diff --git a/.gitignore b/.gitignore
index 5788b4be7e5..6236b9c9db3 100644
--- a/.gitignore
+++ b/.gitignore
@@ -182,3 +182,7 @@ scripts/docs/_build/
.pdfs
config.json
src/promptflow/promptflow/azure/_restclient/swagger.json
+
+# chat-with-pdf's prebuilt index
+!.pdfs/
+!.index/
diff --git a/README.md b/README.md
index 1e3802a472a..d04aeb5ab9a 100644
--- a/README.md
+++ b/README.md
@@ -93,7 +93,7 @@ We also offer a VS Code extension (a flow designer) for an interactive flow deve
You can install it from the visualstudio marketplace.
-#### Deep dive into flow development
+#### Deep delve into flow development
[Getting Started with Prompt Flow](https://microsoft.github.io/promptflow/how-to-guides/quick-start.html): A step by step guidance to invoke your first flow run.
diff --git a/docs/cloud/azureai/quick-start.md b/docs/cloud/azureai/quick-start.md
index 2ceacc85b61..4c4e708664b 100644
--- a/docs/cloud/azureai/quick-start.md
+++ b/docs/cloud/azureai/quick-start.md
@@ -126,7 +126,7 @@ pf = PFClient(
# load flow
flow = "web-classification"
data = "web-classification/data.jsonl"
-runtime = "demo-mir" # assume you have existing runtime with this name provisioned
+runtime = "example-runtime-ci" # assume you have existing runtime with this name provisioned
# runtime = None # un-comment use automatic runtime
# create run
diff --git a/docs/dev/dev_setup.md b/docs/dev/dev_setup.md
index d908dc77ad1..fca3b81cc83 100644
--- a/docs/dev/dev_setup.md
+++ b/docs/dev/dev_setup.md
@@ -6,7 +6,7 @@
`conda create -n python=3.9`.
- Activate the env you created.
- Set environment variable `PYTHONPATH` in your new conda environment.
- `conda env config vars set PYTHONPATH=`.
+ `conda env config vars set PYTHONPATH=\promptflow`.
Once you have set the environment variable, you have to reactivate your environment.
`conda activate `.
- In root folder, run `python scripts/building/dev_setup.py --promptflow-extra-deps azure` to install the package and dependencies.
diff --git a/docs/how-to-guides/init-and-test-a-flow.md b/docs/how-to-guides/init-and-test-a-flow.md
index 4afaeff38d5..5a01c352cce 100644
--- a/docs/how-to-guides/init-and-test-a-flow.md
+++ b/docs/how-to-guides/init-and-test-a-flow.md
@@ -46,8 +46,8 @@ Alternatively, you can use the "Create new flow" action on the Prompt flow pane
Structure of flow folder:
- **flow.dag.yaml**: The flow definition with inputs/outputs, nodes, tools and variants for authoring purpose.
-- **.promptflow/flow.tools.json**: It contains all package tools meta that references in `flow.dag.yaml`.
-- **Source code files (.py, .jinja2)**: User managed, the code scripts that references by tools.
+- **.promptflow/flow.tools.json**: It contains tools meta referenced in `flow.dag.yaml`.
+- **Source code files (.py, .jinja2)**: User managed, the code scripts referenced by tools.
- **requirements.txt**: Python package dependencies for this flow.
![init_flow_folder](../media/how-to-guides/init-and-test-a-flow/flow_folder.png)
diff --git a/docs/how-to-guides/quick-start.md b/docs/how-to-guides/quick-start.md
index 29052344d91..311edacb017 100644
--- a/docs/how-to-guides/quick-start.md
+++ b/docs/how-to-guides/quick-start.md
@@ -36,7 +36,7 @@ pf -v
## Understand what's a flow
-A flow, represented as a YAML file, is a DAG of functions, which connected via input/output dependencies, and executed based on the topology by Prompt flow executor. See [Flows](../../concepts/concept-flows.md) for more details.
+A flow, represented as a YAML file, is a DAG of functions, which is connected via input/output dependencies, and executed based on the topology by Prompt flow executor. See [Flows](../../concepts/concept-flows.md) for more details.
### Get the flow sample
@@ -55,8 +55,8 @@ cd promptflow/examples/flows/standard/web-classification
A flow directory is a directory that contains all contents of a flow. Structure of flow folder:
- **flow.dag.yaml**: The flow definition with inputs/outputs, nodes, tools and variants for authoring purpose.
-- **.promptflow/flow.tools.json**: It contains all package tools meta that references in `flow.dag.yaml`.
-- **Source code files (.py, .jinja2)**: User managed, the code scripts that references by tools.
+- **.promptflow/flow.tools.json**: It contains tools meta referenced in `flow.dag.yaml`.
+- **Source code files (.py, .jinja2)**: User managed, the code scripts referenced by tools.
- **requirements.txt**: Python package dependencies for this flow.
@@ -69,7 +69,7 @@ pip install -r requirements.txt
```
### Understand the flow yaml
-The entry file of a flow directory is [`flow.dag.yaml`](https://github.com/microsoft/promptflow/blob/main/examples/flows/standard/web-classification/flow.dag.yaml) which describes the `DAG(Directed Acyclic Graph)` of a flow. The flow dag of this sample likes below:
+The entry file of a flow directory is [`flow.dag.yaml`](https://github.com/microsoft/promptflow/blob/main/examples/flows/standard/web-classification/flow.dag.yaml) which describes the `DAG(Directed Acyclic Graph)` of a flow. Below is a sample of flow DAG:
![flow_dag](../media/how-to-guides/quick-start/flow_dag.png)
diff --git a/docs/how-to-guides/set-global-configs.md b/docs/how-to-guides/set-global-configs.md
index 727ba75b8cb..9db9cca796f 100644
--- a/docs/how-to-guides/set-global-configs.md
+++ b/docs/how-to-guides/set-global-configs.md
@@ -13,7 +13,7 @@ pf config set =
```
For example:
```shell
-pf config set connection.provider="azureml:/subscriptions//resourceGroups//providers/Microsoft.MachineLearningServices/workspaces/"
+pf config set connection.provider="azureml://subscriptions//resourceGroups//providers/Microsoft.MachineLearningServices/workspaces/"
```
## Show config
@@ -25,7 +25,7 @@ After running the above config set command, show command will return the followi
```json
{
"connection": {
- "provider": "azureml:/subscriptions//resourceGroups//providers/Microsoft.MachineLearningServices/workspaces/"
+ "provider": "azureml://subscriptions//resourceGroups//providers/Microsoft.MachineLearningServices/workspaces/"
}
}
```
@@ -40,7 +40,7 @@ Connections will be saved locally. `PFClient`(or `pf connection` commands) will
#### full azure machine learning workspace resource id
Set connection provider to a specific workspace with:
```
-connection.provider=azureml:/subscriptions//resourceGroups//providers/Microsoft.MachineLearningServices/workspaces/
+connection.provider=azureml://subscriptions//resourceGroups//providers/Microsoft.MachineLearningServices/workspaces/
```
When `get` or `list` connections, `PFClient`(or `pf connection` commands) will return workspace connections, and flow will be executed using these workspace connections.
diff --git a/examples/flows/chat/chat-with-pdf/README.md b/examples/flows/chat/chat-with-pdf/README.md
index ba1759e7219..2a36d62745d 100644
--- a/examples/flows/chat/chat-with-pdf/README.md
+++ b/examples/flows/chat/chat-with-pdf/README.md
@@ -33,6 +33,9 @@ fi
#### Run flow
+**Note**: this sample uses [predownloaded PDFs](./chat_with_pdf/.pdfs/) and [prebuilt FAISS Index](./chat_with_pdf/.index/) to speed up execution time.
+You can remove the folders to start a fresh run.
+
```bash
# test with default input value in flow.dag.yaml
pf flow test --flow .
diff --git a/examples/flows/chat/chat-with-pdf/chat-with-pdf.ipynb b/examples/flows/chat/chat-with-pdf/chat-with-pdf.ipynb
index 1f9692e57f4..6b9d57e6075 100644
--- a/examples/flows/chat/chat-with-pdf/chat-with-pdf.ipynb
+++ b/examples/flows/chat/chat-with-pdf/chat-with-pdf.ipynb
@@ -91,7 +91,10 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## 2. Test the flow"
+ "## 2. Test the flow\n",
+ "\n",
+ "**Note**: this sample uses [predownloaded PDFs](./chat_with_pdf/.pdfs/) and [prebuilt FAISS Index](./chat_with_pdf/.index/) to speed up execution time.\n",
+ "You can remove the folders to start a fresh run."
