-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtf_image.py
139 lines (104 loc) · 4.45 KB
/
tf_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python
# coding: utf-8
"""
Object Detection (On Image) From TF2 Saved Model
=====================================
"""
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TensorFlow logging (1)
import pathlib
import tensorflow as tf
import cv2
import argparse
tf.get_logger().setLevel('ERROR') # Suppress TensorFlow logging (2)
parser = argparse.ArgumentParser()
parser.add_argument('--model', help='Folder that the Saved Model is Located In',
default='exported-models/my_model/')
parser.add_argument('--labels', help='Where the Labelmap is Located',
default='exported-models/my_model/saved_model/label_map.pbtxt')
parser.add_argument('--image', help='Name of the single image to perform detection on',
default='images/test/a136.jpg')
parser.add_argument('--threshold', help='Minimum confidence threshold for displaying detected objects',
default=0.20)
args = parser.parse_args()
# Enable GPU dynamic memory allocation
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
# PROVIDE PATH TO IMAGE DIRECTORY
IMAGE_PATHS = args.image
# PROVIDE PATH TO MODEL DIRECTORY
PATH_TO_MODEL_DIR = args.model
# PROVIDE PATH TO LABEL MAP
PATH_TO_LABELS = args.labels
# PROVIDE THE MINIMUM CONFIDENCE THRESHOLD
MIN_CONF_THRESH = float(args.threshold)
# LOAD THE MODEL
import time
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
PATH_TO_SAVED_MODEL = PATH_TO_MODEL_DIR + "/saved_model"
print('Loading model...', end='')
start_time = time.time()
# LOAD SAVED MODEL AND BUILD DETECTION FUNCTION
detect_fn = tf.saved_model.load(PATH_TO_SAVED_MODEL)
end_time = time.time()
elapsed_time = end_time - start_time
print('Done! Took {} seconds'.format(elapsed_time))
# LOAD LABEL MAP DATA FOR PLOTTING
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,
use_display_name=True)
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore') # Suppress Matplotlib warnings
def load_image_into_numpy_array(path):
"""Load an image from file into a numpy array.
Puts image into numpy array to feed into tensorflow graph.
Note that by convention we put it into a numpy array with shape
(height, width, channels), where channels=3 for RGB.
Args:
path: the file path to the image
Returns:
uint8 numpy array with shape (img_height, img_width, 3)
"""
return np.array(Image.open(path))
print('Running inference for {}... '.format(IMAGE_PATHS), end='')
image = cv2.imread(IMAGE_PATHS)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_expanded = np.expand_dims(image_rgb, axis=0)
# The input needs to be a tensor, convert it using `tf.convert_to_tensor`.
input_tensor = tf.convert_to_tensor(image)
# The model expects a batch of images, so add an axis with `tf.newaxis`.
input_tensor = input_tensor[tf.newaxis, ...]
# input_tensor = np.expand_dims(image_np, 0)
detections = detect_fn(input_tensor)
# All outputs are batches tensors.
# Convert to numpy arrays, and take index [0] to remove the batch dimension.
# We're only interested in the first num_detections.
num_detections = int(detections.pop('num_detections'))
detections = {key: value[0, :num_detections].numpy()
for key, value in detections.items()}
detections['num_detections'] = num_detections
# detection_classes should be ints.
detections['detection_classes'] = detections['detection_classes'].astype(np.int64)
image_with_detections = image.copy()
# SET MIN_SCORE_THRESH BASED ON YOU MINIMUM THRESHOLD FOR DETECTIONS
viz_utils.visualize_boxes_and_labels_on_image_array(
image_with_detections,
detections['detection_boxes'],
detections['detection_classes'],
detections['detection_scores'],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=MIN_CONF_THRESH,
agnostic_mode=False)
print('Done')
# DISPLAYS OUTPUT IMAGE
cv2.imshow('Object Detector', image_with_detections)
# CLOSES WINDOW ONCE KEY IS PRESSED
cv2.waitKey(0)
# CLEANUP
cv2.destroyAllWindows()