-
Notifications
You must be signed in to change notification settings - Fork 4
/
BIMOND3.m
340 lines (300 loc) · 9.18 KB
/
BIMOND3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
%% BIMOND3.m
% M. Henry Linder ([email protected])
%
% This M-file implements the BIMOND3 algorithm presented in "An
% Algorithm For Monotone Piecewise Bicubic Interpolation" (Carlson and
% Fritsch, 1989).
%
% Recreating the results of Carlson and Fritsch requires the following
% functions be available in your path. These files can be obtained as
% part of the `slatec` MATLAB package, available at
% http://www.mathworks.com/matlabcentral/fileexchange/14535-slatec
% * pchci.m
% * pchcs.m
% * pchic.m
% * pchst.m
% * pchsw.m
% * r1mach.m
%% BIMOND3
function pp2d = BIMOND3(x, y, p);
%% Verify inputs
nx = length(x);
ny = length(y);
% Check that input is properly 2-dimensional
if ~(isvector(x) & isvector(y)) | ~(nx >= 4 & ny >= 4)
error(['Input data must be 2-dimensional with at least 4 points ' ...
'along each input axis (i.e., `length(x) >= 4 & length(y) ' ...
'>= 4`']);
end
% Check that dimensions match. Note that x indexes rows and y
% indexes columns
if ~all([nx ny] == size(p))
error('Input value dimensions do not match function value dimensions.');
end
%% Step 1: verify monotonicity, calculate sx and sy, and other
% variable setup
% Verify monotonicity in both directions
if ~(all(all(diff(p, 1, 1) > 0)) | all(all(diff(p, 1, 1) < 0))) | ...
~(all(all(diff(p, 1, 2) > 0)) | all(all(diff(p, 1, 2) < 0)))
error(['Input function values are not monotone along both axes. ' ...
'BIMOND3 requires that the interpolated function be ' ...
'monotone in both directions.'])
end
sx = sign(p(2, 1) - p(1, 1));
sy = sign(p(1, 2) - p(1, 1));
h = [x(2:end) - x(1:(end-1)), nan];
k = [y(2:end) - y(1:(end-1)), nan];
del1 = nan(nx, ny);
del2 = nan(nx, ny);
for i = 1:nx
for j = 1:(ny-1)
del1(i, j) = (p(i, j+1) - p(i, j)) / k(j);
end
del1(i, end) = nan;
end
for j = 1:ny
for i = 1:(nx-1)
del2(i, j) = (p(i+1, j) - p(i, j)) / h(i);
end
del2(end, j) = nan;
end
a = nan(size(del1));
b = nan(size(del2));
for i = 1:nx
for j = 1:(ny-1)
a(i, j) = 3 * k(j) * sy * del1(i, j);
end
end
for i = 1:(nx-1)
for j = 1:ny
b(i, j) = 3 * h(i) * sx * del2(i, j);
end
end
%% Step 2: Initialize partial derivatives px, py
% Intitialize inputs to PCHIC. The value of `SWITCH` ensures
% numerically identical results to those in the paper. Specifically,
% this "smooths" the interpolating function, preventing extrema from
% having partial derivatives equal to zero.
IC = [0 0];
VC = [0 0];
SWITCH = 1;
INCFD = 1;
IERR = 0;
% Initialize partial derivative matrices
px = nan(size(p));
py = nan(size(p));
% Set partials with respect to x-axis
for i = 1:length(y)
[ic,vc,switchml,n,outx,f,d,incfd,wk,nwk,ierr] = pchic(IC, VC, SWITCH, ...
nx, x, p(:, i), ...
zeros(1, nx), INCFD, ...
zeros(1, 2*(nx-1)), ...
2*(nx-1), IERR);
px(:, i) = d;
end
% Set partials with respect to y-axis
for i = 1:length(x)
[ic,vc,switchml,n,outy,f,d,incfd,wk,nwk,ierr] = pchic(IC, VC, SWITCH, ...
ny, y, p(i, :), ...
zeros(1, ny), INCFD, ...
zeros(1, 2*(ny-1)), ...