]
},
{
@@ -135,7 +138,7 @@
" \"MAX_COMPLETION_TOKENS\": 256,\n",
" \"VERBOSE\": True,\n",
" \"CHUNK_SIZE\": 256,\n",
- " \"CHUNK_OVERLAP\": 32,\n",
+ " \"CHUNK_OVERLAP\": 64,\n",
"}\n",
"\n",
"column_mapping = {\n",
@@ -246,7 +249,7 @@
" \"MAX_COMPLETION_TOKENS\": 256,\n",
" \"VERBOSE\": True,\n",
" \"CHUNK_SIZE\": 256,\n",
- " \"CHUNK_OVERLAP\": 32,\n",
+ " \"CHUNK_OVERLAP\": 64,\n",
"}\n",
"\n",
"run_3k_context = pf.run(flow=flow_path, data=data_path, column_mapping=column_mapping)\n",
@@ -312,7 +315,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.17"
+ "version": "3.9.12"
}
},
"nbformat": 4,
diff --git a/examples/flows/chat/chat-with-pdf/chat_with_pdf/.index/.pdfs/https___arxiv.org_pdf_1810.04805.pdf.pdf.index_1024_64/index.faiss b/examples/flows/chat/chat-with-pdf/chat_with_pdf/.index/.pdfs/https___arxiv.org_pdf_1810.04805.pdf.pdf.index_1024_64/index.faiss
new file mode 100644
index 00000000000..898bfdee3ae
Binary files /dev/null and b/examples/flows/chat/chat-with-pdf/chat_with_pdf/.index/.pdfs/https___arxiv.org_pdf_1810.04805.pdf.pdf.index_1024_64/index.faiss differ
diff --git a/examples/flows/chat/chat-with-pdf/chat_with_pdf/.index/.pdfs/https___arxiv.org_pdf_1810.04805.pdf.pdf.index_1024_64/index.pkl b/examples/flows/chat/chat-with-pdf/chat_with_pdf/.index/.pdfs/https___arxiv.org_pdf_1810.04805.pdf.pdf.index_1024_64/index.pkl
new file mode 100644
index 00000000000..2fda0b5a794
Binary files /dev/null and b/examples/flows/chat/chat-with-pdf/chat_with_pdf/.index/.pdfs/https___arxiv.org_pdf_1810.04805.pdf.pdf.index_1024_64/index.pkl differ
diff --git a/examples/flows/chat/chat-with-pdf/chat_with_pdf/.index/.pdfs/https___grs.pku.edu.cn_docs_2018-03_20180301083100898652.pdf.pdf.index_1024_64/index.faiss b/examples/flows/chat/chat-with-pdf/chat_with_pdf/.index/.pdfs/https___grs.pku.edu.cn_docs_2018-03_20180301083100898652.pdf.pdf.index_1024_64/index.faiss
new file mode 100644
index 00000000000..cfe93c5ace5
Binary files /dev/null and b/examples/flows/chat/chat-with-pdf/chat_with_pdf/.index/.pdfs/https___grs.pku.edu.cn_docs_2018-03_20180301083100898652.pdf.pdf.index_1024_64/index.faiss differ
diff --git a/examples/flows/chat/chat-with-pdf/chat_with_pdf/.index/.pdfs/https___grs.pku.edu.cn_docs_2018-03_20180301083100898652.pdf.pdf.index_1024_64/index.pkl b/examples/flows/chat/chat-with-pdf/chat_with_pdf/.index/.pdfs/https___grs.pku.edu.cn_docs_2018-03_20180301083100898652.pdf.pdf.index_1024_64/index.pkl
new file mode 100644
index 00000000000..a1666ef9d86
Binary files /dev/null and b/examples/flows/chat/chat-with-pdf/chat_with_pdf/.index/.pdfs/https___grs.pku.edu.cn_docs_2018-03_20180301083100898652.pdf.pdf.index_1024_64/index.pkl differ
diff --git a/examples/flows/chat/chat-with-pdf/chat_with_pdf/.pdfs/https___grs.pku.edu.cn_docs_2018-03_20180301083100898652.pdf.pdf b/examples/flows/chat/chat-with-pdf/chat_with_pdf/.pdfs/https___grs.pku.edu.cn_docs_2018-03_20180301083100898652.pdf.pdf
new file mode 100644
index 00000000000..e22a1c5ff85
Binary files /dev/null and b/examples/flows/chat/chat-with-pdf/chat_with_pdf/.pdfs/https___grs.pku.edu.cn_docs_2018-03_20180301083100898652.pdf.pdf differ
diff --git a/examples/flows/chat/chat-with-pdf/chat_with_pdf/build_index.py b/examples/flows/chat/chat-with-pdf/chat_with_pdf/build_index.py
index c1aadce4bf3..d96765adb3f 100644
--- a/examples/flows/chat/chat-with-pdf/chat_with_pdf/build_index.py
+++ b/examples/flows/chat/chat-with-pdf/chat_with_pdf/build_index.py
@@ -2,10 +2,13 @@
import faiss
import os
+from pathlib import Path
+
from utils.oai import OAIEmbedding
from utils.index import FAISSIndex
from utils.logging import log
from utils.lock import acquire_lock
+from constants import INDEX_DIR
def create_faiss_index(pdf_path: str) -> str:
@@ -13,7 +16,9 @@ def create_faiss_index(pdf_path: str) -> str:
chunk_overlap = int(os.environ.get("CHUNK_OVERLAP"))
log(f"Chunk size: {chunk_size}, chunk overlap: {chunk_overlap}")
- index_persistent_path = ".index/" + pdf_path + f".index_{chunk_size}_{chunk_overlap}"
+ file_name = Path(pdf_path).name + f".index_{chunk_size}_{chunk_overlap}"
+ index_persistent_path = Path(INDEX_DIR) / file_name
+ index_persistent_path = index_persistent_path.resolve().as_posix()
lock_path = index_persistent_path + ".lock"
log("Index path: " + os.path.abspath(index_persistent_path))
diff --git a/examples/flows/chat/chat-with-pdf/chat_with_pdf/constants.py b/examples/flows/chat/chat-with-pdf/chat_with_pdf/constants.py
new file mode 100644
index 00000000000..cc937d43c39
--- /dev/null
+++ b/examples/flows/chat/chat-with-pdf/chat_with_pdf/constants.py
@@ -0,0 +1,5 @@
+import os
+
+BASE_DIR = os.path.dirname(os.path.abspath(__file__))
+PDF_DIR = os.path.join(BASE_DIR, ".pdfs")
+INDEX_DIR = os.path.join(BASE_DIR, ".index/.pdfs/")
diff --git a/examples/flows/chat/chat-with-pdf/chat_with_pdf/download.py b/examples/flows/chat/chat-with-pdf/chat_with_pdf/download.py
index dca91f430fd..999b935e82c 100644
--- a/examples/flows/chat/chat-with-pdf/chat_with_pdf/download.py
+++ b/examples/flows/chat/chat-with-pdf/chat_with_pdf/download.py
@@ -4,11 +4,12 @@
from utils.lock import acquire_lock
from utils.logging import log
+from constants import PDF_DIR
# Download a pdf file from a url and return the path to the file
def download(url: str) -> str:
- path = ".pdfs/" + normalize_filename(url) + ".pdf"
+ path = os.path.join(PDF_DIR, normalize_filename(url) + ".pdf")
lock_path = path + ".lock"
with acquire_lock(lock_path):
diff --git a/examples/flows/chat/chat-with-pdf/chat_with_pdf/main.py b/examples/flows/chat/chat-with-pdf/chat_with_pdf/main.py
index 58bbee1134b..e50ce66de61 100644
--- a/examples/flows/chat/chat-with-pdf/chat_with_pdf/main.py
+++ b/examples/flows/chat/chat-with-pdf/chat_with_pdf/main.py
@@ -8,14 +8,15 @@
from build_index import create_faiss_index
from download import download
from utils.lock import acquire_lock
+from constants import PDF_DIR, INDEX_DIR
def chat_with_pdf(question: str, pdf_url: str, history: list):
with acquire_lock("create_folder.lock"):
- if not os.path.exists(".pdfs"):
- os.mkdir(".pdfs")
- if not os.path.exists(".index/.pdfs"):
- os.makedirs(".index/.pdfs")
+ if not os.path.exists(PDF_DIR):
+ os.mkdir(PDF_DIR)
+ if not os.path.exists(INDEX_DIR):
+ os.makedirs(INDEX_DIR)
pdf_path = download(pdf_url)
index_path = create_faiss_index(pdf_path)
diff --git a/examples/flows/chat/chat-with-pdf/flow.dag.yaml b/examples/flows/chat/chat-with-pdf/flow.dag.yaml
index 68fe91839c6..c052801f787 100644
--- a/examples/flows/chat/chat-with-pdf/flow.dag.yaml
+++ b/examples/flows/chat/chat-with-pdf/flow.dag.yaml
@@ -18,7 +18,7 @@ inputs:
PROMPT_TOKEN_LIMIT: 3000
MAX_COMPLETION_TOKENS: 1024
VERBOSE: true
- CHUNK_SIZE: 256
+ CHUNK_SIZE: 1024
CHUNK_OVERLAP: 64
outputs:
answer:
diff --git a/examples/flows/chat/chat-with-pdf/setup_env.py b/examples/flows/chat/chat-with-pdf/setup_env.py
index 06066f08e51..6b231b878c9 100644
--- a/examples/flows/chat/chat-with-pdf/setup_env.py
+++ b/examples/flows/chat/chat-with-pdf/setup_env.py
@@ -6,6 +6,8 @@
from chat_with_pdf.utils.lock import acquire_lock
+BASE_DIR = os.path.dirname(os.path.abspath(__file__)) + "/chat_with_pdf/"
+
@tool
def setup_env(connection: Union[AzureOpenAIConnection, OpenAIConnection], config: dict):
@@ -26,10 +28,10 @@ def setup_env(connection: Union[AzureOpenAIConnection, OpenAIConnection], config
for key in config:
os.environ[key] = str(config[key])
- with acquire_lock("create_folder.lock"):
- if not os.path.exists(".pdfs"):
- os.mkdir(".pdfs")
- if not os.path.exists(".index/.pdfs"):
- os.makedirs(".index/.pdfs")
+ with acquire_lock(BASE_DIR + "create_folder.lock"):
+ if not os.path.exists(BASE_DIR + ".pdfs"):
+ os.mkdir(BASE_DIR + ".pdfs")
+ if not os.path.exists(BASE_DIR + ".index/.pdfs"):
+ os.makedirs(BASE_DIR + ".index/.pdfs")
return "Ready"
diff --git a/examples/flows/chat/chat-with-pdf/tests/base_test.py b/examples/flows/chat/chat-with-pdf/tests/base_test.py
index b7612afaa66..b65341743ea 100644
--- a/examples/flows/chat/chat-with-pdf/tests/base_test.py
+++ b/examples/flows/chat/chat-with-pdf/tests/base_test.py
@@ -25,7 +25,7 @@ def setUp(self):
"MAX_COMPLETION_TOKENS": 256,
"VERBOSE": True,
"CHUNK_SIZE": 1024,
- "CHUNK_OVERLAP": 32,
+ "CHUNK_OVERLAP": 64,
}
self.config_2k_context = {
"EMBEDDING_MODEL_DEPLOYMENT_NAME": "text-embedding-ada-002",
@@ -34,7 +34,7 @@ def setUp(self):
"MAX_COMPLETION_TOKENS": 256,
"VERBOSE": True,
"CHUNK_SIZE": 1024,
- "CHUNK_OVERLAP": 32,
+ "CHUNK_OVERLAP": 64,
}
# Switch current working directory to the folder of this file
diff --git a/examples/flows/standard/basic-with-connection/README.md b/examples/flows/standard/basic-with-connection/README.md
index e35d1fd3bed..351c342ed5c 100644
--- a/examples/flows/standard/basic-with-connection/README.md
+++ b/examples/flows/standard/basic-with-connection/README.md
@@ -101,5 +101,5 @@ Run flow with connection `open_ai_connection`.
az account set -s
az configure --defaults group= workspace=
-pfazure run create --flow . --data ./data.jsonl --connections llm.connection=open_ai_connection --stream --runtime demo-mir
+pfazure run create --flow . --data ./data.jsonl --connections llm.connection=open_ai_connection --stream --runtime example-runtime-ci
```
diff --git a/examples/flows/standard/basic/README.md b/examples/flows/standard/basic/README.md
index 8642d513ad7..43ae4c41d74 100644
--- a/examples/flows/standard/basic/README.md
+++ b/examples/flows/standard/basic/README.md
@@ -107,9 +107,9 @@ az configure --defaults group= workspace= workspace= -g -w
+pfazure run create --flow . --data ./data.jsonl --stream --runtime example-runtime-ci --subscription -g -w
# pfazure run create --flow . --data ./data.jsonl --stream # automatic runtime
# set default workspace
az account set -s
az configure --defaults group= workspace=
-pfazure run create --file run.yml --runtime demo-mir --stream
+pfazure run create --file run.yml --runtime example-runtime-ci --stream
# pfazure run create --file run.yml --stream # automatic runtime
```
diff --git a/examples/flows/standard/web-classification/README.md b/examples/flows/standard/web-classification/README.md
index a19fed957c6..448610725a6 100644
--- a/examples/flows/standard/web-classification/README.md
+++ b/examples/flows/standard/web-classification/README.md
@@ -96,14 +96,14 @@ az account set -s
az configure --defaults group= workspace=
# create run
-pfazure run create --flow . --data ./data.jsonl --stream --runtime demo-mir
+pfazure run create --flow . --data ./data.jsonl --stream --runtime example-runtime-ci
# pfazure run create --flow . --data ./data.jsonl --stream # automatic runtime
# (Optional) create a new random run name for further use
run_name="web_classification_"$(openssl rand -hex 12)
# create run using yaml file, --name is optional
-pfazure run create --file run.yml --runtime demo-mir --name $run_name
+pfazure run create --file run.yml --runtime example-runtime-ci --name $run_name
# pfazure run create --file run.yml --stream --name $run_name # automatic runtime
@@ -117,8 +117,8 @@ prev_run_name=$run_name
run_name="classification_accuracy_"$(openssl rand -hex 12)
# create evaluation run, --name is optional
-pfazure run create --flow ../../evaluation/eval-classification-accuracy --data ./data.jsonl --column-mapping groundtruth='${data.answer}' prediction='${run.outputs.category}' --run $prev_run_name --runtime demo-mir
-pfazure run create --file run_evaluation.yml --run $prev_run_name --stream --name $run_name --runtime demo-mir
+pfazure run create --flow ../../evaluation/eval-classification-accuracy --data ./data.jsonl --column-mapping groundtruth='${data.answer}' prediction='${run.outputs.category}' --run $prev_run_name --runtime example-runtime-ci
+pfazure run create --file run_evaluation.yml --run $prev_run_name --stream --name $run_name --runtime example-runtime-ci
pfazure run stream --name $run_name
pfazure run show --name $run_name
diff --git a/examples/tools/tool-package-quickstart/my_tool_package/tools/tool_with_dynamic_list_input.py b/examples/tools/tool-package-quickstart/my_tool_package/tools/tool_with_dynamic_list_input.py
new file mode 100644
index 00000000000..496530c2acb
--- /dev/null
+++ b/examples/tools/tool-package-quickstart/my_tool_package/tools/tool_with_dynamic_list_input.py
@@ -0,0 +1,36 @@
+from promptflow import tool
+from typing import List, Union, Dict
+
+
+def my_list_func(prefix: str = "", size: int = 10, **kwargs) -> List[Dict[str, Union[str, int, float, list, Dict]]]:
+ """This is a dummy function to generate a list of items.
+
+ :param prefix: prefix to add to each item.
+ :param size: number of items to generate.
+ :param kwargs: other parameters.
+ :return: a list of items. Each item is a dict with the following keys:
+ - value: for backend use. Required.
+ - display_value: for UI display. Optional.
+ - hyperlink: external link. Optional.
+ - description: information icon tip. Optional.
+ """
+ import random
+
+ words = ["apple", "banana", "cherry", "date", "elderberry", "fig", "grape", "honeydew", "kiwi", "lemon"]
+ result = []
+ for i in range(size):
+ random_word = f"{random.choice(words)}{i}"
+ cur_item = {
+ "value": random_word,
+ "display_value": f"{prefix}_{random_word}",
+ "hyperlink": f'https://www.google.com/search?q={random_word}',
+ "description": f"this is {i} item",
+ }
+ result.append(cur_item)
+
+ return result
+
+
+@tool
+def my_tool(input_text: list, input_prefix: str) -> str:
+ return f"Hello {input_prefix} {','.join(input_text)}"
diff --git a/examples/tools/tool-package-quickstart/my_tool_package/yamls/tool_with_dynamic_list_input.yaml b/examples/tools/tool-package-quickstart/my_tool_package/yamls/tool_with_dynamic_list_input.yaml
new file mode 100644
index 00000000000..81a7e29e3c2
--- /dev/null
+++ b/examples/tools/tool-package-quickstart/my_tool_package/yamls/tool_with_dynamic_list_input.yaml
@@ -0,0 +1,35 @@
+my_tool_package.tools.tool_with_dynamic_list_input.my_tool:
+ function: my_tool
+ inputs:
+ input_text:
+ type:
+ - list
+ dynamic_list:
+ # UX send dynamic_list content to backend.
+ # specifies the function to generate dynamic list. format: .
+ func_path: my_tool_package.tools.tool_with_dynamic_list_input.my_list_func
+ func_kwargs:
+ - name: prefix # Argument name to be passed to the function
+ type:
+ - string
+ # if optional is not specified, default to false.
+ # this is for UX pre-validaton. If optional is false, but no input. UX can throw error in advanced.
+ optional: true
+ reference: ${inputs.input_prefix} # Dynamic reference to another input parameter
+ - name: size # Another argument name to be passed to the function
+ type:
+ - int
+ optional: true
+ default: 10
+ # enum and dynamic list may need below setting, default false.
+ # allow user to enter input `index_path` value manually.
+ allow_manual_entry: true
+ is_multi_select: true
+ # used to filter
+ input_prefix:
+ type:
+ - string
+ module: my_tool_package.tools.tool_with_dynamic_list_input
+ name: My Tool with Dynamic List Input
+ description: This is my tool with dynamic list input
+ type: python
diff --git a/examples/tools/tool-package-quickstart/setup.py b/examples/tools/tool-package-quickstart/setup.py
index 2c111fb8a8d..901026da85c 100644
--- a/examples/tools/tool-package-quickstart/setup.py
+++ b/examples/tools/tool-package-quickstart/setup.py
@@ -4,7 +4,7 @@
setup(
name=PACKAGE_NAME,
- version="0.0.3",
+ version="0.0.4",
description="This is my tools package",
packages=find_packages(),
entry_points={
diff --git a/examples/tools/tool-package-quickstart/tests/test_tool_with_dynamic_input.py b/examples/tools/tool-package-quickstart/tests/test_tool_with_dynamic_input.py
new file mode 100644
index 00000000000..cae210ceb8b
--- /dev/null
+++ b/examples/tools/tool-package-quickstart/tests/test_tool_with_dynamic_input.py
@@ -0,0 +1,12 @@
+from my_tool_package.tools.tool_with_dynamic_list_input import my_tool, my_list_func
+
+
+def test_my_tool():
+ result = my_tool(input_text=["apple", "banana"], input_prefix="My")
+ assert result == 'Hello My apple,banana'
+
+
+def test_my_list_func():
+ result = my_list_func(prefix="My")
+ assert len(result) == 10
+ assert "value" in result[0]
diff --git a/src/promptflow-tools/connections.json.example b/src/promptflow-tools/connections.json.example
index 27da4ed0937..75fdfc95bcc 100644
--- a/src/promptflow-tools/connections.json.example
+++ b/src/promptflow-tools/connections.json.example
@@ -51,6 +51,16 @@
"endpoint_api_key"
]
},
+ "open_source_llm_ws_service_connection": {
+ "type": "CustomConnection",
+ "value": {
+ "service_credential": "service-credential"
+ },
+ "module": "promptflow.connections",
+ "secret_keys": [
+ "service_credential"
+ ]
+ },
"open_ai_connection": {
"type": "OpenAIConnection",
"value": {
diff --git a/src/promptflow-tools/promptflow/tools/aoai.py b/src/promptflow-tools/promptflow/tools/aoai.py
index 3104fcbafbf..7d0ce8ccdca 100644
--- a/src/promptflow-tools/promptflow/tools/aoai.py
+++ b/src/promptflow-tools/promptflow/tools/aoai.py
@@ -112,7 +112,8 @@ def chat(
frequency_penalty: float = 0,
logit_bias: dict = {},
user: str = "",
- function_call: str = None,
+ # function_call can be of type str or dict.
+ function_call: object = None,
functions: list = None,
**kwargs,
) -> [str, dict]:
@@ -218,7 +219,7 @@ def chat(
frequency_penalty: float = 0,
logit_bias: dict = {},
user: str = "",
- function_call: str = None,
+ function_call: object = None,
functions: list = None,
**kwargs,
) -> str:
diff --git a/src/promptflow-tools/promptflow/tools/common.py b/src/promptflow-tools/promptflow/tools/common.py
index d998578efae..37f242917b0 100644
--- a/src/promptflow-tools/promptflow/tools/common.py
+++ b/src/promptflow-tools/promptflow/tools/common.py
@@ -218,24 +218,15 @@ def process_function_call(function_call):
common_tsg = f"Here is a valid example: {function_call_example}. See the guide at " \
"https://platform.openai.com/docs/api-reference/chat/create#chat/create-function_call " \
"or view sample 'How to call functions with chat models' in our gallery."
- try:
- param = json.loads(function_call)
- except json.JSONDecodeError:
- raise ChatAPIInvalidFunctions(
- message=f"function_call parameter '{function_call}' is an invalid json. {common_tsg}")
- except TypeError:
- raise ChatAPIInvalidFunctions(
- message=f"function_call parameter '{function_call}' must be str, bytes or bytearray"
- f", but not {type(function_call)}. {common_tsg}"
- )
+ param = function_call
if not isinstance(param, dict):
raise ChatAPIInvalidFunctions(
- message=f"function_call parameter '{function_call}' must be a dict, but not {type(param)}. {common_tsg}"
+ message=f"function_call parameter '{param}' must be a dict, but not {type(function_call)}. {common_tsg}"
)
else:
- if "name" not in param:
+ if "name" not in function_call:
raise ChatAPIInvalidFunctions(
- message=f'function_call parameter {function_call} must contain "name" field. {common_tsg}'
+ message=f'function_call parameter {json.dumps(param)} must contain "name" field. {common_tsg}'
)
return param
diff --git a/src/promptflow-tools/promptflow/tools/open_source_llm.py b/src/promptflow-tools/promptflow/tools/open_source_llm.py
index c05b7bf202c..1c3bb8fc7c6 100644
--- a/src/promptflow-tools/promptflow/tools/open_source_llm.py
+++ b/src/promptflow-tools/promptflow/tools/open_source_llm.py
@@ -22,7 +22,7 @@
ChatAPIInvalidRole
)
-VALID_LLAMA_ROLES = {"user", "assistant"}
+VALID_LLAMA_ROLES = {"system", "user", "assistant"}
REQUIRED_CONFIG_KEYS = ["endpoint_url", "model_family"]
REQUIRED_SECRET_KEYS = ["endpoint_api_key"]
DEFAULT_ENDPOINT_NAME = "-- please enter an endpoint name --"
@@ -140,7 +140,7 @@ def get_deployment_from_endpoint(endpoint_name: str, deployment_name: str = None
return (endpoint_uri, endpoint_key, model)
-def get_deployment_from_connection(connection: CustomConnection, deployment_name: str = None) -> Tuple[str, str, str]:
+def get_deployment_from_connection(connection: CustomConnection) -> Tuple[str, str, str]:
conn_dict = dict(connection)
for key in REQUIRED_CONFIG_KEYS:
if key not in conn_dict:
@@ -352,17 +352,7 @@ def get_content_formatter(
class AzureMLOnlineEndpoint:
- """Azure ML Online Endpoint models.
-
- Example:
- .. code-block:: python
-
- azure_llm = AzureMLModel(
- endpoint_url="https://..inference.ml.azure.com/score",
- endpoint_api_key="my-api-key",
- content_formatter=content_formatter,
- )
- """ # noqa: E501
+ """Azure ML Online Endpoint models."""
endpoint_url: str = ""
"""URL of pre-existing Endpoint. Should be passed to constructor or specified as
@@ -385,6 +375,7 @@ def __init__(
endpoint_url: str,
endpoint_api_key: str,
content_formatter: ContentFormatterBase,
+ model_family: ModelFamily,
deployment_name: Optional[str] = None,
model_kwargs: Optional[Dict] = None,
):
@@ -393,6 +384,7 @@ def __init__(
self.deployment_name = deployment_name
self.content_formatter = content_formatter
self.model_kwargs = model_kwargs
+ self.model_family = model_family
@property
def _identifying_params(self) -> Mapping[str, Any]:
@@ -410,7 +402,10 @@ def _llm_type(self) -> str:
def _call_endpoint(self, body: bytes) -> bytes:
"""call."""
- headers = {"Content-Type": "application/json", "Authorization": ("Bearer " + self.endpoint_api_key)}
+ headers = {
+ "Content-Type": "application/json",
+ "Authorization": ("Bearer " + self.endpoint_api_key),
+ "x-ms-user-agent": "PromptFlow/OpenSourceLLM/" + self.model_family}
# If this is not set it'll use the default deployment on the endpoint.
if self.deployment_name is not None:
@@ -448,19 +443,16 @@ class OpenSourceLLM(ToolProvider):
def __init__(self,
connection: CustomConnection = None,
- endpoint_name: str = None,
- deployment_name: str = None):
+ endpoint_name: str = None):
super().__init__()
- self.deployment_name = deployment_name
- if endpoint_name is not None and endpoint_name != DEFAULT_ENDPOINT_NAME:
- (self.endpoint_uri,
- self.endpoint_key,
- self.model_family) = get_deployment_from_endpoint(endpoint_name, deployment_name)
- else:
+ self.endpoint_key = None
+ self.endpoint_name = endpoint_name
+
+ if endpoint_name is None or endpoint_name == DEFAULT_ENDPOINT_NAME:
(self.endpoint_uri,
self.endpoint_key,
- self.model_family) = get_deployment_from_connection(connection, deployment_name)
+ self.model_family) = get_deployment_from_connection(connection)
@tool
@handle_oneline_endpoint_error()
@@ -468,12 +460,20 @@ def call(
self,
prompt: PromptTemplate,
api: API,
+ deployment_name: str = None,
temperature: float = 1.0,
max_new_tokens: int = 500,
top_p: float = 1.0,
model_kwargs: Optional[Dict] = {},
**kwargs
) -> str:
+ self.deployment_name = deployment_name
+
+ if self.endpoint_key is None and self.endpoint_name is not None:
+ (self.endpoint_uri,
+ self.endpoint_key,
+ self.model_family) = get_deployment_from_endpoint(self.endpoint_name, self.deployment_name)
+
prompt = render_jinja_template(prompt, trim_blocks=True, keep_trailing_newline=True, **kwargs)
model_kwargs["top_p"] = top_p
@@ -489,6 +489,7 @@ def call(
llm = AzureMLOnlineEndpoint(
endpoint_url=self.endpoint_uri,
endpoint_api_key=self.endpoint_key,
+ model_family=self.model_family,
content_formatter=content_formatter,
deployment_name=self.deployment_name,
model_kwargs=model_kwargs
diff --git a/src/promptflow-tools/promptflow/tools/openai.py b/src/promptflow-tools/promptflow/tools/openai.py
index 9e5f64c087e..0edd7af1c01 100644
--- a/src/promptflow-tools/promptflow/tools/openai.py
+++ b/src/promptflow-tools/promptflow/tools/openai.py
@@ -107,7 +107,8 @@ def chat(
frequency_penalty: float = 0,
logit_bias: dict = {},
user: str = "",
- function_call: str = None,
+ # function_call can be of type str or dict.
