Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add ChangeDetectionTask #2422

Draft
wants to merge 5 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions tests/conf/oscd.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
model:
class_path: ChangeDetectionTask
init_args:
loss: 'ce'
model: 'unet'
backbone: 'resnet18'
in_channels: 13
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If stacking the channels should this be 2 * 13?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We are no longer stacking channels, we are making all time series datasets (including change detection) into B x T x C x H x W

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

OK and it is not necessary to config T?

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

in_channels is multiplied by 2 in configure_models when initializing Unet.

num_classes: 2
ignore_index: 0
data:
class_path: OSCDDataModule
init_args:
batch_size: 2
patch_size: 16
val_split_pct: 0.5
dict_kwargs:
root: 'tests/data/oscd'
206 changes: 206 additions & 0 deletions tests/trainers/test_change.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,206 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

import os
from pathlib import Path
from typing import Any, cast

import pytest
import segmentation_models_pytorch as smp
import timm
import torch
import torch.nn as nn
from lightning.pytorch import Trainer
from pytest import MonkeyPatch
from torch.nn.modules import Module
from torchvision.models._api import WeightsEnum

from torchgeo.datamodules import MisconfigurationException, SEN12MSDataModule
from torchgeo.datasets import RGBBandsMissingError
from torchgeo.main import main
from torchgeo.models import ResNet18_Weights
from torchgeo.trainers import ChangeDetectionTask


class ChangeDetectionTestModel(Module):
def __init__(self, in_channels: int = 3, classes: int = 3, **kwargs: Any) -> None:
super().__init__()
self.conv1 = nn.Conv2d(
in_channels=in_channels, out_channels=classes, kernel_size=1, padding=0
)

def forward(self, x: torch.Tensor) -> torch.Tensor:
return cast(torch.Tensor, self.conv1(x))


def create_model(**kwargs: Any) -> Module:
return ChangeDetectionTestModel(**kwargs)


def plot(*args: Any, **kwargs: Any) -> None:
return None


def plot_missing_bands(*args: Any, **kwargs: Any) -> None:
raise RGBBandsMissingError()


class TestChangeDetectionTask:
@pytest.mark.parametrize('name', ['oscd'])
def test_trainer(
self, monkeypatch: MonkeyPatch, name: str, fast_dev_run: bool
) -> None:
config = os.path.join('tests', 'conf', name + '.yaml')

monkeypatch.setattr(smp, 'Unet', create_model)
monkeypatch.setattr(smp, 'DeepLabV3Plus', create_model)

args = [
'--config',
config,
'--trainer.accelerator',
'cpu',
'--trainer.fast_dev_run',
str(fast_dev_run),
'--trainer.max_epochs',
'1',
'--trainer.log_every_n_steps',
'1',
]

main(['fit', *args])
try:
main(['test', *args])
except MisconfigurationException:
pass
try:
main(['predict', *args])
except MisconfigurationException:
pass

@pytest.fixture
def weights(self) -> WeightsEnum:
return ResNet18_Weights.SENTINEL2_ALL_MOCO

@pytest.fixture
def mocked_weights(
self,
tmp_path: Path,
monkeypatch: MonkeyPatch,
weights: WeightsEnum,
load_state_dict_from_url: None,
) -> WeightsEnum:
path = tmp_path / f'{weights}.pth'
model = timm.create_model(
weights.meta['model'], in_chans=weights.meta['in_chans']
)
torch.save(model.state_dict(), path)
try:
monkeypatch.setattr(weights.value, 'url', str(path))
except AttributeError:
monkeypatch.setattr(weights, 'url', str(path))
return weights

def test_weight_file(self, checkpoint: str) -> None:
ChangeDetectionTask(backbone='resnet18', weights=checkpoint, num_classes=6)

def test_weight_enum(self, mocked_weights: WeightsEnum) -> None:
ChangeDetectionTask(
backbone=mocked_weights.meta['model'],
weights=mocked_weights,
in_channels=mocked_weights.meta['in_chans'],
)

def test_weight_str(self, mocked_weights: WeightsEnum) -> None:
ChangeDetectionTask(
backbone=mocked_weights.meta['model'],
weights=str(mocked_weights),
in_channels=mocked_weights.meta['in_chans'],
)

@pytest.mark.slow
def test_weight_enum_download(self, weights: WeightsEnum) -> None:
ChangeDetectionTask(
backbone=weights.meta['model'],
weights=weights,
in_channels=weights.meta['in_chans'],
)

