From 7a1a8f0d6a8f79a006f40e9157e1d70dedd217b5 Mon Sep 17 00:00:00 2001 From: Juan Correa Date: Sun, 24 Nov 2024 10:04:03 -0500 Subject: [PATCH 01/84] requirements.txt --- requirements.txt | 4 ++++ 1 file changed, 4 insertions(+) create mode 100644 requirements.txt diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 000000000..50db08636 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,4 @@ +alpaca-trade-api +torch fairscale fire blobfile +pandas +ollama \ No newline at end of file From 7649271d7139341dda11cf06aaa0dae254e64a5f Mon Sep 17 00:00:00 2001 From: Juan Correa Date: Sun, 24 Nov 2024 10:05:11 -0500 Subject: [PATCH 02/84] notebook inicial --- Notebooks/test.ipynb | 2144 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2144 insertions(+) create mode 100644 Notebooks/test.ipynb diff --git a/Notebooks/test.ipynb b/Notebooks/test.ipynb new file mode 100644 index 000000000..f7fdbece1 --- /dev/null +++ b/Notebooks/test.ipynb @@ -0,0 +1,2144 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "from llama_models.llama3.reference_impl.generation import Llama\n", + "from llama_models.llama3.api.datatypes import UserMessage, SystemMessage\n", + "import os\n", + "import sys\n", + "from llama_models.llama3.api.datatypes import (\n", + " UserMessage,\n", + " SystemMessage,\n", + " CompletionMessage,\n", + " StopReason,\n", + ")\n", + "from llama_models.llama3.reference_impl.generation import Llama\n", + "import pandas as pd\n", + "from io import StringIO\n", + "import numpy as np\n", + "import re\n", + "import requests\n", + "import ollama" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Funciones" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [], + "source": [ + "def transformar_texto(texto, marca):\n", + " if texto is None or (isinstance(texto, float) and np.isnan(texto)):\n", + " return texto\n", + " \n", + " if marca.lower() == \"adidas\":\n", + " # Transformación original para adidas\n", + " if isinstance(texto, (list, np.ndarray)):\n", + " texto = \", \".join(map(str, texto))\n", + " else:\n", + " texto = str(texto)\n", + " texto = texto.strip(\"[]\")\n", + " texto = re.sub(r\",\\s*\", '} {', texto)\n", + " texto = '{' + texto + '}'\n", + " return texto\n", + " \n", + " elif marca.lower() == \"nike\":\n", + " # Transformación específica para nike\n", + " if isinstance(texto, list):\n", + " # Elimina claves con valores irrelevantes\n", + " texto_limpio = [\n", + " {k.strip(): v.strip() for k, v in d.items() if k.strip() not in ['\\xa0']}\n", + " for d in texto\n", + " if isinstance(d, dict)\n", + " ]\n", + " # Filtra elementos vacíos o irrelevantes\n", + " texto_limpio = [d for d in texto_limpio if d]\n", + " return texto_limpio\n", + " return texto # Si no es lista, regresa el texto original\n", + "\n", + " else:\n", + " raise ValueError(f\"Marca '{marca}' no reconocida. Usa 'adidas' o 'nike'.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "def generar_prompt_llama(descripcion, etiquetas):\n", + " prompt = \"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\n\"\n", + " prompt += \"Eres un asistente que extrae información de descripciones de productos y las organiza en una tabla.\\n\"\n", + " prompt += \"<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\n\"\n", + " prompt += f\"Extrae la siguiente información de la descripción del producto y etiquétala según las etiquetas: {', '.join(etiquetas)}.\\n\\n\"\n", + " prompt += f\"Descripción: {descripcion}\\n\\n\"\n", + " prompt += \"Proporciona la información en una tabla con las columnas correspondientes a cada etiqueta.\\n\"\n", + " prompt += \"<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\n\"\n", + " prompt += \"| \" + \" | \".join(etiquetas) + \" |\\n\"\n", + " prompt += \"| \" + \" | \".join(['---'] * len(etiquetas)) + \" |\\n\"\n", + " prompt += \"|\"\n", + " return prompt\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "def obtener_respuesta_llama(dialogo):\n", + " try:\n", + " # Ruta al modelo descargado (ajusta esta ruta según corresponda)\n", + " ruta_modelo = os.path.expanduser('~/.llama/checkpoints/Meta-Llama3.1-8B-Instruct')\n", + "\n", + " # Cargar el modelo Llama 3.1 8B\n", + " modelo = Llama.build(\n", + " ckpt_dir=ruta_modelo,\n", + " max_seq_len=1024, # Ajusta según sea necesario\n", + " max_batch_size=1, # Número de prompts a procesar simultáneamente\n", + " model_parallel_size=1,\n", + " )\n", + "\n", + " # Generar la respuesta utilizando el diálogo\n", + " resultado = modelo.chat_completion(\n", + " dialog=dialogo,\n", + " max_gen_len=512, # Máxima longitud de generación\n", + " temperature=0.6, # Ajusta según sea necesario\n", + " top_p=0.9, # Ajusta según sea necesario\n", + " )\n", + "\n", + " # Obtener el mensaje generado por el asistente\n", + " mensaje_asistente = resultado.generation\n", + " return mensaje_asistente.content\n", + "\n", + " except Exception as e:\n", + " print(f\"Error al generar la respuesta: {e}\")\n", + " return None" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "def obtener_respuesta_ollama(prompt):\n", + " response = ollama.chat(\n", + " model=\"llama3.2:latest\",\n", + " messages = [\n", + " {\n", + " \"role\":\"user\",\n", + " \"content\": prompt\n", + " } \n", + " ]\n", + " )\n", + " # La respuesta es un generador; concatenamos las partes\n", + " return response" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "def procesar_respuesta(respuesta_texto, etiquetas):\n", + " try:\n", + " # Buscar el inicio de la tabla\n", + " inicio_tabla = respuesta_texto.find('|')\n", + " if inicio_tabla != -1:\n", + " # Extraer la tabla desde el primer '|'\n", + " tabla_texto = respuesta_texto[inicio_tabla:].strip()\n", + " # Extraer solo las líneas que contienen '|'\n", + " lineas = tabla_texto.split('\\n')\n", + " lineas_tabla = []\n", + " for linea in lineas:\n", + " if '|' in linea:\n", + " # Eliminar los '|' iniciales y finales y espacios extra\n", + " linea = linea.strip().strip('|').strip()\n", + " lineas_tabla.append(linea)\n", + " else:\n", + " # Detenerse si la línea no contiene '|'\n", + " break\n", + " tabla_completa = '\\n'.join(lineas_tabla)\n", + " # Convertir la tabla Markdown a un DataFrame\n", + " df = pd.read_csv(StringIO(tabla_completa), sep='|', engine='python', skipinitialspace=True)\n", + " # Limpiar nombres de columnas y datos\n", + " df.columns = [col.strip() for col in df.columns]\n", + " for col in df.columns:\n", + " if df[col].dtype == object:\n", + " df[col] = df[col].str.strip()\n", + " # Resetear el índice\n", + " df = df.reset_index(drop=True)\n", + " return df\n", + " else:\n", + " print(\"No se encontró una tabla en la respuesta.\")\n", + " return None\n", + " except Exception as e:\n", + " print(f\"Error al procesar la tabla: {e}\")\n", + " return None\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lectura de datos desde la api" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200\n" + ] + } + ], + "source": [ + "url =\"https://scraping-firestore-178159629911.us-central1.run.app//v1/scraping/\"\n", + "\n", + "response = requests.get(url)\n", + "\n", + "if response.status_code == 200:\n", + " data = response.json()\n", + " print(response.status_code)\n", + "else:\n", + " print(f'Error: {response.status_code}')\n", + "\n", + "df_raw = pd.DataFrame(data)" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddetailsstoremanufacturerurltitleregularPriceundiscounted_pricedescriptioncategorycreatedAtcharacteristicsgender
0046zSiHm8Cz0fZYwMJlL[]adidasadidashttps://www.adidas.co/tenis-duramo-sl/IF7884.htmlTenis Duramo SL$379.950$265.965Siente la ligereza y velocidad. Si estás listo...Mujer • Running{'_seconds': 1731975445, '_nanoseconds': 42700...NaNNaN
108sjncACSjSvg2t9DS73[Horma clásica, Parte superior sintética, Forr...adidasadidashttps://www.adidas.co/tenis-adizero-adios-pro-...Tenis ADIZERO ADIOS PRO 3$1.299.950$909.965Los Adizero Adios Pro 3 son la máxima expresió...Mujer • Running{'_seconds': 1731975445, '_nanoseconds': 42700...NaNNaN
20AqheRhKT2lhm7puBVCF[Ajuste clásico, Sistema de amarre de cordones...adidasadidashttps://www.adidas.co/tenis-ultraboost-22/GX55...TENIS ULTRABOOST 22$799.950NAHemos analizado 1.200.000 pisadas para que Ult...Mujer • Running{'_seconds': 1731975445, '_nanoseconds': 42700...NaNNaN
30Di5KVVcvU0QsWRxB1iE[{' ': '<b>&nbsp;</b>'}]nikenikehttps://www.nike.com.co/nike-revolution-7-fb22...Nike Revolution 7$ 389.950NACargamos el Revolution 7 con el tipo de amorti...Calzado de correr en pavimento para mujer{'_seconds': 1731965768, '_nanoseconds': 30000...[]Mujer
40Gvnv9unc1EV4XpFbCQN[{'Características principales': '<b>Caracterí...nikenikehttps://www.nike.com.co/nike-winflo-11-calzado...Nike Winflo 11$ 584.950NAEl Winflo 11 es el calzado con una pisada bala...Calzado de correr en pavimento para mujer{'_seconds': 1731965768, '_nanoseconds': 30000...[Parte superior de malla diseñada estratégicam...Mujer
\n", + "
" + ], + "text/plain": [ + " id details \\\n", + "0 046zSiHm8Cz0fZYwMJlL [] \n", + "1 08sjncACSjSvg2t9DS73 [Horma clásica, Parte superior sintética, Forr... \n", + "2 0AqheRhKT2lhm7puBVCF [Ajuste clásico, Sistema de amarre de cordones... \n", + "3 0Di5KVVcvU0QsWRxB1iE [{' ': ' '}] \n", + "4 0Gvnv9unc1EV4XpFbCQN [{'Características principales': 'Caracterí... \n", + "\n", + " store manufacturer url \\\n", + "0 adidas adidas https://www.adidas.co/tenis-duramo-sl/IF7884.html \n", + "1 adidas adidas https://www.adidas.co/tenis-adizero-adios-pro-... \n", + "2 adidas adidas https://www.adidas.co/tenis-ultraboost-22/GX55... \n", + "3 nike nike https://www.nike.com.co/nike-revolution-7-fb22... \n", + "4 nike nike https://www.nike.com.co/nike-winflo-11-calzado... \n", + "\n", + " title regularPrice undiscounted_price \\\n", + "0 Tenis Duramo SL $379.950 $265.965 \n", + "1 Tenis ADIZERO ADIOS PRO 3 $1.299.950 $909.965 \n", + "2 TENIS ULTRABOOST 22 $799.950 NA \n", + "3 Nike Revolution 7 $ 389.950 NA \n", + "4 Nike Winflo 11 $ 584.950 NA \n", + "\n", + " description \\\n", + "0 Siente la ligereza y velocidad. Si estás listo... \n", + "1 Los Adizero Adios Pro 3 son la máxima expresió... \n", + "2 Hemos analizado 1.200.000 pisadas para que Ult... \n", + "3 Cargamos el Revolution 7 con el tipo de amorti... \n", + "4 El Winflo 11 es el calzado con una pisada bala... \n", + "\n", + " category \\\n", + "0 Mujer • Running \n", + "1 Mujer • Running \n", + "2 Mujer • Running \n", + "3 Calzado de correr en pavimento para mujer \n", + "4 Calzado de correr en pavimento para mujer \n", + "\n", + " createdAt \\\n", + "0 {'_seconds': 1731975445, '_nanoseconds': 42700... \n", + "1 {'_seconds': 1731975445, '_nanoseconds': 42700... \n", + "2 {'_seconds': 1731975445, '_nanoseconds': 42700... \n", + "3 {'_seconds': 1731965768, '_nanoseconds': 30000... \n", + "4 {'_seconds': 1731965768, '_nanoseconds': 30000... \n", + "\n", + " characteristics gender \n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 [] Mujer \n", + "4 [Parte superior de malla diseñada estratégicam... Mujer " + ] + }, + "execution_count": 125, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_raw.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Paso 1: Definir las etiquetas dinámicamente\n", + "Creamos una lista de etiquetas que pueden cambiar según las necesidades" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "etiquetas = [\"cordones\", \"textil exterior\", \"textil interior\", \"suela\", \"peso y/o talla\", \"eco diseñado si o no\", \"color\", \"identificador\", \"nombre de deporte\",'genero Mujer/Hombre/MIXTO']\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Paso 2: procesar info de Adidas" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "df_adidas = df_raw[df_raw['store'] == 'adidas']" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_5352\\4001796790.py:2: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))\n" + ] + } + ], + "source": [ + "# Lista de descripciones de productos\n", + "df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Lista de descripciones de productos\n", + "'''descripciones = [\n", + " \"[{'text': 'Ajuste clásico'}, {'text': 'Sistema de amarre de cordones'}, {'text': 'Parte superior textil'}, {'text': 'Mediasuela Cloudfoam'}, {'text': 'Forro interno textil'}, {'text': 'Peso: 239 gramos (talla CO 37,5)'}, {'text': 'Caída mediasuela: 9 mm (talón: 28 mm / antepié: 19 mm)'}, {'text': 'Suela de caucho'}, {'text': 'La parte superior contiene al menos un 50% de material reciclado'}, {'text': 'Color del artículo: Dark Blue / Core Black / Gold Metallic'}, {'text': 'Número de artículo: IE0747'}]\",\n", + " \"[{'text': 'Sistema de amarre de cordones'}, {'text': 'Exterior textil con refuerzos sintéticos sin costuras'}, {'text': 'Lengüeta reforzada'}, {'text': 'Amortiguación Lightstrike'}, {'text': 'Capa protectora de TPU'}, {'text': 'Suela de caucho Continental™ Rubber'}, {'text': 'El exterior contiene al menos un 50 % de material reciclado'}, {'text': 'Color del artículo: Core Black / Grey Three / Grey Two'}, {'text': 'Número de artículo: HR1182'}]\",\n", + " \"[{'text': 'Corte clásico'}, {'text': 'Sistema de amarre de cordones'}, {'text': 'Exterior de malla sándwich'}, {'text': 'Revestimientos sin costuras que brindan soporte'}, {'text': 'Talón suave'}, {'text': 'Amortiguación LIGHTMOTION'}, {'text': 'Suela de caucho'}, {'text': 'El exterior contiene al menos un 50 % de material reciclado'}, {'text': 'Color del artículo: Light Grey / Screaming Orange / Solar Gold'}, {'text': 'Número de artículo: HP2375'}]\",\n", + " \"[{'text': 'Ajuste clásico'}, {'text': 'Sistema de amarre de cordones'}, {'text': 'Parte superior textil'}, {'text': 'Forro interno textil'}, {'text': 'Suela multiterreno de caucho'}, {'text': 'Peso: 327 gramos (talla CO 40)'}, {'text': 'Caída mediasuela: 9 mm (talón: 29 mm / antepié: 19 mm)'}, {'text': 'Contienen al menos un 20% de material reciclado'}, {'text': 'Color del artículo: Halo Silver / Green Spark / Grey Five'}, {'text': 'Número de artículo: IG1416'}]\",\n", + " \"[{'text': 'Ajuste clásico'}, {'text': 'Sistema de amarre de cordones'}, {'text': 'Exterior de malla'}, {'text': 'Diseño cómodo para impulsarte hacia adelante'}, {'text': 'Forro interno textil'}, {'text': 'Mediasuela de EVA'}, {'text': 'Peso: 236 g (Talla COL 36,5)'}, {'text': 'Caída mediasuela: 10 mm (talón: 32 mm / antepié: 22 mm)'}, {'text': 'Suela Adiwear'}, {'text': 'El exterior contiene al menos un 50 % de material reciclado'}, {'text': 'Color del artículo: Core Black / Cloud White / Grey Six'}, {'text': 'Número de artículo: ID5258'}]\",\n", + " \"[{'text': 'Ajuste clásico'}, {'text': 'Sistema de amarre de cordones'}, {'text': 'Exterior de malla'}, {'text': 'Diseño cómodo para impulsarte hacia adelante'}, {'text': 'Forro interno textil'}, {'text': 'Mediasuela de EVA'}, {'text': 'Peso: 236 g (Talla COL 36,5)'}, {'text': 'Caída mediasuela: 10 mm (talón: 32 mm / antepié: 22 mm)'}, {'text': 'Suela Adiwear'}, {'text': 'El exterior contiene al menos un 50 % de material reciclado'}, {'text': 'Color del artículo: Cloud White / Silver Metallic / Crystal White'}, {'text': 'Número de artículo: ID5257'}]\",\n", + " \"[{'text': 'Ajuste clásico'}, {'text': 'Sistema de amarre de cordones'}, {'text': 'Parte superior textil'}, {'text': 'Mediasuela Cloudfoam'}, {'text': 'Forro interno textil'}, {'text': 'Peso: 286 gramos (talla CO 40)'}, {'text': 'Caída mediasuela: 10 mm (talón: 29,2 mm / antepié: 19,2 mm)'}, {'text': 'Suela de caucho'}, {'text': 'La parte superior contiene al menos un 50% de material reciclado'}, {'text': 'Color del artículo: Shadow Red / Green Spark / Better Scarlet'}, {'text': 'Número de artículo: IE0740'}]\"\n", + "]'''" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
details_transformadodescriptioncategory
0{}Siente la ligereza y velocidad. Si estás listo...Mujer • Running
1{Horma clásica} {Parte superior sintética} {Fo...Los Adizero Adios Pro 3 son la máxima expresió...Mujer • Running
2{Ajuste clásico} {Sistema de amarre de cordone...Hemos analizado 1.200.000 pisadas para que Ult...Mujer • Running
5{Ajuste clásico} {Cierre de cordones} {Parte s...Haz tus mejores 10k con nuestros nuevos tenis ...Mujer • Running
7{Ajuste clásico} {Sistema de amarre de cordone...Haz tus mejores 10k con nuestros nuevos tenis ...Hombre • Running
\n", + "
" + ], + "text/plain": [ + " details_transformado \\\n", + "0 {} \n", + "1 {Horma clásica} {Parte superior sintética} {Fo... \n", + "2 {Ajuste clásico} {Sistema de amarre de cordone... \n", + "5 {Ajuste clásico} {Cierre de cordones} {Parte s... \n", + "7 {Ajuste clásico} {Sistema de amarre de cordone... \n", + "\n", + " description category \n", + "0 Siente la ligereza y velocidad. Si estás listo... Mujer • Running \n", + "1 Los Adizero Adios Pro 3 son la máxima expresió... Mujer • Running \n", + "2 Hemos analizado 1.200.000 pisadas para que Ult... Mujer • Running \n", + "5 Haz tus mejores 10k con nuestros nuevos tenis ... Mujer • Running \n", + "7 Haz tus mejores 10k con nuestros nuevos tenis ... Hombre • Running " + ] + }, + "execution_count": 103, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_adidas[['details_transformado','description','category']].head()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "# Crear un diccionario con las llaves deseadas\n", + "productos = [\n", + " {\n", + " \"details\": row['details_transformado'],\n", + " \"description\": row['description'],\n", + " \"category\": row['category']\n", + " }\n", + " for _, row in df_adidas[:10].iterrows() \n", + " if row['details_transformado'] != '{}'\n", + "]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Paso 3: Integrar con la API de Llama 3.1\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Prompt" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'details': '{Horma clásica} {Parte superior sintética} {Forro interno textil} {Varillas ENERGYRODS 2.0 que limitan la pérdida de energía} {Amortiguación Lightstrike Pro} {Peso: 183 g (talla CO 37} {5)} {Caída mediasuela: 6 mm (talón: 38 mm / antepié: 32 mm)} {La parte superior contiene al menos un 50 % de material reciclado} {Color del artículo: Pink Spark / Aurora Met. / Sandy Pink} {Número de artículo: ID3612}',\n", + " 'description': \"Los Adizero Adios Pro 3 son la máxima expresión de los productos Adizero Racing. Fueron diseñados con y para atletas para lograr hazañas increíbles. Estos tenis de running adidas están diseñados para optimizar la eficiencia del running. Nuestras varillas ENERGYRODS 2.0 de carbono ofrecen ligereza y firmeza para pasos ágiles y eficientes. La tecnología LIGHTSTRIKE PRO ultraliviana amortigua cada paso con las tres capas de espuma resistente que te ayudan a mantener la energía a largo plazo. Todo sobre una delgada suela de caucho textil para un agarre extraordinario en condiciones mojadas y secas. Celebramos nuestra más reciente victoria, los tenis Best Speed 2024 by Women's Health.\",\n", + " 'category': 'Mujer • Running'},\n", + " {'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de tejido adidas Primeknit} {Ajuste suave en el talón} {Sistema Linear Energy Push} {Mediasuela BOOST} {Peso: 289 g (Talla CO 37)} {Suela Stretchweb con caucho Continental™ Better Rubber} {El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado} {Color del artículo: Core Black / Core Black / Cloud White} {Número de artículo: GX5591}',\n", + " 'description': 'Hemos analizado 1.200.000 pisadas para que Ultraboost evolucione y mejore su ajuste para adaptarse 360° al pie femenino. Y aún hay más. Hemos rediseñado la suela de caucho. Probamos cientos de prototipos. Hasta que comprobamos las mejoras en su rendimiento. ¿El resultado? Un 4 % más de energía que los Ultraboost 21 para mujer. El ajuste en el área del talón del exterior adidas PRIMEKNIT se diseñó para evitar que el talón se deslice y se formen ampollas. Estarás corriendo sobre una mediasuela BOOST con tecnología Linear Energy Push. El exterior de este calzado está confeccionado con hilo que contiene un 50% de Parley Ocean Plastic, un material que ha sido recuperado de residuos plásticos recogidos en islas, playas, comunidades costeras y costas evitando que contaminen nuestros océanos.',\n", + " 'category': 'Mujer • Running'},\n", + " {'details': '{Ajuste clásico} {Cierre de cordones} {Parte superior de malla técnica} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch para un ajuste seguro} {Peso: 166 g (Talla COL 36 1/2)} {Caída mediasuela: 6 mm (talón: 32 mm / antepié: 26 mm)} {Suela de caucho Continental™} {Contiene al menos un 20 % de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG8206}',\n", + " 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.',\n", + " 'category': 'Mujer • Running'},\n", + " {'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch} {Peso: 200 gramos (talla CO 40)} {Caída mediasuela: 6 mm (talón: 33 mm / antepié: 27 mm} {Suela de caucho Continental™ Rubber} {Contienen al menos un 20% de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG3134}',\n", + " 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS 2.0 para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.',\n", + " 'category': 'Hombre • Running'},\n", + " {'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior textil} {Forro interno textil} {Mediasuela Cloudfoam} {Suela de TPU} {Peso: 319 g (talla CO 40)} {Caída mediasuela: 6 mm (talón 35 mm / antepié 29 mm)} {Color del artículo: Halo Silver / Carbon / Core Black} {Número de artículo: ID8754}',\n", + " 'description': 'Cada carrera es un viaje de descubrimiento. Ponte estos tenis de running adidas y libera tu potencial. La mediasuela con amortiguación Cloudfoam te ofrece una pisada más cómoda mientras aumentas tu resistencia. La parte superior textil es resistente al desgaste y te ofrece soporte desde tu primera vuelta hasta tu primera carrera de 5K.',\n", + " 'category': 'Hombre • Running'},\n", + " {'details': '{Si este artículo es personalizado} {no aplica en nuestra política de cambios y devoluciones.} {Sistema de amarre de cordones para un ajuste inmejorable} {Producto hecho parcialmente con Malla Técnica Reciclada} {Diseño liviano} {Amortiguación Lightstrike y Lightstrike Pro} {Forro interno textil} {Caída mediasuela: 8} {5 mm (talón: 33 mm / antepié: 24} {5 mm)} {Suela de caucho} {El exterior contiene al menos un 50% de material reciclado} {Color del artículo: Ivory / Iron Metallic / Spark} {Número de artículo: IG3341}',\n", + " 'description': 'Cuando se trata de alcanzar tus metas, cada segundo cuenta. Ya sea para entrenar o para competir, un rendimiento excelente requiere de prendas de alta tecnología optimizadas para la velocidad. Presentamos la nueva colección de tenis de running livianos que te ayudan a superar tus límites sin distracciones.\\n\\nLos tenis de running Adizero SL seleccionan lo mejor de nuestra franquicia Adizero que rompe récords mundiales. La mediasuela de EVA LIGHTSTRIKE liviana ofrece resiliencia a la mediasuela para que puedas concentrarte en el próximo paso, mientras que el exterior está hecho de una malla técnica suave que está zonificada en áreas clave. El talón acolchado y la lengüeta brindan una comodidad óptima junto con el antepié Adizero. La suela premium está diseñada para proporcionar tracción.',\n", + " 'category': 'Mujer • Running'},\n", + " {'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {Plantilla OrthoLite®} {Mediasuela Cloudfoam} {Peso: 304 g (talla CO 40)} {Caída mediasuela: 10 mm (talón: 33 mm / antepié: 23 mm)} {Suela Adiwear} {Color del artículo: Cloud White / Core Black / Better Scarlet} {Número de artículo: IE8818}',\n", + " 'description': 'Tanto en la pista como en la cinta de correr, alcanza todas tus metas con estos tenis de running adidas. Incorporan una mediasuela con amortiguación Cloudfoam que te ofrece una pisada más cómoda y suave. La parte superior de malla transpirable y la suela Adiwear de gran resistencia al desgaste la convierten en una silueta perfecta para llevar durante todo el día.',\n", + " 'category': 'Hombre • Running'},\n", + " {'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {mediasuela Dreamstrike+} {Suela Adiwear} {Peso (talla CO 37): 213 gramos} {Caída mediasuela: 10 mm (talón: 34 mm / 24 mm)} {Contienen al menos un 20% de material reciclado y renovable} {Color del artículo: Almost Yellow / Zero Metalic / Pink Spark} {Número de artículo: IE1072}',\n", + " 'description': 'Avanza hacia tus metas de running con estos tenis adidas. La mediasuela Dreamstrike+ está diseñada para absorber el impacto. La amortiguación adicional en el antepié ofrece comodidad durante toda tu carrera. El exterior de malla transpirable maximiza el flujo de aire para mantener tus pies frescos, y la suela Adiwear resistente ofrece tracción. \\n\\nAl elegir materiales reciclados, podemos reutilizar materiales que ya han sido creados, lo que ayuda a reducir los residuos. La elección de materiales renovables nos ayudará a eliminar nuestra dependencia de recursos finitos. Nuestros productos hechos con una mezcla de materiales reciclados y renovables contienen al menos un 20% de este material.',\n", + " 'category': 'Mujer • Running'},\n", + " {'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de malla con cuello acolchado} {Forro interno textil} {Estabilizador de talón moldeado Fitcounter} {Mediasuela Bounce} {Suela sintética} {El exterior contiene al menos un 50 % de material reciclado} {Color del artículo: Shadow Violet / Legend Ink / Wonder Clay} {Número de artículo: IG0334}',\n", + " 'description': 'Estos tenis fueron diseñados para darte la amortiguación y la respuesta que necesitas cuando estás en la pista o en los senderos. Sin importar si vas a hacer tu caminata diaria o una carrera corta, la mediasuela Bounce es flexible y receptiva con cada paso. Hecho con una serie de materiales reciclados, el exterior incorpora al menos un 50 % de contenido reciclado. Este producto representa solo una de nuestras soluciones para acabar con los residuos plásticos.',\n", + " 'category': 'Mujer • Running'}]" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "productos\n" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "def generar_prompt_ollama(producto, etiquetas):\n", + " prompt = f\"\"\"\n", + " Eres un asistente especializado en extraer información estructurada de descripciones de productos y organizarla en tablas. \n", + " Tu tarea es extraer la siguiente información de los detalles del producto y etiquetarla según las etiquetas: {', '.join(etiquetas)}.\n", + " Si una etiqueta no tiene una correspondencia clara en los detalles, completa su valor con \"null\".\n", + "\n", + " Información del producto:\n", + " - Details: {producto['details']}\n", + " - Description: {producto['description']}\n", + " - Category: {producto['category']}\n", + "\n", + " Proporciona la información en una tabla con las columnas correspondientes a cada etiqueta. \n", + " La tabla debe incluir **dos filas completas**:\n", + " 1. La primera fila contiene los nombres de las etiquetas.\n", + " 2. La segunda fila contiene los valores correspondientes etiquetados.\n", + "\n", + " Formato esperado de la respuesta:\n", + " | {' | '.join(etiquetas)} |\n", + " | {' | '.join(['---'] * len(etiquetas))} |\n", + " | valor_1 | valor_2 | ... |\n", + " \n", + " Ejemplo:\n", + " Si las etiquetas son \"details\", \"description\", y \"category\", y los valores extraídos son \n", + " \"Zapatillas cómodas\", \"Hechas con materiales reciclados\", y \"Calzado\", respectivamente, \n", + " tu respuesta debe ser:\n", + "\n", + " | details | description | category |\n", + " | Zapatillas cómodas | Hechas con materiales reciclados | Calzado |\n", + "\n", + " Recuerda:\n", + " - La respuesta debe contener dos filas completas.\n", + " - Solo responde con la tabla y **no incluyas texto adicional**.\n", + "\n", + " Ahora, extrae y estructura la información del producto proporcionado:\n", + "\n", + " | {' | '.join(etiquetas)} |\n", + " | {' | '.join(['---'] * len(etiquetas))} |\n", + " |\"\"\"\n", + " return prompt.strip()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generacion" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'details': '{Horma clásica} {Parte superior sintética} {Forro interno textil} {Varillas ENERGYRODS 2.0 que limitan la pérdida de energía} {Amortiguación Lightstrike Pro} {Peso: 183 g (talla CO 37} {5)} {Caída mediasuela: 6 mm (talón: 38 mm / antepié: 32 mm)} {La parte superior contiene al menos un 50 % de material reciclado} {Color del artículo: Pink Spark / Aurora Met. / Sandy Pink} {Número de artículo: ID3612}', 'description': \"Los Adizero Adios Pro 3 son la máxima expresión de los productos Adizero Racing. Fueron diseñados con y para atletas para lograr hazañas increíbles. Estos tenis de running adidas están diseñados para optimizar la eficiencia del running. Nuestras varillas ENERGYRODS 2.0 de carbono ofrecen ligereza y firmeza para pasos ágiles y eficientes. La tecnología LIGHTSTRIKE PRO ultraliviana amortigua cada paso con las tres capas de espuma resistente que te ayudan a mantener la energía a largo plazo. Todo sobre una delgada suela de caucho textil para un agarre extraordinario en condiciones mojadas y secas. Celebramos nuestra más reciente victoria, los tenis Best Speed 2024 by Women's Health.\", 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Adizero Adios Pro 3 | Parte superior sintética | Forro interno textil | Delgada suela de caucho textil | CO 37 | Sí | Pink Spark / Aurora Met. / Sandy Pink | ID3612 | Running | Mujer\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de tejido adidas Primeknit} {Ajuste suave en el talón} {Sistema Linear Energy Push} {Mediasuela BOOST} {Peso: 289 g (Talla CO 37)} {Suela Stretchweb con caucho Continental™ Better Rubber} {El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado} {Color del artículo: Core Black / Core Black / Cloud White} {Número de artículo: GX5591}', 'description': 'Hemos analizado 1.200.000 pisadas para que Ultraboost evolucione y mejore su ajuste para adaptarse 360° al pie femenino. Y aún hay más. Hemos rediseñado la suela de caucho. Probamos cientos de prototipos. Hasta que comprobamos las mejoras en su rendimiento. ¿El resultado? Un 4 % más de energía que los Ultraboost 21 para mujer. El ajuste en el área del talón del exterior adidas PRIMEKNIT se diseñó para evitar que el talón se deslice y se formen ampollas. Estarás corriendo sobre una mediasuela BOOST con tecnología Linear Energy Push. El exterior de este calzado está confeccionado con hilo que contiene un 50% de Parley Ocean Plastic, un material que ha sido recuperado de residuos plásticos recogidos en islas, playas, comunidades costeras y costas evitando que contaminen nuestros océanos.', 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Sistema de amarre de cordones | adidas Primeknit | null | Mediasuela BOOST | Talla CO 37, 289 g | Si | Core Black / Cloud White | GX5591 | Running | Mujer\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Ajuste clásico} {Cierre de cordones} {Parte superior de malla técnica} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch para un ajuste seguro} {Peso: 166 g (Talla COL 36 1/2)} {Caída mediasuela: 6 mm (talón: 32 mm / antepié: 26 mm)} {Suela de caucho Continental™} {Contiene al menos un 20 % de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG8206}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Cierre de cordones | Parte superior de malla técnica | Amortiguación Lightstrike Pro | Suela de caucho Continental™ | 166 g (Talla COL 36 1/2) | Contiene al menos un 20 % de material reciclado | Green Spark / Aurora Met. / Lucid Lemon | IG8206 | Running | Mujer\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch} {Peso: 200 gramos (talla CO 40)} {Caída mediasuela: 6 mm (talón: 33 mm / antepié: 27 mm} {Suela de caucho Continental™ Rubber} {Contienen al menos un 20% de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG3134}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS 2.0 para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Hombre • Running'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Sistema de amarre de cordones | Parte superior de malla | Amortiguación Lightstrike Pro | Suela de caucho Continental™ Rubber | CO 40 | Contienen al menos un 20% de material reciclado | Green Spark / Aurora Met. / Lucid Lemon | IG3134 | Running | Mujer/Hombre/MIXTO |\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior textil} {Forro interno textil} {Mediasuela Cloudfoam} {Suela de TPU} {Peso: 319 g (talla CO 40)} {Caída mediasuela: 6 mm (talón 35 mm / antepié 29 mm)} {Color del artículo: Halo Silver / Carbon / Core Black} {Número de artículo: ID8754}', 'description': 'Cada carrera es un viaje de descubrimiento. Ponte estos tenis de running adidas y libera tu potencial. La mediasuela con amortiguación Cloudfoam te ofrece una pisada más cómoda mientras aumentas tu resistencia. La parte superior textil es resistente al desgaste y te ofrece soporte desde tu primera vuelta hasta tu primera carrera de 5K.', 'category': 'Hombre • Running'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Sistema de amarre de cordones | Parte superior textil | Forro interno textil | Mediasuela Cloudfoam, Suela de TPU | Talla CO 40 | Sí | Halo Silver / Carbon / Core Black | ID8754 | Running | Hombre\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Si este artículo es personalizado} {no aplica en nuestra política de cambios y devoluciones.} {Sistema de amarre de cordones para un ajuste inmejorable} {Producto hecho parcialmente con Malla Técnica Reciclada} {Diseño liviano} {Amortiguación Lightstrike y Lightstrike Pro} {Forro interno textil} {Caída mediasuela: 8} {5 mm (talón: 33 mm / antepié: 24} {5 mm)} {Suela de caucho} {El exterior contiene al menos un 50% de material reciclado} {Color del artículo: Ivory / Iron Metallic / Spark} {Número de artículo: IG3341}', 'description': 'Cuando se trata de alcanzar tus metas, cada segundo cuenta. Ya sea para entrenar o para competir, un rendimiento excelente requiere de prendas de alta tecnología optimizadas para la velocidad. Presentamos la nueva colección de tenis de running livianos que te ayudan a superar tus límites sin distracciones.\\n\\nLos tenis de running Adizero SL seleccionan lo mejor de nuestra franquicia Adizero que rompe récords mundiales. La mediasuela de EVA LIGHTSTRIKE liviana ofrece resiliencia a la mediasuela para que puedas concentrarte en el próximo paso, mientras que el exterior está hecho de una malla técnica suave que está zonificada en áreas clave. El talón acolchado y la lengüeta brindan una comodidad óptima junto con el antepié Adizero. La suela premium está diseñada para proporcionar tracción.', 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Si este artículo es personalizado | {Sistema de amarre de cordones para un ajuste inmejorable} | El exterior contiene al menos un 50% de material reciclado | Caucha | null | No | Ivory / Iron Metallic / Spark | IG3341 | Running | Mujer |\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {Plantilla OrthoLite®} {Mediasuela Cloudfoam} {Peso: 304 g (talla CO 40)} {Caída mediasuela: 10 mm (talón: 33 mm / antepié: 23 mm)} {Suela Adiwear} {Color del artículo: Cloud White / Core Black / Better Scarlet} {Número de artículo: IE8818}', 'description': 'Tanto en la pista como en la cinta de correr, alcanza todas tus metas con estos tenis de running adidas. Incorporan una mediasuela con amortiguación Cloudfoam que te ofrece una pisada más cómoda y suave. La parte superior de malla transpirable y la suela Adiwear de gran resistencia al desgaste la convierten en una silueta perfecta para llevar durante todo el día.', 'category': 'Hombre • Running'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Sistema de amarre de cordones | Parte superior de malla | Forro interno textil | Mediasuela Cloudfoam | Talla CO 40 | null | Cloud White / Core Black / Better Scarlet | IE8818 | Running | Hombre |\n", + "\n", + "Nota: Las etiquetas \"Peso y/o talla\" no tienen una relación directa con la información proporcionada, por lo que su valor es \"null\".\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {mediasuela Dreamstrike+} {Suela Adiwear} {Peso (talla CO 37): 213 gramos} {Caída mediasuela: 10 mm (talón: 34 mm / 24 mm)} {Contienen al menos un 20% de material reciclado y renovable} {Color del artículo: Almost Yellow / Zero Metalic / Pink Spark} {Número de artículo: IE1072}', 'description': 'Avanza hacia tus metas de running con estos tenis adidas. La mediasuela Dreamstrike+ está diseñada para absorber el impacto. La amortiguación adicional en el antepié ofrece comodidad durante toda tu carrera. El exterior de malla transpirable maximiza el flujo de aire para mantener tus pies frescos, y la suela Adiwear resistente ofrece tracción. \\n\\nAl elegir materiales reciclados, podemos reutilizar materiales que ya han sido creados, lo que ayuda a reducir los residuos. La elección de materiales renovables nos ayudará a eliminar nuestra dependencia de recursos finitos. Nuestros productos hechos con una mezcla de materiales reciclados y renovables contienen al menos un 20% de este material.', 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Sistema de amarre de cordones | Forro interno textil | mediasuela Dreamstrike+ | Suela Adiwear | CO 37: 213 gramos | Contienen al menos un 20% de material reciclado y renovable | Almost Yellow / Zero Metalic / Pink Spark | IE1072 | Running | Mujer |\n", + "\n", + "Nota: Se han completado los valores que no tenían una correspondencia clara con las etiquetas del producto original.\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de malla con cuello acolchado} {Forro interno textil} {Estabilizador de talón moldeado Fitcounter} {Mediasuela Bounce} {Suela sintética} {El exterior contiene al menos un 50 % de material reciclado} {Color del artículo: Shadow Violet / Legend Ink / Wonder Clay} {Número de artículo: IG0334}', 'description': 'Estos tenis fueron diseñados para darte la amortiguación y la respuesta que necesitas cuando estás en la pista o en los senderos. Sin importar si vas a hacer tu caminata diaria o una carrera corta, la mediasuela Bounce es flexible y receptiva con cada paso. Hecho con una serie de materiales reciclados, el exterior incorpora al menos un 50 % de contenido reciclado. Este producto representa solo una de nuestras soluciones para acabar con los residuos plásticos.', 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Sistema de amarre de cordones | Exterior de malla con cuello acolchado | Forro interno textil | Mediasuela Bounce | null | Si | Shadow Violet / Legend Ink / Wonder Clay | IG0334 | Running | Mujer\n", + "\n", + "------------------------\n", + "\n" + ] + } + ], + "source": [ + "dfs = []\n", + "for producto in productos:\n", + " prompt = generar_prompt_ollama(producto, etiquetas)\n", + " respuesta = obtener_respuesta_ollama(prompt)\n", + " print(producto)\n", + " print(\"Respuesta del modelo:\")\n", + " print(respuesta[\"message\"][\"content\"])\n", + " print(\"\\n------------------------\\n\")\n", + " df = procesar_respuesta(respuesta[\"message\"][\"content\"], etiquetas)\n", + " if df is not None:\n", + " dfs.append(df)\n", + " else:\n", + " print(\"No se pudo extraer la tabla.\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": {}, + "outputs": [], + "source": [ + "if dfs:\n", + " df_total = pd.concat(dfs, ignore_index=True)\n", + "else:\n", + " print(\"No se pudo crear el DataFrame total.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cordonestextil exteriortextil interiorsuelapeso y/o tallaeco diseñado si o nocoloridentificadornombre de deportegenero Mujer/Hombre/MIXTO
0Adizero Adios Pro 3Parte superior sintéticaForro interno textilDelgada suela de caucho textilCO 37Pink Spark / Aurora Met. / Sandy PinkID3612RunningMujer
1Sistema de amarre de cordonesadidas PrimeknitnullMediasuela BOOSTTalla CO 37, 289 gSiCore Black / Cloud WhiteGX5591RunningMujer
2Cierre de cordonesParte superior de malla técnicaAmortiguación Lightstrike ProSuela de caucho Continental™166 g (Talla COL 36 1/2)Contiene al menos un 20 % de material recicladoGreen Spark / Aurora Met. / Lucid LemonIG8206RunningMujer
3Sistema de amarre de cordonesParte superior de mallaAmortiguación Lightstrike ProSuela de caucho Continental™ RubberCO 40Contienen al menos un 20% de material recicladoGreen Spark / Aurora Met. / Lucid LemonIG3134RunningMujer/Hombre/MIXTO
4Sistema de amarre de cordonesParte superior textilForro interno textilMediasuela Cloudfoam, Suela de TPUTalla CO 40Halo Silver / Carbon / Core BlackID8754RunningHombre
5Si este artículo es personalizado{Sistema de amarre de cordones para un ajuste ...El exterior contiene al menos un 50% de materi...CauchanullNoIvory / Iron Metallic / SparkIG3341RunningMujer
6Sistema de amarre de cordonesParte superior de mallaForro interno textilMediasuela CloudfoamTalla CO 40nullCloud White / Core Black / Better ScarletIE8818RunningHombre
7Sistema de amarre de cordonesForro interno textilmediasuela Dreamstrike+Suela AdiwearCO 37: 213 gramosContienen al menos un 20% de material reciclad...Almost Yellow / Zero Metalic / Pink SparkIE1072RunningMujer
8Sistema de amarre de cordonesExterior de malla con cuello acolchadoForro interno textilMediasuela BouncenullSiShadow Violet / Legend Ink / Wonder ClayIG0334RunningMujer
\n", + "
" + ], + "text/plain": [ + " cordones \\\n", + "0 Adizero Adios Pro 3 \n", + "1 Sistema de amarre de cordones \n", + "2 Cierre de cordones \n", + "3 Sistema de amarre de cordones \n", + "4 Sistema de amarre de cordones \n", + "5 Si este artículo es personalizado \n", + "6 Sistema de amarre de cordones \n", + "7 Sistema de amarre de cordones \n", + "8 Sistema de amarre de cordones \n", + "\n", + " textil exterior \\\n", + "0 Parte superior sintética \n", + "1 adidas Primeknit \n", + "2 Parte superior de malla técnica \n", + "3 Parte superior de malla \n", + "4 Parte superior textil \n", + "5 {Sistema de amarre de cordones para un ajuste ... \n", + "6 Parte superior de malla \n", + "7 Forro interno textil \n", + "8 Exterior de malla con cuello acolchado \n", + "\n", + " textil interior \\\n", + "0 Forro interno textil \n", + "1 null \n", + "2 Amortiguación Lightstrike Pro \n", + "3 Amortiguación Lightstrike Pro \n", + "4 Forro interno textil \n", + "5 El exterior contiene al menos un 50% de materi... \n", + "6 Forro interno textil \n", + "7 mediasuela Dreamstrike+ \n", + "8 Forro interno textil \n", + "\n", + " suela peso y/o talla \\\n", + "0 Delgada suela de caucho textil CO 37 \n", + "1 Mediasuela BOOST Talla CO 37, 289 g \n", + "2 Suela de caucho Continental™ 166 g (Talla COL 36 1/2) \n", + "3 Suela de caucho Continental™ Rubber CO 40 \n", + "4 Mediasuela Cloudfoam, Suela de TPU Talla CO 40 \n", + "5 Caucha null \n", + "6 Mediasuela Cloudfoam Talla CO 40 \n", + "7 Suela Adiwear CO 37: 213 gramos \n", + "8 Mediasuela Bounce null \n", + "\n", + " eco diseñado si o no \\\n", + "0 Sí \n", + "1 Si \n", + "2 Contiene al menos un 20 % de material reciclado \n", + "3 Contienen al menos un 20% de material reciclado \n", + "4 Sí \n", + "5 No \n", + "6 null \n", + "7 Contienen al menos un 20% de material reciclad... \n", + "8 Si \n", + "\n", + " color identificador nombre de deporte \\\n", + "0 Pink Spark / Aurora Met. / Sandy Pink ID3612 Running \n", + "1 Core Black / Cloud White GX5591 Running \n", + "2 Green Spark / Aurora Met. / Lucid Lemon IG8206 Running \n", + "3 Green Spark / Aurora Met. / Lucid Lemon IG3134 Running \n", + "4 Halo Silver / Carbon / Core Black ID8754 Running \n", + "5 Ivory / Iron Metallic / Spark IG3341 Running \n", + "6 Cloud White / Core Black / Better Scarlet IE8818 Running \n", + "7 Almost Yellow / Zero Metalic / Pink Spark IE1072 Running \n", + "8 Shadow Violet / Legend Ink / Wonder Clay IG0334 Running \n", + "\n", + " genero Mujer/Hombre/MIXTO \n", + "0 Mujer \n", + "1 Mujer \n", + "2 Mujer \n", + "3 Mujer/Hombre/MIXTO \n", + "4 Hombre \n", + "5 Mujer \n", + "6 Hombre \n", + "7 Mujer \n", + "8 Mujer " + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_total" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Paso 5: Nike" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "df_nike = df_raw[df_raw['store'] == 'nike']" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_5352\\989177854.py:1: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_nike['details_transformado'] = df_nike['details'].apply(transformar_texto)\n" + ] + } + ], + "source": [ + "df_nike['details_transformado'] = df_nike['details'].apply(transformar_texto)" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'\\xa0': ' '}]" + ] + }, + "execution_count": 100, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_nike['details'].iloc[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_5352\\1496571984.py:2: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_nike['details_transformado'] = df_nike['details'].apply(lambda x: transformar_texto(x, 'nike'))\n" + ] + } + ], + "source": [ + "# Aplicar la transformación con el parámetro 'adidas'\n", + "df_nike['details_transformado'] = df_nike['details'].apply(lambda x: transformar_texto(x, 'nike'))" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [], + "source": [ + "# Crear un diccionario con las llaves deseadas\n", + "productos_nike = [\n", + " {\n", + " \"details\": row['details_transformado'],\n", + " \"description\": row['description'],\n", + " \"category\": row['category']\n", + " }\n", + " for _, row in df_nike[:10].iterrows() \n", + " if row['details_transformado'] != '{}'\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'details': \"{{'\\\\xa0': ' '}}\", 'description': 'Cargamos el Revolution 7 con el tipo de amortiguación suave y soporte que podría cambiar tu mundo del running. Elegante como siempre, cómodo cuando la goma se encuentra con la carretera y con alto rendimiento para el ritmo deseado, es una evolución de un favorito de los fanáticos que ofrece una conducción suave y tersa.', 'category': 'Calzado de correr en pavimento para mujer'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Zapatillas cómodas | null | null | null | null | null | null | Revolution 7 | Correr | Mujer\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Características principales': 'Características principales'}} {{'Datos del producto': 'Datos del producto'}} {{'Soporte: neutro': 'Soporte: neutro'}} {{'Ajuste adaptable': 'Ajuste adaptable'}} {{'Datos del producto': 'Datos del producto'}}\", 'description': 'El Winflo 11 es el calzado con una pisada balanceada que te ayudará a impulsar tu carrera a un ritmo que te permitirá acumular kilómetros, metros y objetivos. Impulsado por la amortiguación Nike Air de largo completo, el Winflo 11 cuenta ahora con un antepié más amplio, un talón más ancho y una mayor transpirabilidad en comparación con el Winflo 10. Es el tipo de fijación que crea hábito y que te ayudará a ponerte en marcha, a lucir bien en la carretera con colores fáciles de combinar y a volver al día siguiente por más.', 'category': 'Calzado de correr en pavimento para mujer'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Zapatillas con fijación | Neutra | Textil sintético | Suela de goma | - | Si | Blanco/Rosa/Violeta/Verde | WINFLO 11 | Correr en pavimento para mujer | Mujer/Hombre/MIXTO |\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'\\\\xa0': ' '}}\", 'description': 'Con la máxima amortiguación para brindarte soporte en cada kilómetro, el Invincible 3 ofrece nuestro más alto nivel de comodidad en la planta del pie. Su espuma ZoomX Foam suave y flexible te ayuda a mantener la estabilidad y la frescura. En otras palabras, te sentirás bien todo el día, sin importar lo que hagas. Y al juntar toda esta amortiguación con colores fáciles de combinar, obtienes un calzado que no te vas a querer quitar.', 'category': 'Calzado de correr en pavimento para mujer'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Null | Null | Null | Null | Null | Si | Color fáciles de combinar | Invincible 3 | Calzado de correr en pavimento para mujer | Mujer\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Amortiguación: superalta': 'Cuanta más amortiguación tengas en la planta del pie} {más suave y cómoda puede ser tu experiencia de running. La amortiguación suaviza el impacto cuando los pies llegan al suelo. Con una amortiguación Nike ZoomX con la forma de una mecedora y una espuma más alta} {este calzado te brinda la máxima amortiguación al contacto con el suelo y una sensación aún más suave en la planta del pie.'}} {{'Responsividad: superalta': 'Cuanto más responsivo sea el calzado} {más retorno de energía obtendrás con cada paso. Ya sea que quieras correr un poco más rápido o con un poco menos de esfuerzo} {un calzado responsivo te brinda más elasticidad en tu pisada para que aproveches al máximo tu carrera. La espuma Nike ZoomX es muy responsiva y ligera} {esto brinda rebote y respuesta rápida a cada paso.'}} {{'Ajuste: seguro} {transpirable y cómodo': 'La parte superior evolucionada de Flyknit sitúa las zonas de transpirabilidad donde el pie se calienta más. Es resistente y duradera para mantener el pie seguro a cada kilómetro.'}} {{'¿Qué novedades tiene el Invincible 3?': 'Creamos el clip del talón más pequeño que el de nuestra versión anterior y lo colocamos en una ubicación más precisa. La entresuela más ancha agrega estabilidad. La espuma apilada más alta que la de nuestra versión anterior eleva la vara en términos de amortiguación y comodidad en un diseño más elegante.'}}\", 'description': 'Con la máxima amortiguación para soportar cada kilómetro, el Invincible 3 tiene nuestro más alto nivel de comodidad a tus pies. Su espuma ZoomX Foam suave y flexible te ayuda a mantener la estabilidad y la frescura. En otras palabras, te sentirás bien todo el día, sin importar lo que hagas. Tiene todo lo que necesitas para que puedas impulsarte por tu camino preferido y volver a tu próxima carrera sintiéndote listo y revitalizado.', 'category': 'Calzado de running en carretera para hombre'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Amortiguación: superalta | Nike ZoomX con forma de mecedora y espuma más alta | transpirable | Cuanta más amortiguación tengas en la planta del pie | null | Si | Blanco/Sierra Verde | Invincible 3 | Calzado de running en carretera para hombre | Hombre\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Confeccionada con Nike Grind': 'La suela con diseño tipo waffle cuenta con al menos un 13% de material Nike Grind} {confeccionado con residuos del proceso de fabricación de calzado.'}} {{'Pisada suave': 'La espuma suave y responsiva en la entresuela ofrece una marcha cómoda y suave para tu carrera donde sea que te lleve el día. La espuma más alta proporciona una sensación de suavidad.'}} {{'Échate a volar': 'La parte superior de Flyknit tiene zonas de transpirabilidad donde el pie se calienta más} {específicamente en la punta. Es fuerte y duradera} {lo que ayuda a mantener tu pie seguro en cada kilómetro. La parte superior aireada y ventilada abraza el pie de una manera ligera y sencilla.'}} {{'Más beneficios': 'Más beneficios'}}\", 'description': '¿Puedes ver el futuro? Avanza rápido con el diseño vanguardista del Nike Interact Run. Está diseñado con todas las bondades del running que necesitas: una parte superior ligera de Flyknit, una entresuela de espuma suave y comodidad donde importa. Escanea el código QR de la lengüeta con tu teléfono y consulta nuestra introducción en línea a los detalles de Nike Interact Run.', 'category': 'Calzado de running en carretera para hombre'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Nike Grind | - | - | waffle | null | sí | - | - | Running | Hombre/MIXTO |\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Amortiguación: alta': 'Cuanta más amortiguación tengas en la planta del pie} {más suave y cómoda puede ser tu experiencia de running. La amortiguación suaviza el impacto cuando los pies llegan al suelo. La espuma nueva y mejorada en la entresuela ofrece una sensación suave y cómoda mientras acumulas kilómetros. Las pilas altas de espuma mantienen la comodidad. La espuma} {a la que se le dio la forma de mecedora} {brinda soporte en las tres fases de la pisada de un runner. Te brinda flexibilidad cuando levantas el pie del suelo} {un deslizamiento suave cuando el pie se mueve hacia delante y amortiguación al contacto con el suelo.'}} {{'Responsividad: mínima': 'Cuanto más responsivo sea el calzado} {más retorno de energía obtendrás con cada paso. Ya sea que quieras correr un poco más rápido o con un poco menos de esfuerzo} {un calzado responsivo te brinda más elasticidad en tu pisada para que aproveches al máximo tu carrera. La unidad Zoom Air en el antepié aporta amortiguación responsiva. Cada paso crea retorno de energía para impulsarte hacia delante de forma responsiva y con elasticidad.'}} {{'Ajuste adaptable': 'El antepié adaptable tiene suficiente espacio para extender los dedos. El antepié más amplio complementa la base más ancha y una pisada suave. La estructura y contención adicionales alrededor del talón ofrecen un ajuste con más soporte.'}} {{'¿Qué innovaciones tiene el Structure 25?': 'Le agregamos más espuma que a nuestros Structure anteriores y también tiene mejor soporte y comodidad que su predecesor. La espuma nueva y mejorada en la planta del pie brinda soporte.'}} {{'Más beneficios': 'Más beneficios'}}\", 'description': 'Con estabilidad donde la necesitas y amortiguación donde la quieres, el Structure 25 te apoya en los recorridos largos, las carreras cortas de entrenamiento e incluso con unas sentadillas antes de que acabe el día. Es la estabilidad que buscas, leal desde el primer momento, probado y confiable, con un sistema de soporte completo en el mediopié y una amortiguación más cómoda que antes.', 'category': 'Calzado de running en carretera para mujer'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Amortiguación: alta | Espuma | Textil | Suela con espuma | Pila alta | No | Blanco/ Negro | Structure 25 | Running | Mujer/MIXTO\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Características principales': 'Características principales'}} {{'Datos del producto': 'Datos del producto'}} {{'Responsividad: moderada': 'Responsividad: moderada'}} {{'Transpirabilidad contenida': 'Transpirabilidad contenida'}} {{'Más beneficios': 'Más beneficios'}} {{'Datos del producto': 'Datos del producto'}}\", 'description': 'La amortiguación máxima proporciona una comodidad mejorada para las carreras diarias. Disfruta de una plataforma suave con forma de mecedora confeccionada con la espuma ReactX Foam nueva en la planta del pie, así como de un cuello y una lengüeta ultracómodos para ofrecer un ajuste ceñido. Además, se añadió una membrana resistente al agua a esta versión para ayudar a evitar la humedad.', 'category': 'Calzado de correr en carretera para mujer'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Características principales | La amortiguación máxima proporciona una comodidad mejorada para las carreras diarias. Disfruta de una plataforma suave con forma de mecedora confeccionada con la espuma ReactX Foam nueva en la planta del pie, así como de un cuello y una lengüeta ultracómodos para ofrecer un ajuste ceñido. Además, se añadió una membrana resistente al agua a esta versión para ayudar a evitar la humedad. | Hechas con materiales reciclados | Transpirabilidad contenida | Moderada | Negro | X | | Calzado de correr en carretera para mujer | Mujer\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Amortiguación: superalta': 'Cuanta más amortiguación tengas en la planta del pie} {más suave y cómoda puede ser tu experiencia de running. La amortiguación suaviza el impacto cuando los pies llegan al suelo. La espuma ReactX Foam te brinda una sensación increíblemente suave que te ayuda a ir más allá de tus límites.'}} {{'Soporte: alto': 'Cuanto más soporte ofrece el calzado} {más estabilidad puede darle a tu pisada natural. La combinación de soporte optimizado y amortiguación colocada intencionalmente te ayuda a sentir seguridad en cada paso. La suela curva ayuda a que tu pie se balancee suavemente desde el talón hasta la punta y en cada paso hasta la pisada. Hace que cada paso se sienta más natural y agrega eficiencia a tu carrera} {lo que te ayuda a desperdiciar menos energía en cada pisada. La nueva banda de ajuste Flyknit interna (como una banda de goma alrededor de la parte media del pie) ofrece un soporte elástico y seguro.'}} {{'Responsividad: moderada': 'Cuanto más responsivo sea el calzado} {más retorno de energía obtendrás con cada paso. Ya sea que quieras correr un poco más rápido o con un poco menos de esfuerzo} {un calzado responsivo te brinda más elasticidad en tu pisada para que aproveches al máximo tu carrera. La espuma ReactX Foam te brinda un 13% adicional de retorno de energía en comparación con la espuma React Foam} {lo que te ayuda a mantener la frescura y la elasticidad durante la carrera.'}} {{'Transpirabilidad contenida': 'El forro repelente al agua en la punta te ayuda a mantenerte libre de humedad cuando cambia el tiempo.'}} {{'Más beneficios': 'Más beneficios'}}\", 'description': 'El Nike InfinityRN 4, con una amortiguación con soporte diseñada para ofrecer una carrera uniforme, es una nueva versión de un favorito conocido. Está hecho con nuestra nueva espuma Nike ReactX Foam que te brinda un 13% adicional de retorno de energía en comparación con la espuma Nike React Foam, lo que te ayuda a mantener la frescura y la elasticidad. (¿Y qué más? Nike ReactX reduce su huella de carbono en un par de entresuelas en al menos un 43% en comparación con la espuma Nike React Foam*). Combinamos la espuma ReactX Foam con el Flyknit más adaptable de Nike Running hasta la fecha, para que puedas despegar en cualquier momento y en cualquier lugar con un soporte seguro y transpirabilidad en la parte superior. Es el tipo de calzado que puede concederte esa tranquilidad que no tiene precio para ir más lejos y más rápido gracias a un diseño intuitivo que brinda soporte a cada paso. *La huella de carbono de ReactX se basa en un análisis de todo el proceso de producción, verificado por Intertek China y PRé Sustainability B.V. No se consideraron otros componentes de la entresuela, como cámaras de aire, placas u otras formulaciones de espuma.', 'category': 'Calzado de running en carretera para hombre'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Amortiguación: superalta | Nike ReactX Foam | Flyknit más adaptable | Suela curva | - | No | Negro/Blanco | InfinityRN 4 | Calzado de running en carretera para hombre | Hombre/MIXTO |\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Responsividad: superalta': 'Cuanto más responsivo sea el calzado} {más retorno de energía obtendrás con cada paso. Ya sea que quieras correr un poco más rápido o con un poco menos de esfuerzo} {un calzado responsivo te brinda más elasticidad en tu pisada para que aproveches al máximo tu carrera. En el Vomero 17} {nuestro calzado con el mejor resorte} {el pie descansa sobre una pila de ZoomX Foam} {la espuma más ligera y con mayor retorno de energía de Nike Running} {en la parte superior} {y espuma suave en la parte inferior para tener una pisada energizada} {pero suave.'}} {{'Soporte: neutro': 'Cuanto más soporte ofrece el calzado} {más estabilidad puede darle a tu pisada natural. La combinación de soporte optimizado y amortiguación colocada intencionalmente te ayuda a sentir seguridad en cada paso. El Vomero 17 tiene un soporte neutro. Te brinda equilibrio} {ya sea que pises con el talón o con el antepié. También es bueno para carreras largas y cortas; ofrece una transición suave del talón a la punta que complementa la pisada natural.'}} {{'Ajuste y sensación': 'Este calzado se enorgullece en tener comodidad premium que te pone en modo crucero para distancias largas o cortas. La malla diseñada estratégicamente le da más ligereza y transpirabilidad a la parte superior en comparación con los Vomero anteriores. La plantilla suave ofrece comodidad al ponértelo y el cuello es cómodo en el talón al momento de correr. La lengüeta acolchada y las agujetas suaves y elásticas completan una experiencia general ultracómoda.'}} {{'¿Qué novedades tiene el Vomero 17?': 'Simplificamos la estructura del 17 al quitar la unidad Zoom Air del antepié y apilar espuma ZoomX Foam premium arriba de la entresuela para amplificar la comodidad acolchada. El resultado es una pisada más suave y responsiva.'}} {{'Más beneficios': 'Más beneficios'}}\", 'description': 'El Vomero 17 proporciona una pisada elástica y suave para energizar cada kilómetro, la cual te lleva a tu lugar feliz de running. Su espuma apilada proporciona una responsividad superior para ayudarte a mejorar cuando estés listo para esa velocidad adicional. Y con mejoras generales que ofrecen un nuevo nivel de comodidad ligera y transpirabilidad, este calzado es para aquellos runners de carretera que buscan la emoción del vroom y la sensación de suavidad que te pone en modo crucero para distancias cortas o largas.', 'category': 'Calzado de running en carretera para hombre'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Responsividad: superalta | ZoomX Foam, espuma más ligera y con mayor retorno de energía de Nike Running | - | suela sin especificar | null | No | Color negro/negro escuro | Vomero 17 | Calzado de running en carretera para hombre | Mujer/Hombre/MIXTO |\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'La innovación es nuestra inspiración': 'La innovación es nuestra inspiración'}} {{'Soporte: alto': 'Soporte: alto'}} {{'Amortiguación: superalta': 'Amortiguación: superalta'}} {{'Responsividad: superalta': 'Responsividad: superalta'}} {{'Ajuste: seguro} {transpirable y cómodo': 'Ajuste: seguro} {transpirable y cómodo'}} {{'¿Qué novedades tienen los Invincible 3?': '¿Qué novedades tienen los Invincible 3?'}} {{'Datos del producto': 'Datos del producto'}}\", 'description': 'Con la máxima amortiguación para brindarte soporte en cada kilómetro, el Invincible 3 ofrece nuestro más alto nivel de comodidad en la planta del pie. Sigue corriendo hoy, mañana y siempre. La espuma ZoomX Foam ultraresponsiva y ligera, que cuenta con un diseño avanzado según las especificaciones exactas de atletas campeones, te ayuda a seguir corriendo. Puede ayudarte a impulsarte por tu camino preferido y volver a tu próxima carrera sintiéndote con energía y vitalidad.', 'category': 'Calzado de correr en carretera para hombre'}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| La innovación es nuestra inspiración | transpirable y cómodo | superalta | alta | | no | negro, gris | Invincible 3 | Calzado de correr en carretera para hombre | Hombre\n", + "\n", + "------------------------\n", + "\n" + ] + } + ], + "source": [ + "dfs_nike = []\n", + "for producto in productos_nike:\n", + " prompt = generar_prompt_ollama(producto, etiquetas)\n", + " respuesta = obtener_respuesta_ollama(prompt)\n", + " print(producto)\n", + " print(\"Respuesta del modelo:\")\n", + " print(respuesta[\"message\"][\"content\"])\n", + " print(\"\\n------------------------\\n\")\n", + " df_nike = procesar_respuesta(respuesta[\"message\"][\"content\"], etiquetas)\n", + " if df_nike is not None:\n", + " dfs_nike.append(df_nike)\n", + " else:\n", + " print(\"No se pudo extraer la tabla.\\n\")" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [], + "source": [ + "if dfs_nike:\n", + " df_total_nike = pd.concat(dfs_nike, ignore_index=True)\n", + "else:\n", + " print(\"No se pudo crear el DataFrame total.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cordonestextil exteriortextil interiorsuelapeso y/o tallaeco diseñado si o nocoloridentificadornombre de deportegenero Mujer/Hombre/MIXTO
0Zapatillas cómodasnullnullnullnullnullnullRevolution 7CorrerMujer
1Zapatillas con fijaciónNeutraTextil sintéticoSuela de goma-SiBlanco/Rosa/Violeta/VerdeWINFLO 11Correr en pavimento para mujerMujer/Hombre/MIXTO
2NullNullNullNullNullSiColor fáciles de combinarInvincible 3Calzado de correr en pavimento para mujerMujer
3Amortiguación: superaltaNike ZoomX con forma de mecedora y espuma más ...transpirableCuanta más amortiguación tengas en la planta d...nullSiBlanco/Sierra VerdeInvincible 3Calzado de running en carretera para hombreHombre
4Nike Grind--wafflenull--RunningHombre/MIXTO
5Amortiguación: altaEspumaTextilSuela con espumaPila altaNoBlanco/ NegroStructure 25RunningMujer/MIXTO
6Características principalesLa amortiguación máxima proporciona una comodi...Hechas con materiales recicladosTranspirabilidad contenidaModeradaNegroXNaNCalzado de correr en carretera para mujerMujer
7Amortiguación: superaltaNike ReactX FoamFlyknit más adaptableSuela curva-NoNegro/BlancoInfinityRN 4Calzado de running en carretera para hombreHombre/MIXTO
8Responsividad: superaltaZoomX Foam, espuma más ligera y con mayor reto...-suela sin especificarnullNoColor negro/negro escuroVomero 17Calzado de running en carretera para hombreMujer/Hombre/MIXTO
9La innovación es nuestra inspiracióntranspirable y cómodosuperaltaaltaNaNnonegro, grisInvincible 3Calzado de correr en carretera para hombreHombre
\n", + "
" + ], + "text/plain": [ + " cordones \\\n", + "0 Zapatillas cómodas \n", + "1 Zapatillas con fijación \n", + "2 Null \n", + "3 Amortiguación: superalta \n", + "4 Nike Grind \n", + "5 Amortiguación: alta \n", + "6 Características principales \n", + "7 Amortiguación: superalta \n", + "8 Responsividad: superalta \n", + "9 La innovación es nuestra inspiración \n", + "\n", + " textil exterior \\\n", + "0 null \n", + "1 Neutra \n", + "2 Null \n", + "3 Nike ZoomX con forma de mecedora y espuma más ... \n", + "4 - \n", + "5 Espuma \n", + "6 La amortiguación máxima proporciona una comodi... \n", + "7 Nike ReactX Foam \n", + "8 ZoomX Foam, espuma más ligera y con mayor reto... \n", + "9 transpirable y cómodo \n", + "\n", + " textil interior \\\n", + "0 null \n", + "1 Textil sintético \n", + "2 Null \n", + "3 transpirable \n", + "4 - \n", + "5 Textil \n", + "6 Hechas con materiales reciclados \n", + "7 Flyknit más adaptable \n", + "8 - \n", + "9 superalta \n", + "\n", + " suela peso y/o talla \\\n", + "0 null null \n", + "1 Suela de goma - \n", + "2 Null Null \n", + "3 Cuanta más amortiguación tengas en la planta d... null \n", + "4 waffle null \n", + "5 Suela con espuma Pila alta \n", + "6 Transpirabilidad contenida Moderada \n", + "7 Suela curva - \n", + "8 suela sin especificar null \n", + "9 alta NaN \n", + "\n", + " eco diseñado si o no color identificador \\\n", + "0 null null Revolution 7 \n", + "1 Si Blanco/Rosa/Violeta/Verde WINFLO 11 \n", + "2 Si Color fáciles de combinar Invincible 3 \n", + "3 Si Blanco/Sierra Verde Invincible 3 \n", + "4 sí - - \n", + "5 No Blanco/ Negro Structure 25 \n", + "6 Negro X NaN \n", + "7 No Negro/Blanco InfinityRN 4 \n", + "8 No Color negro/negro escuro Vomero 17 \n", + "9 no negro, gris Invincible 3 \n", + "\n", + " nombre de deporte genero Mujer/Hombre/MIXTO \n", + "0 Correr Mujer \n", + "1 Correr en pavimento para mujer Mujer/Hombre/MIXTO \n", + "2 Calzado de correr en pavimento para mujer Mujer \n", + "3 Calzado de running en carretera para hombre Hombre \n", + "4 Running Hombre/MIXTO \n", + "5 Running Mujer/MIXTO \n", + "6 Calzado de correr en carretera para mujer Mujer \n", + "7 Calzado de running en carretera para hombre Hombre/MIXTO \n", + "8 Calzado de running en carretera para hombre Mujer/Hombre/MIXTO \n", + "9 Calzado de correr en carretera para hombre Hombre " + ] + }, + "execution_count": 110, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_total_nike" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Nacion Runer" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": {}, + "outputs": [], + "source": [ + "df_nr = df_raw[df_raw['store'] == 'nacionRunner']" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(263, 13)" + ] + }, + "execution_count": 116, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_nr.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['id', 'details', 'store', 'manufacturer', 'url', 'title',\n", + " 'regularPrice', 'undiscounted_price', 'description', 'category',\n", + " 'createdAt', 'characteristics', 'gender'],\n", + " dtype='object')" + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_nr.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_5352\\2945244906.py:2: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_nr['details_transformado'] = df_nr['details'].apply(lambda x: transformar_texto(x, 'adidas'))\n" + ] + } + ], + "source": [ + "# Aplicar la transformación con el parámetro 'adidas'\n", + "df_nr['details_transformado'] = df_nr['details'].apply(lambda x: transformar_texto(x, 'adidas'))" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": {}, + "outputs": [], + "source": [ + "# Crear un diccionario con las llaves deseadas\n", + "productos_nr = [\n", + " {\n", + " \"details\": row['details_transformado'],\n", + " \"description\": row['description'],\n", + " \"category\": row['category']\n", + " }\n", + " for _, row in df_nr[:10].iterrows() \n", + " if row['details_transformado'] != '{}'\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'details': \"{{'Pisada': 'Neutro • Supinador'}} {{'Peso del Corredor': 'Ideal hasta 85 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': 'Entre 4:30 y 6:00 min/Km'}} {{'Distancia Recomendada': 'Desde 5 hasta 42 Km'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Comodidad y Amortiguación Superior': 'Las Brooks Ghost 15 se destacan por su amortiguación DNA Loft v2, que proporciona una sensación de suavidad y confort bajo los pies, perfecta para quienes buscan un calzado que se adapte a ritmos de carrera que van desde 4:30 min/km hasta 6:00 min/km. Con un drop de 11 mm, estas zapatillas están diseñadas para corredoras con pisada neutra o supinadora, ofreciendo un soporte equilibrado que facilita la transición en cada zancada.'}, {'Diseñadas para Ritmos y Distancias Variadas': 'Ideales para distancias que van desde los 5 km hasta el maratón, las Brooks Ghost 15 están construidas para soportar volúmenes de entrenamiento semanal que oscilan entre 20 km y más de 50 km. Su capacidad de adaptarse tanto a ritmos rápidos como a entrenamientos más tranquilos las convierte en una opción versátil para el entrenamiento diario en asfalto, asegurando estabilidad y respuesta en cada paso.'}, {'Upper y Suela Mejorados para un Rendimiento Óptimo': 'El upper de malla de ingeniería de las Brooks Ghost 15 ha sido diseñado para mejorar la transpirabilidad y el ajuste, utilizando aproximadamente un 25% de materiales reciclados. Esta estructura permite una excelente ventilación y un ajuste seguro sin comprometer la ligereza. La suela de goma proporciona una tracción duradera y fiable, ideal para mantener la seguridad en todo tipo de superficies durante tus entrenamientos.'}], 'category': nan}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Neutro • Supinador | Malla de ingeniería | Upper con materiales reciclados | Goma | Ideal hasta 85 Kg | Sí | Neutro | Brooks Ghost 15 | Corredora | Mujer |\n", + "\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Entre 4:30 y 6:00 min/Km | Ventilación | Ajuste seguro sin comprometer la ligereza | Duradera y fiable | | Sí | Asfalto | | Corredora | Mujer |\n", + "\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Desde 5 hasta 42 Km | Ventilación | Ajuste seguro sin comprometer la ligerezza | Duradera y fiable | | Sí | Asfalto | | Corredora | Mujer\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Pisada': 'Neutro'}} {{'Peso del Corredor': 'Ideal hasta 85 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': 'Entre 4:00 y 5:45 min/Km'}} {{'Distancia Recomendada': 'Entre 5 y 21 Km | Entreno en pista'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'El equilibrio perfecto entre velocidad y comodidad': '¡Hey Runner! Las Hoka Mach 6 son ideales para quienes buscan correr rápido sin perder comodidad. Estas zapatillas han sido diseñadas para corredores avanzados que necesitan una opción confiable tanto para entrenamientos de calidad como para competiciones de hasta 21 km. Con una amortiguación reactiva y un diseño ligero, este modelo es perfecto para mantener ritmos rápidos y consistentes, sin la necesidad de una placa de carbono. Si pesas hasta 85 kg y cuentas con una buena base de entrenamiento, las Mach 6 serán tus aliadas en el asfalto. ¡Estas zapatillas son una competencia directa de las New Balance Rebel v4!'}, {'Versatilidad y rendimiento en cada paso': 'Las Hoka Mach 6 destacan por su mediasuela de espuma Supercrítica, que proporciona una pisada dinámica y un excelente retorno de energía. El MetaRocker en la suela te impulsa hacia adelante con cada zancada, haciéndolas ideales para ritmos vivos entre 4:00 min/km y 5:45 min/km. Su capellada de malla Jacquard Creel garantiza transpirabilidad y un ajuste cómodo, mientras que los refuerzos estratégicos de goma en la suela aseguran tracción en superficies mojadas.'}], 'category': nan}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Pisada | Neutro | null | MetaRocker | Ideal hasta 85 Kg | Si | Asfalto | Mach 6 | Corre | Mujer |\n", + "\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Entre 4:00 y 5:45 min/Km | null | null | Altimetral con espuma Supercrítica | Entre 5 y 21 Km | Si | Color neutro | New Balance Rebel v4 | Corre | Hombre\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Pisada': 'Neutro • Supinador'}} {{'Peso del Corredor': 'Ideal hasta 80 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': '5:00 min/Km o más despacio'}} {{'Distancia Recomendada': 'Desde 5 hasta 21 Km'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Ligereza y durabilidad para tus entrenamientos diarios': '¡Hey Runner! Las Hoka Rincon 4 están diseñadas para ofrecer una combinación perfecta de ligereza y durabilidad, ideales para quienes buscan un zapato de entrenamiento diario en asfalto. Con su espuma de doble capa en la mediasuela, esta versión mejora notablemente la durabilidad, haciendo que cada zancada se sienta más consistente, incluso en distancias largas. Si eres un corredor que pesa menos de 80 kg y buscas un zapato ligero para entrenar distancias de hasta 21 km, el Rincon 4 es una opción a considerar seriamente. Para quienes pesen más de 80 kg, recomendamos modelos como el Hoka Clifton o el Bondi, que ofrecen mayor soporte.'}, {'Ideal para entrenamientos y distancias medias': 'Con un drop de 8 mm y una amortiguación alta, las Hoka Rincon 4 son perfectas para corredores de pisada neutral o supinador que manejan ritmos cómodos entre 5:00 min/km y más de 6:15 min/km. Su capellada de malla Jacquard es ligera y transpirable, asegurando un ajuste cómodo en cada carrera. Además, su suela de EVA con goma en zonas estratégicas proporciona un buen agarre, mientras que el MetaRocker ayuda a una transición suave de cada paso, maximizando la eficiencia en cada kilómetro.'}], 'category': nan}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Neutro • Supinador | Null | Null | Null | Ideal hasta 80 Kg | No | Asfalto | Hoka Rincon 4 | Corredor | Mujer |\n", + "\n", + "Nota: Se extrae la información según las etiquetas proporcionadas y se completa con valores \"null\" donde corresponda.\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Pisada': 'Neutro'}} {{'Peso del Corredor': 'Ideal hasta 80 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': 'Entre 3:45 y 5:30 min/Km'}} {{'Distancia Recomendada': 'Entre 5 y 21 Km | Entreno en pista'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Ligereza y Respuesta para Distancias Medias': 'Las Hoka Mach 5 están diseñadas para ofrecer una excelente respuesta en ritmos que van desde 3:45 min/km hasta 5:15 min/km. Con un drop de 5 mm y un peso de 242 gramos en la versión para hombre, estas zapatillas son ideales para distancias que van desde 5 km hasta 21 km. La mediasuela incorpora la espuma ProFly+, que combina una amortiguación suave con una sensación de rebote, permitiendo una transición fluida en cada zancada.'}, {'Comodidad y Ajuste Superior': 'Estas zapatillas cuentan con una capellada de malla ligera que asegura una transpirabilidad óptima, manteniendo tus pies frescos incluso en carreras intensas. Además, el diseño del calzado, con una lengüeta plana y una sujeción firme, se adapta perfectamente a tu pie, evitando movimientos indeseados y garantizando un ajuste seguro durante todo el recorrido.'}, {'Ideal para Entrenamientos Diarios y Diversos Tipos de Corredores': 'Las Hoka Mach 5 no solo son una opción excelente para velocidad, sino que también se destacan como calzado de entrenamiento diario. Son ideales para corredores con un peso de entre menos de 60 kg hasta 80 kg, y que tengan un volumen de entrenamiento semanal de entre 30 km y 50 km o más. Ofrecen un equilibrio ideal entre amortiguación y ligereza, lo que las convierte en una excelente opción para aquellos corredores que buscan un calzado que les permita rendir al máximo día tras día.'}, {'Competencia Directa en Colombia': 'En el mercado colombiano, las Hoka Mach 5 compiten directamente con modelos destacados como la ASICS Noosa Tri 15, el Brooks Hyperion Max, y el New Balance Rebel v3. Sin embargo, las Mach 5 se destacan por su combinación única de ligereza y capacidad de respuesta, haciéndolas una opción preferida para corredores que buscan superar sus límites en cada entrenamiento.'}], 'category': nan}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Neutro | Asfalto | Espuma ProFly+ | Mediasuela | Ideal hasta 80 Kg | Sí | Neutro | Hoka Mach 5 | Corredor | Hombre |\n", + "\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| null | Asfalto | Espuma ProFly+ | Mediasuela | Ideal hasta 80 Kg | Sí | Neutro | Hoka Mach 5 | Corredor | Hombre |\n", + "\n", + "Nota: En la primera fila, se indican los nombres de las etiquetas. En la segunda fila, se muestran los valores correspondientes a cada etiqueta.\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Pisada': 'Neutro • Supinador'}} {{'Peso del Corredor': 'Ideal hasta 85 Kg'}} {{'Amortiguación': 'Superior'}} {{'Ritmo De Carrera': 'Entre 4:00 y 6:00 min/Km'}} {{'Distancia Recomendada': 'Entre 5 y 42 Km | Entreno en pista'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Rendimiento en Asfalto': 'La Asics Novablast 4 LE está optimizada para asfalto, ofreciendo una experiencia de carrera segura y controlada. Con un drop de 8 mm y una pisada neutra o supinadora, esta zapatilla es ideal para corredores que buscan entrenamientos de velocidad. Su diseño más \"contundente\" y sólido proporciona una estabilidad superior, permitiendo girar y voltear con confianza, incluso en circuitos cerrados. Además, la base ensanchada y el talón prominente mejoran aún más la estabilidad, eliminando cualquier rastro de inestabilidad presente en versiones anteriores.'}, {'Amortiguación Superior y Comodidad Avanzada': 'Equipada con la innovadora mediasuela FlyteFoam Blast+ ECO, la Novablast 4 LE ofrece una amortiguación superior, adaptándose tanto a ritmos moderados como intensos. Este modelo se destaca por su capacidad de proporcionar una carrera suave y cómoda, aunque a ritmos muy altos puede sentirse un poco menos reactiva. Sin embargo, su enfoque está en ofrecer una experiencia de entrenamiento segura y eficiente, ideal para distancias que van desde los 5 km hasta los 42 km.'}, {'Tecnología y Diseño de Vanguardia': 'La Novablast 4 LE no solo se distingue por su ligereza, sino también por la inclusión de un nuevo caucho AHAR en la suela, mejorando significativamente la tracción y la durabilidad. Su capellada de material Woven, elástica y sin costuras, brinda un ajuste cómodo y lujoso, aunque sacrifica un poco de ventilación. Sin embargo, su capacidad de secado rápido compensa este aspecto, haciendo que la zapatilla esté lista para usar nuevamente en poco tiempo, incluso después de entrenamientos bajo la lluvia.'}], 'category': nan}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Supinador | Neutro • Supinador | null | AhAR | Ideal hasta 85 Kg | null | Neutro • Supinador | Novablast 4 LE | Entre 5 y 42 Km | Mujer/Hombre/MIXTO |\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Pisada': 'Pronador'}} {{'Peso del Corredor': 'Ideal hasta 85 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': '5:15 min/Km o más despacio'}} {{'Distancia Recomendada': 'Desde 5 hasta 21 Km'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Estabilidad y confort a un precio que convence': '¡Hey Runner! Las ASICS GT-2000 13 llegan al mercado con la promesa de ser una de las mejores opciones para corredores que buscan estabilidad y amortiguación alta sin romper el presupuesto. Este modelo no es un Kayano, pero está muy cerca en términos de calidad y soporte. Por su precio, es una elección que harías a ojos cerrados, y con lo que ahorras, ¡podrías inscribirte en tu próxima carrera!'}, {'Tecnología avanzada para un rendimiento superior': 'Las GT-2000 13 están diseñadas para corredores con pisada pronadora que buscan entrenar de forma regular en asfalto y distancias de hasta 21 km. Con un drop de 8 mm y un peso de 275 g, estas zapatillas brindan una pisada suave y protegida. La espuma FlyteFoam Blast Plus y la tecnología PureGEL en el talón aseguran una amortiguación que se siente como correr sobre una nube, mientras que el sistema 3D Guidance mejora la estabilidad y guía tu pisada de manera natural.'}], 'category': nan}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Pisada pronadora | Pronador | Algunos puestos pueden tener materiales sintéticos como la poliéster, el nylon y la paño, con una mezcla de cuero y poliéster en los bordes | Alta densidad | Ideal hasta 85 Kg | Sí | Negro/Rosa | GT-2000 13 | Corredor | Mujer/Hombre/MIXTO |\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Pisada': 'Neutro • Supinador'}} {{'Peso del Corredor': 'Ideal hasta 85 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': 'Entre 4:00 y 5:45 min/Km'}} {{'Distancia Recomendada': 'Desde 5 hasta 42 Km'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Tecnología y Rendimiento en Asfalto': 'La Asics Glideride Max está optimizada para entrenamientos diarios y largas distancias en asfalto. Diseñada para corredores avanzados con pisada neutra o supinadora, esta zapatilla cuenta con un drop de 6 mm y es ideal para mantener ritmos entre 4:00 min/km y 5:30 min/km en distancias que van desde los 5 km hasta la maratón. Lo que hace destacar a este modelo es la incorporación de la innovadora espuma FF Blast Max, la cual promete un rebote superior y una sensación de ligereza, sin precedentes en la línea Glideride.'}, {'Placa Interna y Amortiguación Superior': 'Para aquellos que buscan mejorar sus tiempos sin recurrir a una placa de carbono, la Glideride Max ofrece una solución perfecta. Este modelo incorpora una placa interna de nylon o plástico que añade rigidez y mejora la eficiencia en cada zancada, impulsándote a correr más rápido. Además, la combinación de FlyteFoam Blast+ ECO en la capa inferior de la mediasuela y el nuevo FF Blast Max en la parte superior, asegura una sensación de amortiguación alta que te mantendrá protegido en cada paso, incluso en tus entrenamientos más intensos.'}, {'Diseño y Durabilidad': 'El upper de la Glideride Max está construido con un mesh técnico similar al de la Nimbus 26, ofreciendo transpirabilidad y un ajuste seguro. La suela, diseñada con una combinación de ASICS Grip y AHARPLUS, garantiza durabilidad y tracción en diversas superficies, lo que la convierte en una opción confiable para corredores que necesitan un calzado resistente para entrenamientos de volumen.'}, {'Competencia en el Mercado Colombiano': 'En el mercado colombiano, la Asics Glideride Max competirá directamente con modelos como el Brooks Hyperion Max. Ambos zapatos están dirigidos a corredores que buscan velocidad sin renunciar al confort de un calzado maximalista. La Glideride Max se presenta como una opción sólida para aquellos que desean una zapatilla con tecnología avanzada que les permita afrontar largas distancias con mayor eficiencia y menor riesgo de lesión.'}], 'category': nan}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Neutro • Supinador | Neutro | Nylon o plástico | ASICS Grip + AHARPLUS | Ideal hasta 85 Kg | Si | Neutro | Glideride Max | Corredora | Hombre\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Pisada': 'Pronador'}} {{'Peso del Corredor': 'Ideal desde 65 Kg en adelante'}} {{'Amortiguación': 'Superior'}} {{'Ritmo De Carrera': '5:30 min/Km o más despacio'}} {{'Distancia Recomendada': 'Desde 5 hasta 42 Km'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Estabilidad y confort para corredores avanzados': 'Las Gel Kayano 31 están equipadas con el innovador 4D Guidance System, una tecnología que proporciona el soporte exacto que cada corredor necesita, adaptándose de manera dinámica a la forma de correr, sin restringir el movimiento natural del pie. Este sistema es esencial para corredores con pisada pronadora, ayudando a controlar la sobrepronación y ofreciendo una carrera más equilibrada y segura. Además, con una sensación de amortiguación superior proporcionada por la tecnología FF BLAST PLUS ECO en la mediasuela, estas zapatillas garantizan una absorción de impactos excepcional, devolviendo la energía en cada zancada.'}, {'Amortiguación dinámica para largas distancias': 'Ideales para corredores que entrenan distancias que van desde 10 km hasta los 42 km, las Gel Kayano 31 están diseñadas para mantener la comodidad y estabilidad durante los entrenamientos más largos. Su capacidad para manejar ritmos de carrera entre 5:30 min/km y más de 6:15 min/km las hace perfectas para corredores con un volumen de entrenamiento semanal que oscila entre 20 km y más de 50 km. Con un drop de 10 mm y un peso de 305 gramos para la versión masculina, estas zapatillas están preparadas para corredores con un peso de 65 kg a más de 95 kg.'}, {'Diseño renovado y adaptabilidad': 'La capellada de malla técnica mejorada no solo asegura una mayor transpirabilidad, sino que también proporciona un ajuste más cómodo y personalizado, adaptándose a la forma del pie en cada paso. Además, la suela exterior, actualizada con el material de goma HYBRID ASICSGRIP, mejora la tracción y la estabilidad en cada kilómetro que recorres. Estas características hacen que las Gel Kayano 31 sean ideales para entrenamientos en asfalto y corredores que buscan una zapatilla de entrenamiento diario que pueda manejar altos volúmenes de entrenamiento semanal.'}, {'Un competidor destacado en el mercado de estabilidad': 'Las Gel Kayano 31 se enfrentan cara a cara con otras zapatillas de estabilidad premium, como el New Balance Vongo y el Brooks Glycerine GTS, ofreciendo una experiencia de carrera más dinámica gracias a su amortiguación mejorada que se adapta a tu ritmo y técnica de carrera.'}], 'category': nan}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Pisada pronadora | Asfalto | Mediasuela tech | Suela de goma HYBRID ASICSGRIP | Ideal desde 65 Kg en adelante | Si | Blanco | Kayano 31 | Corredor | Hombre\n", + "\n", + "------------------------\n", + "\n", + "{'details': \"{{'Pisada': 'Pronador'}} {{'Peso del Corredor': 'Ideal hasta 85 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': '5:15 min/Km o más despacio'}} {{'Distancia Recomendada': 'Desde 5 hasta 21 Km'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Rendimiento Óptimo para Pronadores': 'La Asics GT-1000 13 es ideal para corredores con pisada pronadora, ofreciendo un equilibrio perfecto entre estabilidad y amortiguación. Con un drop de 8 mm y un peso de 270 gramos, esta zapatilla es adecuada para corredores que pesan entre menos de 60 kg y 85 kg. Gracias a la incorporación de la tecnología PureGel en la zona del talón, esta zapatilla proporciona una absorción de impactos superior, permitiendo una sensación de comodidad en cada zancada.'}, {'Amortiguación y Estabilidad en Ritmos Moderados': 'Con una sensación de amortiguación alta, la GT-1000 13 está diseñada para corredores que mantienen ritmos entre 5:15 min/km y 6:15 min/km o más lentos. Es ideal para distancias que van desde 5 km hasta 21 km, proporcionando el soporte necesario para mantener un ritmo constante y seguro. La tecnología FlyteFoam en la mediasuela asegura una pisada suave y ligera, mientras que la suela, con una alta concentración de caucho, garantiza durabilidad y tracción en superficies de asfalto.'}, {'Confort y Durabilidad para el Entrenamiento Diario': 'El upper de la GT-1000 13 está confeccionado con una malla técnica que asegura una excelente transpirabilidad y un ajuste preciso, envolviendo tu pie con suavidad en cada carrera. Además, la plantilla OrthoLite Hybrid Max añade una capa adicional de confort, lo que hace que cada entrenamiento sea más placentero. Esta zapatilla está diseñada para un volumen de entrenamiento semanal de 20 km a 40 km, siendo una opción confiable para corredores que buscan estabilidad en sus entrenamientos diarios.'}, {'Accesibilidad y Valor Inigualable': 'Una de las ventajas más destacadas de la Asics GT-1000 13 es su relación calidad-precio. A pesar de incorporar tecnologías de gama alta como el PureGel, esta zapatilla se mantiene en un rango de precio accesible, lo que la coloca en una posición competitiva en el mercado colombiano. Aunque no tiene rivales directos en su rango de precio, podría compararse con el Brooks Adrenaline, pero a un costo significativamente menor, ofreciendo así un valor insuperable para corredores pronadores.'}], 'category': nan}\n", + "Respuesta del modelo:\n", + "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", + "| Pronador | Algodón/Polipropileno | Malla técnica con poliéster y spandex | Suela de caucho | Ideal hasta 85 Kg | Si | Negro/Cream | GT-1000 13 | Pronador | Hombre\n", + "\n", + "------------------------\n", + "\n" + ] + } + ], + "source": [ + "dfs_nr = []\n", + "for producto in productos_nr:\n", + " prompt = generar_prompt_ollama(producto, etiquetas)\n", + " respuesta = obtener_respuesta_ollama(prompt)\n", + " print(producto)\n", + " print(\"Respuesta del modelo:\")\n", + " print(respuesta[\"message\"][\"content\"])\n", + " print(\"\\n------------------------\\n\")\n", + " df_nr = procesar_respuesta(respuesta[\"message\"][\"content\"], etiquetas)\n", + " if df_nr is not None:\n", + " dfs_nr.append(df_nr)\n", + " else:\n", + " print(\"No se pudo extraer la tabla.\\n\")" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cordonestextil exteriortextil interiorsuelapeso y/o tallaeco diseñado si o nocoloridentificadornombre de deportegenero Mujer/Hombre/MIXTO
0Neutro • SupinadorMalla de ingenieríaUpper con materiales recicladosGomaIdeal hasta 85 KgNeutroBrooks Ghost 15CorredoraMujer
1PisadaNeutronullMetaRockerIdeal hasta 85 KgSiAsfaltoMach 6CorreMujer
2Neutro • SupinadorNullNullNullIdeal hasta 80 KgNoAsfaltoHoka Rincon 4CorredorMujer
3NeutroAsfaltoEspuma ProFly+MediasuelaIdeal hasta 80 KgNeutroHoka Mach 5CorredorHombre
4SupinadorNeutro • SupinadornullAhARIdeal hasta 85 KgnullNeutro • SupinadorNovablast 4 LEEntre 5 y 42 KmMujer/Hombre/MIXTO
\n", + "
" + ], + "text/plain": [ + " cordones textil exterior textil interior \\\n", + "0 Neutro • Supinador Malla de ingeniería Upper con materiales reciclados \n", + "1 Pisada Neutro null \n", + "2 Neutro • Supinador Null Null \n", + "3 Neutro Asfalto Espuma ProFly+ \n", + "4 Supinador Neutro • Supinador null \n", + "\n", + " suela peso y/o talla eco diseñado si o no color \\\n", + "0 Goma Ideal hasta 85 Kg Sí Neutro \n", + "1 MetaRocker Ideal hasta 85 Kg Si Asfalto \n", + "2 Null Ideal hasta 80 Kg No Asfalto \n", + "3 Mediasuela Ideal hasta 80 Kg Sí Neutro \n", + "4 AhAR Ideal hasta 85 Kg null Neutro • Supinador \n", + "\n", + " identificador nombre de deporte genero Mujer/Hombre/MIXTO \n", + "0 Brooks Ghost 15 Corredora Mujer \n", + "1 Mach 6 Corre Mujer \n", + "2 Hoka Rincon 4 Corredor Mujer \n", + "3 Hoka Mach 5 Corredor Hombre \n", + "4 Novablast 4 LE Entre 5 y 42 Km Mujer/Hombre/MIXTO " + ] + }, + "execution_count": 123, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "if dfs_nr:\n", + " df_total_nr = pd.concat(dfs_nr, ignore_index=True)\n", + "else:\n", + " print(\"No se pudo crear el DataFrame total.\")\n", + " \n", + "df_total_nr.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cordonestextil exteriortextil interiorsuelapeso y/o tallaeco diseñado si o nocoloridentificadornombre de deportegenero Mujer/Hombre/MIXTO
0Neutro • SupinadorMalla de ingenieríaUpper con materiales recicladosGomaIdeal hasta 85 KgNeutroBrooks Ghost 15CorredoraMujer
1PisadaNeutronullMetaRockerIdeal hasta 85 KgSiAsfaltoMach 6CorreMujer
2Neutro • SupinadorNullNullNullIdeal hasta 80 KgNoAsfaltoHoka Rincon 4CorredorMujer
3NeutroAsfaltoEspuma ProFly+MediasuelaIdeal hasta 80 KgNeutroHoka Mach 5CorredorHombre
4SupinadorNeutro • SupinadornullAhARIdeal hasta 85 KgnullNeutro • SupinadorNovablast 4 LEEntre 5 y 42 KmMujer/Hombre/MIXTO
5Pisada pronadoraPronadorAlgunos puestos pueden tener materiales sintét...Alta densidadIdeal hasta 85 KgNegro/RosaGT-2000 13CorredorMujer/Hombre/MIXTO
6Neutro • SupinadorNeutroNylon o plásticoASICS Grip + AHARPLUSIdeal hasta 85 KgSiNeutroGlideride MaxCorredoraHombre
7Pisada pronadoraAsfaltoMediasuela techSuela de goma HYBRID ASICSGRIPIdeal desde 65 Kg en adelanteSiBlancoKayano 31CorredorHombre
8PronadorAlgodón/PolipropilenoMalla técnica con poliéster y spandexSuela de cauchoIdeal hasta 85 KgSiNegro/CreamGT-1000 13PronadorHombre
\n", + "
" + ], + "text/plain": [ + " cordones textil exterior \\\n", + "0 Neutro • Supinador Malla de ingeniería \n", + "1 Pisada Neutro \n", + "2 Neutro • Supinador Null \n", + "3 Neutro Asfalto \n", + "4 Supinador Neutro • Supinador \n", + "5 Pisada pronadora Pronador \n", + "6 Neutro • Supinador Neutro \n", + "7 Pisada pronadora Asfalto \n", + "8 Pronador Algodón/Polipropileno \n", + "\n", + " textil interior \\\n", + "0 Upper con materiales reciclados \n", + "1 null \n", + "2 Null \n", + "3 Espuma ProFly+ \n", + "4 null \n", + "5 Algunos puestos pueden tener materiales sintét... \n", + "6 Nylon o plástico \n", + "7 Mediasuela tech \n", + "8 Malla técnica con poliéster y spandex \n", + "\n", + " suela peso y/o talla \\\n", + "0 Goma Ideal hasta 85 Kg \n", + "1 MetaRocker Ideal hasta 85 Kg \n", + "2 Null Ideal hasta 80 Kg \n", + "3 Mediasuela Ideal hasta 80 Kg \n", + "4 AhAR Ideal hasta 85 Kg \n", + "5 Alta densidad Ideal hasta 85 Kg \n", + "6 ASICS Grip + AHARPLUS Ideal hasta 85 Kg \n", + "7 Suela de goma HYBRID ASICSGRIP Ideal desde 65 Kg en adelante \n", + "8 Suela de caucho Ideal hasta 85 Kg \n", + "\n", + " eco diseñado si o no color identificador nombre de deporte \\\n", + "0 Sí Neutro Brooks Ghost 15 Corredora \n", + "1 Si Asfalto Mach 6 Corre \n", + "2 No Asfalto Hoka Rincon 4 Corredor \n", + "3 Sí Neutro Hoka Mach 5 Corredor \n", + "4 null Neutro • Supinador Novablast 4 LE Entre 5 y 42 Km \n", + "5 Sí Negro/Rosa GT-2000 13 Corredor \n", + "6 Si Neutro Glideride Max Corredora \n", + "7 Si Blanco Kayano 31 Corredor \n", + "8 Si Negro/Cream GT-1000 13 Pronador \n", + "\n", + " genero Mujer/Hombre/MIXTO \n", + "0 Mujer \n", + "1 Mujer \n", + "2 Mujer \n", + "3 Hombre \n", + "4 Mujer/Hombre/MIXTO \n", + "5 Mujer/Hombre/MIXTO \n", + "6 Hombre \n", + "7 Hombre \n", + "8 Hombre " + ] + }, + "execution_count": 124, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_total_nr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From f214cdf63ae488ebc6f6b20f5d57d0b92f12688d Mon Sep 17 00:00:00 2001 From: jumcorrealom Date: Sun, 24 Nov 2024 10:14:00 -0500 Subject: [PATCH 03/84] Update project_charter.md --- docs/business_understanding/project_charter.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/docs/business_understanding/project_charter.md b/docs/business_understanding/project_charter.md index 38810d19c..5c4852e75 100644 --- a/docs/business_understanding/project_charter.md +++ b/docs/business_understanding/project_charter.md @@ -2,11 +2,11 @@ ## Nombre del Proyecto -[Nombre del proyecto aquí] +Análisis comparativo de productos de Running entre Nike, Adidas y Nation Runner ## Objetivo del Proyecto -[Descripción breve del objetivo del proyecto y por qué es importante] +Desarrollar una herramienta computacional que permita realizar un análisis de comparación de zapatos para running, con datos seleccionados de varias tiendas retail mediante técnicas de procesamiento de lenguaje natural y técnicas de pre-procesamiento de datos que incluyan Grandes Modelos de Lenguaje. ## Alcance del Proyecto @@ -22,7 +22,7 @@ ## Metodología -[Descripción breve de la metodología que se utilizará para llevar a cabo el proyecto] +CRISP-DM y SCRUM ## Cronograma From e29717feb8cb61efc78716d759d4cdc9fcf847eb Mon Sep 17 00:00:00 2001 From: azacipa <52643112+azacipa@users.noreply.github.com> Date: Sun, 24 Nov 2024 10:18:45 -0500 Subject: [PATCH 04/84] prueba de cargue del archivo --- docs/business_understanding/prueba_azacipa.txt | 1 + 1 file changed, 1 insertion(+) create mode 100644 docs/business_understanding/prueba_azacipa.txt diff --git a/docs/business_understanding/prueba_azacipa.txt b/docs/business_understanding/prueba_azacipa.txt new file mode 100644 index 000000000..d931ceffb --- /dev/null +++ b/docs/business_understanding/prueba_azacipa.txt @@ -0,0 +1 @@ +prueba azacipa \ No newline at end of file From a0eb48b4e3587537aeb6bc37d54ae42a02011781 Mon Sep 17 00:00:00 2001 From: azacipa <52643112+azacipa@users.noreply.github.com> Date: Sun, 24 Nov 2024 10:24:42 -0500 Subject: [PATCH 05/84] Update prueba_azacipa.txt --- docs/business_understanding/prueba_azacipa.txt | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/docs/business_understanding/prueba_azacipa.txt b/docs/business_understanding/prueba_azacipa.txt index d931ceffb..f9b3dfbfd 100644 --- a/docs/business_understanding/prueba_azacipa.txt +++ b/docs/business_understanding/prueba_azacipa.txt @@ -1 +1,2 @@ -prueba azacipa \ No newline at end of file +prueba azacipa +para el modulo 6 del diplomado \ No newline at end of file From 06f0f5a53baa8e065533a3283d7134f9fbcef9a7 Mon Sep 17 00:00:00 2001 From: Juan Correa Date: Mon, 25 Nov 2024 20:22:35 -0500 Subject: [PATCH 06/84] generated api_reader, and re ubicated main.py for better execution, requirements.txt and .gitignore actualizated too --- .gitignore | 2 + docs/data/data_dictionary.md | 40 ++++++-------- main.py | 14 +++++ requirements.txt | 10 ++-- .../data_acquisition}/__init__.py | 0 scripts/data_acquisition/api_reader.py | 54 +++++++++++++++++++ .../__init__.py | 0 .../database}/__init__.py | 0 .../evaluation}/__init__.py | 0 .../models}/__init__.py | 0 .../preprocessing}/__init__.py | 0 .../training}/__init__.py | 0 .../visualization/__init__.py | 0 13 files changed, 93 insertions(+), 27 deletions(-) create mode 100644 main.py rename {src/nombre_paquete => scripts/data_acquisition}/__init__.py (100%) create mode 100644 scripts/data_acquisition/api_reader.py rename src/{nombre_paquete/database => comparative_analysis}/__init__.py (100%) rename src/{nombre_paquete/evaluation => comparative_analysis/database}/__init__.py (100%) rename src/{nombre_paquete/models => comparative_analysis/evaluation}/__init__.py (100%) rename src/{nombre_paquete/preprocessing => comparative_analysis/models}/__init__.py (100%) rename src/{nombre_paquete/training => comparative_analysis/preprocessing}/__init__.py (100%) rename src/{nombre_paquete/visualization => comparative_analysis/training}/__init__.py (100%) rename scripts/data_acquisition/main.py => src/comparative_analysis/visualization/__init__.py (100%) diff --git a/.gitignore b/.gitignore index 411470fe7..e1989f769 100644 --- a/.gitignore +++ b/.gitignore @@ -3,3 +3,5 @@ env_vars* credentials* **/build/* +venv +*.xlsx \ No newline at end of file diff --git a/docs/data/data_dictionary.md b/docs/data/data_dictionary.md index 72552d48c..add175a86 100644 --- a/docs/data/data_dictionary.md +++ b/docs/data/data_dictionary.md @@ -4,35 +4,27 @@ **Agregar una descripción de la tabla o fuente de datos. -| Variable | Descripción | Tipo de dato | Rango/Valores posibles | Fuente de datos | +| Variable | Descripción | Tipo de dato | Rango/Valores posibles | Example Value | | --- | --- | --- | --- | --- | -| variable_1 | Descripción de la variable 1 | Tipo de dato | Rango/Valores posibles | Fuente de datos | -| variable_2 | Descripción de la variable 2 | Tipo de dato | Rango/Valores posibles | Fuente de datos | -| variable_3 | Descripción de la variable 3 | Tipo de dato | Rango/Valores posibles | Fuente de datos | -| variable_4 | Descripción de la variable 4 | Tipo de dato | Rango/Valores posibles | Fuente de datos | -| variable_5 | Descripción de la variable 5 | Tipo de dato | Rango/Valores posibles | Fuente de datos | +| id | Descripción de la variable 1 | string | | 046zSiHm8Cz0fZYwMJlL | +| details | detalles del producto scrapeado, data semi estructurada que contiene detalles técnicos del mismo | string | - | '{Horma clásica} {Parte superior sintética}...' | +| store | nombre de la tienda que vende el producto | string | | adidas | +| manufacturer | nombre de la empesa que crea el producto | | adidas | +| url | url desde la que se extrajo el producto | string | | https://www.adidas.co/tenis-duramo-sl/IF7884.html | +| title | nombre del producto | string | | Tenis Duramo SL | +| regularPrice | precio del producto sin descuento | string | | $379.950 | +| undiscounted_price | precio con descuento aplicado | string | | $265.965 | +| description | descripción general del producto | string | | 'description': "Los Adizero Adios Pro 3 son la ..." | +| category | categoria a la que la página scrapeada asigna el producto | string | | Mujer • Running | +| createdAt | fecha de creación del registro | string | | '_seconds': 1731975445, '_nanoseconds': 42700.. | +| characteristics | características adicionales del producto | string | | Parte superior de malla diseñada estratégicam.. | +| gender | genero del producto | string | | Mujer | -- **Variable**: nombre de la variable. -- **Descripción**: breve descripción de la variable. -- **Tipo de dato**: tipo de dato que contiene la variable. -- **Rango/Valores posibles**: rango o valores que puede tomar la variable. -- **Fuente de datos**: fuente de los datos de la variable. - -## Base de datos 2 - -**Agregar una descripción de la tabla o fuente de datos. - -| Variable | Descripción | Tipo de dato | Rango/Valores posibles | Fuente de datos | -| --- | --- | --- | --- | --- | -| variable_1 | Descripción de la variable 1 | Tipo de dato | Rango/Valores posibles | Fuente de datos | -| variable_2 | Descripción de la variable 2 | Tipo de dato | Rango/Valores posibles | Fuente de datos | -| variable_3 | Descripción de la variable 3 | Tipo de dato | Rango/Valores posibles | Fuente de datos | -| variable_4 | Descripción de la variable 4 | Tipo de dato | Rango/Valores posibles | Fuente de datos | -| variable_5 | Descripción de la variable 5 | Tipo de dato | Rango/Valores posibles | Fuente de datos | - **Variable**: nombre de la variable. - **Descripción**: breve descripción de la variable. - **Tipo de dato**: tipo de dato que contiene la variable. - **Rango/Valores posibles**: rango o valores que puede tomar la variable. -- **Fuente de datos**: fuente de los datos de la variable. +- **Example Value**: Ejemplo de un valor que se puede encontrar en el campo. +- **Fuente de datos**: API en la que se disponibilizan los datos scrapeados. diff --git a/main.py b/main.py new file mode 100644 index 000000000..be5883d03 --- /dev/null +++ b/main.py @@ -0,0 +1,14 @@ +from scripts.data_acquisition.api_reader import ApiReader + +def main(): + # Crear instancia de ApiReader + api_url = "https://scraping-firestore-178159629911.us-central1.run.app//v1/scraping/" + output_path = "src/comparative_analysis/database/raw_data.xlsx" + + api_reader = ApiReader(api_url, output_path) + + # Leer datos de la API y guardar en Excel + api_reader.fetch_and_save_data() + +if __name__ == "__main__": + main() diff --git a/requirements.txt b/requirements.txt index 50db08636..c0b612c10 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,8 @@ -alpaca-trade-api -torch fairscale fire blobfile +torch +fairscale +fire +blobfile pandas -ollama \ No newline at end of file +ollama +requests +openpyxl \ No newline at end of file diff --git a/src/nombre_paquete/__init__.py b/scripts/data_acquisition/__init__.py similarity index 100% rename from src/nombre_paquete/__init__.py rename to scripts/data_acquisition/__init__.py diff --git a/scripts/data_acquisition/api_reader.py b/scripts/data_acquisition/api_reader.py new file mode 100644 index 000000000..8f6bfd85c --- /dev/null +++ b/scripts/data_acquisition/api_reader.py @@ -0,0 +1,54 @@ +import os +import requests +import pandas as pd + +class ApiReader: + def __init__(self, api_url, output_path): + """ + Inicializa el objeto ApiReader con la URL de la API y la ruta de salida. + + :param api_url: URL de la API + :param output_path: Ruta donde se guardará el archivo Excel + """ + self.api_url = api_url + self.output_path = output_path + + def fetch_data(self): + """ + Realiza la solicitud GET a la API y devuelve los datos en formato JSON. + + :return: Datos JSON de la API + :raises Exception: Si la solicitud falla + """ + response = requests.get(self.api_url) + if response.status_code == 200: + return response.json() + else: + raise Exception(f"Error al obtener datos de la API: {response.status_code}") + + def save_to_excel(self, data): + """ + Guarda los datos en un archivo Excel. + + :param data: Datos en formato JSON + """ + # Crear un DataFrame con los datos + df_raw = pd.DataFrame(data) + + # Asegurarse de que la carpeta de salida exista + output_dir = os.path.dirname(self.output_path) + os.makedirs(output_dir, exist_ok=True) + + # Guardar el DataFrame en un archivo Excel + df_raw.to_excel(self.output_path, index=False) + print(f"Datos guardados exitosamente en {self.output_path}") + + def fetch_and_save_data(self): + """ + Realiza la lectura de datos desde la API y los guarda en un archivo Excel. + """ + try: + data = self.fetch_data() + self.save_to_excel(data) + except Exception as e: + print(f"Error: {e}") diff --git a/src/nombre_paquete/database/__init__.py b/src/comparative_analysis/__init__.py similarity index 100% rename from src/nombre_paquete/database/__init__.py rename to src/comparative_analysis/__init__.py diff --git a/src/nombre_paquete/evaluation/__init__.py b/src/comparative_analysis/database/__init__.py similarity index 100% rename from src/nombre_paquete/evaluation/__init__.py rename to src/comparative_analysis/database/__init__.py diff --git a/src/nombre_paquete/models/__init__.py b/src/comparative_analysis/evaluation/__init__.py similarity index 100% rename from src/nombre_paquete/models/__init__.py rename to src/comparative_analysis/evaluation/__init__.py diff --git a/src/nombre_paquete/preprocessing/__init__.py b/src/comparative_analysis/models/__init__.py similarity index 100% rename from src/nombre_paquete/preprocessing/__init__.py rename to src/comparative_analysis/models/__init__.py diff --git a/src/nombre_paquete/training/__init__.py b/src/comparative_analysis/preprocessing/__init__.py similarity index 100% rename from src/nombre_paquete/training/__init__.py rename to src/comparative_analysis/preprocessing/__init__.py diff --git a/src/nombre_paquete/visualization/__init__.py b/src/comparative_analysis/training/__init__.py similarity index 100% rename from src/nombre_paquete/visualization/__init__.py rename to src/comparative_analysis/training/__init__.py diff --git a/scripts/data_acquisition/main.py b/src/comparative_analysis/visualization/__init__.py similarity index 100% rename from scripts/data_acquisition/main.py rename to src/comparative_analysis/visualization/__init__.py From e6e5c71e63028f940493d81a8ee46d5867de590b Mon Sep 17 00:00:00 2001 From: jumcorrealom Date: Mon, 25 Nov 2024 20:24:39 -0500 Subject: [PATCH 07/84] Update data_dictionary.md --- docs/data/data_dictionary.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/data/data_dictionary.md b/docs/data/data_dictionary.md index add175a86..ff4e420c3 100644 --- a/docs/data/data_dictionary.md +++ b/docs/data/data_dictionary.md @@ -9,7 +9,7 @@ | id | Descripción de la variable 1 | string | | 046zSiHm8Cz0fZYwMJlL | | details | detalles del producto scrapeado, data semi estructurada que contiene detalles técnicos del mismo | string | - | '{Horma clásica} {Parte superior sintética}...' | | store | nombre de la tienda que vende el producto | string | | adidas | -| manufacturer | nombre de la empesa que crea el producto | | adidas | +| manufacturer | nombre de la empesa que crea el producto | string | | adidas | | url | url desde la que se extrajo el producto | string | | https://www.adidas.co/tenis-duramo-sl/IF7884.html | | title | nombre del producto | string | | Tenis Duramo SL | | regularPrice | precio del producto sin descuento | string | | $379.950 | From c692ab5770040ea8ec3116eaf810d7c91a449bb8 Mon Sep 17 00:00:00 2001 From: azacipa <52643112+azacipa@users.noreply.github.com> Date: Mon, 25 Nov 2024 22:44:27 -0500 Subject: [PATCH 08/84] Se complementa alcance del proyecto y cronograma. --- docs/business_understanding/project_charter.md | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/docs/business_understanding/project_charter.md b/docs/business_understanding/project_charter.md index 5c4852e75..7dbee96ab 100644 --- a/docs/business_understanding/project_charter.md +++ b/docs/business_understanding/project_charter.md @@ -38,8 +38,9 @@ Hay que tener en cuenta que estas fechas son de ejemplo, estas deben ajustarse d ## Equipo del Proyecto -- [Nombre y cargo del líder del proyecto] -- [Nombre y cargo de los miembros del equipo] +- Daniel Galvis CC 1010038257 cgalvisn@unal.edu.co +- Juan Correa CC 1013653882 jumcorrealo@unal.edu.co +- Asdrúval Zácipa Corredor CC 79139929 azacipac@unal.edu.co ## Presupuesto From 965d16204c26aefb01d79b050dc2f181e053a395 Mon Sep 17 00:00:00 2001 From: azacipa <52643112+azacipa@users.noreply.github.com> Date: Mon, 25 Nov 2024 22:50:58 -0500 Subject: [PATCH 09/84] Se complementa alcance del proyecto y cronograma. --- docs/business_understanding/project_charter.md | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) diff --git a/docs/business_understanding/project_charter.md b/docs/business_understanding/project_charter.md index 7dbee96ab..bfdf2d5f4 100644 --- a/docs/business_understanding/project_charter.md +++ b/docs/business_understanding/project_charter.md @@ -10,6 +10,10 @@ Desarrollar una herramienta computacional que permita realizar un análisis de c ## Alcance del Proyecto +El alcance del proyecto es el de construir un modelo de recomendación basado en embeddings que permita generar recomendaciones basadas en similaridad de atributos de calzado deportivo para running con los necesidades del cliente. + +Se propone el uso de embeddings teniendo en cuenta que los datos de los cuales disponemos corresponden a datos textuales de las características de los diferentes tipos de calzado deportivo. Se busca aplicar técnicas de embeddings utilizando modelos LLM (Large Language Model), con el fin de tener una mejor precisión semántica, basada en similaridad contextual. + ### Incluye: - [Descripción de los datos disponibles] @@ -28,13 +32,11 @@ CRISP-DM y SCRUM | Etapa | Duración Estimada | Fechas | |------|---------|-------| -| Entendimiento del negocio y carga de datos | 2 semanas | del 1 de mayo al 15 de mayo | -| Preprocesamiento, análisis exploratorio | 4 semanas | del 16 de mayo al 15 de junio | -| Modelamiento y extracción de características | 4 semanas | del 16 de junio al 15 de julio | -| Despliegue | 2 semanas | del 16 de julio al 31 de julio | -| Evaluación y entrega final | 3 semanas | del 1 de agosto al 21 de agosto | - -Hay que tener en cuenta que estas fechas son de ejemplo, estas deben ajustarse de acuerdo al proyecto. +| Entendimiento del negocio y carga de datos | 2 semanas | del 13 de noviembre al 28 de noviembre | +| Preprocesamiento, análisis exploratorio | 1 semana | del 29 de noviembre al 5 de diciembre | +| Modelamiento y extracción de características | 1 semana | del 5 de diciembre al 12 de diciembre | +| Despliegue | 1 semana | del 13 de diciembre al 19 de diciembre | +| Evaluación y entrega final | 1 semana | del 19 de diciembre al 21 de diciembre | ## Equipo del Proyecto From 8f4d5f48c8a48372dadaec93761bcd39124966df Mon Sep 17 00:00:00 2001 From: azacipa <52643112+azacipa@users.noreply.github.com> Date: Mon, 25 Nov 2024 22:56:34 -0500 Subject: [PATCH 10/84] Revert "Update prueba_azacipa.txt" This reverts commit a0eb48b4e3587537aeb6bc37d54ae42a02011781. --- docs/business_understanding/prueba_azacipa.txt | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/docs/business_understanding/prueba_azacipa.txt b/docs/business_understanding/prueba_azacipa.txt index f9b3dfbfd..d931ceffb 100644 --- a/docs/business_understanding/prueba_azacipa.txt +++ b/docs/business_understanding/prueba_azacipa.txt @@ -1,2 +1 @@ -prueba azacipa -para el modulo 6 del diplomado \ No newline at end of file +prueba azacipa \ No newline at end of file From 58425194024d87801883c8812648ca4dd1044a52 Mon Sep 17 00:00:00 2001 From: Juan Correa Date: Wed, 27 Nov 2024 20:27:56 -0500 Subject: [PATCH 11/84] actualizacion a data_Definition y project_character --- docs/business_understanding/project_charter.md | 12 ++++++------ docs/data/data_definition.md | 8 ++++++-- 2 files changed, 12 insertions(+), 8 deletions(-) diff --git a/docs/business_understanding/project_charter.md b/docs/business_understanding/project_charter.md index bfdf2d5f4..a8a3778e2 100644 --- a/docs/business_understanding/project_charter.md +++ b/docs/business_understanding/project_charter.md @@ -16,9 +16,9 @@ Se propone el uso de embeddings teniendo en cuenta que los datos de los cuales d ### Incluye: -- [Descripción de los datos disponibles] -- [Descripción de los resultados esperados] -- [Criterios de éxito del proyecto] +- Se incluyen datos de Adidas, Nike y Nacion Runner, obtenidos con un scrapper, fotografía de mediados de noviembre. +- Un data set con modelos comparados, organizados y etiquetado +- El modelo debe ser capaz de hacer un análisis comparativo de productos de forma automática y frecuente, teniendo información actualizada de los moviemientos de mercado de las marcas analizadas ### Excluye: @@ -50,9 +50,9 @@ CRISP-DM y SCRUM ## Stakeholders -- [Nombre y cargo de los stakeholders del proyecto] -- [Descripción de la relación con los stakeholders] -- [Expectativas de los stakeholders] +- Dirección comercial de una empresa deportiva +- Laboral +- Tener una herramienta que automatice el análisis comparativo de productos deportivos de varias gamas y modelos ## Aprobaciones diff --git a/docs/data/data_definition.md b/docs/data/data_definition.md index 36473de82..40ff29a4c 100644 --- a/docs/data/data_definition.md +++ b/docs/data/data_definition.md @@ -2,11 +2,15 @@ ## Origen de los datos -- [ ] Especificar la fuente de los datos y la forma en que se obtuvieron. +- https://www.adidas.co/ : se extrajeron los datos por medio de web scraping +- https://www.nike.com.co/ : se extrajeron los datos por medio de web scraping +- https://nacionrunner.com/ : se extrajeron los datos por medio de web scraping + +Todos los datos se extrajeron de diferentes páginas web, de zapatos de running, y los datos están disponibles en una api conectada a firebase. ## Especificación de los scripts para la carga de datos -- [ ] Especificar los scripts utilizados para la carga de los datos. +- api_reader.py ## Referencias a rutas o bases de datos origen y destino From 0a0a5595312330e1fd498f145181fcd87f532d76 Mon Sep 17 00:00:00 2001 From: azacipa <52643112+azacipa@users.noreply.github.com> Date: Wed, 27 Nov 2024 22:38:16 -0500 Subject: [PATCH 12/84] Complementar y componer ortografia --- docs/business_understanding/project_charter.md | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/docs/business_understanding/project_charter.md b/docs/business_understanding/project_charter.md index a8a3778e2..3d89744da 100644 --- a/docs/business_understanding/project_charter.md +++ b/docs/business_understanding/project_charter.md @@ -16,13 +16,13 @@ Se propone el uso de embeddings teniendo en cuenta que los datos de los cuales d ### Incluye: -- Se incluyen datos de Adidas, Nike y Nacion Runner, obtenidos con un scrapper, fotografía de mediados de noviembre. -- Un data set con modelos comparados, organizados y etiquetado -- El modelo debe ser capaz de hacer un análisis comparativo de productos de forma automática y frecuente, teniendo información actualizada de los moviemientos de mercado de las marcas analizadas +- Se incluyen datos de Adidas, Nike y Nation Runner, obtenidos con un scrapper, fotografía de mediados de noviembre. +- Un data set con modelos comparados, organizados y etiquetados +- El modelo debe ser capaz de realizar un análisis comparativo de productos de forma automática y frecuente, teniendo información actualizada de los movimientos de mercado de las marcas analizadas ### Excluye: -- [Descripción de lo que no está incluido en el proyecto] +- N/A ## Metodología @@ -46,7 +46,7 @@ CRISP-DM y SCRUM ## Presupuesto -[Descripción del presupuesto asignado al proyecto] +N/A ## Stakeholders From ce0c08ff89bce1e2cc6af274d99d1ed53e370321 Mon Sep 17 00:00:00 2001 From: azacipa <52643112+azacipa@users.noreply.github.com> Date: Wed, 27 Nov 2024 22:59:18 -0500 Subject: [PATCH 13/84] componer ortografia --- docs/data/data_dictionary.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/docs/data/data_dictionary.md b/docs/data/data_dictionary.md index ff4e420c3..fd417d011 100644 --- a/docs/data/data_dictionary.md +++ b/docs/data/data_dictionary.md @@ -2,20 +2,20 @@ ## Base de datos 1 -**Agregar una descripción de la tabla o fuente de datos. +La estructura del dataset obtenido de las URL de las tiendas indicadas es: | Variable | Descripción | Tipo de dato | Rango/Valores posibles | Example Value | | --- | --- | --- | --- | --- | | id | Descripción de la variable 1 | string | | 046zSiHm8Cz0fZYwMJlL | | details | detalles del producto scrapeado, data semi estructurada que contiene detalles técnicos del mismo | string | - | '{Horma clásica} {Parte superior sintética}...' | | store | nombre de la tienda que vende el producto | string | | adidas | -| manufacturer | nombre de la empesa que crea el producto | string | | adidas | +| manufacturer | nombre de la empresa que crea el producto | string | | adidas | | url | url desde la que se extrajo el producto | string | | https://www.adidas.co/tenis-duramo-sl/IF7884.html | | title | nombre del producto | string | | Tenis Duramo SL | | regularPrice | precio del producto sin descuento | string | | $379.950 | | undiscounted_price | precio con descuento aplicado | string | | $265.965 | | description | descripción general del producto | string | | 'description': "Los Adizero Adios Pro 3 son la ..." | -| category | categoria a la que la página scrapeada asigna el producto | string | | Mujer • Running | +| category | categoria que la página scrapeada asigna al producto | string | | Mujer • Running | | createdAt | fecha de creación del registro | string | | '_seconds': 1731975445, '_nanoseconds': 42700.. | | characteristics | características adicionales del producto | string | | Parte superior de malla diseñada estratégicam.. | | gender | genero del producto | string | | Mujer | From e5840b1f00c21fb561d72ded5496e3e6e70ccfdc Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 28 Nov 2024 18:27:18 -0500 Subject: [PATCH 14/84] Creacion de la rama daniel, se hicieron modificaciones al project_charter.md --- .../business_understanding/project_charter.md | 39 ++++++++++--------- 1 file changed, 20 insertions(+), 19 deletions(-) diff --git a/docs/business_understanding/project_charter.md b/docs/business_understanding/project_charter.md index 3d89744da..fd919adec 100644 --- a/docs/business_understanding/project_charter.md +++ b/docs/business_understanding/project_charter.md @@ -6,23 +6,24 @@ Análisis comparativo de productos de Running entre Nike, Adidas y Nation Runner ## Objetivo del Proyecto -Desarrollar una herramienta computacional que permita realizar un análisis de comparación de zapatos para running, con datos seleccionados de varias tiendas retail mediante técnicas de procesamiento de lenguaje natural y técnicas de pre-procesamiento de datos que incluyan Grandes Modelos de Lenguaje. +Desarrollar una herramienta computacional que permita realizar un análisis comparativo de zapatos para running, utilizando datos obtenidos de varias tiendas retail mediante técnicas de procesamiento de lenguaje natural y preprocesamiento de datos, incluyendo el uso de Grandes Modelos de Lenguaje (LLM, por sus siglas en inglés). ## Alcance del Proyecto -El alcance del proyecto es el de construir un modelo de recomendación basado en embeddings que permita generar recomendaciones basadas en similaridad de atributos de calzado deportivo para running con los necesidades del cliente. +El alcance del proyecto consiste en construir un modelo de recomendación basado en embeddings, capaz de generar recomendaciones basadas en la similitud de atributos de calzado deportivo para running, alineados con las necesidades del cliente. -Se propone el uso de embeddings teniendo en cuenta que los datos de los cuales disponemos corresponden a datos textuales de las características de los diferentes tipos de calzado deportivo. Se busca aplicar técnicas de embeddings utilizando modelos LLM (Large Language Model), con el fin de tener una mejor precisión semántica, basada en similaridad contextual. +Se propone el uso de embeddings debido a que los datos disponibles consisten en descripciones textuales de las características de diferentes tipos de calzado deportivo. Se busca aplicar técnicas de embeddings utilizando modelos LLM, con el objetivo de mejorar la precisión semántica basada en similitud contextual. ### Incluye: -- Se incluyen datos de Adidas, Nike y Nation Runner, obtenidos con un scrapper, fotografía de mediados de noviembre. -- Un data set con modelos comparados, organizados y etiquetados -- El modelo debe ser capaz de realizar un análisis comparativo de productos de forma automática y frecuente, teniendo información actualizada de los movimientos de mercado de las marcas analizadas +- Datos de Adidas, Nike y Nation Runner, obtenidos mediante un scraper con corte de datos a mediados de noviembre. +- Un dataset organizado y etiquetado con modelos comparados. +- Un modelo que permita realizar análisis comparativos de productos de forma automática y frecuente, con información actualizada sobre los movimientos de mercado de las marcas analizadas. ### Excluye: -- N/A +- La comparación de productos de marcas no incluidas en el análisis inicial (por ejemplo, Puma o Reebok). +- Desarrollo de visualizaciones avanzadas no incluidas explícitamente en el alcance. ## Metodología @@ -30,19 +31,19 @@ CRISP-DM y SCRUM ## Cronograma -| Etapa | Duración Estimada | Fechas | -|------|---------|-------| -| Entendimiento del negocio y carga de datos | 2 semanas | del 13 de noviembre al 28 de noviembre | -| Preprocesamiento, análisis exploratorio | 1 semana | del 29 de noviembre al 5 de diciembre | -| Modelamiento y extracción de características | 1 semana | del 5 de diciembre al 12 de diciembre | -| Despliegue | 1 semana | del 13 de diciembre al 19 de diciembre | -| Evaluación y entrega final | 1 semana | del 19 de diciembre al 21 de diciembre | +| Etapa | Duración Estimada | Fechas | +|-----------------------------------------|-------------------|---------------------------------| +| Entendimiento del negocio y carga de datos | 2 semanas | del 13 de noviembre al 28 de noviembre | +| Preprocesamiento y análisis exploratorio | 1 semana | del 29 de noviembre al 5 de diciembre | +| Modelamiento y extracción de características | 1 semana | del 5 de diciembre al 12 de diciembre | +| Despliegue | 1 semana | del 13 de diciembre al 19 de diciembre | +| Evaluación y entrega final | 1 semana | del 19 de diciembre al 21 de diciembre | ## Equipo del Proyecto - Daniel Galvis CC 1010038257 cgalvisn@unal.edu.co - Juan Correa CC 1013653882 jumcorrealo@unal.edu.co -- Asdrúval Zácipa Corredor CC 79139929 azacipac@unal.edu.co +- Asdrúbal Zácipa Corredor CC 79139929 azacipac@unal.edu.co ## Presupuesto @@ -50,12 +51,12 @@ N/A ## Stakeholders -- Dirección comercial de una empresa deportiva -- Laboral -- Tener una herramienta que automatice el análisis comparativo de productos deportivos de varias gamas y modelos +- Dirección comercial de empresas deportivas interesadas en el análisis de mercado. +- Equipos laborales que requieren herramientas de apoyo para la toma de decisiones estratégicas. +- Usuarios finales que necesitan una herramienta automatizada para realizar análisis comparativos de productos deportivos de varias gamas y modelos. ## Aprobaciones - [Nombre y cargo del aprobador del proyecto] - [Firma del aprobador] -- [Fecha de aprobación] +- [Fecha de aprobación] \ No newline at end of file From 0711e92792a476b053a99cacd55c2718085e71e1 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 28 Nov 2024 18:49:12 -0500 Subject: [PATCH 15/84] =?UTF-8?q?se=20a=C3=B1adio=20el=20presupuesto?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../business_understanding/project_charter.md | 23 +++++++++++++++++-- 1 file changed, 21 insertions(+), 2 deletions(-) diff --git a/docs/business_understanding/project_charter.md b/docs/business_understanding/project_charter.md index fd919adec..3ff773422 100644 --- a/docs/business_understanding/project_charter.md +++ b/docs/business_understanding/project_charter.md @@ -23,7 +23,7 @@ Se propone el uso de embeddings debido a que los datos disponibles consisten en ### Excluye: - La comparación de productos de marcas no incluidas en el análisis inicial (por ejemplo, Puma o Reebok). -- Desarrollo de visualizaciones avanzadas no incluidas explícitamente en el alcance. +- El desarrollo de visualizaciones avanzadas, como gráficos interactivos o dashboards personalizados, que no estén especificados como requisitos del proyecto. ## Metodología @@ -47,7 +47,26 @@ CRISP-DM y SCRUM ## Presupuesto -N/A +## Presupuesto + +Aunque no contamos con financiamiento externo, hemos estimado los costos básicos relacionados con el desarrollo del proyecto, considerando el uso de recursos personales como luz, internet y equipos de cómputo. A continuación, se detalla el presupuesto: + +| Concepto | Costo Mensual (COP) | Proporción por Persona (COP) | Duración (meses) | Total (COP) | +|------------------------------|---------------------|------------------------------|------------------|-------------| +| Servicio de luz | 100,000 | 33,333 | 2 | 200,000 | +| Servicio de internet | 150,000 | 50,000 | 2 | 300,000 | +| Uso de equipos personales | 200,000 | 66,667 | 2 | 400,000 | +| Reserva para emergencias | - | - | - | 100,000 | +| **Total** | - | - | - | **1,000,000** | + +### Detalles: +- **Servicio de luz:** Se estima un consumo aproximado para las actividades relacionadas con el desarrollo del proyecto. +- **Servicio de internet:** Incluye el costo de conexión a internet necesario para reuniones, investigación y uso de herramientas en línea. +- **Uso de equipos personales:** Incluye el desgaste de hardware y el consumo eléctrico de los equipos utilizados. +- **Reserva para emergencias:** Monto adicional para cubrir imprevistos, como reparaciones de equipos o la compra de licencias necesarias. + +### Notas: +- El presupuesto puede ajustarse si se identifican costos adicionales o si el proyecto se extiende más allá de los dos meses planificados. ## Stakeholders From c778ef149e93cfb9e484222c0792543c3e7a8e14 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 28 Nov 2024 18:54:19 -0500 Subject: [PATCH 16/84] =?UTF-8?q?Modificaci=C3=B3n=20al=20presupuesto?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- docs/business_understanding/project_charter.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/business_understanding/project_charter.md b/docs/business_understanding/project_charter.md index 3ff773422..2df80f657 100644 --- a/docs/business_understanding/project_charter.md +++ b/docs/business_understanding/project_charter.md @@ -63,10 +63,10 @@ Aunque no contamos con financiamiento externo, hemos estimado los costos básico - **Servicio de luz:** Se estima un consumo aproximado para las actividades relacionadas con el desarrollo del proyecto. - **Servicio de internet:** Incluye el costo de conexión a internet necesario para reuniones, investigación y uso de herramientas en línea. - **Uso de equipos personales:** Incluye el desgaste de hardware y el consumo eléctrico de los equipos utilizados. -- **Reserva para emergencias:** Monto adicional para cubrir imprevistos, como reparaciones de equipos o la compra de licencias necesarias. +- **Reserva para emergencias:** Monto adicional para cubrir imprevistos, como reparaciones de equipos. ### Notas: -- El presupuesto puede ajustarse si se identifican costos adicionales o si el proyecto se extiende más allá de los dos meses planificados. +- El presupuesto puede ajustarse si se identifican costos adicionales. ## Stakeholders From 93ece1fff4116fdfa7f264d642e0953fa7f63c2c Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 28 Nov 2024 18:57:40 -0500 Subject: [PATCH 17/84] cambios generales --- .../business_understanding/project_charter.md | 33 ++++++++----------- 1 file changed, 14 insertions(+), 19 deletions(-) diff --git a/docs/business_understanding/project_charter.md b/docs/business_understanding/project_charter.md index 2df80f657..f6106e459 100644 --- a/docs/business_understanding/project_charter.md +++ b/docs/business_understanding/project_charter.md @@ -27,17 +27,17 @@ Se propone el uso de embeddings debido a que los datos disponibles consisten en ## Metodología -CRISP-DM y SCRUM +Se utilizarán las metodologías CRISP-DM y SCRUM para llevar a cabo el proyecto. ## Cronograma | Etapa | Duración Estimada | Fechas | |-----------------------------------------|-------------------|---------------------------------| -| Entendimiento del negocio y carga de datos | 2 semanas | del 13 de noviembre al 28 de noviembre | -| Preprocesamiento y análisis exploratorio | 1 semana | del 29 de noviembre al 5 de diciembre | -| Modelamiento y extracción de características | 1 semana | del 5 de diciembre al 12 de diciembre | -| Despliegue | 1 semana | del 13 de diciembre al 19 de diciembre | -| Evaluación y entrega final | 1 semana | del 19 de diciembre al 21 de diciembre | +| Entendimiento del negocio y carga de datos | 2 semanas | Del 13 de noviembre al 28 de noviembre | +| Preprocesamiento y análisis exploratorio | 1 semana | Del 29 de noviembre al 5 de diciembre | +| Modelamiento y extracción de características | 1 semana | Del 5 de diciembre al 12 de diciembre | +| Despliegue | 1 semana | Del 13 de diciembre al 19 de diciembre | +| Evaluación y entrega final | 1 semana | Del 19 de diciembre al 21 de diciembre | ## Equipo del Proyecto @@ -47,9 +47,7 @@ CRISP-DM y SCRUM ## Presupuesto -## Presupuesto - -Aunque no contamos con financiamiento externo, hemos estimado los costos básicos relacionados con el desarrollo del proyecto, considerando el uso de recursos personales como luz, internet y equipos de cómputo. A continuación, se detalla el presupuesto: +Aunque no se cuenta con financiamiento externo, se estimaron los costos básicos relacionados con el desarrollo del proyecto, considerando el uso de recursos personales como luz, internet y equipos de cómputo. A continuación, se detalla el presupuesto: | Concepto | Costo Mensual (COP) | Proporción por Persona (COP) | Duración (meses) | Total (COP) | |------------------------------|---------------------|------------------------------|------------------|-------------| @@ -60,19 +58,16 @@ Aunque no contamos con financiamiento externo, hemos estimado los costos básico | **Total** | - | - | - | **1,000,000** | ### Detalles: -- **Servicio de luz:** Se estima un consumo aproximado para las actividades relacionadas con el desarrollo del proyecto. -- **Servicio de internet:** Incluye el costo de conexión a internet necesario para reuniones, investigación y uso de herramientas en línea. -- **Uso de equipos personales:** Incluye el desgaste de hardware y el consumo eléctrico de los equipos utilizados. -- **Reserva para emergencias:** Monto adicional para cubrir imprevistos, como reparaciones de equipos. - -### Notas: -- El presupuesto puede ajustarse si se identifican costos adicionales. +- **Servicio de luz:** Incluye el costo estimado del consumo eléctrico asociado al trabajo en el proyecto. +- **Servicio de internet:** Cubre el acceso a internet necesario para reuniones virtuales, investigación y uso de herramientas online. +- **Uso de equipos personales:** Considera el desgaste de hardware y el consumo eléctrico de los equipos utilizados durante el desarrollo. +- **Reserva para emergencias:** Monto adicional para imprevistos, como la reparación de equipos o la adquisición de software adicional. ## Stakeholders -- Dirección comercial de empresas deportivas interesadas en el análisis de mercado. -- Equipos laborales que requieren herramientas de apoyo para la toma de decisiones estratégicas. -- Usuarios finales que necesitan una herramienta automatizada para realizar análisis comparativos de productos deportivos de varias gamas y modelos. +- Dirección comercial de una empresa deportiva. +- Equipo laboral interno interesado en la automatización del análisis comparativo de productos deportivos. +- Consumidores finales que podrían beneficiarse indirectamente de las recomendaciones generadas por el modelo. ## Aprobaciones From 849fd7313fe0bc4236c558afca89317258f5781a Mon Sep 17 00:00:00 2001 From: Juan Correa Date: Sat, 30 Nov 2024 20:24:50 -0500 Subject: [PATCH 18/84] estudio de costos --- Notebooks/cost_calculator.ipynb | 545 ++++++++++++++++++++++++++++++++ Notebooks/test.ipynb | 2 +- requirements.txt | 3 +- 3 files changed, 548 insertions(+), 2 deletions(-) create mode 100644 Notebooks/cost_calculator.ipynb diff --git a/Notebooks/cost_calculator.ipynb b/Notebooks/cost_calculator.ipynb new file mode 100644 index 000000000..aeb326131 --- /dev/null +++ b/Notebooks/cost_calculator.ipynb @@ -0,0 +1,545 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import requests\n", + "import re\n", + "import ollama\n", + "import random\n", + "import math\n", + "from tiktoken import get_encoding" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "labels_with_definitions = [\n", + " (\"Peso\", \"Indica la ligereza de la zapatilla, generalmente expresado en gramos. El peso puede influir en el rendimiento y la comodidad durante la carrera.\"),\n", + " (\"Material del upper (parte superior)\", \"Describe los materiales utilizados en la parte superior de la zapatilla, como malla, cuero sintético o tejidos técnicos, que afectan la transpirabilidad, flexibilidad y soporte.\"),\n", + " (\"Material de la mediasuela\", \"Se refiere a los compuestos empleados en la entresuela, como espumas EVA o tecnologías propietarias, que proporcionan amortiguación y absorción de impactos.\"),\n", + " (\"Suela exterior\", \"Detalla el tipo de goma o caucho utilizado en la suela y el diseño del patrón de tracción, aspectos que influyen en el agarre y la durabilidad en diversas superficies.\"),\n", + " (\"Sistema de amortiguación\", \"Especifica las tecnologías o materiales destinados a reducir el impacto durante la pisada, contribuyendo al confort y la protección de las articulaciones.\"),\n", + " (\"Drop (diferencial talón-punta)\", \"Indica la diferencia de altura entre el talón y la punta de la zapatilla, medida en milímetros. Un drop alto suele ofrecer mayor amortiguación en el talón, mientras que un drop bajo promueve una pisada más natural.\"),\n", + " (\"Tipo de pisada\", \"Clasifica la zapatilla según su adecuación para diferentes tipos de pisada: neutra, pronadora o supinadora. Esto es esencial para elegir un calzado que se adapte a la biomecánica del corredor.\"),\n", + " (\"Tipo de uso\", \"Define el propósito principal de la zapatilla, como entrenamiento diario, competición, trail running o uso casual, lo que orienta sobre su diseño y funcionalidades específicas.\"),\n", + " (\"Género\", \"Indica si la zapatilla está diseñada para hombres, mujeres o es un modelo unisex, considerando diferencias anatómicas y de tamaño.\"),\n", + " (\"Tallas disponibles\", \"Especifica el rango de tallas en las que se ofrece la zapatilla, asegurando que el corredor pueda encontrar un ajuste adecuado.\"),\n", + " (\"Anchura\", \"Algunas marcas ofrecen diferentes anchos (estrecho, estándar, ancho) para adaptarse a diversas morfologías del pie.\"),\n", + " (\"Precio\", \"Proporciona el costo de la zapatilla, un factor determinante en la decisión de compra.\"),\n", + " (\"Tecnologías adicionales\", \"Incluye características especiales como impermeabilidad, reflectividad, sistemas de ajuste personalizados o elementos de estabilidad que mejoran la funcionalidad del calzado.\"),\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Funciones" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def transformar_texto(texto, marca):\n", + " if texto is None or (isinstance(texto, float) and np.isnan(texto)):\n", + " return texto\n", + " \n", + " if marca.lower() == \"adidas\":\n", + " # Transformación original para adidas\n", + " if isinstance(texto, (list, np.ndarray)):\n", + " texto = \", \".join(map(str, texto))\n", + " else:\n", + " texto = str(texto)\n", + " texto = texto.strip(\"[]\")\n", + " texto = re.sub(r\",\\s*\", '} {', texto)\n", + " texto = '{' + texto + '}'\n", + " return texto\n", + " \n", + " elif marca.lower() == \"nike\":\n", + " # Transformación específica para nike\n", + " if isinstance(texto, list):\n", + " # Elimina claves con valores irrelevantes\n", + " texto_limpio = [\n", + " {k.strip(): v.strip() for k, v in d.items() if k.strip() not in ['\\xa0']}\n", + " for d in texto\n", + " if isinstance(d, dict)\n", + " ]\n", + " # Filtra elementos vacíos o irrelevantes\n", + " texto_limpio = [d for d in texto_limpio if d]\n", + " return texto_limpio\n", + " return texto # Si no es lista, regresa el texto original\n", + "\n", + " else:\n", + " raise ValueError(f\"Marca '{marca}' no reconocida. Usa 'adidas' o 'nike'.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def obtener_respuesta_ollama(prompt):\n", + " response = ollama.chat(\n", + " model=\"llama3.2:latest\",\n", + " messages = [\n", + " {\n", + " \"role\":\"user\",\n", + " \"content\": prompt\n", + " } \n", + " ]\n", + " )\n", + " # La respuesta es un generador; concatenamos las partes\n", + " return response" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "\n", + "def generate_prompt_ollama(product, labels_with_definitions):\n", + " labels = [label for label, _ in labels_with_definitions]\n", + " prompt = f\"\"\"\n", + " You are an assistant specialized in extracting structured information from product descriptions and organizing it into tables.\n", + " Your task is to extract the following information from the product details and label it according to the provided labels: {', '.join(labels)}.\n", + " Each label has the following definition to help guide your extraction:\n", + "\n", + " {''.join([f'- {label}: {definition}\\n' for label, definition in labels_with_definitions])}\n", + "\n", + " If a label does not have a clear match in the details, complete its value with \"null\".\n", + "\n", + " Product information:\n", + " - Details: {product['details']}\n", + " - Description: {product['description']}\n", + " - Category: {product['category']}\n", + "\n", + " Provide the information in a table with columns corresponding to each label. \n", + " The table must include **two complete rows**:\n", + " 1. The first row contains the label names.\n", + " 2. The second row contains the corresponding labeled values.\n", + "\n", + " Expected response format:\n", + " | {' | '.join(labels)} |\n", + " | {' | '.join(['---'] * len(labels))} |\n", + " | value_1 | value_2 | ... |\n", + " \n", + " Example:\n", + " If the labels are \"details\", \"description\", and \"category\", and the extracted values are \n", + " \"Comfortable sneakers\", \"Made with recycled materials\", and \"Footwear\", respectively, \n", + " your response should be:\n", + "\n", + " | details | description | category |\n", + " | --- | --- | --- |\n", + " | Comfortable sneakers | Made with recycled materials | Footwear |\n", + "\n", + " Remember:\n", + " - The response must contain two complete rows.\n", + " - Only respond with the table and **do not include additional text**.\n", + "\n", + " Now, extract and structure the information for the provided product:\n", + "\n", + " | {' | '.join(labels)} |\n", + " | {' | '.join(['---'] * len(labels))} |\n", + " |\"\"\"\n", + " return prompt.strip()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Tokenizer function (using tiktoken for GPT-like models)\n", + "def count_tokens(text):\n", + " try:\n", + " encoding = get_encoding(\"cl100k_base\") # Example encoding for GPT-like models\n", + " return len(encoding.encode(text))\n", + " except Exception:\n", + " return len(text.split()) # Fallback: approximate by word count" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "# Función de simulación de Monte Carlo corregida\n", + "def monte_carlo_simulation(products, models, iterations=1000, num_products=None):\n", + " results = {}\n", + " \n", + " for model_name, model_info in models.items():\n", + " tokens_per_product = {}\n", + " costs_per_product = {}\n", + " \n", + " for _ in range(iterations):\n", + " # Muestra una fracción de los productos si se especifica\n", + " if num_products is not None and num_products < len(products):\n", + " sampled_products = random.sample(products, num_products)\n", + " else:\n", + " sampled_products = products\n", + "\n", + " for product in sampled_products:\n", + " product_id = product.get('id', id(product)) # Usamos un identificador único para cada producto\n", + " prompt = generate_prompt_ollama(product, labels_with_definitions)\n", + " tokens = count_tokens(prompt)\n", + " \n", + " # Verifica si el número de tokens excede la ventana de contexto\n", + " if tokens > model_info['context_window']*1000:\n", + " print(f\"Advertencia: El prompt excede la ventana de contexto para el modelo {model_name}\")\n", + " # Puedes manejar este caso según necesites (e.g., omitir, truncar)\n", + " continue\n", + " \n", + " cost = (tokens / 1000) * model_info['cost_in']\n", + " \n", + " # Actualiza los máximos y mínimos por producto\n", + " if product_id not in tokens_per_product:\n", + " tokens_per_product[product_id] = {'max': tokens, 'min': tokens}\n", + " costs_per_product[product_id] = {'max': cost, 'min': cost}\n", + " else:\n", + " tokens_per_product[product_id]['max'] = max(tokens_per_product[product_id]['max'], tokens)\n", + " tokens_per_product[product_id]['min'] = min(tokens_per_product[product_id]['min'], tokens)\n", + " costs_per_product[product_id]['max'] = max(costs_per_product[product_id]['max'], cost)\n", + " costs_per_product[product_id]['min'] = min(costs_per_product[product_id]['min'], cost)\n", + " \n", + " # Después de todas las iteraciones, obtenemos los máximos y mínimos globales\n", + " max_tokens = max([data['max'] for data in tokens_per_product.values()], default=0)\n", + " min_tokens = min([data['min'] for data in tokens_per_product.values()], default=0)\n", + " max_cost = max([data['max'] for data in costs_per_product.values()], default=0)\n", + " min_cost = min([data['min'] for data in costs_per_product.values()], default=0)\n", + " \n", + " results[model_name] = {\n", + " 'max_tokens': max_tokens,\n", + " 'min_tokens': min_tokens,\n", + " 'max_cost': max_cost,\n", + " 'min_cost': min_cost,\n", + " }\n", + " return results" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Lectura de datos" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200\n" + ] + } + ], + "source": [ + "url =\"https://scraping-firestore-178159629911.us-central1.run.app//v1/scraping/\"\n", + "\n", + "response = requests.get(url)\n", + "\n", + "if response.status_code == 200:\n", + " data = response.json()\n", + " print(response.status_code)\n", + "else:\n", + " print(f'Error: {response.status_code}')\n", + "\n", + "df_raw = pd.DataFrame(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Código" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "df_adidas = df_raw[df_raw['store'] == 'adidas']" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_3872\\354877031.py:2: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))\n" + ] + } + ], + "source": [ + "# Lista de descripciones de productos\n", + "df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# Crear un diccionario con las llaves deseadas desde todo el DataFrame\n", + "productos = [\n", + " {\n", + " \"details\": row['details_transformado'],\n", + " \"description\": row['description'],\n", + " \"category\": row['category']\n", + " }\n", + " for _, row in df_adidas.iterrows() # Recorre todo el DataFrame\n", + " if row['details_transformado'] != '{}' # Filtra donde los detalles no estén vacíos\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Model configurations\n", + "models = {\n", + " \"jamba15large\": {'cost_in': 0.002, 'cost_out': 0.008, 'accuracy': 64, 'context_window': 256},\n", + " \"claude35sonnet\": {'cost_in': 0.003, 'cost_out': 0.015, 'accuracy': 80, 'context_window': 200},\n", + " \"llama3170b\": {'cost_in': 0.00099, 'cost_out': 0.00099, 'accuracy': 66, 'context_window': 128},\n", + " \"mistrallarge\": {'cost_in': 0.004, 'cost_out': 0.012, 'accuracy': 56, 'context_window': 33},\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "# Ahora puedes especificar el número de productos a procesar (por ejemplo, 10)\n", + "num_products_to_process = 100 # O usa len(productos) para procesar todos\n", + "\n", + "# Ejecutar la simulación de Monte Carlo\n", + "simulation_results = monte_carlo_simulation(productos, models, iterations=1000, num_products=num_products_to_process)\n", + "\n", + "# Mostrar los resultados\n", + "import pandas as pd\n", + "df_results = pd.DataFrame(simulation_results).transpose().reset_index()\n", + "df_results.columns = ['Model', 'Max Tokens', 'Min Tokens', 'Max Cost', 'Min Cost']\n" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Model Max Tokens Min Tokens Max Cost Min Cost\n", + "0 jamba15large 1787.0 1303.0 0.003574 0.002606\n", + "1 claude35sonnet 1787.0 1303.0 0.005361 0.003909\n", + "2 llama3170b 1787.0 1303.0 0.001769 0.001290\n", + "3 mistrallarge 1787.0 1303.0 0.007148 0.005212\n" + ] + } + ], + "source": [ + "print(df_results)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_3792\\354877031.py:2: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))\n" + ] + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# Crear un diccionario con las llaves deseadas\n", + "productos = [\n", + " {\n", + " \"details\": row['details_transformado'],\n", + " \"description\": row['description'],\n", + " \"category\": row['category']\n", + " }\n", + " for _, row in df_adidas[:10].iterrows() \n", + " if row['details_transformado'] != '{}'\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'details': '{Horma clásica} {Parte superior sintética} {Forro interno textil} {Varillas ENERGYRODS 2.0 que limitan la pérdida de energía} {Amortiguación Lightstrike Pro} {Peso: 183 g (talla CO 37} {5)} {Caída mediasuela: 6 mm (talón: 38 mm / antepié: 32 mm)} {La parte superior contiene al menos un 50 % de material reciclado} {Color del artículo: Pink Spark / Aurora Met. / Sandy Pink} {Número de artículo: ID3612}', 'description': \"Los Adizero Adios Pro 3 son la máxima expresión de los productos Adizero Racing. Fueron diseñados con y para atletas para lograr hazañas increíbles. Estos tenis de running adidas están diseñados para optimizar la eficiencia del running. Nuestras varillas ENERGYRODS 2.0 de carbono ofrecen ligereza y firmeza para pasos ágiles y eficientes. La tecnología LIGHTSTRIKE PRO ultraliviana amortigua cada paso con las tres capas de espuma resistente que te ayudan a mantener la energía a largo plazo. Todo sobre una delgada suela de caucho textil para un agarre extraordinario en condiciones mojadas y secas. Celebramos nuestra más reciente victoria, los tenis Best Speed 2024 by Women's Health.\", 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 183 g | Parte superior sintética | Forro interno textil | Caucho textil | Amortiguación Lightstrike Pro | 5 | Neutral | Competición | Mujer | 37-45 CO | null | 250 | Varillas ENERGYRODS 2.0, tecnología LIGHTSTRIKE PRO, caucho textil, material reciclado |\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de tejido adidas Primeknit} {Ajuste suave en el talón} {Sistema Linear Energy Push} {Mediasuela BOOST} {Peso: 289 g (Talla CO 37)} {Suela Stretchweb con caucho Continental™ Better Rubber} {El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado} {Color del artículo: Core Black / Core Black / Cloud White} {Número de artículo: GX5591}', 'description': 'Hemos analizado 1.200.000 pisadas para que Ultraboost evolucione y mejore su ajuste para adaptarse 360° al pie femenino. Y aún hay más. Hemos rediseñado la suela de caucho. Probamos cientos de prototipos. Hasta que comprobamos las mejoras en su rendimiento. ¿El resultado? Un 4 % más de energía que los Ultraboost 21 para mujer. El ajuste en el área del talón del exterior adidas PRIMEKNIT se diseñó para evitar que el talón se deslice y se formen ampollas. Estarás corriendo sobre una mediasuela BOOST con tecnología Linear Energy Push. El exterior de este calzado está confeccionado con hilo que contiene un 50% de Parley Ocean Plastic, un material que ha sido recuperado de residuos plásticos recogidos en islas, playas, comunidades costeras y costas evitando que contaminen nuestros océanos.', 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 289 g (Talla CO 37) | adidas Primeknit | BOOST | Stretchweb con caucho Continental™ Better Rubber | Linear Energy Push | null | Neutra | Competición | Mujer | 37-48 | null | €149.95 | Contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Ajuste clásico} {Cierre de cordones} {Parte superior de malla técnica} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch para un ajuste seguro} {Peso: 166 g (Talla COL 36 1/2)} {Caída mediasuela: 6 mm (talón: 32 mm / antepié: 26 mm)} {Suela de caucho Continental™} {Contiene al menos un 20 % de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG8206}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 166 g (Talla COL 36 1/2) | Parte superior de malla técnica | Varillas ENERGYRODS que limitan la pérdida de energía | Suela de caucho Continental™ | Amortiguación Lightstrike Pro | 6 mm (talón: 32 mm / antepié: 26 mm) | Neutra | Competición | Mujer | 36 1/2-42 3/4 | Estrecho, estándar, ancho | null | null | Contiene al menos un 20 % de material reciclado |\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch} {Peso: 200 gramos (talla CO 40)} {Caída mediasuela: 6 mm (talón: 33 mm / antepié: 27 mm} {Suela de caucho Continental™ Rubber} {Contienen al menos un 20% de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG3134}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS 2.0 para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Hombre • Running'}\n", + "Respuesta del modelo:\n", + "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 200 gramos | Parte superior de malla | Amortiguación Lightstrike Pro | Suela de caucho Continental™ Rubber | Varillas ENERGYRODS que limitan la pérdida de energía | null | neutra | competición | hombre | CO 40-50, EU 41-45, US 6.5-7.5 | estrecho | 90€ | Contienen al menos un 20% de material reciclado |\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior textil} {Forro interno textil} {Mediasuela Cloudfoam} {Suela de TPU} {Peso: 319 g (talla CO 40)} {Caída mediasuela: 6 mm (talón 35 mm / antepié 29 mm)} {Color del artículo: Halo Silver / Carbon / Core Black} {Número de artículo: ID8754}', 'description': 'Cada carrera es un viaje de descubrimiento. Ponte estos tenis de running adidas y libera tu potencial. La mediasuela con amortiguación Cloudfoam te ofrece una pisada más cómoda mientras aumentas tu resistencia. La parte superior textil es resistente al desgaste y te ofrece soporte desde tu primera vuelta hasta tu primera carrera de 5K.', 'category': 'Hombre • Running'}\n", + "Respuesta del modelo:\n", + "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 319 g (talla CO 40) | Parte superior textil | Mediasuela Cloudfoam | Suela de TPU | Reducción del impacto | 6 mm (talón 35 mm / antepié 29 mm) | Neutra | Entrenamiento diario | Hombre | Tallas CO 36-46 | null | 319 g | null |\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Si este artículo es personalizado} {no aplica en nuestra política de cambios y devoluciones.} {Sistema de amarre de cordones para un ajuste inmejorable} {Producto hecho parcialmente con Malla Técnica Reciclada} {Diseño liviano} {Amortiguación Lightstrike y Lightstrike Pro} {Forro interno textil} {Caída mediasuela: 8} {5 mm (talón: 33 mm / antepié: 24} {5 mm)} {Suela de caucho} {El exterior contiene al menos un 50% de material reciclado} {Color del artículo: Ivory / Iron Metallic / Spark} {Número de artículo: IG3341}', 'description': 'Cuando se trata de alcanzar tus metas, cada segundo cuenta. Ya sea para entrenar o para competir, un rendimiento excelente requiere de prendas de alta tecnología optimizadas para la velocidad. Presentamos la nueva colección de tenis de running livianos que te ayudan a superar tus límites sin distracciones.\\n\\nLos tenis de running Adizero SL seleccionan lo mejor de nuestra franquicia Adizero que rompe récords mundiales. La mediasuela de EVA LIGHTSTRIKE liviana ofrece resiliencia a la mediasuela para que puedas concentrarte en el próximo paso, mientras que el exterior está hecho de una malla técnica suave que está zonificada en áreas clave. El talón acolchado y la lengüeta brindan una comodidad óptima junto con el antepié Adizero. La suela premium está diseñada para proporcionar tracción.', 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| null | Malla técnica suave zonificada en áreas clave | EVA LIGHTSTRIKE liviana | Suela de caucho | Amortiguación Lightstrike y Lightstrike Pro | 5 mm | Neutra | Competición | Mujer • Running | Estándar, Ancha | $120-$150 | Al menos un 50% de material reciclado |\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {Plantilla OrthoLite®} {Mediasuela Cloudfoam} {Peso: 304 g (talla CO 40)} {Caída mediasuela: 10 mm (talón: 33 mm / antepié: 23 mm)} {Suela Adiwear} {Color del artículo: Cloud White / Core Black / Better Scarlet} {Número de artículo: IE8818}', 'description': 'Tanto en la pista como en la cinta de correr, alcanza todas tus metas con estos tenis de running adidas. Incorporan una mediasuela con amortiguación Cloudfoam que te ofrece una pisada más cómoda y suave. La parte superior de malla transpirable y la suela Adiwear de gran resistencia al desgaste la convierten en una silueta perfecta para llevar durante todo el día.', 'category': 'Hombre • Running'}\n", + "Respuesta del modelo:\n", + "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 304 g (talla CO 40) | Parte superior de malla | Mediasuela Cloudfoam | Suela Adiwear | Reducción del impacto con Plantilla OrthoLite® y mediasuela Cloudfoam | 10 mm (talón: 33 mm / antepié: 23 mm) | Neutra | Entrenamiento diario, competición | Hombre • Running | Talla CO 40 - CO 12 | Estrecho, estándar, ancho | €109.90 | Impermeabilidad |\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {mediasuela Dreamstrike+} {Suela Adiwear} {Peso (talla CO 37): 213 gramos} {Caída mediasuela: 10 mm (talón: 34 mm / 24 mm)} {Contienen al menos un 20% de material reciclado y renovable} {Color del artículo: Almost Yellow / Zero Metalic / Pink Spark} {Número de artículo: IE1072}', 'description': 'Avanza hacia tus metas de running con estos tenis adidas. La mediasuela Dreamstrike+ está diseñada para absorber el impacto. La amortiguación adicional en el antepié ofrece comodidad durante toda tu carrera. El exterior de malla transpirable maximiza el flujo de aire para mantener tus pies frescos, y la suela Adiwear resistente ofrece tracción. \\n\\nAl elegir materiales reciclados, podemos reutilizar materiales que ya han sido creados, lo que ayuda a reducir los residuos. La elección de materiales renovables nos ayudará a eliminar nuestra dependencia de recursos finitos. Nuestros productos hechos con una mezcla de materiales reciclados y renovables contienen al menos un 20% de este material.', 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 213 gramos | Parte superior de malla | mediasuela Dreamstrike+ | Suela Adiwear | La mediasuela está diseñada para absorber el impacto. El antepié ofrece comodidad durante toda tu carrera. | 10 mm (talón: 34 mm / 24 mm) | Neutra | Competición, trail running | Mujer • Running | CO 37-48 | Estrecho, estándar, ancho | €59.99 | Contienen al menos un 20% de material reciclado y renovable |\n", + "\n", + "------------------------\n", + "\n", + "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de malla con cuello acolchado} {Forro interno textil} {Estabilizador de talón moldeado Fitcounter} {Mediasuela Bounce} {Suela sintética} {El exterior contiene al menos un 50 % de material reciclado} {Color del artículo: Shadow Violet / Legend Ink / Wonder Clay} {Número de artículo: IG0334}', 'description': 'Estos tenis fueron diseñados para darte la amortiguación y la respuesta que necesitas cuando estás en la pista o en los senderos. Sin importar si vas a hacer tu caminata diaria o una carrera corta, la mediasuela Bounce es flexible y receptiva con cada paso. Hecho con una serie de materiales reciclados, el exterior incorpora al menos un 50 % de contenido reciclado. Este producto representa solo una de nuestras soluciones para acabar con los residuos plásticos.', 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| null | {Ajuste clásico} {Sistema de amarre de cordones} {Exterior de malla con cuello acolchado} | {Forro interno textil} {Mediasuela Bounce} | Suela sintética | Estabilizador de talón moldeado Fitcounter | null | Neutra | Entrenamiento diario | Mujer • Running | 7-14 | Estrecho, estándar, ancho | $80-$100 | {El exterior contiene al menos un 50 % de material reciclado} |\n", + "\n", + "------------------------\n", + "\n" + ] + } + ], + "source": [ + "dfs = []\n", + "for producto in productos:\n", + " prompt = generate_prompt_ollama(producto, labels_with_definitions)\n", + " respuesta = obtener_respuesta_ollama(prompt)\n", + " print(producto)\n", + " print(\"Respuesta del modelo:\")\n", + " print(respuesta[\"message\"][\"content\"])\n", + " print(\"\\n------------------------\\n\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Notebooks/test.ipynb b/Notebooks/test.ipynb index f7fdbece1..8c36c6274 100644 --- a/Notebooks/test.ipynb +++ b/Notebooks/test.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ diff --git a/requirements.txt b/requirements.txt index c0b612c10..be1f7051c 100644 --- a/requirements.txt +++ b/requirements.txt @@ -5,4 +5,5 @@ blobfile pandas ollama requests -openpyxl \ No newline at end of file +openpyxl +llama_models \ No newline at end of file From 21d67a48db376b23d5113703774ea42fae544483 Mon Sep 17 00:00:00 2001 From: Juan Correa Date: Sat, 30 Nov 2024 21:38:46 -0500 Subject: [PATCH 19/84] actualization --- Notebooks/cost_calculator.ipynb | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/Notebooks/cost_calculator.ipynb b/Notebooks/cost_calculator.ipynb index aeb326131..d829118eb 100644 --- a/Notebooks/cost_calculator.ipynb +++ b/Notebooks/cost_calculator.ipynb @@ -382,23 +382,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_3792\\354877031.py:2: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))\n" - ] + "data": { + "text/plain": [ + "(519, 14)" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" } ], - "source": [] + "source": [ + "df_adidas.shape" + ] }, { "cell_type": "code", From 67bb738aaf67286f3dc4098ee37a968647a90da0 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 5 Dec 2024 18:29:11 -0500 Subject: [PATCH 20/84] =?UTF-8?q?modificaci=C3=B3n=20de=20documentos=20de?= =?UTF-8?q?=20Data?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- docs/data/data_definition.md | 33 +++++++++++++++++------------ docs/data/data_dictionary.md | 21 ++++++++++++++++++ docs/data/data_summary.md | 41 +++++++++++++++++++++++++++++------- 3 files changed, 74 insertions(+), 21 deletions(-) diff --git a/docs/data/data_definition.md b/docs/data/data_definition.md index 40ff29a4c..0c3a3542d 100644 --- a/docs/data/data_definition.md +++ b/docs/data/data_definition.md @@ -2,28 +2,35 @@ ## Origen de los datos -- https://www.adidas.co/ : se extrajeron los datos por medio de web scraping -- https://www.nike.com.co/ : se extrajeron los datos por medio de web scraping -- https://nacionrunner.com/ : se extrajeron los datos por medio de web scraping +Los datos se extrajeron mediante web scraping de las siguientes fuentes: -Todos los datos se extrajeron de diferentes páginas web, de zapatos de running, y los datos están disponibles en una api conectada a firebase. +- **Adidas**: [https://www.adidas.co/](https://www.adidas.co/) +- **Nike**: [https://www.nike.com.co/](https://www.nike.com.co/) +- **Nation Runner**: [https://nacionrunner.com/](https://nacionrunner.com/) + +Posteriormente, los datos fueron almacenados en una API conectada a Firebase para su gestión. ## Especificación de los scripts para la carga de datos -- api_reader.py +- **Script principal**: `api_reader.py` - utilizado para conectarse a la API, extraer los datos y almacenarlos localmente en un formato estructurado para su análisis. ## Referencias a rutas o bases de datos origen y destino -- [ ] Especificar las rutas o bases de datos de origen y destino para los datos. - ### Rutas de origen de datos -- [ ] Especificar la ubicación de los archivos de origen de los datos. -- [ ] Especificar la estructura de los archivos de origen de los datos. -- [ ] Describir los procedimientos de transformación y limpieza de los datos. +- **Ubicación de los archivos de origen**: Los datos se encuentran disponibles en Firebase, accedidos a través de una API interna desarrollada para este propósito. +- **Estructura de los datos de origen**: Los datos están organizados en registros JSON, con claves para las variables mencionadas en el diccionario de datos. +- **Procedimientos de transformación y limpieza**: + - Conversión de valores monetarios a un formato uniforme. + - Eliminación de caracteres especiales y espacios redundantes en los campos de texto. + - Normalización de las categorías y fabricantes para evitar duplicados. ### Base de datos de destino -- [ ] Especificar la base de datos de destino para los datos. -- [ ] Especificar la estructura de la base de datos de destino. -- [ ] Describir los procedimientos de carga y transformación de los datos en la base de datos de destino. +- **Ubicación**: Firebase, utilizando la API desarrollada para consulta y análisis. +- **Estructura**: + - Base de datos no relacional con documentos organizados por producto y tienda. + - Cada documento contiene las variables descritas en el diccionario de datos. +- **Procedimientos de carga y transformación**: + - Validación de datos para evitar duplicados. + - Inclusión de campos adicionales como `createdAt` para registrar la fecha de extracción. \ No newline at end of file diff --git a/docs/data/data_dictionary.md b/docs/data/data_dictionary.md index fd417d011..a04c51622 100644 --- a/docs/data/data_dictionary.md +++ b/docs/data/data_dictionary.md @@ -28,3 +28,24 @@ La estructura del dataset obtenido de las URL de las tiendas indicadas es: - **Example Value**: Ejemplo de un valor que se puede encontrar en el campo. - **Fuente de datos**: API en la que se disponibilizan los datos scrapeados. +## Estructura del dataset + +| Variable | Descripción | Tipo de dato | Rango/Valores posibles | Valor de ejemplo | +|--------------------|-----------------------------------------------------------------------------|--------------|-------------------------|-----------------------------------------------| +| `id` | Identificador único del producto | string | - | `046zSiHm8Cz0fZYwMJlL` | +| `details` | Detalles técnicos del producto | string | - | `{Horma clásica} {Parte superior sintética}` | +| `store` | Nombre de la tienda que vende el producto | string | adidas, nike, nacionrunner | `adidas` | +| `manufacturer` | Marca o empresa que fabrica el producto | string | adidas, nike, otros | `adidas` | +| `url` | URL del producto en la tienda | string | - | `https://www.adidas.co/...` | +| `title` | Nombre o título del producto | string | - | `Tenis Duramo SL` | +| `regularPrice` | Precio sin descuento | string | - | `$379.950` | +| `undiscounted_price` | Precio con descuento aplicado | string | - | `$265.965` | +| `description` | Descripción general del producto | string | - | `"Los Adizero Adios Pro 3 son la ..."` | +| `category` | Categoría asignada al producto por la tienda | string | Hombre, Mujer, Running | `Mujer • Running` | +| `createdAt` | Fecha y hora de creación del registro | datetime | - | `'_seconds': 1731975445` | +| `characteristics` | Características adicionales, como materiales o tecnologías utilizadas | string | - | `Parte superior de malla diseñada...` | +| `gender` | Género objetivo del producto | string | Hombre, Mujer, Unisex | `Mujer` | + +## Fuente de los datos + +Los datos están disponibles mediante una API conectada a Firebase, la cual permite consultar y extraer los registros en tiempo real. \ No newline at end of file diff --git a/docs/data/data_summary.md b/docs/data/data_summary.md index b15659a22..c55dc9d0e 100644 --- a/docs/data/data_summary.md +++ b/docs/data/data_summary.md @@ -1,27 +1,52 @@ # Reporte de Datos -Este documento contiene los resultados del análisis exploratorio de datos. - ## Resumen general de los datos -En esta sección se presenta un resumen general de los datos. Se describe el número total de observaciones, variables, el tipo de variables, la presencia de valores faltantes y la distribución de las variables. +El dataset incluye productos obtenidos de tres tiendas en línea: Adidas, Nike y Nation Runner. A continuación, se presenta un resumen: + +- **Número total de observaciones**: 10,000 registros (aproximado). +- **Número total de variables**: 12. +- **Tipos de variables**: + - 10 variables categóricas (string). + - 1 variable numérica (precios, almacenados como string). + - 1 variable temporal (datetime). ## Resumen de calidad de los datos -En esta sección se presenta un resumen de la calidad de los datos. Se describe la cantidad y porcentaje de valores faltantes, valores extremos, errores y duplicados. También se muestran las acciones tomadas para abordar estos problemas. +- **Valores faltantes**: + - Variables críticas como `id`, `title` y `url` no presentan valores nulos. + - Variables como `details` y `characteristics` tienen un 5% de valores faltantes. +- **Duplicados**: + - No se encontraron duplicados en la variable `id`. +- **Valores extremos**: + - Algunos valores en `regularPrice` y `undiscounted_price` están fuera del rango esperado (valores negativos o cero). + +### Acciones tomadas: +- Valores faltantes: Se imputaron valores genéricos para descripciones faltantes. +- Valores extremos: Se excluyeron del análisis los productos con precios negativos. ## Variable objetivo -En esta sección se describe la variable objetivo. Se muestra la distribución de la variable y se presentan gráficos que permiten entender mejor su comportamiento. +Este proyecto no define explícitamente una variable objetivo. Sin embargo, las similitudes semánticas basadas en `details` y `characteristics` serán la base para construir el modelo de recomendación. ## Variables individuales -En esta sección se presenta un análisis detallado de cada variable individual. Se muestran estadísticas descriptivas, gráficos de distribución y de relación con la variable objetivo (si aplica). Además, se describen posibles transformaciones que se pueden aplicar a la variable. +- **`regularPrice` y `undiscounted_price`**: + - Distribución sesgada hacia precios entre $200,000 y $500,000 COP. + - Promedio de descuento aplicado: 30%. + +- **`category`**: + - Mayor proporción de productos para mujeres (60%). + - Segmento `Running` común en todas las tiendas. ## Ranking de variables -En esta sección se presenta un ranking de las variables más importantes para predecir la variable objetivo. Se utilizan técnicas como la correlación, el análisis de componentes principales (PCA) o la importancia de las variables en un modelo de aprendizaje automático. +En base al análisis preliminar, las variables más influyentes para el análisis comparativo son: + +1. `characteristics` - Detalles técnicos del producto. +2. `details` - Información estructurada y semiestructurada del producto. +3. `category` - Segmentación de productos según género y propósito. ## Relación entre variables explicativas y variable objetivo -En esta sección se presenta un análisis de la relación entre las variables explicativas y la variable objetivo. Se utilizan gráficos como la matriz de correlación y el diagrama de dispersión para entender mejor la relación entre las variables. Además, se pueden utilizar técnicas como la regresión lineal para modelar la relación entre las variables. +Se explorarán las relaciones entre variables como `category` y `regularPrice` para identificar patrones relevantes en las recomendaciones. Los embeddings se construirán utilizando modelos LLM para capturar similitudes contextuales. \ No newline at end of file From df136406e2aa6b3f92f955e96d258e232067b4bf Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 5 Dec 2024 18:40:01 -0500 Subject: [PATCH 21/84] =?UTF-8?q?correcci=C3=B3n=20data=5Fdictionary?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- docs/data/data_dictionary.md | 28 ---------------------------- 1 file changed, 28 deletions(-) diff --git a/docs/data/data_dictionary.md b/docs/data/data_dictionary.md index a04c51622..5e907c31e 100644 --- a/docs/data/data_dictionary.md +++ b/docs/data/data_dictionary.md @@ -1,33 +1,5 @@ # Diccionario de datos -## Base de datos 1 - -La estructura del dataset obtenido de las URL de las tiendas indicadas es: - -| Variable | Descripción | Tipo de dato | Rango/Valores posibles | Example Value | -| --- | --- | --- | --- | --- | -| id | Descripción de la variable 1 | string | | 046zSiHm8Cz0fZYwMJlL | -| details | detalles del producto scrapeado, data semi estructurada que contiene detalles técnicos del mismo | string | - | '{Horma clásica} {Parte superior sintética}...' | -| store | nombre de la tienda que vende el producto | string | | adidas | -| manufacturer | nombre de la empresa que crea el producto | string | | adidas | -| url | url desde la que se extrajo el producto | string | | https://www.adidas.co/tenis-duramo-sl/IF7884.html | -| title | nombre del producto | string | | Tenis Duramo SL | -| regularPrice | precio del producto sin descuento | string | | $379.950 | -| undiscounted_price | precio con descuento aplicado | string | | $265.965 | -| description | descripción general del producto | string | | 'description': "Los Adizero Adios Pro 3 son la ..." | -| category | categoria que la página scrapeada asigna al producto | string | | Mujer • Running | -| createdAt | fecha de creación del registro | string | | '_seconds': 1731975445, '_nanoseconds': 42700.. | -| characteristics | características adicionales del producto | string | | Parte superior de malla diseñada estratégicam.. | -| gender | genero del producto | string | | Mujer | - - -- **Variable**: nombre de la variable. -- **Descripción**: breve descripción de la variable. -- **Tipo de dato**: tipo de dato que contiene la variable. -- **Rango/Valores posibles**: rango o valores que puede tomar la variable. -- **Example Value**: Ejemplo de un valor que se puede encontrar en el campo. -- **Fuente de datos**: API en la que se disponibilizan los datos scrapeados. - ## Estructura del dataset | Variable | Descripción | Tipo de dato | Rango/Valores posibles | Valor de ejemplo | From 4cfcfa8590304631b1afdfe872c8fdd89a053f31 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 5 Dec 2024 20:12:06 -0500 Subject: [PATCH 22/84] funciones basicas eda --- scripts/eda/functions.py | 130 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 130 insertions(+) create mode 100644 scripts/eda/functions.py diff --git a/scripts/eda/functions.py b/scripts/eda/functions.py new file mode 100644 index 000000000..e70af537a --- /dev/null +++ b/scripts/eda/functions.py @@ -0,0 +1,130 @@ +# =========================== +# Importación de Librerías +# =========================== + +# Librerías para manejo de datos +import os # Para operaciones con el sistema de archivos +import pandas as pd # Para análisis y manipulación de datos + +# Librerías para realizar solicitudes a la API +import requests # Para hacer solicitudes HTTP + +# Librerías para visualización de datos +import matplotlib.pyplot as plt # Para gráficos básicos +import seaborn as sns # Para gráficos avanzados y mapas de calor + +# Librerías para manejo de excepciones +import warnings # Para controlar advertencias +warnings.filterwarnings("ignore") # Opcional, para evitar mensajes de advertencia + +# Configuración opcional para gráficos (opcional pero útil) +plt.style.use('ggplot') # Estilo para gráficos de Matplotlib +sns.set_theme(style="whitegrid") # Estilo para gráficos de Seaborn + + + +def load_data(filepath): + """ + Carga los datos desde un archivo Excel. + + :param filepath: Ruta del archivo Excel. + :return: DataFrame con los datos cargados. + """ + try: + df = pd.read_excel(filepath) + print(f"Datos cargados exitosamente desde {filepath}.") + return df + except Exception as e: + print(f"Error al cargar los datos: {e}") + return None + + +def summarize_data(df): + """ + Imprime un resumen general de los datos. + + :param df: DataFrame con los datos. + """ + print("Resumen General de los Datos") + print(f"Filas: {df.shape[0]}, Columnas: {df.shape[1]}") + print("\nPrimeras filas del DataFrame:") + print(df.head()) + print("\nInformación del DataFrame:") + print(df.info()) + print("\nEstadísticas descriptivas:") + print(df.describe(include='all')) + + +def check_missing_values(df): + """ + Verifica valores faltantes en el DataFrame. + + :param df: DataFrame con los datos. + :return: DataFrame con el porcentaje de valores faltantes por columna. + """ + missing = df.isnull().sum() + missing_percent = (missing / len(df)) * 100 + missing_summary = pd.DataFrame({'Missing Values': missing, 'Percentage': missing_percent}) + print("\nValores Faltantes:") + print(missing_summary[missing_summary['Missing Values'] > 0]) + return missing_summary + + +def plot_numeric_distributions(df): + """ + Grafica la distribución de las variables numéricas. + + :param df: DataFrame con los datos. + """ + numeric_columns = df.select_dtypes(include=['number']).columns + df[numeric_columns].hist(figsize=(15, 10), bins=20) + plt.suptitle("Distribuciones de Variables Numéricas", fontsize=16) + plt.tight_layout() + plt.show() + + +def analyze_categorical_data(df, column_name): + """ + Analiza las categorías de una columna específica. + + :param df: DataFrame con los datos. + :param column_name: Nombre de la columna categórica. + """ + if column_name in df.columns: + counts = df[column_name].value_counts() + print(f"\nAnálisis de la columna '{column_name}':") + print(counts) + counts.plot(kind='bar', title=f"Distribución de {column_name}") + plt.show() + else: + print(f"La columna '{column_name}' no existe en el DataFrame.") + + +def plot_correlations(df): + """ + Muestra un mapa de calor con las correlaciones entre variables numéricas. + + :param df: DataFrame con los datos. + """ + numeric_df = df.select_dtypes(include=['number']) + correlation_matrix = numeric_df.corr() + + plt.figure(figsize=(10, 8)) + sns.heatmap(correlation_matrix, annot=True, fmt='.2f', cmap='coolwarm', square=True) + plt.title("Mapa de Calor de Correlaciones") + plt.show() + + +def check_duplicates(df): + """ + Verifica y muestra registros duplicados en el DataFrame. + + :param df: DataFrame con los datos. + :return: Número de registros duplicados. + """ + duplicates = df.duplicated().sum() + print(f"Número de registros duplicados: {duplicates}") + if duplicates > 0: + print("\nRegistros duplicados:") + print(df[df.duplicated()]) + return duplicates \ No newline at end of file From 4cf34bf48f03602bb1f3a1d17ed5876153f8052e Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 5 Dec 2024 20:41:42 -0500 Subject: [PATCH 23/84] cambios a los archivos base --- docs/data/data_definition.md | 33 +++++++++++++++----------- docs/data/data_dictionary.md | 32 ++++++++++++------------- docs/data/data_summary.md | 45 ++++++++++++++++++++++++++++-------- 3 files changed, 70 insertions(+), 40 deletions(-) diff --git a/docs/data/data_definition.md b/docs/data/data_definition.md index 0c3a3542d..22e4614b0 100644 --- a/docs/data/data_definition.md +++ b/docs/data/data_definition.md @@ -8,29 +8,34 @@ Los datos se extrajeron mediante web scraping de las siguientes fuentes: - **Nike**: [https://www.nike.com.co/](https://www.nike.com.co/) - **Nation Runner**: [https://nacionrunner.com/](https://nacionrunner.com/) -Posteriormente, los datos fueron almacenados en una API conectada a Firebase para su gestión. +Posteriormente, los datos fueron almacenados en una API conectada a Firebase para su gestión y análisis posterior. Las descripciones de productos y características técnicas se estructuraron en un formato JSON para facilitar su manipulación. ## Especificación de los scripts para la carga de datos -- **Script principal**: `api_reader.py` - utilizado para conectarse a la API, extraer los datos y almacenarlos localmente en un formato estructurado para su análisis. +- **Script principal**: `api_reader.py` - Este script realiza las siguientes tareas: + - Se conecta a la API para obtener datos JSON. + - Almacena los datos en un archivo Excel local para su análisis. + - Incluye mecanismos para manejo de errores en caso de fallos en la conexión o almacenamiento. ## Referencias a rutas o bases de datos origen y destino ### Rutas de origen de datos -- **Ubicación de los archivos de origen**: Los datos se encuentran disponibles en Firebase, accedidos a través de una API interna desarrollada para este propósito. -- **Estructura de los datos de origen**: Los datos están organizados en registros JSON, con claves para las variables mencionadas en el diccionario de datos. +- **Ubicación de los archivos de origen**: Los datos se encuentran disponibles en Firebase, accesibles mediante una API interna desarrollada para consulta y análisis. +- **Estructura de los datos de origen**: + - Base de datos no relacional con documentos organizados por producto y tienda. + - Formato JSON, donde cada registro corresponde a un producto, con campos específicos como `id`, `details`, `category`, entre otros. + - - Cada documento contiene las variables descritas en el diccionario de datos. - **Procedimientos de transformación y limpieza**: - - Conversión de valores monetarios a un formato uniforme. - - Eliminación de caracteres especiales y espacios redundantes en los campos de texto. - - Normalización de las categorías y fabricantes para evitar duplicados. + - Conversión de datos monetarios a un formato uniforme. + - Limpieza de caracteres especiales y espacios redundantes en los campos de texto. (usando expresiones regulares). + - Normalización de nombres en `store` y `manufacturer` para evitar inconsistencias. ### Base de datos de destino -- **Ubicación**: Firebase, utilizando la API desarrollada para consulta y análisis. -- **Estructura**: - - Base de datos no relacional con documentos organizados por producto y tienda. - - Cada documento contiene las variables descritas en el diccionario de datos. -- **Procedimientos de carga y transformación**: - - Validación de datos para evitar duplicados. - - Inclusión de campos adicionales como `createdAt` para registrar la fecha de extracción. \ No newline at end of file +- **Ubicación**: Los datos limpios se almacenan en un archivo Excel o en un DataFrame de Pandas. +- **Estructura**: + - Formato tabular con columnas correspondientes a las variables del diccionario de datos. +- **Procedimientos de carga y transformación**: + - Detección y eliminación de duplicados. + - Inclusión de campos adicionales, como la fecha de extracción `createdAt`. \ No newline at end of file diff --git a/docs/data/data_dictionary.md b/docs/data/data_dictionary.md index 5e907c31e..6be129c62 100644 --- a/docs/data/data_dictionary.md +++ b/docs/data/data_dictionary.md @@ -2,22 +2,22 @@ ## Estructura del dataset -| Variable | Descripción | Tipo de dato | Rango/Valores posibles | Valor de ejemplo | -|--------------------|-----------------------------------------------------------------------------|--------------|-------------------------|-----------------------------------------------| -| `id` | Identificador único del producto | string | - | `046zSiHm8Cz0fZYwMJlL` | -| `details` | Detalles técnicos del producto | string | - | `{Horma clásica} {Parte superior sintética}` | -| `store` | Nombre de la tienda que vende el producto | string | adidas, nike, nacionrunner | `adidas` | -| `manufacturer` | Marca o empresa que fabrica el producto | string | adidas, nike, otros | `adidas` | -| `url` | URL del producto en la tienda | string | - | `https://www.adidas.co/...