-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_BER_PER_over_MCS.m
319 lines (251 loc) · 13.2 KB
/
main_BER_PER_over_MCS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
clear all;
close all;
% This script calculates BERs and PERs for DECT-2020 New Radio packets over various wireless channels (AWGN, Rayleigh, Rician) for different MCSs.
%
% For each MCS and each SNR, the same number of packets is calculated.
% Results are saved in the folder results/.
% When this script is finished, the scripts main_BER_PER_over_MCS_plot_PCC.m and main_BER_PER_over_MCS_plot_PDC.m can be used to plot the results.
%
% Executing this script as is should take only a few seconds to minutes, depending of the system and multi-core capabilities (parfor).
rng('shuffle');
%rng(1140598280);
warning('off');
if exist('results', 'dir')
lib_util.clear_directory('results');
else
mkdir('results');
end
fprintf('Starting at %s\n', datestr(now,'HH:MM:SS'));
%profile on
% choose mcs to simulate and maximum number of harq retransmissions
mcs_index_vec = [1,2,3,4]; % part 3, Table A-1
max_harq_retransmissions = 0;
% simulation range for link level simulation
snr_db_vec_global = -10 : 1.0 : 30;
snr_db_vec_global = repmat(snr_db_vec_global,numel(mcs_index_vec),1);
% Packets per mcs and snr. Increase this number to get smoother curves.
n_packets_per_snr = 0.5e3;
% result container for PCC
n_bits_PCC_sent_global = zeros(numel(mcs_index_vec), numel(snr_db_vec_global(1,:))); % BER uncoded
n_bits_PCC_error_global = zeros(numel(mcs_index_vec), numel(snr_db_vec_global(1,:))); % BER uncoded
n_packets_PCC_sent_global = zeros(numel(mcs_index_vec), numel(snr_db_vec_global(1,:))); % PER
n_packets_PCC_error_global = zeros(numel(mcs_index_vec), numel(snr_db_vec_global(1,:))); % PER
% result container for PDC
n_bits_PDC_sent_global = zeros(numel(mcs_index_vec), numel(snr_db_vec_global(1,:))); % BER uncoded
n_bits_PDC_error_global = zeros(numel(mcs_index_vec), numel(snr_db_vec_global(1,:))); % BER uncoded
n_packets_PDC_sent_global = zeros(numel(mcs_index_vec), numel(snr_db_vec_global(1,:))); % PER
n_packets_PDC_error_global = zeros(numel(mcs_index_vec), numel(snr_db_vec_global(1,:))); % PER
bps_global = zeros(numel(mcs_index_vec), 1); % bits per symbol, PDC only
tbs_global = zeros(numel(mcs_index_vec), 1); % transport block size, PDC only
cnt = 1;
for mcs_index = mcs_index_vec
% these variables need to be set before creating tx and rx
mac_meta_tx.u = 1; % mu = 1, 2, 4 or 8
mac_meta_tx.b = 1; % beta = 1, 2, 4, 8, 12 or 16
mac_meta_tx.PacketLengthType = 0; % 0 for subslots, 1 for slots
mac_meta_tx.PacketLength = 2; % min is 1, max is 16 according to Table 6.2.1-2a in part 4
mac_meta_tx.tm_mode_0_to_11 = 0; % Table 7.2-1, mode determines wether transmission is closed loop or not, values range from 0 to 11
mac_meta_tx.mcs_index = mcs_index; % Table A-1 in part 3, values range from 0 to 11
mac_meta_tx.Z = 6144; % 5.3 -> so far only Z=6144 fully supported, 2048 only at TX, RX missing (Matlab has no option for Z=2048 in LTE toolbox)
mac_meta_tx.oversampling = 2; % By how much do we oversample our ofdm packet compared to critical sampling (insert zeros at specturm edges before IFFT)?
mac_meta_tx.codebook_index = 0; % 6.3.4, any value other than 0 makes packet beamformed, throws error if out of bound (depends on tm_mode_0_to_11)
mac_meta_tx.PLCF_type = 2; % Type 1 is 40 bits, Type 2 is 80 bits
mac_meta_tx.rv = 0; % HARQ version, values range from 0, 1, 2 to 3 (right HARQ retransmission order is 0 2 3 1)
mac_meta_tx.network_id = de2bi(1e6,32,'left-msb'); % 7.6.6 must be given as a 32 bit vector with network_id(1) being the MSB, network_id must be known for scrambler on PHY
% temporary restrictions
if mac_meta_tx.Z ~= 6144
error('Z must be 6144.');
end
% create tx
verbose = 0;
tx = dect_tx(verbose, mac_meta_tx);
% additional rx configuration
mac_meta_rx = mac_meta_tx;
mac_meta_rx.N_RX = 1;
% synchronization before the FFT (i.e. in time domain) based on the STF
mac_meta_rx.synchronization.pre_FFT.active = false;
if mac_meta_rx.synchronization.pre_FFT.active == true
% symbol time offset (STO), i.e. detection, coarse peak search, fine peak search
mac_meta_rx.synchronization.pre_FFT.sto_config = lib_rx.sync_STO_param(mac_meta_tx.u, mac_meta_tx.b, mac_meta_tx.oversampling);
% carrier frequency offset (CFO), i.e. fractional and integer CFO
mac_meta_rx.synchronization.pre_FFT.cfo_config = lib_rx.sync_CFO_param(mac_meta_tx.u);
mac_meta_rx.synchronization.pre_FFT.cfo_config.active_fractional = false;
mac_meta_rx.synchronization.pre_FFT.cfo_config.active_integer = false;
end
% synchronization in frequency domain based on STF and/or DRS
mac_meta_rx.synchronization.post_FFT.sto_fractional = false;
mac_meta_rx.synchronization.post_FFT.cfo_residual = false;
% create rx
rx = dect_rx(verbose, mac_meta_rx);
% Local variables for a single MCS, required for parfor. Each worker can write into these arrays.
