-
-
Notifications
You must be signed in to change notification settings - Fork 44
/
pdfio-aes.c
519 lines (429 loc) · 15.1 KB
/
pdfio-aes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
//
// AES functions for PDFio.
//
// Copyright © 2021 by Michael R Sweet.
//
// Licensed under Apache License v2.0. See the file "LICENSE" for more
// information.
//
// AES code is adapted from the "tiny-AES-c" project
// (<https://github.com/kokke/tiny-AES-c>)
//
#include "pdfio-private.h"
//
// Local types...
//
typedef uint8_t state_t[4][4]; // 4x4 AES state table @private@
//
// Local globals...
//
static const uint8_t sbox[256] = // S-box lookup table
{
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
static const uint8_t rsbox[256] = // Reverse S-box lookup table
{
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
// The round constant word array, Rcon[i], contains the values given by
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[11] = // Round constants
{
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
};
//
// Local functions...
//
static void AddRoundKey(size_t round, state_t *state, const uint8_t *RoundKey);
static void SubBytes(state_t *state);
static void ShiftRows(state_t *state);
static uint8_t xtime(uint8_t x);
static void MixColumns(state_t *state);
static uint8_t Multiply(uint8_t x, uint8_t y);
static void InvMixColumns(state_t *state);
static void InvSubBytes(state_t *state);
static void InvShiftRows(state_t *state);
static void Cipher(state_t *state, const _pdfio_aes_t *ctx);
static void InvCipher(state_t *state, const _pdfio_aes_t *ctx);
static void XorWithIv(uint8_t *buf, const uint8_t *Iv);
//
// '_pdfioCryptoAESInit()' - Initialize an AES context.
//
void
_pdfioCryptoAESInit(
_pdfio_aes_t *ctx, // I - AES context
const uint8_t *key, // I - Key
size_t keylen, // I - Length of key (must be 16 or 32)
const uint8_t *iv) // I - 16-byte initialization vector
{
size_t i; // Looping var
uint8_t *rkptr0, // Previous round_key values
*rkptr, // Current round_key values
*rkend, // End of round_key values
tempa[4]; // Used for the column/row operations
// size_t roundlen = keylen + 24; // Length of round_key
size_t nwords = keylen / 4; // Number of 32-bit words in key
// Clear context
memset(ctx, 0, sizeof(_pdfio_aes_t));
ctx->round_size = keylen / 4 + 6;
// The first round key is the key itself.
memcpy(ctx->round_key, key, keylen);
// All other round keys are found from the previous round keys.
for (rkptr0 = ctx->round_key, rkptr = rkptr0 + keylen, rkend = rkptr + 16 * ctx->round_size, i = nwords; rkptr < rkend; i ++)
{
if ((i % nwords) == 0)
{
// Shifts word left once - [a0,a1,a2,a3] becomes [a1,a2,a3,a0], then
// apply the S-box to each of the four bytes to produce an output word.
tempa[0] = sbox[rkptr[-3]] ^ Rcon[i / nwords];
tempa[1] = sbox[rkptr[-2]];
tempa[2] = sbox[rkptr[-1]];
tempa[3] = sbox[rkptr[-4]];
}
else if (keylen == 32 && (i % nwords) == 4)
{
// Apply the S-box to each of the four bytes to produce an output word.
tempa[0] = sbox[rkptr[-4]];
tempa[1] = sbox[rkptr[-3]];
tempa[2] = sbox[rkptr[-2]];
tempa[3] = sbox[rkptr[-1]];
}
else
{
// Use unshifted values without S-box...
tempa[0] = rkptr[-4];
tempa[1] = rkptr[-3];
tempa[2] = rkptr[-2];
tempa[3] = rkptr[-1];
}
// TODO: Optimize to incorporate this into previous steps
*rkptr++ = *rkptr0++ ^ tempa[0];
*rkptr++ = *rkptr0++ ^ tempa[1];
*rkptr++ = *rkptr0++ ^ tempa[2];
*rkptr++ = *rkptr0++ ^ tempa[3];
}
// Copy the initialization vector...
if (iv)
memcpy(ctx->iv, iv, sizeof(ctx->iv));
}
//
// '_pdfioCryptoAESDecrypt()' - Decrypt a block of bytes with AES.
