-
Notifications
You must be signed in to change notification settings - Fork 362
/
Copy pathinference-session-run.js
76 lines (60 loc) · 2.47 KB
/
inference-session-run.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT license.
const ort = require('onnxruntime-node');
// following code also works for onnxruntime-web.
const InferenceSession = ort.InferenceSession;
const Tensor = ort.Tensor;
// use an async context to call onnxruntime functions.
async function main() {
try {
// create session and load model.onnx
const session = await InferenceSession.create('./model.onnx');
// prepare inputs
const dataA = prepareDataA(); // Float32Array(12)
const dataB = prepareDataB(); // Float32Array(12)
const tensorA = new ort.Tensor('float32', dataA, [3, 4]);
const tensorB = new ort.Tensor('float32', dataB, [4, 3]);
// prepare feeds. use model input names as keys.
const feeds = {
a: new Tensor('float32', dataA, [3, 4]),
b: new Tensor('float32', dataB, [4, 3])
};
// run options
const option = createRunOptions();
//
// feed inputs and run
//
const results_02 = await session.run(feeds);
const results_02_B = await session.run(feeds, option); // specify options
//
// run with specified names of fetches (outputs)
//
const results_03 = await session.run(feeds, ['c']);
const results_03_B = await session.run(feeds, ['c'], option); // specify options
//
// run with fetches (outputs) as nullable map
//
const results_04 = await session.run(feeds, { c: null });
const results_04_B = await session.run(feeds, { c: null }, option); // specify options
//
// run with fetches (outputs) as nullable map, with tensor as value
//
const preAllocatedTensorC = new Tensor(new Float32Array(9), [3, 3]);
const results_05 = await session.run(feeds, { c: preAllocatedTensorC });
const results_05_B = await session.run(feeds, { c: preAllocatedTensorC }, option); // specify options
} catch (e) {
console.error(`failed to inference ONNX model: ${e}.`);
}
}
main();
function prepareDataA() {
return Float32Array.from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]);
}
function prepareDataB() {
return Float32Array.from([10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120]);
}
function createRunOptions() {
// run options: please refer to the other example for details usage for run options
// specify log verbose to this inference run
return { logSeverityLevel: 0 };
}