snr_db_vec = snr_db_vec_global(cnt,:);
% PCC
n_bits_PCC_sent_local = zeros(1, numel(snr_db_vec));
n_bits_PCC_error_local = zeros(1, numel(snr_db_vec));
n_packets_PCC_sent_local = zeros(1, numel(snr_db_vec));
n_packets_PCC_error_local = zeros(1, numel(snr_db_vec));
% PDC
n_bits_PDC_sent_local = zeros(1, numel(snr_db_vec));
n_bits_PDC_error_local = zeros(1, numel(snr_db_vec));
n_packets_PDC_sent_local = zeros(1, numel(snr_db_vec));
n_packets_PDC_error_local = zeros(1, numel(snr_db_vec));
%for i=1:numel(snr_db_vec)
parfor i=1:numel(snr_db_vec)
warning('off');
% copy handle objects, changes within parfor are not permanent!
txx = tx;
rxx = rx;
% run simulation over multiple packets
result = simulate_packets(txx, rxx, snr_db_vec(i), n_packets_per_snr, max_harq_retransmissions);
% each worker writes to local PCC result container
n_bits_PCC_sent_local(1,i) = result.n_bits_PCC_sent;
n_bits_PCC_error_local(1,i) = result.n_bits_PCC_error;
n_packets_PCC_sent_local(1,i) = n_packets_per_snr;
n_packets_PCC_error_local(1,i) = result.n_packets_PCC_error;
% each worker writes to local PDC result container
n_bits_PDC_sent_local(1,i) = result.n_bits_PDC_sent;
n_bits_PDC_error_local(1,i) = result.n_bits_PDC_error;
n_packets_PDC_sent_local(1,i) = n_packets_per_snr;
n_packets_PDC_error_local(1,i) = result.n_packets_PDC_error;
end
fprintf('Done! MCS %d of %d at %s\n', cnt, numel(mcs_index_vec), datestr(now,'HH:MM:SS'));
% copy from local to global PCC results container
n_bits_PCC_sent_global(cnt,:) = n_bits_PCC_sent_local;
n_bits_PCC_error_global(cnt,:) = n_bits_PCC_error_local;
n_packets_PCC_sent_global(cnt,:) = n_packets_PCC_sent_local;
n_packets_PCC_error_global(cnt,:) = n_packets_PCC_error_local;
% copy from local to global PDC results container
n_bits_PDC_sent_global(cnt,:) = n_bits_PDC_sent_local;
n_bits_PDC_error_global(cnt,:) = n_bits_PDC_error_local;
n_packets_PDC_sent_global(cnt,:) = n_packets_PDC_sent_local;
n_packets_PDC_error_global(cnt,:) = n_packets_PDC_error_local;
bps_global(cnt) = tx.phy_4_5.mcs.N_bps;
tbs_global(cnt) = tx.phy_4_5.N_TB_bits;
cnt = cnt + 1;
end
% save all variables
save('results/var_all.mat');
%profile viewer
%profile off
function [result] = simulate_packets(txx, rxx, snr_dB, n_packets_per_snr, max_harq_retransmissions)
n_bits_PCC_sent = 0;
n_bits_PCC_error = 0;
n_packets_PCC_error = 0;
n_bits_PDC_sent = 0;
n_bits_PDC_error = 0;
n_packets_PDC_error = 0;
% how many antennas do we have?
