-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
519 lines (444 loc) · 16.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
"""
Copyright (c) Microsoft Corporation. All rights reserved.
Licensed under the MIT License.
"""
import argparse
import copy
import datetime
import os
import time
import numpy as np
import pandas as pd
import rasterio
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from skimage.transform import rotate
from cafo import models, utils
from cafo.data.StreamingDatasets import StreamingGeospatialDataset
from cafo.data.TileDatasets import TileInferenceDataset
os.environ.update(utils.RASTERIO_BEST_PRACTICES)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description="CAFO model training script")
# General arguments
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="The path to a directory to store model checkpoints",
)
parser.add_argument(
"--data_blob_root",
type=str,
required=False,
help="The prefix to append to the paths of the tiles that we are loading",
)
parser.add_argument(
"--overwrite",
action="store_true",
help="Flag for overwriting `output_dir` if that directory already exists",
)
parser.add_argument(
"--save_most_recent",
action="store_true",
help="Flag for saving the most recent version of the model during training",
)
parser.add_argument(
"--azureml",
action="store_true",
help="Whether we are running experiments on Azure ML",
)
parser.add_argument("--gpu", type=int, default=-1, help="The ID of the GPU to use")
parser.add_argument(
"--debug",
action="store_true",
help="This drops all but a few tiles so we can test everything",
)
# Dataloader
parser.add_argument(
"--num_dataloader_workers",
type=int,
default=6,
help="Number of workers to use in all dataloaders",
)
parser.add_argument(
"--num_chips_per_tile",
type=int,
default=600,
help="The number of chips we will sample from each tile (we will potentially reject"
+ " some of these, so this isn't fixed)",
)
parser.add_argument(
"--chip_size",
type=int,
default=256,
help="The size of each chip to pass to the model",
)
parser.add_argument(
"--inference_padding",
type=int,
default=32,
help="The amount to padding to throw away from each chip during inference (must be"
+ " an even number)",
)
# Experiment arguments
parser.add_argument(
"--seed", type=int, default=0, help="Random seed to pass to numpy and torch"
)
parser.add_argument(
"--batch_size", type=int, default=32, help="Batch size to use for training"
)
parser.add_argument("--lr", type=float, default=0.01, help="Initial learning rate")
parser.add_argument(
"--num_epochs", type=int, default=50, help="Number of epochs to train for"
)
parser.add_argument(
"--rotation_augmentation",
action="store_true",
help="Whether to use rotation augmentation",
)
parser.add_argument(
"--negative_sample_probability",
type=float,
default=1.0,
help="Probability that we will sample a chip given that it doesn't have some of the"
+ " positive class (we will always sample if there is some positive class)",
)
parser.add_argument(
"--model",
default="unet",
choices=("unet", "manet", "unet++", "deeplabv3+"),
help="Model to use",
)
parser.add_argument(
"--training_set",
default="train-all",
choices=("train-all", "train-single", "train-augment", "all-all", "all-augment"),
help="Which training set to use",
)
args = parser.parse_args()
NUM_WORKERS = args.num_dataloader_workers
NUM_CHIPS_PER_TILE = args.num_chips_per_tile
CHIP_SIZE = args.chip_size
LARGE_CHIP_SIZE = int(np.ceil(CHIP_SIZE * np.sqrt(2)))
CROP_POINT = (LARGE_CHIP_SIZE - CHIP_SIZE) // 2
PADDING = args.inference_padding
assert PADDING % 2 == 0
HALF_PADDING = PADDING // 2
CHIP_STRIDE = CHIP_SIZE - PADDING
def joint_transform(img, labels):
if args.rotation_augmentation:
rotate_amount = np.random.randint(0, 360)
img = rotate(img, rotate_amount)