2*(ny-1), IERR);
py(i, :) = d;
end
%% Step 3: Adjust partial derivatives as needed
% This is omitted as unnecessary (see Carlson and Fritsch).
%% Step 4: Adjust partial derivatives as needed
% All sweeps are done with the original values of px, py
pxx = px;
pyy = py;
% Step 4a: Adjust x partial derivatives
D = nan(nx, ny);
U = nan(nx, ny);
for i = 1:nx
for j = 1:(ny-1)
D(i, j) = (3 * k(j) * sy * del1(i, j) ...
- k(j) * max([sy*pyy(i, j+1), sy*pyy(i, j)])) / h(i);
if i > 1
U(i, j) = (3 * k(j) * sy * del1(i, j) ...
- k(j) * max([sy*pyy(i, j+1), sy*pyy(i, j)])) / h(i-1);
end
end
end
for i = 1:nx
px(i, :) = sx * sweep_bimond3(abs(px(i, :)), D(i, :), U(i, :));
end
% Step 4b: Adjust y partial derivatives
L = nan(nx, ny);
R = nan(nx, ny);
for j = 1:ny
for i = 1:(nx-1)
L(i, j) = (3 * h(i) * sx * del2(i, j) ...
- h(i) * max([sx*pxx(i+1, j), sx*pxx(i, j)])) / k(j);
if j > 1
R(i, j) = (3 * h(i) * sx * del2(i, j) ...
- h(i) * max([sx*pxx(i+1, j), sx*pxx(i, j)])) / k(j-1);
end
end
end
for j = 1:ny
py(:, j) = sy * sweep_bimond3(abs(py(:, j)), L(:, j), R(:, j));
end
%% Step 5: Compute values of crossed derivatives pxy
% Three point difference formulae from
% http://www.sitmo.com/article/numerical-differentiation/
%
% For first derivative, one equation is:
% d/dy px(x, y) = (px(x, y + h) - px(x, y - h)) / (2 * h)
% d/dy px(x, y) = (-px(x, y + 2h), + 4 * px(x, y + h)
% - 3 * px(x,y)) / (2 * h)
partialxy = nan(size(p));
for i = 1:nx
for j = 1:ny
if j > 1 && j < ny
partialxy(i, j) = (px(i, j+1) - px(i, j-1)) / 2;
elseif j == 1
partialxy(i, j) = (-1*px(i, j+2) + 4*px(i, j+1) - 3*px(i, j)) ...
/ 2;
else % j == ny
partialxy(i, j) = (-1*px(i, j-2) + 4*px(i, j-1) - 3*px(i, j)) ...
/ -2;
end
end
end
partialyx = nan(size(p));
for j = 1:ny
for i = 1:nx
if i > 1 && i < nx
partialyx(i, j) = (py(i+1, j) - py(i-1, j)) / 2;
elseif i == 1
partialyx(i, j) = (-1*py(i+2, j) + 4*py(i+1, j) - 3*py(i, j)) ...
/ 2;
else % i == nx
partialyx(i, j) = (-1*py(i-2, j) + 4*py(i-1, j) - 3*py(i, j)) ...
/ -2;
end
end
end
pxy = (partialxy + partialyx) / 2;
% 2.3
pyplus = nan(size(p));
pyminus = nan(size(p));
hlag = [nan h(1:(end-1))];
for i = 1:nx
pyplus(i, :) = sy * py(i, :) / h(i);
pyminus(i, :) = sy * py(i, :) / hlag(i);
end
pxplus = nan(size(p));
pxminus = nan(size(p));
klag = [nan k(1:(end-1))];
for j = 1:ny
pxplus(:, j) = sx * px(:, j) / k(j);
pxminus(:, j) = sx * px(:, j) / klag(j);
end
del1prime = nan(size(p));
del2prime = nan(size(p));
for i = 1:nx
for j = 1:(ny-1)
del1prime(i, j) = (px(i, j+1) - px(i, j)) / k(j);
end
del1prime(i, end) = nan;
end
for j = 1:ny
for i = 1:(nx-1)
del2prime(i, j) = (py(i+1, j) - py(i, j)) / h(i);
end
del2prime(end, j) = nan;
end
A = nan(size(p));
B = nan(size(p));
C = nan(size(p));
D = nan(size(p));
for i = 1:nx
for j = 1:ny
A(i, j) = sy * (del1prime(i, j) - 3 * del1(i, j) / ...