//
// "inbuffer" and "outbuffer" can point to the same memory. Length must be a
// multiple of 16 bytes (excess is not decrypted).
//
size_t // O - Number of bytes in output buffer
_pdfioCryptoAESDecrypt(
_pdfio_aes_t *ctx, // I - AES context
uint8_t *outbuffer, // I - Output buffer
const uint8_t *inbuffer, // I - Input buffer
size_t len) // I - Number of bytes to decrypt
{
uint8_t next_iv[16]; // Next IV value
size_t outbytes = 0; // Output bytes
if (inbuffer != outbuffer)
{
// Not the most efficient, but we can optimize later - the sample AES code
// manipulates the data directly in memory and doesn't support separate
// input and output buffers...
memcpy(outbuffer, inbuffer, len);
}
while (len > 15)
{
memcpy(next_iv, outbuffer, 16);
InvCipher((state_t *)outbuffer, ctx);
XorWithIv(outbuffer, ctx->iv);
memcpy(ctx->iv, next_iv, 16);
outbuffer += 16;
len -= 16;
outbytes += 16;
}
return (outbytes);
}
//
// '_pdfioCryptoAESEncrypt()' - Encrypt a block of bytes with AES.
//
// "inbuffer" and "outbuffer" can point to the same memory. "outbuffer" must
// be a multiple of 16 bytes.
//
size_t // O - Number of bytes in output buffer
_pdfioCryptoAESEncrypt(
_pdfio_aes_t *ctx, // I - AES context
uint8_t *outbuffer, // I - Output buffer
const uint8_t *inbuffer, // I - Input buffer
size_t len) // I - Number of bytes to decrypt
{
uint8_t *iv = ctx->iv; // Current IV for CBC
size_t outbytes = 0; // Output bytes
if (len == 0)
return (0);
if (inbuffer != outbuffer)
{
// Not the most efficient, but we can optimize later - the sample AES code
// manipulates the data directly in memory and doesn't support separate
// input and output buffers...
memcpy(outbuffer, inbuffer, len);
}
while (len > 15)
{
XorWithIv(outbuffer, iv);
Cipher((state_t*)outbuffer, ctx);
iv = outbuffer;
outbuffer += 16;
len -= 16;
outbytes += 16;
}
if (len > 0)
{
// Pad the final buffer with (16 - len)...
memset(outbuffer + len, 16 - len, 16 - len);
XorWithIv(outbuffer, iv);
Cipher((state_t*)outbuffer, ctx);
iv = outbuffer;
outbytes += 16;
}
/* store Iv in ctx for next call */
memcpy(ctx->iv, iv, 16);
return (outbytes);
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void
AddRoundKey(size_t round, state_t *state, const uint8_t *RoundKey)
{
unsigned i; // Looping var
uint8_t *sptr = (*state)[0]; // Pointer into state
for (RoundKey += round * 16, i = 16; i > 0; i --, sptr ++, RoundKey ++)
*sptr ^= *RoundKey;
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void
SubBytes(state_t *state)
{
unsigned i; // Looping var
uint8_t *sptr = (*state)[0]; // Pointer into state
for (i = 16; i > 0; i --, sptr ++)
*sptr = sbox[*sptr];
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void
ShiftRows(state_t *state)
{
uint8_t *sptr = (*state)[0]; // Pointer into state
uint8_t temp; // Temporary value
// Rotate first row 1 columns to left
temp = sptr[1];
sptr[1] = sptr[5];
sptr[5] = sptr[9];
sptr[9] = sptr[13];
sptr[13] = temp;
// Rotate second row 2 columns to left
temp = sptr[2];
sptr[2] = sptr[10];
sptr[10] = temp;
temp = sptr[6];
sptr[6] = sptr[14];
sptr[14] = temp;
// Rotate third row 3 columns to left
temp = sptr[3];
sptr[3] = sptr[15];
sptr[15] = sptr[11];
sptr[11] = sptr[7];
sptr[7] = temp;
}
static uint8_t
xtime(uint8_t x)
{
return ((uint8_t)((x << 1) ^ ((x >> 7) * 0x1b)));
