-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathread_trace.c
executable file
·894 lines (808 loc) · 28.4 KB
/
read_trace.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
/*
* Copyright 2019 Chua Zheng Leong
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This is a trace reader for reading peekaboo traces. */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>
#include <math.h>
#include <unistd.h>
#include <string.h>
#include "libpeekaboo/libpeekaboo.h"
#ifdef ASM
// binutils-dev >= 2.29 required
#include <dis-asm.h>
#endif
#ifdef ASM_CAPSTONE
#include <capstone/capstone.h>
csh capstone_handler;
#endif
// Print how many instructions if block matches
#define PRINT_NEXT 15
#define BUFFER_SIZE 512
// What you want to include in ouput?
// Users can edit print_filter() to modify these booleans during runtime.
bool print_memory = false;
bool print_register = false;
uint32_t print_next = 0;
// Structure
typedef struct _insn_rawbyte_node_t {
bool is_arbitrary;
uint16_t *bytes;
int size;
struct _insn_rawbyte_node_t *prec, *succ;
} insn_rawbyte_node_t;
typedef struct _cache_linked_list_t {
insn_rawbyte_node_t *head, *tail;
size_t length;
} cache_linked_list_t;
typedef struct _matched_list_node_t {
struct _matched_list_node_t *succ;
uint64_t addr;
size_t cnt;
} matched_list_node_t;
bool print_filter(peekaboo_insn_t *insn,
size_t insn_idx,
const size_t num_insn,
const bool is_search,
const uint64_t target_addr,
const uint32_t target_addr_size)
{
/* Return true to print this instruction. Otherwise, skip this instruction printing. */
bool rvalue;
// KH: If no target block, then by default print everything
if (is_search)
rvalue = false;
else
rvalue = true;
if (target_addr != (uint64_t) -1)
{
rvalue = false;
if (insn->num_mem > 0)
{
for (uint32_t mem_idx = 0; mem_idx < insn->num_mem; mem_idx++)
{
// We don't print zero-size memory accesses, i.e. lea instr
if (insn->mem[mem_idx].size == 0) continue;
// Exclude those don't have overlaps
if (
!(
(target_addr > insn->mem[mem_idx].addr + insn->mem[mem_idx].size)
||
(target_addr+target_addr_size-1 < insn->mem[mem_idx].addr)
)
)
{
rvalue = true;
break;
}
}
}
}
// If print_next, then overide return value
if (print_next)
{
print_next--;
rvalue = true;
}
// Detailed settings for what to print
/*
if (insn_idx == num_insn)
{
print_register = true;
print_memory = true;
}
else
{
print_register = false;
print_memory = false;
}
*/
return rvalue;
}
int hexchar_to_uint16(uint16_t *output_uint16_ptr, const char input_char)
{
if (input_char >= '0' && input_char <= '9')
{
*output_uint16_ptr = input_char - '0';
return 0;
}
if (input_char >= 'A' && input_char <= 'F')
{
*output_uint16_ptr = input_char - 'A' + 10;
return 0;
}
if (input_char >= 'a' && input_char <= 'f')
{
*output_uint16_ptr = input_char - 'a' + 10;
return 0;
}
if (input_char == '*')
{
*output_uint16_ptr = 0x100;
return 0;
}
if (input_char == '?')