+ function_call: object = None,
functions: list = None,
**kwargs,
) -> [str, dict]:
@@ -211,7 +212,7 @@ def chat(
frequency_penalty: float = 0,
logit_bias: dict = {},
user: str = "",
- function_call: str = None,
+ function_call: object = None,
functions: list = None,
**kwargs,
) -> [str, dict]:
diff --git a/src/promptflow-tools/promptflow/tools/yamls/open_source_llm.yaml b/src/promptflow-tools/promptflow/tools/yamls/open_source_llm.yaml
index d5221244ae7..120aee91ca8 100644
--- a/src/promptflow-tools/promptflow/tools/yamls/open_source_llm.yaml
+++ b/src/promptflow-tools/promptflow/tools/yamls/open_source_llm.yaml
@@ -1,6 +1,7 @@
promptflow.tools.open_source_llm.OpenSourceLLM.call:
name: Open Source LLM
description: Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.
+ icon: 
type: custom_llm
module: promptflow.tools.open_source_llm
class_name: OpenSourceLLM
diff --git a/src/promptflow-tools/tests/conftest.py b/src/promptflow-tools/tests/conftest.py
index 0ec4f53865d..bae9c5b3642 100644
--- a/src/promptflow-tools/tests/conftest.py
+++ b/src/promptflow-tools/tests/conftest.py
@@ -1,9 +1,9 @@
import json
import os
+import pytest
import sys
-from pathlib import Path
-import pytest
+from pathlib import Path
from pytest_mock import MockerFixture # noqa: E402
# Avoid circular dependencies: Use import 'from promptflow._internal' instead of 'from promptflow'
# since the code here is in promptflow namespace as well
@@ -45,6 +45,28 @@ def serp_connection():
return ConnectionManager().get("serp_connection")
+def verify_oss_llm_custom_connection(connection: CustomConnection) -> bool:
+ '''Verify that there is a MIR endpoint up and available for the Custom Connection.
+ We explicitly do not pass the endpoint key to avoid the delay in generating a response.
+ '''
+
+ import urllib.request
+ from urllib.request import HTTPError
+ from urllib.error import URLError
+
+ try:
+ urllib.request.urlopen(
+ urllib.request.Request(connection.configs['endpoint_url']),
+ timeout=50)
+ except HTTPError as e:
+ # verify that the connection is not authorized, anything else would mean the endpoint is failed
+ return e.code == 403
+ except URLError:
+ # Endpoint does not exist - skip the test
+ return False
+ raise Exception("Task Succeeded unexpectedly.")
+
+
@pytest.fixture
def gpt2_custom_connection():
return ConnectionManager().get("gpt2_connection")
@@ -55,6 +77,19 @@ def llama_chat_custom_connection():
return ConnectionManager().get("llama_chat_connection")
+@pytest.fixture
+def open_source_llm_ws_service_connection() -> bool:
+ try:
+ creds_custom_connection: CustomConnection = ConnectionManager().get("open_source_llm_ws_service_connection")
+ subs = json.loads(creds_custom_connection.secrets['service_credential'])
+ for key, value in subs.items():
+ os.environ[key] = value
+ return True
+ except Exception as e:
+ print(f'Something failed setting environment variables for service credentials. Error: {e}')
+ return False
+
+
@pytest.fixture(autouse=True)
def skip_if_no_key(request, mocker):
mocker.patch.dict(os.environ, {"PROMPTFLOW_CONNECTIONS": CONNECTION_FILE})
@@ -68,6 +103,10 @@ def skip_if_no_key(request, mocker):
elif isinstance(connection, CustomConnection):
if "endpoint_api_key" not in connection.secrets or "-api-key" in connection.secrets["endpoint_api_key"]:
pytest.skip('skipped because no key')
+ # Verify Custom Connections, but only those used by the Open_Source_LLM Tool
+ if "endpoint_url" in connection.configs and "-endpoint-url" not in connection.configs["endpoint_url"]:
+ if not verify_oss_llm_custom_connection(connection):
+ pytest.skip('skipped because the connection is not valid')
# example prompts
diff --git a/src/promptflow-tools/tests/test_aoai.py b/src/promptflow-tools/tests/test_aoai.py
index 20cc607a31f..ef83e02cd40 100644
--- a/src/promptflow-tools/tests/test_aoai.py
+++ b/src/promptflow-tools/tests/test_aoai.py
@@ -48,8 +48,15 @@ def test_aoai_chat_api(self, azure_open_ai_connection, example_prompt_template,
)
assert "Product X".lower() in result.lower()
+ @pytest.mark.parametrize(
+ "function_call",
+ [
+ "auto",
+ {"name": "get_current_weather"},
+ ],
+ )
def test_aoai_chat_with_function(
- self, azure_open_ai_connection, example_prompt_template, chat_history, functions):
+ self, azure_open_ai_connection, example_prompt_template, chat_history, functions, function_call):
result = chat(
connection=azure_open_ai_connection,
prompt=example_prompt_template,
@@ -59,7 +66,7 @@ def test_aoai_chat_with_function(
user_input="What is the weather in Boston?",
chat_history=chat_history,
functions=functions,
- function_call="auto"
+ function_call=function_call
)
assert "function_call" in result
assert result["function_call"]["name"] == "get_current_weather"
diff --git a/src/promptflow-tools/tests/test_common.py b/src/promptflow-tools/tests/test_common.py
index 758b0a5b2bb..ff167a44e90 100644
--- a/src/promptflow-tools/tests/test_common.py
+++ b/src/promptflow-tools/tests/test_common.py
@@ -30,12 +30,10 @@ def test_chat_api_invalid_functions(self, functions, error_message):
@pytest.mark.parametrize(
"function_call, error_message",
[
- ({"name": "get_current_weather"}, "must be str, bytes or bytearray"),
- ("{'name': 'get_current_weather'}", "is an invalid json"),
- ("get_current_weather", "is an invalid json"),
("123", "function_call parameter '123' must be a dict"),
- ('{"name1": "get_current_weather"}', 'function_call parameter {"name1": "get_current_weather"} must '
- 'contain "name" field'),
+ ({"name1": "get_current_weather"},
+ 'function_call parameter {"name1": "get_current_weather"} must '
+ 'contain "name" field'),
],
)
def test_chat_api_invalid_function_call(self, function_call, error_message):
diff --git a/src/promptflow-tools/tests/test_open_source_llm.py b/src/promptflow-tools/tests/test_open_source_llm.py
index 924329df4ab..fe6d8b4d5eb 100644
--- a/src/promptflow-tools/tests/test_open_source_llm.py
+++ b/src/promptflow-tools/tests/test_open_source_llm.py
@@ -1,3 +1,4 @@
+import copy
import os
import pytest
from promptflow.tools.exception import (
@@ -6,6 +7,7 @@
OpenSourceLLMKeyValidationError
)
from promptflow.tools.open_source_llm import OpenSourceLLM, API, ContentFormatterBase, LlamaContentFormatter
+from typing import List, Dict
@pytest.fixture
@@ -18,19 +20,66 @@ def llama_chat_provider(llama_chat_custom_connection) -> OpenSourceLLM:
return OpenSourceLLM(llama_chat_custom_connection)
+@pytest.fixture
+def endpoints_provider(open_source_llm_ws_service_connection) -> Dict[str, List[str]]:
+ if not open_source_llm_ws_service_connection:
+ pytest.skip("Service Credential not available")
+
+ from azure.ai.ml import MLClient
+ from azure.identity import DefaultAzureCredential
+ credential = DefaultAzureCredential(exclude_interactive_browser_credential=False)
+ ml_client = MLClient(
+ credential=credential,
+ subscription_id=os.getenv("AZUREML_ARM_SUBSCRIPTION"),
+ resource_group_name=os.getenv("AZUREML_ARM_RESOURCEGROUP"),
+ workspace_name=os.getenv("AZUREML_ARM_WORKSPACE_NAME"))
+
+ endpoints = {}
+ for ep in ml_client.online_endpoints.list():
+ endpoints[ep.name] = [d.name for d in ml_client.online_deployments.list(ep.name)]
+
+ return endpoints
+
+
+@pytest.fixture
+def chat_endpoints_provider(endpoints_provider: Dict[str, List[str]]) -> Dict[str, List[str]]:
+ chat_endpoint_names = ["gpt2", "llama-chat"]
+
+ chat_endpoints = {}
+ for key, value in endpoints_provider.items():
+ for ep_name in chat_endpoint_names:
+ if ep_name in key:
+ chat_endpoints[key] = value
+
+ if len(chat_endpoints) <= 0:
+ pytest.skip("No Chat Endpoints Found")
+
+ return chat_endpoints
+
+
+@pytest.fixture
+def completion_endpoints_provider(endpoints_provider: Dict[str, List[str]]) -> Dict[str, List[str]]:
+ completion_endpoint_names = ["gpt2", "llama-comp"]
+
+ completion_endpoints = {}
+ for key, value in endpoints_provider.items():
+ for ep_name in completion_endpoint_names:
+ if ep_name in key:
+ completion_endpoints[key] = value
+
+ if len(completion_endpoints) <= 0:
+ pytest.skip("No Completion Endpoints Found")
+
+ return completion_endpoints
+
+
@pytest.mark.usefixtures("use_secrets_config_file")
class TestOpenSourceLLM:
completion_prompt = "In the context of Azure ML, what does the ML stand for?"
-
- gpt2_chat_prompt = """user:
+ chat_prompt = """system:
You are a AI which helps Customers answer questions.
user:
-""" + completion_prompt
-
- llama_chat_prompt = """user:
-You are a AI which helps Customers answer questions.
