-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_pcbm_h.py
141 lines (114 loc) · 5.94 KB
/
train_pcbm_h.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
import os
import pickle
import numpy as np
import torch
from tqdm import tqdm
import sys
import torch.nn as nn
from torch.utils.data import DataLoader, TensorDataset
from scipy.special import softmax
from sklearn.metrics import roc_auc_score
from data import get_dataset
from concepts import ConceptBank
from models import PosthocLinearCBM, PosthocHybridCBM, get_model
from training_tools import load_or_compute_projections, AverageMeter, MetricComputer
def config():
parser = argparse.ArgumentParser()
parser.add_argument("--out-dir", required=True, type=str, help="Output folder")
parser.add_argument("--pcbm-path", required=True, type=str, help="Trained PCBM module.")
parser.add_argument("--concept-bank", required=True, type=str, help="Path to the concept bank.")
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--batch-size", default=64, type=int)
parser.add_argument("--dataset", default="cub", type=str)
parser.add_argument("--seed", default=42, type=int, help="Random seed")
parser.add_argument("--num-epochs", default=20, type=int)
parser.add_argument("--lr", default=0.01, type=float)
parser.add_argument("--l2-penalty", default=0.001, type=float)
return parser.parse_args()
@torch.no_grad()
def eval_model(args, posthoc_layer, loader, num_classes):
epoch_summary = {"Accuracy": AverageMeter()}
tqdm_loader = tqdm(loader)
computer = MetricComputer(n_classes=num_classes)
all_preds = []
all_labels = []
for batch_X, batch_Y in tqdm(loader):
batch_X, batch_Y = batch_X.to(args.device), batch_Y.to(args.device)
out = posthoc_layer(batch_X)
all_preds.append(out.detach().cpu().numpy())
all_labels.append(batch_Y.detach().cpu().numpy())
metrics = computer(out, batch_Y)
epoch_summary["Accuracy"].update(metrics["accuracy"], batch_X.shape[0])
summary_text = [f"Avg. {k}: {v.avg:.3f}" for k, v in epoch_summary.items()]
summary_text = "Eval - " + " ".join(summary_text)
tqdm_loader.set_description(summary_text)
all_preds = np.concatenate(all_preds, axis=0)
all_labels = np.concatenate(all_labels, axis=0)
if all_labels.max() == 1:
auc = roc_auc_score(all_labels, softmax(all_preds, axis=1)[:, 1])
return auc
return epoch_summary["Accuracy"]
def train_hybrid(args, train_loader, val_loader, posthoc_layer, optimizer, num_classes):
cls_criterion = nn.CrossEntropyLoss()
for epoch in range(1, args.num_epochs+1):
print(f"Epoch: {epoch}")
epoch_summary = {"CELoss": AverageMeter(),
"Accuracy": AverageMeter()}
tqdm_loader = tqdm(train_loader)
computer = MetricComputer(n_classes=num_classes)
for batch_X, batch_Y in tqdm(train_loader):
batch_X, batch_Y = batch_X.to(args.device), batch_Y.to(args.device)
optimizer.zero_grad()
out, projections = posthoc_layer(batch_X, return_dist=True)
cls_loss = cls_criterion(out, batch_Y)
loss = cls_loss + args.l2_penalty*(posthoc_layer.residual_classifier.weight**2).mean()
loss.backward()
optimizer.step()
epoch_summary["CELoss"].update(cls_loss.detach().item(), batch_X.shape[0])
metrics = computer(out, batch_Y)
epoch_summary["Accuracy"].update(metrics["accuracy"], batch_X.shape[0])
summary_text = [f"Avg. {k}: {v.avg:.3f}" for k, v in epoch_summary.items()]
summary_text = " ".join(summary_text)
tqdm_loader.set_description(summary_text)
latest_info = dict()
latest_info["epoch"] = epoch
latest_info["args"] = args
latest_info["train_acc"] = epoch_summary["Accuracy"]
latest_info["test_acc"] = eval_model(args, posthoc_layer, val_loader, num_classes)
print("Final test acc: ", latest_info["test_acc"])
return latest_info
def main(args, backbone, preprocess):
train_loader, test_loader, idx_to_class, classes = get_dataset(args, preprocess)
num_classes = len(classes)
hybrid_model_path = args.pcbm_path.replace("pcbm_", "pcbm-hybrid_")
run_info_file = hybrid_model_path.replace("pcbm", "run_info-pcbm")
run_info_file = run_info_file.replace(".ckpt", ".pkl")
run_info_file = os.path.join(args.out_dir, run_info_file)
# We use the precomputed embeddings and projections.
train_embs, _, train_lbls, test_embs, _, test_lbls = load_or_compute_projections(args, backbone, posthoc_layer, train_loader, test_loader)
train_loader = DataLoader(TensorDataset(torch.tensor(train_embs).float(), torch.tensor(train_lbls).long()), batch_size=args.batch_size, shuffle=True)
test_loader = DataLoader(TensorDataset(torch.tensor(test_embs).float(), torch.tensor(test_lbls).long()), batch_size=args.batch_size, shuffle=False)
# Initialize PCBM-h
hybrid_model = PosthocHybridCBM(posthoc_layer)
hybrid_model = hybrid_model.to(args.device)
# Initialize the optimizer
hybrid_optimizer = torch.optim.Adam(hybrid_model.residual_classifier.parameters(), lr=args.lr)
hybrid_model.residual_classifier = hybrid_model.residual_classifier.float()
hybrid_model.bottleneck = hybrid_model.bottleneck.float()
# Train PCBM-h
run_info = train_hybrid(args, train_loader, test_loader, hybrid_model, hybrid_optimizer, num_classes)
torch.save(hybrid_model, hybrid_model_path)
with open(run_info_file, "wb") as f:
pickle.dump(run_info, f)
print(f"Saved to {hybrid_model_path}, {run_info_file}")
if __name__ == "__main__":
args = config()
# Load the PCBM
posthoc_layer = torch.load(args.pcbm_path)
posthoc_layer = posthoc_layer.eval()
args.backbone_name = posthoc_layer.backbone_name
backbone, preprocess = get_model(args, backbone_name=args.backbone_name)
backbone = backbone.to(args.device)
backbone.eval()
main(args, backbone, preprocess)