{
*output_uint16_ptr = 0x101;
return 0;
}
return -1;
}
/* Covert hex string into uint8_t array*/
int hex_string_to_uint16_arrary(uint16_t *uint16_array, const char *hex_string)
{
int size = 0;
while(hex_string[0] && hex_string[1])
{
// Arbitrary symbols must be in pairs
if (hex_string[0] == '?' || hex_string[1] == '?' || hex_string[0] == '*' || hex_string[1] == '*')
if (hex_string[0] != hex_string[1]) return -1;
uint16_t output[2];
if (hexchar_to_uint16(&output[0], hex_string[0])==0 && hexchar_to_uint16(&output[1], hex_string[1])==0)
{
uint16_array[size++] = output[0] * 16 + output[1];
}
else return -1;
hex_string += 2;
}
return size;
}
#ifdef ASM
/* Disassemble and print instruction */
int disassemble_raw(const enum ARCH arch, const bool is_big_endian, uint8_t *input_buffer, const size_t input_buffer_size)
{
disassemble_info disasm_info = {};
init_disassemble_info(&disasm_info, stdout, (fprintf_ftype) fprintf);
switch(arch)
{
case (ARCH_AMD64):
disasm_info.arch = bfd_arch_i386;
disasm_info.mach = bfd_mach_x86_64;
break;
case (ARCH_X86):
disasm_info.arch = bfd_arch_i386;
disasm_info.mach = bfd_mach_i386_i386;
break;
case (ARCH_AARCH64):
disasm_info.arch = bfd_arch_aarch64;
disasm_info.mach = bfd_mach_aarch64;
break;
case (ARCH_AARCH32):
disasm_info.arch = bfd_arch_aarch64;
disasm_info.mach = bfd_mach_aarch64_ilp32;
break;
default:
perror("Arch not supported!");
return -1;
}
if (is_big_endian)
disasm_info.endian = BFD_ENDIAN_BIG;
else
disasm_info.endian = BFD_ENDIAN_LITTLE;
disasm_info.read_memory_func = buffer_read_memory;
disasm_info.buffer = input_buffer;
disasm_info.buffer_vma = 0;
disasm_info.buffer_length = input_buffer_size;
disassemble_init_for_target(&disasm_info);
disassembler_ftype disasm;
disasm = disassembler(disasm_info.arch, is_big_endian, disasm_info.mach, NULL);
for (size_t pc = 0; pc < input_buffer_size;)
pc += disasm(pc, &disasm_info);
return 0;
}
#endif
void free_insn_rawbyte_node(insn_rawbyte_node_t *node_ptr)
{
if (node_ptr != NULL)
{
if (node_ptr->bytes != NULL) free(node_ptr->bytes);
free(node_ptr);
}
}
void update_raw_byte_buffer(cache_linked_list_t *instr_buffer,
char const *cur_insn_rawbytes,
const uint32_t instr_size,
const size_t target_length)
{
// Remove instr from head if buffer is full
if (instr_buffer->length > target_length)
{
assert(instr_buffer->head != NULL);
assert(instr_buffer->head != instr_buffer->tail);
insn_rawbyte_node_t *new_head = instr_buffer->head->succ;
assert(new_head != NULL);
free_insn_rawbyte_node(instr_buffer->head);
instr_buffer->head = new_head;
instr_buffer->length -= 1;
}
// New instr
insn_rawbyte_node_t *new_node = malloc(sizeof(insn_rawbyte_node_t));
if (!new_node) PEEKABOO_DIE("Failed to malloc!");
new_node->is_arbitrary = false;
new_node->prec = instr_buffer->tail;
new_node->succ = NULL;
new_node->size = instr_size;
new_node->bytes = malloc(sizeof(uint16_t) * instr_size);
uint32_t idx;
for (idx=0; idx<instr_size; idx++)
{
new_node->bytes[idx] = cur_insn_rawbytes[idx] & 0xFF;
}
// Update buffer
if (instr_buffer->head == NULL)
{
instr_buffer->head = new_node;
}
if (instr_buffer->tail != NULL)
{
instr_buffer->tail->succ = new_node;
}
instr_buffer->tail = new_node;
instr_buffer->length += 1;
}
uint32_t is_buffer_matched(cache_linked_list_t const *raw_bytes_buffer,
cache_linked_list_t const *pattern)
{
insn_rawbyte_node_t *target_node = raw_bytes_buffer->tail;
insn_rawbyte_node_t *pattern_node = pattern->tail;
uint32_t matched_bytes_num = 0;
if (raw_bytes_buffer->length < pattern->length) return 0;
uint32_t idx = pattern->length;
for (; idx>0; idx--, pattern_node = pattern_node->prec, target_node = target_node->prec)
{
matched_bytes_num += target_node->size;
if (pattern_node->is_arbitrary) continue;
if (pattern_node->size != target_node->size) return 0;
uint32_t byte_offset = 0;
for (; byte_offset < pattern_node->size; byte_offset++)
{
if (pattern_node->bytes[byte_offset] == 0x101*16+0x101) continue; // Matched "??"