@pytest.mark.slow
def test_weight_str_download(self, weights: WeightsEnum) -> None:
ChangeDetectionTask(
backbone=weights.meta['model'],
weights=str(weights),
in_channels=weights.meta['in_chans'],
)

def test_invalid_model(self) -> None:
match = "Model type 'invalid_model' is not valid."
with pytest.raises(ValueError, match=match):
ChangeDetectionTask(model='invalid_model')

def test_invalid_loss(self) -> None:
match = "Loss type 'invalid_loss' is not valid."
with pytest.raises(ValueError, match=match):
ChangeDetectionTask(loss='invalid_loss')

def test_no_plot_method(self, monkeypatch: MonkeyPatch, fast_dev_run: bool) -> None:
monkeypatch.setattr(SEN12MSDataModule, 'plot', plot)
datamodule = SEN12MSDataModule(
root='tests/data/sen12ms', batch_size=1, num_workers=0
)
model = ChangeDetectionTask(backbone='resnet18', in_channels=15, num_classes=6)
trainer = Trainer(
accelerator='cpu',
fast_dev_run=fast_dev_run,
log_every_n_steps=1,
max_epochs=1,
)
trainer.validate(model=model, datamodule=datamodule)

def test_no_rgb(self, monkeypatch: MonkeyPatch, fast_dev_run: bool) -> None:
monkeypatch.setattr(SEN12MSDataModule, 'plot', plot_missing_bands)
datamodule = SEN12MSDataModule(
root='tests/data/sen12ms', batch_size=1, num_workers=0
)
model = ChangeDetectionTask(backbone='resnet18', in_channels=15, num_classes=6)
trainer = Trainer(
accelerator='cpu',
fast_dev_run=fast_dev_run,
log_every_n_steps=1,
max_epochs=1,
)
trainer.validate(model=model, datamodule=datamodule)

@pytest.mark.parametrize('model_name', ['unet'])
@pytest.mark.parametrize(
'backbone', ['resnet18', 'mobilenet_v2', 'efficientnet-b0']
)
def test_freeze_backbone(self, model_name: str, backbone: str) -> None:
model = ChangeDetectionTask(
model=model_name, backbone=backbone, freeze_backbone=True
)
assert all(
[param.requires_grad is False for param in model.model.encoder.parameters()]
)
assert all([param.requires_grad for param in model.model.decoder.parameters()])
assert all(
[
param.requires_grad
for param in model.model.segmentation_head.parameters()
]
)

@pytest.mark.parametrize('model_name', ['unet'])
def test_freeze_decoder(self, model_name: str) -> None:
model = ChangeDetectionTask(model=model_name, freeze_decoder=True)
assert all(
[param.requires_grad is False for param in model.model.decoder.parameters()]
)
assert all([param.requires_grad for param in model.model.encoder.parameters()])
assert all(
[
param.requires_grad
for param in model.model.segmentation_head.parameters()
]
)
8 changes: 5 additions & 3 deletions torchgeo/datamodules/oscd.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,9 +86,11 @@ def __init__(
self.std = torch.tensor([STD[b] for b in self.bands])

self.aug = AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std),
_RandomNCrop(self.patch_size, batch_size),
data_keys=['image1', 'image2', 'mask'],
K.VideoSequential(
K.Normalize(mean=self.mean, std=self.std),
_RandomNCrop(self.patch_size, batch_size),
),
data_keys=['image', 'mask'],
)

def setup(self, stage: str) -> None:
Expand Down
6 changes: 4 additions & 2 deletions torchgeo/datasets/oscd.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,7 +150,8 @@ def __getitem__(self, index: int) -> dict[str, Tensor]:
image1 = self._load_image(files['images1'])
image2 = self._load_image(files['images2'])
mask = self._load_target(str(files['mask']))
sample = {'image1': image1, 'image2': image2, 'mask': mask}
image = torch.stack(tensors=[image1, image2], dim=0)
sample = {'image': image, 'mask': mask}

if self.transforms is not None:
sample = self.transforms(sample)
Expand All @@ -169,7 +170,8 @@ def _load_files(self) -> list[dict[str, str | Sequence[str]]]:
regions = []
labels_root = os.path.join(
self.root,
f'Onera Satellite Change Detection dataset - {self.split.capitalize()} '
f'Onera Satellite Change Detection dataset - {
self.split.capitalize()} '
+ 'Labels',
)
images_root = os.path.join(
Expand Down
2 changes: 2 additions & 0 deletions torchgeo/trainers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@

from .base import BaseTask
from .byol import BYOLTask
from .change import ChangeDetectionTask
from .classification import ClassificationTask, MultiLabelClassificationTask
from .detection import ObjectDetectionTask
from .iobench import IOBenchTask
Expand All @@ -15,6 +16,7 @@

__all__ = (
# Supervised
'ChangeDetectionTask',
'ClassificationTask',
'MultiLabelClassificationTask',
'ObjectDetectionTask',
Expand Down
Loading