-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdriver.cpp
265 lines (209 loc) · 10.7 KB
/
driver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#include "csv.h"
#include "utils_derivs.h"
#include <iostream>
#include <vector>
#include "read_data.h"
#include "second_derivs.h"
#include <codi.hpp>
#include <boost/numeric/ublas/matrix_sparse.hpp>
using Real = codi::RealForward;
namespace ublas = boost::numeric::ublas;
extern "C" void solve(double* matrix, double* b_arr, int m, double* res );
void readREG(char filename[]){
io::CSVReader<7> in(filename);
in.read_header(io::ignore_extra_column, "Bus ID", "Real Power Output", "React Power Output", "Max Real Power Output", "Min Real Power Output", "Max React Power Output", "Min React Power Output");
double Bus; double Po; double Qo; double Pmax; double Pmin; double Qmax; double Qmin;
while(in.read_row(Bus, Po, Qo, Pmax, Pmin, Qmax, Qmin)){
printf("Bus ID: %d, Real Power Output: %f, React Power Output: %f,\n\tMax Real Power Output: %f, Min Real Power Output: %f, Max React Power Output: %f, Max React Power Output: %f\n", int(Bus), Po, Qo, Pmax, Pmin, Qmax, Qmin);
}
}
void readBranch(char filename[]){
io::CSVReader<6> in(filename);
in.read_header(io::ignore_extra_column, "From Bus", "To Bus", "Max Angle Difference", "Min Angle Difference", "G" , "B");
double FromBus; double ToBus; double MaxAng; double MinAng; double G; double B;
while(in.read_row(FromBus, ToBus, MaxAng, MinAng, G, B)){
printf("From Bus: %d, To Bus: %d, Max Angle Difference: %f, Min Angle Difference: %f, Conductance: %f, Susecptance: %f\n", int(FromBus), int(ToBus), MaxAng, MinAng, G, B);
}
}
int main(){
load_data();
/*********************************************** Declare X Vector ***********************************************/
//contents {Real Power of Gen n, React Power of Gen n, Volt of Bus m, Volt Angle of Bus m}
sizeX = RealPower.size() + ReactPower.size() + Volt.size() + VoltAng.size();
Real X[sizeX];
int counter = 0;
for (double i: RealPower)
X[counter++] = i;
for (double i: ReactPower)
X[counter++] = i;
for (double i: Volt)
X[counter++] = i;
for (double i: VoltAng)
X[counter++] = i;
// for(int i=0;i<sizeX;++i)
// cout<<X[i]<<" ";
/*********************************************** Declare/Construct Problem Variables ***********************************************/
int Nb = FromBus.size();
int sizeY = 2*RealPowerMax.size() + 2*ReactPowerMax.size() + 2*VoltMax.size() + 2*FromBus.size();
Real Cost[1], GX[2*Nb], HX[sizeY], f_val[1], G_val[2*Nb];
ublas::compressed_matrix<double> Z(sizeY, 1);
// ublas::compressed_matrix<double> L(1, 1);
ublas::compressed_matrix<double> lambda(2*Nb, 1), mu(sizeY, 1), gamma(sizeY, 1);
//printf("Number of Equations: %d, Number of Variables: %d\n", sizeY, sizeX);
H(X, RealPowerMax, RealPowerMin, ReactPowerMax, ReactPowerMin, VoltMax, VoltMin, FromBus, ToBus, VoltAngMax, VoltAngMin, HX);
ublas::compressed_matrix<double> HXuBLAS(sizeY, 1);
HXuBLAS = RealPointerToDoubleUBlasVec(HX, sizeY);
for(size_t i = 0; i < Z.size1(); ++i) {
for(size_t j = 0; j < Z.size2(); ++j) {
Z(i,j) = -1*HXuBLAS(i,j);
}
}
double iterations = 1, maxIterations = 25; // ensures loop isnt infinite
/************************************
LOOP WILL GO BACK TO HERE
*************************************/
while(iterations < maxIterations) {
/*********************************************** Calculate Problem ***********************************************/
f(X, a, b, c, Cost);
ublas::compressed_matrix<double> CostuBLAS(1, 1);
CostuBLAS = RealPointerToDoubleUBlasVec(Cost, 1);