labels = rotate(labels, rotate_amount, order=0)
img = img[
CROP_POINT : CROP_POINT + CHIP_SIZE, CROP_POINT : CROP_POINT + CHIP_SIZE
]
labels = labels[
CROP_POINT : CROP_POINT + CHIP_SIZE, CROP_POINT : CROP_POINT + CHIP_SIZE
]
else:
img = img / 255.0
img = img[
CROP_POINT : CROP_POINT + CHIP_SIZE, CROP_POINT : CROP_POINT + CHIP_SIZE
]
labels = labels[
CROP_POINT : CROP_POINT + CHIP_SIZE, CROP_POINT : CROP_POINT + CHIP_SIZE
]
img = np.rollaxis(img, 2, 0).astype(np.float32)
img = torch.from_numpy(img)
labels = labels.astype(np.int64)
labels = torch.from_numpy(labels)
return img, labels
def skip_check(img, labels):
if np.any(
np.sum(img == 0, axis=2) == 4
): # if we have an all black part of NAIP then skip
return True
elif np.any(labels == 1): # else, if we have any positive labels, then don't skip
return False
else: # else, skip with probability `negative_sample_probability`
return np.random.random() >= args.negative_sample_probability
def do_validation(
validation_image_fns, validation_label_fns, model, device, epoch, logger, memo=""
):
model.eval()
all_tp = 0
all_fp = 0
all_fn = 0
all_tn = 0
y_trues = []
y_preds = []
per_tile_ious = []
per_tile_recalls = []
per_tile_precisions = []
tic = time.time()
for validation_image_fn, validation_label_fn in zip(
validation_image_fns, validation_label_fns
):
val_dataset = TileInferenceDataset(
validation_image_fn,
chip_size=CHIP_SIZE,
stride=CHIP_STRIDE,
transform=utils.chip_transformer,
verbose=False,
)
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size,
num_workers=NUM_WORKERS,
pin_memory=True,
)
with rasterio.open(validation_label_fn) as f:
y_true = f.read().squeeze()
input_height, input_width = y_true.shape
output = np.zeros((2, input_height, input_width), dtype=np.float32)
kernel = np.ones((CHIP_SIZE, CHIP_SIZE), dtype=np.float32)
kernel[HALF_PADDING:-HALF_PADDING, HALF_PADDING:-HALF_PADDING] = 5
counts = np.zeros((input_height, input_width), dtype=np.float32)
for i, (data, coords) in enumerate(val_dataloader):
data = data.to(device)
with torch.no_grad():
t_output = model(data)
t_output = F.softmax(t_output, dim=1).cpu().numpy()
for j in range(t_output.shape[0]):
y, x = coords[j]
output[:, y : y + CHIP_SIZE, x : x + CHIP_SIZE] += t_output[j] * kernel
counts[y : y + CHIP_SIZE, x : x + CHIP_SIZE] += kernel
output = output / counts
y_pred = output.argmax(axis=0).astype(np.uint8)
gt_positives = y_true == 1
gt_negatives = y_true == 0
pred_positives = y_pred == 1
pred_negatives = y_pred == 0
tp = np.sum(gt_positives & pred_positives)
fp = np.sum(gt_negatives & pred_positives)
fn = np.sum(gt_positives & pred_negatives)
tn = np.sum(gt_negatives & pred_negatives)
all_tp += tp
all_fp += fp
all_fn += fn
all_tn += tn
# Record a sample of pixels to compute more expensive metrics
y_trues.append(y_true.ravel()[::100])
y_preds.append(output[1].ravel()[::100])
iou = tp / (tp + fp + fn)
recall = tp / (tp + fn)
precision = tp / (tp + fp)
per_tile_ious.append(iou)
per_tile_recalls.append(recall)
per_tile_precisions.append(precision)
iou = all_tp / (all_tp + all_fp + all_fn)
recall = all_tp / (all_tp + all_fn)
precision = all_tp / (all_tp + all_fp)
y_trues = np.concatenate(y_trues)
y_preds = np.concatenate(y_preds)
logger.info(
"[{}] Validation Epoch: {}\t Time elapsed: {:.2f} seconds".format(
memo, epoch, time.time() - tic
)
)
logger.info("\tIoU: {}".format(iou))
logger.info("\tPrecision: {}".format(precision))
logger.info("\tRecall: {}".format(recall))
return {
"val_iou": iou,
"val_recall": recall if not np.isnan(precision) else -1,
"val_precision": precision if not np.isnan(precision) else -1,
"per_tile_ious": per_tile_ious,
"per_tile_recalls": per_tile_recalls,
"per_tile_precisions": per_tile_precisions,
}
def main():
# Setup
if os.path.isfile(args.output_dir):
print("A file was passed as `--output_dir`, please pass a directory!")