-
""" + completion_prompt
@pytest.mark.skip_if_no_key("gpt2_custom_connection")
@@ -41,36 +90,32 @@ def test_open_source_llm_completion(self, gpt2_provider):
assert len(response) > 25
@pytest.mark.skip_if_no_key("gpt2_custom_connection")
- def test_open_source_llm_completion_with_deploy(self, gpt2_custom_connection):
- os_tool = OpenSourceLLM(
- gpt2_custom_connection,
- deployment_name="gpt2-8")
- response = os_tool.call(
+ def test_open_source_llm_completion_with_deploy(self, gpt2_provider):
+ response = gpt2_provider.call(
self.completion_prompt,
- API.COMPLETION)
+ API.COMPLETION,
+ deployment_name="gpt2-9")
assert len(response) > 25
@pytest.mark.skip_if_no_key("gpt2_custom_connection")
def test_open_source_llm_chat(self, gpt2_provider):
response = gpt2_provider.call(
- self.gpt2_chat_prompt,
+ self.chat_prompt,
API.CHAT)
assert len(response) > 25
@pytest.mark.skip_if_no_key("gpt2_custom_connection")
- def test_open_source_llm_chat_with_deploy(self, gpt2_custom_connection):
- os_tool = OpenSourceLLM(
- gpt2_custom_connection,
- deployment_name="gpt2-8")
- response = os_tool.call(
- self.gpt2_chat_prompt,
- API.CHAT)
+ def test_open_source_llm_chat_with_deploy(self, gpt2_provider):
+ response = gpt2_provider.call(
+ self.chat_prompt,
+ API.CHAT,
+ deployment_name="gpt2-9")
assert len(response) > 25
@pytest.mark.skip_if_no_key("gpt2_custom_connection")
def test_open_source_llm_chat_with_max_length(self, gpt2_provider):
response = gpt2_provider.call(
- self.gpt2_chat_prompt,
+ self.chat_prompt,
API.CHAT,
max_new_tokens=2)
# GPT-2 doesn't take this parameter
@@ -78,9 +123,10 @@ def test_open_source_llm_chat_with_max_length(self, gpt2_provider):
@pytest.mark.skip_if_no_key("gpt2_custom_connection")
def test_open_source_llm_con_url_chat(self, gpt2_custom_connection):
- del gpt2_custom_connection.configs['endpoint_url']
+ tmp = copy.deepcopy(gpt2_custom_connection)
+ del tmp.configs['endpoint_url']
with pytest.raises(OpenSourceLLMKeyValidationError) as exc_info:
- os = OpenSourceLLM(gpt2_custom_connection)
+ os = OpenSourceLLM(tmp)
os.call(self.chat_prompt, API.CHAT)
assert exc_info.value.message == """Required key `endpoint_url` not found in given custom connection.
Required keys are: endpoint_url,model_family."""
@@ -88,9 +134,10 @@ def test_open_source_llm_con_url_chat(self, gpt2_custom_connection):
@pytest.mark.skip_if_no_key("gpt2_custom_connection")
def test_open_source_llm_con_key_chat(self, gpt2_custom_connection):
- del gpt2_custom_connection.secrets['endpoint_api_key']
+ tmp = copy.deepcopy(gpt2_custom_connection)
+ del tmp.secrets['endpoint_api_key']
with pytest.raises(OpenSourceLLMKeyValidationError) as exc_info:
- os = OpenSourceLLM(gpt2_custom_connection)
+ os = OpenSourceLLM(tmp)
os.call(self.chat_prompt, API.CHAT)
assert exc_info.value.message == (
"Required secret key `endpoint_api_key` "
@@ -100,9 +147,10 @@ def test_open_source_llm_con_key_chat(self, gpt2_custom_connection):
@pytest.mark.skip_if_no_key("gpt2_custom_connection")
def test_open_source_llm_con_model_chat(self, gpt2_custom_connection):
- del gpt2_custom_connection.configs['model_family']
+ tmp = copy.deepcopy(gpt2_custom_connection)
+ del tmp.configs['model_family']
with pytest.raises(OpenSourceLLMKeyValidationError) as exc_info:
- os = OpenSourceLLM(gpt2_custom_connection)
+ os = OpenSourceLLM(tmp)
os.call(self.completion_prompt, API.COMPLETION)
assert exc_info.value.message == """Required key `model_family` not found in given custom connection.
Required keys are: endpoint_url,model_family."""
@@ -114,7 +162,7 @@ def test_open_source_llm_escape_chat(self):
assert out_of_danger == "The quick \\brown fox\\tjumped\\\\over \\the \\\\boy\\r\\n"
def test_open_source_llm_llama_parse_chat_with_chat(self):
- LlamaContentFormatter.parse_chat(self.llama_chat_prompt)
+ LlamaContentFormatter.parse_chat(self.chat_prompt)
def test_open_source_llm_llama_parse_multi_turn(self):
multi_turn_chat = """user:
@@ -130,23 +178,6 @@ def test_open_source_llm_llama_parse_multi_turn(self):
"""
LlamaContentFormatter.parse_chat(multi_turn_chat)
- def test_open_source_llm_llama_parse_system_not_accepted(self):
- bad_chat_prompt = """system:
-You are a AI which helps Customers answer questions.
-
-user:
-""" + self.completion_prompt
- with pytest.raises(OpenSourceLLMUserError) as exc_info:
- LlamaContentFormatter.parse_chat(bad_chat_prompt)
- assert exc_info.value.message == (
- "The Chat API requires a specific format for prompt definition,"
- + " and the prompt should include separate lines as role delimiters: 'assistant:\\n','user:\\n'."
- + " Current parsed role 'system' does not meet the requirement. If you intend to use the Completion "
- + "API, please select the appropriate API type and deployment name. If you do intend to use the Chat "
- + "API, please refer to the guideline at https://aka.ms/pfdoc/chat-prompt or view the samples in our "
- + "gallery that contain 'Chat' in the name.")
- assert exc_info.value.error_codes == "UserError/OpenSourceLLMUserError".split("/")
-
def test_open_source_llm_llama_parse_ignore_whitespace(self):
bad_chat_prompt = f"""system:
You are a AI which helps Customers answer questions.
@@ -158,30 +189,31 @@ def test_open_source_llm_llama_parse_ignore_whitespace(self):
with pytest.raises(OpenSourceLLMUserError) as exc_info:
LlamaContentFormatter.parse_chat(bad_chat_prompt)
assert exc_info.value.message == (
- "The Chat API requires a specific format for prompt definition, and "
- + "the prompt should include separate lines as role delimiters: 'assistant:\\n','user:\\n'. Current parsed "
- + "role 'system' does not meet the requirement. If you intend to use the Completion API, please select the "
- + "appropriate API type and deployment name. If you do intend to use the Chat API, please refer to the "
- + "guideline at https://aka.ms/pfdoc/chat-prompt or view the samples in our gallery that contain 'Chat' "
- + "in the name.")
+ "The Chat API requires a specific format for prompt definition, and the prompt should include separate "
+ + "lines as role delimiters: 'assistant:\\n','system:\\n','user:\\n'. Current parsed role 'in the context "
+ + "of azure ml, what does the ml stand for?' does not meet the requirement. If you intend to use the "
+ + "Completion API, please select the appropriate API type and deployment name. If you do intend to use "
+ + "the Chat API, please refer to the guideline at https://aka.ms/pfdoc/chat-prompt or view the samples in "
+ + "our gallery that contain 'Chat' in the name.")
assert exc_info.value.error_codes == "UserError/OpenSourceLLMUserError".split("/")
def test_open_source_llm_llama_parse_chat_with_comp(self):
with pytest.raises(OpenSourceLLMUserError) as exc_info:
LlamaContentFormatter.parse_chat(self.completion_prompt)
assert exc_info.value.message == (
- "The Chat API requires a specific format for prompt definition, and "
- + "the prompt should include separate lines as role delimiters: 'assistant:\\n','user:\\n'. Current parsed "
- + "role 'in the context of azure ml, what does the ml stand for?' does not meet the requirement. If you "
- + "intend to use the Completion API, please select the appropriate API type and deployment name. If you do "
- + "intend to use the Chat API, please refer to the guideline at https://aka.ms/pfdoc/chat-prompt or view "
- + "the samples in our gallery that contain 'Chat' in the name.")
+ "The Chat API requires a specific format for prompt definition, and the prompt should include separate "
+ + "lines as role delimiters: 'assistant:\\n','system:\\n','user:\\n'. Current parsed role 'in the context "
+ + "of azure ml, what does the ml stand for?' does not meet the requirement. If you intend to use the "
+ + "Completion API, please select the appropriate API type and deployment name. If you do intend to use the "
+ + "Chat API, please refer to the guideline at https://aka.ms/pfdoc/chat-prompt or view the samples in our "
+ + "gallery that contain 'Chat' in the name.")
assert exc_info.value.error_codes == "UserError/OpenSourceLLMUserError".split("/")
@pytest.mark.skip_if_no_key("gpt2_custom_connection")
def test_open_source_llm_llama_endpoint_miss(self, gpt2_custom_connection):
- gpt2_custom_connection.configs['endpoint_url'] += 'completely/real/endpoint'
- os = OpenSourceLLM(gpt2_custom_connection)
+ tmp = copy.deepcopy(gpt2_custom_connection)
+ tmp.configs['endpoint_url'] += 'completely/real/endpoint'
+ os = OpenSourceLLM(tmp)
with pytest.raises(OpenSourceLLMOnlineEndpointError) as exc_info:
os.call(
self.completion_prompt,
@@ -192,30 +224,49 @@ def test_open_source_llm_llama_endpoint_miss(self, gpt2_custom_connection):
assert exc_info.value.error_codes == "UserError/OpenSourceLLMOnlineEndpointError".split("/")
@pytest.mark.skip_if_no_key("gpt2_custom_connection")
- def test_open_source_llm_llama_deployment_miss(self, gpt2_custom_connection):
- os = OpenSourceLLM(
- gpt2_custom_connection,
- deployment_name="completely/real/deployment-007")
+ def test_open_source_llm_llama_deployment_miss(self, gpt2_provider):
with pytest.raises(OpenSourceLLMOnlineEndpointError) as exc_info:
- os.call(self.completion_prompt, API.COMPLETION)
+ gpt2_provider.call(self.completion_prompt,
+ API.COMPLETION,
+ deployment_name="completely/real/deployment-007")
assert exc_info.value.message == (
"Exception hit calling Oneline Endpoint: "
+ "HTTPError: HTTP Error 404: Not Found")
assert exc_info.value.error_codes == "UserError/OpenSourceLLMOnlineEndpointError".split("/")
- @pytest.mark.skip
- def test_open_source_llm_endpoint_name(self):
- os.environ["AZUREML_ARM_SUBSCRIPTION"] = ""
- os.environ["AZUREML_ARM_RESOURCEGROUP"] = ""
- os.environ["AZUREML_ARM_WORKSPACE_NAME"] = ""
-
- os_llm = OpenSourceLLM(endpoint_name="llama-temp-chat")
- response = os_llm.call(self.llama_chat_prompt, API.CHAT)
- assert len(response) > 25
+ @pytest.mark.skip_if_no_key("open_source_llm_ws_service_connection")
+ def test_open_source_llm_chat_endpoint_name(self, chat_endpoints_provider):
+ for endpoint_name in chat_endpoints_provider:
+ os_llm = OpenSourceLLM(endpoint_name=endpoint_name)
+ response = os_llm.call(self.chat_prompt, API.CHAT)
+ assert len(response) > 25
+
+ @pytest.mark.skip_if_no_key("open_source_llm_ws_service_connection")
+ def test_open_source_llm_chat_endpoint_name_with_deployment(self, chat_endpoints_provider):
+ for endpoint_name in chat_endpoints_provider:
+ os_llm = OpenSourceLLM(endpoint_name=endpoint_name)
+ for deployment_name in chat_endpoints_provider[endpoint_name]:
+ response = os_llm.call(self.chat_prompt, API.CHAT, deployment_name=deployment_name)
+ assert len(response) > 25
+
+ @pytest.mark.skip_if_no_key("open_source_llm_ws_service_connection")
+ def test_open_source_llm_completion_endpoint_name(self, completion_endpoints_provider):
+ for endpoint_name in completion_endpoints_provider:
+ os_llm = OpenSourceLLM(endpoint_name=endpoint_name)
+ response = os_llm.call(self.completion_prompt, API.COMPLETION)
+ assert len(response) > 25
+
+ @pytest.mark.skip_if_no_key("open_source_llm_ws_service_connection")
+ def test_open_source_llm_completion_endpoint_name_with_deployment(self, completion_endpoints_provider):
+ for endpoint_name in completion_endpoints_provider:
+ os_llm = OpenSourceLLM(endpoint_name=endpoint_name)
+ for deployment_name in completion_endpoints_provider[endpoint_name]:
+ response = os_llm.call(self.completion_prompt, API.COMPLETION, deployment_name=deployment_name)
+ assert len(response) > 25
@pytest.mark.skip_if_no_key("llama_chat_custom_connection")
def test_open_source_llm_llama_chat(self, llama_chat_provider):
- response = llama_chat_provider.call(self.llama_chat_prompt, API.CHAT)
+ response = llama_chat_provider.call(self.chat_prompt, API.CHAT)
assert len(response) > 25
@pytest.mark.skip_if_no_key("llama_chat_custom_connection")
diff --git a/src/promptflow/promptflow/__init__.py b/src/promptflow/promptflow/__init__.py
index 70bb7487fed..16e2c555fed 100644
--- a/src/promptflow/promptflow/__init__.py
+++ b/src/promptflow/promptflow/__init__.py
@@ -9,6 +9,8 @@
from promptflow._core.tool import ToolProvider, tool
# control plane sdk functions
+from promptflow._sdk._load_functions import load_flow
+
from ._sdk._pf_client import PFClient
from ._version import VERSION
@@ -19,6 +21,7 @@
__all__ = [
"PFClient",
+ "load_flow",
"log_metric",
"ToolProvider",
"tool",
diff --git a/src/promptflow/promptflow/_cli/_pf/_config.py b/src/promptflow/promptflow/_cli/_pf/_config.py
index 9bf46e5ae24..972e5baad71 100644
--- a/src/promptflow/promptflow/_cli/_pf/_config.py
+++ b/src/promptflow/promptflow/_cli/_pf/_config.py
@@ -19,11 +19,11 @@ def add_config_set(subparsers):
""" # noqa: E501
activate_action(
name="set",
- description="Set promptflow configs for current user.",
+ description="Set prompt flow configs for current user.",
epilog=epilog,
add_params=[add_param_set_positional] + logging_params,
subparsers=subparsers,
- help_message="Set promptflow configs for current user, configs will be stored at ~/.promptflow/pf.yaml.",
+ help_message="Set prompt flow configs for current user, configs will be stored at ~/.promptflow/pf.yaml.",
action_param_name="sub_action",
)
@@ -48,7 +48,7 @@ def add_config_show(subparsers):
def add_config_parser(subparsers):
config_parser = subparsers.add_parser(
- "config", description="A CLI tool to set promptflow configs for current user.", help="pf config"
+ "config", description="A CLI tool to set prompt flow configs for current user.", help="pf config"
)
subparsers = config_parser.add_subparsers()
add_config_set(subparsers)
diff --git a/src/promptflow/promptflow/_core/tools_manager.py b/src/promptflow/promptflow/_core/tools_manager.py
index 2aaee089b73..405bd2d1049 100644
--- a/src/promptflow/promptflow/_core/tools_manager.py
+++ b/src/promptflow/promptflow/_core/tools_manager.py
@@ -10,7 +10,7 @@
import types
from functools import partial
from pathlib import Path
-from typing import Callable, List, Mapping, Optional, Tuple, Union
+from typing import Callable, List, Mapping, Optional, Tuple, Union, Dict
import pkg_resources
import yaml
@@ -170,6 +170,50 @@ def gen_tool_by_source(name, source: ToolSource, tool_type: ToolType, working_di
)
+def append_workspace_triple_to_func_input_params(func_sig_params, func_input_params_dict, ws_triple_dict):
+ '''Append workspace triple to func input params.