G_func(X, BusID_Gen, BusID_REG, FromBus, ToBus, RealPowerDemand, ReactPowerDemand, Gvec, Bvec, Real_P_REG, React_P_REG, GX);
ublas::compressed_matrix<double> GXuBLAS(2*Nb, 1);
GXuBLAS = RealPointerToDoubleUBlasVec(GX, 2*Nb);
H(X, RealPowerMax, RealPowerMin, ReactPowerMax, ReactPowerMin, VoltMax, VoltMin, FromBus, ToBus, VoltAngMax, VoltAngMin, HX);
//ublas::compressed_matrix<double> HXuBLAS(sizeY, 1);
HXuBLAS = RealPointerToDoubleUBlasVec(HX, sizeY);
/*********************************************** Declare Derivatives ***********************************************/
vector<vector<Real>> dFdX(1, vector<Real>(sizeX));
vector<vector<Real>> dHXdX(sizeY, vector<Real>(sizeX));
vector<vector<Real>> dGXdX(2*Nb, vector<Real>(sizeX));
/*********************************************** Calculate Derivatives ***********************************************/
dFdX = fX(X, sizeX, f_val, 1, a, b, c, dFdX);
ublas::compressed_matrix<double> dFdXMatrix(dHXdX.size(), dHXdX[0].size());
dFdXMatrix = RealVectorToDoubleUBlas(dFdX, dFdX.size(), dFdX[0].size());
dHXdX = forwardModeFirstDerivativeH(X, sizeX, HX, sizeY, RealPowerMax, RealPowerMin, ReactPowerMax, ReactPowerMin, VoltMax, VoltMin, FromBus, ToBus,
VoltAngMax, VoltAngMin, dHXdX);
ublas::compressed_matrix<double> dHdxMatrix(dHXdX.size(), dHXdX[0].size());
dHdxMatrix = RealVectorToDoubleUBlas(dHXdX, dHXdX.size(), dHXdX[0].size());
dGXdX = GX_func(X, sizeX, G_val, 2*Nb, BusID_Gen, BusID_REG, FromBus, ToBus, RealPowerDemand, ReactPowerDemand, Gvec, Bvec, Real_P_REG,
React_P_REG, dGXdX);
ublas::compressed_matrix<double> dGXdXMatrix(dGXdX.size(), dGXdX[0].size());
dGXdXMatrix = RealVectorToDoubleUBlas(dGXdX, dGXdX.size(), dGXdX[0].size());
/*********************************************** Declare Lagrangian Functions ***********************************************/
Real L[0];
vector<vector<Real>> dLdX(1, vector<Real>(sizeX));
/*********************************************** Calculate Lagrangian Functions ***********************************************/
// L = CostuBLAS + ublas::prod(trans(lambda), GXuBLAS) + ublas::prod(trans(mu), HXuBLAS + Z) - ublas::prod(trans(gamma), uBLASNaturalLog(Z));
Lag(X, lambda, mu, gamma, Z, L);
//cout << L[0].value() << endl;
dLdX = forwardModeFirstDerivativeL(X, sizeX, lambda, mu, gamma, Z, dLdX);
ublas::compressed_matrix<double> dLdXMatrix(dLdX.size(), dLdX[0].size());
dLdXMatrix = RealVectorToDoubleUBlas(dLdX, dLdX.size(), dLdX[0].size());
/*for(size_t i = 0; i < dLdXMatrix.size1(); ++i) {
for(size_t j = 0; j < dLdXMatrix.size2(); ++j) {
cout << fixed;
cout << std::setprecision (4) <<dLdXMatrix(i,j) << ' '; // prints rounded numbers
}
cout << '\n';
}
cout << scientific;*/
vector<double> SX(sizeX);
//double SX[sizeX];
for(int i = 0;i<sizeX;++i)
{
SX[i] = X[i].value();
}
ucmd LXX = second_deriv(SX , lambda, mu, gamma, Z);
/*********************************************** Compute Matrix for cuSolver ***********************************************/
ublas::compressed_matrix<double> muMatrix(sizeY, sizeY), ZMatrixInverse(sizeY, sizeY), M(sizeX, sizeX), N(sizeX,1);
muMatrix = uBLASVectorToMatrix(mu);
ZMatrixInverse = uBLASVectorToMatrix(Z);
ZMatrixInverse = InvertDiagonalMatrix(ZMatrixInverse);
// Computing N with temp variables
ublas::compressed_matrix<double> temp1(sizeX, sizeY), temp2(sizeY,1);
temp1 = ublas::prod(trans(dHdxMatrix), ZMatrixInverse);
temp2 = gamma + ublas::prod(muMatrix, HXuBLAS);
N = trans(dLdXMatrix) + ublas::prod(temp1, temp2);
// Computing M with temp variables
