-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcalc_purity.R
66 lines (56 loc) · 1.85 KB
/
calc_purity.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#Copyright 2012, Paul Medvedev
#
#This file is part of Cnfind
#
#Cnfind is free software: you can redistribute it and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation, either version 3 of the License, or
#(at your option) any later version.
#
#Cnfind is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.
#
#You should have received a copy of the GNU General Public License
#along with cnfind (see file gpl.txt). If not, see <http://www.gnu.org/licenses/>.
#
args <- commandArgs(TRUE)
inputName <- args[1]
outBase <- args[2]
win <- read.table(inputName, header = T)
observed <- win$rOsEs
#filter out NA's
observed <- observed[!is.na(observed)]
myerr <- function(purity) {
truth <- (observed - 1 + purity ) / purity
perr1 <- (1 - truth) ^ 2
perr2 <- (0.5 - truth) ^ 2
perr3 <- (0 - truth) ^ 2
perr4 <- (1.5 - truth) ^ 2
perr5 <- (2.0 - truth) ^ 2
perr <- pmin(perr1, perr2, perr3, perr4, perr5)
terr <- sqrt(sum(perr))
return(terr)
}
purvals <- seq(1,100) * 0.01
errvals <- sapply(purvals, myerr)
bestp <- 0
besterr <- 10000000
for (p in 1:100) {
er <- myerr(p * 0.01)
#cat("At ", p, " we have error ", er, "\n")
if (er < besterr) {
besterr <- er
bestp <- p * 0.01
}
}
cat("purity_estimate ", bestp, "\n" )
outputPlotName <- paste(outBase, ".purity_error.pdf", sep='')
pdf(outputPlotName)
plot(purvals, errvals, ylim = c(besterr,besterr* 2))
dev.off()
outputPlotName <- paste(outBase, ".purity_evidence.pdf", sep='')
pdf(outputPlotName)
plot(seq(1,length(observed)), (observed - 1 + bestp) / bestp, ylim = c(0,4))
dev.off()