diff --git a/18-fine-tuning/README.md b/18-fine-tuning/README.md index 379fa7305..022e4907a 100644 --- a/18-fine-tuning/README.md +++ b/18-fine-tuning/README.md @@ -76,7 +76,7 @@ The following resources provide step-by-step tutorials to walk you through a rea | Provider | Tutorial | Description | | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | OpenAI | [How to fine-tune chat models](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_finetune_chat_models.ipynb?WT.mc_id=academic-105485-koreyst) | Learn to fine-tune a `gpt-35-turbo` for a specific domain ("recipe assistant") by preparing training data, running the fine-tuning job, and using the fine-tuned model for inference. | -| Azure Open AI | [GPT 3.5 Turbo fine-tuning tutorial](https://learn.microsoft.com/azure/ai-services/openai/tutorials/fine-tune?tabs=python-new%2Ccommand-line?WT.mc_id=academic-105485-koreyst) | Learn to fine-tune a `gpt-35-turbo-0613` model **on Azure** by taking steps to create & upload training data, run the fine-tuning job. Deploy & use the new model. | +| Azure OpenAI | [GPT 3.5 Turbo fine-tuning tutorial](https://learn.microsoft.com/azure/ai-services/openai/tutorials/fine-tune?tabs=python-new%2Ccommand-line?WT.mc_id=academic-105485-koreyst) | Learn to fine-tune a `gpt-35-turbo-0613` model **on Azure** by taking steps to create & upload training data, run the fine-tuning job. Deploy & use the new model. | | Hugging Face | [Fine-tuning LLMs with Hugging Face](https://www.philschmid.de/fine-tune-llms-in-2024-with-trl?WT.mc_id=academic-105485-koreyst) | This blog post walks you fine-tuning an _open LLM_ (ex: `CodeLlama 7B`) using the [transformers](https://huggingface.co/docs/transformers/index?WT.mc_id=academic-105485-koreyst) library & [Transformer Reinforcement Learning (TRL)](https://huggingface.co/docs/trl/index?WT.mc_id=academic-105485-koreyst]) with open [datasets](https://huggingface.co/docs/datasets/index?WT.mc_id=academic-105485-koreyst) on Hugging Face. | | | | | | 🤗 AutoTrain | [Fine-tuning LLMs with AutoTrain](https://github.com/huggingface/autotrain-advanced/) | AutoTrain (or AutoTrain Advanced) is a python library developed by Hugging Face that allows finetuning for many different tasks including LLM finetuning. AutoTrain is a no-code solution and finetuning can be done in your own cloud, on Hugging Face Spaces or locally. It supports both a web-based GUI, CLI and training via yaml config files. |