-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_tracking.py
155 lines (127 loc) · 5.17 KB
/
demo_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python
# Copyright (c) 2024 Mitsubishi Electric Research Laboratories (MERL)
#
# SPDX-License-Identifier: AGPL-3.0-or-later
import os
import pdb
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from segment_anything_hq import SamPredictor, sam_model_registry
def calculate_bounding_box(mask):
"""
Calculate bounding box from a binary mask.
Args:
- mask: Binary mask array
Returns:
- box: Bounding box coordinates [x_min, y_min, x_max, y_max]
"""
# Find indices of non-zero elements
non_zero_indices = np.argwhere(mask)
# Extract x and y coordinates
x_coords = non_zero_indices[:, 1]
y_coords = non_zero_indices[:, 0]
# Calculate bounding box coordinates
x_min = np.min(x_coords)
x_max = np.max(x_coords)
y_min = np.min(y_coords)
y_max = np.max(y_coords)
return [[x_min, y_min, x_max, y_max]]
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(
pos_points[:, 0], pos_points[:, 1], color="green", marker="*", s=marker_size, edgecolor="white", linewidth=1.25
)
ax.scatter(
neg_points[:, 0], neg_points[:, 1], color="red", marker="*", s=marker_size, edgecolor="white", linewidth=1.25
)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=2))
def show_res(masks, scores, input_point, input_label, input_box, filename, image):
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca())
if input_box is not None:
box = input_box[i]
show_box(box, plt.gca())
if (input_point is not None) and (input_label is not None):
show_points(input_point, input_label, plt.gca())
print(f"Score: {score:.3f}")
plt.axis("off")
plt.savefig(filename + "_" + str(i) + ".png", bbox_inches="tight", pad_inches=-0.1)
plt.close()
def show_res_multi(masks, scores, input_point, input_label, input_box, filename, image):
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in masks:
show_mask(mask, plt.gca(), random_color=True)
for box in input_box:
show_box(box, plt.gca())
for score in scores:
print(f"Score: {score:.3f}")
plt.axis("off")
plt.savefig(filename + ".png", bbox_inches="tight", pad_inches=-0.1)
plt.close()
if __name__ == "__main__":
sam_checkpoint = "pre_trained/sam_hq_vit_h.pth"
model_type = "vit_h"
device = "cuda"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)
for i in range(60):
print("Frame: ", i)
hq_token_only = False
image = cv2.imread("logs/horse/val_videos/30/rgb/%04d.png" % i)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = image[:, 160:-160]
predictor.set_image(image)
predictor.features = np.load("logs/horse/val_videos/30/sam/%04d.npy" % i)
predictor.features = torch.Tensor(predictor.features[None, :, :, 160:-160]).to(device)
predictor.features = F.interpolate(predictor.features, size=(64, 64), mode="bilinear")
if i == 0:
input_box = None
input_point = np.array([[395, 380]]) # USER INPUT COORDINATE # , [317,340]
input_label = np.ones(input_point.shape[0])
else:
input_box = np.array(calculate_bounding_box(masks.squeeze()))
input_point = None
input_label = None
batch_box = False if input_box is None else len(input_box) > 1
result_path = "logs/horse/val_videos/30/masks/"
os.makedirs(result_path, exist_ok=True)
if not batch_box:
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
box=input_box,
multimask_output=False,
hq_token_only=hq_token_only,
)
show_res(masks, scores, input_point, input_label, input_box, result_path + "example" + str(i), image)
else:
masks, scores, logits = predictor.predict_torch(
point_coords=input_point,
point_labels=input_label,
boxes=input_box,
multimask_output=False,
hq_token_only=hq_token_only,
)
masks = masks.squeeze(1).cpu().numpy()
scores = scores.squeeze(1).cpu().numpy()
input_box = input_box.cpu().numpy()
show_res_multi(masks, scores, input_point, input_label, input_box, result_path + "example" + str(i), image)