You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thanks for your excellent work.
Due to the lack of center coordinates, I am not able to extract the images from all regions of a scene for semantic segmentation. When I use the habitat version of the original matterport dataset that is downloaded from download_mp.py, it has the centers of regions. Is there any other way to get centers, or to get all regions somehow without the center?
I tried doing things like using the coords door, ceiling, etc to find a center, but all were bad, as I couldn't point to which direction it should move, in order to reach the center. I think a workaround would be to detect all walls and ceilings, then compute the centers that way, but I doubt this will work for all images. Is there any other workaround?
This is the result from minival/00800-TEEsavR23oF and hm3d_annotated_minival_basis.scene_dataset_config.json
House has 0 levels, 14 regions and 661 objects
House center:[0. 0. 0.] dims:[-inf -inf -inf]
Region id:_-1, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_1, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_2, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_3, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_4, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_5, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_6, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_7, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_8, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_9, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_10, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_11, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_12, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_13, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
This is from mp3d/1LXtFkjw3qL and mp3d.scene_dataset_config.json
Thanks for your excellent work.
Due to the lack of center coordinates, I am not able to extract the images from all regions of a scene for semantic segmentation. When I use the habitat version of the original matterport dataset that is downloaded from download_mp.py, it has the centers of regions. Is there any other way to get centers, or to get all regions somehow without the center?
I tried doing things like using the coords door, ceiling, etc to find a center, but all were bad, as I couldn't point to which direction it should move, in order to reach the center. I think a workaround would be to detect all walls and ceilings, then compute the centers that way, but I doubt this will work for all images. Is there any other workaround?
This is the result from minival/00800-TEEsavR23oF and hm3d_annotated_minival_basis.scene_dataset_config.json
House has 0 levels, 14 regions and 661 objects
House center:[0. 0. 0.] dims:[-inf -inf -inf]
Region id:_-1, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_1, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_2, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_3, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_4, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_5, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_6, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_7, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_8, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_9, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_10, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_11, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_12, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
Region id:_13, category:None, center:[0. 0. 0.], dims:[-inf -inf -inf]
This is from mp3d/1LXtFkjw3qL and mp3d.scene_dataset_config.json
Region id:2_0, category:bedroom, center:[-0.696105 5.876904 7.47785 ], dims:[5.82755 5.0632906 4.642979 ]
Region id:2_1, category:bedroom, center:[-0.73821497 5.869445 13.285263 ], dims:[5.69943 5.0556297 6.9206686]
Region id:2_2, category:bathroom, center:[-1.5556049 5.855009 16.014853 ], dims:[3.92283 4.8258 2.7374992]
Region id:2_3, category:toilet, center:[-0.1834985 4.628419 15.450899 ], dims:[1.273465 2.3871403 1.513999 ]
Region id:2_4, category:spa/sauna, center:[-1.038781 4.380009 4.0081596], dims:[3.648958 1.9890797 2.3295202]
Region id:1_5, category:porch/terrace/deck, center:[-5.63754 1.6281538 11.358154 ], dims:[ 3.8106003 3.0849504 11.70929 ]
Region id:1_6, category:kitchen, center:[-1.6988602 4.5161204 -0.6340549], dims:[7.36716 7.813819 7.249289]
Region id:1_7, category:hallway, center:[-4.595725 1.6373835 4.9533896], dims:[1.73205 2.9854317 3.9453 ]
Region id:1_8, category:stairs, center:[1.414272 3.6792169 2.6212902], dims:[1.354676 5.7876062 5.110919 ]
Region id:1_9, category:stairs, center:[-4.5807953 1.6682456 3.214875 ], dims:[1.8436699 2.884709 0.5157094]
Region id:1_10, category:office, center:[-0.82038 1.656003 15.7973 ], dims:[5.5746 3.0550919 2.8691978]
Region id:1_11, category:living room, center:[-0.803185 1.6077166 9.955522 ], dims:[5.45431 2.960826 8.798361]
Region id:1_12, category:hallway, center:[1.9568756 2.5135574 6.4436903], dims:[4.127609 5.003624 9.56222 ]
Region id:0_13, category:closet, center:[ 0.539799 -1.6975722 4.8729296], dims:[0.6300919 2.7176151 0.72369957]
Region id:1_14, category:hallway, center:[ 3.03258 1.5403118 14.23005 ], dims:[1.9445 3.0837345 6.0061016]
Region id:0_15, category:bathroom, center:[ 0.5301975 -1.68649 14.789148 ], dims:[2.610045 2.730423 4.872699]
Region id:0_16, category:bedroom, center:[-4.1186237 -1.6176748 15.797 ], dims:[6.673073 2.6894484 2.7996006]
Region id:0_17, category:bedroom, center:[-4.6803603 -1.6154566 12.89305 ], dims:[5.579221 2.685926 2.9934998]
Region id:0_18, category:bedroom, center:[-4.6226 -1.61621 9.868441], dims:[5.5316 2.6871195 3.0303192]
Region id:0_19, category:bedroom, center:[-4.574565 -1.6151962 6.9728546], dims:[5.44477 2.6855097 2.7280297]
Region id:0_20, category:hallway, center:[-0.46183947 -1.6429033 8.91875 ], dims:[ 2.5349011 2.6403122 10.9487 ]
Region id:0_21, category:toilet, center:[ 1.0019575 -1.6828442 5.910165 ], dims:[1.413585 2.723012 1.0809898]
Region id:0_22, category:closet, center:[ 0.884981 -1.6886387 8.2303705], dims:[1.2529579 2.7319617 2.2224197]
Region id:0_23, category:closet, center:[ 0.895914 -1.6896095 11.102665 ], dims:[1.311772 2.7334614 2.2736702]
Region id:0_24, category:stairs, center:[-0.43271753 -2.6956449 3.1824796 ], dims:[2.453765 0.36514997 0.60734034]
Region id:0_25, category:hallway, center:[ 0.34897995 -1.0808079 0.7692351 ], dims:[3.0130801 2.8645244 4.5243893]
Region id:0_26, category:bathroom, center:[ 1.0604529 -1.028461 -2.856915 ], dims:[1.6081738 2.7615576 2.7168703]
Region id:1_27, category:porch/terrace/deck, center:[ 3.139145 2.605465 -1.3372247], dims:[1.8337297 5.35499 6.0002294]
Region id:0_28, category:stairs, center:[ 1.280018 -1.1482306 1.670922 ], dims:[1.015024 2.3518791 2.130136 ]
Region id:0_29, category:workout/gym/exercise, center:[-3.04459 -1.0788939 0.6934099], dims:[4.3276005 2.8613925 4.1135197]
Region id:0_30, category:bedroom, center:[-2.4535055 -1.0308 -2.7611852], dims:[5.3881693 2.7652996 2.7803698]
The text was updated successfully, but these errors were encountered: