-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbackSPIN.py
932 lines (832 loc) · 36.5 KB
/
backSPIN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
#!/usr/bin/env python
# Copyright (c) 2015, Amit Zeisel, Gioele La Manno and Sten Linnarsson
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# This .py file can be used as a library or a command-line version of BackSPIN,
# This version of BackSPIN was implemented by Gioele La Manno.
# The BackSPIN biclustering algorithm was developed by Amit Zeisel and is described
# in Zeisel et al. Cell types in the mouse cortex and hippocampus revealed by
# single-cell RNA-seq Science 2015 (PMID: 25700174, doi: 10.1126/science.aaa1934).
#
# Building using pyinstaller:
# pyinstaller -F backSPIN.py -n backspin-mac-64-bit
#
from __future__ import division, print_function, absolute_import
from numpy import *
import getopt
import sys
import os
from Cef_tools import CEF_obj
class Results:
pass
def calc_loccenter(x, lin_log_flag):
M,N = x.shape
if N==1 and M>1:
x = x.T
M,N = x.shape
loc_center = zeros(M)
min_x = x.min(1)
x = x - min_x[:,newaxis]
for i in range(M):
ind = where(x[i,:]>0)[0]
if len(ind) != 0:
if lin_log_flag == 1:
w = x[i,ind]/sum(x[i,ind], 0)
else:
w = (2**x[i,ind])/sum(2**x[i,ind], 0)
loc_center[i] = sum(w*ind, 0)
else:
loc_center[i] = 0
return loc_center
def _calc_weights_matrix(mat_size, wid):
'''Calculate Weight Matrix
Parameters
----------
mat_size: int
dimension of the distance matrix
wid: int
parameter that controls the width of the neighbourood
Returns
-------
weights_mat: 2-D array
the weights matrix to multiply with the distance matrix
'''
#calculate square distance from the diagonal
sqd = (arange(1,mat_size+1)[newaxis,:] - arange(1,mat_size+1)[:,newaxis])**2
#make the distance relative to the mat_size
norm_sqd = sqd/wid
#evaluate a normal pdf
weights_mat = exp(-norm_sqd/mat_size)
#avoid useless precision that would slow down the matrix multiplication
weights_mat -= 1e-6
weights_mat[weights_mat<0] = 0
#normalize row and column sum
weights_mat /= sum(weights_mat,0)[newaxis,:]
weights_mat /= sum(weights_mat,1)[:, newaxis]
#fix asimmetries
weights_mat = (weights_mat + weights_mat.T) / 2.
return weights_mat
def _sort_neighbourhood( dist_matrix, wid ):
'''Perform a single iteration of SPIN
Parameters
----------
dist_matrix: 2-D array
distance matrix
wid: int
parameter that controls the width of the neighbourood
Returns
-------
sorted_ind: 1-D array
indexes that order the matrix
'''
assert wid > 0, 'Parameter wid < 0 is not allowed'
mat_size = dist_matrix.shape[0]
#assert mat_size>2, 'Matrix is too small to be sorted'
weights_mat = _calc_weights_matrix(mat_size, wid)
#Calculate the dot product (can be very slow for big mat_size)
mismatch_score = dot(dist_matrix, weights_mat)
energy, target_permutation = mismatch_score.min(1), mismatch_score.argmin(1)
max_energy = max(energy)
#Avoid points that have the same target_permutation value
sort_score = target_permutation - 0.1 * sign( (mat_size/2 - target_permutation) ) * energy/max_energy
#sort_score = target_permutation - 0.1 * sign( 1-2*(int(1000*energy/max_energy) % 2) ) * energy/max_energy # Alternative
# Sorting the matrix
sorted_ind = sort_score.argsort(0)[::-1]
return sorted_ind
def sort_mat_by_neighborhood(dist_matrix, wid, times):
'''Perform several iterations of SPIN using a fixed wid parameter
Parameters
----------
dist_matrix: 2-D array
distance matrix
wid: int
parameter that controls the width of the neighbourood
times: int
number of repetitions
verbose: bool
print the progress
Returns
-------
indexes: 1-D array
indexes that order the matrix
'''
# original indexes
indexes = arange(dist_matrix.shape[0])
for i in range(times):
#sort the sitance matrix according the previous iteration
tmpmat = dist_matrix[indexes,:]
tmpmat = tmpmat[:,indexes]
sorted_ind = _sort_neighbourhood(tmpmat, wid);
#resort the original indexes
indexes = indexes[sorted_ind]
return indexes
def _generate_widlist(data, axis=1, step=0.6):
'''Generate a list of wid parameters to execute sort_mat_by_neighborhood
Parameters
----------
data: 2-D array
the data matrix
axis: int
the axis to take in consideration
step: float
the increment between two successive wid parameters
Returns
-------
wid_list: list of int
list of wid parameters to run SPIN
'''
max_wid = data.shape[axis]*0.6
new_wid = 1
wid_list = []
while new_wid < (1+step)*max_wid:
wid_list.append( new_wid )
new_wid = int(ceil( new_wid + new_wid*(step) +1))
return wid_list[::-1]
def SPIN(dt, widlist=[10,1], iters=30, axis='both', verbose=False):
"""Run the original SPIN algorithm
Parameters
----------
dt: 2-D array
the data matrix
widlist: float or list of int
If float is passed, it is used as step parameted of _generate_widlist,
and widlist is generated to run SPIN.
If list is passed it is used directly to run SPIN.
iters: int
number of repetitions for every wid in widlist
axis: int
the axis to take in consideration (must be 0, 1 or 'both')
step: float
the increment between two successive wid parameters
Returns
-------
indexes: 1-D array (if axis in [0,1]) or tuple of 1-D array (if axis = 'both')
indexes that sort the data matrix
Notes
-----
Typical usage
sorted_dt0 = SPIN(dt, iters=30, axis=0)
sorted_dt1 = SPIN(dt, iters=30, axis=1)
dt = dt[sorted_dt0,:]
dt = dt[:,sorted_dt1]
"""
IXc = arange(dt.shape[1])
IXr = arange(dt.shape[0])
assert axis in ['both', 0,1], 'axis must be 0, 1 or \'both\' '
#Sort both axis
if axis == 'both':
CCc = 1 - corrcoef(dt.T)
CCr = 1 - corrcoef(dt)
if type(widlist) != list:
widlist_r = _generate_widlist(dt, axis=0, step=widlist)
widlist_c = _generate_widlist(dt, axis=1, step=widlist)
if verbose:
print('\nSorting genes.')
print('Neighbourood=', end=""),
for wid in widlist_r:
if verbose:
print ('%i, ' % wid),
sys.stdout.flush()
INDr = sort_mat_by_neighborhood(CCr, wid, iters)
CCr = CCr[INDr,:][:,INDr]
IXr = IXr[INDr]
if verbose:
print ('\nSorting cells.')
print ('Neighbourood=',end="")
for wid in widlist_c:
if verbose:
print ('%i, ' % wid),
sys.stdout.flush()
INDc = sort_mat_by_neighborhood(CCc, wid, iters)
CCc = CCc[:,INDc][INDc,:]
IXc= IXc[INDc]
return IXr, IXc
#Sort rows
elif axis == 0:
CCr = 1 - corrcoef(dt)
if type(widlist) != list:
widlist = _generate_widlist(dt, axis=0, step=widlist)
if verbose:
print ('\nSorting genes.\nNeighbourood=',end="")
for wid in widlist:
if verbose:
print ('%i, ' % wid,end="")
sys.stdout.flush()
INDr = sort_mat_by_neighborhood(CCr, wid, iters)
CCr = CCr[INDr,:][:,INDr]
IXr = IXr[INDr]
return IXr
#Sort columns
elif axis == 1:
CCc = 1 - corrcoef(dt.T)
if type(widlist) != list:
widlist = _generate_widlist(dt, axis=1, step=widlist)
if verbose:
print ('\nSorting cells.\nNeighbourood=',end="")
for wid in widlist:
if verbose:
print ('%i, ' % wid,end="")
sys.stdout.flush()
INDc = sort_mat_by_neighborhood(CCc, wid, iters)
CCc = CCc[:,INDc][INDc,:]
IXc = IXc[INDc]
return IXc
def backSPIN(data, numLevels=2, first_run_iters=10, first_run_step=0.05, runs_iters=8 ,runs_step=0.25,\
split_limit_g=2, split_limit_c=2, stop_const = 1.15, low_thrs=0.2, verbose=False):
'''Run the backSPIN algorithm
Parameters
----------
data: 2-D array
the data matrix, rows should be genes and columns single cells/samples
numLevels: int
the number of splits that will be tried
first_run_iters: float
the iterations of the preparatory SPIN
first_run_step: float
the step parameter passed to _generate_widlist for the preparatory SPIN
runs_iters: int
the iterations parameter passed to the _divide_to_2and_resort.
influences all the SPIN iterations except the first
runs_step: float
the step parameter passed to the _divide_to_2and_resort.
influences all the SPIN iterations except the first
wid: float
the wid of every iteration of the splitting and resorting
split_limit_g: int
If the number of specific genes in a subgroup is smaller than this number
splitting of that subgrup is not allowed
split_limit_c: int
If the number cells in a subgroup is smaller than this number splitting of
that subgrup is not allowed
stop_const: float
minimum score that a breaking point has to reach to be suitable for splitting
low_thrs: float
genes with average lower than this threshold are assigned to either of the
splitting group reling on genes that are higly correlated with them
Returns
-------
results: Result object
The results object contain the following attributes
genes_order: 1-D array
indexes (a permutation) sorting the genes
cells_order: 1-D array
indexes (a permutation) sorting the cells
genes_gr_level: 2-D array
for each depth level contains the cluster indexes for each gene
cells_gr_level:
for each depth level contains the cluster indexes for each cell
cells_gr_level_sc:
score of the splitting
genes_bor_level:
the border index between gene clusters
cells_bor_level:
the border index between cell clusters
Notes
-----
Typical usage
'''
assert numLevels>0, '0 is not an available depth for backSPIN, use SPIN instead'
#initialize some varaibles
genes_bor_level = [[] for i in range(numLevels)]
cells_bor_level = [[] for i in range(numLevels)]
N,M = data.shape
genes_order = arange(N)
cells_order = arange(M)
genes_gr_level = zeros((N,numLevels+1))
cells_gr_level = zeros((M,numLevels+1))
cells_gr_level_sc = zeros((M,numLevels+1))
# Do a Preparatory SPIN on cells
if verbose:
print ('\nPreparatory SPIN')
ix1 = SPIN(data, widlist=_generate_widlist(data, axis=1, step=first_run_step), iters=first_run_iters, axis=1, verbose=verbose)
cells_order = cells_order[ix1]
#For every level of depth DO:
for i in range(numLevels):
k=0 # initialize group id counter
# For every group generated at the parent level DO:
for j in range( len( set(cells_gr_level[:,i]) ) ):
# Extract the a data matrix of the genes at that level
g_settmp = nonzero(genes_gr_level[:,i]==j)[0] #indexes of genes in the level j
c_settmp = nonzero(cells_gr_level[:,i]==j)[0] #indexes of cells in the level j
datatmp = data[ ix_(genes_order[g_settmp], cells_order[c_settmp]) ]
# If we are not below the splitting limit for both genes and cells DO:
if (len(g_settmp)>split_limit_g) & (len(c_settmp)>split_limit_c):
# Split and SPINsort the two halves
if i == numLevels-1:
divided = _divide_to_2and_resort(datatmp, wid=runs_step, iters_spin=runs_iters,\
stop_const=stop_const, low_thrs=low_thrs, sort_genes=True, verbose=verbose)
else:
divided = _divide_to_2and_resort(datatmp, wid=runs_step, iters_spin=runs_iters,\
stop_const=stop_const, low_thrs=low_thrs, sort_genes=False,verbose=verbose)
# _divide_to_2and_resort retruns an empty array in gr2 if the splitting condition was not satisfied
if divided:
sorted_data_resort1, genes_resort1, cells_resort1,\
gr1, gr2, genesgr1, genesgr2, score1, score2 = divided
# Resort from the previous level
genes_order[g_settmp] = genes_order[g_settmp[genes_resort1]]
cells_order[c_settmp] = cells_order[c_settmp[cells_resort1]]
# Assign a numerical identifier to the groups
genes_gr_level[g_settmp[genesgr1],i+1] = k
genes_gr_level[g_settmp[genesgr2],i+1] = k+1
cells_gr_level[c_settmp[gr1],i+1] = k
cells_gr_level[c_settmp[gr2],i+1] = k+1
# Not really clear what sc is
cells_gr_level_sc[c_settmp[gr1],i+1] = score1
cells_gr_level_sc[c_settmp[gr2],i+1] = score2
# Augment the counter of 2 becouse two groups were generated from one
k = k+2
else:
# The split is not convenient, keep everithing the same
genes_gr_level[g_settmp,i+1] = k
# if it is the deepest level: perform gene sorting
if i == numLevels-1:
if (datatmp.shape[0] > 2 )and (datatmp.shape[1] > 2):
genes_resort1 = SPIN(datatmp, widlist=runs_step, iters=runs_iters, axis=0, verbose=verbose)
genes_order[g_settmp] = genes_order[g_settmp[genes_resort1]]
cells_gr_level[c_settmp,i+1] = k
cells_gr_level_sc[c_settmp,i+1] = cells_gr_level_sc[c_settmp,i]
# Augment of 1 becouse no new group was generated
k = k+1
else:
# Below the splitting limit: the split is not convenient, keep everithing the same
genes_gr_level[g_settmp,i+1] = k
cells_gr_level[c_settmp,i+1] = k
cells_gr_level_sc[c_settmp,i+1] = cells_gr_level_sc[c_settmp,i]
# Augment of 1 becouse no new group was generated
k = k+1
# Find boundaries
genes_bor_level[i] = r_[0, nonzero(diff(genes_gr_level[:,i+1])>0)[0]+1, data.shape[0] ]
cells_bor_level[i] = r_[0, nonzero(diff(cells_gr_level[:,i+1])>0)[0]+1, data.shape[1] ]
#dataout_sorted = data[ ix_(genes_order,cells_order) ]
results = Results()
results.genes_order = genes_order
results.cells_order = cells_order
results.genes_gr_level = genes_gr_level
results.cells_gr_level = cells_gr_level
results.cells_gr_level_sc = cells_gr_level_sc
results.genes_bor_level = genes_bor_level
results.cells_bor_level = cells_bor_level
return results
def _divide_to_2and_resort(sorted_data, wid, iters_spin=8, stop_const = 1.15, low_thrs=0.2 , sort_genes=True, verbose=False):
'''Core function of backSPIN: split the datamatrix in two and resort the two halves
Parameters
----------
sorted_data: 2-D array
the data matrix, rows should be genes and columns single cells/samples
wid: float
wid parameter to give to widlist parameter of th SPIN fucntion
stop_const: float
minimum score that a breaking point has to reach to be suitable for splitting
low_thrs: float
if the difference between the average expression of two groups is lower than threshold the algorythm
uses higly correlated gens to assign the gene to one of the two groups
verbose: bool
information about the split is printed
Returns
-------
'''
# Calculate correlation matrix for cells and genes
Rcells = corrcoef(sorted_data.T)
Rgenes = corrcoef(sorted_data)
# Look for the optimal breaking point
N = Rcells.shape[0]
score = zeros(N)
for i in range(2,N-2):
if i == 2:
tmp1 = sum( Rcells[:i,:i] )
tmp2 = sum( Rcells[i:,i:] )
score[i] = (tmp1+tmp2) / float(i**2 + (N-i)**2)
else:
tmp1 += sum(Rcells[i-1,:i]) + sum(Rcells[:i-1,i-1]);
tmp2 -= sum(Rcells[i-1:,i-1]) + sum(Rcells[i-1,i:]);
score[i] = (tmp1+tmp2) / float(i**2 + (N-i)**2)
breakp1 = argmax(score)
score1 = Rcells[:breakp1,:breakp1]
score1 = triu(score1)
score1 = mean( score1[score1 != 0] )
score2 = Rcells[breakp1:, breakp1:]
score2 = triu(score2)
score2 = mean( score2[score2 != 0] )
avg_tot = triu(Rcells)
avg_tot = mean( avg_tot[avg_tot != 0] )
# If it is convenient to break
if (max([score1,score2])/avg_tot) > stop_const:
# Divide in two groups
gr1 = arange(N)[:breakp1]
gr2 = arange(N)[breakp1:]
# and assign the genes into the two groups
mean_gr1 = sorted_data[:, gr1].mean(1)
mean_gr2 = sorted_data[:, gr2].mean(1)
concat_loccenter_gr1 = c_[ calc_loccenter(sorted_data[:,gr1], 2), calc_loccenter(sorted_data[:,gr1][...,::-1], 2) ]
concat_loccenter_gr2 = c_[ calc_loccenter(sorted_data[:,gr2], 2), calc_loccenter(sorted_data[:,gr2][...,::-1], 2) ]
center_gr1, flip_flag1 = concat_loccenter_gr1.min(1), concat_loccenter_gr1.argmin(1)
center_gr2, flip_flag2 = concat_loccenter_gr2.max(1), concat_loccenter_gr2.argmax(1)
sorted_data_tmp = array( sorted_data )
sorted_data_tmp[ix_(flip_flag1==1,gr1)] = sorted_data[ix_(flip_flag1==1,gr1)][...,::-1]
sorted_data_tmp[ix_(flip_flag2==1,gr2)] = sorted_data[ix_(flip_flag2==1,gr2)][...,::-1]
loc_center = calc_loccenter(sorted_data_tmp, 2)
imax = zeros(loc_center.shape)
imax[loc_center<=breakp1] = 1
imax[loc_center>breakp1] = 2
genesgr1 = where(imax==1)[0]
genesgr2 = where(imax==2)[0]
if size(genesgr1) == 0:
IN = argmax(mean_gr1)
genesgr1 = array([IN])
genesgr2 = setdiff1d(genesgr2, IN)
elif size(genesgr2) == 0:
IN = argmax(mean_gr2)
genesgr2 = array([IN])
genesgr1 = setdiff1d(genesgr1, IN)
if verbose:
print ('\nSplitting (%i, %i) ' % sorted_data.shape)
print ('in (%i,%i) ' % (genesgr1.shape[0],gr1.shape[0]))
print ('and (%i,%i)' % (genesgr2.shape[0],gr2.shape[0]),end="")
sys.stdout.flush()
# Data of group1
datagr1 = sorted_data[ix_(genesgr1,gr1)]
# zero center
datagr1 = datagr1 - datagr1.mean(1)[:,newaxis]
# Resort group1
if min( datagr1.shape ) > 1:
if sort_genes:
genesorder1,cellorder1 = SPIN(datagr1, widlist=wid, iters=iters_spin, axis='both', verbose=verbose)
else:
cellorder1 = SPIN(datagr1, widlist=wid, iters=iters_spin, axis=1, verbose=verbose)
genesorder1 = arange(datagr1.shape[0])
elif len(genesgr1) == 1:
genesorder1 = 0
cellorder1 = argsort( datagr1[0,:] )
elif len(gr1) == 1:
cellorder1 = 0
genesorder1 = argsort( datagr1[:,0] )
# Data of group2
datagr2 = sorted_data[ix_(genesgr2,gr2)]
# zero center
datagr2 = datagr2 - datagr2.mean(1)[:,newaxis]
# Resort group2
if min( datagr2.shape )>1:
if sort_genes:
genesorder2, cellorder2 = SPIN(datagr2, widlist=wid, iters=iters_spin, axis='both',verbose=verbose)
else:
cellorder2 = SPIN(datagr2, widlist=wid, iters=iters_spin, axis=1,verbose=verbose)
genesorder2 = arange(datagr2.shape[0])
elif len(genesgr2) == 1:
genesorder2 = 0
cellorder2 = argsort(datagr2[0,:])
elif len(gr2) == 1:
cellorder2 = 0
genesorder2 = argsort(datagr2[:,0])
# contcatenate cells and genes indexes
genes_resort1 = r_[genesgr1[genesorder1], genesgr2[genesorder2] ]
cells_resort1 = r_[gr1[cellorder1], gr2[cellorder2] ]
genesgr1 = arange(len(genesgr1))
genesgr2 = arange(len(genesgr1), len(sorted_data[:,0]))
# resort
sorted_data_resort1 = sorted_data[ix_(genes_resort1,cells_resort1)]
return sorted_data_resort1, genes_resort1, cells_resort1, gr1, gr2, genesgr1, genesgr2, score1, score2
else:
if verbose:
print('Low splitting score was : %.4f' % (max([score1,score2])/avg_tot))
return False
def fit_CV(mu, cv, fit_method='Exp', svr_gamma=0.06, x0=[0.5,0.5], verbose=False):
'''Fits a noise model (CV vs mean)
Parameters
----------
mu: 1-D array
mean of the genes (raw counts)
cv: 1-D array
coefficient of variation for each gene
fit_method: string
allowed: 'SVR', 'Exp', 'binSVR', 'binExp'
default: 'SVR'(requires scikit learn)
SVR: uses Support vector regression to fit the noise model
Exp: Parametric fit to cv = mu^(-a) + b
bin: before fitting the distribution of mean is normalized to be
uniform by downsampling and resampling.
Returns
-------
score: 1-D array
Score is the relative position with respect of the fitted curve
mu_linspace: 1-D array
x coordiantes to plot (min(log2(mu)) -> max(log2(mu)))
cv_fit: 1-D array
y=f(x) coordinates to plot
pars: tuple or None
'''
log2_m = log2(mu)
log2_cv = log2(cv)
if len(mu)>1000 and 'bin' in fit_method:
#histogram with 30 bins
n,xi = histogram(log2_m,30)
med_n = percentile(n,50)
for i in range(0,len(n)):
# index of genes within the ith bin
ind = where( (log2_m >= xi[i]) & (log2_m < xi[i+1]) )[0]
if len(ind)>med_n:
#Downsample if count is more than median
ind = ind[random.permutation(len(ind))]
ind = ind[:len(ind)-med_n]
mask = ones(len(log2_m), dtype=bool)
mask[ind] = False
log2_m = log2_m[mask]
log2_cv = log2_cv[mask]
elif (around(med_n/len(ind))>1) and (len(ind)>5):
#Duplicate if count is less than median
log2_m = r_[ log2_m, tile(log2_m[ind], around(med_n/len(ind))-1) ]
log2_cv = r_[ log2_cv, tile(log2_cv[ind], around(med_n/len(ind))-1) ]
else:
if 'bin' in fit_method:
print('More than 1000 input feature needed for bin correction.')
pass
if 'SVR' in fit_method:
try:
from sklearn.svm import SVR
if svr_gamma == 'auto':
svr_gamma = 1000./len(mu)
#Fit the Support Vector Regression
clf = SVR(gamma=svr_gamma)
clf.fit(log2_m[:,newaxis], log2_cv)
fitted_fun = clf.predict
score = log2(cv) - fitted_fun(log2(mu)[:,newaxis])
params = None
#The coordinates of the fitted curve
mu_linspace = linspace(min(log2_m),max(log2_m))
cv_fit = fitted_fun(mu_linspace[:,newaxis])
return score, mu_linspace, cv_fit , params
except ImportError:
if verbose:
print('SVR fit requires scikit-learn python library. Using exponential instead.')
if 'bin' in fit_method:
return fit_CV(mu, cv, fit_method='binExp', x0=x0)
else:
return fit_CV(mu, cv, fit_method='Exp', x0=x0)
elif 'Exp' in fit_method:
from scipy.optimize import minimize
#Define the objective function to fit (least squares)
fun = lambda x, log2_m, log2_cv: sum(abs( log2( (2.**log2_m)**(-x[0])+x[1]) - log2_cv ))
#Fit using Nelder-Mead algorythm
optimization = minimize(fun, x0, args=(log2_m,log2_cv), method='Nelder-Mead')
params = optimization.x
#The fitted function
fitted_fun = lambda log_mu: log2( (2.**log_mu)**(-params[0]) + params[1])
# Score is the relative position with respect of the fitted curve
score = log2(cv) - fitted_fun(log2(mu))
#The coordinates of the fitted curve
mu_linspace = linspace(min(log2_m),max(log2_m))
cv_fit = fitted_fun(mu_linspace)
return score, mu_linspace, cv_fit , params
def feature_selection(data,thrs, verbose=False):
if thrs>= data.shape[0]:
if verbose:
print ("Trying to select %i features but only %i genes available." %( thrs, data.shape[0]))
print ("Skipping feature selection")
return arange(data.shape[0])
ix_genes = arange(data.shape[0])
threeperK = int(ceil(3*data.shape[1]/1000.))
zerotwoperK = int(floor(0.3*data.shape[1]/1000.))
# is at least 1 molecule in 0.3% of thecells, is at least 2 molecules in 0.03% of the cells
condition = (sum(data>=1, 1)>= threeperK) & (sum(data>=2, 1)>=zerotwoperK)
ix_genes = ix_genes[condition]
mu = data[ix_genes,:].mean(1)
sigma = data[ix_genes,:].std(1, ddof=1)
cv = sigma/mu
try:
score, mu_linspace, cv_fit , params = fit_CV(mu,cv,fit_method='SVR', verbose=verbose)
except ImportError:
print ("WARNING: Feature selection was skipped becouse scipy is required. Install scipy to run feature selection.")
return arange(data.shape[0])
return ix_genes[argsort(score)[::-1]][:thrs]
def usage_quick():
message ='''usage: backSPIN [-hbv] [-i inputfile] [-o outputfolder] [-d int] [-f int] [-t int] [-s float] [-T int] [-S float] [-g int] [-c int] [-k float] [-r float]
manual: backSPIN -h
'''
print (message)
def usage():
message='''
backSPIN commandline tool
-------------------------
The options are as follows:
-i [inputfile]
--input=[inputfile]
Path of the cef formatted tab delimited file.
Rows should be genes and columns single cells/samples.
For further information on the cef format visit:
https://github.com/linnarsson-lab/ceftools
-o [outputfile]
--output=[outputfile]
The name of the file to which the output will be written
-d [int]
Depth/Number of levels: The number of nested splits that will be tried by the algorithm
-t [int]
Number of the iterations used in the preparatory SPIN.
Defaults to 10
-f [int]
Feature selection is performed before BackSPIN. Argument controls how many genes are seleceted.
Selection is based on expected noise (a curve fit to the CV-vs-mean plot).
-s [float]
Controls the decrease rate of the width parameter used in the preparatory SPIN.
Smaller values will increase the number of SPIN iterations and result in higher
precision in the first step but longer execution time.
Defaults to 0.1
-T [int]
Number of the iterations used for every width parameter.
Does not apply on the first run (use -t instead)
Defaults to 8
-S [float]
Controls the decrease rate of the width parameter.
Smaller values will increase the number of SPIN iterations and result in higher
precision but longer execution time.
Does not apply on the first run (use -s instead)
Defaults to 0.3
-g [int]
Minimal number of genes that a group must contain for splitting to be allowed.
Defaults to 2
-c [int]
Minimal number of cells that a group must contain for splitting to be allowed.
Defaults to 2
-k [float]
Minimum score that a breaking point has to reach to be suitable for splitting.
Defaults to 1.15
-r [float]
If the difference between the average expression of two groups is lower than threshold the algorythm
uses higly correlated genes to assign the gene to one of the two groups
Defaults to 0.2
-b [axisvalue]
Run normal SPIN instead of backSPIN.
Normal spin accepts the parameters -T -S
An axis value 0 to only sort genes (rows), 1 to only sort cells (columns) or 'both' for both
must be passed
-v
Verbose. Print to the stdoutput extra details of what is happening
'''
print(message)
if __name__ == '__main__':
print("")
#defaults arguments
input_path = None
outfiles_path = None
numLevels=2 # -d
feature_fit = False # -f
feature_genes = 2000
first_run_iters=10 # -t
first_run_step=0.1 # -s
runs_iters=8 # -T
runs_step=0.3 # -S
split_limit_g=2 # -g
split_limit_c=2 # -c
stop_const = 1.15 # -k
low_thrs=0.2 # -r
normal_spin = False #-b
normal_spin_axis = 'both'
verbose=False # -v
optlist, args = getopt.gnu_getopt(sys.argv[1:], "hvi:o:f:d:t:s:T:S:g:c:k:r:b:", ["help", "input=","output="])
if optlist== [] and args == []:
usage_quick()
sys.exit()
for opt, a in optlist:
if opt in ("-h", "--help"):
usage()
sys.exit()
elif opt in ('-i', '--input'):
input_path = a
elif opt in ("-o", "--output"):
outfiles_path = a
elif opt == '-d':
numLevels = int(a)
elif opt == '-f':
feature_fit = True
if a != '':
feature_genes = int(a)
elif opt == '-t':
first_run_iters = int(a)
elif opt == '-s':
first_run_step = float(a)
elif opt == '-T':
runs_iters = int(a)
elif opt == '-S':
runs_step = float(a)
elif opt == '-g':
split_limit_g = int(a)
elif opt == '-c':
split_limit_c = int(a)
elif opt == '-k':
stop_const = float(a)
elif opt == '-r':
low_thrs = float(a)
elif opt == '-v':
verbose = True
elif opt == '-b':
normal_spin = True
if a != '':
if a == 'both':
normal_spin_axis = a
else:
normal_spin_axis = int(a)
else:
assert False, "%s option is not supported" % opt
if input_path == None:
print ('No input file was provided.\nYou need to specify an input file\n(e.g. backSPIN -i path/to/your/file/foo.cef)\n')
sys.exit()
if outfiles_path == None:
print ('No output file was provided.\nYou need to specify an output file\n(e.g. backSPIN -o path/to/your/file/bar.cef)\n')
sys.exit()
try:
if verbose:
print ('Loading file.')
input_cef = CEF_obj()
input_cef.readCEF(input_path)
data = array(input_cef.matrix)
if feature_fit:
if verbose:
print ("Performing feature selection")
ix_features = feature_selection(data, feature_genes, verbose=verbose)
if verbose:
print ("Selected %i genes" % len(ix_features))
data = data[ix_features, :]
input_cef.matrix = data.tolist()
input_cef.row_attr_values = atleast_2d( array( input_cef.row_attr_values ))[:,ix_features].tolist()
input_cef.update()
data = log2(data+1)
data = data - data.mean(1)[:,newaxis]
if data.shape[0] <= 3 and data.shape[1] <= 3:
print ('Input file is not correctly formatted.\n')
sys.exit()
except Exception as err:
import traceback
print ('There was an error')
print (traceback.format_exc())
print ('Error occurred in parsing the input file.')
print ('Please check that your input file is a correctly formatted cef file.\n')
sys.exit()
if normal_spin == False:
print ('backSPIN started\n----------------\n')
print ('Input file:\n%s\n' % input_path)
print ('Output file:\n%s\n' % outfiles_path)
print ('numLevels: %i\nfirst_run_iters: %i\nfirst_run_step: %.3f\nruns_iters: %i\nruns_step: %.3f\nsplit_limit_g: %i\nsplit_limit_c: %i\nstop_const: %.3f\nlow_thrs: %.3f\n' % (numLevels, first_run_iters, first_run_step, runs_iters,\
runs_step, split_limit_g, split_limit_c, stop_const, low_thrs))
results = backSPIN(data, numLevels, first_run_iters, first_run_step, runs_iters, runs_step,\
split_limit_g, split_limit_c, stop_const, low_thrs, verbose)
sys.stdout.flush()
print ('\nWriting output.\n')
output_cef = CEF_obj()
for h_name, h_val in zip( input_cef.header_names, input_cef.header_values):
output_cef.add_header(h_name, h_val )
for c_name, c_val in zip( input_cef.col_attr_names, input_cef.col_attr_values):
output_cef.add_col_attr(c_name, array(c_val)[results.cells_order])
for r_name, r_val in zip( input_cef.row_attr_names, input_cef.row_attr_values):
output_cef.add_row_attr(r_name, array(r_val)[results.genes_order])
for level, groups in enumerate( results.genes_gr_level.T ):
output_cef.add_row_attr('Level_%i_group' % level, [int(el) for el in groups])
for level, groups in enumerate( results.cells_gr_level.T ):
output_cef.add_col_attr('Level_%i_group' % level, [int(el) for el in groups])
output_cef.set_matrix(array(input_cef.matrix)[results.genes_order,:][:,results.cells_order])
if sum(type(i)==float for i in input_cef.matrix[0]) + sum(type(i)==float for i in input_cef.matrix[-1]) == 0:
fmt = '%i'
else:
fmt ='%.6g'
output_cef.writeCEF( outfiles_path, matrix_str_fmt=fmt )
else:
print ('normal SPIN started\n----------------\n')
print ('Input file:\n%s\n' % input_path)
print ('Output file:\n%s\n' % outfiles_path)
results = SPIN(data, widlist=runs_step, iters=runs_iters, axis=normal_spin_axis, verbose=verbose)
print ('\nWriting output.\n')
output_cef = CEF_obj()
for h_name, h_val in zip( input_cef.header_names, input_cef.header_values):
output_cef.add_header(h_name, h_val )
if normal_spin_axis == 'both':
for c_name, c_val in zip( input_cef.col_attr_names, input_cef.col_attr_values):
output_cef.add_col_attr(c_name, array(c_val)[results[1]])
for r_name, r_val in zip( input_cef.row_attr_names, input_cef.row_attr_values):
output_cef.add_row_attr(r_name, array(r_val)[results[0]])
output_cef.set_matrix(array(input_cef.matrix)[results[0],:][:,results[1]])
if normal_spin_axis == 0:
for r_name, r_val in zip( input_cef.row_attr_names, input_cef.row_attr_values):
output_cef.add_row_attr(r_name, array(r_val)[results])
output_cef.set_matrix(array(input_cef.matrix)[results,:])
if normal_spin_axis == 1:
for c_name, c_val in zip( input_cef.col_attr_names, input_cef.col_attr_values):
output_cef.add_col_attr(c_name, array(c_val)[results])
output_cef.set_matrix(array(input_cef.matrix)[:,results])
output_cef.writeCEF( outfiles_path )