ublas::compressed_matrix<double> temp3(sizeY, sizeY);
temp3 = ublas::prod(temp1, muMatrix);
M = LXX + ublas::prod(temp3, dHdxMatrix);
/*********************************************** Assign Values for cuSolver ***********************************************/
//Create cuSolver matrix and vector on host
int n = (M.size1()+dGXdXMatrix.size1())*(M.size2()+dGXdXMatrix.size1()), k = (N.size1()+GXuBLAS.size1());
double h_cuSolverMatrix[n], h_cuSolverVector[k]; //column-major storage
CreateCuSolverMatrix(M, dGXdXMatrix, h_cuSolverMatrix);
CreateCuSolverVector(N, GXuBLAS, h_cuSolverVector);
// cout<<endl<<"double* h_cuSolverMatrix =";
// for(int i=0; i<n;++i)
// cout<<h_cuSolverMatrix[i]<<",";
// cout<<endl;
// cout<<"double* h_cuSolverVector =";
// for(int i=0; i<k;++i)
// cout<<h_cuSolverVector[i]<<",";
// cout<<endl;
//Create cuSolver matrix and vector on device
//double d_cuSolverMatrix[(M.size1()+dGXdXMatrix.size1())*(M.size1()+dGXdXMatrix.size1())] //column-major storage
double res[k];
// solve( h_cuSolverMatrix, h_cuSolverVector, k, res );
ublas::compressed_matrix<double> deltalambda(2*Nb, 1), deltaX(sizeX, 1); // will be solved for on GPU
CudaVectorToDoubleUBlasVec( res, sizeX, deltaX, 2*Nb, deltalambda );
/************************************
CUSOLVER WILL GO HERE
*************************************/
/*********************************************** Compute Update Values ***********************************************/
// We assume deltaX and deltalambda are given from the cuSolver output
double chi = 0.99995, sigma = 0.1, alphaP, alphaD;
// loop through solution of cuSolver to fill deltalambda and deltaX
ublas::compressed_matrix<double> deltaZ(sizeY, 1), deltamu(sizeY, 1), newGamma(1,1);
// Compute deltaZ and deltaMu
deltaZ = -1*HXuBLAS - Z - ublas::prod(dHdxMatrix, deltaX);
ublas::compressed_matrix<double> temp4(sizeY,1);
temp4 = gamma - ublas::prod(muMatrix, deltaZ);
deltamu = -1*mu + ublas::prod(ZMatrixInverse, temp4);
// compute update parameters
if(chi*-1*MaxFractionOverXiLTOne(Z, deltaZ) < 1) {
alphaP = chi*-1*MaxFractionOverXiLTOne(Z, deltaZ);
}
else {
alphaP = 1;
}
//cout << alphaP << '\n';
//cout << '\n';
if(chi*-1*MaxFractionOverXiLTOne(mu, deltamu) < 1) {
alphaD = chi*-1*MaxFractionOverXiLTOne(mu, deltamu);
}
else {
alphaD = 1;
}
//cout << alphaD << '\n';
//cout << '\n';
/*********************************************** Update Problem Variables ***********************************************/
Real deltaXReal[sizeX];
DoubleUBlasVecToRealPointer(alphaP*deltaX, deltaXReal); // changes vector to point
RealPointerAdd(X, deltaXReal, sizeX); // adds deltaXReal to X
Z = Z + alphaP*deltaZ;
lambda = lambda + alphaD*deltalambda;
mu = mu + alphaD*deltamu;
newGamma = sigma*ublas::prod(trans(Z), mu);
for(size_t i = 0; i < gamma.size1(); ++i) {
for(size_t j = 0; j < gamma.size2(); ++j) {
gamma(i,j) = newGamma(0,0);
}
}
/*********************************************** Compute Convergent Criteria ***********************************************/
double epsilon = 0.000001, temp6 = 0, temp7 = 0, temp5 = 0;
f(X, a, b, c, Cost);
ublas::compressed_matrix<double> CostuBLASNew(1, 1);
CostuBLASNew = RealPointerToDoubleUBlasVec(Cost, 1);
temp6 = sqrt(ublas::prod(trans((CostuBLASNew - CostuBLAS)), (CostuBLASNew - CostuBLAS))(0,0));
temp7 = sqrt(ublas::prod(trans(CostuBLAS), CostuBLAS)(0,0));
temp5 = (temp6) / (1 + temp7);
cout<<"Iteration-"<<iterations<<"Old cost: "<<CostuBLAS(0,0)<<"New cost: "<<CostuBLASNew(0,0);
cout<<endl;
iterations++;
if(temp5 < epsilon) {
break;
}
}
}