-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTutorial-Single-Protein-CLI-Step_1.py
238 lines (169 loc) · 8.32 KB
/
Tutorial-Single-Protein-CLI-Step_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
######################################################################
######### Dynamical Network Analysis - Tutorial for command line interface #####
######################################################################
# Load the python package
import dynetan as dna
from dynetan.toolkit import getSelFromNode
import os
import sys
import networkx as nx
from operator import itemgetter
from itertools import islice
import warnings
# Here we turn off `notebookMode` to activate progress bars in the
# command line.
dnap = dna.proctraj.DNAproc(notebookMode=False)
######################################################################
######### User defined values #######
######################################################################
#################################
### File names and paths
# Path where input files will be searched and results be written.
workDir = "./TutorialData/"
# PSF file name
psfFile = os.path.join(workDir, "decarboxylase.0.psf")
# DCD file name
dcdFiles = [os.path.join(workDir, "decarboxylase.1.dcd")]
# dcdFiles = [os.path.join(workDir, "decarboxylase.1.short.dcd")]
# Path where output files will be saved.
pathToData = "./TutorialResults/"
fileNameRoot = "dnaData_SinglePtn"
#################################
### System-specific values
# Segment IDs for regions that will be studied.
segIDs = ["ENZY"]
# Residue name for solvent molecule(s)
h2oName = ["TIP3"]
usrNodeGroups = {}
usrNodeGroups["TIP3"] = {}
usrNodeGroups["TIP3"]["OH2"] = set("OH2 H1 H2".split())
#################################
### Analysis values
# Number of windows created from full simulation.
numWinds = 4
# Sampled frames per window
numSampledFrames = 10
# Number of sampled frames for automatic selection of solvent and ions.
# numAutoFrames = numSampledFrames*numWinds
#################################
### Extra configuration
# Cutoff for contact map (In Angstroms)
cutoffDist = 4.5
# Minimum contact persistance (In ratio of total trajectory frames)
contactPersistence = 0.75
#################################
### Load info to object
dnap.setNumWinds(numWinds)
dnap.setNumSampledFrames(numSampledFrames)
dnap.setCutoffDist(cutoffDist)
dnap.setContactPersistence(contactPersistence)
dnap.setSolvNames(h2oName)
dnap.setSegIDs(segIDs)
dnap.setNodeGroups(usrNodeGroups)
fullPathRoot = os.path.join(pathToData, fileNameRoot)
######################################################################
######### Load topology and trajectory files #######
######################################################################
print(f"Loading topology file {psfFile} and trajectory file(s) {dcdFiles}.")
dnap.loadSystem(psfFile, dcdFiles)
print("System loaded.")
# We can access the trajectory data directly.
print("MDAnalysis universe:", dnap.getU().trajectory)
######################################################################
######### Prepare system for network calculations #######
######################################################################
dnap.checkSystem()
# In this case, we are only selecting the protein for analysis. This will exclude
# all water and ions, and any ligands from the system.
selectionStr = "segid ENZY and (not (name H* or name [123]H*))"
dnap.selectSystem(inputSelStr=selectionStr)
dnap.prepareNetwork()
print("Aligning trajectory...")
dnap.alignTraj()
######################################################################
######### Determine contacts and calculate correlations #######
######################################################################
print("Finding contacts...")
dnap.findContacts(stride=1, verbose=True)
# This may be necessary for systems with low default recursion limits.
print("Recursion limit:", sys.getrecursionlimit())
sys.setrecursionlimit(3000)
print("New recursion limit:", sys.getrecursionlimit())
print("Filtering contacts...")
