Skip to content

Latest commit

 

History

History
220 lines (195 loc) · 6.55 KB

README.md

File metadata and controls

220 lines (195 loc) · 6.55 KB

pyaro-readers

implementations of readers for the pyaerocom project using pyaro as interface

Installation

python -m pip install 'pyaro-readers@git+https://github.com/metno/pyaro-readers.git'

This will install pyaro and pyaro-readers and all their dependencies.

Supported readers

aeronetsunreader

Reader for aeronet sun version 3 data (https://aeronet.gsfc.nasa.gov/new_web/download_all_v3_aod.html). The reader supports reading from an uncompressed local file and from an URL providing a zip file or an uncompressed file. If a zip file URL is provided, only the 1st file in there is used (since the Aeronet provided zip contains all data in a single file).

aeronetsdareader

Reader for aeronet SDA version 3 data (https://aeronet.gsfc.nasa.gov/new_web/download_all_v3_aod.html). The reader supports reading from an uncompressed local file and from an URL providing a zip file, an uncompressed file or a tar file (including all common compression formats). If a zip file URL is provided, only the 1st file in there is used (since the Aeronet provided zip contains all data in a single file).

ascii2netcdf

Reader for databases created with MSC-W tools niluNasaAmes2Netcdf or eea_airquip2emepdata.py. The database consists of a directory with a list of stations, i.e. StationList.csv and netcdf data-files per year with resolutions hourly, daily, weekly, monthly and yearly and a naming of data_{resolution}.{YYYY}.nc, e.g. data_daily.2021.nc. A test-database with daily data only can be found under tests/testdata/NILU.

The MSC-W database contains the EBAS database for 1990-2021 and the EEA_Airquip database for 2016-2018 as of yearly 2024. The data in the database is already aggregated, i.e. daily files contain already hourly data if enough hours have been measured. Therefore, resolution is a required parameter.

harp

Reader for NetCDF files that follow the HARP conventions.

nilupmfebas: EBAS format (Nasa-Ames)

Reader for random EBAS data in NASA-AMES format. This reader is tested only with PMF data provided by NILU, but should in principle able to read any random text file in EBAS NASA-AMES. The variables provided contain in EBAS terms a combination of matrix, component and unit with a number sign (#) as seperator (e.g. pm10_pm25#total_carbon#ug C m-3" or pm10#organic_carbon##ug C m-3 or pm10#galactosan#ng m-3)

EEA: Parquet format

Reader for the EEA files provided by https://eeadmz1-downloads-webapp.azurewebsites.net/. The reader reads the hourly only data of the unverified dataset. The directory structure must be

metadata.csv
unverified
    - NO
    - SE
        - SPO-SE395030_00038_100.parquet
        - ...
    - ...

where metadata.csv is csv file containing station metadata (https://discomap.eea.europa.eu/App/AQViewer/index.html?fqn=Airquality_Dissem.b2g.measurements).

Usage

aeronetsunreader

import pyaro
TEST_URL = "https://pyaerocom.met.no/pyaro-suppl/testdata/aeronetsun_testdata.csv"
with pyro.open_timeseries("aeronetsunreader", TEST_URL, filters=[], fill_country_flag=False) as ts:
    print(ts.variables())
    data = ts.data('AOD_550nm')
    # stations
    data.stations
    # start_times
    data.start_times
    # stop_times
    data.end_times
    # latitudes
    data.latitudes
    # longitudes
    data.longitudes
    # altitudes
    data.altitudes
    # values
    data.values

aeronetsdareader

import pyaro
TEST_URL = "https://pyaerocom.met.no/pyaro-suppl/testdata/SDA_Level20_Daily_V3_testdata.tar.gz"
with pyaro.open_timeseries("aeronetsdareader", TEST_URL, filters=[], fill_country_flag=False) as ts:
    print(ts.variables())
    data = ts.data('AODGT1_550nm')
    # stations
    data.stations
    # start_times
    data.start_times
    # stop_times
    data.end_times
    # latitudes
    data.latitudes
    # longitudes
    data.longitudes
    # altitudes
    data.altitudes
    # values
    data.values

ascii2netcdf

import pyaro
TEST_URL = "/lustre/storeB/project/fou/kl/emep/Auxiliary/NILU/"
with pyaro.open_timeseries(
    'ascii2netcdf', EBAS_URL, resolution="daily", filters=[]
) as ts:
    data = ts.data("sulphur_dioxide_in_air")
    data.units # ug
    # stations
    data.stations
    # start_times
    data.start_times
    # stop_times
    data.end_times
    # latitudes
    data.latitudes
    # longitudes
    data.longitudes
    # altitudes
    data.altitudes
    # values
    data.values

harpreader

import pyaro

TEST_URL = "/lustre/storeB/project/aerocom/aerocom1/AEROCOM_OBSDATA/CNEMC/aggregated/sinca-surface-157-999999-001.nc"
with pyaro.open_timeseries(
    'harp', TEST_URL
) as ts:
    data = ts.data("CO_volume_mixing_ratio")
    data.units # ppm
    # stations
    data.stations
    # start_times
    data.start_times
    # stop_times
    data.end_times
    # latitudes
    data.latitudes
    # longitudes
    data.longitudes
    # altitudes
    data.altitudes
    # values
    data.values

nilupmfebas

import pyaro
TEST_URL = "testdata/PMF_EBAS/NO0042G.20171109070000.20220406124026.high_vol_sampler..pm10.4mo.1w.NO01L_hvs_week_no42_pm10.NO01L_NILU_sunset_002.lev2.nas"
def main():
    with pyaro.open_timeseries(
        'nilupmfebas', TEST_URL, filters=[]
    ) as ts:
        variables = ts.variables()
        for var in variables:
            data = ts.data(var)
            print(f"var:{var} ; unit:{data.units}")
            # stations
            print(set(data.stations))
            # start_times
            print(data.start_times)
            for idx, time in enumerate(data.start_times):
                print(f"{time}: {data.values[idx]}")
            # stop_times
            data.end_times
            # latitudes
            data.latitudes
            # longitudes
            data.longitudes
            # altitudes
            data.altitudes
            # values
            data.values

if __name__ == "__main__":
    main()

eeareader

import pyaro
import pyaro.timeseries

TEST_URL = "/lustre/storeB/project/aerocom/aerocom1/AEROCOM_OBSDATA/EEA-AQDS/download"


def main():
    with pyaro.open_timeseries(
        "eeareader",
        TEST_URL,
        filters=[
            pyaro.timeseries.Filter.CountryFilter(include=["NO", "SE", "DK"]),
            pyaro.timeseries.Filter.TimeBoundsFilter(
                startend_include=[("2023-01-01 00:00:00", "2024-01-01 00:00:00")]
            ),
        ],
        enable_progressbar=True,
    ) as ts:
        # help(ts)
        data = ts.data("PM10")
        print(data.values)


if __name__ == "__main__":
    main()