if (pattern_node->bytes[byte_offset] != target_node->bytes[byte_offset]) return 0;
}
}
return matched_bytes_num;
}
uint8_t digits;
uint64_t read_bytes, write_bytes;
void print_peekaboo_insn(peekaboo_insn_t *insn,
peekaboo_trace_t *peekaboo_trace_ptr,
const size_t insn_idx,
const bool target,
const bool print_syscall_info)
{
// Print instruction index
printf("[%lu] ", insn_idx);
if (!print_memory && !print_register)
if (target)
{
for (uint8_t idx = (uint8_t)log10f(insn_idx); idx < digits - 1; idx++) printf("-");
printf(">");
}
else
for (uint8_t idx = (uint8_t)log10f(insn_idx); idx < digits; idx++) printf(" ");
if (!print_syscall_info)
{
// Print instruction ea
printf("0x%"PRIx64"", insn->addr);
// Print Rawbytes
printf(":\t ");
for (uint8_t rawbyte_idx = 0; rawbyte_idx < insn->size; rawbyte_idx++)
{
if (insn->rawbytes[rawbyte_idx] < 16) printf("0");
printf("%"PRIx8" ", insn->rawbytes[rawbyte_idx]);
}
// Pretty print
for (uint8_t idx = insn->size; idx < 8; idx++) printf(" ");
printf("\t");
}
// Is this syscall?
if (insn->size == 2 && insn->rawbytes[0]=='\x0f' && insn->rawbytes[1]=='\x05')
{
// Yes, syscall. Print it!
size_t trace_length = get_num_insn(peekaboo_trace_ptr);
size_t next_insn_idx = insn_idx + 1;
const regfile_amd64_t *regfile_ptr = (regfile_amd64_t *) insn->regfile;
uint64_t rvalue;
if (next_insn_idx > trace_length)
rvalue = 0;
else
{
peekaboo_insn_t *next_insn = get_peekaboo_insn(next_insn_idx, peekaboo_trace_ptr);
regfile_ptr = (regfile_amd64_t *) next_insn->regfile;
rvalue = regfile_ptr->gpr.reg_rax;
free_peekaboo_insn(next_insn);
}
if (0!=amd64_syscall_pp(insn->regfile, rvalue, print_syscall_info))
{
// Syscall analysis failed.
printf("Syscall analysis failed");
}
printf("\n");
return;
}
// Print disassemble for instructions using libopcodes
#ifdef ASM
{
// Disasmble the instruction
int rvalue = disassemble_raw((enum ARCH)peekaboo_trace_ptr->internal->arch, false, insn->rawbytes, insn->size);
if(rvalue != 0) PEEKABOO_DIE("Libopcodes disasm error!\n");
}
#else
#ifdef ASM_CAPSTONE
{
cs_insn *capstone_insn;
size_t count = cs_disasm(capstone_handler, insn->rawbytes, insn->size, insn->addr, 0, &capstone_insn);
if (count == 0)
{
printf("Capstone Error");
}
else
{
printf("%s\t%s", capstone_insn[0].mnemonic, capstone_insn[0].op_str);
cs_free(capstone_insn, count);
}
}
#endif //ASM_CAPSTONE
#endif // ASM
printf("\n");
// Print memory ops
if (print_memory && (insn->num_mem > 0))
{
for (uint32_t mem_idx = 0; mem_idx < insn->num_mem; mem_idx++)
{
printf("\t");
printf(insn->mem[mem_idx].status ? "Memory Write: " : "Memory Read: ");
if (insn->mem[mem_idx].status)
write_bytes+=insn->mem[mem_idx].size;
else
read_bytes+=insn->mem[mem_idx].size;
printf("%d bytes @ 0x%lx\n", insn->mem[mem_idx].size, insn->mem[mem_idx].addr);
// Memory trace broken checker
if (!(insn->mem[mem_idx].status==0 || insn->mem[mem_idx].status==1))
PEEKABOO_DIE("Abort! Broken memrefs_offsets. Remove memrefs_offsets in trace folder and try again.");
}
}
// Print GPR
if (print_register) regfile_pp(insn);
}
uint64_t print_back(const int64_t unprinted_size,
peekaboo_trace_t *peekaboo_trace_ptr,
const size_t insn_idx)
{
if (unprinted_size <= 0 || insn_idx < 1)
{
for (size_t prev_idx = ((int64_t)insn_idx - 5 > 0) ? (insn_idx - 5) : 1; prev_idx <= insn_idx; prev_idx++)
{
peekaboo_insn_t *prev_insn = get_peekaboo_insn(prev_idx, peekaboo_trace_ptr);
print_peekaboo_insn(prev_insn, peekaboo_trace_ptr, prev_idx, false, false);
free_peekaboo_insn(prev_insn);
}
return (insn_idx+1);
}
peekaboo_insn_t *insn = get_peekaboo_insn(insn_idx, peekaboo_trace_ptr);
uint64_t rvalue = print_back(unprinted_size - insn->size, peekaboo_trace_ptr, insn_idx - 1);
print_peekaboo_insn(insn, peekaboo_trace_ptr, insn_idx, true, false);
free_peekaboo_insn(insn);
return rvalue;
}
int append2pattern_list(cache_linked_list_t *pattern_ptr, const uint8_t *buffer, const unsigned int buffer_size)
{
// Empty buffer, directly return
if (buffer_size == 0) return 0;
insn_rawbyte_node_t *new_node = malloc(sizeof(insn_rawbyte_node_t));
if (!new_node) PEEKABOO_DIE("Failed to malloc.");
new_node->succ = NULL;
if (pattern_ptr->head == NULL)
{
pattern_ptr->head = new_node;
}
// Update tail and length
insn_rawbyte_node_t *curr_tail_node = pattern_ptr->tail;
if (curr_tail_node != NULL)
{
curr_tail_node->succ = new_node;
}
new_node->prec = curr_tail_node;
pattern_ptr->tail = new_node;
pattern_ptr->length += 1;
new_node->bytes = malloc((buffer_size/2+1)*sizeof(uint16_t));
if(!new_node->bytes) PEEKABOO_DIE("Failed to malloc.");
new_node->size = hex_string_to_uint16_arrary(new_node->bytes, buffer);
if (new_node->size <= 0) return -1;
// Find if abitrary
size_t idx;
new_node->is_arbitrary = false;
for (idx=0; idx<new_node->size; idx++)
{
if (new_node->bytes[idx] == 0x100*16+0x100) // Matched "**"
{
new_node->is_arbitrary = true;
new_node->size = 0;
free(new_node->bytes);
new_node->bytes = NULL;
break;
}
}
return 1;
}
void load_pattern(cache_linked_list_t *pattern_ptr, const char* pattern_file_path)
{
// Init pattern
pattern_ptr->length = 0;
pattern_ptr->head = NULL;
pattern_ptr->tail = NULL;
// Load pattern, if given.
uint8_t buffer[33];
unsigned int buffer_size = 0;
FILE* file = fopen(pattern_file_path, "rb");
if (!file) PEEKABOO_DIE("No such pattern file %s\n", pattern_file_path);
uint8_t c;
uint32_t line_num = 0;
bool line_is_commented = false;
while (fread(&c, 1, 1, file) == 1)
{
// Check if this is comment
if (c == '#')
{
line_is_commented = true;
continue;
}
// Check if this is '\n'
if (c == '\n')
{
// Update line number
line_num++;
// Reset commented
line_is_commented = false;
// Parse buffer
buffer[buffer_size] = 0x0;
if (append2pattern_list(pattern_ptr, buffer, buffer_size) < 0) PEEKABOO_DIE("Fail to parse input pattern at line %u", line_num);
// Reset buffer to load next instruction
buffer_size = 0;
continue;
}
// Check if commented
if (line_is_commented) continue;
// Parse this char
if (c < '0' || c > '9')
if (c < 'a' || c > 'f')
if (c < 'A' || c > 'F')
if (c != '*' && c != '?') // Arbitrary matching
{
// this is not a hex char, or an arbitrary matching char
continue;
}
buffer[buffer_size] = c;
buffer_size++;
if (buffer_size > 33) PEEKABOO_DIE("Pattern: Rawbytes are too long for one instruction!");
}
fclose(file);
}
void free_dulinked_list(cache_linked_list_t* pattern)
{
if (pattern == NULL) return;
uint32_t idx;
insn_rawbyte_node_t *this_node = pattern->head;
for (idx=0; idx<pattern->length; idx++)
{
insn_rawbyte_node_t *next_node = this_node->succ;
free_insn_rawbyte_node(this_node);
this_node = next_node;
}
}
void print_pattern(const cache_linked_list_t* pattern)
{
printf("Search for the following snippet (%lu instructions):\n", pattern->length);
uint32_t instr_id;
insn_rawbyte_node_t *this_node = pattern->head;
for (instr_id = 0; instr_id < pattern->length; instr_id++, this_node=this_node->succ)
{
uint32_t byte_offset;
bool has_arbitrary_byte = false;
assert(this_node!=NULL);
printf("\t");
if (this_node->is_arbitrary)
{
printf("** \t[Any Instr.]\n");
continue;
}
for(byte_offset = 0; byte_offset < this_node->size; byte_offset++)
{
uint16_t byte_to_print = this_node->bytes[byte_offset];
if (byte_to_print == 0x101*16+0x101)
{
printf("?? ");
has_arbitrary_byte = true;
continue;
}
printf("%02hhx ", byte_to_print);
}
if (!has_arbitrary_byte)
{
#ifdef ASM_CAPSTONE
cs_insn *capstone_insn;
uint8_t *tmp_rawbytes = malloc(this_node->size);
if (!tmp_rawbytes) PEEKABOO_DIE("Failed to malloc");
uint32_t tmp_idx;
for (tmp_idx = 0; tmp_idx < this_node->size; tmp_idx++)
{
tmp_rawbytes[tmp_idx] = this_node->bytes[tmp_idx] & 0xFF;
}
size_t count = cs_disasm(capstone_handler, tmp_rawbytes, this_node->size, 0x0, 0, &capstone_insn);
free(tmp_rawbytes);
if (count > 0)
{
size_t k;
for (k = this_node->size; k < 8; k++) printf(" ");
printf("%s\t\t%s", capstone_insn[0].mnemonic, capstone_insn[00].op_str);
cs_free(capstone_insn, count);
}
#endif
}
printf("\n");
}
}
void print_usage(const char* program_name)
{
fprintf(stderr, "Usage: %s [Options] path_to_trace_dir\n", program_name);
fprintf(stderr, "Options:\n");
fprintf(stderr, " -r \tPrint register values.\n");
fprintf(stderr, " -m \tPrint memory values.\n");
fprintf(stderr, " -y \tPrint syscalls. Not compatible with -p.\n");
fprintf(stderr, " -s <instr id> \tPrint trace starting from the given id. Below zero for reversed order.\n");
fprintf(stderr, " -e <instr id> \tPrint trace till the given id.\n");
fprintf(stderr, " -a <addr>[,size] \tSearch for all accesses to given memory address, for accesses to buffer when size is given.\n");
fprintf(stderr, " -p <pattern file>\tSearch for instruction patterns in trace. See pattern.txt for samples. Not compatible with -c.\n");
fprintf(stderr, " -h \tPrint this help.\n");
}
void append2macthed_list(matched_list_node_t **list_header, const uint64_t addr)
{
if (*list_header == NULL)
{
*list_header = malloc(sizeof(matched_list_node_t));
if (!*list_header) PEEKABOO_DIE("Malloc failed.");
(*list_header)->addr = addr;
(*list_header)->cnt = 1;
(*list_header)->succ = NULL;
}
else
{
matched_list_node_t *prev_node, *node = *list_header;
while (node)
{
if (node->addr == addr)
{
node->cnt++;
break;
}
prev_node = node;
node = prev_node->succ;
}
if (node == NULL)
{
node = malloc(sizeof(matched_list_node_t));
if (!node) PEEKABOO_DIE("Malloc failed.");
node->addr = addr;
node->cnt = 1;
node->succ = NULL;
prev_node->succ = node;
}
}
}
int main(int argc, char *argv[])
{
// Init capstone
#ifdef ASM_CAPSTONE
if (cs_open(CS_ARCH_X86, CS_MODE_64, &capstone_handler) != CS_ERR_OK) PEEKABOO_DIE("Capstone init error.");
#endif
write_bytes = 0;
read_bytes = 0;
int loop_starts = 1; // Default is 1 for printing from beginning
int loop_ends = 0; // Default is 0 for printing till the end
char *pattern_file_path; // Path to the pattern file for pattern search mode
bool is_search = false; // Pattern search mode
bool print_syscall_only = false; // Strace mode
uint64_t target_addr = (uint64_t) -1; // Target memory address for memory access search mode
uint32_t target_addr_size = 1; // Buffer size for memory access search mode. By default only check 1 byte
bool target_addr_size_hex = false; // Does user type-in buffer size in hex? For memory access search mode
char *comma_pos, *size_ptr; // Temp pointers for arg parsing. For memory access search mode
uint64_t printed_instr_num = 0; // Counter for how many instr have been printed for non-pattern-search modes
// Argument parsing
int opt;
while ((opt = getopt(argc, argv, "hrms:p:e:a:y")) != -1) {
switch (opt) {
case 'r':
print_register = true;
break;
case 'm':
print_memory = true;
break;
case 'p':
pattern_file_path = optarg;
is_search = true;
break;
case 's':
loop_starts = atoi(optarg);
if (loop_starts == 0) PEEKABOO_DIE("Starting point could not be 0. Traces always start at 1.\n");
break;
case 'e':
loop_ends = atoi(optarg);
if (loop_ends <= 0) PEEKABOO_DIE("End point must be greater than 0\n");
break;
case 'a':
comma_pos = strrchr(optarg, ',');
if (optarg[0] == '0' && optarg[1] == 'x')
target_addr = strtol(optarg+2, NULL, 16);
else
target_addr = strtol(optarg, NULL, 16);
if (comma_pos != NULL)
{
size_ptr = comma_pos + 1;
if (size_ptr[0] == '0' && size_ptr[1] == 'x')
{
target_addr_size = strtol(size_ptr+2, NULL, 16);
target_addr_size_hex = true;
}
else
{
target_addr_size = strtol(size_ptr, NULL, 10);
target_addr_size_hex = false;
}
}
break;
case 'y':
print_syscall_only = true;
break;
case 'h':
print_usage(argv[0]);
exit(EXIT_FAILURE);
break;
}
}
// Check mandatory argument, path to a trace folder
if (optind >= argc)
{
print_usage(argv[0]);
PEEKABOO_DIE("\nMissing argument: Trace path at the end expected.\n");
}
// Print current libpeekaboo version
fprintf(stderr, "libpeekaboo version: %d\n", LIBPEEKABOO_VER);
// Print info for memory access search
if (target_addr != (uint64_t) -1)
{
if (target_addr_size > 1)
{
printf("Search for memory access to buffer at 0x%lx with size of ",target_addr);
if (target_addr_size_hex) // Buffer size is taken in hex or dec
printf("0x%x bytes.\n", target_addr_size);
else
printf("%u bytes.\n", target_addr_size);
}
else
{
printf("Search for memory access @0x%lx.\n", target_addr);
}
}
// Load trace
char *trace_path = argv[argc - 1];
peekaboo_trace_t *peekaboo_trace_ptr = malloc(sizeof(peekaboo_trace_t));
if (peekaboo_trace_ptr == NULL) PEEKABOO_DIE("Fail to malloc trace structure.");
load_trace(trace_path, peekaboo_trace_ptr);
// Get and print the length of the trace
const size_t num_insn = get_num_insn(peekaboo_trace_ptr);
digits = (uint8_t) log10(num_insn) + 2;
// Load and Print search pattern
cache_linked_list_t pattern;
pattern.length = 0;
pattern.head = NULL;
pattern.tail = NULL;
if (is_search) load_pattern(&pattern, pattern_file_path);
if (pattern.length) print_pattern(&pattern);
// Prepare buffer for pattern searching
cache_linked_list_t instr_buffer;
instr_buffer.length = 0;
instr_buffer.head = NULL;
instr_buffer.tail = NULL;
uint64_t num_found_block = 0;
matched_list_node_t *matched_list_header = NULL;
// We print instructions sequentially.