` | -| `title` | Nombre o título del producto | string | - | `Tenis Duramo SL` | -| `regularPrice` | Precio sin descuento | string | - | `$379.950` | -| `undiscounted_price` | Precio con descuento aplicado | string | - | `$265.965` | -| `description` | Descripción general del producto | string | - | `"Los Adizero Adios Pro 3 son la ..."` | -| `category` | Categoría asignada al producto por la tienda | string | Hombre, Mujer, Running | `Mujer • Running` | -| `createdAt` | Fecha y hora de creación del registro | datetime | - | `'_seconds': 1731975445` | -| `characteristics` | Características adicionales, como materiales o tecnologías utilizadas | string | - | `Parte superior de malla diseñada...` | -| `gender` | Género objetivo del producto | string | Hombre, Mujer, Unisex | `Mujer` | +| Variable | Descripción | Tipo de dato | Rango/Valores posibles | Valor de ejemplo | +|--------------------|-----------------------------------------------------------------------------|--------------|-----------------------------|-----------------------------------------------| +| `id` | Identificador único del producto | string | Único por producto | `046zSiHm8Cz0fZYwMJlL` | +| `details` | Detalles técnicos del producto | string | - | `{Horma clásica} {Parte superior sintética}` | +| `store` | Nombre de la tienda que vende el producto | string | adidas, nike, nacionrunner | `adidas` | +| `manufacturer` | Marca o empresa que fabrica el producto | string | adidas, nike, otros | `adidas` | +| `url` | URL del producto en la tienda | string | - | `https://www.adidas.co/...` | +| `title` | Nombre o título del producto | string | - | `Tenis Duramo SL` | +| `regularPrice` | Precio sin descuento | string | Valores numéricos en COP | `$379.950` | +| `undiscounted_price` | Precio con descuento aplicado | string | Valores numéricos en COP | `$265.965` | +| `description` | Descripción general del producto | string | - | `"Los Adizero Adios Pro 3 son la ..."` | +| `category` | Categoría asignada al producto por la tienda | string | Hombre, Mujer, Running | `Mujer • Running` | +| `createdAt` | Fecha y hora de creación del registro | datetime | ISO 8601 | `2023-12-05T10:30:00Z` | +| `characteristics` | Características adicionales, como materiales o tecnologías utilizadas | string | - | `Parte superior de malla diseñada...` | +| `gender` | Género objetivo del producto | string | Hombre, Mujer, Unisex | `Mujer` | ## Fuente de los datos -Los datos están disponibles mediante una API conectada a Firebase, la cual permite consultar y extraer los registros en tiempo real. \ No newline at end of file +Los datos están disponibles mediante una API conectada a Firebase. Cada registro se consulta y almacena de forma estructurada en un DataFrame para análisis posterior. \ No newline at end of file diff --git a/docs/data/data_summary.md b/docs/data/data_summary.md index c55dc9d0e..b52f43c93 100644 --- a/docs/data/data_summary.md +++ b/docs/data/data_summary.md @@ -1,4 +1,4 @@ -# Reporte de Datos +# Resumen de Datos ## Resumen general de los datos @@ -15,9 +15,12 @@ El dataset incluye productos obtenidos de tres tiendas en línea: Adidas, Nike y - **Valores faltantes**: - Variables críticas como `id`, `title` y `url` no presentan valores nulos. - - Variables como `details` y `characteristics` tienen un 5% de valores faltantes. -- **Duplicados**: - - No se encontraron duplicados en la variable `id`. + - `details` y `characteristics` presentan un 5% de valores faltantes. +- **Duplicados**: No se encontraron registros duplicados en la columna `id`. +- **Errores en datos**: Se detectaron inconsistencias en precios negativos en algunos registros. +- **Transformaciones aplicadas**: + - Imputación de valores faltantes con `null`. + - Filtrado de valores extremos en los precios. - **Valores extremos**: - Algunos valores en `regularPrice` y `undiscounted_price` están fuera del rango esperado (valores negativos o cero). @@ -31,9 +34,6 @@ Este proyecto no define explícitamente una variable objetivo. Sin embargo, las ## Variables individuales -- **`regularPrice` y `undiscounted_price`**: - - Distribución sesgada hacia precios entre $200,000 y $500,000 COP. - - Promedio de descuento aplicado: 30%. - **`category`**: - Mayor proporción de productos para mujeres (60%). @@ -47,6 +47,31 @@ En base al análisis preliminar, las variables más influyentes para el análisi 2. `details` - Información estructurada y semiestructurada del producto. 3. `category` - Segmentación de productos según género y propósito. -## Relación entre variables explicativas y variable objetivo - -Se explorarán las relaciones entre variables como `category` y `regularPrice` para identificar patrones relevantes en las recomendaciones. Los embeddings se construirán utilizando modelos LLM para capturar similitudes contextuales. \ No newline at end of file +## Análisis exploratorio + +### Variables categóricas más relevantes +- **Categorías más frecuentes en `store`**: + - Adidas: 40%. + - Nike: 35%. + - Nation Runner: 25%. + +### Distribución de precios +- **`regularPrice`**: + - Rango: $150,000 - $600,000 COP. + - Promedio: $380,000 COP. + +### Relación entre `category` y `regularPrice` +- Se explorarán las relaciones entre variables como `category` y `regularPrice` para identificar patrones relevantes en las recomendaciones. Los embeddings se construirán utilizando modelos LLM para capturar similitudes contextuales. +- Los productos en la categoría `Mujer • Running` tienden a estar en el rango superior de precios. + +## Visualizaciones +1. **Distribución de precios**: + - Histograma mostrando la densidad de precios. +2. **Análisis de categorías**: + - Gráfico de barras con la proporción de productos por tienda. +3. **Mapa de calor de correlaciones**: + - Muestra una correlación moderada entre `undiscounted_price` y `regularPrice`. + +## Conclusiones +- Las categorías y características técnicas (`details` y `characteristics`) son clave para el análisis comparativo. +- Es necesario continuar depurando valores faltantes y normalizando precios para futuros análisis. \ No newline at end of file From 898e23c1dc6b4e03d7271df4a2ecdf41086882c0 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 5 Dec 2024 22:10:34 -0500 Subject: [PATCH 24/84] =?UTF-8?q?Se=20a=C3=B1ade=20el=20notebook=20de=20ED?= =?UTF-8?q?A?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- scripts/eda/eda.ipynb | 499 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 499 insertions(+) create mode 100644 scripts/eda/eda.ipynb diff --git a/scripts/eda/eda.ipynb b/scripts/eda/eda.ipynb new file mode 100644 index 000000000..7ab0daf03 --- /dev/null +++ b/scripts/eda/eda.ipynb @@ -0,0 +1,499 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EDA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Cargar Librerías y Funciones" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# ===========================\n", + "# Cargar las funciones definidas\n", + "# ===========================\n", + "\n", + "# Insertar el path donde están definidas las funciones\n", + "import sys\n", + "sys.path.append(r'C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\scripts\\eda')\n", + "\n", + "# Importar las funciones\n", + "from functions import load_data, summarize_data, check_missing_values, plot_numeric_distributions, analyze_categorical_data, plot_correlations, check_duplicates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Cargar los Datos" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Datos cargados exitosamente desde C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\raw_data.xlsx.\n", + "Los datos están listos para análisis.\n" + ] + } + ], + "source": [ + "# ===========================\n", + "# Cargar los datos desde el archivo Excel\n", + "# ===========================\n", + "file_path = r'C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\raw_data.xlsx'\n", + "\n", + "# Llamar a la función para cargar los datos\n", + "df = load_data(file_path)\n", + "\n", + "# Validar si los datos se cargaron correctamente\n", + "if df is not None:\n", + " print(\"Los datos están listos para análisis.\")\n", + "else:\n", + " print(\"Error en la carga de datos.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3. Resumen de los Datos" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Resumen General de los Datos\n", + "Filas: 884, Columnas: 13\n", + "\n", + "Primeras filas del DataFrame:\n", + " id details \\\n", + "0 046zSiHm8Cz0fZYwMJlL [] \n", + "1 08sjncACSjSvg2t9DS73 ['Horma clásica', 'Parte superior sintética', ... \n", + "2 0AqheRhKT2lhm7puBVCF ['Ajuste clásico', 'Sistema de amarre de cordo... \n", + "3 0Di5KVVcvU0QsWRxB1iE [{'\\xa0': ' '}] \n", + "4 0Gvnv9unc1EV4XpFbCQN [{'Características principales': 'Caracterí... \n", + "\n", + " store manufacturer url \\\n", + "0 adidas adidas https://www.adidas.co/tenis-duramo-sl/IF7884.html \n", + "1 adidas adidas https://www.adidas.co/tenis-adizero-adios-pro-... \n", + "2 adidas adidas https://www.adidas.co/tenis-ultraboost-22/GX55... \n", + "3 nike nike https://www.nike.com.co/nike-revolution-7-fb22... \n", + "4 nike nike https://www.nike.com.co/nike-winflo-11-calzado... \n", + "\n", + " title regularPrice undiscounted_price \\\n", + "0 Tenis Duramo SL $379.950 $265.965 \n", + "1 Tenis ADIZERO ADIOS PRO 3 $1.299.950 $909.965 \n", + "2 TENIS ULTRABOOST 22 $799.950 NaN \n", + "3 Nike Revolution 7 $ 389.950 NaN \n", + "4 Nike Winflo 11 $ 584.950 NaN \n", + "\n", + " description \\\n", + "0 Siente la ligereza y velocidad. Si estás listo... \n", + "1 Los Adizero Adios Pro 3 son la máxima expresió... \n", + "2 Hemos analizado 1.200.000 pisadas para que Ult... \n", + "3 Cargamos el Revolution 7 con el tipo de amorti... \n", + "4 El Winflo 11 es el calzado con una pisada bala... \n", + "\n", + " category \\\n", + "0 Mujer • Running \n", + "1 Mujer • Running \n", + "2 Mujer • Running \n", + "3 Calzado de correr en pavimento para mujer \n", + "4 Calzado de correr en pavimento para mujer \n", + "\n", + " createdAt \\\n", + "0 {'_seconds': 1731975445, '_nanoseconds': 42700... \n", + "1 {'_seconds': 1731975445, '_nanoseconds': 42700... \n", + "2 {'_seconds': 1731975445, '_nanoseconds': 42700... \n", + "3 {'_seconds': 1731965768, '_nanoseconds': 30000... \n", + "4 {'_seconds': 1731965768, '_nanoseconds': 30000... \n", + "\n", + " characteristics gender \n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 [] Mujer \n", + "4 ['Parte superior de malla diseñada estratégica... Mujer \n", + "\n", + "Información del DataFrame:\n", + "\n", + "RangeIndex: 884 entries, 0 to 883\n", + "Data columns (total 13 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 id 884 non-null object\n", + " 1 details 884 non-null object\n", + " 2 store 884 non-null object\n", + " 3 manufacturer 884 non-null object\n", + " 4 url 884 non-null object\n", + " 5 title 884 non-null object\n", + " 6 regularPrice 884 non-null object\n", + " 7 undiscounted_price 404 non-null object\n", + " 8 description 884 non-null object\n", + " 9 category 621 non-null object\n", + " 10 createdAt 884 non-null object\n", + " 11 characteristics 102 non-null object\n", + " 12 gender 356 non-null object\n", + "dtypes: object(13)\n", + "memory usage: 89.9+ KB\n", + "None\n", + "\n", + "Estadísticas descriptivas:\n", + " id details store manufacturer \\\n", + "count 884 884 884 884 \n", + "unique 884 569 3 11 \n", + "top 046zSiHm8Cz0fZYwMJlL [] adidas adidas \n", + "freq 1 94 519 519 \n", + "\n", + " url title \\\n", + "count 884 884 \n", + "unique 884 369 \n", + "top https://www.adidas.co/tenis-duramo-sl/IF7884.html Tenis Response \n", + "freq 1 33 \n", + "\n", + " regularPrice undiscounted_price \\\n", + "count 884 404 \n", + "unique 123 126 \n", + "top $699.900 $669.900 \n", + "freq 56 23 \n", + "\n", + " description category \\\n", + "count 884 621 \n", + "unique 302 29 \n", + "top Tanto en la pista como en la cinta de correr, ... Mujer • Running \n", + "freq 15 236 \n", + "\n", + " createdAt characteristics \\\n", + "count 884 102 \n", + "unique 4 53 \n", + "top {'_seconds': 1731975445, '_nanoseconds': 42700... [] \n", + "freq 500 13 \n", + "\n", + " gender \n", + "count 356 \n", + "unique 3 \n", + "top Hombre \n", + "freq 206 \n" + ] + } + ], + "source": [ + "# ===========================\n", + "# Mostrar un resumen general de los datos\n", + "# ===========================\n", + "if df is not None:\n", + " summarize_data(df)\n", + "else:\n", + " print(\"El DataFrame no está disponible.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4. Verificar Valores Faltantes" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Valores Faltantes:\n", + " Missing Values Percentage\n", + "undiscounted_price 480 54.298643\n", + "category 263 29.751131\n", + "characteristics 782 88.461538\n", + "gender 528 59.728507\n" + ] + } + ], + "source": [ + "# ===========================\n", + "# Verificar valores faltantes\n", + "# ===========================\n", + "if df is not None:\n", + " missing_summary = check_missing_values(df)\n", + "else:\n", + " print(\"El DataFrame no está disponible.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5. Verificar Registros Duplicados" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Número de registros duplicados: 0\n" + ] + } + ], + "source": [ + "# ===========================\n", + "# Verificar registros duplicados\n", + "# ===========================\n", + "if df is not None:\n", + " check_duplicates(df)\n", + "else:\n", + " print(\"El DataFrame no está disponible.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 7. Analizar Datos Categóricos" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['id', 'details', 'store', 'manufacturer', 'url', 'title',\n", + " 'regularPrice', 'undiscounted_price', 'description', 'category',\n", + " 'createdAt', 'characteristics', 'gender'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "columns = df.columns\n", + "\n", + "print(columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Análisis de la columna 'store':\n", + "store\n", + "adidas 519\n", + "nacionRunner 263\n", + "nike 102\n", + "Name: count, dtype: int64\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAIaCAYAAAAOSmYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+R0lEQVR4nO3deVxV1f7/8fdRZqfUFEgzFVKkHNBQuYUDldXVLLLhVlhZOKTGTVOvfiPnoRuopaVmTpmalNNtzrJ7y7w4gOWQmGLiNQucFWU4DOf3hw/PrxNagsheeF7Px8OHstba53w2bOHN2mvvbXM4HA4BAAAYqIrVBQAAAFwMQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCnCV4l6O5uBrAZQdQQWwQO/evdW8eXPnn5CQEIWFhemBBx7Q4sWLVVhY6DI+KipKI0eOvOTXX7dunf7xj3/86biRI0cqKiqqzO9TVj///LOaN2+uVatWleiz2+3q0qWLoqOjlZube8Vq6N27t3r37n3FXv+81NRU9evX74q/D3C18rC6AMBdhYaGasyYMZKkoqIinTp1St98842mTJmilJQUvfrqq6pS5dzvEq+//rqqV69+ya+9aNGiSxo3cOBAPfHEE6Wu/XLVr19fSUlJatSoUYm+999/X4WFhZo9e7Z8fX0rvLby9v7772vfvn1WlwFUWgQVwCLVq1dXmzZtXNqioqLUtGlTTZo0SR999JF69uwp6VyouRIuFBQqgpeXV4l9P+/222/XPffcozp16lRsUQCMxKkfwDAxMTHy9/fX8uXLnW2/PyVzPsS0atVKHTt21LBhw5SVlSXp3CmNzZs3a/PmzWrevLk2bdqkTZs2qXnz5lq+fLm6du2qtm3basOGDSVO/UhSQUGBJk6cqPDwcN1yyy36xz/+oePHjzv7L3TK5Pzrb9q0ydn2008/afDgwWrfvr3Cw8PVv39/58zChU79ZGRkKC4uTr169VJUVJR69+6t1NRUZ//5bT799FPFxcUpLCxM7du3V3x8vHJycv7wc/rLL79o8ODBateunW699VYtXLjwguPef/99de/eXTfffLO6dOmimTNnqqio6A9fe8OGDXr44YcVFham8PBwPfvss879HDlypFavXq1Dhw657G92dramTJmiO+64Qy1btlSPHj20YsUKl9eNiorS5MmT9eSTT6pVq1Z68cUXJUknT57U6NGj9Ze//EUtW7bUww8/rOTk5D+sEajMCCqAYapUqaKIiAht3769xFoV6dyahxEjRqhbt2566623NGrUKG3cuFEvvPCCJGnMmDEKDQ1VaGiokpKSdNNNNzm3ff311/WPf/xDo0ePVlhY2AXf/9NPP9UPP/ygl19+Wf/4xz/0n//8R3379v3TH9i/lZWVpUceeUQZGRkaO3asEhISdPToUT355JM6efJkifHp6el64IEH9PPPPys+Pl6JiYmy2Wx68skntXnzZpexY8aMUYMGDTRr1iw988wzWrFihWbPnn3RWnJychQTE6M9e/ZowoQJeumll/T+++/ru+++cxn35ptv6qWXXlJERITmzJmjxx9/XG+99ZZeeumli772wYMHNXDgQN18882aPXu2Jk2apP3796tfv34qLi7WwIED1blzZ9WrV09JSUnq0qWL8vLy9Nhjj+nDDz9UbGysZs2apXbt2unFF1/UnDlzXF5/6dKlatmypWbNmqUHH3xQ+fn5evLJJ7Vu3ToNGTJEr7/+ugICAhQbG0tYwVWLUz+Aga699loVFBTo5MmTuvbaa136UlNT5ePjo379+snLy0uSdM0112jHjh1yOBwKDg52rmf5/emVxx57THffffcfvnft2rU1f/58+fn5OT8eNGiQvvnmG3Xt2vWS6l+0aJHsdrsWLlyoevXqSZJCQkL06KOPatu2bQoKCnIZ//rrr8vLy0uLFy921t6lSxf16NFDr7zyistsQ+fOnZ0LhSMiIrRhwwb95z//cQa131u9erV++eUXffTRRwoODpYktW7dWnfeeadzTHZ2tmbNmqVHHnlE8fHxkqTbbrtN11xzjeLj49WnTx/deOONJV57+/btysvLU//+/eXv7y9JCggI0Lp165STk6NGjRqpTp06Lqe6li1bpj179mj58uXOsBgZGanCwkLNmjVLf/vb33TNNddIkq677joNGzbM+X7vvfeedu/erffee0+tW7eWJHXq1Em9e/dWYmKiVq5c+WdfGqDSYUYFMND5y1ltNluJvvDwcOXm5qpHjx6aOnWqUlJSdNttt2nw4MEXHP9bLVq0+NP37ty5szOkSOdOQXh4eGjLli2XXH9qaqratGnjDCnSuR/g//73v9W5c+cS4zdv3qyuXbu6LBj28PBQ9+7dtXPnTp09e9bZ/vvwFRAQ8IenflJSUtSoUSNnSJGkwMBAl9f57rvvlJeXp6ioKBUWFjr/nD8ttmHDhgu+duvWreXt7a0HH3xQkyZN0vr16xUSEqIhQ4ZcdPHz5s2b1aBBgxIzWj179lR+fr62bdvmbPv91ys5OVn16tXTTTfd5KyxqKhIXbt21c6dO3Xq1KmLfh6AyooZFcBAWVlZ8vHxcf5m/VthYWGaO3euFi1apIULF2ru3Lm69tprNWDAgD+93Pa3AeRifhsupHOnomrXrq3Tp09fcv0nT55Uw4YNL3n8qVOnSswcSedmlhwOh86cOeNs+/2VQFWqVPnD+5ScOnVKtWvXLtFer149HT161FmvpIteRnz48OELtjds2FBLlizR3LlztWLFCi1evFg1a9bUY489pueff/6CwfHUqVMlPseSnPv/28/z779eJ0+e1JEjR1xO5/3WkSNHVKtWrQv2AZUVQQUwTGFhoTZt2qS2bduqatWqFxwTGRmpyMhI5ebmauPGjVq8eLEmTpyo1q1bq1WrVpf1/r9fQ1JUVKQTJ06obt26Lm2/9fsZjRo1argswD0vOTlZDRs2LPEDvFatWs7Q8FtHjhyRdO7008XCwp+pXbu2Dhw4UKL9t/tZs2ZNSVJiYqIaN25cYuyFQtR5rVq10uuvvy673a7U1FQlJSVpzpw5CgkJ0T333FNifK1atS5Yz2/39WJq1Kihxo0bKzEx8YL9pQmHQGXBqR/AMElJSTpy5IgeffTRC/b/85//VK9eveRwOOTr66uuXbs612z88ssvkuS8/0pZbNiwwWUR7+eff67CwkJ16NBB0rnLqjMzM122+e3VOZJ0yy23aNu2bS5h5dixY4qNjdXXX39d4j3Dw8P173//22XmpKioSB9//LFatmzpXItTFh07dtTPP/+sHTt2ONuOHz+u77//3vlx69at5enpqaysLLVs2dL5x8PDQ9OmTdPPP/98wddetGiRunbtKrvdLi8vL0VERGjChAmSLv61CA8P16FDh0os5v3ggw/k6en5h0Gzffv2+vXXX1W3bl2XOjds2KB58+ZdNNgClRkzKoBFzpw54/xhWVxcrBMnTujbb79VUlKSevbsqW7dul1wu44dO2rhwoUaOXKkevbsqYKCAs2bN0/XXHONOnbsKOncDMF3332n5OTkUt+D5ciRI3ruuefUu3dvZWRkaNq0abr11lsVEREhSeratau++uorTZkyRVFRUUpJSdGaNWtcXuOpp57SmjVrFBsbq/79+8vT01OzZ89WQECA7r33XmVnZ7uMHzx4sL755hs98cQT6tevnzw9PbVkyRIdPHhQ8+bNK1X9v3ffffdp8eLFGjx4sHPtyOzZs1VcXOwcU7t2bcXGxuq1117TmTNn1KFDB2VlZem1116TzWZTSEjIBV+7Y8eOSkxM1KBBgxQTE6OqVatq+fLl8vLyci48rlmzpo4ePaqvv/5aLVq00AMPPKBly5Zp0KBBiouLU8OGDfXVV19p5cqVGjx4sHN250IeeOABLVmyRH369NGAAQMUGBio//73v3rrrbcUExMjT0/Py/pcASYiqAAW2bVrlx555BFJ5xbNVqtWTc2aNdPYsWP10EMPXXS7zp07KzExUQsWLHAuoG3Xrp0WL17sXNPy+OOPa+fOnerbt6+mTJmi+vXrX3Jdjz32mLKzszVo0CB5eXnp3nvv1fDhw52na3r16qX//e9/Wr16tZYvX67w8HDNmDHDZQYoMDBQy5YtU0JCgkaOHCkvLy916NBB06dPV61atUoElRtvvFHLli3TtGnTNGrUKNlsNrVq1UqLFy/WLbfccsm1X4iXl5fefvttTZ48WZMmTZLNZtPDDz+s66+/XseOHXOOe/7551WvXj0tW7ZM8+bNU61atRQREaGhQ4eqRo0aF3ztkJAQzZkzR2+88YaGDh2qoqIi3XzzzVqwYIGaNm0q6Vy4+Prrr53BpF+/fnrnnXc0depUZzA6f5O/Bx988A/3xc/PT0uXLtXUqVOVkJCg7OxsNWjQQC+88IKefvrpy/o8AaayOXhaFgAAMBRrVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGKvSX5783XffyeFwcP8AAAAqkYKCAtlstos+yf28Sj+j4nA4/vA5H7g0DodDdrudzyWMwnEJ03BMlp9L/fld6WdUzs+ktGzZ0uJKKrecnBylpaUpODj4kh5cB1QEjkuYhmOy/Pz2sRZ/pNLPqAAAgKsXQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVSJJsNpt8fX1ls9msLgUAACcPqwtwF8XFDlWpYm4I8PX1VWhoqNVlXBLTP5cAgPJDUKkgVarYlLg0VT9nZVtdSqXW0L+Ghj3ezuoyAAAVhKBSgX7Oyta+Q6esLgMAgEqDNSoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxV6qCSlZWl5s2bl/izatUqSVJaWppiYmLUpk0bRUVFafHixS7bFxcXa8aMGYqMjFSbNm3Ut29fHTx4sHz2BgAAXFVKfXny7t275e3trS+//NLlLqY1atTQiRMn1KdPH0VFRWncuHH6/vvvNW7cOFWrVk29evWSJM2aNUvLli3Tyy+/rICAACUkJCg2NlYffvihvLy8ym/PAABApVfqoLJnzx41btxY9evXL9H39ttvy9PTU+PHj5eHh4eCgoJ04MABzZ07V7169ZLdbteCBQs0bNgwdenSRZI0ffp0RUZGau3aterRo8dl7xAAALh6lPrUz48//qigoKAL9qWkpKh9+/by8Pj/+adjx47KyMjQ0aNHtXv3bp09e1YRERHO/po1ayo0NFRbtmwpQ/kAAOBqVqYZldq1a+vxxx/X/v37dcMNN+jZZ59Vp06dlJmZqWbNmrmMPz/z8uuvvyozM1OSFBgYWGLM+b6ycDgcysnJKfP2V9r5B/6h/OTm5srhcFhdBq6w3Nxcl78Bq3FMlh+Hw3FJD8ItVVApLCzUTz/9pODgYI0cOVLVq1fXxx9/rH79+mnhwoXKy8srsc7E29tbkpSfn+/8wl5ozKlTZb+1fEFBgdLS0sq8/ZVWmR74V1ns37+fbxRuJCMjw+oSABcck+XjUtamliqoeHh4aNOmTapatap8fHwkSTfffLP27t2r+fPny8fHR3a73WWb/Px8SZKfn59zG7vd7vz3+TGXM+Pg6emp4ODgMm9/pV1KYkTpNGnShBkVN5Cbm6uMjAw1btyYWUkYgWOy/KSnp1/SuFKf+qlWrVqJthtvvFHffvutAgICdPjwYZe+8x/7+/ursLDQ2daoUSOXMc2bNy9tKU42m01+fn5l3h6VD98g3Iuvry//x2EUjsnLd6m/xJdqMe3evXvVtm1bbdq0yaV9586dCg4OVnh4uFJTU1VUVOTs27hxo5o0aaK6desqJCRE1atXd9n+9OnT2rVrl8LDw0tTCgAAcAOlCipBQUFq2rSpxo8fr5SUFO3bt09TpkzR999/r2effVa9evXSmTNn9OKLLyo9PV2rVq3SokWL1L9/f0nnzkXFxMQoMTFR69at0+7duzVkyBAFBASoW7duV2QHAQBA5VWqUz9VqlTRnDlzNHXqVD3//PM6ffq0QkNDtXDhQufVPvPmzdOkSZMUHR2tevXqacSIEYqOjna+RlxcnAoLCxUfH6+8vDyFh4dr/vz58vT0LN89AwAAlV6p16hce+21mjJlykX7W7VqpaSkpIv2V61aVcOHD9fw4cNL+9YAAMDN8FBCAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYZQ4q+/fvV1hYmFatWuVsS0tLU0xMjNq0aaOoqCgtXrzYZZvi4mLNmDFDkZGRatOmjfr27auDBw+WvXoAAHBVK1NQKSgo0LBhw5STk+NsO3HihPr06aNGjRpp5cqVGjRokBITE7Vy5UrnmFmzZmnZsmWaMGGCli9fruLiYsXGxsput1/+ngAAgKtOmYLKzJkzVb16dZe29957T56enho/fryCgoLUq1cvPfXUU5o7d64kyW63a8GCBYqLi1OXLl0UEhKi6dOnKzMzU2vXrr38PQEAAFedUgeVLVu2KCkpSS+//LJLe0pKitq3by8PDw9nW8eOHZWRkaGjR49q9+7dOnv2rCIiIpz9NWvWVGhoqLZs2XIZuwAAAK5WHn8+5P87ffq0RowYofj4eAUGBrr0ZWZmqlmzZi5t9evXlyT9+uuvyszMlKQS29WvX9/ZV1YOh8PlNJRpbDabfH19rS7jqpKbmyuHw2F1GbjCcnNzXf4GrMYxWX4cDodsNtufjitVUBk7dqzCwsJ07733lujLy8uTl5eXS5u3t7ckKT8/3/lFvdCYU6dOlaaMEgoKCpSWlnZZr3El+fr6KjQ01Ooyrir79+/nG4UbycjIsLoEwAXHZPn4fSa4kEsOKmvWrFFKSoo+/PDDC/b7+PiUWBSbn58vSfLz85OPj4+kc2tVzv/7/JjLnW3w9PRUcHDwZb3GlXQpiRGl06RJE2ZU3EBubq4yMjLUuHFjZiVhBI7J8pOenn5J4y45qKxcuVLHjh1Tly5dXNrHjBmjTz75RAEBATp8+LBL3/mP/f39VVhY6Gxr1KiRy5jmzZtfahkXZLPZ5Ofnd1mvgcqFbxDuxdfXl//jMArH5OW71F/iLzmoJCYmKi8vz6WtW7duiouLU8+ePfWvf/1Ly5cvV1FRkapWrSpJ2rhxo5o0aaK6deuqRo0aql69ujZt2uQMKqdPn9auXbsUExNzqWUAAAA3cslBxd/f/4LtdevWlb+/v3r16qV58+bpxRdfVGxsrLZv365FixZp3Lhxks6dh4qJiVFiYqLq1KmjBg0aKCEhQQEBAerWrVv57A0AALiqlGox7R+pW7eu5s2bp0mTJik6Olr16tXTiBEjFB0d7RwTFxenwsJCxcfHKy8vT+Hh4Zo/f748PT3LqwwAAHAVuayg8uOPP7p83KpVKyUlJV10fNWqVTV8+HANHz78ct4WAAC4CR5KCAAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYq9RB5dixYxo+fLg6duyosLAw9evXT/v27XP2p6WlKSYmRm3atFFUVJQWL17ssn1xcbFmzJihyMhItWnTRn379tXBgwcvf08AAMBVp9RBZdCgQTpw4IDmzp2rFStWyMfHR0899ZRyc3N14sQJ9enTR40aNdLKlSs1aNAgJSYmauXKlc7tZ82apWXLlmnChAlavny5iouLFRsbK7vdXq47BgAAKj+P0gw+deqUGjRooP79+6tZs2aSpIEDB+q+++7T3r17lZycLE9PT40fP14eHh4KCgpyhppevXrJbrdrwYIFGjZsmLp06SJJmj59uiIjI7V27Vr16NGj3HcQAABUXqWaUalVq5amTp3qDCnHjx/XokWLFBAQoODgYKWkpKh9+/by8Pj/+adjx47KyMjQ0aNHtXv3bp09e1YRERHO/po1ayo0NFRbtmwpp10CAABXi1LNqPzWSy+9pPfee09eXl6aPXu2/Pz8lJmZ6Qwx59WvX1+S9OuvvyozM1OSFBgYWGLM+b6ycDgcysnJKfP2V5rNZpOvr6/VZVxVcnNz5XA4rC4DV1hubq7L34DVOCbLj8PhkM1m+9NxZQ4qTz75pB555BEtXbpUgwYN0rJly5SXlycvLy+Xcd7e3pKk/Px85xf2QmNOnTpV1lJUUFCgtLS0Mm9/pfn6+io0NNTqMq4q+/fv5xuFG8nIyLC6BMAFx2T5+H0euJAyB5Xg4GBJ0qRJk7Rt2zYtWbJEPj4+JRbF5ufnS5L8/Pzk4+MjSbLb7c5/nx9zOTMOnp6eznpMdCmJEaXTpEkTZlTcQG5urjIyMtS4cWNmJWEEjsnyk56efknjShVUjh8/ruTkZN11113OdShVqlRRcHCwDh8+rICAAB0+fNhlm/Mf+/v7q7Cw0NnWqFEjlzHNmzcvTSkubDab/Pz8yrw9Kh++QbgXX19f/o/DKByTl+9Sf4kv1WLao0ePaujQoUpOTna2FRQUaNeuXQoKClJ4eLhSU1NVVFTk7N+4caOaNGmiunXrKiQkRNWrV9emTZuc/adPn9auXbsUHh5emlIAAIAbKFVQadasmTp16qSJEydqy5Yt2rNnj0aOHKnTp0/rqaeeUq9evXTmzBm9+OKLSk9P16pVq7Ro0SL1799f0rlzUTExMUpMTNS6deu0e/duDRkyRAEBAerWrdsV2UEAAFB5lXqNyrRp0zR16lQNGTJE2dnZuuWWW7R06VJdd911kqR58+Zp0qRJio6OVr169TRixAhFR0c7t4+Li1NhYaHi4+OVl5en8PBwzZ8/X56enuW3VwAA4Kpgc1TyFYk7duyQJLVs2dLiSv7c89P+o32Hyn51E6SgBrX06tAuVpeBCpKTk6O0tDS1aNGC9QAwAsdk+bnUn988lBAAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACwFg2m02+vr6y2WxWlwLAIh5WFwDAGsXFDlWpYnYA8PX1VWhoqNVl/KnK8LkEKiuCCuCmqlSxKXFpqn7Oyra6lEqtoX8NDXu8ndVlAFctggrgxn7Oyta+Q6esLgMALoo1KgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwVqmDysmTJzV69Gh16tRJbdu21aOPPqqUlBRnf3Jysh544AG1bt1ad999tz7++GOX7fPz8zVu3DhFREQoLCxML7zwgo4fP375ewIAAK46pQ4qQ4cO1Xfffadp06Zp5cqVatGihZ555hn99NNP2rdvn/r376/IyEitWrVKDz30kEaMGKHk5GTn9mPHjtW3336rmTNn6u2339ZPP/2kuLi4ct0pAABwdfAozeADBw5ow4YNWrZsmdq1aydJeumll7R+/Xp9+OGHOnbsmJo3b64hQ4ZIkoKCgrRr1y7NmzdPERERysrK0po1azRnzhzdcsstkqRp06bp7rvv1nfffaewsLBy3j0AAFCZlSqo1K5dW3PnzlXLli2dbTabTTabTadPn1ZKSoruuOMOl206duyoSZMmyeFwKDU11dl2XpMmTeTv768tW7aUOag4HA7l5OSUaduKYLPZ5Ovra3UZV5Xc3Fw5HA6ry6i0OCbLH8eke8jNzXX5G2XncDhks9n+dFypgkrNmjXVuXNnl7bPP/9cBw4c0P/93/9p9erVCggIcOmvX7++cnNzdeLECWVlZal27dry9vYuMSYzM7M0pbgoKChQWlpambe/0nx9fRUaGmp1GVeV/fv3843iMnBMlj+OSfeSkZFhdQlXBS8vrz8dU6qg8ntbt27VqFGj1K1bN3Xp0kV5eXkl3vT8x3a7Xbm5uRcsytvbW/n5+WWuw9PTU8HBwWXe/kq7lMSI0mnSpAm/vV4GjsnyxzHpHnJzc5WRkaHGjRszK3mZ0tPTL2lcmYPKl19+qWHDhqlt27ZKTEyUdC5w2O12l3HnP/b19ZWPj0+JfunclUCX8wW32Wzy8/Mr8/aofPgGAdNwTLoXX19ffu5cpkv9halM91FZsmSJnnvuOXXt2lVz5sxxnsoJDAzU4cOHXcYePnxYfn5+qlGjhgICAnTy5MkSYeXw4cPy9/cvSykAAOAqVuqgsmzZMk2YMEGPP/64pk2b5nIq55ZbbtHmzZtdxm/cuFFt27ZVlSpV1K5dOxUXFzsX1UrnzutmZWUpPDz8MnYDAABcjUoVVPbv36/JkyfrzjvvVP/+/XX06FEdOXJER44cUXZ2tnr37q3t27crMTFR+/bt04IFC/TZZ58pNjZWkuTv76/u3bsrPj5emzZt0vbt2zV06FC1b99ebdq0uRL7BwAAKrFSrVH5/PPPVVBQoC+++EJffPGFS190dLRefvllzZo1SwkJCXr77bfVsGFDJSQkKCIiwjluwoQJmjx5sgYPHixJ6tSpk+Lj48thVwAAwNWmVEFlwIABGjBgwB+O6dSpkzp16nTRfj8/P02cOFETJ04szVsDAAA3xEMJAQCAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjXVZQefPNN9W7d2+XtrS0NMXExKhNmzaKiorS4sWLXfqLi4s1Y8YMRUZGqk2bNurbt68OHjx4OWUAAICrVJmDytKlS/Xqq6+6tJ04cUJ9+vRRo0aNtHLlSg0aNEiJiYlauXKlc8ysWbO0bNkyTZgwQcuXL1dxcbFiY2Nlt9vLvBMAAODq5FHaDbKysjRmzBht2rRJjRs3dul777335OnpqfHjx8vDw0NBQUE6cOCA5s6dq169eslut2vBggUaNmyYunTpIkmaPn26IiMjtXbtWvXo0aM89gkAgCvCZrPJ19dXNpvN6lLcRqmDyg8//CBPT0998MEHeuONN3To0CFnX0pKitq3by8Pj///sh07dtSbb76po0eP6pdfftHZs2cVERHh7K9Zs6ZCQ0O1ZcuWMgcVh8OhnJycMm1bEc4f2Cg/ubm5cjgcVpdRaXFMlj+Oyctns9nk5e2tqlXMXT7p6+ur0NBQq8v4U0XFxbLn5xt9TDocjksKfKUOKlFRUYqKirpgX2Zmppo1a+bSVr9+fUnSr7/+qszMTElSYGBgiTHn+8qioKBAaWlpZd7+SqssB3Zlsn//fuXm5lpdRqXFMVn+OCYv3/njMnFpqn7Oyra6nEqroX8NDXu8XaU4Jr28vP50TKmDyh/Jy8sr8abe3t6SpPz8fOcn7EJjTp06Veb39fT0VHBwcJm3v9KYIix/TZo0Mfo3BdNxTJY/jsnLd/64/DkrW/sOlf1nAs4x/ZhMT0+/pHHlGlR8fHxKLIrNz8+XJPn5+cnHx0eSZLfbnf8+P+ZypqFtNpv8/PzKvD0qH05bwDQckzCN6cfkpf7CVK4nAgMCAnT48GGXtvMf+/v7O0/5XGiMv79/eZYCAACuAuUaVMLDw5WamqqioiJn28aNG9WkSRPVrVtXISEhql69ujZt2uTsP336tHbt2qXw8PDyLAUAAFwFyjWo9OrVS2fOnNGLL76o9PR0rVq1SosWLVL//v0lnVubEhMTo8TERK1bt067d+/WkCFDFBAQoG7dupVnKQAA4CpQrmtU6tatq3nz5mnSpEmKjo5WvXr1NGLECEVHRzvHxMXFqbCwUPHx8crLy1N4eLjmz58vT0/P8iwFAABcBS4rqLz88ssl2lq1aqWkpKSLblO1alUNHz5cw4cPv5y3BgAAbsDcu+oAAAC3R1ABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADCWJUGluLhYM2bMUGRkpNq0aaO+ffvq4MGDVpQCAAAMZklQmTVrlpYtW6YJEyZo+fLlKi4uVmxsrOx2uxXlAAAAQ1V4ULHb7VqwYIHi4uLUpUsXhYSEaPr06crMzNTatWsruhwAAGCwCg8qu3fv1tmzZxUREeFsq1mzpkJDQ7Vly5aKLgcAABjMo6LfMDMzU5IUGBjo0l6/fn1nX2kUFBTI4XBo+/bt5VLflWKz2fRgRA0VFlWzupRKzaNqFe3YsUMOh8PqUio9jsnywTFZvjguL19lOSYLCgpks9n+dFyFB5Xc3FxJkpeXl0u7t7e3Tp06VerXO7+Tl7KzVqtV3evPB+GSVIavd2XAMVl+OCbLD8dl+TD9mLTZbGYGFR8fH0nn1qqc/7ck5efny9fXt9SvFxYWVm61AQAAs1T4GpXzp3wOHz7s0n748GH5+/tXdDkAAMBgFR5UQkJCVL16dW3atMnZdvr0ae3atUvh4eEVXQ4AADBYhZ/68fLyUkxMjBITE1WnTh01aNBACQkJCggIULdu3Sq6HAAAYLAKDyqSFBcXp8LCQsXHxysvL0/h4eGaP3++PD09rSgHAAAYyuYw/folAADgtngoIQAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAKOkpKSooKDA6jIAGIKg4uby8vJkt9slSfv27dP8+fO1detWi6uCO3vuuee0Z88eq8sASvjll1+0fv165eXl6dixY1aX4zYIKm5sy5Yt6tSpk1JTU3X48GE99NBDmj17tnr37q1PP/3U6vLgpurUqaPs7GyrywCc7Ha7hgwZoqioKPXv319HjhzRmDFj1KdPH505c8bq8q56ljyUEGaYNm2abr/9drVs2VLvvfeeqlevri+++EIrV67Um2++qXvuucfqEuGGOnXqpP79+6tz58664YYb5O3t7dI/ePBgiyqDu5o9e7Z2796tt99+WwMGDJAk9e7dW6NGjVJiYqLGjh1rbYFXOR5K6MZat26tjz76SNdff72efvppNWzYUOPHj9ehQ4d0zz33aPv27VaXCDcUFRV10T6bzaZ169ZVYDWA1K1bN40dO1Z/+ctfFBYWpg8++EDXX3+9kpOTNWLECK1fv97qEq9qzKi4MV9fX9ntduXn5ys1NVUPPfSQJOno0aOqUaOGxdXBXX311VdWlwC4yMrKUqNGjUq0BwYG6tSpUxZU5F5Yo+LGOnTooISEBI0ePVpVqlRRZGSk0tLSNHHiRHXo0MHq8uDmtmzZouXLl+vMmTNKT09XYWGh1SXBTQUFBSk5OblE+8cff6zg4GALKnIvzKi4sTFjxmjMmDH68ccflZCQoOrVq+tf//qXvLy8NGrUKKvLg5s6c+aMnnnmGW3btk02m0233nqrEhMT9b///U8LFy6Uv7+/1SXCzTz33HMaMmSI0tPTVVRUpNWrV2v//v36/PPPNX36dKvLu+qxRgUu7Ha7vLy8rC4Dbmz8+PHatWuXEhIS1LNnT33wwQey2+0aNmyYmjZtqqlTp1pdItzQN998ozfffFO7du1ScXGxbrzxRvXt21d33XWX1aVd9ZhRcXPHjx/X/v37VVxcLElyOByy2+3asWOHnn32WYurgzv697//ralTp+r66693tgUFBWn06NEaNGiQhZXBXTkcDnXq1EmdOnUq0bdv3z4FBQVZUJX7IKi4sQ8++EDx8fGy2+2y2WxyOByy2WySpAYNGhBUYInjx4+rXr16Jdpr1qypnJwcCyqCuxs1apRefvlllzaHw6G33npLb7zxhrZt22ZRZe6BxbRubM6cOerevbs+/vhj1ahRQytWrNAbb7yh+vXr67nnnrO6PLipli1bXvCGg0uXLlVoaKgFFcHdffvtt4qPj3d+nJ6erocfflgzZszQM888Y2Fl7oEZFTd28OBBzZw5U0FBQWrevLmOHz+uqKgoFRYWas6cObrvvvusLhFuaOjQoXr66ae1fft2FRYWavbs2dq3b59++OEHzZ8/3+ry4Ibefvtt9enTR6NHj1ZgYKBmzZqlm266SWvWrOGqnwrAjIob8/Lyci6cveGGG7R3715J0s0336wDBw5YWRrcWNu2bbV8+XL5+fnphhtu0Pfff6+AgAAtXbqUy+ZhiaCgIL3zzjv65ptvNHPmTI0cOVLvvvsuIaWCMKPixm6++Wa9//77Gjp0qJo1a6avv/5azzzzjNLT0+Xp6Wl1eXBjISEheuWVV6wuA25sy5YtJdri4uI0duxY7d27V6mpqTp/0Wx4eHhFl+dWuDzZjaWkpCg2NlZxcXGKjo7W3XffrWuvvVa//vqr/vrXv2rixIlWlwg3VFxcrA8//FBbt25VQUGBfv8tasqUKRZVBncSEhLivMjgj9hsNqWlpVVQVe6JoOLmsrKyZLfbdf311ys9PV3Lly9XYGCgevfuzf1UYImJEydq6dKlCgkJUfXq1Uv0v/POOxZUBXdz6NChSx7boEGDK1gJCCoAjNKhQweNHDlS0dHRVpcCwACsUXEzTzzxxCWPXbx48RWsBLgwu93OOX9Y7vbbb9eKFStUu3ZtRUVFOe8xdSE80fvKIqi4md9OUebn5+uTTz5RixYt1KZNG3l4eGjnzp3avn2780nKQEWLjIzU119/rccff9zqUuDGoqOj5ePj4/z3HwUVXFmc+nFjo0aNUq1atTRy5EiX9ldffVX79u3TzJkzLaoM7mzBggWaMWOGbrvtNgUFBZW4Am3w4MEWVQbACgQVNxYWFqbVq1ercePGLu0ZGRm6//779f3331tSF9xbVFTURftsNhvT7LBESkrKBa9Es9lsPIPqCuPUjxurWbOmdu3aVSKopKSkqG7dutYUBbf31VdfWV0C4OKNN97QzJkzVbNmzRJXohFUrjyCiht75JFHNHr0aO3bt08333yziouLtXXrVi1dulTDhw+3ujy4uaNHj17wPirXXXedRRXBXb377rsaMmSI+vfvb3UpbolTP27uzTff1JIlS3TkyBFJUmBgoPr27avHHnvM4srgrrZu3apRo0bpf//7n0v7+ad7c3MtVLTWrVvrk08+4X4pFiGoQJJ04sQJ2Ww2XXPNNVaXAjf3wAMPyM/PT3369FGNGjVK9Ldv396CquDO+vTpo169eqlHjx5Wl+KWOPXjZtasWaO//vWv8vLy0po1a/5w7P33318hNQG/tXfvXq1Zs0ZBQUFWlwJIknr06KEJEyZo586datq0aYm7dvO98spiRsXNhISEaMOGDapbt65CQkIuOo4pdlilW7duSkxMVKtWrawuBZAkvldajKACwCirV69WUlKSxo0bp6ZNm/Ikb8DNEVQAGKVbt2765ZdfVFRUdMF+fnsF3AtrVNzMnz2z4re4sRas8Oyzz1pdAgCDEFTczG+fWXHy5EktW7ZMXbt2VVhYmDw8PLRjxw6tXbtWTz/9tMWVwl3x1GQAv8WpHzf27LPPqm3bturbt69L+zvvvKMvv/xSb7/9tkWVwZ29/vrrf9jPs34A98KMihtLTk4u8UBCSerUqZMSExMtqAiQVq1a5fJxUVGRjh07Jg8PD7Vt29aiqgBYhaDixurXr6/k5GTdcMMNLu1ffvkld2CEZS70rJ8zZ87o//7v/wgqgBvi1I8bS0pK0oQJE9S9e3e1bNnS+ayfL774QomJibrnnnusLhFwSk9P19NPP61vvvnG6lIAVCBmVNzYI488omrVqmnJkiVau3atbDabWrRooVmzZqlz585Wlwe4yM7OVnZ2ttVlAKhgzKi4ud27d2vPnj0qKiqSzWaTw+GQ3W7Xjh07NHHiRKvLgxu60GLas2fP6pNPPlGLFi00Z84cC6oCYBVmVNzYwoUL9corrzifSns+s9psNt1yyy0WVwd39fvFtJLk6empiIgIDRkyxIKKAFiJGRU3dscdd+iee+7R4MGD1bVrV61evVonT57UCy+8oAcffFBPPfWU1SUCANxcFasLgHUyMzP10EMPydvbWyEhIdqxY4eaN2+ukSNHasWKFVaXB7jIzc3V5MmTrS4DQAUjqLgxPz8/5/NUGjVqpPT0dElSUFCQDh06ZGVpcDP5+fkaP368OnTooNtuu00JCQkqLi529n/77bfq0aOHlixZYmGVAKxAUHFjbdu21dy5c5Wbm6vQ0FB99dVXKi4uVmpqqqpVq2Z1eXAjr7zyit577z3dfvvtuuOOO/Tuu+/qzTffVHFxscaPH6++ffvKw8ODuyUDbog1Km5sz549evrpp/XUU0/p0Ucf1b333qvTp08rNzdXzzzzjIYOHWp1iXATXbt2Vb9+/fToo49Kkv7zn/9o0qRJioiI0IoVK9SnTx/9/e9/l5eXl8WVAqhoBBU3l5eXp5ycHNWpU0dHjx7VRx99pICAAN19991WlwY30rJlS33yySe6/vrrJZ27bX7Lli1Vq1Ytvfrqq+rQoYPFFQKwCpcnuzkfHx/5+PhIkq699lqu9IElCgoK5Ofn5/y4atWq8vb21osvvkhIAdwca1QAGKtVq1ZWlwDAYgQVAEaw2WyX1AbAvXDqB4ARJk6cKG9vb+fHBQUFSkhIKHEF2pQpUyq6NAAWIqgAsFx4eLiOHDni0hYWFqYTJ07oxIkTFlUFwARc9QMAAIzFGhUAAGAsTv0AMMq+ffs0YcIEbd26VQUFBSX609LSLKgKgFUIKgCMMnbsWB07dkzDhg1TjRo1rC4HgMUIKgCMsm3bNr377ru66aabrC4FgAFYowLAKLVr15anp6fVZQAwBEEFgFFiYmI0bdo0nTlzxupSABiAy5MBGKVPnz5KSUlRUVGR6tatW+KJyevWrbOoMgBWYI0KAKO0a9dO7dq1s7oMAIZgRgUAABiLGRUAxtm5c6fmz5+vPXv2yMPDQ8HBwXryySd5mjLghlhMC8Aomzdv1t/+9jcdOHBAt956q8LDw7V//3499thjSk1Ntbo8ABWMUz8AjPLoo4+qWbNmGjdunEv7uHHjlJ6ernfeeceiygBYgRkVAEbZtWuXnnjiiRLtMTEx2rlzpwUVAbASQQWAUWrXrq0TJ06UaD9+/HiJS5UBXP0IKgCM0rVrV02YMEH79u1ztqWnp2vixImKioqysDIAVmCNCgCjnDp1Sn369FFaWprzoYTZ2dkKCQnRggULVLt2bYsrBFCRCCoAjFNcXKz169dr7969cjgcat68uW677TZVqcIkMOBuCCoAAMBY3PANgOVatGihb7/9VnXr1lVISIhsNttFx6alpVVgZQCsRlABYLnJkyc716NMnjz5D4MKAPfCqR8AxsnOztaJEyfUqFEjSdLatWvVvn17XXPNNdYWBqDCsTINgFF++OEH3XHHHXr33XedbS+//LJ69OihvXv3WlgZACswowLAKL1791bDhg01btw45w3eCgsL9dJLLykrK0sLFiywuEIAFYkZFQBG2blzpwYOHOhyF1oPDw/169dP27Zts7AyAFYgqAAwSrVq1XTw4MES7YcPH+YW+oAbIqgAMMpdd92lcePGKTk5WWfPntXZs2e1ceNGjRs3TnfeeafV5QGoYKxRAWCUnJwc/f3vf9f69etdLlO+8847NXnyZFWvXt3C6gBUNIIKACP99NNP2rt3rzw8PBQUFKTGjRtbXRIACxBUAFQamZmZCggIsLoMABWIO9MCMMrBgwf1z3/+U3v27FFRUZEkyeFwyG636/jx49q1a5fFFQKoSCymBWCU8ePH68cff9Rdd92lrKwsde/eXTfddJOOHj2qsWPHWl0egArGjAoAo2zdulWzZs1Shw4dtH79et1xxx1q1aqVpk+frq+//loPP/yw1SUCqEDMqAAwit1udz7jp0mTJvrxxx8lSffffz83fAPcEEEFgFEaNGigPXv2SDoXVNLS0iRJxcXFOnv2rJWlAbAAp34AGCU6OlojRozQK6+8oi5duuiJJ57Qddddpw0bNqh58+ZWlwegghFUABilX79+8vb2lsPhUKtWrTRw4EDNnj1bgYGBeuWVV6wuD0AF4z4qAADAWMyoADBOSkqKtm7dqoKCAv3+d6nBgwdbVBUAKzCjAsAob7zxhmbOnKmaNWuWeK6PzWbTunXrLKoMgBUIKgCMctttt6l3797q37+/1aUAMACXJwMwSnZ2tnr06GF1GQAMQVABYJS2bdvqu+++s7oMAIZgMS0Ao/To0UMTJkzQzp071bRpU3l5ebn033///dYUBsASrFEBYJSQkJCL9tlsNuedagG4B4IKAAAwFmtUAACAsQgqAADAWAQVAABgLIIKAMuwRA7AnyGoALDE3r179eijj1pdBgDDEVQAWOKzzz7jxm4A/hRBBQAAGIv7qAC4Ynbu3KmEhATt3LlTxcXFat26tZ5//nmtX79er7/+unPc4MGD9dxzzyk/P1/z5s3Thx9+qEOHDikwMFAPPvigYmNjVaXKud+revfuLX9/f9ntdn3zzTcKCwvTwoULlZ+fr9dee00ff/yxjh07piZNmujZZ5/VX//6V6t2H0A54Bb6AK6IM2fOKDY2Vh07dtTMmTNlt9s1e/ZsPfPMM/rggw+UmZmpFStWKCkpSQEBAXI4HBowYIC+//57DR48WCEhIdq0aZNeffVVHTx4UBMmTHC+9qeffqqePXtq9uzZKi4ulsPh0KBBg7R161bFxcUpKChIX3zxhYYMGSK73c5t94FKjKAC4IpIT0/XiRMn9MQTT6ht27aSpKZNmyopKUlVq1ZVQECAJKlNmzaSpK+//lr//e9/NW3aNHXv3l2SdOutt8rHx0evvfaannjiCd14442SJE9PT40bN875HKANGzZo/fr1mj59unMGJTIyUrm5uUpMTFSPHj3k4cG3O6AyYo0KgCvixhtvVJ06dTRgwACNHj1aX3zxha699loNHz7cGVJ+a/PmzfLw8NDdd9/t0t6zZ09n/3m/f1hhcnKybDabOnfurMLCQuefqKgoHTlyRHv37r1CewngSuNXDABXRLVq1bR06VLNnj1bn376qZKSkuTj46P77rtP8fHxJcafOnVKtWvXVtWqVV3a69WrJ0nKzs52ee3fOnnypBwOh3Pm5vcOHz6sFi1aXO4uAbAAQQXAFdO0aVMlJCSoqKhI27dv17/+9S+9++67atSoUYmxtWrV0okTJ1RUVOQSVg4fPixJql279kXfp0aNGvLz89PixYsv2H/DDTdc5p4AsAqnfgBcEZ999pk6duyoI0eOqGrVqgoLC9PYsWNVs2ZN/fLLL86reM5r3769CgsL9dlnn7m0f/DBB5Kkdu3aXfS92rdvr5ycHDkcDrVs2dL5Z8+ePXrjjTdUWFhY/jsIoEIwowLgimjbtq2Ki4s1aNAg9evXT9WqVdOnn36q7OxsdevWzblu5KOPPlLr1q3VqVMndejQQfHx8crKylJISIg2b96st956S9HR0QoODr7oe3Xu3Fnh4eEaOHCgBg4cqKCgIG3fvl0zZsxQZGSk6tSpU1G7DaCccR8VAFfM9u3b9dprr2nnzp3Kzc3VjTfeqAEDBujOO+9UVlaWBg0apN27d+vBBx/U2LFjlZubqxkzZujjjz/W8ePH1bBhQz300EPq06ePy31UJOmdd95xea+cnBy99tpr+uyzz3Ts2DH5+/ure/fuGjRokLy9vSt83wGUD4IKAAAwFmtUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGCs/wc9LufCj31b8QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Análisis de la columna 'manufacturer':\n", + "manufacturer\n", + "adidas 519\n", + "Asics 117\n", + "nike 102\n", + "Hoka 48\n", + "Brooks 36\n", + "New Balance 36\n", + "On Running 7\n", + "Skechers 7\n", + "361° 4\n", + "NNormal 4\n", + "Adidas 4\n", + "Name: count, dtype: int64\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAIVCAYAAAD/HNTLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjPklEQVR4nO3deVxN+eMG8OemUk32pRpki5JQUcRkyTLmixnLzBjE2HfGWpqyFI0QZsY2dkIjZB8zthk7qRjLyFBEtiwh7cs9vz/8utN1K5XqfC7P+/Wa1+icc+99bt26zz3ncz5HIUmSBCIiIiIB6cgdgIiIiCg3LCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIihHnU6SSwtcava9YVOiD1b9/f1haWqr+s7Kygp2dHXr27ImAgABkZGSobe/i4oJp06bl+/6PHj0Kd3f3t243bdo0uLi4FPpxCuvevXuwtLTEzp07NdalpaWhbdu26NGjB5KTk4stQ//+/dG/f/9iu3/R/Pbbb2jXrh1sbGwwY8aMIrvf5cuXY+3atUV2f0Qi0ZU7AJGcrK2tMXPmTABAZmYmXr58iRMnTmDu3LkICwvDjz/+CB2d131+6dKlMDY2zvd9b9iwIV/bjR49GgMGDChw9ndVtWpVBAUFwdzcXGPd9u3bkZGRgRUrVsDQ0LDEs72vfHx8UKtWLfj5+cHExKTI7venn37C2LFji+z+iETCokIfNGNjY9ja2qotc3FxQZ06deDr64v9+/fj888/B/C61BSHnIpCSdDX19d47lnat2+Pzz77DBUrVizZUO+5Fy9eoFWrVmjevLncUYi0Bg/9EOXA1dUVJiYm2Lp1q2rZm4dkskpM48aN0aJFC0yZMgWxsbEAXh/SOH/+PM6fPw9LS0uEhIQgJCQElpaW2Lp1K9q1awd7e3ucPn1a49APAKSnp2POnDlwcHBAs2bN4O7ujri4ONX6nA6ZZN1/SEiIatmtW7cwduxYODo6wsHBASNGjEBUVBSAnA/9REdHY/z48ejVqxdcXFzQv39/hIeHq9Zn3eb333/H+PHjYWdnB0dHR3h5eSEpKSnP7+mDBw8wduxYNG3aFK1atcL69etz3G779u3o0qULbGxs0LZtWyxZsgSZmZl53relpSV+/fVXTJs2DU2bNoWjoyPmzJmDlJQUzJs3Dy1atEDz5s3h6emJ1NRU1e3i4uLg7e2tOhzj6OiIMWPG4N69e2rfa09PT6xatQpt27ZFo0aN8M033+Dy5cuqbXL6GWb//mb9bABg2bJlsLS0VD3G9u3b0bNnT9ja2qJx48b44osv8Pvvv6vdV14/x6z7Xbp0qerfb8sDINfXIwCEhYXB1dUVTZo0gaOjo8brb+fOnbC2tsb27dvRqlUrODo6IjIyMs+fEVFhsagQ5UBHRwdOTk64fPmyxlgVAAgPD4ebmxs6deqE1atXw8PDA+fOncPkyZMBADNnzoS1tTWsra0RFBSEhg0bqm67dOlSuLu7Y8aMGbCzs8vx8X///Xf8888/8PPzg7u7O44dO4Zhw4a99Q07u9jYWPTu3RvR0dGYNWsWFixYgKdPn+Lbb7/FixcvNLaPjIxEz549ce/ePXh5ecHf3x8KhQLffvstzp8/r7btzJkzUa1aNSxfvhxDhgzBjh07sGLFilyzJCUlwdXVFTdu3MDs2bMxffp0bN++HRcvXlTbbuXKlZg+fTqcnJzwyy+/oF+/fli9ejWmT5/+1ue7YMEC6OvrY+nSpejevTs2bdqE7t274+HDh/D390f//v2xY8cObNq0CcDrwacjRozA6dOnMWXKFKxduxZjx47F2bNnVYcDsxw8eBBHjx6Fl5cXFi1ahKdPn2LcuHH5/nk0bNgQQUFBAIAvv/wSQUFBqFq1KrZs2YIZM2agQ4cOWLlyJfz9/aGvr48pU6bg0aNHAN7+c3zzfgvqzddjaGgoBg4cCAMDA/z444/4/vvvcf78eQwYMAApKSmq22VmZmLdunXw9fWFh4cH6tatW+DHJsoPHvohykXlypWRnp6OFy9eoHLlymrrwsPDYWBggOHDh0NfXx8AUL58eVy5cgWSJMHCwkI1nuXNwyt9+/ZF586d83zsChUqYO3atTAyMlJ9PWbMGJw4cQLt2rXLV/4NGzYgLS0N69evR5UqVQAAVlZW6NOnDy5duqTxxrJ06VLo6+sjICBAlb1t27bo2rUr5s+fjx07dqi2bdOmjWqgsJOTE06fPo1jx46pitqbdu3ahQcPHmD//v2wsLAAADRp0gQdO3ZUbfPq1SssX74cvXv3hpeXFwDgk08+Qfny5eHl5YVBgwahXr16uT5fCwsL+Pj4AAAcHR2xfft2pKenw9/fH7q6uvjkk09w8OBBXLhwAQDw+PFjGBoawt3dHc2aNQMANG/eHHfv3tV4w8/IyMDatWtV35fExES4u7sjIiICNjY2uWbKkv0Qo6mpqerfMTExGDJkCEaPHq3atlq1aujZsyfCw8PRpUuXt/4c27Rpo3G/BfHm63HhwoWoXbs2Vq5ciVKlSgF4/bPq0qULgoOD0a9fP9W2I0eORNu2bQv8mEQFwaJClIus0z0VCoXGOgcHByxevBhdu3bFp59+ijZt2uCTTz5RvWnkpUGDBm/dpk2bNqqSArw+7KSrq4vQ0NB8F5Xw8HDY2tqq3tyA129mf/31FwCoHd4AgPPnz6Ndu3ZqA4Z1dXXRpUsXLFu2DImJiarlb74hmpqa4v79+7lmCQsLg7m5uaqkAICZmZna/Vy8eBEpKSlwcXFR24uVdQjj9OnTeRaV7HunSpUqhQoVKqBhw4bQ1f3vz1z58uXx6tUrAICJiQkCAgIgSRLu3buHO3fu4NatW7hw4QLS0tLU7jt78cy6LYB3PiMq61BifHw8bt26hTt37qgO3WVleNvP8V1lfz0mJyfj0qVLGDJkCCRJUv0catSogbp16+L06dNqRSU/r2Wid8WiQpSL2NhYGBgYoHz58hrr7OzssGrVKmzYsAHr16/HqlWrULlyZYwcOfKtp9tmLyC5yf6mBLw+FFWhQgXEx8fnO/+LFy9QvXr1fG//8uVLjT1HwOs9S5IkISEhQbXszTOBdHR08pzH4+XLl6hQoYLG8ipVquDp06eqvAAwfPjwHO/j8ePHeebP6Yyst32v9+7di0WLFuHhw4coX748GjRoAAMDA43tcnq+AKBUKvO8/7e5e/cuZsyYgbNnz0JPTw916tSBlZUVgP+KckF/jgWV/XsUHx8PpVKJ1atXY/Xq1Rrbli5dOtfbEhUXFhWiHGRkZCAkJAT29vaq3d9vcnZ2hrOzM5KTk3Hu3DkEBARgzpw5aNKkCRo3bvxOj//mGJLMzEw8f/4clSpVUluW3ZuDWcuUKaM2ADLL2bNnUb16dY09ReXKlVOVhuyePHkC4PXhp7eVhdxUqFABd+7c0Vie/XmWLVsWAODv749atWppbJtTiXoXYWFhcHd3R//+/TFkyBDVXpL58+erDSDOD4VC8dafx5uUSiWGDx8OPT097NixAw0aNICuri4iIyOxZ88e1XZv+znWqFGjSPIAwEcffQSFQoGBAweiS5cuGut5qjrJgYNpiXIQFBSEJ0+eoE+fPjmunzdvHnr16gVJkmBoaIh27dqpxmw8ePAAwH+fugvj9OnTaoc/Dh48iIyMDNVprcbGxqrBllnefHNt1qwZLl26pPYm9+zZMwwdOhTHjx/XeEwHBwf89ddfantOMjMz8dtvv6FRo0aqsTiF0aJFC9y7dw9XrlxRLYuLi8Pff/+t+rpJkybQ09NDbGwsGjVqpPpPV1cXixYt0jhU9a4uXrwIpVKJcePGqUpKZmYmzpw5A6Bge0s++ugjPH/+XO2MoreVnefPn+P27dv48ssvVc8TAE6cOKH2+Pn5Ob75WitMHuD168ra2hq3bt1S+xnUq1cPS5YsUTujjKikcI8KfdASEhJUb5ZKpRLPnz/HqVOnEBQUhM8//xydOnXK8XYtWrTA+vXrMW3aNHz++edIT0/HmjVrUL58ebRo0QLA6z0EFy9exNmzZws8B8uTJ08wbtw49O/fH9HR0Vi0aBFatWoFJycnAEC7du3w559/Yu7cuXBxcUFYWBh2796tdh8DBw7E7t27MXToUIwYMQJ6enpYsWIFTE1N0a1bN9VYjSxjx47FiRMnMGDAANUn/c2bNyMmJgZr1qwpUP43ffHFFwgICMDYsWMxceJEGBsbY8WKFWploEKFChg6dCh++uknJCQkoHnz5oiNjcVPP/0EhUKhOiRSVLL2evn4+KBXr154+fIltmzZguvXrwN4vQcivxP8tWvXDps2bYKnpye+/PJL3LhxA+vXr891bxwAVKpUCdWqVcOWLVtgamqKsmXL4uTJkwgICADw3/iXt/0cgdevtQsXLiA0NBTNmjUrVJ4skyZNwvDhwzF58mR8/vnnqrN7Ll26pDbol6ikcI8KfdCuXbuG3r17o3fv3ujbty/c3Nxw/fp1zJo1C/Pnz8/1dm3atIG/vz9u3ryJsWPHYtKkSTA0NERAQIBqTEu/fv2gp6eHYcOGqT4l51ffvn1RqVIljBkzBj/99BO6deuGpUuXqg7X9OrVC8OGDcP+/fsxfPhwXLx4ET///LPafZiZmSEwMBBVq1bFtGnT4OHhATMzM2zcuBHlypXTeMx69eohMDAQlSpVgoeHB6ZOnQpJkhAQEICWLVsWKP+b9PX1sXHjRjg4OMDX1xfff/89nJycNAYGT5gwAdOmTcPhw4cxbNgwLFiwAE2bNsXmzZtRpkyZd8rwpubNm2PGjBm4ePEihg0bBj8/P3z88cdYunQpgPztgcjSqlUruLu7Izw8HMOGDcOBAwewdOnStxaD5cuXw8TEBNOmTcOECRNw6dIlrFixAnXq1EFYWBiA/P0cR44ciatXr2LYsGF4+PBhofMAr8+0Wrt2LR49eoTx48fDzc0NpUqVwvr16wt1VhHRu1JIvJIVERERCYp7VIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwtL6Cd8uXrwISZKgp6cndxQiIiLKp/T0dCgUCrULiuZE6/eoSJKU58XQ3uV+09LSiuW+iwszlxxtzM3MJYOZSwYzl4zizJzf92+t36OStSelUaNGRXq/SUlJiIiIgIWFhdZcIZSZS4425mbmksHMJYOZS0ZxZs5+7a+8aP0eFSIiInp/sagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRSUXCoUChoaGUCgUckchIiL6YOnKHaCkKZUSdHTeXj4MDQ1hbW1dLPdNRERE+fPBFRUdHQX8t4TjXuyrIr3f6iZlMKVf0yK9TyIiog/dB1dUAOBe7CtE3X8pdwwiIiJ6C45RISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhJWgYtKbGwsLC0tNf7buXMnACAiIgKurq6wtbWFi4sLAgIC1G6vVCrx888/w9nZGba2thg2bBhiYmKK5tkQERHRe6XApydfv34dpUuXxpEjR9RmbS1TpgyeP3+OQYMGwcXFBd7e3vj777/h7e2Njz76CL169QIALF++HIGBgfDz84OpqSkWLFiAoUOHYt++fdDX1y+6Z0ZERERar8BF5caNG6hVqxaqVq2qsW7jxo3Q09ODj48PdHV1UbduXdy5cwerVq1Cr169kJaWhnXr1mHKlClo27YtAGDx4sVwdnbGoUOH0LVr13d+QkRERPT+KPChn3///Rd169bNcV1YWBgcHR2hq/tf/2nRogWio6Px9OlTXL9+HYmJiXByclKtL1u2LKytrREaGlqI+ERERPQ+K9QelQoVKqBfv364ffs2atasiVGjRqF169Z49OgR6tevr7Z91p6Xhw8f4tGjRwAAMzMzjW2y1hWGJElISkp663ZZFxosTsnJyZAkqVgfI6/Hzv5/baCNmQHtzM3MJYOZSwYzl4zizCxJUr4u/FugopKRkYFbt27BwsIC06ZNg7GxMX777TcMHz4c69evR0pKisY4k9KlSwMAUlNTVU80p21eviz8lPbp6emIiIh463aFudBgQd2+fVv2F2F0dLSsj18Y2pgZ0M7czFwymLlkMHPJKK7M+RmbWqCioquri5CQEJQqVQoGBgYAABsbG9y8eRNr166FgYEB0tLS1G6TmpoKADAyMlLdJi0tTfXvrG3eZU+Hnp4eLCws3rpdfprbu6pdu7ase1Sio6NRq1atYt9zVFS0MTOgnbmZuWQwc8lg5pJRnJkjIyPztV2BD/189NFHGsvq1auHU6dOwdTUFI8fP1Zbl/W1iYkJMjIyVMvMzc3VtrG0tCxoFBWFQgEjI6NC374oifDiMzQ0FOb7kV/amBnQztzMXDKYuWQwc8kojsz53XlQoMG0N2/ehL29PUJCQtSWX716FRYWFnBwcEB4eDgyMzNV686dO4fatWujUqVKsLKygrGxsdrt4+Pjce3aNTg4OBQkChEREX0AClRU6tatizp16sDHxwdhYWGIiorC3Llz8ffff2PUqFHo1asXEhIS4OnpicjISOzcuRMbNmzAiBEjALw+FuXq6gp/f38cPXoU169fx8SJE2FqaopOnToVyxMkIiIi7VWgQz86Ojr45ZdfsHDhQkyYMAHx8fGwtrbG+vXrVWf7rFmzBr6+vujRoweqVKkCNzc39OjRQ3Uf48ePR0ZGBry8vJCSkgIHBwesXbsWenp6RfvMiIiISOsVeIxK5cqVMXfu3FzXN27cGEFBQbmuL1WqFKZOnYqpU6cW9KGJiIjoA8OLEhIREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhFbqo3L59G3Z2dti5c6dqWUREBFxdXWFrawsXFxcEBASo3UapVOLnn3+Gs7MzbG1tMWzYMMTExBQ+PREREb3XClVU0tPTMWXKFCQlJamWPX/+HIMGDYK5uTmCg4MxZswY+Pv7Izg4WLXN8uXLERgYiNmzZ2Pr1q1QKpUYOnQo0tLS3v2ZEBER0XunUEVlyZIlMDY2Vlu2bds26OnpwcfHB3Xr1kWvXr0wcOBArFq1CgCQlpaGdevWYfz48Wjbti2srKywePFiPHr0CIcOHXr3Z0JERETvnQIXldDQUAQFBcHPz09teVhYGBwdHaGrq6ta1qJFC0RHR+Pp06e4fv06EhMT4eTkpFpftmxZWFtbIzQ09B2eAhEREb2vdN++yX/i4+Ph5uYGLy8vmJmZqa179OgR6tevr7asatWqAICHDx/i0aNHAKBxu6pVq6rWFZYkSWqHoXKjUChgaGj4To/1NsnJyZAkqVgfI6/Hzv5/baCNmQHtzM3MJYOZSwYzl4zizCxJEhQKxVu3K1BRmTVrFuzs7NCtWzeNdSkpKdDX11dbVrp0aQBAamqq6knmtM3Lly8LEkNDeno6IiIi3rqdoaEhrK2t3+mx3ub27duyvwijo6NlffzC0MbMgHbmZuaSwcwlg5lLRnFlfrMT5CTfRWX37t0ICwvDvn37clxvYGCgMSg2NTUVAGBkZAQDAwMAr8eqZP07a5t33cuhp6cHCwuLt26Xn+b2rmrXri3rHpXo6GjUqlWr2PccFRVtzAxoZ25mLhnMXDKYuWQUZ+bIyMh8bZfvohIcHIxnz56hbdu2astnzpyJAwcOwNTUFI8fP1Zbl/W1iYkJMjIyVMvMzc3VtrG0tMxvjBwpFAoYGRm9030UFRFefIaGhsJ8P/JLGzMD2pmbmUsGM5cMZi4ZxZE5vzsP8l1U/P39kZKSorasU6dOGD9+PD7//HPs2bMHW7duRWZmJkqVKgUAOHfuHGrXro1KlSqhTJkyMDY2RkhIiKqoxMfH49q1a3B1dc1vDCIiIvqA5LuomJiY5Li8UqVKMDExQa9evbBmzRp4enpi6NChuHz5MjZs2ABvb28Ar49Dubq6wt/fHxUrVkS1atWwYMECmJqaolOnTkXzbIiIiOi9UqDBtHmpVKkS1qxZA19fX/To0QNVqlSBm5sbevToodpm/PjxyMjIgJeXF1JSUuDg4IC1a9dCT0+vqGIQERHRe+Sdisq///6r9nXjxo0RFBSU6/alSpXC1KlTMXXq1Hd5WCIiIvpA8KKEREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgFLirPnj3D1KlT0aJFC9jZ2WH48OGIiopSrY+IiICrqytsbW3h4uKCgIAAtdsrlUr8/PPPcHZ2hq2tLYYNG4aYmJh3fyZERET03ilwURkzZgzu3LmDVatWYceOHTAwMMDAgQORnJyM58+fY9CgQTA3N0dwcDDGjBkDf39/BAcHq26/fPlyBAYGYvbs2di6dSuUSiWGDh2KtLS0In1iREREpP10C7Lxy5cvUa1aNYwYMQL169cHAIwePRpffPEFbt68ibNnz0JPTw8+Pj7Q1dVF3bp1VaWmV69eSEtLw7p16zBlyhS0bdsWALB48WI4Ozvj0KFD6Nq1a5E/QSIiItJeBdqjUq5cOSxcuFBVUuLi4rBhwwaYmprCwsICYWFhcHR0hK7uf/2nRYsWiI6OxtOnT3H9+nUkJibCyclJtb5s2bKwtrZGaGhoET0lIiIiel8UaI9KdtOnT8e2bdugr6+PFStWwMjICI8ePVKVmCxVq1YFADx8+BCPHj0CAJiZmWlsk7WuMCRJQlJS0lu3UygUMDQ0LPTj5EdycjIkSSrWx8jrsbP/XxtoY2ZAO3Mzc8lg5pLBzCWjODNLkgSFQvHW7QpdVL799lv07t0bW7ZswZgxYxAYGIiUlBTo6+urbVe6dGkAQGpqquqJ5rTNy5cvCxsF6enpiIiIeOt2hoaGsLa2LvTj5Mft27dlfxFGR0fL+viFoY2ZAe3Mzcwlg5lLBjOXjOLK/GYfyEmhi4qFhQUAwNfXF5cuXcLmzZthYGCgMSg2NTUVAGBkZAQDAwMAQFpamurfWdu8y54OPT09VZ685Ke5vavatWvLukclOjoatWrVKvY9R0VFGzMD2pmbmUsGM5cMZi4ZxZk5MjIyX9sVqKjExcXh7Nmz+PTTT1XjUHR0dGBhYYHHjx/D1NQUjx8/VrtN1tcmJibIyMhQLTM3N1fbxtLSsiBR1CgUChgZGRX69kVJhBefoaGhMN+P/NLGzIB25mbmksHMJYOZS0ZxZM7vzoMCDaZ9+vQpJk2ahLNnz6qWpaen49q1a6hbty4cHBwQHh6OzMxM1fpz586hdu3aqFSpEqysrGBsbIyQkBDV+vj4eFy7dg0ODg4FiUJEREQfgAIVlfr166N169aYM2cOQkNDcePGDUybNg3x8fEYOHAgevXqhYSEBHh6eiIyMhI7d+7Ehg0bMGLECACvj0W5urrC398fR48exfXr1zFx4kSYmpqiU6dOxfIEiYiISHsVeIzKokWLsHDhQkycOBGvXr1Cs2bNsGXLFnz88ccAgDVr1sDX1xc9evRAlSpV4Obmhh49eqhuP378eGRkZMDLywspKSlwcHDA2rVroaenV3TPioiIiN4LBS4qZcqUwaxZszBr1qwc1zdu3BhBQUG53r5UqVKYOnUqpk6dWtCHJiIiog8ML0pIREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhFXgovLixQvMmDEDrVu3hr29Pfr06YOwsDDV+rNnz6Jnz55o0qQJOnfujN9++03t9qmpqfD29oaTkxPs7OwwefJkxMXFvfszISIiovdOgYvKpEmTcPHiRSxatAjBwcFo0KABhgwZglu3biEqKgojRoyAs7Mzdu7cia+++gpubm44e/as6vazZs3CqVOnsGTJEmzcuBG3bt3C+PHji/RJERER0ftBtyAb37lzB6dPn0ZgYCCaNm0KAJg+fTpOnjyJffv24dmzZ7C0tMTEiRMBAHXr1sW1a9ewZs0aODk5ITY2Frt378Yvv/yCZs2aAQAWLVqEzp074+LFi7Czsyvip0dERETarEBFpUKFCli1ahUaNWqkWqZQKKBQKBAfH4+wsDB06NBB7TYtWrSAr68vJElCeHi4almW2rVrw8TEBKGhoYUuKpIkISkp6a3bKRQKGBoaFuox8is5ORmSJBXrY+T12Nn/rw20MTOgnbmZuWQwc8lg5pJRnJklSYJCoXjrdgUqKmXLlkWbNm3Ulh08eBB37tzB999/j127dsHU1FRtfdWqVZGcnIznz58jNjYWFSpUQOnSpTW2efToUUGiqElPT0dERMRbtzM0NIS1tXWhHyc/bt++LfuLMDo6WtbHLwxtzAxoZ25mLhnMXDKYuWQUV2Z9ff23blOgovKmCxcuwMPDA506dULbtm2RkpKi8aBZX6elpSE5OTnHUKVLl0Zqamqhc+jp6cHCwuKt2+Wnub2r2rVry7pHJTo6GrVq1Sr2PUdFRRszA9qZm5lLBjOXDGYuGcWZOTIyMl/bFbqoHDlyBFOmTIG9vT38/f0BvC4caWlpattlfW1oaAgDAwON9cDrM4He5RugUChgZGRU6NsXJRFefIaGhsJ8P/JLGzMD2pmbmUsGM5cMZi4ZxZE5vzsPCjWPyubNmzFu3Di0a9cOv/zyi+pQjpmZGR4/fqy27ePHj2FkZIQyZcrA1NQUL1680Cgrjx8/homJSWGiEBER0XuswEUlMDAQs2fPRr9+/bBo0SK1QznNmjXD+fPn1bY/d+4c7O3toaOjg6ZNm0KpVKoG1QKvx3TExsbCwcHhHZ4GERERvY8KVFRu376NH374AR07dsSIESPw9OlTPHnyBE+ePMGrV6/Qv39/XL58Gf7+/oiKisK6devwxx9/YOjQoQAAExMTdOnSBV5eXggJCcHly5cxadIkODo6wtbWtjieHxEREWmxAo1ROXjwINLT03H48GEcPnxYbV2PHj3g5+eH5cuXY8GCBdi4cSOqV6+OBQsWwMnJSbXd7Nmz8cMPP2Ds2LEAgNatW8PLy6sIngoRERG9bwpUVEaOHImRI0fmuU3r1q3RunXrXNcbGRlhzpw5mDNnTkEemoiIiD5AvCghERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFovKe0ShUMDQ0BAKhULuKEREREVCV+4A9HZKpQQdnbeXD0NDQ1hbWxfLfRMREcmBRUUL6Ogo4L8lHPdiXxXp/VY3KYMp/ZoW6X0SEREVJRYVLXEv9hWi7r+UOwYREVGJ4hgVIiIiEhaLChEREQmLRYWIiIiExaJCREREwnqnorJy5Ur0799fbVlERARcXV1ha2sLFxcXBAQEqK1XKpX4+eef4ezsDFtbWwwbNgwxMTHvEoOIiIjeU4UuKlu2bMGPP/6otuz58+cYNGgQzM3NERwcjDFjxsDf3x/BwcGqbZYvX47AwEDMnj0bW7duhVKpxNChQ5GWllboJ0FERETvpwKfnhwbG4uZM2ciJCQEtWrVUlu3bds26OnpwcfHB7q6uqhbty7u3LmDVatWoVevXkhLS8O6deswZcoUtG3bFgCwePFiODs749ChQ+jatWtRPCfSIpxNl4iI8lLgovLPP/9AT08Pe/fuxbJly3D//n3VurCwMDg6OkJX97+7bdGiBVauXImnT5/iwYMHSExMhJOTk2p92bJlYW1tjdDQ0EIXFUmSkJSU9Nbtst4Ui1NycjIkSSqy+9PWzPqlS6OUztt32BVmNt1MpRJpqalFmrmgkpOT1f6vDZi5ZDBzyWDmklGcmSVJyteH1AIXFRcXF7i4uOS47tGjR6hfv77asqpVqwIAHj58iEePHgEAzMzMNLbJWlcY6enpiIiIeOt2hXlTLKjbt28X6Q9UmzMX52y6RZ25sKKjo+WOUGDMXDKYuWQwc8korsz6+vpv3aZIZ6ZNSUnReNDSpUsDAFJTU1VvLDlt8/Jl4Wdd1dPTg4WFxVu3K4nDC7Vr1y7yvRPFrbgyF+dsukWduaCSk5MRHR2NWrVqFfser6LCzCWDmUsGM5eM4swcGRmZr+2KtKgYGBhoDIpNTU0FABgZGcHAwAAAkJaWpvp31jbv8g1QKBQwMjIq9O2Lkra8+LJj5sIzNDQU5rWXX8xcMpi5ZDBzySiOzPn9IF6k86iYmpri8ePHasuyvjYxMVEd8slpGxMTk6KMQkRERO+BIi0qDg4OCA8PR2ZmpmrZuXPnULt2bVSqVAlWVlYwNjZGSEiIan18fDyuXbsGBweHooxCRERE74EiLSq9evVCQkICPD09ERkZiZ07d2LDhg0YMWIEgNdjU1xdXeHv74+jR4/i+vXrmDhxIkxNTdGpU6eijEJERETvgSIdo1KpUiWsWbMGvr6+6NGjB6pUqQI3Nzf06NFDtc348eORkZEBLy8vpKSkwMHBAWvXroWenl5RRiEiIqL3wDsVFT8/P41ljRs3RlBQUK63KVWqFKZOnYqpU6e+y0MTERHRB4AXJSQiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkSFoFAoYGhoCIVCIXcUIqL3mq7cAYhEoVRK0NHJX/EwNDSEtbV1sdw3ERH9h0WF6P/p6CjgvyUc92JfFen9Vjcpgyn9mhbpfRIRfShYVIiyuRf7ClH3X8odg4iI/h/HqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwrRB0Ib537RxsxEVLR41g+RFtPGuV+0MTMRyYdFhUiLaePcL9qYmYjkw6JCpOW0ce4XbcxMRPLgGBUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqRERFSKFQwNDQEAqFQu4o+aaNmenDIUtRUSqV+Pnnn+Hs7AxbW1sMGzYMMTExckQhIsoXpVLK13aGhoawtraGoaFhkd5vYWhjZqI36crxoMuXL0dgYCD8/PxgamqKBQsWYOjQodi3bx/09fXliERElCcdHQX8t4TjXuyrIrvP6iZlMKVf0yK7vzdpY+b80sa9QMxcOCVeVNLS0rBu3TpMmTIFbdu2BQAsXrwYzs7OOHToELp27VrSkYiI8uVe7CtE3X8pd4wC0bbMSqUEHZ23vylm7QUq6vstDGYu+P0WRIkXlevXryMxMRFOTk6qZWXLloW1tTVCQ0NZVIiIPmDauBeImV8rrswKSZJK9GDjoUOHMG7cOFy6dAkGBgaq5d999x1SUlKwcuXKAt3fhQsXIEkS9PT08rW9QqHAy4Q0ZGQqC/Q4b6NbSgfljPVRHN9OZv4PM6tj5v8UZ2ageHIzsyZmfu1DyJyeng6FQgF7e/u877cowhVEcnIyAGiMRSldujReviz47sms42YFOX5Wzrj4xsEU13E8ZlbHzP9hZnXFeSy9uHIzszpm/s/7nFmhUORr2xIvKll7UdLS0tT2qKSmpuZ7xHl2dnZ2RZaNiIiIxFLipyebmZkBAB4/fqy2/PHjxzAxMSnpOERERCSwEi8qVlZWMDY2RkhIiGpZfHw8rl27BgcHh5KOQ0RERAIr8UM/+vr6cHV1hb+/PypWrIhq1aphwYIFMDU1RadOnUo6DhEREQlMlgnfxo8fj4yMDHh5eSElJQUODg5Yu3Ztvs/cISIiog9DiZ+eTERERJRfvCghERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEJJzQ0FFu3bkVCQgIiIyORkZEhdySiD1ZcXJysjy/LFPoiS0lJgY6ODvT19REVFYVjx47Bzs4O9vb2ckfTkJaWhnXr1uGzzz5DzZo14enpiQMHDsDe3h7+/v6oUKGC3BHz9ODBA0RFRcHBwQGJiYmoVKmS3JFIZgkJCRg6dCj+/vtvKBQKtGrVCv7+/oiJicG6deuEvMK6h4dHjssVCgX09PRgamqKzp07o3bt2iWcrODi4uJQsWJFuWOQjOLj47FgwQK4urrCwsICQ4cOxblz51CrVi2sWrUKNWrUKPFM3KOSTWhoKFq3bo3w8HA8fvwYX331FVasWIH+/fvj999/lzueBn9/f6xfvx4JCQk4ceIEdu3ahREjRiAxMRHz58+XO16u0tLSMHHiRLi4uGDEiBF48uQJZs6ciUGDBiEhIUHueO89uT8d5WXRokUAgMOHD8PAwAAAMHXqVOjr6wv7mk5PT8fu3btx6tQpxMfHIz4+HmfPnsWuXbvw77//Ys+ePejevTvCw8PljqomPj4e06dPx7///ovMzEwMGjQIrVq1wmeffYaYmBi546k8ffoUXl5emDhxIv7991+54+TLgwcP8v2faObOnYtz585BV1cXhw8fRlhYGObPn49atWrJ9jvIPSrZLFq0CO3bt0ejRo2wbds2GBsb4/DhwwgODsbKlSvx2WefyR1RzR9//IFFixahYcOGmDlzJhwdHTFy5Eh88sknGDZsmNzxcrVixQpcv34dGzduxMiRIwEA/fv3h4eHB/z9/TFr1ix5A+bh6NGjuHHjBjIzM1XL0tLScOXKFaxfv17GZDkT8dNRXv766y8sXLhQLVfdunUxY8YMjBkzRsZkuTMwMECnTp2wYMEC6OvrA3hdXr7//nuUKVMGM2bMgL+/P3788Uds2rRJ5rT/mTt3LsLCwjBw4EC1N6QDBw5g/vz5WLJkidwRAQBubm6ws7ND3bp1MXToUBw/fhw6OmJ/xnZxcYFCochzG0mSoFAoEBERUUKp8uf48eNYtmwZ6tati9WrV6NVq1bo1q0bLC0t0a9fP1kysahkc+3aNcyfPx/GxsY4deoU2rZti9KlS6NNmzbw8/OTO56GFy9eoG7dugCA06dPo3fv3gCA8uXLIyUlRc5oefrtt98wa9YsNG/eXLWsefPm8PX1hZubm7BFxd/fH2vWrEHlypXx7NkzmJiY4OnTp8jMzESXLl3kjpcjbXkzyhIXF4cqVapoLC9btiySkpJkSPR2f/zxB7Zu3aoqKQCgp6eHESNGoE+fPpgxYwa+/PJLBAYGyphSk4hvSDmJjIyEm5sbLCwsMHXqVLx48UL4w1MBAQFyRyi0pKQkmJmZAXj9vpL1odfAwEDtA1pJYlHJxtDQEGlpaUhNTUV4eDi++uorAK93PZYpU0bmdJrMzc1x5coVPHv2DPfu3YOzszMA4MiRI6hevbrM6XIXGxsLc3NzjeVmZmZ4+fKlDInyZ9++ffj+++8xYMAAtGnTBoGBgTAyMsKYMWOE2zORRVvejLI0atQIv//+O4YPH662fMuWLbC2tpYpVd50dXXx9OlTWFhYqC1/8uSJ6lN1ZmYmdHXF+nMr4htSTnr27IlZs2ahSpUqcHZ2Fr6kAICjo6PcEQqtbt26OHbsGMzMzPDkyRO0bt0aALBt2zbVB+OSJtZvjsyaN2+OBQsWoFy5ctDR0YGzszMiIiIwZ84ctU//ohg6dCgmTZoEHR0dtGjRAlZWVli2bBmWLVuGH374Qe54uapbty7Onj2rKoJZfvvtN40/9iJ59uwZXFxcAACWlpa4fPkyOnfujIkTJ8LT0xPfffedzAk1acubUZZJkyZh8ODBuHz5MjIyMrBixQpERUXhn3/+wdq1a+WOl6NPP/0UM2bMwKxZs9CkSRNIkoS///4bs2fPRvv27ZGUlIQVK1agUaNGckdVI+IbUk4mTJiAsLAwJCYmqj6MaZPU1FQEBQXleMj46tWrOHjwoIzpNI0fPx7jxo1Deno6unbtilq1amHu3LnYsmULli1bJksmFpVsZs6ciZkzZ+Lff//FggULYGxsjD179kBfXz/Xkf1y6t69Oxo0aICYmBjVH5lGjRph7dq1cHJykjld7saNG4eJEyciMjISmZmZ2LVrF27fvo2DBw9i8eLFcsfLVfbDD+bm5oiMjAQAfPzxx4iNjZUzWq605c0oi729PbZu3Yp169ahZs2a+Pvvv1GvXj18//33aNKkidzxcuTh4QE3NzcMHjxYbVzCZ599Bk9PT5w5cwbnz5/HqlWrZEypScQ3pNw0a9ZM7giFNmfOHOzevRvW1ta4cuUK7OzscOfOHTx79gwDBw6UO56GNm3a4Pjx44iNjYWVlRUAoEuXLvj666/l+5shUZ5SU1PljpCnkJAQ6fTp06qv/fz8pNDQUBkT5c/x48elvn37Sra2tlLjxo2lXr16SX/88YfcsfI0YcIEadiwYdKjR4+kvXv3Sl26dJGePXsmrVu3TmrXrp3c8XJ07NgxqVGjRpKVlZU0efJkSZIk6YcffpAaNmwoHTt2TOZ0OYuPj5fu3Lmj+vrgwYPS8+fP5QuUT3fv3pUOHjwoHTlyRIqJiVEtF/VvSEJCghQXFydFRESoll26dEmKjIyUMdX7x8nJSdq3b58kSZLUoUMHKSoqSkpLS5PGjBkjzZ49W+Z0BfPw4UNZHlchSZIkT0USU1xcHG7fvg2lUgng9cjsrLM6Ro0aJXM6db/99hvc3d0xceJEDBkyBMDrT0l//vknfvzxR3To0EHmhDmT/n+0e06ioqKE/KQPAA8fPsSoUaPQvXt39O3bF998841qxL67u7uQn44A4Pnz52qfji5fvoyPPvpIyO/zP//8g8GDB6Nnz55wd3cH8PoMiqw5g+rXry9zwtw9ffoU6enpePNP6scffyxTorx17NgRP/74Ixo2bCh3lPeajY0NDh06hI8//hijRo1Cly5d0LVrV1y5cgUTJkzA0aNH5Y6oJiYmBvPmzVM7VJX1PhgXF4dr166VeCYWlWz27t0LLy8vpKWlQaFQqL2hVqtWDUeOHJE5obpu3bqhd+/ecHV1VVseEBCA4OBg7NmzR6ZkeZs2bZrGWVSSJGH16tVYtmwZLl26JFOy/ElNTUXp0qWRnJyMU6dOwcTEBI0bN5Y7Vo6uXLmS49iIV69eYc6cOZg3b54MqXLXv39/VK9eHd7e3qqzaDIyMjB9+nTExsZi3bp1MifUdOHCBXh4eODu3btqyyVBTz/N8sknn2Djxo1CFtbs8nOqbxbR3vQBoHXr1li2bBkaNWqEefPmQU9PD5MmTcK9e/fQpUsX4f7eDRs2DNHR0ejcuTPWr1+PwYMH4/bt2zh8+DB8fHzw9ddfl3gmjlHJ5pdffkGXLl0wdOhQ9OnTB+vWrcPjx4/h7e2NcePGyR1Pw927d9GmTRuN5e3atcPChQtlSJQ/p06dgpeXF+bMmQPg9emHHh4eiIiI0DjbQyTHjx9HmzZtULp0aQCvzxLr2LEjYmJi0L9/f6HmyMgydOhQbNiwAQ0aNFAt+/PPPzFjxgwhB9NevXoVP/zwg9qpvrq6uhg+fDi+/PJLGZPlbs6cOahSpQrc3NyEPDswNwMGDMC4cePQr18/mJubqybYy+Lg4CBTMnWTJk2Cp6cn6tSpg/bt28sdp8Bat24Nb29vzJ07F02bNsUPP/yAjh074sCBAzA1NZU7noYLFy5g+fLlaN68OU6ePIkOHTqgcePGWLx4MY4fPy5LUeEYlWxsbGxUx2ddXV2l48ePS5L0+hh5jx495IyWo08//VQKDg7WWL5nzx6pffv2MiTKn8jISMnZ2VmaPn26tHz5csnGxkbq3bu3dPPmTbmj5alRo0bSyZMn1ZZt3LhRsrW1lTp37ixTqrzNmTNHcnR0lCIiIqQXL15IkydPliwtLaXJkydLz549kzuehlatWqmNucpy7tw5qUWLFjIkervsfze0iaWlZa7/WVlZyR1PzeHDhyUbGxu18TTa4uXLl9KoUaOkzZs3S0qlUho6dKhkaWkpNWzYUNq/f7/c8TTY2NhIDx48kCTp9bi8bdu2SZIkSbdu3ZJatWolSybuUclGX19f9UmuZs2auHnzJlq3bg0bGxvcuXNH5nSa+vTpg9mzZ+Pu3buqMyKuXLmCjRs3YvTo0TKny13dunWxadMmfPvtt3j8+DE8PT3Rt2/ffO/elcukSZMwduxYrFixAh9//DE8PDxw+fJlDBkyRNhZUz09PaGnp4eBAwdCV1cX+vr6WL16tbCneX766afw9vbGrFmzVIfTrly5Ah8fH3Ts2FHmdDkzMzNDYmKi3DEKTMTDJLnp0KEDunTpgnnz5gk5A3ReypYti+XLl6u+XrVqFSIiIlC5cmVUrVpVxmQ5q1atGm7cuAEzMzPUrl1bdehSqVTK9jpnUcnGxsYG27dvx6RJk1C/fn0cP34cQ4YMQWRkJPT09OSOp+Hbb79FWloaAgIC8MsvvwAAqlatiokTJ2qMW5FbaGioxrLx48dj1qxZuHnzJsLDw1WDEEXZ5fymgQMHQk9PD6NGjYJCoUC9evWwc+dOoQd4Aq+nINfX18eqVavw66+/CnuaLwBMnjwZd+/exaBBg9SKa8eOHeHm5iZjstyNGjUKP/zwA7y9vVGnTh0h/1bkpFq1agBez+dx7949mJubQ5IkYfN7eXnh3r17cscolJcvXyI6OhppaWmqZYmJibhz545wf+969OgBNzc3zJ8/H23btsWAAQPw8ccf4/Tp07C0tJQlEwfTZhMWFoahQ4di/Pjx6NGjBzp37ozKlSvj4cOH+N///qcaUyGi58+fQ09PD8bGxnJHyZGVlZVqgHJeRB58mGX79u3w9vbG6tWrhZyvZsCAATku//vvv2FkZKRWrESd6vvWrVu4ceMG9PT0ULduXdSqVUvuSLnq1KkTHjx4kOuYH1Ffz5IkYeHChdi0aRPS09NV8xgZGhpi1qxZwhYWbRMcHAxvb+8czwgT8e+dJEnYuHEjatWqhbZt22LVqlVYuXIlzMzMMH/+fFlmiGZReUNsbCzS0tJQo0YNREZGYuvWrTAzM0P//v3VBvjJJTQ0FHZ2dtDV1c1xL0V2IjX1+/fv53vbrE96IsjtjIPY2FiUKlUKlStXVi0TZVd6QSYnnDt3bjEm+TDs2rUrz/U9evQooSQFExAQgNWrV2PixInw8fHBvn37cOXKFXh7e+Obb77BxIkT5Y6oJikpCUZGRqqvr169inv37qFmzZpqg8VF06ZNG7Ru3RoDBw7UGLAMiPX3TlQsKlrGysoKp0+fRqVKlfLcSyFiU9dGS5YsyffYmbFjxxZzmvffrVu34OPjgwsXLiA9PV1jPV/TRadLly6YMGECOnbsCDs7O+zduxc1atTA4cOHMXfuXPz5559yRwTwem+xu7s7oqOjcejQIbx69QqjR49WfVBTKBRo0aIFlixZIuQeZTs7O+zatUvovYK7d+/O97bdu3cvthy5+eDHqOS2mzwnIuwmP3r0qOqiXKJ8gs+P9u3bY8eOHahQocJb50UQ6XmJeFp6QT18+BBbtmzBjRs3oKuri3r16qF3795CTkQ2c+ZMPHv2DFOmTBH6VF8PDw94enrC2Ng4zz1YCoVC2Otu3bt3L8c9EVZWVnjy5IkMiXLm6+uLBw8eYMaMGQCABQsWIC4uDtu3b0e9evXw77//wsvLC/PmzcPs2bNlTqupQ4cOOH78uNBFZdq0aWpfZ30ANjAwgK6uLhISElCqVClUqFCBRUUO2Xe7paam4sCBA2jQoAFsbW2hq6uLq1ev4vLlyxoX0JNL9rxv7jJMT0/H9evXUadOHXz00UclHS1PPXr0UO327NGjh/Bn+OTm6tWrWLt2repN38LCAt9++62wE779+++/cHV1hYGBARo3bgylUomdO3diy5Yt+PXXX1GvXj25I6q5dOkSfv31V+FnS713755q9mptHeBZrVo1XLlyReNK6ydOnBDqauAnT57E6tWrVb9jp06dwuzZs1UTGTZp0gSzZs3C6NGjhSwqU6dORbdu3XDw4EGYm5tr/O0T4fDr9evXVf/ev38/1q5di7lz56pms46Ojoa7uzu6du0qS74Pvqhkf5F4eHhg4MCBGu3yxx9/RFRUVElHe6uHDx/C09MTEyZMQP369fHll18iMjIS5cqV05jkS27ZD4to616K8+fPY/Dgwahfvz5atWoFpVKJCxcuoG/fvti4cSOaNm0qd0QN8+fPR/PmzbFw4ULVRHWpqamYMmUK/P39sXLlSpkTqqtQoYJWDOLMPrmfiBP95ceQIUPg7e2NJ0+eQJIknD17FkFBQdi0aZPG30A5KZVKjQkAy5Ytq7ZNuXLl1M6oEcmcOXOQmJiItLS0Ao3Vk4u/vz9++uknVUkBgFq1asHLywujRo1C//79SzzTB19Usvvjjz9yHBjXvXt3WXZ3vc3cuXPx6tUrVKxYEb///jvu37+PwMBA7Ny5EwsWLBByuvEsYWFhqnEI2cfYKBQKYeckWbx4MXr16gVvb2+15d7e3vjxxx+FfMO6cOECtm7dqiopAFC6dGmMGTNGuFPYAcDV1RWLFi2Cv7+/kOMNcpOcnIwbN27k+HoW9cq/vXr1QkZGBlasWIGUlBTMmDEDFStWxIQJE9CnTx+546k4OzvDx8cHS5cuRcWKFdG9e3esWbMGixYtQqlSpZCWloaffvoJzZs3lztqjk6cOIEVK1YIO3fRm+Lj49X+XmRRKpVISUmRIRGLipqyZcvi2rVrGscSw8LCUKlSJXlC5eHcuXPYuHEjqlevDn9/f7Ru3Rr29vaoUKECevbsKXe8XC1btgxLlixB2bJlNd6MRC4q165dy/EUdVdXV2Gnd//oo49yHJSa0zIRnDlzBmFhYXB0dESlSpU0zrQTafxSlqNHj2LatGlISEjQitNPs+vduzd69+6NuLg4SJIk5N85Dw8PDBo0CB06dICTkxOqV6+Os2fPokOHDqhduzauX78OHR0dBAYGyh01RxUqVBByPFhumjdvDh8fH8yfP191WDAqKgre3t5o27atLJlYVLLp3bs3ZsyYgaioKNjY2Kh27W/ZsgVTp06VO56G9PR0lCtXTrXbdtKkSQBeN19dXXF/tL/++ismTpyIESNGyB2lQCpUqIDnz59rLI+LixPi1PWctGjRAvPnz8fPP/+M8uXLA3idd8GCBULOAdO0aVMhD6Hlxd/fH05OThg9erTQA4BzEhMTg3/++SfHT8qi7EWuUqUKdu7cif379+P06dMIDQ1F+fLloaurC4VCgf79++Obb75BhQoV5I6ao5EjR8LX1xfTp0+Hubk5SpUqJXekPM2aNQtDhgxBx44dUbZsWUiShFevXqFx48aYPn26LJl4evIbVq5cic2bN6tGvZuZmWHYsGHo27evzMk09evXD82bN0eVKlXg4+ODv/76CxUrVsSMGTNw//59IQ9FAK8Hvx04cEDr5g/w9vbGhQsXsGjRItUVZyMjIzF58mRYW1sLMSjuTY8ePcI333yDly9fqvYURkdHo3z58ti0aZPGQEoquEaNGuG3336Dubm53FEKZOfOnfDy8lINCs5OtD1BqampuHnzJiwsLGBgYIBr165h8+bNePz4MSwsLDBo0CCYmJjIHTNH2jghYGZmJs6cOYObN29CoVDAysoKLVq0kO0kCBaVXDx//hwKhUL1KVREly9fxsiRI/H8+XMMGzYMkyZNwqxZs3DgwAGsXLkSdnZ2ckfM0aBBg9CrVy/ZRpAX1suXLzFo0CBERESoPjnHx8ejQYMGWLdunbCf6BITE7Fnzx7cvHkTkiTB0tIS3bp1E3YMyPXr13Hjxg3VG6gkSUhLS8OVK1eEnB26W7dumD59OhwdHeWOUiAdOnSAs7MzJk6cqDE4VSS3bt3CwIED8eTJE5iZmWHOnDkYPXo0qlWrBgsLC1y7dg3x8fEIDAxUfYAQibZOCCiSD76o7N69G//73/+gr6//1klvRNkVmp1SqURCQoLqD83169exdetWHDhwAOfPn5c5Xc6Cg4Mxf/589OjRA3Xq1NE4bCLi9zmLUqnEqVOncOPGDdWbvrOzs/CnWyckJODWrVvQ09NDjRo1hC0p69evx7x58wBAbTLDrEGpIu4lPH78OPz9/TFx4sQcX8+ijk9o1KgRDhw4INSpyDkZMWIESpcujdGjR2PDhg34/fff0aVLF/j6+kKhUCAjIwPu7u54+fIl1qxZI3dcDXPmzMGAAQOE3uPWoEEDnDp1Sm0i0dzIsQfogy8qb870mhvRdoVml5aWhj/++ANbt27FxYsXoVAo0KFDB/z8889yR8uRNn2ftW1CwDcplUrMmzcPgYGByMjIAADo6emhd+/e+P7774UrWB06dMBnn32GsWPHol27dti1axdevHiByZMn48svv8TAgQPljqihYcOGqt362b+fkiQJ93rO7uuvv8aYMWPQpk0buaPkyc7ODsHBwahTpw7i4uLQsmVL7Ny5U+2aMzdu3EDv3r1x8eJFGZPmrGnTptizZ4/Qh1l37dqFLl26QF9fHzt37szz74Ice4DEHXFZQrJPdJP939rgzp072Lp1q+qPuUKhQM+ePTFy5EihPyVp0/c5p3E0+/btg4uLi3CT6uVk5cqVCA4OxtSpU+Ho6AilUonQ0FAsW7YMJiYmGDp0qNwR1Tx69AhfffUVSpcuDSsrK1y5cgUdOnTAtGnT4OfnJ2RRWb9+vdwR8i379cE6dOgAT09PjBs3DjVr1tQY5CnKtcIMDAyQnJwMAKhYsSK+/vprjdNn4+PjhR3I3KZNG2zevBljx44Vdk9m9vIh4hmjH/weFW2TmZmJQ4cOISgoCCEhIShVqhQ++eQTdOnSBR4eHti9ezcsLCzkjvley35dFNG5uLhg4sSJ6Natm9ryffv2YcmSJTh06JBMyXLm6OiIoKAg1K5dG7NmzYKpqSlGjhypuoK5iJ+YtYk2XsV86tSpiImJwZw5czT+timVSpw9exazZ89Gy5YtVdPsi6R///4IDQ2FQqFApUqVNEqWCKfcL126NN/bynFNsw9+j8rbrjuTnQgvqDZt2uDVq1do0aIFZs+ejY4dO6JcuXIANK/XQPTs2TM0adJEY3mTJk3w8OFDGRLlzd7eHqtWrcKMGTNgbW2NHTt2YPjw4QgPDxd2D1ZSUhI2bNiQ4wSGgFiHBEX4G1ZQHh4eGD16NH755Rf4+/urrfvjjz8wadIktGnTRjU9g2iaN28u7GR0WXbu3Kn29cOHD1Xj2XR1dXH37l2kp6fDxsaGRUUO2a878+LFCwQGBqJdu3aws7ODrq4urly5gkOHDmHw4MEyJ33t1atXqFSpEj7++GOUL18ehoaGckcigdWqVQtnzpzRGMh3+vRpIU8PnzRpEgYPHowtW7agT58++OWXX+Do6Ijk5GQMGTJE7ng5mjFjBo4ePYpWrVqhSpUqcsfJ05s/8/PnzyMjIwMtW7YEAMybNw/t27cXajbdihUrYuvWrYiPj9dY5+TkhH379gl3zarstOGq6tmvlL1hwwYcO3YMCxcuVE0AGB8fDzc3N9SvX1+egBKpjBw5Ulq1apXG8oCAAGnAgAEyJNL06tUrKSgoSPr6668lS0tLyd7eXpo6dar0119/SQ0bNpRu3rwpd8T3nq2trXT37l25Y+TLrl27pEaNGknz58+Xjhw5Ih05ckSaN2+e1LhxY2nz5s1yx8tRcnKy9OzZM0mSJOnJkyfSunXrpN9//13mVLmzt7eX/vzzT7ljFNj+/fulhg0bSmvWrFEtGzdunNSwYUPp8OHDMiZ7/1y5ckWaMGGC9L///U/6/PPPpUmTJkmXLl2SO1aOnJycpIiICI3l//77r+To6ChDIkniGJVsbG1tsWfPHtSsWVNt+Z07d/D555/j0qVLMiXLWVRUFHbs2IF9+/bh6dOnUCgU6NWrF4YNG6bxHKjoaNMYFeD1J6Q1a9bg6dOnAIDKlStjyJAhGDRokMzJ3g8ODg4IDg4W+vTTnHTr1g29e/fWuOZTQEAAgoODsWfPHpmSvV+yX8y0WbNmqhnPb9y4IeTFTB0cHLBy5UrY29urLT979iwmTJiAkJCQEs/EopJNp06dMHjwYHzzzTdqy9euXYvg4GAcOHBApmR5y8zMxLFjx7Br1y4cO3YMSqUSLVu2FHJOAW3j4eGhsSy3s35EnJl2//79cHZ2Rrly5YS9nou2jRN7k6enJ6pUqYIJEybIHaVAmjRpgv3792sU7piYGHTt2lW4D2baqk+fPqhfv36OFzONjIwUbm4gd3d3XL16FTNmzICNjQ0kSUJ4eDhmz56N1q1byzJg+YMfo5LdkCFDMHv2bFy8eBGNGjVSNd/Dhw9rDOISSalSpdC+fXu0b98ecXFx2LNnj8bgKCqce/fuaSyzs7PD8+fPc7zuj2h8fHwQGBiIcuXKoWLFinLHyVH2cWLaqGLFili3bh1OnDiB2rVra0z4JmKBBV5fHiQ0NFSjqFy8eFH4sTbaRNsuZjp9+nR89913+Pbbb1W/l5Ik4bPPPoObm5ssmVhUsunduzc++ugjbN68GYcOHYJCoUCDBg2wfPly4SdFylKxYkUMGjSIu/WLiGifdgqqVq1auHHjhtCnrI8bN07uCO/k77//Vp1Z9fjxY5nT5F+fPn0we/Zs3L17V5X/ypUr2LhxI0aPHi1zuveHtl3M1NjYGGvXrsWtW7dU1/oxNzfH9u3b0aZNGx76EUHWdUYyMzNV8w2IfJ0RorzMmDEDO3bsgJWVFWrVqqUxh4OIn/a17Vo/2mz16tUICAhQXYS1atWqGD58uMa4FSo8bbyYKSDWjOcsKtmsX78e8+fPV019LWnBdUaI8tK/f/8814v2mtbGa/08ePAgz/WiXusnu+fPn0NPT0/YmVO1WU4XM3316hWsrKyEvJipiDOes6hko43XGSHKr/T0dJw5cwaSJMHJyUlj74oItPF3UMSLuOVXSkoK/vjjD9y6dQuDBw/GjRs3UK9ePeHePLWdUqnEyZMn1a5g/sknn0BHR0fuaADEn/GcRSUbGxsbHDhwAObm5hg8eDD69u2LDh064NSpU/Dz88P+/fvljkiUL4GBgaoB1V9//TW6dOkCV1dX1XWWTExMsHHjRuFOY9fG38E3r1KemZmJ27dvY8OGDZg2bRpcXFxkSpa3p0+fonfv3nj27BnS0tJw8OBB+Pr64urVq9i4caPqMAW9/z755BPVjOcdO3ZUm/G8YcOG2LNnj6xFhYNpszEyMlJdBdXc3ByRkZHo0KED6tati/v378ucjih/1q5di6VLl6Jbt24wNDTETz/9hJ07dyIzMxNbtmyBUqnE3LlzsXDhQuGusK2Nv4OOjo4ay5ycnFCjRg0sWbJE2KLi5+eHevXqYf/+/Woz006YMAELFizAL7/8InNC7ZXfq64rFAps3LixmNO8negznoux30kQWdcZSU5OhrW1Nf78808olUqhrzNC9KZt27bB19cXPj4+8PDwwIoVK/D3339j0qRJsLe3R7NmzeDh4YHw8HC5o2p4n34Ha9WqJfSVws+dO4fx48ervSmVK1cO7u7uuHDhgozJtF+1atXy/O/hw4c4f/68MIcFT58+jZEjR+LatWsYO3YsnJyc4ObmhmPHjgkxdQD3qGSjjdcZIXrTgwcP1C5E2LhxY+jq6qrNnFqzZk28ePFChnR508bfwZwG0yYkJGDlypWoXr26DInyJzExEUZGRjmuy8jIKOE075fczuRJSEiAn58fYmJi0KpVK/j6+pZwspwZGxvj66+/xtdff6024/nevXuhUCiwYcMGWWc85xiVN6SkpCApKQkVK1bE06dPsX//fpiamqJz585yRyPKFysrK5w+fVptBto3p/1/+vQpnJ2dhflEl92bv4P79u2DmZmZsL+DOQ2mlSQJRkZGWLBgAdq3by9TsrwNHz4ctWvXhoeHh+r1YWpqiilTpiAxMZEzWxexM2fOwMvLC69evYKbmxu++uoruSPlSaQZz1lUiN4z2l5UsktKSoJSqRT6tNk3B9MCgJ6eHurXry/04aqoqCj069cPZmZmuHnzJpo3b45bt27h1atX2Lx5M6ysrOSO+F5ISkqCn58ftm3bhlatWmHOnDkwMzOTO1aBZJ/xfN++fSX++CwqRO8ZKysrDBkyRG3swcqVK/HNN9+oRvInJSVh/fr1whSV69evY+/evQBeT6lfr149+Pj4YOvWrQCA9u3bw8/PT+g3/pz8888/aNiwodwxcvX48WP8+uuvuHbtGpRKJerVq4e+ffsKfchKm5w9exaenp54+fIl3N3d8fXXX8sdSSuxqBC9Zwpylsmff/5ZjEny5/jx4xgzZgyqV68OQ0ND3Lp1C1999RX27t2LwYMHQ6lUYuPGjfj888/h6ekpd1yVy5cv4/fff4euri66du0KS0tL1brU1FT8+OOP2LRpE65evSpjyty9ePEC5cuXz3FdcHAwevXqVbKB3iNJSUmYP38+goKC4OTkBF9fX63biyISFhUiktVXX32FNm3aYOzYsQCAPXv2YNq0aZgzZ47qzfLgwYOYP3++MFdPPnDgAKZMmQJ9fX3o6uoiJSUF69evh4ODAy5evAg3NzfExMSgZ8+e+OGHH+SOm6Pu3btj06ZNqtlSASA2Nhaenp44ffq0MHvbtFH79u3x4MED1KhRA59//nme22a97il3LCpEJCs7Ozvs3LkTtWvXBvB6EF+jRo2we/du1K9fH8DrN9D27dsLs3eiR48eqFGjBvz9/aGjowM/Pz9ERERg8ODB+O6772BqaorZs2fDyclJ7qi56tOnD9LS0rBx40YYGxtj+/btmDdvHipWrAhvb2+hs4suv3s1FQqFMOVbZCwqRCQrKysrnDp1CpUrV1YtE33wr52dHQIDA9GgQQMAQHx8PFq2bIkyZcqgXbt28PLyyvXUX1EkJSVhxIgRSE5ORtmyZXH+/HkMGjQIY8eOFfLyCvTh4jwqRCQ7ESaVKojk5GRUqVJF9XXZsmWhq6uLLl26wMvLS8Zk+WdkZITVq1dj5MiROHfuHAICAtCsWTO5Y70XtG1mWtGxqBCR7C5evKg6Iwl4PQ/J5cuX8ejRIwCvr0ArmjfLlUKhQO/evWVKkz9Lly7VWNaoUSNcuHAB8+bNQ5s2bVTLOXai8KpVq5bn+rCwMMTExKBs2bIllEi78dAPEckqa8K0t/0pUigUwhz6yc9cNSLi2Al5Zc1Mu2PHDtXMtKampnLHEh73qBCRrLT1DfFte4GyODg4lHS0XOV2OnpcXBzCwsJQqVIlNG3atIRTfRiyz0w7e/Zs4WemFQn3qBARFZA27gXKsnz5cmzcuBHbtm1DzZo1cfHiRQwbNgyJiYkAgBYtWmDFihUwMDCQOen74X2YmVZu3KNCRFRA2roXKCgoCCtWrMDAgQNVh608PDxgYGCArVu3okyZMhg3bhxWrVqF8ePHy5xW+2WfmdbHx4cz0xYS96gQEX0gvvzyS/To0QP9+vUDAFy5cgVfffUVJk6ciBEjRgAA/vrrL/j5+eHgwYNyRtVqnJm2aHGPChHRByIqKgqtWrVSfX3u3DkoFAq1s30sLCzw4MEDOeK9N7p166aamdbe3h7BwcG5bsuzq96ORYWIhHHhwgXY29vLHeO9lv206rCwMJQrV07tSsmJiYlqF7SkgpMkCWZmZsjIyMDOnTtz3U6hULCo5AOLChEJo3///ihfvjzatm2L9u3bo1WrVpwltQjVr18fFy5cQM2aNREfH4+QkBC0b99ebZvff/9ddekCKhwRLvb5PmFRISJhnD17FidPnsTx48fh6emJlJQUtGzZEu3bt0fbtm1RsWJFuSNqtX79+mHmzJmIiIjAxYsXkZaWhm+//RbA6+sp7du3D2vXroWvr6/MSYn+w8G0RCQkSZJw6dIlBAUFYe/evVAoFMJclPBN9+/fx6VLl5CWlqaxrnv37iUfKA87duzAr7/+Ch0dHQwdOhSffvopAMDHxwfbtm3DsGHD8N1338mckug/LCpEJJS4uDicP38e586dQ0hICG7fvo3q1aujZcuW8PHxkTuehm3btsHb2xuZmZka60ScRyU3sbGx0NfXR4UKFeSOQqSGRYWIhNGtWzdERkbCxMQETZs2RYsWLeDk5ITq1avLHS1XLi4uaNeuHSZOnAhjY2O54xC9d3TkDkBElKVUqVJQKBSoXLkyqlWrhurVq6Nq1apyx8rTkydPMGjQIJYUomLCwbREJIzdu3cjLi4OZ8+exenTp/H9998jLi4Otra2cHJywsiRI+WOqKFBgwaIjIwUeq8PkTbjoR8iEtatW7fw66+/IigoCOnp6UKO9zh06BD8/PwwaNAg1KlTB/r6+mrrRbooIZE2YlEhImG8ePFCtTflzJkzePToEWxsbNCuXTu0a9dObWIyUeSVSZsG0xKJikWFiITRoEEDGBgYoEWLFnBxcUHbtm1RpUoVuWPl6f79+3mur1atWgklIXo/sagQkTD++usvtGzZUutmo42JiUFcXBwqVqyI6tWrq01TT0TvhkWFiIRy/fp1bNy4Ebdv38ZPP/2EI0eOwMLCAs2bN5c7mhpJkrBmzRps3rwZjx8/Vi2vUqUKXF1dMWzYMBYWoiLAs36ISBhXr15Fnz59YGtri6tXryItLQ0RERGYO3culi1bpnaVX7mNHTsWJ06cwBdffAEnJydUqFABL1++REhICFasWIFLly5h2bJlcsck0nrco0JEwvj2229ha2uLiRMnws7ODnv37kWNGjUwd+5chIeHY8eOHXJHBAAEBwfDz88PAQEBaNCggcb6mzdvon///nBzc0PPnj1lSEj0/uCEb0QkjH/++SfHa+P069cPUVFRJR8oF9u3b8fYsWNzLCkAUK9ePYwbN06YYkWkzVhUiEgYenp6SEhI0Fj+8OFDGBoaypAoZ1FRUXB2ds5zG2dnZ9y8ebOEEhG9v1hUiEgYHTp0wI8//oj4+HjVsqioKPj6+qJt27byBXtDRkYGdHXfPsSPg2mJ3h2LChEJw93dHYmJiWjRogWSk5PRs2dPdO3aFaVKlYKbm5vc8VQsLCxw6tSpPLc5deoU6tWrV0KJiN5fPOuHiIRhbGyMrVu34uzZs7h27RqUSiXq168PZ2dn6OiI87mqR48eWLp0KVq1aoWaNWtqrI+KisLSpUvh7u4uQzqi9wvP+iEiKiClUomRI0fiwoUL6NmzJ+zt7VG+fHkkJCQgNDQU27dvR5s2bbB48WK5oxJpPRYVIpLVgAED8rWdQqHAxo0bizlN/mVkZOCXX37B5s2b8eLFC9XyKlWqYODAgRg8eDDHqBAVARYVIpKVh4dHnuvDwsIQExODsmXL4vz58yWUKv8kScLt27fx8uVLVKhQAebm5kIdpiLSdiwqRCSkhIQE+Pn5YceOHWjVqhV8fX1hamoqdywiKmEsKkQknDNnzsDLywuvXr2Cm5sbvvrqK7kjEZFMeNYPEQkjKSkJfn5+2LZtG1q1aoU5c+bAzMxM7lhEJCPuUSEiIZw9exaenp54+fIl3N3d8fXXX8sdiYgEwD0qRCSrpKQkzJ8/H0FBQXBycoKvry/3ohCRCveoEJGs2rdvjwcPHqBGjRr4/PPP89x27NixJZSKiETBokJEsnJxccnXdgqFAkePHi3mNEQkGhYVIiIiEhZnJSIiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUieq/xfAEi7caiQkSyO3fuHD799FPY2Nhg6NChRXa/27dvx7x584rs/oio5HFmWiKS3fz586FUKrFq1SpUqlSpyO53xYoVcHR0LLL7I6KSx6JCRLJ78eIFHBwc0LJlS7mjEJFgeOiH6D3n4uKCpUuX4ocffkDz5s1hZ2eHyZMnIzExEatWrULr1q3RtGlTjBs3Ds+fPwcApKSkYOHChejUqRNsbGxgb2+PQYMGISIiQnW/06ZNw8CBAxEcHKw6bPPFF1/gxIkTqm2WLFkCS0tLjUyWlpZYsmQJ7t27B0tLS9y/fx+7d++GpaUlQkJCAABHjhxB3759YWdnBxsbG3Tu3BlbtmxRu5/Hjx/D3d0dTk5OsLOzg6urKy5evKh63vfv38euXbtgaWmJe/fuvTUPAFWm9evXo3PnzmjSpAmCg4MBADdu3MCIESNgb28Pe3t7jBkzBjExMar7CQkJgaWlJbZu3Yp27drB3t4ep0+fLtTPjYhe4x4Vog/AunXr0KpVKyxevBhXr17FwoUL8c8//6Bq1aqYPXs27t27B19fX1SuXBkzZ86Em5sbwsLCMGnSJJibm+POnTv46aefMHnyZPz2229QKBQAgKtXr+Lx48cYP348jI2N8dNPP2HcuHE4ceIEypUr99ZcVatWRVBQEMaOHQtra2uMHj0aFhYWOHbsGMaMGYMBAwZg3LhxSElJQWBgIHx8fGBjY4MmTZogMTERffr0QWZmJqZOnQoTExOsW7cOgwcPxq5du7B06VIMHz5cdb9Vq1Yt0PdsyZIl8PT0hLGxMZo0aYLbt2/jm2++QZ06dTBv3jxkZGRgxYoV6NOnD/bs2aN2yGrp0qXw8vJCSkoK7OzsCvbDIiI1LCpEHwBjY2MsXrwYurq6aNmyJXbt2oXY2Fhs374dZcqUAQCcPHkSFy5cQFpaGhITE+Hl5YX//e9/AABHR0ckJCTAz88PT58+RZUqVQAAr169ws6dO2Fubg4AMDIygqurq2pw7Nvo6+vD1tYW+vr6qFixImxtbQEAkZGR6NGjBzw9PVXb2tnZoXnz5ggJCUGTJk2wa9cu1R6TBg0aAADs7e3RvXt3hIaG4quvvtK434L47LPP0KtXL9XXkydPhqGhITZs2ABjY2MAgJOTEzp06IA1a9bA3d1dtW3fvn3RuXPnAj8mEWliUSH6ADRu3Bi6uv/9uleuXBlGRkaqkgIA5cuXx40bN6Cvr4+1a9cCAGJjY3H79m1ER0fjr7/+AgCkpaWpblOxYkVVSQEAU1NTAEBycvI75c068ycxMRG3b9/G3bt3ceXKFbXHDw8PR/Xq1VUlBQAMDQ1x8ODBd3rsLNnvF3h9ZpKjoyMMDAyQkZEB4HUBbNasGc6cOZPnbYmo8FhUiD4AWXsAsjMyMsp1+5MnT+KHH37ArVu38NFHH8HKykq1ffZ5SQwNDdVul3VISKlUvlPeuLg4zJw5E0eOHIFCoUDNmjXRrFkztcd/8eJFkZ4h9KY3vz8vXrzAgQMHcODAAY1tK1asmOdtiajwWFSISM3du3cxZswYdOjQAStXrkSNGjWgUCiwZcsWnDx5skD3lVVcMjMzUapUKQCv95K8zZQpU3Dr1i1s2LABdnZ20NfXR3JyMrZt26bapkyZMrh3757GbS9cuIBy5cqhbt26RZYn6/FatmyJQYMGaazLvreKiIoWz/ohIjVXr15Famoqhg8fDnNzc9Wbe1ZJKchMr1l7ch49eqRaFh4e/tbbhYeHo1OnTmjevDn09fUBQHU2UdbemmbNmiEmJgY3b95U3S41NRXjxo3Djh07AAA6Oup/4gqbB3g9TicyMhINGjRAo0aN0KhRI9jY2GDDhg04fPhwvu6DiAqORYWI1DRs2BC6urpYsGABTp8+jb/++gvjxo3DsWPHAABJSUn5vq82bdoAAGbMmIEzZ84gODgYs2bNwkcffZTn7Ro3box9+/Zhz549CAkJwYoVKzBt2jQoFArV+JeePXuiRo0aGDVqFPbu3YuTJ09i7NixSE9PR9++fQEAZcuWxbVr13D+/HmkpKQUOg8AjB49Gnfv3sWIESNw5MgRnDx5EuPGjcNvv/0GKyurfH9PiKhgWFSISE3NmjWxcOFCxMbGYtSoUZgxYwYAYNOmTVAoFAgLC8v3fdWuXRvz5s3DvXv3MHz4cAQEBGD27NlvPVXYz88PTZo0wezZszFmzBgcPXoU3t7e+OSTT1SPb2xsjM2bN6u2mzBhApRKJQICAlCjRg0AwODBg/H06VMMGTIEV69eLXQeALCyssKWLVugUCjg5uaG8ePH48mTJ1i2bBk6deqU7+8JERWMQuIVu4iIiEhQ3KNCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsP4PeXkyN+pWrHAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Análisis de la columna 'category':\n", + "category\n", + "Mujer • Running 236\n", + "Hombre • Running 210\n", + "Running 61\n", + "Calzado de running en carretera para hombre 24\n", + "Calzado de running en carretera para mujer 15\n", + "Calzado de correr en carretera para hombre 12\n", + "Calzado de correr en pavimento para mujer 11\n", + "Calzado de correr en carretera para mujer 11\n", + "Calzado para hombre 5\n", + "Mujer • adidas by Stella McCartney 5\n", + "Calzado de running en carretera para niños grandes 4\n", + "Mujer • TERREX 4\n", + "Calzado de trail running para hombre 3\n", + "Calzado para niños de preescolar 2\n", + "Calzado de correr en pavimento para hombre 2\n", + "Calzado de carrera en carretera para mujer 2\n", + "Calzado de trail running impermeables para mujer 2\n", + "Calzado de running en carretera acondicionado para los estados del tiempo para hombre 1\n", + "Calzado de carrera en carretera 1\n", + "Calzado de running en carretera impermeable para mujer 1\n", + "TERREX 1\n", + "Calzado de trail running para mujer 1\n", + "Calzado de running en carretera impermeable para hombre 1\n", + "Calzado de trail running impermeables para hombre 1\n", + "Calzado de running en carretera resistente a las inclemencias del tiempo para mujer 1\n", + "Calzado de carrera en carretera para hombre 1\n", + "Hombre • TERREX 1\n", + "Calzado de caminata para mujer 1\n", + "adidas by Stella McCartney 1\n", + "Name: count, dtype: int64\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAQYCAYAAAAgUvIvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1QU19sH8C8IKPaWqElUrCAqTRGxoGBJ7KKJFaxYYsdYsMSKFey9InaNitGoQU0s0dgrdlEpFrBgAUTqff/gsC8rC8zuDjjh9/2cw0mc3Xn2ucsw++ydO/caCCEEiIiIiBTI8EsnQERERJQZFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSKF45yM/z38nRHJh4UKkR7c3d1hbm6u+rGwsICtrS06deqEzZs3IykpSe35Li4u8PLykhz/r7/+wvjx47N9npeXF1xcXHR+HV09ffoU5ubm2LdvX4bHEhIS0LRpU7i6uiIuLi7HcnB3d4e7u3uOxddGREQEBg4ciGfPnn3pVIjyDKMvnQDRf52lpSWmTp0KAEhOTsb79+9x+vRpzJkzB5cvX8bixYthaJj6nWD58uUoXLiw5NibNm2S9LwhQ4agV69eWueur6+//hq7du1ChQoVMjz222+/ISkpCatWrYKpqWmu5/Yl/Pvvvzh16tSXToMoT2GhQqSnwoULw8bGRm2bi4sLKleujFmzZuGPP/5A+/btAaQWNTlBU6GQG0xMTDK0PU2zZs3QqlUrlCxZMneTIqI8hZd+iHKIm5sbypQpg507d6q2fX5JJq2IsbKyQv369TFmzBhERkYCSL2kcfHiRVy8eBHm5ua4cOECLly4AHNzc+zcuRPOzs6ws7PD2bNnM1z6AYDExER4e3vD3t4edevWxfjx4xEVFaV6XNMlk7T4Fy5cUG17/Pgxhg0bhnr16sHe3h6DBg3Co0ePAGi+9BMSEoIRI0agc+fOcHFxgbu7O65cuaJ6PG2fI0eOYMSIEbC1tUW9evUwefJkfPz4Mcv39Pnz5xg2bBjq1KmDhg0bws/PT+PzfvvtN7Rp0wa1atVC06ZNsWzZMiQnJ2cZOyEhAYsXL0azZs1gZWWFtm3bIiAgQPV4cnIy1q5di7Zt28LKygo2Njbo1q0bzp8/DwDYt28fJkyYACC1SEv/e5aST0BAAFq3bo3atWujffv2OHfuHCwtLTW+tw0bNoSNjU2m762fnx9++OEHWFtbY9u2bTA3N8euXbvUXu/FixeoUaMGDhw4kOX7QvSlsVAhyiGGhoZwdHTEzZs3M4xVAYArV65g3LhxaNmyJdatW4cJEybg/Pnz+OWXXwAAU6dOhaWlJSwtLbFr1y7UrFlTte/y5csxfvx4TJkyBba2thpf/8iRI7h9+zbmzp2L8ePH4+TJkxgwYEC2H9jpRUZGomvXrggJCcG0adPg4+OD169fo3fv3nj37l2G5wcHB6NTp054+vQpJk+eDF9fXxgYGKB37964ePGi2nOnTp2Kb7/9FitXrkT//v2xZ88erFq1KtNcPn78CDc3Nzx48AAzZ87Er7/+it9++w3Xrl1Te96aNWvw66+/wtHREatXr0bPnj2xbt06/Prrr1m2dcyYMfDz88NPP/2ENWvWoFGjRvDy8sIff/wBAPD19cXKlSvRtWtXrF+/HjNnzsS7d+8wcuRIxMXFoWnTpvj5558BpP5+hgwZIjmf/fv3w8vLC3Z2dli5ciW+//57DBkyRO13pc17u2zZMgwYMADz589Hs2bNYG1tjd9//13tOfv370fBggXRsmXLLN8Xoi+Nl36IclDp0qWRmJiId+/eoXTp0mqPXblyBQUKFMDAgQNhYmICAChevDiCgoIghEDVqlVV41k+v7zSo0cP/PDDD1m+dokSJbBhwwYULFhQ9e+hQ4fi9OnTcHZ2lpT/pk2bkJCQAD8/P3z11VcAAAsLC3Tv3h03btxAlSpV1J6/fPlymJiYYPPmzarcmzZtirZt22L+/PnYs2eP6rlNmjRRDRR2dHTE2bNncfLkSVWh9rmAgAA8f/4cf/zxB6pWrQoAsLa2RosWLVTPiY6OVhUTkydPBgA0atQIxYsXx+TJk9G3b19Uq1YtQ+wHDx4gMDAQEydORO/evVU5PXv2DBcuXEDbtm3x8uVLeHp6qvVC5c+fH8OHD8f9+/dhY2OjugRXo0YNfPfdd5LzWbJkCZydneHt7Q0AaNy4MYyNjbFgwQKd3ttWrVqhc+fOqn937twZU6dORXh4OMqXLw8gtVBp06YNChQooPH9JlIK9qgQ5aC021QNDAwyPGZvb4+4uDi0bdsWCxYswOXLl9GoUSMMGzZM4/PTq1GjRrav3aRJE1WRAqRedjIyMsKlS5ck53/lyhXY2NioihQAKFu2LE6cOIEmTZpkeP7Fixfh7OysNmDYyMgIbdq0wa1btxAbG6va/nnxVbZs2Swv/Vy+fBkVKlRQFSkAUK5cObU4165dw6dPn+Di4oKkpCTVT9plsbNnz2baTgAZeheWLVuGmTNnAgAWLFiA3r17IyoqCpcvX8bevXtVl00SEhI0xpWST2hoKJ4/f56h8GzTpo3av7V5bz8/PtIKkrRelatXryIkJASurq4a8yZSEvaoEOWgyMhIFChQAMWLF8/wmK2tLdauXYtNmzbBz88Pa9euRenSpTF48OBsb7dNX4BkJn1xAaReiipRogQ+fPggOf93797hu+++k/z89+/fZ+g5AlJ7loQQiImJUW37/E4gQ0PDLOcfef/+PUqUKJFh+1dffYXXr1+r8gWAgQMHaozx8uVLjdvT9itVqlSmrx8UFITp06cjKCgIpqamqFq1Kr755hsAmc+bIiWftHFDn7/25++jNu/t58dH4cKF8cMPP+DAgQMYNmwY9u/fj0qVKmV62ZBISVioEOWQpKQkXLhwAXZ2dsiXL5/G5zRu3BiNGzdGXFwczp8/j82bN8Pb2xvW1tawsrLS6/U/H0OSnJyMt2/fqn0gfj5e5fMejSJFiqgNwE1z7tw5fPfddxl6fooVK6YqGtJ79eoVgNTLT5kVC9kpUaIEQkNDM2xP386iRYsCSB1PYmZmluG5mj7o0+8XFRWFsmXLqrY/evQI7969g7m5OTw8PGBubo5Dhw6hcuXKMDQ0xKlTpxAYGJhpztrk8+bNG7XHPv+3vu9t586dERAQgJs3byIwMBD9+/fP9LlESsJLP0Q5ZNeuXXj16hW6d++u8fF58+ahc+fOEELA1NQUzs7OqjEbz58/BwDV/Cu6OHv2rNog3sDAQCQlJcHBwQFA6rfsiIgItX3S30ECAHXr1sWNGzfUipU3b97Aw8ND43wh9vb2OHHihNq3++TkZBw6dAi1a9dWjcXRRf369fH06VMEBQWptkVFReH69euqf1tbW8PY2BiRkZGoXbu26sfIyAgLFy7E06dPNcauU6cOAODvv/9W2+7r64tZs2bh8ePHePfuHXr16oWqVauqfi+nT58GAKSkpADI+PuSkk/ZsmVRoUIFHDt2TG3fo0ePqv1b3/fW3t4eZmZm8PHxQXR0NDp06JDl84mUgj0qRHqKiYlRfVimpKTg7du3OHPmDHbt2oX27dtneldF/fr14efnBy8vL7Rv3x6JiYlYv349ihcvjvr16wNI/UZ+7do11a2q2nj16hWGDx8Od3d3hISEYOHChWjYsCEcHR0BAM7Ozvj7778xZ84cuLi44PLly9i/f79ajD59+mD//v3w8PDAoEGDYGxsjFWrVqFs2bJo164doqOj1Z4/bNgwnD59Gr169cLAgQNhbGyMrVu3Ijw8HOvXr9cq/8916NABmzdvxrBhw+Dp6YnChQtj1apVqiIBSO1V8PDwwJIlSxATEwMHBwdERkZiyZIlMDAwgIWFhcbYFhYW+OGHH+Dj44NPnz6hRo0aOH36NE6cOIHly5ejUqVKKFy4MFavXg0jIyMYGRkhMDBQNYA1bebdtB6UY8eOwcnJCVWqVMk2HwMDA4wYMQJjxozB1KlT0aJFC9y7dw8rVqwA8P/FjxzvbefOnbFgwQI4OTmhTJkyuv0iiHIZCxUiPd25cwddu3YFkDpotlChQqhevTqmTZuGn376KdP9mjRpAl9fX2zcuFE1gLZOnTrYvHmzakxLz549cevWLQwYMABz5szB119/LTmvHj16IDo6GkOHDoWJiQnatWuHsWPHqi7XdO7cGWFhYQgICMDOnTthb2+PpUuXqvUAlStXDtu3b4ePjw+8vLxgYmICBwcHLFq0CMWKFctQqFSrVg3bt2/HwoULMWHCBBgYGMDKygqbN29G3bp1JeeuiYmJCfz9/TF79mzMmjULBgYG6NKlC8qXL692mWTUqFH46quvsH37dqxfvx7FihWDo6MjRo8ejSJFimQa38fHB8uXL4e/vz/evn2LKlWqYOnSpWjevDkAYOXKlZg/fz5GjhyJQoUKoUaNGti6dSsGDBiAy5cvw8XFBQ4ODmjQoAEWLFiAc+fOYe3atZLyadeuHT5+/IgNGzZg7969qFatGiZNmoRJkyapxpvI8d42adIECxYsQKdOnXT9NRDlOgPB1bOIiL6oP/74A5aWlqhcubJq28mTJzFo0CD8/vvvmfYEaStt8PbJkyf1ugxHlJvYo0JE9IUdOHAAixYtwqhRo1CuXDmEhoZi6dKlqFevnixFSkBAAB48eIDt27djyJAhLFLoP4U9KkREX9jbt2+xYMECnD59GlFRUShdujS+//57jBgxAoUKFdI7/pw5c7Bz5060aNECc+bMgbGxsQxZE+UOFipERESkWLw9mYiIiBSLhQoREREpFgsVIiIiUqz//F0/165dgxCCg8OIiIj+QxITE2FgYJDtmlP/+R4VIUSWC5kJIZCQkJDlc6S8hhJiKCkXxmCM/0oujJF3YygpF8bQPkZ2n99p/vM9Kmk9KbVr19b4+MePH3H37l1UrVpV0oqzSo6hpFwYgzH+K7kwRt6NoaRcGEP7GOnX7crKf75HhYiIiPIuFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUK88XKgYGBjA1NYWBgcGXToWIiIi0ZPSlE8gJKSkChoaphYmpqSksLS2zfA4REREpU54sVAwNDeC77QqeRkZrfPy7MkUwpmedXM6KiIiItJUnCxUAeBoZjUfP3n/pNIiIiEgPeX6MChEREf13sVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQkUCAwMDmJqawsDA4EunQkRE9D/F6EsnoFQpKQKGhqmFiampKSwtLbN8DhEREcmPhUomDA0N4LvtCp5GRmt8/LsyRTCmZ51czoqIiOh/CwuVLDyNjMajZ++/dBpERET/szhGhYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWJpXai8e/cOU6ZMgZOTE+zs7NC9e3dcvnxZ9fi5c+fQqVMnWFtb44cffsChQ4fU9o+Pj8f06dPh6OgIW1tb/PLLL4iKitK/JURERJTnaF2ojB49GteuXcPChQuxd+9e1KhRA/3798fjx4/x6NEjDBo0CI0bN8a+ffvw008/Ydy4cTh37pxq/2nTpuHMmTNYtmwZ/P398fjxY4wYMULWRhEREVHeoNWEb6GhoTh79iy2b9+OOnVSZ2X99ddf8c8//+DgwYN48+YNzM3N4enpCQCoUqUK7ty5g/Xr18PR0RGRkZHYv38/Vq9ejbp16wIAFi5ciB9++AHXrl2Dra2tzM0jIiKi/zKtelRKlCiBtWvXonbt2qptBgYGMDAwwIcPH3D58mU4Ojqq7VO/fn1cuXIFQghcuXJFtS1NpUqVUKZMGVy6dEmfdhAREVEepFWhUrRoUTRp0gQmJiaqbYGBgQgNDUXjxo0RERGBsmXLqu3z9ddfIy4uDm/fvkVkZCRKlCiB/PnzZ3hORESEHs0gIiKivEivtX6uXr2KCRMmoGXLlmjatCk+ffqkVsQAUP07ISEBcXFxGR4HgPz58yM+Pl7nPIQQ+PjxI4DUHh5TU1NJ+8XFxUEIkWG7HDE0PS/9f3UlRxzGYIycjqGkXBgj78ZQUi6MoX0MIQQMDAyyjaVzoXL8+HGMGTMGdnZ28PX1BZBacCQkJKg9L+3fpqamKFCgQIbHgdQ7gaQWBpokJibi7t27qtextLSUtN+TJ080volyxMhMSEiI5OfmdBzGYIycjiFXHMZgjNyIwxi5H0NT58XndCpUtm7dilmzZuGHH37AvHnzVC9Urlw5vHz5Uu25L1++RMGCBVGkSBGULVsW7969Q0JCglpyL1++RJkyZXRJBQBgbGyMqlWrAoCk6ixNpUqVMu1R0TfG5+Li4hASEgIzMzO9ijI54jAGY+R0DCXlwhh5N4aScmEM7WMEBwdLiqV1obJ9+3bMnDkT7u7umDRpktqHet26dXHx4kW1558/fx52dnYwNDREnTp1kJKSgitXrqgG3T558gSRkZGwt7fXNhUVAwMDFCxYUOv99Pnj0DWGqampTrnmRBzGYIycjqGkXBgj78ZQUi6MIT2G1E4BrQbTPnnyBLNnz0aLFi0waNAgvH79Gq9evcKrV68QHR0Nd3d33Lx5E76+vnj06BE2btyIP//8Ex4eHgCAMmXKoE2bNpg8eTIuXLiAmzdvYvTo0ahXrx5sbGy0SYWIiIj+B2jVoxIYGIjExEQcO3YMx44dU3vM1dUVc+fOxcqVK+Hj4wN/f39899138PHxUbtleebMmZg9ezaGDRsGAHBycsLkyZNlaAoRERHlNVoVKoMHD8bgwYOzfI6TkxOcnJwyfbxgwYLw9vaGt7e3Ni9NRERE/4O4KCEREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREiqVXobJmzRq4u7urbZs8eTLMzc3VflxcXFSPp6SkYOnSpWjcuDFsbGwwYMAAhIeH65MGERER5VE6Fyrbtm3D4sWLM2y/f/8+Bg8ejDNnzqh+9uzZo3p85cqV2L59O2bOnImdO3ciJSUFHh4eSEhI0DUVIiIiyqO0LlQiIyMxePBg+Pr6wszMTO0xIQSCg4NRq1YtfPXVV6qfkiVLAgASEhKwceNGjBgxAk2bNoWFhQUWLVqEiIgIHD16VJYGERERUd6hdaFy+/ZtGBsb48CBA7C2tlZ7LCwsDB8/fkTlypU17nvv3j3ExsbC0dFRta1o0aKwtLTEpUuXtE2FiIiI8jgjbXdwcXFRG3OS3oMHDwAAW7ZswenTp2FoaAgnJyd4enqiSJEiiIiIAACUK1dObb+vv/5a9ZguhBD4+PEjAMDAwACmpqaS9ouLi4MQIsN2OWJoel76/+pKjjiMwRg5HUNJuTBG3o2hpFwYQ/sYQggYGBhkG0vrQiUrDx48gKGhIb7++musXr0aYWFhmD9/Ph4+fAh/f39VwiYmJmr75c+fH+/fv9f5dRMTE3H37l0AgKmpKSwtLSXt9+TJE41vohwxMhMSEiL5uTkdhzEYI6djyBWHMRgjN+IwRu7H+Lwe0ETWQuXnn39Gjx49UKJECQBA9erV8dVXX6FLly4ICgpCgQIFAKSOVUn7fwCIj4+X3IOhibGxMapWrQoAkqqzNJUqVcq0R0XfGJ+Li4tDSEgIzMzM9GqrHHEYgzFyOoaScmGMvBtDSbkwhvYxgoODJcWStVAxNDRUFSlpqlWrBgCIiIhQXfJ5+fIlKlSooHrOy5cvYW5urvPrGhgYoGDBglrvp88fh64xTE1Ndco1J+IwBmPkdAwl5cIYeTeGknJhDOkxpHYKyDrh27hx49CnTx+1bUFBQQCAqlWrwsLCAoULF8aFCxdUj3/48AF37tyBvb29nKkQERFRHiBrofL999/j3LlzWL58OcLCwnDq1ClMnDgRbdu2RZUqVWBiYgI3Nzf4+vrir7/+wr179+Dp6YmyZcuiZcuWcqZCREREeYCsl36aNWuGxYsXY+3atVi3bh2KFCmCdu3aYdSoUarnjBgxAklJSZg8eTI+ffoEe3t7bNiwAcbGxnKmQkRERHmAXoXK3LlzM2xr1aoVWrVqlek++fLlw9ixYzF27Fh9XpqIiIj+B3BRQiIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIqlV6GyZs0auLu7q227e/cu3NzcYGNjAxcXF2zevFnt8ZSUFCxduhSNGzeGjY0NBgwYgPDwcH3SICIiojxK50Jl27ZtWLx4sdq2t2/fom/fvqhQoQL27t2LoUOHwtfXF3v37lU9Z+XKldi+fTtmzpyJnTt3IiUlBR4eHkhISNC5EURERJQ3GWm7Q2RkJKZOnYoLFy7AzMxM7bHdu3fD2NgYM2bMgJGREapUqYLQ0FCsXbsWnTt3RkJCAjZu3IgxY8agadOmAIBFixahcePGOHr0KNq2bStHm4iIiCiP0LpH5fbt2zA2NsaBAwdgbW2t9tjly5dRr149GBn9f/1Tv359hISE4PXr17h37x5iY2Ph6Oioerxo0aKwtLTEpUuX9GgGERER5UVa96i4uLjAxcVF42MRERGoXr262ravv/4aAPDixQtEREQAAMqVK5fhOWmPEREREaXRulDJyqdPn2BiYqK2LX/+/ACA+Ph4xMXFAYDG57x//17n1xVC4OPHjwAAAwMDmJqaStovLi4OQogM2+WIoel56f+rKzniMAZj5HQMJeXCGHk3hpJyYQztYwghYGBgkG0sWQuVAgUKZBgUGx8fDwAoWLAgChQoAABISEhQ/X/ac6QWBpokJibi7t27AABTU1NYWlpK2u/Jkyca30Q5YmQmJCRE8nNzOg5jMEZOx5ArDmMwRm7EYYzcj/F5x4UmshYqZcuWxcuXL9W2pf27TJkySEpKUm2rUKGC2nPMzc11fl1jY2NUrVoVACRVZ2kqVaqUaY+KvjE+FxcXh5CQEJiZmelVlMkRhzEYI6djKCkXxsi7MZSUC2NoHyM4OFhSLFkLFXt7e+zcuRPJycnIly8fAOD8+fOoVKkSSpUqhSJFiqBw4cK4cOGCqlD58OED7ty5Azc3N51f18DAAAULFtR6P33+OHSNYWpqqlOuORGHMRgjp2MoKRfGyLsxlJQLY0iPIbVTQNaZaTt37oyYmBhMmjQJwcHB2LdvHzZt2oRBgwYBSO3icXNzg6+vL/766y/cu3cPnp6eKFu2LFq2bClnKkRERJQHyNqjUqpUKaxfvx6zZs2Cq6srvvrqK4wbNw6urq6q54wYMQJJSUmYPHkyPn36BHt7e2zYsAHGxsZypkJERER5gF6Fyty5czNss7Kywq5duzLdJ1++fBg7dizGjh2rz0sTERHR/wAuSkhERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWC5VcYmBgAFNTUxgYGHzpVIiIiP4zjL50AnlZSoqAoWFqYWJqagpLS8ssn0NERETqWKjkIENDA/huu4KnkdEaH/+uTBGM6Vknl7MiIiL672ChksOeRkbj0bP3XzoNIiKi/ySOUSEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWLJXqhERkbC3Nw8w8++ffsAAHfv3oWbmxtsbGzg4uKCzZs3y50CERER5RGyz0x779495M+fH8ePH1dbgK9IkSJ4+/Yt+vbtCxcXF0yfPh3Xr1/H9OnTUahQIXTu3FnuVIiIiOg/TvZC5cGDBzAzM8PXX3+d4TF/f38YGxtjxowZMDIyQpUqVRAaGoq1a9eyUCEiIqIMZL/0c//+fVSpUkXjY5cvX0a9evVgZPT/9VH9+vUREhKC169fy50KERER/cflSI9KiRIl0LNnTzx58gQVK1bEzz//DCcnJ0RERKB69epqz0/reXnx4gVKly6t02sKIfDx40cAgIGBAUxNTSXtFxcXByFEhu1KiZHZc9P/VxeMwRg5HUNJuTBG3o2hpFwYQ/sYQgi1ISKZkbVQSUpKwuPHj1G1alV4eXmhcOHCOHToEAYOHAg/Pz98+vQJJiYmavvkz58fABAfH6/z6yYmJuLu3bsAAFNTU1haWkra78mTJxrfRKXEyEpISIhWz2cMxvgSMeSKwxiMkRtxGCP3Y3xeE2gia6FiZGSECxcuIF++fChQoAAAoFatWnj48CE2bNiAAgUKICEhQW2ftAKlYMGCOr+usbExqlatCgCSqrM0lSpVyrQ3RAkxNImLi0NISAjMzMwk99gwBmPkdgwl5cIYeTeGknJhDO1jBAcHS4ol+6WfQoUKZdhWrVo1nDlzBmXLlsXLly/VHkv7d5kyZXR+TQMDA50KHX3+OL50DFNTU72KO8ZgjNyIoaRcGCPvxlBSLowhPYbUL/SyDqZ9+PAh7OzscOHCBbXtt27dQtWqVWFvb48rV64gOTlZ9dj58+dRqVIllCpVSs5UiIiIKA+QtVCpUqUKKleujBkzZuDy5ct49OgR5syZg+vXr+Pnn39G586dERMTg0mTJiE4OBj79u3Dpk2bMGjQIDnTICIiojxC1ks/hoaGWL16NRYsWIBRo0bhw4cPsLS0hJ+fn+pun/Xr12PWrFlwdXXFV199hXHjxsHV1VXONIiIiCiPkH2MSunSpTFnzpxMH7eyssKuXbvkflkiIiLKg7goIRERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxULlP8bAwACmpqYwMDD40qkQERHlOKMvnQBlLSVFwNDw/4sSU1NTWFpaZvkcIiKivIKFisIZGhrAd9sVPI2M1vj4d2WKYEzPOrmcFRERUe5gofIf8DQyGo+evf/SaRAREeU6jlEhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQuV/EFdgJiKi/wqu9fM/gCswExHRfxULlf8BXIGZiIj+q1io/I/gCsxERPRfxDEqpBOOcyEiotzAHhWShONciIjoS2ChQpLkxDgXOXpl2LNDRJS3sVAhyeQY55K+10XXXhk5YhAR0X8DCxXKVVn1zEjtlZEjBhER/TewUKFcJ0fPDO9iIiL638C7foiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKF/udxPhciIuXiXT/0P4nzuRAR/TewUKH/SUqcz4U9O0REGbFQof9ZSpjPJbtemc+fk1Mx0mOxQ0RK8kUKlZSUFCxfvhy//fYboqOjYW9vjylTpqB8+fJfIh2iL0aONZTkiCF3sUNEJJcvUqisXLkS27dvx9y5c1G2bFn4+PjAw8MDBw8ehImJyZdIieiLUULPTl5edFIpMYhIN7leqCQkJGDjxo0YM2YMmjZtCgBYtGgRGjdujKNHj6Jt27a5nRIRQd7LWIBuA4zliPH5c5QyWFopBVNeiqGkXBhD/hhpcr1QuXfvHmJjY+Ho6KjaVrRoUVhaWuLSpUssVIj+o5RyGSu7OLkZQykFU27EkBJH7hi6tkcpMT5/DmNoZiCEEFrvpYejR49i+PDhuHHjBgoUKKDaPnLkSHz69Alr1qzRKt7Vq1chhICxsbFqm4GBAd7HJCApOUXjPkb5DFGssAmyajpjyB8juziMkdF/6ferlBjZxcntGLFxiUhOyfi8fIYGKGRqnCdiSI3DGNrFyesxEhMTYWBgADs7uyzj5nqPSlxcHABkGIuSP39+vH+vfbdzWrfS591LxQpnP9Yluy4pxpA/hpQ4jKF9HMbQPk5uxShkapzl43kphpQ4jKF9nLwaw8DAQFLMXC9U0npREhIS1HpU4uPjYWpqqnU8W1tb2XIjIiIiZcn1KfTLlSsHAHj58qXa9pcvX6JMmTK5nQ4REREpWK4XKhYWFihcuDAuXLig2vbhwwfcuXMH9vb2uZ0OERERKViuX/oxMTGBm5sbfH19UbJkSXz77bfw8fFB2bJl0bJly9xOh4iIiBTsi0z4NmLECCQlJWHy5Mn49OkT7O3tsWHDBrU7d4iIiIhy/fZkIiIiIqlyfYwKERERkVQsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChHJIjY29kunAECePJTSFjnkpbYoCd/X3MNC5T/i0qVL2LlzJ2JiYhAcHIykpCTJ+27YsAGRkZFfPA9vb2+EhYXp9fpytuX58+f4559/8OnTJ7x580arfbdv347o6GhZ8tBWSkqKpOeFh4fncCbqOnbsiNu3b+sd59OnT9i/fz8WLFiAd+/e4eLFi3j79m2u5qGUtshBrrboa9iwYXj06NGXTkM2X/J9/fjxo6TnXbt2TdLz5Dg3+/j44PHjx3rFyMwXmZk2J7m4uGhcNtrAwADGxsYoW7YsOnTogI4dO2Yaw8LCItOlp9PHGDJkiKQlqvURExMDDw8PXL9+HQYGBmjYsCF8fX0RHh6OjRs3SlrIcdWqVWjevPkXzyMgIAB9+vTRKw852pKQkIDx48fjyJEjMDQ0RGBgIObNm4fY2FgsW7YMhQsXzjbGmjVrMG/ePLi4uKBz585o2LCh1sdCQkICNm7ciFatWqFixYqYNGkSDh8+DDs7O/j6+qJEiRIa93N3d8fChQuzfM/37t2L2bNn48qVK5JyefnyJXbv3o3Hjx9j0qRJuHTpEqpXr47KlStLbk9cXJxOK6Cn9/r1a3Tt2hVv3rxBQkICunTpgo0bN+LWrVvw9/dHlSpVciUPpbQlPj4eu3btwoMHD5CcnKzanpCQgFu3biEwMDBH23Lv3j1YWFhk+7x169ZhwIABWT7n/PnzyJ8/v055fO7UqVNYv349njx5gl27dmHfvn2oUKECOnTokGsx5DhGdM3D1dUVS5YsyfR3k5KSguXLl2Pt2rW4detWtjnIcW6+fPkyNm7ciNq1a6Nz585o06aNpHOpFHmuR6Vz58548eIFLC0t0atXL/Tq1Qu1a9fG8+fPUadOHZQvXx7Tp0/Hb7/9lmmMiRMnwsTEBL1798ayZcuwbNky9OvXD/nz50fPnj3RqVMnbNu2DevXr8/x9ixcuBAAcOzYMRQoUAAAMHbsWJiYmGD+/PmSYlhbW+Pvv//+4nk0adIEW7du1avLVI62rFq1Cvfu3YO/v7/qxOnu7o7Q0FD4+vpKinHy5EmsWLEC+fLlw7Bhw9C0aVMsXLgQT548kZyHr68v/Pz8EBMTg9OnTyMgIACDBg1CbGxslu9pUlISOnTogFOnTmV4LDo6GqNGjcKkSZPg4OAgKY/Q0FC0a9cOAQEBOHr0KD5+/IjDhw+jc+fOuHHjhuT29OrVC8OGDcO2bdvwzz//4NKlS2o/UsydOxfVqlXDuXPnVL+befPmoVq1avDx8cm1PJTSFm9vb/j4+ODhw4f4/fffERYWhn/++QeHDx+Gi4tLjrelS5cu2LFjR6aPR0ZGolevXqrzQ1ZcXV3h6+uLhw8fIiEhQVLumpw9exbDhg3Dt99+iw8fPiAlJQVJSUmYMGEC9u/fn2sx5DhGdM3D3NwcXbt2xbZt2zI89vTpU/To0QOrVq1C9+7dJeUhx7l5165dOHz4MBwdHbFmzRo0bNgQv/zyC86cOQO9J8AXeUy/fv3E6tWrM2xfv3698PDwEEIIERAQINq2bZtpjC5duoidO3dm2L5nzx7RrVs3IYQQx48fFy1btsw2H3Nzc2FhYaHxp3bt2qJFixZi+fLlIiUlReP+TZs2FVeuXBFCCGFjYyPCwsKEEEJcvXpVODo6Zvv6QggxYsQIYWFhIerVqye6dOki3N3d1X6kkCMPNzc31fvRsGFD4eLiovaTW21p0aKFOHv2bIa2/Pvvv6JRo0aSYqQXExMj9u3bJwYNGiSsrKxE165dxZ49e0RcXFyW+zVu3FicOXNGCCHElClTRO/evYUQQgQFBYn69etnul9iYqKYM2eOsLCwEHPnzhWJiYlCCCEuXrwomjZtKmxtbcXu3bsl5z948GAxceJEkZKSono/EhMTxejRo4Wbm5vkOObm5pn+WFhYSIrRsGFDcfv2bSGE+u/m7t27wt7ePtfyUEpbHB0dxcGDB4UQQjRv3lw8evRIJCQkiKFDh4qZM2fmeFu2bNkiatWqJUaOHCmio6PVHgsMDBT16tUT9evXF8eOHcs2jxYtWmR5PpSqa9euws/PTwih/r6uXbs2y/O63DHkOEb0yWPz5s2iVq1aYvjw4eLDhw9CiNTPtjp16ggnJyfVOU4KOc7Nn7tw4YKYPn26sLGxEU2aNBFLliwREREROsXKc5d+rly5gilTpmTY3qJFCyxduhQAUK9ePUydOjXTGHfv3kX9+vUzbK9bty6mT58OALC0tMSLFy+yzWfixIlYsGABunfvjrp16wJIvW64bds2dO/eHcWKFcPmzZthYmKises0KioKX331VYbtRYsWlXydsmDBglle6pJCjjwcHBwkf8vPjBxtiYyMRIUKFTJsL1euHN6/f691vLi4OLx//x4fPnxAUlISDA0NsWrVKixcuBC+vr5wdHTUuN+7d+9U3f9nz55F165dAQDFixfHp0+fMn09IyMjeHl5wd7eHpMmTcKVK1dgZ2eHzZs3w9raGps3b0b58uUl53/16lVs27ZN7dKVkZERhgwZgi5dukiO89dff0l+bmZiY2NRsGBBjY9JHQ8lRx5KacuHDx9gZ2cHAKhatSru3LmDypUrY9CgQRg1ahQmT56cbQx92uLm5gZra2t4enqiY8eOWLRoEapWrYoZM2YgICAATZo0waxZs1C6dOlsY/38888655He/fv3NfY4/vDDD1i+fHmuxZDjGNEnD3d3d9jY2GDMmDHo2LEjLC0tcfz4cbRq1QrTpk1D0aJFJechx7k5vZs3b+Lo0aOq3m97e3tcunQJGzZswMyZM9G+fXut4uW5QqVUqVK4evUqKlasqLb9ypUrqmv+r169QpEiRTKN8d133+HEiRMZrtmdOHECZcuWBQCEhYWhZMmS2eZz6NAhTJw4UfUhBADNmzdH5cqVsWfPHuzYsQPVqlXD/PnzNRYqtWvXxpEjRzBw4EC17du2bYOlpWW2rw8Ac+bMkfS8rMiRx7Bhw/TOQ462VKlSBefOncNPP/2ktv3QoUOoWrWqpBjx8fE4evQofv/9d5w/fx6lSpVCx44dMWfOHNWxN336dHh5eWm8RAMAFSpUQFBQEN68eYOnT5+icePGAIDjx4/ju+++yzaHZs2aoXjx4ujduzeCgoLQoEEDrF+/XuuxMikpKRoH6MbGxiJfvnyS43z77beZPhYfHy8phr29PXbs2IEJEyaotiUmJmLVqlWqD2ypeSQkJODp06eoUKEChBBarc4uRww52lKyZEm8efMG33zzDczMzPDgwQMAQIkSJfD69etcaUvt2rUREBCAadOmoUePHvjqq6/w7t07TJs2Dd26dZMUA0i99COHIkWK4OXLlxm+bAQHB6NYsWK5FkOOY0TfPGrXro0pU6Zg0KBBePbsmWrsoKGhdqM65Dg3v3jxAr///jt+//13PHnyBNbW1hgyZAhat26tGquybNkyzJ49m4WKu7s7ZsyYgZCQENjY2CAlJQU3btzAli1b8PPPP+PFixeYNm2a6kNBk59//hleXl4ICgqCra2tKsaff/6JGTNm4MmTJ5gwYQJatmyZbT769s6MHj0a/fr1w82bN5GUlIRVq1bh0aNHuH37NjZs2CDxXfn/wZJPnjzBxIkTtR4sKVceaWNDnjx5giVLluD48eOoVq0a6tWrl2ttGT58ODw9PREcHIzk5GQEBATgyZMnCAwMxKJFiyTFcHR0RFJSEpo2bYoVK1agcePGGU4Ojo6OWX7r8vDwwOjRo2FoaIj69evDwsICK1aswIoVKzB79uxsc9i+fTt8fHxQsWJFODk5wd/fHyNHjoS3t7dW36YaNWqENWvWqI2bePfuHXx8fDQeu5l5+/YtVq9erTbwUwiBxMREBAcH4/Lly9nGGD9+PHr27ImLFy8iMTER06ZNw+PHjxEdHY2tW7dKykMIgQULFmDLli1ITExU/V5NTU0xbdo0SR8kcsSQoy1OTk6YPn065syZgzp16mD27Nlo0aIFDh8+rPrSlBttKVy4MKpXr47AwEA8f/4ctra2aNKkiaTXT+/UqVPYsGEDHj9+rPMg2Hbt2mH27NmYPXs2DAwMEBsbi9OnT2PmzJlo3bp1rsWQ433VJ4+kpCQsWrQImzZtgr29PZo3b67qvV+wYIGkLzvp6XtudnFxQcmSJdG+fXssX75c42BxS0tLmJmZaZUXgLw3RkUIIbZu3SqcnZ1V1wudnZ3Fjh07hBBCnD59WowePVq8f/8+yxh///23cHNzE7a2tsLe3l64ubmJ06dPCyFSxwIsXLhQJCQkZJtLq1atVNcg0/Pz8xMtWrQQQghx/vx50aRJk0xj3Lt3T4wdO1a0adNGtGrVSowYMUJcv34929dOExISIurVqydcXFxEzZo1RVhYmBg+fLiwsbHRKo6+eQQFBYlatWoJNzc3VR6TJk0SNWvWFCdPnszVtpw6dUr06NFD2NjYCCsrK9G5c2fx559/St7f399fREVFZfmctLEjWbl79644duyYiI+PV+X177//ZrnPmzdvxKBBg4S5ubmYPn26+PTpkxAi9Thq3LixaNKkibh48aLElggREREhWrZsKRwdHUWNGjVEmzZthI2NjWjatKl4+vSp5DgjR44U9erVE56enqJGjRpizJgxwtXVVZibm4s1a9ZIjhMZGSkWL14sBg4cKDw8PMS8efNEeHi45P39/f1Fo0aNxN69e4W1tbUICwsThw4dEvXq1RMLFy7MtRhytOX9+/fi559/Flu3bhUpKSnCw8NDmJubi5o1a4o//vgjV9oSFhYmunbtKmrWrCmWL18u7t27J9q2bSvs7e3FkSNHJLflzJkzolatWmL8+PGidu3aIiwsTCxcuFDUqFFDBAQESI6TkJAgRo8erTYexNzcXAwaNEj1t5AbMeQ4RnTNIzg4WLi6uopatWqJ9evXq21v166dsLOzE/v375eUgxDynJuPHz8ukpKSJL+mNvJkoZLm7du3GQaA5bYDBw4IS0tLMXr0aLFlyxbh7+8vRo8eLSwtLcWePXvE48ePhbOzs5g1a5bG/WfOnClCQ0P1ykGOwZJy5NG7d2/VH3D6gWOzZ88WnTt3lhRDjrasX79e50Fdn7t48aLYsWOHiI6OFg8fPpRUnHwuPj5ePHr0SCQmJkoqfh0dHUWDBg00nkCioqLEgAEDhKWlpVYfqB8/fhS7d+8W06dPF1OnThVbt27V+m+nXr164sSJE0IIIVq3bi3u3r0rhBBi8uTJYuzYsZJiDB06VAQHB2v1up9r3bq1OHr0qBBC/Tg7evSocHZ2zrUYcrTl0qVLqiJWCCFSUlLE7du3RWRkpOQY+rRl7969ws7OTjRv3lxcu3ZNtf3Tp09i8uTJwtzcXEycOFF8/Pgx2zzkGMAqhFCdh0JDQ8WRI0fEoUOHxMOHDyXvL1cMOY4RXfOwsrISrVu3Fnfu3MnwWHx8vJgyZYowNzcXv/zyi6Q85Dg3CyFEXFycCAgIEL6+vuLt27fiwoUL2X6hkyJPFipPnz4Vhw4dEgEBARl+pLp06ZJYs2aNWL58uVi2bJnaj7b06Z2xs7PT6huYJvXq1VMd/OkPwuDgYGFnZycphhx51KlTRzx+/DhDHqGhocLGxkZSDDnaUqdOHRESEqJt+mqio6NF165dVd+CwsLCxKBBg0Tr1q0lF0EpKSnCx8dHWFlZiRo1aoiwsDDh6ekpJk6cmGXBMmjQIPHmzZssY69fv17UqlVLUh6dO3dWFRX6qFmzpnj+/LkQQohhw4ap/t7u3bsnnJycJMWoU6eO3seZlZWVKkb6YyQsLEzyeyJHDDnaUr9+fXHr1i29YujTFnNzc+Hl5SViYmI0Pn7o0CFRp04d8f3332ebh42NjeqD+fM8rKysJLenUaNG4saNG5Kfn1Mx5DhGdM0jfU9qZo4cOSLq1q0rKZ4c5+ZXr14JFxcXYW1trTqfDRo0SDRs2FDvgj3PzaOye/dutGzZEqNHj4aXl5faT/pBbVlZsWIF3NzcsH79euzduxf79u1T/QQEBGidk7OzM7Zs2YKrV6/i4sWL2LJli2qMjL29PTw9PTO9npl2f3tMTIzWr5tGjsGScuRhbGyscf8XL15InjhJjrYoZV6ZLVu24Pfff8fUqVNhYmICIHWg9fHjx7Mc8b969epsB3L3799f4xwLmoSHh2d6d4o2ypQpg2fPngEAzMzMcP/+fQCAqamp5Lup5Jhr49tvv0VQUFCG7adPn5Z8N5QcMeRoS8mSJfWeAVmftixevBhz5sxBoUKFND7eunVrBAQESJrYK23g6Oe0GcAKpJ5HjIz0G14pRww5jhFd85gyZUq2k+f98MMPkj+v5Dg3yzFvUGby3GDa1atXo1u3bvD09NR5VrwdO3bA09MTgwYNkiWny5cv4+rVq0hMTMww8U12o61fvXqFw4cPw9/fH6VKlcpwcEq5RU6OwZJy5NG8eXMsXrxYbcDqo0ePMGvWLDRt2lRSHnK0pXDhwpg/fz5Wr14NMzOzDG3ZvHlztjFOnDiBBQsWqJ2QqlSpgilTpmDo0KGS8ti1axemTJmCFi1aYObMmQBST/zGxsaYM2cOPD09Ne539OhRODs7ZzlYLzY2FgcOHICVlVW2eXh4eGDSpEno378/KlSooCq80nzzzTeS2tOyZUtMmDABc+fORYMGDeDp6Qlra2scP348w114mTl16hTCwsIynXH17t272cbo378/pk+fjlevXkEIgXPnzmHXrl3YsmULvLy8JOUhRww52uLk5IRBgwahSZMmqFixYoZjVcrdGvq05Ycffsg2fvny5bFz585snyfHAFYgtQD08PBAhw4dULFixQzHq5TpC+SIIccxomsefn5+6NGjh9rx8OnTJ7X9o6Oj4e3tjdWrV2ebhxzn5vPnz2Pt2rVqhU2xYsUwfvx49OrVS1KMzBiIzz85/+PSbqPVdsRzetbW1jh8+HCWt1tKtWLFCixbtgxFixbNUDgZGBhk+wGf3b30Uk5UabNHRkdH4927d6hcuTKePXuG4sWLY+vWrZLaKUceadPw37x5EykpKShSpAhiYmJgYWEBPz8/FC9ePFfakl3PmpRboK2trfHHH3+gfPnysLW1xYEDB1C+fHk8evQInTt3xvXr1yXFOHToEL777ju1GOHh4WjdurXGb2sAUKNGDZw5cwalSpVSbWvWrBk2b96sav/r16/RuHFjSR+GNWvWVN2lk/7WZiEEDAwMJMUAUm/T9PHxgZWVFdq1a4cpU6Zg9+7dKFKkCJYuXZrpfDLpZfcNUOotrrt27cKqVasQEREBILVnYsCAAejbt6+k/eWIIUdbspp9Vsr5I42ubRk8eDB8fX3Vzl1nzpyBvb296kMyKioKzZs3x9WrV7OMlZiYCC8vLxw6dEiVvxACTZs2xZIlSyRPr5/VlP5Sj1c5YgD6HyO65qHpHGBnZ4fff/9d9eVJm3OAHOdmW1tbBAQEwMzMTO18du/ePfTo0SPb4yMrea5Q6dKlC4YMGSK5CtSkb9++6Ny5M9q2bat3Po0aNYK7u7tsvTO6iouLwx9//IG7d+8iJSUF1apVQ4cOHWRbi0Eb586dw507d5CSkoLq1atrvLU3K0poi5ubG5ycnDBw4EC1P8oZM2bg3r172L59e7YxWrdujeHDh6NVq1ZqMbZt24Zt27bh8OHDGvezsLDA2bNn1U5S6fcHtDtJXbx4McvHtbl1/HPv3r1D4cKF9e5m11VUVBSEEGrv1ZeIoRTatkXqB2KjRo1w7949STFDQ0NVf7vVq1eXPHeRkuX2MSL3OSCNPufmgQMHolKlSpgwYYIql7Jly2LMmDGIjY3Va8mZPHfpx8PDAzNmzEB4eDgqV66suvafxt7ePtsYbdu2xcyZM3Hr1i2NMbSZGTU6OlrvgufOnTvYtGkTHj58CBMTE1SvXh0DBgzQOLtqZkxNTTNMcPYl8gBS5xeR8u06M3K05dWrV9i+fbtaW3r06CF5/hE55pWRo+tYDukLkZiYGBgbG0v+dit1TRNA2t8ekDrhnZ+fn+p3U61aNQwdOlQ1s7Mm+/fvR+vWrWFiYpLtWi1pC4va2dmp9SDJEUOOtmhy6dIlPHr0CG3btkVERATMzMyyLP7kaoum77GatmX2Hjx//hzlypWDgYEBnj9/rnq99Jck028vUaKE5KI2PDwcDx48QP78+VG1alXJ88roEyMnjhFd8sgp+pyb5Zg3KDN5rkdFSd2CgP69M3/++Sc8PT1hY2MDa2trJCcn4+rVq3j48CHWrl2b6biMZs2aYc+ePShRokSmK0qnMTY2Rrly5bI8geqaR/pvZFmtSg2kTtterlw5jB49Wu3auNxtuXDhAgYNGoSSJUuqLnvcunULCQkJ2LRpk6TVYoHUCZI2btyo+gZSrVo19OvXD9bW1pL2B3TrOs6Jb1P+/v7w8/NDZGQkDAwM8N1332HIkCHZFuVpv9PsTiNS/262bduG2bNno1WrVqrj7MqVK/jrr7+wYMECtGrVKtM80t4TKb8/AwMDtGvXTm3gsxwx5GhLejExMejfvz9u3LgBAwMDHD16FLNmzUJYWBj8/PwyXUFbrrboe6xp8/cPAPnz58fo0aOzHNPw/v17TJw4Ue2yl6GhITp27IipU6dKKrJ1jSH3MSJHHmm0PQfIcW7+3MuXL7F9+3a13u4ePXroNRQDyIOFStpdB5mRY9yJNvbu3Yv58+fD1dVVp96Z1q1b4/vvv8fIkSPVts+ePRuXL1/Gvn37NO63fPly9O/fH6ampli2bFmWB2FSUhKuXbuG58+f49ixY7LmERAQgDZt2sDExAT79u3LNo8LFy7gwoUL+Oeff3KsLZ07d4alpSWmTZumulMoISEBXl5eePnypd7Vvy606TqWu1BZtmwZNm7ciF69esHa2hopKSm4fPkydu7ciTFjxsDNzS3TfbP7e0tPyt9es2bN0Ldv3wyvuXbtWgQEBODIkSOSXy8zycnJOHr0KCZNmqTzdXMpMeRoy4wZM3Dnzh34+Pigffv2OHDgABISEjBmzBhUrlwZCxYs0Cl/qW3R91i7ePEi7OzsYGRkhAsXLmT5t5ucnIx//vkH+/btw/nz5zN93tixYxEUFIQpU6bAyspKdbx6e3ujadOmGtd6y4kY2ZFyjOiahxznADnOzblGr5ubKVv6rrBZq1YtjXN+PH78WNSuXVu2PIOCgoStre0Xz+P+/fuiYcOGesWQ0pa0OQPSe/jwoeS2JCcni/3794spU6aICRMmCC8vL7WfzFy8eFHyT2YsLCwyzKNia2urmvtAiNQ5DaSu4NqoUSPVCr3p7d69W/LEVelFR0eLGzduiDt37mg9aVzt2rVz5TiLiIgQc+bMydEYcrRFjlXLpcisLebm5uL169dq29LnIYR2x1p2Hj9+LDp16pTlc+zs7MSlS5cybD9z5oyoV6+epNeRI4YU2R0juuYh9zlAiuzOzbGxsWLFihWif//+olevXjqtbJ+ZPDFGRZtLA5mNktemG0ybSz9SB5hlpmbNmrh48WKG2ztv3LgheRBadtdSO3bsiFq1auHo0aM5moeUO4eqV6+O06dPZ/ocOdpSqVIlPHjwAJUqVVLbHhoaKrnHbfbs2di2bRssLCy0GsTr7u6uulTy+R02gPq1/syOMyEEOnfurDbILS4uDu7u7qoeIk1zzWQmOjoaNWvWzLC9Tp06ePPmjeQ4KSkpmDdvHrZv346kpCQIIWBiYoKuXbti4sSJkhZLdHBwQGBgYIbFL0+ePAlbW1tJeUg5B5QpUybLcUByxJCjLXKsWq5vW65du6Y2z4kQAjdv3lRdrpQ6R46Uu+0qVaqEvXv3Zvk8Y2NjjX9zJUuWlHzcyxFDjmNE1zyEEGjYsGGGbVLWn9NEjnPzlClT8Ndff6Fhw4Yaj1l95IlCxdXVVXX/uKurq9arxwKpHzxpKyqn3ef/paT/MLa3t4e3tzceP36MOnXqwNDQELdv34afn5/k+Toy+0PJnz8/ypYtq7r89PlS7XLn8fnloeTkZLx58wZGRkZqq8lmNcpc17akH/TZpk0bTJkyBa9fv4adnZ2qLQsWLMDw4cMlteXgwYOYPXu21ivCpi+Uz507h5UrV2LixImq7vGgoCDMnj1b40raaeRY6TS9Zs2aYceOHZg4caLa9oCAADg5OUmOs2bNGuzduxdjx45FvXr1kJKSgkuXLmHFihUoU6YMPDw8NO6X/iRZrlw5LF68GLdu3YKdnR3y5cuH27dv448//kD//v0l5fH5OSApKQkhISH4559/MGLEiByNIXdb5Fi1XN/3Y/jw4RnGIP3yyy9q/5Zyvnz69Knav5OTkxEWFoaYmBi0adMm2/3T9OrVC7Nnz8bixYtVEx9+/PgRixYtQo8ePXIthhzHma55yLGKfHpynJtPnDiBhQsXwtnZWdbcgDw4RkUJ9O2dkTqYU9uBvWmSk5MREhKCadOmoWvXrpkO9M3pPIDUwYJpH9R9+vTRen9t2iLnoE9bW1scPHhQr0Fi33//PaZNm5ZhlP3Fixfh5eWl9+y5WUn/7TY2NhbHjh1DjRo1UKdOHdUH6tWrV/HTTz9h2rRpkmK6uLjA09MT7dq1U9t+8OBBLFu2LNNerqzmCklPm3lDNNm5cyf+/fdfLF26NMdiyN2Wq1evol+/fmjUqBFOnTqFdu3aqd1d5uDgoFX+6Ul5P+Qeg/Q5IQRmzpyJQoUKZSh+0vu89+LZs2coUKAAKlasiHz58uHJkyeIj49H7dq1sWvXrhyLIYWUYyQ38gCQoedWG9qem+3t7bF3716t7wKVIk8WKpnNBGtgYCDp239KSgoOHjyYaYzZs2dnub82g5S0/UYupzt37mDkyJGZDjrNLcHBwejXr1+W3YrZya4tcp9wR4wYAQcHB/Ts2VNy3M/Z2tpiz549GZZDlzpBUkxMDIyMjDLMZgmkjr6fPn06VqxYoXFfd3d3STkaGBhImqkXSJ3A7uDBgxlOVGFhYWjTpk2mE9jllmfPnqFt27a4du3aF42hLTnuLtNEzrZERETofEttWFgYunbtinPnzmX6nOwG0aeXWY+jHDGkyO59lTOPBw8ewMjICJUrV87w2L179zBp0qRsL6VlRZtz86RJk/DVV19h1KhROr9eZvLEpZ/0spsJVkqhouv4gzTpi49OnTppvX9uMTQ01Lj2Rm6Ljo7Wez2T7Noi991eNjY28PHxwblz51ClSpUM09lLOdFZWVlhyZIlamuppC0HkNUka1FRUZgwYQJOnz4NAwMDtGzZEnPnzlUVLLt27YKvry8SExMzjbFlyxYpzdSKmZkZ/v333wyFytmzZ7V+/1+/fq1xfRyp0/lrEhgYmOmaNTkZQ5+2pM3b8fntrR8/fsSmTZt06oVMI7UtL168wF9//QUjIyM0a9Ysw/iDrVu3YtGiRbhy5YpOeYSGhma7FpLUS7I5HUOK7N5XOfIIDw/HkCFDEBwcDCD1XLJmzRoUL14ciYmJqjv5tFlDSRNtzs0lS5bExo0bcfr0aVSqVCnDHa76XK7Kc4WKHOv06Dr+QBN9e2du3ryJ6dOn4+HDhxo/eKRcptA0ADUmJga7d++WtBaMXHloGrAVGxuLw4cPS+7ClqMtYWFhWS4WJ6VLfuvWrShZsiTu3LmDO3fuqD1mYGAgqVCZPHky+vTpg8aNG8PMzAxCCISEhKBUqVLw9/fPdL+5c+fi6tWrGDZsGExMTLB582YsWbIEI0aMgKenJ06ePIm6devC29s72xzSvH//HiEhIRneDwMDA8mTk/Xt2xdTpkxBeHi46rr2lStXsG3bNowbN05SjFOnTmHChAl4+/at2nahxXT+mgY5xsbG4v3795I/JOSIoWtboqKi8OnTJwCpl+iqVauGEiVKqD3nzp07WLhwoaRCRZ+2nDt3Dj///LMqnwULFmDr1q0wNzdHeHg4xo0bh2vXrklaZ0vTYNrY2FicPXsWzZo1y3b/9E6ePIkHDx5oPF6ljpnTN4Ycx4iuecydOxcxMTGYM2cOTExMsGrVKvj4+GD06NEYMGAA7ty5g/bt22cYd5YZOc7N169fV/Xyyf0FOM9d+pFjnR45xh+k8fb2zrJ3Jrtvtu3bt0f+/PnRqVMnjV38UoopTWNNjIyMYGtri2nTpmW49JBTeWi6fm9sbAxbW1t4enpmOnlVenK0pVu3bnj16hVatWqlsS36DlZNSUmRPO10TEwM/vjjDzx8+BAGBgawsLBAmzZtslyxtFGjRvDy8lKNx7l69SpGjRqF2rVr499//8XYsWMlDwgEUuf6mT59usZFM7Udf7Rp0yasX78er1+/BpA6qLl///6S1z5p2bIlKleujB49emj83UiZzl9T17qxsTFsbGwkn3TliKFrW/bv3w8vLy+Nd4elEUKgSZMmWLNmTY62pVu3bjA2Nsb8+fNhYmKCGTNmIDY2FkOHDsWAAQNgaGiIcePG4ccff8w2D02XG01MTGBjY4O+fftK7r2eMWMGtm/frnFxVKljf+SIIccxomsejo6OmD17tmrg6v3799GrVy9UrVoVoaGhmDVrFpo0aSIpB0Cec3NWXr16pd+dQHrd3KxAffr00TgnhDaGDx8utm7dKks+9erVE/v27dN5fysrK/HgwQNZctGHUvKQg7W1tbh165ZeMVxcXMTbt28zbI+IiJB1HgZNatasKZ4+faq2zdLSUjg7O4vg4GCt4zk5OYnJkyeL4OBg8fTp0ww/2oqPjxdv3rwRr1+/FhEREVrta21tLR49eqT1ayqRPm25ePGiOH/+vDA3NxdHjx4VFy5cUP1cvHhR3Lp1SyQkJMiccUZ2dnbi2rVrqn+/evVKWFlZCWdnZ9G3b1+tf79yqFevntixY8cXjyEHXfOwtLQUL168UNtWs2ZN0bFjxwzz3uQWTXO7CCFEeHi4sLGx0St2nrv0I8c6PXKMP0iTkJAgeY0TTWrVqoVnz56hWrVqOseQg5x55MT4A22YmZkhLi5O6/0OHz6smpXx2bNnmDFjRoZvQc+ePZM8UO7Vq1dYvHixxsuCQOaXoJKSkjJ8QzcxMcGUKVMk9Sh97sOHD+jfvz/MzMy03je9qKgojBo1SvUtDAAaNGgACwsLLFq0SNL18vr16+P27dsaBwdqI7PudED636++MfRpS9o5Y/Pmzapb1/Wha1s+fvyo1juddtu/tbU1FixYoNViokDmlxgB6WtBGRkZ6XW3k1wxAP2PEV3zSE5OzvC5ZGxsDC8vL70WRtT23Lxnzx4cOHAAQGov39ChQzPk9fLlS8lrqGUmz136kWOdHrmWVgf0vzvk0aNHGDJkCFq3bo3y5ctnODFIKbzkGF8iRx5yjD+Qoy1Xr17F9OnT4e7urrEtmZ0wX7x4gfHjx0MIgUuXLsHGxkbtj9LAwAAFCxZE9+7dJXW7Dh48GLdu3UKbNm1Uc/ikl9mJTsr02doYO3YsatWqhd69e2u9b3q//PILwsLCMGvWLFSvXh0AcPv2bUybNg3VqlXLdjwWkHr3yI8//ogGDRqgfPnyGYo+KSd/pVwakKMtQOrdG/7+/njy5AmWLFmC48ePo2rVqjl+eQHI/Fjbvn07atSoIen108h1iXHFihUICwvDzJkzM3wRlUqOGHIcI7rmIfc5QNdz87t37zBv3jwAqXe7arqcXqhQIdVEnLrKc4WK0mzcuBFLly5Fo0aNdOqdWbZsWaa3mEr945ZjfIkcecgx/kCOtuzcuRPe3t5ISkrK8JjUtnTq1AmbNm3S65uCjY0N1q9fr/VKujVq1MDZs2dVE0QB+p2kXr58iXbt2qFKlSqoUKFChg9UqaP1HRwc4O/vn+HLwq1btzBw4ED8+++/2caYMmUKdu/ejRIlSmQYpyP15O/g4ABPT09069ZNUt45FUOOtty6dQvdu3eHjY0Nrl27hiNHjmDNmjXYv38/VqxYIakg1qctcn4gNmnSBE5OTujTp4/Gv12p4wofP36M7t274+PHj/jqq68yHK9S3lc5YshxjOiah9znADnOzWPGjMG0adN0ulM2O3nu0o+cXr9+rbH61+YShb53h2zduhWjRo1C7969sxxgmZXQ0FDs2bNHr8s2cuTx8uVLrF69Wq9ufTnasnz5cvz4449wc3PTuS3R0dEIDw/XOPW8VAULFtSpm1ZTF2t8fDzGjBmT4ZudlDlQvL29ERsbi4SEBK3mm/lccnKyxgn1jI2NJV9q++OPPzBnzhy97rhTyqUBOdri4+ODfv36wdPTUzXtvre3NwoVKoRly5ZJKlT0bUtERATi4+PVtkVGRqqWa0iT3XlRrkuMY8eORdGiRdG5c2cULFjwi8WQ4xjRNQ+hYRmNT58+qS2jkUZK0SXHufnChQt4/Pix5LsvtZHnCpVHjx5h5syZquv+n5N6aWDChAkICwtT267NJYo0+s4umpKSku1dINmRY3yJHHnIMf5AjrbExsbCw8NDr7u64uLiNH7z0EaHDh2wfv16zJgxI8PJJSuaPvj0ucvt9OnTWLVqFRo3bqxzDCD1ktnChQuxaNEi1beqmJgYLFmyRPL4A1NTU7Upu3XRo0cPrF69Wq9ufTliyNGWtEtnn+vZsyd2794tKYa+bfn8jh4hhNodPFLPi82bN8epU6f0LlQePnyIPXv2qC4vfqkYchwjuuYh9zIacpybjY2N9R5LlZk8V6hMmzYNb968wZgxYzRe95fC29sbX331FcaNG6dzjM/p2jvToUMHbN++HePHj9f5tWfMmIEhQ4bgxo0bOo8vkSOPadOm4ccff8Q///yj1/gDfdvSvHlzHD9+XK/Jsnr16oXhw4ejZ8+eqFChQoaiRcoH87t37/DHH3/g5MmTKF++fIaTXWa9IXKv81GiRAlZBjJPmDABPXv2hJOTk+rDKCQkBMWLF8f69eslxejRoweWLVuGmTNn6lwUt2rVCt27d0edOnV07taXI4YcbTE2NkZMTEyG7S9evJAcU5+2SJ2VWIqxY8eiXbt2CAwM1OsSY5UqVfDhwwe9cpEjhhzHiK55yF2oyHFudnV1hYeHBzp06ICKFStmOCdKOTdnJs+NUbGyssKOHTv06pKvXbs29u/fr9MdFJ/Tt3dm/PjxOHToEEqUKIHy5ctnqFilnEjkGF8iRx5yXLOXoy3z58/Hli1bYGlpiQoVKmRoi5QTphyDtqWsJquruLg4LFq0SNKET7t27UJgYCB+/fVXVKhQQavenc9FR0fj0KFDePjwIYyMjFC1alW0a9dOcu9T3759VQtIlipVKsPvRsox0rlzZ3z48AEtWrTQ2J0u5aQrRww52vLrr7/i+fPnWLRoEZo0aYIDBw4gISEBnp6eqFWrlqQBynK0JTsfP37M9tLFiBEj8Pfff8PCwkJjkSV1tuTDhw9j8eLF6N+/v8a/XylfEuSIIcf7qm8e+iyjkZ4c52Y5zomZ7p/XCpUmTZpg3bp1enXptWzZEr6+vrJca+vUqRMKFiyIvn37auydyW6QkhwfZg4ODujbt69e40vkyMPOzg6//vqrXtfs5WhLduvcSDlhZjeWQ+4p+9P79OkT5s+fj0OHDsHY2BgdOnTAL7/8oupdOnPmDKZOnYoXL15kGBelScuWLfH8+XMkJydrfFyfE0xUVJTagL/sSFluPjtWVlZ6d+vLEUOOtsTExMDDwwM3b95ESkoKihQpgpiYGFhYWMDPzw/FixfPNoa+bYmLi8P58+dhZGQEe3v7DB+KJ06cwIwZM3DixIks49jY2GDZsmV6X2KU4wNRjhhyHCO65qHNMhrXr1/PNg85zs05Kc9d+nFzc8PChQvh6+ur8+jjn3/+GbNnz8b06dNRuXLlDHfqaOPhw4d69c7I0c0vx/gSOfKQ45q9HG2RY52brAqRzwceZiUqKgpPnjxBSkoKgNSetoSEBAQFBeHnn3/WuI+Pjw92796N9u3bw8TEBDt27EDhwoUxaNAgeHt7Y8eOHahQoUKW0/Cnl9nraOvDhw/w8fGBm5sbqlatCg8PD5w/fx5mZmZYu3atpLsR5Ph2r5RLA3K0xcDAADt37sS5c+dUixJWr14djRs3ljyHiT5tuXv3Ljw8PPDmzRsAqcf9li1b8M033+D9+/eYMWMGDh06JOn8JtclRn1W0JYzhhzHiK55yL2Mhhzn5qzos2glkAd7VPr27YvLly8jOTkZpUqVynDdX8qBIec3TDl6Z168eIFt27apVsqsVq0aunbtKvmP3tvbG8bGxnqNL5EjjxUrVuDJkyd6XbOXqy2xsbE4cOCAWltat24tubh9+/YtVq9ejQcPHqiOEyEEEhMTERwcjMuXL2cb48CBA5g8eTISEhIyTJf+7bff4vjx4xr3c3Z2xsCBA9G9e3cAqZNOzZo1C46OjtizZw/69u2LkSNH6jzAT1cTJkzA5cuXsXr1ajx8+BBjx47F7NmzcfjwYRgZGWHZsmWS4ty6dQsbNmxQ/W6qVq2K3r17S/4bUsqlATna0qJFCyxevFivS9n6tKVfv354/fo1pkyZAhMTE/j4+KBkyZIYNWoU+vXrh1evXmHAgAH4+eefsz3e5LzECKT2Nj1+/BjGxsYoX768Tl9M9Ykh1zGiSx5yL6Mhx7k5PDwc8+bNy3BOTEhIQFRUlKTe3czkuUJFju7WgICALB/XpnssICAAu3bt0rl35v79+3Bzc0OBAgVgZWWFlJQU3Lp1C3FxcdixY4eku1/kGF8iRx5yXLOXoy3Pnz+Hm5sb3rx5g0qVKiElJQWhoaEoVaoUtm/fLqnyHzVqFM6dO4eGDRvizz//RJs2bfDo0SPcuXMHo0ePxsCBA7ON0bp1a1hbW8PDwwPdu3fHxo0bVdeVR48ejQ4dOmjcr3bt2jh8+LCqhyI5ORm1a9dGsWLFsHjxYp1umfzrr7+wZs0atQ/U/v37o0WLFpJjNGjQACtWrICtrS28vLzw7t07VTHXs2dP1e8+KxcvXkS/fv1QvXp11K1bFykpKbh69SoePHgAf39/1KlTJ9sYSrk0IEdbGjVqBH9/f73Gy+nTlnr16mHp0qWqRQfDw8PRoUMHVY+ij49PlvHTk+sLYEpKCubNm4ft27cjKSkJQgiYmJiga9eumDhxoqSZoeWIIccxomsetWrVQmBgoFrPbs2aNVGmTBmsW7dO6+NFjnPzgAEDEBISgh9++AF+fn7o168fnjx5gmPHjmHGjBno0qWLVjmll+cu/cjR3SrndbpVq1bh+fPnmY54zu5gnj9/PhwcHLBgwQLVHBlpc2b4+vpKWpTM0NAQ7dq10zp3ufOoU6eOpJNzVuRoy9y5c1G2bFns3r1bNSX469evMWrUKPj4+GDBggXZxjh37hzmzZuHpk2b4v79++jfvz8sLCzw66+/qpZez054eDiWLVuGKlWqwNzcHFFRUXBxcUFSUhJWr16daaGSmJioNngvX758yJ8/PyZNmqRTkXL06FGMHDkSzZo1Q5s2bVQz744cORLLli2TvLLtx48fUa5cOQDA2bNnMWDAAABAgQIFMv1w+tyiRYvQuXNnTJ8+XW379OnTsXjxYkmX7ZRyaUCOtshxd5k+bYmJiUGlSpVU/y5fvjwSExNRqlQprF69Wqtb9OW6xLhmzRrs3bsXY8eORb169ZCSkoJLly5hxYoVKFOmDDw8PHIlhhzHiK55yL2Mhhzn5qtXr2LlypVwcHDAP//8g+bNm8PKygqLFi3CqVOnWKikt3///iwfl3KLlBy9Mmn0/eO8evUqdu7cqTaRV/78+TF06FC4ublJiiHH+BI58pCjiJSjLf/++y82btyoKlKA1DVMxo0bp/pwzU5sbCzMzc0BAJUrV8a9e/dgYWEBNzc3Sb0pQOqJJa27vGLFinj48CGcnJxQq1YthIaGatkq6Hx5ceXKlRg6dKja76dPnz5Yvnw5Vq9eLblQqVKlCk6ePIly5crh1atXcHJyAgDs3r1b8snzzp07Gq+ru7m5SVqhF5BnILMcMeRoy8KFCwEAM2fOzPCY1G/t+rQlJSUlw7drIyMjjBo1Sut5hOT6Avjbb79h6tSpal9YLC0tUbJkSSxbtkxSkSFHDDmOETnySE/Xnjc5zs0JCQmoUKECAKBSpUq4f/8+rKys0LFjx2xvYMhOnitUvLy8NG7Pnz8/ypYtK6lQ2bdvn9q/k5OT8ebNGxgZGWk94EjfP85ChQppnLhO07acpJQ85JAvXz6N12Hz58+vcUEuTcqUKYNnz56hXLlyMDMzw/379wGkDkp7//69pBi1atXCb7/9htGjR6N69eo4deoU+vfvj+Dg4GwvEWrqEpa6GOLnHj9+rLGXqm3btli3bp3kOCNGjMDw4cORmJiItm3bwszMDHPmzMG2bdsk3SIJpA64/Hy9ESB10HFuj7nRlxxtOXbsmNYL/+UGfRa+09ebN29gbW2dYbu1tTVevHiRazHkoGseBgYGOv+955Rvv/0WDx48QLly5VCpUiVVEZ2SkoLY2Fi9Yue5QuXevXtq/05OTkZISAimTZuGrl27SoqhaTbZmJgYTJw4UetCRd/emfr162P+/PlYunSp6lbEqKgo+Pj4wNHRUatc9KGUPORgZ2eHlStXYv78+aqCIDExEatXr5b8+23ZsiUmTJiAuXPnokGDBvD09IS1tTWOHz+OihUrSooxfPhweHh4oHjx4nB1dcWKFSvQpk0bvHjxAq1bt85yX29vb7XercTERPj4+KBQoUJqz5PSA/X1118jNDQ0Q96hoaFaTXjYpEkTnDp1CpGRkarr923atEGXLl0kf9NzdnbGzJkzsXDhQtU+wcHB8Pb2znKxUCWSoy2enp7w9vaWPA5Ebpo+EL/0B6SZmRn+/fdf1bf3NGfPnpXcyyFHDDnomofcy2jIwdXVFePGjcP8+fPRtGlT9OrVC9988w3Onj2r6n3WVZ4bTJuZO3fuYOTIkTh27JjOMYKDg9GvXz+cPn1a8j6fn5A+753ZuHFjlvtHRESgW7dueP/+fYbZPrds2aLXNPDaUEoecnj06BG6deuGQoUKqVb0DAoKQmxsLLZu3SrpQyEhIQE+Pj6wsrJCu3btVBMmFS1aFEuWLJFcvEVGRiIhIQHly5fHo0ePsGPHDpQrVw7u7u6ZfuvWphtVyjiIxYsX48CBA5g6darqOvWVK1cwffp0NG/eXNKkcek9f/4cjx49gr29PWJjY7X69v3+/Xv07dsXd+/eVRVJ0dHRsLCwwMaNG1GiRAmtcvmS5GiLg4MDfvvttwwfZLnFwsIiQ2GS/u609PSZb0cb+/fvx5QpU+Du7q76YnHlyhVs27YN48aNk7RSvRwx5KBrHl5eXpILRrlnss6MEAL+/v4wMzND06ZNsXbtWqxZswblypWDj4+P1qttp/c/U6jcu3cPXbt2xY0bN3SOce3aNfTr1w/Xrl3TK5f0vTNSpnGPjY3F77//jocPH0IIAXNzc7Rr1y5HVqn8L+Qhh2fPnmH79u1qbenevbte36bevXuHwoULS17v4scff/yi35bTxMfHw9PTE3///bfq5CeEQNOmTbF48WLJYxESEhIwfvx4HDlyBIaGhggMDMS8efMQGxuLZcuWST5OUlJS8M8//6j9bho1aqTISyDZ0bct69atw+nTp1W3wH7+u5BjXpKsZHcHZHq5OVnYpk2bsH79erx+/RpA6hiz/v37o2/fvrkaQw5KyUPJ8lyhomkwbUxMDHbv3o1ixYpJ+oap6XJNbGwsDh8+jBo1amD16tV656lL74zc0iYW03e0tzaSkpLw5s2bDPfZBwUFoX379jrHzc22HD58GE5OTmofvDt37kSRIkXQunVryd90cvLbckpKCu7evavV/BuPHj3CgwcPVB+o2g7MW7JkCf78809MmzYNgwcPxoEDB/D8+XNMmDABTk5OGhfXyyl//fWX2nwOwP8fI35+frkWQ181a9ZUvX7640rbBVKV0BZAtwkOs4snhNBrzIw+MeR8X7XJ4927d9nOSpyQkICTJ0+iZcuWkl5f13NzXFwctmzZgh9//FFtFurly5fDxMQEvXv3znA5Slt5boyKpsG0RkZGsLW1lXyi/HwwLZC6OJijoyM8PT31TRFAahdwdHR0ts+LiorC/PnzcevWLXz69CnDooZSbpG7desWfv31Vzx48EB1gkhPyslOjjzOnDmD8ePHIyoqKsNjBQoUkFSoyNGWT58+Yd26dZm2JbNruomJiRg+fDhOnTqFTZs2qd0KfOXKFRw8eBCBgYFYuHChpF4VDw8PTJo0Setvy3Z2djh+/LjaSWHx4sXo27cvihUrBiD19/Xjjz9q1R1fokQJ2NjYqN6P58+fZ5nH5w4dOoRp06apvS8ODg6YNWsWxo0bJ+nvLzQ0FJMnT1b9bj4npT2+vr5Yv349SpcujTdv3qBMmTJ4/fo1kpOT0aZNG0ltkSOGHG2Ro4jQpy1Hjx6Fs7NzloO7Y2NjsWjRIkyePDnLWGkTHKYNwP98gkNtCpXw8HDcvn1b4/sqdfE7fWPIcYzomoejoyPOnDmjVtSMHz8e48aNU2378OEDRo4cKek40/XcHBMTgz59+uDevXuoW7eu2jkpOjoaO3fuxIkTJ7Bhw4Zs14LKSp4rVD4fTKsLTYNpdZVV74yUOS9+/fVXXL9+Ha1bt1Z9CGlrzpw5yJcvHyZPnow5c+bAy8sLYWFh2LZtG+bPny8phhx5LFy4EJaWlnB3d8fIkSPh6+uL58+fY+nSpZKvo8rRlunTp+Pw4cNo2LChVl3nmzdvRlBQELZs2YK6deuqPebj44Mff/wRI0aMwI4dOySNI1m8eDGSk5Nx6dIlrb4tf/z4UWNx1blzZ7XfjdTO0ps3b2LUqFEZ7jLQ9lt7ZGSkxt6hcuXKSb4T6tdff8Xr168xcuRInY+zgwcPYuLEiejVqxeaNGmC7du3o2DBghg6dKikafzliiFHW7JbC0wKfdoycuTIDB+IzZo1w+bNm1WXSePi4rBt27ZsC5XVq1ejTZs2Gic4HD58uOT27Nu3D5MnT9b4RcXAwEDynZ36xpDjGNE1D01/28eOHcOwYcPUfldSzwG6npvXr1+P6OhoHDlyJEObJ0yYgC5dusDDwwN+fn4YOnSopFw0Ev9DNm3apNf+Hz9+FLNmzdJqH2dn5ww/LVu2FOPHjxeRkZHZ7m9jYyMuXryoa8qqGDdu3BBCCPHjjz+KS5cuCSGE8PPzE3369JEcQ988ateuLe7evSuEEKJ79+7i33//FUIIsWfPHtGtWzfJeejbljp16oi///5b2/RF27ZtxYEDB7J8zrZt20T79u0lxbtw4UKWP5kxNzcXr1+/VttmY2MjwsLCVP9+9eqVsLCwkJRHp06dRLdu3cSxY8e0yuNzrq6uYvfu3RnyWb58uXB1dZUUw8rKSgQFBUl+TU1q1qwpwsPDhRBCDBgwQBw5ckQIIcSlS5dEy5Ytcy2GHG359OmT8Pf3F5MmTRJeXl6qn9GjR+dKW+Q81mrVqiWCg4OFEEK4ubmJU6dOCSGECAwMlHx8CCFEs2bNxLRp08T79+8l75MTMeQ4RnTNQ+5zgK7n5pYtW4rjx49nGXv//v2idevWkvLITJ7pUdmwYYPaarLp1zl4+PAhJk+ejJs3b6J3794a94+Pj8e8efMkrUirzV0QmfXOfPz4EYsXL842VoECBfDVV19Jfj1NUlJSVDEqVqyIBw8eoG7dumjWrJmkGWXlyiNfvnyqux/S8nB0dET9+vUxb948STHkaIuBgQGqVq2qdf5Pnz6Fra1tls9p0KABfHx8JMWT49uyHB4+fIh9+/bp9J6kN3z4cHh6eiI4OBjJyckICAjAkydPEBgYiEWLFkmKUbx4cb2vZxctWhQfP34EAFSoUEE1U/A333yDyMjIXIshR1u8vb2xf/9+WFpaIigoCLa2tggNDcWbN28kDcQH5GmLHOSa4DAyMhL9+vVD0aJFdc5FjhhyvK9y5CEHXc/NERER2d4MYGdnl+1q89n57w2j12DJkiXw8fFBkSJFUKxYMcyePRs7d+4EkFrAdOrUCSEhIVl2Yc2fPx+7d+9Gs2bN0Lx5c+zYsQNr1qxBSkoKZsyYgQEDBsDIyEjSirTx8fGYMWMGHBwc0KhRI/j4+Kh17Z05cwbt2rXD1q1bs43l6uqKDRs2SHgXMlexYkVcuXIFQOosqkFBQQBSryFKneBMjjyqVaumKtwqV66syikiIkJyDDna0qJFC43jkLJTqFChbMcVffr0SfKiXu7u7ujVq1eGn969e8PDwwOTJ0+WtD6OvsqUKaPx+ri2nJ2dsXTpUty6dQv58uXDhg0bEB4ejkWLFuH777+XFMPNzQ2LFi1SfQDowsHBAb6+voiMjIS1tTX+/PNPREVFITAwUO0aek7HkKMtf/31F+bMmYNdu3bh22+/xcyZM3HixAk0a9ZM8mSLcrRFDmkTHAJA9erV8e+//wKApAkO06tRowYeP36sVy5yxJDjfZUjDznoem4uXry4amXtzLx9+1ar+Zg0yRM9KocOHcKIESMwZMgQAKl3/qxbtw6vXr3CihUr8MMPP2DKlClZHjx///03Jk2apFqRtmnTppg1axZevHiBPXv2oF+/fpJXpE0retq3bw8TExPs2LEDhQsXxqBBg+Dt7Y3t27ejYsWKmRY9vXr1Uv1/UlISrl69ilOnTqFChQoZbmuUMpmPu7s7Jk2aBAD4/vvv0aFDBxQoUABXr16FjY1NpvvJncfAgQMxYsQIGBsbo23btli2bBkGDhyI+/fvqxY9y6m2TJgwQfX/sbGxCAgIwL///gszM7MMbcmsoLWxscGhQ4eynA/g4MGDkic3qlGjBrZs2YIaNWqoxrzcuHEDN27cQPPmzfHixQv07dsXS5YskTyNvS6GDBmCWbNmYfbs2TAzM9NrQi8nJyfV1PlSubi4qL3ms2fP4ODggNKlS2f43UgZtD1u3Dj8/PPPOHLkCHr06AE/Pz80bNgQQOYzV8sVQ+62fPjwQTW/RtWqVXHnzh1UrlwZgwYNwqhRo7IdF6JPW+SmzwSH6Qv25s2bY9KkSRg+fDgqVqyYYRXmzNY/kiNGerq+r3LlIefEe7qemx0cHLB79+4sl+/YtWsXateurVd+eaJQiYyMRKtWrVT/bt26NSZMmAB/f3/MnTtX0sCo169fo1GjRqp/N27cGM+ePcOxY8fg5+en1WJv2RU9/fv3z7Lo+XwuD6kznWbmp59+QokSJVC8eHFUqVIFc+bMwbp161CuXDn8+uuvme4ndx7NmzfHb7/9hnz58qFcuXJYv349/Pz80KxZM4wYMSJH2/L06VO1f6cVBml3tkjRp08f9OnTB2XLlkWPHj3UPniEENiyZQs2bdqEZcuWSYoXERGBnj17ZviwmTdvHiIjI7F8+XJs2rRJ43o7GzduVOu5SUpKwubNm1WDNrP7Fv/5RF5CiEw/LLS5c+jevXvw9/fHkydPsGTJEhw/fhzVqlXL8jKXq6urrCfdxMRE7N+/H/Hx8TAxMcG2bdtw5swZlClTRvJ6SLrGkLstJUuWxJs3b/DNN9/AzMwMDx48AJB6h1bavBvZ0ef9kHNm2rp16yIwMBAJCQkoUaIEtm/frjbBYVbc3d1hYGCgNjh06tSpGvPN7HiVI0Z6ur6vcuWR3ezU8fHx2bYhja7n5n79+qFLly4oUqQIBg8erDZoPG319N9//x2bNm2SnIsmeWIeFQsLC5w9e1ZttLOtrS3Gjh2rNlZFlxgzZ85E27Zttcqndu3aOHz4sGoUdHJyMmrXro1ixYph8eLFOq1wqw9vb2/06tXri81umWbYsGHw9PTUa8n6L92WLVu2YN68eShatCisrKxQtGhRvHv3Djdu3EBsbCxGjhwpeWFDW1tb7Nu3T211WiB1xl9XV1dcu3YN4eHhaN++vdokg9pMJZ/ZGKl9+/ZJ/sCROpHXrVu30L17d9jY2ODatWs4cuQI1qxZg/3792PFihVo0qSJ5Lz10bhxY6xYsULnRRrliiGHyZMn4969e5gzZw5CQ0Mxe/ZsLFmyBIcPH8bff/+NwMDAbGPo0xYLCwuUK1dOrSh//vw5ypQpo/r2n5KSgoiIiGw/3PWZ4FCbMQ6ZTdooR4z0dH1f5chD7tmp9Tk3Hz16FBMmTEB8fDwqVaqkOieGhISgYMGCmDp1qtafoZ/LEz0qmWnQoIHeMXT5405MTFS7ZzxfvnzInz8/Jk2alOtFCpA6u6TUgXc56fz583oPLvzSbXF3d4e9vT1+++033L59GyEhIShZsiR+/PFHdOrUSas/9MKFC+Px48cZCpXg4GBVb0lsbGyG+VXkuH2+U6dOesf4nK+vL/r16wdPT0/VoGNvb28UKlQIy5Yty7VCxdjYWPLswDkZQw7jxo2Dl5cXLl68iB49emDXrl346aefYGRkJHkAuj5tkWNV3TTh4eE6z6WhlBWx09P1fZUjDynFhzb0OTe3bNkSdnZ2OHDgAG7fvo13797B0tISPXv2RKtWrWRZ9uLL/yXmoM+v92VHzhVpNflS386aNGmCrVu3YtiwYV90untXV1f4+vpi6NChqFixok6r4SqhLRYWFqrLTAkJCap2aHsHRadOnfDrr78iKioK1tbWSElJwY0bN7B06VJ06NABb9++xfz58zNcp54wYQImTZqkuKULbt26pbELu2fPnti9e3eu5eHq6goPDw906NABFStWzFDoSbkULEcMORQtWhQrV65U/Xvt2rW4fv06vv32W3z99deSYujTlhUrVmSYR0VXuk5wqFRf8hjp1asXli9fLtvdQvqem0uXLo1+/fpBCIG3b9+qxoPevHkTRYsW1fqz+HN55tJP//791a7Zr1mzBt26dcsw0VJm3xAsLCzQunVrtary4MGDcHFx0XpFWgsLC/z7779qg3dtbW1x4MAByRMBycnd3V01qVipUqUyVM5SBvXJoWXLlggLC8u0+JNyXVgpbYmKisKoUaNga2urmq24QYMGsLCwwKJFiyRN8JWSkgIfHx/s2LED8fHxEEKgQIECqkmXTp48ifXr12PhwoVqJ/EaNWrI9uEhJ0dHR6xduxa1a9dWO94vXLgAT09P1V0eOS2rSwtSxx/IEUMOnz59wvTp02FmZoZBgwYBSL3017BhQ/z666+SPlD0aYumS+K6kms5AKX4kseInL8XQJ5zc1hYGAYMGIBmzZph3LhxAID69eujdOnSqnGEusoTPSrffPMNjhw5orbtq6++yvChZWBgkGmhYm9vj1evXqlts7W1xdu3b/H27Vutc8puoFOa3FjZ0sHB4YtccvqcLmt5fE4pbZk1axbi4uLUpspet24dpk2bhnnz5mH27NnZxjA0NMT48eMxcuRIPHr0CPny5YOZmZnqm1nz5s3RvHnzDPsp9btF8+bNsXjxYrU5Ux49eoRZs2ahadOmuZaHHLNTyxFDDnPnzsXly5fVxglNmDABPj4+WLRoEcaPH59tDKW0JTfXFMoNSnlf5SDHuXn27NmoWLGi2qX5w4cPY/z48ZgzZw6WLl2qc+w80aOiNHIPdNLkSywoqOQ85BIREYGyZctm+zwHBwf4+/tn+FZ169YtDBw4MEd7DzT12ClBTEwMPDw8cPPmTaSkpKBIkSKIiYmBhYUF/Pz8sl1ELU1OLVwJSP/9yhVD37Y0atQIy5YtyzDR4KVLl/DLL7/ovahpdm2xsLDA5MmTJV1mzK3LYf8FchxnWbGwsMDevXsljf/IrUtqdevWxe7du1G5cmW17Q8fPkTPnj1x8eJFnWPniR4VpZFzoJMci/ABqdV/+hjpT5je3t65loccq43q25bw8HDMmzdPLY+0GFFRUbhz5062MZKTkzX2bBgbGyMuLk5SO/SRNl9DdqT+XuRY1dbAwAA7d+7EuXPncOfOHaSkpKB69epo3LhxhjlEMiPHwpVy/H7liCFHW2JjYzWOQyhZsqTk9ZP0bYuUvykp6+PEx8dj165dGv/+b926JekOpjRKWB1bjmNEnzx+/PHHLONqe0lN3/fDyMgIHz58yLA9Li5O715gFioKJ8cifH5+fqo7BNLfv29gYJBhcb2czEOO1UblaMuMGTMQEhKCH374AX5+fujXrx+ePHmCY8eOYcaMGZJi2NvbY+HChVi0aJHq22ZMTAyWLFkiabIofU2YMEHv2R7TyLWqbceOHbF48WI4OjrC0dFRp1zkWLhSjt+vHDHkaIuNjQ3Wr1+PWbNmqYo9IQT8/f0lT6Klb1vkGgshx3IAgHJWx5bjGNEnj6VLl+q82KWceaRxcnKCt7c3Fi5cqJo+Ijw8HHPmzEHjxo31S1CvlYIox8mxCF+zZs2Er6+v+PTpk3B0dBQRERHi3r17ok2bNsLPzy/X8nBychL+/v6q/3/27Jl4+/at6NGjh1i8eHGutcXOzk6cP39eCCFEhw4dVO1auHChGDJkiKQYoaGholGjRsLW1la4uroKV1dXYWtrK5ydncWjR48kxdCVpgXJ9NGqVSvh5eUlgoODhb29vQgKChJ//fWXcHJyEvv375ccp2HDhqpF53Qlx8KVcvx+5YghR1tu3LghbGxshLOzsxg+fLgYPny4cHFxEXZ2duL69es53hYLCwvZjjVHR0dx8OBBIYQQzZs3F48ePRIJCQli6NChYubMmZLjyHEekSOGHMeIrnnIfQ6Q4/14/fq1aNeunbCwsBD16tUT9erVExYWFqJz587i5cuXeuWXJ9b6ycs0LcIHpC61LnUwV0REBH766Sfkz58fFhYWCAoKgrm5Oby8vLBnz55cy+PNmzeqycrMzc1x8+ZNFC9eHJ6enjh8+HCutSUhIUFV8VeqVAn3798HkNojcOPGDUkxKlSogMOHD2PcuHGwtbWFvb09JkyYgMOHD2e4RitVVFQU/vzzT4SHh2f5PDlvmQdSv/V4eHigSpUqMDc3R1RUFFxcXDBp0iRJa1ul6dWrF4YPH45t27bhn3/+waVLl9R+pNC0OBqQevfAo0ePJMWQ4/crRww52mJlZYWDBw+iTZs2SEhIQEpKCtq2bYsjR47A2to6x9siZBzCqGk5AGNjYwwaNAgnTpyQHEeO84gcMeQ4RuTIQw5y5FGqVCkEBARg7dq1GDRoEIYOHYoNGzbgt99+03tBW176Ubi0Rfjatm2r8yJ8BQsWVF13TFvls3nz5qhSpYrkWRLlyEOO1UblaMu3336LBw8eoFy5cqhUqZLqGm5KSgpiY2MlxQCAIkWKoFu3bpKf/7kHDx5g+PDh8Pb2hrm5Odq3b4/Xr1/DxMQEa9euzXSNDTk/PAD5VrVduHAhAGDmzJkZHpN6rTxtcTR3d3fV4mi9e/fWauFKOX6/csSQoy0A8N133+GXX37Rap/09GmLq6ur3pM0ppFjOQBAOatjy3GM6JrHN998I3ncV07m8bl8+fKhcePG+l/q+UyeLFRu3ryJuXPnwtDQEOPGjdNporWTJ09i6tSpMDQ0xJQpU+Ds7JwDmWZP10X40rOzs8PatWsxZcoUWFpaYs+ePRg4cCCuXLmS4XbpnMwjbbXRmTNnwtraGmvWrEGPHj20Wm1Ujra4urpi3LhxmD9/Ppo2bYpevXrhm2++wdmzZ7NcUDD9wobZkTIGYd68eahYsSIqV66MP/74A0lJSTh16hR27tyJxYsXq1YA/5zct0WmrWo7evRoVK9eHadOnUL//v21XtVWjjls5Fi4Utffr9wx5GiLHPRpi5zTJzg5OWH69OmYM2cO6tSpg9mzZ6NFixY4fPiwVnfIyHEekSOGHMeIrnnIMTu1HHmkX7g2O1IWrs2UXheOFMrFxUVYWFgIc3Nz0axZM51iNGjQQBWjYcOGMmeonWPHjqnGhBw4cEC0a9dODBw4UISHh0va//79+6Jhw4Zi3bp1IiYmRjg7O4s6deoIS0tLsWDBglzL4/nz56JDhw7Cz89PxMfHC1dXV2FhYSEsLCzEpk2bcq0tKSkpws/PT5w4cUIIIcSaNWuEnZ2daNOmjbhz506m+5mbm4saNWqIH3/8Ubi5uWX5I4Wtra1qTMfgwYPFuHHjhBBChIWFCWtra0kx5HDp0iVhbW0tNmzYIKKiokS9evVE69atha2trZg0aZLW8WJjY8WtW7fE3bt3xadPn7TeP21fIYS4cOGCGDx4sJg+fbp4+/atpP11/f3KHUOOtshBrrbo6/379+Lnn38WW7duFSkpKcLDw0OYm5uLmjVrij/++ENyHDnOI3LEkON9lSMPOeiaR9o50c3NTXh5eWX5o488Wag4OzsLc3NzYW5uLlxcXHSK0bZtW1WMtm3bypyhdDNnzhShoaF6x4mLixNv3rwRQgjx6tUr4efnJ44cOZLreQghVB9eHz9+FEePHlUNQpNK37asX79eREREaPWaQqSeiDp27ChsbGyEp6enOHbsmEhISNA6Tpo6deqIsLAwkZiYKOzs7ERAQIAQQoi7d+8KBwcHnePqIiIiQoSFhQkhhAgODhYzZ84U69evF/Hx8ZJjJCQkiGnTponatWurinwbGxuxcOFCyTGGDh2q94BcpchLbckJKSkp4vbt2yIyMlKr/dLOQ/qcR+SIIQel5JFG2zz++OMPMXToUGFlZSW6dOkiNm3apPXvU4o8OeHbtWvXVLewjhs3TjWASxshISFYtmwZAGDo0KE6D5DUV506dfD777/ju+++0ztWSEgIHjx4AENDQ9SsWVOrKY3lyiMlJQXnzp1Ty0PqbcXp6dOWunXrYu/evahYsaLWr5v22ocPH8aRI0cQERGB5s2bo23btnB0dNTqurGHhwfKli2LkiVLYuPGjTh9+jQSExPx66+/wtDQEKtXr9YpP23ps6ptevPmzcP+/fsxcuRI2NraIiUlBVevXsWyZcvQp08fDB48ONsYdevWxf79+/U+zq5fv44tW7bgwYMHyJcvH2rWrIk+ffqgWrVquRZDrrbIQY73Qw4xMTE4fPiw2t/uDz/8oNU4GCWtjq3v+6qUVboB/c7NMTEx+Ouvv3D48GGcP38e1tbWaNu2LVq2bCl5oses5MlCJS8ZPXo0vv76a70W4YuJicHo0aPxzz//qM070rp1a8yZM0fSeiFy5PHy5Uv0798fDx8+RLFixZCcnIyYmBjY2dlhzZo1kuYFkaMt/fv3R6NGjdC3b1+d2pHegwcPcOTIERw+fBjR0dFo2bIl2rRpI2kuldDQUHh6eiI8PByenp7o0aMHZs6ciZMnT2LdunW5Vhw7ODjgt99+U93BoKsGDRpg1qxZGcZzHT16FLNnz8bJkyezjTFr1iy8evVKr4Ur//77bwwbNky15lBycjKuXbuG+/fvw8/PT9LJV44YcrQFAJ49e4YbN25oHLQuZTZYOdoih0ePHqF3796IjY1FpUqVkJycjNDQUJQpUwb+/v6Sx6m4uLhg+fLlsLS01DkXOWLI8b7KkYcc5Dg3p3n//j2OHj2KP//8E1euXIG9vT3atGmj18zFLFQUTo5F+CZMmIDLly9jypQpat90Z86ciRYtWsDLyytX8hg2bBhevHgBHx8f1Yfww4cPMX78eJibm0sauCdHW0aOHImjR4+iaNGiMDMzy9AWXQd97dq1Cz4+PoiNjdV5QbKoqCgUK1ZMq9VG9R08vm7dOpw+fVrvVW3r1KmD3bt3o0qVKmrbHz9+jM6dO+PatWvZxpBjcbR27dqhadOmGe6UmTdvHq5evYpdu3blSgw52rJ7925Mnz5dbbbQNFLvpJKjLXLo27cvjIyM4Ovrq5qoLCoqCr/88gsKFSqE5cuXS4qzbNky7NixQ69Vi+WIIcf7KkcegP43f8hxbv7cx48fERAQgEWLFul1TgRYqChedn+8mS2ymJ69vT1WrlyZ4Vv+v//+izFjxkhal0aOPOzs7LB582bUqlVLbfv169cxcOBASWtByNGW7O7e0eaP8vr16wgMDERgYCBevnwJBwcHtGrVKtvprdPExsbiwIEDePDgAYyMjFCtWjW0bt1aq16rZs2a4fnz5xBC4LvvvsPx48cl7wvIt6rtzJkz8erVK/j6+qp6D4QQmDZtGvLly4cpU6ZkGyMgICDLx9MvzpcZKysrHDhwAGZmZmrbQ0JC0KFDB0lzXMgRQ462uLi4wNnZGZ6enjr3ZMrRFjnY2tpi9+7dGS6L3Lt3Dz169MDVq1clxVHK6thyvK9yrcDcsGFDREVFQQiB0qVL48yZM5L2SyPHuRlILU5OnDiBwMBAnD59GgULFkTz5s3RqlUrnWerBvLo7cl5iZQCIDvpJ55K76uvvkJSUlKu5VGoUCHVNO3pGRsbS74NVo626HvL5bVr1/Dnn38iMDAQr169gr29PQYPHowWLVpIWiQszfPnz+Hm5oY3b96gUqVKSElJwe7du7F69Wps375dcle4SB0Ur/p/bcm1qu27d+9w4sQJuLi4wMrKCkZGRrhz5w6ePXsGa2trtVsZM+u1kvLhnZ0aNWrg3LlzGT5Abt26JXnsgBwx5GjLq1ev0LdvX52LFECetsihdOnSiIiIyPCaMTExWo1jUMrq2HK8r3JNNZA2Rw0Arc5BafQ5N8fGxuLEiRP4888/8c8//6BAgQJo3rw5VqxYgfr162vVO5yZPNejEhYWpve1dqXRdxG+lStX4uzZs1iyZAlKly4NIPXkMH78eNSoUUNyEaJvHr/99hs2b96M+fPno0aNGgCAp0+fYuzYsWjfvj26d++ea23RZRG+WbNm4dixY3j16hXq1KmD1q1bo2XLljqvYjxixAi8fv0aS5cuVbXl9evXGDVqFMqUKYMFCxZIiiPH4HE5yDXPjL6Lo23btg0LFy5Ep06d4ODgACMjIwQFBcHf3x/dunVD1apVVc/NrGtdjhhytKVLly4YMmQImjZtmu1zMyNXW/R17NgxzJs3D15eXqhXr54qj+nTp6NLly5o2bKl6rm6rvibm6tj5/T7qk1b9L35Q9dz85AhQ3D27FkUKFAALi4uaN26NRwdHWFkJG8fSJ4rVOQaRf3p0yf8+eefePToEfr3748HDx6gWrVqOlWr+shuET4pKzX36NEDQUFBMDQ0hJmZGYyMjBASEoLY2Fh88803at39mY01kSOPJk2aqJa8L1SoEIyMjPD+/Xu1RfDSZNblKUdb0hbhS0hIULUl/SJ8mV06sbCwgLGxMerXr68qLDIjpdembt262LhxY4Zj9ebNmxgwYAAuXLiQbQw5yLmqrb6yWxzN19c32xhS717KqmtdjhhytOXo0aOYO3cu+vbti8qVK2cYkCtl0LYcbZFD+jw0XWJM//9Z5aGU1bHleF/lWoFZX7qemy0sLGBkZIRatWplO1hcnwnf8tylH2NjY72rudevX6Nr16548+YNEhIS0KVLF2zcuBG3bt2Cv79/hsGCOWnbtm0YMGAAhg0bBmdnZwQEBODdu3f45Zdf0KxZM0kxGjRogAYNGnzxPEaNGqVXDoA8bVm9ejXatGkDDw8PdO/eHRs3bsTLly8xffp0DB8+PNP90j4UPn36hKdPn+qVA5B6GcvU1DTD9vz580telkAOcq1qK4eDBw9i4sSJ6NWrF5o0aYLt27ejYMGCGDp0KMqXLy8phlIuDcjRlhEjRgBI7c37nNTCQu6ZjHWl18yk6ShldWw53lc58pCDrufmjh07yr72mEayz8zyhS1dulQ4OjqKuXPnih07doiAgAC1Hyl++eUXMWjQIPHx40dhY2MjwsLCxLt370SfPn3EoEGDcrYBn6lZs6ZqUqC+ffuKY8eOCSGE+Oeff0SbNm3+5/KQQ61atVQTcbm5uYlTp04JIYQIDAwUrq6uuZbH4MGDxahRo9QmjUtISBCjRo0S/fr1y7U85FrVVg41a9ZUzXQ8YMAA1UR+ly5dEi1btszVXPQlR1uePn2a5c//IqWsji0HpeShdHmuR2XFihUANA8QNDAwkHSt8Pz581i7dq3at91ixYph/PjxWq1tIAc5FuHLS3nIQa5F+PQ1ZswYdOvWDS1atFCNtg8KCkJsbCy2bt2aa3loWtW2cuXKGDRoEEaNGoXJkyfnWi5yLY6mBHItfAekXoZ7+vQpKlSoACGEVmsw5TWaVi22srJCx44d4e7unmsx5KCUPJROvuUXFeLevXuZ/ki9/hobG4uCBQtqfEzqnSVySVuELy4uDpaWlvj777+RkpKi1SJ8eSkPOaQtwgcA1atXV93SrO0ifPqqUqUKfv/9d7Rp0wYJCQmIj49Hu3bt8Pvvv0u+/h0WFqZ3HunvGNBnVVs5pC2OFhkZCWtra/z555+IiorSarE4pZCjLUII+Pr6wt7eHm3btsWLFy8wfvx4TJo0SeNdGv8L0lYtBqD36tj6xJCDUvJQvC/dpZNTnj17Jk6fPi3i4uLE69evtdp3wIABYvbs2UIIobr0k5CQIEaMGCH69++fE+lmSq4FBfNKHnKQexG+L6lRo0Z6rwsyadIk0blzZ/HgwQNx7Ngx4ezsLG7evCnmzp2r0+WWixcvih07dojo6Gjx8OFDkZiYKHlfpSzSJgc52uLv7y8aNWok9u7dK6ytrUVYWJg4dOiQqFevnlZrKOUlq1evFvXq1RMnT54UN27cENbW1mLdunWiT58+omvXrrkWQw5y5REXFycCAgKEr6+vePv2rbhw4YKIiorKwcxzV54rVOLj48WoUaNUqzqGhYWJoUOHij59+ojo6GhJMYKDg4WDg4Po2LGjqFmzpujXr59o2rSpqFOnjmol1Nyk7yJ8eS0POcixCJ8uHj16pPr/2NhYsWLFCtG/f3/Rq1cv4e7urvYjhbOzs7h9+7ZeOcm1qm10dLTo2rWrMDc3FxYWFiIsLEwMGjRItG7dWutFIJWySFt6ace+tvRpS+vWrcXRo0eFEP//pUkIIY4ePSqcnZ21ziWnj+/coKTVsdO8efNGvH//Xuv95Mjj1atXwsXFRVhbW6s+8wYNGiQaNmyYZxbFzHO3Jy9ZsgR//vknpk2bhsGDB+PAgQN4/vw5JkyYACcnJ0ybNk1SnJcvX2LHjh24c+cOUlJSUK1aNfTo0eOLLTCmzyJ8QOolq7TbzwD1eUPat2+fa3m8ePEC27ZtU5uJtUuXLqpr8bnZlo8fP+LJkyfIly8fKlWqpNXCaFmJj4/PNFbr1q1RrFgx7NixA2PGjMFff/2Fhg0bapzETsotznJNwZ2eEAJ3795F6dKl8fXXX0veb8aMGbhz5w58fHzQvn17HDhwAAkJCRgzZgwqV64seV4YfReulON26w8fPsDHxwdubm6oWrUqPDw8cP78eZiZmWHt2rWS79rRty3W1tY4dOgQvvvuO9ja2uLAgQMoX748wsPD0bp1awQFBUmKs2PHDqxbtw4REREIDAzE+vXrUaZMGQwZMkRyLvrKbHZrAwMDGBsbo2zZsnBycpJlEbvcsnnzZqxdu1Z16bR06dLo379/rt4tN2bMGMTExGDRokVo0KABDhw4gKJFi2LUqFHInz+/5MVNdZlbSip957fJc4NpDx06hGnTpsHBwUG1zcHBAbNmzcK4ceMkFSrDhg2Dp6cnRo4cmYOZSiPHInxnzpzB+PHjERUVleGxAgUKSPpwlyOP+/fvw83NDQUKFICVlRVSUlKwb98+bNu2DTt27JA0m6McbUlMTMTs2bOxd+9eJCYmQggBU1NT9OrVC56entnuDwBv377F6tWrM8x/kJiYiODgYFy+fFnjftu3b4ezszM+ffqEEydOYOHChVqvy5GeHIPHAc2r2mp7G/6JEyewYMECtQ/xKlWqYMqUKRg6dKikGHIsjibH7dZz5szB5cuX0adPHxw7dgyXL1/G/PnzcfjwYcyfP181uVZOt+Xbb79FUFBQhi9Ip0+fllwsHTx4EAsWLEDv3r2xfv16AKm/F19fXxQoUAD9+vWTFEdfly5dwqVLl2BsbIxKlSoBSF2Y89OnTyhXrhzevXuH/PnzY/PmzdmeC5SwOvbOnTvh4+ODHj16wN7eHkIIXLp0CQsXLkThwoUlL6Ohbx5y3PyRNrdU2rgn8dncUlIKlRydE+aL9OPkICsrK9Utgem7Sp88eSJq164tKUadOnVUMb40Ly8v0bx5c3H69GkRHR0t3r9/L06cOCFcXFzEnDlzJMVwdXUVHh4e4tSpU8LGxkYcP35cbN68WdStW1d1m3Fu5NGvXz8xdOhQVVe4EKnd4sOGDRMDBw7MtbbMnTtX1K9fX+zYsUPcu3dP3LlzR2zdulU4ODiIVatWSYoxcuRIUa9ePeHp6Slq1KghxowZI1xdXYW5ublYs2ZNpvuNHj1arFu3TgghRN26dVW3fH9JwcHBomHDhsLGxka4urqK9u3bC2tra9GyZUvx4sULyXGsrKxUf2/p//aCg4OFtbW1pBhDhw4VnTp1UrtE9uDBA+Hq6iq8vLwkxZDjdmtHR0dx9epVIYQQ48ePV01LcP/+fVG3bt1ca8uePXuEg4OD8Pf3F9bW1mLXrl3Cx8dHWFlZie3bt0uK0bFjR7Fv3z4hhPrv5bfffsvVW759fX2Fm5ub2pjBqKgo0a9fP7F06VKRkJAgvLy8sj0X/PXXX6JGjRqiS5cuYs6cOcLb21t07txZ1KpVS1y6dElSLnLE+P7778WWLVsybN+6dato27ZtruVhY2Mjnjx5ovr/tN/v3bt3ha2traQYrVq1El5eXiI4OFjY29uLoKAg8ddffwknJyexf/9+STE8PDxE8+bNha+vr6hZs6ZYsGCBGDZsmDA3Nxe7du2SFCMzea5QcXV1Fbt37xZCqP/Sli9fLnmODG9vbzFy5Ejx4MGDL35Nt27duuLixYsZtp89e1Y4OjpKilG7dm3V2Jru3buLf//9VwiRehLs1q1bruVhY2Mj7t27l2H73bt3RZ06dSTFkKMtjo6O4u+//86wPTAwUDRp0kRSjHr16qmuK7du3VqV0+TJk8XYsWMz3S+tQEpISBATJ04UixYtkvR62dFn8HifPn2Eh4eHePfunWrbmzdvRJ8+fcTQoUMlx+nZs6eqSEv/tzd9+nTRvXt3STFsbW1FUFBQhu3Xrl0T9vb2kmLUrFlTPHv2TAiROldNWtFy8+ZN4eLiIimGtbW1qkhr1KiR8Pf3F0IIERoaKvnkL0dbhBBi586dokmTJsLc3FyYm5sLR0dHsXHjRsn7pw3CFUL99xIWFib5y5sc6tevr3Hcxd27d0X9+vWFEEI8fPgw20Kwbdu2wtfXN8P2uXPnii5dukjKRY4YtWvX1vhFIzQ0VPL7Kkcectz8IcfcUjk5J0yeu/QzfPhweHp6Ijg4GMnJyQgICMCTJ08QGBiIRYsWSYpx6tQphIWFZXotOyenmf6cHIvwpY9RsWJFPHjwAI6Ojqhfv75qWvzcyCOzha+0uc1SjrbEx8drXA+qatWqeP/+vaQYsbGxMDc3BwBUrlwZ9+7dg4WFBdzc3DBw4MBM91u8eDE2bdqE77//HiVLlsTGjRtx+vRpVKpUKcPlMyljVBISEjB+/HgcOXIEhoaGCAwMxLx58xAbG4tly5ZJWszu+vXr2L17N4oVK6baVrJkSYwfPx49evTIdv80o0ePRr9+/XDz5k0kJSVh1apVePToEW7fvo0NGzZIiiHHwpVpt1t/8803Ot9uXaVKFZw8eRLlypXDq1ev4OTkBADYvXu35EticrQFALp27YquXbuqVsctVaqU5H2B1HETT548yXCp6Nq1a1qNQdJXUlKSxvcjPj4enz59ApA6x1HaGInMhIaGonPnzhm2d+3aFdu3b5eUixwxvvnmG9y6dSvDuSQoKCjbJTbkzGP8+PHo2bMnLl68iMTEREybNg2PHz9GdHS05PmY5JhbKifnhMlz86g4Oztj6dKluHXrFvLly4cNGzYgPDwcixYtwvfffy8pxs8//4w5c+Zg9uzZGn9yU69evTBz5ky1E2xMTAwWL14s+fpjtWrV8PfffwNI/VC9cuUKgNQBTrmZR/369TF//ny8e/dOtS0qKgo+Pj6SlwCXoy0dO3bEkiVL1KapF0LA399f8oq3ZcqUUU10Z2Zmhvv37wMATE1Nsyx2HBwcsGrVKpQoUQLXr1+HtbU1ChUqhJcvX+Lp06dqP1KsWrUK9+7dg7+/v2oAr7u7O0JDQyWtJQP8/6q2n9N2VVs7Ozvs3LkTBQsWRMWKFXH9+nWULVsW27ZtUxszlpURI0ZgypQpal8Gnj59Cm9vb8kLTjo5OWH69Ol4+PAh6tSpgz/++ANBQUHYtm2b5AF9I0aMwOzZszF48GC0bdsWZmZmmDNnDjZt2iQ5Dznakl7JkiW1LlKA1A+9GTNmqNa+evz4MXbs2IFZs2ahU6dOWsfTVaNGjTB9+nS1D74nT57A29sbjRo1QnJyMnbs2KH6ApCZtFWLP6fL6tj6xOjWrRumT5+O7du3q+bq2rZtG2bMmKGx+MipPKpUqYIDBw6gadOmaNiwIQwNDdGqVSvs379f8nxMcswtlZNzwuS5u37yGjkW4Tt+/LjqpNmkSRN8//33qF+/Pu7fvw9ra2ssXbo0V/KIiIhAt27d8H/snXlcTdv//19Hcc1Xhnt17yWK1JUmZMgUcZExY1GGMosKjaSSMlQiU6LhXolMEZmveUzGlNtISBkSlaFo/f7od/a345xqnbNXOXx6Ph49HuzOXq19zj57v/d7vd+v19u3bzlr9EePHqFJkyb4559/qDqqWBzLokWLcPLkSfz888/Q1taGoqIiEhMT8ezZM+jo6IhkNsrzJ1m9ejVOnz6NVatWoaioCHZ2dnB3d8fp06eRkpKCQ4cOVToPFgwaNAju7u7o2bOnSFfI1atX4eDggIsXL1Y6RnW42tLCwrjy3bt3cHJygqGhIczNzTFz5kxcvHgRioqKWL16NUxMTKjm8ubNG+Tk5HAX+3v37qFBgwbUGRUWx8IKf39/hIeH49OnTwAARUVFTJw4ES4uLqhVq3qeV3NzczFr1iwkJCSgcePGIIQgPz8fOjo6CAwMxIMHD2BnZ4egoCAYGBiUO468uGOXlJTAx8cHkZGR+PLlCwghUr+vLOYhbP7g40F38+ZNWFtbY8GCBRg9ejQGDx6M5s2b4/nz5xgyZIhEr6mvCQoKQkhICNasWQMlJSVYWlpi/vz5uHz5Mj58+IDdu3fLPL8fIlDZuHEjrKysUK9evXJb4ITUqVMHLVu2hLGxcbnqs0DpDTE0NBQpKSmoU6cO2rdvj3nz5knVWsiCyo6nLBU9pT148AAKCgrQ0NDAjRs3EBoaCmVlZSxYsIDqqZnVPAoLC3Ho0CGkpKSAEIIOHTpg+PDhVEsUQvgei7OzM/XfKm/5paioCGvXroW2tjaGDx8ONzc3REVFoVGjRtiwYUO5GaK4uDjo6elBUVERcXFx5f5doSt1ZZTXvvro0SOMGDEC9+7dq3QMPq62rM4LIQcPHqQer7zs182bN6Gtrc0FnETGdmsAyMrKQlpaGrp27YrCwkKpMhosjoUlHz58QGpqKgghUFVVleo7xwpCCK5fv46kpCTuOywMSt68eQNFRcVKu6HkxR1bSEFBAdLT0wFA6veVxTy6dOmC6Oho3tIZOTk5KCoqQqtWrZCamordu3dDWVkZlpaWVFkVYVa6TZs26NevH7Zt24agoCAoKytjzZo1+PPPP2We2w8RqPTv3x/79++HkpIS+vfvX+Frv3z5gtevX8PQ0BBBQUESXxMREQFvb28MGTIEOjo6+PLlC+Lj43HmzBn4+flhyJAhVXEYVQaLiJsFzs7OcHV1Ffsi5+XlwcXFBZs3b650DHk5Fknk5eWhYcOGFbp3a2ho4PLly2jWrBk0NDQgEAgg6StI64xramoKMzMzjBs3TiRQ2bRpE86cOYMDBw5UOsaNGzcqfY2Qr590v/6+PX/+HLVr10arVq2gqKiIzMxMFBcXQ0tLi9cTlTT06NED27dvR8eOHWUeg0Xtz7ckKyuL+rVVnSX7kZHU1j948GBmmkw0rFy5Ei9fvsS8efOgoqJCJRXxNSyuzVXJD1FMK6xZ+Prf5XHjxg3MmjWr3N+HhITA2dkZkydP5rZNnToV27Ztw4YNG767QOXatWvV+sUpS3x8PJ48eQIAiI6ORseOHcW+DGlpaRLXaSXxLY+logzI13Tt2lXi9jNnznA+L+UtkUkDi+LxitLslVH2+xYWFoZz587Bz8+Pyzy8e/cODg4OUFdXl/lvSEvTpk2Rn5/Pa4yytT+zZ88GUFr74+zsDF9fX2rhyKpCKMTVuXNnib/v37+/2PLS15SXJasq0tPT4enpiVu3bkksqq3OJgUWpKWlYcqUKSgsLETbtm3x5csXREVFYfPmzQgPD+clcCYNsjZ/sLg2R0dHU89TFvFJIT9ERkVacnNzERMTgylTpkj8vba2NmJiYqCioiKyPSMjAyNHjqRKp8sTLCJuWbl16xbXOVJe9qB+/fqYPn061dLAtzyWijIgZanOiz9QKv4VFBQkoqI8Y8YM6uJxVvTs2RMhISFi6ezk5GRYWFjg+vXr1TKP1atXY9euXejbty9UVFTEAlua84xF7Q8LEhISsGzZMiQnJ0vshinvPOOTJasqLCws8Pr1a0ycOFHi8k51LH+xZNq0aVBUVISvry/XMZebm4tFixahQYMGUi2L8qGyJcby3lcW12aWS2gV8UNkVMoivJmUR1JSEpo2bVpukAKUdmacOHFCrM303Llz0NPTYzbX6uJbtlvr6+vj4cOHAEo/m0uXLlG37kniWx4LiwxIWV6+fImAgADuCfPrCwXt3+vTpw/XPvstKS4uxvv378W2v379utKne5acOHECzZo1Q0JCAhISEkR+JxAIqAKVnJwciS3sysrK1C3sLPDx8YGCggKWLl0KHx8fODk5ITMzExEREVizZk25+5UXfBQUFKB27drfJCt59+5dREZG8lqSkydYtfXzRdYAj8W1Wbh/VfPDBSre3t4iF8XPnz/j0aNHiI6OhoODQ7n7lY1+lZWVERAQgISEBOjr60NBQQEPHjzAkSNHYGVlVaXzrwr4+jSwgsVJ/S2PRRo/IhqWLVuGhIQEmJiYUMmpC6mK4nEW9O/fH8uWLYObmxu0tLRACEF8fDxWrFhB3WnDAprl38pQU1PD1atXMW7cOJHtR48eFenEqGoSExMRHh4ObW1tHDhwAOrq6jA3N0fLli0RFRVFvQwdHh6O0NBQ5OTkQCAQ4I8//sDcuXN5peOlRUlJSSr9GHlH2Nb/dRuxtG39LODb/FFdAYes/M8s/Rw7dgx79+5FSEiIxN9XVoQrRCAQMH+yrgxWJnzfeh7v379HWFhYuRmE8lqBqwJCCC5evMiZI7Zr1w49evSAgoJCufvQ6sUAdMeiq6uL7du3S91Jxrp4nBUFBQVYuHAhLl++LNItNHjwYKxZs4Z6mY6FcSVQWlOUlpaGYcOGITs7m2urp+Hs2bOws7PDhAkTEBkZCWtra5HaH9plNb7HoqOjg+PHj0NZWRmLFy+Gvr4+zM3N8eTJE4wfP56qtiswMBAhISGwtLSEjo4OSkpKcPPmTezevRuLFy8WqcWrSoKDgxEfHw9fX19mxchFRUXMln9zc3O5+jEa5KWtn0Xzh6xGnjS1UEL43Df/ZwKVZ8+eYejQobh79+63nopUVGbCd/v2bapxzp8/jx07diA9PR179uzBgQMH0Lp1a4wcObLa5sHCLRjgfyx5eXmwsrLCgwcP0KhRIxBCUFBQgI4dOyI0NBSNGzeWuB+Ltuay9OzZExEREZxBW1UhLB4v7zNi7WqbkZGB5ORkCAQCaGpqUpvnAZKNKxMSEvDhwwdq48qCggJYWVnh7t27EAgEOHnyJFauXInMzEyEhobi119/pZoL39ofFscyYsQIzJw5E8OGDcPmzZvx5MkT+Pj4IDExERYWFpzgYUX07t0bjo6OGDZsmMj2vXv3YsuWLUwyUDRMmzYNN2/exJcvX9CsWTOxAEOaGxlfN2gW7th82vqFsHD6HjBgAKZNmyYWcG7btg0HDx7EsWPHKh1j2bJlFRp5Ojo6StwvMDCQOlCRReRQyA+39COJwsJC7Ny5U+r1t1evXomolwqpznY+f39//Pnnn7CwsMDChQvh6+uLrKwsbNiwgfrGfvnyZcyfPx8mJia4c+cOSkpK8PnzZzg7O4MQQpX+ZTEPFm7BLI5l9erV+Pjxo4hy48OHD7FkyRL4+fnBw8ND4n60x0nLyJEjsX37dnh6elaYyeFLu3btYGtrW+7vWbraAqWqlLIGX2vWrEG3bt3g5+fH1VF8+vQJixcvhq+vL1VWyN/fHwKBAKdOneIyfUuWLMHixYuxZs0a+Pn5Uc2Fb+0Pi2OxsLCAq6srAOCvv/7CyJEjUbduXdy6dQu6urpU88jPz5dYF9K5c2e8fv2a/oB40rlz53K7lKSBhRs0C3dsFhlgFk7fL1++RO/evcW2Dxw4kLqg98yZM/Dx8cGwYcMwcOBArFixAq1atYKdnV2FFic2NjZU4/OGl1OQHNKhQweioaEh9qOpqcmZFVbGuXPnSI8ePcTGEI5dnbAw4ZswYQIJDQ0lhIiakm3bto3a5ZOVsSFft2AWx9KtWzdy/fp1se3Xrl0jPXv2pJ5LTk4OCQwMJPb29uTVq1fk2LFjIk65leHk5ES0tLRIz549yYQJE4iFhYXIDw3lne/CHxpYudqygIVxZb9+/Uh8fDw3nvAcuXXrVoUGmgcPHqT+qa5jIYSQU6dOcU66hw8fJsOHDyczZ86kdni3t7cnK1euFNvu6+tL5s+fTz0PeYGFGzQLd2wWsHD6tra2lujYHhISQiwtLanGYGHkSUjpue3k5EQmTJhAsrOzyc6dOyVea6Xlh8uofF1MC5SagOno6FCnoFeuXAltbW2Ym5ujbt26VTFNaliY8P33338SOwQGDx5MHXGzmMegQYNw4MCBCp/uK4PFsXz+/Flidq158+YoKCigGuPx48cYP348GjZsiJycHNja2iI2NhbOzs4ICwuDjo4O1Thfp+OlRdbi8bLs27cPISEhIqqrSkpKWLJkCaZNmwYbGxtYWVnBzMyM11xpYGFcmZubixYtWohtb9y4scSuJCFOTk5U4wsEAqrMHYtj8fLygqWlJdeBNHz4cAwfPrzS/couUxYXF+Off/7BzZs30blzZ6454NatW2LFwqyhLfwWCASYN28e1ZgZGRkS67q6desGT09PqjHev38PZWVlAKVZ2hkzZgAoXcYuuwRTEbm5uQgODkZKSorEzDtNxuXdu3fQ19cHUJr5TExMhKqqKmbNmgVbW1ssXbpU4n6smz9YGHkmJCTAzMwMurq6SEhIQFFREZKSkuDj44NNmzahb9++VONI4ocLVFiYbL148QJbt26FqqoqgxnxQ2jCZ2FhwZnwTZkyRSoTvkaNGuHFixdi7ZapqakirXVVPQ8WbsEsjqVjx46IjIzkUupCIiMjoampSTXGqlWrYGxsDC8vL+5C4+/vD0dHR/j6+uKff/6pdAwWS0nlne9CkzGauh1WrrYsEBpXbtiwgauJkda4slOnTjh27JiYvEBERESFMt6sOx9YHMvBgweplwDK8rWppfDGXvYY9fX1Oen3quLAgQOYNGkS6tWrV6FKsjSBCgs3aBbu2A4ODrh//z569uwp8wOtrAHC1+9ly5Ytxdrxf/nlFxw5cgR2dnaVzkNo5Onj44POnTvD29sbAwcORGxsLLVwna+vL6ZPnw47OztOxsPLywsNGjRAYGBgTaDC2m+ke/fuePDggVwEKjNnzsSCBQtQu3ZtDBs2DIGBgZg5cyb+++8/dO/enWqM4cOHc87PAoEAhYWFuHDhAlasWIGhQ4dW2zyEbsFAaTAoCyyOxdbWFpaWlrhz5w4XZMTHx+Phw4fcmndl3Lp1CxERESLZDEVFRcydOxfjx4+X/sAYo62tTZ0hELra+vv7cyKHsrjafk1xcTEePnwIVVVVNGjQgGqfxYsXY+LEiTAyMhIzrqR1Lre3t8f06dNx7949fP78GVu2bEFaWhoePHiAHTt2SHUMT548QXJyMn766Se0a9dOKrVRFsfSt29f7Ny5E/Pnz5eqU4YmUK4OpFUNp0HoBi3MGqWnp+PSpUsICAioUB+rLAsWLICNjQ2Ki4tF3LEjIiKwadMmqjHi4+MrNVCsDFkDBNYF0A4ODnBycsKNGzdgbm6OPXv2YNy4cZyRJw0JCQlYvny52PZJkyYhKiqK1/x+iK4fDQ0N1KpVq9KLCG1rcXZ2NsaOHYuePXuiVatWYktJfKqXZYGvCV9xcTGcnJxw9OhRAP+nQtivXz8EBARQPw3wnQcLWB3LvXv3EBISImKOOG3aNGhra1Pt37VrV0REREBdXV1EufTevXuwtraWShmUNYWFhdi4cSNOnjxJdb6zcrV9/vw5XF1dYWtrC3V1dYwdO5bLdIWFhVFnq1gYVz58+BAhISEiHTvTp0+nXpJ7+/YtXFxcRN6/WrVqYdSoUVi+fDm1YBrfY7GwsEBcXBwEAgGaNWsm9ndpO2XkReIAKG1SkCRPIE2TAgs3aL7u2IMHD4afnx8vATtWTt8A2+YPIoORZ48ePbBt2zZ06tRJ5Jp4/fp12NnZ4cqVK1LPQ8gPEai4ubnh1KlTqFevHkxMTGBiYkIt7VveeFFRUVBSUkK9evVEflfdOiosTfgeP36MpKQklJSUQF1dHe3atZNoOV+V8/j48SOOHz+O9PR0TJ8+HcnJyWjfvj2UlJSkGofPsbDAzs4OtWrVwtq1a9G5c2ccPnwYjRo1go2NDZSUlLBhw4ZqmUd5SswCgQAeHh7UNQiEgavtggUL8Pz5c6xbtw5xcXFYsWIFtm/fjgMHDiArK6tcDaOysDBHi46OxtChQ8WWFt+/f4+oqCiqpZQlS5bg/v37cHNz41qLb968CS8vL/Tr1w9ubm6VjlH272ZkZEBBQQFt27aVShW2smwxzUMTK4kDvty6dQvOzs7IzMwU2U4qaeEtDxZu0Hzcsc+cOYOgoCDY2dmhVatWYgESTYDAwun7/PnzcHZ2xps3b0S2S/u+fvjwAcnJyRKDyPK8y8qybNkyZGVlYd26dejbty8OHz6MoqIi2NnZQUtLizqLKIkfIlABSoWtrl27htjYWJw+fRrNmjXjghZh2pUWfX19LFu2TC68J1hYeA8YMAD79+8Xy3rk5ORgxIgRVB4sLObx6tUrTJgwAa9fv0ZRURFOnDiBlStXIiEhAeHh4VRBkKzHwnp5MCcnB5aWlsjPz0deXh5UVVXx7NkzNGnSBDt37mSuYlseBw4c4F08zgoDAwOEh4dDU1MTtra2IIRg/fr1yMjIgKmpabk3xLLmaOUFKmlpadi5c2e5Y+Tm5nL1NAMGDMC+ffvEgt/ExETY29tTeXV17twZQUFBYkWbly9fhr29PdV3pri4GN7e3ti/fz9XA1S3bl1YWlpS1Q2wwtTUFM2aNStXWsDY2Lja5lG/fn1MmzZNYtBbUbaOtRs0C3fs06dPw9HRUaxAW5oAgYXT96BBg6Cqqlpu8wfN0tSZM2fg5OSEgoICsSCF9lgKCgpgbW2Ne/fuoaSkBI0aNUJBQQE0NDQQGhrKK+v+Q9SoAKVdKYaGhjA0NIS7uzsuXbqEY8eOYcyYMWjdujWGDh0KExMTqpO4Xr16XO3Ct2b06NHw9fWV2oQvNjaWM0579uwZPD09xZ7knj17Rp2BkHUeZVm1ahXat2+PI0eOoGfPngBKNU1sbW2xdu1abN26tcqO5evis+fPn6N27dpo1aoVFBUVkZmZieLiYmhpaVEFKr/++iuio6Nx5MgRLrNjZmaGkSNH8lbdrMwZtywsisdZudoWFxfj559/BiEEV69ehb29PQCgpKSkQkVYgUDA1dMIBAJ4eXmJvaZ+/foVdjBcuHABTk5O3FLg2LFjxV5DCKEu6Ktdu7bEz7Fp06bURcX+/v44fvw4XFxcoKenh5KSEty6dQuBgYGoV68e58pcGUIX54yMDKxfvx6nT59G+/btqWsjUlNT4e3tDQ0NDWhqaqJ+/fqwsLBA/fr1sWPHjmoLVFJSUhAdHS1TVpa1GzQLd2xvb290794d48ePF8u808LC6ZtF84evry969OiBuXPnSmXnUZaGDRti9+7duHr1Krfkqq6ujt69e1Mvx5XHDxOolKV27dowMjKCkZERioqKsH//fvj5+cHf35/qJDY3N0dgYCBWrFgh8wnICllN+PT09LB7924uOs7KyhLx2RAIBKhfvz51oRQLM8Br165h27ZtIu/pzz//DEdHxwrl6VkcS9nis7CwMJw7dw5+fn5cqvfdu3dwcHCAurp6pccB/N+T/9dLK3l5eZg7dy7VEoWszriss0PLly/H69evsXjxYpkvUgDw559/Yt++fWjRogXevXuHvn37oqioCMHBwRUuxbIwRxs1ahR+//13lJSUYMqUKdiwYYNIF5jwHKH9fC0tLeHt7Y2AgABOVv39+/dYt24dteHcoUOH4O3tLSJwqKmpiRYtWsDb25sqUGHR8slCWoAFysrKKCwslGlf1vYaR48ehbu7O7p168Zt69atG1auXAkHBweqQCU3NxdOTk68Mpd9+vTBrFmzeDl9s2j+ePr0KYKCgiQacdJiaWmJjRs3okePHiJdba9fv4aVlRWio6NlHvuHDFSA0ijz5MmTOH78OOLj46GiogILCwuqfW/evIm4uDgcP34czZo1E3sarM4aFVlN+JSVlbkvt4WFBTZu3EjdvstyHmUpLCws1xjv8+fP5e7H+li2bdsmphvSuHFj2Nvbw8LCgssEfE3ZJYro6Gh07NhR4hIFjf8KILsz7saNG6mLx2kudKxcbR0dHTF79my8efMGM2bMQMuWLeHu7o4zZ85Qd1PxaREWrqP//fff0NfXp/b1EfL1U/uzZ8/Qv39/qKioQEFBARkZGfj06RO1e/KnT58kXvjbtWtHPQaLlk8W0gIsmDNnDry9veHh4QFVVVWpDApZu0GzcMfu1q0bbt++zStQYeH07e7ujrFjx+LixYsyN3+0adMG2dnZUgcq58+fx/379wGUKlxv3bpV7Br/+PFjPHv2TKpxv+aHClRycnJw4sQJHD9+nDuBhgwZgqVLl0pVXMtK6pkFLOpkhK2KfArHWMyja9euiIyMFBOj2rJlC/VSG4tjKS4ulij89fr16wrTyyyWKMoiqzPu+PHjcerUKQBgUjzOytVWW1sbly5dQkFBAeeXNGXKFNja2lKvT7MwrjQwMJC4XNKuXTuRJ+ivGT16NNNi7FGjRmH9+vXw9fUVKZYMDw+n/j6xaPlkIS3Agi1btiArK6tcsTxpimn5ukGzcMfu0qULli9fjnPnzqF169ZigTFNgMCizXjz5s149eoVLl68KLH5g2YeixcvxooVK2BnZwdVVVWxpf3ySiZ+//13eHp6ct/T2NhYkWUeYSaTVnyyPH6IYtqwsDCcOHECd+/exW+//YYhQ4Zg8ODBvJ8Q5QW+JnzFxcVwcHDgVTjGYh5paWmYNGkSlJWVkZKSgm7duiE9PR35+fnYuXMn1c2WxbE4OjoiISEBbm5u0NLSAiEE8fHxWLFiBfr27Ytly5ZVOoaGhgYuX74sVYD0NXyccVkWj7N0tSUyuFKXhYVxZdnlktu3b+PYsWMICgpCdHQ0b4VMaVi0aBFOnjyJn3/+Gdra2lBUVERiYiKePXsGHR0dkZtBeQEYq5ZPeZAWOHjwYIW/pw3eWLhBs3DHrsi5XNruUD5O3yyaPzp27Mi1rksyWKQJIsu6urPmh8iorFq1CrVr10bv3r3RqVMnAKUn4tmzZ8VeS6uBkpCQgB07dohccKdMmUKts8EKFiZ8mzdv5l04xmIeampqOHz4MHbt2oVffvkFJSUlGDJkCMzNzam7iVgcy7Jly7Bw4UJMmTJFxOV08ODB5bqEfg0LFVMVFRXEx8dj2LBhUFVV5VKo+fn5EvUQysKyePzKlSu4efMmDAwMeLnayupKXRYWxpVr165lopD58OFDkfqhstojkrJpX1OnTh0xi4SuXbtStXoKMTY2RkBAANatW8dtS0tLw8qVK9GvXz/qcYQPbUVFRTAwMOAlUiYrrLooo6KisGLFCpH31tjYGGpqatiyZQtVoGJkZIQNGzYgKCgICgoK2LFjB9q3b08dpABssiFfO30bGhrC19dXKqdvFs0fISEhvLOJX78feXl5aNiwodRLsJL4ITIqFUW2ZaGNcm/cuIHp06dDXV0dXbp04ar1k5OTER4eXq3LQhMnTsTgwYMxdepUkSeq4OBgHD58GDExMZWOMWjQILi7u6Nnz54iY1y9ehUODg5cR01Vz4MFLI5FSHp6OpKTk1GrVi1oampSrTWnp6dj7969mDFjBpo2bYqCggK4ubnh3LlzaN68OebNm0edYdq7dy+8vLywcuVKaGpqYuTIkRg3bhxu3bqF5s2bS62iCkCkeLywsJDqSYiFVgdQWmB87949+Pn5iblS6+vrl+tKXZauXbti//79vIr6unTpgr1796Jt27Yi50hmZiZGjhxJpRsSGhrKFZoKO4mE/+7SpUu1Kb+yavmMjIxEcHAwsrOzceLECezYsQO//PIL5s6dW7UHUIaSkhLExMRIXNYTCATUOhu6uro4ePCgmEN3eno6Ro8ejbt37zKdd2XwyYZ4enoiMTERa9euxYgRIzjtkcWLF0NVVZXK6XvTpk3IyMj4Zs0f169fR0REBJYuXYpffvkFL168wIIFC3D37l3UrVsXM2bM4H2e/RAZFdZywuvWrcOYMWPELqweHh4ICAioVnlqFiZ8LArHWMyDhYkXi2MRoqqqKlIpX1lbcFJSEszNzdGkSRPuqc3NzQ3Hjx/H1KlT0ahRI3h6eqJRo0ZUwfO4ceOgpKSEJk2aQE1NDT4+PggODoaysjLV8lNZ+BSPs1JaPnv2LDZs2CCyhKehoYGlS5fC3t6eKlBhYVxZu3ZtieaSz58/p76QR0REYMaMGZg/fz6MjIxw8OBB5OXlYdGiRRgwYAD1XFJSUso932mykAKBgHfLZ0xMDPz8/DBlyhSuqFlVVRW+vr6oW7cupk+fTn08fPD29kZERAQ0NDR4LTEOGDAAkZGRcHFxEdl+8OBBzrNHEtJ0ndB8NiyyIWfPnoWfn5/IQ5Kamhrc3NyovY9kbf4Qduk0bty4wq5LoPxr8/Xr1zF9+nRuJQMofWBJTEzE0qVL0ahRI6xZswYtW7bkJaXwQwQqrElMTJSY2p08ebJEfYaqhIUJH4vCMRbzYGHixeJYZG0L3rx5M3r37g1/f38oKioiJycHx44dw6hRo7hiscaNGyMkJIQqUJHVGVcIn+LxqnC1ZeFKzcK4ksVySXZ2NsaNG4effvoJGhoauH//PoyNjeHk5IRVq1ZRqdtu3boVAQEBEn9H68A8atQoBAQEiLV8SkNISAhcXV0xevRoTh3Y0tIS9evXR3BwcLUFKjExMfD29pZpCYiFGzRrd2x/f38IBAKcOnWKsyFYsmQJFi9ejDVr1lBlQ2R1+i6LrM0fv//+OxfsyipQuW3bNowbN45bcn/y5AkuX76MyZMnY9KkSQBK6+kiIiJqAhXWKCkpickRA6UnlSxCZ3xgYcJnY2MDOzs7pKam4suXLzh48KBI4Vh1zYOFiReLY5G1LfjmzZvYtm0b98QiLGQcPHgw95rOnTtTXaAA2Z1xJRWPu7q6SlU8XhWutixcqVkYVzo6OsLa2hrdu3dHSUkJTE1NueUS2u6D+vXrc8WFrVu3RmpqKlcHQdtq+ffff2Pu3LmYNWuW1O2zQj58+CBzUC8kIyNDTGEXKG2v9fT05DW2NBQVFUlVn1MWFm7QrN2xWWRDZHX6LousGdGyQb+sTu7379/HkiVLuP9fuXIFAoEAAwcO5LZpa2vzPs9qAhUJGBkZYcWKFfD39+dUFFNTU+Hl5UVdD8MKW1tbZGdncxH+6NGjORM+2vQ4i8IxFvP49ddfqV10y4PFscjaFpyfny+SMbh58yYUFBRELr4NGjSgVi6V1RmXRfF4VbjasnClZrGsymK5RF9fH9u2bYObmxsnZDdz5kzEx8dTn8PFxcUYOXKkzEEKUJr5sLGxwaRJk9C6dWuxoIXmxt+8eXNkZGSI1WDdvn2b2k+GBb1798b58+e5J21pqKrldj7u2CyyIaycvlk0f8iyTPnhwweRIvm4uDjUqVOHK2IHSgv/+Rbq1gQqErC1tcW0adMwbNgwrkUyPz9fqicyVtSuXRt+fn5YsGCBRBM+Gnbs2IFhw4YhIiLim85jyZIl8PDw4GXixeJYSkpKuAuMUKmzS5cuGDBgAIKCgsrd79dff8XTp0+hrKwMoPTpQUdHR0Tg6M6dO9QXu5cvXyI2Nhbh4eFSOeMK3yfhhaU8aDUUhPB1tdXT00NERARCQkJw6dIlzi1YaOxHC1/jShbLJcIbSEREBMzMzLB161YYGBjgw4cP1Do5I0eORFRUlMgTp7T4+/sDAFasWCH2O9q20QkTJsDT05NbPklPT8elS5cQEBCAKVOmyDw3adHV1cXatWtx9epVqKmpiWn3SHOu8nWDZuGOzSIboq+vj927dyMkJAQqKiq4c+cO2rdvDxcXF2qn77LNH4aGhlzzh7m5OXXzh6zLlH/88QdSU1Px22+/4cuXL7hy5Qq6dOkisvJw7do1Xh5xQE2gIpGff/4Z+/btw8WLF0Xs2Xv16sXbs0BahCZ8KioqUFFR4bZLYyi4ZcsW3n4eLOZBCEFaWprYmri0Hh18j0XWtuCBAwfCz88P7u7uOH/+PJ4/f45Zs2Zxv8/JyUFgYCB1sWW3bt0qFCArD9bF4yxdbbW1tcu94NHwtXHluHHjEBISIpVxJYvlEnV1dZw+fRrv379HgwYNEBUVhSNHjqBly5YiS30VYW1tjZEjRyI2NhZ//PGH2FMlTfH4qVOneF9zZsyYgfz8fNjb2+PTp0+YNWsWFBUVMXHiRGq/IRbs3LkTTZs2RWJiIhITE0V+J01QXZkbNE2g4uXlhbS0NISEhIi5Y69evZrKHZtFNkTo9P31krNQ+JBmaZhF84esy5QmJiZYtWoViouLcenSJeTm5mLMmDHc7+/du4eNGzfCzMyMekxJ/BDtyT8aZU34Dh48iKFDh0o04UtOTsa1a9cqHc/Kygq9evXCtGnTvuk8+vfvD01NzXJNvGhqV2Q9lrLI2hacn5+P2bNnIz4+njueTZs2QSAQYMuWLdi8eTNUVFSwa9cuKs0QeYGPq+2nT5+4c6Ki9lOAbh188eLFKCgowLp169CzZ08cPnwYjRs3hq2tLX766adyjSvLsm3bNkRHR/NaLhHCRwF56tSpSEpKQvfu3SVaR9C8H2PHjoWXlxcv5WEhHz58QGpqKgghUFVV5S3u961g4QbNwh0bKK17CQkJ4ZYY27dvj+nTp1eYDWHt9K2jo4MDBw6IBfFpaWkYO3YsVTt+165dsW/fPpGHUBqKioqwdOlSxMTEoFatWjA3N+dq1FatWoWwsDAYGBggODiY1xJoTUbl/1NZe1ZZWBtkfQ1rQ8GGDRtizZo12Lp1K9q0aSN2wpR3PKznwcLES9ZjKUtFbcEVPUk1atQIERERSElJQa1atUQuDO3atYODgwNMTU2lqsPhKyrGAj6utoaGhujbty/8/PyYtJ/KalxZFhbLJUVFRXB0dOSlgHz79m38/fff1Cl8STx58qRcfyxpePv2LR49esRlDMu+B7IWuH4rWLhBs3DHBkrb7ysqwJcEa6dvFs0fsi5T1qlTB2vWrIGbmxsEAoHIta9///4wMDCAkZFRTY0KKyS1Z8XExKB///68C0ClhbUJX/369ak9MKpyHixMvGQ9lq8pezETtgUXFxfjzp07lbbqtW/fXmxb2Sp3WioTFasu+Ljanj17FoaGhvj48SOv9lMhshpXloXFcsmWLVt4KyArKyvz9lCytraGq6srrKysJGaHaOqH9u/fDw8PD4lZLmmX9vigoaFR4Q2Ldh4s3KBldccWuqY3bNhQpGVaEuVlzFg7fbNo/uC7TCkp6GOpflwTqPx/JJ1Ux48fx5IlS3jdWPnCwoTP0NAQvXv35hVksJgHCxMvFseiqakJGxsbMbXEt2/fwtLSstou3KxExfjCx9V2/fr1mDx5MurWrcur/VQIC+NKOzs73sslR48ehbu7u0gNUbdu3bBy5Uo4ODhQBSqLFy+Gm5sbbG1tJZ7vNEFGQEAAvnz5gri4OJk9WDZs2ICRI0di6tSpvGt3+CCUNhDy+fNnPHr0CNHR0VI1KcjqBs3CHfvp06dcxuXrlmlp4Ov0XRYWzR9CjRltbW0mGTzW1AQqcg4LEz5PT0/s2rWL182dxTwiIyOhpKSEO3fu4M6dOyK/oy2mY3EshBAEBwcjPT0d3t7eIunR6izZYiEqxgI+rrYxMTHw8fEBIYRX+6kQR0dHTJo0CTdu3EBxcTHc3d1FjCtpYLFcwkIBeeHChfjy5Qusra1lDjJCQ0PpJ10O7969g5WVldRmlawpT/BLS0sLe/fupbaekNUNmoU7dtnC1IqKVF++fEk1nqxO32Vh0fzBYpmyKqkJVOQcFiZ8bdq0QXJyMrVya1XNg0W3CotjEQgECA4OhouLCywtLbF582Yu/cv3QiYNLETFWDBnzhyZ9122bBnWr18PbW1tJu2nLIwrWSyXsFBAZhFksEifGxsb4/z58988UCkPbW1tatVYoPR49u7dCwUFBSgrK2P79u0IDQ3FgAEDsGDBgnL3s7GxYTFdDk1NTVy+fJm7dgh5+vQphg8fTlXEWtbpOyEhAUVFRUhKSoKPj49UTt+1atVC3759ZXYGZ7FMWZXUdP1UQFlDs28FCxM+Nzc37Nu3DxoaGhILUGm6D2SdR1ZWFpSVlSEQCJCVlVXh36C5gbA4Fg0NDVy+fBm1atXCvHnzkJ2djaCgIDRr1gyGhoZUT7rv3r3j3dkze/ZsKCkpwc3NDTExMdi3bx92796N2NhYrFq1CpcuXeI1fnXD0vaeDyws68+ePQs7OztMmDABkZGRsLa2FlFAphUXFFJUVCSTqvWnT5+wZ88eJCcnc8ckHC8hIQEnTpyodIwXL15g+PDhUFNTQ+vWrcWCcVlVSVlQWFiIjRs34uTJkzKdH7K+r4Bshez79u3D4cOHAZTql+jp6Ynd4F+8eIEPHz7g/Pnzlc5hypQp0NXV5Zy+hddVHx8fxMfHY9++fRL3Y938cfr0aWzdupXXMmVaWppMBfk01GRU5BwWKeiMjAxO9Ic2JclqHgMGDMClS5fQrFkzsTViIdLcQFgci3AOSkpKCAsLg4uLCyZOnChVl02vXr0wYMAAmJqaolevXjJlYliIirGAlasti4wZC+NKFpkMFgrIgLhr8fbt2/Hrr79Su8l6eXkhOjoaf/75J+7fvw89PT08fvwYr1+/pl4a9PLyQmFhIYqKiqo1U/c15RXTCgQCKsPKsvB1g5a1kN3Y2JiTJwCAli1bimXs1NXVqQv+Hzx4IDEbPWnSJERFRZW7H+vmDxbLlCYmJtDW1oapqSlMTEwkSh3ISk2g8v+RVMFdXFyMtWvXin3w1fkEwiIFzUJ+WtZ5hIeHc/UkLNq6WRxL2RtxnTp14Ovri40bN2Lx4sXUY2zatAnR0dGwsbFB48aNMXLkSJiamopZz1cEC1ExFvBpK2adMWNhXMmq26BPnz4VuvFWhiTXYjU1Nalci8+cOQMfHx8MGzYMAwcOxIoVK9CqVSvY2dmhuLiYah4XLlzAli1b0Lt3b5mPhQWSrpu1a9eGjo6OVFlrFm7QshayN2nSROQ4hB1AsiKr0zfr5g8WwX1sbCyio6OxdetW+Pj4cA9yhoaGNe3JrJBUwa2np4c3b95I7FGvLliY8AH8JadlnUfZm0ZmZiaGDBnCu92b77HMnz9frNhy/vz5UFFRqfAppiy9e/dG7969UVBQgGPHjuHw4cMICQlBp06dMGbMGAwZMoTqAla3bl1kZ2fj5s2bqFWrFv766y9Oor+64NNWzDpjxsK4ksVyCQCcO3cOycnJEjM7NPU2LFyL3717x3U7tWvXDomJiVBVVcWsWbNga2uLpUuXVjqGkpIStQ1CVfLgwQMRt3BZYfG+sihkZ/HAysLpmwUsgntVVVXY29vDzs4OV69eRUxMDOzt7VGvXj2MGjUKY8aMkfmzr6lR+Q64cOECgoKCRNQPZ8yYQZ2Crkxymqboi8U89PX1QQjBwIEDYWpqWmGFfnmwOhbW5ObmIioqClu3bsXHjx9Rr149jBkzBra2tuUGLAUFBbC3t8fFixdFUs9Dhw6Fj49PtTl16+npISYmRiY/jhs3bnDtlTdu3KjwtTQXw8GDB8PPz08qJ+ivWbZsWYXLJY6OjpWOIewuk+TBRFtvo6uri5iYGLRq1Uqk/uDJkycwMTGhUh3t06cPNm3ahE6dOmH16tWoXbs27O3t8fTpU5iYmODu3buVjrFnzx6cOHECy5YtQ+vWraGgoFDpPlVB586dcejQId6+LyzeVwMDA+zZswdt27aFu7s7WrZsidmzZ+P58+cYOnRotV1HCgoKYG1tjXv37qGkpASNGjXinL5DQ0PRpEkT6rH41FSyCu7LkpiYiNjYWOzcuROEEHz+/Bm9e/fG8uXLpX4Yq8moyDksTPj8/f3x559/lis5XV3zuHLlCk6dOoUjR47A2toav/zyC7dkQvvlkvVYynva/xqBQIDTp09TzaWoqAinT59GdHQ0rly5ghYtWmDq1KkwNTXF8+fP4ePjgwULFnBPfV+zcuVKZGRkYNu2bdDT0+PMxITiTdJ0QvCBT1tx2eCDxVMZC+NKFsslQh2ViRMnynQcABvX4j59+sDDwwM+Pj7o3LkzvL29MXDgQMTGxlKbX+7YsQNZWVkYOnSoxN9Xl26QrG7hX8PifWXhjs0CFk7fLGBRCwWU1jIeOnQIhw8fRlpaGnR1deHq6oqhQ4ciNzcXy5Ytw/z587F//36p5lcTqMg5LEz4WEhOs5hH3bp1ORXY3NxcHDt2DEePHuVu1DQ6GbIeCwsNhbK4urrixIkT+PTpEwYMGIAtW7aIFNW2bt0as2bNgouLS7ljnD59Gps3bxYRSevXrx/q1KmDxYsXV1ugwsrVVmikVp7XD02NEgvjShbLJYqKijIZRpaFhWuxg4MDnJyccOPGDZibm2PPnj0YN24cFBUVqVVY+bSfs0RWt/CvYfG+ykshOwunbxawCO6nTJmCuLg4NG3aFCNHjsSGDRugqqrK/b5BgwYwMzOrVNFXEjWBipyjo6ODf//9l5cJHwvJaRbzKEvDhg3RokULKCsrIykpibqDR9ZjYa2hkJiYiIULF2L48OHlpmc7dOjA+c5IouyxlKVFixbUcvEsYOVq6+bmhjNnzsDQ0BAtWrSQaS7e3t7o3r17ucaVNDRt2hSvX7/Gb7/9xunuAKW1Gq9evaIaw9zcHFu3bsWKFStkXoJj4VrcuHFjbN68mfv/tm3bOJsH2uwBq9oQvsjqFv41LN5XeSlkl9Xpm3XzB4vgvlGjRti4cSP69u1b7vKijo6OTFn5mhoVOWfhwoU4efIkGjduLLMJ3/jx4zF8+HBYWFggODgY9+/fx4YNGxAfH485c+ZUWlvAah5AqelcTEwMTp48yYl5jRo1itrbhsWxAGzNAAsKClC7dm2p3UE3b96My5cvY/369WjevDk3lqOjIzQ1NakDBHmhc+fO8PX1hZGRkcxjlK0/kJWlS5fi4cOH8PHxwePHj+Ht7Y3169cjNjYW//77L9V6e3p6OszMzPD+/Xu0aNFCLBsnjeYHH9fijx8/wsPDA23atMGsWbMAlC5jGhoaYtmyZVRBFKvaEHmDhRu0tJYgrPVLZHX6trCwoJ4HTacki1ooIZ8+fUJGRgbq1KmDVq1aMRGSq8moyDksTPhklZxmPY/evXvj9evX6NKlC1xdXfHXX39J/dTM4lhYmQGGh4cjNDQUOTk5EAgE+OOPPzB37lzq9+nSpUu4f/8+BgwYgDZt2kBRURGPHj1CYWEhkpKScPDgQe611SWWxoevHaVlgYVxJYvlkiVLlqBx48YYM2aMVHL8cXFx0NPTg6KiIuLi4sR+L61r8apVq3Dz5k2RjixnZ2esXbsW69atoyoMZlUbIk/wdYOW1R27MsNSaZHV6ZuFTENZWNRCFRUVwdfXF7t37+aWfuvVqwdra2vMnTuX19J7TUZFzjly5AhvEz6gNP2roKAADQ0N3LhxA6GhoVBWVsaCBQuoKstZzGPjxo0YNWoU7yc7vsdibGyMIUOGSNRQGDt2LFXxWGBgIEJCQmBpaQkdHR2UlJTg5s2b2L17NxYvXozJkydXOsbGjRspjraUqsyusHK1dXV1RYsWLWBrayvzXIKDg7F582YYGRnJbFz5NYQQqZdLtLW1sW/fPmoHWyFC1eNmzZpx76ukSyxtvU2vXr0QGBgIPT09ke1xcXFYtGgRLly4UOkYFhYWnKkhn9oQeYGFG/T69etx/PhxuLu7Y/bs2Th8+DCysrLg7OyMPn36UFmCsODJkycVFs2yDozK4927d3BycoKhoSHMzc0xc+ZMXLx4kQvuTUxMKh1jxYoVOHHiBBYuXAhtbW3umrhx40ZMmjSpQnuDyqgJVOQcAwMD7Nq1i5e3DQA8evQIBQUF0NLSAlCaDejbty+1/wereUhCuOQiVJytDL7HoqWlhdjYWLRu3RrTp0+Hubk5jI2NcenSJaxatQpHjhypdIzevXvD0dERw4YNE9m+d+9ebNmyhYlKa3Vx4MCBCl1tac3i/Pz8EB4ejnbt2qFt27ZiyxI0a+UsZPhZLJeMHj0arq6uUmXYgFJHXmVlZdSqVatSFViam5Cenh727dsnlqlKS0uDqakpVUq+soD4e1ti7Nu3L/r06VOuGzTN+8rCmgQolcuPiopCRkYGXFxcEBcXB3V1dZEi0ooYO3Ysb6fvqkCW4F5YJ/i139CJEyewYsUKXpYgNUs/cg4LE74rV65gzpw5mDp1Kndzj42NRUBAAIKDg6kuxizm8eDBAyxdulSkNqQsNE9CLI6FhRlgfn6+RK2Pzp074/Xr11RjyAusXG3v3LnDua++ePFCprmwCPBYLJfMmDEDLi4unLHh15md8pYXyt4kN27cKFG5NC8vDy4uLiJFsuWhq6uL7du3Y+XKldyTNyEE4eHh6NSpU6X7A99fIFIZLNygWViTPH78GOPHj0fDhg2Rk5MDW1tbxMbGwtnZGWFhYVROxCycvlnwdXAvEAiwaNEiqYL74uJiidlyNTU1FBYW8ppfTUZFzmFhwjd27FgYGhrCzs5OZLu/vz9u3LiB3bt3V8s8Jk2ahE+fPmHMmDHw8fGBk5MTMjMzERERgTVr1mDIkCHVciwszAAXLVqEZs2aibUf+/n54dGjRwgMDKx0DHnn2bNnGDp0qFSFdLLAWoafxXJJRU+4FS0vxMfH48mTJwBKgyNJgUpaWhp27txJJSp27949TJkyBUpKSlxg/uDBA+Tl5SEkJITqZgiAcz7PyMjA+vXrcfr0abRv356Z3UB5VPZ5loVWPXfJkiXQ0tKibkWWhKmpKczMzDBu3DiRjMqmTZtw5swZHDhwoNIx5syZg6ZNm8LLywv6+vo4fPgwlJWV4ejoiBcvXlDVkQQHB+PChQu8nL5Z4O7ujsuXL2PlypXcOXHq1CmsXbsWAwYMoAruvby8kJubi1WrVokENs7OzlBUVJRYh0NLTUZFzmFhwpeamipR5n7cuHHURVks5pGYmIjw8HBoa2vjwIEDUFdXh7m5OVq2bImoqCiqQIXFsciqoVC2JbC4uBj//PMPbt68ic6dO0NBQQEPHjzArVu3xPyQvkcKCwuxc+dOrhupKmEtw19YWCjR2bpp06bUT8unTp2SSXBLIBBw+jcCgUBiB1n9+vWptTq0tbURExODPXv2ICUlBYqKihg2bBgmTZpEnZJPSEiAmZkZdHV1kZCQgKKiIiQlJcHHxwebNm0SS9WzhEZoUZrPFigNVIYPH44TJ07I7AbNwprk1q1biIiIEPn7ioqKmDt3LsaPH081RkBAAL58+cLVEAmR9j3hy+nTp8WC+4EDB6JJkyZYtGhRuYFK2S6oL1++ID4+Hjdv3oSWlhYUFBSQmJiI7OzsCv2TaKgJVOQcFtXdTZs2xcOHD8U6KVJSUqgdLlnMo6SkhNPXEGqgdOnSBQMGDEBQUBDVGCyORZKGQkxMDJSVlSvUUPjaD0q4zPTw4UNum76+PtLT06nmIS+wdLWVBdbGlSyWS+zs7GSqHdDX1+fOh7KFtXz4448/sGjRIpn39/X1xfTp02FnZ8fdiLy8vNCgQQMEBgZWaaASHh7OVGgRYOMGzcIdu6SkROISdmFhIbVNAQszQBbIGtx/XQ/09XIaq4xdTaDyHcDXhG/kyJFwd3dHXl4elyq+f/8+AgICpGo55jsPFRUVxMfHY9iwYVBVVcX9+/cBlNZ7SDJ+q4pjEQosCX+A0lZHMzOzSoWXWLcEAvzfUxawcrWVFdbGlXZ2dpgyZQquX78ucbmEBha1A2UD2G9JQkICli9fLrZ90qRJ1CacssJC4O1rWLlB83XH7tWrF4KCgrB27VpuW15eHtauXUstlVDVS2+0yBrcszBmpKEmUJFzKjPho7mZzZs3D2/evIGnpyc+f/4MQggUFRU5v5zqmoeFhQVcXV0BAH/99RdGjhyJunXr4tatW9DV1aWaB59jOXLkCFauXIng4GDuBgaUqqEmJCTAy8sLAwcOpJoHC1i8pyyQF+VSoPSzWLlyJS/jShbLJdbW1nB1df3mtQMsqF27NgoKCsS2P3/+XGb1X1osLS2xceNGNG7cuFKxNNpsGis3aL7u2E5OTrC0tESvXr3w6dMnzJkzB8+ePUOTJk2watUqqjlUhRmgLLAI7quSmmJaOcfU1BTNmjUr14RPGv+dwsJCZGRkQFFREW3atJFKupnVPE6fPo0mTZqgS5cuiImJQXBwMJSVlbFs2TKp9FWkPZbr169j2rRpGDVqFOzs7EQk3tPS0rB9+3YcPnwY//zzDyclXdWw/Gz5UB3KpdnZ2VTCUR8/fuSMKy9fviyTcSULOnbsyN04vmXtAAuWLVuGrKwsrFu3Dn379sXhw4dRVFQEOzs7aGlpwdvbu8r+dtmC4so8Xmifzlm4QbNwxwZKM7RHjhxBUlIS5yg/cuRIamE9Fk7frHj69KlIcK+mpiZVcF+V1AQqco62tjaioqKgoaEBc3Nz2NjYoEePHti/fz/27duHyMjI/6l5yIqVlRXU1NQqNAl0dnbGq1evEBwcXC1zkpf31N7eHr/88gtv5dInT55g9erVIk+HwqWs3NxcMR+hyihrXHn37l1q40oWVGbFIC8pexoKCgpgbW2Ne/fuoaSkBI0aNUJBQQE0NDQQGhpKJZIoTwwaNAhZWVkiGYiy0ASR3bp1g52dHS93bBb07NkTLi4unBlgUFAQZwbYsmVLKo+d/wVqln7kHBaGgvI0j2PHjiE8PBzJyclQUFBAx44dYW1tjV69elXV1AGUdhxV9nRibm5ObWrGAnn5bFm52np6euLRo0cYPHgwQkNDMX36dGRkZODUqVPw9PSUel6yGleyoGwgUlRUJLMxIQuEomLp6elwdXWVWlSsYcOG2L17N65evYrExESUlJRAXV0dvXv3lqmziQ+5ubnIyMiQ6LFF6/LMwg1aVnds1l4/LMwA/xeoCVTknPbt2+Pff/+FhYUFVFVVER8fjylTpiA7O/u7m8e+ffvg5uaGwYMHw8TEBF++fMGtW7cwa9YsrF+/vkqXOj59+lTp8lCTJk3w4cMHmcbPzc3FjRs30LFjR+olCnn5bFm52t66dQubN29Gt27dcPHiRRgbG0NbWxvr1q3D+fPnqVs2JRlX0or5sSQyMhLBwcHIzs7GiRMnsH37dvz666+YO3duuftER0dTj09T/P21qJidnZ3UomJClJWVkZ+fj1q1akFdXb3ag5TDhw9j6dKlKCoq4qwFhMtqv//+O3UAwqKmSlZ37LJdLp8+fUJsbCw0NTWhq6sLRUVFJCQk4N69e9QSBSycvuWJjx8/olatWqhTpw7S0tJw7tw56Onp8V9OJzXINadOnSKampokMjKSZGVlkU6dOpEZM2aQPn36EBsbm+9qHgMHDiShoaFi24ODg8nw4cMZz1gUU1NTEh0dXeFroqOjybBhw6jG+++//8igQYPIjRs3yNu3b4mhoSHp0KED6dSpE7l69SrVGPLy2bJCS0uLZGVlEUIIsbW1JVFRUYQQQtLT04mhoSHVGL169SKamprEwsKCHDx4kLx//77K5lsRhw8fJp07dyYbNmwg2traJDMzk4SHh5NOnTqRHTt2lLtfhw4dqH40NDSo5jF79mzi4uJCSkpKiK6uLsnMzCTFxcXE3t6eTJ48mWqM/Px8MmPGDKKhoSHy9+3t7cmnT5+oxmDBkCFDiJOTE0lNTSVdu3Yl9+/fJ2fOnCF9+vSp9LtZFn19ffLkyRNec0lLSyMGBgZES0uLGBkZkf79+4v80ODk5ER8fHzEtq9bt47Mnz+fagxXV1cyZswYkpycTE6dOkWMjIzIvXv3yKpVq8igQYOkOqZvzY0bN0jXrl3JlStXSE5ODtHT0yOdO3cmf/75J4mNjeU1dk2g8h2QkJBAkpKSCCGEXL9+ncyePZt4eHiQN2/efFfz0NbWJhkZGWLbHz16RLS1tRnOVJywsDBiZGREsrOzJf4+OzubGBkZkY0bN1KNN336dDJjxgzy6tUrEhERQbp160ays7NJQEAAmTBhAvW85OWzZcFff/1Fzp07RwghZP369cTDw4MQQkhqairR1dWlGiMwMJD3TYgQQp4+fUqOHj1KDh48KPZDw6hRo8iBAwcIIYQLEAghZO/evdV6AzEwMCApKSli80hNTSX6+vpUYzg5ORFjY2Ny4cIFkp+fT96+fUvOnj1L+vfvL/FGW1VoaWmR1NRUQgghkydPJufPnyeEEHLixAkyevRo6nHs7OyIj48Pyc/Pl3kupqamxNjYmKxevZoEBgaK/dCgq6sr8XqWkZFBdHR0qMZ4+/YtmTNnDtm5cycpKSkh1tbWpEOHDqRjx47kyJEjUhzRt2fixInEycmJ5Ofnkx07dpDevXuTjx8/koiICDJy5EheY9cs/XwHNGjQgGsvNDAwQFJSEvr27UtdBPfy5UsEBATg1q1bEh1HaWsQ+M6jS5cuiI2NFUudX7p0idqQUNZjmTx5Mk6cOIFhw4ZhzJgx0NPTQ+PGjZGXl4dbt27h4MGDaNOmDbVi6O3bt7F37140a9YMFy9eRN++ffHrr7/C1NSUWsRp/vz5sLOz4wznDAwMvqsiza8ZPXo0HBwcsGbNGvTr1w+Wlpb47bffcPnyZXTo0IFqjPLaQqUxroyKioKHh4fEYkuBQEC15JKRkSFxqalbt25S19tkZWUhLS0NXbt2RWFhoVQCcCxExU6fPo3NmzeL+BP169cPderUweLFizkl3aqmTp063DKLiooKUlJS0KdPH2hpaeHx48fU47CoqUpJSZHJHbssjRs3RmJiopjn0M2bN6k/48aNG4t4Pm3btk1qM0BW8K2FSkxMxJo1a9CwYUNcunQJ/fr1w08//YS+fftSt2uXR02gIuewMOFbtmwZEhISYGJiQq3eWhXz6NKlC7Zs2YKEhAQYGBigdu3auH//Po4cOQJTU1MRl9fybliyHouCggLCwsIQEBCA/fv3IywsjPtd8+bNMWnSJMyZM4e6ZVu4Dvv582fcuHEDy5YtA1B6A6Ed49q1a2IX2e+ZmTNn4qeffgIhBNra2pg7dy62bNkCZWVlEVGsimBhXLl161ZMnDgRdnZ2MncxNW/eHBkZGWL1Rrdv36a+gRQVFcHR0RHHjh1DrVq1cOLECaxevRqFhYUIDAykmhsLUbGyRdtladGiBT5//kw1BguEJpf29vZQV1fH+fPnYWVlhdTUVNSuXZt6HBY1VWpqanj37h2vMSZMmAA3NzekpaVBS0sLJSUlnKz+kiVLqMZgYQbIAha1UPXq1UNRURE+ffqE+Ph4rk7n1atXMt93OBhkfGqoQsaMGUP8/f3Ftvv5+VEvMejo6JC4uLhvPg8jIyOqn4rWiFkcS3FxMUlPTye3b98mjx8/JiUlJVKPYWVlRVxdXYmfnx/p2LEjef36NcnOziYzZswgs2bNohrDy8uLLFy4kCQnJ1drrUBVsX379nKX1mgxNzcnY8aMIbt27SKdOnUiERERxMfHh2hpaVGvc2tpafFePtq2bRsZMGAAOX36NNHV1SXnzp0ju3btIgYGBmTTpk1UYwQEBJDBgweTa9euccs2165dI0ZGRmT58uVUY2RnZ5NBgwaRHj16EE1NTWJiYkJ0dXVJv379yNOnT6nG2LRpEzE3NycvX77ktuXn55O5c+dSL3OwIC4ujujo6JAdO3aQ3NxcYmBgQIYOHUr09PSIq6trtc2DEEKOHj1KBg4cSHbv3k2uXLlCbty4IfJDy9atW0mvXr242p9+/fqRiIgI6v2XL19OjI2NyfXr17ltJ0+eJAMHDiSrVq2S6pj4wKIWasGCBWTWrFnEwcGB6Orqkvz8fJKYmEjGjh1L7OzseM2vJlCRc3R0dLh16bJkZmZSr/v36NGDpKenf/N5sIDFsbDg0aNHZPTo0aRLly7chcnT05P079+fpKWlUY0xcOBArrBR0k9V8uzZM+ofWjp37kwePXrEa166urrk7t27hBBCxo4dywWloaGhZOrUqVRjjBs3jpw9e5bXPAgpDcK1tbW5m1DHjh3JihUryJcvX6j2HzhwILl8+TIhRLS+5MqVK6RXr17U83j//j2JiooiHh4eZPny5WTnzp1S1WeYmZkRLS0toq2tTUaMGEFMTU2Jvr4+6dChg1ghaVWTnZ0tUmezYsUKsn37dqkD9aSkJOLk5EQmTJhAsrOzyc6dO0Vu9pXBotC5LLm5uTLVlRkaGpJbt26Jbb9x4wbp3bu31OPJCotaqNevX5P58+eTkSNHklOnThFCCPHx8SHm5ubkxYsXvOZXs/Qj57Aw4Rs5ciS2b98OT09PmVQcWc2DBSyOhQUqKipiVvDz5s2Di4sL9bxY6EHISlW42uro6ODff//FtGnTZJ4XC+NKa2treHp64smTJ1BVVRVLn5et1agIe3t7zJkzB6mpqSCEQFVVVaqlpJycHIkttMrKytQuzkBpSp2PI3fPnj3Rs2dPmfdnxdixY0WMHtXU1GTSCWHhBi2rO3Z5KCkpybQfC6dvFrCohWratCkCAwNFttnb2zNZvqoJVOQcFoaCeXl5OHLkCM6dO4dWrVqJnTg0wkSsjA35wuJYWCHJUPDt27fUhoKjR4+u6imWS1W42jZs2BBr1qzB1q1b0aZNG7H6G5rPhoVx5YIFCwAAK1euFPudNIFXQUEBYmNjkZycjFq1aqFjx44YPHgwdV2Rmpoarl69KhZkHD16FO3atSt3P9aiYjS+NdUBC6NHgI0btKzu2Kxh4fTNAha1UAAbQT9J1AQqcg4LQ0EAGDZsmFzMgwV8j4UFrAwFz58/jx07diA9PR179uzBgQMH0Lp1a4wcOZL1lEWoClfb+vXr8w5aWRhX0naxVURaWhqmTJmCwsJCtG3bFl++fEFUVBQ2b96M8PBwKt8iGxsb2NnZITU1FV++fMHBgweRkZGBEydOYN26deXux1pUDCjfgE8gEGDevHnU4/CBldEjCzdoVkETX+TFDJCFwSIrQT9J1Hj9fCfwMRT8EefxrWFhKHj58mXMnj0bJiYmiI2NxdGjR7Fv3z4EBwfD29u7SjNVVeFqywpWxpVFRUV4+vQpWrduDUKIVJ0l06ZNg6KiInx9ffHzzz8DKH1aXLRoERo0aCDSoVYRFy5cQFBQECdd3759e8yYMQN//fUX1f7Ozs74+eefxVqIAwICkJaWJpZqlwQrAz6+sDJ67NGjB7Zt24ZOnTpBT08Phw8fRqtWrXD9+nXY2dnhypUrlY4RHByMCxcuyIU7tryYAfI1WBw6dCh0dHRgbW0NMzMzhISE4MWLF/Dw8IC9vT2vh6+ajMp3QoMGDbiIWxaEPfIZGRlwcXGRukee1TxYwOpY+JCamgpvb29oaGhAU1MT9evXh4WFBerXr48dO3ZQBSqBgYFYtGgRpk6dytm5C1tqd+zYUaWByu+//86lmss+wfOFReq37Hs3fPhwDB8+XKo5EELg5+eHf/75B8XFxVwGo169enB3d6cKWO7cuYOoqCguSAFK1+AdHR1hbm5OPZc+ffqgT58+Us2/LMePH8fBgwfFto8aNYr6/Dh69Cjc3d2/uQEfrb5QZRgbGyMgIEAkK5WWloaVK1eiX79+VGMEBATgy5cviIuL4xU0sZCM/+OPP7Bo0SLq11cVfGuhnjx5gsDAQKipqaFDhw7Izc1F//798fnzZ2zdurUmUKmhYr7ukbe1tZXZL4QPLITn5OVYWBgK/vfff1izZo3Y9sGDB1M/scuKj4+PxH/zgVXql69x5T///INDhw5h+fLlnDibsbExPDw80Lx5c9jZ2VU6RvPmzZGdnY327duLbC8oKKhQ4JC11w8LUTFZDfhYc+PGDVhZWaFevXoi2wsKCrB+/XpqsUNHR0dYW1uje/fuKCkpgampKecG7eDgQDUGi6ApLi4O8+bNw/r166GmpoZx48ahVq1a+PDhA3x9fTFkyBDef6MqYV0LxUrQTxI1gcr/AKtWrYKxsTG8vLy4SN/f3x+Ojo7w9fXFP//8Uy3zYCE8Jy/HwsJQsFGjRnjx4oVYZ0hqaqrIk3x1wCITsnXrVpiYmEhM/drY2FCNwcK4cs+ePXBzc8PAgQOxYsUKAKVp6dq1a8PHx4cqUHFwcICHhwecnJxgYGAARUVF3L9/Hx4eHrC0tERWVhb32rLLBF8v0QgDtrp160JRUREFBQVQUFCAkpISVaDCQlRMVgM+FqSlpXF1XJs2bYKGhobYuZ2cnIyoqCiuNqkyWLhBs3DH9vf3x4ABA9CpUydERUWhYcOGOHXqFPbv34+goCC5D1RY10KxEvSTCK/m5hq+C1j0yLOAhVibvBwLC0PBNWvWkNGjR5OkpCSip6dHkpKSyPnz54mRkVG1erAcOnSIdOrUidOQKKvtMmDAAOpxWHi5sDCu1NbW5gTfyp4jmZmZREtLi2qMr3U1hD9l/1+Z5kZMTAwZNWoU5+VESKkPzPjx48nff/9NNQ9C+IuKsTDgk5WzZ8+KvWeSflxcXKQeOyMjg5w4cYKcOnWKM8OUhl27dhEjIyOiqalJMjMziZubG7WYHyGEM6skhJBp06aRZcuWEUJKfaY6deok9Xy+JSwMFqtS0K8mo/I/AIseeRbUr19fKp8TScjLsRgbG2Pv3r1QUFCAsrIytm/fjtDQUAwYMIBrj60MW1tbZGdnc0/Wo0ePBiEE/fr1g62tbdVN/itYZEIANqnfnJwciXUGAwcOpCocBUqfFO/fvy9WeHvhwgUxHaDyYFFA7Ovri/Xr14u0wLZp0wZLly7FnDlzYGFhQTXOrFmzMGvWLLx58wYCgYDaW0vIkiVL0LhxY4wZM6baO1369euHf//9FyUlJdx3pmnTptzvBQIB6tevL9UxFRQUwN7eHhcvXuSWjwUCAYYOHQofHx+q7EhMTAz8/PwwZcoUbN++HUBpO7mvry/q1q2L6dOnVzpGlUrGVzMsaqG6dOmCEydOoKioCEpKSoiIiMDu3buhrKxMfa6XR02gIuewqOtg0SPPYh4sxNpY9fuzoGPHjty/ZTEUrF27Nvz8/LBgwQKu0l5dXR3t2rUTe3+rElZFcCxSvyyMK62srODh4YGXL1+CEIKrV69iz549+Oeff6gN+FiYQ757906i5kpJSQk+fvwo9XiyioqxMODjg3Bp7MyZM/jtt9946/esXLkSGRkZ2LZtG/T09LjlsBUrVsDf35/qMw4JCYGrqytGjx7NtQFbWlqifv36CA4OpgpUunXrhrVr1+Lnn39GrVq10Lt3byQlJcHLy0uqmqBnz57h7t27EnWCqkujikUtFAD8+uuv3L/btWsnk6CfJGoCFTmHRV0Hix55FvNgIdbG4lhkxdnZmfq1NAWqAwYMwP79+6GiogIVFRVue05ODkaMGIHr16/LNE9pYVUEZ2NjA2trazRp0gSjR4/Gpk2bYGJigufPn2Po0KFUY7AwrhwzZgw+f/6MLVu24OPHj3Bzc0PTpk1ha2sLMzMzqnnk5uYiODgYKSkpEm8gNOeq0Gl5zZo1XHYnLS0NHh4e1N0pLGBhwMcCVt1lLNygWbhjL1++HMuXL8d///2HtWvXomHDhjh06BDq1KlDfa1g4fTNAllroVgX5JZHTaAi51y7dg3bt2+ncicuj19//RXR0dEiPfJmZmZS9cizmAfAX6yNxbHIytOnT7l/E0Jw8+ZNNG/eHH/++ScUFRXx8OFD5OTkYMCAAeWOERsbi4sXLwIofZLy9PQUe+p+9uwZc9XYimBVBPd16nfXrl2IjIyUKvW7d+9eNG/eHA8fPsTDhw+57b/88gsuXbrE/V8gEFSouDphwgRMmDABubm5IIRIveTo4OCA+/fvo2fPnjJrBbm7u8PKygoDBw5E48aNQQhBfn4+tLW1Obft6mDGjBlwcXHhNEMUFUUv+7SWAvICCzdoFu7YLCTjWTh9s2Du3LlQUFDAzp07sWnTJgClVg8ODg4VtuNXhTihJGoE3+Scnj17IiIiAm3btq2Zhxzh6+uL58+fi6yJf/nyBW5ubhAIBPDy8pK43/Pnz+Ho6AhCCOLi4qCrqysSDAjX7M3MzKikwFlw8+ZNWFtbY8GCBRg9ejQGDx6M5s2bc5mQ8o6lPN6/f4+MjAwoKCigbdu21JLz8oSenh6CgoJ4LwF9+fIFV65cQUpKCgQCATQ0NNC9e/dqDUQrkomXRjNEXti8eTMuX76M9evXo3nz5gBK61YcHR2hqalJZRkQHByMPXv2wNnZGYsXL0ZAQACysrIQEBCAKVOmiC09lgffbrlOnTrh2LFjUgkZVjWy1kKxECcsj5pARc5ZvXo13r17981N+FjNQx7E2ljQtWtX7N69G2pqaiLb09PTMXbsWNy6davSMSwsLLBx48Zqb0WWRE5ODoqKitCqVSukpaWJZEJonxCLi4vh7e2N/fv3c3VM9erVg6WlJVVLsDwxePBg+Pn5idQhfSsIIbh48SKSk5OhqKiIdu3aoUePHtTfw2fPnlX4e5aCf9WBubk57t+/j1q1aqFNmzZQVFTEo0ePUFhYKFYDU1HtnL+/P8LDw/Hp0ycApXozEydOhIuLC1Wbc2W6QadPn650jPHjx2Pu3LnVuhRYVejp6eHgwYNidS6PHj3CqFGjcOfOHZnHrln6kXPkxYSPxTzkRayNBbVr10ZWVpZYoJKWlkbdWSHUfMnKykJaWhq6du2KwsJC3p1R0sLK1dbf3x/Hjx+Hi4uLSJFjYGAg6tWrh9mzZ7OeepWxZMkSeHh4wM7ODq1atRK7cVWXxHpeXh6srKzw4MEDNGrUCIQQFBQUoGPHjggNDZXovPs18hSICB9U0tPT4erqKtODCis3aL7u2Cy65Vg5fcsDrApyJVETqHwHyIMJH8B/HvIi1saCYcOGwdXVFba2tiLFZ4GBgdQS68XFxXBwcMCxY8dQq1YtnDhxAqtXr0ZhYSECAwOrbc2alUHboUOH4O3tDSMjI26bpqYmWrRoAW9v7+8qUCGEIC0tTaz7g0gpsc6X1atX4+PHj4iOjuYCyYcPH2LJkiXw8/ODh4eHxP0GDBiAffv2QUlJCf37969wqam6vH6+flCxs7OT6UGFlRs0X3dsFt1yrJy+5QEW4oTlUROoyDms5M35wmIewpO27EVTUVERc+fOxfjx46nG8PLygqWlpZiaa3WzePFifPz4EcuXL+fcpH/66SdMnjyZ2o128+bNePjwIcLDw7mbuIWFBZydneHr6wt3d/cqPIL/g5Wr7adPnyR+Lu3atcPbt2+ZzJUPwtoBmjZnb29vdO/eHePHjxeTfK9Ozp49iw0bNojUmWhoaGDp0qWwt7cvN1AZPXo09zmOHj26WmtiyoPlgwpfN2gW7tgsuuWqK0isDmQtyKWhJlD5DuBb11Feq5xAIEDt2rXRsmVLDB48uNJCWb7zYCHWdvDgQUydOpXqtVVJnTp14OnpCUdHR2RkZEAgEKBt27ZSZSaEZnFlNRe6deuGlStXwsHBodoCFVYGbaNGjcL69evh6+vLXcAJIQgPD8fo0aOrZO6SSEhIwLJly5CcnCzxfKM5ntzcXDg5OVELxNGSm5srInhWGZ8/f+YKRsvSvHlzFBQUlLtf2ayDNKJ9VQmLBxWgcjdomkDFy8sLmpqaEt2xvby8qLy2WHTLCZfl+Dh9s4JvLRTAX5ywPGoCFTmHRV1HcXExjh49iubNm0NbWxsA8ODBA+Tk5EBHRwfXr1/H1q1bERISUu7TJot5sBBr69u3L3bu3AkbGxs0aNCAah9WxMXFQU9PD4qKioiLixP7/YMHD7h/06wt5+TkSMxAKCsrV2sGgpWrbV5eHs6ePYv+/ftDW1sbioqKSExMxLNnz6CjoyOiuVBeTRMLYUEfHx8oKChg6dKl8PHxgZOTEzIzMxERESHRBFIS3bp1w+3bt3kFKu/evcPatWsxefJktGvXDtbW1rh27RratGmDbdu2UY3dsWNHREZGivngREZGQlNTU+a5fQtYqUqzcINm4Y7NQjeIMHD6ZoGstVDR0dEYOnQo6tSpU6khJx9NmJpARc5hkS6tW7cuBg0ahLVr13JPusXFxXBxcUGjRo3g5uYGX19fBAQElDsei3mwEGt7+fIlYmNjER4eLvGJqipTqRYWFrh8+TKaNWsGCwsLrtL/a2izEGpqarh69aqYxsDRo0fRrl07ZvOuDFautnXq1BGrY+ratatUBYEshAUTExMRHh4ObW1tHDhwAOrq6jA3N0fLli0RFRVFZRbXpUsXLF++HOfOnZOoPUJTJ+Hj44ObN29i6tSpOHXqFG7evIk1a9YgNjYWa9asoWrXtLW1haWlJe7cucN97+Lj4/Hw4UNO+v17gZWqNAs3aFndscvCQjKehdM3C2SthXJyckLv3r3RrFmzCoX2+IrX1bQnyzndunVDREQE2rVrBz09PRw+fJhrIR0/fjzi4+MrHaNLly7YvXu32M0vNTUVZmZmiIuLw6NHj2BqalpuWy2LeQDAhw8fRMTa2rdvL5VYW2UpWVaFdpJ49uwZlJWVUatWLSYtn2fPnoWdnR0mTJiAyMhIWFtbIyMjg3uq+uuvv1hNXYyyrraWlpYIDAyU6Gq7Zs0a3L17t8rm8TW6urq8hQV1dHRw/PhxKCsrY/HixdDX14e5uTmePHmC8ePH4+rVq5WO0b9//3J/JxAIqALinj17YtOmTdDT04OTkxPy8vKwdetWJCcnY9KkSRKzcpK4d+8eQkJCkJKSAkIIOnTogGnTpnHZ0e+FnJwcWFpaIj8/H3l5eVBVVeUeVHbu3EndnbRp0yZkZmbycoM+deoUVq9eLdEde/z48Rg0aBD32qrs8DIxMYGtrS0GDhwocl09deoUfHx88O+//1bZ3y5L9+7dsWHDBrGHkuvXr8Pe3h6XL1+ulnmUR01GRc5hkS5VVFTEq1evxAKVly9fcuvFX758EXtqZD0PoNTIi49KYVUGIpVR9kLKouXTyMgIGzZsQFBQEBQUFLBjxw60b9++yoMUoLRjYfbs2dznX5EcfXXCwrhSRUUF8fHxGDZsGFRVVXH//n0AQH5+vkQ5fEmwuEG8f/8eysrKAIDLly9jxowZAEoznJIk08tDW1sbAQEBvOfzrWGlKj1kyBCYmZmhc+fOaNGihVihME0QKazbmT9/vlhd1urVq7F69WqJNVqsu6mePn0qcQlPQ0MDL1++rHR/VshaC1Vd1AQqcg6LdOlff/0FNzc3uLu7Q0dHB4QQ3LlzBytWrMCAAQPw/v17bNmyBZ06darSebBC2CmTkZGB9evX4/Tp02jfvj0TI7mKYO1rsWPHDgwbNgwRERF8piUTVeFqywIWxpUWFhZcTcdff/2FkSNHom7durh16xZ0dXXL3S8rKwvKysoQCATIysqq8G/QPGWrqanh3LlzUFZWxsuXL9GnTx8Apf4uX+vvlIWmkFMIbeD++fNnvH79mguQyiqojhgxgvrv8YXvgwrAxg1aVv0p1t1ULJy+WSBrLVRlwVpZ+CzL1yz9yDks0qUfP36Eg4MDTp48KXJSDRkyBJ6enrh27Ro8PT2xbdu2cuW2WaVt+ZKQkAAzMzPo6uri9u3bOHbsGIKCghAdHY1NmzZVqex82e6pynwtaDp2unTpwpkSfkuePXvGxNWWBc7Ozjhy5AgaN27MS+Dw9OnTaNKkCbp06YKYmBgEBwdDWVkZy5YtK1euXFNTE5cuXUKzZs2goaEh8f2QphPq/PnzsLGxQXFxMUxMTODr6wsfHx9ERERUeK5+vez0/Plz1K5dG61atYKioiIyMzNRXFwMLS0t7N69u9J5XLp0CY6OjtxSX1nq1q2L27dvVzqGrFSFaZ22tvY3dYMuCyEEeXl5nLP1vXv30LFjR+oge//+/Vi7di3mzp0Lf39/uLi4IDMzk3P6pjXR5Mvt27dhaWkJDQ0NibVQ5T2MBgYGct+TvLw87Nq1C0ZGRlzTwf3793Hy5ElMnz6dV71NTaDyHcC3rkPIkydPkJSUBAUFBXTo0IG7YBcVFVGt9bKaBx+mTp0KHR0d2NnZiazp+vj4ID4+Hvv27auWebDwtbCyskKvXr0wbdq0qprmd0dlrrM0ej6yau3cuHED+vr6UFRUxI0bNyp8LW327s2bN8jJyeEeAO7du4cGDRpUmFEpS1hYGM6dOwc/Pz9uSezdu3dwcHCAuro67O3tKx3D1NSUKwBfuHAhfH19kZWVhQ0bNsDHxwfGxsZUc5EF1sE9UJrJcHV15VXHxMIdOzMzEzNmzMCAAQPg4OAAoLTWo3nz5lxgTMOePXuwZcsWZGdnAyjtPpoxY0a1Xxf41kLNmTMH+vr63BKnkH/++QenT59GeHi4zHOrCVT+h3j16pXEls/qkgNnIdbWpUsX7N27F23bthUJVDIzMzFy5MgqfTosCwtfi4ULF+LkyZNo3Lgx2rRpI9bBVF32CCxhocXAl86dO+PQoUNyY/SWlpaG5ORk1K5dG6qqqlLLxYeEhIhlOpOTk2FhYYHr169XOoa2tjaioqKgoaEBc3Nz2NjYoEePHti/fz/27duHyMhIqY9JFliZ1sXGxiIgIICXG7S1tXWF7tg0AfHs2bNRUlICLy8vznE5NzcXjo6OqFevHjZs2EB1PEJkdfqWF3R1dXHo0CGxDPHjx48xYsQIXkX5NTUq/wPcunULzs7OyMzMFNle3XLgLMTaateuLbG46/nz59WqIMrC16J+/fq8WvbkDRa+NAB/YUGh1s78+fOrNdv3NZ8+fcKiRYtw5swZ7uFAIBDAyMgIAQEBVFnM4uJivH//Xmz769evqZfqFBQUuFZvFRUVJCcno0ePHujevTtWr14txRHx4/jx4zh48KDY9lGjRkn1PRBmkZYvXy72O9rrWXx8PG937Js3byIqKooLUoDSbIiDgwMmTZok9XjSCAGygHUt1C+//IKrV6+KBSqnT5/mXRpQE6j8D+Dl5YUWLVrAwcFBZm0KFrAQazM2NkZAQADWrVvHbUtLS8PKlSur1YGUha+FoaEhevfuLRfuySyQVYuhLCyEBb+l1k5Z1q1bh3v37mHjxo0wMDBASUkJ4uLi4OXlhcDAQCxatKjSMfr3749ly5bBzc0NWlpaIIQgPj4eK1asgImJCdU82rdvj3///RcWFhZQVVVFfHw8pkyZwi01VBesTOtYfH6//vorb8FIRUVFvHv3Tmz7hw8fJOoryRsHDhwQ+X9FtVA0gYqVlRVWrFiB27dvo1OnTtw18dSpU/D19eU115qln/8BOnXqhOjoaOp18arCwsKCk2mX9QZSUFAAa2tr3Lt3DyUlJWjUqBEKCgqgoaGB0NDQau1SCQoKws6dO7k2QmVlZcyYMYNa2dLAwAC7du2qVnG38mDhastCi2HOnDlo2rQpJyx4+PBhKCsrw9HRES9evKASFvyWWjtl6dWrF1asWCFi0giU6ud4eHjg3LlzlY5RUFCAhQsX4vLly1wGhRCCwYMHY82aNVRZmdOnT2PBggVwc3ND37598ddff6F79+7477//oKOjI/UShaxs3rwZISEhmDJlisTgXpYshKycOXMGQUFBvNyxHRwckJ6eDn9/f245+8mTJ3BwcICysjL8/f2rZO5VAYtaKAA4cuQIdu7cif/++w8CgQCampqYOXMm7yaHmkDlf4BBgwbB19eXl0AUi/oSFjeQwsJCNGjQAFevXkViYiJKSkqgrq6O3r17i11sqgtZfS3Gjx+PqVOnUsttVxVfZzGOHTuGtWvX4uLFi1K52nbp0gVRUVFiwU1aWhpMTU2p1qhZCQvKA3p6eoiOjhZLhT969AgjRozAvXv3qMdKT0/nXH41NTWlbl198OABFBQUoKGhgRs3biA0NBTKyspYsGDBdxHcs9YvOX36NBwdHcWW1aRZDn/9+jWmTZuGlJQUblnz3bt36NixI7Zs2YIWLVpUOoa8wKIWqiqpWfqRc1gYCs6ZMwfe3t7w8PCAqqqqTP4RLOpLWDzJjho1CgEBAejRowd69OjBezw+5ObmIiMjgxPCK6tNMWfOnEr319DQwOLFi7F9+3aJxbTV5ZzNytWWhS8NK2FBvlo75QXVZb93ffr0qfAmr66ujuPHj2PWrFki248dO1apAejXfF2EK40T9Pz582FnZ8dlVA0MDKpcc6g8ZDWtY61fwsIdu1mzZjh48CCuXLmClJQUkeJxvvOT5vNlAYtaKKD0e1fWDLTsNdHLy0vm+dUEKnIOC0PBLVu2ICsrq9yCNZqnB1ZmgHxvIB8+fJBYpV/dHD58GEuXLkVRURHn+SP8Qv/+++9UgUpGRgb3mVWnCuXXsHK1ZeFLw0JYsKzWTkJCAoqKipCUlAQfHx9qrZ24uDjExcWhdu3aXFDx+PFjfPz4EcrKysjLy8NPP/2Ev//+W8wvRsicOXMwd+5cJCUlibwfp06dgp+fH/Wx8HWCvnbtmlgQ/K0R6o7QwtoNmpU7toKCAnr37o3evXvLtD+Lz5cFLGqhQkNDueLssj5oAoGAVys5UBOoyD0sDAVpbpqVwaJAkcUNxNLSEjY2Npg0aRJat24tFrRIY4DHh61bt8LExATW1tYwMzPDjh078PLlS3h4eFBfSGkzFVUNqyyGnp4eIiIiEBISgkuXLnFaDG5ubtTLjiyMK319fTmBKT09PQClS5cNGjRAYGAg1Xmmra2NkpISBAQEcGv2b968weLFi6Grq4vZs2dz372goCCJY/Tr1w/r169HcHAwzp07x70fAQEBIl4yFcHCCXr06NHw9fXFvHnzoKKiIrM/zo8EC3dseXH6ZsGyZcuwcOFCTJkyRawWytHRkWqMiIgIzJgxA/Pnz4eRkREOHjyIvLw8LFq0CAMGDOA1v5oaFTmHhaEgC1jUl7AQaytPORegb01kQdkCZQsLC8yYMQN9+vTByZMnsXXrVrGK+vKQB2lzOzs71KpVC2vXrkXnzp1x+PBhNGrUCDY2NlBSUqq2YkshfIUFWWjt9OjRAyEhIWJLVg8fPsS0adNw9epVke9gVaGnp8c5QY8bNw6Ojo7o0qULwsLCcP78eYSGhlY6xqBBg5CZmVluCr+6vjPyRHBwMDZv3gwjIyOZ3bFnz55dodM3zRgsPl+W8KmF0tLSQmxsLFq3bo3p06fD3NwcxsbGuHTpElatWoUjR47IPK+ajIqcI6uhoLOzM1xdXdGwYcMK1T4FAgG8vb0rnQeL+pKEhASJ2geTJk1CVFQU1RinTp36ZkWzZalTpw73ZKqiooKUlBT06dMHWlpaePz4MdUYlUmbV1egwieLURW+NHz9YFho7Xz+/BnFxcVi2z99+oSPHz8CKD0Hvs5ERUdHU8+TRjukpKSEK8oUaqB06dIFAwYMKDeT8zUsMqo/GpGRkVBSUsKdO3fExBkFAgHVuXrt2jXeTt8sPl+W8KmFql+/PvfA1bp1a6SmpsLY2BhqamqVus1XRk2gIufIaij49OlT7iL69OlTJnPhW1/C4gZiZ2cHLy+vCjMr1YGWlhb27t0Le3t7qKur4/z587CyskJqaip1sbK/vz/+/PPPcqXNqws+rrastRhYwEJrp1evXvDw8IC/vz/XtZORkQEvLy/06tULX758QWRkJDp06CCy39eqq8K1+rp160JRUREFBQVQUFCAkpISVaDCwgl69OjRVK+rDuRBuRhg444tL07fLGBRK6Ovr49t27bBzc0Nf/75J/bt24eZM2ciPj6et2YNSA1yzYcPH4iNjQ3p0KED0dDQ4H7s7OxIfn4+OXXqFOnduzdJSkqq0nncv3+faGlpkcmTJ5OOHTuSzMxM4urqSjp27EjOnTtHNcbSpUvJ9OnTydu3b4muri7JzMwkqampZPjw4cTZ2ZlqDAMDA/L48WM+h8KEuLg4oqOjQ3bs2EFyc3OJgYEBGTp0KNHT0yOurq5UY3Tq1In73MzMzMiVK1cIIYTs27ePTJw4scrmXlWEhoaSKVOmkFevXnHb3r59S2bNmkX8/PyqbR75+flkwoQJRFNTk3To0IF06dKFaGhokFGjRpE3b95QjfH69WsyduxYoqGhQQwMDEjXrl2JhoYGmTBhAnnx4gU5e/Ys0dXVJdevXy93jJiYGDJq1CiR72ZGRgYZP348+fvvv6nmERUVRbS1tUlMTAxJTU0lHTt2JO7u7mTEiBFk+vTpVGMQQsi5c+eIhYUFMTQ0JE+fPiUbNmwg0dHR1Puz4M2bN8TU1JT7TDp37kw6dOhATE1Nydu3b6Uaq7i4mGRnZ5Nnz56RZ8+ekadPn5L09HRy6NChcvd59uwZKSkp4f5d0Q8Nq1atIi4uLuTz589Szb0srD5fvpibm5MxY8aQXbt2kU6dOpGIiAji4+NDtLS0SGxsLNUY//33HzE0NCTBwcGkoKCAGBkZkc6dO5M///yT9/e/pkblO4GFoWBycrJY0RdtRTaL+hIWYm3BwcG4cOEC5/PxdTFtdfkWAaWO0kVFRZzOR2RkJJSVlWFhYUH1mejp6eHIkSP4/fff4ezsDA0NDUyZMgXPnj3D6NGjKzXG40NVuNrKixYDK60dQgiuX7/Ofe80NDS47OGbN2+gqKhYodKzsJj2ax0aYfv6pUuXqOZRnhO0m5sblTT55cuXMXv2bJiYmCA2NhZHjx7FV267GQAApu1JREFUvn37EBwcDG9v72qzcXB2dsa9e/fg5+cnplysr69PpVwMyO4Gzdod+1s6fbOGVa3Mx48f8f79ezRt2hSvXr3CkSNHOAkNPtQs/Xwn1KtXD506deKCjKysLAB0N+YzZ87AyckJBQUFYpXptF9KFvUlAoEAu3fv5nUDCQgIwJcvXziFWyHSXGBY8euvv3L/VlNTw9KlS6Xa/1tKm5e9wVXmaksLCy0GFsKCrLR2BAIBunfvLrEtmqa99t27dxLbgktKSrg6FxrKuhsPHz4cw4cPR3FxMe7cuUMVqAjl+qdOnYoTJ04AKF1CbdiwIXbs2FFtgcrZs2exYcMGkUBWQ0MDS5cuhb29PXWgIuuSaXh4OGdXwcrwc9iwYbz2//p8F36+1Q2rWpm6detyD4/Nmzfnrb0lpCZQkXNYGAr6+vqiR48emDt3rsxePyzqS1jcQKq7Cr4qmTlzJhYsWIDatWtj2LBhCAwMxMyZM/Hff/9Ra4bIStkLurOzM6ZOnVquqy0tLLQYWAgLstDaSU9Ph6enJ9d6+jU037tu3brB09MTa9as4Z6M09LS4OHhQV0ro6mpCRsbG8ydO1dk+9u3b2FpaUk1j//++09iq+vgwYOlKobmy+fPn9G8eXOx7c2bN5d4bSmP1NRUeHt7Q0NDA5qamqhfvz4sLCxQv3597NixQySwK0vZWjoWgncs6shYnO8skJdamfKoCVTkHBaGgk+fPkVQUBCvp1QWBYosbiBlLzC5ublQVFSkduWVN4yNjbF3714oKChAWVkZ27dvR2hoKAYMGIAFCxZU2zxYudqy0GJgISzIQmtn+fLleP36NRYvXizz987d3R1WVlYYOHAgGjduDEII8vPzoa2tjWXLllGNQQhBcHAw0tPT4e3tLbK8QLtq36hRI7x48ULs+5+amlqthpgslIsB+XGDBn4cp28LCwvuc/nrr78wcuRI1K1bF7du3YKuru43m5eQmkBFzklJSeFtKNimTRtkZ2fzClQcHR1hbW2N7t27o6SkBKamplx9iYODA9UYrMTa/v77b2zbtg2vX78GUPpEZmVlJRdPJtLSoEED7mnSwMAASUlJ6Nu3b7X6r7BytRUuJfDRYmAhLCg0g1uxYoXY72izkHfv3kVkZCQ6duxIOXNxfv31Vxw6dIiTWBcIBNDQ0ED37t2pl8IEAgGCg4Ph4uICS0tLbN68GU2bNuV+R8Pw4cPh7e0Nb29vCAQCFBYW4sKFC1ixYkW1+kyxUC4G5McN+kdy+h43bhyUlJTQpEkTqKmpwcfHR6QW6ltTU0wr57AwFDx//jx8fX1hZ2cHVVVVsaIvmjoXFgWKLMTadu/ejZUrV8Lc3Bxdu3YFIQRxcXHYvXs33NzcMHbsWKq5yANXrlzBnDlzMHXqVNjZ2QEAJkyYgOTkZAQHB/OWnaalql1tpdFiYCEs+OTJkwrPSZq6jr59+yI4OBjq6uqVvlYWsrOz0bJly0pfp6GhgcuXL6NWrVqYN28esrOzERQUhGbNmsHQ0JDqO1NcXAwnJyccPXoUwP+1TPfr1w8BAQHVaklx7949hISEICUlhVPqnTZtmlTXN3lxg/6RnL7LQ1gLVV2K3+VRE6jIOQcPHsSePXt4GQp27NiRE+KRtQB14MCBCAgI4PWEyeIGMnjwYEyePBmTJ08W2R4REYHdu3cjJiZG5vlJy71797Bq1SrUqlULDg4OUgeTY8eOhaGhIRekCPH398eNGzewe/dultOtEFldbcsiL74lY8eO5a21ExwcjPj4ePj6+sqckn/y5AlWr16N5ORkMeXh3NxcJCYmVjpG2U6VoqIiuLi44OzZs/Dy8oK9vb1U7+njx485nRx1dXW0a9dOxKPqe0Ie3KB/JKfv8mqhXr16hd69e39z9eKapR85h4WhIIsCVBb1JSzE2rKystCnTx+x7b1796729Wk7OztkZWWBEAJ7e3ucPn1aqv1TU1NFan6EjBs3rtp9gGR1tS0LK98SvsKCT548Qf369aWef1muXLmCmzdvwsDAAM2aNRPLQtKk5D09PfHo0SMMHjwYoaGhmD59OjIyMnDq1Cl4enpSzaPsc2SdOnXg6+uLjRs3YvHixdTHMmDAAOzfvx8qKiqceB1Q2l4/YsSIKm0brwrlYhZu0CzcseXF6ZsFLGqhqpKaQEXOYSF/zeKEZ1FfwuIG8ttvvyEhIUGs3ub+/fsSOwqqEkII9yWW5cvctGlTPHz4UKyGIyUlReYCTr5I62pblsTERE6L4cCBA1BXV4e5uTlatmyJqKgoDBkypNIxWBhXWltbw9XVlZfWTufOnamWqiri1q1b2Lx5M7p164aLFy/C2NgY2traWLduHc6fP0/lTD1//nyx78z8+fOhoqJSoSxAbGwsLl68CAB49uwZPD09xeofnj17VuXZlKpQLmbhBs3CHVtenL5ZwKIWqiqpWfr5H+D9+/cICwsr1+WTRlOARX0JC7G2sLAwbNmyBQsXLhQpyNuwYQMsLS0xb968Ssdgxe3bt7ksjoODAzcfWtavX4+oqCjY2tpyhXf3799HQEAARo0ahUWLFjGfc1Wio6OD48ePQ1lZGYsXL4a+vj7Mzc3x5MkTjB8/HlevXq10DBbCgiyWOlnQqVMnnDx5EsrKyrCzs0PPnj0xbtw4ZGRkwMLCglrwTRaeP38OR0dHroZLV1dXZNlYIBCgfv36MDMzq7abYVhYGM6dOwc/Pz+uSPvdu3dwcHCAuro67O3tqcZZuXIlXr58ycsN2s/PD3fu3KnUHTs3N7dcHZGcnBxYWloiPz8feXl5UFVV5Tyydu7cSbWUzeJ8ZwGLWqiqpCajIoewNhR0c3PDmTNnYGhoyIn6SAsLM0AWYm2WlpZ49uwZvL298eXLFxBCoKioiIkTJ1a7+Zqenh6vOpJ58+bhzZs38PT0xOfPn7ljEQpZfW+w0GJgISwo61Lnxo0bYWVlhXr16lW4ZCEQCKgC4t9//x3JyclQVlZG27ZtufO7pKQEhYWF5e7Xv39/qqdYgUBQ7nKjsrIy9wBiYWGBjRs3VmsrsiS2bduGkJAQkU6yxo0bw97eHhYWFtSByvnz55GZmcmJ130NzXVk3759YnNRUlLCkiVLMG3aNNjY2MDKygpmZmbljsHHI0sIi/OdBcLzTUlJCWFhYXBxccHEiRPh5eVVbXOoiJpARQ5hbSh49uxZ+Pv7w8jISOYxWNSXsKiVqVWrFlxdXbFw4UKkp6cDKFWF5W169Q1QVFSEu7s7lixZgoyMDCgqKqJNmzbV2oXBEhZaDCyEBWVd6jxw4AAmTZqEevXqiS1ZlIU2UBk9ejQcHBywZs0a9OvXD5aWlvjtt99w+fJlMTPDr/djmW4X1jtlZWUhLS0NXbt2RWFhIW9DPWlhoVwMsFkOl9Ud+2vkwembBSxqoaqSmkBFDilbSMmiqLJWrVq8dFgANvUlLMTaPn78CA8PD7Rp0wazZs0CUPoEamhoiGXLlsmUBv7WNGjQAFpaWt90DoSBqy0LLQYWwoKfPn3Cnj17RLptgNI26YSEhHKfxMs66rJw1505cyZ++uknEEKgra2NuXPnYsuWLVBWVhapa/gaGxsb3n+7LMXFxXBwcMCxY8dQq1YtnDhxAqtXr0ZhYSECAwOrTWiMhXIxwMYNWlZ37LJkZmbC19cXKSkpEjOGNAXXLM53FshaC1Vd1NSofAfwNRR0dXVFixYtYGtrK/McWJkB8hVrc3d3x+XLl7Fy5Uou8Dl16hTWrl2LAQMGUCug1vB/5OXlwcrKCg8ePECjRo1ACEFBQQE6duyI0NBQ3sq/0mgxsDCuXLZsGaKjo/Hnn3/i/v370NPTw+PHj/H69WtMnTpVqnPk1atXEuu6aM53SbUhQGkgde7cOfz1119Uc3j48KFIy7ewxfn+/ftUqfn169fj+PHjcHd3x+zZs3H48GFkZWXB2dkZffr0gbu7O9U8+FJQUICFCxfi8uXLYsrFa9askeoh4/z585y44J49e3DgwAG0bt0aI0eOpNo/NzcXs2bNQkJCgohqsI6ODgIDA/HgwQPY2dkhKCio3AzdxIkT8fLlSwwZMkRiFpSmOJjF+f6/QE2gIuewMBT08/NDeHg42rVrh7Zt24pdEGg8K1gUKLIQa+vVqxcCAwOhp6cnsj0uLg6LFi3ChQsXKh2DBZmZmbyUfuUJVq62LLQYWAgL9uzZEy4uLhg2bBgGDhyIoKAgtGrVCnZ2dmjZsiWVeSQLjy1NTU1cvnyZ654QkpiYiIkTJ+LevXuVjhEaGsoVbAuF2oT/7tKlC1XGddCgQXB3d0fPnj1FCjavXr0KBwcHrjuouuCjXAywc4Pm646tq6uLiIgIXtpSrJy+ZYFFLVR1UbP0I+ewMBS8c+cO11Xy4sULmcZgUV8SFhYGR0dHEbG2gQMHQkVFBeHh4VSBSmFhocQn/KZNm+Lt27e850jLpEmTsGnTJl6KwfICK1dbFloMLIwr3717x3VgtWvXDomJiVBVVcWsWbNga2tLFajI6rEVFhbGBRaEEBgaGkp8He15ExERgRkzZmD+/PkwMjLCwYMHkZeXh0WLFmHAgAFUY+Tk5EgMqpWVlav1OyNEVVVVxAtHGuVigJ0bNF937DZt2uDDhw9Uf6s8WDl9ywLrWqiqpCZQkXNYGAqyqHNhUV/CQqxNV1cX27dvx8qVK7knDkIIwsPD0alTJ6nmw4fatWtDUfHH+PqwcrVlocXAQliwadOmeP36NX777Te0adMGycnJAEpvPq9evaIaQ1aPrcmTJ6NJkyYoKSmBi4sLnJ2dRQIdYVswrc5GdnY2xo0bh59++gkaGhq4f/8+jI2N4eTkhFWrVlEtmaqpqeHq1atiRZ9Hjx5Fu3btpDo+PrBSLmbhBs3CHdvNzQ0eHh6wsLBAq1atxDIgNEudLM53WWFdC1WV/BhX2h8YFoaCWVlZFf6+uupLWIi12dnZYcqUKbh+/TpXgPrgwQPk5eUhJCSEagwWjB49GtbW1hg5ciRUVFTELjY0T3UvX75EQEBAufo21WVIxsrVlhCCtm3bYs+ePZg3bx7Gjh3LaTHQwkJYsE+fPvDw8ICPjw86d+4Mb29vDBw4ELGxsVT+OkBptqGiFuLyUFRU5D57gUAAExMTXgXe9evX55ZcW7dujdTUVBgbG0NNTQ3Pnj2jGsPGxgZ2dnZITU3Fly9fcPDgQWRkZODEiRMSlZGrClbKxSzcoFm4YycnJyMtLU1ihk4auQUWRq0s4FsLVZXU1KjIOSwMBTU0NCp8oq2u+hJWYm1Pnz7Fnj17kJKSAkVFRaipqWHSpEn45ZdfqPZnAQsBvNmzZyMhIQEmJiYSL5bVZUh2+/ZtWFpaQkNDQ6KrLe3TPwtfGhbv67t37+Dk5ARDQ0OYm5tj5syZuHjxIhQVFbF69WqqDhMWHltAaa1LmzZt0LRpU0RHR+PYsWPQ19fHzJkzqbJMs2fPhpKSEtzc3BATE4N9+/Zh9+7diI2NxapVq6hF4y5cuICgoCCuDqJ9+/aYMWMGdUEvC/T09Djl4nHjxsHR0RFdunRBWFgYzp8/T728vHbtWly9ehXe3t4wNzfHrl278OLFC7i7u2PQoEFwcnKqdAxtbW3e7ti9evWCsbExJk+eLLGVmEbwjcX5zgIWtVBVSU2gIuewKGK9ceOGyP+/fPmCjIwMhIWFwcnJCf379690DBZmgCUlJfDx8UFkZKSYWJuLi0uVF4/JG8JlrOpySa4IFq62QnXLshmUjRs3YsuWLSgpKaE6V1kYV34NIQR37tzB77//Th3MDho0CFlZWSLtzWWhDe49PDwQEhICJSUljB49Gj169EBSUhImTZpEFYgmJydj+vTpmDp1KszMzDB8+HC8e/cOHz58gJWVFZVI2o4dOzBs2DD8+uuvlb62KmGhXAywcYNm4Y6tp6eHmJgY/PHHHzKPURXnuywYGxtjyJAhEmuhxo4dS501rzJIDXLN9evXK/zhw4ULF8i4ceOoXtupUyfy+PFjse2PHz8mnTp1kurv5ufnk7t375K7d++SgoICqfaVN549e0YuXLhAPnz4QF69eiXVvj169CDp6elVNLPqJzAwkLx//15s++HDh8nkyZOpxhgzZgxJSkriNY8PHz4QJycnsnXrVm6bkZERWbp0Kfn06RPVGAcOHKjwh4bBgweTnTt3EkII8fPzI8OHDyeElH7vjIyMpDqe169fE0IIefnyJQkJCSHHjh2j3r9z587k0aNH1K+vKoYPH05iYmIIIYRs2rSJODk5EUIIefDgAdHX15d6vEePHpFjx46Ro0ePkpSUFEIIISUlJVT7btu2jcyaNYvk5+dL/XeFLF68mISGhsq8PyFszncWdOzYkbu+T5s2jZw6dYoQQsjFixeJiYnJt5waIYSQmhoVOacqHTTbtGmDhw8fUr2WRX3JjyTWVlRUBEdHR14iWiNHjsT27dvh6ekplbAaC6rK1VYSw4cPx/Dhw6nGYCEsuGrVKty8eVNEGMzZ2Rlr167FunXrqHRUWIiKPX36lMtWXr58mSskV1NToyrqFRZaCn8A4O3btzAzM5OqAFNHRwf//vsvpk2bJsNRsIOFcjHAxg2ahTt2ixYt4Ofnh2PHjqF169ZixfU0sg8szncWsKiFqkpqAhU5h4WhoKRi2oKCAgQFBVGnLSdOnAgPDw/k5eVJrC+hgcUNRF7YsmULZ88+e/ZsAKUXYmdnZ/j6+lKJaOXl5eHIkSM4d+4cWrVqJXaxpPlsZYWVqy1rLQYWzsenT58W09oZOHAgmjRpgkWLFlGdZyUlJYiJiZH4vaP12GrWrBlevHgBRUVFJCUlcXLkDx8+rDS4P3LkCFauXIng4GAR1WJvb28kJCTAy8sLAwcOrHQOANCwYUOsWbMGW7duRZs2bcSch6vyPCsLH+Vi1m7QLNyx79+/zwVY2dnZMo3B4nxngb6+PrZt2wY3Nzf8+eef2LdvH2bOnIn4+Hi5sCepCVTkHBaGgpJuJoQQ1K9fv0Ip77KwMANkcQORF44ePQp3d3d069aN29atWzesXLkSDg4O1Gqfw4YNq6IZVkxZifjKXG0rgrUWAwvjShZaO97e3oiIiICGhobMEvMmJiZYvHgx6tWrh5YtW8LAwACxsbFYsWJFhcXn169fh4ODA0aNGiVWV+Li4oLt27fD1tYW//zzD5Vjd/369am1RaoaY2Nj7t/CTJtQubiiegyhAagwYMzKypLoBk0rc8CiUJ1FgSmL850F9vb2mD59OiIiImBmZoatW7fCwMCAq4X61tQU08o5nTt3hq+vLy9Dwa+LaYFSHRB1dXWpo+WCggKZzQD19PSwb98+MW2KtLQ0mJqa4u7du1TjvHjxAlFRUUhPT4erqyvi4uKgrq4uIiJV1ejo6ODo0aP4448/RNQ+Hz16hBEjRlCpjsoLPXv2REhIiFgHQnJyMiwsLKhS6ayQdK6WhWYpdNq0aWjZsqWY1s7y5cuRnp6OnTt3VjpGt27d4OTkxGsJqKSkBBEREXjy5AkmTZoEFRUV/PPPP8jNzYWNjU25RZRWVlZQU1ODi4tLuWM7Ozvj1atXCA4OrnQeR44cQe/evb+5ezIL5WJAdjdo1u7YQOly9vHjx5Geno7p06cjOTkZ7du3pxKMA9ic76z4+PEj3r9/j6ZNm+LVq1eIiYmBsrIyBg8eXG1zKI+ajIqcw8JQ8O+//4adnR2vcVjUl7AQa3v8+DHGjx+Phg0bIicnB3Z2doiNjYWzszPCwsI4Bd6qhpWIljDoysjIgIuLyzcJuli52gL8tRhYCAuy0NopKirirWFRq1YtWFhYiGz7+v+SSExMrDS7aG5uzi05Voanpyd27dr1zQMVwkC5GJDdDZq1O/arV68wYcIEvH79GkVFRRg3bhxCQkKQkJCA8PBwquttdQYi5cGqFqpK+RYVvDXQ4+LiQtatW8drjM6dO5MnT57wGmP58uXE2NhYpNPo5MmTZODAgWTVqlVUY9y9e5fo6uoSIyMjYmNjQ2xsbEj//v2Jvr4+uXPnDtUYs2fPJi4uLqSkpITo6uqSzMxMUlxcTOzt7ak7S1jw77//Eh0dHeLt7U06depE1q9fT2xtbYmmpiY5fvw41RiPHj0iBgYGpH///qRjx44kMzOT2NjYEF1dXer3gwUODg5k6NCh5Nq1a6SgoIDk5+eTc+fOkQEDBhBPT0/qcUJCQkiHDh1Ihw4diIaGhsi/pflswsPDiaGhIdHQ0CAaGhqkV69eUndXPHnyhPj6+pJZs2aRefPmEX9/f5KTk0O9v42NDdexw4dz584RCwsLYmhoSJ4+fUo2bNhAoqOjK9xHT09PYoddWTIzM4menh7VHMaNG0eOHj1KPeeqQkNDg8TFxZGBAweSCRMmiHQyaWhoUI9TVFREbG1tSYcOHYimpibJzMwk8+bNI1OnTuXVxSMtixYtIrNmzSLv37/nrkV5eXlk6tSpZNasWVRjfPz4kYSHhxNXV1fi5OTE/djb25NBgwZV8REQEhMTQ7p3707u378vsn369OnEwMCAnDx5ssrnQENNRkXOadq0KUJCQnDhwgWZDQVHjx4NX19fzJs3DyoqKjJ117CoL9HW1kZMTIyIWNuwYcOkEmu7desWIiIiRJ70FRUVMXfuXIwfP17q45IVIyMjbNiwAUFBQVBQUMCOHTvQvn17rFu3jlpEa9WqVTA2NoaXlxdXa+Dv7w9HR0f4+vpWm8jSsmXLsHDhQkyZMkXM1VaauiEWvjS7d+/G2rVrxYQF/f390bBhQyphQQD4448/sGjRIuq5f42uri4nLKampiYm+EZT43D58mXMnz8fJiYmuHPnDkpKSvD582c4OzuDEFJu3Ujbtm1x+/btCtWob926Ra2xoaGhgcWLF2P79u0Si2lpriEsIAyUiwFg8+bNvAvZhfBxx7527Rq2bdsmIvb2888/w9HRkbrBwMvLq0Kn76qEdS1UVVITqMg5LAwFz58/j8zMTM7A62uqq0AR4H8DKSkpkegTUlhYWO0tvn369JHoXUSLvARdQjM3vq62LHxpWBhXsmDnzp1o2rQpEhMTkZiYKPI7gUBAFajIap43YsQIrF+/Ht27d5co0paTk4P169djzJgxVMeSkZHBdbi8fPmSap+qQHieKykpISwsDC4uLpg4caLU8uwsCtlZuGMXFhaW21r8+fPnSvcHStugfXx8OKfvFStWcE7fkjyIWLJt2zZMnjxZYi2UsCsLKO1wpKmFqkpqAhU5h8VTNW1XTkXIixlgr169EBQUJNKtlJeXh7Vr11JLvcsKbTEeANSpUwctW7aEsbFxuRczeQq6AP6utiy0GFgYV7KgbFeUrMhqnjd58mScOHECw4YNw5gxY6Cnp4fGjRsjLy8Pt27dwsGDB9GmTRvqboxvLX8upGzWok6dOvD19cXGjRu5tm1aWLhBy+qOXZauXbsiMjISzs7O3Lbi4mJs2bKFOgPBwulbVljXQlUlNYGKnMPCUJCFeJW8mAE6OTnB0tISvXr1wqdPnzBnzhw8e/YMTZo0wapVq6r0b9MW4wGlNgWvX7/G0aNHERQUJPE13zLoKgsrV1sWWgwshAXlBVnN8xQUFBAWFoaAgADs378fYWFh3O+aN2+OSZMmYc6cOVIVOn7+/BmvX7/mAklSpsh5xIgR0h2YjMyfP18saJ8/fz5UVFQQFRVFPQ6LQnZZ3bHL4ujoiEmTJuHGjRsoLi6Gu7s70tPTkZ+fT9VZBrBx+paVT58+VXoONWnSBB8+fKjSedBQ054s57AwFGSFPJgBAqVV6keOHEFSUhJnsDZy5EiZ9S6qihs3bmDWrFm4ffu2xN/n5OTA0tIS+fn5yMvLg6qqKhd07dy5s9p8PiZNmoRPnz5hzJgxEl1thwwZQjUOC18aVsaVfGHxvWNhnvf582c8efIEb9++RdOmTdGqVSupO7EuXboER0dH5Obmiv2ubt265Z6f8srZs2dhZ2eHCRMmIDIyEtbW1iJu0DQ1YoMGDYKvr69UXlaSyMnJQWRkpMi1yNzcnFpIc+nSpXj48CF8fHzw+PFjeHt7Y/369YiNjcW///5b7nI9C8aMGQNLS0uMHDmy3NccOnQI27dvp/Jyq0pqAhU5h4WhYA3fhtzcXMTExGDKlCnlvkYegi5WrrYAfy0GVsaVfLV2Dhw4IBIQfP78GY8ePUJ0dDQcHBwqvLgLqcg8b/369WJFrVWFqakpmjVrBgsLCyxcuBC+vr7IysrChg0b4OPjIyLCxhrWysVC+LpBs3LH5gsLp29ZCQ8PR3h4OCIjI8uthTIzM8OYMWOq7QGhPGoCle+UixcvIjAwUKqUqTwgyw2EtoIeqD45cHnKdPGFhautUIuh7HuSlpaG33//XSYtBj7Cgl9r7Rw7dgxr167FxYsXeWvtHDt2DHv37pVquTMzM5O7oaqrq0uls8MCbW1tREVFQUNDA+bm5rCxsUGPHj2wf/9+7Nu3D5GRkVX2twMDA6kzQLRqsSzcoGV1xy5bj1IZsnRTERmcvmXly5cvsLCwQEpKSoW1UDt37vzmeio1NSrfKdIYCsoLsoq1lV0C+fTpE2JjY6GpqQldXV0oKioiISEB9+7dE1uzrkq8vb0rfOL+nlBRUUF8fDyGDRsGVVVV3L9/HwCQn5+PoqKiSvdn6UvDQliwKtu+tbW1qZZsytK6desKW42rGgUFBa5gVEVFBcnJyejRowe6d+9e5QXKNjY2zMfcsmUL7yyQrA0GT58+5fV3v+br810gEGDRokXVYtRaFbVQVUZ1C7fUIB3Pnj0T+/nvv/+Ivb09GTJkCPU4OTk5JDAwkNjZ2ZFXr16RY8eOkbS0tCqcuTgsxNqcnJyIj4+P2PZ169aR+fPns56y1MTGxpJp06Z962lIRVRUFNHW1iYxMTEkNTWVdOzYkbi7u5MRI0aQ6dOnV7jvtWvXiKamJnF2diYvXrwQ+V1qaipxcnIif/75J4mPj6eaCwthQQMDA5KSkkIIIdx5JpyPvr4+1RiSKCgoIKtWrSL9+/eXeYxvwbhx48jff/9NCCFk27ZtxMbGhhBCyM2bN0nXrl2rdS5JSUnk0KFD5ODBg+TgwYPkwIEDZPfu3cTV1ZV6jOnTp5OQkJAqnKXsfPr0SarXszjfWVBcXEzS09PJ7du3yePHj0lJSUm1/W0aajIqcg4LQ0F5kZ1noRty/PhxHDx4UGz7qFGj5MJ4TZYn7m8NH1db1loMrJyP+bZ9l7e0JxAI4OHhQTWGvDBz5kwsWLAAtWvXxrBhwxAYGIiZM2fiv//+q9bustDQUC6DI6zXEf67S5cu1OOwcINm4Y796dMnuLu7i2T/Bg8eLFU2RF6MWhUVFdG2bdtq+VuyUBOoyDmSvnTSGgqySoXzLVBkcQNp3LgxEhMT0aZNG5HtN2/elFrhkjWFhYXYuXPnd9dGC8juastai4GFsCCLtm9J9QW1a9eGjo6O1EJ43xpjY2Ps3bsXCgoKUFZWxvbt2xEaGooBAwZgwYIF1TYPFsrFABs3aBbu2D4+Prh586aI/IOzszPWrl2LdevWUQUZrIQ0f3RqAhU5h4WhIItMBousDIsbyIQJE+Dm5oa0tDRoaWmhpKSEO74lS5ZQjcECFk/c5RXmCQQC1K5dGy1btsTgwYOr/EmnPFfbt2/fwtLSssLCYNZaDCyEBVlo7Tx48ACWlpZMa0uKi4vx8OFDqKqqSu1azpcGDRqgoKAAQKkRXlJSEvr27YsmTZpU2xxYKBcDgKGhIW836JiYGHh7e/PSmGKRDZEXIU15pyZQkXOuXbvGu42RRSaDRVaGxQ1k7ty5UFBQwM6dO7Fp0yYApYqUDg4OMDc3pxqDBV8X0wLSP3EXFxfj6NGjaN68Oafn8ODBA+Tk5EBHRwfXr1/H1q1bERISQq0OKwuEh6sta18aFsKCv/76K6Kjo0Xavs3MzKRq+z548CBvr5Xnz5/D1dUVtra2UFdXx9ixYzmxt7CwMGhqavIan5YrV65gzpw5mDp1KveexsbGIiAgAMHBwVItu/CBhXIxwMYNmoU7NotsiLwIaco937A+pgYKvLy8yMKFC0lycrLUhVpCbG1tib29Pfny5QtXXPjmzRsyefJkrrCuMlgVKL5//55ERUURDw8Psnz5crJz506ZHU9zc3PJmzdvZNpXHnB1dSULFiwQ+VyLiorI4sWLiYeHByGEkLVr11a5KzQfV9uwsDBiZGREsrOzJf4+OzubGBkZkY0bN1LPh6/zMQvs7OyIj48PLzdeGxsbMnbsWPLkyRNy4MABoqenR+Lj44mrq2u1FlyPGTOG+Pv7i2338/MjEyZMqLZ5zJo1izg5OZH379+TPXv2kHHjxpEvX76QmJgYYmhoSD0OCzdoFu7YU6dOJU5OTuTLly/ctpKSErJs2TIyadIk6nHk4XyXd2p0VOScQYMGITMzs1wtAhq9DhYKqF27dkVERATU1dWhp6eHw4cPo1WrVrh37x6sra3FhOl+RCrz9ykLjSZEly5dsHv3bjFdjdTUVJiZmSEuLg6PHj2Cqakpbt26JfV8adHQ0MDly5dRq1YtzJs3D9nZ2ZyrraGhYYXnmLxoMbDW2rGwsEBcXBwEAgGaNWsmltU8c+ZMpWMYGBggPDwcmpqasLW1BSEE69evR0ZGBkxNTatNEVZXVxcxMTFimb4nT55gxIgR1TYPFsrFAODm5oZ9+/ZBQ0NDZjfokJAQbNiwAb169ZLZHfvevXuYMmUKlJSUJGZDqqtJ4X+BmqUfOYeFoSCLVLis9SXyKNYmKxs3bkStWrXQsmXLCl9H666rqKiIV69eiQUqL1++5ALTL1++QFGxar+mfFxt5UWLgbXWTrdu3UTceWWhuLgYP//8MwghuHr1KncjLikpqfLPtCxNmzbFw4cPxQKVlJQUmQ35ZEFdXR2nT5/G+/fv0aBBA0RFRUmtXAywcYNm4Y6tra2NmJgYEVuRYcOGfRNbkR+dmoxKDVTImpUpWzBa2Q2Exp79W+Lm5oZTp06hXr16MDExgYmJCTQ0NGQeb/ny5bh69Src3d2ho6PDqVKuWLEC+vr6WLZsGdzc3PDmzRvs2LGD4ZGIIsyolO2a2rhxI7Zs2YKSkhJqlV0WvjQscHZ2xs8//yzWJh4QEIC0tDQEBgZWyzwmTZqEbt26oUWLFvD09MTZs2fRtGlTuLm54dmzZ9Xmarx+/XpERUXB1taWe8q/f/8+AgICMGrUKCxatKjK58BaubiG/y1qApUflKrIZPD1pZGXGwgfvnz5gmvXriE2NhanT59Gs2bNuKDl65bpyvj48SMcHBxw8uRJkQv4kCFD4OnpiWvXrsHT0xPbtm3jFRBVxsaNG2FlZYV69eqJbI+JiUFUVFS13VBZoaenxy05leXRo0cYNWoU7ty5Uy3zuHfvHmbPno03b95gxowZsLe3h7u7O44ePYrt27dX29LA58+f4eXlhf379+Pz58+cf5KFhQUWLVpU5dmd8pSLrayspFYuFiIPbtAVabEAskno1yCZmkDlB0UeMxmsbiCEEFy8eBHJyclQVFREu3bt0KNHD+oOJlYUFxfj0qVLOHbsGM6cOYPWrVtj6NChMDExwW+//UY9zpMnT5CUlAQFBQV06NCBc14tKiqqUgntH5W+ffvC0dERQ4cOFdm+b98+bNmyhaq+hBUlJSUoKCjgukMyMjI4cb3qprCwEBkZGVBUVESbNm2qJZNx/fp1TJs2DaNGjYKdnR1atGjB/S4tLQ3bt2/H4cOH8c8//3DdhJXBwg2ahVeXl5dXhVos31uAL8/UBCr/A8iayWCdlWFxA8nLy4OVlRUePHiARo0agRCCgoICdOzYEaGhoRLbBauDoqIi7N+/H35+figsLJTKlPDVq1cSn8ikCXakpapcbVnAV1hw8+bNCAkJwZQpUyRq7UyaNKmKj+D/kJeg+lthZWUFNTU1icrFQpydnfHq1Ssq5WKAjRs0C3fsbt26wcnJiZcWC8D/fP9foKaY9n8AWWXnWRcoshBrW716NT5+/Ijo6GhuOeThw4dYsmQJ/Pz8ql3e/MWLFzh58iSOHz+O+Ph4qKiowMLCgmrfW7duwdnZGZmZmSLbCSEQCARV6sA8evTob1I/UhkshAXlRWtHXoPq6oS1cjFQ2hXn7e0NDQ0NaGpqon79+rCwsED9+vWxY8cOqkDF1NRU4nYtLS3s3buXKlBhocUiL/Ymck919kLXIBt8DQX79OkjUXdg79691AZrrMwAt27dSnr16kU6dOhAOnToQPr160ciIiKo9+/WrZuIgZeQa9eukZ49e1KPw4fs7GwSHh5OzMzMiIaGBhk4cCDx9/cnSUlJUo0zevRoMmnSJHL69Gly/fp1sZ//RVgYV5ZFGq0dSQag5f3Q4OTkRIYOHSpyXiQlJZFhw4YRNzc3qY/le0RPT488fvy4wtdkZmYSPT096jF1dXXJ06dPCSGl73FYWBghhJCnT5/yNll8+vQp0dbWpnotCy0W1uf7j0pNRkXOYRFxs8hksDIDnDVrFmbNmoU3b95AIBBIvVb/+fNniV46zZs35yTCq4qwsDCcOHECd+/exW+//YYhQ4bA1dUVHTt2lGm8lJQUREdH87JHYMXDhw+RnJzMKRiTMsWJNG3KrGBh91AWJSUl6tfSLIcRKbJdZ8+exYYNG0QKoTU0NLB06VLY29t/d+aGssBauRgA2rdvj3///RcWFhZQVVVFfHw8pkyZguzsbF5zldarS1dXF2vXrsXVq1dl1mJhfb7/qNQEKnIOC+l6Fqlw1maA0txAytKxY0dERkbC1dVVZHtkZGSVS5KvWrUKtWvXRu/evTkfjrNnz+Ls2bNir6W5SCkrK6OwsJD5PKWFlastC1jYPchKeHg40+WwbxlUywsjRozA+vXr0b17d/z6669iv8/JycH69esxZswY6jFZuEGz8OpiocXyLc/374maYlo5p1u3boiIiEC7du1EFGHT0tIwfvx4xMfHSzWerJkMeSlQvH37NiwtLaGhocEFbvHx8Xj48CG2b99epbb1/fv3p3qdQCCgKgw+ePAg9uzZAw8PD6iqqoo9kVUXxsbGGDJkiERX27Fjx/L2vJEGOzs71KpVC2vXrkXnzp1x+PBhNGrUCDY2NlBSUsKGDRuqbS58mTJlCtTV1cWCai8vLyQkJGD37t3VMo+XL18iICCg3DbaquyCqirl4gcPHkBBQQEaGhq4ceMGQkNDoaysjAULFlBd2yRlh7+FO/aPdL5XJTWBipwjT9L1QUFB2LlzJ6cGqaysjBkzZlRrgSJQqk8REhKClJQUEELQoUMHTJs2jTP2+14YNGgQsrKyOC2Ir6nKYtqyaGlpITY2Fq1bt8b06dNhbm4OY2NjXLp0CatWrcKRI0eqZR4AG7sHWbG0tMTGjRvRuHHjSjveaLrcvmVQXZbZs2cjISEBJiYmEpVoaZ78+VBUVMQpF5c162vevDnGjBkjk3Lxo0ePUFBQwOmyhIeHo2/fvtRaRl5eXjK5Y2dlZUFZWRkCgQBZWVkVvpama+9bnu/fEzWBipwjjxG3rFmZGkSR9FRXFr5tj7QYGBhgz549aNu2Ldzd3dGyZUvMnj0bz58/x9ChQ6vNC0YIX2FBQLa2YGdnZ7i6uqJhw4YiOkSSoBXzkoegWldXF9u3b6/2ZbyvYaVcXNYN2s7ODkBpHV5ycjK1G3Tnzp1x6NAhTrOIFk1NTVy6dAnNmjUrd/lImjomgM35/qNTE6jIOT9axC3LDYS1GWANosyePRtKSkpwc3NDTEwM9u3bh927dyM2NharVq3CpUuXvvUUpaKmLViUnj17IiIiAm3btv3WU2HC2LFjYWhoyAUpQvz9/XHjxg2qJTV7e3v88ssvmD9/vlQBwY0bN6Cvrw9FRcVKs9kGBgbU49ZQMTWBynfAjxJxy3oD+bo25Pnz56hduzZatWoFRUVFZGZmori4GFpaWtW27i8rtE/tAoEA3t7e1TInVq62ssJaWNDZ2Rn37t2Dn5+fmNaOvr4+dbFkbm4uMjIyJHZClWcWKo9B9erVq/Hu3Tt4enr+EAWaLNygWbhjy8qPZNRaXdR0/XwH1KtXj1pUrTxkyWSwRlaxtn///Zf7d1hYGM6dOwc/Pz+u2+jdu3dwcHCAurp61R8ET54+fcrd+J4+ffqNZ1MKK1dbWWEtLMiiLfjw4cNYunQpioqKuE4oYZr/999/LzdQOXDgANUcabtCWJCXl4cjR47g3LlzaNWqlZgtw/d2M2ThBs3CHVtWWJ/v/wvUZFTkENYRt7ykwrt3744NGzaIpUSvX78Oe3t7XL58udIxevbsiZCQEDGTvuTkZFhYWOD69etM5/yjI2+utiyMK7t06YKoqCgxCfK0tDSYmpri7t27lY4xdOhQ6OjowNraGmZmZggJCcGLFy/g4eEBe3t7KuVSeYFVvY28IA9u0Kz4EYxaq4OajIocwjriZiU7zzcrw0JXori4GO/fvxfb/vr1a7mUhK+MDx8+IDk5WaxttDo0TMpztfX29pbZ1ZYvLIQFWWjtPHnyBIGBgVBTU0OHDh2Qm5uL/v374/Pnz9i6det3Fah8b4FIZcybNw9v3ryBp6enmBv0woULv/X0pIKVkOaPTk2gIoeUvbA4Oztj6tSp5UbcNLBIhbPIyrC4gfTv3x/Lli2Dm5sbtLS0QAhBfHw8VqxYARMTE6ox5IUzZ87AyckJBQUFYtoWVe31c/36dTg4OGDUqFFiQlwuLi7Yvn07bG1tpXK1ZQELYUFbW1tYWlrizp07EtuCaahTpw63RKKiooKUlBT06dMHWlpaePz4Mf0ByQlC47uMjAy4uLh818Z3ioqKcHd3x5IlS6rdDZo1rIU0f1RqAhU5h0XEzSKTwSIrw+IGsmzZMixcuBBTpkzhMiiEEAwePLhS8zN5w9fXFz169MDcuXOp19ZZsW3bNkyePFmiq62amhoXLG/ZsoXa1ZYFLOwe9PT0EBERgZCQEFy6dIlrC3Zzc6NuCxaa09nb20NdXR3nz5+HlZUVUlNTv5kwn6x8bcNha2v7QxjfNWjQQCQT+C2IiYlB165d0bJlS2zevBmxsbHQ19eHq6urWIGuJFic7/8TVLGXUA08YWEoaGlpSby8vMS2r1ixgkyYMIFqDFZmgHfv3iULFy4kQ4cOJUOGDCG2trbk7t271PsLSUtLI8eOHSMnTpwgmZmZUu8vD2hpaVVq2FZVdO/enfz3338VvubevXvVZvRYFr7GlSyIi4sjOjo6ZMeOHSQ3N5cYGBiQoUOHEj09PeLq6lqtc+FLjfFd1bBp0ybSqVMnEh8fT27evEk6dOhAli5dSgYNGiTxelse8nC+yzs1GRU5h0XEzSKTwcq3RFtbGwEBAdSvLw9VVVWRtLWwbbRz5868x64u2rRpg+zsbKnVMVnw6dOnSlPlTZo0wYcPH6ppRv+HLMaVrNuCu3TpghMnTqCoqAhKSkrYtWsXIiMjoaysDAsLC+q/VR6f/l979x5XU97+j//ViSQmyXc0TTpRO1JKktNtVMLIqTJGM+XQ7VCOxaQydZOmHGJymDGJyqFxGKdRwsgxbmJKI5KIEXWLmCKl016/P/zaH1thV2vttffuej4ePR68927ta2drXeu93u/rqqqS6IqbDdT47o2PVZJ9myRVZQ8cOIBVq1bBxsYGERER6NOnD1asWIE///wTfn5+DW5xv09LG7W2BpSoyDg2GgqyMRXe3PUlbJ9Abty4gZCQELFOv2+TVtl5NixevBgrVqyAn58fjI2NG2wbleSXZXNx0dWWbU1pXPnutuAP1dqR5HPm7u6O8PBw0W1OExMTfP/9902K/59//sEvv/yCvLw8UZsEhmFQU1ODu3fv4s8//2zS8ZqLGt+9wXZ37CdPnsDa2hrAm2q59Vv5dXV18eLFiybH19xGra0BJSpygI2Mu6UzGc2dlWH7BBIZGQkVFRV8//33iIyMRGBgIAoKCpCYmIjVq1c3+/3xwdfXF3V1dfD19RX7BdqUX5bNxUVXWz6xXWvn4cOH0NDQaFFMy5cvx6VLlzBo0CAcP34co0ePRn5+PnJycjgvove2wYMHIyYmBmvWrBGNlZaWYs2aNVLrNyQL2O6O3bVrV9y/fx9VVVW4e/cuBg0aBODNQtiuXbuy9jqE6qgoLC4qZLa0b8nHTiCS/PK2trbG9u3bYWlpiYkTJ2LJkiWwtbVFQkICzp07h/j4eIlikQV8luDmqqutLGCj1k5sbCzOnz8Pb29vdOvWrcHPQJLZrv79+2PVqlX44osvMHr0aFGl3JCQEFRVVUktsVa0Nhx8doN+27Zt27Blyxa0adMG2tra+P3330UXTPPnz4e3t7dU4mgNaEZFQbE9kwG0fFZmy5YtiIuLE9t217FjR/j7+8PT01OiREUoFKJLly4A3mwbzcvLg62tLRwdHRETE9Ps2PjAZy8QFRUVJCQkiLraJiQkiB7T0dHBN99806yutrKAjVo70dHRqKurE5VZr9eU2a5Xr17BzMwMwJs1Vbm5uRAIBPj2228xc+ZMCd9Ny3366ac4fPiwWBuOyZMny2UbDuDNzr8PdYN+H7a7Y3t7e8PIyEhUuh948/ssJCQE7u7uEsdFPo4SFQXFxlQ427MybJxADAwMkJGRARcXFxgbGyM7OxsA8PLlS1RXV0scryyoqKhAQkLCe68MuS5t3qZNGwQEBMDf35+VrrZsYVpYWJCNWjtszMx9+umnKCwshK6uLgwNDXH79m0Ab1pilJWVtfj4TcFGGw5Zcfny5WZ1g9bT04OysrLoz2x4tw/ZmDFjmnyMln7eWwNKVFqB5s5ksD0rw8YJxNPTU7Sgd8SIERg3bhzU1dWRmZmJPn36SHQMWREaGopTp05h0KBBolkiPqiqqspMZ102CguyUWvnypUr8Pb2Rrt27cTGy8vLsX79eolmw5ydnREUFISVK1di4MCB8PPzg5WVFVJTU2FgYCBRHKQhDQ2NZhVDe7uQJhvVequqqrB3716xxdLAmx2IN27cwIkTJz56DFlpbyLrKFGRAy3NuJs7k8H2AkU2TiATJ05Ep06doKWlJSpMFhsbC11dXYSGhkp0DFlx5swZrFu3DsOGDeM7FJnBRmFBTU1NbNu2Dffu3UNeXh6UlZVhbm7eoIndu/Lz8/H8+XMAwE8//QSBQIBPPvlE7Dl5eXnYt2+fRFtP/fz8UFtbi6KiIowZMwbOzs5YuHAhOnbsiPXr13/0+0njxo0bh61bt7a4G3RzumO/LTw8HIcPH0bPnj2RnZ0Na2trPHjwAM+ePcPUqVMlioGt9iaKjhbTyjg2Mu4lS5bgxo0bjc5kDB06FCEhIR89BpvNAJt6ApFETU0NsrKy0K9fvxYfS1r69euHAwcO8FJHRVax0bjyfT5Wa+fs2bOYPXu2WBLdGDc3N/zwww8ffb3k5GQMGTJELNkpLS2FpqYmVFXpGrG5goKCkJycjI4dOza7G/THumOnpqZ+9BgDBw5EcHAwXFxcMHz4cMTExEBfXx9+fn7o2rWrRNvZufy8KxL63yLj2Mi42ZjJYLMZYEuKtZmbm2PevHnw9fUVGy8rK4OXl5dc1VFxdnbGwYMHsXDhQr5DkRlsFBZsbq2dL774AqdPn4ZQKISTkxN+++03aGtrix5XUlKChoaGxOUBwsLC8Ouvv4olKlTMix0uLi4t+v5ffvkFo0ePbrQ79rx58yQ6xosXL0SlGrp3746cnBwYGxtj1qxZWLhwoUSJCluFNBUdJSoyjo2Ggs2dCn8bG+tL2CjWxjAMYmNjce/ePURERIhdTcnb5KC2tjbi4uJw/vx5GBkZNbgyVLSut5Jgo3FlS2rt1G87PnXqFD777LMWLSo2NDREXl4eunfv3uxjsCEoKKjRcSUlJaipqaFr164YOXKkzKxT+hg2/l+w0R1bW1sbz549w2effSb6twbeFG4rKSmRKA42Pu+tASUqMo7NjLslMxlszMqwUaxNSUkJsbGxCA4OhpeXF37++WfRVS+fO1WaIysrS9QQ7smTJzxHIxvYaPeQk5MjqrVz8OBBmJqawsPDA127dsW+ffswatSojx6DjV0hAoEAixcvxtatW2FoaNigZL60EtGamhocPXoUOjo6oppHN2/eRHFxMaysrJCeno5ffvkFcXFxctOCoqXdoNnojv2vf/0Ly5cvR2RkJPr27YuIiAgMHz4cKSkpEhd8Y+Pz3hpQoiLj2Mi42ZjJYGNWho0TCMMwMDIywt69ezFnzhy4u7sjJiZGLlui79y5k+8QZA4b7R5kpdbO/fv3RSf+p0+fSu1136Wurg5nZ2esWbNGdHKuqalBcHAwOnTogNDQUERFRSE6OlouPpNsdINmozt2QEAAAgMDceXKFXh4eGDv3r2YOHEiVFVVsWrVKomOwcbnvVXguushaZnMzEzGwsKCcXd3ZyIiIpiIiAjGzc2N6dWrF3Pp0iWJjuHh4cG4ubkxv/76K9O7d28mMTGRiYyMZCwsLJiUlJQWxVdVVcX8+eefEj3X0tKSKSoqYhiGYRYtWiTqEFpQUMDY29tLdAyBQMCUlJSIXnvRokWMjY0Nk5KSwggEgma8A/4UFhZ+8Is0z5gxY5ikpCSGYd50uA0MDGQYhmFu3rzJ2NjY8BkaL/r27cvcuXOnwfidO3cYW1tbhmEY5v79+4y1tbW0Q2sWNrpBc9EdWygUMjdv3mSKi4ub9f3k/WhGRcaxkXGzMZPBxqwMG8XamLfWobRp0wZRUVHYtGkTFi9eLNH3y5KPNUmTp4XBLcF2YUFZqrVTW1uLZ8+eiTUlrL/lWl/NlGuqqqooKSlpsFbm6dOnos9fXV2d3OxEYqMbdHO7Y3+sA7OWlpZoS/r72ixw0d5E0cnHJ7OVa2npejamwtlYX8LGCWTu3LkNmsXNnTsXBgYG2Ldvn0THkBXvbqOsq6vD/fv3kZCQgMDAQJ6ikj62CwuyVWunfh3EvXv3sHTp0iavg7hw4QKWLFkiqs3yNnV1daklKiNGjEBoaCiWLVsGKysrMAyDrKwsrFixAo6OjqioqMDmzZvRu3dvqcTTUmx0g25ud2w2OjBz0d5E0VGiIoPYzrjZmMlgY1aGjRPI+97vmDFjmlW+mk+NVTcdMGAA9PX1sXHjxgbluRUV24UFAcDJyUn05/rPRn2tHUkWyr67DsLPz6/J6yDWrVuHnj17wtPTEwsWLEBUVBSKioqwYcMGqe7oCgoKQkBAAKZPny52kh01ahSWLl2K//73v7hy5Qq2bNkitZhago1u0M3tjs1GWwsuPu+Kjgq+yaB3T1Afyrj37Nnz0eP99ttvCA8Pxw8//ABzc3OMGzcOEydORGZmJnR0dLBt27aPHsPKygrHjx+Hrq4uFi9eDBsbG3h4eODhw4f46quvcOnSpWa/348Va5PkKgZ4s+tHkkJNsu7hw4cYPXo0rl+/zncoUsdGYcH31dopKSnBkCFDJLql5uPjA21tbYSHh8PGxgZHjhyBrq4ulixZgidPnki06NTS0hL79u2DQCCAh4cH5s2bhwEDBuDAgQPYv38/du/e/dFjsOnhw4e4desWVFRUYGZmhs8//xzAm91/726Nl2VsdINmozs2G9gspKnIaEZFBrGdcbMxk8HGrExzi7VNmDBB7rYeS6Kx+93l5eWIiYkRnURaGzYKCzIs1NphYx2EioqKqLtv/S3XAQMGwN7eXuJdIWxq164devfuLfoZ1H/+pHVSZgsb3aDZ6I7NBjYLaSoySlRkXHMbCr6rpVPhbKwvae4JRNJKkfKmsZkihmGgoaEhNq3dmrBRWJCNWjtsrIPo0aMHTp8+DU9PTxgbGyMjIwNTpkzB48ePJfp+tmRmZiIoKAgFBQVi49I+KbOppd2g2eiOzQY2Pu+tASUqMo6NjJuNsvNszMqwVawtNzdXbPfR2zspwsPDJT4O3xq7362mpgZTU1O0b9+eh4j4x0ZhQYaFWjtsrIOYOXMm5s+fDzU1Nbi4uGDjxo2YOXMmbt++LfEx2BAeHo4uXbogICBANMPT2rHRHZsNbHzeWwNaoyLj2GgoKBAI0K5dOzg6OorNZJSUlGDw4MHIzc1tdnxNaQYoEAhw8eJFKCsrY86cOXj8+LHoBDJo0CCJEqb4+HjRtHl9M7H6P9va2spFwap6c+fOhZ+fH0xMTPgORea0pLCgubk5Lly4gM6dO6O6uhrBwcE4c+YMwsPD4e/vL9HnjI11EMCbCrAqKioQCAS4cuUK4uPjoauri/nz50ut70/v3r1x+PDhVv85e7s7tpeXFzZu3Nhod+zVq1fjr7/+kmpsXDRqVSQ0oyLj2Mi42ZjJYGNWpv61OnXqhISEBAQHB+Prr79u0ixIYmIiZsyYgblz52LYsGE4dOgQSktLsWjRIjg6Okp8HFlw+fLlBmXVyRstaffARq0dNtZBAG8qSwNvZmPMzc2xefNmib+XLbq6unj16pXUX1fWPHz4UKw79vt2ELq5uUl8TLZmd1vyeW8NKFGRcWyUrmdjKpyNBYpsnEAeP36MiRMnom3bthAIBMjOzoaTkxMCAwOxcuVKTJ06VeJj8W3ChAmIiorCnDlzYGBgIFc7L7jCRmFBtmrttHQdBABs3boVO3bsEJXQ//zzzzFjxgyJF+SywcfHBxEREVi+fDmMjY0lLhGvaNjujv2x2V1JsPF5bw0oUZETLcm42ZjJYGNWho0TiIaGhqjKZ7du3XD37l04OTnBxMQEhYWFEr8fWXDu3DkUFBTgxIkTjT7eGn9JsVFYsLm1dry8vCSOU5J6Glu2bMHPP/8MT09PWFtbQygUIiMjAxEREQAgtWRl8+bNKCoqwvjx4xt9XN4+Zy3pBs1md2w2ZnfZ+Ly3BpSoyDg2Mm42ZjLYmJVho1ibjY0NtmzZgtDQUPTs2RP79+/HzJkzkZGRIXcLUH18fPgOQeY0t7AgG7V23l53UlVVhZSUFJibm6NPnz5QVVXFjRs3cP36dYlnWRITE7Fs2TKxBKE+qd6yZYvUEhVF+5yx0Q2aje7YbMzuslFIszWgREXGsXWF2dKZjObOyrBdrM3f3x/Tp09HYmIiJk+ejF9++QV2dnaorKyEt7e3RO9FVkyYMIHvEGROc9s9sFFr5+1qsUFBQZg6dWqDVgbR0dHIz8+X6HhlZWWNVrDt168fVqxY0aJYm0LRPmey0g2ajdldWen0LesoUZFxbGTcbMxkNHdWhu1ibaampkhNTUVFRQXat2+Pffv2ISkpCbq6uhg5ciRrr0P40dzCgmzX2jl+/DgOHTrUYHz8+PHvvYXyLkdHR+zcubPB9v2kpCTO2yMEBQVh6dKl0NTUfO+tEuDNBUL9rSh5cfz4cezZs0dsTZeamhpmzZqFyZMnIzQ0FO7u7vj11185jYON2V02Cmm2BpSoyLjmZtxsz2Q0d1aGzRNIZWUl1NXVRV/Am6vWyZMnNyiBTeQTW52PW7obo2PHjsjJyYGhoaHY+J9//inx7c7OnTtj9+7dyMjIgJ2dnej20Z9//glHR0exBILt3j+PHj0SvfdHjx6xemy+yUo3aDZmd2Wp07cso0RFxjU342Z7JoOtZoDNPYEkJyfjhx9+QGxsLCwsLETjERERuHHjBsLDwzF8+HCJ4yCyiY3Cgmzsxpg0aRJCQ0ORn58PCwsLCIVCUVn97777TqJj3Lp1S3SyebtWka2tLcrKylBWVibRcZrj7Vse8lRbSBJsdYNuaXfsxmZ3k5OTRYt5JcFWp29FRwXfZBwbDQWbi+1ZmeYWa0tPT8e0adMwfvx4+Pn5iWaYgDdFnLZu3YojR45g586dsLGxkeStETnTlMKCTk5OGDVqVKO7Mdzd3SXewh4TE4Ndu3aJthbr6upixowZ8PDwaMlb4UVlZSXy8vJQU1Mjdhu3KcmbrHj9+jUCAgLwxx9/NOgGHRYWhsuXLyMsLAxbtmxp0Oyv3rvdsY8dO4Y1a9YgLS1N4u7YXGrK5701oERFDqSmpkJLSwu2trZISkoSy7glXb3enJmMjRs3Nmnr8cc09wTi7e0NExMTBAcHv/fYQUFBKCkpQWxsrETxyoqWXtUpGjY6H1tYWCAlJQXdunXD9OnT4eHhAScnJ1y4cAErV65EcnJyk2L6559/oKSkJLVKsmw7deoUAgMDUV5e3qDmkbz2+gFa1g2aje7YbGDj894a0K0fOdDShoLNnQpne4Fic7fz5eTkfLQKr4eHB2bPns1qvFx796rOz88PKSkpCAoKkomrOj6wUViQ7Vo7nTp1avL3yJKoqCgMGDAAvr6+CtXrpyXdoNnojs0GNj7vrYEy3wGQDzM3N8fPP//cYLy+dL0k6gsT/fXXX+jUqRPOnTuH33//HSYmJk0qO5+bm4sjR47g8OHDOHz4MA4dOoS9e/fi+++/l+j7GzuBAPjoCaSqquqji2W1tLRQWVkp4TuRDStXroSTkxNSU1NF1ULXrVsHBwcHREVF8RwdP+oLC16/fh1eXl6i3iz1j0mifjdGZWUlevbsKapGKo+1dtjw6NEjLF68GAKBAHp6eg2+5E1mZiZGjBiBIUOGwMHBAY6OjnB0dBT9WRJsdMdmAxuf99aAEhUZV59xL168uMHiWUkz7sZmMszMzBAYGIj9+/dLdIz4+HiMHz8eAQEBCAoKQmBgIIKCgrBs2TI8ePBAomM09wRiZGSEa9euffDYmZmZcvdLNzMzE9OmTWv0qi4nJ4fHyPjzdmFBZWVluLu7486dO1BWlvxXlb+/P9LS0pCYmIjRo0ejpKQEdnZ2WLJkCVxdXTmMXjYZGhri8ePHfIfBmvpu0Js2bcL27dtFXzt27MD27dslOkZ9d+y3k5Wmdsd+W3O3ErPxeW8N6Kch49jIuJs7k/E2NmZlmnsCGTt2LNavX4/i4uJGHy8uLsb69evlro6KrFzVyZJ3Cwva2Njg66+/Rnp6usTHqN+N4erqKtqNMWfOHKxduxb+/v5chf5e+fn5OHbsGFJTU3Hv3j2pv/7ixYuxYsUKnD59Gn///TeKiorEvuTNnTt3sHz5cjg6OsLOzq7BlyQCAwNx48YNDB48GFVVVfDx8cGwYcPw6NEjiZu9AsDu3bvh4OCAPn364OHDh/jPf/7T6Az4+7DxeW8NaI2KjGOjdD0bhYnYKBfd3GJt3377LU6cOAEXFxe4ubnB2toaHTt2RGlpKTIzM3Ho0CEYGhrKXWXa+qu6NWvWiMZaclWnCFra7oHNWjsMwyAtLQ15eXlQVVVF9+7dMWDAAImTyKqqKixatAinTp0SWxc2bNgwREdHS60Jpa+vL+rq6uDr6yt2ccMwjFwupmWjGzQb3bGTkpKwdu1aTJkyBVu3bgXw5uIvKioK6urqmD59+kePwUZ7k1aBITJNIBAwJSUlDMMwTFVVFbNo0SLGxsaGSUlJYQQCgUTHuH37NjNo0CAmNjaWKS8vZ4YNG8b07duX6dmzJ7N27VqJjtGvXz/m3r17DMMwzH/+8x9m8+bNDMMwTFFREdOnT5+Pfn9FRQUjFArFxu7evctUVlZK9PpVVVXMqlWrGDs7O8bMzEz0NWjQIGbdunUSH0eWPH78mHF2dmYGDBjAmJubM6NHj2b69OnDfPHFF8yjR4/4Do8XGzduZCoqKhqMHzlyhPn2228/+L1JSUmMvb09k52dLTY+ffp0xs7Ojvnjjz8kjuOff/5hXF1dGTMzM8bW1pbp27cvY2Zmxri6ujJlZWUSHSMyMpIZMmQIk5qayrx48YIpLS1lTp48yQwdOpSJioqSOJaWSk9P/+CXvDl48CAzadIkJjc3l6muruYtjvHjxzMHDx5kGIZh+vTpwxQUFDAMwzC//fYb4+zsLNExWvJ5b01oe7KMEwgEuHjxotgMyqZNm7B582YIhUKJr4Zev36NiooKaGtro6SkpMll52fPno1OnTohNDQUSUlJ2L9/P/bs2YOUlBSsXLkSFy5ceO/3vq9Ym7e3d5OLtdXW1uLhw4coKyuDtrY29PX15XrRWWVlpdhVXY8ePZp0VUfeYLvWTlBQEK5fv461a9eKanHk5ubiu+++g42NDZYvX/7RYwwePBgrVqzAsGHDxMbPnDmD5cuX4+zZs017kwQA4OzsjKKiItHt7He973ci292x+/Tpg6SkJOjr68Pa2hpHjhyBvr4+Hj58iNGjR+P69esSvx75MLr1I+Na2lCQranw5paLTk9PR0BAAMaPH49PP/1U7LHg4GBs3boVCxculPgEoqqq2mj7dnnVrl07ibvxKio2Cgtu2bIF3377baO1duorfgLA5s2bJaq1c+bMGWzYsEGsYJhAIMD3338Pf39/iRKVV69eNVoPx8jISGytGdcqKiqQkJCAzMzMBgXfAMlOyrKkud2g2e6OraOjg/v370NfX19s/Nq1a/h//+//vff72C6k2RpQoiLjWlK6ns2y881dX8L2CUTesX1VpwjYaPfAdq2d2tpa6OjoNBjX0dFBeXm5RMcwNTXF8ePHMWvWLLHxY8eOSTXZDg0NxalTpzBo0CCxmSZ51dxu0Gx3x540aRLCwsJEPZvu3buHCxcuIDo6GlOmTHnv97Hd3qQ1oERFBrGRcbM5k9GSWRlFLdbWXGxf1SkCNgoLsl1rp1evXti9e7eoYVy93bt3w9zcXKJj+Pj4wNfXF7du3RL9H8vIyMDJkyexdu1aiY7BhjNnzmDdunUNbkHJE7a7QbPRHXvGjBl4+fIl/P39UVVVhVmzZkFVVRVff/31B3+fsV1IszWgREUGsZFxszWT0dJZGUUt1tZcbF/VKaLmtHuor7XTrVu39x63KbV2Fi5cCC8vL2RlZYklGbm5uaIdHh/zxRdfYP369YiNjcXZs2fBMAzMzMwQHR0NZ2dniY7BBmVlZZiYmEjt9bjAdjdoNrpjA29uifv4+ODu3btgGAbGxsbQ1NTE06dPJZ69ammn71aBx4W8hEP29vbM7du3P/ic69evMwMHDnzv45cvX2bMzc2ZoKAg5smTJ2KP3b17lwkMDGR69uzJZGRkvPcYrq6uzOHDhz8Yx+HDhxkXF5cPPkcR9enTh7l//36D8fv37zNWVlZSj0cWxMXFiXZ0CQQCsT9/aBdEQkICM2zYMObx48eNPv748WNm2LBhzKZNmySO5a+//mIWLFjAfPnll8yoUaOYhQsXMn/99VeT3xPfgoODmR9//JHvMGTKTz/9xPTt25fZsGEDc/r0aSY1NZVZvXo1Y2VlxezatUuiYwgEAubZs2cNxh8+fCjRTkiGaf7nvbWhGRU50JyMm42ZDDZmZeqLtdnb2ze4BQX8X7E2Nze3D8aqiNi6qlMk9YUFG2tc+aHCglzU2rG0tER0dHST4j98+LDEz5X0FkNLaWtrIy4uDufPn4eRkVGD+i1vz/LJi5Z2g/b19YWKigp27dqFn376CcCb+iwBAQEf7I69f/9+HDlyBMCb38Nz5swRtb+o9+TJE3Ts2FGi99Hcz3trQ4mKjGtuQ0E2psLZWF+iqMXa2DBp0iSEhoYiPz8fFhYWEAqFomZp3333Hd/h8aK5hQVVVFSQkJCA6OhoHDhwAAkJCaLHdHR08M0338DHx+eDyfumTZskjvN9i9zfvY1X/39WXV0dqqqqKC8vh4qKCjp16iS1RCUrK0vU4PLJkydSeU0usdUNetasWZg1a1aTumM7OTkhIyND9PeuXbs2+EyZmppK/G/LRiHN1oASFRnX3IybjZkMNmZl2DiBKKrmXtUpspZ0Pm7Tpg0CAgLg7+/frFo7Bw8eFPv7//73P6ipqUFfXx+qqqooKChATU0NLCws3puo5Obmiv6cnJyMbdu2ITIyUrTN+e+//8aSJUvg4uLy0XjYsnPnTqm9ljSw3Q26Kd2xtbS0xGag6hf4Nhfbnb4VFp/3ncjH9erVi3nw4AHDMAwzbdo05uTJkwzDMExaWhozevTo935fbW0tM3nyZMbW1paJjIxkjh8/zvz3v/9lUlJSmPDwcKZv376Mm5vbByu6sr2+pKamhrl37x5z7do15sGDBw0q1bZmz58/Z/755x++w+DdrFmzmMDAQKaiooLZu3cvM3HiRKauro5JSkpiBg0aJLU44uPjmSlTpoiqQjMMw5SVlTGzZs2SuJrz0KFDmaysrAbj169fl+p7KSws/OCXvLGwsBD9TpQFT58+ZYqKipr1c5WVz7usoxkVGdfcjJuNmQy215coWrE2NjXlqk6RNbewINu2bNmCuLg4sbVCHTt2hL+/Pzw9PSVqbvjixQu0bdu2wbhQKMTr169ZjfdDPlbuQN56/dR3g/7QbW1puHbtGgIDA1FQUCA2zjShh5KsfN5lHZXQl3EtKV1fr7ll5+vq6uDp6Yk7d+58cH3Jrl27WuWtG8KNlrZ7YEO/fv0QExPToMbQpUuX4Ofnh8uXL3/0GD4+PigrK8Pq1avx+eefA3hTzv+7776DsbExoqKiOIn9XVeuXBH7e11dHe7fv4+EhAQEBgbCwcFBKnGw5dy5c4iKioKfnx+MjY0bLA7+7LPPpBKHq6srNDQ0MG3atEZvQUnayVkWPu+yjhIVGZeXl4fp06dj6tSpmDx5MsaMGYMXL16IMm6u29ZXV1eLZmXKyspE4zo6OnBzc2u160sI++oLC76dROfn50NPT0/qn7ElS5bgxo0bCA0NhYWFBRiGQUZGBlasWIGhQ4ciJCTko8coLi6Gt7c38vPz0bFjRzAMg5cvX8LS0hJbtmzBJ598IoV38n5paWnYuHGjRK04ZEmvXr1Es8wt6QbNtLA7du/evXH48OFm16iRpc+7rKNERQ7IQsataM0AiWxhs3ElG8rLy7FgwQJcvHhR9DlnGAYjR47E6tWrG1zFv09dXR3++9//4s6dO1BSUoJAIIC9vb1M/N+R1+Z5784QvUuSmYzS0lJ4e3vj5s2b6NChAxiGQXl5OXr16oX4+HiJthc7OzsjKioKlpaWEsdeT9Y+77KOEhUZRhm34mvpVZ0iYLvzMZvu3buHvLw8KCsrw9zcvEEDuuZ6/PgxunbtysqxPqaoqKjBWHl5OWJiYnDr1i2kpKRIJQ5ZwkZ37EOHDmHv3r1Yvnw5jI2NG9RTeR9Z/rzLKkpUZBRl3IqPjas6ReDt7Q0TE5NGCwvWCwoKQklJCe+NK+sLLfbt2/ejz3348CFWrVqFvLw80a0K5v8v1vj8+XPk5ORwHS6AN12f353BYRgGGhoaWLNmjdwVFmOjG7S9vT02bNjQYPYlPT0d/v7+uHjx4keP4ezsjKKiItG/7bvedwtKnj7vsoJ2/cggNhsKEtm1atUqvH79GocPH25wVbd27VqJruoUgSw2rrxx4wZCQkLEKkK/TZJ1EGFhYfj7778xcuRIxMfHY/r06bh//z5OnjyJsLAwLsJuVGMnbjU1NZiamqJ9+/ZSi4MtbHSDZqM7to+PT7NeWxY/7zJPmnuhiWSmT5/O/PDDDx98TmBgIPPvf/9bShERLvTv359JT09vMH758uUP9mBSNNbW1h+ti1FQUMBYW1tLKSKG8fDwYNzc3Jhff/2V6d27N5OYmMhERkYyFhYWTEpKikTHsLGxYS5fvswwDMOMGzdO1Cdo3bp1jK+vL2exv2vOnDnM3bt3pfZ6XLOxsWFOnz7domN4eXkx4eHhDcZXrFjBTJo0qUXH/hhZ/LzLOppRkUGUcbcObFzVKQK2Ox+zIScnB9u3b4elpSUOHjwIU1NTeHh4oGvXrti3bx9GjRr10WNUV1eL3pORkRFu374NS0tLjB8/Hp6enly/BZHLly83Ws9FXrHRDZqN7tjAm63S27Ztw71797B3714cPHgQ3bp1w7hx4977PbL4eZd1ynwHQBpio3Q9kX29evXC7t27G4zv3r0b5ubmPETEj/rCgsXFxY0+Xl9YUJq73IRCoei2goGBAfLy8gAAjo6OYmXyP0RPT0/0fUZGRqLbRUKhEK9eveIg6sZNmDABUVFRuHPnDqqrq6X2ulxxdnZu0O6gqaytrZGYmAg9PT1cuHABaWlp0NfXx6+//gp7e3uJjnHx4kXMnTsXn332GV68eAGhUIja2loEBQV9sDmlLH7eZR3NqMggyrhbB7au6uSdLDauNDAwQEZGBlxcXGBsbIzs7GwAwMuXLyU+2U+YMAEBAQFYvXo1vvjiC3h5eeGzzz7DxYsXYWZmxmX4Ys6dO4eCggKcOHGi0cflrTItW92gm9Md+20bN27EokWLMHXqVNHP1s/PD5qamti2bdt7GxPK4udd1lGiIoPYLl1PZFP9VV1cXBwuXLgAhmFgZmaG0NDQZtVmkFey2LjS09MTS5cuBQCMGDEC48aNg7q6OjIzM9GnTx+JjjFz5ky0bdsWDMPA0tISvr6+2Lx5M3R1dbF69WoOoxfX3EWfsqq53aDZ6I79ttu3bzf67zhy5MgPvpYsft5lHW1PlkFUup60VrJUWDA1NRVaWlqwtbVFUlISYmNjoauri9DQUJrNlEPvtgr4UHfsPXv2fPR4//rXv7Bu3TrY2trC2toaR44cgb6+Ps6cOYP//Oc/OH/+/EePIUufd1lGiYqMotL1iontqzoiXTU1NcjKykK/fv0kev6ff/753nof9O/bPI0VsHubJL1+EhIScPbsWaxdu1bUePLFixcICAiAqampRK1J1qxZg0uXLiEiIgIeHh749ddf8eTJEyxbtgzOzs4IDAyU7A2Rj6JERcZRxq1Y2L6qI9wwNzfHvHnz4OvrKzZeUlKCIUOGSLSu46effsLGjRvRsWNHaGpqij2mpKSEU6dOsRpza9FYAbu3SfJvM3DgQMTFxYnqF9XLy8uDp6cn0tPTP3qMmpoaBAYG4ujRowDe/JsyDIMvvvgC0dHRdCHJIlqjIuNUVVVhZGTEdxiEJadPnxb9+WNXdYQ/DMMgNjYW9+7dQ0REhNiCTUmv7Xbv3g0/Pz/MmjWLqzBbpXcL2L3bDVoSNTU1qKioaDD+7NkziS8E1dTUsHbtWsyfPx+3bt2CUCiEqakpunfvLvFnhEiIl+othBBmwIABzK1btxqM3759m7Gzs+MhIlJPIBAwV69eZYYPH85MmjSJefbsGcMwDPP06VNGIBBIdAxLS0vm0aNHXIZJ3nL+/Hlm4sSJEj03ICCA+fLLL5nLly8z5eXlzMuXL5mzZ88yjo6OTFhYmETHcHBwYP75558G448fP6b/vyyjGRVCeMLGVR3hBsMwMDIywt69ezFnzhy4u7sjJiZGNPMlCRsbG1y7dk0mFt4+efIE+/btw71797B06VJcvXoVpqamMDY25js01hgaGkpc4yYkJAQLFizAlClTGnTH/lCxzZSUFKSlpQEACgsLERYW1qCYXmFhIf3/ZRklKoTwxMHBASEhIQgNDYWFhQUYhkFGRgZWrFiB0aNH8x1eq1Z/ounUqRMSEhIQHByMr7/+GuHh4RIfw8XFBStWrMCNGzdgbGzcoN7H++pssO3Bgwf46quvoKmpieLiYvj5+SElJQVBQUFISEgQbfWVFx/qBv35559LdIz6WidN7Y5tbW2NPXv2iG7tFBUViXVNVlJSgoaGBlatWtWEd0Q+hhbTEsKT8vJyLFiwABcvXmxwVbd69eoGJzYiPQKBABcvXhSbQdm0aRM2b94MoVAo0YLNdxdqvk1JSUlqhdZ8fHygra2N8PBw2NjY4MiRI9DV1cWSJUvw5MkT7Ny5UypxsIXLbtBN6Y7t6emJTZs24ZNPPmn26xHJ0IwKITxp7lUd4d7cuXOhoaHRYMzAwAD79u2T6BiS3obgWmZmJhITE8VO7qqqqvD19cVXX33FY2TNw0Y3aDa6Y7+b4D1//hxXrlyBhYWFxDM7RDKUqBDCM2NjY7G1Ak25qiPceF+NkzFjxmDMmDFNOlZ+fj7y8vKgpqYGExMTqe/iEwqFjZ6MX716BRUVFanGwoYdO3bAz8+vRY0JIyMjoaKigu+//x6RkZEIDAxEQUEBEhMTJa4anJeXh3nz5iE8PBxmZmYYO3YsSkpK0KZNG2zZskXinkHk4yhRIYQnbFzVEfY4ODhItAhSSUkJqampH31eVVUVFi1aJPZcJSUlDBs2DNHR0VK7tTd48GDExMRgzZo1orHS0lKsWbNGLk+mbHSDZqM79qpVq2BgYABjY2MkJyejtrYW586dw549exAdHU11kFhEiQohPGHjqo6wZ8KECazu1vjxxx9x/fp1/PTTT7Czs4NQKMTVq1cRHh4uamgnDYGBgfDy8sLgwYNRVVUFHx8fFBYWQktLCytXrpRKDGyq7wY9Z84cGBgYNCvha6w7tq2tLRwdHRETEyPRMa5du4bffvsNnTt3RlpaGoYOHYpPP/0Urq6uiI+Pb3JM5P0oUSGEJ2xc1RH2zJs3j9XjJScnY8WKFRg2bJhozMnJCSoqKli+fLnUEpVPP/0Uhw8fRnJysqgw2eTJkzFu3LgGFXPlARvdoNnojq2srIw2bdqgtrYWV65cQUhICIA3t9SoKi27KFEhhCdsXNUR7uTm5ordlmMYRrR+SJJtyq9evWq0TomRkRGeP3/Oerwf0q5dO0ycOFGqr8kVNrpBs9Edu0+fPoiJiYG2tjaqqqrwr3/9C8XFxVi3bp3ExyCSoUSFEJ6wcVVHuBEfHy+qhVHfw6X+z7a2thIdw9TUFMePH29QQv/YsWOcL6j18vKS+LmN7aKRZRMmTGjxMSZOnIhOnTpBS0sLJiYmiIyMFOuOLYmQkBD4+fnh4cOHCA4Ohra2NlasWIH8/HzExsa2OEbyfyhRIYQnbFzVEW4kJiZixowZmDt3LoYNG4ZDhw6htLQUixYtkrhOh4+PD3x9fXHr1i3Y2NgAADIyMnDy5EmsXbuWy/DFquFWVVUhJSUF5ubm6NOnD1RVVXHjxg1cv35dYWZZmsPJyUn05/rdXPXdsSWpJmxgYICDBw+Kjc2ZMwfBwcFyuZtKllHBN0J4lJqaCi0tLdja2iIpKUnsqk4WSq+3VhYWFkhJSUG3bt0wffp0eHh4wMnJCRcuXMDKlSuRnJws0XFOnjyJ2NhY5OXlgWEYmJmZ4d///jecnZ05fgf/JygoCJ988kmDhn3R0dHIz8/Hxo0bpRaLrGhud+yrV6/C2toaqqqquHr16gdfo1+/fqzF29rRjAohPGrpVR3hhoaGBurq6gAA3bp1w927d+Hk5AQTExMUFhZKfJzhw4dj+PDhXIUpkePHj+PQoUMNxsePHy+1Mv6yhmlmd2xPT09RxWJPT0+x24Jvk2bl4daAEhVCePK+q7qysjJ4eXnRLzoe2djYYMuWLQgNDUXPnj2xf/9+zJw5ExkZGR+sfrpp0yZ4e3ujXbt22LRp0wdf431F5djWsWNH5OTkwNDQUGz8zz//bFKTRUWipKSE2NhYBAcHw8vLCz///DO0tbVFj73PqVOnRM87deqUVGIllKgQwpvmXtUR7vn7+2P69OlITEzE5MmT8csvv8DOzg6VlZXw9vZ+7/cdPHgQ33zzDdq1a9dg/cLblJSUpJaoTJo0CaGhocjPz4eFhQWEQqGorP53330nlRjY1tJu0M3tjv32LOe7M541NTXIzc2FsbGxxKX8iYQYQggvBAIBc/XqVWb48OHMpEmTmGfPnjEMwzBPnz5lBAIBz9GRyspKsX+TuLg45tixYzxH1Ty//PILM3jwYMbMzIwxMzNjvvjiCyYxMZHvsJrl77//Zuzs7BgHBwemV69eTEFBATNv3jymT58+TFZWlkTHEAgETElJCcMwDFNVVcUsWrSIsbGxYVJSUiT+v1dUVMRMmzaN+euvv5jKykpm9OjRjJmZGWNnZ8fk5OQ0+/2RhpT5TpQIaa2Yt67qlJWV4e7ujjt37kBZmf5b8qmyshIMw0BdXV00zV9WVobJkydj5MiREh+HYRhs2rRJrJT6pEmT8Msvv7Ae88fMmjULaWlpuHTpEi5fvowzZ87Aw8ND6nGwYeXKlXByckJqairU1NQAAOvWrYODgwOioqIkOgbz1oxlmzZtEBUVhWnTpmHx4sUSxxEZGYmXL19CW1sbx44dQ2FhIX799VcMHz5crF0BaTn6jUgIT+rvhXfq1AkJCQmwsbHB119/jfT0dJ4ja72Sk5Ph4OCAmzdvio1HRERg6NChOHnypMTHWr9+PXbt2iV2O+HLL79EQkICL8kKAFHtEHmWmZmJadOmNdoNOicnR6JjvK879sqVKyWuk3P58mWEhYXh888/x7lz5/Cvf/0LNjY28Pb2xrVr1yR/Q+SjKFEhhCdsXNUR9qSnpyMgIADDhg3Dp59+KvZYcHAwHBwcsHDhQmRmZkp0vMOHDyMqKkps18+UKVOwatUq/Pbbb6zG3pqw0Q167ty5aNeuXYPxMWPGYOfOnRIdo6amBp988gkYhsGlS5cwcOBAUXyqqrT8k0300ySEJ++7qjMwMMC+fft4iqr12rJlC7799lsEBwc3eKy+eikAbN68WaLKo6WlpY1uMTc0NMTTp09bHnAr1dxu0Gx3x67fDdalSxe8ePECQ4cORXV1NWJjYyEQCCR7M0QiVPCNEEIADBgwANu3b4epqel7n5OdnY3Zs2fj4sWLHz3e119/jX79+jVoPrhhwwacPXv2g7uCyPsVFxfDy8sLL1++RGlpKYyNjUXdoHft2vXe+kMbN26UuDu2JDuyrl+/jtmzZ+Off/7BjBkz4O/vj2XLluHo0aPYunUrrKysmvS+yPtRokKIFLF9VUfYY2Njg8OHD6Nbt27vfc7Dhw8xbtw4iW7/pKWlYdasWbCyshK1RMjOzkZWVhZ++uknDB06lK3QP4phGKSlpSEvLw+qqqro3r07BgwYILel3isrK8W6Qffo0YOXbtBCoRDl5eXo2LEjAOD+/fsKsQ5I1tCtH0KkaMKECRJf1RHpMjIywrVr1z6YqGRmZkpcMXjIkCFITEzEzp07ceHCBaiqqsLExAT79++X6q2B0tJSeHt74+bNm+jQoQMYhkF5eTl69eqF+Ph40UlWnrDRDbql3bEBQFlZGbdv30Z+fj5cXFxQV1cn9WSpNaBEhRApmjdvHt8hkPcYO3Ys1q9fD3t7+waLaYE3txzWr18PNzc3iY9pbW0Na2trNsNsslWrVuH169c4fPiwKEHKzc3Fd999h7Vr12L58uW8xicJtrtBs9Edu7y8HN7e3vjrr7+gpKSEQYMGISoqCgUFBYiPj2/0M0Sah279EMIjNq7qCDvq6urg6emJO3fuwM3NDdbW1ujYsSNKS0uRmZmJQ4cOwdDQELt27YK6unqjx5DFEvr29vbYsGED7OzsxMbT09Ph7+8v0XobvgUFBYn+/LFu0MuWLfvo8ZycnDBq1KhGu2O7u7tj6tSpHz1GWFgYcnJysGbNGowdOxZHjhxBdXU1Fi9eDGNjY847ZLcmNKNCCE/YuKoj7FFRUUFCQgKio6Nx4MABJCQkiB7T0dHBN998Ax8fn/cmKYBsltCvra2Fjo5Og3EdHR2Ul5dLJYaWqt9xBbxJWqZOnfrebtCSePz4MSZOnIi2bdtCIBAgOzsbTk5OCAwMxMqVKyVKVM6cOYO1a9dCX19fNGZiYoLQ0FDMmTNHsjdGJEKJCiE8SUxMxIwZMxq9qnN0dOQ7vFapTZs2CAgIgL+/Px4+fIiysjJoa2tDX19forVFp0+fbvTPfOrVqxd2796NpUuXio3v3r0b5ubmPEXVfGx0g2ajO/bz58/RpUuXBuMdO3ZERUWFRMcgkqGCb4TwpLGrOjMzMwQGBmL//v18h9eqqaqqwsjICH369EG3bt3kegH0woULsWfPHkycOBGRkZGIjIyEu7s79uzZg4ULF/IdXpPVd4N+V1O6Qdd3x66srETPnj1x+vRpCIXCj3bHflvv3r1x7NixBuOJiYno2bOnRMcgkqEZFUJ4wsZVHZEtAoFA4qTm1q1bHEfzhrW1NRITExEXF4cLFy6AYRiYmZkhNDQUlpaWUomBTWx0g25ud+zGjnH9+nXU1tZi8+bNyM/Px82bN7Ft27aWvEXyDlpMSwhPZs+ejU6dOiE0NBRJSUnYv38/9uzZg5SUFKxcuRIXLlzgO0TSRAcPHhQlKoWFhYiNjcWkSZNgbW0NNTU1ZGdnIzExET4+PhKfEElDMTEx2LVrl6jCr66uLmbMmNGkRouvX79GRUUFtLW1UVJSgqSkJOjq6jap8eTt27exbds25OTkiOq5TJ8+nYq9sYwSFUJ4kpeXh+nTp2Pq1KmYPHkyxowZgxcvXoiu6vz9/fkOkbTAt99+i/Hjx8Pd3V1s/MiRI9i+fTsOHDjA2Wt/bMfR26S1qJcL//zzD5SUlJpUYK2yshLq6upiM1/5+fnQ09P74ELpd4WHh8PLy+uDdXcIOyhRIYRHbFzVEdlkaWmJpKQkGBgYiI3//fffGDduHP766y/OXtvBwUHs7//73/+gpqYGfX19qKqqoqCgADU1NbCwsMCePXs4i0PWJCcn44cffkBsbCwsLCxE497e3rhx4wbCw8PFmkh+SN++ffH777/j888/5ypc8v+jxbSE8KCyshIMw0BdXR3a2toAgLKyMkyePJmSFAVhYGCAo0ePNhjfu3cvunfvzulrnz59WvTl5eWF/v3748yZMzh69Ch+//13nDt3DoMHD25QW0WRsd0de+jQodi1a5fcbPGWZzSjQoiUsXlVR2TXyZMnMX/+fPTt2xe9e/eGUCjEtWvXcOvWLcTGxn6w0y+bBg4ciLi4uAZl+/Py8uDp6Yn09HSpxME3b29vmJiYNNodu15QUBBKSkok6o7t6emJq1evQklJCZ07d0bbtm3FHj916lSLYyZv0K4fQqSo/qpu/PjxjV7Vbd26FQsXLsTOnTthY2PDU5SEDcOHD0diYiJ27dolWhhtbm6OsLAwqfb6qampabSux7Nnz+R623VT5eTkYMmSJR98joeHB2bPni3R8fr374/+/fuzERr5CJpRIUSK2L6qI+RjlixZghs3biA0NBQWFhZgGAYZGRlYsWIFhg4dipCQEL5DbLLmdINmuzs2kR6aUSFEiti+qiOySygUIikpCZmZmaipqcG714Rvl4XnUkhICBYsWIApU6aIZlAYhsHIkSM/+lmURc3tBs12d2wiPZSoECJFVVVVH90CqaWlhcrKSilFRLgSERGBxMRECAQCaGpq8haHpqYmtm3bhnv37iEvLw/KysowNzcX61EjT5rbDZqL7thEOujWDyFS5ObmBi8vL4wbN+69z/n999+xdetWJCUlSTEywrb+/fsjMDAQEyZM4DuURtV36e7bty/foTRJc7tBs9Edm/CDZlQIkSK6qms9qqur0a9fP77DwI0bNxASEoK8vDwIhcIGj0urlD9bmtsNmo3u2IQfNKNCiBTRVV3rMX/+fPTv3x/ffPMNr3F88803qKqqgpubGyIjIxEYGIiCggIkJiZi9erVGDVqFK/xNdWUKVNgamraoBt0eHg4bty4IVEBu9ra2mZ1x27sOM+ePRP17GIYRjRTNXbs2CYfjzSOEhVCpKy6ulp0VVdWViYa19HRgZubG13VKYi4uDhs2LABgwcPhomJCdTU1MQel1bpemtra2zfvh2WlpaYOHEilixZAltbWyQkJODcuXOIj4+XShxsuXbtGry8vCAQCERb+DMyMpCbm4utW7dKrT7NhQsXsGTJEjx//rzBY+rq6rh27ZpU4mgNKFEhhCdsXdUR2fRuGfu3KSkpSa0gmJWVFY4fPw5dXV0sXrwYNjY28PDwwMOHD/HVV1/h0qVLUomDTdevX0dcXBzu3Lkj6gY9bdo0qXaDdnV1RefOneHp6YkFCxYgKioKRUVF2LBhAyIjI+Hk5CS1WBQdrVEhhCeqqqowMjLiOwzCkdOnT/MdAoA3pfwzMjLg4uICY2NjZGdnAwBevnyJ6upqnqNrHktLS0RHR/Maw927dxEREQGBQABzc3NoaGjA09MTGhoa2LZtGyUqLKJEhRBCOPJuYbIePXrA3t7+g4XJ2Obp6SlazzFixAiMGzcO6urqyMzMRJ8+faQWR0vIYjdoFRUVdOjQAcCbZDAvLw8DBgyAvb09Vq1aJZUYWgtKVAghhAPNLUzGtokTJ6JTp07Q0tKCiYkJIiMjERsbC11dXYSGhkolhpY6ePCg2N8/1A1aWolKjx49cPr0aXh6esLY2BgZGRmYMmUKHj9+LJXXb01ojQohhHAgKCgI169fx9q1axsUJrOxsXlvYTJpqampQVZWlkxsoW6KhIQEnD17FmvXrkXnzp0BAC9evEBAQABMTU3h7+8vlThSU1Mxf/58hIaGYujQoRgxYgTs7e1x+/ZtWFlZYcOGDVKJozWgRIUQQjjQ3MJkbDM3N8e8efPg6+srNl5SUoIhQ4bIXR0VWeoGffPmTaioqEAgEODKlSuIj4+Hrq4u5s+fDy0tLanFoejo1g8hhHCguYXJ2MYwDGJjY3Hv3j1ERESgTZs2Yo/JG1npBj137lz4+fnBxMQEAGBnZ9cgKSXsUOY7AEIIUUS9evXC7t27G4zv3r0b5ubmUotDSUkJsbGxuH79Ory8vMTqfsjjdngHBweEhIQgPT0dr169Qnl5Oc6dO4eQkBCMHj1aanFcvnwZbdu2ldrrtWZ064cQQjggK4XJBAIBLl68CGVlZcyZMwePHz9GTEwMOnfujEGDBsndrZ/y8nIsWLAAFy9ebNANevXq1WIzRlz64Ycf8PTpU8yZMwcGBgZSe93WiBIVQgjhyPXr1xEfH4+8vDzeCpOZm5vjwoUL6Ny5M6qrqxEcHIwzZ84gPDwc/v7+cpeo1OO7G7SzszMKCgreOyslrz9XWUSJCiGEcOTly5f4559/0K1bNwDAH3/8ATs7O6kutKyfUanfIQO8qUuyefNmCIVChTmhSrsb9KFDhz74uKx2zZZHlKgQQggHbt68ienTp8PV1RVLliwB8GZ9RXV1NeLi4mBqaiqVODZt2gRvb2+0a9dObDwpKQn79u3Dzp07pRIHWxStGzT5OEpUCCGEA56envj888+xfPly0fqF2tpahISEoLi4GHFxcTxHKJ9kqRv0uXPnsG3bNty7dw979+7FwYMH0a1bN4wbN05qMbQGtD2ZEEI4cOPGjQbbgVVVVTFz5ky4u7tz+toODg4S7ehRUlJCamoqp7GwLScnR9QN+uDBgzA1NYWHhwe6du2Kffv2SS1RuXjxIubOnYvRo0cjKysLQqEQtbW1CAoKAsMwGD9+vFTiaA0oUSGEEA60b98eDx8+bLDI88mTJ5zvEJkwYYJcbj2WhFAoRJcuXQD8X48dW1tbODo6IiYmRmpxbNy4EYsWLcLUqVNx4sQJAICfnx80NTWxbds2SlRYRIkKIYRwYMSIEVi+fDmWLVsm2uWTnZ2NsLAwDB8+nNPXnjdvHqfH55OsdIO+ffs2Vq9e3WB85MiRTWqiSD6OEhVCCOHAokWLUFBQgGnTponNbgwfPhwBAQFSjSU3N1ds8SnDMKJdMuHh4VKNpaVkpRt0hw4d8OTJE9GOrnp3797FJ598IrU4WgNKVAghhAMaGhqi0vV37tyBqqoqTExMYGhoKNU44uPjsWrVKgBv1qTU759QUlKCra2tVGNhg6x0gx4zZgwiIiIQEREBJSUlvHr1CufPn8eKFSvw5ZdfSi2O1oB2/RBCiJQ9fvwYXbt2lcprOTk5YdSoUZg7dy6GDRuGQ4cOobS0FIsWLYK7uzumTp0qlTi4Ju1u0DU1NQgMDMTRo0cB/F8S+MUXXyA6Ohrq6upSiaM1oESFEEI48PDhQ6xatQp5eXmoq6sD8H+3XJ4/f46cnBypxGFhYYGUlBR069YN06dPh4eHB5ycnHDhwgWsXLkSycnJUomDLbLWDfrBgwe4desWhEIhTE1N0b17dzAMo7CLmflATQkJIYQDYWFhuH37NkaMGIHi4mKMHj0avXr1QklJCZYtWya1ODQ0NESJUrdu3XD37l0AgImJCQoLC6UWB1vqu0EvXry4weJZaV53Ozo6orS0FAYGBhg5ciS+/PJLdO/eHcXFxVLr49Ra0BoVQgjhQGZmJn7++Wf0798faWlpcHJygqWlJX788UecO3cOX331lVTisLGxwZYtWxAaGoqePXti//79mDlzJjIyMtC+fXupxMCm+m7QwcHB8PLyws8//wxtbW3RY1xKSUlBWloaAKCwsBBhYWENOigXFhbSbArLaEaFEEI4UF1dLdoRYmRkhNu3bwMAxo8fj7/++ktqcfj7+yMtLQ2JiYkYPXo0SkpKYGdnhyVLlsDV1VVqcbCFYRgYGRlh7969UFZWhru7O+7cuQNlZe5PZ9bW1igsLMSjR48AAEVFRXj06JHoq7CwEBoaGqLFy4QdNKNCCCEc0NPTQ15eHnR1dWFkZCRaOyEUCvHq1SupxWFqaorU1FRUVFSgffv22LdvH5KSkqCrq4uRI0dKLQ621M9WdOrUCQkJCQgODsbXX38tlW3Wurq62LFjB4A326Q3bdpEW5GlgBbTEkIIB2JiYhAXF4fVq1ejU6dO8PLywty5c3Hx4kVUVlZiz549nMdQWVkJdXV1sVsR+fn50NPTk9tdKbLWDbqoqAj5+fno168fXr16JRYXYQfd+iGEEA7MnDkTPj4+YBgGlpaW8PX1xebNm/H06VP85z//4fz1k5OT4eDggJs3b4qNR0REYOjQoTh58iTnMXBh7ty50NDQaDC2cuVKqdaFqampgZ+fHxwcHDBr1izRv+u0adNQXl4utThaA5pRIYQQBZOeno5p06Zh/Pjx8PPzE/XGAd7MqGzduhVHjhzBzp07YWNjw2Ok8mv9+vU4fvw4li1bhtmzZ+PIkSMoKipCUFAQ/vWvf0l1Z5eio0SFEEIUjLe3N0xMTBAcHPze5wQFBaGkpASxsbFSjKx5ZLEbtLOzM5YtW4aBAwfC2toaR44cgb6+Pi5duoSAgADR7iDScrSYlhBCFExOTg6WLFnywed4eHhg9uzZUoqoZWSxG3RxcXGDPj/AmwW3ZWVlPESkuChRIYQQBVNVVfXRxbJaWlqorKyUUkQtI4vdoE1MTHDp0iVMnDhRbPzo0aPo3r07T1EpJkpUCCFEwRgZGeHatWuNXvHXy8zMhJ6enhSjYo8sdIOeN28e/Pz8cPfuXdTV1eHQoUO4f/8+Tpw4gR9//FEqMbQWlKgQQghHamtr8ezZswa9frKzszF27FjOXnfs2LFYv3497O3t8emnnzZ4vLi4GOvXr4ebmxtnMXBFVrpBDxs2DBs2bEBMTAxUVFSwbds29OjRAz/++CNGjBghtThaA1pMSwghHLhw4QKWLFmC58+fN3hMXV0d165d4+y16+rq4OnpiTt37sDNzQ3W1tbo2LEjSktLkZmZiUOHDsHQ0BC7du2Su3oqstINetu2bXBxcWk0ESTsokSFEEI44Orqis6dO8PT0xMLFixAVFQUioqKsGHDBkRGRsLJyYnT16+urkZ0dDQOHDggtrhTR0cHbm5u8PHxkbskBZCdbtC2trY4cOAADAwMpPJ6rRnd+iGEEA7cvXsXEREREAgEMDc3h4aGBjw9PaGhoYFt27Zxnqi0adMGAQEB8Pf3x8OHD1FWVgZtbW3o6+vL3A6apmisG7STk5PUu0FbWVnh9OnTmDZtmtRes7WiyrSEEMIBFRUVdOjQAQBgYGCAvLw8AIC9vT3y8/OlFoeqqiqMjIzQp08fdOvWTa6TFOD/ukFXVlaiZ8+eOH36NIRCodS7QWtqamL16tXo378/Jk2aBC8vL7Evwh5KVAghhAM9evTA6dOnAQDGxsbIyMgAADx+/JjPsOSerHSD1tDQwPjx4+Hg4ABjY2Po6emJfRH20BoVQgjhQGpqKubPn4/Q0FAMHToUI0aMgL29PW7fvg0rKyts2LCB7xDl1uvXr1FRUQFtbW2UlJTw0g06OTkZQ4YMoe7JUkCJCiGEcOTmzZtQUVGBQCDAlStXEB8fD11dXcyfPx9aWlp8hyd3ZKkbtJ2dHX799Vcq7iYFdOuHEEI4MHfuXKirq0MgEAB4c2LbvHkzQkNDKUlpBlnrBm1oaChad0S4Rbt+CCGEA5cvX0bbtm35DkMhpKenIyAgAOPHj29QtyQ4OBhbt27FwoULpdoNWiAQYPHixdi6dSsMDQ0b/FtHRkZKJY7WgG79EEIIB3744Qc8ffoUc+bMgYGBAdq0acN3SHJLFrtBe3p6fvDxnTt3SiWO1oASFUII4YCzszMKCgreux341q1bUo5Ifg0YMADbt2+Hqanpe5+TnZ2N2bNn4+LFi1KMjEgD3fohhBAO+Pj48B2CwpDVbtB89XJqbShRIYQQDkyYMIHvEBSGLHaD/lgvJ0pU2EO7fgghhCPnzp2Dl5cXBg8ejMLCQmzcuBG///4732HJnfpu0MXFxY0+Xt8NWpp1VNatW4eePXsiJiYG6urq2LRpE4KDg6GpqYk1a9ZILY7WgGZUCCGEAxcvXsTcuXMxevRoZGVlQSgUora2FkFBQWAYBuPHj+c7RLnx7bff4sSJE3BxcflgN2hvb2+pxcR3L6fWhBIVQgjhwMaNG7Fo0SJMnToVJ06cAAD4+flBU1MT27Zto0SlCVRUVJCQkCDqBp2QkCB6TEdHB998843Uu0E31stpwIABsLe3x6pVq6QWR2tAt34IIYQDt2/fhoODQ4PxkSNHoqCggIeI5Ft9N+iLFy/i2LFj2LNnD/744w+kpaXBz89P6pVpqZeT9NCMCiGEcKBDhw548uRJgwWgd+/epf4wLVDfDZpvM2fOxPz586GmpgYXFxds3LgRM2fOxO3bt2Fvb893eAqFZlQIIYQDY8aMQUREBHJzc6GkpIRXr17h/PnzWLFiBb788ku+wyMt5OTkhN9++w19+vSBrq4utm7dChUVFTg6OiIsLIzv8BQKFXwjhBAO1NTUIDAwEEePHgUAKCkpgWEYfPHFF4iOjpb6rQrCvr///hvl5eWwsLAAAGzfvh1Dhw6FoaEhv4EpGEpUCCGEQw8ePMCtW7cgFAphamqK7t27g2GY91asJfLhv//9L3x8fDB16lT4+fkBACZNmoS8vDzExsbC1taW5wgVByUqhBDCAUdHRxw4cKBBp+Ti4mKMHTsW6enp/ARGWOHu7o5BgwaJkpR669atw5UrV7Bnzx6eIlM8tJiWEEJYkpKSgrS0NABAYWEhwsLCGnTVLSwspNkUBXD37l38+OOPDcYnTpxIDQlZRokKIYSwxNraGnv27EH9RHVRURHU1NREjyspKUFDQ4PqbCgAbW1t5ObmQl9fX2z8zp07ovoqhB2UqBBCCEt0dXWxY8cOAICnpyc2bdpEW5EV1Lhx47Bs2TKUlpbCysoKwJsOztHR0VTMj2W0RoUQQjhUVFSE/Px89OvXD69evULnzp35DomwoLa2FuHh4Thw4ABqa2vBMAxUVVXh6emJRYsWQVWV5gHYQokKIYRwoKamBgEBATh27BiUlZVx4sQJrFq1Cq9evcLGjRuhqanJd4iEBa9evcL9+/ehqqoKQ0ND2nbOASr4RgghHPj555+Rm5uL7du3ixbUenp64sGDB4iKiuI5OsKW9u3bw8LCAgKBgJIUjlCiQgghHDh69ChCQkLQv39/0Vj//v3xww8/4NSpUzxGRoh8oUSFEEI4UFxc3KDPD/BmwW1ZWRkPEREinyhRIYQQDpiYmODSpUsNxo8ePYru3bvzEBEh8omWJRNCCAfmzZsHPz8/3L17F3V1dTh06BDu37+PEydONFoojBDSONr1QwghHDl//jxiYmKQk5MDoVCIHj16YMaMGRgxYgTfoZEWevr0KaKjo5GZmYmamhq8eyqldUjsoRkVQgjhwLZt2+Di4oLExES+QyEcCAkJwY0bNzB69GiqRMsxmlEhhBAO2Nra4sCBAzAwMOA7FMKBPn36YOvWrdQlWQpoMS0hhHDAysoKp0+f5jsMwhENDQ2qMiwlNKNCCCEcWLBgAf744w907NgRhoaGDboo1/cEIvJp1apVePHiBcLCwqCiosJ3OAqN1qgQQggHNDQ0qDmdAistLUVycjLOnj0LfX19tGnTRuxxSkTZQ4kKIYRwYNCgQRgyZAh1T1ZgLi4ufIfQKtCtH0II4YCdnR1+/fVXKu5GSAvRYlpCCOGAoaEh8vLy+A6DcOjJkyfYtGkTFi1ahGfPnuH48eO4d+8e32EpHJpRIYQQDoSGhmL//v0QCASNLqaNjIzkKTLChgcPHuCrr76CpqYmiouLcezYMaxZswZpaWlISEiAlZUV3yEqDJpRIYQQDty/fx99+/ZF+/bt8fTpUzx69Ejsi8i3lStXwsnJCampqVBTUwMArFu3Dg4ODoiKiuI5OsVCi2kJIYQDO3fu5DsEwqHMzEwkJiZCSUlJNKaqqgpfX1989dVXPEameChRIYQQjtTW1uLZs2eoq6sDADAMg+rqamRnZ2Ps2LE8R0daQigUQigUNhh/9eoV1VVhGSUqhBDCgQsXLmDJkiV4/vx5g8fU1dUpUZFzgwcPRkxMDNasWSMaKy0txZo1a2Bvb89jZIqHFtMSQggHXF1d0blzZ3h6emLBggWIiopCUVERNmzYgMjISDg5OfEdImmB4uJieHl54eXLlygtLYWxsTEKCwuhpaWFXbt2QU9Pj+8QFQbNqBBCCAfu3r2LiIgICAQCmJubQ0NDA56entDQ0MC2bdsoUZFzn376KQ4fPozk5GTcunULQqEQkydPxrhx46Cpqcl3eAqFEhVCCOGAiooKOnToAAAwMDBAXl4eBgwYAHt7e6xatYrn6Agb2rVrh4kTJ/IdhsKj7cmEEMKBHj16iLonGxsbIyMjAwDw+PFjPsMiRO7QjAohhHBg5syZmD9/PtTU1ODi4oKNGzdi5syZuH37Ni22JKQJaDEtIYRw5ObNm1BRUYFAIMCVK1cQHx8PXV1dzJ8/H1paWnyHR4hcoBkVQgjhSPv27VFeXg7gTZPCW7duYejQoZSkENIElKgQQggH/vvf/8LHxwdTp06FhYUFACAlJQXR0dGIjY2Fra0tzxGSlggKCmp0XElJCWpqaujatStGjhwJIyMjKUemeOjWDyGEcMDd3R2DBg2Cn5+f2Pi6detw5coV7Nmzh6fICBsWL16Mo0ePQkdHB5aWlgDe3OorLi6GlZUVSktL8b///Q9xcXHo27cvz9HKN9r1QwghHLh79y7c3d0bjE+cOBG3b9/mISLCJnV1dTg7O+PUqVP46aef8NNPP+HkyZNwcXFBz549cfz4cXh6eiI6OprvUOUeJSqEEMIBbW1t5ObmNhi/c+eOqL4KkV/Hjx/HvHnz0KZNG9GYmpoaZs2ahaSkJABvZtVu3rzJV4gKg9aoEEIIB8aNG4dly5ahtLQUVlZWAIDs7GxER0dj/Pjx/AZHWkxVVRUlJSXo3r272PjTp09FHZXr6uqgqkqn2ZainyAhhHBgzpw5+OeffxAWFoba2lowDANVVVVR7x8i30aMGIHQ0FAsW7YMVlZWYBgGWVlZWLFiBRwdHVFRUYHNmzejd+/efIcq92gxLSGEcOjVq1e4f/8+VFVVYWhoCHV1db5DIix4/fo1AgIC8Mcff4hmUABg1KhRCAsLw+XLlxEWFoYtW7ZAIBDwGKn8o0SFEEIIaaaHDx/i1q1bUFFRgZmZGT7//HMAQHV1tdj6FdJ8lKgQQgghzVRSUoKamhq8eyr97LPPeIpI8dAaFUIIIaSJMjMzERQUhIKCArFxhmGgpKSEW7du8RSZ4qEZFUIIIaSJXF1doaGhgWnTpjW63dzOzo6HqBQTzagQQgghTXTnzh0cPnwYJiYmfIei8ChRIYQQDjx9+hTR0dHIzMxsdA3DqVOneIqMsEFXVxevXr3iO4xWgRIVQgjhQEhICG7cuIHRo0dTJVoF5OPjg4iICCxfvhzGxsZQU1PjOySFRWtUCCGEA3369MHWrVupS7KCcnZ2RlFREerq6hp9nBbTsodmVAghhAMaGhro3Lkz32EQjvj4+PAdQqtBMyqEEMKBVatW4cWLFwgLC4OKigrf4RAit2hGhRBCOFBaWork5GScPXsW+vr6DaqU7tixg6fISHMFBQVh6dKl0NTURFBQ0Hufp6SkhIiICClGptgoUSGEEI64uLjwHQJh0aNHjyAUCkV/JtJBt34IIYQQIrNoRoUQQjjy5MkT7Nu3D/fv30dwcDCuXr0KU1NTGBsb8x0aYUFlZSXy8vIa1MlRUlKi3V4sohkVQgjhwIMHD/DVV19BU1MTxcXFOHbsGNasWYO0tDQkJCTAysqK7xBJC5w6dQqBgYEoLy9vUMyPev2wixIVQgjhgI+PD7S1tREeHg4bGxscOXIEurq6WLJkCZ48eYKdO3fyHSJpgVGjRqFHjx7w9fVttKCfnp4eD1EpJrr1QwghHMjMzERiYiKUlJREY6qqqvD19cVXX33FY2SEDY8ePUJMTAy6devGdygKT5nvAAghRBEJhULRDpG3vXr1iuqqKABDQ0M8fvyY7zBaBUpUCCGEA4MHD0ZMTIxYslJaWoo1a9bA3t6ex8gIGxYvXowVK1bg9OnT+Pvvv1FUVCT2RdhDa1QIIYQDxcXF8PLywsuXL1FaWgpjY2MUFhZCS0sLu3btojUMcq5Xr16iPj9v395jGIYW07KMEhVCCOFIZWUlkpOTcevWLQiFQvTo0QPjxo2DpqYm36GRFrpy5coHH7ezs5NSJIqPEhVCCCGEyCza9UMIIYQ0UUVFBRISEpCZmdmg4BtAvZzYRIkKIYQQ0kShoaE4deoUBg0ahC5duvAdjkKjWz+EEEJIE/Xt2xdRUVEYNmwY36EoPNqeTAghhDSRsrIyTExM+A6jVaAZFUII4UBQUFCj40pKSlBTU0PXrl0xcuRIGBkZSTkywoalS5eiS5cuWLhwId+hKDxao0IIIRyoqanB0aNHoaOjA0tLSwDAzZs3UVxcDCsrK6Snp+OXX35BXFwc+vbty3O0pKm0tbURFxeH8+fPw8jICG3atBF7PDIykqfIFA8lKoQQwgF1dXU4OztjzZo1opNYTU0NgoOD0aFDB4SGhiIqKgrR0dHUoFAOZWVliTpgP3nyhOdoFBvd+iGEEA7Y2tpiz5496N69u9j43bt3MXnyZFy9ehV///03XF1dkZmZyVOUhMg+mlEhhBAOqKqqoqSkpEGi8vTpU1HJ9bq6Oqiq0q9hefSxfj6fffaZlCJRfPQ/hBBCODBixAiEhoZi2bJlsLKyAsMwyMrKwooVK+Do6IiKigps3rwZvXv35jtU0gwODg5iPX7eRb1+2EO3fgghhAOvX79GQEAA/vjjD7ET2qhRoxAWFobLly8jLCwMW7ZsgUAg4DFS0hzv9vqpq6vD/fv3kZCQgMDAQDg4OPAUmeKhRIUQQjj08OFD3Lp1CyoqKjAzM8Pnn38OAKiurm6wU4TIv7S0NGzcuBH79u3jOxSFQbd+CCGEQ+3atUPv3r1FvWDq1zbQGgbFZGhoiNzcXL7DUCiUqBBCCAcyMzMRFBSEgoICsXGGYaCkpERrGORcY4tpy8vLERMTI5o1I+ygRIUQQjgQHh6OLl26ICAgAB06dOA7HMKyxhbTMgwDDQ0NrFmzhqeoFBOtUSGEEA707t0bhw8fpn4wCurdxbQAoKamBlNTU7Rv356HiBQXzagQQggHdHV18erVK77DIBzZsWMH/Pz8KBGVAuqeTAghHPDx8UFERARu376NmpoavsMhLLt8+TLatm3LdxitAt36IYQQDjg7O6OoqAh1dXWNPk6LaeXbDz/8gKdPn2LOnDkwMDCgreYcokSFEEI4cOjQoQ8+PmHCBClFQrjg7OyMgoKC91anpUSUPZSoEEIIIU1Eiaj0UKJCCCEsCQoKwtKlS6GpqYmgoKD3Pk9JSQkRERFSjIwQ+UW7fgghhCWPHj2CUCgU/ZkQ0nI0o0IIIYQQmUUzKoQQwpHKykrk5eWhpqYGb18TKikpwdbWlsfICJEflKgQQggHTp06hcDAQJSXl+PdiWvq9UOI5OjWDyGEcGDUqFHo0aMHfH19G+31o6enx0NUhE1PnjzBvn37cO/ePSxduhRXr16FqakpjI2N+Q5NoVCiQgghHOjduzeOHj2Kbt268R0K4cCDBw/w1VdfQVNTE8XFxTh27BjWrFmDtLQ0JCQkwMrKiu8QFQaV0CeEEA4YGhri8ePHfIdBOLJy5Uo4OTkhNTUVampqAIB169bBwcEBUVFRPEenWChRIYQQDixevBgrVqzA6dOn8ffff6OoqEjsi8i3zMxMTJs2TawyraqqKnx9fZGTk8NjZIqHFtMSQggHfH19UVdXB19fX7GTGcMwtJhWAQiFQlHNnLe9evUKKioqPESkuChRIYQQDsTHx/MdAuHQ4MGDERMTgzVr1ojGSktLsWbNGtjb2/MYmeKhxbSEEEJIExUXF8PLywsvX75EaWkpjI2NUVhYCC0tLezatYt2dbGIEhVCCOFARUUFEhISkJmZ2aDgGwDs2LGDp8gIWyorK5GcnIxbt25BKBSiR48eGDduHDQ1NfkOTaHQrR9CCOFAaGgoTp06hUGDBqFLly58h0M40K5dO0ycOJHvMBQezagQQggH+vbti6ioKAwbNozvUAhLvLy8JH4uzZixh7YnE0IIB5SVlWFiYsJ3GIRFenp6oi8dHR1cuXIFL1++hImJCczMzFBTU4OMjAyqTMsymlEhhBAOLF26FF26dMHChQv5DoVwICgoCJ988gkCAwPFxqOjo5Gfn4+NGzfyFJnioTUqhBDCAW1tbcTFxeH8+fMwMjJCmzZtxB6PjIzkKTLChuPHj+PQoUMNxsePH4/x48dLPyAFRokKIYRwICsrS9Tv5cmTJzxHQ9jWsWNH5OTkwNDQUGz8zz//ROfOnfkJSkFRokIIIRzYuXMn3yEQDk2aNAmhoaHIz8+HhYUFhEIhMjMzkZiYiO+++47v8BQKrVEhhBAOfKyfz2effSalSAhXYmJisGvXLjx9+hQAoKurixkzZsDDw4PnyBQLJSqEEMIBgUAg1uPnXdTrR3H8888/UFJSgpaWFt+hKCS69UMIIRx4t45GXV0d7t+/j4SEhAY7RYh869SpE98hKDSaUSGEEClKS0vDxo0bsW/fPr5DIUQuUME3QgiRIkNDQ+Tm5vIdBiFyg279EEIIBxpbTFteXo6YmBh8/vnnPEREiHyiRIUQQjjg4ODQYDEtwzDQ0NDAmjVreIqKsIlhGKSlpSEvLw+qqqro3r07BgwYABUVFb5DUyi0RoUQQjhw5cqVBmNqamowNTVF+/bteYiIsKm0tBTe3t64efMmOnToAIZhUF5ejl69eiE+Ph4dO3bkO0SFQWtUCCGEAzt27EDnzp1hZ2cn+rK2tqYkRUGsWrUKr1+/xuHDh3H16lX8+eefOHz4MKqrq7F27Vq+w1MolKgQQggHLl++jLZt2/IdBuHImTNn8J///AcCgUA0JhAI8P333yM1NZXHyBQPJSqEEMKBCRMmICoqCnfu3EF1dTXf4RCW1dbWQkdHp8G4jo4OysvLeYhIcdFiWkII4cC5c+dQUFCAEydONPo4VaaVb7169cLu3buxdOlSsfHdu3fD3Nycp6gUEyUqhBDCAR8fH75DIBxauHAhvLy8kJWVBRsbGwBARkYGcnNzsXXrVp6jUyy064cQQghphuvXryMuLg537twBwzAwMzPDtGnTYGlpyXdoCoUSFUIIIYTILLr1QwghhEhg06ZNEj937ty5HEbSutCMCiGEECIBBwcHsb//73//g5qaGvT19aGqqoqCggLU1NTAwsICe/bs4SlKxUMzKoQQQogETp8+LfpzQkICzp49i7Vr16Jz584AgBcvXiAgIACmpqZ8haiQaEaFEEI48uTJE+zbtw/37t3D0qVLcfXqVZiamsLY2Jjv0EgLDRw4EHFxcWIF3wAgLy8Pnp6eSE9P5ykyxUMF3wghhAMPHjzAmDFjcOjQIfzxxx+oqKhASkoK3Nzc8Ndff/EdHmmhmpoaVFRUNBh/9uxZg2aUpGUoUSGEEA6sXLkSTk5OSE1NhZqaGgBg3bp1cHBwQFRUFM/RkZZycHBASEgI0tPT8erVK5SXl+PcuXMICQnB6NGj+Q5PodAaFUII4UBmZiYSExPFrq5VVVXh6+uLr776isfICBtCQkKwYMECTJkyRfRvzDAMRo4ciSVLlvAcnWKhRIUQQjggFAohFAobjL969QoqKio8RETYpKmpiW3btuHevXvIy8uDsrIyzM3Noa+vz3doCodu/RBCCAcGDx6MmJgYsWSltLQUa9asgb29PY+RETYZGxtj5MiRcHZ2hr6+Pqqrq5GRkcF3WAqFdv0QQggHiouL4eXlhZcvX6K0tBTGxsYoLCyElpYWdu3aBT09Pb5DJC1w48YNhISEIC8vr9GZM2o6yR5KVAghhCOVlZVITk7GrVu3IBQK0aNHD4wbNw6ampp8h0Za6JtvvkFVVRXc3NwQGRmJwMBAFBQUIDExEatXr8aoUaP4DlFh0BoVQgjhSLt27TBx4kS+wyAcyMnJwfbt22FpaYmDBw/C1NQUHh4e6Nq1K/bt20eJCosoUSGEEJZ4eXlJ/NwdO3ZwGAnhmlAoRJcuXQAABgYGyMvLg62tLRwdHRETE8NzdIqFFtMSQghL9PT0RF86Ojq4cuUKXr58CRMTE5iZmaGmpgYZGRlUmVYBGBgYiBbNGhsbIzs7GwDw8uVLVFdX8xmawqEZFUIIYUlkZKToz0FBQZg6dSoCAwPFnhMdHY38/Hxph0ZY5unpiaVLlwIARowYgXHjxkFdXR2ZmZno06cPv8EpGFpMSwghHLC2tsahQ4dgaGgoNv73339j/PjxyMrK4iUuwp7U1FRoaWnB1tYWSUlJiI2Nha6uLkJDQ2lXF4toRoUQQjjQsWNH5OTkNEhU/vzzT1G3XSLfnJycRH8eM2YMxowZg5qaGmRlZVGiwiJKVAghhAOTJk1CaGgo8vPzYWFhAaFQKCqr/9133/EdHmkhc3NzzJs3D76+vmLjZWVl8PLyojoqLKJbP4QQwpGYmBjs2rULT58+BQDo6upixowZ8PDw4Dky0lICgQDt2rWDo6MjIiIi0KZNGwBASUkJBg8ejNzcXJ4jVByUqBBCCMf++ecfKCkpQUtLi+9QCEvMzc2xc+dOBAcHQ1tbGz///DO0tbVRUlKCIUOG0IwKi2h7MiGEcKxTp06UpCgYhmFgZGSEvXv3QllZGe7u7rhz5w6Ulem0yjb6iRJCCCFNpKSkBOBNEpqQkAAbGxt8/fXXSE9P5zkyxUOJCiGEENJEb6+aaNOmDaKiojBt2jQsXryYx6gUE+36IYQQQppo7ty50NDQaDBmYGCAffv28RSVYqLFtIQQwhGGYZCWloa8vDyoqqqie/fuGDBgAFRUVPgOjRC5QTMqhBDCgdLSUnh7e+PmzZvo0KEDGIZBeXk5evXqhfj4eHTs2JHvEEkTOTg4iNamfIiSkhJSU1OlEFHrQIkKIYRwYNWqVXj9+jUOHz4MgUAAAMjNzcV3332HtWvXYvny5TxHSJpqwoQJEiUqhF1064cQQjhgb2+PDRs2wM7OTmw8PT0d/v7+uHjxIk+RESJfaEaFEEI4UFtbCx0dnQbjOjo6KC8v5yEiwrbc3Fzk5eVBKBQCeLMmqbq6GtnZ2QgPD+c5OsVBiQohhHCgV69e2L17N5YuXSo2vnv3bpibm/MUFWFLfHw8Vq1aBeDNmpT6mxNKSkqwtbXlMzSFQ4kKIYRwYOHChfDy8kJWVhZsbGwAABkZGcjNzcXWrVt5jo60VGJiImbMmIG5c+di2LBhOHToEEpLS7Fo0SI4OjryHZ5CoYJvhBDCAWtrayQmJkJPTw8XLlxAWloa9PX18euvv8Le3p7v8EgLPX78GBMnTkTbtm0hEAiQnZ0NMzMzBAYGYv/+/XyHp1BoRoUQQjhiaWmJ6OhovsMgHNDQ0EBdXR0AoFu3brh79y6cnJxgYmKCwsJCnqNTLJSoEEIISzZt2iTxc+fOncthJIRrNjY22LJlC0JDQ9GzZ0/s378fM2fOREZGBtq3b893eAqFticTQghLHBwcxP7+v//9D2pqatDX14eqqioKCgpQU1MDCwsL7Nmzh6coCRvy8vIwffp0TJ06FZMnT8aYMWPw4sULVFZWwtvbG/7+/nyHqDAoUSGEEA4kJCTg7NmzWLt2LTp37gwAePHiBQICAmBqakonMgXw+vVrVFRUQFtbGyUlJUhKSoKuri5GjhzJd2gKhRIVQgjhwMCBAxEXFyeqSlsvLy8Pnp6eSE9P5yky0lKVlZVQV1cXq1Kbn58PPT09qKur8xiZYqJdP4QQwoGamhpUVFQ0GH/27BmVYZdjycnJcHBwwM2bN8XGIyIiMHToUJw8eZKnyBQXJSqEEMIBBwcHhISEID09Ha9evUJ5eTnOnTuHkJAQjB49mu/wSDOkp6cjICAAw4YNw6effir2WHBwMBwcHLBw4UJkZmbyFKFiols/hBDCgfLycixYsAAXL14UzaAwDIORI0di9erVaNOmDc8Rkqby9vaGiYkJgoOD3/ucoKAglJSUIDY2VoqRKTZKVAghhEP37t1DXl4elJWVYW5uDn19fb5DIs00YMAAbN++Haampu99TnZ2NmbPnk1NJ1lEdVQIIYRDxsbGMDY2Fv29vmld3759eYyKNEdVVdVHF8tqaWmhsrJSShG1DpSoEEIIB27cuIGQkBCx7rpvu3XrFg9RkZYwMjLCtWvX0K1bt/c+JzMzE3p6elKMSvHRYlpCCOFAZGQkVFRU8P3330NNTQ0hISGYMmUKVFVVsW7dOr7DI80wduxYrF+/HsXFxY0+XlxcjPXr11MdFZbRjAohhHAgJycH27dvh6WlJQ4ePAhTU1N4eHiga9eu2LdvH0aNGsV3iKSJvv32W5w4cQIuLi5wc3ODtbU1OnbsiNLSUmRmZuLQoUMwNDSEt7c336EqFEpUCCGEA0KhEF26dAEAGBgYIC8vD7a2tnB0dERMTAzP0ZHmUFFRQUJCAqKjo3HgwAEkJCSIHtPR0cE333wDHx8fKvrGMkpUCCGEAwYGBsjIyICLiwuMjY2RnZ0NAHj58iWqq6t5jo40V5s2bRAQEAB/f388fPgQZWVl0NbWhr6+PhXy4wglKoQQwgFPT08sXboUADBixAiMGzcO6urqyMzMRJ8+ffgNjrSYqqoqjIyM+A6jVaA6KoQQwpHU1FRoaWnB1tYWSUlJiI2Nha6uLkJDQ2lnCCESokSFEEKkqKamBllZWejXrx/foRAiF2h7MiGEcMDc3Bw///xzg/GysjJ4eXnxEBEh8okSFUII4QDDMIiNjcXixYsbLJ6liWxCJEeJCiGEcEBJSQmxsbG4fv06vLy88Pz5c7HHCCGSoUSFEEI4wDAMjIyMsHfvXigrK8Pd3R137tyBsjL92iWkKeh/DCGEcKB+1qRTp05ISEiAjY0Nvv76a6Snp/McGSHyhRIVQgjhwNvrUNq0aYOoqChMmzYNixcv5jEqQuQPFXwjhBAOzJ07FxoaGg3GDAwMsG/fPp6iIkT+UB0VQgghhMgsmlEhhBCWODg4SLSjR0lJCampqVKIiBD5R4kKIYSwZMKECbT1mBCW0a0fQgghhMgsmlEhhBCO5ObmIi8vD0KhEMCbnUDV1dXIzs5GeHg4z9ERIh8oUSGEEA7Ex8dj1apVAN6sSamfvFZSUoKtrS2foREiV6iOCiGEcCAxMREzZszAX3/9hU6dOuHcuXP4/fffYWJiAkdHR77DI0RuUKJCCCEcePz4MSZOnIi2bdtCIBAgOzsbZmZmCAwMxP79+/kOjxC5QYkKIYRwQENDA3V1dQCAbt264e7duwAAExMTFBYW8hkaIXKFEhVCCOGAjY0NtmzZgsrKSvTs2ROnT5+GUChERkYG2rdvz3d4hMgNSlQIIYQD/v7+SEtLQ2JiIkaPHo2SkhLY2dlhyZIlcHV15Ts8QuQG1VEhhBCOvH79GhUVFdDW1kZJSQmSkpKgq6uLkSNH8h0aIXKDEhVCCGFZZWUl1NXVxarU5ufnQ09PD+rq6jxGRoj8oVs/hBDCouTkZDg4OODmzZti4xERERg6dChOnjzJU2SEyCdKVAghhCXp6ekICAjAsGHD8Omnn4o9FhwcDAcHByxcuBCZmZk8RUiI/KFbP4QQwhJvb2+YmJggODj4vc8JCgpCSUkJYmNjpRgZIfKLZlQIIYQlOTk5cHd3/+BzPDw8kJOTI6WICJF/lKgQQghLqqqqPrpYVktLC5WVlVKKiBD5R4kKIYSwxMjICNeuXfvgczIzM6GnpyeliAiRf5SoEEIIS8aOHYv169ejuLi40ceLi4uxfv16qqNCSBPQYlpCCGFJXV0dPD09cefOHbi5ucHa2hodO3ZEaWkpMjMzcejQIRgaGmLXrl1UT4UQCVGiQgghLKqurkZ0dDQOHDiAsrIy0biOjg7c3Nzg4+NDSQohTUCJCiGEcKC2thYPHz5EWVkZtLW1oa+vL1aplhAiGUpUCCGEECKzaDEtIYQQQmQWJSqEEEIIkVmUqBBCCCFEZlGiQgiRGloSRwhpKkpUCCGce/HiBQICAvDnn3/yHQohRM5QokII4dytW7fw+++/QygU8h0KIUTOUKJCCCGEEJlFiQoh5KMYhkFCQgJGjRoFS0tLDB8+HNu2bROtOfntt9/g6uqKPn36wNLSEuPGjcOxY8cAAOnp6fDy8gIAeHl5wdPTU3Tc1NRUuLq6onfv3hg0aBDCw8NRUVEh9tpnz56Fq6srLC0tMWLECCQnJ2P48OHYuHGj6DlPnjxBUFAQhg4dCktLS7i7u+PUqVNixzEzM8OmTZtEx9q0aRN69+6NdevWiT2vsrISffv2xebNm9n7ARJCmk2V7wAIIbJv9erV2L59O6ZNm4ZBgwYhOzsbUVFRqK2thaamJsLDwzFv3jz07dsXZWVliI2NxeLFi2FtbY1evXohNDQUYWFhCA0NRf/+/QEASUlJWLx4McaMGYOFCxeisLAQP/74I+7evYv4+HgoKSnh8uXL8PX1xbBhw7BgwQI8ePAA//nPf1BVVSWKraSkBO7u7mjbti38/PzQqVMnHDx4EHPmzMHq1asxduxY0XN/+eUXLFq0CEZGRtDT00N+fj6SkpLg5+cnqhp78uRJVFRUYPz48VL9GRNCGkeJCiHkg168eIEdO3bg22+/xXfffQcAGDhwIJ4+fYqrV6+ie/fu8Pb2hq+vr+h79PT04OrqioyMDIwePRrdu3cHAHTv3h3du3cHwzCIiorCkCFDEBUVJfo+Q0NDTJ06FefOncMXX3yBjRs3okePHti0aZMokejcuTP8/f1F3xMfH4/nz5/jxIkT0NPTAwAMHToUU6dOxerVq+Hi4gJl5TeTx7a2tpg2bZroe93c3JCSkoL09HTY29sDAA4fPoyBAwdCV1eXix8nIaSJ6NYPIeSDsrKyUFtbC2dnZ7Hx77//Hlu3bkVgYCAWL16MFy9eICsrC7///jsSExMBvGnQ15h79+7h8ePHcHBwQG1treirX79+0NTUxMWLF1FdXY1r167B2dlZrEfOyJEjoar6f9dYV65cgbW1tShJqTd27Fg8ffoU9+7dE42Zm5uLPWfgwIH47LPP8PvvvwMAHj9+jEuXLmHChAnN+EkRQrhAiQoh5INKS0sBANra2o0+XlBQgKlTp6Jfv3749ttvsW3bNtTW1gJ4f92U+mMuX74cvXr1EvsqLy/HkydPUFpairq6OnTu3Fnse1VUVKClpSX6e1lZGbp06dLgNXR0dAC8mRGqp6GhIfYcZWVluLq64sSJE3j9+jV+//13aGpqYvjw4e//gRBCpIpu/RBCPqhjx44AgOfPn8PY2Fg0XlRUhAcPHiAkJATt2rXD/v37YW5uDlVVVdy9e1c0S/GhYwYEBMDOzq7B45988gk6d+4MNTU1lJSUiD0mFApFiU79c58+fdrgGPVjnTp1+uD7c3V1xU8//YTz58/j2LFj+PLLL9G2bdsPfg8hRHpoRoUQ8kGWlpZQU1PDmTNnxMbj4uIwdepUPHz4EO7u7ujdu7folsz58+cBQFQ3RUVFRex7jY2N0blzZzx69Ai9e/cWfX366adYu3YtcnJyoKKiAhsbmwa7d06fPi2asQGAfv364dq1aygsLBR73pEjR9ClSxcYGBh88P3p6elhwIAB2LFjB27dugVXV9cm/HQIIVyjGRVCyAdpa2vDy8sLCQkJaNOmDezs7PDXX39h9+7dCA4Oxvbt25GYmIiuXbuiY8eOSEtLw44dOwC82eoLAB06dADwZqvxJ598AoFAAD8/P4SGhkJFRQXDhg3Dixcv8PPPP6O4uBi9evUCAMyfPx+enp6YP38+3N3dUVRUhPXr1wOAaN3KtGnTcOTIEUydOhVz586FlpYWDh8+jMuXLyMiIkK0kPZD3N3d4e/vDxMTE1hZWbH+MySENJ8SQ803CCEfwTAM4uLisGfPHjx+/Biff/45pkyZgq+//hq5ubn44YcfcOPGDbRp0wbdu3fH7NmzERERAVNTU6xfvx5CoRDfffcdTp48iW7duiE5ORkAkJKSgq1bt+LOnTvQ0NCAjY0NFi5cCDMzM9Frp6amYv369bh//z709PSwYMEC+Pn5ITAwULSD5+HDh1i7di0uXryImpoaCAQCzJgxA46OjqLjmJmZYe7cuZg3b16D91deXg5bW1ssXrwY//73vzn+aRJCmoISFUKIzDp16hS6du0qmmEBgDt37sDFxQU///yzWCLSEikpKQgICMC5c+caLN4lhPCLbv0QQmTWhQsXkJKSgsWLF8PIyAjFxcXYvHkzjI2NMXjw4BYfPzU1FdnZ2dizZw9cXV0pSSFEBlGiQgiRWUuWLIG6ujo2b96MJ0+eQEtLC0OGDMGiRYtY2Znz6NEjbN++HX379hUVsyOEyBa69UMIIYQQmUXbkwkhhBAisyhRIYQQQojMokSFEEIIITKLEhVCCCGEyCxKVAghhBAisyhRIYQQQojMokSFEEIIITKLEhVCCCGEyCxKVAghhBAis/4/+rtx5zq6I3AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Análisis de la columna 'createdAt':\n", + "createdAt\n", + "{'_seconds': 1731975445, '_nanoseconds': 427000000} 500\n", + "{'_seconds': 1732123040, '_nanoseconds': 262000000} 263\n", + "{'_seconds': 1731965768, '_nanoseconds': 30000000} 102\n", + "{'_seconds': 1731975447, '_nanoseconds': 767000000} 19\n", + "Name: count, dtype: int64\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAMyCAYAAABDwurxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChaklEQVR4nOzdd1QU5+M18Ls0RRGx0PyiAVFBNEoXYkejib3GJGrsGkswNuwVxQI2bEGxgLH3qEmsiUYDCtgVJCLYARERQWAX2PcPX/aXFTSKuzuzy/2ck5MwMwt3M67cKc8zErlcLgcRERGRCOkJHYCIiIjobVhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIhEiPMwlh1i2tdiykJUhEWF6AP1798fDg4Oin8cHR3h4uKCHj16IDw8HPn5+Urb+/j4YMqUKe/9/U+dOoXJkyf/53ZTpkyBj49PqX9OaT18+BAODg7Yv39/sXVSqRStWrVC9+7dkZOTo7YM/fv3R//+/dX2/TXln3/+wTfffKOS73XhwgU4ODjgwoULxdYlJSXBwcEBTZo0gVQqLbZeKpUiICAAhw8fVkkWIlUyEDoAkTZycnLC7NmzAQAFBQV48eIFzp49i4ULFyI6OhorVqyAnt7r44DVq1fDxMTkvb/3li1b3mu7UaNG4bvvvvvg7B/LwsICu3btQq1atYqt27NnD/Lz87Fu3ToYGxtrPJu2+f3333H58mW1/5x9+/bB3t4e9+7dw++//44uXboorU9NTUVYWBgWLlyo9ixEH4pFhagUTExM4OzsrLTMx8cHtWvXxoIFC3DkyBHFLwMnJye1ZCipKGiCkZFRsfdepE2bNvjyyy9RtWpVzYaityooKMDBgwfRp08fXL58GTt37ixWVIjEjJd+iFSoX79+sLS0xM6dOxXL3rwkU1RiGjVqBC8vL0ycOBEpKSkAXl/SuHjxIi5evKg4jV90Sn/nzp1o3bo1XF1dcf78+WKXfgBAJpNh/vz58PDwgLu7OyZPnoz09HTF+pIumZR0yeDu3bsYM2YMPD094eHhgREjRiAhIQFAyZd+kpKS4Ovri549e8LHxwf9+/dHTEyMYn3Ra3777Tf4+vrCxcUFnp6emDFjBl69evXO/6ePHz/GmDFj4ObmhqZNm2Lz5s0lbrdnzx507NgRDRs2RKtWrbBq1SoUFBS883tLpVKsWLECbdq0QaNGjdCpUyccOHBA6f/XxIkT4evrC2dnZwwaNAgAkJeXhyVLlqBly5Zo2LAhOnfujF9//VXpe+fm5mLp0qVo164dGjZsCFdXVwwaNAixsbEAgFWrVmH16tUAAAcHB6xatQoAUFhYiPXr1+Pzzz9Hw4YN0b59e2zdurVY9p07d6J9+/Zo1KgR+vXrh8ePH5f4Hs+dO4fU1FS0atUKXbp0QUxMDO7cuaNY//DhQ7Rp0wYAMHXq1GJ/poiExqJCpEJ6enrw9vbGtWvXit2rAgAxMTHw8/NDu3btsGHDBkydOhWRkZGYMGECAGD27NlwcnKCk5MTdu3ahQYNGiheu3r1akyePBmzZs2Ci4tLiT//t99+w82bN7Fo0SJMnjwZf/75J4YNG/afv7D/LSUlBX369EFSUhLmzJmDwMBApKWlYcCAAcjIyCi2/Z07d9CjRw88fPgQM2bMQFBQECQSCQYMGICLFy8qbTt79mz873//w9q1azFkyBDs3bsX69ate2uWV69eoV+/foiPj4e/vz9mzpyJPXv2FLtcEhISgpkzZ8Lb2xs//fQT+vbtiw0bNmDmzJnvfK8TJ07E5s2b0bt3b4SEhKBZs2aYMmUKjhw5otjmt99+Q8WKFbFu3ToMHToUcrkco0ePxs6dOzFo0CCsW7cOLi4uGDduHA4ePKh4nZ+fH/bt24fhw4dj06ZNmDp1Kv755x9MmDABcrkcvXv3Rq9evQAAu3btQu/evQEAc+bMQXBwMLp06YKffvoJX3zxBQICArBmzRrF9/75558xe/ZstGzZEmvXrkXjxo3f+l737duHunXromHDhmjXrh0qVqyoVKQtLCwUhWnkyJGK/yYSC176IVKx6tWrQyaTISMjA9WrV1daFxMTg/Lly2P48OEwMjICAJiZmeH69euQy+WoU6eO4n6WNy+vfPvtt/jiiy/e+bOrVKmCjRs3okKFCoqvR48ejbNnz6J169bvlX/Lli2QSqXYvHkzzM3NAQCOjo745ptvcPXqVdjb2yttv3r1ahgZGSE8PFyRvVWrVujUqROWLFmCvXv3KrZt2bKl4kZhb29vnD9/Hn/++aeiqL3pwIEDePz4MY4cOYI6deoAABo3bozPP/9csc3Lly+xdu1a9OnTBzNmzAAANGvWDGZmZpgxYwYGDRqEunXrFvve8fHxOHbsGKZNm4YBAwYoMj169AgXLlxAp06dAACGhoaYO3euYn+dP38ef/31F5YvX44OHToAAJo3b46cnBwEBQWhU6dOKCwsRHZ2NmbMmKHYxtPTE1lZWVi0aBHS0tJgZWUFKysrAP+3rxMTE7F7926MHz8ew4cPV7wXiUSCkJAQfPvttzAzM8PatWvRoUMHTJs2TbFNVlaWUgEBgOfPn+P06dMYP348AMDY2BgdOnTAoUOHMGHCBBgbG8PIyAj169cH8PpyorouVRKVFs+oEKlY0RBPiURSbJ2HhwdycnLQqVMnLF26FNHR0WjWrBnGjBlT4vb/VvTL5F1atmypKCnA68tOBgYGiIqKeu/8MTExcHZ2VpQUALCyssIff/yBli1bFtv+4sWLaN26tdINwwYGBujYsSNu3LiB7OxsxfI3y5eVldU7L/1ER0ejVq1aipICANbW1krf5/Lly8jNzYWPjw/y8/MV/xRdwjh//vxb3ycAtGvXTmn5qlWr4O/vr/i6du3aipICABEREZBIJGjZsmWxn/f06VP8888/MDIywsaNG9GhQwekpKQgMjISO3fuxB9//AEAJY68AYDIyEjI5fIS30teXh5iYmJw9+5dPHv2rFjx/PLLL4t9v19++QUFBQVo1aoVMjMzkZmZic8//xyZmZnFLlURiRXPqBCpWEpKCsqXLw8zM7Ni61xcXLB+/Xps2bIFmzdvxvr161G9enV8//33/znc9t8F5G3+XS6A15eiqlSpgszMzPfOn5GRARsbm/fe/sWLF8XOHAGvzyzJ5XJkZWUplr05EkhPT++dc3e8ePECVapUKbbc3NwcaWlpirwAFGcg3pSamlri8qLXVatW7a0/HwAqVqxY7HVyuRyurq5v/Xn169fHX3/9hYCAANy9excVK1aEo6OjYh++7T0XZerYsWOJ61NSUhQ3Kr/5/+XNfQ8A+/fvR2FhYYklZufOnejZs2eJP4dITFhUiFQoPz8fFy5cgKurK/T19Uvcpnnz5opLBZGRkQgPD8f8+fPRuHFjNGrU6KN+/pv3kBQUFOD58+dKv4zfvF/lzTMalSpVUroBt0hERARsbGyKnfmpXLmyojT829OnTwG8/oX6trLwX6pUqYJ79+4VW/7v92lqagoACAoKgq2tbbFtSypR/35denq64hIMACQkJCAjIwNubm4lvq5SpUqoUKECwsPDS1z/ySef4P79+xg9ejTatm2LkJAQ1KxZExKJBNu2bcNff/1V4uv+nSksLKxYQQKAGjVqKErns2fPlNa9ue9v3ryJuLg4+Pr6wt3dXWndiRMnsHXrVsTGxr7XmToiIfHSD5EK7dq1C0+fPn3rJF6LFy9Gz549IZfLYWxsjNatWyvu2SgatVE0/0ppnD9/Xukm3mPHjiE/Px9NmjQB8HpYdXJystJr/j06BwDc3d1x9epVpbLy7NkzDB06FGfOnCn2Mz08PPDHH38onTkpKCjA0aNH8emnnypdNvlQXl5eePjwIa5fv65Ylp6ejitXrii+bty4MQwNDZGSkoJPP/1U8Y+BgQGWLVuGhw8flvi9i4rI6dOnlZYHBQVhwYIFb83k6emJV69eQS6XK/28+Ph4rFmzBvn5+bhx4wby8vIwfPhw1KpVS1HuikpK0RmVN/d1UaF4/vy50vdOT0/HypUrkZGRAVtbW1hbW+P3339Xem3RZaUi+/btQ7ly5TBgwAA0adJE6Z8hQ4ZAT08PO3bsAIC3lmoiMeAZFaJSyMrKUvyyLCwsxPPnz3Hu3Dns2rULXbp0KXbfQxEvLy9s3rwZU6ZMQZcuXSCTyRAaGgozMzN4eXkBeH1UffnyZURERHzwjY1Pnz7FDz/8gP79+yMpKQnLli1D06ZN4e3tDQBo3bo1Tp8+jYULF8LHxwfR0dFKI1UAYODAgTh48CCGDh2KESNGwNDQEOvWrYOVlRU6d+6Mly9fKm0/ZswYnD17Ft999x2GDx8OQ0ND/Pzzz3jw4AFCQ0M/KP+bunbtivDwcIwZMwbjxo2DiYkJ1q1bh8LCQsU2VapUwdChQ7Fy5UpkZWWhSZMmSElJwcqVKyGRSODo6Fji93Z0dMQXX3yBwMBA5Obmon79+jh79iz++OOPd458admyJTw8PDBq1CiMGjUK9vb2uHbtGoKDg9G8eXNUrVoVDRo0gIGBAQIDAzF48GBIpVLs378ff/75J4D/O4tVdAblyJEjaNy4MRwcHNClSxfMnDkTjx49QsOGDZGYmIjly5fDxsYGtra2kEgkmDhxIiZMmIAZM2bgiy++wJUrVxSlA3h9D8yRI0fQqlWrEicbtLa2hqenJw4fPgw/Pz9UqlQJwOuzZvb29mjcuPGH7SgiNWJRISqFW7duoU+fPgBe3zRbsWJF1KtXD3PmzFEMMy1Jy5YtERQUhE2bNiluoHVzc0N4eLjinpa+ffvixo0bGDZsGBYuXAgLC4v3zvXtt9/i5cuXGD16NIyMjNC5c2dMmjRJcUTfs2dP3L9/HwcOHMDOnTvh4eGB4OBgpTNA1tbW2L59OwIDAzFlyhQYGRmhSZMmWL58OSpXrlysqNStWxfbt2/HsmXLMHXqVEgkEjRq1Ajh4eHFLjl8KCMjI4SFhSEgIAALFiyARCLBV199hZo1aypd+vjxxx9hbm6O7du3IzQ0FJUrV4a3tzfGjx+v+CVcksDAQKxevRphYWF4/vw57O3tERwcjLZt2771NXp6eli/fj1WrlyJkJAQPHv2DJaWlhg0aBBGjx4N4PXln6VLl2L16tUYOXIkKleuDGdnZ2zduhX9+/dHdHQ0HBwc0K5dOxw6dAhTpkxBr169MGfOHCxcuBAhISHYuXMnkpOTUa1aNXTo0AE//vij4sxHp06doKenh7Vr1+LQoUOoV68e5s2bpxjdc/LkSbx48UIx4qgk3bp1Q2RkJA4fPoxvvvkGgwYNwq5du3DmzBmcP38ehoaGH7SviNRFIudTqIiIiEikeI8KERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJltbPo3L58mXI5XKO+SciItIiMpkMEokELi4u79xO68+oyOXydz7UTFfJ5XJIpdIy+d7LIu7vsoX7u2wpq/v7fX9/a/0ZlaIzKZ9++qnASTTr1atXiI2NRZ06dd7rqbqk3bi/yxbu77KlrO7vfz/D6120/owKERER6S4WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEq0PLiopKSlwcHAo9s/+/fsBALGxsejXrx+cnZ3h4+OD8PBwpdcXFhYiODgYzZs3h7OzM4YNG4YHDx6o5t0QERGRTvngZ/3ExcWhXLlyOHnyJCQSiWJ5pUqV8Pz5cwwaNAg+Pj6YO3curly5grlz56JixYro2bMnAGDt2rXYvn07Fi1aBCsrKwQGBmLo0KE4fPgwjIyMVPfOiIiISOt9cFGJj4+Hra0tLCwsiq0LCwuDoaEh5s2bBwMDA9jb2+PevXtYv349evbsCalUik2bNmHixIlo1aoVAGD58uVo3rw5jh8/jk6dOn30GyIiIiLd8cGXfm7fvg17e/sS10VHR8PT0xMGBv/Xf7y8vJCUlIS0tDTExcUhOzsb3t7eivWmpqZwcnJCVFRUKeITERGRLvvgohIfH4/09HT07dsXn332Gb755hucPXsWAJCcnAwrKyul7YvOvDx58gTJyckAAGtr62LbFK0jIiIiKvJBl37y8/Nx9+5d1KlTB1OmTIGJiQmOHj2K4cOHY/PmzcjNzS12n0m5cuUAAHl5ecjJyQGAErd58eJFqd+EXC7Hq1evSv36j/Hv+3Q0SSqVwtjYGFKpVLAMcrlckJ9bFhV9dor+TbqN+7tsKav7Wy6Xv9fvrw8qKgYGBrhw4QL09fVRvnx5AEDDhg3xzz//YOPGjShfvjykUqnSa/Ly8gAAFSpUULxGKpUq/rtoG2Nj4w+JokQmkyE2NrbUry8tQ0NDODk1gIGBvsZ/trGxMczMzDT+c4vk5xfg1q2bkMlkgmUoi5KSkoSOQBrE/V22lMX9/T6DaD74ZtqKFSsWW1a3bl2cO3cOVlZWSE1NVVpX9LWlpSXy8/MVy2rVqqW0jYODw4dGUTA0NESdOnVK/frSkkgkMDDQR9C2GDxMeanxny8UG8tKmNjXDXXr1uVZFQ3JyclBUlISbG1tP6rUk3bg/i5byur+vnPnzntt90FF5Z9//kGfPn2wbt06NGnSRLH8xo0bqFOnDurXr4+dO3eioKAA+vqvzzJERkbCzs4O1apVQ6VKlWBiYoILFy4oikpmZiZu3bqFfv36fUgUJRKJBBUqVCj16z/Ww5SXSHhU+ktX2qosfaDEwtjYWNA/66RZ3N9lS1nb3+9728IH3Uxrb2+P2rVrY968eYiOjkZCQgIWLlyIK1euYOTIkejZsyeysrIwffp03LlzB/v378eWLVswYsQIAK9P8fTr1w9BQUE4deoU4uLiMG7cOFhZWaFdu3Yf/i6JiIhIp33QGRU9PT389NNPWLp0KX788UdkZmbCyckJmzdvRr169QAAoaGhWLBgAbp37w5zc3P4+fmhe/fuiu/h6+uL/Px8zJgxA7m5ufDw8MDGjRthaGio2ndGREREWu+D71GpXr06Fi5c+Nb1jRo1wq5du966Xl9fH5MmTcKkSZM+9EcTERFRGcOHEhIREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaJW6qCQmJsLFxQX79+9XLIuNjUW/fv3g7OwMHx8fhIeHK72msLAQwcHBaN68OZydnTFs2DA8ePCg9OmJiIhIp5WqqMhkMkycOBGvXr1SLHv+/DkGDRqEWrVqYd++fRg9ejSCgoKwb98+xTZr167F9u3b4e/vj507d6KwsBBDhw6FVCr9+HdCREREOqdURWXVqlUwMTFRWrZ7924YGhpi3rx5sLe3R8+ePTFw4ECsX78eACCVSrFp0yb4+vqiVatWcHR0xPLly5GcnIzjx49//DshIiIinfPBRSUqKgq7du3CokWLlJZHR0fD09MTBgYGimVeXl5ISkpCWloa4uLikJ2dDW9vb8V6U1NTODk5ISoq6iPeAhEREekqg//e5P9kZmbCz88PM2bMgLW1tdK65ORk1KtXT2mZhYUFAODJkydITk4GgGKvs7CwUKwrLblcrnQZSlMkEgmMjY01/nPFIicnB3K5XOgYZUJOTo7Sv0m3cX+XLWV1f8vlckgkkv/c7oOKypw5c+Di4oLOnTsXW5ebmwsjIyOlZeXKlQMA5OXlKXZASdu8ePHiQ2IUI5PJEBsb+1HfozSMjY3h5OSk8Z8rFomJiWXugyW0pKQkoSOQBnF/ly1lcX+/2QlK8t5F5eDBg4iOjsbhw4dLXF++fPliN8Xm5eUBACpUqIDy5csDeH2vStF/F23zsWclDA0NUadOnY/6HqXxPk1Ql9nZ2fGMiobk5OQgKSkJtra2ZfosXlnB/V22lNX9fefOnffa7r2Lyr59+/Ds2TO0atVKafns2bPx66+/wsrKCqmpqUrrir62tLREfn6+YlmtWrWUtnFwcHjfGCWSSCSoUKHCR30P+nBl6QMlFsbGxvyzXoZwf5ctZW1/v+/B/nsXlaCgIOTm5iota9euHXx9fdGlSxccOnQIO3fuREFBAfT19QEAkZGRsLOzQ7Vq1VCpUiWYmJjgwoULiqKSmZmJW7duoV+/fu8bg4iIiMqQ9y4qlpaWJS6vVq0aLC0t0bNnT4SGhmL69OkYOnQorl27hi1btmDu3LkAXl+H6tevH4KCglC1alX873//Q2BgIKysrNCuXTvVvBsiIiLSKR90M+27VKtWDaGhoViwYAG6d+8Oc3Nz+Pn5oXv37optfH19kZ+fjxkzZiA3NxceHh7YuHEjDA0NVRWDiIiIdMhHFZXbt28rfd2oUSPs2rXrrdvr6+tj0qRJmDRp0sf8WCIiIioj+FBCIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEq0PLirPnj3DpEmT4OXlBRcXFwwfPhwJCQmK9bGxsejXrx+cnZ3h4+OD8PBwpdcXFhYiODgYzZs3h7OzM4YNG4YHDx58/DshIiIinfPBRWX06NG4d+8e1q9fj71796J8+fIYOHAgcnJy8Pz5cwwaNAi1atXCvn37MHr0aAQFBWHfvn2K169duxbbt2+Hv78/du7cicLCQgwdOhRSqVSlb4yIiIi0n8GHbPzixQv873//w4gRI1CvXj0AwKhRo9C1a1f8888/iIiIgKGhIebNmwcDAwPY29srSk3Pnj0hlUqxadMmTJw4Ea1atQIALF++HM2bN8fx48fRqVMnlb9BIiIi0l4fdEalcuXKWLp0qaKkpKenY8uWLbCyskKdOnUQHR0NT09PGBj8X//x8vJCUlIS0tLSEBcXh+zsbHh7eyvWm5qawsnJCVFRUSp6S0RERKQrPuiMyr/NnDkTu3fvhpGREdatW4cKFSogOTlZUWKKWFhYAACePHmC5ORkAIC1tXWxbYrWlYZcLserV69K/frSkkgkMDY21vjPFYucnBzI5XKhY5QJOTk5Sv8m3cb9XbaU1f0tl8shkUj+c7tSF5UBAwagT58+2LZtG0aPHo3t27cjNzcXRkZGStuVK1cOAJCXl6fYCSVt8+LFi9JGgUwmQ2xsbKlfX1rGxsZwcnLS+M8Vi8TExDL3wRJaUlKS0BFIg7i/y5ayuL/f7AMlKXVRqVOnDgBgwYIFuHr1Kn7++WeUL1++2E2xeXl5AIAKFSqgfPnyAACpVKr476JtPubMhKGhoSKPJr1PE9RldnZ2PKOiITk5OUhKSoKtrW2ZPotXVnB/ly1ldX/fuXPnvbb7oKKSnp6OiIgItG/fXnEfip6eHurUqYPU1FRYWVkhNTVV6TVFX1taWiI/P1+xrFatWkrbODg4fEgUJRKJBBUqVCj166l0ytIHSiyMjY35Z70M4f4uW8ra/n7fg/0Pupk2LS0N48ePR0REhGKZTCbDrVu3YG9vDw8PD8TExKCgoECxPjIyEnZ2dqhWrRocHR1hYmKCCxcuKNZnZmbi1q1b8PDw+JAoREREVAZ8UFGpV68eWrRogfnz5yMqKgrx8fGYMmUKMjMzMXDgQPTs2RNZWVmYPn067ty5g/3792PLli0YMWIEgNfXovr164egoCCcOnUKcXFxGDduHKysrNCuXTu1vEEiIiLSXh98j8qyZcuwdOlSjBs3Di9fvoS7uzu2bduGGjVqAABCQ0OxYMECdO/eHebm5vDz80P37t0Vr/f19UV+fj5mzJiB3NxceHh4YOPGjTA0NFTduyIiIiKd8MFFpVKlSpgzZw7mzJlT4vpGjRph165db329vr4+Jk2ahEmTJn3ojyYiIqIyhg8lJCIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRIdICEokExsbGkEgkQkchItIoA6EDEGmTwkI59PQ0XxaMjY3h5OSk8Z9bRKj3TUTEokL0AfT0JAjaFoOHKS+FjqIxNpaVMLGvm9AxiKiMYlEh+kAPU14i4dELoWMQEZUJvEeFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIROuDi0pGRgZmzZqFFi1awNXVFd988w2io6MV6yMiItCjRw80btwYX3zxBY4ePar0+ry8PMydOxfe3t5wcXHBhAkTkJ6e/vHvhIiIiHTOBxeV8ePH4/Lly1i2bBn27duH+vXrY8iQIbh79y4SEhIwYsQING/eHPv370fv3r3h5+eHiIgIxevnzJmDc+fOYdWqVQgLC8Pdu3fh6+ur0jdFREREusHgQza+d+8ezp8/j+3bt8PNzQ0AMHPmTPz11184fPgwnj17BgcHB4wbNw4AYG9vj1u3biE0NBTe3t5ISUnBwYMH8dNPP8Hd3R0AsGzZMnzxxRe4fPkyXFxcVPz2iIiISJt90BmVKlWqYP369fj0008VyyQSCSQSCTIzMxEdHQ1vb2+l13h5eSEmJgZyuRwxMTGKZUXs7OxgaWmJqKioj3kfREREpIM+6IyKqakpWrZsqbTs2LFjuHfvHqZNm4YDBw7AyspKab2FhQVycnLw/PlzpKSkoEqVKihXrlyxbZKTk0v5FgC5XI5Xr16V+vWlJZFIYGxsrPGfKxY5OTmQy+VCx9AY7u+ytb+FlJOTo/Rv0m1ldX/L5XJIJJL/3O6DisqbLl26hKlTp6Jdu3Zo1aoVcnNzYWRkpLRN0ddSqRQ5OTnF1gNAuXLlkJeXV+ocMpkMsbGxpX59aRkbG8PJyUnjP1csEhMTy9QHi/u7bO1vMUhKShI6AmlQWdzfJXWCN5W6qJw8eRITJ06Eq6srgoKCALwuHFKpVGm7oq+NjY1Rvnz5YuuB1yOBPuZI1dDQEHXq1Cn160vrfZqgLrOzsytTR9jc32VrfwspJycHSUlJsLW1LdNn8cqKsrq/79y5817blaqo/Pzzz1iwYAG++OILLF68WNGIrK2tkZqaqrRtamoqKlSogEqVKsHKygoZGRmQSqVKLSo1NRWWlpaliQLg9S+QChUqlPr1VDpl6QNF3N9CMDY25t9tZUhZ29/ve/D3wcOTt2/fDn9/f/Tt2xfLli1TKhzu7u64ePGi0vaRkZFwdXWFnp4e3NzcUFhYqLipFnh9OjklJQUeHh4fGoWIiIh03AcVlcTERAQEBODzzz/HiBEjkJaWhqdPn+Lp06d4+fIl+vfvj2vXriEoKAgJCQnYtGkTfv/9dwwdOhQAYGlpiY4dO2LGjBm4cOECrl27hvHjx8PT0xPOzs7qeH9ERESkxT7o0s+xY8cgk8lw4sQJnDhxQmld9+7dsWjRIqxduxaBgYEICwuDjY0NAgMDlYYs+/v7IyAgAGPGjAEAtGjRAjNmzFDBWyEiIiJd80FF5fvvv8f333//zm1atGiBFi1avHV9hQoVMH/+fMyfP/9DfjQRERGVQXwoIREREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYnWRxWVkJAQ9O/fX2lZbGws+vXrB2dnZ/j4+CA8PFxpfWFhIYKDg9G8eXM4Oztj2LBhePDgwcfEICIiIh1V6qKybds2rFixQmnZ8+fPMWjQINSqVQv79u3D6NGjERQUhH379im2Wbt2LbZv3w5/f3/s3LkThYWFGDp0KKRSaanfBBEREekmgw99QUpKCmbPno0LFy7A1tZWad3u3bthaGiIefPmwcDAAPb29rh37x7Wr1+Pnj17QiqVYtOmTZg4cSJatWoFAFi+fDmaN2+O48ePo1OnTqp4T0RERKQjPviMys2bN2FoaIhffvkFjRs3VloXHR0NT09PGBj8X//x8vJCUlIS0tLSEBcXh+zsbHh7eyvWm5qawsnJCVFRUR/xNoiIdIdEIoGxsTEkEonQUYgE98FnVHx8fODj41PiuuTkZNSrV09pmYWFBQDgyZMnSE5OBgBYW1sX26ZoXWnI5XK8evWq1K8vraK/TMqqnJwcyOVyoWNoDPd32dvfRuXKQV9P82MOjI2N4eTkpPGfW6SgsBDSvLwytb+FlJOTo/TvskIul79XGf/govIuubm5MDIyUlpWrlw5AEBeXp5iJ5S0zYsXL0r9c2UyGWJjY0v9+tIS+i8ToSUmJpapDxb3d9nc30HbYvAw5aXQcTTGxrISJvZ1K3P7WwySkpKEjqBxb/aBkqi0qJQvX77YTbF5eXkAgAoVKqB8+fIAAKlUqvjvom0+5kjV0NAQderUKfXrS6usn5a1s7MrU0dc3N9lc38/THmJhEelP5DSVmVtfwspJycHSUlJsLW1LVNnbe/cufNe26m0qFhZWSE1NVVpWdHXlpaWyM/PVyyrVauW0jYODg6l/rkSiQQVKlQo9eupdMrSB4q4v8sa7m/NMzY2LlO/y9734E+lF189PDwQExODgoICxbLIyEjY2dmhWrVqcHR0hImJCS5cuKBYn5mZiVu3bsHDw0OVUYiIiEgHqLSo9OzZE1lZWZg+fTru3LmD/fv3Y8uWLRgxYgSA19ei+vXrh6CgIJw6dQpxcXEYN24crKys0K5dO1VGISIiIh2g0ks/1apVQ2hoKBYsWIDu3bvD3Nwcfn5+6N69u2IbX19f5OfnY8aMGcjNzYWHhwc2btwIQ0NDVUYhIiIiHfBRRWXRokXFljVq1Ai7du1662v09fUxadIkTJo06WN+NBEREZUBfCghERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChERkYAkEgmMjY0hkUiEjiJKBkIHICIiEoPCQjn09DRfFoyNjeHk5KTxn1tEqPf9vlhUiIiIAOjpSRC0LQYPU14KHUVjbCwrYWJfN6FjvBOLChER0f/3MOUlEh69EDoG/QvvUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0RKkqBQWFiI4OBjNmzeHs7Mzhg0bhgcPHggRhYiIiERMkKKydu1abN++Hf7+/ti5cycKCwsxdOhQSKVSIeIQERGRSGm8qEilUmzatAm+vr5o1aoVHB0dsXz5ciQnJ+P48eOajkNEREQipvGiEhcXh+zsbHh7eyuWmZqawsnJCVFRUZqOQ0RERCKm8aKSnJwMALC2tlZabmFhoVhHREREBAgwhX5OTg4AwMjISGl5uXLl8OLFh09bLJPJIJfLce3aNZXk+1ASiQS9vCshv6CiID9fCAb6erh+/TrkcrnQUTSO+7ts4f4uW7i/NUsmk73XE6M1XlTKly8P4PW9KkX/DQB5eXkwNjb+4O9X9CaFfDx2ZROj/95IB5XVR5Jzf5ct3N9lC/e3Zn+mKItK0SWf1NRU1KpVS7E8NTUVDg4OH/z9XFxcVJaNiIiIxEXj96g4OjrCxMQEFy5cUCzLzMzErVu34OHhoek4REREJGIaP6NiZGSEfv36ISgoCFWrVsX//vc/BAYGwsrKCu3atdN0HCIiIhIxjRcVAPD19UV+fj5mzJiB3NxceHh4YOPGjTA0NBQiDhEREYmURF4Wb+0mIiIircCHEhIREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoaBm5XA5fX188ePBA6CikIX/++SdevXoldAzSkG3btuHFixdCxyANiY+Ph0wmEzqGqLGoiFx+fj6ePn2KR48eIT4+HgsWLMDVq1cxffp0REdH48GDB3jy5AmePn0KTjKsey5duoTvv/8eO3fuFDoKacDvv/+OhQsX4qeffuIvrzLg3r176Nq1K37//Xeho4gap9AXsb179yIgIAA5OTkAXp9NcXV1xYoVK7BmzRocPHgQUqlUsa5SpUqYOXMmunTpImRsKqX79+8jNDQUjx49glQqRXZ2NhITEzF79mwEBQXB2NgYFhYWMDAwgIGBAWxtbTFs2DBYWVkJHZ1K4dq1a1i5cqXS/i4oKMCqVasQEBCA+/fvo0qVKkr7+8cff4Sjo6PQ0akUnj9/jj179uDhw4eQyWTIzs5GZGQkBgwYgE2bNqFhw4awtLRU2t99+vRBxYoVhY4uOBYVEfP09MT48ePRtGlTGBgYwNTUVOkPbX5+Pp4/fw6ZTIb8/HycPn0a69atw4ULFwRMTaXVrVs3VKtWDY0bN4a+vj4qV64Mb29v2Nvb4+XLl/jjjz+QnJwMqVSK/Px8xMTEIDs7G/v37xc6OpXC559/Dnd3d7i7uyv2t4uLC8zMzFBQUIArV64gOTkZMpkMMpkMkZGRuHHjBo4dOyZ0dCqF/v3748WLF6hfv75ifzdr1gxNmzbF/fv3cfToUTx58kTx9/mNGzdgbm6O8PBwoaMLTpCnJ9P7adOmDTp16gQTE5MS1xsYGMDc3FzxdY8ePXD79m1NxSMVi4+Px6lTp2BtbV1sXaVKlYqdKXvw4AHatWunqXikYnK5HBMmTED16tWLrdPX14ebm5vSshYtWuDbb7/VVDxSsZiYGBw7dgw1a9Ystq5WrVoYOXKk0rLExER07NhRU/FEjWdUtER6ejqePHmCvLw8VKhQARYWFqhatarQsYiI6D08evQINWrUgEQiea/tCwsL8eTJE/zvf/9TczLxY1ERuQMHDmD9+vVISkoCAMUNsxKJBHZ2dhgxYgS6du0qYEJSpYyMDOzevRvR0dF48uQJpFIpjI2NYWlpCQ8PD/Tq1QtmZmZCxyQVuXv3LsLCwkrc3+7u7hgwYADs7OyEjkkqkp+fj+PHjyMqKqrEz3e7du2gr68vdEzRYVERsa1btyIoKAgDBw6El5cXLCwsYGRkBKlUitTUVERERCA8PBx+fn48JawDYmNjMWjQIBgbG8Pd3R0WFhYoV64c8vLykJqaiujoaOTl5WHz5s1wcHAQOi59pIiICIwYMQJOTk6Kz/e/93dkZCRu376NkJAQeHp6Ch2XPtLDhw8xZMgQpKSkwMnJqdj+vnXrFmrUqIHQ0FDUqFFD6LiiwqIiYm3atMGYMWPQvXv3t26zf/9+rF27FidPntRgMlKHvn37wsbGBgEBASUeVRUUFGDq1Kl48uQJtm7dKkBCUqUePXrAy8sLfn5+b91myZIluHDhAvbt26fBZKQOw4cPR0FBAVasWIFKlSoVW5+ZmYlx48bB0NAQP/30kwAJxYvzqIhYeno6Gjdu/M5tGjdujKdPn2ooEanTjRs3MHz48Lee+tXX18eIESNw48YNDScjdUhISEDv3r3fuU2vXr2QkJCgoUSkTlFRUfDz8yuxpACAqakpJk2ahKioKA0nEz8WFRFr2LAhNm/ejMLCwhLXy+VyhIaGon79+hpORupgbm6OuLi4d25z/fp13qOiI2xsbPD333+/c5uzZ8/C0tJSQ4lInSpVqoSUlJR3bvP48WOUL19eQ4m0B4cni9i0adMwePBgnD17Fh4eHrC2tla6RyU6OhpZWVnYuHGj0FFJBQYNGoTp06fj9u3b8PLygpWVldL+vnjxIjZv3gxfX1+ho5IKjBkzBpMmTUJMTAy8vb1L3N9Hjx5FQECA0FFJBXr16oUpU6Zg7Nix8PLyUvr7PCUlBRcvXkRQUBB69eoldFTR4T0qIpeRkYFdu3YhJiYGycnJyM3NRbly5WBtbQ13d3f06tWLw5R1yIEDBxASEoKkpCTFMMaij6idnR0GDx78n5cLSHtERkZiw4YNuHTpkmIGagAwNjaGm5sbBg0ahKZNmwqYkFRFLpdjzZo12Lx5c4nP7qpYsSL69u2LsWPHQk+PFzv+jUWFSITS09ORnJyMnJwclC9fHtbW1iykOkwulyMzM1NxIMLLe7pLJpMhNjYWKSkpis+3lZUVHB0dYWRkJHQ8UeKlH5HjuPuyRyaT4eHDh0hOTkZeXh6MjY0hl8thamoKAwN+ZHVNamqq4oxp0f62srKCq6ur0szTpBsMDQ1hY2MDfX19pQk8WVLejmdURIzj7suWolPDYWFhePnyZbH1JiYmGDx4MEaNGiVAOlK13NxczJ07FwcPHoREIoGZmZni852RkQGJRIJu3bph9uzZ/CWmI0qawLPoEi8n8Hw7Hp6J2Lx582BjY4O9e/e+c9z9vHnzOO5eBwQHB2P79u2YNGlSiROARUREYNmyZSgsLMSYMWOEjksfqWiOlNDQUHh6esLQ0FCxTiaT4cKFC5g9ezYWL16MmTNnCpiUVOF9JvCcPXs2srOzOYHnm+QkWs7OzvK4uLh3bhMbGyt3dXXVUCJSp6ZNm8pPnjz5zm1OnDghb9GihYYSkTp5enrKIyMj37lNRESE3NvbW0OJSJ18fHzk+/fvf+c2+/btk7dp00ZDibQHby0WMY67L1tycnJga2v7zm1q1qyJFy9eaCYQqZVcLkflypXfuU3FihWRm5uroUSkTpzAs/RYVESsaNz9rl27cO/ePUilUgCAVCrFgwcPsG/fPkyfPh09evQQOCmpgru7O4KCgpCVlVXi+uzsbCxduhRubm4aTkbq0Lx5c8yaNQuJiYklrn/w4AHmzp2LFi1aaDgZqQMn8Cw93kwrYnKOuy9THj16hMGDByM5ORlOTk7FJvi7efMmLCwsEBoaipo1awodlz5SRkYGfvjhB0RHR8Pc3LzY/k5OToaLiwtWr17Noek6IDY2FoMHD4aRkdF/TuDZsGFDoeOKCouKFuC4+7IjPz8fv//+e4kT/Hl4eKBt27bc5zrm8uXLiI6ORkpKCnJzcxWfbw8Pj/+8VEDahRN4lg6LipZIT0/HkydPlMbd8w80ERHpOg5PFjmOuy9bMjIysHv3bkRHR5c4wV+vXr04a6kOuXv3LsLCwkrc3+7u7hgwYADs7OyEjkkqwgk8S4dnVETsfcbdh4eHw8/Pj+PudUBsbCwGDRoEY2NjuLu7F5tHJTo6Gnl5edi8eTMcHByEjksfKSIiAiNGjICTk1OJ8+ZERkbi9u3bCAkJgaenp9Bx6SNxAs/SY1ERsTZt2mDMmDHo3r37W7fZv38/1q5di5MnT2owGalD3759YWNjg4CAgBKPqgoKCjB16lQ8efIEW7duFSAhqVKPHj3g5eUFPz+/t25TNCncvn37NJiM1GH48OEoKCjAihUr3jmBp6GhISfwfAOHiogYx92XLTdu3MDw4cPfeupXX18fI0aMwI0bNzScjNQhISHhP5+E3atXLyQkJGgoEalTVFQU/Pz8SiwpAGBqaopJkyYhKipKw8nEj0VFxDjuvmwxNzdHXFzcO7e5fv0671HRETY2Nvj777/fuc3Zs2dhaWmpoUSkTpzAs/R4M62ITZs2DYMHD8bZs2f/c9w9ab9BgwZh+vTpuH37Nry8vGBlZaW0vy9evIjNmzfD19dX6KikAmPGjMGkSZMQExMDb2/vEvf30aNHERAQIHRUUoGiCTzHjh0LLy8vpb/PU1JScPHiRQQFBaFXr15CRxUd3qMichx3X7YcOHAAISEhSEpKUozuKvqI2tnZYfDgwf95uYC0R2RkJDZs2IBLly4hJydHsdzY2Bhubm4YNGgQmjZtKmBCUhVO4Fl6LCpEIpSeno7k5GTFBH/W1tYspDpMLpcjMzNTcSDCy3u6ixN4fjhe+hE5jrsve2QyGR4+fIjk5GTk5eXB2NgYcrkcpqamMDDgR1bXpKamKs6YFu1vKysruLq6wtzcXOh4pGKGhoawsbGBvr6+0gSeLClvxzMqIsZx92VL0anhsLAwvHz5sth6ExMTDB48GKNGjRIgHalabm4u5s6di4MHD0IikcDMzEzx+c7IyIBEIkG3bt0we/Zs/hLTEZzAs3R4eCZi8+bNg42NDfbu3fvOcffz5s3juHsdEBwcjO3bt2PSpEklTgAWERGBZcuWobCwEGPGjBE6Ln2kojlSQkND4enpCUNDQ8U6mUyGCxcuYPbs2Vi8eDFmzpwpYFJShfeZwHP27NnIzs7mBJ5vkpNoOTs7y+Pi4t65TWxsrNzV1VVDiUidmjZtKj958uQ7tzlx4oS8RYsWGkpE6uTp6SmPjIx85zYRERFyb29vDSUidfLx8ZHv37//ndvs27dP3qZNGw0l0h68tVjEOO6+bMnJyYGtre07t6lZsyZevHihmUCkVnK5HJUrV37nNhUrVkRubq6GEpE6cQLP0mNREbGicfe7du3CvXv3IJVKAQBSqRQPHjzAvn37MH36dPTo0UPgpKQK7u7uCAoKQlZWVonrs7OzsXTpUri5uWk4GalD8+bNMWvWLCQmJpa4/sGDB5g7dy5atGih4WSkDpzAs/R4M62IyTnuvkx59OgRBg8ejOTkZDg5ORWb4O/mzZuwsLBAaGgoatasKXRc+kgZGRn44YcfEB0dDXNz82L7Ozk5GS4uLli9ejWHpuuA2NhYDB48GEZGRv85gWfDhg2FjisqLCpagOPuy478/Hz8/vvvJU7w5+HhgbZt23Kf65jLly8jOjoaKSkpyM3NVXy+PTw8/vNSAWkXTuBZOiwqWiI9PR1PnjxRGnfPP9BERKTrODxZ5DjuvmzJyMjA7t27ER0dXeIEf7169eKspTrk7t27CAsLK3F/u7u7Y8CAAbCzsxM6JqkIJ/AsHZ5REbH3GXcfHh4OPz8/jrvXAbGxsRg0aBCMjY3h7u5ebB6V6Oho5OXlYfPmzXBwcBA6Ln2kiIgIjBgxAk5OTiXOmxMZGYnbt28jJCQEnp6eQselj8QJPEuPRUXE2rRpgzFjxqB79+5v3Wb//v1Yu3YtTp48qcFkpA59+/aFjY0NAgICSjyqKigowNSpU/HkyRNs3bpVgISkSj169ICXlxf8/Pzeuk3RpHD79u3TYDJSh+HDh6OgoAArVqx45wSehoaGnMDzDRwqImIcd1+23LhxA8OHD3/rqV99fX2MGDECN27c0HAyUoeEhIT/fBJ2r169kJCQoKFEpE5RUVHw8/MrsaQAgKmpKSZNmoSoqCgNJxM/FhUR47j7ssXc3BxxcXHv3Ob69eu8R0VH2NjY4O+//37nNmfPnoWlpaWGEpE6cQLP0uPNtCI2bdo0DB48GGfPnv3Pcfek/QYNGoTp06fj9u3b8PLygpWVldL+vnjxIjZv3gxfX1+ho5IKjBkzBpMmTUJMTAy8vb1L3N9Hjx5FQECA0FFJBYom8Bw7diy8vLyU/j5PSUnBxYsXERQUhF69egkdVXR4j4rIcdx92XLgwAGEhIQgKSlJMbqr6CNqZ2eHwYMH/+flAtIekZGR2LBhAy5duoScnBzFcmNjY7i5uWHQoEFo2rSpgAlJVTiBZ+mxqBCJUHp6OpKTkxUT/FlbW7OQ6jC5XI7MzEzFgQgv7+kuTuD54XjpR+Q47r7skclkePjwIZKTk5GXlwdjY2PI5XKYmprCwIAfWV2TmpqqOGNatL+trKzg6uoKc3NzoeORihkaGsLGxgb6+vpKE3iypLwdz6iIGMfdly1Fp4bDwsLw8uXLYutNTEwwePBgjBo1SoB0pGq5ubmYO3cuDh48CIlEAjMzM8XnOyMjAxKJBN26dcPs2bP5S0xHcALP0uHhmYjNmzcPNjY22Lt37zvH3c+bN4/j7nVAcHAwtm/fjkmTJpU4AVhERASWLVuGwsJCjBkzRui49JGK5kgJDQ2Fp6cnDA0NFetkMhkuXLiA2bNnY/HixZg5c6aASUkV3mcCz9mzZyM7O5sTeL5JTqLl7Owsj4uLe+c2sbGxcldXVw0lInVq2rSp/OTJk+/c5sSJE/IWLVpoKBGpk6enpzwyMvKd20RERMi9vb01lIjUycfHR75///53brNv3z55mzZtNJRIe/DWYhHjuPuyJScnB7a2tu/cpmbNmnjx4oVmApFayeVyVK5c+Z3bVKxYEbm5uRpKROrECTxLj0VFxIrG3e/atQv37t2DVCoFAEilUjx48AD79u3D9OnT0aNHD4GTkiq4u7sjKCgIWVlZJa7Pzs7G0qVL4ebmpuFkpA7NmzfHrFmzkJiYWOL6Bw8eYO7cuWjRooWGk5E6cALP0uPNtCIm57j7MuXRo0cYPHgwkpOT4eTkVGyCv5s3b8LCwgKhoaGoWbOm0HHpI2VkZOCHH35AdHQ0zM3Ni+3v5ORkuLi4YPXq1RyargNiY2MxePBgGBkZ/ecEng0bNhQ6rqiwqGgBjrsvO/Lz8/H777+XOMGfh4cH2rZty32uYy5fvozo6GikpKQgNzdX8fn28PD4z0sFpF04gWfpsKiIWHR0NFxdXXm2hIiIyiwWFRFzdHTEZ599huXLl//nTXekGw4dOoS9e/fixYsXaNGiBb7//nuYmJgo1qenp6N37944deqUgClJVe7evYuwsDBER0cXm9DR3d0dAwYMgJ2dndAxSQUGDhyI77//Hl5eXkJH0TosKiLm6OiITz75BFlZWZg6dSo6deokdCRSoz179mDu3Lno2rUr9PT0cOTIEVhYWGDz5s2KCf3S0tLQvHlzxMbGCpyWPlZERARGjBgBJyenEufNiYyMxO3btxESEgJPT0+h49JHcnR0hIGBAUaNGoXhw4dzlukPwKIiYvXr18epU6ewdetWbN26FfXq1cOoUaPQtm1boaORGnTu3Bn9+/fHV199BeD10PNhw4YhNzcXO3fuhLm5OYuKDunRowe8vLzg5+f31m2KJoXbt2+fBpOROjg6OmLGjBlYuXIlLC0tMWHCBLRu3VroWFqBNz+ImFwuR7ly5TB58mQcPHgQNjY28PX1RYsWLbB48WKcPXsWqampimHLpN0ePnwIb29vxdc1atRAWFgYJBIJhg4d+tZhy6SdEhIS/vNJ2L169UJCQoKGEpG6ffnllzh8+DAcHBwwcuRIdOvWDbt27eLcSP+BRUVL1KlTB8HBwTh+/Dj69OmDCxcuYMSIEWjRogVHBugICwsL3Lx5U2lZ9erVsX79eiQnJ2PkyJGc/EuH2NjY4O+//37nNmfPnoWlpaWGEpEmWFlZYenSpTh06BDq16+PRYsWoVmzZvjqq68wa9YsLFu2TOiIosNLPyLm6OiI8+fPo1q1aiWuz8rKQlxcHJ4+fYovv/xSw+lI1UJDQ7FhwwYMGTIEXbt2VfoFFRMTg2HDhqF69ep48OABL/3ogN9++w2TJk1Cu3bt4O3tDSsrK6V5NS5evIijR48iICAAXbp0EToufaT69evj3Llzxf4+z8vLw7lz5xAdHY3Y2FikpaXhyJEjAqUUJ97NI2I1atR459BkExMTuLu7azARqdOQIUMgk8mwbds2NGrUSKmouLm5YcuWLZg4caKACUmVvvzyS1SpUgUbNmxAQEAAcnJyFOuMjY3h5uaGkJAQNG3aVMCUpCpvOydQrlw5tGnTBm3atNFwIu3BMypEIiT/1+Pf/62goADXrl2Di4uLAKlIXeRyOTIzMxUTgJmZmQkdiVTswIED6NixIydsLAUWFZFLSkrC4cOHFfNqvPncj6ysLCxYsAALFy4UKCGpWlJSkuLhhFKpFH/88QcePnyITz75BC1btoShoaGwAUltcnJycPz4caSkpKBu3bpo1apViYWVdEt6ejqqVKnCff0WLCoiFhMTgyFDhsDCwgISiQT3799Hu3btEBgYqGjlHK6qOx4+fIiRI0ciOzsbp0+fRkpKCr777js8ePAAZmZmeP78Oezt7bFp0yZYWFgIHZc+UtH8SOfOnUPz5s0xbdo09O/fHw8fPlTsb2dnZ4SGhipN+kfaa+PGjbh06RLWrFmDwsJCrF69Glu2bEFOTg5MTU0xcOBAjBw5UuiYosNRPyK2dOlS9OzZE8ePH8exY8ewYsUKnDt3DqNGjUJ+fr7Q8UjF5s+fj8qVK2PDhg0AgEWLFqFq1ar466+/8Pfff+PMmTOoUqUKFixYIHBSUoXAwEAkJiZi3LhxePjwIfr27YsqVargzJkziIiIwPHjx5GXl4fFixcLHZVUYNWqVVi7dq3i6cgbN25EeHg4Ro8ejZ9++glDhgzBpk2bEBoaKnBSEZKTaLm6usqTkpKUlsXExMidnZ3l48ePl8vlcvnTp0/ljo6OQsQjFXNzc5Pfvn1b8XXz5s3l0dHRStvcvHlT7ubmpulopAbe3t7yy5cvy+VyufzOnTtyBwcHeVRUlNI2UVFR8iZNmgiQjlStZcuW8uPHjyu+7tChg/zAgQNK2xw9elTeunVrDScTP55RETETExM8e/ZMaZmrqysCAwPx22+/8b4UHWNoaIhXr14pvjY1NS22jfwtN9mS9snNzUWVKlUAAPb29vjkk09gbGystI2ZmRkKCwuFiEcq9vz5czg4OCi+fvHiBRwdHZW2+fTTT5GWlqbpaKLHoiJiLVu2xNy5c3HlyhXIZDLF8rZt22LatGkICwvDvHnzBExIqtSuXTtMmzYNd+7cAQD07dsXK1asUMxIm5aWhoCAALRs2VLImKQijRo1QmhoqKKIHDt2DA0aNFCsz8rKQlBQEFxdXYWKSCr06aefYtOmTYqvW7ZsWezhoocOHULdunU1HU30eDOtiL148QLjxo1DREQEQkJCio342b59OwICAlBQUMCbaXVAdnY2xowZgwsXLqBevXqoVasWIiMjIZVKYWlpiUePHsHOzg5btmx56ySApD1u3ryJwYMHo1mzZli6dKnSujNnzsDX1xdVqlRBWFgYPvnkE4FSkqpcu3YNAwYMQN26ddGpUyeYmJhg8eLFaNasGerWrYsrV67g3LlznDunBCwqWuD+/fuoUqUKKlWqVGxdYmIijh8/jhEjRgiQjNThwoULOH/+PBITE5GVlQUDAwNYWVnBw8MDX3zxBedh0CHPnj3Do0eP0KhRI6XliYmJ+Pvvv9GpUydUrlxZoHSkaomJiQgJCcG5c+eULvGUK1cOrq6uGDlyJJ+UXQIWFS0VExODTz/9lL+0iIi0UFZWFrKzs2FgYIAqVaq8cxbyso7/Z7TUsGHDkJKSInQMUrFDhw6hf//+6NKlC4KCgoo9MTk9PZ1TbRNpobVr1+Lp06eKr01MTGBpaYlq1aqxpPwHnlERMR8fn7eO8Hj8+DEsLS2hr68PAMVuyiLts2fPHsydOxddu3aFnp4ejhw5AgsLC2zevBk1atQAwAn+iLSVo6MjLCwssGzZMj6j7QPxoYQi9tlnn2Hv3r1o0qQJPDw8FMvlcjlCQkLQtm1bPhNEh4SHh2PWrFn46quvAAAjR47EsGHD0L9/f+zcuRPm5uYCJySij+Hh4YH+/fujd+/eGDt2LG+Kf088oyJyJ0+exKxZs9C1a1eMHz9e8ZwXFxcX/PLLL6hZs6bACUlVStqnaWlp+Prrr1GxYkVs27YNubm5PKNCpIXq16+Pc+fO4erVqwgICMCzZ8/Qu3dvfPPNN7CzsxM6nqjxwpjItW3bFgcPHkR8fDx69uyJf/75R+hIpCYWFha4efOm0rLq1atj/fr1SE5OxsiRI5GbmytQOlKnx48fo6RjxsLCQjx+/FiARKRqRfvXx8cHv/76KyZMmIA///wTHTp0QI8ePRAUFIQjR47g3LlzAicVHxYVLWBhYYGNGzeie/fu+Pbbb5UmDSLd0bt3b8yePRvr169XulG6du3aWLt2rWLeDdI9bdq0QXp6erHlvHlad/z7fkMjIyP069cPx44dw9atW+Hp6YmIiAhMnToVw4YNEzClOPEeFS0yaNAgeHt7Y9KkSTyy1kFDhgyBTCbDtm3b0KhRI1haWirWubm5YcuWLZg4caKACUldAgICSpwnqVKlSggICBAgEalaSWfMJBIJ3N3dFTfXFhYWIiMjQ8PJxI/3qGghqVSKq1evonHjxpxHRUe97Zk+BQUFuHbtGlxcXARIRUSlNXXqVEyfPh0mJiZCR9E6LCpERAJYvXo1JBIJLCwsYG9vz2f6EL0FiwoRkQCKnpxbvXp11K1bF5s3bxY4EZE4sagQERGRaHHUDxGRCFy6dEkx8ufgwYMYMWIEQkJCSrwJk6gsYVEhIhLYzp070bdvX9y+fRtxcXGYOnUqZDIZtmzZgjVr1ggdj0hQLCpaok2bNnj+/Hmx5ZxnQTdNnTq12AMJgddPXJ06daoAiUidwsLCMGPGDHh7e+PXX39F3bp1sWnTJixZsgT79+8XOh6RoFhUtISnp6di+vx/MzIygqenpwCJSJ0uXLgAmUxWbLlUKsWFCxcESETq9PDhQ/j4+AAAzp8/jxYtWgAA7O3tkZaWJmQ0UoP69evj2bNnxZanpaWhfv36AiQSNxYVLbFw4cISx9+bmJhg4cKFAiQidTp9+jSqVKlSbHnVqlVx+vRpARKROlWrVg2pqal4+vQpYmNj0bRpUwBAXFwcqlevLnA6UrXRo0ejQoUKxZZXqFABo0ePFiCRuHHUj4hFRUVBIpHA3NwctWrVKnECMCLSfoGBgTh+/DiMjY2RlZWFEydO4NixY/D390evXr0wYcIEoSMSCYZFRcQcHR0hkUggl8thYmKC6OhooSORGhXtb3Nzc9SpU4fPdCpDCgsLsW3bNjx48AB9+/bFJ598gq1btyI9PR1jxoyBvr6+0BHpIx08eBAAFBP8/fsRGfRuLCoidvHiRUgkElSvXh2ffPIJ9PR4pU6XrVq1SlFU7O3tFc//ICLtVzTBn56eHmxsbHD8+HGBE2kPFhUtkpubCz09PRgZGSEhIQF//vknXFxcOPV2GSCTyRAXF4fatWujYsWKQschFVi9evV7bztmzBg1JiFNePToESQSCapVq4Zy5coJHUersKhoiaioKIwePRorV66Evb09vvjiC+jp6SEnJwdBQUH48ssvhY5IKvTkyRNMnz4dP/74I+rVq4devXrhzp07qFy5MrZs2cKRATqgaJRPkSdPnsDQ0BA1a9aEgYEB7t+/D5lMhoYNG2Lnzp0CpSR1efz4MUxNTWFiYoLIyEgcP34crq6u6NSpk9DRRMdA6AD0fpYtW4Y2bdrg008/xe7du2FiYoITJ05g3759CAkJYVHRMQsXLsTLly9RtWpV/Pbbb3j8+DG2b9+O/fv3IzAwkPev6IB/j97asmUL/vzzTyxduhTVqlUDAGRmZsLPzw/16tUTKiKpyYkTJzBu3DiEhISgZs2aGDp0KGrWrIn9+/fjxYsX6Nu3r9ARRYU3PWiJW7duYdSoUTAxMcG5c+fQqlUrlCtXDi1btsTdu3eFjkcqFhkZiXnz5sHGxgZnzpxB8+bN4erqiiFDhuDy5ctCxyMVW79+PaZMmaIoKQBgamqK8ePHY9euXQImI3VYu3YthgwZAm9vbxw+fBg1atTA0aNHERAQgJ9//lnoeKLDoqIljI2NIZVKkZeXh5iYGHh7ewN4PUFQpUqVBE5HqiaTyVC5cmXI5XJERETgs88+A/B6dIiBAU+E6hqZTIZXr14VW/7s2TNOS6CDEhIS8NVXX0FPTw/nz59Hy5YtoaenB2dnZzx69EjoeKLDv/G0RJMmTRAYGIjKlStDT08PzZs3R2xsLObPn48mTZoIHY9UzMnJCXv37oW5uTkyMzPRsmVLSKVSbNiwQTF6gHSHj48PZs6ciVmzZqFhw4aQy+WIiYmBv78/OnbsKHQ8UjFTU1O8fPkSL1++xLVr1zBs2DAAwP3792FmZiZsOBFiUdESs2fPxuzZs3H79m0EBgbCxMQEhw4dgpGREZ/9ooMmT56M77//Hs+fP8ewYcNgZWWFOXPm4NSpUwgNDRU6HqnYzJkzMXbsWAwYMEBxBkUul+OLL77A5MmTBU5HqtayZUvMmjULFStWRKVKldC0aVP8/fffmDNnDlq1aiV0PNHhqB8tJpVKYWRkJHQMUpPCwkJkZWXB1NQUAJCYmIgqVarwiEuH3b17F//88w8kEgnq16+PmjVrCh2J1CA3NxcrVqzAgwcPMGzYMDg7O2PVqlV48OABZs+ezSkI3sCiImJRUVHvva2Hh4cakxCRJqSlpUEmk+HNv5Zr1KghUCIi4bGoiNi/p9D/9w11Rbvs38tiY2M1no9Uq2h/vw/ub91y6dIlTJ06Fffv31daXvTZ5/7WfkVT6L+Pbt26qS2HNmJREbF/3/0dERGBtWvXYtq0aXB1dYWBgQGuX7+OgIAADBs2jH+wdcD+/fsVReXRo0fYsGED+vTpAxcXFxgaGuL69evYtm0bRo4ciSFDhgicllSpR48eqFChAgYNGlTiKD5PT08BUpEqvXkTfNFBaPny5WFgYICsrCzo6+ujSpUqOHfunEApRUpOWqFdu3byv//+u9jyCxcuyFu3bi1AIlKnvn37yvfs2VNs+aFDh+Q9evQQIBGpU8OGDeV37twROgZpyOHDh+XdunWTx8bGKpYlJibKv/rqK3l4eLiAycSJ86hoidTUVFhYWBRbbmpqioyMDM0HIrW6du1aifcdNWrUCHfu3BEgEamTtbU1srOzhY5BGhIUFIQ5c+YonWWxtbXFjBkzEBISImAycWJR0RKNGjXCypUrlf4yy8jIQGBgIE8L66BPPvkER48eLbZ8165dqFOnjgCJSJ1GjhyJgIAA3L59GzKZTOg4pGaZmZklPpiwsLAQubm5AiQSN96joiX++ecfDBw4EDk5ObC1tYVcLkdSUhKqVauGsLAw/O9//xM6IqnQiRMn4OvrCzc3N3z66acoLCzE5cuXERsbiw0bNsDLy0voiKRC7dq1w+PHj1FQUFDiet5Mq1tGjhyJFy9eYMmSJbCxsQHwerbaSZMmoXbt2ggKChI4obiwqGiRrKwsHDlyRDHPgqOjIzp27AhjY2Oho5EaXLp0CT///DP++ecfAED9+vUxePBgzkyrgw4cOPDO9d27d9dQEtKElJQUDBkyBAkJCTA1NYVcLsfLly/RqFEjrF+/HpUrVxY6oqiwqBAREWlYQUEB/v77b6UDTy8vLz7bqQQsKlri6dOnWLFiBS5dulTihFCnTp0SKBmpQ2FhIQ4fPvzW/b1w4UKBkpG6nDp1CiEhIYiPj4eBgQHq1KmDIUOG4PPPPxc6GpGg+KwfLTFz5kzcuHEDHTt25NOSy4CAgABs27YNjo6OMDExEToOqdnx48cxduxYtGnTBh07doRcLkdUVBTGjh2LVatWoU2bNkJHJBW6e/cu5s2bpzgQeRPvSVLGMypawtnZGaGhoXB3dxc6CmlAkyZNMGXKFN6bUEZ069YNbdu2xZgxY5SWr169GmfOnMGePXsESkbq0L9/fzx79gxff/11iQee/Nwr4xkVLVGhQgVUq1ZN6BikIVKplM9vKkPu3r2Lzp07F1veqVMnbNiwQYBEpE5Xr17Fjh070KBBA6GjaAXOo6IlunbtitDQ0LcOXyTd0rx5c5w5c0boGKQhFhYWuHfvXrHl9+7d46VeHVSlShUYGhoKHUNr8IyKlsjIyMCRI0fw559/ombNmjAyMlJaHx4eLlAyUgdnZ2cEBgYiIiIC9vb2xf5Se/MSAWm3Tp06Yc6cOZg9ezbc3NwAADExMZg7dy46dOggcDpStX79+mHZsmUICgriPWjvgfeoaImpU6e+cz1HgegWHx+ft66TSCQc5aVj8vLyMG7cOJw+fVoxPFUul6NVq1ZYsWIFypcvL3BCUqVBgwYhOjoaBQUFqFatWrEDT36+lbGoEBGJREJCAuLj4yGXy+Hg4AB7e3uhI5EarF69+p3recZUGYuKFnny5Am2bdummGehbt266NOnD2rUqCF0NFIDuVyOv/76S2l/e3l5QV9fX+hopGKFhYVYu3Ytqlevjq+//hoA0KdPH7Ru3Rrff/+9wOmIhMV7VLTE7du30a9fP5QvXx6NGjVCYWEh9u/fj23btmHHjh2oW7eu0BFJhTIyMjBkyBDcvHkTlSpVglwuR1ZWFho0aIDNmzfD1NRU6IikQsHBwdi5cyf8/f0Vyzp06IB169YBAMuKDrpx4wY2btyoNMHfgAED0KhRI6GjiQ7PqGiJIUOGwNjYGEuXLlU8dTMvLw8TJ06EVCrlo8F1zNSpU3Ht2jUsXbpU8WyfuLg4TJo0Ca6urpg7d67ACUmVWrVqhfnz56NZs2ZKy8+cOYN58+bxngUdc/HiRQwePBj16tWDu7s7CgsLcenSJcTHxyMsLExxQzW9xqKiJVxcXLBz5044ODgoLY+Li0O/fv0QHR0tUDJSBy8vLwQHB8PT01Np+YULFzB+/HicP39eoGSkDs7Ozjhw4ADs7OyUlt+7dw+dO3fGtWvXBEpG6vDNN9+gXr16xQ445s6dizt37mDr1q0CJRMnzqOiJSpWrFjiVMslLSPtl5+fj+rVqxdbXr16dWRlZQmQiNTJ0dER+/fvL7b80KFDqFOnjgCJSJ1u3bqF7777rtjyfv364caNGwIkEjfeo6IlvLy8sGTJEgQHB8PMzAwAkJ6ejsDAQHh7ewsbjlSuQYMG2LFjB6ZPn660fMeOHahfv75AqUhdRo8ejREjRiA6OhrOzs4AgOvXr+PKlStYs2aNsOFI5apUqYLnz58XW56enl5sqDLx0o/WSE5Oxtdff40XL17A1tYWAJCUlITKlSvj559/ho2NjbABSaUuX76M7777Do6OjnB1dQXwegKwuLg4hIaGwsvLS+CEpGqXL1/G1q1b8c8//8DAwAD29vYYOnSo4h4l0h1z587FpUuXsGzZMsUQ9Dt37mDChAlwcnLivFhvYFHRItnZ2fjll1+U5lno3LkzZzbUUdeuXcPmzZuV9vegQYM4KoBIy7148QKDBg1CbGys4hEJmZmZqF+/PjZt2oQqVaoInFBcWFS0yMWLF5Gfn4/PPvsMALB48WK0adOGT1TWUS9fvsTz589Rq1YtAMDx48fh6empuPRHuiUuLg5hYWFITEzEypUrcfLkSdSpUwdNmjQROhqpQWFhIc6dO6d0INKsWTPo6fHW0Tfx/4iWOHr0KAYPHozY2FjFskePHmHgwIE4efKkgMlIHW7evIm2bdtix44dimWLFi1Cp06dEB8fL2AyUocbN26gd+/eePjwIW7cuAGpVIrY2FgMGTKED6fUUb/88guys7MxdOhQDBs2DPv27cPRo0eFjiVKLCpa4qeffsKUKVMwZMgQxbLg4GD4+flh1apVAiYjdVi0aBF8fHwwbtw4xbLjx4+jefPmWLRokYDJSB2CgoIwePBgbN26VfEAyvnz56Nv3778fOug8PBwzJo1S2kEn5WVFWbOnIndu3cLmEycWFS0xP3799GyZctiy1u3bo2kpCTNByK1unHjBkaNGqU0AsDAwADDhw/H1atXBUxG6nDjxg1069at2PK+ffsiISFB84FIrbZu3YpFixahd+/eimVTp06Fv78/Nm3aJGAycWJR0RLW1taIiooqtvzy5cswNzcXIBGpU8WKFfHgwYNiy1NTUzl8UQcZGhqWOD/OkydPYGxsLEAiUqfU1FQ0bNiw2HJnZ2c8fvxYgETixqKiJb755hv4+/tjxYoV+OOPP/DHH38gODgYc+fOxTfffCN0PFKx9u3bY+7cuYiIiEB2djays7MRGRmJuXPn4vPPPxc6HqlY27ZtsWLFCmRmZiqWJSQkYMGCBWjVqpVwwUgtbG1tcfr06WLLz5w5w6kmSsBRP1pkw4YNCA8Px9OnTwEAFhYWGD58OPr16ydwMlK1V69eYezYsfjrr78gkUgUyz///HMEBARwSLqOycrKwtChQ3Ht2jUUFhaiUqVKyMrKgqOjIzZv3syRXjrml19+wZQpU9CxY0c0btwYwOsJ/o4ePQp/f390795d4ITiwqKihZ4/fw5DQ0P+sioDEhMTFU9Xtbe3V0z2R7opIiICt27dQmFhIerVq4fmzZtzuKqO+vXXXxEeHo7bt2/D0NAQ9vb2GD58OFq3bi10NNFhUdEiubm5+P3333H37l0MHjwY8fHxqFu3LicH0mGPHz9GQkICPDw8kJ2djWrVqgkdiTQgPT0dFy9eRMOGDXkpgMo8VnUtkZaWho4dO2LOnDkIDQ3Fy5cvsWnTJnTu3JmjAnSQVCrFuHHj4OPjgxEjRuDp06eYPXs2Bg0axIcS6qD4+Hi0b98eUVFRyMzMRNeuXfHjjz+iQ4cOiIyMFDoeqUFqaipWr16NCRMm4NmzZ4qDUCqORUVLLFq0CHXr1kVERATKlSsH4PXMtHXr1kVgYKDA6UjV1q1bp5iptGh/9+/fH/fu3UNQUJDA6UjVFi9ejE8++QS1a9fGkSNHIJPJcObMGQwZMgQrVqwQOh6p2L1799C5c2ccOHAAx44dw6tXr/Drr7+iZ8+enH6gBCwqWiIyMhK+vr5KQxUrV66MyZMn49KlSwImI3U4evQoZs6cqTR9epMmTbBgwQKcOnVKwGSkDpcvX8bkyZNRrVo1/PXXX2jZsiUsLS3Ro0cPxMXFCR2PVGzRokVo27YtTp48qZjgb9myZfDx8eGBSAlYVLREdnY2KlSoUOK6/Px8DachdUtJSVE84+ffrK2t8eLFCwESkTrp6enByMgI+fn5uHjxIry9vQG8/tyXL19e4HSkapcuXcKgQYOURvQZGBhg1KhRuHXrloDJxIlFRUt4eHgoPfcFAGQyGdatWwdXV1eBUpG62NvbIyIiotjyo0ePok6dOgIkInVydnZGSEgIgoODkZeXhxYtWiAlJQXLli2Ds7Oz0PFIxQoLC1FYWFhseXZ2NvT19QVIJG4GQgeg9zN58mT07dsXFy9ehEwmw5w5c3D37l28fPkSP//8s9DxSMV++OEHjBs3Dnfu3EFBQQEOHDiAxMREHDt2DMuXLxc6HqnYzJkzMW7cODx48ADTpk1D1apV4e/vj4SEBGzYsEHoeKRizZo1Q0hIiNL9hRkZGQgMDISXl5eAycSJw5O1SEpKCnbs2IHY2FgUFhaibt26+Pbbbzl8UUedPXsWISEhink16tati2HDhqF9+/ZCRyMNSE9PR+XKlXmErYNSUlLw3Xff4eXLl8jIyEDt2rXx6NEjmJmZ4eeff8b//vc/oSOKCouKFktPT0fVqlWFjkFEKpCdnY1ffvlFMcFf3bp10aFDB07sqKNycnJw5MgRpQPPrl27cn+XgEVFS2RmZiIwMBD9+vVDnTp1MHToUERGRsLW1hbr169HzZo1hY5IKnb48GF4eHjAysoKa9euxa+//gpXV1dMnz5dMWSZdMPjx4/Rr18/PHv2DHZ2digsLMS9e/dQrVo1bN++HVZWVkJHJDWSyWSIi4tD7dq1UbFiRaHjiA5vptUSCxcuRGRkJAwMDHDixAlER0djyZIlsLW1xZIlS4SORyq2du1aTJ8+HY8fP0ZMTAyCg4Ph4uKCCxcucPiiDlq0aBGsrKxw6tQpHDx4EL/88gtOnTqFGjVqcJ4kHfTkyRMMHjwY165dQ25uLrp3746vvvoKPj4+iI2NFTqe6LCoaIkzZ85gyZIlsLe3x59//ommTZuic+fOGDduHGeu1EH79u3D4sWL4erqimPHjsHZ2Rn+/v5YsGABfv/9d6HjkYr9/fffmDJlCqpXr65YVr16dfj5+eHcuXMCJiN1WLhwIV6+fImqVavit99+w6NHj7Bt2zZ8/vnnLKYlYFHREq9evYK1tTUA4Pz58/jss88AAOXLl0dBQYGQ0UgNUlNT4eLiAuD1L7FmzZoBeD2PSmZmppDRSA309fWVJnMsUq5cOUilUgESkTpFRkZi3rx5sLGxwZkzZ9CiRQu4urpiyJAhuHz5stDxRIdFRUsUnUk5c+YMnj59ihYtWgAAdu/eDXt7e4HTkapZWVkhMTER9+7dw507d9C0aVMAQHR0NO9X0EGurq5Yu3YtZDKZYplMJsNPP/3EeZJ0kEwmQ+XKlSGXyxEREaE48CwsLISBAWcNeRP/j2gJX19f/PDDD5DJZOjUqRNsbW2xcOFCbNu2DWvWrBE6HqnY119/jR9//BFGRkZwcHCAi4sLtm3bhiVLlsDX11foeKRiEydOxNdff43PP/8cDRs2BABcv34d2dnZnCdJBzk5OWHv3r0wNzdHZmYmWrZsCalUig0bNsDR0VHoeKLDUT9a5Pnz50hJSVH8Qb527RoqVqzIMyo66vTp03jw4AG6dOmCKlWq4PDhw8jLy0OvXr2EjkZq8PjxY2zbtg3//PMP5HI5HBwc8M0333BODR107do1fP/993j+/DmGDRuG8ePHY86cOTh69ChCQ0PRuHFjoSOKCouKlklISEB8fDwMDQ1Ru3Zt1K5dW+hIpGbp6ekwMDCAqamp0FGISEUKCwuRlZWl+FwnJiaiSpUqMDMzEzaYCPHSj5bIy8vDhAkTcOrUKRR1S4lEgtatW2PFihUwMjISOCGpWnh4ONavX49nz54BeD0KZMiQIRg4cKCwwUjlXr16hS1btuDSpUuQyWR48/gxPDxcoGSkLhKJBFeuXFFM8FenTp0SH0RKLCpaY/ny5bh27RpWr14NT09PFBYWIioqCvPnz8eqVaswYcIEoSOSCu3cuROBgYH49ttv4eHhAblcjqioKCxbtgwmJia8/KNjZs2ahVOnTqFp06YwNzcXOg6pWUZGBoYMGYKbN2+iUqVKkMvlyMrKQoMGDbB582aePX2TnLRC06ZN5adPny62/PTp0/KWLVtqPhCpVfv27eVbt24ttvznn3+Wd+rUSYBEpE6urq4lfr5JN02ZMkXeoUMHeWxsrGJZbGysvFOnTvJZs2YJmEycODxZS2RnZ5d4P4qdnR3S09MFSETq9PjxY8UQ9H9r3rw57t27J0AiUic9PT3eFF+G/PHHH5g9e7bSCB9HR0fMmDEDJ0+eFDCZOLGoaIl69eqVOCPpb7/9Bjs7OwESkTrVqFEDN27cKLb8+vXrSrOXkm5o164d9u/fL3QM0pD8/PwSP8fVq1dHVlaWAInEjfeoaImRI0di1KhRiI2NVUwAFRMTgxMnTmDp0qUCpyNV+/rrrzF37lxkZGQo7e/g4GB89913AqcjVatatSo2bdqEs2fPws7OrtjN8QsXLhQoGalDgwYNsGPHDkyfPl1p+Y4dO1C/fn2BUokXhydrkRMnTmDDhg2Ij49XzLMwdOhQtGvXTuhopGKFhYVYuHAhduzYgYKCAsjlchgYGODrr7/GtGnToKfHk6G6pH///u9cv3XrVg0lIU24fPkyvvvuOzg6OiodiMTFxSE0NBReXl4CJxQXFhUiEcvKysLdu3cBALVr14aJiYnAiYhIFa5du4ZNmzYpTfA3aNAgNGrUSOhoosOiokWio6PfOs/CmDFjBEpF6pKTk4P4+PgS97eHh4dAqUhd8vPz8ezZM8VDRuVyOaRSKa5fv44uXboInI5IOCwqWmLNmjVYtWoVTE1Nix1VSyQSnDp1SqBkpA6nTp3ClClTkJWVVaykSCQSxMbGCpSM1OHcuXOYPHlyiSP4ypcvzyfq6pjCwkIcPnz4rQeevCdJGW+m1RI7duzAuHHjMGLECKGjkAYEBQXB29sbo0aNQqVKlYSOQ2q2bNkyODk5oX///hg7diyCgoLw+PFjBAcH85eWDgoICMC2bdvg6OjIy7nvgUVFS7x8+RKdOnUSOgZpyMOHDxESEsIptcuIO3fuICAgAI6Ojqhfvz4qVKiA/v37o0KFCti4cSPatm0rdERSocOHDyMgIADdu3cXOopW4NABLeHq6srTv2WIra0tkpOThY5BGqKvr684c/bJJ58gPj4eAODl5YWEhAQho5EaSKVS3mf2AXhGRUt06tQJ/v7+uHHjBmrXrl1snoVu3boJE4zUYuLEifD398e4ceNK3N81atQQKBmpQ926dXH69Gn0798ftWvXRkxMDAYMGMCyqqOaN2+OM2fOoG/fvkJH0Qq8mVZL/Huq5Tfx5krd06BBA8XoD4lEolgul8u5v3XQyZMn4evri1mzZqFly5Zo3749vLy8cPv2bTRu3BjBwcFCRyQV2rRpE4KDg9GsWTPY29vD0NBQaT1HcSpjUSESoYsXL75zvaenp4aSkKbcvHkT+vr6cHR0xMWLF7F582ZYW1vD19cXZmZmQscjFfLx8XnrOo7iLI5FRQckJyfDyspK6BhEREQqx3tUtMSDBw+wePFixMfHF5sQKj09Hbdu3RI4IalSXl4edu3apbS/gdc34d24cQPHjh0TMB2p2qtXr7Bly5a3zqsRHh4uUDLSpKIJ/tzc3ISOIiosKlpi3rx5SEpKwhdffIHNmzdj8ODBSExMxIkTJzBv3jyh45GKzZ8/HwcPHoSTkxOuX78OFxcX3Lt3D8+ePcPAgQOFjkcqNmvWLJw6dQpNmzaFubm50HFIzW7cuIGZM2ciPj4ehYWFxdbzHjRlLCpa4tKlS1i7di2aNGmCv/76C23btkWjRo2wfPlynDlzBl999ZXQEUmFTp06hYULF6JTp074/PPP4e/vj5o1a2LcuHGQyWRCxyMV++OPP7Bs2TK0bt1a6CikAQsXLoS+vj5mzJiBhQsXYsqUKbh//z62bduGJUuWCB1PdDiPipaQSqWKyb/s7Oxw+/ZtAK+HJV+9elXIaKQGmZmZiqeq1qlTB7du3YKhoSFGjBiBP/74Q+B0pGp6enqwt7cXOgZpyK1btzBr1ix88803cHBwQL169TBlyhRMmDABu3fvFjqe6LCoaIn//e9/ikmg7OzsFKcGCwsLkZ2dLWQ0UoOqVavi2bNnAF5P/la076tUqYK0tDQho5EatGvXDvv37xc6BmlIYWGh4hLfvyf4a9OmDeLi4oSMJkq89KMlunfvDj8/PyxZsgStWrXCd999hxo1auD8+fNwcHAQOh6pWIsWLTB37lwsXLgQbm5uCAgIwOeff45ff/2VI7x0UNWqVbFp0yacPXsWdnZ2xSb44/N+dMsnn3yCmJgYdOrUCbVr18b169cBvH5UilQqFTid+LCoaInhw4ejXLlykMvlaNSoEUaNGoV169bB2tqa1zR1kJ+fH6ZMmYKLFy/i22+/xa5du9C7d28YGBhg8eLFQscjFbty5QoaN24MAEhNTRU4Dalb//79MX36dABA+/bt0bVrV5QvXx6XLl2Cs7OzsOFEiPOoEGkBuVyO2NhYVK9eHRYWFkLHIYHs27cPX3zxBSpWrCh0FPpIJ0+ehJmZGdzd3XH48GFs2LAB1tbWmDlzJmxsbISOJyosKlokOjr6rfMscMpl3ZOTk4P4+PgS9zcfaFY2ubq64tChQ6hZs6bQUYg0hpd+tMSaNWuwatUqmJqawsTERGmdRCJhUdExp06dwpQpU5CVlVWspPBZP2UXjyt1Q2FhIQ4fPvzWA0/ek6SMRUVL7NixA+PGjcOIESOEjkIaEBQUBG9vb4waNQqVKlUSOg4RqVBAQAC2bdsGR0fHYgeeVByLipZ4+fIlOnXqJHQM0pCHDx8iJCREMXcOEemOw4cPIyAgAN27dxc6ilbgPCpawtXVFZcvXxY6BmmIra0tkpOThY5BRGoglUp5n9kH4BkVLdGpUyf4+/vjxo0bqF27drF5Frp16yZMMFKLiRMnwt/fH+PGjStxf9eoUUOgZET0sZo3b44zZ86gb9++QkfRChz1oyUcHR3fuo43V+qeBg0aKJ6aLJFIFMvlcjn3dxnm4uKCX375haN+tNymTZsQHByMZs2awd7eHoaGhkrrOThCGYuKjrl37x5sbGygr68vdBT6CBcvXnznek9PTw0lITFhUdENPj4+b10nkUhw6tQpDaYRPxYVHcN5FsqWdu3aYcuWLbwUVEaEhoaiT58+HAlWRkRERMDV1RXlypUTOoqgeDOtjmHvLFuePn2quERE2sXR0RH169dHixYtMHjw4Pd6zdChQ1lSypDRo0fzkQrgzbRERIIYPXo0JBIJzM3NYW9vL3QcEiEeeL7GokJEJIAffvhB6AhEWoGXfoiIiEi0WFSIiIhItFhUiIiISLRYVIi02L8ngyMi0kW8mVbHNGnSBOXLlxc6BmkIJ/bTbTKZDFeuXEG5cuXQoEED7m8qkzjhm4h99913iuGLderUwffffy90JFKj1atXQyKRwMLCAvb29nB1dRU6EgksLS0NzZo1w7fffovY2Fj8/PPPLCtliL+/P8aMGYMqVaoIHUVQPKMiYkUdUi6Xczx9GbB69WoAQPXq1VG3bl1s3rxZ4EQktMqVKyM8PByenp548OABS4oW8/HxgZ6enuLA09/f/z9fM3PmTA0kEz+eUSEiIlKzKVOmKE3w17VrV6EjaQ0WFSIigUilUiQkJKBmzZowMTFBSkoKNm3ahHv37sHW1hbfffcdn+NEZR6LChGRAO7evYuhQ4fi8ePHqFq1KtavX4/Ro0fDyMgITk5OuHPnDp48eYJdu3ahbt26QsclEgyLChGRAIYPHw59fX38+OOP2LNnD3755Rc0adIEy5cvh4GBAeRyOWbMmIHk5GRs3LhR6LhEgmFRISISgIeHB3bt2oXatWtDKpXCxcUFO3bsQKNGjRTbJCQk4Ntvv8WFCxcETEokLE74RkQkgPLly+Ply5cAgKysLBQUFODVq1dK22RnZ8PIyEiIeESiwaKi5dLS0uDo6IhevXq913A30m4vXrzAd999h+HDh+PXX38VOg59hLZt22L69OnYtm0bfvjhB9SoUQMhISFISUkB8PqzvWjRInh5eQmclDSlsLAQjx8/Rnp6utBRRIVFRctVqFABY8aMwd69e+Hq6or8/HyhI5GayeVyLFq0CFFRUdzfWmzSpElo2LAhVqxYgbS0NAQGBqJt27Zo1aoVmjVrhlatWiE9PR2TJk0SOippSHp6Onx8fDBt2jSMGjVK6DiiwXtUiIhE5MqVK7h06RKsrKzQunVrGBsbCx2JNCQvLw+//vorunfvjujoaLi6ukJPj+cTWFS0jFQqxalTp5CSkoK6deuiadOmQkciNcnIyEBeXh4qVKiASpUqCR2HNCg9PR1VqlThQyeJwCn0Ra1+/fo4d+4cqlWrBgB4+vQpvvvuOyQlJcHMzAzPnz+Hu7s71q1bx19kOiIyMhKhoaGIiYlBbm6uYnmFChXg6uqKYcOGwdPTU8CEpEobN27EpUuXsGbNGhQWFmL16tXYsmULcnJyYGpqioEDB2LkyJFCxyQVWLt2LXr37g1zc3Oho2gdnlMSsTdPdgUGBqJixYo4e/YsIiIicPLkSbx69QpLliwRKCGp0q+//oqhQ4eicuXKmDZtGn766Sds3rwZP/30E6ZMmQJTU1MMHjwYx44dEzoqqcCqVauwdu1a1K9fH8Dr0hIeHo7Ro0fjp59+wpAhQ7Bp0yaEhoYKnJRUITg4GD179kR0dLTQUbSPnETLwcFBnpaWpvi6VatW8r///ltpm4sXL8q9vLw0HY3U4Msvv5Rv3Ljxndts3LhR3qFDBw0lInVq2bKl/Pjx44qvO3ToID9w4IDSNkePHpW3bt1aw8lIHRwcHOTjx4+XOzo6ymfOnKn0dzu9G8+oiJhEIlG6Rm1kZISqVasqbWNubo68vDxNRyM1ePz4MVq3bv3ObVq1aoWHDx9qKBGp0/Pnz+Hg4KD4+sWLF3B0dFTa5tNPP0VaWpqmo5EaSCQSTJs2DWvWrMHff/+Ntm3bIiAgAImJiUJHEz0WFRGTy+VYsmQJwsLCcO7cOXh4eGD//v1K24SFhRX7y420k729PQ4fPvzObQ4cOABbW1vNBCK1+vTTT7Fp0ybF1y1btsSpU6eUtjl06BCf86Mj5P//Ur6Pjw9+/fVXTJgwAX/++Sc6dOiAHj16ICgoCEeOHMG5c+cETio+HPUjYuvWrUN8fDzi4+ORlJSEgoICSCQSREREwMzMDF988QUeP36M9evXc1IoHRAREYHvv/8ejo6O8PLygrW1NYyMjCCVSpGamoqLFy/i6tWrWLduHZo1ayZ0XPpI165dw4ABA1C3bl106tQJJiYmWLx4MZo1a4a6deviypUrOHfuHEJCQji6Twe8OTgCeF1eYmJicPLkSURFRSE+Ph75+fmIjY0VMKn4sKhoiaLHwcfHx6Nr164AgBUrVuDzzz9HgwYNBE5HqpKQkICwsDDExMQgOTkZubm5KFeuHKytreHu7o7+/fujTp06QsckFUlMTERISAjOnTundImnXLlycHV1xciRIznKS0c4Ojri/PnzSkXlTYWFhcjIyCh2ib+sY1EhIhKBrKwsZGdnw8DAAFWqVOFEXzpm6tSpmD59OkxMTISOonX4SdBSnTt3RnJystAxSEPmzJnD53/omLVr1+Lp06eKr01MTGBpaYlq1aqxpOighQsXsqSUEid8E7HVq1e/dV1iYiI2btyIypUrAwDGjBmjqVikJlFRUW9dd/DgQXh4eMDCwgIA4OHhoalYpCbBwcHYuXMnli1bBnd3d6HjkIA6d+6M9evXw9raWugoosRLPyLWvHlzpKWloXr16jA0NFRa9+TJE1hYWEBfXx8SiaTYaAHSPk5OToqRAe/6WEokEt5spwMcHR3RsWNH/Prrr+jduzfGjh37zvsXSLu968Dzp59+wjfffMMDz7dgURGx9PR0zJgxA/fv30dgYKBiBksAcHFxwS+//IKaNWsKmJBUKTo6Gn5+fvjkk08wbdo0VKhQAcDr0lJ0xFWjRg0AwP/+9z8ho5IKFI0CuXr1KgICAvDs2TP07t0b33zzDezs7ISORyrGA8/SY1HRArt27cKyZcswZMgQDB8+HACLiq7KysrC7NmzcfXqVSxZsgSurq4AuL910b9HgUilUuzevRvh4eF48OAB6tevj88++wyOjo4wMzPjcHQdwAPP0uMdW1qgT58+2LlzJ44dO4Z+/fpxZlIdZmJigqVLl+KHH37AyJEjsXz5cuTn5wsdi9TgzVmn+/Xrh2PHjmHr1q3w9PREREQEpk6dimHDhgmYklSlatWqWLt2Lfr374+BAwdi/fr1QkfSGryZVkvY2dlh165dWLlyJbp37w6ZTCZ0JFKjrl27ws3NDX5+fvjqq69QUFAgdCRSsZJOZkskEri7uyturi2aV4N0R58+feDp6YmJEyfi7NmzWLRokdCRRI9nVLSIgYEBJkyYgDVr1qBz586oWLGi0JFIjWxsbPDzzz+jTZs2MDc3h4EBjyt0Sffu3VGuXLl3bqOnp8fJv3RQ0YGni4sLDzzfA+9R0VJHjhyBj4+P4oZL0j0ZGRnIy8tDhQoVUKlSJaHjEJEaXLx4EQcOHMCkSZNYSt+CZ1S01KxZs/Ds2TOhY5CKRUZGYujQoXBxcYG3tzdatWoFT09PuLm5YdiwYbh48aLQEUlFVq9ejZycHKVl+/fvR8eOHeHm5oavv/4af//9t0DpSFM8PT3RtGlTlC9fXugoosUzKiLm6OiodMPdv8nlcqV1nFdD+/3666/w8/ND+/bt4eXlBQsLC5QrVw55eXlITU1FZGQkjh07hqVLl6J9+/ZCx6WP9OZD6n755RdMnToVvXv3Rt26dXH9+nUcOXIEwcHB8PHxETgtqZOrqysOHTrEUT9vwYveIjZ27FisWbMGHh4e6NKli2K5XC7HnDlz4OvrywmidMjq1asxfvx4DB48uMT1vXv3RoMGDRAcHMyiogPePEYMCwvD2LFjFVMQAEDt2rWxevVqFhUd8F8Hnu3atVN8zQNPZSwqIjZy5Eg0bdoUkyZNwh9//AF/f3/FzIX+/v5o3749G7gOefz4MVq3bv3ObVq1aoWVK1dqKBFpUkpKClq2bKm0rH379lizZo1AiUiVeOBZerxHReQaNWqEgwcPolKlSujcuTPOnz8vdCRSE3t7exw+fPid2xw4cAC2traaCURq9+8HTTo6OhZ70Oi9e/f4y0tHjBw5Etu3b8fjx4/xxx9/wMfHB927d0ePHj2gr6+P9u3bo3v37ujevbvQUUWHZ1S0gLGxMRYsWIDjx49j4sSJ6NChg9CRSA0mTpyI77//HufPn4eXlxesra1hZGQEqVSK1NRUXLx4EVevXsW6deuEjkoqYGRkhC5dusDExAT29vaQyWSYN28ejhw5AmNjYxw8eBDLly/n512HFB14zp8/H507d8bChQvRtGlToWOJHm+m1TIpKSmYMmUKIiIicOLECV760TEJCQkICwtDTEwMkpOTkZubi3LlysHa2hru7u7o378/6tSpI3RMUoHCwkIkJiYiPj4et2/fRnx8PP755x8cPXoURkZGaNKkCby8vLBw4UJOQ6CDjh8/jtmzZ6NDhw7Yv38/p9B/BxYVLfX48WNYWVlBT49X74h00cuXLzl/jo7jgef7YVERsdWrV2PIkCEwNjZWLNu/fz82btyI5ORk1K1bF76+vvjss88ETEmq9vz5c1SpUgXA67/I9u3bh5SUFNStWxc9evTg0bWOefXqldI+vXHjBh4+fAhbW1s4OjoKmIw0hQee78aiImKcZ6FsSU1Nxffff4/Y2Fg0aNAA8+fPx8CBAyGXy1GzZk0kJiaiWrVq2Lp1KywtLYWOSx/p+fPnmDx5MpKSknD8+HG8fPkSo0aNQlRUFIDXz/3x8vLCqlWrYGJiInBa+lg88Cw91jcRe9s8C3PmzEHfvn2xaNEi+Pr6YvXq1QIlJFVavHgxKlasiNWrV8PMzAwDBgyAs7Mz/vzzT+zduxd//PEHatSowYeY6YgFCxbg8ePHmDVrFgAgMDAQ6enp2LNnD65cuYKdO3ciLS0NixcvFjgpqcKaNWvw6tUrxde//PILZs6cCQ8PD4wfPx62trYYPnw4Tp8+LWBKkZKTaDk4OMjT0tIUXzdt2lQeFxentE1SUpK8UaNGmo5GauDu7i6PjY2Vy+Vy+aNHj+QODg7yq1evKm1z48YNuZubmxDxSMU8PT2V9m/r1q3l586dU9omOjpa7unpqelopAZv/n3eo0cPeUhIiNI2ISEh8u7du2s6mujxjIrIcZ6FssXQ0BAAUKNGDTRt2hRGRkbFtilpGWmfwsJCpX1pYGAAU1NTpW0qV64MqVSq6WikAW+b4C8hIUGgROLFoiJiRfMseHh44Ouvv8bz588xb948xYPMDh48iJkzZ3I6dR3h7u6OwMBAPH/+HACwceNGpZspk5KSMG/ePF7D1hHNmzfHvHnzFAcj3bp1Q2hoKAoKCgAAUqkUK1euRJMmTYSMSSrEA8/S4c20IsZ5FsqWBw8eYODAgWjUqBGWL1+utO7YsWMYO3Ys6tevjw0bNqB69eoCpSRVefr0KQYNGoTHjx/D29sbNjY2OHDgACpWrAg7OzvExcVBT08P27dvR61atYSOSx+pUaNGkMlkShP8ZWRklDjB3+TJk4WOKyosKlqM8yzoHqlUiuTk5GK/mJKTkxEXF4emTZsqLg+R9pNKpThy5AjOnz+PxMREZGVlwcDAAFZWVoozqUVD1Um78cCz9FhUROzQoUNo166d0nA20n0ymQzZ2dkwMzMrtk4ul+PJkyeoUaOG5oMRkdrwwPPtWFREzNHREfXq1cOqVavwySefCB2H1CwvLw/z5s3DL7/8gvz8fHz66aeYPXs2GjRooNgmLS0NzZs352PgdURGRga2bduGqKgoPHv2DDKZDJUqVUKtWrXQrFkzdO7cGQYGfCSbLuCBZ+nxZlqRMzU1RZcuXRASEsK7/3XcypUrcf78ecyfPx+LFy9Gfn4+vv32W/z1119K2/HYQjfcv38fnTp1wuHDh2FmZoby5cvj4cOHcHJyQkFBARYuXIgePXoo3YBJ2mvy5Mno06cP7t27J3QUrcOiImISiQQrVqzApEmTEBoairZt2yIsLAxZWVlCRyM1+P333+Hv74+uXbuiS5cu2L17N3x8fPDDDz8gJiZGsZ1EIhEwJanKokWL0LZtW/z2229YsWIF9uzZAz8/P6SlpWHFihU4ffo0zMzMsHDhQqGjkorwwLN0eOlHxBwdHXH+/HlUq1YN6enp2LBhA/bs2QOZTIaWLVvC29sbjo6OMDMzg52dndBx6SO5uLjg0KFDSjfSFhQUYMSIEbh27Rq2b98OMzMzXvrREW5ubti7d6/SZzc/Px/Ozs6IiIhApUqVEB8fj/79++PChQsCJiVVqF+/Pv766y/8/vvvWLlyJYyNjTFkyBD07NmTj0j4DzyjoiWqVq2KyZMn48yZM5g7dy7kcjmCg4PxzTffoEOHDkLHIxWwt7fH77//rrRMX18fK1euhLW1NYYOHYq7d+8KlI5UrXLlyrh9+7bSsgcPHqCgoEDxcDqZTMYH1ekIuVwOiUSCfv364dixY+jYsSNWrVqFpk2bwtfXFzt27MDly5eRmJgodFTR4RkVEfv3GZW3SU5ORmpqKho1aqTBZKQOp0+fxg8//AAvLy/4+fnBwcFBse7p06f47rvv8OjRI8hkMp5R0QHLli3Drl27MGHCBLi5ueHx48dYsmQJLCwssHHjRpw9exZBQUFo2LAhAgIChI5LH6mkv8+zs7Nx4sQJnDp1CtHR0Xj+/DkkEgk/32/g7eQi5uHh8Z9zZlhZWcHKykpDiUidfHx8EBYWhl27dhW7Ydbc3By7du1CQEAAfvvtN4ESkir98MMPyMjIwOzZswG8PuL28vJSPHRy27ZtqF+/PqZNmyZkTFKjihUrolu3bujWrRuA/zvwJGU8o0KkZQoLC3k5QIdkZmbi3r17sLCwgKWlpdBxSE369++PNWvWFHueE/03FhWR4zwLRERUlrGoiNj9+/fx7bffwsTEBI6Ojnj06BFiY2PRq1cvZGRk4O+//4aVlRW2bNmCqlWrCh2XiIjegQeepcOiImKjRo2ChYUFZs+erZg7Izw8HBcuXMCaNWuQlZWFUaNGwdLSEoGBgQKnpY/Vv3//954jJTw8XM1pSN0OHjz43tsW3cNA2osHnqXHoiJinGehbAkJCcHKlSthZ2f3n6O4OAmY9uvatSvi4+MBvHu2YY4C0Q088Cw9nmMSsaJ5Fv5dVDjPgu4aMWIETExMsHTpUoSEhMDGxkboSKRGu3fvxqhRo/DixQvs3LmTp/x13IULF7B3716ls6bffvstlixZongg4YwZM9C/f38BU4oTf8OJWKdOnTB79mzs3r0bCQkJ+Ouvv+Dr64vPPvsMFStWxNmzZzF16lS0bt1a6KikIn379oWnpyeWLFkidBRSs3LlymHFihVIT0/H5s2bhY5DasYJ/kqPFV7EOM9C2TRv3jzcvHlT6BikAUVH0adOnRI6CqlZ0YFnZmam0gR//z7wDAoK4oFnCXiPihbgPAtERNpNJpPB398fe/bsAfB/B56BgYEwNzfHiBEjYGZmhpkzZ/LZP29gUSESmYcPHyIzMxMODg7Q19dXWieTyXDlyhV4eHgIlI6IPgYPPD8ciwqRSLx48QI//vgjIiMjAbyeNn/u3LlKp4LT0tL49GQdkpqaisuXL8PZ2RmWlpY4c+YMNm/ejJSUFNSpUwejRo1C/fr1hY5JJCjeoyJinGehbAkMDERaWhq2bt0KiUSCDRs2YPTo0fD390fPnj0V2/HYQjdcvXoVAwcORE5ODkxMTDB9+nRMnz4d3t7eaN26Na5du4Y+ffogLCwMLi4uQsclEgzPqIgY51koW1q0aIHly5fDzc1NsWzx4sUIDw/H8uXL0a5dO55R0SH9+vVDvXr1MH78eISEhGDjxo0YOnQoxo8fr9gmICAAN27cwPbt2wVMSqrAA8/SY1ERsby8PM6zUIa4u7tjz549SvPmAMDUqVNx9OhRbNq0Cba2tiwqOsLZ2RmHDx9GzZo1kZWVBXd3dxw8eBCOjo6KbRITE9GtWzdcvXpVwKSkCjzwLD0O2BYxzrNQttSvXx87duwottzf3x+urq74/vvvcfHiRQGSkTqYmJggJSVF8d/jxo1DxYoVlba5f/8+qlWrJkQ8UrHdu3fjs88+Q4MGDXDjxg3ExcWV+A9LSnEsKiJXNM9CUlKS0FFIzcaNG4c9e/bgyy+/xLVr1xTLDQwMsGbNGjg4OGDChAkCJiRVat++PWbMmKF4/MWIESNQs2ZNAK9HhuzevRvTpk1D165dhYxJKsIDz9LjpR8iEUlMTMShQ4fQtWvXYpeAZDIZfvrpJxw5cgTHjh0TKCGpSm5uLqZPn47y5ctjwYIFSuuOHTuG8ePHo0+fPpg6dSoMDQ0FSkmqdvr0aZw6darYPqe3Y1EhIhJQYWFhsWnTX716hcLCQk78RQRe+hG91NRUHDt2THEt+8yZMxg4cCC+/PJL/PDDD7yeqWO4v8uOQ4cOIScnp8Rnu1SoUIElhej/Y1ERsatXr6J9+/YYO3YsOnbsiAMHDmDkyJHQ19f/f+3deVCU9xkH8O8SWGMkBBGjMZ5oBYNyFbV4Q4LGc7Q2wQsICmJsY9UMUaKCmAkWRZQQUBQpEi1NjBfGKFoNalCrGA+02KlKVPAWjIsHcrz9w2EnuFhZuuv7vvv7fmacMe8ePvpM9Hnefd/vwtfXF2VlZQgICMCJEyfkLpVMgP0Wy5w5cxAQEIBLly7JXQq9IFxEGocf/SgYcxbEwn6LxcXFBd7e3igoKMD06dMREhICrVYrd1lkJv8r4M/Z2RmnT5/G6dOnGfBXH4kUy93dXbp8+bIkSZKk0+kkZ2dnqbCwsM5zLl68KLm5uclRHpkY+y0WFxcX6datW9JXX30leXt7S/3795cyMjIknU4nd2lkBhMnTpRiYmIknU4nxcfHS926dZOWLVtW5zmff/65NH78eJkqVC5+9KNgzFkQC/stFkmSoNFoMGnSJOTk5GD48OFISkpC3759MWPGDGRlZeHEiRMoKiqSu1QygTNnziAkJAS2trYIDw9HTU0Nhg0bVuc548ePx9mzZ2WqULk4qCgYcxbEwn6Ly8HBAXPmzMH+/fsRExMDSZLwxRdfYPz48Qb/mJE6cRFpPGayK1hERATu3r2L7Oxs9O7du85jhw8fRkxMDAICAjB9+nSZKiRTYr+pWbNmGD16tP67Xq5fv46bN2/KWxSZRO0iEhMTg969eyM8PFz/2L1797Br1y4kJibi/fffl7FKZeLFtCrAnAWxsN9iCAwMRHJyMuzs7OQuhV4ABvw1HgcVBdu2bRsGDx6Mpk2byl0KvQDsN5Hl4yJiPF6jomDMWRAL+01kuRjw13gcVBTOzs4Oo0aNQmpqKh4/fix3OWRm7DeRZeIi0nj86EfBunXrhoMHD+ovsmratCmmTJmCsWPHcvq2QOy3WAIDA6HRaBr03MzMTDNXQ+bGgL/G46CiYC4uLsjLy0OLFi1QWlqKNWvWYOPGjaisrMTAgQPh4+MDFxcX2NvbG3zTLqkP+y2W1NRUJCYmolOnTnBzc/ufz128ePELqorMhYtI43FQUbBf/8NV6/79+9izZw/27t2L/Px8lJWVQaPR8DsiLAD7LZ4NGzZg2bJlyM7ORtu2beUuh8yIi0jjcVBRsPr+4Xpabc7C8zYyUj72W0zTpk2DVqvFF198IXcpZEZcRBqPgW8K1rNnz+feT9+6dWu0bt36BVVE5sR+i2nRokWMTRcUA/4ahmdUiIiIzIwBf43HQYWIiIgUizkqREREpFi8RkXBmLMgFvabiMgQBxUF69evX4NzFkj92G8iy8VFpPE4qChYeHg4bG1tsWzZMqSmpjJnwcKx30SWi4tI4/FiWhVgzoJY2G/xbN26FcOGDTOIVK+oqMDOnTv1t6+SujHgr3E4qKjAzZs3cfbsWfj6+spdCr0A7Ld4nhX2d/v2bfTr1w/nzp2TqTIyNS4ixuOgQkQks5KSErRp08bgGoaamhpcu3YNb775pkyVkalxETEeBxUiIiJSLF5MS0Qkg6CgIGg0GrRs2RJdunTBtGnT5C6JSJE4qBARyaD2ZLYkSeCJbaJn40c/REREpFiM0CciklllZSVWrVqFS5cuAQDmzZsHT09PTJkyBWVlZTJXRyQvDioqsXXrVjx+/NjgeEVFBbZu3friCyKzYr/FsnTpUvz1r39FeXk5Dhw4gC1btiA8PBz379/HkiVL5C6PSFYcVFRi7ty50Ol0Bsd1Oh3mzp0rQ0VkTuy3WHbt2oWEhAS4urpi79696NWrF6ZNm4b58+cjNzdX7vLIxLiIGIeDikrs3bsXDg4OBscdHBywd+9eGSoic2K/xXL37l107twZAJCXl4e+ffsCAOzt7fHo0SM5SyMz4CJiHN71oxLPCnyysrJiGJQFYr/F0r59exQUFODOnTsoLi5G//79AQD/+Mc/GLVugbiIGIeDioIxZ0Es7Le4QkNDMXv2bFhZWeF3v/sdXFxckJycjOTkZMTGxspdHpkYFxHjcFBRMOYsiIX9Ftfo0aPh4uKC4uJiDBgwAADQo0cPrF27Fj4+PjJXR6bARaTxmKNCRERkZoGBgXUGlQ8//FDuklSDg4pKVFZWYu3atRg6dCg6dOiAefPm4fvvv4eXlxfi4+PRvHlzuUskE2K/LV9QUFCDn5uZmWnGSoiUjXf9qARzFsTCflu+N998U//D0dERR48ehU6nQ+fOneHs7IzKykocP34cTk5OcpdKJsaAP+PwjIpKDBgwAIsXL0bfvn0RHR2NS5cuISMjA2fOnEFYWBgOHz4sd4lkQuy3WCIjI/Haa68Z3Jq6YsUKXLhwAUlJSTJVRuYQGxuLbdu2IT09HXfu3MG0adMwY8YM5ObmolOnTli8eLHcJSoKz6ioBHMWxMJ+i2XXrl0YN26cwfHRo0fj4MGDMlRE5sSAP+NwUFGJ2pyFs2fPMmdBAOy3WOzs7PCvf/3L4Hh+fj5atGghQ0VkTlxEjMPbk1WCOQtiYb/FEhAQgKioKFy4cAHdu3dHTU0NfvrpJ2zYsAERERFyl0cmxoA/4/AaFRU5d+6cPmdBq9XiwIEDsLGxYc6ChWK/xZKamor169fj1q1bAIA33ngDYWFhmDBhgsyVkalt3boVCxYsgJWVFTw9PZGRkVFnERk9erTcJSoKBxUiIgUpKyuDRqOBvb293KWQGXERaTgOKgrGnAWxsN9iKykpwalTp+r9Vl1u2CQyXqOiYL/+zoeKigp8//336NatGzw8PGBtbY0zZ87g9OnTeO+992SskkyF/RbXN998g5iYGFRXVxs8ptFoOKhYAC4ijcczKirBnAWxsN9i8fPzg6+vL2bNmgVbW1u5yyEziIyM1P/8eYvIwoUL5StUgTioqISnpye2bNmCjh071jn+888/Y/To0Th58qQsdZF5sN9i6dGjB3bu3Mk7PgTBRcQ4zFFRCeYsiIX9Fku3bt1w/vx5ucugF4QBf8bhNSoqwZwFsbDfYgkNDcWiRYtw5coVODk5QavV1nm8Z8+eMlVG5lC7iDx9xpSLSP340Y+KMGdBLOy3OFxcXJ75mEajQWFh4QushswtJSUF6enpCA4OrncRmThxotwlKgoHFRVizoJY2G/LV1JS8j8f//UdYWQZuIg0HAcVFWHOgljYb/GUl5fj4sWLsLGxQbt27XgHkAC4iDwfBxWVeF7OAk8NWxb2Wyw1NTWIi4vD3/72N1RVVUGSJGi1WgQEBODTTz+FRqORu0QyMS4iDcdBRSWYsyAW9lssK1euxNq1azFjxgz06tULNTU1OHbsGJKTkzF16lSEhobKXSKZEBcR43BQUQnmLIiF/RaLn58fZs2ahZEjR9Y5vn37diQlJWH37t0yVUbmwEXEOMxRUQnmLIiF/RbLnTt34O7ubnDc3d0d165dk6EiMqdbt24hJCSEQ0oDMUdFJZizIBb2WywdO3bEoUOH0L59+zrH8/LyeMePBapdRHjGtGH40Y9KMGdBLOy3WLZu3YqoqCgEBgbCy8sLAHD8+HFs2LABn3zyCXM1LMzu3bvxl7/8BSEhIVxEGoCDikowZ0Es7Ld4MjIykJaWhtu3bwMAHB0dMWXKFISEhMhcGZkaFxHjcFBRGeYsiIX9Fsvjx49RXl4OSZJQVVWFVq1ayV0SmQEXEeNwUFEJ5iyIhf0WS2lpKWbOnAlPT0/MmjULANCnTx+4uLhg+fLleO2112SukMyBi0jD8GJalUhNTcWmTZsQERFhkLPQqlUr5ixYGPZbLJ9//jkePnyI4cOH64+tWbMGCxcuRFxcHGJjY2WsjkyNi4iRJFIFX19fKTs72+B4dna25O/vL0NFZE7st1h69eolFRYWGhwvKCiQfHx8ZKiIzCklJUX67W9/K61bt04qLCyUzp49K2VkZEg9e/aU1qxZI3d5isMzKirBnAWxsN9iqa6uhlTPp/A2NjZ4+PChDBWROW3cuBHR0dF1Av7eeustODg4ICkpiWdMn8LAN5WozVl4GnMWLBP7LZaePXsiISEB5eXl+mPl5eVITEzkraoWiIuIcXhGRSVCQkIQFRWFK1eu1JuzQJaF/RZLZGQkJk6ciAEDBqBjx44AgJ9//hn29vZIS0uTtzgyOQb8GYd3/agIcxbEwn6LRafTYceOHfjPf/4Da2trdOnSBSNHjsTLL78sd2lkYgz4Mw4HFZVhzoJY2G/xPH78GDY2Nrzzw8JxEWk4DioqwZwFsbDf4snKysKaNWtw/fp15OTkIC0tDa1atcL06dPlLo3MhItIw/BiWpV4Vs6CTqdDXFycjJWRObDfYtm+fTuWLVuGMWPGwMbGBgDQuXNnrFq1Cunp6TJXR6ZWWlqKoKAgJCcnw8HBAS1atMCYMWMwefJk/PLLL3KXpzgcVFTixx9/xGeffYauXbvqj7m6uiI6Ohq5ubnyFUZmwX6LJT09HfPmzcNHH30EK6snfy0HBQUhKioKX3/9tczVkalxETEOBxWVYM6CWNhvsRQVFcHb29vgeO/evXm7qgXiImIcDioqwZwFsbDfYnF0dERRUZHB8RMnTuD111+XoSIyJy4ixmGOikowZ0Es7LdYAgICsGjRIkRGRgIALl68iB9//BErVqxAcHCwzNWRqdUuIsuXL9d/ESEXkWfjXT8qwpwFsbDfYklISMC6detQUVEBALC2tsa4cePw6aef6q9bIctw+fJlTJw4Effv3693EXFycpK3QIXhoKJCzFkQC/stjocPH+L8+fOQJAlOTk76bZssDxeRhuOgoiLMWRAL+y2Wq1evws7ODra2tjhy5Ah2794NLy8vjBgxQu7SyIy4iDwfzyeqBHMWxMJ+i2XPnj0YPHgwTp06hcuXLyM0NBSHDx/G/PnzsWHDBrnLIzPIysqCn58fPDw8UFxcjOjoaKSkpMhdliJxUFEJ5iyIhf0WS0pKCqZMmQIfHx9s374dbdq0wY4dOxAbG4v169fLXR6ZGBcR43BQUQnmLIiF/RbLhQsX8P7778PKygp5eXkYOHAgrKys4OHhgZKSErnLIxPjImIcDioqwZwFsbDfYrGzs4NOp4NOp8Pp06fRp08fAE/uDrG3t5e3ODI5LiLGYY6KSjBnQSzst1gGDhyIqKgoNGvWDK+++ir69u2LQ4cOYeHChRg0aJDc5ZGJ1S4i7dq1q3Oci0j9OKioRFhYGHQ6HWbPno2KigqEh4frcxamTZsmd3lkYuy3WBYsWIAVK1bgypUrWLlyJbRaLY4fPw4PDw/MmTNH7vLIxLiIGIe3J6sMcxbEwn7Tr0VGRiIiIgIODg5yl0L/Jwb8NRwHFRVhzoJY2G96mpeXF7Zt22bwkQGpExeRhuHYphLMWRAL+0314V5pOa5evYrq6mr06NEDDx48QEJCAr777ju5y1IkDioqwZwFsbDfRJaLi4hxOKioBHMWxMJ+E1kuLiLG4aCiEsxZEAv7TWS5uIgYh7cnqwRzFsTCfhNZrqcXkbCwMABcRJ6FZ1RUYsGCBfDy8sIrr7zCnAUBsN9UH37DrmWoXURmzJhRZxGJioriIlIP3p5sYZizIBb2Wyyenp7Izs7m7ckq9+jRI33AX1hYGDw8PJCUlIQrV64gOjoazZo1k7tEReGgYmGYsyAW9lu9jh07Bo1Gg5YtW6J9+/YNOlty8uRJvPXWW9BqtS+gQpIbF5EneI2KheHcKRb2W70CAwOh0WggSRJsbW2Rn5//3Nd4eHiYvzBSjJycHEyfPp2DitwFEBGJKDMzExqNBo6OjujQoYPc5ZACcRF5ghfTEhHJIDk5GV26dEGnTp0a9N0uZWVl/MI6EhLPqBARyeDChQvIyMhAnz59YGNjg1deeQVdu3bVDy137tzBtWvX8OjRI1RVVeHgwYO4ePGizFUTvXgcVIiIZLBgwQLExcVhzZo1qKmpAQC0adMGq1evRnx8PHJzcwE8uSVZq9Wic+fOWLJkiYwVE8mDg4qFYc6CWNhv9RoyZAiGDBmi/+/y8nJs2bIF48aNg7+/P/bv348WLVrA2pp/TZPY+H+AheHFV2Jhvy2Hra0tAgMDcfXqVUyePBktW7aUuySSGReRJ5ijomDMWRAL+01Ev8aAvyc4qCiYi4uL0TkLpF7sN5Hl4iLSeBxUFOzo0aN1chYacgsjqRf7TWS5uIg0Hv8mVDDmLIiF/SayXJmZmcjMzMTOnTtx9OhRuctRFV5Mq2DMWRAL+01kuZKTk7FixQo0b968Qc8vKyvDzJkzsW7dOjNXpnz86EfBcnJyEBcXh+vXrzc4ZyEiIgI+Pj4yVk2NxX4TWa5+/fph7NixRi0i2dnZOHjwoMyVy4+DiorU5iwkJibC398fM2fOZM6CBWO/iSwHF5HG46CiQnFxccxZEAj7TWR5uIg0HAcVIiIimXAReT4OKkRERKRYvD2ZiIiIFIuDChERESkWBxUiUiylfDKtlDqIRMRBhYgU5/r165g6dSpKSkr+7/cqLi6Gs7MzNm/ebPBYeXk53N3d4erqilu3btX7+pSUFKxdu/b/roOIGoeDChEpzqFDh7B//36z/zrfffcdXn31VdjZ2eHbb7+t9zmJiYl4+PCh2WshovpxUCEiYW3evBn9+/eHv78/Nm7cqA/iIiLl4KBCRPWSJAkZGRkYOnQo3Nzc4O/vj7Vr10KSJMydOxfBwcGIjo6Gl5cXhg0bhurqatTU1GD16tXw9/dH9+7dMWTIEHz11Vd13re6uhqrV6/GiBEj4ObmBg8PD4wbNw5HjhwB8GR4iIyMBAC8/fbbmDt3rv61GzduxPDhw9G9e3cMGjQISUlJqK6urvP+u3fvxqhRo+Dm5oYxY8bg3Llz9f7+zp8/j1OnTmHQoEEYNWoUSkpKDOLKnZ2dAQBffvml/udE9GIxAo+I6rVkyRKsW7cOISEh6Nu3LwoKChAfH4+qqioAQH5+Ppo0aYLk5GQ8ePAAL730EqKiorB582aEh4fD09MTx44dQ2xsLO7du4c//vGPAID4+HhkZWXh448/hrOzM27cuIHk5GT8+c9/Rm5uLgYNGoQPP/wQK1eurDMgpKamYvny5Zg0aRIiIyNRWFiIpKQkXLt2DbGxsQCAffv2YcaMGRg5ciQiIiJQWFiIiIiIen9/mzZtgr29PXx9faHVatGhQwdkZWVh4MCB+ud8/fXXCAgIwB/+8Ae899575vzjJqJn4KBCRAbu3buHzMxMTJo0Sf8PfZ8+fXDr1i0cO3YMjo6OqKqqwqJFi9C6dWsAQFFREb755hvMnj0bU6dOBfDki9g0Gg1SU1MxYcIENG/eHDdv3sSsWbMQGBio//WaNGmCjz76CP/+97/h4eGB9u3bAwC6deuGtm3bQqfTISUlBQEBAZg/f77+ve3t7TF//nyEhITgN7/5DZKTk+Hm5oalS5cCAPr37w8AWLZsWZ3fX1VVFbKzszFixAhotVoAwJgxY/SDzxtvvAEA8PDwAAC0bt1a/3MierH40Q8RGTh58iSqqqowePDgOsfnz5+PtLQ0AIC9vb1+SAGAI0eOQJIk+Pn5oaqqSv/Dz88PFRUVOH78OIAnQ0NwcDBKS0uRn5+PTZs2ITs7GwDw+PHjeus5ceIEHj16VO97A0BeXh4ePXqEs2fPwtfXt85rhw4davB+ubm5uH37Nt555x3cu3cP9+7dg5+fH2pqarBx48ZG/qkRkTnwjAoRGbh79y4AwMHB4ZnPadasWb2vGT58eL3Pv3HjBgCgoKAAMTExKCgoQNOmTdGlSxe0adMGwLPzSmrfu/ZMzdNu3ryJX375BZIkoXnz5nUee/311w2ev2nTJgDABx98YPDYt99+i+nTp/PL4YgUgv8nEpEBOzs7AEBpaSmcnJz0x69evYrLly+jsrLyma9Zt26dwRADPPlK+/LycoSGhsLZ2Rk7duyAk5MTrKyssH//fuTk5Dy3nvj4eHTs2NHgcUdHR9jb28PKygq3b9+u81jtkFPr9u3bOHDgACZMmIB33323zmMnT55EQkICfvjhB/j7+z+zHiJ6cfjRDxEZcHNzg42NDX744Yc6x9PT0zF79my89NJLBq/x9vYGAJSVlaFHjx76H6WlpUhMTMTdu3dx8eJF3L17F0FBQejSpQusrJ78FXTgwAEA0N8eXHu8lru7O2xsbHDjxo06721tbY2EhAQUFxejSZMm8PT0xO7du+ucmdm3b1+d99q2bRuqqqoQHByM3r171/kRHBwMW1tb/P3vf9c//+laiOjF4hkVIjLg4OCAoKAgZGRkQKvVolevXjh16hSysrLwySefoLCw0OA1zs7OGDVqFBYsWICSkhJ0794dRUVFWL58Odq2bYuOHTviwYMHsLW1xapVq2BtbQ1ra2vk5OTow9Zqg9Vqz6Ds2bMHAwYMQOfOnREaGorExESUl5ejd+/euHHjBhITE6HRaODi4gIAmD17NoKDg/GnP/0JAQEBKCoqwqpVq+rUuXnzZri6utZ7Zubll1/GkCFDsHnzZly5cgXt2rWDnZ0dfvrpJxw7dgze3t7QaDSm/KMmoueRiIjqUVNTI6WlpUnvvPOO1L17d+ndd9+VsrKyJEmSpDlz5ki+vr4Gr6msrJS+/PJL6e2335ZcXV2lAQMGSNHR0VJZWZn+OUeOHJF+//vfS25ubpKPj480efJkKT8/X/L09JTi4uIkSZKk8vJy6YMPPpBcXV2lsLAw/WvXr18vDRs2THJ1dZX69Okjffzxx1JJSUmdGvLy8qSxY8dKPXr0kIYOHSrt27dP6tq1q7Rp0ybp5MmTUteuXaW0tLRn/r7/+c9/Sl27dpWWLl0qSZIkpaenS97e3pK7u7vBr0VE5qeRJH7bFhERESkTP3wlIiIixeKgQkRERIrFQYWIiIgUi4MKERERKRYHFSIiIlIsDipERESkWBxUiIiISLE4qBAREZFicVAhIiIixeKgQkRERIrFQYWIiIgUi4MKERERKdZ/AVxk8jPgk+eJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Análisis de la columna 'gender':\n", + "gender\n", + "Hombre 206\n", + "Mujer 144\n", + "Niño 6\n", + "Name: count, dtype: int64\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHyCAYAAADFteVsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/H0lEQVR4nO3deVxU9f7H8fcAgwyuuFtqKChEuaBikuFCZS6Vqbe6JWpeLU3NR5a5lJq7VrikZrnvpi3q1bpmajdNf4pilpq4kGKaAa64MMo2vz98OLcJNZbBOTCv5+PBA+d7vmfO59Bp5j3f8z1nTDabzSYAAAAD8nB1AQAAALdDUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEKKe7VCMAdEFSAAtClSxcFBQXZf4KDgxUaGqqOHTtq8eLFysjIcOgfGRmpIUOG5Pj5N2/erMGDB/9tvyFDhigyMjLP28mrU6dOKSgoSKtWrcq2LC0tTS1atFCHDh1ktVoLrIYuXbqoS5cuBfb8d1NR2hcgt7xcXQBQVIWEhOjdd9+VJGVmZiolJUVbt27VhAkTFBsbq6lTp8rD48ZnhRkzZqhEiRI5fu6FCxfmqF+fPn3UtWvXXNeeXxUrVtTKlStVvXr1bMs+//xzZWRk6OOPP5bFYrnrtQEoXAgqQAEpUaKE6tev79AWGRmpmjVraty4cfrqq6/09NNPS7oRagrCrYLC3eDt7Z1t32969NFH1aZNG5UtW/buFgWgUOLUD3CXRUVFqVKlSlqxYoW97a+nZG6GmLp166pJkyYaOHCgkpKSJN04DbBr1y7t2rVLQUFBiomJUUxMjIKCgrRixQq1bNlSDRo00Pbt27Od+pGk9PR0jR07VmFhYWrUqJEGDx6s8+fP25ff6jTDzeePiYmxtx07dkz9+vVT48aNFRYWpl69eunXX3+VdOtTPwkJCerfv786deqkyMhIdenSRXv27LEvv7nO+vXr1b9/f4WGhqpx48YaNmyYUlNT7/g3PX36tPr166eGDRuqadOmWrBgwS37ff7552rXrp0efPBBtWjRQtOnT1dmZuYdn/vKlSsaMWKEwsPDFRoaqgEDBmjhwoUKCgpy6Ldp0yZ17NhRderUUdOmTTV27FiHuqdPn67HH39c33//vZ566ik9+OCDeuKJJ7RmzZoC2ZchQ4aoW7duevfdd9WgQQO1bdv2b/cVMCKCCnCXeXh4KDw8XPv27cs2V0WS9uzZo0GDBqlVq1aaM2eOhg4dqp07d+rNN9+UJL377rsKCQlRSEiIVq5cqQceeMC+7owZMzR48GCNGDFCoaGht9z++vXr9csvv2jixIkaPHiwvv/+e7388su5ehNLSkrS888/r4SEBI0cOVIffPCBzp49q27duunixYvZ+sfHx6tjx446deqUhg0bpujoaJlMJnXr1k27du1y6Pvuu+/q3nvv1cyZM9WjRw998cUX+vjjj29bS2pqqqKionTkyBGNGTNGw4cP1+eff669e/c69Js1a5aGDx+u8PBwffLJJ+rcubPmzJmj4cOH33Ff+/Tpo/Xr1+u1117TlClTdPXqVU2aNMmhz7p169S3b1/VrFlTH330kfr166e1a9eqT58+DpOez5w5o9GjR6tr166aPXu2qlatqsGDB9sDnrP3JTY2Vn/88Yc++ugjvfnmm/L09LzjvgJGxKkfwAXKly+v9PR0Xbx4UeXLl3dYtmfPHvn4+OiVV16Rt7e3JKlMmTLav3+/bDabAgMD7fNZ/np65cUXX1Tr1q3vuG0/Pz/NmzdPvr6+9sd9+/bV1q1b1bJlyxzVv3DhQqWlpWnBggWqUKGCJCk4OFgvvPCCfv75ZwUEBDj0nzFjhry9vbV48WJ77S1atNCTTz6p999/X1988YW9b/Pmze0ThcPDw7V9+3Z9//339qD2V6tXr9bp06f11VdfKTAwUJJUr149Pf744/Y+ly9f1syZM/X8889r2LBhkqRHHnlEZcqU0bBhw9S9e3fVqlUr23Pv2LFDMTExmj59ulq1aiVJatasmZ588kl7uLDZbIqOjlZERISio6Pt6/r7++ull17Sli1b1KJFC0mS1WrVuHHjFB4ebu/TsmVLbdmyRQEBAU7fl4yMDI0ePVqVK1e+5d8OKAwYUQFc4OanbJPJlG1ZWFiYrFarnnzySU2aNEmxsbF65JFH1K9fv1v2/7P777//b7fdvHlze0iRbpx28vLy0u7du3Nc/549e1S/fn17SJGkypUr67///a+aN2+erf+uXbvUsmVLhwnDXl5eateunQ4cOKCrV6/a2/8avipXrnzHUz+xsbGqXr26/Y1dkqpUqeLwPHv37tW1a9cUGRmpjIwM+8/N02Lbt2+/5XPv3LlTZrNZjz32mL3Nw8NDbdu2tT8+duyYEhMTsz13WFiYSpQoke25/1zXzQBxc/+cvS9lypQhpKDQY0QFcIGkpCT5+PioTJky2ZaFhoZq9uzZWrhwoRYsWKDZs2erfPny6t27999eovrnAHI7fw4X0o03Xj8/P126dCnH9V+8eFFVq1bNcf+UlJRsI0fSjZElm82mK1eu2Nv+eiWQh4fHHe8Zk5KSIj8/v2ztFSpU0NmzZ+31StIrr7xyy+dITk6+ZfuFCxdUpkwZ+9VZN5UrV87+75vPPWrUKI0aNepvn/vP+3fzeW/un7P3pXjx4rfsAxQmBBXgLsvIyFBMTIwaNGhw2zkDERERioiIkNVq1c6dO7V48WKNHTtW9erVU926dfO1/b/OIcnMzNSFCxcc3nz/Ol/lryMaJUuWdJiAe9OOHTtUtWrVbCM/pUuXtr/R/tmZM2ck3Tj9dLuw8Hf8/Px04sSJbO1/3s9SpUpJkqKjo+Xv75+t761ClCRVqlRJFy5cUFZWlkNYOXfuXLbnHjRokBo3bpztOUqXLp2j/ZAKdl+AwopTP8BdtnLlSp05c0YvvPDCLZe/99576tSpk2w2mywWi1q2bGmfs3H69GlJyvYJPze2b9/uMIl3w4YNysjI0EMPPSTpxmXViYmJDuv8+eocSWrUqJF+/vlnh7By7tw59ezZU1u2bMm2zbCwMP33v/91GDnJzMzU119/rTp16tjn4uRFkyZNdOrUKe3fv9/edv78ef3000/2x/Xq1ZPZbFZSUpLq1Klj//Hy8tLkyZN16tSpWz5348aNlZGRoe+++87eZrPZtGnTJvvjmjVrqly5cjp16pTDc1eqVEmTJk3SwYMHDbEvQGHFiApQQK5cuWJ/g8nKytKFCxe0bds2rVy5Uk8//bR9cuZfNWnSRAsWLNCQIUP09NNPKz09XXPnzlWZMmXUpEkTSTc+Ve/du1c7duzI9T1Yzpw5o9dee01dunRRQkKCJk+erKZNm9oneLZs2VLfffedJkyYoMjISMXGxma7hPall17SmjVr1LNnT/Xq1Utms1kff/yxKleurKeeekqXL1926N+vXz9t3bpVXbt21SuvvCKz2aylS5fq5MmTmjt3bq7q/6v27dtr8eLF6tevnwYMGKASJUro448/VlZWlr2Pn5+fevbsqQ8//FBXrlzRQw89pKSkJH344YcymUwKDg6+5XOHhYWpadOmeuedd3T27Fndc889+uKLL3T48GH7qJGnp6cGDBigESNGyNPTUy1bttSlS5c0c+ZMJSUlOVyV5cp9AQorggpQQA4ePKjnn39e0o1Js8WLF1ft2rU1cuRIPfvss7ddr3nz5oqOjtb8+fPtE2gbNmyoxYsX2+e0dO7cWQcOHNDLL7+sCRMmqGLFijmu68UXX9Tly5fVt29feXt766mnntJbb71lf+Pt1KmTfvvtN61evVorVqxQWFiYpk2b5jACVKVKFS1fvlwffPCBhgwZIm9vbz300EOaMmWKSpcunS2o1KpVS8uXL9fkyZM1dOhQmUwm1a1bV4sXL1ajRo1yXPuteHt7a9GiRRo/frzGjRsnk8mk5557TtWqVXM4RfP666+rQoUKWr58uebOnavSpUsrPDxcb7zxhkqWLHnb558yZYomTpyoSZMmKSMjQ48++qheeOEFh/D27LPPqnjx4po7d65WrlwpX19fNWjQQNHR0apWrZph9gUojEw2vtkMAG7p999/108//aRHH31UPj4+9vb+/fvr5MmTWr16tQurA9wDIyoAcBseHh4aMmSIHn30Uf3jH/+Qp6enfvjhB3377beaMGGCq8sD3AIjKgBwBzt37tRHH32kuLg4ZWRkKCAgQN27d9eTTz7p6tIAt0BQAQAAhsXlyQAAwLAIKgAAwLAIKgAAwLAK/VU/e/fulc1mk9lsdnUpAAAgh9LT02UymRQaGnrHfoV+RMVms93xC8uQMzabTWlpafwtYSgclzAajknnyen7d6EfUbk5klKnTh0XV1K4paamKi4uToGBgTn6Bl7gbuC4hNFwTDrPn7/T6k4K/YgKAAAouggqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqkCSZTCZZLBaZTCZXlwIAgJ2XqwtwF1lZNnl4GDcEWCwWhYSEuLqMHDH63xIA4DwElbvEw8Ok6GV7dCrpsqtLKdSqViqpgZ0buroMAMBdQlC5i04lXdavv6e4ugwAAAoN5qgAAADDIqgAAADDynVQuXjxokaMGKFmzZqpQYMGeuGFFxQbG2tfvmPHDnXs2FH16tVT69at9fXXXzusf/36dY0aNUrh4eEKDQ3Vm2++qfPnz+d/TwAAQJGT66DyxhtvaO/evZo8ebK+/PJL3X///erRo4eOHTumX3/9Vb169VJERIRWrVqlZ599VoMGDdKOHTvs648cOVLbtm3T9OnTtWjRIh07dkz9+/d36k4BAICiIVeTaU+cOKHt27dr+fLlatjwxpUXw4cP1w8//KB169bp3LlzCgoK0oABAyRJAQEBOnjwoObOnavw8HAlJSVpzZo1+uSTT9SoUSNJ0uTJk9W6dWvt3btXoaGhTt49AABQmOVqRMXPz0+zZ89WnTp17G0mk0kmk0mXLl1SbGyswsPDHdZp0qSJ9uzZI5vNpj179tjbbqpRo4YqVaqk3bt352c/AABAEZSrEZVSpUqpefPmDm0bNmzQiRMn9Pbbb2v16tWqXLmyw/KKFSvKarXqwoULSkpKkp+fn4oVK5atT2JiYh53QbLZbEpNTc3z+gXt5l1f4TxWq1U2m83VZaCAWa1Wh9+Aq3FMOo/NZsvR3dDzdR+VH3/8UUOHDlWrVq3UokULXbt2Td7e3g59bj5OS0uT1WrNtlySihUrpuvXr+e5jvT0dMXFxeV5/YJWmO76WlgcP36cFwo3kpCQ4OoSAAcck85xq0zwV3kOKps2bdLAgQPVoEEDRUdHS7oRONLS0hz63XxssVjk4+OTbbl040qg/Iw4mM1mBQYG5nn9gsb35zhfjRo1GFFxA1arVQkJCfL392dUEobAMek88fHxOeqXp6CydOlSjRs3Tq1bt9Z7771nT0RVqlRRcnKyQ9/k5GT5+vqqZMmSqly5si5evKi0tDSHFJWcnKxKlSrlpRRJN4KAr69vntdH4cMLhHuxWCz8Pw5D4ZjMv5x+iM/15cnLly/XmDFj1LlzZ02ePNkhcDRq1Ei7du1y6L9z5041aNBAHh4eatiwobKysuyTaqUbQ/hJSUkKCwvLbSkAAKCIy1VQOX78uMaPH6/HH39cvXr10tmzZ3XmzBmdOXNGly9fVpcuXbRv3z5FR0fr119/1fz58/XNN9+oZ8+ekqRKlSqpXbt2GjZsmGJiYrRv3z698cYbaty4serXr18Q+wcAAAqxXJ362bBhg9LT07Vx40Zt3LjRYVmHDh00ceJEzZw5Ux988IEWLVqkqlWr6oMPPnC4ZHnMmDEaP368+vXrJ0lq1qyZhg0b5oRdAQAARU2ugkrv3r3Vu3fvO/Zp1qyZmjVrdtvlvr6+Gjt2rMaOHZubTQMAADfElxICAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADD8srPyrNmzdK2bdu0ZMkSSVKXLl20a9euW/Z977339MwzzygzM1OhoaG6fv26w/J+/frptddey085AACgiMlzUFm2bJmmTp2qRo0a2dumT5+u9PR0+2ObzaYBAwYoJSVFjz/+uCQpISFB169f17///W+VK1fO3tfX1zevpQAAgCIq10ElKSlJ7777rmJiYuTv7++wrEyZMg6Ply5dqn379unf//63ihcvLkk6fPiwSpQooeDg4DwXDQAA3EOu56j88ssvMpvNWrt2rerVq3fbfufPn9fUqVP16quvqmbNmvb2w4cPKyAgIG/VAgAAt5LrEZXIyEhFRkb+bb85c+bIx8dHPXr0cGg/cuSIMjIy1KNHDx06dEiVKlVSt27d1L59+9yWAgAAirh8Taa9nStXruizzz5Tv379VKxYMYdlR48eVVZWlvr376/KlStry5YtGjp0qNLT0/WPf/wjT9uz2WxKTU11RukFwmQyyWKxuLqMIsVqtcpms7m6DBQwq9Xq8BtwNY5J57HZbDKZTH/br0CCyqZNm5SWlqZOnTplW/bVV18pMzPTPmclODhYp0+f1rx58/IcVNLT0xUXF5evmguSxWJRSEiIq8soUo4fP84LhRtJSEhwdQmAA45J5/D29v7bPgUWVJo3b65SpUplW+bj45OtrXbt2lq7dm2et2c2mxUYGJjn9QtaThIjcqdGjRqMqLgBq9WqhIQE+fv7MyoJQ+CYdJ74+Pgc9SuQoBIbG3vLe6JcunRJjz32mIYMGaKOHTva2/fv369atWrleXsmk4nLm90MLxDuxWKx8P84DIVjMv9y+iHe6UHljz/+0IULF255+XGpUqXUpEkTTZkyReXKldN9992nb7/9VmvXrtWsWbOcXQoAACjknB5Uzpw5Iyn7PVVuGj9+vKZPn653331X586dU0BAgKZNm6aIiAhnlwIAAAq5fAWViRMnZmurW7euDh8+fNt1SpQooaFDh2ro0KH52TQAAHADfCkhAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwrHwFlVmzZqlLly4ObcOGDVNQUJDDT2RkpH15VlaWpk2bpoiICNWvX18vv/yyTp48mZ8yAABAEZXnoLJs2TJNnTo1W/vhw4fVu3dvbdu2zf7zxRdf2JfPnDlTy5cv15gxY7RixQplZWWpZ8+eSktLy2spAACgiMp1UElKSlLv3r0VHR0tf39/h2U2m03x8fF68MEHVaFCBftP2bJlJUlpaWmaP3+++vfvrxYtWig4OFhTpkxRYmKivv32W6fsEAAAKDpyHVR++eUXmc1mrV27VvXq1XNY9ttvvyk1NVU1a9a85bqHDh3S1atXFR4ebm8rVaqUQkJCtHv37tyWAgAAijiv3K4QGRnpMOfkz44cOSJJWrJkibZu3SoPDw81a9ZMAwYMUMmSJZWYmChJqlKlisN6FStWtC8DAAC4KddB5U6OHDkiDw8PVaxYUZ988ol+++03vf/++zp69KgWLVokq9UqSfL29nZYr1ixYkpJScnzdm02m1JTU/NVe0EymUyyWCyuLqNIsVqtstlsri4DBezma8bN34CrcUw6j81mk8lk+tt+Tg0qr776ql588UX5+flJkmrXrq0KFSroueee0/79++Xj4yPpxlyVm/+WpOvXr+frjTw9PV1xcXH5K74AWSwWhYSEuLqMIuX48eO8ULiRhIQEV5cAOOCYdI6/DlzcilODioeHhz2k3FSrVi1JUmJiov2UT3JysqpXr27vk5ycrKCgoDxv12w2KzAwMM/rF7ScJEbkTo0aNRhRcQNWq1UJCQny9/dnVBKGwDHpPPHx8Tnq59SgMmjQICUnJ2vhwoX2tv3790uSAgMDVa1aNZUoUUIxMTH2oHLp0iUdPHhQUVFRed6uyWSSr69vvmpH4cILhHuxWCz8Pw5D4ZjMv5x+iHfqnWmfeOIJ7dixQzNmzNBvv/2mLVu26O2339aTTz6pgIAAeXt7KyoqStHR0dq8ebMOHTqkAQMGqHLlymrVqpUzSwEAAEWAU0dUHn30UU2dOlWzZ8/WnDlzVLJkST311FN6/fXX7X369++vjIwMDRs2TNeuXVNYWJjmzZsns9nszFIAAEARkK+gMnHixGxtbdq0UZs2bW67jqenp9566y299dZb+dk0AABwA3wpIQAAMCyCCgAAMCyCCgAAMCyCCgDDunlXZ+5FBLgvp171A6DwyMqyycPD2AGgsNzVuTD8LYHCiqACuCkPD5Oil+3RqaTLri6lUKtaqaQGdm7o6jKAIougArixU0mX9evvef9CUAAoaMxRAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhpWvoDJr1ix16dLFoe27775Tp06dFBoaqsjISL333nu6du2affmePXsUFBSU7ScmJiY/pQAAgCLIK68rLlu2TFOnTlWjRo3sbbGxserXr5/69++v1q1b68SJExoxYoQuXryoCRMmSJIOHz6s6tWra/ny5Q7PV7p06byWAgAAiqhcj6gkJSWpd+/eio6Olr+/v8OyFStW6KGHHlLv3r3l7++v5s2ba8CAAVq3bp3S0tIkSUeOHFFgYKAqVKjg8OPt7e2UHQIAAEVHroPKL7/8IrPZrLVr16pevXoOy/71r39p8ODBjhvw8FB6erquXLki6caISkBAQD5KBgAA7iLXp34iIyMVGRl5y2UhISEOj9PT07Vw4UI9+OCDKlu2rCTp6NGj8vPzU8eOHZWUlKTatWtrwIABqlu3bh7Kv8Fmsyk1NTXP6xc0k8kki8Xi6jKKFKvVKpvN5uoyCi2OSefjmHQPVqvV4TfyzmazyWQy/W2/PM9R+TsZGRkaNGiQjh49qmXLlkmS/vjjD12+fFmpqakaNmyYPD09tXTpUkVFRWnVqlUKDAzM07bS09MVFxfnzPKdymKxZAtxyJ/jx4/zQpEPHJPOxzHpXhISElxdQpGQk2kfBRJUrly5otdff127du3SjBkz7KMlVapU0e7du2WxWGQ2myVJderU0cGDB7VkyRKNGjUqT9szm815Djl3Q04SI3KnRo0afHrNB45J5+OYdA9Wq1UJCQny9/dnVDKf4uPjc9TP6UElOTlZL7/8sn7//XfNmzdPYWFhDstLlSrl8NjDw0MBAQFKSkrK8zZNJpN8fX3zvD4KH14gYDQck+7FYrHwvpNPOf3A5NQbvqWkpKhbt246f/68li1bli2kbN26VaGhoTp58qS9LSMjQ4cOHTL0iAgAAHANp46oTJgwQSdPntTcuXNVtmxZnTlzxr6sbNmyatCggfz8/DR48GC9/fbbMpvNmj17ti5evKiXXnrJmaUAAIAiwGlBJTMzU//5z3+Unp6ubt26ZVu+efNmVa1aVQsXLlR0dLR69Oih69evq2HDhlq6dKnKly/vrFIAAEARka+gMnHiRPu/PT09tW/fvr9dp3r16po2bVp+NgsAANwEX0oIAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMK19BZdasWerSpYtDW1xcnKKiolS/fn1FRkZq8eLFDsuzsrI0bdo0RUREqH79+nr55Zd18uTJ/JQBAACKqDwHlWXLlmnq1KkObRcuXFD37t1VvXp1ffnll+rbt6+io6P15Zdf2vvMnDlTy5cv15gxY7RixQplZWWpZ8+eSktLy/NOAACAoskrtyskJSXp3XffVUxMjPz9/R2WffbZZzKbzRo9erS8vLwUEBCgEydOaPbs2erUqZPS0tI0f/58DRw4UC1atJAkTZkyRREREfr222/15JNPOmOfAABAEZHrEZVffvlFZrNZa9euVb169RyWxcbGqnHjxvLy+l/+adKkiRISEnT27FkdOnRIV69eVXh4uH15qVKlFBISot27d+djNwAAQFGU6xGVyMhIRUZG3nJZYmKiateu7dBWsWJFSdIff/yhxMRESVKVKlWy9bm5LC9sNptSU1PzvH5BM5lMslgsri6jSLFarbLZbK4uo9DimHQ+jkn3YLVaHX4j72w2m0wm09/2y3VQuZNr167J29vboa1YsWKSpOvXr9v/w96qT0pKSp63m56erri4uDyvX9AsFotCQkJcXUaRcvz4cV4o8oFj0vk4Jt1LQkKCq0soEv6aB27FqUHFx8cn26TY69evS5J8fX3l4+MjSUpLS7P/+2af/Hy6M5vNCgwMzPP6BS0niRG5U6NGDT695gPHpPNxTLoHq9WqhIQE+fv7MyqZT/Hx8Tnq59SgUrlyZSUnJzu03XxcqVIlZWRk2NuqV6/u0CcoKCjP2zWZTPL19c3z+ih8eIGA0XBMuheLxcL7Tj7l9AOTU2/4FhYWpj179igzM9PetnPnTtWoUUPlypVTcHCwSpQooZiYGPvyS5cu6eDBgwoLC3NmKQAAoAhwalDp1KmTrly5onfeeUfx8fFatWqVFi5cqF69ekm6cS4qKipK0dHR2rx5sw4dOqQBAwaocuXKatWqlTNLAQAARYBTT/2UK1dOc+fO1bhx49ShQwdVqFBBgwYNUocOHex9+vfvr4yMDA0bNkzXrl1TWFiY5s2bJ7PZ7MxSAABAEZCvoDJx4sRsbXXr1tXKlStvu46np6feeustvfXWW/nZNAAAcAN8KSEAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsL2c+WUxMjLp27XrLZVWrVtXmzZv18ccfa+rUqdmWHz582JmlAACAIsCpQSU0NFTbtm1zaPvpp5/02muvqU+fPpJuBJL27dvrrbfecuamAQBAEeTUoOLt7a0KFSrYH6empmrChAnq0KGDOnXqJEk6cuSInnvuOYd+AAAAt1Kgc1Q++eQTWa1WDR48WJKUlpamhIQE1axZsyA3CwAAiogCCyrnz5/XwoUL1bt3b5UpU0aSFB8fr8zMTG3YsEFPPPGEWrRoobfeekvJyckFVQYAACjEnHrq58+WL1+ukiVL6vnnn7e3HTlyRJJksVj04Ycf6ty5c5o8ebK6du2qNWvWyMfHJ0/bstlsSk1NdUrdBcFkMslisbi6jCLFarXKZrO5uoxCi2PS+Tgm3YPVanX4jbyz2WwymUx/26/AgsqaNWv0zDPPOISPZ555Rs2aNVPZsmXtbbVq1VKzZs303XffqW3btnnaVnp6uuLi4vJdc0GxWCwKCQlxdRlFyvHjx3mhyAeOSefjmHQvCQkJri6hSPD29v7bPgUSVA4dOqSTJ0/qqaeeyrbszyFFkipWrKgyZcooMTExz9szm80KDAzM8/oFLSeJEblTo0YNPr3mA8ek83FMuger1aqEhAT5+/szKplP8fHxOepXIEElNjZW5cqVU3BwsEP7lClT9M033+ibb76xv1CeOnVKFy5cyFfQMJlM8vX1zVfNKFx4gYDRcEy6F4vFwvtOPuX0A1OBTKY9ePCggoKCsrU//vjj+v333zVy5EgdP35cu3fv1muvvaYGDRooIiKiIEoBAACFWIEElTNnztiv9PmzBx98UHPmzNHhw4fVsWNH9evXT/fff78++eQThqIBAEA2BXLqZ86cObddFh4ervDw8ILYLAAAKGL4UkIAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYTg8qSUlJCgoKyvazatUqSVJcXJyioqJUv359RUZGavHixc4uAQAAFBFezn7CQ4cOqVixYtq0aZNMJpO9vWTJkrpw4YK6d++uyMhIjRo1Sj/99JNGjRql4sWLq1OnTs4uBQAAFHJODypHjhyRv7+/KlasmG3ZokWLZDabNXr0aHl5eSkgIEAnTpzQ7NmzCSoAACAbp5/6OXz4sAICAm65LDY2Vo0bN5aX1//yUZMmTZSQkKCzZ886uxQAAFDIOT2oHDlyROfPn1fnzp318MMP64UXXtDWrVslSYmJiapcubJD/5sjL3/88YezSwEAAIWcU0/9ZGRk6NixYwoMDNSQIUNUokQJff3113rllVe0YMECXbt2Td7e3g7rFCtWTJJ0/fr1PG/XZrMpNTU1X7UXJJPJJIvF4uoyihSr1SqbzebqMgotjknn45h0D1ar1eE38s5msznMZb0dpwYVLy8vxcTEyNPTUz4+PpKkBx98UEePHtW8efPk4+OjtLQ0h3VuBhRfX988bzc9PV1xcXF5L7yAWSwWhYSEuLqMIuX48eO8UOQDx6TzcUy6l4SEBFeXUCT8dfDiVpw+mbZ48eLZ2mrVqqVt27apcuXKSk5Odlh283GlSpXyvE2z2azAwMA8r1/QcpIYkTs1atTg02s+cEw6H8eke7BarUpISJC/vz+jkvkUHx+fo35ODSpHjx7V888/r48//lgPPfSQvf3AgQMKDAzU/fffrxUrVigzM1Oenp6SpJ07d6pGjRoqV65cnrdrMpnyNSKDwocXCBgNx6R7sVgsvO/kU04/MDl1Mm1AQIBq1qyp0aNHKzY2Vr/++qsmTJign376Sa+++qo6deqkK1eu6J133lF8fLxWrVqlhQsXqlevXs4sAwAAFBFOHVHx8PDQJ598okmTJun111/XpUuXFBISogULFqh27dqSpLlz52rcuHHq0KGDKlSooEGDBqlDhw7OLAMAABQRTp+jUr58eU2YMOG2y+vWrauVK1c6e7MAAKAI4ksJAQCAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYXk5+wkvXryoyZMn6/vvv9eVK1cUFBSkN998U40aNZIkde/eXf/3f//nsE7jxo21ZMkSZ5cCAAAKOacHlTfeeENnzpzR5MmTVa5cOS1ZskQ9evTQ6tWrVbNmTR0+fFgjR47UY489Zl/HbDY7uwwAAFAEODWonDhxQtu3b9fy5cvVsGFDSdLw4cP1ww8/aN26dYqKitK5c+dUr149VahQwZmbBgAARZBT56j4+flp9uzZqlOnjr3NZDLJZDLp0qVLOnz4sEwmk2rUqOHMzQIAgCLKqSMqpUqVUvPmzR3aNmzYoBMnTujtt9/WkSNHVLJkSY0ePVrbt2+Xr6+vWrdurT59+sjb2zvP27XZbEpNTc1v+QXGZDLJYrG4uowixWq1ymazubqMQotj0vk4Jt2D1Wp1+I28s9lsMplMf9vP6XNU/uzHH3/U0KFD1apVK7Vo0UJvv/22rl+/rrp166p79+6Ki4vT+++/r9OnT+v999/P83bS09MVFxfnxMqdy2KxKCQkxNVlFCnHjx/nhSIfOCadj2PSvSQkJLi6hCIhJ4MUBRZUNm3apIEDB6pBgwaKjo6WJI0ePVqDBw9W6dKlJUm1a9eW2WzWgAEDNGjQIJUvXz5P2zKbzQoMDHRa7c6Wk8SI3KlRowafXvOBY9L5OCbdg9VqVUJCgvz9/RmVzKf4+Pgc9SuQoLJ06VKNGzdOrVu31nvvvWdPTF5eXvaQclOtWrUkSYmJiXkOKiaTSb6+vvkrGoUKLxAwGo5J92KxWHjfyaecfmBy+g3fli9frjFjxqhz586aPHmyw7BOly5dNHToUIf++/fvl9lslr+/v7NLAQAAhZxTR1SOHz+u8ePH6/HHH1evXr109uxZ+zIfHx898cQTGj9+vOrWratHHnlE+/fv1/vvv68ePXqoRIkSziwFAAAUAU4NKhs2bFB6ero2btyojRs3Oizr0KGDJk6cKJPJpCVLlmj8+PGqUKGCXnrpJb3yyivOLAMAABQRTg0qvXv3Vu/eve/Yp3PnzurcubMzNwsAAIoovpQQAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAIAcMplMslgsMplMri7FbXi5ugAAAG7KyrLJw8O4IcBisSgkJMTVZfwto/8dc4OgAgAwDA8Pk6KX7dGppMuuLqXQqlqppAZ2bujqMpyGoAIAMJRTSZf16+8pri4DBsEcFQAAYFgEFQAAYFguCSpZWVmaNm2aIiIiVL9+fb388ss6efKkK0oBAAAG5pKgMnPmTC1fvlxjxozRihUrlJWVpZ49eyotLc0V5QAAAIO660ElLS1N8+fPV//+/dWiRQsFBwdrypQpSkxM1Lfffnu3ywEAAAZ214PKoUOHdPXqVYWHh9vbSpUqpZCQEO3evftulwMAAAzsrl+enJiYKEmqUqWKQ3vFihXty3IjPT1dNptN+/btc0p9BcVkMukf4SWVkVnc1aUUal6eHtq/f79sNpurSyn0OCadg2PSuTgu86+wHJPp6ek5usPvXQ8qVqtVkuTt7e3QXqxYMaWk5P66+Zs7WRhuZ1y6hPffd0KOFIb/3oUBx6TzcEw6D8elcxj9mDSZTMYMKj4+PpJuzFW5+W9Jun79uiwWS66fLzQ01Gm1AQAAY7nrc1RunvJJTk52aE9OTlalSpXudjkAAMDA7npQCQ4OVokSJRQTE2Nvu3Tpkg4ePKiwsLC7XQ4AADCwu37qx9vbW1FRUYqOjlbZsmV177336oMPPlDlypXVqlWru10OAAAwMJd8KWH//v2VkZGhYcOG6dq1awoLC9O8efNkNptdUQ4AADAok83o1y8BAAC3xZcSAgAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoADCU3377zdUlADAQggp07do1rVmzRpMmTdLFixe1a9cuXbhwwdVlwU117txZ+/btc3UZAAzCJd/1A+M4e/asnn/+eZ07d05paWl67rnnNH/+fB04cECLFi1SQECAq0uEmzGbzfLy4qUJxvLHH39o2bJlOnLkiLy8vFSrVi0999xzuvfee11dWpHHd/24uYEDB+rKlSuaMmWKHn74Ya1du1alSpXS66+/rmLFiumTTz5xdYlwM9OnT9enn36q9u3b67777pOPj4/D8meeecY1hcFtHT58WFFRUfLx8VHdunWVlZWlAwcOyGq16tNPP1WtWrVcXWKRRlBxc4888ohmz56tkJAQhYaGau3atapWrZoOHTqkrl27ateuXa4uEW4mODj4tstMJpPi4uLuYjWA1KNHD1ksFk2aNEnFihWTJF2/fl0DBw5UWlqaZs2a5eIKizbGV93c1atX5evre8tlGRkZd7kaQDp06JCrSwAc/Pjjj1qxYoU9pEhSsWLF1LdvX0VFRbmwMvfAZFo3FxYWpk8//dShLT09XR9//LEaNGjgoqoA6fTp0/rhhx907do1nTt3ztXlwI0VL15c6enp2dpv1Qbn49SPm/v111/VuXNnValSRUePHtVDDz2kY8eO6fLly1q6dOkdh+GBgpCWlqbBgwdr/fr18vDw0IYNG/Tee+/p6tWrmj59ukqUKOHqEuFmBg4cqOTkZE2bNk1lypSRJJ0/f16vv/66SpcurenTp7u2wCKOoAIlJyfr008/1cGDB5WVlaVatWrpxRdfVNWqVV1dGtzQhx9+qG+++UYjR45U7969tXbtWp0+fVpDhw5Vs2bNNHLkSFeXCDeTmJiof/7zn0pJSZG/v78kKSEhQWXKlNGSJUt4rSxgBBU3169fPw0YMIDLkGEYrVq10siRI/Xwww87TPDesWOHBg0apB9++MHVJcINXb16Vf/+97919OhR2Ww2BQUF6amnnmKE7y5gMq2b27lzp8MEMcDVkpKSVL169WztVapUUUpKigsqAm7MU3nxxRddXYZbIqi4uQ4dOig6Olp9+/bVfffdJ29vb1eXBDcXEBCgHTt26Nlnn3Vo//rrrxUYGOiiquBufvjhB4WFhcnHx0dnzpzR1KlT9eOPPyo9PV1/PRGxefNmF1XpHggqbm7Lli367bfftGHDhlsu554VuNtee+01DRgwQPHx8crMzNTq1at1/PhxbdiwQVOmTHF1eXATCxcu1NixY7V+/XoNHz5cBw4cULt27VSyZElXl+Z2mKPi5lavXn3H5R06dLhLlQD/s3XrVs2aNcthgvfLL7+sJ554wtWlwU0kJSWpffv22rp1qxo3bqy5c+eqUaNGri7LLRFUAAD4ix49eqht27bq1KmTHn74YS1btkw1atRwdVluiVM/0KZNm7RgwQIdPXpU3t7eqlWrlvr27cunB9w1M2bMsN+mfMaMGXfs6+3trcqVK+uxxx677V2Vgfw6duyYTp48qbS0NLVv315z587V6NGj5enp6erS3A4jKm5u2bJlGj9+vNq0aaN69eopMzNTe/bs0ebNmzVp0iS1adPG1SXCDURGRurLL7+Un5+fIiMj79g3MzNT586dU9OmTfmOFRSY+Ph4rVixQv3799eECRP01VdfqVSpUqpWrVq2iw4WL17soirdA0HFzT366KPq3r17tu+rmD17tlavXq3169e7qDLg9nbt2qVevXpp7969ri4FbmDo0KF3XD5hwoS7VIl7Iqi4ubp162rdunW67777HNqPHz+u9u3ba9++fS6qDLi98+fPa926derWrZurSwFQwJij4uYeeughbdiwQa+88opD+/fff6/Q0FAXVQV3FhwcLJPJdNvlcXFxKlu2LCEFBWrNmjVq27atvL29tWbNmjv2feaZZ+5KTe6KERU39OfJisnJyfriiy/02GOPqUGDBvL09NQvv/yir776Sj169NCAAQNcWCnc0apVqxyCSkZGhhISErRmzRoNGjRI7du3d2F1cBfBwcHavn27ypUrd8cvZzWZTNxvqoARVNzQ301WvMlkMnHHRRjG+vXr9fnnn2v+/PmuLgXAXURQAVAo/P7772rbtq1+/vlnV5cCN9C1a9cc9TOZTFq0aFEBV+PemKMCSdLZs2eVlpaWrf2ee+5xQTWAo6tXr2rp0qUqX768q0uBm7jnnnvuOFcqNjZWJ0+eVKlSpe5iVe6JoOLmtmzZoqFDh+rChQsO7TabjXOvcIk7TaYdPXr0Xa4G7mrixIm3bL9y5YomTpyokydPqmnTpho3btxdrsz9cOrHzbVq1Uo1a9bUiy++KB8fn2zLGzdu7IKq4M5u9f1TZrNZ9erVU7Vq1VxQEXDD//3f/2nYsGG6fPmyBg0alO0bvlEwCCpurn79+lq1apVq1qzp6lLgxv7utvk3mUwm9e3bt4CrARylpqZq4sSJ+uyzz9S0aVONHTtWVapUcXVZboNTP26uSZMm+uWXXwgqcKkZM2bIw8NDlStXvmM/ggruth07duidd95RSkqKRo8ereeee87VJbkdRlTcXGJiov7xj3/o4YcfVrVq1bLNDejXr5+LKoM7GTFihDZu3CiLxaJ27dqpXbt2d7x3BVDQUlNT9f7772vlypUKDw/XuHHjGEVxEYKKmxsxYoQ+++wz+fn5yWKxOCzjPiq4mzIzM7Vz50795z//0aZNm1SuXDl7aPH393d1eXAzjz76qE6fPq1q1arp6aefvmNfPtAVLIKKm2vQoIGGDx+uDh06uLoUwC49PV3btm3T+vXrtXnzZlWvXl1t27ZVu3btuGQedwU3xjQOgoqba9q0qZYvX57tSwkBo0hLS9OXX36pSZMm6erVq1wyD7gZD1cXANd68cUXNX36dFmtVleXAjhITk7W0qVL9a9//UujR49W+fLl1bt3b1eXBeAuY0TFzXXv3l27d++WJJUrV05eXo4XgjGkibspKSlJGzZs0DfffKO9e/eqWrVqatOmjdq0acPkWsBNcXmym2vYsKEaNmzo6jLg5hYuXKgNGzbo559/1j333KM2bdronXfe0QMPPODq0gC4GCMqAFwuODhYZrNZDz/8sOrUqXPHvlxhAbgXggp04MABzZs3T0eOHJGXl5cCAwPVrVs31a1b19WlwU1whQWA2yGouLldu3bpX//6l2rXrq1GjRopKytLP/74o44cOaJFixZxWggA4FIEFTf3wgsvqHbt2ho1apRD+6hRoxQfH68lS5a4qDIAALg82e0dPHhQXbt2zdYeFRWlAwcOuKAiAAD+h6Di5vz8/HThwoVs7efPn5e3t7cLKgIA4H8IKm6uZcuWGjNmjH799Vd7W3x8vMaOHZvjCY4AABQU5qi4uZSUFHXv3l1xcXEqWbKkJOnSpUu6//77NX/+fPn5+bm4QgCAOyOoQFlZWdq2bZuOHDkim82moKAgRUREyGQyubo0AICbI6i4oVtNnr2dxYsXF2AlAADcGbfQd0P33ntvtrZ169YpMjJSxYsXd0FFAADcGiMqkCSFhoZq7dq1qlatmqtLAQDAjqt+AACAYRFUAACAYRFUAACAYRFUAACAYXHVjxsaOnRotrb09HR98MEH2a76mTBhwt0qCwCAbAgqbujUqVPZ2kJDQ3XhwoVbfu8PAACuwuXJAADAsJijAgAADIugAgAADIugAgAADIugAgAADIugAqDQGjJkiCIjI11dBoACRFABAACGRVABAACGRVABkGfp6emKjo5Ws2bNVLduXfXo0UNr1qxRUFCQ/caCsbGxioqKUr169dS4cWMNHjxY58+ftz/HqlWrFBISop9//lnPP/+86tSpo5YtW2revHkO20pJSdHQoUPVuHFjhYWF6YMPPlBWVla2mjZt2qSOHTuqTp06atq0qcaOHavU1FT78unTp+vxxx/XjBkz1LhxYz3yyCNKSUkpoL8QgPwiqADIsxEjRmjRokWKiorSRx99pPLly2v48OH25bt379ZLL70kHx8fTZ06VW+//bZ27dqlrl276tq1a/Z+WVlZev3119W2bVvNnj1bDRo00Pvvv68ffvjBvrxnz57asmWLBg8erIkTJ+rHH3/Uf/7zH4d61q1bp759+6pmzZr66KOP1K9fP61du1Z9+vTRn+9tefr0aW3ZskVTpkzR0KFDVbp06QL+SwHIK26hDyBPfvvtN61evVqDBw9W9+7dJUkRERE6e/astm3bJkmaNGmSatSooVmzZsnT01OSVK9ePbVr105ffvmlOnfuLEmy2Wzq06ePnn32WUlSw4YNtXHjRn3//feKiIjQ1q1btW/fPs2ZM0fNmjWTJIWHhztMpLXZbIqOjlZERISio6Pt7f7+/nrppZe0ZcsWtWjRQpKUkZGhwYMHq1GjRgX7RwKQb4yoAMiTmJgY2Ww2tW7d2qH9ySeflCRdu3ZNP//8s5o3by6bzaaMjAxlZGSoWrVqCggI0Pbt2x3WCw0Ntf/b29tbZcuWtZ+yiY2NldlsVkREhL2Pr6+vmjdvbn987NgxJSYmKjIy0r6tjIwMhYWFqUSJEtm2d//99zvnDwGgQDGiAiBPbs4zKVeunEP7zccpKSnKysrSnDlzNGfOnGzrFytWzOGxj4+Pw2MPDw/76ZqUlBSVKVNGJpPJoU+FChXs/7548aIkadSoURo1alS27SUnJzs8/us3hQMwJoIKgDypVKmSJOns2bO655577O03A0yJEiVkMpn00ksvqV27dtnWt1gsOd6Wn5+fLly4oMzMTPspJOl/4USSSpUqJUkaNGiQGjdunO05mIcCFE6c+gGQJw0bNpSnp6c2btzo0P7tt99KujFiERISomPHjqlOnTr2n1q1amn69OmKiYnJ8bbCw8OVkZGhTZs22dvS0tIcTufUrFlT5cqV06lTpxy2V6lSJU2aNEkHDx7M5x4DcAVGVADkSbVq1dSpUydNnjxZ6enpCg4O1saNG/Xf//5X0o1TN2+88YZeeeUVvfnmm3r66aeVmZmp+fPn6+eff1afPn1yvK3w8HA98sgjGjZsmM6dO6d7771Xixcv1vnz5+2nmjw9PTVgwACNGDFCnp6eatmypS5duqSZM2cqKSlJDzzwQIH8HQAULIIKgDwbPny4fH19NX/+fF25ckXh4eF69dVX9dFHH8nX11ePPPKI5s2bpxkzZqh///4ym8164IEHtGDBAtWvXz9X25oxY4aio6M1bdo0Xb9+XW3bttVzzz2nzZs32/s8++yzKl68uObOnauVK1fK19dXDRo0UHR0tKpVq+bkvQdwN5hsf765AADk0MWLF7V161ZFRETIz8/P3v7ee+9p1apVuTq1AwC3w4gKgDyxWCwaN26c7r//fnXr1k2+vr766aeftHTpUvXq1cvV5QEoIhhRAZBncXFxmjp1qn766SdZrVZVr15d//znP9W5c+dslxIDQF4QVAAAgGFxeTIAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADCs/wcEyqAIkK/fgwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ===========================\n", + "# Analizar una columna categórica\n", + "# ===========================\n", + "for column in [\"store\", \"manufacturer\", \"category\", \"createdAt\", \"gender\"]:\n", + " categorical_column = column # Reemplazar por una columna categórica del DataFrame\n", + "\n", + " if df is not None:\n", + " analyze_categorical_data(df, categorical_column)\n", + " else:\n", + " print(\"El DataFrame no está disponible.\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From b756eefc4552c7a1d63f02587ad24d326a63c02e Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 5 Dec 2024 22:11:44 -0500 Subject: [PATCH 25/84] =?UTF-8?q?Correcci=C3=B3n=20de=20numeraci=C3=B3n=20?= =?UTF-8?q?en=20el=20notebook=20de=20EDA?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- scripts/eda/eda.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/eda/eda.ipynb b/scripts/eda/eda.ipynb index 7ab0daf03..b24e5811e 100644 --- a/scripts/eda/eda.ipynb +++ b/scripts/eda/eda.ipynb @@ -280,7 +280,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 7. Analizar Datos Categóricos" + "### 6. Analizar Datos Categóricos" ] }, { From b610501640663fb3315fe21e81e214178ea1fe82 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 5 Dec 2024 22:47:49 -0500 Subject: [PATCH 26/84] arreglos finales --- docs/data/data_dictionary.md | 12 ++-- docs/data/data_summary.md | 79 +++++++++++-------------- scripts/eda/eda.ipynb | 110 +++++++++++++++++++++++++++++++++++ 3 files changed, 149 insertions(+), 52 deletions(-) diff --git a/docs/data/data_dictionary.md b/docs/data/data_dictionary.md index 6be129c62..561b6bd8c 100644 --- a/docs/data/data_dictionary.md +++ b/docs/data/data_dictionary.md @@ -7,16 +7,16 @@ | `id` | Identificador único del producto | string | Único por producto | `046zSiHm8Cz0fZYwMJlL` | | `details` | Detalles técnicos del producto | string | - | `{Horma clásica} {Parte superior sintética}` | | `store` | Nombre de la tienda que vende el producto | string | adidas, nike, nacionrunner | `adidas` | -| `manufacturer` | Marca o empresa que fabrica el producto | string | adidas, nike, otros | `adidas` | +| `manufacturer` | Marca o empresa que fabrica el producto | string | adidas, Asics, nike, Hoka, otros | `adidas` | | `url` | URL del producto en la tienda | string | - | `https://www.adidas.co/...` | | `title` | Nombre o título del producto | string | - | `Tenis Duramo SL` | -| `regularPrice` | Precio sin descuento | string | Valores numéricos en COP | `$379.950` | -| `undiscounted_price` | Precio con descuento aplicado | string | Valores numéricos en COP | `$265.965` | +| `regularPrice` | Precio sin descuento | string | Valores en COP | `$379.950` | +| `undiscounted_price` | Precio con descuento aplicado | string | Valores en COP | `$265.965` | | `description` | Descripción general del producto | string | - | `"Los Adizero Adios Pro 3 son la ..."` | -| `category` | Categoría asignada al producto por la tienda | string | Hombre, Mujer, Running | `Mujer • Running` | -| `createdAt` | Fecha y hora de creación del registro | datetime | ISO 8601 | `2023-12-05T10:30:00Z` | +| `category` | Categoría asignada al producto por la tienda | string | - | `Mujer • Running` | +| `createdAt` | Fecha y hora de creación del registro | datetime | - | `2023-12-05T10:30:00Z` | | `characteristics` | Características adicionales, como materiales o tecnologías utilizadas | string | - | `Parte superior de malla diseñada...` | -| `gender` | Género objetivo del producto | string | Hombre, Mujer, Unisex | `Mujer` | +| `gender` | Género objetivo del producto | string | Hombre, Mujer, Niño | `Mujer` | ## Fuente de los datos diff --git a/docs/data/data_summary.md b/docs/data/data_summary.md index b52f43c93..dab3c42c6 100644 --- a/docs/data/data_summary.md +++ b/docs/data/data_summary.md @@ -4,74 +4,61 @@ El dataset incluye productos obtenidos de tres tiendas en línea: Adidas, Nike y Nation Runner. A continuación, se presenta un resumen: -- **Número total de observaciones**: 10,000 registros (aproximado). -- **Número total de variables**: 12. -- **Tipos de variables**: - - 10 variables categóricas (string). - - 1 variable numérica (precios, almacenados como string). - - 1 variable temporal (datetime). +- **Número total de observaciones**: 10,000 registros (aproximado). +- **Número total de variables**: 12. +- **Tipos de variables**: + - 10 variables categóricas (string). + - 1 variable numérica (precios, almacenados como string). + - 1 variable temporal (datetime). ## Resumen de calidad de los datos -- **Valores faltantes**: - - Variables críticas como `id`, `title` y `url` no presentan valores nulos. - - `details` y `characteristics` presentan un 5% de valores faltantes. -- **Duplicados**: No se encontraron registros duplicados en la columna `id`. -- **Errores en datos**: Se detectaron inconsistencias en precios negativos en algunos registros. -- **Transformaciones aplicadas**: - - Imputación de valores faltantes con `null`. - - Filtrado de valores extremos en los precios. -- **Valores extremos**: - - Algunos valores en `regularPrice` y `undiscounted_price` están fuera del rango esperado (valores negativos o cero). +- **Valores faltantes**: + - Variables críticas como `id`, `title` y `url` no presentan valores nulos. + - `gender`, `category`, `undiscounted_price` y `characteristics` presentan un porcentaje alto de valores faltantes y no hay mas columnas con valores faltantes. +- **Duplicados**: No se encontraron registros duplicados. ### Acciones tomadas: -- Valores faltantes: Se imputaron valores genéricos para descripciones faltantes. -- Valores extremos: Se excluyeron del análisis los productos con precios negativos. +- **Valores faltantes**: Se planea imputar valores genéricos como "unisex" para descripciones faltantes en columnas como "genero" pero se necesita hacer una revision exahustiva para decidir esto. ## Variable objetivo -Este proyecto no define explícitamente una variable objetivo. Sin embargo, las similitudes semánticas basadas en `details` y `characteristics` serán la base para construir el modelo de recomendación. +Este proyecto no define explícitamente una variable objetivo. Sin embargo, las similitudes semánticas basadas en `details` y `characteristics` serán la base para construir el modelo de recomendación. ## Variables individuales - -- **`category`**: - - Mayor proporción de productos para mujeres (60%). - - Segmento `Running` común en todas las tiendas. +- **`category`**: + - Mayor proporción de productos para mujeres (60%). + - El segmento `Running` es común en todas las tiendas. ## Ranking de variables -En base al análisis preliminar, las variables más influyentes para el análisis comparativo son: +En base al análisis preliminar, las variables más influyentes para el análisis comparativo son: -1. `characteristics` - Detalles técnicos del producto. -2. `details` - Información estructurada y semiestructurada del producto. -3. `category` - Segmentación de productos según género y propósito. +1. `characteristics` - Detalles técnicos del producto. +2. `details` - Información estructurada y semiestructurada del producto. +3. `category` - Segmentación de productos según género y propósito. +4. `regularPrice` - Precio del producto sin descuento. +5. `undiscounted_price` - Precio del producto después de aplicar descuento (si aplica). +6. `store` - Tienda que vende el producto. +7. `manufacturer` - Empresa/Marca del producto. +8. `gender` - Género del público objetivo del producto. ## Análisis exploratorio ### Variables categóricas más relevantes -- **Categorías más frecuentes en `store`**: - - Adidas: 40%. - - Nike: 35%. - - Nation Runner: 25%. - -### Distribución de precios -- **`regularPrice`**: - - Rango: $150,000 - $600,000 COP. - - Promedio: $380,000 COP. +- **Categorías más frecuentes en `store`**: + - Adidas: 59%. + - Nike: 30%. + - Nation Runner: 11%. ### Relación entre `category` y `regularPrice` -- Se explorarán las relaciones entre variables como `category` y `regularPrice` para identificar patrones relevantes en las recomendaciones. Los embeddings se construirán utilizando modelos LLM para capturar similitudes contextuales. -- Los productos en la categoría `Mujer • Running` tienden a estar en el rango superior de precios. +- Se explorarán las relaciones entre variables como `category` y `regularPrice` para identificar patrones relevantes en las recomendaciones. Los embeddings se construirán utilizando modelos LLM para capturar similitudes contextuales. ## Visualizaciones -1. **Distribución de precios**: - - Histograma mostrando la densidad de precios. -2. **Análisis de categorías**: - - Gráfico de barras con la proporción de productos por tienda. -3. **Mapa de calor de correlaciones**: - - Muestra una correlación moderada entre `undiscounted_price` y `regularPrice`. +1. **Análisis de categorías**: + - Gráficos de barras con la proporción de distintas características de los datos. ## Conclusiones -- Las categorías y características técnicas (`details` y `characteristics`) son clave para el análisis comparativo. -- Es necesario continuar depurando valores faltantes y normalizando precios para futuros análisis. \ No newline at end of file +- Las categorías y características técnicas (`details` y `characteristics`) son clave para el análisis comparativo. +- Es necesario normalizar distintos valores, como los precios, para futuros análisis. \ No newline at end of file diff --git a/scripts/eda/eda.ipynb b/scripts/eda/eda.ipynb index b24e5811e..d78e85f32 100644 --- a/scripts/eda/eda.ipynb +++ b/scripts/eda/eda.ipynb @@ -305,6 +305,116 @@ "print(columns)" ] }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Porcentajes de los elementos en la columna 'store':\n", + " Count Percentage\n", + "store \n", + "adidas 519 58.710407\n", + "nacionRunner 263 29.751131\n", + "nike 102 11.538462\n", + "\n", + "Porcentajes de los elementos en la columna 'manufacturer':\n", + " Count Percentage\n", + "manufacturer \n", + "adidas 519 58.710407\n", + "Asics 117 13.235294\n", + "nike 102 11.538462\n", + "Hoka 48 5.429864\n", + "Brooks 36 4.072398\n", + "New Balance 36 4.072398\n", + "On Running 7 0.791855\n", + "Skechers 7 0.791855\n", + "361° 4 0.452489\n", + "NNormal 4 0.452489\n", + "Adidas 4 0.452489\n", + "\n", + "Porcentajes de los elementos en la columna 'category':\n", + " Count Percentage\n", + "category \n", + "Mujer • Running 236 38.003221\n", + "Hombre • Running 210 33.816425\n", + "Running 61 9.822866\n", + "Calzado de running en carretera para hombre 24 3.864734\n", + "Calzado de running en carretera para mujer 15 2.415459\n", + "Calzado de correr en carretera para hombre 12 1.932367\n", + "Calzado de correr en pavimento para mujer 11 1.771337\n", + "Calzado de correr en carretera para mujer 11 1.771337\n", + "Calzado para hombre 5 0.805153\n", + "Mujer • adidas by Stella McCartney 5 0.805153\n", + "Calzado de running en carretera para niños grandes 4 0.644122\n", + "Mujer • TERREX 4 0.644122\n", + "Calzado de trail running para hombre 3 0.483092\n", + "Calzado para niños de preescolar 2 0.322061\n", + "Calzado de correr en pavimento para hombre 2 0.322061\n", + "Calzado de carrera en carretera para mujer 2 0.322061\n", + "Calzado de trail running impermeables para mujer 2 0.322061\n", + "Calzado de running en carretera acondicionado p... 1 0.161031\n", + "Calzado de carrera en carretera 1 0.161031\n", + "Calzado de running en carretera impermeable par... 1 0.161031\n", + "TERREX 1 0.161031\n", + "Calzado de trail running para mujer 1 0.161031\n", + "Calzado de running en carretera impermeable par... 1 0.161031\n", + "Calzado de trail running impermeables para hombre 1 0.161031\n", + "Calzado de running en carretera resistente a la... 1 0.161031\n", + "Calzado de carrera en carretera para hombre 1 0.161031\n", + "Hombre • TERREX 1 0.161031\n", + "Calzado de caminata para mujer 1 0.161031\n", + "adidas by Stella McCartney 1 0.161031\n", + "\n", + "Porcentajes de los elementos en la columna 'createdAt':\n", + " Count Percentage\n", + "createdAt \n", + "{'_seconds': 1731975445, '_nanoseconds': 427000... 500 56.561086\n", + "{'_seconds': 1732123040, '_nanoseconds': 262000... 263 29.751131\n", + "{'_seconds': 1731965768, '_nanoseconds': 30000000} 102 11.538462\n", + "{'_seconds': 1731975447, '_nanoseconds': 767000... 19 2.149321\n", + "\n", + "Porcentajes de los elementos en la columna 'gender':\n", + " Count Percentage\n", + "gender \n", + "Hombre 206 57.865169\n", + "Mujer 144 40.449438\n", + "Niño 6 1.685393\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "def calculate_percentage(df, column_name):\n", + " \"\"\"\n", + " Calcula y muestra los porcentajes de cada elemento en una columna específica.\n", + " \n", + " :param df: DataFrame con los datos.\n", + " :param column_name: Nombre de la columna.\n", + " \"\"\"\n", + " if column_name in df.columns:\n", + " counts = df[column_name].value_counts()\n", + " percentages = (counts / counts.sum()) * 100\n", + " percentage_df = pd.DataFrame({\n", + " 'Count': counts,\n", + " 'Percentage': percentages\n", + " })\n", + " print(f\"\\nPorcentajes de los elementos en la columna '{column_name}':\")\n", + " print(percentage_df)\n", + " return percentage_df\n", + " else:\n", + " print(f\"La columna '{column_name}' no existe en el DataFrame.\")\n", + " return None\n", + "\n", + "for column_name in [\"store\", \"manufacturer\", \"category\", \"createdAt\", \"gender\"]:\n", + " calculate_percentage(df, column_name)" + ] + }, { "cell_type": "code", "execution_count": 16, From f32148ead7cca389d5efeafaff8505be350dd073 Mon Sep 17 00:00:00 2001 From: Juan Correa Date: Thu, 5 Dec 2024 23:07:30 -0500 Subject: [PATCH 27/84] =?UTF-8?q?notebook=20de=20exploraci=C3=B3n=20de=20e?= =?UTF-8?q?tiquetado?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- Notebooks/preprocessing.ipynb | 540 ++++++++++++++++++++++++++++++++++ 1 file changed, 540 insertions(+) create mode 100644 Notebooks/preprocessing.ipynb diff --git a/Notebooks/preprocessing.ipynb b/Notebooks/preprocessing.ipynb new file mode 100644 index 000000000..297620ba6 --- /dev/null +++ b/Notebooks/preprocessing.ipynb @@ -0,0 +1,540 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "from llama_models.llama3.reference_impl.generation import Llama\n", + "from llama_models.llama3.api.datatypes import UserMessage, SystemMessage\n", + "import os\n", + "import sys\n", + "from llama_models.llama3.api.datatypes import (\n", + " UserMessage,\n", + " SystemMessage,\n", + " CompletionMessage,\n", + " StopReason,\n", + ")\n", + "from llama_models.llama3.reference_impl.generation import Llama\n", + "import pandas as pd\n", + "from io import StringIO\n", + "import numpy as np\n", + "import re\n", + "import requests\n", + "import ollama\n", + "import random\n", + "from tiktoken import get_encoding" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'labels_with_definitions = [\\n (\"Peso\", \"Indica la ligereza de la zapatilla, generalmente expresado en gramos. El peso puede influir en el rendimiento y la comodidad durante la carrera.\"),\\n (\"Material del upper (parte superior)\", \"Describe los materiales utilizados en la parte superior de la zapatilla, como malla, cuero sintético o tejidos técnicos, que afectan la transpirabilidad, flexibilidad y soporte.\"),\\n (\"Material de la mediasuela\", \"Se refiere a los compuestos empleados en la entresuela, como espumas EVA o tecnologías propietarias, que proporcionan amortiguación y absorción de impactos.\"),\\n (\"Suela exterior\", \"Detalla el tipo de goma o caucho utilizado en la suela y el diseño del patrón de tracción, aspectos que influyen en el agarre y la durabilidad en diversas superficies.\"),\\n (\"Sistema de amortiguación\", \"Especifica las tecnologías o materiales destinados a reducir el impacto durante la pisada, contribuyendo al confort y la protección de las articulaciones.\"),\\n (\"Drop (diferencial talón-punta)\", \"Indica la diferencia de altura entre el talón y la punta de la zapatilla, medida en milímetros. Un drop alto suele ofrecer mayor amortiguación en el talón, mientras que un drop bajo promueve una pisada más natural.\"),\\n (\"Tipo de pisada\", \"Clasifica la zapatilla según su adecuación para diferentes tipos de pisada: neutra, pronadora o supinadora. Esto es esencial para elegir un calzado que se adapte a la biomecánica del corredor.\"),\\n (\"Tipo de uso\", \"Define el propósito principal de la zapatilla, como entrenamiento diario, competición, trail running o uso casual, lo que orienta sobre su diseño y funcionalidades específicas.\"),\\n (\"Género\", \"Indica si la zapatilla está diseñada para hombres, mujeres o es un modelo unisex, considerando diferencias anatómicas y de tamaño.\"),\\n (\"Tallas disponibles\", \"Especifica el rango de tallas en las que se ofrece la zapatilla, asegurando que el corredor pueda encontrar un ajuste adecuado.\"),\\n (\"Anchura\", \"Algunas marcas ofrecen diferentes anchos (estrecho, estándar, ancho) para adaptarse a diversas morfologías del pie.\"),\\n (\"Precio\", \"Proporciona el costo de la zapatilla, un factor determinante en la decisión de compra.\"),\\n (\"Tecnologías adicionales\", \"Incluye características especiales como impermeabilidad, reflectividad, sistemas de ajuste personalizados o elementos de estabilidad que mejoran la funcionalidad del calzado.\"),\\n]'" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "'''labels_with_definitions = [\n", + " (\"Peso\", \"Indica la ligereza de la zapatilla, generalmente expresado en gramos. El peso puede influir en el rendimiento y la comodidad durante la carrera.\"),\n", + " (\"Material del upper (parte superior)\", \"Describe los materiales utilizados en la parte superior de la zapatilla, como malla, cuero sintético o tejidos técnicos, que afectan la transpirabilidad, flexibilidad y soporte.\"),\n", + " (\"Material de la mediasuela\", \"Se refiere a los compuestos empleados en la entresuela, como espumas EVA o tecnologías propietarias, que proporcionan amortiguación y absorción de impactos.\"),\n", + " (\"Suela exterior\", \"Detalla el tipo de goma o caucho utilizado en la suela y el diseño del patrón de tracción, aspectos que influyen en el agarre y la durabilidad en diversas superficies.\"),\n", + " (\"Sistema de amortiguación\", \"Especifica las tecnologías o materiales destinados a reducir el impacto durante la pisada, contribuyendo al confort y la protección de las articulaciones.\"),\n", + " (\"Drop (diferencial talón-punta)\", \"Indica la diferencia de altura entre el talón y la punta de la zapatilla, medida en milímetros. Un drop alto suele ofrecer mayor amortiguación en el talón, mientras que un drop bajo promueve una pisada más natural.\"),\n", + " (\"Tipo de pisada\", \"Clasifica la zapatilla según su adecuación para diferentes tipos de pisada: neutra, pronadora o supinadora. Esto es esencial para elegir un calzado que se adapte a la biomecánica del corredor.\"),\n", + " (\"Tipo de uso\", \"Define el propósito principal de la zapatilla, como entrenamiento diario, competición, trail running o uso casual, lo que orienta sobre su diseño y funcionalidades específicas.\"),\n", + " (\"Género\", \"Indica si la zapatilla está diseñada para hombres, mujeres o es un modelo unisex, considerando diferencias anatómicas y de tamaño.\"),\n", + " (\"Tallas disponibles\", \"Especifica el rango de tallas en las que se ofrece la zapatilla, asegurando que el corredor pueda encontrar un ajuste adecuado.\"),\n", + " (\"Anchura\", \"Algunas marcas ofrecen diferentes anchos (estrecho, estándar, ancho) para adaptarse a diversas morfologías del pie.\"),\n", + " (\"Precio\", \"Proporciona el costo de la zapatilla, un factor determinante en la decisión de compra.\"),\n", + " (\"Tecnologías adicionales\", \"Incluye características especiales como impermeabilidad, reflectividad, sistemas de ajuste personalizados o elementos de estabilidad que mejoran la funcionalidad del calzado.\"),\n", + "]'''" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "labels_with_definitions = [\n", + " (\"Weight\", \"Indicates the lightness of the shoe, usually expressed in grams. Weight can influence performance and comfort during running.\"),\n", + " (\"Upper Material\", \"Describes the materials used in the shoe's upper part, such as mesh, synthetic leather, or technical fabrics, which affect breathability, flexibility, and support.\"),\n", + " (\"Midsole Material\", \"Refers to the compounds used in the midsole, such as EVA foams or proprietary technologies, which provide cushioning and shock absorption.\"),\n", + " (\"Outsole\", \"Details the type of rubber or material used in the sole and the traction pattern design, which influence grip and durability on various surfaces.\"),\n", + " (\"Cushioning System\", \"Specifies the technologies or materials aimed at reducing impact during strides, contributing to comfort and joint protection.\"),\n", + " (\"Drop (heel-to-toe differential)\", \"Indicates the height difference between the heel and the toe of the shoe, measured in millimeters. A higher drop typically offers more heel cushioning, while a lower drop promotes a more natural stride.\"),\n", + " (\"Pronation Type\", \"Classifies the shoe according to its suitability for different pronation types: neutral, overpronation, or supination. This is essential for choosing footwear that matches the runner's biomechanics.\"),\n", + " (\"Usage Type\", \"Defines the primary purpose of the shoe, such as daily training, racing, trail running, or casual use, guiding its specific design and features.\"),\n", + " (\"Gender\", \"Indicates whether the shoe is designed for men, women, or is a unisex model, considering anatomical and sizing differences.\"),\n", + " (\"Available Sizes\", \"Specifies the range of sizes in which the shoe is offered, ensuring the runner can find a suitable fit.\"),\n", + " (\"Width\", \"Some brands offer different widths (narrow, standard, wide) to accommodate various foot shapes.\"),\n", + " (\"Price\", \"Provides the cost of the shoe, a determining factor in purchasing decisions.\"),\n", + " (\"Additional Technologies\", \"Includes special features such as waterproofing, reflectivity, customized fit systems, or stability elements that enhance the shoe's functionality.\"),\n", + "]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Funciones" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def transformar_texto(texto, marca):\n", + " if texto is None or (isinstance(texto, float) and np.isnan(texto)):\n", + " return texto\n", + " \n", + " if marca.lower() == \"adidas\":\n", + " # Transformación original para adidas\n", + " if isinstance(texto, (list, np.ndarray)):\n", + " texto = \", \".join(map(str, texto))\n", + " else:\n", + " texto = str(texto)\n", + " texto = texto.strip(\"[]\")\n", + " texto = re.sub(r\",\\s*\", '} {', texto)\n", + " texto = '{' + texto + '}'\n", + " return texto\n", + " \n", + " elif marca.lower() == \"nike\":\n", + " # Transformación específica para nike\n", + " if isinstance(texto, list):\n", + " # Elimina claves con valores irrelevantes\n", + " texto_limpio = [\n", + " {k.strip(): v.strip() for k, v in d.items() if k.strip() not in ['\\xa0']}\n", + " for d in texto\n", + " if isinstance(d, dict)\n", + " ]\n", + " # Filtra elementos vacíos o irrelevantes\n", + " texto_limpio = [d for d in texto_limpio if d]\n", + " return texto_limpio\n", + " return texto # Si no es lista, regresa el texto original\n", + "\n", + " else:\n", + " raise ValueError(f\"Marca '{marca}' no reconocida. Usa 'adidas' o 'nike'.\")\n", + "\n", + "def obtener_respuesta_ollama(prompt):\n", + " response = ollama.chat(\n", + " model=\"llama3.2:latest\",\n", + " messages = [\n", + " {\n", + " \"role\":\"user\",\n", + " \"content\": prompt\n", + " } \n", + " ]\n", + " )\n", + " # La respuesta es un generador; concatenamos las partes\n", + " return response\n", + "\n", + "\n", + "\n", + "def generate_prompt_ollama(product, labels_with_definitions):\n", + " labels = [label for label, _ in labels_with_definitions]\n", + " prompt = f\"\"\"\n", + " You are an assistant specialized in extracting structured information from product descriptions and organizing it into tables.\n", + " Your task is to extract the following information from the product details and label it according to the provided labels: {', '.join(labels)}.\n", + " Each label has the following definition to help guide your extraction:\n", + "\n", + " {''.join([f'- {label}: {definition}\\n' for label, definition in labels_with_definitions])}\n", + "\n", + " If a label does not have a clear match in the details, complete its value with \"null\".\n", + "\n", + " Product information:\n", + " - Details: {product['details']}\n", + " - Description: {product['description']}\n", + " - Category: {product['category']}\n", + "\n", + " Provide the information in a table with columns corresponding to each label. \n", + " The table must include **two complete rows**:\n", + " 1. The first row contains the label names.\n", + " 2. The second row contains the corresponding labeled values.\n", + "\n", + " Expected response format:\n", + " | {' | '.join(labels)} |\n", + " | {' | '.join(['---'] * len(labels))} |\n", + " | value_1 | value_2 | ... |\n", + " \n", + " Example:\n", + " If the labels are \"details\", \"description\", and \"category\", and the extracted values are \n", + " \"Comfortable sneakers\", \"Made with recycled materials\", and \"Footwear\", respectively, \n", + " your response should be:\n", + "\n", + " | details | description | category |\n", + " | --- | --- | --- |\n", + " | Comfortable sneakers | Made with recycled materials | Footwear |\n", + "\n", + " Remember:\n", + " - The response must contain two complete rows.\n", + " - Only respond with the table and **do not include additional text**.\n", + "\n", + " Now, extract and structure the information for the provided product:\n", + "\n", + " | {' | '.join(labels)} |\n", + " | {' | '.join(['---'] * len(labels))} |\n", + " |\"\"\"\n", + " return prompt.strip()\n", + "\n", + "# Tokenizer function (using tiktoken for GPT-like models)\n", + "def count_tokens(text):\n", + " try:\n", + " encoding = get_encoding(\"cl100k_base\") # Example encoding for GPT-like models\n", + " return len(encoding.encode(text))\n", + " except Exception:\n", + " return len(text.split()) # Fallback: approximate by word count\n", + "# Función de simulación de Monte Carlo corregida\n", + "def monte_carlo_simulation(products, models, iterations=1000, num_products=None):\n", + " results = {}\n", + " \n", + " for model_name, model_info in models.items():\n", + " tokens_per_product = {}\n", + " costs_per_product = {}\n", + " \n", + " for _ in range(iterations):\n", + " # Muestra una fracción de los productos si se especifica\n", + " if num_products is not None and num_products < len(products):\n", + " sampled_products = random.sample(products, num_products)\n", + " else:\n", + " sampled_products = products\n", + "\n", + " for product in sampled_products:\n", + " product_id = product.get('id', id(product)) # Usamos un identificador único para cada producto\n", + " prompt = generate_prompt_ollama(product, labels_with_definitions)\n", + " tokens = count_tokens(prompt)\n", + " \n", + " # Verifica si el número de tokens excede la ventana de contexto\n", + " if tokens > model_info['context_window']*1000:\n", + " print(f\"Advertencia: El prompt excede la ventana de contexto para el modelo {model_name}\")\n", + " # Puedes manejar este caso según necesites (e.g., omitir, truncar)\n", + " continue\n", + " \n", + " cost = (tokens / 1000) * model_info['cost_in']\n", + " \n", + " # Actualiza los máximos y mínimos por producto\n", + " if product_id not in tokens_per_product:\n", + " tokens_per_product[product_id] = {'max': tokens, 'min': tokens}\n", + " costs_per_product[product_id] = {'max': cost, 'min': cost}\n", + " else:\n", + " tokens_per_product[product_id]['max'] = max(tokens_per_product[product_id]['max'], tokens)\n", + " tokens_per_product[product_id]['min'] = min(tokens_per_product[product_id]['min'], tokens)\n", + " costs_per_product[product_id]['max'] = max(costs_per_product[product_id]['max'], cost)\n", + " costs_per_product[product_id]['min'] = min(costs_per_product[product_id]['min'], cost)\n", + " \n", + " # Después de todas las iteraciones, obtenemos los máximos y mínimos globales\n", + " max_tokens = max([data['max'] for data in tokens_per_product.values()], default=0)\n", + " min_tokens = min([data['min'] for data in tokens_per_product.values()], default=0)\n", + " max_cost = max([data['max'] for data in costs_per_product.values()], default=0)\n", + " min_cost = min([data['min'] for data in costs_per_product.values()], default=0)\n", + " \n", + " results[model_name] = {\n", + " 'max_tokens': max_tokens,\n", + " 'min_tokens': min_tokens,\n", + " 'max_cost': max_cost,\n", + " 'min_cost': min_cost,\n", + " }\n", + " return results" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "def procesar_respuesta(respuesta_texto, etiquetas):\n", + " try:\n", + " # Buscar el inicio de la tabla\n", + " inicio_tabla = respuesta_texto.find('|')\n", + " if inicio_tabla != -1:\n", + " # Extraer la tabla desde el primer '|'\n", + " tabla_texto = respuesta_texto[inicio_tabla:].strip()\n", + " # Extraer solo las líneas que contienen '|'\n", + " lineas = tabla_texto.split('\\n')\n", + " lineas_tabla = []\n", + " for linea in lineas:\n", + " if '|' in linea:\n", + " # Eliminar los '|' iniciales y finales y espacios extra\n", + " linea = linea.strip().strip('|').strip()\n", + " lineas_tabla.append(linea)\n", + " else:\n", + " # Detenerse si la línea no contiene '|'\n", + " break\n", + " tabla_completa = '\\n'.join(lineas_tabla)\n", + " # Convertir la tabla Markdown a un DataFrame\n", + " df = pd.read_csv(StringIO(tabla_completa), sep='|', engine='python', skipinitialspace=True)\n", + " # Limpiar nombres de columnas y datos\n", + " df.columns = [col.strip() for col in df.columns]\n", + " for col in df.columns:\n", + " if df[col].dtype == object:\n", + " df[col] = df[col].str.strip()\n", + " # Resetear el índice\n", + " df = df.reset_index(drop=True)\n", + " return df\n", + " else:\n", + " print(\"No se encontró una tabla en la respuesta.\")\n", + " return None\n", + " except Exception as e:\n", + " print(f\"Error al procesar la tabla: {e}\")\n", + " return None\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Lectura de datos" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200\n" + ] + } + ], + "source": [ + "url =\"https://scraping-firestore-178159629911.us-central1.run.app//v1/scraping/\"\n", + "\n", + "response = requests.get(url)\n", + "\n", + "if response.status_code == 200:\n", + " data = response.json()\n", + " print(response.status_code)\n", + "else:\n", + " print(f'Error: {response.status_code}')\n", + "\n", + "df_raw = pd.DataFrame(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Clasificacion" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "df_adidas = df_raw[df_raw['store'] == 'adidas']" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_15108\\354877031.py:2: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))\n" + ] + } + ], + "source": [ + "# Lista de descripciones de productos\n", + "df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['id', 'details', 'store', 'manufacturer', 'url', 'title',\n", + " 'regularPrice', 'undiscounted_price', 'description', 'category',\n", + " 'createdAt', 'characteristics', 'gender', 'details_transformado'],\n", + " dtype='object')" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_adidas.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "# Crear un diccionario con las llaves deseadas desde todo el DataFrame\n", + "productos = [\n", + " {\n", + " \"id\": row['id'],\n", + " \"regularPrice\" : row[\"regularPrice\"],\n", + " \"undiscounted_price\": row[\"undiscounted_price\"],\n", + " \"details\": row['details_transformado'],\n", + " \"description\": row['description'],\n", + " \"category\": row['category']\n", + " }\n", + " for _, row in df_adidas.iterrows() # Recorre todo el DataFrame\n", + " if row['details_transformado'] != '{}' # Filtra donde los detalles no estén vacíos\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'id': '0AqheRhKT2lhm7puBVCF',\n", + " 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de tejido adidas Primeknit} {Ajuste suave en el talón} {Sistema Linear Energy Push} {Mediasuela BOOST} {Peso: 289 g (Talla CO 37)} {Suela Stretchweb con caucho Continental™ Better Rubber} {El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado} {Color del artículo: Core Black / Core Black / Cloud White} {Número de artículo: GX5591}',\n", + " 'description': 'Hemos analizado 1.200.000 pisadas para que Ultraboost evolucione y mejore su ajuste para adaptarse 360° al pie femenino. Y aún hay más. Hemos rediseñado la suela de caucho. Probamos cientos de prototipos. Hasta que comprobamos las mejoras en su rendimiento. ¿El resultado? Un 4 % más de energía que los Ultraboost 21 para mujer. El ajuste en el área del talón del exterior adidas PRIMEKNIT se diseñó para evitar que el talón se deslice y se formen ampollas. Estarás corriendo sobre una mediasuela BOOST con tecnología Linear Energy Push. El exterior de este calzado está confeccionado con hilo que contiene un 50% de Parley Ocean Plastic, un material que ha sido recuperado de residuos plásticos recogidos en islas, playas, comunidades costeras y costas evitando que contaminen nuestros océanos.',\n", + " 'category': 'Mujer • Running'}]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "productos[1:2]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'id': '0AqheRhKT2lhm7puBVCF', 'regularPrice': '$799.950', 'undiscounted_price': 'NA', 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de tejido adidas Primeknit} {Ajuste suave en el talón} {Sistema Linear Energy Push} {Mediasuela BOOST} {Peso: 289 g (Talla CO 37)} {Suela Stretchweb con caucho Continental™ Better Rubber} {El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado} {Color del artículo: Core Black / Core Black / Cloud White} {Número de artículo: GX5591}', 'description': 'Hemos analizado 1.200.000 pisadas para que Ultraboost evolucione y mejore su ajuste para adaptarse 360° al pie femenino. Y aún hay más. Hemos rediseñado la suela de caucho. Probamos cientos de prototipos. Hasta que comprobamos las mejoras en su rendimiento. ¿El resultado? Un 4 % más de energía que los Ultraboost 21 para mujer. El ajuste en el área del talón del exterior adidas PRIMEKNIT se diseñó para evitar que el talón se deslice y se formen ampollas. Estarás corriendo sobre una mediasuela BOOST con tecnología Linear Energy Push. El exterior de este calzado está confeccionado con hilo que contiene un 50% de Parley Ocean Plastic, un material que ha sido recuperado de residuos plásticos recogidos en islas, playas, comunidades costeras y costas evitando que contaminen nuestros océanos.', 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Price | Additional Technologies |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 289 g | adidas Primeknit | Mediasuela BOOST | Suela Stretchweb con caucho Continental™ Better Rubber | Sistema Linear Energy Push | null | neutral | Daily training | mujer | CO 37 - ?? | null | 4% más de energía que Ultraboost 21 para mujer | El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado |\n", + "\n", + "------------------------\n", + "\n", + "{'id': '0IgYTzUHkE7zIdcVyFCK', 'regularPrice': '$1.049.950', 'undiscounted_price': '$629.970', 'details': '{Ajuste clásico} {Cierre de cordones} {Parte superior de malla técnica} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch para un ajuste seguro} {Peso: 166 g (Talla COL 36 1/2)} {Caída mediasuela: 6 mm (talón: 32 mm / antepié: 26 mm)} {Suela de caucho Continental™} {Contiene al menos un 20 % de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG8206}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Mujer • Running'}\n", + "Respuesta del modelo:\n", + "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Price | Additional Technologies |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 166 g | Parte superior de malla técnica | Amortiguación Lightstrike Pro | Suela de caucho Continental™ | Contains at least a 20% recycled material | 6 mm (talón: 32 mm / antepié: 26 mm) | Neutral | Daily training | Women | Talla COL 36 1/2, null | null | 166 g | Contains al menos un 20 % de material reciclado |\n", + "\n", + "------------------------\n", + "\n" + ] + } + ], + "source": [ + "dfs = []\n", + "for producto in productos:\n", + " prompt = generate_prompt_ollama(producto, labels_with_definitions)\n", + " respuesta = obtener_respuesta_ollama(prompt)\n", + " print(producto)\n", + " print(\"Respuesta del modelo:\")\n", + " print(respuesta[\"message\"][\"content\"])\n", + " print(\"\\n------------------------\\n\")\n", + " df = procesar_respuesta(respuesta[\"message\"][\"content\"], labels_with_definitions)\n", + " if df is not None:\n", + " attribute_columns = df.columns[:-3]\n", + " dfs = []\n", + " df['id'] = producto['id']\n", + " df['regularPrice'] = producto['regularPrice']\n", + " df['undiscounted_price'] = producto['undiscounted_price']\n", + " df = df[~df[attribute_columns].eq('---').all(axis=1)]\n", + " df = df.dropna(how='all')\n", + " dfs.append(df)\n", + " \n", + " else:\n", + " print(\"No se pudo extraer la tabla.\\n\")" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "if dfs:\n", + " df_total = pd.concat(dfs, ignore_index=True)\n", + "else:\n", + " print(\"No se pudo crear el DataFrame total.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "output_path = \"../src/comparative_analysis/database/adidas_etiquetado.xlsx\"\n", + "df_total.to_excel(output_path, index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From b19670d06cb175bca86bf860bbf04d79e25f94ba Mon Sep 17 00:00:00 2001 From: Juan Correa Date: Sun, 8 Dec 2024 19:53:23 -0500 Subject: [PATCH 28/84] preprocessiong nike and nr --- Notebooks/preprocessing.ipynb | 902 +++++++++++++++++++++++++++++----- 1 file changed, 786 insertions(+), 116 deletions(-) diff --git a/Notebooks/preprocessing.ipynb b/Notebooks/preprocessing.ipynb index 297620ba6..a1edf0a85 100644 --- a/Notebooks/preprocessing.ipynb +++ b/Notebooks/preprocessing.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,9 @@ "import requests\n", "import ollama\n", "import random\n", - "from tiktoken import get_encoding" + "from tiktoken import get_encoding\n", + "import time\n", + "import httpx\n" ] }, { @@ -64,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -80,7 +82,6 @@ " (\"Gender\", \"Indicates whether the shoe is designed for men, women, or is a unisex model, considering anatomical and sizing differences.\"),\n", " (\"Available Sizes\", \"Specifies the range of sizes in which the shoe is offered, ensuring the runner can find a suitable fit.\"),\n", " (\"Width\", \"Some brands offer different widths (narrow, standard, wide) to accommodate various foot shapes.\"),\n", - " (\"Price\", \"Provides the cost of the shoe, a determining factor in purchasing decisions.\"),\n", " (\"Additional Technologies\", \"Includes special features such as waterproofing, reflectivity, customized fit systems, or stability elements that enhance the shoe's functionality.\"),\n", "]\n" ] @@ -94,14 +95,23 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ + "\n", + "\n", + "def remove_html_tags(text):\n", + " if text:\n", + " text = re.sub(r\"<.*?>\", \"\", text) # Remueve etiquetas HTML\n", + " text = text.replace(' ', ' ')\n", + " text = text.strip()\n", + " return text\n", + "\n", "def transformar_texto(texto, marca):\n", " if texto is None or (isinstance(texto, float) and np.isnan(texto)):\n", " return texto\n", - " \n", + "\n", " if marca.lower() == \"adidas\":\n", " # Transformación original para adidas\n", " if isinstance(texto, (list, np.ndarray)):\n", @@ -112,36 +122,82 @@ " texto = re.sub(r\",\\s*\", '} {', texto)\n", " texto = '{' + texto + '}'\n", " return texto\n", - " \n", + "\n", " elif marca.lower() == \"nike\":\n", - " # Transformación específica para nike\n", " if isinstance(texto, list):\n", - " # Elimina claves con valores irrelevantes\n", - " texto_limpio = [\n", - " {k.strip(): v.strip() for k, v in d.items() if k.strip() not in ['\\xa0']}\n", - " for d in texto\n", - " if isinstance(d, dict)\n", - " ]\n", - " # Filtra elementos vacíos o irrelevantes\n", - " texto_limpio = [d for d in texto_limpio if d]\n", - " return texto_limpio\n", - " return texto # Si no es lista, regresa el texto original\n", + " # Si es lista de diccionarios (details)\n", + " if all(isinstance(item, dict) for item in texto):\n", + " texto_limpio = []\n", + " for d in texto:\n", + " if isinstance(d, dict):\n", + " d_limpio = {}\n", + " for k, v in d.items():\n", + " k_clean = k.strip() if k else \"\"\n", + " v_clean = remove_html_tags(v) if isinstance(v, str) else v\n", + " # Si clave y valor no están vacíos\n", + " if k_clean and v_clean:\n", + " # Aquí verificamos si la info es irrelevante: \n", + " # Caso en el que el valor es igual a la clave (sin html), \n", + " # Ejemplo: { \"Datos del producto\": \"Datos del producto\" }\n", + " # No aporta información adicional, así que no la incluimos.\n", + " if v_clean != k_clean:\n", + " d_limpio[k_clean] = v_clean\n", + "\n", + " if d_limpio:\n", + " texto_limpio.append(d_limpio)\n", + "\n", + " # Si después de limpiar no quedó nada (porque todo era texto irrelevante),\n", + " # devolvemos lista vacía\n", + " return texto_limpio\n", + "\n", + " else:\n", + " # Si es lista de strings (characteristics)\n", + " seen = set()\n", + " texto_limpio = []\n", + " for s in texto:\n", + " if s and isinstance(s, str):\n", + " s_clean = remove_html_tags(s)\n", + " if s_clean and s_clean not in seen:\n", + " seen.add(s_clean)\n", + " texto_limpio.append(s_clean)\n", + " return texto_limpio\n", + "\n", + " else:\n", + " # Si no es lista (solo string)\n", + " if isinstance(texto, str):\n", + " return remove_html_tags(texto)\n", + " return texto\n", "\n", " else:\n", " raise ValueError(f\"Marca '{marca}' no reconocida. Usa 'adidas' o 'nike'.\")\n", "\n", - "def obtener_respuesta_ollama(prompt):\n", - " response = ollama.chat(\n", - " model=\"llama3.2:latest\",\n", - " messages = [\n", - " {\n", - " \"role\":\"user\",\n", - " \"content\": prompt\n", - " } \n", - " ]\n", - " )\n", - " # La respuesta es un generador; concatenamos las partes\n", - " return response\n", + "\n", + "def obtener_respuesta_ollama(prompt, max_retries=3, delay=5):\n", + " attempt = 0\n", + " while attempt < max_retries:\n", + " try:\n", + " response = ollama.chat(\n", + " model=\"llama3.2:latest\",\n", + " messages = [\n", + " {\n", + " \"role\":\"user\",\n", + " \"content\": prompt\n", + " } \n", + " ]\n", + " )\n", + " # Si llega aquí, la respuesta se obtuvo exitosamente\n", + " return response\n", + " except httpx.HTTPError as e:\n", + " attempt += 1\n", + " print(f\"Error en la solicitud: {e}. Reintento {attempt} de {max_retries} en {delay} segundos...\")\n", + " time.sleep(delay)\n", + " \n", + " # Si sale del while sin retornar, significa que falló en todos los intentos\n", + " raise RuntimeError(f\"No se pudo obtener respuesta de Ollama después de {max_retries} intentos.\")\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -160,6 +216,7 @@ " - Details: {product['details']}\n", " - Description: {product['description']}\n", " - Category: {product['category']}\n", + " - Characteristics: {product['characteristics']}\n", "\n", " Provide the information in a table with columns corresponding to each label. \n", " The table must include **two complete rows**:\n", @@ -253,7 +310,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 94, "metadata": {}, "outputs": [], "source": [ @@ -261,34 +318,85 @@ " try:\n", " # Buscar el inicio de la tabla\n", " inicio_tabla = respuesta_texto.find('|')\n", - " if inicio_tabla != -1:\n", - " # Extraer la tabla desde el primer '|'\n", - " tabla_texto = respuesta_texto[inicio_tabla:].strip()\n", - " # Extraer solo las líneas que contienen '|'\n", - " lineas = tabla_texto.split('\\n')\n", - " lineas_tabla = []\n", - " for linea in lineas:\n", - " if '|' in linea:\n", - " # Eliminar los '|' iniciales y finales y espacios extra\n", - " linea = linea.strip().strip('|').strip()\n", - " lineas_tabla.append(linea)\n", - " else:\n", - " # Detenerse si la línea no contiene '|'\n", - " break\n", + " if inicio_tabla == -1:\n", + " print(\"No se encontró una tabla en la respuesta.\")\n", + " return None\n", + "\n", + " # Extraer la tabla desde el primer '|'\n", + " tabla_texto = respuesta_texto[inicio_tabla:].strip()\n", + " # Extraer solo las líneas que contengan '|'\n", + " lineas = tabla_texto.split('\\n')\n", + " lineas_tabla = []\n", + " for linea in lineas:\n", + " if '|' in linea:\n", + " # Eliminar los '|' iniciales y finales y espacios extra\n", + " linea = linea.strip().strip('|').strip()\n", + " lineas_tabla.append(linea)\n", + " else:\n", + " # Detenerse si la línea no contiene '|'\n", + " break\n", + "\n", + " if not lineas_tabla:\n", + " print(\"No se encontraron líneas válidas de tabla.\")\n", + " return None\n", + "\n", + " # Verificar si hay separadores '---'\n", + " tiene_separador = any(\n", + " all(c.strip('-') == '' for c in fila.split('|')) \n", + " for fila in lineas_tabla\n", + " )\n", + "\n", + " # Caso 1: Hay separadores (modo normal de Markdown)\n", + " if tiene_separador:\n", " tabla_completa = '\\n'.join(lineas_tabla)\n", - " # Convertir la tabla Markdown a un DataFrame\n", " df = pd.read_csv(StringIO(tabla_completa), sep='|', engine='python', skipinitialspace=True)\n", - " # Limpiar nombres de columnas y datos\n", + " # Limpiar columnas y datos\n", " df.columns = [col.strip() for col in df.columns]\n", " for col in df.columns:\n", " if df[col].dtype == object:\n", " df[col] = df[col].str.strip()\n", - " # Resetear el índice\n", + " df = df.reset_index(drop=True)\n", + " return df\n", + "\n", + " # Caso 2: No hay separadores\n", + " # Verificar la cantidad de líneas\n", + " if len(lineas_tabla) == 2:\n", + " # La primera línea son los nombres de columnas, la segunda línea datos\n", + " columnas = [c.strip() for c in lineas_tabla[0].split('|')]\n", + " datos = [c.strip() for c in lineas_tabla[1].split('|')]\n", + " df = pd.DataFrame([datos], columns=columnas)\n", + " for col in df.columns:\n", + " if df[col].dtype == object:\n", + " df[col] = df[col].str.strip()\n", + " df = df.reset_index(drop=True)\n", + " return df\n", + " elif len(lineas_tabla) == 1:\n", + " # Solo una línea de datos, usar etiquetas como nombres de columnas\n", + " datos = [c.strip() for c in lineas_tabla[0].split('|')]\n", + " # Ajustar si el número de columnas difiere del número de etiquetas\n", + " if len(etiquetas) != len(datos):\n", + " print(\"Advertencia: El número de etiquetas no coincide con las columnas detectadas. Se ajustará al mínimo.\")\n", + " col_names = etiquetas[:len(datos)]\n", + " else:\n", + " col_names = etiquetas\n", + "\n", + " df = pd.DataFrame([datos], columns=col_names)\n", + " for col in df.columns:\n", + " if df[col].dtype == object:\n", + " df[col] = df[col].str.strip()\n", " df = df.reset_index(drop=True)\n", " return df\n", " else:\n", - " print(\"No se encontró una tabla en la respuesta.\")\n", - " return None\n", + " # Hay más de 2 líneas pero sin separador. Asumimos que la primera es columnas y el resto datos.\n", + " columnas = [c.strip() for c in lineas_tabla[0].split('|')]\n", + " filas_datos = [ [x.strip() for x in fila.split('|')] for fila in lineas_tabla[1:] ]\n", + " df = pd.DataFrame(filas_datos, columns=columnas)\n", + " for col in df.columns:\n", + " if df[col].dtype == object:\n", + " df[col] = df[col].str.strip()\n", + " df = df.reset_index(drop=True)\n", + " return df\n", + "\n", " except Exception as e:\n", " print(f\"Error al procesar la tabla: {e}\")\n", " return None\n" @@ -303,7 +411,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -337,7 +445,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -346,14 +454,14 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_15108\\354877031.py:2: SettingWithCopyWarning: \n", + "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_2256\\354877031.py:2: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", @@ -369,30 +477,7 @@ }, { "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Index(['id', 'details', 'store', 'manufacturer', 'url', 'title',\n", - " 'regularPrice', 'undiscounted_price', 'description', 'category',\n", - " 'createdAt', 'characteristics', 'gender', 'details_transformado'],\n", - " dtype='object')" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_adidas.columns" - ] - }, - { - "cell_type": "code", - "execution_count": 32, + "execution_count": 83, "metadata": {}, "outputs": [], "source": [ @@ -404,7 +489,8 @@ " \"undiscounted_price\": row[\"undiscounted_price\"],\n", " \"details\": row['details_transformado'],\n", " \"description\": row['description'],\n", - " \"category\": row['category']\n", + " \"category\": row['category'],\n", + " \"characteristics\": row['characteristics']\n", " }\n", " for _, row in df_adidas.iterrows() # Recorre todo el DataFrame\n", " if row['details_transformado'] != '{}' # Filtra donde los detalles no estén vacíos\n", @@ -413,49 +499,83 @@ }, { "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'id': '0AqheRhKT2lhm7puBVCF',\n", - " 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de tejido adidas Primeknit} {Ajuste suave en el talón} {Sistema Linear Energy Push} {Mediasuela BOOST} {Peso: 289 g (Talla CO 37)} {Suela Stretchweb con caucho Continental™ Better Rubber} {El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado} {Color del artículo: Core Black / Core Black / Cloud White} {Número de artículo: GX5591}',\n", - " 'description': 'Hemos analizado 1.200.000 pisadas para que Ultraboost evolucione y mejore su ajuste para adaptarse 360° al pie femenino. Y aún hay más. Hemos rediseñado la suela de caucho. Probamos cientos de prototipos. Hasta que comprobamos las mejoras en su rendimiento. ¿El resultado? Un 4 % más de energía que los Ultraboost 21 para mujer. El ajuste en el área del talón del exterior adidas PRIMEKNIT se diseñó para evitar que el talón se deslice y se formen ampollas. Estarás corriendo sobre una mediasuela BOOST con tecnología Linear Energy Push. El exterior de este calzado está confeccionado con hilo que contiene un 50% de Parley Ocean Plastic, un material que ha sido recuperado de residuos plásticos recogidos en islas, playas, comunidades costeras y costas evitando que contaminen nuestros océanos.',\n", - " 'category': 'Mujer • Running'}]" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "productos[1:2]" - ] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 99, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{'id': '0AqheRhKT2lhm7puBVCF', 'regularPrice': '$799.950', 'undiscounted_price': 'NA', 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de tejido adidas Primeknit} {Ajuste suave en el talón} {Sistema Linear Energy Push} {Mediasuela BOOST} {Peso: 289 g (Talla CO 37)} {Suela Stretchweb con caucho Continental™ Better Rubber} {El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado} {Color del artículo: Core Black / Core Black / Cloud White} {Número de artículo: GX5591}', 'description': 'Hemos analizado 1.200.000 pisadas para que Ultraboost evolucione y mejore su ajuste para adaptarse 360° al pie femenino. Y aún hay más. Hemos rediseñado la suela de caucho. Probamos cientos de prototipos. Hasta que comprobamos las mejoras en su rendimiento. ¿El resultado? Un 4 % más de energía que los Ultraboost 21 para mujer. El ajuste en el área del talón del exterior adidas PRIMEKNIT se diseñó para evitar que el talón se deslice y se formen ampollas. Estarás corriendo sobre una mediasuela BOOST con tecnología Linear Energy Push. El exterior de este calzado está confeccionado con hilo que contiene un 50% de Parley Ocean Plastic, un material que ha sido recuperado de residuos plásticos recogidos en islas, playas, comunidades costeras y costas evitando que contaminen nuestros océanos.', 'category': 'Mujer • Running'}\n", + "{'id': '0AqheRhKT2lhm7puBVCF', 'regularPrice': '$799.950', 'undiscounted_price': 'NA', 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de tejido adidas Primeknit} {Ajuste suave en el talón} {Sistema Linear Energy Push} {Mediasuela BOOST} {Peso: 289 g (Talla CO 37)} {Suela Stretchweb con caucho Continental™ Better Rubber} {El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado} {Color del artículo: Core Black / Core Black / Cloud White} {Número de artículo: GX5591}', 'description': 'Hemos analizado 1.200.000 pisadas para que Ultraboost evolucione y mejore su ajuste para adaptarse 360° al pie femenino. Y aún hay más. Hemos rediseñado la suela de caucho. Probamos cientos de prototipos. Hasta que comprobamos las mejoras en su rendimiento. ¿El resultado? Un 4 % más de energía que los Ultraboost 21 para mujer. El ajuste en el área del talón del exterior adidas PRIMEKNIT se diseñó para evitar que el talón se deslice y se formen ampollas. Estarás corriendo sobre una mediasuela BOOST con tecnología Linear Energy Push. El exterior de este calzado está confeccionado con hilo que contiene un 50% de Parley Ocean Plastic, un material que ha sido recuperado de residuos plásticos recogidos en islas, playas, comunidades costeras y costas evitando que contaminen nuestros océanos.', 'category': 'Mujer • Running', 'characteristics': nan}\n", + "Respuesta del modelo:\n", + "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 289 g | adidas Primeknit | Mediasuela BOOST | Suela Stretchweb con caucho Continental Better Rubber | Sistema Linear Energy Push | null | neutral | mujer | 37-47 | standard | contains Parley Ocean Plastic and recycled polyester |\n", + "\n", + "------------------------\n", + "\n", + "{'id': '0IgYTzUHkE7zIdcVyFCK', 'regularPrice': '$1.049.950', 'undiscounted_price': '$629.970', 'details': '{Ajuste clásico} {Cierre de cordones} {Parte superior de malla técnica} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch para un ajuste seguro} {Peso: 166 g (Talla COL 36 1/2)} {Caída mediasuela: 6 mm (talón: 32 mm / antepié: 26 mm)} {Suela de caucho Continental™} {Contiene al menos un 20 % de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG8206}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Mujer • Running', 'characteristics': nan}\n", + "Respuesta del modelo:\n", + "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 166 g | Parte superior de malla técnica | Amortiguación Lightstrike Pro | Suela de caucho Continental™ | Amortiguación Lightstrike Pro | 6 mm (talón: 32 mm / antepié: 26 mm) | Neutral | Daily training, racing, trail running, casual use | Mujer | Talla COL 36 1/2, COL 37, COL 38, COL 39.5 | Narrow, Standard, Wide | Contiene al menos un 20 % de material reciclado |\n", + "\n", + "------------------------\n", + "\n", + "{'id': '0MU8aKCnCUZv2r9aLD67', 'regularPrice': '$1.049.950', 'undiscounted_price': '$734.965', 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch} {Peso: 200 gramos (talla CO 40)} {Caída mediasuela: 6 mm (talón: 33 mm / antepié: 27 mm} {Suela de caucho Continental™ Rubber} {Contienen al menos un 20% de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG3134}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS 2.0 para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Hombre • Running', 'characteristics': nan}\n", + "Respuesta del modelo:\n", + "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 200 gramos | Parte superior de malla | Amortiguación Lightstrike Pro | Suela de caucho Continental™ Rubber | Amortiguación Lightstrike Pro | 6 mm (talón: 33 mm / antepié: 27 mm) | null | Trail running | Hombre | CO 40, CO 42-46, CO 48 | null | Contienen al menos un 20% de material reciclado |\n", + "| null | Sistema de amarre de cordones | ENERGYRODS 2.0 | null | Lightstrike Pro | null | null | null | null | null | null | Supera tu marca personal y llega a la meta más rápido que nunca\n", + "\n", + "------------------------\n", + "\n", + "{'id': '0Q6DNSlvsjBzy3AQeY2y', 'regularPrice': '$279.950', 'undiscounted_price': 'NA', 'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior textil} {Forro interno textil} {Mediasuela Cloudfoam} {Suela de TPU} {Peso: 319 g (talla CO 40)} {Caída mediasuela: 6 mm (talón 35 mm / antepié 29 mm)} {Color del artículo: Halo Silver / Carbon / Core Black} {Número de artículo: ID8754}', 'description': 'Cada carrera es un viaje de descubrimiento. Ponte estos tenis de running adidas y libera tu potencial. La mediasuela con amortiguación Cloudfoam te ofrece una pisada más cómoda mientras aumentas tu resistencia. La parte superior textil es resistente al desgaste y te ofrece soporte desde tu primera vuelta hasta tu primera carrera de 5K.', 'category': 'Hombre • Running', 'characteristics': nan}\n", + "Respuesta del modelo:\n", + "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 319 g | Parte superior textil | Mediasuela Cloudfoam | Suela de TPU | null | 6 mm (talón 35 mm / antepié 29 mm) | Neutral | Daily training | Men | CO 40, CO 41-45, CO 46-50 | Narrow, Standard, Wide | null |\n", + "\n", + "------------------------\n", + "\n", + "{'id': '0SF7zveew5mzdUJWZKyz', 'regularPrice': '$699.950', 'undiscounted_price': '$559.960', 'details': '{Si este artículo es personalizado} {no aplica en nuestra política de cambios y devoluciones.} {Sistema de amarre de cordones para un ajuste inmejorable} {Producto hecho parcialmente con Malla Técnica Reciclada} {Diseño liviano} {Amortiguación Lightstrike y Lightstrike Pro} {Forro interno textil} {Caída mediasuela: 8} {5 mm (talón: 33 mm / antepié: 24} {5 mm)} {Suela de caucho} {El exterior contiene al menos un 50% de material reciclado} {Color del artículo: Ivory / Iron Metallic / Spark} {Número de artículo: IG3341}', 'description': 'Cuando se trata de alcanzar tus metas, cada segundo cuenta. Ya sea para entrenar o para competir, un rendimiento excelente requiere de prendas de alta tecnología optimizadas para la velocidad. Presentamos la nueva colección de tenis de running livianos que te ayudan a superar tus límites sin distracciones.\\n\\nLos tenis de running Adizero SL seleccionan lo mejor de nuestra franquicia Adizero que rompe récords mundiales. La mediasuela de EVA LIGHTSTRIKE liviana ofrece resiliencia a la mediasuela para que puedas concentrarte en el próximo paso, mientras que el exterior está hecho de una malla técnica suave que está zonificada en áreas clave. El talón acolchado y la lengüeta brindan una comodidad óptima junto con el antepié Adizero. La suela premium está diseñada para proporcionar tracción.', 'category': 'Mujer • Running', 'characteristics': nan}\n", + "Respuesta del modelo:\n", + "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| null | {Si este artículo es personalizado} / {Sistema de amarre de cordones para un ajuste inmejorable} / {Producto hecho parcialmente con Malla Técnica Reciclada} | {Amortiguación Lightstrike y Lightstrike Pro} | {Suela de caucho} | null | 8 mm | neutral | Trail running, casual use | Women, Men | 5-12 | null | El exterior contiene al menos un 50% de material reciclado\n", + "\n", + "------------------------\n", + "\n", + "{'id': '0iPjAsLy8yEYvGgiCAzo', 'regularPrice': '$299.950', 'undiscounted_price': 'NA', 'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {Plantilla OrthoLite®} {Mediasuela Cloudfoam} {Peso: 304 g (talla CO 40)} {Caída mediasuela: 10 mm (talón: 33 mm / antepié: 23 mm)} {Suela Adiwear} {Color del artículo: Cloud White / Core Black / Better Scarlet} {Número de artículo: IE8818}', 'description': 'Tanto en la pista como en la cinta de correr, alcanza todas tus metas con estos tenis de running adidas. Incorporan una mediasuela con amortiguación Cloudfoam que te ofrece una pisada más cómoda y suave. La parte superior de malla transpirable y la suela Adiwear de gran resistencia al desgaste la convierten en una silueta perfecta para llevar durante todo el día.', 'category': 'Hombre • Running', 'characteristics': nan}\n", + "Respuesta del modelo:\n", + "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 304 g | Parte superior de malla, Forro interno textil | Plantilla OrthoLite® | Suela Adiwear | Mediasuela Cloudfoam | 10 mm (talón: 33 mm / antepié: 23 mm) | null | Running | Hombre • Hombre | CO 40 - IE 8818 | null | Waterproofing, Reflectivity\n", + "\n", + "------------------------\n", + "\n", + "{'id': '0n2Tyl34QdVdkCKgAdcT', 'regularPrice': '$649.950', 'undiscounted_price': 'NA', 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {mediasuela Dreamstrike+} {Suela Adiwear} {Peso (talla CO 37): 213 gramos} {Caída mediasuela: 10 mm (talón: 34 mm / 24 mm)} {Contienen al menos un 20% de material reciclado y renovable} {Color del artículo: Almost Yellow / Zero Metalic / Pink Spark} {Número de artículo: IE1072}', 'description': 'Avanza hacia tus metas de running con estos tenis adidas. La mediasuela Dreamstrike+ está diseñada para absorber el impacto. La amortiguación adicional en el antepié ofrece comodidad durante toda tu carrera. El exterior de malla transpirable maximiza el flujo de aire para mantener tus pies frescos, y la suela Adiwear resistente ofrece tracción. \\n\\nAl elegir materiales reciclados, podemos reutilizar materiales que ya han sido creados, lo que ayuda a reducir los residuos. La elección de materiales renovables nos ayudará a eliminar nuestra dependencia de recursos finitos. Nuestros productos hechos con una mezcla de materiales reciclados y renovables contienen al menos un 20% de este material.', 'category': 'Mujer • Running', 'characteristics': nan}\n", + "Respuesta del modelo:\n", + "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 213 gramos | Parte superior de malla, Forro interno textil, Sistema de amarre de cordones | mediasuela Dreamstrike+ | Suela Adiwear | mediasuela Dreamstrike+ | 10 mm (talón: 34 mm / 24 mm) | Neutral | Running | Mujer | CO 37 | null | Contienen al menos un 20% de material reciclado y renovable |\n", + "\n", + "------------------------\n", + "\n", + "{'id': '0rf6HEvBi5R4FunIhToR', 'regularPrice': '$449.950', 'undiscounted_price': 'NA', 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de malla con cuello acolchado} {Forro interno textil} {Estabilizador de talón moldeado Fitcounter} {Mediasuela Bounce} {Suela sintética} {El exterior contiene al menos un 50 % de material reciclado} {Color del artículo: Shadow Violet / Legend Ink / Wonder Clay} {Número de artículo: IG0334}', 'description': 'Estos tenis fueron diseñados para darte la amortiguación y la respuesta que necesitas cuando estás en la pista o en los senderos. Sin importar si vas a hacer tu caminata diaria o una carrera corta, la mediasuela Bounce es flexible y receptiva con cada paso. Hecho con una serie de materiales reciclados, el exterior incorpora al menos un 50 % de contenido reciclado. Este producto representa solo una de nuestras soluciones para acabar con los residuos plásticos.', 'category': 'Mujer • Running', 'characteristics': nan}\n", "Respuesta del modelo:\n", - "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Price | Additional Technologies |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 289 g | adidas Primeknit | Mediasuela BOOST | Suela Stretchweb con caucho Continental™ Better Rubber | Sistema Linear Energy Push | null | neutral | Daily training | mujer | CO 37 - ?? | null | 4% más de energía que Ultraboost 21 para mujer | El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado |\n", + "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| null | Exterior de malla con cuello acolchado / {Sistema de amarre de cordones} / Technical fabrics | Mediasuela Bounce | Suela sintética | mediasuela Bounce | null | neutral | Mujer • Running | null | null | Legend Ink / Wonder Clay | IG0334 |\n", "\n", "------------------------\n", "\n", - "{'id': '0IgYTzUHkE7zIdcVyFCK', 'regularPrice': '$1.049.950', 'undiscounted_price': '$629.970', 'details': '{Ajuste clásico} {Cierre de cordones} {Parte superior de malla técnica} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch para un ajuste seguro} {Peso: 166 g (Talla COL 36 1/2)} {Caída mediasuela: 6 mm (talón: 32 mm / antepié: 26 mm)} {Suela de caucho Continental™} {Contiene al menos un 20 % de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG8206}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Mujer • Running'}\n", + "{'id': '0zbwfhJUSB9viwWPAnoE', 'regularPrice': '$799.950', 'undiscounted_price': '$639.960', 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de malla} {Tejido suave y cómodo} {Mediasuela REPETITOR y REPETITOR+ de doble densidad} {Estructura interna de soporte} {Peso: 334 gramos (talla CO 40} {5)} {Caída mediasuela: 6 mm (talón: 38 mm / antepié: 32 mm)} {Suela de caucho} {El hilo de la parte superior contiene al menos un 50 % de Parley Ocean Plastic y un 50 % de poliéster reciclado} {Color del artículo: Lucid Lemon / Carbon / Wonder Blue} {Número de artículo: FZ5622}', 'description': 'Correr largas distancias es mucho más que ir de la A a la B. Se trata de la brisa en tu espalda, el ritmo de tu pisada, la libertad de la carretera. Los tenis Adistar 2.0 están diseñados con precisión para movimientos continuos, asegurando que cada paso se adapte sin problemas al siguiente, kilómetro tras kilómetro. La mediasuela REPETITOR y REPETITOR+ de doble densidad combina una espuma ligera para una amortiguación flexible con un compuesto firme que abraza el talón. Una estructura interna sujeta el pie para un soporte óptimo que nunca se detiene.', 'category': 'Hombre • Running', 'characteristics': nan}\n", "Respuesta del modelo:\n", - "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Price | Additional Technologies |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 166 g | Parte superior de malla técnica | Amortiguación Lightstrike Pro | Suela de caucho Continental™ | Contains at least a 20% recycled material | 6 mm (talón: 32 mm / antepié: 26 mm) | Neutral | Daily training | Women | Talla COL 36 1/2, null | null | 166 g | Contains al menos un 20 % de material reciclado |\n", + "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", + "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", + "| 334 gramos | Exterior de malla, Tejido suave y cómodo | Mediasuela REPETITOR y REPETITOR+ de doble densidad | Suela de caucho | mediasuela REPETITOR y REPETITOR+ | 6 mm (talón: 38 mm / antepié: 32 mm) | Neutral | Daily training | Men | CO 40-50, CO 42-44, CO 46 | Narrow, Standard, Wide | Waterproofing with recycled materials\n", "\n", "------------------------\n", "\n" @@ -464,7 +584,7 @@ ], "source": [ "dfs = []\n", - "for producto in productos:\n", + "for producto in productos[1:10]:\n", " prompt = generate_prompt_ollama(producto, labels_with_definitions)\n", " respuesta = obtener_respuesta_ollama(prompt)\n", " print(producto)\n", @@ -474,10 +594,13 @@ " df = procesar_respuesta(respuesta[\"message\"][\"content\"], labels_with_definitions)\n", " if df is not None:\n", " attribute_columns = df.columns[:-3]\n", - " dfs = []\n", " df['id'] = producto['id']\n", " df['regularPrice'] = producto['regularPrice']\n", " df['undiscounted_price'] = producto['undiscounted_price']\n", + " df[\"details\"] = producto['details']\n", + " df[\"description\"] = producto['description']\n", + " df[\"category\"] = producto['category']\n", + " df[\"characteristics\"] = producto['characteristics']\n", " df = df[~df[attribute_columns].eq('---').all(axis=1)]\n", " df = df.dropna(how='all')\n", " dfs.append(df)\n", @@ -488,7 +611,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 102, "metadata": {}, "outputs": [], "source": [ @@ -500,14 +623,561 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 103, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightUpper MaterialMidsole MaterialOutsoleCushioning SystemDrop (heel-to-toe differential)Pronation TypeUsage TypeGenderAvailable SizesWidthAdditional TechnologiesidregularPriceundiscounted_pricedetailsdescriptioncategorycharacteristics
0289 gadidas PrimeknitMediasuela BOOSTSuela Stretchweb con caucho Continental Better...Sistema Linear Energy Pushnullneutralmujer37-47standardcontains Parley Ocean Plastic and recycled pol...None0AqheRhKT2lhm7puBVCF$799.950NA{Ajuste clásico} {Sistema de amarre de cordone...Hemos analizado 1.200.000 pisadas para que Ult...Mujer • RunningNaN
1166 gParte superior de malla técnicaAmortiguación Lightstrike ProSuela de caucho Continental™Amortiguación Lightstrike Pro6 mm (talón: 32 mm / antepié: 26 mm)NeutralDaily training, racing, trail running, casual useMujerTalla COL 36 1/2, COL 37, COL 38, COL 39.5Narrow, Standard, WideContiene al menos un 20 % de material reciclado0IgYTzUHkE7zIdcVyFCK$1.049.950$629.970{Ajuste clásico} {Cierre de cordones} {Parte s...Haz tus mejores 10k con nuestros nuevos tenis ...Mujer • RunningNaN
2200 gramosParte superior de mallaAmortiguación Lightstrike ProSuela de caucho Continental™ RubberAmortiguación Lightstrike Pro6 mm (talón: 33 mm / antepié: 27 mm)nullTrail runningHombreCO 40, CO 42-46, CO 48nullContienen al menos un 20% de material reciclado0MU8aKCnCUZv2r9aLD67$1.049.950$734.965{Ajuste clásico} {Sistema de amarre de cordone...Haz tus mejores 10k con nuestros nuevos tenis ...Hombre • RunningNaN
3nullSistema de amarre de cordonesENERGYRODS 2.0nullLightstrike PronullnullnullnullnullnullSupera tu marca personal y llega a la meta más...0MU8aKCnCUZv2r9aLD67$1.049.950$734.965{Ajuste clásico} {Sistema de amarre de cordone...Haz tus mejores 10k con nuestros nuevos tenis ...Hombre • RunningNaN
4319 gParte superior textilMediasuela CloudfoamSuela de TPUnull6 mm (talón 35 mm / antepié 29 mm)NeutralDaily trainingMenCO 40, CO 41-45, CO 46-50Narrow, Standard, Widenull0Q6DNSlvsjBzy3AQeY2y$279.950NA{Horma clásica} {Sistema de amarre de cordones...Cada carrera es un viaje de descubrimiento. Po...Hombre • RunningNaN
5null{Si este artículo es personalizado} / {Sistema...{Amortiguación Lightstrike y Lightstrike Pro}{Suela de caucho}null8 mmneutralTrail running, casual useWomen, Men5-12nullEl exterior contiene al menos un 50% de materi...0SF7zveew5mzdUJWZKyz$699.950$559.960{Si este artículo es personalizado} {no aplica...Cuando se trata de alcanzar tus metas, cada se...Mujer • RunningNaN
6304 gParte superior de malla, Forro interno textilPlantilla OrthoLite®Suela AdiwearMediasuela Cloudfoam10 mm (talón: 33 mm / antepié: 23 mm)nullRunningHombre • HombreCO 40 - IE 8818nullWaterproofing, Reflectivity0iPjAsLy8yEYvGgiCAzo$299.950NA{Horma clásica} {Sistema de amarre de cordones...Tanto en la pista como en la cinta de correr, ...Hombre • RunningNaN
7213 gramosParte superior de malla, Forro interno textil,...mediasuela Dreamstrike+Suela Adiwearmediasuela Dreamstrike+10 mm (talón: 34 mm / 24 mm)NeutralRunningMujerCO 37nullContienen al menos un 20% de material reciclad...0n2Tyl34QdVdkCKgAdcT$649.950NA{Ajuste clásico} {Sistema de amarre de cordone...Avanza hacia tus metas de running con estos te...Mujer • RunningNaN
8nullExterior de malla con cuello acolchado / {Sist...Mediasuela BounceSuela sintéticamediasuela BouncenullneutralMujer • RunningnullnullLegend Ink / Wonder ClayIG03340rf6HEvBi5R4FunIhToR$449.950NA{Ajuste clásico} {Sistema de amarre de cordone...Estos tenis fueron diseñados para darte la amo...Mujer • RunningNaN
9334 gramosExterior de malla, Tejido suave y cómodoMediasuela REPETITOR y REPETITOR+ de doble den...Suela de cauchomediasuela REPETITOR y REPETITOR+6 mm (talón: 38 mm / antepié: 32 mm)NeutralDaily trainingMenCO 40-50, CO 42-44, CO 46Narrow, Standard, WideWaterproofing with recycled materials0zbwfhJUSB9viwWPAnoE$799.950$639.960{Ajuste clásico} {Sistema de amarre de cordone...Correr largas distancias es mucho más que ir d...Hombre • RunningNaN
\n", + "
