Skip to content

Latest commit

 

History

History
112 lines (89 loc) · 2.98 KB

R-setup.md

File metadata and controls

112 lines (89 loc) · 2.98 KB

R setup and example for MMLSpark

Installation

Requirements: You will need to have R and devtools installed on your machine.

To install the current MMLSpark package for R use:

...
devtools::install_url("https://mmlspark.azureedge.net/rrr/mmlspark-1.0.0-rc3.zip")
...

Importing libraries and setting up spark context

It will take some time to install all dependencies. Then, run:

...
library(sparklyr)
library(dplyr)
config <- spark_config()
config$sparklyr.defaultPackages <- "com.microsoft.ml.spark:mmlspark_2.11:1.0.0-rc3"
sc <- spark_connect(master = "local", config = config)
...

This will create a spark context on local machine.

We will then need to import the R wrappers:

...
library(mmlspark)
...

Example

We can use the faithful dataset in R:

...
faithful_df <- copy_to(sc, faithful)
cmd_model = ml_clean_missing_data(
              x=faithful_df,
              inputCols = c("eruptions", "waiting"),
              outputCols = c("eruptions_output", "waiting_output"),
              only.model=TRUE)
sdf_transform(cmd_model, faithful_df)
...

You should see the output:

...
# Source:   table<sparklyr_tmp_17d66a9d490c> [?? x 4]
# Database: spark_connection
   eruptions waiting eruptions_output waiting_output
          <dbl>   <dbl>            <dbl>          <dbl>
          1     3.600      79            3.600             79
          2     1.800      54            1.800             54
          3     3.333      74            3.333             74
          4     2.283      62            2.283             62
          5     4.533      85            4.533             85
          6     2.883      55            2.883             55
          7     4.700      88            4.700             88
          8     3.600      85            3.600             85
          9     1.950      51            1.950             51
          10     4.350      85            4.350             85
          # ... with more rows
...

Azure Databricks

In Azure Databricks, you can install devtools and the spark package from URL and then use spark_connect with method = "databricks":

install.packages("devtools")
devtools::install_url("https://mmlspark.azureedge.net/rrr/mmlspark-1.0.0-rc3.zip")
library(sparklyr)
library(dplyr)
sc <- spark_connect(method = "databricks")
faithful_df <- copy_to(sc, faithful)
unfit_model = ml_light_gbmregressor(sc, maxDepth=20, featuresCol="waiting", labelCol="eruptions", numIterations=10, unfit.model=TRUE)
ml_train_regressor(faithful_df, labelCol="eruptions", unfit_model)

Building from Source

Our R bindings are built as part of the normal build process. To get a quick build, start at the root of the mmlspark directory, and:

./runme TESTS=NONE
unzip ./BuildArtifacts/packages/R/mmlspark-0.0.zip

You can then run R in a terminal and install the above files directly:

...
devtools::install_local("./BuildArtifacts/packages/R/mmlspark")
...