-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaximumSumCircularSubarray.java
117 lines (102 loc) · 3.61 KB
/
MaximumSumCircularSubarray.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
package techQuestions;
/*
Purpose: Given a circular array C of integers represented by A, find the maximum possible
sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array.
(Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once.
(Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2
<= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Author: Erich Meissner
Date: 5/15/20
Time: 6:58 PM
*/
import java.io.InputStream;
import java.util.Properties;
public class MaximumSumCircularSubarray {
public static void main(String[] args) {
int[] A = {5,-3,5};
System.out.println(maxSubarraySumCircular(A));
}
public static int maxSubarraySumCircular(int[] A) {
// initialized these two variables to equal first array element
int ans = A[0];
int cur = A[0];
int len = A.length;
for (int i = 1; i < len; i++) {
// for each element in the array, cur holds the maximum sum up to that point
cur = A[i] + Math.max(cur, 0);
// System.out.println(cur);
ans = Math.max(ans, cur);
}
// System.out.println(ans);
// the ans variable now holds the answer for 1 interval subarrays
// next we must calculate the answer for 2 interval subarrays
// for each i, we want to know the maximum of sum(A[j:]) with j >= i+2
int[] rightSums = new int[len];
// initalize the end of this rightsum array
rightSums[len-1] = A[len-1];
for (int i = len - 2; i >= 0; i--) {
// start at second to last index
rightSums[i] = rightSums[i+1] + A[i];
}
// we know that maxRight[i] is equal to the max(j >= 1) rightsums[j]
int[] maxRight = new int[len];
maxRight[len-1] = A[len-1];
for (int i = len - 2; i>=0; i--) {
maxRight[i] = Math.max(maxRight[i+1], rightSums[i]);
}
int leftSum = 0;
for (int i = 0; i < len-2; i++) {
leftSum = leftSum + A[i];
ans = Math.max(ans, leftSum + maxRight[i+2]);
}
return ans;
// brute force concept: for each index i in the array,
// test every possible length and replace maxSum with largest
// int maxSum = Integer.MIN_VALUE;
// for (int i = 0; i < A.length; i++) {
// int sum = A[i];
//// System.out.println(sum);
// if (sum > maxSum) {
// maxSum = sum;
// }
// for (int j = i + 1; j < A.length; j++) {
// sum = sum + A[j];
// if (sum > maxSum) {
// maxSum = sum;
// }
// }
// if (i > 0) {
//// System.out.println(i);
// for (int k = 0; k < i; k++) {
// sum = sum + A[k];
// if (sum > maxSum) {
// maxSum = sum;
// }
// }
// }
// }
// return maxSum;
}
}