From ffffaecc7cf710eddf31e3723824ebd02a66d8ca Mon Sep 17 00:00:00 2001 From: Erick Matsen Date: Thu, 6 Jun 2024 09:11:27 -0700 Subject: [PATCH] gpu index improvement --- netam/common.py | 28 +++++++++++++--------------- 1 file changed, 13 insertions(+), 15 deletions(-) diff --git a/netam/common.py b/netam/common.py index 720bc314..deb2131d 100644 --- a/netam/common.py +++ b/netam/common.py @@ -142,10 +142,10 @@ def stack_heterogeneous(tensors, pad_value=0.0): return torch.stack(padded_tensors) -def find_least_used_cuda_gpu(default_value): +def find_least_used_cuda_gpu(): """ Find the least used CUDA GPU on the system using nvidia-smi. - If they are all idle, return the default value. + If they are all idle, return None. """ result = subprocess.run( ["nvidia-smi", "--query-gpu=utilization.gpu", "--format=csv,nounits,noheader"], @@ -153,23 +153,19 @@ def find_least_used_cuda_gpu(default_value): text=True, ) if result.returncode != 0: - print("Error running nvidia-smi; choosing GPU 0.") - return 0 + print(f"Error running nvidia-smi.") + return None utilization = [int(x) for x in result.stdout.strip().split("\n")] if max(utilization) == 0: - gpu_to_use = default_value - else: - gpu_to_use = utilization.index(min(utilization)) - print( - f"Picking GPU {gpu_to_use}; default {default_value}; utilization: {utilization}" - ) - return gpu_to_use + return None # All GPUs are idle. + # else: + return utilization.index(min(utilization)) -def pick_device(jobid): +def pick_device(gpu_index=0): """ Pick a device for PyTorch to use. If CUDA is available, use the least used - GPU, and if all are idle use a GPU based on the jobid. + GPU, and if all are idle use the gpu_index modulo the number of GPUs. """ # check that CUDA is usable @@ -181,8 +177,10 @@ def check_CUDA(): return False if torch.backends.cudnn.is_available() and check_CUDA(): - print(f"Using CUDA for job {jobid}") - which_gpu = find_least_used_cuda_gpu(jobid % torch.cuda.device_count()) + which_gpu = find_least_used_cuda_gpu() + if which_gpu is None: + which_gpu = gpu_index % torch.cuda.device_count() + print(f"Using CUDA GPU {which_gpu}") return torch.device(f"cuda:{which_gpu}") elif torch.backends.mps.is_available(): print("Using Metal Performance Shaders")