@@ -346,7 +346,7 @@ def MatMulInteger(
346
346
r"""[🌐 MatMulInteger(10)](https://onnx.ai/onnx/operators/onnx__MatMulInteger.html#matmulinteger-10 "Online Documentation")
347
347
348
348
349
- Matrix product that behaves like numpy.matmul: https://docs.scipy. org/doc/numpy-1.13.0 /reference/generated/numpy.matmul.html.
349
+ Matrix product that behaves like [ numpy.matmul]( https://numpy. org/doc/stable /reference/generated/numpy.matmul.html) .
350
350
The production MUST never overflow. The accumulation may overflow if and only if in 32 bits.
351
351
352
352
@@ -749,7 +749,7 @@ def QLinearMatMul(
749
749
r"""[🌐 QLinearMatMul(10)](https://onnx.ai/onnx/operators/onnx__QLinearMatMul.html#qlinearmatmul-10 "Online Documentation")
750
750
751
751
752
- Matrix product that behaves like numpy.matmul: https://docs.scipy. org/doc/numpy-1.13.0 /reference/generated/numpy.matmul.html.
752
+ Matrix product that behaves like [ numpy.matmul]( https://numpy. org/doc/stable /reference/generated/numpy.matmul.html) .
753
753
It consumes two quantized input tensors, their scales and zero points, scale and zero point of output,
754
754
and computes the quantized output. The quantization formula is y = saturate((x / y_scale) + y_zero_point).
755
755
For (x / y_scale), it is rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/Rounding for details.
@@ -1067,7 +1067,7 @@ def Slice(
1067
1067
1068
1068
1069
1069
Produces a slice of the input tensor along multiple axes. Similar to numpy:
1070
- https://docs.scipy. org/doc/numpy /reference/arrays .indexing.html
1070
+ https://numpy. org/doc/stable /reference/routines .indexing.html
1071
1071
Slices uses `starts`, `ends`, `axes` and `steps` inputs to specify the start and end
1072
1072
dimension and step for each axis in the list of axes, it uses this information to
1073
1073
slice the input `data` tensor. If a negative value is passed for any of the
0 commit comments