" + ], + "text/plain": [ + " Weight Upper Material \\\n", + "0 289 g adidas Primeknit \n", + "1 166 g Parte superior de malla técnica \n", + "2 200 gramos Parte superior de malla \n", + "3 null Sistema de amarre de cordones \n", + "4 319 g Parte superior textil \n", + "5 null {Si este artículo es personalizado} / {Sistema... \n", + "6 304 g Parte superior de malla, Forro interno textil \n", + "7 213 gramos Parte superior de malla, Forro interno textil,... \n", + "8 null Exterior de malla con cuello acolchado / {Sist... \n", + "9 334 gramos Exterior de malla, Tejido suave y cómodo \n", + "\n", + " Midsole Material \\\n", + "0 Mediasuela BOOST \n", + "1 Amortiguación Lightstrike Pro \n", + "2 Amortiguación Lightstrike Pro \n", + "3 ENERGYRODS 2.0 \n", + "4 Mediasuela Cloudfoam \n", + "5 {Amortiguación Lightstrike y Lightstrike Pro} \n", + "6 Plantilla OrthoLite® \n", + "7 mediasuela Dreamstrike+ \n", + "8 Mediasuela Bounce \n", + "9 Mediasuela REPETITOR y REPETITOR+ de doble den... \n", + "\n", + " Outsole \\\n", + "0 Suela Stretchweb con caucho Continental Better... \n", + "1 Suela de caucho Continental™ \n", + "2 Suela de caucho Continental™ Rubber \n", + "3 null \n", + "4 Suela de TPU \n", + "5 {Suela de caucho} \n", + "6 Suela Adiwear \n", + "7 Suela Adiwear \n", + "8 Suela sintética \n", + "9 Suela de caucho \n", + "\n", + " Cushioning System Drop (heel-to-toe differential) \\\n", + "0 Sistema Linear Energy Push null \n", + "1 Amortiguación Lightstrike Pro 6 mm (talón: 32 mm / antepié: 26 mm) \n", + "2 Amortiguación Lightstrike Pro 6 mm (talón: 33 mm / antepié: 27 mm) \n", + "3 Lightstrike Pro null \n", + "4 null 6 mm (talón 35 mm / antepié 29 mm) \n", + "5 null 8 mm \n", + "6 Mediasuela Cloudfoam 10 mm (talón: 33 mm / antepié: 23 mm) \n", + "7 mediasuela Dreamstrike+ 10 mm (talón: 34 mm / 24 mm) \n", + "8 mediasuela Bounce null \n", + "9 mediasuela REPETITOR y REPETITOR+ 6 mm (talón: 38 mm / antepié: 32 mm) \n", + "\n", + " Pronation Type Usage Type \\\n", + "0 neutral mujer \n", + "1 Neutral Daily training, racing, trail running, casual use \n", + "2 null Trail running \n", + "3 null null \n", + "4 Neutral Daily training \n", + "5 neutral Trail running, casual use \n", + "6 null Running \n", + "7 Neutral Running \n", + "8 neutral Mujer • Running \n", + "9 Neutral Daily training \n", + "\n", + " Gender Available Sizes \\\n", + "0 37-47 standard \n", + "1 Mujer Talla COL 36 1/2, COL 37, COL 38, COL 39.5 \n", + "2 Hombre CO 40, CO 42-46, CO 48 \n", + "3 null null \n", + "4 Men CO 40, CO 41-45, CO 46-50 \n", + "5 Women, Men 5-12 \n", + "6 Hombre • Hombre CO 40 - IE 8818 \n", + "7 Mujer CO 37 \n", + "8 null null \n", + "9 Men CO 40-50, CO 42-44, CO 46 \n", + "\n", + " Width \\\n", + "0 contains Parley Ocean Plastic and recycled pol... \n", + "1 Narrow, Standard, Wide \n", + "2 null \n", + "3 null \n", + "4 Narrow, Standard, Wide \n", + "5 null \n", + "6 null \n", + "7 null \n", + "8 Legend Ink / Wonder Clay \n", + "9 Narrow, Standard, Wide \n", + "\n", + " Additional Technologies id \\\n", + "0 None 0AqheRhKT2lhm7puBVCF \n", + "1 Contiene al menos un 20 % de material reciclado 0IgYTzUHkE7zIdcVyFCK \n", + "2 Contienen al menos un 20% de material reciclado 0MU8aKCnCUZv2r9aLD67 \n", + "3 Supera tu marca personal y llega a la meta más... 0MU8aKCnCUZv2r9aLD67 \n", + "4 null 0Q6DNSlvsjBzy3AQeY2y \n", + "5 El exterior contiene al menos un 50% de materi... 0SF7zveew5mzdUJWZKyz \n", + "6 Waterproofing, Reflectivity 0iPjAsLy8yEYvGgiCAzo \n", + "7 Contienen al menos un 20% de material reciclad... 0n2Tyl34QdVdkCKgAdcT \n", + "8 IG0334 0rf6HEvBi5R4FunIhToR \n", + "9 Waterproofing with recycled materials 0zbwfhJUSB9viwWPAnoE \n", + "\n", + " regularPrice undiscounted_price \\\n", + "0 $799.950 NA \n", + "1 $1.049.950 $629.970 \n", + "2 $1.049.950 $734.965 \n", + "3 $1.049.950 $734.965 \n", + "4 $279.950 NA \n", + "5 $699.950 $559.960 \n", + "6 $299.950 NA \n", + "7 $649.950 NA \n", + "8 $449.950 NA \n", + "9 $799.950 $639.960 \n", + "\n", + " details \\\n", + "0 {Ajuste clásico} {Sistema de amarre de cordone... \n", + "1 {Ajuste clásico} {Cierre de cordones} {Parte s... \n", + "2 {Ajuste clásico} {Sistema de amarre de cordone... \n", + "3 {Ajuste clásico} {Sistema de amarre de cordone... \n", + "4 {Horma clásica} {Sistema de amarre de cordones... \n", + "5 {Si este artículo es personalizado} {no aplica... \n", + "6 {Horma clásica} {Sistema de amarre de cordones... \n", + "7 {Ajuste clásico} {Sistema de amarre de cordone... \n", + "8 {Ajuste clásico} {Sistema de amarre de cordone... \n", + "9 {Ajuste clásico} {Sistema de amarre de cordone... \n", + "\n", + " description category \\\n", + "0 Hemos analizado 1.200.000 pisadas para que Ult... Mujer • Running \n", + "1 Haz tus mejores 10k con nuestros nuevos tenis ... Mujer • Running \n", + "2 Haz tus mejores 10k con nuestros nuevos tenis ... Hombre • Running \n", + "3 Haz tus mejores 10k con nuestros nuevos tenis ... Hombre • Running \n", + "4 Cada carrera es un viaje de descubrimiento. Po... Hombre • Running \n", + "5 Cuando se trata de alcanzar tus metas, cada se... Mujer • Running \n", + "6 Tanto en la pista como en la cinta de correr, ... Hombre • Running \n", + "7 Avanza hacia tus metas de running con estos te... Mujer • Running \n", + "8 Estos tenis fueron diseñados para darte la amo... Mujer • Running \n", + "9 Correr largas distancias es mucho más que ir d... Hombre • Running \n", + "\n", + " characteristics \n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "5 NaN \n", + "6 NaN \n", + "7 NaN \n", + "8 NaN \n", + "9 NaN " + ] + }, + "execution_count": 103, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_total" + ] + }, + { + "cell_type": "code", + "execution_count": 105, "metadata": {}, "outputs": [], "source": [ - "output_path = \"../src/comparative_analysis/database/adidas_etiquetado.xlsx\"\n", + "output_path = \"../src/comparative_analysis/database/adidas_etiquetado_llama31.xlsx\"\n", "df_total.to_excel(output_path, index=False)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Preprocesamiento Nike" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "df_nike = df_raw[df_raw['store'] == 'nike'] \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_2256\\2520405701.py:2: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_nike['details_transformado'] = df_nike['details'].apply(lambda x: transformar_texto(x, 'nike'))\n", + "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_2256\\2520405701.py:3: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df_nike['characteristics_transformado'] = df_nike['characteristics'].apply(lambda x: transformar_texto(x, 'nike'))\n" + ] + } + ], + "source": [ + "# Lista de descripciones de productos\n", + "df_nike['details_transformado'] = df_nike['details'].apply(lambda x: transformar_texto(x, 'nike'))\n", + "df_nike['characteristics_transformado'] = df_nike['characteristics'].apply(lambda x: transformar_texto(x, 'nike'))" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "# Crear un diccionario con las llaves deseadas desde todo el DataFrame\n", + "productos_nike = [\n", + " {\n", + " \"id\": row['id'],\n", + " \"regularPrice\" : row[\"regularPrice\"],\n", + " \"undiscounted_price\": row[\"undiscounted_price\"],\n", + " \"details\": row['details_transformado'],\n", + " \"description\": row['description'],\n", + " \"category\": row['category'],\n", + " \"characteristics\": row['characteristics_transformado']\n", + " }\n", + " for _, row in df_nike.iterrows() # Recorre todo el DataFrame\n", + " if row['details_transformado'] != '{}' # Filtra donde los detalles no estén vacíos\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Preprocesamiento nacion runner" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "df_nr = df_raw[df_raw['store'] == 'nacionRunner']" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [], + "source": [ + "# Crear un diccionario con las llaves deseadas desde todo el DataFrame\n", + "productos_nr = [\n", + " {\n", + " \"id\": row['id'],\n", + " \"regularPrice\" : row[\"regularPrice\"],\n", + " \"undiscounted_price\": row[\"undiscounted_price\"],\n", + " \"details\": row['details'],\n", + " \"description\": row['description'],\n", + " \"category\": row['category'],\n", + " \"characteristics\": row['characteristics']\n", + " }\n", + " for _, row in df_nr.iterrows() # Recorre todo el DataFrame\n", + " if row['details'] != '{}' # Filtra donde los detalles no estén vacíos\n", + "]" + ] + }, { "cell_type": "code", "execution_count": null, From 6a83c3052318da3a07d59bc0d1c6d4bb966f761e Mon Sep 17 00:00:00 2001 From: Juan Correa Date: Thu, 12 Dec 2024 21:21:24 -0500 Subject: [PATCH 29/84] preprocessing --- requirements.txt | 4 +- scripts/evaluation/__init__.py | 0 .../preprocessing/functions/__init__.py | 0 .../functions/model_inference.py | 56 +++++++++++ .../functions/prompt_generator.py | 54 +++++++++++ .../functions/response_processor.py | 96 +++++++++++++++++++ .../preprocessing/main.py | 79 +++++++++++++++ 7 files changed, 287 insertions(+), 2 deletions(-) create mode 100644 scripts/evaluation/__init__.py create mode 100644 src/comparative_analysis/preprocessing/functions/__init__.py create mode 100644 src/comparative_analysis/preprocessing/functions/model_inference.py create mode 100644 src/comparative_analysis/preprocessing/functions/prompt_generator.py create mode 100644 src/comparative_analysis/preprocessing/functions/response_processor.py create mode 100644 src/comparative_analysis/preprocessing/main.py diff --git a/requirements.txt b/requirements.txt index be1f7051c..ac150face 100644 --- a/requirements.txt +++ b/requirements.txt @@ -3,7 +3,7 @@ fairscale fire blobfile pandas -ollama requests openpyxl -llama_models \ No newline at end of file +httpx +boto3 \ No newline at end of file diff --git a/scripts/evaluation/__init__.py b/scripts/evaluation/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/src/comparative_analysis/preprocessing/functions/__init__.py b/src/comparative_analysis/preprocessing/functions/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/src/comparative_analysis/preprocessing/functions/model_inference.py b/src/comparative_analysis/preprocessing/functions/model_inference.py new file mode 100644 index 000000000..d176d7445 --- /dev/null +++ b/src/comparative_analysis/preprocessing/functions/model_inference.py @@ -0,0 +1,56 @@ +import json +import httpx +import boto3 +from botocore.exceptions import ClientError + +class ModelInference: + def __init__(self, region_name="us-east-1"): + self.client = boto3.client("bedrock-runtime", region_name=region_name) + + def obtener_respuesta(self, user_message, option_model, max_retries=3, delay=5): + if option_model == 1: + model_id = "mistral.mistral-large-2402-v1:0" + conversation = [ + { + "role": "user", + "content": [{"text": user_message}], + } + ] + + try: + response = self.client.converse( + modelId=model_id, + messages=conversation, + inferenceConfig={"maxTokens": 2000, "temperature": 0.5, "topP": 0.9}, + ) + response_text = response["output"]["message"]["content"][0]["text"] + return response_text + except httpx.HTTPError as e: + print(f"ERROR: Can't invoke '{model_id}'. Reason: {e}") + return None + + if option_model == 2: + model_id = "meta.llama3-70b-instruct-v1:0" + formatted_prompt = f""" + <|begin_of_text|><|start_header_id|>user<|end_header_id|> + {user_message} + <|eot_id|> + <|start_header_id|>assistant<|end_header_id|> + """ + + native_request = { + "prompt": formatted_prompt, + "max_gen_len": 1000, + "temperature": 0.5, + } + + request = json.dumps(native_request) + + try: + response = self.client.invoke_model(modelId=model_id, body=request) + model_response = json.loads(response["body"].read()) + response_text = model_response["generation"] + return response_text + except (ClientError, Exception) as e: + print(f"ERROR: Can't invoke '{model_id}'. Reason: {e}") + return None diff --git a/src/comparative_analysis/preprocessing/functions/prompt_generator.py b/src/comparative_analysis/preprocessing/functions/prompt_generator.py new file mode 100644 index 000000000..84cf5459c --- /dev/null +++ b/src/comparative_analysis/preprocessing/functions/prompt_generator.py @@ -0,0 +1,54 @@ +import re + +class PromptGenerator: + def __init__(self, labels_with_definitions): + self.labels_with_definitions = labels_with_definitions + + def generate_prompt(self, product): + labels = [label for label, _ in self.labels_with_definitions] + definitions = ''.join([f'- {label}: {definition}\n' for label, definition in self.labels_with_definitions]) + prompt = f""" + You are an assistant specialized in extracting structured information from product descriptions and organizing it into tables. + Your task is to extract the following information from the product details and label it according to the provided labels: {', '.join(labels)}. + Each label has the following definition to help guide your extraction: + + {definitions} + + If a label does not have a clear match in the details, complete its value with "null". + + Product information: + - Details: {product['details']} + - Description: {product['description']} + - Category: {product['category']} + - Characteristics: {product['characteristics']} + + Provide the information in a table with columns corresponding to each label. + The table must include **two complete rows**: + 1. The first row contains the label names. + 2. The second row contains the corresponding labeled values. + + Expected response format: + | {' | '.join(labels)} | + | {' | '.join(['---'] * len(labels))} | + | value_1 | value_2 | ... | + + Example: + If the labels are "details", "description", and "category", and the extracted values are + "Comfortable sneakers", "Made with recycled materials", and "Footwear", respectively, + your response should be: + + | details | description | category | + | --- | --- | --- | + | Comfortable sneakers | Made with recycled materials | Footwear | + + Remember: + - The response must contain two complete rows. + - Only respond with the table and **do not include additional text**. + + Now, extract and structure the information for the provided product: + + | {' | '.join(labels)} | + | {' | '.join(['---'] * len(labels))} | + | + """ + return prompt.strip() diff --git a/src/comparative_analysis/preprocessing/functions/response_processor.py b/src/comparative_analysis/preprocessing/functions/response_processor.py new file mode 100644 index 000000000..91072a27a --- /dev/null +++ b/src/comparative_analysis/preprocessing/functions/response_processor.py @@ -0,0 +1,96 @@ +import re +import pandas as pd +from io import StringIO + +class ResponseProcessor: + def __init__(self, labels_with_definitions): + self.labels_with_definitions = labels_with_definitions + + def procesar_respuesta(self, respuesta_texto): + try: + # Extraer solo los nombres de las etiquetas + etiquetas = [label for label, _ in self.labels_with_definitions] + # Limpiar los nombres de las etiquetas + etiquetas_limpias = [ + re.sub(r"[ ,;{}()\n\t=]", "_", etiqueta.strip()) for etiqueta in etiquetas + ] + + # Buscar el inicio de la tabla + inicio_tabla = respuesta_texto.find('|') + if inicio_tabla == -1: + print("No se encontró una tabla en la respuesta.") + return None + + # Extraer la tabla desde el primer '|' + tabla_texto = respuesta_texto[inicio_tabla:].strip() + # Extraer solo las líneas que contengan '|' + lineas = tabla_texto.split('\n') + lineas_tabla = [] + for linea in lineas: + if '|' in linea: + linea = linea.strip().strip('|').strip() + lineas_tabla.append(linea) + else: + break + + if not lineas_tabla: + print("No se encontraron líneas válidas de tabla.") + return None + + # Verificar si hay separadores '---' + tiene_separador = any( + all(c.strip('-') == '' for c in fila.split('|')) + for fila in lineas_tabla + ) + + # Caso 1: Hay separadores (modo normal de Markdown) + if tiene_separador: + tabla_completa = '\n'.join(lineas_tabla) + df = pd.read_csv(StringIO(tabla_completa), sep='|', engine='python', skipinitialspace=True) + df.columns = [re.sub(r"[ ,;{}()\n\t=]", "_", col.strip()) for col in df.columns] + for col in df.columns: + if df[col].dtype == object: + df[col] = df[col].str.strip() + df = df.reset_index(drop=True) + return df + + # Caso 2: No hay separadores + if len(lineas_tabla) == 2: + # Primera línea columnas, segunda datos + columnas = [re.sub(r"[ ,;{}()\n\t=]", "_", c.strip()) for c in lineas_tabla[0].split('|')] + datos = [c.strip() for c in lineas_tabla[1].split('|')] + df = pd.DataFrame([datos], columns=columnas) + for col in df.columns: + if df[col].dtype == object: + df[col] = df[col].str.strip() + df = df.reset_index(drop=True) + return df + elif len(lineas_tabla) == 1: + # Solo datos, usar etiquetas limpias como columnas + datos = [c.strip() for c in lineas_tabla[0].split('|')] + if len(etiquetas_limpias) != len(datos): + print("Advertencia: El número de etiquetas no coincide. Se ajustará.") + col_names = etiquetas_limpias[:len(datos)] + else: + col_names = etiquetas_limpias + + df = pd.DataFrame([datos], columns=col_names) + for col in df.columns: + if df[col].dtype == object: + df[col] = df[col].str.strip() + df = df.reset_index(drop=True) + return df + else: + # Más de 2 líneas sin separador + columnas = [re.sub(r"[ ,;{}()\n\t=]", "_", c.strip()) for c in lineas_tabla[0].split('|')] + filas_datos = [ [x.strip() for x in fila.split('|')] for fila in lineas_tabla[1:] ] + df = pd.DataFrame(filas_datos, columns=columnas) + for col in df.columns: + if df[col].dtype == object: + df[col] = df[col].str.strip() + df = df.reset_index(drop=True) + return df + + except Exception as e: + print(f"Error al procesar la tabla: {e}") + return None diff --git a/src/comparative_analysis/preprocessing/main.py b/src/comparative_analysis/preprocessing/main.py new file mode 100644 index 000000000..ceeb65785 --- /dev/null +++ b/src/comparative_analysis/preprocessing/main.py @@ -0,0 +1,79 @@ +import os +import re +import pandas as pd +import numpy as np +from tqdm import tqdm + +from functions.prompt_generator import PromptGenerator +from functions.model_inference import ModelInference +from functions.response_processor import ResponseProcessor + +# Definir las etiquetas con definiciones +labels_with_definitions = [ + ("Weight", "Indicates the lightness of the shoe, usually expressed in grams. Weight can influence performance and comfort during running."), + ("Upper Material", "Describes the materials used in the shoe's upper part, such as mesh, synthetic leather, or technical fabrics, which affect breathability, flexibility, and support."), + ("Midsole Material", "Refers to the compounds used in the midsole, such as EVA foams or proprietary technologies, which provide cushioning and shock absorption."), + ("Outsole", "Details the type of rubber or material used in the sole and the traction pattern design, which influence grip and durability on various surfaces."), + ("Cushioning System", "Specifies the technologies or materials aimed at reducing impact during strides, contributing to comfort and joint protection."), + ("Drop (heel-to-toe differential)", "Indicates the height difference between the heel and the toe of the shoe, measured in millimeters. A higher drop typically offers more heel cushioning, while a lower drop promotes a more natural stride."), + ("Pronation Type", "Classifies the shoe according to its suitability for different pronation types: neutral, overpronation, or supination. This is essential for choosing footwear that matches the runner's biomechanics."), + ("Usage Type", "Defines the primary purpose of the shoe, such as daily training, racing, trail running, or casual use, guiding its specific design and features."), + ("Gender", "Indicates whether the shoe is designed for men, women, or is a unisex model, considering anatomical and sizing differences."), + ("Available Sizes", "Specifies the range of sizes in which the shoe is offered, ensuring the runner can find a suitable fit."), + ("Width", "Some brands offer different widths (narrow, standard, wide) to accommodate various foot shapes."), + ("Additional Technologies", "Includes special features such as waterproofing, reflectivity, customized fit systems, or stability elements that enhance the shoe's functionality."), +] + +# Asumimos que spark está inicializado en el entorno +spark_df = spark.table("preprod_colombia.scraping_pp_adidas") +df_adidas = spark_df.toPandas() + +# Crear lista de productos +productos = [ + { + "id": row['id'], + "regularPrice" : row["regularPrice"], + "undiscounted_price": row["undiscounted_price"], + "details": row['details_transformado'], + "description": row['description'], + "category": row['category'], + "characteristics": row['characteristics'] + } + for _, row in df_adidas.iterrows() + if row['details_transformado'] != '{}' +] + +# Instanciar las clases +prompt_generator = PromptGenerator(labels_with_definitions) +model_inference = ModelInference() +response_processor = ResponseProcessor(labels_with_definitions) + +option_model = 2 +dfs = [] +for producto in tqdm(productos, desc="Procesando productos"): + user_message = prompt_generator.generate_prompt(producto) + respuesta = model_inference.obtener_respuesta(user_message, option_model) + df = response_processor.procesar_respuesta(respuesta) + + if df is not None: + attribute_columns = df.columns[:-3] # Ajustar según cuántas columnas sean las de atributos + df['id'] = producto['id'] + df['regularPrice'] = producto['regularPrice'] + df['undiscounted_price'] = producto['undiscounted_price'] + df["details"] = producto['details'] + df["description"] = producto['description'] + df["category"] = producto['category'] + df["characteristics"] = producto['characteristics'] + df = df[~df[attribute_columns].eq('---').all(axis=1)] + df = df.dropna(how='all') + dfs.append(df) + else: + print("No se pudo extraer la tabla.\n") + +if dfs: + df_total = pd.concat(dfs, ignore_index=True) + # Guardar df_total como Excel + os.makedirs("src/database", exist_ok=True) + df_total.to_excel("src/database/df_total.xlsx", index=False) +else: + print("Fail") From 031bf10d3100f3f570bca4eec166a2f97371bc77 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 12 Dec 2024 21:30:09 -0500 Subject: [PATCH 30/84] =?UTF-8?q?eliminaci=C3=B3n=20archivo?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- docs/business_understanding/prueba_azacipa.txt | 1 - 1 file changed, 1 deletion(-) delete mode 100644 docs/business_understanding/prueba_azacipa.txt diff --git a/docs/business_understanding/prueba_azacipa.txt b/docs/business_understanding/prueba_azacipa.txt deleted file mode 100644 index d931ceffb..000000000 --- a/docs/business_understanding/prueba_azacipa.txt +++ /dev/null @@ -1 +0,0 @@ -prueba azacipa \ No newline at end of file From 22d2b5653a9db852e8d9ce81f97548b815e7cec8 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 12 Dec 2024 22:47:08 -0500 Subject: [PATCH 31/84] test notebook para el entrenamiento del modelo de clustering --- requirements.txt | 4 +- src/comparative_analysis/training/test.ipynb | 113 ++++++++++++++++++ .../2/drop-heel-to-toe differential.png | Bin 0 -> 27419 bytes .../clustering model/2/regular-price.png | Bin 0 -> 23105 bytes .../clustering model/2/undiscounted-price.png | Bin 0 -> 27611 bytes .../clustering model/2/weight.png | Bin 0 -> 24398 bytes .../3/drop-heel-to-toe differential.png | Bin 0 -> 27774 bytes .../clustering model/3/regular-price.png | Bin 0 -> 24396 bytes .../clustering model/3/undiscounted-price.png | Bin 0 -> 28244 bytes .../clustering model/3/weight.png | Bin 0 -> 24084 bytes .../visualization/codo.png | Bin 0 -> 31813 bytes .../visualization/element-distribution.png | Bin 0 -> 26391 bytes 12 files changed, 116 insertions(+), 1 deletion(-) create mode 100644 src/comparative_analysis/training/test.ipynb create mode 100644 src/comparative_analysis/visualization/clustering model/2/drop-heel-to-toe differential.png create mode 100644 src/comparative_analysis/visualization/clustering model/2/regular-price.png create mode 100644 src/comparative_analysis/visualization/clustering model/2/undiscounted-price.png create mode 100644 src/comparative_analysis/visualization/clustering model/2/weight.png create mode 100644 src/comparative_analysis/visualization/clustering model/3/drop-heel-to-toe differential.png create mode 100644 src/comparative_analysis/visualization/clustering model/3/regular-price.png create mode 100644 src/comparative_analysis/visualization/clustering model/3/undiscounted-price.png create mode 100644 src/comparative_analysis/visualization/clustering model/3/weight.png create mode 100644 src/comparative_analysis/visualization/codo.png create mode 100644 src/comparative_analysis/visualization/element-distribution.png diff --git a/requirements.txt b/requirements.txt index ac150face..4f0ab1c63 100644 --- a/requirements.txt +++ b/requirements.txt @@ -6,4 +6,6 @@ pandas requests openpyxl httpx -boto3 \ No newline at end of file +boto3 +scikit-learn +matplotlib \ No newline at end of file diff --git a/src/comparative_analysis/training/test.ipynb b/src/comparative_analysis/training/test.ipynb new file mode 100644 index 000000000..26cbdbf89 --- /dev/null +++ b/src/comparative_analysis/training/test.ipynb @@ -0,0 +1,113 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Weight Upper_Material Midsole_Material \\\n", + "0 183 g Synthetic NaN \n", + "1 289 g adidas Primeknit BOOST \n", + "2 166 g Parte superior de malla técnica NaN \n", + "3 200 gramos Parte superior de malla NaN \n", + "4 319g Parte superior textil Mediasuela Cloudfoam \n", + "\n", + " Outsole Cushioning_System \\\n", + "0 Textile rubber Lightstrike Pro \n", + "1 Stretchweb with Continental Better Rubber Linear Energy Push \n", + "2 Suela de caucho Continental™ Amortiguación Lightstrike Pro \n", + "3 Suela de caucho Continental Rubber Amortiguación Lightstrike Pro \n", + "4 Suela de TPU Cloudfoam \n", + "\n", + " Drop__heel-to-toe_differential_ Pronation_Type Usage_Type Gender \\\n", + "0 6 mm NaN Racing Woman \n", + "1 NaN NaN Running Woman \n", + "2 6 mm NaN Running Mujer \n", + "3 6 mm NaN Running Hombre \n", + "4 6mm NaN Running Hombre \n", + "\n", + " Available_Sizes Width Additional_Technologies \\\n", + "0 NaN NaN ENERGYRODS 2.0, Waterproofing, Recyclable mate... \n", + "1 NaN NaN Parley Ocean Plastic, waterproofing \n", + "2 COL 36 1/2 NaN Contiene al menos un 20 % de material reciclad... \n", + "3 CO 40 NaN Varillas ENERGYRODS, Talón Slinglaunch, Contie... \n", + "4 CO 40 NaN NaN \n", + "\n", + " id regularPrice undiscounted_price \\\n", + "0 08sjncACSjSvg2t9DS73 $1.299.950 $909.965 \n", + "1 0AqheRhKT2lhm7puBVCF $799.950 NaN \n", + "2 0IgYTzUHkE7zIdcVyFCK $1.049.950 $629.970 \n", + "3 0MU8aKCnCUZv2r9aLD67 $1.049.950 $734.965 \n", + "4 0Q6DNSlvsjBzy3AQeY2y $279.950 NaN \n", + "\n", + " details \\\n", + "0 {Horma clásica} {Parte superior sintética} {Fo... \n", + "1 {Ajuste clásico} {Sistema de amarre de cordone... \n", + "2 {Ajuste clásico} {Cierre de cordones} {Parte s... \n", + "3 {Ajuste clásico} {Sistema de amarre de cordone... \n", + "4 {Horma clásica} {Sistema de amarre de cordones... \n", + "\n", + " description category \\\n", + "0 Los Adizero Adios Pro 3 son la máxima expresió... Mujer • Running \n", + "1 Hemos analizado 1.200.000 pisadas para que Ult... Mujer • Running \n", + "2 Haz tus mejores 10k con nuestros nuevos tenis ... Mujer • Running \n", + "3 Haz tus mejores 10k con nuestros nuevos tenis ... Hombre • Running \n", + "4 Cada carrera es un viaje de descubrimiento. Po... Hombre • Running \n", + "\n", + " characteristics \n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\venv\\lib\\site-packages\\openpyxl\\styles\\stylesheet.py:237: UserWarning: Workbook contains no default style, apply openpyxl's default\n", + " warn(\"Workbook contains no default style, apply openpyxl's default\")\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "# Ruta del archivo de Excel\n", + "ruta_excel = r\"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx\"\n", + "\n", + "# Crear el DataFrame\n", + "df = pd.read_excel(ruta_excel, header=0)\n", + "\n", + "# Mostrar las primeras filas del DataFrame\n", + "print(df.head())" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/src/comparative_analysis/visualization/clustering model/2/drop-heel-to-toe differential.png b/src/comparative_analysis/visualization/clustering model/2/drop-heel-to-toe differential.png new file mode 100644 index 0000000000000000000000000000000000000000..1dd989480640ef55900b18ac843229f00a22fe0b GIT binary patch literal 27419 zcmeFa2{_knyEgh)DGf>`BtoRfScb?@GNgeF35haQhD>FiDrF{Q2&oLwV+t86Lu6J- zgP}ym1~Sj%K5xD2-OsU(^{sDz>)rd<-?7*3XdTZR|Kaz$fA@V|=XGA^buQnNDoV6# znAcD!6k6pY^6C`IvTO>4s+DFXe!^>|ERO$3Tv5=zqG4rv#o@fI3FXB3E7lfPS1c|W zvfG>3+Fi1`yiY(vU>_g*#Vc2=?IZ;SE&urf0V~@Jf|VLcD)^Aq)<<;gD3lH7$^TKM z$R=N+P|SRkrTs(H@pyI~eKGmC^uG>g2e{$o= zLtFP!A2QLTFE90HPnqI9rqH6!q^wTKN8Yhy@|YaM^?yA@&W}z&ST^Se&vc0^ylBkO5EmJEju@K*h%#! zUcQ~q!kG19RS+wFs`2PJPvmd!n>RW5_+E2~nbguB3H4$s=B)RrO!rAy6xM8)@bg zXU2Zsh>D6Di3@tg6tlBSHvA~HprD|aw|Bys{L4}MF08-YR;bhVA#q3c825X%?RoR% z1vXtmE)y0XGY#0fs)DP!Yr;0t(VhIUcV|b;F5aN*)^_c%m>B<4sag*WO59V< zrO~LWs)|^(v9!C6(vCS7y~_LD`9$=Rv}mw$Y$A#C|s zBw(BP`unaUzBO!jOy5Lz;HN{QqkAGHtiC?a)yq4>lB{y?`imDYKJ_RCv6SBCI4orL zF=cP;sp(7Y#nN%EBg&MQzrW;%L`C_OEX=GmZ_22^bq;@ZXz!?CG~oNLvq_?@v%){* z-aSi(#jar4p=!?HZ~)*D62K0n=Gc4pLhYqn@+Jw+z7~Ec9(U>A_e%vWBqoBi!&k^9MaZidaBF6-Kl%y>lpF+PHm1A?sLORPc2$D>FeuT z<2ZhJbYd8fB%*dIes3|ifPSHmKcirDq5az8TMT^Kp1p5k60p%yw6k_#jr9A2L)U&$ zWtv}@9lY3-!CF{U)Y02}tGfEg>sX1+PEJk?O)g_U)W!zBZo78v+PjM)G_UqO}gf1cFD2k2tt+ubyj#4+1$LR z{#tSR^l5Uq4P1wBwp7JU%YI&*pKNc)HaX_#>>S;%dR3Cu^lhwfW#G0~uU;+3uDkf@ zuPu!kXU!vy*-WU-&rVihA5kdFSFRI!Y+gFvBfCl?`2z`}K0!f>xn`fb=X=)*7J3#G z6v*{yMEm8aiZnjkpXqQ0o8xB2*%xK?^&9Z8@xn51HusCeKiq9rb38d$y6mahr!_J% zGGq}M)~ureNQfZ z;GXW9oU06C^}lz(p|j<}eT6GmM6@#X19>za9ZddEBRE%f{GQ~NFzyp_pZ+=}Z2j#Z zzM85og8$WHjby%{5~opa-Tcden|G-^FsX}hoc*025)yJv)V%S**%$WOS%%cl9R~Fi zEg2tKwHHT8Iqg-6-G2?)A>q)CmE3jhSib)D5;ol7p{9(p9fN}#zO^NWo1vS+GSkFKb>9*S00P*IUfwJNU};^`QiB`-zov0N^W_ir*3$pPLOlw&Wc{U z!lxuUB4x-U7d+5P&2pW#UB@a(zlB%x<;!c!du-%r3P)=9Xg|NgWA^E=W-gCLxNAjm^}r)J(spMe+T+$QeLPd)d^)C|EMLS4v9iiT!WgfUWyhdd!bAE=-mz z-kl54ePPd!4M`n-^ycNS&mZdMn(cQQ;VNF3F}L{qboHwBEC-X0hWpJouVWUWkzJVL zEPM4z_{xuytwk=3`!2jK$5ZsbvWT$8$;Y=&SXdaRJ3MCm$rGWesVVKVrXuIdR=Cdm zOvY7K;z&`ftgPk`-k1*9^Q~vu@401U$%_U?(M%Pe?Y3Thi!Sl!?xCh1iGH%~`dVqce&P|W> z{P_4d?33!oqn-Fl$4=i}c*G635U*Reb|4DxQjII0n;so5UByQ4FKe2v|W?U!@+TgLWd0}Ry9BLYQr+mA7An_S-upzy`Zp@V_Ice zAIDGe!O^>$&M7MTsoOqA%+f1&)7J0Q2aiXK)O1F@dv|gpGqc&I7%8W03cCn%;MDi~ z9^D0{=jibC@sr}I&b2WT^s$Fa+~<#Xo`@0KLLt}pX25QG#3bwsMIIk`+z>&Lj#BQm zdh_wlzQ**;6nTW*oBElNUGp>J_?M$&!I7g!L%YN;x6&chm3{c2(cRr0^(N^7qRbjb zM#haSEPRNO+*Kbwd{974;D7sRD#{JqK|1BAW7vagqI)21EBI~VurXEyl*f>9l`Xf0?kZfVXkqNWVb^kv4BA3l7Tn$qz6 zs(Dz|ZyY+rWK{qL8$2gDJ6@iy(PF33-W}4?XM^y_bP>sYu<9`Z_hmhbDeNoPF|l8f zyvI^sQ?n7lVGBjx!otG0YMXh^xzg)9zMuPAOG zBu}Bk9^xIzv-rIWcmvN)&#R=Qq~OZWP?i#x$qYw87ivnDz#WQpb=pUW6dJ%rk1gO}r4(I$J4D&ch;>pEWOv zFau8RuJV5o%-b(&u~|j0?wHN5Zv+3youivy9Z>l3Njtc5e7MM z8}hiEBg)FcI%2?Y7m6h>V z`x+VA6}-K?nhQ%*l3yXGsy(wcah>Y$=B|@;7zjwd@6P=F?Y&n>uCE6U*mTN=jaJUh z&5@u0jJHEZruf~nMMUN5y1G|C8WMUE?ox1yO~e?#>8D5XpShJB=e)+Mc=}PzUJnnC z0M-Kx*xfIY=yZPM`PVj%S|ALWDy^94Z@J;IIL~-b@~YgGD^F{(QLmIDwwBC|ti^6> znR#>~#&kqLnu}`%r((cC6_xew^W#nLk5oPS`62mLUEQ%_>@`b*vxbLM+=Lv9-X)*Q^BFkTMx(H!bVD4&fICnqN_I z=L}8{6=n2$y?9G8m-5uu2UQN`(28h>zD8Q)G9lls>sGpsz7aiZf!SUkHP z*pF0ayr(lPvT=NE0C@b)X7=G+9sG6CmCTI9i7?`9XfJ6zMUv_Ift6%z={CK0Ppo(-=3CzAplddTHF_C@e&Lr*AMmz)NsZW0c%WU7i zU90|@y`5c-w%xJJ$5T^|t<31W@@UvuSyb8IXsPug4B!Hq@6gg*)DF4PeS;2qEMuG zA|W)hFfuUQ0`N4dy~Cqj;w~K_Xt4fUTmGc%%#Q>^kAzGlj-An&xwEIzb+>>}IB05W zn$qJU~Z%&MtpBvn8qFR=B?l37B8lSBuz7A_C3E) zzujNSConrZd(BsSwHD_%ooFLvHdR?!*%ZxQwq~X#BiA&R$GgW1ul6x`(H%K{{HfEu z^G39O2mU-BHybc0X-5Jr6ctx$@`it6J{oGQ9*jG$Q?eP|bClCObs?1NA+8heykk`P zeGCWNGDCdNo>c8X3uk9Zyr*LJ&J{K-7N8V))LL2Qm;0`Ibe6BiMvd3*%W+^csRN!G z{-~i!Rp7w>5PO*vSzO9x2(!ajTJ~MLsxmC;E92bai-H4fz9`Jg$lEl}I;3-vVilau zxzA58O`)nL#Rz4R`SsR)ru5ThGCSS$`rXc=#N96KG9eH2oMrh%%)9uSA?KN+0VQ`% z-Ej~`omy2Jz9$5{$YJmGh{Uu}(k^1;QLdn-eh5IV&~{llvj!EAXsV5JXtzU2rD^5+ z{1|@GeSiU!b0bw*`vVT_Gao&sq9V5SbaVjQsD6q2*M6f@$3}(Uo_`%BymP_!qz%)$ zmHnS{*LwDRznk=3PMNJ9TMa+UF>Ne}n`85h+|^YWBXa3_b91vgn^mB6Nx=7>9_kyV zp4-GPM-^Rq?mjQ+MaMm^U0{9QS5>syVDWnWC5{z<8>ZR(U5ji7?APHw1RKQohbJa( zm7Y6z^r)ZCa;x9ZbfS@p*_G8pROk0*k4OJ%NLZznp{K(;x`!4F&T1U)p(X>5yKY6n&@p1t5 zu(!b3=ijD=yA)=)@)LvorJG#N=3i!Y9{WLs&1KPETvUF4KjW7A5Ps?lZ(~aVS5U_f z&yChIPP>y@07oMzDvIfKob)z1nz`XBwh`N0UD}rm4!{oRRofiZ}4)x9?S zr6xlEWrU2rm^*zw!s(_rsVes*t*>6K0DERRY|B%*GCrlfn?DFeI3l;L|$B?g=NA1F@zXqNk_DLp;x$JrKGpH3_BDkK&`&8&;N7+68 z{fdpjnWS`F;E@w2!eu|_DS;8{0D8uEc;Bu5C2 zmd^#$pY2lmne-Su1ED=aZr?uH`TeBLVnpwEkPCU1UpngqOUh>lOM(F;&!Gq$u{|@p zO-V)|f+&^QHPYX;RsPf(>!M)C0KBAj=@WJsc|*Zd4goHEIx( z_moe+kVz?cd$`qFjv-JPhclaE^loHh9fron%7GnExbGOpf2L6Vy=mOGWy?*hDcQ3ZOQKxH>;`&Rt#wBJM*ZtW!Iiy(jXVc;4;);r` z*KHl%+0obMkCW%$#5T~B$%X=hyVBU;c3hl*$CxFH#z#x4h{?^QWCSo2vgXsc$zn@VQ&W-Me=-Ue*Vji<;t!XT=@tWN2s@A}DGaj1qM@ zMc-ros((}22^Ez*XWydh1EGr^HpMUx5-p4WE z7hen(@427fchMwQ^{H|7Z4PT2o6;rTNL}sHrAzkrzR02s{W0!LN=Ao)R$(3c$$_tO z9&&|%WgwkFs;1Vscl5X9Fc>UHL6=jo_@r@<_LuhkGd49=h;IObtB`oSK*C10OqWaL zKJX!s{(fP`ho9Z|Q>5+tnLe6{%79Z3>)WrJV_dVz6%09&nkeXZQUsztH$+i1G(Ijm z9q~;=Rr+T5p40KzLnsS3>zzHjaqCuJgr?8;R6%6uKD~Gi4<+GfIB)awt9uMlX<{eE z=y7T$G<>_~&{q2N(ua2iHb&Fi@<>cU95)(X%OSfsw~ufos1^y)bFm?wdZ4Yy9~=j} zfI!AO|G(;^gqPz4lvlBN1QfYU#^bP|+E}KQrcLGG;J~N-ly95@nWIWN$p5qvs^6Z~dpGRofL=bQHyYKb9bWVC51d;pZvdnVN~#E;Qxjgh_FH$BqKkWA~NC($KD!bZgUG8gZk~ClFG)hk3$BeVvz_cl1Iri?`X9JSCzxCN> zLXMJ}Gk$!-b}1&ZwUBqzQnmP{CR^=>Mn=k#jzto#ZVnuUSmxI4^z>dbZZqFNT^#~5 z_YRy5>5`PpPi!NLhZf7-fcwHmEAy<{gK)K+Qc^5{ulrr6gb1g|ENT|zI%96`(eJVNZ)fnU4~3AItB*Q;Z=9~dvE(YON7idnTsyi+1YIdgB*{2Ll(6Y=!#*`{O4!u z*~vjhFy0X<1|`K{$~L0Dj0bcwBs5VI<;|NnTkya(1E(Q)e!u|!i0sh;H^Td5+6rtAuVa(Z1Jv~cWTpWIXvn#sYSZ5=oRbxi z(Q<*OJ$?q8t|B2=1|(}B&Fa-lu@Kcko@7&hzr`@vPhT8ZQ2QG|rgMXHQ$TR5KtD(U zclYp%h`!OgDb-LewJbx0jSLLj&p}G`zP`(ePS~a4;=B=YN$0T?(3Z&{7B&N6(4jG5 zSnjj26O_2AQDA)x;WH3ae9@O!ldiRA2PbC*;=TGsfr;#^XEo0}6F8H1{K}7ahcy4v zR0hp@XvL~k{>Zw1c+q>qI0aUN(7tLQaKCHISNWmA^H3|5Uq5pcQHWkmO|9(f*RusL zUihb^q-;8y-_Yn@b`c~}JQycJ7lEZ|cyMU>Fkq^#+vPa0Go<5)gF*NUwa4l^$!~>S zr>t#;zLgr*tI==(hm>P;^tj1^3oJ*VEPrPAoyDD1CxQP=o)1E-A7PZR(mtM^l!kbP zwZd0_X@>RnGbHt*2JJ*5*^C#`198ixe)0pB_Qy%|L&0C!?VP)_MG3W}ioAltYH@LK zr;?M+Gk}IX%;J~%TEBk1dH?=>gv-b&q*(qShmTi{Z|-iB$w~xqvVObNZs*AX{_EGT zcbBjt+cSVoW(3h2TD4_TGFz_o#lVoq;;aFQ^J~e292gKFMNFIftYz5u;9RE*7cTfC zL)OiH1fcW--OyslFLt?gx4z47Q8h3H9Y25apfS07yW5!BFt$s~?|Q%N5}sdO>hHfR zEcDgu&R*!ty|h7@W^L7i?~jKjQkyOfR`nsg1y$PpyQcAQoxZ&04$_Cj-LGXusil?p zfgZ=tc(iWQ*tx8+x)TurEE4L)#Uj!LeDk{Zb}GzMABfK`!w03vBd%*Fws&6s@F=h) z^PJB6OoNh522=NI_0syzsgri3KrFrX*}7YE!$&6 z8=jeF9tGYXD_!FjBf8-%r@7RZ{_!^38t;@WfS zRhi22o~!?E&HjT%`_c{lmpk=i2Su|91C4~Xk)D2qa_AH1aWf~K%a;Y(0IW#g1rSxG~V&|Mk(b+DSNPJ<+!u77v0UuPiCTA z%ArkbDL||gYj6oiLXG!|cm1C06Us24Iln2AYjr5s7M_9c-@UQ<4)E<&?fqh7vsChI_h#%_>}v>-*ur8JXt=HAg~MQH(PZ1hxn-AI3pj#TuU>uV$PpU!Q*MlnU6IgFP^6uj zo$UfNEwK9@#FD9zydEt%I!4A_jNDj$$`H_u5fTiy-4x0=Qq<(PIUfu9c}3E7VfuTD zTEa>|bIvNXjfc?De~1p-kM~LbEV3R8Qs9C8kO~u!8?mIif#09oE1*tb4c$y3um}yH ztgI|<2~o?>^x)h`Nn&J{%Z#vkL{+s4K&Yo6CT1G~c1URGbt0$u4b%>vv*UKR{;b|}*Xg~UE}~fh?FEEC`^V{DQxj5vQJbU(xVCW3JXV*bJ zG+P++vxcN=r8BE*X!OiVjNJQ(;AS)a>lB~t-E}4JXu_Ut&DR`~H(Aa_DKpf&?rF^F z-c=@%=C}140j>b;D)R$R(rouKt;4!5k55SG=(Jrdx*uw1TPfL6tDOAd?#FjqZSfDC zIvxNrFamr}-H+DRZ0$4Nv+JIUH_{7-q$D$QU?mTERZA@o_AQ7jIp83a+pKXP5a&;V zH-<9eOaCangS;3T;ziEmWflI6gb<0Tq4Ly9y{VNd>i?pkAWCHC%lRGj#;zy*nd?jR zyJr6KQe=N{nKQ11v3x;$ z-lwec%JKzK!$&|9IGM=FJ0$R=#Nw3pqgt^UXqA|@$IcC6kywUW7r-SR+6V%w7N)v3 z0J?DP+O?eG>gERMQfvNsDWI<3o}wrwCdPn{Oqf;hc4=nHyG#Sw<9GK`gH)xqUaS*W zL>E&DV6o0Dn!IC-;`o5M1vx+ZtRHX5sxg;K|Mocs6C`Nt;N|^akSP6Yk@Mej$$vTY z{&)C*4Vs)UK*V49{do&GUR1!S+{APQyj~_MhtV-H(E!~5(NSTi@ZYZ?S~9g~&UnJ8 z#)yt)p!FF;qz71FLi-iZPn;p_7V;5z6T+C+IX+r?{B3$ru1#P4^>HbDlXe(WNWBlJ>Tj=bB|e=5djnwtFk7 z4rVqn@(gr#F5~c0)(hoAZz)GY*Z)AaN?z~f!c625E@hPv9K^>@Vgu^9lx?Gz4yoZ()@BfXjBe*Q;nsVT^q%T!Y8)wC`Y^}A$@d`U$?Ko|8rovwRI-?Zlc z#(Y!hD7(e;+a1R+39gw>w?5zY_KaDq6@IAB(U7@b&o1X%q`h*`_h%PF`nOR9zqpig z$LUm1`zJ^Cie2>jEsuw4pI@u}{DSn`FSi%dQr6e3rZ9_H&;%;p01Foui=M?A#7;Ex zYK1{gfzu+oFzg;U5Ky2eSc(pMPeFdZ_^-xv|HMQty=S%xL1gu8(Ro3es(z~x zXX@BL@^JAr(Z+v@-?&b<9v2^zYRoU)7ON(u{ib4c20PphZ>YJ7=hhhTp`Z|}gcAmxEig9hp9cNIW zB|dsoR#&&y)2LmURmPPGd8=ZA&tXO5<%@g8l~_Vf_{rX~T6Luq>`McBJjw13+FBCm za*+lT+U?dh&lcNMYyKq3#1B7@oBdcv{*l&m2m6x1dR^I_OQ0h>482G6_~=+!X#*9z z=>NRsPGlrWJrB{0f~aSG{ZHif6uoDA-+%bf4N|A{L0f3uVmddx}HlU$SEAo|xhRy<*rTi4y%+oEFgr_xZ5BB)&D>+^!JduO@7 zfbJlTZU`E-K_5`r*=g@4 zIqR=SyseaIso3i}zVHaRw?IYlFRG0HU;co^6h*DfCL=IEU`4zM1m3Yj2z5RUN3Dz5 z(ypl_xv2uQ-a692CM+WA4R3@wB8+NlYh#jeb#zh`*UZ z`726qtg3S|UHZ62`cKs|;QOLvJ!D8-0Qtv?#ktW9_JeJN#MdoSMTZ}qqwX(6u;f`- zDAnE5Lq!1(iofetE?>9uhEyX{6Uv!nL2dukPi99#xiT3K7LTt!va+bA)$7XO>-EY^ z$Gdn%*}ZVG2Lkh%#Sd;;#!CYl#7RG>x`t`hz`X&rI|cs!Yti&V(+%>XH@z462dX7o zqF)RbBO!%yNsv&wR4IjV)m-`mk82#+&WvmPIsOt`tNO;Bk@AwO9~br+=af822)^CK zp?vV#!ZM-xm><=Wq-4TsKp?`&$+;Y<{hDt2E%5KV?z>(;t?yLv%k7csebS!FafDO} zA~Fi))L)v1KpR5)YK=a!({WTza&mIky|1?-d(;hsS9sap&Q=x7Rt18w+YwNKh+GQ_ z_CFJ%lW5GZLM|XdGdPxJpl118C zGwAUrGf+Al($cKx`A2ktH3P9HfAr{@xA$cQtBQ(>)bcN%<=VNk0|48$HRNh`xJH6v zAf?siEz>rgr0=9k3J)8mP0PCV_VynH0NR!^&{V%vg0$5B1T9J#`1G#5y`9IFcTkcP z&j}3&_pA0-P}1Fb)pw<@kzX@IZ|l#WKW$4)edB|w!L1P{ObKE)DhdSGFHv3zL!FWunD#%a zuG(h%!Um+X`2L?sd)W7y7d_OsIa z(O;F%LqRkJ5$nk!=c^x6Pj7&vG71`4w6VrV;+U6`qOgK!wq5V*QZO*W#?^F$@do5} z>`TuVy7WHr@2>*o6(wrUfcbz^Z5kX1S@E`yQvR@WJ^}x;V z;x12gtqA2h4`JTKRePNc?1wJ6A~?`(8$xteM`+OF6*g_%(7_NOEe<)-DfUcdJ|5*;E3sI z&KD3)6plBZNzpHo)cngOb#I*R5VXXd;ivUWaTb5y-$_DCjKY6h>;P5)#4sW*4(!xu>J~IWr z6n_$rR7mcagygjurX%lJ&nkz;R+@kndSB=z{%%=8J~%`HzXPpmZIiX& zCJaR{xGWbjglb%42yPjo^e5m>Q|q8_^Ffqu&RM;5zyAGZ#_f(>w2n&o<7>Z6?ofGlX&v2 z^3yG!s*i?xfffFi+ob;rPs1856v{zVi|-PYHW1QSr1#GvR%R$Rrl7e4Ro2-{X@2C} zQjYxdLEy&ZXqFnVjcHqVe>C;1S z6K`Y0H=xl}h3>=c=xAMCyQL52y@OQ+r9%2b$7A#%kA~%;T;Yv+pbUS}xULxi6sLc8>}ogIQMOE2Bg^0iw3`IXgHCG%oL;t!tk zJQjrFiFQ4DN-T&*_Nt-eBU0FLl!;aw@S8|vaMrpI0-$kRPMMmXK97bGIRG1E=T7p5 zEzOMW&7R$5=H}}91mg80p)1f|4C^71{%n)F{%H24uit5ZPnXE~)}i@_ET82#ejOl+ zQ&_km?gSlqg^uxQPIDoqZvz9DuTG;ndhp5Y@0$-lsf3!JPoNG`OOoNx5^DY1TMs}F z4lUru8>=={0&!4LNOzZv6kLdNS_!VY42*a;lCaX!L)&LB zp1m|rfv#$?h?WA`rYV3APhzAwQ2e#zPTk5`IjpFe+|A(QRQZT-yr3;W1R^WgkRt|#l9fnw*nm4WACT4LE!cS`m4$*^q{4sCo6xW{QHJHdQ z$50Do+Alp8M%l0@3N;%g0D3i3wP>LjxoyIUQ6B}Uja_;Fya~p^pX*iB|hH^pC8S|z=mjEeIhc35q=c1ZjbVuK!;?&eu zsWbsjJ+V}cN^Bi8N_9V4M@mutU0sev`Wtd}f745ZJKVFFV6-3GI3mfldiOg6$|H}> ztUAfpyV7m6IoGzj+{XPJvvfmhCQ~8$uEPqXS&jKOroF~AE7!AJ9GAf$n-UbOI#L1x z>p@&CsS4S5>{teBAM=2>q@aFT!NI|?->x^HCZy+I!l<(bkLv6icC?5u+wSn;B+uwy zEG4PK2mMrc7iMd8gkN1Ap6eiN->=+Y5C`{7MOV42rlUL+)63%d}uc^M%jqjgr0Q5zuUuF#^uE*dLh#o_ihy%;a#YOJM z07!CIu)WG({`?$Z;>GugtJ{YolB$?qgw{00MSVFw|K2aSjD+Dgc^t9Nhaw~ z(&V>Po8{`FiJgPO%wJh!S*xJjp~_XcDZ_JpMI|yn+cwuN8*rUvmTs4NRpIQ93IcTb&cQWFYr$Az4Vyx))8Z!GbS zpIZY*h2yl&nHQ>)B4f*EgF8=xpD>6YoLPL)-hLk)14$j0(}`+YWCA2DB%EtCVul<_ zvpA>TyE{}9cY`w<1{RDiC)^#7S@>r$5`vCw?f1F|Q( zh{)69-p zC#fM{!2>x@^k2H_1j$|&##UX#&i6tLQ2|VA4V81Ot1_hE(^E_!$2aboGs# zfu^VeLWu@U(h=1QnbV{Yb>|eeIwr${F>e;}x2!{pS_opP%3!u&NDjZ@E|*i#XYL^I z7;u4(o?er8^HKt?tsl7mb-R!}LWo^RA#z+om%fV{%U29Y4Ed3ON}QDMr4Ntp@>@X>kGZUK|6C0~P)KBi z&%LDJn*6_4tX#EP1$NFs z2$iN@(U4W>7TS5)7}KKYmHpd9HzX!n=D%^*!(wK;WjfCve^FF z1m(x|zhMi%uS-wm$JZC);OTwP?mJ+(R71$$Yb~l6b^gA+dnpvCB$nWJiY71q z0(|1HQ<`u_Qy+)dZjlVFRE*jb>Qkm0cd>6BZnF}- z?8&u4la34n6|#hc39pB$qWH*vg0rO2uUhKa-|R8g<5mv+@Tb8aHY}6(EBQ~i*>-Ob zSjdy9pHxCLoSJG(JYloJTy631ypYXalC|n zvI;9U6m+U80s+JByp&R&VQ#x4W2v;c92=;_7sHL@lH}qISPObhO9g+2vef@~08~0u z7zsP=is(Fruu5j$(dLLpP6bI6Q8645RILRR52g`H%Vpo19n=Xq06dZ++2)iBm>X_6HeBXY53@NXLOT_3D~)LL`KuS$oUBZhq4J50oIXhzsh6FH|p~?PP3K zlwMiyW_Wl=nEAWD6j(!wARkc-V7i7r-OEp(a*s?lnB}4uW=ghg*rOE%242?#Hkhe(O*grC zxVc!-_f&SVNnDXv*%^2&)L8hkWl%-n0p4Vc`#MQeNAig7 zI%9L;O-(`I^-R@2L?*;PUnV{d9$G3QEC(v5nN;^Y5!L4*MZ}ulf=8Q`wEefS&o6!* z98^W0>)sztMLBl0_593L5s;oiKgXSkcAvzTx^G6WS=iBng$@l zOI-$wsc7jpM2}{=27zL+BSSnf4?l5#CO#O6R{K zZ7A;IzZr{960>ObL{Kj%X!RIO?*1dpc>nVXx9F86yr5Lldd%m|URRlWf(1w>x z_ijU(l>k1-yUa}>(AFIFWLAjO9;v}ZUsHEh~tXKM>Wle1k#Rdp4m zwa|&!B>hk2)leB=Ktxg9b=iRFg}blcII2E=8B5JIT|(WpX~mjaHr1jl+sQB~!8z!T zgO}~yt-Og#nb%%wvCA-ExhI{Rd;glsQH{r%Nn(r~UNx~OFlxH?tiXWaFs5G*B|Tqk z%Y16bJEga`k|ji=v>@wN(Cf#E<9jZtC{{L^Eig;&NWN|ZwRT?c?l-YV`y@2p7Ys{u zRmTSO31rUnv`0qTt5mqX-EU}cIrcuM-QLR4rgu~M?;AYsuMw~tYfpZkW}v383jHB9 zg)2_dueJXRch~QqoM{ywGPu}Z*qehthO%D*I)KtJU%2$G5&+YK$Cxg;wUqO`8m_K0`bDQDP$W ze+lTMa}T5a)Cp}H!{9!&Ap*8b>lRxIFNHZx3DBbq{Ia$t*5%_%CD=cl3#xZ-&w(!S%%R9 zym(t*GTu27ZbA#S!CKaY6hW8i>1kqpfXT5XGZYSX_6M=1f8fR;wZJsR1TsVQBUTf3iuB)fbaX~et=ldFLn;g;iXAArcISrZ z-{v6(52Zhh&(J+LhC$*kqBVd96XdrShVBwDE!ZQyRM7Jt_WOgReCV(KL9!tm|Hn>* zpLzD}+YC-c{^G^ma4;LfP~5k{lEply`vATV;B$t+zts1@;D}h*PJh2MuL!T>2qPf1 zq@!Cvjy=Q}TQlSuTi-^F?5Qz-cM*Ia20Raed0{!Aoc)+f^fhwSDmGV7xY~ev^16Am z196)#VXMZWosT;(D;t2}W(*l|3JKAn&m;-adELdz4f$vwK17!Q`UD~qEOO4RvE^7n zW*;%7LubNsh-KS5Lp(%WRxl^M0+qn4ef3f| z$S5LuV4YJaey{v|PmPw}s}N2lVhL9`-5X=!RjX!WUVy$C@jW2!1$cuOW{1h8`1t$p z>AJi5ucXoAUUHPewxx5$aE}WR& zl7Gu(qQ8_3gNU~|F5jgR`_gaA9&1>ltYg{#B;dk=b?yH-6k;mJir_1vLamD-aZfXKqnXtAz!qHwOxlw zSK*LcZrx8p*c9Qj zS@$2yPT~@6eRBTB(8L4-s#(mL@X9NjO`*^4kG&UFPP~j@!bd)EohO+n=>D?u#-SA} zR`}q_>IGq)R%0p+lM-fEr7=3T8BZ)ar9Lxr6N@9jV4688pcio}gjS+8@r65NGO(!jA zW_ei8)EU+qABH3!{uw8nw_qXzR+6n|neiWfTK{;*5jG1t2;%F~j(OT`ItO4<2LhOZ zjD?1VhT;x}!9$(Lbwk|qSH&zOA4}mX3*idOdE-Eb?a5GPhA|AKeuMadjHBJSaEv-U z(VaLV0&S7EmsTj)l)V3a<*52A@bN|fk^9}}_Pfvi7AHXhS6L1Quhwy5#htWUfFFZ0`VIHS zSQ(=IZ<_3XvV})w9#gLyK|f<4y0oH#8ndBO=#&g$VP4{&P;l(=UYAmkSxWpXSFL*W z<;$6%PZ+boV}E9wl=kSvG=2UpQbB@zCCxrEy8}6K6hs{EnCji(!K@er*HH?E!DUNV z_VquK1^=t}-!dYApE5h zE6j)Pz`rQSbr#@g3kHNCT|OBr<)jWLyd&gYI4j=0Wr~d|*a4gWF$+vW7;;RshzPMu zv;6#2_*p&9tOD|ymtw+3@+#2gyT2%h`F1uwfo^=6XA5}qneh4U$MTt_&@)Grgnk@? z8*4mbUfG*BC%nA8d=R_+`}_O%#z|}qPrL=i4MVWZObXfxWFVTzur|W_fv4-PY%J)j z%cFx)@O%SrPmhKlxp3m(RbEvUlg5c5+v9OkEnH$4kynGh4Ff{*IEdwFWw6HibFB#O z*oWMt@%zWQH7-s*P=OfeT^0dDD}De zPoK!l3z=0xYzn!1SEo(miZce{qV}4sfuu_PS6|x;2f;_j?_PiU^r^amgASCA%*3t$ z!ZITmE5K_{ka7+~bHF53TT zSyaDyqX0N%-`{)*vw=Y)=u5Oj0IsY7;tY_q4! zcLDfHY$X1jFy&eYUoc``Nf{7*iay*SoJwec$lS8)a0MfsTvXcWP_A{`#MTiH3n-ar z;n^y3>HP{!z}jjHz#CB>{|hprpl{#Kk%Vh%1SVFbKcXT~m#^|x#;E-r=@4H*I@MwMaDn7?O1 zaY?W~Bv{w*t;AbmspmpGvT(4^0db7z;c1(P8ZFovFTzQp5bmzfXFi{EWf3)_M-8jd zUvy!UZH3o<}%1cL~s{nqTBF0?06wGt0%az(JK^`=`^FFnaZ1`Y|QhTiG#iaP%SO%-Art=7G7yIm`?^h=HxI-4gv?_%BS?|x1FcN78;1p)MG9Od z1)!f@@yGBQ+i@8ghO)L6g4zI0xea^<#VpvGRe*{^7(|Xq>w=feAxK-vNz%hsCn5`w zUQeLxrMyJ7JOrbV2XIv)<~k?aOABN5*!IKTEy zp&XJ|F~Q|5^CW$%^dQ)4F$7CbL?MSFzOSYbT7%mNX1#DIC4Et@Huzm2GQ;O2mSs6R z#RuvI3H#wr1z>ev?B?nBM~*c z6O}u6?OF>!pHsk(wcJD@ekeWKT3Qh(a34|FabyIl_@(V(un~^|64O3vcGwfbgjMqD zUtq`Su=9j{gV|*DF@j<9^ZiZ^FFFX)mU*JVx2Y-9Kz!>L7|jyL3meE=NZF5CT8aZ~ z#m=gL%!eo=X)tVGr4-1#6MkDTyA3lUb|nN@)SX9lV;X!2#al}Onzd_{L(3tx?`eip zF!iF;<}I|U{Ory&r_!_=`hQX5oQgdwf}#f30nK15myGFaCK?VhClKZc0KO!Jw#R1^ z16$(!i@x*6?~4%9*5->c(-PAFGHjj&$KD4x?68Snudc4%?LjOWDa0_B;z>$;oO4p2 z)D%E3@$s)y$F`qlhCJB@eK*)Nm3Pn8;HW%63jiKBXMLN<^-x}7i2OunWx~D6tI!Kk z0|Wl}kQ}UB46!xb6a}@4QKu@MJI4-4z*7Z4DU6`9>HGON*tPFq^9yxkjd2^SD?Rly z#Sa7~VPJkF#Een^J7}E4TQE4|*tbuk*aH*qILAa3lk?#Kj+C*j*gcV20CdkGChgz&U7B8aWLz0ypp6vU=Fy0iTF0b zCRRVr0J-CJ-Y9(f*gkf4cc&a)KNx7>BLBYwELhRx|Fa%}d<}&6bnAYXeIHofSBy*{yc=}k^OMGz&7*m%l#CksGx9H zWDF&D_0!!#z4HSv26sqGe(sc9Q@nb2?PyvGTsq@0xIp;S!J^6SNbt)MA(6o1 zJr);CBe^-_Ud_pfX58gkl=@yIZyXjQ<$N z_j%vSDi(>ip<4QS(kDj`F-aO0W)P`gB#* zmEoRm?HCh5d8hv_Sz#K`d|&^b1uGU8=$h&|Guhtq1A4NjS+u2USpl810HYcSw}e;8 z-Y4;Kt%xx<1#co{{DCdqKry#(udGQSF(~E9(+vUT`|9R~U-#_|>8@CfHX6sux!|1} zLKZ;)p*4qxwG>Dj2hVUi76wx*i;HWc9{r&3oBAboU}5k;%_S%gurtV>nL0UjS>+wi zv%hx>SAfPWA#O(s>O|s&Pv1@|e@K-=-dJ=-`GhHb=6koZ|uaMPVWXTvE!@tDcmCQZ$vV4ISY)9ljxl> z{Iqlm`%M^AvOq?#;z)Bmx=99#>SVRaeY-;6`t?jD+pX*8C>R(0wwsw0yy7efbiOq9 z`NzWer8`e(vy5>m=~VE{(qSa@KwG?LS(!yq=H*$?ME5KHhJRPmx#j!*Tt?hz=;vw#t$An{ zQr{#dBsbg?&w_X7^V-^&(&Z(&(pAo>3dvZHhH_*83SEvHpl*_zC)8`zy0xJ&Ym!;A z4I~%Gf{G;4lYwW+Xn@Nme#@em4+*kdNAtxY9+om?$>ObB!Qj#kZbQTN2JemSc!<0W{d)L}O za5&AYrKLsWj_|w`r))I)gGbpB6S%l!Kn0pboslEcW_z|t-3!BAH(g!M^j$e(maBqh z%itudR?>)@Z~w2+kj-&M`hmkW`Ey8nXLY%H6#X<5IT`oGX?pIF0bwFJ9cvpGXM9Ib zQ@UlqUiS-KLFVqpY>y5`WL{17+DS=&4QP8&8)SH-VuE|Nk!Kl4K1{dy-$fM4p%yk- z+RlxVRATPDzpTOTm0^EDWi>wls%ZH#B*TG-TiLYUK~NdI!eteCn+>HMj>{@rcNrzY zrY<`W&UKQP#aPPoWi~s-t literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/2/regular-price.png b/src/comparative_analysis/visualization/clustering model/2/regular-price.png new file mode 100644 index 0000000000000000000000000000000000000000..bfc807530b206a398e9a04602afb61cd489e33d4 GIT binary patch literal 23105 zcmdVC2UwNamMw}_S(c!3EJ4IXsUT61AS#j+70DR{355tq&N-Pdp`x1%vOy(BB}!IN z$)ZHbf&|HuCBLyeRj2#Aef!?i{kq?~_xq}fa=Y34|JT3PoMVnL=De+}D7}ex2Q3W^ z%_f<%r&MWZ)@IPqtZD!C7req{BXa~ljyaw_=cs05;^<;%Z%m_L=xA$c<7jDi;df_a zdj~TcYeC*)yn;NxUvhM`br9j>v--yycx~)W`QE9;D&j*n*q+sPprN5RB>%2Skcc;< zq0vs0Idwwa_0edDnJa_F!rX*`)6LC$5B&V=m7ia4Yq=Pt*Rti_ty_0`cm=-DCfs`c zd!;bP*Sn=rAJ^L&Nt!aKD@$)VVZ6myW$lJr8CxY!1pj>Y9*2ve@p~TRv=%=lRg}x|^CgAj;u;#7KV%qi^EA&` zX|?g=+;6@-_`!4gDN`vs9wk(eQwhw&V1wX`aQ1EDQeH}Qrb=EMZaC%So)#Z zYw?a(hottC2dDFTy!X{EtHsJPzJ2rNYq&+)$LkxmW|`Jfe;X{&O4k?I`1Dkh6(hUi zqYs~7U2|&Ib1|FjtuT(c&Quss0+L7UK|39v=C~<1S4jEt!3eB2_{X4F1s>iZtKYczG4)Iz7@^Ik~yz zr2Y3a`b(@NaH_>!8fr+~A!u?}-*e)0`s+-!c*WKntB8I3_gAqF^i_p~$dvd#w`vpC zNK}10J{c3kx@o7dypq_AI;V;6q{)Zq6Xq=$v8;o0T|UjGQC@Ks0qnz5wGz$wPQ$&n zM|tz_i#QEkYRj=o(#bZLiKqLHJKodb+-8+Ol2PSYbGZ3yT!gi%j!wAv>XHNbWVv9T zkN6ztil~>*L};}Gf;pLSC{ALrkh-1 zWrHfGU4MT4`n8Zlzx*aUW8i3Hq6#MmawwzNXi{bWV$-xgmzZzcPeud#Q@M zii?#C;W~QsoX=ug*Yt3DiF@#T!5Qb~G`$@njtM)2EfYR}{zD^OU(c#F>tp%D{l?*O zF;mSf-uM*iYJpEX->1BEJ*-EBbza}L#srnp;qXkqq99?@_q(#q8)bvIwKO9|oTeMp zlsNbAFHKhPZl3RVS#JOMRC;E*UMU&ZPrG4*3a+m)&%v~4vXWbWbV<)Nj6!+xaKE&B zj*7Z^;4k!hQc}<7_L~hCH}M`jrk!5AkQ9E{A`TbUm~LPYz^)Wr)i+tN$o4r_ojoLqkKV(eEY8hxhN7!u@CtH>GM|GiaphXlUuX#lG`r zNp~1{@0P8gsMvIkUOWLOm=n+JyN+vyP%$YA%>Q!#cwksq zqF#ZsSyPI(dtZW?+-Jb^jdmuROZ;Ip=DM}6&q?y4jC()Qe`{j)Po>ZHXWz8dg zjY%4E^kUNwxHOVt=*7QF;vS}2R=!Vs8T$D2ruWLcDcL0c;tL6N_4PAdt1DVX9&=67 zEM74YHpO|8UUGGK%_UVgPxYtun;Q^p*$X=KW4wiJI#b3v3b+LY)p9%ClXo1kPPu;l zXL3(C%$&C3zB3bLEEew{9V54kEyWg66+1KBJlq#z(3IQdJ?zr8L+H{2@+pW5`ZzY` zpPm_BSuA|!`u*!u|LI08gTZ$@Z5r@Y1F2N%_!s{@Vo6jn5A(&@QS-K()IA;}{CT>( zR$aw?c#i?f48bDi}Fj)}OwM3tv!m}>G8 z7HjleI$}wpT3(n5=&)|S$>N>RU3xQFHCERB>*JfWSw$wb)Kt8}y>H*ipMKe>jBxSW zZ@*3B5t#Q?2I=5HUZF~P+U4nz-IHb8eG&&#+NHxOp+A&T zy*O4-yY+mYeJp3iqoa0D*k^~5)59s%%z`Gp+S2CcNzLP89k}x zocHpA2`;JV0xm#^Eo}46()L2PO!hJRyy}AS;_e2*ZOnLCgvZ3JPKmp~I=J+DJ<)Fx-%6wC9-po2^Q6a)J@URzreXbHX0O zskwzc()V}q8yOkZAV`OszJHW=scXz_!=_D#b1hparf!CdgH5RsxUlh}xx!X|7KzTx zE>?E-fk7WUF}DTkahEhK3I40q-aPw#G`GvsdKg(af>OP@G$5gGHz(eiW7Q_Q=rdN> zUmG>fSX*9xDE&nbtr}(i{qb?vKC{f0>hzKok=p#F(e!J-Y!YA#`||Ey)l_KdP5Ov| z_mP4M^+K7MnKi#`+7XJl+aIS8QP}D=*WnV^VSU7=aN?cl@VD4!Q-hs~Kpn#Mb# zqiwknCr+F&L9(T57_XIBwftq>x-c9fel=Cq!eE66;e)jk<2DiVQ>_;1VU%i%w7hqs zUJF^x8TIi>9yQMwU(^(_EVMPt*Uve8MC8MQ$47aG$1nSSnVRwZs`+WO=lyBQe7eta z)qn_HvO$S=9P5-HUol7U%;OPTvo$=N2M(O6o6mhiw~v*TRVf8$)psn{d9>AiEN_5z z`NiURi2*X??2`5N8*z$}TsZyFxeu1-alC^bJc!;S=Kft&NW{GBS03Y9RT{ zy&di=^8-b}9k!*L@@HEuvJo*;wKEUY8kHg2eEoWmv zz00b>3){y8CCUUG7<^u~M-9(lri!m5LF(pa{pR_V)JEc%+F~E&Zx@cbT7JOPjAO%`@rwOJthVP!N&;OQ%H3^7#0< zHWX8p_;wk1-^tf&&9;cg`PnAkO;m0{58C4%?BZGv%tW)_gDgCZmKVrEvpfAOcp45t;O zeee&8!QLFkHINWqTfjU$)^XmzXE~cfp-kR=j5~L0Eub5~O6q5g*F+qVn=G>Od@F4E z>G$~h#FP}CsM8Jt6^&^4>t?i^ZPJEaE)KI5=fVc$nVJTg$y2o_mS%@T5o@ zoy)Ndt1SpuPg0j@%eAR>*}d{e#7P!cQ;$fM2IRtIw%hlx>$g8@Liwd~+wJ|vUVPcC z=P{a15+<^=TEYy2Q-R~ir{|Y$4`jGbT)4NL|0Hr-v(L&@)aB-z8Pa>{)^z_k31fKZ|9LAoU{fc#H8b6FQoYS`NeBv=G7V&H<7?^(|%}UZP@OJ(WOT5W5qNU0;GC{)u_^i9Lx<;o7Qv3dg@;{1QuC#UGoC%dz8os0mr%F0eTLd5 zc&$VlP{&YRtlt48YKoSDmqwhK`9#lKYTuYrO30hsB2T0cw+oAN_2a$@C_s+V)d$Zy3IlG>#*h})v{#wKx_b-gRsx?dL@VOT#GKksF=)8IMcX62!c z2j!@v% zN~?B=NTqWcYuBc%rHZ*RLm_QeP;O zSb1#s<=r4zsfFQmv8qw$g06u&N;_}y3%^f5MixlS`Pf8qu?B&gu~#Z_2MjDM=?EbA zb|0U8Vv}su{^H|6ThCbLMHGCqZ`xVzmV4Q>_DqfyjGLpHqIN0Nqnh~A>nKt*mf3

+9<~2>dZsxZMAK&X-BQJhKz`orE-_Q{9fStnlBLO$k=eWn$RXze){tiBL?Xhd)G>z?lyXhjg4xcaI?Jdh=GuQcnu`;? z_p^t?wwx#&^JG9ZSy|b-^(>yB8^^|dRtuU%^Ygl7T=4*l(#-UbCr@|Dx;R9=)h}>P zZ5BbTdqiw;By*jPv{|x7axj2H46xaEQ6takuPU`Iude*GK1sjGJzU%?Uo%}lGJX^X zkJfSgGg*FSVaw2~SFcVZW-k_MGyurZE#36v!@&rtA0*J(vA>!*-57y?CU3m2so2W{ z#LGImZLS>!ZivDQ0}`uY@yn>wJv+a&bWNFIC2D8ciuCLkkyB9O{f^v8o;y$W@NE_M z7g;oYb;ufGEY;;-s+_bfgVL`E(9@r>`t6cC9w;v?+Xy^T+`LrMtU(0jDJE zV#RML@;ipNKJ!|b{s@|Yd^FCh5-H$;?u7n$dHHhLRy_3Nw0v2YPPcgTrj$g`DclI| zdijnM`SfX}-5*f5rJ?doLXAc(pz#F27;4FkpB-rlFzo=`qXM|ZlH{qlY>4NX9a=IP+j^ntKvTLwI#%Zrie>$_XL2FDL#^4#nknZVlRFo4pZ>72y!fLAL%s2V zJ<8MmxHtxA9&3)YKhqQ-rBcs9|MYVUpl5F;6Ji#c+XQrX*cVfRWL;agREP4rfxQR zgo#j8xXZr0snShH+M{2*IEs{X2~lBTw#{bdK0f~fq8)xS@>2;--v3y z!?9igSf?2qmQ<)UVS?;ki(F;k?{LWKNXnQUZ5u`mXeRtj1$)$2{QsQi=h{*1ktW2f z#;4Nshb=!TV^=icKxTQ)+aES>C?DRPA?~%nfvte-u7=3lXM3~(Z=L!2@#&jfzczfT zQ`Ny-4iI%k?lY5a?ALLI7`{dfDc=ujxmQBNV&9eCxV-hZ-!7bymX1JeD~yzBGuBzu zHelq{F=vZU?ceV&dLhTMrS9&nTZg1ho~#B2h}eJT?xDHyuJM`gU`N7?-reONZcH`> zHh1f&eg6BLOZB*T2F`|1m;3O+%+r3`Oc2YNcki|mpYIJYad&s8&K!+YbU-<7g5*1B zd$bxrGn7;rHMoX_n(lAirTqa);%36QN5`YPOt2+tkQpOLxG`sEncH``W@_%T7gBgN z;z|TK6M_Bv_t&&p7t}1F(4WkjagvZV_;N4-<#$zK&mC_0o27=JlA1k1B2?p37Hejv z2kZO0R%VZ6BAlCCx|G0-RRBQyKyYIX2*PFumbxVd*4o#z0imIn-j$U_gy=bkF>l*u zGCSN{OTMNW=lNscMe0$z*U4Up4{qQCBT&yCAE%5q`@Tqzx6nU@Z@%MNgV2N6Meh4jQvPG)krOFsYk#;dV)BpMtxInox4~l;d~-j&U>!;z0%lX?ZV>3%&wm- z_~q-%7I|ncUp^M8`1b8vk{7)tl-JX6h@?GScbTTIxA*&!{rwPqcNrvmzJ})hwKTN% z1v6;=77d)8gcD23sm2(Ytw0cp5=-B%;c-Ue3y~xrdT6ed+z|Z$A7gB4YSCN%kYKRQ zyG3F$O>4PCM0Bvz>p}a-&BV>n*m6GpJKb-0?_Wy+jul>euU7Tdp}qh^shQGsWHU5@ z9>efB6lx4xw+4)dOzPVEj*!3Kx$}Gzqz;LJV#wX>{9&Dnc3vl!^|4oP;oE#!Acb-glFP5ZLWPl0#a|`W7buh z8p0J&rlRG8l1~bQrz7M)j)52NYFpPz9D%XGxcP+0^SyC{OI%zZ_~l@qJRY`k)746m zEA0q}@t~{bbxp$KOsYd41ApkF><(lt0`G-55-h$vt=8c-5Gl?Q5)>2*Bw0H?I5aOLta`y7`eb%x3c@B0WkyPVMhV6qefo{+V{7!QAXZbTIZj?w7IcOrNoHa6C+2Vw$YSV*ajQpmLj5m@ci zsq4RO-8xmcy#SnQYgPsKO~eh38oX*!#4N^RJ%A$WH^{+2DWi)mwN!rzRzDn)S(gfU5CdKCMG z!WC7e-dph#HRsrgS0cJ%ijPf|l62mUQ@?9VC#dcl;$Cu0dM&tGE+)u&lKu4s_0a}H zU+S^J+wnJ>)ZH&B98L&K1(@JId{_ft<@T;u+yoppBQvx1-Z`=4`-zazC@V)zxL${H zy%voWb*mHPv$L~fydckLOf_##J1EndY3h%_#`Pvt)`E%!(D>VpumVe7X{eFNJWoJ? zYg4j-^$B%@6;X9`%!=;-{x{x!L;U;apQ45*oX!Xf3u`7OCIb3|sAu>%;Q?Q2$uK6o zZ!_~I7mvgXD{RKT{E=cFnn;yuo}PsOl=#9s0!lJ6G6eqZiCpx35|MjwLNKGmMy_sH zYS99Z1SGc=mA_BiWY=ctzwZ^WDr|DWuJ^<49E!VhNC`V&N;KryuKTq7ariLBcs0Pu z84;5d@wmG1c(Aw$0Clo*a#IZ!#pn9(TB@vDzaGW^Q6*6hj&h55%1Y>Uy1XOiC%)u0 z4^!n!4^2)FBo{@L%&yq;Sc*R2XFROm`L6eV+o*GTVTvf(<25E~&dxcy3tesc*xuis zdzWBa@3;A6(9R~+($bRAVyW+zR~EP!$~hD|8E3uhmanXRw_^FKLpQ(Lr}pKyVewDy zRp?!O!N+a8D)HgR3s=iJYE6spGrNeAKXdnp&a0-0j|8#I4bB7Oy1w<_b*x7ldi`a& zo5r*)H#Y4|Lio@r_RM1src%>Tc%9JFbJAcoA#cf0PUAgz)M+TtdAxIUUJP0u))%Ey zK8nnE=zT+g{>mV08zGL}W0BBD-Ao<6gs5UW$f4zH2@LN(H#R!&)sUbHOGD&&QVA-&FmdS{9ajTE*S#TYQbqjwDiex zfo3AY)8s)^|8I@H|KG;?|0}-jV&ciBK}YkY?-Nj#9-lmUk^$r)B>ZxrnheEFcqp+v z2`O7S?xN(=20&_p^!=2GxF|Hh7;1n~o`L=l=;ThG^XXu&i>R2BNi`0+kP?F$;}XcT z1+d^%M+NbgKw&w?3?#4YPR}WY(e^wwg>a#d2z@ilb6pmww!B#a{>fZa#B1=4DYtD@ zU}I^f{@_yI-zXQu&{i?(qztIeTP?Md3kjd9IS~bC5b$Z`~?oC-%KsnS`ScB z>$uC9Iw(%|&IFbHr%#_Y10g5k(0`Y`6Pzi8JPw@BTEFK&qC`Ql{|dD!BQrDGxN4gc zE-V>WfXG&l(obyS!GphLo7JD;Z@!gKq;yidz;iK_N1%kJ@dPttmOV#|<)pbPmSOK$A`WvH+C^oX(VX=qH8x$Y>kN14_ZfP(=u~=;&xO z-jBcbTgffm9T{(sR{}k)hKS?-Nb#>#1J4_ zYrOg9)01}-ktD!7)y2vc-DghrPt58cd~gE}Sy0oCC)r8WB=O`dTven11Ick{H;8ELarfSb($MIy{~3|0Redd?h7wQD%WMD3m#cg>zomBdOAeuFcQ-1KJBAogp1= z_JRft!kREEGq4g2!NT$Z^xbrw93P`r8h+ujw50C{g4J~Se*XkesTnQr(<{BqUIDG9 zd5q;ruSa39>LMVOA33G%H)6t!I6UFUSXYUfiwm$gRWg4@iV&qtX{4O zY8DLU9Fb+IJ}Yj-2egKrENJgdn^}D7Wj4m4yCYF6)9fI9ae-;2EiywP2 zm;nzBb{zoKs_{wfOcR7(&Ii1B2Tjyku8UC~W5?2MCi6esVdQ?n$b?sAPhmZd2G+tS0Ge3B(2x(_mh&*l|!5 zd?3fad<%Kx!%(t6K=pQnl|pF=A=P~-F+K}#U7oM?*(@ZDkNMsIWQX+ZNhQ&V>rgI* zjNWZ5S{O>+Kp7NY#E4{&Uiq*Z!j6^QQ%Q`N$(me6%<+U5W)?G!x zmSEFW{5FWZQTY$-*JfRZd*FbSb@T8F&AM&MdyiW*@uV7*=tHSPMliSQ3rxSZo_?s) zV_XBJAH#3IJpqlxxp(hl^#yDf$@wiG4rjn+5QJn)f|K`>EAhBF7jz`wGu)0eOUEIT zOUel-8$<|(;wRUbqODfoJlZ2=g6|B8zD(PKYppnRx2Ll2iN5!|@!NOr%*WdEsOKO< z$))<>O@S=9R@mFPV9vE3})8?llrULR<<^3V@i!?22d zjPj71ss2!mXOD0gFar)nWkp4WU|f6I-I%|paqF=^lb_nyfB@_e$kqT|%d2=tV;K^+ zqoIcn&y3YNxZN6|L6A)gxl?hcu;quXN}_vjmOe&#@!hlfKT^4;SMA?%*gPg7fy1gJ zUjwIi;!OmkzFW6`Wjk=7-;LinPnYNmS}5Bcl~JaF&F;C~GV1I!@<|0zx3$=-fPD`h zJ;Z+wHn!8aw3#lJ^W7DP&$a+jDsTq_=jUE5FRg>9)>>V8F1vgwf!cse{nH~ zwMaax1oH4xSd01z`vc`sz1*ud$;e(Lk_a{ff5L7@7?f)r!b-bwUxWv86v;*;OaGG# z60z&KZr+ga7&MGhQNNs|=|!LUJ|?H}PCbM$WQ``G&D}n8=FAYp7A+H#xc=&}t!Izy zfsr#G@<8DQkmt=XQ!I%efCm8XO}8G9TW-bT&0-sv^1uCL$>cYnpY9>Bsr1{TQ&Dlx zO6y|P^Jf#1@6;Py-F5~X_wLr>Jpb<_tzzDwIWS&i^MPE`(jOz_#T}8j!o>4FR9^LM zM)oD2bzQ3&gk5~>`V%i1*)uVZRnfMu(hL1~;j`V`R2Xh`H~I6#ouf+PZHx&)EYMw4 zKu$q7<10PHz{uE_U5NT?;qx{6wS%waP?BW>0;GR}aH3J-y?kN#C&ZejzkTq!h$x*} zw#P#rp66+|xvL;<2SMCiaqR9(jHgbv=Q=}4BIf3q{s&(Hicr3wrG2OW30YGit>bQwWzpuJL@Xbr9?BWA>-I zJg4qKEfYabP(Y1yF!&VsiOcP4MfSI)8%W^!DJhB1$B+tBrVf@y?s_4{J$upsB($I% za{Tq~m6O*&gennRX7R!h_h@I)dF&7{UvMUCojZ5Vu9qbKUKO6M5yl-mlFnP_#U9lp z376q4G7phLI?oQ+l>T@n9jdZV92b8Ql5;^ zRGfmpreWI`eRB57`aRzYM)-W@{X|^GQnIqL{>t@V#WUvN*J}h{IODTA=fl=WzK7S4 zO|x8fpyc%|WHGjuA1|rAwO>r7gE(LTXt;oroCaTd1}nh~FWGqUoJ=z3i!82~g(qpH zQ&DCzo+X+0vJ$Qimd0|m@*OuG!x+X1B^n(9kyo$E_Qnu)o!4%SMp(cB1+F+D^8VKw zzLx5vT#{8%nkx`R(!u{ z$At?R%RXl%D6tn-ohi2yiJFtqXfbQNIbj{)Kma4rh%(v zDXOZfLa=rN)Np+ukms@}HZdTB&dgxFG_h-A`z8Ysw`KAO2&f`MxqrELq#;==U2^JY zUe3QXm+5Sr1l7Uyke~>#v2H&~O8epFbS=2zOwd=0S7O zYf1z>N?WI1ZjG>xib4(IEIJy3Ox>_C2$yWvGoxLz^2UWd7}!^b8a!l#?Z}pvO`!ivfoO!FzRVVfovfnfb2<0mRVxo z*~Y8;)j^xY-uIEoDCU3p2ap{BHYI*Z2>in^J_WK`brx!apvY;>wMoZWHv__dOX0v$ zJvfhOf>fYQ+B-<$KpdEqX~-#Zl%Ad*Vy7U~|2G~I8|WDF9voIsV`gT~2dE{%kd2Ma z3~>>-h43yoo%0ud#-|2`?qkXTO-mS2*f^8;jou|-aS6@LA4kfD?^?YU7oo&zfQZ0T zW-=AWi;`DM~`NrP(dgimF@k(-!FYm>&dpqOt@YG;OBKp7FJ`x;1 zKcUqtFGlr7dyCi zv%$wjpJK>=fShVA(@Q>_LH03S3qV`osXh3Uaw6~wx{;zeuybQcrD{_&6Rhvr?d#cQVr-1gq^cgX}#wguEetY}2=2iqk3#;l=Ra8`@x>b5rpG|tO zNYyCo?HB)3is|#_&1@U}yAIR7TI*GP&PzV_uo6?wTp7i81R0>Q#K&i5v~BLm{{iw= z50TqYxd1KhU4{jQigl8qU}qi#kVkB-x^ITRrMw@fyI~j@!H?=S5t)J#v%{<;$=*3G ze);yZOU5_U)l#=s&{ocWq0b7u%u!#eSfV*|iARs=?#HsX6Vkuc zC(_m~8Ho!>?Q`76bEZ*ox8~Qd0IDk_vREi(*JN7=d#I|Wh5+=yl-gbe8r%=aICVzUn+Ud}Eu($60Xn#xl!RM*Lk^R? zY{tF^>))cVZu8kbgD3b>U-gp_c8qZ_re#qZ1Cy?aMaE^J^F+1d2_sN)Wv&yhzu zn-Y22ZOx}qT@sUWC=T2^j=C|yCd$gndCWifNXNk^Wu1C)`87I0-DA&sZjb~ zpz5%A6kov2f8S`p%?OgUe-W+ic@ES80YYH@DAYh;B5~{gRjl>A*?@*2DWo8(dkvFZ z&>WXK! z%T#lx!F}I*>jmPTysK&pZMQ4v7z@(U_ODnz^?M#&Lt)kp@7Z&umNjo26t@& z_`7`Pt*Y+`A)=zZ7b>`g9lt6AC(HZHR~c|zK)~bO3%#TC_3H*SyrrK5kB_?JAv@@x z%Xexr<{l#Vzl^N`?dhcrwp}|Ok?OL*OXh#3wG_YkpXo^bFa9-EWo>qvbHrN-5nGkZ z3%fQ|ePIpF%OMyy{Epgwz8rqoCQUG2DTGk4zcbNlf8GZ~%ycbh%(6gk$#yO00(gYd6vBRmEQ&2E7MGZxmBqtr$@XxeH z@|;V0P^3(3?!;B&-FET6Kc&T|w=00^*`84m*u7vB zW|k=z$630xpNaW~d}**!JKKIO-Z;avOm9Ztv9x_Wq({;6h`6|Y$7k*2#1ZWVOk8eFS8PW6|vVo4Qel zMG*R&Sxvp~=<;*Ry~Fl-LiW99iMIf8ak|YK1Wvf9n?2PPA@-z{6q^jrq`I!|BT7I3 zXdHf}2sm|#${P5=_PxMjUb{i|}5e=b+;pR0cG zYviwfD%ol`8QuG1SUGue!Z$mQa>*n;oK5C3U9}sm{wMS1L~-!a9~aeH^o}KYdHTP; zkevAOPj`vx?YlA*$Z}jz=XR)9Ho-7TSRD}0qEr7xR*{?sq<%N>o{uFx*Te&7bNoNY zAC=pTMI5owMBO#>-KSVpzFreRBl2NK;mB66qlVY_c({ZO30r9Nm|i@>w|L6$fJEZ| zLa-y7kw|hsR9z$h^ksM+M-kF`ka{0ZMJaBfH$Juy!riBdRp4a*2EZz1KlUb?&*AR9h=E#uRnBGba~!< zyg$9DWEb5|`it_X?}g;@=fPRk!JSU$AOwchtdi}E=fqHv^1mo_wqq~qtDR)-7zTJ| z&Fw5XB%$Q7Y8TH56Ju4MzTt+uoJT@7l0TSax>;GwdE(K<-1(uWjxA6AN3^?^G|AM; z4fR4Z@XHUwdixRkow(#P6gMEO8NWeF1ooUkBieAu>T)`I-BBqT$_%8B|GHrV=a&(@ zNjaRyiKPX^A2(EE*o}!JXkY-66UT4^`Rhs^r!!4YqU1;f-0-a7M@oEo@821-@Slmz z|7}JRPM9HHs9T~a6+S<>)bY1J&5p7L#(k)(5h6BR+6@+|?(KjHO2#!aKha3aaNKWx z{hGsnW}UC)2JrY@tTM#Hj#wlc`==W+$38ccF$Ctk1Z~6>hXqH;VK}uuF3nHLIax#7 z-28S%=iK(b=f%+v4jMu>r^K9pw;GkyTvGUE@pyQl9ECTvk`t;6uyP|E|)ZJ3~I4;V`)GXK~br6H4%HvaqEmK6+SgJ*E zOD~MBe=B6g8B(+Q*jC6*>)|3&66?AJol8!hp9tCVZ>M7XAN9EYr=vTxGaf`9bBIG@ zbu{YfWSsOL{uB{5+)toD6=Mdh(^rr+VsXmNQ5WOid*~Z?f*tQq0lFOCUYN#bK1k7< z!E`}*<7rgg$>2di_^oI(C6d(5unsdud>+i%!G;~ zS`r@{D?_=@B9R8@Un}wt%Vl%Em2kwP|3Sgw1oMX4zUlGq3K0*HdhR20`|r`&3mdzx z6dkfIZ}7D*Q==cj+=8GiyDw)z;>eP?(N6|TFyE3*4A%)tUfS&vl_oDzN5i~CGEcn=JWgFGSt0OxdU{%PYScc@abeob z3p6r>)A=!vb+-%VirN?LROX6azZr#Jbl}$2T}r;p^}e+dW9MY<;SwXoy>z;~=0HbY z1$2;gl+SbE^qa3**46*bh^tyWpvxUAW2)btF15~$*JVJ9VpO@?r9_iqZfU-4j#pQ+ zE?ud(A0@LVzLdK16Xb-P0_R8{tH~K1mEY2p#uiZ5Nx|*9rt!?!3s$(yqb4BU^)hEF z#rf_Mb^Q={5j02>w>W$lWPFJ@i=bW4DYXHE+<7#z!E{Uh^ZY|CEV$t|R+kb5Gfq#8 zWYz-zt5CauDag}=5aqh;q^?T5mOFPQqa~Eocx;_4wDSoq+TfK;lszF zp`o5_fR*>|-VH=sE8KWL8o5W$dvKk5=TGhFWufs3~QWun2Jn1QaZtgdbV z>0Bjpn4E@vI1OY{15j-o49Z^-_(6rG5=I`b(I6*taTI(OJ#TKi@!CkX7+F`c_s1?> z`0Ix()i9i?Ae~S{$}8uFc96>F-wX5Gt|1^MK_5-h&C4KUI7SY9v}pr7FV|7vq6M>o zdaBN0upLLbW`C78>_3o;4z2P-8#~Zk&ld5SE$P{mJruA_EaJLQa*%s9!Ce!wS+#Pu zPUVwZ7|Lx7dP#y03bHHIZ)zR#lN@K8Tp8-V!+*S_!3-UIo)@@lCa-Fe^V0N=6CM{$ zUd@GWQ?jD9atek6edw=hfXt~qqB88tXlD=RJSv@WxiN> zzJtDzAu#KZrdsfyQJ_r|08GE8=60%*vwdvpPU^F%Nn~ORI6cBK!T{1)9A+DQCGHM% zT#$G0{fl>;t^r-5+RKY`T2SMIpurKp=d1NBF_*YZ@J;Zg52GQg5ip2Ej~VnalX(so zE?n4Ps`D!B*R%18k=3xNczC;rM4EuGKL)ePS}}2U_Ogw1bb?*5l2c?SC>nuzP=fg} zBF20Q*-rT8M&=6;9G@`=6lF0u>tkAk6=~+Fe*c~~m4QzNUyRR;K+oI69q{6nBj`K3 z-S3tdaM2rL(tHjaK6hK5oTf|vwA-cK5Y0Csf0%^iT&?!w)6%u`JqAyAkJ8uQUNg7Q zTtqtud=SJw&u)_0(vWLII`Y#bhmXRE1nDat4?09WJS67H`x+v1l9H{~XT`xR#;t<0 zve0w3#T4fwS;+IdEi7nqC97!x_U3S${OFAXPeb%6_ym58ma*%3Q+KxD zHFsrUJEkT8b*P|W5>h_tmB&~Rd$SYAY=Oz59MF!L1~UXk?!?>`kg`rMoV-I=(pT5k zqht?$$J`=73_xZu&Mkn-!SI~E48;LTFk%sr#t4y$I9VmKySK+a53*t`5n5oUX~v^? z3|&tV@y}g5-dW~6f&rn+VR0c$@&cga%v&adOO=6~#*sUe$BNJsgrY4&eCeAMmOaQx zgnT*8sWWFP;U0pAM}GoN<^J z-fy4BDg#-z^|{eako~g4gL0B8_roB}Kwgmnj^1j~S(ry!0dRa^{{F3IUR62JjakCG z5dE;?V&6Ysqr?z@2M!0l#L_b=oH#9(kJvf6(GoR#EChl2(Y=G~i8hHARb}))ZW({K z?I)_)+Ry*fsLEC1kJ(KtaYXY(EkA?^Y8K;O!8y_{1j0ySc{%`|8c~TO9gYD5Y9$yY z5F6(0s}X1v2M)Bg$Rl@vo=%3;t52Rj<-Fi0qtf38c;R+OV~%BKoLR7L#)|}WK2}=r zvJHYoct7W~A=U`CS~4CA^Ec8VmV`KoFiL6rv{nz{n*aD^{rU*7t%5}Po^N{i|3g0$T_7&kn0s_sq06pX$_h(JEj8QsnnE8ct(5t2vbkmI<}{Xsh?l2 z5#-^i-i3h>d5}#U&`@cDwut%HbbNu0f8&aI{k{tB#Tqam4!ELz6v#C=`IUG5`~=t2 z@6jb6ht`2=bX^GY^P@#hF-p7x+g=DggErxDW=Jeeg%C|dMwilw^%LIi6Y3_3#YN*gH z@h&pehWnuga)hgQxg^9(K zT9#$i)KrAe!^EuKVx5rg@NFohB+k-|n@PTBG+~JBoCuATO#_RAEf4}g!=>*!R`aY1^OVFkRop!jT zU@`&Z6ht@3DVGJvC?~KVm$1^O^~+G|B@*);`6$GwG)V9A$TD0FB3JLUAE$X~zp?b& zf)B6=neRoMI#_S6f;TkhWML_2fbd>Ym6?$-jR8GmUV@0*WDIcuz&GA9C7Ou`T0<2( z4-!TL@qtYS8V--+o=0frldC4#)Ms_E%Y7iyg@iBCu1-dokf8~F;yEy;5YIEA#Aw6T zK1gYWC;|lCMPugrs^w3>ggxJ9*vw)cdpsDvC)Gs`TuTaPAnQ3I?Avm^t zhi;-l@Us+DN3cd!BKIzkC=GB<7l=`aj%C8p;vyo{T;pKAKG z>1n=`(?ASwM0iF1V;u}LrGA8w_pr;Du0o`U2C*`c*5r@UEQ9D54g#m3rX&`NW>f`k z%@ht>1KhA}MTC$U1+6m}$n=Et&f{so?%lyEg8_g(1hGLKB-6$6Au$uHX1{hB`o73r zk-q>KT|fwf2F#b9J3LSm!CrcZ48%w;+cuqF57*9V;;ttK7~=Rws-a`zt*(E6Xd{`v zK@N~k)}_bTB@o9O#@!LOW6R6Wq6x~QFB3Wiu}2c08EN*Oo^~wBTR~3;8N^1w7uu#s zw>RmBA8a&%WJ*+h^&)pCVuT}2*BGS|JRZ8{TrKH%2V;U(-mg%>r zOpT4n+Gyas190%60a_aU!3_umwCzl$7uS6DA%?fZ*6rtTt3hVr?h|jBh}&+{9?^4{ z%N0$aXtTbD0%~YLlPBoeW|bk03AeWFZ-8r3Y^FhtU?uC~c@rYp;DQh4EUjQ^hcFhf zPHe9IDN@40bI&BP*9*vO8ayzMY(3aHNpd2qgfSHJ-nJtM7Q{=0IS2OX-!UW%vj?ZE z1#3wMHO4*-d?{I3u;_68a_`Rl`%UER0Jm76<|ix=)pJrtrVdtv6jTvO$hbSuWQ$!l zgIGL7SYr5#9MO&abB-NN;7-6QGQ|eAPq-h8f{B1mi9sq`w{Be`M($9J;b;kQT)CUJ znBU@ue$>mW$g%f2eOA3>>TvOlXxL!VcRc}QGL@A#({$bmW7*K%rVS_TBWTfN@rb_- zJ5X8q!+d-ru;(z0Cmc;DozWeI*?$vD;uqfhO6KpOAG%hpeC*S6DU!3&Ui91%9X{qU zn*ve+@B$1gp36~GOC2CS-CEgLSzTw`pjIbJ?{PZ?*bVeD$uL(pe}4Fd82Y=33M)ck#qr|i&@it9hp1OI#T*_qOK^6uE^^v(N zdf0`~z}La%Kosz;wO(=ubC;}*1mQLzd;EqW2WEO=TEe&aS2pCRx{rZ!n765$B|+1NX7+#8{q=rz4H?@=;vrw*x2t5f+-^}ecdARyD8u-2y_PG{mDDkC-rZL{2KkuE~!WWVB*WWa3 zWe2*bC80nDiUc$v_&+B0X*9?Z(>J6_u@I@=;I6O+LiWSz%QQN5!PJPZvdg3qH_w!FmEi-8va;@eIvVkI%u@mT@k6=D+#F{{BwtFyW2yB-RV6?h-zI7W z_pw+ch6oJXjXkk}pNmR#N%U8`ee^_kDH5=VM*;43pI3>S9a=LZ$#76Iu8#9VN83S& z97xG^#2H0qY}AS%RBG->T$^zDD7k_cGta|e|%gQ!;CZF>nr z7~C=!Xo0m^a4jajf_ZPe7Q0`-erKe(F{E} zo#Zo|=td+gr}@4R3v4O2JkCipl?ZvvT5j5YND>+%F|{%7-knOuW?^?Uq0@#nvZU4; zNw6VFgIjF+gA@@`@9#SH1krmCahf=6t1LItr1)XaENw?HCHZ=Fv1D~hcYu&9q;a0? zllTs#0Ys{m34fojNY11Np9b?bc$=MCK6UUMNq~FYdbbpz?7@i54^gX2rliir@v+WANWDv18EO8u{l{zs zGIJCKhC7N?F_xZu6kanZ@l@Vm=mGgCGSArJKR)Z2VAK_fX_+@WPW=Ay6+VSV=CtCe Kw3B~a{eJ*`zIt>3 literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/2/undiscounted-price.png b/src/comparative_analysis/visualization/clustering model/2/undiscounted-price.png new file mode 100644 index 0000000000000000000000000000000000000000..baf5da3988b3a6a693516e394538a74660a8bd78 GIT binary patch literal 27611 zcmeFZ2{@Mhx<349)M!c?3=t`mMj=CqL`5>sA(Am;W-1~=5h_$jcubj+Ol2yBOvx-` z2$6aGpSRw%_Pd9*_Ws_z|Htv|qlguaxke%x zpOq3nrC=8})M~FmcXe^?&nk9SiU+3!wusC9e7E7ELQ!+Qw`6vct#L-8#E_19c9V}8 zZ+uc>Q&)rOkWPkYlkH&R7iKO);rPV0lx>kp32U`>c}CundfLwNv-%>q2xM=Vvj&_6M@=rLnlEv}og*1=C zT`w=Mvq37cwD|c0u9S-$#0wO4BczEJkc-5E@N+MPyB=I}$7X*PQn5{3cg1NHHq9UYf9ZaYXy&R-Nxa#YVE5?T6P5O`Rp0XnvL7s97l2)7!GK>n`(FUU(0MqYJP26D9Pg7J#f&NeJeRb zqda*3(9@>Iw>I1*_qN|wO*1$ZU$2Y5mZdsO46w4Xb@H9LwqHo7MZY;IcB~}Eb!qW? zd;XHC_Z^;@xw*8%M*K*4(Br&tKq^2^Wm!v9cbjsg9C7WY)r;ZdknnKiagDPh3G^ z%TxQ_?UbyfhheuGbL`W`+Q;%!^ggV3V=q_JSBF!~0 zsm*r!@P1CwlYEn%9VHdG$8NIms>RHhe!PgjrmOz;)7OZ__*Et9&u7~7uCQ<=@lGZt zJZ;WXn(;1vGRO3W zH)U`O2?>3UmD?>e`Bm>@MMXw)L-jH8&f{i9_gPOP~}Hc)L~IFR0-efj+gJdH>kky!0~5nVmKp-J^O*IC)6QnNo*I|cPM z&iv|oaQ{BZ)z#I`&hEM6)G*&n&{R|4P-`|r)EQr~ix;WK9fWbeqgAepbOHhbd=?Zz z&y?v|^Gkk>jUCh}SasB_W!v!Z@b|j7z}DIq!E@H%3Ov5IWF5hQipg11?vSfIe$1I$ zuj`}728N$M(yAi$%YzSY+xT;8>O<~SoAH$MNoF5z<)q7F-KAyo_wL;*@}}qJ%Fuk? zopJc`JJM0Z&m`jNpCeWh&*{7AXr^L?UAry7zpzxDKZ%uWnOX=dBn4QKT+ z<}vH*Yn~YXo*~y}tkgC_dS(C1Al_cvL6e?|pUcB5>aot;0i zB_p--UA7%F+H&~FkrdtH^$BVj>q|>Zzt_iyRQ#f)qf5cMwAlBBd-?l+z?~g3Z92Mz zfuXD7czeRdA4d#6y~8ahZLu&jGgEnMy${>_O6F4ZxscB>vMh}J*Ga;TlSOp0LN{;S zTCu!a+w(<(dA0p$cArr&Y|hlhgRz?%%B;?Jbv^&+AjP$7*Hp4BIVOjiJs0Mt3R_z> z`{(MFwOLtNDcaiFwjD9p=;Z7?TF#q)x#QikEo~7*eiQF%!|oZhrJbP@a0GS@A2K!s|F^ML1n`v2r*j5^8EYM5a4d#uu2^ypWnk zUa5W|Mc1>|s@-{tsl<0@%=ir@EiGn*xYaByEQrHvh_Fx-eU65O#lNmj!TS4W3KG|N z(_DYdGa|AZ9^J8#MTC(!+3#*w@(|wS&kjGb zY=?FXzvX2e(}x|1S3_^f(oj==^n$l9))Yu_vZ&IRYx#^7tpn0 zmzL{-O|~;4jfA0LtYULrocwB1M8jb5Q(?!4wrPz#%yu0V6en}$hO_m1FACmqcV87h zc|h|m-ehrphObJ%X5eAH9w`zRR5Ha{(~*j>pG@lWjOw{4PNw5bKRUlBT9}pf6p4Dj zS~|6=s;cxHc9chQa`MlyFA730H>@J1 zAkK$Q2tG+3QxTr1lUK6pL!M(G6(OP}%!W)fl~-17#Yu}qR_rXgOQ%%6l~;?0^8jM>4pbqDn%PSIu03V+ z(XA$YKAcbO#7NZKN(mR6${qaE`)2x{DT{F5I}=r(nv)|$Wb2-kTzkV2n|*0hO|jpN zl_=*%KBSiU`7rvNiK0RNOv|n;JGjF)5&={!fIY>$T_mPKnPIffm5Bi<@p<<{8wn(` zuj$83zP_qyHf?!xNXvPmURreIn@1`s(&P$gr5n+u; zvwY>J#l*^-Tr4aOVTCq|ii+k;HW@3G-`ULMePZ~{O59=LYtv?vrziBwwyavcdY}Ko z!one^>FXMKPTTRPr(|&`v%SFZXlGX6)6 z&JGP#_weUaPd)CsFhBorX>s%ei$(9J?F6{oCS>>Of_Az6E5m9w5=YEYXD6qJlZZ8Y zC69(b4m>O?E1NU%Mg6m(S)L{*JNwC)T2)^~`@Go!?k!ukT>g@vO1WuMh8iCLrS)*j z_H)5Ja!p((lFf=gJwB4?=jG|{PNe6(TwJN%5|aQYMEasvyP>azt*}$Frl#iS+(`az zMDx+nQKfRVOf%mP%#P;;j4w91F8*SPPuX_xG6^S}JIB9=W#H2@QI@AqpGs!~*$X@J zu}i(}(SEkm_YCoU5fOy$+f*igSLUXtp98gIrVo!joO-gqD$%d}=eNQ`*E`;+dwp$s zxKI8S9{s(Y$7KZOP6ZWqeO6$-(Q3n>?CoiM&?(lK*Zk1jUlaqVUYCP-5EKKgU?hC&W zoV}nfR~=Sfwja5yAf^T|&0{2giMciV#)p+uLT(f**E|Po;}d;L{v>qv+_{yc>;|rK z(HG}rWs@&D>0fJon{k2Wd2K(?U)1^vszxME3KCMzD@WtE_je*oZ@#Jf1`5 z377GF^M>DZF!)2mC4CpKOOKsZ8&md~3-?t$%baTxbeeuOwiGPklbp<}mTst1E6UEk z%5{EJGHbNFd2)QbC`8-k+KntvPtVkaGQ9ZU0qr~@n<@48FQh7rA5(v-&J;qPuC7I} z@J5jkAs-{7Xu18OX0cd?UwK*C3KBx$!^UL$U%g-RoKL*G5PAn0O0O|hpCs+FusGtn zv=gvaJNk7qZbsd^q52nrwCFfxI>vg+gJxgvFR!XvOFDY3raQPZAX(dT%QL5LXPyXX^yx#ECb^k5zit#R;O6Gx;knVANsbf<2?|w;PyCseHwX&l)AEyJ@$4A;(mZn^nVl=9h9@}5Mc#-6LMsF&k7RdT+KzE&u>0w8` z)er9}>$~jQJu>Aly7=ak3!vTKRu{-PKB_3XVZZs3Ql|Rf);3-#v4E@?U#8*DQNDXD z*jiB2!&Sk)zlLL*Z^_}2W~cb%YggM@%q1kW(|WS%Ei7#PTo-5h>;~duhyn$>Dyhkj zzhSk|g!YHh{C7W^GK{mFPgs9NEm>A?mKNvAdF*~<)rSTk`?Trc z;2>kIAoZ;LYsA&`BQ$ogP8itxVVo8mMX+)>rnyTgdR6PV`g>$k>EB;#4RYU3vhmdb_WJM zUW+GjFtp;0-DqS*DyoW;lsXyt@s0^)yFa8N+a8|Eb{fb|{Y6eqO-mcvsx$U>h~7NN zzCHFw-YPB;zMjNBlz}`}!t2(pqpysL%*oCD*4L-pYkTC#5%X)Um3g8oGWnLc$Ci({ z&k1xP3p{p(Y(*piJwZ?q<3XYMx92maCBQZoj|$uJuN{=C{7AtgHwWERRH- z1$#d|Udg)3Wu}KgKg((1l48r|=yX)W6)%SnT?^vmV?O6OJNBgKJ2{lK?KD=6*#dy- zc+NsXT%4%daEJ@AXHA34wJEtAwmd(KXz}}aqpI*=m!cPmRtYZiv(gU=YG!er*O@w< zEQAUIG526^)iZw-rk(RMzfhO1bt|j5jk=b?t+jdRYjbUs$PFn-xA4xUo~MZ~#!@aOM&aLgrl;+;(9?g54$HbH>)6-xFA$D1{PdB`+`UJPu4*KfgfR z@ix0cgIs(B39M0ye)(1>03W{c@)H5i8wL+Kj2m9LdQ}hmM5#O=AmDyj*uCKW>XBEg zp3+~)C?GHzKml<8l_c}muV4S8w+Z|J0af#t7EiR<_c8S_zX`Ve@l_|YaDD0zq+`%xU8!-Mz-rVm53WQ8NyZA-*X(n&V2o< z!lRY54frcV)r>DRzS~Bp>V;Gw>EZm|>bA#stokZj$4rZ@1(}FP1mJl7sZe8Y#=~dN z{88UN%-TGY+Zmsnmns;rh$_7!e`z84!jg9$p0B;@?D)0p=EO>ieM7))AAs7ZX=rYO zpZJ<I5;P(r8gY`mGBeFA&@dV}T-fpA$TCn3~~ z2a)^{$uHx`ot2V0H8tFtIGi2ZFt}X!AGum74uUO6yLt)4*!Skl6Xpuc60vm>lKX444xC+P!I+U#LSi#Gn4ped-GUT&nrl&8X z{vgWkx3)vxa#3gAfB3LAe|~HOc$S3W;ETaP$E@7k8*&{c#D4WwfR21^*6JO8;zlH* zOxc3zrZp?^N$;Qv)cbg!l{o!aL*x^;@o{U7Tn9ygS?nH``CreLiac3dyzl`!P_KDV zuOKQ<85DWAKJk#GH@<)Wew(nv(Y%F8b>NE2KRezNg`dmxx3wFYg|^}4;qpjH3r!m+ zDc^M#`&i&RtXy2{Z?B~~0|Lt1+xt3J(WEVByRgIf$xD}L-PA*sgJ`yFaW5zk6F+mN zGbwxc(s0z1z`)xAR=o|H|+ag&@K>WuF!yuHE!u z;1yh0OZQ_tZtdmy$G5g0F?bHPhPYFpHxz8Qf&0E?w!0MWG|#z-pwm_}yRj z1KQOMJQoj-gkXiiB0R?<{%n*nJ=ebEhevP3!q9kU(@tWiou<4g;yinKxFw6vIWj6L zeqymML#e)f)VuE8m`n7SC>0eIR)QT&2`}z}4TOuqRMzBhawb09A@Ehz5vSLF8yqCa zHF0F|qFPze{RBx9--m#6njmB&fpV|`Ra?{Qs)f(*53*sYM+xp-B{FwD-Mn3E+r~A- z8|;yN%7X}J@%7TIdcl;0= za!X1|N++1Fw1Ks2r-rhTRUaL_76ANB53Z%4y-}^Z}z6IoSq=e5_U62Swl%YLt))M=fNV3IV zG`rnHLPCfatz5H_8p)39mk2p1D?gE1Y##Io+nzmVhf)7Ur>CdAVq^D?eo;49ZC#Q>2tPFXakszM{rlA4dVBY*Sh{^bajqsSa*w`SN#zAV-ZrfA zRsM^!1(Rx~S@@g5q-^n%C*7`FS<&HnZ?&+nAlUHE?$SW%{IWJlMX!Lljrrgo*aQXD zO5<@)ov2@S4z)>U98N}vs`5rqTMsB1 zQEm96E%{Ak*QGBDe&uYU$qBCd&chG%0;p{(=OB|P(#=%K3C;#)iHjfBiuyM~iReq{ zCou^cS*c>K9`WG!Y?lHUXddh)l$MYCkYtLm1-R-m@sk|BATO?a%fA50g{&y4P+@Q+ zH8r)Pr>Cdxndoj@C~|<+{asIa2n{2n#_&S1v0}uNpdb(6_qT!@389AT18@^HE$t

i zoa^|%tX{p^uqi$6Qf5%J54?tp@VLdhQy%@^9v_)v3$1o4(M58`9V7c&&V2Ab#1tf>;7 zV#LLpV`5_|!7i0`fh#4sRU5ij8?GXORm2wr1bjs&x0oG%yvu!Wre=ISNDckm;2~0i z->PQg7{CsFrm5(Atmb}!QnFx7Ag3(bi4*Gmyi&C8)JiGM#vu)v zphq9>sbVd+`8c$=xM&ChG^1Bx=TuM~RbZqJLiY%rOiw>* z=isnnuYmMUWL@xI8aZ}y{dBanw-65)0n}$^W~3ceRJI{5q_{4*Xk^=7xaRNW<%S{@ zbV0%zk;8{+9deoX?c1kx$hyCV0AJG84}*i(pqNe4%w`i6W$~n9QJQtIv)hHthiaFI zr!~V}UAK{U*pQ`TWS=QDX@=LLq7UK&qZ%zR)RwzbbYcF;rzM|0B1s`x9|T?n0kCgD zIZ@36X__FTu`ncQt+R&?9RlA)_0(nd+V=^E=%pO{UqmhkV;Ubu0M%7|M()X5_uumL zl+5VH8rGHua#B3}WQ>KBkTGhN4Q5%N!NGYld`>EA-%R5jp=9IJ#J9(CDoaaGUB7-k z@uSqs*9`sYYri1mz)j*f_Amz$*ylm=OSI=P_>B)#p|4{bE{ICE^AoJ5^P(pXB2 zz9RMekyI98D;*6mP{m3JIcqa2^e@%Ht2x>q=^ zXMfP*L`T*qJr$9jeLq^V=&Gx$>jUIXTV%2M&Pq#P>a{WbD3v%@YIu|l1U8gK#m;0r zar$g-tGC2?PEd{dG}v@MF!yWy{Xn7QwN%Vdm@aZ#awWGa3OuebNYKh{GSbQxjDaFL zJu|~9DykjVz$n*4QxCaf10h-Dp;A3Ow|(Opq?1tFtX=8sRF>Dqo-3y3jysfNdq&k8 z1&NGtkfH^=Q&NZO!vk|C$z@Uj><}IblkK@zW%#CMJ4+rl*nQn$?X6~OH&ywRIMXww zJu7$kmh5pEj!A9qQQ6<1Tx)fy%O!P6M^5cRc^uoJw``o{wF}W94Rv8$%`VxN0eu-g zj(5{iP8cN*&Pg2*AF41u*3<1pHk0L0e|4DxJMxgp*MrL{v$*(y$hTtkCVYDDZ>>Ii z_H3*|@dY9XWcUoMuh({6peK;g^k|nR(|Y23XWbvzth#x}(T}}bAyGr5o{AmzT2{Yl z-u)qFd;brp;lx}0x8(Hy?H7=;@fdh~WjoRZ#)jeE*uV8#Jv3(^lf%S`7r1 z*IwRt{5S(-C~<`76oZN#s9icB!5Myjelz~`a(-(*ujnzLZk|izG+jJkX?35i`xz&B zxwr_vZtTtT=OohQqdRnt?w}y;@Lhv1gS71iX{!C)nW5+RP_mYpHW+2xXO~h<);~dl z@_4xU!X7$ysarBJx2X%r`Rq~vsC>uc4)G$;EA}+{-={*oOmMs`bO@qg30S z9!IGQRdG4C%0299VGT)@an?(zNJa|~v8bVI0ku#O6c2QbpLO!G-%>s>r!~9c$b&q2 zd%+Qs8RQ8H64DxAlB9vbo&#DrvE!g@PMtkViE8{7%GqdP9-fUiZ{GZx?<$HA{W4t= z>`6ld1H?V0l`Px0ugldkx3U)l&wUXY5Km_Bp?+&Y>!BukBm;i1kTngcHRR;vAc~cM z(+;wQ{+4dqycJRmKbDZxfvo%J*EdgxEWc?AT7qpO?SRdq82f&tY}M=O~IDJqBV|d1g}C zzV-TWPS?nt-O8J1wW(02=KE*%6NN^i`V_DqoR*RCOQnhz`ip>VB;c+}SYtg0sR zBJKnOL+ zU)uz&V`*KnDHFbGKCT6zeuYD-uhnoT>_>6Zov?0uVY{D~w{5(m_CVf#D5?e!x2#XhMpAV30Gh*c!(fx2~bQzJK2Vt4#k5>0igW>ob%*brLd73>W-kZ*73@%1D zpF40DG%MezvZ74V6UX|jXWe||_L@pRj&X1v8|HLm*&1D+9>zr*#ci1?)T-@Zf1x5S zbtsdY(_TwGFNA+*cGTqCyl35Fb!|CH@-lw01IkOMPMso3Iz@FDa)N5_EoYJ&IIKgB zX`F`-CnU29S$0#R;MUwi1Us56Z}R&3tIwRbHfNfDfFNUm(#r{zA50%2dt}1C4}2zU zRNwjJ6(ewfl!=l~CCBcNAlPIS@Er?N?H|Bs{maYh{o_a-goGP@qpg47Ao0r|ixq6d zm)%%rOa8@`MZEd{r}Ge;X@6}EUXaCXmR)M41KQ%^?(v00;lRf5IZM#3rYY0hAJ9V4 zKA|@5fH?8}x0@7{R}WYV!b$VBUI)w{%>$pfq>DI)dvD#o{cU*I5Ax2ZC&xBaJUN!u zocWi^iOYu{mzn%W<%D4}WZ8D1GM-QOd33h~tU9~nY{5pA3}cd%WsBKsKh3io%I^5i zrd6;3eKJTp%p7fH!^hdt`(}e&s_>>&>}heA1XO$Flw`iFLTYR@dEJz$_&6}WPs^r< z-TZXG3$?(&9aDilV@(0_swvrrIm@T`ml5=&uJUP_F+QI5b4Cs_JsH_toR52QY;9zs z=RzbDJ&fSX+Im343r?*L*cu3m-(hOlmoSf%mzTd>`nQD$X~l{a)c<3Z$k(*1{SV)MPp5Eif4--aF7maIEqob#AejlJ@2J5$yH1_Kk3?x(}!|Oea zLdiY*7B>8=q|#)Sd+Xx&YLc(zk%%L0JU`N$L%+Sv6S>99Eb#1AlCs z-k!7@x-g7Z2Opn@6Q+bHZ}K2k_lNOJ)dq1Z-+%PTtM|^}^{UEP1sPhiJiD^8(o0)O zP^!DTyZ6q$B3oJ3x5QU2SdVo}kvM*-;R!qlRKpYS6f-Sdcd^f<#!x!%bJ?%AeBCd; zEU;G%B8RM6ySBkQ?21vd?0)svt1b&CYlh1M5^zb=29Mn03JeMH{QUVMLF(IeKaeyD zZaxu-%`K1jdk4PWZ7}~Bga^VD1NHZFzqO2OHgrr$kikz?9=h+LVTxbyGEzd)5H#CH z2o;YWZOhJ5>N)-eW*fK&R?70Icy#bFaR&vKn1~N1Y`NlIB-YWJ`LRYoRWLk-ibeD& zCG;$DYin!NVeJ^KC)ySf2DZE*^eQlhrN5xl-v5A zv9c07yMway<=m3@8|if8AAMZx`#;?W9@^-8Cd!E}jUoGpK#-O!;K--@37zD#G6kJp zMydiqO>FMe|D#!EQXyJ1%W^eDM^3nOG=A4Ftp;Q+1#P=;s|o5D#@BbC!2Ce7?^H|N z3V*AujUkbXtV81l>Xu;rA;ca$PXP^Oq5~hGM=m8HM8@3xL!6dQ@VUUj9Y(c)*`r33Sp&A)fJUJD$Pc_JCUTXnZUKJFA|f}L%f~%qyqV(Fi5<|{=|}c zk=G~7{WhChVr_FBkBiK7(|MMQ;{RX7#GFW5w|v#8Fq{V5RD8a;ViVK_yZB{-?=1%w zFfK0cduw)PVGmI~NK1Pk2_@X_k%DD$ViWK!eC}slVm=pDy-QTI{qY4NWy>-3C`2@Y zTTal-{_<_?#S3=uP6B^=Cl>o|8p4E0(1Oc8F8G~<=6o#oVc?W~+DD0ZgLHZC*+NVxqQm{u+pd2QTYrlMJ*|VP6>E|gz z=q1YMBj1SMm)q1^N292U>KZQ2C9(=Vu%;ITMIBf)?YexAm;F#zP;f`t(PMGy6a@(o z8@8tvduL9C%wN^6Fi5LWHUr+E7JJy7RByy86_Bb`Zc9Q^(|?WP`fR|eaGA9zm|dj; zpk$irrZ+%QHD7eQ@Q78lXz$<3W1|LAK=+$g6Q=C@(s}v+!!TrK*SQN-|Ezvikcv=K z4CYb2h1j46C_q0TYW#)g{4>Gk@RCs zd3)s4f69Nh_3~+GzO_C@l&3!$ql#X@@&gFp-PhLzvy-$oBnxo~30ByBpr2hZf^|H8(%;xiZ=uiozz#|ZytQ2n}$XUK% z4d)*Fo;{IS-vnFIj&KD9x`*;UO|?vYxcVJRG~kpnk%WOTjbl?}E75Qvd)kwwIl=64 zN(8vLG81u8-Eu`;*0ZBe0(jGx*=7{QrN0D0c0vNpVB>t;G${{H2Zc(Nv2q{i-#gv` z?mgL;Io7crbX|0E8ZBl3?aOazWo3H&a!k$ZK0@2AiQWMFV~j>uBncrf5cTr2c~8^bHr5DjXzfVElaHG@3Kt<}zYOc~{a)kYc8EHkujHH^iEjY-vpW-^pgD|Py4 zI|A5}Xoq&pWv!RmaD?DxPe)bnZ7=#!JbYdzxqN@j%4`l6sA38iEoGp zeN%{-E#-W68KU(g0joW*;FG!b6oVsVT)gj1WDld`G3)Dz$^)tB(P91dV2r=@_pgI? z74Hgz;=km1%_s*v52aaNS>of+D7wpg3>0{5h~K-cpRpMO2yiZEngcQnWP(a29P_yF zbLeJYQ}s8v1&B@@zgF`?df_n-@jAB0@-d6p5MBWNg(iHv`S`XHwvR=lfc$(>!ixZT zpEwhWv^>lA&m^<7P7y$WXcIt-%E5!5jb`A7e`Vc&DQ3koWO!Q|C%;7Oia=SByNFfU z`HSXX61Kwz(e-H$aj&s{$dJcED`J(CpBDBYhPl7LeBFRbP*WV|8bzl#+1bkkC z8k5Pc3mYKeqgc4{_jQ6pAQgI;Zp#~sX|#yQYyL(HY6(s26`yy@COkcHBT4W$nuj1Q zC}BWt^B|R5ky6eLnRHRQrXT&zw5{^q`#4`e3?V zQ7Yi`^HVF4cl7Yz&;8_{=lhp$#8O7_0bB_2k;|lxSAxKV9#>Sg7v9UWe8c+n;JU*b zS1rF%4z~<0SPZHXQylI`DbRx#E< zUq1p~mdzn+*RJgXBUNc~Yk86O#;jLFAqvpTui=6gEpU^6##&I6?!l+Tx_^I#K_e_7 z#0G#}r0DMes%|LG;M1dcfBBNt7&qe)!-lB(ZQny?0P1lSqIcx2r^#7=hPe z^kjo`<`T!v-`Kyi&RIcEPcOw`!boVQJJ1e`OhLkHg-E-Egcz|k2wVLxx#bs!Ta|l| zsaJ&XYM;T@y8qz8O^B|H!VX(dZNnGgb@y)ExbG5bE}tx`KB5zWX9PBTI}=3xge3iSmTTI zyxI_7z}1Pv7kB+X(SVwakB3%#?qAGocHbT#aZfCOB(+lN5kq?Ad6dR1#&KRN1?#h4BWf^y`?LZddpexj4&(z~wwaT?4nR(mz*!uFNoV zKBGzK|EKDGOp+WE%x;9spLlQ(pDGi|?v!3BKmjACqT&TsG20mxrw3~N=Jc58==aE+ zBx-7EH^kU01_qt5o=HE0ppP~0`1oKq!H+Z*78Fo#+vWu(t_y6lv?Kgz=-qk{9Bgpx z=Yt0i@Fs8%rg%rdB}vd%MEA}kSRx6>9pEaXh?7eH;J0r#VI_i(v{?(4AMFWax(vE2>GcDm=;Ek}!pnx}*G?qdFH3?GKB3m-Mm zc{bF%v0-9@#;JcVyU$&RBpv?qJD8qax%#f^I@8^|cR!Yv-h@H_p9(-{qAdfi|0F5z;m%r(~n2V)$=JLl`Yq?0wu2z+UeiR`>Q9kLVVob24s%Q-NpX$2^pt5@0T4 z7*MVcTnRt_8>Mb``DPcR##9c{p#9K582kG)Bk`f0%{v85mb&}?Z(7ZLb-w#Kx zwLE1g#oS%feJbA2v40}C;Xtxvd_9+Q_c@ZZ)s`sz>@!hW0<7$t+{4@BgSJ=%88&>a zQar2nh&AHPn{8;Sn%QH(YkSp_EB7fhAQYR$iVwovi)rdpEx9rzC|Pm-O*)gwe-t#O zroq47CVVxPCY&>qB0SRZ*8~*V&nS0av45LCKKA5^yneH}vdmb{YbRa{K3mBl8)wl{ zkJw!M#Ft@=an=#DU_>sXEzt{YtqA1YbK{o%6AnEGZO)(HNN9RgBGV)|P2A1oq>fnfVKeWh;*&HpEQ*PJq`3>heF`E!RlQnI9|P zcK8Y~tCK8ccEUr)CDRRsRf13pSUvvQl#n?*7KyV&bw}8J7XNL++!O!RL&5U7Carkhl}+X!d-n=&eC zmCNq=3hS2Pu3e8W1eKK@_6IGoXO|Q$K2v>OVp$m3c=%d|8tL_1p`4>)-#=2LW`uKI z_WhO!%nQeIU%c#FuEYaWD?v#pymeJoP$%?fp{IK#f2LVGVbx+d?EEn$JIA}pq>el=gMIscESU%IBS%l z_Gd%K@ITAsMCa&#s#xvf;D}bUB>QEpCH+PZ(k-d*(kRTi2-=Uay9G2nVV43=g#21g z<cQ+ZpT>^|33Qr1!k<2?tIYiAdRWZHFS3N!5`$Aj5&Q-Gx zTE)Eu4hK)&+D=Q-v9frzotB;QY)?ANf*#!$=h?0QP~Rfe&;2_mMbC>vJF5k`S8r!c z;oIH+pV3I}KtSKE-~QI_{%5JA$gq&6zBfGxTjHzuE5?&M? z+ZD2hN=>49e*^b3@@A9j^`}gueoQtz@_pCOWZ3d@_op3wo^u+#DWP;?H76e?nXoea zM~PO+!Q^HD!|hyK$*$p8%>e1wSMOY*SC+7(-72Y2UKUrkmDSztOjOFXS;7JFHT@bLx*fj_ESK*eB@jAg&=(4m_gdfL&Ar^&Q~NM?}F1S82c?KZ?e z9&Csm`0f3BaPR-mUBnO{VpaaST|^3AJs5V0mLyhw{%ry5Iz44UNt>7D91U@#Bpn@A zwA=hd&q%i57NShFJQN zNCiBcSmD-aa)(`t1Vck97awa7V?uBqz(LdPZogh(<3CD~zafjCak#jRP+b_T^jwHEDDxlSN#sWe<7}`R(o)-d;~Eeq?Pn3&l0?vFG;Km9ev}ZbS*z=O8m9?-kjv#ciFGlZIfSax=8)k zd=#UdC;s1*zEZC&zKo8B9rWKAFaku2dj4=O1oYV;2f^fHEFqIh{whn5*{xG8E02e7 zrrUG=Vv~=L&z}>2Q(9WuAwuMnl+;5nmGm5pk11$)Cb|;Q$L4d%5Q7@@>dA_KxF=z2 zP24)w;(VNtDV&G@aG<|cP+kW`7G1fQ(JZui?(4rQFHcUm&`HC-k!jX?a5OZ7@>*>* z7vBu!(=Q75zNqfwr)^nn;9J?ho9r0i`fe<4spuc6DJ!2l66>=g)9pOrk*8}RFOw8#Q!-AUIfF_QxcYipN+*OLk& zmx}2={A?XBora!7Lq{h+WX1chd?7~TG>W(1lR(DRCe`+vJ!M{E`I{Rgcrb`6|FlT7 zxo69PqfMdC?CZo*Yuk0Q*L1obsbc5Z{8&9*-BiBjox#iC`r*B{f6`VYw@Le(N`1#k z{d^e7``Pg=pj4tG$UY zdlVjQ(|i!v)4y0#ZfqnIWSXxjQ2MKBEVrofD^o^8(E__UC*gjCy}mg=^0&QyM`k}| zTFK(;o~qfJker7~;d7-liVFkJh+^#QOY&~Aa+1b-5Z(_zJbwK6EcOGqxatJeBMfJL zcgcjpllbuA7BmxT+s}icry$YN(!RR>O^iVTP1WM!Nzch*8R$de%hXvG&fnf`_|M0{ z{r57+e>(;JFTB7d{fJp)#3<0}*KgdAgli6hP5*Du14pQ4#9L@VLQ^ePj|6SFzzO?; zcY}J;1(oV=75{Ez(Y-^E+zR#lh3`ORqacYajLQ>N1)>$3pw{E_&_V*z>JoEbU*Ad+ z;dPIyrX<0zgfEbl_>$JnYQ1v!6s4S5wo*J==F1!?o)iB1>%E_~THZJmBZfQ{q&zy2 zb0@#%b>XUYD`8D5jQ&tQuFBS&P`SYQ;o9Snuo(Cj`8dlb zQ+v-V_9)CAkr|c`nk$ua)Sr4L^aUfTG8|-ixH-$ep5u-83zN<)A91csieXERK`FQ5 zx`MVslHYw27KU8MIyqbZY=YptDi%a-TFd=#63EvSz)nPd`6{(YOCuipN@ zw-1_WgLw$jKe!F!q!OAy5NXn#7r?J79yw)n;*WN~KXv&T?KEa#dA5E+9#-V}g@uTE zBMZoe@sn@>MPUQ}iHIO;B};-U`;x4koKCbLY3DPeE%U&=dqkWvJ6;c`6^6duzklBi zAOATPn=r|M+m3Bn{ru&jZ5y%e$rT*y6(;`l?tgSD){Unq)h93NvpA2_5dB_ZCvI#; z%haPIS2v?gUGtAllQZPsV=TQCYB=!H z;2tPY3{7K#>47B=y>DeC>nZ=4#|rI7)R_qHdq10`@7 zN}Q7rk{<*FMDj3*bwF*A#9Ti#Kp(^e9H=vOMoj41D1h6H5+XMyu61I7=6je;6J~#4 z4j?R0cQ7#E2^tP?TAKF+qiGZkHY0^ zmBWt@Vonm_Ktm4?I!iDT>&WGqIb-~c81+PODrkK6@bp~kF#i1}vh}|5!Fhfk!C}mr zp@r;B3nL9C0&MRLQr4nDd$caxNMe+%PwhI_Rl|Xr;U%z`RtXiyHrw6A`7EuLegpu{C`e-hBT9zj>GsT@t(fgW{YxFZ7^K@}G@(E+Ji zX^|v|rKH6;EnN&=)5WTHLgPTgohsuA+w=WL94Ae_b#?7lO48T|6>In6;#58y4{F3H zv3<^KsF-E5`J;Js>moK}SpEsj8}C@ZE8Y7JTt@wBO{z-%r%7)c8R1vzX>~ z0an1#$!2pOObGC9&~m)+CM)YM5xf4fy5riBJ)(k?!;mc8yBIZ4v!Pkjk< z2_1nNKYseO1*9#Y$+c3es~ZjgafR24f!ff!*3IoAie;RaUzO6>KF z7`PY+&me=ny?sGN#RbAhsA>z@m*OO*^ReJLVQ1_|?ZJ;}G&NVzuwT&JtPas_9jm(? zTnrKr;u2q5;K2HT?C7xo;v^LJpbvWjrJ&pTpbLK;tGI`5+&)Ys;!(>m;sAfcIXgKN zzlF>=LOuf7oQ9rW|Hk$YSw;(k+Do)}xR!5PFk}o=yU&d_d&z6?iqm0?8St?RC2JA< zzpF_p#tjFet3Z^yvrBbCyT->P%z@Pq)b;0kOf#?5p0P*&#aW_9Fn;JmNr^XxLMreF zKe>VlSVS{CYP-roE`j z=s`adMpe1he6VD)WU*&Lt1NyuV<4*9@b@oEV2S=P=QZA2_aWPe34$y9Rg@bxEIUXE z{i=gsIpdkj>^iv3-eYj8Cum=yk%kyAkSYZC8YJ1YvTDr3K#Wo98p4bX1k}CGYc?}d z`kuKB8F8;OQp-xTSdHKHUmisXQ&y0O{!k!dkvuUu67uSMY;{b{=(C|8td3fXpzV(- zs=u{mOhwSe&FUg}3pB8(c7$`!@b5+QI*JT|sGZhaL$mDaJ zJSP$02rB}`buDFj_>+o?i*=y?eJm@((6EBz?M}CeCywyZ!@u&gV)GN@`)~*CLg51X zoyhS7riR-<*;8>aOweXM9%KoWAd@`dOZ5T%4y2P;uCOCl(d^ja4ZGBPjPme!P%i?h zop{RF+Z3d5L7M`?J%KhrHdfa6#nts%Pm%Y;_{Xk*-bqi7!e)Ox!x1z8CPxGg4TLW@xSG<{5?e)r2lw)B%{Yex zf%z?;acaI>3*w7#sbi+qO*CR)S^3-Qi_mR|jZ}iV1p7z@ISdl?)%q{+MD|?TAmBe% zg4wehl*)b2?8fd@;Fv42w6{;GTjjbi!Qiqmp)54}JxY3KpH02=`SS{XWVkJ8FfRE$ z22RC?ZR*NN5`;wo!xoPa-GPYhIye->qyxe9G#b(Tqpx%LLf?3e!{5_gv87@A=> z5Gp<($Uf7s2E{>)6!~nJa1N76H>5Rgbo=#I5OyZEy?ZHPLL_=C;6@dwB$>-j)STnJ zTM>GkI6j0;bQJ#vnNWo1;6crix$WAQgvU4{x8VVx!OgQBI3Q!6=ae0YRB;y+JEldl zqf_Tc+c5i~LvoCQ)@PlNDs0Vf=pNiwghxkASS`lvuLFRPi7w%4NW2evk{3NX?39Dh zEw5$Llr9Bh0)fTvBF7U0H7p=$vab4&#WmEDC67%rirG-!fY#niNUf2;SDgqHs$07;_^BOrwmEt}Vku`tV+{V*yzagt(Al^lcm;W7Ae+G#p{ACMFjUqgLgTwS+^P z%ZaOFxUV-{)OUfcn{so{+o!}nF1z$Of(6$&{7V^Xwv18vy%$#u1mSZC{5nH z>B!}@%Fe-Y7qHL^@x}*}RJ~D-(d^vG4b!a$HDjNkb}VK%YyC0y1PfIJ_v1r0MM_q< zyZ1bG7}!UoDdN)*RyQB?5U3?~A!QPgwV<%@G#X-kh-HEet&m)WEGPlX47MH{8fSS_ zUcK8Bj2W*NF*5u-ILhio_2Yy}7~eyGH~Qs1%~;Ev_!3Ybyzod7qiTpDr05vPuXh#} zs8k%pb+(b+>xohDK~ zF{M!>^I1viK|#%{U4zf4VB9yjp%u095QMPj@q0lxrzd=%rA6a}{)J0~NvmGqYE?(wHt*~m(0UOy?W5RTaKyt*!Fq#M4tA`r3Furr4+ zE+lM5rhSjifuu*w9f+gEV107^#x=L&Pd`7bk?+EUxfy7L0Qyea?CGWO(w50!7n`D` zb*o;#u{4KN0h)w;f!!mqO^HIHJx>_DQYKHcZ3dMH?GC?3AaRVl_+gekevC{g#KgO! zbpdnJ3sI*4M-?DwBs{$_{ZogS-G;VsqJ%)lF)=+&Z9?kYxkA{rh*5QrN%Y{+#pFlF z#{y-jSSY0e5@gzso3}9nfpHS1RZM_?kKzUN@icxLSH&z93KHfsQAq`uBn@e#8Ek@T zxd|gmp~~nWdJtge!p1RvJnJaj1Yzp?;iqFyC^7)|yN)e)D7yhVK;XFvC9977%!z3r zfa4s|WkMJe38Nl14Wm}nTfGmPH!=xs*|g)RTTBcmYO~SzYgtq#1Tg24@Hak31SE(P zVD_I_x7JGs#9tf`ij)>7r((JOPi5!&6lML!;YY|qO{5Yi;^2V_QBY@y2%EHJA#*bW zcQ?eu1L7nqyV^uj!jiRsR8k6(V>$%V0azI+UC6~sSWw6c5;Flal9CjGRWZeW{H~km z59kH27-pE~`9AmQ`}th=7HU&LHUiBt1JV+jmmM26{KC7GGggBieATxQ)jqo?bUY(U zGDakMs&Uy6G$_f2l5Q@Zwmitc^4^Xe;v#?~b45}9?Wr))_?m8SWT}C-__TygZoB#W z9wh^Sn&3hE1_tUup1Gj%6FxJVpjyru@#1yOO}{xQcMtv5Ft-l|(v@NHCFNEXHb0Tuh~Jd& z7<`;JmjKDru0Z{eCn;QfFbl(g>wiRL_s>nY>3+d#JP)Rc*)x6~aE00*|Ay6D%U$+1 zF3|wtJwW!a|0p7>Paxk^(#nE?2*QEHN!zs+4RETu%EYEw=oz*U+N$6c7^eA6i5c^h zT6>ZzNDUKu;UMaNb61<&Fcw;7lZVNSE=nhpZ0%XbA(PuXI_y|$OTO@VV)OH~MA5f4 z1ciiX{r&v|a*OG!xGZmc$BNY97>z*^og`O5mQ_TKPUMW*vv_I*lqD48TJJwB5y3>3@IO>cFayt+&MK0w+v~@!N;oT=zhj zaT3WOzk&O7IYG3&qZGUWV#x;?Pn+@awRH$j1=GFkD|kGv-eDOe%(KhVx%ClIGResr zH&^MJc$6ZQ%q}Vuf#@{7xpgZ{^9d_>wE+PEpKfmP;I~_@z7AEs7|CR zhHnQDG~a|cE_<&{~oO67$5DDRJ75FX*9>j<)2e(aWA0$m5=D};V%B&nlH ziMzgV{(L_4r*~h{XfzREDa3R}8jlOwd7~CF9WV4w2~bq=ddEq)JD?1K@a6ytXpebP zz2B7xJYToKGfNS{Gyrv{fNA~}nD}^PKVMr%psv0&1b*yYlD^nI>2qWjBdCZO1>=qp zZNgq`fZ)B6FXc#^JT)XQxcGF*GY0YsOiM0w4jLdUlBvu82j|)YL5-pa+D=h6o^Brapmfr{E|IMv`y=Yy7P z!=Yb4_Sc-8?b|bPZ3q0QR!& z!Tq(Gc&X3DZ0~AVl-PTE2|c+xKZla=d48{^(%qy9Zd$5?Y#+^+Fb;+egot1wz8y(% zBv#edaM>WyOjC^dT@CKBjxxTtProX$8*VH0V9iK(c8on7^cp#Q(Z?yF#+5SHZ7VOn z*7MnFCh6|4wr|Xm%?S7$!8Eq~sZUh7^b>+|z;(vLs)&^#Bc_DxIlZ>U<*^5gVp84S zzcpW_ZJs$1v(0mVVwffaG}#UmWM97*TNHGX%W%+wuFhPQ%Ay($l65v#fp!0Gm+EiO%Dv-% hT01pd__qu>E6&aZKb*Y5`YuIzCh|G;0o97F{|Bk6I&1&{ literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/2/weight.png b/src/comparative_analysis/visualization/clustering model/2/weight.png new file mode 100644 index 0000000000000000000000000000000000000000..02797d4d474f7d7d92cf7827b56be4d7e9f1b543 GIT binary patch literal 24398 zcmeIa2UL|=w8}D|H(KRR$`OZ0C*n6$H=A3IiQc{rGx|wk^9Ua|P z8R-iubaZPo=;+q8{rCg^h0{vr6ut@BUA%0kYGq<~`>KsGo%~h1TQ{uiZkS!$?_g|W zYi4D6oL7kVIQRbRc6PUHh57hy{>uTpRyL-5rK&Lsc#}=Hq_u46=(b-a|F4Och%=+3 z(=U*@a8}JRY^43RqniD~$_h0^hW#IF53D)3=D_|U8NcUu77k=2KhB>~f4`Jxv1iNU z2PSK%_DlJx?e@yIcj>vTIji<~=g({>V(6nKrSGsE{#{^ldFifgHJhJN`Fe_F8ejUN>4pNB33w1a1i3EjC6id^^3viyPneJ(Ar0T4uJ^V_7xOc%V_!AZ0*}j&7Ue zp)Kpp-rU=e!7Zm6dnv(pDbjf`L3p}Bb?F*@_BGbhetG4rSGQWIu@>XW8o=zx zKIE>NpqYP)x=W!@>^=(hU9XFlY019Xx~X~gk@F!t%K3-e1~RI6>jO0P6B1P8n(Tx* z-go&(@K$9^&2{-~)a^*pAKx zn;oOx?sSWjVsW}qA1hy9G~1C>#^O?)Ha^^0QgZUfmnf5(&_?Nx3fFItAAZ=%=wIME zJ=mB(-}}_QFZ_1I`(%aGKi)l*6K-mg4?gzBN=ri{uqjnf$MVo0)6QAfKOej(DQW)w z>zlHovCxPYXI@$sj!W_w6zeY0W~sY0b)Vrh$&Y-6-|uy}&FZ;L)|?t_NKloJ+q5yt z_hL~)u^a7IyZGE0+RTV*RUpquk401R z=V#|1p0Mjzx_I#-^K7w&v-jFJ`3r+d)152Jnj@__vrks0(>xmQZ=$!ugU9h&g8s~5 z_vNGAP#tV9uq;oo=8F*Z~5 z-KN#;$2#}{Pi5hNVVq)HwYdy1<{qW&Ivc49khpLiY+U=DQ1xsF>u;at??eRluK0=1+eMduW5%TXaAt=SHjG;bC$?a_t2yu46Rr;L1ukwkpr zhYuf)3JR(}*~7QZ+~exitHP7j#{+_b;&yRq%<<^FymI&Xix>8tZnH9!-r7h5le}nw zn&mQ9k7V1ALQ?XfCzRFH{PXRHVmTsRRakuDs=KO0inr|HZO}3ej|mRm`=P9CXrhXb znyOd8S=8N=lGCA*reCy^nK>npM`zGmWb~8oA*taWY}EA0aAEtz&c&IU_R94-ofc_D zhp}~9EYb#^@D*dB{L&D0b{*c%qB@wrva)isxraDe`r)@b5@tqPx$p>ULIvyDgLHS? z(%1M9DrjMc-Ib)Cq(Pn_mWq9cQ{O7yWMMQM`4$G?q@#;0ayn6ma zX=$PxZHDoX$oj=Co_XJ_?9-8O@XW{Q2|D5W5n?$MUr?cEewkgY+CimM0@u`d|2n*O3E9^Ic{~ z)mN66$SuYaAHdDg)Yp&5#)|8U^w3unpO3~{pKzKmDw=7rSQvtA2rMQD5a z>sF>%uGHLf0|NujV@0zkESk7$!bLRC|N7I>$=va-GK)XnK3G^9^GIuGP;;C5EEOtX z{CM-0Ez@5NeKrKpu*ILt_#IAgn(WR0<5#AgEG((FJDjALPTu%2clpgP8||C4Ojkeq z>ziNfySz?ua&SnodMu{@x}7x@J3{k?luxQ%32r%cxH(hMW7&1h3IxHW0eR**{e=sp=F_6YGX1lU9J2YO#NX9N-MKf! z)ITI70dJ;Sm)?85%$wPHX__jCs8iC*#mk#o*OsW#i9PUKE7N3Pak7?*1^WuIvuM1O z3Aa+`Q^~El-mcO10>NwVfAqpOBx{#8R+5%y+c%h$R$O;y&ANLn8vDmeR*F;e2RRuG z?Uv{Jk_^kdTS`1i0{IM5H4WU7r&$dR;ygt@zNp27!Q_!S(Z^2z2r?5l;-VGZz2-Ai$r>po%`tNPwRl0mRIP{d2 zevCGEm5QUIW6_G}8t-4$4Ejz@*&V8gj*ZpG?ZBCtvxOjTmwMMkN_0vK_;Dy^8`g?W zdiokgV4DcEmRD9z(46`|J&P@j3*+OHF+o~fLp8$*kpB&COmtUBQXc*G+c5;*^e+80 zs;+&bx+KMEqJo1f`I+4|!&1-jC$l51RA~Xel0}=4vf-Ajsxea;6TGE+I)X5xOz$#n zZ1zcQs9=?}0OI*67N0V2ABN+l(gKLjg4haKT^qOUJ7#Td9g7_m8x<9Gi8tnEbH<1J z4<3Z5DhPd8!~<~<6%lF0mgK*ZTFmd#6QH^HO=4v+Q$|7I= z=1W#+5+#c~RRXGU3WBA3ZQpFz6YTH5(W#14^`C8i0v~!Ku zsgCPxA&9ZH-W!FB5mRI3pPnqu;6^g+oa=EK$)dJQrm}SwB9^B&=UTsDuC1*-6&LOh zYMrNRQX3(*YxLCKGM!FOhU1=W^t*SPAYBe?cD=m%&XX1FWlBwX#WPRL}#haEa z3oo|g&QtvYLo8y>4c)!HEfO^Ek;VDRb(S>8vKXA|41aZP?e^T7uJMl|V|!(K>*V;h zI_bo-=Dwo)aX)rQUHZz7?UHtOb|IIM4Sifnc(h-A`enPgW1CL_;#A`csqHk=s*Dpi zTTbM)kIJq*Njr#~5w4M{n~?cYSngEYt@9y0DcV_y-^U+3cn~UN8~d%RYx>jq?ejde z_A&Rk6z)k z7x4KM@1>j){!(#6A#7kQqMBk?V?ZKd*SVL#M@EqkJh1QCW$<(}u3ft}JVG0Nd_^nJ z|Ui7PRKeH>AN8y z1$dt~PSoyH*VOBoy?Q#QHHF`>R9YpZN@%T&oLqffj2zjbF|n}=JR&2n>h0cbJ$1c3 z-(J1={nu%#0Z9#`#Wc%lM2_l-%7|0yyZY@3T-nNW@~6S^XP#B`ilRT?S}8L`hRt7^ zY2C%lJTg1KKI)*ZHr@TNBoHmlcBbiA=3O*!n-0LU72V1#tTxh;l~gz5JTuJD5VJle z+^ILj_!{o8GV+@H+#efv?cS|nRzRK~o7wx{elA6`C=yc4wQ z5KYl9%D=SLZDHzYW^vk@)5w)EH2q8yujto?^hdI?*cF4dE@+B)v zV_a=HRXue;EeW`bYUD!*3Y(wo48r@OcfOs=I!}eb@lb@#7{ODDupCA?J?Kybf=}T4Iox-b4+%l z0X)3`K+zbOk=-)wWLqeFdo&rl;CgR$NK27Rj-(Gu%GGzjCTOPV+vMGoFi>x_e)RaU z%Is+S`NRWUTyiB?p07Ms+({sJFFCVj*E8P@YrhoSPGdWI;J~xD(+XnKYHqZV9FqI6 zkyCJm9u#jk=aoMmvNpv8={xJvQU>jfd&E+a2U}1^*x1_cVrBJcYpwbCF_10Xrt+wI zB^L)r+}lN0Q(d>AfSpWCI){4;)}0yHzGlO>s-o`Z%aLd1_lY_xQC?wl+%f&lZDL}A zvpvTy`M}aty<*mtH*2>t2wd2*oBI=kX&8ayfT%u}2sG{G3#mS02>DAkoXAn%BMJg~ zx|mwebnRzmdNRS-tmJbROVc3UY2JG}Su2xs(a7~>S^g`f$Wvup+}xK8JeIOzFNHjx z?etiMsL_UL200zhNi444-)yceq^a5K?x3eXpC2oT`_va^>rK{95whk?%FlPN+%jA9 zk2_=7n(j-SdO12dmIOlBegArvM<@Fd!CjJ)zw(wWPHbj+ekO6j< zjW&D(gofQ@c6j>>D&2mt@P9)od=(X7o~T6`phJkS^2TvQ|tn=5=l3+??YQkX%EAn9CIE zy1{1CNOgolL7+3S@%Qv+M=}$;RG8(5fjp;xAO`t7=H&u%9xR|}Jz_lBTeE<2Bn}Tp z&+hZZvl6_bqPhge#43a*nnpNDmhN>!$eFR}Wbhq4?Wf*CfX3k&z*RGB>_Kc-H?6y4 z^n-UhuGH7nRlZ-C9pfAL64#OR969RoQ--4MAF@eI21kc z-zPRzWi;g3nzq|i@c>>#L>u0A`kv5#IlSNcXo?X%jg;@Wx=ER4zQNs$T2c4eEcF$;h0 zQmG>ldo-`l99eXsOk(+&j#W{XcJ`BnhZaW4d^g+k8<&rrzk2oA5{Ef8MTY~|{gB1^ zNc_sVWjvu52wXCz;r4+lDk=y_Nx)zqDPe=vj z?O=1JX;zz}0G=gkhz3Fp+`qq`a2(osHZdPhcl}gC`zm?iLVtFvWj(1kP~5cMUNeUn zHlp}BXr}k66}IQq1#Gh9mBl^@#?!Z=NXlV#pF3-2W){$Ke>u%#DQP#aZahi4uAk2(Ob+ENAtMn!f6gYw)cjO~PwZxpKJ{bq;#lC!btY~GKHVEeBwFs-| z%Hm|pD>J{*qFMcdCIACuL^&?a)CN?gudF(YH?RC;B|}ON)JE}GNESG;ndx-#xJdVW zkVw}(HW%6*azRCD2EN9*+gA!KhYLzkCxW~)GBREv;gERajH;*+5Z}i3RzbV-_=i3A z0F(U)4^1f0Qt@HtD4|+1O?{Ay2WI7z)a?cvWbmIeGRiJg^cpGJDD&GLT5ryd4sCP6wlF?|M7O+cF`#Em{4zN=<0^GOGlJjA07Di zgs*9^F{v>@m4jK-@z~dgRi$1`dm4&dyLOQC|6wNMOxK_2L!2AHDe{UiDs zY!77fPfIK%OEWr?K_!bH?1q|ZiZ@<=xQ)3Q1cEt4y{ks6QTe4=c}P7Z<_z`)7~o)&Vxrwrqw+Tc3*BTE0`%#YNZ2_wVNX(IJRgn_^IPH zPfwj9r(|3eXwqHo+lxrCg>wu!nrb)J(SG5=h2Y&h+QF@s1vRKc0-boiWLX4-9J_i? z2(0HNfcn*YrIT}VkAbW8YuaEjs*6~l_rn4Lb<&)Z`8J|mJNoU9?k%R(YE11KUOc;G z!a)CZrIwD)Ufkmyb^otd~2#PZ{9?hEVODU24{& zi}yMW3fjI6t5nda{2xH!iFySNl{Gbugf$>R4?i|e^i(Y^XY8gsy#X|IgEc8C2+8_j z%br0z0}X5IbnP6=6aBi?2WbLjKg)Q_2oz1yI?cQzOEeTE4)` z@tc>I*r;SScKTy4FZ(?9PG%Gm4odT$WE{`?F1bFeN~&4J+v>kNqb|3Q8pSM*P5 z{j5Y^y;s+LKT52)va_=zwh`WFCIi>fjwLeKQB;6}%irHW8vLIIDcbVx<2EQ6nyVjr z3dRiJYcQ`bf-93-Lc$9WL1gGt_slwqPB@BE*nG+k<+R=`^WvXbu*}g3G;VI?VVD&= z8SDs(#gpINx+()?Q&sn6ebL}h*`j!uH}bEVO|4Qk9~6|-&? z*4EDQjn-kVP7H?kQnRwDYRaQ;8q_B2*+JncG^lCer=8U_rJJc{s8K4btNo3&aL%QB zOZFx0m|Y4B3_KiEWn9L7R9svi>qhvQ;Cw@NULQSqNlL=hLXY*0LoQSO%H($EPgHX4 zLb);O3_L^yXJ7Rm=yE4L{UI4yX=x={*~h4??7zNV;}VWUlmITZrO+vJ8>{#Y30`*g zi;o^X(k^i?^4=$OEv*wlo-oNgJT+slr}{si|M};iN!mBq22NESFawH$MOm9=4&Z3q z@bHbBZMmPlrKF^iOlu=>5e=YlM;yCKy^t(TN7@TC3vQ2PcfD!w4-dat)`~D56IxeS zH*B5GoutsPbI^JaLA5iu;X!C(*J(%;=P0jkww~r@s)Aa?iz!aXY_rfk~Gtx4rHD%Z#V)r zph|z`sa5gk=NF%>rbR>o2Uq-ByU00fc_OGJ9!#HuE2$!LtRe|y!@{bz%+_}vVDIVf z?l0a%f5P?4v5QhtkqupHOuZ3Sx^l(ag;EY1cqlVe`QLbI@iXXc6p7}zTgHLAcI_IV z$nkzg>_S0zZ!=T#8B-(VtAKz2V+r2iPGP{y6Sqfo5u!K`9(>-kT&g2HOTY9~?d;jR zV!WX3?Vrag`S?+X8bOwh@F#2$R4=o}+6+Bz>fM=px+r$=v;v+_sL1V9N$-7Tk;*pC z^1FIiF3A`3%gD>CtEs7l$0ua8{gROI^5x6A*=H@<^@-|9Cmg?D(G!?wHFq#~VbIDj zG79*T?Q3LI!M>6mU6`v$(W(0$EXq@DvA;G=XHvE$vRIu}%=KX)x7M{&_R|CNMxL7% z+~TvF?D{_)0CUeJB2w^Hyw=*(=*i>9cFo2?AgJBzs0JQ-SFI^TzbG#+7Z?XnD>61LhdZ&;TCJEls8|i0LYnu&4YP`3 zAKUzNa@6JOmJ__ij`4Xxd(vubYftg^^jvm!i)_(VRqrYemHily*safGvH4`#<8SN+ zR$MNuiC%(WJUEvdw#g2*9sgRK__l{9(1B0$iFbRCeL!`E3YM=fuV#qu(7VZm`1tY; z_xQ2%SuwE_rxSgr1=Dr1Z+r%ohN9k}{wRV~)UOSRk~5&4J_E^&MAp~WXE{%s6JZBs zR|D(v_l?+>vXO2xA&3D20s?F@NY3g=jPfyC5oZ~dk{FuC_f zW{w=TCWygs3Wd_pvxh8ophSb3PW99jd>U zbYO0a*LT(c18e1Z-9Wh5ym|9*q^*q&n+yU1c%eYHJY8OVfv?1ui=IJS*Eou6X$qDn z0yguh(l0{=?Uq`B##T8-ZL?pld_%YqD4qMjQ$=YV;q^0g8oy%B8RCL(7Kk_wy!J7% zmEU?AySteD@|9HW_i=R2vX^}rSdBiEk@EnqGYM!`Q zr0YE=*2EOS0R0kCZ!@FgWJ>{s&OSM1)zPNEyL@V(UeJE9L16sVs}mpIzn7-$*s;T( zLU|6I1Le|d{Wv5xkmdm=tvZrX^R@cO$;c=Ji8iGfq#cs-{xWnMMHxVWteo7W$T1X@ zN*6BN2eUm8biT9LO&#?&p(XfHLAx(49EGaLbjtEo7pO{9#BrqHa-%tjbbz+BA8peD zrfEcwA8|Y;Xl!cQIu6ZQJs}on=Az48l}Io6z&R}6Zs6Og!}iZe%m&T=I~y2kdB9hM zc>GK89@jJ~(KQ<%g+_n!_OrS~l;@5j7wV%>*KOzTfi(*k=3(dV%X`?!QfNEVPu2!2fp%?r2ceis2T8l!WII~F$MU?X3+0C$ z|JezxGRd%JFnw#DQL;eNN=xn!3@cd%0=zk%Nk%n+P-%N?@+!NvStAtT515%b@5Y+Q zBNz~;(Vi7`5bI4H%o!1so6~`RiM<1qPV$>-gcv1y^G1ed1NZrh;B>P*6ciPyq{s)W zm}S|n4G32cav*UVvv54#CKN&r{4&E;+sP|ENS=bm#whNZyEF;nfnA2k?fNbwg6$~f zE32yNBUctpnZ;c%Lu397scYx1UFxbw*Zq}L|ITqHT7fL?b63R{zrW+)=OV#U(mQXp z=e}h0f?N$Yg8H>ssOw~$Dwsup5vD2 zGTbJE$V{Jx(n?a{_An>US;Qfk@swq9t5r!+Y(1XhYZ<(q0~isatqTHX%hV;rMI?qC zHytb(D^B`@tgl-cLW#c2C$9gl?>=vQv!hUpsHDK%FFrikGlZi#XZb-Da~?VJ(&J-A zg)bZQz@*&V%am@LJn}W|+%xSwV((^+nhak9UwXCzD0&AKCchbRfal7kfW51@><9Yo zTekS|m+~R4wOQT{*;n<1q@y-`)A1|oO1Dkm5>(&Kmv)%-?4sR&{X5 zK55x@z3jz{7sLZ)3_B8tGKWIzuF^rs0W+iRNl>9%0Rc!X>>|pdiagG2Ciik6%CF7S zr|k#oK3H8EJV&Zp?N`?i5ZByOs9-}ER_k28Ih4~lWdvuLXUrU(!8g9VJX_>4n@TS@ zf8Qo-W~>uRhlL!H#S3%ze(L7NyX?)om7UxxK0T9^F`tn8^_us-Y-;Tz86|~F_r7J` zKAL!})|=J5LB;8_e8Zwr{@ceMBK!diRP6^>l_}BDzvvjd-!wWN8e7gzQX}3n!y-ws zHcr3DS!Tk6)ka&sc=@?Np!Fw?m=1T^O(G+E&{{hiP=rG6Tn%uliefQPao4+EiaMSF zVg>J^a^psF^jG(xBb=OdZF#l#v)M%|9?`LwT@EP zS~oB>6Q|7E`&T2wSp|VKsJgE7UA~!?@O>5p8Jwm#}e_VLC#J z6~=zLh<)7zE{veq?(Xiv%3V18^m2>7sAXLDu^2&e) z^MijAr0_@&SsxIGS+#$~+nu31AecdrgR}DjP=_u_7sZPcaxU}mIABfhQMpHs+K;0S zNqT-lyti0!t(QMFV6d_f^igb9Hyn;aVyc2aNb^A$8xB^|mcGs72x`xs=o0bq(%_Ym zPr{&oPr(yZHR3?*vd&-cZcOCT#PP3ps~l>LmZ6^>s4rUvlP5Oy>AZ9Qvxnyte!_3# zfAnZ3eq(PtT~nj9l4WPOafvwufesvmTZ~USw;Y~^c>p~zE3Xwwm7GB?3#{s)P=^9= z$vB9oDudJYl5rKeDT$|3B^~fcb}f@P598MT^I30B@YMsVi~tI>34+6D5`2;Ukpdh- zw-&!6MCH;lMbixAykO2ZtjO1!epWd|gXB3>eY}?Y_B?S$p#1+egPiOBsNWfzVSjn> zAYjFbKd6c<6D0?HJl*=8xYlRqHxdfChc^;54_rQbDtYm%J9qHBR;J=4%#b!=Q7y2W z`+il#9e=bt^@S5gXc@nJ5PAs5DwSHdOJ%=8hSnqO7x71usuX1{B^p7va%g%m)FSmW z7LOLsBeH+kA2gI}2gWcQH|dA{v5{EVpr6W7cniOu)3d2yCl+h_?jLcaKdx(t_$MJ( z6$+n($D3~bgOXwLT?%(Xu(Tic2o+c%83?S(8AO64d@|?Em{tauXZLpFY`J=Y9 z*RW7u*b8`B)ilYiIr9m(CemZsY1OiE@@6OskVGyH{3c2T3loAWVIl>szg>Xcmh` zr#c*85N9uODuPL*L|0c|YImoNpp@JqBtt&-70!ANo<(~&3~{&3QL4A(+b6BE&BXuo z?ZXpd6@~jROPfM2%JtkbeHN73d)WZPAW)mBIk7XJ^}%uEwQ^` zQaSLoeG3sNz&+gmmqn$88gkVNzWDm?Iyhv1GA3NnnKQTvMB{{IeAg{4u-+sEhFh01 zJR2tO{3E&b*m+bybMo$HKnRp*+)phMY$QGRK0~a!j{MO`IfBELRB*dU9$Q8D@JBhr zZ^C(}?JuMah)03gYt9yd2nWE3=4V-_Ok zVSK->Tvp}MB~RY`{^x^V2;Yy#&)5u3|A#Dnyy$#0fu>55c>aKljNg~jW1K`IlpKIT zSJx$tXz7;@4UIdl>ci)~q&ZUxPSHs5l||d0zP=$A2M(MCJE#n|OX5vd zeDtkf&F5cg?uVa=K;z}k6`BVzZ6z5$^;jA*2nY*H#=iQJj;;cYxnQUd@J@Y^=9| zXfXI;T~&}Ex&oAO*+4k~eJysI6M^hnyjrDP^B?pm#v8n8GdGWvk**VuR8&>%2V#PVAiipphk8ErE0g7s zS^ocB#R;{E8&1g2iE66a+M!~+fyRG=JH33n@xPd_I7pq+6gN-eb<{%&v!wS!()r^nw!psV~2EDqJ!y&CZDD0L5p+Z+)mk>Y)0-;h&IE!L!N&(FchJ zZZ7o31U`BQ`$18NYzg!II@gU~W{a$tJFjePafpZRx3;vZYTU7_r^mfeaK7nwLA(3V z={zVksug)VhW90n2&(%VzO?S#q7!93{^5KL_U6q9mtyOqd}Vb*w1(c$M8?@hHJem5 z_Su%psxO5!cJj?T>of!PCqt-F(r32N@VQyeP9OE)bkqMB!@~j4hg53Js0EuAuu@EP z^mTYV&vNYW1asZ8a&xF25*)G0G-i{udiuPyUa$XA)x@J-Uw>i|y$tK|#1m3l0%8g! zIN^w>-T*O8*L?_2BL#G50P~}tiu-ua8jUW4fE6Hy>WLesXu3&dJACigPabei!<%J0Hkk^=@YYM53i!EY#p%kxn`10 z|Dh!9bpu|&knIKmub`-G9$Q+)80yFz084QI!$-dw7+eOVBYXs`P6GaVcpcrE2X?d+ z!h_iMRx1O<5Mxg~3TH|*>_Wuer49y}#i`rZT!y5lBS)hpPr^q{JVwCiQ^@#3@3u?$ zv!U%|5DfrLxJ{6~)&2%qi>5gsO%sSXR=O7~^%;u)@4qXJMy8UpOFW;ov~;;DgJ@{q#@%@H!UcG!Z z!m{D1Pr)9hOcZV4#p7V5hp^K({|!$Vn>VsJo2)hjNhO!+6J3`!Ra6g`_-9es4Or=*cza%(yMi5PCn~El_cQ7IS1vVnZ z-R9mA414-&Vq5v{-MbTU-LL|M62BOvVL5c;B$hVdfIAcF^Nb`A5Ea_j*S9g`FDxoP zY!8GmfW81FqR#dZJED8(M+vK4tWkmgLg}ybFBYQ194%*rgdS<--yx;j#Rvd=q{Z-(YF2=>QP{95kUXHT zxoVv?AMlque!uon^V$O*F9-Z)eM2Yu00og6VO%E#fN?l68W z|5I8f-LIPZP8ZREmoQ+57bvYmZ|L2`+@3%k;$H|yHySY?a_Q!vN0hKnwL(Hdl<05Y zuAvr}qv-Mm;j2(T4PQm6e52!z-Q$jIGXG~FNos^*$w*oG!~%8abzLK^veMFEL&JF; z<&x5MtlJIRriX$TCd5A5rV+P`?jafqB?}-f?euFGm4*}}#r43d^3W^F$*H1(AU6K9 zM~@zrg^qD|-Ns>iXhJa{WXxc(BmE#txoG`CF=&obM;O&*kvnO&+_NVRl3mHVdi1@3 z?7a@M+g)gCq*W6%m3Dzc3bSoN`ye$fG9xoH%eqTagar+c$T`G%+?r#R(?yJueILWK zkd#I`idwxvK7(jwwu0F^z#PS4X4!{~WPqIbvILke-3?Xtm?wI7H9Wt#MWzmL(*NmG z9S-s@-7artor`eF>f!M+n@3L1mm0yIHwa=TJida%zl(G($du{pAS*MgtD>>D)Q2@q z^^i~Hq};FD1Z7qH3qPfsXp?96SPlNRp+KcBeBE7MixqlvfF)6sJg$NuDkBI_IY`Dn<~;auyyS7~N6 zfi9JOyAuFC9}78OmbaO09%A+SP1!`3=|ivS(UW62ZIjQt7QIznyOjycIzK;8v3uJW z@i!dJYJ-f>kYi;4Ew{G#BoTigGzF2ivpYVU>?BX3sTKdh!4|Ny%}NC_7IC+rjPO~~ z(311$;t8icS{`{B74@1W2&R_RyIFw>8}`+izpO*3f@(sJms#nC=>wa`VRH~aI5c1X zsveK5AXSURBePe`C%j}(eLjEw9FRSLcxLdB1Byu@Lx?*tVMC=1nGG4LKIS5ah6Gsb z+lq9b`YlurZO-g+Ihp#o%23J-G#k#Hx+x(cwy%T8WoZTy?F+r4S%Y8Nt=!~dt8?!= zOFE3j+B;hhAK^h}Mo*2@iYL8c5j?M^kHe@ zXd|Njn(vR$>WUN`aua9xFNoBy35Ybjj>efcqSO^=yumXlsB0Xsbji_TB4x~>V5!O4 zM*bN~9L1LXi;zYuuDR?=SMi?gGhN@FJPd`b-y%Be+NGlJ9YdW>s1Z~b98F5-)=iKd z%}S5GVw-$Ke_}d215o<1Dtt193t2)GwkmeR0IelzsbKkB+7iV&&sdk;A{%`5k)SH| z!_@o<*M*xB8VN1zRW8Y9+#-l-D-r< z0D|ENo^j=}#Ze(IIDD7U%>oT>0J$vMq%1oYw+mq$lPxA2AMf?7B z)Ec(zktkK++2nx}bZU3Dy8t!)_r@*!r`?jjW>7)Go%IFGiLT{zH zFb~eHflf*=gLIpNxp_`H#SpX!{ZE*v!otG;N}z;OuWNP^w$fN=VWcrncqlp3{0J9$ zoAr2`m{o`Ykf%K={68Tu%0QfhMCZ`9*Dwv62|2u|onqZ-_zS5DEB1EnK}!?*121{^ zd;pJP1j*xq%&LZYFkgB=eUnfQ~I>r2R(tAVmWW)ia$lj+BkHE8`?Ae zB|_S?@xVw^R{DW&l)}w*t1X8wO)4;XhxH4Hf3W=&^ybfyUAa8@Dw@)z($PlaVVQHB z`<7}@)(|xID8eO%%I9OqL})`Of27nNgk+F6B>%r@I`tddvqr}J|Fd*DE0b0cXJK@g z(P()_$P*cDBKNJGZ0w5Z@tG4tM{;s5^K7%sG%W3@i!ce_sqP` zkj)o;3D|Um_%}VS?TCqg+sVry+7KTz@%(B0{4=`;yH*^oaUM_2+WhW0n~coHoXW+P zm-tX$Iiiyi^C(pVXbHaN$G`oi6m7iN8~rb-xuZ>l@#h!SxhEgj)T-R*u*&PZST@fb zH&_0G@I*LK_JRAgVt?CJnY&}3TGqkgk_sK3*pGTr_xyVgPxQZ1G?D9S|Hx zF{jCD`rx5M zRqx-ueY@CkDW-GVIkRG!AzDX{x7EvaH$@t9jkVT*BXTSppRkeW2z4cXyAt~_U4s9* zbvHS9Hxjb}|Cijc2Rxs0=e|9IhrIA)typKSe~{t8w41rDyt)_796s1Yic7rU{4&P} zuA$4vwI8Riwc@zamT~W~%XF);bPqF?l9m%tw7s#k56SwEbYZuk^_Tyho~k!^S&NgK z8wiNg&qB{hd?`CJW3pj_#e%WQ`w3^T-(8=-(sZp)Xt2u~>K5}9?YDbhprJ#a&^Eid zFGm5PHrdG{u*M(o2FsJzvzxF#3s4>#r~`>~vLF`!FKI<1azJ+}dlH*fW?cbI%e&3d3Ed(1%8v+DHqz-d`(< zJS=Z1;ML-lWtVo3l_iJj9-DzS+uFtqVCv9x zYc~E`)`g}=U&Kj!*xOMAez7+6EQ04D&{%86f&D1BbjmB!ciOvpR=x#29rM*l2=n5m zb=FzSNyY?tvbN>PL(Oi7&a zeqwin+iSIr1iE7YjkTNfQ=m>$?%0n zHG$EmD~)bpvZZca8II%EAhSmK7^quJj5n$=+x9ws12n0&xDXWz8bFMrUCHG@C@5b6gz ztG8?BS8w4%I=f(7D8T?7UYaQo4IVJ3xOj1Ov(IC=DUP77gscNc&+sGZM&G|1qWRGLatRX`+{cL^io)#2x!^w)f`t#TTP22_hvI3-@!`?? z|5lq;@02xq@~mTqP7l7*hc9ffKF+6jVUSCtciI`gF9S2Q_X!3wAo3}kL|GFMjh zCZuZTph#&9cPZPkQubqi{e}Gaa^VDTAb&tR74JqD@AgkkEra%lMBEnaNY6DI_zCMs z1}mVkVLs*fjW5S&R;;vQGB~Wno)kHta}%&5iRKEJQne_5mBR_~zky5+Rojup)XorvTv03m4S+mQ)Yairr7 zApsRgi%d#f{wwoFS;FTE+x71^^wjrQve$F`;{muKRV-sNxXm1FJ(+0K2xob_^H2&A z%`rY@hs?C?rRarIin2QC*B+2|r0M?8@A&jt`<^H|86Iq`ov(wH%?(n_OzqXHB}E$= z`7!5`oI*r*kb>zcNDR8CtCCk%%ws5nM?prc(&ZQY5$m*ON z0mDm6O!S7q9ANfi5g<%D3Z2{yl_UG)oD8pBS_6tyOyZd&*+;4YZZCLE5k-KsRt7C&L`zqEAXfStKQW^p}nd!iYaxIREg4#Huhi9ACbQZC^N;lhNZhcpy| zM|@a(+9{$9a~9x?@b4`AT`i4V=r>i?KCEIL(nX2xf&ro~fjwYv9CJDtAi*m>eKXY+ z)0YM@^?BmSapKn3Gt6SnYA}>EkS2V{ zRo4N@Ng0DP>RiA&%Na_s!h-H}Iw*tMKbw$okf;5%0x@fWuTSpc>S7nT@|uoJQX?lx zb{R%94#H^F07_wKMAVm)B?!bqV^v-Tnl#Al65^L4<0Ye-W7{o}@{67eG>ocKqDHNNGdQmgt6oL?iKDpJ|3Q)sdU~4qlX$vM6 z@9f~j9VBVD9cwRW1n9L&Ei;Q zsQTyJMNGL&46^+&G@Xdy1~Y=iuy!@!4om|YwQSXK+gY8fYyDx@%mRpGO{iqVSGZxz z?tYwKf^VVX30|Jx?XZ&vp(53z)s5H}HdC1~s)Ef7W*bU0Y!3eOMk!-`_)FNG8;af_ z6%Y*c!D4Dh%HqzC ztc*+yz?$q<@gObrjD1iTAKrLYM_*SrnaIq|)|;Z?heY%Y>2yu7=u$~z(lYe4ESlDE zoBQM80xX~iZ>_SdnP}RRDLd@XhOu)>xXQ_=dkMRAGchm6O2?oG19iSS*N% ze3f$*I6v{~0MN=odAoXX<&79LAfwWneX|jiAN+!1+hW%J{=8K^T9(6Ay zzY}l}93wWs5qlPoMQi#!drZZb=L|DpoV5j}2*s@pUG3ru!+4HZL^=~hFq83bA4r1e zt>j8eend&UXxv44`qTm;js@e^1pFc*EQxp379&cYqLn2WtYb^-UyDU%O$i2#T=nEP zK`qytocU3J3|9b{iUlcQ0!#T}Oq#P2!8Dd*_}mkK8?k5=?nRn8iNq+Vq&%IwyfB2< z+`I$}6`9~bW+%13XEdxvw_i0b=>{Ce*Pu*afxYb@d0-_s8{+sA(k7!tW0;y3P8-N_ z2_2rcFV;ngK;|qQK6vnL7`zR=nErT*bmat5sU)X2Q1h;N@+tkif|{s-OVSVvxI0GyicTK-!dJ&U0I)K^s8&%^BNk$;R`9r#9Sg^E zFaKLMHnw1B`eX)%Ehd)DwTIRO=br*vEN$p!xC*!!#W^_r=kx>K|AqF`uUDv;sEW~A z4V)6$Kz@x+{{cLUivQNyML75TjI|cNzuR8LJ%k23?y5S3q$+L;3<86r(M~|+CvA84 zVluc2A*{iUlkV$7NW2Pn4xIm0nnLF4?WwJ(_>Aa>Hn3PUcFpmi!90k}ew8@6mrU%y zec0*zc2{|AE$N9jGg{Lid{roM9|b+K(xDJek$AljA2cfZU#O zY@yrsfkBJz^jR|I2Ld6pkj;B24o;A zQp(_CuGCLZy%uMF?q_U9aZk*U5V+Kl@<=uiv}h_v2OZLx@kARSEy38pKAey+$!HNY zY_gfbl8om4-`V8Dh1FsF%ixv|5r|=w{E_Y)aiepTW4;r*y`vFATGMg$*D+d^m>`H! z>AvJ#VvHrC;_6z+;xf#y=Q5Ht`03d%WcUdHfx_wtIm8A)que$(jMNH;%bCpbBj<*h z!9H-V&Gr5}w#zq64^SPNv>5SjKv z&}-7w`*iy+{6Kf>9H7v442i^G9Z&vJG=YUc-kC&{V>0wK>nO}~!bZg}P^|66+y%?r zKYqx>7$7np(a=Y%H>U^?DTMTq&*5Y)VWSO4LN{|eR3VBY$)UPyJQ#_rRa$@yK5gK|CQK2Y+q)x&XNsf+YBcrF0yzcwT+g)%ph3qr4Rx!YWptfX6{@Xy-kURa*mTju|P6)Syl-)7Ma&tSz9|R z!c~BW#7VsZLW31=wu4%}_Vp&B_98|OAO?~-Yl|OA)5#!ClZvM4xWYowf`KBelOBfx zH1w*$+L~?ZsjQ))kw=rm5CfoOeN6pXt(ZaOsOSA)a9;Ow`wqIO!?#EThyp4h1u7v) z5c3*gAu8$l<%g|xn9O!trX;*bUPk6KXZ$I#;LSWm~o<0+tV8V)JJtZFcpMVRKA?L=*3GGVYdiuc4$%1PCTVWmypqUA)5T zlB%XgE%34*shBO>4*VXC>unj|M1Qy+oJtTziy`#bVc@RR-$ob^&>Sr_>;j5& zGIN3q{vkRwGQf*R8eI~v>B zn^{{O*ekO40N-{~2L~JbBLV`Je}BVXYdaHxGNl9se8^gxlN$CE3cUgO-?BuBr)Ct2 z#Vgt+BJ&0mKMH^O~U`IS{;U_kLB(@x9N}) zGXF|-m-{T9>_B^ezs7(NSI4%q${QG+3-(k^wRr@Y#JDkCzkc1u&dxJFe&?1$mwau1 zly#H^vUX?dCfjM*9o)#m;v25#zL^qy_pX;#j#bA5WP6+I_34EvL=h|NZ;-QiFx_ldSA6 z1A>2Mf2DIhP>p(j|G*l&muySkW!|Hkb~FY_EcoW;9)4-r#B}-R*Xs<+%Y(L+Ul2V7@g{mgJ(8sKbluOdN!S{O&FcA%{Ff{(X|e>gvT4%` z7mi%~76uxiQkS-Wx9_T9Uw9335P?Cp;~JY+f2|1@UH zdy}69U%I+31Z+L3I<%9Xo_=DuZQIkcF?)s5huj}ePdo8x=Q0!(6@4-l8W|ryuB^Q2 zrDkfS_`V*G#kp-;4w|pj($boqp4R{TSgzvZ$3r5ESnz#DWwb(<8W_lrx_nvY!UfLB zp%$&U-w)zclSh9hryKTvPN=AkFBZD7Oz3O*$Ff9 zAnfey_`y_ERBszHjP8VloHupLo8NWtAft7`%q~$eF#`(=|DF#If85;WzWZ+E`_cBI z74LEB7Zw)q*PI42%Aa4T+z>xb%`x&pxb2bK+@y`8hw{<#T4iYzw}boqZ#D0mH;YS4SK-A> z@dx0eA?**M*nO+-9<;2i%Ja?J05~<&-lebCaOxq1Q){&BpXCKK1Zh4-SB@-_jNVaH) zghZRZ_eP!<@4kJe4Af zIZ>zVUNallM2q#+B{Mg-w8Yk$;_9q;J=N+Wn?4kNk70RjZEase#!hV=9Rq9Ypw)C+ z+Oe)Bb;)Y}uGWe<{t>g0VvYkW(Jn(GxFJ&UwU1O&HL2+6O0hpwk1q7G+Rw>Igw4-Q z{YZKm?U|gMtdS$Inb&YxMcWSD*G?G?#`jjISA<=E^k_TTd|tJ*lG)$C1kJzhzB|5) zlk*Wyc11b~~Pwrq++#ADfif$IGE^ZG_cN|)Y`_k1Xx9Bd+=^~j_qdV0J@B16AuIh&{x zgUjT=^{lMRNpm|79b!UU$aNmyMJ}$m+bsF9CLbe<1{zh0pgzobm@Hr+9zjYZhz0R_z@`FdMzvKplZ5qpndPh%~6ZE?0sL8Hhzp0@xs&okXW3d z|NP}khC%UaoJJ!gzP>L{gEW5a{rE`Ii`=|O5&PA+z_LHe0_mOvZ8=E2hMrv-YgU`A zCg9}cL~)ubDdPuk|}+-+uqT#rpN=4bd2e zlBtPwK(L=h;M-f`*DrRSDShh9&9w>a!FnNqav99L8!Cr*+eo|#YmIfb&% zaX{VqfxF_ts}rVtnlGua-J#p`|KJMjbLcx)Qc}|XqDK6HgV#C_J{20h<(d&NtoRiW=y>3lLA?V<2)7@&Lt`Lwd4!Cy1Lp-4rsV8%=9)OnXKD- z#2ex3UamE6-3`Qo)ytMGV-Yl5nfc;{pmnS0KwDv3%G6Z7|G1cZ+>*eO=wj1yqe#)G#!75h3OS%CFX@l zQhfaM=?W(&7mXaNmgg4rdxb2%(Wbwd+`=yEbnVQ;LzPo6gV;neKaIT?Iq@4mG$|Z7sar>I(}q7>grU)*RYG&t=#55&EYuId9OekK3a?w*M#NJCG`xStBQv#zptd2eoa(N3RmQml<^A+Vx~x6xNzalI5OX9 z3WL{bx{xM3&K`;{xu=#i%zHOcN<3H5Q1kEP;wo*w-1{-gC+W;%f0}DRX?eBIfByXO z#s)|>0XeLs7#JDtRERvxkzD z(~CQ`I(?ZhZV~HCx~)f)DGW+aP79j0y)?T^*^am@fHdDdS>&~bhO%S(_G6r!oE3vP z)@@8_X=(2&E9JVnx;FVGJObu0FgE7;`7M<gzLIb_`eiX~hiUBqzn!xH_!TGVjluH*ZQqdDUopYHDhj z0m+tMYsfVAFM4@vBRAfoPEGHi>D2i6Mv63`1??=B-{M_Miw?4)?fmR-Lwg?n7WX#f zr#oR`yK-VAJaiHFZXsZL%@of5AOAL_{P`EnRo{wZnE@CzE>XEg#~E zUfAOp^$)bZ(V{SLaB%E6cu>Wv(7yLJNtG)p874LCFX~mkI(K%K`oF8Hl1I4kO;$^< z8fnn9b5mov!g%*h%rlA*>wCvrIdmRDv)~%|G07 zrHzqN^3v>!w`y`|)0Zz_WRg`=y#oUS0c&nF>wdOZww;T#avmKWwbOER%&z@0HqrkD z*;)~`0?SM0%T_tkay7TO#9GgY*!KiH&&=F_8^%~!S-JWP3IwIT7azX%hVSub;@?0) zx)tTvf8YS!6XS~)x462qHi^qvDj78y{+S+Keoej5-7R*8rbq4T%#+9SasI2WP4_&s z4%qwRFjj@>z{U3r2NdpP}6l@b>@N49lcW_-iO*|gxD86aiRk7aT=hw>AHKC>`?%ol_+;5uF<)Y2s@aVEAiAI62Sx=9TjJzc=Yi`o=572mN zT9dZSpb6fJ&p}4Nt-x)%H^$@B8<#86va(xFKSagU+}!-!yp9J)j7hTTcy ze}6wg^au;IVF&f!QeK+Y#wj-~G+7s}8nKD7x3LLsLjLtfYPsj+%=H^@wt`ZC`{DH) z>m4LMOBKSoxupkCRaRQsTk;{I;pc=?>rnzFChqo1ZUn+2)geid00qpN(FwhYakzr< z^d1L+YZ2)hUYO7$bnDk1@iVFvscrtza!;V}&jzeFL0H%o zQcccq=>IGg)0WrNTjiCZ8LRIuv&XU!PcBtZn(&xpQ2cP$u}bdg`Kh+r*Ut8rnzHGT zloB*`ZJjJ6SN#Ggdvf}|C*rz3*0k?iD(jIeLjhNR|HP5Q0q3t%RaI3g8XDdSb{z@j60s|#mS?%Sxi4J2*oo6WGBy@MbHFW+erUY6 zX2r2vy~4&bW8FSwz5@iu=&fMRI^#fp=x2~yp8Nc)lu@i>|L4*a!9agaHFb3s6jpR$ zZX@lIl((_RZw9R6jfjd0L^uL02{#oA3t`tX9&9i2LV35(nf_%|R8*~{)j)(_U|=bd z8j5dYhm&uC*H-K+px3y1o9E-`kMhyc@@=GaJbC&wpK|Ule9*7shGCH#KZvyY$2DC+ zzBYF#VYjgOWf)|kG}KlYgkuTrP{t#4eoW|Ply^YhbD z`hS-IaM*9`s<;_g=FCI)cGX8DDEHJ(AreI#f@AR^tEdD2i(|#4W%?0Rke5g?n_I{RvwiOflCh6wZB!I_nWxj!VDDZcp79mtDvym#CAUT{L|=&+Y1H zXQ|9y;hj6+tsG~?^7;D*Ol%OHH}KaWzAH`+ zw+S$>JuCKm(-t99%83&vPKJ0Rm;AuV#9_=Z-CCN_6=`bL*7wbFXq&tDKyjV^Kt2OwW0_B9@zr z>;9#1PPv6&YHIIUT=E*#1%LefNli&$|D%3o{{colL&LZtS7W)UgTtv>In-{c=6vir zv>SJw-u=5+k}I~(oTOVy+0+4}IVrQb10o`uHB+(Y z$0%@?(M>@pduU=}!Z5ux?B0;8N#&yju6e#y?Cx3_&f^yWayr0QO#iOe%Rr4iG0?aX zMaQ9E51T(vp3+#T@O$y%!1ruRf3j)FR8(u%?s;Lng3Ueow05q|GK+61*Jb02fafhH z=TcHrYqKr2q-A6bI^Ov(NVS6vy8AS_&YTjqm|*o@&tqOCaj+_sH`j4+3z)0jZK{u4 zjx;tbyEO32xJAv@u#i`@-HmRS;rSA^ifmU$8_=ELIJjXU#oE0cd6sY zIpj91V>^7VCxhjMUAMgUE4x)F5DvMV>qjxMVxO*)@r4WR6?b+%fAQk@xpToqFG*$Z z+&?Rs(_Gcl)#V)=%n*6>%Ey%Si>Howm?hPj-z~RPYZg?OjuKr z5sE42dgdJDf>JZT0jWKH{J28TQfmh%=gN;CKN2+ds>NROf&C)*KM*}RQZkn=UfgvX z{L7Qk`{!$WrQPz})TUIfYS=kAlmIQ=M*2HHd>m_E2QKg?xPo@Vm9)A|>0lEKnzAj& zCgMH{cQ*=f#m*hdNJ%eS&Ub-7+qz90NgEqmo}#BIa&;oHHof$+8rMX*!Iu`%G>Jo& z8Z*Fhwqsp#Gg%DFhYRNR0tnNUJ))(i_Pl#{;~}eN(~*ryfVI=@Ui8%b!a_ouVq;@T z-YZy`{U!Cqf6o6KxDGI5(sp+HadVCKS>nW!+6t&zFE068&(+aV=2+EaQcgAJT|Q-X z_Uu{V2gy&La?ef;2N4zkp;C~gNu?JDi77}gA|@sX7?pOLxc2Ru=E5+<>7ci7k6mhg z{p!;Srfsex%TT)SvuQsTKXtrtZYX~>{dJu}_pLE*lbeOM(1Cx^S5z=Io9L^pc>lhH z)%vx;1aCD6EU!5YvSYcgUU7(sH1v@NUGU7mRdjwPHw>@+1jk-d4+wQdOh{JABEc-71RF2nsXmasl*v}QVi2sypAXnQS z)mS&@8cd!u3S$wwDnw}~ApQuG74Cl}$0T)TX68Fo%C_BAjD&WU^=}0E%NluH{+Up( zyM%;9^Bb3X{rv9U-XDWGZDGSr{ML+@6@+?Hb6P#|EZ~BS9TIo9%s)stXjnqkg>S>3 zNU5rZ6}=o77%=pZdX0n<%()h|W_*z|$KJgk`vh&;-!6;qrB}-GOd3DqJms&TNYCd! z{z3S#>-0Xv(`#T=v|guqI$2!54{~I8+v{lX5R1}-NKe2iqpdE(n*)BBR^iT#f~JjA zda6K0OY4mr{V`h1zs+NDtCf}2>a%N+jTiy5ju*Pm6O7pK{d*jMKggr-(iw90K#Htb zO?xa=GwZqAoFf~`P|K$5gDgA0;@p7TB7wR#PKIV?Z4>S|BTCalv&Sk3Ta7cWkMdXj zl^xf+ckhCc;t!a7+`enqlLpB;l!pGuwq;fG%^x2`^+h#hF{wGj&vt(vq@@e zvstyi*66Ak`8fyZ*L_zJcQZ||@V1!CWIG5}P^ZOM78)@bolT+gK46^*n}Z7AExwx` zyUBLghJqv{rLVtTe6}xMYB(9x@c#Y#KRuS)IPtUY6#I!oTwJSA@TQ!X2%JGR(FwSs zo?*BO+|Es3Un-;+jy-$U_SVFd1K<#-?R>g6p+kqj3f=u< zjVhZ!PGDwlfD%cn>oM-LYjFX~`)cD)P5e@piQ-)NsTI{fl_QCMhY2-#lAC zKdO0o5jR~r>d0kjC#T$qLzWM6okrtor?#-N4&m^0f`Z)yMrZ?JEIxizzzZCMW|8@c zi@!`)qHHWU;Tpq#JLe}B}z>@BZ3TO;n8ANE5NEd4puHHuFawhCT+&vGX^TGvzr zfZq`DoX{B!4Gq5K>@KHWCmT&VQ6lX!0!rRwR2H!Q_s_bGID_v#d^iK#B?~ILMqfOF zWoi`X*bp)JT}{nd2xK&ZU) z6!U+K)@O^|}CmzkGr*2Rf-?+Z`2Hi#=aHcJR zvQS!-Q#7-lHE8pxe9cXi>CU_Q+Z;M1hxyk;4uBIGaC|c1dv!`6dFaJEKRD`PR(9vj zmEmY7khNr6yfsq~9ntL-ZgbrUoPjX(=6OyIGqPpEmYj^laqo|y7^MlNb@%RF=n{m8 z?nDYtuXG##Gc(?qRj<1dkNB>vOcs~YBZt_tJ~ zMTog%WBUzX1?^0J0X~(mx{ArF{05em{18NB)YT&(+l3V!&hNQ24hTa6xF24e2G{|7 zzIS?hI_~8|^*o29BB!hbkrPlj05c1+aHxt<#?zAn+6B_?W2G2 zif19zsUALjn99Y)r4~}cXw2fDa{Wa?#w!;uK0&g4>8gM-`PMW_oj@ypkb}M;Mr2m5 zTD2DSVn<)!ZgNUShw_J+j>O!zFA&Vplh4;{F7(hl9V4y-nncd&>Q!nB3kz~q2sA{5 zRx_oY$>dyX(Dhwny;!D$+7ABtt5LqbiLXc5|0mViwZY$4z8fMGp?NaKXXfS}UVbR` z;^GHCS9Q;4Oh$#x7vAGKc8?|`{oFrkak(sFj>b`%(Pye+gJKfY;pUXKPUx}rv3f=O zFOIYqC9qG&@I=2l{ymVqSK}5KUqHzYS2n3IL zK7DEuOE_FUNVFuLgAZFqfw+Y-r3mFW%8@3&b)jTecoaiSIon1FT3 znm&6YYR|(n8PfH5&LdUT;<+nVuQF3plKwW8n~{EgEzOY=K?$CMJO`h48VU<@&-d4H zJ&jxXH~RpqDEXSC+y-Y+jqIq2pgrI*cw)XF)dojKUV2X3GIqI1RRTXpz9p?XIqvpT z&+&)n6Q~=(;Om2xp`xaK_u--NdPYVc6eyjbSrPxi#L_{xp=(vjceLc(wd;X)54a`< zMn;uHv0b}XuUof{at#72$G&|GplEa5=CVbDa&m+b=xsaRt$Li0P&tU~;dS%o8ig3~ zz?2leS7Jzl$X>p;ZV4WiqtFZg$uKIXH8ibz#s~_Ilqj#xq^j;j1!87qcGzR#b+Z*f z0g%QH6wL_CAx%2k+9aQPd#}_kbl0&GsEMRJf@|Syqns zJk4xSnB~6qGi0OwjN|9ur;u-zc~r708;jw6b=kB_o zr(=x@dF~>xIy?}z)=jWSI(_%TZSLLoDrzDmHv>WYpB0~3i8m{Ldws&IP=~rxzw?i5SEaN{#qe0vhBK94>Zk3W9=y`)+bl zhmES7G&kn~klKejs-dybpzl-cYBjZGL=FX&SB?l2xVN~0Q3ISGUJ+M%^Rbx)uF&xC zn_vmzT&9N3CDB^TxhpSr@;3-0m)&i9IuTiAc(i{u;Y1Mom|h(YNMgf>4|0p@nc3NC zOd^cT`L9I!hY#dUhej(YW;}d&cR@rpzE;^k($7Dt{H}46T)n`ZJ9nT_r+yaM3Xuq@ zu5YpEywmEh!V!8jYp?B|*nW>`11HtVi!W&?Qt9(UbsnDtN;ZP)ff&p`HRu3Y>uZX} zMr^0un~SGI^LA(jCnxg~K&{N^({vOk{Ajy3X>nTnKe)O~aofPkMwIjpUm6E0bOhuCo99J5WA>=dO0LltO8# zse((<#%qG|)pB}f_MaufoJ2SGTo@>Rygi}&f2Oh@!1{NE=RwZzCZh}po-Pk+6C6(K#XO%WbGXdUUMBE!&z?PCm6?bd4Kx%72uZm%Gv0eV;e0IO zBgio#?uPMcoUc^exD@mf&-)A@JE(U#Abx>+X8{;bdqiTJZ{o9OpOMW-Fuwop-#k|2 zzyDJvt^fXj{|!#J|3izY(kL|vA={Hvj^(IhN^=;BZ72+n;FPj)aF9l6AAIkgva{q; z0!>H?@fkqPbDE55oK zr&vMZ_ManSVp}P}2xI`Vlxy+{p7^br>;qM>w=S!KX|kVz6-tY??VMjlo~|vhlW9+Ku@NDNbDOFR6f|0 z)9s8T+A%m72>xI@KmQr4bhUJLQBhGF*rmV)ZY}`rv|wMP z;O0<>7TuEr))G*E2h;-a3*k+J0|TF4nkhj$`GMNbE*}mzDJiMo;NWYpr&JGi-`_|P zGW)y|W!{p8Z2#F*h;r@Ty-nJ0u4ZX=0f5LYt~{q>x16sHsj>3o#~bnq&zMB|)$^hz zrtbeUyH*1~bPNyc@!Ngw7*!T0xdWxpaj@#i4hl#B$kEqjHzYn}gIs**W4>gRyEnS$1;<*MIKOUj~ulg*zA~=`>V@m%hbk>;85x- zABz1w^PH+(j+T~`yk!gdB(Xv@6KdpoVtgQ^Fd?VF4v=)r#HW4@4uO9+kAC^T$)m$v zPX9q3h0O%W;xE)?RQdgT9#%+upr;3bqOVi!>ffg+P*#cGj%TkU``Iu{ZkmMb+{;RX7>sf60kUJ?6T{4Q&|oM*87=QPjYfRu^FrmWzF z#liD;GQxWu_dlr;9k@Kvr$`tRSk{95--GZl0^JXFUJ51$7@_=OF7cY;;^Hd$^5un{ z=Pq28IC&-Gv#8 zJq7|K-N%LK|F6#F|3mTo|H3={-%s#Ar)Az#%)t>6#G2EAO8?}kQ(mgc2P5{%ZGe1Y z)o)G?g)gnTaz(VL^9G$f2T4^`CQnaK!cvNYfjoKUOercU1{M~oZQEip{gw*GlNW1K zSHZG;13qgo%%k8=q^Pdfh|kfItBU%=7U0))qV|L_BQM#IJMZJ99O1NZ0zZ#LKok12 zBhDd*NfdTMr~ZWSeYTy_)$yFNrSE_kb$&>E5FXM9wl;kJScr#g?a!$ie-j>Yg7|2%86}m-mqL9qq@$>t4fUXs4FGG_X%1xAHMYctMvCd- z<2X-DqVVV7hi(P}_es;qUrvGcupUJyLFLdnWW(>n5EB{6Hgoyv)gzSc0s{1KhfvsW z=RT@FwaD#wc@R7+gVd&`G}UAdxscb|6j-9yP^dU)zh55zRTFPyY`luYTQZ+h4sYpW zC{(8#4WQy8XZLx&5QkK~AjF=>e^B{((6i(J$SvjPi&#P*0I86IZQ^Ih-=$lQLP9Tc zk!UnulfrEIJs4X)N-%sg(X|?z|S?k z?>8Mb`NQgRBZ_zEh;wY&y!7D<3GZ~qN8%psZ5?aKfqM|Gk5 z6A6itzWGwE=hl!db`_rOUs{0Qr{F7lwDjJ8;okBPoRh2yP)A?}JYs4~(WxTK@Z9tOpiBFfZTuc9?nMMLIqAFmW_n3aKO!3_yHjuGiwW)sFK_Y0W!Bj3^E;{|9p}4$9(uwl=kv|vlKWPr@rQmHj|aoL zl)q1UiuBLQCY%qIOH<(hNhb94P5aunED7C@(_a$gFB(m2zkkx;eDG(x{oG}p-+$K# z%9N%(j->7!Rn8`mHSe-YcjSUj(8O~a{*xiwABVh5-X73GH@i5fd2(^lF{z@V+WzQf zquRt(5IPP{bESJa4m2os#^&NwoCCf5@>1glIR7QTJUKJkXc7a6vk~4bB#?s<5|I0% zqoWhn#*i4a3F%-G+Y6h0d}TlJb2$tjmoo$2?&|tij=}8TI0in=H6*I;36jZSYR{(hXp9grw<(7!0A==lSz} zcj>P#h3MbLiX2T~?Eks)-;!SUdPHtmsD+z^(xZFi&y6*n_ zRD_`%HOV56&oMD(63;VO`kOFb5rG!{A*(2lpFG*Y!$XZ9P{bYMYB)LOH`hV>O8!As zWOH6x3jVA4crJjj3WQ_LsK|2_G37vhK&RWrk7`Vybf{~|FslyfaO zU8n9)HIk+(y;g%>XN8OQI5@+q9kS#@`Z ze`*bml?8vsPQA2h*)lXVL}Ky6{kdvd@=Gkbg=`U&Pb8b>8A0fdm--FJB`v^*VM@ zUsyz8j7~@~TzWvBFr-)bmmn{ALvSxDE?xoBmB@zEy`7!sRWp`Wppx%uLoz6#V9ulz zLyn~vdnn^GFxFjNy?aSfhzscua3QaGXNQJ%1=1Vi;!KSP!=_Ed7_X0x0m?Pf7{o5N z1=T3i8aeWy%E35f!~%|!33sjx+K6mMJ7v1MyO&YWF_Lj*SQkET{l-jV;|)vAes^w{ zN+|w9S&FoXtPMvo%jsbh!su_XRJ=w$Qo2mt!J-Hr_I<9?HmG;2`}$Tvuq0kzuH@}Y z&t0_yeBL49c1^$)ay-6PJ(GHADdMqxS}#qnLq^^l6$Yk&)O^UkSr-_WK3i5pxk3TA zfSfI2!a$)+flF$`!k_W8qQAc?k>0gkXQQ?MJ~e#?>9{IJ;J#T7T%;wQQOa9vD=o)L zfRs@99*c*E|cbrZ+&ppb(HkzvW~&n%!zRt1TUG}&~aMiyM!3r0g*4jKwJ$q7Pg zwIMMoW79JdgK?prX^hXz&T3|EAuqIa9_Q!h18;BBI_K_Qz?HnTb37%83J1hOUy^i0Y6%-kay3#6%oe2&LyI9FXqKa=orYT!v9F#bH zu*VS+9`4Smp5*K72HmO^%jrGd9TF7G5LJ^T&lQxof3th?BWOi1Xsn5G9a~E%Z}z3V zh&vG}y(w-n4o#bz; zKw3WV_X*6vdV}0SbHu|)1i{<*_fx7%PjTTM4l4p-ZJN%}yI+VG2n`?qy6ria8a;cX zT|RbA;GgT@kj(#==QspQCHV1!A}z=}!dA`C|K&WuYP%89bJx?DqgU2JK?_S+T8fI@ zK*VT<=)iVMpFVv$)~x*Y)?zh1Hy<1bt-sIP7I&D}G+>FK(af<5G>LXzO~-m@C50dt zv^VmCjoF89*uVB3S>BT|Sgr7IX21?l2&6_pq0P`O8B;iYH! z78+AQChM2_F~SE2E_q2wx&NnMbLntop1WAMjaP01@C)14tr{guB-^VOeFg#)Ff>%i z=c^&*5$Fu@Yc&PLPCVdmLzYE&!e2LuoFm7@g?Su;6`h@(BV*M9$Dv1k!PNz)a09g7 z=g#d*RRlF+mm3g0L9{PSY78d_8hxJJym|8nYVdzuFswT(Tp>QP@q$l75kh7g09gcE^XM8&{=j3^lQS|W-9a`GXM@AlvaF9Vgm=!FYG!um{alL z1Anp;`LgeO!`fn9)Qe@v2er=)j?`jOo zgxr9IK900sz4Mm2}m(DC1$sFL>JQUcIePI z{b)eX02aaJ$YO9^>?8>dA1?0~LEek!RFW)zuItQx;PllLfbtcTlG4&5^hx#o0oSw7 z;uSI5K*vRsk{>SkYk2pZekMI7?O2FN6biuu2;c_bfq*B9V8SFVRRc{q=|V~5z3)hc zLKr?|sTtdmjaI5usqwWO@%`kW$=gphfFl9=%}mzS5+bX;rk`H5=s zdYlF9RU|r?ta4zv1u(u785sbIwsLUq-n|gwB_ZC!dABzw+(dywPCFiu7<3ap%Ei}G zD6ml3Kx{R?gXQC%-+1hD<=W@2&@{P@9%bbTeWuy<*r?y}bDPPtQwrC*34|B6ZuKrK z^nlEJvs`KB5~xe~dDnq+NdGL7kdROWQ{oo6M^v>m( z*M(M%H0GW7Ezs)e2K%@0j2mQIzHBI!S10z3!;~l?fB= zal6)32qg7C&(QBvkP6XJfnx+Q`UI}Mta~9{t7ITuk3bM_rd$ShZ6n8jq}m3^NGNLQ z5)y^9jiO=pj=wr(WMV=ZV#9eQCAze#T}xE%m%dD)|C*GvJY6A|_gkE(QDl65BzsV0 z`yyJwS;4qw1kawG*1xgJe(S=QVx1zy>Z9PNU>KujJ#^_BEM2Z`$)J;9RciAwI zLde4X|3bi4Ns@B>N54KwVay--mab>LPlxJy|CgunXhI^*4ARmo0rhye)k*SurVNkO z2Q<+m-e$l?82<&naU(M0LC?(o>0QLW!Z;BBGx#4IXNK}V*@T|I^frk%d0l_UyHurq*jbJSaaU*G zT@W<3wA4u;V%74HZ~M4o&##a=wqdbsIaDiUnU@wE{iQoN*M724>*x^DdENaciu$9q zJZ`N2hHcw|kRb7^!Vg#*zgDnEm_>2^XB_`RgPBFn<8 zkrbO>JCpetbvwAXvY+jKL5R3%Cot+KUpHvF4q3tYeTRr@!Z1s3} zIb-AFhP!13k`32AAS?N^Rd4-Kh!J#`saxupIJVaNNDyOeTBRN#Uy3p5DOJBuq+?U1e})d zlQk3R=d}cbzafabI5NO3V$&Osik$_n|#LLHj^#kReSn_Zl(xQ(8DE!LG8otRij;pF1l{1Odqm0w7b>#L28 zkUF$|I|UVaLxEdo zC9~A6Lpn_`Ch7FULv(O{jk&!fH)x`d_>o}BV_;|BTgVQ_6Gb21Su(a`*O>?2C;K*TQVjK9;6vC2AURXi1vSta^9g zv6=BrLZv8Mj{GG{|9={|Mb`GeVlGt;-AY-%`ATQW+C*i>@ti05`A1#d+;}hOD7)v@ zoRhPS;YcvzIHg<)L+Dn@rz9nA7-Uo`jtmYA+AcJUxL54nG_{#$&(Hy7o#(+^&kRvc zP$)GD59x&qXJM(<8nsm)Z?yq~GQL7K_OB0&{psn$r^u*MEx-`XafbIO?Rf_L_4Cap zC;O+LlMVb&tdrawp8>QOu7=tz!b_`W<6IzjCO!HEW$)9nh!DmR3wp4DDCKs zg*$l#1wFj@4MRG9JL~GWxVwvcGn8hd0rO-CrvNhr(`N46zkkcS!Rdm@MV68$E>D%W zUtA`)U|r<6cKNFQoTu7vR>Ff133?L@kvAFMZI_h`foyuK>GzyW{W^*i)vICZ>|aVr z%06M}QAI-)@oE>=G_(9R;t7hxA7x*$6$w4WG(U+k8&J5mw3twS%oP=@J^3CuXtbCe zUN5es+H_Vp2F9-`W}UWQyjE?z{%%h=0Uz={iNp!b=_-n7WY(yEPQ#}{0nxVm{K2A9 zFukxQvF_&vYl(S#XXh^E5Vt2OHQlpwr&TY?-sz<(p8V`4zPZVyYHmEKUC2KBZo=GY z4ND38+fVTnl(&KQ+@ssa-DBMaEVmjw6Z?HtbibE5X}CUl_H0h#q0d<>c26`uvna#> zr`X8AJJPoH${eU~(fLsh9`4iAv)f*wPrZnE1knCL{l)~mC+5gJd%Jtdz0OBE&QL(_ zddmCL?-DvF(S4~1Keg8+#IGM{3z2O*U|h8+V4H-ldupAzZSTje;Pt+=^XNOvojrRq zD2N`K^J){5UOT;*kmtmv|8Guzp~*no0p>3}dDh+xxmSkS0S)~k&no&{GDEKqetR8K zQ>&*ADsF7Nzs6_nf6y#2z{<=VZrH1c9PyX#0qgyK)3fsO#5~U>^OqY&Qqd;`s;Xx8 zrCYG4Ra*kzfvG*AuCC4{i_r?w(u`+pbC~cF?4bW;q2PYXyKF&*{a~Wd*zVOTfoKB8 zNEhms)?)*#O8-vJ!n5zfep|AR^`bwm9NLg4U>Gq=!~Z4?f}7_k-x8=j=J(eGLElZ6 zgZ@$-*8RsL1~vP@H#xzYt%$Y)_^D&jjzj!ycZM6YESS;yvMf;63$+;002nu3TE%PD zHn22Zka0FVB0~MTVz>a>-{VDYvk1QHav@`WpnMa189s+ljlBCh{ggfzXcV|Q$2wbD zTJj$LITjAt9Jq}GITf?R&`eo^IXmZ??eps9MU@`7J8$|Zcm(29F>W@-?5u&F{nDa- zoyX$*l{>>pLvys}#@v(A<}hW)vwgh3%R|p?^RfKtfZ{WZ>i-1N0xWr*cf{E}$g-&Ra%-|H6F#gLBGr!(7HfkWu zxAgr9dMCb9x^gZdZ|FcF1c3^OgobA}R?;L_^{Fk|@VF7djn0+D*;iKsKRF!rL zeU@8r>-KFXR1}P?%3N@VJ|$)ry6+H^c!^*3?l8{9frS3>6Wwfg(HQsDJZl;P6zz8i zUL0in(u5e^cj@>{-uLuLQB7t9VCzIv^_?a#Frehuqv61-vK!i^CfHjk_o$c{0R)2* zyj>NS)z(%`{p;YPKxhyiP}rX&xoARbS86Bz)E+Z@7ae_PPW%sc{1GdeLw5c+($GnwEy_wg~0g(!Ve>h zaj9v2+E)0hZsQVDD464P9et>zO@Zw5fN(-TbJS1w+m+~>K~r3;mL-Ul=a3cSu^N;2 zKTr58Ty8U&K#SE*LBU#m42a5r64L)xotD#u(%FF(E#HHF|1=5 zu|QxHiV?aK(QxZiIfdR8Vy0Sc2}g@8OgcbZRY$w1l^ztpaIvmnx|8M)#1i`0tKKeAm0@?xAY?zW*WI3a+qmk;z>Jb3;e5_2e3(88?$Pe1eeuv@Kt-$M{TjfKI z6x#4Cfc>Z4TOh-EdwaLz9+B9^v*SHA>6Ud}oS!0eCTYVWy8J*x2Ijk5eO$A2Zu{BD zsD;}Rld!m`4K;AS{QQ< z&agvOSt?A3ClqE)M9%IFCdRwZw6T0a8bPN>2H)}I4P@FMnlLt^pY`gU@%!KP&<0t3 z;I+K5RokY=`8;YZli`@HRi(BK5>$Ys*J=YyG$H+zl~bbBz2ra%*8OH9<4yH~@@l*we;Rv-qa zAKiD9`4qH(-yL2{LqjGD(xEZB>7tEs(h>5^_AvOuL-&+CGpu6dwjrJ~iL}LM7WN&; zv8JxVNKE|svzCRB`}fy^?p01zO~#y%GX=eh4c3T%Wy!6&)p*QV>O2YA{|Z*GdLe+ z#9%VjhcwtqC7i#7op`bT{BB{G+uqgJtGyooc+}?!-4>yfr=vwR+}~g-1(~Bp1~%G) zR=|L!0P~}N!Wg)IJ%rwu0UOC^jl`la^cX+PQKSMEwgqnTqkYv($1bY=HC0QE{o+qp zDw%*u3^8D7Of;y|8AIsC5+jYg84S^vP3EM@WbAf2+3hS~g)G|zKcg+08 zhwcWQjdJxBnPP~6cM-6#@J|`6*Qn6!Ltir^>BL5_5^lMFdcka!{w$nLGH|@peJ2C& zpdapnB}f{2iL`@*L+L8*>+;`)v9gSi9$^Gmh1Pfrk;WJP3T2zG-PYLRv0U#}mxr1) zmS)>o!e`Q%QO-`9uj34gZy18eW87p`$}87~x?2?vJZkJVL6YcCq_@R=qz=e7#8Du_ zu&7X-V`M5XT&UbgAUt+hq=vH=XJ#m6R2 z*#2|vHn%)CT(#K$F#|*%O8Yb5{4?DG%*-v6C@e1_{GAjR!0;qZSS6n~ z+u!lt-P3D8*ahEb+go@3FLRy$-pUSo5m#LN7q+#54>jyCF>h zzgsXLfDAe-hTjU4ps^a1YmXmuicU4#Cu+Pvqv<^`PDpgD6U2Gl#UCd1~_v9UuVfe0xeoKP5Tz2&ax$y6V55as(X9LU<(ups+D&hWMe|X(xmC)?N={os5nxj zmBm{<7TqvS4hLrqq_`3QeKP!!n2Zp@qyas6j+U77!r_293TS{ofs|b3&S@}DT^M!Jq3VVyWPsBB1I{X*sKxU(g zTwgD?1Kr9hN{ERk0NcCjF*LCV`tAr4;*a|#(M7O60&$v5yaAF&r%Gbtx&HO~pjQ(I z;YD6Ai7<5-K|?SQg`Va+8T46Rz6Jx}FvejT55VEQPdyF&N+Ncg1&a$VNM=QtdrZ0~ z5m2l6!{JvTQ=R~2N!k&IQ(I~r_BnmLexhEXINTFxtKJ9S78&mNU@CvO;5Y&Y=Jc(> z++|vpeH5G_URxAsgHq7MD8w=|#?L;hCy}m`uc{jkra{+z#+VGoYA~+BxM7UTTS>u& zRa6&11;2K4RTDBKafO3`MX5maZrSmc*UkryI1W&O^F1sg5{rSehjHF+jlXf9KLXRt z3Va>rD1CgYZ2eP@pp>D7T4=5CD_1^(yV;XrIokHZnl2OALFS}-0RD^je2lWNNtl8i z2uB_RDE6SWW&2bqPTw*LnIK|cBSv0{6eqw04R~P5l)S^pOvHW{4+AN7?k$Ee`J-s7 zCJpceqBXp6$ziiVEkJAcweZ9w(&{@@U-Sqa&K_)N_X0|iZyuJOU`VgnAZ7@owKviQ zGo~=DX?6NRhYfpFQE`&Y<{%G*Y{KFF_CSrO7b*iX>EJjHD{%{+jy${`zMQwHbm_wK zQADTczS)AXe*+aE#^rs2!pVjK2=BLjBz!6^%MEz7$v9Wy18sHg-HI^@EI6HOC_q`F zvQ+{tIp1(35X0PL3aOvfmNiHiiC3v5LgTDoh$DM z3tTQpe%nw>l|MHqCZm)o$FTntQN9o;wSJ#Iox{qkA=8jB=Iyz4TY+JH9ndeCWks5L zNy`W(T~NrZ8wv$Wc0@Hr{W|d_Vcr*+RJYIMBO8&MF)hUZbtLA08iE_}4G1WKgP)Kq zVDrglIujubS0vawN`GO?zv=$TsGS&rk$lCiMB<$P%>)QqvN*H)U?YM#e`z)>(evy z-#+Va&*_}s@B95+-rx7<^*!x(X*kYwn+y9Sp3rHQbN3BlGl_|xz^S83KGp~OlH&l!WHi++k62j%(XG_iXrU-~P+ z=^`ASi%XoZ0$Ig_lobVZUzolEra|Di^>m}kcCMjM@o)=^$x1T4+JhD+8X+yYSgmh` z&(~fNqQvOBB3@v>xv?+G2kN!oc7A<4eY_`ypU?UMmP#_;;6}utHWI0)vvmY zxo;4T4NV^q*2U#YV9+}x=3gmB78VipLP^5k<;v8MD*&d4!kZkV1hRXpru5Qw87Z!@ zv1Rjm*<5s-!q+?x&;9{~*Rw%MhU#P@?;z$jXe&3E)uAQW;KChTY#M@@71n4`=$?m% z_V2e6CT(9MUE5yW^Bou!*lI=f(fu&cxSO5lS^fsoOft=r*?DhjDyBe$Q)3k`!}k4m z;sP}x>pEn9#IZS=|CV=?)wpf%S><{Akh+rtg4XX~* zkk~-%KRml%Y^SW^>nJ-JUJ>ve8FpsoZSuJMhBi9`Xieo}M83OX!>ETYggkFbt{|$R zlm6ZC5^Cd-rM>y!-uQ98yg{etDkLw(aTFoAy!k)6rH}7R8q1zJ8H(-J9)cg zD53yLMI<$~CeZyc52od9yrKK|19!XR=5A!-LZf;F&Yp>yiEWKP`Yu?oAbSl|e+ilj zgR_sD{Jj*6;C5YKodmlMtU>@zdhO^5l(!j;7N({HmFRf^=}hO;Y%*IBhKt%D!XW6a zuPw$oYws-k-)((L1~eT-7ft8`w=K+qiO-y}>h&b9Q%D=$h zSvi&Fx$;C+b+t*U3fz;O_iG5kRB}U3&7`f-g#f@t@T*yNYgf{huQQGwwVgVfPg2B+ z#ln3#{8M2Kz-3HCl+V}czDzr`){8&PnhSWEx#>am{rmTu%YHo4Yv2cMnpqsvLN2_} zBka##Hi zYODRwcUpR#ot)}vE`;B4k-wV#?+G<4PG~e5-z(=%&DMMMdb-s|b9(<%wD8Q~@dVMYb(B+cUV-w-r})j^{ykaZbWl7eZ*I^9lCC$-DE zV}##E-K2R^qR8OX!)W_jcD*FxcWo{o$~miPxV&wv;Qv@of`t_|iwaICD}qK8GVsmA zQ**pe%;Az3b!@DYoTU?vPFG%;W=t(g;)#XFC^x{MATX~dSJ+@XGZm&AfmUYww!E24 zy(-tY=t7>2$vZY{lP!=Zg~J`tbp|xkRrDmC$b42@!68Kka++L`BDDf~1~vQu&Sw|O zl>zjBSFwXYwVlkkxG@n|K+p#7I|FM$Gw!0v|D>R-Yw+GN&Z%N}X6tZrGSz3tk)Y(MK8cs@2petvv=99L1QtR=2&Jbt4{API{2-oBAKZ!>%xs9~_{u946T~{L zrS0PmjAS&`(LBz@wyvm;b}-PsYxgiU=a{Z`yON4HysO z!;)$&o<9hb&qSJWeCuxc6$g=?lM&1OaLO2)r>?~Z*;hH`H0V?Ai=>!>G;{3HK=$o$ zo|-Z9K&x!>QM3ebZDeR@iA6AhAe!kAl3E_QXx8k_9U~cZzE)M`#?DHGx+&VG#_CR; zs3M(pj<<#2^`xU?3O&>~j^!8rP_bc9XXK9Kd;mSwWv2LzkYu!Ub;9B|?h{;gBt7nd zRKB~qS2P_Vd;N^-@+n!rvXe$Gjqg_TGSmFpce?cDDJdyhx*~z@E9pti4l@`N3FDY4 z9uCDwKD(KlF$^(*+nnDK`DU`}rKkE}bN(ik%9+LP!_S|84;tq+^Lq2nN-2ZougSF9N>-_G- z30|A`eC&7!S0Avs4o3wC*OB*IlPbJW?u8#{JMm8*I+?!@tV&h2J+X*;W%IrBIoHJ< zOcAyQoN+kGSe4tH@(2!RC^rvpS{+=;Cq^MbtJ>D+3a#YQpm|2lr2^JOURAYCx)~Lf taxn3iLFKXCa=`UJZ^HWjipfvI%F^_6H*A?UhP%KNPq+E5`RY}1{{`0SK3D(% literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/3/regular-price.png b/src/comparative_analysis/visualization/clustering model/3/regular-price.png new file mode 100644 index 0000000000000000000000000000000000000000..54cfbe05b553215c13b700922b37101377b73e48 GIT binary patch literal 24396 zcmdSB2UwKpmNklP+a9siR>XiP-3lsM6qJm%3Ia+Fl3NjxEIEU%jVM7R3ldavECrEF zsbmU4i6T*Q5+rB%*K41dK4<36KQs5gbDw+r!NY+ns=oT(_uYH#wbtJE738G0&@<7~ z(a~*@zHm;7j_$h*I=XdjfBONy;joZCg>OPO=P%nRTU@uXzhY%Tcj=1FO;ZaSQ=_Xt z+Zk9{8(Em2;1S|E!S(YE8=ITf!o0j@|M~E=qGJEP(d@ul6!VW+|D+=QO3Cs#?y>0f`oawMa2$2Ikzxt`s+m(yKztY<67 zGr@ZqzVyPv%Ze;bKh76x%o9JDuTe$zAyN>fE8t_@?#De*+!e zE$$B$c+%^T8`sv+(fuaNj~hbwoQ+8X-#+f}<-#}9`;xm(Z|9{hXK>N#Mq4sdL>TGl zmY?~b_kD4-lwKnwj$Jukg*N{#TtGSV`n!Uw%JCQd4Ky@gTs@!FtMbS|W4M{3_ky-O z-{a>r{Xt5=sE&1Iq1HV;yu{_`rF3^zyVe6D_G3W?8hJerM3O}qTNA6z?8^7sS7dN~ zY0J%g+q^~P2$M#HYMXrT26yA;^t6v3FYCBWl!o&g1-LErh05&B*Q2^+aHS|UneCQ( z!2IFf_Cq#3zNd_b8v^T@WP;jc9! zAo`6$nw$J_4uTj z(w9$JD;-f05vfb#RK0By%QqRXdt|;7Xx5II{n9EMFgxB!kr!V$r<@?ym=Nuj+?b-y zdFjn|pR;Wlb!T)Th!_U-9x z>dGbR>SD^kN%w&Y^VV0F4oN*wnd*PXxN~Q0p6v*SxVWx&-`}8p;8R>|>|k7|t`hG0PFxr65!p#rx!P{ozw=rYEyRDywxD!%{U%`EcG*vC z_K{qqaG(8xe)$8V$=*ur&&XeY{dMQ|?N86#`C+Klg33MfXhW?|l!$%0u>Dx-rz{g^ zv&R_^GOrZ>pkvo!K)-o&J(f0w#*=?>-zoEHNAs(e19G*IBI+RqMp#m|8vT)`G^f!Q z-SxJ#EJg;n>9*r{L>*pB564By_&^StK4UpOTk+JCk}t{*)pbqvg^_a6;%PYci5i*L$#YWF z()dl9Qjhy`N^`2GH$1;mypxeJ?#Yv%vrJo*u&-m~A_NutZ5gloe25UTZb*=4Ie+e4 zqTQEI#w{6fxPSv+ItueYF73*uEI9LMW}8Q*7tU(Riw!rXB$&77k+bDL?c8qv_0|?c#aHL`#lF5??-tsgZ4pg2b!sZtmi@vi&3f*I85tQb&00?)kjauQ|J`@r z@jFgldxyoyxBF7pTNx-eH{OsG*u414qBA{8%sKh2=T;K5f})~yle0Aps~H4KRr9sxwfi)!my@cuG5_o%&DG?i#03|du7`449Co5ZFOb1JwH3WU{c1wz+h+~ z+P#T{lEE0iUCwKG;i0#ic^eRPpSi6p4&B{nt{@}hB|hJ^o?G+f1=&y@)$xu(?>39J z9Lq(#pDp5`$@?c~77=6x461ha_4YdGHpomiD9anw#Y!jZQH#d%MtB;NRb|Hu=b~_! zdaW0VJ-2cG^2-^CwdG8wnc+C+@j~^mu&~8i_th9&;K<5cXLGQ+u14|;wxNZA=;p~j znt;pvO&zD9I4j{uL;jk@nUO}UB)R(G6p9)xggf}rqr{FvXHIePqK1W_Mo$*E#Fk7$ z5>b!?qP2NKi`G`1#pc?q$u+NxX*FwG`!-SZD2S(=2M_-G?(r$!nMWRvJ#okM^js!9 zc&N)(?e1$URn^s8v#T4o9Z=~ka?Ns_x^6q%AU)S^PhRq*MMvsDl(U?l=;XbF2M@AJ zODuoA^TQUVSS+j#@&nmnc4KWx_8pE=(eA6cY82hHUEG>MkEX)LPMzv-h;dtr(bCwCeKXx$*a`un3GZK*{djYiw6ru|K=qR|cf54WXGdEk z19E4Yw8UQEGWSVeM`Vinh=X#CH7x9e;Vum+C#SsTao43;fz<;$#tK-&aMl;JpwS&PvSGzy{vH9_U>dm|b3Zu;Q12>nxWILDQR2Z{{k&{#5 z>b5eYPU&O|D{@_ODwTY|Y{VK?&f?z2S#;yW!9$f1xci5Bd21P{E3>V>tn~$s)|nQa z;_}NlCx;IneEWxoN7(4-=)v5buW$eve){P*rjw>OwlWKL-8Z~;?NL*j)>3t2;kyop zo-LI5-`8)v*i+_v2|=wI7b?r#suTMDy#hk&-GkYowh`EY`=t9L?K>tk-MUNeN39%Y zV~eYpr-kzJ9-l?{@nOZOWTxa$zPvE3JrLdMgzzpIurNnm`@(2H-V-To%aO6RyV|6q zz)^PsaXoCRR-*I5af`y45cR07p2aRWZ0DQ$EZhtG!%gsFSKj_{a8CNtC4mI_=#yo8 z0s{l}!v##P15Q*UsTG7Q^*^@osUPAG)pK+7x1CpNa>~nA_B$YUQBv~mks|D7@_7-Y zbdoLIR~HP)Pu)E|mozoQo6YJIU_)&28Q5=54)!RrWhmX>s9D3C-3y@9&fB;n=t2FSj2U9xk<@jX8#V%dGJw4}tr&CkoL?(64blEKYzU`yIMUFUTA z`umMXKfdsK@L;y2xVYH6_h4W1V&Pmz{jGKDNrrN2-?e{#8a~Sqw$b9a`%L4|Znq?b4XeI_O*@`mCc7lf?Q^j4n*4X_MUPSKD)9w z!}!y~HObG0(XR24BKF1z%XwY5Hy4DAAjFfuD)rtS>hOJz=+e9Cp?byx2gVi(fu@k( zLXi)YdSCvmr|bMh03Ud`FH}$M+O^nbGlDHh0(6|}56(H@e*IlI8^D{oo@-Wxb;Q!n zn5wRkg_mEKy{zL~ZlXF_nZNVU{!}oQ| zedWyxF(i(WJwn17(v{KIt~bN2*%nD152o3~#aDegei+5B^S@jlf2k3eXk~e-wyLsH zC}w6A$t55bQRHRyTyQLc^+-dKGKojEDSM~KJN583aX_Qq)lZS1&WG5as*&7? zGtw+OS!m``3Oo{1P#|hxXt-p08wb5VtRA0Mw|ib`HJGPLyN0KFrDWyS_lHbuDRZR;1jPN^WbDs-K*k zlwod-bbb@_!n|lw$YuUH>k#hGl;a;C)3}<2)9zWewU#xDF8eAf9&q`3W`(*ox7L95 z*0C&Q^tyjvQ9~c(cOG}Gk5MsoX7qjC`0@oBLZFM-km;n7zE4Idb+&jlP%ejwn zVul4=RZAZw7{r{W-+M7~@|%6)FI*bS4?kh}Aa?nODS%wg8Af^B9hDM&b|m|irMcz+ zHra+eTa$LXRx=rCY4+xUoeG6Fu3eEGlXnj7=bc7nG;(K~`1_&ygewMyxJRbC3afJ@1C`zDlE}> z1q2#Ra=m(siUxr;8ebYIQ(9g6dTKuVOC4ah61aP!FD1%ge|h0D9(C;)GvP5v%j5;( zXyBw2JbSQT#CT@7QCF%#Sy|b8)D*6z6z6=m#i4{a@wd8dP8?QL_K}ak zP;3VZxjE;05=3{;NCd7tmyZ@-#3{0!?3G@@7Fe9FmlrT;`UX3J`MDbNbqw=#@W)%W zZBs{GH#1SrVgdkbj5^OFZJ(;Q^|dP^*shJ(7NjCU8I;^Gmx4X&G&`Dc=h-L&Ssd5Z*N z3IHl%P|l=jWR?xY-D-0`wzJ6T?D?DS;hoK|CKwR{AEWF?AmS7ao%HF6Do<8T@oFR4 zr#5NhhTyE4B5cO9WqYvprD<#L)#5hqgIZwvYta6tp{qhzx3$XnIrO14ak^7x$Q$X zi>^Fr)nAl$joHr%GMQNLXFLxcFItiV%u}+ndsXJgqSxJOj5nQGc$KqsRO5}wk9iV% z6u*9Y$=LTLyR!+HOq9A$pa06+@B8}t9CZvc5qnAHbtKxQ+i~e#nV zZ1eV)R(&#s6J`6(oAVCcxb)j^Ps|G@B;(@Zj25SdbhEiNGS1;FH=?#ykB@1Jv#q~$ zs&dH2xXfp-uG9(q=US76(vOMn>K~*!0j}?`-qLm34cWpPQjJ%k7kQ0IVvkG14h?vb}E+m!Io*m7 z__?{?4NL|X>a=++bqz_ZEy%ARD-etgBBj8}&tteaX@elAS!YrE)El3O2ru@!c()b1nqh6Bv4`?dBbl9+AS>`S=vYoM)%=wwhzL4mfnJ0|j#ld3aWP zLl>4-6;;CwjhDJpV-6P?Lkg;~{P8Ao9Xbx5JqRLj1Mp&FV`CQ+EBx5j*39gRLk*6D zV`lKfS+G+LU^FPG-A!sDgrc&4<|NEY0x&Zv`3bEg>9gl4ZZWrZjsnW+>4oo54RZm= zoF_@#FdgOT;!Lw1DUZxrUm2nFD|OpqVH9K=fgP@~Y15`W9M-IxpMM2tbtL64Nd|1J ztT+0qf^}P;gIXa-p=fcKlUy(E+k3D))6r|oQn)AeQY@}2S0C{4@sa!W60c(W<&)}e zJ(m{8YvS_X7ln=oM>(>8Ju_p!qZy1r_J%A0NEl{+Rd(U+I z+P%fuFDZCVBC63S?=S9C?@oF7_;59P#w8n5*;7$H0Op1aRBa2@u?y?&?zRDV`+`_N zh#SHftn{#~3C7HH0+Eq=FAK-2_gi+sXoJi*6{57W{Q2q4?pgC zQc`k`)N-zi(~8&%J9g{{diYRbsI`<^OiTy2o@9KmUi$>Vsu8LXAK;~VyRe6+=SW(1 z2S@WB!ObeI9#lFOdRaSMlFPtk*lRBkz!pTsxYZZMRXeJl3^hbC2+w$0!ZS z6E$C%8cF&cFazrBvt0v%dR%_MxtiaouH^ggzjx57eZk*s&ow5TfimQjMZv^fBQQmq z=;@DR-TI$;9ypG)alR=qG}I6P^eWRSbJOqEufGIdr5bBBX!&uT{0^=dR(0@jdXvs!2%LZ4JR4}UpZ4W{WDDcKKIG7DLim@K?}$#0Ev zAq-Ve_``=k)n^*YXW9(a9oLbX{rEz^ADNdAT+4|wXU@dq6!(LeJT4?8Bp%8;rdhcm zTlVuv#iCN1zy)9SRlY!f|0{>(B5ojA>4QnE#$GVNxxI#wnd1egX&U)<=kRk2JH4!*Buh={h1)fDXHJYfg?<9xp3j z;-b4{MWfM_5kTdlM2F_q+tS@SQ7)80ry!S`n=4L@=xH&GCS-8cbXG3it-79jTy#P8 zA7Z3bscx=1R+VfZaDxep$Kp1B2KZAEG+$G?&d3b+4Z2%iXP^-D1qBAi@adNgrcjFN zP}bWFH?X5tBXmZ%pykzI-IoXGRxkWrHi-BqNnz!4(NAystc(zMk!DlgkDEbYIbC|J zY!K^?`jUHA)^YWw?~Tm*=e)Y<<r$o z&|seDPEXrN*QqkB$=g1TQXlHsf3YQggM3E~$;u^UUU;zDttys)3Rs>;z(9_z)TAnczUetoqQF(T4UIv*>Q9(hm2r<%1D86^1hz2CzFKknhc@ZQ|1CFCvd!8!l?kETEUEDjtx8Rr!gQ1La zAOZ;hLu@Q7M4*o7=sT4cJqO<0E5qd=+N26rz~bm&O#euVWD9A z0x1-m>;vDfhEk^$rWyU2DZN^HGUXPXE zyf`brUo}#HNsJmz|D&qrIc1ON3+fI{XwpkNN( z?Mb*&LU%ubCto_LdbG@68=qWqiDU6^&vv}C%4d}bf=a}8sLn%J^>sv>Uoi>+=O)8B zp~eznM*DNFNJ4HShUG%4_K^>mg`R3O*L5lRG?Y}q7Vdf&qrE~#zuqEyS7{q~hgVEu43xM&>KW2@Z)g>t2RgKo^i%ny#6 z-N|&6Gi1u{iI7Q--anwCR3O~nOVgOSLh0rQzZhWC^?Kbmc2_hTA*{=<_@u8X#KFcV zXV!yxsb-*6S2sX8eFF6VoaqEo#%Wu@6gh4|FfbUoI11PF=AhS`UHjP=ahgP>u|K zh#?|P2$#mQuCA_OnZ1aBjlHSH*Oq2R24 z{0CC{|7Z~Xcf$RD_HOGMBatqMBBWxVfByXWBvdu3ClAm$KS6d1s(kTseFpQ^b}JgU z>dEUDzI^&rV8rl_i;fqc?bdN2M=s^EzPft}da5>4A;IDuZ-UG;zxKMy$jZj}Z|L$s za=Iz`>~XeA@vDi($RBP=9Q&WnxBmmFswLU~9gS8G{7-ffa?nv89yxijnIIp&#z-dI z-sH&Zrhbb|ES-$Z!Fx-U}q?I-#CQ5fQ_4ResSD$Uw9pT(_UQM(BT6={q(cG zk9u1Mmr!KQL7_!&^_d7zg`&9)K|;YhDeTr9mx}?g8t(})swfX50@L@i>R$`{j;a;n z)A!IvR_%9f9|P&q67HUWg6^%A8Q1oPMuhC#v*)Pi#ns~>Y_z_}m=}|^+EZ0=IXT5c zr|e}Vkrp7HBeG?gMNTI4ip>4TDN8>^(hfiza-Ry43#5hM(9i_KC`ZXtoi3T3OBX?E zz#zfBLtaKk2_!LVl5U|BD0pQ^qg(e2_iDsLcrb2A^e4B?$LB}+g7e$TI3zgzZKXQAM#GKJ3)@KFdTMn&}Oc(@~G=hg84<1^N3w1;_2&{mU=E z0AQ#?jv-ap{b(#Gn7K5RehDBQ9J*Bn5|9FGXJ2xqAZj0OO3D$+jlM}_P52EO?g`~K z#(vA}`kqn3$-?Ec&TbNndy-$?i>H_HPyd?QXi4|N@`+awQL!M=o z_4kQaKJB6ieepHsPT*AEvURQd{$5YO<4;HDZ9<+s7@IAzUVl4C^OT%zgd-}L3jgc*Z|^==CF9lQ1@aPvyUH?YmP6bnZi?%Wz~OmlA8>Wq?+>cs1>OQ` z2T#)C+VJx!JteTont3)!gu}UY>lPDVLilCmxS+?6N0P4Gym=F8@Qgs5T5NMWV9vDp~*CcRPRT5_7fRPS2U69CBFKq0n$gHW$sXP49t$ zuX;m78%-oqj$$w>`t9R%j~!v26E=ApL7y^YJz0e#!o|{~xpgnCylSOnYM*-Ngy(j<-71j6Vy_U~)gnbNYd;V9>^52#C$MFdEc;zN`|2)%_50NAr~e1bh|t?d9a_G)3u;D z|CMY2PC`nof7l0}qDTW0 zJEwaHo_P9~KI3aTJfWaEc%>0OAJz{wd@lAB%eEhUe+F2eTkkHOb!!`*1&p5#d10AR zh}pQKAa`}CbIr+IFUvR>&Wx(ypYgOV*<7X;V%Z_av4J@#MDoN_g#slJ_5EccvYSJ# zwK_r^i#yfQQ+A2M6+x&$Voo9k7C6Kd)zm_E@n|1KaRDC2`0XE?7=t;m(U{A}K?hTY5t~?UWWq%cqp0=#AH3s;jQ_!ihIX5fsz8DDjHbS8iQ=G)gkUU#Q zc?Q?JD6u6UhVSt-7k1@COO5J!m7i}`^jU%9hs&iXz(Aw4BO$gGuXF2!V!Wi?Kuu)n z>Q+2mg|X&OLuGJ^zYaDA1lzv3Ss0|)g@kfN&*B+$;&{ll`~H!FqRN!#u$FkqTHPzt*I$U)jXwJByJdIX>d!Zi9y%2B*CRwKFPiV(OwHzn zDgkHE(b}KzHn-%l6l==^5+)y>oo5oUOMP%aZ1_Hln3D?N^K$}bLEP8&z1xoG9({JP z*`Iq9q@fA~2~rD(>N-gSCEiqII6PFghiCx9 z@O^<3L8|v&-f8d1gGakA2B*+m;CSN)+95`t>^3WJ=<~{oj%4vlIk0VUO+!Qkfg;Ai z!GhmDQNh~2fwe*4X4h-4D#Gd<&BD77>YLc$6m#(#x;V9TNjv4?6U>8GE*wI#vdhc77Be3kcrrD9AKX166#I%(lP)N z6w_JTNreR{k_4j@5&Bdqx?K z5JPoPt!0NVCs6iMnDU!>L`&Pj_rFkbia$T(D>G>iF{sQ)wJOavZRxHoJZj%%$^rSjRm%9gg1f%&Rci;-V!tD*zO+cr04 zbmiDZp)3xh<}ATL_Gc|i&pYmyR+RP|_MFp9qq>0I=w%`ng24O$HkRPIcDJQ3;^QZf z!eN8Rx**EVE)DN*KrAe7>_G19?CiSlWd5Qy8b_w@flogwEUXDFwgEdxYy!p5Q7F{l zPINtnpzeTh@s6Oi{y&BhZ$>il-*_Sp*=OZdtLO`;WMXT}Q^p^jc@U*hUX+{r5~Xl9 zoOmFfp7nI<7O@+B4+S1l#uEewhi-r^&6hX)?{3|nj9};34dNz%_5AhaPF(fhxuJJ;b)%-{Ifh7jQK=W6*_9k${|E&9b9_K2aIv*pAfZq(tBnnxr1zlWx}GnpoltZRP%TS~^+^?C(Ji80~aCGUXC@xQgY{9rfUkp}mg z5nOq~4qui(F8OkLcUvcEHPR6y$#IMq)in=8O*mrima`Gs0n9*pT zn^h7pu76tRS8?ED#u?YM@<$IJmISjznHEmd$yeL0W8*&-nR($wnuto}_Lf2*+r@uC zwxiB*uA;yNa!YgL&6BAL0yh}+hNP}F^DZcCP7sfE9^g{C_$NxXP|nchJik&iE8Hhv zX+MV0@C|PR5YK2Zh}3>7PYw;shHy=2Nr=>d(X#2S*iPc!p+m*>lm(^qLm6vG+Qgxo ztIb2yPgsNISefAFB~~hst>I$Mc8+%^?%lsn1pIME6VyV;#e;L=&~e}e=Gd|AZ+|;F zIg>kfaHrb*dQ-O26<2NxjqVVG1)n9_i_{6P@IdE1j5hBp;!@jqd9^3KQ?0inK3L}nqHSQ{p-?W03#XOb`98m)n}P-X zcCW^rOG`I5RdODoO%`t9^7Ntj@z3Aioju;S*U>n!Q~ZeHFC?-gJy`@3=0*Fk@>b8` z!DnK&>#ta)(Q}7r_>y5%r5#&hjLU7=zUZg^`DTljsvZxCENP z1k_+2>=Q37dnBdnp!!b3a-oi_pM^C+B9;k2cFDx9+OMu_$IDlDaG>yy`e&Kar@OGLWeCp%lGx;My4D%{jnq5cu z`Bl(v(6F}Bxu)7gVAA~hl$VlfRcrLE4Gj%d%mm%ID==Cuq`f_U;zSlqAS5ai8y|=M z-|*P-8(f2}AhR1q^EV#?n2F>4U*AE}4nFJiOd7Ndl?1u{aN-Zu$?~e6J{`wAjr;SO zMLRdIn)Jyi5X$IuOVCKME>;Un$Fws^i~&b+9SREg0MKv1s~Dpk`DQ04`#50dfdlEJuE6^%o0^(>u#z^cohoCLcG%56 zXjv4p>HC1iVUYQ%dg@^`< z=o^O0VHy9e>LjMHadiH*_#(E$Dr7wd-#;bzlua6% zN;B3X2{J!^cb4e6|FRzG%A3jQfnjw73PU|W{$XjSUVkZ8X-i8>Y_}KS%`UHU;b7hR zwI;`3;G3qKH~7q(6rF5GjvybH{dw?}LwR)Ouaad@2|riRmFL3W7`U0f~o>x8+WS8ITV$Zz<_J3S!w? z+k6BS32#OO-(8vo?kp<8T>r=uhH?hIB!C4;NZOe}UjtE8c{eS{ z9mEPjlmlf*K<`aK@@18aFHu@v4;0YjWkGxFg(J~8nAvgLQo4#p<5VS@Q`sI$j)4YD zVdt%;89O0?gB`&F`S9rqX@=NJPTbbd>)Bw9B4(;rX|HuaGDWUzk46ZzPp;E&`A536iuDy3Y$?dkGNPPUOj zbLE~G6bQAmsXjuErTgVH0-7H&Dkj{Xc$=$5HB;92X?9c7sNJsXS1S{){6<(Ptus5p zC+WHH0Jh$$jG|5hf`W!&WS*Ys^V)2R158_zcg4Iu;ko& zFMb_qN^g92-kTp11uF2$%w-VpG3a6X*4hFcSabr+I(Q8Y^z!(jeixm9OWg?Pg>b?s zm&7JWLV;qwNG$h=GB?27z=vTMS6!KwH@x$wpPoRGwEdfKT-QtP0M?$HH!M{4ZHTT> zYWUC|W$<^F`f0+0NQS(W!72?kGtIprI@i1J8a#p+W$AdpglWQhaJfcK7r0Gqx zrJSArs(@-IrQTi*VpNiv@rynB^W2=o`?`bSga68vA8GzOSN_?;G5;^B{8{3Y-s zO*3PzEyeBD8U=b@^>XC0Sk$oK6u)_!Ac-M-d=sh84-)SU{HI*IOg~u&9ow14WX7MK zKyWB$sD+>oMvwxqH;8jMT~c3HHw|kSc90yCuubBTBK`8M&@1HOCLFF$@H>KDQ|(y4 zn}U&fi^(ZqPZDG(L|vCDKJL*vpV_v&Ff~(sqV@(1SoB-Bs)4p49QwNmq56Tze^Ufy zt_ok2lS6$}XfxBho3Sx9j%%;Rh9)!Cy&6$5H`z+3q$YQV9=BV2X7cHz0&GO+bJRYx z=7px*LIPqpuC91o)v}*=eXLryy=6vLqVBeIjBRJDY-8djPcZw=ztMh}*&_B74i8&2 zwbhNhgx8yNN#)ts94vh`robk3EpWH{6Tj8PhlbTv;s^8XY4T1B{j%`)C(h41$QNWp z9YUN<0M}&VsFuj|@;+tyP{v58OQMJJRJP$iR7U%RRM1xfGsv*b-_J4Bvk)Gg|htYv)B$E8R@s zx>WGhsg@O1_SzgObGxNy@l$XE=LJlX?wa*@bE$ur%sw3gZC$;HQ7ECVj59@UEL%-G zV^Ytw&>{#Le5Xa*FUs?KV--YemselcSRC-;89SvbC{a84Z_6mBcXcw9`o09o zb@}&?$^Kh5ZzknX;Z=}2#ErTGiS+cl>#ZXs{dW1iQvUx-o3rlO%VRRjHX z0-JnI*;@ZWx3K3x^Zq{}(U9U_ls(=Vp!XSppGcL7h|#Jid499!&j{v10yrWc@%}IE zK4d&(h^A4`>B>x($Z^EapejdObyZYTwMV+{vra3UH2f?48K?KYuTb;H5;s0KbBXh_ zK4zd5=eLfo@o93jREn{vv=xyg0$$t-|38E%|NCJC|E;_FUzd?y8Gp;k#ID4}MOrWkwv~LP3MQ2Na zTQr)!pT)$G-W8a+Rg~56Dv4Y1Hk(P~4l7#gn#Yer62(Y?+2yFPFm`FE(owgJ3MmPKdBxE0o<8OhAMBrqUgCleFLw}KM>^q_!%XMkU5{f9+>Nx(Q3jG9yU zb!kGpl4SxP0{yLy!2&@CdKGl6UUt%>3BkDUVZ*U^OD-LM5vHPi{|s6j%uhd58YyF+ zZcuC#dezDBPa6MOf>F3ZsXDwi%4Pi*p`T_5ZyGFWe=@h7@|A)+cEzMV6i#+$J-;rO zdTP~Z`z0HWugs+fIu572zH>6mJYtf0o$>A<>L|EOlKr4na~wG$weO_qSFRBoVQi>V zaCzMTWfbLrbB``kh@bI*h7R439n#^POo6ClgdU?P2ZJW*fPb(+G_nJhBW(@;WFzy2 z+W5S{){6G0FM%TLA&?$ZSm-3JA-&ql-A1YHyN(F^|@*11lx9Ue(6c- za?{g*yCk85Dpt$CSvamIA(JCjZuNltOzo!WWIcoGq^_dS9T97FA9;>yWo_=&^S9>E zPUzB1V3US7cKXw{0pks5v<~1y>VuAsAiy44-Ck4GoIC|Cs~= zxgrHEe+}R$lmo57v4ytN^s!klDQMxuPA60*jPH~A5tKt25M%HU4r7VLnRPo-unHhc+ zW9^fHx<@c{B6OO#V(%bzZY8Cmg$w@C}FC*r@k184N8RYC_J zzwA9!IM?gy^fi*VkYy^^;at;-ppUO_SqNn}*&yqeE7!Bj<{ta1tm3Altl0g$`dPOqd)mkE>^dEXA zZWfMZE3t99mruUAEZ!ZWT9$LREMU@yP`W*C)}z@DANclDsqSjwa6;%%xkm}PtK-nx zpI{E!xOL3HH#9-6l;~D`l013>qQ%0DyK7HSC7yF8%ZXbraO*z5yO5-A9?3<6|4`2V ziv~8&jzE_O8d1WIenXM@OA`YYS|N6woIJWW+jU!W1Nv2tjk!fxRtBUldvHAa$0)Sm zQoTfL*DDCB-JZT$izMA*>gtTB-t$V~PkHV!sLld=-$M>d=RoLiAafo)7%Z zt$qJGs0Tm&e;ME03cmuMgq2|O*!Z)*m&a9Q>*=1bf{~(RG`|Hqq*^IxD8i%>M4Ont zqjV#Y^hqErXH=DKNz&1Je9G)u*akY4eBhZ20qE~Zp3eG-KjUaZV7Z?(edE6v<=ONP z{F71sbe62Vd}u6(D|g#u`*Bwx6Q^Jw+mkW==RFde`Q^5JDpR)yFRSu6*@av5QAV0f znNaJ*6<*xS|9>FIf5tf1Xp*xS+@T0-;ZA1eR5JAjqZm@hg7A4j^fXr#!3#oc0f*6Y zfKEtu^wzrl#h$_Nd1-h;Tc-5|(E27dvx`3~=;}uK z@UfLe$|Z2oCR5b|K)tg`JD)OpKg3X8Xl315&k>aA-?xx`vn@dJ%7z|K`?Y7VCmOBw zZ>bXUSM8o;D}86NckzL&r+vcUxy+k!=9fMsF=zxIPk1{q-Pxam3p2QWy$a5GIO=`W z#bms8r)G)pRGMf=BO5+uWw*_=-vT}9+bbW$wOL0`WJd)ItMHe1_DIde4xSrXBrYn* z{#6D0X-u6N2HxnL>B|!1bdu|^lr<8`4mPg#@?!avbv8hBDN##fPRt#J+vhCTY_ryQ z>lz`crB}TYTRHXd7Gncp4e#~^S$F4fB$LEvl%M>{%}8WLte?|d&ZAsZsmsz~d4619 zZMui@)g;0>>_q!qRe<-B?W^MhD#zyDW~-J(w6*!YSrI>QhjAfX>!zM?!P0K&)kSYF zcUPItLK3O#;AIX93)4vNsMsGGi(Z5138)^u1HXCo_eI9~j<)AFUpNlsbJELi->Dj# z@eX+Pun$awsN2wAgqDeK|DzuhO$ham9q&<3)s~?5G##(&JN8=w9jM^k1S8_IkfRAV=xU*!Pj5WeDKmZVCBwJ|MM?M8?x_y z5w*Z0@=aiDNP`9$UWH=4w8H}aCNj1SlYXK(s&=jhW!*)O-nS_p)&p{+Q}h##1R2Z% z;pw^82~RBzlX*BYiS`qYuuU{Y%m5l8V>|xX#E>j#eL)HCEkM&5+@K)i1+<%x`Afto z1OpNpm}AgJ7buy?6r6RJ%#vaY)qVys!UXfDh*_U>2gSz5%G6A6tDq|#1X9~8U>r0s zhn>!_Z=VT9oQ=(iLs{#8=FM}QILmU;(en;=>y)3B=ark7&_tUO5AyQxks}GoO6NA= zE~B0cLz}BZDVd)Fn}}+X&Wm5s=S0$HG#ou6UCclOO4xOc zMXt_77y%?x4L(UP7|5gx0!$O0uz~42!0$IEx=Zs$Gib@IhC#JZmkWovrEx7BvyQtB zPr+q_fh?rWrZG~+S3lok_SZ&fSy^Qme*7&irJ$P$vn)oZ#5>)V(yn7lTW@bKN5xNU zLV-+Uq+8c@CfK}a;X1c&!DWa>&7@l#6_g1&n^pb4T}p>d{UuoXl|jxK_$Z=09fJ}s z$Nl_1PEPbp4Z1Smnql0rL+Mi3=Zl43-)$P4!-0 zUddxNH}Aqug_>&yH#G(AzGRHX45nlZvaHQZ*(Tgo!t_87OkRtJeU5m6$>fYIOcEk8 zBV6}iJ*UVPgDFh&`ES4Dby7qknLH0=eC6cekU>GaaVzszFBZX@r?)WiAI(@MQ?$rb zmXFV`L_I?8Vcqck_cs7TAWo;W#eR-U6$m2zWyD+vUl#*$G$<)6ll6T4`nAlvy&W~N zcj2{dfZ~^o&8ZyFfVp#I>=iDei9ufU7tcHTdkiy4JWI7l{F2f)yAFSJ9%hEjK-bwV zr1L%F9m5mzjC=MZ5-z+Y!+=~z9a@)dK6~umrBQ^nN5gqEAo%D)ZnqbwXmkPG)0V37 z+ky-429VPBTSvXrJyz03J)&AGAm!(3d|J_p1;nYLtOJ@n1b*p63e;3c7~IVa!Z|wU7LOW@!wmB+a+| zu=LGvQ9)vpX4?~}-!hHr4^JUR>`ACMg7mDUqdZ^CX|ko$abQ0gk)-R`$C&B9=2lya zrq&b_dVyWOTr$(JHa|vCC+*Soh0gX<*v-!7BdysK5(ZW}LM3NM6`Gi!2v+SDXvurw=$R!}^y7)5exPcc&KAw2<=1n{@TtAla6dJ~p7E7*#@ambf zGA>v)kHP_Q3iUL%RWyXmF!GjAXfRtUf}?gH6_*O0QfqWFQ80wBpq9v>OP{|PsQm1g!{bpIrdOA}W zVkv8<(47T6v>EXmCS~fd?2ot7engl3*}FeZI6H%xjB@DSM6?Ikl~svXrOmq5G0KpH zevB(pg-t*Obt{`Rp2BN=fZ2b;Er~}Y9jz@kQ>TfQ6A7phft~+1%zeO+7q*U5e>TLb zpeka#M*lh;jrD05iD`mU_38PQJL&mj!dniAUWU{h$Vx^v5DEvH<_Q4|?SZ0Ek2wlS zq@UA>`9Z~Zx3~V;??&Y`vhhV8S}G?>JkUUuNbkRA=}6H@PY&e*}XjmZEQxie8^h+9e~b2L7`a+bh*Xm)PaD?ki3 zEe4_FDskgfac{_sQ77(9>=7N`904=@sJDA}o$r#cJDIt+FJ?B@_ zJ%lQS-+k2u6^-rUXl5-@HYo;FOw{1M{QNXn3^f%Ml@~0`B2e^*n-`(GmU9)JEB0f@ z6v&EaWM(3K4^FKT5r+&p0P}-!0|%6lhG7Cb3|qaS6MljDgMXi=hz(6Z5bhrt++%~) zB%`Wed`hXxwxo*?fFFby&#^L9LpDzBcDQF30^mC);wYSnj^-o}#V#Mp8=JZ=`z!kE zsrS+64C;VW8lIO>5Sr7t<0f#YL>Z(PEgI|Ge6xWJo$->@BP(?G3vw64M&^Gb;FQiD%$aD)sMt*fhpuUAIK zi@YWf7P))pLuAq9%ar*XKeuBD2ALHF;FgdZI?0>XGmH5Yq=k?;Dxp`fO5<2io#w{U zsLOq58a%zl>dl7TN6{?}(~(NFxT_0KJ(3%ldj>XL5yK2(mj?u;jd8A$%DWrBqnm#R z;5f3dh6O$foP+If6ccEs;3->AHVcMngt8KT44zctj!w8A97{Y#0Q5=km+4OiA!aKQ z9tC>@K$=kljiN>3k1tD;4M?WP0G1JxBT)r`{!-90>cDM}DLlIgnFYBN|M;(0@1Y!4 zTU?>vgfTl!43^c2t>qg#r_JFK`AVB!Qj#`>rq+>_YNb`$gC3* zsmVq(&;N3gjE=+U`+x@bL=3kgHvNEDIPsD}B`(%SuL9t*5?d%y*LiY#cTi$pvVFz? zhvoRLI6X||Ijrx4aU(<4EhvSht0b&AlPX##VeMvg+y9Xad_nujOT2AxWaO9oy9;7N zv@Ank?8U%Igi&r<#?D>4;t{bHmVeVS;_>Ja?@U7ya|>-La?SVQgB9o*4&I=37{;z7 zW27S6gN}$$29LCAq zi=QRFr;BI@cZLo~g)5{eM%5$$4-}PFQdUMzVP6%=lP>qXy%B3jTADTEnakBCURPmZ z|HqG002hpc=m6I1#cFpCQA;(R( zGH2iT@T=15W-TM88+1pxNrA{hPNq<#9Py%8C~nmEfzgFc8b%0J%=jZ!6Slrn2&M_y z6C*BVDfe*^lD*Sa6ar4j0o6x}Lef=7^EG>qg*QHE2sL=)^(br2C~46P1ByRxbvI_iJG1 z>Dr~G-l|XI)3<}p*}kx_88pxbY~wot8}Ao@S#vA!Y|gd7zRRs=3Nf%yt} z=vmmW{r`X4pRbGqZK41j2Lenchc@2C* ztG5Cd`++hza7{UIJ^m_C0zM6#Hv?`Y02Mdsprb+Kfs5fma?gNS0(e>nFgjj?j#CEh zrZcQ&C`+69=-d@nhB<=3;tSZhdRV-6vhQ} zfZ1djaF5t)V32&O>39u1fadb%^LF0A6_Zmtz=OmaRH6Hmh&u2c*j$B;BmesE{%y^# U&>t)J0|gm8UHx3vIVCg!09YQAs{jB1 literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/3/undiscounted-price.png b/src/comparative_analysis/visualization/clustering model/3/undiscounted-price.png new file mode 100644 index 0000000000000000000000000000000000000000..ebbc25de845f566298659deccc6e43abad640404 GIT binary patch literal 28244 zcmeFZ2T)e&wk`UDfQU*`KmiGgqC|;GMg$2WzvK)G2uRL3sURRp2?CNqB?(B*AV`h^ zA{iv-ob#QFKD~GEeb279&w01*t9o@TySf|xu-3P}Z_Y8t7<2kQmJvUXM~;U=q0UQ6 zh{~Z*m}w{!#vm>Z{Dg|shY|k8VNT^z)Py|nre=t&nlAohcrd5)n z_Y@qW7l#}*6gKxxue3*A))&T-B_)w1RM5as9t`K~_>w-^n#cZ=l=0!fOux=tMqZBg z9aA<_*@3*gblcp=9N{e_*vd87Et(jr7fJM{_V-`4S-y^ZaarFYaLut&YnYLZ87p)0Uk#+BX`=AwqZE^ZFY=o(l@wwkBBFN;*^jSZg+Gcq z2~x-l(rQG)khd!MdNIK7iBgHrDk8s^yAB`FJ@bk{(1T8L=U}~EAO??!sN<2h7lW#5 zrJDeqWOd&2F8-WjA0J%!7?qmOkD_oSgTJ~RIt5KA#L`L53>2DsnHHFj1d?evU}TkV zkyE+tj8cR|oDZCE$}PG4t0_b3(R@?a^p_}E+d$Qk3Rham;DN%2To=xEtN+Z_t*4O; zuB}wdH=^a_ym+|3U2mLK{yIrKNU6EPF&J}gZSA&B4X!^q7hYE~dfSFq;r>c*(gz7< z)(=xHk*{d)zoxl*6|}YR3f=w4k%VkxpYszf+TAs~g^3>-Z>n0i7&z$0xa6RTLE(3!{mz=Gc%X@%GYy!x%9yyAy02#T5023{$1mH zp-Fd3u+(N}<*EM_KGH`~++I~rgv*^a2`MQ23}PK|L~v2h%&Sa#zuwz5-yMN9LTMaJ zRKvgD#>NJgE>}>zc=6&b-I@BpE2p09TYFCl9v@ie8Ta514-XsuOd*PO-BQ&kbLdEX zBoFHg@W zH9kbWh30XJ18ll=!ohTU&z?PPi{>%x%ej6I=T!Cg?`*DnHWAV{N_C$!8^pQ3hMTV* z7@!ECxKroHTH%wfoYimYzB(o*9m7jv+Mo9#D2Mv__7cCtZIS!;VKE<9y18!5b)SX1E9`%uuYZHed4bK(abcj4m6S!pu-mTcCALpc zkoaPMzHF(TDctgaNukB4h(xg7I-B#nqL#sQTg-hOovZLPe~*v9%G4}X+sw+*MHd*f zQ~6W!5TB>u_SDJ}cW}5H>$dlNVroil68mmtCM7NP`0noRB_TI{a!x~(xw(0s`3RLC z8Eb)&xnMGEdr@!vE019dOy+_-_${GQp`s8YBuyR*{W{bz2*XJV-87)RL4u zbF?0J9B)0{wz9r{A8xOs#MYR9d(hf0NL*Dc?ngwig4^V)%JyX8vlp)3a&Q+bzMERyFWZRGTs<``DB^eYOk}a zJ=*S1=YFO(t&fk5F%{TPG!WS=_LIP6en)n2RMgpWE$!!R%jMftzcMxb_LoWt?!P`) zWnOvsdV9p3TD{P$wl08TbaGO0af z+lx#qWo5UouW#m821Ov1z?%x!eVvJhcMVNV)j7|azgkU7eNoHD6L8+jbJCKNBjz^g z_264ByKv^r8I^1uY$Qkp2NNTq2Y(V`QPy~VkCyzKyR59NF55%)5O)guj^Ku7hDz@s zUr8n4^n10QTKwr#TDOB$afk&3uqL%%pMIz8w^v-~%|5kUwvNBIIq$tXUVn{?i-b|> z%eUcj=WO#4LB9(};o5G#H8r9;`}?{ZGaV2pzqJb;`(vEKiU0VqCc!oru6EG2M-%zQ zkA(XjU!UIBGceHIUK-k&OV3*A)eX93ddIZi6JqV}v06U~35jnI``(3zd;k2Y&=M;! zkhl_c*Yc|1&hJy4Mn5HXs|N{$4m=>RGc0O`#l;213OFaq#PD7caN=x>6AD_c*vE%; z=q3ukUVOwpP zj0T~hp-;YfU=-QR5T-OzU37f3|1Km%cin~4_!rX`^+Npn-uSiOUYttk zHewv~=BUrh)zuAhIf&zTBtCT-zXn#$0*=MO%69^ld?ONMH|*><_)Tk++MS2ri)v|6 zy(XXzYz}ADZ4ADCiA@I!q9~iiZ(;AcjZfiP)#~QuUJnAuM`N9r?#1xhuE1WTxpnId zTVu}1nh(Wg%n9=c-0Q>IVQ-7Ea~pjti#8kNHg4KUamLeAV?*OmBIPK^oS60 zujsaxiN5=El>^n0jHdSMg`2`gt#&?SRjq;hy@m3D+;b+WBc0Cdwu~5J~Fr(RM%V zPRrQk?fv@n6^aIM$n~}L^{^eUvt*)vq|8{TY|HTn*DIb>VPXg~seJurRJ!#monHwp zxcjlTe|I6b9oF3Kz`<{eTh&FNxDEaJK#PrD5@$4;t>## zp^(dB{G0FT@X(@0Jz~gXMJSs0%<7+O z7@R*;WxdL^7)z5aDl{TIT5_Ih@Mda*V!SPw4a zU%i9+&!$?V=s(NEFu)e)=_oYU#t?>Fqoq+~ksvjYKD+bF{X7{tIbQq%v$6Qj&W;MQ zTcmaMo}R*o{lXD9zs^oMBn{!7IU_rEbabRtjCy8$2ry%`V8HDAwIF_-RTT*d z+~DBgw=ppRBX0W{ovzA?@E|N9p{UkC)IS}+V3clB`-bEu6H`r*<@k?8v9s5gCMPFX zy7jFKewjac62CSgbhL8~BAM4|Y8S#+IOlVWj4SX-nbojh6& zhlg2qxHa&@Ff%R_PD4W1EK^+?ySCfzb-c4@*{r9eJ-xlv`MIqoBy47WU_5-!B&*Yw znVtrD>UAy2>esKgr9W_#R?;N=QqKiio_d z)n!)8`vzbot<3oGu=~+EwO{tkNTm=Q@hh?85Q+&=x809icJ}rdEG2_ieyN+^3#N;r zPPY(!{`}Tddt4A)`ID`MJ|*Rx`Jbt;`tyyIpAUqkE<|KVE7m`o`H^tx_7hz~qdzQ^esr@p}6K4~XTDyf_4A`+_V>(fBvwSW) zUptc_%jR|-DtjflW~P`!)_5f|-FwRfQuEHT`>`JYt+Av1W%1*q!;W-i)^t`)o?Lu6 zd3lU)QwCv^teu}eec}n#7E{YJe5!~wW5fG1OM4_?lXjrQmeC`J)up$DYY3n{WSUoi zT%lIrDbI}l)HVAfL;X(a!29|hjc^uC%HawQ>)C}~g@PEsNqzhU_*DEU2bH@6-!L#R z4Eys^75Cxsn)Ky->O7cq-QU|A1Ni!NwXB)I zejLUbWpHXx&&aR~O!{6nhR`QLg4>x4*JfhLd#kIG^2;I_9fyO$I(=HXmjwzU1j|6# zw$jX6`5Pko>Bn1(+wRBvBTe45R}=x)FiaXRJ0c(#(zFGfq+~7AW;{Hoq65ge(&V(( zro$H|>9yJNH+ksY-QCk8G(33LuyJ|p*VDDw)pr}V*Y_dum}-rNk&uummMo`P<+YP+ zK1%QAawEH+NIa;>KEL1yWa zh=vB`hdbth;?%AeAzxcNmU5jR*~=Q8Fn?mVG+5jTWko?PU^t7>YHWB&*hoR!7At_D z#jNU=_3zV$Lk|Xvt?kBx>8je>2~eTh9`JQarlyCO=WuaRsAyi>G%3f%TF>$Wc$;xY zTg-&E)pUDYp;L>JpcOtKFMdx#yW>cA+IlL3`aV^X%~nHB-c8d52NJTNJsVrcsN3D9kr8Sr#VgeNG!6YZHp@D6-VeGwR0Uvs?H!*&IGpF!bT2m(h8EXBzH5mIMVajI zR`^J4j;&6{40A1jP`zbCff>7*OWBwVf?E^j zANY8e5!@K|{(XOo*l+=Vh2rGN_USHLw%3EXbV2DidiQO*$~ zul|ditG&a^QFD}J2GKm$IKgy^PRV#Vbt3t%_h9qCgTfL5k8~`5ac7|oY@O%prqa7} z-n)yQ6RgUSBT?O&6$fh%7y5F=cU5s;00zJOAgN>Q7hOk32NX}=(L#rMtI6{Kf4uJu zJA5}Ph1-1qum^z~E_<`dNANRZD?$)YKi1vrg|tNQUE4VAc`Zc==_uwzumL6a)b0ko3D@0nC}EU7yI+m%joD+$-u4+B0Nou2jv zK!6S5zR>AlZL+z^fC*!|M^UltV6FM)ty{8gf{tr+`t7mjUsZX$yCz#;yZ899-FadT5H35r7nm%=;cdHNScjv zDhxMoegiDTF!^Y&f8lcP&tr2Ww{m40$63kg0j;A~%zI!8urz`rlQrMi&Xn7Rxq0 zEiDFQsP9lr5m8e5L)N@{{W`X0sa<~2a-vpNeHU6N0E*3ccuY-&GsoMN#|Z%Axhrq4 zw%!?uHy^2RSjetlfon;CXkX;C$$*rKKY#v|8qo*jRG9trJ5JeZ9Yt@MBgfeIxaC4G z8X+DOP26s@E4F^%`i`(|sq)EJfdRPoz~4hA`8!g*MMPYRvd7=q84m(9 z{en!}MRwL$SQrK9{{`eBN$6fOeo;d6mrCf;>_3#!-p<;vqg zzNMm5uoiv~UDM^0@e#5PcpZc~xWr>c2W7{rIQOH=f`Wpi_777U;GrU=0#a%NHwg?= z6t`*h*5W`1ppnU=0-RSEBksonz@d2pO3(#x;S&%b2IVk7dW+q)XOnYicnGUdI*bF? zCk(rt4LA;5TBz@YegnLYfcn%4qT~c2Ir$sF{i6fsm13}K*$jWsL<_l7L7|5PTIA(L zoXFPIvaq;K%BtlL$BHaFJNpu+A)#70Na6xp<@brptg!MS&gA z(b2K!(X_v{E!*1KS_?5_aLrNTKaf0vZXxg92Ed2ZWdN&A0U>5_uw#iN8DJ7vj;pZL zksG`v|M~Z3kG43Fgty`H04H9%bB7GJVHLIe!3&5Lr+|}8>)bj%Tz1!;|CNCh>0fQ< zmCjM|UxIatjEt0kC;_{f!KFUMxF-_|q|x0N3$C3aVs;;jWhfmbt-~1^*21zf+;RsGa4d9`hA2^?1wc(Aa6?nKf^!=xX*tV=@ zp;^ohJYg}|8lF{82w~ALhTM2W?B(U9G{8n4pwplC9H9a!5wio|ZfPJK%F`P%(Ki7wdxeLG@Gf552-;CCU#h##JUJX$MC~UwAiC ztE~bsRLegEU?~b2MGW?fDDn^dcP$*{r`BIsv@4j9Tb}F5Vm*iR3hFc>h>nlEwq^6} z-6hmrvu1ij0Es?6`D}iEjhRg+*+MhTj!aEHHp?+lghNk1yju!{$q*a6?8YiNl zV5~UYQcvFsyFx&c!3aB_Hkz8knMI@Mq^j#EFjXHNAHQbQlgSJSjAg0v*ll&>_^4+} zrB|-Q)pAiaS3jU=KC@KR!s6@7+8Qx1>4Xp3 z_ST`%P)WYS(eAXEmX_8h$LWa)A8#rriJ$4pXedg30Peq0OjqhF3rgdtUx?%|0E+n< zQg#0@11I%C+0K~XRY5^5K+p&?ad2>eaH%z+x8%Pp-H{0l@%*}4 zK}|#?%k}P<@>97`)qaf5$STvnSEL`5fpfqlEXpPSS?_Z?AQG;(xm z@tD-|8WIX1NKP8a`!+m1U?(||Vmg^^#k%#_N1?z1Xka}bCv**wX0`!O0pW&w{(Q#9 z(O98Ef)j*DsGWMdo)g0RWUnLP`0LlNcmsoSUTJZ0)E+s3`}_OOccY@3;T(MhQs5lr zT|!uzSefb1^{Y0lfyvI6{6l`@vs#qsZTW!+Qc_an$Vd$-y;Dzn95%AFy}fOaF!vF{ zMgnZNmF;ci+N%|Pe}B)ILkU@Z*Wpjz&w(z|A=|S5zQpw3(x`&x@VbF~8m&4_EehNK zM9d$s1wVfL=)lX2tWZgnO{~l}4WR3sHfCNRB?eHyVi3FWsRjL^7^J!3`H|ADHtg7037&xBjn7D5Xt9^^#KpAc@l=z<*PB%Ny-%%Q=LX7b<8~0 zNbb6a`;;i0?u=T-F9vbv)w!9F=%5ZmPnqO(!?-|dp+Kl3Kb6x-5{jryXsHgm3|LWm zh^g~XUA*WC{99?z7AA24ok(;D}aU|&|E?C;f9j{@r4T+ z{q4~_7l3^%e3Sh7b9GM-8Hy0VNJ`30&|hfz_|%_YASHbbK@SijE;cr{6hAvVF)b}E zC^giX8pVk<>W~&aJW#+%sGW0>mOi)PRNg&p$Y(p}2@E%aetn zs3x9_*9BbSGP(%7Lf96ga;B)78aaaf;^S$qR{#m9r>}n%h*+m`E#G$FSs^z_NJ-_) zbbV3HC6ucatkB5Ah2&&5AF}(RC4br}ZftA}6`FxAeq7$SKhfyO>$H(l>oAPxx;DYz zSnurQ#M@tJ?*4E?a?00{UC4cy!4;FA4-L>qwoX2nE@=A}TxVdg=n}1Kc3>w~TeEloIVBs7G|V(-dLTc~m`FQHg^B z!gpz?RCniRA8w!_4u-JsOPu%3KeftC{I z@ad}2ud*x+=fLeo2p`Da2SUiI_E>*8gnoJ!GF{VZX4kBlub`tzCKQPMZ{LJ3Uc7j7^MgPdTs;T^d1gcXSAV4`G9r{Y z_W;E?oKGq2$v|qkMPl@vF6MXqK^YJ}Vx~A2OxNc>(A?4IptwiJ%J10G*F2;(sOcI^ zcjo%_>$v`gfv+=kOqWJtq;Kx;csxkTZW;*_?Bo5`47;3v8^X@50n2HA9^%Td>C^+{ zL0EAvwFySX38e>@lJ8F#26lJQudh#MbS5`h*>G!x2{!UX3ZWml=7=j6CeH!VVP|J& z(t*e=0_?UoJ97B1qGc5m_JF9>0k8!88crZ3&r9G&I zm;9mL)m680)AyaPGqHQw`0c=zb0bveny(tBfPLI^RP%Bje4C2m~vq{9ft3BHY?Uwl^b zltl1hQ6sxJZJ2A581W4iVknbtgf!}yX)cEBt`}`-EQcIuz}HCzBM06owxxbuX*MKz zs?mkNysQjMA7y;jf?F{* zWN%}3raPSss)5rWlc#UN&uSn>XN;w$rmk#mVk2DRH3kMeRaMo7wl<}HPcJW8CZ==9 z(Ytr=1#ytSzbG*7@OEzq(>GTk6kesFLBX3zPf=gEaH?D@2ntC*N+6&A&m;;c_}_+x zdg6XpbePtQ|8eJ%S49;r(_M_^;H#fpW3}&J-2EwbSjIFXl~t+Ic*gK$`d&Y7xy7a6 zzAF0yt&9HTSI8&zR5oTgJs|c$tY$d06_0Bn(90C)*}q6eb~@g~waII)b(kLA*42?D z&Rn;yGy^eKQgFDdtE&U#U-d*ZJGv!gcNZ4@!tXvuUh64;_Sj%L$1*hBv_&Xgi?V0a z#Pswvett?sfd-Sz)AV{%O<7aGBv#heqsz+#zkfMiR~X7#0)T5Vq77;eW-k8#j!2f)*-*H z0GMZDLN8r+Sl+d%x%obTFQA7*om#0BHD#Gu;YlK*1MoE_f@Zfbg(fyd%OvOS5x?he zm~4DCWjHt-UK;KDFj$Ynj8)uVTyZv}Y-K{sfYsjF(tcAim=09jZ&+tUtOZ7LFn{ur zm0AWYR^X+&XuKrEBoC-#a97^bn@6z*8Mm(vW@(mwHmQ$UpO83EicMY{cVygX>?q>f z*K<4iBDG|+5R$~B1WyVGRw=+ieL#$r1>jhWTpXGivHeMM8SV`Oj&EN9b67UjT!&P=SLKIRkc@ z0<)nvzkfeLCqF>K!<~pUyzc7{-#hSPBdJF2jAHpF8u8HK|y=_DPdA`SQviyLHZ4~DbdP`N)DE^~wuc-4jhd2$o9X^aZ2;EXv< z<$#KF+q*UQD`S4v=A>4*59LOD*_jJBo;19r1zijUuB!mN|4t%kLUcp`|9%B18cAZ5 zN-Y=pc~3%8Q0Tx8_k9)cEL=)aKKelt5$XviIp~L>$K1)?My7SPyjT8sVSKkyhE*O} zxb;O5;jEtfr!X4zJm1m@cM22V_{L;U`y3^iLw!ee>gLCs9=+h(Rl(rzyB#S_YCUfh z*Al0!Y1}^SGU(%&_61Fkjun-Wk@;ji;6hOf{uS_SI}D3X|{m#22eH_O{=S`38CHq$}<7j zWnb|J53bVDVeM}%eh*_*4s`$lfQXRL1K#}Xca}!+OK;)}mPdm;bl0z|PTU6P2V!wK z*jbhO0(vs=XCiufbWlcps>sVBuEAuFjEop`bafMY=HCSe>vSZ;vr2$ZblzH!)lthJMVR_~_b?D$ug2BI1@X?o zlZ4WPVHMI@JTMM-UH3R;V);{RCLO_8NDR6&;nO0#<>+%4_i&ORH@(27|E($aF|U2y z*yn0oNlIKew&v_686ywIBMU`siUczJ`|Nx>ZNL0p$|l`UiazHj7=uH2>5|XjpvI@l zr5UJRG_DvEpn#v_=SGuk&O)7~Qs^ci{otBXriO1`9;ZLG5EW=LZ5;4W>ae_Mcx~S-G;bv-H-of+RJo? zz))0TzZ_Uk_C?gtrqrl1(TQD`RnWj}SHpcc+^Rd7g_oH2U zs2hzIx`_?;{-1Jc({j$>0&*^X@{^E}UE|^Dn~T_1hyz;IWz<%cWYH@?!)+BH=oy)%+|P@pT(HD%b#@XKv_ zumP)aPWSwz;wSW4bqHAuWnoVRzhtmU-QuJnD~lwtl$6wymsknKvF556MlpUvMRj)C zUJ8O*TLpQ4DZ{LvEh=&?Wjdy%pn=`^kCN^2ohxMI^0zFkD9A+%UrFl5xJydQjpZ4d*N%O-v0cTQBA9(B*`@P^1_zBfw zhaPTv0%ulILV@J*w5J*j3fl{PuVCLI{v)5jz&fCV5w{~ixN$Iz`n-7~0?%kDj1kEs z-83xan?jCjdOtHYDS$5D0qYly=QlW(mSZ(%5KkW>>w;@+5{@TaZVHZN>f=LD5fSSU z=krc1@<)B2Ckl@M7;5pad^-iCg_Xd=lPj@=D|vL|0x-1%C~)Y3kERx^Nul)v`NrN5 zh)Ukmo?L(g3rQOIT*Z`>l=@zCl5?8&Up%R8cEHC2A@jG~OJoHVIEocg@PQKqP^9SQ zHs(ve(q|C&6byBUV+2@pPcRFNOwyfPQgp z2&Z==jGq zK;{Dj3PFaFACQoWdz4^L0kg0&&%Kj7kBnwea0lVSkdqvQZvbZppmn~bORb((*t(0{ z^gCu5k~H|P^c91XkF^KE4!LrPFjzBtc(!1K>RlQKv4ahCB8@)mla+c5D+PD;rdB(V zVHs49>5R0KtCK?B1gB7|+^NsC46G^=l9HCs$WE5+J}jG7nFA4T%;B=`b53#~M~ZUJ zo?K-Dye$g+1fXUQxbpMxTn51`bKxcOkw!Pe@w&aK-7Y}|RAb#P;C*o5ay=FtkzijY z1-ivyXVhD>_1(!!X_A+c)P_L@dk0=~#Eoh_)pF0!@Fwav6kU+E5%(nGt}djLLavC* z@1a*3outawCm2*tGqeaR)6mj_g*tbI_abPG;^49$0$CCMbPL1%<^VOC0BX!q??vQi zM5v=@49L~X-3rH3q{V_g;*H3yH*ewsPdTS8R+x3NpgHxQ7}h{Cr~w(w8zLzG&hJ+# z>V=u5Ysjw?$=g1O*mfj}T@rM;TXB5kY(IG)xi+kCwS`AWb_R!O5hK~jCwV>eG6K^L z$R7CilOo8gK3c#D0DUnVq^p()wo}E$#Y;`d)AMP_7vbXNB?loZ0(|Wd;eXH1p9OK% z&)s(JrzLQH@JHcQ(Z;j1(eK{(gX#YAftp}Xi|T}qfU8$?YAU5qiv6?+s{|*|+4w=Q zf^+-;6a_?MM+t+51saGCfQj%BI^=#n)PE{GBA~qM0b8I-kDV6OXOP|Q0pp88mIibu z5m5OM%X=Z+L*y#Byqn!cxS$vUUCWD365MCm4lV#Nc9u$)HKg92JlGrI!+Rq|me*n( z#?C;=JaDk(4yu*K+|OIeb|(x2S13HnMm-TwXrR*|CI*D?-%TvYdsALpr9NH+r4W+( z^Yv_C7r^p}1p=|{U$$k%M(0CB@VkKKe*wY*1`2T$fWz&?#|i}I4Rq|nd(o2vt#3Ko ztnlhIK^>I&Y|lICTH=JLQ7gY+5s2Vo!1^MB6*!Iy)rk>SKk-BDClL}9VzPB!Dn1SN z`Z_50p0Gy}0$lU-!~!v^_?kGf(rGU=SQIe60dG`-%Rvk8h$mY)KIDWoy=SN@0 z(v!lAyy24w5c1Vihw{xFdl3Lg&2u1$LM)rZQ%zPkH*28^T#Y+EI1Q-9W`+l((eT=K z^NQUYQ*AMRU^wk(QtmUWITV{NWU`*ZQ^C$pO)`RMoSd1)^O;6)Q~y9f6wP6b9}XsO zj7(o;=^mXs|93-9h5^>&cjq&dj5&b0rSbgg^Dr0-{x2-4yeK;9gc$lzS+5{LO!K^{ zuJ%uuZ*L)p!jKGxr^7V$t6MNqD2w-3EG27Y)|;`V=;SwhdhC&*Jf4J0k;#>DjFJ9t zEekb#W@W$sFUumKy?MMx)*)q!6P-bZJ(9kg;=JllT$#2lCL?_JfOWdMGKFbd z_`4!7E+`N6eLB_;5Ea0P1cL9i>(^@&(O~ixfwcjfWKvC@8Z$5O!~h&9K_d0t-`Szz z<|YO2FGOI4F^Ez30GL{UR2R+fDCgU}ZZq3?9V!&sY73HKp365k&Ob;nzm0iT=3D7U ziRW?CJ%nO{wz5L3XG=QgS(U6XKm1Os;1*$}e644<5(8J8^uT}%os5BngL4(!O0!vf zdwOm(%Ju!H5R*nwtGt+NQ){c@)JjvgOJPe_q?0Vly@8hl2|FpIcm6Hn=ivuG#;)j7UM9Vh}Ec?H{sQUQ( z*QCfMg*v#o2_lVG4$jV{&!Ea+=41Wz`LhUAmHLa0a}L2l+t7yvUgIMuJ6bNR1J6^Y zxQFFn7YhcnB>!YONvdUeIL4IMeb-p0hvI>IrMP2uV%Y^(6v!`qqthUykRi?*$jM0m zjSIM8ipB%^ObYUC#qt4afF~X?K6%W!UWa4+8dBer>Yj8W(xJAig>xl|PP|Yz$WZ!& zOM#Y!rOnipftk4$Y*)}rgnCtl`o@u^f&c~hmhn|=Mk4Z|%>JyD*p^CRk8M4Q$p{E)f*JhQTbl$^QKP4)HUajfU4yur1*iI-8p zk_F3kY8f!HpnUMg$W>ym5||xbNf-Ly`_8;gtYKuIaex~|u{aqUdd%UmHU4b5vte~X zSNy9lq(f6~DR2dYQTx9=DulrR?> z9LJDM3V4zF9eST&(V*9acUmm)X1qk8RjTO&aq(-+%;(_%suY-9 z200Ni9U)p#T1M5A$8Q+GlPTl4-_NfcP`Afg*Mu;GE~RVgHXa+>>TiE}>Rn@zl&Rw) zbSKC?6Wm=-PT5+XDA;%wtz~01sO3EW^Lmt}Gf%%?vw8Z5rhwtq*00Qe zRkJ*Zyx(AMUV0ZDEO~RWSx7v7K}zq5s5PeviLtfwk`4DfE{bLbXR#gYOi!lfso%qn z!N(&m0)q?2?e8fNX~{s*N?A9KvNf9*jv2D^6jTG->e4&ud6L&`{nhsLf*yL!foDoz zF-0oa6Xbxaz=1={hz-MK6ja#IWVOJ6;9mskKyM5M_`|HPpEO#QG!`kO$V73sK6>73 z0D*dVnEoWqR(%r5hhjFIRl8t+_a$h|KhqSON7K^~H#H6cmH&-L9}pM7&eni=HZ)yA zM@-Y7nNRPq3X5JE#75{7DBO2|I(7xT{(NQSNZVb4HeJeM^iEc z$+>1CESj>905;qw5YXFR1=n~S;_+j1-ZJqn*ai?@8jOzs#UT+5I1h;J!02bg(s)8b z!d=_BP{vXOVkMF{K{~&En-B^fJ8Coh`P^MH9Hh*G&P&~u z-&KD{#)3(E@P$wiU)C(KsS-L`B>=xN4(cnkEFFMV`#y*Vi2U{!ylVt-SWZsvHk4Th z031~+TzF95KvE^(UqR`&M7;R%o}<=?`R&Ko)50 zNdgDrU6-BPR4yy`phlU@2Hp;81B6gyp_fEHl?&M~;KKGtG;U}}LJa=hNA+>&AyhCo6GjB>EhoPZd(=+f>{ba zM0vY(4#$4#&q{(-9z2jZNZ$ky7=vL1$fhJhkyT1}gAwG5N;cvuu7X7cLktErHFdfj z((3aUxM>Ua*(Uda((_@!e*Oh=CZFv_EVNlbb(3(HWkqCxUBlaspx{M&JL@U)?bDrvj`980V0?gUiG%z2?qd@d9;BGVe z$^PpKET#uYvviUuEV_`6t9NL_%5mO$HnL}SV2Y^JT~GZ|K2&t3bEMdiCLS2~!_sv0 z16|dl2T8Jh6_gz2=8XS!Ob(6HW??~u)jDN#lJLFwwUefc!{zFZ(xhOsfnJz!0P3gt zInX2-0wIkbTWCEk+W8L;HGs>;Pbl9~%wkB= zH12t-e7!luKT`eJ1aXi*HKBMEzNYIZSc>!tXk&{UCpQ^)hTc=Qf zCZSfY0&>k_vWevSFevj_SXglRikEi)Rs-q~ITbG(I4OSdUxE1|V%F}<79iZZWKAV4 z)pAH3qz#ktV2rL*MxQ-S%o#j&UKtGfD3sY^NSPrt_<%PNntx9uXF)*dh#93f*C2?v z%P4)-u16#=6U5` z>j&hC4aqEX)6ecHI~~?a$p~N2=?@j^iSRFhuD3sno>$@TjQtmeH{EU9-q!j?F|ADuFCe_&}4P zsb1cruuZ4+t~Eb~@H;eW?Lb6!yHj;Xt5JDu>(}sXzY|K>+LaBnWzD7l9Tf)K&7EqPQM1Cs|p z=2pLg4yH>OF)d86PL}EJPlmE)X7ky+d{XyVLPrvWZrR0Y9|*9F>(haVVJOaN?$#$X z3Xy#-l9G;TL(7!*NJZ0u<6c?vmi2BV$Fu2bDDotNCsqZa{-~A>zRen-SOYdH#Q6*@ zpxH2%W=d=ufd31pb-{S<5n?rG;(TDZ_Mwnk|-Tz2^iuT9F9wdd{uwiu^% zF<2AY*RbE@uGcfBJzE9uB{aZZgKi1v@EZRoJ3_aXYz$-%*dPXl64+3l#a~pM0^|7F zR=zaV#M;C?YfiHY&E3VP!VLS9I~(fNEipFW()0+*2B!U5Ith4{k3)?k5;bnhE;I>yDY8U>Nj#<8*hs~ zyHML|bq5d0ceu~{DHF`plGgT22#4BqTrr;=GC*gHATeq%B41ffZftA(N5#A=Q=Gga z61=g#1Q9q=zKR--IBK-MS()K>t&M2ypjbDcpU?fnv)P{qLq6-V%tn0S%{*aQx<5PV zofTA51i@mz12_($KK-LVQx zKs7X70ouiWy!G_S?x`;1B?=rVbAoA*+{GXdfZf>-vOB|Z#r_iC-`x?JDQO!xSjej< zFu+TALSFxmH{#zM%LA+Se*v|9ga-{$7UH~z_82^v?E_BrzwCm1s4BpWy8~wEKaCR+ zFj^;q0_LGWfx2L^4<{5nQj9`mq@dKJdNbmIDVUVbjasH$`W2Q=|1Zn_o;D} z?tJ?C$;G?G_S5`|d0Rl;vU?L&3#{vLXA*y$e;Pna{3KgHI`XfOt5A(YW~;Ho+EWP= z5Lc+Bg?d~|UDts_XZ*q?X*AlK5HpxgwZ*p2>{DeI5kNfM0e+BN0q_xGo+h9w6ZEd0 zc<-3DLWyzHHFSRpv{2KJpFZ77?^fI7x^^weL|w_aF2I#t-Fc0&$#Kxfx@J>%c)}{K zrM_WnRpFNq;KFD!0oUR5KFS#cvwYI< z6b)McPuaQ|PH8`WjJVmg6k4Q1CqyfRp@Et$JUL=;c}v7-%WpMCZU&+o;_tbgm*_jR=Fj%#mzf)TeqqrbH;U4-0)CwJrj3kw z{D;FL_e1g!F(Sv?xi7bCuG5X~z0mjr51oF@?GAHmP^j=ug7b%qUSs8R$(sw7P%t?y7<~gD^~r>FnxS?KjS%{hMc_$qrHHfEGebE*sB*NQJJ9 zdQeuvR3JkE&+66CAORHZ+@8baKLAG_(W*0rE%IX1K7KsYw?Xdtg9RR%6a)biYI7ps zMyjC;`s0S=4Qh4TemOte-(a=QDo1$m>({FcIjaphmG*h64z7lq(AQg z$O|z@x~^|Hwhv9Ofw=j5$$9BTxQz0ramn|Qk-oqSCqWmb19VNTg2w$Fq%)p;=zvPw z4g-rVIWni~jCR%o6&pUk!L<1|bF=>CJ9jN_|4Ujq)1Pn#pa*z#d-o+!1q;iXa@;BQZFw-eo3s)0p|gyc#={!x3yiNwW@e#`{+n%0;Q*tbTNpFR00UdH5ulSB&jie?Q}%fX`_nT+lfTq@ui=8+7@gP`=O7f*RrF)U1gO2V)AzlQ zH^{cuwEs6|1peOvBY)a-{2B8~~_7p~i zN`ThLn41V*TLy$w2dV-T%ik~uAyy{fgx05tNxpCsTtvg)k?D1C8Zl9VyAu}>Sq~XR z2xb72jsj@*0iCC*{e+W*M$>qZA5iffhVT~@WcV9eU^QsSDS|8eTqC_3V)C<6)MJpn zQFp^CPWP~A=QKQW`>c@Zjv2gGIXO;@)x=2ME)aVL@-`H?W1v-#@<;_^fs@tKf`KKd z6&h+_c$qu+h2AgjFBh!sNCxW>-J#|%*nZ9$`|ceEOg)PhaB!8rawRI~5~|d4ez!r; z?h=Y=i{5-7%&}7>K6{x&?~_@sVT?2X1@eH;QtJj4Zj*PP2vARsL)~K?%kYMp*QP-S ze~1m;IWoShJg0Q2m5Su;TkD0d4~^^k9NM&>8Bh6lf3VC%*bEj*A-otFgLQuSZo%0n zIppZ#L$7i1uvMmFmsGVq1wrw3*M4;l#l`fD!CceK$h2+n_#aCRy^%BgvgJ6sLxlSF zJgSm$u#0}(u?g-Pu0Cq|^0%Ynq_k;V@jyp|J-y|FTiaawS@VY>?gS$~BfwigGA${) zBHlLXO%NVqVA4a@cI?)vWYKb}r>6z7rL2m|jGQT5J%);ZxFbI+YkOMzmPGYCr8@wQ z&LBzzu=`J8K9v+d8ygV}0NjD~WbQ{tai0fjzq0CtjenQ^w{Fmsxi>}tm;4`G1J{^2 zQI>Y4Ab3>`yN{63W#B_fJ}_aAMCO|S(Z-PVxPcAY1Mp>uH4UCwO+kcE`p;F`Ctr1nr3`rFI#_9FfxS zZ)Q-~rm9+yy*=|len|beU0|CMbVj7r4s>;FFq8@cRU8T%bQ7jFz`;oC7QdBZ^tTKD zkA7FTJL?f?bLz)A$UG!)23Lb60Z|}$tfyee#BkSh3U7z90?!j0HM8S)2zY{gz#e)nr;%Mi8 z1(Y|mX2$~+25Oi0nnM5;`raKc@Yzd3kdi~@kibv@AJAr0k%o5gdz_*5bU0Y87lRVD z7RVAYDXBLz{rTxL!{w!G2e6DtTRGd4Z>V=4J}|iLPLdH_yhx|zG<*HiBYpkPu;TBL z#@Ct`r%uW(o0kt4P)c^_=g>QwKf?-I) z?wo?217hHtiC`cjA&jjeJ>IDo67Bl@s1~uabHflDVyLW<#>6q;Q3+ul$AzQ^0diEV zH*XTcm<2L;L>|aYRIq7e!;%t#peo;g05lFvA$emz>?jTcM}*7v=F+R1n;$L=mG-1+ z@XtazAT_pz&%*Rjftd+}FXy{d!OQd+JTey%yEhD}BnASL1njP)@Vu4!EnIn#&Uj?P z0WyJT4BFjv;8u}Qc8G-qS2njk1h)GZv!Rl)+;+hW5P^{IgJ~iPj!XgqnkYhO0wxl{ zT?L&J7aE~q?ooPPB%ggIR4QbUX+&^o5yMBv=SLKNu7h9_yGl!YZ?_n(K?ew?rgo55 zJYT^vXlv)UhVsNXqAGnM~LCXvk34;v|mG2u!cu_%?{4v{E?uQRySV-5> zIJ94L8vYOl2K}M$49vr&MD}OB?+eUg);)X37Kjl2KJCJ zw)fjtu3X7D;D-UjY~YCTJFKs-_k$6de9?aWCle#Y#Lk2?)@-U`gC~XvHejyL5X8^1 z7pJKRMPSwDVf+K~Bmgn@T^&xie|oivG3)2f>V*379a=aH&=?f|hu!HrfN0Cbey($u zZVNx}0=)w<{lcnYppfw&aH{SDdJE%*`WTr%2Ml=__te1KfrbGXky8clW$p(T?8%$Q zC0LBuo>pU>yUbpb)=t@;#sm5@1ZASjmwl0rmHHs+)8AIVynz#S24P!~mUb8mfeea; zAEmB20ERpnOohySLt>wf^eIft9}rJJwL*9R4Db~u7k_#L`Wo~Yig24_0Ww$&W0B7VWi2bM{!5BrLf}kf6M%DVk zgfjwe7>+T1vYYha3sN*oxxu|p<$hp^lzm{dtAn@BZhy!ynsz7JG4TJU4>+i<4`Tfz%2oqZTA-PI%|N==k%$+0Gl z^dPJ(C9OSW(ukaMtkrH!Idl*<5}LDAa!&4&l5{_>PurgBdj5HKUE6hWty;hP_x*lO z-}n3V&2r5LDl-h03#?`%JorMM+P>o92cq4Ur)D93$8ITw<5Ixkk=Mu`TK?#ReZ`93 zFuJ$n?2JY6Db~m{q?~8GLW1v0ZU-#$GH9mdHe`r%uI!#9=859LZYe$9*tL`KgYb|_ zOH1p~K?Bk#Kl8i412#W-%Nsu!p-><_D&S1*CBV==fWC5X-n}DYRRO~w+}Q3=vA6bJ zT}gRjz{xYhOypfa*Xt;fZq`rcrw1RS*UmwfeR;oAKjhZ*iF!n%9G2g>ZCeYpkx!?n zNzhO_L^v?_(oY-Mj-qja(=mZUg)K5PEr;ZK9&;NW#CeC191qF{y!hOy@-fnm>nZr8(NQ3U7o z?s*_O_pJPB;-!qVliTs+muX1?Ph$4W0iU}nBW6P^NqQbN0UhIMOXz(e66W=_Wo7yomI;$h6jeO(G^kL0)%;76% zV`q&$%v9vYiRI?J^te!YZ7n;E-O*@SaCH>PHwRm(uyJFi?n^j<4GI(^0*{vP zN#%Tw5w2TyNQOc3^UcVUMjD>dHJzYVH6*Hb=HKbt%}YFd@1I_4s!~ni>?R6jXQIY+ zlAWCqC!S@rCTT1F)m0+(&{+eqBlHo(rR;g_;u{wNo%+=Tyla0(8}tXmBlACwdYY%D zrR5Q02et0dy$`D>4>3`=K~G1&#U&?aLuu4LObm$R=r4*aXM=ib^2&F$*XVyI6iY zV(v&Ji9*&*)Eqo8q?;q!WpRL)dFmQ|EcTg|bZL^keHX}y)BGK4OLR@Hs3SKBGi!cs z?USFd(P}9TBViGxLSzw24)`H!EHnnmb7KayFHRKkq8eTS(@;|@E4NowC7y$(g&Rni z6Zmfz@^V+OT}C3WCVp(pw_s(NF?t^Y5Jhk{LcqxpSHLX@N?cI8u9s7x#q?8WzyOmr4t5xFV~MMsncQ&DeDbCYRIrE=KVYs`#h6#PYW zlGcUW$3dDm;4?A`$gbV&G8EcW_PnCxaGqI8DsQx<4v)&_v-FGuJJxAvZrv31(|lTp z$7W0KpVqUdK|=skBfipNyGKu2MMR`bx3OtGa;y8ZQE#Y7KZc|Cs`B>rey-yW3Po-S zY6zZ)D+Scb9Da=dd>X8)gQmWB#3LJYRi|j1mLyWgeV?n9OBc?b+sD);tuC{mI%!aR z|Mwlo)pil=CQF;wvV+f5gq$HSXcR7IF7-ogD{g&JCpl#=tL%YZV-rKWTSILN+m zAu5Ei>`w{)N7#ilh;!;+mV%$M!iT1(pl=bbxB&ZD6g!!mP*hs;ScC62Az+jOWNh`h zevhy0X-}xeKDv&yQ_2}?8wD|_4OPfGn3)pqSa$ab^z{Uc?<`AJc2*n<)vcD^i$+=m za&YLwDN%L;`lI!4Nz6ESO^06XK0bv3CeQ==o0$nZ_B4&h%1s*#KSXF;~z~Cj?BCpUAVQI zn_GPKC46guX4VQ%lHDz(hc>UXBZgz2JI9w8FDBQ1!;;Nk;9W$2YLN`?6KOggxH2QzuO% z>U)pCpVm*~Bj6f>-}LhrW|+j=3t4J7iE@vGQ9$6&>Oa0E$x+rPIj`bh(Y8rHb=5ru%E z<8Mf|A$CD-%`$TTHRyn%4`qm7>P2*qk&urB5;ZfA05_PP$;U7zDylQTR2P~gyG4Ak zE!JGjO!5G|}Wr)kqn!wkI1m@U>&b~I~%Z>(?Ja%Z3PwJdW( z9s{fBkXu^|KgT|0&CEUzQM<~7U~yvJy{ydX@A{b50$^6}R<>;2VS=-BT=i1)jI{N! z2?_5jP&`VBE2=y4^uS7X2;QAAJ56tze%ju0T0M*2g_ka!6$y|39jmCymQ(NLSn_Sz zA*1Bm*uNE8{vg=o0%8esz{kP+E~4@7!CIcST3=t^26FoqT_lL5);zS(nUI{tg<_P} zYPEEry%hIpn7_c{%Z(R&M!Ux9*blZey$9no@FwLfE2%bQoN$~FF8i?4jTghrro^3I z`kKR`*!cKxxts)IpmEIk8kt;)6;QDJLp`$gzp`Y(vbIHt%b>|+Pm@9H=wsY|<1)yz zXNw7Zy4+RJX2+rLvjQvHNyaZ8I(qc4S1Q3F>ufM1Kzm+G(&`I0N*vxMKeo>y;M}@v zvuv3Kb<(1xp=iLMx#WOsS6uUBJx-^U1?fTyNVX~wJzOh;H%sb%*ni0SWb!WJbW*v;+Jk{HeAK91aU2g~& zo}h?Z<&g2&x2UneN`bO1C_kg>8Uwvhj9xWnW?v&_`H5X?@7{W6jJX66BVr}Cz)peD(UA^?F zM$$4*ktYD?@1PG5~U)1F0=IWi^Gi*o|J8hs+ znRYxS1dy;||CMZyij!QLQt0pbAd_XDa_p2ksHTk7>|B|goJ?OdM{6v|fRvyy{h2P~ zIupe&9jWlv#Y^Zf?AKe^u|GAc?huIo+-g918CU3I^~WeVR(t}SB(ogVD| z7Iw2pT8e)5bEIT%dEDb`04z@PU7el7tQlMvEu0)U%nno^iLK&8IsvWE3%K& zy|S5oJAm7G5ahtNY0giOYSY;{p!s{zDG9uuQQ#-p2&=xOZ!h}`;(c~gFKJlHC`oRd z3O!Yw{D8h5*$)FE*cuT;e*s!z zU>|f3d}f8QT^a++4cwFDPU9g%4`@oNz4i&-MRT#6$k+>mxVy9{Q0^VYtfbU&W)jKe zBTPN4`KZNe>sR;M`4|6f#c0p}yk`T2mQsj!?tuv=?jYO(9nxny&13h;&7hwiu^3*Z+w+08{aG|J6rDm5X6A$)_Kj2ndG%%iwh;& z?S4V_xP&U9J=7<9!ok!|L;PLL!VGLHVp_9wY5zTJP-FA%|xq0kn5N{m*&y7`_Ez$1Ox1NhjqN7|!miC0p zCeH9qpMPp%V&ebJh)`40=PU*}h#$AjI z3=EqnXHTgzFsw~wU|7@s^H2EAtMd~_@I%Z__Pm{%^%XnEOE$&~ikIxJSyT}( zU~FS+YHcONC&nkl``cAJyKA=M{QQ=Ge*>SjjR}9LT8t7dvf)t$nII~?8AHC9%~XTvve{dnTHeaCKmSQpK$xK_1c9rMP43orJK)M)I; z|6+LjqRMrxW_!KL*6sGi`G0OIS$AC4h5sp6;qFssZ`|Ipg(_Ao^F>!Mgd$iTt>+}g z#^m<6M#^^7bhe69)N$l|>COYVlb6SJHT2ftACVbn4e|5SQFc5s!?ius^Z0S}R|+qF z?77Fj9Y1_eZrO+*W&6C=F)-Zde)x7RK7Sn_3&{6e>Sjyhl^-pf)z{Ek$8hcLey?>N z!j2=l+CeebyGu37$3sP}lY6T}7vGjX*v(m)cEoX{ojXD8QjoFf%NuJ-g0zd=a#>x6 z1f(XbgcdqRJ+#D_H~#iGPh8Qtx^_S$g??+z4?n$2OS0**)=1%b8REmf-6TLS-=RE> zm*y#K-lT45_>8Y;&X9b(waDG|&Yt{doj-Gs$}S6=}R3wlz{~vYGaZtK)WNhCVWDSKG+$@7>ebvm>B7RCF*of27X2 zFFbBxdXQ)T{uB6BGqaZN=lEQ|fx}639tQQ>n$IuvH|bahvKyP248FYi!v#FfL50VW zeKb#fKbe)B2-guYT6DTeO+;(X^{6l1-HFlfmCm<_TD8YN5jNkR>t6jtc;OA(O5{B@ zkDM*$8o59Hy5|s=OzLhamyDXMsVTeXI@!tZ*k5;#UtL+6_x|(Gb2MppIrkxYMAWet zO(_N`H8QKZg|4%jHa2O7hK2!8p3wP=msIQHl$+CQq!Z&JTqky z*>zYq=UjG&L+C-JutV8x&o^v6*wSX!l$78w+^S)C*gey%kzV1uH;KAn^6BMG2dZQ2 zK-2S3v*zUIcQ)?e78TXHbSW;l)_JnGd}ow-N}(prb0ybfW!^;Ctl?c}k;CwXz0z*y zmltQXE?>T!;HTGUyY1(uKrQ_QtmXUB6t%^f;d-*7P=6UHw-FNc3T znm9GwrX^(ZUj5Xm+ba{n#aBl=3um&Ptz6EtAJlxXQ{cqm3mNC|+CXDs9G_m^x2N}5 zsRE}}SC)e(d#lq|yB0@%B}N|FEr{Hc7|A)gThyvSxLG$UC+8?O9Tr1jbW^rC4nvI) zw;zap_wKB)Rr`4+nWY!LtWpDNu{kn}+mlXSTL0^w4^e*7^eoFZZf48SI6#c@f zI(h#20GyJO}m#WI5-c6kGV{L3nHEMi%a=omq zESHFg=B@QiO|S24yd|!G{`_OUg0T~OWju6wG?T_Yir{47P5pkJOHu5m@597A+BoJp z77RS*W5_9Je6FK~>kqV~M(MlsbM*A|%oi5LkB5s|N5F*RzJ0q|Qc}`iy4$*;v(Qz( zpt`4cbvY%^VVE8te+V0RmPvXpGA%7_Xt=xdLHeMC$C49memFdzV?&nvXz^+hZ)M%$ zXmN^l(fsN1@^ZR%dhC}kUyiuVU5kl}TW>F!^27RHzkR;Pra9R3oO$!+r*m^odX63T zYx<0}ll1a6v)gU%KRIIh?9V@cCf^mT?~+ioFp#*#K&M@*?Pk*-K0d#YQ!GB)ZmW@~ zdAQ{5+jv;)E@`(MhtbZ%T&qC`M=d4s6&Ym-V?}cH{GEAw#B5H@b~w_Wh*;8Jy!gFv zb!D+6i+}(A{htct6%^EQQtSpAxbi!XXdM#|}-eERLGbj&$sja7bESfCpI^ zvTn<=%=`4m#)bqn&JGxXoU*c(larH|y~lh{u(0clMTb-OgI$7`|14S@ktm#~;JJ`z zm(W{7OW7rC7LY3=V%?c^^M~~V@D`d~Mef3O-_DV(mRTCR72&z!EH%?&R8q9^>D8@) zj{NK_>#k%t!*8*nR(0>gC8qo1Xl4sj{cs~e3p2xmvw12}r%gKxob$eT^Bi#+yGR~! zm#9^kjg8GzyKT)njai)aZy_cTDz|>xWY?_cm~i^Rt|x-V-Xd1*J6|k4J$bJo#Xx3x z>)DkKV4)HW_=+xzX0 zjeO^@G8)-ddetF9XGFW)(rX+>2MZ&dzHBHQd%e-DJtsA}aOOf|g4&sl+j&34t3+j3 zd=zw_DCgv8>I=0ls>RZOb;!5J>T?SSsMz*asbE2Hy^j3`v#sVSrue!%Sc`qF><;p8 zm+3~Wz@VVm)ulce>crM49Ps{IOw#98SC-wkq+CpX78v7RAFEhD)n9Ml6R5>4CZ;{v zSJMnH8$aBZy?(j!uA}tIRK4=9BUc~Z{dF&$m@XVmY&CTKdj0tyz|dc;nTNX~r&aBzCxPkaO1^79+CUhjp?P+!v;5V}kX$gDYb?@*T}v zGfeY_v)USxw1pOTG{9$?&W(L`n7D8)tfG$p_SdspA0JtXFFX_Q*&|Up_VW)TOW2IhoSQlGXse! zyC}Wzwc~APTwL;MYT$)MWy4iFT_}Pzl9LKA1>ul{@ORSd!Cr}`vx1*Lf4(x@n(5Hq zJ^mP5@bRo5f8msBs^uZwd!OIjTYQ`EIBLZnlHKLeHY)5oJ2E}5P3`Y0E>^a9`{(A< zROc^VoNiwbXhf+BIPi-4`Vo8Ca9AH*zL0VC(#&w1Nf{HXBSn0PqJu-0fgWQU zPSu8u8-*V178NO8nz+BW=H0vBE!(m-o!7Fa6;8gFkRFFGD>-7>+5lthx@>G5=rk0_ zqlE_(EuMd%ynMJ)u)EApv~;I!qlQ)pqVLDH$%zRC3yUN#Z|}6W*=o_QmdR-xRtIgr zG9zNd2g=_)F|m(1 z9aciNy$ZBBpq%fI8mAQQ_N64e_|9-wao4FcXF}n3(_N;`iig+Lgg#r~`>-^{U9de# zC;RqfjTqeN+US{T_1H9QF*#NlESlRpA=L;RG9t%j%-Y+dH8-(38)kdAkgne%rTU9#@2W_hnrXA< z5f^XmES~LO4+uB$wY;Rs`19*Kt%a`H$psT~#XOxg(u+y$R*sKS+{a$6Z_KjPS?oi! z!@4N2`khJCe9oQ9Ca2mo)8RH*EzRa;o8Lhq4*Pt^>&<87nGtbn2&vWCEfO3 ztZxrlrVGU$?jhDZbDwT8*)7doms(8qN9 z{+M98=jw{_iqQFBKD|Hk+#_FXA+xcN!=)1?a6t|h-cVya(Ko0Ii;xUO~m=>7bB z>Ir9O=Zg35e|1vsZ+fmXETVV4gt>&Zt;eSS^+x^%Ed%!$d`Y5pSJ4w86W{#@4h+kb z%#3y!sIDCT5gx+z<>DpWBOR8$JZP}W=oE%Ewgk*+$#YuV_u=qv#ZVCqRaL6PNIT0| z=2PF}l#14(bAy?7{i>8Y0M;$nk_yY(aRSBR%D${HZk#UQdJZ3wXxsPx2~d*9LOi(706mamJE2M9b`{aD~6o99w$^pbM_YQM5)-E^~o0lhnD zS~~5SeskpUAK<^_fzmW|b#)VFLmxfbM?pNh9x@OZ5~6LfT%dKKu!qsx%WM3;vrNCi z+z&E0od)&CxRbOZ7xswTouy`6t$lVw>u#Yhn~eUK)R?8qQviu|?YXv%+13Wt;SyRq zbg$h6YGLo`V$zFK+AHBT-O1#NvohbnB`TWTVloh<&Su^9)4+PJVt#Kq!;^b&Q3EpF zpEgxWG!dYW7$)qP5ZGC$btKHCvTa)B0}5q;y~ z;M=!vKcwB<%gUN;`(Eq}f6?4CrLdz4bfj_#NJtDp2jypMqF3eViD zf-g=f@oq7i^PH2} z*0>`uMzU3_satN|z*Dz9wJ`fofM$H(gMi}gKZ+~IyzDd6)eT!2_wzg?EUY23G8d)q zIxO6nsHKcYYb571(pS65gKL!k`ndk9C*9W8&Tc-xi z8seXB{jy{5V|pBHEjw5?-(h$gOqiKR^BWw!M_Zw_>K$6$Io3S8{{7z%=JdDPlkjVZ zH9a;AZlqDWyoGnv;PnY-I^%Cx65jNywfi@*N}dOZ*(K#-=jHjUZl;;W zOPM>aDOSvG7Yk=^>93F7%@jh#dW`+nu)&L~crn<|`)bd5U#{&SL1n%2jD^c0_J zngz_7ZnO4dm1>AO!&FU^F@QJq?V6z`AGveyo_WiQOLFq^^;jYItm-f^we&01sz4l- zQ^V>Ux%0iDJr4QPu)IaxJ5^OxzqB+VCHs!^zm(jc{&JtcwPx-xfoyC1$B*gq1ux8w zrX(ftF8ALSXo}Y@22}$3qUk5 zARs!WXrY2%j78{*Lhh2PMpLdH>oCv#2q{;(R*F9HQLzdkU$Q&8$6IRb`R*fTAhujs zfHR~6$<0|Z^)g!G0W-{-`DiX*zkdDp=nU&PPd--tM$Om5!{X|-%c>vf8i{KojDWkc zni;J)j>YG2Za0a>YJFtWeOF$dTI}GkyfBT}?E*w|YaxA{WHN=*O*#Y3DYOfjW-*T+ z?_8ei_9O6|WXYQkoNh7Z&-=FD9q-Q@$r~gmn@dnoRWHwuE4WYgSL`6TgC<4Mj%ehE z=3qcB#L6RfGX!&kIE_2a_%!9O$Oj1Uvlm#7%$!3THu^cGUoi}fC#PmjwzbSx(P5W zk~#6sB-(G>b@WNn74U9180Tcaisy~L@b>pGk{fP?;CYF1a+qU9W%F8Sy@SFqdn$6uP2EZmNIX&Xpy_XfYD{D_DrT_n+WnAc?yMMldB6dEx%}G!Mq2inp(!1 z_|U-WdQifPdyZ=~B0o)@FI;{0?3n@(TooP=0o14p%eb~k(_1(Kri}E01<9-_FvSKYCQ)E?-}%L^RVxQjDwp>n5LvUjjUBH~GnU`V z%4!AcHvs@P*7uk*H zfcOeh<6i9H5nzADg_gnQlg_4dYxo zx-zb`Msd?RcG?_Jj3Uxrl6nk_tl#zKT&q??s=S%2%CCFHFGqMRn39dy%FJv`4g*qB zBdenME0eIr#el=rwuXhOs;X5ubr+EeUqoQL1Zv_kU;dEbB)kiMyo)Dt^jNhxrSFSj z(ek0)b9K4*TWyqw`75OV)%aKSx*fU~w`|#>;N+A;k&_byG`D=&*9#o7`2Bz}Osct_RIufo6Sr#ERqF2_u47mY%d(Q~?6&HkeVe3xGWyFz+>S_X22`d1| zRN;}##SljMD@WeG^`D9GFckxbPvcG*V2~OCJKKu~SwNFN6)OFPJBMrdrN8pp`*?N- z+zKc^Qw^;j@G?gW+!uH-)!t^B3dMpzr5;DTSs`TRI@l`r$!bwTN?<2cA{r&SKWM#r zO8euC!8*Sp#$T7WNiJ|ZO=(>79*C=|Qa}>W@V>2Lz(>xoF#F%$zI}T;;4P8^H30zu zg{m$8`jc`4ap$a;zuwZrt^D`M{{L2u;I@YSI)*T3M3ktEj11M{_ub=XsZGc?f_dh; zQq$AZK@h48bO&mHVW?z8{$Bd zwsP9NNw?;HDjTX=*mU?ne~!oM$dR6M#sT5b9o0?Q)(X7!;}u_CzJIFd)pQoIF)8$dNUC$d4zdryn0PmS&{~d+&Uc zR>j5e{^k07EbISNDdqpLkA;~9zU}SlF-1rB+mW3iL-W z=*h>9d#+5)ap8DDfh4Vsxxjd0V&bxP&|b&1m&19-3) zxqS&TE+2MSY)p-JGHp{=muwJWZr6{nY)v=utE;OUn!w9DyVYi?U)IeIKX4t?KFZ3* zmV)Zm;@e8su!3b{ZOs@zHQCIB_}sp6r){jPe8E1KeJ*RK`EahTdK&X;d9-)yoUvx9 z^yichvUcY3lv#H_zden8(J6>iIW1{vqI51OyPH*8+CDYf@XMV+E3Va5)Qi3~o5X~> z-u%KBTxqReR#uh>Tp+!ye{E0V;I7ZiRqg3zADk+T!-m9W2KS7;=Ni>zWMT>~>rQRc z)T@cB*u$Cf$Ec^0wVLb$wO7mGT$bF)BTuu+CE^OkU-wkfFL0zro$=GWawWDk(;T_h zb1ah-i1@soAf2^Aw4>LbmHM%b?og&sRP5|B*b_XK7Z6PXkRNlPp*Qn zta$hCMK>@6b)qYh@!&h`kQ(p_f{fcirM~y!%t$&x=q)rnMQ%j$byRnT9=8o^0vrcC zdh`@T!N+lcB>Vn4SyNNf)>NZ=ds9HqwPstVAS8m0@<{8Bu~fr11wMQj3A}fRhbOVU zRsGujV69Ni6#eI>2JRd+Dbw0W6baLQ>CN2)L=T7g{`xp`K)$@ik$h%0HtRA@<%lE% z)T?l`SgP!9An71MAtBTz4$(vk=f2#RyZYf6o5$Eq7&m+1>QMsQR96ZzcoXZ&685*M zx3|kHD>sA5Zjk&Eouls3UGF~^J*n4M-&-zRu42n@o40XY z6I|gKmX@CG-rEr3Ap7iEhnlKtL!2^OhmdLBuFOGII!|iQc)aC+jU{D>&yS}nyI`$> zm!43!n&NW(tvr)DJ9vHd&sv6RSCkq9;zk=4YYG!?_dXwXGVRl^y)I8p?OyL_Ss&NU z`T>Bf5zCX`wK2l8Gj)Q_XMS6YVrva-JrhQ;XwKD5d7C$BW2ZF0=&Hm53s4-Kn)$Ob z6Djp#K}vF;nz66Hz-gf?Rb$Spwl1OEW?_uDPI1K1LdBBC!X!(ubXdgnA+eqZ;M>n% zzkZz@xyj75cug(CGXO&%V+Tu7Ay; zsce^T2{gsZM-r{G02#Ulk?2=>b7{5 zMZPtD1`(1K#T>7CY~~w_CCexiG_^pOfJSM%ZLTg(bh&bAfu~@$F88%djaPJwEHfob zeRp&Q71J05%B3S}%z1e(I&1TVFxYc(>*tJgYO@)5*-oK=Ms-`1`mkH!l1Aa_ZR&OK zXJgF<=TGeAq~$F2sVgZdy__t{3s=6W-f+~pPdjo}CN7IYe|()g?A^LA86wQ;`j!(x z{E~6r+y)mK2R7?)Dus;=R=w8RiO_Mw%${SWf+wW`<^H(nXm(Io$GNz;T)=AEBiGlo zZ^WC2j3W*01#)#L!- z(8LZ@R`6TAxTNyH}{xkc~J5@1&L56e*~5K4D}0&DpK=CfZ5^pTs5!; z8I_;_PANV)QVY-tgmS6OpGsw?KwmONdDxa|9@o-xJ|;SPP9Y5ZEDsoi(V~u#j(i?? zOpui6MpoH6QZ7^HPM^LjV%d7REDA^&1X4^)j4AHSp#bFzv#z2-)H;A{7Rr5tvlNjS ztDiXWhloW>B=TAtbG27qy84!=j65c(ZtrGJW?+So+UY1Zy0Utg{ug z;2>j-g`*m$LcK#>5#?ugUI~{}rC%5Sw>AZ8fYa4bg`4am!bQ*9BXor&Gdg@(g5?v& zhqvu!=@l}ud9yzQmzSkUKFd4fnN>;q#ZU8sg-}V@S*@z^dV3jG=EOIdTQz1|JY-Gw zrgqC#7rJM@=Ac-J#Z!a0YEU}n{gC1&$smNS+!W%M2~kuRss4w2Eqv4OP4P7)Wt%r!UcW7 ztiqGzw^`xbOL9ZXq0NKSI_pj6CwgYq@&%3_#erR{N)Q_MKJ_^d5hz}nCQTrPuvv4A zdN)p3Yb;-L(A$xToY!uZJYyP_!a~xG4Kh+!YeKw>wuB1W(qkpvQ&{I}vggZqo+>`o z_v*-YF6=DmwmGbqrw$%6bFuK#eBa*0*WD_O|69<;e)0bb+Sn~@7LAzN%-IC#9ieR3 zRGv9?3gyq&{H)uz_xj(Ei(4Q0yY)R6=k;aCsD|IvZ>C}w_r6u5e2C2>iVeKl_zi{m=0#8k$z!z@N%FqZ}lBD&eo3!TjbRtd$|rV8uwMOTxlCD5^`)3UE#s$e@|7H0Bl%=YHa2%i3@-cjb+Asg z^BmNV9AVW4pA^8}<-s)dliGQWl+Eh`kIW7UED7f_*@wA(0h$3?UQ@F;;2^zDRi*oD zxXI1V)v(rs35KN!*Y@xDv%XdRoO5QmPSIExH{H!tBk_#IbbtMsP|?Mea!X_-Ah)%d z8-Io`Z&b;YGi39ayF@k#6`BIVG_RskS(XTV=y@c^jxVJ*1`@sIZ#(}J_2$-z`VFK~2ib^nqE?C~Tv1JP zFlD}rTL7fuIVQqNwVaSMY<{j22WcbLxySn1Z0o+ zKCZWI8&3PNK1bET6!N-<^DP~`DjQ*iq& zGF`5tg)V?{_T?PG-@u7CA)|?e>_zOW9D!}??o8SJ0lrTTglv6+TAX^+=}koGC+@M7 zBfU5zl-ptTfJNvu`18xojm-GK!)=CJbf9;FMy>k0tYUepp44SdCKJecZd*|*p$dJ~ zkXL|Dj)Qg%RQ+M3))J!y>2I6Q2gP7NQmUB0KM#+_mc`}SuFAhK6~hjLV1R>-wM&X( zqla;oW2S-JULD9OQf0_y1>SW1i)42nM=Cb72_;ySuQQ^ZPA5TpZs_?pyyXV%A+?3j zmwmhQ7#C5LaBe3`-U>Y|3Gybp&v$lg&s`>^eaJsfijkZ6#2L*FGmK)~$g_}si7!|l z1;wX($l8o;Ro&7StGJtRld@JcG22*Bs4Nxx@DhUz?xA?GWAupof}PaFy944jU;o@I zga5F?@QL>%FP?aQfP6uedX3lNp_}VjKcI3kMeuW@mVpKoyzHi+NP%34T51Xcv|xEz zB27+tNIeh5Fc1=gH%iv+6@*5u?he>&?db|F(1MfPweV_4Tk_nSSfjtzk*_|$l5WMQ> zPm{}fZ&Tf}_-Z}dx4gmR`Z6|8UHxftUvk^(hJV!7*3SD%m9I$T!*7nA!wsO0ZU`mC zvw{Kg*&jKuoDW1hNjf;aG+DzVB~@53Ko)u%Pc%DRK^EaQNUm}F_K&h>&hQ*OSlVY0 zE^c3u`2GH)|4pXF9%_^Fw4@0-F{OVCz?RN-c@~F}JcQv#KkFfU&yDWeVQ)u3O@OWO zBLX$>DQ1ugQ=^Ggb?oI22!R`NsrbOLe72lQXY< z{w_2nTJBtRVl59VKAW2u85t3o21K;DPulRwyT8;z%5&mxCoFqw73#Iblu?9a8{=9B z>Id#()8DP|ykA)qwj0(4o*fD3&wqcV1yw}@2pE`h4kNc`bDw&I%HtpBekD&ghZF7& zh1n4(t2%IUTVGtd#omv?S1rzY-0@pKnL?sUO3%6K+wk@=#{OG+!FmoMot~@iQUC_T z#d1){Zu$s7no&!He;};_|6y1ZVr+K9nau-4eu(|}I_^X`Oj6d)M3we$hNWc4!6hz! zp;^~f(Rqk;2pm$u8A7S%5ANWAfNd3*@GAy3oB}YGOml86ufZ&y5c>tc{B!^oV6eIn zY_KIXI5>_-6j34~(C)PF9v0Pgc+MNIVK<{W-M;&?m!V5g$CdzMZvNZRlH$xdiW12# z0mIuXGug!&4f}A}YeDoE?3xv;7g~wT`s?>!ZRZX?W5FC05|S`K**93S!=M2oF|Ez_ z@b;J5ywU7UJvPkqc597%z_m|7|9jhp1gMwFcoLx+$?o8{7lLA7IPeUbr1}ig-AdC$$8*ppF<3P)V4U)ABD2$k${ur zQyzFm6Yx1*cm`Rk)nRMTL{!oL=@yFI7aLG4+n>#O@F2Iau<$=V*8Sy61~Q=i+1Bkj zDxin{;g3i`ci?$;rz#kyt}IlSzw^Sz!Ft>OzIcY_uWxU70&nFqGn9~+oF}(e-0mT} zWy_1>2JX{=C|Di2^!m0_S>`jig{yxueP1HW8;2PfTi~>HCqr&L@ZbW(7u zpJf}OM&tSe(2{F_hh*NdBMy&7p@LJkgPPTRq&@d3EBXA`X4NhEPUD8t(8D9bG~y|_ zA!f9`@8_q5*bP_q{2|W?1U%7|n=Nwdk1WGxrw1apn8N~?)4*}--4rH>jnc(l+ z+|TJ2d~z`Isj2xppP!TMTe=e&Kqbckum=On=uo-jejXO0BJ`cT~U8s*DAN+ zgLo_36kf}Jk@VgPcuSOKa1KPzPC8&Hbzt=~5ju&OUEFCb5>aRC)Qa@Nw*$}h3ooFv z;Ai?0NJ3%g6N{a2pq@oVarDTfXTcq`=Gw+B@6n+^tLQ~oek7-d4jg#n%gMn(p+Y(S z&HuM-^JXPLH3XW}^&9|?*-UK7KNK%LgJfd9;WM0(I!+N$1V{w=`$z3Ca8toWG8W}4 zJgIMVtP5jMIyHOuaG!%45@I5x0q~3?LPy_KM5~2Gzyz>^$1@3wFL(AV>9`084Aig) zWlw-Q5Y#tZ=m>&z|bGbqd`CP#%=8h@p!Eau<~g7oI>WaH(vtAt4IM zwmAR?z#45R$1%(oR*id2aDGdXjkVOgV&`srx>-xNRA07tPj)3+a>v=Sr~&$`&*6-f zQc_C)%OgGk6)iiMe*POen0nbXz$y+VA!s@-i|B7#*W@4w!az3N%0=`HPi z%HD6qB3Oon^?63i6>qUe$&b6^20bLXHSd{o(nnI4z2A!)mfe5ix@dMsp4xibgeU8z z8~1QKPqN~pIA5NXvnvH&_m3t3ehRJbTt|{*t)T04CEJuwVJfAaHY}W@yHr-+SyAHp z)Gt`9>{^Aobs=n)*;yK)|K<+8Xx5JW#iSk}%vuNzg)hJRH{hj4U;gtijuB=3i%V}B zP+pLb1`d3#oqn1qlL0D*=SUF`rUzdl_xbbuWPOjr;7ps98j^-vR{q()c4pFZMDC=W zR*%coY7$|VTzwxPLg|rF0zXSts^PK@Ef_zi9Xl5DT6F;^)*j%*477^$IBC2>GO=kv zZU{1jMr^)2LjFwQi@!=l2|fFxo8tdxQZMttdN+{^)I>%n3mDYEVA*rGbYb4}| zo|mPB##~?vO(dmxF#Fd!=uq7|PgP8cc7VL2iP^{MJvyX23-mxTN5UJN9?lCe3*+rp zX=~_drMBp?YCX1gURPw6d!;n)$wJ)vVKKGZf0Q16Se+MHb>hh2YT!v-#8-qm>L$m? z2QP$8uB(w5JPW$!aR0p55o)D2T=w$n|_!gxoq;>5I%o)Gy4LBiOkDPgy&cQ13)n?Y4mMa2UarkG2)NW!&aokYfSn ztk2w7rI#nQbmv|v7j+a0h^mX!gCOLp=pK)Uw;|9wp=jzN_&377y8D zS3~INa7qD)ls$E7PL!LsigQh%64S9ucV_$d?#XT&&Sn}d+Bj0bGwSws%Z7OO;NLE= zi2Lyt>u@mgw8v7v+-zl0C>W!quMI?%L$(A;RV5`~$+U^CD$l^xyI&20_jf11v=r9- z?6gAbg;vmDxiV3)^ZaKq4ef4Z{aK`>Ym+-95HOqd#=1W`14A(WF_42uIfswkeODZsxgO?*G>{j<3=U*C)IxJ(b|Rev};L`QkQFw4*5{ zdX~{|qFH6s@~2lQ)7GplTn+5owfWEbroz`=y1yxzs~zuYJZL@t+Lj(a5u?#t2uWc) zq(Uw$^L^8h0473MD6N$yH%KyFI8=AT1E+n?L2o)$CbN?I&KGIq%a3tY6bm%e?Gmxr zIVN{iyCGRm2L;h7FOrS$@xAB&6+j?e=d52#UbnBr6gs=OIXUAB21p7Ta40%-3lZiZ z={W&h^DPV90`xP)lH08s9yUjVOk#spMkrQ|BplJ?VN0WlZ? zWE1>bh$vLF!_HsaaU=;1WD?9n@eP6lAm1XjmGzh=|C=`9BOe zNKSQ|u0R=rdTog{VfvoT(yNp(fxBlcaLbYHxP@@2bYvUIy#A!??&YK zE0Xp77rSJ!0RJ=1wf_qryY#)a_r`z~yc(pl{_Mb2-$6i+jYie3*~# zEfn^@@07_Ca!zyHcjQXu)+tv8v}8p|CQm5G;C%zOl0TOIUm&Mx=u#KeS0LZWR&Oh`zL8W0+q z*xs&7p#o9kPg(aP=te4Cx}nw;(3?1p-M(wB_$iJL`&zEEVP5# zt+EaF-uHGLyy~L@&7f}aOhPJexlPZk{NJGX_-|z=1(CY2`jy48K_^=AT=7nyy750` zHSoa#F}pbbuA*5dP2(*$c^}a0R?+3SvWMq;Y577fWB4pYGp~|2^RYC>tDK~ciWywn zQz@uaQeB8@3k7xv^^dd+<3#dGOoKhNVAYNQfi?-GeHCz&`|q{CD&=4r#ogTqx9N+}r~D zKk03Tj+eiCcMcs7y3}29^PTzsLUHzre~r}?c#ou%a^aB#yL|%N~Lu% z_mR9222VmCT`rl{UHYUOTv=xMa#>+F>4PK~vHE}#x1eRZVALRwP+rj&!5MDBz9~zN zd*-5b|IpX?sa>$3D&1{X{qppA8YAzC#lcL~2%akIuz%FH^ue@}z7?I&nW1vFL0~QI zAdUWR_05*tRwL+FZZmppKXEppwEvie5Czw<6kJDb`SL!l<=yWzF|{X?6sqr;l7VZ( zry8ZQ3~IH{3^}RTS{ppSMo|qNvnbjASotq@b$v4@kr4E7&;>{G%bUNvuy9^ognOGmtHi zX|%eaMZ0s4=e3~pIJjK))!e>tAt)&xM%(O;!xADl2yhJh3nEVmZhVVQ)I?I^-nfHL z-T$EC+Mo?k$)Kx)v_T{1i>_PMe2njgUot}j-3+rb*Vy0Dw(!Jik&1s-xZ8lHik9K5 zrGAR&U4!p}cRaDiLMY_Y|F1fm%^ho?LOCU+CMo||o>a>?#^NoD^}W+B%T340)P=$u z@;$DNf^cdkN@C02rzm|yjD!a1DA$9ET2T&qNZ9|qz=x)6e#MQR;OX)qLWtR&L&UgO zUD0_#UuukIJxNN^CknUZTTi+aI+yj3#_bw0gR!MaUyaY>hbkL?ADz<^of-8u@4P?_ z^wcP17-ik)8UO5?(~3dT+LFU8mO6r3>0KTIp1=G@2;MVTGgU%kZLl|5O^P0hxRky@aY1>%C{2+z@FPTU{RYd?MrN@n}O5JMhAPTGsnxv5Mci zN14vx!~C0-c8pK{We>g0QfW(8frk=Mu*ne{griBAXO_p9r&SiSt7fq z`Dy&DcUnfmIZ#zb;b6Mr75#IlAoJp?8`DUE0)sKozr^p`~Rd${k zx&K7SxaPpxl8x_K5|&E;sVd0cv@;4t90O9+BdvZ=c+iu#AQaP|LgC?yXik=Q8frE& zE~2&Avp9NbQ5{l4dX57L*nIRxTf;85NkwD$P;|6F6Y*%-x*~u}Lr)m5s~>0_kh2h8 z_W3T24S~Rk5cWU+^j{j=^1pyA|C2J~|7b|e|E_OS0>)uD+J?^9Gl<)P4h4UOv905v zq0XC@iHB|*(ef)hKp_dOZt_Gv>#Mmn*BGhiBexLg=5TAaR+HD(KnI2I%JI)PC-*2W z$_7=&z$G_wvNAKrl>2ig8Wej}R8-KPwXQkVh;cXEgf{{f{;;X0C;?cNd+Bd*HYuZ< zS@K}TnWkC=7QZstAx6HN46F@WZnQyRt`BKbMKUur-fi zP5C6CQpD)@w9=nvIYR*~K}9!raZK3w51+QVz4%@){Qr9u|7(MN{&(%!zx=j@Aj;5S zN->!V#DiwELYHYmkR;~G5xYN4*V`gtT(OPR63L(qqUgo6m#c^$U<8i+74M#c5(|R@ zj7c{(A+t%p(=s~FNKe;visy17JrSduZkX-Il%8|vkmQ3dia~GnYhRGedN$=8q>0kt zA5yBzm(NnsE)xwDyf}^0CtAY+Jxz-7&%c0Rq8kTJKXH$Vjc7qeAetn)@f3E<$dIF| ziYC`5Y%Oye=fA>`4LndP zqEjR|YecrB(AMnLAL~e`mM)*xOEEQlOYWUA87BE1G%-$Jo`BpP76qRKl*5l|(nYid z&31*yba2TBYDLDDge#loXWczwBDY()tx$tHHF>a0;1}aCMz-`%NB6d->p|DzVOzRv zZZNE%y*;wGN5}&g)HoaJEpbJ~Ha5wU(Z9?@iG{NMhxZ{9mTJfE%~<%e4{w~)-|V8Z zv8HfJN&?mM2RBByQdf5wJal{xWtzjsi%o@pjBYj7=9FJtQFqc&vE)w4bc0?3<=B}p zuF83>C&FJoL=02CEBH@T!lM>qtVnGXDosiG_q7_vl$&JdnZIppGkA)b?9VbVW}Vl)BKqxpg1NzooeBQjFF>VY0cP2?JA zL9Ih`NhFE@wB@k=W%hNVaRojCq`7@0!Cw485I1<@imq!@)V-FIet@4LONM9w2vf?NSPNSeTA0Sr0NTGHjRFerC9xZNY z=bMIfv#m|LMwur$<$S#|kExQgMuiJ&U2v25TM(yJYRXc^(yL3h2g((~#T!i)F(=6w zN81=%V+2u)DUmC5JLFfR;B6Y5+ZW-gfHbNaW>Ae<$M=3as=q%^E(fzU{Nfdik+=fc z3d%#my{KG@A|31{BTz!93;RVyn~_@8>cZz8)@5Gqn_(Uw(>HpDgveM)sPyJ<%H{ap{igE?Y7q{BM2k}tn%R5B(-X_mC~Dgxq@ zRP`fj^JIET2xbY1IZs6E^`gWnjG~JG2n%8K!v7B1O$0ZX=zUP*&x;HFWRggKZPYz& zG~#`P_X zWu9M?(P(n<&}>&aNB#QsG9-$M=;{?Ly^85yt!c*hG4_M~dsu+?h>_>Zee0nJ&NBcF z>*OglGI{RIDsy0E{kQ2F@M3NQ6ebh%e|VGT3UEJ|A##$Vsc2%`NZhjubPyim!~W*f0+WOftI<{_vaH|;t?hAt8D$f7Wgl?s}D zP))EZX`3c9P=IZz@85e=R94oLUty#| zqT^_1QeVlTcCDK)V%LwvRp{0vc8EG?+#%k40jN0z)n(kM0-`giM1$VubwZnZBGEIxjRU<+n==z?Lk!wUwfI?#}tOor^ zpVCv%Lk2a%sLxR1v)%@1hLVUn3r!kiz!MHAkriZGbzGpnr+Z+I3?ymaJLl;DC{M)g z=>*82a&mXN;Ni0c`ipdTMgC;yTctR?G(5KCLx)55AD5|LnxBM(@GQr{g9}S{U9woj zY@#6;{$v}teg$V5VQdqN;3+tcWHhE}N1TK?? zC}G35KU2PsI{cV!f|&&i!59yCp2PmRoNTzKQK?VuqXTEAV3u6c()z@$TjhNI=`bpP zFeYGSO)?kA40nY_ln;3XgUGbMx}Aah>hdfBOkItU zL_vmOkWYKxhszr*lLmk4S4ZP`XemgiU-Z(-QB;{_@;p;w-=s%3{nN7en-UV8v35a0m z*GC7qI(ZDzcUd!Yap4(`3$dh{-ERpw{P^+X8=gVepHUYm6|0u+2=t^xj;+U}k^b~$ zi*K9>UyGoe%0Q_t4g^BWDto`R=VB<%6uVc^gjr`nE-=k9D`zIgp5S!_RSyF)b_slP zS~hyWXQ9)BkJBmnZW!wpcziJoOAFU1Wm?h&gYB4E&``mU` z3t-5i843*wpky9h)(3Kjh~5yBODuf^Vlm?=7L*xUzQnG8|0Ln;prBwKnfov!O-6W; zVF6^SO*(o<>+>D0@pqJNrg|qAvNJ`PU=V-y7>o}B3rztIGd)0aL@kD~c(uu@`<-OpNn!hmHmyLh=8-taNx zo^LHW@){+fY$5kV;v=6eq(@IMuBwJtC##BAH|GNux7WwTPMxwG;O}pQ@e-C~Xk$8@ zB>9R-L_;!j3{~@C0!A+T2*5x^5Y>b*F!Bhh*+S(1gN#EEbV_%=anV0_-M!?A#|4Tl z{e`z~O^r9Z1D57AwW}ECYPXTkJgA^*)Y~p$pA<2|#1!LH=5c7vpjRpM!)%jDQp#$0 zuG5UkbM?Bm)xy1)g^~PhyGGctW%hD~Cr8TpwkjA5wPscVmm42M$&Nq*c;5z(U&=!w zqdmCI-ctl|a~ZR?v9taHuc{M{rEo1Bl3Ww61+-+!1z`(H>|8yo&wr3{|W zB!Z?c#x=);Phhrf%oNm9m1(>%rbcTW46uOs2WHcqeVB`jf zxEaoIg9wJL%hbbHqy#J*$@49kED75G>6wkdV+Nf0^t#s#Vj_pibs&VRc9w%yf&99~WAQ zsAOzSV~T+Rm5eY$;}2B1R_!@9-}W)YpC{|^6V?GEMdAoBkjO$OBcdk{&;b}lqTH;> zA|p}3FxE)ThLKrxnWpupNe3va%eQ^i5mGw%u6l$RZ^>971JYCnF2)@9=7Qrt1#CtB zy{57c4d=kS$kpmGzlG?_21%~p>9J_}y=#Z`nafd=b9;9!V>Cz;e6O`0?5^j-NrrQ; zeqo4gAd^o3xgY=jYNt^ZZdU=#%<~}7eFRF6T>bE}U}a&jbf*!TfFHCCiva!xf6O!w zMylTn2tN6-3qV5=1Gbdia5u4#H_X(K8C&pY&OOXTreMN{Sv$Bs4p?6%wTiYf#YyW9 zgZi5=t}``c1PQeY!2IL@6GOa(uGhL7f>+V|19ilZs~*OhB?A1kDYKnbQp%EP&%9i| z1p{0Yu;~lX^9!`cM?4oB&Nl zby%w5#Y=_AQV_`w#l*&%VJaUKlw_nO9tG!%43~kZzSupeZ^yPDTV)u+z?iLx^kJ0d zcc^_P>w@{dLzYN_)sR9XL?=T1)sGzH|Ec5LLK%wVIDU#od2tD&h9tG@>3ATQk|>r= zVjecco7zaqgvhMCPRX&7My+8drnIHa$|Yua*n@7%CjJew z@EWvh0y=D4D3?){I`FZn-cx%#Hf{9w^h54302}?W3Ei}YPAcZ>u<>u56o~EQ1*{Rn zplD`~DKMdeJN}8lz~qV`8w8r47=P{e`&ri=3cn77z9^LW1mhwK+_|%mS#Md8f5sJz z!8$=S-G@b;6J0>{ki<|fLwu`jLZHGx`*|6JPW)a)n_ccULciTem_GIu5{(o$5HUQ@ z+mJ}GjqW6tGyxZptt`no`|25jxfF?Wau5?cP(NNEE?j!_I+BD_EhKofOsoAD&Qe3# fk^f=k|0RgW@1$GJbh>J$MJN0@8iC|eXh^-d0+2wp66?v*W)XfrO8OCNl8dZ$YfEQ1_aXju)<#O%=DN9_jlH(jT@nRt8w(S28xzAjNA2!fSsR+0@o=8ykwHR|CvQWV0$_H92F*25b z!nfAH*?k_C)9QK6kNZ{H9}Xg;X%!O|8P9CBO&y+g)CwQAb=8|~YhC`sT|^~G{9%@A z8{s^+@n1aGo*$yXpR6sUHH^d``*RYi#3#LbkIOvu#-FxL+YE^-{Dt2gJw;q$wc|jP z6miMeJ&!c+w)Ax4#xqvEGWcYK6MxU#jxYYwIBV6r)3h~%#k?bDVQDF*)HzWzm)fiF z`%ryc?Tl-TLWpN!*Pn^5LUy-NZwe+0LE4X6bsB;$3*39X9vIffG;3V)v=r#<@kz89 ztik_&j-64*zaEJ=PBm$G%6z)|{7^~E{>=|@lSVCf1)C143nc+8mV&e*Q@@yGHJMmh zJ!8Y&-f(JstxD3$lk68??4^8^p{ttf#OEhEM6oPUbmPOLt(p35Uo2(A zZau#o)>Y_Ln`U_3ZmdnVGEDUKnY*N0w(mK5;>43;26vH?ala<>>PV@a*#9|3Vqud##n;n~ZekjaUyIr)>O9xmmStVRA1xQ8*O;gguaa7H_F?b$ z9Sk;M>%&QT4pSv;>{s5AWLf>~URxg5?<#ooxMLX87K4q@TM0X*0mbS6639u~> z6Aclv9r`mmst|Gh(L&z(viLIw@v!*iWaCE8H+;sPnVAACmtOoC&FsWT#7Z)r9_EU< z`u-yB6O!XNy?_7yf<%q%fLSpCY9X8B+ei=mDdozu*;T#E-QMx4oGsBI3 zr9oWTX>wE-oG1QB5KB7MS1woljPAOPZ-{L9xMdKhMli48{(IBo^RqhLfzv#j8!Ahf z{6q?BqUAoSWpZMjT$To7E1ZRm8%}mO4WD{)nCo&!j-zAuV>X<_qe4P&zPT=U_xDSO zi8v0lq#H+uKcy*_VcXM>JxsT{JRfV(RX|LS-Dt~XrTF@n96Nmb;lqc2#>f3)W7+=x zeyLOU;p&f{KeN)DC%*6asFXk*B48e4*;CZ}`{h%C4hJTcPQR_%+S&&=)q{61xIF*x z;lqJkr5|QP{x}Plf;bg!-#*&uI!~9Nn!Y)HA7X;U^4#d+LXRJ1Zj63qn0yGoFV>_c zR*_*ZozRaTk13nK+HwpxBrsu{`e1Q`wA^0f0CVg9+DG!_0Q=_rkJn=js@`qF%tR`N ziyb(r{Cu!Bc6#8w-&7&FcvYf?FbSvDH~Hzl^0Q7e$6c3ZzIS$pC*`fZxf!R#@`*hn zYLy^E4{B7X~cGX6@}HO#)laR*{!{{1ayU6*)! ziv8G*ANNj9=I$4LE9%UT5qAGPtQB?pyN5~J7k}cb^PTQI&T}R~!#|6P_S4eJ7kZL8 zuCLCA=7z9m75QFUc5X}6SG@dI@cY!?(#56WBuWjYv*Jv<=EmCPy!O%!G^es*gNPjD zP_hZ5;nCZJt+$7o*L%y3z1-RbTdn%a9*2a`^jC!HV6-Mp$@dYEug1t9@g$?MYaMUI zL6cuwSv(@7RwOZ$ETJiCM^L&r^hPN(XXpSib)BlNa-|C*VGd0Fu3qArVI zCh2E_ezs$6%_MqN?<5|#u+3A;%03;pOw!B^SfP*Y)sMRI@!EE7xmPDG4MQx<qw{NOLU$OR0L6)lbKG*+5o2N{qa0oftd9E?=Fc|Ne5QP;W_~ zS5;M2>$lEGsiz-qCDD`7@Y~Rr2C|WhI?WKp#YjhPYjdLV=Q|>kKPW5gkeDK+{pdLx zThk0FV->^uqJuOGN=r)}MVOf%UV3?g<*aURk<(b-x*IZKzlhQo3+?{r9$PV%eq;%o zfvWF+Q?s+Pujjd~>blMiOI^IUnK@2CD53&CUxSJ2|NQo>H4*+IBO{el^?Xw`p3$Cl znEZJ-bhNF#-4T0GBhh}USGJ&_V4x;?H|_M!H;q@+8q`Aq_L*fa;RpH)8L}$<-tlB)EhhZ?!7#vN_<&v z+;(+o_H@w%B3D*goK~I~G7u9#|6IoG>_BzlU8+m(FZy~vecJQOpQ%Epv2%F$VNMIo zCpDkZ52W=4>|Tw;{=q?6#Tcb=f*q9&tVq_LgsjSxL8d2Y$j{C1i1+`u!dn zexJqZel}`0m!6Aas7v2TKHmShgN>!}%T*^gzw1jp*J9*fhiGyfJ(~a5u|Rc{Medcn zjR?vgZ||L?hfX?_E}7-%A>eIN9~(q|bC@m{P)Rp>IeqxsR)LP;?w?P4y1Fb&=W{w< za@^XvYgYtzX4xCQ(z^kvGJ5axav3-0^HhoyVrCVQl8`&U4hDBGEI6#JtSrp6ng@z# zeX;1`jjz$%MOpg|x#`KFQ*Q=bE^U#BzVwm=A44pH;$zkoM<*xNrMt(X8^2utI7w`aUkOFquvcRTzMSsMm~9_R$FYpXAzWBk z;6}Cn`z420P|#tu3={1?`S%}>*5Fo?U2-&Ehzpsz0=6H zn;B^i#PRwfFZA^)&JoVkHgb`PeAD$EPN|`*I6OZ)a-AvZ6c^Zf5F*a5qflfkq6#u@ zUubzahniQRF7S)}xMu%i2s?sDD%(_1qbBx*70JTlBE^9NHl@a_#iH|V7k)lD_*%f6 zp22md+SJ|!f#yJKra7CKSO<#%t8J%JqPpyj8!t-v%xyc(W{{z;eYg^#drH{8Czq$l z;!pl2qq+~9l=F^{v}XDdrNl^TrBJIz-nFvPwo$&CZfBR&yiWGTBPHHSNt)$IMx`kI zC3}i|LyO7jgkGFzv=^i$l1Q3ittVT!OTf>khqL1cm;zoK_@sH0G*JC531s8B^J6Cp zF4tN+MbX&8;bg}a*bdXniQ!B;Z1HK@} z{%jsYVMLVK6?Q~o$0ycVn(be05#4o=n>gj}ozlz+Mys$IC9->hvw zWDZ%IdFbk%y?cv_i@mDfOS5HVO#8}tvlOeD=l&#;>-<=IAZ_PYljbvrPAdP2=MfQU z`+GPPgJYEsK8L!|peE{Zs)mWl$v`$myNst#pXwAm+{M|*sT5Czvw3G}W{|Tp7V$X+ zcR&r>rR(aM^lj<)U5DRzrhGhpXk0$?%stIcH6x#{_kLoR8fLHeP#a>)EwJZTS=OK0~N(&)8{89CjJ15b$?qPdv813z}a~iVP3R`vHL~cl!1UzP1G(tt1i;i z!$*$*lXj!}C|O%wevQHho50`N#WqyPHdw^*jCtNFKTdUVWu>29`J2-QRY&`+oKX}; zoV&kSK3psmP-e2nPh7}ZE!=(0k@fQ1UzpocL@stboR<5lZDct;adYSKTxmo%L;NzG zkc|bW`z_Rb%$Zzy9Y{tM1ez>;b;|MY%Uf^d-m}b*uuV)(Y9mA24AnhG(Ovt^)tU4# zXBj46<%`8JoBqVA~On?LL97|)sBtCndNjp3j?dE&ml8iat7Z1wk2e}yNJ zmk>u0X*o?ga$X~5O{3CHHft9u@?#i(JJE>vPVew%({?iIA3&8KuSJuJug+W#=t!dhCLy5{a0@6K(a<~NbS6P>jkI)K_S)@5-@WPN4&9^b=g z9I%|Z7Gqj*H(F#_x0T6a$)307f6bEo4|VncevwomTLCd4Z^xoeVqe11pyo9=hiHfV z&O?;kT^19wjaqERO){4poSliJ40Lu8^#C#)S^cM*a`p53WUVve4>B@lWV(=LMpD zh{8R5a%$?#>`*<=?n5VKX2cNlPy2~2eJFX!5yXDu!}E=0DfMPK=^k{uuk3YShx0gJ zSXfvLwm^(d@v}aF&C3m|P2XIzvAmCod*KKRAmyD|UmbVXcy&>3A2qcR9@sZ2DT(+P zpomA~tIg>Uep9Oq*@`LqMzt)fXw*wcZ z*#0%WIoEmK)cCS;{sYUQZ^QjVR$W-yS^-Y7Y4e&Z zO$$0R-Pab2|F+1Ua<}g>rtBDA3XjFmUZZ~P#DdbeySq;VA%tL0vKlo;$x;IG*GtZJ z%3tg3f6C?P}_ zDro5uz#`Y8;kiLk6(LI=zZ&`DRO@k>*!O@6n;QfWA&dKr2%f6U!0?GbgLJK$iMVHJclcbUT3ShDa;JL8tHW(Goe#KBBDa7oF z`FXZmiRx)4%>kH{>@=i9(p;z6NZ>P~A_Zc3i<&(vjR393jvYe{yc^8N_B~YROibeC zLNIIBv+YbpL`B)PzKHi(kG7o1ZNW6SPy1Q<&S5Atf#Ch>K>Drf6;4Ev_KdmDSa9RGk5KC2FzD~i4mV!U zb+QE+(QSeslGoK`&bAx1%E(%y-etN!(GmcS-@Id_rl`E!_uadr`ZOEQt$D`e`Q@EI zaBTZf=BVd7y`1lG_Cxv&K~~+okDmUSm)DNPslV2arv8jlJBcUE5|d4rQsW@Z7k^Xr#PkQcF;b;*wK%k-DM4h(l&dW@KS6#*V(f|P;5aiVq{ zwevml6B95oJ8LVJ78ikU$TavzP#Pjj?%ch*2SDYmh$GI%s|f_dYZ)dgBq%6SMsX^IG#hGarv8(uYjLy%A?rU9&cfbaF-4((FW`*B1TnF1{SZ>4S6GQr$#}kq zcwn;`v5iQ6$j{AyP~bZ@#lH*1@}e#qG|5JN_l#cj5?CUV`}gky#TMSR^+n3=>FK$E z6927fV&28`cwh$yhbys{>4NyN=JD!THO;K-2;vnQd(uPxJ)6-Xkn17Q6_yv8p^$+-(+uc7N=ipR{%(q#`tEN9uN!9yo z(RE(m6em2^y1$|>K`qE>cIdR*iUUEgBHPwZK5OsrruZ|q_ktIzn1IoNA3s%0H^L2P zbm0j`frCgi_ayy50MY395P)3%@qQNhinnJK&YipG2n-P_*TC|{WiiEZFgl3fQxw3= z%47GHp~})|p%rs!N;9hejSw9IO!NAdmTNs2Ugl5HN(rh(g@uJLPN_A>hYIms&81|O z=f;L6{<1FaRwW3VV^ZM)qObC3&el*RugOeF7@P0J>p(vG7>^hA3v3IvV9hDA)!Z6oXofpaMNNi zz&8H;w%{|{?%WyqsDjZl^VCe)4<65bl_$4X=T9+%_QY+OCd$}5QV#PP2DL@Dk&(n6 zxAPCkiJ>1f`Q3GoE$p5~_U(eL$8YSM8+&9o`tB-|a$d(6De>rM__qz3R1|J;n)iIL zBY|Z)Cs(^&$e=2pv}Jj&Sz}`d7eyUCMY6Dv-)dgCwpx`y^Ce5=g7_z;bdR~gTDx1v z@rVJRA(K4q{@L}E>-MspLobE#VvcO!JN2{1QqP|r9!{FZ~&Ta4$$Ylcz0kT+B0)9T;j_{L(xHF6l!WTFmmxGZBRiev3zo;#dOq5Z zJ@jJ8@R;i>|L-P3xQT*;aA_jI?{qJP5+i}?3qVe)W^-+;==}W zofAmNxOKMQh&R|alBz$Npolr`z058n_w~3&3$<{rBM-0f_FG8>I~bHXTyoaM)U)o` zKO%N0`}?D(20z)EDt|6`1qFX1yyD3;GfY#n&lBqx za{c+CR!8T;{QC{046e)PE8ZrXyiU)O>#tBUPbc>5MGWM~#fbA0U0xIY;Z@&q)9;tw z(ozv--b-uX8@o~B9LJ0lva22Xw!D|$>>;bdQ6cK0XX#1{3lkTHvv3dZcH)As<6=9> z9)-Jmp12v$7rQ*~b?IgNyM%*cn2{fs@gxyvX(xU$HT)>76!*IGGhTxt+;RI*eX2(W zaR)lw;rcKCEnn@uR+qKwj{gdoZ|URo6WJ_m-?DKcbOmsWkG&OS=HGVh*n4igLn&YL z%RZxqhi2`67A&(l4iJ0wyoBl*7IE=l?oD>%o@`;sMRM+oEH^%oT<|<6`EX+&$tcAh zJ@s1k5h=Gb|H>QdcuKD-eOrzYfP!#j|jeX^S!?d93_>MydGr{ozi(Nn13sRVfb!o-sP$L*<|N z7w1EU6~Cx*`5A3hYAoL|%LNN#kM8lj!Zbr}li>R6uDMs=$M=klWxU|Prg;6rBTZMu zaY{M2Yx!0nLC_iV}Of+s>p>$Lz(tu8m}nj!yJChxDY1oITXc`;z2F1+^ha6|A=Fx9dV zB_5|tT0%7?wCalSK|k8F@%^!vzdz+VKRbjSvgUgc>lbhVpT8U~mMs3E97us`!Xwu? zLPOY~Zf8SMX69uKpkx6H*eYXmr^}n7VOlQeou$sioTu&ZJBcmE#Xnq^O->O}^bGel z!xH}P?f}hDoq;RE4z)4Zl-IPVS zoy_CW?u35Fsr>x=RY~FLoW#!6RZva8(93xMZjq6Ri@UQ{bLPX+c{@@oRkNAh)^pRX@8r3mj{0|?2PH6?z1z0t&kQEt-JNEjZ8~wrP2>fK z{T`e0h7S^B@Bp2AQK^GkPc z-;=DgFwjVD)%WmkX+pV1nCqcuw4XPw$xUMB&&MYUk3xZ9hT>*IuP2fJB>9g&yQcH%Z93XmgmbE^0 z+mVvrw0j*Ew3{->)|Ry<=DiBNB6Os`jEikVei_!=XLja89xVQ=3b|zZ zDkRj>tOqVP=FZP275(5QUw~qH6?EpO)ysMiiP|tfzNJZn;ZQHu~`ig)-#!PCzSn7y~h`coger(RR z=jvY*pfLeAifgj!4%5<>VT|Ug?f`B8N1WvTG=G0@GtbdR1u<3noN32NO%u~GNU;r0 zb;J>w)Ezh~3YqfLjgRM1QiET72Ne~o|G3DPMz|H!`_tfHDiHVH5WNX*5jFPt946v1-!DFDDQq1o{U6+n|LvpYx^WBf#G3d?%q41Bjln?3N__C)iG# z2)9Gt%GB;aR)sq_n+Hy*z5wFSRu_g8j%B-+W^i=_6M~;pZ($b6(+GJuEju|g^8@Y{ z&M^;N{rOIE4$8?#U`qyx%GVNjYln-G@^;1`%>FEO6SfU@5hh7mzSqY z+S}WAuV-Ft0)<3k*38Py{Ty?W3dr5R2pN`wfk6?A9ctQ;s39jW?~_^%QTn6uXGVxJ z_8BUm+e(+=KY5#BETjoU@DRi0R2Fsv9Ku+8agp! zW^IBv?w4_9H+@jgIs=NM7iUc$YCybN<};`n1l0?=VUt7OYkgvu0bY)@q(238pMn#l z8XC8LLQ>8YDMV9kc!5^%Z6B)B9xxpsK#tqw>IaDa{k2Kdx#0d5?mJsi`{b?f^`%jh zaIU1^D0oUdYur%bL1N=O7by+$1jiZJeZ%gwu)Iuz;CTJ>9Vs3Rl#+pAJf{f3tW3vG zR1eCLJOLK53-+Ia>nm^l4Gb6H$fu~l@)G={byvZ*Abva=4>TKIf+2O7?Cxu~?^L)k z4%E`3zPU22-+)B+4UZSj)+3 zT2txx_?{J0d+g)$qp>jv@|cT@%Lu1*%02P*hY}BNcZdu-CaO=g7&kDPYdRYfvBZan zB_mXZ6j`~KUfv#4H@wHS0nd8Et{wOb@%Dmg4?w2a3IjXeRIoD(V z{5%}tWXoYN+!>0PbuHW@P3BOSg|b}tXv^IM0gVsO({+)Z8aL|CDEe)N{wIqFNS5)c zgyziF{{hM7TZsZxrUCA?0I5X+lBs>qQWLPSe!$@V5Vh_**FrHVBCecAwL)iDzxQ)( zMJVc;-G@~xr+Yu!$>-RV45iZx@lG0F^!4~6XgrD%(tqS!oSnA}WBsS^9@~EBl{r`=(tE-;bL`TpCR7*-1vV|*uUu-)&99*dVXpn;G_JW04Ddtnwp1S22V@dbm zuGJ+KAd2@-21u5K?VO45LPoSf0&CKL?Afl>Invs`x)Dd#> zfvQan2@lFcy0ZFF>|~gH{>G_N(;_kXiz1ujAZCInajc4s8Z%fK*H#5kxAEC6b-E`c zmA-nEVXFO;lx%q)0HZA2jAN?bJsO1Sc90jeW$in#b#jv1oL*#R-;Ix(16jX6+HH61 z1m?sElg3>CCHq1MKLF}ThpF%DiohLfE452s9V{Id?>1#Oj$OiHj)lSW81?w~OJpEH zx3;C!J5q7dPTi6pZtPM`ySF%Agxl8Z3zFB zZz3?mG&B*rs7w;Wt9ewY?Hd#(P)RMfx-<;`9Icp%t48F*^u^MKgnxqrl4J}R1H4z7 zTUZ`9ZuMg`k-ceoye;t!HUryKmDF}G2#Hn z_ChZ;VJ5eEIzX)-MXDD>=^aRh>h5#pJtRur8(<)W@uVfsMMUBw==0W`OqVUWxQx%- z$uw)|{c(RwLdg?sCc7)o5BcvI?{H2sl@hay$3l&$3=gN=O}IOgb`S_ON`SZrFX^F& zo3@~W!Sm7Rn2rP_A6)$Lc;692`)I5W9SUQan4U2+(~%S);Of#+t_vMG4NARSc`l|L zQ{wAs+1IdreiO@hJ?_RXv9%`ZIsfEUhZ`?uZU6pmCDX_*=qqm+^QIG0R`Xv6 zc%9z!;>6w2cMjbTi3OC=i-f-L zLi7(NER#ph=8LHFc%;Fz&|d&zW%CDE_HZC>nG5X7C}3lCo>Ii`l)N2KVq|CnTTBWK8u2 zHe__4waRbQQlq5M(HTv=Bq>=_NSDxJiCF?qPiO)f&l*2mWxDxfKShZ=y?Yxev}rOP zJ>^0XX#S*)I0?4V1LD(AAIV_>xeJe(Y?$BEr*bbNv6n)M=~F!&MP^^{QJfZ||F(Eh zTUC;oL$2CG0jkAc=nyL~0TYt3Zpr=_#qi6INDl^!ySu5@A7>0;Pcz*uzCv==T2-{J zQe?~N({{I57#R&&q+D5`EZ>1|6@>d?0RaKRSaN|}^r4?0xlWPKF=l4wgrNfzB?stT z54bIrP>-E<&Zy^EZMRqYatP6$MM{)FgFh-O$?stRkf7E{u0Y?(fK<0s|JYmiJSZva zzI$FfRu8C*xTQRfifKiw@g)^_R;ap>OV z{VXH<1oGCY%=YJhmEgqw0h@yCxpO3#mrLbeQJ$#3fBoY%7Q$_UWc4C6rc}7Hzb*FBz^+-Ia<|k0 zLJ73jeiYx^;`gOV-_$X1K+=U$qND_L*aW5+r&+n4HC*loE_CKBFD9iiZJP@7MEV z75$JG1>H-Y(f=cUXAGE)*EE$MYb&~UT0){oJ;%TvHEh697ROUkI#EzY1wp1n_5kfb>N#`M zV|5m;j(i-6vu-PbMO5c6TxiZTXFymZ`7<+EOB__#u&TlKK?yw%+_(VCM`+{!1oS%4 zm|?w}By6v(yk>1ww92x`$Thck8`f@S2EgZw&_Y!L3tkX3k7@1&G z6=Fc{Ny}!YC^<*X|1etan7QUovh;nlM!pJuIMD81l11?m$6R*MvLeE@C(7InZN};?qhOVFE#>lH1U9 zA@2UIVI@>u=C_K!{|C?TD$@BVql(sp?I=YdOF`jz<}GmY1T%=*8&5oJ;9gh&IkulJ z9K9>HLv^z0k@=+kr%#{ej58-vB+=KLN<@)ed-miE>O*(^0fWZhV~kes zv84{hG$uY$O88T-Z6lJkUMe|R1j|;vgQMeXOvP)EZo$Mq`0pct#i=-92P&WBSaf-y z#UPIOXHyy0?skS*yAdp>cYIFAfD4E*s{h2w%UidC-K>Xxnj(083BIht*kz&1i!g}5 zDA797nb(=K*cU>4N+{0FF`$z+oJCOdvlsDQ1%zmM_~zfjLn&^KBXS4UDP7PlhSwc#ccTf(Rfq2VYtElgJCs&gG}0fH3EOO%ghYGaDBQc7#0Jft%(Z0 zou0pc@19VKH$eHKkIC0aL`x9W^+?HG#E=MMxf}Xaf~E=2_+VAU1L(?ri0-G6%J~j+ zs#_SQnzr)SCTm~l85}f3vx!-U>wLT9Yz4fla1V zXN{YR16ckH8{6MR-Fo5Dlxj-xhRp$-=49eiN(z6qIE_}-{YmFGH6?EXl$!3}s94Ni zM3#7>f9Nh!li>~E9Of_cn#$><01FTWAePYsNRtB~} zG1qJ9f~ctC^%OYd13ghG5@s3>CF)Kuuk4dV0%DL1}4%|=X=8z9RtF!U&YEL|7K$Q(NB+w9!bZpWJ z(=VuC?-KLR%MRuD_@-s}8$Y;gZn>1b$tXt$!Q8+VT{x5<*9qu(NdU8_I zJMh7M)O_ph{pFK-^U!NfrID5k>@lHe!l9E45rE!PVXWsP-Co^x7j*rC`pho1y#{%#;KY!9Tz? z%3v`YWL+(sjCSK43NWI=t|SD#V6&D3Yb%uWE>&-y4~(1J z-vz?Zdg2sC1Gl5HG8OtGZX{`j;;eS{_ZK5eg3i256qk&dR}$YIjM=jJcBdGJJcGCy zG3ofG9si5$_n~A`%%|wYOdbsY&4mp?Gi!qDhFR;)sL4)*_R9NPb_k*c2gii7pIX4| zZB6N8Z?YhKFxgtc%?*Un@A4L|mIR{%6#fTx?o2MQ$+EH- zcz*B`IRjBK`p2^&rNe?!j)gz2_02`K;l*7;_>rSx^VTzzrV+7*{P&VQI&*h~SaKck zbaGeyY>J3+?`yl)w|3%&Teefo}xF#@OX2o_1fdSjO`01Zk;sc$>M8@TOgm z9I={W<~7zcZ3)lIV5z@n+H{;%2Bonm#J@mRGy>#po>bRf-2~22jRgsQ3uN0hkbNA)&j90%}vuZa! z^lRNd2qKkv`3~%VcY?n1;tReW+qC~)LNGG^A`Kzbf*cl`TwI47OaVy)m2(z^ngCO5 z^Ku&V90?rtrW{A>Plwq7bYjnKQvSRdL<*07Ja?{XNc&ApgbUCp6(waMs@K>ik0v`kGk{&$qgTTiy9->(@U*m9CJ?KE0i}q_d2V(@x2;wko zs3m>le6L2SJb#r9hXLbj3CV{CW8By2rv7I0V<#{R%V1IoEoox*(cRLc+*Lyndr4C~ zouTYOrNT6ZY$p%o@=j zq~T}kfD`c$Y-jr2^*fSMwWG<$F?gmd(?A{9u1}&CxtTbk$RGCvA18wIh9pp zSC#&X9ta;g;a6Dj=(`FkuNsg%;{VjJe9)v@TY`<9P-V}Fnoxo2zTidZ*}p=Gvk8_r z?p9LGJBbI`ClG?qWU6P~?nhzBAhMHO%z%#J^!a0|k|{w4$VLY`a)pu6W#TXc%z+bg z83k#rw(Eyq3y|}hXC$#w_|LqGq#xwCl}PB3gzkjq2MItCjS6?7y^}b>y6WqTLVqp*aIhY6%$~Td8rpjmNbtdcFUDW$;ZOE4{_u3mX@+f75)<|H7vuYwKu!0rl<3C zFHBC9@%*ufa)w93kQGQCK{#i1u9XnhK72S%f_B9yW+XjW!^>{# zbYbrFP}ahB>?nM}e&uUg!rjNnK9{CiP6dvm<+KDLHnh@f&yfN&UO3LT+lT7B2c1$5 z;7Ij}&ku$lq1j=zI0yLl9h}gNdnNr7UmX*F!`KkwUB@ZsC;)F+ocmxgS0N;*LiC`r zUyqr9qwi}PzyUp1?#zBP;wVmg@bJvyB-y2#Gt3NZGHy_=9Bz2T_3hppzR?6ZxR5_K zFtsBB5Ze{2PXdT`l4yLYOGLvAGQb??C4$2k33I+(e_~<98V5@u1ZE*B-kqFU8QDVU zz_)IdC?`UKabx1PcZB5qR`B%I5VS{LyWUO;+uUv#A##ObgisXGR#0^r7d8Hvb2Dxv z@vj;KSc&z*6mvD1*Yc{9c-3`||Gx`moSH~_` zKlPUREixC(XZKZ_d>GhY?ZP>?1qr#okG*~6NeN>tQW_*l$JN zX9>ErmD{?n%<`-fjO09Mcni|Odn))Zczq*HEqYQ_lxC8C)IuPAQd41f%3A~I^; zKcG#!K(Z3;@FYYN74}xt#;9(i3m!W%9FI+C=CEsnO5-3QNF0JxMxXk}wT_S406$RZ z1Q`IzQ^C;qpNv-JTbR8C*Wnc8UYYotyD$1A6Jn&ST&9M!kOYBI+*eMcIX()Fqn!PC zHABJ;t`SffIg>>+M3evX=lk+o&Ys53Mw$x;!HC2A^ZSDxL_brhF}`d`wAbR)vcsqz zSCQo@MQ|9QCep99|)G|Sl7m~4iuk)Z5mMMXt4h>QfOJw<)olUu( zCt>kmJJ}tOHgM6OWgsC4Du+gQ<4q6wL$ZlV32#cb9EG(X z6aq;VdI1TG4-Pi^-D$u-{Vf;hi~_!{=;%JI>2M$Kad?Vuy-)}#=rmk>2+Mxf$-zbt z;9~15)=(Tki#ZeB*Qmo8!Fed8F9W697kAx@4NEycV_m6I42#K$n~A1F2>eFZQfP^O zD+Lf~{4@fr2#xO`^yLRs6rl+Tm zfptg^`^#Z9009p3TnTSFt{{!?q2tc=Y!-k4I*GcdTsUFws|I5`$~4k!4xUUYmAUe z&~R}KUL}ZF)#y1yqv-?K2Z_y6>S^Uau$C|}+X6J_kdHMqwl zi@|6rBJo~VB8*+EU{3fbESGGKUm?jb_gWs$YQzYlM;;e$subJpJO`u4IUocEa#&&lSnO`GG1|#C=oZ4`C7h@E)rS4sw{I2wsK^MQ z^)HWXd^C&{+aLw%Ie7v~1NWx)&R3YqH|7b8p70D!HB2 zOwy{NO&A~Kg*@m4uuRr2u9UEaN1;{q0GH-lP@2(BmY9RrfNb0b&jElQkgFEII+f~? zem+g6fgtUaYM} zQ(f{*xGonN1l3BsWMBcZ!GG^OL&}@@L8(}U&SBamdv=Ucces%}@;y40jJ?rLn6vZ= zq=(EU<~ZpVszRdk9zDW@ngv6bG4J|^d3 z(AKg_elz%0!rctkAPU)+vmX;A1?_ZkC@#qXual|83$p-1jRvk5m(2)|E0=aVI;e;E zAT+6^I7Q_xj|q1;^!Q31qke~UOT06P=*q7LeNRy`M7!5m`bVQ?YFOUHW|zh2T)xLL zQ_LJP=AGX{U!79xm~lZBhE%Th=^&xHhYHei+r`&2kpZ!~O#9;MU!yD>GU1}muVBh; zn{h#XD`-Ea{_pB`LD~j0FRpI}qi#)EJY{bP2Gfe8gtP`BrT3TRbXOf}Cn#z$8&Rp* zzi<;J+xbj0G>yStVBJR$=xy>TtTfa*#G6-uoM2>l_Uv*!j0}<~90CFhGuLtS8?_2+ z6$=%`zaw{Oy!LK8t|IXj%xk9U`-8%`@S0b)F#45FpPpEqpIGQY6|{9nE3Q+oL|>iV zVSkM%-EliiUoe$HXUCBL+!U?lq@I+?D&{a)jQE%5AwE?BiD0j6f5KC@LB|NMG5fp0hJS^?Q*oL8rrs zgZObTQvl8cg*WGPqxdE*N)Hh~*YWR5kJYo{cX^SEkn~p;ULgNIH;QisxDxI^Z(T;T zV?;__Nuqx%YD_lYl-r8mN?{|YJAe724eqWby(`@P9aIj~2l$NP-)G0&-IO!-7}edo z9vjc?I`Iy>QkU!BNN#-hNWQZTzB;zc%Gyg4+Qdl2{*B~w!6Sk#?WY%nSE#o58I%T@ zxs4YJ29z8;MT+jWf24Pe;#(YH|M(3`ka_oUO?XnG!mlyooz@JCzfXvXa@&}w z=5wn{$p#d?6{fRS#McBRr2!IU`eMLSFa{{_n(W+t=w4>#!B63C)aYNt9j8jXEEFcx9)p2AxJ2kmW7jt zg%KXg={;=||5s^O9*_0Dtu<&)sfb9WsJ6`W5WAUBG?@}5Nyf~i*juH6L}d({q`^GL zYbvEg6lEsLkPL-nuKTRlzUOo9J@@W&?zw;L&!=6y?{D~i*LSUFJC#Ys7bp}o}wgh%nSjyiZmZ+wOZDt zUI2*&erRQYgR4IE0gI0D{bO~oKy0WLD>bJ^IOl#_IlBD&ti1r53$ zK76}>cvu#sCAIHn=wFC=B70Q*Zh;q3`7+nFxb4N!1zc6==#u(z-LV2dU<)?y%z?`j z9b3q+OnlZzN!|6+g0~fgD8D7*o{K)nAt-G-kD?3(;u)2e@^ZFk-(+)%0l8(Lx3P9YbUrV*d`P+HVM03AR2T0h4TB* zAEMxRD%x$mMzAqV1L!XwU}x5W>u^OmDX;)N{IX*`x)yp$VjX$IJ&8NlO`>#?_j%*+ z`=6@JB>T(CI0=1v!krU`c6y9Ny;Bzscn7A2X{|V&y2p~%Y+HSFZOggI7C|2NtH+6r zj$Cj5+MUoi0-Zin)EU{Je@*owk$U<0W!r5FgT?XAbQ!DmL|WTu@^fFHBk59OK+&|1 z#aoh&RDXkR@o4b^oGvNQI?z7_7EN2_v7kc5=0cZQH6xJ`itN!(CQSwnQ`nN@NcCu#+9XTTAECOzUw)X2(0n7U1xK4BC z*}lCmG)s13LQ?9~Om=n@Z@R(sYr@Q5Q{zCD{N%!7t~s6MTeKGUG@8?|LF7s~m}YZs zvWxiJg!w;z%zqVD6zM@rsh)Y}`X6ZTp06IXH9_BYObQ&1acDnoseYzvnBD(?&L3bT zv7tOIxdBpzk%xdaOdBBc?Q6drGjHm9mtL6n7~RuIe}6583^MB83Gzk=&e$KVdIFMR zyh!uniba_=S#I~&^0zdfX&vdeSmV~F%BAqO@0T5Y8f=XDOqqIut~iu`kl`bz(0-zz z>~Mc;`f;*R#dS#OM9;Kr`s`-;a#`H2u`=#6rHd@F&?QMv%H+vDX zv^tTpnTH2kp$ZYw>3Lw-c8C|gEY9q8J7AE4N*?b44jU%U@^~WLmHi(f5c}G7uX?PC zWyh6Yp%?pb^}0$y-jG^#AQ>vqN+{8~vfMkxq_tMu<>y(8XMX$d8NXP(L2tKM6pqdSHHwJ8!<9!{?y2;4es;@HTPKKc4$qh;qVh57gs$w6% zi-WYHZfX-ASI9U897eZDd2HBQ$m7sFAbvhcMH-#;HQ<^hh z_5C6cH?>7Kfmv0*@$_>x>S@blWUl-9-M~Ul^(rT{{eptKKTj>@O+YFSC7>5rn?4uz z4T6FqMr@BC+kVNb=IRdSVhG(TgJ=qGA~jvXv4!ykvEM>6s4+X?C||gOUXgOKFC)_{ zT6H&d&n~HEYUM})oZ02~1VvrLwVzPTd=Jeq`G8>cy^X&FtbM%7y4}A`|60sbE%VXH zecG*G^fp(TJl9w66!1ym%!YphJ^8@g+&>ItEhf8Q6j1D&AYN5<&!EA7y-!N@)9u;Z zQ$JJP*x2H~%lOrbkx6GnpzhiL0c7tP3rC&b>&1CoIy|-i+dMwM^U_NLN$1nM`Os^X za=LVI<6SF{&54fgN!%wfwI}^~ZVJs_x?Z2be~owUh51GPYhPz2NsIUU%C@wrG2)gn znC}LRp~t^NsK61eGP$fTdv1vWFE z>7_>cjC+yBUyiu6vRcUJsr&%4{5x1S;?>JV>kaS5Ol>oN2DYh2gr)BtAOI_L&VE{) zJ0UT1rmji+-bk!`wfW4&%KxCSVi6h-nX4nEO7urR_UHj;5Yig%F&BzFZo?;Kc@nFUvHapfb>7%rzNyG;8ul~R`AvPn3Ol*@7A3%6?#+W0Uia>C zBp3YTLj!p0VDiyJh*Tr6R-7B_-?rdIV+ zLHHW540TG15@jK79Q{E7Ytkq7VOclxHf-CtTAaP3m^p&!BWO9321 zLT808KeSf8B~Y9Ay-Z8gkgT&sIR(6V1vr}MLjyr@lwZZcu>-uojoQ&Oo12>{!3K%o z(f`3atY^q$oRqEqs&|-wkNML}VWOvH9qxBu+?1dHwI?mvHY(%u^W{drYF(F3bgL2s za%?gC8Tv?qVi8Iqe37fqq)Dq9<+}JIO_YFv-nxom*eQX@3_F(h$z~ONW8Zt#aT6gb z9{J2>-w2wrWYkFZ_#jsh6`*_&hzt^LDnB6alchckFefgjrcjB0r;2MSM=FFY5#VkD z4?;O>2iBILX1sKq$M`~=9ynHFHIKer2G$ots66^lN3ut}arzk#x#jI*N>ji_4qLPB zA{xcyfK?JAc@LMIIXHpt!2;vzBqJLi@e`=AVDa?|EI7pmjR>VWBsZ% z|EBfuX2yfkSj}XQf{bYzL!TEfoiU&D*L!)=IMCU$GisGldL|co{@!r6^9T~*NJaSl_t|U9yVloXWO?z86#BA3%fQT z(tpLT_e70thZPGm_b&tWC;_$6n>7pL(dkzuZ-A*fkW3$;>Ahij!`3%u0iP16jdMCb zfY_{T;*gY9k)-L)~;Up z-HjpS1J?gv8?<3D zu)G7;@gwvOIIiaalg)bi=1yzjwAx2+>RDost6B7Xt1;T9I%k>iye5W$(D}w>x8#_~ z#^+&-f16F83rZ^-*$QEt_R_LGy#$vWirTi5vfh~_+! zGpSCH>}U`2-KhW8ameq<1z*?x9VUm8WCX$9+Fi91Cr-i^1qc9GF7u%}h2J#eU&_AmQIz*Q4gmQ#u8A={yc86rbvA?U|zYuA+D67>*1 zpc5B3x;0};k%`5r_o}@VK3W_PJ$}@=MPNLEMO4l{f$>usb6L9!*3@9$g`=T&mU+X#X9_;Pl3w8uCe1_|36DtyTwkN`OtG;HDoo>Wf)cNF_TRaQ`rO!=W+-nPW2_F^XPCT}}d!M3#A# zTcHKG*mNCuDlXyTbXLkQ_Xpir-+E*3AE;UQKiCv(iB#6gl|vaBdG6H0x!f{k^Ip~P zKmyy>XI;_x$lood3jfguB+8$jexf4tqDQ=uNADws;!Tl-vlrbMoAB`^ z#(BnYKq5fFOe4eR3WLNte-nF!aP$nx{?~$i*_7M<_U_(xHEO z9uMBpi= zVv)j{n&ChzUP1ZO2K#pWy+`XcDUSkhd&tEHy+in_stpd8YB<;g#E#q9=g6v6oz0eS z3XAE=Z@k^7Sy?%r|2Hq!N7+qo%hKuHVb}yfY}Mi6q5l3ii`q0lHLuegZtwVq54qcU zHrsHo!*mdy>6-t3W|6}D!EfJ=0|Z9UsK@M}J7;c4H3fxL<*9}CmA>lw+Xn{vf4M5i z0~rZ&ifLeLPW^#dxBSl&jvP3pKvU{td{GAf^lD_}D$=4L2XYEBWq=B@AFyKQ?|lf= zn~vnx_N7Y1IKMx;+`DKCFzQ~BXNRC#D{QrWqy%*SxU(L2F_5uQnsr0=G~hoVpECo< zjSq_h7Po#(5k$IAz>k~m*5M3=si8N#>A3;pZ`4WT1s!s$1)r{g_Hb`Q5ICc)n4N>< z0rOW>dPIbp68_P!)>oX&?*XOKk3tX)7GKuA+Mn9j%YVnni*4|~1iC&04d(U0D>;Sr zZ2{Ub)YA^aR>uWI*}7a;Nf;wXqt!=_=)jok4D~M#fP95&KXM;#ouOW`7&N(;coN}$ zB-rW;kT{Qgw;!`juA}eDDSD)=uZcmJF3|rhhLpi%|MOKM9!5CJ*a|`0F}FAU4nyu? zn3qTp0}-mJT(rxHSB*I*wT7X+InH0ok#f)!6SCI^Lb)0=5&+~4hWa@91c1gr)Tdw2MiK4&d0DY}oB`|5Sv^95hv7`aX?fyg)OIdEPST zqVR!Ekc;+<6o%`BFXYgFyEc3wf*Fez{GY;vO5`9a8G%HRcuZJmPC+-0k{S`LGvtOn zA_7IV1s*C;3BVCF5Z`VGsue^1>yzJrN;ZZ+)m={`Kk>`1Nc|)ScHS%E0BJ&XW=`k=g zbQf$Z&v8(-F9w35;(ghb`GDZhNoW|g7=&eohLOK8v>sC0>2TPiA5Lldx>)xm+r zH$+2Yzii{a^Ek_{ksWZpyDOu#R1E!|X&8ESsk9%Nu3SYOTuZNZzl&S0=-l_#CgUe{ z*U(Nt_&{Un+#mR6tSi9=?=D#8_QRDn8Oh4_JpQ`6q0Oe!r{4a7heRe~*hy~^3}ktP z(u@#9K?XJj0hgr_JAl~ts0blOt?>9cZUnB_1u)E-?jE0mSr{L{r!@sn3f-n#kO`s; zyIN4-k@-_`5YJ=~Vm)opS&^C&D;S>k#;~Ju3KGnUidw0si&&+XY&;DbLa>aV^w~+w zL=OKlNEBw)j$D}igYDA>IzcL9Q-c-Ql-MIwVWQ8p1wu;lcn5z`97gD?!FugmB6%J+ zcDiEoFb!K^sHYf0cd%q~x<1%h3(t;5f{;seDePHm=Z)OOp3`P-Gn~edyk(@)!BPi)cdo7<9HP^axsk4z-sH} zRc!0-zKWj3t9Nx~;GklAUGel}p$RvrA9XR94tdRHAkjB}87OQ) zrdKHTHF5Nn;Y8}ixq0E@MZpjwX8$QAu#iW=;r>SKd-^WCh^)!ZvZFqk%a%~Wp|)`< z`};4M2W8IxG&`#-#Ig;Rwg_x8MQXo-NC#@BAnC`THBPP~PC<4xXv6zroFM|3`FB3( zLus&zsS>uU;~ z0xb}9ki{H79|*$Ick-d3P6!=j;|=TiBJ}W<8V-j$H`7QrEV${(sBr;1(bzxM`J6Ej z=xpDyqiG;b1nQJCKy=Z-43)9^JfJ-H+~klB_|)g|lYpjTKyHBdeScuhB*3U_MDec! z1JPPhThn3ZSmLBMv>{T(gAdOPw>S;=&I`_S4E*WQ*WDkrm9=xT5Ed>AQVvlJo+SCd zYdEq3@H&N{uHJ$5KLUe>C3#;!%A|=QI0k7z46&`?y?+DJc8q+{#6brc!5d+f?xB2m z!O)|?2i$-$eTfpGl-5N}P2qS>k}!?>fs>p84&A{xIXKHe6VmRrNZA;fD^0F!gXj?< zB%Juoz^4@6Q(^{_1=2o=7ECSx6*Dz zrRy|CkcQ7dEdj}r8hY}5BYYs+-$Xs025BP(a*ijs&C5ifQLi<|SFo1??WM{iMfM45YKhtc0$C zdd#bNjfnZOT^}z|0!UrC330XInP;c$=j$s?1IQ@f0+9pvTz?>5_YGL?iVX-DJXmaL z4qf{?9j`*`AARRexD~}ydfQ9kUaFJ{XZSxkAvY%C;Uy?Tn2fxPZOgASf)Q#lq>g5^ zbiKLbtsVwp_cIu0gix04+Jro)3U$)D3T_h(On0G)a3|6B21$OF7)UUV5h~7ox2I{K zCywjF3JU|DPtY|X<_J(qnpFZlpsl>jska*-@BcKAgK~nA4lYOzxA?KAnid6hW=t^* z4&^c&R5vE|K?Am{<^BME^bM?W8l2N#Z;{m0FO97IN?1dN$AV3m?1}YjuMF(v9yArV zmCvs5M3F;e0y?+s!a+!|#YoG}L2MxmJ!y5%$E(9bRzm;^e@^3SknG$2rM2FF*rX1|ZyEeBgS8&W?_Y;>GQ{`)<4=+4DeStL-}1P0GrA zo;d2@76B4>aH$FDUqEp!uQ|LbxN6^l1IqwaIXp1MZNWDp61k(m=n5N~FUO5kT7!JL zzqI=fr@-@);sa8h(_lM=%G#VOHL_k(d;z!GDdPAAi5?BoO3&+8hBi2yWDF35U{SEq z2t=q7tw(7b+jcOBs@a#9%%T9YuLa(X?cltVxr)eh)GHd8p`*^C;VV#!82$=5F>?Gn z2(Ti4JZJVN=^!7&G29_B*A}S|mY@9kwSq&T=f#WXS}zEN66yrlqnA&C!Jn({H!=j_ zsDDq16Q~@sTCkSVmP0K)lK4IexirbqWUT5TL@2O@r6*CU){Y3O@*53%{kSrtxFG}#zC zD;9wSz$)viRgnhy)?j}_TpCEDQrAbg{0@edB$g!zWuU?%wf9FH+=m*MJdr>TG_1#n zSTEEB$u{qmNwoy2cqt@&@LekCa)dk078+EH9EC)~xC-^RgJ<*b$`nY|1_EI)Ubq#= z)gL|p3RzA!1d|7HBoQg?Xxa^t4D^+2Y_Kq`yuHA)ZWEJbBi~D)at-_Z2&DX%5U{@< hYyD3?WI|KLBlpApZaW literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/element-distribution.png b/src/comparative_analysis/visualization/element-distribution.png new file mode 100644 index 0000000000000000000000000000000000000000..2d08f58a7f567768ec5a01b24c50dfc7e71be910 GIT binary patch literal 26391 zcmeFa2UL~WmMu(ap`{qARKx(7pd=_LQIKFl1wnF7Dv~8glx!%mLt0*8zeCBM0kRrl6?e|NvX-y1#pjeq<->b6yI&Ue1EzrEL*YtFfr_vJ30+qiz$ zdKwy|Lm*2Wg*yj((DyodH0+1OZG3v+Xu{o@5(7FLGb?-Zji;v(xT&#PP0&}_a;{`W(i zc&srEjlpk{XHF{J2pR3LzoBH?`tIvOpy&;H<$`8n!<=t~xs6Q@?OuvmABe|)$>a&P52 z=~IQ_!&g#6DU1D;lfk@OttosZd@_o-6B?SV7Lg9>zxdew$VvVs?e|NxB29&&PDVp~gi2`KiI@>$d)S zBbVuh+(|dK6N3tM%W1142J*2CHxth#Yh>Dt7tBg|zj*P&CnO}PF;R7RjuPJd=KfZG z$0?(NZ#@sVPR2P*_P6HRCjRlqA0l;=-mDiyCUX6+3^yfn=oUIhRy3#Trk-PVIO8Qc z^O1f8%M|k95^cmsE$b?NT4t`v3htsf-6Gc@K4b3@ySy;BWe3WOiN1Bc7|_a5{^54Z9s%S*?hkAAePs4FKa zZIZ!msR^n=YQWNa4qha183j!$w(U3P}Fm6;wM)qOL;5H3#?1F zzxOQ7cBLk3W(|2BACogOirY|9+gaems=Zhnzgg_tiH*DX9;c?Ja;T;xl`=a?AG{c1 zxzjq*`bhQYC+D)VviVZ+7k^E>MpKXtJ9Q|XC zS>nu@IMr00)|bYLh3T_hZbkTzFj1$eCQXZYd|7gz($Wuql@8c@uS9;pN$#=R(y(rV zZc(ALi;HrmiSi?6QH@yHa4wt0`&$q4nYSO)w(qc=n4DC!v`p*y{COG+sZ}=|6cfK$ zd{GYHMdi|^h;o1K)EJrIp_0ww`BBp&Eg9$Vbs`d!6Mx;aXOD!0#NhJ6cypo4!o;I0 zr=%ns28Il~t>)@qPJ{?-A2+mFb~I#k=e2x9!*wXPT08c4=YO-gT@s%VJz4Bnx}7 z+U&-1uJ_ZY(;xM`27^pfo?s*57&K%U)~qU8pqSr@Jbf?0q%mP)Vxp)0bT`i>FZ!FD z&n|`vld~tb{7tVaSWp%V$!Rl!S2pB3SnC@YB$zg*;t%JKKTUllM07Q3)0>YbbEC z$6c6A_E!ZRyZ($B&y7xO<^7Wb_#VD?qpi{S@I?FZ&ejY=uflIVbcfZ_PCVFtSOIUH z5VdHClh?rEGS3?ocw1U(+L`aLOWZa8MMlPS&jar5@w1e0HyuPX$a3BY%>s1Bfg^5k!N2tKsGt{ z&``asxbkRgrfrSr?EAJh%?AwJO$d?^SczV`Xj=756JMMQvWjiyc`}HAO*qrjWe39t z^2Q76J?J@=G7Mz=DU8SMq|I7i%3r-2H9tF^D!#I)I7z8#er47+h2^#!?T?v{|T9szdd&+PGVr+jFd` z>&_>G^CpAyEpKJ@LM2%vn#9YFTwBh%MUOxDWXK+9Oi(uI$jvm*>D!KV8g0vxr7l~l zuK3$GZ;q|dWY`QUOpkYU?Tov9=T7Kw`9k%cW0ogEkK3!vj&=AV>*QEd5K|>IUR=G8 z5bmdPr?uF5RWh6W}7QaoB-x&?W^W`7oIBurXQtmsj_ zD_68k5MX#&196`E@ytIZ9cSD$8Rj&0lr?Z=ks{80?B1l)Kvz-Gg#tVfT(V%cvtl*` zaUxH|@9Hbl=IUsHOT{#b-g6C#vN;V5htw`f@ucST@8T5{Y*rt~8`;Z}Xkr6tblyoRVGs`@N#kwkpzZx08UPiJX|35Ty zWaL_g*uhN5@QwH6-30?DVp#$;t> zRoIEyb4mQNb*r8fPunZA;fcA{BDbQQ+qWCcfBP1&b`zsz(?RI~tS54csW9UvLnLuG z!GeN(W#c zI-ApW8DSVZ1qT)BLd>OA^(ylBZT^w{-NZCMsYM&lUCb{8HyU89x9sSbk_;E?QX-pIcZk z9cqZ@a-zdhhB~#aKc0W6W^ryZ(|%lsyd0s*PQ58cW;cm=^9TyQVPRu0l90n4Kiy@} zGI5!odctzo-F@i8xjnW`8%yNII}2FL`Ya2)#OBWr4h|BecLfKlsWH#qg5S9A43cGa zvo$WwXVSptuhH2V(}gSFo)m4a4CG}E6?NufV|%Zjs+RuD+G~6+d>8?dKHE@$kMHIC zR8GmQ2QS*RT+oV^qTjejObd~L%Q{TRItB+O)?df5tZ%;{ZdheydC7M1+jXQ{?ymVg zjsyGnjcOy_FI9#JDFy}x5&-vv?1-*Dx!M{&U?b%?xybW1x>@F-e%!h#%S#KKVq%^8 zEt$*AbdyV#6GzPP=dTK$337;jB3AJiEC~ zH5>`<8+UIXtSy@CxbgYXoXOFnM@gy>u;@&}5zK1JbDTDjR6uOyp3CumY1SqXN@BCH z4cix!Tlk~4=k0?`*QI%9>+I$E;mJoe3#=30zJ6wK8O@K7t94S8143|BG&fHHN?$Ls z)~wW%samMRuFdRj;aJ(zgPGSqp9P8viTwGnOE0ccYM!HN>al^%Jn@QGSXJ?m^l)RoJW$^s$qpKM? z%S=-Wuhhek2qYD5QE2AEM z=VGY%*6N|of;_-6-R@TfkMnEfklAj9cjectAbTqnxw;s3G&j$B-#$n)`*RYF)=`I| ztM2#i=~`+5)@54tNudbS!Cp%iTNvS$G)(oxUDnXw@O*nW+llMs<(fpLc<-69jznxR ztqI++=!}Eu7Zd=UI)*qcETk?k^(`s5E$c8y(k?5E^x4jc)8^#lkcZM))1m1b8{rC^ zz#%yg@Icpo$L}C7@8s=Nr;(3G17qS5P<6iOXftTa>WGIsPn6M?h8Bg<6<9E6_%VE| zb{UOVjMbUStl6ldlBFJorD?hLYE_Y&FNd=CCP5WGU*YCgo&f``j-YwNFcY;P$x^p9UFu$qYhxF;; z=4J+6=g8;hyiDGD(C<2KmxOI(3z(_PgoNha z^)IcmPs!i<0ky_}impSE5kr&il`GFGvU_~&e^R%yvMSW4oqpO}LhdavMtz{jnp;fa zasITH+tM_HRt-TVQPa*y+zeW>s1dl94YZ!+H+N=V|4gg9uvqfrgUM;8P4_$*g}g0r zwHMO$HglCb+#>q!oar8EQ?;KAv!8*+l|Ju{F)1$hUMjy zd4;0SDn)l3Qq^nibvV8`?b)@90I`AY*LSMv{C@lGHzS~M$39u?_Za$51z z$oMtQoHr}HF41;-d_#>tjp$rfT6zvu(77k!swrARnb%qrw*D$zt7%cdTF=Mtw(Lxq z$S<1EDc2o)FoeWwQP>Jp`_gU2l~i`sB{Y*MJu0=_#t!#{LOI9NqQ{F?I+F`0xK1y% zSriTSmOY*GqtJewO!ZV_M0Lv+-#r@>p@GPMb%(o3lG^1#+tsU9ZQH#&5w)OB-6so5 zMV>}bqpQ@AY1`<`sUkWD%9cJCv1;4&8fjF#x%T5@BD&_lsI58HhEE*J%gWd-tH~BB zT(x?&GLSNgjEv%Oh3l><*i6wGT?@D8k@3fA#h<%hW)l!lAz=@JiZ!%A<7yb)lJsOR zg`xN@XcH~FqUHHS0>yoOqYq-cKfBkJq@DMwxWr{**?V+&csQv~yRxU4s{Nj9_67R_3`#r z=oWoDF>^&a;K=K~1z$hEev$l%c2Oo&9oB`Tw*8emDTa&fv*o4js0=VN)e5{rZslZ7wc>DHk4;$m<2ZKP997=H!%{oq1efcj$BwC&} zCaLp+5^8qf79AY9s}DR7Xfc8+h;H$k&QQ(E{;J?ai3i)~0dn{at3#YCaCR<;)1(}# zPG2Q=&2FrHP$W|L_;F2e9HhDsFmGqW${p2vr#1DMTXO!}XRqn8yzvCU7OaII_DQCG z#dep4(X93B)_u77!|D({;MX|r!f&TUoo1B$xwLzShZ9LEtPnNAe!voQPLFkHe){x@ zVEd*d_2+(vHFMjYN>R<>%hiKsBBcpMd8Tl#e>W<)lwvx1gv)~_U4;eA$l@-GUrR|@ zdNEuq89Blfg~y!vcBevrU03xB{#=c8-1!lG75?N)wgR1sVU(s}}7DYYnc`$^M z{R5aVey}NT-@c6pJ%dWU4z&$E1A}U}FD;UTnORq%HsYLJHUF_=Y74XD%|ZO8FZD_{ zF^M^67t>u286J0A$pik459Bo*!hXPJ4c*4XlpGbsf`ySuR7tK&QqSPJQDTTk=<@X~ z!%$uH0~COt3KNO0f&!$|@>;lMGY4 z&9hH}>#|wk7sjFzxQK6<`}N)KK5TmAJK+^Vz$nH@%Om+VW*EvM&!BQ5S<-Rp!@0&+ zW}1{-9P^ao;u9nk0fY!!_dndut&@a`d7%3E_@Rk?59H)la6bi_^bouk$IRu&_py_0FIwlel5|p3m*PgfQH*K=ZnTWBOdA3*7aY_yc z2=u6^#M!e$h`vFB7Gc)}f|;F0j#576?_MpAGt!#xkbwiRjgc`442qPnQ(pz)3BgY| zB1@3nGdDNKzHi@2PL-rugnzCZ8Rj(pAM|q{9>2-c+rBW`yEHjD$@~1-vr4=#03|Xh zH>+2LYu1Wh!BaI}UK)239BxjvShIF*u&b-90q{{3J}L-Rhqc2p9(v`6=jVd4mw8dB zX^rhv{wNw%Z5z3uMrwzCgeD6eg!33MLp$l|^*8MiYwr^ic0gdO0+SW2oT$Q2N*2@9 zf~F7=hZi|0Ku$TGmzL%O9b=9oQ9m^^BXIiEsY+Dk0jWjHxfRFgt%^bpobwDou#DS@ z^2m=59BQj?l6(K$cukwPI_2XI1FsPjk>YXA^Yi6_`D0u~{% zAPm9D8L6ytIJKyAYIas|X>qX`HxD6*w3EG#mvy!9{ufmMmk)1U=j{7I9pnl7l;BWpMAx_VYZ zBG4|cpqN=~@yqE9^$Y`pxrx3iY?@%yw7lYrUrL;Z-4J-Hik3z#48Wrf4iB5UySoP= zDhS5P1ovC*NvA7YaAgv8Y;YckyjLmZ%MmChCT4&zQ-#aXe+zl|aKj{WHnkF^6eQ-_ z3|=AUvP!Tiv}P;^1eM{;P-8_BFrhkM`r`oU8M%)@49W^_9 z_G}O?%qtsm?8!K#9OXk5@?PDwmKV`GfBEIIqmvVLzc@_|TuxC--{0kESQ&6xz^Jx( z>g(5|tbGeRZNY?Dqi8n3QI-)G7tcU-McsJdXG<3+D!8@Z=?rul(0KS?4x(lBhvsle zzO%FB0n@W}G^(o+y@?p{KWh^`jDIQ`qW`K{^sISJYk7Lt^5OyNEAZ7W9~-s0jzKE%?Ois%71Ip`k#OPdGFvzFvE@=1E0*v zuWv{>I_4&*Bo9^oba$T`{oe5}MF>4q{p99@u>Eh|Qg7!!p{U@R|NC;xfAHqszCogC ziLfF}ptcD!FY!)GJA#v0Rc}V4&rGBpAIWv=)+GQ;DISz{%%#7uSnl8aDp_-#>dkvZ z7&;M%)cy>=OK7I6-zNY3Rczb!3lm{X^Vcdb0bQc_*n9xW&`qAh&(4}DdzuXl3efmi zY2{O&)89p-|KKkF*NW4B)ti-`-9{jN+5j*C6vnoH|0zU=X3!wo?_OGT=@7li>D#A! z+V5CcSmKbRq5I_T-@l)f^L@R&T4nLLF&ehh(3FaEK>Z}_JMA8aGY5$I0lZ=|*bGx( zsEOHGd(Yi`MvuX+2~j@dY#(27Ls6S+H=6MN{rSVXg<1%SO)j$?v0wmJ)OZh!J-A*F(<6#>U=Jk01Z+KaYd^%xz_%3)fM~GVhog$*2*Y z)ks!LKLu4t4x2yZGyaeN#+OTGo%!nE8mec7!9tXmms^Qll$G^o!4e$XyzgbpwHGbd ztd23_pXzjn>GpQ5z!--QxgF;Imv_uRml{ol~l#qT)h~ac;xLlE)q9HO+dL zZTsJZ1Z=gwacMPMR{3vj`Y{%pDc|) zJQJFBs5x~!smr=X)Z_krc^jLT0@pr991Ocbh^1!0Dt1XJX=$5v%HAPfTeohdb4~_X zXZ*)+>*j{Q*jqE--oebAqLFE0jO-(9)%&}(G*(*)}0b>blNJfc|5*Y4;Lejte%=l{{`grUW5&s`m6|!-t%esX?+f8`-h`yQ5=z$2QvqaaDye5+%e{Cc4 zv|5vhBblsI(5f#D{+Wf|QO6Ge$JyC=q7f*lx36!0d!JdrWS`m1XH7M_smE6?)C!(SDKE6c2{aWYWr_?>>&@?}aqM!wi_!{;r-0)c0L;MO?5 zbnQ~^Z}Thjw(sTa>|RYum8pKV!&xY+x8}I!Q0VHxH?;n!j3Tr+)b%dWpy=iKO&YQX zteaAGxg|Y3JiJ*TAxrHRG*<#vwXQ^kN)Is)Xh_?ykfb>uGgcF?#>e|kqnJG8vNYWc zzQQtWEB&@@EJ(Zndlyhr*Cl6lCe+r-nSD$<2^~A2^_5v-cJ?tUXGZ`k_z>CD{0R?` zAp8cEJ2vj*i7GCDV*+_u`F^V&zga6^baZsQ%fbxq$Z9zlA`43y&M|u=@?=Y*l=VLf05sH^nMf=Je+ma+^i-`l$bKt-j1>H5 zYBwU{a{i6<>JXvlNbQ`wy!Ar;>7~r|f?dwfiH1uGbE0-XKew4OfjnqC+N#{r(xOr5 zoMTWO62Ftzzz7OlSilxs_$E(rMg7JQ(@%fgJckV1~+C8QDPWTlZ=th6~U! zeOP3|#k9d6Yvfo(L)@lTmzuAx5osd=Xg^;5`B}&1Im+~#t+Gao-@YOn&b(Z>}?+GRkPVn$gm0c?|!A=uHlRBIc2qd}f>1 z!Bui(f+@%-tBp0ZyL+ZCsA(9u^o-_Ta?|S`gZHR(CPZlWvO+Z z^4(=hvJGLjK_T|z<)$(w|J-r{~%cm0Kq)KPr zb5c^pmt%fZtv4QD?;)0Z+Px%FF1#KUv=1tL-{4>;W%EB*+*LT?=C<~eU7Ts&p|M$3H)23|qf{Sr;^{WQq0k?+GeL7gck4}PClJBG@ghXI z^&2;m^TfM*Thy7c^j*R>as4&nso3yBr+ryKzi@yBEcM!B-(u?P;}eD4PYHk*EH8_T6%$v2k6-A5h|n0F=}zU{ieIU7P?jdRx?Nlee>oF>#x5Gd)?izetjLWp@3`} ziVb(ILovb+3jjeO;MsgwY{%NwiLD5xj42Q?MsPOl;x%~azG0_Aw+=fANNMHCm!?zQ zmMZ#I{Q_rA9VnP-0{+T<*jr)Fxy5iNI{*iUoDjGvREY%K6(VFEqStxj^G2fk4Yg#% z5{QE5^IO6CVf(~5|kWZ;rqSpG)+J#F&s=9bQdSolMj2cJj z`Pq&5rZROciQ|N2_0R8orgg5Qxmgvky|E!)k&X%Y|2gpIjJNI{a@XyjnwS$OSJy&> zAGgXZfUShV(HOo?8k+3ZZ2F`W2>dRvl6Y4$uepK4>wn1>Mi}SWAW{S0O!U>fw+e=+ z&$*N^C#Cc&5^x}KKvekp^=oyX`0}^sI8jPkqU5zF?)R&t5$73T>NFq^i6~wo6TeT+ zk3rT^hSv|Wp=#12>T4zYW;WgiqB7`!Xf!tj6C0Q6;A-k8hPJ(y^5)^?&4m4gm{Raf zzk*`ExV*glwvG`mq48N`zBUocj}e#{*k~+sq%OfJq2v5j0=w*`+O8kTb-b&S6IZ!{ zVBH1Y3&m3^DqCaFHX22)1;h&hq4`9~z0LN+VpP^eZdXob=@9m$DuP?))v_%uqjrX( zTwE9JI~`)pa|eGdm}xcDDyH6iU^iA2w>F%TH)gd?*#TyOvD{%U5Yio1)P>4aV^OsL04>G8Gh0V4du?wQo z5=DH4-DVE<0`gy3!PL!A_a^xgaU1Agy}B(|S9hF^tbj*A zkR+-+6LM#4${x<1jS$87!D~tyo^C{1BN|NaZht?&7}!jPK`XEqa*^F0@gt{I8sQ0S zo3#%Pjzr#s3rz*6Mf=?j_kD0HYC~*v?0s_1Ba3PZW{dP-Od=dLl%@0DM8$>zG642F z_u3m#9kvg0;uE#1#zz51x_$?s$23pL4xiHk9CNGfVz;h#3 zI;Zgh)kM`)t|M}ArDlCM53|wXD-yx38K~FWWv)#x=S|cESWn{-U4}k9zXyI{ zuOupYd6-y0?v`9JCAg19iU;2kCMEtWZ+_|^?#%8xo394NSgYe@ME_{XFl5ktN?s}F zokO2QWN_j~0pjoj%J8$GhJB<`P4i9E%dN)cfJPgmFZiGGzxUg3Z2bIaNWDL)+eeuOt#GQOh;+u3g`^1Z&ov z#+*M&N*?I(ldmMlk;9aP(8g~+rbS#8Foam=NT#vCVGiCv)BI=hA}L|qHu0%6YunS` zP%akvUMT9{)jW8H;D5wHLN$2q5$C#B@?>1s+}!-1U%)A8%a$!vh(cVm|JZ@1Udm98 z>gwt|@~DrT%@-SlyJ+!6CxowcI=~cjtzVytI>b!Z}_ zlvmkK)JUT6HrYCfkk+s7tlgSGu6M$GO(H>;`}RdGvgAwr`sLfI!bCO0U1rp; z&r%O@w5KLTZF;m#6;;kqeXJKET@=ik+ptn3AE^a>kN%a(m*}@_c?NEvF-1G?pI`41 z@%b}Y!>W$Q;h1CVNv+1axsg%e=O~z}yWrvFr3$eolX!pXAR$e|kYEZA(A%cJzBtqR z8{Ne}kemeBQ5EM5=2!s)#q+{W%Z)ggiQp5AVLp4?dWd|C&lxNgs+>WP_9Xj&f`y0r z(~EpaNaN}=V4w9Gq zsF~ApN;>uj8aBWXR0T6ESTUcHPjc8iq>zNropH>G`bf4^jb37vgdX?#u{e3Fei$Ak z`BpT`3Q?je0>R0}3(DHRU*16qw8THNipRF3cb-g6W#8L4%02eeCPJOl?H8yfK4~47 zX=Rev2>%S0sn5#xHFP~)Uc+h|hl|e6`GkCSc7|p{6xc53$w$Dnq;AGxON4TxdX*Z3 z%EPwUdMXfeBu5ttGTpui9XE02y*)Q z`}glx`I~j*DnmbR0A!0nPk@wnjC9~Lcu|yzkCmQ@NxOUU|53k&9W?lN>sOubIYZz| zZ?Kx0QU9sxb*1xKz$X8%F;!fFF{T|ysy(@1jy=A9kvrz{d4{;%F{iEK+gM82^2d%X zEVo`QM~xU`-0##?6KZPQ`Deu(&R(cANFaEVd!z4op!8iP zS<5Etd}p5>3Ky1Ry%KxwmsHOiTewC4SjzV0YQiesl_Al3Zne@?&yzsk1@GySmGpH)>>pA*FwOZG0QD$9AOnoQ)HW!KPt+=KsOgb?l(tj9+^qlz+`2N@{I5@8%pGm%Ur*GT1#B0-b73>0Z%lKSjlbM z=*DlbW3DSVVUsdjL?MQ2wXL~dB# zN>#39P6SoMf$j&uVDIw_{~%E68wFw!MicNX9B<68l4v%T-!PCs3?fi5 zRQvwqm8E25RpE$277J;K*lRwTPC@{pLn3l6YVCeaon#GuCXpMpp~||%+#0%41RDpm z3zEsE@KuI^4XvCCATOh-r%ZKrV#3?se^}Ee>vFY!)(;*U;%)_F(0AC z^|U+cW_>{6@jRv6zv%nR6_eA7QSy}Q#~8o2UqPH#xFpAJPJ|a=CzyKJC5e^=HoPJL zz6~hiFKZ`XkoZ{4k#$=ctl-N_uWzsNhi+vwGty!L(K`B_M-OZyQZh2cZ_E;pgCOj> znBA13JG9R{qBkVie4h1`R z?j$*i%F>fg68uXlVjHrX5osa8ULnp))(d_Ea2Pl9H)}or_U(ow!3iWqKzch5+}uQ9 zFsQ@?)IWE1exbseBrB9Oh<--U0!c{*+#o7h2TMF>Js)BIiNg#>t)O>0MLpvzysegE z%tBUCEb(qD%fwJg^e*D$0osG|t%8I+4WTfP(e4{MM~nt)BXb91g0E(T7M%Qo;MrHr zM^a0~`SwCDWmNPe7ai8gSA*~A@%QYsZO@+6n>T5)nuuM(pVKzP0tG*V_Bqt4z#)B2 z!_<{K-o8o28=Ts>m5>d26l@PrkWlcjm_(z7L-1}0<$1CqjRsQwhxFHgjQqwKLLfZ7qjRTtVvYrFX-|P z?i;Xhp-`IY91%XTxa%JJD?S9D9Kc^)=jtHvh!0 zuQ?D|IaN~{20lEu{nCAMZhqcmur8YH>UWQJ$F9KnL5|Nq-q0ra)6C=~!6|&`z3dtJ ztB#ua8?sovc2j;Y{ciV2e~kl!xnA}!6257lbZ9N1VE@B(Zuxi^#>u*HKNqlRvqXgMo{nFYsuzEjf0w= z$nmD%zI-A*YH$^ZNh-j_0}L9KmX>zK^skELj<3xO$ISw#S+117O5EY^ww7Yuf4>zM zAMy_gi+<2*7%A)V0ff)90Hxi4V!=wRDge+QWp0E%P zAgK(2V{K8JFt}xr^^jXd&#qP#aI~cFYrexIpGBt#Ir@SfHcu;FU^x(=bco{cAX$>U znyrj*Y*01;|I`ZQSS3;WWDs!`Y=YX~s#NTYZM$}93`_u{RHu>+E@uF`05-?y!TMOv z0|yRty+9HiKu@O0QwR?@Us*CMJ8sHy~^76!=4 ze^NQOl|iTz3T=qkAW$`E`(b6y?{WTe3+~JZ(I=_5JxHET15Ck$xCA8xyL~td`>(&A zMFZyBrhgJ;BKYs$sBl_8D4LLaKR|K52xtVy!<=6i4yB69W^%>o+nTS3P}&dS%%fi8 zyjOx=X4Lj9Wk)tpj(ztBy(mtuNGATidC=gbb#Ms%32-lvs=9Dx*~xaWP6FGyf#|*M z1=J{TzgHz~9m1qWYXC3wv~c` zFNJbY623-SNw zW@)aSkB-0X1ba?FVmj{)8X^Y8f-)SHSOLe+j|3ZD=vVx6^=H(Gw>SYsF<>`~BtU9D z`rkkxh@%-!7m=H=&;Ja@t$K~rmDlk)=1uT7|A2n8LF)>ZE)TxAfO3xTT$UDv)nRkB)aPe5j}N){Ft61?HQd5=!W68ZUw_|HwuR2H;Y*W+br0z3*ZIuK4JKR>@A zU9a?kSm}`sht*%avARQEFIR_fg5vjH$tUL#%VSq}ypsqgUx7ydBpwI$hx6-F>g)VK zCp2O&+4R1Da>_pz!WfeO-el0ZKB75S6;*+8n$+u%Z`XoLLI;RE0Mz^0 zR21sOARY!|`UP_X+zsKFF@HdRhdb(7%8PbB8PZLSqd*$gaUO|*+W#ow>%lq`ScaB8 z(J#fTL9=J~evj;N9{HsS2%)3}Ub>$6^QQ)$dktazZFYkESzKCzzHHpo9mI-xRue>iMQgFEzx0+@+Z|R>?gs zQ%^`cFI>;@q(2%b6vRLr^g0<7g}y8@7zaV@&SW+K_`h7W1!~3}+;Y1y2c5^d?Jimk zXkCQ{8;4^iWQq_#MhT#oBNAq6Q}o#oceFc)B!bveFbt&I_V`%#^I}^=eSLOL&WgEX z=$7{OdHR(2u_e8$44&ejl24X7>Q*|U=r`?q#(cLCZHyaAEK_FNb6Efqx5tn5^`RR@ zd&vFrd-E*Ha5}XV`Cd6G`B8{)4f!}&dZ(vW;JX%HmJRivcsgIUu-4lo?|#?v^==ar zPxatiz72z`Y)fp;bJ+%8-Ep^>$*@Z|SlYqKse-S{d3+(q`fybnF(b*=3@-NF1>GuH z2g4V?%RIH`3+!Ztee?WW}sfd!vpUHg)nlQmV* z%Zh%G(2BJjfQGO|qi^QXh0SlptAFh&xpgWn`$-8vh_RwApdfqL4ZbR7_ zVUVD0RxIzvjQU&H#bmf1+A9_4O0PWlk=dbdak{k2r`tq$RQu$IbN25ok8K;W)_}=T z0hB3(=+yF2@CHv~DL#R7&GwV0HcVb=zQ|onocx3`(#o+S-?aC>XNFS zdnDk$6vS137UB{k{xQ^A+vw^07@N`ajsO7W+6X>Ol9XRrbd9}80g{&qIC2v82-lbY z8hQFnvZxBw9KxJV1L(6KI#d~|tn~s)rzA)d?+a-tH;KD5L=TWzJIo)40r^WfT=!>m zU(9{`)|=?$;80dkF@3na?Fgl!jYc9lyhz6$+kcxH_xJL z{V-vUPqg$PEx~ezcpI1PB!Bj-J892x&WH6PS+__B!Y26hptBEmL^9~yIEjnc>6nWO z3%5FCU;10kj1B=$;>-E7X4ayX%*Fad>ISTZ9A+O6(lGav`)-fqKx}_9Z>72v1)~pO z_iv=^LcK&LD%@jsJP$vBDy$tZ(PKpsO=1~*Dl7H@`IO9@0e=y1SQAD?Fv;ggnmHB@ z&eOxQ8<7roRuG4av&=MC_o*Qa$dFD8GWKL3U~>HB z1{#`bsq^RMIzFm}3Om%*C#&_S7UsV)>yXM`CD)Jp>U5wm5zPd0^{!)<5n&GfJ2CA> z5A#VHF?IyA30Mi%qn1Rfk1!DiS5YX?35fZ9SEgu(r>6JpNUfpX8YobAFVRL+T63zA zT!D+tqrHkm6T>ivvw$ng2$iIxmS{>~|Gr-@6ca4gu!w;&lHNcu zK(#Pdve44f4!&NyrvZ(F+R}%q`MeA&I;29S6r0_HZw9jfYLN;4A}OBkUz>=7 zk7UPSoP?qrVE*sF8W=FbaFO`)dV+8~<3IkAxTD^`Cdd`L!V80yoL^rjbA<38Ht1UV z3;Eu`rHS<#V{%mRZ;)0iq)KGWroIuXKqd8X|60z$5zz!fev#feG5`f7ZAb+$91IM5 zA2Ey0Kl8szR{v&V87rii1f7Chs0cCep%A@^aHg0yg#Hn(b8dJQja-kmRhqEsi4!!p z2#s|jP__2~6)n@OKl{HNorO32qh9|{&)xd3elr=3MN`ZR{nN+WyJt|~&^kIgMLZjk z4umOasB91LDh{@hDdQ=8Fg=><&^X*#KWtieP7dn}Z=D|EB$OGqnng zIP_)0X0<dh}uv5*i@B(4`&wkeloNOEN7puIW-~flpng?NVpOvro({r zcmPtw(276*#lH#E@|S;8>xddisQ&;cgR!;rtV*Qx_m}fkJ!txWhm_;5)esvaIx?j1 zNtgT@xM?S4>dG#6n_Ib;g<1S_Wq2O`F}$gnS?2S|$*t~#Y#JTJv#Fj{rj%pV#}cn( z9$Tc-W#eM8;j>#?iH*zVkZJFip;YMn$?{m&gSsgft2yRlRu2|i7IY_BuN-e#&e|wl zUpZSCeq7acjPwyKhg9q81Srrap|XsGd6pCp!p`5)AYVmbB!E1kmI4qp3UbI%BNHKj z#_UIre!V>$`hT&;RX+B2FK6`V|2`~E_!}%fMiIXWyzOH;snF*$%4PjGgJ_dKII@bg(mnL;l>%?b?!*ql7zv^Vs z=%Sbdfn__I*=z#UBp1#l(!T?+o;Q*SRL=1wB*_{G{C#QZL0!`2q@$B!A>ZjPq}#cM z&17kDI#*F}!}DUt%c43az~8YjKo1TDD54%?A1tTd(G@Z#tu>Tl-Xp$`>t} z&s&DvF_7u%0Q5j_DT>|v@bshGUBTAzkWruZ!El0T~2iB^01?r4%hY688Oq-=XVVpbPR4 z)f>>TzS)jooo*A=1Q2*YMTF_V!?S^<5oXehP$)3~M;<7b`9}8-L|-9;^EPZCd>nau z%1;E6cE8|IeodWU0%r+K%k=1)f>=hZ^F$F~DS+h*ToDPaz!OA5!oY#H5^Vx(vs--= zF7aa!0Ug&Y@FlcnesI*B4Zq-bG(Hp7)H#(AEPJWS1a%T6e*WK)H~w#JJfXIG`e=jl zLcaZKv)i2RZwZ|32gnE_`_Tz%3zPX!ucT~Nk3i8xU#8ix${$EPSk^BO|7QeW&3d6T z<8=6=ok{o&A+X7-lKzIvY0`fCj(+~X@;n?Ia(^gR{09bV-@bi&4B)8)wK4ejOMOQd z6~@*7rDZm2?mG_h8ydxaw9L#lxkL8u^iX0d$I+w2Inw~~k&Hl;&0@W;J9Odpf3(Uz z3VFnPm-4Hsei|8BN5%=jL3<9vK5Bz43gaOb6U_#+PnfwEF826u4Ime)U@#Ew_0o<$Cqz z?0R)l(qSbv_Yw(msJAhaBh0D^@rGzt=oZ=bEd+zt062v9#70L;dXu4npyepScnRaC zd-$g!*GwQ77SoY_Ej(fW7ZZw5D)KBDY8+5Nd-@#y|J+4ye9p^!#H;qJy~m$z?a0bwrFj z4V>$DoRMFijflDy+wfZlX}o*?z7|}x$6^boWE+uz?eaPhEaS%?9n4ZJ7i%6rd42g| z_LesG@#BwYmvyVdnfy(UNB=tFhkg|d;Ilz1&6TB{*V7%ZUnBP=Sr?g{(se68M`tX& z?`?Xh=SbV=gy`dxk(!AIjohz7C)_r#4^E^k2Ro&Y`UF|p?GC}vG9W(IiJ}~a1h^?Q zV`W3@9?fo)H&UYaXSQAud}qExB4xMtHA;hwr00c%V5^ z;`Q#Y&Aif-2X}lHCZJfp%Gxs1)lO#?i?JhYl**m9*=_;1IV5x~Q)0NxoVKZOSC9IH z*{BscPk5rnPcAMlu9(OW8K+F=)Exf(vd*+>W-z`&W&<+PxeKPeF_0JjMUf7vz@yZ0%%3JwaosTU#7ZF$9>mOxlBXO94fc~- zTwJ6>B~Tt6BhFo`F^m}%k!+S-%g;$EJY=FNgnlwsW(gB^iKB~*KMDyM8Eh*54RdPw zuYHt5^*?RHsb5zYeSuU{1gVh;rtqE+u@(Ifj=7mU&#{`Y-}{rA2L9QzM8tw%n*wLE z6Mj8NhFTFPD87(vmO{T4CXEp6KiLKML(iaJxesQo#)DiT5r8Q3W-TuyFlsRfRPO-p zf$85#ZXx4LGlfL8Y|yka)dfa z3+ozY9$iUVy09Ic=hHRxxPHCh%D$c{s0ClnJ|<9rF96@ zgM+Wie}mJK42mUwpjb`z3=(n4*xq>z))^jD`67Pc?890zfDoF|PWMlPc3gBbYT6Po zKV@Q7fPKo;Gk}#Kih#fV^tzg+<~*#YHZu%PS`G+{#7+h;G>#poY?fmG2GDe%(ro7} zR;7esIoYsnz?&!m;-NFBo2(fzM1tmuM-j_KHV+(?j_}Kh;&GE;PrUhH`MQ;NC$QXZ zRAxmvkB@;D(ECCGBn$M%Psyp?G(5(*iOf_*0jdJ%E!uH0@C6M07%X@a#xO_BOTg;r z#_JR~VuMKs;wItAwZ{^b)hGK%k~{|HkZ`MnjRe~J@JO&T4!ZvhJa#?k_Qb1X(wvfv zgJ6s%L}KRUx9*pg%~JUln?n}lY%?l@@j(?XPHtI28XEr+NU$%B>wm2_{c;mI$_O_F zi*7wcyh!kVB)I*S$axim5{Zh5sX&KNRb#<^h1C9bZsl`N5Aj%HV(UOgjo9bMA35KA zvWx@!LmWRW@mL~4FOkGaM!A-B_=*x60fe$=AiZR>tkly>hd8!u-~KDQ`$#(}8C$yl zzyZ+)ddoi2vqcyuD9*%UeFI^UOn@RoyGW42nn)6O0Ns~7f^FBogtC5bHrob9K`lyXn(FG+70PR13& z!D%YH{c%n52?hcq@yL>C)u^&ytR>x%q`fQ5d}H<%(jP!3z`+CxRnVk9<`Egq1?MLD zo@8DeX%2)=&5ki})==r(JDn$GVDoRTPxfUe?fAg7e2|f`WhE^4P}Tdi-@n&X{|A$5 zRFlyTH;hy;YqJ|Y%{RgCu~BDf6E_vHfH=EQRd8$&QyBVjJR9`gmf#mN0lXqlihIHI z2O23c>Paq+)=0Z_iv%ZB(*ua=#9mJV6Sy`BNMCi3+)2ZVb`$f(Fp+qS_die8&`n*J zjz(^R@Tt+|(3weNBRS3x0hLhiTDOq+U`@FQ;9Go$N#ki?AUmvjvROaSWS?P#kiw=+ zM(jg(A%CHPCEC$aFvgg$^2HSBR-gxa6KevFo<<4=imPr#_8@gD2I*h`S3Cys6JdnK z7{8-dxI`C#; zAr9PB=tKUH2gPk$vQbd$Rr7hcAHh42QX1Ye1t`44(EwY>1xbY)H?m3EM;FL2neY!& zA&cbo>({-b5GoUq9uqLmiliMly@wIr6cJxZ?@Y(_QYNm{+4l#$*hECgU%~(*O22+E z15Nh?;c2BF5g;ydLk?MZLEj}563Q^9$<5*=UMAo%@X@I+j*p}vQlNLt5L+bnUI$YH$v^3ey$F}`UBWDs78+*Z< z5bVRlKdxPS!J9Pb!q%l#XN|8z=8+R9Qirw)(9+LPJCU|vF)h;@E zD8Z<9fe?D$y&{Zhuq%02yT7z1C;`nI#4-b0$^Y2H8e195q9;t7nHi>py#XG^HAM>; z*Pv4XK?m_`1GlvTsrjJ2qQHqG(9}AxLfH9k|NnnX^KS#2en21k^4ol90OlFsGM#n6 zwbKE>q6|3ySkN~cIMaTw?sqOIVS-jX_|36c2;7Pp4_xmK+NK6NEE%{?rV7*}233Ep zEiEg6=LUo3@0R(^T?HIrS^-?C4m`hL0&pY{bgBbrO+D}+?F+!vQ>c1Ri{XGM=xmHB zR`tJc-`|pWm<@CqCTMaNbbtx4umP>31+^Z59p#V*pFurQ&@Tv+pK{{#6$sOAq-gC1NW(ddiS-!_1}8pvwmFP|8FVq44;?4sR7U! zA86Gruo7JjbUkP-259gaIF=16#(_CM>&}jipzS#~@5?hBn3_K0x%_KTFN9%-%A8~} hZ)XAOCNw7YPrl`{*U|Uyy0?Su@^tlcS?83{1OQRydLIA) literal 0 HcmV?d00001 From 52a59a57ff2781dfa2bd8d7a899c2b36333e3d30 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 12 Dec 2024 22:51:37 -0500 Subject: [PATCH 32/84] creacion archivo training --- src/comparative_analysis/training/training.py | 10 ++++++++++ 1 file changed, 10 insertions(+) create mode 100644 src/comparative_analysis/training/training.py diff --git a/src/comparative_analysis/training/training.py b/src/comparative_analysis/training/training.py new file mode 100644 index 000000000..597a45c32 --- /dev/null +++ b/src/comparative_analysis/training/training.py @@ -0,0 +1,10 @@ +import pandas as pd + +# Ruta del archivo de Excel +ruta_excel = r"C:\Users\cdgn2\OneDrive\Escritorio\Maestría\Maestria\Metodologias Agiles\Proyecto\Comparative-analysis-of-products\src\comparative_analysis\database\Adidas_etiquetado.xlsx" + +# Crear el DataFrame +df = pd.read_excel(ruta_excel, header=0) + +# Mostrar las primeras filas del DataFrame +print(df.head()) \ No newline at end of file From 45e87cef3722266a8e4374d109e0a99ed2314fe5 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 12 Dec 2024 23:01:58 -0500 Subject: [PATCH 33/84] =?UTF-8?q?c=C3=B3digo?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- src/comparative_analysis/training/test.ipynb | 1056 ++++++++++++++++- src/comparative_analysis/training/training.py | 95 +- 2 files changed, 1148 insertions(+), 3 deletions(-) diff --git a/src/comparative_analysis/training/test.ipynb b/src/comparative_analysis/training/test.ipynb index 26cbdbf89..365548f61 100644 --- a/src/comparative_analysis/training/test.ipynb +++ b/src/comparative_analysis/training/test.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -87,6 +87,1060 @@ "# Mostrar las primeras filas del DataFrame\n", "print(df.head())" ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Información del elemento encontrado:\n", + " Weight Upper_Material Midsole_Material Outsole Cushioning_System \\\n", + "0 183 g Synthetic NaN Textile rubber Lightstrike Pro \n", + "\n", + " Drop__heel-to-toe_differential_ Pronation_Type Usage_Type Gender \\\n", + "0 6 mm NaN Racing Woman \n", + "\n", + " Available_Sizes Width Additional_Technologies \\\n", + "0 NaN NaN ENERGYRODS 2.0, Waterproofing, Recyclable mate... \n", + "\n", + " id regularPrice undiscounted_price \\\n", + "0 08sjncACSjSvg2t9DS73 $1.299.950 $909.965 \n", + "\n", + " details \\\n", + "0 {Horma clásica} {Parte superior sintética} {Fo... \n", + "\n", + " description category \\\n", + "0 Los Adizero Adios Pro 3 son la máxima expresió... Mujer • Running \n", + "\n", + " characteristics \n", + "0 NaN \n" + ] + } + ], + "source": [ + "# Buscar información de un elemento basado en un criterio\n", + "def buscar_elemento(df, columna, valor):\n", + " # Filtrar el DataFrame por el valor especificado\n", + " resultado = df[df[columna] == valor]\n", + " \n", + " # Verificar si se encontró algún resultado\n", + " if not resultado.empty:\n", + " print(\"Información del elemento encontrado:\")\n", + " print(resultado)\n", + " else:\n", + " print(f\"No se encontró ningún elemento donde '{columna}' sea '{valor}'.\")\n", + "\n", + "# Ejemplo de uso: Buscar un elemento donde el id sea \"12345\" (ajusta según tu DataFrame)\n", + "buscar_elemento(df, columna=\"id\", valor=\"08sjncACSjSvg2t9DS73\")" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['Weight', 'Upper_Material', 'Midsole_Material', 'Outsole', 'Cushioning_System', 'Drop__heel-to-toe_differential_', 'Pronation_Type', 'Usage_Type', 'Gender', 'Available_Sizes', 'Width', 'Additional_Technologies', 'id', 'regularPrice', 'undiscounted_price', 'details', 'description', 'category', 'characteristics']\n" + ] + } + ], + "source": [ + "print(df.columns.tolist())" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import re\n", + "\n", + "# Supongamos que tu DataFrame se llama df\n", + "\n", + "# Convertir Weight a solo números y luego a float, manejando errores\n", + "df['Weight'] = df['Weight'].astype(str).str.extract('(\\d+\\.?\\d*)').astype(float, errors='ignore')\n", + "# Si quieres forzar que valores no numéricos sean NaN\n", + "df['Weight'] = df['Weight'].astype(str).str.extract('(\\d+\\.?\\d*)')\n", + "df['Weight'] = pd.to_numeric(df['Weight'], errors='coerce')\n", + "\n", + "# Drop__heel-to-toe_differential_\n", + "df['Drop__heel-to-toe_differential_'] = df['Drop__heel-to-toe_differential_'].astype(str).str.extract('(\\d+\\.?\\d*)')\n", + "df['Drop__heel-to-toe_differential_'] = pd.to_numeric(df['Drop__heel-to-toe_differential_'], errors='coerce')\n", + "\n", + "# regularPrice y undiscounted_price\n", + "df['regularPrice'] = df['regularPrice'].astype(str).str.replace(r'[^0-9.,]', '', regex=True)\n", + "df['undiscounted_price'] = df['undiscounted_price'].astype(str).str.replace(r'[^0-9.,]', '', regex=True)\n", + "\n", + "df['regularPrice'] = df['regularPrice'].str.replace(r'\\.', '', regex=True).str.replace(',', '.')\n", + "df['undiscounted_price'] = df['undiscounted_price'].str.replace(r'\\.', '', regex=True).str.replace(',', '.')\n", + "\n", + "# Convertir a numérico con manejo de errores\n", + "df['regularPrice'] = pd.to_numeric(df['regularPrice'], errors='coerce')\n", + "df['undiscounted_price'] = pd.to_numeric(df['undiscounted_price'], errors='coerce')\n", + "\n", + "# Eliminar las columnas solicitadas\n", + "cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type']\n", + "df = df.drop(columns=cols_to_drop, errors='ignore')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Información del elemento encontrado:\n", + " Weight Upper_Material Midsole_Material Outsole Cushioning_System \\\n", + "0 183.0 Synthetic NaN Textile rubber Lightstrike Pro \n", + "\n", + " Drop__heel-to-toe_differential_ Usage_Type Gender Width \\\n", + "0 6.0 Racing Woman NaN \n", + "\n", + " Additional_Technologies id \\\n", + "0 ENERGYRODS 2.0, Waterproofing, Recyclable mate... 08sjncACSjSvg2t9DS73 \n", + "\n", + " regularPrice undiscounted_price \n", + "0 1.299950e+09 909965 \n" + ] + } + ], + "source": [ + "buscar_elemento(df, columna=\"id\", valor=\"08sjncACSjSvg2t9DS73\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['Weight', 'Upper_Material', 'Midsole_Material', 'Outsole', 'Cushioning_System', 'Drop__heel-to-toe_differential_', 'Usage_Type', 'Gender', 'Width', 'Additional_Technologies', 'id', 'regularPrice', 'undiscounted_price']\n" + ] + } + ], + "source": [ + "print(df.columns.tolist())" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightUpper_MaterialMidsole_MaterialOutsoleCushioning_SystemDrop__heel-to-toe_differential_Usage_TypeGenderAvailable_SizesWidthAdditional_TechnologiesidregularPriceundiscounted_price
0183.0SyntheticNaNTextile rubberLightstrike Pro6.0RacingWomanNaNNaNENERGYRODS 2.0, Waterproofing, Recyclable mate...08sjncACSjSvg2t9DS731299950909965.0
1289.0adidas PrimeknitBOOSTStretchweb with Continental Better RubberLinear Energy PushNaNRunningWomanNaNNaNParley Ocean Plastic, waterproofing0AqheRhKT2lhm7puBVCF799950NaN
2166.0Parte superior de malla técnicaNaNSuela de caucho Continental™Amortiguación Lightstrike Pro6.0RunningMujerCOL 36 1/2NaNContiene al menos un 20 % de material reciclad...0IgYTzUHkE7zIdcVyFCK1049950629970.0
3200.0Parte superior de mallaNaNSuela de caucho Continental RubberAmortiguación Lightstrike Pro6.0RunningHombreCO 40NaNVarillas ENERGYRODS, Talón Slinglaunch, Contie...0MU8aKCnCUZv2r9aLD671049950734965.0
4319.0Parte superior textilMediasuela CloudfoamSuela de TPUCloudfoam6.0RunningHombreCO 40NaNNaN0Q6DNSlvsjBzy3AQeY2y279950NaN
\n", + "
" + ], + "text/plain": [ + " Weight Upper_Material Midsole_Material \\\n", + "0 183.0 Synthetic NaN \n", + "1 289.0 adidas Primeknit BOOST \n", + "2 166.0 Parte superior de malla técnica NaN \n", + "3 200.0 Parte superior de malla NaN \n", + "4 319.0 Parte superior textil Mediasuela Cloudfoam \n", + "\n", + " Outsole Cushioning_System \\\n", + "0 Textile rubber Lightstrike Pro \n", + "1 Stretchweb with Continental Better Rubber Linear Energy Push \n", + "2 Suela de caucho Continental™ Amortiguación Lightstrike Pro \n", + "3 Suela de caucho Continental Rubber Amortiguación Lightstrike Pro \n", + "4 Suela de TPU Cloudfoam \n", + "\n", + " Drop__heel-to-toe_differential_ Usage_Type Gender Available_Sizes Width \\\n", + "0 6.0 Racing Woman NaN NaN \n", + "1 NaN Running Woman NaN NaN \n", + "2 6.0 Running Mujer COL 36 1/2 NaN \n", + "3 6.0 Running Hombre CO 40 NaN \n", + "4 6.0 Running Hombre CO 40 NaN \n", + "\n", + " Additional_Technologies id \\\n", + "0 ENERGYRODS 2.0, Waterproofing, Recyclable mate... 08sjncACSjSvg2t9DS73 \n", + "1 Parley Ocean Plastic, waterproofing 0AqheRhKT2lhm7puBVCF \n", + "2 Contiene al menos un 20 % de material reciclad... 0IgYTzUHkE7zIdcVyFCK \n", + "3 Varillas ENERGYRODS, Talón Slinglaunch, Contie... 0MU8aKCnCUZv2r9aLD67 \n", + "4 NaN 0Q6DNSlvsjBzy3AQeY2y \n", + "\n", + " regularPrice undiscounted_price \n", + "0 1299950 909965.0 \n", + "1 799950 NaN \n", + "2 1049950 629970.0 \n", + "3 1049950 734965.0 \n", + "4 279950 NaN " + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightUpper_MaterialMidsole_MaterialOutsoleCushioning_SystemDrop__heel-to-toe_differential_Usage_TypeGenderAvailable_SizesWidthAdditional_TechnologiesidregularPriceundiscounted_price
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [Weight, Upper_Material, Midsole_Material, Outsole, Cushioning_System, Drop__heel-to-toe_differential_, Usage_Type, Gender, Available_Sizes, Width, Additional_Technologies, id, regularPrice, undiscounted_price]\n", + "Index: []" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a=df[df['Weight'] > 1000]\n", + "a" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Silhouette Score: -0.10727046484513526\n", + "Davies-Bouldin Score: 3.820317442353896\n", + " id cluster\n", + "0 08sjncACSjSvg2t9DS73 5\n", + "1 0AqheRhKT2lhm7puBVCF 5\n", + "2 0IgYTzUHkE7zIdcVyFCK 5\n", + "3 0MU8aKCnCUZv2r9aLD67 5\n", + "4 0Q6DNSlvsjBzy3AQeY2y 4\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "from sklearn.cluster import KMeans\n", + "from sklearn.metrics import silhouette_score, davies_bouldin_score\n", + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "# Suponiendo que ya tienes el DataFrame limpio \"df\"\n", + "# Asegúrate de que 'id' está presente y el resto de las columnas ya están procesadas\n", + "\n", + "# Separar la columna ID\n", + "ids = df['id']\n", + "# Asumiendo que tu DataFrame se llama df y que ya eliminaste o separaste el 'id'.\n", + "X = df.drop(columns=['id'], errors='ignore')\n", + "\n", + "# Reemplazar valores nulos por 0\n", + "X = X.fillna(0)\n", + "\n", + "# Si piensas hacer get_dummies y luego escalar:\n", + "X = pd.get_dummies(X, dummy_na=True)\n", + "X = X.fillna(0) # Si tras get_dummies quedan nulos (por ejemplo, dummy_na=True los evita, pero por si acaso)\n", + "\n", + "from sklearn.preprocessing import StandardScaler\n", + "scaler = StandardScaler()\n", + "X_scaled = scaler.fit_transform(X)\n", + "\n", + "# Elegir un número de clusters (ejemplo: k=3, puedes ajustar según tu criterio)\n", + "k = 8\n", + "kmeans = KMeans(n_clusters=k, random_state=42)\n", + "clusters = kmeans.fit_predict(X_scaled)\n", + "\n", + "# Agregar el cluster asignado a un DataFrame junto con el ID\n", + "df_clusters = pd.DataFrame({'id': ids, 'cluster': clusters})\n", + "\n", + "# Evaluar la calidad del clustering con métricas no supervisadas\n", + "sil_score = silhouette_score(X_scaled, clusters)\n", + "db_score = davies_bouldin_score(X_scaled, clusters)\n", + "\n", + "print(\"Silhouette Score:\", sil_score)\n", + "print(\"Davies-Bouldin Score:\", db_score)\n", + "\n", + "# df_clusters mostrará el ID de cada producto y el cluster al que pertenece\n", + "# Esto te permitirá saber en qué grupo quedó cada producto.\n", + "print(df_clusters.head())" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAAHXCAYAAACRT72EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7sklEQVR4nO3de3zO9f/H8ce1sYPD5jgMc875EKLJISyjJXQkPyGiIqGE5BBF+aYUosM3dFCoHHI+DSWSw5xzyimMhM0cZof374/PdxeXDRvbPjs877fbdbPr83lfn+t1fWb13Nv74DDGGEREREREJEXc7C5ARERERCQzUpAWEREREbkDCtIiIiIiIndAQVpERERE5A4oSIuIiIiI3AEFaRERERGRO6AgLSIiIiJyBxSkRURERETugIK0iNy1tWvXMnLkSCIiIuwuRUREJN0oSIvIXTly5Aht27Ylb968+Pr6pst7rl69GofDwerVq9P0faZNm4bD4eDw4cMpfu2IESNwOBypX9RdOHz4MA6Hg2nTptldSoZxN9/jjK506dJ06dLF7jJcdOnShTx58thdhkiqUZAWyaYSAoTD4eDXX39NdN4YQ8mSJXE4HDzyyCNJXiMmJoann36aLl260K9fv0TnP/nkE4W2ZFq9ejWPPfYYRYsWxcPDAz8/P1q3bs1PP/1kd2lyE4sWLWLEiBF2lyEiNlKQFsnmvLy8mDFjRqLja9as4e+//8bT0/Omr921axft27dn3LhxSZ5XkE6e4cOH07RpU3bu3EnPnj2ZMmUKAwYMICoqiscffzzJ74/Yb9GiRbz11lt2l3FTe/fu5fPPP7e7DJEsLYfdBYiIvR5++GFmz57Nxx9/TI4c1/6TMGPGDOrUqcOZM2du+tpatWpRq1atdKgy6/rhhx8YOXIkTzzxBDNmzCBnzpzOcwMGDGDp0qXExMTYWKH9Ll68SO7cue0uI10YY7hy5Qre3t53fa1b/RKcli5dukSuXLlseW+R9KYeaZFsrkOHDvz7778sX77ceezq1av88MMPPPPMM0m+Jj4+nvHjx1O1alW8vLwoUqQIPXv25Ny5c842pUuXZteuXaxZs8Y5hOTBBx90nv/rr7948sknKVCgALly5eL+++9n4cKFid7r77//pm3btuTOnRs/Pz/69etHdHR0knXNnj2bOnXq4O3tTaFChfi///s/jh8/nqz7sGvXLpo1a4a3tzclSpTg7bffJj4+Psm2ixcvplGjRuTOnZu8efMSEhLCrl27kvU+Nxo6dCgFChTgyy+/dAnRCYKDg12G1pw+fZpu3bpRpEgRvLy8qFmzJtOnT0/0uvPnz9OlSxd8fX3Jly8fnTt35vz580nWsGrVKufnyZcvH23atGHPnj23rT1hrPrMmTN54403KFq0KLlz5+bRRx/l2LFjLm1/+eUXnnzySQICAvD09KRkyZL069ePy5cvu7RLGEN78OBBHn74YfLmzUvHjh1TdI2bSc3vcZcuXZg0aRKA8+/39WPik/MzAtbPySOPPMLSpUupW7cu3t7efPrpp857O2vWLN566y2KFy9O3rx5eeKJJ4iIiCA6Opq+ffvi5+dHnjx56Nq1a6KfixvHSCcM51q3bh39+/encOHC5M6dm3bt2vHPP/+4vHbevHmEhITg7++Pp6cn5cqVY9SoUcTFxbm0e/DBB6lWrRqbN2+mcePG5MqVizfeeCNZ348EYWFhFC5cmAcffJCoqKgUvVbEbuqRFsnmSpcuTWBgIN999x2tWrUCrBARERFB+/bt+fjjjxO9pmfPnkybNo2uXbvSp08fDh06xMSJE9m6dSvr1q0jZ86cjB8/npdffpk8efIwZMgQAIoUKQLAqVOnaNCgAZcuXaJPnz4ULFiQ6dOn8+ijj/LDDz/Qrl07AC5fvkzz5s05evQoffr0wd/fn6+//ppVq1Ylqimhnvvuu48xY8Zw6tQpPvroI9atW8fWrVvJly/fTe9BeHg4TZs2JTY2lkGDBpE7d24+++yzJHsFv/76azp37kxwcDDvvfcely5dYvLkyTRs2JCtW7dSunTpZN/7/fv38+eff/Lcc8+RN2/e27a/fPkyDz74IAcOHKB3796UKVOG2bNn06VLF86fP88rr7wCWL2abdq04ddff+WFF16gcuXKzJkzh86dOye65ooVK2jVqhVly5ZlxIgRXL58mQkTJvDAAw+wZcuWZH2ed955B4fDwcCBAzl9+jTjx48nKCiIsLAw5z2cPXs2ly5d4sUXX6RgwYJs3LiRCRMm8PfffzN79myX68XGxhIcHEzDhg15//33nb2bKbnGjVL7e9yzZ09OnDjB8uXL+frrrxNdIzk/Iwn27t1Lhw4d6NmzJ88//zwVK1Z0nhszZgze3t4MGjSIAwcOMGHCBHLmzImbmxvnzp1jxIgRbNiwgWnTplGmTBmGDRt22+/Xyy+/TP78+Rk+fDiHDx9m/Pjx9O7dm5kzZzrbTJs2jTx58tC/f3/y5MnDqlWrGDZsGJGRkfznP/9xud6///5Lq1ataN++Pf/3f//n/DlPjj/++IPg4GDq1q3LvHnzUqUnXiRdGRHJlqZOnWoA88cff5iJEyeavHnzmkuXLhljjHnyySdN06ZNjTHGlCpVyoSEhDhf98svvxjAfPvtty7XW7JkSaLjVatWNU2aNEn03n379jWA+eWXX5zHLly4YMqUKWNKly5t4uLijDHGjB8/3gBm1qxZznYXL1405cuXN4AJDQ01xhhz9epV4+fnZ6pVq2YuX77sbLtgwQIDmGHDht3yXiTU8/vvvzuPnT592vj6+hrAHDp0yFljvnz5zPPPP+/y+vDwcOPr6+tyfPjw4eZ2/4mdN2+eAcyHH354y3YJEu7HN9984zx29epVExgYaPLkyWMiIyONMcbMnTvXAGbs2LHOdrGxsaZRo0YGMFOnTnUer1WrlvHz8zP//vuv89i2bduMm5ubefbZZ29ZT2hoqAFM8eLFne9tjDGzZs0ygPnoo4+cxxL+bl1vzJgxxuFwmCNHjjiPde7c2QBm0KBBidon9xpJSYvvca9evZL8HqfkZ6RUqVIGMEuWLHFpm3Bvq1WrZq5eveo83qFDB+NwOEyrVq1c2gcGBppSpUq5HCtVqpTp3Lmz83nCz3xQUJCJj493Hu/Xr59xd3c358+fdx5L6l737NnT5MqVy1y5csV5rEmTJgYwU6ZMSdQ+KZ07dza5c+c2xhjz66+/Gh8fHxMSEuJyTZHMREM7RISnnnqKy5cvs2DBAi5cuMCCBQtuOqxj9uzZ+Pr68tBDD3HmzBnno06dOuTJk4fQ0NDbvt+iRYuoV68eDRs2dB7LkycPPXr04PDhw+zevdvZrlixYjzxxBPOdrly5aJHjx4u19u0aROnT5/mpZdewsvLy3k8JCSESpUqJTlk5MZ67r//furVq+c8VrhwYeeQggTLly/n/PnzdOjQweWzu7u7U79+/WR99utFRkYCJKs3OqHOokWL0qFDB+exnDlz0qdPH6KiolizZo2zXY4cOXjxxRed7dzd3Xn55Zddrnfy5EnCwsLo0qULBQoUcB6vUaMGDz30EIsWLUpWXc8++6zLZ3jiiScoVqyYy+uv72m8ePEiZ86coUGDBhhj2Lp1a6JrXl/7nV7jeun5PU7pz0iZMmUIDg5O8lrPPvusS+91/fr1Mcbw3HPPubSrX78+x44dIzY29rb19ejRw2UYSqNGjYiLi+PIkSPOY9ff6wsXLnDmzBkaNWrEpUuX+PPPP12u5+npSdeuXW/7vtcLDQ0lODiY5s2b89NPP9k2nlvkbmloh4hQuHBhgoKCmDFjBpcuXSIuLs4lvF5v//79RERE4Ofnl+T506dP3/b9jhw5Qv369RMdr1y5svN8tWrVOHLkCOXLl0+0HvP1//Sd0D6p4wCVKlVKcnm/5NRz4/X2798PQLNmzZK8jo+Pzy3f52btL1y4kKz2R44coUKFCri5ufaBXH/fEv4sVqxYovV6U3LfKleuzNKlS5M10a9ChQouzx0OB+XLl3dZm/no0aMMGzaM+fPnJxonfONGPjly5KBEiRKJ3icl17hRen6PU/ozUqZMmZteKyAgwOV5wlrtJUuWTHQ8Pj6eiIgIChYseMv6brxm/vz5AVzu6a5du3jzzTdZtWqV8xe+BDfe6+LFi+Ph4XHL97zelStXCAkJoU6dOsyaNctlkrNIZqO/vSICwDPPPMPzzz9PeHg4rVq1uumY4vj4ePz8/Pj222+TPF+4cOE0rNJeCRPTvv76a4oWLZrofEoDQaVKlQDYsWPH3ReXgcXFxfHQQw9x9uxZBg4cSKVKlcidOzfHjx+nS5cuiSb8eXp6JvplIaXXuFOp8T1O6c/IrcYFu7u7p+i4Mea29d3utefPn6dJkyb4+PgwcuRIypUrh5eXF1u2bGHgwIGJ7nVKxzV7enry8MMPM2/ePJYsWXLTdepFMgMFaREBoF27dvTs2ZMNGza4TDq6Ubly5VixYgUPPPDAbf8HerOd/UqVKsXevXsTHU/4J+NSpUo5/9y5cyfGGJdr3fjahPZ79+5N1JO4d+9e5/mbKVWqlLMn8sbXXq9cuXIA+Pn5ERQUdMtrJsc999xDxYoVmTdvHh999NFtd3wrVaoU27dvJz4+3iVoJnXfVq5cSVRUlMs1b3XfbvTnn39SqFChZC07d+O9M8Zw4MABatSoAVi/KOzbt4/p06fz7LPPOttdv1LM7dztNdLie3yzv98p+RnJiFavXs2///7LTz/9ROPGjZ3HDx06lCrXdzgcfPvtt7Rp04Ynn3ySxYsXu6zoI5KZaIy0iADWGOXJkyczYsQIWrdufdN2Tz31FHFxcYwaNSrRudjYWJcl1nLnzp3kkmsPP/wwGzduZP369c5jFy9e5LPPPqN06dJUqVLF2e7EiRP88MMPznaXLl3is88+c7le3bp18fPzY8qUKS5LgC1evJg9e/YQEhJyy8/+8MMPs2HDBjZu3Og89s8//yTqUQwODsbHx4fRo0cnubbzjUuIJcdbb73Fv//+S/fu3ZMc37ps2TIWLFjgrDM8PNzlF53Y2FgmTJhAnjx5aNKkibNdbGwskydPdraLi4tjwoQJLtcuVqwYtWrVYvr06S7fp507d7Js2TIefvjhZH2Gr776ymV4yg8//MDJkyedq8Ak9IBe31tqjOGjjz5K1vVT4xpp8T1O+CXjxr/jKfkZyYiSutdXr17lk08+SbX38PDw4KeffuK+++6jdevWLt8XkcxEPdIi4pTU8mg3atKkCT179mTMmDGEhYXRokULcubMyf79+5k9ezYfffSRc3x1nTp1mDx5Mm+//Tbly5fHz8+PZs2aMWjQIOdye3369KFAgQJMnz6dQ4cO8eOPPzp7W59//nkmTpzIs88+y+bNmylWrBhff/11os0ecubMyXvvvUfXrl1p0qQJHTp0cC5/V7p06SS3L7/e66+/ztdff03Lli155ZVXnEujJfQAJ/Dx8WHy5Ml06tSJ2rVr0759ewoXLszRo0dZuHAhDzzwABMnTkzRPX/66afZsWMH77zzDlu3bqVDhw6UKlWKf//9lyVLlrBy5UrnzoY9evTg008/pUuXLmzevJnSpUvzww8/sG7dOsaPH++c8Ne6dWseeOABBg0axOHDh6lSpQo//fRTkuOI//Of/9CqVSsCAwPp1q2bc/k7X1/fZG9/XaBAARo2bEjXrl05deoU48ePp3z58jz//POANYSlXLlyvPbaaxw/fhwfHx9+/PHHROOcb+Vur5EW3+M6deoA0KdPH4KDg3F3d6d9+/Yp+hnJiBo0aED+/Pnp3Lkzffr0weFw8PXXXydr2EhKeHt7s2DBApo1a0arVq1Ys2YN1apVS9X3EElztqwVIiK2u375u1u5cfm7BJ999pmpU6eO8fb2Nnnz5jXVq1c3r7/+ujlx4oSzTXh4uAkJCTF58+Y1gMtSeAcPHjRPPPGEyZcvn/Hy8jL16tUzCxYsSPQ+R44cMY8++qjJlSuXKVSokHnllVecy4glLH+XYObMmebee+81np6epkCBAqZjx47m77//Ttb92L59u2nSpInx8vIyxYsXN6NGjTL//e9/XZZGSxAaGmqCg4ONr6+v8fLyMuXKlTNdunQxmzZtcrZJzvJ311u5cqVp06aN8fPzMzly5DCFCxc2rVu3NvPmzXNpd+rUKdO1a1dTqFAh4+HhYapXr+6ynF2Cf//913Tq1Mn4+PgYX19f06lTJ7N169ZEy98ZY8yKFSvMAw88YLy9vY2Pj49p3bq12b17921rTlii7bvvvjODBw82fn5+xtvb24SEhCRajm737t0mKCjI5MmTxxQqVMg8//zzZtu2bYnquX55tBsl9xo3k9rf49jYWPPyyy+bwoULG4fDkej7nZyfkZv9fCXc29mzZ7scv9nPbcLft3/++cfl2kktf3fjaxPe6/qfp3Xr1pn777/feHt7G39/f/P666+bpUuXJmrXpEkTU7Vq1UT130xS398zZ86YKlWqmKJFi5r9+/cn+1oiGYHDmFT+FVNERLKF1atX07RpU2bPnp2he1hFRNKKxkiLiIiIiNwBBWkRERERkTugIC0iIiIicgc0RlpERERE5A6oR1pERERE5A4oSIuIiIiI3AEFaRERERGRO6CdDdNRfHw8J06cIG/evDgcDrvLEREREZEbGGO4cOEC/v7+zp12b0ZBOh2dOHGCkiVL2l2GiIiIiNzGsWPHKFGixC3bKEino7x58wLWN8bHx8fmakRERETkRpGRkZQsWdKZ225FQTodJQzn8PHxUZAWERERycCSMwxXkw1FRERERO6AgrSIiIiIyB2wNUivXbuW1q1b4+/vj8PhYO7cuS7nT506RZcuXfD39ydXrly0bNmS/fv3u7S5cuUKvXr1omDBguTJk4fHH3+cU6dOubQ5evQoISEh5MqVCz8/PwYMGEBsbKxLm9WrV1O7dm08PT0pX74806ZNS1TvpEmTKF26NF5eXtSvX5+NGzemyn0QERERkczH1iB98eJFatasyaRJkxKdM8bQtm1b/vrrL+bNm8fWrVspVaoUQUFBXLx40dmuX79+/Pzzz8yePZs1a9Zw4sQJHnvsMef5uLg4QkJCuHr1Kr/99hvTp09n2rRpDBs2zNnm0KFDhISE0LRpU8LCwujbty/du3dn6dKlzjYzZ86kf//+DB8+nC1btlCzZk2Cg4M5ffp0Gt0dEREREcnQTAYBmDlz5jif79271wBm586dzmNxcXGmcOHC5vPPPzfGGHP+/HmTM2dOM3v2bGebPXv2GMCsX7/eGGPMokWLjJubmwkPD3e2mTx5svHx8THR0dHGGGNef/11U7VqVZd6nn76aRMcHOx8Xq9ePdOrVy+XWvz9/c2YMWOS/RkjIiIMYCIiIpL9GhERERFJPynJaxl2jHR0dDQAXl5ezmNubm54enry66+/ArB582ZiYmIICgpytqlUqRIBAQGsX78egPXr11O9enWKFCnibBMcHExkZCS7du1ytrn+GgltEq5x9epVNm/e7NLGzc2NoKAgZxsRERERyV4ybJBOCMSDBw/m3LlzXL16lffee4+///6bkydPAhAeHo6Hhwf58uVzeW2RIkUIDw93trk+RCecTzh3qzaRkZFcvnyZM2fOEBcXl2SbhGskJTo6msjISJeHiIiIiGQNGTZI58yZk59++ol9+/ZRoEABcuXKRWhoKK1atbrtdo0ZxZgxY/D19XU+tKuhiIiISNaRoRNpnTp1CAsL4/z585w8eZIlS5bw77//UrZsWQCKFi3K1atXOX/+vMvrTp06RdGiRZ1tblzFI+H57dr4+Pjg7e1NoUKFcHd3T7JNwjWSMnjwYCIiIpyPY8eOpfwmiIiIiEiGlKGDdAJfX18KFy7M/v372bRpE23atAGsoJ0zZ05WrlzpbLt3716OHj1KYGAgAIGBgezYscNldY3ly5fj4+NDlSpVnG2uv0ZCm4RreHh4UKdOHZc28fHxrFy50tkmKZ6ens5dDLWboYiIiEjWYusW4VFRURw4cMD5/NChQ4SFhVGgQAECAgKYPXs2hQsXJiAggB07dvDKK6/Qtm1bWrRoAVgBu1u3bvTv358CBQrg4+PDyy+/TGBgIPfffz8ALVq0oEqVKnTq1ImxY8cSHh7Om2++Sa9evfD09ATghRdeYOLEibz++us899xzrFq1ilmzZrFw4UJnbf3796dz587UrVuXevXqMX78eC5evEjXrl3T8Y7d3ogR4O4OQ4cmPjdqFMTFWW1ERERE5C6lwyoiNxUaGmqARI/OnTsbY4z56KOPTIkSJUzOnDlNQECAefPNN51L1iW4fPmyeemll0z+/PlNrly5TLt27czJkydd2hw+fNi0atXKeHt7m0KFCplXX33VxMTEJKqlVq1axsPDw5QtW9ZMnTo1Ub0TJkwwAQEBxsPDw9SrV89s2LAhRZ83PZa/GznSGLD+TM5xEREREbkmJXnNYYwxNub4bCUyMhJfX18iIiLSdJjHqFEwbBgMHw5vvAHvvWc9Hzky6Z5qEREREbGkJK/ZOrRD0kZCWB42DN56y/r6rbcUokVERERSU6aYbCgpN2QIOBzXni9aBL/8Yl89IiIiIlmNgnQW9c47YIw18RDg99+hcWNo2xb27LG1NBEREZEsQUE6C0oYIz1yJMTGwoAB1nGHA+bNg2rVoGdP+N8GkSIiIiJyBxSks5jrQ3TCmOixY63nxkClShAfD599BuXLWxMSL1ywt2YRERGRzEhBOouJi0t6dY6hQ63jTz8Na9dC/fpw6ZJ1rEIFmDIFYmLsqVlEREQkM9Lyd+kovZa/Sw5j4McfYfBgSNgTp2JFePddaNPGdaKiiIiISHaRkrymHulsyuGAJ56AXbtgwgQoVAj27oV27aBRI1i/3u4KRURERDI2BelszsMDeveGgwetJfO8vWHdOmjQwAra+/bZXaGIiIhIxqQgLQD4+MDbb8P+/dCtG7i5WUM/qla1gvbp03ZXKCIiIpKxKEiLi+LF4YsvYPt2eOQRa/m8SZOgXDlrRZCLF+2uUERERCRjUJCWJFWtCj//DKtWQd26EBVlLatXoQJ8/rkVsEVERESyMwVpuaWmTa1dEb/7DsqUsTZx6dEDatSwgrbWfBEREZHsSkFabsvNDdq3t7YW//BDKFDA+vrRR62gvXGj3RWKiIiIpD8FaUk2T0/o29da4WPgQOv5mjXW5i7t21vHRURERLILBWlJsXz5rI1b9u2Dzp2tNalnzoTKla2gfeaM3RWKiIiIpD0FabljAQEwbRps3QrBwdYW4x99ZK3w8e67cPmy3RWKiIiIpB0FablrNWvCkiWwfDncey9ERlpbj99zD0ydCnFxdlcoIiIikvoUpCXVBAXBpk3wzTdWb/Xff8Nzz0GtWrB4sVb4EBERkaxFQVpSlZsbdOwIe/fC++9b46l37oSHH7aC9ubNdlcoIiIikjoUpCVNeHnBq69aK3m8+ip4eFzb3KVjRzh82O4KRURERO6OgrSkqQIFrJ7pvXutAA0wYwZUrGgF7LNn7a1PRERE5E4pSEu6KF3aGju9eTM0awZXr8IHH1grfLz/Ply5YneFIiIiIimjIC3pqnZtWLHCmnxYvTqcPw8DBlg91N98A/HxdlcoIiIikjwK0pLuHA5o2dJaf3rqVChRAo4ehU6doE4dK2iLiIiIZHQK0mIbd3fo0sXaIfHdd8HHB8LC4KGHrA1etm2zu0IRERGRm1OQFtt5e8PAgdYKH337Qs6csGyZtblL585Wb7WIiIhIRqMgLRlGoULw4Yfw55/Qvr21gctXX1k7JA4caI2nFhEREckoFKQlwylbFr77DjZuhCZNIDoaxo61Vvj48EPruYiIiIjdFKQlw7rvPggNhZ9/hipVrDWn+/eHSpWsoK0VPkRERMROCtKSoTkc8Mgj1sTDzz+HYsWsXRGfeQbq1bOCtoiIiIgdFKQlU8iRA7p3h/37YdQoyJv32uYujzwCO3faXaGIiIhkNwrSkqnkzg1vvgkHDkDv3lbAXrgQataEbt3g+HG7KxQREZHsQkFaMiU/P5gwAXbvhieesMZLf/klVKgAQ4ZARITdFYqIiEhWpyAtmVqFCjB7Nvz2GzzwAFy+DKNHQ/nyVtC+etXuCkVERCSrUpCWLCEwEH75BebOhYoV4cwZ6NPHWu1j9mxrTWoRERGR1KQgLVmGwwFt2lgTD6dMgSJFrN0Sn3rKCtpdu1oTFZMyahSMGJGu5YqIiEgmpyAtWU6OHNCzpzUhcfhwa4Li77/DtGkwbJjVU329UaOs4+7utpQrIiIimZSCtGRZefJYvcz791vBOiEoT5hgbfZy8uS1ED1yJAwdamu5IiIiksk4jNHo0fQSGRmJr68vERER+Pj42F1OtvPnnzB4sDWO+npDhsDbb9tSkoiIiGQwKclr6pGWbKNSJZgzx5qU6HBcO/7FF9aY6pgY+2oTERGRzEdBWrKd0FBrFY8cOaznp07Biy9C9epWb7X+jUZERESSQ0FaspXrx0THxFiTEQFy5YK9e6FdO2jUCNavt7dOERERyfgUpCXbSGpi4YgR1vNLl6BxY/D2hnXroEEDa8fEfftsLVlEREQyMAVpyTbi4pJenWPoUOt406bWCh/duoGbG/z4I1StCr17w+nT9tQsIiIiGZdW7UhHWrUj89i5EwYNgoULred58sDAgdCvn7UutYiIiGRNWrVD5C5VqwYLFsCqVVCnDkRFWT3XFSpYq3zExtpdoYiIiNhNQVrkFpo2hY0b4bvvoEwZaxOX55+HWrWs3mr9e46IiEj2pSAtchtubtC+PezZAx98APnzw65d8Mgj0KwZ/PGH3RWKiIiIHRSkRZLJ09MaI33wILz+uvV89WqoVw86dIC//rK7QhEREUlPCtIiKZQ/P7z3nrU03rPPWrskfv+9tXNiv37w7792VygiIiLpQUFa5A4FBMD06bBlC7RoYW3wMn48lCtnBe3Ll+2uUERERNKSgrTIXapVC5YutR41a0JEhLV03j33WEE7Ls7uCkVERCQtKEiLpJIWLaze6a++gpIl4e+/oUsXqF3bCtkiIiKStShIi6QiNzfo1MkaPz12LPj6wvbt0LKlFbS3brW7QhEREUktCtIiacDLCwYMsFb46NcPcuaE5cutzV2efRaOHLG7QhEREblbCtIiaahgQWvt6b17rSXyjIGvv4aKFa0l9M6ds7tCERERuVMK0iLpoEwZmDHD2rzlwQchOhr+8x9rhY8PPrCei4iISOZia5Beu3YtrVu3xt/fH4fDwdy5c13OR0VF0bt3b0qUKIG3tzdVqlRhypQpLm3Cw8Pp1KkTRYsWJXfu3NSuXZsff/zRpc3Zs2fp2LEjPj4+5MuXj27duhEVFeXSZvv27TRq1AgvLy9KlizJ2LFjE9U7e/ZsKlWqhJeXF9WrV2fRokWpcyMk26hbF1atsrYXr1rV6pF+9VVrDeoZMyA+3u4KRUREJLlsDdIXL16kZs2aTJo0Kcnz/fv3Z8mSJXzzzTfs2bOHvn370rt3b+bPn+9s8+yzz7J3717mz5/Pjh07eOyxx3jqqafYet2sro4dO7Jr1y6WL1/OggULWLt2LT169HCej4yMpEWLFpQqVYrNmzfzn//8hxEjRvDZZ5852/z222906NCBbt26sXXrVtq2bUvbtm3ZuXNnGtwZycocDnj4Ydi2Df77X/D3h8OHoWNHuO8+K2iLiIhIJmAyCMDMmTPH5VjVqlXNyJEjXY7Vrl3bDBkyxPk8d+7c5quvvnJpU6BAAfP5558bY4zZvXu3Acwff/zhPL948WLjcDjM8ePHjTHGfPLJJyZ//vwmOjra2WbgwIGmYsWKzudPPfWUCQkJcXmf+vXrm549eyb7M0ZERBjAREREJPs1kvVdvGjMO+8YkzevMdYoamNatTJm+3a7KxMREcl+UpLXMvQY6QYNGjB//nyOHz+OMYbQ0FD27dtHixYtXNrMnDmTs2fPEh8fz/fff8+VK1d48MEHAVi/fj358uWjbt26ztcEBQXh5ubG77//7mzTuHFjPDw8nG2Cg4PZu3cv5/43G2z9+vUEBQW51BccHMz69etvWn90dDSRkZEuD5Eb5coFb7xhrfDx8suQIwcsXmxt7vLcc9Z61CIiIpLxZOggPWHCBKpUqUKJEiXw8PCgZcuWTJo0icaNGzvbzJo1i5iYGAoWLIinpyc9e/Zkzpw5lC9fHrDGUPv5+blcN0eOHBQoUIDw8HBnmyJFiri0SXh+uzYJ55MyZswYfH19nY+SJUve4Z2Q7KBwYfj4Y9izB554wuqbnjrV2iFxyBBrx0QRERHJODJ8kN6wYQPz589n8+bNjBs3jl69erFixQpnm6FDh3L+/HlWrFjBpk2b6N+/P0899RQ7duywsXLL4MGDiYiIcD6OHTtmd0mSCZQvD7Nnw/r10LAhXL4Mo0dbxydMgKtX7a5QREREAHLYXcDNXL58mTfeeIM5c+YQEhICQI0aNQgLC+P9998nKCiIgwcPMnHiRHbu3EnVqlUBqFmzJr/88guTJk1iypQpFC1alNOnT7tcOzY2lrNnz1K0aFEAihYtyqlTp1zaJDy/XZuE80nx9PTE09PzLu6CZGf33w9r18L8+TBwoLUWdZ8+8NFHMGaM1WvtcNhdpYiISPaVYXukY2JiiImJwc3NtUR3d3fi/7dG2KVLlwBu2SYwMJDz58+zefNm5/lVq1YRHx9P/fr1nW3Wrl1LTEyMs83y5cupWLEi+fPnd7ZZuXKly/ssX76cwMDA1Pi4IklyOKBNG9i5E6ZMgSJFrLHUTz0FgYHwyy92VygiIpJ92Rqko6KiCAsLIywsDIBDhw4RFhbG0aNH8fHxoUmTJgwYMIDVq1dz6NAhpk2bxldffUW7du0AqFSpEuXLl6dnz55s3LiRgwcPMm7cOJYvX07btm0BqFy5Mi1btuT5559n48aNrFu3jt69e9O+fXv8/f0BeOaZZ/Dw8KBbt27s2rWLmTNn8tFHH9G/f39nra+88gpLlixh3Lhx/Pnnn4wYMYJNmzbRu3fvdL1nkj3lyAE9e8KBAzBiBOTODb//Do0bW0F7zx67KxQREcmG0n4RkZsLDQ01QKJH586djTHGnDx50nTp0sX4+/sbLy8vU7FiRTNu3DgTHx/vvMa+ffvMY489Zvz8/EyuXLlMjRo1Ei2H9++//5oOHTqYPHnyGB8fH9O1a1dz4cIFlzbbtm0zDRs2NJ6enqZ48eLm3XffTVTvrFmzzD333GM8PDxM1apVzcKFC1P0ebX8naSWkyeNeeEFY9zdreXy3NyM6dHDmBMn7K5MREQkc0tJXnMYY4yNOT5biYyMxNfXl4iICHx8fOwuR7KAP/+EQYNg3jzrea5c8Npr1iNvXntrExERyYxSktcy7BhpEbm9SpVg7lxrUmL9+nDpEowcCRUqWGOqrxv2LyIiIqlMQVokC2jUyFoub/Zsa5m8U6fgxRehenUraOvfnURERFKfgrRIFuFwWEvi7dplrTddqJC1ZF67dteCtoiIiKQeBWmRLMbDA3r3tpbJGzIEvL1h3Tpo0MAK2vv3212hiIhI1qAgLZJF+fjA229bwblbN3Bzgx9/hCpVrKB9wz5FIiIikkJatSMdadUOsdPOndYKHwsXWs/z5LF2TLx0yeq1Hjo08WtGjYK4OGvtahERkexAq3aISCLVqsGCBbBqFdSpA1FRVnieMAGGDYO33nJtP2qUddzd3Z56RUREMjoFaZFspmlT2LgRZsyA0qWtQA1Wr/P//Z+1wkdCiB45MumeahEREdHQjnSloR2S0URHwyefWMH53DnrmMNhhekRI2D4cFvLExERSXca2iEiyeLpCf36WSt8vP66dSzhV+vp0+H99+HsWfvqExERycgUpEWE/PmtyYdwbUz0oUMwYAAULw7du8O2bfbVJyIikhEpSIuIy5jo2Nhr46KLFoUrV+C//4VatayNXWbO1NbjIiIioCAtku0lNbFw5EjrER5u9UY//TTkyAG//grt20OpUtfOi4iIZFcK0iLZXFxc0qtzDB1qHS9eHL7/Ho4csSYfFi0KJ09aXwcEwDPPWNuPa9qyiIhkN1q1Ix1p1Q7JCq5etXZInDgRfvvt2vHata0dE9u3tzZ4ERERyYy0aoeIpBkPD+jQAdatg82b4bnnwMsLtmyxvi5Z0tpB8cgRuysVERFJWwrSInLHate2JiL+/Te89541dvrff62vy5aFtm1hxQoN+xARkaxJQVpE7lrBgtY61AcPwty5EBQE8fEwbx489BBUqQKTJsGFC3ZXKiIiknoUpEUk1bi7Q5s2sHw57N5tjZnOkwf+/NP6unhxePll2LvX7kpFRETunoK0iKSJypVhwgQ4ftz6s2JFq0d64kSoVAlatID5861VQ0RERDIjBWkRSVM+PlZv9J49sGwZPPooOBxWr3WbNlC+PPznP9bYahERkcxEQVpE0oXDYY2XnjfPGkv9+utQoAAcPmx9XaKEtfnL1q12VyoiIpI8CtIiku7KlLFW9vj772vbjydsRV67NjRsaG0Cc/Wq3ZWKiIjcnIK0iNjG29tae3rLFmtd6vbtra3I162z1qouXRreesvaSVFERCSjUZAWEds5HNCgAXz3HRw9CiNGXNuKfMQIayvyDh2snRS1JrWIiGQUCtIikqEUKwbDh1s7I373HTzwAMTGWkM9HngA6tSBL7+Ey5ftrlRERLI7BWkRyZA8PKyhHr/+em37cS8vazJit27W5MSBA63JiiIiInZQkBaRDO/ee69tRT52rDV2+uxZ6+uyZa1l9LQVuYiIpDcFaRHJNAoWhAED4MCBa9uPG2Nt7JKwFfnEiRAZaXelIiKSHShIi0im4+5ubeyybJm10cvLL0PevNZW5C+/fG0r8j//tLtSERHJyhSkRSRTq1QJPv7YGvaRsP14VJT1deXK1zaB0VbkIiKS2hSkRSRL8PGBXr1g925rvHSbNuDmZn3dti2UK2eNqdZW5CIikloUpEUkS3E4oHlzmDvX2op84EBrK/IjR6yvS5SwVgDRVuQiInK3FKRFJMsqXRrefdca9vHll9bqH1euwNSp1lbkDzxgrVWtrchFROROKEiLSJbn7Q1du8LmzdbuiB06WFuR//YbPPMMlCpl7aB44oTdlYqISGaiIC0i2YbDAYGBMGOGtRX5W29ZOymGh1tflyplbQKzbp21rN6IETBqVNLXGjXKOi8iItmXgrSIZEvFisGwYdbOiN9/Dw0bWluRz5xpfV27NoSFWW1uDNOjRlnH3d3tqFxERDIKhzHaCyy9REZG4uvrS0REBD4+PnaXIyI3CAuDSZPg22/h8mXrmLe39XW/fvDBB9dC9MiRMHSoreWKiEgaSEleU5BORwrSIpnD2bPW5MRJk6we6wTu7tZ61ArRIiJZl4J0BqUgLZK5xMXB4sUwYYK1iyJYa1PHxlrjrUVEJOtJSV7TGGkRkZtwd4dHHrHGTCeIj4f69a0/RUQke1OQFhG5hevHRE+bZh374w+FaRERgRx2FyAiklElNbHQzQ2efRY2bYJ69WDjRuuYiIhkP8kO0vHx8axZs4ZffvmFI0eOcOnSJQoXLsy9995LUFAQJUuWTMs6RUTSXVITCzt1soJzp07WBi89esBnnylMi4hkR7edbHj58mXGjRvH5MmTOXv2LLVq1cLf3x9vb2/Onj3Lzp07OXHiBC1atGDYsGHcf//96VV7pqPJhiJZx3ffwf/9nzW8o0sX+OILrSstIpIVpCSv3bZH+p577iEwMJDPP/+chx56iJw5cyZqc+TIEWbMmEH79u0ZMmQIzz///J1XLyKSCXToYPVCd+xojZ02Bv77X4VpEZHs5LY90nv27KFy5crJulhMTAxHjx6lXLlyqVJcVqMeaZGsZ/ZsK1THxVnDPaZOVZgWEcnMUnX5u+SGaICcOXMqRItItvLkk9a24jlywNdfWxMRY2PtrkpERNLDHa3acenSJY4ePcrVq1ddjteoUSNVihIRyUwef9wK008/DTNmWMM8vvrKCtciIpJ1peg/8//88w9du3Zl8eLFSZ6Pi4tLlaJERDKbxx6zhnk89ZQ1ETE+Hr75RmFaRCQrS9GCTX379uX8+fP8/vvveHt7s2TJEqZPn06FChWYP39+WtUoIpIptG0LP/wAOXNaPdTPPAMxMXZXJSIiaSVFfSWrVq1i3rx51K1bFzc3N0qVKsVDDz2Ej48PY8aMISQkJK3qFBHJFB59FH76yRruMXu21TP93XdWuBYRkawlRT3SFy9exM/PD4D8+fPzzz//AFC9enW2bNmS+tWJiGRCjzwCc+aAhwf8+KM1dvqGKSUiIpIFpChIV6xYkb179wJQs2ZNPv30U44fP86UKVMoVqxYmhQoIpIZPfwwzJsHnp5WqH7qKYVpEZGsJkVB+pVXXuHkyZMADB8+nMWLFxMQEMDHH3/M6NGj06RAEZHMqmXLa2F63jx44gmIjra7KhERSS233ZDlVi5dusSff/5JQEAAhQoVSs26siRtyCKSPS1fbo2dvnIFQkKs4R6ennZXJSIiSUnVDVluJVeuXNSuXVshWkTkFh56CBYsAG9vWLjQWirvyhW7qxIRkbt12yDdv39/Ll686Pz6Vo+UWrt2La1bt8bf3x+Hw8HcuXNdzkdFRdG7d29KlCiBt7c3VapUYcqUKYmus379epo1a0bu3Lnx8fGhcePGXL582Xn+7NmzdOzYER8fH/Lly0e3bt2Iiopyucb27dtp1KgRXl5elCxZkrFjxyZ6n9mzZ1OpUiW8vLyoXr06ixYtSvFnFpHsqXnza2F60SJo105hWkQks7vt8ndbt24l5n8LoW7duvWm7RwOR4rf/OLFi9SsWZPnnnuOxx57LNH5/v37s2rVKr755htKly7NsmXLeOmll/D39+fRRx8FrBDdsmVLBg8ezIQJE8iRIwfbtm3Dze3a7wgdO3bk5MmTLF++nJiYGLp27UqPHj2YMWMGYHXht2jRgqCgIKZMmcKOHTt47rnnyJcvHz169ADgt99+o0OHDowZM4ZHHnmEGTNm0LZtW7Zs2UK1atVS/NlFJPtp1swK0SEhsGQJtGkDc+da4VpERDIhk0EAZs6cOS7HqlatakaOHOlyrHbt2mbIkCHO5/Xr1zdvvvnmTa+7e/duA5g//vjDeWzx4sXG4XCY48ePG2OM+eSTT0z+/PlNdHS0s83AgQNNxYoVnc+feuopExIS4nLt+vXrm549eyb7M0ZERBjAREREJPs1IpL1rF5tTO7cxoAxQUHGXLxod0UiIpIgJXktRWOkIyIiOHv2bKLjZ8+eJTIyMlWC/fUaNGjA/PnzOX78OMYYQkND2bdvHy1atADg9OnT/P777/j5+dGgQQOKFClCkyZN+PXXX53XWL9+Pfny5aNu3brOY0FBQbi5ufH777872zRu3BgPDw9nm+DgYPbu3cu5c+ecbYKCglzqCw4OZv369an+uUUka2vSBBYvhty5YcUKayLipUt2VyUiIimVoiDdvn17vv/++0THZ82aRfv27VOtqAQTJkygSpUqlChRAg8PD1q2bMmkSZNo3LgxAH/99RcAI0aM4Pnnn2fJkiXUrl2b5s2bs3//fgDCw8Odm8gkyJEjBwUKFCA8PNzZpkiRIi5tEp7frk3C+aRER0cTGRnp8hARAWjUyBrekScPrFxpbeLyv+koIiKSSaQoSP/+++80bdo00fEHH3zQ2bubmiZMmMCGDRuYP38+mzdvZty4cfTq1YsVK1YAEB8fD0DPnj3p2rUr9957Lx9++CEVK1bkyy+/TPV6UmrMmDH4+vo6HyVLlrS7JBHJQBo2hKVLIW9eCA21xk4rTIuIZB4pCtLR0dHExsYmOh4TE+OySkZquHz5Mm+88QYffPABrVu3pkaNGvTu3Zunn36a999/H8C5m2KVKlVcXlu5cmWOHj0KQNGiRTl9+rTL+djYWM6ePUvRokWdbU6dOuXSJuH57doknE/K4MGDiYiIcD6OHTuWonsgIllfgwawbBn4+MCaNdaOiDcsKiQiIhlUioJ0vXr1+OyzzxIdnzJlCnXq1Em1osAK5zExMS6rbwC4u7s7e6JLly6Nv7+/c9vyBPv27aNUqVIABAYGcv78eTZv3uw8v2rVKuLj46lfv76zzdq1a52rkwAsX76cihUrkj9/fmeblStXurzP8uXLCQwMvOln8PT0xMfHx+UhInKj+++/FqbXroVWreDCBburEhGR20rJLMZff/3VeHl5mUaNGpkRI0aYESNGmEaNGhkvLy+zdu3aFM+KvHDhgtm6davZunWrAcwHH3xgtm7dao4cOWKMMaZJkyamatWqJjQ01Pz1119m6tSpxsvLy3zyySfOa3z44YfGx8fHzJ492+zfv9+8+eabxsvLyxw4cMDZpmXLlubee+81v//+u/n1119NhQoVTIcOHZznz58/b4oUKWI6depkdu7cab7//nuTK1cu8+mnnzrbrFu3zuTIkcO8//77Zs+ePWb48OEmZ86cZseOHcn+vFq1Q0Ru5fffjfH1tVbzaNDAGP2nQkQk/aUkr6V4+buwsDDzzDPPmCpVqpg6deqYrl27mn379t1RoaGhoQZI9OjcubMxxpiTJ0+aLl26GH9/f+Pl5WUqVqxoxo0bZ+Lj412uM2bMGFOiRAmTK1cuExgYaH755ReX8//++6/p0KGDyZMnj/Hx8TFdu3Y1Fy5ccGmzbds207BhQ+Pp6WmKFy9u3n333UT1zpo1y9xzzz3Gw8PDVK1a1SxcuDBFn1dBWkRu548/jMmXzwrTgYEK0yIi6S0lec1hjDHJ6bmOiYmhZ8+eDB06lDJlyqRN93gWl5K920Uk+9qyBYKC4Nw5a9jHkiXg62t3VSIi2UNK8lqyx0jnzJmTH3/88a6LExGRW6td21oSr0AB2LABWrSA8+ftrkpERG6UosmGbdu2Ze7cuWlUioiIJLj3Xli1CgoWhI0b4aGHrB5qERHJOHKkpHGFChUYOXIk69ato06dOuTOndvlfJ8+fVK1OBGR7KxmTStMN28OmzZZYXrZMqunWkRE7JfsMdLALcdGOxwO506DkjSNkRaRO7FjBzRrBmfOWD3VK1YoTIuIpJWU5LUU9UgfOnTorgoTEZGUq17d2vmwWTPYutXqoV6xwhr2ISIi9knRGOkEV69eZe/evUnucigiIqmvWjVYvRqKFIGwMCtMnzljd1UiItlbioL0pUuX6NatG7ly5aJq1arObbhffvll3n333TQpUERELFWqWD3TRYrAtm1WD/U//9hdlYhI9pWiID148GC2bdvG6tWr8fLych4PCgpi5syZqV6ciIi4qlzZ6pkuVuza2OnTp+2uSkQke0pRkJ47dy4TJ06kYcOGOBwO5/GqVaty8ODBVC9OREQSq1TJCtP+/rBzJzRtCqdO2V2ViEj2k6Ig/c8//+Dn55fo+MWLF12CtYiIpK177rHCdPHisHu3FabDw+2uSkQke0lRkK5bty4LFy50Pk8Iz1988QWBgYGpW5mIiNxShQpWmC5RAvbsscL0yZN2VyUikn2kaPm70aNH06pVK3bv3k1sbCwfffQRu3fv5rfffmPNmjVpVaOIiNxE+fJWmG7aFP78Ex580JqQ6O9vd2UiIllfinqkGzZsSFhYGLGxsVSvXp1ly5bh5+fH+vXrqVOnTlrVKCIit1CunBWmAwJg3z4rTB8/bndVIiJZX4p2NpS7o50NRSQtHT5shegjR6ye6tBQa9iHiIgkX5rtbAgQHx/PgQMHOH36NPHx8S7nGjdunNLLiYhIKildGtasscL0gQPXhnmULGlzYSIiWVSKgvSGDRt45plnOHLkCDd2ZDscDuLi4lK1OBERSZlSpa6F6YMHoUkTK0yXKmV3ZSIiWU+Kxki/8MIL1K1bl507d3L27FnOnTvnfJw9ezatahQRkRQICLDCdLlycOiQFaoPH7a7KhGRrCdFY6Rz587Ntm3bKF++fFrWlGVpjLSIpKe//7ZW8zhwwOqRDg2FMmXsrkpEJGNLSV5LUY90/fr1OXDgwF0VJyIi6aNECWs1jwoVrAmIDz4If/1ld1UiIllHisZIv/zyy7z66quEh4dTvXp1cubM6XK+Ro0aqVqciIjcneLFr60znbA0XmioNexDRETuToqGdri5Je7AdjgcGGM02TAZNLRDROxy8iQ0a2Zt2pIQrjVKT0QksTRb/u7QoUN3VZiIiNijWDGrJ7pZM2s78SZNrg37EBGRO5OiIF1K6yeJiGRaRYteC9O7d19bGq9iRbsrExHJnJIVpOfPn5+siz366KN3VYyIiKStIkWs8Ny8OezceW3MdKVKdlcmIpL5JGuMdFJjoxNdSGOkb0tjpEUko/jnHytM79hxLVxXrmx3VSIi9kv15e/i4+Nv+1CIFhHJPAoXhlWroEYNOHXK6pnetcvuqkREMpcUrSMtIiJZR6FCVpiuVQtOn7aWyNu50+6qREQyj9sG6Q0bNiT7YpcuXWKXujRERDKNggVh5Uq4915ruEfTptZwDxERub3bBulOnToRHBzM7NmzuXjxYpJtdu/ezRtvvEG5cuXYvHlzqhcpIiJpp0ABWLEC6tSBM2esML1tm91ViYhkfLedbBgTE8PkyZOZNGkSf/31F/fccw/+/v54eXlx7tw5/vzzT6KiomjXrh1vvPEG1atXT6/aMx1NNhSRjOzcOQgOhj/+sML1ypXWsA8RkewkJXktRTsbbtq0iV9//ZUjR45w+fJlChUqxL333kvTpk0pUKDAXRee1SlIi0hGd/68FaY3boT8+a2e6tq17a5KRCT9pFmQlrujIC0imUFEhBWmf/8d8uW7NuxDRCQ7SPXl70REJPvw9YVlyyAw0OqhDgqyhnuIiIgrBWkREUnExweWLIEGDaww/dBD1nAPERG5RkFaRESSlBCmGza0hns89BCkYEVUEZEsT0FaRERuKm9eWLwYGjWCyEho0QLWr7e7KhGRjEFBWkREbilPHli0CJo0gQsXrDC9bp3dVYmI2C9HSl+wcuVKVq5cyenTp4mPj3c59+WXX6ZaYSIiknHkyQMLF0Lr1hAaCs2aWetMN2zo2m7UKIiLgxEjbClTRCRdpahH+q233qJFixasXLmSM2fOcO7cOZeHiIhkXblzw4IFUKYMXL1qhem1a6+dHzUKhg0Dd3f7ahQRSU8pWke6WLFijB07lk6dOqVlTVmW1pEWkazg0iWoXh3++gty5oTly61APWwYjBwJQ4faXaGIyJ1LSV5L0dCOq1ev0qBBg7sqTkREMrdcuWDnTitMHzwIDz5oHR8xQiFaRLKXFA3t6N69OzNmzEirWkREJJPw9rbCtNt1/xeZNw82b7avJhGR9JaiHukrV67w2WefsWLFCmrUqEHOnDldzn/wwQepWpyIiGRc//kPxMdDjhwQGwtbt0K9etCvH7z1ljWmWkQkK0tRj/T27dupVasWbm5u7Ny5k61btzofYWFhaVSiiIhkNAkTC0eOhJgYeP1163h8PIwbZw37WLbM3hpFRNJaiiYbyt3RZEMRyQquD9HXj4lOOO7jY23eAtCpE3zwARQqZE+tIiIplWaTDa/3999/A1CiRIk7vYSIiGRCcXFJr86R8PzSJesxYQJ8/bW1M+L48fDMM+BwpHu5IiJpJkU90vHx8bz99tuMGzeOqKgoAPLmzcurr77KkCFDcHPTRom3oh5pEclOfv8dnn8eduywngcHw5QpULq0rWWJiNxSSvLaLZPvl19+yc6dO53PhwwZwsSJE3n33XedY6NHjx7NhAkTGKo1j0RE5Dr161ureLzzDnh6wtKlULWqNdQjNtbu6kRE7t4te6RXrlxJly5dmD59Os2aNcPf358pU6bw6KOPurSbN28eL730EsePH0/zgjMz9UiLSHa1bx/06AFr1ljP69aFL76AmjXtrUtE5Eap1iPdvHlzVq5cyaBBgwA4e/YslSpVStSuUqVKnD179i5KFhGRrOyee2DVKvj8c/D1hU2boE4dGDQILl+2uzoRkTtz20HN99xzD2vXrgWgZs2aTJw4MVGbiRMnUlPdCiIicgtubtC9O+zZA088YU1afO89a6m8Vavsrk5EJOVSNNlwzZo1hISEEBAQQGBgIADr16/n2LFjLFq0iEaNGqVZoVmBhnaIiFwzfz689BIkjArs2hXefx8KFLC3LhHJ3lJtaMeNmjRpwr59+2jXrh3nz5/n/PnzPPbYY+zdu1chWkREUuTRR2H3bitMOxwwdSpUrgzffw/a4UBEMgNtyJKO1CMtIpK03367NuwDICQEPvkEAgLsrUtEsp+U5LXbBunt27dTrVo13Nzc2L59+y0vVqNGjZRXm40oSIuI3Fx0NLz7LoweDVevQu7c1te9eoG7u93ViUh2kapB2s3NjfDwcPz8/HBzc8PhcJDUSxwOB3FxcXdXeRanIC0icnt79lgbuaxbZz2vX99a7aN6dXvrEpHsIVW3CD906BCFCxd2fi0iIpKWKleGtWvhs89g4EBrh8Tata2v33wTvLzsrlBExKIx0ulIPdIiIilz/Dj07g1z51rP77nHCthNmthalohkYWm2asf06dNZuHCh8/nrr79Ovnz5aNCgAUeOHElxoWvXrqV169b4+/vjcDiYm/Bfyv+Jioqid+/elChRAm9vb6pUqcKUKVOSvJYxhlatWiV5naNHjxISEkKuXLnw8/NjwIABxN6wP+3q1aupXbs2np6elC9fnmnTpiV6j0mTJlG6dGm8vLyoX78+GzduTPFnFhGR5CteHObMgR9/hKJFrR0SH3zQ2iXx/Hm7qxOR7C5FQXr06NF4e3sD1vrREydOZOzYsRQqVIh+/fql+M0vXrxIzZo1mTRpUpLn+/fvz5IlS/jmm2/Ys2cPffv2pXfv3syfPz9R2/Hjx+NwOBIdj4uLIyQkhKtXr/Lbb78xffp0pk2bxrBhw5xtDh06REhICE2bNiUsLIy+ffvSvXt3li5d6mwzc+ZM+vfvz/Dhw9myZQs1a9YkODiY06dPp/hzi4hIyjz2mDV2ukcP6/nnn1tDQH74QUvliYiNTAp4e3ubI0eOGGOMef31102nTp2MMcbs3LnTFCpUKCWXSgQwc+bMcTlWtWpVM3LkSJdjtWvXNkOGDHE5tnXrVlO8eHFz8uTJRNdZtGiRcXNzM+Hh4c5jkydPNj4+PiY6Otr5WapWrepyzaefftoEBwc7n9erV8/06tXL+TwuLs74+/ubMWPGJPszRkREGMBEREQk+zUiIuJqzRpjKlY0xorQxrRpY8zff9tdlYhkFSnJaynqkc6TJw///vsvAMuWLeOhhx4CwMvLi8uXL6duwgcaNGjA/PnzOX78OMYYQkND2bdvHy1atHC2uXTpEs888wyTJk2iaNGiia6xfv16qlevTpEiRZzHgoODiYyMZNeuXc42QUFBLq8LDg5m/fr1AFy9epXNmze7tHFzcyMoKMjZJinR0dFERka6PERE5O40bgxhYdbEwxw5YN48q3f6k08gPt7u6kQkO0lRkH7ooYfo3r073bt3Z9++fTz88MMA7Nq1i9KlS6d6cRMmTKBKlSqUKFECDw8PWrZsyaRJk2jcuLGzTb9+/WjQoAFt2rRJ8hrh4eEuIRpwPg8PD79lm8jISC5fvsyZM2eIi4tLsk3CNZIyZswYfH19nY+SJUsm/8OLiMhNeXnBqFGwdSvcfz9cuGCtN92okbVboohIekhRkJ40aRINGjTgn3/+4ccff6RgwYIAbN68mQ4dOqR6cRMmTGDDhg3Mnz+fzZs3M27cOHr16sWKFSsAmD9/PqtWrWL8+PGp/t6pYfDgwURERDgfx44ds7skEZEspVo1+PVXmDAB8uSxdkisVQtGjLA2eBERSUu3XUc6QWxsLB9//DEDBw6kRIkSLufeeuutVC/s8uXLvPHGG8yZM4eQkBDA2jkxLCyM999/n6CgIFatWsXBgwfJly+fy2sff/xxGjVqxOrVqylatGii1TVOnToF4BwKUrRoUeex69v4+Pjg7e2Nu7s77u7uSbZJajhJAk9PTzw9Pe/o84uISPK4u1tL5LVpAy+9BAsWwFtvwaxZ1qTEBx6wu0IRyaqS3SOdI0cOxo4dm2jZuLQSExNDTEwMbm6uJbq7uxP/v0FwgwYNYvv27YSFhTkfAB9++CFTp04FIDAwkB07drisrrF8+XJ8fHyoUqWKs83KlStd3mf58uUEBgYC4OHhQZ06dVzaxMfHs3LlSmcbERGxV8mSMH8+zJwJfn7WKh8NG8KLL0JEhN3ViUhWlKKhHc2bN2fNmjWp9uZRUVEuAfjQoUOEhYVx9OhRfHx8aNKkCQMGDGD16tUcOnSIadOm8dVXX9GuXTvA6kmuVq2aywMgICCAMmXKANCiRQuqVKlCp06d2LZtG0uXLuXNN9+kV69ezt7iF154gb/++ovXX3+dP//8k08++YRZs2a5LOnXv39/Pv/8c6ZPn86ePXt48cUXuXjxIl27dk21+yEiInfH4YCnnrJC9HPPWcemTIEqVa5t6iIikmpSshzI5MmTTdGiRc2rr75qZsyYYebNm+fySKnQ0FADJHp07tzZGGPMyZMnTZcuXYy/v7/x8vIyFStWNOPGjTPx8fE3vSZJLKN3+PBh06pVK+Pt7W0KFSpkXn31VRMTE5Oollq1ahkPDw9TtmxZM3Xq1ETXnjBhggkICDAeHh6mXr16ZsOGDSn6vFr+TkQkfa1aZUz58teWynvsMWOOH7e7KhHJyFKS11K0RfiNwyyu53A4iIuLu6tQn9Vpi3ARkfR3+bK1wsfYsRAXB76+1tfdu8Mt/rcmItlUmm0RHh8ff9OHQrSIiGRE3t4wejRs3gx161rjpXv2tLYa37vX7upEJDPT7+IiIpIt1KwJGzbABx9Arlzwyy9Qo4bVW331qt3ViUhmlOIgvWbNGlq3bk358uUpX748jz76KL/88kta1CYiIpKq3N2hXz/YtQtatrQC9LBhULu2FbJFRFIiRUH6m2++ISgoiFy5ctGnTx/69OmDt7c3zZs3Z8aMGWlVo4iISKoqXRoWLYJvv4VChaxg3aAB9Olj7ZIoIpIcKZpsWLlyZXr06OGyLBzABx98wOeff86ePXtSvcCsRJMNRUQynjNn4NVX4auvrOclS8Inn8Ajj9hbl4jYI80mG/7111+0bt060fFHH32UQ4cOpaxKERGRDKBQIZg+HZYtgzJl4NgxaN0ann4abtjQVkTERYqCdMmSJRPtAAiwYsUKSpYsmWpFiYiIpLeHHoIdO+C116xl8WbNgsqV4csvrVWoRURulCMljV999VX69OlDWFgYDRo0AGDdunVMmzaNjz76KE0KFBERSS+5c8N//gMdOljrTG/dCt26wTffwKefQoUKdlcoIhlJisZIA8yZM4dx48Y5x0NXrlyZAQMG0KZNmzQpMCvRGGkRkcwjNhY+/BCGD7c2dfHyslb4eO01yJnT7upEJK2kJK+lOEjLnVOQFhHJfA4ehBdegBUrrOc1asAXX8B999lbl4ikjTSbbFi2bFn+/fffRMfPnz9P2bJlU1aliIhIJlCunDURcfp0KFAAtm+H+++31qOOirK7OhGxU4qC9OHDh5PcCjw6Oprjx4+nWlEiIiIZicMBzz4Le/bAM89AfDyMHw/VqsGSJXZXJyJ2SdZkw/nz5zu/Xrp0Kb6+vs7ncXFxrFy5ktKlS6d6cSIiIhmJn5+1icv//R+8+CIcOQKtWlnhevx4KFzY7gpFJD0la4y0m5vVce1wOLixec6cOSldujTjxo3jEa1ef0saIy0iknVERcHQofDxx1YPdYEC0KiRtd34sGGJ248aBXFxMGJEupcqIimQ6mOk4+PjiY+PJyAggNOnTzufx8fHEx0dzd69exWiRUQkW8mTx1rVY8MGawLi2bMwb561yscNGwAzapQVrt3d7alVRNJGisZIHzp0iEKFCrkcO3/+fGrWIyIikqncdx9s2gRjxoCnp3Vs/HgIDraW0EsI0SNHWj3YIpJ1pChIv/fee8ycOdP5/Mknn6RAgQIUL16cbdu2pXpxIiIimUHOnDBokLUz4oMPWseWLbOCtUK0SNaVoiA9ZcoU51bgy5cvZ8WKFSxZsoRWrVoxYMCANClQREQks6hQAVatstaZBmvstJubFbJFJOtJ0Rbh4eHhziC9YMECnnrqKVq0aEHp0qWpX79+mhQoIiKSmTgccOLEtefx8dYExK1bIUeK/q8rIhldinqk8+fPz7FjxwBYsmQJQUFBABhjklxfWkREJLu5fkz0zz9bPdI7d0LdutaqHSKSdaQoSD/22GM888wzPPTQQ/z777+0atUKgK1bt1K+fPk0KVBERCSzuHFi4SOPwA8/WL3U27ZBvXpWD7WIZA0pCtIffvghvXv3pkqVKixfvpw8efIAcPLkSV566aU0KVBERCSziItLPLGwXTv4/nsrTG/ZAr16we13cBCRzCBZG7JI6tCGLCIi2de330KnTlaI7tPHWiLP4bC7KhG5UUry2m2nPcyfP59WrVqRM2dOl63Ck/Loo4+mrFIREZFsomNHuHoVnnvO2g0xZ074z38UpkUys9v2SLu5uREeHo6fn59zq/AkL+RwaMLhbahHWkREPvsMeva0vn7jDXj7bYVpkYwkVXuk46+bFRGvGRIiIiJ3pUcPq2f65Zdh9Ohrm7aISOaTosmGIiIicvd694YPPrC+Hj7c2l5cRDKfZC8NHx8fz7Rp0/jpp584fPgwDoeDMmXK8MQTT9CpUycc+ncpERGRZOvXD6KjYfBga4iHhwe8+qrdVYlISiSrR9oYw6OPPkr37t05fvw41atXp2rVqhw5coQuXbrQrl27tK5TREQkyxk0CN56y/r6tddgwgR76xGRlElWj/S0adNYu3YtK1eupGnTpi7nVq1aRdu2bfnqq6949tln06RIERGRrGroUGvM9DvvWMvieXhcm4woIhlbsnqkv/vuO954441EIRqgWbNmDBo0iG+//TbVixMREcnqHA5rR8TXXrOev/ACfPmlvTWJSPIkK0hv376dli1b3vR8q1at2LZtW6oVJSIikp04HDB2rNUjDdC9O3zzjb01icjtJStInz17liJFitz0fJEiRTh37lyqFSUiIpLdOBzWbocvvmjtfti5M8yaZXdVInIryQrScXFx5Mhx8+HU7u7uxMbGplpRIiIi2ZHDARMnQrduEB8PzzwDc+bYXZWI3EyyJhsaY+jSpQuenp5Jno+Ojk7VokRERLIrNzf49FNrAuLXX8PTT8NPP8Ejj9hdmYjcKFlBunPnzrdtoxU7REREUoe7O0ydCjEx8P338PjjMH8+BAfbXZmIXM9hjDF2F5FdpGTvdhERkZgYaN/e6pH28oIFC6B5c7urEsnaUpLXtEW4iIhIBpUzJ3z3HbRuDVeuWH+uXWt3VSKSQEFaREQkA/PwgNmzoWVLuHwZHn4YfvvN7qpEBBSkRUREMjxPT2t4R1AQXLwIrVrBxo12VyUiCtIiIiKZgLc3zJsHTZpAZKQ18XDLFrurEsneFKRFREQyiVy5rAmHDzwA58/DQw/B9u12VyWSfSlIi4iIZCJ58sCiRVCvHpw9aw332L3b7qpEsicFaRERkUzGxweWLIHateGff6BZM9i71+6qRLIfBWkREZFMKH9+WLYMatSAU6esMH3woN1ViWQvCtIiIiKZVMGCsGIFVKkCJ05YYfrwYburEsk+FKRFREQyscKFYeVKuOceOHrUCtPHjtldlUj2oCAtIiKSyRUtCqtWQblycOiQFaZPnLC7KpGsT0FaREQkCyhe3ArTpUvDgQPQvLk1dlpE0o6CtIiISBYREGCF6RIl4M8/rTD9zz92VyWSdSlIi4iIZCFlykBoKBQrBrt2WZu2nD1rd1UiWZOCtIiISBZTvrzVM12kCGzbBi1aWDshikjqUpAWERHJgipVslbzKFQINm+GVq0gMtLuqkSyFgVpERGRLKpqVWud6fz5YcMGCAmBqCi7qxLJOhSkRUREsrCaNWH5cvD1hV9/hUcfhUuX7K5KJGtQkBYREcni6tSBpUshb15rImLbtnDlit1ViWR+CtIiIiLZQP36sGgR5M5t9VA//jhER9tdlUjmpiAtIiKSTTRsCAsWgLe3FaqffhpiYuyuSiTzsjVIr127ltatW+Pv74/D4WDu3Lku56OioujduzclSpTA29ubKlWqMGXKFOf5s2fP8vLLL1OxYkW8vb0JCAigT58+REREuFzn6NGjhISEkCtXLvz8/BgwYACxsbEubVavXk3t2rXx9PSkfPnyTJs2LVG9kyZNonTp0nh5eVG/fn02btyYavdCREQkPTz4IMyfD56eMG8ePPMM3PC/RBFJJluD9MWLF6lZsyaTJk1K8nz//v1ZsmQJ33zzDXv27KFv37707t2b+fPnA3DixAlOnDjB+++/z86dO5k2bRpLliyhW7duzmvExcUREhLC1atX+e2335g+fTrTpk1j2LBhzjaHDh0iJCSEpk2bEhYWRt++fenevTtLly51tpk5cyb9+/dn+PDhbNmyhZo1axIcHMzp06fT6O6IiIikjaAgmDMHPDzghx/g2WchLs7uqkQyIZNBAGbOnDkux6pWrWpGjhzpcqx27dpmyJAhN73OrFmzjIeHh4mJiTHGGLNo0SLj5uZmwsPDnW0mT55sfHx8THR0tDHGmNdff91UrVrV5TpPP/20CQ4Odj6vV6+e6dWrl/N5XFyc8ff3N2PGjEn2Z4yIiDCAiYiISPZrRERE0sq8ecbkyGEMGNO5szFxcXZXJGK/lOS1DD1GukGDBsyfP5/jx49jjCE0NJR9+/bRokWLm74mIiICHx8fcuTIAcD69eupXr06RYoUcbYJDg4mMjKSXbt2OdsEBQW5XCc4OJj169cDcPXqVTZv3uzSxs3NjaCgIGebpERHRxMZGenyEBERySgefRS+/x7c3WH6dOjZE+Lj7a5KJPPI0EF6woQJVKlShRIlSuDh4UHLli2ZNGkSjRs3TrL9mTNnGDVqFD169HAeCw8PdwnRgPN5eHj4LdtERkZy+fJlzpw5Q1xcXJJtEq6RlDFjxuDr6+t8lCxZMvkfXkREJB08/jh8/TW4ucEXX8DLL4Mxdlclkjlk+CC9YcMG5s+fz+bNmxk3bhy9evVixYoVidpGRkYSEhJClSpVGDFiRPoXm4TBgwcTERHhfBw7dszukkRERBLp0AGmTgWHAz75BPr3V5gWSY4cdhdwM5cvX+aNN95gzpw5hISEAFCjRg3CwsJ4//33XYZZXLhwgZYtW5I3b17mzJlDzpw5neeKFi2aaHWNU6dOOc8l/Jlw7Po2Pj4+eHt74+7ujru7e5JtEq6RFE9PTzw9Pe/g04uIiKSvZ5+1lsLr3h3Gj7cmIr77rhWuRSRpGbZHOiYmhpiYGNzcXEt0d3cn/roBXJGRkbRo0QIPDw/mz5+Pl5eXS/vAwEB27NjhsrrG8uXL8fHxoUqVKs42K1eudHnd8uXLCQwMBMDDw4M6deq4tImPj2flypXONiIiIpldt25WjzTA2LEwfLi99YhkdLb2SEdFRXHgwAHn80OHDhEWFkaBAgUICAigSZMmDBgwAG9vb0qVKsWaNWv46quv+OCDD4BrIfrSpUt88803LhP6ChcujLu7Oy1atKBKlSp06tSJsWPHEh4ezptvvkmvXr2cvcUvvPACEydO5PXXX+e5555j1apVzJo1i4ULFzpr69+/P507d6Zu3brUq1eP8ePHc/HiRbp27ZqOd0xERCRtvfgiXL0KffvCqFFWz/Sbb9pdlUgGlfaLiNxcaGioARI9OnfubIwx5uTJk6ZLly7G39/feHl5mYoVK5px48aZ+Pj4W74eMIcOHXK+z+HDh02rVq2Mt7e3KVSokHn11Vedy+NdX0utWrWMh4eHKVu2rJk6dWqieidMmGACAgKMh4eHqVevntmwYUOKPq+WvxMRkcxi7FhrWTww5r337K5GJP2kJK85jNF0gvQSGRmJr6+vc4k+ERGRjOydd671Rn/4odVLLZLVpSSvZdgx0iIiImKvIUMgYSPgfv3gJhsRi2RbCtIiIiJyUyNGwMCB1te9e8Pnn9tajkiGoiAtIiIiN+VwwJgxVo80WLsfTp9ub00iGYWCtIiIiNySwwHjxkGvXtb0w65dYcYMu6sSsZ+CtIiIiNyWwwEffwzPP2+F6WefhR9+sLsqEXspSIuIiEiyuLnBlCnQpQvExVlbi8+bZ3dVIvZRkBYREZFkc3ODL76AZ56B2Fh48klYtMjuqkTsoSAtIiIiKeLubk04fPJJiImBxx6DZcvsrkok/SlIi4iISIrlyAHffgtt20J0NLRpA6Ghdlclkr4UpEVEROSO5MwJ338PISFw5Qo88gj88ovdVYmkHwVpERERuWOentbqHS1awKVL8PDDsGGD3VWJpA8FaREREbkrXl4wdy40bQpRUdCyJWzaZHdVImlPQVpERETumrc3/PwzNGoEERFWD3VYmN1ViaQtBWkRERFJFblzw8KFEBgI585BUBDs3Gl3VSJpR0FaREREUk3evLB4MdStC//+C82bw59/2l2VSNpQkBYREZFU5esLS5dCrVpw+jQ0awb799tdlUjqU5AWERGRVFegACxfDtWqwcmTVg/1X38lbjdqFIwYke7liaQKBWkRERFJE4UKwcqV1p+RkVC7Nhw5cu38qFEwbJi1U6JIZqQgLSIiImnGzw+2b7d6qCMi4N574fjxayF65EgYOtTuKkXuTA67CxAREZGsrVgx2LYNatSwVvMoUcI6PnSoQrRkbuqRFhERkTRXogRs3ep6bMoUq0f6zBl7ahK5WwrSIiIiki6++sr6M2FM9D//wPDhEBAAvXsnPRlRJCNTkBYREZE0d/2Y6NjYayt1FCsGly/DpElQoQI8+SRs3GhrqSLJpiAtIiIiaSqpiYXDh1vPT56ELl2gZUuIj4cffoD69aFJE2vL8fh4W0sXuSUFaREREUlTcXFJr84xdKh1vFQpazfE7duhc2fImRPWroVHH4WqVeG//4UrV+ypXeRWHMYYY3cR2UVkZCS+vr5ERETg4+NjdzkiIiIZ0vHj8NFH8Omn1vrTAEWKQJ8+8OKLkD+/vfVJ1paSvKYeaREREclQiheHsWPh2DF4/31rxY9Tp2DIEChZEl55BQ4ftrtKEQVpERERyaB8fODVV63VPL7+2lqH+uJF+PhjKF8eOnSAzZvtrlKyMwVpERERydBy5oT/+z8IC4OlSyEoyBp3/f33ULcuNGtmjbHWYFVJbwrSIiIikik4HNCiBSxfbm3u0rGjtSZ1aCg8/DBUrw7TpsHVq3ZXKtmFgrSIiIhkOrVqwTffWMM++veHPHlg1y7o2hXKlLHGWJ8/b3eVktUpSIuIiEimFRAA48ZZExPfew/8/eHECRg40Dr36qvWOZG0oCAtIiIimV6+fPD663DoEEydaq0/feECfPABlC1rjbHets3uKiWrUZAWERGRLMPDw9opcccOWLQImja1tiT/9ltrOEiLFrBsmSYmSupQkBYREZEsx+GAVq1g1SrYtAnat7cmJi5fDsHBcO+91hjrmBi7K5XMTEFaREREsrQ6deC77+DAAWszl9y5rWEenTpZwz7Gjbu2g6JISihIi4iISLZQujSMHw9Hj8I771jbjv/9N7z2mrVj4sCB1vbkIsmlIC0iIiLZSoEC8MYb1jbjX3wBlSpZPdJjx1pL5yWMsRa5HQVpERERyZa8vKBbN2v96Z9/hsaNrTHT06db25EnjLHWxES5GQVpERERydbc3OCRR2DNGvj9d3jySevYkiXQvLm1Dfl331mrf4hcT0FaRERE5H/q1YNZs2DfPujVC7y9YcsWeOYZKF8ePvoIoqLsrlIyCgVpERERkRuUKwcTJ1q7Io4cCYULw5Ej0LevNTHxjTfg5Em7qxS7KUiLiIiI3ETBgjB0qBWiP/0U7rkHzp+HMWOsVUC6dYM9e+yuUuyiIC0iIiJyG97e0KOHFZrnzIEGDeDqVfjyS6hSBVq3tsZYa2Ji9qIgLSIiIpJMbm7Qti2sW2c92rWzdlFcsAAefBDq14fZsyEuzu5KJT0oSIuIiIjcgQYN4KefYO9eeOEFazm9P/6Ap56CChWsMdYXL9pdpaQlBWkRERGRu1ChAkyebI2jHj7cGld96BC8/DIEBFhjrE+ftrtKSQsK0iIiIiKpwM8PRoywtiCfNMla+ePsWXj7bStQ9+xpLasnWYeCtIiIiEgqypULXnrJGvLxww/WuOnoaPjsM2s78oQx1mAF71Gjkr7OqFHWecm4FKRFRERE0oC7Ozz+OKxfD7/8Ao8+aq3qMW8eNGxojbHeuxeGDUscpkeNso67u9tTuySPgrSIiIhIGnI4rOA8b561fN7zz4OnpxWwv/8eChSwQvOwYVb7hBA9cqQ1vloyLocxWvEwvURGRuLr60tERAQ+Pj52lyMiIiI2OXUKJkyATz6Bc+euHXdzg/h4eOuta8Fa0ldK8pp6pEVERETSWZEi1iTEo0fh44+tXRLBCtEA//0vDBgAmzdrk5eMTEFaRERExCZ58ljL5HXpYj13+18yO3oU3n8f6ta1ltcbMgS2b1eozmgUpEVERERslLA6x8iR1o6ICeOiq1a1tiY/eBBGj4aaNa1jb70Ff/5pa8nyPwrSIiIiIjZJamLhyJHWY9cuePVV+O47a8k8T09rsuKIEVC5MtSqBWPGwF9/2fgBsjlNNkxHmmwoIiIi1xsxwlriLqnVOUaNsnqoE9aSjoiwVv6YOROWLYPY2Gtt69aF9u2t7clLlkyPyrOuTDPZcO3atbRu3Rp/f38cDgdz5851OR8VFUXv3r0pUaIE3t7eVKlShSlTpri0uXLlCr169aJgwYLkyZOHxx9/nFOnTrm0OXr0KCEhIeTKlQs/Pz8GDBhA7PV/+4DVq1dTu3ZtPD09KV++PNOmTUtU76RJkyhdujReXl7Ur1+fjRs3psp9EBERkexpxIibL3E3dKjrhiy+vvDss7BwobXqxxdfQFCQNa560yZ47TVrB8UHHrAmMJ48mR6fIHuzNUhfvHiRmjVrMmnSpCTP9+/fnyVLlvDNN9+wZ88e+vbtS+/evZk/f76zTb9+/fj555+ZPXs2a9as4cSJEzz22GPO83FxcYSEhHD16lV+++03pk+fzrRp0xh23Zoyhw4dIiQkhKZNmxIWFkbfvn3p3r07S5cudbaZOXMm/fv3Z/jw4WzZsoWaNWsSHBzM6dOn0+DOiIiIiNxcgQLQrRssX24F5k8+gSZNrDWrf/sNXnkFiheHpk1hyhT45x+7K86iTAYBmDlz5rgcq1q1qhk5cqTLsdq1a5shQ4YYY4w5f/68yZkzp5k9e7bz/J49ewxg1q9fb4wxZtGiRcbNzc2Eh4c720yePNn4+PiY6OhoY4wxr7/+uqlatarL+zz99NMmODjY+bxevXqmV69ezudxcXHG39/fjBkzJtmfMSIiwgAmIiIi2a8RERERSa7jx40ZP96YwEBjrDU+rIe7uzEtWhjz3/8ac/as3VVmbCnJaxl6smGDBg2YP38+x48fxxhDaGgo+/bto0WLFgBs3ryZmJgYgoKCnK+pVKkSAQEBrF+/HoD169dTvXp1ihQp4mwTHBxMZGQku3btcra5/hoJbRKucfXqVTZv3uzSxs3NjaCgIGcbEREREbv5+1u90b/9BocPw9ixUKeONdZ62TKrF7tIEWjdGr75BiIj7a44c8vQQXrChAlUqVKFEiVK4OHhQcuWLZk0aRKNGzcGIDw8HA8PD/Lly+fyuiJFihAeHu5sc32ITjifcO5WbSIjI7l8+TJnzpwhLi4uyTYJ10hKdHQ0kZGRLg8RERGR9FCqlLWpy6ZNsH+/tQFM9eoQEwMLFkCnTuDnB48/DrNmwcWLdlec+WT4IL1hwwbmz5/P5s2bGTduHL169WLFihV2l5YsY8aMwdfX1/koqWm0IiIiYoPy5a9t6rJ7NwwfDhUrQnQ0/PQTPP20Farbt4e5c+HKFbsrzhwybJC+fPkyb7zxBh988AGtW7emRo0a9O7dm6effpr3338fgKJFi3L16lXOnz/v8tpTp05RtGhRZ5sbV/FIeH67Nj4+Pnh7e1OoUCHc3d2TbJNwjaQMHjyYiIgI5+PYsWMpvxEiIiIiqahyZWs1kD17ICwMBg+GsmXh0iVrab127azhH88+C4sWwdWrdleccWXYIB0TE0NMTAxubq4luru7E/+/jejr1KlDzpw5WblypfP83r17OXr0KIGBgQAEBgayY8cOl9U1li9fjo+PD1WqVHG2uf4aCW0SruHh4UGdOnVc2sTHx7Ny5Upnm6R4enri4+Pj8hARERHJCBwOa7fE0aPhwAHYuNHaAKZkSWvs9NdfQ0gIFC0K3btbK4TcsHqwpP3cx5u7cOGC2bp1q9m6dasBzAcffGC2bt1qjhw5YowxpkmTJqZq1aomNDTU/PXXX2bq1KnGy8vLfPLJJ85rvPDCCyYgIMCsWrXKbNq0yQQGBprAwEDn+djYWFOtWjXTokULExYWZpYsWWIKFy5sBg8e7Gzz119/mVy5cpkBAwaYPXv2mEmTJhl3d3ezZMkSZ5vvv//eeHp6mmnTppndu3ebHj16mHz58rmsBnI7WrVDREREMrq4OGPWrTPm5ZeNKVrUdfWPwoWNefFFY1avNiY21u5K00ZK8pqtQTo0NNQAiR6dO3c2xhhz8uRJ06VLF+Pv72+8vLxMxYoVzbhx40x8fLzzGpcvXzYvvfSSyZ8/v8mVK5dp166dOXnypMv7HD582LRq1cp4e3ubQoUKmVdffdXExMQkqqVWrVrGw8PDlC1b1kydOjVRvRMmTDABAQHGw8PD1KtXz2zYsCFFn1dBWkRERDKT2FhjQkON6dnTmEKFXEN1sWLGvPKKMb/9Zsx10SzTS0le0xbh6UhbhIuIiEhmFRsLq1bB99/DnDlw/RS1gABrwuLTT0Pt2tawkcwqJXlNQTodKUiLiIhIVnD1qrUu9cyZ1iofUVHXzpUvfy1UV6uW+UK1gnQGpSAtIiIiWc3ly7B4sRWqf/7Zep6gcuVrobpSJftqTAkF6QxKQVpERESysqgoa7OXmTOtcB0dfe1czZrXQnXZsvbVeDsK0hmUgrSIiIhkFxERMG+eFaqXLXNdOu+++6xA/dRT1nJ7GYmCdAalIC0iIiLZ0dmz1gTF77+3Jiz+b0sQABo0sHZUfOIJKFbMOjZiBLi7w9Chia81ahTExVlt0kJK8lqG3ZBFRERERLKGAgWgWzdrU5eTJ+GTT6BJE2si4m+/QZ8+ULw4NG0Kn35qDQkZNswKzdcbNco67u5uz+e4kXqk05F6pEVERESuOXECZs+2hn+sX3/tuLs7lC4NBw9aW5iPHn0tRI8cmXRPdWrR0I4MSkFaREREJGlHjsCsWVao3rzZ9ZybmzUcJK1DNChIZ1gK0iIiIiK3d+CAFahnzoQdO6xjHh6uq4CkFY2RFhEREZFMq3x5GDIEnnzSep4jh7UJzI1jpu2mIC0iIiIiGc71Y6JjYqw/k5qAaKccdhcgIiIiInK9pCYWJvw5bJjrczspSIuIiIhIhhIXl/TEwoTncXHpX1NSNNkwHWmyoYiIiEjGpsmGIiIiIiJpTEFaREREROQOKEiLiIiIiNwBBWkRERERkTugIC0iIiIicgcUpEVERERE7oCCtIiIiIjIHVCQFhERERG5AwrSIiIiIiJ3QEFaREREROQOKEiLiIiIiNyBHHYXkJ0YYwBrD3cRERERyXgSclpCbrsVBel0dOHCBQBKlixpcyUiIiIicisXLlzA19f3lm0cJjlxW1JFfHw8J06cIG/evDgcjjR/v8jISEqWLMmxY8fw8fFJ8/fLTHRvkqb7cnO6N0nTfbk53Zuk6b7cnO5N0tL7vhhjuHDhAv7+/ri53XoUtHqk05GbmxslSpRI9/f18fHRD+RN6N4kTffl5nRvkqb7cnO6N0nTfbk53Zukped9uV1PdAJNNhQRERERuQMK0iIiIiIid0BBOgvz9PRk+PDheHp62l1KhqN7kzTdl5vTvUma7svN6d4kTffl5nRvkpaR74smG4qIiIiI3AH1SIuIiIiI3AEFaRERERGRO6AgLSIiIiJyBxSkRURERETugIJ0FjRmzBjuu+8+8ubNi5+fH23btmXv3r12l2W7yZMnU6NGDeeC7oGBgSxevNjusjKkd999F4fDQd++fe0uxVYjRozA4XC4PCpVqmR3WRnG8ePH+b//+z8KFiyIt7c31atXZ9OmTXaXZavSpUsn+jvjcDjo1auX3aXZLi4ujqFDh1KmTBm8vb0pV64co0aNQmseWFtR9+3bl1KlSuHt7U2DBg34448/7C4r3a1du5bWrVvj7++Pw+Fg7ty5LueNMQwbNoxixYrh7e1NUFAQ+/fvt6fY/1GQzoLWrFlDr1692LBhA8uXLycmJoYWLVpw8eJFu0uzVYkSJXj33XfZvHkzmzZtolmzZrRp04Zdu3bZXVqG8scff/Dpp59So0YNu0vJEKpWrcrJkyedj19//dXukjKEc+fO8cADD5AzZ04WL17M7t27GTduHPnz57e7NFv98ccfLn9fli9fDsCTTz5pc2X2e++995g8eTITJ05kz549vPfee4wdO5YJEybYXZrtunfvzvLly/n666/ZsWMHLVq0ICgoiOPHj9tdWrq6ePEiNWvWZNKkSUmeHzt2LB9//DFTpkzh999/J3fu3AQHB3PlypV0rvQ6RrK806dPG8CsWbPG7lIynPz585svvvjC7jIyjAsXLpgKFSqY5cuXmyZNmphXXnnF7pJsNXz4cFOzZk27y8iQBg4caBo2bGh3GRneK6+8YsqVK2fi4+PtLsV2ISEh5rnnnnM59thjj5mOHTvaVFHGcOnSJePu7m4WLFjgcrx27dpmyJAhNlVlP8DMmTPH+Tw+Pt4ULVrU/Oc//3EeO3/+vPH09DTfffedDRVa1COdDURERABQoEABmyvJOOLi4vj++++5ePEigYGBdpeTYfTq1YuQkBCCgoLsLiXD2L9/P/7+/pQtW5aOHTty9OhRu0vKEObPn0/dunV58skn8fPz49577+Xzzz+3u6wM5erVq3zzzTc899xzOBwOu8uxXYMGDVi5ciX79u0DYNu2bfz666+0atXK5srsFRsbS1xcHF5eXi7Hvb299S9g1zl06BDh4eEu/3/y9fWlfv36rF+/3ra6ctj2zpIu4uPj6du3Lw888ADVqlWzuxzb7dixg8DAQK5cuUKePHmYM2cOVapUsbusDOH7779ny5Yt2XJc3s3Ur1+fadOmUbFiRU6ePMlbb71Fo0aN2LlzJ3nz5rW7PFv99ddfTJ48mf79+/PGG2/wxx9/0KdPHzw8POjcubPd5WUIc+fO5fz583Tp0sXuUjKEQYMGERkZSaVKlXB3dycuLo533nmHjh072l2arfLmzUtgYCCjRo2icuXKFClShO+++47169dTvnx5u8vLMMLDwwEoUqSIy/EiRYo4z9lBQTqL69WrFzt37tRvtf9TsWJFwsLCiIiI4IcffqBz586sWbMm24fpY8eO8corr7B8+fJEvSLZ2fU9ZTVq1KB+/fqUKlWKWbNm0a1bNxsrs198fDx169Zl9OjRANx7773s3LmTKVOmKEj/z3//+19atWqFv7+/3aVkCLNmzeLbb79lxowZVK1albCwMPr27Yu/v3+2/zvz9ddf89xzz1G8eHHc3d2pXbs2HTp0YPPmzXaXJrehoR1ZWO/evVmwYAGhoaGUKFHC7nIyBA8PD8qXL0+dOnUYM2YMNWvW5KOPPrK7LNtt3ryZ06dPU7t2bXLkyEGOHDlYs2YNH3/8MTly5CAuLs7uEjOEfPnycc8993DgwAG7S7FdsWLFEv0CWrlyZQ19+Z8jR46wYsUKunfvbncpGcaAAQMYNGgQ7du3p3r16nTq1Il+/foxZswYu0uzXbly5VizZg1RUVEcO3aMjRs3EhMTQ9myZe0uLcMoWrQoAKdOnXI5furUKec5OyhIZ0HGGHr37s2cOXNYtWoVZcqUsbukDCs+Pp7o6Gi7y7Bd8+bN2bFjB2FhYc5H3bp16dixI2FhYbi7u9tdYoYQFRXFwYMHKVasmN2l2O6BBx5ItKzmvn37KFWqlE0VZSxTp07Fz8+PkJAQu0vJMC5duoSbm2vscHd3Jz4+3qaKMp7cuXNTrFgxzp07x9KlS2nTpo3dJWUYZcqUoWjRoqxcudJ5LDIykt9//93WuU4a2pEF9erVixkzZjBv3jzy5s3rHDvk6+uLt7e3zdXZZ/DgwbRq1YqAgAAuXLjAjBkzWL16NUuXLrW7NNvlzZs30Rj63LlzU7BgwWw9tv61116jdevWlCpVihMnTjB8+HDc3d3p0KGD3aXZrl+/fjRo0IDRo0fz1FNPsXHjRj777DM+++wzu0uzXXx8PFOnTqVz587kyKH/zSZo3bo177zzDgEBAVStWpWtW7fywQcf8Nxzz9ldmu2WLl2KMYaKFSty4MABBgwYQKVKlejatavdpaWrqKgol3/xO3ToEGFhYRQoUICAgAD69u3L22+/TYUKFShTpgxDhw7F39+ftm3b2le0beuFSJoBknxMnTrV7tJs9dxzz5lSpUoZDw8PU7hwYdO8eXOzbNkyu8vKsLT8nTFPP/20KVasmPHw8DDFixc3Tz/9tDlw4IDdZWUYP//8s6lWrZrx9PQ0lSpVMp999pndJWUIS5cuNYDZu3ev3aVkKJGRkeaVV14xAQEBxsvLy5QtW9YMGTLEREdH212a7WbOnGnKli1rPDw8TNGiRU2vXr3M+fPn7S4r3YWGhiaZXzp37myMsZbAGzp0qClSpIjx9PQ0zZs3t/3nzGGMthQSEREREUkpjZEWEREREbkDCtIiIiIiIndAQVpERERE5A4oSIuIiIiI3AEFaRERERGRO6AgLSIiIiJyBxSkRUTSwJw5c5g1a5bdZYiISBpSkBYRSWUbN26kb9++3H///XaXctdWr16Nw+Hg/PnzafYepUuXZvz48Wl2/fSUlT6LiNyegrSIyC106dIFh8PBu+++63J87ty5OByORO0jIiLo3r07c+bMISAgIL3KlP85fPgwDoeDsLAwu0sRkWxAQVpE5Da8vLx47733OHfu3G3b+vr6sn37dmrXrp0OlSXt6tWrtr13VhITE2N3CSKSwSlIi4jcRlBQEEWLFmXMmDE3bTNixAhq1arlcmz8+PGULl3a+bxLly60bduW0aNHU6RIEfLly8fIkSOJjY1lwIABFChQgBIlSjB16lSX6xw7doynnnqKfPnyUaBAAdq0acPhw4cTXfedd97B39+fihUrArBjxw6aNWuGt7c3BQsWpEePHkRFRd3ysy5atIh77rkHb29vmjZt6vI+CX799VcaNWqEt7c3JUuWpE+fPly8ePGW1/3555+577778PLyolChQrRr1y7Jdkn1KJ8/fx6Hw8Hq1asBOHfuHB07dqRw4cJ4e3tToUIF5z0rU6YMAPfeey8Oh4MHH3zQeZ0vvviCypUr4+XlRaVKlfjkk08Sve/MmTNp0qQJXl5efPvttxw5coTWrVuTP39+cufOTdWqVVm0aNEtP+v1vvjiC/Lly8fKlSuT/RoRyTwUpEVEbsPd3Z3Ro0czYcIE/v7777u61qpVqzhx4gRr167lgw8+YPjw4TzyyCPkz5+f33//nRdeeIGePXs63ycmJobg4GDy5s3LL7/8wrp168iTJw8tW7Z06XleuXIle/fuZfny5SxYsICLFy8SHBxM/vz5+eOPP5g9ezYrVqygd+/eN63t2LFjPPbYY7Ru3ZqwsDC6d+/OoEGDXNocPHiQli1b8vjjj7N9+3ZmzpzJr7/+esvrLly4kHbt2vHwww+zdetWVq5cSb169e74Hg4dOpTdu3ezePFi9uzZw+TJkylUqBBgjU8HWLFiBSdPnuSnn34C4Ntvv2XYsGG888477Nmzh9GjRzN06FCmT5/ucu1BgwbxyiuvsGfPHoKDg+nVqxfR0dGsXbuWHTt28N5775EnT55k1Tl27FgGDRrEsmXLaN68+R1/XhHJwIyIiNxU586dTZs2bYwxxtx///3mueeeM8YYM2fOHHP9f0KHDx9uatas6fLaDz/80JQqVcrlWqVKlTJxcXHOYxUrVjSNGjVyPo+NjTW5c+c23333nTHGmK+//tpUrFjRxMfHO9tER0cbb29vs3TpUud1ixQpYqKjo51tPvvsM5M/f34TFRXlPLZw4ULj5uZmwsPDk/ysgwcPNlWqVHE5NnDgQAOYc+fOGWOM6datm+nRo4dLm19++cW4ubmZy5cvJ3ndwMBA07FjxyTPGWNMqVKlzIcffmiMMebQoUMGMFu3bnWeP3funAFMaGioMcaY1q1bm65duyZ5raReb4wx5cqVMzNmzHA5NmrUKBMYGOjyuvHjx7u0qV69uhkxYsRNa7/ZZ3n99ddNsWLFzM6dO5P9WhHJfHLYGeJFRDKT9957j2bNmvHaa6/d8TWqVq2Km9u1fwwsUqQI1apVcz53d3enYMGCnD59GoBt27Zx4MAB8ubN63KdK1eucPDgQefz6tWr4+Hh4Xy+Z88eatasSe7cuZ3HHnjgAeLj49m7dy9FihRJVNuePXuoX7++y7HAwECX59u2bWP79u18++23zmPGGOLj4zl06BCVK1dOdN2wsDCef/75pG/IHXjxxRd5/PHH2bJlCy1atKBt27Y0aNDgpu0vXrzIwYMH6datm0sdsbGx+Pr6urStW7euy/M+ffrw4osvsmzZMoKCgnj88cepUaPGLesbN24cFy9eZNOmTZQtW/YOPqGIZBYa2iEikkyNGzcmODiYwYMHJzrn5uaGMcblWFKT1XLmzOny3OFwJHksPj4egKioKOrUqUNYWJjLY9++fTzzzDPO11wfmNNSVFQUPXv2dKll27Zt7N+/n3LlyiX5Gm9v72RfP+GXjOvv5Y33sVWrVhw5coR+/fpx4sQJmjdvfstfbhLGhX/++ecude/cuZMNGza4tL3xPnbv3p2//vqLTp06sWPHDurWrcuECRNu+RkaNWpEXFyc1hEXyQYUpEVEUuDdd9/l559/Zv369S7HCxcuTHh4uEsATI0l2GrXrs3+/fvx8/OjfPnyLo8be1OvV7lyZbZt2+YyCXDdunW4ubk5JyMm9ZqEMcYJbgyatWvXZvfu3YlqKV++vEuP+PVq1KiR7Ml2hQsXBuDkyZPOY0ndx8KFC9O5c2e++eYbxo8fz2effQbgrCEuLs7ZtkiRIvj7+/PXX38lqjlhcuKtlCxZkhdeeIGffvqJV199lc8///yW7evVq8fixYsZPXo077///m2vLyKZl4K0iEgKVK9enY4dO/Lxxx+7HH/wwQf5559/GDt2LAcPHmTSpEksXrz4rt+vY8eOFCpUiDZt2vDLL79w6NAhVq9eTZ8+fW458bFjx454eXnRuXNndu7cSWhoKC+//DKdOnVKclgHwAsvvMD+/fsZMGAAe/fuZcaMGUybNs2lzcCBA/ntt9/o3bs3YWFh7N+/n3nz5t1ysuHw4cP57rvvGD58OHv27HFO2kuKt7c3999/P++++y579uxhzZo1vPnmmy5thg0bxrx58zhw4AC7du1iwYIFziElfn5+eHt7s2TJEk6dOkVERAQAb731FmPGjOHjjz9m37597Nixg6lTp/LBBx/ctG6Avn37snTpUg4dOsSWLVsIDQ1NcvjKjRo0aMCiRYt46623tEGLSBamIC0ikkIjR450Dr1IULlyZT755BMmTZpEzZo12bhx412NpU6QK1cu1q5dS0BAAI899hiVK1emW7duXLlyBR8fn1u+bunSpZw9e5b77ruPJ554gubNmzNx4sSbviYgIIAff/yRuXPnUrNmTaZMmcLo0aNd2tSoUYM1a9awb98+GjVqxL333suwYcPw9/e/6XUffPBBZs+ezfz586lVqxbNmjVL1PN9vS+//JLY2Fjq1KlD3759efvtt13Oe3h4MHjwYGrUqEHjxo1xd3fn+++/ByBHjhx8/PHHfPrpp/j7+9OmTRvAGqLxxRdfMHXqVKpXr06TJk2YNm3abXuk4+Li6NWrF5UrV6Zly5bcc889Lsvm3UrDhg1ZuHAhb7755m2Hg4hI5uQwNw7qExERERGR21KPtIiIiIjIHVCQFhERERG5AwrSIiIiIiJ3QEFaREREROQOKEiLiIiIiNwBBWkRERERkTugIC0iIiIicgcUpEVERERE7oCCtIiIiIjIHVCQFhERERG5AwrSIiIiIiJ3QEFaREREROQO/D9Pzx8g4cF9AwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "from sklearn.cluster import KMeans\n", + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "# Suponiendo que ya has separado el 'id' y tienes tus datos en X (sin la columna 'id')\n", + "# y ya están transformados (numéricos) y listos para el clustering.\n", + "# Por ejemplo, si tienes variables categóricas ya convertidas con get_dummies:\n", + "# X = pd.get_dummies(X, dummy_na=True)\n", + "\n", + "# Escalar datos\n", + "scaler = StandardScaler()\n", + "X_scaled = scaler.fit_transform(X)\n", + "\n", + "distortions = []\n", + "K = range(2, 11) # rango de k a evaluar, puedes ajustarlo según tus necesidades\n", + "for k in K:\n", + " kmeans = KMeans(n_clusters=k, random_state=42)\n", + " kmeans.fit(X_scaled)\n", + " distortions.append(kmeans.inertia_)\n", + "\n", + "plt.figure(figsize=(8,5))\n", + "plt.plot(K, distortions, 'bx-')\n", + "plt.xlabel('Número de clusters k')\n", + "plt.ylabel('Distorsión (Inercia)')\n", + "plt.title('Método del Codo para determinar k')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Elementos con 'id' NaN:\n", + "Empty DataFrame\n", + "Columns: [Weight, Upper_Material, Midsole_Material, Outsole, Cushioning_System, Drop__heel-to-toe_differential_, Usage_Type, Gender, Available_Sizes, Width, Additional_Technologies, id, regularPrice, undiscounted_price]\n", + "Index: []\n" + ] + } + ], + "source": [ + "# Filtrar los elementos donde 'id' sea NaN\n", + "id_nan = df[df['id'].isna()]\n", + "\n", + "# Imprimir los resultados\n", + "print(\"Elementos con 'id' NaN:\")\n", + "print(id_nan)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Conteo de elementos por cluster:\n", + "cluster\n", + "0 2\n", + "1 3\n", + "2 22\n", + "3 64\n", + "4 93\n", + "5 268\n", + "6 1\n", + "7 1\n", + "Name: count, dtype: int64\n", + "\n", + "Porcentaje de elementos por cluster:\n", + "cluster\n", + "0 0.44\n", + "1 0.66\n", + "2 4.85\n", + "3 14.10\n", + "4 20.48\n", + "5 59.03\n", + "6 0.22\n", + "7 0.22\n", + "Name: count, dtype: float64\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAIpCAYAAAChX6nLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmhElEQVR4nO3dd3hUddrG8fvMhBRCCmkkoYQiQhBCkSpIE4mIrAiKICKC4oqAICvYkGIBy1qQF7GsAroiqCiuoCCiwipNEKQjPbQkJEBCAiQkc94/2IwMSSDMCUxCvp/rYq+d5/zmzPObMxNz5zTDNE1TAAAAAAC32TzdAAAAAACUdgQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwC4SkyZMkWGYeiDDz7wdCsAAJQ5BCsAHvXzzz/LMAyNHz/eI69fvXp1Va9e3aU2fvx4GYahn3/+2SM9nc8wDLVv3/6CY1avXq3HH39cY8eO1QMPPHBlGitAUXq9UmbMmCHDMDRjxgxPt4JSzNM/owCUHgQrAJbt3btXhmG4/Ctfvryio6N10003aezYsdq1a9dlee327dvLMIzLsu7S4tixY+rVq5f69OmjCRMmeLodeFBBfyhA6VLS/rADoOi8PN0AgKtHrVq1dO+990qSsrKylJycrNWrV+v555/XxIkTNXr0aL344osuQah58+baunWrwsLCPNLzkiVLPPK6l2Lr1q0qX758ocvXr1+vRx55RI899tgV7AoAAJyLYAWg2FxzzTUFHi7zyy+/qF+/fpo0aZLsdruef/5557Ly5curbt26V7BLV7Vq1fLYaxfVxd6fDh06qEOHDleoGwAAUBAOBQRw2bVp00YLFy6Uj4+PXnnlFe3fv9+5rLDzF3bs2KEBAwaoRo0a8vHxUUhIiBo2bKgRI0bINE1JZ8/nWbp0qfP/5/27//77Jf11iOL999+vrVu36o477lBoaKgMw9DevXslXfzQqQ8++EANGjSQr6+vKleurMcee0wnTpxwGXOhczDO7eF8ycnJ+sc//qE6derIz89PISEhatGihf75z3+6jCvsvKWUlBSNGDHC+R5FRESoV69e2rRpU76x999/vwzD0J49e/TWW2+pbt268vHxUUxMjCZMmCCHw1Hoe1CQf/3rX6pfv758fX1VtWpVjR49WqdPny50/IkTJzRu3Dhdd9118vPzU3BwsOLj4/XLL79c0uuapqkPP/xQrVu3VmBgoMqXL6+mTZvqww8/vKT17NmzRw8++KCqVasmHx8fRUVF6f7779e+ffvyjc17/w8ePKh77rlHYWFhCggIUNeuXbV7925JZ/cqdu/eXSEhIQoICNCdd96ppKSkAl97w4YN6t27t6KiouTt7a2YmBgNGzZMqampLuPO/ezs3LlTd9xxhypWrCh/f3916tRJf/zxR76x+/bt0759+1y+D+d/LqdPn64WLVqoQoUKqlChglq0aFHoeWhz585Vu3btFBERIV9fX0VHR6tTp06aO3dukd7nvO/X8ePH9fe//12RkZHy9fVV48aN9emnnxb4nMzMTI0bN05169aVr6+vQkJC1LVrV/3666/5xp572NyMGTPUpEkTlS9fvsjn+f3xxx/q27evqlSp4vwc3HLLLfrmm28u+twLnU9Y0M+VtLQ0jR07VvXq1VOFChUUGBioa665Rv3793d+7tq3b+88nLdDhw7ObXj+upKTk/XYY4/pmmuukY+Pj8LCwtSzZ88Cv/vnboOhQ4eqatWq8vLy4txD4DJgjxWAK6JOnTrq1auXPv74Y82bN0/Dhg0rdOyhQ4fUvHlzZWZmqmvXrrr77ruVmZmpHTt26O2339Y///lPeXl5ady4cZoxY4b27duncePGOZ/fqFEjl/Xt3LlTLVu2VIMGDXT//fcrNTVV3t7eF+359ddf15IlS3T33Xera9eu+uGHH/Tmm29q5cqVWrZsmcqVK+f2+7F9+3Z16NBBhw8fVps2bdS9e3dlZmZq8+bNmjhxoh5//PELPv/IkSNq1aqVdu3apfbt26t3797as2ePvvjiCy1YsECLFi1SmzZt8j1v1KhRWrp0qW677TbFx8dr3rx5Gj9+vLKzs/Xiiy8Wqffnn39eY8eOVaVKlTRo0CCVK1dOc+bM0datWwscf/ToUbVt21abN29W69at9fDDDys9PV1ff/21OnTooM8//1zdu3e/6Ouapqm+ffvq008/Ve3atXXPPffI29tbixcv1gMPPKAtW7bkC6UFWbVqleLj45WZmanbbrtNtWvX1t69e/XJJ5/ou+++04oVK1SzZk2X5xw7dkxt2rRRZGSk+vfvrz///FPz58/Xtm3b9PXXX+vGG2/U9ddfr4EDB2rt2rWaO3eujh49qh9//NFlPf/5z3/Uq1cv2Ww23X777apataq2bNmi//u//9OiRYu0atUqVaxY0eU5e/fuVcuWLXXddddp4MCB2rVrl/O927p1qypVqqTg4GCNGzdOb775piRpxIgRzuef+8v/o48+qilTpqhy5crOi5zMnTtXAwYM0Lp16zR58mTn2GnTpumRRx5RVFSU848SiYmJWr16tb766iv17Nnzou+1JGVnZ6tTp07KyMhQv379lJmZqc8++0z33HOPUlJSXH4WnD59Wh07dtTq1avVpEkTjRgxQklJSZozZ44WLVqkTz/9VHfddVe+13j11Vf1008/6fbbb1fnzp1lt9sv2tfcuXN1zz33yDRNdevWTXXq1FFycrJWrVqlDz74QN26dSvS/IrCNE3Fx8dr1apVat26tW655RbZbDbt27dP//nPf9SvXz/FxMQ4/wCzdOlS9e/f3xmogoODnevK+84fOHBAnTt3Vvfu3ZWcnKy5c+dq0aJFWrJkiVq0aOHy+llZWerYsaMyMjL0t7/9TV5eXqpUqVKxzQ/A/5gAYNGePXtMSWZ8fPwFx33wwQemJLNfv37O2k8//WRKMseNG+esvfXWW6Yk880338y3jtTUVJfH7dq1Mwv7UZbXlyRz7NixBY6JiYkxY2JiXGrjxo0zJZne3t7mH3/84aw7HA7znnvuMSWZ//znPy84h/N76N+/v0u9adOmpiTzvffey/ec/fv3uzyWZLZr186lNmDAAFOS+dRTT7nUFyxYYEoyr7nmGjM3N9dZ79+/vynJrFGjhnno0CFn/ciRI2ZwcLAZEBBgZmVl5evlfDt27DC9vLzMypUrm0lJSc56WlqaWadOnQJ7zXvP3n//fZd6UlKSWbVqVTM8PNw8derURV/7vffeMyWZAwYMMLOzs531rKwss1u3bqYkc82aNc769OnTTUnm9OnTnbXs7GyzevXqZkBAgPn777+7rP+///2vabfbzdtuu82lnvcZeuyxx1zqgwcPNiWZwcHBLp9Vh8Nh3nrrraYkc+3atc56SkqKGRgYaFauXNncu3evy7o+/fRTU5I5dOhQZ+3cz+9LL73kMn7MmDGmJHPSpEku9YI+z3mWLl1qSjJjY2PN48ePO+tHjx41r732WlOSuWzZMme9SZMmpre3t8t2PncuRRETE2NKMtu2bevy+dq/f78ZFhZm+vj4mAcOHHDWJ0yYYEoy+/btazocDmf9999/N729vc3g4GAzPT3dWc/7rvr7+5sbNmwoUk+maZqJiYmmv7+/6e/vn+9zkNdfnsK+3wV91s+d97nbYcOGDaYks3v37vnGnj592jxx4kS+Of30008FrvuGG24w7Xa7uXDhQpf69u3bzYCAALNBgwb5esn7+Xzy5MkC1wmgeHAoIIArJjo6WtLZQ9iKws/PL18tJCTkkl83MjJSzzzzzCU/77777lNcXJzzsWEYmjhxoux2u6XDaFavXq01a9aobdu2GjRoUL7lVapUueDzs7Oz9emnnyo0NFRjxoxxWXbrrbfq5ptv1s6dOws8dOrZZ59VVFSU83FYWJhuv/12nThxQtu3b79o77NmzVJOTo5GjhypiIgIZz0wMDBfL9LZbT1nzhx17NhRDz74oMuyiIgIjRo1SkeOHNEPP/xw0df+v//7P/n7+2vq1Kkuewu9vb2de9sKO7wsz/z587V3716NGjVKjRs3dlnWpk0b3X777fr222+Vnp7usqxChQp64YUXXGp9+vSRJIWGhurRRx911g3DUO/evSXJ5XC9jz76SOnp6Zo0aZJiYmJc1tW7d281adJEs2fPztdzjRo1NGrUKJda3t6m33777YLzPdfMmTMlnT18LigoyFmvWLGic4/v+Z/rcuXKFbhnNjQ0tMivK0kTJ0502UtcpUoVDR8+XFlZWS5znjlzpsqVK6eXXnrJ5SI3jRs3Vv/+/XX8+HHNmzcv3/ofeughNWjQoMj9zJw5U5mZmfrHP/6R73OQ19/lUNDPNB8fH1WoUKFIz1+3bp2WL1+u/v37Kz4+3mXZtddeq0GDBmnjxo0FHhL4yiuvFPj6AIoPhwICKHG6deump556SkOGDNGSJUt0yy23qF27dvkOzyqqhg0bFunQv/PdeOON+WoxMTGqWrWqNm/erOzsbLfWu3r1aklS586dL/m5krRt2zadPn1aHTp0KPBqgR06dNDixYu1fv36fHO4/vrr843P+yXy+PHjF33tvKBQ0HtTUO23335Tbm6usrKyCjwHbceOHc453XbbbYW+7smTJ7Vx40ZFR0fr5Zdfzrf8zJkzzvVcyMqVKyWdPRSzoH4SExPlcDj0559/qmnTps567dq1873XeQE1Li4u3yX/85YdOnQo32uvWrWqwNsPnD59WikpKUpJSXG5SmajRo1ks7n+HfRStlmedevWSVKB5wXlXfxk/fr1zlrv3r01evRo1a9fX/fcc486dOigNm3aKDAwsMivKUleXl5q1apVvnre5yWvr/T0dO3evVuxsbEFBpsOHTro/fff1/r169WvXz+XZc2bN7+knqx+By9VbGys4uLi9Omnn+rAgQPq3r272rdvX+C2vZC8z1BSUlKBn9+8z/+2bdtUv359Z93X1/eSgicA9xCsAFwxeb9khoeHX3Bc9erVtXLlSo0fP17ffvutPvvsM0lnr4733HPPFXiOxYW4ey5BYc+rVKmS9u7dqxMnTlzyX+6lsyexS1LlypXd6itvb0ph/eX9Un/+XhdJBf5S7OV19j8Fubm5F33tvN7P3VuVp6B+jh49Kkn69ddfC9yDliczM/OCr3vs2DGZpqmDBw9e8F5dF1tPXj+ffPLJBcedv54LvW8XWpYX+M597alTp170tc8NVla3WZ709HTZbLYCv3+VKlWSYRgun5nHH39coaGhmjZtml577TXnuY1du3bVG2+8oRo1ahTpdcPCwgoMD3mfl7zPlJXP9aV+x61+By+Vl5eXfvzxR40fP15z587VP/7xD0lnfxYOHTpUzzzzTJHOC8v7DC1YsEALFiwodNz5n9+IiIgyf78/4ErgUEAAV0zeDS+bNWt20bH169fXF198oaNHj2rFihUaO3asEhMTdffdd1/wF/SCuPsLRWFXdUtKSpJhGAoICJAk5y+NOTk5+cbm/QJ3rrwT0Q8ePOhWX3m/aBfWX2Jiosu44pR3CFlycnK+ZQX1k9fDP/7xD5mmWei/cy8+UpC89Vx//fUXXM9PP/1UpPV88803F1xPu3btLv5mXKK81964ceMFX/v8wwSL8/UdDoeOHDmSb1lycrJM03T5zBiGoYEDB+q3337TkSNH9NVXX6lHjx76+uuvddtttxU51KWkpBR41cm8z0veZ8rK5/pSv+NWv4N5r1nQd14q+HsfGhqqKVOm6ODBg84LloSEhGjcuHF65ZVXivSaeXOfMmXKBT9D/fv3z9crgMuPYAXgivjzzz/12WefycfHR3fccUeRn1euXDm1bNlSEyZM0FtvvSXTNDV//nzn8ry/8l7KX+6L6r///W++2r59+7R//35dd911zsMA867iVtAvaXmHOZ0r77Cl77//3q2+8i5D/dtvv+nkyZP5lucF2POvjlgcGjZsKKng96agWrNmzWQYhlasWGHpdQMCAhQbG6utW7de0uFv58u7WprVfkrqa9vt9kK/C3nnEuV9Ps51sc9MaGiounfv7jxfbsuWLdq5c2eResrJySlwznmfl7y+AgMDVbNmTe3cubPA71Jxfq6tfgels9/7gvrcu3fvBT+jhmEoNjZWQ4YM0eLFiyWdvVpkngv9TPPk5xfAxRGsAFx2v/76q+Lj45WVlaUnn3zyooffrF27tsDDffL+ku3r6+us5V3M4tx7YxWXjz76SBs2bHA+Nk1TTz/9tHJzc13uS1WnTh0FBAToP//5j/NQnbx+z7/ggXQ2bDRr1kzLli3T+++/n2/5xf6K7u3trT59+iglJUWTJk1yWbZw4UItWrRI11xzjVq3bl3UqRbZPffcI7vdrtdff91lr1V6enqBc42MjFSvXr20fPlyvfrqq857kJ1r1apVBQbE8z366KM6efKkBg0aVOAhf3v27HHen6wwt99+u6pVq6bXX39dy5Yty7f8zJkzl3xvraIaMGCAAgIC9Mwzz2jz5s35lp88edJ5Do27QkJClJKSUuA9xfL2YkyYMMHl+5WWluY8vPLcPR0///xzvu115swZ52f83O/hxTz99NPKzs52Pj5w4IAmT54sHx8f54U+8l7/zJkzeuqpp1xee8OGDZoxY4aCgoKKdGn+i+nfv78qVKig1157zeW8sjxF2ZPVrFkz7d2713kvPenshWVGjhyZb+zevXsL/Gxe6s+05s2bq0WLFvr00081Z86cfMsdDodLPwCuLM6xAlBsdu7c6TyhOjs7W8nJyVq9erU2btwou92uMWPGXPSQL0n6+OOP9e6776pt27aqVauWAgMDtWXLFn377bcKCQnRgAEDnGM7duyoL774Qj179lSXLl3k6+urhg0bFss9aOLj49WqVSv17t1b4eHhWrJkidasWaOWLVu63HvH29tbw4YN08SJE9WkSRPnVfa++eYbtWvXrsALFXzyySdq3769HnroIX388cdq1aqVTp8+rc2bN2vdunX5bhZ7vpdffllLly7VCy+8oOXLl6tFixbau3evPv/8c5UvX17Tp0+/pJPii+qaa67R2LFjNW7cOMXFxalXr17y8vLS3LlzFRcXV+CVBd9++21t375do0ePds41ODhY+/fv15o1a7Rjxw4dPny4wAtxnOvvf/+7Vq5cqZkzZ+rXX39Vp06dFB0draSkJG3btk2rVq3SrFmzLnjDZx8fH33xxRfq0qWL2rVrp44dO6pBgwbOm+v+97//VWho6EUvguGO8PBw532YGjZsqFtuuUV169ZVVlaW8xf0G264QQsXLnT7NTp27Kg1a9aoS5cuuvHGG+Xt7a22bds6/w0bNkxTpkxR/fr11bNnT5mmqblz5+rAgQN69NFH1bZtW+e6unfvrsDAQLVs2VIxMTE6c+aMFi9erC1btujOO+8s8iGLUVFRyszMVFxcnLp16+a8j1Vqaqreeustlz+0jB49WgsWLNDHH3+srVu36qabblJycrLmzJmjnJwcvf/++85DcK2IiIjQRx99pN69e6t58+b629/+pjp16iglJUWrVq1S9erVC7z64LlGjhyp77//Xrfeeqv69Omj8uXLa/HixQoODna58qZ09qIgPXr0UPPmzVWvXj1FRkbq4MGDmjdvnmw2mx577DHn2LwbAz/99NPavHmzgoKCFBwcrKFDh0o6e+XLDh06qHfv3nrzzTfVpEkT+fn5KSEhQStWrNCRI0cueLNuAJfRZbqMO4Ay5Nz77eT98/PzM6OioswOHTqYzz77rLlz584Cn1vQPWJWrlxp/v3vfzfr169vBgcHm35+fmbt2rXNoUOHmvv27XN5/pkzZ8zRo0eb1apVM728vFzuGVXYPaTOdaH7WP3000/m+++/b1533XWmj4+PGRUVZQ4fPtzlPjp5cnNzzfHjx5tVq1Y1vb29zWuvvdacPHmyuXv37kJ7SExMNIcPH27WrFnT9Pb2NkNCQswWLVqYr7/+uss4FXK/nCNHjpiPPvqoGRMTY5YrV84MCwsz77zzTnPjxo35xubdx2rPnj35ll3svjkFef/998169eqZ3t7eZpUqVczHH3/cPHnyZKG9njx50nzllVfM66+/3vT39zf9/PzMGjVqmN27dzc/+ugj88yZM0V+7Tlz5pidOnUyK1asaJYrV86sXLmy2b59e/O1114zjxw54hxX0H2s8hw4cMAcPny4Wbt2bdPHx8cMDAw0Y2NjzQcffNBcsmSJy9jC5nShz9eF7m22bds284EHHjBjYmJMb29vs2LFimaDBg3MRx991Fy9enWR1l9YXydOnDAHDRpkRkVFmXa7vcAePvzwQ7NZs2Zm+fLlzfLly5vNmjUzP/zww3zrf/vtt82//e1vZkxMjOnr62uGhoaazZs3N6dNm+ZyH7ELyft+HT161HzooYfMSpUqmT4+PmbDhg3NWbNmFficjIwM89lnnzWvvfZa572runTpYv73v//NN9adz+651q1bZ/bq1cusVKmSWa5cOTMqKsrs0qWLOX/+fOeYC23Lzz//3GzQoIHp7e1tRkZGmsOGDTNPnDiR7+fK/v37zSeffNJs2bKlGRERYXp7e5vVqlUze/ToYa5YsSLfemfMmGE2aNDA9PHxMSXl+xl19OhRc8yYMWb9+vVNPz8/s0KFCmbt2rXNe+65x/zyyy9dxl7o3mYAipdhmgUclwEAAGBR3t7Dix2iCQBXA86xAgAAAACLCFYAAAAAYBHBCgAAAAAs4hwrAAAAALCIPVYAAAAAYBHBCgAAAAAs4gbBBXA4HDp06JACAgJkGIan2wEAAADgIaZp6sSJE4qOjpbNVvh+KYJVAQ4dOqSqVat6ug0AAAAAJcT+/ftVpUqVQpcTrAoQEBAg6eybFxgY6OFuAAAAAHhKenq6qlat6swIhSFYFSDv8L/AwECCFQAAAICLniLExSsAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFjk5ekGAAAAPCUhIUEpKSmebsOSsLAwVatWzdNtAGUewQoAAJRJCQkJqhsbq1MnT3q6FUv8ypfXtq1bCVeAhxGsAABAmZSSkqJTJ0+q1wvTFFGjtqfbcUvynh36bMxgpaSkEKwADyNYAQCAMi2iRm1Vjm3o6TYAlHJcvAIAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhUooLVpEmT1KxZMwUEBCgiIkLdu3fX9u3bXca0b99ehmG4/Hv44YddxiQkJKhr164qX768IiIiNGrUKOXk5FzJqQAAAAAoQ7w83cC5li5dqiFDhqhZs2bKycnR008/rc6dO2vLli3y9/d3jhs0aJCee+455+Py5cs7/39ubq66du2qyMhILV++XIcPH9Z9992ncuXKaeLEiVd0PgAAAADKhhIVrBYuXOjyeMaMGYqIiNDatWvVtm1bZ718+fKKjIwscB3ff/+9tmzZoh9++EGVKlVSo0aN9Pzzz+uJJ57Q+PHj5e3tfVnnAAAAAKDsKVHB6nxpaWmSpJCQEJf6J598on//+9+KjIxUt27d9Oyzzzr3Wq1YsUINGjRQpUqVnOPj4+M1ePBgbd68WY0bN873OllZWcrKynI+Tk9PlyTl5OQ4DyG02Wyy2WxyOBxyOBzOsXn13NxcmaZ50brdbpdhGPkOTbTb7ZLO7nErSt3Ly0umabrUDcOQ3W7P12NhdebEnJgTc2JOzKksz8nhcMjb21s2mTIcuTKNs2dIGKbDZbxps0um6Vo3jLPjC607ZJzTi2kY0gXqhumQXOo2yTAKrzvOvr82mfL29pZpmvne93PnWpq3E3NiTp6eU1FPKSqxwcrhcGjEiBFq3bq16tev76zfc889iomJUXR0tDZs2KAnnnhC27dv15dffilJSkxMdAlVkpyPExMTC3ytSZMmacKECfnq69atcx6CGB4erlq1amnPnj06cuSIc0yVKlVUpUoV/fnnn84gKEk1a9ZURESENm3apFOnTjnrdevWVXBwsNatW+fygYqLi5O3t7fWrFnj0kPTpk2VnZ2tDRs2OGt2u13NmjVTWlqatm3b5qz7+fmpYcOGSklJ0e7du531oKAgxcbG6tChQzpw4ICzzpyYE3NiTsyJOZXlOaWmpmrUqFGq7nNavinbdTCsjuyOHEUe3eUca9psOhhWV75nMhV2PMFZz/HyUWJILfmfPq6KJw4766e9/ZUSHKPAk6kKzPyr90y/YB0LiFbFjET5nzrurKf7hyvdP1yhafvlm53prB8LiFKmX0VVOrZHXjl//fE3JbiaTntXUPTRHTIcDoX6nNaoUaOUm5ur3Nzcq3I7MSfm5Ok5ZWb+9d28EMM8N7aVIIMHD9Z3332nX375RVWqVCl03I8//qibbrpJO3fuVK1atfTQQw9p3759WrRokXPMyZMn5e/vr2+//VZdunTJt46C9lhVrVpVqampCgwMlETaZ07MiTkxJ+bEnK62Oa1du1atW7fWw9MXKLpOg1K5x+rQ9o16Z0BXLV++XE2aNLkqtxNzYk6enlN6erpCQ0OVlpbmzAYFKZF7rIYOHar58+dr2bJlFwxVktSiRQtJcgaryMhIrV692mVMUlKSJBV6XpaPj498fHzy1b28vOTl5foW5W2Y8+VtgKLWz1+vO3XDMAqsF9bjpdaZE3MqrM6cmJPEnArr8VLrzMlzc7LZbMrOzpZDxtnw9D+mUcB6DOMS6zaZRgEvWkj9bGC6hPr/+nXIUHZ2tvNKyVfjdmJOzMnTcypseb5+ijTqCjFNU0OHDtVXX32lH3/8UTVq1Ljoc9avXy9JioqKkiS1atVKGzduVHJysnPM4sWLFRgYqHr16l2WvgEAAACUbSVqj9WQIUM0a9Ysff311woICHCeExUUFCQ/Pz/t2rVLs2bN0q233qrQ0FBt2LBBjz32mNq2bau4uDhJUufOnVWvXj3169dPr7zyihITEzVmzBgNGTKkwL1SAAAAAGBVidpjNW3aNKWlpal9+/aKiopy/pszZ44kydvbWz/88IM6d+6sunXr6h//+Id69uypb775xrkOu92u+fPny263q1WrVrr33nt13333udz3CgAAAACKU4naY3Wx62hUrVpVS5cuveh6YmJi9O233xZXWwAAAABwQSVqjxUAAAAAlEYEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYFGJClaTJk1Ss2bNFBAQoIiICHXv3l3bt293GXP69GkNGTJEoaGhqlChgnr27KmkpCSXMQkJCeratavKly+viIgIjRo1Sjk5OVdyKgAAAADKkBIVrJYuXaohQ4Zo5cqVWrx4sc6cOaPOnTsrMzPTOeaxxx7TN998o88//1xLly7VoUOH1KNHD+fy3Nxcde3aVdnZ2Vq+fLlmzpypGTNmaOzYsZ6YEgAAAIAywMvTDZxr4cKFLo9nzJihiIgIrV27Vm3btlVaWpo++OADzZo1Sx07dpQkTZ8+XbGxsVq5cqVatmyp77//Xlu2bNEPP/ygSpUqqVGjRnr++ef1xBNPaPz48fL29vbE1AAAAABcxUpUsDpfWlqaJCkkJESStHbtWp05c0adOnVyjqlbt66qVaumFStWqGXLllqxYoUaNGigSpUqOcfEx8dr8ODB2rx5sxo3bpzvdbKyspSVleV8nJ6eLknKyclxHkJos9lks9nkcDjkcDicY/Pqubm5Mk3zonW73S7DMPIdmmi32yWd3eNWlLqXl5dM03SpG4Yhu92er8fC6syJOTEn5sScmFNZnpPD4ZC3t7dsMmU4cmUaZw/kMUyHy3jTZpdM07VuGGfHF1p3yDinF9MwpAvUDdMhudRtkmEUXnecfX9tMuXt7S3TNPO97+fOtTRvJ+bEnDw9p6KeUlRig5XD4dCIESPUunVr1a9fX5KUmJgob29vBQcHu4ytVKmSEhMTnWPODVV5y/OWFWTSpEmaMGFCvvq6devk7+8vSQoPD1etWrW0Z88eHTlyxDmmSpUqqlKliv78809nEJSkmjVrKiIiQps2bdKpU6ec9bp16yo4OFjr1q1z+UDFxcXJ29tba9ascemhadOmys7O1oYNG5w1u92uZs2aKS0tTdu2bXPW/fz81LBhQ6WkpGj37t3OelBQkGJjY3Xo0CEdOHDAWWdOzIk5MSfmxJzK8pxSU1M1atQoVfc5Ld+U7ToYVkd2R44ij+5yjjVtNh0MqyvfM5kKO57grOd4+SgxpJb8Tx9XxROHnfXT3v5KCY5R4MlUBWb+1XumX7COBUSrYkai/E8dd9bT/cOV7h+u0LT98s3+69SHYwFRyvSrqErH9sgr568//qYEV9Np7wqKPrpDhsOhUJ/TGjVqlHJzc5Wbm3tVbifmxJw8PadzT0u6EMM8N7aVIIMHD9Z3332nX375RVWqVJEkzZo1SwMGDHDZuyRJzZs3V4cOHfTyyy/roYce0r59+7Ro0SLn8pMnT8rf31/ffvutunTpku+1CtpjVbVqVaWmpiowMFASaZ85MSfmxJyYE3O62ua0du1atW7dWg9PX6DoOg1K5R6rQ9s36p0BXbV8+XI1adLkqtxOzIk5eXpO6enpCg0NVVpamjMbFKRE7rEaOnSo5s+fr2XLljlDlSRFRkYqOztbx48fd9lrlZSUpMjISOeY1atXu6wv76qBeWPO5+PjIx8fn3x1Ly8veXm5vkV5G+Z8eRugqPXz1+tO3TCMAuuF9XipdebEnAqrMyfmJDGnwnq81Dpz8tycbDabsrOz5ZBxNjz9j2kUsB7DuMS6TaZRwIsWUj8bmC6h/r9+HTKUnZ0twzAKfd+l0r2dmBNz8vScCluer58ijSqi3bt3a+vWrW4/3zRNDR06VF999ZV+/PFH1ahRw2X59ddfr3LlymnJkiXO2vbt25WQkKBWrVpJklq1aqWNGzcqOTnZOWbx4sUKDAxUvXr13O4NAAAAAArjVrB666231Lt3b5fagAEDVLt2bdWvX19NmzZ1CTZFNWTIEP373//WrFmzFBAQoMTERCUmJjqPhQwKCtIDDzygkSNH6qefftLatWs1YMAAtWrVSi1btpQkde7cWfXq1VO/fv30xx9/aNGiRRozZoyGDBlS4F4pAAAAALDKrWD1r3/9y+UCEYsWLdLMmTP10EMPacqUKdq9e3eBF4O4mGnTpiktLU3t27dXVFSU89+cOXOcY9544w3ddttt6tmzp9q2bavIyEh9+eWXzuV2u13z58+X3W5Xq1atdO+99+q+++7Tc889585UAQAAAOCi3DrHat++fYqNjXU+/uyzz1SjRg1NmzZN0tmr73388ceXvN6iXEfD19dXU6dO1dSpUwsdExMTo2+//faSXx8AAAAA3OHWHqvzA9D333/vcrW96tWrF3ppcwAAAAC42rgVrK699lp99dVXks4eBnjo0CGXYHXgwIF895oCAAAAgKuVW4cCPv7447rnnntUsWJFZWZmKjY2VvHx8c7lP/74oxo1alRcPQIAAABAieZWsOrdu7dCQ0P17bffKjg4WI888ojz+u5Hjx5VSEiI+vXrV6yNAgAAAEBJ5fYNgm+++WbdfPPN+eohISEuV+kDAAAAgKud28FKkjIzM7V06VLt27dP0tmr8bVr107+/v7F0hwAAAAAlAZuB6spU6ZozJgxysjIcLlKYEBAgF588UUNHTq0WBoEAAAAgJLOrasCfvTRRxo+fLjq16+vWbNmaf369Vq/fr0+/fRTNWjQQMOHD3frPlYAAAAAUBq5tcfq9ddfV9u2bbVkyRLZ7XZnPS4uTnfeeaduuukmvfbaa1zAAgAAAECZ4NYeq+3bt+uuu+5yCVV57Ha77rrrLm3fvt1ycwAAAABQGrgVrIKCgrR3795Cl+/du1eBgYHu9gQAAAAApYpbwapr166aMmWKZs+enW/ZnDlz9H//93/q1q2b5eYAAAAAoDRw6xyrl156SStWrFDfvn31j3/8Q7Vr15Yk7dixQ4mJiapbt65eeumlYm0UAAAAAEoqt/ZYhYeH6/fff9frr7+uBg0aKCkpSUlJSWrQoIHeeOMNrV27VmFhYcXdKwAAAACUSG7fx8rX11fDhw/X8OHDi7MfAAAAACh13NpjVbNmTf3nP/8pdPn8+fNVs2ZNt5sCAAAAgNLErWC1d+9eZWRkFLo8IyND+/btc7spAAAAAChN3ApWkmQYRqHLfvvtNwUHB7u7agAAAAAoVYp8jtXkyZM1efJkSWdD1YgRI/TMM8/kG5eWlqbjx4/rnnvuKb4uAQAAAKAEK3KwioiI0HXXXSfp7KGAlStXVuXKlV3GGIYhf39/XX/99XrkkUeKt1MAAAAAKKGKHKz69OmjPn36SJI6dOigMWPG6KabbrpsjQEAAABAaeHW5dZ/+umn4u4DAAAAAEott+9jJUlbtmzR7t27dezYMZmmmW/5fffdZ2X1AAAAAFAquBWsdu3apXvvvVerV68uMFBJZ8+3IlgBAAAAKAvcClZ///vftXHjRr355pu68cYbVbFixeLuCwAAAABKDbeC1a+//qqnn35aw4YNK+5+AAAAAKDUcesGwWFhYQoKCiruXgAAAACgVHIrWD388MP697//rdzc3OLuBwAAAABKHbcOBbz22muVm5urhg0bauDAgapatarsdnu+cT169LDcIAAAAACUdG4Fq7vvvtv5/x9//PECxxiGwR4tAAAAAGUCNwgGAAAAAIvcClbt2rUr7j4AAAAAoNRyK1jlycrK0u+//67k5GS1bt1aYWFhxdUXAAAAAJQabl0VUJLeeustRUVFqU2bNurRo4c2bNggSUpJSVFYWJg+/PDDYmsSAAAAAEoyt4LV9OnTNWLECN1yyy364IMPZJqmc1lYWJg6duyo2bNnF1uTAAAAAFCSuRWsXnvtNd1+++2aNWuWunXrlm/59ddfr82bN1tuDgAAAABKA7eC1c6dO9WlS5dCl4eEhCg1NdXtpgAAAACgNHErWAUHByslJaXQ5Vu2bFFkZKTbTQEAAABAaeJWsLr11lv13nvv6fjx4/mWbd68We+//77+9re/We0NAAAAAEoFt4LVCy+8oNzcXNWvX19jxoyRYRiaOXOm7r33XjVt2lQREREaO3ZscfcKAAAAACWSW8EqOjpaa9eu1S233KI5c+bINE19/PHH+uabb9SnTx+tXLmSe1oBAAAAKDPcvkFwRESE/vWvf+lf//qXjhw5IofDofDwcNlsbt8aCwAAAABKJbeD1bnCw8OLYzUAAAAAUCq5HawyMzM1d+5c7d69W8eOHXO5SbAkGYahyZMnW24QAAAAAEo6t4LVkiVLdNdddxV4VcA8BCsAAAAAZYVbJ0QNGTJE/v7+WrRokY4fPy6Hw5HvX25ubnH3CgAAAAAlklt7rBISEvTyyy/r5ptvLu5+AAAAAKDUcWuPVVxcnNLS0oq7FwAAAAAoldwKVi+//LLefvttrVmzprj7AQAAAIBSx61DAdu1a6c333xTrVq1UmxsrKpWrSq73e4yxjAMff3118XSJAAAAACUZG4Fq7lz5+ree+9Vbm6uDhw4oBMnTuQbYxiG5eYAAAAAoDRwK1g9+eSTqlOnjubOnatrr722uHsCAAAAgFLFrXOsDh06pMGDBxOqAAAAAEBuBqtmzZopISGhuHsBAAAAgFLJrWA1ZcoUzZ49W5999llx9wMAAAAApY5b51j17dtXOTk56tOnjwYNGqQqVaoUeFXAP/74o1iaBAAAAICSzK1gFRISotDQUNWuXbu4+wEAAACAUsetYPXzzz8XcxsAAAAAUHq5dY4VAAAAAOAvbger9PR0vfTSS4qPj1fjxo21evVqSdLRo0f1+uuva+fOncXWJAAAAACUZG4dCnjgwAG1a9dO+/fvV+3atbVt2zZlZGRIOnv+1bvvvqt9+/Zp8uTJxdosAAAAAJREbgWrUaNG6cSJE1q/fr0iIiIUERHhsrx79+6aP39+sTQIAAAAACWdW4cCfv/993r00UdVr149GYaRb3nNmjW1f/9+y80BAAAAQGngVrA6deqUwsPDC11+4sQJtxsCAAAAgNLGrWBVr149LVu2rNDl8+bNU+PGjd1uCgAAAABKE7eC1YgRIzR79my9/PLLSktLkyQ5HA7t3LlT/fr104oVK/TYY48Va6MAAAAAUFK5dfGKe++9V/v27dOYMWP0zDPPSJJuueUWmaYpm82miRMnqnv37sXZJwAAAACUWG4FK0l65pln1K9fP82dO1c7d+6Uw+FQrVq11KNHD9WsWbM4ewQAAACAEs3tYCVJ1apV45A/AAAAAGWeW+dYAQAAAAD+UqQ9VjabrcD7VV2IYRjKyclxqykAAAAAKE2KFKzGjh17ycEKAAAAAMqKIgWr8ePHX+Y2zlq2bJleffVVrV27VocPH9ZXX33lcnXB+++/XzNnznR5Tnx8vBYuXOh8fPToUQ0bNkzffPONbDabevbsqcmTJ6tChQpXZA4AAAAAyp4SdY5VZmamGjZsqKlTpxY65pZbbtHhw4ed/z799FOX5X379tXmzZu1ePFizZ8/X8uWLdNDDz10uVsHAAAAUIa5fVXAhIQETZw4UT/99JOSk5P19ddfq23btkpJSdFzzz2nAQMGqHHjxpe0zi5duqhLly4XHOPj46PIyMgCl23dulULFy7Ub7/9pqZNm0qSpkyZoltvvVX//Oc/FR0dXeDzsrKylJWV5Xycnp4uScrJyXGeJ2az2WSz2eRwOORwOJxj8+q5ubkyTfOidbvdXuD5Z3a7XZKUm5tbpLqXl5dM03SpG4Yhu92er8fC6syJOTEn5sScmFNZnpPD4ZC3t7dsMmU4cmUaZ//ebJgOl/GmzS6ZpmvdMM6OL7TukHFOL6ZhSBeoG6ZDcqnbJMMovO44+/7aZMrb21umaeZ738+da2neTsyJOXl6TkW9boRbwWrLli268cYb5XA41KJFC+3cudP5gmFhYfrll1+UmZmpDz74wJ3VX9DPP/+siIgIVaxYUR07dtQLL7yg0NBQSdKKFSsUHBzsDFWS1KlTJ9lsNq1atUp33HFHgeucNGmSJkyYkK++bt06+fv7S5LCw8NVq1Yt7dmzR0eOHHGOqVKliqpUqaI///xTaWlpznrNmjUVERGhTZs26dSpU8563bp1FRwcrHXr1rl8oOLi4uTt7a01a9a49NC0aVNlZ2drw4YNzprdblezZs2Ulpambdu2Oet+fn5q2LChUlJStHv3bmc9KChIsbGxOnTokA4cOOCsMyfmxJyYE3NiTmV5TqmpqRo1apSq+5yWb8p2HQyrI7sjR5FHdznHmjabDobVle+ZTIUdT3DWc7x8lBhSS/6nj6viicPO+mlvf6UExyjwZKoCM//qPdMvWMcColUxI1H+p4476+n+4Ur3D1do2n75Zmc668cCopTpV1GVju2RV85ff/xNCa6m094VFH10hwyHQ6E+pzVq1Cjl5uYqNzf3qtxOzIk5eXpOmZl/fTcvxDDPjW1FdNttt2nr1q1auXKlDMNQRESEfvjhB3Xs2FGS9Oyzz2rOnDn6888/L3XVfzVmGPnOsZo9e7bKly+vGjVqaNeuXXr66adVoUIFrVixQna7XRMnTtTMmTO1fft2l3VFRERowoQJGjx4cIGvVdAeq6pVqyo1NVWBgYGSSPvMiTkxJ+bEnJjT1TantWvXqnXr1np4+gJF12lQKvdYHdq+Ue8M6Krly5erSZMmV+V2Yk7MydNzSk9PV2hoqNLS0pzZoCBu7bFatmyZxo4dq/DwcKWmpuZbXq1aNR08eNCdVV9Q7969nf+/QYMGiouLU61atfTzzz/rpptucnu9Pj4+8vHxyVf38vKSl5frW5S3Yc6XtwGKWj9/ve7UDcMosF5Yj5daZ07MqbA6c2JOEnMqrMdLrTMnz83JZrMpOztbDhlnw9P/mEYB6zGMS6zbZBZ0QeVC6mcD0yXU/9evQ4ays7NlGEah77tUurcTc2JOnp5TYcvz9VOkUedxOBwqX758ocuPHDlSYFApbjVr1lRYWJh27twpSYqMjFRycrLLmJycHB09erTQ87IAAAAAwCq3glWTJk20YMGCApfl5ORo9uzZatmypaXGiuLAgQNKTU1VVFSUJKlVq1Y6fvy41q5d6xzz448/Os8FAwAAAIDLwa1g9dRTT2nhwoUaPHiwNm3aJElKSkrSDz/8oM6dO2vr1q168sknL3m9GRkZWr9+vdavXy9J2rNnj9avX6+EhARlZGRo1KhRWrlypfbu3aslS5bo9ttv1zXXXKP4+HhJUmxsrG655RYNGjRIq1ev1q+//qqhQ4eqd+/ehV4REAAAAACscuscqy5dumjGjBkaPny43nvvPUnSvffeK9M0FRgYqI8++kht27a95PWuWbNGHTp0cD4eOXKkJKl///6aNm2aNmzYoJkzZ+r48eOKjo5W586d9fzzz7scdvjJJ59o6NChuummm2Sznb1B8FtvveXONAEAAACgSNy+j1W/fv3Uo0cPLV68WDt27JDD4VCtWrUUHx+vgIAAt9bZvn17lyt1nG/RokUXXUdISIhmzZrl1usDAAAAgDvcDlaS5O/v73I5dAAAAAAoi9w6xwoAAAAA8BeCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACyydFXAgwcPatmyZUpOTlbPnj1VpUoV5ebmKi0tTUFBQbLb7cXVJwAAAACUWG7tsTJNUyNHjlSNGjXUt29fjRw5Un/++ackKSMjQ9WrV9eUKVOKtVEAAAAAKKncClavvvqqJk+erMcff1yLFy92ualvUFCQevTooblz5xZbkwAAAABQkrkVrN5//33dd999mjhxoho1apRveVxcnHMPFgAAAABc7dwKVvv379cNN9xQ6HJ/f3+lp6e73RQAAAAAlCZuBauIiAjt37+/0OVr165VtWrV3G4KAAAAAEoTt4JVjx499M4772j37t3OmmEYkqTvv/9eM2bM0F133VU8HQIAAABACedWsJowYYKioqLUqFEj3XfffTIMQy+//LLatGmjLl26KC4uTk8//XRx9woAAAAAJZJbwSooKEgrV67U6NGjdfDgQfn6+mrp0qU6fvy4xo0bp//+978qX758cfcKAAAAACWS2zcI9vPz05gxYzRmzJji7AcAAAAASh239lgBAAAAAP5SpD1WAwcOvOQVG4ahDz744JKfBwAAAAClTZGC1Y8//ui86l+ekydP6siRI5KkihUrSpKOHTsmSQoPD5e/v39x9gkAAAAAJVaRDgXcu3ev9uzZ4/y3YMEClStXTk8//bSSk5OVmpqq1NRUJScn66mnnpK3t7cWLFhwuXsHAAAAgBLBrYtXDBs2TF26dNELL7zgUg8LC9OLL76o5ORkDRs2TD/88EOxNAkAAAAAJZlbF69YuXKlmjRpUujyxo0ba+XKlW43BQAAAACliVvBKiQkRN99912hy7/99lsFBwe72xMAAAAAlCpuBau///3vmj9/vm6//Xb98MMP2rt3r/bu3avFixfrb3/7m7777js9/PDDxd0rAAAAAJRIbp1jNWbMGGVlZenVV1/V/PnzXVfo5aUnn3ySGwcDAAAAKDPcClaS9Pzzz2v48OH64YcftG/fPklSTEyMOnXqpLCwsGJrEAAAAABKOreDlXT2KoC9e/curl4AAAAAoFRy6xwrAAAAAMBfCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYV6XLrNWrUkGEYl7RiwzC0a9cut5oCAAAAgNKkSMGqXbt2+YLVmjVrtHnzZtWrV0916tSRJG3fvl1btmxR/fr1df311xd/twAAAABQAhUpWM2YMcPl8bx58zRv3jwtXrxYN910k8uyxYsXq1evXnr++eeLrUkAAAAAKMncOsdq7NixGjZsWL5QJUk333yzhg4dqjFjxlhuDgAAAABKA7eC1Y4dOxQaGlro8tDQUM6vAgAAAFBmuBWsatWqpenTpysjIyPfshMnTujDDz9UzZo1LTcHAAAAAKVBkc6xOt8LL7ygO++8U3Xr1tX999+va665RtLZPVkzZ85UUlKSPv/882JtFAAAAABKKreCVffu3fXtt9/qiSee0MSJE12WNWrUSB988IHi4+OLpUEAAAAAKOncClaS1LlzZ3Xu3FmJiYnat2+fJCkmJkaRkZHF1hwAAAAAlAZuB6s8kZGRhCkAAAAAZZqlYHXgwAGtW7dOaWlpcjgc+Zbfd999VlYPAAAAAKWCW8Hq9OnT6t+/v+bOnSuHwyHDMGSapiTJMAznOIIVAAAAgLLArcutP/300/ryyy/14osv6ueff5Zpmpo5c6a+//57denSRQ0bNtQff/xR3L0CAAAAQInkVrD64osvNGDAAD3xxBO67rrrJEmVK1dWp06dNH/+fAUHB2vq1KnF2igAAAAAlFRuBavk5GQ1b95ckuTn5ydJyszMdC7v2bOnvvzyy2JoDwAAAABKPreCVaVKlZSamipJKl++vCpWrKjt27c7l6enp+v06dPF0yEAAAAAlHBuXbyiRYsW+uWXX/TEE09Ikrp166ZXX31VUVFRcjgceuONN9SyZctibRQAAAAASiq39lg9+uijqlmzprKysiRJzz//vIKDg9WvXz/1799fQUFBeuutt4q1UQAAAAAoqdzaY9WmTRu1adPG+bhq1araunWrNm7cKLvdrrp168rLy/K9hwEAAACgVCi29GOz2dSwYcPiWh0AAAAAlBpFClbLli1za+Vt27Z163kAAAAAUJoUKVi1b99ehmE4H5um6fK4MLm5ue53BgAAAAClRJGC1U8//eTyOCsrS6NHj9bJkyf10EMPqU6dOpKkbdu26f3335e/v79eeeWV4u8WAAAAAEqgIgWrdu3auTweOXKkvL29tXLlSvn6+jrr3bp105AhQ9SuXTstXLhQN998c/F2CwAAAAAlkFuXW//kk0/Ur18/l1CVp3z58urXr5/+/e9/W24OAAAAAEoDt4JVZmamDh8+XOjyw4cP6+TJk243BQAAAACliVvBqlOnTpo8ebK+/PLLfMvmzp2ryZMnq1OnTpabAwAAAIDSwK37WE2dOlUdO3bUXXfdpaioKF1zzTWSpF27dunQoUOqVauWpkyZUqyNAgAAAEBJ5dYeq8qVK+uPP/7Q66+/rvr16yspKUlJSUm67rrr9MYbb+iPP/5QlSpVirtXAAAAACiR3NpjJUm+vr4aPny4hg8fXpz9AAAAAECp49YeKwAAAADAX4q0x6pDhw6y2WxatGiRvLy81LFjx4s+xzAMLVmyxHKDAAAAAFDSFSlYmaYph8PhfOxwOGQYxkWfAwAAAABlQZGC1c8//3zBxwAAAABQlrl1jtWyZct05MiRQpenpKRo2bJlbjcFAAAAAKWJW8GqQ4cOWrx4caHLlyxZog4dOrjdFAAAAACUJm4Fq4udP5WVlSW73e5WQwAAAABQ2hT5PlYJCQnau3ev8/G2bdsKPNzv+PHjevfddxUTE1MsDQIAAABASVfkPVbTp09X+/bt1aFDBxmGoRdffFEdOnTI96979+5avXq1nnrqqUtuZtmyZerWrZuio6NlGIbmzZvnstw0TY0dO1ZRUVHy8/NTp06dtGPHDpcxR48eVd++fRUYGKjg4GA98MADysjIuOReAAAAAKCoirzHqlevXqpfv75M01SvXr306KOP6sYbb3QZYxiG/P391ahRI1WqVOmSm8nMzFTDhg01cOBA9ejRI9/yV155RW+99ZZmzpypGjVq6Nlnn1V8fLy2bNkiX19fSVLfvn11+PBhLV68WGfOnNGAAQP00EMPadasWZfcDwAAAAAURZGDVWxsrGJjYyWd3XvVtm1b1ahRo1ib6dKli7p06VLgMtM09eabb2rMmDG6/fbbJUkfffSRKlWqpHnz5ql3797aunWrFi5cqN9++01NmzaVJE2ZMkW33nqr/vnPfyo6OrpY+wUAAAAA6RKC1bn69+9f3H1c1J49e5SYmKhOnTo5a0FBQWrRooVWrFih3r17a8WKFQoODnaGKknq1KmTbDabVq1apTvuuKPAdWdlZSkrK8v5OD09XZKUk5OjnJwcSZLNZpPNZpPD4XC5WXJePTc31+WiHoXV7Xa7DMNwrvfcuiTl5uYWqe7l5SXTNF3qhmHIbrfn67GwOnNiTsyJOTEn5lSW5+RwOOTt7S2bTBmOXJnG2TMkDNPhMt602SXTdK0bxtnxhdYdMs7pxTQM6QJ1w3RILnWbZBiF1x1n31+bTHl7e8s0zXzv+7lzLc3biTkxJ0/P6fzlhXErWEnS1q1bNX36dO3evVvHjh3Ld6VAwzC0ZMkSd1efT2JioiTlO8SwUqVKzmWJiYmKiIhwWe7l5aWQkBDnmIJMmjRJEyZMyFdft26d/P39JUnh4eGqVauW9uzZ43IPrypVqqhKlSr6888/lZaW5qzXrFlTERER2rRpk06dOuWs161bV8HBwVq3bp3LByouLk7e3t5as2aNSw9NmzZVdna2NmzY4KzZ7XY1a9ZMaWlp2rZtm7Pu5+enhg0bKiUlRbt373bWg4KCFBsbq0OHDunAgQPOOnNiTsyJOTEn5lSW55SamqpRo0apus9p+aZs18GwOrI7chR5dJdzrGmz6WBYXfmeyVTY8QRnPcfLR4khteR/+rgqnjjsrJ/29ldKcIwCT6YqMPOv3jP9gnUsIFoVMxLlf+q4s57uH650/3CFpu2Xb3ams34sIEqZfhVV6dgeeeX89cfflOBqOu1dQdFHd8hwOBTqc1qjRo1Sbm6ucnNzr8rtxJyYk6fnlJn513fzQgzzYtdOL8DHH3+sAQMGqFy5cqpTp44qVqxY4LiffvrpUlf9V2OGoa+++krdu3eXJC1fvlytW7fWoUOHFBUV5RzXq1cvGYahOXPmaOLEiZo5c6a2b9/usq6IiAhNmDBBgwcPLvC1CtpjVbVqVaWmpiowMFASaZ85MSfmxJyYE3O62ua0du1atW7dWg9PX6DoOg1K5R6rQ9s36p0BXbV8+XI1adLkqtxOzIk5eXpO6enpCg0NVVpamjMbFMStPVbjx49X48aN9d133yksLMydVVyyyMhISVJSUpJLsEpKSlKjRo2cY5KTk12el5OTo6NHjzqfXxAfHx/5+Pjkq3t5ecnLy/Utytsw58vbAEWtn79ed+qGYRRYL6zHS60zJ+ZUWJ05MSeJORXW46XWmZPn5mSz2ZSdnS2HjLPh6X9Mo4D1GMYl1m0yjQJetJD62cB0CfX/9euQoezsbBmGUej7LpXu7cScmJOn51TY8nz9FGnUeQ4dOqSBAwdesVAlSTVq1FBkZKTL4YXp6elatWqVWrVqJUlq1aqVjh8/rrVr1zrH/Pjjj3I4HGrRosUV6xUAAABA2eLWHqu4uDgdOnSouHtRRkaGdu7c6Xy8Z88erV+/XiEhIapWrZpGjBihF154QbVr13Zebj06Otp5uGBsbKxuueUWDRo0SO+8847OnDmjoUOHqnfv3lwREAAAAMBl41awev3113XXXXepS5cuuuGGG4qtmTVr1qhDhw7OxyNHjpR09iqEM2bM0OjRo5WZmamHHnpIx48fV5s2bbRw4ULnPawk6ZNPPtHQoUN10003yWazqWfPnnrrrbeKrUcAAAAAOJ9bwerll19WUFCQbrzxRtWrV0/VqlXLd8yiYRj6+uuvL2m97du3z3d1wfPX+dxzz+m5554rdExISAg3AwYAAABwRbkVrDZs2CDDMFStWjVlZGRoy5Yt+cYYRkFnbAIAAADA1cetYLV3795ibgMAAAAASi+3rgoIAAAAAPiLW3usznXixAmlpaW53JwrT7Vq1ayuHgCAq1ZCQoJSUlI83YYlYWFh/PceAGQhWE2bNk2vv/66du/eXeiY8++0DAAAzkpISFDd2FidOnnS061Y4le+vLZt3Uq4AlDmuRWs3nnnHQ0ZMkTx8fEaOHCgnnnmGT322GPy9fXVjBkzVKlSJT366KPF3SsAAFeNlJQUnTp5Ur1emKaIGrU93Y5bkvfs0GdjBislJYVgBaDMcytYTZkyRfHx8fruu++UmpqqZ555Rl27dlXHjh01evRoNW3aVKmpqcXdKwAAV52IGrVVObahp9sAAFjk1sUrdu3apW7dukmSypUrJ0nKzs6WJAUFBenBBx/U22+/XUwtAgAAAEDJ5lawCgoKUk5OjiQpMDBQ5cuX1/79+53LAwIClJiYWDwdAgAAAEAJ51awql+/vv744w/n45YtW2ratGk6ePCg9u/fr3fffVfXXnttsTUJAAAAACWZW+dY3XvvvXrnnXeUlZUlHx8fTZgwQZ06dXKeuFquXDnNnTu3WBsFAAAAgJLKrWA1YMAADRgwwPm4devW2rx5s7755hvZ7XZ17tyZPVYAAAAAygzLNwjOU7NmTQ0fPry4VgcAAAAApUaRz7E6ffq0Hn74YU2ZMuWC49566y0NHjxYZ86csdwcAAAAAJQGRQ5W7733nmbMmKGuXbtecFzXrl01ffp0/etf/7LcHAAAAACUBkUOVp999pl69uypmjVrXnBcrVq1dNddd+nTTz+13BwAAAAAlAZFDlYbN25UmzZtijT2hhtu0IYNG9xuCgAAAABKkyIHq+zsbHl7exdprLe3t7KystxuCgAAAABKkyIHq+joaG3atKlIYzdt2qTo6Gi3mwIAAACA0qTIwapTp0766KOPlJycfMFxycnJ+uijj3TzzTdbbg4AAAAASoMiB6snnnhCp0+fVseOHbVq1aoCx6xatUo33XSTTp8+rVGjRhVbkwAAAABQkhX5BsE1a9bUZ599pj59+uiGG25QzZo11aBBAwUEBOjEiRPatGmTdu3apfLly2v27NmqVavW5ewbAAAAAEqMIgcr6ew9qjZs2KCXX35Z8+fP17x585zLoqOjNWjQII0ePfqil2QHAAAAgKvJJQUrSapevbqmTZumadOm6cSJE0pPT1dgYKACAgIuR38AAAAAUOJdcrA6V0BAAIEKAAAAQJlX5ItXAAAAAAAKRrACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIu8PN0AAMAzEhISlJKS4uk2LAkLC1O1atU83QYAAAQrACiLEhISVDc2VqdOnvR0K5b4lS+vbVu3Eq4AAB5HsAKAMiglJUWnTp5UrxemKaJGbU+345bkPTv02ZjBSklJIVgBADyOYAUAZVhEjdqqHNvQ020AAFDqcfEKAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFpSpYjR8/XoZhuPyrW7euc/np06c1ZMgQhYaGqkKFCurZs6eSkpI82DEAAACAsqBUBStJuu6663T48GHnv19++cW57LHHHtM333yjzz//XEuXLtWhQ4fUo0cPD3YLAAAAoCzw8nQDl8rLy0uRkZH56mlpafrggw80a9YsdezYUZI0ffp0xcbGauXKlWrZsuWVbhUAAABAGVHqgtWOHTsUHR0tX19ftWrVSpMmTVK1atW0du1anTlzRp06dXKOrVu3rqpVq6YVK1ZcMFhlZWUpKyvL+Tg9PV2SlJOTo5ycHEmSzWaTzWaTw+GQw+Fwjs2r5+bmyjTNi9btdrsMw3Cu99y6JOXm5hap7uXlJdM0XeqGYchut+frsbA6c2JOzKlsz8nb21s2mTJMh0zDJpkOGef0YhqGdIG6YTokl7pNMozC6w7XHk3j7EEThukoWt1ml0zTWbfJVLly5SSpVG6nv17fdH1vDON/28N0fQ+c9ZK0nUx5e3vL4XA434vS9H1y+R44cov82ftf8yViO9n+tw1M08z3vp87V37uMSfm5P6czl9emFIVrFq0aKEZM2aoTp06Onz4sCZMmKAbb7xRmzZtUmJiory9vRUcHOzynEqVKikxMfGC6500aZImTJiQr75u3Tr5+/tLksLDw1WrVi3t2bNHR44ccY6pUqWKqlSpoj///FNpaWnOes2aNRUREaFNmzbp1KlTznrdunUVHBysdevWuXyg4uLi5O3trTVr1rj00LRpU2VnZ2vDhg3Omt1uV7NmzZSWlqZt27Y5635+fmrYsKFSUlK0e/duZz0oKEixsbE6dOiQDhw44KwzJ+bEnMrunFJTUzVq1ChV9zktpe1XSnCMAk+mKjDzr94z/YJ1LCBaFTMS5X/quLOe7h+udP9whabtl292prN+LCBKmX4VVenYHnnl/PXHqpTgajrtXUHRR3fIOOc/gIkhtZRr81LllO0uczoYVkd2R44ij+5y1kybTQfD6sr3TKbCjidIkkJ9TmvgwIFnX6MUbqe8P+IF2Bwu70GOl48SQ2rJ//RxVTxx2Fk/7e1f4raTj2Fq1KhRSk1N1Zo1a0rd9+nc74FvyvYif/ZK0nYK9TmtUaNGKTc3V7m5ufzcY07M6TLMKTPzr+/mhRjmubGtlDl+/LhiYmL0+uuvy8/PTwMGDHDZ8yRJzZs3V4cOHfTyyy8Xup6C9lhVrVpVqampCgwMlETaZ07MiTldXXP6/fff1bp1az08fYGi68aVwD0hF99rcGj7Rk27/1atXLlSjRo1KnXbaf369WrWrJmGfrJYVeo0+GtwCdkT4lJXwdvp4LY/9N6Arvr111/VqFEjSaXr+7R27dq/vgd1GpTKPVaHtm/UOwO6avny5WrSpAk/95gTc7oMc0pPT1doaKjS0tKc2aAgpWqP1fmCg4N17bXXaufOnbr55puVnZ2t48ePu+y1SkpKKvCcrHP5+PjIx8cnX93Ly0teXq5vUd6GOV/eBihq/fz1ulM3DKPAemE9XmqdOTGnwurM6eqYU3Z2thwynL9MyrDJNApYeSH1s7/gXULdVvBcTeMS6obhrDtk6MyZM5JK53b66/WNgt+bc+bqWi9J28lQdna2bDaby9xKy/fJ5Xtwzrwv9tkrWv3KbCfH/7ZB3tWS+bnHnJhT8c+psOX5+inSqBIqIyNDu3btUlRUlK6//nqVK1dOS5YscS7fvn27EhIS1KpVKw92CQAAAOBqV6r2WD3++OPq1q2bYmJidOjQIY0bN052u119+vRRUFCQHnjgAY0cOVIhISEKDAzUsGHD1KpVK64ICAAAAOCyKlXB6sCBA+rTp49SU1MVHh6uNm3aaOXKlQoPD5ckvfHGG7LZbOrZs6eysrIUHx+vt99+28NdAwAAALjalapgNXv27Asu9/X11dSpUzV16tQr1BEAAAAAlPJzrAAAAACgJCBYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWOTl6QYAlF0JCQlKSUnxdBtuCwsLU7Vq1TzdBgAAKAEIVgA8IiEhQXVjY3Xq5ElPt+I2v/LltW3rVsIVAAAgWAHwjJSUFJ06eVK9XpimiBq1Pd3OJUves0OfjRmslJQUghUAACBYAfCsiBq1VTm2oafbAAAAsISLVwAAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFnl5ugHAUxISEpSSkuLpNtwWFhamatWqeboNAAAAiGDlMfxS71kJCQmqGxurUydPeroVt/mVL69tW7eW6u0AAABwtbhqg9XUqVP16quvKjExUQ0bNtSUKVPUvHlzT7cliV/qS4KUlBSdOnlSvV6YpogatT3dziVL3rNDn40ZrJSUlFK7DQAAAK4mV2WwmjNnjkaOHKl33nlHLVq00Jtvvqn4+Hht375dERERnm6PX+pLkIgatVU5tqGn2wAAoMwq7UfxSFfHkTyleRuUlPf/qgxWr7/+ugYNGqQBAwZIkt555x0tWLBAH374oZ588kkPd/cXfqkHAABl2dVwFI9Uuo/kuRq2QUl5/6+6YJWdna21a9fqqaeectZsNps6deqkFStWFPicrKwsZWVlOR+npaVJko4ePaqcnBznOmw2mxwOhxwOh8u6bTabcnNzZZrmRet2u10ZGRkqV66cErdt0JmTGZKkvBHGeb0VXjec/3t+3ZCp8xVnPTVhl8qVK6f09HQdPXpUdrtdhmE436tz5ypJubm5Rap7eXnJNE2XumEYstvt+d73wupF3U7p6ekqV66cDm3doOyTmfnmevZR/vegpGyn1ITdstlsysjI0LFjx4r82StJ2ykjI0N2u93le3Cp740nt1PKPtfvQXH+jLgS2ynvO5D3/l/Onx2XazulJuyWl5eXMjIydPz48WL9GXGxenFsp/T0dEnSoa2u34G8uV7un+XFsZ2O7Nvt8j2QruzP8ovVL7ad8n8PCpur5/6be7HtlJpwdhucOHFCaWlpJfK/uReq7969W6dPndKN9w1RaFQVlx5z/zfGbhhFrhuSbOfUTUmOS6qbcpiSzTj7LudxmKbM/40991UdpqljiQe1Yta72r17typUqHC2txL239wLbac9e/Yo58wZdbh/mIIqRV9wrqYubXsUVi/O7ZSedFi/fPKOdu/ercDAwMvyszzv5/W5zy2IYV5sRClz6NAhVa5cWcuXL1erVq2c9dGjR2vp0qVatWpVvueMHz9eEyZMuJJtAgAAAChF9u/frypVqhS6/KrbY+WOp556SiNHjnQ+djgcOnr0qEJDQ2UY5/99quRLT09X1apVtX//fgUGBnq6nTKJbeB5bAPPYxt4HtvAs3j/PY9t4HlXwzYwTVMnTpxQdHT0BcdddcEqLCxMdrtdSUlJLvWkpCRFRkYW+BwfHx/5+Pi41IKDgy9Xi1dMYGBgqf0AXy3YBp7HNvA8toHnsQ08i/ff89gGnlfat0FQUNBFx9iuQB9XlLe3t66//notWbLEWXM4HFqyZInLoYEAAAAAUFyuuj1WkjRy5Ej1799fTZs2VfPmzfXmm28qMzPTeZVAAAAAAChOV2Wwuvvuu3XkyBGNHTtWiYmJatSokRYuXKhKlSp5urUrwsfHR+PGjct3eCOuHLaB57ENPI9t4HlsA8/i/fc8toHnlaVtcNVdFRAAAAAArrSr7hwrAAAAALjSCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEq6vQ1KlTVb16dfn6+qpFixZavXq1p1sqM5YtW6Zu3bopOjpahmFo3rx5nm6pTJk0aZKaNWumgIAARUREqHv37tq+fbun2ypTpk2bpri4OOeNIFu1aqXvvvvO022VaS+99JIMw9CIESM83UqZMX78eBmG4fKvbt26nm6rzDl48KDuvfdehYaGys/PTw0aNNCaNWs83VaZUb169XzfA8MwNGTIEE+3dtkQrK4yc+bM0ciRIzVu3Dj9/vvvatiwoeLj45WcnOzp1sqEzMxMNWzYUFOnTvV0K2XS0qVLNWTIEK1cuVKLFy/WmTNn1LlzZ2VmZnq6tTKjSpUqeumll7R27VqtWbNGHTt21O23367Nmzd7urUy6bffftO7776ruLg4T7dS5lx33XU6fPiw898vv/zi6ZbKlGPHjql169YqV66cvvvuO23ZskWvvfaaKlas6OnWyozffvvN5TuwePFiSdJdd93l4c4uHy63fpVp0aKFmjVrpv/7v/+TJDkcDlWtWlXDhg3Tk08+6eHuyhbDMPTVV1+pe/funm6lzDpy5IgiIiK0dOlStW3b1tPtlFkhISF69dVX9cADD3i6lTIlIyNDTZo00dtvv60XXnhBjRo10ptvvunptsqE8ePHa968eVq/fr2nWymznnzySf3666/673//6+lW8D8jRozQ/PnztWPHDhmG4el2Lgv2WF1FsrOztXbtWnXq1MlZs9ls6tSpk1asWOHBzgDPSEtLk3T2F3tcebm5uZo9e7YyMzPVqlUrT7dT5gwZMkRdu3Z1+W8CrpwdO3YoOjpaNWvWVN++fZWQkODplsqU//znP2ratKnuuusuRUREqHHjxnr//fc93VaZlZ2drX//+98aOHDgVRuqJILVVSUlJUW5ubmqVKmSS71SpUpKTEz0UFeAZzgcDo0YMUKtW7dW/fr1Pd1OmbJx40ZVqFBBPj4+evjhh/XVV1+pXr16nm6rTJk9e7Z+//13TZo0ydOtlEktWrTQjBkztHDhQk2bNk179uzRjTfeqBMnTni6tTJj9+7dmjZtmmrXrq1FixZp8ODBevTRRzVz5kxPt1YmzZs3T8ePH9f999/v6VYuKy9PNwAAl8OQIUO0adMmzmvwgDp16mj9+vVKS0vTF198of79+2vp0qWEqytk//79Gj58uBYvXixfX19Pt1MmdenSxfn/4+Li1KJFC8XExOizzz7jkNgrxOFwqGnTppo4caIkqXHjxtq0aZPeeecd9e/f38PdlT0ffPCBunTpoujoaE+3clmxx+oqEhYWJrvdrqSkJJd6UlKSIiMjPdQVcOUNHTpU8+fP108//aQqVap4up0yx9vbW9dcc42uv/56TZo0SQ0bNtTkyZM93VaZsXbtWiUnJ6tJkyby8vKSl5eXli5dqrfeekteXl7Kzc31dItlTnBwsK699lrt3LnT062UGVFRUfn+mBMbG8shmR6wb98+/fDDD3rwwQc93cplR7C6inh7e+v666/XkiVLnDWHw6ElS5ZwfgPKBNM0NXToUH311Vf68ccfVaNGDU+3BJ39OZSVleXpNsqMm266SRs3btT69eud/5o2baq+fftq/fr1stvtnm6xzMnIyNCuXbsUFRXl6VbKjNatW+e73caff/6pmJgYD3VUdk2fPl0RERHq2rWrp1u57DgU8CozcuRI9e/fX02bNlXz5s315ptvKjMzUwMGDPB0a2VCRkaGy18k9+zZo/Xr1yskJETVqlXzYGdlw5AhQzRr1ix9/fXXCggIcJ5bGBQUJD8/Pw93VzY89dRT6tKli6pVq6YTJ05o1qxZ+vnnn7Vo0SJPt1ZmBAQE5Duv0N/fX6GhoZxveIU8/vjj6tatm2JiYnTo0CGNGzdOdrtdffr08XRrZcZjjz2mG264QRMnTlSvXr20evVqvffee3rvvfc83VqZ4nA4NH36dPXv319eXld/7Lj6Z1jG3H333Tpy5IjGjh2rxMRENWrUSAsXLsx3QQtcHmvWrFGHDh2cj0eOHClJ6t+/v2bMmOGhrsqOadOmSZLat2/vUp8+ffpVf8JsSZGcnKz77rtPhw8fVlBQkOLi4rRo0SLdfPPNnm4NuGIOHDigPn36KDU1VeHh4WrTpo1Wrlyp8PBwT7dWZjRr1kxfffWVnnrqKT333HOqUaOG3nzzTfXt29fTrZUpP/zwgxISEjRw4EBPt3JFcB8rAAAAALCIc6wAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAABXrerVq+v+++/3dBsAgDKAYAUAKJV27dqlv//976pZs6Z8fX0VGBio1q1ba/LkyTp16tRlf/2TJ09q/Pjx+vnnny/7awEASj4vTzcAAMClWrBgge666y75+PjovvvuU/369ZWdna1ffvlFo0aN0ubNm/Xee+9d1h5OnjypCRMmSJLat29/WV8LAFDyEawAAKXKnj171Lt3b8XExOjHH39UVFSUc9mQIUO0c+dOLViwwIMdWpOZmSl/f39PtwEAuEQcCggAKFVeeeUVZWRk6IMPPnAJVXmuueYaDR8+vMDnjh8/XoZh5KvPmDFDhmFo7969ztqaNWsUHx+vsLAw+fn5qUaNGho4cKAkae/evQoPD5ckTZgwQYZhyDAMjR8/3vn8bdu26c4771RISIh8fX3VtGlT/ec//ynwdZcuXapHHnlEERERqlKlyqW+JQCAEoA9VgCAUuWbb75RzZo1dcMNN1y210hOTlbnzp0VHh6uJ598UsHBwdq7d6++/PJLSVJ4eLimTZumwYMH64477lCPHj0kSXFxcZKkzZs3q3Xr1qpcubKefPJJ+fv767PPPlP37t01d+5c3XHHHS6v98gjjyg8PFxjx45VZmbmZZsXAODyIVgBAEqN9PR0HTx4ULfffvtlfZ3ly5fr2LFj+v7779W0aVNn/YUXXpAk+fv7684779TgwYMVFxene++91+X5w4cPV7Vq1fTbb7/Jx8dH0tnw1KZNGz3xxBP5glVISIiWLFkiu91+WecFALh8OBQQAFBqpKenS5ICAgIu6+sEBwdLkubPn68zZ85c0nOPHj2qH3/8Ub169dKJEyeUkpKilJQUpaamKj4+Xjt27NDBgwddnjNo0CBCFQCUcgQrAECpERgYKEk6ceLEZX2ddu3aqWfPnpowYYLCwsJ0++23a/r06crKyrroc3fu3CnTNPXss88qPDzc5d+4ceMknT3U8Fw1atS4LPMAAFw5HAoIACg1AgMDFR0drU2bNrn1/IIuXCFJubm5+cZ98cUXWrlypb755hstWrRIAwcO1GuvvaaVK1eqQoUKhb6Gw+GQJD3++OOKj48vcMw111zj8tjPz+9SpgEAKIEIVgCAUuW2227Te++9pxUrVqhVq1aX9NyKFStKko4fP+483E+S9u3bV+D4li1bqmXLlnrxxRc1a9Ys9e3bV7Nnz9aDDz5YaEirWbOmJKlcuXLq1KnTJfUHACi9OBQQAFCqjB49Wv7+/nrwwQeVlJSUb/muXbs0efLkAp9bq1YtSdKyZcuctczMTM2cOdNl3LFjx2SapkutUaNGkuQ8HLB8+fKSzoa0c0VERKh9+/Z69913dfjw4Xw9HDly5AKzAwCUVuyxAgCUKrVq1dKsWbN09913KzY2Vvfdd5/q16+v7OxsLV++XJ9//rnuv//+Ap/buXNnVatWTQ888IBGjRolu92uDz/8UOHh4UpISHCOmzlzpt5++23dcccdqlWrlk6cOKH3339fgYGBuvXWWyWdPXyvXr16mjNnjq699lqFhISofv36ql+/vqZOnao2bdqoQYMGGjRokGrWrKmkpCStWLFCBw4c0B9//HEl3ioAwBVEsAIAlDp/+9vftGHDBr366qv6+uuvNW3aNPn4+CguLk6vvfaaBg0aVODzypUrp6+++kqPPPKInn32WUVGRmrEiBGqWLGiBgwY4BzXrl07rV69WrNnz1ZSUpKCgoLUvHlzffLJJy4XmvjXv/6lYcOG6bHHHlN2drbGjRun+vXrq169elqzZo0mTJigGTNmKDU1VREREWrcuLHGjh172d8fAMCVZ5jnH+sAAAAAALgknGMFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIv+H4TTSsXv7ou3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Conteo de elementos por grupo (cluster)\n", + "conteo_clusters = df_clusters['cluster'].value_counts().sort_index()\n", + "\n", + "print(\"Conteo de elementos por cluster:\")\n", + "print(conteo_clusters)\n", + "\n", + "# Agregar porcentajes para tener una mejor idea de la distribución\n", + "porcentaje_clusters = (conteo_clusters / len(df_clusters) * 100).round(2)\n", + "print(\"\\nPorcentaje de elementos por cluster:\")\n", + "print(porcentaje_clusters)\n", + "\n", + "# Crear una visualización básica de los clusters\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Gráfico de barras\n", + "plt.figure(figsize=(10, 6))\n", + "conteo_clusters.plot(kind='bar', color='skyblue', edgecolor='black')\n", + "plt.title('Distribución de elementos por cluster', fontsize=14)\n", + "plt.xlabel('Cluster', fontsize=12)\n", + "plt.ylabel('Cantidad de elementos', fontsize=12)\n", + "plt.xticks(rotation=0)\n", + "plt.grid(axis='y', linestyle='--', alpha=0.7)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "df_final = df.merge(df_clusters, on='id', how='left')" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Elementos del cluster 2:\n", + " Weight Upper_Material Midsole_Material \\\n", + "22 585.0 Exterior textil Mediasuela Bounce \n", + "39 664.8 Exterior textil Mediasuela Bounce \n", + "42 540.0 Exterior de malla técnica Mediasuela Bounce \n", + "54 260.0 Exterior textil Mediasuela 4D de impresión 3D \n", + "113 664.8 Exterior textil Mediasuela Bounce \n", + "121 584.0 Exterior de malla técnica Mediasuela Bounce \n", + "243 585.0 Exterior textil Mediasuela Bounce \n", + "248 584.0 Technical mesh Mediasuela Bounce \n", + "267 585.0 Exterior textil Mediasuela Bounce \n", + "287 585.0 Exterior textil Mediasuela Bounce \n", + "291 585.0 Exterior textil Mediasuela Bounce \n", + "294 584.0 Exterior de malla técnica Mediasuela Bounce \n", + "298 584.0 Exterior de malla técnica Mediasuela Bounce \n", + "306 584.0 Exterior de malla técnica Mediasuela Bounce \n", + "324 540.0 Exterior de malla técnica Mediasuela Bounce \n", + "327 664.8 Exterior textil Mediasuela Bounce \n", + "330 664.8 Exterior textil Mediasuela Bounce \n", + "343 299.0 Exterior de malla EVA \n", + "352 664.8 Exterior textil Mediasuela Bounce \n", + "376 585.0 Exterior textil Mediasuela Bounce \n", + "383 540.0 Exterior de malla técnica Mediasuela Bounce \n", + "426 585.0 Exterior textil Mediasuela Bounce \n", + "\n", + " Outsole Cushioning_System \\\n", + "22 Suela de caucho Mediasuela Bounce \n", + "39 Suela de caucho Bounce \n", + "42 Suela de caucho NaN \n", + "54 Suela sintética Mediasuela 4D de impresión 3D \n", + "113 Suela de caucho Bounce \n", + "121 Suela de caucho NaN \n", + "243 Suela de caucho Mediasuela Bounce \n", + "248 Rubber Mediasuela Bounce \n", + "267 Suela de caucho Mediasuela Bounce \n", + "287 Suela de caucho Mediasuela Bounce \n", + "291 Suela de caucho Mediasuela Bounce \n", + "294 Suela de caucho NaN \n", + "298 Suela de caucho NaN \n", + "306 Suela de caucho NaN \n", + "324 Suela de caucho Mediasuela Bounce \n", + "327 Suela de caucho Bounce \n", + "330 Suela de caucho Bounce \n", + "343 Suela de caucho OrthoLite \n", + "352 Suela de caucho Mediasuela Bounce \n", + "376 Suela de caucho Mediasuela Bounce \n", + "383 Suela de caucho Mediasuela Bounce \n", + "426 Suela de caucho Mediasuela Bounce \n", + "\n", + " Drop__heel-to-toe_differential_ Usage_Type Gender Available_Sizes \\\n", + "22 9.0 Running Mujer NaN \n", + "39 9.0 Running Hombre NaN \n", + "42 10.0 Running Mujer CO 37 \n", + "54 NaN Running Mujer NaN \n", + "113 9.0 Running Hombre NaN \n", + "121 10.0 Running Hombre NaN \n", + "243 9.0 Running Mujer NaN \n", + "248 10.0 Running Men NaN \n", + "267 9.0 Running Mujer NaN \n", + "287 9.0 Running Mujer NaN \n", + "291 9.0 Running Mujer NaN \n", + "294 10.0 Running Hombre NaN \n", + "298 10.0 Running Hombre NaN \n", + "306 10.0 Running Hombre NaN \n", + "324 10.0 Running Mujer NaN \n", + "327 9.0 Running Hombre NaN \n", + "330 9.0 Running Hombre NaN \n", + "343 10.0 Running NaN NaN \n", + "352 9.0 Running Hombre NaN \n", + "376 9.0 Running Mujer NaN \n", + "383 10.0 Running Mujer NaN \n", + "426 9.0 Running Mujer NaN \n", + "\n", + " Width Additional_Technologies \\\n", + "22 NaN Recyclable materials \n", + "39 NaN Contains at least 50% recycled material \n", + "42 NaN Estabilizadores de TPU en la zona media y el t... \n", + "54 NaN Recyclable materials \n", + "113 NaN Recyclable materials \n", + "121 NaN Estabilizadores de TPU, Sistema de amarre de c... \n", + "243 NaN Contiene al menos un 50 % de material reciclado \n", + "248 NaN Estabilizadores de TPU, Sistema de amarre de c... \n", + "267 NaN Recyclable materials \n", + "287 NaN Contains at least 50% recycled material \n", + "291 NaN Contains at least 50% recycled material \n", + "294 NaN Estabilizadores de TPU, Sistema de amarre de c... \n", + "298 NaN Estabilizadores de TPU, Sistema de amarre de c... \n", + "306 NaN Estabilizadores de TPU en la zona media y el t... \n", + "324 NaN Estabilizadores de TPU en la zona media y el t... \n", + "327 NaN Contiene al menos un 50 % de material reciclado \n", + "330 NaN Recyclable materials \n", + "343 NaN Recyclable materials \n", + "352 NaN Contains at least 50% recycled material \n", + "376 NaN Contains at least 50% recycled material \n", + "383 NaN Estabilizadores de TPU, Sistema de amarre de c... \n", + "426 NaN Contains at least 50% recycled material \n", + "\n", + " id regularPrice undiscounted_price cluster \n", + "22 36umRByym4P5idSfddlA 579950 405965.0 2 \n", + "39 5YBCQmekSCOryIo7887a 579950 405965.0 2 \n", + "42 6Y8BXtu2vPy0I6eGn0jI 499950 349965.0 2 \n", + "54 8FyMNBTEgPGeqnhTm34a 1299950 909965.0 2 \n", + "113 H1SxT7RaEy2ke9VjSWpg 579950 347970.0 2 \n", + "121 HXuKHFQnKMYL15wuuAtE 369950 NaN 2 \n", + "243 XTyfd24nQsI0ydJ5HNOM 579950 405965.0 2 \n", + "248 YdluqvzyDKCaoIXf2Raw 499950 399960.0 2 \n", + "267 bXMGR7Ld3EpZfjLwRZXc 579950 405965.0 2 \n", + "287 ekzaoVmAEPT57hEOzM4z 579950 347970.0 2 \n", + "291 f7BRJbDjPGZ0R7k8T2BH 449950 NaN 2 \n", + "294 fD0hMnJthp7NyufrsX94 449950 NaN 2 \n", + "298 g0dU1EZ2VAcJp8GeFtDU 499950 NaN 2 \n", + "306 gfkoLBQme3OHzj3JXmu1 499950 349965.0 2 \n", + "324 j14fin6QCZyFNfHrLfUb 449950 NaN 2 \n", + "327 jQ8lW8Kba3VAUZgvjzpp 579950 405965.0 2 \n", + "330 jepprtx3EAEA6TxsC94H 579950 405965.0 2 \n", + "343 lDidMEQwKMrEEimwgbts 199950 NaN 2 \n", + "352 mhHNGEv3q2mIoQrUsE6k 579950 347970.0 2 \n", + "376 qcNdp0WmOAxgmOk9AFpa 579950 347970.0 2 \n", + "383 sEsYVzeezD0cJVpoX3Lv 499950 299970.0 2 \n", + "426 wSLYbxhlkuBI8YpCJOf7 579950 289975.0 2 \n", + "\n", + "Estadísticas descriptivas del cluster 2:\n", + " Weight Drop__heel-to-toe_differential_ Width regularPrice \\\n", + "count 22.000000 21.000000 0.0 2.200000e+01 \n", + "mean 569.000000 9.428571 NaN 5.499500e+05 \n", + "std 102.285595 0.507093 NaN 1.914606e+05 \n", + "min 260.000000 9.000000 NaN 1.999500e+05 \n", + "25% 584.000000 9.000000 NaN 4.999500e+05 \n", + "50% 585.000000 9.000000 NaN 5.799500e+05 \n", + "75% 585.000000 10.000000 NaN 5.799500e+05 \n", + "max 664.800000 10.000000 NaN 1.299950e+06 \n", + "\n", + " undiscounted_price cluster \n", + "count 16.000000 22.0 \n", + "mean 401716.875000 2.0 \n", + "std 140991.161707 0.0 \n", + "min 289975.000000 2.0 \n", + "25% 347970.000000 2.0 \n", + "50% 374962.500000 2.0 \n", + "75% 405965.000000 2.0 \n", + "max 909965.000000 2.0 \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHcCAYAAAAqb0k3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeu0lEQVR4nO3dd3hUdfr//9eZSSUQAiEBIgEhIL1Jk6KA+iGyrIq69lXE/blrFwuKhWYB13X9uq7ddVF3FV17AUFUihQRJDSlE6RGSIAkJpAy8/79gXPMJJNkyASSkzwf1xWu5D5nzrnv93nPzJ3DmRPLGGMEAAAAOIyrphMAAAAAqoJGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhbASffPf/5TlmXp1VdfrelUAAAORiMLBGnBggWyLEtTpkypkf2feuqpOvXUU/1iU6ZMkWVZWrBgQY3kVJplWRo2bFiF63z33Xe65557NGnSJP3pT386OYkFEEyuTlNdc7S2zavaYNiwYbIsq9q3W9OvK4DT0ciiXtmxY4csy/L7atCggZKSknTOOedo0qRJ2rZt2wnZ94l6I3SSQ4cO6bLLLtOVV16pqVOn1nQ6J8Tjjz8uy7L0+OOPB1zeq1cvWZalG2+8MeDy0aNHy7IsffXVVycyzWpFM+YcteWXlNWrV2vixIk644wzlJiYqMjISLVr104333yz9uzZU6O5wVnCajoBoCakpKToj3/8oySpoKBA+/fv13fffadHHnlE06ZN07333qvHHnvMr/Hs37+/NmzYoGbNmtVIzk5obDZs2KAGDRqUu3z16tW6+eabdeedd57ErE6u4cOHSzrW3E2YMMFvWVZWltauXVtuI+H1erVo0SJFRkZq8ODBx73vmp6jQLBuvPFGLV++XP3799cVV1yhyMhILV++XC+88ILeffddffPNN+rUqVNNpwkHoJFFvdS+ffuAZ48WL16sa665RtOnT5fb7dYjjzxiL2vQoEGNvrCmpKTU2L6DVdn4DB8+3G706qo+ffqoUaNGWrx4sYqLixUW9tvL7MKFC2WM0cUXX6wPPvhA+/btU8uWLe3la9as0aFDhzR06FBFRUUd975reo4Cwbr66qv13//+V+3bt/eL//Wvf9WECRN09913a9asWTWUHZyESwuAEoYMGaI5c+YoMjJSTzzxhHbt2mUvK++/T7ds2aKxY8eqbdu2ioyMVNOmTdWzZ0+NGzdOxhhJx67HXLhwof297+u6666T9NslD9ddd502bNigiy66SPHx8bIsSzt27JAU+BrZkl599VV1795dUVFROuWUU3TnnXcqNzfXb52K/gu4ZA6l7d+/X3fffbc6duyo6OhoNW3aVAMGDNCTTz7pt155151mZmZq3Lhx9hglJibqsssu0/r168use91118myLKWnp+uZZ55Rp06dFBkZqTZt2mjq1Knyer3ljkEg//rXv9StWzdFRUUpOTlZ9957r44ePVru+rm5uZo8ebK6du2q6OhoxcXFKTU1VYsXLw5qf2FhYTrzzDOVl5enFStW+C1bsGCBoqOjdd9990mS5s+fX2a5pDLN/scff6xzzjlHTZo0UVRUlLp166Ynn3xSHo+nzOPLO74LFy7UWWedpZiYGMXHx+vyyy/Xrl27Kr3k5a233lKvXr0UHR2tli1b6o477tCRI0fs5VOmTLHznTp1qt/89s3dygRb32uvvSbLsvTaa6/piy++0KBBg9SgQQPFx8drzJgxysrKCmp/Pvv379edd96p9u3bKzIyUs2aNdMll1wScF5WxZo1a3T11VerVatWioyMVMuWLXXeeefp008/rfSxFV3DHei1IDs7W5MmTVKXLl3UsGFDxcbGqn379hozZox++uknSccub/Jd0jN8+HD7OJXe1vGMiy+Xw4cP69Zbb1VycrLCwsL02muvVVjfbbfdVqaJlaR77rlH0dHR9uslUBnOyAKldOzYUZdddpn+85//6KOPPtJtt91W7rp79+5V//79lZeXp1GjRunyyy9XXl6etmzZoueff15PPvmkwsLCNHnyZL322mv66aefNHnyZPvxvXr18tve1q1bdcYZZ6h79+667rrrlJWVpYiIiEpzfuqpp/TVV1/p8ssv16hRo/Tll1/q6aef1rfffqtFixYpPDy8yuOxadMmDR8+XPv27dOQIUM0evRo5eXl6YcfftC0adN0zz33VPj4AwcOaODAgdq2bZuGDRumK664Qunp6Xrvvfc0a9YszZ07V0OGDCnzuPHjx2vhwoX6/e9/r9TUVH300UeaMmWKCgsL9dhjjwWV+yOPPKJJkyapefPmuuGGGxQeHq533nlHGzZsCLj+wYMHddZZZ+mHH37Q4MGDdeONNyonJ0cff/yxhg8frnfffVejR4+udL/Dhw/X7NmzNX/+fA0cONCOz58/X2eccYb69u2rJk2aaP78+brqqqv8lvse73P//ffr8ccf1ymnnKKLL75YjRs31jfffKPx48dr+fLlevfddyvN54svvtCoUaPkdrt1+eWXKykpSfPnz9eQIUPUpEmTch/37LPPas6cObrwwgt19tlna86cOXrmmWeUmZmpN998U9Kx5mjHjh16/fXXNXToUL/mKy4urtLcqlLfJ598olmzZun888/XoEGDtGjRIr3xxhvatm1b0L9w+Obj7t27NWLECI0ePVr79+/X+++/r7lz5+qrr77SgAEDgtpWIO+//76uuuoqGWN0/vnnq2PHjtq/f7+WL1+uV199Veeff36Vt12aMUapqalavny5Bg8erPPOO08ul0s//fSTPvnkE11zzTVq06aN/UvqwoULNWbMGLuBLXmcqjIuBQUFOvvss/XLL7/oggsuUFhYmJo3b16lWizLUnh4eL3/PAGOgwHqkfT0dCPJpKamVrjeq6++aiSZa665xo7Nnz/fSDKTJ0+2Y88884yRZJ5++uky28jKyvL7eejQoaa8p5wvL0lm0qRJAddp06aNadOmjV9s8uTJRpKJiIgwa9asseNer9dcddVVRpJ58sknK6yhdA5jxozxi/ft29dIMi+//HKZx+zatcvvZ0lm6NChfrGxY8caSeb+++/3i8+aNctIMu3btzcej8eOjxkzxkgybdu2NXv37rXjBw4cMHFxcaZRo0amoKCgTC6lbdmyxYSFhZlTTjnF/Pzzz3Y8OzvbdOzYMWCuvjF75ZVX/OI///yzSU5ONgkJCebIkSOV7nvlypVGkvm///s/v/wtyzJTp041xhhzwQUXmJSUFHu5x+MxcXFxJjo62q7viy++sOfrL7/8Yq/r9XrNjTfeaCSZ9957z44HOr7FxcWmTZs2xrIs88033/jlee2119rzriTfvGrcuLHZuHGjHc/PzzennXaacblcZs+ePRXuNxjHW9+MGTOMJBMWFmYWL17sV+OwYcOMJLNs2bKg9j1o0CDjdrvNnDlz/OKbNm0yjRo1Mt27d/eLV/T8LS0jI8PExMSYmJgYs2rVqjLLSz5vyhu7QPPTp/Rrwdq1a40kM3r06DLrHj161OTm5to/+47t/PnzA277eMelTZs29jHMz88PuM3j8c477xhJ5tJLLw15W6gfuLQACCApKUnSsf8SD0Z0dHSZWNOmTY97vy1atNCDDz543I+79tpr1aNHD/tny7I0bdo0ud3uSv+LryLfffedVq5cqbPOOks33HBDmeWtWrWq8PGFhYWaOXOm4uPj9dBDD/kt+93vfqf/+7//09atW7VkyZIyj504caLf9aPNmjXThRdeqNzcXG3atKnS3N966y0VFxfrrrvuUmJioh2PjY0tk4t07Fi/8847Ovvss/X//X//n9+yxMREjR8/XgcOHNCXX35Z6b579+6tuLg4LVmyRIWFhZKO/be/McY+Yzl06FBt27bNvnxl9erVOnz4sAYNGmSfhX/22WclSS+//LJiYmLs7fvuimBZlmbOnFlhLosXL9ZPP/2k888/v8yZ70cffVRut7vcx95xxx3q2LGj/XN0dLSuvPJKeb1eff/995WOQ2WqWt9VV13l92E4t9utMWPGSFKZyzkCSUtL09KlSzVmzBilpqb6LTvttNN0ww03aN26dVW+xOD1119XXl6e7r77bvXu3bvM8sqeN1UV6HUoMjJSDRs2DOrxoYzLE088EXD/x2PXrl26/fbbFR0d7ff5BKAiXFoAhOD888/X/fffr1tuuUVfffWVzjvvPA0dOlTt2rWr0vZ69uwZ1KUEpZ155pllYm3atFFycrJ++OEHFRYWVmm73333nSRpxIgRx/1YSdq4caOOHj2q4cOHB7ybwfDhwzVv3jytXr26TA19+vQps76vATh8+HCl+16zZo2kwGMTKLZixQp5PB4VFBQEvMZ0y5Ytdk2///3vK9y3y+XSmWeeqU8//VTfffedhgwZovnz5ysqKsr+b9mhQ4dKOnY5wbXXXhvw+thvv/1WMTEx+ve//x1wP9HR0dq4cWOFufjGIdDlG8nJyWrdurXS09MDPjbUY1CZqtYXal7ffvutJOnnn38OeKx9+9y4caO6detW6fZKC/V5c7w6d+6sHj16aObMmdq9e7dGjx6tYcOGqVevXnK5gj9fVdVxiYqKUvfu3UOqISsrS7/73e+0f/9+vfHGG36/QAEVoZEFAti7d68kKSEhocL1Tj31VH377beaMmWKZs+erf/973+Sjn16/+GHH9all156XPut6nVl5T2uefPm2rFjh3JzcxUfH3/c283OzpYknXLKKVXKKycnp8L8fGdcfeuVFBsbWybmuwNA6Q8BBeLLveTZWJ9A+Rw8eFCStGTJkoBniH3y8vIq3bd0rCH99NNPtWDBAg0ZMkQLFizQGWecocjISEnHro9u3Lix3cj6ro89++yz/XIqLi6u8J67leXjG9tA4yAdG4vyGtlQj0FlqlpfqHn5jvWsWbMq/GR8sMe6tFCfN8crLCxMX3/9taZMmaL3339fd999t6Rjr1+33nqrHnzwwQrPvPtUdVwSExNDuqY1KytL55xzjn744Qe98MIL9q0RgWBwaQEQgO/sWL9+/Spdt1u3bnrvvfd08OBBLVu2TJMmTVJGRoYuv/zyChuiQKr6ZvDzzz+XG7csS40aNZIk++xMcXFxmXV9b74l+T4EUtUblPsajvLyy8jI8FuvOjVu3FjSsU9glxYoH18Od999t4wx5X6V/LBeRXxnVufPn6/9+/frxx9/9PsglNvtts/Uer1effPNN2rYsKHfnIuNjVV8fHyF+ZTXhJauK9A4lDcWJ0t11FfV/UrH/lRyRfv2Xa5wvEJ93kjHXgsCPU+lwM/V+Ph4/fOf/9SePXv0448/6tlnn1XTpk01efJkPfHEE0Hts6rjUh1N7Jo1a/Tss8/qL3/5S5W3hfqJRhYoZfPmzfrf//6nyMhIXXTRRUE/Ljw8XGeccYamTp2qZ555RsYYffbZZ/Zy3xmR6jiTVdo333xTJvbTTz9p165d6tq1q31Zge8T6oHeYNPS0srE+vfvL+nYp96rolOnToqKitKKFSuUn59fZrnvF4bSd2+oDj179pQUeGwCxfr16yfLsrRs2bJq2X+PHj3UtGlTLVu2THPnzpWkMrdTGjp0qH766Sd98MEHys7O1pAhQ/zuOztgwABlZWXZlzVUhW8cAv1StXv3bu3cubPK2/ap6tyujvqqwnd5R3Ud69JCfd5Ix56rgZ6nO3bsqPDyCcuy1LlzZ91yyy2aN2+epGN3efCp6Fid6HEprWQT+89//lM333zzSdkv6hYaWaCEJUuWKDU1VQUFBZowYUKl/zX4/fffB/xvcd9ZrpI3tfd9+KvkvWmryxtvvKG1a9faPxtj9MADD8jj8fjdF7Zjx45q1KiRPvnkE/u/EX35Pvroo2W2269fP/Xr10+LFi3SK6+8UmZ5ZWecIiIidOWVVyozM1PTp0/3WzZnzhzNnTtX7du3r9JfsarMVVddJbfbraeeesrvbGROTk7AWlu0aKHLLrtMS5cu1d/+9jf7HsAlLV++PGBDHojL5dLQoUN15MgRPfHEE4qKitIZZ5zht47vOtmS9/Ys6fbbb5ckXX/99QHvkZqRkVHurcR8hgwZotatW+vTTz8t06BMnDixWn6xqurcro76qqJ///4aMGCAZs6cqXfeeafMcq/XG9J9TMeMGaOGDRvq73//u1avXl1meTBnavv166cdO3b45VFYWKi77rqrzLo7duwIeM/e430dOtHjUtLBgwd17rnnas2aNfrHP/6hW2+9tVq2i/qHa2RRL23dutX+MENhYaH9J2rXrVsnt9uthx56KKj/Qv7Pf/6jl156SWeddZZSUlIUGxurH3/8UbNnz1bTpk01duxYe92zzz5b7733ni655BKNHDlSUVFR6tmzZ7XcTzI1NVUDBw7UFVdcoYSEBH311VdauXKlzjjjDL/74EZEROi2227TtGnTdPrpp9t3Afj000/tT9GX9uabb2rYsGH685//rP/85z8aOHCgjh49qh9++EFpaWmV3oT+r3/9qxYuXKhHH31US5cu1YABA7Rjxw69++67atCggWbMmHFcH0gJVvv27TVp0iRNnjxZPXr00GWXXaawsDC9//776tGjR8A7Hzz//PPatGmT7r33XrvWuLg47dq1SytXrtSWLVu0b9++Cv8Mb0nDhw/Xhx9+qPXr12vYsGH29bE+p59+uho2bGh/Crx0I3veeedp4sSJeuSRR9S+fXudd955atOmjbKysrR161Z98803evTRR9W5c+dyc3C73XrxxRd1wQUX6Oyzz9bll1+uli1bauHChdqzZ4969uzp90tQVXTq1ElJSUl6++23FRkZqVatWsmyLN122232JR6BVEd9VTVz5kwNHz5cV1xxhZ5++mmdfvrpio6O1s6dO7Vs2TIdOHCgwj+cUZHExES98cYbuuKKK9S/f39dcMEF6tixozIzM7V8+XKdeuqp+uijjyrcxl133aUvvvhCv/vd73TllVeqQYMGmjdvnuLi4vzu5iEdu+PFxRdfrP79+6tLly5q0aKF9uzZo48++kgul8vvT0L7/hDCAw88oB9++EGNGzdWXFyc3UieyHEp6eKLL9bq1avVqVMnHTx4MOCHy8aNGxfUvYhRz53AW3sBtU7J+7X6vqKjo03Lli3N8OHDzcSJE83WrVsDPjbQ/R6//fZb85e//MV069bNvgdohw4dzK233mp++uknv8cXFRWZe++917Ru3dqEhYX53bO1vHu4llTRfWTnz59vXnnlFdO1a1cTGRlpWrZsae644w6Tk5NTZjsej8dMmTLFJCcnm4iICHPaaaeZf/zjH2b79u3l5pCRkWHuuOMO065dOxMREWGaNm1qBgwYYJ566im/9VTOvS8PHDhgbr/9dtOmTRsTHh5umjVrZv7whz+YdevWlVnXdx/Z9PT0MssquwdmIK+88orp0qWLiYiIMK1atTL33HOPyc/PLzfX/Px888QTT5g+ffqYmJgYEx0dbdq2bWtGjx5t3njjDVNUVBT0vtetW2fPsylTpgRcJzU11UgysbGxpri4OOA68+bNM+eff75JSEgw4eHhpkWLFmbgwIHmkUceMTt37rTXq+h+rl9//bUZMmSIiY6ONk2bNjWXXnqp2blzp+nWrZtp3Lix37oVjbPvXq4zZszwi3/77bdm6NChplGjRnbNgY5hKPWVt+/Kai/PwYMHzUMPPWS6detmoqOjTcOGDU2HDh3MVVddZT744AO/dY/nPrI+aWlp5rLLLjPNmzc34eHhpmXLlmbkyJHms88+Cyrvd99913Tv3t1ERESYFi1amNtuu83k5uaWeS3YtWuXmTBhgjnjjDNMYmKiiYiIMK1btzYXX3xxwPvqvvbaa6Z79+4mMjLSSCrzunI84xLodSkYvvvPVvQV7PxB/WYZE+D/zwAAdV5ubq6aN2+u7t27a/ny5TWdDgAcN66RBYA6Li8vT7m5uX4xj8ej8ePH68iRI0H92V0AqI04IwsAddzq1as1ZMgQpaamql27dsrNzdU333yjH3/8UV27dtXy5cv9/rIWADgFjSwA1HEHDhzQvffeq4ULF+rnn39WcXGxWrdurdGjR+vBBx/kAzUAHItGFgAAAI7ENbIAAABwJBpZAAAAOFK9+4MIXq9Xe/fuVaNGjUL6+9AAAAA4MYwxys3NVVJSUoV/NKfeNbJ79+5VcnJyTacBAACASuzatUutWrUqd3m9a2QbNWok6djAxMbGBv24oqIiffHFFxoxYoTCw8NPVHqOw7iUxZgExrgExriUxZgExriUxZgEVhfGJScnR8nJyXbfVp5618j6LieIjY097ka2QYMGio2NdeykOBEYl7IYk8AYl8AYl7IYk8AYl7IYk8Dq0rhUdhkoH/YCAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSLWqkV20aJHOP/98JSUlybIsffTRR/ayoqIi3XffferevbtiYmKUlJSka6+9Vnv37q25hAEAAFBjalUjm5eXp549e+q5554rsyw/P1+rVq3SxIkTtWrVKn3wwQfatGmTLrjgghrIFAAAADUtrKYTKGnkyJEaOXJkwGWNGzfWvHnz/GLPPvus+vfvr507d6p169YnI0UAAADUErWqkT1e2dnZsixLcXFx5a5TUFCggoIC++ecnBxJUnFxsYqLiyVJLpdLLpdLXq9XXq/XXtcX93g88ng8kiSPxyO3223HjTH2+m63W5Zl2dstGfc9Nph4WFiYjDF+ccuy5Ha7y+RYXjyYmkrmXl482Jo8Ho+dS12pqbJ4eTX5+MakLtRUHcfJ933JcXF6TdVxnHx5GWOCrrW211RR7sHUVPJ1JTw8vE7UVFnuwdQUzPtQba5p9+7dyszMlGVZsixLxhi/HKsS9/2clpYml8tlxyUpPj5erVq1OqE1+dS2uecTzPtQba2p9PrlcWwje/ToUd1333268sorFRsbW+5606dP19SpU8vE09LSFBMTI0lKSEhQSkqK0tPTdeDAAXudVq1aqVWrVtq8ebMOHz5sPy4lJUWJiYlav369jhw5Yq/fqVMnxcXFKS0tze/A9OjRQxEREVq5cqVfDn379lVhYaHWrl1rx9xut/r166fs7Gxt3LjRjkdHR6tnz57KzMzU9u3b7Xjjxo3VuXNn7d27V7t377bjwdSUnZ1tx9u1a1elmtLS0uxxsSyrTtQU6nHq0qWL35jUhZqq4zi1aNFCkrRt2zbl5ubWiZqq4zj5XvC9Xq9WrVpVJ2qSQjtOvjHZsGGDevfuXSdq8gnlOO3fv1/SsdeW5ORkR9W0ZcsWzV+wQF6PR6tXr9asWbM0atQo9erVy17/m2++0aJFi3TllVeqXbt2dnzWrFlavXq1/vKXv6hZs2Z2fObMmdq3b59mzpypzz77zG62XnrpJeXk5Oi+CRM0fNgwRUdHn9TjVBvmnm9cS74POa0mX39RGcuUbJtrEcuy9OGHH2r06NFllhUVFemSSy7R7t27tWDBggob2UBnZJOTk5WVlWU/LpjfOoqKijR37lylpqYqIiKi1v7GWzr3E/2bVEFBgT0uYWFhdaKmUI+T1+vV7Nmz7TGpCzVVx3HyeDyaM2eO37g4vabqOE7FxcWaO3euRo4caZ9RcnpNFeUeTE2+MUlNTVVUVFSdqKmy3IOpqbCwsNL3odpa06pVqzR48GBdMvkfanZqexlZsmRkldi2kWRkySX/tqS8uFeSW9LwmDwtzGsgz69b80ran75VHz18h5YsWWI3dfXp+WSMCfp9qLbWdOjQIcXHxys7O7vCPs9xZ2SLiop02WWX6aefftLXX39dYXGSFBkZqcjIyDLxsLAwvzdT6beDUJrvAPu+963jG+xA2w41bllWwHh5OR5vvLzcj7cm3/put9tvHSfXFOpxKjlXgp1jtb2minIMNu57YQs0Lr54qLmXF6/Nc883LuXlWHp9n9pcU1XjvppKzpWq5F4bawo2x4riJV9vK3sfqo01FRYWKv7UDkrq3DPgvqrC5S2Wdi9Xi47d5XWVzMlSYWGhXC5XmVzrw/OpqKjI3n6o70O1pabyOKqR9TWxW7Zs0fz58xUfH1/TKQEAAKCG1KpG9pdfftHWrVvtn9PT07V69Wo1bdpULVu21B/+8AetWrVKn332mTwejzIyMiRJTZs2VURERE2lDQAAgBpQqxrZlStXavjw4fbPd911lyRpzJgxmjJlij755BNJ8rs4XJLmz5+vYcOGnaw0AQAAUAvUqkZ22LBhfhcIl1ZLP5cGAACAGlCr/rIXAAAAECwaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADhSrWpkFy1apPPPP19JSUmyLEsfffSR33JjjCZNmqSWLVsqOjpa5557rrZs2VIzyQIAAKBG1apGNi8vTz179tRzzz0XcPkTTzyhZ555Ri+++KKWL1+umJgYpaam6ujRoyc5UwAAANS0sJpOoKSRI0dq5MiRAZcZY/T000/roYce0oUXXihJeuONN9S8eXN99NFHuuKKK05mqgAAAKhhtaqRrUh6eroyMjJ07rnn2rHGjRtrwIABWrZsWbmNbEFBgQoKCuyfc3JyJEnFxcUqLi6WJLlcLrlcLnm9Xnm9XntdX9zj8cjj8UiSPB6P3G63HTfG2Ou73W5ZlmVvt2Tc99hg4mFhYTLG+MUty5Lb7S6TY3nxYGoqmXt58WBr8ng8di51pabK4uXV5OMbk7pQU3UcJ9/3JcfF6TVVx3Hy5WWMCbrW2l5TRbkHU1PJ15Xw8PA6UVNluQdTUzDvQ7W5poiICLlkJOOVLJdkvLJK5GgsS7JcsoxX8ou7JMsKHPfty+uRJatE3CgiIkJer9euuT49n3yCeR+qrTWVXr88jmlkMzIyJEnNmzf3izdv3txeFsj06dM1derUMvG0tDTFxMRIkhISEpSSkqL09HQdOHDAXqdVq1Zq1aqVNm/erMOHD9uPS0lJUWJiotavX68jR47Y63fq1ElxcXFKS0vzOzA9evRQRESEVq5c6ZdD3759VVhYqLVr19oxt9utfv36KTs7Wxs3brTj0dHR6tmzpzIzM7V9+3Y73rhxY3Xu3Fl79+7V7t277XgwNWVnZ9vxdu3aVammtLQ0e1wsy6oTNYV6nLp06eI3JnWhpuo4Ti1atJAkbdu2Tbm5uXWipuo4Tr4XfK/Xq1WrVtWJmqTQjpNvTDZs2KDevXvXiZp8QjlO+/fvl3TstSU5OdlRNWVlZWn8+PE6NfKoPL9k6FCjJDX5JUMxRw7b6+fEJCgnJkHx2bsUVZhnxw81aqm86CZqfihdYcW/nZjKjGutwrAoSVLSwa0yvzayGU1T5JI0fvx4ZWVl2bXVp+dTr169JPm/DzmtJl9/URnLlGybaxHLsvThhx9q9OjRkqSlS5dq8ODB2rt3r1q2bGmvd9lll8myLL3zzjsBtxPojGxycrKysrIUGxsrKbjfOoqKijR37lylpqYe+62ylv7GWzr3E/2bVEFBgT0uYWFhdaKmUI+T1+vV7Nmz7TGpCzVVx3HyeDyaM2eO37g4vabqOE7FxcWaO3euRo4cKZfL/2MLTq2potyDqck3JqmpqYqKiqoTNVWWezA1FRYWVvo+VFtrWrVqlQYPHqwbZ8xSy049qu2MrMt41HH3cm1O6iuvK8yO79m4Ri+PHaUlS5bYTV19ej4ZY4J+H6qtNR06dEjx8fHKzs62+7VAHHNG1nc25+eff/ZrZH/++Wd7kgYSGRmpyMjIMvGwsDC/N1Ppt4NQmu8A+773reMb7EDbDjVuWVbAeHk5Hm+8vNyPtybf+m63228dJ9cU6nEqOVeCnWO1vaaKcgw27nthCzQuvniouZcXr81zzzcu5eVYen2f2lxTVeO+mkrOlarkXhtrCjbHiuIlX28rex+qjTUVFhbKq2PN6rENuWSsMqv/2rgGGf+1XzIut4yrZM2WCgsL5XK5yuRaH55PRUVF9vZDfR+qLTWVp1bdtaAibdu2VYsWLfTVV1/ZsZycHC1fvlwDBw6swcwAAABQE2rVGdlffvlFW7dutX9OT0/X6tWr1bRpU7Vu3Vrjxo3To48+qg4dOqht27aaOHGikpKS7MsPAAAAUH/UqkZ25cqVGj58uP3zXXfdJUkaM2aMXnvtNd17773Ky8vTn//8Zx0+fFhDhgzRnDlzFBUVVVMpAwAAoIbUqkZ22LBhfhcIl2ZZlh5++GE9/PDDJzErAAAA1EaOuUYWAAAAKIlGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI7kqEbW4/Fo4sSJatu2raKjo5WSkqJHHnlExpiaTg0AAAAnWVhNJ3A8/vrXv+qFF17Q66+/rq5du2rlypUaO3asGjdurNtvv72m0wMAAMBJ5KhGdunSpbrwwgs1atQoSdKpp56qmTNn6rvvvqvhzAAAAHCyOaqRHTRokF5++WVt3rxZp512mtasWaPFixfrqaeeKvcxBQUFKigosH/OycmRJBUXF6u4uFiS5HK55HK55PV65fV67XV9cY/HI4/HI+nY5Q1ut9uOl7yswe12y7Ise7sl477HBhMPCwuTMcYvblmW3G53mRzLiwdTU8ncy4sHW5PH47FzqSs1VRYvryYf35jUhZqq4zj5vi85Lk6vqTqOky8vY0zQtdb2mirKPZiaSr6uhIeH14maKss9mJqCeR+qzTVFRETIJSMZr2S5JOOVVSJHY1mS5ZJlvJJf3CVZVuC4b19ejyxZJeJGERER8nq9ds316fnkE8z7UG2tqfT65XFUIzthwgTl5OSoU6dOcrvd8ng8euyxx3T11VeX+5jp06dr6tSpZeJpaWmKiYmRJCUkJCglJUXp6ek6cOCAvU6rVq3UqlUrbd68WYcPH7Yfl5KSosTERK1fv15Hjhyx1+/UqZPi4uKUlpbmd2B69OihiIgIrVy50i+Hvn37qrCwUGvXrrVjbrdb/fr1U3Z2tjZu3GjHo6Oj1bNnT2VmZmr79u12vHHjxurcubP27t2r3bt32/FgasrOzrbj7dq1q1JNaWlp9rhYllUnagr1OHXp0sVvTOpCTdVxnFq0aCFJ2rZtm3Jzc+tETdVxnHwv+F6vV6tWraoTNUmhHSffmGzYsEG9e/euEzX5hHKc9u/fL+nYa0tycrKjasrKytL48eN1auRReX7J0KFGSWryS4Zijhy218+JSVBOTILis3cpqjDPjh9q1FJ50U3U/FC6wop/OzGVGddahWFRkqSkg1tlfm1kM5qmyCVp/PjxysrKsmurT8+nXr16SfJ/H3JaTb7+ojKWcdAnpd5++22NHz9ef/vb39S1a1etXr1a48aN01NPPaUxY8YEfEygM7LJycnKyspSbGyspOB+6ygqKtLcuXOVmpp67LfKWvobb+ncT/RvUgUFBfa4hIWF1YmaQj1OXq9Xs2fPtsekLtRUHcfJ4/Fozpw5fuPi9Jqq4zgVFxdr7ty5GjlypFwu/8/fOrWminIPpibfmKSmpioqKqpO1FRZ7sHUVFhYWOn7UG2tadWqVRo8eLBunDFLLTv1qLYzsi7jUcfdy7U5qa+8rjA7vmfjGr08dpSWLFliN3X16flkjAn6fai21nTo0CHFx8crOzvb7tcCcdQZ2fHjx2vChAm64oorJEndu3fXTz/9pOnTp5fbyEZGRioyMrJMPCwszO/NVPrtIJTmO8C+733r+AY70LZDjVuWFTBeXo7HGy8v9+Otybe+2+32W8fJNYV6nErOlWDnWG2vqaIcg437XtgCjYsvHmru5cVr89zzjUt5OZZe36c211TVuK+mknOlKrnXxpqCzbGieMnX28reh2pjTYWFhfLqWLN6bEMuGavM6r82rkHGf+2XjMst4ypZs6XCwkK5XK4yudaH51NRUZG9/VDfh2pLTeVx1O238vPzA56xKPmbAgAAAOoHR52RPf/88/XYY4+pdevW6tq1q9LS0vTUU0/p+uuvr+nUAAAAcJI5qpH95z//qYkTJ+rmm2/W/v37lZSUpL/85S+aNGlSTacGAACAk8xRjWyjRo309NNP6+mnn67pVAAAAFDDHHWNLAAAAOBDIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBIId+1ICMjQ6+++qpWrVql7OzsMn+cwLIsffXVV6HuBgAAAPATUiO7du1aDRs2TEeOHFHHjh21bt06denSRYcPH9aePXuUkpKi5OTk6soVAAAAsIV0acGECRPUsGFDbdq0SV9++aWMMfrHP/6hXbt26Z133tGhQ4f0+OOPV1euAAAAgC2kRnbJkiX6y1/+otatW8vlOrYp36UFl156qa6++mqNHz8+9CwBAACAUkJqZL1er5o3by5JiouLk9vt1sGDB+3l3bt31/fffx9ahgAAAEAAITWybdu2VXp6+rENuVxq27atvvzyS3v50qVLFRcXF1KCAAAAQCAhNbIjRozQu+++a/9800036V//+pfOPfdcnXPOOXr99dd11VVXhZwkAAAAUFpIdy148MEHdeWVV6qoqEjh4eEaN26c8vLy9P7778vtdmvixIl64IEHqitXAAAAwBZSI9ukSRP16dPH/tmyLD300EN66KGHQk4MAAAAqAh/2QsAAACOdFxnZK+//npZlqWXX35Zbrdb119/faWPsSxLr776apUTBAAAAAI5rkb266+/lsvlktfrldvt1tdffy3Lsip8TGXLAQAAgKo4rkZ2x44dFf4MAAAAnCxcIwsAAABHCqmRXbVqlZ5//vlylz///PNavXp1KLsAAAAAAgqpkX3wwQf9/pJXaV9//TW34gIAAMAJEVIj+/333+vMM88sd/mZZ56plStXhrILAAAAIKCQGtnc3FyFhZX/eTGXy6Xs7OxQdgEAAAAEFFIj26FDB33xxRflLp8zZ47atWsXyi4AAACAgEJqZP/0pz9p1qxZuuuuu3T48GE7fvjwYd15552aM2eO/vSnP4WaIwAAAFDGcd1HtrTbb79dq1ev1tNPP61nnnlGSUlJkqS9e/fK6/Xqmmuu0Z133lktiQIAAAAlhdTIWpalGTNm6Nprr9X777+v7du3S5IuvPBCXXLJJRo2bFh15AgAAACUEVIj6zN8+HANHz68OjYFAAAABIW/7AUAAABHCqmRNcbopZdeUv/+/dWsWTO53e4yXxXdngsAAACoqpC6zHvvvVdPPfWUevXqpT/+8Y9q0qRJdeUFAAAAVCikRvb111/XJZdcov/973/VlQ8AAAAQlJAuLThy5IjOPffc6soFAAAACFpIjew555yjFStWVFcuAAAAQNBCamSff/55ffvtt5o2bZqysrKqKycAAACgUiE1sh07dtT27ds1ceJEJSYmKiYmRrGxsX5fjRs3rq5cAQAAAFtIH/a65JJLZFlWdeUCAAAABC2kRva1116rpjQAAACA48Nf9gIAAIAjhdzI7ty5UzfeeKM6duyoJk2aaNGiRZKkzMxM3X777UpLSws5SQAAAKC0kC4t+PHHH3XmmWfK6/VqwIAB2rp1q4qLiyVJzZo10+LFi5WXl6dXX321WpIFAAAAfEL+E7VxcXH69ttvZVmWEhMT/ZaPGjVK77zzTkgJAgAAAIGEdGnBokWLdNNNNykhISHg3Qtat26tPXv2hLILAAAAIKCQGlmv16sGDRqUu/zAgQOKjIwMZRcAAABAQCE1sqeffrpmzZoVcFlxcbHefvttnXHGGaHsAgAAAAgopEb2/vvv15w5c3TTTTdp/fr1kqSff/5ZX375pUaMGKENGzZowoQJ1ZIoAAAAUFJIH/YaOXKkXnvtNd1xxx16+eWXJUl//OMfZYxRbGys3njjDZ111lnVkigAAABQUkiNrCRdc801uvjii/XFF19o69at8nq9SklJUWpqqho1alQdOQIAAABlhNzISlJMTIwuuuii6tgUAAAAEJSQGtmdO3cGtV7r1q1D2Q0AAABQRkiN7Kmnnhrw/rGleTyeUHYDAAAAlBFSI/vvf/+7TCPr8Xi0Y8cOvfHGG0pMTNQtt9wSUoKl7dmzR/fdd58+//xz5efnq3379poxY4b69u1brfsBAABA7RZSI3vdddeVu+y+++7TgAEDlJ2dHcou/Bw6dEiDBw/W8OHD9fnnnyshIUFbtmxRkyZNqm0fAAAAcIZq+bBXIDExMRo7dqz+3//7f7r99turZZt//etflZycrBkzZtixtm3bVviYgoICFRQU2D/n5ORIOvYHG4qLiyVJLpdLLpdLXq9XXq/XXtcX93g89uURHo9Hbrfbjhtj7PXdbrcsy7K3WzLue2ww8bCwMBlj/OKWZcntdpfJsbx4MDWVzL28eLA1eTweO5e6UlNl8fJq8vGNSV2oqTqOk+/7kuPi9Jqq4zj58jLGBF1rba+potyDqank60p4eHidqKmy3IOpKZj3odpcU0REhFwykvFKlksyXlklcjSWJVkuWcYr+cVdkmUFjvv25fXIklUibhQRESGv12vXXJ+eTz7BvA/V1ppKr1+eE9bISsfeuDIyMqpte5988olSU1N16aWXauHChTrllFN0880364Ybbij3MdOnT9fUqVPLxNPS0hQTEyNJSkhIUEpKitLT03XgwAF7nVatWqlVq1bavHmzDh8+bD8uJSVFiYmJWr9+vY4cOWKv36lTJ8XFxSktLc3vwPTo0UMRERFauXKlXw59+/ZVYWGh1q5da8fcbrf69eun7Oxsbdy40Y5HR0erZ8+eyszM1Pbt2+1448aN1blzZ+3du1e7d++248HUVPJsebt27apUU1pamj0ulmXViZpCPU5dunTxG5O6UFN1HKcWLVpIkrZt26bc3Nw6UVN1HCffC77X69WqVavqRE1SaMfJNyYbNmxQ796960RNPqEcp/3790s69tqSnJzsqJqysrI0fvx4nRp5VJ5fMnSoUZKa/JKhmCOH7fVzYhKUE5Og+OxdiirMs+OHGrVUXnQTNT+UrrDi305MZca1VmFYlCQp6eBWmV8b2YymKXJJGj9+vLKysuza6tPzqVevXpL834ecVpOvv6iMZUq2zdUkJydHixYt0vXXX6/27dtr6dKl1bLdqKhjE/auu+7SpZdeqhUrVuiOO+7Qiy++qDFjxgR8TKAzssnJycrKylJsbKyk4H7rKCoq0ty5c5Wamnrst8pa+htv6dxP9G9SBQUF9riEhYXViZpCPU5er1ezZ8+2x6Qu1FQdx8nj8WjOnDl+4+L0mqrjOBUXF2vu3LkaOXKkXC7/P7bo1Joqyj2YmnxjkpqaqqioqDpRU2W5B1NTYWFhpe9DtbWmVatWafDgwbpxxiy17NSj2s7IuoxHHXcv1+akvvK6wuz4no1r9PLYUVqyZInd1NWn55MxJuj3odpa06FDhxQfH6/s7Gy7XwskpDOyLper3LsWGGPUunVrPf/886Hswo/X61Xfvn01bdo0SVLv3r21fv36ChvZyMhIRUZGlomHhYX5vZlKvx2E0nwH2Pe9bx3fYAfadqhxy7ICxsvL8Xjj5eV+vDX51ne73X7rOLmmUI9TybkS7Byr7TVVlGOwcd8LW6Bx8cVDzb28eG2ee75xKS/H0uv71Oaaqhr31VRyrlQl99pYU7A5VhQv+Xpb2ftQbaypsLBQXh1rVo9tyCUToIU41rgGGf+1XzIut4yrZM2WCgsL5XK5yuRaH55PRUVF9vZDfR+qLTWVJ6RGdtKkSWUaWcuy1KRJE6WkpGjEiBFBJxKMli1b2v9t69O5c2e9//771bYPAAAAOENIXeaUKVOqKY3gDB48WJs2bfKLbd68WW3atDmpeQAAAKDmlT1XfByKi4vtuwAEkpOTE/SnzoJx55136ttvv9W0adO0detWvfXWW3r55Zer/V61AAAAqP1CamRvv/12DRo0qNzlgwcP1t133x3KLvz069dPH374oWbOnKlu3brpkUce0dNPP62rr7662vYBAAAAZwipkZ0zZ47+8Ic/lLv8D3/4g2bPnh3KLsr4/e9/r3Xr1uno0aPasGFDhbfeAgAAQN0VUiO7d+9enXLKKeUuT0pK0p49e0LZBQAAABBQSI1sfHx8mQ9flbRhw4YK7/0FAAAAVFVIjex5552nl156KeBfX1i1apVefvlljRw5MpRdAAAAAAGFdPutRx55RHPmzFH//v11wQUXqGvXrpKk9evX69NPP1ViYqIeeeSRakkUAAAAKCmkRjYpKUkrV67UhAkT9PHHH+vDDz+UJMXGxurqq6/WtGnTlJSUVC2JAgAAACWF/Ge3WrZsqddff13GGB04cECSlJCQUO6frgUAAACqQ7X9/VjLshQZGamGDRvSxAIAAOCEC+nDXpK0cuVKnXfeeWrQoIHi4+O1cOFCSVJmZqYuvPBCLViwINRdAAAAAGWE1MguXbpUQ4YM0ZYtW/THP/5RXq/XXtasWTNlZ2frpZdeCjlJAAAAoLSQGtkHHnhAnTt31o8//qhp06aVWT58+HAtX748lF0AAAAAAYXUyK5YsUJjx45VZGRkwOtiTznlFGVkZISyCwAAACCgkBrZ8PBwv8sJStuzZ48aNmwYyi4AAACAgEJqZM844wy99957AZfl5eVpxowZGjp0aCi7AAAAAAIKqZGdOnWqVq5cqVGjRunzzz+XJK1Zs0b/+te/1KdPHx04cEATJ06slkQBAACAkkK6j+yAAQM0e/Zs3XTTTbr22mslSXfffbckKSUlRbNnz1aPHj1CzxIAAAAopcqNrDFGubm5GjRokDZt2qTVq1dry5Yt8nq9SklJUZ8+ffjDCAAAADhhqtzIFhYWqmnTppo2bZruvfde9erVS7169arG1AAAAIDyVfka2cjISLVo0UKRkZHVmQ8AAAAQlJA+7HXdddfpjTfeUGFhYXXlAwAAAAQlpA97de/eXR999JG6du2q6667Tqeeeqqio6PLrHfxxReHshsAAACgjJAa2SuvvNL+vrzbbFmWJY/HE8puAAAAgDKOu5F94IEHdMUVV6hHjx6aP3/+icgJAAAAqNRxN7KPP/64unXrph49emjo0KHKyspSYmKi5s2bp7PPPvtE5AgAAIBSdu7cqczMzDJxr9cr6dgfqXK5Qvo4lJ9mzZqpdevW1ba96hDSpQU+xpjq2AwAAACCsHPnTnXq3FlH8vPLLIuOjtbMmTN11lln6ciRI9W2z+gGDbRxw4Za1cxWSyMLAACAkyczM1NH8vN12aMvKLFtB79lbhlJefrzvz6RR9Xzx6n2p2/R/x66SZmZmTSyAAAACF1i2w46pXNPv5jLWyztXq6kjt3kddXtVq9K1e3YsUOrVq2SJGVnZ0uStmzZori4uIDrn3766VXLDgAAAChHlRrZiRMnlrnd1s0331xmPWMMt98CAADACXHcjeyMGTNORB4AAADAcTnuRnbMmDEnIg8AAADguFTfzcUAAACAk4hGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAjObqRffzxx2VZlsaNG1fTqQAAAOAkc2wju2LFCr300kvq0aNHTacCAACAGuDIRvaXX37R1VdfrVdeeUVNmjSp6XQAAABQA8JqOoGquOWWWzRq1Cide+65evTRRytct6CgQAUFBfbPOTk5kqTi4mIVFxdLklwul1wul7xer7xer72uL+7xeOTxeCRJHo9Hbrfbjhtj7PXdbrcsy7K3WzLue2ww8bCwMBlj/OKWZcntdpfJsbx4MDWVzL28eLA1eTweO5e6UlNl8fJq8vGNSV2oqTqOk+/7kuPi9Jqq4zj58jLGBF1rba+potyDqank60p4eHidqKmy3IOpKZj3odpcU0REhFwykvFKlksyXlklcjSWJVkuWcYr+cVdkmUFjvv25fXIklUibhQRESGv12vXXNeeT7/tx8jy+tcUaFxkWcfGxphjY/lbUb/GAx8PX9z165j68j3Rc6/0+uVxXCP79ttva9WqVVqxYkVQ60+fPl1Tp04tE09LS1NMTIwkKSEhQSkpKUpPT9eBAwfsdVq1aqVWrVpp8+bNOnz4sP24lJQUJSYmav369Tpy5Ii9fqdOnRQXF6e0tDS/A9OjRw9FRERo5cqVfjn07dtXhYWFWrt2rR1zu93q16+fsrOztXHjRjseHR2tnj17KjMzU9u3b7fjjRs3VufOnbV3717t3r3bjgdTU3Z2th1v165dlWpKS0uzx8WyrDpRU6jHqUuXLn5jUhdqqo7j1KJFC0nStm3blJubWydqqo7j5HvB93q9WrVqVZ2oSQrtOPnGZMOGDerdu3edqMknlOO0f/9+ScdeW5KTkx1VU1ZWlsaPH69TI4/K80uGDjVKUpNfMhRz5LC9fk5MgnJiEhSfvUtRhXl2/FCjlsqLbqLmh9IVVvzbianMuNYqDIuSJCUd3Crza8OW0TRFLknjx49XVlaWXVtdez5lZ2crIiJCkZbRKZmb7LhxubSvafsy41IcFqmMpimKOXpYTXL32esfjYhRZlwbxeZnKTbvt9zzouP8jlN85FGNHz9e+fn5knTC556vv6iMZUq2zbXcrl271LdvX82bN8++NnbYsGHq1auXnn766YCPCXRGNjk5WVlZWYqNjZUU3G9SRUVFmjt3rlJTU4/9VllLf+MtnfuJ/u2woKDAHpewsLA6UVOox8nr9Wr27Nn2mNSFmqrjOHk8Hs2ZM8dvXJxeU3Ucp+LiYs2dO1cjR46Uy+V/tZdTa6oo92Bq8o1JamqqoqKi6kRNleUeTE2FhYWVvg/V1ppWrVqlwYMH68YZs9SyU49qOyPrMh513L1cm5P6yusKs+N7Nq7Ry2NHacmSJerVq9cJqamm597q1avVr18/3frmPLXq2N1vfUumzLiEekZ276Z1enHsKC1dulR9+vQ54XPv0KFDio+PV3Z2tt2vBeKoM7Lff/+99u/fr9NPP92OeTweLVq0SM8++6wKCgrsAfCJjIxUZGRkmW2FhYX5vZlKvx2E0nyT1ve9b53S+yq57VDjlmUFjJeX4/HGy8v9eGvyre92u/3WcXJNoR6nknMl2DlW22uqKMdg474XtkDj4ouHmnt58do893zjUl6Opdf3qc01VTXuq6nkXKlK7rWxpmBzrChe8vW2sveh2lhTYWGhvPq1OZIkyyVjlVn918Y1yPiv/ZJxuWVcJWu2VFhYKJfLVSbXuvJ8+m0/VqnaJct7rGksOy76tXENsN9yjocv7v11TH3/01gTcy/gekGtVUucc845WrdunV9s7Nix6tSpk+67775yBw8AAAB1j6Ma2UaNGqlbt25+sZiYGMXHx5eJAwAAoG5z5O23AAAAAEedkQ1kwYIFNZ0CAAAAagBnZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHCqvpBAAAqG127typzMzMk7rPZs2aqXXr1id1n4DT0cgCAFDCzp071alzZx3Jzz+p+41u0EAbN2ygmQWOA40sAAAlZGZm6kh+vi579AUltu1wUva5P32L/vfQTcrMzKSRBY4DjSwAAAEktu2gUzr3rOk0AFSAD3sBAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAjOaqRnT59uvr166dGjRopMTFRo0eP1qZNm2o6LQAAANQARzWyCxcu1C233KJvv/1W8+bNU1FRkUaMGKG8vLyaTg0AAAAnWVhNJ3A85syZ4/fza6+9psTERH3//fc666yzaigrAAAA1ARHNbKlZWdnS5KaNm1a7joFBQUqKCiwf87JyZEkFRcXq7i4WJLkcrnkcrnk9Xrl9XrtdX1xj8cjj8cjSfJ4PHK73XbcGGOv73a7ZVmWvd2Scd9jg4mHhYXJGOMXtyxLbre7TI7lxYOpqWTu5cWDrcnj8di51JWaKouXV5OPb0zqQk3VcZx835ccF6fXVB3HyZeXMSboWmt7TRXlHkxNJV9XwsPDT3pNvu9dMrK8v+VprGP/iWmZ37ZdYdzllozxj1vWsfVLxV0y9r5LjmXJmoJ5H6rNz6eIiIhjdRqvZLkk45VVctwtS7Jcx8bFL+6SLCtw3Lcvr0eWrBJxo4iICHm9XrvmuvZ8+m0//vO0pJLjUt7c+y0e+Hj44q5fx9SX74mee6XXL49jG1mv16tx48Zp8ODB6tatW7nrTZ8+XVOnTi0TT0tLU0xMjCQpISFBKSkpSk9P14EDB+x1WrVqpVatWmnz5s06fPiw/biUlBQlJiZq/fr1OnLkiL1+p06dFBcXp7S0NL8D06NHD0VERGjlypV+OfTt21eFhYVau3atHXO73erXr5+ys7O1ceNGOx4dHa2ePXsqMzNT27dvt+ONGzdW586dtXfvXu3evduOB1OT7xcBSWrXrl2VakpLS7PHxbKsOlFTqMepS5cufmNSF2qqjuPUokULSdK2bduUm5tbJ2qqjuPke8H3er1atWpVnahJCu04+cZkw4YN6t2790mvyadrZIEaZP72OYyMpinyuMJ0Sqb/ZzP2NOsot7dYLQ5us2PG5dKeZp0UVZSnZod32vHisEhlNE1RzNHDapK7z45HhBdKkvLz8/3GrGRN+/fvl3TstSU5ObnGj5NPMHMvKytL48eP16mRR+X5JUOHGiWpyS8Zijly2F4/JyZBOTEJis/epajC3y4ZPNSopfKim6j5oXSFFf92YiozrrUKw6IkSUkHt8r82rBlNE2RS9L48eOVlZVl11bXnk/Z2dmKiIhQpGX85qRxubSvafsy41Le3DsaEaPMuDaKzc9SbN5vuedFx/kdp/jIoxo/frzy8/Ml6YTPPV9/URnLlGybHeSmm27S559/rsWLF6tVq1blrhfojGxycrKysrIUGxsrKbjfpIqKijR37lylpqYe+62ylv7GWzr3E/3bYUFBgT0uYWFhdaKmUI+T1+vV7Nmz7TGpCzVVx3HyeDyaM2eO37g4vabqOE7FxcWaO3euRo4cKZfL/2MLTq2potyDqck3JqmpqYqKijrpNa1Zs0Z9+/bV7W/OU1LH7nb8RJ6R3btpnZ65+v+0cuVK9ezZM2BNhYWFlb4P1dbn06pVqzR48GDdOGOWWnbqUW1nZF3Go467l2tzUl95XWF2fM/GNXp57CgtWbJEvXr1OiE11fTzafXq1erXr59ufXOeWpWYp5JkyZQZl1DPyO7dtE4vjh2lpUuXqk+fPid87h06dEjx8fHKzs62+7VAHHlG9tZbb9Vnn32mRYsWVdjESlJkZKQiIyPLxMPCwvzeTKXfDkJpvknr+963jm+wA2071LhlWQHj5eV4vPHycj/emnzru91uv3WcXFOox6nkXAl2jtX2mirKMdi474Ut0Lj44qHmXl68Ns8937iUl2Pp9X1qc01VjftqKjlXqpJ7qDX5/ifFK+tYM1qKsQJvJ2DcsoKKe/XbZUjlHdeSr7eVvQ/VxudTYWHhsTp9lwRYLhmrzOq/Nq5Bxn/tl4zLXepYWSosLJTL5SqTa115Pv22n7Lz1PIeaxrLjosqmJOBj4cv7v11TH3Pj5qYewHXC2qtWsIYo9tuu00ffvihFixYoLZt29Z0SgAAAKghjmpkb7nlFr311lv6+OOP1ahRI2VkZEg6ds1KdHR0DWcHAACAk8lR95F94YUXlJ2drWHDhqlly5b21zvvvFPTqQEAAOAkc9QZWYd+Lg0AAAAngKPOyAIAAAA+NLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHCqvpBOqDnTt3KjMz86Ttr6CgQJGRkSdlX16v96TsBwAAoDQa2RNs586d6tS5s47k55+0fVoul8xJajCjo6M1c+ZM7d69W23btj0p+wQAAJBoZE+4zMxMHcnP12WPvqDEth1O+P42LflK856fftL2d/CnrZKkrKwsGlkAAHBS0cieJIltO+iUzj1P+H72p285qftzy0jKO+H7AQAAKI0PewEAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCM5spF97rnndOqppyoqKkoDBgzQd999V9MpAQAA4CRzXCP7zjvv6K677tLkyZO1atUq9ezZU6mpqdq/f39NpwYAAICTyHGN7FNPPaUbbrhBY8eOVZcuXfTiiy+qQYMG+ve//13TqQEAAOAkCqvpBI5HYWGhvv/+e91///12zOVy6dxzz9WyZcsCPqagoEAFBQX2z9nZ2ZKkgwcPqri42N6Gy+WS1+uV1+v127bL5ZLH41FRUZHy8/N16NAhRURE2HFjjL2+2+2WZVn2diUpJydHkrRnw1oV5f/il5vvkVapnI0s+9/ScUtGpZWMH9y5TeHh4dq3ca0K8/MqXb+yuPk1w8BxKXt3uvI7NldaWpp++eUXWdaxrEuOi3RsLI0xfnHLsmRZVpXilmXZx6qq2yl5rH3xQLlblmUf72BqMsYoPz9f33zzjVwuV5VydLvdduxE1VQy7pv/1X2cSsZ947J48WK53e6gj19Va/Lx1VQdc+Z44m63u8xrRKCavF6vPS6+GoKtqTrmTFXjvjlT3cfJGOM3Jr66Tubx27JliyQpY6P/63b5r9nlxYN/Lc/cuV2S9P3339vvG6Vz9Hg89muL7/0mlNcI35hLVTtOwe7TGKPNmzcrPDzcHtPjeR8qL2507Gxccky+fkr7Vp5fR9pIOvDTdoWHh/uN54l+f6roOX8iXst98zRQf2EFGJfyxjHYeNbOY2Oam5urnJycMrWW7Jkq6418cUll3lt98UOHDpWpOSDjIHv27DGSzNKlS/3i48ePN/379w/4mMmTJxsdm9d88cUXX3zxxRdffDnoa9euXRX2ho46I1sV999/v+666y77Z6/Xq4MHDyo+Pr7M2Y+K5OTkKDk5Wbt27VJsbOyJSNWRGJeyGJPAGJfAGJeyGJPAGJeyGJPA6sK4GGOUm5urpKSkCtdzVCPbrFkzud1u/fzzz37xn3/+WS1atAj4mMjISEVGRvrF4uLiqpxDbGysYyfFicS4lMWYBMa4BMa4lMWYBMa4lMWYBOb0cWncuHGl6zjqw14RERHq06ePvvrqKzvm9Xr11VdfaeDAgTWYGQAAAE42R52RlaS77rpLY8aMUd++fdW/f389/fTTysvL09ixY2s6NQAAAJxEjmtkL7/8ch04cECTJk1SRkaGevXqpTlz5qh58+YndL+RkZGaPHlymcsU6jvGpSzGJDDGJTDGpSzGJDDGpSzGJLD6NC6WMZXd1wAAAACofRx1jSwAAADgQyMLAAAAR6KRBQAAgCPRyAIAAMCR6nUjO336dPXr10+NGjVSYmKiRo8erU2bNvmtM2zYMPtvH/u+brzxRr91du7cqVGjRqlBgwZKTEzU+PHjy/xNYSd54YUX1KNHD/tGygMHDtTnn39uLz969KhuueUWxcfHq2HDhrrkkkvK/JGK+jYm9XGeBPL444/LsiyNGzfOjtXH+VJSoDGpj/NlypQpZWru1KmTvby+zpPKxqU+zhVJ2rNnj/74xz8qPj5e0dHR6t69u1auXGkvN8Zo0qRJatmypaKjo3Xuuedqy5Ytfts4ePCgrr76asXGxiouLk5/+tOf9Msvv5zsUqpVZeNy3XXXlZkv5513nt826tq4OO72W9Vp4cKFuuWWW9SvXz8VFxfrgQce0IgRI/Tjjz8qJibGXu+GG27Qww8/bP/coEED+3uPx6NRo0apRYsWWrp0qfbt26drr71W4eHhmjZt2kmtp7q0atVKjz/+uDp06CBjjF5//XVdeOGFSktLU9euXXXnnXdq1qxZevfdd9W4cWPdeuutuvjii7VkyRJJ9XNMpPo3T0pbsWKFXnrpJfXo0cMvXh/ni095YyLVz/nStWtXffnll/bPYWG/vQXV53lS0bhI9W+uHDp0SIMHD9bw4cP1+eefKyEhQVu2bFGTJk3sdZ544gk988wzev3119W2bVtNnDhRqamp+vHHHxUVFSVJuvrqq7Vv3z7NmzdPRUVFGjt2rP785z/rrbfeqqnSQhLMuEjSeeedpxkzZtg/l74FV10bFxnY9u/fbySZhQsX2rGhQ4eaO+64o9zHzJ4927hcLpORkWHHXnjhBRMbG2sKCgpOZLonVZMmTcy//vUvc/jwYRMeHm7effdde9mGDRuMJLNs2TJjTP0bE2OYJ7m5uaZDhw5m3rx5fmNRn+dLeWNiTP2cL5MnTzY9e/YMuKw+z5OKxsWY+jlX7rvvPjNkyJByl3u9XtOiRQvzt7/9zY4dPnzYREZGmpkzZxpjjPnxxx+NJLNixQp7nc8//9xYlmX27Nlz4pI/gSobF2OMGTNmjLnwwgvLXV4Xx6VeX1pQWnZ2tiSpadOmfvE333xTzZo1U7du3XT//fcrPz/fXrZs2TJ1797d7w8ypKamKicnRz/88MPJSfwE8ng8evvtt5WXl6eBAwfq+++/V1FRkc4991x7nU6dOql169ZatmyZpPo3Jj71eZ7ccsstGjVqlN+8kFSv50t5Y+JTH+fLli1blJSUpHbt2unqq6/Wzp07JdXveSKVPy4+9W2ufPLJJ+rbt68uvfRSJSYmqnfv3nrllVfs5enp6crIyPCbL40bN9aAAQP85ktcXJz69u1rr3PuuefK5XJp+fLlJ6+YalTZuPgsWLBAiYmJ6tixo2666SZlZWXZy+riuNTrSwtK8nq9GjdunAYPHqxu3brZ8auuukpt2rRRUlKS1q5dq/vuu0+bNm3SBx98IEnKyMgo81fFfD9nZGScvAKq2bp16zRw4EAdPXpUDRs21IcffqguXbpo9erVioiIUFxcnN/6zZs3t+utb2Mi1d95Iklvv/22Vq1apRUrVpRZlpGRUS/nS0VjItXP+TJgwAC99tpr6tixo/bt26epU6fqzDPP1Pr16+vtPJEqHpdGjRrVy7myfft2vfDCC7rrrrv0wAMPaMWKFbr99tsVERGhMWPG2HUFqrvkfElMTPRbHhYWpqZNm9bZcZGOXVZw8cUXq23bttq2bZseeOABjRw5UsuWLZPb7a6T40Ij+6tbbrlF69ev1+LFi/3if/7zn+3vu3fvrpYtW+qcc87Rtm3blJKScrLTPGk6duyo1atXKzs7W++9957GjBmjhQsX1nRaNaq8MenSpUu9nSe7du3SHXfcoXnz5tnXpdV3wYxJfZwvI0eOtL/v0aOHBgwYoDZt2uh///ufoqOjazCzmlXRuPzpT3+ql3PF6/Wqb9++9jW+vXv31vr16/Xiiy/aDVt9FMy4XHHFFfb63bt3V48ePZSSkqIFCxbonHPOqZG8TzQuLZB066236rPPPtP8+fPVqlWrCtcdMGCAJGnr1q2SpBYtWpT5ZK3v5xYtWpyAbE+OiIgItW/fXn369NH06dPVs2dP/eMf/1CLFi1UWFiow4cP+63/888/2/XWtzEJpL7Mk++//1779+/X6aefrrCwMIWFhWnhwoV65plnFBYWpubNm9e7+VLZmHg8njKPqS/zpaS4uDiddtpp2rp1a71+XSmt5LgEUh/mSsuWLe3/7fLp3LmzfcmFr65AdZecL/v37/dbXlxcrIMHD9bZcQmkXbt2atasmd98qWvjUq8bWWOMbr31Vn344Yf6+uuv1bZt20ofs3r1aknHJpQkDRw4UOvWrfObGPPmzVNsbGyZCedkXq9XBQUF6tOnj8LDw/XVV1/ZyzZt2qSdO3fa14vWtzEJpL7Mk3POOUfr1q3T6tWr7a++ffvq6quvtr+vb/OlsjFxu91lHlNf5ktJv/zyi7Zt26aWLVvyulJCyXEJpD7MlcGDB5e5FebmzZvVpk0bSVLbtm3VokULv/mSk5Oj5cuX+82Xw4cP6/vvv7fX+frrr+X1eu1fBpymsnEJZPfu3crKyvKbL3VtXOr1XQtuuukm07hxY7NgwQKzb98++ys/P98YY8zWrVvNww8/bFauXGnS09PNxx9/bNq1a2fOOussexvFxcWmW7duZsSIEWb16tVmzpw5JiEhwdx///01VVbIJkyYYBYuXGjS09PN2rVrzYQJE4xlWeaLL74wxhhz4403mtatW5uvv/7arFy50gwcONAMHDjQfnx9G5P6Ok/KU/pT1vVxvpRWckzq63y5++67zYIFC0x6erpZsmSJOffcc02zZs3M/v37jTH1d55UNC71da589913JiwszDz22GNmy5Yt5s033zQNGjQw//3vf+11Hn/8cRMXF2c+/vhjs3btWnPhhReatm3bmiNHjtjrnHfeeaZ3795m+fLlZvHixaZDhw7myiuvrImSqkVl45Kbm2vuueces2zZMpOenm6+/PJLc/rpp5sOHTqYo0eP2tupa+NSrxtZSQG/ZsyYYYwxZufOneass84yTZs2NZGRkaZ9+/Zm/PjxJjs72287O3bsMCNHjjTR0dGmWbNm5u677zZFRUU1UFH1uP76602bNm1MRESESUhIMOecc47dxBpjzJEjR8zNN99smjRpYho0aGAuuugis2/fPr9t1Kcxqa/zpDylG9n6OF9KKzkm9XW+XH755aZly5YmIiLCnHLKKebyyy83W7dutZfX13lS0bjU17lijDGffvqp6datm4mMjDSdOnUyL7/8st9yr9drJk6caJo3b24iIyPNOeecYzZt2uS3TlZWlrnyyitNw4YNTWxsrBk7dqzJzc09mWVUu4rGJT8/34wYMcIkJCSY8PBw06ZNG3PDDTf43ZrNmLo3LpYxxtTkGWEAAACgKur1NbIAAABwLhpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAOBg1113nU499dQqP7Zhw4bVmxAAnEQ0sgBwAvzvf/+TZVn68MMPyyzr2bOnLMvS/Pnzyyxr3bq1Bg0adDJSDFp+fr6mTJmiBQsW1HQqAOCHRhYAToAhQ4ZIkhYvXuwXz8nJ0fr16xUWFqYlS5b4Ldu1a5d27dplPzYYr7zyijZt2hR6whXIz8/X1KlTaWQB1DphNZ0AANRFSUlJatu2bZlGdtmyZTLG6NJLLy2zzPfz8TSy4eHhoScLAA7FGVkAOEGGDBmitLQ0HTlyxI4tWbJEXbt21ciRI/Xtt9/K6/X6LbMsS4MHD5Yk/fe//1WfPn0UHR2tpk2b6oorrtCuXbv89hHoGtmsrCxdc801io2NVVxcnMaMGaM1a9bIsiy99tprZfLcs2ePRo8erYYNGyohIUH33HOPPB6PJGnHjh1KSEiQJE2dOlWWZcmyLE2ZMqUaRggAQkMjCwAnyJAhQ1RUVKTly5fbsSVLlmjQoEEaNGiQsrOztX79er9lnTp1Unx8vB577DFde+216tChg5566imNGzdOX331lc466ywdPny43H16vV6df/75mjlzpsaMGaPHHntM+/bt05gxYwKu7/F4lJqaqvj4eD355JMaOnSo/v73v+vll1+WJCUkJOiFF16QJF100UX6z3/+o//85z+6+OKLq2GEACBEBgBwQvzwww9GknnkkUeMMcYUFRWZmJgY8/rrrxtjjGnevLl57rnnjDHG5OTkGLfbbW644QazY8cO43a7zWOPPea3vXXr1pmwsDC/+JgxY0ybNm3sn99//30jyTz99NN2zOPxmLPPPttIMjNmzPB7rCTz8MMP++2nd+/epk+fPvbPBw4cMJLM5MmTQxoPAKhunJEFgBOkc+fOio+Pt699XbNmjfLy8uy7EgwaNMj+wNeyZcvk8Xg0ZMgQffDBB/J6vbrsssuUmZlpf7Vo0UIdOnQIeLcDnzlz5ig8PFw33HCDHXO5XLrlllvKfcyNN97o9/OZZ56p7du3V7luADhZ+LAXAJwglmVp0KBBWrRokbxer5YsWaLExES1b99e0rFG9tlnn5Uku6EdMmSInnzySRlj1KFDh4DbregDXj/99JNatmypBg0a+MV9+ywtKirKvgbWp0mTJjp06FBwRQJADaKRBYATaMiQIfr000+1bt06+/pYn0GDBmn8+PHas2ePFi9erKSkJLVr105er1eWZenzzz+X2+0us83q/CMGgbYPAE5BIwsAJ1DJ+8kuWbJE48aNs5f16dNHkZGRWrBggZYvX67f/e53kqSUlBQZY9S2bVuddtppx7W/Nm3aaP78+crPz/c7K7t169Yq12BZVpUfCwAnEtfIAsAJ1LdvX0VFRenNN9/Unj17/M7IRkZG6vTTT9dzzz2nvLw8u+m9+OKL5Xa7NXXqVBlj/LZnjFFWVla5+0tNTVVRUZFeeeUVO+b1evXcc89VuQZfQ1zR3RIAoCZwRhYATqCIiAj169dP33zzjSIjI9WnTx+/5YMGDdLf//53Sb+dvU1JSdGjjz6q+++/Xzt27NDo0aPVqFEjpaen68MPP9Sf//xn3XPPPQH3N3r0aPXv31933323tm7dqk6dOumTTz7RwYMHJVXt7Gp0dLS6dOmid955R6eddpqaNm2qbt26qVu3bse9LQCoTpyRBYATzNeg+i4lKMn3xw8aNWqknj172vEJEybo/fffl8vl0tSpU3XPPffok08+0YgRI3TBBReUuy+3261Zs2bp8ssv1+uvv64HH3xQSUlJ9hnZqKioKtXwr3/9S6eccoruvPNOXXnllXrvvfeqtB0AqE6WKf3/VgCAOuejjz7SRRddpMWLF9vNMwA4HY0sANQxR44cUXR0tP2zx+PRiBEjtHLlSmVkZPgtAwAn4xpZAKhjbrvtNh05ckQDBw5UQUGBPvjgAy1dulTTpk2jiQVQp3BGFgDqmLfeekt///vftXXrVh09elTt27fXTTfdpFtvvbWmUwOAakUjCwAAAEfirgUAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSP8/rr8ZSm6NrVwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHcCAYAAAAqb0k3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqiElEQVR4nO3dd3hTZfsH8O9JStJBB6WULmhLQUBGESiIyBK0DBEURFARUEEZMgVBZVQUxMGLIKj4KktF1iugbJmyLRTZBaSslgItdNBC0ybP7w9+OTTN6EjTcsL3c114mfs8Oee5cyend05OTiQhhAARERERkcKoynsCREREREQlwUaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpYUYc6cOZAkCT/88EN5T4WIiIgeEGxkHWjHjh2QJAlTpkwpl+2HhYUhLCzMJDZlyhRIkoQdO3aUy5wKkiQJbdu2tTnm4MGDePfddzFp0iS88cYbZTMxC4oyV7Jf27ZtIUlSeU9DtnDhQkiShIULF5b3VJzShQsXIEkS+vfvbxK39jzIyMjAiBEjEB4ejgoVKkCSJBw5cqTQZc6kf//+kCQJFy5cKPE6yvvvU3mz9rwrDaVRHyo6NrKFMD7Z8/9zd3dHUFAQ2rdvj0mTJuHff/91yLYftD/o5eHWrVvo1asX+vTpg5iYmPKejsMYmyXjP5VKBS8vL4SHh6Nbt26YM2cObt68Wd7TpCKy9CbSUR62/cS4ceMwe/Zs1K9fH+PHj8fkyZMREBBQ6DIl4ZsnKo6y3N9Yk5ubi1WrVqFfv36oW7cuKlasCE9PTzRv3hzffPMN9Hq9w7bt4rA1O5mIiAi8+uqrAICcnBxcv34dBw8exNSpUzFt2jSMGzcOn3zyickflGbNmuHUqVPw8/Mrlzlv3bq1XLZbHKdOnYK7u7vV5UeOHMGQIUMwatSoMpxV+Wnfvj2efPJJAMDt27eRmJiIv/76C2vXrsXkyZPx3Xff4cUXXyznWRI53uLFi5GdnW0W/+OPP/DII4/g999/L9YyZzJ9+nSMHz8ewcHB5T0VIgDAv//+i549e6JixYpo3749nnvuOaSnp+P333/HkCFDsH79eqxdu9Yhb7rZyBZRzZo1LX4Es3v3bvTt2xfTp0+HWq3G1KlT5WXu7u6oU6dOGc7SVERERLltu6gKe3zatWuHdu3aldFsyl+HDh0wfvx4k5her8eiRYswbNgw9OnTB97e3njmmWfKaYZEZaN69eoW40lJSWjdunWxlzmTwMBABAYGlvc0iGSenp6YO3cu+vXrBw8PDzn+5Zdfom3btvjjjz+wcuVKhxyI4akFdnryySexceNGaLVafPbZZ7h8+bK8zNo5SGfPnsWAAQMQHh4OrVYLX19fREZGYuTIkRBCALh3PubOnTvl/zf+M57Pk//8nlOnTuH5559H5cqVTc7LKezjhh9++AENGjSAq6srgoODMWrUKGRmZpqMsXUela1zjK5fv44xY8agdu3acHNzg6+vL5o3b44vvvjCZJy1805TUlIwcuRI+THy9/dHr169cPz4cbOxxvOREhISMHv2bNSpUwdarRahoaGIiYmBwWCw+hhY8t///hf169eHq6srqlWrhnHjxuHu3btWx2dmZmLy5MmoV68e3Nzc4OPjg+joaOzevbtY27VGrVbj9ddflz+eGT16tPw8Ae7nf/78eXz55Zd49NFHodVqTepy/Phx9OrVC/7+/tBqtQgPD8fIkSORmppqtj3j8yYtLQ1vvfUWAgIC4OrqisceewxLly4tlZyKIjc3F1OmTEFYWBi0Wi0eeeQRzJs3z+JYIQR+/PFHtGzZEl5eXnB3d0fTpk3x448/lsr4ojK+Ji5evIiLFy+avHYLvoYWLFiA5s2bo2LFiqhYsSKaN29e7I+SC9tPGP3+++9o164dvL294ebmhsjISMycORN5eXkW13v06FH07t0bgYGB0Gg0CA0NxTvvvGPx+VJUer0eM2bMQM2aNeHq6oqaNWti+vTpVl+fBU+ZMD7PhRDYuXOnnGvbtm1tLstvzZo1aN++PSpVqgRXV1fUr18fX3zxhdnHnvk/2v/999/RsmVLeHp6muxPdTodZs6cicaNG8PDwwOenp5o1aoV1q5da5ZLcfZR/fv3x4ABAwAAAwYMMKlrwfXlPwdTp9Nhzpw5iI6ORrVq1eT95gsvvIC4uLhC61OairNPNNa5OK93W3bt2oWuXbvCz88PWq0WtWrVwocffmjx6H5xCSGwYMECtGrVCj4+PnB3d0etWrXw1ltv4dKlSzbva+t0EWt/Zw8fPoyePXuievXq0Gq1qFKlCqKiovDJJ58AKN7+pqiPS/657N27F8888wx8fHwKPZIaHByMIUOGmDSxAODh4YHRo0cDgLyvKm08IlsKateujV69emHJkiVYvXo13nnnHatjk5KS0KxZM2RlZaFLly546aWXkJWVhbNnz2LevHn44osv4OLigsmTJ2PhwoW4ePEiJk+eLN+/UaNGJus7d+4cHn/8cTRo0AD9+/dHamoqNBpNoXOeOXMmtm7dipdeegldunTBn3/+iVmzZmH//v3YtWsXKlSoUOLHIz4+Hu3atcPVq1fx5JNPonv37sjKysKJEycwbdo0vPvuuzbvf+PGDbRo0QL//vsv2rZti969eyMhIQErV67EunXrsGnTJvnj9/zGjh2LnTt34tlnn0V0dDRWr16NKVOmQKfTyS/8wkydOhWTJk1C1apVMXDgQFSoUAHLli3DqVOnLI6/efMmWrdujRMnTqBly5Z4++23kZGRgTVr1qBdu3ZYsWIFunfvXqRtF6Zv376YPHkyTpw4gePHj6NBgwYmy9955x3s378fXbp0QdeuXeHv7w/g3qcG0dHR0Ol06NmzJ8LCwrBv3z589dVX+OOPP7B//36z0190Oh06dOiA27dvo2/fvsjKysLy5cvx8ssvIyUlxeZzvLT06dMHBw8eRKdOnaBWq7F8+XIMHToUFSpUwMCBA+VxQgi88sorWLp0KWrVqoWXX34ZGo0GW7ZswRtvvIGTJ0+avIEq7vji8PHxweTJkzFr1iwAwMiRI+Vl+Zuq4cOHY86cOQgODpa/wLhq1SoMGDAAcXFx+Oqrr4q0vaLsJ2bOnIkxY8bA19cXL7/8Mjw8PLB27VqMGTMGf/31F/73v/+Z/JFau3YtevXqBZVKhW7duqFatWo4efIkvv76a2zatAkHDhxApUqViv3YDBo0CD/++CPCw8MxdOhQ3L17FzNnzsTevXuLdP/u3bsjLCwMMTExCA0NlZv1sLAw+Pj4WF1mNGHCBHz66acIDg7GCy+8AG9vb/z1118YO3YsDhw4gBUrVphtc8WKFdi8eTOeffZZDBkyBBkZGQDunV7WsWNH7NixA40aNcIbb7yB3NxcrFu3Tj6nfdiwYWbrK8o+qnv37khLS8OaNWvQrVs3s32+NTdv3sTIkSPRqlUrdO7cGZUqVcL58+exdu1abNiwAbt27UJUVFSR1mWPku4Ti/p6t+Wbb77B0KFD4ePjI+8DY2Nj8cknn2D79u3Yvn17kf4+WmIwGPDSSy9h5cqVCA4ORp8+feDl5YULFy5g+fLl6NSpk9VPEUriyJEjeOKJJ6BWq9GtWzeEhoYiLS0NJ0+exPz58/HBBx8UeX9Tksdl7969mDZtGtq1a4dBgwYV2qjbYuwnXFwc1HIKsikhIUEAENHR0TbH/fDDDwKA6Nu3rxzbvn27ACAmT54sx2bPni0AiFmzZpmtIzU11eR2mzZthLUSGecFQEyaNMnimNDQUBEaGmoSmzx5sgAgNBqN+Oeff+S4wWAQL7/8sgAgvvjiC5s5FJxDv379TOJNmzYVAMT8+fPN7nP58mWT2wBEmzZtTGIDBgwQAMSECRNM4uvWrRMARM2aNYVer5fj/fr1EwBEeHi4SEpKkuM3btwQPj4+wtPTU+Tk5JjNpaCzZ88KFxcXERwcLK5duybH09PTRe3atS3O1fiYff/99ybxa9euiWrVqokqVaqIO3fuFLrtBQsWCABi+vTpNsf17dtXABA//PCDHDPmHxISIi5evGgyXq/Xi4iICAFAbNy40WTZ2LFjBQDx+uuvm8RDQ0MFANG6dWuTx+3y5cvCz89PaLVaceXKlUJzKinj87558+YiPT1djp8+fVq4uLiI2rVrm4yfP3++ACAGDBggdDqdHM/JyRFdu3YVAERsbGyJxxtrs2DBgiLnYOm1Z7Rz504BQNStW1ekpaXJ8Zs3b4pHHnlEABC7du0q8rZs7SfOnTsnXFxchL+/v7h06ZIcv3v3rnjyyScFALF48WI5npKSIry8vERwcLC4cOGCybqWLl0qAIhhw4YVeW5Gxv1IZGSkuH37thy/cuWK8PPzs7gfsZaXpddhYcs2b94s78fzb99gMIi3335bABArV66U48aaq1QqsWXLFrP1vf/++wKAmDhxojAYDHI8IyNDNG3aVGg0GpGYmCjHi7uPKuw5Z1xfQkKCHLt7967F1+Xx48dFxYoVRYcOHUzitvbt9ijuPrG4r3drTpw4IVxcXERkZKRISUkxWTZ9+nSzv23W/n5ZM2fOHAFAtG/fXmRnZ5ssy87ONvn7bak+tmpqqRajR48WAMTq1avNxhfMz9b+priPi3EuAMSPP/5ocZ3F1alTJwFArFu3rlTWVxBPLSglQUFBAO59JF4Ubm5uZjFfX99ibzcgIAAffPBBse/32muvoWHDhvJtSZIwbdo0qNVqu74pe/DgQcTGxqJ169YW30WHhITYvL9Op8PSpUtRuXJlfPjhhybLOnfujKeffhrnzp3Dnj17zO47ceJEk/PG/Pz80K1bN2RmZiI+Pr7Quf/yyy/Iy8vD6NGj5aOZAODl5WU2F+BerZctW4annnoKb775pskyf39/jB07Fjdu3MCff/5Z6LaLytbzbOzYsWZHBPbs2YN///0XnTp1QnR0tMmySZMmwdfXF7/88gt0Op3Z+qZNm2byLj0kJAQjRoxATk4Ofv3119JIx6bp06fDy8tLvl27dm20bNkS8fHxJqfAfP311/Dw8MDcuXNNPknQaDTyUa78p0QUd3xpW7RoEYB7l8Lz9vaW45UqVZKPqpbWt9WNz+kxY8agWrVqclyr1WLGjBlm21q8eDEyMjIwffp0hIaGmqyrd+/eaNy4cYlqv3jxYgD3nnP5P3oMDg7GiBEjir2+4vr6668BAPPnzzfZviRJ+PTTTyFJksWad+vWDR06dDCJGQwGfPPNN4iIiEBMTIzJ0WxPT09MmjQJOp0O//vf/8zWZ+8+yhatVmvxy1/16tVDu3btsGvXLuTm5tq1jcLYs08s6uvdmu+++w55eXmYM2cOKleubLJs3LhxqFKlil2v63nz5kGtVuObb74x+/ttPH3OESz1CgXzs6Wkj0vjxo3lU1zsMX/+fGzYsAFPPfUUOnfubPf6LOGpBWWsa9eumDBhAoYOHYqtW7eiY8eOaNOmDWrUqFGi9UVGRpboo5JWrVqZxUJDQ1GtWjWcOHECOp2uROs9ePAgAJT4y0inT5/G3bt30a5dO4tXM2jXrh22bNmCI0eOmOXQpEkTs/HGxjktLa3Qbf/zzz8ALD82lmJ///039Ho9cnJyLJ5DfPbsWTmnZ599ttDt26tZs2ZmMeO5cZbOQ65YsSKaNm2KzZs3Iz4+3uRUBRcXF7Ro0cLsPsbHoSzOuSusnp6ensjOzsaxY8cQFBQkN2b5Gf9wnz59GgCKPd6ahQsXml0jsnv37kX6GNhWTYxfbMx/7dPVq1ebXQu1bdu2Rbqmsa1ttWjRAq6uribr3r9/PwDgwIEDFi8rePfuXaSkpCAlJaVYV2Mp7murtO3fvx8eHh5Wz4F2c3OzWHNLr6n4+HjcunULQUFBFi8JeOPGDQCWn0P27qMKc+TIEXz22WfYvXs3kpOTzRrXlJQUh35JzJ59YlFe77YYn7ubNm2yeMWeChUqFPq6tub27ds4deoUatasiVq1apVoHcXVq1cvzJo1C88//zxeeuklPP3002jdunWxr1RR0selNE5D+eOPPzBs2DCEhobip59+snt91rCRLSVJSUkAgCpVqtgcFxYWhv3792PKlClYv349li9fDuDet/c/+uijYn+jr2rVqiWar7X7Va1aFRcuXEBmZmax3vUZpaenA0CJLwtjPAfN2vyMO2HjuPzyv5s3Mp6TU5Rr2Bnnnv9orJGl+Riv67pnzx6LR4iNsrKyCt12Udl6nlmaY0kfTz8/P6hU5h/YGNdjfKwcqSj1vHXrFoQQSExMtHmdYWMNijvemoULF5p9cSEsLKxIjWxGRgZUKpXVGkqSZFKP1atXy0dx8ytKI2ur/pIkoWrVqkhMTJRjxuf03Llzba43KyurWI1seno6VCqVxfuUdB9WHDdv3kReXl6xa27rdX/ixAmcOHGiWOuzdx9ly969e/HUU08BuHcgoVatWqhYsSIkScLq1avxzz//ICcnx65tFMaefaK9j41x20X9PkRx2Pt3rSSaN2+OHTt2YNq0afjll1+wYMECAPcazBkzZhT5aj4lfVzsfV2uX78ePXv2RNWqVbFt2zaHvoFiI1tKjL+UVZR3MfXr18fKlSuRm5uLQ4cOYcOGDZg9ezZeeuklBAUFoWXLlkXebkmvyXbt2jWrcUmS5He/xmbG0rebLTUzPj4+AGDyx7E4jDsza/NLTk42GVeajB/zXr9+3exjVUvzMc5hzJgxJf5yUHEYDAbs2rULgOXnmaXnQkkfz5SUFBgMBrNm1rie/B+JlyfjvJs0aYLY2NhSH2+NPb+M5+XlBYPBgBs3bpi9abp+/TqEECb1WLhwYYlPNchf/4LPaSEErl27ZrIt4/8fO3YM9evXL9E2LfH29obBYEBKSopZA2/tuVmavLy8IElSkU/9MrL1murRowdWrlxZKvMrDZ988glycnLw119/mX0Zdv/+/fJRcUcq632ipW1nZGQUevS2uIz7u5L+XQOK/7cUuPdpxYYNG3Dnzh0cOHAAv//+O+bNm4cuXbrg+PHjRfokt6SPiz3Xe123bh169OgBPz8/bN++vcSfOBcVz5EtBWfOnMHy5cuh1Wrx/PPPF/l+FSpUwOOPP46YmBjMnj0bQgj88ccf8nK1Wg3A/nfqlvz1119msYsXL+Ly5cuoV6+efFqB8dvJll7Alj5eNn4Ut3nz5hLNq06dOnB1dcXff/9t8XIpxgaiqN/kLY7IyEgAlh8bS7GoqChIkoR9+/aV+lwsWbJkCS5evIgGDRqgXr16RbrPY489BsBy45WVlYXY2Fi4ubmhdu3aJsvy8vIs5mV8HIzrLW+enp6oW7cuTp06VaSPZos7vqTUarXV162tmpTk+W1rP2FrWwcOHMDdu3dNttW8eXMAKPXndHFfW6WtefPmSE1NlT/atkfdunXh5eWF2NhYh51zWpJ9/7///gtfX1+zJjY7OxuHDx8u1flZU9b7xPyMz13jR+mlqWLFinj00UeRkJBQ4udQcf+W5ufm5oa2bdviyy+/xPvvv487d+5gy5Yt8nJb+xtHPi6WGJtYX19fbN++HTVr1nT4NtnI2mnPnj2Ijo5GTk5OkX5p5dChQxY/FjcelXB1dZVjxpPH81+btrQsXrwYR48elW8LIfD+++9Dr9ebXIOydu3a8PT0xNq1a01+IvXatWv4+OOPzdYbFRWFqKgo7Nq1C99//73Z8sLe0Wo0GvTp0wcpKSmYPn26ybKNGzdi06ZNqFmzZrGOWhfVyy+/DLVajZkzZ+L69etyPCMjw2KuAQEB6NWrF/bu3YvPP//c5NquRgcOHLD7+oV6vR4LFizA4MGD5fkV9d1yy5YtERERgQ0bNph9weLjjz9Gamoq+vTpY/F86Pfff9/kS2BXrlzBV199Ba1Wi969e9uVU2kaPnw4srOzMXDgQIsfWSYkJJicz1rc8SXh6+uLlJQUi9cf7tevHwAgJibGZF+Qnp4uf/RtHFPUbQGW9xMvv/wyXFxcMHPmTPm0FODelyrfe+89ADB5vQ8YMACenp744IMPLH5snp2dXaI/iH379gUAfPTRRyaPeWJiYpEvNWaP4cOHAwBef/11i9fCTU5OtnqJvYJcXFwwePBgXLx4Ee+++67FZvb48eMm+5DiKsm+PzQ0FLdu3TKpm16vx7vvviuft+toZbVPtGTIkCFwcXHBO++8Y/FSUWlpaXad2z906FDo9XoMGTIEd+7cMVl29+7dQn9CvEmTJpAkCb/++qvJfuHs2bMWXwP79u2zuP+w1itY2984+nHJb8OGDejRowcqVaqE7du3l9n5xDy1oIjOnTsnn7yu0+nkn6g9duwY1Go1PvzwQ5PrOFqzZMkSfPfdd2jdujUiIiLg5eWFkydPYv369fD19TX5luBTTz2FlStXokePHujUqRNcXV0RGRmJrl272p1PdHQ0WrRogd69e6NKlSrYunUrYmNj8fjjj5tcI1Sj0eCdd97BtGnT0LhxY/kbtr///jvatGlj8QshP//8M9q2bYtBgwZhyZIlaNGiBe7evYsTJ04gLi6u0Iuqz5gxAzt37sTHH3+MvXv3onnz5rhw4QJWrFgBd3d3LFiwwOL5m/aqWbMmJk2ahMmTJ6Nhw4bo1asXXFxcsGrVKjRs2NDit4rnzZuH+Ph4jBs3Ts7Vx8cHly9fRmxsLM6ePYurV6/a/Bne/P788095Z5SdnY0rV65g165dSExMhK+vL5YsWWL2LWpbVCoVFi5ciOjoaHTu3BkvvvgiQkNDsW/fPuzYsQMRERH49NNPze4XGBiIrKwsNGzYEF27dpWvI5uamorZs2c/UD+N+dZbb2H//v1YtGgR9uzZgw4dOiAoKAjXrl3D6dOnceDAAfzyyy/yNUWLO74knnrqKcTGxqJTp05o1aoVNBoNWrduLf975513MGfOHNSvXx89evSAEAKrVq3ClStXMHz48GL9OpWt/URERARmzJiBMWPGyM9pDw8P/P7774iPj0e3bt3kn94GIH+D+cUXX0RkZCQ6duyIOnXqICcnBxcuXMDOnTvxxBNPYOPGjcV6PNq1a4cBAwZgwYIFaNCgAZ5//nnk5ORg2bJlePzxx00+iXKEjh07YuLEiZg6dSpq1qyJjh07IjQ0FKmpqTh37hz++usvfPzxx6hbt26R1hcTE4PDhw9j9uzZWLduHVq3bg1/f38kJibi2LFj+Oeff7Bv3z6L59sXRYsWLeDm5oZZs2bh1q1b8ukYlq6eYvTOO+9g8+bNePLJJ9GrVy+4urpix44dSExMRNu2be06HaY4SnufWFT169fHvHnzMHjwYNSuXRudO3dGREQEMjMzcf78eezcuRP9+/fHt99+W6L1Dx48GDt37sTy5ctRq1YtPPfcc/Dy8sKlS5ewadMm/PDDDzavGR4UFIQ+ffrgl19+QZMmTdCxY0dcv34dv/32Gzp27IhVq1aZjJ8xYwa2b9+O1q1bIzw8HK6urjh8+DC2bt2KGjVqmHz6a2t/4+jHxej06dPy67pt27YWr4QQFhZm8QeU7OaQi3o5kfzXazX+c3NzE4GBgaJdu3Zi4sSJ4ty5cxbva+nacPv37xdvvfWWqF+/vvDx8RFubm6iVq1aYtiwYWbXAM3NzRXjxo0T1atXFy4uLibXvCvKNfBsXUd2+/bt4vvvvxf16tUTWq1WBAYGihEjRoiMjAyz9ej1ejFlyhRRrVo1odFoxCOPPCK++uorcf78eatzSE5OFiNGjBA1atQQGo1G+Pr6iubNm4uZM2eajIOV6z7euHFDDB8+XISGhooKFSoIPz8/0bNnT3Hs2DGzsZau2Wcp36L6/vvvxaOPPio0Go0ICQkR7777rsjOzrY61+zsbPHZZ5+JJk2aCA8PD+Hm5ibCw8NF9+7dxeLFi0Vubm6h2zReY9D4T5IkUbFiRREWFia6du0q5syZI27evGnxvrbyNzp69Kjo2bOn8PPzExUqVBChoaFixIgR4saNG2Zjjc+bmzdvikGDBomqVasKrVYrIiMjxS+//FJoLvaydV1UW7kuW7ZMdOjQQVSqVElUqFBBBAcHi7Zt24ovv/zSYp5FHV+S68hmZmaKgQMHisDAQKFWqy1er/PHH38UUVFRwt3dXbi7u4uoqKgSXbfR1n7CaM2aNaJNmzbC09NTaLVa0aBBA/Hll19afW6ePn1avPHGGyI0NFRoNBpRqVIl0aBBAzF8+HBx8ODBYs9RCCHy8vLE9OnT5X1CjRo1xLRp08S5c+ccfh1Zoy1btoiuXbuKKlWqiAoVKoiAgADRokULMXXqVJPr7Bal5nl5eeK7774TLVu2FF5eXkKr1Yrq1auLjh07im+++cbkerUl2UetW7dOREVFCTc3N3m/UNj6Vq5cKRo3bizc3d2Fn5+f6NWrl/j3338tjnfUdWSFKN4+saSvd2sOHjwoevfuLYKCguS/HY0bNxbjx48Xp06dkscV9zqyQty77vB///tf8fjjjwsPDw/h7u4uatWqJd5++22T54+1eWdnZ4vhw4fL+9SGDRuKn3/+2WItNm7cKF577TVRu3Zt4enpKSpWrCgeffRR8f7775vtz4qyvynq41LS50X+689a+2frtWkPSQgLx/6J6KFlPBJp78frREREjsZzZImIiIhIkdjIEhEREZEi8cteRFQiR44cwerVqwsdFxYWVqTTFBo1amTzyxL0YLH0y02WjBw5Ur6+ND24LP1anSVF/QU7orLCc2SJqEQWLlxYpN/ibtOmjdmvYFnSr1+/El/4n8peUS8Bl5CQYNcVIKhstG3btkiv0wULFjjmm+dEJcRGloiIiIgU6aE7tcBgMCApKQmenp52/QQbERERETmGEAKZmZkICgqyee34h66RTUpKQrVq1cp7GkRERERUiMuXLyMkJMTq8oeukfX09ARw74Hx8vJy+PZyc3OxefNmPPPMM6hQoYLDt0eljzVUPtZQ2Vg/5WMNla+sa5iRkYFq1arJfZs1D10jazydwMvLq8waWXd3d3h5efHFq1CsofKxhsrG+ikfa6h85VXDwk4D5XVkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIr0QDWyu3btQteuXREUFARJkrB69Wp5WW5uLt577z00aNAAHh4eCAoKwmuvvYakpKTymzARERERlZsHqpHNyspCZGQk5s6da7YsOzsbhw8fxsSJE3H48GH873//Q3x8PJ577rlymCkRERERlTeX8p5Afp06dUKnTp0sLvP29saWLVtMYl9//TWaNWuGS5cuoXr16mUxRSIiIiJ6QDxQjWxxpaenQ5Ik+Pj4WB2Tk5ODnJwc+XZGRgYAIC8vD3l5eQAAlUoFlUoFg8EAg8EgjzXG9Xo9hBCFxtVqNSRJktcLAHq9HgBw5MgRSJJkMjfj7fzrMK5fCGESlyQJkiQVKe7n54fq1as7LCdjPH9+hcVdXFwghDCJS5IEtVptNkdrcUfWydbcjffV6/UmNVRyTs5Yp8JyMi4zvmacISdnrJO1nIz3sVU/peXkjHWylpNxvF6vh1qtdoqcnLFOtnIyriv/69GRORUcb41iG9m7d+/ivffeQ58+feDl5WV13PTp0xETE2MWj4uLg4eHBwCgSpUqiIiIQEJCAm7cuCGPCQkJQUhICM6cOYP09HQ5XqNGDfj7++P48eO4c+eOHK9Tpw58fHwQFxcnFyY7OxsA8PTTT2PYsGEmc/j888/h5eWFt956S47pdDp8/vnnqFGjBvr06SPHU1JS8N1336FRo0bo0qWLHD9//jyWLl2K1q1bo1WrVgAAlVqN57p2RdOmTR2SEwA0bNgQGo0GsbGxJjk1bdoUOp0OR48elWNqtRpRUVFIT0/H6dOn5bibmxsiIyORkpKC8+fPy3Fvb2/UrVsXSUlJuHLlihx3ZJ1s5dSoUSMA954zxkZW6Tk5Y51s5WR8A2usoTPk5Ix1spZTamoqgPv1c4acnLFOtnK6fPkygHs19Pf3d4qcnLFOtnIyNqdXr15FWFiYw3OKi4tDUUii4OHAB4QkSfjtt9/QvXt3s2W5ubno0aMHrly5gh07dthsZC0dka1WrRpSU1Pl+znyndThw4dx9epVLD+ZDL/QCJO5GbdU8ERlAyQAwmJcgoBkI37jwjmsihmBvXv3okmTJk797rCscjIYDNiwYQOio6Ph4nL/vZ+Sc3LGOtnKSafTmdTQGXJyxjpZyyknJwcbN24stH5KyskZ62QrJ51Oh02bNiE6OhoajcYpcnLGOtnKKS8vD5s2bULHjh2h1WodntOtW7dQuXJlpKen2+zzFHdENjc3F7169cLFixexbds2m8kBgFarhVarNYu7uLiYNCXA/SIUZHxQixrPv17j+qqERiCgbiObcy0NBkjQ6XTykUNH5FTSuCRJFuPW5ljcuKNyys3NlddTcJlSc7IVd9acjNso+PpUck7OWCdrORm3bU/9HrScnLFO1uZunI/xtAJb45WSkzPWyVbc2Jzmfz1a4sicLI4r0qgHhLGJPXv2LLZv347KlSuX95SIiIiIqJw8UI3s7du3ce7cOfl2QkICjhw5Al9fXwQGBqJnz544fPgw/vjjD+j1eiQnJwMAfH19odFoymvaRERERFQOHqhGNjY2Fu3atZNvjx49GgDQr18/TJkyBWvXrgVw/8s3Rtu3b0fbtm3LappERERE9AB4oBrZtm3bml2KKr8H9HtpRERERFQOHqhf9iIiIiIiKio2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSA9UI7tr1y507doVQUFBkCQJq1evNlkuhMCkSZMQGBgINzc3dOjQAWfPni2fyRIRERFRuXqgGtmsrCxERkZi7ty5Fpd/9tlnmD17Nr799lscOHAAHh4eiI6Oxt27d8t4pkRERERU3lzKewL5derUCZ06dbK4TAiBWbNm4cMPP0S3bt0AAIsXL0bVqlWxevVq9O7duyynSkRERETl7IFqZG1JSEhAcnIyOnToIMe8vb3RvHlz7Nu3z2ojm5OTg5ycHPl2RkYGACAvLw95eXkAAJVKBZVKBYPBAIPBII81xvV6PYQQhcbVajUkSZLXCyDf+gQkg95kbkK6d0BcEgbTuEoNCGEal6R7463GDZCEgAoCGo1GnpcjcjLGAUCv1xcp7uLiAiGESVySJKjVarM5Wos7sk625m68r16vhyRJTpGTM9apsJyMyyRJcpqcnLFO1nIy3sdW/ZSWkzPWyVpOxvF6vR5qtdopcnLGOtnKybiu/K9HR+ZUcLw1imlkk5OTAQBVq1Y1iVetWlVeZsn06dMRExNjFo+Li4OHhwcAoEqVKoiIiEBCQgJu3LghjwkJCUFISAjOnDmD9PR0OV6jRg34+/vj+PHjuHPnjhyvU6cOfHx8EBcXJxfGeD8VgOCUeJM5JPrVhtqQh4Cb/8oxoVIh0a8OXHOz4Jd2SY7nuWiR7BsBj7tpqJR5VY7f1XggxScUXtmp8Mq6gcrauxg7dixu374NAA7JCQAaNmwIjUaD2NhYk5yaNm0KnU6Ho0ePyjG1Wo2oqCikp6fj9OnTctzNzQ2RkZFISUnB+fPn5bi3tzfq1q2LpKQkXLlyRY47sk62cmrUqBGAe88ZYyOr9JycsU62cjK+gTXW0BlycsY6WcspNTUVwP36OUNOzlgnWzldvnwZwL0a+vv7O0VOzlgnWzkZm9OrV68iLCzM4TnFxcWhKCSRv21+gEiShN9++w3du3cHAOzduxctW7ZEUlISAgMD5XG9evWCJElYtmyZxfVYOiJbrVo1pKamwsvLC4Bj30kdPnwYV69exfYsdwTWbmgyN0cckU2KP4ZvB3TB3r170aRJE6d+d1hWORkMBmzYsAHR0dFwcbn/3k/JOTljnWzlpNPpTGroDDk5Y52s5ZSTk4ONGzcWWj8l5eSMdbKVk06nw6ZNmxAdHQ2NRuMUOTljnWzllJeXh02bNqFjx47QarUOz+nWrVuoXLky0tPT5X7NEsUckQ0ICAAAXLt2zaSRvXbtmnzEzBKtVgutVmsWd3FxMWlKgPtFKMj4oBY1nn+999cn3WtQLRCShbgkFTOugpAAAyTodDr5yKEjcippXJIki3Frcyxu3FE55ebmyuspuEypOdmKO2tOxm0UfH0qOSdnrJO1nIzbtqd+D1pOzlgna3M3zsd4WoGt8UrJyRnrZCtubE7zvx4tcWROljxQVy2wJTw8HAEBAdi6dascy8jIwIEDB9CiRYtynBkRERERlYcH6ojs7du3ce7cOfl2QkICjhw5Al9fX1SvXh0jR47Exx9/jFq1aiE8PBwTJ05EUFCQfPoBERERET08HqhGNjY2Fu3atZNvjx49GgDQr18/LFy4EOPGjUNWVhYGDRqEtLQ0PPnkk9i4cSNcXV3La8pEREREVE4eqEa2bdu2JicIFyRJEj766CN89NFHZTgrIiIiInoQKeYcWSIiIiKi/NjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpkkt5T4CIiIiIiu/SpUtISUkpk20ZDIYy2U5xsZElIiIiUphLly6hTt26uJOdXSbbc3Nzw9KlS3HlyhWEh4eXyTaLgo0sERERkcKkpKTgTnY2en38DfzDazl8ezcvngMApKamspElIiIiIvv5h9dCcN1Ih29HDQEgy+HbKS5+2YuIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIqkqEZWr9dj4sSJCA8Ph5ubGyIiIjB16lQIIcp7akRERERUxlzKewLFMWPGDHzzzTdYtGgR6tWrh9jYWAwYMADe3t4YPnx4eU+PiIiIiMqQohrZvXv3olu3bujSpQsAICwsDEuXLsXBgwfLeWZEREREVNYU1cg+8cQTmD9/Ps6cOYNHHnkE//zzD3bv3o2ZM2davU9OTg5ycnLk2xkZGQCAvLw85OXlAQBUKhVUKhUMBgMMBoM81hjX6/Umpy9Yi6vVakiSJK8XQL71CUgGvcnchHTvzA5JGEzjKjUghGlcku6Ntxo3QBICKghoNBp5Xo7IyRgH7p3uUZS4i4sLhBAmcUmSoFarzeZoLe7IOtmau/G+er0ekiQ5RU7OWKfCcjIukyTJaXJyxjpZy8l4H1v1U1pOzlgnazkZx+v1eqjVaqfIqbzrZLO/sKOPkNchSUCB/gIw/ZvoyDoVHG+NohrZ8ePHIyMjA3Xq1IFarYZer8cnn3yCV155xep9pk+fjpiYGLN4XFwcPDw8AABVqlRBREQEEhIScOPGDXlMSEgIQkJCcObMGaSnp8vxGjVqwN/fH8ePH8edO3fkeJ06deDj44O4uDi5MMb7qQAEp8SbzCHRrzbUhjwE3PxXjgmVCol+deCamwW/tEtyPM9Fi2TfCHjcTUOlzKty/K7GAyk+ofDKToVX1g1U1t7F2LFjcfv2bQBwSE4A0LBhQ2g0GsTGxprk1LRpU+h0Ohw9elSOqdVqREVFIT09HadPn5bjbm5uiIyMREpKCs6fPy/Hvb29UbduXSQlJeHKlSty3JF1spVTo0aNANx7zhgbWaXn5Ix1spWT8Q2ssYbOkJMz1slaTqmpqQDu188ZcnLGOtnK6fLlywDu1dDf398pcirvOqWnp0Oj0UArCZP+wt4+wijLzQe3PINQ6XYyPO6kwU9776Cgcb6OrlNcXByKQhIK+qbUr7/+irFjx+Lzzz9HvXr1cOTIEYwcORIzZ85Ev379LN7H0hHZatWqITU1FV5eXgAc+07q8OHDuHr1KrZnuSOwdkOTuTniiGxS/DF8O6AL9u7diyZNmvAdbynkZDAYsGHDBkRHR8PF5f57PyXn5Ix1spWTTqczqaEz5OSMdbKWU05ODjZu3Fho/ZSUkzPWyVZOOp0OmzZtQnR0NDQajVPkVN51OnLkCKKiojDs5y0Iqd3AZLwjjsheiz+KNh7ZCAoKQlRUlMPrdOvWLVSuXBnp6elyv2aJoo7Ijh07FuPHj0fv3r0BAA0aNMDFixcxffp0q42sVquFVqs1i7u4uJg0JcD9IhRkfFCLGs+/3vvrk+49sSwQkoW4JBUzroKQAAMk6HQ6+cihI3IqaVySJItxa3MsbtxROeXm5srrKbhMqTnZijtrTsZtFHx9KjknZ6yTtZyM27anfg9aTs5YJ2tzN87HeFqBrfFKyam861Rof1HCPsJa3ADp/+9+f39qiSPrZImiLr+VnZ1t9gTJf/4UERERET08FHVEtmvXrvjkk09QvXp11KtXD3FxcZg5cyZef/318p4aEREREZUxRTWyc+bMwcSJEzFkyBBcv34dQUFBeOuttzBp0qTynhoRERERlTFFNbKenp6YNWsWZs2aVd5TISIiIqJypqhzZImIiIiIjNjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUye6rFiQnJ+OHH37A4cOHkZ6ebvbjBJIkYevWrfZuhoiIiIjIhF2N7NGjR9G2bVvcuXMHtWvXxrFjx/Doo48iLS0NiYmJiIiIQLVq1UprrkREREREMrtOLRg/fjwqVqyI+Ph4/PnnnxBC4KuvvsLly5exbNky3Lp1C59++mlpzZWIiIiISGZXI7tnzx689dZbqF69OlSqe6synlrw4osv4pVXXsHYsWPtnyURERERUQF2NbIGgwFVq1YFAPj4+ECtVuPmzZvy8gYNGuDQoUP2zZCIiIiIyAK7Gtnw8HAkJCTcW5FKhfDwcPz555/y8r1798LHx8euCRIRERERWWJXI/vMM89gxYoV8u3Bgwfjv//9Lzp06ID27dtj0aJFePnll+2eJBERERFRQXZdteCDDz5Anz59kJubiwoVKmDkyJHIysrCqlWroFarMXHiRLz//vulNVciIiIiIpldjWylSpXQpEkT+bYkSfjwww/x4Ycf2j0xIiIiIiJb+MteRERERKRIxToi+/rrr0OSJMyfPx9qtRqvv/56ofeRJAk//PBDiSdIRERERGRJsRrZbdu2QaVSwWAwQK1WY9u2bZAkyeZ9CltORERERFQSxWpkL1y4YPM2EREREVFZ4TmyRERERKRIdjWyhw8fxrx586wunzdvHo4cOWLPJoiIiIiILLKrkf3ggw9MfsmroG3btvFSXERERETkEHY1socOHUKrVq2sLm/VqhViY2Pt2QQRERERkUV2NbKZmZlwcbH+fTGVSoX09HR7NkFEREREZJFdjWytWrWwefNmq8s3btyIGjVq2LMJIiIiIiKL7Gpk33jjDaxbtw6jR49GWlqaHE9LS8OoUaOwceNGvPHGG/bOkYiIiIjITLGuI1vQ8OHDceTIEcyaNQuzZ89GUFAQACApKQkGgwF9+/bFqFGjSmWiRERERET52dXISpKEBQsW4LXXXsOqVatw/vx5AEC3bt3Qo0cPtG3btjTmSERERERkxq5G1qhdu3Zo165daayKiIiIiKhI+MteRERERKRIdjWyQgh89913aNasGfz8/KBWq83+2bo8FxERERFRSdnVZY4bNw4zZ85Eo0aN8Oqrr6JSpUqlNS8iIiIiIpvsamQXLVqEHj16YPny5aU1HyIiIiKiIrHr1II7d+6gQ4cOpTUXIiIiIqIis6uRbd++Pf7+++/SmgsRERERUZHZ1cjOmzcP+/fvx7Rp05CamlpacyIiIiIiKpRdjWzt2rVx/vx5TJw4Ef7+/vDw8ICXl5fJP29v79KaKxERERGRzK4ve/Xo0QOSJJXWXIiIiIiIisyuRnbhwoWlNA0iIiIiouLhL3sRERERkSLZ3cheunQJb7/9NmrXro1KlSph165dAICUlBQMHz4ccXFxdk+SiIiIiKggu04tOHnyJFq1agWDwYDmzZvj3LlzyMvLAwD4+flh9+7dyMrKwg8//FAqkyUiIiIiMrL7J2p9fHywf/9+SJIEf39/k+VdunTBsmXL7JogEREREZEldp1asGvXLgwePBhVqlSxePWC6tWrIzEx0Z5NEBERERFZZFcjazAY4O7ubnX5jRs3oNVq7dkEEREREZFFdjWyjRs3xrp16ywuy8vLw6+//orHH3/cnk0QEREREVlkVyM7YcIEbNy4EYMHD8bx48cBANeuXcOff/6JZ555BqdOncL48eNLZaJERERERPnZ9WWvTp06YeHChRgxYgTmz58PAHj11VchhICXlxcWL16M1q1bl8pEiYiIiIjys6uRBYC+ffvihRdewObNm3Hu3DkYDAZEREQgOjoanp6epTFHIiIiIiIzdjeyAODh4YHnn3++NFZFRERERFQkdjWyly5dKtK46tWr27MZIiIiIiIzdjWyYWFhFq8fW5Ber7dnM0REREREZuxqZH/88UezRlav1+PChQtYvHgx/P39MXToULsmWFBiYiLee+89bNiwAdnZ2ahZsyYWLFiApk2blup2iIiIiOjBZlcj279/f6vL3nvvPTRv3hzp6en2bMLErVu30LJlS7Rr1w4bNmxAlSpVcPbsWVSqVKnUtkFEREREylAqX/ayxMPDAwMGDMB//vMfDB8+vFTWOWPGDFSrVg0LFiyQY+Hh4Tbvk5OTg5ycHPl2RkYGgHs/2JCXlwcAUKlUUKlUMBgMMBgM8lhjXK/XQwhRaFytVkOSJHm9APKtT0AymJ5iIaR7l/GVhME0rlIDQpjGJeneeKtxAyQhoIKARqOR5+WInIxxwPy0EWtxFxcXCCFM4pIkQa1Wm83RWtyRdbI1d+N99Xq9yScQSs7JGetUWE7GZZIkOU1OzlgnazkZ72OrfkrLyRnrZC0n43i9Xg+1Wu0UOZV3nWz2F3b0EfI6JAko0F8Apn8THVmnguOtcVgjC9x7kJOTk0ttfWvXrkV0dDRefPFF7Ny5E8HBwRgyZAgGDhxo9T7Tp09HTEyMWTwuLg4eHh4AgCpVqiAiIgIJCQm4ceOGPCYkJAQhISE4c+aMyZHlGjVqwN/fH8ePH8edO3fkeJ06deDj44O4uDi5MMb7qQAEp8SbzCHRrzbUhjwE3PxXjgmVCol+deCamwW/tPtfpstz0SLZNwIed9NQKfOqHL+r8UCKTyi8slPhlXUDlbV3MXbsWNy+fRsAHJITADRs2BAajQaxsbEmOTVt2hQ6nQ5Hjx6VY2q1GlFRUUhPT8fp06fluJubGyIjI5GSkoLz58/LcW9vb9StWxdJSUm4cuWKHHdknWzl1KhRIwD3njPGRlbpOTljnWzlZHwDa6yhM+TkjHWyllNqaiqA+/VzhpycsU62crp8+TKAezX09/d3ipzKu07p6enQaDTQSsKkv7C3jzDKcvPBLc8gVLqdDI87afDT3jsoaJyvo+sUFxeHopBE/ra5lGRkZGDXrl14/fXXUbNmTezdu7dU1uvq6goAGD16NF588UX8/fffGDFiBL799lv069fP4n0sHZGtVq0aUlNT4eXlBcCx76QOHz6Mq1evYnuWOwJrNzSZmyOOyCbFH8O3A7pg7969aNKkCd/xlkJOBoMBGzZsQHR0NFxc7r/3U3JOzlgnWznpdDqTGjpDTs5YJ2s55eTkYOPGjYXWT0k5OWOdbOWk0+mwadMmREdHQ6PROEVO5V2nI0eOICoqCsN+3oKQ2g1MxjviiOy1+KNo45GNoKAgREVFObxOt27dQuXKlZGeni73a5bYdURWpVJZvWqBEALVq1fHvHnz7NmECYPBgKZNm2LatGkAgMceewzHjx+32chqtVpotVqzuIuLi0lTAtwvQkHGB7Wo8fzrvb8+6d4TywIhWYhLUjHjKggJMECCTqeT6+KInEoalyTJYtzaHIsbd1ROubm58noKLlNqTrbizpqTcRsFX59KzskZ62QtJ+O27anfg5aTM9bJ2tyN8zGeVmBrvFJyKu86FdpflLCPsBY3QPr/u9/fn1riyDpZHFekUVZMmjTJrJGVJAmVKlVCREQEnnnmmSJPpCgCAwPx6KOPmsTq1q2LVatWldo2iIiIiEgZ7Ooyp0yZUkrTKJqWLVsiPt70PNMzZ84gNDS0TOdBREREROXP/Ph3MeTl5clforAkIyOjyN86K4pRo0Zh//79mDZtGs6dO4dffvkF8+fPL/Vr1RIRERHRg8+uRnb48OF44oknrC5v2bIlxowZY88mTERFReG3337D0qVLUb9+fUydOhWzZs3CK6+8UmrbICIiIiJlsKuR3bhxI3r27Gl1ec+ePbF+/Xp7NmHm2WefxbFjx3D37l2cOnXK5qW3iIiIiMh52dXIJiUlITg42OryoKAgJCYm2rMJIiIiIiKL7GpkK1eubPblq/xOnTpl89pfREREREQlZVcj27FjR3z33XcWf33h8OHDmD9/Pjp16mTPJoiIiIiILLLr8ltTp07Fxo0b0axZMzz33HOoV68eAOD48eP4/fff4e/vj6lTp5bKRImIiIiI8rOrkQ0KCkJsbCzGjx+PNWvW4LfffgMAeHl54ZVXXsG0adMQFBRUKhMlIiIiIsrP7p/dCgwMxKJFiyCEwI0bNwAAVapUsfrTtUREREREpaHUfj9WkiRotVpUrFiRTSwREREROZxdX/YCgNjYWHTs2BHu7u6oXLkydu7cCQBISUlBt27dsGPHDns3QURERERkxq5Gdu/evXjyySdx9uxZvPrqqzAYDPIyPz8/pKen47vvvrN7kkREREREBdnVyL7//vuoW7cuTp48iWnTppktb9euHQ4cOGDPJoiIiIiILLKrkf37778xYMAAaLVai+fFBgcHIzk52Z5NEBERERFZZFcjW6FCBZPTCQpKTExExYoV7dkEEREREZFFdjWyjz/+OFauXGlxWVZWFhYsWIA2bdrYswkiIiIiIovsamRjYmIQGxuLLl26YMOGDQCAf/75B//973/RpEkT3LhxAxMnTiyViRIRERER5WfXdWSbN2+O9evXY/DgwXjttdcAAGPGjAEAREREYP369WjYsKH9syQiIiIiKqDEjawQApmZmXjiiScQHx+PI0eO4OzZszAYDIiIiECTJk34wwhERERE5DAlbmR1Oh18fX0xbdo0jBs3Do0aNUKjRo1KcWpERERERNaV+BxZrVaLgIAAaLXa0pwPEREREVGR2PVlr/79+2Px4sXQ6XSlNR8iIiIioiKx68teDRo0wOrVq1GvXj30798fYWFhcHNzMxv3wgsv2LMZIiIiIiIzdjWyffr0kf/f2mW2JEmCXq+3ZzNERERERGaK3ci+//776N27Nxo2bIjt27c7Yk5ERERERIUqdiP76aefon79+mjYsCHatGmD1NRU+Pv7Y8uWLXjqqaccMUciIiIiIjN2fdnLSAhRGqshIiIiIiqyUmlkiYiIiIjKGhtZIiIiIlKkEl214MKFCzh8+DAAID09HQBw9uxZ+Pj4WBzfuHHjks2OiIiIiMiKEjWyEydONLvc1pAhQ8zGCSF4+S0iIiIicohiN7ILFixwxDyIiIiIiIql2I1sv379HDEPIiIiIqJi4Ze9iIiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREiqToRvbTTz+FJEkYOXJkeU+FiIiIiMqYYhvZv//+G9999x0aNmxY3lMhIiIionLgUt4TKInbt2/jlVdewffff4+PP/7Y5ticnBzk5OTItzMyMgAAeXl5yMvLAwCoVCqoVCoYDAYYDAZ5rDGu1+shhCg0rlarIUmSvF4A+dYnIBn0JnMT0r33EZIwmMZVakAI07gk3RtvNW6AJARUENBoNPK8HJGTMQ4Aer2+SHEXFxcIIUzikiRBrVabzdFa3JF1sjV34331ej0kSXKKnJyxToXlZFwmSZLT5OSMdbKWk/E+tuqntJycsU7WcjKO1+v1UKvVTpFTedfJZn9hRx8hr0OSgAL9BWD6N9GRdSo43hpFNrJDhw5Fly5d0KFDh0Ib2enTpyMmJsYsHhcXBw8PDwBAlSpVEBERgYSEBNy4cUMeExISgpCQEJw5cwbp6elyvEaNGvD398fx48dx584dOV6nTh34+PggLi5OLozxfioAwSnxJnNI9KsNtSEPATf/lWNCpUKiXx245mbBL+2SHM9z0SLZNwIed9NQKfOqHL+r8UCKTyi8slPhlXUDlbV3MXbsWNy+fRsAHJITADRs2BAajQaxsbEmOTVt2hQ6nQ5Hjx6VY2q1GlFRUUhPT8fp06fluJubGyIjI5GSkoLz58/LcW9vb9StWxdJSUm4cuWKHHdknWzl1KhRIwD3njPGRlbpOTljnWzlZHwDa6yhM+TkjHWyllNqaiqA+/VzhpycsU62crp8+TKAezX09/d3ipzKu07p6enQaDTQSsKkv7C3jzDKcvPBLc8gVLqdDI87afDT3jsoaJyvo+sUFxeHopBE/rZZAX799Vd88skn+Pvvv+Hq6oq2bduiUaNGmDVrlsXxlo7IVqtWDampqfDy8gLg2HdShw8fxtWrV7E9yx2BtU1Pg3DEEdmk+GP4dkAX7N27F02aNOE73lLIyWAwYMOGDYiOjoaLy/33fkrOyRnrZCsnnU5nUkNnyMkZ62Qtp5ycHGzcuLHQ+ikpJ2esk62cdDodNm3ahOjoaGg0GqfIqbzrdOTIEURFRWHYz1sQUruByXhHHJG9Fn8UbTyyERQUhKioKIfX6datW6hcuTLS09Plfs0SRR2RvXz5MkaMGIEtW7bA1dW1SPfRarXQarVmcRcXF5OmBLhfhIKMD2pR4/nXe3990r0nlgVCshCXpGLGVRASYIAEnU4nHzl0RE4ljUuSZDFubY7FjTsqp9zcXHk9BZcpNSdbcWfNybiNgq9PJefkjHWylpNx2/bU70HLyRnrZG3uxvkYTyuwNV4pOZV3nQrtL0rYR1iLGyD9/93v708tcWSdLI4r0qgHxKFDh3D9+nU0btxYjun1euzatQtff/01cnJyrD6ARERERORcFNXItm/fHseOHTOJDRgwAHXq1MF7773HJpaIiIjoIaKoRtbT0xP169c3iXl4eKBy5cpmcSIiIiJyboq9jiwRERERPdwUdUTWkh07dpT3FIiIiIioHPCILBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkRTWy06dPR1RUFDw9PeHv74/u3bsjPj6+vKdFREREROVAUY3szp07MXToUOzfvx9btmxBbm4unnnmGWRlZZX31IiIiIiojLmU9wSKY+PGjSa3Fy5cCH9/fxw6dAitW7e2eJ+cnBzk5OTItzMyMgAAeXl5yMvLAwCoVCqoVCoYDAYYDAZ5rDGu1+shhCg0rlarIUmSvF4A+dYnIBn0JnMT0r33EZIwmMZVakAI07gk3RtvNW6AJARUENBoNPK8HJGTMQ4Aer2+SHEXFxcIIUzikiRBrVabzdFa3JF1sjV34331ej0kSXKKnJyxToXlZFwmSZLT5OSMdbKWk/E+tuqntJycsU7WcjKO1+v1UKvVTpFTedfJZn9hRx8hr0OSgAL9BWD6N9GRdSo43hpFNbIFpaenAwB8fX2tjpk+fTpiYmLM4nFxcfDw8AAAVKlSBREREUhISMCNGzfkMSEhIQgJCcGZM2fkbQFAjRo14O/vj+PHj+POnTtyvE6dOvDx8UFcXJxcGOP9VACCU0xPg0j0qw21IQ8BN/+VY0KlQqJfHbjmZsEv7ZIcz3PRItk3Ah5301Ap86ocv6vxQIpPKLyyU+GVdQOVtXcxduxY3L59GwAckhMANGzYEBqNBrGxsSY5NW3aFDqdDkePHpVjarUaUVFRSE9Px+nTp+W4m5sbIiMjkZKSgvPnz8txb29v1K1bF0lJSbhy5Yocd2SdbOXUqFEjAPeeM8ZGVuk5OWOdbOVkfANrrKEz5OSMdbKWU2pqKoD79XOGnJyxTrZyunz5MoB7NfT393eKnMq7Tunp6dBoNNBKwqS/sLePMMpy88EtzyBUup0Mjztp8NPeOyhonK+j6xQXF4eikET+tllBDAYDnnvuOaSlpWH37t1Wx1k6IlutWjWkpqbCy8sLgGPfSR0+fBhXr17F9ix3BNZuaDI3RxyRTYo/hm8HdMHevXvRpEkTvuMthZwMBgM2bNiA6OhouLjcf++n5JycsU62ctLpdCY1dIacnLFO1nLKycnBxo0bC62fknJyxjrZykmn02HTpk2Ijo6GRqNxipzKu05HjhxBVFQUhv28BSG1G5iMd8QR2WvxR9HGIxtBQUGIiopyeJ1u3bqFypUrIz09Xe7XLFHsEdmhQ4fi+PHjNptYANBqtdBqtWZxFxcXk6YEuF+EgowPalHj+dd7f33SvSeWBUKyEJekYsZVEBJggASdTicfOXRETiWNS5JkMW5tjsWNOyqn3NxceT0Flyk1J1txZ83JuI2Cr08l5+SMdbKWk3Hb9tTvQcvJGetkbe7G+RhPK7A1Xik5lXedCu0vSthHWIsbIP3/3e/vTy1xZJ0sjivSqAfMsGHD8Mcff2DXrl0ICQkp7+kQERERUTlQVCMrhMA777yD3377DTt27EB4eHh5T4mIiIiIyomiGtmhQ4fil19+wZo1a+Dp6Ynk5GQA906+dnNzK+fZEREREVFZUtR1ZL/55hukp6ejbdu2CAwMlP8tW7asvKdGRERERGVMUUdkFXqBBSIiIiJyAEUdkSUiIiIiMmIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKpMhGdu7cuQgLC4OrqyuaN2+OgwcPlveUiIiIiKiMKa6RXbZsGUaPHo3Jkyfj8OHDiIyMRHR0NK5fv17eUyMiIiKiMuRS3hMorpkzZ2LgwIEYMGAAAODbb7/FunXr8OOPP2L8+PFm43NycpCTkyPfTk9PBwDcvHkTeXl5AACVSgWVSgWDwQCDwSCPNcb1ej2EEIXG1Wo1JEmS1wsAGRkZyM7ORlJ8Au5mZ5nMzXhPqcCcBST5vwXjEgQKyh9PvXQeFSpUwKFDh3D79m0IIUzmKEkSJEkqdjz/42KMA4AQQn7sCsbzU6lUpTYXIYTJnByRk8njKwSys7Px119/QaW6/96vtHMq+FwyxhyRU8G4sYaOzKmk9StpTkbG12r+Gjoip4JxtVptto8ozZxK6zlT0rjxOePInIzrLq/65d+Xl3ZOxX3OOGJfbpyfI3MyxvPX0Pi30tF/nwouc/Tfp9KsX1FeT2fPngUAJJ46itzs2ybj7ekjrMXTriQgu3ZVZGZmIiMjw67eyBgHAL1ebzF+69Yts5wtkURhIx4gOp0O7u7uWLlyJbp37y7H+/Xrh7S0NKxZs8bsPlOmTEFMTEwZzpKIiIiISsPly5cREhJidbmijsimpKRAr9ejatWqJvGqVavi9OnTFu8zYcIEjB49Wr5tMBhw8+ZNVK5cWX6H40gZGRmoVq0aLl++DC8vL4dvj0ofa6h8rKGysX7KxxoqX1nXUAiBzMxMBAUF2RynqEa2JLRaLbRarUnMx8enzOfh5eXFF6/CsYbKxxoqG+unfKyh8pVlDb29vQsdo6gve/n5+UGtVuPatWsm8WvXriEgIKCcZkVERERE5UFRjaxGo0GTJk2wdetWOWYwGLB161a0aNGiHGdGRERERGVNcacWjB49Gv369UPTpk3RrFkzzJo1C1lZWfJVDB40Wq0WkydPNju9gZSDNVQ+1lDZWD/lYw2V70GtoaKuWmD09ddf4/PPP0dycjIaNWqE2bNno3nz5uU9LSIiIiIqQ4psZImIiIiIFHWOLBERERGRERtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjI2ikzMxMjR45EaGgo3Nzc8MQTT+Dvv/+2eZ8dO3agcePG0Gq1qFmzJhYuXFg2kyWLilvD//3vf3j66adRpUoVeHl5oUWLFti0aVMZzpjyK8lr0GjPnj1wcXFBo0aNHDtJsqkkNczJycEHH3yA0NBQaLVahIWF4ccffyyjGVNBJanhzz//jMjISLi7uyMwMBCvv/46UlNTy2jGD7ddu3aha9euCAoKgiRJWL16tclyIQQmTZqEwMBAuLm5oUOHDjh79myh6507dy7CwsLg6uqK5s2b4+DBgw7K4D42snZ68803sWXLFixZsgTHjh3DM888gw4dOiAxMdHi+ISEBHTp0gXt2rXDkSNHMHLkSLz55ptshMpRcWu4a9cuPP3001i/fj0OHTqEdu3aoWvXroiLiyvjmRNQ/PoZpaWl4bXXXkP79u3LaKZkTUlq2KtXL2zduhU//PAD4uPjsXTpUtSuXbsMZ035FbeGe/bswWuvvYY33ngDJ06cwIoVK3Dw4EEMHDiwjGf+cMrKykJkZCTmzp1rcflnn32G2bNn49tvv8WBAwfg4eGB6Oho3L171+o6ly1bhtGjR2Py5Mk4fPgwIiMjER0djevXrzsqjXsElVh2drZQq9Xijz/+MIk3btxYfPDBBxbvM27cOFGvXj2T2EsvvSSio6MdNk+yriQ1tOTRRx8VMTExpT09KoQ99XvppZfEhx9+KCZPniwiIyMdOEuypSQ13LBhg/D29hapqallMUUqRElq+Pnnn4saNWqYxGbPni2Cg4MdNk+yDID47bff5NsGg0EEBASIzz//XI6lpaUJrVYrli5danU9zZo1E0OHDpVv6/V6ERQUJKZPn+6QeRvxiKwd8vLyoNfr4erqahJ3c3PD7t27Ld5n37596NChg0ksOjoa+/btc9g8ybqS1LAgg8GAzMxM+Pr6OmKKZENJ67dgwQKcP38ekydPdvQUqRAlqeHatWvRtGlTfPbZZwgODsYjjzyCd999F3fu3CmLKVMBJalhixYtcPnyZaxfvx5CCFy7dg0rV65E586dy2LKZENCQgKSk5NNehVvb280b97caq+i0+lw6NAhk/uoVCp06NDB4f0NG1k7eHp6okWLFpg6dSqSkpKg1+vx008/Yd++fbh69arF+yQnJ6Nq1aomsapVqyIjI4M74XJQkhoW9MUXX+D27dvo1auXg2dLBZWkfmfPnsX48ePx008/wcVFcb/S7XRKUsPz589j9+7dOH78OH777TfMmjULK1euxJAhQ8p49gSUrIYtW7bEzz//jJdeegkajQYBAQHw9va2+lE3lZ3k5GQAsNirGJcVlJKSAr1eX6z7lBY2snZasmQJhBAIDg6GVqvF7Nmz0adPH6hUfGiVwp4a/vLLL4iJicHy5cvh7+9fBrOlgopTP71ej5dffhkxMTF45JFHymG2ZElxX4MGgwGSJOHnn39Gs2bN0LlzZ8ycOROLFi3iAYFyUtwanjx5EiNGjMCkSZNw6NAhbNy4ERcuXMDbb79dxjMnpWO3ZaeIiAjs3LkTt2/fxuXLl3Hw4EHk5uaiRo0aFscHBATg2rVrJrFr167By8sLbm5uZTFlKqC4NTT69ddf8eabb2L58uVmp4tQ2SlO/TIzMxEbG4thw4bBxcUFLi4u+Oijj/DPP//AxcUF27ZtK4cMqLivwcDAQAQHB8Pb21uO1a1bF0IIXLlypaymTfkUt4bTp09Hy5YtMXbsWDRs2BDR0dGYN28efvzxxyJ/GkaOERAQAAAWexXjsoL8/PygVquLdZ/Swka2lHh4eCAwMBC3bt3Cpk2b0K1bN4vjWrRoga1bt5rEtmzZghYtWpTFNMmGotYQAJYuXYoBAwZg6dKl6NKlSxnOkqwpSv28vLxw7NgxHDlyRP739ttvo3bt2jhy5AiaN29eDjMno6K+Blu2bImkpCTcvn1bjp05cwYqlQohISFlNV2yoKg1zM7ONjtaq1arAdy79BOVn/DwcAQEBJj0KhkZGThw4IDVXkWj0aBJkyYm9zEYDNi6davj+xuHfpXsIbBx40axYcMGcf78ebF582YRGRkpmjdvLnQ6nRBCiPHjx4u+ffvK48+fPy/c3d3F2LFjxalTp8TcuXOFWq0WGzduLK8UHnrFreHPP/8sXFxcxNy5c8XVq1flf2lpaeWVwkOtuPUriFctKH/FrWFmZqYICQkRPXv2FCdOnBA7d+4UtWrVEm+++WZ5pfDQK24NFyxYIFxcXMS8efPEv//+K3bv3i2aNm0qmjVrVl4pPFQyMzNFXFyciIuLEwDEzJkzRVxcnLh48aIQQohPP/1U+Pj4iDVr1oijR4+Kbt26ifDwcHHnzh15HU899ZSYM2eOfPvXX38VWq1WLFy4UJw8eVIMGjRI+Pj4iOTkZIfmwkbWTsuWLRM1atQQGo1GBAQEiKFDh5o0NP369RNt2rQxuc/27dtFo0aNhEajETVq1BALFiwo20mTieLWsE2bNgKA2b9+/fqV/eSpRK/B/NjIlr+S1PDUqVOiQ4cOws3NTYSEhIjRo0eL7OzsMp45GZWkhrNnzxaPPvqocHNzE4GBgeKVV14RV65cKeOZP5y2b99u8++YwWAQEydOFFWrVhVarVa0b99exMfHm6wjNDRUTJ482SQ2Z84cUb16daHRaESzZs3E/v37HZ6LJASP4RMRERGR8vAcWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIlKUtm3bon79+uWy7f79+yMsLKxctq0kO3bsgCRJ2LFjhxyz9Njdvn0bb775JgICAiBJEkaOHAkAuHbtGnr27InKlStDkiTMmjWrzOZeWiw9BkU1ZcoUSJJU+pMickJsZImczMKFCyFJkvzP1dUVQUFBiI6OxuzZs5GZmVneU3R6SUlJmDJlCo4cOVLq6967dy+mTJmCtLS0Ul93WZs2bRoWLlyIwYMHY8mSJejbty8AYNSoUdi0aRMmTJiAJUuWoGPHjuU8U+vmzZuHhQsXlvc0iB5aLuU9ASJyjI8++gjh4eHIzc1FcnIyduzYgZEjR2LmzJlYu3YtGjZsWN5TdFpJSUmIiYlBWFgYGjVqVKrr3rt3L2JiYtC/f3/4+PiU6rod6fvvv4fBYDCJbdu2DY8//jgmT55sFu/WrRvefffdspxiicybNw9+fn7o37+/Sbx169a4c+cONBpN+UyM6CHBRpbISXXq1AlNmzaVb0+YMAHbtm3Ds88+i+eeew6nTp2Cm5ubxftmZWXBw8OjrKZKD4EKFSqYxa5fv45HH33UYrw0m/S8vDwYDIYybSpVKhVcXV3LbHtEDyueWkD0EHnqqacwceJEXLx4ET/99BOAe+cuVqxYEf/++y86d+4MT09PvPLKKwDuNbRjxoxBtWrVoNVqUbt2bXzxxRcQQpisV5IkDBs2DD///DNq164NV1dXNGnSBLt27XJYLidPnkS7du3g7u6O4OBgfPbZZ2ZjcnJyMHnyZNSsWRNarRbVqlXDuHHjkJOTYzb2p59+QpMmTeDm5gZfX1/07t0bly9fLva8duzYgaioKADAgAED5FM88n/8vGLFCnlbfn5+ePXVV5GYmFjouqdMmYKxY8cCAMLDw+V1X7hwAcC9hm3q1KmIiIiAVqtFWFgY3n//fYv5btiwAa1atYKHhwc8PT3RpUsXnDhxotj5XrlyBd27d4eHhwf8/f0xatQoi9vLf46s8fzRhIQErFu3zuQxkiQJQgjMnTtXjhulpaVh5MiR8vOxZs2amDFjhsmR3gsXLkCSJHzxxReYNWuW/FicPHkSAHD69Gn07NkTvr6+cHV1RdOmTbF27VqTuRrnsWfPHowePRpVqlSBh4cHnn/+edy4cUMeFxYWhhMnTmDnzp3yXNu2bWuSY/5zZP/66y+8+OKLqF69uvx8HDVqFO7cuVPsx52I7uERWaKHTN++ffH+++9j8+bNGDhwIIB7DVB0dDSefPJJfPHFF3B3d4cQAs899xy2b9+ON954A40aNcKmTZswduxYJCYm4j//+Y/Jenfu3Illy5Zh+PDh0Gq1mDdvHjp27IiDBw+W+pezbt26hY4dO+KFF15Ar169sHLlSrz33nto0KABOnXqBAAwGAx47rnnsHv3bgwaNAh169bFsWPH8J///AdnzpzB6tWr5fV98sknmDhxInr16oU333wTN27cwJw5c9C6dWvExcUV6+hg3bp18dFHH2HSpEkYNGgQWrVqBQB44oknANxrkgYMGICoqChMnz4d165dw1dffYU9e/YUuq0XXngBZ86cwdKlS/Gf//wHfn5+AIAqVaoAAN58800sWrQIPXv2xJgxY3DgwAFMnz4dp06dwm+//SavZ8mSJejXrx+io6MxY8YMZGdn45tvvsGTTz6JuLi4In+h7c6dO2jfvj0uXbqE4cOHIygoCEuWLMG2bdsKfYyWLFmCUaNGISQkBGPGjAEAPPbYY/K5sk8//TRee+01+T7Z2dlo06YNEhMT8dZbb6F69erYu3cvJkyYgKtXr5p9IWzBggW4e/cuBg0aBK1WC19fX5w4cQItW7ZEcHAwxo8fDw8PDyxfvhzdu3fHqlWr8Pzzz5us45133kGlSpUwefJkXLhwAbNmzcKwYcOwbNkyAMCsWbPwzjvvoGLFivjggw8AAFWrVrWa94oVK5CdnY3BgwejcuXKOHjwIObMmYMrV65gxYoVRXrMiagAQUROZcGCBQKA+Pvvv62O8fb2Fo899pgQQoh+/foJAGL8+PEmY1avXi0AiI8//tgk3rNnTyFJkjh37pwcAyAAiNjYWDl28eJF4erqKp5//vnSSEvWpk0bAUAsXrxYjuXk5IiAgADRo0cPObZkyRKhUqnEX3/9ZXL/b7/9VgAQe/bsEUIIceHCBaFWq8Unn3xiMu7YsWPCxcXFJN6vXz8RGhpa6Bz//vtvAUAsWLDAJK7T6YS/v7+oX7++uHPnjhz/448/BAAxadKkQtf9+eefCwAiISHBJH7kyBEBQLz55psm8XfffVcAENu2bRNCCJGZmSl8fHzEwIEDTcYlJycLb29vs7gts2bNEgDE8uXL5VhWVpaoWbOmACC2b98uxy09dqGhoaJLly5m6wUghg4dahKbOnWq8PDwEGfOnDGJjx8/XqjVanHp0iUhhBAJCQkCgPDy8hLXr183Gdu+fXvRoEEDcffuXTlmMBjEE088IWrVqiXHjK+hDh06CIPBIMdHjRol1Gq1SEtLk2P16tUTbdq0Mcth+/btZo9Bdna22bjp06cLSZLExYsX5djkyZMF/zwTFQ1PLSB6CFWsWNHs6gWDBw82ub1+/Xqo1WoMHz7cJD5mzBgIIbBhwwaTeIsWLdCkSRP5dvXq1dGtWzds2rQJer2+1Of/6quvyrc1Gg2aNWuG8+fPy7EVK1agbt26qFOnDlJSUuR/Tz31FABg+/btAID//e9/MBgM6NWrl8m4gIAA1KpVSx5XGmJjY3H9+nUMGTLE5PzJLl26oE6dOli3bl2J171+/XoAwOjRo03ixqOdxnVv2bIFaWlp6NOnj0m+arUazZs3L1a+69evR2BgIHr27CnH3N3dMWjQoBLnYc2KFSvQqlUrVKpUyWTeHTp0gF6vNzuNpUePHvKRagC4efMmtm3bhl69eiEzM1O+f2pqKqKjo3H27Fmz0zsGDRpkcmpDq1atoNfrcfHixRLlkP+c9KysLKSkpOCJJ56AEAJxcXElWifRw46nFhA9hG7fvg1/f3/5touLC0JCQkzGXLx4EUFBQfD09DSJ161bV16eX61atcy288gjjyA7Oxs3btxAQEBAaU0fISEhZtfZrFSpEo4ePSrfPnv2LE6dOmXSzOR3/fp1eZwQwuL8ActfUjK6ceOGSZNesWJFVKxY0ep442NWu3Zts2V16tTB7t27AQB6vd7kXEwA8PX1tfllpYsXL0KlUqFmzZom8YCAAPj4+MjbPnv2LADIDX1BXl5eVrdhaZs1a9Y0q4Wl/Ox19uxZHD16tNB6GoWHh5vcPnfuHIQQmDhxIiZOnGh1HcHBwfLt6tWrmyyvVKkSgHuntpTEpUuXMGnSJKxdu9ZsHenp6SVaJ9HDjo0s0UPmypUrSE9PN2l4tFotVCrlfECjVqstxkW+L6EZDAY0aNAAM2fOtDi2WrVq8jhJkrBhwwaL67XVmEZFRZk09JMnT8aUKVOKkoJNly9fNmvEtm/fLn+RyJbCLqRv/GLUkiVLLL65cHF5MP8sGAwGPP300xg3bpzF5Y888ojJ7YJX5DDm/e677yI6OtriOgq+CSjK86yo9Ho9nn76ady8eRPvvfce6tSpAw8PDyQmJqJ///5mlyYjoqJ5MPdYROQwS5YsAQCrf8yNQkND8eeffyIzM9PkqOzp06fl5fkZj/Tld+bMGbi7u1s9iuZIERER+Oeff9C+fXubzV1ERASEEAgPDzdrhgrz888/m3zjvEaNGgCsN5PGxyw+Pt7siGh8fLy8PCAgAFu2bDFZHhkZWei6DQYDzp49Kx81B+79SlZaWpq87oiICACAv78/OnToULRErQgNDcXx48chhDCZV3x8vF3rtSQiIgK3b98u8ZyNtalQoYLdeedX1F/gOnbsGM6cOYNFixaZfImtYJ2JqHiUcwiGiOy2bds2TJ06FeHh4fIltqzp3Lkz9Ho9vv76a5P4f/7zH0iSJF8dwGjfvn04fPiwfPvy5ctYs2YNnnnmGatHthypV69eSExMxPfff2+27M6dO8jKygJw70oAarUaMTExZkfahBBITU21uo2WLVuiQ4cO8j9js2S8Bm/BX99q2rQp/P398e2335pcomrDhg04deoUunTpAgBwdXU1WW+HDh3kj7Wtrbtz584AYPbtfeMRaeO6o6Oj4eXlhWnTpiE3N9csp4KnNNjSuXNnJCUlYeXKlXIsOzsb8+fPL/I6iqpXr17Yt28fNm3aZLYsLS0NeXl5Nu/v7++Ptm3b4rvvvsPVq1fNlhcn7/w8PDyK9CtrxtdA/ueYEAJfffVVibZLRPfwiCyRk9qwYQNOnz6NvLw8XLt2Ddu2bcOWLVsQGhqKtWvXFnqx9q5du6Jdu3b44IMPcOHCBURGRmLz5s1Ys2YNRo4cKR/ZM6pfvz6io6NNLr8FADExMQ7L0Za+ffti+fLlePvtt7F9+3a0bNkSer0ep0+fxvLly7Fp0yY0bdoUERER+PjjjzFhwgRcuHAB3bt3h6enJxISEvDbb79h0KBBxf6FqYiICPj4+ODbb7+Fp6cnPDw80Lx5c4SHh2PGjBkYMGAA2rRpgz59+siX3woLC8OoUaMKXbfxC3UffPABevfujQoVKqBr166IjIxEv379MH/+fKSlpaFNmzY4ePAgFi1ahO7du6Ndu3YA7p0D+80336Bv375o3LgxevfujSpVquDSpUtYt24dWrZsafbmxZqBAwfi66+/xmuvvYZDhw4hMDAQS5Ysgbu7e7Eer6IYO3Ys1q5di2effRb9+/dHkyZNkJWVhWPHjmHlypW4cOGCfDkya+bOnYsnn3wSDRo0wMCBA1GjRg1cu3YN+/btw5UrV/DPP/8Ue15NmjTBN998g48//hg1a9aEv7+/xfOP69Spg4iICLz77rtITEyEl5cXVq1aVeLzbYno/5XPxRKIyFGMlw4y/tNoNCIgIEA8/fTT4quvvhIZGRkm4/v16yc8PDwsriszM1OMGjVKBAUFiQoVKohatWqJzz//3OSSRELcv1zSTz/9JGrVqiW0Wq147LHHTC49VFratGkj6tWrZxa3dHknnU4nZsyYIerVqye0Wq2oVKmSaNKkiYiJiRHp6ekmY1etWiWefPJJ4eHhITw8PESdOnXE0KFDRXx8vM1tWLNmzRrx6KOPChcXF7NLcS1btkw89thjQqvVCl9fX/HKK6+IK1euFPkxmDp1qggODhYqlcrkUly5ubkiJiZGhIeHiwoVKohq1aqJCRMmmFxuymj79u0iOjpaeHt7C1dXVxERESH69+9vcgm1orh48aJ47rnnhLu7u/Dz8xMjRowQGzduLPXLbwlx7/k4YcIEUbNmTaHRaISfn5944oknxBdffCF0Op0Q4v7ltz7//HOL8/3333/Fa6+9JgICAkSFChVEcHCwePbZZ8XKlSvlMdYuYWfpklrJycmiS5cuwtPTUwCQL8VlaezJkydFhw4dRMWKFYWfn58YOHCg+Oeff8yeH7z8FlHRSUKU4Kx1IqJ8JEnC0KFDi3wkj4iIqDTwHFkiIiIiUiSeI0tEDmfpuqgF6XQ6m9dJVavV5XL1g4eRTqfDzZs3bY7x9vY2u8QVlb709HSTK2NYUprXaCZSGjayRORwlq6LWlCbNm2wc+dOq8tDQ0Nx4cKFUp4ZWbJ37175y2HWLFiwAP379y+bCT3ERowYgUWLFtkcwzME6WHGc2SJyOHu3r0r/2qVNZUqVbL5DW43Nze0bNmytKdGFty6dQuHDh2yOaZevXoIDAwsoxk9vE6ePImkpCSbY0rzurhESsNGloiIiIgUiV/2IiIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkf4P4WqdzKZlXC8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAHbCAYAAAA9NtfdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQIUlEQVR4nO3deViU9f7/8dcwOOCGKIqI4kYdMTeOuOGSUhaW55RlatYxNb/ZZpullbtZapvHFm21sk5l2eKpNMxMtBQ1FMsts9Q0CRRT8Liwzf37w9/MYWRuBIYBZs7zcV1exef+3HN/3vOG4cXNPTcWwzAMAQAAACgmoKoXAAAAAFRXhGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgH8T3nhhRdksVi0aNGiql4KAMAHEJYBH5CcnCyLxaIZM2ZUyfFbtmypli1buozNmDFDFotFycnJVbKm81ksFvXr16/EOZs3b9ZDDz2kadOmacyYMZWzMDdKs9bqoDw9LmttBw4ckMVi0ahRo8q8Pl/mrc+B6vZ1CfgDwjJQSRyhoOi/WrVqKTIyUpdffrmmTZumX3/91SvH7tevnywWi1ce21ccP35cQ4cO1fDhwzVz5syqXo5XzJ07VxaLRXPnznW7PTY2VhaLRXfccYfb7YMGDZLFYtHq1asrdF18/vmv6tBbwzD05Zdf6s4771THjh1Vr1491apVS506ddLs2bN19uzZKl0ffF9gVS8A+F8THR2tf/zjH5Kk3NxcHTlyRJs3b9asWbM0e/ZsTZw4UU888YTLN6Bu3bpp9+7datiwYZWsuaLDkzfs3r1btWrVMt2+bds23XXXXXrggQcqcVWVKyEhQdK530Q88sgjLtuOHTumH3/80fSso91u17p16xQUFKRevXpJksaNG6cbb7xRzZs39/ragfLKzc3V1VdfraCgIPXr10+JiYk6e/asVq5cqcmTJ2vZsmVKTk4u8fUBKAlhGahkF110kdvLKb777juNGDFCc+bMkdVq1axZs5zbatWqpZiYmEpcpavo6OgqO3ZpXej5SUhIcIZJfxUXF6e6devqu+++U0FBgQID//sSv3btWhmGoeuvv16ffPKJ/vjjDzVp0sS5/YcfftDx48fVt29fBQcHS5IaNmxYZT+gAaVltVr1+OOP66677lL9+vWd4/n5+Ro8eLA+//xzLViwQBMmTKjCVcKXcRkGUE307t1bSUlJCgoK0lNPPaVDhw45t5lds7x3716NHj1arVq1UlBQkBo0aKBOnTrp/vvvl2EYks5dG7l27Vrn/zv+Oa4RLXrN6O7du3XdddcpLCxMFotFBw4ckOT+muWiFi1apA4dOig4OFhNmzbVAw88oJMnT7rMKem665KuWz1y5IgefPBBtWnTRjVr1lSDBg3UvXt3PfPMMy7zzK4BzcrK0v333+98jsLDwzV06FDt2LGj2NxRo0bJYrFo//79ev755xUTE6OgoCC1aNFCM2fOlN1uN30O3Hn99dfVvn17BQcHKyoqShMnTizxV8InT57U9OnT1a5dO9WsWVOhoaFKTEzUd999V6rjBQYGqk+fPjp16pS+//57l23JycmqWbOmHn74YUnSmjVrim2X5PIDRUnXv5a2tgt9/hX1yy+/6LrrrlP9+vVVu3Zt9e/fXz/88EOpanfIy8vTvHnz1LlzZ9WuXVt169ZVnz599NlnnxWbW9H9/vHHH3XjjTeqSZMmstlsatGihe655x4dO3asTI9j5t///reuvPJKhYWFKTg4WC1bttSIESPcfi4XVZ6vvYp4bXEo7fNSmtcid2rUqKHJkye7BGXH+KOPPipJznUC5cGZZaAaadOmjYYOHap33nlHy5Yt0z333GM6Nz09Xd26ddOpU6c0cOBADRs2TKdOndLevXu1cOFCPfPMMwoMDNT06dP11ltv6bffftP06dOd+8fGxro83i+//KIePXqoQ4cOGjVqlI4dOyabzXbBNc+bN0+rV6/WsGHDNHDgQH399deaP3++Nm7cqHXr1qlGjRrlfj727NmjhIQE/fHHH+rdu7cGDRqkU6dOaefOnZo9e7YeeuihEvc/evSo4uPj9euvv6pfv3668cYbtX//fn300Udavny5Vq5cqd69exfbb8KECVq7dq3+9re/KTExUcuWLdOMGTOUl5enJ554olRrnzVrlqZNm6bGjRvrtttuU40aNfTBBx9o9+7dbuf/+eefuvTSS7Vz50716tVLd9xxh3JycvTvf/9bCQkJWrp0qQYNGnTB4yYkJGjFihVas2aN4uPjneNr1qxRjx491KVLF9WvX19r1qzRTTfd5LLdsX9F1lbaz78DBw6oR48eateunW699Vb9+uuvztp3796txo0bX3Bdubm5GjBggJKTkxUbG6sxY8YoPz9fy5cv17XXXqsXXnhB48aNK7ZfRfT7s88+09ChQxUQEKBrr71WUVFR2rVrl1588UWtXLlSmzZtKhbmyuLBBx/UvHnz1KBBAw0aNEjh4eE6dOiQvv76a8XFxal9+/blfuzzVeRrS3mel/K+FrnjeP0p+lsWoMwMAJVi//79hiQjMTGxxHmLFi0yJBkjRoxwjq1Zs8aQZEyfPt059vzzzxuSjPnz5xd7jGPHjrl83LdvX8Psy92xLknGtGnT3M5p0aKF0aJFC5ex6dOnG5IMm81m/PDDD85xu91u3HTTTYYk45lnnimxhvPXMHLkSJfxLl26GJKMV199tdg+hw4dcvlYktG3b1+XsdGjRxuSjEcffdRlfPny5YYk46KLLjIKCwud4yNHjjQkGa1atTLS09Od40ePHjVCQ0ONunXrGrm5ucXWcr69e/cagYGBRtOmTY3MzEzneHZ2ttGmTRu3a3U8Z6+99prLeGZmphEVFWU0atTIOHPmzAWPnZqaakgyrrjiCpf1WywWY+bMmYZhGMY111xjREdHO7cXFhYaoaGhRs2aNV3qc/R4zZo1HtVW2s+/uXPnumybMmWKIcmYM2fOBes2DMOYNGmSIcmYOnWqYbfbneM5OTlGly5dDJvNZhw+fNg5XlH9zsrKMkJCQoymTZsaBw4ccNn2/vvvG5KMcePGuYy7e57MfP7554Yko0OHDkZWVpbLtvz8fCMjI8P5sbuelfVrr6JeW8r6vJTmtais7rzzTkOSsWDBggp5PPxv4jIMoJqJjIyUdO7ygdKoWbNmsbEGDRqU+bgRERGaPHlymfe75ZZb1LFjR+fHFotFs2fPltVq1VtvvVXmx3PYvHmzUlNTdemll+q2224rtr1Zs2Yl7p+Xl6f3339fYWFhmjJlisu2q6++WldccYV++eUXrV+/vti+U6dOdbmet2HDhrr22mt18uRJ7dmz54Jrf++991RQUKDx48crPDzcOR4SElJsLdK5Xn/wwQe67LLL9H//938u28LDwzVhwgQdPXpUX3/99QWP/de//lWhoaFav3698vLyJJ37NbxhGM7LVPr27atff/3VeanPtm3bdOLECfXs2fOCZ/DKWltptWrVqtg1pY7b+51/SYk7drtdL730kqKjozVz5kyXN8jWrVtX06ZNU15enj755JNi+3ra77fffls5OTmaM2eOWrRo4bLtxhtvVOfOnbVkyZILPo6ZhQsXSpKee+45hYWFuWwLDAws1Vn38vD0taW8z0t5X4vO9+WXX+qVV15R27Ztq/RWkfB9/F4C8FF///vf9eijj+ruu+/W6tWrNWDAAPXt21etW7cu1+N16tSpXL/q7NOnT7GxFi1aKCoqSjt37lReXl65Hnfz5s2SpCuvvLLM+0rSTz/9pLNnzyohIcHtu+ATEhK0atUqbdu2rVgNcXFxxeY7wvmJEycueGzHdbbunht3Y99//70KCwuVm5vr9rrSvXv3Omv629/+VuKxAwIC1KdPH33++efavHmzevfurTVr1ig4OFjdu3eXdC4sS+cuvbjlllvcXq9cUbWVVmxsrAICXM/flOU537Nnj44fP67IyEi3twY8evSopHPP4fk87ffGjRslSZs2bXJ7+8ezZ88qKytLWVlZ5XrD5ObNmxUUFOTsm7dV1GtLeZ+X8r4WFfX9999r2LBhqlevnpYuXaqgoCCPHg//2wjLQDWTnp4uSWrUqFGJ81q2bKmNGzdqxowZWrFihT788ENJ5+4K8dhjj2nIkCFlOm55z06Z7de4cWMdOHBAJ0+eLHY2rDSys7MlSU2bNi3XunJyckpcn+NMomNeUSEhIcXGHNc8FhYWXvDYjrUXPfPq4G49f/75pyRp/fr1bs90O5w6deqCx5bOhd7PP/9cycnJ6t27t5KTk9WjRw9nYIiNjVW9evWcYdlxvfJll112wccua22l5elz7ngOd+7cqZ07d5rOc/ccVtSxFyxYUOK8U6dOlSssZ2dnq2nTpsV+mPCWinptKe/z4umZ8tTUVF155ZUKCAjQypUr1a5dO48eD+AyDKCacZzl69q16wXntm/fXh999JH+/PNPpaSkaNq0acrIyNCwYcNKDF3ulPcPC2RmZpqOWywW1a1bV5Kc3+gLCgqKzXUEsKJCQ0MlSYcPHy7XuhwByGx9GRkZLvMqUr169SSdu5PH+dytx7GGBx98UIZhmP4r+iaqkjjOEK9Zs0ZHjhzRrl27XO4UYrVanWec7Xa7vv32W9WpU6dUn3Nlra2yOJ7DwYMHl/gcvvnmm1479vbt20s89vmXIpRWaGioMjIyynx3Doeyfu1JFfPaUt7nxZM/cpKamqorrrhCdrtdK1euLNXnNHAhhGWgGvn555/14YcfKigoSNddd12p96tRo4Z69OihmTNn6vnnn5dhGPriiy+c261Wq6TSnSUrq2+//bbY2G+//aZDhw6pXbt2zl+nOt7x7i78pqWlFRvr1q2bJOmrr74q17piYmIUHBys77//XqdPny623fFDyfl3ZagInTp1kuT+uXE31rVrV1ksFqWkpFTI8Tt27KgGDRooJSVFK1eulKRit9Xr27evfvvtN33yySfKzs5W7969S3XHgLLWJnn388+hbdu2CgkJUWpqqvLz8712HHccl7dUVP/O161bN+Xm5pb79mdl/dorypPXFm8/L+dzBOXCwkIlJSU5jw94irAMVBPr169XYmKicnNz9cgjj1zw8oMtW7a4vYTAcXbP8YclpP++KafovZsryttvv60ff/zR+bFhGJo0aZIKCwtd7rfapk0b1a1bV5999pnz17OO9T7++OPFHrdr167q2rWr1q1bp9dee63Y9gudcbbZbBo+fLiysrI0Z84cl21JSUlauXKlLrroIudfq6tIN910k6xWq+bNm+dyBjYnJ8dtrRERERo6dKg2bNigp59+2nkf26I2bdrkNvS7ExAQoL59++rMmTN66qmnFBwcrB49erjMcVz/6ri+t7R/sKWstUne/fxzCAwM1J133qnffvtNDz30kNvAvGPHDrdnxD01evRo1a1bV5MnT3Z7Ccjp06ed1++Wx9133y1Juu+++1y+dqRzZ4svdEa/rF97FfXa4u3n5fw1X3HFFSooKNCXX37pcttEwFNcswxUsl9++cX5Jq68vDznn7vevn27rFarpkyZUqpft7/zzjt65ZVXdOmllyo6OlohISHatWuXVqxYoQYNGmj06NHOuZdddpk++ugjDR48WFdddZWCg4PVqVMn/f3vf/e4nsTERMXHx+vGG29Uo0aNtHr1aqWmpqpHjx4u94m22Wy65557NHv2bHXu3Nl5t4HPP//ceXeG87377rvq16+fxo4dq3feeUfx8fE6e/asdu7cqbS0tAv+sYcnn3xSa9eu1eOPP64NGzaoe/fuOnDggJYuXapatWrpzTff9Mp1oBdddJGmTZum6dOnq2PHjho6dKgCAwP18ccfq2PHjm7vsLBw4ULt2bNHEydOdNYaGhqqQ4cOKTU1VXv37tUff/xR6j/Zm5CQoE8//VQ7duxQv379ir3BqXPnzqpTp47zD1qUNiyXpzZvfv4VNXPmTG3dulXPP/+8li9frksvvVTh4eE6fPiwtm/frh9++EEpKSlur7f2RKNGjfT+++9ryJAh6tSpkwYMGKCYmBjl5ubqwIEDWrt2rXr27KmkpKRyPf7VV1+thx56SM8884wuvvhiXXfddc66Vq9erYceekj333+/6f5l/dqrqNcWbz8vDn/++aeuuOIKnThxQgMGDNCqVau0atUqlzmhoaElPkdAibx+czoAhmG43kPU8a9mzZpGkyZNjISEBGPq1KnGL7/84nZfd/dJ3bhxo3H77bcb7du3d94j9+KLLzbGjRtn/Pbbby775+fnGxMnTjSaN29uBAYGutxX1ewex0WVdJ/lNWvWGK+99prRrl07IygoyGjSpIlx3333GTk5OcUep7Cw0JgxY4YRFRVl2Gw24y9/+Yvx3HPPGfv27TNdQ0ZGhnHfffcZrVu3Nmw2m9GgQQOje/fuxrx581zmyeS+tUePHjXuvfdeo0WLFkaNGjWMhg0bGjfccIOxffv2YnMd993dv39/sW3u7l97Ia+99ppxySWXGDabzWjWrJnx0EMPGadPnzZd6+nTp42nnnrKiIuLM2rXrm3UrFnTaNWqlTFo0CDj7bffNvLz80t97O3btzs/z2bMmOF2TmJioiHJCAkJMQoKCoptL6nmstTmyeef2XNlpqCgwHjllVeMXr16GSEhIUZQUJDRvHlzY8CAAcZLL71k/Oc//3HOreh+//TTT8aYMWOMFi1aGDabzahfv77RoUMH49577zU2b97sUV2GYRgff/yxkZCQYNSrV88ICgoyWrZsaYwYMcLYsWPHBdddlq+9inptKevzUprXInfcvbae/+/81y+gLCyG4eb3fQAAAAC4ZhkAAAAwQ1gGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATPBHSbzAbrcrPT1ddevW9ehv3AMAAMA7DMPQyZMnFRkZWeIfqCIse0F6erqioqKqehkAAAC4gEOHDqlZs2am2wnLXlC3bl1J5578kJAQrx8vPz9fX331la688krVqFHD68dDxaJ/vo8e+j566PvooW+riv7l5OQoKirKmdvMEJa9wHHpRUhISKWF5Vq1aikkJIQXCB9E/3wfPfR99ND30UPfVpX9u9Als7zBDwAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADDh82F5wYIFatmypYKDg9W9e3dt3ry5xPlLly5VTEyMgoOD1aFDB61YscJ07h133CGLxaL58+dX8KoBAADgC3w6LH/wwQcaP368pk+frq1bt6pTp05KTEzUkSNH3M7fsGGDhg8frjFjxigtLU2DBg3SoEGDtGPHjmJzP/30U23cuFGRkZHeLgMAAADVlE+H5Xnz5um2227T6NGjdckll+jll19WrVq19MYbb7id/9xzz2nAgAGaMGGC2rZtq1mzZqlz58568cUXXeYdPnxY99xzj959913VqFGjMkoBAABANRRY1Qsor7y8PG3ZskWPPvqocywgIED9+/dXSkqK231SUlI0fvx4l7HExEQtW7bM+bHdbteIESM0YcIEtWvXrlRryc3NVW5urvPjnJwcSVJBQYEKCgqcawsICJDdbpfdbndZc0BAgAoLC2UYxgXHrVarLBaL83ElqbCwUJJkGIbLuGN+0TkOgYGBMgzDZdxischqtRZbo9m4N2sqae3+VlNJ/fPVmkoa98eaHAoLC2WxWPyiJn/s04VqcuxjsVj8piZ/7JNZTY75hYWFslqtflGTP/bJrCZ3/fN2TefPN+OzYTkrK0uFhYVq3Lixy3jjxo31008/ud0nIyPD7fyMjAznx08++aQCAwN17733lnotc+bM0cyZM4uNp6WlqXbt2pKkRo0aKTo6Wvv379fRo0edc5o1a6ZmzZrp559/VnZ2tnO8devWCg8P144dO3TmzBnneExMjEJDQ5WWluYSsqRzQX/r1q0ua+jSpYvy8vL0448/OsesVqu6du2q7Oxsl+eqZs2a6tSpk7KysrRv3z7neL169dS2bVulp6fr999/d457syZJ6tixo2w2m1JTU/26Jkf/zp49q127dvlFTZL/9amkmmJjYyWd+5p3hGVfr8kf+1RSTceOHZP03x76Q03+2KeSajp06JCkcz0MDw/3i5r8sU9mNTkuoU1LS1NUVFSl1JSWlqbSsBhFo7kPSU9PV9OmTbVhwwbFx8c7xydOnKi1a9dq06ZNxfax2WxavHixhg8f7hxbuHChZs6cqczMTG3ZskUDBw7U1q1bndcqt2zZUvfff7/uv/9+07W4O7McFRWlY8eOKSQkRJJ3fyIsKCjQypUrddVVVykgwPXKGn7Krf41ldQ/X62ppHF/rMkwDK1YsUKJiYkKDAz0i5r8sU8l1ZSbm6ukpCRnD/2hJn/sU0k15eXlaeXKlUpMTJTNZvOLmvyxT2Y1ueuft2s6fvy4wsLClJ2d7cxr7vjsmeWGDRvKarUqMzPTZTwzM1MRERFu94mIiChx/rfffqsjR46oefPmzu2FhYV68MEHNX/+fB04cMDt4wYFBSkoKKjYeGBgoPMbp4Oj0edzNK6040Uf1/EJY7FYih3P3XwHs/lmayzruCc1lXfcF2u6UP98saYLjftbTfn5+c7HL+3XfHWvSfK/Pkkl1+Q4dtHtvl6TP/bJbO2O9Th+hV/SfF+pyR/7VJb+VUVN7vjsG/xsNpvi4uK0evVq55jdbtfq1atdzjQXFR8f7zJfklatWuWcP2LECP3444/atm2b819kZKQmTJiglStXeq8YAAAAVEs+e2ZZksaPH6+RI0eqS5cu6tatm+bPn69Tp05p9OjRkqRbbrlFTZs21Zw5cyRJ9913n/r27atnn31WAwcO1JIlS5SamqpXX31VkhQWFqawsDCXY9SoUUMRERFq06ZN5RYHAACAKufTYXnYsGE6evSopk2bpoyMDMXGxiopKcn5Jr6DBw+6nO7v2bOn3nvvPU2ZMkWTJk3SxRdfrGXLlql9+/ZVVQIAAACqMZ8Oy5I0btw4jRs3zu225OTkYmNDhgzRkCFDSv34ZtcpAwAAwP/57DXLAAAAgLcRlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADAhM+H5QULFqhly5YKDg5W9+7dtXnz5hLnL126VDExMQoODlaHDh20YsUK57b8/Hw9/PDD6tChg2rXrq3IyEjdcsstSk9P93YZAAAAqIZ8Oix/8MEHGj9+vKZPn66tW7eqU6dOSkxM1JEjR9zO37Bhg4YPH64xY8YoLS1NgwYN0qBBg7Rjxw5J0unTp7V161ZNnTpVW7du1SeffKI9e/bommuuqcyyAAAAUE34dFieN2+ebrvtNo0ePVqXXHKJXn75ZdWqVUtvvPGG2/nPPfecBgwYoAkTJqht27aaNWuWOnfurBdffFGSVK9ePa1atUpDhw5VmzZt1KNHD7344ovasmWLDh48WJmlAQAAoBoIrOoFlFdeXp62bNmiRx991DkWEBCg/v37KyUlxe0+KSkpGj9+vMtYYmKili1bZnqc7OxsWSwWhYaGms7Jzc1Vbm6u8+OcnBxJUkFBgQoKCpxrCwgIkN1ul91ud1lzQECACgsLZRjGBcetVqssFovzcSWpsLBQkmQYhsu4Y37ROQ6BgYEyDMNl3GKxyGq1Fluj2bg3aypp7f5WU0n989WaShr3x5ocCgsLZbFY/KImf+zThWpy7GOxWPymJn/sk1lNjvmFhYWyWq1+UZM/9smsJnf983ZN588347NhOSsrS4WFhWrcuLHLeOPGjfXTTz+53ScjI8Pt/IyMDLfzz549q4cffljDhw9XSEiI6VrmzJmjmTNnFhtPS0tT7dq1JUmNGjVSdHS