dnap.filterContacts(notSameRes=True, notConsecutiveRes=False, removeIsolatedNodes=True)
dnap.calcCor(ncores=1)
######################################################################
######### Determine cartesian distances #######
######################################################################
dnap.calcCartesian(backend="serial")
######################################################################
######### Determine Network Properties #######
######################################################################
dnap.calcGraphInfo()
# Basic information of the network as interpreted as a graph.
print("Graph with {} nodes and {} edges".format(len(dnap.nxGraphs[0].nodes),
len(dnap.nxGraphs[0].edges)))
# Both density and transitivity are scaled from 0 to 1
for win in range(dnap.numWinds):
print("----- Window {} -----".format(win))
print("Density:", round( nx.density(dnap.nxGraphs[win]), 4) )
print("Transitivity:", round( nx.transitivity(dnap.nxGraphs[win]), 4) )
print()
# We can check the nodes that have the most connections in each window.
for win in range(dnap.numWinds):
print("----- Window {} -----".format(win))
sorted_degree = sorted(dnap.getDegreeDict(win).items(), key=itemgetter(1), reverse=True)
print("Top 5 nodes by degree: [node --> degree : selection]")
for n,d in sorted_degree[:5]:
print("{0:>4} --> {1:>2} : {2}".format(n, d, getSelFromNode(n, dnap.nodesAtmSel)))
print()
# calculate optimal paths
print("Calculating optimal paths...")
dnap.calcOptPaths(ncores=1)
print("Calculating edge betweeness...")
# calculate betweeness values
dnap.calcBetween(ncores=1)
print("Here are the top 5 pairs of nodes based on Betweeness values, compared to their correlation values (in Window 0):")
for k,v in islice(dnap.btws[0].items(),5):
print("\tNodes {} have betweenes {} and correlation {}.".format(k,
round(v,3),
round(dnap.corrMatAll[0, k[0], k[1]], 3) ) )
dnap.calcEigenCentral()
dnap.calcCommunities()
print("Here are the top 5 communities based on number of nodes:")
# Sort communities based on number of nodes
for comIndx in islice(dnap.nodesComm[0]["commOrderSize"], 5):
print("Modularity Class {0:>2}: {1:>3} nodes.".format(comIndx, len(dnap.nodesComm[0]["commNodes"][comIndx])))
print("Here are the top 5 communities based on Eigenvector Centrality:")
# Sort communities based on the node with highest eigenvector centrality
for comIndx in islice(dnap.nodesComm[0]["commOrderEigenCentr"], 5):
print("Modularity Class {0} ({1} nodes) Sorted by Eigenvector Centrality:".format(
comIndx,
len(dnap.nodesComm[0]["commNodes"][comIndx])))
for node in dnap.nodesComm[0]["commNodes"][comIndx][:5]:
print("Name: {0:>4} | Degree: {1:>2} | Eigenvector Centrality: {2}".format(
node, dnap.nxGraphs[win].nodes[node]['degree'], dnap.nxGraphs[win].nodes[node]['eigenvector']))
print()
######################################################################
######### Save data for analysis and plots #######
######################################################################
dnap.saveData(fullPathRoot)
# This function will save a reduced DCD trajectory with the heavy atoms used for network analysis
# A smaller trajectory can be created by choosing a "stride" that sub-samples the original trajectory.
# This function will also produce a PDB file so that information on atoms and residues can be loaded to
# visualization software such as VMD.
dcd_stride = 1
num_atoms = dnap.workU.atoms.n_atoms
num_frames = len(dnap.workU.trajectory[::dcd_stride])
print(f"We will save {num_atoms} heavy atoms and {num_frames} frames.")
# MDAnalysis may print warnings regarding missing data fields, such as altLocs,
# icodes, occupancies, or tempfactor, which provide information commonly found
# in PDB files. The warnings are for your information, and in the context of
# this tutorial, they are expected and do not indicate a problem. We will silence
# such "UserWarning"s for clarity.
warnings.filterwarnings("ignore", category=UserWarning)
dnap.saveReducedTraj(fullPathRoot, stride=dcd_stride)
######################################################################
######### END OF TUTORIAL #######
######################################################################
print("\n\n END OF TUTORIAL \n\n")