-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathclip_models.py
90 lines (77 loc) · 3.94 KB
/
clip_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import clip
import torch
import numpy as np
from tqdm import tqdm
import torch.nn.functional as F
class CLIPWrapper:
def __init__(self, model, device):
self.model = model
self.device = device
@torch.no_grad()
def get_text_embeddings(self, texts, text_batch_size=256, normalize=False):
num_text = len(texts)
text_embeds = []
tqdm_loader = tqdm(range(0, num_text, text_batch_size))
tqdm_loader.set_description("Computing text embeddings")
for i in tqdm_loader:
text = texts[i: min(num_text, i+text_batch_size)]
text_input = clip.tokenize(text).to(self.device)
text_feats = self.model.encode_text(text_input)
if normalize:
text_feats = F.normalize(text_feats,dim=-1)
text_embeds.append(text_feats)
text_embeds = torch.cat(text_embeds, dim=0)
return text_embeds
@torch.no_grad()
def get_image_embeddings(self, image_loader, normalize=False):
image_embeds = []
tqdm_loader = tqdm(image_loader)
tqdm_loader.set_description("Computing image embeddings")
for batch in tqdm_loader:
images = batch["image"]
image_feats = self.model.encode_image(images.to(self.device))
if normalize:
image_feats = F.normalize(image_feats, dim=-1)
image_embeds.append(image_feats)
image_embeds = torch.cat(image_embeds, dim=0)
return image_embeds
@torch.no_grad()
def get_retrieval_scores_dataset(self, loader):
captions = loader.dataset.text
text_embeds = self.get_text_embeddings(captions, normalize=True)
image_embeds = self.get_image_embeddings(loader, normalize=True)
scores = image_embeds @ text_embeds.T
scores = scores.cpu().numpy()
return scores
@torch.no_grad()
def get_retrieval_scores_batched(self, joint_loader):
"""Computes the scores for each image_option / caption_option pair in the joint loader.
Args:
joint_loader (DataLoader): batches have "image_options" and "caption_options" fields.
"image_options" is a list of images, and "caption_options" is a list of captions.
Returns:
all_scores: A numpy array containing the scores of the shape NxKxL,
where N is the number of test cases, K is the number of image options per the test case,
and L is the number of caption options per the test case.
"""
scores = []
tqdm_loader = tqdm(joint_loader)
tqdm_loader.set_description("Computing retrieval scores")
for batch in tqdm_loader:
image_options = []
for i_option in batch["image_options"]:
image_embeddings = self.model.encode_image(i_option.to(self.device)).cpu().numpy() # B x D
image_embeddings = image_embeddings / np.linalg.norm(image_embeddings, axis=1, keepdims=True) # B x D
image_options.append(np.expand_dims(image_embeddings, axis=1))
caption_options = []
for c_option in batch["caption_options"]:
caption_tokenized = torch.cat([clip.tokenize(c) for c in c_option])
caption_embeddings = self.model.encode_text(caption_tokenized.to(self.device)).cpu().numpy() # B x D
caption_embeddings = caption_embeddings / np.linalg.norm(caption_embeddings, axis=1, keepdims=True) # B x D
caption_options.append(np.expand_dims(caption_embeddings, axis=1))
image_options = np.concatenate(image_options, axis=1) # B x K x D
caption_options = np.concatenate(caption_options, axis=1) # B x L x D
batch_scores = np.einsum("nkd,nld->nkl", image_options, caption_options) # B x K x L
scores.append(batch_scores)
all_scores = np.concatenate(scores, axis=0) # N x K x L
return all_scores