return
if os.path.exists(args.output_dir) and len(os.listdir(args.output_dir)):
if args.overwrite:
print(
f"WARNING! The output directory, {args.output_dir}, already exists, we"
+ " might overwrite data in it!" % (args.output_dir)
)
else:
print(
f"The output directory, {args.output_dir}, already exists and isn't"
+ "empty. We don't want to overwrite and existing results, exiting..."
)
return
else:
print("The output directory doesn't exist or is empty.")
os.makedirs(args.output_dir, exist_ok=True)
if args.azureml:
from azureml.core import Run
run = Run.get_context()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
now_str = datetime.datetime.now().strftime("%Y-%m-%d_%X")
logger = utils.setup_log_file_handler(
args.output_dir, "training_{}".format(now_str)
)
logger.info("Starting CAFO training script")
logger.info("Saving results to: {}".format(args.output_dir))
if torch.cuda.is_available():
if args.gpu == -1:
device = torch.device("cuda")
logger.info("Using %d devices" % (torch.cuda.device_count()))
else:
device = torch.device("cuda:%d" % args.gpu)
logger.info("Using a single device")
else:
logger.error(
"WARNING! Torch is reporting that CUDA isn't available, exiting..."
)
return
logger.info("Using device: %s" % (str(device)))
# Load input data
validation_image_fns = [
"https://landcover.blob.core.windows.net/poultry/naip/v002/de/2011/de_100cm_2011/38075/m_3807505_ne_18_1_20110602.tif",
"https://landcover.blob.core.windows.net/poultry/naip/v002/de/2013/de_100cm_2013/38075/m_3807505_ne_18_1_20130915.tif",
"https://landcover.blob.core.windows.net/poultry/naip/v002/de/2015/de_100cm_2015/38075/m_3807505_ne_18_1_20150629.tif",
"https://landcover.blob.core.windows.net/poultry/naip/v002/de/2017/de_100cm_2017/38075/m_3807505_ne_18_1_20170720.tif",
"https://landcover.blob.core.windows.net/poultry/naip/v002/de/2018/de_060cm_2018/38075/m_3807505_ne_18_060_20180827.tif",
]
validation_label_fns = [
"https://landcover.blob.core.windows.net/poultry/train-augment/v002/de/2011/de_100cm_2011/38075/m_3807505_ne_18_1_20110602.tif",
"https://landcover.blob.core.windows.net/poultry/train-augment/v002/de/2013/de_100cm_2013/38075/m_3807505_ne_18_1_20130915.tif",
"https://landcover.blob.core.windows.net/poultry/train-augment/v002/de/2015/de_100cm_2015/38075/m_3807505_ne_18_1_20150629.tif",
"https://landcover.blob.core.windows.net/poultry/train-augment/v002/de/2017/de_100cm_2017/38075/m_3807505_ne_18_1_20170720.tif",
"https://landcover.blob.core.windows.net/poultry/train-augment/v002/de/2018/de_060cm_2018/38075/m_3807505_ne_18_060_20180827.tif",
]
if args.training_set == "train-all":
input_fn = "data/splits/train-all.csv"
elif args.training_set == "train-single":
input_fn = "data/splits/train-single.csv"
elif args.training_set == "train-augment":
input_fn = "data/splits/train-augment.csv"
elif args.training_set == "all-all":
input_fn = "data/splits/all.csv"
input_dataframe = pd.read_csv(input_fn)
image_fns = input_dataframe["image_fn"].to_list()
label_fns = input_dataframe["label_fn"].to_list()
if args.debug:
image_fns = image_fns[:4]
label_fns = label_fns[:4]
# remove val tile from training set
image_fns = [fn for fn in image_fns if "m_3807505_ne_18" not in fn]
label_fns = [fn for fn in label_fns if "m_3807505_ne_18" not in fn]