N_TX = txx.phy_4_5.tm_mode.N_TX;
N_RX = rxx.mac_meta.N_RX;
% create channel
ch = lib_rf_channel.rf_channel();
ch.verbose = 0;
ch.verbose_cp = txx.phy_4_5.numerology.N_b_CP*txx.mac_meta.oversampling;
ch.type = 'rician';
ch.amp = 1.0;
ch.noise = true;
ch.snr_db = snr_dB;
ch.spectrum_occupied = txx.phy_4_5.n_spectrum_occupied/txx.mac_meta.oversampling;
ch.N_TX = N_TX;
ch.N_RX = N_RX;
ch.awgn_random_source = 'global';
ch.awgn_randomstream = RandStream('mt19937ar','Seed', randi(1e9,[1 1]));
ch.a_sto = 0;
ch.a_cfo = 0;
ch.a_err_phase = 0;
ch.r_random_source = 'global';
ch.r_seed = randi(1e9,[1 1]);
ch.r_sto = 0;
ch.r_cfo = 0;
ch.r_err_phase = 0;
ch.r_samp_rate = txx.phy_4_5.numerology.B_u_b_DFT*txx.mac_meta.oversampling;
ch.r_max_doppler = 1.946; % 1.946 19.458
ch.r_type = 'TDL-v';
ch.r_DS_desired = 10^(-7.03 + 0.00*randn(1,1));
ch.r_K = db2pow(9.0 + 0.00*randn(1,1)); %93e-9;
ch.r_interpolation = true;
ch.r_gains_active = true;
ch.init_rayleigh_rician_channel();
% adapt Wiener coefficients to channel conditions
rxx.overwrite_wiener(1/10^(snr_dB/10), 20, 363e-9);
% give rx handles so it can debug
rxx.tx_handle = txx;
rxx.ch_handle = ch;
% how many bits does tx need?
N_TB_bits = txx.phy_4_5.N_TB_bits;
for j=1:1:n_packets_per_snr
% generate random PCC bits
if txx.mac_meta.PLCF_type == 1
PCC_user_bits = randi([0 1], 40, 1);
elseif txx.mac_meta.PLCF_type == 2
PCC_user_bits = randi([0 1], 80, 1);
end
% generate bits
PDC_user_bits = randi([0 1], N_TB_bits, 1);
% harq abort conditions
pcc_decoded_successfully = false;
pdc_decoded_successfully = false;
for z=0:1:max_harq_retransmissions
% there is a specific order for the redundany version
if mod(z,4) == 0
txx.mac_meta.rv = 0; % initial transmission
rxx.mac_meta.rv = 0; % initial transmission
elseif mod(z,4) == 1
txx.mac_meta.rv = 2;
rxx.mac_meta.rv = 2;
elseif mod(z,4) == 2
txx.mac_meta.rv = 3;
rxx.mac_meta.rv = 3;
elseif mod(z,4) == 3
txx.mac_meta.rv = 1;
rxx.mac_meta.rv = 1;
end
% let tx create the packet
samples_antenna_tx = txx.generate_packet(PCC_user_bits, PDC_user_bits);
% pass samples through channel
samples_antenna_rx = ch.pass_samples(samples_antenna_tx, 0);
% make next channel impulse response independent from this one
ch.reset_random_rayleigh_rician();
% Now let rx decode the frame.
% Rx can do so because it's mac_meta is the exact same.
[PCC_user_bits_recovered, PDC_user_bits_recovered] = rxx.demod_decode_packet(samples_antenna_rx);
% measure the BER uncoded
n_bits_PCC_sent = n_bits_PCC_sent + numel(txx.packet_data.pcc_enc_dbg.d);
n_bits_PCC_error = n_bits_PCC_error + sum(abs(double(txx.packet_data.pcc_enc_dbg.d) - double(rxx.packet_data.pcc_dec_dbg.d_hard)));
n_bits_PDC_sent = n_bits_PDC_sent + numel(txx.packet_data.pdc_enc_dbg.d);
n_bits_PDC_error = n_bits_PDC_error + sum(abs(double(txx.packet_data.pdc_enc_dbg.d) - double(rxx.packet_data.pdc_dec_dbg.d_hard)));
% we might be done
if numel(PCC_user_bits_recovered) ~= 0
pcc_decoded_successfully = true;
end
% we might be done
if numel(PDC_user_bits_recovered) ~= 0
pdc_decoded_successfully = true;
end
% we continue sending retransmissions as long as not both were decoded correctly
if pcc_decoded_successfully == true && pdc_decoded_successfully == true
break;
end
end
% delete harq buffer
rxx.harq_buf_40 = [];
rxx.harq_buf_80 = [];
rxx.harq_buf = [];
% check if frame was decoded correctly, maybe there's still an error despite all the harq iterations
if pcc_decoded_successfully == false
n_packets_PCC_error = n_packets_PCC_error + 1;
end
% check if frame was decoded correctly, maybe there's still an error despite all the harq iterations
if pdc_decoded_successfully == false
n_packets_PDC_error = n_packets_PDC_error + 1;
end
end
% delete channel
delete(ch);
result.n_bits_PCC_sent = n_bits_PCC_sent;
result.n_bits_PCC_error = n_bits_PCC_error;
result.n_packets_PCC_error = n_packets_PCC_error;
result.n_bits_PDC_sent = n_bits_PDC_sent;
result.n_bits_PDC_error = n_bits_PDC_error;
result.n_packets_PDC_error = n_packets_PDC_error;
end