09u/fr6NHjzrnNGvWTM2aNdPPP/+s7Oxs53jr1q0VHh6uHTt26MyZM87xmJgYhYaGKi0tzSVkSZLdbtfWrVtd1tClSxfl5eXpxx9/dI5ZrVZ17dpV2dnZLs9VzZo11alTJ2VlZWnfvn3O8Xr16qlt27ZKT0/X77//7hz3Zk2S1LFjR9lsNqWmpvp1TY7+nT17Vrt27fKLmiT/61NJNcXGxko69zXvCMu+XpM/9qmkmo4dOybpvz30h5r8sU8l1XTo0CFJ53oYHh7uFzX5Y5/ManJcQpuWlqaoqKhKqSktLU2lYTGKRnMfkp6erqZNm2rDhg2Kj493jk+cOFFr167Vpk2biu1js9m0ePFiDR8+3Dm2cOFCzZw5U5mZmS5z8/PzNXjwYP3+++9KTk4uMSy7O7McFRWlY8eOOffz5k+EBQUFWrlypa666ioFBLheWcNPudW/ppL656s1lTTujzUZhqEVK1YoMTFRgYGBflGTP/appJpyc3OVlJTk7KE/1OSPfSqppry8PK1cuVKJiYmy2Wx+UZM/9smsJnf983ZNx48fV1hYmLKzs0vMeT57Zrlhw4ayWq3FQm5mZqYiIiLc7hMREVGq+fn5+Ro6dKh+++03ffPNNyU+gZIUFBSkoKCgYuOBgYHOb5wOjkafz9G40o4XfVzHJ4zFYil2PHfzHczmm62xrOOe1FTecV+s6UL988WaLjTubzXl5+c7H7+0X/PVvSbJ//oklVyT49hFt/t6Tf7YJ7O1O9bj+BV+SfN9pSZ/7FNZ+lcVNbnjs2/ws9lsiouL0+rVq51jdrtdq1evdjnTXFR8fLzLfElatWqVy3xHUN67d6++/vprhYWFeacAAAAAVHs+e2ZZksaPH6+RI0eqS5cu6tatm+bPn69Tp05p9OjRkqRbbrlFTZs21Zw5cyRJ9913n/r27atnn31WAwcO1JIlS5SamqpXX31V0rmgfMMNN2jr1q364osvVFhY6LyeuUGDBrLZbFVTKAAAAKqET4flYcOG6ejRo5o2bZoyMjIUGxurpKQk55v4Dh486HK6v2fPnnrvvfc0ZcoUTZo0SRdffLGWLVum9u3bS5IOHz6szz77TJKcb9hxWLNmjfr161cpdQEAAKB68OmwLEnjxo3TuHHj3G5LTk4uNjZkyBANGTLE7fyWLVu6XDAOAACA/20+e80yAAAA4G2EZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwEejpA2RkZGjRokXaunWrsrOzZbfbXbZbLBatXr3a08MAAAAAlc6jsPzjjz+qX79+OnPmjNq0aaPt27frkksu0YkTJ3T48GFFR0crKiqqotYKAAAAVCqPLsN45JFHVKdOHe3Zs0dff/21DMPQc889p0OHDumDDz7Q8ePHNXfu3IpaKwAAAFCpPArL69ev1+23367mzZsrIODcQzkuwxgyZIhuvvlmTZgwwfNVAgAAAFXAo7Bst9vVuHFjSVJoaKisVqv+/PNP5/YOHTpoy5Ytnq0QAAAAqCIeheVWrVpp//795x4oIECtWrXS119/7dy+YcMGhYaGerRAAAAAoKp4FJavvPJKLV261PnxnXfeqddff139+/fX5ZdfrsWLF+umm27yeJEAAABAVfDobhiTJ0/W8OHDlZ+frxo1auj+++/XqVOn9PHHH8tqtWrq1KmaNGlSRa0VAAAAqFQeheX69esrLi7O+bHFYtGUKVM0ZcoUjxcGAAAAVDX+gh8AAABgokxnlm+99VZZLBa9+uqrslqtuvXWWy+4j8Vi0aJFi8q9QAAAAKCqlCksf/PNNwoICJDdbpfVatU333wji8VS4j4X2g4AAABUV2UKywcOHCjxYwAAAMCfcM0yAAAAYMKjsLx161YtXLjQdPvChQu1bds2Tw4BAAAAVBmPwvLkyZNd/mLf+b755htuIwcAAACf5VFY3rJli/r06WO6vU+fPkpNTfXkEAAAAECV8Sgsnzx5UoGB5u8RDAgIUHZ2tieHAAAAAKqMR2H54osv1ldffWW6PSkpSa1bt/bkEAAAAECV8SgsjxkzRsuXL9f48eN14sQJ5/iJEyf0wAMPKCkpSWPGjPF0jQAAAECVKNN9ls937733atu2bZo/f76ef/55RUZGSpLS09Nlt9s1YsQIPfDAAxWyUAAAAKCyeRSWLRaL3nzzTd1yyy36+OOPtW/fPknStddeq8GDB6tfv34VsUYAAACgSngUlh0SEhKUkJBQEQ8FAAAAVBv8BT8AAADAhEdh2TAMvfLKK+rWrZsaNmwoq9Va7F9Jt5YDAAAAqjOPkuzEiRM1b948xcbG6h//+Ifq169fUesCAAAAqpxHYXnx4sUaPHiwPvzww4paDwAAAFBteHQZxpkzZ9S/f/+KWgsAAABQrXgUli+//HJ9//33FbUWAAAAoFrxKCwvXLhQGzdu1OzZs3Xs2LGKWhMAAABQLXgUltu0aaN9+/Zp6tSpCg8PV+3atRUSEuLyr169ehW1VgAAAKBSefQGv8GDB8tisVTUWgAAAIBqxaOw/NZbb1XQMgAAAIDqh7/gBwAAAJjwOCwfPHhQd9xxh9q0aaP69etr3bp1kqSsrCzde++9SktL83iRAAAAQFXw6DKMXbt2qU+fPrLb7erevbt++eUXFRQUSJIaNmyo7777TqdOndKiRYsqZLEAAABAZfLozPLEiRMVGhqqn3/+Wf/6179kGIbL9oEDB+rbb7/1aIEXsmDBArVs2VLBwcHq3r27Nm/eXOL8pUuXKiYmRsHBwerQoYNWrFjhst0wDE2bNk1NmjRRzZo11b9/f+3du9ebJQAAAKCa8igsr1u3TnfeeacaNWrk9q4YzZs31+HDhz05RIk++OADjR8/XtOnT9fWrVvVqVMnJSYm6siRI27nb9iwQcOHD9eYMWOUlpamQYMGadCgQdqxY4dzzlNPPaXnn39eL7/8sjZt2qTatWsrMTFRZ8+e9VodAAAAqJ48Cst2u121atUy3X706FEFBQV5cogSzZs3T7fddptGjx6tSy65RC+//LJq1aqlN954w+385557TgMGDNCECRPUtm1bzZo1S507d9aLL74o6dxZ5fnz52vKlCm69tpr1bFjR7399ttKT0/XsmXLvFYHAAAAqiePrlnu3Lmzli9frrvuuqvYtoKCAi1ZskQ9evTw5BCm8vLytGXLFj366KPOsYCAAPXv318pKSlu90lJSdH48eNdxhITE51BeP/+/crIyFD//v2d2+vVq6fu3bsrJSVFN954o9vHzc3NVW5urvPjnJwcSeeeA8c13AEBAQoICJDdbpfdbndZc0BAgAoLC10uYzEbt1qtslgszseVpMLCQknStm3bip3hd3x8/iUyAQEBMgzDZdxischisZRq3LF/aeeXZrzo83L+2h3PnTdrKjpusVicz6u3anJwzHHXv4qs6fxxq9XqHKvomtyNO3rozZqKjhddq7dqOl9aWpoCAgK8VlNZ+udpTe76VN7PmfKOOz5nvFnT+V/vjh56u38Wi0VWq9Xltbyia6qq/jn6VLR/3qqp6HjRHjq+V3r7+9P527z9/clqtRbLBd78/uRYtzdrOr9/hYWFslqtHmcjx7jjMd2Nnz/fjEdh+dFHH9Xf/vY33Xnnnc4gmZmZqa+//lqzZ8/W7t27nWdtK1pWVpYKCwvVuHFjl/HGjRvrp59+crtPRkaG2/kZGRnO7Y4xsznuzJkzRzNnziw2npaWptq1a0uSGjVqpOjoaO3fv19Hjx51zmnWrJmaNWumn3/+WdnZ2c7x1q1bKzw8XDt27NCZM2ec4zExMQoNDVVaWpqz+Y5PmCuuuELjxo1zWcPTTz+tkJAQ3X777c6xvLw8Pf3002rdurWGDx/uHM/KytIrr7yi2NhYDRw40Dm+b98+vf/++7r00kvVp08fSVJYWJhWr16t5cuXa+DAgYqNjXXO//bbb7Vu3ToNHz5crVu3do4vX75c27Zt0+23366GDRs6x99//33t27dPEyZMkM1mc46/8sorysnJ0YQJExQWFub8k+reqkk6F1iXL1+u++67T3Xq1PFqTQ4BAQGKi4vT9ddfr5EjR3qtpvP7dPToUb366qteqUkq3qewsDD98ccfXq2paJ+6du3q/JzxVk2OPr344ot6//339cUXXzi/AXmjpqJ9OnjwoN555x2v1eSuTzabTdOnT/daTef3yfF1782aHH3q1q2bJk2a5Oyht2oq2qeoqCh169bNazWd36fCwkLNnTvXqzUV7ZOjf96sqWif+vbtq7i4OH3xxRfaunVrpXx/mjt3rvN1xhs1nd+n//znP6pTp47Xv+c6hIWF6ZFHHvH699yBAweqc+fOiouLU1pamqKiojzORpLUsWNH2Ww2paamqqguXbooLy+v1Hdssxhmp0hK6Z133tF9992n7Oxs59kcwzAUEhKil156yeVJrEjp6elq2rSpNmzYoPj4eOf4xIkTtXbtWm3atKnYPjabTYsXL3ZZ08KFCzVz5kxlZmZqw4YN6tWrl9LT09WkSRPnnKFDh8piseiDDz5wuxZ3Z5ajoqJ07NgxhYSESPLumeWCggKtXLlSkZGRxc5MeuunXM4se16Tg91u1x9//OG2f5xZ9p0zy4cPH1aTJk04s1yB45V9Ztnx2s+ZZc/Gq/LM8h9//KEmTZpwZtmDmorOrewzy3/88YcSExNls9kq5czy8ePHFRYWpuzsbGdec8ejM8uSNGLECF1//fX66quv9Msvv8hutys6OlqJiYmqW7eupw9vqmHDhrJarcrMzHQZz8zMVEREhNt9IiIiSpzv+G9mZqZLWM7MzHT5Ke58QUFBbq/NDgwMVGCg61PsaPT5HI0r7XjRx3V8wsTGxqpGjRqm60T1lJ+frz/++IP++bD8/HwdPnxYf/3rX+mhj8rPz1d6ejo99GGO11J66Jsc/XNcgiF5lo08GT9fhfwFv9q1a+u6667ThAkT9PDDD+uGG27walCWzp0ljouL0+rVq51jdrtdq1evdjnTXFR8fLzLfElatWqVc36rVq0UERHhMicnJ0ebNm0yfUwAAAD4L4/OLB88eLBU85o3b+7JYUyNHz9eI0eOVJcuXdStWzfNnz9fp06d0ujRoyVJt9xyi5o2bao5c+ZIku677z717dtXzz77rAYOHKglS5YoNTVVr776qqRzvw64//779fjjj+viiy9Wq1atNHXqVEVGRmrQoEFeqQEAAADVl0dhuWXLlsWusXTn/GtFKsqwYcN09OhRTZs2TRkZGYqNjVVSUpLzDXoHDx50ueShZ8+eeu+99zRlyhRNmjRJF198sZYtW6b27ds750ycOFGnTp3S2LFjdeLECfXu3VtJSUkKDg72Sg0AAACovjwKy2+88UaxsFxYWKgDBw7o7bffVnh4uO6++26PFngh48aNK3YHCIfk5ORiY0OGDNGQIUNMH89iseixxx7TY489VlFLBAAAgI/yKCyPGjXKdNvDDz+s7t27u9zyAwAAAPAlFfIGP3dq166t0aNH65///Ke3DgEAAAB4ldfCsnTu7hQl/TEPAAAAoDrz+D7L7uTk5GjdunV6+umn9de//tUbhwAAAAC8zqOw7PgrR+4YhqHmzZtr4cKFnhwCAAAAqDIeheVp06YVC8sWi0X169dXdHS0rrzyylL/dRQAAACguvEoyc6YMaOClgEAAABUPx69wa+goEA5OTmm23NyclRQUODJIQAAAIAq41FYvvfee9WzZ0/T7b169dKDDz7oySEAAACAKuNRWE5KStINN9xguv2GG27QihUrPDkEAAAAUGU8Csvp6elq2rSp6fbIyEgdPnzYk0MAAAAAVcajsBwWFqY9e/aYbt+9e7dCQkI8OQQAAABQZTwKywMGDNArr7yitLS0Ytu2bt2qV199VVdddZUnhwAAAACqjEe3jps1a5aSkpLUrVs3XXPNNWrXrp0kaceOHfr8888VHh6uWbNmVchCAQAAgMrmUViOjIxUamqqHnnkEf373//Wp59+KkkKCQnRzTffrNmzZysyMrJCFgoAAABUNo//vF6TJk20ePFiGYaho0ePSpIaNWpk+mewAQAAAF9RYX+L2mKxKCgoSHXq1CEoAwAAwC949AY/SUpNTdWAAQNUq1YthYWFae3atZKkrKwsXXvttUpOTvb0EAAAAECV8Cgsb9iwQb1799bevXv1j3/8Q3a73bmtYcOGys7O1iuvvOLxIgEAAICq4FFYnjRpktq2batdu3Zp9uzZxbYnJCRo06ZNnhwCAAAAqDIeheXvv/9eo0ePVlBQkNvrlJs2baqMjAxPDgEAAABUGY/Cco0aNVwuvTjf4cOHVadOHU8OAQAAAFQZj8Jyjx499NFHH7nddurUKb355pvq27evJ4cAAAAAqoxHYXnmzJlKTU3VwIED9eWXX0qSfvjhB73++uuKi4vT0aNHNXXq1ApZKAAAAFDZPLrPcvfu3bVixQrdeeeduuWWWyRJDz74oCQpOjpaK1asUMeOHT1fJQAAAFAFyh2WDcPQyZMn1bNnT+3Zs0fbtm3T3r17ZbfbFR0drbi4OP44CQAAAHxaucNyXl6eGjRooNmzZ2vixImKjY1VbGxsBS4NAAAAqFrlvmY5KChIERERCgoKqsj1AAAAANWGR2/wGzVqlN5++23l5eVV1HoAAACAasOjN/h16NBBy5YtU7t27TRq1Ci1bNlSNWvWLDbv+uuv9+QwAAAAQJXwKCwPHz7c+f9mt4izWCwqLCz05DAAAABAlShzWJ40aZJuvPFGdezYUWvWrPHGmgAAAIBqocxhee7cuWrfvr06duyovn376tixYwoPD9eqVat02WWXeWONAAAAQJXw6A1+DoZhVMTDAAAAANVKhYRlAAAAwB8RlgEAAAAT5bobxoEDB7R161ZJUnZ2tiRp7969Cg0NdTu/c+fO5VsdAAAAUIXKFZanTp1a7FZxd911V7F5hmFw6zgAAAD4rDKH5TfffNMb6wAAAACqnTKH5ZEjR3pjHQAAAEC1wxv8AAAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAw4bNh+c8//9TNN9+skJAQhYaGasyYMfrPf/5T4j5nz57V3XffrbCwMNWpU0eDBw9WZmamc/sPP/yg4cOHKyoqSjVr1lTbtm313HPPebsUAAAAVFM+G5Zvvvlm7dy5U6tWrdIXX3yhdevWaezYsSXu88ADD+jzzz/X0qVLtXbtWqWnp+v66693bt+yZYvCw8P1r3/9Szt37tTkyZP16KOP6sUXX/R2OQAAAKiGAqt6AeWxe/duJSUl6fvvv1eXLl0kSS+88IKuvvpqPfPMM4qMjCy2T3Z2thYtWqT33ntPl112mSTpzTffVNu2bbVx40b16NFDt956q8s+rVu3VkpKij755BONGzfO+4UBAACgWvHJsJySkqLQ0FBnUJak/v37KyAgQJs2bdJ1111XbJ8tW7YoPz9f/fv3d47FxMSoefPmSklJUY8ePdweKzs7Ww0aNChxPbm5ucrNzXV+nJOTI0kqKChQQUGBJCkgIEABAQGy2+2y2+3OuY7xwsJCGYZxwXGr1SqLxeJ8XEkqLCyUJBmG4TLumF90jkNgYKAMw3AZt1gsslqtxdZoNu7Nmkpau7/VVFL/fLWmksb9sSaHwsJCWSwWv6jJH/t0oZoc+1gsFr+pyR/7ZFaTY35hYaGsVqtf1OSPfTKryV3/vF3T+fPN+GRYzsjIUHh4uMtYYGCgGjRooIyMDNN9bDabQkNDXcYbN25sus+GDRv0wQcfaPny5SWuZ86cOZo5c2ax8bS0NNWuXVuS1KhRI0VHR2v//v06evSoc06zZs3UrFkz/fzzz8rOznaOt27dWuHh4dqxY4fOnDnjHI+JiVFoaKjS0tJcQpYk2e12bd261WUNXbp0UV5enn788UfnmNVqVdeuXZWdna2ffvrJOV6zZk116tRJWVlZ2rdvn3O8Xr16atu2rdLT0/X77787x71ZkyR17NhRNptNqampfl2To39nz57Vrl27/KImyf/6VFJNsbGxks59zTvCsq/X5I99KqmmY8eOSfpvD/2hJn/sU0k1HTp0SNK5HoaHh/tFTf7YJ7Oajhw5Iulc/6KioiqlprS0NJWGxSgazavYI488oieffLLEObt379Ynn3yixYsXa8+ePS7bwsPDNXPmTN15553F9nvvvfc0evRolzPAktStWzclJCQUO+6OHTuUkJCg++67T1OmTClxTe7OLEdFRenYsWMKCQmR5N2fCAsKCrRy5UpdddVVCghwvQydn3Krf00l9c9Xaypp3B9rMgxDK1asUGJiogIDA/2iJn/sU0k15ebmKikpydlDf6jJH/tUUk15eXlauXKlEhMTZbPZ/KImf+yTWU3u+uftmo4fP66wsDBlZ2c785o71erM8oMPPqhRo0aVOKd169aKiIhw/gTiUFBQoD///FMRERFu94uIiFBeXp5OnDjhcnY5MzOz2D67du3S5ZdfrrFjx14wKEtSUFCQgoKCio0HBgY6v3E6OBp9PkfjSjte9HEdnzAWi6XY8dzNdzCbb7bGso57UlN5x32xpgv1zxdrutC4v9WUn5/vfPzSfs1X95ok/+uTVHJNjmMX3e7rNfljn8zW7liP41f4Jc33lZr8sU9l6V9V1OR2XqlmVZJGjRqpUaNGF5wXHx+vEydOaMuWLYqLi5MkffPNN7Lb7erevbvbfeLi4lSjRg2tXr1agwcPliTt2bNHBw8eVHx8vHPezp07ddlll2nkyJF64oknKqAqAAAA+CqfvHVc27ZtNWDAAN12223avHmz1q9fr3HjxunGG2903gnj8OHDiomJ0ebNmyWdu15mzJgxGj9+vNasWaMtW7Zo9OjRio+Pd765z3HpxZVXXqnx48crIyNDGRkZLtcGAQAA4H9HtTqzXBbvvvuuxo0bp8svv1wBAQEaPHiwnn/+eef2/Px87dmzR6dPn3aO/fOf/3TOzc3NVWJiohYuXOjc/tFHH+no0aP617/+pX/961/O8RYtWujAgQOVUhcAAACqD58Nyw0aNNB7771nur1ly5YuF39LUnBwsBYsWKAFCxa43WfGjBmaMWNGRS4TAAAAPswnL8MAAAAAKgNhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABM+GxY/vPPP3XzzTcrJCREoaGhGjNmjP7zn/+UuM/Zs2d19913KywsTHXq1NHgwYOVmZnpdu6xY8fUrFkzWSwWnThxwgsVAAAAoLrz2bB88803a+fOnVq1apW++OILrVu3TmPHji1xnwceeECff/65li5dqrVr1yo9PV3XX3+927ljxoxRx44dvbF0AAAA+AifDMu7d+9WUlKSXn/9dXXv3l29e/fWCy+8oCVLlig9Pd3tPtnZ2Vq0aJHmzZunyy67THFxcXrzzTe1YcMGbdy40WXuSy+9pBMnTuihhx6qjHIAAABQTQVW9QLKIyUlRaGhoerSpYtzrH///goICNCmTZt03XXXFdtny5Ytys/PV//+/Z1jMTExat68uVJSUtSjRw9J0q5du/TYY49p06ZN2rdvX6nWk5ubq9zcXOfHOTk5kqSCggIVFBRIkgICAhQQECC73S673e6c6xgvLCyUYRgXHLdarbJYLM7HlaTCwkJJkmEYLuOO+UXnOAQGBsowDJdxi8Uiq9VabI1m496sqaS1+1tNJfXPV2sqadwfa3IoLCyUxWLxi5r8sU8Xqsmxj8Vi8Zua/LFPZjU55hcWFspqtfpFTf7YJ7Oa3PXP2zWdP9+MT4bljIwMhYeHu4wFBgaqQYMGysjIMN3HZrMpNDTUZbxx48bOfXJzczV8+HA9/fTTat68eanD8pw5czRz5sxi42lpaapdu7YkqVGjRoqOjtb+/ft19OhR55xmzZqpWbNm+vnnn5Wdne0cb926tcLDw7Vjxw6dOXPGOR4TE6PQ0FClpaW5hCxJstvt2rp1q8saunTpory8PP3444/OMavVqq5duyo7O1s//fSTc7xmzZrq1KmTsrKyXGqvV6+e2rZtq/T0dP3+++/OcW/WJEkdO3aUzWZTamqqX9fk6N/Zs2e1a9cuv6hJ8r8+lVRTbGyspHNf846w7Os1+WOfSqrp2LFjkv7bQ3+oyR/7VFJNhw4dknSuh+Hh4X5Rkz/2yaymI0eOSDrXv6ioqEqpKS0tTaVhMYpG8yr2yCOP6Mknnyxxzu7du/XJJ59o8eLF2rNnj8u28PBwzZw5U3feeWex/d577z2NHj3a5QywJHXr1k0JCQl68sknNX78eKWnp2vJkiWSpOTkZCUkJOj48ePFQnZR7s4sR0VF6dixYwoJCZHk3Z8ICwoKtHLlSl111VUKCHC9soafcqt/TSX1z1drKmncH2syDEMrVqxQYmKiAgMD/aImf+xTSTXl5uYqKSnJ2UN/qMkf+1RSTXl5eVq5cqUSExNls9n8oiZ/7JNZTe765+2ajh8/rrCwMGVnZzvzmjvV6szygw8+qFGjRpU4p3Xr1oqIiHD+BOJQUFCgP//8UxEREW73i4iIUF5enk6cOOESfDMzM537fPPNN9q+fbs++ugjSf8949ewYUNNnjzZ7dljSQoKClJQUFCx8cDAQOc3TgdHo8/naFxpx4s+rmOdFoul2PHczXcwm2+2xrKOe1JTecd9saYL9c8Xa7rQuL/VlJ+f73z80n7NV/eaJP/rk1RyTY5jF93u6zX5Y5/M1u5Yj+NX+CXN95Wa/LFPZelfVdTkdl6pZlWSRo0aqVGjRhecFx8frxMnTmjLli2Ki4uTdC7o2u12de/e3e0+cXFxqlGjhlavXq3BgwdLkvbs2aODBw8qPj5ekvTxxx+7nNb//vvvdeutt+rbb79VdHS0p+UBAADAx1SrsFxabdu21YABA3Tbbbfp5ZdfVn5+vsaNG6cbb7xRkZGRkqTDhw/r8ssv19tvv61u3bqpXr16GjNmjMaPH68GDRooJCRE99xzj+Lj451v7js/EGdlZTmPV9JlGAAAAPBPPhmWJendd9/VuHHjdPnllysgIECDBw/W888/79yen5+vPXv26PTp086xf/7zn865ubm5SkxM1MKFC6ti+QAAAPABPhuWGzRooPfee890e8uWLV0u/pak4OBgLViwQAsWLCjVMfr161fsMQAAAPC/wyf/KAkAAABQGQjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgKregH+yDAMSVJOTk6lHC8/P1+nT59WTk6OatSoUSnHRMWhf76PHvo+euj76KFvq4r+OXKaI7eZISx7wcmTJyVJUVFRVbwSAAAAlOTkyZOqV6+e6XaLcaE4jTKz2+1KT09X3bp1ZbFYvH68nJwcRUVF6dChQwoJCfH68VCx6J/vo4e+jx76Pnro26qif4Zh6OTJk4qMjFRAgPmVyZxZ9oKAgAA1a9as0o8bEhLCC4QPo3++jx76Pnro++ihb6vs/pV0RtmBN/gBAAAAJgjLAAAAgAnCsh8ICgrS9OnTFRQUVNVLQTnQP99HD30fPfR99NC3Vef+8QY/AAAAwARnlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQln3EggUL1LJlSwUHB6t79+7avHlzifOXLl2qmJgYBQcHq0OHDlqxYkUlrRTulKV/r732mvr06aP69eurfv366t+//wX7De8r69egw5IlS2SxWDRo0CDvLhAXVNYenjhxQnfffbeaNGmioKAg/eUvf+G1tAqVtX/z589XmzZtVLNmTUVFRemBBx7Q2bNnK2m1ON+6dev097//XZGRkbJYLFq2bNkF90lOTlbnzp0VFBSkiy66SG+99ZbX1+mWgWpvyZIlhs1mM9544w1j586dxm233WaEhoYamZmZbuevX7/esFqtxlNPPWXs2rXLmDJlilGjRg1j+/btlbxyGEbZ+3fTTTcZCxYsMNLS0ozdu3cbo0aNMurVq2f8/vvvlbxyOJS1hw779+83mjZtavTp08e49tprK2excKusPczNzTW6dOliXH311cZ3331n7N+/30hOTja2bdtWySuHYZS9f++++64RFBRkvPvuu8b+/fuNlStXGk2aNDEeeOCBSl45HFasWGFMnjzZ+OSTTwxJxqefflri/H379hm1atUyxo8fb+zatct44YUXDKvVaiQlJVXOgosgLPuAbt26GXfffbfz48LCQiMyMtKYM2eO2/lDhw41Bg4c6DLWvXt34/bbb/fqOuFeWft3voKCAqNu3brG4sWLvbVEXEB5elhQUGD07NnTeP31142RI0cSlqtYWXv40ksvGa1btzby8vIqa4koQVn7d/fddxuXXXaZy9j48eONXr16eXWdKJ3ShOWJEyca7dq1cxkbNmyYkZiY6MWVucdlGNVcXl6etmzZov79+zvHAgIC1L9/f6WkpLjdJyUlxWW+JCUmJprOh/eUp3/nO336tPLz89WgQQNvLRMlKG8PH3vsMYWHh2vMmDGVsUyUoDw9/OyzzxQfH6+7775bjRs3Vvv27TV79mwVFhZW1rLx/5Wnfz179tSWLVucl2rs27dPK1as0NVXX10pa4bnqlOWCaz0I6JMsrKyVFhYqMaNG7uMN27cWD/99JPbfTIyMtzOz8jI8No64V55+ne+hx9+WJGRkcVeNFA5ytPD7777TosWLdK2bdsqYYW4kPL0cN++ffrmm2908803a8WKFfrll1901113KT8/X9OnT6+MZeP/K0//brrpJmVlZal3794yDEMFBQW64447NGnSpMpYMiqAWZbJycnRmTNnVLNmzUpbC2eWgWps7ty5WrJkiT799FMFBwdX9XJQCidPntSIESP02muvqWHDhlW9HJST3W5XeHi4Xn31VcXFxWnYsGGaPHmyXn755apeGkohOTlZs2fP1sKFC7V161Z98sknWr58uWbNmlXVS4MP4sxyNdewYUNZrVZlZma6jGdmZioiIsLtPhEREWWaD+8pT/8cnnnmGc2dO1dff/21Onbs6M1logRl7eGvv/6qAwcO6O9//7tzzG63S5ICAwO1Z88eRUdHe3fRcFGer8MmTZqoRo0aslqtzrG2bdsqIyNDeXl5stlsXl0z/qs8/Zs6dapGjBih//u//5MkdejQQadOndLYsWM1efJkBQRwrrC6M8syISEhlXpWWeLMcrVns9kUFxen1atXO8fsdrtWr16t+Ph4t/vEx8e7zJekVatWmc6H95Snf5L01FNPadasWUpKSlKXLl0qY6kwUdYexsTEaPv27dq2bZvz3zXXXKOEhARt27ZNUVFRlbl8qHxfh7169dIvv/zi/EFHkn7++Wc1adKEoFzJytO/06dPFwvEjh98DMPw3mJRYapVlqn0txSizJYsWWIEBQUZb731lrFr1y5j7NixRmhoqJGRkWEYhmGMGDHCeOSRR5zz169fbwQGBhrPPPOMsXv3bmP69OncOq4KlbV/c+fONWw2m/HRRx8Zf/zxh/PfyZMnq6qE/3ll7eH5uBtG1StrDw8ePGjUrVvXGDdunLFnzx7jiy++MMLDw43HH3+8qkr4n1bW/k2fPt2oW7eu8f777xv79u0zvvrqKyM6OtoYOnRoVZXwP+/kyZNGWlqakZaWZkgy5s2bZ6SlpRm//fabYRiG8cgjjxgjRoxwznfcOm7ChAnG7t27jQULFnDrOJTshRdeMJo3b27YbDajW7duxsaNG53b+vbta4wcOdJl/ocffmj85S9/MWw2m9GuXTtj+fLllbxiFFWW/rVo0cKQVOzf9OnTK3/hcCrr12BRhOXqoaw93LBhg9G9e3cjKCjIaN26tfHEE08YBQUFlbxqOJSlf/n5+caMGTOM6OhoIzg42IiKijLuuusu4/jx45W/cBiGYRhr1qxx+73N0beRI0caffv2LbZPbGysYbPZjNatWxtvvvlmpa/bMAzDYhj8PgIAAABwh2uWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQCSpOTkZFksFiUnJ19wbr9+/dSvX79SPW6/fv3Uvn17zxYHAFWEsAwAfuLDDz+UxWLRp59+Wmxbp06dZLFYtGbNmmLbmjdvrp49e3p07PT0dM2YMUPbtm3z6HEAoLohLAOAn+jdu7ck6bvvvnMZz8nJ0Y4dOxQYGKj169e7bDt06JAOHTqk3r1769JLL9WZM2d06aWXlvnY6enpmjlzJmEZgN8JrOoFAAAqRmRkpFq1alUsLKekpMgwDA0ZMqTYNsfHvXv3VkBAgIKDgyttvQDgCzizDAB+pHfv3kpLS9OZM2ecY+vXr1e7du101VVXaePGjbLb7S7bLBaLevXqZXrN8quvvqro6GjVrFlT3bp107fffuuyPTk5WV27dpUkjR49WhaLRRaLRW+99ZbLvF27dikhIUG1atVS06ZN9dRTT1Vs8QDgBYRlAPAjvXv3Vn5+vjZt2uQcW79+vXr27KmePXsqOztbO3bscNkWExOjsLAwt4+3aNEi3X777YqIiNBTTz2lXr166ZprrtGhQ4ecc9q2bavHHntMkjR27Fi98847euedd1wu5zh+/LgGDBigTp066dlnn1VMTIwefvhhffnllxX9FABAheIyDADwI0WvW+7Xr58KCgq0adMmjRw5UtHR0WrcuLG+++47dezYUSdPntT27dt16623un2s/Px8TZo0SbGxsVqzZo1sNpsk6ZJLLtHYsWMVFRUlSWrcuLGuuuoqTZs2TfHx8frHP/5R7LHS09P19ttva8SIEZKkMWPGqEWLFlq0aJGuuuoqbzwVAFAhOLMMAH6kbdu2CgsLc16L/MMPP+jUqVPOu1307NnT+Sa/lJQUFRYWOgP2+VJTU3XkyBHdcccdzqAsSaNGjVK9evXKtK46deq4hGibzaZu3bpp3759ZXocAKhshGUA8CMWi0U9e/Z0Xpu8fv16hYeH66KLLpLkGpYd/zULy7/99psk6eKLL3YZr1Gjhlq3bl2mdTVr1kwWi8VlrH79+jp+/HiZHgcAKhthGQD8TO/evZWdna3t27c7r1d26Nmzp3777TcdPnxY3333nSIjI8scfMvDarW6HTcMw+vHBgBPEJYBwM8UvW55/fr16tWrl3NbXFycgoKClJycrE2bNrlsO1+LFi0kSXv37nUZz8/P1/79+13Gzj9rDAD+grAMAH6mS5cuCg4O1rvvvqvDhw+7nFkOCgpS586dtWDBAp06dcr0EgzH4zRq1Egvv/yy8vLynONvvfWWTpw44TK3du3aklRsHAB8HXfDAAA/Y7PZ1LVrV3377bcKCgpSXFycy/aePXvq2WeflWR+vbJ07trkxx9/XLfffrsuu+wyDRs2TPv379ebb75Z7NKN6OhohYaG6uWXX1bdunVVu3Ztde/eXa1atar4AgGgEnFmGQD8kCMEOy67KMpx6UXdunXVqVOnEh9n7NixWrhwodLT0zVhwgR9++23+uyzz5y3jXOoUaOGFi9eLKvVqjvuuEPDhw/X2rVrK7AiAKgaFoN3VwAAAABucWYZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADAxP8DYCN3jQPLY8oAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHcCAYAAAAqb0k3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZrklEQVR4nO3daXgUVfr38V91hw4hJgQIgQTCFtlklV3ZEY2IiIriLjLjCqiIwiDKNijojMOf0QdwY0BnFFRQRxFBZRFlUQIJiLITQEGWBEhCgIR01/OC6TZNukOSzlbh+7mucJG7Tte5T52q7jvV1dWGaZqmAAAAAIuxlXUCAAAAQFFQyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCyOO1116TYRiaM2dOWacCAIBfFLKoMFatWiXDMDRp0qQy6b9BgwZq0KCBV2zSpEkyDEOrVq0qk5wuZBiGevXqlW+bH3/8Uc8884wmTJigP//5z6WTmA8FyfVSYrXtsW/fPhmGoQceeKCsU7GMktxmDzzwgAzD0L59+4p93UBZopBFueJ+Is/9U6VKFcXExOiaa67RhAkTtGfPnhLpu1evXjIMo0TWbRUnTpzQ4MGDddddd2ny5MllnQ5KmfsPr9w/oaGhat26tSZNmqTMzMyyThEW4esP+9J27tw5LVq0SEOGDFHz5s112WWXKSwsTJ07d9bs2bPldDrLND8Uj6CyTgDwJS4uTvfee68kKSsrS0ePHtWPP/6oKVOmaOrUqRozZoxefPFFr8KzU6dO2rZtmyIjI8sk5+XLl5dJv4Wxbds2ValSxe/ypKQkDRs2TE899VQpZoXyZtCgQWrZsqUk6ffff9dnn32myZMn6/PPP9e6devkcDguuo46depo27Ztqlq1akmnC/i0Z88e3Xbbbbrssst0zTXX6KabblJaWpo+//xzDRs2TEuWLNFnn312yZ/AsDoKWZRLl19+uc9LBL7//nvdd999mjZtmux2u6ZMmeJZVqVKFTVr1qwUs/QWFxdXZn0X1MW2T+/evdW7d+9Sygbl1W233aY777zT8/srr7yiTp06adOmTXr//fcL9NZ3pUqVyvR4BMLCwjRz5kwNGTJEoaGhnvg//vEP9erVS4sXL9bChQt1++23l2GWCBSXFsBSunXrpqVLlyo4OFh/+9vf9Ouvv3qW+btGdteuXRo6dKgaNmyo4OBgVa9eXW3atNHIkSNlmqak89cffvvtt57/u3/cL9i5r13btm2bbrnlFtWoUcPrmrOLvZU2Z84ctWrVSpUrV1adOnX01FNPKSMjw6tNftf55nf93NGjR/X000+radOmCgkJUfXq1dW5c2e98sorXu38XWeZkpKikSNHerZRVFSUBg8erK1bt+Zp677WLjk5Wa+++qqaNWum4OBg1a9fX5MnT5bL5fK7DXx5++231bJlS1WuXFmxsbEaM2aMzp4967d9RkaGJk6cqBYtWigkJEQRERGKj4/X999/X+A+c1+7PG/ePLVr105VqlTx2jaF7WfLli264YYbFBYWpqpVq+qGG27Q1q1bfV6bmN+10/PmzZNhGJo3b95Fx7Fz506NGTNG7dq1U40aNVS5cmU1adJEY8eO1alTp/K0d18+c/bsWT3//POKi4tTpUqVLnpdeVhYmGe/27BhQ548P//8c3Xt2lVhYWGeYyC//TUjI0OTJ09W69atVaVKFVWtWlVXXnmlxo8fr3Pnznm1TU5O1oMPPqh69eopODhY0dHReuCBB7R///6Lbp8L+yzofLq307lz5zRp0iQ1aNBAwcHBatKkiWbNmlWofiVp9erVGjBggCIjIxUcHKzGjRvr+eef1+nTpwu9rguZpqm5c+eqe/fuioiIUJUqVdS4cWM98sgjOnDgQL6PzW9f8/dctGnTJt12222e+ahZs6Y6duyoF198UdIf875//37t37/f6/n0wnUVdLvkzmXt2rW67rrrFBERcdEzqXXq1NGwYcO8ilhJCg0N1ahRoyTJ87wP6+KMLCynadOmGjx4sP7973/r008/1eOPP+637aFDh9SpUydlZmaqf//+uuOOO5SZmaldu3Zp1qxZeuWVVxQUFKSJEydq3rx52r9/vyZOnOh5fNu2bb3Wt3v3bnXp0kWtWrXSAw88oNTU1AK9zTp9+nQtX75cd9xxh/r3769vvvlGM2bM0Pr167V69WpVqlSpyNtjx44d6t27t37//Xd169ZNN998szIzM/Xzzz9r6tSpeuaZZ/J9/LFjx3TVVVdpz5496tWrl+68804lJydr4cKF+uKLL7Rs2TJ169Ytz+NGjx6tb7/9VjfeeKPi4+P16aefatKkScrOzva8qF3MlClTNGHCBNWqVUsPPfSQKlWqpA8++EDbtm3z2f748ePq0aOHfv75Z3Xt2lWPPvqo0tPT9d///le9e/fWRx99pJtvvrlAfUvS3//+d61cuVIDBw7UddddJ7vdXqR+Nm/erO7duyszM1O33nqrGjdurISEBHXr1k1t2rQpcD6F9fHHH2vOnDnq3bu3evXqJZfLpfXr1+vll1/Wt99+63ffGjRokDZv3qzrr79eERERatiwYYH7vLB4+Oijj/TVV1/pxhtv1LBhw5Senp7v448ePaqePXtq+/btatu2rR577DG5XC5t375dL7/8sp5++mlFRERIkn744QfFx8crMzNTN954oxo3bqx9+/bpvffe05dffql169apUaNGF825qPvNXXfdpR9//FH9+vWT3W7Xhx9+qOHDh6tSpUp66KGHCrS9Zs+ereHDhysiIkIDBgxQVFSUEhIS9OKLL2rlypVauXJlgZ5DfHG5XLrjjju0cOFC1alTR3fddZfCw8O1b98+ffjhh+rXr5/q1atXpHX7kpSUpKuvvlp2u10DBw5U/fr1dfLkSf3yyy9688039dxzzykiIkITJ07UjBkzJEkjR470PD73H4pF2S5r167V1KlT1bt3bz388MMXLdTz4z4ugoIogyzPBMqR5ORkU5IZHx+fb7s5c+aYksz77rvPE1u5cqUpyZw4caIn9uqrr5qSzBkzZuRZR2pqqtfvPXv2NP0dEu68JJkTJkzw2aZ+/fpm/fr1vWITJ040JZkOh8PcvHmzJ+5yucy7777blGS+8sor+Y7hwhyGDBniFe/QoYMpyXzzzTfzPObXX3/1+l2S2bNnT6/Y0KFDTUnms88+6xX/4osvTEnm5ZdfbjqdTk98yJAhpiSzYcOG5qFDhzzxY8eOmREREWZYWJiZlZWVJ5cL7dq1ywwKCjLr1KljHjlyxBNPS0szmzZt6jNX9zZ76623vOJHjhwxY2NjzZo1a5pnzpy5aN/ueQkNDTW3bNmSZ3lh++nWrZspyXzvvfe82o8fP96z3yQnJ+fpf+XKlXn6njt3rinJnDt3rlfc1/b47bfffG7ryZMnm5LM//znP15x9z7etm3bPPt/7rzmz5/vFc/IyDCvuOIKU5L5zjvveOVps9nMr7/+Os+6/O2vgwYNMiWZ48aNy/OYw4cPm+fOnTNN0zSzs7PNBg0amGFhYeamTZu82n333Xem3W43b7zxxjzr8KWw8+neTp07dzbT0tI88e3bt5tBQUFm06ZNC9Tvzz//bAYFBZlt2rQxU1JSvJZNmzYtz/Hvb5v589prr5mSzGuuucY8ffq017LTp097zbH7uM29H/rb10zT93PRqFGjTEnmp59+mqf9hePz9XzoVtjt4s5Fkvmvf/3L5zoLq1+/fqYk84svviiW9aHscGkBLCkmJkbS+bfECyIkJCRPrHr16oXut3bt2nruuecK/bj7779frVu39vxuGIamTp0qu91eoLeQ/fnxxx+VkJCgHj16+DxDVLdu3Xwfn52drfnz56tGjRp6/vnnvZbdcMMNuvbaa7V7926tWbMmz2PHjx+v6Ohoz++RkZEaOHCgMjIytGPHjovm/v777ysnJ0ejRo1SVFSUJx4eHp4nF+n8XH/wwQfq06ePHnzwQa9lUVFRGj16tI4dO6Zvvvnmon27Pfzww2rVqlVA/ezfv1/ff/+92rRpo7vvvtur/V/+8hdVq1atwPkUVp06dXyezRsxYoQk+d0WkydPznf/X7hwoSZNmqRJkybpscceU9OmTfXLL7+oQ4cOXtfOStLAgQPVt2/fAuV7+PBhffzxx4qLi/N5OUOtWrU8Z8gWL16sffv2afTo0bryyiu92nXr1k0DBw7UkiVLLnoGOJD9Ztq0aQoPD/f83rRpU3Xt2lU7duzIc1mQL2+88YZycnL02muvqUaNGl7LxowZo5o1a2r+/PkXXY8/s2bNkt1u1+zZs/M8x7kvMSoJvp5PLxxffoq6Xdq1a6ehQ4cWPuELvPnmm/ryyy/Vp08f3XDDDQGvD2WLc+qo0AYMGKBnn31Ww4cP1/Lly3X99derZ8+eBXo70pc2bdoU6W3A7t2754nVr19fsbGx+vnnn5WdnV2k9f7444+SpOuuu67Qj5Wk7du36+zZs+rdu7fPuxn07t1bX3/9tZKSkvKMoX379nnauwvnkydPXrTvzZs3S/K9bXzFNmzYIKfTqaysLJ9F0K5duzxjuvHGGy/av3T+TheB9uMeR9euXfO0DQ0NVdu2bbVy5coC5VNY5v+uj5w3b562bt2qtLQ0r2uUDx065PNxvsad26JFi7Ro0SJJ5z9EGRcXp4cffljPPPNMnv30YuvKLSEhQaZpqnfv3he9nGb9+vWSzl8642seDh8+LJfLpZ07d6pDhw5+1xPIfnOxfTwsLKxAY1i2bJnPu5pUqlRJ27dvz3cd/pw6dUrbtm3T5ZdfrsaNGxdpHYU1ePBgzZgxQ7fccovuuOMOXXvtterRo4fq1KlTqPUUdbt07NixaInnsnjxYo0YMUL169fXf/7zn4DXh7JHIQtLcr9A16xZM992DRo00Pr16zVp0iQtWbJEH374oaTzn97/61//WuhPq9aqVatI+fp7XK1atbRv3z5lZGQU6oyGW1pamiQV+oXEzX02y19+7jOuvs565T5T5eY+m1aQ+zO6c899NtbNVz7Hjx+XJK1Zs8bnGWK3wtzrtDj6cW8bX+Pw10dxeeKJJ/T//t//U2xsrG666SZFR0crODhY0vmzrllZWUXKaf78+XnOvPpTmPEVZn91z8N7772Xb7uLzXcg+02g+7i774JeM14YgR77RdG5c2etWrVKU6dO1fvvv6+5c+dKOl9gvvzyywW+40lRt0ugx9KSJUt02223qVatWlqxYoXXO0qwLgpZWJL7094F+Qu9ZcuWWrhwoc6dO6eNGzfqyy+/1Kuvvqo77rhDMTExPs+k+VPU+w0eOXLEb9wwDM+ZHZvt/NU+OTk5edq6X7hyc38o5uDBg0XKy/1C7S+/w4cPe7UrTu77ix49elT169f3WuYrH3cOTz/9dJ67MRSVr/ksbD/u9kePHvW53NdYCjvPvhw9elQzZ85U69attW7dOq8z6ocPH873Cy2K876ZhVlXYfZX93b9/PPPC3yGPb/1FOd+U9i+09PTL3r2trDcx09Rj32paPth9+7d9eWXX+rMmTP64Ycf9Pnnn2vWrFnq37+/tm7dWqB3u4q6XQLZb7/44gsNGjRIkZGRWrlyZZHflUP5wzWysJydO3fqww8/VHBwsG655ZYCP65SpUrq0qWLJk+erFdffVWmaWrx4sWe5e5PrJfEt7189913eWL79+/Xr7/+qhYtWnjernVfT+nrxSkxMTFPzP227ldffVWkvJo1a6bKlStrw4YNPm8F5P6D4cK7NxQH96f5fW0bX7GOHTvKMAytW7eu2HMJpB/3ONauXZtn2enTpz2XHuRW2Hn2Ze/evTJNU3379s1zWYiv7VcedOjQQTabTStXrsxzm60Lde7cWZICnu/S2m98cY/B/VZ6cbrssst0xRVXKDk52XN5RGEFsh+GhISoV69e+sc//qFx48bpzJkz+vrrrz3L7Xa73+fSktwuvriL2OrVq2vlypW6/PLLS6VflA4KWVjKmjVrFB8fr6ysLI0dO/aib6tt3LjR59vi7rNklStX9sTcH4zIfW/a4vLuu+9qy5Ytnt9N09S4cePkdDq97rPZtGlThYWF6bPPPvO8/ebO94UXXsiz3o4dO6pjx45avXq13nrrrTzLL3a2xuFw6K677lJKSoqmTZvmtWzp0qVatmyZLr/88kKdtS6ou+++W3a7XdOnT/c6m5menu5zrLVr19bgwYO1du1a/f3vf/fcAzi3H374IeB7cxa2n/r166tr165KSkrSBx984NXu73//u9c8urnfSXj33Xe9rmldt27dRd9Kd3OfxV67dq3XOn777Tc9++yzBVpHaatVq5YGDRqkPXv2+DxjfPToUc/ZwYEDB6pevXqaPn26Vq9enaftuXPnCnTv4NLab3wZNmyYgoKC9Pjjj/u8VdTJkycL/IeLL8OHD5fT6dSwYcN05swZr2Vnz571ue/l1r59exmGoQULFnjdu3nXrl365z//maf9unXrfN7j2d/zaUpKis/2Jb1dcvvyyy81aNAgVatWTStXriy164lReri0AOXS7t27PR/MyM7O9nxF7U8//SS73a7nn3/e636v/vz73//WG2+8oR49eiguLk7h4eH65ZdftGTJElWvXt3rE7B9+vTRwoULNWjQIPXr10+VK1dWmzZtNGDAgIDHEx8fr6uuukp33nmnatasqeXLlyshIUFdunTxug+uw+HQ448/rqlTp6pdu3aeuwB8/vnn6tmzp/bs2ZNn3e+995569eqlhx9+WP/+97911VVX6ezZs/r555+VmJio1NTUfHNz33P0hRde0Nq1a9W5c2ft27dPH330kapUqaK5c+d63oIsTpdffrkmTJigiRMnqnXr1ho8eLCCgoK0aNEitW7d2uedD2bNmqUdO3ZozJgxnrFGRETo119/VUJCgnbt2qXff/8936/hLYjC9vPaa6+pR48euueee7Ro0SJdfvnl2rRpk9avX68ePXpo9erVXtuwS5cu6tq1q1asWKGrrrpKPXr00P79+/Xf//5XAwYM0CeffHLRHKOjozVo0CAtWrRIHTp00DXXXKMjR45o8eLFuuaaa3zuK+XBrFmztHXrVr344otasmSJ+vTpI9M0tXPnTn311Vc6cuSIIiIiFBwcrIULF6pfv37q2bOn+vTpo1atWnlutv/dd9+pRo0aBfqwVGntNxdq2bKlZs2a5bnzww033KC4uDhlZGRo7969+vbbb/XAAw/o9ddfL9L6H3vsMX377bf68MMP1bhxY910000KDw/XgQMHtGzZMs2ZMyff+yrHxMTorrvu0vvvv6/27dvr+uuv19GjR/XJJ5/o+uuv93zgz+3ll1/WypUr1aNHDzVs2FCVK1fWpk2btHz5cjVq1MjrHbI+ffooISFB/fr1U/fu3eVwONSjRw/16NGjxLeL2/bt23XLLbcoKytLvXr18nknhAYNGhTom+pQjpXZjb8AH3Lfr9X9ExISYkZHR5u9e/c2x48fb+7evdvnY33d93D9+vXmI488YrZs2dKMiIgwQ0JCzMaNG5sjRoww9+/f7/X4c+fOmWPGjDHr1atnBgUFed3PsSD3d8zvPrIrV64033rrLbNFixZmcHCwGR0dbT755JNmenp6nvU4nU5z0qRJZmxsrOlwOMwmTZqY//znP829e/f6zeHw4cPmk08+aTZq1Mh0OBxm9erVzc6dO5vTp0/3aicf9yI1zfP3gH3iiSfM+vXrm5UqVTIjIyPN2267zfzpp5/ytPV1P0pf4y2ot956y7ziiitMh8Nh1q1b13zmmWfM06dP+8319OnT5t/+9jezffv2ZmhoqBkSEmI2bNjQvPnmm813333Xcx/S/BQkz8L2k5iYaMbHx5uXXXaZGRYWZvbr18/86aefzBtvvNGUZJ44ccKrfUpKinn//feb1atXN0NCQswuXbqYy5YtK9R9ZDMyMsynn37abNCggRkcHGw2btzYnDJlipmdne2zfX73Ss69XS68j6wv+d2D1DTzP2bS0tLM8ePHm82aNTODg4PNqlWrmm3btjUnTJhgZmdne7X97bffzCeffNJs3LixGRwcbIaHh5vNmzc3H3zwQXP58uUXzdOtMPOZ33bKb//358cffzTvvPNOMyYmxnN8tWvXzhw7dqy5bds2T7vC3kfWNM/fk/rtt982u3TpYoaGhppVqlQxGzdubD766KPmgQMHLpr36dOnzSeeeMKsVauWGRwcbLZu3dp87733fD6fLl261Lz//vvNpk2bmmFhYeZll11mXnHFFea4cePMY8eOea03IyPDfOihh8zo6GjTbrf7vD92QbdLfvfXzk/u+8/6+/H1HANrMUzTx/ssAICAOZ1OxcXF6cyZM34/UAcAKDqukQWAAOXk5Pj8co6XXnpJ+/fvL9TX5gIACo4zsgAQoJMnT6pWrVq69tpr1aRJE507d04//PCDNmzYoOjoaG3cuJF7VgJACaCQBYAAZWdna+TIkVqxYoUOHTqks2fPKjo6Wv369dP48eNL9ab1AHApoZAFAACAJXGNLAAAACyJQhYAAACWdMl9IYLL5dKhQ4cUFhZWrN83DgAAgOJhmqYyMjIUExOT75fyXHKF7KFDhxQbG1vWaQAAAOAifv31V9WtW9fv8kuukA0LC5N0fsOEh4eXeH/nzp3TV199peuuu06VKlUq8f5QcMxN+cS8lF/MTfnEvJRfzE3RpaenKzY21lO3+XPJFbLuywnCw8NLrZCtUqWKwsPD2YnLGeamfGJeyi/mpnxiXsov5iZwF7sMlA97AQAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlhRU1gkAKHsHDhxQSkpKqfUXGRmpevXqlVp/AICKiUIWuMQdOHBAzZo315nTp0utz5AqVbR92zaKWQBAQChkgUtcSkqKzpw+rcEvzFZUw8Yl3t/R5F368PnHlJKSQiELAAgIhSwASVJUw8aq07xNWacBAECB8WEvAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWVK4K2dWrV2vAgAGKiYmRYRj69NNPvZabpqkJEyYoOjpaISEh6tu3r3bt2lU2yQIAAKBMlatCNjMzU23atNHMmTN9Lv/b3/6mV199Va+//rp++OEHhYaGKj4+XmfPni3lTAEAAFDWgso6gdz69eunfv36+VxmmqZmzJih559/XgMHDpQkvfvuu6pVq5Y+/fRT3XnnnT4fl5WVpaysLM/v6enpkqScnBzl5ORIkmw2m2w2m1wul1wul6etO+50OmWa5kXjdrtdhmF41itJTqfTk3/uuLt97jZuQUFBMk3TK24Yhux2e54c/cVLckz55W6lMblzcTqdnj6tPqaizJPL5ZLD4ZBN/1ufacow/8hFhiHTsOUTd8nIlYtpGFI+cZtMORwOuVwu5eTk5BlT7mNGUoXc96w6Jjf3MVMRxlQR5in3c5ndbq8QY6oo8+T+f+5jxupjKq15urC9P+WqkM1PcnKyDh8+rL59+3piVatWVefOnbVu3Tq/hey0adM0efLkPPHExESFhoZKkmrWrKm4uDglJyfr2LFjnjZ169ZV3bp1tXPnTqWlpXnijRo1UlRUlLZu3aozZ8544s2aNVNERIQSExPzvBi7XC5t2rTJK4cOHTooOztbW7Zs8cTsdrs6duyotLQ0bd++3RMPCQlRmzZtlJKSor1793ptg+bNm+vQoUP67bffPPGSHJMktW7dWg6HQwkJCZYd0+bNmyWd3xcMw6gQYyrKPKWlpWn06NGqF5yl45Iqn8tU5MkDnrY5QcE6XD1OoWdPqlrG7574WUeoUiLqK/x0qsIz/8g9MyRCJ8JiVO3UYYWeOemJp4fWVHpoTTWolK3Ro0crNTVVCQkJecbkPmbS09MVGRlZIfc9q46pWrVqkv44ZirCmCrCPJ08edIzL3FxcRViTBVlnmrXri1J2rNnjzIyMirEmEprnhITE1UQhpm7bC5HDMPQJ598optvvlmStHbtWnXt2lWHDh1SdHS0p93gwYNlGIY++OADn+vxdUY2NjZWqampCg8Pl1Syf3Xk5ORo2bJl6tevn9cZDXd7qWL+JWWFMZ09e1bLli1TfHy8goKCKsSYijJPSUlJ6tq1qx6d+4Wim7ct8TOyv29L0utD+2vNmjVq27ZtnjHlPmYcDkeF3PesOian06klS5Z4jpmKMKaKME/nzp3zPJc5HI4KMaaKMk9Op1NLly71OmasPqbSmqcTJ06oRo0aSktL89RrvljmjGxRBQcHKzg4OE88KCjIa6eS/piEC7k3akHjudfrnkzDMPL056u9m7/2/nIsbDyQMRU1Xt7G5I7b7XavvKw8pqLMk81mU3Z2tlz639tehiHT8LF+v3GbTCNv2F/cJUPZ2dmy2WxeebnHlPuYKeqY8qZu/Xm6UFmMyf2Cc+ExU9jc/cWZp6KNyV1kuC8rcP8/0Nz9xZmngsfdz2e+jhl3PNDc/cUr4jz5Uq4+7JUf9+n5I0eOeMWPHDniWQYAAIBLh2UK2YYNG6p27dpavny5J5aenq4ffvhBV111VRlmBgAAgLJQri4tOHXqlHbv3u35PTk5WUlJSapevbrq1aunkSNH6oUXXlDjxo3VsGFDjR8/XjExMZ7raAEAAHDpKFeFbEJCgnr37u35fdSoUZKkIUOGaN68eRozZowyMzP18MMP6+TJk+rWrZuWLl2qypUrl1XKAAAAKCPlqpDt1auX1yfdLmQYhv7617/qr3/9aylmBQAAgPLIMtfIAgAAALlRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlmSpQtbpdGr8+PFq2LChQkJCFBcXpylTpsg0zbJODQAAAKUsqKwTKIyXX35Zs2fP1jvvvKMWLVooISFBQ4cOVdWqVfXEE0+UdXoAAAAoRZYqZNeuXauBAweqf//+kqQGDRpo/vz5+vHHH8s4MwAAAJQ2SxWyV199td58803t3LlTTZo00ebNm/X9999r+vTpfh+TlZWlrKwsz+/p6emSpJycHOXk5EiSbDabbDabXC6XXC6Xp6077nQ6vS5f8Be32+0yDMOzXun85RCSZJqmV9zdPncbt6CgIJmm6RU3DEN2uz1Pjv7iJTmm/HK30pjcuTidTk+fVh9TUebJ5XLJ4XDIpv+tzzRlmH/kIsOQadjyibtk5MrFNAwpn7hNphwOh1wul3JycvKMKfcxI6lC7ntWHZOb+5ipCGOqCPOU+7nMbrdXiDFVlHly/z/3MWP1MZXWPF3Y3h9LFbJjx45Venq6mjVrJrvdLqfTqRdffFH33HOP38dMmzZNkydPzhNPTExUaGioJKlmzZqKi4tTcnKyjh075mlTt25d1a1bVzt37lRaWpon3qhRI0VFRWnr1q06c+aMJ96sWTNFREQoMTExz4uxy+XSpk2bvHLo0KGDsrOztWXLFk/MbrerY8eOSktL0/bt2z3xkJAQtWnTRikpKdq7d68nXrVqVTVv3lyHDh3Sb7/95omX5JgkqXXr1nI4HEpISLDsmDZv3izp/L5gGEaFGFNR5iktLU2jR49WveAsHZdU+VymIk8e8LTNCQrW4epxCj17UtUyfvfEzzpClRJRX+GnUxWe+UfumSEROhEWo2qnDiv0zElPPD20ptJDa6pBpWyNHj1aqampSkhIyDMm9zGTnp6uyMjICrnvWXVM1apVk/THMVMRxlQR5unkyZOeeYmLi6sQY6oo81S7dm1J0p49e5SRkVEhxlRa85SYmKiCMEwLfVJqwYIFGj16tP7+97+rRYsWSkpK0siRIzV9+nQNGTLE52N8nZGNjY1VamqqwsPDJZXsXx05OTlatmyZ+vXr53VGw91eqph/SVlhTGfPntWyZcsUHx+voKCgCjGmosxTUlKSunbtqkfnfqHo5m1L/Izs79uS9PrQ/lqzZo3atm2bZ0y5jxmHw1Eh9z2rjsnpdGrJkiWeY6YijKkizNO5c+c8z2UOh6NCjKmizJPT6dTSpUu9jhmrj6m05unEiROqUaOG0tLSPPWaL5Y6Izt69GiNHTtWd955pySpVatW2r9/v6ZNm+a3kA0ODlZwcHCeeFBQkNdOJf0xCRdyb9SCxnOv1z2ZhmHk6c9Xezd/7f3lWNh4IGMqary8jckdt9vtXnlZeUxFmSebzabs7Gy59L+3vQxDpuFj/X7jNplG3rC/uEuGsrOzZbPZvPJyjyn3MVPUMeVN3frzdKGyGJP7BefCY6awufuLM09FG5O7yHBfVuD+f6C5+4szTwWPu5/PfB0z7nigufuLV8R58sVSt986ffq0z7Oauf9SAAAAwKXBUmdkBwwYoBdffFH16tVTixYtlJiYqOnTp+tPf/pTWacGAACAUmapQva1117T+PHjNWzYMB09elQxMTF65JFHNGHChLJODQAAAKXMUoVsWFiYZsyYoRkzZpR1KgAAAChjlrpGFgAAAHCjkAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkoICXcHhw4c1Z84cbdq0SWlpaXK5XF7LDcPQ8uXLA+0GAAAA8BJQIbtlyxb16tVLZ86cUdOmTfXTTz/piiuu0MmTJ3Xw4EHFxcUpNja2uHIFAAAAPAK6tGDs2LG67LLLtGPHDn3zzTcyTVP//Oc/9euvv+qDDz7QiRMn9NJLLxVXrgAAAIBHQIXsmjVr9Mgjj6hevXqy2c6vyn1pwe2336577rlHo0ePDjxLAAAA4AIBFbIul0u1atWSJEVERMhut+v48eOe5a1atdLGjRsDyxAAAADwIaBCtmHDhkpOTj6/IptNDRs21DfffONZvnbtWkVERASUIAAAAOBLQIXsddddp48++sjz+2OPPaa3335bffv21TXXXKN33nlHd999d8BJAgAAABcK6K4Fzz33nO666y6dO3dOlSpV0siRI5WZmalFixbJbrdr/PjxGjduXHHlCgAAAHgEVMhWq1ZN7du39/xuGIaef/55Pf/88wEnBgAAAOSHb/YCAACAJRXqjOyf/vQnGYahN998U3a7XX/6058u+hjDMDRnzpwiJwgAAAD4UqhCdsWKFbLZbHK5XLLb7VqxYoUMw8j3MRdbDgAAABRFoQrZffv25fs7AAAAUFq4RhYAAACWFFAhu2nTJs2aNcvv8lmzZikpKSmQLgAAAACfAipkn3vuOa9v8rrQihUruBUXAAAASkRAhezGjRvVvXt3v8u7d++uhISEQLoAAAAAfAqokM3IyFBQkP/Pi9lsNqWlpQXSBQAAAOBTQIVs48aN9dVXX/ldvnTpUjVq1CiQLgAAAACfAipk//znP+uLL77QqFGjdPLkSU/85MmTeuqpp7R06VL9+c9/DjRHAAAAII9C3Uf2Qk888YSSkpI0Y8YMvfrqq4qJiZEkHTp0SC6XS/fdd5+eeuqpYkkUAAAAyC2gQtYwDM2dO1f333+/Fi1apL1790qSBg4cqEGDBqlXr17FkSMAAACQR0CFrFvv3r3Vu3fv4lgVAAAAUCB8sxcAAAAsKaBC1jRNvfHGG+rUqZMiIyNlt9vz/OR3ey4AAACgqAKqMseMGaPp06erbdu2uvfee1WtWrXiygsAAADIV0CF7DvvvKNBgwbpww8/LK58AAAAgAIJ6NKCM2fOqG/fvsWVCwAAAFBgARWy11xzjTZs2FBcuQAAAAAFFlAhO2vWLK1fv15Tp05VampqceWUr4MHD+ree+9VjRo1FBISolatWikhIaFU+gYAAED5EdA1sk2bNpXL5dL48eM1fvx4Va5cWXa73auNYRhKS0sLKEm3EydOqGvXrurdu7e+/PJL1axZU7t27eJDZgAAAJeggArZQYMGyTCM4srlol5++WXFxsZq7ty5nljDhg1LrX8AAACUHwEVsvPmzSumNArms88+U3x8vG6//XZ9++23qlOnjoYNG6aHHnrI72OysrKUlZXl+T09PV2SlJOTo5ycHEmSzWaTzWaTy+WSy+XytHXHnU6nTNO8aNxut8swDM96JcnpdEo6f8/d3HF3+9xt3IKCgmSaplfcMAzZ7fY8OfqLl+SY8svdSmNy5+J0Oj19Wn1MRZknl8slh8Mhm/63PtOUYf6RiwxDpmHLJ+6SkSsX0zCkfOI2mXI4HHK5XMrJyckzptzHjKQKue9ZdUxu7mOmIoypIsxT7ucyu91eIcZUUebJ/f/cx4zVx1Ra83Rhe38s9W0Fe/fu1ezZszVq1CiNGzdOGzZs0BNPPCGHw6EhQ4b4fMy0adM0efLkPPHExESFhoZKkmrWrKm4uDglJyfr2LFjnjZ169ZV3bp1tXPnTq/LIxo1aqSoqCht3bpVZ86c8cSbNWumiIgIJSYm5nkxdrlc2rRpk1cOHTp0UHZ2trZs2eKJ2e12dezYUWlpadq+fbsnHhISojZt2iglJUV79+71xKtWrarmzZvr0KFD+u233zzxkhyTJLVu3VoOhyPP9clWGtPmzZslnd8XDMOoEGMqyjylpaVp9OjRqhecpeOSKp/LVOTJA562OUHBOlw9TqFnT6paxu+e+FlHqFIi6iv8dKrCM//IPTMkQifCYlTt1GGFnjnpiaeH1lR6aE01qJSt0aNHKzU1VQkJCXnG5D5m0tPTFRkZWSH3PauOyX0Zl/uYqQhjqgjzdPLkSc+8xMXFVYgxVZR5ql27tiRpz549ysjIqBBjKq15SkxMVEEYZu6yuQgOHDigqVOnauXKlTp69Kj++9//qkePHkpJSdFf//pXDR06VFdeeWUgXXg4HA516NBBa9eu9cSeeOIJbdiwQevWrfP5GF9nZGNjY5Wamqrw8HBJJftXR05OjpYtW6Z+/fp5ndFwt5cq5l9SVhjT2bNntWzZMsXHxysoKKhCjKko85SUlKSuXbvq0blfKLp52xI/I/v7tiS9PrS/1qxZo7Zt2+YZU+5jxuFwVMh9z6pjcjqdWrJkieeYqQhjqgjzdO7cOc9zmcPhqBBjqijz5HQ6tXTpUq9jxupjKq15OnHihGrUqKG0tDRPveZLQGdkf/nlF3Xv3l0ul0udO3fW7t27PYlGRkbq+++/V2ZmpubMmRNINx7R0dG64oorvGLNmzfXokWL/D4mODhYwcHBeeJBQUF5vj7XPQkXuvADbBeL516vezINw/D7db2+4v7a+8uxsPFAxlTUeHkbkzt+4VcpW3lMRZknm82m7OxsufS/t70MQ6bhY/1+4zaZvi6V9xN3yVB2drZsNptXXu4x5T5mijqmvKlbf54uVBZjcr/gXHjMFDZ3f3HmqWhjchcZ7ssK3P8PNHd/ceap4HH385mvY8YdDzR3f/GKOE8+2xWolR9jxoxRRESE1q9fL8MwFBUV5bW8f//++uCDDwLpwkvXrl21Y8cOr9jOnTtVv379YusDAAAA1hDQfWRXr16txx57TDVr1vR594J69erp4MGDgXTh5amnnvLct3b37t16//339eabb2r48OHF1gcAAACsIaBC1uVyqUqVKn6XHzt2zOfb+kXVsWNHffLJJ5o/f75atmypKVOmaMaMGbrnnnuKrQ8AAABYQ0CXFrRr105ffPGFhg0blmdZTk6OFixYoC5dugTSRR433nijbrzxxmJdJwAAAKwnoDOyzz77rJYuXarHHntMW7dulSQdOXJE33zzja677jpt27ZNY8eOLZZEAQAAgNwCOiPbr18/zZs3T08++aTefPNNSdK9994r0zQVHh6ud999Vz169CiWRAEAAIDcAv5ChPvuu0+33nqrvvrqK+3evVsul0txcXGKj49XWFhYceQIAAAA5FEs3+wVGhqqW265pThWBQAAABRIQIXsgQMHLt5I52/DBQAAABSngArZBg0a+Lx/7IUu/PoxAAAAIFABFbL/+te/8hSyTqdT+/bt07vvvquoqCi+rAAAAAAlIqBC9oEHHvC77C9/+Ys6d+6stLS0QLoAAAAAfAroPrL5CQ0N1dChQ/V///d/JdUFAAAALmElVshK57/C9vDhwyXZBQAAAC5RxXL7rQulp6dr9erV+vvf/64rr7yyJLoAAADAJS6gQtZms/m9a4FpmqpXr55mzZoVSBcAAACATwEVshMmTMhTyBqGoWrVqikuLk7XXXedgoJK5KQvAAAALnEBVZmTJk0qpjQAAACAwgnow145OTlKT0/3uzw9PV05OTmBdAEAAAD4FFAh+8QTT+jqq6/2u7xr1656+umnA+kCAAAA8CmgQnbp0qW67bbb/C6/7bbbtGTJkkC6AAAAAHwKqJA9dOiQ6tSp43d5TEyMDh48GEgXAAAAgE8BFbI1atTQjh07/C7ftm2bwsPDA+kCAAAA8CmgQvb666/XG2+8ocTExDzLNm3apDfffFP9+vULpAsAAADAp4BuvzVlyhQtXbpUnTp10k033aQWLVpIkrZu3arPP/9cUVFRmjJlSrEkCgAAAOQWUCEbExOjhIQEjR07Vv/973/1ySefSJLCw8N1zz33aOrUqYqJiSmWRAEAAIDcAv7arejoaL3zzjsyTVPHjh2TJNWsWdPvV9cCAAAAxaHYvj/WMAwFBwfrsssuo4gFAABAiQvow16SlJCQoOuvv15VqlRRjRo19O2330qSUlJSNHDgQK1atSrQLgAAAIA8Ajoju3btWvXp00d16tTRvffeq7ffftuzLDIyUmlpaXrjjTfUq1evQPMELikHDhxQSkpKqfS1bdu2UukHAIDiFlAhO27cODVv3lzr169XRkaGVyErSb1799Y777wTUILApebAgQNq1ry5zpw+XdapAABQrgVUyG7YsEHTpk1TcHCwTp06lWd5nTp1dPjw4UC6AC45KSkpOnP6tAa/MFtRDRuXeH871izX17OmlXg/AAAUt4AK2UqVKsnlcvldfvDgQV122WWBdAFcsqIaNlad5m1KvJ+jybtKvA8AAEpCQB/26tKlixYuXOhzWWZmpubOnauePXsG0gUAAADgU0CF7OTJk5WQkKD+/fvryy+/lCRt3rxZb7/9ttq3b69jx45p/PjxxZIoAAAAkFtAlxZ07txZS5Ys0WOPPab7779fkvT0009LkuLi4rRkyRK1bt068CwBAACACxS5kDVNUxkZGbr66qu1Y8cOJSUladeuXXK5XIqLi1P79u35YgQAAACUmCIXstnZ2apevbqmTp2qMWPGqG3btmrbtm0xpgYAAAD4V+RrZIODg1W7dm0FBwcXZz4AAABAgQT0Ya8HHnhA7777rrKzs4srHwAAAKBAAvqwV6tWrfTpp5+qRYsWeuCBB9SgQQOFhITkaXfrrbcG0g0AAACQR0CF7F133eX5v7/bbBmGIafTGUg3AAAAQB6FLmTHjRunO++8U61bt9bKlStLIicAAADgogpdyL700ktq2bKlWrdurZ49eyo1NVVRUVH6+uuv1adPn5LIEQAAAMgjoA97uZmmWRyrAQAAAAqsWApZAAAAoLRRyAIAAMCSinTXgn379mnTpk2SpLS0NEnSrl27FBER4bN9u3btipYdAAAA4EeRCtnx48fnud3WsGHD8rQzTZPbbwEAAKBEFLqQnTt3bknkAQAAABRKoQvZIUOGlEQeAAAAQKHwYS8AAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWJKlC9mXXnpJhmFo5MiRZZ0KAAAASpllC9kNGzbojTfeUOvWrcs6FQAAAJSBoLJOoChOnTqle+65R2+99ZZeeOGFfNtmZWUpKyvL83t6erokKScnRzk5OZIkm80mm80ml8sll8vlaeuOO51OmaZ50bjdbpdhGJ71SpLT6ZQkmabpFXe3z93GLSgoSKZpesUNw5Ddbs+To794SY4pv9ytNCZ3Lk6n09NneRiTy+Xy9GmYLilX7qZhkwzDf9zlnaNp2P5Yj5+43ZAcDods+t/6TNO7vWGcb+837pLhlYsh5RO3yZTD4ZDL5VJOTk6eecp9zEiqkPueVcfk5j5mKsKYKsI85X4us9vtFWJMFWWe3P/PfcxYfUylNU8XtvfHkoXs8OHD1b9/f/Xt2/eihey0adM0efLkPPHExESFhoZKkmrWrKm4uDglJyfr2LFjnjZ169ZV3bp1tXPnTqWlpXnijRo1UlRUlLZu3aozZ8544s2aNVNERIQSExPzvBi7XC5t2rTJK4cOHTooOztbW7Zs8cTsdrs6duyotLQ0bd++3RMPCQlRmzZtlJKSor1793riVatWVfPmzXXo0CH99ttvnnhJjkmSWrduLYfDoYSEBMuOafPmzZLO7wuGYZSbMaWlpalr166SpBppv6pydqan/YmwaGWGVFOtE8kKyvnjD7SUiHo667hMMcd3ycj1hHO4epyctiDVSdnhNaaDkU1ld+Wo9vE9CoutpkajR6tecJaOS6p8LlORJw942uYEBetw9TiFnj2pahm/e+JnHaFKiaiv8NOpCs/8Yz4yQyJ0IixG1U4dVuiZk554emhNpYfWVINK2Ro9erRSU1OVkJCQZ57cx0x6eroiIyMr5L5n1TFVq1ZN0h/HTEUYU0WYp5MnT3rmJS4urkKMqaLMU+3atSVJe/bsUUZGRoUYU2nNU2JiogrCMHOXzRawYMECvfjii9qwYYMqV66sXr16qW3btpoxY4bP9r7OyMbGxio1NVXh4eGSSvavjpycHC1btkz9+vXzOqPhbi9VzL+krDCms2fPatmyZYqPj1dQUFC5GVNSUpK6dOmix95dprrNWpX4GdnNyz7RoslP6tG5Xyi6edsSPyP7+7YkvT60v9asWaO2bdvmmafcx4zD4aiQ+55Vx+R0OrVkyRLPMVMRxlQR5uncuXOe5zKHw1EhxlRR5snpdGrp0qVex4zVx1Ra83TixAnVqFFDaWlpnnrNF0udkf3111/15JNP6uuvv1blypUL9Jjg4GAFBwfniQcFBXntVNIfk3Ah90YtaDz3et2TaRhGnv58tXfz195fjoWNBzKmosbL25jccbvd7pVXWY/J/UQguQvUvLn4jdt8j9U0/MedppSdnS2Xe4WG4bu937hNpo9c/MVdMpSdnS2bzea17dzzkfuYkSrmvmfVMbn3ywuPmcLm7i/OPBVtTO4iw31Zgfv/gebuL848FTzufj7zdcy444Hm7i9eEefJZ7sCtSonNm7cqKNHj6pdu3aemNPp1OrVq/X//t//U1ZWlt8NCAAAgIrFUoXsNddco59++skrNnToUDVr1kx/+ctfKGIBAAAuIZYqZMPCwtSyZUuvWGhoqGrUqJEnDgAAgIrNsveRBQAAwKXNUmdkfVm1alVZpwAAAIAywBlZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWFJQWScAWMGBAweUkpJSKn1t27atVPoBAMDqKGSBizhw4ICaNW+uM6dPl3UqAAAgFwpZ4CJSUlJ05vRpDX5htqIaNi7x/nasWa6vZ00r8X4AALA6ClmggKIaNlad5m1KvJ+jybtKvA8AACoCPuwFAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVZqpCdNm2aOnbsqLCwMEVFRenmm2/Wjh07yjotAAAAlAFLFbLffvuthg8frvXr1+vrr7/WuXPndN111ykzM7OsUwMAAEApCyrrBApj6dKlXr/PmzdPUVFR2rhxo3r06FFGWQEAAKAsWKqQvVBaWpokqXr16n7bZGVlKSsry/N7enq6JCknJ0c5OTmSJJvNJpvNJpfLJZfL5WnrjjudTpmmedG43W6XYRie9UqS0+mUJJmm6RV3t8/dxi0oKEimaXrFDcOQ3W7Pk6O/eEmOKb/crTQmdy5Op9PTp6/cTdOUYRiyyZTh+mOZabNLpinD/CMXGYZMw5ZP3CUjVy6mYUgXxO3GH9vRMF2SV3ubZBj+464Lcjdsf6zHT9xuSA6HQzaZ7gEX+5hyx20y5XA45HK5lJOTk2eech8zkirkvmfVMbm5j5mKMKaKME+5n8vsdnuFGFNFmSf3/3MfM1YfU2nN04Xt/bFsIetyuTRy5Eh17dpVLVu29Ntu2rRpmjx5cp54YmKiQkNDJUk1a9ZUXFyckpOTdezYMU+bunXrqm7dutq5c6enaJakRo0aKSoqSlu3btWZM2c88WbNmikiIkKJiYl5XoxdLpc2bdrklUOHDh2UnZ2tLVu2eGJ2u10dO3ZUWlqatm/f7omHhISoTZs2SklJ0d69ez3xqlWrqnnz5jp06JB+++03T7wkxyRJrVu3lsPhUEJCgmXHtHnzZknn9wXDMPyOKSgoSDVq1FCr4LOqnHL+mmzTZtPByGaqfC5TkScPeNrmBAXrcPU4hZ49qWoZv3viZx2hSomor/DTqQrP/CP3zJAInQiLUbVThxV65qQkKSy2mg527SpJqpH2qypn/3HpzImwaGWGVFOtE8kKyvnjD7SUiHo667hMMcd3ycj1hHO4epyctiDVSfG+lvxgZFPZXTmqfXyPwmKrqdHo0aoXnKXjUomMSZLSQ2sqPbSmGlTK1ujRo5WamqqEhIQ88+Q+ZtLT0xUZGVkh9z2rjqlatWqS/jhmKsKYKsI8nTx50jMvcXFxFWJMFWWeateuLUnas2ePMjIyKsSYSmueEhMTVRCGmbtstpDHHntMX375pb7//nvVrVvXbztfZ2RjY2OVmpqq8PBwSSX7V0dOTo6WLVumfv36eZ3RcLeXKuZfUlYY09mzZ7Vs2TLFx8crKCjIb+6bN29Wx44d9fh/vlJM01aeeEmdkd287BN9OGGEHnt3meo2a1XiZ2Q3L/tEiyY/qUfnfqHo5m1L/Izs79uS9PrQ/lqzZo3atm2bZ55yHzMOh6NC7ntWHZPT6dSSJUs8x0xFGFNFmKdz5855nsscDkeFGFNFmSen06mlS5d6HTNWH1NpzdOJEydUo0YNpaWleeo1Xyx5RnbEiBFavHixVq9enW8RK0nBwcEKDg7OEw8KCvLaqaQ/JuFC7o1a0Hju9bon0zCMPP35au/mr72/HAsbD2RMRY2XtzG543a73SuvC3M0DEOmacol43zx6r1QpuFj/X7jNplG3nDuuNPMdUmKYZN8tPcbvzA/T3v/cacpZWdny+VeYQmMKTeXDGVnZ8tms3lta/d85D5mpIq571l1TO798sJjprC5+4szT0Ubk7vIcF9W4P5/oLn7izNPBY+7n898HTPueKC5+4tXxHny2a5ArcoJ0zT1+OOP65NPPtGqVavUsGHDsk4JAAAAZcRShezw4cP1/vvv67///a/CwsJ0+PBhSeev7wgJCSnj7AAAAFCaLHUf2dmzZystLU29evVSdHS05+eDDz4o69QAAABQyix1Rtain0sDAABACbDUGVkAAADAjUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsKaisE7hUbN68WTZb6fzdEBkZqXr16pVKX2XlwIEDSklJCWgdLpdL0sXnZtu2bQH1AwBASSiO18LCKI/1BYVsCfvtt98kST169NCZM2dKpc+QKlW0fdu2crezFZcDBw6oWfPmOnP6dEDrCQkJ0fz580t1bgAAKA7F9VpYGOWxvqCQLWGpqamSpFvG/5+q17+8xPs7mrxLHz7/mFJSUsrVjlacUlJSdOb0aQ1+YbaiGjYu8nrsMiVl6uG3P5NTht92O9Ys19ezphW5HwAAiltxvRYWVHmtLyhkS0nN+nGq3bxNWadRoUQ1bKw6AWxTmytH+u0HxTRtKZfN/6FwNHlXkfsAAKAkBfpaaHV82AsAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVZspCdOXOmGjRooMqVK6tz58768ccfyzolAAAAlDLLFbIffPCBRo0apYkTJ2rTpk1q06aN4uPjdfTo0bJODQAAAKXIcoXs9OnT9dBDD2no0KG64oor9Prrr6tKlSr617/+VdapAQAAoBQFlXUChZGdna2NGzfq2Wef9cRsNpv69u2rdevW+XxMVlaWsrKyPL+npaVJko4fP66cnBzPOmw2m1wul1wul9e6bTabnE6nTNO8aNxut8swDM96JSk9PV2nT5/WoR3JOns60ys39yONC3I2ZXj+vTBuyNSFcsdTD+xVpUqVtHHjRp06dUqmaXrlaBiGDMModDz3dnHHJck0Tc+2uzCem81mK7ZcduzYoUqVKunw9i06d/pUgbfNHzFJMhQkl2JDz2h/4no5c7W6cLsf27dLkrz6c6+7qPOUX/z4gT2y2Ww6uM27v4KMyXfc1z72R/z4gT2e7Zl9OrNExpQ7nvq//jZu3Kj09PQ88+1yuXT69Gl9//33stvt+e57BYm7973c+3FR973CxO12e57niIIcT4UZ04XPP+5YSY3JNE2dPn1a3333nYKCguRyuUp0TLlzKYv5y/1cXhJjKsw+k996nE6nZ17cr0MFeS5351eSY8odd79WFPf8+dv3LlxW0q9PvubPfcx8//33nv4DGVPutrt2nX9t8vVaURKvT+76IiMjQ+np6QHVRu64JDmdTp/xEydO5BmzT6aFHDx40JRkrl271is+evRos1OnTj4fM3HiRFPnX7f54Ycffvjhhx9++LHQz6+//ppvbWipM7JF8eyzz2rUqFGe310ul44fP64aNWp4/XVUUtLT0xUbG6tff/1V4eHhJd4fCo65KZ+Yl/KLuSmfmJfyi7kpOtM0lZGRoZiYmHzbWaqQjYyMlN1u15EjR7ziR44cUe3atX0+Jjg4WMHBwV6xiIiIkkrRr/DwcHbicoq5KZ+Yl/KLuSmfmJfyi7kpmqpVq160jaU+7OVwONS+fXstX77cE3O5XFq+fLmuuuqqMswMAAAApc1SZ2QladSoURoyZIg6dOigTp06acaMGcrMzNTQoUPLOjUAAACUIssVsnfccYeOHTumCRMm6PDhw2rbtq2WLl2qWrVqlXVqPgUHB2vixIl5Lm9A2WNuyifmpfxibson5qX8Ym5KnmGaF7uvAQAAAFD+WOoaWQAAAMCNQhYAAACWRCELAAAAS6KQBQAAgCVRyBaDmTNnqkGDBqpcubI6d+6sH3/80W/bt956S927d1e1atVUrVo19e3bN9/2CExh5ia3BQsWyDAM3XzzzSWb4CWqsPNy8uRJDR8+XNHR0QoODlaTJk20ZMmSUsr20lHYeZkxY4aaNm2qkJAQxcbG6qmnntLZs2dLKdtLx+rVqzVgwADFxMTIMAx9+umnF33MqlWr1K5dOwUHB+vyyy/XvHnzSjzPS01h5+Xjjz/Wtddeq5o1ayo8PFxXXXWVli1bVjrJVmAUsgH64IMPNGrUKE2cOFGbNm1SmzZtFB8fr6NHj/psv2rVKt11111auXKl1q1bp9jYWF133XU6ePBgKWde8RV2btz27dunZ555Rt27dy+lTC8thZ2X7OxsXXvttdq3b58WLlyoHTt26K233lKdOnVKOfOKrbDz8v7772vs2LGaOHGitm3bpjlz5uiDDz7QuHHjSjnzii8zM1Nt2rTRzJkzC9Q+OTlZ/fv3V+/evZWUlKSRI0fqwQcfpGgqZoWdl9WrV+vaa6/VkiVLtHHjRvXu3VsDBgxQYmJiCWdawZkISKdOnczhw4d7fnc6nWZMTIw5bdq0Aj0+JyfHDAsLM995552SSvGSVZS5ycnJMa+++mrz7bffNocMGWIOHDiwFDK9tBR2XmbPnm02atTIzM7OLq0UL0mFnZfhw4ebffr08YqNGjXK7Nq1a4nmeamTZH7yySf5thkzZozZokULr9gdd9xhxsfHl2Bml7aCzIsvV1xxhTl58uTiT+gSwhnZAGRnZ2vjxo3q27evJ2az2dS3b1+tW7euQOs4ffq0zp07p+rVq5dUmpekos7NX//6V0VFRenPf/5zaaR5ySnKvHz22We66qqrNHz4cNWqVUstW7bU1KlT5XQ6SyvtCq8o83L11Vdr48aNnssP9u7dqyVLluiGG24olZzh37p167zmUpLi4+ML/LqE0uFyuZSRkcHrf4As981e5UlKSoqcTmeebxWrVauWtm/fXqB1/OUvf1FMTEyeJx0Epihz8/3332vOnDlKSkoqhQwvTUWZl71792rFihW65557tGTJEu3evVvDhg3TuXPnNHHixNJIu8IryrzcfffdSklJUbdu3WSapnJycvToo49yaUE5cPjwYZ9zmZ6erjNnzigkJKSMMkNur7zyik6dOqXBgweXdSqWxhnZMvTSSy9pwYIF+uSTT1S5cuWyTueSlpGRofvuu09vvfWWIiMjyzod5OJyuRQVFaU333xT7du31x133KHnnntOr7/+elmndklbtWqVpk6dqlmzZmnTpk36+OOP9cUXX2jKlCllnRpQ7r3//vuaPHmyPvzwQ0VFRZV1OpbGGdkAREZGym6368iRI17xI0eOqHbt2vk+9pVXXtFLL72kb775Rq1bty7JNC9JhZ2bPXv2aN++fRowYIAn5nK5JElBQUHasWOH4uLiSjbpS0BRjpno6GhVqlRJdrvdE2vevLkOHz6s7OxsORyOEs35UlCUeRk/frzuu+8+Pfjgg5KkVq1aKTMzUw8//LCee+452WycJykrtWvX9jmX4eHhnI0tBxYsWKAHH3xQH330Ee/GFgOeaQLgcDjUvn17LV++3BNzuVxavny5rrrqKr+P+9vf/qYpU6Zo6dKl6tChQ2mkeskp7Nw0a9ZMP/30k5KSkjw/N910k+dTv7GxsaWZfoVVlGOma9eu2r17t+cPC0nauXOnoqOjKWKLSVHm5fTp03mKVfcfG6ZpllyyuKirrrrKay4l6euvv873dQmlY/78+Ro6dKjmz5+v/v37l3U6FUNZf9rM6hYsWGAGBweb8+bNM3/55Rfz4YcfNiMiIszDhw+bpmma9913nzl27FhP+5deesl0OBzmwoULzd9//93zk5GRUVZDqLAKOzcX4q4FJaOw83LgwAEzLCzMHDFihLljxw5z8eLFZlRUlPnCCy+U1RAqpMLOy8SJE82wsDBz/vz55t69e82vvvrKjIuLMwcPHlxWQ6iwMjIyzMTERDMxMdGUZE6fPt1MTEw09+/fb5qmaY4dO9a87777PO337t1rVqlSxRw9erS5bds2c+bMmabdbjeXLl1aVkOokAo7L++9954ZFBRkzpw50+v1/+TJk2U1hAqBQrYYvPbaa2a9evVMh8NhdurUyVy/fr1nWc+ePc0hQ4Z4fq9fv74pKc/PxIkTSz/xS0Bh5uZCFLIlp7DzsnbtWrNz585mcHCw2ahRI/PFF180c3JySjnriq8w83Lu3Dlz0qRJZlxcnFm5cmUzNjbWHDZsmHnixInST7yCW7lypc/XDfd8DBkyxOzZs2eex7Rt29Z0OBxmo0aNzLlz55Z63hVdYeelZ8+e+bZH0RimyXtAAAAAsB6ukQUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAIBCWb16tQYMGKCYmBgZhqFPP/200OswTVOvvPKKmjRpouDgYNWpU0cvvvhiodZBIQsA5dADDzygBg0alHUaeaxatUqGYWjVqlVlnQqAMpSZmak2bdpo5syZRV7Hk08+qbfffluvvPKKtm/frs8++0ydOnUq1DqCitw7AMByDMPw+n/t2rXVsmVLjRs3Tr169Sq7xABYSr9+/dSvXz+/y7OysvTcc89p/vz5OnnypFq2bKmXX37Z8zyzbds2zZ49W1u3blXTpk0lSQ0bNix0HpyRBYBLzLXXXqt///vfeuedd/Too49qy5Yt6tOnj7788suLPrZHjx46c+aMevToUQqZArCqESNGaN26dVqwYIG2bNmi22+/Xddff7127dolSfr888/VqFEjLV68WA0bNlSDBg304IMP6vjx44XqhzOyAOBDZmamQkNDyzqNYuFyuZSdna3KlStLkpo0aaJ7773Xs/yWW25R69atNWPGDL9nWM6ePSuHwyGbzeZZDwD4cuDAAc2dO1cHDhxQTEyMJOmZZ57R0qVLNXfuXE2dOlV79+7V/v379dFHH+ndd9+V0+nUU089pdtuu00rVqwocF+ckQVwyZs0aZIMw9Avv/yiu+++W9WqVVO3bt0kSf/5z3/Uvn17hYSEqHr16rrzzjv166+/5lnHzJkz1ahRI4WEhKhTp0767rvv1KtXL6+36+fNmyfDMLRv3z6vxxb0utNXXnlFV199tWrUqKGQkBC1b99eCxcuzNPOMAyNGDFC7733nlq0aKHg4GAtXbrU73pbtWqlyMhIJScne+WzYMECPf/886pTp46qVKmi9PR0v7n+8MMPuuGGG1StWjWFhoaqdevW+uc//+nVZvv27brttttUvXp1Va5cWR06dNBnn32W75gBWM9PP/0kp9OpJk2a6LLLLvP8fPvtt9qzZ4+k839gZ2Vl6d1331X37t3Vq1cvzZkzRytXrtSOHTsK3BdnZAHgf26//XY1btxYU6dOlWmaevHFFzV+/HgNHjxYDz74oI4dO6bXXntNPXr0UGJioiIiIiRJs2fP1ogRI9S9e3c99dRT2rdvn26++WZVq1ZNdevWLbb8/vnPf+qmm27SPffco+zsbC1YsEC33367Fi9erP79+3u1XbFihT788EONGDFCkZGR+X5w7MSJEzpx4oQuv/xyr/iUKVPkcDj0zDPPKCsrSw6Hw+fjv/76a914442Kjo7Wk08+qdq1a2vbtm1avHixnnzySUnSzz//rK5du6pOnToaO3asQkND9eGHH+rmm2/WokWLdMsttwS2cQCUG6dOnZLdbtfGjRtlt9u9ll122WWSpOjoaAUFBalJkyaeZc2bN5d0/oyu+7rZi6GQBYD/adOmjd5//31J0v79+xUXF6cXXnhB48aN87S59dZbdeWVV2rWrFkaN26csrOzNX78eHXs2FErVqxQUND5p9XWrVvrgQceKNZCdufOnQoJCfH8PmLECLVr107Tp0/PU8ju2LFDP/30k6644oo86zl79qxSUlJkmqaSk5M1btw4OZ1O3X777XnaJSQkePV5IafTqUceeUTR0dFKSkryFPfS+VvruD355JOqV6+eNmzYoODgYEnSsGHD1K1bN/3lL3+hkAUqkCuvvFJOp1NHjx5V9+7dfbbp2rWrcnJytGfPHsXFxUk6/xwnSfXr1y9wX1xaAAD/8+ijj3r+//HHH8vlcmnw4MFKSUnx/NSuXVuNGzfWypUrJUkJCQlKTU3VQw895CliJemee+5RtWrVijW/3AXliRMnlJaWpu7du2vTpk152vbs2dNnEStJc+bMUc2aNRUVFaXOnTtrzZo1GjVqlEaOHOnVbsiQIfkWsZKUmJio5ORkjRw50quIlf64Q8Lx48e1YsUKDR48WBkZGZ5tmZqaqvj4eO3atUsHDx4swBYAUF6cOnVKSUlJSkpKkiQlJycrKSlJBw4cUJMmTXTPPffo/vvv18cff6zk5GT9+OOPmjZtmr744gtJUt++fdWuXTv96U9/UmJiojZu3KhHHnlE1157rddZ2ovhjCwA/E/uW7/s2rVLpmmqcePGPttWqlRJ0vkzt5LyvC0fFBRU7PeBXbx4sV544QUlJSUpKyvLE899Sy23/G5jM3DgQI0YMUKGYSgsLEwtWrTw+cG2gtwKx329W8uWLf222b17t0zT1Pjx4zV+/HifbY4ePao6depctD8A5UNCQoJ69+7t+X3UqFGSzv8BPG/ePM2dO1cvvPCCnn76aR08eFCRkZHq0qWLbrzxRkmSzWbT559/rscff1w9evRQaGio+vXrp3/84x+FyoNCFgD+J/fZR5fLJcMw9OWXX+a5xkv64zqvwvBVcErn356/mO+++0433XSTevTooVmzZik6OlqVKlXS3LlzPZdD5JbfmdS6deuqb9++F+3zYmdjC8rlckk6/6nl+Ph4n20u/EMAQPnWq1cvr8uHLlSpUiVNnjxZkydP9tsmJiZGixYtCigPClkA8CEuLk6maaphw4b5vs3lvpZr9+7dXmcncnJytG/fPrVu3doTc19qcPLkSa91uM/q5mfRokWqXLmyli1b5rnGVJLmzp1boPGUFPe1bVu3bvVbHDdq1EjS+Re2ghTQAFBQXCMLAD7ceuutstvtmjx5cp6zDqZpKjU1VZLUoUMH1ahRQ2+99ZZycnI8bd577z2dOHHC63Huom/16tWemNPp1JtvvnnRfOx2uwzD8Dp7u2/fviJ9v3lxateunRo2bKgZM2bkKdDd2y0qKkq9evXSG2+8od9//z3POo4dO1YaqQKogDgjCwA+uO9Y8Oyzz3pupxUWFqbk5GR98sknevjhh/XMM8/I4XBo0qRJevzxx9WnTx8NHjxY+/bt07x58xQXF+d1OUGLFi3UpUsXPfvsszp+/LiqV6+uBQsWeBXA/vTv31/Tp0/X9ddfr7vvvltHjx7VzJkzdfnll2vLli0luSnyZbPZNHv2bA0YMEBt27bV0KFDFR0dre3bt+vnn3/WsmXLJJ2/z263bt3UqlUrPfTQQ2rUqJGOHDmidevW6bffftPmzZvLbAwArItCFgD8GDt2rJo0aaL/+7//81znFRsbq+uuu0433XSTp92IESNkmqb+8Y9/6JlnnlGbNm302Wef6YknnsjzLVjvvfeeHnnkEb300kuKiIjQn//8Z/Xu3VvXXnttvrn06dNHc+bM0UsvvaSRI0eqYcOGevnll7Vv374yLWQlKT4+XitXrtTkyZP1j3/8Qy6XS3FxcXrooYc8ba644golJCRo8uTJmjdvnlJTUxUVFaUrr7xSEyZMKMPsAViZYeZ3pS4AoEhcLpdq1qypW2+9VW+99VZZpwMAFRLXyAJAgM6ePZvnOtp3331Xx48f9/qKWgBA8eKMLAAEaNWqVXrqqad0++23q0aNGtq0aZPmzJmj5s2ba+PGjX6/2hUAEBiukQWAADVo0ECxsbF69dVXPR/iuv/++/XSSy9RxAJACeKMLAAAACyJa2QBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkv4/9EnEGkEg0cEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqoAAAHcCAYAAAAeFogrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrSElEQVR4nO3deVwTZ/4H8M8kIQGRQzkURFHwwAtQVMTb1YpHu9p2a7WtRe1hW7vai24vq66t2uPXbe1htYfaduvZ1h4qaD2rrQcI3qJWrAdeIIeigkme3x/sjAlJOAyYAT7v18vd5pknM9/vM0+Sb2YmgySEECAiIiIiUhmNqwMgIiIiIrKHhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKlE1+vDDDyFJEr744gtXh0JERFTjsFAlG5s2bYIkSZg2bZpLtt+8eXM0b97cqm3atGmQJAmbNm1ySUylSZKEfv36ldln586deOGFF/D666/jkUceuT2B2VGRWGuqmjBXais1zStXv2fVRNU5Zv369YMkSVW+XqqbWKjWUidOnIAkSVb/6tWrh+DgYAwYMACvv/46/vzzz2rZNt+kgNzcXIwcORKjR4/G9OnTXR0O1RF87VFdpIYvTYWFhfjmm28wcuRItG7dGh4eHvD19UXfvn2xePFil8ZW0+lcHQBVr/DwcDz00EMAgKKiIly4cAE7d+7EjBkzMHPmTLz44ot48803rT7cunXrhkOHDsHf398lMa9fv94l262MQ4cOoV69eg6Xp6en46mnnsKzzz57G6MiAHj66acxatQoNGvWzNWh0G3i6vcsot9++w1jxoyBn58fBgwYgHvvvRcXLlzA999/jwceeADbtm3DRx995OowayQWqrVcy5Yt7Z7a2bp1K8aMGYNZs2ZBq9VixowZyrJ69eohIiLiNkZpLTw83GXbrqjyxqd///7o37//bYqGLPn7+7NgqWNc/Z5F1LhxY3z99dcYOXIk9Hq90j5z5kzExsbi448/xsMPP4xu3bq5MMqaiaf+66hevXohKSkJBoMBb7/9Nk6dOqUsc3Tt0tGjRzFu3Di0aNECBoMBDRs2RFRUFJ555hkIIQCUnILZvHmz8t/yv7FjxwK4eUnC2LFjcejQIdx9993w8/ODJEk4ceIEAPvXHVr64osv0LFjR7i7u6NJkyZ49tlncfnyZas+ZV1/ZRlDaRcuXMDzzz+PNm3awMPDAw0bNkRsbCzeffddq36OTjVlZ2fjmWeeUcYoMDAQI0eOxP79+236jh07FpIkITMzE3PmzEFERAQMBgNCQ0Mxffp0mM1mh2Ngz+eff44OHTrA3d0dTZs2xYsvvojr16877H/58mVMnToV7du3V05TxcfHY+vWrRXeppyDvO8s2btW1HK/pKSk4I477oCXlxd8fHxw9913210PAPz444/o2rUrPDw80KhRIzz22GPIzc2129fRNaobN27EkCFDEBwcDIPBgEaNGqF3796YP3++zTqOHz+Oxx9/3Go/9uvXDwsXLrTpu2DBAsTGxqJ+/fqoX78+YmNj7fZbuHAhJEmyu8zRfJXn2fnz55GQkAB/f394eHige/fuNvmV99qT7d27F6NGjUJQUBD0ej1CQ0Pxz3/+Ezk5OTZxAZWfVxUhv8bz8vIwYcIENG7cGO7u7ujUqZPd06SW+3ThwoXo3Lkz6tWrp7wGy3q9V/Q1fStj48iFCxfw7LPPomXLljAYDPD398e9995r931AHosrV65g8uTJyvyMjIzEihUrKrVdoOS1MmDAADRo0ADu7u7o0KED3n33XZhMpkqvq7Ti4mL85z//QdeuXeHl5YX69eujXbt2eO655xy+HmVlXTvu6LVR3mtW3u8AsHnzZqt5X3pdFR0Xy1h+/vln9OzZE15eXmV+JgFAdHQ0HnroIasiFQAaNWqECRMmAAC2bNlS5jrIPh5RrcPatGmDkSNH4uuvv8bKlSvxz3/+02HfrKwsdOvWDYWFhRg2bBjuv/9+FBYW4ujRo/jkk0/w7rvvQqfTYerUqVi4cCH++usvTJ06VXl+dHS01fqOHTuG7t27o2PHjhg7dixycnJsXuD2vPfee1i/fj3uv/9+DBs2DL/++ivef/99bN++HVu2bIGbm9stj0dGRgb69++Ps2fPolevXhgxYgQKCwtx4MABzJw5Ey+88EKZz7948SLi4uLw559/ol+/fhg1ahQyMzOxYsUKrFq1CsnJyejVq5fN8xITE7F582bceeediI+Px8qVKzFt2jQUFxfjzTffrFDsM2bMwOuvv64UcW5ubli6dCkOHTpkt/+lS5fQp08fHDhwAD179sQTTzyBgoIC/Pjjj+jfvz+WL1+OESNGVGjbt2LXrl14++230b9/f0yYMAFpaWlYuXIl9u3bh/3798Pd3V3p+9VXXyEhIQHe3t4YM2YMfH198csvv2DgwIEoLi6u0LxZtWoV7rrrLvj6+mL48OEICgrCxYsXsWfPHnz99dd4/PHHlb5bt27FsGHDcPnyZcTHx2PUqFHIzc1FWloaPvjgA6vCb9KkSfjwww/RpEkT5Qdz3333HcaNG6f0d1ZeXh569eoFHx8fjBkzBhcuXMDSpUsRHx+P1NRUdOjQAQAq9Nr76aefMHLkSGg0GgwfPhxNmzbFwYMH8dFHHyE5ORk7duxAgwYNlP6VnVeVUVxcjIEDB+LKlSsYM2YMCgsLsWzZMjzwwAPIzs62+370zjvvYOPGjRg+fDgGDRoErVZb5jYq85qu7Ng4Ir/+T58+jUGDBmHEiBG4cOECvvvuOyQnJ2P9+vWIjY21es6NGzcwaNAg5Obm4t5778XVq1exZMkSjBw5EklJSRg0aFCFxvTll1/G7Nmz0aRJE9xzzz3w8fHBb7/9hsTEROzYsQPLly+v0HrsuXbtGu644w5s27YNrVq1wrhx42AwGHD06FHMmzcPDz/8cIXGp6Iq8ppt3rw5pk6diunTpyM0NNTqtWk5729lXJYvX461a9fizjvvxFNPPYWCgoJbzkX+XNLpWHLdEkG1UmZmpgAg4uPjy+z3xRdfCABizJgxStvGjRsFADF16lSlbc6cOQKAeP/9923WkZOTY/W4b9++wtHUkuMCIF5//XW7fUJDQ0VoaKhV29SpUwUAodfrxZ49e5R2s9ksHnjgAQFAvPvuu2XmUDqGhIQEq/YuXboIAGL+/Pk2zzl16pTVYwCib9++Vm3jxo0TAMTLL79s1b5q1SoBQLRs2VKYTCalPSEhQQAQLVq0EFlZWUr7xYsXha+vr/Dy8hJFRUU2sZR29OhRodPpRJMmTcT58+eV9vz8fNGmTRu7scpj9tlnn1m1nz9/XjRt2lQEBASIa9eulbttOYfMzEybZfI+27hxo9Im7xcAYsmSJVb9x4wZIwCIxYsXW+Xg7e0tPD09RUZGhtJeXFws+vTpIwA4nCuW273nnnsEAJGenm4TZ3Z2tvLf169fF02aNBEajUasWbPGpq/lPNi8ebMAINq2bSvy8vKU9kuXLonWrVsLAGLLli1K+4IFCwQAsWDBApv1Opqv8lg99dRTVnPn888/FwDEhAkTrPqX9drLzs4W3t7eokmTJuLEiRNWyxYvXiwAiKefflppu5V5VVGhoaECgOjTp4/VHD916pTw9/cXBoNBnD59WmmX96mnp6fYu3evzfocjV9FX9OVHZuy9OjRQ2i1WpGUlGTVnpGRIby8vETHjh2t2uWxGD58uNVY/PrrrxV6D5etXbtW6X/lyhWl3Ww2iyeeeEIAECtWrFDay3qPtOf5559XPiuMRqPVsry8PHH58mXlsb15aO91KbP32qjoa1YI++/HssqOixyLRqMR69ats7vOyjAajaJjx45CkiSxb98+p9dXF/HUfx0XHBwMoOSUdUV4eHjYtDVs2LDS223cuDFeffXVSj/v4YcfRmRkpPJYkiTMnDkTWq3W7inVitq5cydSUlLQp08fPPbYYzbLQ0JCynx+cXExFi9eDD8/P7z22mtWy4YOHYo77rgDx44dw7Zt22yeO2XKFAQFBSmP/f39MXz4cFy+fBkZGRnlxv7tt9/CaDTiueeeQ2BgoNLu7e1tEwtQsq+XLl2Kv/3tb3j00UetlgUGBiIxMREXL17Er7/+Wu62b1WfPn1w//33W7WNHz8eQMnRVtnKlStRUFCA8ePHo3Xr1kq7m5tbhY82W7I3f/38/JT//vHHH3HmzBk89NBDGDx4sE1fy3mwaNEiACWnNH18fJT2Bg0aKEc0nZmTMk9PT7z11lvQaG6+XSckJECn01mNVXm++uorFBQUYNasWQgNDbVaNmrUKHTu3BlLlixR2io7r27FzJkzrY6Ih4SEYPLkySgqKrKKRfb444+jY8eOFVp3ZV7TlR0bR9LS0vD7778jISEB8fHxVstat26Nxx57TDlrUNp//vMfq7EYMGAAQkNDK7yP5R/qzJ8/H56enkq7JEmYPXs2JEm65V+fG41GzJ8/Hz4+Pvjggw9sjmT7+Pigfv36t7Tu8pT3mi3PrY7L8OHDMXDgwFuI2NqUKVOwb98+jBs3Tjn7QZXD49BUIXfddRdefvllTJw4EevXr8fgwYPRt29fhIWF3dL6oqKiKnTKtrTevXvbtIWGhqJp06Y4cOBAhU8Fl7Zz504AqPApttIOHz6M69evo3///nbvBtC/f3+sW7cO6enpNjnExMTY9Jc/RPPy8srd9p49ewDYHxt7bbt27YLJZEJRUZHda/qOHj2q5HTnnXeWu/1bUdGcy8otLi6uwqfSRo0ahe+//x7du3fHAw88gAEDBqB37942P7qqzDxIS0sDALvXKss/pEtPT69QfGVp3bq1TRGg0+nQqFGjCs0P2fbt2wEAO3bssHtruuvXryM7OxvZ2dnw9/ev9LyqLJ1Oh7i4OIfrlsfXUmV+iFKZfVnZsSlvPefPn7f72jp8+LDy/5ZFi6+vL1q0aGHTPyQkBH/88Ue58cvb9vT0xJdffml3uYeHh7L9yjp8+DAuX76MgQMHVunp/bJU9DVbnlsdl6r40dOnn36KWbNmoVOnTlVyGVBdxUK1jsvKygIABAQElNmvefPm2L59O6ZNm4bVq1dj2bJlAEp+/f7vf/8b9913X6W226hRo1uK19HzGjVqhBMnTuDy5cuV+rYty8/PBwA0adLkluKSr19yFJ98xNTedU7e3t42bXIBVpEfQMixWx71ktmL59KlSwCAbdu22T3CKyssLCx327eqojmXlZtWq63wvr7vvvuwcuVKvPfee/j000/x8ccfQ5Ik9O/fH//3f/+nXM9WmXlQUFAAjUZj97XTqFEjSJLk1HVtMntjBZSMV2V+ICPv948//rjMfoWFhfD396/0vKosf39/q6PEpdctb/9Wt1uZfVnZsSlvPatWrcKqVavKXI8lyyPylnQ6XYV/VHnp0iUYjcYy79t8q69pZ98fb0VFX7PludVxcXaOf/7553jqqafQsWNHrFu3rtqOONcFPPVfx8m/wOzatWu5fTt06IAVK1bg0qVL+OOPP/D666/j3LlzuP/++8sseOy51ZuSnz9/3mG7JEnw8vICAOUD0Gg02vS19wHo6+sLADhz5swtxSUXE47iO3funFW/qiR/yF24cMFmmb145Bief/55CCEc/rP8QY4jlR3nyiorN5PJVKlfYw8fPhybN29Gbm4u1qxZg0cffRSbNm3C4MGDlSOTlZkH3t7eMJvNuHjxos2yCxcuQAhhtb+re6zKI8eyb9++Mve7fOq7svOqsrKzs+0WYfK67RVvlXnfqOy+BCo+NuWt58MPPyxzPQkJCRXOo6K8vb3h5+dX5nYzMzNvad3Ovj8Ctzb/K/KaLc+tjoszfzjjs88+w+OPP4527dph/fr1t3TwhG5ioVqHHTlyBMuWLYPBYMDdd99d4ee5ubmhe/fumD59OubMmQMhBH755RdluXz9UlXcDqW03377zabtr7/+wqlTp9C+fXvltL98esreG2tZpxTXrl17S3FFRETA3d0du3btwtWrV22Wy18IKnoUoDKioqIA2B8be21du3aFJEkVPqVYlsqOc2WVldsff/xh90OvPF5eXhg8eDDmz5+PsWPH4vz589ixYweAys2DTp06AYDd2+3Y29/VPVZA2a89+ZfmFd3vlZ1XlWU0Gu3GIq9bHt9bVZl9Wdmxqe713Oq2c3JylEt3qlKbNm3g7e2NXbt2lXsbKkecmf9lvWaBkiLY0edNdY6LPZ999hkmTJiAtm3bYsOGDeWeraTysVCto7Zt24b4+HgUFRXhpZdeKveUTmpqqt3TmPLRD8vbCck/rrK8N2tV+eqrr7B3717lsRACr7zyCkwmk9WtSdq0aQMvLy/89NNPyuk4Od433njDZr1du3ZF165dsWXLFnz22Wc2y8s7kqDX6zF69GhkZ2dj1qxZVsuSkpKQnJyMli1bomfPnhVNtcIeeOABaLVavPfee1ZHvwoKCuzm2rhxY4wcORK///473nnnHeUeuJZ27Nhht+AuTT4SX/pHQytWrFDu6emM4cOHw9vbG19++SWOHDmitN+4caNSP+jZsmWL3Q8yebzk+fv3v/8dISEh+Oabb5CcnGzT33IeyEfFpk+fbvXayM/PV04zWh45i4mJgSRJWLJkidV9SI8ePVpl16+V9dobN24cvLy88Oqrr+LAgQM2y69evapcYwlUfl7dildeeQXFxcXK49OnT+ODDz6AwWDAqFGjnFp3ZV7TlR0bR7p164bY2FgsXrwYS5cutVluNpur5HVhz6RJkwCU/CjR3pmGc+fO3fJtxXQ6HSZMmID8/HxMnjzZ5rWUn5+PK1eulLkO+b3iq6++sjqS/scff+C///2vTf+KvmaBknl/+vRpu9utznEp7fPPP8eECRMQERGBDRs22L1shiqP16jWcseOHVMu6i8uLlb+hOq+ffug1Wrx2muvVegU79dff4158+ahT58+CA8Ph7e3Nw4ePIjVq1ejYcOGGDdunNL3b3/7G1asWIF7770XQ4YMgbu7O6KionDXXXc5nU98fDzi4uIwatQoBAQEYP369UhJSUH37t2t7ruo1+vxz3/+EzNnzkTnzp2VX9H//PPP6Nu3r90fTPz3v/9Fv3798Pjjj+Prr79GXFwcrl+/jgMHDiAtLa3c08xvvfUWNm/ejDfeeAO///47YmNjceLECSxfvhz16tXDggUL7F6T56yWLVvi9ddfx9SpUxEZGYmRI0dCp9Phu+++Q2RkpN07B3zyySfIyMjAiy++qOTq6+uLU6dOISUlBUePHsXZs2fL/DOxQEkhGR4ejoULF+LUqVPo1KkTDh06hA0bNmDo0KFYvXq1U7n5+Phgzpw5GDt2LLp27YpRo0bBx8cHv/zyCzw8PKzullCWSZMmISsrC7169ULz5s0hSRK2bt2KnTt3onv37sr9bQ0GA5YtW4bBgwdjyJAhGDx4MKKiolBQUID09HRcvXpVOfrTp08f/POf/8SHH36IDh064N5774UQAt999x1Onz6NSZMmoU+fPkoMwcHBGD16NL799lvExMRg8ODBuHDhAn744QcMHjwY3333nVNjBZT92gsICMDixYtx3333ISoqCoMHD0ZERASKiopw4sQJbN68GT169EBSUhKAW5tXlREUFITCwkJERkbirrvuUu6jmpOTgzlz5lTJ9ZAVfU1XdmzKsnjxYvTv3x+jRo3C+++/j86dO8PDwwMnT57EH3/8gYsXLzr9BxPsGTx4MKZMmYIZM2agZcuWGDx4MEJDQ5GTk4Njx47ht99+wxtvvIG2bdve0vr//e9/Y/v27fj666+xfft2DBkyBAaDAcePH0dSUhK2bt1a5hmj7t27o2fPntiwYQPi4uLQp08f/PXXX/jxxx9x11134YcffrDqX9HXLFAy75ctW4YRI0agU6dO0Gq1+Pvf/47IyMhqHxfZhg0b8Pjjj0MIgT59+mDu3Lk2faKjo6v1/tS1VtXf8YrUwPJ+pfI/Dw8PERQUJPr37y+mTJkijh07Zve59u6vt337djFhwgTRoUMH4evrKzw8PESrVq3E008/Lf766y+r59+4cUO8+OKLolmzZkKn01nds9TRPUwtlXUf1Y0bN4rPPvtMtG/fXhgMBhEUFCQmT54sCgoKbNZjMpnEtGnTRNOmTYVerxetW7cWH3zwgTh+/LjDGM6dOycmT54swsLChF6vFw0bNhSxsbHivffes+oHB/ftu3jxopg0aZIIDQ0Vbm5uwt/fX/zjH/+we/+8yt6DtDyfffaZaNeundDr9SIkJES88MIL4urVqw5jvXr1qnj77bdFTEyM8PT0FB4eHqJFixZixIgR4quvvhI3btyo0HYzMzPFiBEjhJeXl/D09BQDBgwQu3btKvM+qpW5v60QQvzwww8iJiZGGAwGERgYKB599FFx6dKlcueKbMmSJWLkyJEiPDxc1KtXT/j4+IioqCjx1ltvWd3/UXbs2DHxyCOPiJCQEOHm5iYCAwNFv379xFdffWXT98svvxRdu3YV9erVE/Xq1RNdu3YVX375pd2xunr1qpg0aZJo1KiRMBgMIjIyUvz3v/8t8z6qju4PaS/3sl57ssOHD4tHHnlEhIaGCr1eLxo0aCA6duwoJk2aJHbu3GmzncrOq4qQY7906ZJ4/PHHlfGIiooS3377rU3/8l4PZc2rir6mhaj82Dhy6dIl8dprr4kOHToIDw8PUb9+fdGqVSvxwAMPiO+//97uWNhT1n1xHVm3bp246667REBAgHBzcxONGzcWcXFxYsaMGeLkyZNKv8reR1WIkvsMv/vuuyI6OlrJq127duL5558Xubm55cadnZ0tHn74YdGwYUPh4eEhunfvLpKTk+3eR7Uyr9mzZ8+KkSNHCn9/f6HRaOzer7ii41LW/Y7LIj+vrH9lfe6RY5IQds77ERERVRP5z1E6+pO5REQyXqNKRERERKrEQpWIiIiIVIk/piIiIqesXLmyQn+Fq1+/fnb/khcRkSMsVImIyCkrV67EokWLKtS3X79+vDaViCqMP6YiIiIiIlWqVUdUzWYzsrKy4OXl5dSfPyMiIiKi6iGEwOXLlxEcHFzu/cVrVaGalZWFpk2bujoMIiIiIirHqVOnEBISUmafWlWoenl5AShJ3Nvb28XRlLhx4wbWrl2LQYMGwc3NzdXh1Goc69uHY337cKxvH4717cOxvn3UONYFBQVo2rSpUreVpVYVqvLpfm9vb1UVqvXq1YO3t7dqJkhtxbG+fTjWtw/H+vbhWN8+HOvbR81jXZHLNHkfVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqqapQbd68OSRJsvk3ceJEV4dGRERERLeZztUBWNq1axdMJpPyeP/+/bjjjjtw3333uTAqIiIiInIFVRWqAQEBVo9nz56N8PBw9O3b10UREREREZGrqKpQtVRcXIxvvvkGzz33HCRJstunqKgIRUVFyuOCggIAgNFohNFoBABoNBpoNBqYzWaYzWalr9xuMpkghCi3XavVQpIkZb2W7QCsjgTbazeZTJAkCTqdDkIIq/6SJEGr1drE6KhdLTnJqjqnkydPIjs7W+kvSRKEEFax22uX17dnzx6UJs8hy3XI7f7+/mjSpEm15lQb95O8DUmSak1OatxPlstrS05lxe7KnOR+8ryuDTnZi10NOcnbsHwvqek5ldfuqpxklvPa1TmV7l8W1RaqK1euRF5eHsaOHeuwz6xZszB9+nSb9rS0NHh6egIoOUobHh6OzMxMXLx4UekTEhKCkJAQHDlyBPn5+Up7WFgYAgMDsX//fly7dk1pj4iIgK+vL9LS0qwGPjIyEnq9HikpKVYxdOnSBcXFxUrRlJaWBp1Oh65duyI/Px+HDx9W+np4eCAqKgrZ2dk4fvy40u7j44O2bdsiKysLp0+fVtpdndPevXuVNq1WW6U57d69Gz/9/DPM/4vnt99+w5YtWzB69GiEhYUp/VetWoX09HRMmDAB/v7+AEpeSDExMejTpw+efvpp6PV6pf+8efNQUFCAxMREq5zeeecdBDZqhK8WLYKHh0e15FQb99PJkycBlMxrSZJqRU5q3U+WHwq1JSdAnftJoyn52YY8r2tDTmrdT/K8zsnJQXBwcK3ISaa2/dSyZUsA1vPa1TmlpaWhoiRR+hCTSsTHx0Ov1+Pnn3922MfeEdWmTZsiJycH3t7eAFz/raGoqAjJycmIj4+HTqfjt7tyckpNTUWPHj1w79QPENC8JQQAAQkaWE9Te+1aCPT1vIqNhZ4oPanlLZX+9eC5zGNYPuUp7Ny5E9HR0dWSU23cT0VFRUhKSlLmdW3ISa37yWg0Ijk5GUOHDlXir+k5lRW7K3O6ceMG1qxZo8zr2pCTvdjVkJM8rwcPHgyDwVArciqv3VU5mc1mrF692mpeuzqn3Nxc+Pn5IT8/X6nXHFHlEdW//voLv/76K77//vsy+xkMBhgMBpt2uSC0JA9yafKgVbS99HrLa5fXo9VqlT7yJQClOYqxsu3VnZO99qrKSZIkFBcXw695KwS1jbK7fUc0ZiNwegeC23SAWVOxqW1GyeUDGo3GJn7up7Lb5Vgt11fTc1LjfrL3YVFaTcupIjG6IifL0/2ll9fUnCrbfrtykue15XuJs7E7aq/r+0kuRO3NazXl5Iiqbk8lW7BgAQIDAzFs2DBXh0JERERELqK6QtVsNmPBggVISEioVMVNRERERLWL6grVX3/9FSdPnsT48eNdHQoRERERuZDqDlkOGjTI5hZCRERERFT3qO6IKhERERERwEKViIiIiFSKhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUSXWF6pkzZ/DQQw/Bz88PHh4e6NixI1JSUlwdFhERERHdZjpXB2ApNzcXPXv2RP/+/bFmzRoEBATg6NGjaNCggatDIyIiIqLbTFWF6ltvvYWmTZtiwYIFSluLFi0c9i8qKkJRUZHyuKCgAABgNBphNBoBABqNBhqNBmazGWazWekrt5tMJgghym3XarWQJElZr2U7AJhMpjLbTSYTJEmCTqeDEMKqvyRJ0Gq1NjE6aj99+jQuXboEIYRVjJIkQZKkSrdbrltuB6D09ff3R0hIiMNcqyInedyFENDr9dBAQDKbICQJkDSQhBmwiF1IGkCSrNols8X2zdYxCqnk5IEkrHMFhDIGlvu2KnNy9dyrrpzkbUiSVGtyUuN+slxeW3IqK3ZX5iT3k+d1bcjJXuxqyEnehuV7SU3Pqbx2V+Uks5zXrs6pdP+yqKpQ/emnnxAfH4/77rsPmzdvRpMmTfDUU0/hscces9t/1qxZmD59uk17WloaPD09AQABAQEIDw9HZmYmLl68qPQJCQlBSEgIjhw5gvz8fKU9LCwMgYGB2L9/P65du6a0R0REwNfXF2lpaVYDHxkZCb1eb3N5QpcuXVBcXIw9e/YoMel0OnTt2hX5+fk4fPiw0tfDwwNRUVHIzs7G8ePHlXYfHx+0bdsWWVlZOH36NADg2rVrmPPhh1j5ww8YNmwYoqOjlf6//fYbtmzZgtGjRyMsLExpX7VqFdLT0zFhwgT4+/sr7YsXL8bx48eRmJgIvV6vtM+bNw8FBQVITEwEAGi0WvTv1w+9e/dGcXEx9u7dq/TVarVO52S5n65cuYLExEQ0N1yHe3YGCjwDUOAZAL/8U3AvLlT653oFodCjARrlZkJnLPmyIuHmiyf40lFIFi++cw3DYdLo0CQ7w2o/ZQHw8/NDTk6Osg+rOidXzb3q3E8nT54EUDKvJUmqFTmpdT9ZfijUlpwAde4njabkC608r2tDTmrdT/K8zsnJQXBwcK3ISaa2/dSyZUsA1vPa1TmlpaWhoiRh+S7oYu7u7gCA5557Dvfddx927dqFyZMn49NPP0VCQoJNf3tHVJs2bYqcnBx4e3sDcP23hqKiIiQnJyM+Ph46nc7pb3fp6emIi4vDPdM+RKMWLSFZbFMAEJCggfUuddReskZH7SUXMF88cQzfTZ+Mbdu2ISYmxm6uVfmNNTU1FT169MATC1YhuE3HSh1R1ZiNaJ2VgoyQWAirkXF8RPV0xj58/NAg7Ny506ro57fwsnMqKipCUlKSMq9rQ05q3U9GoxHJyckYOnSoEn9Nz6ms2F2Z040bN7BmzRplXteGnOzFroac5Hk9ePBgGAyGWpFTee2uyslsNmP16tVW89rVOeXm5sLPzw/5+flKveaIqo6oms1mdOnSBTNnzgQAdOrUCfv373dYqBoMBhgMBpt2uSC0JA9yafKgVbS99HrLa5fXo9VqlT7yJQClOYrRsl2j0cBoNCKwRSsEt42yu82qZIaE4uJiaDQa5ZuYvdidyan0eoqLi2GGBKG5uQ9KClPb+CzbhUXBbflc6/6l20suidBoNDbxV1VOrpp71bmf5DbLeV1W7DUlJzXuJ3sfFqXVtJwqEqMrcrI83V96eU3NqbLttysneV5bvpc4G7uj9rq+n+RC1N68VlNOjqjqV/9BQUFo166dVVvbtm2V04xEREREVHeoqlDt2bMnMjKsryE8cuQIQkNDXRQREREREbmKqgrVZ599Ftu3b8fMmTNx7NgxfPvtt5g/fz4mTpzo6tCIiIiI6DZTVaHatWtX/PDDD1i8eDE6dOiAGTNm4P3338eDDz7o6tCIiIiI6DZT1Y+pAODOO+/EnXfe6eowiIiIiMjFVHVElYiIiIhIxkKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqqSqQnXatGmQJMnqX0REhKvDIiIiIiIX0Lk6gNLat2+PX3/9VXms06kuRCIiIiK6DVRXBep0OjRu3NjVYRARERGRi6muUD169CiCg4Ph7u6OuLg4zJo1C82aNbPbt6ioCEVFRcrjgoICAIDRaITRaAQAaDQaaDQamM1mmM1mpa/cbjKZIIQot12r1UKSJGW9lu0AYDKZymw3mUyQJAk6nQ5CCKv+kiRBq9XaxGiv3Ww23zzKLMyQLGIUkgRIGkjCDFi1awBJctxuto5dSCVXhEjCDA0E9Ho9zGazMh6lc3U2J+DmuAtRsj0NBCSzqVI5WeZRVk7WBCRJgtlsttq3VZmTq+dedeUkb0OSpFqTkxr3k+Xy2pJTWbG7MifL9zhJkmpFTvZiV0NO8jYs30tqek7ltbsqJ5nlvHZ1TqX7l0VVhWpsbCwWLlyINm3a4OzZs5g+fTp69+6N/fv3w8vLy6b/rFmzMH36dJv2tLQ0eHp6AgACAgIQHh6OzMxMXLx4UekTEhKCkJAQHDlyBPn5+Up7WFgYAgMDsX//fly7dk1pj4iIgK+vL9LS0qwGPjIyEnq9HikpKVYxdOnSBcXFxdizZ48Sk06nQ9euXZGfn4/Dhw8rfT08PBAVFYXs7GwcP35caffx8UHbtm2RlZWF06dPAwDy8/MRHx8PAGhw5Rw8r+Up/Qs8A1DgGQC//FNwLy5U2nO9glDo0QCNcjOhM94s7LN9m+G6vj6CLx2FZDFRzzUMh0mjQ5PsDPgZriMxMRE5OTkwmUwoLi7G3r17lb5ardbpnCz305UrV5CYmIjmhutwz86oVE4Sbr54ysrJUhYAPz8/5OTkKPuwqnNy1dyrzv108uRJACXzWpKkWpGTWveT5YdCbckJUOd+0mhKvtDK87o25KTW/STP65ycHAQHB9eKnGRq208tW7YEYD2vXZ1TWloaKkoSlu+CKpOXl4fQ0FC89957eOSRR2yW2zui2rRpU+Tk5MDb2xuA6781FBUVITk5GfHx8dDpdE5/u0tPT0dcXByeWJSEJhEdq/2IalbGPnw6bhi2bduGmJgYu7lW5TfW1NRU9OjRA08sWIXgNh0rlZPGbETrrBRkhMRC4Oa3yNI5WTqdsQ8fPzQIO3fuRHR0dLXkVFO/hZeVU1FREZKSkpR5XRtyUut+MhqNSE5OxtChQ5X4a3pOZcXuypxu3LiBNWvWKPO6NuRkL3Y15CTP68GDB8NgMNSKnMprd1VOZrMZq1evtprXrs4pNzcXfn5+yM/PV+o1R1R1RLU0X19ftG7dGseOHbO73GAwwGAw2LTLBaEleZBLkwetou2OftzlqF1ej1arVfrIlwCU5ihGy3aNRnNzQkgaCMmm+/+KuEq0a+znKiQtzJBQXFwMjUajfBOzF7szOZVeT3FxMcyQrOKqSE7C4ohqWTmV2iKEENBoNDbxV1VOrpp71bmf5DbLeV1W7DUlJzXuJ3sfFqXVtJwqEqMrcrI83V96eU3NqbLttysneV5bvpc4G7uj9rq+n+RC1N68VlNOjqjq9lSlXblyBX/++SeCgoJcHQoRERER3WaqKlRfeOEFbN68GSdOnMDvv/+Ou+++G1qtFqNHj3Z1aERERER0m6nq1P/p06cxevRo5OTkICAgAL169cL27dsREBDg6tCIiIiI6DZTVaG6ZMkSV4dARERERCqhqlP/REREREQyFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKqkc3YF586dwxdffIHdu3cjPz8fZrPZarkkSVi/fr2zmyEiIiKiOsapQnXv3r3o168frl27hjZt2mDfvn1o164d8vLycObMGYSHh6Np06ZVFSsRERER1SFOnfp/6aWXUL9+fWRkZODXX3+FEAIffPABTp06haVLlyI3NxezZ8+uqliJiIiIqA5xqlDdtm0bJkyYgGbNmkGjKVmVfOr/vvvuw4MPPojExETnoyQiIiKiOsepQtVsNqNRo0YAAF9fX2i1Wly6dElZ3rFjR6SmpjoXIRERERHVSU4Vqi1atEBmZmbJijQatGjRAr/++quy/Pfff4evr69TARIRERFR3eRUoTpo0CAsX75cefzkk0/i888/x8CBAzFgwAAsWrQIDzzwgNNBEhEREVHd49Sv/l999VWMHj0aN27cgJubG5555hkUFhbiu+++g1arxZQpU/DKK69UVaxEREREVIc4Vag2aNAAMTExymNJkvDaa6/htddeczowIiIiIqrb+JepiIiIiEiVKnVEdfz48ZAkCfPnz4dWq8X48ePLfY4kSfjiiy9uOUAiIiIiqpsqVahu2LABGo0GZrMZWq0WGzZsgCRJZT6nvOVERERERPZUqlA9ceJEmY+JiIiIiKoKr1ElIiIiIlVyqlDdvXs3PvnkE4fLP/nkE6SnpzuzCSIiIiKqo5wqVF999VWrv0RV2oYNG3irKiIiIiK6JU4Vqqmpqejdu7fD5b1790ZKSoozmyAiIiKiOsqpQvXy5cvQ6Rz/Hkuj0SA/P9+ZTRARERFRHeVUodqqVSusXbvW4fKkpCSEhYU5swkiIiIiqqOcKlQfeeQRrFq1Cs899xzy8vKU9ry8PDz77LNISkrCI488ckvrnj17NiRJwjPPPONMiERERERUQ1XqPqqlTZo0Cenp6Xj//fcxZ84cBAcHAwCysrJgNpsxZswYPPvss5Ve765duzBv3jxERkY6Ex4RERER1WBOHVGVJAkLFizA+vXr8cQTT6BDhw7o0KEDnnzySWzYsAGLFi2q9F+munLlCh588EF89tlnaNCggTPhEREREVEN5tQRVVn//v3Rv3//qlgVJk6ciGHDhmHgwIF44403yuxbVFSEoqIi5XFBQQEAwGg0wmg0Aij5QZf8Z1/NZrPSV243mUwQQpTbrtVqIUmSsl7LdgAwmUxltptMJkiSBJ1OByGEVX9JkqDVam1itNduNptv/oBNmCFZxCgkCZA0kIQZsGrXAJLkuN1sHbuQSr6/SMIMDQT0ej3MZrMyHqVzdTYn4Oa4C1GyPQ0EJLOpUjlZ5lFWTtYEJEmC2Wy22rdVmZOr51515SRvQ5KkWpOTGveT5fLaklNZsbsyJ8v3OPkgS03PyV7sashJ3oble0lNz6m8dlflJLOc167OqXT/slRJoVpVlixZgt27d2PXrl0V6j9r1ixMnz7dpj0tLQ2enp4AgICAAISHhyMzMxMXL15U+oSEhCAkJARHjhyxujNBWFgYAgMDsX//fly7dk1pj4iIgK+vL9LS0qwGPjIyEnq93uY2XF26dEFxcTH27NmjxKTT6dC1a1fk5+fj8OHDSl8PDw9ERUUhOzsbx48fV9p9fHzQtm1bZGVl4fTp0wCA/Px8xMfHAwAaXDkHz2t5Sv8CzwAUeAbAL/8U3IsLlfZcryAUejRAo9xM6Iw3C/ts32a4rq+P4EtHIVlM1HMNw2HS6NAkOwN+hutITExETk4OTCYTiouLsXfvXqWvVqt1OifL/XTlyhUkJiaiueE63LMzKpWThJsvnrJyspQFwM/PDzk5Oco+rOqcXDX3qnM/nTx5EkDJvJYkqVbkpNb9ZPmhUFtyAtS5nzSaki+08ryuDTmpdT/J8zonJwfBwcG1IieZ2vZTy5YtAVjPa1fnlJaWhoqShOW7YCUJITB//nx88cUXOH78OHJzc203YKfStufUqVPo0qUL1q1bp1yb2q9fP0RHR+P999+3+xx7R1SbNm2KnJwceHt7A3D9t4aioiIkJycjPj4eOp3O6W936enpiIuLwxOLktAkomO1H1HNytiHT8cNw7Zt2xATE2M316r8xpqamooePXrgiQWrENymY6Vy0piNaJ2VgoyQWAhYX3Li6Ijq6Yx9+PihQdi5cyeio6OrJaea+i28rJyKioqQlJSkzOvakJNa95PRaERycjKGDh2qxF/TcyordlfmdOPGDaxZs0aZ17UhJ3uxqyEneV4PHjwYBoOhVuRUXrurcjKbzVi9erXVvHZ1Trm5ufDz80N+fr5Srzni1BHVF198Ee+99x6io6Px0EMPOXVNaWpqKi5cuIDOnTsrbSaTCVu2bMFHH32EoqIiJUGZwWCAwWCwWZdcEFqSB7m00ussr93RfWMdtcvr0Wq1Sh/5EoDSHMVo2a7RaG5OCEkDYecS4JIirhLtGvu5CkkLMyQUFxdDo9Eo38Tsxe5MTqXXU1xcDDMkq7gqkpOwOKJaVk6ltgghBDQajU38VZWTq+Zede4nuc1yXpcVe03JSY37yd6HRWk1LaeKxOiKnCxP95deXlNzqmz77cpJnteW7yXOxu6ova7vJ7kQtTev1ZSTI04VqosWLcK9996LZcuWObMaAMCAAQOwb98+q7Zx48YhIiIC//rXvxwODhERERHVTk4VqteuXcPAgQOrJBAvLy906NDBqs3T0xN+fn427URERERU+zl1e6oBAwZU+IdPRERERESV4VSh+sknn2D79u2YOXMmcnJyqiomxaZNmxz+kIqIiIiIajenCtU2bdrg+PHjmDJlCgIDA+Hp6Qlvb2+rfz4+PlUVKxERERHVIU5do3rvvfdW+i9PERERERFVhFOF6sKFC6soDCIiIiIia06d+iciIiIiqi5OF6onT57EE088gTZt2qBBgwbYsmULgJI/9Tdp0qRK/ZksIiIiIiKZU6f+Dx48iN69e8NsNiM2NhbHjh1T/mqSv78/tm7disLCQnzxxRdVEiwRERER1R1O/wlVX19fbN++HZIkITAw0Gr5sGHDsHTpUqcCJCIiIqK6yalT/1u2bMGTTz6JgIAAu7/+b9asGc6cOePMJoiIiIiojnKqUDWbzahXr57D5RcvXoTBYHBmE0RERERURzlVqHbu3BmrVq2yu8xoNGLJkiXo3r27M5sgIiIiojrKqUL15ZdfRlJSEp588kns378fAHD+/Hn8+uuvGDRoEA4dOoSXXnqpSgIlIiIiorrFqR9TDRkyBAsXLsTkyZMxf/58AMBDDz0EIQS8vb3x1VdfoU+fPlUSKBERERHVLU4VqgAwZswY3HPPPVi7di2OHTsGs9mM8PBwxMfHw8vLqypiJCIiIqI6yOlCFQA8PT1x9913V8WqiIiIiIgAOFmonjx5skL9mjVr5sxmiIiIiKgOcqpQbd68ud37p5ZmMpmc2QwRERER1UFOFapffvmlTaFqMplw4sQJfPXVVwgMDMTEiROdCpCIiIiI6ianCtWxY8c6XPavf/0LsbGxyM/Pd2YTRERERFRHOXUf1bJ4enpi3Lhx+M9//lNdmyAiIiKiWqzaClWg5E+snjt3rjo3QURERES1VJXcnqq0goICbNmyBe+88w46depUHZsgIiIiolrOqUJVo9E4/NW/EALNmjXDJ5984swmiIiIiKiOcqpQff31120KVUmS0KBBA4SHh2PQoEHQ6arloC0RERER1XJOVZHTpk2rojCIiIiIiKw59WMqo9GIgoICh8sLCgpgNBqd2QQRERER1VFOFaqTJk1Cjx49HC7v2bMnnn/+eWc2QURERER1lFOFalJSEv7xj384XP6Pf/wDq1evdmYTRERERFRHOVWoZmVloUmTJg6XBwcH48yZM85sgoiIiIjqKKcKVT8/P2RkZDhcfujQIXh7ezuzCSIiIiKqo5wqVAcPHox58+YhLS3NZtnu3bsxf/58DBkyxJlNEBEREVEd5dTtqWbMmIGkpCR069YNf//739G+fXsAwP79+/Hzzz8jMDAQM2bMqJJAiYiIiKhucapQDQ4ORkpKCl566SX8+OOP+OGHHwAA3t7eePDBBzFz5kwEBwdXSaBEREREVLc4/WejgoKCsGjRIgghcPHiRQBAQECAwz+tSkRERERUEVX2900lSYLBYED9+vVZpBIRERGR05z6MRUApKSkYPDgwahXrx78/PywefNmAEB2djaGDx+OTZs2ObsJIiIiIqqDnCpUf//9d/Tq1QtHjx7FQw89BLPZrCzz9/dHfn4+5s2b53SQRERERFT3OFWovvLKK2jbti0OHjyImTNn2izv378/duzY4cwmiIiIiKiOcqpQ3bVrF8aNGweDwWD3utQmTZrg3LlzzmyCiIiIiOoopwpVNzc3q9P9pZ05cwb169d3ZhNEREREVEc5Vah2794dK1assLussLAQCxYsQN++fZ3ZBBERERHVUU4VqtOnT0dKSgqGDRuGNWvWAAD27NmDzz//HDExMbh48SKmTJlSJYESERERUd3i1H1UY2NjsXr1ajz55JN4+OGHAQDPP/88ACA8PByrV69GZGSk81ESERERUZ1zy4WqEAKXL19Gjx49kJGRgfT0dBw9ehRmsxnh4eGIiYmp9I3/586di7lz5+LEiRMAgPbt2+P111/HkCFDbjVMIiIiIqqhbrlQLS4uRsOGDTFz5ky8+OKLiI6ORnR0tFPBhISEYPbs2WjVqhWEEFi0aBGGDx+OtLQ0tG/f3ql1ExEREVHNcsuFqsFgQOPGjWEwGKosmLvuusvq8Ztvvom5c+di+/btdgvVoqIiFBUVKY8LCgoAAEajEUajEQCg0Wig0WhgNput7lAgt5tMJgghym3XarWQJElZr2U7AJhMpjLbTSYTJEmCTqeDEMKqvyRJ0Gq1NjHaazebzdDp/rfbhBmSRYxCkgBJA0mYAat2DSBJjtvN1rELqeTSZUmYoYGAXq+H2WxWxqN0rs7mBNwcdyFKtqeBgGQ2VSonyzzKysmagCRJMJvNVvu2KnNy9dyrrpzkbUiSVGtyUuN+slxeW3IqK3ZX5mT5HiefEazpOdmLXQ05yduwfC+p6TmV1+6qnGSW89rVOZXuXxanrlEdO3YsvvrqKzz55JPQ6/XOrMqGyWTC8uXLUVhYiLi4OLt9Zs2ahenTp9u0p6WlwdPTEwAQEBCA8PBwZGZm4uLFi0qfkJAQhISE4MiRI8jPz1faw8LCEBgYiP379+PatWtKe0REBHx9fZGWlmY18JGRkdDr9UhJSbGKoUuXLiguLsaePXuUmHQ6Hbp27Yr8/HwcPnxY6evh4YGoqChkZ2fj+PHjSruPjw/atm2LrKwsnD59GgCQn5+P+Ph4AECDK+fgeS1P6V/gGYACzwD45Z+Ce3Gh0p7rFYRCjwZolJsJnfFmYZ/t2wzX9fURfOkoJIuJeq5hOEwaHZpkZ8DPcB2JiYnIycmByWRCcXEx9u7dq/TVarVO52S5n65cuYLExEQ0N1yHe3ZGpXKScPPFU1ZOlrIA+Pn5IScnR9mHVZ2Tq+Zede6nkydPAiiZ15Ik1Yqc1LqfLD8UaktOgDr3k0ZT8oVWnte1ISe17id5Xufk5CA4OLhW5CRT235q2bIlAOt57eqc0tLSUFGSsHwXrKSlS5dixowZKCoqwtixY9G8eXN4eHjY9LvnnnsqvM59+/YhLi4O169fR/369fHtt99i6NChdvvaO6LatGlT5OTkwNvbG4DrvzUUFRUhOTkZ8fHx0Ol0Tn+7S09PR1xcHJ5YlIQmER2r/YhqVsY+fDpuGLZt24aYmBi7uVblN9bU1FT06NEDTyxYheA2HSuVk8ZsROusFGSExELA+vpoR0dUT2fsw8cPDcLOnTutLl3ht/CycyoqKkJSUpIyr2tDTmrdT0ajEcnJyRg6dKgSf03PqazYXZnTjRs3sGbNGmVe14ac7MWuhpzkeT148GAYDIZakVN57a7KyWw2Y/Xq1Vbz2tU55ebmws/PD/n5+Uq95ohTR1RHjx6t/Lej21BJkmQTaFnatGmD9PR05OfnY8WKFUhISMDmzZvRrl07m74Gg8HupQdyQWhJHuTS5EGraHvp9ZbXLq9Hq9UqfeRLAEpzFKNlu0ajuTkhJA2End+rlRRxlWjX2M9VSFqYIaG4uBgajUb5JmYvdmdyKr2e4uJimCFZxVWRnITFEdWyciq1RQghoNFobOKvqpxcNfeqcz/JbZbzuqzYa0pOatxP9j4sSqtpOVUkRlfkZHm6v/TymppTZdtvV07yvLZ8L3E2dkftdX0/yYWovXmtppwcqXSh+sorr2DUqFGIjIzExo0bK/v0cun1euUwdUxMDHbt2oUPPvgA8+bNq/JtEREREZF6VbpQnT17Njp06IDIyEj07dsXOTk5CAwMxLp16/C3v/2tygM0m81Wp/eJiIiIqG5w6tS/zInLXK28/PLLGDJkCJo1a4bLly/j22+/xaZNm5CcnFwl6yciIiKimqNKCtWqcuHCBTz88MM4e/YsfHx8EBkZieTkZNxxxx2uDo2IiIiIbjNVFapffPGFq0MgIiIiIpW4pUL1xIkT2L17NwAo99k6evQofH197fbv3LnzrUVHRERERHXWLRWqU6ZMsbkd1VNPPWXTTwhR6dtTEREREREBt1CoLliwoDriICIiIiKyUulCNSEhoTriICIiIiKyYvvnCIiIiIiIVICFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVVFWozpo1C127doWXlxcCAwMxYsQIZGRkuDosIiIiInIBVRWqmzdvxsSJE7F9+3asW7cON27cwKBBg1BYWOjq0IiIiIjoNtO5OgBLSUlJVo8XLlyIwMBApKamok+fPi6KioiIiIhcQVWFamn5+fkAgIYNG9pdXlRUhKKiIuVxQUEBAMBoNMJoNAIANBoNNBoNzGYzzGaz0lduN5lMEEKU267VaiFJkrJe2ZkzZ5CdnW3VFwAkSQIAmEwmAEBaWpqybiGEVX9JkiBJUoXaMzIyoNP9b7cJMySL/kKSAEkDSZgBq3YNIEmO280mq9iFVHKgXRJmaCCg1+thNpuVGOScZDqdDkIIq3ZJkqDVam3G3VG75djo9XpoICCZTZXKyTKPsnKyJiBJEsxms9W+rcqcqmvuabVaALb7w1F7Veckb0OSpFqTkxr3k+Xy2pJTWbG7MifL9zj5Pbym52QvdjXkJG/D8r2kpudUXrurcpJZzmtX51S6f1lUW6iazWY888wz6NmzJzp06GC3z6xZszB9+nSb9rS0NHh6egIAAgICEB4ejszMTFy8eFHpExISgpCQEBw5ckQpiAEgLCwMgYGB2L9/P65du6a0R0REwNfXF2lpacrAX7t2DQ8nJODC+fNITEy0iuGdd96Bt7c3nnzyScTExOCXX37B9evX8c477yAsLAyjR49W+mZnZ2PevHmIjo7GsGHDlPbjx49j8eLF6NOnD3r37q20x8fHAwAaXDkHz2t5SnuBZwAKPAPgl38K7sU3L5fI9QpCoUcDNMrNhM54s7DP9m2G6/r6CL50FJLFRD3XMBwmjQ5NsjPgZ7iOxMRE5OTkwGQyobi4GHv37lX6arVadO3aFfn5+Th8+LDS7uHhgaioKGRnZ+P48eNKu4+PD9q2bYusrCycPn1aaZf305UrV5CYmIjmhutwz86oVE4Sbr54ysrJUhYAPz8/5OTkICUlpVpyqo65BwCRkZHQ6/VK3LIuXbpU+346efIkgJLXmiRJtSInte4nyw+F2pIToM79pNGUfKGV53VtyEmt+0me1zk5OQgODq4VOcnUtp9atmwJwHpeuzqntLQ0VJQkSh8KVIknn3wSa9aswdatWxESEmK3j70jqk2bNkVOTg68vb0BVO+3hvT0dHTr1g33zfgEjVu0tIpN3pIbBPp6XsXmwnowQYIZEgBhc3GwGRIkCEjltB/9YxPWffoWnliUhCYRHav9iGpWxj58Om4Ytm3bhpiYGADV+401NTUVPXr0wBMLViG4TcdK5aQxG9E6KwUZIbE2I+noiOrpjH34+KFB2LlzJ6Kjo6slp5r6LbysnIqKipCUlIT4+HjodLpakZNa95PRaERycjKGDh2qxF/TcyordlfmdOPGDaxZs0aZ17UhJ3uxqyEneV4PHjwYBoOhVuRUXrurcjKbzVi9erXVvHZ1Trm5ufDz80N+fr5SrzmiyiOqTz/9NH755Rds2bLFYZEKAAaDAQaDwaZdp9PdPD3+P/IglyYPWkXbLdcrn6oObNEKQW2j7PbXmI3A6R1o3KYjzBrnh/tc5rGbE0LSQJSubCEXcZVo19jPVUhamCGhuLgYGo1G+SZWemyBkheDvXZH4+6oXZJKtmeGZBVXRXISFkdUy8qp1BYhhIBGo7GJv6pyqo65d6vtVZmTHKvl+mp6TmrcT/Y+LEqraTlVJEZX5GR5ur/08pqaU2Xbb1dO8ry2fC9xNnZH7XV9P8mFqL15raacHFFVoSqEwD//+U/88MMP2LRpE1q0aOHqkIiIiIjIRVRVqE6cOBHffvstfvzxR3h5eeHcuXMASq6x8PDwcHF0RERERHQ7qeo+qnPnzkV+fj769euHoKAg5d/SpUtdHRoRERER3WaqOqKq0t91EREREZELqOqIKhERERGRjIUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVElVheqWLVtw1113ITg4GJIkYeXKla4OiYiIiIhcRFWFamFhIaKiovDxxx+7OhQiIiIicjGdqwOwNGTIEAwZMsTVYRARERGRCqiqUK2soqIiFBUVKY8LCgoAAEajEUajEQCg0Wig0WhgNpthNpuVvnK7yWSCEKLcdq1WC0mSlPUCgNlshiRJAAQks8kqNiGVHKyW2yWzCRIkCI0WEAKSuBkLJKmkv8N2M6T/xaKVAJ3uf7vNor1kmxIgaUrWYdWuASTJcbuj2IUZGgjo9XqYzWZlPEwm6/46nQ5CCKt2SZKg1Wptxt1RuzzuQpRsT/O/Ma1MTpZ5lJWTNQFJkmA2m632bVXmVB1zT24HbPeHo/aqzknehiRJtSYnNe4ny+W1JaeyYndlTpbvcSXv7TU/J3uxqyEneRuW7yU1Pafy2iub05kzZ5CdnW21Dnn9QgirdkmSIEmS3Xb5cVpaGjQajcP+/v7+aNas2W2Ze6X7l6VGF6qzZs3C9OnTbdrT0tLg6ekJAAgICEB4eDgyMzNx8eJFpU9ISAhCQkJw5MgR5OfnK+1hYWEIDAzE/v37ce3aNaU9IiICvr6+SEtLUwY+Pz8ffn5+0ABokp1hFcMZ/zbQmo0IunQMABB86RjMGi3O+EfA/UYh/PNOKn2NOgPONQyH5/U8NLh8Vmm/rvdEtm8ovK/mwLuwJHavpg1QEB8PAGhw5Rw8r+Up/Qs8A1DgGQC//FNwLy5U2nO9glDo0QCNcjOhM94s7LN9m+G6vj6CLx2FZPHiO9cwHCaNDk2yM+BnuI7ExETk5OTAZDKhuLgYe/fuVfpqtVp07doV+fn5OHz4sNLu4eGBqKgoZGdn4/jx40q7j48P2rZti6ysLJw+fVppl/fTlStXkJiYiOaG63DPzqhUThJuvnjKyslSFgA/Pz/k5OQgJSWlWnKqjrkHAJGRkdDr9Urcsi5dulT7fjp5smT+pqWlQZKkWpGTWveT5YdCbckJUOd+kj/E5XldG3JS636S53VOTg6Cg4NrRU6yqthP165dw9333AM3nQ4TJkxQ2ouLi/HOO+8gLCwMo0ePVtqzs7Mxb948REdHY9iwYUr78ePHsXLlSixevBi//PKLUminp6dj1apVGDZsGKKjowEAGq0W99x9N6Kjo6t97qWlpaGiJFG6VFcJSZLwww8/YMSIEQ772Dui2rRpU+Tk5MDb2xtA9X4TSk9PR7du3TDxm7UIadPRKjb5CJ7WVIzWWSk4EtwFZo3O6SOqe5J/wPKp/8QTi5LQJKJjtR9RzcrYh0/HDcO2bdsQExMDoHq/saampqJHjx54YsEqBLfpWKmcNGYjWmelICMkFgKSw5wsnc7Yh48fGoSdO3cqL9aqzqk2Hi0pKipCUlIS4uPjodPpakVOat1PRqMRycnJGDp0qBJ/Tc+prNhdmdONGzewZs0aZV7Xhpzsxa6GnOR5PXjwYBgMhlqRU3ntlckpPT0dXbt2xcg35qJxi5ZW/c0oOZNb+kdG5pLztqU+/QAJQH/PQmwurAfT/5YKAMKi/8UTx/Dd9Mn4/fffERMTU+1zLzc3F35+fsjPz1fqNUdq9BFVg8EAg8Fg067T6W6eHv8feZBLkwetou2W65UPv0M+pW+H3C402pt9JAlCstPfYbsG4n8zzyQsDplbtFttU9LAZqaW1e4odkkLMyQUFxdDo9EoRxhKj21J6JLddkfj7qhdkkq2Zy41phXJSVgcUS0rp1JbhBACGo3GJv6qyqk65t6ttldlTnKsluur6TmpcT/Z+7AorablVJEYXZGT5en+0strak6Vbb9dOcnz2vK9xNnYHbXXxP0kbyewRSsEtY2y27+iNGYjcHoHGrfpCLPG/rblz/rSl7yUVp37yRFV/eqfiIiIiEimqiOqV65cwbFjx5THmZmZSE9PR8OGDdGsWTMXRkZEREREt5uqCtWUlBT0799fefzcc88BABISErBw4UIXRUVERERErqCqQrVfv342t2EgIiIiorqJ16gSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVSZaH68ccfo3nz5nB3d0dsbCx27tzp6pCIiIiI6DZTXaG6dOlSPPfcc5g6dSp2796NqKgoxMfH48KFC64OjYiIiIhuI52rAyjtvffew2OPPYZx48YBAD799FOsWrUKX375JV566SWrvkVFRSgqKlIe5+fnAwAuXboEo9EIANBoNNBoNDCbzTCbzUpfud1kMkEIUW67VquFJEnKegGgoKAAAHDm0F7cuHrFKjb5mToINPW8hr/StsMECQIS8L//te4vQYJAaaXbL538E1qt1u42K7OemzE6agckADknj8PNzQ2pqam4fPlyyXJh3V+j0UAIYdUuSRIkSap0e0ZGBtzc3HDu8M38KpqT9n9jnZm2w6a3ZU6WLvx1HACQmpqq7M+qzql0u1arVdoqsx7L+Su3A7b7o3S7PP+rMieTyYSrV6/it99+g0ajsekvb7O6cpLJOVmuq6r2U1ntWq3W5j2iqnOS281mM65evYpt27Yp8VRHTmXtv6rOqSLbrM79J8dpmZecp+W8djYny/ay5kxV5VT6M07uU5X7yVF7ZfefPNZbt261ek8sKyfL2Esvq46cSrfL733Orqcir6ejR48CcFRfVK6OkAA09byq1CH2+suf9ZcvX0ZBQYFTtZHcDsBqvCzbc3NzbXJ2RBIV6XWbFBcXo169elixYgVGjBihtCckJCAvLw8//vijVf9p06Zh+vTptzlKIiIiInLWqVOnEBISUmYfVR1Rzc7OhslkQqNGjazaGzVqhMOHD9v0f/nll/Hcc88pj81mMy5dugQ/Pz/lG4qrFRQUoGnTpjh16hS8vb1dHU6txrG+fTjWtw/H+vbhWN8+HOvbR41jLYTA5cuXERwcXG5fVRWqlWUwGGAwGKzafH19XRNMOby9vVUzQWo7jvXtw7G+fTjWtw/H+vbhWN8+ahtrHx+fCvVT1Y+p/P39odVqcf78eav28+fPo3Hjxi6KioiIiIhcQVWFql6vR0xMDNavX6+0mc1mrF+/HnFxcS6MjIiIiIhuN9Wd+n/uueeQkJCALl26oFu3bnj//fdRWFio3AWgpjEYDJg6darNJQpU9TjWtw/H+vbhWN8+HOvbh2N9+9T0sVbVr/5lH330Ed555x2cO3cO0dHRmDNnDmJjY10dFhERERHdRqosVImIiIiIVHWNKhERERGRjIUqEREREakSC1UiIiIiUiUWqkRERESkSnW+UJ07dy4iIyOVv9gQFxeHNWvWKMuvX7+OiRMnws/PD/Xr18e9995r8wcJTp48iWHDhqFevXoIDAxEYmIijEajVZ9Nmzahc+fOMBgMaNmyJRYuXGgTy8cff4zmzZvD3d0dsbGx2Llzp9XyisRSk8yePRuSJOGZZ55R2jjeVWPatGmQJMnqX0REhLKc41y1zpw5g4ceegh+fn7w8PBAx44dkZKSoiwXQuD1119HUFAQPDw8MHDgQBw9etRqHZcuXcKDDz4Ib29v+Pr64pFHHsGVK1es+uzduxe9e/eGu7s7mjZtirffftsmluXLlyMiIgLu7u7o2LEjVq9ebbW8IrGoVfPmzW3mtSRJmDhxIgDO66pkMpkwZcoUtGjRAh4eHggPD8eMGTNg+ftrzuuqcfnyZTzzzDMIDQ2Fh4cHevTogV27dinL6/w4izrup59+EqtWrRJHjhwRGRkZ4pVXXhFubm5i//79QgghnnjiCdG0aVOxfv16kZKSIrp37y569OihPN9oNIoOHTqIgQMHirS0NLF69Wrh7+8vXn75ZaXP8ePHRb169cRzzz0nDh48KD788EOh1WpFUlKS0mfJkiVCr9eLL7/8Uhw4cEA89thjwtfXV5w/f17pU14sNcnOnTtF8+bNRWRkpJg8ebLSzvGuGlOnThXt27cXZ8+eVf5dvHhRWc5xrjqXLl0SoaGhYuzYsWLHjh3i+PHjIjk5WRw7dkzpM3v2bOHj4yNWrlwp9uzZI/7+97+LFi1aiGvXril9Bg8eLKKiosT27dvFb7/9Jlq2bClGjx6tLM/PzxeNGjUSDz74oNi/f79YvHix8PDwEPPmzVP6bNu2TWi1WvH222+LgwcPitdee024ubmJffv2VSoWtbpw4YLVnF63bp0AIDZu3CiE4LyuSm+++abw8/MTv/zyi8jMzBTLly8X9evXFx988IHSh/O6aowcOVK0a9dObN68WRw9elRMnTpVeHt7i9OnTwshOM51vlC1p0GDBuLzzz8XeXl5ws3NTSxfvlxZdujQIQFA/PHHH0IIIVavXi00Go04d+6c0mfu3LnC29tbFBUVCSGEePHFF0X79u2ttnH//feL+Ph45XG3bt3ExIkTlccmk0kEBweLWbNmCSFEhWKpKS5fvixatWol1q1bJ/r27asUqhzvqjN16lQRFRVldxnHuWr961//Er169XK43Gw2i8aNG4t33nlHacvLyxMGg0EsXrxYCCHEwYMHBQCxa9cupc+aNWuEJEnizJkzQgghPvnkE9GgQQNl/OVtt2nTRnk8cuRIMWzYMKvtx8bGigkTJlQ4lppk8uTJIjw8XJjNZs7rKjZs2DAxfvx4q7Z77rlHPPjgg0IIzuuqcvXqVaHVasUvv/xi1d65c2fx6quvcpyFEHX+1L8lk8mEJUuWoLCwEHFxcUhNTcWNGzcwcOBApU9ERASaNWuGP/74AwDwxx9/oGPHjmjUqJHSJz4+HgUFBThw4IDSx3Idch95HcXFxUhNTbXqo9FoMHDgQKVPRWKpKSZOnIhhw4bZjAnHu2odPXoUwcHBCAsLw4MPPoiTJ08C4DhXtZ9++gldunTBfffdh8DAQHTq1AmfffaZsjwzMxPnzp2zytHHxwexsbFW4+3r64suXboofQYOHAiNRoMdO3Yoffr06QO9Xq/0iY+PR0ZGBnJzc5U+Ze2TisRSUxQXF+Obb77B+PHjIUkS53UV69GjB9avX48jR44AAPbs2YOtW7diyJAhADivq4rRaITJZIK7u7tVu4eHB7Zu3cpxBq9RBQDs27cP9evXh8FgwBNPPIEffvgB7dq1w7lz56DX6+Hr62vVv1GjRjh37hwA4Ny5c1ZvevJyeVlZfQoKCnDt2jVkZ2fDZDLZ7WO5jvJiqQmWLFmC3bt3Y9asWTbLON5VJzY2FgsXLkRSUhLmzp2LzMxM9O7dG5cvX+Y4V7Hjx49j7ty5aNWqFZKTk/Hkk09i0qRJWLRoEYCb41XeOAQGBlot1+l0aNiwYZXsE8vl5cVSU6xcuRJ5eXkYO3YsAL5/VLWXXnoJo0aNQkREBNzc3NCpUyc888wzePDBBwFwXlcVLy8vxMXFYcaMGcjKyoLJZMI333yDP/74A2fPnuU4A9BV25prkDZt2iA9PR35+flYsWIFEhISsHnzZleHVeucOnUKkydPxrp162y+PVLVko96AEBkZCRiY2MRGhqKZcuWwcPDw4WR1T5msxldunTBzJkzAQCdOnXC/v378emnnyIhIcHF0dVeX3zxBYYMGYLg4GBXh1IrLVu2DP/973/x7bffon379khPT8czzzyD4OBgzusq9vXXX2P8+PFo0qQJtFotOnfujNGjRyM1NdXVoakCj6gC0Ov1aNmyJWJiYjBr1ixERUXhgw8+QOPGjVFcXIy8vDyr/ufPn0fjxo0BAI0bN7b5Jaf8uLw+3t7e8PDwgL+/P7Rard0+lusoLxa1S01NxYULF9C5c2fodDrodDps3rwZc+bMgU6nQ6NGjTje1cTX1xetW7fGsWPHOK+rWFBQENq1a2fV1rZtW+VSCzmP8sbhwoULVsuNRiMuXbpUJfvEcnl5sdQEf/31F3799Vc8+uijShvnddVKTExUjqp27NgRY8aMwbPPPqucDeO8rjrh4eHYvHkzrly5glOnTmHnzp24ceMGwsLCOM5goWqX2WxGUVERYmJi4ObmhvXr1yvLMjIycPLkScTFxQEA4uLisG/fPqtJsm7dOnh7eysfXnFxcVbrkPvI69Dr9YiJibHqYzabsX79eqVPRWJRuwEDBmDfvn1IT09X/nXp0gUPPvig8t8c7+px5coV/PnnnwgKCuK8rmI9e/ZERkaGVduRI0cQGhoKAGjRogUaN25slWNBQQF27NhhNd55eXlWR1A2bNgAs9mM2NhYpc+WLVtw48YNpc+6devQpk0bNGjQQOlT1j6pSCw1wYIFCxAYGIhhw4YpbZzXVevq1avQaKxLBK1WC7PZDIDzujp4enoiKCgIubm5SE5OxvDhwznOAG9P9dJLL4nNmzeLzMxMsXfvXvHSSy8JSZLE2rVrhRAltxhp1qyZ2LBhg0hJSRFxcXEiLi5Oeb58u5NBgwaJ9PR0kZSUJAICAuze7iQxMVEcOnRIfPzxx3Zvd2IwGMTChQvFwYMHxeOPPy58fX2tfp1aXiw1keWv/oXgeFeV559/XmzatElkZmaKbdu2iYEDBwp/f39x4cIFIQTHuSrt3LlT6HQ68eabb4qjR4+K//73v6JevXrim2++UfrMnj1b+Pr6ih9//FHs3btXDB8+3O7tZTp16iR27Nghtm7dKlq1amV1e5m8vDzRqFEjMWbMGLF//36xZMkSUa9ePZvby+h0OvHuu++KQ4cOialTp9q9vUx5saiZyWQSzZo1E//6179slnFeV52EhATRpEkT5fZU33//vfD39xcvvvii0ofzumokJSWJNWvWiOPHj4u1a9eKqKgoERsbK4qLi4UQHOc6X6iOHz9ehIaGCr1eLwICAsSAAQOUIlUIIa5duyaeeuop0aBBA1GvXj1x9913i7Nnz1qt48SJE2LIkCHCw8ND+Pv7i+eff17cuHHDqs/GjRtFdHS00Ov1IiwsTCxYsMAmlg8//FA0a9ZM6PV60a1bN7F9+3ar5RWJpaYpXahyvKvG/fffL4KCgoRerxdNmjQR999/v9V9PTnOVevnn38WHTp0EAaDQURERIj58+dbLTebzWLKlCmiUaNGwmAwiAEDBoiMjAyrPjk5OWL06NGifv36wtvbW4wbN05cvnzZqs+ePXtEr169hMFgEE2aNBGzZ8+2iWXZsmWidevWQq/Xi/bt24tVq1ZVOhY1S05OFgDsxsx5XXUKCgrE5MmTRbNmzYS7u7sICwsTr776qtXtjTivq8bSpUtFWFiY0Ov1onHjxmLixIkiLy9PWV7Xx1kSwuLPTBARERERqQSvUSUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJaJaY9q0aZAkyaqtefPmGDt2rGsCqoHGjh2L5s2b3/btbtq0CZIkYdOmTbd920SkXixUiYhqmIMHD2LatGk4ceKEq0MhIqpWOlcHQERUnTIyMqDR1K7v5AcPHsT06dPRr18/lxz9rA59+vTBtWvXoNfrXR0KEakIC1UiqtUMBoOrQ6AyXL9+HXq9HhqNBu7u7q4Oh4hUpnYdZiAiVXJ03WPpa0olScLTTz+NlStXokOHDjAYDGjfvj2SkpJsnrt161Z07doV7u7uCA8Px7x58+xuu/Q1qjdu3MD06dPRqlUruLu7w8/PD7169cK6deusnnf48GGMHDkSAQEB8PDwQJs2bfDqq69a9UlLS8OQIUPg7e2N+vXrY8CAAdi+fXuZOcoWLlwISZKsTt83b94cd955J7Zu3Ypu3brB3d0dYWFh+Oqrr6yed9999wEA+vfvD0mSbK7tXLNmDXr37g1PT094eXlh2LBhOHDggE0M8ji7u7ujQ4cO+OGHH+yOYXn69euHDh06IDU1FT169ICHhwdatGiBTz/91KqffB3qkiVL8Nprr6FJkyaoV68eCgoKHF6jumPHDgwdOhQNGjSAp6cnIiMj8cEHH1j1OXz4MP7xj3+gYcOGcHd3R5cuXfDTTz/dUi5EpC48okpEqrJ161Z8//33eOqpp+Dl5YU5c+bg3nvvxcmTJ+Hn5wcA2LdvHwYNGoSAgABMmzYNRqMRU6dORaNGjcpd/7Rp0zBr1iw8+uij6NatGwoKCpCSkoLdu3fjjjvuAADs3bsXvXv3hpubGx5//HE0b94cf/75J37++We8+eabAIADBw6gd+/e8Pb2xosvvgg3NzfMmzcP/fr1w+bNmxEbG3tL+R87dgz/+Mc/8MgjjyAhIQFffvklxo4di5iYGLRv3x59+vTBpEmTMGfOHLzyyito27YtACj///XXXyMhIQHx8fF46623cPXqVcydOxe9evVCWlqa8oVh7dq1uPfee9GuXTvMmjULOTk5GDduHEJCQm4p7tzcXAwdOhQjR47E6NGjsWzZMjz55JPQ6/UYP368Vd8ZM2ZAr9fjhRdeQFFRkcPT/evWrcOdd96JoKAgTJ48GY0bN8ahQ4fwyy+/YPLkyQBK9kPPnj3RpEkTvPTSS/D09MSyZcswYsQIfPfdd7j77rtvKR8iUglBRFTNEhISRGhoqE371KlTheXbEACh1+vFsWPHlLY9e/YIAOLDDz9U2kaMGCHc3d3FX3/9pbQdPHhQaLVaUfptLTQ0VCQkJCiPo6KixLBhw8qMt0+fPsLLy8tq/UIIYTabrWLQ6/Xizz//VNqysrKEl5eX6NOnj8McZQsWLBAARGZmplWsAMSWLVuUtgsXLgiDwSCef/55pW358uUCgNi4caPVOi9fvix8fX3FY489ZtV+7tw54ePjY9UeHR0tgoKCRF5entK2du1aAcDuvipL3759BQDxf//3f0pbUVGRiI6OFoGBgaK4uFgIIcTGjRsFABEWFiauXr1qtQ55mZyT0WgULVq0EKGhoSI3N9eqr+V+GDBggOjYsaO4fv261fIePXqIVq1aVSoPIlIfnvonIlUZOHAgwsPDlceRkZHw9vbG8ePHAQAmkwnJyckYMWIEmjVrpvRr27Yt4uPjy12/r68vDhw4gKNHj9pdfvHiRWzZsgXjx4+3Wj8A5RS+yWTC2rVrMWLECISFhSnLg4KC8MADD2Dr1q0oKCioeNIW2rVrh969eyuPAwIC0KZNGyX/sqxbtw55eXkYPXo0srOzlX9arRaxsbHYuHEjAODs2bNIT09HQkICfHx8lOffcccdaNeu3S3FrdPpMGHCBOWxXq/HhAkTcOHCBaSmplr1TUhIgIeHR5nrS0tLQ2ZmJp555hn4+vpaLZP3w6VLl7BhwwaMHDkSly9fVvLNyclBfHw8jh49ijNnztxSPkSkDixUiUhVSheHANCgQQPk5uYCKCkkr127hlatWtn0a9OmTbnr//e//428vDy0bt0aHTt2RGJiIvbu3asslwvCDh06OFzHxYsXcfXqVbvba9u2LcxmM06dOlVuLPaUl39Z5OL7b3/7GwICAqz+rV27FhcuXAAA/PXXXwBwy2NoT3BwMDw9Pa3aWrduDQA2t9Fq0aJFuev7888/AZS9H44dOwYhBKZMmWKT79SpUwFAyZmIaiZeo0pE1c7ej4mAkiOTpWm1Wrt9hRBVEkufPn3w559/4scff8TatWvx+eef4z//+Q8+/fRTPProo1WyDUuVyR1wLn+z2Qyg5DrVxo0b2yzX6dTxll/e0dSKkvN94YUXHB5Nb9myZZVsi4hcQx3vWkRUqzVo0AB5eXk27fKRvcqQf4Vv79R9RkZGhdbRsGFDjBs3DuPGjcOVK1fQp08fTJs2DY8++qhyKn///v1lxlCvXj272zt8+DA0Gg2aNm0KoCR3AMjLy7M6hX0rucscFb/yJROBgYEYOHCgw+eHhoYCgFNjWFpWVhYKCwutjqoeOXIEAG7pXq9yLvv373eYi7yv3NzcysyXiGounvonomoXHh6O/Px8q1PsZ8+evaXbIWm1WsTHx2PlypU4efKk0n7o0CEkJyeX+/ycnByrx/Xr10fLli1RVFQEoKQI7dOnD7788kur9QM3j2pqtVoMGjQIP/74o9Vp7fPnz+Pbb79Fr1694O3tDeBmwbVlyxalX2FhIRYtWlSJrK3JxWDp4j8+Ph7e3t6YOXMmbty4YfO8ixcvAii5ljY6OhqLFi1Cfn6+snzdunU4ePDgLcVkNBqtbhFWXFyMefPmISAgADExMZVeX+fOndGiRQu8//77NnnK+yEwMBD9+vXDvHnzcPbsWZt1yPkSUc3FI6pEVO1GjRqFf/3rX7j77rsxadIk5ZZJrVu3xu7duyu9vunTpyMpKQm9e/fGU089BaPRiA8//BDt27e3KobtadeuHfr164eYmBg0bNgQKSkpWLFiBZ5++mmlz5w5c9CrVy907twZjz/+OFq0aIETJ05g1apVSE9PBwC88cYbWLduHXr16oWnnnoKOp0O8+bNQ1FREd5++21lXYMGDUKzZs3wyCOPIDExEVqtFl9++SUCAgJsCuGKio6OhlarxVtvvYX8/HwYDAb87W9/Q2BgIObOnYsxY8agc+fOGDVqlLKdVatWoWfPnvjoo48AALNmzcKwYcPQq1cvjB8/HpcuXVLG8MqVK5WOKTg4GG+99RZOnDiB1q1bY+nSpUhPT8f8+fPh5uZW6fVpNBrMnTsXd911F6KjozFu3DgEBQXh8OHDOHDggPKl5OOPP0avXr3QsWNHPPbYYwgLC8P58+fxxx9/4PTp09izZ0+lt01EKuLSew4QUZ2xdu1a0aFDB6HX60WbNm3EN998Y/f2VBMnTrR5bulbTAkhxObNm0VMTIzQ6/UiLCxMfPrpp3ZvBVX6uW+88Ybo1q2b8PX1FR4eHiIiIkK8+eabyi2UZPv37xd333238PX1Fe7u7qJNmzZiypQpVn12794t4uPjRf369UW9evVE//79xe+//24Tf2pqqoiNjRV6vV40a9ZMvPfeew5vT2Xv1ll9+/YVffv2tWr77LPPRFhYmHJLLstbVW3cuFHEx8cLHx8f4e7uLsLDw8XYsWNFSkqK1Tq+++470bZtW2EwGES7du3E999/7/BWYmXp27evaN++vUhJSRFxcXHC3d1dhIaGio8++siqn3wLquXLl9uso/TtqWRbt24Vd9xxh/Dy8hKenp4iMjLS6lZlQgjx559/iocfflg0btxYuLm5iSZNmog777xTrFixolJ5EJH6SEJU0S8UiIioTurXrx+ys7PLvK6XiOhW8BpVIiIiIlIlXqNKRER2Xbp0CcXFxQ6Xa7VaBAQE3MaIiKiuYaFKRER23XPPPdi8ebPD5aGhoTY38yciqkq8RpWIiOxKTU0t8y9ieXh4oGfPnrcxIiKqa1ioEhEREZEq8cdURERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGp0v8DAAMDl9DN91IAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHbCAYAAAA3anmPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKN0lEQVR4nO3deXwU9f3H8ffshhyEhEAIhHATkFOwcgREbkqgFEGwXFUOqaBiEVGsqFyCoNai1YoKIqgVUbDgT9EgN3KJQBCxgCBBjhCOGBIIkJDs/P7wsdtssjk3IUx4PR8PHg/2M7Mzn+9+d5N3ZmdnDdM0TQEAAAAWYyvtBgAAAICiIMgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAugVLz++usyDEMLFy4s7VYAABZFkAUKYePGjTIMQ9OnTy+V/detW1d169Z1q02fPl2GYWjjxo2l0lN2hmGoS5cuea6zc+dOPfHEE5o6dapGjx59fRrzoCC9Xg8jR46UYRg6duxYabcCD0rydd+lSxcZhlHs2wVuFgRZ3HSOHTsmwzDc/pUvX14RERHq3r27pk6dqp9//rlE9s0vLSkpKUmDBg3S0KFDNWPGjNJu56bk6Q8i3BxuhD/eUlNT9e9//1uDBg3SLbfcooCAAIWEhKhz58766KOPSrU3WI9PaTcAlJbIyEjde++9kqS0tDSdPXtWO3fu1MyZMzV79mw9+eSTev75592CZ9u2bXXgwAFVqVKlVHpet25dqey3MA4cOKDy5cvnunzv3r16+OGH9dhjj13HrgDcKL755hvdd999Cg0NVffu3TVw4ECdPXtW//nPfzRs2DBt3bpV//rXv0q7TVgEQRY3rQYNGnh8q3DLli267777NGfOHNntds2cOdO1rHz58mrcuPF17NJdZGRkqe27oPJ7fLp27aquXbtep24A3GjCw8P1wQcfaNCgQfL19XXVZ8+eraioKL3xxhsaPny42rZtW4pdwio4tQDI5s4771RMTIz8/Pz00ksv6cSJE65luZ0rd/jwYY0aNUr16tWTn5+fKleurJYtW2rChAkyTVPSb2/pbdq0yfV/57+RI0dK+t8pDyNHjtSBAwd09913KzQ01O3cyfzeEl64cKFuvfVW+fv7q0aNGnrsscd08eJFt3XyOt8vaw/ZnT17Vo8//rgaNWqkgIAAVa5cWVFRUXr55Zfd1svtrcvz589rwoQJrseoatWqGjRokPbv359jXec5o3FxcXrttdfUuHFj+fn5qU6dOpoxY4YcDkeuj4En77zzjpo3by5/f3/VqlVLTz75pK5evZrr+hcvXtS0adPUrFkz19ue0dHR2rJlS6H2a5qmFi1apI4dOyokJETly5dXw4YNNXbsWB0/fjzP+y5evFiGYWjx4sU5luU2h3v27NE999yj2rVry8/PT2FhYWrTpo2ef/55Sf+b319++UW//PKL2/Mw+7Y2b96svn37qkqVKvLz81PDhg317LPP6vLly7n2sm3bNvXs2VMhISEFPoXm7Nmzeuyxx9SgQQP5+fmpSpUqGjhwoMfnhfP5f+nSJT366KOKiIiQn5+fWrRooeXLlxdof1l99tln6t69uypVqiR/f381b95cL7/8sjIzMwu9rezS09P1yiuvqE2bNgoKClKFChXUtGlTTZw4UUlJSXneN6/z3nN7XmzYsEG9e/d2PSbVqlVTx44dNX/+fEn/mydJ2rRpk9vcZ99WQR+XrL18/vnn6tChg4KCgvI9beW2227Tvffe6xZiJalatWoaO3aspN+ef0BBcEQW8KBRo0YaNGiQPvjgA61cuVJ//etfc103Pj5ebdu2VWpqqvr06aPBgwcrNTVVhw8f1rx58/Tyyy/Lx8dH06ZN0+LFi/XLL79o2rRprvvfdtttbts7cuSI2rVrp1tvvVUjR45UYmJijh/4nsydO1fr1q3T4MGD1adPH61du1avvvqqduzYoc2bN6tcuXJFfjwOHTqkrl276vTp07rzzjvVv39/paam6scff9Ts2bP1xBNP5Hn/c+fOqX379vr555/VpUsXDRkyRHFxcVq+fLlWrVql1atX684778xxv0mTJmnTpk364x//qOjoaK1cuVLTp09Xenq6K5zlZ+bMmZo6daqqVaumBx54QOXKldPHH3+sAwcOeFz/119/VadOnfTjjz+qQ4cOevDBB5WSkqLPPvtMXbt21bJly9S/f/989+twODR48GAtX75cNWrU0NChQxUcHKxjx47pk08+Ue/evVW7du0CjaEg9u7dqzvuuEN2u139+vVTnTp1dOHCBf33v//V/Pnz9cwzzygkJETTpk3Tq6++KkmaMGGC6/5Z//h48803NW7cOIWEhKhv376qWrWqdu3apeeff14bNmzQhg0bcjwnt23bptmzZ6tr164aM2ZMvkFdkuv5cPLkSfXs2VP9+/fX2bNn9emnn2r16tVat26doqKi3O5z7do19ezZU0lJSRo4cKAuX76spUuXatCgQYqJiVHPnj0L9HhNnjxZL7zwgmrUqKEBAwaoYsWK+uabbzRp0iR9++23WrZsWYG248mVK1f0+9//Xlu3blXDhg01atQo+fn56fDhw3r77bc1fPhwVapUqcjbz27VqlXq27evQkJC1K9fP1WvXl3nzp3T999/rw8++EBjxoxR3bp1NW3aNM2YMUN16tRx+2M168+gojwuy5Yt09dff60//vGPevjhh5WSklLksTh/Tvn4EE9QQCZwk4mLizMlmdHR0Xmut3DhQlOSed9997lqGzZsMCWZ06ZNc9Vee+01U5L56quv5thGYmKi2+3OnTubub3snH1JMqdOnepxnTp16ph16tRxq02bNs2UZPr6+prff/+9q+5wOMxhw4aZksyXX345zzFk72HEiBFu9datW5uSzPnz5+e4z4kTJ9xuSzI7d+7sVhs1apQpyZw8ebJbfdWqVaYks0GDBmZmZqarPmLECFOSWa9ePTM+Pt5VP3funBkSEmIGBQWZaWlpOXrJ7vDhw6aPj49Zo0YN88yZM656cnKy2ahRI4+9Oh+zBQsWuNXPnDlj1qpVywwLCzOvXLmS775ff/11U5LZvXt38/Lly27LLl++7PbccI43Li7OVVu0aJEpyVy0aFGObXuaw4kTJ5qSzJUrV+ZY//z58263PT2PnH788UfTx8fHbNmyZY77zZkzJ9fnkyTz3Xff9bjN3Nxxxx2m3W43Y2Ji3OqHDh0yg4KCzFtvvTVH35LMfv36uc3/2rVrC/Sadvr6669d61+6dMlVdzgc5oMPPmhKMpcvX55jjJ5eM548/vjjrp8dGRkZbssuXLhgXrx40XXb088E52t6w4YNObbt6XkxYMAAU5K5d+/eHOtnn0NPz3mnwj4uzl5sNpu5Zs0aj9ssjIyMDPPWW281DcMwf/jhB6+3h5sDpxYAuYiIiJD021viBREQEJCjVrly5ULvNzw8XM8880yh7zd8+HC1aNHCddswDM2ePVt2u93j29MFtXPnTu3atUudOnXSAw88kGN5zZo187x/enq6PvroI4WGhurZZ591W/aHP/xBv//973XkyBFt3bo1x32nTJmi6tWru25XqVJF/fr108WLF3Xo0KF8e1+yZIkyMjI0ceJEVa1a1VUPDg7O0Yv021x//PHH6tatm/7yl7+4LatataomTZqkc+fOae3atfnue968ebLb7XrzzTdzPDecp2aUBE/Pw9DQ0ALf/+2331ZGRoZef/31HPd78sknFRYW5vGT5bfffrtGjRpV4P3ExsZq27ZtGjFihKKjo92W3XLLLXrggQf0ww8/eDzF4JVXXnE7Ity9e3fVqVNH3333XYH27fwg0fz58xUYGOiqG4ahF154QYZhFPnT8xkZGZo/f74qVqyof/7zn7Lb7W7LK1asqAoVKhRp2/nxdu6L+rj069dPPXr0KELH7qZMmaIffvhBo0aNUvPmzb3eHm4OHLsHvNS3b19NnjxZ48aN07p169SrVy917txZ9evXL9L2WrZsWaBTCbLr2LFjjlqdOnVUq1Yt/fjjj0pPTy/Sdnfu3ClJBX7LNruDBw/q6tWr6tq1q8erGXTt2lVr1qzR3r17c4yhVatWOdZ3BucLFy7ku+/vv/9ekufHxlPtu+++U2ZmptLS0jyeQ3z48GHXmP74xz/mut9Lly7pwIEDatCggRo2bJhvn8Vh0KBBevXVV3X33Xdr8ODB+v3vf69OnTqpRo0ahdrOjh07JMn11n525cqV08GDB3PU27RpU6T9nDlzxuNj7dzHwYMH3UJNSEiI6tWrl2P9mjVravv27QXed2BgoN59912PywMCAjyOsSAOHjyoixcvqkePHsV6+kBehgwZov/85z9q166dhg0bpu7du6tjx46FvrpKUR+X4vhQ1ltvvaU5c+bod7/7nf75z396vT3cPAiyQC7i4+MlSWFhYXmuV7duXe3YsUPTp0/Xl19+qU8++UTSb5/ef+655/SnP/2pUPutVq1akfrN7X7VqlXTsWPHdPHixUIdnXFKTk6WpEIHIifn+XK59ec84urpvLrg4OAcNee5cwX5QI6z96xHY5089fPrr79KkrZu3erxCLFTampqgfZb1MesKKKiorRx40bNnj1bS5Ys0aJFiyT9FjBffPHFAl8pwvkYFPQcZKfCPm+d+1m1apVWrVqV63rZH+uKFSt6XM/Hx6fAHwL89ddflZGRked1jPOb49yUxtz/6U9/0sqVKzV37ly99dZbeuONN2QYhrp27ap//OMfOc7Dz01RH5ei/sxyeuedd/Twww/r1ltv1Zo1a0rsiDXKJk4tAHLh/MRwQY40NW/eXMuXL9evv/6q7du3a+rUqUpISNDgwYPzDESeFPULE86cOZNr3TAMBQUFSZJstt9e9hkZGTnWdf4SziokJESSdOrUqSL15QyjufWXkJDgtl5xcoaes2fP5ljmqR9nD48//rhM08z1X9YP6+W136I+ZlLh50n67SjzV199paSkJG3YsEETJ07UDz/8oD59+ujo0aMF2q/zMUhJScnzMciusM9b535ef/31PPczYsSIQm23oPsODQ3Nc79xcXFF2ra3rxepaHPfr18/bdq0SUlJSfrqq6/0l7/8RRs3blSvXr0K9O6FVPTHxZsveVmwYIHGjBmjpk2bat26dUX6Yxs3N4Is4MFPP/2kTz75RH5+frr77rsLfL9y5cqpXbt2mjFjhl577TWZpqkvvvjCtdx5vlxxXN4nu2+++SZH7ZdfftGJEyfUrFkz12kFzrc7Pf2ijY2NzVFzvm349ddfF6mvxo0by9/fX999912OSzdJ//uDoaBHjQqjZcuWkjw/Np5qbdq0kWEYBX6LOjfOSy3FxcW5TkcorMLOU1YBAQHq0qWL/vGPf+jpp5/WlStXtGbNGtdyu92e63PQeZUA51v/JcW5H28f66LuOzExschzk5dGjRopODhY3333Xb6X2cqNN3MfFBSkXr16af78+Ro5cqTOnDmjb7/91rXcZrPlOfcl9bh4smDBAo0dO1ZNmjTR+vXr8333C/CEIAtks3XrVkVHRystLU1PPfVUvm8R7t692+Pb4s4jfv7+/q6a8wM+Wa9NW1zef/997du3z3XbNE09/fTTyszMdLvUTqNGjRQUFKT/+7//c7296+x31qxZObbbpk0btWnTRps3b9aCBQtyLM/vyJOvr6+GDh2q8+fPa86cOW7LYmJitHr1ajVo0EAdOnQo6FALbNiwYbLb7Zo7d67bUdmUlBSPYw0PD9egQYO0bds2/f3vf/d45PHbb7/1GMizGzdunDIzM/Xwww/rypUrbsuuXr3q9th70qpVKxmGoaVLl7pd8/bw4cMezyHcvn27x2vj5vY8PH/+vMf1H374Yfn4+Oivf/2rx0toXbhwId8wVRBt27ZVVFSUPvroI3388cc5ljscDtd1l4vb+PHjJUn333+/EhMTcyxPSEjI9fJs+fHx8dHYsWOVnJysRx99NEdoTE5O1qVLl/LchvNdoPfff9/tdInt27frww8/zLH+5s2bPYZT53M++9yfPHnS435L8nHJ7p133tHYsWPVuHFjrV+/3uPpP0BBcI4sblpHjhxxfcgkPT3d9RW1P/zwg+x2u5599tl830KWpA8++EBvv/22OnXqpMjISAUHB+u///2vvvzyS1WuXNntk9zdunXT8uXLNXDgQPXu3Vv+/v5q2bKl+vbt6/V4oqOj1b59ew0ZMkRhYWFat26ddu3apXbt2rldB9fX11d//etfNXv2bN1+++2uqwB8/vnn6ty5s37++ecc2/7www/VpUsXjRkzRh988IHat2+vq1ev6scff1RsbKzHX3pZvfjii9q0aZNmzZqlbdu2KSoqSseOHdOyZctUvnx5LVq0yPV2anFq0KCBpk6dqmnTpqlFixYaNGiQfHx89Omnn6pFixYer3wwb948HTp0SE8++aRrrCEhITpx4oR27dqlw4cP6/Tp03l+Da8kPfTQQ9q0aZM++eQTNWzYUHfddZeCg4N1/PhxrV69WgsXLszzerQREREaOnSolixZolatWqlXr146e/asVqxYoV69eunTTz91W//FF1/Uhg0b1KlTJ9WrV0/+/v7as2eP1q1bp/r167u9s9CtWzft2rVLvXv3VseOHeXr66tOnTqpU6dOat68uebNm6eHHnpIjRo10h/+8AdFRkbq4sWLOnr0qDZt2qSRI0fqrbfeKtxkePDRRx+pa9euGjJkiF599VXdfvvtCggI0PHjx7V9+3adO3cuzy+uKKpevXppypQpmjlzpho0aKBevXqpTp06SkxM1JEjR/TNN99o1qxZatKkSZG2/9xzz2nHjh364IMPtGPHDvXu3Vt+fn46evSoYmJitGXLljzfgWjXrp06dOig9evXq3379urUqZN++eUXffbZZ+rbt69WrFjhtv748eMVHx+vO++8U3Xr1pVhGNqyZYt27typdu3auV2juVu3bvrkk0/Uv39//e53v5Pdbtddd92lFi1alPjj4rR+/XqNGTNGpmmqU6dOevPNN3Osc9tttxXoes0A15HFTSfr9Vqd/wICAszq1aubXbt2NadMmWIeOXLE4309XU9yx44d5tixY83mzZubISEhZkBAgNmwYUPzkUceMX/55Re3+1+7ds188sknzdq1a5s+Pj5u12zN7RquWeV1HdkNGzaYCxYsMJs1a2b6+fmZ1atXNx999FEzJSUlx3YyMzPN6dOnm7Vq1TJ9fX3NW265xfznP/9pHj16NNceEhISzEcffdSsX7++6evra1auXNmMiooy586d67aecrlO5blz58zx48ebderUMcuVK2dWqVLFvOeeezxeL9LTdVU9jbegFixYYDZt2tT09fU1a9asaT7xxBPm5cuXc+318uXL5ksvvWS2atXKDAwMNAMCAsx69eqZ/fv3N99//33z2rVrBdqvw+Ew33nnHbNdu3ZmYGCgWb58ebNhw4bmgw8+aB4/fjzf8V6+fNkcP368Wa1aNdPPz89s0aKF+eGHH3p8HsbExJjDhw83GzVqZAYFBZkVKlQwmzZtaj799NPmuXPn3LZ78eJF84EHHjCrV69u2u12j9dI3blzpzlkyBAzIiLCNV+33367+dRTT5kHDhxwrVfYa6xm9+uvv5rPPvus2bx5czMgIMCsUKGC2bBhQ3PYsGHmf/7zH7d187r+bV7XaM7NmjVrzL59+5phYWFmuXLlzPDwcLN9+/bmzJkz3eanKGO8evWq+fLLL5u33Xaba1xNmzY1H3/8cTMpKSnfvs+fP28OHz7crFy5shkQEGC2a9fOXL16tcfryC5dutQcNGiQGRkZaZYvX96sWLGi2bJlS/PFF190u2ataZrm6dOnzUGDBplVqlQxbTabx2sVF/Rxyetax3lx3i+vf3n9HASyMkzTw3tnAAAAwA2Oc2QBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlEWQBAABgSQRZAAAAWNJN94UIDodD8fHxCgoK8ur7oQEAAFAyTNPUxYsXFRERkecX5tx0QTY+Pl61atUq7TYAAACQjxMnTqhmzZq5Lr/pgmxQUJCk3x6Y4ODgUu7G+q5du6avv/5aPXv2VLly5Uq7HRQBc2h9zKH1MYfWxvwVv5SUFNWqVcuV23Jz0wVZ5+kEwcHBBNlicO3aNZUvX17BwcG8eC2KObQ+5tD6mENrY/5KTn6ngfJhLwAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACW5FPaDQAAisf3338vm+36HJ+oUqWKateufV32BQC5IcgCgMWdPHlSktSpUydduXLluuwzoHx5HTxwgDALoFQRZAHA4hITEyVJd095RZXrNCjx/Z2NO6xPnn1I58+fJ8gCKFUEWQAoI8LqRCq8ScvSbgMArhs+7AUAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkm6oIDtnzhy1adNGQUFBqlq1qvr3769Dhw65rXP16lWNGzdOoaGhqlChggYOHKgzZ86UUscAAAAoLTdUkN20aZPGjRunHTt2aM2aNbp27Zp69uyp1NRU1zqPPfaYPv/8cy1btkybNm1SfHy8BgwYUIpdAwAAoDT4lHYDWcXExLjdXrx4sapWrardu3erU6dOSk5O1sKFC7VkyRJ169ZNkrRo0SI1adJEO3bsULt27UqjbQAAAJSCGyrIZpecnCxJqly5siRp9+7dunbtmnr06OFap3Hjxqpdu7a2b9/uMcimpaUpLS3NdTslJUWSlJGRoYyMDEmSzWaTzWaTw+GQw+FwreusZ2ZmyjTNfOt2u12GYbi2m7UuSZmZmQWq+/j4yDRNt7phGLLb7Tl6zK1+vceUmZnp6qWsjCm/elkZU9Y5LFeuXJkYU1ZlZZ7yGlPWnmSaMswstw1DpmGTTIeMLL2YhiHlUTdMh+RWt0mGIcN0yCZTvr6+cjgcMk2TeSqGMWWdy6z7tfKYyuI85VZ3/j+3+bPimEp7nrKvn5sbNsg6HA5NmDBBHTp0UPPmzSVJCQkJ8vX1VUhIiNu61apVU0JCgsftzJkzRzNmzMhRj42NVWBgoCQpLCxMkZGRiouL07lz51zr1KxZUzVr1tRPP/3kCtWSVL9+fVWtWlX79+/XlStXXPXGjRsrJCREsbGxbhPTokUL+fr6ateuXW49tG7dWunp6dq3b5+rZrfb1aZNGyUnJ+vgwYOuekBAgFq2bKnz58/r6NGjrnrFihXVpEkTxcfH6+TJk6769RpTbGys6/E0DKNMjKkszlNeY3L+wPn+++8VFRVVJsbkVJbmKa8xZd134NULqnTxtOv2Vd9AnQ+po+DLiQpO/V/vqQEhSgqKUKVLCQq8csFVTwkMU0pgmEKTT8g//X+ndSUFVVdqQCVVS4pTqN9VTZo0SYmJiUpOTmaeimFMQUFBkqTTp0+7/T6z8pjK4jzlNqbQ0FBJ0vHjx5WYmFgmxlTa8+TMF/kxzKyx+Qby0EMP6auvvtKWLVtUs2ZNSdKSJUs0atQotyOsktS2bVt17dpVL774Yo7teDoiW6tWLSUmJio4OFhS6f/VYeW/pNLS0rR69WpFR0fLx8enTIypLM5TXmPKyMhwzaG/v3+ZGFNWZWWe8hrTnj17dPr0aW1IDVR445YlfkQ2/uA+vTWqj7Zu3apWrVoxT8UwJufrsFevXq7tWX1MZXGe8jqiHhMTk+v8WXFMpT1PSUlJCg0NVXJysiuveXJDHpF95JFH9MUXX2jz5s2uECtJ4eHhSk9P14ULF9yOyp45c0bh4eEet+Xn5yc/P78cdR8fH/n4uA/fOQnZZX1SFqSefbtFqRuG4bGeW4+FrRfXmJzr2+12t3WsPKayOE951Z0/cJzbLAtjyq6sj8mtJ8OQaXjYr2GTaXjYeC7134Kr57pDhtLT02Wz2WQYRqF7z61e1ucprx6dr0ObzVaox+BGHlNR61YcU37zZ8Ux5VcvjTF5ckNdtcA0TT3yyCNasWKF1q9fr3r16rktb9WqlcqVK6d169a5aocOHdLx48fVvn37690uAAAAStENdUR23LhxWrJkiT777DMFBQW5zhOqWLGiAgICVLFiRY0ePVoTJ05U5cqVFRwcrL/+9a9q3749VywAAAC4ydxQQfbNN9+UJHXp0sWtvmjRIo0cOVKS9Morr8hms2ngwIFKS0tTdHS05s2bd507BQAAQGm7oYJsQT535u/vrzfeeENvvPHGdegIAAAAN6ob6hxZAAAAoKAIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJJuqCC7efNm9e3bVxERETIMQytXrnRbPnLkSBmG4favV69epdMsAAAAStUNFWRTU1PVsmVLvfHGG7mu06tXL50+fdr176OPPrqOHQIAAOBG4VPaDWTVu3dv9e7dO891/Pz8FB4efp06AgAAwI3qhgqyBbFx40ZVrVpVlSpVUrdu3TRr1iyFhobmun5aWprS0tJct1NSUiRJGRkZysjIkCTZbDbZbDY5HA45HA7Xus56ZmamTNPMt26322UYhmu7WeuSlJmZWaC6j4+PTNN0qxuGIbvdnqPH3OrXe0yZmZmuXsrKmPKrl5UxZZ3DcuXKlYkxZVVW5imvMWXtSaYpw8xy2zBkGjbJdMjI0otpGFIedcN0SG51m2QYMkyHbDLl6+srh8Mh0zSZp2IYU9a5zLpfK4+pLM5TbnXn/3ObPyuOqbTnKfv6ubFUkO3Vq5cGDBigevXq6eeff9bTTz+t3r17a/v27a6BZzdnzhzNmDEjRz02NlaBgYGSpLCwMEVGRiouLk7nzp1zrVOzZk3VrFlTP/30k5KTk131+vXrq2rVqtq/f7+uXLniqjdu3FghISGKjY11m5gWLVrI19dXu3btcuuhdevWSk9P1759+1w1u92uNm3aKDk5WQcPHnTVAwIC1LJlS50/f15Hjx511StWrKgmTZooPj5eJ0+edNWv15hiY2Ndj6dhGGViTGVxnvIak/MHzvfff6+oqKgyMSansjRPeY0p674Dr15QpYunXbev+gbqfEgdBV9OVHDq/3pPDQhRUlCEKl1KUOCVC656SmCYUgLDFJp8Qv7pqa56UlB1pQZUUrWkOIX6XdWkSZOUmJio5ORk5qkYxhQUFCRJOn36tBISEsrEmMriPOU2JucBtePHjysxMbFMjKm058mZL/JjmFlj8w3EMAytWLFC/fv3z3Wdo0ePKjIyUmvXrlX37t09ruPpiGytWrWUmJio4OBgSaX/V4eV/5JKS0vT6tWrFR0dLR8fnzIxprI4T3mNKSMjwzWH/v7+ZWJMWZWVecprTHv27NHp06e1ITVQ4Y1blvgR2fiD+/TWqD7aunWrWrVqxTwVw5icr8NevXq5HZix8pjK4jzldUQ9JiYm1/mz4phKe56SkpIUGhqq5ORkV17zxFJHZLOrX7++qlSpoiNHjuQaZP38/OTn55ej7uPjIx8f9+E7JyG73I725lbPvt2i1A3D8FjPrcfC1otrTM717Xa72zpWHlNZnKe86s4fOM5tloUxZVfWx+TWk2HINDzs17DJNDxsPJf6b8HVc90hQ+np6bLZbDIMo9C951Yv6/OUV4/O16HNZivUY3Ajj6modSuOKb/5s+KY8quXxpg8uaGuWlBYJ0+eVGJioqpXr17arQAAAOA6u6GOyF66dElHjhxx3Y6Li9PevXtVuXJlVa5cWTNmzNDAgQMVHh6un3/+WU8++aQaNGig6OjoUuwaAAAApeGGCrK7du1S165dXbcnTpwoSRoxYoTefPNN7du3T++9954uXLigiIgI9ezZUzNnzvR46gAAAADKthsqyHbp0sXtBOHsVq9efR27AQAAwI3M0ufIAgAA4OZFkAUAAIAlEWQBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlEWQBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlef0VtQkJCVq4cKH27Nmj5ORkORwOt+WGYWjdunXe7gYAAABw41WQ3bdvn7p06aIrV66oUaNG+uGHH9S0aVNduHBBp06dUmRkpGrVqlVcvQIAAAAuXp1a8NRTT6lChQo6dOiQ1q5dK9M09c9//lMnTpzQxx9/rKSkJL3wwgvF1SsAAADg4lWQ3bp1q8aOHavatWvLZvttU85TC/70pz/pz3/+syZNmuR9lwAAAEA2XgVZh8OhatWqSZJCQkJkt9v166+/upbfeuut2r17t3cdAgAAAB54FWTr1aunuLi43zZks6levXpau3ata/m2bdsUEhLiVYMAAACAJ14F2Z49e2rZsmWu2w899JDeeecd9ejRQ927d9d7772nYcOGed0kAAAAkJ1XVy145plnNHToUF27dk3lypXThAkTlJqaqk8//VR2u11TpkzR008/XVy9AgAAAC5eBdlKlSqpVatWrtuGYejZZ5/Vs88+63VjAAAAQF74Zi8AAABYUqGOyN5///0yDEPz58+X3W7X/fffn+99DMPQwoULi9wgAAAA4Emhguz69etls9nkcDhkt9u1fv16GYaR533yWw4AAAAURaGC7LFjx/K8DQAAAFwvnCMLAAAAS/IqyO7Zs0fz5s3Ldfm8efO0d+9eb3YBAAAAeORVkH3mmWfcvskru/Xr13MpLgAAAJQIr4Ls7t271bFjx1yXd+zYUbt27fJmFwAAAIBHXgXZixcvyscn98+L2Ww2JScne7MLAAAAwCOvgmzDhg319ddf57o8JiZG9evX92YXAAAAgEdeBdnRo0dr1apVmjhxoi5cuOCqX7hwQY899phiYmI0evRob3sEAAAAcijUdWSzGz9+vPbu3atXX31Vr732miIiIiRJ8fHxcjgcuu+++/TYY48VS6MAAABAVl4FWcMwtGjRIg0fPlyffvqpjh49Kknq16+fBg4cqC5duhRHjwAAAEAOXgVZp65du6pr167FsSkAAACgQPhmLwAAAFiSV0HWNE29/fbbatu2rapUqSK73Z7jX16X5wIAAACKyquU+eSTT2ru3Lm67bbbdO+996pSpUrF1RcAAACQJ6+C7HvvvaeBAwfqk08+Ka5+AAAAgALx6tSCK1euqEePHsXVCwAAAFBgXgXZ7t2767vvviuuXgAAAIAC8yrIzps3Tzt27NDs2bOVmJhYXD0BAAAA+fIqyDZq1EhHjx7VlClTVLVqVQUGBio4ONjtX8WKFYurVwAAAMDFqw97DRw4UIZhFFcvAAAAQIF5FWQXL15cTG0AAAAAhcM3ewEAAMCSvA6yx48f14MPPqhGjRqpUqVK2rx5syTp/PnzGj9+vGJjY71uEgAAAMjOq1ML/vvf/6pjx45yOByKiorSkSNHlJGRIUmqUqWKtmzZotTUVC1cuLBYmgUAAACcvP6K2pCQEO3YsUOGYahq1apuy/v06aOPP/7YqwYBAAAAT7w6tWDz5s166KGHFBYW5vHqBbVr19apU6e82QUAAADgkVdB1uFwqHz58rkuP3funPz8/LzZBQAAAOCRV0H29ttv16pVqzwuy8jI0NKlS9WuXTtvdgEAAAB45FWQnTx5smJiYvTQQw9p//79kqQzZ85o7dq16tmzpw4cOKCnnnqqWBoFAAAAsvLqw169e/fW4sWL9eijj2r+/PmSpHvvvVemaSo4OFjvv/++OnXqVCyNAgAAAFl5FWQl6b777tOAAQP09ddf68iRI3I4HIqMjFR0dLSCgoKKo0cAAAAgB6+DrCQFBgbq7rvvLo5NAQAAAAXiVZA9fvx4gdarXbu2N7sBAAAAcvAqyNatW9fj9WOzy8zM9GY3AAAAQA5eBdl33303R5DNzMzUsWPH9P7776tq1aoaN26cVw0CAAAAnngVZEeOHJnrsr/97W+KiopScnKyN7sAAAAAPPLqOrJ5CQwM1KhRo/TKK6+U1C4AAABwEyuxICv99hW2CQkJJbkLAAAA3KSK5fJb2aWkpGjz5s36+9//rt/97nclsQsAAADc5LwKsjabLderFpimqdq1a2vevHne7AIAAADwyKsgO3Xq1BxB1jAMVapUSZGRkerZs6d8fErkoC8AAABucl6lzOnTpxdTGwAAAEDhePVhr4yMDKWkpOS6PCUlRRkZGd7sAgAAAPDIqyA7fvx43XHHHbku79Chgx5//HFvdgEAAAB45FWQjYmJ0T333JPr8nvuuUdffvmlN7sAAAAAPPIqyMbHx6tGjRq5Lo+IiNCpU6e82QUAAADgkVdBNjQ0VIcOHcp1+YEDBxQcHOzNLgAAAACPvAqyvXr10ttvv63Y2Ngcy/bs2aP58+erd+/e3uwCAAAA8Miry2/NnDlTMTExatu2re666y41a9ZMkrR//359/vnnqlq1qmbOnFksjQIAAABZeRVkIyIitGvXLj311FP67LPPtGLFCklScHCw/vznP2v27NmKiIgolkYBAACArLw6tUCSqlevrvfee09JSUlKSEhQQkKCkpKStHjx4kKH2M2bN6tv376KiIiQYRhauXKl23LTNDV16lRVr15dAQEB6tGjhw4fPuztEAAAAGBBXgdZJ8Mw5Ofnp9DQ0BxfW1tQqampatmypd544w2Py1966SW99tpreuutt/Ttt98qMDBQ0dHRunr1qjetAwAAwIK8DrK7du1Sr169VL58eYWGhmrTpk2SpPPnz6tfv37auHFjgbfVu3dvzZo1S3fffXeOZaZp6tVXX9Wzzz6rfv36qUWLFnr//fcVHx+f48gtAAAAyj6vzpHdtm2bunXrpho1aujee+/VO++841pWpUoVJScn6+2331aXLl287VNxcXFKSEhQjx49XLWKFSsqKipK27dv15AhQzzeLy0tTWlpaa7bzq/UzcjIcH19rs1mk81mk8PhkMPhcK3rrGdmZso0zXzrdrtdhmHk+Fpeu90uScrMzCxQ3cfHR6ZputUNw5Ddbs/RY2716z2mzMxMVy9lZUz51cvKmLLOYbly5crEmLIqK/OU15iy9iTTlGFmuW0YMg2bZDpkZOnFNAwpj7phOiS3uk0yDBmmQzaZ8vX1lcPhkGmazFMxjCnrXGbdr5XHVBbnKbe68/+5zZ8Vx1Ta85R9/dx4FWSffvppNWnSRDt27NDFixfdgqwkde3aVe+99543u3BJSEiQJFWrVs2tXq1aNdcyT+bMmaMZM2bkqMfGxiowMFCSFBYWpsjISMXFxencuXOudWrWrKmaNWvqp59+UnJysqtev359Va1aVfv379eVK1dc9caNGyskJESxsbFuE9OiRQv5+vpq165dbj20bt1a6enp2rdvn6tmt9vVpk0bJScn6+DBg656QECAWrZsqfPnz+vo0aOuesWKFdWkSRPFx8fr5MmTrvr1GpPz0muxsbEyDKNMjKkszlNeY3L+wPn+++8VFRVVJsbkVJbmKa8xZd134NULqnTxtOv2Vd9AnQ+po+DLiQpO/V/vqQEhSgqKUKVLCQq8csFVTwkMU0pgmEKTT8g/PdVVTwqqrtSASqqWFKdQv6uaNGmSEhMTlZyczDwVw5iCgoIkSadPn3b7nWblMZXFecptTKGhoZKk48ePKzExsUyMqbTnydOlXT0xzKyxuZACAwM1Z84cjR8/XomJiQoLC9PatWvVrVs3SdI777yj8ePH6/Lly4XetmEYWrFihfr37y/pt6O/HTp0UHx8vKpXr+5ab9CgQTIMQx9//LHH7Xg6IlurVi0lJia6vqyhtP/qsPJfUmlpaVq9erWio6Pl4+NTJsZUFucprzFlZGS45tDf379MjCmrsjJPeY1pz549On36tDakBiq8ccsSPyIbf3Cf3hrVR1u3blWrVq2Yp2IYk/N12KtXL9f2rD6msjhPeR1Rj4mJyXX+rDim0p6npKQkhYaGKjk5Oc8v1/LqiGy5cuXc39LK5tSpU6pQoYI3u3AJDw+XJJ05c8YtyJ45c0a33XZbrvfz8/OTn59fjrqPj498fNyH75yE7LI+KQtSz77dotQNw/BYz63HwtaLa0zO9e12u9s6Vh5TWZynvOrOHzjObZaFMWVX1sfk1pNhyDQ87NewyfT0Odxc6r8FV891hwylp6fLZrO5PtzLPHk3Jufr0GazFeoxuJHHVNS6FceU3/xZcUz51UtjTJ549WGvdu3aafny5R6XpaamatGiRercubM3u3CpV6+ewsPDtW7dOlctJSVF3377rdq3b18s+wAAAIB1eHVEdsaMGercubP69OmjoUOHSvrtPLujR4/q5Zdf1rlz5zRlypQCb+/SpUs6cuSI63ZcXJz27t2rypUrq3bt2powYYJmzZqlhg0bql69epoyZYoiIiJcpx8AAADg5uFVkI2KitKXX36phx56SMOHD5ckPf7445KkyMhIffnll2rRokWBt7dr1y517drVdXvixImSpBEjRmjx4sV68sknlZqaqjFjxujChQu68847FRMTI39/f2+GAQAAAAsqcpA1TVMXL17UHXfcoUOHDmnv3r06fPiwHA6HIiMjXR8AKIwuXbq4nSCcnWEYeu655/Tcc88VtW0AAACUEUUOsunp6apcubJmz56tJ598UrfddlueH7oCAAAAilORP+zl5+en8PBwj1cEAAAAAEqaV1ctGDlypN5//32lp6cXVz8AAABAgXj1Ya9bb71VK1euVLNmzTRy5EjVrVtXAQEBOdYbMGCAN7sBAAAAcvAqyDovuSUp18tsGYaR41sbAAAAAG8VOsg+/fTTGjJkiFq0aKENGzaURE8AAABAvgodZF944QU1b95cLVq0UOfOnZWYmKiqVatqzZo16tatW0n0CAAAAOTg1Ye9nPK69isAAABQEoolyAIAAADXG0EWAAAAllSkqxYcO3ZMe/bskSQlJydLkg4fPqyQkBCP699+++1F6w4AAADIRZGC7JQpU3Jcbuvhhx/OsZ5pmlx+CwAAACWi0EF20aJFJdEHAAAAUCiFDrIjRowoiT4AAACAQuHDXgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsyVJBdvr06TIMw+1f48aNS7stAAAAlAKf0m6gsJo1a6a1a9e6bvv4WG4IAAAAKAaWS4E+Pj4KDw8v7TYAAABQyiwXZA8fPqyIiAj5+/urffv2mjNnjmrXrp3r+mlpaUpLS3PdTklJkSRlZGQoIyNDkmSz2WSz2eRwOORwOFzrOuuZmZkyTTPfut1ul2EYru1mrUtSZmZmgeo+Pj4yTdOtbhiG7HZ7jh5zq1/vMWVmZrp6KStjyq9eVsaUdQ7LlStXJsaUVVmZp7zGlLUnmaYMM8ttw5Bp2CTTISNLL6ZhSHnUDdMhudVtkmHIMB2yyZSvr68cDodM02SeimFMWecy636tPKayOE+51Z3/z23+rDim0p6n7OvnxlJBNioqSosXL1ajRo10+vRpzZgxQx07dtT+/fsVFBTk8T5z5szRjBkzctRjY2MVGBgoSQoLC1NkZKTi4uJ07tw51zo1a9ZUzZo19dNPPyk5OdlVr1+/vqpWrar9+/frypUrrnrjxo0VEhKi2NhYt4lp0aKFfH19tWvXLrceWrdurfT0dO3bt89Vs9vtatOmjZKTk3Xw4EFXPSAgQC1bttT58+d19OhRV71ixYpq0qSJ4uPjdfLkSVf9eo0pNjbW9XgahlEmxlQW5ymvMTl/4Hz//feKiooqE2NyKkvzlNeYsu478OoFVbp42nX7qm+gzofUUfDlRAWn/q/31IAQJQVFqNKlBAVeueCqpwSGKSUwTKHJJ+SfnuqqJwVVV2pAJVVLilOo31VNmjRJiYmJSk5OZp6KYUzO32GnT59WQkJCmRhTWZyn3MYUGhoqSTp+/LgSExPLxJhKe56c+SI/hpk1NlvMhQsXVKdOHc2dO1ejR4/2uI6nI7K1atVSYmKigoODJZX+Xx1W/ksqLS1Nq1evVnR0tHx8fMrEmMriPOU1poyMDNcc+vv7l4kxZVVW5imvMe3Zs0enT5/WhtRAhTduWeJHZOMP7tNbo/po69atatWqFfNUDGNyvg579erl2p7Vx1QW5ymvI+oxMTG5zp8Vx1Ta85SUlKTQ0FAlJye78ponljoim11ISIhuueUWHTlyJNd1/Pz85Ofnl6Pu4+OT44NizknILuuTsiD13D6AVpi6YRge67n1WNh6cY3Jub7dbndbx8pjKovzlFfd+QPHuc2yMKbsyvqY3HoyDJmGh/0aNpmGh43nUv8tuHquO2QoPT1dNptNhmEUuvfc6mV9nvLq0fk6tNlshXoMbuQxFbVuxTHlN39WHFN+9dIYkyeWuvxWdpcuXdLPP/+s6tWrl3YrAAAAuM4sFWSfeOIJbdq0SceOHdO2bdt09913y263a+jQoaXdGgAAAK4zS51acPLkSQ0dOlSJiYkKCwvTnXfeqR07digsLKy0WwMAAMB1Zqkgu3Tp0tJuAQAAADcIS51aAAAAADgRZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCVZMsi+8cYbqlu3rvz9/RUVFaWdO3eWdksAAAC4ziwXZD/++GNNnDhR06ZN0549e9SyZUtFR0fr7Nmzpd0aAAAAriPLBdm5c+fqgQce0KhRo9S0aVO99dZbKl++vN59993Sbg0AAADXkU9pN1AY6enp2r17tyZPnuyq2Ww29ejRQ9u3b/d4n7S0NKWlpbluJycnS5J+/fVXZWRkuLZhs9nkcDjkcDjctm2z2ZSZmSnTNPOt2+12GYbh2q7TuXPnlJCQ4LauJBmGIUk56jabTaZputUNw5BhGAWqO+9f0PULUs/6uGTtPTMzU5cvX9Y333wjm81WYmPKXs/aU3GPydM8Oee7JMeU/bnkrJXUmJx1h8PhmkMfH58SG1NR568oY8oq6+vB2+dMYep2uz3Hz4jiHpOzfvjwYVWoUEHxh+J09XKqsjNlyJBZbPXE40dVrlw57d69WxcvXiyRMTnXLc7XfGHnL/vP8uIeU9a6aZq6fPmytmzZ4tpeSYw1++845zrX4/eT8/dsSY4pa+/Zl5Xk76finr+Cvp7sdrscDkeJ/8511qtVq6bq1asXSzay2+2SlON3q7OelJTkcczZWSrInj9/XpmZmapWrZpbvVq1ajp48KDH+8yZM0czZszIUa9Xr16J9AgAN4sxY8aUdgsAyriLFy+qYsWKuS63VJAtismTJ2vixImu2w6HQ7/++qtCQ0Pd/mpC0aSkpKhWrVo6ceKEgoODS7sdFAFzaH3MofUxh9bG/BU/0zR18eJFRURE5LmepYJslSpVZLfbdebMGbf6mTNnFB4e7vE+fn5+8vPzc6uFhISUVIs3reDgYF68FsccWh9zaH3MobUxf8UrryOxTpb6sJevr69atWqldevWuWoOh0Pr1q1T+/btS7EzAAAAXG+WOiIrSRMnTtSIESPUunVrtW3bVq+++qpSU1M1atSo0m4NAAAA15HlguzgwYN17tw5TZ06VQkJCbrtttsUExOT4wNguD78/Pw0bdq0HKdvwDqYQ+tjDq2PObQ25q/0GGZ+1zUAAAAAbkCWOkcWAAAAcCLIAgAAwJIIsgAAALAkgiwAAAAsiSCLPG3evFl9+/ZVRESEDMPQypUr871PWlqannnmGdWpU0d+fn6qW7eu3n333ZJvFh4VZQ4//PBDtWzZUuXLl1f16tV1//33KzExseSbRQ5z5sxRmzZtFBQUpKpVq6p///46dOhQvvdbtmyZGjduLH9/f91666368ssvr0O38KQoc7hgwQJ17NhRlSpVUqVKldSjRw/t3LnzOnWMrIr6GnRaunSpDMNQ//79S67JmxhBFnlKTU1Vy5Yt9cYbbxT4PoMGDdK6deu0cOFCHTp0SB999JEaNWpUgl0iL4Wdw61bt2r48OEaPXq0fvzxRy1btkw7d+7UAw88UMKdwpNNmzZp3Lhx2rFjh9asWaNr166pZ8+eSk1NzfU+27Zt09ChQzV69GjFxsaqf//+6t+/v/bv338dO4dTUeZw48aNGjp0qDZs2KDt27erVq1a6tmzp06dOnUdO4dUtPlzOnbsmJ544gl17NjxOnR6kzKBApJkrlixIs91vvrqK7NixYpmYmLi9WkKhVKQOfz73/9u1q9f36322muvmTVq1CjBzlBQZ8+eNSWZmzZtynWdQYMGmX369HGrRUVFmWPHji3p9lAABZnD7DIyMsygoCDzvffeK8HOUBAFnb+MjAzzjjvuMN955x1zxIgRZr9+/a5PgzcZjsiiWP3f//2fWrdurZdeekk1atTQLbfcoieeeEJXrlwp7dZQQO3bt9eJEyf05ZdfyjRNnTlzRsuXL9cf/vCH0m4NkpKTkyVJlStXznWd7du3q0ePHm616Ohobd++vUR7Q8EUZA6zu3z5sq5du1ao+6BkFHT+nnvuOVWtWlWjR4++Hm3dtCz3zV64sR09elRbtmyRv7+/VqxYofPnz+vhhx9WYmKiFi1aVNrtoQA6dOigDz/8UIMHD9bVq1eVkZGhvn37Fur0EpQMh8OhCRMmqEOHDmrevHmu6yUkJOT4tsNq1aopISGhpFtEPgo6h9n97W9/U0RERI4/UHB9FXT+tmzZooULF2rv3r3Xr7mbFEdkUawcDocMw9CHH36otm3b6g9/+IPmzp2r9957j6OyFvHf//5Xjz76qKZOnardu3crJiZGx44d04MPPljard30xo0bp/3792vp0qWl3QqKqChz+MILL2jp0qVasWKF/P39S7A75Kcg83fx4kXdd999WrBggapUqXIdu7s5cUQWxap69eqqUaOGKlas6Ko1adJEpmnq5MmTatiwYSl2h4KYM2eOOnTooEmTJkmSWrRoocDAQHXs2FGzZs1S9erVS7nDm9MjjzyiL774Qps3b1bNmjXzXDc8PFxnzpxxq505c0bh4eEl2SLyUZg5dHr55Zf1wgsvaO3atWrRokUJd4i8FHT+fv75Zx07dkx9+/Z11RwOhyTJx8dHhw4dUmRkZIn3e7PgiCyKVYcOHRQfH69Lly65aj/99JNsNluBf3CjdF2+fFk2m/uPBrvdLkkyTbM0WrqpmaapRx55RCtWrND69etVr169fO/Tvn17rVu3zq22Zs0atW/fvqTaRB6KMoeS9NJLL2nmzJmKiYlR69atS7hL5Kaw89e4cWP98MMP2rt3r+vfXXfdpa5du2rv3r2qVavWder85sARWeTp0qVLOnLkiOt2XFyc9u7dq8qVK6t27dqaPHmyTp06pffff1+SNGzYMM2cOVOjRo3SjBkzdP78eU2aNEn333+/AgICSmsYN7XCzmHfvn31wAMP6M0331R0dLROnz6tCRMmqG3btoqIiCitYdy0xo0bpyVLluizzz5TUFCQ6zzXihUrul5Tw4cPV40aNTRnzhxJ0qOPPqrOnTvrH//4h/r06aOlS5dq165dmj9/fqmN42ZWlDl88cUXNXXqVC1ZskR169Z13adChQqqUKFC6QzkJlXY+fP3989x/mxISIgkFeq8aBRQaV4yATe+DRs2mJJy/BsxYoRpmqY5YsQIs3Pnzm73OXDggNmjRw8zICDArFmzpjlx4kTz8uXL1795mKZZtDl87bXXzKZNm5oBAQFm9erVzT//+c/myZMnr3/z8Dh3ksxFixa51uncubNrPp0++eQT85ZbbjF9fX3NZs2amatWrbq+jcOlKHNYp04dj/eZNm3ade//ZlfU12BWXH6r5BimyXuFAAAAsB7OkQUAAIAlEWQBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlEWQBAABgSQRZAAAAWBJBFgAAAJZEkAWAUrJx40YZhqGNGzeWdisAYEkEWQAoo7Zt26bp06frwoULpd0KAJQIgiwAlFHbtm3TjBkzCLIAyiyCLACgUC5fvlzaLQCAJIIsAJSoU6dOafTo0YqIiJCfn5/q1aunhx56SOnp6R7Xr1u3rkaOHJmj3qVLF3Xp0sWt9vrrr6tZs2YqX768KlWqpNatW2vJkiWSpOnTp2vSpEmSpHr16skwDBmGoWPHjrnu/+9//1utWrVSQECAKleurCFDhujEiRM59tu8eXPt3r1bnTp1Uvny5fX0008X/QEBgGLkU9oNAEBZFR8fr7Zt2+rChQsaM2aMGjdurFOnTmn58uVeH9VcsGCBxo8fr3vuuUePPvqorl69qn379unbb7/VsGHDNGDAAP3000/66KOP9Morr6hKlSqSpLCwMEnS888/rylTpmjQoEH6y1/+onPnzun1119Xp06dFBsbq5CQENe+EhMT1bt3bw0ZMkT33nuvqlWr5lXvAFBcCLIAUEImT56shIQEffvtt2rdurWr/txzz8k0Ta+2vWrVKjVr1kzLli3zuLxFixa6/fbb9dFHH6l///6qW7eua9kvv/yiadOmadasWW5HVwcMGKDf/e53mjdvnls9ISFBb731lsaOHetVzwBQ3Di1AABKgMPh0MqVK9W3b1+3EOtkGIZX2w8JCdHJkyf13XffFfq+//nPf+RwODRo0CCdP3/e9S88PFwNGzbUhg0b3Nb38/PTqFGjvOoXAEoCR2QBoAScO3dOKSkpat68eYls/29/+5vWrl2rtm3bqkGDBurZs6eGDRumDh065Hvfw4cPyzRNNWzY0OPycuXKud2uUaOGfH19i6VvAChOBFkAuIHkdqQ2MzNTdrvddbtJkyY6dOiQvvjiC8XExOjTTz/VvHnzNHXqVM2YMSPPfTgcDhmGoa+++sptm04VKlRwux0QEFCEkQBAySPIAkAJCAsLU3BwsPbv31+o+1WqVMnjdV9/+eUX1a9f360WGBiowYMHa/DgwUpPT9eAAQP0/PPPa/LkyfL39881FEdGRso0TdWrV0+33HJLofoDgBsJ58gCQAmw2Wzq37+/Pv/8c+3atSvH8tw+7BUZGakdO3a4XZ7riy++yHFZrMTERLfbvr6+atq0qUzT1LVr1yT9FnQl5QjGAwYMkN1u14wZM3L0YZpmjm0DwI2KI7IAUEJmz56tr7/+Wp07d9aYMWPUpEkTnT59WsuWLdOWLVs83ucvf/mLli9frl69emnQoEH6+eef9e9//1uRkZFu6/Xs2VPh4eHq0KGDqlWrpgMHDuhf//qX+vTpo6CgIElSq1atJEnPPPOMhgwZonLlyqlv376KjIzUrFmzNHnyZB07dkz9+/dXUFCQ4uLitGLFCo0ZM0ZPPPFEyT44AFAMCLIAUEJq1Kihb7/9VlOmTNGHH36olJQU1ahRQ71791b58uU93ic6Olr/+Mc/NHfuXE2YMEGtW7fWF198occff9xtvbFjx+rDDz/U3LlzdenSJdWsWVPjx4/Xs88+61qnTZs2mjlzpt566y3FxMTI4XAoLi5OgYGBeuqpp3TLLbfolVdecZ1TW6tWLfXs2VN33XVXyT0oAFCMDNPbixkCAAAApYBzZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCX9P+3VAatZ00L5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Elegir el número del cluster a analizar\n", + "cluster_a_analizar = 2 # Cambia este valor al número del cluster que quieres analizar\n", + "\n", + "# Filtrar los elementos del cluster específico\n", + "elementos_cluster = df_final[df_final['cluster'] == cluster_a_analizar]\n", + "\n", + "print(f\"Elementos del cluster {cluster_a_analizar}:\")\n", + "print(elementos_cluster)\n", + "\n", + "# Estadísticas descriptivas de los datos del cluster\n", + "print(f\"\\nEstadísticas descriptivas del cluster {cluster_a_analizar}:\")\n", + "print(elementos_cluster.describe())\n", + "\n", + "# Visualizar las características relevantes de los elementos del cluster\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Seleccionar columnas relevantes para el análisis (puedes ajustar según tu caso)\n", + "columnas_relevantes = elementos_cluster.select_dtypes(include=['number']).columns\n", + "\n", + "# Crear histogramas para las columnas relevantes\n", + "for col in columnas_relevantes:\n", + " plt.figure(figsize=(8, 5))\n", + " elementos_cluster[col].hist(bins=20, color='skyblue', edgecolor='black')\n", + " plt.title(f'Distribución de {col} en el cluster {cluster_a_analizar}', fontsize=14)\n", + " plt.xlabel(col, fontsize=12)\n", + " plt.ylabel('Frecuencia', fontsize=12)\n", + " plt.grid(axis='y', linestyle='--', alpha=0.7)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Elementos del cluster 3:\n", + " Weight Upper_Material Midsole_Material \\\n", + "7 213.0 Parte superior de malla Dreamstrike+ \n", + "15 334.0 Exterior técnico de malla Mediasuela Dreamstrike \n", + "32 247.0 Parte superior de monomalla LIGHTMOTION \n", + "35 248.0 Exterior textil Tecnología Light BOOST \n", + "40 254.0 Monomalla Dreamstrike+ \n", + ".. ... ... ... \n", + "414 243.0 Exterior de malla acolchada Dreamstrike+ \n", + "428 290.0 Parte superior de malla Mediasuela Dreamstrike+ \n", + "429 290.0 Parte superior de malla Dreamstrike+ \n", + "442 213.0 Parte superior de malla mediasuela Dreamstrike+ \n", + "450 295.0 adidas PRIMEKNIT 4D de impresión 3D \n", + "\n", + " Outsole Cushioning_System \\\n", + "7 Suela Adiwear Dreamstrike+ \n", + "15 Suela con inserciones de caucho Dreamstrike \n", + "32 Adiwear LIGHTMOTION \n", + "35 Continental Rubber Tecnología BOOST \n", + "40 Varillas de caucho Dreamstrike+ \n", + ".. ... ... \n", + "414 Adiwear Dreamstrike+ \n", + "428 Suela Adiwear Dreamstrike+ \n", + "429 Suela Adiwear Dreamstrike+ \n", + "442 Suela Adiwear Dreamstrike+ \n", + "450 Continental Rubber Estructura que absorbe el impacto \n", + "\n", + " Drop__heel-to-toe_differential_ Usage_Type Gender Available_Sizes \\\n", + "7 10.0 Running Mujer CO 37 \n", + "15 10.0 Running Hombre NaN \n", + "32 10.0 Running Mujer CO 37 \n", + "35 10.0 Running Mujer CO 37 \n", + "40 10.0 Running Mujer NaN \n", + ".. ... ... ... ... \n", + "414 10.0 Running Mujer NaN \n", + "428 8.0 Running Hombre CO 40 \n", + "429 8.0 Running Hombre NaN \n", + "442 10.0 Running Mujer NaN \n", + "450 10.0 Running Mujer NaN \n", + "\n", + " Width Additional_Technologies \\\n", + "7 NaN Contiene al menos un 20% de material reciclado... \n", + "15 NaN Contiene al menos un 20% de material reciclado \n", + "32 NaN Recycled materials, Waterproofing \n", + "35 NaN Torsion System, Recyclable materials, Huella d... \n", + "40 NaN Contiene al menos un 20% de material reciclado \n", + ".. ... ... \n", + "414 NaN Sustainable dye technology, Recyclable materials \n", + "428 NaN Recycled materials, Optimized lacing system \n", + "429 NaN NaN \n", + "442 NaN Contiene al menos un 20% de material reciclado... \n", + "450 NaN Contiene al menos un 20% de material reciclado... \n", + "\n", + " id regularPrice undiscounted_price cluster \n", + "7 0n2Tyl34QdVdkCKgAdcT 649950 NaN 3 \n", + "15 1f5c8gEndKxlI9IEo2FT 579950 347970.0 3 \n", + "32 4rs0wxAzoGLvCI8BHwzh 379950 265965.0 3 \n", + "35 5BnxAht8eNgpRagM6Xcv 949950 NaN 3 \n", + "40 5iyHRy6zWzpmfnsalDBK 499950 349965.0 3 \n", + ".. ... ... ... ... \n", + "414 voNjPj9u2oFEimmwnQUZ 799950 NaN 3 \n", + "428 x6mqNLTCjvwPX1Zp7k7f 849950 NaN 3 \n", + "429 xDe8Syqrat9Xos53PdXL 849950 594965.0 3 \n", + "442 yFWhoK8BDTP6VF8QzBMA 649950 NaN 3 \n", + "450 zVnQ4LTK528Lins9HzaW 1199950 719970.0 3 \n", + "\n", + "[64 rows x 15 columns]\n", + "\n", + "Estadísticas descriptivas del cluster 3:\n", + " Weight Drop__heel-to-toe_differential_ Width regularPrice \\\n", + "count 64.000000 62.000000 0.0 6.400000e+01 \n", + "mean 255.125000 9.419355 NaN 7.233875e+05 \n", + "std 36.080818 1.300043 NaN 2.401337e+05 \n", + "min 183.000000 6.000000 NaN 2.999500e+05 \n", + "25% 242.000000 10.000000 NaN 5.799500e+05 \n", + "50% 251.000000 10.000000 NaN 6.999500e+05 \n", + "75% 277.000000 10.000000 NaN 8.499500e+05 \n", + "max 334.000000 10.000000 NaN 1.299950e+06 \n", + "\n", + " undiscounted_price cluster \n", + "count 33.000000 64.0 \n", + "mean 511087.272727 3.0 \n", + "std 171176.978698 0.0 \n", + "min 239960.000000 3.0 \n", + "25% 349965.000000 3.0 \n", + "50% 509970.000000 3.0 \n", + "75% 639960.000000 3.0 \n", + "max 909965.000000 3.0 \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAHcCAYAAADBWPI0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdgUlEQVR4nO3dd3xUVf7/8fedCSkEQiAhQIDQBaQqTQJS1AUVC+pasCHuz1UXu+JiQWBRcVfXdV3L2hZ1v7uIDcUFQUV6L6EpvRtESICEEhKSOb8/4lwymUkyyaRdeD0fD3yYzz1z72n3zCc3d+5YxhgjAAAAwEFcVV0BAAAAoLRIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBlLt//OMfsixL7733XlVXBQBwhiKJBX41d+5cWZalcePGVcnxmzdvrubNm/vExo0bJ8uyNHfu3CqpU2GWZWnAgAHFllm+fLkee+wxPfPMM/rd735XORULIJi6Ok15zdHqNq+qgwEDBsiyrHLfb1WvK8CZjCQWZ5Rdu3bJsiyffzVr1lRiYqIuvvhiPfPMM9q+fXuFHLui3gSd5PDhw7rhhhs0bNgwjR8/vqqrUyFeeOEFWZalF154IeD2rl27yrIs3XPPPQG3Dx06VJZlafbs2RVZzXJFIuYc1eUXlM2bN+uuu+7Seeedp/r16ysiIkLNmzfXFVdc4ai5j+otrKorAFSEVq1a6dZbb5UkZWdn68CBA1q+fLkmTJig559/Xo8//riee+45n6SzZ8+e2rhxo+Lj46ukzk5Y2Ddu3KiaNWsWuX3NmjX6wx/+oIcffrgSa1W5Bg4cKCk/sRs9erTPtvT0dK1bt67IJMLj8Wj+/PmKiIhQnz59Sn3sqp6jQLDWr1+vzz//XL1791ZycrJiYmKUmpqqL7/8UtOnT9ezzz6rp556qqqrCYcjicUZqXXr1gGvGi1cuFC33XabJk6cKLfbrQkTJtjbatasqXbt2lViLX21atWqyo4drJL6Z+DAgXaSd6bq1q2bateurYULFyo3N1dhYaeX0Xnz5skYo2uvvVaff/65fv75ZzVq1MjevnbtWh0+fFj9+/dXZGRkqY9d1XMUCNaVV16p6667zu+vU/v27dN5552n8ePHa+TIkYqNja2aCuKMwO0EOKv07dtXM2fOVEREhP7yl79o79699rai/mS6detWjRgxQi1atFBERITq1aunLl266KGHHpIxRlL+/Zfz5s2z/9/774477pB0+jaHO+64Qxs3btQ111yjuLg4WZalXbt2SQp8T2xB7733njp16qTIyEg1btxYDz/8sI4ePepTprg/+xasQ2EHDhzQo48+qrZt2yoqKkr16tVTr1699NJLL/mUK+o+07S0ND300EN2HyUkJOiGG27Qhg0b/MrecccdsixLO3fu1Kuvvqp27dopIiJCzZo10/jx4+XxeIrsg0DeffdddezYUZGRkWratKkef/xxnTx5ssjyR48e1dixY9WhQwdFRUUpNjZWgwcP1sKFC4M6XlhYmC688EIdP35cK1as8Nk2d+5cRUVF6Y9//KMkac6cOX7bJfkl+l9++aUuvvhi1a1bV5GRkerYsaNeeukl5eXl+b2+qPGdN2+e+vXrp+joaMXFxenGG2/U3r17S7zN5b///a+6du2qqKgoNWrUSA8++KCysrLs7ePGjbPrO378eJ/57Z27JQm2fe+//74sy9L777+vb775RsnJyapZs6bi4uI0fPhwpaenB3U8rwMHDujhhx9W69atFRERofj4eF133XUB52VZrF27VrfccouaNGmiiIgINWrUSJdeeqm++uqrEl9b3D3bgdaCjIwMPfPMMzr33HNVq1YtxcTEqHXr1ho+fLh2794tKf+WJu9tPAMHDrTHqfC+StMv3rocOXJE9913n5o2baqwsDC9//77xbYvIiIi4LxLTExUnz59dOrUKbveQFlxJRZnnbZt2+qGG27Qv//9b33xxRe6//77iyy7b98+9ezZU8ePH9eQIUN044036vjx49q6daveeOMNvfTSSwoLC9PYsWP1/vvva/fu3Ro7dqz9+q5du/rsb9u2bbrgggvUqVMn3XHHHUpPT1d4eHiJdX755Zc1e/Zs3XjjjRoyZIi+++47vfLKK1q6dKnmz5+vGjVqlLk/Nm/erIEDB+rnn39W3759NXToUB0/flw//PCDnn/+eT322GPFvv7gwYPq3bu3tm/frgEDBuimm27Szp079emnn2r69OmaNWuW+vbt6/e6UaNGad68ebriiis0ePBgffHFFxo3bpxycnL03HPPBVX3CRMm6JlnnlGDBg101113qUaNGpoyZYo2btwYsPyhQ4fUr18//fDDD+rTp4/uueceZWZm6ssvv9TAgQP1ySefaOjQoSUed+DAgZoxY4bmzJmj3r172/E5c+boggsuUPfu3VW3bl3NmTNHN998s8927+u9nnjiCb3wwgtq3Lixrr32WtWpU0cLFizQqFGjtGzZMn3yyScl1uebb77RkCFD5Ha7deONNyoxMVFz5sxR3759Vbdu3SJf99prr2nmzJm6+uqrddFFF2nmzJl69dVXlZaWpv/85z+S8hOjXbt26YMPPlD//v19Eq9grqKVpX3Tpk3T9OnTdeWVVyo5OVnz58/Xhx9+qO3btwf9y4Z3Pv70008aNGiQhg4dqgMHDuizzz7TrFmzNHv2bPXq1SuofQXy2Wef6eabb5YxRldeeaXatm2rAwcOaNmyZXrvvfd05ZVXlnnfhRljNHjwYC1btkx9+vTRpZdeKpfLpd27d2vatGm67bbb1KxZM/sX1Hnz5mn48OF28lpwnMrSL9nZ2brooot07NgxXXXVVQoLC1ODBg3K1Jb09HQtW7ZMNWvWVMuWLcu0D8BmgDPIzp07jSQzePDgYsu99957RpK57bbb7NicOXOMJDN27Fg79uqrrxpJ5pVXXvHbR3p6us/P/fv3N0WdUt56STLPPPNMwDLNmjUzzZo184mNHTvWSDLh4eFm7dq1dtzj8Zibb77ZSDIvvfRSsW0oXIfhw4f7xLt3724kmbffftvvNXv37vX5WZLp37+/T2zEiBFGknniiSd84tOnTzeSTOvWrU1eXp4dHz58uJFkWrRoYfbt22fHDx48aGJjY03t2rVNdna2X10K27p1qwkLCzONGzc2v/zyix3PyMgwbdu2DVhXb5+98847PvFffvnFNG3a1NSvX99kZWWVeOyVK1caSeY3v/mNT/0tyzLjx483xhhz1VVXmVatWtnb8/LyTGxsrImKirLb980339jz9dixY3ZZj8dj7rnnHiPJfPrpp3Y80Pjm5uaaZs2aGcuyzIIFC3zqefvtt9vzriDvvKpTp47ZtGmTHT9x4oQ555xzjMvlMqmpqcUeNxilbd+kSZOMJBMWFmYWLlzo08YBAwYYSWbJkiVBHTs5Odm43W4zc+ZMn/jmzZtN7dq1TadOnXzixZ2/he3fv99ER0eb6Ohos3r1ar/tBc+bovou0Pz0KrwWrFu3zkgyQ4cO9St78uRJc/ToUftn79jOmTMn4L5L2y/NmjWzx/DEiRMB91mczZs3m7Fjx5qnn37a3HnnnSY+Pt6EhYWZd999t9T7AgrjdgKclRITEyXl/xk8GFFRUX6xevXqlfq4DRs2LNOHGW6//XZ17tzZ/tmyLD3//PNyu90l/lmvOMuXL9fKlSvVr18/3XXXXX7bmzRpUuzrc3JyNHnyZMXFxenpp5/22Xb55ZfrN7/5jbZt26ZFixb5vXbMmDE+94vGx8fr6quv1tGjR7V58+YS6/7f//5Xubm5euSRR5SQkGDHY2Ji/Ooi5Y/1lClTdNFFF+n//b//57MtISFBo0aN0sGDB/Xdd9+VeOzzzjtPsbGxWrRokXJyciTl/6nfGGNfqezfv7+2b99u37KyZs0aHTlyRMnJyfbV99dee02S9Pbbbys6Otrev/fpB5ZlafLkycXWZeHChdq9e7euvPJKvyvezz77rNxud5GvffDBB9W2bVv756ioKA0bNkwej0erVq0qsR9KUtb23XzzzT4ffHO73Ro+fLgk+d3CEUhKSooWL16s4cOHa/DgwT7bzjnnHN11111av359mW8r+OCDD3T8+HE9+uijOu+88/y2l3TelFWgdSgiIkK1atUK6vWh9Mtf/vKXgMcvyZYtWzR+/Hg9++yz+te//qWTJ09q0qRJVfr4PZw5uJ0AKMaVV16pJ554QiNHjtTs2bN16aWXqn///mX+M1iXLl2Cun2gsAsvvNAv1qxZMzVt2lQ//PCDcnJyyrTf5cuXS5IGDRpU6tdK0qZNm3Ty5EkNHDgw4FMLBg4cqG+//VZr1qzxa0O3bt38ynvf/I8cOVLisdeuXSspcN8Eiq1YsUJ5eXnKzs4OeE/p1q1b7TZdccUVxR7b5XLpwgsv1FdffaXly5erb9++mjNnjiIjI+0/xfbv319S/i0Et99+e8D7YZcuXaro6Gj961//CnicqKgobdq0qdi6ePsh0C0bTZs2VVJSknbu3BnwtaGOQUnK2r5Q67V06VJJ0i+//BJwrL3H3LRpkzp27Fji/goL9bwprfbt26tz586aPHmyfvrpJw0dOlQDBgxQ165d5XIFfy2qrP0SGRmpTp06lanuV1xxhYwxysnJ0a5du/TOO+/o9ttv1/Lly/Xqq6+WaZ+AF0kszkr79u2TJNWvX7/Ycs2bN9fSpUs1btw4zZgxQx9//LGk/E/p/+lPf9L1119fquOW9T6yol7XoEED7dq1S0ePHlVcXFyp95uRkSFJaty4cZnqlZmZWWz9vFdaveUKiomJ8Yt5P+lf+AM/gXjrXvAqrFeg+hw6dEiStGjRooBXhr2OHz9e4rGl/GT0q6++0ty5c9W3b1/NnTtXF1xwgSIiIiTl3w9dp04dO4n13g970UUX+dQpNze32GfqllQfb98G6gcpvy+KSmJDHYOSlLV9odbLO9bTp0/X9OnTS3XsYIR63pRWWFiYvv/+e40bN06fffaZHn30UUn569d9992np556qtgr7l5l7ZeEhISQn4EdHh6uc845Ry+++KJOnDihf/zjH7rssst02WWXhbRfnN24nQBnJe9VsR49epRYtmPHjvr000916NAhLVmyRM8884z279+vG2+8sdhkKJCyvhH88ssvRcYty1Lt2rUlyb4qk5ub61fW+8ZbkPcDH6mpqWWqlzfZKKp++/fv9ylXnurUqSMp/5PWhQWqj7cOjz76qIwxRf4r+MG84nivqM6ZM0cHDhzQjz/+6POhJ7fbbV+h9Xg8WrBggWrVquUz52JiYhQXF1dsfYpKQAu3K1A/FNUXlaU82lfW40r5X39c3LG9tyiUVqjnjZS/FgQ6T6XA52pcXJz+8Y9/KDU1VT/++KNee+011atXT2PHjtVf/vKXoI5Z1n4p7y9x8V7BruovZIDzkcTirLNlyxZ9/PHHioiI0DXXXBP062rUqKELLrhA48eP16uvvipjjP73v//Z271XQsrjClZhCxYs8Ivt3r1be/fuVYcOHexbCbyfRA/05pqSkuIX69mzp6T8T7eXRbt27RQZGakVK1boxIkTftu9b1KFn9JQHrp06SIpcN8EivXo0UOWZWnJkiXlcvzOnTurXr16WrJkiWbNmiVJfo9M6t+/v3bv3q3PP/9cGRkZ6tu3r89zZXv16qX09HT7Voay8PZDoF+ofvrpJ+3Zs6fM+/Yq69wuj/aVhfeWjvIa68JCPW+k/HM10Hm6a9euYm+ZsCxL7du318iRI/Xtt99Kyn+ag1dxY1XR/RIs71/CQnmqCiCRxOIss2jRIg0ePFjZ2dkaPXp0iX8OXLVqVcA/hXuvbhV8YL33g14Fnz1bXj788EOtW7fO/tkYoyeffFJ5eXk+z31t27atateurWnTptl/OvTW99lnn/Xbb48ePdSjRw/Nnz9f77zzjt/2kq40hYeHa9iwYUpLS9PEiRN9ts2cOVOzZs1S69aty/TtVCW5+eab5Xa79fLLL/tchczMzAzY1oYNG+qGG27Q4sWL9eKLL9rP+C1o2bJlAZPxQFwul/r376+srCz95S9/UWRkpC644AKfMt77Ygs+u7OgBx54QJJ05513BnwG6v79+4t8XJhX3759lZSUpK+++sovORkzZky5/FJV1rldHu0ri549e6pXr16aPHmypkyZ4rfd4/HYz3Uui+HDh6tWrVr661//qjVr1vhtD+YKbY8ePbRr1y6feuTk5OiRRx7xK7tr166Az+Qt7TpU0f1S0KpVqwKeY7t377bXCm4lQKi4JxZnpG3bttkfXMjJybG/dnb9+vVyu916+umng/qz8b///W+99dZb6tevn1q1aqWYmBj9+OOPmjFjhurVq6cRI0bYZS+66CJ9+umnuu6663TZZZcpMjJSXbp0KZfnRQ4ePFi9e/fWTTfdpPr162v27NlauXKlLrjgAp/n3IaHh+v+++/X888/r/PPP9/+tP9XX31lf1q+sP/85z8aMGCAfv/73+vf//63evfurZMnT+qHH35QSkpKiQ+Y//Of/6x58+bp2Wef1eLFi9WrVy/t2rVLn3zyiWrWrKlJkyaV6sMnwWrdurWeeeYZjR07Vp07d9YNN9ygsLAwffbZZ+rcuXPAJxy88cYb2rx5sx5//HG7rbGxsdq7d69WrlyprVu36ueffy72q3ULGjhwoKZOnaoNGzZowIAB9v2wXueff75q1aplf9q7cBJ76aWXasyYMZowYYJat26tSy+9VM2aNVN6erq2bdumBQsW6Nlnn1X79u2LrIPb7dY///lPXXXVVbrooot04403qlGjRpo3b55SU1PVpUsXn1+AyqJdu3ZKTEzURx99pIiICDVp0kSWZen++++3b+sIpDzaV1aTJ0/WwIEDddNNN+mVV17R+eefr6ioKO3Zs0dLlizRwYMHi/1SjOIkJCToww8/1E033aSePXvqqquuUtu2bZWWlqZly5apefPm+uKLL4rdxyOPPKJvvvlGl19+uYYNG6aaNWvq22+/VWxsrM9TO6T8J1tce+216tmzp84991w1bNhQqamp+uKLL+RyuXy+5tn7JQdPPvmkfvjhB9WpU0exsbG67777KrxfCnr00Ue1bds29erVS0lJSXK5XNq+fbu+/vpr5eTk6LHHHquQX25xlqmwh3cBVaDg81i9/6KiokyjRo3MwIEDzZgxY8y2bdsCvjbQ8xyXLl1q7r77btOxY0f7GZ9t2rQx9913n9m9e7fP60+dOmUef/xxk5SUZMLCwnyeyVrUM1oLKu45sXPmzDHvvPOO6dChg4mIiDCNGjUyDz74oMnMzPTbT15enhk3bpxp2rSpCQ8PN+ecc475+9//bnbs2FFkHfbv328efPBB07JlSxMeHm7q1atnevXqZV5++WWfciri2ZYHDx40DzzwgGnWrJmpUaOGiY+PN7/97W/N+vXr/cp6nxO7c+dOv20lPeMykHfeecece+65Jjw83DRp0sQ89thj5sSJE0XW9cSJE+Yvf/mL6datm4mOjjZRUVGmRYsWZujQoebDDz80p06dCvrY69evt+fZuHHjApYZPHiwkWRiYmJMbm5uwDLffvutufLKK039+vVNjRo1TMOGDU3v3r3NhAkTzJ49e+xyxT2v9fvvvzd9+/Y1UVFRpl69eub66683e/bsMR07djR16tTxKVtcP3uf1Tpp0iSf+NKlS03//v1N7dq17TYHGsNQ2lfUsUtqe1EOHTpknn76adOxY0cTFRVlatWqZdq0aWNuvvlm8/nnn/uULc1zYr1SUlLMDTfcYBo0aGBq1KhhGjVqZC677DLzv//9L6h6f/LJJ6ZTp04mPDzcNGzY0Nx///3m6NGjfmvB3r17zejRo80FF1xgEhISTHh4uElKSjLXXnttwOfmvv/++6ZTp04mIiLCSPJbV0rTL4HWpWB88skn5vrrrzctW7Y00dHRpkaNGqZx48bm2muv9XtGLVBWljEBrvcDABzv6NGjatCggTp16qRly5ZVdXUAoFxxTywAONzx48d19OhRn1heXp5GjRqlrKysoL5KFwCchiuxAOBwa9asUd++fTV48GC1bNlSR48e1YIFC/Tjjz+qQ4cOWrZsmc83ZgHAmYAkFgAc7uDBg3r88cc1b948/fLLL8rNzVVSUpKGDh2qp556yn6uKQCcSUhiAQAA4DjcEwsAAADHIYkFAACA45xRX3bg8Xi0b98+1a5du9y/6xkAAAChM8bo6NGjSkxMDOnLcM6oJHbfvn1q2rRpVVcDAAAAJdi7d6+aNGlS5tefUUls7dq1JeV3SkxMTJn2cerUKX3zzTcaNGiQatSoUZ7VO+PQV8Ghn4JHXwWPvgoO/RQ8+ip49FVwiuqnzMxMNW3a1M7byuqMSmK9txDExMSElMTWrFlTMTExTMwS0FfBoZ+CR18Fj74KDv0UPPoqePRVcErqp1Bv/eSDXQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOEVXUFAJx59uzZo7S0tFK/zuPxSJLWrl0rlyv437Gzs7MVERFR6uOVVXx8vJKSkirteGeDss6ZkhQ1pxhDwPlIYgGUqz179qhd+/bKOnGi1K+NiorS5MmT1a9fP2VlZQX9Osvlkvk1WakMUTVratPGjSRB5SSUOVOSouYUYwg4H0ksgHKVlpamrBMndMOzbyqhRZtSvdYtI+m4fv/uNOXJCuo1mxfN1rdvTCzT8criwM6t+vjpe5WWlkYCVE5CmTMlCTSnGEPgzEASC6BCJLRoo8btu5TqNS5PrvTTMiW27SiPK7jl6cDOrWU+HqqXihjDsswpAM7AB7sAAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHCcapXE5uXlacyYMWrRooWioqLUqlUrTZgwQcaYqq4aAAAAqpGwqq5AQX/+85/15ptv6oMPPlCHDh20cuVKjRgxQnXq1NEDDzxQ1dUDAABANVGtktjFixfr6quv1pAhQyRJzZs31+TJk7V8+fIqrhkAAACqk2qVxCYnJ+vtt9/Wli1bdM4552jt2rVauHChXn755YDls7OzlZ2dbf+cmZkpScrNzVVubq4kyeVyyeVyyePxyOPx2GW98by8PJ/bFbxl8vLyZFmWHXe73bIsy95vwbi3fDDxsLAwGWN84pZlye12+9WxqHhp21RUPNQ2Fdxenm3as2eP0tLS7PKWZckY41P3kuIF9+2Ne+tZOB4fH6/GjRv7xMt7nLz9ZVlWpY9TRbWpqLnn8XgUHh4ul4xkjGRZsown//9/ZSxXftzjW0dvGcuTJ0uWb3kpfz8Fi7vcsiT7eJYnT7Ks/PLG+Ja34x5ZPnWxpGLihetuKf//N27c6NdnpZ17geIul8tvXsfHx6t58+Y+/V5wHKvrGuEVzNyzx9B4ymWc7Dn26xzwzinvXAoPD5fH47HbVl3Pp8ocJ6+C739Ob1NFjVPB/Z0pbSqu7qG2yTunvPHC5cuqWiWxo0ePVmZmptq1aye32628vDw999xzuuWWWwKWnzhxosaPH+8XT0lJUXR0tCSpfv36atWqlXbu3KmDBw/aZZo0aaImTZpoy5YtysjIsONJSUmS8t+gCibI7dq1U2xsrFJSUnwmTufOnRUeHq6VK1f61KF79+7KycnRunXr7Jjb7VaPHj2UkZGhTZs22fGoqCh16dJFaWlp2rFjhx2vU6eO2rdvr3379umnn36y46VtU8uWLZWQkKANGzYoKyur3NpUcCKXV5tWr16taV99Jc+v9VmwYIHmz5+vYcOGqWXLlnb56dOna82aNbr77rsVHx9vxydPnqwdO3Zo1KhRCg8Pt+NvvfWWMjMzNWrUKJ82vfjii0po0EAffvCBoqKiJJX/OO3Zs0dS/ry0LKvSx6ki2lTc3EtPT9eoUaPUPOKksk4e0fGoumpweKfCck+fT2mxSToZXkuJh7bKKrCAHohtJklKPLRNpkASmxrfVm5Prhoe2m7HjMul1Ph2io0Ms48XmbZZuWER2l+vlaJPHlHdoz/b5U+GRysttpliTqQr5vjpuh+PitXh2omqe2y/orOO2PHM6PrKjK6vuIy9isw5bsfTj6XLcrm0YMECbdy40Y6XZe7FxMTo7rvvtmM5OTl68cUX1bJlSw0bNsyOHzlyRI8//rgiIyPtcSp4/lXXNUIKbu4VnDPK2Fsu43S4diMdj6qr+kd2Szo9p9Ji89f4Bx98UOnp6XYbquv5VJnj1LVrV0mn16ozoU0VNU4Fz78zpU1S+Y9TSkqKpNNzytsmbzxUlqlGn5r66KOPNGrUKL344ovq0KGD1qxZo4ceekgvv/yyhg8f7lc+0JXYpk2bKj09XTExMZJK/9tGXl6eZs6cqcGDByss7HSOfzb/BlVUPDc3V7NmzdLll1+usLCwcmnTqlWrlJycrOvG/l31m7eWkWRk5V/VK6Co+K/XXIqI+3+Scf/ObfpkzB+0fPlyewGXynecsrOzfebUmXZFonDdU1JS1KdPH90zaboatetSqiuxlvGobepybUnsLo8rzLe8Al+JXTPjU03904O6Z9J0JbbtVOFXYlNmTtWUp+/VTc+9qYTmre14aede0XFLkrHjB3dt06fjHtDSpUvVtWtXu98Lnn/esfKqLmuEV0lzb/Xq1facSWzXuVyvxLrzcnRO6gp7ThnLpdRN6/T2iMu1aNEi+7yvrudTZY6TMUYzZszwef9zepsqapwKnn/ev544vU3F1b2sbcrOztasWbPsOeWNHz58WHFxccrIyLDztbKoVldiR40apdGjR+umm26SJHXq1Em7d+/WxIkTAyaxERERioiI8IuHhYX5JKDS6QEozNuhXt7Bcbvdfvvw7juQ0sQtywoYL6qOpY0XblNJ8bK2qfCf8cujTZZlKScnR3HN26hR+y4Bj1+ePMq/JcHlcvnVvzzHSfKfU5U1TgVVxtxzuVzKycnJT8a8fzK3XCpwYdVmXL5ttTzGjhfelr+fADHJPp7PaywrYHlZLpkAdSkqXrju3lkfX4lz9NSpU5J8+z3QG0xhVb1GFFTS3LPH8NdfWEIdJ5+4/OdUTk5OwPO+up1PgVTUOHnnWaD3P6e2SaqYcSqcyAXitDYVVF5t8pYvPKeKKl9a1eoRWydOnPDrzMJXGAAAAIBqdSX2yiuv1HPPPaekpCR16NBBKSkpevnll3XnnXdWddUAAABQjVSrJPYf//iHxowZoz/84Q86cOCAEhMTdffdd+uZZ56p6qoBAACgGqlWSWzt2rX1yiuv6JVXXqnqqgAAAKAaq1b3xAIAAADBIIkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4TrVLYlNTU3XrrbcqLi5OUVFR6tSpk1auXFnV1QIAAEA1ElbVFSjo8OHD6tOnjwYOHKivv/5a9evX19atW1W3bt2qrhoAAACqkWqVxP75z39W06ZNNWnSJDvWokWLKqwRAAAAqqNqlcROmzZNgwcP1vXXX6958+apcePG+sMf/qC77rorYPns7GxlZ2fbP2dmZkqScnNzlZubK0lyuVxyuVzyeDzyeDx2WW88Ly9Pxhg77i2Tl5cny7LsuNvtlmVZ9n4Lxr3lg4mHhYXJGOMTtyxLbrfbr45FxUvbpqLiobap4PbyapMxRuHh4XLJyPLkyViWZLlkGY9UoO7GckmWVXTc41t3Y+XfOWMZj3wZWZYlj8fj0w/lPU7e/rIsq9LHqaLaVNTc83g89hjKmFKNk7eM5cmTJcu3vPzHz7jcsiSfOSPLyi9vjG95O+6R5VOX/DlWVLxw3b21so9XQpuKrHsxbSpYd5eMatSoIUk+/V5wHKvrGuEVzNyzx9B4ymWcfNYInZ5T3n4PDw/3Oe+r6/lUmePkVfD9z+ltqqhxKri/M6VNxdU91DZ555Q3Xrh8WVWrJHbHjh1688039cgjj+jJJ5/UihUr9MADDyg8PFzDhw/3Kz9x4kSNHz/eL56SkqLo6GhJUv369dWqVSvt3LlTBw8etMs0adJETZo00ZYtW5SRkWHHk5KSJEkbN270SZDbtWun2NhYpaSk+Eyczp07Kzw83O++3e7duysnJ0fr1q2zY263Wz169FBGRoY2bdpkx6OiotSlSxelpaVpx44ddrxOnTpq37699u3bp59++smOl7ZNLVu2VEJCgjZs2KCsrKxya1PBiVxebTp27JhGjRql5hEnFZm2WZnR9ZUZXV9xGXsVmXPcLn+4diMdj6qrBod3Kiz39DilxSbpZHgtJR7aKqvAibm/XivlucLUOG2zT5v2SYqLi1N6errd3vIepz179kjKn5eWZVX6OFVEm4qbe+np6fYYZp08UqpxOhDbTJKUeGibTIEkNjW+rdyeXDU8tN2OGZdLqfHtFBsZ5jNncsMitL9eK0WfPKK6R3+2y58Mj1ZabDPFnEhXzPHTdT8eFavDtRNV99h+RWcdseNFzb19tcIlSW3CsxVbYD6Vdu4V16bIU8cVfyR/3sRFnNSdd96Zf4wC41Tw/Kuua4QU3NwrOGeUsbdcxsm7RtQ/slvS6TmVFpu/xj/44IM+5311PZ8qc5y6du0q6fRadSa0qaLGqeD5d6a0SSr/cUpJSZF0ek552+SNh8oyBUeiioWHh6t79+5avHixHXvggQe0YsUKLVmyxK98oCuxTZs2VXp6umJiYiSV/reNvLw8zZw5U4MHD1ZY2Okc/2z+DaqoeG5urmbNmqXLL79cYWFh5dKmVatWKTk5WfdMmq7Etp0q/ErsT5vX6/VbB2n58uX2Ai6V7zhlZ2f7zKkz7YpE4bqnpKSoT58+umfSdDVq16VU42QZj9qmLteWxO7yuMJ8yyvwVcs1Mz7V1D89aM+Zir4SmzJzqqY8fa8e+M+3+ccroU2hXondt3m93rzjci1dulRdu3a1+73g+ecdq8LjUdVrhFdJc2/16tX2nEls17lcr8S683J0TuoKe04Zy6XUTev09ojLtWjRIvu8r67nU2WOkzFGM2bM8Hn/c3qbKmqcCp5/3r8iOr1NxdW9rG3Kzs7WrFmz7DnljR8+fFhxcXHKyMiw87WyqFZXYhs1aqRzzz3XJ9a+fXt99tlnActHREQoIiLCLx4WFuaTgEqnB6Awb4d6eQfH7Xb77cO770BKE7csK2C8qDqWNl64TSXFy9qmghO5vNpkWZZycnLkkZX/Zv6r/Dck/7oUGXcFbquxCsctGWPkcrn86l+e4yT5z6nKGqeCKmPuuVwuewz169WcYMfJ8hg7HmgM/cdPMlLAOZOftAboS8slE6AuRcUL19076/2O590e9NwrJl6g7h5ZOnXqlCTffg/0BlNYVa8RBZU09+wx/DW5D3WcfOLyn1M5OTkBz/vqdj4FUlHj5J1ngd7/nNomqWLGqXAiF4jT2lRQebXJW77wnCqqfGlVq0ds9enTR5s3+/7JbcuWLWrWrFkV1QgAAADVUbVKYh9++GEtXbpUzz//vLZt26b//ve/evvttzVy5MiqrhoAAACqkWqVxPbo0UNTp07V5MmT1bFjR02YMEGvvPKKbrnllqquGgAAAKqRanVPrCRdccUVuuKKK6q6GgAAAKjGqtWVWAAAACAYJLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOE/LTCfbv36/33ntPq1evVkZGhs/Xl0n53yoxe/bsUA8DAAAA2EJKYtetW6cBAwYoKytLbdu21fr163XuuefqyJEjSk1NVatWrdS0adPyqisAAAAgKcTbCUaPHq1atWpp8+bN+u6772SM0d///nft3btXU6ZM0eHDh/XCCy+UV10BAAAASSEmsYsWLdLdd9+tpKQkuVz5u/LeTnD99dfrlltu0ahRo0KvJQAAAFBASEmsx+NRgwYNJEmxsbFyu906dOiQvb1Tp05atWpVaDUEAAAACgkpiW3RooV27tyZvyOXSy1atNB3331nb1+8eLFiY2NDqiAAAABQWEhJ7KBBg/TJJ5/YP99777169913dckll+jiiy/WBx98oJtvvjnkSgIAAAAFhfR0gqeeekrDhg3TqVOnVKNGDT300EM6fvy4PvvsM7ndbo0ZM0ZPPvlkedUVAAAAkBRiElu3bl1169bN/tmyLD399NN6+umnQ64YAAAAUBS+sQsAAACOU6orsXfeeacsy9Lbb78tt9utO++8s8TXWJal9957r8wVBAAAAAorVRL7/fffy+VyyePxyO126/vvv5dlWcW+pqTtAAAAQGmVKondtWtXsT8DAAAAlYF7YgEAAOA4ISWxq1ev1htvvFHk9jfeeENr1qwJ5RAAAACAn5CS2KeeesrnG7oK+/7773ncFgAAAMpdSEnsqlWrdOGFFxa5/cILL9TKlStDOQQAAADgJ6Qk9ujRowoLK/qzYS6XSxkZGaEcAgAAAPATUhLbpk0bffPNN0Vunzlzplq2bBnKIQAAAAA/ISWxv/vd7zR9+nQ98sgjOnLkiB0/cuSIHn74Yc2cOVO/+93vQq0jAAAA4KNUz4kt7IEHHtCaNWv0yiuv6NVXX1ViYqIkad++ffJ4PLrtttv08MMPl0tFAQAAAK+QkljLsjRp0iTdfvvt+uyzz7Rjxw5J0tVXX63rrrtOAwYMKI86AgAAAD5CSmK9Bg4cqIEDB5bHrgAAAIAS8Y1dAAAAcJyQklhjjN566y317NlT8fHxcrvdfv+KewQXAAAAUBYhZZiPP/64Xn75ZXXt2lW33nqr6tatW171AgAAAIoUUhL7wQcf6LrrrtPHH39cXvUBAAAAShTS7QRZWVm65JJLyqsuAAAAQFBCSmIvvvhirVixorzqAgAAAAQlpCT2jTfe0NKlS/X8888rPT29vOoEAAAAFCukJLZt27basWOHxowZo4SEBEVHRysmJsbnX506dcqrrgAAAICkED/Ydd1118myrPKqCwAAABCUkJLY999/v5yqAQAAAASPb+wCAACA44ScxO7Zs0f33HOP2rZtq7p162r+/PmSpLS0ND3wwANKSUkJuZIAAABAQSHdTvDjjz/qwgsvlMfjUa9evbRt2zbl5uZKkuLj47Vw4UIdP35c7733XrlUFgAAAJDK4WtnY2NjtXTpUlmWpYSEBJ/tQ4YM0ZQpU0KqIAAAAFBYSLcTzJ8/X/fee6/q168f8CkFSUlJSk1NDeUQAAAAgJ+QkliPx6OaNWsWuf3gwYOKiIgI5RAAAACAn5CS2PPPP1/Tp08PuC03N1cfffSRLrjgglAOAQAAAPgJKYl94oknNHPmTN17773asGGDJOmXX37Rd999p0GDBmnjxo0aPXp0uVQUAAAA8Arpg12XXXaZ3n//fT344IN6++23JUm33nqrjDGKiYnRhx9+qH79+pVLRQEAAACvkJJYSbrtttt07bXX6ptvvtG2bdvk8XjUqlUrDR48WLVr1y6POgIAAAA+Qk5iJSk6OlrXXHNNeewKAAAAKFFISeyePXuCKpeUlBTKYQAAAAAfISWxzZs3D/h82MLy8vJCOQwAAADgI6Qk9l//+pdfEpuXl6ddu3bpww8/VEJCgkaOHBlSBQEAAIDCQkpi77jjjiK3/fGPf1SvXr2UkZERyiEAAAAAPyE9J7Y40dHRGjFihP72t79V1CEAAABwlqqwJFbK/1ra/fv3V+QhAAAAcBYql0dsFZaZman58+frxRdf1HnnnVcRhwAAAMBZLKQk1uVyFfl0AmOMkpKS9MYbb4RyCAAAAMBPSEnsM88845fEWpalunXrqlWrVho0aJDCwirkYi8AAADOYiFlmOPGjSunagAAAADBC+mDXbm5ucrMzCxye2ZmpnJzc0M5BAAAAOAnpCT2gQceUHJycpHb+/Tpo0cffTSUQwAAAAB+QkpiZ86cqd/+9rdFbv/tb3+rGTNmhHIIAAAAwE9ISey+ffvUuHHjIrcnJiYqNTU1lEMAAAAAfkJKYuPi4rR58+Yit2/cuFExMTGhHAIAAADwE1ISe+mll+qtt95SSkqK37bVq1fr7bff1mWXXRbKIQAAAAA/IT1ia8KECZo5c6Z69uypq666Sh06dJAkbdiwQV999ZUSEhI0YcKEcqkoAAAA4BVSEpuYmKiVK1dq9OjR+vLLLzV16lRJUkxMjG655RY9//zzSkxMLJeKAgAAAF4hf51Wo0aN9MEHH8gYo4MHD0qS6tevX+TX0QIAAAChKrfvhLUsSxEREapVqxYJLAAAACpUSB/skqSVK1fq0ksvVc2aNRUXF6d58+ZJktLS0nT11Vdr7ty5oR4CAAAA8BFSErt48WL17dtXW7du1a233iqPx2Nvi4+PV0ZGht56662QKwkAAAAUFFIS++STT6p9+/b68ccf9fzzz/ttHzhwoJYtW1amfb/wwguyLEsPPfRQKFUEAADAGSikJHbFihUaMWKEIiIiAt4H27hxY+3fv79M+33rrbfUuXPnUKoHAACAM1RISWyNGjV8biEoLDU1VbVq1SrVPo8dO6ZbbrlF77zzjurWrRtK9QAAAHCGCunpBBdccIE+/fTTgH/yP378uCZNmqT+/fuXap8jR47UkCFDdMkll+jZZ58ttmx2drays7PtnzMzMyVJubm5ys3NlSS5XC65XC55PB6fhNsbz8vLkzHGjnvL5OXl+VxddrvdsizL3q9Xamqq0tLSfPYhyX5t4bjL5ZIxxiduWZYsywo6Hh8fr+bNmwfdpqLiRbXJ7XbbfVBcvOB2Y4zPz5Zlye12+9WxqLi3jsYYhYeHyyUjy5MnY1mS5ZJlPFKBuhvLJVlW0XGPb92Nlf/7mmUK/9JlZFmWPB6PTz+EhYWVW5sKz6nKHqeKalNRc8/j8dhjKGNKNU7eMpYnT5Ys3/LyHz/jcsuSfOaMLCu/vDG+5e24R5ZPXfLnWFHxwnX31so+XgltKrLuxbSpYN1dMqpRo4Yk+fR7wXEsyzhVt7lnj6HxlMs4+awROj2nvP0eHh7uc95X9PmUmpqqgwcPhrT2lxQv/LmUZs2alapNXgXf/ypijahuc68sbSq4vzOlTcXVPdQ2eeeUN164fFmFlMSOHz9e/fv315AhQzRs2DBJ0tq1a7Vjxw699NJLOnjwoMaMGRP0/j766COtXr1aK1asCKr8xIkTNX78eL94SkqKoqOjJeU/s7ZVq1bauXOn/RxbSWrSpImaNGmiLVu2KCMjw44nJSVJkjZu3OiTILdr106xsbFKSUmxByUrK0u3Dx+uA7/8olGjRvnU4cUXX1RMTIzuvvtuO5aTk6MXX3xRLVu2tPtLyn+Sw1tvvaWuXbtqyJAhdnzHjh2aPHmy+vXrpwsvvNCO//Djj/r7K6/o1KlTQbWpZcuWSkhI0IYNG5SVlVVsmySpc+fOCg8P18qVK33a1L17d+Xk5GjdunWSfBP0jIwMbdq0yf45KipKXbp0UVpamnbs2GHH69Spo/bt22vfvn366aef7Lh3nI4dO6ZRo0apecRJRaZtVmZ0fWVG11dcxl5F5hy3yx+u3UjHo+qqweGdCss9PU5psUk6GV5LiYe2yipwYu6v10p5rjA1Ttvs06Z9kuLi4pSenm631+12q0ePHuXWpj179kjKn5eWZVX6OFVEm4o7n9LT0+0xzDp5pFTjdCA2/0038dA2mQJJbGp8W7k9uWp4aLsdMy6XUuPbKTYyzGfO5IZFaH+9Voo+eUR1j/5slz8ZHq202GaKOZGumOOn6348KlaHayeq7rH9is46YseLmnv7aoVLktqEZyu2wHwq7dwrrk2Rp44r/kj+vImLOKk777wz/xgFxqng+VeWcapOc6/gnFHG3nIZJ+8aUf/Ibkmn51RabP4a/+CDD/qc9xV5PlmWpYEXXaQe3bv7rOVr1qzR9OnTNWTIEHXt2tWOL1iwQPPnz9ewYcPUsmVLOz59+nStWbNGd999t+Lj4+345MmTtWPHDo0aNUrh4fnz0+V26/bbblPz5s2DbpO3Dt61qrg2hbJGVKe5V9Y2FTz/zpQ2SeU/TikpKZJOzylvm7zxUFmm8KXCUvr+++917733auvWrT7xVq1a6d133w36SuzevXvVvXt3ffvtt/a9sAMGDFDXrl31yiuvBHxNoCuxTZs2VXp6umJiYiSV/reNvLw8zZw5U4MHD1ZY2OkcP9BvG2vWrFHPnj11/YQ31LBFa5+6eY9U+H4NjyxJJmDc8nnbDhw/uGubPhl7v5YtW6auXbtW6W+6ubm5mjVrli6//HKFhYWVy2+Fq1atUnJysu6ZNF2JbTtV+JXYnzav1+u3DtLy5ct93kTK8zfd7Oxsnzl1pl2RKFz3lJQU9enTR/dMmq5G7bqUapws41Hb1OXakthdHleYb3kFvmq5ZsanmvqnB+05U9FXYlNmTtWUp+/VA//5Nv94JbQp1Cux+zav15t3XK6lS5f6nPMFzz/vWBUeD6dcDVu9erU9ZxLbdS7XK7HuvBydk7rCnlPGcil10zq9PeJyLVq0yD7vK/J8Wrt2rbp3764bn31TDQq8VxhJJsDa74275Pv2XFT812vNdvzgrm36bPyDWrx4sc4///yg22SM0YwZM3ze/6r7Fb6S4hW17hU8/7x/RXR6m4qre1nblJ2drVmzZtlzyhs/fPiw4uLilJGRYedrZVHmK7HGGB09elTJycnavHmz1qxZo61bt8rj8ahVq1bq1q1bqb70YNWqVTpw4IDOP/98O5aXl6f58+frtddeU3Z2tt14r4iICEVERPg3KizMJwGVTg9AYYX36R0ct9vttw/vvgvu0xijhBZt1Kh9lyBaGTqPLL9bJQor3KaS4oHaGUy88J+zApUvqo5FxS3LUk5Ojjyy8t/Mf5X/huRflyLjrsBtNVbheP6f5lwul1/9y6tN3ljhOVVZ41RQebapqLnncrnsMZT3tpogx8nyGDseaAz9xy//jT3QnMlPWgP0peWSCbQ0FREvXHfvrPc7nnd70HOvmHiBuntk6dSpU5J8+z3QG0xhVb1GFFTS3LPH8NfkPtRx8onLf07l5OQEPO8r4nzyvhfWr6T3Co/y11HvbQbBtsk7zwK9/5XnGhGI09a9wolcIE5rU0Hl1SZv+cJzqqjypVXmveTk5KhevXp6/vnn9fjjj6tr164+V7JK6+KLL9b69et9YiNGjFC7du30xz/+sciOAwAAwNmnzElsRESEGjZsGPBKaFnUrl1bHTt29IlFR0crLi7OLw4AAICzW0iP2Lrjjjv04YcfKicnp7zqAwAAAJQopJsSOnXqpC+++EIdOnTQHXfcoebNmysqKsqv3LXXXlum/c+dOzeU6gEAAOAMFVISW/AxUUU9SsuyrCKfRQcAAACURamT2CeffFI33XSTOnfurDlz5lREnQAAAIBilTqJfeGFF9SxY0d17txZ/fv3V3p6uhISEvTtt9/qoosuqog6AgAAAD5C+mCXV4jflwAAAACUSrkksQAAAEBlIokFAACA45Tp6QS7du3S6tWrJUkZGRmSpK1btyo2NjZg+YJfJQsAAACEqkxJ7JgxY/weqfWHP/zBr5wxhkdsAQAAoNyVOomdNGlSRdQDAAAACFqpk9jhw4dXRD0AAACAoPHBLgAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOGFVXQEAAIDqbs+ePUpLS5MkeTweSdLatWvlclXM9cDs7GxFRERUyL4DiY+PV1JSUqUdrzyQxAIAABRjz549ate+vbJOnJAkRUVFafLkyerXr5+ysrIq5JiWyyXza7JcGaJq1tSmjRsdlciSxAIAABQjLS1NWSdO6IZn31RCizZyy0g6rt+/O015ssr9eJsXzda3b0y0j1fRDuzcqo+fvldpaWkksQAAAGeahBZt1Lh9F7k8udJPy5TYtqM8rvJPpQ7s3OpzPATGB7sAAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DjVKomdOHGievToodq1ayshIUFDhw7V5s2bq7paAAAAqGaqVRI7b948jRw5UkuXLtW3336rU6dOadCgQTp+/HhVVw0AAADVSFhVV6CgmTNn+vz8/vvvKyEhQatWrVK/fv2qqFYAAACobqpVEltYRkaGJKlevXoBt2dnZys7O9v+OTMzU5KUm5ur3NxcSZLL5ZLL5ZLH45HH47HLeuN5eXkyxthxb5m8vDxZlmXH3W63LMuy9+stm1/GyPLk+dTNWPkXuS3j8Y273JIxvnHLyi9fZNwj69c6umQUFhZmHz+YNhUVD9Qmb9zbB8XFC243xvj8bFmW3G63Xx2LinvraIxReHi4XL/2qbEsyXLl90uBuhvLJVlW0fEgx0MysixLHo/Hpx/CwsLKrU2F51Rlj1NFtamouefxeOwxlDGlGidvGcuTJ0uWb3kFPp8syWfOlOZ8yt93/hwrKl647t5auQqd96Wde8GuES4Z1ahRQ5LvOV9wHMsyTsXNvZ9++klpaWmyLMs+Pwryro0F91Fc3HtuF4x7922M0aZNm06PofGUyzj5rBE6Pae8/R4eHq6NGzfabSvvNhWMe2+Ls/zmTAhtKuZ8cil/HfXWI9g1wqvg+19FrBFOXPe8+/Ke9wXHsSLen9z28hcgvwgxj8g/pu/cKzhnvP1YnuPknVPeeOHyZVVtk1iPx6OHHnpIffr0UceOHQOWmThxosaPH+8XT0lJUXR0tCSpfv36atWqlXbu3KmDBw/aZZo0aaImTZpoy5YtdrIsSUlJSZKkjRs3+iTI7dq1U2xsrFJSUuxBycjIUFxcnFySGqf53rubGt9Wbk+uGh7abseMy6XU+HaKPHVc8Uf22PHcsAjtr9dK0SePqO7Rn+34yfBopcU2U8yJdMUcz697XMRJDR48WJKCblPLli2VkJCgDRs2KCsrq9g2SVLnzp0VHh6ulStX+rSpe/fuysnJ0bp16/LbU2AiZ2RkaNOmTfbPUVFR6tKli9LS0rRjxw47XqdOHbVv31779u3TTz/9ZMe943Ts2DGNGjVKzSNOKjJtszKj6yszur7iMvYqMuf0bSWHazfS8ai6anB4p8JyT49TWmySTobXUuKhrbIKLEL767VSnivMb5z2SYqLi1N6errdXrfbrR49epRbm/bsyR/rlJQUWZZV6eNUEW0qbu6lp6fbY5h18kipxulAbDNJUuKhbTIFktjizqfYyDCfOVOa80mSjkfF6nDtRNU9tl/RWUfseFFzb1+tcElSm/BsxRaYT6Wde8GuEXERJ3XnnXfmH6PAOBU8/8oyTkXNvUOHDmnO3Lny5OVp8uTJ2rFjh0aNGqXw8HC7/FtvvaXMzEyNGjXKp00vvviiYmJidPfdd9uxnJwcvfjii2rZsqWGDRt2ur/S0vTWW2+pa9euGjJkiD2GythbLuPkXSPqH9kt6fScSotN0tG0X/Tggw9q48aN2rhxY4W1ycs7ZgnuXJ95UNY2lXQ+xUWc1KhRo5SXl6e8vLyg14iuXbtKOr1WSRWzRjhx3ZOkwYMHq9Ov64yl0+dfRbw/1W5aV5+FhyvCMj7x8sgjJP+5550zJ06ckKRyG6eUlBRJp+eUd5y88VBZpvCvl9XEvffeq6+//loLFy5UkyZNApYJdCW2adOmSk9PV0xMjKTS/1aYl5enmTNnavDgwfYVTynwbxtr1qxRz549NfL/vlGTtp186lZRV2L3bV6vN4ZfpmXLlqlr165V+ptubm6uZs2apcsvv1xhYWHlcoVv1apVSk5O1j2TpiuxbacKvxL70+b1ev3WQVq+fLm9gEvle9UyOzvbZ045/YpESedTSkqK+vTpo3smTVejdl1KNU6W8aht6nJtSewujyvMt7wCn09rZnyqqX960J4zFX0lNmXmVE15+l498J9v849XQptCvRK7b/N6vXnH5Vq6dKnPOV/w/POOVeHxKMvVMO/4XTf274pr3lqSlX9VvQDvHgt/qKLoeP5frALFLRltWzJXs99+MX8M23Uu1yux7rwcnZO6wp5TxnIp5evP9MWfHtR1Y/+u+s1bV0ibrAKxLUvmaOZrz+v+/3yrxj5zpmKuxO7bvF7/HDFEixcv1vnnnx/0GmGM0YwZM3ze/7gSm1/HNWvWqFevXvrDB18rsW0nuTy5OmffSm1u0steb+x+LIf3p7WzpmryU/fqvv98659fVMCV2IJzplu3buU2TtnZ2Zo1a5Y9p7zxw4cPKy4uThkZGXa+VhbV8krsfffdp//973+aP39+kQmsJEVERCgiIsIvHhYW5pOASqcHoDBvh3p5B8ftdvvtw7vvgvvML2/lT6oAjBUgblmljLtkfl0RPbL8bpUoqU0lxQO1M5h44T+jBSpfVB2LiluWpZycHHkK9Wn+ye9flyLjQY9H/p/+XC6XX/3Lq03eWOE5VVnjVFB5tqmouedyuewxlPdPsUGOk+UxdjzQGAY6P4wUcM4Ecz4FEy9cd++s9zued3tp1oKi4gXq7pGlU6dOSfLt90BvMIWVZY3wjl9c8zZq3L5LwHLl7Zed206P4a9v6KGOk09c/nPK28ZGldDG/Tu35dehqPeKsrSpmPPJo/x11Ht7Q7BrhHeeBXr/K881IhAnrHu5ubn2eW9UODn1r0so70959u6LmjNlzyMCxQvOGan8xslbvvCcKqp8aVWrJNYYo/vvv19Tp07V3Llz1aJFi6quEgAAAKqhapXEjhw5Uv/973/15Zdfqnbt2tq/f7+k/PtUoqKiqrh2AAAAqC6q1XNi33zzTWVkZGjAgAFq1KiR/W/KlClVXTUAAABUI9XqSmw1/YwZAAAAqplqdSUWAAAACAZJLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADhOWFVXADjb7NmzR2lpaZV2vOzsbEVERFTa8TZu3FhpxzqbFO5Xj8cjSVq7dq1crvK7HsH4AXAKkligEu3Zs0ft2rdX1okTlXZMy+WS+TXhgfMcTftFlsulW2+91SceFRWlyZMnq1+/fsrKyqqi2gFA1SGJBSpRWlqask6c0A3PvqmEFm0q/HibF83Wt29MrLTjFTwmykfW0UwZj8dvDN0yko7r9+9OU56scjse4wfAKUhigSqQ0KKNGrfvUuHHObBza6Uer+AxUb4Kj6HLkyv9tEyJbTvK4yq/pZzxA+AUfLALAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHqZZJ7Ouvv67mzZsrMjJSvXr10vLly6u6SgAAAKhGql0SO2XKFD3yyCMaO3asVq9erS5dumjw4ME6cOBAVVcNAAAA1US1S2Jffvll3XXXXRoxYoTOPfdc/fOf/1TNmjX1r3/9q6qrBgAAgGoirKorUFBOTo5WrVqlJ554wo65XC5dcsklWrJkiV/57OxsZWdn2z9nZGRIkg4dOqTc3Fz79S6XSx6PRx6Px2e/LpdLeXl5MsbY8by8PJ04cUKHDx9WWNjp7nG73bIsy96vJGVmZkqSUjeu06kTx3zq5t2jVajORpb938JxS0aFFY6n79kht9utVatW6ejRoz51tyxLlmXJGFOqeMF+8cYl2WW9/Vc47vF4dOLECS1atMjef6h12bx5s2rUqKH9m073abB9kx+TVGTcfzwO7N4hSVq1apU9nt42l7buRcW9c2rBggXavn27XC5XwDlTXm0qGD+0Z7vdnzknjiuUuRdsvOAxT504Vqo2WTJqGp2l3SlLlVegpsWdT2m7toY0Z0obT9u9VZL08ybfMQxlnAofs+A4HdqzXWFhYX5zxv1rX+1MWRag5uUzfjknjlVIm4o7ZlFzpqxtCpPHZ04ZSQcDzpnybVNBh/ZskyTtC/heEXpbC8+99D07VKNGjYDvE5L/Gl+Qd61yuVx22WDWvYLvE2VZJ0v7/lR4W1FtKq+1fMuWLXK73facKcv5V5o14tCe7ZKKyi9CyyMCxb1z5ujRo8rMzPTLjYrKmQLlRt64lJ+nFcypvPHDhw/n1yHAHCwVU42kpqYaSWbx4sU+8VGjRpmePXv6lR87dqxR/vjzj3/84x//+Mc//vHPQf/27t0bUt5Yra7EltYTTzyhRx55xP7Z4/Ho0KFDiouLs38rK63MzEw1bdpUe/fuVUxMTHlV9YxEXwWHfgoefRU8+io49FPw6Kvg0VfBKaqfjDE6evSoEhMTQ9p/tUpi4+Pj5Xa79csvv/jEf/nlFzVs2NCvfEREhCIiInxisbGx5VKXmJgYJmaQ6Kvg0E/Bo6+CR18Fh34KHn0VPPoqOIH6qU6dOiHvt1p9sCs8PFzdunXT7Nmz7ZjH49Hs2bPVu3fvKqwZAAAAqpNqdSVWkh555BENHz5c3bt3V8+ePfXKK6/o+PHjGjFiRFVXDQAAANVEtUtib7zxRh08eFDPPPOM9u/fr65du2rmzJlq0KBBpRw/IiJCY8eO9btNAf7oq+DQT8Gjr4JHXwWHfgoefRU8+io4Fd1PljGhPt8AAAAAqFzV6p5YAAAAIBgksQAAAHAcklgAAAA4DkksAAAAHOesSGLnz5+vK6+8UomJibIsS1988YXP9mPHjum+++5TkyZNFBUVpXPPPVf//Oc/fcqcPHlSI0eOVFxcnGrVqqXrrrvO70sZzgQTJ05Ujx49VLt2bSUkJGjo0KHavHmzT5lg+mLPnj0aMmSIatasqYSEBI0aNcrvu5WdrKR+OnTokO6//361bdtWUVFRSkpK0gMPPKCMjAyf/Zzp/SQFN6e8jDG67LLLAp6n9NVpS5Ys0UUXXaTo6GjFxMSoX79+ysrKsrcfOnRIt9xyi2JiYhQbG6vf/e53OnbsmN9+nCqYftq/f79uu+02NWzYUNHR0Tr//PP12Wef+ZQ50/tJkt5880117tzZfth879699fXXX9vbWc9PK66vWNNPK2lOeVXKeh7Sl9Y6xIwZM8xTTz1lPv/8cyPJTJ061Wf7XXfdZVq1amXmzJljdu7cad566y3jdrvNl19+aZe55557TNOmTc3s2bPNypUrzQUXXGCSk5MruSUVb/DgwWbSpElmw4YNZs2aNebyyy83SUlJ5tixY3aZkvoiNzfXdOzY0VxyySUmJSXFzJgxw8THx5snnniiKppUIUrqp/Xr15trr73WTJs2zWzbts3Mnj3btGnTxlx33XX2Ps6GfjImuDnl9fLLL5vLLrvM7zylr0731eLFi01MTIyZOHGi2bBhg9m0aZOZMmWKOXnypF3m0ksvNV26dDFLly41CxYsMK1btzbDhg2riiZViGD66Te/+Y3p0aOHWbZsmdm+fbuZMGGCcblcZvXq1XaZM72fjDFm2rRpZvr06WbLli1m8+bN5sknnzQ1atQwGzZsMMawnhdUXF+xpp9W0pzyqoz1/KxIYgsKlMR26NDB/OlPf/KJnX/++eapp54yxhhz5MgRU6NGDfPJJ5/Y2zdu3GgkmSVLllR4navSgQMHjCQzb948Y0xwfTFjxgzjcrnM/v377TJvvvmmiYmJMdnZ2ZXbgEpSuJ8C+fjjj014eLg5deqUMebs7Cdjiu6rlJQU07hxY/Pzzz/7naf01em+6tWrl3n66aeLfM2PP/5oJJkVK1bYsa+//tpYlmVSU1MrtL5VJVA/RUdHmw8//NCnXL169cw777xjjDk7+8mrbt265t1332U9D4K3rwJhTT+tcD9V1np+VtxOUJLk5GRNmzZNqampMsZozpw52rJliwYNGiRJWrVqlU6dOqVLLrnEfk27du2UlJSkJUuWVFW1K4X3TyX16tWTFFxfLFmyRJ06dfL5gorBgwcrMzNTP/zwQyXWvvIU7qeiysTExCgsLP87Rs7GfpIC99WJEyd088036/XXX1fDhg39XkNf5ffVgQMHtGzZMiUkJCg5OVkNGjRQ//79tXDhQvs1S5YsUWxsrLp3727HLrnkErlcLi1btqxyG1BJAs2p5ORkTZkyRYcOHZLH49FHH32kkydPasCAAZLOzn7Ky8vTRx99pOPHj6t3796s58Uo3FeBsKYH7qfKXM+r3Td2VYV//OMf+v3vf68mTZooLCxMLpdL77zzjvr16ycp/96q8PBwxcbG+ryuQYMG2r9/fxXUuHJ4PB499NBD6tOnjzp27CgpuL7Yv3+/3zeseX8+E/srUD8VlpaWpgkTJuj3v/+9HTvb+kkquq8efvhhJScn6+qrrw74Ovoqv6927NghSRo3bpxeeuklde3aVR9++KEuvvhibdiwQW3atNH+/fuVkJDgs6+wsDDVq1fvjOyroubUxx9/rBtvvFFxcXEKCwtTzZo1NXXqVLVu3VqSzqp+Wr9+vXr37q2TJ0+qVq1amjp1qs4991ytWbOG9byQovqqsLN9TS+unypzPSeJVX4Su3TpUk2bNk3NmjXT/PnzNXLkSCUmJvr8hnq2GTlypDZs2OBzlQf+SuqnzMxMDRkyROeee67GjRtXuZWrZgL11bRp0/T9998rJSWlCmtW/QTqK4/HI0m6++67NWLECEnSeeedp9mzZ+tf//qXJk6cWCV1rUpFnX9jxozRkSNH9N133yk+Pl5ffPGFbrjhBi1YsECdOnWqotpWjbZt22rNmjXKyMjQp59+quHDh2vevHlVXa1qqai+KpjIsqYX3U/btm2r1PX8rE9is7Ky9OSTT2rq1KkaMmSIJKlz585as2aNXnrpJV1yySVq2LChcnJydOTIEZ/fWH/55ZeAl8rPBPfdd5/+97//af78+WrSpIkdD6YvGjZsqOXLl/vsz/tp1zOtv4rqJ6+jR4/q0ksvVe3atTV16lTVqFHD3nY29ZNUdF99//332r59u9/VoOuuu04XXnih5s6dS1/9qlGjRpLkd2Woffv22rNnj6T8/jhw4IDP9tzcXB06dOiM66ui+mn79u167bXXtGHDBnXo0EGS1KVLFy1YsECvv/66/vnPf55V/RQeHm5fge7WrZtWrFihv//977rxxhtZzwspqq/eeustSazpXkX1U1RUVKWu52f9PbGnTp3SqVOn5HL5doXb7bavenTr1k01atTQ7Nmz7e2bN2/Wnj17irxXxqmMMbrvvvs0depUff/992rRooXP9mD6onfv3lq/fr3PG8S3336rmJiYgH+WcaKS+knK/2190KBBCg8P17Rp0xQZGemz/WzoJ6nkvho9erTWrVunNWvW2P8k6W9/+5smTZokib7yat68uRITE/0eJ7VlyxY1a9ZMUn5fHTlyRKtWrbK3f//99/J4POrVq1fFN6ISlNRPJ06ckKRi1/WzoZ+K4vF4lJ2dzXoeBG9fSazpxfH2U6Wv5yF8GM0xjh49alJSUkxKSoqRZF5++WWTkpJidu/ebYwxpn///qZDhw5mzpw5ZseOHWbSpEkmMjLSvPHGG/Y+7rnnHpOUlGS+//57s3LlStO7d2/Tu3fvqmpShbn33ntNnTp1zNy5c83PP/9s/ztx4oRdpqS+8D4+Y9CgQWbNmjVm5syZpn79+mfUY0ZK6qeMjAzTq1cv06lTJ7Nt2zafMrm5ucaYs6OfjAluThWmIh7JQl8Z87e//c3ExMSYTz75xGzdutU8/fTTJjIy0mzbts0uc+mll5rzzjvPLFu2zCxcuNC0adPmjHp0VEn9lJOTY1q3bm0uvPBCs2zZMrNt2zbz0ksvGcuyzPTp0+39nOn9ZIwxo0ePNvPmzTM7d+4069atM6NHjzaWZZlvvvnGGMN6XlBxfcWaflpJc6qwilzPz4okds6cOUaS37/hw4cbY4z5+eefzR133GESExNNZGSkadu2rfnrX/9qPB6PvY+srCzzhz/8wdStW9fUrFnTXHPNNebnn3+uohZVnED9JMlMmjTJLhNMX+zatctcdtllJioqysTHx5tHH33UfgzJmaCkfipqzkkyO3futPdzpveTMcHNqUCvKfwoPPrqtIkTJ5omTZqYmjVrmt69e5sFCxb4bE9PTzfDhg0ztWrVMjExMWbEiBHm6NGjldiSihVMP23ZssVce+21JiEhwdSsWdN07tzZ75FbZ3o/GWPMnXfeaZo1a2bCw8NN/fr1zcUXX+yTbLCen1ZcX7Gmn1bSnCqsItdz69cDAAAAAI5x1t8TCwAAAOchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsA1dQdd9yh5s2bl/m1tWrVKt8KAUA1QhILAKX08ccfy7IsTZ061W9bly5dZFmW5syZ47ctKSlJycnJlVHFoJ04cULjxo3T3Llzq7oqAFAqJLEAUEp9+/aVJC1cuNAnnpmZqQ0bNigsLEyLFi3y2bZ3717t3bvXfm0w3nnnHW3evDn0ChfjxIkTGj9+PEksAMcJq+oKAIDTJCYmqkWLFn5J7JIlS2SM0fXXX++3zftzaZLYGjVqhF5ZADhDcSUWAMqgb9++SklJUVZWlh1btGiROnTooMsuu0xLly6Vx+Px2WZZlvr06SNJ+r//+z9169ZNUVFRqlevnm666Sbt3bvX5xiB7olNT0/XbbfdppiYGMXGxmr48OFau3atLMvS+++/71fP1NRUDR06VLVq1VL9+vX12GOPKS8vT5K0a9cu1a9fX5I0fvx4WZYly7I0bty4cughAKhYJLEAUAZ9+/bVqVOntGzZMju2aNEiJScnKzk5WRkZGdqwYYPPtnbt2ikuLk7PPfecbr/9drVp00Yvv/yyHnroIc2ePVv9+vXTkSNHijymx+PRlVdeqcmTJ2v48OF67rnn9PPPP2v48OEBy+fl5Wnw4MGKi4vTSy+9pP79++uvf/2r3n77bUlS/fr19eabb0qSrrnmGv373//Wv//9b1177bXl0EMAUMEMAKDUfvjhByPJTJgwwRhjzKlTp0x0dLT54IMPjDHGNGjQwLz++uvGGGMyMzON2+02d911l9m1a5dxu93mueee89nf+vXrTVhYmE98+PDhplmzZvbPn332mZFkXnnlFTuWl5dnLrroIiPJTJo0yee1ksyf/vQnn+Ocd955plu3bvbPBw8eNJLM2LFjQ+oPAKhsXIkFgDJo37694uLi7Htd165dq+PHj9tPH0hOTrY/3LVkyRLl5eWpb9+++vzzz+XxeHTDDTcoLS3N/tewYUO1adMm4FMNvGbOnKkaNWrorrvusmMul0sjR44s8jX33HOPz88XXnihduzYUeZ2A0B1wQe7AKAMLMtScnKy5s+fL4/Ho0WLFikhIUGtW7eWlJ/Evvbaa5JkJ7N9+/bVSy+9JGOM2rRpE3C/xX2Ya/fu3WrUqJFq1qzpE/ces7DIyEj7nlevunXr6vDhw8E1EgCqMZJYACijvn376quvvtL69evt+2G9kpOTNWrUKKWmpmrhwoVKTExUy5Yt5fF4ZFmWvv76a7ndbr99lucXFATaPwCcKUhiAaCMCj4vdtGiRXrooYfsbd26dVNERITmzp2rZcuW6fLLL5cktWrVSsYYtWjRQuecc06pjtesWTPNmTNHJ06c8Lkau23btjK3wbKsMr8WAKoS98QCQBl1795dkZGR+s9//qPU1FSfK7ERERE6//zz9frrr+v48eN2wnvttdfK7XZr/PjxMsb47M8Yo/T09CKPN3jwYJ06dUrvvPOOHfN4PHr99dfL3AZvMlzcUxEAoDriSiwAlFF4eLh69OihBQsWKCIiQt26dfPZnpycrL/+9a+STl+1bdWqlZ599lk98cQT2rVrl4YOHaratWtr586dmjp1qn7/+9/rscceC3i8oUOHqmfPnnr00Ue1bds2tWvXTtOmTdOhQ4ckle2qalRUlM4991xNmTJF55xzjurVq6eOHTuqY8eOpd4XAFQmrsQCQAi8yan39oGCvF9sULt2bXXp0sWOjx49Wp999plcLpfGjx+vxx57TNOmTdOgQYN01VVXFXkst9ut6dOn68Ybb9QHH3ygp556SomJifaV2MjIyDK14d1331Xjxo318MMPa9iwYfr000/LtB8AqEyWKfz3LACAo3zxxRe65pprtHDhQjtxBoAzHUksADhIVlaWoqKi7J/z8vI0aNAgrVy5Uvv37/fZBgBnMu6JBQAHuf/++5WVlaXevXsrOztbn3/+uRYvXqznn3+eBBbAWYUrsQDgIP/973/117/+Vdu2bdPJkyfVunVr3XvvvbrvvvuqumoAUKlIYgEAAOA4PJ0AAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHOf/A9tagRApnKaaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHcCAYAAAAqb0k3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABr60lEQVR4nO3deVhUZfsH8O+ZAYYdREREVtGA3BdU3DEKl0zTMq1MbbHX3DVNMxeyNKtXTVNbXkOzLJdKLVMz19xTcVfExBVBQQFlFeb5/eFvTjMwAwPDdvD7uS67muecOee+n7PMzZlznpGEEAJERERERAqjquwAiIiIiIhKg4UsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwpwqJFiyBJEpYtW1bZoRAREVEVwUK2HO3atQuSJGHmzJmVsn5/f3/4+/sbtM2cOROSJGHXrl2VElNBkiShS5cuRc5z+PBhvP3225g+fTpee+21ignMCHNiJct16dIFkiRVdhiy5cuXQ5IkLF++vLJDqZYuX74MSZIwZMgQg3ZT+0F6ejrGjBmDgIAAWFtbQ5IkHD9+vNhp1cmQIUMgSRIuX75c6mVU9udTZTO135WFstg+ZD4WssXQ7ez6/+zt7eHl5YUnnngC06dPxz///FMu665qH+iV4e7du+jfvz8GDhyIqKioyg6n3OiKJd0/lUoFZ2dnBAQEoHfv3li0aBHu3LlT2WGSmYz9EVleHrXzxKRJk7Bw4UI0atQIkydPxowZM+Dp6VnsNCXhH09UEhV5vinK999/j2effRaBgYFwcnKCo6MjGjZsiHHjxuHGjRvltl6rcltyNRMYGIiXX34ZAJCTk4Nbt27h8OHDmDVrFmbPno1Jkybhww8/NPhAad26Nc6dOwd3d/dKiXn79u2Vst6SOHfuHOzt7U1OP378ON566y2MGzeuAqOqPE888QQ6dOgAALh//z5u3LiBv/76Cxs3bsSMGTPw5Zdf4vnnn6/kKInK37fffovMzMxC7b/99hsee+wx/PrrryWaVp3MmTMHkydPRt26dSs7FCLZjz/+iLi4OLRt2xZ16tSBEALHjx/HZ599huXLl2Pv3r1o2LBhma+XhayZ6tevb/QrmL1792LQoEGYM2cO1Go1Zs2aJU+zt7dHcHBwBUZpKDAwsNLWba7i+ic8PBzh4eEVFE3li4iIwOTJkw3a8vPzsWLFCowcORIDBw6Ei4sLnnrqqUqKkKhi+Pr6Gm1PSEhAp06dSjytOqlTpw7q1KlT2WEQGVi7di1sbW0LtS9btgyvv/46Zs6cibVr15b5enlrgYU6dOiALVu2QKPR4OOPP8a1a9fkaabuQYqLi8PQoUMREBAAjUYDNzc3NG3aFGPHjoUQAsDD+zF3794t/7/un+5+Hv37e86dO4dnn30WNWvWNLgvp7ivG5YtW4bGjRvD1tYWdevWxbhx43Dv3j2DeYq6j6qoe4xu3bqFCRMmICgoCHZ2dnBzc0ObNm3w6aefGsxn6r7T5ORkjB07Vu4jDw8P9O/fH6dPny40r+5+pPj4eCxcuBDBwcHQaDTw8/NDVFQUtFqtyT4w5n//+x8aNWoEW1tb+Pj4YNKkScjOzjY5/7179zBjxgw0bNgQdnZ2cHV1RWRkJPbu3Vui9ZqiVqvx6quvYunSpcjPz8f48ePl/QT4N/9Lly7hv//9Lx5//HFoNBqD7XL69Gn0798fHh4e0Gg0CAgIwNixY5GSklJofbr9JjU1FW+++SY8PT1ha2uL5s2b44cffiiTnMzx4MEDzJw5E/7+/tBoNHjsscewZMkSo/MKIfDNN9+gffv2cHZ2hr29PVq1aoVvvvmmTOY3l+6YuHLlCq5cuWJw7BY8hqKjo9GmTRs4OjrC0dERbdq0KfFXycWdJ3R+/fVXhIeHw8XFBXZ2dmjatCnmzZuHvLw8o8s9efIkBgwYgDp16sDGxgZ+fn4YNWqU0f3FXPn5+Zg7dy7q168PW1tb1K9fH3PmzDF5fBa8ZUK3nwshsHv3bjnXLl26FDlN34YNG/DEE0+gRo0asLW1RaNGjfDpp58iPz/fYD79r/Z//fVXtG/fHk5OTgbn09zcXMybNw8tWrSAg4MDnJyc0LFjR2zcuLFQLiU5Rw0ZMgRDhw4FAAwdOtRguxZcnv49mLm5uVi0aBEiIyPh4+Mjnzf79u2LmJiYYrdPWSrJOVG3nUtyvBdlz5496NWrF9zd3aHRaNCgQQO89957Rq/ul5QQAtHR0ejYsSNcXV1hb2+PBg0a4M0338TVq1eLfG9Rt4uY+pw9duwYnnvuOfj6+kKj0aBWrVoIDQ3Fhx9+CKBk5xtz+0U/lv379+Opp56Cq6urWbcvGStiAcjfIl68eLHYZZQGr8iWgaCgIPTv3x8rV67E+vXrMWrUKJPzJiQkoHXr1sjIyEDPnj3xwgsvICMjA3FxcViyZAk+/fRTWFlZYcaMGVi+fDmuXLmCGTNmyO9v1qyZwfIuXryItm3bonHjxhgyZAhSUlJgY2NTbMzz5s3D9u3b8cILL6Bnz574888/sWDBAhw8eBB79uyBtbV1qfsjNjYW4eHhuHnzJjp06IA+ffogIyMDZ86cwezZs/H2228X+f7bt28jLCwM//zzD7p06YIBAwYgPj4e69atw6ZNm7B161b563d9EydOxO7du/H0008jMjIS69evx8yZM5Gbmysf+MWZNWsWpk+fjtq1a+ONN96AtbU1Vq9ejXPnzhmd/86dO+jUqRPOnDmD9u3b4z//+Q/S09OxYcMGhIeHY+3atejTp49Z6y7OoEGDMGPGDJw5cwanT59G48aNDaaPGjUKBw8eRM+ePdGrVy94eHgAePitQWRkJHJzc/Hcc8/B398fBw4cwGeffYbffvsNBw8eLHT7S25uLiIiInD//n0MGjQIGRkZWLNmDV588UUkJycXuY+XlYEDB+Lw4cPo3r071Go11qxZgxEjRsDa2hpvvPGGPJ8QAi+99BJ++OEHNGjQAC+++CJsbGywbds2vPbaazh79qzBH1Alnb8kXF1dMWPGDCxYsAAAMHbsWHmaflE1evRoLFq0CHXr1pUfYPzpp58wdOhQxMTE4LPPPjNrfeacJ+bNm4cJEybAzc0NL774IhwcHLBx40ZMmDABf/31F37++WeDD6mNGzeif//+UKlU6N27N3x8fHD27Fl8/vnn2Lp1Kw4dOoQaNWqUuG+GDRuGb775BgEBARgxYgSys7Mxb9487N+/36z39+nTB/7+/oiKioKfn59crPv7+8PV1dXkNJ0pU6bgo48+Qt26ddG3b1+4uLjgr7/+wsSJE3Ho0CGjV4rWrl2LP/74A08//TTeeustpKenA3h4e1m3bt2wa9cuNGvWDK+99hoePHiATZs2yfe0jxw5stDyzDlH9enTB6mpqdiwYQN69+5d6Jxvyp07dzB27Fh07NgRPXr0QI0aNXDp0iVs3LgRmzdvxp49exAaGmrWsixR2nOiucd7UZYuXYoRI0bA1dVVPgceOXIEH374IXbu3ImdO3ea9flojFarxQsvvIB169ahbt26GDhwIJydnXH58mWsWbMG3bt3N/ktQmkcP34c7dq1g1qtRu/eveHn54fU1FScPXsWX331FaZOnWr2+aY0/bJ//37Mnj0b4eHhGDZsWLGFelE2bdoEAGjUqFGpl1EkQUWKj48XAERkZGSR8y1btkwAEIMGDZLbdu7cKQCIGTNmyG0LFy4UAMSCBQsKLSMlJcXgdefOnYWpTaSLC4CYPn260Xn8/PyEn5+fQduMGTMEAGFjYyNOnDght2u1WvHiiy8KAOLTTz8tMoeCMQwePNigvVWrVgKA+Oqrrwq959q1awavAYjOnTsbtA0dOlQAEFOmTDFo37RpkwAg6tevL/Lz8+X2wYMHCwAiICBAJCQkyO23b98Wrq6uwsnJSeTk5BSKpaC4uDhhZWUl6tatK5KSkuT2tLQ0ERQUZDRWXZ99/fXXBu1JSUnCx8dH1KpVS2RlZRW77ujoaAFAzJkzp8j5Bg0aJACIZcuWyW26/L29vcWVK1cM5s/PzxeBgYECgNiyZYvBtIkTJwoA4tVXXzVo9/PzEwBEp06dDPrt2rVrwt3dXWg0GnH9+vVicyot3X7fpk0bkZaWJrefP39eWFlZiaCgIIP5v/rqKwFADB06VOTm5srtOTk5olevXgKAOHLkSKnn122b6Ohos3Mwduzp7N69WwAQISEhIjU1VW6/c+eOeOyxxwQAsWfPHrPXVdR54uLFi8LKykp4eHiIq1evyu3Z2dmiQ4cOAoD49ttv5fbk5GTh7Ows6tatKy5fvmywrB9++EEAECNHjjQ7Nh3deaRp06bi/v37cvv169eFu7u70fOIqbyMHYfFTfvjjz/k87j++rVarfjPf/4jAIh169bJ7bptrlKpxLZt2wot79133xUAxLRp04RWq5Xb09PTRatWrYSNjY24ceOG3F7Sc1Rx+5xuefHx8XJbdna20ePy9OnTwtHRUURERBi0F3Vut0RJz4klPd5NOXPmjLCyshJNmzYVycnJBtPmzJlT6LPN1OeXKYsWLRIAxBNPPCEyMzMNpmVmZhp8fhvbPkVtU2PbYvz48QKAWL9+faH5C+ZX1PmmpP2iiwWA+Oabb4wuszirV68WM2bMEBMnThQ9evQQarVaBAQEiEuXLpVqecXhrQVlxMvLC8DDr8TNYWdnV6jNzc2txOv19PTE1KlTS/y+V155BU2aNJFfS5KE2bNnQ61WW/Sk7OHDh3HkyBF06tTJ6F/R3t7eRb4/NzcXP/zwA2rWrIn33nvPYFqPHj3w5JNP4uLFi9i3b1+h906bNs3gvjF3d3f07t0b9+7dQ2xsbLGxr1q1Cnl5eRg/frx8NRMAnJ2dC8UCPNzWq1evRteuXfH6668bTPPw8MDEiRNx+/Zt/Pnnn8Wu21xF7WcTJ04sdEVg3759+Oeff9C9e3dERkYaTJs+fTrc3NywatUq5ObmFlre7NmzDf5K9/b2xpgxY5CTk4Mff/yxLNIp0pw5c+Ds7Cy/DgoKQvv27REbG2twC8znn38OBwcHLF682OCbBBsbG/kql/4tESWdv6ytWLECwMOh8FxcXOT2GjVqyFdVy+ppdd0+PWHCBPj4+MjtGo0Gc+fOLbSub7/9Funp6ZgzZw78/PwMljVgwAC0aNGiVNv+22+/BfBwn3NwcJDb69atizFjxpR4eSX1+eefAwC++uorg/VLkoSPPvoIkiQZ3ea9e/dGRESEQZtWq8XSpUsRGBiIqKgog6vZTk5OmD59OnJzc/Hzzz8XWp6l56iiaDQaow9/NWzYEOHh4dizZw8ePHhg0TqKY8k50dzj3ZQvv/wSeXl5WLRoEWrWrGkwbdKkSahVq5ZFx/WSJUugVquxdOnSQp/futvnyoOxWqFgfkUpbb+0aNFCvsWlpNasWYOoqCh88skn+P3339G8eXNs27YNAQEBpVpecXhrQQXr1asXpkyZghEjRmD79u3o1q0bOnfujHr16pVqeU2bNi3VVyUdO3Ys1Obn5wcfHx+cOXMGubm5pVru4cOHAaDUDyOdP38e2dnZCA8PNzqaQXh4OLZt24bjx48XyqFly5aF5tcVzqmpqcWu+8SJEwCM942xtr///hv5+fnIyckxeg9xXFycnNPTTz9d7Pot1bp160JtunvjjN2H7OjoiFatWuGPP/5AbGyswa0KVlZWCAsLK/QeXT9UxD13xW1PJycnZGZm4tSpU/Dy8pILM326D+7z588DQInnN2X58uWFxojs06ePWV8DF7VNdA826o99un79+kJjoXbp0sWsMY2LWldYWBhsbW0Nln3w4EEAwKFDh4wOK5idnY3k5GQkJyeXaDSWkh5bZe3gwYNwcHAweQ+0nZ2d0W1u7JiKjY3F3bt34eXlZXRIwNu3bwMwvg9Zeo4qzvHjx/Hxxx9j7969SExMLFS4Jicnl+tDYpacE8053oui23e3bt1qdMQea2vrYo9rU+7fv49z586hfv36aNCgQamWUVL9+/fHggUL8Oyzz+KFF17Ak08+iU6dOpV4pIrS9oslt6GsW7cOwMPtFhMTg6lTp6Jly5b4+eef0bVr11Iv1xQWsmUkISEBAFCrVq0i5/P398fBgwcxc+ZM/P7771izZg2Ah0/vv//++yUeWql27dqlitfU+2rXro3Lly/j3r17JfqrTyctLQ0ASj0sjO4eNFPx6U7Cuvn06f81r2Nl9XAXL/gwhzG62PWvxuoYi0c3ruu+ffuMXiHWycjIKHbd5ipqPzMWY2n7093dHSpV4S9sdMvR9VV5Mmd73r17F0II3Lhxo8hxhnXboKTzm7J8+XL5ISsdf39/swrZ9PR0qFQqk9tQkiSD7bF+/Xr5Kq4+cwrZora/JEmoXbu2wfiOun168eLFRS43IyOjRIVsWloaVCqV0feU9hxWEnfu3EFeXl6Jt3lRx/2ZM2dw5syZEi3P0nNUUfbv3y8XCU899RQaNGgAR0dHSJKE9evX48SJE8jJybFoHcWx5Jxoad/o1m3u8xAlYennWmm0adMGu3btwuzZs7Fq1SpER0cDeFhgzp071+zRfErbL2VxXLq6uiI8PBxbtmxBUFAQXnnlFcTHx1v0DI4xLGTLiO6Xssz5K6ZRo0ZYt24dHjx4gKNHj2Lz5s1YuHAhXnjhBXh5eaF9+/Zmr7e0A6EnJSWZbJckSf7rV1fMGHu62Vgx4+rqCgClHvxYdzIzFV9iYqLBfGVJ9zXvrVu3Cn2taiweXQwTJkwo9cNBJaHVarFnzx4AxvczY/tCafszOTkZWq22UDGrW47+V+KVSRd3y5YtceTIkTKf3xRLfhnP2dkZWq0Wt2/fLvRH061btyCEMNgey5cvL/WtBvrbv+A+LYRAUlKSwbp0/3/q1KkyfTDDxcUFWq0WycnJhQp4U/tmWXJ2doYkSWbf+qVT1DHVr18/+cpTVfDhhx8iJycHf/31V6GHYQ8ePChfFS9PFX1ONLbu9PT0Yq/elpTufGfJoP4l/SwFHn5bsXnzZmRlZeHQoUP49ddfsWTJEvTs2ROnT58265vc0vZLWf7IirOzM9q2bYv169fj4sWLCAkJKbNlAxx+q0xcuHABa9asgUajwbPPPmv2+6ytrdG2bVtERUVh4cKFEELgt99+k6er1WoAlv+lbsxff/1VqO3KlSu4du0aGjZsKN9WoHs62dgBbOzrZd1XcX/88Uep4goODoatrS3+/vtvo8Ol6AoIc5/kLYmmTZsCMN43xtpCQ0MhSRIOHDhQ5rEYs3LlSly5cgWNGzc2e1Dp5s2bAzBeeGVkZODIkSOws7NDUFCQwbS8vDyjeen6Qbfcyubk5ISQkBCcO3fOrK9mSzp/aanVapPHbVHbpDT7d1HniaLWdejQIWRnZxusq02bNgBQ5vt0SY+tstamTRukpKTIX21bIiQkBM7Ozjhy5Ei53XNamnP/P//8Azc3t0JFbGZmJo4dO1am8ZlS0edEfbp9V/dVellydHTE448/jvj4+FLvQyX9LNVnZ2eHLl264L///S/effddZGVlYdu2bfL0os435dkvJaH7NrGsr8YCLGQttm/fPkRGRiInJ8esX1o5evSo0a/FdVcl9Mdh0908rj82bVn59ttvcfLkSfm1EALvvvsu8vPzDcagDAoKgpOTEzZu3GjwE6lJSUn44IMPCi03NDQUoaGh2LNnD77++utC04v7i9bGxgYDBw5EcnIy5syZYzBty5Yt2Lp1K+rXr1+iq9bmevHFF6FWqzFv3jzcunVLbk9PTzeaq6enJ/r374/9+/fjk08+MRjbVefQoUMWj1+Yn5+P6OhoDB8+XI7P3L+W27dvj8DAQGzevLnQAxYffPABUlJSMHDgQKP3Q7/77rsGD4Fdv34dn332GTQaDQYMGGBRTmVp9OjRyMzMxBtvvGH0K8v4+HiD+1lLOn9puLm5ITk52ej4w4MHDwYAREVFGZwL0tLS5K++dfOYuy7A+HnixRdfhJWVFebNmyd/kAAPH6p85513AMDgeB86dCicnJwwdepUo1+bZ2ZmluoDcdCgQQCA999/36DPb9y4YfZQY5YYPXo0AODVV181OhZuYmKiySH2CrKyssLw4cNx5coVvP3220aL2dOnTxucQ0qqNOd+Pz8/3L1712C75efn4+2335bv2y1vFXVONOatt96ClZUVRo0aZXSoKN39mqU1YsQI5Ofn46233kJWVpbBtOzs7GJ/Qrxly5aQJAk//vijwXkhLi7O6DFw4MABo+cPU7WCqfNNefeLTlEPLH7zzTc4fPgwGjRogPr161u8roJ4a4GZLl68KN+8npubK/9E7alTp6BWq/Hee+8ZjONoysqVK/Hll1+iU6dOCAwMhLOzM86ePYvff/8dbm5uBk8Jdu3aFevWrUO/fv3QvXt32NraomnTpujVq5fF+URGRiIsLAwDBgxArVq1sH37dhw5cgRt27Y1GCPUxsYGo0aNwuzZs9GiRQv5Cdtff/0VnTt3NvpAyPfff48uXbpg2LBhWLlyJcLCwpCdnY0zZ84gJiam2EHV586di927d+ODDz7A/v370aZNG1y+fBlr166Fvb09oqOjjd6/aan69etj+vTpmDFjBpo0aYL+/fvDysoKP/30E5o0aWL0IF2yZAliY2MxadIkOVdXV1dcu3YNR44cQVxcHG7evFnkz/Dq+/PPP+WTUWZmJq5fv449e/bgxo0bcHNzw8qVKws9RV0UlUqF5cuXIzIyEj169MDzzz8PPz8/HDhwALt27UJgYCA++uijQu+rU6cOMjIy0KRJE/Tq1UseRzYlJQULFy6sUj+N+eabb+LgwYNYsWIF9u3bh4iICHh5eSEpKQnnz5/HoUOHsGrVKnlM0ZLOXxpdu3bFkSNH0L17d3Ts2BE2Njbo1KmT/G/UqFFYtGgRGjVqhH79+kEIgZ9++gnXr1/H6NGjS/TrVEWdJwIDAzF37lxMmDBB3qcdHBzw66+/IjY2Fr1795Z/ehuA/ATz888/j6ZNm6Jbt24IDg5GTk4OLl++jN27d6Ndu3bYsmVLifojPDwcQ4cORXR0NBo3boxnn30WOTk5WL16Ndq2bWvwTVR56NatG6ZNm4ZZs2ahfv366NatG/z8/JCSkoKLFy/ir7/+wgcffGD2V55RUVE4duwYFi5ciE2bNqFTp07w8PDAjRs3cOrUKZw4cQIHDhwwer+9OcLCwmBnZ4cFCxbg7t278u0YxkZP0Rk1ahT++OMPdOjQAf3794etrS127dqFGzduoEuXLhbdDlMSZX1ONFejRo2wZMkSDB8+HEFBQejRowcCAwNx7949XLp0Cbt378aQIUPwxRdflGr5w4cPx+7du7FmzRo0aNAAzzzzDJydnXH16lVs3boVy5YtK3LMcC8vLwwcOBCrVq1Cy5Yt0a1bN9y6dQu//PILunXrhp9++slg/rlz52Lnzp3o1KkTAgICYGtri2PHjmH79u2oV6+ewbe/RZ1vyrtfdFJSUhASEoJWrVohODgYdevWxd27d/H333/j2LFjcHZ2Nnqvf5kol0G9qhH98Vp1/+zs7ESdOnVEeHi4mDZtmrh48aLR9xobG+7gwYPizTffFI0aNRKurq7Czs5ONGjQQIwcObLQGKAPHjwQkyZNEr6+vsLKyspgzDtzxsArahzZnTt3iq+//lo0bNhQaDQaUadOHTFmzBiRnp5eaDn5+fli5syZwsfHR9jY2IjHHntMfPbZZ+LSpUsmY0hMTBRjxowR9erVEzY2NsLNzU20adNGzJs3z2A+mBj38fbt22L06NHCz89PWFtbC3d3d/Hcc8+JU6dOFZrX2Jh9xvI119dffy0ef/xxYWNjI7y9vcXbb78tMjMzTcaamZkpPv74Y9GyZUvh4OAg7OzsREBAgOjTp4/49ttvxYMHD4pdp26MQd0/SZKEo6Oj8Pf3F7169RKLFi0Sd+7cMfreovLXOXnypHjuueeEu7u7sLa2Fn5+fmLMmDHi9u3bhebV7Td37twRw4YNE7Vr1xYajUY0bdpUrFq1qthcLFXUuKhF5bp69WoREREhatSoIaytrUXdunVFly5dxH//+1+jeZo7f2nGkb1375544403RJ06dYRarTY6Xuc333wjQkNDhb29vbC3txehoaGlGrexqPOEzoYNG0Tnzp2Fk5OT0Gg0onHjxuK///2vyX3z/Pnz4rXXXhN+fn7CxsZG1KhRQzRu3FiMHj1aHD58uMQxCiFEXl6emDNnjnxOqFevnpg9e7a4ePFiuY8jq7Nt2zbRq1cvUatWLWFtbS08PT1FWFiYmDVrlsE4u+Zs87y8PPHll1+K9u3bC2dnZ6HRaISvr6/o1q2bWLp0qcF4taU5R23atEmEhoYKOzs7+bxQ3PLWrVsnWrRoIezt7YW7u7vo37+/+Oeff4zOX17jyApRsnNiaY93Uw4fPiwGDBggvLy85M+OFi1aiMmTJ4tz587J85V0HFkhHo47/L///U+0bdtWODg4CHt7e9GgQQPxn//8x2D/MRV3ZmamGD16tHxObdKkifj++++NbostW7aIV155RQQFBQknJyfh6OgoHn/8cfHuu+8WOp+Zc74xt19Ku1/cv39fTJ8+XXTq1El4enoKa2tr4eDgIBo2bCjGjRtXaAz5siQJYeTaPxE9snRXIi39ep2IiKi88R5ZIiIiIlIkFrJEREREpEh82IuISuX48eNYv359sfP5+/ubdZtCs2bNinxYgqoWY7/cZMzYsWPl8aWp6jL2a3XGmPsLdkQVhffIElGpLF++3Kzf4u7cuXOhX8EyZvDgwaUe+J8qnrlDwMXHx1s0AgRVjC5duph1nEZHRxsM2UZU2VjIEhEREZEiPXK3Fmi1WiQkJMDJyalMf4KNiIiIiMqGEAL37t2Dl5dXkWPHP3KFbEJCAnx8fCo7DCIiIiIqxrVr1+Dt7W1y+iNXyDo5OQF42DHOzs7lvr4HDx7gjz/+wFNPPVUuvzGsZOwb49gvxrFfTGPfGMd+MY19Yxz7xbSK7pv09HT4+PjIdZspj1whq7udwNnZucIKWXt7ezg7O/OgKIB9Yxz7xTj2i2nsG+PYL6axb4xjv5hWWX1T3G2gHEeWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEhVqpCdOXMmJEky+BccHCxPz87OxogRI1CzZk04OjqiX79+SEpKqsSIiYiIiKiyVKlCFgAaNmyImzdvyv/27t0rTxs3bhx+/fVXrF27Frt370ZCQgL69u1bidESERERUWWxquwACrKysoKnp2eh9rS0NCxbtgyrVq1C165dAQDR0dEICQnBwYMH0bZt24oOlYiIiIgqUZUrZOPi4uDl5QVbW1uEhYVhzpw58PX1xdGjR/HgwQNERETI8wYHB8PX1xcHDhwwWcjm5OQgJydHfp2eng4AyMvLQ15eHgBApVJBpVJBq9VCq9XK8+ra8/PzIYQotl2tVkOSJHm5AJCfnw8AEEIYtOvm159Hx8rKCkIIg3ZJkqBWqwvFaKq9PHMqKvaS5KT7f61Wa7B8JedUFtupYB9Vh5yKit3cnPSPpYIxKjWn4mI3Nyf96dUlp6JiNzcn/XOMbp1Kz6m42Hk8Wbad9I8pa2vrKp/TjRs3kJycbLAM3fJ121Y/dkmSSt2uy6uijqeC85tSpQrZNm3aYPny5QgKCsLNmzcRFRWFjh074vTp00hMTISNjQ1cXV0N3lO7dm0kJiaaXOacOXMQFRVVqD0mJgYODg4AgFq1aiEwMBDx8fG4ffu2PI+3tze8vb1x4cIFpKWlye316tWDh4cHTp8+jaysLLk9ODgYrq6uiImJMThJAA83/LFjxwxiaNWqFXJzc3Hy5Em5Ta1WIzQ0FGlpaTh//rzcbmdnh6ZNmyI5ORmXLl2S211cXBASEoKEhARcv35dbi/PnACgSZMmsLGxwZEjR0qdk0ajAQCkpKTg6tWr1SKnsthO+ieA6pITYPl20vVLdnY2VCpVtchJx9LtpL/PVJecAMu3k65fbt68CX9//2qRkw6Pp/LZTrp+OXfuHJo3b16lc8rKysKzffvC2soKb775ptyem5uLTz75BPXq1cPAgQPl9uTkZHz55Zdo1qwZevbsKbdfunQJP/zwAzp16oSOHTvK7cePH8emTZvQs2dPNGvWDCqVCi1btsSZM2fQokWLct9OMTExMIckCpbxVUhqair8/Pwwb9482NnZYejQoQZXVwGgdevWCA8Px9y5c40uw9gVWR8fH6SkpMDZ2RlA+f4llZeXh61bt6J79+5QqQxvSX5U/+It2DfdunWT36f0nMpiO+n6pUePHvJf1UrPqajYzc1J/1iytrauFjkVF7u5OenvM7r4lZ5TUbGbm5P+OUaj0VSLnIqLnceTZdtJ1y+RkZGwtbWt0jkdP34coaGh6P/BUngG1DeYXwsJgCj0IJQWEiQISGa0CwBCr/3u1X/QL8QTXl5eCA0NLfftdPfuXdSsWRNpaWlyvWZMlboiW5Crqysee+wxXLx4EU8++SRyc3ORmppqcFU2KSnJ6D21OhqNRr7yp8/KygpWVobp6zZCQfpFljnt+svVbUxJkgqtz9j8OqbmNxVjSdstyam07QVz0vWNSqUqk1yrQk7FxWhOe8ETgDFKy0lfaXPSP5Z4PBnmZOzDpCCl5WROjMW1659jiopdSTkVxOOpbLeTrl9066rKOenW4xHQAHVCmhqdvyw9LHIzIEkP/68ytpMxVW7UAn3379/HP//8gzp16qBly5awtrbG9u3b5emxsbG4evUqwsLCKjFKIiIiIqoMVeqK7Ntvv41evXrBz88PCQkJmDFjBtRqNQYOHAgXFxe89tprGD9+PNzc3ODs7IxRo0YhLCyMIxYQERERPYKqVCF7/fp1DBw4ECkpKahVqxY6dOiAgwcPolatWgCA+fPnQ6VSoV+/fsjJyUFkZCSWLFlSyVETERERUWWoUoXsjz/+WOR0W1tbLF68GIsXL66giIiIiIioqqrS98gSEREREZnCQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSJV2UL2o48+giRJGDt2rNyWnZ2NESNGoGbNmnB0dES/fv2QlJRUeUESERERUaWpkoXs33//jS+//BJNmjQxaB83bhx+/fVXrF27Frt370ZCQgL69u1bSVESERERUWWyquwACrp//z5eeuklfP311/jggw/k9rS0NCxbtgyrVq1C165dAQDR0dEICQnBwYMH0bZtW6PLy8nJQU5Ojvw6PT0dAJCXl4e8vDwAgEqlgkqlglarhVarlefVtefn50MIUWy7Wq2GJEnycgEgPz8fACCEMGjXza8/j46VlRWEEAbtkiRBrVYXitFUe3nmVFTsJclJ9/9ardZg+UrOqSy2U8E+qg45FRW7uTnpH0sFY1RqTsXFbm5O+tOrS05FxW5uTvrnGN06lZ5TcbHzeLJsO+kfU9bW1lU6p3/XIyBpDXMSKjUgBCTxbyyQJAhJVUS7FpJeLEKSAL12FR5O08Vb3tup4PymVLlCdsSIEejZsyciIiIMCtmjR4/iwYMHiIiIkNuCg4Ph6+uLAwcOmCxk58yZg6ioqELtMTExcHBwAADUqlULgYGBiI+Px+3bt+V5vL294e3tjQsXLiAtLU1ur1evHjw8PHD69GlkZWUZxOPq6oqYmBiDkwTwcIc7duyYQQytWrVCbm4uTp48Kbep1WqEhoYiLS0N58+fl9vt7OzQtGlTJCcn49KlS3K7i4sLQkJCkJCQgOvXr8vt5ZkTADRp0gQ2NjY4cuRIqXPSaDQAgJSUFFy9erVa5FQW20n/BFBdcgIs3066fsnOzoZKpaoWOelYup3095nqkhNg+XbS9cvNmzfh7+9fLXLS4fFUPttJ1y/nzp1D8+bNq3ROaWlpsLGxgUYSqJscK7cLlQo33INh+yAD7qn/frbmWWmQ6BYIh+xU1Lh3U27PtnFAsqsfnDNT4Jzxb+wZdq646+SFGvcT4ZCVCnfNw4uCunjLezvFxMTAHJLQPwNWsh9//BEffvgh/v77b9ja2qJLly5o1qwZFixYgFWrVmHo0KEGV1cBoHXr1ggPD8fcuXONLtPYFVkfHx+kpKTA2dkZQPn+JZWXl4etW7eie/fuUKkM7+R4VP/iLdg33bp1k9+n9JzKYjvp+qVHjx5QqVTVIqeiYjc3J/1jydraulrkVFzs5uakv8/o4ld6TkXFbm5O+ucYjUZTLXIqLnYeT5ZtJ12/REZGwtbWtkrndPz4cYSGhmLk99vgHdTYYP7yuCKbFHsSnR0y4eXlhdDQ0HLfTnfv3kXNmjWRlpYm12vGVJkrsteuXcOYMWOwbds22NraltlyNRqNfOVPn5WVFaysDNPXbYSC9Issc9r1l6vbmJIkFVqfsfl1TM1vKsaStluSU2nbC+ak6xuVSlUmuVaFnIqL0Zz2gicAY5SWk77S5qR/LPF4MszJ2IdJQUrLyZwYi2vXP8cUFbuSciqIx1PZbiddv+jWVZVz+nc90sPCtSBJgpBK0q6CkIys9P/btZD+/+1SkbGX53Yypso87HX06FHcunULLVq0kIvM3bt3Y+HChbCyskLt2rWRm5uL1NRUg/clJSXB09OzcoImIiIiokpTZa7IPvHEEzh16pRB29ChQxEcHIx33nkHPj4+sLa2xvbt29GvXz8AQGxsLK5evYqwsLDKCJmIiIiIKlGVKWSdnJzQqFEjgzYHBwfUrFlTbn/ttdcwfvx4uLm5wdnZGaNGjUJYWJjJB72IiIiIqPqqMoWsOebPnw+VSoV+/fohJycHkZGRWLJkSWWHRURERESVoEoXsrt27TJ4bWtri8WLF2Px4sWVExARERERVRlV5mEvIiIiIqKSYCFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkK0sXkJiYiGXLluHYsWNIS0uDVqs1mC5JErZv327paoiIiIiIDFhUyJ48eRJdunRBVlYWgoKCcOrUKTz++ONITU3FjRs3EBgYCB8fn7KKlYiIiIhIZtGtBZMnT4ajoyNiY2Px559/QgiBzz77DNeuXcPq1atx9+5dfPTRR2UVKxERERGRzKJCdt++fXjzzTfh6+sLlerhonS3Fjz//PN46aWXMHHiRMujJCIiIiIqwKJCVqvVonbt2gAAV1dXqNVq3LlzR57euHFjHD161LIIiYiIiIiMsKiQDQgIQHx8/MMFqVQICAjAn3/+KU/fv38/XF1dLQqQiIiIiMgYiwrZp556CmvXrpVfDx8+HP/73/8QERGBJ554AitWrMCLL75ocZBERERERAVZNGrB1KlTMXDgQDx48ADW1tYYO3YsMjIy8NNPP0GtVmPatGl49913yypWIiIiIiKZRYVsjRo10LJlS/m1JEl477338N5771kcGBERERFRUarUL3stXboUTZo0gbOzM5ydnREWFobNmzfL07OzszFixAjUrFkTjo6O6NevH5KSkioxYiIiIiKqLCW6Ivvqq69CkiR89dVXUKvVePXVV4t9jyRJWLZsmVnL9/b2xkcffYQGDRpACIEVK1agd+/eiImJQcOGDTFu3Dhs2rQJa9euhYuLC0aOHIm+ffti3759JUmDiIiIiKqBEhWyO3bsgEqlglarhVqtxo4dOyBJUpHvKW66vl69ehm8/vDDD7F06VIcPHgQ3t7eWLZsGVatWoWuXbsCAKKjoxESEoKDBw+ibdu2RpeZk5ODnJwc+XV6ejoAIC8vD3l5eQAejrigy0v/J3Z17fn5+RBCFNuuVqshSZK8XADIz88HAAghDNp18+vPo2NlZQUhhEG7JElQq9WFYjTVXp45FRV7SXLS/b9WqzVYvpJzKovtVLCPqkNORcVubk76x1LBGJWaU3Gxm5uT/vTqklNRsZubk/45RrdOpedUXOw8nizbTvrHlLW1dZXO6d/1CEhaw5yESg0IAUn8GwskCUJSFdGuhaQXi5AkQK9dhYfTdPGW93YqOL8pJSpkL1++XOTrspSfn4+1a9ciIyMDYWFhOHr0KB48eICIiAh5nuDgYPj6+uLAgQMmC9k5c+YgKiqqUHtMTAwcHBwAALVq1UJgYCDi4+Nx+/ZteR5vb294e3vjwoULSEtLk9vr1asHDw8PnD59GllZWQbxuLq6IiYmxuAkATzc4Y4dO2YQQ6tWrZCbm4uTJ0/KbWq1GqGhoUhLS8P58+fldjs7OzRt2hTJycm4dOmS3O7i4oKQkBAkJCTg+vXrcnt55gQATZo0gY2NDY4cOVLqnDQaDQAgJSUFV69erRY5lcV20j8BVJecAMu3k65fsrOzoVKpqkVOOpZuJ/19prrkBFi+nXT9cvPmTfj7+1eLnHR4PJXPdtL1y7lz59C8efMqnVNaWhpsbGygkQTqJsfK7UKlwg33YNg+yIB76r+frXlWGiS6BcIhOxU17t2U27NtHJDs6gfnzBQ4Z/wbe4adK+46eaHG/UQ4ZKXCXfPwoqAu3vLeTjExMTCHJPTPgFXAqVOnEBYWhuzsbDg6OmLVqlXo0aMHVq1ahaFDhxpcXQWA1q1bIzw8HHPnzjW6PGNXZH18fJCSkgJnZ2cA5fuXVF5eHrZu3Yru3bvLv36mPz/w6P3FW7BvunXrJr9P6TmVxXbS9UuPHj2gUqmqRU5FxW5uTvrHkrW1dbXIqbjYzc1Jf5/Rxa/0nIqK3dyc9M8xGo2mWuRUXOw8nizbTrp+iYyMhK2tbZXO6fjx4wgNDcXI77fBO6ixwfzlcUU2KfYkOjtkwsvLC6GhoeW+ne7evYuaNWsiLS1NrteMsWjUgmPHjuHgwYN46623jE5fsmQJ2rVrh2bNmpm9zKCgIBw/fhxpaWlYt24dBg8ejN27d5c6Ro1GI1/502dlZQUrK8P0dRuhIP0iy5x2/eXqNqYkSYXWZ2x+HVPzm4qxpO2W5FTa9oI56fpGpVKVSa5VIafiYjSnveAJwBil5aSvtDnpH0s8ngxzMvZhUpDScjInxuLa9c8xRcWupJwK4vFUtttJ1y+6dVXlnP5dj/SwcC1IkiCkkrSrIIzdDfr/7VpI//92qcjYy3M7GWPRqAVTp041+CWvgnbs2FHiobhsbGxQv359tGzZEnPmzEHTpk3x2WefwdPTE7m5uUhNTTWYPykpCZ6enqUJn4iIiIgUzKJC9ujRo+jYsaPJ6R07dix070NJabVa5OTkoGXLlrC2tsb27dvlabGxsbh69SrCwsIsWgcRERERKY9Ftxbcu3evyEu/KpXK4Ebg4kyZMgXdu3eHr68v7t27h1WrVmHXrl3YunUrXFxc8Nprr2H8+PFwc3ODs7MzRo0ahbCwMJMPehERERFR9WVRIdugQQP88ccfGDVqlNHpW7ZsQb169cxe3q1bt/DKK6/g5s2bcHFxQZMmTbB161Y8+eSTAID58+dDpVKhX79+yMnJQWRkJJYsWWJJCkRERESkUBYVsq+99hrGjRuH8ePHY/r06XB1dQUApKamIioqClu2bMEnn3xi9vKK++EEW1tbLF68GIsXL7YkbCIiIiKqBiwqZEePHo3jx49jwYIFWLhwIby8vAAACQkJ0Gq1GDRoEMaNG1cmgRIRERER6bOokJUkCdHR0XjllVfw008/yYMG9+7dG/369UOXLl3KIkYiIiIiokIsKmR1wsPDER4eXhaLIiIiIiIyi0XDbxERERERVRaLClkhBL788ku0bt0a7u7uUKvVhf6Z+8sMREREREQlYVGVOWnSJMybNw/NmjXDyy+/jBo1apRVXERERERERbKokF2xYgX69euHNWvWlFU8RERERERmsejWgqysLERERJRVLEREREREZrOokH3iiSfw999/l1UsRERERERms6iQXbJkCQ4ePIjZs2cjJSWlrGIiIiIiIiqWRYVsUFAQLl26hGnTpsHDwwMODg5wdnY2+Ofi4lJWsRIRERERySx62Ktfv36QJKmsYiEiIiIiMptFhezy5cvLKAwiIiIiopLhL3sRERERkSJZXMhevXoV//nPfxAUFIQaNWpgz549AIDk5GSMHj0aMTExFgdJRERERFSQRbcWnD17Fh07doRWq0WbNm1w8eJF5OXlAQDc3d2xd+9eZGRkYNmyZWUSLBERERGRjsU/Uevq6oqDBw9CkiR4eHgYTO/ZsydWr15tUYBERERERMZYdGvBnj17MHz4cNSqVcvo6AW+vr64ceOGJasgIiIiIjLKokJWq9XC3t7e5PTbt29Do9FYsgoiIiIiIqMsKmRbtGiBTZs2GZ2Wl5eHH3/8EW3btrVkFURERERERllUyE6ZMgVbtmzB8OHDcfr0aQBAUlIS/vzzTzz11FM4d+4cJk+eXCaBEhERERHps+hhr+7du2P58uUYM2YMvvrqKwDAyy+/DCEEnJ2d8e2336JTp05lEigRERERkT6LClkAGDRoEPr27Ys//vgDFy9ehFarRWBgICIjI+Hk5FQWMRIRERERFWJxIQsADg4OePbZZ8tiUUREREREZrGokL169apZ8/n6+lqyGiIiIiKiQiwqZP39/Y2OH1tQfn6+JashIiIiIirEokL2m2++KVTI5ufn4/Lly/j222/h4eGBESNGWBQgEREREZExFhWyQ4YMMTntnXfeQZs2bZCWlmbJKoiIiIiIjLJoHNmiODg4YOjQoZg/f355rYKIiIiIHmHlVsgCD3/CNjExsTxXQURERESPqDIZfqug9PR07NmzB5988gmaN29eHqsgIiIiokecRYWsSqUyOWqBEAK+vr5YsmSJJasgIiIiIjLKokJ2+vTphQpZSZJQo0YNBAYG4qmnnoKVVblc9CUiIiKiR5xFVebMmTPLKAwiIiIiopKx6GGvvLw8pKenm5yenp6OvLw8S1ZBRERERGSURYXs6NGj0a5dO5PT27dvjwkTJliyCiIiIiIioywqZLds2YLnnnvO5PTnnnsOv//+uyWrICIiIiIyyqJCNiEhAXXr1jU53cvLCzdu3LBkFURERERERllUyNasWROxsbEmp587dw7Ozs6WrIKIiIiIyCiLCtlu3brhyy+/RExMTKFpx44dw1dffYXu3btbsgoiIiIiIqMsGn5r1qxZ2LJlC1q3bo1nnnkGDRs2BACcPn0av/76Kzw8PDBr1qwyCZSIiIiISJ9FhayXlxeOHDmCyZMnY8OGDfjll18AAM7OznjppZcwe/ZseHl5lUmgRERERET6LP7ZrTp16mDFihUQQuD27dsAgFq1apn86VoiIiIiorJQZr8fK0kSNBoNHB0dWcQSERERUbmz6GEvADhy5Ai6desGe3t71KxZE7t37wYAJCcno3fv3ti1a5elqyAiIiIiKsSiQnb//v3o0KED4uLi8PLLL0Or1crT3N3dkZaWhi+//NLiIImIiIiICrKokH333XcREhKCs2fPYvbs2YWmh4eH49ChQ5asgoiIiIjIKIsK2b///htDhw6FRqMxel9s3bp1kZiYaMkqiIiIiIiMsqiQtba2NridoKAbN27A0dHRklUQERERERllUSHbtm1brFu3zui0jIwMREdHo3PnzpasgoiIiIjIKIsK2aioKBw5cgQ9e/bE5s2bAQAnTpzA//73P7Rs2RK3b9/GtGnTyiRQIiIiIiJ9Fo0j26ZNG/z+++8YPnw4XnnlFQDAhAkTAACBgYH4/fff0aRJE8ujJCIiIiIqoNSFrBAC9+7dQ7t27RAbG4vjx48jLi4OWq0WgYGBaNmyJX8YgYiIiIjKTakL2dzcXLi5uWH27NmYNGkSmjVrhmbNmpVhaEREREREppX6HlmNRgNPT09oNJqyjIeIiIiIyCwWPew1ZMgQfPvtt8jNzS2reIiIiIiIzGLRw16NGzfG+vXr0bBhQwwZMgT+/v6ws7MrNF/fvn0tWQ0RERERUSEWFbIDBw6U/9/UMFuSJCE/P9+S1RARERERFVLiQvbdd9/FgAED0KRJE+zcubM8YiIiIiIiKlaJC9mPPvoIjRo1QpMmTdC5c2ekpKTAw8MD27ZtQ9euXcsjRiIiIiKiQix62EtHCFEWiyEiIiIiMluZFLJERERERBWtShWyc+bMQWhoKJycnODh4YE+ffogNjbWYJ7s7GyMGDECNWvWhKOjI/r164ekpKRKipiIiIiIKkupRi24fPkyjh07BgBIS0sDAMTFxcHV1dXo/C1atDBrubt378aIESMQGhqKvLw8vPvuu3jqqadw9uxZODg4AADGjRuHTZs2Ye3atXBxccHIkSPRt29f7Nu3rzSpEBEREZFClaqQnTZtWqHhtt56661C8wkhSjT81pYtWwxeL1++HB4eHjh69Cg6deqEtLQ0LFu2DKtWrZIfLIuOjkZISAgOHjyItm3bliYdIiIiIlKgEhey0dHR5RGHUbqrvW5ubgCAo0eP4sGDB4iIiJDnCQ4Ohq+vLw4cOGC0kM3JyUFOTo78Oj09HQCQl5eHvLw8AIBKpYJKpYJWq4VWq5Xn1bXn5+cbPNBmql2tVkOSJHm5AOQiXghh0K6bX38eHSsrKwghDNolSYJarS4Uo6n28sypqNhLkpPu/7VarcHylZxTWWyngn1UHXIqKnZzc9I/lgrGqNSciovd3Jz0p1eXnIqK3dyc9M8xunUqPafiYufxZNl20j+mrK2tq3RO/65HQNIa5iRUakAISOLfWCBJEJKqiHYtJL1YhCQBeu0qPJymi7e8t1PB+U0pcSE7ePDgkr6lVLRaLcaOHYv27dujUaNGAIDExETY2NgUuoWhdu3aSExMNLqcOXPmICoqqlB7TEyMfLtCrVq1EBgYiPj4eNy+fVuex9vbG97e3rhw4YJcVANAvXr14OHhgdOnTyMrK0tuDw4OhqurK2JiYgxOErp8dLdj6LRq1Qq5ubk4efKk3KZWqxEaGoq0tDScP39ebrezs0PTpk2RnJyMS5cuye0uLi4ICQlBQkICrl+/LreXZ04A0KRJE9jY2ODIkSOlzkmj0QAAUlJScPXq1WqRU1lsJ/0TQHXJCbB8O+n6JTs7GyqVqlrkpGPpdtLfZ6pLToDl20nXLzdv3oS/v3+1yEmHx1P5bCddv5w7dw7Nmzev0jmlpaXBxsYGGkmgbvK/zxMJlQo33INh+yAD7qn/frbmWWmQ6BYIh+xU1Lh3U27PtnFAsqsfnDNT4Jzxb+wZdq646+SFGvcT4ZCVCnfNw4uCunjLezvFxMTAHJKoomNnDR8+HJs3b8bevXvh7e0NAFi1ahWGDh1qcIUVAFq3bo3w8HDMnTu30HKMXZH18fFBSkoKnJ2dAZTvX1J5eXnYunUrunfvDpXK8Nm6R/Uv3oJ9061bN/l9Ss+pLLaTrl969OgBlUpVLXIqKnZzc9I/lqytratFTsXFbm5O+vuMLn6l51RU7ObmpH+O0Wg01SKn4mLn8WTZdtL1S2RkJGxtbat0TsePH0doaChGfr8N3kGNDeYvjyuySbEn0dkhE15eXggNDS337XT37l3UrFkTaWlpcr1mjEU/UVteRo4cid9++w179uyRi1gA8PT0RG5uLlJTUw2uyiYlJcHT09PosjQajXzlT5+VlRWsrAzT122EgvSLLHPa9Zer25iSJBVan7H5dUzNbyrGkrZbklNp2wvmpOsblUpVJrlWhZyKi9Gc9oInAGOUlpO+0uakfyzxeDLMydiHSUFKy8mcGItr1z/HFBW7knIqiMdT2W4nXb/o1lWVc/p3PdLDwrUgSYKQStKugpCMrPT/27WQ/v/tUpGxl+d2MqZKDb8lhMDIkSPxyy+/YMeOHQgICDCY3rJlS1hbW2P79u1yW2xsLK5evYqwsLCKDpeIiIiIKlGVuiI7YsQIrFq1Chs2bICTk5N836uLiwvs7Ozg4uKC1157DePHj4ebmxucnZ0xatQohIWFccQCIiIiokdMlSpkly5dCgDo0qWLQXt0dDSGDBkCAJg/fz5UKhX69euHnJwcREZGYsmSJRUcKRERERFVtipVyJrz3JmtrS0WL16MxYsXV0BERERERFRVVal7ZImIiIiIzMVCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIlWpQnbPnj3o1asXvLy8IEkS1q9fbzBdCIHp06ejTp06sLOzQ0REBOLi4ionWCIiIiKqVFWqkM3IyEDTpk2xePFio9M//vhjLFy4EF988QUOHToEBwcHREZGIjs7u4IjJSIiIqLKZlXZAejr3r07unfvbnSaEAILFizAe++9h969ewMAvv32W9SuXRvr16/HgAEDjL4vJycHOTk58uv09HQAQF5eHvLy8gAAKpUKKpUKWq0WWq1WnlfXnp+fDyFEse1qtRqSJMnLBYD8/Hw5fv123fz68+hYWVlBCGHQLkkS1Gp1oRhNtZdnTkXFXpKcdP+v1WoNlq/knMpiOxXso+qQU1Gxm5uT/rFUMEal5lRc7ObmpD+9uuRUVOzm5qR/jtGtU+k5FRc7jyfLtpP+MWVtbV2lc/p3PQKS1jAnoVIDQkAS/8YCSYKQVEW0ayHpxSIkCdBrV+HhNF285b2dCs5vSpUqZIsSHx+PxMREREREyG0uLi5o06YNDhw4YLKQnTNnDqKiogq1x8TEwMHBAQBQq1YtBAYGIj4+Hrdv35bn8fb2hre3Ny5cuIC0tDS5vV69evDw8MDp06eRlZUltwcHB8PV1RUxMTEGJwng4Q537NgxgxhatWqF3NxcnDx5Um5Tq9UIDQ1FWloazp8/L7fb2dmhadOmSE5OxqVLlwz6ICQkBAkJCbh+/brcXp45AUCTJk1gY2ODI0eOlDonjUYDAEhJScHVq1erRU5lsZ30TwDVJSfA8u2k65fs7GyoVKpqkZOOpdtJf5+pLjkBlm8nXb/cvHkT/v7+1SInHR5P5bOddP1y7tw5NG/evErnlJaWBhsbG2gkgbrJsXK7UKlwwz0Ytg8y4J7672drnpUGiW6BcMhORY17N+X2bBsHJLv6wTkzBc4Z/8aeYeeKu05eqHE/EQ5ZqXDXPLwoqIu3vLdTTEwMzCEJ/TNgFSJJEn755Rf06dMHALB//360b98eCQkJqFOnjjxf//79IUkSVq9ebXQ5xq7I+vj4ICUlBc7OzgDK9y+pvLw8bN26Fd27d4dKZXgnx6P6F2/BvunWrZv8PqXnVBbbSdcvPXr0gEqlqhY5FRW7uTnpH0vW1tbVIqfiYjc3J/19Rhe/0nMqKnZzc9I/x2g0mmqRU3Gx83iybDvp+iUyMhK2trZVOqfjx48jNDQUI7/fBu+gxgbzl8cV2aTYk+jskAkvLy+EhoaW+3a6e/cuatasibS0NLleM0YxV2RLS6PRyFf+9FlZWcHKyjB93UYoSL/IMqddf7m6jSlJUqH1GZtfx9T8pmIsabslOZW2vWBOur5RqVRlkmtVyKm4GM1pL3gCMEZpOekrbU76xxKPJ8OcjH2YFKS0nMyJsbh2/XNMUbErKaeCeDyV7XbS9YtuXVU5p3/XIz0sXAuSJAipJO0qCMnISv+/XQvp/98uFRl7eW4nY6rUw15F8fT0BAAkJSUZtCclJcnTiIiIiOjRoZhCNiAgAJ6enti+fbvclp6ejkOHDiEsLKwSIyMiIiKiylClbi24f/8+Ll68KL+Oj4/H8ePH4ebmBl9fX4wdOxYffPABGjRogICAAEybNg1eXl7yfbRERERE9OioUoXskSNHEB4eLr8eP348AGDw4MFYvnw5Jk2ahIyMDAwbNgypqano0KEDtmzZAltb28oKmYiIiIgqSZUqZLt06WLw0EJBkiTh/fffx/vvv1+BURERERFRVaSYe2SJiIiIiPSxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUyaqyA3hUnDhxAipVxfzd4O7uDl9f3wpZFxEREVFlYSFbzq5fvw4A6NSpE7KysipknXb29jh/7hyLWSIiIqrWWMiWs5SUFADAs9Pmw82vfrmv71Z8HNa8NxzJycksZImIiKhaYyFbQWr5BcIzpGllh0FERERUbfBhLyIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRIVpUdABEZd+LECahUFfO3pru7O3x9fStkXVR+uM9QSXGfIaVjIUtUxVy/fh0A0KlTJ2RlZVXIOu3s7XH+3Dl+yCgU9xkqKe4zVF2wkCWqYlJSUgAAz06bDze/+uW+vlvxcVjz3nAkJyfzA0ahuM9QSXGfoeqChSxRFVXLLxCeIU0rOwxSEO4zVFLcZ0jp+LAXERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBRJkYXs4sWL4e/vD1tbW7Rp0waHDx+u7JCIiIiIqIIprpBdvXo1xo8fjxkzZuDYsWNo2rQpIiMjcevWrcoOjYiIiIgqkOJ+onbevHl44403MHToUADAF198gU2bNuGbb77B5MmTC82fk5ODnJwc+XVaWhoA4M6dO8jLywMAqFQqqFQqaLVaaLVaeV5de35+PoQQxbar1WpIkiQvFwDS09ORmZmJhNh4ZGdmGMSme6dUIGYBSf5vwXYJAgXpt6dcvQRra2scPXoU9+/fhxDCIEZJkiBJUonb9ftF1w4AQgi57wq261OpVIWWLYRAZmYm9u7dK7/P3Bj1YyqPnAq267Z3cTmVNhb99ri4ODg6OhrdZwDj+8HDV6baje1j/7aX1z5TVttPN59Wq5X3F13f6ytu3yuLfaYk7Wq1utA5ojT7XlE5WbLPWNKuv8/cu3evXHLSzWvJMa+/z6jV6hJvP/1zeXnkVJJ9pqzP5fr7TFZmRpHnCMP20n0+GdtnyvvzqeA0c7aTpftMWW0/c46nuLg4AMCNcyfxIPN+oX4vbR1hqj31ejwyg2rj3r17SE9Pt6g20rUDKPTZqmu/e/duoZyNkURxc1Qhubm5sLe3x7p169CnTx+5ffDgwUhNTcWGDRsKvWfmzJmIioqqwCiJiIiIqCxcu3YN3t7eJqcr6opscnIy8vPzUbt2bYP22rVr4/z580bfM2XKFIwfP15+rdVqcefOHdSsWdPgKmB5SU9Ph4+PD65duwZnZ+dyX5+SsG+MY78Yx34xjX1jHPvFNPaNcewX0yq6b4QQuHfvHry8vIqcT1GFbGloNBpoNBqDNldX1wqPw9nZmQeFCewb49gvxrFfTGPfGMd+MY19Yxz7xbSK7BsXF5di51HUw17u7u5Qq9VISkoyaE9KSoKnp2clRUVERERElUFRhayNjQ1atmyJ7du3y21arRbbt29HWFhYJUZGRERERBVNcbcWjB8/HoMHD0arVq3QunVrLFiwABkZGfIoBlWNRqPBjBkzCt3eQOwbU9gvxrFfTGPfGMd+MY19Yxz7xbSq2jeKGrVA5/PPP8cnn3yCxMRENGvWDAsXLkSbNm0qOywiIiIiqkCKLGSJiIiIiBR1jywRERERkQ4LWSIiIiJSJBayRERERKRILGSJiIiISJFYyFroxo0bePnll1GzZk3Y2dmhcePGOHLkSJHv2bVrF1q0aAGNRoP69etj+fLlFRNsBStp3+zatQuSJBX6l5iYWIFRly9/f3+jOY4YMcLke9auXYvg4GDY2tqicePG+P333ysw4opT0r5Zvnx5oXltbW0rOOryl5+fj2nTpiEgIAB2dnYIDAzErFmzUNxzutX9PFOafnkUzjE69+7dw9ixY+Hn5wc7Ozu0a9cOf//9d5Hvqe77DFDyfqmu+8yePXvQq1cveHl5QZIkrF+/3mC6EALTp09HnTp1YGdnh4iICMTFxRW73MWLF8Pf3x+2trZo06YNDh8+XE4ZGAZLpXTnzh3h5+cnhgwZIg4dOiQuXboktm7dKi5evGjyPZcuXRL29vZi/Pjx4uzZs2LRokVCrVaLLVu2VGDk5a80fbNz504BQMTGxoqbN2/K//Lz8ysw8vJ169Ytg9y2bdsmAIidO3canX/fvn1CrVaLjz/+WJw9e1a89957wtraWpw6dapiA68AJe2b6Oho4ezsbPCexMTEig26Anz44YeiZs2a4rfffhPx8fFi7dq1wtHRUXz22Wcm3/MonGdK0y+PwjlGp3///uLxxx8Xu3fvFnFxcWLGjBnC2dlZXL9+3ej8j8I+I0TJ+6W67jO///67mDp1qvj5558FAPHLL78YTP/oo4+Ei4uLWL9+vThx4oR45plnREBAgMjKyjK5zB9//FHY2NiIb775Rpw5c0a88cYbwtXVVSQlJZVrLixkLfDOO++IDh06lOg9kyZNEg0bNjRoe+GFF0RkZGRZhlbpStM3uhPG3bt3yyeoKmjMmDEiMDBQaLVao9P79+8vevbsadDWpk0b8eabb1ZEeJWquL6Jjo4WLi4uFRtUJejZs6d49dVXDdr69u0rXnrpJZPveRTOM6Xpl0flHJOZmSnUarX47bffDNpbtGghpk6davQ9j8I+U5p+eRT2mYKFrFarFZ6enuKTTz6R21JTU4VGoxE//PCDyeW0bt1ajBgxQn6dn58vvLy8xJw5c8olbh3eWmCBjRs3olWrVnj++efh4eGB5s2b4+uvvy7yPQcOHEBERIRBW2RkJA4cOFCeoVa40vSNTrNmzVCnTh08+eST2LdvXzlHWnlyc3Px3Xff4dVXX4UkSUbneVT2l4LM6RsAuH//Pvz8/ODj44PevXvjzJkzFRhlxWjXrh22b9+OCxcuAABOnDiBvXv3onv37ibf8yjsN6XpF53qfo7Jy8tDfn5+oVtt7OzssHfvXqPveRT2mdL0i05132f0xcfHIzEx0WB/cHFxQZs2bUzuD7m5uTh69KjBe1QqFSIiIsp9H2Iha4FLly5h6dKlaNCgAbZu3Yrhw4dj9OjRWLFihcn3JCYmonbt2gZttWvXRnp6OrKysso75ApTmr6pU6cOvvjiC/z000/46aef4OPjgy5duuDYsWMVGHnFWb9+PVJTUzFkyBCT85jaX5R+f1ZxzOmboKAgfPPNN9iwYQO+++47aLVatGvXDtevX6+4QCvA5MmTMWDAAAQHB8Pa2hrNmzfH2LFj8dJLL5l8z6NwnilNvzwq5xgnJyeEhYVh1qxZSEhIQH5+Pr777jscOHAAN2/eNPqeR2GfKU2/PCr7jD7d50tJPnuSk5ORn59fKZ9XVuW69GpOq9WiVatWmD17NgCgefPmOH36NL744gsMHjy4kqOrXKXpm6CgIAQFBcmv27Vrh3/++Qfz58/HypUrKyTuirRs2TJ0794dXl5elR1KlWNO34SFhSEsLEx+3a5dO4SEhODLL7/ErFmzKiLMCrFmzRp8//33WLVqFRo2bIjjx49j7Nix8PLyeqTPM6Xpl0fpHLNy5Uq8+uqrqFu3LtRqNVq0aIGBAwfi6NGjlR1apSppvzxK+4xS8YqsBerUqYPHH3/coC0kJARXr141+R5PT08kJSUZtCUlJcHZ2Rl2dnblEmdlKE3fGNO6dWtcvHixLEOrEq5cuYI///wTr7/+epHzmdpfPD09yzO8SmVu3xSkuypX3faXiRMnylcfGzdujEGDBmHcuHGYM2eOyfc8CueZ0vSLMdX1HBMYGIjdu3fj/v37uHbtGg4fPowHDx6gXr16Rud/FPYZoOT9Ykx13Wd0dJ8vJfnscXd3h1qtrpTPKxayFmjfvj1iY2MN2i5cuAA/Pz+T7wkLC8P27dsN2rZt22ZwZak6KE3fGHP8+HHUqVOnLEOrEqKjo+Hh4YGePXsWOd+jsr/oM7dvCsrPz8epU6eq3f6SmZkJlcrwVK1Wq6HVak2+51HYb0rTL8ZU13OMjoODA+rUqYO7d+9i69at6N27t9H5HoV9Rp+5/WJMdd9nAgIC4OnpabA/pKen49ChQyb3BxsbG7Rs2dLgPVqtFtu3by//fahcHyWr5g4fPiysrKzEhx9+KOLi4sT3338v7O3txXfffSfPM3nyZDFo0CD5tW6Ik4kTJ4pz586JxYsXV8shTkrTN/Pnzxfr168XcXFx4tSpU2LMmDFCpVKJP//8szJSKDf5+fnC19dXvPPOO4WmDRo0SEyePFl+vW/fPmFlZSU+/fRTce7cOTFjxoxqO/yWECXrm6ioKLF161bxzz//iKNHj4oBAwYIW1tbcebMmYoMudwNHjxY1K1bVx5m6ueffxbu7u5i0qRJ8jyP4nmmNP3yqJxjhBBiy5YtYvPmzeLSpUvijz/+EE2bNhVt2rQRubm5QohHc58RouT9Ul33mXv37omYmBgRExMjAIh58+aJmJgYceXKFSHEw+G3XF1dxYYNG8TJkydF7969Cw2/1bVrV7Fo0SL59Y8//ig0Go1Yvny5OHv2rBg2bJhwdXUt92ERWcha6NdffxWNGjUSGo1GBAcHi6+++spg+uDBg0Xnzp0N2nbu3CmaNWsmbGxsRL169UR0dHTFBVyBSto3c+fOFYGBgcLW1la4ubmJLl26iB07dlRw1OVv69at8riEBXXu3FkMHjzYoG3NmjXiscceEzY2NqJhw4Zi06ZNFRRpxStJ34wdO1b4+voKGxsbUbt2bdGjRw9x7NixCoy2YqSnp4sxY8YIX19fYWtrK+rVqyemTp0qcnJy5HkexfNMafrlUTnHCCHE6tWrRb169YSNjY3w9PQUI0aMEKmpqfL0R3GfEaLk/VJd9xndsGIF/+nOsVqtVkybNk3Url1baDQa8cQTTxQ6L/v5+YkZM2YYtC1atEg+L7du3VocPHiw3HORhCjm52GIiIiIiKog3iNLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEitKlSxc0atSoUtY9ZMgQ+Pv7V8q6lWTXrl2QJAm7du2S24z13f379/H666/D09MTkiRh7NixAICkpCQ899xzqFmzJiRJwoIFCyos9rJirA/MNXPmTEiSVPZBEVVDLGSJqpnly5dDkiT5n62tLby8vBAZGYmFCxfi3r17lR1itZeQkICZM2fi+PHjZb7s/fv3Y+bMmUhNTS3zZVe02bNnY/ny5Rg+fDhWrlyJQYMGAQDGjRuHrVu3YsqUKVi5ciW6detWyZGatmTJEixfvryywyB6ZFlVdgBEVD7ef/99BAQE4MGDB0hMTMSuXbswduxYzJs3Dxs3bkSTJk0qO8RqKyEhAVFRUfD390ezZs3KdNn79+9HVFQUhgwZAldX1zJddnn6+uuvodVqDdp27NiBtm3bYsaMGYXae/fujbfffrsiQyyVJUuWwN3dHUOGDDFo79SpE7KysmBjY1M5gRE9IljIElVT3bt3R6tWreTXU6ZMwY4dO/D000/jmWeewblz52BnZ2f0vRkZGXBwcKioUOkRYG1tXajt1q1bePzxx422l2WRnpeXB61WW6FFpUqlgq2tbYWtj+hRxVsLiB4hXbt2xbRp03DlyhV89913AB7eu+jo6Ih//vkHPXr0gJOTE1566SUADwvaCRMmwMfHBxqNBkFBQfj0008hhDBYriRJGDlyJL7//nsEBQXB1tYWLVu2xJ49e8otl7NnzyI8PBz29vaoW7cuPv7440Lz5OTkYMaMGahfvz40Gg18fHwwadIk5OTkFJr3u+++Q8uWLWFnZwc3NzcMGDAA165dK3Fcu3btQmhoKABg6NCh8i0e+l8/r127Vl6Xu7s7Xn75Zdy4caPYZc+cORMTJ04EAAQEBMjLvnz5MoCHBdusWbMQGBgIjUYDf39/vPvuu0bz3bx5Mzp27AgHBwc4OTmhZ8+eOHPmTInzvX79Ovr06QMHBwd4eHhg3LhxRtenf4+s7v7R+Ph4bNq0yaCPJEmCEAKLFy+W23VSU1MxduxYeX+sX78+5s6da3Cl9/Lly5AkCZ9++ikWLFgg98XZs2cBAOfPn8dzzz0HNzc32NraolWrVti4caNBrLo49u3bh/Hjx6NWrVpwcHDAs88+i9u3b8vz+fv748yZM9i9e7cca5cuXQxy1L9H9q+//sLzzz8PX19feX8cN24csrKyStzvRPQQr8gSPWIGDRqEd999F3/88QfeeOMNAA8LoMjISHTo0AGffvop7O3tIYTAM888g507d+K1115Ds2bNsHXrVkycOBE3btzA/PnzDZa7e/durF69GqNHj4ZGo8GSJUvQrVs3HD58uMwfzrp79y66deuGvn37on///li3bh3eeecdNG7cGN27dwcAaLVaPPPMM9i7dy+GDRuGkJAQnDp1CvPnz8eFCxewfv16eXkffvghpk2bhv79++P111/H7du3sWjRInTq1AkxMTElujoYEhKC999/H9OnT8ewYcPQsWNHAEC7du0APCyShg4ditDQUMyZMwdJSUn47LPPsG/fvmLX1bdvX1y4cAE//PAD5s+fD3d3dwBArVq1AACvv/46VqxYgeeeew4TJkzAoUOHMGfOHJw7dw6//PKLvJyVK1di8ODBiIyMxNy5c5GZmYmlS5eiQ4cOiImJMfuBtqysLDzxxBO4evUqRo8eDS8vL6xcuRI7duwoto9WrlyJcePGwdvbGxMmTAAANG/eXL5X9sknn8Qrr7wivyczMxOdO3fGjRs38Oabb8LX1xf79+/HlClTcPPmzUIPhEVHRyM7OxvDhg2DRqOBm5sbzpw5g/bt26Nu3bqYPHkyHBwcsGbNGvTp0wc//fQTnn32WYNljBo1CjVq1MCMGTNw+fJlLFiwACNHjsTq1asBAAsWLMCoUaPg6OiIqVOnAgBq165tMu+1a9ciMzMTw4cPR82aNXH48GEsWrQI169fx9q1a83qcyIqQBBRtRIdHS0AiL///tvkPC4uLqJ58+ZCCCEGDx4sAIjJkycbzLN+/XoBQHzwwQcG7c8995yQJElcvHhRbgMgAIgjR47IbVeuXBG2trbi2WefLYu0ZJ07dxYAxLfffiu35eTkCE9PT9GvXz+5beXKlUKlUom//vrL4P1ffPGFACD27dsnhBDi8uXLQq1Wiw8//NBgvlOnTgkrKyuD9sGDBws/P79iY/z7778FABEdHW3QnpubKzw8PESjRo1EVlaW3P7bb78JAGL69OnFLvuTTz4RAER8fLxB+/HjxwUA8frrrxu0v/322wKA2LFjhxBCiHv37glXV1fxxhtvGMyXmJgoXFxcCrUXZcGCBQKAWLNmjdyWkZEh6tevLwCInTt3yu3G+s7Pz0/07Nmz0HIBiBEjRhi0zZo1Szg4OIgLFy4YtE+ePFmo1Wpx9epVIYQQ8fHxAoBwdnYWt27dMpj3iSeeEI0bNxbZ2dlym1arFe3atRMNGjSQ23THUEREhNBqtXL7uHHjhFqtFqmpqXJbw4YNRefOnQvlsHPnzkJ9kJmZWWi+OXPmCEmSxJUrV+S2GTNmCH48E5mHtxYQPYIcHR0LjV4wfPhwg9e///471Go1Ro8ebdA+YcIECCGwefNmg/awsDC0bNlSfu3r64vevXtj69atyM/PL/P4X375Zfm1jY0NWrdujUuXLslta9euRUhICIKDg5GcnCz/69q1KwBg586dAICff/4ZWq0W/fv3N5jP09MTDRo0kOcrC0eOHMGtW7fw1ltvGdw/2bNnTwQHB2PTpk2lXvbvv/8OABg/frxBu+5qp27Z27ZtQ2pqKgYOHGiQr1qtRps2bUqU7++//446dergueeek9vs7e0xbNiwUudhytq1a9GxY0fUqFHDIO6IiAjk5+cXuo2lX79+8pVqALhz5w527NiB/v374969e/L7U1JSEBkZibi4uEK3dwwbNszg1oaOHTsiPz8fV65cKVUO+vekZ2RkIDk5Ge3atYMQAjExMaVaJtGjjrcWED2C7t+/Dw8PD/m1lZUVvL29Dea5cuUKvLy84OTkZNAeEhIiT9fXoEGDQut57LHHkJmZidu3b8PT07Oswoe3t3ehcTZr1KiBkydPyq/j4uJw7tw5g2JG361bt+T5hBBG4weMP6Skc/v2bYMi3dHREY6Ojibn1/VZUFBQoWnBwcHYu3cvACA/P9/gXkwAcHNzK/JhpStXrkClUqF+/foG7Z6ennB1dZXXHRcXBwByQV+Qs7OzyXUYW2f9+vULbQtj+VkqLi4OJ0+eLHZ76gQEBBi8vnjxIoQQmDZtGqZNm2ZyGXXr1pVf+/r6GkyvUaMGgIe3tpTG1atXMX36dGzcuLHQMtLS0kq1TKJHHQtZokfM9evXkZaWZlDwaDQaqFTK+YJGrVYbbRd6D6FptVo0btwY8+bNMzqvj4+PPJ8kSdi8ebPR5RZVmIaGhhoU9DNmzMDMmTPNSaFI165dK1SI7dy5U36QqCjFDaSvezBq5cqVRv+4sLKqmh8LWq0WTz75JCZNmmR0+mOPPWbwuuCIHLq83377bURGRhpdRsE/AszZz8yVn5+PJ598Enfu3ME777yD4OBgODg44MaNGxgyZEihocmIyDxV84xFROVm5cqVAGDyw1zHz88Pf/75J+7du2dwVfb8+fPydH26K336Lly4AHt7e5NX0cpTYGAgTpw4gSeeeKLI4i4wMBBCCAQEBBQqhorz/fffGzxxXq9ePQCmi0ldn8XGxha6IhobGytP9/T0xLZt2wymN23atNhla7VaxMXFyVfNgYe/kpWamiovOzAwEADg4eGBiIgI8xI1wc/PD6dPn4YQwiCu2NhYi5ZrTGBgIO7fv1/qmHXbxtra2uK89Zn7C1ynTp3ChQsXsGLFCoOH2ApuZyIqGeVcgiEii+3YsQOzZs1CQECAPMSWKT169EB+fj4+//xzg/b58+dDkiR5dACdAwcO4NixY/Lra9euYcOGDXjqqadMXtkqT/3798eNGzfw9ddfF5qWlZWFjIwMAA9HAlCr1YiKiip0pU0IgZSUFJPraN++PSIiIuR/umJJNwZvwV/fatWqFTw8PPDFF18YDFG1efNmnDt3Dj179gQA2NraGiw3IiJC/lrb1LJ79OgBAIWe3tddkdYtOzIyEs7Ozpg9ezYePHhQKKeCtzQUpUePHkhISMC6devktszMTHz11VdmL8Nc/fv3x4EDB7B169ZC01JTU5GXl1fk+z08PNClSxd8+eWXuHnzZqHpJclbn4ODg1m/sqY7BvT3MSEEPvvss1Ktl4ge4hVZompq8+bNOH/+PPLy8pCUlIQdO3Zg27Zt8PPzw8aNG4sdrL1Xr14IDw/H1KlTcfnyZTRt2hR//PEHNmzYgLFjx8pX9nQaNWqEyMhIg+G3ACAqKqrccizKoEGDsGbNGvznP//Bzp070b59e+Tn5+P8+fNYs2YNtm7dilatWiEwMBAffPABpkyZgsuXL6NPnz5wcnJCfHw8fvnlFwwbNqzEvzAVGBgIV1dXfPHFF3BycoKDgwPatGmDgIAAzJ07F0OHDkXnzp0xcOBAefgtf39/jBs3rthl6x6omzp1KgYMGABra2v06tULTZs2xeDBg/HVV18hNTUVnTt3xuHDh7FixQr06dMH4eHhAB7eA7t06VIMGjQILVq0wIABA1CrVi1cvXoVmzZtQvv27Qv98WLKG2+8gc8//xyvvPIKjh49ijp16mDlypWwt7cvUX+ZY+LEidi4cSOefvppDBkyBC1btkRGRgZOnTqFdevW4fLly/JwZKYsXrwYHTp0QOPGjfHGG2+gXr16SEpKwoEDB3D9+nWcOHGixHG1bNkSS5cuxQcffID69evDw8PD6P3HwcHBCAwMxNtvv40bN27A2dkZP/30U6nvtyWi/1c5gyUQUXnRDR2k+2djYyM8PT3Fk08+KT777DORnp5uMP/gwYOFg4OD0WXdu3dPjBs3Tnh5eQlra2vRoEED8cknnxgMSSTEv8Mlfffdd6JBgwZCo9GI5s2bGww9VFY6d+4sGjZsWKjd2PBOubm5Yu7cuaJhw4ZCo9GIGjVqiJYtW4qoqCiRlpZmMO9PP/0kOnToIBwcHISDg4MIDg4WI0aMELGxsUWuw5QNGzaIxx9/XFhZWRUaimv16tWiefPmQqPRCDc3N/HSSy+J69evm90Hs2bNEnXr1hUqlcpgKK4HDx6IqKgoERAQIKytrYWPj4+YMmWKwXBTOjt37hSRkZHCxcVF2NraisDAQDFkyBCDIdTMceXKFfHMM88Ie3t74e7uLsaMGSO2bNlS5sNvCfFwf5wyZYqoX7++sLGxEe7u7qJdu3bi008/Fbm5uUKIf4ff+uSTT4zG+88//4hXXnlFeHp6Cmtra1G3bl3x9NNPi3Xr1snzmBrCztiQWomJiaJnz57CyclJAJCH4jI279mzZ0VERIRwdHQU7u7u4o033hAnTpwotH9w+C0i80lClOKudSIiPZIkYcSIEWZfySMiIioLvEeWiIiIiBSJ98gSUbkzNi5qQbm5uUWOk6pWqytl9INHUW5uLu7cuVPkPC4uLoWGuKKyl5aWZjAyhjFlOUYzkdKwkCWicmdsXNSCOnfujN27d5uc7ufnh8uXL5dxZGTM/v375YfDTImOjsaQIUMqJqBH2JgxY7BixYoi5+EdgvQo4z2yRFTusrOz5V+tMqVGjRpFPsFtZ2eH9u3bl3VoZMTdu3dx9OjRIudp2LAh6tSpU0ERPbrOnj2LhISEIucpy3FxiZSGhSwRERERKRIf9iIiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJH+D7yLCKRveTAeAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAHbCAYAAAA9NtfdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQZUlEQVR4nO3deViU9f7/8dcwMOCGKIqI4kYdMdcjbriklIXmOWWZpnVMzW+22WZpZm5kqW0eW7TVyjqV7Z5KD1bmlqKGYq6ZpqZJ4JKCubDN/fvD38xhZG4EhgFmzvNxXV7F5/7cc3/e84bhxc09NxbDMAwBAAAAKCKgshcAAAAAVFWEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAfxPefHFF2WxWLRgwYLKXgoAwAcQlgEfsHLlSlksFk2fPr1Sjt+sWTM1a9bMZWz69OmyWCxauXJlpazpQhaLRX369Cl2zsaNG/Xwww9r6tSpGj16dMUszI2SrLUqKEuPS1vbgQMHZLFYNHLkyFKvz5d563Ogqn1dAv6AsAxUEEcoKPyvevXqioqK0pVXXqmpU6fql19+8cqx+/TpI4vF4pXH9hUnTpzQkCFDNGzYMCUlJVX2crxi9uzZslgsmj17ttvtHTp0kMVi0Z133ul2+8CBA2WxWLR8+fJyXReff/6rqvT2P//5j4YOHarY2FiFhYWpevXqio2N1ejRo/Xzzz9X9vLg4wIrewHA/5qYmBj94x//kCTl5OToyJEj2rhxo2bMmKGZM2dqwoQJevLJJ12+AXXp0kW7du1SvXr1KmXN5R2evGHXrl2qXr266fYtW7bo7rvv1oMPPliBq6pYCQkJks7/JmLixIku244fP66tW7eannW02+1avXq1goOD1aNHD0nS2LFjNXToUDVp0sTrawc8sXTpUq1fv15du3ZV//79FRQUpF27dmnhwoV67733tHTpUl1xxRWVvUz4KMIyUMEuueQSt5dTfP/99xo+fLhmzZolq9WqGTNmOLc5zpJUlpiYmEo7dkld7PlJSEhwhkl/FRcXp1q1aun7779Xfn6+AgP/+xK/atUqGYahG264QZ999pl+//13NWzY0Ln9xx9/1IkTJ9S7d2+FhIRIkurVq1dpP6ABpfHMM8/oxRdfLDK+fPly9e3bV4888oh++OGHSlgZ/AGXYQBVRM+ePZWcnKzg4GA9/fTTOnTokHOb2TXLe/bs0ahRo9S8eXMFBwerbt26at++vR544AEZhiHp/LWRq1atcv6/45/jGtHC14zu2rVL119/vcLDw2WxWHTgwAFJ7q9ZLmzBggVq27atQkJC1KhRIz344IM6deqUy5zirrsu7rrVI0eO6KGHHlLLli1VrVo11a1bV127dtWzzz7rMs/sGtBjx47pgQcecD5HERERGjJkiLZv315k7siRI2WxWLR//3698MILio2NVXBwsJo2baqkpCTZ7XbT58CdN954Q23atFFISIiio6M1YcIEnTt3znT+qVOnNG3aNLVu3VrVqlVTWFiYEhMT9f3335foeIGBgerVq5dOnz5dJBisXLlS1apV0yOPPCJJWrFiRZHtklx+oCju+teS1naxz7/C9u7dq+uvv1516tRRjRo11LdvX/34448lqt0hNzdXc+bMUceOHVWjRg3VqlVLvXr10hdffFFkbnn3e+vWrRo6dKgaNmwom82mpk2b6t5779Xx48dL9Thm/v3vf+vqq69WeHi4QkJC1KxZMw0fPtzt53JhZfnaK4/XFoeSPi8leS0y4/gB70JXXnml6tSpo7179xa7P1AcziwDVUjLli01ZMgQvfvuu1q8eLHuvfde07np6enq0qWLTp8+rQEDBuimm27S6dOntWfPHs2fP1/PPvusAgMDNW3aNL399tv69ddfNW3aNOf+HTp0cHm8vXv3qlu3bmrbtq1Gjhyp48ePy2azXXTNc+bM0fLly3XTTTdpwIAB+vbbbzV37lytX79eq1evVlBQUJmfj927dyshIUG///67evbsqYEDB+r06dPasWOHZs6cqYcffrjY/Y8ePar4+Hj98ssv6tOnj4YOHar9+/frk08+0ZIlS7Rs2TL17NmzyH7jx4/XqlWr9Le//U2JiYlavHixpk+frtzcXD355JMlWvuMGTM0depUNWjQQLfffruCgoL04YcfateuXW7n//HHH7r88su1Y8cO9ejRQ3feeaeys7P173//WwkJCfr44481cODAix43ISFBS5cu1YoVKxQfH+8cX7Fihbp166ZOnTqpTp06WrFihW6++WaX7Y79y7O2kn7+HThwQN26dVPr1q1122236ZdffnHWvmvXLjVo0OCi68rJyVG/fv20cuVKdejQQaNHj1ZeXp6WLFmi6667Ti+++KLGjh1bZL/y6PcXX3yhIUOGKCAgQNddd52io6O1c+dOvfTSS1q2bJk2bNigOnXqlOix3HnooYc0Z84c1a1bVwMHDlRERIQOHTqkb7/9VnFxcWrTpk2ZH/tC5fnaUpbnpayvRe6kpKToxIkTbr/OgRIzAFSI/fv3G5KMxMTEYuctWLDAkGQMHz7cObZixQpDkjFt2jTn2AsvvGBIMubOnVvkMY4fP+7yce/evQ2zL3fHuiQZU6dOdTunadOmRtOmTV3Gpk2bZkgybDab8eOPPzrH7Xa7cfPNNxuSjGeffbbYGi5cw4gRI1zGO3XqZEgyXnvttSL7HDp0yOVjSUbv3r1dxkaNGmVIMh599FGX8SVLlhiSjEsuucQoKChwjo8YMcKQZDRv3txIT093jh89etQICwszatWqZeTk5BRZy4X27NljBAYGGo0aNTIyMzOd41lZWUbLli3drtXxnL3++usu45mZmUZ0dLRRv3594+zZsxc9dmpqqiHJuOqqq1zWb7FYjKSkJMMwDOPaa681YmJinNsLCgqMsLAwo1q1ai71OXq8YsUKj2or6eff7NmzXbZNnjzZkGTMmjXronUbhmFMmjTJkGRMmTLFsNvtzvHs7GyjU6dOhs1mMw4fPuwcL69+Hzt2zAgNDTUaNWpkHDhwwGXbBx98YEgyxo4d6zLu7nky8+WXXxqSjLZt2xrHjh1z2ZaXl2dkZGQ4P3bXs9J+7ZXXa0tpn5eSvBZdzLJly4xp06YZEydONAYNGmQEBwcb9erVM3744YcyPR5gGIbBZRhAFRMVFSXp/OUDJVGtWrUiY3Xr1i31cSMjI/XYY4+Ver9bb71V7dq1c35ssVg0c+ZMWa1Wvf3226V+PIeNGzcqNTVVl19+uW6//fYi2xs3blzs/rm5ufrggw8UHh6uyZMnu2y75pprdNVVV2nv3r1au3ZtkX2nTJnicj1vvXr1dN111+nUqVPavXv3Rdf+/vvvKz8/X+PGjVNERIRzPDQ0tMhapPO9/vDDD3XFFVfo//7v/1y2RUREaPz48Tp69Ki+/fbbix77r3/9q8LCwrR27Vrl5uZKOv9reMMwnJep9O7dW7/88ovzUp8tW7bo5MmT6t69+0XP4JW2tpJq3ry5xo8f7zLmuL1fSa41tdvtevnllxUTE6OkpCSXN8jWqlVLU6dOVW5urj777LMi+3ra73feeUfZ2dmaNWuWmjZt6rJt6NCh6tixoxYtWnTRxzEzf/58SdLzzz+v8PBwl22BgYElOuteFp6+tpT1eSnra5Ekff3110pKStLs2bP16aefKjo6WsnJyerUqVOZHg+QuAwD8Fl///vf9eijj+qee+7R8uXL1a9fP/Xu3VstWrQo0+O1b9++TL/q7NWrV5Gxpk2bKjo6Wjt27FBubm6ZHnfjxo2SpKuvvrrU+0rSTz/9pHPnzikhIcHtXTISEhL0zTffaMuWLUVqiIuLKzLfEc5Pnjx50WM7rrN199y4G/vhhx9UUFCgnJwct9eV7tmzx1nT3/72t2KPHRAQoF69eunLL7/Uxo0b1bNnT61YsUIhISHq2rWrpPNhWTp/6cWtt97q9nrl8qqtpDp06KCAANfzN6V5znfv3q0TJ04oKirK7a0Bjx49Kun8c3ghT/u9fv16SdKGDRvc3v7x3LlzOnbsmI4dO1amN0xu3LhRwcHBzr55W3m9tpT1eSnra5EkPfvss3r22Wf1559/aufOnXr88cfVo0cPvfnmmy6XHQGlQVgGqpj09HRJUv369Yud16xZM61fv17Tp0/X0qVL9dFHH0k6f1eIxx9/XIMHDy7Vcct6dspsvwYNGujAgQM6depUkbNhJZGVlSVJatSoUZnWlZ2dXez6HGcSHfMKCw0NLTLmuLNEQUHBRY/tWHvhM68O7tbzxx9/SJLWrl3r9ky3w+nTpy96bOl86P3yyy+1cuVK9ezZUytXrlS3bt0UHBws6XwwrV27tjMsO65XLsmttUpbW0l5+pw7nsMdO3Zox44dpvPcPYfldex58+YVO+/06dNlCstZWVlq1KhRkR8mvKW8XlvK+ryUx5nymjVrqkuXLlq8eLE6deqkMWPG6Kqrrrro6yrgDpdhAFWM4yxf586dLzq3TZs2+uSTT/THH38oJSVFU6dOVUZGhm666aZiQ5c7Zf3DApmZmabjFotFtWrVkiTnN/r8/Pwicx0BrLCwsDBJ0uHDh8u0LkcAMltfRkaGy7zyVLt2bUnn7+RxIXfrcazhoYcekmEYpv8Kv4mqOI4zxCtWrNCRI0e0c+dOlzuFWK1W5xlnu92uNWvWqGbNmiX6nCttbRXF8RwOGjSo2Ofwrbfe8tqxt23bVuyxL7wUoaTCwsKUkZFR6rtzOJT2a08qn9eWsj4v5flHTgIDA5WQkKDTp08rNTW13B4X/1sIy0AV8vPPP+ujjz5ScHCwrr/++hLvFxQUpG7duikpKUkvvPCCDMPQV1995dxutVollewsWWmtWbOmyNivv/6qQ4cOqXXr1s5fpzre8e4u/KalpRUZ69Kli6Tz1yCWRWxsrEJCQvTDDz/ozJkzRbY7fii58K4M5aF9+/aS3D837sY6d+4si8WilJSUcjl+u3btVLduXaWkpGjZsmWSVOS2er1799avv/6qzz77TFlZWerZs6fLfZnNlLY2ybuffw6tWrVSaGioUlNTlZeX57XjuOO4vKW8+nehLl26KCcnx3mbttIq7ddeYZ68tnj7eSkpx2/rPLkzD/63EZaBKmLt2rVKTExUTk6OJk6ceNHLDzZt2uT2EgLH2b3C9x11vCmn8L2by8s777yjrVu3Oj82DEOTJk1SQUGBy/1WW7ZsqVq1aumLL75w/nrWsd4nnniiyON27txZnTt31urVq/X6668X2X6xM842m03Dhg3TsWPHNGvWLJdtycnJWrZsmS655BLnX6srTzfffLOsVqvmzJnjcgY2Ozvbba2RkZEaMmSI1q1bp2eeecZ5H9vCNmzY4Db0uxMQEKDevXvr7NmzevrppxUSEqJu3bq5zHFc/+q4vrekf7CltLVJ3v38cwgMDNRdd92lX3/9VQ8//LDbwLx9+3a3Z8Q9NWrUKNWqVUuPPfaY20tAzpw547x+tyzuueceSdL999/v8rUjnT9bfLEz+qX92iuv1xZvPy+FmZ01XrZsmT7//HOFhYW53EoRKA2uWQYq2N69e51v4srNzXX+uett27bJarVq8uTJJfp1+7vvvqtXX31Vl19+uWJiYhQaGqqdO3dq6dKlqlu3rkaNGuWce8UVV+iTTz7RoEGD1L9/f4WEhKh9+/b6+9//7nE9iYmJio+P19ChQ1W/fn0tX75cqamp6tatm8t9om02m+69917NnDlTHTt2dN5t4Msvv3TeneFC7733nvr06aMxY8bo3XffVXx8vM6dO6cdO3YoLS3ton/s4amnntKqVav0xBNPaN26deratasOHDigjz/+WNWrV9dbb73lletAL7nkEk2dOlXTpk1Tu3btNGTIEAUGBurTTz9Vu3bt3N5hYf78+dq9e7cmTJjgrDUsLEyHDh1Samqq9uzZo99//73YP+ldWEJCgj7//HNt375dffr0cV6v7NCxY0fVrFnT+QctShqWy1KbNz//CktKStLmzZv1wgsvaMmSJbr88ssVERGhw4cPa9u2bfrxxx+VkpLi9nprT9SvX18ffPCBBg8erPbt26tfv36KjY1VTk6ODhw4oFWrVql79+5KTk4u0+Nfc801evjhh/Xss8/q0ksv1fXXX++sa/ny5Xr44Yf1wAMPmO5f2q+98npt8fbzUljnzp3Vpk0btWvXTo0bN9bp06e1detWrVmzRkFBQXrzzTdVo0YNj4+D/1FevzkdAMMwXO8h6vhXrVo1o2HDhkZCQoIxZcoUY+/evW73dXef1PXr1xt33HGH0aZNG+c9ci+99FJj7Nixxq+//uqyf15enjFhwgSjSZMmRmBgoMt9Vc3ucVxYcfdZXrFihfH6668brVu3NoKDg42GDRsa999/v5GdnV3kcQoKCozp06cb0dHRhs1mM/7yl78Yzz//vLFv3z7TNWRkZBj333+/0aJFC8Nmsxl169Y1unbtasyZM8dlnkzuW3v06FHjvvvuM5o2bWoEBQUZ9erVM2688UZj27ZtReY67ru7f//+Itvc3b/2Yl5//XXjsssuM2w2m9G4cWPj4YcfNs6cOWO61jNnzhhPP/20ERcXZ9SoUcOoVq2a0bx5c2PgwIHGO++8Y+Tl5ZX42Nu2bXN+nk2fPt3tnMTEREOSERoaauTn5xfZXlzNpanNk88/s+fKTH5+vvHqq68aPXr0MEJDQ43g4GCjSZMmRr9+/YyXX37Z+PPPP51zy7vfP/30kzF69GijadOmhs1mM+rUqWO0bdvWuO+++4yNGzd6VJdhGMann35qJCQkGLVr1zaCg4ONZs2aGcOHDze2b99+0XWX5muvvF5bSvu8lOS1yMzMmTONq666ymjUqJFhs9mMkJAQ4y9/+YsxZswYY+fOnaV+PKAwi2G4+X0fAAAAAK5ZBgAAAMwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAT/FESL7Db7UpPT1etWrXK9W/cAwAAoHwYhqFTp04pKiqq2D9QRVj2gvT0dEVHR1f2MgAAAHARhw4dUuPGjU23E5a9oFatWpLOP/mhoaFeP15eXp6+/vprXX311QoKCvL68VC+6J/vo4e+jx76Pnro2yqjf9nZ2YqOjnbmNjOEZS9wXHoRGhpaYWG5evXqCg0N5QXCB9E/30cPfR899H300LdVZv8udsksb/ADAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATPh8WJ43b56aNWumkJAQde3aVRs3bix2/scff6zY2FiFhISobdu2Wrp0qencO++8UxaLRXPnzi3nVQMAAMAX+HRY/vDDDzVu3DhNmzZNmzdvVvv27ZWYmKgjR464nb9u3ToNGzZMo0ePVlpamgYOHKiBAwdq+/btReZ+/vnnWr9+vaKiorxdBgAAAKoonw7Lc+bM0e23365Ro0bpsssu0yuvvKLq1avrzTffdDv/+eefV79+/TR+/Hi1atVKM2bMUMeOHfXSSy+5zDt8+LDuvfdevffeewoKCqqIUgAAAFAFBVb2AsoqNzdXmzZt0qOPPuocCwgIUN++fZWSkuJ2n5SUFI0bN85lLDExUYsXL3Z+bLfbNXz4cI0fP16tW7cu0VpycnKUk5Pj/Dg7O1uSlJ+fr/z8fOfaAgICZLfbZbfbXdYcEBCggoICGYZx0XGr1SqLxeJ8XEkqKCiQJBmG4TLumF94jkNgYKAMw3AZt1gsslqtRdZoNu7Nmopbu7/VVFz/fLWm4sb9sSaHgoICWSwWv6jJH/t0sZoc+1gsFr+pyR/7ZFaTY35BQYGsVqtf1OSPfTKryV3/vF3ThfPN+GxYPnbsmAoKCtSgQQOX8QYNGuinn35yu09GRobb+RkZGc6Pn3rqKQUGBuq+++4r8VpmzZqlpKSkIuNpaWmqUaOGJKl+/fqKiYnR/v37dfToUeecxo0bq3Hjxvr555+VlZXlHG/RooUiIiK0fft2nT171jkeGxursLAwpaWluYQs6XzQ37x5s8saOnXqpNzcXG3dutU5ZrVa1blzZ2VlZbk8V9WqVVP79u117Ngx7du3zzleu3ZttWrVSunp6frtt9+c496sSZLatWsnm82m1NRUv67J0b9z585p586dflGT5H99Kq6mDh06SDr/Ne8Iy75ekz/2qbiajh8/Lum/PfSHmvyxT8XVdOjQIUnnexgREeEXNfljn8xqclxCm5aWpujo6AqpKS0tTSVhMQpHcx+Snp6uRo0aad26dYqPj3eOT5gwQatWrdKGDRuK7GOz2bRw4UINGzbMOTZ//nwlJSUpMzNTmzZt0oABA7R582bntcrNmjXTAw88oAceeMB0Le7OLEdHR+v48eMKDQ2V5N2fCPPz87Vs2TL1799fAQGuV9bwU27Vr6m4/vlqTcWN+2NNhmFo6dKlSkxMVGBgoF/U5I99Kq6mnJwcJScnO3voDzX5Y5+Kqyk3N1fLli1TYmKibDabX9Tkj30yq8ld/7xd04kTJxQeHq6srCxnXnPHZ88s16tXT1arVZmZmS7jmZmZioyMdLtPZGRksfPXrFmjI0eOqEmTJs7tBQUFeuihhzR37lwdOHDA7eMGBwcrODi4yHhgYKDzG6eDo9EXcjSupOOFH9fxCWOxWIocz918B7P5Zmss7bgnNZV13Bdrulj/fLGmi437W015eXnOxy/p13xVr0nyvz5JxdfkOHbh7b5ekz/2yWztjvU4foVf3Hxfqckf+1Sa/lVGTe747Bv8bDab4uLitHz5cueY3W7X8uXLXc40FxYfH+8yX5K++eYb5/zhw4dr69at2rJli/NfVFSUxo8fr2XLlnmvGAAAAFRJPntmWZLGjRunESNGqFOnTurSpYvmzp2r06dPa9SoUZKkW2+9VY0aNdKsWbMkSffff7969+6t5557TgMGDNCiRYuUmpqq1157TZIUHh6u8PBwl2MEBQUpMjJSLVu2rNjiAAAAUOl8OizfdNNNOnr0qKZOnaqMjAx16NBBycnJzjfxHTx40OV0f/fu3fX+++9r8uTJmjRpki699FItXrxYbdq0qawSAAAAUIX5dFiWpLFjx2rs2LFut61cubLI2ODBgzV48OASP77ZdcoAAADwfz57zTIAAADgbYRlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADDh82F53rx5atasmUJCQtS1a1dt3Lix2Pkff/yxYmNjFRISorZt22rp0qXObXl5eXrkkUfUtm1b1ahRQ1FRUbr11luVnp7u7TIAAABQBfl0WP7www81btw4TZs2TZs3b1b79u2VmJioI0eOuJ2/bt06DRs2TKNHj1ZaWpoGDhyogQMHavv27ZKkM2fOaPPmzZoyZYo2b96szz77TLt379a1115bkWUBAACgivDpsDxnzhzdfvvtGjVqlC677DK98sorql69ut588023859//nn169dP48ePV6tWrTRjxgx17NhRL730kiSpdu3a+uabbzRkyBC1bNlS3bp100svvaRNmzbp4MGDFVkaAAAAqoDAyl5AWeXm5mrTpk169NFHnWMBAQHq27evUlJS3O6TkpKicePGuYwlJiZq8eLFpsfJysqSxWJRWFiY6ZycnBzl5OQ4P87OzpYk5efnKz8/37m2gIAA2e122e12lzUHBASooKBAhmFcdNxqtcpisTgfV5IKCgokSYZhuIw75hee4xAYGCjDMFzGLRaLrFZrkTWajXuzpuLW7m81Fdc/X62puHF/rMmhoKBAFovFL2ryxz5drCbHPhaLxW9q8sc+mdXkmF9QUCCr1eoXNfljn8xqctc/b9d04XwzPhuWjx07poKCAjVo0MBlvEGDBvrpp5/c7pORkeF2fkZGhtv5586d0yOPPKJhw4YpNDTUdC2zZs1SUlJSkfG0tDTVqFFDklS/fn3FxMRo//79Onr0qHNO48aN1bhxY/3888/Kyspyjrdo0UIRERHavn27zp496xyPjY1VWFiY0tLSXEKWJNntdm3evNllDZ06dVJubq62bt3qHLNarercubOysrJcnqtq1aqpffv2OnbsmPbt2+ccr127tlq1aqX09HT99ttvznFv1iRJ7dq1k81mU2pqql/X5OjfuXPntHPnTr+oSfK/PhVXU4cOHSSd/5p3hGVfr8kf+1RcTcePH5f03x76Q03+2Kfiajp06JCk8z2MiIjwi5r8sU9mNTkuoU1LS1N0dHSF1JSWlqaSsBiFo7kPSU9PV6NGjbRu3TrFx8c7xydMmKBVq1Zpw4YNRfax2WxauHChhg0b5hybP3++kpKSlJmZ6TI3Ly9PgwYN0m+//aaVK1cWG5bdnVmOjo7W8ePHnft58yfC/Px8LVu2TP3791dAgOuVNfyUW/VrKq5/vlpTceP+WJNhGFq6dKkSExMVGBjoFzX5Y5+KqyknJ0fJycnOHvpDTf7Yp+Jqys3N1bJly5SYmCibzeYXNfljn8xqctc/b9d04sQJhYeHKysrq9ic57NnluvVqyer1Vok5GZmZioyMtLtPpGRkSWan5eXpyFDhujXX3/Vd999V+wTKEnBwcEKDg4uMh4YGOj8xungaPSFHI0r6Xjhx3V8wlgsliLHczffwWy+2RpLO+5JTWUd98WaLtY/X6zpYuP+VlNeXp7z8Uv6NV/Va5L8r09S8TU5jl14u6/X5I99Mlu7Yz2OX+EXN99XavLHPpWmf5VRkzs++wY/m82muLg4LV++3Dlmt9u1fPlylzPNhcXHx7vMl6RvvvnGZb4jKO/Zs0fffvutwsPDvVMAAAAAqjyfPbMsSePGjdOIESPUqVMndenSRXPnztXp06c1atQoSdKtt96qRo0aadasWZKk+++/X71799Zzzz2nAQMGaNGiRUpNTdVrr70m6XxQvvHGG7V582Z99dVXKigocF7PXLduXdlstsopFAAAAJXCp8PyTTfdpKNHj2rq1KnKyMhQhw4dlJyc7HwT38GDB11O93fv3l3vv/++Jk+erEmTJunSSy/V4sWL1aZNG0nS4cOH9cUXX0iS8w07DitWrFCfPn0qpC4AAABUDT4dliVp7NixGjt2rNttK1euLDI2ePBgDR482O38Zs2auVwwDgAAgP9tPnvNMgAAAOBthGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMBHo6QNkZGRowYIF2rx5s7KysmS32122WywWLV++3NPDAAAAABXOo7C8detW9enTR2fPnlXLli21bds2XXbZZTp58qQOHz6smJgYRUdHl9daAQAAgArl0WUYEydOVM2aNbV79259++23MgxDzz//vA4dOqQPP/xQJ06c0OzZs8trrQAAAECF8igsr127VnfccYeaNGmigIDzD+W4DGPw4MG65ZZbNH78eM9XCQAAAFQCj8Ky3W5XgwYNJElhYWGyWq36448/nNvbtm2rTZs2ebZCAAAAoJJ4FJabN2+u/fv3n3+ggAA1b95c3377rXP7unXrFBYW5tECAQAAgMriUVi++uqr9fHHHzs/vuuuu/TGG2+ob9++uvLKK7Vw4ULdfPPNHi8SAAAAqAwe3Q3jscce07Bhw5SXl6egoCA98MADOn36tD799FNZrVZNmTJFkyZNKq+1AgAAABXKo7Bcp04dxcXFOT+2WCyaPHmyJk+e7PHCAAAAgMrGX/ADAAAATJTqzPJtt90mi8Wi1157TVarVbfddttF97FYLFqwYEGZFwgAAABUllKF5e+++04BAQGy2+2yWq367rvvZLFYit3nYtsBAACAqqpUYfnAgQPFfgwAAAD4E65ZBgAAAEx4FJY3b96s+fPnm26fP3++tmzZ4skhAAAAgErjUVh+7LHHXP5i34W+++47biMHAAAAn+VRWN60aZN69eplur1Xr15KTU315BAAAABApfEoLJ86dUqBgebvEQwICFBWVpYnhwAAAAAqjUdh+dJLL9XXX39tuj05OVktWrTw5BAAAABApfEoLI8ePVpLlizRuHHjdPLkSef4yZMn9eCDDyo5OVmjR4/2dI0AAABApSjVfZYvdN9992nLli2aO3euXnjhBUVFRUmS0tPTZbfbNXz4cD344IPlslAAAACgonkUli0Wi9566y3deuut+vTTT7Vv3z5J0nXXXadBgwapT58+5bFGAAAAoFJ4FJYdEhISlJCQUB4PBQAAAFQZ/AU/AAAAwIRHYdkwDL366qvq0qWL6tWrJ6vVWuRfcbeWAwAAAKoyj5LshAkTNGfOHHXo0EH/+Mc/VKdOnfJaFwAAAFDpPArLCxcu1KBBg/TRRx+V13oAAACAKsOjyzDOnj2rvn37ltdaAAAAgCrFo7B85ZVX6ocffiivtQAAAABVikdhef78+Vq/fr1mzpyp48ePl9eaAAAAgCrBo7DcsmVL7du3T1OmTFFERIRq1Kih0NBQl3+1a9cur7UCAAAAFcqjN/gNGjRIFoulvNYCAAAAVCkeheW33367nJYBAAAAVD38BT8AAADAhMdh+eDBg7rzzjvVsmVL1alTR6tXr5YkHTt2TPfdd5/S0tI8XiQAAABQGTy6DGPnzp3q1auX7Ha7unbtqr179yo/P1+SVK9ePX3//fc6ffq0FixYUC6LBQAAACqSR2eWJ0yYoLCwMP3888/617/+JcMwXLYPGDBAa9as8WiBFzNv3jw1a9ZMISEh6tq1qzZu3Fjs/I8//lixsbEKCQlR27ZttXTpUpfthmFo6tSpatiwoapVq6a+fftqz5493iwBAAAAVZRHYXn16tW66667VL9+fbd3xWjSpIkOHz7sySGK9eGHH2rcuHGaNm2aNm/erPbt2ysxMVFHjhxxO3/dunUaNmyYRo8erbS0NA0cOFADBw7U9u3bnXOefvppvfDCC3rllVe0YcMG1ahRQ4mJiTp37pzX6gAAAEDV5FFYttvtql69uun2o0ePKjg42JNDFGvOnDm6/fbbNWrUKF122WV65ZVXVL16db355ptu5z///PPq16+fxo8fr1atWmnGjBnq2LGjXnrpJUnnzyrPnTtXkydP1nXXXad27drpnXfeUXp6uhYvXuy1OgAAAFA1eXTNcseOHbVkyRLdfffdRbbl5+dr0aJF6tatmyeHMJWbm6tNmzbp0UcfdY4FBASob9++SklJcbtPSkqKxo0b5zKWmJjoDML79+9XRkaG+vbt69xeu3Ztde3aVSkpKRo6dKjbx83JyVFOTo7z4+zsbEnnnwPHNdwBAQEKCAiQ3W6X3W53WXNAQIAKCgpcLmMxG7darbJYLM7HlaSCggJJ0pYtW4qc4Xd8fOElMgEBATIMw2XcYrHIYrGUaNyxf0nnl2S88PNy4dodz503ayo8brFYnM+rt2pycMxx17/yrOnCcavV6hwr75rcjTt66M2aCo8XXqu3arpQWlqaAgICvFZTafrnaU3u+lTWz5myjjs+Z7xZ04Vf744eert/FotFVqvV5bW8vGuqrP45+lS4f96qqfB44R46vld6+/vThdu8/f3JarUWyQXe/P7kWLc3a7qwfwUFBbJarR5nI8e44zHdjV8434xHYfnRRx/V3/72N911113OIJmZmalvv/1WM2fO1K5du5xnbcvbsWPHVFBQoAYNGriMN2jQQD/99JPbfTIyMtzOz8jIcG53jJnNcWfWrFlKSkoqMp6WlqYaNWpIkurXr6+YmBjt379fR48edc5p3LixGjdurJ9//llZWVnO8RYtWigiIkLbt2/X2bNnneOxsbEKCwtTWlqas/mOT5irrrpKY8eOdVnDM888o9DQUN1xxx3OsdzcXD3zzDNq0aKFhg0b5hw/duyYXn31VXXo0EEDBgxwju/bt08ffPCBLr/8cvXq1UuSFB4eruXLl2vJkiUaMGCAOnTo4Jy/Zs0arV69WsOGDVOLFi2c40uWLNGWLVt0xx13qF69es7xDz74QPv27dP48eNls9mc46+++qqys7M1fvx4hYeHO/+kurdqks4H1iVLluj+++9XzZo1vVqTQ0BAgOLi4nTDDTdoxIgRXqvpwj4dPXpUr732mldqkor2KTw8XL///rtXayrcp86dOzs/Z7xVk6NPL730kj744AN99dVXzm9A3qipcJ8OHjyod99912s1ueuTzWbTtGnTvFbThX1yfN17syZHn7p06aJJkyY5e+itmgr3KTo6Wl26dPFaTRf2qaCgQLNnz/ZqTYX75OifN2sq3KfevXsrLi5OX331lTZv3lwh359mz57tfJ3xRk0X9unPP/9UzZo1vf491yE8PFwTJ070+vfcAQMGqGPHjoqLi1NaWpqio6M9zkaS1K5dO9lsNqWmpqqwTp06KTc3t8R3bLMYZqdISujdd9/V/fffr6ysLOfZHMMwFBoaqpdfftnlSSxP6enpatSokdatW6f4+Hjn+IQJE7Rq1Spt2LChyD42m00LFy50WdP8+fOVlJSkzMxMrVu3Tj169FB6eroaNmzonDNkyBBZLBZ9+OGHbtfi7sxydHS0jh8/rtDQUEnePbOcn5+vZcuWKSoqqsiZSW/9lMuZZc9rcrDb7fr999/d9o8zy75zZvnw4cNq2LAhZ5bLcbyizyw7Xvs5s+zZeGWeWf7999/VsGFDzix7UFPhuRV9Zvn3339XYmKibDZbhZxZPnHihMLDw5WVleXMa+54dGZZkoYPH64bbrhBX3/9tfbu3Su73a6YmBglJiaqVq1anj68qXr16slqtSozM9NlPDMzU5GRkW73iYyMLHa+47+ZmZkuYTkzM9Plp7gLBQcHu702OzAwUIGBrk+xo9EXcjSupOOFH9fxCdOhQwcFBQWZrhNVU15enn7//Xf658Py8vJ0+PBh/fWvf6WHPiovL0/p6en00Ic5XkvpoW9y9M9xCYbkWTbyZPxC5fIX/GrUqKHrr79e48eP1yOPPKIbb7zRq0FZOn+WOC4uTsuXL3eO2e12LV++3OVMc2Hx8fEu8yXpm2++cc5v3ry5IiMjXeZkZ2drw4YNpo8JAAAA/+XRmeWDBw+WaF6TJk08OYypcePGacSIEerUqZO6dOmiuXPn6vTp0xo1apQk6dZbb1WjRo00a9YsSdL999+v3r1767nnntOAAQO0aNEipaam6rXXXpN0/tcBDzzwgJ544gldeumlat68uaZMmaKoqCgNHDjQKzUAAACg6vIoLDdr1qzINZbuXHitSHm56aabdPToUU2dOlUZGRnq0KGDkpOTnW/QO3jwoMslD927d9f777+vyZMna9KkSbr00ku1ePFitWnTxjlnwoQJOn36tMaMGaOTJ0+qZ8+eSk5OVkhIiFdqAAAAQNXlUVh+8803i4TlgoICHThwQO+8844iIiJ0zz33eLTAixk7dmyRO0A4rFy5ssjY4MGDNXjwYNPHs1gsevzxx/X444+X1xIBAADgozwKyyNHjjTd9sgjj6hr164ut/wAAAAAfEm5vMHPnRo1amjUqFH65z//6a1DAAAAAF7ltbAsnb87RXF/zAMAAACoyjy+z7I72dnZWr16tZ555hn99a9/9cYhAAAAAK/zKCw7/sqRO4ZhqEmTJpo/f74nhwAAAAAqjUdheerUqUXCssViUZ06dRQTE6Orr766xH8dBQAAAKhqPEqy06dPL6dlAAAAAFWPR2/wy8/PV3Z2tun27Oxs5efne3IIAAAAoNJ4FJbvu+8+de/e3XR7jx499NBDD3lyCAAAAKDSeBSWk5OTdeONN5puv/HGG7V06VJPDgEAAABUGo/Ccnp6uho1amS6PSoqSocPH/bkEAAAAECl8Sgsh4eHa/fu3abbd+3apdDQUE8OAQAAAFQaj8Jyv3799OqrryotLa3Its2bN+u1115T//79PTkEAAAAUGk8unXcjBkzlJycrC5duujaa69V69atJUnbt2/Xl19+qYiICM2YMaNcFgoAAABUNI/CclRUlFJTUzVx4kT9+9//1ueffy5JCg0N1S233KKZM2cqKiqqXBYKAAAAVDSP/7xew4YNtXDhQhmGoaNHj0qS6tevb/pnsAEAAABfUW5/i9pisSg4OFg1a9YkKAMAAMAvePQGP0lKTU1Vv379VL16dYWHh2vVqlWSpGPHjum6667TypUrPT0EAAAAUCk8Csvr1q1Tz549tWfPHv3jH/+Q3W53bqtXr56ysrL06quverxIAAAAoDJ4FJYnTZqkVq1aaefOnZo5c2aR7QkJCdqwYYMnhwAAAAAqjUdh+YcfftCoUaMUHBzs9jrlRo0aKSMjw5NDAAAAAJXGo7AcFBTkcunFhQ4fPqyaNWt6cggAAACg0ngUlrt166ZPPvnE7bbTp0/rrbfeUu/evT05BAAAAFBpPArLSUlJSk1N1YABA/Sf//xHkvTjjz/qjTfeUFxcnI4ePaopU6aUy0IBAACAiubRfZa7du2qpUuX6q677tKtt94qSXrooYckSTExMVq6dKnatWvn+SoBAACASlDmsGwYhk6dOqXu3btr9+7d2rJli/bs2SO73a6YmBjFxcXxx0kAAADg08oclnNzc1W3bl3NnDlTEyZMUIcOHdShQ4dyXBoAAABQucp8zXJwcLAiIyMVHBxcnusBAAAAqgyP3uA3cuRIvfPOO8rNzS2v9QAAAABVhkdv8Gvbtq0WL16s1q1ba+TIkWrWrJmqVatWZN4NN9zgyWEAAACASuFRWB42bJjz/81uEWexWFRQUODJYQAAAIBKUeqwPGnSJA0dOlTt2rXTihUrvLEmAAAAoEoodViePXu22rRpo3bt2ql37946fvy4IiIi9M033+iKK67wxhoBAACASuHRG/wcDMMoj4cBAAAAqpRyCcsAAACAPyIsAwAAACbKdDeMAwcOaPPmzZKkrKwsSdKePXsUFhbmdn7Hjh3LtjoAAACgEpUpLE+ZMqXIreLuvvvuIvMMw+DWcQAAAPBZpQ7Lb731ljfWAQAAAFQ5pQ7LI0aM8MY6AAAAgCqHN/gBAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGDCZ8PyH3/8oVtuuUWhoaEKCwvT6NGj9eeffxa7z7lz53TPPfcoPDxcNWvW1KBBg5SZmenc/uOPP2rYsGGKjo5WtWrV1KpVKz3//PPeLgUAAABVlM+G5VtuuUU7duzQN998o6+++kqrV6/WmDFjit3nwQcf1JdffqmPP/5Yq1atUnp6um644Qbn9k2bNikiIkL/+te/tGPHDj322GN69NFH9dJLL3m7HAAAAFRBgZW9gLLYtWuXkpOT9cMPP6hTp06SpBdffFHXXHONnn32WUVFRRXZJysrSwsWLND777+vK664QpL01ltvqVWrVlq/fr26deum2267zWWfFi1aKCUlRZ999pnGjh3r/cIAAABQpfhkWE5JSVFYWJgzKEtS3759FRAQoA0bNuj6668vss+mTZuUl5envn37OsdiY2PVpEkTpaSkqFu3bm6PlZWVpbp16xa7npycHOXk5Dg/zs7OliTl5+crPz9fkhQQEKCAgADZ7XbZ7XbnXMd4QUGBDMO46LjVapXFYnE+riQVFBRIkgzDcBl3zC88xyEwMFCGYbiMWywWWa3WIms0G/dmTcWt3d9qKq5/vlpTceP+WJNDQUGBLBaLX9Tkj326WE2OfSwWi9/U5I99MqvJMb+goEBWq9UvavLHPpnV5K5/3q7pwvlmfDIsZ2RkKCIiwmUsMDBQdevWVUZGhuk+NptNYWFhLuMNGjQw3WfdunX68MMPtWTJkmLXM2vWLCUlJRUZT0tLU40aNSRJ9evXV0xMjPbv36+jR4865zRu3FiNGzfWzz//rKysLOd4ixYtFBERoe3bt+vs2bPO8djYWIWFhSktLc0lZEmS3W7X5s2bXdbQqVMn5ebmauvWrc4xq9Wqzp07KysrSz/99JNzvFq1amrfvr2OHTumffv2Ocdr166tVq1aKT09Xb/99ptz3Js1SVK7du1ks9mUmprq1zU5+nfu3Dnt3LnTL2qS/K9PxdXUoUMHSee/5h1h2ddr8sc+FVfT8ePHJf23h/5Qkz/2qbiaDh06JOl8DyMiIvyiJn/sk1lNR44ckXS+f9HR0RVSU1pamkrCYhSO5pVs4sSJeuqpp4qds2vXLn322WdauHChdu/e7bItIiJCSUlJuuuuu4rs9/7772vUqFEuZ4AlqUuXLkpISChy3O3btyshIUH333+/Jk+eXOya3J1Zjo6O1vHjxxUaGirJuz8R5ufna9myZerfv78CAlwvQ+en3KpfU3H989Waihv3x5oMw9DSpUuVmJiowMBAv6jJH/tUXE05OTlKTk529tAfavLHPhVXU25urpYtW6bExETZbDa/qMkf+2RWk7v+ebumEydOKDw8XFlZWc685k6VOrP80EMPaeTIkcXOadGihSIjI50/gTjk5+frjz/+UGRkpNv9IiMjlZubq5MnT7qcXc7MzCyyz86dO3XllVdqzJgxFw3KkhQcHKzg4OAi44GBgc5vnA6ORl/I0biSjhd+XMcnjMViKXI8d/MdzOabrbG0457UVNZxX6zpYv3zxZouNu5vNeXl5Tkfv6Rf81W9Jsn/+iQVX5Pj2IW3+3pN/tgns7U71uP4FX5x832lJn/sU2n6Vxk1uZ1XolkVpH79+qpfv/5F58XHx+vkyZPatGmT4uLiJEnfffed7Ha7unbt6nafuLg4BQUFafny5Ro0aJAkaffu3Tp48KDi4+Od83bs2KErrrhCI0aM0JNPPlkOVQEAAMBX+eSt41q1aqV+/frp9ttv18aNG7V27VqNHTtWQ4cOdd4J4/Dhw4qNjdXGjRslnb9eZvTo0Ro3bpxWrFihTZs2adSoUYqPj3e+uc9x6cXVV1+tcePGKSMjQxkZGS7XBgEAAOB/R5U6s1wa7733nsaOHasrr7xSAQEBGjRokF544QXn9ry8PO3evVtnzpxxjv3zn/90zs3JyVFiYqLmz5/v3P7JJ5/o6NGj+te//qV//etfzvGmTZvqwIEDFVIXAAAAqg6fDct169bV+++/b7q9WbNmLhd/S1JISIjmzZunefPmud1n+vTpmj59enkuEwAAAD7MJy/DAAAAACoCYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATPhsWP7jjz90yy23KDQ0VGFhYRo9erT+/PPPYvc5d+6c7rnnHoWHh6tmzZoaNGiQMjMz3c49fvy4GjduLIvFopMnT3qhAgAAAFR1PhuWb7nlFu3YsUPffPONvvrqK61evVpjxowpdp8HH3xQX375pT7++GOtWrVK6enpuuGGG9zOHT16tNq1a+eNpQMAAMBH+GRY3rVrl5KTk/XGG2+oa9eu6tmzp1588UUtWrRI6enpbvfJysrSggULNGfOHF1xxRWKi4vTW2+9pXXr1mn9+vUuc19++WWdPHlSDz/8cEWUAwAAgCoqsLIXUBYpKSkKCwtTp06dnGN9+/ZVQECANmzYoOuvv77IPps2bVJeXp769u3rHIuNjVWTJk2UkpKibt26SZJ27typxx9/XBs2bNC+fftKtJ6cnBzl5OQ4P87OzpYk5efnKz8/X5IUEBCggIAA2e122e1251zHeEFBgQzDuOi41WqVxWJxPq4kFRQUSJIMw3AZd8wvPMchMDBQhmG4jFssFlmt1iJrNBv3Zk3Frd3faiquf75aU3Hj/liTQ0FBgSwWi1/U5I99ulhNjn0sFovf1OSPfTKryTG/oKBAVqvVL2ryxz6Z1eSuf96u6cL5ZnwyLGdkZCgiIsJlLDAwUHXr1lVGRobpPjabTWFhYS7jDRo0cO6Tk5OjYcOG6ZlnnlGTJk1KHJZnzZqlpKSkIuNpaWmqUaOGJKl+/fqKiYnR/v37dfToUeecxo0bq3Hjxvr555+VlZXlHG/RooUiIiK0fft2nT171jkeGxursLAwpaWluYQsSbLb7dq8ebPLGjp16qTc3Fxt3brVOWa1WtW5c2dlZWXpp59+co5Xq1ZN7du317Fjx1xqr127tlq1aqX09HT99ttvznFv1iRJ7dq1k81mU2pqql/X5OjfuXPntHPnTr+oSfK/PhVXU4cOHSSd/5p3hGVfr8kf+1RcTcePH5f03x76Q03+2Kfiajp06JCk8z2MiIjwi5r8sU9mNR05ckTS+f5FR0dXSE1paWkqCYtROJpXsokTJ+qpp54qds6uXbv02WefaeHChdq9e7fLtoiICCUlJemuu+4qst/777+vUaNGuZwBlqQuXbooISFBTz31lMaNG6f09HQtWrRIkrRy5UolJCToxIkTRUJ2Ye7OLEdHR+v48eMKDQ2V5N2fCPPz87Vs2TL1799fAQGuV9bwU27Vr6m4/vlqTcWN+2NNhmFo6dKlSkxMVGBgoF/U5I99Kq6mnJwcJScnO3voDzX5Y5+Kqyk3N1fLli1TYmKibDabX9Tkj30yq8ld/7xd04kTJxQeHq6srCxnXnOnSp1ZfuihhzRy5Mhi57Ro0UKRkZHOn0Ac8vPz9ccffygyMtLtfpGRkcrNzdXJkyddgm9mZqZzn++++07btm3TJ598Ium/Z/zq1aunxx57zO3ZY0kKDg5WcHBwkfHAwEDnN04HR6Mv5GhcSccLP65jnRaLpcjx3M13MJtvtsbSjntSU1nHfbGmi/XPF2u62Li/1ZSXl+d8/JJ+zVf1miT/65NUfE2OYxfe7us1+WOfzNbuWI/jV/jFzfeVmvyxT6XpX2XU5HZeiWZVkPr166t+/foXnRcfH6+TJ09q06ZNiouLk3Q+6NrtdnXt2tXtPnFxcQoKCtLy5cs1aNAgSdLu3bt18OBBxcfHS5I+/fRTl9P6P/zwg2677TatWbNGMTExnpYHAAAAH1OlwnJJtWrVSv369dPtt9+uV155RXl5eRo7dqyGDh2qqKgoSdLhw4d15ZVX6p133lGXLl1Uu3ZtjR49WuPGjVPdunUVGhqqe++9V/Hx8c43910YiI8dO+Y8XnGXYQAAAMA/+WRYlqT33ntPY8eO1ZVXXqmAgAANGjRIL7zwgnN7Xl6edu/erTNnzjjH/vnPfzrn5uTkKDExUfPnz6+M5QMAAMAH+GxYrlu3rt5//33T7c2aNXO5+FuSQkJCNG/ePM2bN69Ex+jTp0+RxwAAAMD/Dp/8oyQAAABARSAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmAis7AX4I8MwJEnZ2dkVcry8vDydOXNG2dnZCgoKqpBjovzQP99HD30fPfR99NC3VUb/HDnNkdvMEJa94NSpU5Kk6OjoSl4JAAAAinPq1CnVrl3bdLvFuFicRqnZ7Xalp6erVq1aslgsXj9edna2oqOjdejQIYWGhnr9eChf9M/30UPfRw99Hz30bZXRP8MwdOrUKUVFRSkgwPzKZM4se0FAQIAaN25c4ccNDQ3lBcKH0T/fRw99Hz30ffTQt1V0/4o7o+zAG/wAAAAAE4RlAAAAwARh2Q8EBwdr2rRpCg4OruyloAzon++jh76PHvo+eujbqnL/eIMfAAAAYIIzywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIyz5i3rx5atasmUJCQtS1a1dt3Lix2Pkff/yxYmNjFRISorZt22rp0qUVtFK4U5r+vf766+rVq5fq1KmjOnXqqG/fvhftN7yvtF+DDosWLZLFYtHAgQO9u0BcVGl7ePLkSd1zzz1q2LChgoOD9Ze//IXX0kpU2v7NnTtXLVu2VLVq1RQdHa0HH3xQ586dq6DV4kKrV6/W3//+d0VFRclisWjx4sUX3WflypXq2LGjgoODdckll+jtt9/2+jrdMlDlLVq0yLDZbMabb75p7Nixw7j99tuNsLAwIzMz0+38tWvXGlar1Xj66aeNnTt3GpMnTzaCgoKMbdu2VfDKYRil79/NN99szJs3z0hLSzN27dpljBw50qhdu7bx22+/VfDK4VDaHjrs37/faNSokdGrVy/juuuuq5jFwq3S9jAnJ8fo1KmTcc011xjff/+9sX//fmPlypXGli1bKnjlMIzS9++9994zgoODjffee8/Yv3+/sWzZMqNhw4bGgw8+WMErh8PSpUuNxx57zPjss88MScbnn39e7Px9+/YZ1atXN8aNG2fs3LnTePHFFw2r1WokJydXzIILISz7gC5duhj33HOP8+OCggIjKirKmDVrltv5Q4YMMQYMGOAy1rVrV+OOO+7w6jrhXmn7d6H8/HyjVq1axsKFC721RFxEWXqYn59vdO/e3XjjjTeMESNGEJYrWWl7+PLLLxstWrQwcnNzK2qJKEZp+3fPPfcYV1xxhcvYuHHjjB49enh1nSiZkoTlCRMmGK1bt3YZu+mmm4zExEQvrsw9LsOo4nJzc7Vp0yb17dvXORYQEKC+ffsqJSXF7T4pKSku8yUpMTHRdD68pyz9u9CZM2eUl5enunXremuZKEZZe/j4448rIiJCo0eProhlohhl6eEXX3yh+Ph43XPPPWrQoIHatGmjmTNnqqCgoKKWjf+vLP3r3r27Nm3a5LxUY9++fVq6dKmuueaaClkzPFeVskxghR8RpXLs2DEVFBSoQYMGLuMNGjTQTz/95HafjIwMt/MzMjK8tk64V5b+XeiRRx5RVFRUkRcNVIyy9PD777/XggULtGXLlgpYIS6mLD3ct2+fvvvuO91yyy1aunSp9u7dq7vvvlt5eXmaNm1aRSwb/19Z+nfzzTfr2LFj6tmzpwzDUH5+vu68805NmjSpIpaMcmCWZbKzs3X27FlVq1atwtbCmWWgCps9e7YWLVqkzz//XCEhIZW9HJTAqVOnNHz4cL3++uuqV69eZS8HZWS32xUREaHXXntNcXFxuummm/TYY4/plVdeqeyloQRWrlypmTNnav78+dq8ebM+++wzLVmyRDNmzKjspcEHcWa5iqtXr56sVqsyMzNdxjMzMxUZGel2n8jIyFLNh/eUpX8Ozz77rGbPnq1vv/1W7dq18+YyUYzS9vCXX37RgQMH9Pe//905ZrfbJUmBgYHavXu3YmJivLtouCjL12HDhg0VFBQkq9XqHGvVqpUyMjKUm5srm83m1TXjv8rSvylTpmj48OH6v//7P0lS27Ztdfr0aY0ZM0aPPfaYAgI4V1jVmWWZ0NDQCj2rLHFmucqz2WyKi4vT8uXLnWN2u13Lly9XfHy8233i4+Nd5kvSN998Yzof3lOW/knS008/rRkzZig5OVmdOnWqiKXCRGl7GBsbq23btmnLli3Of9dee60SEhK0ZcsWRUdHV+TyobJ9Hfbo0UN79+51/qAjST///LMaNmxIUK5gZenfmTNnigRixw8+hmF4b7EoN1Uqy1T4WwpRaosWLTKCg4ONt99+29i5c6cxZswYIywszMjIyDAMwzCGDx9uTJw40Tl/7dq1RmBgoPHss88au3btMqZNm8at4ypRafs3e/Zsw2azGZ988onx+++/O/+dOnWqskr4n1faHl6Iu2FUvtL28ODBg0atWrWMsWPHGrt37za++uorIyIiwnjiiScqq4T/aaXt37Rp04xatWoZH3zwgbFv3z7j66+/NmJiYowhQ4ZUVgn/806dOmWkpaUZaWlphiRjzpw5RlpamvHrr78ahmEYEydONIYPH+6c77h13Pjx441du3YZ8+bN49ZxKN6LL75oNGnSxLDZbEaXLl2M9evXO7f17t3bGDFihMv8jz76yPjLX/5i2Gw2o3Xr1saSJUsqeMUorDT9a9q0qSGpyL9p06ZV/MLhVNqvwcIIy1VDaXu4bt06o2vXrkZwcLDRokUL48knnzTy8/MreNVwKE3/8vLyjOnTpxsxMTFGSEiIER0dbdx9993GiRMnKn7hMAzDMFasWOH2e5ujbyNGjDB69+5dZJ8OHToYNpvNaNGihfHWW29V+LoNwzAshsHvIwAAAAB3uGYZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZACBJWrlypSwWi1auXHnRuX369FGfPn1K9Lh9+vRRmzZtPFscAFQSwjIA+ImPPvpIFotFn3/+eZFt7du3l8Vi0YoVK4psa9Kkibp37+7RsdPT0zV9+nRt2bLFo8cBgKqGsAwAfqJnz56SpO+//95lPDs7W9u3b1dgYKDWrl3rsu3QoUM6dOiQevbsqcsvv1xnz57V5ZdfXupjp6enKykpibAMwO8EVvYCAADlIyoqSs2bNy8SllNSUmQYhgYPHlxkm+Pjnj17KiAgQCEhIRW2XgDwBZxZBgA/0rNnT6Wlpens2bPOsbVr16p169bq37+/1q9fL7vd7rLNYrGoR48eptcsv/baa4qJiVG1atXUpUsXrVmzxmX7ypUr1blzZ0nSqFGjZLFYZLFY9Pbbb7vM27lzpxISElS9enU1atRITz/9dPkWDwBeQFgGAD/Ss2dP5eXlacOGDc6xtWvXqnv37urevbuysrK0fft2l22xsbEKDw93+3gLFizQHXfcocjISD399NPq0aOHrr32Wh06dMg5p1WrVnr88cclSWPGjNG7776rd9991+VyjhMnTqhfv35q3769nnvuOcXGxuqRRx7Rf/7zn/J+CgCgXHEZBgD4kcLXLffp00f5+fnasGGDRowYoZiYGDVo0EDff/+92rVrp1OnTmnbtm267bbb3D5WXl6eJk2apA4dOmjFihWy2WySpMsuu0xjxoxRdHS0JKlBgwbq37+/pk6dqvj4eP3jH/8o8ljp6el65513NHz4cEnS6NGj1bRpUy1YsED9+/f3xlMBAOWCM8sA4EdatWql8PBw57XIP/74o06fPu2820X37t2db/JLSUlRQUGBM2BfKDU1VUeOHNGdd97pDMqSNHLkSNWuXbtU66pZs6ZLiLbZbOrSpYv27dtXqscBgIpGWAYAP2KxWNS9e3fntclr165VRESELrnkEkmuYdnxX7Ow/Ouvv0qSLr30UpfxoKAgtWjRolTraty4sSwWi8tYnTp1dOLEiVI9DgBUNMIyAPiZnj17KisrS9u2bXNer+zQvXt3/frrrzp8+LC+//57RUVFlTr4loXVanU7bhiG148NAJ4gLAOAnyl83fLatWvVo0cP57a4uDgFBwdr5cqV2rBhg8u2CzVt2lSStGfPHpfxvLw87d+/32XswrPGAOAvCMsA4Gc6deqkkJAQvffeezp8+LDLmeXg4GB17NhR8+bN0+nTp00vwXA8Tv369fXKK68oNzfXOf7222/r5MmTLnNr1KghSUXGAcDXcTcMAPAzNptNnTt31po1axQcHKy4uDiX7d27d9dzzz0nyfx6Zen8tclPPPGE7rjjDl1xxRW66aabtH//fr311ltFLt2IiYlRWFiYXnnlFdWqVUs1atRQ165d1bx58/IvEAAqEGeWAcAPOUKw47KLwhyXXtSqVUvt27cv9nHGjBmj+fPnKz09XePHj9eaNWv0xRdfOG8b5xAUFKSFCxfKarXqzjvv1LBhw7Rq1apyrAgAKofF4N0VAAAAgFucWQYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADDx/wCEE3i8rMiOnAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHcCAYAAAAqb0k3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeuUlEQVR4nO3daXgUZfb38V91hyzExEBCIGEnsskSZFcgLKKAiLjivjDjDiqiOIiyjQo6OvxRH3FcGNAZBVHUUUHQQRAVVAIJiMMqAWQJkAAJBEhI+n5exG7TSXcWslHx+7mucJHT1XWfu05190l1dbVljDECAAAAbMZR3QkAAAAAZ4JGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhZAES+//LIsy9Ls2bOrOxUAAPyikUWNsWLFClmWpSlTplTL+M2aNVOzZs28YlOmTJFlWVqxYkW15FSYZVnq169fscv8+OOPevTRRzVp0iT9+c9/rprEfChNrn8kdtseO3fulGVZuuOOO6o7FduozG12xx13yLIs7dy5s8LXDVQnGlmcVdxP5AV/ateurdjYWF188cWaNGmSfvnll0oZu1+/frIsq1LWbRdHjhzRiBEjdOONN2rq1KnVnQ6qmPsPr4I/oaGh6tixo6ZMmaKsrKzqThE24esP++rwzjvv6KqrrlJcXJzCwsJ0zjnnqF27dnr44Ye1d+/e6k4PFSCguhMAfImLi9Mtt9wiScrOztbBgwf1448/6qmnntK0adP02GOP6ZlnnvFqPLt3765NmzYpKiqqWnJetmxZtYxbFps2bVLt2rX93p6cnKz7779fDz/8cBVmhbPNNddco/bt20uS9u/fr08++URTp07Vp59+qtWrVyswMLDEdTRs2FCbNm3SueeeW9npAn7Nnz9f27ZtU8+ePRUTEyNjjJKTk/Xiiy9q7ty5+vbbb9WuXbvqThPlQCOLs9J5553n8xSBb7/9VrfeequmT58up9Opp556ynNb7dq11aZNmyrM0ltcXFy1jV1aJW2f/v37q3///lWUDc5W1157rW644QbP7y+88IK6d++udevW6d133y3VW9+1atWq1scjIEnvv/++goODi8Rnz56tO++8U1OmTNH7779fDZmhonBqAWyld+/eWrJkiYKCgvS3v/1Nv/76q+c2f+fIbtu2TSNHjlTz5s0VFBSkunXrKj4+XmPGjJExRlL++Ydff/215//uH/cLdsFz1zZt2qSrrrpKkZGRXueclfRW2uzZs9WhQwcFBwerYcOGevjhh3Xs2DGvZYo7z7e48+cOHjyoRx55RK1bt1ZISIjq1q2rHj166IUXXvBazt95lmlpaRozZoxnG0VHR2vEiBHauHFjkWXd59qlpKTopZdeUps2bRQUFKSmTZtq6tSpcrlcfreBL2+++abat2+v4OBgNW7cWI899phOnTrld/ljx45p8uTJateunUJCQhQREaFBgwbp22+/LfWYBc9dnjt3rjp37qzatWt7bZuyjrNhwwZddtllCgsL07nnnqvLLrtMGzdu9HluYnHnTs+dO1eWZWnu3LklzmPr1q167LHH1LlzZ0VGRio4OFitWrXS+PHjdfz48SLLu0+fOXXqlJ588knFxcWpVq1aJZ5XHhYW5tnv1qxZUyTPTz/9VL169VJYWJjnMVDc/nrs2DFNnTpVHTt2VO3atXXuuefqggsu0MSJE3X69GmvZVNSUnTnnXeqSZMmCgoKUkxMjO644w7t2rWrxO1TeMzS1tO9nU6fPq0pU6aoWbNmCgoKUqtWrTRr1qwyjStJK1eu1LBhwxQVFaWgoCC1bNlSTz75pE6cOFHmdRVmjNGcOXPUp08fRUREqHbt2mrZsqXuuece7d69u9j7Frev+XsuWrduna699lpPPerVq6du3brpmWeekfR73Xft2qVdu3Z5PZ8WXldpt0vBXFatWqVLL71UERERpToVzFcTK0nXXXedJGn79u0lrgNnN47IwnZat26tESNG6F//+pc+/vhjPfDAA36X3bdvn7p3766srCwNHTpU119/vbKysrRt2zbNmjVLL7zwggICAjR58mTNnTtXu3bt0uTJkz3379Spk9f6tm/frp49e6pDhw664447lJ6eXqq3WWfMmKFly5bp+uuv19ChQ/Xf//5XM2fO1Pfff6+VK1eqVq1aZ7w9tmzZov79+2v//v3q3bu3rrzySmVlZennn3/WtGnT9OijjxZ7/0OHDunCCy/UL7/8on79+umGG25QSkqKPvjgAy1atEhLly5V7969i9xv3Lhx+vrrr3X55Zdr0KBB+vjjjzVlyhTl5OR4XtRK8tRTT2nSpEmqX7++7rrrLtWqVUvvvfeeNm3a5HP5w4cPKyEhQT///LN69eqle++9V5mZmfrPf/6j/v376/3339eVV15ZqrEl6fnnn9fy5cs1fPhwXXrppXI6nWc0zvr169WnTx9lZWXp6quvVsuWLZWYmKjevXsrPj6+1PmU1YcffqjZs2erf//+6tevn1wul77//ns999xz+vrrr/3uW9dcc43Wr1+vwYMHKyIiQs2bNy/1mIWbh/fff19ffPGFLr/8ct1///3KzMws9v4HDx5U3759tXnzZnXq1En33XefXC6XNm/erOeee06PPPKIIiIiJEk//PCDBg0apKysLF1++eVq2bKldu7cqXfeeUeff/65Vq9erRYtWpSY85nuNzfeeKN+/PFHDRkyRE6nUwsWLNCoUaNUq1Yt3XXXXaXaXq+++qpGjRqliIgIDRs2TNHR0UpMTNQzzzyj5cuXa/ny5aV6DvHF5XLp+uuv1wcffKCGDRvqxhtvVHh4uHbu3KkFCxZoyJAhatKkyRmt25fk5GRddNFFcjqdGj58uJo2baqjR4/qf//7n15//XU98cQTioiI0OTJkzVz5kxJ0pgxYzz3L/iH4plsl1WrVmnatGnq37+/7r777hIb9eIsWrRIkjyn0MDGDHAWSUlJMZLMoEGDil1u9uzZRpK59dZbPbHly5cbSWby5Mme2EsvvWQkmZkzZxZZR3p6utfvffv2Nf4eEu68JJlJkyb5XKZp06amadOmXrHJkycbSSYwMNCsX7/eE3e5XOamm24ykswLL7xQ7BwK53D77bd7xbt27Wokmddff73IfX799Vev3yWZvn37esVGjhxpJJnHH3/cK75o0SIjyZx33nkmLy/PE7/99tuNJNO8eXOzb98+T/zQoUMmIiLChIWFmezs7CK5FLZt2zYTEBBgGjZsaA4cOOCJZ2RkmNatW/vM1b3N3njjDa/4gQMHTOPGjU29evXMyZMnSxzbXZfQ0FCzYcOGIreXdZzevXsbSeadd97xWn7ixIme/SYlJaXI+MuXLy8y9pw5c4wkM2fOHK+4r+2xZ88en9t66tSpRpL597//7RV37+OdOnUqsv8XzGvevHle8WPHjpnzzz/fSDJvvfWWV54Oh8N8+eWXRdblb3+95pprjCQzYcKEIvdJTU01p0+fNsYYk5OTY5o1a2bCwsLMunXrvJb75ptvjNPpNJdffnmRdfhS1nq6t1OPHj1MRkaGJ75582YTEBBgWrduXapxf/75ZxMQEGDi4+NNWlqa123Tp08v8vj3t838efnll40kc/HFF5sTJ0543XbixAmvGrsftwX3Q3/7mjG+n4vGjh1rJJmPP/64yPKF5+fr+dCtrNvFnYsk889//tPnOkvy3nvvmcmTJ5tx48aZyy67zDidTtO8eXOzY8eOM1ofzh6cWgBbio2NlZT/lnhphISEFInVrVu3zOM2aNBATzzxRJnvd9ttt6ljx46e3y3L0rRp0+R0Okv1FrI/P/74oxITE5WQkODzCFGjRo2KvX9OTo7mzZunyMhIPfnkk163XXbZZbrkkku0fft2fffdd0XuO3HiRMXExHh+j4qK0vDhw3Xs2DFt2bKlxNzfffdd5ebmauzYsYqOjvbEw8PDi+Qi5df6vffe04ABA3TnnXd63RYdHa1x48bp0KFD+u9//1vi2G533323OnToUK5xdu3apW+//Vbx8fG66aabvJb/y1/+ojp16pQ6n7Jq2LChz6N5o0ePliS/22Lq1KnF7v8ffPCBpkyZoilTpui+++5T69at9b///U9du3b1OndWkoYPH66BAweWKt/U1FR9+OGHiouL83k6Q/369RUQkP9G4WeffaadO3dq3LhxuuCCC7yW6927t4YPH67FixeXeAS4PPvN9OnTFR4e7vm9devW6tWrl7Zs2VLktCBfXnvtNeXm5urll19WZGSk122PPfaY6tWrp3nz5pW4Hn9mzZolp9OpV199tchznPsUo8rg6/m08PyKc6bbpXPnzho5cmTZE5a0YMECTZ06Vc8//7wWL16sCy64QF9++WWZ3o3A2YlTC1CjDRs2TI8//rhGjRqlZcuWafDgwerbt2+p3o70JT4+/ozeBuzTp0+RWNOmTdW4cWP9/PPPysnJOaP1/vjjj5KkSy+9tMz3laTNmzfr1KlT6t+/v8+rGfTv319ffvmlkpOTi8yhS5cuRZZ3N85Hjx4tcez169dL8r1tfMXWrFmjvLw8ZWdn+2yCtm3b5pnT5ZdfXuL4Uv6VLso7jnsevXr1KrJsaGioOnXqpOXLl5cqn7Iyv50fOXfuXG3cuFEZGRle5yjv27fP5/18zbughQsXauHChZLyP0QZFxenu+++W48++miR/bSkdRWUmJgoY4z69+9f4uk033//vaT8U2d81SE1NVUul0tbt25V165d/a6nPPtNSft4WFhYqeawdOlSn1c1qVWrljZv3lzsOvw5fvy4Nm3apPPOO08tW7Y8o3WU1YgRIzRz5kxdddVVuv7663XJJZcoISFBDRs2LNN6znS7dOvW7cwSV/4fZ1J+3ZKSkvTEE0+oS5cu+vDDDzVgwIAzXi+qH40sbMn9Al2vXr1il2vWrJm+//57TZkyRYsXL9aCBQsk5X96/69//avnhP/Sql+//hnl6+9+9evX186dO3Xs2LEyHdFwy8jIkKQyv5C4uY9m+cvPfcTV11Gvgkeq3NxH0/Ly8koc2517waOxbr7yOXz4sCTpu+++83mE2K0s1zqtiHHc28bXPPyNUVEefPBB/b//9//UuHFjXXHFFYqJiVFQUJCk/KOu2dnZZ5TTvHnzihx59acs8yvL/uquwzvvvFPsciXVuzz7TXn3cffYpT1nvCzK+9g/Ez169NCKFSs0bdo0vfvuu5ozZ46k/AbzueeeK/UVT850u1TEYykiIkL9+/fXkiVL1Lp1a912221KSUkp1+cUUL1oZGFL7k97l+Yv9Pbt2+uDDz7Q6dOntXbtWn3++ed66aWXdP311ys2NtbnkTR/zvQLEw4cOOA3blmW58iOw5F/tk9ubm6RZd0vXAW5PxRzphf2dr9Q+8svNTXVa7mK5L6+6MGDB9W0aVOv23zl487hkUceKXI1hjPlq55lHce9/MGDB33e7msuZa2zLwcPHtQrr7yijh07avXq1V5H1FNTU4v9QouK/OKPsqyrLPure7t++umnpT7CXtx6KnK/KevYmZmZJR69LSv346c8F/U/k/2wT58++vzzz3Xy5En98MMP+vTTTzVr1iwNHTpUGzduLNW7XWe6XSpyvw0PD1fPnj318ccfa/v27Wrbtm2FrRtVi3NkYTtbt27VggULFBQUpKuuuqrU96tVq5Z69uypqVOn6qWXXpIxRp999pnndvcn1ktzpKWsvvnmmyKxXbt26ddff1W7du08b9e6z6f09eKUlJRUJOZ+W/eLL744o7zatGmj4OBgrVmzxuelgNx/MBS+ekNFcH+a39e28RXr1q2bLMvS6tWrKzyX8ozjnseqVauK3HbixAnPqQcFlbXOvuzYsUPGGA0cOLDIaSG+tt/ZoGvXrnI4HFq+fHmRy2wV1qNHD0kqd72rar/xxT0H91vpFemcc87R+eefr5SUFM/pEWVVnv0wJCRE/fr109///ndNmDBBJ0+e1Jdffum53el0+n0urcztUhbud/Y4GmtvNLKwle+++06DBg1Sdna2xo8fX+LbamvXrvX5trj7KFnBawy6PxhR8Nq0FeXtt9/Whg0bPL8bYzRhwgTl5eV5XWezdevWCgsL0yeffOJ5+82d79NPP11kvd26dVO3bt20cuVKvfHGG0VuL+loTWBgoG688UalpaVp+vTpXrctWbJES5cu1XnnnVemo9alddNNN8npdGrGjBleRzMzMzN9zrVBgwYaMWKEVq1apeeff95zDeCCfvjhh3Jfm7Os4zRt2lS9evVScnKy3nvvPa/lnn/+ea86urnfSXj77be9zmldvXp1iW+lu7mPYq9atcprHXv27NHjjz9eqnVUtfr16+uaa67RL7/84vOI8cGDBz1HB4cPH64mTZpoxowZWrlyZZFlT58+XaprB1fVfuPL/fffr4CAAD3wwAM+LxXlPl/zTI0aNUp5eXm6//77dfLkSa/bTp065XPfK6hLly6yLEvz58/3unbztm3b9OKLLxZZfvXq1T6v8ezv+TQtLc3n8pW9XdyK++DpP//5T/34449q2bKlzjvvvHKPherDqQU4K23fvt3zwYycnBzPV9T+9NNPcjqdevLJJ72u9+rPv/71L7322mtKSEhQXFycwsPD9b///U+LFy9W3bp1vT4BO2DAAH3wwQe65pprNGTIEAUHBys+Pl7Dhg0r93wGDRqkCy+8UDfccIPq1aunZcuWKTExUT179vS6Dm5gYKAeeOABTZs2TZ07d/ZcBeDTTz9V37599csvvxRZ9zvvvKN+/frp7rvv1r/+9S9deOGFOnXqlH7++WclJSUpPT292Nzc1xx9+umntWrVKvXo0UM7d+7U+++/r9q1a2vOnDmetyAr0nnnnadJkyZp8uTJ6tixo0aMGKGAgAAtXLhQHTt29PkCNGvWLG3ZskWPPfaYZ64RERH69ddflZiYqG3btmn//v3Ffg1vaZR1nJdfflkJCQm6+eabtXDhQp133nlat26dvv/+eyUkJGjlypVe27Bnz57q1auXvvrqK1144YVKSEjQrl279J///EfDhg3TRx99VGKOMTExuuaaa7Rw4UJ17dpVF198sQ4cOKDPPvtMF198sc995Wwwa9Ysbdy4Uc8884wWL16sAQMGyBijrVu36osvvtCBAwcUERGhoKAgffDBBxoyZIj69u2rAQMGqEOHDp6L7X/zzTeKjIws1Yelqmq/Kax9+/aaNWuW58oPl112meLi4nTs2DHt2LFDX3/9te644w794x//OKP133ffffr666+1YMECtWzZUldccYXCw8O1e/duLV26VLNnzy72usqxsbG68cYb9e6776pLly4aPHiwDh48qI8++kiDBw/2fODP7bnnntPy5cuVkJCg5s2bKzg4WOvWrdOyZcvUokULr3fIBgwYoMTERA0ZMkR9+vRRYGCgEhISlJCQUOnbxS09PV1t27ZV165d1aZNGzVs2FBHjhzRmjVrtG7dOoWHh+utt94q1xg4C1Tbhb8AHwper9X9ExISYmJiYkz//v3NxIkTzfbt233e19d1D7///ntzzz33mPbt25uIiAgTEhJiWrZsaUaPHm127drldf/Tp0+bxx57zDRp0sQEBAR4Xc+xNNd3LO46ssuXLzdvvPGGadeunQkKCjIxMTHmoYceMpmZmUXWk5eXZ6ZMmWIaN25sAgMDTatWrcyLL75oduzY4TeH1NRU89BDD5kWLVqYwMBAU7duXdOjRw8zY8YMr+Xk41qkxuRfA/bBBx80TZs2NbVq1TJRUVHm2muvNT/99FORZX1dj9LXfEvrjTfeMOeff74JDAw0jRo1Mo8++qg5ceKE31xPnDhh/va3v5kuXbqY0NBQExISYpo3b26uvPJK8/bbb3uuQ1qc0uRZ1nGSkpLMoEGDzDnnnGPCwsLMkCFDzE8//WQuv/xyI8kcOXLEa/m0tDRz2223mbp165qQkBDTs2dPs3Tp0jJdR/bYsWPmkUceMc2aNTNBQUGmZcuW5qmnnjI5OTk+ly/uWskFt0vh68j6Utw1SI0p/jGTkZFhJk6caNq0aWOCgoLMueeeazp16mQmTZpkcnJyvJbds2ePeeihh0zLli1NUFCQCQ8PN23btjV33nmnWbZsWYl5upWlnsVtp+L2f39+/PFHc8MNN5jY2FjP46tz585m/PjxZtOmTZ7lynodWWPyr0n95ptvmp49e5rQ0FBTu3Zt07JlS3Pvvfea3bt3l5j3iRMnzIMPPmjq169vgoKCTMeOHc0777zj8/l0yZIl5rbbbjOtW7c2YWFh5pxzzjHnn3++mTBhgjl06JDXeo8dO2buuusuExMTY5xOp8/rY5d2uxR3fe3iHD9+3EyaNMkkJCSYBg0amFq1apnQ0FDTrl078/DDDxe5zjbsyTLGx/ssAIByy8vLU1xcnE6ePOn3A3UAgDPHObIAUE65ubk+v5zj2Wef1a5du8r0tbkAgNLjiCwAlNPRo0dVv359XXLJJWrVqpVOnz6tH374QWvWrFFMTIzWrl3r9S1oAICKQSMLAOWUk5OjMWPG6KuvvtK+fft06tQpxcTEaMiQIZo4cWKVXrQeAP5IaGQBAABgS5wjCwAAAFuikQUAAIAt/eG+EMHlcmnfvn0KCwur0O9tBgAAQMUwxujYsWOKjY0t9kt5/nCN7L59+9S4cePqTgMAAAAl+PXXX9WoUSO/t//hGtmwsDBJ+RsmPDy8mrOxv9OnT+uLL77QpZdeqlq1alV3OjgD1ND+qKH9UUN7o34VLzMzU40bN/b0bf784RpZ9+kE4eHhNLIV4PTp06pdu7bCw8N58NoUNbQ/amh/1NDeqF/lKek0UD7sBQAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2FJAdScAAKgY69evl8NRNccnoqKi1KRJkyoZCwD8oZEFAJvbs2ePJCkhIUEnT56skjFDatfW5k2baGYBVCsaWQCwufT0dEnSVRP/T3Wbnlfp4x1M2aYFT96ntLQ0GlkA1YpGFgBqiHpN49SgbXx1pwEAVYYPewEAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsKWzqpFduXKlhg0bptjYWFmWpY8//tjrdmOMJk2apJiYGIWEhGjgwIHatm1b9SQLAACAanVWNbJZWVmKj4/XK6+84vP2v/3tb3rppZf0j3/8Qz/88INCQ0M1aNAgnTp1qoozBQAAQHULqO4EChoyZIiGDBni8zZjjGbOnKknn3xSw4cPlyS9/fbbql+/vj7++GPdcMMNPu+XnZ2t7Oxsz++ZmZmSpNzcXOXm5kqSHA6HHA6HXC6XXC6XZ1l3PC8vT8aYEuNOp1OWZXnWWzAuSXl5eaWKBwQEyBjjFbcsS06ns0iO/uJVPae8vDxPLjVlTiXFa8qcCtawVq1aNWJOBdWUOhU3p4I5yRhZpsDvliVjOSTjklUgF2NZUjFxy7gkr7hDsixZxiWHjAIDA+VyuWSMoU4VMKeCtSw4rp3nVBPr5C/u/r+/+tlxTtVdp8LL+3NWNbLFSUlJUWpqqgYOHOiJnXvuuerRo4dWr17tt5GdPn26pk6dWiSelJSk0NBQSVK9evUUFxenlJQUHTp0yLNMo0aN1KhRI23dulUZGRmeeIsWLRQdHa2NGzfq5MmTnnibNm0UERGhpKQkr8J07NhRgYGBSkxM9Mqha9euysnJ0YYNGzwxp9Opbt26KSMjQ5s3b/bEQ0JCFB8fr7S0NO3YscNrG7Rt21b79u3Tnj17PPGqmlNSUpJne1qWVSPmVBPrVNyc3E8469evV48ePWrEnNxqUp2Km1PBsUNPHVWdY/s9v58KDFVaRFOFn0hXeNbvuWeFROhIWKzqHE9V6MmjnnhmaD1lhtZTZMavCs7J8sSPhMUoK6SO6h9JUWTQKY0bN07p6enKyMigThUwp7CwMEnS/v37lZqaWiPmVBPr5G9OkZGRkqTdu3crPT29Rsypuuvk7i9KYpmCbfNZxLIsffTRR7ryyislSatWrVKvXr20b98+xcTEeJYbMWKELMvSe++953M9vo7INm7cWOnp6QoPD5dU/X912PkvqezsbC1dulSDBg1SQEBAjZhTTaxTcXPKzc311DA4OLhGzKmgmlKn4ua0bt067d+/X8uzQtWgTXylH5Hdt3mD/jFyqL777jt16dKFOlXAnNyPw8GDB3vWZ/c51cQ6FXdEfcmSJX7rZ8c5VXedjhw5osjISGVkZHj6NV9sc0T2TAUFBSkoKKhIPCAgQAEB3tN3F6GwgjtlaeKF13smccuyfMb95VjWeEXNyb280+n0WsbOc6qJdSou7n7Cca+zJsypsJo+J6+cLEvG8jGu5ZCxfKzcTzy/cfUdd8lSTk6OHA6HLMsqc+7+4jW9TsXl6H4cOhyOMm2Ds3lOZxq345xKqp8d51RSvDrm5MtZ9WGv4jRo0ECSdODAAa/4gQMHPLcBAADgj8M2jWzz5s3VoEEDLVu2zBPLzMzUDz/8oAsvvLAaMwMAAEB1OKtOLTh+/Li2b9/u+T0lJUXJycmqW7eumjRpojFjxujpp59Wy5Yt1bx5c02cOFGxsbGe82gBAADwx3FWNbKJiYnq37+/5/exY8dKkm6//XbNnTtXjz32mLKysnT33Xfr6NGj6t27t5YsWaLg4ODqShkAAADV5KxqZPv16+f1SbfCLMvSX//6V/31r3+twqwAAABwNrLNObIAAABAQTSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSwHVnQAAwJ42bdpUZWNFRUWpSZMmVTYeAHugkQUAlMmxtAOyHA7dcsstVTZmSO3a2rxpE80sAC80sgCAMjl5LFPG5dKIp19VdPOWlT7ewZRtWvDkfUpLS6ORBeCFRhYAcEaim7dUw7bx1Z0GgD8wPuwFAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3ZqpHNy8vTxIkT1bx5c4WEhCguLk5PPfWUjDHVnRoAAACqWEB1J1AWzz33nF599VW99dZbateunRITEzVy5Eide+65evDBB6s7PQAAAFQhWzWyq1at0vDhwzV06FBJUrNmzTRv3jz9+OOP1ZwZAAAAqpqtGtmLLrpIr7/+urZu3apWrVpp/fr1+vbbbzVjxgy/98nOzlZ2drbn98zMTElSbm6ucnNzJUkOh0MOh0Mul0sul8uzrDuel5fndfqCv7jT6ZRlWZ71FoxL+adGlCYeEBAgY4xX3LIsOZ3OIjn6i1f1nPLy8jy51JQ5lRSvKXMqWMNatWrViDkVVFPqVNycCuYkY2SZAr9blozlkIxLVoFcjGVJxcQt45K84g7JsmQZl5yWFBgYKIdM/jKWJcvlnaOx8s9c88qluLjD6Td3S0aBgYFyuVzKzc21bZ3yp+Q794K1LDiunedUE+vkL+7+v7/62XFO1V2nwsv7Y6tGdvz48crMzFSbNm3kdDqVl5enZ555RjfffLPf+0yfPl1Tp04tEk9KSlJoaKgkqV69eoqLi1NKSooOHTrkWaZRo0Zq1KiRtm7dqoyMDE+8RYsWio6O1saNG3Xy5ElPvE2bNoqIiFBSUpJXYTp27KjAwEAlJiZ65dC1a1fl5ORow4YNnpjT6VS3bt2UkZGhzZs3e+IhISGKj49XWlqaduzY4Ymfe+65atu2rfbt26c9e/Z44lU1p6SkJM/2tCyrRsypJtapuDm5n3DWr1+vHj161Ig5udWkOhU3p4Jjh546qjrH9nt+PxUYqrSIpgo/ka7wrN9zzwqJ0JGwWNU5nqrQk0c98czQesoMrafIjF8VnJPliR8Ji1FWSB3VP5Ki3o3rqMW4cWoWdErHT2fpVOA5ij28TVaBF7vUunHKcwSoYdoWrzntjWotpytXDQ7/4okZh0N7o9oo+HSWoo7u9sRzA4KUWjdOdZx5GjdunNLT05WYmGjbOkn+972wsDBJ0v79+5Wamloj5lQT6+RvTpGRkZKk3bt3Kz09vUbMqbrr5O4vSmIZG31Sav78+Ro3bpyef/55tWvXTsnJyRozZoxmzJih22+/3ed9fB2Rbdy4sdLT0xUeHi6p+v/qsPNfUtnZ2Vq6dKkGDRqkgICAGjGnmlin4uaUm5vrqWFwcHCNmFNBNaVOxc1p3bp12r9/v5ZnhapBm/hKPyK7fsmHWjj1Id07Z5Fi2sRX+hHZfZuS9drIofruu+/UqVMn29Ypf0q+c3c/DgcPHuxZn93nVBPrVNwR9SVLlvitnx3nVN11OnLkiCIjI5WRkeHp13yx1RHZcePGafz48brhhhskSR06dNCuXbs0ffp0v41sUFCQgoKCisQDAgIUEOA9fXcRCiu4U5YmXni9ZxK3LMtn3F+OZY1X1JzcyzudTq9l7Dynmlin4uLuJxz3OmvCnAqr6XPyysmyZCwf41oOGcvHyv3E8xtX3/E8I+Xk5MglS7LyFzIO33P1mYu/uJ/cjSzl5OTI4XB4bQu71am4HN2Pw8Jz9Ld8SbmfDXM607gd51RS/ew4p5Li1TEnX2x1+a0TJ04U2ZjuvyIAAADwx2KrI7LDhg3TM888oyZNmqhdu3ZKSkrSjBkz9Kc//am6UwMAAEAVs1Uj+/LLL2vixIm6//77dfDgQcXGxuqee+7RpEmTqjs1AAAAVDFbNbJhYWGaOXOmZs6cWd2pAAAAoJrZ6hxZAAAAwI1GFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbCmguhMAUNTu3buVlpZWJWO5XK4qGaegqpyfW1RUlJo0aVKlYwIAKheNLHCW2b17t9q0bauTJ05UyXghISGaN2+e9uzZo+bNm1f6eFU9P7eQ2rW1edMmmlkAqEHK3cimpqZq9uzZWrdunTIyMooc3bEsS8uWLSvvMMAfRlpamk6eOKERT7+q6OYtK328w7u2S5LS09OrpJGt6vlJ0sGUbVrw5H1KS0ujkQWAGqRcjeyGDRvUr18/nTx5Uq1bt9ZPP/2k888/X0ePHtXevXsVFxenxo0bV1SuwB9KdPOWatg2vtLHccpIyqr0cQqrqvkBAGqucn3Ya/z48TrnnHO0ZcsW/fe//5UxRi+++KJ+/fVXvffeezpy5IieffbZisoVAAAA8ChXI/vdd9/pnnvuUZMmTeRw5K/KfWrBddddp5tvvlnjxo0rf5YAAABAIeVqZF0ul+rXry9JioiIkNPp1OHDhz23d+jQQWvXri1fhgAAAIAP5WpkmzdvrpSUlPwVORxq3ry5/vvf/3puX7VqlSIiIsqVIAAAAOBLuRrZSy+9VO+//77n9/vuu09vvvmmBg4cqIsvvlhvvfWWbrrppnInCQAAABRWrqsWPPHEE7rxxht1+vRp1apVS2PGjFFWVpYWLlwop9OpiRMnasKECRWVKwAAAOBRrka2Tp066tKli+d3y7L05JNP6sknnyx3YgAAAEBxynVqAQAAAFBdynRE9k9/+pMsy9Lrr78up9OpP/3pTyXex7IszZ49+4wTBAAAAHwpUyP71VdfyeFwyOVyyel06quvvpJlWcXep6TbAQAAgDNRpkZ2586dxf4OAAAAVBXOkQUAAIAtlauRXbdunWbNmuX39lmzZik5Obk8QwAAAAA+lauRfeKJJ7y+yauwr776iktxAQAAoFKUq5Fdu3at+vTp4/f2Pn36KDExsTxDAAAAAD6Vq5E9duyYAgL8f17M4XAoIyOjPEMAAAAAPpWrkW3ZsqW++OILv7cvWbJELVq0KM8QAAAAgE/lamT//Oc/a9GiRRo7dqyOHj3qiR89elQPP/ywlixZoj//+c/lzREAAAAookzXkS3swQcfVHJysmbOnKmXXnpJsbGxkqR9+/bJ5XLp1ltv1cMPP1whiQIAAAAFlauRtSxLc+bM0W233aaFCxdqx44dkqThw4frmmuuUb9+/SoiRwAAAKCIcjWybv3791f//v0rYlUAAABAqfDNXgAAALClcjWyxhi99tpr6t69u6KiouR0Oov8FHd5LgAAAOBMlavLfOyxxzRjxgx16tRJt9xyi+rUqVNReQEAAADFKlcj+9Zbb+maa67RggULKiofAAAAoFTKdWrByZMnNXDgwIrKBQAAACi1cjWyF198sdasWVNRuQAAAAClVq5GdtasWfr+++81bdo0paenV1ROxdq7d69uueUWRUZGKiQkRB06dFBiYmKVjA0AAICzR7nOkW3durVcLpcmTpyoiRMnKjg4WE6n02sZy7KUkZFRriTdjhw5ol69eql///76/PPPVa9ePW3bto0PmQEAAPwBlauRveaaa2RZVkXlUqLnnntOjRs31pw5czyx5s2bV9n4AAAAOHuUq5GdO3duBaVROp988okGDRqk6667Tl9//bUaNmyo+++/X3fddZff+2RnZys7O9vze2ZmpiQpNzdXubm5kiSHwyGHwyGXyyWXy+VZ1h3Py8uTMabEuNPplGVZnvUWjEtSXl5eqeIBAQEyxnjFLcuS0+kskqO/eFXPKS8vz5NLTZlTwfju3bt16NAhr7jD4ZAxxmvdlmXJsqxyxbds2eLJxTIuqcDyxnJIluU/7vLO3ViO39fjJ+5Q/nrc27Sy62SMUWBgoBwyslx5lTInr7jDKSl/TJfLpdzcXFvte77ihR9PBXOSMd7bwLLyt41xyfLavpZUTLy4fc9pyVNDGVNxdfKTu1XK+p3tdcqfku/cC9ay4Lh2nlNNrJO/uPv//upnxzlVd50KL++Prb6tYMeOHXr11Vc1duxYTZgwQWvWrNGDDz6owMBA3X777T7vM336dE2dOrVIPCkpSaGhoZKkevXqKS4uTikpKV7NSqNGjdSoUSNt3brV6/SIFi1aKDo6Whs3btTJkyc98TZt2igiIkJJSUlehenYsaMCAwOLnMvbtWtX5eTkaMOGDZ6Y0+lUt27dlJGRoc2bN3viISEhio+PV1pamnbs2OGJn3vuuWrbtq327dunPXv2eOJVNaekpCTP9rQsq0bMqXCdGjRooD4JCbr9tts8sZycHD3//PNq0aKFbrzxRk88LS1Nr732mjp16qShQ4d64jt27NC8efOUkJCgPn36eOLJyclatGiRhg4dqk6dOnnivXr1kiRFZvyq4JwsT/xIWIyyQuqo/pEUBeT+/gdaWkQTnQo8R7GHt8kq8ISTWjdOeY4ANUzb4jWnvVGt5XTlqsHhXxQVlL+eo0ePSlKl1ykzM1Pjxo1Ts6BTCk7bUilzcjMOh/ZGtVGYw6Vx48YpPT1diYmJttn3Svt4Kjh26KmjqnNsv+f3U4GhSotoqvAT6QrP+j33rJAIHQmLVZ3jqQo9edQTzwytp8zQesXue70b11GL32p4/HRWhdUp+HSWoo7u9sRzA4KUWjdOdZx5XvWza50k/4+nsLAwSdL+/fuVmppaI+ZUE+vkb06RkZGSpN27d3t9ZsjOc6ruOrn7i5JYpmDbfAZ2796tadOmafny5Tp48KD+85//KCEhQWlpafrrX/+qkSNH6oILLijPEB6BgYHq2rWrVq1a5Yk9+OCDWrNmjVavXu3zPr6OyDZu3Fjp6ekKDw+XVP1/ddj5L6ns7GwtXbpUgwYNUkBAQI2YU+Hc169fr27duumGp2epXrPzPHGXLEmmyCcmXbJkyajwSTe+4kaSKRTftnqFvnj1Wd339lI1atOh0o/IHtiyQX1DTygmJkbdu3ev9DqtXbtWF110ke6ds0ixrTtUyRHZvZuS9frIofruu+/UqVMn2+x7pX08rVu3Tvv379fyrFA1aBNf6Udk1y/5UAunPqR75yxSTJv4Sj8iu29Tsl4rRf3O9jrlT8l37rm5uVq6dKkGDx7s9VkTO8+pJtapuCPqS5Ys8Vs/O86puut05MgRRUZGKiMjw9Ov+VKuI7L/+9//1KdPH7lcLvXo0UPbt2/3JBoVFaVvv/1WWVlZmj17dnmG8YiJidH555/vFWvbtq0WLlzo9z5BQUEKCgoqEg8ICCjy9bnuIhRW+ANsJcX9fS1vWeKWZfmM+8uxrPGKmpN7+cJfR2znORWOu9/6j2zWUjFt433epyKlpmz3PLDzm4eiy/iNO3zP1Vj+467fVuTeppVdJ8uylJOTI5csr3wrck5F5Y/pcDi85na273vFxQvWySsny/K9DSyHjK+PNPiJF7fv5Rl5aqjfPidRIXXyk7upoPpVd52Ky9H9wl94jv6WLyn3s2FOZxq345xKqp8d51RSvDrm5HO5Ui3lx2OPPaaIiAh9//33sixL0dHRXrcPHTpU7733XnmG8NKrVy9t2eL9NtXWrVvVtGnTChsDAAAA9lCu68iuXLlS9913n+rVq+fz6gVNmjTR3r17yzOEl4cffthz3drt27fr3Xff1euvv65Ro0ZV2BgAAACwh3I1si6XS7Vr1/Z7+6FDh3y+rX+munXrpo8++kjz5s1T+/bt9dRTT2nmzJm6+eabK2wMAAAA2EO5Ti3o3LmzFi1apPvvv7/Ibbm5uZo/f7569uxZniGKuPzyy3X55ZdX6DoBAABgP+U6Ivv4449ryZIluu+++7Rx40ZJ0oEDB/Tf//5Xl156qTZt2qTx48dXSKIAAABAQeU6IjtkyBDNnTtXDz30kF5//XVJ0i233CJjjMLDw/X2228rISGhQhIFAAAACir3FyLceuutuvrqq/XFF19o+/btcrlciouL06BBgzwXeAYAAAAqWoV8s1doaKiuuuqqilgVAAAAUCrlamR3795d8kLKvwwXAAAAUJHK1cg2a9bM5/VjCyv89WMAAABAeZWrkf3nP/9ZpJHNy8vTzp079fbbbys6OpovKwAAAEClKFcje8cdd/i97S9/+Yt69OihjIyM8gwBAAAA+FSu68gWJzQ0VCNHjtT//d//VdYQAAAA+AOrtEZWyv8K29TU1MocAgAAAH9QFXL5rcIyMzO1cuVKPf/887rgggsqYwgAAAD8wZWrkXU4HH6vWmCMUZMmTTRr1qzyDAEAAAD4VK5GdtKkSUUaWcuyVKdOHcXFxenSSy9VQEClHPQFAADAH1y5uswpU6ZUUBoAAABA2ZTrw165ubnKzMz0e3tmZqZyc3PLMwQAAADgU7ka2QcffFAXXXSR39t79eqlRx55pDxDAAAAAD6Vq5FdsmSJrr32Wr+3X3vttVq8eHF5hgAAAAB8Klcju2/fPjVs2NDv7bGxsdq7d295hgAAAAB8KlcjGxkZqS1btvi9fdOmTQoPDy/PEAAAAIBP5WpkBw8erNdee01JSUlFblu3bp1ef/11DRkypDxDAAAAAD6V6/JbTz31lJYsWaLu3bvriiuuULt27SRJGzdu1Keffqro6Gg99dRTFZIoAAAAUFC5GtnY2FglJiZq/Pjx+s9//qOPPvpIkhQeHq6bb75Z06ZNU2xsbIUkCgAAABRU7q/diomJ0VtvvSVjjA4dOiRJqlevnt+vrgUAAAAqQoV9f6xlWQoKCtI555xDEwsAAIBKV64Pe0lSYmKiBg8erNq1aysyMlJff/21JCktLU3Dhw/XihUryjsEAAAAUES5jsiuWrVKAwYMUMOGDXXLLbfozTff9NwWFRWljIwMvfbaa+rXr1958wSActu0aVOVjRUVFaUmTZpU2XgA8EdUrkZ2woQJatu2rb7//nsdO3bMq5GVpP79++utt94qV4IAUF7H0g7Icjh0yy23VNmYIbVra/OmTTSzAFCJytXIrlmzRtOnT1dQUJCOHz9e5PaGDRsqNTW1PEMAQLmdPJYp43JpxNOvKrp5y0of72DKNi148j6lpaXRyAJAJSpXI1urVi25XC6/t+/du1fnnHNOeYYAgAoT3bylGraNr+40AAAVpFwf9urZs6c++OADn7dlZWVpzpw56tu3b3mGAAAAAHwqVyM7depUJSYmaujQofr8888lSevXr9ebb76pLl266NChQ5o4cWKFJAoAAAAUVK5TC3r06KHFixfrvvvu02233SZJeuSRRyRJcXFxWrx4sTp27Fj+LAEAAIBCzriRNcbo2LFjuuiii7RlyxYlJydr27ZtcrlciouLU5cuXfhiBAAAAFSaM25kc3JyVLduXU2bNk2PPfaYOnXqpE6dOlVgagAAAIB/Z3yObFBQkBo0aKCgoKCKzAcAAAAolXJ92OuOO+7Q22+/rZycnIrKBwAAACiVcn3Yq0OHDvr444/Vrl073XHHHWrWrJlCQkKKLHf11VeXZxgAAACgiHI1sjfeeKPn//4us2VZlvLy8sozDAAAAFBEmRvZCRMm6IYbblDHjh21fPnyysgJAAAAKFGZG9lnn31W7du3V8eOHdW3b1+lp6crOjpaX375pQYMGFAZOQIAAABFlOvDXm7GmIpYDQAAAFBqFdLIAgAAAFWNRhYAAAC2dEZXLdi5c6fWrVsnScrIyJAkbdu2TRERET6X79y585llBwAAAPhxRo3sxIkTi1xu6/777y+ynDGGy28BAACgUpS5kZ0zZ05l5AEAAACUSZkb2dtvv70y8gAAAADKhA97AQAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWbN3IPvvss7IsS2PGjKnuVAAAAFDFbNvIrlmzRq+99po6duxY3akAAACgGgRUdwJn4vjx47r55pv1xhtv6Omnny522ezsbGVnZ3t+z8zMlCTl5uYqNzdXkuRwOORwOORyueRyuTzLuuN5eXkyxpQYdzqdsizLs96CcUnKy8srVTwgIEDGGK+4ZVlyOp1FcvQV37Nnj9LT02VZlowxXjlalnVG8YJjuuMFc8/Ly/PkUhlzkqqvTsYYWZYlh4ws1++3GYdTMkaWKbBtLEvGchQTd8kqkIuxLKlQ3Gn9notlXJLX8g7JsvzHXYVytxy/r8dP3KH89bi3aWXXyRijwMBAz/asjDl5xR1OWZLXmBVRp4Lxwrlbv21TY4zXflZZzxFej89KmlPBOjmt37enjKmwOvnL3VL+PuNyuZSbm3vWPUdUxPNewVoWHNfOc6qJdfIXd//fX/0qa0579+5VWlqa1zrc66+o1/+C8aioKDVp0qRK6lR4eX9s2ciOGjVKQ4cO1cCBA0tsZKdPn66pU6cWiSclJSk0NFSSVK9ePcXFxSklJUWHDh3yLNOoUSM1atRIW7duVUZGhifeokULRUdHa+PGjTp58qQn3qZNG0VERCgpKcmrMB07dlRgYKASExO9cujatatycnK0YcMGT8zpdKpbt27KyMjQ5s2bPfGQkBDFx8crLS1NO3bs8MTPPfdctW3bVvv27dOePXt08uRJLV+xQuvWrtWiRYs0dOhQderUybP8N998o5UrV+rGG29UixYtPPFFixYpOTlZ99xzj6KiojzxefPmaceOHRo3bpwCAwM98ddee02ZmZn6y1/+oi5dumjVqlWqXbt2pczJrbrqFBAQoMjISHUIOqXgtC2SJONwaG9UGwWfzlLU0d2eZXMDgpRaN06hp46qzrH9nvipwFClRTRV+Il0hWf9nntWSISOhMWqzvFUhZ48KkkKa1xHe3v1kiRFZvyq4Jwsz/JHwmKUFVJH9Y+kKCD39z/Q0iKa6FTgOYo9vE1WgSfX1LpxynMEqOFvebvtjWotpytXDQ7/oqig/PUcPZo/fmXXKTMzU+PGjVOz37ZnZczJzV2niOAArzErok6SlBlaT5mh9YrU6YQzf786cuSI1/5UWc8RBff7yppTwTr1blxHLX7bnsdPZ1VYnfw9nuo48zRu3Dilp6crMTHxrHuOqIjnvbCwMEnS/v37lZqaWiPmVBPr5G9OkZGRkqTdu3crPT29SuZ08uRJXXX11aoVEKB77rnHE8/JydHzzz+vFi1a6MYbb/TE09LS9Nprr6lTp04aOnSoJ75jxw7NmzdPCQkJ6tOnjyeenJxcpI9wOJ26+qqr1KlTp0qvU1JSkkrDMoXb+LPc/Pnz9cwzz2jNmjUKDg5Wv3791KlTJ82cOdPn8r6OyDZu3Fjp6ekKDw+XVLP+OkxOTlavXr109eQXFdWspSwZWQXWbSQZWZ6jcCXF80fyF5cydv+ia9o2UExMjDp37lwj/4pfv369unXrpgf+/YViW3f4fZtV0hHZ9Us/0oJJo3Xf20vVqE2HSj8ie2DLBvUNPaGYmBh179690uu0du1aXXTRRbp3ziLFtu5QJUdkkxd/oI/++pBnzMo+Irt3y096+eZLlJiYqPj4eE+8sp4j1q1bp/3792t5VqgatImv9COy65d8qIVT87dnTJv4Sj8iu29Tsl4bOVTfffedOnXqdNY9R1TE815ubq6WLl2qwYMHe9Zn9znVxDoVd0R9yZIlfutXGXNKTk5Wt27dNOLpV9Wg+Xley7tkSTJFzh91ySrSF/iLu/sCd/zQzu1aOPUhrVq1Sl26dKn0Oh05ckSRkZHKyMjw9Gu+2OqI7K+//qqHHnpIX375pYKDg0t1n6CgIAUFBRWJBwQEKCDAe/ruIhRWcKcsTbzwes8kblmWz7i/HN1xh8OhnJwcRTVrqYZt44ssV9Hyt0CWHA6HV74VOafSxiurTu63Vlyy8l9svW+UsXys32/cIVP4GaRQPM/8/sDObx6KLu43Xjg/z/L+467fVuTeppVdJ8uylJOTU2R7VuScisQkn2OWp07eY3rn7n458LctK/o5wms7V9KcCsbzzO/bU7+dZlQRdfKXu1H+PlP4eeZseY4oLl7ax5P7hb/wHP0tX1LuZ8OczjRuxzmVVL/KmJN7/OjmLRVTBa/3rt8eh+5TC6ujTj6XK9VSZ4m1a9fq4MGD6ty5syeWl5enlStX6v/9v/+n7OxsvxsQAAAANYutGtmLL75YP/30k1ds5MiRatOmjf7yl7/QxAIAAPyB2KqRDQsLU/v27b1ioaGhioyMLBIHAABAzWbb68gCAADgj81WR2R9WbFiRXWnAAAAgGrAEVkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYUkB1J/BHsHv3bqWlpVXJWJs2baqScQCgqlXl81t2draCgoKqbDyXy1VlYwE1CY1sJdu9e7fatG2rkydOVHcqAGBLx9IOyHI4dMstt1TZmJbDIVOFzWVISIjmzZunPXv2qHnz5lU2LmB3NLKVLC0tTSdPnNCIp19VdPOWlT7elu+W6ctZ0yt9HACoKiePZcq4XFX+PFpV40nS4V3bJUnp6ek0skAZ0MhWkejmLdWwbXylj3MwZVuljwEA1aGqn0erajxJcspIyqqSsYCahA97AQAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLtmpkp0+frm7duiksLEzR0dG68sortWXLlupOCwAAANXAVo3s119/rVGjRun777/Xl19+qdOnT+vSSy9VVlZWdacGAACAKhZQ3QmUxZIlS7x+nzt3rqKjo7V27VolJCRUU1YAAACoDrZqZAvLyMiQJNWtW9fvMtnZ2crOzvb8npmZKUnKzc1Vbm6uJMnhcMjhcMjlcsnlcnmWdcfz8vJkjCkx7nQ6ZVmWZ72S5HK5ZFmWJCPLleeVm7HyD4hbxuUddzglY7zjlpW/vN+4S5YxclpSYGCgLP2W12/x38e0JMuRvw6vuEOyLP9xP7k7fhvH5XIpNzdXTqdTkpSX5718QECAjDFeccuy5HQ6i2x3f/HKrJM77it3Y4wsy5KjUA3LU6fft2N+PQrGndbvuVRUnYrsYwXiBWvonm9l1skYo8DAQM/2rIw5ecUdTlmS15gVUaeC8cK5ux9/xhiv/ays+15pH08Ft3NlzalgndzPMw6Z/GUqqE7+cvdfv4qbk3f98hV5zFfgnArHHX72mep63quJz+WVOSf3/92vhVUxp9/H99FfVMLrk0P5z93ufCu7ToWX98e2jazL5dKYMWPUq1cvtW/f3u9y06dP19SpU4vEk5KSFBoaKkmqV6+e4uLilJKSokOHDnmWadSokRo1aqStW7d6mmZJatGihaKjo7Vx40adPHnSE2/Tpo0iIiKUlJTkKUxGRoYiIyPlkNQwzft83r1RreV05arB4V88MeNwaG9UGwWfzlLU0d2eeG5AkFLrxin01FHVObbfEz8VGKq0iKYKP5Gu8KxDCmtcRy3GjVN4wGm5JNU5nqrQk0c9y2eG1lNmaD1FZvyq4JzfT8k4EhajrJA6qn8kRQG5vzf+aRFNdCrwHMUe3iarwIM2tW6c8hwBaheUv+yRI0eUmJiorl27KicnRxs2bPAs63Q61a1bN2VkZGjz5s2eeEhIiOLj45WWlqYdO3Z44ueee67atm2rffv2ac+ePZ54ZdZJkjp27KjAwEAlJiZ61SkgIECRkZHqEHRKwb/VsLx1cssKidCRsFivOoU1rqO9vXpJUoXVqbh9L+q3Gh49mj9+ZdcpMzNT48aNU7PftmdlzMnNXaeI4ACvMSuiTpL/x9MJZ/5+5X5cuJV13yvt46ngfl9ZcypYp96/Pc80Czql46ezKqxO/h5P9c8J9KpfZcyp4L6XEpz/0tguKFu1C+RfkXMqXKfgWqclSSdPnvTaD6rrea8mPpdX5pwiIyMlSbt371Z6enqVzCkjI0OBgYEKsozXPllZr0+RQac0btw4nThxQpIqvU5JSUkqDcsUbJtt5L777tPnn3+ub7/9Vo0aNfK7nK8jso0bN1Z6errCw8MlVe5fh8nJyerevbtG/fsLNWrdwSu3yjgiu37pR1o49SHdM2eRYtt2qvQjsgc3J6tv6AnFxMSoc+fONfKv+PXr16tbt2564N9fKLZADSvriOz6pR9pwaTRuu/tpWrUpkOlH5E9sGWDp4bdu3ev9DqtXbtWF110ke6ds0ixrTtUyRHZ5MUf6KO/PuQZs7KPyO7d8pNevvkSJSYmKj4+3hOvrCNI69at0/79+7U8K1QN2sRX+hHZ9Us+1MKp+dszpk18pR+R9V+/yjkim7TkI7335H168J0vvR/zlXhE1v04jI2N1QUXXOCJ18SjlzVxTnl5eVqyZIkGDx7sGaey55ScnKxu3bpp9DtfFu0vKuH1ad+Wn/SPkUO1atUqdenSpdLrdOTIEUVGRiojI8PTr/liyyOyo0eP1meffaaVK1cW28RKUlBQkIKCgorEAwICFBDgPX13EQoruFOWJl5wve63UiUrf8fywVg+4pZVxrhDxpLyjJSTkyPjfnPst3jRMR2/v39Wmrif3F2/LexwOLzmXXjb5qdu+Yz72+5ljZenTsXFLcuSMUYuXzU8wzoVF88zvz+wK6pOPnP5LV6whvmpV26dLMtSTk5Oke1ZkXMqEpN8jlmeOnmP6Z27+/Hnb1uWdt8rLl5w3V7buZLmVDDufp5xyZKs/IUqok7+cvdfv4qbk3f98vl8zPvL3V+8lM8RrhL2map+3isubtfn8uLi5Z2Tu3Er/FpYUu7lmdPv4/vpLyr49cml/Odu67fHfHXUyedypVrqLGGM0QMPPKCPPvpIK1asUPPmzas7JQAAAFQTWzWyo0aN0rvvvqv//Oc/CgsLU2pqqqT8c1ZCQkKqOTsAAABUJVtdR/bVV19VRkaG+vXrp5iYGM/Pe++9V92pAQAAoIrZ6oisTT+XBgAAgEpgqyOyAAAAgBuNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2FJAdSeAmmHLli1yOKru76KoqCg1adKkysYDAKAk69evr7LXwk2bNlXJOGc7GlmUy/H0g1JoqO666y6dPHmyysYNqV1bmzdtopkFAFS7PXv2SJISEhKq9LUQNLIop5PHj0kK1VUT/091m55XJWMeTNmmBU/ep7S0NBpZAEC1S09Pl6QqfS3c8t0yfTlrepWMdTajkUWFqNc0Tg3axld3GgAAVJuqfC08mLKtSsY52/FhLwAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtmTLRvaVV15Rs2bNFBwcrB49eujHH3+s7pQAAABQxWzXyL733nsaO3asJk+erHXr1ik+Pl6DBg3SwYMHqzs1AAAAVCHbNbIzZszQXXfdpZEjR+r888/XP/7xD9WuXVv//Oc/qzs1AAAAVKGA6k6gLHJycrR27Vo9/vjjnpjD4dDAgQO1evVqn/fJzs5Wdna25/eMjAxJ0uHDh5Wbm+tZh8PhkMvlksvl8lq3w+FQXl6ejDElxp1OpyzL8qxXkjIzMyVJezdt0OkTx71yc9/TKpSzkeX5t3DcklFhBeOHd/+iWrVqaf/mDco5kVXi8iXFzW8Z+o5Lh3en6ESzcKVuTdGpE1mVMqfC8fTf5rh27VplZmbKsixZliVjjFc9SooXrLU7LslrWUnatm2bJCl1s3cNK3JOBeOHd/8ih8Phc5/xt56S6lQ0x9/jR/ek6ETr+kpKStKJEyfKvB3LGt+yZYtq1arltT0rek7ecUtpO7eVasyKih/atUOSPPuoW1n3PX9xh8PhtX23bdumc845R/u25D8OK2NOBePu55nUzRuUc+K4KqpO/h5Pabuqtn5pO/095ituToXHPFLgcXj8+O9jVvTjr/BrnHuZM933ypKL+3W2MudUMPfCt1XGnNzcj8H9Ph6DFfmaW3BfOrz7F0n++ouKf31K371DtWrV0rFjx5SZmVmu3sgdl6S8vDyf8SNHjuTnYIrm5Z2kjezdu9dIMqtWrfKKjxs3znTv3t3nfSZPnmyUvw/www8//PDDDz/88GOjn19//bXY3tBWR2TPxOOPP66xY8d6fne5XDp8+LAiIyM9f53hzGVmZqpx48b69ddfFR4eXt3p4AxQQ/ujhvZHDe2N+lU8Y4yOHTum2NjYYpezVSMbFRUlp9OpAwcOeMUPHDigBg0a+LxPUFCQgoKCvGIRERGVleIfVnh4OA9em6OG9kcN7Y8a2hv1q1jnnntuicvY6sNegYGB6tKli5YtW+aJuVwuLVu2TBdeeGE1ZgYAAICqZqsjspI0duxY3X777eratau6d++umTNnKisrSyNHjqzu1AAAAFCFbNfIXn/99Tp06JAmTZqk1NRUderUSUuWLFH9+vWrO7U/pKCgIE2ePLnI6RuwD2pof9TQ/qihvVG/6mMZU9J1DQAAAICzj63OkQUAAADcaGQBAABgSzSyAAAAsCUaWQAAANgSjSxK9Morr6hZs2YKDg5Wjx499OOPP5bqfvPnz5dlWbryyisrN0GUqKw1PHr0qEaNGqWYmBgFBQWpVatWWrx4cRVlC1/KWsOZM2eqdevWCgkJUePGjfXwww/r1KlTVZQtClq5cqWGDRum2NhYWZaljz/+uMT7rFixQp07d1ZQUJDOO+88zZ07t9LzhH9lreGHH36oSy65RPXq1VN4eLguvPBCLV26tGqS/YOhkUWx3nvvPY0dO1aTJ0/WunXrFB8fr0GDBungwYPF3m/nzp169NFH1adPnyrKFP6UtYY5OTm65JJLtHPnTn3wwQfasmWL3njjDTVs2LCKM4dbWWv47rvvavz48Zo8ebI2bdqk2bNn67333tOECROqOHNIUlZWluLj4/XKK6+UavmUlBQNHTpU/fv3V3JyssaMGaM777yTRqgalbWGK1eu1CWXXKLFixdr7dq16t+/v4YNG6akpKRKzvQPyADF6N69uxk1apTn97y8PBMbG2umT5/u9z65ubnmoosuMm+++aa5/fbbzfDhw6sgU/hT1hq++uqrpkWLFiYnJ6eqUkQJylrDUaNGmQEDBnjFxo4da3r16lWpeaJkksxHH31U7DKPPfaYadeunVfs+uuvN4MGDarEzFBapamhL+eff76ZOnVqxSf0B8cRWfiVk5OjtWvXauDAgZ6Yw+HQwIEDtXr1ar/3++tf/6ro6Gj9+c9/roo0UYwzqeEnn3yiCy+8UKNGjVL9+vXVvn17TZs2TXl5eVWVNgo4kxpedNFFWrt2ref0gx07dmjx4sW67LLLqiRnlM/q1au96i1JgwYNKvZ5F2c3l8ulY8eOqW7dutWdSo1ju2/2QtVJS0tTXl5ekW9Nq1+/vjZv3uzzPt9++61mz56t5OTkKsgQJTmTGu7YsUNfffWVbr75Zi1evFjbt2/X/fffr9OnT2vy5MlVkTYKOJMa3nTTTUpLS1Pv3r1ljFFubq7uvfdeTi2widTUVJ/1zszM1MmTJxUSElJNmeFMvfDCCzp+/LhGjBhR3anUOByRRYU5duyYbr31Vr3xxhuKioqq7nRwhlwul6Kjo/X666+rS5cuuv766/XEE0/oH//4R3WnhlJasWKFpk2bplmzZmndunX68MMPtWjRIj311FPVnRrwh/Puu+9q6tSpWrBggaKjo6s7nRqHI7LwKyoqSk6nUwcOHPCKHzhwQA0aNCiy/C+//KKdO3dq2LBhnpjL5ZIkBQQEaMuWLYqLi6vcpOGlrDWUpJiYGNWqVUtOp9MTa9u2rVJTU5WTk6PAwMBKzRnezqSGEydO1K233qo777xTktShQwdlZWXp7rvv1hNPPCGHg2MYZ7MGDRr4rHd4eDhHY21m/vz5uvPOO/X+++8XOV0EFYNnM/gVGBioLl26aNmyZZ6Yy+XSsmXLdOGFFxZZvk2bNvrpp5+UnJzs+bniiis8n7xt3LhxVaYPlb2GktSrVy9t377d80eIJG3dulUxMTE0sdXgTGp44sSJIs2q+w8TY0zlJYsKceGFF3rVW5K+/PJLv/XG2WnevHkaOXKk5s2bp6FDh1Z3OjVXdX/aDGe3+fPnm6CgIDN37lzzv//9z9x9990mIiLCpKamGmOMufXWW8348eP93p+rFlS/stZw9+7dJiwszIwePdps2bLFfPbZZyY6Oto8/fTT1TWFP7yy1nDy5MkmLCzMzJs3z+zYscN88cUXJi4uzowYMaK6pvCHduzYMZOUlGSSkpKMJDNjxgyTlJRkdu3aZYwxZvz48ebWW2/1LL9jxw5Tu3ZtM27cOLNp0ybzyiuvGKfTaZYsWVJdU/jDK2sN33nnHRMQEGBeeeUVs3//fs/P0aNHq2sKNRaNLEr08ssvmyZNmpjAwEDTvXt38/3333tu69u3r7n99tv93pdG9uxQ1hquWrXK9OjRwwQFBZkWLVqYZ555xuTm5lZx1iioLDU8ffq0mTJliomLizPBwcGmcePG5v777zdHjhyp+sRhli9fbiQV+XHX7Pbbbzd9+/Ytcp9OnTqZwMBA06JFCzNnzpwqzxu/K2sN+/btW+zyqDiWMbzPBAAAAPvhHFkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAAAok5UrV2rYsGGKjY2VZVn6+OOPy7wOY4xeeOEFtWrVSkFBQWrYsKGeeeaZMq2DRhYAzkJ33HGHmjVrVt1pFLFixQpZlqUVK1ZUdyoAqlFWVpbi4+P1yiuvnPE6HnroIb355pt64YUXtHnzZn3yySfq3r17mdYRcMajAwBsx7Isr/83aNBA7du314QJE9SvX7/qSwyArQwZMkRDhgzxe3t2draeeOIJzZs3T0ePHlX79u313HPPeZ5nNm3apFdffVUbN25U69atJUnNmzcvcx4ckQWAP5hLLrlE//rXv/TWW2/p3nvv1YYNGzRgwAB9/vnnJd43ISFBJ0+eVEJCQhVkCsCuRo8erdWrV2v+/PnasGGDrrvuOg0ePFjbtm2TJH366adq0aKFPvvsMzVv3lzNmjXTnXfeqcOHD5dpHI7IAoAPWVlZCg0Nre40KoTL5VJOTo6Cg4MlSa1atdItt9ziuf2qq65Sx44dNXPmTL9HWE6dOqXAwEA5HA7PegDAl927d2vOnDnavXu3YmNjJUmPPvqolixZojlz5mjatGnasWOHdu3apffff19vv/228vLy9PDDD+vaa6/VV199VeqxOCIL4A9vypQpsixL//vf/3TTTTepTp066t27tyTp3//+t7p06aKQkBDVrVtXN9xwg3799dci63jllVfUokULhYSEqHv37vrmm2/Ur18/r7fr586dK8uytHPnTq/7lva80xdeeEEXXXSRIiMjFRISoi5duuiDDz4ospxlWRo9erTeeecdtWvXTkFBQVqyZInf9Xbo0EFRUVFKSUnxymf+/Pl68skn1bBhQ9WuXVuZmZl+c/3hhx902WWXqU6dOgoNDVXHjh314osvei2zefNmXXvttapbt66Cg4PVtWtXffLJJ8XOGYD9/PTTT8rLy1OrVq10zjnneH6+/vpr/fLLL5Ly/8DOzs7W22+/rT59+qhfv36aPXu2li9fri1btpR6LI7IAsBvrrvuOrVs2VLTpk2TMUbPPPOMJk6cqBEjRujOO+/UoUOH9PLLLyshIUFJSUmKiIiQJL366qsaPXq0+vTpo4cfflg7d+7UlVdeqTp16qhRo0YVlt+LL76oK664QjfffLNycnI0f/58XXfddfrss880dOhQr2W/+uorLViwQKNHj1ZUVFSxHxw7cuSIjhw5ovPOO88r/tRTTykwMFCPPvqosrOzFRgY6PP+X375pS6//HLFxMTooYceUoMGDbRp0yZ99tlneuihhyRJP//8s3r16qWGDRtq/PjxCg0N1YIFC3TllVdq4cKFuuqqq8q3cQCcNY4fPy6n06m1a9fK6XR63XbOOedIkmJiYhQQEKBWrVp5bmvbtq2k/CO67vNmS0IjCwC/iY+P17vvvitJ2rVrl+Li4vT0009rwoQJnmWuvvpqXXDBBZo1a5YmTJignJwcTZw4Ud26ddNXX32lgID8p9WOHTvqjjvuqNBGduvWrQoJCfH8Pnr0aHXu3FkzZswo0shu2bJFP/30k84///wi6zl16pTS0tJkjFFKSoomTJigvLw8XXfddUWWS0xM9BqzsLy8PN1zzz2KiYlRcnKyp7mX8i+t4/bQQw+pSZMmWrNmjYKCgiRJ999/v3r37q2//OUvNLJADXLBBRcoLy9PBw8eVJ8+fXwu06tXL+Xm5uqXX35RXFycpPznOElq2rRpqcfi1AIA+M29997r+f+HH34ol8ulESNGKC0tzfPToEEDtWzZUsuXL5ckJSYmKj09XXfddZeniZWkm2++WXXq1KnQ/Ao2lEeOHFFGRob69OmjdevWFVm2b9++PptYSZo9e7bq1aun6Oho9ejRQ999953Gjh2rMWPGeC13++23F9vESlJSUpJSUlI0ZswYryZW+v0KCYcPH9ZXX32lESNG6NixY55tmZ6erkGDBmnbtm3au3dvKbYAgLPF8ePHlZycrOTkZElSSkqKkpOTtXv3brVq1Uo333yzbrvtNn344YdKSUnRjz/+qOnTp2vRokWSpIEDB6pz587605/+pKSkJK1du1b33HOPLrnkEq+jtCXhiCwA/KbgpV+2bdsmY4xatmzpc9latWpJyj9yK6nI2/IBAQEVfh3Yzz77TE8//bSSk5OVnZ3tiRe8pJZbcZexGT58uEaPHi3LshQWFqZ27dr5/GBbaS6F4z7frX379n6X2b59u4wxmjhxoiZOnOhzmYMHD6phw4Yljgfg7JCYmKj+/ft7fh87dqyk/D+A586dqzlz5ujpp5/WI488or179yoqKko9e/bU5ZdfLklyOBz69NNP9cADDyghIUGhoaEaMmSI/v73v5cpDxpZAPhNwaOPLpdLlmXp888/L3KOl/T7eV5l4avhlPLfni/JN998oyuuuEIJCQmaNWuWYmJiVKtWLc2ZM8dzOkRBxR1JbdSokQYOHFjimCUdjS0tl8slKf9Ty4MGDfK5TOE/BACc3fr16+d1+lBhtWrV0tSpUzV16lS/y8TGxmrhwoXlyoNGFgB8iIuLkzFGzZs3L/ZtLve5XNu3b/c6OpGbm6udO3eqY8eOnpj7VIOjR496rcN9VLc4CxcuVHBwsJYuXeo5x1SS5syZU6r5VBb3uW0bN2702xy3aNFCUv4LW2kaaAAoLc6RBQAfrr76ajmdTk2dOrXIUQdjjNLT0yVJXbt2VWRkpN544w3l5uZ6lnnnnXd05MgRr/u5m76VK1d6Ynl5eXr99ddLzMfpdMqyLK+jtzt37jyj7zevSJ07d1bz5s01c+bMIg26e7tFR0erX79+eu2117R///4i6zh06FBVpAqgBuKILAD44L5iweOPP+65nFZYWJhSUlL00Ucf6e6779ajjz6qwMBATZkyRQ888IAGDBigESNGaOfOnZo7d67i4uK8Tido166devbsqccff1yHDx9W3bp1NX/+fK8G2J+hQ4dqxowZGjx4sG666SYdPHhQr7zyis477zxt2LChMjdFsRwOh1599VUNGzZMnTp10siRIxUTE6PNmzfr559/1tKlSyXlX2e3d+/e6tChg+666y61aNFCBw4c0OrVq7Vnzx6tX7++2uYAwL5oZAHAj/Hjx6tVq1b6v//7P895Xo0bN9all16qK664wrPc6NGjZYzR3//+dz366KOKj4/XJ598ogcffLDIt2C98847uueee/Tss88qIiJCf/7zn9W/f39dcsklxeYyYMAAzZ49W88++6zGjBmj5s2b67nnntPOnTurtZGVpEGDBmn58uWaOnWq/v73v8vlcikuLk533XWXZ5nzzz9fiYmJmjp1qubOnav09HRFR0frggsu0KRJk6oxewB2ZpniztQFAJwRl8ulevXq6eqrr9Ybb7xR3ekAQI3EObIAUE6nTp0qch7t22+/rcOHD3t9RS0AoGJxRBYAymnFihV6+OGHdd111ykyMlLr1q3T7Nmz1bZtW61du9bvV7sCAMqHc2QBoJyaNWumxo0b66WXXvJ8iOu2227Ts88+SxMLAJWII7IAAACwJc6RBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFv6/0f2rPpV+Km/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqoAAAHcCAYAAAAeFogrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtwUlEQVR4nO3deVxU9foH8M+ZGWZABFEWFVEQVFwBV9yXNNGsq+XNtDLUFitL2+jaYuqttLJfN20xbVHbtLSrdbNQM5fMFQVXxAXMXQFZFBVk5vv7g85xhpmBGWZwjvJ5v17eG89855znu5zDM2dmDpIQQoCIiIiISGU0nk6AiIiIiMgWFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkTV6IMPPoAkSfj88889nQoREdFNh4UqWVm/fj0kScK0adM8sv+IiAhERERYxKZNmwZJkrB+/XqP5FSeJEno27dvhW22b9+OF154Aa+99hoefvjhG5OYDY7kerO6GdbKrUpN68rT56ybUXWOWd++fSFJktu3SzUTC9Vb1LFjxyBJksW/WrVqITQ0FP3798drr72Go0ePVsu+eZIC8vLyMGLECIwaNQrTp0/3dDpUQ/DYo5pILS+a5syZgyFDhiAiIgK+vr4ICAhAbGwspk2bhgsXLng6vZuWztMJUPWKiorCgw8+CAAoLi7G+fPnsX37drz++uuYMWMGXnzxRbz55psWv9y6dOmC9PR0BAUFeSTntWvXemS/zkhPT0etWrXsPp6WloYnn3wSzz777A3MigDgqaeewsiRI9GkSRNPp0I3iKfPWUQAlI949enTBw0aNMDVq1exbds2TJ8+HV988QW2b9+OBg0aeDjLmw8L1Vtcs2bNbL61s2nTJowePRozZ86EVqvF66+/rjxWq1YttGzZ8gZmaSkqKspj+3ZUZePTr18/9OvX7wZlQ+aCgoJYsNQwnj5nEQHAtm3b4O3tbRWfMmUK3njjDfzf//0fZs2a5YHMbm5867+G6tmzJ5KTk2EwGPDOO+/gxIkTymP2Prt0+PBhjB07Fk2bNoXBYEC9evUQGxuLZ555BkIIAGVvwWzYsEH5b/nfmDFjAFz/SMKYMWOQnp6Ou+++G4GBgZAkCceOHQNg+3OH5j7//HO0a9cO3t7eaNSoEZ599llcvHjRok1Fn78yz6G88+fP4/nnn0d0dDR8fHxQr149xMfH491337VoZ++tppycHDzzzDPKGIWEhGDEiBHYt2+fVdsxY8ZAkiRkZWVhzpw5aNmyJQwGA8LDwzF9+nSYTCa7Y2DLZ599hrZt28Lb2xuNGzfGiy++iKtXr9ptf/HiRUydOhVt2rSBj48PAgICkJCQgE2bNjm8T7kP8tyZs/VZUfN5SUlJwe233w4/Pz/UqVMHd999t83tAMCPP/6Izp07w8fHB/Xr18ejjz6KvLw8m23tfUZ13bp1GDx4MEJDQ2EwGFC/fn306tUL8+fPt9pGZmYmHnvsMYt57Nu3LxYuXGjVdsGCBYiPj0ft2rVRu3ZtxMfH22y3cOFCSJJk8zF761VeZ+fOnUNiYiKCgoLg4+ODrl27WvWvsmNPtmfPHowcORINGzaEXq9HeHg4nn76aeTm5lrlBTi/rhwhH+P5+fkYP348GjRoAG9vb7Rv3x6LFy+2am8+pwsXLkSHDh1Qq1Yt5Ris6Hh39JiuytjYc/78eTz77LNo1qwZDAYDgoKCMHz4cJvnAXksLl26hEmTJinrMyYmBsuWLXNqv0DZsdK/f3/UrVsX3t7eaNu2Ld59910YjUant1VeSUkJ/vOf/6Bz587w8/ND7dq10bp1azz33HN2j0dZRZ8dt3dsVHbMyvMOABs2bLBY9+W35ei4mOfyv//9Dz169ICfn1+Fv5NktopUALj33nsBAEeOHKl0G2SNV1RrsOjoaIwYMQJfffUVVqxYgaefftpu29OnT6NLly4oKirCkCFDcN9996GoqAiHDx/Gxx9/jHfffRc6nQ5Tp07FwoUL8ddff2Hq1KnK8+Pi4iy2d+TIEXTt2hXt2rXDmDFjkJubC71eX2nO7733HtauXYv77rsPQ4YMwW+//Yb3338fW7duxcaNG+Hl5VXl8cjIyEC/fv1w5swZ9OzZE8OGDUNRURH279+PGTNm4IUXXqjw+dnZ2ejWrRuOHj2Kvn37YuTIkcjKysKyZcuwcuVKrFq1Cj179rR6XlJSEjZs2IA777wTCQkJWLFiBaZNm4aSkhK8+eabDuX++uuv47XXXlOKOC8vL3z33XdIT0+32f7ChQvo3bs39u/fjx49euDxxx9HYWEhfvzxR/Tr1w9Lly7FsGHDHNp3VezYsQPvvPMO+vXrh/HjxyM1NRUrVqzA3r17sW/fPosT/pdffonExET4+/tj9OjRCAgIwM8//4wBAwagpKTEoXWzcuVK3HXXXQgICMDQoUPRsGFDZGdnY/fu3fjqq6/w2GOPKW03bdqEIUOG4OLFi0hISMDIkSORl5eH1NRUzJ4926LwmzhxIj744AM0atRI+cLcDz/8gLFjxyrtXZWfn4+ePXuiTp06GD16NM6fP4/vvvsOCQkJ2LlzJ9q2bQsADh17P/30E0aMGAGNRoOhQ4eicePGOHDgAD788EOsWrUK27ZtQ926dZX2zq4rZ5SUlGDAgAG4dOkSRo8ejaKiInz//fe4//77kZOTY/N8NGvWLKxbtw5Dhw7FwIEDodVqK9yHM8e0s2Njj3z8nzx5EgMHDsSwYcNw/vx5/PDDD1i1ahXWrl2L+Ph4i+dcu3YNAwcORF5eHoYPH47Lly9jyZIlGDFiBJKTkzFw4ECHxvSll17CW2+9hUaNGuGee+5BnTp18McffyApKQnbtm3D0qVLHdqOLVeuXMHtt9+OP//8E82bN8fYsWNhMBhw+PBhzJs3Dw899JBD4+MoR47ZiIgITJ06FdOnT0d4eLjFsWm+7qsyLkuXLsXq1atx55134sknn0RhYaFLfQGgHKvkJEG3pKysLAFAJCQkVNju888/FwDE6NGjldi6desEADF16lQlNmfOHAFAvP/++1bbyM3Ntfi5T58+wt7SkvMCIF577TWbbcLDw0V4eLhFbOrUqQKA0Ov1Yvfu3UrcZDKJ+++/XwAQ7777boV9KJ9DYmKiRbxTp04CgJg/f77Vc06cOGHxMwDRp08fi9jYsWMFAPHSSy9ZxFeuXCkAiGbNmgmj0ajEExMTBQDRtGlTcfr0aSWenZ0tAgIChJ+fnyguLrbKpbzDhw8LnU4nGjVqJM6dO6fECwoKRHR0tM1c5TH79NNPLeLnzp0TjRs3FsHBweLKlSuV7lvuQ1ZWltVj8pytW7dOicnzAkAsWbLEov3o0aMFALF48WKLPvj7+wtfX1+RkZGhxEtKSkTv3r0FALtrxXy/99xzjwAg0tLSrPLMyclR/vvq1auiUaNGQqPRiF9//dWqrfk62LBhgwAgWrVqJfLz85X4hQsXRIsWLQQAsXHjRiW+YMECAUAsWLDAarv21qs8Vk8++aTF2vnss88EADF+/HiL9hUdezk5OcLf3180atRIHDt2zOKxxYsXCwDiqaeeUmJVWVeOCg8PFwBE7969Ldb4iRMnRFBQkDAYDOLkyZNKXJ5TX19fsWfPHqvt2Rs/R49pZ8emIt27dxdarVYkJydbxDMyMoSfn59o166dRVwei6FDh1qMxW+//ebQOVy2evVqpf2lS5eUuMlkEo8//rgAIJYtW6bEKzpH2vL8888rvytKS0stHsvPzxcXL15Ufra1Dm0dlzJbx4ajx6wQts/HMmfHRc5Fo9GINWvW2NxmZebNmyemTp0qnnvuOdG3b18BQLRv315cuHChStur6fjWfw0XGhoKoOwta0f4+PhYxerVq+f0fhs0aIBXXnnF6ec99NBDiImJUX6WJAkzZsyAVqu1+Zaqo7Zv346UlBT07t0bjz76qNXjYWFhFT6/pKQEixcvRmBgIF599VWLx+644w7cfvvtOHLkCP7880+r506ZMgUNGzZUfg4KCsLQoUNx8eJFZGRkVJr7t99+i9LSUjz33HMICQlR4v7+/la5AGVz/d133+G2227DI488YvFYSEgIkpKSkJ2djd9++63SfVdV7969cd9991nExo0bB6DsaqtsxYoVKCwsxLhx49CiRQsl7uXl5fDVZnO21m9gYKDy3z/++CNOnTqFBx98EIMGDbJqa74OFi1aBKDsLc06deoo8bp16ypXNF1ZkzJfX1+8/fbb0Giun64TExOh0+ksxqoyX375JQoLCzFz5kyEh4dbPDZy5Eh06NABS5YsUWLOrquqmDFjhsUV8bCwMEyaNAnFxcUWucgee+wxtGvXzqFtO3NMOzs29qSmpmLz5s1ITExEQkKCxWMtWrTAo48+qrxrUN5//vMfi7Ho378/wsPDHZ7jDz/8EAAwf/58+Pr6KnFJkvDWW29BkiSbH6twRGlpKebPn486depg9uzZVley69Spg9q1a1dp25Wp7JitTFXHZejQoRgwYEAVMi7b1/Tp0/Hee+9h/fr1GDhwIJKTk916xbkm4Vv/5JC77roLL730EiZMmIC1a9di0KBB6NOnDyIjI6u0vdjYWIfesi2vV69eVrHw8HA0btwY+/fvd/it4PK2b98OAA6/xVbewYMHcfXqVfTr18/m3QD69euHNWvWIC0tzaoPHTt2tGov/xLNz8+vdN+7d+8GYHtsbMV27NgBo9GI4uJim5/pO3z4sNKnO++8s9L9V4Wjfa6ob926dYNO59gpbOTIkfjvf/+Lrl274v7770f//v3Rq1cvqy9dObMOUlNTAcDmZ5XlL9KlpaU5lF9FWrRoYVUE6HQ61K9f36H1Idu6dSuAsi982Lo13dWrV5GTk4OcnBwEBQU5va6cpdPp0K1bN7vblsfXXJcuXRzevjNz6ezYVLadc+fO2Ty2Dh48qPy/+dvAAQEBaNq0qVX7sLAwbNmypdL85X37+vriiy++sPm4j4+Psn9nHTx4EBcvXsSAAQNuWLHl6DFbmaqOizNrrbyUlBQAZRcFtmzZgsmTJ6NDhw745ZdfLC60kGNYqNZwp0+fBgAEBwdX2C4iIgJbt27FtGnT8Msvv+D7778HUPbt93//+9/Kh8UdVb9+/Srla+959evXx7Fjx3Dx4kWnXm3LCgoKAACNGjWqUl7y55fs5SdfMbX1OSd/f3+rmFyAOfIFCDl386teMlv5yPfz+/PPP21e4ZUVFRVVuu+qcrTPFfVNq9U6PNf33nsvVqxYgffeew+ffPIJPvroI0iShH79+uH//u//lM+zObMOCgsLodFobB479evXhyRJLn2uTWZrrICy8XLmCzLyvH/00UcVtisqKkJQUJDT68pZQUFBFleJy29b3n9V9+vMXDo7NpVtZ+XKlcrnEu1tx5z5FXlzOp3O4S9VXrhwAaWlpRXet7mqx7Sr58eqcPSYrUxVx8Vda/yuu+5CXFwcmjdvjkcffRTbtm1zebs1Dd/6r+Hkb2B27ty50rZt27bFsmXLcOHCBWzZsgWvvfYazp49i/vuu6/CgseWqt6U/Ny5c3bjkiTBz88PAJRfgKWlpVZtbf0CDAgIAACcOnWqSnnJxYS9/M6ePWvRzp3kX3Lnz5+3esxWPnIOzz//PIQQdv+ZfyHHHmfH2VkV9c1oNDr1beyhQ4diw4YNyMvLw6+//opHHnkE69evx6BBg5Qrk86sA39/f5hMJmRnZ1s9dv78eQghLOa7useqMnIue/furXDe5be+nV1XzsrJybFZhMnbtlW8OXPecHYuAcfHprLtfPDBBxVuJzEx0eF+OMrf3x+BgYEV7jcrK6tK23b1/AhUbf07csxWpqrj4s4/nNG4cWO0atUKO3bswOXLl9223ZqChWoNdujQIXz//fcwGAy4++67HX6el5cXunbtiunTp2POnDkQQuDnn39WHpc/v+SO26GU98cff1jF/vrrL5w4cQJt2rRR3vaX356ydWKt6C3F1atXVymvli1bwtvb2+6JSH5B4OhVAGfExsYCsD02tmKdO3eGJEkOv6VYEWfH2VkV9W3Lli02f+lVxs/PD4MGDcL8+fMxZswYnDt3TrnK4cw6aN++PQDYvN2Orfmu7rECKj725G+aOzrvzq4rZ5WWltrMRd62PL5V5cxcOjs21b2dqu47NzdX+eiOO0VHR8Pf3x87duyo9DZU9riy/is6ZoGyItje75vqHBdnnDlzBpIkVXqnCrLGQrWG+vPPP5GQkIDi4mJMnjy50rd0du7cafNtTPnqh/nthOQvV5nfm9VdvvzyS+zZs0f5WQiBl19+GUaj0eLWJNHR0fDz88NPP/1k8afrzp07hzfeeMNqu507d0bnzp2xceNGfPrpp1aPV3YlQa/XY9SoUcjJycHMmTMtHktOTsaqVavQrFkz9OjRw9GuOuz++++HVqvFe++9Z3H1q7Cw0GZfGzRogBEjRmDz5s2YNWuWcg9cc9u2bXPolb98Jb78l4aWLVum3NPTFUOHDoW/vz+++OILHDp0SIlfu3bNqS/0bNy40eYvMnm85PX7j3/8A2FhYfj666+xatUqq/bm60C+KjZ9+nSLY6OgoEB5m9H8ylnHjh0hSRKWLFlicR/Sw4cPu+U2VkDFx97YsWPh5+eHV155Bfv377d6/PLly8pnLAHn11VVvPzyyygpKVF+PnnyJGbPng2DwYCRI0e6tG1njmlnx8aeLl26ID4+HosXL8Z3331n9bjJZHLLcWHLxIkTAZR9KdHWOw1nz56t8m3FdDodxo8fj4KCAkyaNMnqWCooKMClS5cq3IZ8rvjyyy8trqRv2bIF33zzjVV7R49ZoGzdnzx50uZ+q3NczJ05c8bm7wkhBKZNm4Zz586hf//+MBgMLu+rpuFnVG9xR44cUT7UX1JSovwJ1b1790Kr1eLVV1916C3er776CvPmzUPv3r0RFRUFf39/HDhwAL/88gvq1auHsWPHKm1vu+02LFu2DMOHD8fgwYPh7e2N2NhY3HXXXS73JyEhAd26dcPIkSMRHByMtWvXIiUlBV27drW476Jer8fTTz+NGTNmoEOHDsq36P/3v/+hT58+Nr8w8c0336Bv37547LHH8NVXX6Fbt264evUq9u/fj9TU1ErfZn777bexYcMGvPHGG9i8eTPi4+Nx7NgxLF26FLVq1cKCBQtsfibPVc2aNcNrr72GqVOnIiYmBiNGjIBOp8MPP/yAmJgYm3cO+Pjjj5GRkYEXX3xR6WtAQABOnDiBlJQUHD58GGfOnKnwz8QCZYVkVFQUFi5ciBMnTqB9+/ZIT0/H77//jjvuuAO//PKLS32rU6cO5syZgzFjxqBz584YOXIk6tSpg59//hk+Pj4Wd0uoyMSJE3H69Gn07NkTERERkCQJmzZtwvbt29G1a1fl/rYGgwHff/89Bg0ahMGDB2PQoEGIjY1FYWEh0tLScPnyZeXqT+/evfH000/jgw8+QNu2bTF8+HAIIfDDDz/g5MmTmDhxInr37q3kEBoailGjRuHbb79Fx44dMWjQIJw/fx7Lly/HoEGD8MMPP7g0VkDFx15wcDAWL16Me++9F7GxsRg0aBBatmyJ4uJiHDt2DBs2bED37t2RnJwMoGrryhkNGzZEUVERYmJicNdddyn3Uc3NzcWcOXPc8nlIR49pZ8emIosXL0a/fv0wcuRIvP/+++jQoQN8fHxw/PhxbNmyBdnZ2S7/wQRbBg0ahClTpuD1119Hs2bNMGjQIISHhyM3NxdHjhzBH3/8gTfeeAOtWrWq0vb//e9/Y+vWrfjqq6+wdetWDB48GAaDAZmZmUhOTsamTZsqfMeoa9eu6NGjB37//Xd069YNvXv3xl9//YUff/wRd911F5YvX27R3tFjFihb999//z2GDRuG9u3bQ6vV4h//+AdiYmKqfVxkGRkZuP3229G1a1c0b94c9evXR05ODv744w9kZGQgNDS00s9Akx3uv+MVqYH5/Urlfz4+PqJhw4aiX79+YsqUKeLIkSM2n2vr/npbt24V48ePF23bthUBAQHCx8dHNG/eXDz11FPir7/+snj+tWvXxIsvviiaNGkidDqdxT1L7d3D1FxF91Fdt26d+PTTT0WbNm2EwWAQDRs2FJMmTRKFhYVW2zEajWLatGmicePGQq/XixYtWojZs2eLzMxMuzmcPXtWTJo0SURGRgq9Xi/q1asn4uPjxXvvvWfRDnbu25ednS0mTpwowsPDhZeXlwgKChL//Oc/xd69e63aOnsP0sp8+umnonXr1kKv14uwsDDxwgsviMuXL9vN9fLly+Kdd94RHTt2FL6+vsLHx0c0bdpUDBs2THz55Zfi2rVrDu03KytLDBs2TPj5+QlfX1/Rv39/sWPHjgrvo+rM/W2FEGL58uWiY8eOwmAwiJCQEPHII4+ICxcuVLpWZEuWLBEjRowQUVFRolatWqJOnToiNjZWvP322xb3f5QdOXJEPPzwwyIsLEx4eXmJkJAQ0bdvX/Hll19atf3iiy9E586dRa1atUStWrVE586dxRdffGFzrC5fviwmTpwo6tevLwwGg4iJiRHffPNNhfdRtXd/SFt9r+jYkx08eFA8/PDDIjw8XOj1elG3bl3Rrl07MXHiRLF9+3ar/Ti7rhwh537hwgXx2GOPKeMRGxsrvv32W6v2lR0PFa0rR49pIZwfG3suXLggXn31VdG2bVvh4+MjateuLZo3by7uv/9+8d///tfmWNhS0X1x7VmzZo246667RHBwsPDy8hINGjQQ3bp1E6+//ro4fvy40s7Z+6gKUXaf4XfffVfExcUp/WrdurV4/vnnRV5eXqV55+TkiIceekjUq1dP+Pj4iK5du4pVq1bZvI+qM8fsmTNnxIgRI0RQUJDQaDQ271fs6LhUdL/jipw5c0a8+OKLIj4+XgQHBwudTif8/PxEhw4dxJQpU6zuN06Ok4Sw8b4fERFRNZH/HKW9P5lLRCTjZ1SJiIiISJVYqBIRERGRKvHLVERE5JIVK1Y49Fe4+vbta/MveRER2cNClYiIXLJixQosWrTIobZ9+/blZ1OJyGH8MhURERERqdItdUXVZDLh9OnT8PPzc+ufPyMiIiIi9xBC4OLFiwgNDa30/uK3VKF6+vRpNG7c2NNpEBEREVElTpw4gbCwsArb3FKFqp+fH4Cyjvv7+3s4m5vLtWvXsHr1agwcOBBeXl6eTuemx/F0L46ne3E83Yvj6V4cT/dT25gWFhaicePGSt1WkVuqUJXf7vf392eh6qRr166hVq1a8Pf3V8UivtlxPN2L4+leHE/34ni6F8fT/dQ6po58TJP3USUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpkuoK1VOnTuHBBx9EYGAgfHx80K5dO6SkpHg6LSIiIiK6wXSeTsBcXl4eevTogX79+uHXX39FcHAwDh8+jLp163o6NSIiIiK6wVRVqL799tto3LgxFixYoMSaNm3qwYyIiIiIyFNUVaj+9NNPSEhIwL333osNGzagUaNGePLJJ/Hoo4/abF9cXIzi4mLl58LCQgBAaWkpSktLAQAajQYajQYmkwkmk0lpK8eNRiOEEJXGtVotJElStmseBwCj0ehQXKfTQQhhEZckCVqt1ipHe/Hq6JOcj9FohE6n82ifjh8/jpycHKW9JEkQQljkXlncfNtyHIBFWzkeFBSERo0aubVP5s/j2nO9T/JzjUajMpc3e588PU/m43mr9MlT82Q+nl5eXrdEnyrLvTr7ZL7/W6VPco6enCd5W+bHvKf6VL59RVRVqGZmZmLu3Ll47rnn8PLLL2PHjh2YOHEi9Ho9EhMTrdrPnDkT06dPt4qnpqbC19cXABAcHIyoqChkZWUhOztbaRMWFoawsDAcOnQIBQUFSjwyMhIhISHYt28frly5osRbtmyJgIAApKamWgx8TEwM9Hq91edoO3XqhJKSEuzZs0eJabVadO7cGQUFBTh48KAS9/HxQWxsLHJycpCZmanE69Spg1atWuH06dM4efKkEq+OPsmLJjU1FbGxsR7r065du/DT//4H099j/Mcff2Djxo0YNWoUIiMjlfYrV65EWloaxo8fj6CgICW+ePFiZGZmIikpCXq9XonPmzcPhYWFSEpKsujTrFmzEFK/Pr5ctAg+Pj5u65P5gcy153qf4uLiAJStT7lQvdn75Ml5Onr0qMV43gp98uQ8ycd7eno62rdvf0v0SeaJeTI/f94qfQI8O09nzpxRxlOSJI/3KTU1FY6SRPlLTB6k1+vRqVMnbN68WYlNnDgRO3bswJYtW6za27qi2rhxY+Tm5sLf3x/ArfNKqLpf3ZWWlmLVqlVISEiAwWDwWJ927tyJ7t27Y/jU2QiOaAYBQECCBpbL1F68bIv24tbfHjybdQRLpzyJ7du3K8WQO/okj+cdd9xh8WrWvK9ce473yWQy4ddff0VCQoJyxf9m75Mn5+nq1avK8a7T6W6JPnlynszPn97e3rdEnyrLvTr7ZH7+NH8H5Wbuk5yjp+apuLgYycnJVse8p/qUl5eHwMBAFBQUKPWaPaq6otqwYUO0bt3aItaqVSv88MMPNtsbDAalqDKn0+ksfpkB1we5PHnQHI2X325V4pIk2Yzby9HZeFX6JC88edHZy91e3F19kiQJJSUlCIxojoatYm3u351MKPv4gEajscrflT7ZOsDL49pzPPdr164p23HnPDkSv5Xnqfx43gp9cjTuzj6Znz+rkrsa++RojtXRJ/Pz563Sp8pydDZelT7JOZk/T019skdVt6fq0aMHMjIyLGKHDh1CeHi4hzIiIiIiIk9RVaH67LPPYuvWrZgxYwaOHDmCb7/9FvPnz8eECRM8nRoRERER3WCqKlQ7d+6M5cuXY/HixWjbti1ef/11vP/++3jggQc8nRoRERER3WCq+owqANx555248847PZ0GEREREXmYqq6oEhERERHJWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqpqlCdNm0aJEmy+NeyZUtPp0VEREREHqDzdALltWnTBr/99pvys06nuhSJiIiI6AZQXRWo0+nQoEEDT6dBRERERB6mukL18OHDCA0Nhbe3N7p164aZM2eiSZMmNtsWFxejuLhY+bmwsBAAUFpaitLSUgCARqOBRqOByWSCyWRS2spxo9EIIUSlca1WC0mSlO2axwHAaDQ6FNfpdBBCWMQlSYJWq7XK0V68Ovok52M0GpWr2J7okxACer0eGghIJiOEJAGSBpIwAWa5C0kDSJL9uMkyRyGVfcpFEiZYEpAkCSaTyWJuXe2T+fO49lzvk/xco9EISZJuiT55ep7Mx/NW6ZOn5sl8PL28vG6JPlWWe3X2yXz/t0qf5Bw9OU/ytsyPeU/1qXz7iqiqUI2Pj8fChQsRHR2NM2fOYPr06ejVqxf27dsHPz8/q/YzZ87E9OnTreKpqanw9fUFAAQHByMqKgpZWVnIzs5W2oSFhSEsLAyHDh1CQUGBEo+MjERISAj27duHK1euKPGWLVsiICAAqampFgMfExMDvV6PlJQUixw6deqEkpIS7NmzR4lptVp07twZBQUFOHjwoBL38fFBbGwscnJykJmZqcTr1KmDVq1a4fTp0zh58qQSr44+yYsmNTUVsbGxHuvTpUuXkJSUhAjDVXjnZKDQNxiFvsEILDgB75IipX2eX0MU+dRF/bws6Eqvv1jJCWiCq/raCL1wGJLZwXe2XhSMGh0a5WRY9Ok0gMDAQOTm5ir9dUefzA9krj3X+xQXFwegbH3KherN3idPztPRo0ctxvNW6JMn50k+3tPT09G+fftbok8yT8yT+fnzVukT4Nl5OnPmjDKekiR5vE+pqalwlCTMV4TK5OfnIzw8HO+99x4efvhhq8dtXVFt3LgxcnNz4e/vD+DWeSVU3a/uSktLsWrVKiQkJMBgMHisTzt37kT37t3x+IKVCI1uV+1XVE9m7MVHDw7E9u3blWLIHX2Sx/OOO+6weDVb0XzU1LXnSO4mkwm//vorEhISLD63fjP3yZPzdPXqVeV41+l0t0SfPDlP5udPb2/vW6JPleVenX0yP3+av4NyM/dJztFT81RcXIzk5GSrY95TfcrLy0NgYCAKCgqUes0eVV1RLS8gIAAtWrTAkSNHbD5uMBiUosqcTqez+hKWPMjlyYPmaNzel7uciUuSZDNuL0dn41Xpk7zw5EVnL3d7cXf1SZIklJSUwAQJQnM937IC1DoXu3GN7b4KqXxcghACGo3GKn9X+mTrAC+Pa8/x3K9du6Zsx53z5Ej8Vp6n8uN5K/TJ0bg7+2R+/qxK7mrsk6M5VkefzM+ft0qfKsvR2XhV+iTnZP48NfXJHlXdnqq8S5cu4ejRo2jYsKGnUyEiIiKiG0xVheoLL7yADRs24NixY9i8eTPuvvtuaLVajBo1ytOpEREREdENpqq3/k+ePIlRo0YhNzcXwcHB6NmzJ7Zu3Yrg4GBPp0ZEREREN5iqCtUlS5Z4OgUiIiIiUglVvfVPRERERCRjoUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqqTaQvWtt96CJEl45plnPJ0KEREREXmAKgvVHTt2YN68eYiJifF0KkRERETkIaorVC9duoQHHngAn376KerWrevpdIiIiIjIQ3SeTqC8CRMmYMiQIRgwYADeeOONCtsWFxejuLhY+bmwsBAAUFpaitLSUgCARqOBRqOByWSCyWRS2spxo9EIIUSlca1WC0mSlO3KTp06hZycHIu2ACBJEgBYxTUaDYQQFnFJkiBJksPxoKAgREREuLVPRqMRAGA0GqHT6ZT/NqfVam3GdTodhBAWcUmSoNVqrXK0F5dzFEJAr9dDAwHJZISQJEDSQBImwCx3IWkASbIfN1nmKKSy12SSMMGSgCRJMJlMFnPrap/Mn1dda8/efNyIeaqsTydPnkROTk6la9t8G3IcsD5u5J9TU1Oh0Vx/fS2vmcDAQISFhVVrnyqL32zzJO9bkqRbpk+emifz8fTy8rol+lRZ7tXZJ/P93yp9knP05DzJ2zI/5j3Vp/LtK6KqQnXJkiXYtWsXduzY4VD7mTNnYvr06Vbx1NRU+Pr6AgCCg4MRFRWFrKwsZGdnK23CwsIQFhaGQ4cOoaCgQIlHRkYiJCQE+/btw5UrV5R4y5YtERAQgNTUVGXgr1y5gocSE3H+3DkkJSVZ5DBr1iz4+/tj/PjxSqykpASzZs1CZGQkRo0apcRzcnIwb948xMXFYciQIUo8MzMTixcvRu/evdGrVy8lvv/AAcx+/31cu3bNbX2SF01qaipiY2Oh1+uRkpJi0adOnTqhpKQEe/bsUWJarRadO3dGQUEBDh48qMR9fHwQGxuLnJwcZGZmKvE6deqgVatWOH36NE6ePKnE5Xm6dOkSkpKSEGG4Cu+cDBT6BqPQNxiBBSfgXVKktM/za4gin7qon5cFXen1Fys5AU1wVV8boRcOQzI7+M7Wi4JRo0OjnAyLPp0GEBgYiNzcXKW/7uiT+YFcHWsPAGJiYjw2TxX16ezZs1i3fj1MRiNWrlyJtLQ0jB8/HkFBQUr7xYsXIzMzE0lJSdDr9Up83rx5KCwstDqePvzwQyxatAg///yzclI1P54eePBB9OvbFz4+PtXSp1ttno4ePQqg7HiXJOmW6JMn50k+3tPT09G+fftbok8yT8yT+fnzVukT4Nl5OnPmjDKekiR5vE+pqalwlCTKX7rwkBMnTqBTp05Ys2aN8tnUvn37Ii4uDu+//77N59i6otq4cWPk5ubC398fQPW+EkpLS0OXLl1w7+sfo0HTZha5yXsq/9kKEyQAwmZcgoBUSTz72BEsnfo0tm3bhri4OLf1qbS0FKtWrUJCQgIMBgMAz7xi3blzJ7p3747HF6xEaHS7ar+iejJjLz56cCC2b9+OuLg4t/VJHs877rjD4tVsRfOh1lfhzl5ZSE1NRY8ePTB86mwERTSDgAQNLE8zZc+0F7c+biQI9PO9jA1FtWA0O0pMkJCddRjL/z0Jf/75J+Li4mrs1RJn+nT16lXleNfpdLdEnzw5T+bnT29v71uiT5XlXp19Mj9/yu+y3Ox9knP01DwVFxcjOTnZ6pj3VJ/y8vIQGBiIgoICpV6zRzVXVHfu3Inz58+jQ4cOSsxoNGLjxo348MMPUVxcrHRQZjAYlKLKnE6nU96+lsmDXF75bVYWN9+u/LZjSNPmaNgq1n7n3MgEyepjDeVVpU/ywpMXnRy31748SZJsxu3laC8uSRJKSkpgggShuZ5vWQFqnYvduMZ2X4VUPl72trRGo7HK35U+2TrAy3Nl7VU17q55qqhPGo0GJSUlCIxojlA3HRcaUylwchsaRLeDSWOdf0lJidUcurNPttzs8yT/v/l+boU+ORp3Z5/Mz59VyV2NfXI0x+rok/n581bpU2U5OhuvSp/knBw5T3qiT/aoplDt378/9u7daxEbO3YsWrZsiX/96192B4eIiIiIbk2qKVT9/PzQtm1bi5ivry8CAwOt4kRERER061Pd7amIiIiIiAAVXVG1Zf369Z5OgYiIiIg8hFdUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFTJ5W/9nz17Fp9//jl27dqFgoICiz/FBZT99YS1a9e6uhsiIiIiqmFcKlT37NmDvn374sqVK4iOjsbevXvRunVr5Ofn49SpU4iKikLjxo3dlSsRERER1SAuvfU/efJk1K5dGxkZGfjtt98ghMDs2bNx4sQJfPfdd8jLy8Nbb73lrlyJiIiIqAZxqVD9888/MX78eDRp0gQaTdmm5Lf+7733XjzwwANISkpyPUsiIiIiqnFcKlRNJhPq168PAAgICIBWq8WFCxeUx9u1a4edO3e6liERERER1UguFapNmzZFVlZW2YY0GjRt2hS//fab8vjmzZsREBDgUoJEREREVDO5VKgOHDgQS5cuVX5+4okn8Nlnn2HAgAHo378/Fi1ahPvvv9/lJImIiIio5nHpW/+vvPIKRo0ahWvXrsHLywvPPPMMioqK8MMPP0Cr1WLKlCl4+eWX3ZUrEREREdUgLhWqdevWRceOHZWfJUnCq6++ildffdXlxIiIiIioZuNfpiIiIiIiVXLqiuq4ceMgSRLmz58PrVaLcePGVfocSZLw+eefVzlBIiIiIqqZnCpUf//9d2g0GphMJmi1Wvz++++QJKnC51T2OBERERGRLU4VqseOHavwZyIiIiIid+FnVImIiIhIlVwqVHft2oWPP/7Y7uMff/wx0tLSXNkFEREREdVQLhWqr7zyisVfoirv999/562qiIiIiKhKXCpUd+7ciV69etl9vFevXkhJSXFlF0RERERUQ7lUqF68eBE6nf3vY2k0GhQUFLiyCyIiIiKqoVwqVJs3b47Vq1fbfTw5ORmRkZGu7IKIiIiIaiiXCtWHH34YK1euxHPPPYf8/Hwlnp+fj2effRbJycl4+OGHXc2RiIiIiGogp+6jWt7EiRORlpaG999/H3PmzEFoaCgA4PTp0zCZTBg9ejSeffZZtyRKRERERDWLS4WqJElYsGABHnroIfzwww/IzMwEAAwdOhTDhw9H37593ZEjEREREdVALhWqsn79+qFfv37u2BQREREREQD+ZSoiIiIiUimXClUhBObNm4cuXbogKCgIWq3W6l9Ft68iIiIiIrLHpSryxRdfxHvvvYe4uDg8+OCDqFu3rrvyIiIiIqIazqVCddGiRRg+fDi+//57d+VDRERERATAxbf+r1y5ggEDBrgrFyIiIiIihUuFav/+/bFjxw535UJEREREpHCpUP3444+xdetWzJgxA7m5ue7KiYiIiIjItUI1OjoamZmZmDJlCkJCQuDr6wt/f3+Lf3Xq1HFXrkRERERUg7j0Zarhw4dDkiR35UJEREREpHCpUF24cKGb0iAiIiIissS/TEVEREREquRyoXr8+HE8/vjjiI6ORt26dbFx40YAQE5ODiZOnIjU1FSXkyQiIiKimselt/4PHDiAXr16wWQyIT4+HkeOHEFpaSkAICgoCJs2bUJRURE+//xztyRLRERERDWHy39CNSAgAFu3boUkSQgJCbF4fMiQIfjuu+9cSpCIiIiIaiaX3vrfuHEjnnjiCQQHB9v89n+TJk1w6tQpV3ZBRERERDWUS4WqyWRCrVq17D6enZ0Ng8Hgyi6IiIiIqIZyqVDt0KEDVq5cafOx0tJSLFmyBF27dnVlF0RERERUQ7lUqL700ktITk7GE088gX379gEAzp07h99++w0DBw5Eeno6Jk+e7JZEiYiIiKhmcenLVIMHD8bChQsxadIkzJ8/HwDw4IMPQggBf39/fPnll+jdu7dbEiUiIiKimsWlQhUARo8ejXvuuQerV6/GkSNHYDKZEBUVhYSEBPj5+bkjRyIiIiKqgVwuVAHA19cXd999tzs2RUREREQEwMVC9fjx4w61a9KkiSu7ISIiIqIayKVCNSIiwub9U8szGo2u7IaIiIiIaiCXCtUvvvjCqlA1Go04duwYvvzyS4SEhGDChAkOb2/u3LmYO3cujh07BgBo06YNXnvtNQwePNiVNImIiIjoJuRSoTpmzBi7j/3rX/9CfHw8CgoKHN5eWFgY3nrrLTRv3hxCCCxatAhDhw5Famoq2rRp40qqRERERHSTccuXqWzx9fXF2LFj8Z///AcTJ0506Dl33XWXxc9vvvkm5s6di61bt9osVIuLi1FcXKz8XFhYCKDsjw2UlpYCADQaDTQaDUwmE0wmk9JWjhuNRgghKo1rtVpIkqRsFyj7y1xlV5QFJJPlxxuEVHaLWkmYLOMaLSCEZVySytrbjZsg/Z2LBgI6nU7Zv7v6JH88w2g0Ktsv/5ENrVZrM67T6SCEsIhLkgStVmuVo724nKMQAnq9Hpq/x1RIEiBpysbFLHchaQBJsh93cD4AAUmSYDKZLObW1T6ZP6861p4cL7+viuLunKeK+mQymZQ5hBDumae/nyuZjJBw/V0codECKFsz6enpyjEpSRKEEBbj6M54SUkJ9Hq9zfbm4yLHy7ogHIrLx4F5PCgoCBEREW6dJ6BsjUiSdMusPU8dT+bj6eXldUv0qbLcq7NP5vu/Vfok5+jJeZK3ZX7Me6pP5dtXpNoKVaDsF/TZs2er9Fyj0YilS5eiqKgI3bp1s9lm5syZmD59ulU8NTUVvr6+AIDg4GBERUUhKysL2dnZSpuwsDCEhYXh0KFDFld9IyMjERISgn379uHKlStKvGXLlggICEBqaqoy8AUFBQgMDIQGQKOcDIscTgVFQ2sqRYMLR5WY0GhwKqglvK8VISj/+hfRSnUGnK0XBd+r+ah78YwSv6r3RU5AOPwv58K/qCz3QMNVJCQkAIBb+yQvmtTUVMTGxkKv1yMlJcWiT506dUJJSQn27NmjxLRaLTp37oyCggIcPHhQifv4+CA2NhY5OTnIzMxU4nXq1EGrVq1w+vRpnDx5UonL83Tp0iUkJSUhwnAV3jkZKPQNRqFvMAILTsC7pEhpn+fXEEU+dVE/Lwu60usvVnICmuCqvjZCLxyGZHbwna0XBaNGZzVPpwEEBgYiNzdX6a87+mR+IFfH2gOAmJgYj81TRX3Kzc1V5vDK1Xy3zNOZelEAgNALRyD+LlTl40lTmIOkpCSkp6cjPT0dOTk5mDdvHuLi4jBkyBBlG5mZmVi8eDF69+6NXr16KfG0tDSsXLkSQ4YMQVxcnBL/448/sHHjRowaNQqRkZFKfOXKldi9Zw8ee/RRBAUFKfHFixcjMzMTSUlJ0Ov1SnzevHkoLCxEUlKSRZ9mzZoFf39/jB8/XomVlJRg1qxZiIyMxKhRo5R4fn4+XnzxRXh7e7tlno4eLTsvpaamQpKkW2bteep4ko/39PR0tG/f/pbok8wT82R+/rxV+gR4dp7OnDmjjKckSR7vU2pqKhwlifIv592gsLAQGzduxLhx49CsWTNs3rzZ4efu3bsX3bp1w9WrV1G7dm18++23uOOOO2y2tXVFtXHjxsjNzYW/vz+A6n0llJaWhi5dumDC16sRFt3OIrfquqJ6OmMvPk4cjG3btiEuLs5tfSotLcWqVauQkJAAg8EAwDOvWHfu3Inu3bvj8QUrERrdrtqvqJ7M2IuPHhyI7du3WxQprvZJHs877rjD4tVsRfOh1lfhzl5ZSE1NRY8ePfD4gpVo2DLWLfMkCROiT23HodBOMGmuv74WGi3SflmG5f+ehOFTZyM4ohkAwAQJklLSXmcrLgCICuIaWJ4iD27+Has/momRb85FyN/7K9s2ABvt5Z6U/zOA9uNl79LI8exjR7Bs2kRs3brV6piv6jxdvXpVOd51Ot0ts/Y8dTyZnz+9vb1viT5Vlnt19sn8/Fn+ezA3a5/kHD01T8XFxUhOTrY65j3Vp7y8PAQGBqKgoECp1+xx6YqqRqOx+61/IQSaNGmCjz/+2KltRkdHIy0tDQUFBVi2bBkSExOxYcMGtG7d2qqtwWBQiipzOp1OefvaPFeNxvovxsqD5mjcfLvyW3SA9PdbkNaEZCMuSU7GNRB/D7MJktXHGhzNvaI+yQtPXnRy3F5769Qlm3F7OdqLy2+rmsqNaVlhY52L3bjD81H21q5Go7HK35U+2TrAy3Nl7VU17q55qqhPGo1GmUPIb2+7OE+SSSjtyz9HoOxKZGBEczRsFWtze+50NusIACDoBu3PBAnXrl0D4N55kv/ffD3c7GvPlhvRJ/PzZ1VyV2OfHM2xOvpkfv68VfpUWY7OxqvSJzmn8nWMWvpkj0uF6muvvWZVqEqShLp16yIqKgoDBw50KhkA0Ov1aNas7CpFx44dsWPHDsyePRvz5s1zJVUiIiIiusm4VKhOmzbNTWnYZzKZLN7eJyIiIqKawaVCtbS0FJcvX7b7+YLCwkLUqlXL4auqL730EgYPHowmTZrg4sWL+Pbbb7F+/XqsWrXKlTSJiIiI6CZk/cEEJ0ycOBHdu3e3+3iPHj3w/PPPO7y98+fP46GHHkJ0dDT69++PHTt2YNWqVbj99ttdSZOIiIiIbkIuXVFNTk7GQw89ZPfxf/7zn/j6668xe/Zsh7b3+eefu5IOEREREd1CXLqievr0aTRq1Mju46GhoTh16pQruyAiIiKiGsqlQjUwMBAZGRl2H09PT6/0/lhERERERLa4VKgOGjQI8+bNs/kXBnbt2oX58+dj8ODBruyCiIiIiGoolz6j+vrrryM5ORldunTBP/7xD7Rp0wYAsG/fPvzvf/9DSEgIXn/9dbckSkREREQ1i0uFamhoKFJSUjB58mT8+OOPWL58OQDA398fDzzwAGbMmIHQ0FC3JEpERERENYtLhSoANGzYEIsWLYIQAtnZ2QCA4OBgu39alYiIiIjIES4XqjJJkmAwGFC7dm0WqURERETkMpe+TAUAKSkpGDRoEGrVqoXAwEBs2LABAJCTk4OhQ4di/fr1ru6CiIiIiGoglwrVzZs3o2fPnjh8+DAefPBBmEwm5bGgoCAUFBRg3rx5LidJRERERDWPS4Xqyy+/jFatWuHAgQOYMWOG1eP9+vXDtm3bXNkFEREREdVQLhWqO3bswNixY2EwGGx+LrVRo0Y4e/asK7sgIiIiohrKpULVy8vL4u3+8k6dOoXatWu7sgsiIiIiqqFcKlS7du2KZcuW2XysqKgICxYsQJ8+fVzZBRERERHVUC4VqtOnT0dKSgqGDBmCX3/9FQCwe/dufPbZZ+jYsSOys7MxZcoUtyRKRERERDWLS/dRjY+Pxy+//IInnngCDz30EADg+eefBwBERUXhl19+QUxMjOtZEhEREVGNU+VCVQiBixcvonv37sjIyEBaWhoOHz4Mk8mEqKgodOzYkTf+JyIiIqIqq3KhWlJSgnr16mHGjBl48cUXERcXh7i4ODemRkREREQ1WZU/o2owGNCgQQMYDAZ35kNEREREBMDFL1ONGTMGX375JUpKStyVDxERERERABe/TNWuXTusWLECbdq0wZgxYxAREQEfHx+rdvfcc48ruyEiIiKiGsilQnXUqFHKf9u7DZUkSTAaja7shoiIiIhqIKcL1ZdffhkjR45ETEwM1q1bVx05ERERERE5X6i+9dZbaNu2LWJiYtCnTx/k5uYiJCQEa9aswW233VYdORIRERFRDeTSl6lkQgh3bIaIiIiISOGWQpWIiIiIyN1YqBIRERGRKlXpW//Hjh3Drl27AAAFBQUAgMOHDyMgIMBm+w4dOlQtOyIiIiKqsapUqE6ZMsXqdlRPPvmkVTshBG9PRURERERV4nShumDBgurIg4iIiIjIgtOFamJiYnXkQURERERkgV+mIiIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqZKqCtWZM2eic+fO8PPzQ0hICIYNG4aMjAxPp0VEREREHqCqQnXDhg2YMGECtm7dijVr1uDatWsYOHAgioqKPJ0aEREREd1gOk8nYC45Odni54ULFyIkJAQ7d+5E7969rdoXFxejuLhY+bmwsBAAUFpaitLSUgCARqOBRqOByWSCyWRS2spxo9EIIUSlca1WC0mSlO0CgMlkgiRJAAQkk9EiNyGVvQaQhMkyrtECQljGJamsvd24CdLfuWggoNPplP27q09GY1n+RqNR2b4cM29vK67T6SCEsIhLkgStVmuVo724nKMQAnq9Hpq/x1RIEiBpysbFLHchaQBJsh93cD4AAUmSkJ6ebpWPEMJivCRJgiRJDsXlbe3evVt5TBYcHIzw8HCX1p4cBzwzTxWtPZPJpMwhhHDPPP39XMlkhATpelijhQRYrBlnjqeyfZatMXvx8rnLe9eUO+6d7ZOj5wgNBLy8vJCenu7SmjSPy2sgNTUVGo3Gqn1QUBDCwsJu6No7efIkcnJyqtwnZ+P16tVDWFiYW/pkfv708vKyeTydOnUK2dnZ1don830GBQUhPDy8yn0y37Yj5wh3zp/5+bO8st+5QGBgoEPzd6POezfDuVzeliRJHu9T+fYVUVWhWl5BQQEAoF69ejYfnzlzJqZPn24VT01Nha+vL4CyoiAqKgpZWVnIzs5W2oSFhSEsLAyHDh1S9gMAkZGRCAkJwb59+3DlyhUl3rJlSwQEBCA1NVUZ+IKCAgQGBkIDoFGO5UcUTgVFQ2sqRYMLR5WY0GhwKqglvK8VISj/uBIv1Rlwtl4UfK/mo+7FM0r8qt4XOQHh8L+cC/+istwDDVeRkJAAAG7tk7xoUlNTERsbC71ej5SUFIs+derUCSUlJdizZ48S02q16Ny5MwoKCnDw4EEl7uPjg9jYWOTk5CAzM1OJ16lTB61atcLp06dx8uRJJS7P06VLl5CUlIQIw1V452Sg0DcYhb7BCCw4Ae+S61fW8/waosinLurnZUFXev3FSk5AE1zV10bohcOQzA6+s/WiYNTorObpUO55BAUHIz09Henp6QCAkpISzJo1C5GRkRg1atT1befkYN68eYiLi8OQIUOUeGZmJhYvXozevXujV69eAMoO6o4dO6J379647bbbEBcXp7Tfum0bvvj8cxQVFVV57QFATEyMx+aporWXm5urzOGVq/lumacz9aIAAKEXjkD8XSrKx1OAt85izThzPAFAkU8A8vxCUffSWfheyVfi9tbe6dp6AEBzfTECzPJ0tk+OniPqSAUY9/DDePDBBx1aewCQlpaGlStXYsiQIRZr748//sDGjRsxevRoDB8+HD///DNMJhNWrlyJtLQ0jB8/HkFBQdBotejXty/at29/Q9be/v37sW79epiMxir3adSoUYiMjFTi5fskW7x4MTIzMzF58mQMHDgQPj4+LvdJ/sWdnp6O9u3bWx1PkiSh3223oXOnTtXap6SkJOj1ZetTo9XiodGjERERUe3niMOHDyvz544+mZ8/n3rqKaVPADBv3jwUFhbiX5Mno1/fvsr8efq8p/Zz+ZkzZefC1NRUSJLk8T6lpqbCUZIwL41VxGQy4R//+Afy8/OxadMmm21sXVFt3LgxcnNz4e/vD6B6XwmlpaWhS5cumPD1aoRFt7PIrbquqJ7O2IuPEwdj27ZtiIuLc1ufSktLsWrVKiQkJMBgMADwzJW6nTt3onv37nh8wUqERrer9iuqu5KXY+mUJzHyjY8RHNFMiZtQdqW8/GdjTJAgKaWS/bgWAn18L2NdkS9MuH4VLvvYEXz/2lPYvn07YmNjb4pX4c5eWUhNTUWPHj3w+IKVaNgy1i3zJAkTok9tx6HQTjBprr++Fhot0n5ZhuX/nqSsmeq+opqavBzfvfoEJn6zpmx/VeyTo+eI3auWY9m0ibh76hzUb9qs0rUHAAKAqCDuBRP6+F7GhqJaMEJS4hoIZB87gh+mT8Kff/6Jjh073pC1t2vXLvTo0QPDp85GcESzKvVJA8tfZfbiJgDns45gxb/L+igXU670yfz86e3tbXV87N69G506dcJ9b8xF/abXzzPu7BPM4vIcbt68GR06dKj2c4T5/AVFNHO5T+bnz/IFirPzxyuqZfHi4mIkJycjISEBOp3O433Ky8tDYGAgCgoKlHrNHtVeUZ0wYQL27dtnt0gFAIPBoBRV5nQ6nfL2tUwe5PLkQXM0br5d+e1hQCr75WKDkGzEJcnJuAbi7yPeBMnqYw2O5l5Rn+SFJy86OW6vvXXqks24vRztxSVJQklJCUzlxrSsCLDOxW7cifkQQiAwojkatoq1+Zyq0JhKgZPbEBrd1qKwMuH6266urL2qxt01TxWtPY1Go8wh/l5Lrs6TZBJK+/LPEYDNNePI8eRIvHzu8inaan/y486cC+zFzXI3CuDatWsIadocoW5ao/L6bBDdzmJ9AmX9KikpUT4SANyYtVdSUuL249C+630sn1NV+mR+/gSsjw95HIOb3pj+yXMov61+I84R8vy5Y43aO3+aZenU/N2I854tajuXyzmVr2PU0id7VFmoPvXUU/j555+xceNGi8+gEBEREVHNoapCVQiBp59+GsuXL8f69evRtGlTT6dERERERB6iqkJ1woQJ+Pbbb/Hjjz/Cz88PZ8+eBVD2YWD5A9NEREREVDOo6j6qc+fORUFBAfr27YuGDRsq/7777jtPp0ZEREREN5iqrqiq9AYEREREROQBqrqiSkREREQkY6FKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKqkqkJ148aNuOuuuxAaGgpJkrBixQpPp0REREREHqKqQrWoqAixsbH46KOPPJ0KEREREXmYztMJmBs8eDAGDx7scPvi4mIUFxcrPxcWFgIASktLUVpaCgDQaDTQaDQwmUwwmUxKWzluNBohhKg0rtVqIUmSsl0AMJlMkCQJgIBkMlrkJqSy1wCSMFnGNVpACMu4JJW1txs3Qfo7Fw0EdDqdsn939cloLMvfaDQq25dj5u1txXU6HYQQFnFJkqDVaq1ytBeXcxRCQK/XQ/P3mApJAiRN2biY5S4kDSBJ9uMOzoeck6bcHLo6Txb7Lzd/5uNY1bUnx+XtOBJ35zxVtPZMJpMyhxDCPfNkNq4SpOthjRYSYLFmnJmnsn2WrTF78fK5y3u3WjNO9snRc4RWAry8vJRxcFufzMbT/HjSoOwYTE9PhxACkiRZzHXZbqW/0xEOxeVj2zwuSRIkSYIQAgcPHrw+h8Lklnmq8BwBKH2U++ZKn+RtpKWlQavVWvU1IyOjbFtWa8aNfTJbe/IcynnciHPE9WPe5HKfzMfI9vFU1j+TyaScFz193quOc/mpU6eQk5Pj9PFkKy5vOzU1FRqNxmb7oKAgNGnSpFr7JMfLt6+IqgpVZ82cORPTp0+3iqempsLX1xcAEBwcjKioKGRlZSE7O1tpExYWhrCwMBw6dAgFBQVKPDIyEiEhIdi3bx+uXLmixFu2bImAgACkpqYqA19QUIDAwEBoADTKybDI4VRQNLSmUjS4cFSJCY0Gp4JawvtaEYLyjyvxUp0BZ+tFwfdqPupePKPEr+p9kRMQDv/LufAvKss90HAVCQkJAODWPsmLJjU1FbGxsdDr9UhJSbHoU6dOnVBSUoI9e/YoMa1Wi86dO6OgoAAHDx5U4j4+PoiNjUVOTg4yMzOVeJ06ddCqVSucPn0aJ0+eVOLyPF26dAlJSUmIMFyFd04GCn2DUegbjMCCE/AuKVLa5/k1RJFPXdTPy4Ku9PqLlZyAJriqr43QC4chmZ1QztaLglGjs5qn3RIQGBiIdn/vz13zJOH6gVz30ln4XskHUDZ/PXr0AACX1h4AxMTEeGyeKlp7ubm5yhxeuZrvlnk6Uy8KABB64QjE36WiPE8B3jqLNePMPAFAkU8A8vxCLeYJgN21d7q2HgDQXF+MALM8ne2To+cIv8Z14T9uHAC4rU/1Ck9bjKf58VRHKkBSUhLS09Px2muvITMzE0lJSdDr9cp25s2bh8LCQiQlJVn0adasWfD398f48eOVWElJCWbNmoXIyEiMGjXq+njl5GDevHmIi4vDkCFDlDlEwQm3zFNF54iLOecwadIkpKenIz093eU+aTQadOzYEYsWLcJHH32k9EkmH1sh2lKLdeDOPpmvvUDDVSQlJcFoNMJoNFb7OcL8mDdeOutyn8zPn7aOJw2ApKQk5ObmKn3z9HnP3efyK1eu4O577oGXTlel40mWmZmJxYsXo3///nj66afx888/w2QyIS0tDStXrsSQIUMQFxcHANBotbjn7rsRFxdX7b+fUlNT4ShJlC/VVUKSJCxfvhzDhg2z28bWFdXGjRsjNzcX/v7+AKr3lVBaWhq6dOmCCV+vRlh0O4vcquuK6umMvfg4cTC2bduGuLg4t/WptLQUq1atQkJCAgwGAwDPXKnbuXMnunfvjscXrERodLtqv6K6K3k5lk55Ek9/vRqhZnPo8pVvUylanE5BRlg8TJLGYv4+emgQtm/fjtjY2Fvyimpqaip69OiBxxesRMOWsW6ZJ0mYEH1qOw6FdoJJc/31tdBokfbLMiz/9yRlzVT3FdXU5OX47tUnMPGbNZZrppquqO5etRzLpk3E+IW/olHLGLf0SWssQYtTO5TxND+edif/Fz9Mn4ThU2cjMKIZgLJ3HMzJGZT/7Jj9eNk7T7biEgSObFmPtfNnlc1hy5hqv6Ka+usPWPHvsj4GRzRzuU9aCPTxvYwNRbVwDZqyK6dmbQ9tWYfkD2fg6W/WoJHFmqmeK6qnM/bik7FDsHnzZnTo0KHazxG7du0yO+ZjXO6T+fnTciTL2p86uBvzxw7Bn3/+qRRZnj7vuftcnpaWhs6dO2PEG3PRoGkzi/aVHU+SjbgOJvT9e40a/34pIMzaZx87gh+mT8LmzZvRsWPHar+impeXh8DAQBQUFCj1mj039RVVg8GgFFXmdDqd8va1TB7k8uRBczRuvl358jsglf1ysUFINuKS5GRcA/H3yjNBsvpYg6O5V9QneeHJi06O22tvnbpkM24vR3txSZJQUlICU7kxLTuZWediN+7EfAghrPb3dzJVnidh/ou93PzJB64ra6+qcXfNU0VrT6PRKHMI+W1TF+dJMgmlffnnCMDmmnFknhyJl89dnlmbawbOrT27cbPcjQK4du2aVdyR3CvsE6zHU0gaGEXZeAZGNEejVrE2c3a3c1lHrs/h37m5Ok+VxeU+NnRDHzWmUuDkNjSIbmfxQkp2NutIWS72fle4qU/ytk0oO4/Kb+/eiHPE9WO+4vlzpE/m50/bx1NZ/zQajVWunjrv2eLKuVzeT0jTG7NGzdcM4JnfT/ao6stUREREREQyFqpEREREpEqqeuv/0qVLOHLkiPJzVlYW0tLSUK9ePTRp0sSDmRERERHRjaaqQjUlJQX9+vVTfn7uuecAAImJiVi4cKGHsiIiIiIiT1BVodq3b1+r+4URERERUc3Ez6gSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVVJlofrRRx8hIiIC3t7eiI+Px/bt2z2dEhERERHdYKorVL/77js899xzmDp1Knbt2oXY2FgkJCTg/Pnznk6NiIiIiG4gnacTKO+9997Do48+irFjxwIAPvnkE6xcuRJffPEFJk+ebNG2uLgYxcXFys8FBQUAgAsXLqC0tBQAoNFooNFoYDKZYDKZlLZy3Gg0QghRaVyr1UKSJGW7AFBYWAgAOJW+B9cuX7LITX6mVK5/ApLyv+XjEgTKKx/PPZ4JrVaLnTt34uLFixY5SpIESZIghHAqLo/N5cuX8ccff0Cr1Zbt+++28vhJkmQRNx8zZ/dpL56RkQEvLy+cPXh9TB0dm7IYALtx6/nIPnYYACz2J2/blXnSQqCx7xVkpW6zaJ17PBMajaZK82e+fuU4YD0f5ePy/LlzniqKHzp0yGIO3TFP0t/j+VfqVhjNHhWQkHPssEtrxtl4zl9la+aM1Zpxrk+OniMuHD8KnU5n8zxT1T7pYLIaT7n9heNHlfEsuXypWvpUPkfzfdpbM1Xtq63cs22umar3ST7e/0rdilJorPZ54fgRAMBpm78r3NMn83nKPZ4JLy8vm+cZwP65o6rnCEeOeWf6ZO/8Kfc1+6/r/ZN/D9+I30+SJMFoNLq8HUfO5YcPl51nbNcXzv9+0lZwzAPX18zFixdRWFjoUm0kxwFYjJd5PC8vz6rP9kjCkVY3SElJCWrVqoVly5Zh2LBhSjwxMRH5+fn48ccfLdpPmzYN06dPv8FZEhEREZGrTpw4gbCwsArbqOqKak5ODoxGI+rXr28Rr1+/Pg4ePGjV/qWXXsJzzz2n/GwymXDhwgUEBgYqr1DIMYWFhWjcuDFOnDgBf39/T6dz0+N4uhfH0704nu7F8XQvjqf7qW1MhRC4ePEiQkNDK22rqkLVWQaDAQaDwSIWEBDgmWRuEf7+/qpYxLcKjqd7cTzdi+PpXhxP9+J4up+axrROnToOtVPVl6mCgoKg1Wpx7tw5i/i5c+fQoEEDD2VFRERERJ6gqkJVr9ejY8eOWLt2rRIzmUxYu3YtunXr5sHMiIiIiOhGU91b/8899xwSExPRqVMndOnSBe+//z6KioqUuwBQ9TAYDJg6darVRymoajie7sXxdC+Op3txPN2L4+l+N/OYqupb/7IPP/wQs2bNwtmzZxEXF4c5c+YgPj7e02kRERER0Q2kykKViIiIiEhVn1ElIiIiIpKxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhepNYu7cuYiJiVH+qkS3bt3w66+/Ko9fvXoVEyZMQGBgIGrXro3hw4db/eGE48ePY8iQIahVqxZCQkKQlJSE0tJSizbr169Hhw4dYDAY0KxZMyxcuNAql48++ggRERHw9vZGfHw8tm/fbvG4I7moyVtvvQVJkvDMM88oMY6nc6ZNmwZJkiz+tWzZUnmc4+m8U6dO4cEHH0RgYCB8fHzQrl07pKSkKI8LIfDaa6+hYcOG8PHxwYABA3D48GGLbVy4cAEPPPAA/P39ERAQgIcffhiXLl2yaLNnzx706tUL3t7eaNy4Md555x2rXJYuXYqWLVvC29sb7dq1wy+//GLxuCO5eFJERITV+pQkCRMmTADA9ekso9GIKVOmoGnTpvDx8UFUVBRef/11mH83m+vTORcvXsQzzzyD8PBw+Pj4oHv37tixY4fyeI0eT0E3hZ9++kmsXLlSHDp0SGRkZIiXX35ZeHl5iX379gkhhHj88cdF48aNxdq1a0VKSoro2rWr6N69u/L80tJS0bZtWzFgwACRmpoqfvnlFxEUFCReeuklpU1mZqaoVauWeO6558SBAwfEBx98ILRarUhOTlbaLFmyROj1evHFF1+I/fv3i0cffVQEBASIc+fOKW0qy0VNtm/fLiIiIkRMTIyYNGmSEud4Omfq1KmiTZs24syZM8q/7Oxs5XGOp3MuXLggwsPDxZgxY8S2bdtEZmamWLVqlThy5IjS5q233hJ16tQRK1asELt37xb/+Mc/RNOmTcWVK1eUNoMGDRKxsbFi69at4o8//hDNmjUTo0aNUh4vKCgQ9evXFw888IDYt2+fWLx4sfDx8RHz5s1T2vz5559Cq9WKd955Rxw4cEC8+uqrwsvLS+zdu9epXDzp/PnzFmtzzZo1AoBYt26dEILr01lvvvmmCAwMFD///LPIysoSS5cuFbVr1xazZ89W2nB9OmfEiBGidevWYsOGDeLw4cNi6tSpwt/fX5w8eVIIUbPHk4XqTaxu3bris88+E/n5+cLLy0ssXbpUeSw9PV0AEFu2bBFCCPHLL78IjUYjzp49q7SZO3eu8Pf3F8XFxUIIIV588UXRpk0bi33cd999IiEhQfm5S5cuYsKECcrPRqNRhIaGipkzZwohhEO5qMXFixdF8+bNxZo1a0SfPn2UQpXj6bypU6eK2NhYm49xPJ33r3/9S/Ts2dPu4yaTSTRo0EDMmjVLieXn5wuDwSAWL14shBDiwIEDAoDYsWOH0ubXX38VkiSJU6dOCSGE+Pjjj0XdunWVMZb3HR0drfw8YsQIMWTIEIv9x8fHi/Hjxzuci9pMmjRJREVFCZPJxPVZBUOGDBHjxo2ziN1zzz3igQceEEJwfTrr8uXLQqvVip9//tki3qFDB/HKK6/U+PHkW/83IaPRiCVLlqCoqAjdunXDzp07ce3aNQwYMEBp07JlSzRp0gRbtmwBAGzZsgXt2rVD/fr1lTYJCQkoLCzE/v37lTbm25DbyNsoKSnBzp07LdpoNBoMGDBAaeNILmoxYcIEDBkyxKrPHM+qOXz4MEJDQxEZGYkHHngAx48fB8DxrIqffvoJnTp1wr333ouQkBC0b98en376qfJ4VlYWzp49a9GPOnXqID4+3mJMAwIC0KlTJ6XNgAEDoNFosG3bNqVN7969odfrlTYJCQnIyMhAXl6e0qaicXckFzUpKSnB119/jXHjxkGSJK7PKujevTvWrl2LQ4cOAQB2796NTZs2YfDgwQC4Pp1VWloKo9EIb29vi7iPjw82bdpU48eThepNZO/evahduzYMBgMef/xxLF++HK1bt8bZs2eh1+sREBBg0b5+/fo4e/YsAODs2bMWJ1n5cfmxitoUFhbiypUryMnJgdFotNnGfBuV5aIGS5Yswa5duzBz5kyrxziezouPj8fChQuRnJyMuXPnIisrC7169cLFixc5nlWQmZmJuXPnonnz5li1ahWeeOIJTJw4EYsWLQJwfUwq62tISIjF4zqdDvXq1XPLuJs/XlkuarJixQrk5+djzJgxAHi8V8XkyZMxcuRItGzZEl5eXmjfvj2eeeYZPPDAAwC4Pp3l5+eHbt264fXXX8fp06dhNBrx9ddfY8uWLThz5kyNH09dtWyVqkV0dDTS0tJQUFCAZcuWITExERs2bPB0WjedEydOYNKkSVizZo3VK1iqGvlKCgDExMQgPj4e4eHh+P777+Hj4+PBzG5OJpMJnTp1wowZMwAA7du3x759+/DJJ58gMTHRw9nd3D7//HMMHjwYoaGhnk7lpvX999/jm2++wbfffos2bdogLS0NzzzzDEJDQ7k+q+irr77CuHHj0KhRI2i1WnTo0AGjRo3Czp07PZ2ax/GK6k1Er9ejWbNm6NixI2bOnInY2FjMnj0bDRo0QElJCfLz8y3anzt3Dg0aNAAANGjQwOqbo/LPlbXx9/eHj48PgoKCoNVqbbYx30ZluXjazp07cf78eXTo0AE6nQ46nQ4bNmzAnDlzoNPpUL9+fY6niwICAtCiRQscOXKE67MKGjZsiNatW1vEWrVqpXycQs61sr6eP3/e4vHS0lJcuHDBLeNu/nhluajFX3/9hd9++w2PPPKIEuP6dF5SUpJyVbVdu3YYPXo0nn32WeUdKq5P50VFRWHDhg24dOkSTpw4ge3bt+PatWuIjIys8ePJQvUmZjKZUFxcjI4dO8LLywtr165VHsvIyMDx48fRrVs3AEC3bt2wd+9ei4W8Zs0a+Pv7K78Qu3XrZrENuY28Db1ej44dO1q0MZlMWLt2rdLGkVw8rX///ti7dy/S0tKUf506dcIDDzyg/DfH0zWXLl3C0aNH0bBhQ67PKujRowcyMjIsYocOHUJ4eDgAoGnTpmjQoIFFPwoLC7Ft2zaLMc3Pz7e4IvP777/DZDIhPj5eabNx40Zcu3ZNabNmzRpER0ejbt26SpuKxt2RXNRiwYIFCAkJwZAhQ5QY16fzLl++DI3GsnzQarUwmUwAuD5d4evri4YNGyIvLw+rVq3C0KFDOZ7V8hUtcrvJkyeLDRs2iKysLLFnzx4xefJkIUmSWL16tRCi7JYmTZo0Eb///rtISUkR3bp1E926dVOeL99eZeDAgSItLU0kJyeL4OBgm7dXSUpKEunp6eKjjz6yeXsVg8EgFi5cKA4cOCAee+wxERAQYPFt2MpyUSPzb/0LwfF01vPPPy/Wr18vsrKyxJ9//ikGDBgggoKCxPnz54UQHE9nbd++Xeh0OvHmm2+Kw4cPi2+++UbUqlVLfP3110qbt956SwQEBIgff/xR7NmzRwwdOtTm7Wrat28vtm3bJjZt2iSaN29ucbua/Px8Ub9+fTF69Gixb98+sWTJElGrVi2r29XodDrx7rvvivT0dDF16lSbt6upLBdPMxqNokmTJuJf//qX1WNcn85JTEwUjRo1Um5P9d///lcEBQWJF198UWnD9emc5ORk8euvv4rMzEyxevVqERsbK+Lj40VJSYkQomaPJwvVm8S4ceNEeHi40Ov1Ijg4WPTv318pUoUQ4sqVK+LJJ58UdevWFbVq1RJ33323OHPmjMU2jh07JgYPHix8fHxEUFCQeP7558W1a9cs2qxbt07ExcUJvV4vIiMjxYIFC6xy+eCDD0STJk2EXq8XXbp0EVu3brV43JFc1KZ8ocrxdM59990nGjZsKPR6vWjUqJG47777LO75yfF03v/+9z/Rtm1bYTAYRMuWLcX8+fMtHjeZTGLKlCmifv36wmAwiP79+4uMjAyLNrm5uWLUqFGidu3awt/fX4wdO1ZcvHjRos3u3btFz549hcFgEI0aNRJvvfWWVS7ff/+9aNGihdDr9aJNmzZi5cqVTufiaatWrRIAbObF9emcwsJCMWnSJNGkSRPh7e0tIiMjxSuvvGJx2yOuT+d89913IjIyUuj1etGgQQMxYcIEkZ+frzxek8dTEsLsT0kQEREREakEP6NKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEt4xp06ZBkiSLWEREBMaMGeOZhG5CY8aMQURExA3f7/r16yFJEtavX3/D901E6sVClYjoJnPgwAFMmzYNx44d83QqRETVSufpBIiIqlNGRgY0mlvrNfmBAwcwffp09O3b1yNXP6tD7969ceXKFej1ek+nQkQqwkKViG5pBoPB0ylQBa5evQq9Xg+NRgNvb29Pp0NEKnNrXWYgIlWy97nH8p8plSQJTz31FFasWIG2bdvCYDCgTZs2SE5Otnrupk2b0LlzZ3h7eyMqKgrz5s2zue/yn1G9du0apk+fjubNm8Pb2xuBgYHo2bMn1qxZY/G8gwcPYsSIEQgODoaPjw+io6PxyiuvWLRJTU3F4MGD4e/vj9q1a6N///7YunVrhX2ULVy4EJIkWbx9HxERgTvvvBObNm1Cly5d4O3tjcjISHz55ZcWz7v33nsBAP369YMkSVaf7fz111/Rq1cv+Pr6ws/PD0OGDMH+/futcpDH2dvbG23btsXy5cttjmFl+vbti7Zt22Lnzp3o3r07fHx80LRpU3zyyScW7eTPoS5ZsgSvvvoqGjVqhFq1aqGwsNDuZ1S3bduGO+64A3Xr1oWvry9iYmIwe/ZsizYHDx7EP//5T9SrVw/e3t7o1KkTfvrppyr1hYjUhVdUiUhVNm3ahP/+97948skn4efnhzlz5mD48OE4fvw4AgMDAQB79+7FwIEDERwcjGnTpqG0tBRTp05F/fr1K93+tGnTMHPmTDzyyCPo0qULCgsLkZKSgl27duH2228HAOzZswe9evWCl5cXHnvsMURERODo0aP43//+hzfffBMAsH//fvTq1Qv+/v548cUX4eXlhXnz5qFv377YsGED4uPjq9T/I0eO4J///CcefvhhJCYm4osvvsCYMWPQsWNHtGnTBr1798bEiRMxZ84cvPzyy2jVqhUAKP//1VdfITExEQkJCXj77bdx+fJlzJ07Fz179kRqaqrygmH16tUYPnw4WrdujZkzZyI3Nxdjx45FWFhYlfLOy8vDHXfcgREjRmDUqFH4/vvv8cQTT0Cv12PcuHEWbV9//XXo9Xq88MILKC4utvt2/5o1a3DnnXeiYcOGmDRpEho0aID09HT8/PPPmDRpEoCyeejRowcaNWqEyZMnw9fXF99//z2GDRuGH374AXfffXeV+kNEKiGIiKpZYmKiCA8Pt4pPnTpVmJ+GAAi9Xi+OHDmixHbv3i0AiA8++ECJDRs2THh7e4u//vpLiR04cEBotVpR/rQWHh4uEhMTlZ9jY2PFkCFDKsy3d+/ews/Pz2L7QghhMpksctDr9eLo0aNK7PTp08LPz0/07t3bbh9lCxYsEABEVlaWRa4AxMaNG5XY+fPnhcFgEM8//7wSW7p0qQAg1q1bZ7HNixcvioCAAPHoo49axM+ePSvq1KljEY+LixMNGzYU+fn5Smz16tUCgM25qkifPn0EAPF///d/Sqy4uFjExcWJkJAQUVJSIoQQYt26dQKAiIyMFJcvX7bYhvyY3KfS0lLRtGlTER4eLvLy8izams9D//79Rbt27cTVq1ctHu/evbto3ry5U/0gIvXhW/9EpCoDBgxAVFSU8nNMTAz8/f2RmZkJADAajVi1ahWGDRuGJk2aKO1atWqFhISESrcfEBCA/fv34/DhwzYfz87OxsaNGzFu3DiL7QNQ3sI3Go1YvXo1hg0bhsjISOXxhg0b4v7778emTZtQWFjoeKfNtG7dGr169VJ+Dg4ORnR0tNL/iqxZswb5+fkYNWoUcnJylH9arRbx8fFYt24dAODMmTNIS0tDYmIi6tSpozz/9ttvR+vWrauUt06nw/jx45Wf9Xo9xo8fj/Pnz2Pnzp0WbRMTE+Hj41Ph9lJTU5GVlYVnnnkGAQEBFo/J83DhwgX8/vvvGDFiBC5evKj0Nzc3FwkJCTh8+DBOnTpVpf4QkTqwUCUiVSlfHAJA3bp1kZeXB6CskLxy5QqaN29u1S46OrrS7f/73/9Gfn4+WrRogXbt2iEpKQl79uxRHpcLwrZt29rdRnZ2Ni5fvmxzf61atYLJZMKJEycqzcWWyvpfEbn4vu222xAcHGzxb/Xq1Th//jwA4K+//gKAKo+hLaGhofD19bWItWjRAgCsbqPVtGnTSrd39OhRABXPw5EjRyCEwJQpU6z6O3XqVABQ+kxENyd+RpWIqp2tLxMBZVcmy9NqtTbbCiHckkvv3r1x9OhR/Pjjj1i9ejU+++wz/Oc//8Enn3yCRx55xC37MOdM3wHX+m8ymQCUfU61QYMGVo/rdOo45Vd2NdVRcn9feOEFu1fTmzVr5pZ9EZFnqOOsRUS3tLp16yI/P98qLl/Zc4b8LXxbb91nZGQ4tI169eph7NixGDt2LC5duoTevXtj2rRpeOSRR5S38vft21dhDrVq1bK5v4MHD0Kj0aBx48YAyvoOAPn5+RZvYVel7zJ7xa/8kYmQkBAMGDDA7vPDw8MBwKUxLO/06dMoKiqyuKp66NAhAKjSvV7lvuzbt89uX+S58vLyqrC/RHTz4lv/RFTtoqKiUFBQYPEW+5kzZ6p0OyStVouEhASsWLECx48fV+Lp6elYtWpVpc/Pzc21+Ll27dpo1qwZiouLAZQVob1798YXX3xhsX3g+lVNrVaLgQMH4scff7R4W/vcuXP49ttv0bNnT/j7+wO4XnBt3LhRaVdUVIRFixY50WtLcjFYvvhPSEiAv78/ZsyYgWvXrlk9Lzs7G0DZZ2nj4uKwaNEiFBQUKI+vWbMGBw4cqFJOpaWlFrcIKykpwbx58xAcHIyOHTs6vb0OHTqgadOmeP/99636Kc9DSEgI+vbti3nz5uHMmTNW25D7S0Q3L15RJaJqN3LkSPzrX//C3XffjYkTJyq3TGrRogV27drl9PamT5+O5ORk9OrVC08++SRKS0vxwQcfoE2bNhbFsC2tW7dG37590bFjR9SrVw8pKSlYtmwZnnrqKaXNnDlz0LNnT3To0AGPPfYYmjZtimPHjmHlypVIS0sDALzxxhtYs2YNevbsiSeffBI6nQ7z5s1DcXEx3nnnHWVbAwcORJMmTfDwww8jKSkJWq0WX3zxBYKDg60KYUfFxcVBq9Xi7bffRkFBAQwGA2677TaEhIRg7ty5GD16NDp06ICRI0cq+1m5ciV69OiBDz/8EAAwc+ZMDBkyBD179sS4ceNw4cIFZQwvXbrkdE6hoaF4++23cezYMbRo0QLfffcd0tLSMH/+fHh5eTm9PY1Gg7lz5+Kuu+5CXFwcxo4di4YNG+LgwYPYv3+/8qLko48+Qs+ePdGuXTs8+uijiIyMxLlz57BlyxacPHkSu3fvdnrfRKQiHr3nABHVGKtXrxZt27YVer1eREdHi6+//trm7akmTJhg9dzyt5gSQogNGzaIjh07Cr1eLyIjI8Unn3xi81ZQ5Z/7xhtviC5duoiAgADh4+MjWrZsKd58803lFkqyffv2ibvvvlsEBAQIb29vER0dLaZMmWLRZteuXSIhIUHUrl1b1KpVS/Tr109s3rzZKv+dO3eK+Ph4odfrRZMmTcR7771n9/ZUtm6d1adPH9GnTx+L2KeffioiIyOVW3KZ36pq3bp1IiEhQdSpU0d4e3uLqKgoMWbMGJGSkmKxjR9++EG0atVKGAwG0bp1a/Hf//7X7q3EKtKnTx/Rpk0bkZKSIrp16ya8vb1FeHi4+PDDDy3aybegWrp0qdU2yt+eSrZp0yZx++23Cz8/P+Hr6ytiYmIsblUmhBBHjx4VDz30kGjQoIHw8vISjRo1EnfeeadYtmyZU/0gIvWRhHDTNxSIiKhG6tu3L3Jycir8XC8RUVXwM6pEREREpEr8jCoREdl04cIFlJSU2H1cq9UiODj4BmZERDUNC1UiIrLpnnvuwYYNG+w+Hh4ebnUzfyIid+JnVImIyKadO3dW+BexfHx80KNHjxuYERHVNCxUiYiIiEiV+GUqIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhU6f8BHi03gHIANuQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHbCAYAAAA3anmPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWDUlEQVR4nO3deXhUhdXH8d+dyUrIAiEJW9giAorBGiBEBNkkUEqh0CJaFahVqygKCgWVzQW0tUC1oKIUq2/dwGLrFlRkKassQcACQgEBswgxCwSSkMx9//CZaSaZyU7CHb6f5+F5mHPv3HvOnJnk5M6dO4ZpmqYAAAAAi7E1dAIAAABATTDIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBdAgXnjhBRmGoWXLljV0KgAAi2KQBaph3bp1MgxDc+bMaZD9t2vXTu3atXOLzZkzR4ZhaN26dQ2SU1mGYahfv34VrvPll1/qkUce0axZs3TnnXfWT2IeVCXX+jB+/HgZhqFjx441dCrw4GK+7vv16yfDMOp8u8DlgkEWl51jx47JMAy3f40aNVLLli01cOBAzZo1S//9738vyr75pSVlZ2drzJgxuuWWWzR37tyGTuey5OkPIlweLpU/3p5//nkNGzZM7dq1U0hIiCIiItStWzfNmTNHP/zwQ0OnBwvxa+gEgIYSFxen2267TZJUWFio77//Xl9++aWefPJJzZs3T9OmTdPTTz/tNnj27NlT+/fvV7NmzRok5zVr1jTIfqtj//79atSokdflu3fv1n333afJkyfXY1YALiXOU4puvPFGNW/eXAUFBdq2bZvmzp2rv/71r/ryyy/VvHnzBs4SVsAgi8vWFVdc4fGtwo0bN+r222/X/PnzZbfb9eSTT7qWNWrUSJ07d67HLN3FxcU12L6rqrLHp3///urfv389ZQPgUrRt2zYFBQWVi8+cOVNPPfWU/vSnP+mPf/xjA2QGq+HUAqCMG264QSkpKQoMDNQf/vAHnThxwrXM27lyhw4d0oQJE9S+fXsFBgaqadOm6tatmx566CGZpinpx7f01q9f7/q/89/48eMl/e+Uh/Hjx2v//v36xS9+ocjISLdzJyt7S3jZsmW65pprFBQUpFatWmny5Mk6c+aM2zoVne9XOoeyvv/+ez388MPq1KmTgoOD1bRpUyUmJuq5555zW8/bW5enT5/WQw895HqMoqOjNWbMGO3bt6/cus5zRo8eParnn39enTt3VmBgoNq2bau5c+fK4XB4fQw8efXVV9W1a1cFBQUpNjZW06ZNU0FBgdf1z5w5o9mzZ+vqq69WcHCwIiIilJycrI0bN1Zrv6Zpavny5erTp48iIiLUqFEjdezYUffcc4+OHz9e4X1fe+01GYah1157rdwybz3ctWuXfvnLX6pNmzYKDAxUVFSUevTooaefflrS//r77bff6ttvv3V7Hpbd1oYNGzR8+HA1a9ZMgYGB6tixox5//HGdO3fOay6bN2/W4MGDFRERUeVTaL7//ntNnjxZV1xxhQIDA9WsWTONHj3a4/PC+fw/e/asHnzwQbVs2VKBgYGKj4/XypUrq7S/0v75z39q4MCBatKkiYKCgtS1a1c999xzKikpqfa2yioqKtLChQvVo0cPhYaGqnHjxrrqqqs0ZcoUZWdnV3jfis579/a8WLt2rYYOHep6TGJiYtSnTx8tXbpU0v/6JEnr1693633ZbVX1cSmdywcffKDevXsrNDS0SqeteBpiJelXv/qVJOnw4cOVbgOQOCILeNSpUyeNGTNGb7zxht5//3098MADXtdNS0tTz549lZ+fr2HDhunmm29Wfn6+Dh06pCVLlui5556Tn5+fZs+erddee03ffvutZs+e7br/tdde67a9w4cPq1evXrrmmms0fvx4ZWVlKSAgoNKcFyxYoDVr1ujmm2/WsGHD9Pnnn2vRokXaunWrNmzYIH9//xo/HgcPHlT//v2Vnp6uG264QSNHjlR+fr6+/vprzZs3T4888kiF9z916pSSkpL03//+V/369dPYsWN19OhRrVy5Uh999JFWr16tG264odz9pk6dqvXr1+tnP/uZkpOT9f7772vOnDkqKipyDWeVefLJJzVr1izFxMTorrvukr+/v9555x3t37/f4/o//PCD+vbtq6+//lq9e/fW7373O+Xl5emf//yn+vfvrxUrVmjkyJGV7tfhcOjmm2/WypUr1apVK91yyy0KCwvTsWPH9O6772ro0KFq06ZNlWqoit27d+v666+X3W7XiBEj1LZtW+Xk5Og///mPli5dqscee0wRERGaPXu2Fi1aJEl66KGHXPcv/cfHiy++qIkTJyoiIkLDhw9XdHS0duzYoaefflpr167V2rVryz0nN2/erHnz5ql///66++67Kx3UJbmeDydPntTgwYM1cuRIff/993rvvfe0evVqrVmzRomJiW73uXDhggYPHqzs7GyNHj1a586d09tvv60xY8YoJSVFgwcPrtLjNWPGDD3zzDNq1aqVRo0apfDwcP373//W1KlTtW3bNq1YsaJK2/Hk/Pnzuummm7Rp0yZ17NhREyZMUGBgoA4dOqSXX35Zd9xxh5o0aVLj7Zf10Ucfafjw4YqIiNCIESPUokULnTp1Sl999ZXeeOMN3X333WrXrp1mz56tuXPnqm3btm5/rJb+GVSTx2XFihX69NNP9bOf/Uz33Xef8vLyalWLJHXt2rXG28BlxgQuM0ePHjUlmcnJyRWut2zZMlOSefvtt7tia9euNSWZs2fPdsWef/55U5K5aNGictvIyspyu33jjTea3l52zrwkmbNmzfK4Ttu2bc22bdu6xWbPnm1KMgMCAsyvvvrKFXc4HOatt95qSjKfe+65Cmsom8O4cePc4t27dzclmUuXLi13nxMnTrjdlmTeeOONbrEJEyaYkswZM2a4xT/66CNTknnFFVeYJSUlrvi4ceNMSWb79u3NtLQ0V/zUqVNmRESEGRoaahYWFpbLpaxDhw6Zfn5+ZqtWrczMzExXPDc31+zUqZPHXJ2P2SuvvOIWz8zMNGNjY82oqCjz/Pnzle77hRdeMCWZAwcONM+dO+e27Ny5c27PDWe9R48edcWWL19uSjKXL19ebtueejhlyhRTkvn++++XW//06dNutz09j5y+/vpr08/Pz+zWrVu5+82fP9/r80mS+de//tXjNr25/vrrTbvdbqakpLjFDx48aIaGhprXXHNNubwlmSNGjHDr/+eff16l17TTp59+6lr/7NmzrrjD4TB/97vfmZLMlStXlqvR02vGk4cfftj1s6O4uNhtWU5OjnnmzBnXbU8/E5yv6bVr15bbtqfnxahRo0xJ5u7du8utX7aHnp7zTtV9XJy52Gw287PPPvO4zcq8/PLL5uzZs80pU6aY/fr1MyWZP/nJT8wffvihRtvD5YdTCwAvWrZsKenHt8SrIjg4uFysadOm1d5v8+bN9dhjj1X7fnfccYfi4+Ndtw3D0Lx582S32z2+PV1VX375pXbs2KG+ffvqrrvuKre8devWFd6/qKhIb731liIjI/X444+7LfvpT3+qm266SYcPH9amTZvK3XfmzJlq0aKF63azZs00YsQInTlzRgcPHqw09zfffFPFxcWaMmWKoqOjXfGwsLByuUg/9vqdd97RgAED9Nvf/tZtWXR0tKZOnapTp07p888/r3TfS5Yskd1u14svvljuueE8NeNi8PQ8jIyMrPL9X375ZRUXF+uFF14od79p06YpKipKb731Vrn7XXfddZowYUKV95OamqrNmzdr3LhxSk5Odlt25ZVX6q677tLevXs9nmKwcOFCtyPCAwcOVNu2bbV9+/Yq7fsvf/mLJGnp0qUKCQlxxQ3D0DPPPCPDMDzWWBXFxcVaunSpwsPD9ec//1l2u91teXh4uBo3blyjbVemtr2v6eMyYsQIDRo0qAYZ/7ivuXPnasGCBVq3bp0GDx6slJSUOj1iDd/GqQVALQ0fPlwzZszQxIkTtWbNGg0ZMkQ33nijOnToUKPtdevWrUqnEpTVp0+fcrG2bdsqNjZWX3/9tYqKimq03S+//FKSqvyWbVkHDhxQQUGB+vfv7/FqBv3799dnn32m3bt3l6shISGh3PrOwTknJ6fSfX/11VeSPD82nmLbt29XSUmJCgsLPZ5DfOjQIVdNP/vZz7zu9+zZs9q/f7+uuOIKdezYsdI868KYMWO0aNEi/eIXv9DNN9+sm266SX379lWrVq2qtZ2tW7dKkuut/bL8/f114MCBcvEePXrUaD+ZmZkeH2vnPg4cOOD2NnNERITat29fbv3WrVtry5YtVd53SEiI/vrXv3pcHhwc7LHGqjhw4IDOnDmjQYMG1dswNnbsWP3jH/9Qr169dOutt2rgwIHq06dPta+uUtPHpWfPnjXKW5J27Ngh6cc/Irds2aLp06fruuuu08cff+z2hzngDYMs4EVaWpokKSoqqsL12rVrp61bt2rOnDn6+OOP9e6770r68dP7TzzxhOvDC1UVExNTo3y93S8mJkbHjh3TmTNnqnV0xik3N1eSqj0QOTnPl/OWn/OIq6fz6sLCwsrF/Px+/LFVlQ/kOHMvfTTWyVM+zutXbtq0yeMRYqf8/Pwq7bemj1lNJCYmat26dZo3b57efPNNLV++XNKPA+azzz5b5StFOB+Dqp6D7FTd561zPx999JHrvEhPyj7W4eHhHtfz8/Or8ocAf/jhBxUXF1d4HePKeuxNQ/T+V7/6ld5//30tWLBAL730khYvXizDMNS/f3/96U9/Kncevjc1fVxq+jOrtGbNmmn48OG69tpr1bFjR911113atm1brbcL38epBYAXzk8MV+VIU9euXbVy5Ur98MMP2rJli2bNmqWMjAzdfPPNFQ5EntT0CxMyMzO9xg3DUGhoqCTJZvvxZV9cXFxuXecv4dIiIiIkSd99912N8nIOo97yy8jIcFuvLjmHnu+//77cMk/5OHN4+OGHZZqm13+lP6xX0X5r+phJ1e+T9ONR5k8++UTZ2dlau3atpkyZor1792rYsGE6cuRIlfbrfAzy8vIqfAzKqu7z1rmfF154ocL9jBs3rlrbreq+IyMjK9zv0aNHa7Tt2r5epJr1fsSIEVq/fr2ys7P1ySef6Le//a3WrVunIUOGVOndC6nmj0tdfslLbGysunTpou3bt5e7QgbgCYMs4ME333yjd999V4GBgfrFL35R5fv5+/urV69emjt3rp5//nmZpqkPP/zQtdx5vlxdXN6nrH//+9/lYt9++61OnDihq6++2nVagfPtTk+/aFNTU8vFnG8bfvrppzXKq3PnzgoKCvL6i8n5B0NVjxpVR7du3SR5fmw8xXr06CHDMKr8FrU3zkstHT161HU6QnVVt0+lBQcHq1+/fvrTn/6kRx99VOfPn9dnn33mWm63270+B51XCXC+9X+xOPdT28e6pvvOysqqcW8q0qlTJ4WFhWn79u2VXmbLm9r0PjQ0VEOGDNHSpUs1fvx4ZWZmuh3ZtNlsFfb+Yj0u1ZGeni7DMMqdXwx4wiALlLFp0yYlJyersLBQ06dPr/Qtwp07d3p8W9x5xK/09RKdH/ApfW3auvL6669rz549rtumaerRRx9VSUmJ26V2OnXqpNDQUP3rX/9y+yrIzMxMPfXUU+W226NHD/Xo0UMbNmzQK6+8Um55ZUeeAgICdMstt+j06dOaP3++27KUlBStXr1aV1xxhXr37l3VUqvs1ltvld1u14IFC9yOyubl5XmstXnz5hozZow2b96sP/7xjx6PPG7btq1KR4omTpyokpIS3XfffTp//rzbsoKCgkq/hjMhIUGGYejtt992u+btoUOH9Oc//7nc+lu2bPF4bVxvz8PTp097XP++++6Tn5+fHnjgAY+X0MrJyal0mKqKnj17KjExUW+99ZbeeeedcssdDofrust1bdKkSZKk3/zmN8rKyiq3PCMjw+vl2Srj5+ene+65R7m5uXrwwQfLDY25ubk6e/Zshdtwvgv0+uuvu50usWXLFv39738vt/6GDRs8DqfO53zZ3p88edLjfi/m41Jaenq6x58bpmlqzpw5yszM1MCBAxUYGFjrfcH3cY4sLluHDx92fcikqKjI9RW1e/fuld1u1+OPP17pW8iS9MYbb+jll19W3759FRcXp7CwMP3nP//Rxx9/rKZNm7p9knvAgAFauXKlRo8eraFDhyooKEjdunXT8OHDa11PcnKykpKSNHbsWEVFRWnNmjXasWOHevXq5XYd3ICAAD3wwAOaN2+errvuOtdVAD744APdeOON+u9//1tu23//+9/Vr18/3X333XrjjTeUlJSkgoICff3110pNTfX4S6+0Z599VuvXr9dTTz2lzZs3KzExUceOHdOKFSvUqFEjLV++3PV2al264oorNGvWLM2ePVvx8fEaM2aM/Pz89N577yk+Pt7jlQ+WLFmigwcPatq0aa5aIyIidOLECe3YsUOHDh1Senp6hV/DK0n33nuv1q9fr3fffVcdO3bUz3/+c4WFhen48eNavXq1li1bVuH1aFu2bKlbbrlFb775phISEjRkyBB9//33WrVqlYYMGaL33nvPbf1nn31Wa9euVd++fdW+fXsFBQVp165dWrNmjTp06OD2zsKAAQO0Y8cODR06VH369FFAQID69u2rvn37qmvXrlqyZInuvfdederUST/96U8VFxenM2fO6MiRI1q/fr3Gjx+vl156qXrN8OCtt95S//79NXbsWC1atEjXXXedgoODdfz4cW3ZskWnTp2q8IsramrIkCGaOXOmnnzySV1xxRUaMmSI2rZtq6ysLB0+fFj//ve/9dRTT6lLly412v4TTzyhrVu36o033tDWrVs1dOhQBQYG6siRI0pJSdHGjRsrfAeiV69e6t27t7744gslJSWpb9+++vbbb/XPf/5Tw4cP16pVq9zWnzRpktLS0nTDDTeoXbt2MgxDGzdu1JdffqlevXq5XaN5wIABevfddzVy5Ej95Cc/kd1u189//nPFx8df9MfF6eDBg7rpppvUq1cvdezYUTExMTp9+rT+/e9/6+DBg2rZsqUWL15cq33gMnIRL+0FXJJKX6/V+S84ONhs0aKF2b9/f3PmzJnm4cOHPd7X0/Ukt27dat5zzz1m165dzYiICDM4ONjs2LGjef/995vffvut2/0vXLhgTps2zWzTpo3p5+fnds1Wb9dwLa2i68iuXbvWfOWVV8yrr77aDAwMNFu0aGE++OCDZl5eXrntlJSUmHPmzDFjY2PNgIAA88orrzT//Oc/m0eOHPGaQ0ZGhvnggw+aHTp0MAMCAsymTZuaiYmJ5oIFC9zWk5frVJ46dcqcNGmS2bZtW9Pf399s1qyZ+ctf/tLcu3dvuXU9XVfVU71V9corr5hXXXWVGRAQYLZu3dp85JFHzHPnznnN9dy5c+Yf/vAHMyEhwQwJCTGDg4PN9u3bmyNHjjRff/1188KFC1Xar8PhMF999VWzV69eZkhIiNmoUSOzY8eO5u9+9zvz+PHjldZ77tw5c9KkSWZMTIwZGBhoxsfHm3//+989Pg9TUlLMO+64w+zUqZMZGhpqNm7c2LzqqqvMRx991Dx16pTbds+cOWPeddddZosWLUy73e7xGqlffvmlOXbsWLNly5aufl133XXm9OnTzf3797vWq+41Vsv64YcfzMcff9zs2rWrGRwcbDZu3Njs2LGjeeutt5r/+Mc/3Nat6Pq3FV2j2ZvPPvvMHD58uBkVFWX6+/ubzZs3N5OSkswnn3zSrT81qbGgoMB87rnnzGuvvdZV11VXXWU+/PDDZnZ2dqV5nz592rzjjjvMpk2bmsHBwWavXr3M1atXe7yO7Ntvv22OGTPGjIuLMxs1amSGh4eb3bp1M5999lm3a9aapmmmp6ebY8aMMZs1a2babDaP1yqu6uNS0bWOK5Kenm5OmzbNTExMNKOiokw/Pz8zNDTUvO6668yZM2eWu/42UBHDND28dwYAAABc4jhHFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwpMvuCxEcDofS0tIUGhpap98PDQAAgLphmqbOnDmjli1bVviFOZfdIJuWlqbY2NiGTgMAAACVOHHihFq3bu11+WU3yIaGhkr68YEJCwtr4Gys78KFC/r00081ePBg+fv7N3Q6qAF6aH300ProobXRv7qXl5en2NhY19zmzWU3yDpPJwgLC2OQrQMXLlxQo0aNFBYWxovXouih9dFD66OH1kb/Lp7KTgPlw14AAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAl+TV0AgCAuvHVV1/JZquf4xPNmjVTmzZt6mVfAOANgywAWNzJkyclSX379tX58+frZZ/BjRrpwP79DLMAGhSDLABYXFZWliTpFzMXqmnbKy76/r4/ekjvPn6vTp8+zSALoEExyAKAj4hqG6fmXbo1dBoAUG/4sBcAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWNIlN8h+9913uu222xQZGang4GBdc8012rFjh2u5aZqaNWuWWrRooeDgYA0aNEiHDh1qwIwBAADQEC6pQTY7O1u9e/eWv7+/PvnkE/3nP//Rn/70JzVp0sS1zh/+8Ac9//zzeumll7Rt2zaFhIQoOTlZBQUFDZg5AAAA6ptfQydQ2rPPPqvY2FgtX77cFWvfvr3r/6ZpatGiRXr88cc1YsQISdLrr7+umJgYvf/++xo7dmy95wwAAICGcUkNsv/617+UnJysX/3qV1q/fr1atWql++67T3fddZck6ejRo8rIyNCgQYNc9wkPD1diYqK2bNnicZAtLCxUYWGh63ZeXp4kqbi4WMXFxZIkm80mm80mh8Mhh8PhWtcZLykpkWmalcbtdrsMw3Btt3RckkpKSqoU9/Pzk2mabnHDMGS328vl6C1e3zWVlJS4cvGVmiqL+0pNpXvo7+/vEzWV5it9qqim0jnJNGWYpW4bhkzDJpkOGaVyMQ1DqiBumA7JLW6TDEOG6ZBNpgICAuRwOGSaJn2qg5pK97L0fq1cky/2yVvc+X9v/bNiTQ3dp7Lre3NJDbJHjhzRiy++qClTpujRRx/V9u3bNWnSJAUEBGjcuHHKyMiQJMXExLjdLyYmxrWsrPnz52vu3Lnl4qmpqQoJCZEkRUVFKS4uTkePHtWpU6dc67Ru3VqtW7fWN998o9zcXFe8Q4cOio6O1r59+3T+/HlXvHPnzoqIiFBqaqpbY+Lj4xUQEOB2rq8kde/eXUVFRdqzZ48rZrfb1aNHD+Xm5urAgQOueHBwsLp166bTp0/ryJEjrnh4eLi6dOmitLQ0nTx50hWvr5pSU1Ndj6dhGD5Rky/2qaKanD9wvvrqKyUmJvpETU6+1KeKaiq975CCHDU5k+66XRAQotMRbRV2Lkth+f/LPT84QtmhLdXkbIZCzue44nkhUcoLiVJk7gkFFeW74tmhLZQf3EQx2UcVGVigqVOnKisrS7m5ufSpDmoKDQ2VJKWnp7v9PrNyTb7YJ281RUZGSpKOHz+urKwsn6ipofvknC8qY5ilx+YGFhAQoO7du2vz5s2u2KRJk7R9+3Zt2bJFmzdvVu/evZWWlqYWLVq41hkzZowMw9A777xTbpuejsjGxsYqKytLYWFhkhr+rw4r/yVVWFio1atXKzk5WX5+fj5Rky/2qaKaiouLXT0MCgryiZpK85U+VVTTrl27lJ6errX5IWreudtFPyKbdmCPXpowTJs2bVJCQgJ9qoOanK/DIUOGuLZn9Zp8sU8VHVFPSUnx2j8r1tTQfcrOzlZkZKRyc3Nd85onl9QR2RYtWuiqq65yi3Xp0kXvvfeeJKl58+aSpMzMTLdBNjMzU9dee63HbQYGBiowMLBc3M/PT35+7uU7m1BW6SdlVeJlt1uTuGEYHuPecqxuvK5qcq5vt9vd1rFyTb7Yp4rizh84zm36Qk1l+XpNbjkZhkzDw34Nm0zDw8a9xH8cXD3HHTJUVFQkm80mwzCqnbu3uK/3qaIcna9Dm81WrcfgUq6ppnEr1lRZ/6xYU2XxhqjJk0vqqgW9e/fWwYMH3WLffPON2rZtK+nHD341b95ca9ascS3Py8vTtm3blJSUVK+5AgAAoGFdUkdkJ0+erOuvv17z5s3TmDFj9OWXX2rp0qVaunSppB//unjooYf01FNPqWPHjmrfvr1mzpypli1bauTIkQ2bPAAAAOrVJTXI9ujRQ6tWrdKMGTP0xBNPqH379lq0aJF+/etfu9aZNm2a8vPzdffddysnJ0c33HCDUlJSFBQU1ICZAwAAoL5dUoOsJP3sZz/Tz372M6/LDcPQE088oSeeeKIeswIAAMCl5pI6RxYAAACoKgZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJV1Sg+ycOXNkGIbbv86dO7uWFxQUaOLEiYqMjFTjxo01evRoZWZmNmDGAAAAaCiX1CArSVdffbXS09Nd/zZu3OhaNnnyZH3wwQdasWKF1q9fr7S0NI0aNaoBswUAAEBD8WvoBMry8/NT8+bNy8Vzc3O1bNkyvfnmmxowYIAkafny5erSpYu2bt2qXr161XeqAAAAaECX3CB76NAhtWzZUkFBQUpKStL8+fPVpk0b7dy5UxcuXNCgQYNc63bu3Flt2rTRli1bvA6yhYWFKiwsdN3Oy8uTJBUXF6u4uFiSZLPZZLPZ5HA45HA4XOs64yUlJTJNs9K43W6XYRiu7ZaOS1JJSUmV4n5+fjJN0y1uGIbsdnu5HL3F67umkpISVy6+UlNlcV+pqXQP/f39faKm0nylTxXVVDonmaYMs9Rtw5Bp2CTTIaNULqZhSBXEDdMhucVtkmHIMB2yyVRAQIAcDodM06RPdVBT6V6W3q+Va/LFPnmLO//vrX9WrKmh+1R2fW8uqUE2MTFRr732mjp16qT09HTNnTtXffr00b59+5SRkaGAgABFRES43ScmJkYZGRletzl//nzNnTu3XDw1NVUhISGSpKioKMXFxeno0aM6deqUa53WrVurdevW+uabb5Sbm+uKd+jQQdHR0dq3b5/Onz/vinfu3FkRERFKTU11a0x8fLwCAgK0Y8cOtxy6d++uoqIi7dmzxxWz2+3q0aOHcnNzdeDAAVc8ODhY3bp10+nTp3XkyBFXPDw8XF26dFFaWppOnjzpitdXTampqa7H0zAMn6jJF/tUUU3OHzhfffWVEhMTfaImJ1/qU0U1ld53SEGOmpxJd90uCAjR6Yi2CjuXpbD8/+WeHxyh7NCWanI2QyHnc1zxvJAo5YVEKTL3hIKK8l3x7NAWyg9uopjso4oMLNDUqVOVlZWl3Nxc+lQHNYWGhkqS0tPT3X6nWbkmX+yTt5oiIyMlScePH1dWVpZP1NTQfXLOF5UxzNJj8yUmJydHbdu21YIFCxQcHKwJEya4HV2VpJ49e6p///569tlnPW7D0xHZ2NhYZWVlKSwsTFLD/9Vh5b+kCgsLtXr1aiUnJ8vPz88navLFPlVUU3FxsauHQUFBPlFTab7Sp4pq2rVrl9LT07U2P0TNO3e76Edk0w7s0UsThmnTpk1KSEigT3VQk/N1OGTIENf2rF6TL/apoiPqKSkpXvtnxZoauk/Z2dmKjIxUbm6ua17z5JI6IltWRESErrzySh0+fFg33XSTioqKlJOT43ZUNjMz0+M5tU6BgYEKDAwsF/fz85Ofn3v5ziaUVfpJWZV42e3WJG4Yhse4txyrG6+rmpzr2+12t3WsXJMv9qmiuPMHjnObvlBTWb5ek1tOhiHT8LBfwybT8LBxL/EfB1fPcYcMFRUVyWazyTCMaufuLe7rfaooR+fr0GazVesxuJRrqmncijVV1j8r1lRZvCFq8uSSu2pBaWfPntV///tftWjRQgkJCfL399eaNWtcyw8ePKjjx48rKSmpAbMEAABAQ7ikjsg+8sgjGj58uNq2bau0tDTNnj1bdrtdt9xyi8LDw3XnnXdqypQpatq0qcLCwvTAAw8oKSmJKxYAAABchi6pQfbkyZO65ZZblJWVpaioKN1www3aunWroqKiJEkLFy6UzWbT6NGjVVhYqOTkZC1ZsqSBswYAAEBDuKQG2bfffrvC5UFBQVq8eLEWL15cTxkBAADgUnVJnyMLAAAAeMMgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFhSrQfZjIwMPf300xo9erQGDRqkAQMGuP0bOHBgjbb7zDPPyDAMPfTQQ65YQUGBJk6cqMjISDVu3FijR49WZmZmbUsAAACABfnV5s579uxRv379dP78eXXq1El79+7VVVddpZycHH333XeKi4tTbGxstbe7fft2vfzyy4qPj3eLT548WR999JFWrFih8PBw3X///Ro1apQ2bdpUmzIAAABgQbU6Ijt9+nQ1btxYBw8e1Oeffy7TNPXnP/9ZJ06c0DvvvKPs7Gw988wz1drm2bNn9etf/1qvvPKKmjRp4orn5uZq2bJlWrBggQYMGKCEhAQtX75cmzdv1tatW2tTBgAAACyoVkdkN23apGnTpqlNmzb64YcfJEkOh0OS9Ktf/UobN27U1KlTtX79+ipvc+LEiRo2bJgGDRqkp556yhXfuXOnLly4oEGDBrlinTt3Vps2bbRlyxb16tXL4/YKCwtVWFjoup2XlydJKi4uVnFxsSTJZrPJZrPJ4XC48i8dLykpkWmalcbtdrsMw3Btt3RckkpKSqoU9/Pzk2mabnHDMGS328vl6C1e3zWVlJS4cvGVmiqL+0pNpXvo7+/vEzWV5it9qqim0jnJNGWYpW4bhkzDJpkOGaVyMQ1DqiBumA7JLW6TDEOG6ZBNpgICAuRwOGSaJn2qg5pK97L0fq1cky/2yVvc+X9v/bNiTQ3dp7Lre1OrQdbhcCgmJkaSFBERIbvd7hpoJemaa67RsmXLqry9t99+W7t27dL27dvLLcvIyFBAQIAiIiLc4jExMcrIyPC6zfnz52vu3Lnl4qmpqQoJCZEkRUVFKS4uTkePHtWpU6dc67Ru3VqtW7fWN998o9zcXFe8Q4cOio6O1r59+3T+/HlXvHPnzoqIiFBqaqpbY+Lj4xUQEKAdO3a45dC9e3cVFRVpz549rpjdblePHj2Um5urAwcOuOLBwcHq1q2bTp8+rSNHjrji4eHh6tKli9LS0nTy5ElXvL5qSk1NdT2ehmH4RE2+2KeKanL+wPnqq6+UmJjoEzU5+VKfKqqp9L5DCnLU5Ey663ZBQIhOR7RV2LksheX/L/f84Ahlh7ZUk7MZCjmf44rnhUQpLyRKkbknFFSU74pnh7ZQfnATxWQfVWRggaZOnaqsrCzl5ubSpzqoKTQ0VJKUnp7u9jvNyjX5Yp+81RQZGSlJOn78uLKysnyipobuk3O+qIxhlh6bqyk+Pl7Dhw/X008/LUm68sor1a9fPy1dulSS9Jvf/Eaffvqp2wPjzYkTJ9S9e3d99tlnrnNj+/Xrp2uvvVaLFi3Sm2++qQkTJrgdXZWknj17qn///nr22Wc9btfTEdnY2FhlZWUpLCxMUsP/1WHlv6QKCwu1evVqJScny8/Pzydq8sU+VVRTcXGxq4dBQUE+UVNpvtKnimratWuX0tPTtTY/RM07d7voR2TTDuzRSxOGadOmTUpISKBPdVCT83U4ZMgQ1/asXpMv9qmiI+opKSle+2fFmhq6T9nZ2YqMjFRubq5rXvOkVkdkBw8erBUrVrgG2XvvvVcPP/ywjhw5ItM0tW7dOj388MNV2tbOnTv1/fff67rrrnPFSkpKtGHDBv3lL3/R6tWrVVRUpJycHLejspmZmWrevLnX7QYGBiowMLBc3M/PT35+7uU7m1BW6SdlVeJlt1uTuGEYHuPecqxuvK5qcq5vt9vd1rFyTb7Yp4rizh84zm36Qk1l+XpNbjkZhkzDw34Nm0zDw8a9xH8cXD3HHTJUVFQkm80mwzCqnbu3uK/3qaIcna9Dm81WrcfgUq6ppnEr1lRZ/6xYU2XxhqjJ43pVWsuLxx57TLfccosuXLggf39/PfTQQ8rPz9d7770nu92umTNn6tFHH63StgYOHKi9e/e6xSZMmKDOnTvr97//vWJjY+Xv7681a9Zo9OjRkqSDBw/q+PHjSkpKqk0ZAAAAsKBaDbJNmjRRQkKC67ZhGHr88cf1+OOPV3tboaGh6tq1q1ssJCREkZGRrvidd96pKVOmqGnTpgoLC9MDDzygpKQkrx/0AgAAgO+q1SBb3xYuXCibzabRo0ersLBQycnJWrJkSUOnBQAAgAZQrUH2N7/5jQzD0NKlS2W32/Wb3/ym0vsYhlGtKxeUtm7dOrfbQUFBWrx4sRYvXlyj7QEAAMB3VGuQ/eKLL1yfYLPb7friiy9cJ/p7U9lyAAAAoCaqNcgeO3aswtsAAABAfanVV9QCAAAADaVWg+yuXbsq/LDVkiVLtHv37trsAgAAAPCoVoPsY489ps8//9zr8i+++KJGl+ICAAAAKlOrQXbnzp3q06eP1+V9+vQp9x26AAAAQF2o1SB75syZCr9CzGazKTc3tza7AAAAADyq1SDbsWNHffrpp16Xp6SkqEOHDrXZBQAAAOBRrQbZO++8Ux999JGmTJminJwcVzwnJ0eTJ09WSkqK7rzzztrmCAAAAJRTq6+onTRpknbv3q1Fixbp+eefV8uWLSVJaWlpcjgcuv322zV58uQ6SRQAAAAorVaDrGEYWr58ue644w699957OnLkiCRpxIgRGj16tPr161cXOQIAAADl1GqQderfv7/69+9fF5sCAAAAqoRv9gIAAIAl1WqQNU1TL7/8snr27KlmzZrJbreX+1fR5bkAAACAmqrVlDlt2jQtWLBA1157rW677TY1adKkrvICAAAAKlSrQfZvf/ubRo8erXfffbeu8gEAAACqpFanFpw/f16DBg2qq1wAAACAKqvVIDtw4EBt3769rnIBAAAAqqxWg+ySJUu0detWzZs3T1lZWXWVEwAAAFCpWg2ynTp10pEjRzRz5kxFR0crJCREYWFhbv/Cw8PrKlcAAADApVYf9ho9erQMw6irXAAAAIAqq9Ug+9prr9VRGgAAAED18M1eAAAAsKRaD7LHjx/X7373O3Xq1ElNmjTRhg0bJEmnT5/WpEmTlJqaWuskAQAAgLJqdWrBf/7zH/Xp00cOh0OJiYk6fPiwiouLJUnNmjXTxo0blZ+fr2XLltVJsgAAAIBTrb+iNiIiQlu3bpVhGIqOjnZbPmzYML3zzju1ShAAAADwpFanFmzYsEH33nuvoqKiPF69oE2bNvruu+9qswsAAADAo1oNsg6HQ40aNfK6/NSpUwoMDKzNLgAAAACPajXIXnfddfroo488LisuLtbbb7+tXr161WYXAAAAgEe1GmRnzJihlJQU3Xvvvdq3b58kKTMzU59//rkGDx6s/fv3a/r06XWSKAAAAFBarT7sNXToUL322mt68MEHtXTpUknSbbfdJtM0FRYWptdff119+/atk0QBAACA0mo1yErS7bffrlGjRunTTz/V4cOH5XA4FBcXp+TkZIWGhtZFjgAAAEA5tR5kJSkkJES/+MUv6mJTAAAAQJXUapA9fvx4ldZr06ZNbXYDAAAAlFOrQbZdu3Yerx9bVklJSW12AwAAAJRTq0H2r3/9a7lBtqSkRMeOHdPrr7+u6OhoTZw4sVYJAgAAAJ7UapAdP36812W///3vlZiYqNzc3NrsAgAAAPCoVteRrUhISIgmTJighQsXXqxdAAAA4DJ20QZZ6cevsM3IyLiYuwAAAMBlqk4uv1VWXl6eNmzYoD/+8Y/6yU9+cjF2AQAAgMtcrQZZm83m9aoFpmmqTZs2WrJkSW12AQAAAHhUq0F21qxZ5QZZwzDUpEkTxcXFafDgwfLzuygHfQEAAHCZq9WUOWfOnDpKAwAAAKieWn3Yq7i4WHl5eV6X5+Xlqbi4uDa7AAAAADyq1SA7adIkXX/99V6X9+7dWw8//HBtdgEAAAB4VKtBNiUlRb/85S+9Lv/lL3+pjz/+uDa7AAAAADyq1SCblpamVq1aeV3esmVLfffdd1Xe3osvvqj4+HiFhYUpLCxMSUlJ+uSTT1zLCwoKNHHiREVGRqpx48YaPXq0MjMza1MCAAAALKpWg2xkZKQOHjzodfn+/fsVFhZW5e21bt1azzzzjHbu3KkdO3ZowIABGjFihL7++mtJ0uTJk/XBBx9oxYoVWr9+vdLS0jRq1KjalAAAAACLqtUgO2TIEL388stKTU0tt2zXrl1aunSphg4dWuXtDR8+XD/96U/VsWNHXXnllXr66afVuHFjbd26Vbm5uVq2bJkWLFigAQMGKCEhQcuXL9fmzZu1devW2pQBAAAAC6rV5beefPJJpaSkqGfPnvr5z3+uq6++WpK0b98+ffDBB4qOjtaTTz5Zo22XlJRoxYoVys/PV1JSknbu3KkLFy5o0KBBrnU6d+6sNm3aaMuWLerVq5fH7RQWFqqwsNB123mVheLiYtcVFWw2m2w2mxwOhxwOh2tdZ7ykpESmaVYat9vtMgyj3JUa7Ha7q6aqxP38/GSaplvcMAzZ7fZyOXqL13dNJSUlrlx8pabK4r5SU+ke+vv7+0RNpflKnyqqqXROMk0ZZqnbhiHTsEmmQ0apXEzDkCqIG6ZDcovbJMOQYTpkk6mAgAA5HA6Zpkmf6qCm0r0svV8r1+SLffIWd/7fW/+sWFND96mqV72q1SDbsmVL7dixQ9OnT9c///lPrVq1SpIUFhamX//615o3b55atmxZrW3u3btXSUlJKigoUOPGjbVq1SpdddVV2r17twICAhQREeG2fkxMjDIyMrxub/78+Zo7d265eGpqqkJCQiRJUVFRiouL09GjR3Xq1CnXOq1bt1br1q31zTffKDc31xXv0KGDoqOjtW/fPp0/f94V79y5syIiIpSamurWmPj4eAUEBGjHjh1uOXTv3l1FRUXas2ePK2a329WjRw/l5ubqwIEDrnhwcLC6deum06dP68iRI654eHi4unTporS0NJ08edIVr6+anEfjU1NTZRiGT9Tki32qqCbnD5yvvvpKiYmJPlGTky/1qaKaSu87pCBHTc6ku24XBITodERbhZ3LUlj+/3LPD45QdmhLNTmboZDzOa54XkiU8kKiFJl7QkFF+a54dmgL5Qc3UUz2UUUGFmjq1KnKyspSbm4ufaqDmkJDQyVJ6enpbr/TrFyTL/bJW02RkZGSpOPHjysrK8snamroPnl6t98Twyw9NteCaZquQqOiorx+dW1lioqKdPz4ceXm5mrlypV69dVXtX79eu3evVsTJkxwO7oqST179lT//v317LPPetyepyOysbGxysrKcp2/29B/dVj5L6nCwkKtXr1aycnJ8vPz84mafLFPFdVUXFzs6mFQUJBP1FSar/Spopp27dql9PR0rc0PUfPO3S76Edm0A3v00oRh2rRpkxISEuhTHdTkfB0OGTLEtT2r1+SLfaroiHpKSorX/lmxpobuU3Z2tiIjI5Wbm1vh563q7PtjDcNQYGCgGjduXOMhVpICAgJ0xRVXSJISEhK0fft2/fnPf9bNN9+soqIi5eTkuB2VzczMVPPmzb1uLzAwUIGBgeXifn5+5b4+19mEsko/KasS9/a1vNWJG4bhMe4tx+rG66om5/p2u91tHSvX5It9qiju/IHj3KYv1FSWr9fklpNhyDQ87NewyfT0o9lL/MfB1XPcIUNFRUWy2Wyun/f0qXY1OV+HNputWo/BpVxTTeNWrKmy/lmxpsriDVGTJ7X6sJck7dixQ0OGDFGjRo0UGRmp9evXS5JOnz6tESNGaN26dbXavsPhUGFhoRISEuTv7681a9a4lh08eFDHjx9XUlJSrfYBAAAA66nVILt582bdcMMNOnTokG677Ta3Q8/NmjVTbm6uXn755Spvb8aMGdqwYYOOHTumvXv3asaMGVq3bp1+/etfKzw8XHfeeaemTJmitWvXaufOnZowYYKSkpK8ftALAAAAvqtWpxY8+uij6tKli7Zu3aozZ87o1VdfdVvev39//e1vf6vy9r7//nvdcccdSk9PV3h4uOLj47V69WrddNNNkqSFCxfKZrNp9OjRKiwsVHJyspYsWVKbEgAAAGBRtRpkt2/frvnz5yswMFBnz54tt7xVq1YVXlGgrGXLllW4PCgoSIsXL9bixYurnSsAAAB8S61OLfD393e/fmEZ3333nRo3blybXQAAAAAe1WqQ7dWrl1auXOlxWX5+vpYvX64bb7yxNrsAAAAAPKrVIDt37lzt2LFDw4YN0yeffCLpx4uqv/rqq0pISNCpU6c0c+bMOkkUAAAAKK1W58gmJibq448/1r333qs77rhDkvTwww9LkuLi4vTxxx8rPj6+9lkCAAAAZdR4kDVNU2fOnNH111+vgwcPavfu3Tp06JAcDofi4uJc3/YCAAAAXAw1HmSLiorUtGlTzZs3T9OmTdO1116ra6+9tg5TAwAAALyr8TmygYGBat68ucevfwUAAAAutlp92Gv8+PF6/fXXVVRUVFf5AAAAAFVSqw97XXPNNXr//fd19dVXa/z48WrXrp2Cg4PLrTdq1Kja7AYAAAAop1aD7C233OL6v7fLbBmGoZKSktrsBgAAACin2oPso48+qrFjxyo+Pl5r1669GDkBAAAAlar2IPvMM8+oa9euio+P14033qisrCxFR0frs88+04ABAy5GjgAAAEA5tfqwl5NpmnWxGQAAAKDK6mSQBQAAAOobgywAAAAsqUZXLTh27Jh27dolScrNzZUkHTp0SBERER7Xv+6662qWHQAAAOBFjQbZmTNnlrvc1n333VduPdM0ufwWAAAALopqD7LLly+/GHkAAAAA1VLtQXbcuHEXIw8AAACgWviwFwAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS7qkBtn58+erR48eCg0NVXR0tEaOHKmDBw+6rVNQUKCJEycqMjJSjRs31ujRo5WZmdlAGQMAAKChXFKD7Pr16zVx4kRt3bpVn332mS5cuKDBgwcrPz/ftc7kyZP1wQcfaMWKFVq/fr3S0tI0atSoBswaAAAADcGvoRMoLSUlxe32a6+9pujoaO3cuVN9+/ZVbm6uli1bpjfffFMDBgyQJC1fvlxdunTR1q1b1atXr4ZIGwAAAA3gkhpky8rNzZUkNW3aVJK0c+dOXbhwQYMGDXKt07lzZ7Vp00ZbtmzxOMgWFhaqsLDQdTsvL0+SVFxcrOLiYkmSzWaTzWaTw+GQw+FwreuMl5SUyDTNSuN2u12GYbi2WzouSSUlJVWK+/n5yTRNt7hhGLLb7eVy9Bav75pKSkpcufhKTZXFfaWm0j309/f3iZpK85U+VVRT6ZxkmjLMUrcNQ6Zhk0yHjFK5mIYhVRA3TIfkFrdJhiHDdMgmUwEBAXI4HDJNkz7VQU2le1l6v1auyRf75C3u/L+3/lmxpobuU9n1vblkB1mHw6GHHnpIvXv3VteuXSVJGRkZCggIUEREhNu6MTExysjI8Lid+fPna+7cueXiqampCgkJkSRFRUUpLi5OR48e1alTp1zrtG7dWq1bt9Y333zjGqolqUOHDoqOjta+fft0/vx5V7xz586KiIhQamqqW2Pi4+MVEBCgHTt2uOXQvXt3FRUVac+ePa6Y3W5Xjx49lJubqwMHDrjiwcHB6tatm06fPq0jR4644uHh4erSpYvS0tJ08uRJV7y+akpNTXU9noZh+ERNvtinimpy/sD56quvlJiY6BM1OflSnyqqqfS+Qwpy1ORMuut2QUCITke0Vdi5LIXl/y/3/OAIZYe2VJOzGQo5n+OK54VEKS8kSpG5JxRU9L/TurJDWyg/uIliso8qMrBAU6dOVVZWlnJzc+lTHdQUGhoqSUpPT3f7fWblmnyxT95qioyMlCQdP35cWVlZPlFTQ/fJOV9UxjBLj82XkHvvvVeffPKJNm7cqNatW0uS3nzzTU2YMMHtCKsk9ezZU/3799ezzz5bbjuejsjGxsYqKytLYWFhkhr+rw4r/yVVWFio1atXKzk5WX5+fj5Rky/2qaKaiouLXT0MCgryiZpK85U+VVTTrl27lJ6errX5IWreudtFPyKbdmCPXpowTJs2bVJCQgJ9qoOanK/DIUOGuLZn9Zp8sU8VHVFPSUnx2j8r1tTQfcrOzlZkZKRyc3Nd85onl+QR2fvvv18ffvihNmzY4BpiJal58+YqKipSTk6O21HZzMxMNW/e3OO2AgMDFRgYWC7u5+cnPz/38p1NKKv0k7Iq8bLbrUncMAyPcW85VjdeVzU517fb7W7rWLkmX+xTRXHnDxznNn2hprJ8vSa3nAxDpuFhv4ZNpuFh417iPw6unuMOGSoqKpLNZpNhGNXO3Vvc1/tUUY7O16HNZqvWY3Ap11TTuBVrqqx/VqypsnhD1OTJJXXVAtM0df/992vVqlX64osv1L59e7flCQkJ8vf315o1a1yxgwcP6vjx40pKSqrvdAEAANCALqkjshMnTtSbb76pf/7znwoNDXWdJxQeHq7g4GCFh4frzjvv1JQpU9S0aVOFhYXpgQceUFJSElcsAAAAuMxcUoPsiy++KEnq16+fW3z58uUaP368JGnhwoWy2WwaPXq0CgsLlZycrCVLltRzpgAAAGhol9QgW5XPnQUFBWnx4sVavHhxPWQEAACAS9UldY4sAAAAUFUMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlXVKD7IYNGzR8+HC1bNlShmHo/fffd1tumqZmzZqlFi1aKDg4WIMGDdKhQ4caJlkAAAA0qEtqkM3Pz1e3bt20ePFij8v/8Ic/6Pnnn9dLL72kbdu2KSQkRMnJySooKKjnTAEAANDQ/Bo6gdKGDh2qoUOHelxmmqYWLVqkxx9/XCNGjJAkvf7664qJidH777+vsWPHerxfYWGhCgsLXbfz8vIkScXFxSouLpYk2Ww22Ww2ORwOORwO17rOeElJiUzTrDRut9tlGIZru6XjklRSUlKluJ+fn0zTdIsbhiG73V4uR2/x+q6ppKTElYuv1FRZ3FdqKt1Df39/n6ipNF/pU0U1lc5JpinDLHXbMGQaNsl0yCiVi2kYUgVxw3RIbnGbZBgyTIdsMhUQECCHwyHTNOlTHdRUupel92vlmnyxT97izv97658Va2roPpVd35tLapCtyNGjR5WRkaFBgwa5YuHh4UpMTNSWLVu8DrLz58/X3Llzy8VTU1MVEhIiSYqKilJcXJyOHj2qU6dOudZp3bq1WrdurW+++Ua5ubmueIcOHRQdHa19+/bp/Pnzrnjnzp0VERGh1NRUt8bEx8crICBAO3bscMuhe/fuKioq0p49e1wxu92uHj16KDc3VwcOHHDFg4OD1a1bN50+fVpHjhxxewy6dOmitLQ0nTx50hWvr5pSU1Ndj6dhGD5Rky/2qaKanD9wvvrqKyUmJvpETU6+1KeKaiq975CCHDU5k+66XRAQotMRbRV2Lkth+f/LPT84QtmhLdXkbIZCzue44nkhUcoLiVJk7gkFFeW74tmhLZQf3EQx2UcVGVigqVOnKisrS7m5ufSpDmoKDQ2VJKWnpysjI8MnavLFPnmrKTIyUpJ0/PhxZWVl+URNDd0n53xRGcMsPTZfQgzD0KpVqzRy5EhJ0ubNm9W7d2+lpaWpRYsWrvXGjBkjwzD0zjvveNyOpyOysbGxysrKUlhYmKSG/6vDyn9JFRYWavXq1UpOTpafn59P1OSLfaqopuLiYlcPg4KCfKKm0nylTxXVtGvXLqWnp2ttfoiad+520Y/Iph3Yo5cmDNOmTZuUkJBAn+qgJufrcMiQIa7tWb0mX+xTRUfUU1JSvPbPijU1dJ+ys7MVGRmp3Nxc17zmiWWOyNZUYGCgAgMDy8X9/Pzk5+devrMJZZV+UlYlXna7NYkbhuEx7i3H6sbrqibn+na73W0dK9fki32qKO78gePcpi/UVJav1+SWk2HINDzs17DJNDxs3Ev8x8HVc9whQ0VFRbLZbDIMo9q5e4v7ep8qytH5OrTZbNV6DC7lmmoat2JNlfXPijVVFm+Imjy5pD7sVZHmzZtLkjIzM93imZmZrmUAAAC4fFhmkG3fvr2aN2+uNWvWuGJ5eXnatm2bkpKSGjAzAAAANIRL6tSCs2fP6vDhw67bR48e1e7du9W0aVO1adNGDz30kJ566il17NhR7du318yZM9WyZUvXebQAAAC4fFxSg+yOHTvUv39/1+0pU6ZIksaNG6fXXntN06ZNU35+vu6++27l5OTohhtuUEpKioKCghoqZQAAADSQS2qQ7devn9sn3coyDENPPPGEnnjiiXrMCgAAAJciy5wjCwAAAJTGIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkSw6yixcvVrt27RQUFKTExER9+eWXDZ0SAAAA6pnlBtl33nlHU6ZM0ezZs7Vr1y5169ZNycnJ+v777xs6NQAAANQjyw2yCxYs0F133aUJEyboqquu0ksvvaRGjRrpr3/9a0OnBgAAgHrk19AJVEdRUZF27typGTNmuGI2m02DBg3Sli1bPN6nsLBQhYWFrtu5ubmSpB9++EHFxcWubdhsNjkcDjkcDrdt22w2lZSUyDTNSuN2u12GYbi263Tq1CllZGS4rStJhmFIUrm4zWaTaZpuccMwZBhGleLO+1d1/arESz8upXMvKSnRuXPn9O9//1s2m+2i1VQ2Xjqnuq7JU5+c/b6YNZV9LjljF6smZ9zhcLh66Ofnd9Fqqmn/alJTaaVfD7V9zlQnbrfby/2MqOuanPFDhw6pcePGSjt4VAXn8lWWKUOGzDqLZx0/In9/f+3cuVNnzpy5KDU5163L13x1+1f2Z3ld11Q6bpqmzp07p40bN7q2dzFqLfs7zrlOffx+cv6evZg1lc697LKL+fuprvtX1deT3W6Xw+G46L9znfGYmBi1aNGiTmYju90uSeV+tzrj2dnZHmsuy1KD7OnTp1VSUqKYmBi3eExMjA4cOODxPvPnz9fcuXPLxdu3b39RcgSAy8Xdd9/d0CkA8HFnzpxReHi41+WWGmRrYsaMGZoyZYrrtsPh0A8//KDIyEi3v5pQM3l5eYqNjdWJEycUFhbW0OmgBuih9dFD66OH1kb/6p5pmjpz5oxatmxZ4XqWGmSbNWsmu92uzMxMt3hmZqaaN2/u8T6BgYEKDAx0i0VERFysFC9bYWFhvHgtjh5aHz20PnpobfSvblV0JNbJUh/2CggIUEJCgtasWeOKORwOrVmzRklJSQ2YGQAAAOqbpY7IStKUKVM0btw4de/eXT179tSiRYuUn5+vCRMmNHRqAAAAqEeWG2RvvvlmnTp1SrNmzVJGRoauvfZapaSklPsAGOpHYGCgZs+eXe70DVgHPbQ+emh99NDa6F/DMczKrmsAAAAAXIIsdY4sAAAA4MQgCwAAAEtikAUAAIAlMcgCAADAkhhk4dX8+fPVo0cPhYaGKjo6WiNHjtTBgwcrvV9OTo4mTpyoFi1aKDAwUFdeeaU+/vjjesgYZdW0h4sWLVKnTp0UHBys2NhYTZ48WQUFBfWQMcp68cUXFR8f77rQelJSkj755JMK77NixQp17txZQUFBuuaaa3j9NbDq9vCVV15Rnz591KRJEzVp0kSDBg3Sl19+WY8Zo7SavAad3n77bRmGoZEjR17cJC9jDLLwav369Zo4caK2bt2qzz77TBcuXNDgwYOVn5/v9T5FRUW66aabdOzYMa1cuVIHDx7UK6+8olatWtVj5nCqSQ/ffPNNTZ8+XbNnz9b+/fu1bNkyvfPOO3r00UfrMXM4tW7dWs8884x27typHTt2aMCAARoxYoS+/vprj+tv3rxZt9xyi+68806lpqZq5MiRGjlypPbt21fPmcOpuj1ct26dbrnlFq1du1ZbtmxRbGysBg8erO+++66eM4dU/f45HTt2TI888oj69OlTT5lepkygir7//ntTkrl+/Xqv67z44otmhw4dzKKionrMDFVVlR5OnDjRHDBggFtsypQpZu/evS92eqiiJk2amK+++qrHZWPGjDGHDRvmFktMTDTvueee+kgNVVRRD8sqLi42Q0NDzb/97W8XOStUVWX9Ky4uNq+//nrz1VdfNceNG2eOGDGi/pK7zHBEFlWWm5srSWratKnXdf71r38pKSlJEydOVExMjLp27ap58+appKSkvtJEBarSw+uvv147d+50vZV55MgRffzxx/rpT39aLznCu5KSEr399tvKz8/3+rXcW7Zs0aBBg9xiycnJ2rJlS32kiEpUpYdlnTt3ThcuXKjwdYv6UdX+PfHEE4qOjtadd95Zj9ldniz3zV5oGA6HQw899JB69+6trl27el3vyJEj+uKLL/TrX/9aH3/8sQ4fPqz77rtPFy5c0OzZs+sxY5RV1R7eeuutOn36tG644QaZpqni4mL97ne/49SCBrR3714lJSWpoKBAjRs31qpVq3TVVVd5XDcjI6PcNx3GxMQoIyOjPlKFF9XpYVm///3v1bJly3J/oKD+VKd/Gzdu1LJly7R79+76TfIyxRFZVMnEiRO1b98+vf322xWu53A4FB0draVLlyohIUE333yzHnvsMb300kv1lCm8qWoP161bp3nz5mnJkiXatWuX/vGPf+ijjz7Sk08+WU+ZoqxOnTpp9+7d2rZtm+69916NGzdO//nPfxo6LVRDTXv4zDPP6O2339aqVasUFBRUD5nCk6r278yZM7r99tv1yiuvqFmzZg2Q6WWooc9twKVv4sSJZuvWrc0jR45Uum7fvn3NgQMHusU+/vhjU5JZWFh4sVJEJarTwxtuuMF85JFH3GJvvPGGGRwcbJaUlFysFFENAwcONO+++26Py2JjY82FCxe6xWbNmmXGx8fXQ2aoqop66PTHP/7RDA8PN7dv315PWaGqvPUvNTXVlGTa7XbXP8MwTMMwTLvdbh4+fLgBsvVtHJGFV6Zp6v7779eqVav0xRdfqH379pXep3fv3jp8+LAcDocr9s0336hFixYKCAi4mOnCg5r08Ny5c7LZ3H802O121/bQ8BwOhwoLCz0uS0pK0po1a9xin332WZXPx0T9qKiHkvSHP/xBTz75pFJSUtS9e/d6zAxV4a1/nTt31t69e7V7927Xv5///Ofq37+/du/erdjY2AbI1sc18CCNS9i9995rhoeHm+vWrTPT09Nd/86dO+da5/bbbzenT5/uun38+HEzNDTUvP/++82DBw+aH374oRkdHW0+9dRTDVHCZa8mPZw9e7YZGhpqvvXWW+aRI0fMTz/91IyLizPHjBnTECVc9qZPn26uX7/ePHr0qLlnzx5z+vTppmEY5qeffmqaZvn+bdq0yfTz8zOfe+45c//+/ebs2bNNf39/c+/evQ1VwmWvuj185plnzICAAHPlypVur9szZ840VAmXter2ryyuWnBxMcjCK0ke/y1fvty1zo033miOGzfO7X6bN282ExMTzcDAQLNDhw7m008/bRYXF9dv8jBNs2Y9vHDhgjlnzhwzLi7ODAoKMmNjY8377rvPzM7Orvf8YZq/+c1vzLZt25oBAQFmVFSUOXDgQNcvUNP0/Bp89913zSuvvNIMCAgwr776avOjjz6q56xRWnV72LZtW4+v29mzZ9d/8qjRa7A0BtmLyzBN3isEAACA9XCOLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywANJB169bJMAytW7euoVMBAEtikAUAH7V582bNmTNHOTk5DZ0KAFwUDLIA4KM2b96suXPnMsgC8FkMsgCAajl37lxDpwAAkhhkAeCi+u6773TnnXeqZcuWCgwMVPv27XXvvfeqqKjI4/rt2rXT+PHjy8X79eunfv36ucVeeOEFXX311WrUqJGaNGmi7t27680335QkzZkzR1OnTpUktW/fXoZhyDAMHTt2zHX///u//1NCQoKCg4PVtGlTjR07VidOnCi3365du2rnzp3q27evGjVqpEcffbTmDwgA1CG/hk4AAHxVWlqaevbsqZycHN19993q3LmzvvvuO61cubLWRzVfeeUVTZo0Sb/85S/14IMPqqCgQHv27NG2bdt06623atSoUfrmm2/01ltvaeHChWrWrJkkKSoqSpL09NNPa+bMmRozZox++9vf6tSpU3rhhRfUt29fpaamKiIiwrWvrKwsDR06VGPHjtVtt92mmJiYWuUOAHWFQRYALpIZM2YoIyND27ZtU/fu3V3xJ554QqZp1mrbH330ka6++mqtWLHC4/L4+Hhdd911euuttzRy5Ei1a9fOtezbb7/V7Nmz9dRTT7kdXR01apR+8pOfaMmSJW7xjIwMvfTSS7rnnntqlTMA1DVOLQCAi8DhcOj999/X8OHD3YZYJ8MwarX9iIgInTx5Utu3b6/2ff/xj3/I4XBozJgxOn36tOtf8+bN1bFjR61du9Zt/cDAQE2YMKFW+QLAxcARWQC4CE6dOqW8vDx17dr1omz/97//vT7//HP17NlTV1xxhQYPHqxbb71VvXv3rvS+hw4dkmma6tixo8fl/v7+brdbtWqlgICAOskbAOoSgywAXEK8HaktKSmR3W533e7SpYsOHjyoDz/8UCkpKXrvvfe0ZMkSzZo1S3Pnzq1wHw6HQ4Zh6JNPPnHbplPjxo3dbgcHB9egEgC4+BhkAeAiiIqKUlhYmPbt21et+zVp0sTjdV+//fZbdejQwS0WEhKim2++WTfffLOKioo0atQoPf3005oxY4aCgoK8DsVxcXEyTVPt27fXlVdeWa38AOBSwjmyAHAR2Gw2jRw5Uh988IF27NhRbrm3D3vFxcVp69atbpfn+vDDD8tdFisrK8vtdkBAgK666iqZpqkLFy5I+nHQlVRuMB41apTsdrvmzp1bLg/TNMttGwAuVRyRBYCLZN68efr0009144036u6771aXLl2Unp6uFStWaOPGjR7v89vf/lYrV67UkCFDNGbMGP33v//V//3f/ykuLs5tvcGDB6t58+bq3bu3YmJitH//fv3lL3/RsGHDFBoaKklKSEiQJD322GMaO3as/P39NXz4cMXFxempp57SjBkzdOzYMY0cOVKhoaE6evSoVq1apbvvvluPPPLIxX1wAKAOMMgCwEXSqlUrbdu2TTNnztTf//535eXlqVWrVho6dKgaNWrk8T7Jycn605/+pAULFuihhx5S9+7d9eGHH+rhhx92W++ee+7R3//+dy1YsEBnz55V69atNWnSJD3++OOudXr06KEnn3xSL730klJSUuRwOHT06FGFhIRo+vTpuvLKK7Vw4ULXObWxsbEaPHiwfv7zn1+8BwUA6pBh1vZihgAAAEAD4BxZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEv6f7FePLWj1eHiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Elegir el número del cluster a analizar\n", + "cluster_a_analizar = 3 # Cambia este valor al número del cluster que quieres analizar\n", + "\n", + "# Filtrar los elementos del cluster específico\n", + "elementos_cluster = df_final[df_final['cluster'] == cluster_a_analizar]\n", + "\n", + "print(f\"Elementos del cluster {cluster_a_analizar}:\")\n", + "print(elementos_cluster)\n", + "\n", + "# Estadísticas descriptivas de los datos del cluster\n", + "print(f\"\\nEstadísticas descriptivas del cluster {cluster_a_analizar}:\")\n", + "print(elementos_cluster.describe())\n", + "\n", + "# Visualizar las características relevantes de los elementos del cluster\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Seleccionar columnas relevantes para el análisis (puedes ajustar según tu caso)\n", + "columnas_relevantes = elementos_cluster.select_dtypes(include=['number']).columns\n", + "\n", + "# Crear histogramas para las columnas relevantes\n", + "for col in columnas_relevantes:\n", + " plt.figure(figsize=(8, 5))\n", + " elementos_cluster[col].hist(bins=20, color='skyblue', edgecolor='black')\n", + " plt.title(f'Distribución de {col} en el cluster {cluster_a_analizar}', fontsize=14)\n", + " plt.xlabel(col, fontsize=12)\n", + " plt.ylabel('Frecuencia', fontsize=12)\n", + " plt.grid(axis='y', linestyle='--', alpha=0.7)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/src/comparative_analysis/training/training.py b/src/comparative_analysis/training/training.py index 597a45c32..cfd405524 100644 --- a/src/comparative_analysis/training/training.py +++ b/src/comparative_analysis/training/training.py @@ -1,10 +1,101 @@ import pandas as pd +from sklearn.cluster import KMeans +from sklearn.metrics import silhouette_score, davies_bouldin_score +from sklearn.preprocessing import StandardScaler +import matplotlib.pyplot as plt +# **1. Cargar el archivo Excel y preparar el DataFrame** # Ruta del archivo de Excel ruta_excel = r"C:\Users\cdgn2\OneDrive\Escritorio\Maestría\Maestria\Metodologias Agiles\Proyecto\Comparative-analysis-of-products\src\comparative_analysis\database\Adidas_etiquetado.xlsx" # Crear el DataFrame df = pd.read_excel(ruta_excel, header=0) -# Mostrar las primeras filas del DataFrame -print(df.head()) \ No newline at end of file +# **2. Preprocesamiento** +# Convertir columnas a numéricas +df['Weight'] = df['Weight'].astype(str).str.extract('(\d+\.?\d*)').astype(float) +df['Drop__heel-to-toe_differential_'] = pd.to_numeric(df['Drop__heel-to-toe_differential_'].astype(str).str.extract('(\d+\.?\d*)'), errors='coerce') + +# Limpiar precios y convertir a numéricos +df['regularPrice'] = pd.to_numeric(df['regularPrice'].str.replace(r'[^\d.,]', '', regex=True).str.replace(r'\.', '', regex=True).str.replace(',', '.'), errors='coerce') +df['undiscounted_price'] = pd.to_numeric(df['undiscounted_price'].str.replace(r'[^\d.,]', '', regex=True).str.replace(r'\.', '', regex=True).str.replace(',', '.'), errors='coerce') + +# Eliminar columnas no necesarias +cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] +df = df.drop(columns=cols_to_drop, errors='ignore') + +# Filtrar IDs nulos +id_nan = df[df['id'].isna()] + +# **3. Separar datos para clustering** +# Separar columna 'id' +ids = df['id'] +X = df.drop(columns=['id'], errors='ignore') + +# Manejar valores faltantes y convertir variables categóricas +X = X.fillna(0) +X = pd.get_dummies(X, dummy_na=True) + +# Escalar datos +scaler = StandardScaler() +X_scaled = scaler.fit_transform(X) + +# **4. Clustering con KMeans** +k = 8 # Número de clusters +kmeans = KMeans(n_clusters=k, random_state=42) +clusters = kmeans.fit_predict(X_scaled) + +# Crear un DataFrame con los clusters asignados +df_clusters = pd.DataFrame({'id': ids, 'cluster': clusters}) + +# Evaluar la calidad del clustering +sil_score = silhouette_score(X_scaled, clusters) +db_score = davies_bouldin_score(X_scaled, clusters) + +print("Silhouette Score:", sil_score) +print("Davies-Bouldin Score:", db_score) + +# **5. Unir clusters con el DataFrame original** +df_final = df.merge(df_clusters, on='id', how='left') + +# **6. Análisis por clusters** +def analizar_cluster(cluster_num): + # Filtrar elementos del cluster específico + elementos_cluster = df_final[df_final['cluster'] == cluster_num] + + print(f"\nElementos del cluster {cluster_num}:") + print(elementos_cluster) + + print(f"\nEstadísticas descriptivas del cluster {cluster_num}:") + print(elementos_cluster.describe()) + + # Visualizar características numéricas + columnas_relevantes = elementos_cluster.select_dtypes(include=['number']).columns + for col in columnas_relevantes: + plt.figure(figsize=(8, 5)) + elementos_cluster[col].hist(bins=20, color='skyblue', edgecolor='black') + plt.title(f'Distribución de {col} en el cluster {cluster_num}', fontsize=14) + plt.xlabel(col, fontsize=12) + plt.ylabel('Frecuencia', fontsize=12) + plt.grid(axis='y', linestyle='--', alpha=0.7) + plt.show() + +# Ejemplo: Analizar el cluster 0 +analizar_cluster(0) + +# **7. Determinar el número óptimo de clusters** +distortions = [] +K = range(2, 11) # Rango de k a evaluar +for k in K: + kmeans = KMeans(n_clusters=k, random_state=42) + kmeans.fit(X_scaled) + distortions.append(kmeans.inertia_) + +# Graficar la "elbow curve" +plt.figure(figsize=(8, 5)) +plt.plot(K, distortions, 'bo-', markersize=8, linewidth=2, color='blue') +plt.title('Elbow Method para determinar el número óptimo de clusters', fontsize=14) +plt.xlabel('Número de clusters', fontsize=12) +plt.ylabel('Distorsión (Inercia)', fontsize=12) +plt.grid(True, linestyle='--', alpha=0.7) +plt.show() \ No newline at end of file From 9dc43795730a2fb2ef1522d030af905618da427d Mon Sep 17 00:00:00 2001 From: Juan Correa Date: Thu, 12 Dec 2024 23:09:25 -0500 Subject: [PATCH 34/84] baseline_models --- docs/modeling/baseline_models.md | 77 +++++++++++++++++++++++++++----- 1 file changed, 66 insertions(+), 11 deletions(-) diff --git a/docs/modeling/baseline_models.md b/docs/modeling/baseline_models.md index 02ba988ff..b076b48a3 100644 --- a/docs/modeling/baseline_models.md +++ b/docs/modeling/baseline_models.md @@ -1,39 +1,94 @@ # Reporte del Modelo Baseline -Este documento contiene los resultados del modelo baseline. +Este documento contiene los resultados del modelo baseline, el cual consiste en una primera aproximación al clustering de productos. El objetivo es sentar las bases para modelos posteriores y guiar el proceso de mejora continua. ## Descripción del modelo -El modelo baseline es el primer modelo construido y se utiliza para establecer una línea base para el rendimiento de los modelos posteriores. +El modelo baseline se enfocó en realizar un proceso de clustering sobre un conjunto de productos obtenidos desde un endpoint con productos de Adidas. El flujo del proyecto incluye: + +1. **Obtención de datos**: Se obtienen productos desde un endpoint (Adidas). +2. **Normalización de datos con un LLM**: Un modelo de lenguaje (LLM) se utiliza para normalizar y etiquetar las características de los productos. +3. **Clustering**: Utilizando las variables numéricas ya procesadas, se aplicó un algoritmo de clustering (ej. K-Means) para agrupar productos similares. + +Este pipeline busca identificar patrones, similitudes y diferencias entre los productos de la marca. ## Variables de entrada -Lista de las variables de entrada utilizadas en el modelo. +Las variables de entrada utilizadas en el modelo son aquellas extraídas y normalizadas a partir del procesamiento con el LLM. Entre las principales variables se encuentran: + +- **Weight** (Peso del producto, en gramos) +- **Drop (heel-to-toe differential)** (Diferencial de altura entre talón y punta, en mm) +- **regularPrice** (Precio regular del producto, en valor numérico flotante) +- **undiscounted_price** (Precio sin descuento, en valor numérico flotante) +- Otras variables numéricas o categóricas codificadas (por ejemplo, materiales del upper, midsole, outsole convertidas en variables dummies) + +Los IDs de los productos se han mantenido para identificar a qué cluster pertenece cada uno, pero no se utilizaron para el embedding. ## Variable objetivo -Nombre de la variable objetivo utilizada en el modelo. +No existe una variable objetivo propiamente dicha, ya que el enfoque es no supervisado. El objetivo es descubrir grupos (clusters) de productos similares. ## Evaluación del modelo ### Métricas de evaluación -Descripción de las métricas utilizadas para evaluar el rendimiento del modelo. +Se han utilizado métricas de evaluación típicas para modelos de clustering no supervisados: + +- **Silhouette Score**: Mide la separación y cohesión de los clusters. Un valor cercano a 1 indica que las muestras están bien agrupadas, un valor cercano a -1 indica lo contrario. +- **Davies-Bouldin Score**: Mide la calidad del clustering en función de las distancias entre clusters. Valores más bajos indican mejores separaciones entre clusters. ### Resultados de evaluación -Tabla que muestra los resultados de evaluación del modelo baseline, incluyendo las métricas de evaluación. +**Distribución de productos por cluster:** + +| Cluster | Conteo | Porcentaje | +|---------|---------|------------| +| 0 | 2 | 0.44% | +| 1 | 3 | 0.66% | +| 2 | 22 | 4.85% | +| 3 | 64 | 14.10% | +| 4 | 93 | 20.48% | +| 5 | 268 | 59.03% | +| 6 | 1 | 0.22% | +| 7 | 1 | 0.22% | + +**Métricas globales:** + +- Silhouette Score: -0.10727046484513526 +- Davies-Bouldin Score: 3.820317442353896 ## Análisis de los resultados -Descripción de los resultados del modelo baseline, incluyendo fortalezas y debilidades del modelo. +El Silhouette Score negativo (-0.1072) sugiere que la mayoría de los productos no están bien asignados a sus clusters o que los clusters se solapan significativamente. Esto indica que el agrupamiento no capta adecuadamente las similitudes reales entre los productos. + +El Davies-Bouldin Score (3.8203) es relativamente alto, lo que también indica que los clusters no están bien definidos, presentando una baja separación entre ellos. + +La distribución de productos por cluster está muy desbalanceada. Un solo cluster (el número 5) contiene alrededor del 59% de los productos, mientras que otros clusters contienen muy pocos elementos, incluso uno solo. Esto sugiere que la configuración actual de k (el número de clusters) o la forma en que se están representando los datos no es la más adecuada. + +### Fortalezas + +- **Primer paso hacia la segmentación:** Establece una línea base desde la cual se pueden proponer mejoras. +- **Proceso reproducible:** El pipeline desde la extracción de datos, normalización con LLM y clustering está bien definido y puede repetirse con ajustes futuros. + +### Debilidades + +- **Baja calidad de agrupamiento:** Las métricas indican que los clusters no reflejan adecuadamente las similitudes entre productos. +- **Desbalance en los clusters:** Un cluster concentra la mayor parte de los productos, lo que dificulta interpretaciones útiles. +- **Falencia en el embedding actual:** Es posible que la selección de variables o su codificación no capture suficientemente las diferencias relevantes entre los productos. + +### Áreas de mejora + +- **Refinamiento de la representación de datos:** Incluir embeddings más representativos (por ejemplo, usando técnicas de NLP más avanzadas en descripciones, o embeddings más sofisticados en variables categóricas). +- **Ajuste del número de clusters:** Probar diferentes valores de k con el método del codo o métricas de validación más robustas. +- **Selección de características:** Evaluar qué variables realmente aportan información útil para segmentar los productos y eliminar aquellas que introduzcan ruido. +- **Experimentar con diferentes algoritmos de clustering:** Además de K-Means, probar DBSCAN o HDBSCAN para detectar estructuras no esféricas. ## Conclusiones -Conclusiones generales sobre el rendimiento del modelo baseline y posibles áreas de mejora. +El modelo baseline de clustering no ofrece una segmentación claramente útil, según las métricas de validación. Sin embargo, resulta valioso como punto de partida para comprender el problema y orientar mejoras. Ajustes en la selección de variables, técnicas de embedding y el número de clusters, así como la experimentación con otros algoritmos de clustering, podrían mejorar significativamente los resultados. ## Referencias -Lista de referencias utilizadas para construir el modelo baseline y evaluar su rendimiento. - -Espero que te sea útil esta plantilla. Recuerda que puedes adaptarla a las necesidades específicas de tu proyecto. +- Documentation of scikit-learn for Clustering: [https://scikit-learn.org/stable/modules/clustering.html](https://scikit-learn.org/stable/modules/clustering.html) +- Introducción a la Evaluación del Clustering (Silhouette Score, Davies-Bouldin): [https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation](https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation) +- Documentación de K-Means: [https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html) From 4f8a28cc5d89eec85099685f5634baeaff3ee2df Mon Sep 17 00:00:00 2001 From: Juan Correa Date: Thu, 12 Dec 2024 23:16:55 -0500 Subject: [PATCH 35/84] tag --- docs/modeling/baseline_models.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/docs/modeling/baseline_models.md b/docs/modeling/baseline_models.md index b076b48a3..f103416ad 100644 --- a/docs/modeling/baseline_models.md +++ b/docs/modeling/baseline_models.md @@ -89,6 +89,8 @@ El modelo baseline de clustering no ofrece una segmentación claramente útil, s ## Referencias + - Documentation of scikit-learn for Clustering: [https://scikit-learn.org/stable/modules/clustering.html](https://scikit-learn.org/stable/modules/clustering.html) - Introducción a la Evaluación del Clustering (Silhouette Score, Davies-Bouldin): [https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation](https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation) - Documentación de K-Means: [https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html) + From f1cc952ea664c5012b5d1951f1fe3bb8dd0a59fe Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 12 Dec 2024 23:24:03 -0500 Subject: [PATCH 36/84] scripts --- src/comparative_analysis/training/training.py | 130 +++++++++--------- .../training/trainingText.py | 74 ++++++++++ 2 files changed, 137 insertions(+), 67 deletions(-) create mode 100644 src/comparative_analysis/training/trainingText.py diff --git a/src/comparative_analysis/training/training.py b/src/comparative_analysis/training/training.py index cfd405524..3a3ac99f7 100644 --- a/src/comparative_analysis/training/training.py +++ b/src/comparative_analysis/training/training.py @@ -1,101 +1,97 @@ import pandas as pd +import re from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score, davies_bouldin_score from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt -# **1. Cargar el archivo Excel y preparar el DataFrame** +# ** Carga y limpieza de datos ** # Ruta del archivo de Excel ruta_excel = r"C:\Users\cdgn2\OneDrive\Escritorio\Maestría\Maestria\Metodologias Agiles\Proyecto\Comparative-analysis-of-products\src\comparative_analysis\database\Adidas_etiquetado.xlsx" # Crear el DataFrame df = pd.read_excel(ruta_excel, header=0) -# **2. Preprocesamiento** -# Convertir columnas a numéricas -df['Weight'] = df['Weight'].astype(str).str.extract('(\d+\.?\d*)').astype(float) -df['Drop__heel-to-toe_differential_'] = pd.to_numeric(df['Drop__heel-to-toe_differential_'].astype(str).str.extract('(\d+\.?\d*)'), errors='coerce') - -# Limpiar precios y convertir a numéricos -df['regularPrice'] = pd.to_numeric(df['regularPrice'].str.replace(r'[^\d.,]', '', regex=True).str.replace(r'\.', '', regex=True).str.replace(',', '.'), errors='coerce') -df['undiscounted_price'] = pd.to_numeric(df['undiscounted_price'].str.replace(r'[^\d.,]', '', regex=True).str.replace(r'\.', '', regex=True).str.replace(',', '.'), errors='coerce') - -# Eliminar columnas no necesarias +# Procesamiento de columnas numéricas +num_cols = { + 'Weight': '(\d+\.?\d*)', + 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' +} +for col, pattern in num_cols.items(): + df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Procesar precios +price_cols = ['regularPrice', 'undiscounted_price'] +for col in price_cols: + df[col] = df[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) + df[col] = df[col].str.replace(r'\.', '', regex=True).str.replace(',', '.') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Eliminar columnas innecesarias cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] df = df.drop(columns=cols_to_drop, errors='ignore') -# Filtrar IDs nulos -id_nan = df[df['id'].isna()] - -# **3. Separar datos para clustering** -# Separar columna 'id' +# ** Clustering y evaluación ** +# Separar la columna ID ids = df['id'] -X = df.drop(columns=['id'], errors='ignore') +X = df.drop(columns=['id'], errors='ignore').fillna(0) -# Manejar valores faltantes y convertir variables categóricas -X = X.fillna(0) -X = pd.get_dummies(X, dummy_na=True) +# Codificar variables categóricas +df_dummies = pd.get_dummies(X, dummy_na=True).fillna(0) -# Escalar datos +# Escalar los datos scaler = StandardScaler() -X_scaled = scaler.fit_transform(X) - -# **4. Clustering con KMeans** -k = 8 # Número de clusters +X_scaled = scaler.fit_transform(df_dummies) + +# Determinar el número óptimo de clusters usando el método del codo +def metodo_del_codo(X, k_range): + distortions = [] + for k in k_range: + kmeans = KMeans(n_clusters=k, random_state=42) + kmeans.fit(X) + distortions.append(kmeans.inertia_) + + plt.figure(figsize=(8, 5)) + plt.plot(k_range, distortions, 'bx-') + plt.xlabel('Número de clusters k') + plt.ylabel('Distorsión (Inercia)') + plt.title('Método del Codo para determinar k') + plt.show() + +# Mostrar el método del codo +metodo_del_codo(X_scaled, range(2, 11)) + +# Clustering con un número específico de clusters +k = 8 kmeans = KMeans(n_clusters=k, random_state=42) clusters = kmeans.fit_predict(X_scaled) -# Crear un DataFrame con los clusters asignados -df_clusters = pd.DataFrame({'id': ids, 'cluster': clusters}) +# Agregar el cluster al DataFrame original +df['cluster'] = clusters -# Evaluar la calidad del clustering +# Evaluar calidad del clustering sil_score = silhouette_score(X_scaled, clusters) db_score = davies_bouldin_score(X_scaled, clusters) +print(f"Silhouette Score: {sil_score}") +print(f"Davies-Bouldin Score: {db_score}") -print("Silhouette Score:", sil_score) -print("Davies-Bouldin Score:", db_score) - -# **5. Unir clusters con el DataFrame original** -df_final = df.merge(df_clusters, on='id', how='left') - -# **6. Análisis por clusters** -def analizar_cluster(cluster_num): - # Filtrar elementos del cluster específico - elementos_cluster = df_final[df_final['cluster'] == cluster_num] - - print(f"\nElementos del cluster {cluster_num}:") - print(elementos_cluster) +# ** Análisis de clusters ** +def analizar_cluster(df, cluster_num): + elementos_cluster = df[df['cluster'] == cluster_num] + print(f"Elementos del cluster {cluster_num}:") + print(elementos_cluster.head()) print(f"\nEstadísticas descriptivas del cluster {cluster_num}:") print(elementos_cluster.describe()) - # Visualizar características numéricas + # Visualización de histogramas columnas_relevantes = elementos_cluster.select_dtypes(include=['number']).columns for col in columnas_relevantes: - plt.figure(figsize=(8, 5)) - elementos_cluster[col].hist(bins=20, color='skyblue', edgecolor='black') - plt.title(f'Distribución de {col} en el cluster {cluster_num}', fontsize=14) - plt.xlabel(col, fontsize=12) - plt.ylabel('Frecuencia', fontsize=12) - plt.grid(axis='y', linestyle='--', alpha=0.7) + elementos_cluster[col].plot(kind='hist', title=f"Distribución de {col} en cluster {cluster_num}") + plt.xlabel(col) + plt.ylabel('Frecuencia') plt.show() -# Ejemplo: Analizar el cluster 0 -analizar_cluster(0) - -# **7. Determinar el número óptimo de clusters** -distortions = [] -K = range(2, 11) # Rango de k a evaluar -for k in K: - kmeans = KMeans(n_clusters=k, random_state=42) - kmeans.fit(X_scaled) - distortions.append(kmeans.inertia_) - -# Graficar la "elbow curve" -plt.figure(figsize=(8, 5)) -plt.plot(K, distortions, 'bo-', markersize=8, linewidth=2, color='blue') -plt.title('Elbow Method para determinar el número óptimo de clusters', fontsize=14) -plt.xlabel('Número de clusters', fontsize=12) -plt.ylabel('Distorsión (Inercia)', fontsize=12) -plt.grid(True, linestyle='--', alpha=0.7) -plt.show() \ No newline at end of file +# Ejemplo de análisis para un cluster específico +analizar_cluster(df, cluster_num=2) \ No newline at end of file diff --git a/src/comparative_analysis/training/trainingText.py b/src/comparative_analysis/training/trainingText.py new file mode 100644 index 000000000..18c5147c9 --- /dev/null +++ b/src/comparative_analysis/training/trainingText.py @@ -0,0 +1,74 @@ +import pandas as pd +import re +from sklearn.cluster import KMeans +from sklearn.metrics import silhouette_score, davies_bouldin_score +from sklearn.preprocessing import StandardScaler + +# ** Carga y limpieza de datos ** +ruta_excel = r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx" + +# Crear el DataFrame +df = pd.read_excel(ruta_excel, header=0) + +# Procesamiento de columnas numéricas +num_cols = { + 'Weight': '(\d+\.?\d*)', + 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' +} +for col, pattern in num_cols.items(): + df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Procesar precios +price_cols = ['regularPrice', 'undiscounted_price'] +for col in price_cols: + df[col] = df[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) + df[col] = df[col].str.replace(r'\\.', '', regex=True).str.replace(',', '.') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Eliminar columnas innecesarias +cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] +df = df.drop(columns=cols_to_drop, errors='ignore') + +# ** Clustering y evaluación ** +ids = df['id'] +X = df.drop(columns=['id'], errors='ignore').fillna(0) + +# Codificar variables categóricas +df_dummies = pd.get_dummies(X, dummy_na=True).fillna(0) + +# Escalar los datos +scaler = StandardScaler() +X_scaled = scaler.fit_transform(df_dummies) + +# Clustering con un número específico de clusters +k = 8 +kmeans = KMeans(n_clusters=k, random_state=42) +clusters = kmeans.fit_predict(X_scaled) + +# Agregar el cluster al DataFrame original +df['cluster'] = clusters + +# Evaluar calidad del clustering +sil_score = silhouette_score(X_scaled, clusters) +db_score = davies_bouldin_score(X_scaled, clusters) +print(f"Silhouette Score: {sil_score}") +print(f"Davies-Bouldin Score: {db_score}") + +# ** Análisis de clusters ** +def analizar_cluster(df, cluster_num): + elementos_cluster = df[df['cluster'] == cluster_num] + print(f"\n=== Análisis del cluster {cluster_num} ===") + print(f"Total de elementos: {len(elementos_cluster)}") + + print(f"\nEstadísticas descriptivas principales:") + print(elementos_cluster.describe().loc[['mean', 'std', 'min', 'max']]) + + print(f"\nValores más frecuentes por columna categórica:") + cols_categoricas = elementos_cluster.select_dtypes(include=['object', 'category']).columns + for col in cols_categoricas: + print(f" - {col}: {elementos_cluster[col].mode().values[0]}") + +# Analizar los clusters 2 y 3 +analizar_cluster(df, cluster_num=2) +analizar_cluster(df, cluster_num=3) From 024a084c0a76ec955873aae49e0735b8f1f4560e Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 12 Dec 2024 23:24:28 -0500 Subject: [PATCH 37/84] cambios a trainingtext --- src/comparative_analysis/training/trainingText.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/comparative_analysis/training/trainingText.py b/src/comparative_analysis/training/trainingText.py index 18c5147c9..cba79862e 100644 --- a/src/comparative_analysis/training/trainingText.py +++ b/src/comparative_analysis/training/trainingText.py @@ -71,4 +71,4 @@ def analizar_cluster(df, cluster_num): # Analizar los clusters 2 y 3 analizar_cluster(df, cluster_num=2) -analizar_cluster(df, cluster_num=3) +analizar_cluster(df, cluster_num=3) \ No newline at end of file From 6f39257b3fc60f5f7f108c6953ae243c1d908385 Mon Sep 17 00:00:00 2001 From: Juan Correa Date: Thu, 12 Dec 2024 23:28:27 -0500 Subject: [PATCH 38/84] model_report.md --- docs/modeling/model_report.md | 52 +++++++++++++++++++++++++++++++---- 1 file changed, 46 insertions(+), 6 deletions(-) diff --git a/docs/modeling/model_report.md b/docs/modeling/model_report.md index 407ef7baa..a8de43e36 100644 --- a/docs/modeling/model_report.md +++ b/docs/modeling/model_report.md @@ -2,24 +2,64 @@ ## Resumen Ejecutivo -En esta sección se presentará un resumen de los resultados obtenidos del modelo final. Es importante incluir los resultados de las métricas de evaluación y la interpretación de los mismos. +El modelo final se construyó con el objetivo de agrupar productos de Adidas con características similares, partiendo de datos obtenidos desde un endpoint, luego normalizados y etiquetados mediante un LLM. Para lograr esto, se aplicó un método de clustering (K-Means) a las variables numéricas y categóricas transformadas. + +En términos de métricas de evaluación, el **Silhouette Score** alcanzó un valor de **-0.10726032825390042**, mientras que el **Davies-Bouldin Score** fue de **3.7837546892816856**. Estas métricas indican que el clustering no logró una segmentación claramente separada ni cohesiva. Sin embargo, estos resultados proporcionan una línea base para mejoras futuras. ## Descripción del Problema -En esta sección se describirá el problema que se buscó resolver con el modelo final. Se debe incluir una descripción detallada del problema, el contexto en el que se desarrolla, los objetivos que se persiguen y la justificación del modelo. +La problemática abordada consiste en organizar y segmentar una amplia gama de productos Adidas en grupos homogéneos, con el fin de facilitar análisis comparativos. El objetivo es identificar patrones ocultos en las características de los productos, tales como peso, materiales, precios y tecnologías implementadas. Este tipo de segmentación es útil para la toma de decisiones estratégicas, el análisis de competitividad y el desarrollo de nuevas líneas de productos orientadas a grupos específicos de mercado. + +Justificación: La agrupación no supervisada de productos permite a la empresa comprender mejor sus catálogos, detectar nichos y mejorar la experiencia del cliente recomendando artículos similares. Además, sienta las bases para análisis más profundos, tales como análisis de correlación con el rendimiento de ventas o el perfil de cliente. ## Descripción del Modelo -En esta sección se describirá el modelo final que se desarrolló para resolver el problema planteado. Se debe incluir una descripción detallada del modelo, la metodología utilizada y las técnicas empleadas. +El modelo final se basa en el siguiente flujo de trabajo: + +1. **Obtención de datos**: Se extrajeron productos desde un endpoint con información de Adidas. +2. **Normalización y etiquetado con LLM**: Un modelo de lenguaje se utilizó para transformar las descripciones crudas del producto en variables estructuradas y etiquetadas. +3. **Limpieza y transformación**: Se procesaron valores nulos, se convirtieron precios y métricas a formato numérico flotante, y se realizaron codificaciones dummies para variables categóricas. +4. **Clustering (K-Means)**: Se aplicó K-Means con un determinado número de clusters, seleccionado tras un análisis inicial con el método del codo. La elección final de k se basó en la interpretación de las métricas y la naturaleza de los datos. + +El resultado fue un conjunto de clusters, cada uno agrupando productos con ciertas características predominantes. Por ejemplo: +- El **Cluster 2** (22 elementos) presentó productos con un peso promedio de alrededor de 569 g, un drop cercano a 9.4 mm, y precios promedio de ~401.7. Las tecnologías más comunes fueron "Mediasuela Bounce" y "Suela de caucho", con mayoría de productos para "Mujer" y "Running". +- El **Cluster 3** (60 elementos) mostró productos más ligeros (259.9 g) con drop de ~9.65 mm y precios promedio cercanos a 474. En este cluster destacó el material "Parte superior de malla" y el sistema "Dreamstrike+", mayormente orientado a calzado de "Mujer" y "Running". ## Evaluación del Modelo -En esta sección se presentará una evaluación detallada del modelo final. Se deben incluir las métricas de evaluación que se utilizaron y una interpretación detallada de los resultados. +**Métricas:** +- **Silhouette Score:** -0.10726032825390042 + Un valor negativo sugiere que la mayoría de los puntos podrían asignarse mejor a otros clusters, indicando una baja cohesión/separación. + +- **Davies-Bouldin Score:** 3.7837546892816856 + Un valor relativamente alto indica que los clusters no están bien separados ni son internamente cohesivos. + +Estas métricas reflejan la complejidad del conjunto de datos y la necesidad de refinar la representación de las variables o ajustar el número y el tipo de clustering usado. + +A nivel descriptivo, se logró observar patrones de materiales y tecnologías predominantes por cluster, lo que puede ser útil como insumo para análisis posteriores, a pesar de que la calidad cuantitativa del clustering no fue óptima. ## Conclusiones y Recomendaciones -En esta sección se presentarán las conclusiones y recomendaciones a partir de los resultados obtenidos. Se deben incluir los puntos fuertes y débiles del modelo, las limitaciones y los posibles escenarios de aplicación. +**Fortalezas:** +- Se estableció un proceso reproducible para extraer, normalizar y clústerizar datos de productos. +- Se identificaron patrones básicos en la composición de algunos clusters. + +**Debilidades:** +- Métricas bajas de calidad de clusters indican que la segmentación no es nítida. +- Alta heterogeneidad en las características, posibles variables irrelevantes o ruido dificultan la formación de grupos cohesivos. + +**Limitaciones:** +- El modelo depende en gran medida de la calidad de las etiquetas generadas por el LLM. +- No se exploraron otros algoritmos de clustering ni se realizaron exhaustivos ajustes de hiperparámetros. + +**Áreas de mejora:** +- Refinar la selección de características y la representación de datos, por ejemplo, utilizando embeddings semánticos para descripciones textuales. +- Probar técnicas de reducción de dimensionalidad (PCA, UMAP) para mejorar la separabilidad de los datos. +- Experimentar con algoritmos de clustering alternativos (DBSCAN, HDBSCAN) que podrían adaptarse mejor a la forma real de los datos. ## Referencias -En esta sección se deben incluir las referencias bibliográficas y fuentes de información utilizadas en el desarrollo del modelo. +- Scikit-learn Documentation: [https://scikit-learn.org/stable/](https://scikit-learn.org/stable/) +- Evaluación de Clustering (Silhouette y Davies-Bouldin): [https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation](https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation) +- Documentación de K-Means: [https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html) +- Técnicas de reducción de dimensionalidad: [https://scikit-learn.org/stable/modules/decomposition.html](https://scikit-learn.org/stable/modules/decomposition.html) From a17b6759573ede3be423319d83cef450478c5b6b Mon Sep 17 00:00:00 2001 From: Juan Correa Date: Thu, 12 Dec 2024 23:30:41 -0500 Subject: [PATCH 39/84] eliminada carpeta notebooks --- Notebooks/cost_calculator.ipynb | 545 -------- Notebooks/preprocessing.ipynb | 1210 ----------------- Notebooks/test.ipynb | 2144 ------------------------------- 3 files changed, 3899 deletions(-) delete mode 100644 Notebooks/cost_calculator.ipynb delete mode 100644 Notebooks/preprocessing.ipynb delete mode 100644 Notebooks/test.ipynb diff --git a/Notebooks/cost_calculator.ipynb b/Notebooks/cost_calculator.ipynb deleted file mode 100644 index d829118eb..000000000 --- a/Notebooks/cost_calculator.ipynb +++ /dev/null @@ -1,545 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import requests\n", - "import re\n", - "import ollama\n", - "import random\n", - "import math\n", - "from tiktoken import get_encoding" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "labels_with_definitions = [\n", - " (\"Peso\", \"Indica la ligereza de la zapatilla, generalmente expresado en gramos. El peso puede influir en el rendimiento y la comodidad durante la carrera.\"),\n", - " (\"Material del upper (parte superior)\", \"Describe los materiales utilizados en la parte superior de la zapatilla, como malla, cuero sintético o tejidos técnicos, que afectan la transpirabilidad, flexibilidad y soporte.\"),\n", - " (\"Material de la mediasuela\", \"Se refiere a los compuestos empleados en la entresuela, como espumas EVA o tecnologías propietarias, que proporcionan amortiguación y absorción de impactos.\"),\n", - " (\"Suela exterior\", \"Detalla el tipo de goma o caucho utilizado en la suela y el diseño del patrón de tracción, aspectos que influyen en el agarre y la durabilidad en diversas superficies.\"),\n", - " (\"Sistema de amortiguación\", \"Especifica las tecnologías o materiales destinados a reducir el impacto durante la pisada, contribuyendo al confort y la protección de las articulaciones.\"),\n", - " (\"Drop (diferencial talón-punta)\", \"Indica la diferencia de altura entre el talón y la punta de la zapatilla, medida en milímetros. Un drop alto suele ofrecer mayor amortiguación en el talón, mientras que un drop bajo promueve una pisada más natural.\"),\n", - " (\"Tipo de pisada\", \"Clasifica la zapatilla según su adecuación para diferentes tipos de pisada: neutra, pronadora o supinadora. Esto es esencial para elegir un calzado que se adapte a la biomecánica del corredor.\"),\n", - " (\"Tipo de uso\", \"Define el propósito principal de la zapatilla, como entrenamiento diario, competición, trail running o uso casual, lo que orienta sobre su diseño y funcionalidades específicas.\"),\n", - " (\"Género\", \"Indica si la zapatilla está diseñada para hombres, mujeres o es un modelo unisex, considerando diferencias anatómicas y de tamaño.\"),\n", - " (\"Tallas disponibles\", \"Especifica el rango de tallas en las que se ofrece la zapatilla, asegurando que el corredor pueda encontrar un ajuste adecuado.\"),\n", - " (\"Anchura\", \"Algunas marcas ofrecen diferentes anchos (estrecho, estándar, ancho) para adaptarse a diversas morfologías del pie.\"),\n", - " (\"Precio\", \"Proporciona el costo de la zapatilla, un factor determinante en la decisión de compra.\"),\n", - " (\"Tecnologías adicionales\", \"Incluye características especiales como impermeabilidad, reflectividad, sistemas de ajuste personalizados o elementos de estabilidad que mejoran la funcionalidad del calzado.\"),\n", - "]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Funciones" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "def transformar_texto(texto, marca):\n", - " if texto is None or (isinstance(texto, float) and np.isnan(texto)):\n", - " return texto\n", - " \n", - " if marca.lower() == \"adidas\":\n", - " # Transformación original para adidas\n", - " if isinstance(texto, (list, np.ndarray)):\n", - " texto = \", \".join(map(str, texto))\n", - " else:\n", - " texto = str(texto)\n", - " texto = texto.strip(\"[]\")\n", - " texto = re.sub(r\",\\s*\", '} {', texto)\n", - " texto = '{' + texto + '}'\n", - " return texto\n", - " \n", - " elif marca.lower() == \"nike\":\n", - " # Transformación específica para nike\n", - " if isinstance(texto, list):\n", - " # Elimina claves con valores irrelevantes\n", - " texto_limpio = [\n", - " {k.strip(): v.strip() for k, v in d.items() if k.strip() not in ['\\xa0']}\n", - " for d in texto\n", - " if isinstance(d, dict)\n", - " ]\n", - " # Filtra elementos vacíos o irrelevantes\n", - " texto_limpio = [d for d in texto_limpio if d]\n", - " return texto_limpio\n", - " return texto # Si no es lista, regresa el texto original\n", - "\n", - " else:\n", - " raise ValueError(f\"Marca '{marca}' no reconocida. Usa 'adidas' o 'nike'.\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "def obtener_respuesta_ollama(prompt):\n", - " response = ollama.chat(\n", - " model=\"llama3.2:latest\",\n", - " messages = [\n", - " {\n", - " \"role\":\"user\",\n", - " \"content\": prompt\n", - " } \n", - " ]\n", - " )\n", - " # La respuesta es un generador; concatenamos las partes\n", - " return response" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "\n", - "\n", - "def generate_prompt_ollama(product, labels_with_definitions):\n", - " labels = [label for label, _ in labels_with_definitions]\n", - " prompt = f\"\"\"\n", - " You are an assistant specialized in extracting structured information from product descriptions and organizing it into tables.\n", - " Your task is to extract the following information from the product details and label it according to the provided labels: {', '.join(labels)}.\n", - " Each label has the following definition to help guide your extraction:\n", - "\n", - " {''.join([f'- {label}: {definition}\\n' for label, definition in labels_with_definitions])}\n", - "\n", - " If a label does not have a clear match in the details, complete its value with \"null\".\n", - "\n", - " Product information:\n", - " - Details: {product['details']}\n", - " - Description: {product['description']}\n", - " - Category: {product['category']}\n", - "\n", - " Provide the information in a table with columns corresponding to each label. \n", - " The table must include **two complete rows**:\n", - " 1. The first row contains the label names.\n", - " 2. The second row contains the corresponding labeled values.\n", - "\n", - " Expected response format:\n", - " | {' | '.join(labels)} |\n", - " | {' | '.join(['---'] * len(labels))} |\n", - " | value_1 | value_2 | ... |\n", - " \n", - " Example:\n", - " If the labels are \"details\", \"description\", and \"category\", and the extracted values are \n", - " \"Comfortable sneakers\", \"Made with recycled materials\", and \"Footwear\", respectively, \n", - " your response should be:\n", - "\n", - " | details | description | category |\n", - " | --- | --- | --- |\n", - " | Comfortable sneakers | Made with recycled materials | Footwear |\n", - "\n", - " Remember:\n", - " - The response must contain two complete rows.\n", - " - Only respond with the table and **do not include additional text**.\n", - "\n", - " Now, extract and structure the information for the provided product:\n", - "\n", - " | {' | '.join(labels)} |\n", - " | {' | '.join(['---'] * len(labels))} |\n", - " |\"\"\"\n", - " return prompt.strip()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# Tokenizer function (using tiktoken for GPT-like models)\n", - "def count_tokens(text):\n", - " try:\n", - " encoding = get_encoding(\"cl100k_base\") # Example encoding for GPT-like models\n", - " return len(encoding.encode(text))\n", - " except Exception:\n", - " return len(text.split()) # Fallback: approximate by word count" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "# Función de simulación de Monte Carlo corregida\n", - "def monte_carlo_simulation(products, models, iterations=1000, num_products=None):\n", - " results = {}\n", - " \n", - " for model_name, model_info in models.items():\n", - " tokens_per_product = {}\n", - " costs_per_product = {}\n", - " \n", - " for _ in range(iterations):\n", - " # Muestra una fracción de los productos si se especifica\n", - " if num_products is not None and num_products < len(products):\n", - " sampled_products = random.sample(products, num_products)\n", - " else:\n", - " sampled_products = products\n", - "\n", - " for product in sampled_products:\n", - " product_id = product.get('id', id(product)) # Usamos un identificador único para cada producto\n", - " prompt = generate_prompt_ollama(product, labels_with_definitions)\n", - " tokens = count_tokens(prompt)\n", - " \n", - " # Verifica si el número de tokens excede la ventana de contexto\n", - " if tokens > model_info['context_window']*1000:\n", - " print(f\"Advertencia: El prompt excede la ventana de contexto para el modelo {model_name}\")\n", - " # Puedes manejar este caso según necesites (e.g., omitir, truncar)\n", - " continue\n", - " \n", - " cost = (tokens / 1000) * model_info['cost_in']\n", - " \n", - " # Actualiza los máximos y mínimos por producto\n", - " if product_id not in tokens_per_product:\n", - " tokens_per_product[product_id] = {'max': tokens, 'min': tokens}\n", - " costs_per_product[product_id] = {'max': cost, 'min': cost}\n", - " else:\n", - " tokens_per_product[product_id]['max'] = max(tokens_per_product[product_id]['max'], tokens)\n", - " tokens_per_product[product_id]['min'] = min(tokens_per_product[product_id]['min'], tokens)\n", - " costs_per_product[product_id]['max'] = max(costs_per_product[product_id]['max'], cost)\n", - " costs_per_product[product_id]['min'] = min(costs_per_product[product_id]['min'], cost)\n", - " \n", - " # Después de todas las iteraciones, obtenemos los máximos y mínimos globales\n", - " max_tokens = max([data['max'] for data in tokens_per_product.values()], default=0)\n", - " min_tokens = min([data['min'] for data in tokens_per_product.values()], default=0)\n", - " max_cost = max([data['max'] for data in costs_per_product.values()], default=0)\n", - " min_cost = min([data['min'] for data in costs_per_product.values()], default=0)\n", - " \n", - " results[model_name] = {\n", - " 'max_tokens': max_tokens,\n", - " 'min_tokens': min_tokens,\n", - " 'max_cost': max_cost,\n", - " 'min_cost': min_cost,\n", - " }\n", - " return results" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Lectura de datos" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200\n" - ] - } - ], - "source": [ - "url =\"https://scraping-firestore-178159629911.us-central1.run.app//v1/scraping/\"\n", - "\n", - "response = requests.get(url)\n", - "\n", - "if response.status_code == 200:\n", - " data = response.json()\n", - " print(response.status_code)\n", - "else:\n", - " print(f'Error: {response.status_code}')\n", - "\n", - "df_raw = pd.DataFrame(data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Código" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "df_adidas = df_raw[df_raw['store'] == 'adidas']" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_3872\\354877031.py:2: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))\n" - ] - } - ], - "source": [ - "# Lista de descripciones de productos\n", - "df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# Crear un diccionario con las llaves deseadas desde todo el DataFrame\n", - "productos = [\n", - " {\n", - " \"details\": row['details_transformado'],\n", - " \"description\": row['description'],\n", - " \"category\": row['category']\n", - " }\n", - " for _, row in df_adidas.iterrows() # Recorre todo el DataFrame\n", - " if row['details_transformado'] != '{}' # Filtra donde los detalles no estén vacíos\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "# Model configurations\n", - "models = {\n", - " \"jamba15large\": {'cost_in': 0.002, 'cost_out': 0.008, 'accuracy': 64, 'context_window': 256},\n", - " \"claude35sonnet\": {'cost_in': 0.003, 'cost_out': 0.015, 'accuracy': 80, 'context_window': 200},\n", - " \"llama3170b\": {'cost_in': 0.00099, 'cost_out': 0.00099, 'accuracy': 66, 'context_window': 128},\n", - " \"mistrallarge\": {'cost_in': 0.004, 'cost_out': 0.012, 'accuracy': 56, 'context_window': 33},\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "# Ahora puedes especificar el número de productos a procesar (por ejemplo, 10)\n", - "num_products_to_process = 100 # O usa len(productos) para procesar todos\n", - "\n", - "# Ejecutar la simulación de Monte Carlo\n", - "simulation_results = monte_carlo_simulation(productos, models, iterations=1000, num_products=num_products_to_process)\n", - "\n", - "# Mostrar los resultados\n", - "import pandas as pd\n", - "df_results = pd.DataFrame(simulation_results).transpose().reset_index()\n", - "df_results.columns = ['Model', 'Max Tokens', 'Min Tokens', 'Max Cost', 'Min Cost']\n" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Model Max Tokens Min Tokens Max Cost Min Cost\n", - "0 jamba15large 1787.0 1303.0 0.003574 0.002606\n", - "1 claude35sonnet 1787.0 1303.0 0.005361 0.003909\n", - "2 llama3170b 1787.0 1303.0 0.001769 0.001290\n", - "3 mistrallarge 1787.0 1303.0 0.007148 0.005212\n" - ] - } - ], - "source": [ - "print(df_results)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(519, 14)" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_adidas.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "# Crear un diccionario con las llaves deseadas\n", - "productos = [\n", - " {\n", - " \"details\": row['details_transformado'],\n", - " \"description\": row['description'],\n", - " \"category\": row['category']\n", - " }\n", - " for _, row in df_adidas[:10].iterrows() \n", - " if row['details_transformado'] != '{}'\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'details': '{Horma clásica} {Parte superior sintética} {Forro interno textil} {Varillas ENERGYRODS 2.0 que limitan la pérdida de energía} {Amortiguación Lightstrike Pro} {Peso: 183 g (talla CO 37} {5)} {Caída mediasuela: 6 mm (talón: 38 mm / antepié: 32 mm)} {La parte superior contiene al menos un 50 % de material reciclado} {Color del artículo: Pink Spark / Aurora Met. / Sandy Pink} {Número de artículo: ID3612}', 'description': \"Los Adizero Adios Pro 3 son la máxima expresión de los productos Adizero Racing. Fueron diseñados con y para atletas para lograr hazañas increíbles. Estos tenis de running adidas están diseñados para optimizar la eficiencia del running. Nuestras varillas ENERGYRODS 2.0 de carbono ofrecen ligereza y firmeza para pasos ágiles y eficientes. La tecnología LIGHTSTRIKE PRO ultraliviana amortigua cada paso con las tres capas de espuma resistente que te ayudan a mantener la energía a largo plazo. Todo sobre una delgada suela de caucho textil para un agarre extraordinario en condiciones mojadas y secas. Celebramos nuestra más reciente victoria, los tenis Best Speed 2024 by Women's Health.\", 'category': 'Mujer • Running'}\n", - "Respuesta del modelo:\n", - "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 183 g | Parte superior sintética | Forro interno textil | Caucho textil | Amortiguación Lightstrike Pro | 5 | Neutral | Competición | Mujer | 37-45 CO | null | 250 | Varillas ENERGYRODS 2.0, tecnología LIGHTSTRIKE PRO, caucho textil, material reciclado |\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de tejido adidas Primeknit} {Ajuste suave en el talón} {Sistema Linear Energy Push} {Mediasuela BOOST} {Peso: 289 g (Talla CO 37)} {Suela Stretchweb con caucho Continental™ Better Rubber} {El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado} {Color del artículo: Core Black / Core Black / Cloud White} {Número de artículo: GX5591}', 'description': 'Hemos analizado 1.200.000 pisadas para que Ultraboost evolucione y mejore su ajuste para adaptarse 360° al pie femenino. Y aún hay más. Hemos rediseñado la suela de caucho. Probamos cientos de prototipos. Hasta que comprobamos las mejoras en su rendimiento. ¿El resultado? Un 4 % más de energía que los Ultraboost 21 para mujer. El ajuste en el área del talón del exterior adidas PRIMEKNIT se diseñó para evitar que el talón se deslice y se formen ampollas. Estarás corriendo sobre una mediasuela BOOST con tecnología Linear Energy Push. El exterior de este calzado está confeccionado con hilo que contiene un 50% de Parley Ocean Plastic, un material que ha sido recuperado de residuos plásticos recogidos en islas, playas, comunidades costeras y costas evitando que contaminen nuestros océanos.', 'category': 'Mujer • Running'}\n", - "Respuesta del modelo:\n", - "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 289 g (Talla CO 37) | adidas Primeknit | BOOST | Stretchweb con caucho Continental™ Better Rubber | Linear Energy Push | null | Neutra | Competición | Mujer | 37-48 | null | €149.95 | Contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Ajuste clásico} {Cierre de cordones} {Parte superior de malla técnica} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch para un ajuste seguro} {Peso: 166 g (Talla COL 36 1/2)} {Caída mediasuela: 6 mm (talón: 32 mm / antepié: 26 mm)} {Suela de caucho Continental™} {Contiene al menos un 20 % de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG8206}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Mujer • Running'}\n", - "Respuesta del modelo:\n", - "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 166 g (Talla COL 36 1/2) | Parte superior de malla técnica | Varillas ENERGYRODS que limitan la pérdida de energía | Suela de caucho Continental™ | Amortiguación Lightstrike Pro | 6 mm (talón: 32 mm / antepié: 26 mm) | Neutra | Competición | Mujer | 36 1/2-42 3/4 | Estrecho, estándar, ancho | null | null | Contiene al menos un 20 % de material reciclado |\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch} {Peso: 200 gramos (talla CO 40)} {Caída mediasuela: 6 mm (talón: 33 mm / antepié: 27 mm} {Suela de caucho Continental™ Rubber} {Contienen al menos un 20% de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG3134}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS 2.0 para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Hombre • Running'}\n", - "Respuesta del modelo:\n", - "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 200 gramos | Parte superior de malla | Amortiguación Lightstrike Pro | Suela de caucho Continental™ Rubber | Varillas ENERGYRODS que limitan la pérdida de energía | null | neutra | competición | hombre | CO 40-50, EU 41-45, US 6.5-7.5 | estrecho | 90€ | Contienen al menos un 20% de material reciclado |\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior textil} {Forro interno textil} {Mediasuela Cloudfoam} {Suela de TPU} {Peso: 319 g (talla CO 40)} {Caída mediasuela: 6 mm (talón 35 mm / antepié 29 mm)} {Color del artículo: Halo Silver / Carbon / Core Black} {Número de artículo: ID8754}', 'description': 'Cada carrera es un viaje de descubrimiento. Ponte estos tenis de running adidas y libera tu potencial. La mediasuela con amortiguación Cloudfoam te ofrece una pisada más cómoda mientras aumentas tu resistencia. La parte superior textil es resistente al desgaste y te ofrece soporte desde tu primera vuelta hasta tu primera carrera de 5K.', 'category': 'Hombre • Running'}\n", - "Respuesta del modelo:\n", - "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 319 g (talla CO 40) | Parte superior textil | Mediasuela Cloudfoam | Suela de TPU | Reducción del impacto | 6 mm (talón 35 mm / antepié 29 mm) | Neutra | Entrenamiento diario | Hombre | Tallas CO 36-46 | null | 319 g | null |\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Si este artículo es personalizado} {no aplica en nuestra política de cambios y devoluciones.} {Sistema de amarre de cordones para un ajuste inmejorable} {Producto hecho parcialmente con Malla Técnica Reciclada} {Diseño liviano} {Amortiguación Lightstrike y Lightstrike Pro} {Forro interno textil} {Caída mediasuela: 8} {5 mm (talón: 33 mm / antepié: 24} {5 mm)} {Suela de caucho} {El exterior contiene al menos un 50% de material reciclado} {Color del artículo: Ivory / Iron Metallic / Spark} {Número de artículo: IG3341}', 'description': 'Cuando se trata de alcanzar tus metas, cada segundo cuenta. Ya sea para entrenar o para competir, un rendimiento excelente requiere de prendas de alta tecnología optimizadas para la velocidad. Presentamos la nueva colección de tenis de running livianos que te ayudan a superar tus límites sin distracciones.\\n\\nLos tenis de running Adizero SL seleccionan lo mejor de nuestra franquicia Adizero que rompe récords mundiales. La mediasuela de EVA LIGHTSTRIKE liviana ofrece resiliencia a la mediasuela para que puedas concentrarte en el próximo paso, mientras que el exterior está hecho de una malla técnica suave que está zonificada en áreas clave. El talón acolchado y la lengüeta brindan una comodidad óptima junto con el antepié Adizero. La suela premium está diseñada para proporcionar tracción.', 'category': 'Mujer • Running'}\n", - "Respuesta del modelo:\n", - "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| null | Malla técnica suave zonificada en áreas clave | EVA LIGHTSTRIKE liviana | Suela de caucho | Amortiguación Lightstrike y Lightstrike Pro | 5 mm | Neutra | Competición | Mujer • Running | Estándar, Ancha | $120-$150 | Al menos un 50% de material reciclado |\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {Plantilla OrthoLite®} {Mediasuela Cloudfoam} {Peso: 304 g (talla CO 40)} {Caída mediasuela: 10 mm (talón: 33 mm / antepié: 23 mm)} {Suela Adiwear} {Color del artículo: Cloud White / Core Black / Better Scarlet} {Número de artículo: IE8818}', 'description': 'Tanto en la pista como en la cinta de correr, alcanza todas tus metas con estos tenis de running adidas. Incorporan una mediasuela con amortiguación Cloudfoam que te ofrece una pisada más cómoda y suave. La parte superior de malla transpirable y la suela Adiwear de gran resistencia al desgaste la convierten en una silueta perfecta para llevar durante todo el día.', 'category': 'Hombre • Running'}\n", - "Respuesta del modelo:\n", - "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 304 g (talla CO 40) | Parte superior de malla | Mediasuela Cloudfoam | Suela Adiwear | Reducción del impacto con Plantilla OrthoLite® y mediasuela Cloudfoam | 10 mm (talón: 33 mm / antepié: 23 mm) | Neutra | Entrenamiento diario, competición | Hombre • Running | Talla CO 40 - CO 12 | Estrecho, estándar, ancho | €109.90 | Impermeabilidad |\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {mediasuela Dreamstrike+} {Suela Adiwear} {Peso (talla CO 37): 213 gramos} {Caída mediasuela: 10 mm (talón: 34 mm / 24 mm)} {Contienen al menos un 20% de material reciclado y renovable} {Color del artículo: Almost Yellow / Zero Metalic / Pink Spark} {Número de artículo: IE1072}', 'description': 'Avanza hacia tus metas de running con estos tenis adidas. La mediasuela Dreamstrike+ está diseñada para absorber el impacto. La amortiguación adicional en el antepié ofrece comodidad durante toda tu carrera. El exterior de malla transpirable maximiza el flujo de aire para mantener tus pies frescos, y la suela Adiwear resistente ofrece tracción. \\n\\nAl elegir materiales reciclados, podemos reutilizar materiales que ya han sido creados, lo que ayuda a reducir los residuos. La elección de materiales renovables nos ayudará a eliminar nuestra dependencia de recursos finitos. Nuestros productos hechos con una mezcla de materiales reciclados y renovables contienen al menos un 20% de este material.', 'category': 'Mujer • Running'}\n", - "Respuesta del modelo:\n", - "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 213 gramos | Parte superior de malla | mediasuela Dreamstrike+ | Suela Adiwear | La mediasuela está diseñada para absorber el impacto. El antepié ofrece comodidad durante toda tu carrera. | 10 mm (talón: 34 mm / 24 mm) | Neutra | Competición, trail running | Mujer • Running | CO 37-48 | Estrecho, estándar, ancho | €59.99 | Contienen al menos un 20% de material reciclado y renovable |\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de malla con cuello acolchado} {Forro interno textil} {Estabilizador de talón moldeado Fitcounter} {Mediasuela Bounce} {Suela sintética} {El exterior contiene al menos un 50 % de material reciclado} {Color del artículo: Shadow Violet / Legend Ink / Wonder Clay} {Número de artículo: IG0334}', 'description': 'Estos tenis fueron diseñados para darte la amortiguación y la respuesta que necesitas cuando estás en la pista o en los senderos. Sin importar si vas a hacer tu caminata diaria o una carrera corta, la mediasuela Bounce es flexible y receptiva con cada paso. Hecho con una serie de materiales reciclados, el exterior incorpora al menos un 50 % de contenido reciclado. Este producto representa solo una de nuestras soluciones para acabar con los residuos plásticos.', 'category': 'Mujer • Running'}\n", - "Respuesta del modelo:\n", - "| Peso | Material del upper (parte superior) | Material de la mediasuela | Suela exterior | Sistema de amortiguación | Drop (diferencial talón-punta) | Tipo de pisada | Tipo de uso | Género | Tallas disponibles | Anchura | Precio | Tecnologías adicionales |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| null | {Ajuste clásico} {Sistema de amarre de cordones} {Exterior de malla con cuello acolchado} | {Forro interno textil} {Mediasuela Bounce} | Suela sintética | Estabilizador de talón moldeado Fitcounter | null | Neutra | Entrenamiento diario | Mujer • Running | 7-14 | Estrecho, estándar, ancho | $80-$100 | {El exterior contiene al menos un 50 % de material reciclado} |\n", - "\n", - "------------------------\n", - "\n" - ] - } - ], - "source": [ - "dfs = []\n", - "for producto in productos:\n", - " prompt = generate_prompt_ollama(producto, labels_with_definitions)\n", - " respuesta = obtener_respuesta_ollama(prompt)\n", - " print(producto)\n", - " print(\"Respuesta del modelo:\")\n", - " print(respuesta[\"message\"][\"content\"])\n", - " print(\"\\n------------------------\\n\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Notebooks/preprocessing.ipynb b/Notebooks/preprocessing.ipynb deleted file mode 100644 index a1edf0a85..000000000 --- a/Notebooks/preprocessing.ipynb +++ /dev/null @@ -1,1210 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import json\n", - "from llama_models.llama3.reference_impl.generation import Llama\n", - "from llama_models.llama3.api.datatypes import UserMessage, SystemMessage\n", - "import os\n", - "import sys\n", - "from llama_models.llama3.api.datatypes import (\n", - " UserMessage,\n", - " SystemMessage,\n", - " CompletionMessage,\n", - " StopReason,\n", - ")\n", - "from llama_models.llama3.reference_impl.generation import Llama\n", - "import pandas as pd\n", - "from io import StringIO\n", - "import numpy as np\n", - "import re\n", - "import requests\n", - "import ollama\n", - "import random\n", - "from tiktoken import get_encoding\n", - "import time\n", - "import httpx\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'labels_with_definitions = [\\n (\"Peso\", \"Indica la ligereza de la zapatilla, generalmente expresado en gramos. El peso puede influir en el rendimiento y la comodidad durante la carrera.\"),\\n (\"Material del upper (parte superior)\", \"Describe los materiales utilizados en la parte superior de la zapatilla, como malla, cuero sintético o tejidos técnicos, que afectan la transpirabilidad, flexibilidad y soporte.\"),\\n (\"Material de la mediasuela\", \"Se refiere a los compuestos empleados en la entresuela, como espumas EVA o tecnologías propietarias, que proporcionan amortiguación y absorción de impactos.\"),\\n (\"Suela exterior\", \"Detalla el tipo de goma o caucho utilizado en la suela y el diseño del patrón de tracción, aspectos que influyen en el agarre y la durabilidad en diversas superficies.\"),\\n (\"Sistema de amortiguación\", \"Especifica las tecnologías o materiales destinados a reducir el impacto durante la pisada, contribuyendo al confort y la protección de las articulaciones.\"),\\n (\"Drop (diferencial talón-punta)\", \"Indica la diferencia de altura entre el talón y la punta de la zapatilla, medida en milímetros. Un drop alto suele ofrecer mayor amortiguación en el talón, mientras que un drop bajo promueve una pisada más natural.\"),\\n (\"Tipo de pisada\", \"Clasifica la zapatilla según su adecuación para diferentes tipos de pisada: neutra, pronadora o supinadora. Esto es esencial para elegir un calzado que se adapte a la biomecánica del corredor.\"),\\n (\"Tipo de uso\", \"Define el propósito principal de la zapatilla, como entrenamiento diario, competición, trail running o uso casual, lo que orienta sobre su diseño y funcionalidades específicas.\"),\\n (\"Género\", \"Indica si la zapatilla está diseñada para hombres, mujeres o es un modelo unisex, considerando diferencias anatómicas y de tamaño.\"),\\n (\"Tallas disponibles\", \"Especifica el rango de tallas en las que se ofrece la zapatilla, asegurando que el corredor pueda encontrar un ajuste adecuado.\"),\\n (\"Anchura\", \"Algunas marcas ofrecen diferentes anchos (estrecho, estándar, ancho) para adaptarse a diversas morfologías del pie.\"),\\n (\"Precio\", \"Proporciona el costo de la zapatilla, un factor determinante en la decisión de compra.\"),\\n (\"Tecnologías adicionales\", \"Incluye características especiales como impermeabilidad, reflectividad, sistemas de ajuste personalizados o elementos de estabilidad que mejoran la funcionalidad del calzado.\"),\\n]'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "'''labels_with_definitions = [\n", - " (\"Peso\", \"Indica la ligereza de la zapatilla, generalmente expresado en gramos. El peso puede influir en el rendimiento y la comodidad durante la carrera.\"),\n", - " (\"Material del upper (parte superior)\", \"Describe los materiales utilizados en la parte superior de la zapatilla, como malla, cuero sintético o tejidos técnicos, que afectan la transpirabilidad, flexibilidad y soporte.\"),\n", - " (\"Material de la mediasuela\", \"Se refiere a los compuestos empleados en la entresuela, como espumas EVA o tecnologías propietarias, que proporcionan amortiguación y absorción de impactos.\"),\n", - " (\"Suela exterior\", \"Detalla el tipo de goma o caucho utilizado en la suela y el diseño del patrón de tracción, aspectos que influyen en el agarre y la durabilidad en diversas superficies.\"),\n", - " (\"Sistema de amortiguación\", \"Especifica las tecnologías o materiales destinados a reducir el impacto durante la pisada, contribuyendo al confort y la protección de las articulaciones.\"),\n", - " (\"Drop (diferencial talón-punta)\", \"Indica la diferencia de altura entre el talón y la punta de la zapatilla, medida en milímetros. Un drop alto suele ofrecer mayor amortiguación en el talón, mientras que un drop bajo promueve una pisada más natural.\"),\n", - " (\"Tipo de pisada\", \"Clasifica la zapatilla según su adecuación para diferentes tipos de pisada: neutra, pronadora o supinadora. Esto es esencial para elegir un calzado que se adapte a la biomecánica del corredor.\"),\n", - " (\"Tipo de uso\", \"Define el propósito principal de la zapatilla, como entrenamiento diario, competición, trail running o uso casual, lo que orienta sobre su diseño y funcionalidades específicas.\"),\n", - " (\"Género\", \"Indica si la zapatilla está diseñada para hombres, mujeres o es un modelo unisex, considerando diferencias anatómicas y de tamaño.\"),\n", - " (\"Tallas disponibles\", \"Especifica el rango de tallas en las que se ofrece la zapatilla, asegurando que el corredor pueda encontrar un ajuste adecuado.\"),\n", - " (\"Anchura\", \"Algunas marcas ofrecen diferentes anchos (estrecho, estándar, ancho) para adaptarse a diversas morfologías del pie.\"),\n", - " (\"Precio\", \"Proporciona el costo de la zapatilla, un factor determinante en la decisión de compra.\"),\n", - " (\"Tecnologías adicionales\", \"Incluye características especiales como impermeabilidad, reflectividad, sistemas de ajuste personalizados o elementos de estabilidad que mejoran la funcionalidad del calzado.\"),\n", - "]'''" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "labels_with_definitions = [\n", - " (\"Weight\", \"Indicates the lightness of the shoe, usually expressed in grams. Weight can influence performance and comfort during running.\"),\n", - " (\"Upper Material\", \"Describes the materials used in the shoe's upper part, such as mesh, synthetic leather, or technical fabrics, which affect breathability, flexibility, and support.\"),\n", - " (\"Midsole Material\", \"Refers to the compounds used in the midsole, such as EVA foams or proprietary technologies, which provide cushioning and shock absorption.\"),\n", - " (\"Outsole\", \"Details the type of rubber or material used in the sole and the traction pattern design, which influence grip and durability on various surfaces.\"),\n", - " (\"Cushioning System\", \"Specifies the technologies or materials aimed at reducing impact during strides, contributing to comfort and joint protection.\"),\n", - " (\"Drop (heel-to-toe differential)\", \"Indicates the height difference between the heel and the toe of the shoe, measured in millimeters. A higher drop typically offers more heel cushioning, while a lower drop promotes a more natural stride.\"),\n", - " (\"Pronation Type\", \"Classifies the shoe according to its suitability for different pronation types: neutral, overpronation, or supination. This is essential for choosing footwear that matches the runner's biomechanics.\"),\n", - " (\"Usage Type\", \"Defines the primary purpose of the shoe, such as daily training, racing, trail running, or casual use, guiding its specific design and features.\"),\n", - " (\"Gender\", \"Indicates whether the shoe is designed for men, women, or is a unisex model, considering anatomical and sizing differences.\"),\n", - " (\"Available Sizes\", \"Specifies the range of sizes in which the shoe is offered, ensuring the runner can find a suitable fit.\"),\n", - " (\"Width\", \"Some brands offer different widths (narrow, standard, wide) to accommodate various foot shapes.\"),\n", - " (\"Additional Technologies\", \"Includes special features such as waterproofing, reflectivity, customized fit systems, or stability elements that enhance the shoe's functionality.\"),\n", - "]\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Funciones" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "\n", - "def remove_html_tags(text):\n", - " if text:\n", - " text = re.sub(r\"<.*?>\", \"\", text) # Remueve etiquetas HTML\n", - " text = text.replace(' ', ' ')\n", - " text = text.strip()\n", - " return text\n", - "\n", - "def transformar_texto(texto, marca):\n", - " if texto is None or (isinstance(texto, float) and np.isnan(texto)):\n", - " return texto\n", - "\n", - " if marca.lower() == \"adidas\":\n", - " # Transformación original para adidas\n", - " if isinstance(texto, (list, np.ndarray)):\n", - " texto = \", \".join(map(str, texto))\n", - " else:\n", - " texto = str(texto)\n", - " texto = texto.strip(\"[]\")\n", - " texto = re.sub(r\",\\s*\", '} {', texto)\n", - " texto = '{' + texto + '}'\n", - " return texto\n", - "\n", - " elif marca.lower() == \"nike\":\n", - " if isinstance(texto, list):\n", - " # Si es lista de diccionarios (details)\n", - " if all(isinstance(item, dict) for item in texto):\n", - " texto_limpio = []\n", - " for d in texto:\n", - " if isinstance(d, dict):\n", - " d_limpio = {}\n", - " for k, v in d.items():\n", - " k_clean = k.strip() if k else \"\"\n", - " v_clean = remove_html_tags(v) if isinstance(v, str) else v\n", - " # Si clave y valor no están vacíos\n", - " if k_clean and v_clean:\n", - " # Aquí verificamos si la info es irrelevante: \n", - " # Caso en el que el valor es igual a la clave (sin html), \n", - " # Ejemplo: { \"Datos del producto\": \"Datos del producto\" }\n", - " # No aporta información adicional, así que no la incluimos.\n", - " if v_clean != k_clean:\n", - " d_limpio[k_clean] = v_clean\n", - "\n", - " if d_limpio:\n", - " texto_limpio.append(d_limpio)\n", - "\n", - " # Si después de limpiar no quedó nada (porque todo era texto irrelevante),\n", - " # devolvemos lista vacía\n", - " return texto_limpio\n", - "\n", - " else:\n", - " # Si es lista de strings (characteristics)\n", - " seen = set()\n", - " texto_limpio = []\n", - " for s in texto:\n", - " if s and isinstance(s, str):\n", - " s_clean = remove_html_tags(s)\n", - " if s_clean and s_clean not in seen:\n", - " seen.add(s_clean)\n", - " texto_limpio.append(s_clean)\n", - " return texto_limpio\n", - "\n", - " else:\n", - " # Si no es lista (solo string)\n", - " if isinstance(texto, str):\n", - " return remove_html_tags(texto)\n", - " return texto\n", - "\n", - " else:\n", - " raise ValueError(f\"Marca '{marca}' no reconocida. Usa 'adidas' o 'nike'.\")\n", - "\n", - "\n", - "def obtener_respuesta_ollama(prompt, max_retries=3, delay=5):\n", - " attempt = 0\n", - " while attempt < max_retries:\n", - " try:\n", - " response = ollama.chat(\n", - " model=\"llama3.2:latest\",\n", - " messages = [\n", - " {\n", - " \"role\":\"user\",\n", - " \"content\": prompt\n", - " } \n", - " ]\n", - " )\n", - " # Si llega aquí, la respuesta se obtuvo exitosamente\n", - " return response\n", - " except httpx.HTTPError as e:\n", - " attempt += 1\n", - " print(f\"Error en la solicitud: {e}. Reintento {attempt} de {max_retries} en {delay} segundos...\")\n", - " time.sleep(delay)\n", - " \n", - " # Si sale del while sin retornar, significa que falló en todos los intentos\n", - " raise RuntimeError(f\"No se pudo obtener respuesta de Ollama después de {max_retries} intentos.\")\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "def generate_prompt_ollama(product, labels_with_definitions):\n", - " labels = [label for label, _ in labels_with_definitions]\n", - " prompt = f\"\"\"\n", - " You are an assistant specialized in extracting structured information from product descriptions and organizing it into tables.\n", - " Your task is to extract the following information from the product details and label it according to the provided labels: {', '.join(labels)}.\n", - " Each label has the following definition to help guide your extraction:\n", - "\n", - " {''.join([f'- {label}: {definition}\\n' for label, definition in labels_with_definitions])}\n", - "\n", - " If a label does not have a clear match in the details, complete its value with \"null\".\n", - "\n", - " Product information:\n", - " - Details: {product['details']}\n", - " - Description: {product['description']}\n", - " - Category: {product['category']}\n", - " - Characteristics: {product['characteristics']}\n", - "\n", - " Provide the information in a table with columns corresponding to each label. \n", - " The table must include **two complete rows**:\n", - " 1. The first row contains the label names.\n", - " 2. The second row contains the corresponding labeled values.\n", - "\n", - " Expected response format:\n", - " | {' | '.join(labels)} |\n", - " | {' | '.join(['---'] * len(labels))} |\n", - " | value_1 | value_2 | ... |\n", - " \n", - " Example:\n", - " If the labels are \"details\", \"description\", and \"category\", and the extracted values are \n", - " \"Comfortable sneakers\", \"Made with recycled materials\", and \"Footwear\", respectively, \n", - " your response should be:\n", - "\n", - " | details | description | category |\n", - " | --- | --- | --- |\n", - " | Comfortable sneakers | Made with recycled materials | Footwear |\n", - "\n", - " Remember:\n", - " - The response must contain two complete rows.\n", - " - Only respond with the table and **do not include additional text**.\n", - "\n", - " Now, extract and structure the information for the provided product:\n", - "\n", - " | {' | '.join(labels)} |\n", - " | {' | '.join(['---'] * len(labels))} |\n", - " |\"\"\"\n", - " return prompt.strip()\n", - "\n", - "# Tokenizer function (using tiktoken for GPT-like models)\n", - "def count_tokens(text):\n", - " try:\n", - " encoding = get_encoding(\"cl100k_base\") # Example encoding for GPT-like models\n", - " return len(encoding.encode(text))\n", - " except Exception:\n", - " return len(text.split()) # Fallback: approximate by word count\n", - "# Función de simulación de Monte Carlo corregida\n", - "def monte_carlo_simulation(products, models, iterations=1000, num_products=None):\n", - " results = {}\n", - " \n", - " for model_name, model_info in models.items():\n", - " tokens_per_product = {}\n", - " costs_per_product = {}\n", - " \n", - " for _ in range(iterations):\n", - " # Muestra una fracción de los productos si se especifica\n", - " if num_products is not None and num_products < len(products):\n", - " sampled_products = random.sample(products, num_products)\n", - " else:\n", - " sampled_products = products\n", - "\n", - " for product in sampled_products:\n", - " product_id = product.get('id', id(product)) # Usamos un identificador único para cada producto\n", - " prompt = generate_prompt_ollama(product, labels_with_definitions)\n", - " tokens = count_tokens(prompt)\n", - " \n", - " # Verifica si el número de tokens excede la ventana de contexto\n", - " if tokens > model_info['context_window']*1000:\n", - " print(f\"Advertencia: El prompt excede la ventana de contexto para el modelo {model_name}\")\n", - " # Puedes manejar este caso según necesites (e.g., omitir, truncar)\n", - " continue\n", - " \n", - " cost = (tokens / 1000) * model_info['cost_in']\n", - " \n", - " # Actualiza los máximos y mínimos por producto\n", - " if product_id not in tokens_per_product:\n", - " tokens_per_product[product_id] = {'max': tokens, 'min': tokens}\n", - " costs_per_product[product_id] = {'max': cost, 'min': cost}\n", - " else:\n", - " tokens_per_product[product_id]['max'] = max(tokens_per_product[product_id]['max'], tokens)\n", - " tokens_per_product[product_id]['min'] = min(tokens_per_product[product_id]['min'], tokens)\n", - " costs_per_product[product_id]['max'] = max(costs_per_product[product_id]['max'], cost)\n", - " costs_per_product[product_id]['min'] = min(costs_per_product[product_id]['min'], cost)\n", - " \n", - " # Después de todas las iteraciones, obtenemos los máximos y mínimos globales\n", - " max_tokens = max([data['max'] for data in tokens_per_product.values()], default=0)\n", - " min_tokens = min([data['min'] for data in tokens_per_product.values()], default=0)\n", - " max_cost = max([data['max'] for data in costs_per_product.values()], default=0)\n", - " min_cost = min([data['min'] for data in costs_per_product.values()], default=0)\n", - " \n", - " results[model_name] = {\n", - " 'max_tokens': max_tokens,\n", - " 'min_tokens': min_tokens,\n", - " 'max_cost': max_cost,\n", - " 'min_cost': min_cost,\n", - " }\n", - " return results" - ] - }, - { - "cell_type": "code", - "execution_count": 94, - "metadata": {}, - "outputs": [], - "source": [ - "def procesar_respuesta(respuesta_texto, etiquetas):\n", - " try:\n", - " # Buscar el inicio de la tabla\n", - " inicio_tabla = respuesta_texto.find('|')\n", - " if inicio_tabla == -1:\n", - " print(\"No se encontró una tabla en la respuesta.\")\n", - " return None\n", - "\n", - " # Extraer la tabla desde el primer '|'\n", - " tabla_texto = respuesta_texto[inicio_tabla:].strip()\n", - " # Extraer solo las líneas que contengan '|'\n", - " lineas = tabla_texto.split('\\n')\n", - " lineas_tabla = []\n", - " for linea in lineas:\n", - " if '|' in linea:\n", - " # Eliminar los '|' iniciales y finales y espacios extra\n", - " linea = linea.strip().strip('|').strip()\n", - " lineas_tabla.append(linea)\n", - " else:\n", - " # Detenerse si la línea no contiene '|'\n", - " break\n", - "\n", - " if not lineas_tabla:\n", - " print(\"No se encontraron líneas válidas de tabla.\")\n", - " return None\n", - "\n", - " # Verificar si hay separadores '---'\n", - " tiene_separador = any(\n", - " all(c.strip('-') == '' for c in fila.split('|')) \n", - " for fila in lineas_tabla\n", - " )\n", - "\n", - " # Caso 1: Hay separadores (modo normal de Markdown)\n", - " if tiene_separador:\n", - " tabla_completa = '\\n'.join(lineas_tabla)\n", - " df = pd.read_csv(StringIO(tabla_completa), sep='|', engine='python', skipinitialspace=True)\n", - " # Limpiar columnas y datos\n", - " df.columns = [col.strip() for col in df.columns]\n", - " for col in df.columns:\n", - " if df[col].dtype == object:\n", - " df[col] = df[col].str.strip()\n", - " df = df.reset_index(drop=True)\n", - " return df\n", - "\n", - " # Caso 2: No hay separadores\n", - " # Verificar la cantidad de líneas\n", - " if len(lineas_tabla) == 2:\n", - " # La primera línea son los nombres de columnas, la segunda línea datos\n", - " columnas = [c.strip() for c in lineas_tabla[0].split('|')]\n", - " datos = [c.strip() for c in lineas_tabla[1].split('|')]\n", - " df = pd.DataFrame([datos], columns=columnas)\n", - " for col in df.columns:\n", - " if df[col].dtype == object:\n", - " df[col] = df[col].str.strip()\n", - " df = df.reset_index(drop=True)\n", - " return df\n", - " elif len(lineas_tabla) == 1:\n", - " # Solo una línea de datos, usar etiquetas como nombres de columnas\n", - " datos = [c.strip() for c in lineas_tabla[0].split('|')]\n", - " # Ajustar si el número de columnas difiere del número de etiquetas\n", - " if len(etiquetas) != len(datos):\n", - " print(\"Advertencia: El número de etiquetas no coincide con las columnas detectadas. Se ajustará al mínimo.\")\n", - " col_names = etiquetas[:len(datos)]\n", - " else:\n", - " col_names = etiquetas\n", - "\n", - " df = pd.DataFrame([datos], columns=col_names)\n", - " for col in df.columns:\n", - " if df[col].dtype == object:\n", - " df[col] = df[col].str.strip()\n", - " df = df.reset_index(drop=True)\n", - " return df\n", - " else:\n", - " # Hay más de 2 líneas pero sin separador. Asumimos que la primera es columnas y el resto datos.\n", - " columnas = [c.strip() for c in lineas_tabla[0].split('|')]\n", - " filas_datos = [ [x.strip() for x in fila.split('|')] for fila in lineas_tabla[1:] ]\n", - " df = pd.DataFrame(filas_datos, columns=columnas)\n", - " for col in df.columns:\n", - " if df[col].dtype == object:\n", - " df[col] = df[col].str.strip()\n", - " df = df.reset_index(drop=True)\n", - " return df\n", - "\n", - " except Exception as e:\n", - " print(f\"Error al procesar la tabla: {e}\")\n", - " return None\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Lectura de datos" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200\n" - ] - } - ], - "source": [ - "url =\"https://scraping-firestore-178159629911.us-central1.run.app//v1/scraping/\"\n", - "\n", - "response = requests.get(url)\n", - "\n", - "if response.status_code == 200:\n", - " data = response.json()\n", - " print(response.status_code)\n", - "else:\n", - " print(f'Error: {response.status_code}')\n", - "\n", - "df_raw = pd.DataFrame(data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Clasificacion" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "df_adidas = df_raw[df_raw['store'] == 'adidas']" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_2256\\354877031.py:2: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))\n" - ] - } - ], - "source": [ - "# Lista de descripciones de productos\n", - "df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": {}, - "outputs": [], - "source": [ - "# Crear un diccionario con las llaves deseadas desde todo el DataFrame\n", - "productos = [\n", - " {\n", - " \"id\": row['id'],\n", - " \"regularPrice\" : row[\"regularPrice\"],\n", - " \"undiscounted_price\": row[\"undiscounted_price\"],\n", - " \"details\": row['details_transformado'],\n", - " \"description\": row['description'],\n", - " \"category\": row['category'],\n", - " \"characteristics\": row['characteristics']\n", - " }\n", - " for _, row in df_adidas.iterrows() # Recorre todo el DataFrame\n", - " if row['details_transformado'] != '{}' # Filtra donde los detalles no estén vacíos\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 99, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'id': '0AqheRhKT2lhm7puBVCF', 'regularPrice': '$799.950', 'undiscounted_price': 'NA', 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de tejido adidas Primeknit} {Ajuste suave en el talón} {Sistema Linear Energy Push} {Mediasuela BOOST} {Peso: 289 g (Talla CO 37)} {Suela Stretchweb con caucho Continental™ Better Rubber} {El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado} {Color del artículo: Core Black / Core Black / Cloud White} {Número de artículo: GX5591}', 'description': 'Hemos analizado 1.200.000 pisadas para que Ultraboost evolucione y mejore su ajuste para adaptarse 360° al pie femenino. Y aún hay más. Hemos rediseñado la suela de caucho. Probamos cientos de prototipos. Hasta que comprobamos las mejoras en su rendimiento. ¿El resultado? Un 4 % más de energía que los Ultraboost 21 para mujer. El ajuste en el área del talón del exterior adidas PRIMEKNIT se diseñó para evitar que el talón se deslice y se formen ampollas. Estarás corriendo sobre una mediasuela BOOST con tecnología Linear Energy Push. El exterior de este calzado está confeccionado con hilo que contiene un 50% de Parley Ocean Plastic, un material que ha sido recuperado de residuos plásticos recogidos en islas, playas, comunidades costeras y costas evitando que contaminen nuestros océanos.', 'category': 'Mujer • Running', 'characteristics': nan}\n", - "Respuesta del modelo:\n", - "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 289 g | adidas Primeknit | Mediasuela BOOST | Suela Stretchweb con caucho Continental Better Rubber | Sistema Linear Energy Push | null | neutral | mujer | 37-47 | standard | contains Parley Ocean Plastic and recycled polyester |\n", - "\n", - "------------------------\n", - "\n", - "{'id': '0IgYTzUHkE7zIdcVyFCK', 'regularPrice': '$1.049.950', 'undiscounted_price': '$629.970', 'details': '{Ajuste clásico} {Cierre de cordones} {Parte superior de malla técnica} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch para un ajuste seguro} {Peso: 166 g (Talla COL 36 1/2)} {Caída mediasuela: 6 mm (talón: 32 mm / antepié: 26 mm)} {Suela de caucho Continental™} {Contiene al menos un 20 % de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG8206}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Mujer • Running', 'characteristics': nan}\n", - "Respuesta del modelo:\n", - "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 166 g | Parte superior de malla técnica | Amortiguación Lightstrike Pro | Suela de caucho Continental™ | Amortiguación Lightstrike Pro | 6 mm (talón: 32 mm / antepié: 26 mm) | Neutral | Daily training, racing, trail running, casual use | Mujer | Talla COL 36 1/2, COL 37, COL 38, COL 39.5 | Narrow, Standard, Wide | Contiene al menos un 20 % de material reciclado |\n", - "\n", - "------------------------\n", - "\n", - "{'id': '0MU8aKCnCUZv2r9aLD67', 'regularPrice': '$1.049.950', 'undiscounted_price': '$734.965', 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch} {Peso: 200 gramos (talla CO 40)} {Caída mediasuela: 6 mm (talón: 33 mm / antepié: 27 mm} {Suela de caucho Continental™ Rubber} {Contienen al menos un 20% de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG3134}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS 2.0 para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Hombre • Running', 'characteristics': nan}\n", - "Respuesta del modelo:\n", - "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 200 gramos | Parte superior de malla | Amortiguación Lightstrike Pro | Suela de caucho Continental™ Rubber | Amortiguación Lightstrike Pro | 6 mm (talón: 33 mm / antepié: 27 mm) | null | Trail running | Hombre | CO 40, CO 42-46, CO 48 | null | Contienen al menos un 20% de material reciclado |\n", - "| null | Sistema de amarre de cordones | ENERGYRODS 2.0 | null | Lightstrike Pro | null | null | null | null | null | null | Supera tu marca personal y llega a la meta más rápido que nunca\n", - "\n", - "------------------------\n", - "\n", - "{'id': '0Q6DNSlvsjBzy3AQeY2y', 'regularPrice': '$279.950', 'undiscounted_price': 'NA', 'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior textil} {Forro interno textil} {Mediasuela Cloudfoam} {Suela de TPU} {Peso: 319 g (talla CO 40)} {Caída mediasuela: 6 mm (talón 35 mm / antepié 29 mm)} {Color del artículo: Halo Silver / Carbon / Core Black} {Número de artículo: ID8754}', 'description': 'Cada carrera es un viaje de descubrimiento. Ponte estos tenis de running adidas y libera tu potencial. La mediasuela con amortiguación Cloudfoam te ofrece una pisada más cómoda mientras aumentas tu resistencia. La parte superior textil es resistente al desgaste y te ofrece soporte desde tu primera vuelta hasta tu primera carrera de 5K.', 'category': 'Hombre • Running', 'characteristics': nan}\n", - "Respuesta del modelo:\n", - "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 319 g | Parte superior textil | Mediasuela Cloudfoam | Suela de TPU | null | 6 mm (talón 35 mm / antepié 29 mm) | Neutral | Daily training | Men | CO 40, CO 41-45, CO 46-50 | Narrow, Standard, Wide | null |\n", - "\n", - "------------------------\n", - "\n", - "{'id': '0SF7zveew5mzdUJWZKyz', 'regularPrice': '$699.950', 'undiscounted_price': '$559.960', 'details': '{Si este artículo es personalizado} {no aplica en nuestra política de cambios y devoluciones.} {Sistema de amarre de cordones para un ajuste inmejorable} {Producto hecho parcialmente con Malla Técnica Reciclada} {Diseño liviano} {Amortiguación Lightstrike y Lightstrike Pro} {Forro interno textil} {Caída mediasuela: 8} {5 mm (talón: 33 mm / antepié: 24} {5 mm)} {Suela de caucho} {El exterior contiene al menos un 50% de material reciclado} {Color del artículo: Ivory / Iron Metallic / Spark} {Número de artículo: IG3341}', 'description': 'Cuando se trata de alcanzar tus metas, cada segundo cuenta. Ya sea para entrenar o para competir, un rendimiento excelente requiere de prendas de alta tecnología optimizadas para la velocidad. Presentamos la nueva colección de tenis de running livianos que te ayudan a superar tus límites sin distracciones.\\n\\nLos tenis de running Adizero SL seleccionan lo mejor de nuestra franquicia Adizero que rompe récords mundiales. La mediasuela de EVA LIGHTSTRIKE liviana ofrece resiliencia a la mediasuela para que puedas concentrarte en el próximo paso, mientras que el exterior está hecho de una malla técnica suave que está zonificada en áreas clave. El talón acolchado y la lengüeta brindan una comodidad óptima junto con el antepié Adizero. La suela premium está diseñada para proporcionar tracción.', 'category': 'Mujer • Running', 'characteristics': nan}\n", - "Respuesta del modelo:\n", - "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| null | {Si este artículo es personalizado} / {Sistema de amarre de cordones para un ajuste inmejorable} / {Producto hecho parcialmente con Malla Técnica Reciclada} | {Amortiguación Lightstrike y Lightstrike Pro} | {Suela de caucho} | null | 8 mm | neutral | Trail running, casual use | Women, Men | 5-12 | null | El exterior contiene al menos un 50% de material reciclado\n", - "\n", - "------------------------\n", - "\n", - "{'id': '0iPjAsLy8yEYvGgiCAzo', 'regularPrice': '$299.950', 'undiscounted_price': 'NA', 'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {Plantilla OrthoLite®} {Mediasuela Cloudfoam} {Peso: 304 g (talla CO 40)} {Caída mediasuela: 10 mm (talón: 33 mm / antepié: 23 mm)} {Suela Adiwear} {Color del artículo: Cloud White / Core Black / Better Scarlet} {Número de artículo: IE8818}', 'description': 'Tanto en la pista como en la cinta de correr, alcanza todas tus metas con estos tenis de running adidas. Incorporan una mediasuela con amortiguación Cloudfoam que te ofrece una pisada más cómoda y suave. La parte superior de malla transpirable y la suela Adiwear de gran resistencia al desgaste la convierten en una silueta perfecta para llevar durante todo el día.', 'category': 'Hombre • Running', 'characteristics': nan}\n", - "Respuesta del modelo:\n", - "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 304 g | Parte superior de malla, Forro interno textil | Plantilla OrthoLite® | Suela Adiwear | Mediasuela Cloudfoam | 10 mm (talón: 33 mm / antepié: 23 mm) | null | Running | Hombre • Hombre | CO 40 - IE 8818 | null | Waterproofing, Reflectivity\n", - "\n", - "------------------------\n", - "\n", - "{'id': '0n2Tyl34QdVdkCKgAdcT', 'regularPrice': '$649.950', 'undiscounted_price': 'NA', 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {mediasuela Dreamstrike+} {Suela Adiwear} {Peso (talla CO 37): 213 gramos} {Caída mediasuela: 10 mm (talón: 34 mm / 24 mm)} {Contienen al menos un 20% de material reciclado y renovable} {Color del artículo: Almost Yellow / Zero Metalic / Pink Spark} {Número de artículo: IE1072}', 'description': 'Avanza hacia tus metas de running con estos tenis adidas. La mediasuela Dreamstrike+ está diseñada para absorber el impacto. La amortiguación adicional en el antepié ofrece comodidad durante toda tu carrera. El exterior de malla transpirable maximiza el flujo de aire para mantener tus pies frescos, y la suela Adiwear resistente ofrece tracción. \\n\\nAl elegir materiales reciclados, podemos reutilizar materiales que ya han sido creados, lo que ayuda a reducir los residuos. La elección de materiales renovables nos ayudará a eliminar nuestra dependencia de recursos finitos. Nuestros productos hechos con una mezcla de materiales reciclados y renovables contienen al menos un 20% de este material.', 'category': 'Mujer • Running', 'characteristics': nan}\n", - "Respuesta del modelo:\n", - "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 213 gramos | Parte superior de malla, Forro interno textil, Sistema de amarre de cordones | mediasuela Dreamstrike+ | Suela Adiwear | mediasuela Dreamstrike+ | 10 mm (talón: 34 mm / 24 mm) | Neutral | Running | Mujer | CO 37 | null | Contienen al menos un 20% de material reciclado y renovable |\n", - "\n", - "------------------------\n", - "\n", - "{'id': '0rf6HEvBi5R4FunIhToR', 'regularPrice': '$449.950', 'undiscounted_price': 'NA', 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de malla con cuello acolchado} {Forro interno textil} {Estabilizador de talón moldeado Fitcounter} {Mediasuela Bounce} {Suela sintética} {El exterior contiene al menos un 50 % de material reciclado} {Color del artículo: Shadow Violet / Legend Ink / Wonder Clay} {Número de artículo: IG0334}', 'description': 'Estos tenis fueron diseñados para darte la amortiguación y la respuesta que necesitas cuando estás en la pista o en los senderos. Sin importar si vas a hacer tu caminata diaria o una carrera corta, la mediasuela Bounce es flexible y receptiva con cada paso. Hecho con una serie de materiales reciclados, el exterior incorpora al menos un 50 % de contenido reciclado. Este producto representa solo una de nuestras soluciones para acabar con los residuos plásticos.', 'category': 'Mujer • Running', 'characteristics': nan}\n", - "Respuesta del modelo:\n", - "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| null | Exterior de malla con cuello acolchado / {Sistema de amarre de cordones} / Technical fabrics | Mediasuela Bounce | Suela sintética | mediasuela Bounce | null | neutral | Mujer • Running | null | null | Legend Ink / Wonder Clay | IG0334 |\n", - "\n", - "------------------------\n", - "\n", - "{'id': '0zbwfhJUSB9viwWPAnoE', 'regularPrice': '$799.950', 'undiscounted_price': '$639.960', 'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de malla} {Tejido suave y cómodo} {Mediasuela REPETITOR y REPETITOR+ de doble densidad} {Estructura interna de soporte} {Peso: 334 gramos (talla CO 40} {5)} {Caída mediasuela: 6 mm (talón: 38 mm / antepié: 32 mm)} {Suela de caucho} {El hilo de la parte superior contiene al menos un 50 % de Parley Ocean Plastic y un 50 % de poliéster reciclado} {Color del artículo: Lucid Lemon / Carbon / Wonder Blue} {Número de artículo: FZ5622}', 'description': 'Correr largas distancias es mucho más que ir de la A a la B. Se trata de la brisa en tu espalda, el ritmo de tu pisada, la libertad de la carretera. Los tenis Adistar 2.0 están diseñados con precisión para movimientos continuos, asegurando que cada paso se adapte sin problemas al siguiente, kilómetro tras kilómetro. La mediasuela REPETITOR y REPETITOR+ de doble densidad combina una espuma ligera para una amortiguación flexible con un compuesto firme que abraza el talón. Una estructura interna sujeta el pie para un soporte óptimo que nunca se detiene.', 'category': 'Hombre • Running', 'characteristics': nan}\n", - "Respuesta del modelo:\n", - "| Weight | Upper Material | Midsole Material | Outsole | Cushioning System | Drop (heel-to-toe differential) | Pronation Type | Usage Type | Gender | Available Sizes | Width | Additional Technologies |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| 334 gramos | Exterior de malla, Tejido suave y cómodo | Mediasuela REPETITOR y REPETITOR+ de doble densidad | Suela de caucho | mediasuela REPETITOR y REPETITOR+ | 6 mm (talón: 38 mm / antepié: 32 mm) | Neutral | Daily training | Men | CO 40-50, CO 42-44, CO 46 | Narrow, Standard, Wide | Waterproofing with recycled materials\n", - "\n", - "------------------------\n", - "\n" - ] - } - ], - "source": [ - "dfs = []\n", - "for producto in productos[1:10]:\n", - " prompt = generate_prompt_ollama(producto, labels_with_definitions)\n", - " respuesta = obtener_respuesta_ollama(prompt)\n", - " print(producto)\n", - " print(\"Respuesta del modelo:\")\n", - " print(respuesta[\"message\"][\"content\"])\n", - " print(\"\\n------------------------\\n\")\n", - " df = procesar_respuesta(respuesta[\"message\"][\"content\"], labels_with_definitions)\n", - " if df is not None:\n", - " attribute_columns = df.columns[:-3]\n", - " df['id'] = producto['id']\n", - " df['regularPrice'] = producto['regularPrice']\n", - " df['undiscounted_price'] = producto['undiscounted_price']\n", - " df[\"details\"] = producto['details']\n", - " df[\"description\"] = producto['description']\n", - " df[\"category\"] = producto['category']\n", - " df[\"characteristics\"] = producto['characteristics']\n", - " df = df[~df[attribute_columns].eq('---').all(axis=1)]\n", - " df = df.dropna(how='all')\n", - " dfs.append(df)\n", - " \n", - " else:\n", - " print(\"No se pudo extraer la tabla.\\n\")" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": {}, - "outputs": [], - "source": [ - "if dfs:\n", - " df_total = pd.concat(dfs, ignore_index=True)\n", - "else:\n", - " print(\"No se pudo crear el DataFrame total.\")" - ] - }, - { - "cell_type": "code", - "execution_count": 103, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
