-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_mnli.py
195 lines (165 loc) · 7.59 KB
/
run_mnli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import argparse
import numpy as np
import torch
import constants as const
import data_loader
from RNN import RNN
from CNN import CNN
def eval_model(loader, model, device, criterion, inspect=False):
"""
Helper function to evaluate model performance on the given dataset
@param loader: DataLoader()
@param model: CNN() or RNN()
@param device: device
@param criterion: loss criterion
"""
correct = 0
total = 0
running_loss = 0.0 # Running sum of batch loss value
for p, h, target in loader:
assert(len(p) == len(h) == len(target))
p, h, target = p.to(device), h.to(device), target.to(device)
output = model(p, h)
pred = output.max(1, keepdim=True)[1]
loss = criterion(output, target)
running_loss += loss.item() * len(target) # Undo "elementwise_mean"
total += target.size(0)
correct += pred.eq(target.view_as(pred)).sum().item()
if inspect:
right_preds = []
wrong_preds = []
right_batched = pred.eq(target.view_as(pred))
# Correct
for i, right in enumerate(right_batched):
right = right.item()
if right:
right_preds.append(p[i].cpu().numpy())
if len(right_preds) == 3:
break
# Incorrect
for i, right in enumerate(right_batched):
right = right.item()
if right:
continue
wrong_preds.append(p[i].cpu().numpy())
if len(wrong_preds) == 3:
break
return right_preds, wrong_preds
return (100 * correct / total), (running_loss / total)
def main(args):
"""
Evaluate SNLI model on MNLI data set
"""
# Use CUDA
use_cuda = args.use_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
# Fix random seed
torch.manual_seed(args.seed)
# Generate token-to-index and index-to-token mapping
tok2id, id2tok = data_loader.build_or_load_vocab(
args.train, overwrite=False)
print("*" * 5)
print(args)
# Create DataLoader() objects
params = {
"batch_size": args.batch_size,
"collate_fn": data_loader.collate_fn,
"shuffle": args.shuffle,
"num_workers": args.num_workers,
}
# train_dataset = data_loader.SNLIDataSet(args.train, tok2id)
# train_loader = torch.utils.data.DataLoader(train_dataset, **params)
val_dataset = data_loader.SNLIDataSet(args.val, tok2id)
val_loader = torch.utils.data.DataLoader(val_dataset, **params)
# Initialize model
if args.model == "rnn": # RNN model
model = RNN(
vocab_size=const.MAX_VOCAB_SIZE, # Vocabulary size
emb_dim=const.EMB_DIM, # Embedding dimensions
hidden_dim=args.hidden_dim, # Hidden dimensions
dropout_prob=args.dropout_prob, # Dropout probability
padding_idx=const.PAD_IDX, # Padding token index
num_classes=const.NUM_CLASSES, # Number of class labels
id2tok=id2tok, # Vocabulary
).to(device)
# Load model weights from disk
model.load_state_dict(torch.load(const.MODELS + "rnn.pt"))
model.eval()
elif args.model == "cnn": # CNN model
model = CNN(
vocab_size=const.MAX_VOCAB_SIZE, # Vocabulary size
emb_dim=const.EMB_DIM, # Embedding dimensions
hidden_dim=args.hidden_dim, # Hidden dimensions
kernel_size=args.kernel_size, # Kernel size
dropout_prob=args.dropout_prob, # Dropout probability
padding_idx=const.PAD_IDX, # Padding token index
num_classes=const.NUM_CLASSES, # Number of class labels
id2tok=id2tok, # Vocabulary
).to(device)
# Load model weights from disk
model.load_state_dict(torch.load(const.MODELS + "cnn.pt"))
model.eval()
else:
print("Invalid model specification, exiting")
exit()
# Criterion
criterion = torch.nn.CrossEntropyLoss()
# Model parameters
params = [p for p in model.parameters() if p.requires_grad]
# Inspect correct/incorrect predictions
if args.inspect:
right, wrong = eval_model(val_loader, model, device, criterion,
inspect=True)
print("\nValidation premises with correct predictions:\n")
for i, item in enumerate(right):
text = " ".join([id2tok[idx] for idx in item if idx > 0])
print("#{}\n {}".format(i + 1, text))
print("\nValidation premises with incorrect predictions:\n")
for i, item in enumerate(wrong):
text = " ".join([id2tok[idx] for idx in item if idx > 0])
print("#{}\n {}".format(i + 1, text))
return
# Validation
val_acc, _ = eval_model(val_loader, model, device, criterion)
print("\n Validation accuracy: {}".format(val_acc))
print("*" * 5 + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="PyTorch NL inference")
parser.add_argument("--batch-size", type=int, default=256, metavar="N",
help="mini-batch size for training (default: 256)")
parser.add_argument("--num-workers", type=int, default=8, metavar="N",
help="number of worker threads (default: 8)")
parser.add_argument("--shuffle", type=int, default=1, metavar="S",
help="shuffle training data (default: 1)")
parser.add_argument("--epochs", type=int, default=5, metavar="E",
help="number of epochs to train (default: 5)")
parser.add_argument("--log-interval", type=int, default=100, metavar="L",
help="training log interval (default: 100)")
parser.add_argument("--use-cuda", type=int, default=1, metavar="C",
help="use CUDA (default: 1)")
parser.add_argument("--seed", type=int, default=42, metavar="S",
help="random seed (default: 42)")
parser.add_argument("--emb-dim", type=int, default=300, metavar="D",
help="embedding dimensions (default: 300)")
parser.add_argument("--hidden-dim", type=int, default=100, metavar="H",
help="hidden dimensions (default: 100)")
parser.add_argument("--kernel-size", type=int, default=3, metavar="K",
help="kernel size (default: 3)")
parser.add_argument("--dropout-prob", type=float, default=0.0, metavar="D",
help="dropout probability (default: 0.0)")
parser.add_argument("--lr", type=float, default=1e-3, metavar="L",
help="learning rate (default: 1e-3)")
parser.add_argument("--model", type=str, default="rnn", metavar="M",
help="neural network model")
parser.add_argument("--train", type=str,
default="/scratch/mt3685/nl_data/snli_train.tsv",
metavar="T", help="training file path")
parser.add_argument("--val", type=str,
default="/scratch/mt3685/nl_data/snli_val.tsv",
metavar="V", help="validation file path")
parser.add_argument("--id", type=str, default="debug", metavar="I",
help="experiment ID")
parser.add_argument("--inspect", type=int, default=0, metavar="I",
help="inspect correct/incorrect predictions")
args = parser.parse_args()
main(args)