// Please note the first instruction's index is 1, instead of 0.
const size_t _loop_ends = (loop_ends) ? loop_ends : num_insn;
const size_t _loop_starts = (loop_starts < 0) ? (_loop_ends + loop_starts + 1) : loop_starts;
printf("Range: from %lu to %lu (%lu in total)\n", _loop_starts, _loop_ends, num_insn);
for (size_t insn_idx=_loop_starts; insn_idx<=_loop_ends; insn_idx++)
{
// Get instruction ptr by instruction index
peekaboo_insn_t *insn = get_peekaboo_insn(insn_idx, peekaboo_trace_ptr);
// strace mode
if (print_syscall_only)
{
if (insn->size == 2 && insn->rawbytes[0]=='\x0f' && insn->rawbytes[1]=='\x05')
{
print_peekaboo_insn(insn, peekaboo_trace_ptr, insn_idx, false, true);
printed_instr_num++;
}
free_peekaboo_insn(insn);
continue;
}
// Pattern search
if (pattern.length)
{
update_raw_byte_buffer(&instr_buffer, insn->rawbytes, insn->size, pattern.length);
uint32_t matched_bytes_num = is_buffer_matched(&instr_buffer, &pattern);
if (matched_bytes_num)
{
num_found_block ++;
print_next = PRINT_NEXT;
if (num_found_block) printf("\n");
printf("[Target block %lu] ends at [%lu]0x%"PRIx64":\n", num_found_block, insn_idx, insn->addr);
print_back(matched_bytes_num, peekaboo_trace_ptr, insn_idx);
append2macthed_list(&matched_list_header, insn->addr);
free_peekaboo_insn(insn);
continue;
}
}
// Call print_filter() to decide what should be printed
if (!print_filter(insn, insn_idx, num_insn, is_search, target_addr, target_addr_size))
{
// We are NOT going to print this instruction. Free and skip!
free_peekaboo_insn(insn);
continue;
}
else
{
// We are going to print this instruction.
printed_instr_num++;
}
// Body of print
print_peekaboo_insn(insn, peekaboo_trace_ptr, insn_idx, false, false);
// Free instruction ptr
free_peekaboo_insn(insn);
}
if (pattern.length)
{
// Print pattern search summary and free linked list
printf("%lu code snippet(s) matched with the given pattern", num_found_block);
if (num_found_block)
{
printf(":\n");
matched_list_node_t *node = matched_list_header;
while (node != NULL)
{
printf(" Found pattern at 0x%lx for %ld time(s)\n", node->addr, node->cnt);
matched_list_node_t *this_node = node;
node = node->succ;
free(this_node);
}
}
}
else
{
// Print a total info for non-pattern modes
printf("End of printing. Totol printed instructions: %lu.\n", printed_instr_num);
}
#ifdef ASM_CAPSTONE
cs_close(&capstone_handler);
#endif
if (pattern.length)
{
free_dulinked_list(&pattern);
free_dulinked_list(&instr_buffer);
}
free_peekaboo_trace(peekaboo_trace_ptr);
return 0;
}