if args.data_blob_root is not None:
image_fns = [args.data_blob_root + fn for fn in image_fns]
label_fns = [args.data_blob_root + fn for fn in label_fns]
validation_image_fns = [args.data_blob_root + fn for fn in validation_image_fns]
validation_label_fns = [args.data_blob_root + fn for fn in validation_label_fns]
image_fns = np.array(image_fns)
label_fns = np.array(label_fns)
train_dataset = StreamingGeospatialDataset(
imagery_fns=image_fns,
label_fns=label_fns,
chip_size=LARGE_CHIP_SIZE,
num_chips_per_tile=NUM_CHIPS_PER_TILE,
windowed_sampling=False,
verbose=False,
sample_transform=joint_transform,
nodata_check=skip_check,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
num_workers=NUM_WORKERS,
pin_memory=False,
)
num_training_batches_per_epoch = int(
len(image_fns) * NUM_CHIPS_PER_TILE / args.batch_size
)
logger.info("We will be training with %d different tiles" % (image_fns.shape[0]))
logger.info(
"We will be training with %d batches per epoch"
% (num_training_batches_per_epoch)
)
# Setup training
if args.model == "unet":
model = models.get_unet()
elif args.model == "unet++":
model = models.get_fcn()
elif args.model == "manet":
model = models.get_manet()
elif args.model == "deeplabv3+":
model = models.get_deeplab()
else:
raise ValueError("Invalid model")
if args.gpu == -1:
model = nn.DataParallel(model).to(device)
else:
model = model.to(device)
optimizer = optim.AdamW(model.parameters(), lr=args.lr, amsgrad=True)
criterion = nn.CrossEntropyLoss()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, "min", patience=2, threshold=0.0001
)
logger.info("Model has %d parameters" % (utils.count_parameters(model)))
# Model training
metrics_per_epoch = []
best_val_iou = 0
num_times_lr_dropped = 0
for epoch in range(args.num_epochs):
lr = utils.get_lr(optimizer)
training_losses = utils.fit(
model,
device,
train_dataloader,
num_training_batches_per_epoch,
optimizer,
criterion,
epoch,
)
metrics = do_validation(
validation_image_fns,
validation_label_fns,
model,
device,
epoch,
logger,
memo="",
)
# Record training loss and val metrics
metrics["training_loss"] = training_losses[0]
metrics_per_epoch.append(metrics)
if args.azureml:
run.log("training_loss", metrics["training_loss"])
run.log("val_iou", metrics["val_iou"])
run.log("val_precision", metrics["val_precision"])
run.log("val_recall", metrics["val_recall"])
run.log("epoch", epoch)
# LR schedule / early stopping
scheduler.step(training_losses[0])
if utils.get_lr(optimizer) < lr:
num_times_lr_dropped += 1
logger.info("")
logger.info("Learning rate dropped")
logger.info("")
# Save everything
save_obj = {
"epoch": epoch,
"optimizer_checkpoint": copy.deepcopy(optimizer.state_dict()),
"model_checkpoint": copy.deepcopy(model.state_dict()),
}
torch.save(
save_obj, os.path.join(args.output_dir, "checkpoint_epoch_%d.pt" % (epoch))
)
if metrics["val_iou"] > best_val_iou:
logger.info("New best!")
best_val_iou = metrics["val_iou"]
torch.save(save_obj, os.path.join(args.output_dir, "best_checkpoint.pt"))
torch.save(
{"metrics_per_epoch": metrics_per_epoch, "args": args},
os.path.join(args.output_dir, "results.pt"),
)
if num_times_lr_dropped == 4:
break
# Cleanup
logger.info("Finished training run")
if __name__ == "__main__":
main()