Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The train/val split in domainnet #6

Open
FrankZhangRp opened this issue Oct 8, 2022 · 2 comments
Open

The train/val split in domainnet #6

FrankZhangRp opened this issue Oct 8, 2022 · 2 comments

Comments

@FrankZhangRp
Copy link

we find that the train sets are kept the same size on all domains as the 'min_data_len' and we think there is a mistake:

min_data_len = int(min_data_len * 0.05)

@FrankZhangRp
Copy link
Author

if the 'trainset' is only 5% of the total dataset, the training process is too toy and unstable with about 100+ samples per client without pretrained weights. We think the train/val split may be 95% / 5%, but in this code is 5% / 5%.

@dwelcaslu
Copy link

dwelcaslu commented Jan 20, 2025

I re-implemented this part like this for the domainet dataset (federated/fed_domainnet.py):

Replaced this:

    min_data_len = min(len(clipart_trainset), len(infograph_trainset), len(painting_trainset), len(quickdraw_trainset), len(real_trainset), len(sketch_trainset))
    val_len = int(min_data_len * 0.05)
    min_data_len = int(min_data_len * 0.05)

    clipart_valset   = torch.utils.data.Subset(clipart_trainset, list(range(len(clipart_trainset)))[-val_len:])
    clipart_trainset = torch.utils.data.Subset(clipart_trainset, list(range(min_data_len)))
    
    infograph_valset   = torch.utils.data.Subset(infograph_trainset, list(range(len(infograph_trainset)))[-val_len:])
    infograph_trainset = torch.utils.data.Subset(infograph_trainset, list(range(min_data_len)))
    
    painting_valset   = torch.utils.data.Subset(painting_trainset, list(range(len(painting_trainset)))[-val_len:])
    painting_trainset = torch.utils.data.Subset(painting_trainset, list(range(min_data_len)))

    quickdraw_valset   = torch.utils.data.Subset(quickdraw_trainset, list(range(len(quickdraw_trainset)))[-val_len:])
    quickdraw_trainset = torch.utils.data.Subset(quickdraw_trainset, list(range(min_data_len)))

    real_valset   = torch.utils.data.Subset(real_trainset, list(range(len(real_trainset)))[-val_len:])
    real_trainset = torch.utils.data.Subset(real_trainset, list(range(min_data_len)))

    sketch_valset   = torch.utils.data.Subset(sketch_trainset, list(range(len(sketch_trainset)))[-val_len:])
    sketch_trainset = torch.utils.data.Subset(sketch_trainset, list(range(min_data_len)))

By this:

    idx_train, idx_valid = train_test_split(range(len(clipart_trainset)), test_size=valid_size, random_state=42)
    clipart_valset =  torch.utils.data.Subset(clipart_trainset, idx_valid)
    clipart_trainset =  torch.utils.data.Subset(clipart_trainset, idx_train)

    idx_train, idx_valid = train_test_split(range(len(infograph_trainset)), test_size=valid_size, random_state=42)
    infograph_valset =  torch.utils.data.Subset(infograph_trainset, idx_valid)
    infograph_trainset =  torch.utils.data.Subset(infograph_trainset, idx_train)

    idx_train, idx_valid = train_test_split(range(len(painting_trainset)), test_size=valid_size, random_state=42)
    painting_valset =  torch.utils.data.Subset(painting_trainset, idx_valid)
    painting_trainset =  torch.utils.data.Subset(painting_trainset, idx_train)

    idx_train, idx_valid = train_test_split(range(len(quickdraw_trainset)), test_size=valid_size, random_state=42)
    quickdraw_valset =  torch.utils.data.Subset(quickdraw_trainset, idx_valid)
    quickdraw_trainset =  torch.utils.data.Subset(quickdraw_trainset, idx_train)

    idx_train, idx_valid = train_test_split(range(len(real_trainset)), test_size=valid_size, random_state=42)
    real_valset =  torch.utils.data.Subset(real_trainset, idx_valid)
    real_trainset =  torch.utils.data.Subset(real_trainset, idx_train)

    idx_train, idx_valid = train_test_split(range(len(sketch_trainset)), test_size=valid_size, random_state=42)
    sketch_valset =  torch.utils.data.Subset(sketch_trainset, idx_valid)
    sketch_trainset =  torch.utils.data.Subset(sketch_trainset, idx_train)

If you use valid_size=0.05 then you get train/val split with 95% / 5% percentages.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants