-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathindex.html
370 lines (348 loc) · 21 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
<!doctype html>
<html>
<head>
<title>Persuasion Strategies in Advertisements</title>
<script src="https://cdn.anychart.com/js/8.0.1/anychart-core.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.9.4/Chart.js"></script>
<script src="https://cdn.anychart.com/js/8.0.1/anychart-pie.min.js"></script>
<meta charset="utf-8" name="viewport" content="width=device-width, initial-scale=1">
<link href="css/frame.css" media="screen" rel="stylesheet" type="text/css" />
<link href="css/controls.css" media="screen" rel="stylesheet" type="text/css" />
<link href="css/custom.css" media="screen" rel="stylesheet" type="text/css" />
<link href='https://fonts.googleapis.com/css?family=Open+Sans:400,700' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300,700' rel='stylesheet' type='text/css'>
<link href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:400,700" rel="stylesheet">
<style>
.menu-index {
color: rgb(255, 255, 255) !important;
opacity: 1 !important;
font-weight: 700 !important;
}
</style>
</head>
<body>
<div class="menu-container">
<div class="menu">
<div class="menu-table flex-row-space-between">
<div class="logo flex-row-center">
<a href="index.html">Persuasion Strategies in Advertisements</a>
</div>
<a class="menu-button" tabindex="0" href="javascript:void(0)">
<img src="img/menu.png">
</a>
<div class="menu-items flex-row-center flex-item">
<a href="#Introduction" class="menu-index">Introduction</a>
<!-- <a href="#Annotation Example" class="menu-widget">Annotation Example</a> -->
<a href="#Dataset" class="menu-embedding">Explore Dataset</a>
<a href="#Collaborators" class="menu-embedding">Collaborators</a>
<a href="#Contact" class="menu-embedding">Contact</a>
<a href="#terms-of-use" class="menu-embedding">Terms of Use</a>
<a href="https://github.com/midas-research/persuasion-advertisements/tree/Persuasion-Prediction-Model">GitHub</a>
</div>
</div>
</div>
</div>
<div class="content-container">
<div class="content">
<div class="content-table flex-column">
<!-------------------------------------------------------------------------------------------->
<!-- Start Intro-->
<!-- <div class="flex-row">
<div class="flex-item flex-column">
<img class="image" src="img/dummay-img.png">
</div>
<div class="flex-item flex-column">
<p class="text text-large">
<a target="_blank" href="javascript:void(0)">Author 1</a>, author1 (at) cs.cmu.edu<br>
<a target="_blank" href="javascript:void(0)">Author 2</a>, author2 (at) cs.cmu.edu<br>
<a target="_blank" href="javascript:void(0)">Author 3</a>, author3 (at) cs.cmu.edu<br>
<a target="_blank" href="javascript:void(0)">Laboratory</a><br>
<a target="_blank" href="javascript:void(0)">Institute</a><br>
<a target="_blank" href="javascript:void(0)">Organization</a><br>
<a target="_blank" href="javascript:void(0)">Street Address</a><br>
<a target="_blank" href="javascript:void(0)">City, State, Country</a>
</p>
</div>
</div>
<div class="flex-row">
<div class="flex-item flex-column">
<p class="text add-top-margin">
Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel
augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget
condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit
vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae
sapien ut libero venenatis faucibus. Nullam quis ante.
</p>
</div>
</div> -->
<!--End Intro -->
<!-------------------------------------------------------------------------------------------->
<!--Start Text Only-->
<div class="flex-row">
<div class="flex-item flex-column">
<h2 class="add-top-margin" id="Introduction">Introduction</h2>
<!-- <h2 class="add-top-margin" id="Annotation Example">Annotation Example </h2> -->
<hr>
<p class="text text-center graph-title">
Persuasion Strategies in Advertisements
</p>
<!-- <embed src="flowchart.pdf" width="800px" height="345px" /> -->
<img class="image center max-width-700-new add-top-margin-small" src="img/FlowChart_New.png">
</div>
</div>
<div class="flex-row">
<div class="flex-item flex-column">
<!-- <h2 class="add-top-margin" id="Introduction">Introduction</h2> -->
<hr>
<p class="text">
Modeling what makes an advertisement persuasive, i.e., eliciting the desired response from consumer, is critical to the study of propaganda, social psychology, and marketing. Despite its importance, computational modeling of persuasion in computer vision is still in its infancy, primarily due to the lack of benchmark datasets that can provide persuasion-strategy labels associated with ads. Motivated by persuasion literature in social psychology and marketing, we introduce an extensive vocabulary of persuasion strategies and build the first ad image corpus annotated with persuasion strategies. We then formulate the task of persuasion strategy prediction with multi-modal learning, where we design a multi-task attention fusion model that can leverage other ad-understanding tasks to predict persuasion strategies. Further, we conduct a real-world case study on 1600 advertising campaigns of 30 Fortune-500 companies where we use our model’s predictions to analyze which strategies work with different demographics (age and gender). The dataset also provides image segmentation masks, which labels persuasion strategies in the corresponding ad images on the test split. We publicly release our code and dataset.
</p>
</div>
</div>
<!--End Text with Buttons-->
<!-------------------------------------------------------------------------------------------->
<!--Start Text with Images and Image buttons-->
<div class="flex-row">
<div class="flex-item flex-column">
<!-- <h2 class="add-top-margin" id="Annotation Example">Annotation Example </h2>
<hr> -->
<p class="text text-center graph-title">
Different Advertisements with Different Persuasive Strategies Selling Same Product
</p>
<img class="image center max-width-800 add-top-margin-small" src="img/description_new.png">
</div>
</div>
<div class="flex-row">
</div>
<!--End Text with Images and Image buttons-->
<!-------------------------------------------------------------------------------------------->
<!-------------------------------------------------------------------------------------------->
<!--Start Text with Centered Image and Table-->
<div class="flex-row">
<div class="flex-item flex-column">
<h2 class="add-top-margin" id="Dataset">Explore Dataset</h2>
<hr>
<h3>
Distribution of Persuasion Strategies
</h3>
<canvas id="myChart" style="width:100%;max-width:700px"></canvas>
<script src="js/piechart.js"></script>
<h3>
Sample Segmented Images
</h3>
<br>
<div class="flex-row-space-between">
<div class="flex-item flex-column">
<script src="https://scripts.sirv.com/sirvjs/v3/sirv.js"></script>
<div class="figure">
<img class="Sirv image-main" src="https://demo.sirv.com/hc/Bose-700-a.jpg?w=10&colorize.color=efefef"
data-src="img/Image1.png">
<img class="Sirv image-hover" data-src="img/Image1_hover.png">
</div>
</div>
<div class="flex-item flex-column">
<div class="figure">
<img class="Sirv image-main" src="https://demo.sirv.com/hc/Bose-700-a.jpg?w=10&colorize.color=efefef"
data-src="img/Image2.png">
<img class="Sirv image-hover" data-src="img/Image2_hover.png">
</div>
</div>
</div>
<!-- <div class="flex-row">
<div class="flex-item flex-column">
<div class="figure2" >
<img class="Sirv image-main image center" src="https://demo.sirv.com/hc/Bose-700-a.jpg?w=10&colorize.color=efefef" data-src="img/Image3.png">
<img class="Sirv image-hover image center" data-src="img/Image3_hover.png">
</div>
</div>
</div> -->
<h3>Pitt Ads Dataset</h3>
<p>Pitt ads dataset contains an image dataset of 64,832 image ads, and a video dataset of 3,477 ads. This data contains annotations encompassing the topic and sentiment of the ads, questions and answers describing what actions the viewer is prompted to take and the reasoning that the ad presents to persuade the viewer. The Pitt Ads dataset can be donwloaded from <a href="https://people.cs.pitt.edu/~kovashka/ads/">here</a>.</p>
<p class="text">
<h3>Get the Dataset</h3>
<ul>
<!-- <li><a href="dataset_distribution.html">Dataset Statistics</a></li> -->
<li><a href="https://drive.google.com/drive/folders/1UJ-lQHg0IW_9n4zvp5PJanmPaqGmsw0u">Images</a></li>
<li><a href="https://github.com/midas-research/persuasion-advertisements/blob/Persuasion-Prediction-Model/Persuasion-Modelling-Code/data/annotations_file_train_set.json">Train Image Annotations</a></li>
<li><a href="https://github.com/midas-research/persuasion-advertisements/blob/Persuasion-Prediction-Model/Persuasion-Modelling-Code/data/annotations_test_set.json">Test Image Annotations</a></li>
<li><a href="CategoryWisePage.html">Explore the Dataset with Category Wise Examples</a></li>
<!-- <li><a href="downloads/segmentation.xml" download="segmentation.xml">Segmentation Masks</a></li> -->
<li><a href="https://github.com/midas-research/persuasion-advertisements/blob/Persuasion-Prediction-Model/Persuasion-Modelling-Code/segmentation-masks/AnnotationImageSegmentation_Batch_5_.xml">Segmentation Masks</a></li>
<li><a href="https://github.com/midas-research/persuasion-advertisements/tree/Persuasion-Prediction-Model">Model</a></li>
<li><a href="https://arxiv.org/abs/2208.09626">Read the Paper</a></li>
</ul>
</p>
<h3>Dataset Statistics</h3>
<div class="custom-table-container center add-top-margin-small">
<table class="custom-table">
<thead>
<tr class="bg-color-gray">
<th>Persuasive Strategies</th>
<th class="text-center">No. of Class Sample</th>
<th class="text-center">Definition</th>
<!-- <th class="text-center">Representative Prior Work</th> -->
</tr>
</thead>
<tbody>
<tr>
<td>Anchoring and comparison</td>
<td class="text-center">48</td>
<td class="text-center"> A product’s value is strongly influenced by what <br> it is compared to.</td>
</tr>
<tr>
<td>Reciprocity</td>
<td class="text-center">186</td>
<td class="text-center"> By obligating the recipient of an act to repayment in
<br> the future, the rule for reciprocation begets a sense
<br> of future obligation, often unequal in nature</td>
</tr>
<tr>
<td>Concreteness</td>
<td class="text-center">1007</td>
<td class="text-center">Using concrete facts, evidence to appeal to the <br> logic of consumers</td>
</tr>
<tr>
<td>Social Impact</td>
<td class="text-center">103</td>
<td class="text-center">Emphasizes the importance or bigger impact <br> of a product</td>
</tr>
<tr>
<td>Guarantees</td>
<td class="text-center">45</td>
<td class="text-center">Guarantees reduce risk and people try out <br> such products more often.</td>
</tr>
<tr>
<td>Trustworthiness</td>
<td class="text-center">157</td>
<td class="text-center">Trustworthiness indicated honesty and integrity of <br> the source through tropes like years of experience, <br> “trusted brand”, numbers and statistics</td>
</tr>
<tr>
<td>Authority</td>
<td class="text-center">65</td>
<td class="text-center">Authority indicated through expertise, source of power, <br>third-party approval, credentials, and awards</td>
</tr>
<tr>
<td>Customer Reviews and Stories</td>
<td class="text-center">28</td>
<td class="text-center">Informational influence by accepting information <br> obtained from others as evidence about <br> reality, e.g., customer reviews and ratings</td>
</tr>
<tr>
<td>Social Identity</td>
<td class="text-center">126</td>
<td class="text-center">Normative influence, which involves conformity with the positive <br> expectations of “another”, who could be “another person, a <br> group, or one’s self” (includes self-persuasion, fleeting attraction, <br> alter-casting, and exclusivity)</td>
</tr>
<tr>
<td>Scarcity</td>
<td class="text-center">64</td>
<td class="text-center">People assign more value to opportunities when they are less <br>available. This happens due to psychological reactance of losing <br> freedom of choice when things are less available or they use <br> availability as a cognitive shortcut for gauging quality.</td>
</tr>
<tr>
<td>Foot in the Door</td>
<td class="text-center">18</td>
<td class="text-center">Starting with small requests followed by larger requests to <br> facilitate compliance while maintaining cognitive coherence.</td>
</tr>
<tr>
<td>Reverse Psychology</td>
<td class="text-center">15</td>
<td class="text-center">Overcoming resistance (reactance) by postponing consequences <br> to the future, by focusing resistance on realistic concerns, by <br> forewarning that a message will be coming, by acknowledging <br> resistance, by raising self-esteem and a sense of efficacy.</td>
</tr>
<tr>
<td>Anthropomorphism</td>
<td class="text-center">37</td>
<td class="text-center">When a brand or product is seen as human-like, people will <br>like it more and feel closer to it.</td>
</tr>
<tr>
<td>Unclear</td>
<td class="text-center">148</td>
<td class="text-center">If the ad strategy is unclear or it is not in English</td>
</tr>
<tr>
<td>Emotion</td>
<td class="text-center">238</td>
<td class="text-center">Aesthetics, feeling and other non-cognitively demanding <br>features used for persuading consumers</td>
</tr>
<tr>
<td>Amazed</td>
<td class="text-center">141</td>
<td class="text-center">Feeling surprised, astonished, awed, fascinated, intrigued</td>
</tr>
<tr>
<td>Fashionable</td>
<td class="text-center">443</td>
<td class="text-center">Trendy, elegant, beautiful, attractive, sexy</td>
</tr>
<tr>
<td>Feminine</td>
<td class="text-center">173</td>
<td class="text-center">Womanly, girlish</td>
</tr>
<tr>
<td>Active</td>
<td class="text-center">256</td>
<td class="text-center">Feeling energetic, adventurous, vibrant, enthusiastic, playful</td>
</tr>
<tr>
<td>Eager</td>
<td class="text-center">540</td>
<td class="text-center">Feeling of hunger, thirsty, passion</td>
</tr>
<tr>
<td>Cheerful</td>
<td class="text-center">223</td>
<td class="text-center">Feeling delighted, happy, joyful, carefree, optimistic</td>
</tr>
<tr>
<td>Creative</td>
<td class="text-center">402</td>
<td class="text-center">Inventive, productive</td>
</tr>
</tfoot>
</table>
</div>
</div>
</div>
<!--Start Text around Image-->
<div class="flex-row">
<div class="flex-item flex-column">
<h2 class="add-top-margin" id="Collaborators">Collaborators </h2>
<hr>
<p>
<img class="image center image-wrap-text max-width-400" src="img/Logos.png">
<span style="display: inline-block; padding-top: 6em;">
1. Indraprastha Institute of Information Technology Delhi<br>
2. Adobe Media & Data Science Research<br>
3. Georgia Institute of Technology<br>
4. The State University of New York, Buffalo<br>
</span>
</p>
</div>
</div>
<div class="flex-row">
<div class="flex-item flex-column">
<h2 class="add-top-margin" id="Contact">Contact </h2>
<hr>
<p class="text">
For any questions, issues, concerns, and comments, please email <b>Yaman Kumar Singla</b> at
<b>[email protected]</b>
</p>
</div>
</div>
<div class="flex-row">
<div class="flex-item flex-column">
<h2 class="add-top-margin" id="terms-of-use">Terms of Use </h2>
<hr>
<p class="text">
If you use our data, please cite the following papers:<br>
<br>
1. Singla, Yaman Kumar, Rajat Jha, Arunim Gupta, Milan Aggarwal, Aditya Garg, Ayush Bhardwaj, Tushar, Balaji Krishnamurthy, Rajiv Ratn Shah, and Changyou Chen. "Persuasion Strategies in Advertisements: Dataset, Modeling, and Baselines." arXiv preprint arXiv:2208.09626 (2022). <br>
2. Hussain, Zaeem, Mingda Zhang, Xiaozhong Zhang, Keren Ye, Christopher Thomas, Zuha Agha, Nathan Ong, and Adriana Kovashka. "Automatic understanding of image and video advertisements."
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1705-1715. 2017. <br>
</p>
</div>
</div>
<!--End Text Only-->
</div>
</div>
</div>
</body>
</html>