-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path5_pair_wise_mi.py
118 lines (81 loc) · 2.87 KB
/
5_pair_wise_mi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import pandas as pd
import numpy as np
import sys
from sklearn import preprocessing as pp
def shannon_entropy(c):
c_normalized = c / float(np.sum(c))
c_normalized = c_normalized[np.nonzero(c_normalized)]
H = -sum(c_normalized * np.log2(c_normalized))
return H
def calc_mi(x, y, bins = 5):
c_xy = np.histogram2d(x, y, bins)[0]
c_x = np.histogram(x, bins)[0]
c_y = np.histogram(y, bins)[0]
h_x = shannon_entropy(c_x)
h_y = shannon_entropy(c_y)
h_xy = shannon_entropy(c_xy)
mi = h_x + h_y - h_xy
return mi, h_x, h_y
def class_feature_MI(X, y):
sample_size, feature_size = X.shape
# check each gene to find the max I(f_i, y)
max_mi = 0
# writing in a file (class - feature MI)
f_class_feat = open('All_Class_feature_MI.txt', 'w')
for i in range(feature_size):
feat_i = X.iloc[:, i].tolist()
mi, _, _ = calc_mi(feat_i, y)
f_class_feat.write(str(X.columns[i]) + '\t' + str(mi) + '\n')
f_class_feat.close()
def main():
data_file = sys.argv[1] # original snp count file (all_data.txt)
selected_genes_file = sys.argv[2] # filtered genes file (selected_gene_file.txt)
original_X = pd.read_table(data_file, sep = '\t', header = 'infer')
original_y = original_X['Cancer_type']
original_y = original_X['Cancer_type'].values
le = pp.LabelEncoder()
le.fit(original_y)
y = le.transform(original_y)
original_X.drop('Cancer_type', axis = 1, inplace = True)
selected_genes = pd.read_table(selected_genes_file, header = None)[0].tolist()
X = original_X.filter(selected_genes, axis = 1)
gene_names = X.columns.values
sample_size, feature_size = X.shape
print('Filtered Data Dim: ' + str(X.shape))
# compute the entropy of all genes
H_dict = dict()
for i in range(0, feature_size):
gene = X.iloc[:, i].tolist()
_, h_x, _ = calc_mi(gene, gene)
H_dict[gene_names[i]] = h_x
# write the entropy values for each gene in a file
f_h = open('All_Gene_entropy_values.txt', 'w')
for key in H_dict:
f_h.write(str(key) + '\t' + str(H_dict[key]) + '\n')
f_h.close()
# first compute all gene pair mutual information
f_pair_mi = open('All_Gene_pair_MI.txt', 'w')
MI_mat = np.zeros((feature_size, feature_size))
for i in range(0, feature_size):
gene1 = X.iloc[:, i].tolist()
gene1_name = gene_names[i]
for j in range(i + 1, feature_size):
gene2 = X.iloc[:, j].tolist()
gene2_name = gene_names[j]
mi, h_g1, h_g2 = calc_mi(gene1, gene2)
f_pair_mi.write(str(gene1_name) + '\t' + str(gene2_name) + '\t' + str(mi) + '\n')
MI_mat[i, j] = mi
if(i % 100 == 0 and i > 1):
print(str(i) + ' genes processed...')
f_pair_mi.close()
# write the pair-wise MI values in a file
f_mi = open('All_Pair_wise_gene_MI.txt', 'w')
for i in range(feature_size):
for j in range(feature_size):
f_mi.write(str(MI_mat[i, j]) + '\t')
f_mi.write('\n')
f_mi.close()
# get the MI for each feature with class f(f, c)
class_feature_MI(X, y)
if __name__ == "__main__":
main()