hlag(i));
B(i, j) = sy * (del1prime(i, j) + 3 * del1(i, j) / h(i));
C(i, j) = sx * (del2prime(i, j) - 3 * del2(i, j) / ...
klag(j));
D(i, j) = sx * (del2prime(i, j) + 3 * del2(i, j) / k(j));
end
end
boundsly1 = nan(size(p)); % left y bounds
boundsry1 = nan(size(p)); % right y bounds
boundsly2 = nan(size(p));
boundsry2 = nan(size(p));
boundsly3 = nan(size(p));
boundsry3 = nan(size(p));
for i = 1:nx
for j = 1:ny
boundsly1(i, j) = -3 * pyplus(i, j);
boundsly2(i, j) = 3 * (A(i, j) + pyminus(i, j));
boundsry1(i, j) = 3 * (B(i, j) - pyplus(i, j));
boundsry3(i, j) = 3 * pyminus(i, j);
if j > 1
boundsly3(i, j) = 3 * (A(i, j-1) + pyminus(i, j));
boundsry2(i, j) = 3 * (B(i, j-1) - pyplus(i, j));
end
end
end
boundslx1 = nan(size(p));
boundsrx1 = nan(size(p));
boundslx2 = nan(size(p));
boundsrx2 = nan(size(p));
boundslx3 = nan(size(p));
boundsrx3 = nan(size(p));
for j = 1:ny
for i = 1:nx
boundslx1(i, j) = -3 * pxplus(i, j);
boundslx2(i, j) = 3 * (C(i, j) + pxminus(i, j));
boundsrx1(i, j) = 3 * (D(i, j) - pxplus(i, j));
boundsrx3(i, j) = 3 * pxminus(i, j);
if i > 1
boundslx3(i, j) = 3 * (C(i-1, j) + pxminus(i, j));
boundsrx2(i ,j) =3 * (D(i-1, j) - pxplus(i, j));
end
end
end
boundsly = max( max(boundsly1, boundsly2), ...
boundsly3);
boundsry = min( min(boundsry1, boundsry2), ...
boundsry3);
boundslx = max( max(boundslx1, boundslx2), ...
boundslx3);
boundsrx = min( min(boundsrx1, boundsrx2), ...
boundsrx3);
for i = 1:nx
for j = 1:ny
if sy * pxy(i, j) < boundsly(i, j)
pxy(i, j) = boundsly(i, j);
end
if sy * pxy(i, j) > boundsry(i, j)
pxy(i, j) = boundsry(i, j);
end
if sx * pxy(i, j) < boundslx(i, j)
pxy(i, j) = boundslx(i, j);
end
if sx * pxy(i, j) > boundsrx(i, j)
pxy(i, j) = boundsrx(i, j);
end
end
end
pp2d = extract_pp(x, y, p, px, py, pxy);
end % function BIMOND3
%% sweep_bimond3
function d = sweep_bimond3(d, lhs, rhs)
% This function does NOT verify inputs
n = length(d);
% upsweep
for k = 1:(n-1)
if d(k+1) - d(k) > rhs(k)
d(k+1) = d(k) + rhs(k);
end
end
% downsweep
for k = flip(1:(n-1))
if d(k+1) - d(k) < -1*lhs(k)
d(k) = d(k+1) + lhs(k);
end
end
end % function sweep_bimond3