+
+ :param func_sig_params: function signature parameters, full params.
+ :param func_input_params_dict: user input param key-values for dynamic list function.
+ :param ws_triple_dict: workspace triple dict, including subscription_id, resource_group_name, workspace_name.
+ :return: combined func input params.
+ '''
+ # append workspace triple to func input params if any below condition are met:
+ # 1. func signature has kwargs param.
+ # 2. func signature has param named 'subscription_id','resource_group_name','workspace_name'.
+ has_kwargs_param = any([param.kind == inspect.Parameter.VAR_KEYWORD for _, param in func_sig_params.items()])
+ if has_kwargs_param is False:
+ # keep only params that are in func signature. Or run into error when calling func.
+ avail_ws_info_dict = {k: v for k, v in ws_triple_dict.items() if k in set(func_sig_params.keys())}
+ else:
+ avail_ws_info_dict = ws_triple_dict
+
+ # if ws triple key is in func input params, it means user has provided value for it,
+ # do not expect implicit override.
+ combined_func_input_params = dict(avail_ws_info_dict, **func_input_params_dict)
+ return combined_func_input_params
+
+
+def gen_dynamic_list(func_path: str, func_input_params_dict: Dict, ws_triple_dict: Dict[str, str] = None):
+ import importlib
+ import inspect
+
+ # TODO: validate func path.
+ module_name, func_name = func_path.rsplit('.', 1)
+ module = importlib.import_module(module_name)
+ func = getattr(module, func_name)
+ # get param names from func signature.
+ func_sig_params = inspect.signature(func).parameters
+ # TODO: validate if func input params are all in func signature params.
+ # TODO: add more tests to verify following appending logic.
+ combined_func_input_params = append_workspace_triple_to_func_input_params(
+ func_sig_params, func_input_params_dict, ws_triple_dict)
+ # TODO: error handling of func call.
+ result = func(**combined_func_input_params)
+ # TODO: validate response is of required format. Throw correct message if response is empty.
+ return result
+
+
class BuiltinsManager:
def __init__(self) -> None:
pass
diff --git a/src/promptflow/promptflow/_internal/__init__.py b/src/promptflow/promptflow/_internal/__init__.py
index 450a1b05e68..7d4a0b885c3 100644
--- a/src/promptflow/promptflow/_internal/__init__.py
+++ b/src/promptflow/promptflow/_internal/__init__.py
@@ -40,6 +40,7 @@
register_apis,
register_builtins,
register_connections,
+ gen_dynamic_list,
)
from promptflow._core.tracer import Tracer
from promptflow._sdk._constants import LOCAL_MGMT_DB_PATH
@@ -102,3 +103,4 @@
NotFoundException,
SqliteClient,
)
+from promptflow.storage._run_storage import DefaultRunStorage
diff --git a/src/promptflow/promptflow/_sdk/_serving/flow_invoker.py b/src/promptflow/promptflow/_sdk/_serving/flow_invoker.py
index e1b8c9b7936..aadc7201c02 100644
--- a/src/promptflow/promptflow/_sdk/_serving/flow_invoker.py
+++ b/src/promptflow/promptflow/_sdk/_serving/flow_invoker.py
@@ -18,6 +18,7 @@
update_environment_variables_with_connections,
)
from promptflow._sdk.entities._connection import _Connection
+from promptflow._sdk.entities._flow import Flow
from promptflow._sdk.operations._flow_operations import FlowOperations
from promptflow._utils.multimedia_utils import convert_multimedia_data_to_base64, persist_multimedia_data
from promptflow.executor import FlowExecutor
@@ -30,8 +31,8 @@ class FlowInvoker:
"""
The invoker of a flow.
- :param flow: The path of the flow.
- :type flow: str
+ :param flow: The path of the flow, or the flow loaded by load_flow().
+ :type flow: [str, ~promptflow._sdk.entities._flow.Flow]
:param connection_provider: The connection provider, defaults to None
:type connection_provider: [str, Callable], optional
:param streaming: The function or bool to determine enable streaming or not, defaults to lambda: False
@@ -40,13 +41,12 @@ class FlowInvoker:
def __init__(
self,
- flow: str,
+ flow: [str, Flow],
connection_provider: [str, Callable] = None,
streaming: Union[Callable[[], bool], bool] = False,
**kwargs,
):
- self.flow_dir = flow
- self.flow_entity = load_flow(self.flow_dir)
+ self.flow_entity = flow if isinstance(flow, Flow) else load_flow(source=flow)
self.streaming = streaming if isinstance(streaming, Callable) else lambda: streaming
# Pass dump_to path to dump flow result for extension.
self._dump_to = kwargs.get("dump_to", None)
diff --git a/src/promptflow/promptflow/_sdk/_utils.py b/src/promptflow/promptflow/_sdk/_utils.py
index 60cd2b98fec..506947a9e4e 100644
--- a/src/promptflow/promptflow/_sdk/_utils.py
+++ b/src/promptflow/promptflow/_sdk/_utils.py
@@ -32,6 +32,7 @@
import promptflow
from promptflow._constants import EXTENSION_UA
from promptflow._core.tool_meta_generator import generate_tool_meta_dict_by_file
+from promptflow._core.tools_manager import gen_dynamic_list
from promptflow._sdk._constants import (
DAG_FILE_NAME,
DEFAULT_ENCODING,
@@ -624,6 +625,28 @@ def _generate_tool_meta(
return res
+def _gen_dynamic_list(function_config: Dict) -> List:
+ """Generate dynamic list for a tool input.
+
+ :param function_config: function config in tool meta. Should contain'func_path' and 'func_kwargs'.
+ :return: a list of tool input dynamic enums.
+ """
+ func_path = function_config.get("func_path", "")
+ func_kwargs = function_config.get("func_kwargs", {})
+ # May call azure control plane api in the custom function to list Azure resources.
+ # which may need Azure workspace triple.
+ # TODO: move this method to a common place.
+ from promptflow._cli._utils import get_workspace_triad_from_local
+
+ workspace_triad = get_workspace_triad_from_local()
+ if (workspace_triad.subscription_id and workspace_triad.resource_group_name
+ and workspace_triad.workspace_name):
+ return gen_dynamic_list(func_path, func_kwargs, workspace_triad._asdict())
+ # if no workspace triple available, just skip.
+ else:
+ return gen_dynamic_list(func_path, func_kwargs)
+
+
def _generate_package_tools(keys: Optional[List[str]] = None) -> dict:
import imp
diff --git a/src/promptflow/promptflow/_sdk/entities/_flow.py b/src/promptflow/promptflow/_sdk/entities/_flow.py
index 7b789f2b527..7aa743c9d6c 100644
--- a/src/promptflow/promptflow/_sdk/entities/_flow.py
+++ b/src/promptflow/promptflow/_sdk/entities/_flow.py
@@ -120,6 +120,7 @@ def __init__(
super().__init__(code=code, **kwargs)
self._flow_dir, self._dag_file_name = self._get_flow_definition(self.code)
+ self._executable = None
@property
def flow_dag_path(self) -> Path:
@@ -172,3 +173,20 @@ def _dump_for_validation(self) -> Dict:
return yaml.safe_load(self.flow_dag_path.read_text(encoding=DEFAULT_ENCODING))
# endregion
+
+ # region MLFlow model requirements
+ @property
+ def inputs(self):
+ # This is used for build mlflow model signature.
+ if not self._executable:
+ self._executable = self._init_executable()
+ return {k: v.type.value for k, v in self._executable.inputs.items()}
+
+ @property
+ def outputs(self):
+ # This is used for build mlflow model signature.