}
// MixColumns function mixes the columns of the state matrix
static void
MixColumns(state_t *state)
{
unsigned i; // Looping var
uint8_t *sptr = (*state)[0]; // Pointer into state
uint8_t Tmp, Tm, t; // Temporary values
for (i = 4; i > 0; i --, sptr += 4)
{
t = sptr[0];
Tmp = sptr[0] ^ sptr[1] ^ sptr[2] ^ sptr[3];
Tm = sptr[0] ^ sptr[1];
Tm = xtime(Tm);
sptr[0] ^= Tm ^ Tmp;
Tm = sptr[1] ^ sptr[2];
Tm = xtime(Tm);
sptr[1] ^= Tm ^ Tmp;
Tm = sptr[2] ^ sptr[3];
Tm = xtime(Tm);
sptr[2] ^= Tm ^ Tmp;
Tm = sptr[3] ^ t;
Tm = xtime(Tm);
sptr[3] ^= Tm ^ Tmp;
}
}
// Multiply is used to multiply numbers in the field GF(2^8)
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
// The compiler seems to be able to vectorize the operation better this way.
// See https://github.com/kokke/tiny-AES-c/pull/34
static uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
}
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void
InvMixColumns(state_t *state)
{
unsigned i; // Looping var
uint8_t *sptr = (*state)[0]; // Pointer into state
uint8_t a, b, c, d; // Temporary values
for (i = 4; i > 0; i --)
{
a = sptr[0];
b = sptr[1];
c = sptr[2];
d = sptr[3];
*sptr++ = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
*sptr++ = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
*sptr++ = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
*sptr++ = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void
InvSubBytes(state_t *state)
{
unsigned i; // Looping var
uint8_t *sptr = (*state)[0]; // Pointer into state
for (i = 16; i > 0; i --, sptr ++)
*sptr = rsbox[*sptr];
}
static void
InvShiftRows(state_t *state)
{
uint8_t *sptr = (*state)[0]; // Pointer into state
uint8_t temp; // Temporary value
// Rotate first row 1 columns to right
temp = sptr[13];
sptr[13] = sptr[9];
sptr[9] = sptr[5];
sptr[5] = sptr[1];
sptr[1] = temp;
// Rotate second row 2 columns to right
temp = sptr[2];
sptr[2] = sptr[10];
sptr[10] = temp;
temp = sptr[6];
sptr[6] = sptr[14];
sptr[14] = temp;
// Rotate third row 3 columns to right
temp = sptr[3];
sptr[3] = sptr[7];
sptr[7] = sptr[11];
sptr[11] = sptr[15];
sptr[15] = temp;
}
// Cipher is the main function that encrypts the PlainText.
static void
Cipher(state_t *state, const _pdfio_aes_t *ctx)
{
size_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(0, state, ctx->round_key);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without MixColumns()
for (round = 1; round < ctx->round_size; round ++)
{
SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(round, state, ctx->round_key);
}
// Add round key to last round
SubBytes(state);
ShiftRows(state);
AddRoundKey(ctx->round_size, state, ctx->round_key);
}
static void
InvCipher(state_t *state, const _pdfio_aes_t *ctx)
{
size_t round;
// Add the First round key to the state before starting the rounds.
AddRoundKey(ctx->round_size, state, ctx->round_key);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without InvMixColumn()
for (round = ctx->round_size - 1; ; round --)
{
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(round, state, ctx->round_key);
if (round == 0)
break;
InvMixColumns(state);
}
}
static void
XorWithIv(uint8_t *buf, const uint8_t *Iv)
{
// 16-byte block...
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
}