+ if not self._executable:
+ self._executable = self._init_executable()
+ return {k: v.type.value for k, v in self._executable.outputs.items()}
+
+ # endregion
diff --git a/src/promptflow/promptflow/_sdk/operations/_test_submitter.py b/src/promptflow/promptflow/_sdk/operations/_test_submitter.py
index 1042b8bde34..c9afb89aad1 100644
--- a/src/promptflow/promptflow/_sdk/operations/_test_submitter.py
+++ b/src/promptflow/promptflow/_sdk/operations/_test_submitter.py
@@ -202,6 +202,7 @@ def node_test(
dependency_nodes_outputs=dependency_nodes_outputs,
connections=connections,
working_dir=self.flow.code,
+ output_sub_dir=".promptflow/intermediate",
)
return result
diff --git a/src/promptflow/promptflow/_utils/connection_utils.py b/src/promptflow/promptflow/_utils/connection_utils.py
index be16b1d64a3..5ea3cb6ff4d 100644
--- a/src/promptflow/promptflow/_utils/connection_utils.py
+++ b/src/promptflow/promptflow/_utils/connection_utils.py
@@ -37,6 +37,7 @@ def generate_custom_strong_type_connection_spec(cls, package, package_version):
def generate_custom_strong_type_connection_template(cls, connection_spec, package, package_version):
connection_template_str = """
+ $schema: https://azuremlschemas.azureedge.net/promptflow/latest/CustomStrongTypeConnection.schema.json
name: "to_replace_with_connection_name"
type: custom
custom_type: {{ custom_type }}
diff --git a/src/promptflow/promptflow/executor/_errors.py b/src/promptflow/promptflow/executor/_errors.py
index e190bce71da..543eb4bf56e 100644
--- a/src/promptflow/promptflow/executor/_errors.py
+++ b/src/promptflow/promptflow/executor/_errors.py
@@ -193,6 +193,16 @@ def __init__(self, line_number, timeout):
)
+class EmptyLLMApiMapping(UserErrorException):
+ """Exception raised when connection_type_to_api_mapping is empty and llm node provider can't be inferred"""
+
+ def __init__(self):
+ super().__init__(
+ message="LLM api mapping is empty, please ensure 'promptflow-tools' package has been installed.",
+ target=ErrorTarget.EXECUTOR,
+ )
+
+
class ResolveToolError(PromptflowException):
"""Exception raised when tool load failed.
diff --git a/src/promptflow/promptflow/executor/_tool_resolver.py b/src/promptflow/promptflow/executor/_tool_resolver.py
index 87c70397168..ebf1937f6c3 100644
--- a/src/promptflow/promptflow/executor/_tool_resolver.py
+++ b/src/promptflow/promptflow/executor/_tool_resolver.py
@@ -12,14 +12,15 @@
from promptflow._core.connection_manager import ConnectionManager
from promptflow._core.tools_manager import BuiltinsManager, ToolLoader, connection_type_to_api_mapping
-from promptflow._utils.tool_utils import get_inputs_for_prompt_template, get_prompt_param_name_from_func
from promptflow._utils.multimedia_utils import create_image, load_multimedia_data_recursively
+from promptflow._utils.tool_utils import get_inputs_for_prompt_template, get_prompt_param_name_from_func
from promptflow.contracts.flow import InputAssignment, InputValueType, Node, ToolSourceType
from promptflow.contracts.tool import ConnectionType, Tool, ToolType, ValueType
from promptflow.contracts.types import PromptTemplate
from promptflow.exceptions import ErrorTarget, PromptflowException, UserErrorException
from promptflow.executor._errors import (
ConnectionNotFound,
+ EmptyLLMApiMapping,
InvalidConnectionType,
InvalidCustomLLMTool,
InvalidSource,
@@ -212,6 +213,8 @@ def _get_node_connection(self, node: Node):
def _resolve_llm_node(self, node: Node, convert_input_types=False) -> ResolvedTool:
connection = self._get_node_connection(node)
if not node.provider:
+ if not connection_type_to_api_mapping:
+ raise EmptyLLMApiMapping()
# If provider is not specified, try to resolve it from connection type
node.provider = connection_type_to_api_mapping.get(type(connection).__name__)
tool: Tool = self._tool_loader.load_tool_for_llm_node(node)
diff --git a/src/promptflow/promptflow/executor/flow_executor.py b/src/promptflow/promptflow/executor/flow_executor.py
index 9f247e19342..3829fd8a2d3 100644
--- a/src/promptflow/promptflow/executor/flow_executor.py
+++ b/src/promptflow/promptflow/executor/flow_executor.py
@@ -24,7 +24,7 @@
from promptflow._core.tools_manager import ToolsManager
from promptflow._utils.context_utils import _change_working_dir
from promptflow._utils.logger_utils import logger
-from promptflow._utils.multimedia_utils import load_multimedia_data
+from promptflow._utils.multimedia_utils import load_multimedia_data, load_multimedia_data_recursively
from promptflow._utils.utils import transpose
from promptflow.contracts.flow import Flow, FlowInputDefinition, InputAssignment, InputValueType, Node
from promptflow.contracts.run_info import FlowRunInfo, Status
@@ -48,7 +48,7 @@
from promptflow.executor._tool_resolver import ToolResolver
from promptflow.executor.flow_validator import FlowValidator
from promptflow.storage import AbstractRunStorage
-from promptflow.storage._run_storage import DefaultRunStorage, DummyRunStorage
+from promptflow.storage._run_storage import DefaultRunStorage
LINE_NUMBER_KEY = "line_number" # Using the same key with portal.
LINE_TIMEOUT_SEC = 600
@@ -242,6 +242,7 @@ def load_and_exec_node(
flow_file: Path,
node_name: str,
*,
+ output_sub_dir: Optional[str] = None,
flow_inputs: Optional[Mapping[str, Any]] = None,
dependency_nodes_outputs: Optional[Mapping[str, Any]] = None,
connections: Optional[dict] = None,
@@ -294,8 +295,10 @@ def load_and_exec_node(
flow_file=flow_file,
)
- flow_inputs = FlowExecutor._apply_default_value_for_input(flow.inputs, flow_inputs)
- converted_flow_inputs_for_node = FlowValidator.convert_flow_inputs_for_node(flow, node, flow_inputs)
+ inputs_with_default_value = FlowExecutor._apply_default_value_for_input(flow.inputs, flow_inputs)
+ inputs = load_multimedia_data(flow.inputs, inputs_with_default_value)
+ dependency_nodes_outputs = load_multimedia_data_recursively(dependency_nodes_outputs)
+ converted_flow_inputs_for_node = FlowValidator.convert_flow_inputs_for_node(flow, node, inputs)
package_tool_keys = [node.source.tool] if node.source and node.source.tool else []
tool_resolver = ToolResolver(working_dir, connections, package_tool_keys)
resolved_node = tool_resolver.resolve_tool_by_node(node)
@@ -320,7 +323,9 @@ def load_and_exec_node(
resolved_inputs = {k: v for k, v in resolved_inputs.items() if k not in resolved_node.init_args}
# TODO: Simplify the logic here
- run_tracker = RunTracker(DummyRunStorage())
+ sub_dir = "." if output_sub_dir is None else output_sub_dir
+ storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path(sub_dir))
+ run_tracker = RunTracker(storage)
with run_tracker.node_log_manager:
ToolInvoker.activate(DefaultToolInvoker())
diff --git a/src/promptflow/tests/executor/e2etests/test_executor_happypath.py b/src/promptflow/tests/executor/e2etests/test_executor_happypath.py
index 2f66097191b..0725fa45568 100644
--- a/src/promptflow/tests/executor/e2etests/test_executor_happypath.py
+++ b/src/promptflow/tests/executor/e2etests/test_executor_happypath.py
@@ -1,5 +1,7 @@
import uuid
+import os
from types import GeneratorType
+from pathlib import Path
import pytest
@@ -11,6 +13,7 @@
from promptflow.executor import FlowExecutor
from promptflow.executor._errors import ConnectionNotFound, InputTypeError, ResolveToolError
from promptflow.executor.flow_executor import BulkResult, LineResult
+from promptflow.storage._run_storage import DefaultRunStorage
from promptflow.storage import AbstractRunStorage
from ..utils import (
@@ -19,6 +22,7 @@
get_flow_expected_status_summary,
get_flow_sample_inputs,
get_yaml_file,
+ get_yaml_working_dir
)
SAMPLE_FLOW = "web_classification_no_variants"
@@ -27,6 +31,11 @@
SAMPLE_FLOW_WITH_LANGCHAIN_TRACES = "flow_with_langchain_traces"
+def assert_contains_substrings(s, substrings):
+ for substring in substrings:
+ assert substring in s
+
+
class MemoryRunStorage(AbstractRunStorage):
def __init__(self):
self._node_runs = {}
@@ -105,6 +114,7 @@ def test_executor_storage(self, dev_connections):
"prompt_tools",
"script_with___file__",
"connection_as_input",
+ "sample_flow_with_functions"
],
)
def test_executor_exec_bulk(self, flow_folder, dev_connections):
@@ -221,6 +231,38 @@ def test_executor_exec_line(self, flow_folder, dev_connections):
assert node_run_info.node == node
assert isinstance(node_run_info.api_calls, list) # api calls is set
+ @pytest.mark.parametrize(
+ "flow_folder",
+ [
+ "python_tool_with_multiple_image_nodes"
+ ],
+ )
+ def test_executor_exec_line_with_image(self, flow_folder, dev_connections):
+ self.skip_serp(flow_folder, dev_connections)
+ working_dir = get_yaml_working_dir(flow_folder)
+ os.chdir(working_dir)
+ storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./temp"))
+ executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections, storage=storage)
+ flow_result = executor.exec_line({})
+ assert not executor._run_tracker._flow_runs, "Flow runs in run tracker should be empty."
+ assert not executor._run_tracker._node_runs, "Node runs in run tracker should be empty."
+ assert isinstance(flow_result.output, dict)
+ assert flow_result.run_info.status == Status.Completed
+ node_count = len(executor._flow.nodes)
+ assert isinstance(flow_result.run_info.api_calls, list) and len(flow_result.run_info.api_calls) == node_count
+ substrings = ["data:image/jpg;path", ".jpg"]
+ for i in range(node_count):
+ assert_contains_substrings(str(flow_result.run_info.api_calls[i]), substrings)
+ assert len(flow_result.node_run_infos) == node_count
+ for node, node_run_info in flow_result.node_run_infos.items():
+ assert node_run_info.status == Status.Completed
+ assert node_run_info.node == node
+ assert isinstance(node_run_info.api_calls, list) # api calls is set
+ assert_contains_substrings(str(node_run_info.inputs), substrings)
+ assert_contains_substrings(str(node_run_info.output), substrings)
+ assert_contains_substrings(str(node_run_info.result), substrings)
+ assert_contains_substrings(str(node_run_info.api_calls[0]), substrings)
+
@pytest.mark.parametrize(
"flow_folder, node_name, flow_inputs, dependency_nodes_outputs",
[
@@ -252,6 +294,41 @@ def test_executor_exec_node(self, flow_folder, node_name, flow_inputs, dependenc
assert run_info.node == node_name
assert run_info.system_metrics["duration"] >= 0
+ @pytest.mark.parametrize(
+ "flow_folder, node_name, flow_inputs, dependency_nodes_outputs",
+ [
+ ("python_tool_with_multiple_image_nodes", "python_node_2", {"logo_content": "Microsoft and four squares"},
+ {"python_node": {"image": {"data:image/jpg;path": "logo.jpg"}, "image_name": "Microsoft's logo",
+ "image_list": [{"data:image/jpg;path": "logo.jpg"}]}}),
+ ("python_tool_with_multiple_image_nodes", "python_node", {
+ "image": "logo.jpg", "image_name": "Microsoft's logo"}, {},)
+ ],
+ )
+ def test_executor_exec_node_with_image(self, flow_folder, node_name, flow_inputs, dependency_nodes_outputs,
+ dev_connections):
+ self.skip_serp(flow_folder, dev_connections)
+ yaml_file = get_yaml_file(flow_folder)
+ working_dir = get_yaml_working_dir(flow_folder)
+ os.chdir(working_dir)
+ run_info = FlowExecutor.load_and_exec_node(
+ yaml_file,
+ node_name,
+ flow_inputs=flow_inputs,
+ dependency_nodes_outputs=dependency_nodes_outputs,
+ connections=dev_connections,
+ output_sub_dir=("./temp"),
+ raise_ex=True,
+ )
+ substrings = ["data:image/jpg;path", "temp", ".jpg"]
+ assert_contains_substrings(str(run_info.inputs), substrings)
+ assert_contains_substrings(str(run_info.output), substrings)
+ assert_contains_substrings(str(run_info.result), substrings)
+ assert_contains_substrings(str(run_info.api_calls[0]), substrings)
+ assert run_info.status == Status.Completed
+ assert isinstance(run_info.api_calls, list)
+ assert run_info.node == node_name
+ assert run_info.system_metrics["duration"] >= 0
+
def test_executor_node_overrides(self, dev_connections):
inputs = self.get_line_inputs()
executor = FlowExecutor.create(
diff --git a/src/promptflow/tests/executor/unittests/_core/test_tools_manager.py b/src/promptflow/tests/executor/unittests/_core/test_tools_manager.py
index 36a5ebe6559..77b784ce0ef 100644
--- a/src/promptflow/tests/executor/unittests/_core/test_tools_manager.py
+++ b/src/promptflow/tests/executor/unittests/_core/test_tools_manager.py
@@ -167,6 +167,7 @@ def test_collect_package_tools_and_connections(self, install_custom_tool_pkg):
}
expected_template = {
+ "$schema": "https://azuremlschemas.azureedge.net/promptflow/latest/CustomStrongTypeConnection.schema.json",
"name": "to_replace_with_connection_name",
"type": "custom",
"custom_type": "MyFirstConnection",
@@ -197,5 +198,16 @@ def test_collect_package_tools_and_connections(self, install_custom_tool_pkg):
content = templates["my_tool_package.tools.my_tool_with_custom_strong_type_connection.MyCustomConnection"]
expected_template_str = textwrap.dedent(expected_template)
-
- assert content in expected_template_str
+ assert expected_template_str in content
+
+ # TODO: enable this test after new my_tool_package is released
+ @pytest.mark.skip("Will enable this test after new my_tool_package is released")
+ def test_gen_dynamic_list(self):
+ from promptflow._sdk._utils import _gen_dynamic_list
+ func_path = "my_tool_package.tools.tool_with_dynamic_list_input.my_list_func"
+ func_kwargs = {"prefix": "My"}
+ result = _gen_dynamic_list({
+ "func_path": func_path, "func_kwargs": func_kwargs})
+ assert len(result) == 10
+
+ # TODO: add test for gen_dynamic_list with ws_triple.
diff --git a/src/promptflow/tests/executor/utils.py b/src/promptflow/tests/executor/utils.py
index 210d3830709..afecd725625 100644
--- a/src/promptflow/tests/executor/utils.py
+++ b/src/promptflow/tests/executor/utils.py
@@ -14,6 +14,11 @@ def get_yaml_file(folder_name, root: str = FLOW_ROOT, file_name: str = "flow.dag
return yaml_file
+def get_yaml_working_dir(folder_name, root: str = FLOW_ROOT):
+ flow_folder_path = Path(root) / folder_name
+ return flow_folder_path
+
+
def get_flow_inputs(folder_name, root: str = FLOW_ROOT):
flow_folder_path = Path(root) / folder_name
inputs = load_json(flow_folder_path / "inputs.json")
diff --git a/src/promptflow/tests/sdk_cli_test/unittests/test_utils.py b/src/promptflow/tests/sdk_cli_test/unittests/test_utils.py
index 99bfe26d8ec..c08492940da 100644
--- a/src/promptflow/tests/sdk_cli_test/unittests/test_utils.py
+++ b/src/promptflow/tests/sdk_cli_test/unittests/test_utils.py
@@ -173,7 +173,9 @@ def test_concurrent_execution_of_refresh_connections_dir(self, concurrent_count)
# Create and start threads
for _ in range(concurrent_count):
- thread = threading.Thread(target=refresh_connections_dir, args={None, None})
+ thread = threading.Thread(
+ target=lambda: refresh_connections_dir(connection_spec_files=[], connection_template_yamls=[])
+ )
thread.start()
threads.append(thread)
diff --git a/src/promptflow/tests/test_configs/flows/python_tool_with_multiple_image_nodes/flow.dag.yaml b/src/promptflow/tests/test_configs/flows/python_tool_with_multiple_image_nodes/flow.dag.yaml
index 971906fa51f..806c5a0c39f 100644
--- a/src/promptflow/tests/test_configs/flows/python_tool_with_multiple_image_nodes/flow.dag.yaml
+++ b/src/promptflow/tests/test_configs/flows/python_tool_with_multiple_image_nodes/flow.dag.yaml
@@ -2,6 +2,12 @@ inputs:
image:
type: image
default: logo.jpg
+ image_name:
+ type: string
+ default: Microsoft's logo
+ logo_content:
+ type: string
+ default: Microsoft and four squares
outputs:
output:
type: image
@@ -14,10 +20,12 @@ nodes:
path: python_with_image.py
inputs:
image: ${inputs.image}
+ image_name: ${inputs.image_name}
- name: python_node_2
type: python
source:
type: code
- path: python_with_image.py
+ path: python_node_2.py
inputs:
- image: ${python_node.output}
+ image_dict: ${python_node.output}
+ logo_content: ${inputs.logo_content}
diff --git a/src/promptflow/tests/test_configs/flows/python_tool_with_multiple_image_nodes/python_node_2.py b/src/promptflow/tests/test_configs/flows/python_tool_with_multiple_image_nodes/python_node_2.py
new file mode 100644
index 00000000000..68791f1c419
--- /dev/null
+++ b/src/promptflow/tests/test_configs/flows/python_tool_with_multiple_image_nodes/python_node_2.py
@@ -0,0 +1,9 @@
+from promptflow.contracts.multimedia import Image
+from promptflow import tool
+
+
+@tool
+def python_with_image(image_dict: dict, logo_content: str) -> Image:
+ image_dict["image_list2"] = [image_dict["image"], image_dict["image"]]
+ image_dict["logo_content"] = logo_content
+ return image_dict
diff --git a/src/promptflow/tests/test_configs/flows/python_tool_with_multiple_image_nodes/python_with_image.py b/src/promptflow/tests/test_configs/flows/python_tool_with_multiple_image_nodes/python_with_image.py
index 3b0770ebfd6..bd0a3fb7072 100644
--- a/src/promptflow/tests/test_configs/flows/python_tool_with_multiple_image_nodes/python_with_image.py
+++ b/src/promptflow/tests/test_configs/flows/python_tool_with_multiple_image_nodes/python_with_image.py
@@ -3,5 +3,5 @@
@tool
-def python_with_image(image: Image) -> Image:
- return image
+def python_with_image(image: Image, image_name: str) -> Image:
+ return {"image": image, "image_name": image_name, "image_list": [image, image]}
diff --git a/src/promptflow/tests/test_configs/flows/sample_flow_with_functions/flow.dag.yaml b/src/promptflow/tests/test_configs/flows/sample_flow_with_functions/flow.dag.yaml
new file mode 100644
index 00000000000..44691909765
--- /dev/null
+++ b/src/promptflow/tests/test_configs/flows/sample_flow_with_functions/flow.dag.yaml
@@ -0,0 +1,104 @@
+id: use_functions_with_chat_models
+name: Use Functions with Chat Models
+inputs:
+ chat_history:
+ type: list
+ default:
+ - inputs:
+ question: What is the weather like in Boston?
+ outputs:
+ answer: '{"forecast":["sunny","windy"],"location":"Boston","temperature":"72","unit":"fahrenheit"}'
+ llm_output:
+ content: null
+ function_call:
+ name: get_current_weather
+ arguments: |-
+ {
+ "location": "Boston"
+ }
+ role: assistant
+ is_chat_input: false
+ question:
+ type: string
+ default: How about London next week?
+ is_chat_input: true
+outputs:
+ answer:
+ type: string
+ reference: ${run_function.output}
+ is_chat_output: true
+ llm_output:
+ type: object
+ reference: ${use_functions_with_chat_models.output}
+nodes:
+- name: run_function
+ type: python
+ source:
+ type: code
+ path: run_function.py
+ inputs:
+ response_message: ${use_functions_with_chat_models.output}
+ use_variants: false
+- name: use_functions_with_chat_models
+ type: llm
+ source:
+ type: code
+ path: use_functions_with_chat_models.jinja2
+ inputs:
+ deployment_name: gpt-35-turbo
+ temperature: 0.7
+ top_p: 1
+ stop: ""
+ max_tokens: 256
+ presence_penalty: 0
+ frequency_penalty: 0
+ logit_bias: ""
+ functions:
+ - name: get_current_weather
+ description: Get the current weather in a given location
+ parameters:
+ type: object
+ properties:
+ location:
+ type: string
+ description: The city and state, e.g. San Francisco, CA
+ unit:
+ type: string
+ enum:
+ - celsius
+ - fahrenheit
+ required:
+ - location
+ - name: get_n_day_weather_forecast
+ description: Get an N-day weather forecast
+ parameters:
+ type: object
+ properties:
+ location:
+ type: string
+ description: The city and state, e.g. San Francisco, CA
+ format:
+ type: string
+ enum:
+ - celsius
+ - fahrenheit
+ description: The temperature unit to use. Infer this from the users location.
+ num_days:
+ type: integer
+ description: The number of days to forecast
+ required:
+ - location
+ - format
+ - num_days
+ function_call:
+ name: get_current_weather
+ chat_history: ${inputs.chat_history}
+ question: ${inputs.question}
+ provider: AzureOpenAI
+ connection: azure_open_ai_connection
+ api: chat
+ module: promptflow.tools.aoai
+ use_variants: false
+node_variants: {}
+environment:
+ python_requirements_txt: requirements.txt
diff --git a/src/promptflow/tests/test_configs/flows/sample_flow_with_functions/run_function.py b/src/promptflow/tests/test_configs/flows/sample_flow_with_functions/run_function.py
new file mode 100644
index 00000000000..d1a97198b28
--- /dev/null
+++ b/src/promptflow/tests/test_configs/flows/sample_flow_with_functions/run_function.py
@@ -0,0 +1,41 @@
+from promptflow import tool
+import json
+
+
+def get_current_weather(location, unit="fahrenheit"):
+ """Get the current weather in a given location"""
+ weather_info = {
+ "location": location,
+ "temperature": "72",
+ "unit": unit,
+ "forecast": ["sunny", "windy"],
+ }
+ return weather_info
+
+
+def get_n_day_weather_forecast(location, format, num_days):
+ """Get next num_days weather in a given location"""
+ weather_info = {
+ "location": location,
+ "temperature": "60",
+ "format": format,
+ "forecast": ["rainy"],
+ "num_days": num_days,
+ }
+ return weather_info
+
+
+@tool
+def run_function(response_message: dict) -> str:
+ if "function_call" in response_message:
+ function_name = response_message["function_call"]["name"]
+ function_args = json.loads(response_message["function_call"]["arguments"])
+ print(function_args)
+ result = globals()[function_name](**function_args)
+ else:
+ print("No function call")
+ if isinstance(response_message, dict):
+ result = response_message["content"]
+ else:
+ result = response_message
+ return result
diff --git a/src/promptflow/tests/test_configs/flows/sample_flow_with_functions/use_functions_with_chat_models.jinja2 b/src/promptflow/tests/test_configs/flows/sample_flow_with_functions/use_functions_with_chat_models.jinja2
new file mode 100644
index 00000000000..05b4b43a2ac
--- /dev/null
+++ b/src/promptflow/tests/test_configs/flows/sample_flow_with_functions/use_functions_with_chat_models.jinja2
@@ -0,0 +1,27 @@
+system:
+Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.
+
+{% for item in chat_history %}
+user:
+{{item.inputs.question}}
+
+{% if 'function_call' in item.outputs.llm_output %}
+assistant:
+Function generation requested, function = {{item.outputs.llm_output.function_call.name}}, args = {{item.outputs.llm_output.function_call.arguments}}
+
+function:
+name:
+{{item.outputs.llm_output.function_call.name}}
+content:
+{{item.outputs.answer}}
+
+{% else %}
+assistant:
+{{item.outputs.llm_output}}}}
+
+{% endif %}}
+
+{% endfor %}
+
+user:
+{{question}}
\ No newline at end of file