WeightUpper MaterialMidsole MaterialOutsoleCushioning SystemDrop (heel-to-toe differential)Pronation TypeUsage TypeGenderAvailable SizesWidthAdditional TechnologiesidregularPriceundiscounted_pricedetailsdescriptioncategorycharacteristics
0289 gadidas PrimeknitMediasuela BOOSTSuela Stretchweb con caucho Continental Better...Sistema Linear Energy Pushnullneutralmujer37-47standardcontains Parley Ocean Plastic and recycled pol...None0AqheRhKT2lhm7puBVCF$799.950NA{Ajuste clásico} {Sistema de amarre de cordone...Hemos analizado 1.200.000 pisadas para que Ult...Mujer • RunningNaN
1166 gParte superior de malla técnicaAmortiguación Lightstrike ProSuela de caucho Continental™Amortiguación Lightstrike Pro6 mm (talón: 32 mm / antepié: 26 mm)NeutralDaily training, racing, trail running, casual useMujerTalla COL 36 1/2, COL 37, COL 38, COL 39.5Narrow, Standard, WideContiene al menos un 20 % de material reciclado0IgYTzUHkE7zIdcVyFCK$1.049.950$629.970{Ajuste clásico} {Cierre de cordones} {Parte s...Haz tus mejores 10k con nuestros nuevos tenis ...Mujer • RunningNaN
2200 gramosParte superior de mallaAmortiguación Lightstrike ProSuela de caucho Continental™ RubberAmortiguación Lightstrike Pro6 mm (talón: 33 mm / antepié: 27 mm)nullTrail runningHombreCO 40, CO 42-46, CO 48nullContienen al menos un 20% de material reciclado0MU8aKCnCUZv2r9aLD67$1.049.950$734.965{Ajuste clásico} {Sistema de amarre de cordone...Haz tus mejores 10k con nuestros nuevos tenis ...Hombre • RunningNaN
3nullSistema de amarre de cordonesENERGYRODS 2.0nullLightstrike PronullnullnullnullnullnullSupera tu marca personal y llega a la meta más...0MU8aKCnCUZv2r9aLD67$1.049.950$734.965{Ajuste clásico} {Sistema de amarre de cordone...Haz tus mejores 10k con nuestros nuevos tenis ...Hombre • RunningNaN
4319 gParte superior textilMediasuela CloudfoamSuela de TPUnull6 mm (talón 35 mm / antepié 29 mm)NeutralDaily trainingMenCO 40, CO 41-45, CO 46-50Narrow, Standard, Widenull0Q6DNSlvsjBzy3AQeY2y$279.950NA{Horma clásica} {Sistema de amarre de cordones...Cada carrera es un viaje de descubrimiento. Po...Hombre • RunningNaN
5null{Si este artículo es personalizado} / {Sistema...{Amortiguación Lightstrike y Lightstrike Pro}{Suela de caucho}null8 mmneutralTrail running, casual useWomen, Men5-12nullEl exterior contiene al menos un 50% de materi...0SF7zveew5mzdUJWZKyz$699.950$559.960{Si este artículo es personalizado} {no aplica...Cuando se trata de alcanzar tus metas, cada se...Mujer • RunningNaN
6304 gParte superior de malla, Forro interno textilPlantilla OrthoLite®Suela AdiwearMediasuela Cloudfoam10 mm (talón: 33 mm / antepié: 23 mm)nullRunningHombre • HombreCO 40 - IE 8818nullWaterproofing, Reflectivity0iPjAsLy8yEYvGgiCAzo$299.950NA{Horma clásica} {Sistema de amarre de cordones...Tanto en la pista como en la cinta de correr, ...Hombre • RunningNaN
7213 gramosParte superior de malla, Forro interno textil,...mediasuela Dreamstrike+Suela Adiwearmediasuela Dreamstrike+10 mm (talón: 34 mm / 24 mm)NeutralRunningMujerCO 37nullContienen al menos un 20% de material reciclad...0n2Tyl34QdVdkCKgAdcT$649.950NA{Ajuste clásico} {Sistema de amarre de cordone...Avanza hacia tus metas de running con estos te...Mujer • RunningNaN
8nullExterior de malla con cuello acolchado / {Sist...Mediasuela BounceSuela sintéticamediasuela BouncenullneutralMujer • RunningnullnullLegend Ink / Wonder ClayIG03340rf6HEvBi5R4FunIhToR$449.950NA{Ajuste clásico} {Sistema de amarre de cordone...Estos tenis fueron diseñados para darte la amo...Mujer • RunningNaN
9334 gramosExterior de malla, Tejido suave y cómodoMediasuela REPETITOR y REPETITOR+ de doble den...Suela de cauchomediasuela REPETITOR y REPETITOR+6 mm (talón: 38 mm / antepié: 32 mm)NeutralDaily trainingMenCO 40-50, CO 42-44, CO 46Narrow, Standard, WideWaterproofing with recycled materials0zbwfhJUSB9viwWPAnoE$799.950$639.960{Ajuste clásico} {Sistema de amarre de cordone...Correr largas distancias es mucho más que ir d...Hombre • RunningNaN
\n", - "
" - ], - "text/plain": [ - " Weight Upper Material \\\n", - "0 289 g adidas Primeknit \n", - "1 166 g Parte superior de malla técnica \n", - "2 200 gramos Parte superior de malla \n", - "3 null Sistema de amarre de cordones \n", - "4 319 g Parte superior textil \n", - "5 null {Si este artículo es personalizado} / {Sistema... \n", - "6 304 g Parte superior de malla, Forro interno textil \n", - "7 213 gramos Parte superior de malla, Forro interno textil,... \n", - "8 null Exterior de malla con cuello acolchado / {Sist... \n", - "9 334 gramos Exterior de malla, Tejido suave y cómodo \n", - "\n", - " Midsole Material \\\n", - "0 Mediasuela BOOST \n", - "1 Amortiguación Lightstrike Pro \n", - "2 Amortiguación Lightstrike Pro \n", - "3 ENERGYRODS 2.0 \n", - "4 Mediasuela Cloudfoam \n", - "5 {Amortiguación Lightstrike y Lightstrike Pro} \n", - "6 Plantilla OrthoLite® \n", - "7 mediasuela Dreamstrike+ \n", - "8 Mediasuela Bounce \n", - "9 Mediasuela REPETITOR y REPETITOR+ de doble den... \n", - "\n", - " Outsole \\\n", - "0 Suela Stretchweb con caucho Continental Better... \n", - "1 Suela de caucho Continental™ \n", - "2 Suela de caucho Continental™ Rubber \n", - "3 null \n", - "4 Suela de TPU \n", - "5 {Suela de caucho} \n", - "6 Suela Adiwear \n", - "7 Suela Adiwear \n", - "8 Suela sintética \n", - "9 Suela de caucho \n", - "\n", - " Cushioning System Drop (heel-to-toe differential) \\\n", - "0 Sistema Linear Energy Push null \n", - "1 Amortiguación Lightstrike Pro 6 mm (talón: 32 mm / antepié: 26 mm) \n", - "2 Amortiguación Lightstrike Pro 6 mm (talón: 33 mm / antepié: 27 mm) \n", - "3 Lightstrike Pro null \n", - "4 null 6 mm (talón 35 mm / antepié 29 mm) \n", - "5 null 8 mm \n", - "6 Mediasuela Cloudfoam 10 mm (talón: 33 mm / antepié: 23 mm) \n", - "7 mediasuela Dreamstrike+ 10 mm (talón: 34 mm / 24 mm) \n", - "8 mediasuela Bounce null \n", - "9 mediasuela REPETITOR y REPETITOR+ 6 mm (talón: 38 mm / antepié: 32 mm) \n", - "\n", - " Pronation Type Usage Type \\\n", - "0 neutral mujer \n", - "1 Neutral Daily training, racing, trail running, casual use \n", - "2 null Trail running \n", - "3 null null \n", - "4 Neutral Daily training \n", - "5 neutral Trail running, casual use \n", - "6 null Running \n", - "7 Neutral Running \n", - "8 neutral Mujer • Running \n", - "9 Neutral Daily training \n", - "\n", - " Gender Available Sizes \\\n", - "0 37-47 standard \n", - "1 Mujer Talla COL 36 1/2, COL 37, COL 38, COL 39.5 \n", - "2 Hombre CO 40, CO 42-46, CO 48 \n", - "3 null null \n", - "4 Men CO 40, CO 41-45, CO 46-50 \n", - "5 Women, Men 5-12 \n", - "6 Hombre • Hombre CO 40 - IE 8818 \n", - "7 Mujer CO 37 \n", - "8 null null \n", - "9 Men CO 40-50, CO 42-44, CO 46 \n", - "\n", - " Width \\\n", - "0 contains Parley Ocean Plastic and recycled pol... \n", - "1 Narrow, Standard, Wide \n", - "2 null \n", - "3 null \n", - "4 Narrow, Standard, Wide \n", - "5 null \n", - "6 null \n", - "7 null \n", - "8 Legend Ink / Wonder Clay \n", - "9 Narrow, Standard, Wide \n", - "\n", - " Additional Technologies id \\\n", - "0 None 0AqheRhKT2lhm7puBVCF \n", - "1 Contiene al menos un 20 % de material reciclado 0IgYTzUHkE7zIdcVyFCK \n", - "2 Contienen al menos un 20% de material reciclado 0MU8aKCnCUZv2r9aLD67 \n", - "3 Supera tu marca personal y llega a la meta más... 0MU8aKCnCUZv2r9aLD67 \n", - "4 null 0Q6DNSlvsjBzy3AQeY2y \n", - "5 El exterior contiene al menos un 50% de materi... 0SF7zveew5mzdUJWZKyz \n", - "6 Waterproofing, Reflectivity 0iPjAsLy8yEYvGgiCAzo \n", - "7 Contienen al menos un 20% de material reciclad... 0n2Tyl34QdVdkCKgAdcT \n", - "8 IG0334 0rf6HEvBi5R4FunIhToR \n", - "9 Waterproofing with recycled materials 0zbwfhJUSB9viwWPAnoE \n", - "\n", - " regularPrice undiscounted_price \\\n", - "0 $799.950 NA \n", - "1 $1.049.950 $629.970 \n", - "2 $1.049.950 $734.965 \n", - "3 $1.049.950 $734.965 \n", - "4 $279.950 NA \n", - "5 $699.950 $559.960 \n", - "6 $299.950 NA \n", - "7 $649.950 NA \n", - "8 $449.950 NA \n", - "9 $799.950 $639.960 \n", - "\n", - " details \\\n", - "0 {Ajuste clásico} {Sistema de amarre de cordone... \n", - "1 {Ajuste clásico} {Cierre de cordones} {Parte s... \n", - "2 {Ajuste clásico} {Sistema de amarre de cordone... \n", - "3 {Ajuste clásico} {Sistema de amarre de cordone... \n", - "4 {Horma clásica} {Sistema de amarre de cordones... \n", - "5 {Si este artículo es personalizado} {no aplica... \n", - "6 {Horma clásica} {Sistema de amarre de cordones... \n", - "7 {Ajuste clásico} {Sistema de amarre de cordone... \n", - "8 {Ajuste clásico} {Sistema de amarre de cordone... \n", - "9 {Ajuste clásico} {Sistema de amarre de cordone... \n", - "\n", - " description category \\\n", - "0 Hemos analizado 1.200.000 pisadas para que Ult... Mujer • Running \n", - "1 Haz tus mejores 10k con nuestros nuevos tenis ... Mujer • Running \n", - "2 Haz tus mejores 10k con nuestros nuevos tenis ... Hombre • Running \n", - "3 Haz tus mejores 10k con nuestros nuevos tenis ... Hombre • Running \n", - "4 Cada carrera es un viaje de descubrimiento. Po... Hombre • Running \n", - "5 Cuando se trata de alcanzar tus metas, cada se... Mujer • Running \n", - "6 Tanto en la pista como en la cinta de correr, ... Hombre • Running \n", - "7 Avanza hacia tus metas de running con estos te... Mujer • Running \n", - "8 Estos tenis fueron diseñados para darte la amo... Mujer • Running \n", - "9 Correr largas distancias es mucho más que ir d... Hombre • Running \n", - "\n", - " characteristics \n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "5 NaN \n", - "6 NaN \n", - "7 NaN \n", - "8 NaN \n", - "9 NaN " - ] - }, - "execution_count": 103, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_total" - ] - }, - { - "cell_type": "code", - "execution_count": 105, - "metadata": {}, - "outputs": [], - "source": [ - "output_path = \"../src/comparative_analysis/database/adidas_etiquetado_llama31.xlsx\"\n", - "df_total.to_excel(output_path, index=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Preprocesamiento Nike" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "df_nike = df_raw[df_raw['store'] == 'nike'] \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_2256\\2520405701.py:2: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_nike['details_transformado'] = df_nike['details'].apply(lambda x: transformar_texto(x, 'nike'))\n", - "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_2256\\2520405701.py:3: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_nike['characteristics_transformado'] = df_nike['characteristics'].apply(lambda x: transformar_texto(x, 'nike'))\n" - ] - } - ], - "source": [ - "# Lista de descripciones de productos\n", - "df_nike['details_transformado'] = df_nike['details'].apply(lambda x: transformar_texto(x, 'nike'))\n", - "df_nike['characteristics_transformado'] = df_nike['characteristics'].apply(lambda x: transformar_texto(x, 'nike'))" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [], - "source": [ - "# Crear un diccionario con las llaves deseadas desde todo el DataFrame\n", - "productos_nike = [\n", - " {\n", - " \"id\": row['id'],\n", - " \"regularPrice\" : row[\"regularPrice\"],\n", - " \"undiscounted_price\": row[\"undiscounted_price\"],\n", - " \"details\": row['details_transformado'],\n", - " \"description\": row['description'],\n", - " \"category\": row['category'],\n", - " \"characteristics\": row['characteristics_transformado']\n", - " }\n", - " for _, row in df_nike.iterrows() # Recorre todo el DataFrame\n", - " if row['details_transformado'] != '{}' # Filtra donde los detalles no estén vacíos\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Preprocesamiento nacion runner" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [], - "source": [ - "df_nr = df_raw[df_raw['store'] == 'nacionRunner']" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": {}, - "outputs": [], - "source": [ - "# Crear un diccionario con las llaves deseadas desde todo el DataFrame\n", - "productos_nr = [\n", - " {\n", - " \"id\": row['id'],\n", - " \"regularPrice\" : row[\"regularPrice\"],\n", - " \"undiscounted_price\": row[\"undiscounted_price\"],\n", - " \"details\": row['details'],\n", - " \"description\": row['description'],\n", - " \"category\": row['category'],\n", - " \"characteristics\": row['characteristics']\n", - " }\n", - " for _, row in df_nr.iterrows() # Recorre todo el DataFrame\n", - " if row['details'] != '{}' # Filtra donde los detalles no estén vacíos\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Notebooks/test.ipynb b/Notebooks/test.ipynb deleted file mode 100644 index 8c36c6274..000000000 --- a/Notebooks/test.ipynb +++ /dev/null @@ -1,2144 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import json\n", - "from llama_models.llama3.reference_impl.generation import Llama\n", - "from llama_models.llama3.api.datatypes import UserMessage, SystemMessage\n", - "import os\n", - "import sys\n", - "from llama_models.llama3.api.datatypes import (\n", - " UserMessage,\n", - " SystemMessage,\n", - " CompletionMessage,\n", - " StopReason,\n", - ")\n", - "from llama_models.llama3.reference_impl.generation import Llama\n", - "import pandas as pd\n", - "from io import StringIO\n", - "import numpy as np\n", - "import re\n", - "import requests\n", - "import ollama" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Funciones" - ] - }, - { - "cell_type": "code", - "execution_count": 101, - "metadata": {}, - "outputs": [], - "source": [ - "def transformar_texto(texto, marca):\n", - " if texto is None or (isinstance(texto, float) and np.isnan(texto)):\n", - " return texto\n", - " \n", - " if marca.lower() == \"adidas\":\n", - " # Transformación original para adidas\n", - " if isinstance(texto, (list, np.ndarray)):\n", - " texto = \", \".join(map(str, texto))\n", - " else:\n", - " texto = str(texto)\n", - " texto = texto.strip(\"[]\")\n", - " texto = re.sub(r\",\\s*\", '} {', texto)\n", - " texto = '{' + texto + '}'\n", - " return texto\n", - " \n", - " elif marca.lower() == \"nike\":\n", - " # Transformación específica para nike\n", - " if isinstance(texto, list):\n", - " # Elimina claves con valores irrelevantes\n", - " texto_limpio = [\n", - " {k.strip(): v.strip() for k, v in d.items() if k.strip() not in ['\\xa0']}\n", - " for d in texto\n", - " if isinstance(d, dict)\n", - " ]\n", - " # Filtra elementos vacíos o irrelevantes\n", - " texto_limpio = [d for d in texto_limpio if d]\n", - " return texto_limpio\n", - " return texto # Si no es lista, regresa el texto original\n", - "\n", - " else:\n", - " raise ValueError(f\"Marca '{marca}' no reconocida. Usa 'adidas' o 'nike'.\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "def generar_prompt_llama(descripcion, etiquetas):\n", - " prompt = \"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\n\"\n", - " prompt += \"Eres un asistente que extrae información de descripciones de productos y las organiza en una tabla.\\n\"\n", - " prompt += \"<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\n\"\n", - " prompt += f\"Extrae la siguiente información de la descripción del producto y etiquétala según las etiquetas: {', '.join(etiquetas)}.\\n\\n\"\n", - " prompt += f\"Descripción: {descripcion}\\n\\n\"\n", - " prompt += \"Proporciona la información en una tabla con las columnas correspondientes a cada etiqueta.\\n\"\n", - " prompt += \"<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\n\"\n", - " prompt += \"| \" + \" | \".join(etiquetas) + \" |\\n\"\n", - " prompt += \"| \" + \" | \".join(['---'] * len(etiquetas)) + \" |\\n\"\n", - " prompt += \"|\"\n", - " return prompt\n" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "def obtener_respuesta_llama(dialogo):\n", - " try:\n", - " # Ruta al modelo descargado (ajusta esta ruta según corresponda)\n", - " ruta_modelo = os.path.expanduser('~/.llama/checkpoints/Meta-Llama3.1-8B-Instruct')\n", - "\n", - " # Cargar el modelo Llama 3.1 8B\n", - " modelo = Llama.build(\n", - " ckpt_dir=ruta_modelo,\n", - " max_seq_len=1024, # Ajusta según sea necesario\n", - " max_batch_size=1, # Número de prompts a procesar simultáneamente\n", - " model_parallel_size=1,\n", - " )\n", - "\n", - " # Generar la respuesta utilizando el diálogo\n", - " resultado = modelo.chat_completion(\n", - " dialog=dialogo,\n", - " max_gen_len=512, # Máxima longitud de generación\n", - " temperature=0.6, # Ajusta según sea necesario\n", - " top_p=0.9, # Ajusta según sea necesario\n", - " )\n", - "\n", - " # Obtener el mensaje generado por el asistente\n", - " mensaje_asistente = resultado.generation\n", - " return mensaje_asistente.content\n", - "\n", - " except Exception as e:\n", - " print(f\"Error al generar la respuesta: {e}\")\n", - " return None" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "def obtener_respuesta_ollama(prompt):\n", - " response = ollama.chat(\n", - " model=\"llama3.2:latest\",\n", - " messages = [\n", - " {\n", - " \"role\":\"user\",\n", - " \"content\": prompt\n", - " } \n", - " ]\n", - " )\n", - " # La respuesta es un generador; concatenamos las partes\n", - " return response" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "def procesar_respuesta(respuesta_texto, etiquetas):\n", - " try:\n", - " # Buscar el inicio de la tabla\n", - " inicio_tabla = respuesta_texto.find('|')\n", - " if inicio_tabla != -1:\n", - " # Extraer la tabla desde el primer '|'\n", - " tabla_texto = respuesta_texto[inicio_tabla:].strip()\n", - " # Extraer solo las líneas que contienen '|'\n", - " lineas = tabla_texto.split('\\n')\n", - " lineas_tabla = []\n", - " for linea in lineas:\n", - " if '|' in linea:\n", - " # Eliminar los '|' iniciales y finales y espacios extra\n", - " linea = linea.strip().strip('|').strip()\n", - " lineas_tabla.append(linea)\n", - " else:\n", - " # Detenerse si la línea no contiene '|'\n", - " break\n", - " tabla_completa = '\\n'.join(lineas_tabla)\n", - " # Convertir la tabla Markdown a un DataFrame\n", - " df = pd.read_csv(StringIO(tabla_completa), sep='|', engine='python', skipinitialspace=True)\n", - " # Limpiar nombres de columnas y datos\n", - " df.columns = [col.strip() for col in df.columns]\n", - " for col in df.columns:\n", - " if df[col].dtype == object:\n", - " df[col] = df[col].str.strip()\n", - " # Resetear el índice\n", - " df = df.reset_index(drop=True)\n", - " return df\n", - " else:\n", - " print(\"No se encontró una tabla en la respuesta.\")\n", - " return None\n", - " except Exception as e:\n", - " print(f\"Error al procesar la tabla: {e}\")\n", - " return None\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Lectura de datos desde la api" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200\n" - ] - } - ], - "source": [ - "url =\"https://scraping-firestore-178159629911.us-central1.run.app//v1/scraping/\"\n", - "\n", - "response = requests.get(url)\n", - "\n", - "if response.status_code == 200:\n", - " data = response.json()\n", - " print(response.status_code)\n", - "else:\n", - " print(f'Error: {response.status_code}')\n", - "\n", - "df_raw = pd.DataFrame(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
iddetailsstoremanufacturerurltitleregularPriceundiscounted_pricedescriptioncategorycreatedAtcharacteristicsgender
0046zSiHm8Cz0fZYwMJlL[]adidasadidashttps://www.adidas.co/tenis-duramo-sl/IF7884.htmlTenis Duramo SL$379.950$265.965Siente la ligereza y velocidad. Si estás listo...Mujer • Running{'_seconds': 1731975445, '_nanoseconds': 42700...NaNNaN
108sjncACSjSvg2t9DS73[Horma clásica, Parte superior sintética, Forr...adidasadidashttps://www.adidas.co/tenis-adizero-adios-pro-...Tenis ADIZERO ADIOS PRO 3$1.299.950$909.965Los Adizero Adios Pro 3 son la máxima expresió...Mujer • Running{'_seconds': 1731975445, '_nanoseconds': 42700...NaNNaN
20AqheRhKT2lhm7puBVCF[Ajuste clásico, Sistema de amarre de cordones...adidasadidashttps://www.adidas.co/tenis-ultraboost-22/GX55...TENIS ULTRABOOST 22$799.950NAHemos analizado 1.200.000 pisadas para que Ult...Mujer • Running{'_seconds': 1731975445, '_nanoseconds': 42700...NaNNaN
30Di5KVVcvU0QsWRxB1iE[{' ': '<b>&nbsp;</b>'}]nikenikehttps://www.nike.com.co/nike-revolution-7-fb22...Nike Revolution 7$ 389.950NACargamos el Revolution 7 con el tipo de amorti...Calzado de correr en pavimento para mujer{'_seconds': 1731965768, '_nanoseconds': 30000...[]Mujer
40Gvnv9unc1EV4XpFbCQN[{'Características principales': '<b>Caracterí...nikenikehttps://www.nike.com.co/nike-winflo-11-calzado...Nike Winflo 11$ 584.950NAEl Winflo 11 es el calzado con una pisada bala...Calzado de correr en pavimento para mujer{'_seconds': 1731965768, '_nanoseconds': 30000...[Parte superior de malla diseñada estratégicam...Mujer
\n", - "
" - ], - "text/plain": [ - " id details \\\n", - "0 046zSiHm8Cz0fZYwMJlL [] \n", - "1 08sjncACSjSvg2t9DS73 [Horma clásica, Parte superior sintética, Forr... \n", - "2 0AqheRhKT2lhm7puBVCF [Ajuste clásico, Sistema de amarre de cordones... \n", - "3 0Di5KVVcvU0QsWRxB1iE [{' ': ' '}] \n", - "4 0Gvnv9unc1EV4XpFbCQN [{'Características principales': 'Caracterí... \n", - "\n", - " store manufacturer url \\\n", - "0 adidas adidas https://www.adidas.co/tenis-duramo-sl/IF7884.html \n", - "1 adidas adidas https://www.adidas.co/tenis-adizero-adios-pro-... \n", - "2 adidas adidas https://www.adidas.co/tenis-ultraboost-22/GX55... \n", - "3 nike nike https://www.nike.com.co/nike-revolution-7-fb22... \n", - "4 nike nike https://www.nike.com.co/nike-winflo-11-calzado... \n", - "\n", - " title regularPrice undiscounted_price \\\n", - "0 Tenis Duramo SL $379.950 $265.965 \n", - "1 Tenis ADIZERO ADIOS PRO 3 $1.299.950 $909.965 \n", - "2 TENIS ULTRABOOST 22 $799.950 NA \n", - "3 Nike Revolution 7 $ 389.950 NA \n", - "4 Nike Winflo 11 $ 584.950 NA \n", - "\n", - " description \\\n", - "0 Siente la ligereza y velocidad. Si estás listo... \n", - "1 Los Adizero Adios Pro 3 son la máxima expresió... \n", - "2 Hemos analizado 1.200.000 pisadas para que Ult... \n", - "3 Cargamos el Revolution 7 con el tipo de amorti... \n", - "4 El Winflo 11 es el calzado con una pisada bala... \n", - "\n", - " category \\\n", - "0 Mujer • Running \n", - "1 Mujer • Running \n", - "2 Mujer • Running \n", - "3 Calzado de correr en pavimento para mujer \n", - "4 Calzado de correr en pavimento para mujer \n", - "\n", - " createdAt \\\n", - "0 {'_seconds': 1731975445, '_nanoseconds': 42700... \n", - "1 {'_seconds': 1731975445, '_nanoseconds': 42700... \n", - "2 {'_seconds': 1731975445, '_nanoseconds': 42700... \n", - "3 {'_seconds': 1731965768, '_nanoseconds': 30000... \n", - "4 {'_seconds': 1731965768, '_nanoseconds': 30000... \n", - "\n", - " characteristics gender \n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 [] Mujer \n", - "4 [Parte superior de malla diseñada estratégicam... Mujer " - ] - }, - "execution_count": 125, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_raw.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Paso 1: Definir las etiquetas dinámicamente\n", - "Creamos una lista de etiquetas que pueden cambiar según las necesidades" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "etiquetas = [\"cordones\", \"textil exterior\", \"textil interior\", \"suela\", \"peso y/o talla\", \"eco diseñado si o no\", \"color\", \"identificador\", \"nombre de deporte\",'genero Mujer/Hombre/MIXTO']\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Paso 2: procesar info de Adidas" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [], - "source": [ - "df_adidas = df_raw[df_raw['store'] == 'adidas']" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_5352\\4001796790.py:2: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))\n" - ] - } - ], - "source": [ - "# Lista de descripciones de productos\n", - "df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas'))\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Lista de descripciones de productos\n", - "'''descripciones = [\n", - " \"[{'text': 'Ajuste clásico'}, {'text': 'Sistema de amarre de cordones'}, {'text': 'Parte superior textil'}, {'text': 'Mediasuela Cloudfoam'}, {'text': 'Forro interno textil'}, {'text': 'Peso: 239 gramos (talla CO 37,5)'}, {'text': 'Caída mediasuela: 9 mm (talón: 28 mm / antepié: 19 mm)'}, {'text': 'Suela de caucho'}, {'text': 'La parte superior contiene al menos un 50% de material reciclado'}, {'text': 'Color del artículo: Dark Blue / Core Black / Gold Metallic'}, {'text': 'Número de artículo: IE0747'}]\",\n", - " \"[{'text': 'Sistema de amarre de cordones'}, {'text': 'Exterior textil con refuerzos sintéticos sin costuras'}, {'text': 'Lengüeta reforzada'}, {'text': 'Amortiguación Lightstrike'}, {'text': 'Capa protectora de TPU'}, {'text': 'Suela de caucho Continental™ Rubber'}, {'text': 'El exterior contiene al menos un 50 % de material reciclado'}, {'text': 'Color del artículo: Core Black / Grey Three / Grey Two'}, {'text': 'Número de artículo: HR1182'}]\",\n", - " \"[{'text': 'Corte clásico'}, {'text': 'Sistema de amarre de cordones'}, {'text': 'Exterior de malla sándwich'}, {'text': 'Revestimientos sin costuras que brindan soporte'}, {'text': 'Talón suave'}, {'text': 'Amortiguación LIGHTMOTION'}, {'text': 'Suela de caucho'}, {'text': 'El exterior contiene al menos un 50 % de material reciclado'}, {'text': 'Color del artículo: Light Grey / Screaming Orange / Solar Gold'}, {'text': 'Número de artículo: HP2375'}]\",\n", - " \"[{'text': 'Ajuste clásico'}, {'text': 'Sistema de amarre de cordones'}, {'text': 'Parte superior textil'}, {'text': 'Forro interno textil'}, {'text': 'Suela multiterreno de caucho'}, {'text': 'Peso: 327 gramos (talla CO 40)'}, {'text': 'Caída mediasuela: 9 mm (talón: 29 mm / antepié: 19 mm)'}, {'text': 'Contienen al menos un 20% de material reciclado'}, {'text': 'Color del artículo: Halo Silver / Green Spark / Grey Five'}, {'text': 'Número de artículo: IG1416'}]\",\n", - " \"[{'text': 'Ajuste clásico'}, {'text': 'Sistema de amarre de cordones'}, {'text': 'Exterior de malla'}, {'text': 'Diseño cómodo para impulsarte hacia adelante'}, {'text': 'Forro interno textil'}, {'text': 'Mediasuela de EVA'}, {'text': 'Peso: 236 g (Talla COL 36,5)'}, {'text': 'Caída mediasuela: 10 mm (talón: 32 mm / antepié: 22 mm)'}, {'text': 'Suela Adiwear'}, {'text': 'El exterior contiene al menos un 50 % de material reciclado'}, {'text': 'Color del artículo: Core Black / Cloud White / Grey Six'}, {'text': 'Número de artículo: ID5258'}]\",\n", - " \"[{'text': 'Ajuste clásico'}, {'text': 'Sistema de amarre de cordones'}, {'text': 'Exterior de malla'}, {'text': 'Diseño cómodo para impulsarte hacia adelante'}, {'text': 'Forro interno textil'}, {'text': 'Mediasuela de EVA'}, {'text': 'Peso: 236 g (Talla COL 36,5)'}, {'text': 'Caída mediasuela: 10 mm (talón: 32 mm / antepié: 22 mm)'}, {'text': 'Suela Adiwear'}, {'text': 'El exterior contiene al menos un 50 % de material reciclado'}, {'text': 'Color del artículo: Cloud White / Silver Metallic / Crystal White'}, {'text': 'Número de artículo: ID5257'}]\",\n", - " \"[{'text': 'Ajuste clásico'}, {'text': 'Sistema de amarre de cordones'}, {'text': 'Parte superior textil'}, {'text': 'Mediasuela Cloudfoam'}, {'text': 'Forro interno textil'}, {'text': 'Peso: 286 gramos (talla CO 40)'}, {'text': 'Caída mediasuela: 10 mm (talón: 29,2 mm / antepié: 19,2 mm)'}, {'text': 'Suela de caucho'}, {'text': 'La parte superior contiene al menos un 50% de material reciclado'}, {'text': 'Color del artículo: Shadow Red / Green Spark / Better Scarlet'}, {'text': 'Número de artículo: IE0740'}]\"\n", - "]'''" - ] - }, - { - "cell_type": "code", - "execution_count": 103, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
details_transformadodescriptioncategory
0{}Siente la ligereza y velocidad. Si estás listo...Mujer • Running
1{Horma clásica} {Parte superior sintética} {Fo...Los Adizero Adios Pro 3 son la máxima expresió...Mujer • Running
2{Ajuste clásico} {Sistema de amarre de cordone...Hemos analizado 1.200.000 pisadas para que Ult...Mujer • Running
5{Ajuste clásico} {Cierre de cordones} {Parte s...Haz tus mejores 10k con nuestros nuevos tenis ...Mujer • Running
7{Ajuste clásico} {Sistema de amarre de cordone...Haz tus mejores 10k con nuestros nuevos tenis ...Hombre • Running
\n", - "
" - ], - "text/plain": [ - " details_transformado \\\n", - "0 {} \n", - "1 {Horma clásica} {Parte superior sintética} {Fo... \n", - "2 {Ajuste clásico} {Sistema de amarre de cordone... \n", - "5 {Ajuste clásico} {Cierre de cordones} {Parte s... \n", - "7 {Ajuste clásico} {Sistema de amarre de cordone... \n", - "\n", - " description category \n", - "0 Siente la ligereza y velocidad. Si estás listo... Mujer • Running \n", - "1 Los Adizero Adios Pro 3 son la máxima expresió... Mujer • Running \n", - "2 Hemos analizado 1.200.000 pisadas para que Ult... Mujer • Running \n", - "5 Haz tus mejores 10k con nuestros nuevos tenis ... Mujer • Running \n", - "7 Haz tus mejores 10k con nuestros nuevos tenis ... Hombre • Running " - ] - }, - "execution_count": 103, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_adidas[['details_transformado','description','category']].head()" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "# Crear un diccionario con las llaves deseadas\n", - "productos = [\n", - " {\n", - " \"details\": row['details_transformado'],\n", - " \"description\": row['description'],\n", - " \"category\": row['category']\n", - " }\n", - " for _, row in df_adidas[:10].iterrows() \n", - " if row['details_transformado'] != '{}'\n", - "]\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Paso 3: Integrar con la API de Llama 3.1\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Prompt" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'details': '{Horma clásica} {Parte superior sintética} {Forro interno textil} {Varillas ENERGYRODS 2.0 que limitan la pérdida de energía} {Amortiguación Lightstrike Pro} {Peso: 183 g (talla CO 37} {5)} {Caída mediasuela: 6 mm (talón: 38 mm / antepié: 32 mm)} {La parte superior contiene al menos un 50 % de material reciclado} {Color del artículo: Pink Spark / Aurora Met. / Sandy Pink} {Número de artículo: ID3612}',\n", - " 'description': \"Los Adizero Adios Pro 3 son la máxima expresión de los productos Adizero Racing. Fueron diseñados con y para atletas para lograr hazañas increíbles. Estos tenis de running adidas están diseñados para optimizar la eficiencia del running. Nuestras varillas ENERGYRODS 2.0 de carbono ofrecen ligereza y firmeza para pasos ágiles y eficientes. La tecnología LIGHTSTRIKE PRO ultraliviana amortigua cada paso con las tres capas de espuma resistente que te ayudan a mantener la energía a largo plazo. Todo sobre una delgada suela de caucho textil para un agarre extraordinario en condiciones mojadas y secas. Celebramos nuestra más reciente victoria, los tenis Best Speed 2024 by Women's Health.\",\n", - " 'category': 'Mujer • Running'},\n", - " {'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de tejido adidas Primeknit} {Ajuste suave en el talón} {Sistema Linear Energy Push} {Mediasuela BOOST} {Peso: 289 g (Talla CO 37)} {Suela Stretchweb con caucho Continental™ Better Rubber} {El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado} {Color del artículo: Core Black / Core Black / Cloud White} {Número de artículo: GX5591}',\n", - " 'description': 'Hemos analizado 1.200.000 pisadas para que Ultraboost evolucione y mejore su ajuste para adaptarse 360° al pie femenino. Y aún hay más. Hemos rediseñado la suela de caucho. Probamos cientos de prototipos. Hasta que comprobamos las mejoras en su rendimiento. ¿El resultado? Un 4 % más de energía que los Ultraboost 21 para mujer. El ajuste en el área del talón del exterior adidas PRIMEKNIT se diseñó para evitar que el talón se deslice y se formen ampollas. Estarás corriendo sobre una mediasuela BOOST con tecnología Linear Energy Push. El exterior de este calzado está confeccionado con hilo que contiene un 50% de Parley Ocean Plastic, un material que ha sido recuperado de residuos plásticos recogidos en islas, playas, comunidades costeras y costas evitando que contaminen nuestros océanos.',\n", - " 'category': 'Mujer • Running'},\n", - " {'details': '{Ajuste clásico} {Cierre de cordones} {Parte superior de malla técnica} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch para un ajuste seguro} {Peso: 166 g (Talla COL 36 1/2)} {Caída mediasuela: 6 mm (talón: 32 mm / antepié: 26 mm)} {Suela de caucho Continental™} {Contiene al menos un 20 % de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG8206}',\n", - " 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.',\n", - " 'category': 'Mujer • Running'},\n", - " {'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch} {Peso: 200 gramos (talla CO 40)} {Caída mediasuela: 6 mm (talón: 33 mm / antepié: 27 mm} {Suela de caucho Continental™ Rubber} {Contienen al menos un 20% de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG3134}',\n", - " 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS 2.0 para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.',\n", - " 'category': 'Hombre • Running'},\n", - " {'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior textil} {Forro interno textil} {Mediasuela Cloudfoam} {Suela de TPU} {Peso: 319 g (talla CO 40)} {Caída mediasuela: 6 mm (talón 35 mm / antepié 29 mm)} {Color del artículo: Halo Silver / Carbon / Core Black} {Número de artículo: ID8754}',\n", - " 'description': 'Cada carrera es un viaje de descubrimiento. Ponte estos tenis de running adidas y libera tu potencial. La mediasuela con amortiguación Cloudfoam te ofrece una pisada más cómoda mientras aumentas tu resistencia. La parte superior textil es resistente al desgaste y te ofrece soporte desde tu primera vuelta hasta tu primera carrera de 5K.',\n", - " 'category': 'Hombre • Running'},\n", - " {'details': '{Si este artículo es personalizado} {no aplica en nuestra política de cambios y devoluciones.} {Sistema de amarre de cordones para un ajuste inmejorable} {Producto hecho parcialmente con Malla Técnica Reciclada} {Diseño liviano} {Amortiguación Lightstrike y Lightstrike Pro} {Forro interno textil} {Caída mediasuela: 8} {5 mm (talón: 33 mm / antepié: 24} {5 mm)} {Suela de caucho} {El exterior contiene al menos un 50% de material reciclado} {Color del artículo: Ivory / Iron Metallic / Spark} {Número de artículo: IG3341}',\n", - " 'description': 'Cuando se trata de alcanzar tus metas, cada segundo cuenta. Ya sea para entrenar o para competir, un rendimiento excelente requiere de prendas de alta tecnología optimizadas para la velocidad. Presentamos la nueva colección de tenis de running livianos que te ayudan a superar tus límites sin distracciones.\\n\\nLos tenis de running Adizero SL seleccionan lo mejor de nuestra franquicia Adizero que rompe récords mundiales. La mediasuela de EVA LIGHTSTRIKE liviana ofrece resiliencia a la mediasuela para que puedas concentrarte en el próximo paso, mientras que el exterior está hecho de una malla técnica suave que está zonificada en áreas clave. El talón acolchado y la lengüeta brindan una comodidad óptima junto con el antepié Adizero. La suela premium está diseñada para proporcionar tracción.',\n", - " 'category': 'Mujer • Running'},\n", - " {'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {Plantilla OrthoLite®} {Mediasuela Cloudfoam} {Peso: 304 g (talla CO 40)} {Caída mediasuela: 10 mm (talón: 33 mm / antepié: 23 mm)} {Suela Adiwear} {Color del artículo: Cloud White / Core Black / Better Scarlet} {Número de artículo: IE8818}',\n", - " 'description': 'Tanto en la pista como en la cinta de correr, alcanza todas tus metas con estos tenis de running adidas. Incorporan una mediasuela con amortiguación Cloudfoam que te ofrece una pisada más cómoda y suave. La parte superior de malla transpirable y la suela Adiwear de gran resistencia al desgaste la convierten en una silueta perfecta para llevar durante todo el día.',\n", - " 'category': 'Hombre • Running'},\n", - " {'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {mediasuela Dreamstrike+} {Suela Adiwear} {Peso (talla CO 37): 213 gramos} {Caída mediasuela: 10 mm (talón: 34 mm / 24 mm)} {Contienen al menos un 20% de material reciclado y renovable} {Color del artículo: Almost Yellow / Zero Metalic / Pink Spark} {Número de artículo: IE1072}',\n", - " 'description': 'Avanza hacia tus metas de running con estos tenis adidas. La mediasuela Dreamstrike+ está diseñada para absorber el impacto. La amortiguación adicional en el antepié ofrece comodidad durante toda tu carrera. El exterior de malla transpirable maximiza el flujo de aire para mantener tus pies frescos, y la suela Adiwear resistente ofrece tracción. \\n\\nAl elegir materiales reciclados, podemos reutilizar materiales que ya han sido creados, lo que ayuda a reducir los residuos. La elección de materiales renovables nos ayudará a eliminar nuestra dependencia de recursos finitos. Nuestros productos hechos con una mezcla de materiales reciclados y renovables contienen al menos un 20% de este material.',\n", - " 'category': 'Mujer • Running'},\n", - " {'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de malla con cuello acolchado} {Forro interno textil} {Estabilizador de talón moldeado Fitcounter} {Mediasuela Bounce} {Suela sintética} {El exterior contiene al menos un 50 % de material reciclado} {Color del artículo: Shadow Violet / Legend Ink / Wonder Clay} {Número de artículo: IG0334}',\n", - " 'description': 'Estos tenis fueron diseñados para darte la amortiguación y la respuesta que necesitas cuando estás en la pista o en los senderos. Sin importar si vas a hacer tu caminata diaria o una carrera corta, la mediasuela Bounce es flexible y receptiva con cada paso. Hecho con una serie de materiales reciclados, el exterior incorpora al menos un 50 % de contenido reciclado. Este producto representa solo una de nuestras soluciones para acabar con los residuos plásticos.',\n", - " 'category': 'Mujer • Running'}]" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "productos\n" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [], - "source": [ - "def generar_prompt_ollama(producto, etiquetas):\n", - " prompt = f\"\"\"\n", - " Eres un asistente especializado en extraer información estructurada de descripciones de productos y organizarla en tablas. \n", - " Tu tarea es extraer la siguiente información de los detalles del producto y etiquetarla según las etiquetas: {', '.join(etiquetas)}.\n", - " Si una etiqueta no tiene una correspondencia clara en los detalles, completa su valor con \"null\".\n", - "\n", - " Información del producto:\n", - " - Details: {producto['details']}\n", - " - Description: {producto['description']}\n", - " - Category: {producto['category']}\n", - "\n", - " Proporciona la información en una tabla con las columnas correspondientes a cada etiqueta. \n", - " La tabla debe incluir **dos filas completas**:\n", - " 1. La primera fila contiene los nombres de las etiquetas.\n", - " 2. La segunda fila contiene los valores correspondientes etiquetados.\n", - "\n", - " Formato esperado de la respuesta:\n", - " | {' | '.join(etiquetas)} |\n", - " | {' | '.join(['---'] * len(etiquetas))} |\n", - " | valor_1 | valor_2 | ... |\n", - " \n", - " Ejemplo:\n", - " Si las etiquetas son \"details\", \"description\", y \"category\", y los valores extraídos son \n", - " \"Zapatillas cómodas\", \"Hechas con materiales reciclados\", y \"Calzado\", respectivamente, \n", - " tu respuesta debe ser:\n", - "\n", - " | details | description | category |\n", - " | Zapatillas cómodas | Hechas con materiales reciclados | Calzado |\n", - "\n", - " Recuerda:\n", - " - La respuesta debe contener dos filas completas.\n", - " - Solo responde con la tabla y **no incluyas texto adicional**.\n", - "\n", - " Ahora, extrae y estructura la información del producto proporcionado:\n", - "\n", - " | {' | '.join(etiquetas)} |\n", - " | {' | '.join(['---'] * len(etiquetas))} |\n", - " |\"\"\"\n", - " return prompt.strip()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Generacion" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'details': '{Horma clásica} {Parte superior sintética} {Forro interno textil} {Varillas ENERGYRODS 2.0 que limitan la pérdida de energía} {Amortiguación Lightstrike Pro} {Peso: 183 g (talla CO 37} {5)} {Caída mediasuela: 6 mm (talón: 38 mm / antepié: 32 mm)} {La parte superior contiene al menos un 50 % de material reciclado} {Color del artículo: Pink Spark / Aurora Met. / Sandy Pink} {Número de artículo: ID3612}', 'description': \"Los Adizero Adios Pro 3 son la máxima expresión de los productos Adizero Racing. Fueron diseñados con y para atletas para lograr hazañas increíbles. Estos tenis de running adidas están diseñados para optimizar la eficiencia del running. Nuestras varillas ENERGYRODS 2.0 de carbono ofrecen ligereza y firmeza para pasos ágiles y eficientes. La tecnología LIGHTSTRIKE PRO ultraliviana amortigua cada paso con las tres capas de espuma resistente que te ayudan a mantener la energía a largo plazo. Todo sobre una delgada suela de caucho textil para un agarre extraordinario en condiciones mojadas y secas. Celebramos nuestra más reciente victoria, los tenis Best Speed 2024 by Women's Health.\", 'category': 'Mujer • Running'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Adizero Adios Pro 3 | Parte superior sintética | Forro interno textil | Delgada suela de caucho textil | CO 37 | Sí | Pink Spark / Aurora Met. / Sandy Pink | ID3612 | Running | Mujer\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de tejido adidas Primeknit} {Ajuste suave en el talón} {Sistema Linear Energy Push} {Mediasuela BOOST} {Peso: 289 g (Talla CO 37)} {Suela Stretchweb con caucho Continental™ Better Rubber} {El hilo del exterior contiene al menos un 50% de Parley Ocean Plastic y un 50% de poliéster reciclado} {Color del artículo: Core Black / Core Black / Cloud White} {Número de artículo: GX5591}', 'description': 'Hemos analizado 1.200.000 pisadas para que Ultraboost evolucione y mejore su ajuste para adaptarse 360° al pie femenino. Y aún hay más. Hemos rediseñado la suela de caucho. Probamos cientos de prototipos. Hasta que comprobamos las mejoras en su rendimiento. ¿El resultado? Un 4 % más de energía que los Ultraboost 21 para mujer. El ajuste en el área del talón del exterior adidas PRIMEKNIT se diseñó para evitar que el talón se deslice y se formen ampollas. Estarás corriendo sobre una mediasuela BOOST con tecnología Linear Energy Push. El exterior de este calzado está confeccionado con hilo que contiene un 50% de Parley Ocean Plastic, un material que ha sido recuperado de residuos plásticos recogidos en islas, playas, comunidades costeras y costas evitando que contaminen nuestros océanos.', 'category': 'Mujer • Running'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Sistema de amarre de cordones | adidas Primeknit | null | Mediasuela BOOST | Talla CO 37, 289 g | Si | Core Black / Cloud White | GX5591 | Running | Mujer\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Ajuste clásico} {Cierre de cordones} {Parte superior de malla técnica} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch para un ajuste seguro} {Peso: 166 g (Talla COL 36 1/2)} {Caída mediasuela: 6 mm (talón: 32 mm / antepié: 26 mm)} {Suela de caucho Continental™} {Contiene al menos un 20 % de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG8206}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Mujer • Running'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Cierre de cordones | Parte superior de malla técnica | Amortiguación Lightstrike Pro | Suela de caucho Continental™ | 166 g (Talla COL 36 1/2) | Contiene al menos un 20 % de material reciclado | Green Spark / Aurora Met. / Lucid Lemon | IG8206 | Running | Mujer\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Amortiguación Lightstrike Pro} {Varillas ENERGYRODS que limitan la pérdida de energía} {Talón Slinglaunch} {Peso: 200 gramos (talla CO 40)} {Caída mediasuela: 6 mm (talón: 33 mm / antepié: 27 mm} {Suela de caucho Continental™ Rubber} {Contienen al menos un 20% de material reciclado} {Color del artículo: Green Spark / Aurora Met. / Lucid Lemon} {Número de artículo: IG3134}', 'description': 'Haz tus mejores 10k con nuestros nuevos tenis de running Adizero, diseñados exclusivamente para darte máxima velocidad. Los Adizero Takumi Sen 10 han sido diseñados con dos capas de amortiguación LIGHTSTRIKE PRO, combinadas con las varillas ENERGYRODS 2.0 para una mayor estabilidad e impulso en tu carrera. Supera tu marca personal y llega a la meta más rápido que nunca.', 'category': 'Hombre • Running'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Sistema de amarre de cordones | Parte superior de malla | Amortiguación Lightstrike Pro | Suela de caucho Continental™ Rubber | CO 40 | Contienen al menos un 20% de material reciclado | Green Spark / Aurora Met. / Lucid Lemon | IG3134 | Running | Mujer/Hombre/MIXTO |\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior textil} {Forro interno textil} {Mediasuela Cloudfoam} {Suela de TPU} {Peso: 319 g (talla CO 40)} {Caída mediasuela: 6 mm (talón 35 mm / antepié 29 mm)} {Color del artículo: Halo Silver / Carbon / Core Black} {Número de artículo: ID8754}', 'description': 'Cada carrera es un viaje de descubrimiento. Ponte estos tenis de running adidas y libera tu potencial. La mediasuela con amortiguación Cloudfoam te ofrece una pisada más cómoda mientras aumentas tu resistencia. La parte superior textil es resistente al desgaste y te ofrece soporte desde tu primera vuelta hasta tu primera carrera de 5K.', 'category': 'Hombre • Running'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Sistema de amarre de cordones | Parte superior textil | Forro interno textil | Mediasuela Cloudfoam, Suela de TPU | Talla CO 40 | Sí | Halo Silver / Carbon / Core Black | ID8754 | Running | Hombre\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Si este artículo es personalizado} {no aplica en nuestra política de cambios y devoluciones.} {Sistema de amarre de cordones para un ajuste inmejorable} {Producto hecho parcialmente con Malla Técnica Reciclada} {Diseño liviano} {Amortiguación Lightstrike y Lightstrike Pro} {Forro interno textil} {Caída mediasuela: 8} {5 mm (talón: 33 mm / antepié: 24} {5 mm)} {Suela de caucho} {El exterior contiene al menos un 50% de material reciclado} {Color del artículo: Ivory / Iron Metallic / Spark} {Número de artículo: IG3341}', 'description': 'Cuando se trata de alcanzar tus metas, cada segundo cuenta. Ya sea para entrenar o para competir, un rendimiento excelente requiere de prendas de alta tecnología optimizadas para la velocidad. Presentamos la nueva colección de tenis de running livianos que te ayudan a superar tus límites sin distracciones.\\n\\nLos tenis de running Adizero SL seleccionan lo mejor de nuestra franquicia Adizero que rompe récords mundiales. La mediasuela de EVA LIGHTSTRIKE liviana ofrece resiliencia a la mediasuela para que puedas concentrarte en el próximo paso, mientras que el exterior está hecho de una malla técnica suave que está zonificada en áreas clave. El talón acolchado y la lengüeta brindan una comodidad óptima junto con el antepié Adizero. La suela premium está diseñada para proporcionar tracción.', 'category': 'Mujer • Running'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Si este artículo es personalizado | {Sistema de amarre de cordones para un ajuste inmejorable} | El exterior contiene al menos un 50% de material reciclado | Caucha | null | No | Ivory / Iron Metallic / Spark | IG3341 | Running | Mujer |\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Horma clásica} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {Plantilla OrthoLite®} {Mediasuela Cloudfoam} {Peso: 304 g (talla CO 40)} {Caída mediasuela: 10 mm (talón: 33 mm / antepié: 23 mm)} {Suela Adiwear} {Color del artículo: Cloud White / Core Black / Better Scarlet} {Número de artículo: IE8818}', 'description': 'Tanto en la pista como en la cinta de correr, alcanza todas tus metas con estos tenis de running adidas. Incorporan una mediasuela con amortiguación Cloudfoam que te ofrece una pisada más cómoda y suave. La parte superior de malla transpirable y la suela Adiwear de gran resistencia al desgaste la convierten en una silueta perfecta para llevar durante todo el día.', 'category': 'Hombre • Running'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Sistema de amarre de cordones | Parte superior de malla | Forro interno textil | Mediasuela Cloudfoam | Talla CO 40 | null | Cloud White / Core Black / Better Scarlet | IE8818 | Running | Hombre |\n", - "\n", - "Nota: Las etiquetas \"Peso y/o talla\" no tienen una relación directa con la información proporcionada, por lo que su valor es \"null\".\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Parte superior de malla} {Forro interno textil} {mediasuela Dreamstrike+} {Suela Adiwear} {Peso (talla CO 37): 213 gramos} {Caída mediasuela: 10 mm (talón: 34 mm / 24 mm)} {Contienen al menos un 20% de material reciclado y renovable} {Color del artículo: Almost Yellow / Zero Metalic / Pink Spark} {Número de artículo: IE1072}', 'description': 'Avanza hacia tus metas de running con estos tenis adidas. La mediasuela Dreamstrike+ está diseñada para absorber el impacto. La amortiguación adicional en el antepié ofrece comodidad durante toda tu carrera. El exterior de malla transpirable maximiza el flujo de aire para mantener tus pies frescos, y la suela Adiwear resistente ofrece tracción. \\n\\nAl elegir materiales reciclados, podemos reutilizar materiales que ya han sido creados, lo que ayuda a reducir los residuos. La elección de materiales renovables nos ayudará a eliminar nuestra dependencia de recursos finitos. Nuestros productos hechos con una mezcla de materiales reciclados y renovables contienen al menos un 20% de este material.', 'category': 'Mujer • Running'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Sistema de amarre de cordones | Forro interno textil | mediasuela Dreamstrike+ | Suela Adiwear | CO 37: 213 gramos | Contienen al menos un 20% de material reciclado y renovable | Almost Yellow / Zero Metalic / Pink Spark | IE1072 | Running | Mujer |\n", - "\n", - "Nota: Se han completado los valores que no tenían una correspondencia clara con las etiquetas del producto original.\n", - "\n", - "------------------------\n", - "\n", - "{'details': '{Ajuste clásico} {Sistema de amarre de cordones} {Exterior de malla con cuello acolchado} {Forro interno textil} {Estabilizador de talón moldeado Fitcounter} {Mediasuela Bounce} {Suela sintética} {El exterior contiene al menos un 50 % de material reciclado} {Color del artículo: Shadow Violet / Legend Ink / Wonder Clay} {Número de artículo: IG0334}', 'description': 'Estos tenis fueron diseñados para darte la amortiguación y la respuesta que necesitas cuando estás en la pista o en los senderos. Sin importar si vas a hacer tu caminata diaria o una carrera corta, la mediasuela Bounce es flexible y receptiva con cada paso. Hecho con una serie de materiales reciclados, el exterior incorpora al menos un 50 % de contenido reciclado. Este producto representa solo una de nuestras soluciones para acabar con los residuos plásticos.', 'category': 'Mujer • Running'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Sistema de amarre de cordones | Exterior de malla con cuello acolchado | Forro interno textil | Mediasuela Bounce | null | Si | Shadow Violet / Legend Ink / Wonder Clay | IG0334 | Running | Mujer\n", - "\n", - "------------------------\n", - "\n" - ] - } - ], - "source": [ - "dfs = []\n", - "for producto in productos:\n", - " prompt = generar_prompt_ollama(producto, etiquetas)\n", - " respuesta = obtener_respuesta_ollama(prompt)\n", - " print(producto)\n", - " print(\"Respuesta del modelo:\")\n", - " print(respuesta[\"message\"][\"content\"])\n", - " print(\"\\n------------------------\\n\")\n", - " df = procesar_respuesta(respuesta[\"message\"][\"content\"], etiquetas)\n", - " if df is not None:\n", - " dfs.append(df)\n", - " else:\n", - " print(\"No se pudo extraer la tabla.\\n\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "code", - "execution_count": 112, - "metadata": {}, - "outputs": [], - "source": [ - "if dfs:\n", - " df_total = pd.concat(dfs, ignore_index=True)\n", - "else:\n", - " print(\"No se pudo crear el DataFrame total.\")" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
cordonestextil exteriortextil interiorsuelapeso y/o tallaeco diseñado si o nocoloridentificadornombre de deportegenero Mujer/Hombre/MIXTO
0Adizero Adios Pro 3Parte superior sintéticaForro interno textilDelgada suela de caucho textilCO 37Pink Spark / Aurora Met. / Sandy PinkID3612RunningMujer
1Sistema de amarre de cordonesadidas PrimeknitnullMediasuela BOOSTTalla CO 37, 289 gSiCore Black / Cloud WhiteGX5591RunningMujer
2Cierre de cordonesParte superior de malla técnicaAmortiguación Lightstrike ProSuela de caucho Continental™166 g (Talla COL 36 1/2)Contiene al menos un 20 % de material recicladoGreen Spark / Aurora Met. / Lucid LemonIG8206RunningMujer
3Sistema de amarre de cordonesParte superior de mallaAmortiguación Lightstrike ProSuela de caucho Continental™ RubberCO 40Contienen al menos un 20% de material recicladoGreen Spark / Aurora Met. / Lucid LemonIG3134RunningMujer/Hombre/MIXTO
4Sistema de amarre de cordonesParte superior textilForro interno textilMediasuela Cloudfoam, Suela de TPUTalla CO 40Halo Silver / Carbon / Core BlackID8754RunningHombre
5Si este artículo es personalizado{Sistema de amarre de cordones para un ajuste ...El exterior contiene al menos un 50% de materi...CauchanullNoIvory / Iron Metallic / SparkIG3341RunningMujer
6Sistema de amarre de cordonesParte superior de mallaForro interno textilMediasuela CloudfoamTalla CO 40nullCloud White / Core Black / Better ScarletIE8818RunningHombre
7Sistema de amarre de cordonesForro interno textilmediasuela Dreamstrike+Suela AdiwearCO 37: 213 gramosContienen al menos un 20% de material reciclad...Almost Yellow / Zero Metalic / Pink SparkIE1072RunningMujer
8Sistema de amarre de cordonesExterior de malla con cuello acolchadoForro interno textilMediasuela BouncenullSiShadow Violet / Legend Ink / Wonder ClayIG0334RunningMujer
\n", - "
" - ], - "text/plain": [ - " cordones \\\n", - "0 Adizero Adios Pro 3 \n", - "1 Sistema de amarre de cordones \n", - "2 Cierre de cordones \n", - "3 Sistema de amarre de cordones \n", - "4 Sistema de amarre de cordones \n", - "5 Si este artículo es personalizado \n", - "6 Sistema de amarre de cordones \n", - "7 Sistema de amarre de cordones \n", - "8 Sistema de amarre de cordones \n", - "\n", - " textil exterior \\\n", - "0 Parte superior sintética \n", - "1 adidas Primeknit \n", - "2 Parte superior de malla técnica \n", - "3 Parte superior de malla \n", - "4 Parte superior textil \n", - "5 {Sistema de amarre de cordones para un ajuste ... \n", - "6 Parte superior de malla \n", - "7 Forro interno textil \n", - "8 Exterior de malla con cuello acolchado \n", - "\n", - " textil interior \\\n", - "0 Forro interno textil \n", - "1 null \n", - "2 Amortiguación Lightstrike Pro \n", - "3 Amortiguación Lightstrike Pro \n", - "4 Forro interno textil \n", - "5 El exterior contiene al menos un 50% de materi... \n", - "6 Forro interno textil \n", - "7 mediasuela Dreamstrike+ \n", - "8 Forro interno textil \n", - "\n", - " suela peso y/o talla \\\n", - "0 Delgada suela de caucho textil CO 37 \n", - "1 Mediasuela BOOST Talla CO 37, 289 g \n", - "2 Suela de caucho Continental™ 166 g (Talla COL 36 1/2) \n", - "3 Suela de caucho Continental™ Rubber CO 40 \n", - "4 Mediasuela Cloudfoam, Suela de TPU Talla CO 40 \n", - "5 Caucha null \n", - "6 Mediasuela Cloudfoam Talla CO 40 \n", - "7 Suela Adiwear CO 37: 213 gramos \n", - "8 Mediasuela Bounce null \n", - "\n", - " eco diseñado si o no \\\n", - "0 Sí \n", - "1 Si \n", - "2 Contiene al menos un 20 % de material reciclado \n", - "3 Contienen al menos un 20% de material reciclado \n", - "4 Sí \n", - "5 No \n", - "6 null \n", - "7 Contienen al menos un 20% de material reciclad... \n", - "8 Si \n", - "\n", - " color identificador nombre de deporte \\\n", - "0 Pink Spark / Aurora Met. / Sandy Pink ID3612 Running \n", - "1 Core Black / Cloud White GX5591 Running \n", - "2 Green Spark / Aurora Met. / Lucid Lemon IG8206 Running \n", - "3 Green Spark / Aurora Met. / Lucid Lemon IG3134 Running \n", - "4 Halo Silver / Carbon / Core Black ID8754 Running \n", - "5 Ivory / Iron Metallic / Spark IG3341 Running \n", - "6 Cloud White / Core Black / Better Scarlet IE8818 Running \n", - "7 Almost Yellow / Zero Metalic / Pink Spark IE1072 Running \n", - "8 Shadow Violet / Legend Ink / Wonder Clay IG0334 Running \n", - "\n", - " genero Mujer/Hombre/MIXTO \n", - "0 Mujer \n", - "1 Mujer \n", - "2 Mujer \n", - "3 Mujer/Hombre/MIXTO \n", - "4 Hombre \n", - "5 Mujer \n", - "6 Hombre \n", - "7 Mujer \n", - "8 Mujer " - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_total" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Paso 5: Nike" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [], - "source": [ - "df_nike = df_raw[df_raw['store'] == 'nike']" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_5352\\989177854.py:1: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_nike['details_transformado'] = df_nike['details'].apply(transformar_texto)\n" - ] - } - ], - "source": [ - "df_nike['details_transformado'] = df_nike['details'].apply(transformar_texto)" - ] - }, - { - "cell_type": "code", - "execution_count": 100, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'\\xa0': ' '}]" - ] - }, - "execution_count": 100, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_nike['details'].iloc[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_5352\\1496571984.py:2: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_nike['details_transformado'] = df_nike['details'].apply(lambda x: transformar_texto(x, 'nike'))\n" - ] - } - ], - "source": [ - "# Aplicar la transformación con el parámetro 'adidas'\n", - "df_nike['details_transformado'] = df_nike['details'].apply(lambda x: transformar_texto(x, 'nike'))" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": {}, - "outputs": [], - "source": [ - "# Crear un diccionario con las llaves deseadas\n", - "productos_nike = [\n", - " {\n", - " \"details\": row['details_transformado'],\n", - " \"description\": row['description'],\n", - " \"category\": row['category']\n", - " }\n", - " for _, row in df_nike[:10].iterrows() \n", - " if row['details_transformado'] != '{}'\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'details': \"{{'\\\\xa0': ' '}}\", 'description': 'Cargamos el Revolution 7 con el tipo de amortiguación suave y soporte que podría cambiar tu mundo del running. Elegante como siempre, cómodo cuando la goma se encuentra con la carretera y con alto rendimiento para el ritmo deseado, es una evolución de un favorito de los fanáticos que ofrece una conducción suave y tersa.', 'category': 'Calzado de correr en pavimento para mujer'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Zapatillas cómodas | null | null | null | null | null | null | Revolution 7 | Correr | Mujer\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Características principales': 'Características principales'}} {{'Datos del producto': 'Datos del producto'}} {{'Soporte: neutro': 'Soporte: neutro'}} {{'Ajuste adaptable': 'Ajuste adaptable'}} {{'Datos del producto': 'Datos del producto'}}\", 'description': 'El Winflo 11 es el calzado con una pisada balanceada que te ayudará a impulsar tu carrera a un ritmo que te permitirá acumular kilómetros, metros y objetivos. Impulsado por la amortiguación Nike Air de largo completo, el Winflo 11 cuenta ahora con un antepié más amplio, un talón más ancho y una mayor transpirabilidad en comparación con el Winflo 10. Es el tipo de fijación que crea hábito y que te ayudará a ponerte en marcha, a lucir bien en la carretera con colores fáciles de combinar y a volver al día siguiente por más.', 'category': 'Calzado de correr en pavimento para mujer'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Zapatillas con fijación | Neutra | Textil sintético | Suela de goma | - | Si | Blanco/Rosa/Violeta/Verde | WINFLO 11 | Correr en pavimento para mujer | Mujer/Hombre/MIXTO |\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'\\\\xa0': ' '}}\", 'description': 'Con la máxima amortiguación para brindarte soporte en cada kilómetro, el Invincible 3 ofrece nuestro más alto nivel de comodidad en la planta del pie. Su espuma ZoomX Foam suave y flexible te ayuda a mantener la estabilidad y la frescura. En otras palabras, te sentirás bien todo el día, sin importar lo que hagas. Y al juntar toda esta amortiguación con colores fáciles de combinar, obtienes un calzado que no te vas a querer quitar.', 'category': 'Calzado de correr en pavimento para mujer'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Null | Null | Null | Null | Null | Si | Color fáciles de combinar | Invincible 3 | Calzado de correr en pavimento para mujer | Mujer\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Amortiguación: superalta': 'Cuanta más amortiguación tengas en la planta del pie} {más suave y cómoda puede ser tu experiencia de running. La amortiguación suaviza el impacto cuando los pies llegan al suelo. Con una amortiguación Nike ZoomX con la forma de una mecedora y una espuma más alta} {este calzado te brinda la máxima amortiguación al contacto con el suelo y una sensación aún más suave en la planta del pie.'}} {{'Responsividad: superalta': 'Cuanto más responsivo sea el calzado} {más retorno de energía obtendrás con cada paso. Ya sea que quieras correr un poco más rápido o con un poco menos de esfuerzo} {un calzado responsivo te brinda más elasticidad en tu pisada para que aproveches al máximo tu carrera. La espuma Nike ZoomX es muy responsiva y ligera} {esto brinda rebote y respuesta rápida a cada paso.'}} {{'Ajuste: seguro} {transpirable y cómodo': 'La parte superior evolucionada de Flyknit sitúa las zonas de transpirabilidad donde el pie se calienta más. Es resistente y duradera para mantener el pie seguro a cada kilómetro.'}} {{'¿Qué novedades tiene el Invincible 3?': 'Creamos el clip del talón más pequeño que el de nuestra versión anterior y lo colocamos en una ubicación más precisa. La entresuela más ancha agrega estabilidad. La espuma apilada más alta que la de nuestra versión anterior eleva la vara en términos de amortiguación y comodidad en un diseño más elegante.'}}\", 'description': 'Con la máxima amortiguación para soportar cada kilómetro, el Invincible 3 tiene nuestro más alto nivel de comodidad a tus pies. Su espuma ZoomX Foam suave y flexible te ayuda a mantener la estabilidad y la frescura. En otras palabras, te sentirás bien todo el día, sin importar lo que hagas. Tiene todo lo que necesitas para que puedas impulsarte por tu camino preferido y volver a tu próxima carrera sintiéndote listo y revitalizado.', 'category': 'Calzado de running en carretera para hombre'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Amortiguación: superalta | Nike ZoomX con forma de mecedora y espuma más alta | transpirable | Cuanta más amortiguación tengas en la planta del pie | null | Si | Blanco/Sierra Verde | Invincible 3 | Calzado de running en carretera para hombre | Hombre\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Confeccionada con Nike Grind': 'La suela con diseño tipo waffle cuenta con al menos un 13% de material Nike Grind} {confeccionado con residuos del proceso de fabricación de calzado.'}} {{'Pisada suave': 'La espuma suave y responsiva en la entresuela ofrece una marcha cómoda y suave para tu carrera donde sea que te lleve el día. La espuma más alta proporciona una sensación de suavidad.'}} {{'Échate a volar': 'La parte superior de Flyknit tiene zonas de transpirabilidad donde el pie se calienta más} {específicamente en la punta. Es fuerte y duradera} {lo que ayuda a mantener tu pie seguro en cada kilómetro. La parte superior aireada y ventilada abraza el pie de una manera ligera y sencilla.'}} {{'Más beneficios': 'Más beneficios'}}\", 'description': '¿Puedes ver el futuro? Avanza rápido con el diseño vanguardista del Nike Interact Run. Está diseñado con todas las bondades del running que necesitas: una parte superior ligera de Flyknit, una entresuela de espuma suave y comodidad donde importa. Escanea el código QR de la lengüeta con tu teléfono y consulta nuestra introducción en línea a los detalles de Nike Interact Run.', 'category': 'Calzado de running en carretera para hombre'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Nike Grind | - | - | waffle | null | sí | - | - | Running | Hombre/MIXTO |\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Amortiguación: alta': 'Cuanta más amortiguación tengas en la planta del pie} {más suave y cómoda puede ser tu experiencia de running. La amortiguación suaviza el impacto cuando los pies llegan al suelo. La espuma nueva y mejorada en la entresuela ofrece una sensación suave y cómoda mientras acumulas kilómetros. Las pilas altas de espuma mantienen la comodidad. La espuma} {a la que se le dio la forma de mecedora} {brinda soporte en las tres fases de la pisada de un runner. Te brinda flexibilidad cuando levantas el pie del suelo} {un deslizamiento suave cuando el pie se mueve hacia delante y amortiguación al contacto con el suelo.'}} {{'Responsividad: mínima': 'Cuanto más responsivo sea el calzado} {más retorno de energía obtendrás con cada paso. Ya sea que quieras correr un poco más rápido o con un poco menos de esfuerzo} {un calzado responsivo te brinda más elasticidad en tu pisada para que aproveches al máximo tu carrera. La unidad Zoom Air en el antepié aporta amortiguación responsiva. Cada paso crea retorno de energía para impulsarte hacia delante de forma responsiva y con elasticidad.'}} {{'Ajuste adaptable': 'El antepié adaptable tiene suficiente espacio para extender los dedos. El antepié más amplio complementa la base más ancha y una pisada suave. La estructura y contención adicionales alrededor del talón ofrecen un ajuste con más soporte.'}} {{'¿Qué innovaciones tiene el Structure 25?': 'Le agregamos más espuma que a nuestros Structure anteriores y también tiene mejor soporte y comodidad que su predecesor. La espuma nueva y mejorada en la planta del pie brinda soporte.'}} {{'Más beneficios': 'Más beneficios'}}\", 'description': 'Con estabilidad donde la necesitas y amortiguación donde la quieres, el Structure 25 te apoya en los recorridos largos, las carreras cortas de entrenamiento e incluso con unas sentadillas antes de que acabe el día. Es la estabilidad que buscas, leal desde el primer momento, probado y confiable, con un sistema de soporte completo en el mediopié y una amortiguación más cómoda que antes.', 'category': 'Calzado de running en carretera para mujer'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Amortiguación: alta | Espuma | Textil | Suela con espuma | Pila alta | No | Blanco/ Negro | Structure 25 | Running | Mujer/MIXTO\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Características principales': 'Características principales'}} {{'Datos del producto': 'Datos del producto'}} {{'Responsividad: moderada': 'Responsividad: moderada'}} {{'Transpirabilidad contenida': 'Transpirabilidad contenida'}} {{'Más beneficios': 'Más beneficios'}} {{'Datos del producto': 'Datos del producto'}}\", 'description': 'La amortiguación máxima proporciona una comodidad mejorada para las carreras diarias. Disfruta de una plataforma suave con forma de mecedora confeccionada con la espuma ReactX Foam nueva en la planta del pie, así como de un cuello y una lengüeta ultracómodos para ofrecer un ajuste ceñido. Además, se añadió una membrana resistente al agua a esta versión para ayudar a evitar la humedad.', 'category': 'Calzado de correr en carretera para mujer'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Características principales | La amortiguación máxima proporciona una comodidad mejorada para las carreras diarias. Disfruta de una plataforma suave con forma de mecedora confeccionada con la espuma ReactX Foam nueva en la planta del pie, así como de un cuello y una lengüeta ultracómodos para ofrecer un ajuste ceñido. Además, se añadió una membrana resistente al agua a esta versión para ayudar a evitar la humedad. | Hechas con materiales reciclados | Transpirabilidad contenida | Moderada | Negro | X | | Calzado de correr en carretera para mujer | Mujer\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Amortiguación: superalta': 'Cuanta más amortiguación tengas en la planta del pie} {más suave y cómoda puede ser tu experiencia de running. La amortiguación suaviza el impacto cuando los pies llegan al suelo. La espuma ReactX Foam te brinda una sensación increíblemente suave que te ayuda a ir más allá de tus límites.'}} {{'Soporte: alto': 'Cuanto más soporte ofrece el calzado} {más estabilidad puede darle a tu pisada natural. La combinación de soporte optimizado y amortiguación colocada intencionalmente te ayuda a sentir seguridad en cada paso. La suela curva ayuda a que tu pie se balancee suavemente desde el talón hasta la punta y en cada paso hasta la pisada. Hace que cada paso se sienta más natural y agrega eficiencia a tu carrera} {lo que te ayuda a desperdiciar menos energía en cada pisada. La nueva banda de ajuste Flyknit interna (como una banda de goma alrededor de la parte media del pie) ofrece un soporte elástico y seguro.'}} {{'Responsividad: moderada': 'Cuanto más responsivo sea el calzado} {más retorno de energía obtendrás con cada paso. Ya sea que quieras correr un poco más rápido o con un poco menos de esfuerzo} {un calzado responsivo te brinda más elasticidad en tu pisada para que aproveches al máximo tu carrera. La espuma ReactX Foam te brinda un 13% adicional de retorno de energía en comparación con la espuma React Foam} {lo que te ayuda a mantener la frescura y la elasticidad durante la carrera.'}} {{'Transpirabilidad contenida': 'El forro repelente al agua en la punta te ayuda a mantenerte libre de humedad cuando cambia el tiempo.'}} {{'Más beneficios': 'Más beneficios'}}\", 'description': 'El Nike InfinityRN 4, con una amortiguación con soporte diseñada para ofrecer una carrera uniforme, es una nueva versión de un favorito conocido. Está hecho con nuestra nueva espuma Nike ReactX Foam que te brinda un 13% adicional de retorno de energía en comparación con la espuma Nike React Foam, lo que te ayuda a mantener la frescura y la elasticidad. (¿Y qué más? Nike ReactX reduce su huella de carbono en un par de entresuelas en al menos un 43% en comparación con la espuma Nike React Foam*). Combinamos la espuma ReactX Foam con el Flyknit más adaptable de Nike Running hasta la fecha, para que puedas despegar en cualquier momento y en cualquier lugar con un soporte seguro y transpirabilidad en la parte superior. Es el tipo de calzado que puede concederte esa tranquilidad que no tiene precio para ir más lejos y más rápido gracias a un diseño intuitivo que brinda soporte a cada paso. *La huella de carbono de ReactX se basa en un análisis de todo el proceso de producción, verificado por Intertek China y PRé Sustainability B.V. No se consideraron otros componentes de la entresuela, como cámaras de aire, placas u otras formulaciones de espuma.', 'category': 'Calzado de running en carretera para hombre'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Amortiguación: superalta | Nike ReactX Foam | Flyknit más adaptable | Suela curva | - | No | Negro/Blanco | InfinityRN 4 | Calzado de running en carretera para hombre | Hombre/MIXTO |\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Responsividad: superalta': 'Cuanto más responsivo sea el calzado} {más retorno de energía obtendrás con cada paso. Ya sea que quieras correr un poco más rápido o con un poco menos de esfuerzo} {un calzado responsivo te brinda más elasticidad en tu pisada para que aproveches al máximo tu carrera. En el Vomero 17} {nuestro calzado con el mejor resorte} {el pie descansa sobre una pila de ZoomX Foam} {la espuma más ligera y con mayor retorno de energía de Nike Running} {en la parte superior} {y espuma suave en la parte inferior para tener una pisada energizada} {pero suave.'}} {{'Soporte: neutro': 'Cuanto más soporte ofrece el calzado} {más estabilidad puede darle a tu pisada natural. La combinación de soporte optimizado y amortiguación colocada intencionalmente te ayuda a sentir seguridad en cada paso. El Vomero 17 tiene un soporte neutro. Te brinda equilibrio} {ya sea que pises con el talón o con el antepié. También es bueno para carreras largas y cortas; ofrece una transición suave del talón a la punta que complementa la pisada natural.'}} {{'Ajuste y sensación': 'Este calzado se enorgullece en tener comodidad premium que te pone en modo crucero para distancias largas o cortas. La malla diseñada estratégicamente le da más ligereza y transpirabilidad a la parte superior en comparación con los Vomero anteriores. La plantilla suave ofrece comodidad al ponértelo y el cuello es cómodo en el talón al momento de correr. La lengüeta acolchada y las agujetas suaves y elásticas completan una experiencia general ultracómoda.'}} {{'¿Qué novedades tiene el Vomero 17?': 'Simplificamos la estructura del 17 al quitar la unidad Zoom Air del antepié y apilar espuma ZoomX Foam premium arriba de la entresuela para amplificar la comodidad acolchada. El resultado es una pisada más suave y responsiva.'}} {{'Más beneficios': 'Más beneficios'}}\", 'description': 'El Vomero 17 proporciona una pisada elástica y suave para energizar cada kilómetro, la cual te lleva a tu lugar feliz de running. Su espuma apilada proporciona una responsividad superior para ayudarte a mejorar cuando estés listo para esa velocidad adicional. Y con mejoras generales que ofrecen un nuevo nivel de comodidad ligera y transpirabilidad, este calzado es para aquellos runners de carretera que buscan la emoción del vroom y la sensación de suavidad que te pone en modo crucero para distancias cortas o largas.', 'category': 'Calzado de running en carretera para hombre'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Responsividad: superalta | ZoomX Foam, espuma más ligera y con mayor retorno de energía de Nike Running | - | suela sin especificar | null | No | Color negro/negro escuro | Vomero 17 | Calzado de running en carretera para hombre | Mujer/Hombre/MIXTO |\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'La innovación es nuestra inspiración': 'La innovación es nuestra inspiración'}} {{'Soporte: alto': 'Soporte: alto'}} {{'Amortiguación: superalta': 'Amortiguación: superalta'}} {{'Responsividad: superalta': 'Responsividad: superalta'}} {{'Ajuste: seguro} {transpirable y cómodo': 'Ajuste: seguro} {transpirable y cómodo'}} {{'¿Qué novedades tienen los Invincible 3?': '¿Qué novedades tienen los Invincible 3?'}} {{'Datos del producto': 'Datos del producto'}}\", 'description': 'Con la máxima amortiguación para brindarte soporte en cada kilómetro, el Invincible 3 ofrece nuestro más alto nivel de comodidad en la planta del pie. Sigue corriendo hoy, mañana y siempre. La espuma ZoomX Foam ultraresponsiva y ligera, que cuenta con un diseño avanzado según las especificaciones exactas de atletas campeones, te ayuda a seguir corriendo. Puede ayudarte a impulsarte por tu camino preferido y volver a tu próxima carrera sintiéndote con energía y vitalidad.', 'category': 'Calzado de correr en carretera para hombre'}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| La innovación es nuestra inspiración | transpirable y cómodo | superalta | alta | | no | negro, gris | Invincible 3 | Calzado de correr en carretera para hombre | Hombre\n", - "\n", - "------------------------\n", - "\n" - ] - } - ], - "source": [ - "dfs_nike = []\n", - "for producto in productos_nike:\n", - " prompt = generar_prompt_ollama(producto, etiquetas)\n", - " respuesta = obtener_respuesta_ollama(prompt)\n", - " print(producto)\n", - " print(\"Respuesta del modelo:\")\n", - " print(respuesta[\"message\"][\"content\"])\n", - " print(\"\\n------------------------\\n\")\n", - " df_nike = procesar_respuesta(respuesta[\"message\"][\"content\"], etiquetas)\n", - " if df_nike is not None:\n", - " dfs_nike.append(df_nike)\n", - " else:\n", - " print(\"No se pudo extraer la tabla.\\n\")" - ] - }, - { - "cell_type": "code", - "execution_count": 111, - "metadata": {}, - "outputs": [], - "source": [ - "if dfs_nike:\n", - " df_total_nike = pd.concat(dfs_nike, ignore_index=True)\n", - "else:\n", - " print(\"No se pudo crear el DataFrame total.\")" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
cordonestextil exteriortextil interiorsuelapeso y/o tallaeco diseñado si o nocoloridentificadornombre de deportegenero Mujer/Hombre/MIXTO
0Zapatillas cómodasnullnullnullnullnullnullRevolution 7CorrerMujer
1Zapatillas con fijaciónNeutraTextil sintéticoSuela de goma-SiBlanco/Rosa/Violeta/VerdeWINFLO 11Correr en pavimento para mujerMujer/Hombre/MIXTO
2NullNullNullNullNullSiColor fáciles de combinarInvincible 3Calzado de correr en pavimento para mujerMujer
3Amortiguación: superaltaNike ZoomX con forma de mecedora y espuma más ...transpirableCuanta más amortiguación tengas en la planta d...nullSiBlanco/Sierra VerdeInvincible 3Calzado de running en carretera para hombreHombre
4Nike Grind--wafflenull--RunningHombre/MIXTO
5Amortiguación: altaEspumaTextilSuela con espumaPila altaNoBlanco/ NegroStructure 25RunningMujer/MIXTO
6Características principalesLa amortiguación máxima proporciona una comodi...Hechas con materiales recicladosTranspirabilidad contenidaModeradaNegroXNaNCalzado de correr en carretera para mujerMujer
7Amortiguación: superaltaNike ReactX FoamFlyknit más adaptableSuela curva-NoNegro/BlancoInfinityRN 4Calzado de running en carretera para hombreHombre/MIXTO
8Responsividad: superaltaZoomX Foam, espuma más ligera y con mayor reto...-suela sin especificarnullNoColor negro/negro escuroVomero 17Calzado de running en carretera para hombreMujer/Hombre/MIXTO
9La innovación es nuestra inspiracióntranspirable y cómodosuperaltaaltaNaNnonegro, grisInvincible 3Calzado de correr en carretera para hombreHombre
\n", - "
" - ], - "text/plain": [ - " cordones \\\n", - "0 Zapatillas cómodas \n", - "1 Zapatillas con fijación \n", - "2 Null \n", - "3 Amortiguación: superalta \n", - "4 Nike Grind \n", - "5 Amortiguación: alta \n", - "6 Características principales \n", - "7 Amortiguación: superalta \n", - "8 Responsividad: superalta \n", - "9 La innovación es nuestra inspiración \n", - "\n", - " textil exterior \\\n", - "0 null \n", - "1 Neutra \n", - "2 Null \n", - "3 Nike ZoomX con forma de mecedora y espuma más ... \n", - "4 - \n", - "5 Espuma \n", - "6 La amortiguación máxima proporciona una comodi... \n", - "7 Nike ReactX Foam \n", - "8 ZoomX Foam, espuma más ligera y con mayor reto... \n", - "9 transpirable y cómodo \n", - "\n", - " textil interior \\\n", - "0 null \n", - "1 Textil sintético \n", - "2 Null \n", - "3 transpirable \n", - "4 - \n", - "5 Textil \n", - "6 Hechas con materiales reciclados \n", - "7 Flyknit más adaptable \n", - "8 - \n", - "9 superalta \n", - "\n", - " suela peso y/o talla \\\n", - "0 null null \n", - "1 Suela de goma - \n", - "2 Null Null \n", - "3 Cuanta más amortiguación tengas en la planta d... null \n", - "4 waffle null \n", - "5 Suela con espuma Pila alta \n", - "6 Transpirabilidad contenida Moderada \n", - "7 Suela curva - \n", - "8 suela sin especificar null \n", - "9 alta NaN \n", - "\n", - " eco diseñado si o no color identificador \\\n", - "0 null null Revolution 7 \n", - "1 Si Blanco/Rosa/Violeta/Verde WINFLO 11 \n", - "2 Si Color fáciles de combinar Invincible 3 \n", - "3 Si Blanco/Sierra Verde Invincible 3 \n", - "4 sí - - \n", - "5 No Blanco/ Negro Structure 25 \n", - "6 Negro X NaN \n", - "7 No Negro/Blanco InfinityRN 4 \n", - "8 No Color negro/negro escuro Vomero 17 \n", - "9 no negro, gris Invincible 3 \n", - "\n", - " nombre de deporte genero Mujer/Hombre/MIXTO \n", - "0 Correr Mujer \n", - "1 Correr en pavimento para mujer Mujer/Hombre/MIXTO \n", - "2 Calzado de correr en pavimento para mujer Mujer \n", - "3 Calzado de running en carretera para hombre Hombre \n", - "4 Running Hombre/MIXTO \n", - "5 Running Mujer/MIXTO \n", - "6 Calzado de correr en carretera para mujer Mujer \n", - "7 Calzado de running en carretera para hombre Hombre/MIXTO \n", - "8 Calzado de running en carretera para hombre Mujer/Hombre/MIXTO \n", - "9 Calzado de correr en carretera para hombre Hombre " - ] - }, - "execution_count": 110, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_total_nike" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Nacion Runer" - ] - }, - { - "cell_type": "code", - "execution_count": 113, - "metadata": {}, - "outputs": [], - "source": [ - "df_nr = df_raw[df_raw['store'] == 'nacionRunner']" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(263, 13)" - ] - }, - "execution_count": 116, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_nr.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 118, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Index(['id', 'details', 'store', 'manufacturer', 'url', 'title',\n", - " 'regularPrice', 'undiscounted_price', 'description', 'category',\n", - " 'createdAt', 'characteristics', 'gender'],\n", - " dtype='object')" - ] - }, - "execution_count": 118, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_nr.columns" - ] - }, - { - "cell_type": "code", - "execution_count": 119, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Usuario\\AppData\\Local\\Temp\\ipykernel_5352\\2945244906.py:2: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df_nr['details_transformado'] = df_nr['details'].apply(lambda x: transformar_texto(x, 'adidas'))\n" - ] - } - ], - "source": [ - "# Aplicar la transformación con el parámetro 'adidas'\n", - "df_nr['details_transformado'] = df_nr['details'].apply(lambda x: transformar_texto(x, 'adidas'))" - ] - }, - { - "cell_type": "code", - "execution_count": 121, - "metadata": {}, - "outputs": [], - "source": [ - "# Crear un diccionario con las llaves deseadas\n", - "productos_nr = [\n", - " {\n", - " \"details\": row['details_transformado'],\n", - " \"description\": row['description'],\n", - " \"category\": row['category']\n", - " }\n", - " for _, row in df_nr[:10].iterrows() \n", - " if row['details_transformado'] != '{}'\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'details': \"{{'Pisada': 'Neutro • Supinador'}} {{'Peso del Corredor': 'Ideal hasta 85 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': 'Entre 4:30 y 6:00 min/Km'}} {{'Distancia Recomendada': 'Desde 5 hasta 42 Km'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Comodidad y Amortiguación Superior': 'Las Brooks Ghost 15 se destacan por su amortiguación DNA Loft v2, que proporciona una sensación de suavidad y confort bajo los pies, perfecta para quienes buscan un calzado que se adapte a ritmos de carrera que van desde 4:30 min/km hasta 6:00 min/km. Con un drop de 11 mm, estas zapatillas están diseñadas para corredoras con pisada neutra o supinadora, ofreciendo un soporte equilibrado que facilita la transición en cada zancada.'}, {'Diseñadas para Ritmos y Distancias Variadas': 'Ideales para distancias que van desde los 5 km hasta el maratón, las Brooks Ghost 15 están construidas para soportar volúmenes de entrenamiento semanal que oscilan entre 20 km y más de 50 km. Su capacidad de adaptarse tanto a ritmos rápidos como a entrenamientos más tranquilos las convierte en una opción versátil para el entrenamiento diario en asfalto, asegurando estabilidad y respuesta en cada paso.'}, {'Upper y Suela Mejorados para un Rendimiento Óptimo': 'El upper de malla de ingeniería de las Brooks Ghost 15 ha sido diseñado para mejorar la transpirabilidad y el ajuste, utilizando aproximadamente un 25% de materiales reciclados. Esta estructura permite una excelente ventilación y un ajuste seguro sin comprometer la ligereza. La suela de goma proporciona una tracción duradera y fiable, ideal para mantener la seguridad en todo tipo de superficies durante tus entrenamientos.'}], 'category': nan}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Neutro • Supinador | Malla de ingeniería | Upper con materiales reciclados | Goma | Ideal hasta 85 Kg | Sí | Neutro | Brooks Ghost 15 | Corredora | Mujer |\n", - "\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Entre 4:30 y 6:00 min/Km | Ventilación | Ajuste seguro sin comprometer la ligereza | Duradera y fiable | | Sí | Asfalto | | Corredora | Mujer |\n", - "\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Desde 5 hasta 42 Km | Ventilación | Ajuste seguro sin comprometer la ligerezza | Duradera y fiable | | Sí | Asfalto | | Corredora | Mujer\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Pisada': 'Neutro'}} {{'Peso del Corredor': 'Ideal hasta 85 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': 'Entre 4:00 y 5:45 min/Km'}} {{'Distancia Recomendada': 'Entre 5 y 21 Km | Entreno en pista'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'El equilibrio perfecto entre velocidad y comodidad': '¡Hey Runner! Las Hoka Mach 6 son ideales para quienes buscan correr rápido sin perder comodidad. Estas zapatillas han sido diseñadas para corredores avanzados que necesitan una opción confiable tanto para entrenamientos de calidad como para competiciones de hasta 21 km. Con una amortiguación reactiva y un diseño ligero, este modelo es perfecto para mantener ritmos rápidos y consistentes, sin la necesidad de una placa de carbono. Si pesas hasta 85 kg y cuentas con una buena base de entrenamiento, las Mach 6 serán tus aliadas en el asfalto. ¡Estas zapatillas son una competencia directa de las New Balance Rebel v4!'}, {'Versatilidad y rendimiento en cada paso': 'Las Hoka Mach 6 destacan por su mediasuela de espuma Supercrítica, que proporciona una pisada dinámica y un excelente retorno de energía. El MetaRocker en la suela te impulsa hacia adelante con cada zancada, haciéndolas ideales para ritmos vivos entre 4:00 min/km y 5:45 min/km. Su capellada de malla Jacquard Creel garantiza transpirabilidad y un ajuste cómodo, mientras que los refuerzos estratégicos de goma en la suela aseguran tracción en superficies mojadas.'}], 'category': nan}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Pisada | Neutro | null | MetaRocker | Ideal hasta 85 Kg | Si | Asfalto | Mach 6 | Corre | Mujer |\n", - "\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Entre 4:00 y 5:45 min/Km | null | null | Altimetral con espuma Supercrítica | Entre 5 y 21 Km | Si | Color neutro | New Balance Rebel v4 | Corre | Hombre\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Pisada': 'Neutro • Supinador'}} {{'Peso del Corredor': 'Ideal hasta 80 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': '5:00 min/Km o más despacio'}} {{'Distancia Recomendada': 'Desde 5 hasta 21 Km'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Ligereza y durabilidad para tus entrenamientos diarios': '¡Hey Runner! Las Hoka Rincon 4 están diseñadas para ofrecer una combinación perfecta de ligereza y durabilidad, ideales para quienes buscan un zapato de entrenamiento diario en asfalto. Con su espuma de doble capa en la mediasuela, esta versión mejora notablemente la durabilidad, haciendo que cada zancada se sienta más consistente, incluso en distancias largas. Si eres un corredor que pesa menos de 80 kg y buscas un zapato ligero para entrenar distancias de hasta 21 km, el Rincon 4 es una opción a considerar seriamente. Para quienes pesen más de 80 kg, recomendamos modelos como el Hoka Clifton o el Bondi, que ofrecen mayor soporte.'}, {'Ideal para entrenamientos y distancias medias': 'Con un drop de 8 mm y una amortiguación alta, las Hoka Rincon 4 son perfectas para corredores de pisada neutral o supinador que manejan ritmos cómodos entre 5:00 min/km y más de 6:15 min/km. Su capellada de malla Jacquard es ligera y transpirable, asegurando un ajuste cómodo en cada carrera. Además, su suela de EVA con goma en zonas estratégicas proporciona un buen agarre, mientras que el MetaRocker ayuda a una transición suave de cada paso, maximizando la eficiencia en cada kilómetro.'}], 'category': nan}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Neutro • Supinador | Null | Null | Null | Ideal hasta 80 Kg | No | Asfalto | Hoka Rincon 4 | Corredor | Mujer |\n", - "\n", - "Nota: Se extrae la información según las etiquetas proporcionadas y se completa con valores \"null\" donde corresponda.\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Pisada': 'Neutro'}} {{'Peso del Corredor': 'Ideal hasta 80 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': 'Entre 3:45 y 5:30 min/Km'}} {{'Distancia Recomendada': 'Entre 5 y 21 Km | Entreno en pista'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Ligereza y Respuesta para Distancias Medias': 'Las Hoka Mach 5 están diseñadas para ofrecer una excelente respuesta en ritmos que van desde 3:45 min/km hasta 5:15 min/km. Con un drop de 5 mm y un peso de 242 gramos en la versión para hombre, estas zapatillas son ideales para distancias que van desde 5 km hasta 21 km. La mediasuela incorpora la espuma ProFly+, que combina una amortiguación suave con una sensación de rebote, permitiendo una transición fluida en cada zancada.'}, {'Comodidad y Ajuste Superior': 'Estas zapatillas cuentan con una capellada de malla ligera que asegura una transpirabilidad óptima, manteniendo tus pies frescos incluso en carreras intensas. Además, el diseño del calzado, con una lengüeta plana y una sujeción firme, se adapta perfectamente a tu pie, evitando movimientos indeseados y garantizando un ajuste seguro durante todo el recorrido.'}, {'Ideal para Entrenamientos Diarios y Diversos Tipos de Corredores': 'Las Hoka Mach 5 no solo son una opción excelente para velocidad, sino que también se destacan como calzado de entrenamiento diario. Son ideales para corredores con un peso de entre menos de 60 kg hasta 80 kg, y que tengan un volumen de entrenamiento semanal de entre 30 km y 50 km o más. Ofrecen un equilibrio ideal entre amortiguación y ligereza, lo que las convierte en una excelente opción para aquellos corredores que buscan un calzado que les permita rendir al máximo día tras día.'}, {'Competencia Directa en Colombia': 'En el mercado colombiano, las Hoka Mach 5 compiten directamente con modelos destacados como la ASICS Noosa Tri 15, el Brooks Hyperion Max, y el New Balance Rebel v3. Sin embargo, las Mach 5 se destacan por su combinación única de ligereza y capacidad de respuesta, haciéndolas una opción preferida para corredores que buscan superar sus límites en cada entrenamiento.'}], 'category': nan}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Neutro | Asfalto | Espuma ProFly+ | Mediasuela | Ideal hasta 80 Kg | Sí | Neutro | Hoka Mach 5 | Corredor | Hombre |\n", - "\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |\n", - "| null | Asfalto | Espuma ProFly+ | Mediasuela | Ideal hasta 80 Kg | Sí | Neutro | Hoka Mach 5 | Corredor | Hombre |\n", - "\n", - "Nota: En la primera fila, se indican los nombres de las etiquetas. En la segunda fila, se muestran los valores correspondientes a cada etiqueta.\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Pisada': 'Neutro • Supinador'}} {{'Peso del Corredor': 'Ideal hasta 85 Kg'}} {{'Amortiguación': 'Superior'}} {{'Ritmo De Carrera': 'Entre 4:00 y 6:00 min/Km'}} {{'Distancia Recomendada': 'Entre 5 y 42 Km | Entreno en pista'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Rendimiento en Asfalto': 'La Asics Novablast 4 LE está optimizada para asfalto, ofreciendo una experiencia de carrera segura y controlada. Con un drop de 8 mm y una pisada neutra o supinadora, esta zapatilla es ideal para corredores que buscan entrenamientos de velocidad. Su diseño más \"contundente\" y sólido proporciona una estabilidad superior, permitiendo girar y voltear con confianza, incluso en circuitos cerrados. Además, la base ensanchada y el talón prominente mejoran aún más la estabilidad, eliminando cualquier rastro de inestabilidad presente en versiones anteriores.'}, {'Amortiguación Superior y Comodidad Avanzada': 'Equipada con la innovadora mediasuela FlyteFoam Blast+ ECO, la Novablast 4 LE ofrece una amortiguación superior, adaptándose tanto a ritmos moderados como intensos. Este modelo se destaca por su capacidad de proporcionar una carrera suave y cómoda, aunque a ritmos muy altos puede sentirse un poco menos reactiva. Sin embargo, su enfoque está en ofrecer una experiencia de entrenamiento segura y eficiente, ideal para distancias que van desde los 5 km hasta los 42 km.'}, {'Tecnología y Diseño de Vanguardia': 'La Novablast 4 LE no solo se distingue por su ligereza, sino también por la inclusión de un nuevo caucho AHAR en la suela, mejorando significativamente la tracción y la durabilidad. Su capellada de material Woven, elástica y sin costuras, brinda un ajuste cómodo y lujoso, aunque sacrifica un poco de ventilación. Sin embargo, su capacidad de secado rápido compensa este aspecto, haciendo que la zapatilla esté lista para usar nuevamente en poco tiempo, incluso después de entrenamientos bajo la lluvia.'}], 'category': nan}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Supinador | Neutro • Supinador | null | AhAR | Ideal hasta 85 Kg | null | Neutro • Supinador | Novablast 4 LE | Entre 5 y 42 Km | Mujer/Hombre/MIXTO |\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Pisada': 'Pronador'}} {{'Peso del Corredor': 'Ideal hasta 85 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': '5:15 min/Km o más despacio'}} {{'Distancia Recomendada': 'Desde 5 hasta 21 Km'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Estabilidad y confort a un precio que convence': '¡Hey Runner! Las ASICS GT-2000 13 llegan al mercado con la promesa de ser una de las mejores opciones para corredores que buscan estabilidad y amortiguación alta sin romper el presupuesto. Este modelo no es un Kayano, pero está muy cerca en términos de calidad y soporte. Por su precio, es una elección que harías a ojos cerrados, y con lo que ahorras, ¡podrías inscribirte en tu próxima carrera!'}, {'Tecnología avanzada para un rendimiento superior': 'Las GT-2000 13 están diseñadas para corredores con pisada pronadora que buscan entrenar de forma regular en asfalto y distancias de hasta 21 km. Con un drop de 8 mm y un peso de 275 g, estas zapatillas brindan una pisada suave y protegida. La espuma FlyteFoam Blast Plus y la tecnología PureGEL en el talón aseguran una amortiguación que se siente como correr sobre una nube, mientras que el sistema 3D Guidance mejora la estabilidad y guía tu pisada de manera natural.'}], 'category': nan}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Pisada pronadora | Pronador | Algunos puestos pueden tener materiales sintéticos como la poliéster, el nylon y la paño, con una mezcla de cuero y poliéster en los bordes | Alta densidad | Ideal hasta 85 Kg | Sí | Negro/Rosa | GT-2000 13 | Corredor | Mujer/Hombre/MIXTO |\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Pisada': 'Neutro • Supinador'}} {{'Peso del Corredor': 'Ideal hasta 85 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': 'Entre 4:00 y 5:45 min/Km'}} {{'Distancia Recomendada': 'Desde 5 hasta 42 Km'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Tecnología y Rendimiento en Asfalto': 'La Asics Glideride Max está optimizada para entrenamientos diarios y largas distancias en asfalto. Diseñada para corredores avanzados con pisada neutra o supinadora, esta zapatilla cuenta con un drop de 6 mm y es ideal para mantener ritmos entre 4:00 min/km y 5:30 min/km en distancias que van desde los 5 km hasta la maratón. Lo que hace destacar a este modelo es la incorporación de la innovadora espuma FF Blast Max, la cual promete un rebote superior y una sensación de ligereza, sin precedentes en la línea Glideride.'}, {'Placa Interna y Amortiguación Superior': 'Para aquellos que buscan mejorar sus tiempos sin recurrir a una placa de carbono, la Glideride Max ofrece una solución perfecta. Este modelo incorpora una placa interna de nylon o plástico que añade rigidez y mejora la eficiencia en cada zancada, impulsándote a correr más rápido. Además, la combinación de FlyteFoam Blast+ ECO en la capa inferior de la mediasuela y el nuevo FF Blast Max en la parte superior, asegura una sensación de amortiguación alta que te mantendrá protegido en cada paso, incluso en tus entrenamientos más intensos.'}, {'Diseño y Durabilidad': 'El upper de la Glideride Max está construido con un mesh técnico similar al de la Nimbus 26, ofreciendo transpirabilidad y un ajuste seguro. La suela, diseñada con una combinación de ASICS Grip y AHARPLUS, garantiza durabilidad y tracción en diversas superficies, lo que la convierte en una opción confiable para corredores que necesitan un calzado resistente para entrenamientos de volumen.'}, {'Competencia en el Mercado Colombiano': 'En el mercado colombiano, la Asics Glideride Max competirá directamente con modelos como el Brooks Hyperion Max. Ambos zapatos están dirigidos a corredores que buscan velocidad sin renunciar al confort de un calzado maximalista. La Glideride Max se presenta como una opción sólida para aquellos que desean una zapatilla con tecnología avanzada que les permita afrontar largas distancias con mayor eficiencia y menor riesgo de lesión.'}], 'category': nan}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Neutro • Supinador | Neutro | Nylon o plástico | ASICS Grip + AHARPLUS | Ideal hasta 85 Kg | Si | Neutro | Glideride Max | Corredora | Hombre\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Pisada': 'Pronador'}} {{'Peso del Corredor': 'Ideal desde 65 Kg en adelante'}} {{'Amortiguación': 'Superior'}} {{'Ritmo De Carrera': '5:30 min/Km o más despacio'}} {{'Distancia Recomendada': 'Desde 5 hasta 42 Km'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Estabilidad y confort para corredores avanzados': 'Las Gel Kayano 31 están equipadas con el innovador 4D Guidance System, una tecnología que proporciona el soporte exacto que cada corredor necesita, adaptándose de manera dinámica a la forma de correr, sin restringir el movimiento natural del pie. Este sistema es esencial para corredores con pisada pronadora, ayudando a controlar la sobrepronación y ofreciendo una carrera más equilibrada y segura. Además, con una sensación de amortiguación superior proporcionada por la tecnología FF BLAST PLUS ECO en la mediasuela, estas zapatillas garantizan una absorción de impactos excepcional, devolviendo la energía en cada zancada.'}, {'Amortiguación dinámica para largas distancias': 'Ideales para corredores que entrenan distancias que van desde 10 km hasta los 42 km, las Gel Kayano 31 están diseñadas para mantener la comodidad y estabilidad durante los entrenamientos más largos. Su capacidad para manejar ritmos de carrera entre 5:30 min/km y más de 6:15 min/km las hace perfectas para corredores con un volumen de entrenamiento semanal que oscila entre 20 km y más de 50 km. Con un drop de 10 mm y un peso de 305 gramos para la versión masculina, estas zapatillas están preparadas para corredores con un peso de 65 kg a más de 95 kg.'}, {'Diseño renovado y adaptabilidad': 'La capellada de malla técnica mejorada no solo asegura una mayor transpirabilidad, sino que también proporciona un ajuste más cómodo y personalizado, adaptándose a la forma del pie en cada paso. Además, la suela exterior, actualizada con el material de goma HYBRID ASICSGRIP, mejora la tracción y la estabilidad en cada kilómetro que recorres. Estas características hacen que las Gel Kayano 31 sean ideales para entrenamientos en asfalto y corredores que buscan una zapatilla de entrenamiento diario que pueda manejar altos volúmenes de entrenamiento semanal.'}, {'Un competidor destacado en el mercado de estabilidad': 'Las Gel Kayano 31 se enfrentan cara a cara con otras zapatillas de estabilidad premium, como el New Balance Vongo y el Brooks Glycerine GTS, ofreciendo una experiencia de carrera más dinámica gracias a su amortiguación mejorada que se adapta a tu ritmo y técnica de carrera.'}], 'category': nan}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Pisada pronadora | Asfalto | Mediasuela tech | Suela de goma HYBRID ASICSGRIP | Ideal desde 65 Kg en adelante | Si | Blanco | Kayano 31 | Corredor | Hombre\n", - "\n", - "------------------------\n", - "\n", - "{'details': \"{{'Pisada': 'Pronador'}} {{'Peso del Corredor': 'Ideal hasta 85 Kg'}} {{'Amortiguación': 'Alta'}} {{'Ritmo De Carrera': '5:15 min/Km o más despacio'}} {{'Distancia Recomendada': 'Desde 5 hasta 21 Km'}} {{'Superficie': 'Asfalto'}}\", 'description': [{'Rendimiento Óptimo para Pronadores': 'La Asics GT-1000 13 es ideal para corredores con pisada pronadora, ofreciendo un equilibrio perfecto entre estabilidad y amortiguación. Con un drop de 8 mm y un peso de 270 gramos, esta zapatilla es adecuada para corredores que pesan entre menos de 60 kg y 85 kg. Gracias a la incorporación de la tecnología PureGel en la zona del talón, esta zapatilla proporciona una absorción de impactos superior, permitiendo una sensación de comodidad en cada zancada.'}, {'Amortiguación y Estabilidad en Ritmos Moderados': 'Con una sensación de amortiguación alta, la GT-1000 13 está diseñada para corredores que mantienen ritmos entre 5:15 min/km y 6:15 min/km o más lentos. Es ideal para distancias que van desde 5 km hasta 21 km, proporcionando el soporte necesario para mantener un ritmo constante y seguro. La tecnología FlyteFoam en la mediasuela asegura una pisada suave y ligera, mientras que la suela, con una alta concentración de caucho, garantiza durabilidad y tracción en superficies de asfalto.'}, {'Confort y Durabilidad para el Entrenamiento Diario': 'El upper de la GT-1000 13 está confeccionado con una malla técnica que asegura una excelente transpirabilidad y un ajuste preciso, envolviendo tu pie con suavidad en cada carrera. Además, la plantilla OrthoLite Hybrid Max añade una capa adicional de confort, lo que hace que cada entrenamiento sea más placentero. Esta zapatilla está diseñada para un volumen de entrenamiento semanal de 20 km a 40 km, siendo una opción confiable para corredores que buscan estabilidad en sus entrenamientos diarios.'}, {'Accesibilidad y Valor Inigualable': 'Una de las ventajas más destacadas de la Asics GT-1000 13 es su relación calidad-precio. A pesar de incorporar tecnologías de gama alta como el PureGel, esta zapatilla se mantiene en un rango de precio accesible, lo que la coloca en una posición competitiva en el mercado colombiano. Aunque no tiene rivales directos en su rango de precio, podría compararse con el Brooks Adrenaline, pero a un costo significativamente menor, ofreciendo así un valor insuperable para corredores pronadores.'}], 'category': nan}\n", - "Respuesta del modelo:\n", - "| cordones | textil exterior | textil interior | suela | peso y/o talla | eco diseñado si o no | color | identificador | nombre de deporte | genero Mujer/Hombre/MIXTO |\n", - "| Pronador | Algodón/Polipropileno | Malla técnica con poliéster y spandex | Suela de caucho | Ideal hasta 85 Kg | Si | Negro/Cream | GT-1000 13 | Pronador | Hombre\n", - "\n", - "------------------------\n", - "\n" - ] - } - ], - "source": [ - "dfs_nr = []\n", - "for producto in productos_nr:\n", - " prompt = generar_prompt_ollama(producto, etiquetas)\n", - " respuesta = obtener_respuesta_ollama(prompt)\n", - " print(producto)\n", - " print(\"Respuesta del modelo:\")\n", - " print(respuesta[\"message\"][\"content\"])\n", - " print(\"\\n------------------------\\n\")\n", - " df_nr = procesar_respuesta(respuesta[\"message\"][\"content\"], etiquetas)\n", - " if df_nr is not None:\n", - " dfs_nr.append(df_nr)\n", - " else:\n", - " print(\"No se pudo extraer la tabla.\\n\")" - ] - }, - { - "cell_type": "code", - "execution_count": 123, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
cordonestextil exteriortextil interiorsuelapeso y/o tallaeco diseñado si o nocoloridentificadornombre de deportegenero Mujer/Hombre/MIXTO
0Neutro • SupinadorMalla de ingenieríaUpper con materiales recicladosGomaIdeal hasta 85 KgNeutroBrooks Ghost 15CorredoraMujer
1PisadaNeutronullMetaRockerIdeal hasta 85 KgSiAsfaltoMach 6CorreMujer
2Neutro • SupinadorNullNullNullIdeal hasta 80 KgNoAsfaltoHoka Rincon 4CorredorMujer
3NeutroAsfaltoEspuma ProFly+MediasuelaIdeal hasta 80 KgNeutroHoka Mach 5CorredorHombre
4SupinadorNeutro • SupinadornullAhARIdeal hasta 85 KgnullNeutro • SupinadorNovablast 4 LEEntre 5 y 42 KmMujer/Hombre/MIXTO
\n", - "
" - ], - "text/plain": [ - " cordones textil exterior textil interior \\\n", - "0 Neutro • Supinador Malla de ingeniería Upper con materiales reciclados \n", - "1 Pisada Neutro null \n", - "2 Neutro • Supinador Null Null \n", - "3 Neutro Asfalto Espuma ProFly+ \n", - "4 Supinador Neutro • Supinador null \n", - "\n", - " suela peso y/o talla eco diseñado si o no color \\\n", - "0 Goma Ideal hasta 85 Kg Sí Neutro \n", - "1 MetaRocker Ideal hasta 85 Kg Si Asfalto \n", - "2 Null Ideal hasta 80 Kg No Asfalto \n", - "3 Mediasuela Ideal hasta 80 Kg Sí Neutro \n", - "4 AhAR Ideal hasta 85 Kg null Neutro • Supinador \n", - "\n", - " identificador nombre de deporte genero Mujer/Hombre/MIXTO \n", - "0 Brooks Ghost 15 Corredora Mujer \n", - "1 Mach 6 Corre Mujer \n", - "2 Hoka Rincon 4 Corredor Mujer \n", - "3 Hoka Mach 5 Corredor Hombre \n", - "4 Novablast 4 LE Entre 5 y 42 Km Mujer/Hombre/MIXTO " - ] - }, - "execution_count": 123, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "if dfs_nr:\n", - " df_total_nr = pd.concat(dfs_nr, ignore_index=True)\n", - "else:\n", - " print(\"No se pudo crear el DataFrame total.\")\n", - " \n", - "df_total_nr.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
cordonestextil exteriortextil interiorsuelapeso y/o tallaeco diseñado si o nocoloridentificadornombre de deportegenero Mujer/Hombre/MIXTO
0Neutro • SupinadorMalla de ingenieríaUpper con materiales recicladosGomaIdeal hasta 85 KgNeutroBrooks Ghost 15CorredoraMujer
1PisadaNeutronullMetaRockerIdeal hasta 85 KgSiAsfaltoMach 6CorreMujer
2Neutro • SupinadorNullNullNullIdeal hasta 80 KgNoAsfaltoHoka Rincon 4CorredorMujer
3NeutroAsfaltoEspuma ProFly+MediasuelaIdeal hasta 80 KgNeutroHoka Mach 5CorredorHombre
4SupinadorNeutro • SupinadornullAhARIdeal hasta 85 KgnullNeutro • SupinadorNovablast 4 LEEntre 5 y 42 KmMujer/Hombre/MIXTO
5Pisada pronadoraPronadorAlgunos puestos pueden tener materiales sintét...Alta densidadIdeal hasta 85 KgNegro/RosaGT-2000 13CorredorMujer/Hombre/MIXTO
6Neutro • SupinadorNeutroNylon o plásticoASICS Grip + AHARPLUSIdeal hasta 85 KgSiNeutroGlideride MaxCorredoraHombre
7Pisada pronadoraAsfaltoMediasuela techSuela de goma HYBRID ASICSGRIPIdeal desde 65 Kg en adelanteSiBlancoKayano 31CorredorHombre
8PronadorAlgodón/PolipropilenoMalla técnica con poliéster y spandexSuela de cauchoIdeal hasta 85 KgSiNegro/CreamGT-1000 13PronadorHombre
\n", - "
" - ], - "text/plain": [ - " cordones textil exterior \\\n", - "0 Neutro • Supinador Malla de ingeniería \n", - "1 Pisada Neutro \n", - "2 Neutro • Supinador Null \n", - "3 Neutro Asfalto \n", - "4 Supinador Neutro • Supinador \n", - "5 Pisada pronadora Pronador \n", - "6 Neutro • Supinador Neutro \n", - "7 Pisada pronadora Asfalto \n", - "8 Pronador Algodón/Polipropileno \n", - "\n", - " textil interior \\\n", - "0 Upper con materiales reciclados \n", - "1 null \n", - "2 Null \n", - "3 Espuma ProFly+ \n", - "4 null \n", - "5 Algunos puestos pueden tener materiales sintét... \n", - "6 Nylon o plástico \n", - "7 Mediasuela tech \n", - "8 Malla técnica con poliéster y spandex \n", - "\n", - " suela peso y/o talla \\\n", - "0 Goma Ideal hasta 85 Kg \n", - "1 MetaRocker Ideal hasta 85 Kg \n", - "2 Null Ideal hasta 80 Kg \n", - "3 Mediasuela Ideal hasta 80 Kg \n", - "4 AhAR Ideal hasta 85 Kg \n", - "5 Alta densidad Ideal hasta 85 Kg \n", - "6 ASICS Grip + AHARPLUS Ideal hasta 85 Kg \n", - "7 Suela de goma HYBRID ASICSGRIP Ideal desde 65 Kg en adelante \n", - "8 Suela de caucho Ideal hasta 85 Kg \n", - "\n", - " eco diseñado si o no color identificador nombre de deporte \\\n", - "0 Sí Neutro Brooks Ghost 15 Corredora \n", - "1 Si Asfalto Mach 6 Corre \n", - "2 No Asfalto Hoka Rincon 4 Corredor \n", - "3 Sí Neutro Hoka Mach 5 Corredor \n", - "4 null Neutro • Supinador Novablast 4 LE Entre 5 y 42 Km \n", - "5 Sí Negro/Rosa GT-2000 13 Corredor \n", - "6 Si Neutro Glideride Max Corredora \n", - "7 Si Blanco Kayano 31 Corredor \n", - "8 Si Negro/Cream GT-1000 13 Pronador \n", - "\n", - " genero Mujer/Hombre/MIXTO \n", - "0 Mujer \n", - "1 Mujer \n", - "2 Mujer \n", - "3 Hombre \n", - "4 Mujer/Hombre/MIXTO \n", - "5 Mujer/Hombre/MIXTO \n", - "6 Hombre \n", - "7 Hombre \n", - "8 Hombre " - ] - }, - "execution_count": 124, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_total_nr" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From ca6eccb3ca97805a6b45e81bfe4513bd18e0093a Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 12 Dec 2024 23:33:02 -0500 Subject: [PATCH 40/84] =?UTF-8?q?eliminaci=C3=B3n=20test.ipynb?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- src/comparative_analysis/training/test.ipynb | 1167 ------------------ 1 file changed, 1167 deletions(-) delete mode 100644 src/comparative_analysis/training/test.ipynb diff --git a/src/comparative_analysis/training/test.ipynb b/src/comparative_analysis/training/test.ipynb deleted file mode 100644 index 365548f61..000000000 --- a/src/comparative_analysis/training/test.ipynb +++ /dev/null @@ -1,1167 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Weight Upper_Material Midsole_Material \\\n", - "0 183 g Synthetic NaN \n", - "1 289 g adidas Primeknit BOOST \n", - "2 166 g Parte superior de malla técnica NaN \n", - "3 200 gramos Parte superior de malla NaN \n", - "4 319g Parte superior textil Mediasuela Cloudfoam \n", - "\n", - " Outsole Cushioning_System \\\n", - "0 Textile rubber Lightstrike Pro \n", - "1 Stretchweb with Continental Better Rubber Linear Energy Push \n", - "2 Suela de caucho Continental™ Amortiguación Lightstrike Pro \n", - "3 Suela de caucho Continental Rubber Amortiguación Lightstrike Pro \n", - "4 Suela de TPU Cloudfoam \n", - "\n", - " Drop__heel-to-toe_differential_ Pronation_Type Usage_Type Gender \\\n", - "0 6 mm NaN Racing Woman \n", - "1 NaN NaN Running Woman \n", - "2 6 mm NaN Running Mujer \n", - "3 6 mm NaN Running Hombre \n", - "4 6mm NaN Running Hombre \n", - "\n", - " Available_Sizes Width Additional_Technologies \\\n", - "0 NaN NaN ENERGYRODS 2.0, Waterproofing, Recyclable mate... \n", - "1 NaN NaN Parley Ocean Plastic, waterproofing \n", - "2 COL 36 1/2 NaN Contiene al menos un 20 % de material reciclad... \n", - "3 CO 40 NaN Varillas ENERGYRODS, Talón Slinglaunch, Contie... \n", - "4 CO 40 NaN NaN \n", - "\n", - " id regularPrice undiscounted_price \\\n", - "0 08sjncACSjSvg2t9DS73 $1.299.950 $909.965 \n", - "1 0AqheRhKT2lhm7puBVCF $799.950 NaN \n", - "2 0IgYTzUHkE7zIdcVyFCK $1.049.950 $629.970 \n", - "3 0MU8aKCnCUZv2r9aLD67 $1.049.950 $734.965 \n", - "4 0Q6DNSlvsjBzy3AQeY2y $279.950 NaN \n", - "\n", - " details \\\n", - "0 {Horma clásica} {Parte superior sintética} {Fo... \n", - "1 {Ajuste clásico} {Sistema de amarre de cordone... \n", - "2 {Ajuste clásico} {Cierre de cordones} {Parte s... \n", - "3 {Ajuste clásico} {Sistema de amarre de cordone... \n", - "4 {Horma clásica} {Sistema de amarre de cordones... \n", - "\n", - " description category \\\n", - "0 Los Adizero Adios Pro 3 son la máxima expresió... Mujer • Running \n", - "1 Hemos analizado 1.200.000 pisadas para que Ult... Mujer • Running \n", - "2 Haz tus mejores 10k con nuestros nuevos tenis ... Mujer • Running \n", - "3 Haz tus mejores 10k con nuestros nuevos tenis ... Hombre • Running \n", - "4 Cada carrera es un viaje de descubrimiento. Po... Hombre • Running \n", - "\n", - " characteristics \n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\venv\\lib\\site-packages\\openpyxl\\styles\\stylesheet.py:237: UserWarning: Workbook contains no default style, apply openpyxl's default\n", - " warn(\"Workbook contains no default style, apply openpyxl's default\")\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "\n", - "# Ruta del archivo de Excel\n", - "ruta_excel = r\"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx\"\n", - "\n", - "# Crear el DataFrame\n", - "df = pd.read_excel(ruta_excel, header=0)\n", - "\n", - "# Mostrar las primeras filas del DataFrame\n", - "print(df.head())" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Información del elemento encontrado:\n", - " Weight Upper_Material Midsole_Material Outsole Cushioning_System \\\n", - "0 183 g Synthetic NaN Textile rubber Lightstrike Pro \n", - "\n", - " Drop__heel-to-toe_differential_ Pronation_Type Usage_Type Gender \\\n", - "0 6 mm NaN Racing Woman \n", - "\n", - " Available_Sizes Width Additional_Technologies \\\n", - "0 NaN NaN ENERGYRODS 2.0, Waterproofing, Recyclable mate... \n", - "\n", - " id regularPrice undiscounted_price \\\n", - "0 08sjncACSjSvg2t9DS73 $1.299.950 $909.965 \n", - "\n", - " details \\\n", - "0 {Horma clásica} {Parte superior sintética} {Fo... \n", - "\n", - " description category \\\n", - "0 Los Adizero Adios Pro 3 son la máxima expresió... Mujer • Running \n", - "\n", - " characteristics \n", - "0 NaN \n" - ] - } - ], - "source": [ - "# Buscar información de un elemento basado en un criterio\n", - "def buscar_elemento(df, columna, valor):\n", - " # Filtrar el DataFrame por el valor especificado\n", - " resultado = df[df[columna] == valor]\n", - " \n", - " # Verificar si se encontró algún resultado\n", - " if not resultado.empty:\n", - " print(\"Información del elemento encontrado:\")\n", - " print(resultado)\n", - " else:\n", - " print(f\"No se encontró ningún elemento donde '{columna}' sea '{valor}'.\")\n", - "\n", - "# Ejemplo de uso: Buscar un elemento donde el id sea \"12345\" (ajusta según tu DataFrame)\n", - "buscar_elemento(df, columna=\"id\", valor=\"08sjncACSjSvg2t9DS73\")" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['Weight', 'Upper_Material', 'Midsole_Material', 'Outsole', 'Cushioning_System', 'Drop__heel-to-toe_differential_', 'Pronation_Type', 'Usage_Type', 'Gender', 'Available_Sizes', 'Width', 'Additional_Technologies', 'id', 'regularPrice', 'undiscounted_price', 'details', 'description', 'category', 'characteristics']\n" - ] - } - ], - "source": [ - "print(df.columns.tolist())" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import re\n", - "\n", - "# Supongamos que tu DataFrame se llama df\n", - "\n", - "# Convertir Weight a solo números y luego a float, manejando errores\n", - "df['Weight'] = df['Weight'].astype(str).str.extract('(\\d+\\.?\\d*)').astype(float, errors='ignore')\n", - "# Si quieres forzar que valores no numéricos sean NaN\n", - "df['Weight'] = df['Weight'].astype(str).str.extract('(\\d+\\.?\\d*)')\n", - "df['Weight'] = pd.to_numeric(df['Weight'], errors='coerce')\n", - "\n", - "# Drop__heel-to-toe_differential_\n", - "df['Drop__heel-to-toe_differential_'] = df['Drop__heel-to-toe_differential_'].astype(str).str.extract('(\\d+\\.?\\d*)')\n", - "df['Drop__heel-to-toe_differential_'] = pd.to_numeric(df['Drop__heel-to-toe_differential_'], errors='coerce')\n", - "\n", - "# regularPrice y undiscounted_price\n", - "df['regularPrice'] = df['regularPrice'].astype(str).str.replace(r'[^0-9.,]', '', regex=True)\n", - "df['undiscounted_price'] = df['undiscounted_price'].astype(str).str.replace(r'[^0-9.,]', '', regex=True)\n", - "\n", - "df['regularPrice'] = df['regularPrice'].str.replace(r'\\.', '', regex=True).str.replace(',', '.')\n", - "df['undiscounted_price'] = df['undiscounted_price'].str.replace(r'\\.', '', regex=True).str.replace(',', '.')\n", - "\n", - "# Convertir a numérico con manejo de errores\n", - "df['regularPrice'] = pd.to_numeric(df['regularPrice'], errors='coerce')\n", - "df['undiscounted_price'] = pd.to_numeric(df['undiscounted_price'], errors='coerce')\n", - "\n", - "# Eliminar las columnas solicitadas\n", - "cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type']\n", - "df = df.drop(columns=cols_to_drop, errors='ignore')" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Información del elemento encontrado:\n", - " Weight Upper_Material Midsole_Material Outsole Cushioning_System \\\n", - "0 183.0 Synthetic NaN Textile rubber Lightstrike Pro \n", - "\n", - " Drop__heel-to-toe_differential_ Usage_Type Gender Width \\\n", - "0 6.0 Racing Woman NaN \n", - "\n", - " Additional_Technologies id \\\n", - "0 ENERGYRODS 2.0, Waterproofing, Recyclable mate... 08sjncACSjSvg2t9DS73 \n", - "\n", - " regularPrice undiscounted_price \n", - "0 1.299950e+09 909965 \n" - ] - } - ], - "source": [ - "buscar_elemento(df, columna=\"id\", valor=\"08sjncACSjSvg2t9DS73\")" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['Weight', 'Upper_Material', 'Midsole_Material', 'Outsole', 'Cushioning_System', 'Drop__heel-to-toe_differential_', 'Usage_Type', 'Gender', 'Width', 'Additional_Technologies', 'id', 'regularPrice', 'undiscounted_price']\n" - ] - } - ], - "source": [ - "print(df.columns.tolist())" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
WeightUpper_MaterialMidsole_MaterialOutsoleCushioning_SystemDrop__heel-to-toe_differential_Usage_TypeGenderAvailable_SizesWidthAdditional_TechnologiesidregularPriceundiscounted_price
0183.0SyntheticNaNTextile rubberLightstrike Pro6.0RacingWomanNaNNaNENERGYRODS 2.0, Waterproofing, Recyclable mate...08sjncACSjSvg2t9DS731299950909965.0
1289.0adidas PrimeknitBOOSTStretchweb with Continental Better RubberLinear Energy PushNaNRunningWomanNaNNaNParley Ocean Plastic, waterproofing0AqheRhKT2lhm7puBVCF799950NaN
2166.0Parte superior de malla técnicaNaNSuela de caucho Continental™Amortiguación Lightstrike Pro6.0RunningMujerCOL 36 1/2NaNContiene al menos un 20 % de material reciclad...0IgYTzUHkE7zIdcVyFCK1049950629970.0
3200.0Parte superior de mallaNaNSuela de caucho Continental RubberAmortiguación Lightstrike Pro6.0RunningHombreCO 40NaNVarillas ENERGYRODS, Talón Slinglaunch, Contie...0MU8aKCnCUZv2r9aLD671049950734965.0
4319.0Parte superior textilMediasuela CloudfoamSuela de TPUCloudfoam6.0RunningHombreCO 40NaNNaN0Q6DNSlvsjBzy3AQeY2y279950NaN
\n", - "
" - ], - "text/plain": [ - " Weight Upper_Material Midsole_Material \\\n", - "0 183.0 Synthetic NaN \n", - "1 289.0 adidas Primeknit BOOST \n", - "2 166.0 Parte superior de malla técnica NaN \n", - "3 200.0 Parte superior de malla NaN \n", - "4 319.0 Parte superior textil Mediasuela Cloudfoam \n", - "\n", - " Outsole Cushioning_System \\\n", - "0 Textile rubber Lightstrike Pro \n", - "1 Stretchweb with Continental Better Rubber Linear Energy Push \n", - "2 Suela de caucho Continental™ Amortiguación Lightstrike Pro \n", - "3 Suela de caucho Continental Rubber Amortiguación Lightstrike Pro \n", - "4 Suela de TPU Cloudfoam \n", - "\n", - " Drop__heel-to-toe_differential_ Usage_Type Gender Available_Sizes Width \\\n", - "0 6.0 Racing Woman NaN NaN \n", - "1 NaN Running Woman NaN NaN \n", - "2 6.0 Running Mujer COL 36 1/2 NaN \n", - "3 6.0 Running Hombre CO 40 NaN \n", - "4 6.0 Running Hombre CO 40 NaN \n", - "\n", - " Additional_Technologies id \\\n", - "0 ENERGYRODS 2.0, Waterproofing, Recyclable mate... 08sjncACSjSvg2t9DS73 \n", - "1 Parley Ocean Plastic, waterproofing 0AqheRhKT2lhm7puBVCF \n", - "2 Contiene al menos un 20 % de material reciclad... 0IgYTzUHkE7zIdcVyFCK \n", - "3 Varillas ENERGYRODS, Talón Slinglaunch, Contie... 0MU8aKCnCUZv2r9aLD67 \n", - "4 NaN 0Q6DNSlvsjBzy3AQeY2y \n", - "\n", - " regularPrice undiscounted_price \n", - "0 1299950 909965.0 \n", - "1 799950 NaN \n", - "2 1049950 629970.0 \n", - "3 1049950 734965.0 \n", - "4 279950 NaN " - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
WeightUpper_MaterialMidsole_MaterialOutsoleCushioning_SystemDrop__heel-to-toe_differential_Usage_TypeGenderAvailable_SizesWidthAdditional_TechnologiesidregularPriceundiscounted_price
\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [Weight, Upper_Material, Midsole_Material, Outsole, Cushioning_System, Drop__heel-to-toe_differential_, Usage_Type, Gender, Available_Sizes, Width, Additional_Technologies, id, regularPrice, undiscounted_price]\n", - "Index: []" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a=df[df['Weight'] > 1000]\n", - "a" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Silhouette Score: -0.10727046484513526\n", - "Davies-Bouldin Score: 3.820317442353896\n", - " id cluster\n", - "0 08sjncACSjSvg2t9DS73 5\n", - "1 0AqheRhKT2lhm7puBVCF 5\n", - "2 0IgYTzUHkE7zIdcVyFCK 5\n", - "3 0MU8aKCnCUZv2r9aLD67 5\n", - "4 0Q6DNSlvsjBzy3AQeY2y 4\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "from sklearn.cluster import KMeans\n", - "from sklearn.metrics import silhouette_score, davies_bouldin_score\n", - "from sklearn.preprocessing import StandardScaler\n", - "\n", - "# Suponiendo que ya tienes el DataFrame limpio \"df\"\n", - "# Asegúrate de que 'id' está presente y el resto de las columnas ya están procesadas\n", - "\n", - "# Separar la columna ID\n", - "ids = df['id']\n", - "# Asumiendo que tu DataFrame se llama df y que ya eliminaste o separaste el 'id'.\n", - "X = df.drop(columns=['id'], errors='ignore')\n", - "\n", - "# Reemplazar valores nulos por 0\n", - "X = X.fillna(0)\n", - "\n", - "# Si piensas hacer get_dummies y luego escalar:\n", - "X = pd.get_dummies(X, dummy_na=True)\n", - "X = X.fillna(0) # Si tras get_dummies quedan nulos (por ejemplo, dummy_na=True los evita, pero por si acaso)\n", - "\n", - "from sklearn.preprocessing import StandardScaler\n", - "scaler = StandardScaler()\n", - "X_scaled = scaler.fit_transform(X)\n", - "\n", - "# Elegir un número de clusters (ejemplo: k=3, puedes ajustar según tu criterio)\n", - "k = 8\n", - "kmeans = KMeans(n_clusters=k, random_state=42)\n", - "clusters = kmeans.fit_predict(X_scaled)\n", - "\n", - "# Agregar el cluster asignado a un DataFrame junto con el ID\n", - "df_clusters = pd.DataFrame({'id': ids, 'cluster': clusters})\n", - "\n", - "# Evaluar la calidad del clustering con métricas no supervisadas\n", - "sil_score = silhouette_score(X_scaled, clusters)\n", - "db_score = davies_bouldin_score(X_scaled, clusters)\n", - "\n", - "print(\"Silhouette Score:\", sil_score)\n", - "print(\"Davies-Bouldin Score:\", db_score)\n", - "\n", - "# df_clusters mostrará el ID de cada producto y el cluster al que pertenece\n", - "# Esto te permitirá saber en qué grupo quedó cada producto.\n", - "print(df_clusters.head())" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAAHXCAYAAACRT72EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7sklEQVR4nO3de3zO9f/H8ce1sYPD5jgMc875EKLJISyjJXQkPyGiIqGE5BBF+aYUosM3dFCoHHI+DSWSw5xzyimMhM0cZof374/PdxeXDRvbPjs877fbdbPr83lfn+t1fWb13Nv74DDGGEREREREJEXc7C5ARERERCQzUpAWEREREbkDCtIiIiIiIndAQVpERERE5A4oSIuIiIiI3AEFaRERERGRO6AgLSIiIiJyBxSkRURERETugIK0iNy1tWvXMnLkSCIiIuwuRUREJN0oSIvIXTly5Aht27Ylb968+Pr6pst7rl69GofDwerVq9P0faZNm4bD4eDw4cMpfu2IESNwOBypX9RdOHz4MA6Hg2nTptldSoZxN9/jjK506dJ06dLF7jJcdOnShTx58thdhkiqUZAWyaYSAoTD4eDXX39NdN4YQ8mSJXE4HDzyyCNJXiMmJoann36aLl260K9fv0TnP/nkE4W2ZFq9ejWPPfYYRYsWxcPDAz8/P1q3bs1PP/1kd2lyE4sWLWLEiBF2lyEiNlKQFsnmvLy8mDFjRqLja9as4e+//8bT0/Omr921axft27dn3LhxSZ5XkE6e4cOH07RpU3bu3EnPnj2ZMmUKAwYMICoqiscffzzJ74/Yb9GiRbz11lt2l3FTe/fu5fPPP7e7DJEsLYfdBYiIvR5++GFmz57Nxx9/TI4c1/6TMGPGDOrUqcOZM2du+tpatWpRq1atdKgy6/rhhx8YOXIkTzzxBDNmzCBnzpzOcwMGDGDp0qXExMTYWKH9Ll68SO7cue0uI10YY7hy5Qre3t53fa1b/RKcli5dukSuXLlseW+R9KYeaZFsrkOHDvz7778sX77ceezq1av88MMPPPPMM0m+Jj4+nvHjx1O1alW8vLwoUqQIPXv25Ny5c842pUuXZteuXaxZs8Y5hOTBBx90nv/rr7948sknKVCgALly5eL+++9n4cKFid7r77//pm3btuTOnRs/Pz/69etHdHR0knXNnj2bOnXq4O3tTaFChfi///s/jh8/nqz7sGvXLpo1a4a3tzclSpTg7bffJj4+Psm2ixcvplGjRuTOnZu8efMSEhLCrl27kvU+Nxo6dCgFChTgyy+/dAnRCYKDg12G1pw+fZpu3bpRpEgRvLy8qFmzJtOnT0/0uvPnz9OlSxd8fX3Jly8fnTt35vz580nWsGrVKufnyZcvH23atGHPnj23rT1hrPrMmTN54403KFq0KLlz5+bRRx/l2LFjLm1/+eUXnnzySQICAvD09KRkyZL069ePy5cvu7RLGEN78OBBHn74YfLmzUvHjh1TdI2bSc3vcZcuXZg0aRKA8+/39WPik/MzAtbPySOPPMLSpUupW7cu3t7efPrpp857O2vWLN566y2KFy9O3rx5eeKJJ4iIiCA6Opq+ffvi5+dHnjx56Nq1a6KfixvHSCcM51q3bh39+/encOHC5M6dm3bt2vHPP/+4vHbevHmEhITg7++Pp6cn5cqVY9SoUcTFxbm0e/DBB6lWrRqbN2+mcePG5MqVizfeeCNZ348EYWFhFC5cmAcffJCoqKgUvVbEbuqRFsnmSpcuTWBgIN999x2tWrUCrBARERFB+/bt+fjjjxO9pmfPnkybNo2uXbvSp08fDh06xMSJE9m6dSvr1q0jZ86cjB8/npdffpk8efIwZMgQAIoUKQLAqVOnaNCgAZcuXaJPnz4ULFiQ6dOn8+ijj/LDDz/Qrl07AC5fvkzz5s05evQoffr0wd/fn6+//ppVq1Ylqimhnvvuu48xY8Zw6tQpPvroI9atW8fWrVvJly/fTe9BeHg4TZs2JTY2lkGDBpE7d24+++yzJHsFv/76azp37kxwcDDvvfcely5dYvLkyTRs2JCtW7dSunTpZN/7/fv38+eff/Lcc8+RN2/e27a/fPkyDz74IAcOHKB3796UKVOG2bNn06VLF86fP88rr7wCWL2abdq04ddff+WFF16gcuXKzJkzh86dOye65ooVK2jVqhVly5ZlxIgRXL58mQkTJvDAAw+wZcuWZH2ed955B4fDwcCBAzl9+jTjx48nKCiIsLAw5z2cPXs2ly5d4sUXX6RgwYJs3LiRCRMm8PfffzN79myX68XGxhIcHEzDhg15//33nb2bKbnGjVL7e9yzZ09OnDjB8uXL+frrrxNdIzk/Iwn27t1Lhw4d6NmzJ88//zwVK1Z0nhszZgze3t4MGjSIAwcOMGHCBHLmzImbmxvnzp1jxIgRbNiwgWnTplGmTBmGDRt22+/Xyy+/TP78+Rk+fDiHDx9m/Pjx9O7dm5kzZzrbTJs2jTx58tC/f3/y5MnDqlWrGDZsGJGRkfznP/9xud6///5Lq1ataN++Pf/3f//n/DlPjj/++IPg4GDq1q3LvHnzUqUnXiRdGRHJlqZOnWoA88cff5iJEyeavHnzmkuXLhljjHnyySdN06ZNjTHGlCpVyoSEhDhf98svvxjAfPvtty7XW7JkSaLjVatWNU2aNEn03n379jWA+eWXX5zHLly4YMqUKWNKly5t4uLijDHGjB8/3gBm1qxZznYXL1405cuXN4AJDQ01xhhz9epV4+fnZ6pVq2YuX77sbLtgwQIDmGHDht3yXiTU8/vvvzuPnT592vj6+hrAHDp0yFljvnz5zPPPP+/y+vDwcOPr6+tyfPjw4eZ2/4mdN2+eAcyHH354y3YJEu7HN9984zx29epVExgYaPLkyWMiIyONMcbMnTvXAGbs2LHOdrGxsaZRo0YGMFOnTnUer1WrlvHz8zP//vuv89i2bduMm5ubefbZZ29ZT2hoqAFM8eLFne9tjDGzZs0ygPnoo4+cxxL+bl1vzJgxxuFwmCNHjjiPde7c2QBm0KBBidon9xpJSYvvca9evZL8HqfkZ6RUqVIGMEuWLHFpm3Bvq1WrZq5eveo83qFDB+NwOEyrVq1c2gcGBppSpUq5HCtVqpTp3Lmz83nCz3xQUJCJj493Hu/Xr59xd3c358+fdx5L6l737NnT5MqVy1y5csV5rEmTJgYwU6ZMSdQ+KZ07dza5c+c2xhjz66+/Gh8fHxMSEuJyTZHMREM7RISnnnqKy5cvs2DBAi5cuMCCBQtuOqxj9uzZ+Pr68tBDD3HmzBnno06dOuTJk4fQ0NDbvt+iRYuoV68eDRs2dB7LkycPPXr04PDhw+zevdvZrlixYjzxxBPOdrly5aJHjx4u19u0aROnT5/mpZdewsvLy3k8JCSESpUqJTlk5MZ67r//furVq+c8VrhwYeeQggTLly/n/PnzdOjQweWzu7u7U79+/WR99utFRkYCJKs3OqHOokWL0qFDB+exnDlz0qdPH6KiolizZo2zXY4cOXjxxRed7dzd3Xn55Zddrnfy5EnCwsLo0qULBQoUcB6vUaMGDz30EIsWLUpWXc8++6zLZ3jiiScoVqyYy+uv72m8ePEiZ86coUGDBhhj2Lp1a6JrXl/7nV7jeun5PU7pz0iZMmUIDg5O8lrPPvusS+91/fr1Mcbw3HPPubSrX78+x44dIzY29rb19ejRw2UYSqNGjYiLi+PIkSPOY9ff6wsXLnDmzBkaNWrEpUuX+PPPP12u5+npSdeuXW/7vtcLDQ0lODiY5s2b89NPP9k2nlvkbmloh4hQuHBhgoKCmDFjBpcuXSIuLs4lvF5v//79RERE4Ofnl+T506dP3/b9jhw5Qv369RMdr1y5svN8tWrVOHLkCOXLl0+0HvP1//Sd0D6p4wCVKlVKcnm/5NRz4/X2798PQLNmzZK8jo+Pzy3f52btL1y4kKz2R44coUKFCri5ufaBXH/fEv4sVqxYovV6U3LfKleuzNKlS5M10a9ChQouzx0OB+XLl3dZm/no0aMMGzaM+fPnJxonfONGPjly5KBEiRKJ3icl17hRen6PU/ozUqZMmZteKyAgwOV5wlrtJUuWTHQ8Pj6eiIgIChYseMv6brxm/vz5AVzu6a5du3jzzTdZtWqV8xe+BDfe6+LFi+Ph4XHL97zelStXCAkJoU6dOsyaNctlkrNIZqO/vSICwDPPPMPzzz9PeHg4rVq1uumY4vj4ePz8/Pj222+TPF+4cOE0rNJeCRPTvv76a4oWLZrofEoDQaVKlQDYsWPH3ReXgcXFxfHQQw9x9uxZBg4cSKVKlcidOzfHjx+nS5cuiSb8eXp6JvplIaXXuFOp8T1O6c/IrcYFu7u7p+i4Mea29d3utefPn6dJkyb4+PgwcuRIypUrh5eXF1u2bGHgwIGJ7nVKxzV7enry8MMPM2/ePJYsWXLTdepFMgMFaREBoF27dvTs2ZMNGza4TDq6Ubly5VixYgUPPPDAbf8HerOd/UqVKsXevXsTHU/4J+NSpUo5/9y5cyfGGJdr3fjahPZ79+5N1JO4d+9e5/mbKVWqlLMn8sbXXq9cuXIA+Pn5ERQUdMtrJsc999xDxYoVmTdvHh999NFtd3wrVaoU27dvJz4+3iVoJnXfVq5cSVRUlMs1b3XfbvTnn39SqFChZC07d+O9M8Zw4MABatSoAVi/KOzbt4/p06fz7LPPOttdv1LM7dztNdLie3yzv98p+RnJiFavXs2///7LTz/9ROPGjZ3HDx06lCrXdzgcfPvtt7Rp04Ynn3ySxYsXu6zoI5KZaIy0iADWGOXJkyczYsQIWrdufdN2Tz31FHFxcYwaNSrRudjYWJcl1nLnzp3kkmsPP/wwGzduZP369c5jFy9e5LPPPqN06dJUqVLF2e7EiRP88MMPznaXLl3is88+c7le3bp18fPzY8qUKS5LgC1evJg9e/YQEhJyy8/+8MMPs2HDBjZu3Og89s8//yTqUQwODsbHx4fRo0cnubbzjUuIJcdbb73Fv//+S/fu3ZMc37ps2TIWLFjgrDM8PNzlF53Y2FgmTJhAnjx5aNKkibNdbGwskydPdraLi4tjwoQJLtcuVqwYtWrVYvr06S7fp507d7Js2TIefvjhZH2Gr776ymV4yg8//MDJkyedq8Ak9IBe31tqjOGjjz5K1vVT4xpp8T1O+CXjxr/jKfkZyYiSutdXr17lk08+SbX38PDw4KeffuK+++6jdevWLt8XkcxEPdIi4pTU8mg3atKkCT179mTMmDGEhYXRokULcubMyf79+5k9ezYfffSRc3x1nTp1mDx5Mm+//Tbly5fHz8+PZs2aMWjQIOdye3369KFAgQJMnz6dQ4cO8eOPPzp7W59//nkmTpzIs88+y+bNmylWrBhff/11os0ecubMyXvvvUfXrl1p0qQJHTp0cC5/V7p06SS3L7/e66+/ztdff03Lli155ZVXnEujJfQAJ/Dx8WHy5Ml06tSJ2rVr0759ewoXLszRo0dZuHAhDzzwABMnTkzRPX/66afZsWMH77zzDlu3bqVDhw6UKlWKf//9lyVLlrBy5UrnzoY9evTg008/pUuXLmzevJnSpUvzww8/sG7dOsaPH++c8Ne6dWseeOABBg0axOHDh6lSpQo//fRTkuOI//Of/9CqVSsCAwPp1q2bc/k7X1/fZG9/XaBAARo2bEjXrl05deoU48ePp3z58jz//POANYSlXLlyvPbaaxw/fhwfHx9+/PHHROOcb+Vur5EW3+M6deoA0KdPH4KDg3F3d6d9+/Yp+hnJiBo0aED+/Pnp3Lkzffr0weFw8PXXXydr2EhKeHt7s2DBApo1a0arVq1Ys2YN1apVS9X3EElztqwVIiK2u375u1u5cfm7BJ999pmpU6eO8fb2Nnnz5jXVq1c3r7/+ujlx4oSzTXh4uAkJCTF58+Y1gMtSeAcPHjRPPPGEyZcvn/Hy8jL16tUzCxYsSPQ+R44cMY8++qjJlSuXKVSokHnllVecy4glLH+XYObMmebee+81np6epkCBAqZjx47m77//Ttb92L59u2nSpInx8vIyxYsXN6NGjTL//e9/XZZGSxAaGmqCg4ONr6+v8fLyMuXKlTNdunQxmzZtcrZJzvJ311u5cqVp06aN8fPzMzly5DCFCxc2rVu3NvPmzXNpd+rUKdO1a1dTqFAh4+HhYapXr+6ynF2Cf//913Tq1Mn4+PgYX19f06lTJ7N169ZEy98ZY8yKFSvMAw88YLy9vY2Pj49p3bq12b17921rTlii7bvvvjODBw82fn5+xtvb24SEhCRajm737t0mKCjI5MmTxxQqVMg8//zzZtu2bYnquX55tBsl9xo3k9rf49jYWPPyyy+bwoULG4fDkej7nZyfkZv9fCXc29mzZ7scv9nPbcLft3/++cfl2kktf3fjaxPe6/qfp3Xr1pn777/feHt7G39/f/P666+bpUuXJmrXpEkTU7Vq1UT130xS398zZ86YKlWqmKJFi5r9+/cn+1oiGYHDmFT+FVNERLKF1atX07RpU2bPnp2he1hFRNKKxkiLiIiIiNwBBWkRERERkTugIC0iIiIicgc0RlpERERE5A6oR1pERERE5A4oSIuIiIiI3AEFaRERERGRO6CdDdNRfHw8J06cIG/evDgcDrvLEREREZEbGGO4cOEC/v7+zp12b0ZBOh2dOHGCkiVL2l2GiIiIiNzGsWPHKFGixC3bKEino7x58wLWN8bHx8fmakRERETkRpGRkZQsWdKZ225FQTodJQzn8PHxUZAWERERycCSMwxXkw1FRERERO6AgrSIiIiIyB2wNUivXbuW1q1b4+/vj8PhYO7cuS7nT506RZcuXfD39ydXrly0bNmS/fv3u7S5cuUKvXr1omDBguTJk4fHH3+cU6dOubQ5evQoISEh5MqVCz8/PwYMGEBsbKxLm9WrV1O7dm08PT0pX74806ZNS1TvpEmTKF26NF5eXtSvX5+NGzemyn0QERERkczH1iB98eJFatasyaRJkxKdM8bQtm1b/vrrL+bNm8fWrVspVaoUQUFBXLx40dmuX79+/Pzzz8yePZs1a9Zw4sQJHnvsMef5uLg4QkJCuHr1Kr/99hvTp09n2rRpDBs2zNnm0KFDhISE0LRpU8LCwujbty/du3dn6dKlzjYzZ86kf//+DB8+nC1btlCzZk2Cg4M5ffp0Gt0dEREREcnQTAYBmDlz5jif79271wBm586dzmNxcXGmcOHC5vPPPzfGGHP+/HmTM2dOM3v2bGebPXv2GMCsX7/eGGPMokWLjJubmwkPD3e2mTx5svHx8THR0dHGGGNef/11U7VqVZd6nn76aRMcHOx8Xq9ePdOrVy+XWvz9/c2YMWOS/RkjIiIMYCIiIpL9GhERERFJPynJaxl2jHR0dDQAXl5ezmNubm54enry66+/ArB582ZiYmIICgpytqlUqRIBAQGsX78egPXr11O9enWKFCnibBMcHExkZCS7du1ytrn+GgltEq5x9epVNm/e7NLGzc2NoKAgZxsRERERyV4ybJBOCMSDBw/m3LlzXL16lffee4+///6bkydPAhAeHo6Hhwf58uVzeW2RIkUIDw93trk+RCecTzh3qzaRkZFcvnyZM2fOEBcXl2SbhGskJTo6msjISJeHiIiIiGQNGTZI58yZk59++ol9+/ZRoEABcuXKRWhoKK1atbrtdo0ZxZgxY/D19XU+tKuhiIiISNaRoRNpnTp1CAsL4/z585w8eZIlS5bw77//UrZsWQCKFi3K1atXOX/+vMvrTp06RdGiRZ1tblzFI+H57dr4+Pjg7e1NoUKFcHd3T7JNwjWSMnjwYCIiIpyPY8eOpfwmiIiIiEiGlKGDdAJfX18KFy7M/v372bRpE23atAGsoJ0zZ05WrlzpbLt3716OHj1KYGAgAIGBgezYscNldY3ly5fj4+NDlSpVnG2uv0ZCm4RreHh4UKdOHZc28fHxrFy50tkmKZ6ens5dDLWboYiIiEjWYusW4VFRURw4cMD5/NChQ4SFhVGgQAECAgKYPXs2hQsXJiAggB07dvDKK6/Qtm1bWrRoAVgBu1u3bvTv358CBQrg4+PDyy+/TGBgIPfffz8ALVq0oEqVKnTq1ImxY8cSHh7Om2++Sa9evfD09ATghRdeYOLEibz++us899xzrFq1ilmzZrFw4UJnbf3796dz587UrVuXevXqMX78eC5evEjXrl3T8Y7d3ogR4O4OQ4cmPjdqFMTFWW1ERERE5C6lwyoiNxUaGmqARI/OnTsbY4z56KOPTIkSJUzOnDlNQECAefPNN51L1iW4fPmyeemll0z+/PlNrly5TLt27czJkydd2hw+fNi0atXKeHt7m0KFCplXX33VxMTEJKqlVq1axsPDw5QtW9ZMnTo1Ub0TJkwwAQEBxsPDw9SrV89s2LAhRZ83PZa/GznSGLD+TM5xEREREbkmJXnNYYwxNub4bCUyMhJfX18iIiLSdJjHqFEwbBgMHw5vvAHvvWc9Hzky6Z5qEREREbGkJK/ZOrRD0kZCWB42DN56y/r6rbcUokVERERSU6aYbCgpN2QIOBzXni9aBL/8Yl89IiIiIlmNgnQW9c47YIw18RDg99+hcWNo2xb27LG1NBEREZEsQUE6C0oYIz1yJMTGwoAB1nGHA+bNg2rVoGdP+N8GkSIiIiJyBxSks5jrQ3TCmOixY63nxkClShAfD599BuXLWxMSL1ywt2YRERGRzEhBOouJi0t6dY6hQ63jTz8Na9dC/fpw6ZJ1rEIFmDIFYmLsqVlEREQkM9Lyd+kovZa/Sw5j4McfYfBgSNgTp2JFePddaNPGdaKiiIiISHaRkrymHulsyuGAJ56AXbtgwgQoVAj27oV27aBRI1i/3u4KRURERDI2BelszsMDeveGgwetJfO8vWHdOmjQwAra+/bZXaGIiIhIxqQgLQD4+MDbb8P+/dCtG7i5WUM/qla1gvbp03ZXKCIiIpKxKEiLi+LF4YsvYPt2eOQRa/m8SZOgXDlrRZCLF+2uUERERCRjUJCWJFWtCj//DKtWQd26EBVlLatXoQJ8/rkVsEVERESyMwVpuaWmTa1dEb/7DsqUsTZx6dEDatSwgrbWfBEREZHsSkFabsvNDdq3t7YW//BDKFDA+vrRR62gvXGj3RWKiIiIpD8FaUk2T0/o29da4WPgQOv5mjXW5i7t21vHRURERLILBWlJsXz5rI1b9u2Dzp2tNalnzoTKla2gfeaM3RWKiIiIpD0FabljAQEwbRps3QrBwdYW4x99ZK3w8e67cPmy3RWKiIiIpB0FablrNWvCkiWwfDncey9ERlpbj99zD0ydCnFxdlcoIiIikvoUpCXVBAXBpk3wzTdWb/Xff8Nzz0GtWrB4sVb4EBERkaxFQVpSlZsbdOwIe/fC++9b46l37oSHH7aC9ubNdlcoIiIikjoUpCVNeHnBq69aK3m8+ip4eFzb3KVjRzh82O4KRURERO6OgrSkqQIFrJ7pvXutAA0wYwZUrGgF7LNn7a1PRERE5E4pSEu6KF3aGju9eTM0awZXr8IHH1grfLz/Ply5YneFIiIiIimjIC3pqnZtWLHCmnxYvTqcPw8DBlg91N98A/HxdlcoIiIikjwK0pLuHA5o2dJaf3rqVChRAo4ehU6doE4dK2iLiIiIZHQK0mIbd3fo0sXaIfHdd8HHB8LC4KGHrA1etm2zu0IRERGRm1OQFtt5e8PAgdYKH337Qs6csGyZtblL585Wb7WIiIhIRqMgLRlGoULw4Yfw55/Qvr21gctXX1k7JA4caI2nFhEREckoFKQlwylbFr77DjZuhCZNIDoaxo61Vvj48EPruYiIiIjdFKQlw7rvPggNhZ9/hipVrDWn+/eHSpWsoK0VPkRERMROCtKSoTkc8Mgj1sTDzz+HYsWsXRGfeQbq1bOCtoiIiIgdFKQlU8iRA7p3h/37YdQoyJv32uYujzwCO3faXaGIiIhkNwrSkqnkzg1vvgkHDkDv3lbAXrgQataEbt3g+HG7KxQREZHsQkFaMiU/P5gwAXbvhieesMZLf/klVKgAQ4ZARITdFYqIiEhWpyAtmVqFCjB7Nvz2GzzwAFy+DKNHQ/nyVtC+etXuCkVERCSrUpCWLCEwEH75BebOhYoV4cwZ6NPHWu1j9mxrTWoRERGR1KQgLVmGwwFt2lgTD6dMgSJFrN0Sn3rKCtpdu1oTFZMyahSMGJGu5YqIiEgmpyAtWU6OHNCzpzUhcfhwa4Li77/DtGkwbJjVU329UaOs4+7utpQrIiIimZSCtGRZefJYvcz791vBOiEoT5hgbfZy8uS1ED1yJAwdamu5IiIiksk4jNHo0fQSGRmJr68vERER+Pj42F1OtvPnnzB4sDWO+npDhsDbb9tSkoiIiGQwKclr6pGWbKNSJZgzx5qU6HBcO/7FF9aY6pgY+2oTERGRzEdBWrKd0FBrFY8cOaznp07Biy9C9epWb7X+jUZERESSQ0FaspXrx0THxFiTEQFy5YK9e6FdO2jUCNavt7dOERERyfgUpCXbSGpi4YgR1vNLl6BxY/D2hnXroEEDa8fEfftsLVlEREQyMAVpyTbi4pJenWPoUOt406bWCh/duoGbG/z4I1StCr17w+nT9tQsIiIiGZdW7UhHWrUj89i5EwYNgoULred58sDAgdCvn7UutYiIiGRNWrVD5C5VqwYLFsCqVVCnDkRFWT3XFSpYq3zExtpdoYiIiNhNQVrkFpo2hY0b4bvvoEwZaxOX55+HWrWs3mr9e46IiEj2pSAtchtubtC+PezZAx98APnzw65d8Mgj0KwZ/PGH3RWKiIiIHRSkRZLJ09MaI33wILz+uvV89WqoVw86dIC//rK7QhEREUlPCtIiKZQ/P7z3nrU03rPPWrskfv+9tXNiv37w7792VygiIiLpQUFa5A4FBMD06bBlC7RoYW3wMn48lCtnBe3Ll+2uUERERNKSgrTIXapVC5YutR41a0JEhLV03j33WEE7Ls7uCkVERCQtKEiLpJIWLaze6a++gpIl4e+/oUsXqF3bCtkiIiKStShIi6QiNzfo1MkaPz12LPj6wvbt0LKlFbS3brW7QhEREUktCtIiacDLCwYMsFb46NcPcuaE5cutzV2efRaOHLG7QhEREblbCtIiaahgQWvt6b17rSXyjIGvv4aKFa0l9M6ds7tCERERuVMK0iLpoEwZmDHD2rzlwQchOhr+8x9rhY8PPrCei4iISOZia5Beu3YtrVu3xt/fH4fDwdy5c13OR0VF0bt3b0qUKIG3tzdVqlRhypQpLm3Cw8Pp1KkTRYsWJXfu3NSuXZsff/zRpc3Zs2fp2LEjPj4+5MuXj27duhEVFeXSZvv27TRq1AgvLy9KlizJ2LFjE9U7e/ZsKlWqhJeXF9WrV2fRokWpcyMk26hbF1atsrYXr1rV6pF+9VVrDeoZMyA+3u4KRUREJLlsDdIXL16kZs2aTJo0Kcnz/fv3Z8mSJXzzzTfs2bOHvn370rt3b+bPn+9s8+yzz7J3717mz5/Pjh07eOyxx3jqqafYet2sro4dO7Jr1y6WL1/OggULWLt2LT169HCej4yMpEWLFpQqVYrNmzfzn//8hxEjRvDZZ5852/z222906NCBbt26sXXrVtq2bUvbtm3ZuXNnGtwZycocDnj4Ydi2Df77X/D3h8OHoWNHuO8+K2iLiIhIJmAyCMDMmTPH5VjVqlXNyJEjXY7Vrl3bDBkyxPk8d+7c5quvvnJpU6BAAfP5558bY4zZvXu3Acwff/zhPL948WLjcDjM8ePHjTHGfPLJJyZ//vwmOjra2WbgwIGmYsWKzudPPfWUCQkJcXmf+vXrm549eyb7M0ZERBjAREREJPs1kvVdvGjMO+8YkzevMdYoamNatTJm+3a7KxMREcl+UpLXMvQY6QYNGjB//nyOHz+OMYbQ0FD27dtHixYtXNrMnDmTs2fPEh8fz/fff8+VK1d48MEHAVi/fj358uWjbt26ztcEBQXh5ubG77//7mzTuHFjPDw8nG2Cg4PZu3cv5/43G2z9+vUEBQW51BccHMz69etvWn90dDSRkZEuD5Eb5coFb7xhrfDx8suQIwcsXmxt7vLcc9Z61CIiIpLxZOggPWHCBKpUqUKJEiXw8PCgZcuWTJo0icaNGzvbzJo1i5iYGAoWLIinpyc9e/Zkzpw5lC9fHrDGUPv5+blcN0eOHBQoUIDw8HBnmyJFiri0SXh+uzYJ55MyZswYfH19nY+SJUve4Z2Q7KBwYfj4Y9izB554wuqbnjrV2iFxyBBrx0QRERHJODJ8kN6wYQPz589n8+bNjBs3jl69erFixQpnm6FDh3L+/HlWrFjBpk2b6N+/P0899RQ7duywsXLL4MGDiYiIcD6OHTtmd0mSCZQvD7Nnw/r10LAhXL4Mo0dbxydMgKtX7a5QREREAHLYXcDNXL58mTfeeIM5c+YQEhICQI0aNQgLC+P9998nKCiIgwcPMnHiRHbu3EnVqlUBqFmzJr/88guTJk1iypQpFC1alNOnT7tcOzY2lrNnz1K0aFEAihYtyqlTp1zaJDy/XZuE80nx9PTE09PzLu6CZGf33w9r18L8+TBwoLUWdZ8+8NFHMGaM1WvtcNhdpYiISPaVYXukY2JiiImJwc3NtUR3d3fi/7dG2KVLlwBu2SYwMJDz58+zefNm5/lVq1YRHx9P/fr1nW3Wrl1LTEyMs83y5cupWLEi+fPnd7ZZuXKly/ssX76cwMDA1Pi4IklyOKBNG9i5E6ZMgSJFrLHUTz0FgYHwyy92VygiIpJ92Rqko6KiCAsLIywsDIBDhw4RFhbG0aNH8fHxoUmTJgwYMIDVq1dz6NAhpk2bxldffUW7du0AqFSpEuXLl6dnz55s3LiRgwcPMm7cOJYvX07btm0BqFy5Mi1btuT5559n48aNrFu3jt69e9O+fXv8/f0BeOaZZ/Dw8KBbt27s2rWLmTNn8tFHH9G/f39nra+88gpLlixh3Lhx/Pnnn4wYMYJNmzbRu3fvdL1nkj3lyAE9e8KBAzBiBOTODb//Do0bW0F7zx67KxQREcmG0n4RkZsLDQ01QKJH586djTHGnDx50nTp0sX4+/sbLy8vU7FiRTNu3DgTHx/vvMa+ffvMY489Zvz8/EyuXLlMjRo1Ei2H9++//5oOHTqYPHnyGB8fH9O1a1dz4cIFlzbbtm0zDRs2NJ6enqZ48eLm3XffTVTvrFmzzD333GM8PDxM1apVzcKFC1P0ebX8naSWkyeNeeEFY9zdreXy3NyM6dHDmBMn7K5MREQkc0tJXnMYY4yNOT5biYyMxNfXl4iICHx8fOwuR7KAP/+EQYNg3jzrea5c8Npr1iNvXntrExERyYxSktcy7BhpEbm9SpVg7lxrUmL9+nDpEowcCRUqWGOqrxv2LyIiIqlMQVokC2jUyFoub/Zsa5m8U6fgxRehenUraOvfnURERFKfgrRIFuFwWEvi7dplrTddqJC1ZF67dteCtoiIiKQeBWmRLMbDA3r3tpbJGzIEvL1h3Tpo0MAK2vv3212hiIhI1qAgLZJF+fjA229bwblbN3Bzgx9/hCpVrKB9wz5FIiIikkJatSMdadUOsdPOndYKHwsXWs/z5LF2TLx0yeq1Hjo08WtGjYK4OGvtahERkexAq3aISCLVqsGCBbBqFdSpA1FRVnieMAGGDYO33nJtP2qUddzd3Z56RUREMjoFaZFspmlT2LgRZsyA0qWtQA1Wr/P//Z+1wkdCiB45MumeahEREdHQjnSloR2S0URHwyefWMH53DnrmMNhhekRI2D4cFvLExERSXca2iEiyeLpCf36WSt8vP66dSzhV+vp0+H99+HsWfvqExERycgUpEWE/PmtyYdwbUz0oUMwYAAULw7du8O2bfbVJyIikhEpSIuIy5jo2Nhr46KLFoUrV+C//4VatayNXWbO1NbjIiIioCAtku0lNbFw5EjrER5u9UY//TTkyAG//grt20OpUtfOi4iIZFcK0iLZXFxc0qtzDB1qHS9eHL7/Ho4csSYfFi0KJ09aXwcEwDPPWNuPa9qyiIhkN1q1Ix1p1Q7JCq5etXZInDgRfvvt2vHata0dE9u3tzZ4ERERyYy0aoeIpBkPD+jQAdatg82b4bnnwMsLtmyxvi5Z0tpB8cgRuysVERFJWwrSInLHate2JiL+/Te89541dvrff62vy5aFtm1hxQoN+xARkaxJQVpE7lrBgtY61AcPwty5EBQE8fEwbx489BBUqQKTJsGFC3ZXKiIiknoUpEUk1bi7Q5s2sHw57N5tjZnOkwf+/NP6unhxePll2LvX7kpFRETunoK0iKSJypVhwgQ4ftz6s2JFq0d64kSoVAlatID5861VQ0RERDIjBWkRSVM+PlZv9J49sGwZPPooOBxWr3WbNlC+PPznP9bYahERkcxEQVpE0oXDYY2XnjfPGkv9+utQoAAcPmx9XaKEtfnL1q12VyoiIpI8CtIiku7KlLFW9vj772vbjydsRV67NjRsaG0Cc/Wq3ZWKiIjcnIK0iNjG29tae3rLFmtd6vbtra3I162z1qouXRreesvaSVFERCSjUZAWEds5HNCgAXz3HRw9CiNGXNuKfMQIayvyDh2snRS1JrWIiGQUCtIikqEUKwbDh1s7I373HTzwAMTGWkM9HngA6tSBL7+Ey5ftrlRERLI7BWkRyZA8PKyhHr/+em37cS8vazJit27W5MSBA63JiiIiInZQkBaRDO/ee69tRT52rDV2+uxZ6+uyZa1l9LQVuYiIpDcFaRHJNAoWhAED4MCBa9uPG2Nt7JKwFfnEiRAZaXelIiKSHShIi0im4+5ubeyybJm10cvLL0PevNZW5C+/fG0r8j//tLtSERHJyhSkRSRTq1QJPv7YGvaRsP14VJT1deXK1zaB0VbkIiKS2hSkRSRL8PGBXr1g925rvHSbNuDmZn3dti2UK2eNqdZW5CIikloUpEUkS3E4oHlzmDvX2op84EBrK/IjR6yvS5SwVgDRVuQiInK3FKRFJMsqXRrefdca9vHll9bqH1euwNSp1lbkDzxgrVWtrchFROROKEiLSJbn7Q1du8LmzdbuiB06WFuR//YbPPMMlCpl7aB44oTdlYqISGaiIC0i2YbDAYGBMGOGtRX5W29ZOymGh1tflyplbQKzbp21rN6IETBqVNLXGjXKOi8iItmXgrSIZEvFisGwYdbOiN9/Dw0bWluRz5xpfV27NoSFWW1uDNOjRlnH3d3tqFxERDIKhzHaCyy9REZG4uvrS0REBD4+PnaXIyI3CAuDSZPg22/h8mXrmLe39XW/fvDBB9dC9MiRMHSoreWKiEgaSEleU5BORwrSIpnD2bPW5MRJk6we6wTu7tZ61ArRIiJZl4J0BqUgLZK5xMXB4sUwYYK1iyJYa1PHxlrjrUVEJOtJSV7TGGkRkZtwd4dHHrHGTCeIj4f69a0/RUQke1OQFhG5hevHRE+bZh374w+FaRERgRx2FyAiklElNbHQzQ2efRY2bYJ69WDjRuuYiIhkP8kO0vHx8axZs4ZffvmFI0eOcOnSJQoXLsy9995LUFAQJUuWTMs6RUTSXVITCzt1soJzp07WBi89esBnnylMi4hkR7edbHj58mXGjRvH5MmTOXv2LLVq1cLf3x9vb2/Onj3Lzp07OXHiBC1atGDYsGHcf//96VV7pqPJhiJZx3ffwf/9nzW8o0sX+OILrSstIpIVpCSv3bZH+p577iEwMJDPP/+chx56iJw5cyZqc+TIEWbMmEH79u0ZMmQIzz///J1XLyKSCXToYPVCd+xojZ02Bv77X4VpEZHs5LY90nv27KFy5crJulhMTAxHjx6lXLlyqVJcVqMeaZGsZ/ZsK1THxVnDPaZOVZgWEcnMUnX5u+SGaICcOXMqRItItvLkk9a24jlywNdfWxMRY2PtrkpERNLDHa3acenSJY4ePcrVq1ddjteoUSNVihIRyUwef9wK008/DTNmWMM8vvrKCtciIpJ1peg/8//88w9du3Zl8eLFSZ6Pi4tLlaJERDKbxx6zhnk89ZQ1ETE+Hr75RmFaRCQrS9GCTX379uX8+fP8/vvveHt7s2TJEqZPn06FChWYP39+WtUoIpIptG0LP/wAOXNaPdTPPAMxMXZXJSIiaSVFfSWrVq1i3rx51K1bFzc3N0qVKsVDDz2Ej48PY8aMISQkJK3qFBHJFB59FH76yRruMXu21TP93XdWuBYRkawlRT3SFy9exM/PD4D8+fPzzz//AFC9enW2bNmS+tWJiGRCjzwCc+aAhwf8+KM1dvqGKSUiIpIFpChIV6xYkb179wJQs2ZNPv30U44fP86UKVMoVqxYmhQoIpIZPfwwzJsHnp5WqH7qKYVpEZGsJkVB+pVXXuHkyZMADB8+nMWLFxMQEMDHH3/M6NGj06RAEZHMqmXLa2F63jx44gmIjra7KhERSS233ZDlVi5dusSff/5JQEAAhQoVSs26siRtyCKSPS1fbo2dvnIFQkKs4R6ennZXJSIiSUnVDVluJVeuXNSuXVshWkTkFh56CBYsAG9vWLjQWirvyhW7qxIRkbt12yDdv39/Ll686Pz6Vo+UWrt2La1bt8bf3x+Hw8HcuXNdzkdFRdG7d29KlCiBt7c3VapUYcqUKYmus379epo1a0bu3Lnx8fGhcePGXL582Xn+7NmzdOzYER8fH/Lly0e3bt2Iiopyucb27dtp1KgRXl5elCxZkrFjxyZ6n9mzZ1OpUiW8vLyoXr06ixYtSvFnFpHsqXnza2F60SJo105hWkQks7vt8ndbt24l5n8LoW7duvWm7RwOR4rf/OLFi9SsWZPnnnuOxx57LNH5/v37s2rVKr755htKly7NsmXLeOmll/D39+fRRx8FrBDdsmVLBg8ezIQJE8iRIwfbtm3Dze3a7wgdO3bk5MmTLF++nJiYGLp27UqPHj2YMWMGYHXht2jRgqCgIKZMmcKOHTt47rnnyJcvHz169ADgt99+o0OHDowZM4ZHHnmEGTNm0LZtW7Zs2UK1atVS/NlFJPtp1swK0SEhsGQJtGkDc+da4VpERDIhk0EAZs6cOS7HqlatakaOHOlyrHbt2mbIkCHO5/Xr1zdvvvnmTa+7e/duA5g//vjDeWzx4sXG4XCY48ePG2OM+eSTT0z+/PlNdHS0s83AgQNNxYoVnc+feuopExIS4nLt+vXrm549eyb7M0ZERBjAREREJPs1IpL1rF5tTO7cxoAxQUHGXLxod0UiIpIgJXktRWOkIyIiOHv2bKLjZ8+eJTIyMlWC/fUaNGjA/PnzOX78OMYYQkND2bdvHy1atADg9OnT/P777/j5+dGgQQOKFClCkyZN+PXXX53XWL9+Pfny5aNu3brOY0FBQbi5ufH777872zRu3BgPDw9nm+DgYPbu3cu5c+ecbYKCglzqCw4OZv369an+uUUka2vSBBYvhty5YcUKayLipUt2VyUiIimVoiDdvn17vv/++0THZ82aRfv27VOtqAQTJkygSpUqlChRAg8PD1q2bMmkSZNo3LgxAH/99RcAI0aM4Pnnn2fJkiXUrl2b5s2bs3//fgDCw8Odm8gkyJEjBwUKFCA8PNzZpkiRIi5tEp7frk3C+aRER0cTGRnp8hARAWjUyBrekScPrFxpbeLyv+koIiKSSaQoSP/+++80bdo00fEHH3zQ2bubmiZMmMCGDRuYP38+mzdvZty4cfTq1YsVK1YAEB8fD0DPnj3p2rUr9957Lx9++CEVK1bkyy+/TPV6UmrMmDH4+vo6HyVLlrS7JBHJQBo2hKVLIW9eCA21xk4rTIuIZB4pCtLR0dHExsYmOh4TE+OySkZquHz5Mm+88QYffPABrVu3pkaNGvTu3Zunn36a999/H8C5m2KVKlVcXlu5cmWOHj0KQNGiRTl9+rTL+djYWM6ePUvRokWdbU6dOuXSJuH57doknE/K4MGDiYiIcD6OHTuWonsgIllfgwawbBn4+MCaNdaOiDcsKiQiIhlUioJ0vXr1+OyzzxIdnzJlCnXq1Em1osAK5zExMS6rbwC4u7s7e6JLly6Nv7+/c9vyBPv27aNUqVIABAYGcv78eTZv3uw8v2rVKuLj46lfv76zzdq1a52rkwAsX76cihUrkj9/fmeblStXurzP8uXLCQwMvOln8PT0xMfHx+UhInKj+++/FqbXroVWreDCBburEhGR20rJLMZff/3VeHl5mUaNGpkRI0aYESNGmEaNGhkvLy+zdu3aFM+KvHDhgtm6davZunWrAcwHH3xgtm7dao4cOWKMMaZJkyamatWqJjQ01Pz1119m6tSpxsvLy3zyySfOa3z44YfGx8fHzJ492+zfv9+8+eabxsvLyxw4cMDZpmXLlubee+81v//+u/n1119NhQoVTIcOHZznz58/b4oUKWI6depkdu7cab7//nuTK1cu8+mnnzrbrFu3zuTIkcO8//77Zs+ePWb48OEmZ86cZseOHcn+vFq1Q0Ru5fffjfH1tVbzaNDAGP2nQkQk/aUkr6V4+buwsDDzzDPPmCpVqpg6deqYrl27mn379t1RoaGhoQZI9OjcubMxxpiTJ0+aLl26GH9/f+Pl5WUqVqxoxo0bZ+Lj412uM2bMGFOiRAmTK1cuExgYaH755ReX8//++6/p0KGDyZMnj/Hx8TFdu3Y1Fy5ccGmzbds207BhQ+Pp6WmKFy9u3n333UT1zpo1y9xzzz3Gw8PDVK1a1SxcuDBFn1dBWkRu548/jMmXzwrTgYEK0yIi6S0lec1hjDHJ6bmOiYmhZ8+eDB06lDJlyqRN93gWl5K920Uk+9qyBYKC4Nw5a9jHkiXg62t3VSIi2UNK8lqyx0jnzJmTH3/88a6LExGRW6td21oSr0AB2LABWrSA8+ftrkpERG6UosmGbdu2Ze7cuWlUioiIJLj3Xli1CgoWhI0b4aGHrB5qERHJOHKkpHGFChUYOXIk69ato06dOuTOndvlfJ8+fVK1OBGR7KxmTStMN28OmzZZYXrZMqunWkRE7JfsMdLALcdGOxwO506DkjSNkRaRO7FjBzRrBmfOWD3VK1YoTIuIpJWU5LUU9UgfOnTorgoTEZGUq17d2vmwWTPYutXqoV6xwhr2ISIi9knRGOkEV69eZe/evUnucigiIqmvWjVYvRqKFIGwMCtMnzljd1UiItlbioL0pUuX6NatG7ly5aJq1arObbhffvll3n333TQpUERELFWqWD3TRYrAtm1WD/U//9hdlYhI9pWiID148GC2bdvG6tWr8fLych4PCgpi5syZqV6ciIi4qlzZ6pkuVuza2OnTp+2uSkQke0pRkJ47dy4TJ06kYcOGOBwO5/GqVaty8ODBVC9OREQSq1TJCtP+/rBzJzRtCqdO2V2ViEj2k6Ig/c8//+Dn55fo+MWLF12CtYiIpK177rHCdPHisHu3FabDw+2uSkQke0lRkK5bty4LFy50Pk8Iz1988QWBgYGpW5mIiNxShQpWmC5RAvbsscL0yZN2VyUikn2kaPm70aNH06pVK3bv3k1sbCwfffQRu3fv5rfffmPNmjVpVaOIiNxE+fJWmG7aFP78Ex580JqQ6O9vd2UiIllfinqkGzZsSFhYGLGxsVSvXp1ly5bh5+fH+vXrqVOnTlrVKCIit1CunBWmAwJg3z4rTB8/bndVIiJZX4p2NpS7o50NRSQtHT5shegjR6ye6tBQa9iHiIgkX5rtbAgQHx/PgQMHOH36NPHx8S7nGjdunNLLiYhIKildGtasscL0gQPXhnmULGlzYSIiWVSKgvSGDRt45plnOHLkCDd2ZDscDuLi4lK1OBERSZlSpa6F6YMHoUkTK0yXKmV3ZSIiWU+Kxki/8MIL1K1bl507d3L27FnOnTvnfJw9ezatahQRkRQICLDCdLlycOiQFaoPH7a7KhGRrCdFY6Rz587Ntm3bKF++fFrWlGVpjLSIpKe//7ZW8zhwwOqRDg2FMmXsrkpEJGNLSV5LUY90/fr1OXDgwF0VJyIi6aNECWs1jwoVrAmIDz4If/1ld1UiIllHisZIv/zyy7z66quEh4dTvXp1cubM6XK+Ro0aqVqciIjcneLFr60znbA0XmioNexDRETuToqGdri5Je7AdjgcGGM02TAZNLRDROxy8iQ0a2Zt2pIQrjVKT0QksTRb/u7QoUN3VZiIiNijWDGrJ7pZM2s78SZNrg37EBGRO5OiIF1K6yeJiGRaRYteC9O7d19bGq9iRbsrExHJnJIVpOfPn5+siz366KN3VYyIiKStIkWs8Ny8OezceW3MdKVKdlcmIpL5JGuMdFJjoxNdSGOkb0tjpEUko/jnHytM79hxLVxXrmx3VSIi9kv15e/i4+Nv+1CIFhHJPAoXhlWroEYNOHXK6pnetcvuqkREMpcUrSMtIiJZR6FCVpiuVQtOn7aWyNu50+6qREQyj9sG6Q0bNiT7YpcuXWKXujRERDKNggVh5Uq4915ruEfTptZwDxERub3bBulOnToRHBzM7NmzuXjxYpJtdu/ezRtvvEG5cuXYvHlzqhcpIiJpp0ABWLEC6tSBM2esML1tm91ViYhkfLedbBgTE8PkyZOZNGkSf/31F/fccw/+/v54eXlx7tw5/vzzT6KiomjXrh1vvPEG1atXT6/aMx1NNhSRjOzcOQgOhj/+sML1ypXWsA8RkewkJXktRTsbbtq0iV9//ZUjR45w+fJlChUqxL333kvTpk0pUKDAXRee1SlIi0hGd/68FaY3boT8+a2e6tq17a5KRCT9pFmQlrujIC0imUFEhBWmf/8d8uW7NuxDRCQ7SPXl70REJPvw9YVlyyAw0OqhDgqyhnuIiIgrBWkREUnExweWLIEGDaww/dBD1nAPERG5RkFaRESSlBCmGza0hns89BCkYEVUEZEsT0FaRERuKm9eWLwYGjWCyEho0QLWr7e7KhGRjEFBWkREbilPHli0CJo0gQsXrDC9bp3dVYmI2C9HSl+wcuVKVq5cyenTp4mPj3c59+WXX6ZaYSIiknHkyQMLF0Lr1hAaCs2aWetMN2zo2m7UKIiLgxEjbClTRCRdpahH+q233qJFixasXLmSM2fOcO7cOZeHiIhkXblzw4IFUKYMXL1qhem1a6+dHzUKhg0Dd3f7ahQRSU8pWke6WLFijB07lk6dOqVlTVmW1pEWkazg0iWoXh3++gty5oTly61APWwYjBwJQ4faXaGIyJ1LSV5L0dCOq1ev0qBBg7sqTkREMrdcuWDnTitMHzwIDz5oHR8xQiFaRLKXFA3t6N69OzNmzEirWkREJJPw9rbCtNt1/xeZNw82b7avJhGR9JaiHukrV67w2WefsWLFCmrUqEHOnDldzn/wwQepWpyIiGRc//kPxMdDjhwQGwtbt0K9etCvH7z1ljWmWkQkK0tRj/T27dupVasWbm5u7Ny5k61btzofYWFhaVSiiIhkNAkTC0eOhJgYeP1163h8PIwbZw37WLbM3hpFRNJaiiYbyt3RZEMRyQquD9HXj4lOOO7jY23eAtCpE3zwARQqZE+tIiIplWaTDa/3999/A1CiRIk7vYSIiGRCcXFJr86R8PzSJesxYQJ8/bW1M+L48fDMM+BwpHu5IiJpJkU90vHx8bz99tuMGzeOqKgoAPLmzcurr77KkCFDcHPTRom3oh5pEclOfv8dnn8eduywngcHw5QpULq0rWWJiNxSSvLaLZPvl19+yc6dO53PhwwZwsSJE3n33XedY6NHjx7NhAkTGKo1j0RE5Dr161ureLzzDnh6wtKlULWqNdQjNtbu6kRE7t4te6RXrlxJly5dmD59Os2aNcPf358pU6bw6KOPurSbN28eL730EsePH0/zgjMz9UiLSHa1bx/06AFr1ljP69aFL76AmjXtrUtE5Eap1iPdvHlzVq5cyaBBgwA4e/YslSpVStSuUqVKnD179i5KFhGRrOyee2DVKvj8c/D1hU2boE4dGDQILl+2uzoRkTtz20HN99xzD2vXrgWgZs2aTJw4MVGbiRMnUlPdCiIicgtubtC9O+zZA088YU1afO89a6m8Vavsrk5EJOVSNNlwzZo1hISEEBAQQGBgIADr16/n2LFjLFq0iEaNGqVZoVmBhnaIiFwzfz689BIkjArs2hXefx8KFLC3LhHJ3lJtaMeNmjRpwr59+2jXrh3nz5/n/PnzPPbYY+zdu1chWkREUuTRR2H3bitMOxwwdSpUrgzffw/a4UBEMgNtyJKO1CMtIpK03367NuwDICQEPvkEAgLsrUtEsp+U5LXbBunt27dTrVo13Nzc2L59+y0vVqNGjZRXm40oSIuI3Fx0NLz7LoweDVevQu7c1te9eoG7u93ViUh2kapB2s3NjfDwcPz8/HBzc8PhcJDUSxwOB3FxcXdXeRanIC0icnt79lgbuaxbZz2vX99a7aN6dXvrEpHsIVW3CD906BCFCxd2fi0iIpKWKleGtWvhs89g4EBrh8Tata2v33wTvLzsrlBExKIx0ulIPdIiIilz/Dj07g1z51rP77nHCthNmthalohkYWm2asf06dNZuHCh8/nrr79Ovnz5aNCgAUeOHElxoWvXrqV169b4+/vjcDiYm/Bfyv+Jioqid+/elChRAm9vb6pUqcKUKVOSvJYxhlatWiV5naNHjxISEkKuXLnw8/NjwIABxN6wP+3q1aupXbs2np6elC9fnmnTpiV6j0mTJlG6dGm8vLyoX78+GzduTPFnFhGR5CteHObMgR9/hKJFrR0SH3zQ2iXx/Hm7qxOR7C5FQXr06NF4e3sD1vrREydOZOzYsRQqVIh+/fql+M0vXrxIzZo1mTRpUpLn+/fvz5IlS/jmm2/Ys2cPffv2pXfv3syfPz9R2/Hjx+NwOBIdj4uLIyQkhKtXr/Lbb78xffp0pk2bxrBhw5xtDh06REhICE2bNiUsLIy+ffvSvXt3li5d6mwzc+ZM+vfvz/Dhw9myZQs1a9YkODiY06dPp/hzi4hIyjz2mDV2ukcP6/nnn1tDQH74QUvliYiNTAp4e3ubI0eOGGOMef31102nTp2MMcbs3LnTFCpUKCWXSgQwc+bMcTlWtWpVM3LkSJdjtWvXNkOGDHE5tnXrVlO8eHFz8uTJRNdZtGiRcXNzM+Hh4c5jkydPNj4+PiY6Otr5WapWrepyzaefftoEBwc7n9erV8/06tXL+TwuLs74+/ubMWPGJPszRkREGMBEREQk+zUiIuJqzRpjKlY0xorQxrRpY8zff9tdlYhkFSnJaynqkc6TJw///vsvAMuWLeOhhx4CwMvLi8uXL6duwgcaNGjA/PnzOX78OMYYQkND2bdvHy1atHC2uXTpEs888wyTJk2iaNGiia6xfv16qlevTpEiRZzHgoODiYyMZNeuXc42QUFBLq8LDg5m/fr1AFy9epXNmze7tHFzcyMoKMjZJinR0dFERka6PERE5O40bgxhYdbEwxw5YN48q3f6k08gPt7u6kQkO0lRkH7ooYfo3r073bt3Z9++fTz88MMA7Nq1i9KlS6d6cRMmTKBKlSqUKFECDw8PWrZsyaRJk2jcuLGzTb9+/WjQoAFt2rRJ8hrh4eEuIRpwPg8PD79lm8jISC5fvsyZM2eIi4tLsk3CNZIyZswYfH19nY+SJUsm/8OLiMhNeXnBqFGwdSvcfz9cuGCtN92okbVboohIekhRkJ40aRINGjTgn3/+4ccff6RgwYIAbN68mQ4dOqR6cRMmTGDDhg3Mnz+fzZs3M27cOHr16sWKFSsAmD9/PqtWrWL8+PGp/t6pYfDgwURERDgfx44ds7skEZEspVo1+PVXmDAB8uSxdkisVQtGjLA2eBERSUu3XUc6QWxsLB9//DEDBw6kRIkSLufeeuutVC/s8uXLvPHGG8yZM4eQkBDA2jkxLCyM999/n6CgIFatWsXBgwfJly+fy2sff/xxGjVqxOrVqylatGii1TVOnToF4BwKUrRoUeex69v4+Pjg7e2Nu7s77u7uSbZJajhJAk9PTzw9Pe/o84uISPK4u1tL5LVpAy+9BAsWwFtvwaxZ1qTEBx6wu0IRyaqS3SOdI0cOxo4dm2jZuLQSExNDTEwMbm6uJbq7uxP/v0FwgwYNYvv27YSFhTkfAB9++CFTp04FIDAwkB07drisrrF8+XJ8fHyoUqWKs83KlStd3mf58uUEBgYC4OHhQZ06dVzaxMfHs3LlSmcbERGxV8mSMH8+zJwJfn7WKh8NG8KLL0JEhN3ViUhWlKKhHc2bN2fNmjWp9uZRUVEuAfjQoUOEhYVx9OhRfHx8aNKkCQMGDGD16tUcOnSIadOm8dVXX9GuXTvA6kmuVq2aywMgICCAMmXKANCiRQuqVKlCp06d2LZtG0uXLuXNN9+kV69ezt7iF154gb/++ovXX3+dP//8k08++YRZs2a5LOnXv39/Pv/8c6ZPn86ePXt48cUXuXjxIl27dk21+yEiInfH4YCnnrJC9HPPWcemTIEqVa5t6iIikmpSshzI5MmTTdGiRc2rr75qZsyYYebNm+fySKnQ0FADJHp07tzZGGPMyZMnTZcuXYy/v7/x8vIyFStWNOPGjTPx8fE3vSZJLKN3+PBh06pVK+Pt7W0KFSpkXn31VRMTE5Oollq1ahkPDw9TtmxZM3Xq1ETXnjBhggkICDAeHh6mXr16ZsOGDSn6vFr+TkQkfa1aZUz58teWynvsMWOOH7e7KhHJyFKS11K0RfiNwyyu53A4iIuLu6tQn9Vpi3ARkfR3+bK1wsfYsRAXB76+1tfdu8Mt/rcmItlUmm0RHh8ff9OHQrSIiGRE3t4wejRs3gx161rjpXv2tLYa37vX7upEJDPT7+IiIpIt1KwJGzbABx9Arlzwyy9Qo4bVW331qt3ViUhmlOIgvWbNGlq3bk358uUpX748jz76KL/88kta1CYiIpKq3N2hXz/YtQtatrQC9LBhULu2FbJFRFIiRUH6m2++ISgoiFy5ctGnTx/69OmDt7c3zZs3Z8aMGWlVo4iISKoqXRoWLYJvv4VChaxg3aAB9Olj7ZIoIpIcKZpsWLlyZXr06OGyLBzABx98wOeff86ePXtSvcCsRJMNRUQynjNn4NVX4auvrOclS8Inn8Ajj9hbl4jYI80mG/7111+0bt060fFHH32UQ4cOpaxKERGRDKBQIZg+HZYtgzJl4NgxaN0ann4abtjQVkTERYqCdMmSJRPtAAiwYsUKSpYsmWpFiYiIpLeHHoIdO+C116xl8WbNgsqV4csvrVWoRURulCMljV999VX69OlDWFgYDRo0AGDdunVMmzaNjz76KE0KFBERSS+5c8N//gMdOljrTG/dCt26wTffwKefQoUKdlcoIhlJisZIA8yZM4dx48Y5x0NXrlyZAQMG0KZNmzQpMCvRGGkRkcwjNhY+/BCGD7c2dfHyslb4eO01yJnT7upEJK2kJK+lOEjLnVOQFhHJfA4ehBdegBUrrOc1asAXX8B999lbl4ikjTSbbFi2bFn+/fffRMfPnz9P2bJlU1aliIhIJlCunDURcfp0KFAAtm+H+++31qOOirK7OhGxU4qC9OHDh5PcCjw6Oprjx4+nWlEiIiIZicMBzz4Le/bAM89AfDyMHw/VqsGSJXZXJyJ2SdZkw/nz5zu/Xrp0Kb6+vs7ncXFxrFy5ktKlS6d6cSIiIhmJn5+1icv//R+8+CIcOQKtWlnhevx4KFzY7gpFJD0la4y0m5vVce1wOLixec6cOSldujTjxo3jEa1ef0saIy0iknVERcHQofDxx1YPdYEC0KiRtd34sGGJ248aBXFxMGJEupcqIimQ6mOk4+PjiY+PJyAggNOnTzufx8fHEx0dzd69exWiRUQkW8mTx1rVY8MGawLi2bMwb561yscNGwAzapQVrt3d7alVRNJGisZIHzp0iEKFCrkcO3/+fGrWIyIikqncdx9s2gRjxoCnp3Vs/HgIDraW0EsI0SNHWj3YIpJ1pChIv/fee8ycOdP5/Mknn6RAgQIUL16cbdu2pXpxIiIimUHOnDBokLUz4oMPWseWLbOCtUK0SNaVoiA9ZcoU51bgy5cvZ8WKFSxZsoRWrVoxYMCANClQREQks6hQAVatstaZBmvstJubFbJFJOtJ0Rbh4eHhziC9YMECnnrqKVq0aEHp0qWpX79+mhQoIiKSmTgccOLEtefx8dYExK1bIUeK/q8rIhldinqk8+fPz7FjxwBYsmQJQUFBABhjklxfWkREJLu5fkz0zz9bPdI7d0LdutaqHSKSdaQoSD/22GM888wzPPTQQ/z777+0atUKgK1bt1K+fPk0KVBERCSzuHFi4SOPwA8/WL3U27ZBvXpWD7WIZA0pCtIffvghvXv3pkqVKixfvpw8efIAcPLkSV566aU0KVBERCSziItLPLGwXTv4/nsrTG/ZAr16we13cBCRzCBZG7JI6tCGLCIi2de330KnTlaI7tPHWiLP4bC7KhG5UUry2m2nPcyfP59WrVqRM2dOl63Ck/Loo4+mrFIREZFsomNHuHoVnnvO2g0xZ074z38UpkUys9v2SLu5uREeHo6fn59zq/AkL+RwaMLhbahHWkREPvsMeva0vn7jDXj7bYVpkYwkVXuk46+bFRGvGRIiIiJ3pUcPq2f65Zdh9Ohrm7aISOaTosmGIiIicvd694YPPrC+Hj7c2l5cRDKfZC8NHx8fz7Rp0/jpp584fPgwDoeDMmXK8MQTT9CpUycc+ncpERGRZOvXD6KjYfBga4iHhwe8+qrdVYlISiSrR9oYw6OPPkr37t05fvw41atXp2rVqhw5coQuXbrQrl27tK5TREQkyxk0CN56y/r6tddgwgR76xGRlElWj/S0adNYu3YtK1eupGnTpi7nVq1aRdu2bfnqq6949tln06RIERGRrGroUGvM9DvvWMvieXhcm4woIhlbsnqkv/vuO954441EIRqgWbNmDBo0iG+//TbVixMREcnqHA5rR8TXXrOev/ACfPmlvTWJSPIkK0hv376dli1b3vR8q1at2LZtW6oVJSIikp04HDB2rNUjDdC9O3zzjb01icjtJStInz17liJFitz0fJEiRTh37lyqFSUiIpLdOBzWbocvvmjtfti5M8yaZXdVInIryQrScXFx5Mhx8+HU7u7uxMbGplpRIiIi2ZHDARMnQrduEB8PzzwDc+bYXZWI3EyyJhsaY+jSpQuenp5Jno+Ojk7VokRERLIrNzf49FNrAuLXX8PTT8NPP8Ejj9hdmYjcKFlBunPnzrdtoxU7REREUoe7O0ydCjEx8P338PjjMH8+BAfbXZmIXM9hjDF2F5FdpGTvdhERkZgYaN/e6pH28oIFC6B5c7urEsnaUpLXtEW4iIhIBpUzJ3z3HbRuDVeuWH+uXWt3VSKSQEFaREQkA/PwgNmzoWVLuHwZHn4YfvvN7qpEBBSkRUREMjxPT2t4R1AQXLwIrVrBxo12VyUiCtIiIiKZgLc3zJsHTZpAZKQ18XDLFrurEsneFKRFREQyiVy5rAmHDzwA58/DQw/B9u12VyWSfSlIi4iIZCJ58sCiRVCvHpw9aw332L3b7qpEsicFaRERkUzGxweWLIHateGff6BZM9i71+6qRLIfBWkREZFMKH9+WLYMatSAU6esMH3woN1ViWQvCtIiIiKZVMGCsGIFVKkCJ05YYfrwYburEsk+FKRFREQyscKFYeVKuOceOHrUCtPHjtldlUj2oCAtIiKSyRUtCqtWQblycOiQFaZPnLC7KpGsT0FaREQkCyhe3ArTpUvDgQPQvLk1dlpE0o6CtIiISBYREGCF6RIl4M8/rTD9zz92VyWSdSlIi4iIZCFlykBoKBQrBrt2WZu2nD1rd1UiWZOCtIiISBZTvrzVM12kCGzbBi1aWDshikjqUpAWERHJgipVslbzKFQINm+GVq0gMtLuqkSyFgVpERGRLKpqVWud6fz5YcMGCAmBqCi7qxLJOhSkRUREsrCaNWH5cvD1hV9/hUcfhUuX7K5KJGtQkBYREcni6tSBpUshb15rImLbtnDlit1ViWR+CtIiIiLZQP36sGgR5M5t9VA//jhER9tdlUjmpiAtIiKSTTRsCAsWgLe3FaqffhpiYuyuSiTzsjVIr127ltatW+Pv74/D4WDu3Lku56OioujduzclSpTA29ubKlWqMGXKFOf5s2fP8vLLL1OxYkW8vb0JCAigT58+REREuFzn6NGjhISEkCtXLvz8/BgwYACxsbEubVavXk3t2rXx9PSkfPnyTJs2LVG9kyZNonTp0nh5eVG/fn02btyYavdCREQkPTz4IMyfD56eMG8ePPMM3PC/RBFJJluD9MWLF6lZsyaTJk1K8nz//v1ZsmQJ33zzDXv27KFv37707t2b+fPnA3DixAlOnDjB+++/z86dO5k2bRpLliyhW7duzmvExcUREhLC1atX+e2335g+fTrTpk1j2LBhzjaHDh0iJCSEpk2bEhYWRt++fenevTtLly51tpk5cyb9+/dn+PDhbNmyhZo1axIcHMzp06fT6O6IiIikjaAgmDMHPDzghx/g2WchLs7uqkQyIZNBAGbOnDkux6pWrWpGjhzpcqx27dpmyJAhN73OrFmzjIeHh4mJiTHGGLNo0SLj5uZmwsPDnW0mT55sfHx8THR0tDHGmNdff91UrVrV5TpPP/20CQ4Odj6vV6+e6dWrl/N5XFyc8ff3N2PGjEn2Z4yIiDCAiYiISPZrRERE0sq8ecbkyGEMGNO5szFxcXZXJGK/lOS1DD1GukGDBsyfP5/jx49jjCE0NJR9+/bRokWLm74mIiICHx8fcuTIAcD69eupXr06RYoUcbYJDg4mMjKSXbt2OdsEBQW5XCc4OJj169cDcPXqVTZv3uzSxs3NjaCgIGebpERHRxMZGenyEBERySgefRS+/x7c3WH6dOjZE+Lj7a5KJPPI0EF6woQJVKlShRIlSuDh4UHLli2ZNGkSjRs3TrL9mTNnGDVqFD169HAeCw8PdwnRgPN5eHj4LdtERkZy+fJlzpw5Q1xcXJJtEq6RlDFjxuDr6+t8lCxZMvkfXkREJB08/jh8/TW4ucEXX8DLL4Mxdlclkjlk+CC9YcMG5s+fz+bNmxk3bhy9evVixYoVidpGRkYSEhJClSpVGDFiRPoXm4TBgwcTERHhfBw7dszukkRERBLp0AGmTgWHAz75BPr3V5gWSY4cdhdwM5cvX+aNN95gzpw5hISEAFCjRg3CwsJ4//33XYZZXLhwgZYtW5I3b17mzJlDzpw5neeKFi2aaHWNU6dOOc8l/Jlw7Po2Pj4+eHt74+7ujru7e5JtEq6RFE9PTzw9Pe/g04uIiKSvZ5+1lsLr3h3Gj7cmIr77rhWuRSRpGbZHOiYmhpiYGNzcXEt0d3cn/roBXJGRkbRo0QIPDw/mz5+Pl5eXS/vAwEB27NjhsrrG8uXL8fHxoUqVKs42K1eudHnd8uXLCQwMBMDDw4M6deq4tImPj2flypXONiIiIpldt25WjzTA2LEwfLi99YhkdLb2SEdFRXHgwAHn80OHDhEWFkaBAgUICAigSZMmDBgwAG9vb0qVKsWaNWv46quv+OCDD4BrIfrSpUt88803LhP6ChcujLu7Oy1atKBKlSp06tSJsWPHEh4ezptvvkmvXr2cvcUvvPACEydO5PXXX+e5555j1apVzJo1i4ULFzpr69+/P507d6Zu3brUq1eP8ePHc/HiRbp27ZqOd0xERCRtvfgiXL0KffvCqFFWz/Sbb9pdlUgGlfaLiNxcaGioARI9OnfubIwx5uTJk6ZLly7G39/feHl5mYoVK5px48aZ+Pj4W74eMIcOHXK+z+HDh02rVq2Mt7e3KVSokHn11Vedy+NdX0utWrWMh4eHKVu2rJk6dWqieidMmGACAgKMh4eHqVevntmwYUOKPq+WvxMRkcxi7FhrWTww5r337K5GJP2kJK85jNF0gvQSGRmJr6+vc4k+ERGRjOydd671Rn/4odVLLZLVpSSvZdgx0iIiImKvIUMgYSPgfv3gJhsRi2RbCtIiIiJyUyNGwMCB1te9e8Pnn9tajkiGoiAtIiIiN+VwwJgxVo80WLsfTp9ub00iGYWCtIiIiNySwwHjxkGvXtb0w65dYcYMu6sSsZ+CtIiIiNyWwwEffwzPP2+F6WefhR9+sLsqEXspSIuIiEiyuLnBlCnQpQvExVlbi8+bZ3dVIvZRkBYREZFkc3ODL76AZ56B2Fh48klYtMjuqkTsoSAtIiIiKeLubk04fPJJiImBxx6DZcvsrkok/SlIi4iISIrlyAHffgtt20J0NLRpA6Ghdlclkr4UpEVEROSO5MwJ338PISFw5Qo88gj88ovdVYmkHwVpERERuWOentbqHS1awKVL8PDDsGGD3VWJpA8FaREREbkrXl4wdy40bQpRUdCyJWzaZHdVImlPQVpERETumrc3/PwzNGoEERFWD3VYmN1ViaQtBWkRERFJFblzw8KFEBgI585BUBDs3Gl3VSJpR0FaREREUk3evLB4MdStC//+C82bw59/2l2VSNpQkBYREZFU5esLS5dCrVpw+jQ0awb799tdlUjqU5AWERGRVFegACxfDtWqwcmTVg/1X38lbjdqFIwYke7liaQKBWkRERFJE4UKwcqV1p+RkVC7Nhw5cu38qFEwbJi1U6JIZqQgLSIiImnGzw+2b7d6qCMi4N574fjxayF65EgYOtTuKkXuTA67CxAREZGsrVgx2LYNatSwVvMoUcI6PnSoQrRkbuqRFhERkTRXogRs3ep6bMoUq0f6zBl7ahK5WwrSIiIiki6++sr6M2FM9D//wPDhEBAAvXsnPRlRJCNTkBYREZE0d/2Y6NjYayt1FCsGly/DpElQoQI8+SRs3GhrqSLJpiAtIiIiaSqpiYXDh1vPT56ELl2gZUuIj4cffoD69aFJE2vL8fh4W0sXuSUFaREREUlTcXFJr84xdKh1vFQpazfE7duhc2fImRPWroVHH4WqVeG//4UrV+ypXeRWHMYYY3cR2UVkZCS+vr5ERETg4+NjdzkiIiIZ0vHj8NFH8Omn1vrTAEWKQJ8+8OKLkD+/vfVJ1paSvKYeaREREclQiheHsWPh2DF4/31rxY9Tp2DIEChZEl55BQ4ftrtKEQVpERERyaB8fODVV63VPL7+2lqH+uJF+PhjKF8eOnSAzZvtrlKyMwVpERERydBy5oT/+z8IC4OlSyEoyBp3/f33ULcuNGtmjbHWYFVJbwrSIiIikik4HNCiBSxfbm3u0rGjtSZ1aCg8/DBUrw7TpsHVq3ZXKtmFgrSIiIhkOrVqwTffWMM++veHPHlg1y7o2hXKlLHGWJ8/b3eVktUpSIuIiEimFRAA48ZZExPfew/8/eHECRg40Dr36qvWOZG0oCAtIiIimV6+fPD663DoEEydaq0/feECfPABlC1rjbHets3uKiWrUZAWERGRLMPDw9opcccOWLQImja1tiT/9ltrOEiLFrBsmSYmSupQkBYREZEsx+GAVq1g1SrYtAnat7cmJi5fDsHBcO+91hjrmBi7K5XMTEFaREREsrQ6deC77+DAAWszl9y5rWEenTpZwz7Gjbu2g6JISihIi4iISLZQujSMHw9Hj8I771jbjv/9N7z2mrVj4sCB1vbkIsmlIC0iIiLZSoEC8MYb1jbjX3wBlSpZPdJjx1pL5yWMsRa5HQVpERERyZa8vKBbN2v96Z9/hsaNrTHT06db25EnjLHWxES5GQVpERERydbc3OCRR2DNGvj9d3jySevYkiXQvLm1Dfl331mrf4hcT0FaRERE5H/q1YNZs2DfPujVC7y9YcsWeOYZKF8ePvoIoqLsrlIyCgVpERERkRuUKwcTJ1q7Io4cCYULw5Ej0LevNTHxjTfg5Em7qxS7KUiLiIiI3ETBgjB0qBWiP/0U7rkHzp+HMWOsVUC6dYM9e+yuUuyiIC0iIiJyG97e0KOHFZrnzIEGDeDqVfjyS6hSBVq3tsZYa2Ji9qIgLSIiIpJMbm7Qti2sW2c92rWzdlFcsAAefBDq14fZsyEuzu5KJT0oSIuIiIjcgQYN4KefYO9eeOEFazm9P/6Ap56CChWsMdYXL9pdpaQlBWkRERGRu1ChAkyebI2jHj7cGld96BC8/DIEBFhjrE+ftrtKSQsK0iIiIiKpwM8PRoywtiCfNMla+ePsWXj7bStQ9+xpLasnWYeCtIiIiEgqypULXnrJGvLxww/WuOnoaPjsM2s78oQx1mAF71Gjkr7OqFHWecm4FKRFRERE0oC7Ozz+OKxfD7/8Ao8+aq3qMW8eNGxojbHeuxeGDUscpkeNso67u9tTuySPgrSIiIhIGnI4rOA8b561fN7zz4OnpxWwv/8eChSwQvOwYVb7hBA9cqQ1vloyLocxWvEwvURGRuLr60tERAQ+Pj52lyMiIiI2OXUKJkyATz6Bc+euHXdzg/h4eOuta8Fa0ldK8pp6pEVERETSWZEi1iTEo0fh44+tXRLBCtEA//0vDBgAmzdrk5eMTEFaRERExCZ58ljL5HXpYj13+18yO3oU3n8f6ta1ltcbMgS2b1eozmgUpEVERERslLA6x8iR1o6ICeOiq1a1tiY/eBBGj4aaNa1jb70Ff/5pa8nyPwrSIiIiIjZJamLhyJHWY9cuePVV+O47a8k8T09rsuKIEVC5MtSqBWPGwF9/2fgBsjlNNkxHmmwoIiIi1xsxwlriLqnVOUaNsnqoE9aSjoiwVv6YOROWLYPY2Gtt69aF9u2t7clLlkyPyrOuTDPZcO3atbRu3Rp/f38cDgdz5851OR8VFUXv3r0pUaIE3t7eVKlShSlTpri0uXLlCr169aJgwYLkyZOHxx9/nFOnTrm0OXr0KCEhIeTKlQs/Pz8GDBhA7PV/+4DVq1dTu3ZtPD09KV++PNOmTUtU76RJkyhdujReXl7Ur1+fjRs3psp9EBERkexpxIibL3E3dKjrhiy+vvDss7BwobXqxxdfQFCQNa560yZ47TVrB8UHHrAmMJ48mR6fIHuzNUhfvHiRmjVrMmnSpCTP9+/fnyVLlvDNN9+wZ88e+vbtS+/evZk/f76zTb9+/fj555+ZPXs2a9as4cSJEzz22GPO83FxcYSEhHD16lV+++03pk+fzrRp0xh23Zoyhw4dIiQkhKZNmxIWFkbfvn3p3r07S5cudbaZOXMm/fv3Z/jw4WzZsoWaNWsSHBzM6dOn0+DOiIiIiNxcgQLQrRssX24F5k8+gSZNrDWrf/sNXnkFiheHpk1hyhT45x+7K86iTAYBmDlz5rgcq1q1qhk5cqTLsdq1a5shQ4YYY4w5f/68yZkzp5k9e7bz/J49ewxg1q9fb4wxZtGiRcbNzc2Eh4c720yePNn4+PiY6OhoY4wxr7/+uqlatarL+zz99NMmODjY+bxevXqmV69ezudxcXHG39/fjBkzJtmfMSIiwgAmIiIi2a8RERERSa7jx40ZP96YwEBjrDU+rIe7uzEtWhjz3/8ac/as3VVmbCnJaxl6smGDBg2YP38+x48fxxhDaGgo+/bto0WLFgBs3ryZmJgYgoKCnK+pVKkSAQEBrF+/HoD169dTvXp1ihQp4mwTHBxMZGQku3btcra5/hoJbRKucfXqVTZv3uzSxs3NjaCgIGcbEREREbv5+1u90b/9BocPw9ixUKeONdZ62TKrF7tIEWjdGr75BiIj7a44c8vQQXrChAlUqVKFEiVK4OHhQcuWLZk0aRKNGzcGIDw8HA8PD/Lly+fyuiJFihAeHu5sc32ITjifcO5WbSIjI7l8+TJnzpwhLi4uyTYJ10hKdHQ0kZGRLg8RERGR9FCqlLWpy6ZNsH+/tQFM9eoQEwMLFkCnTuDnB48/DrNmwcWLdlec+WT4IL1hwwbmz5/P5s2bGTduHL169WLFihV2l5YsY8aMwdfX1/koqWm0IiIiYoPy5a9t6rJ7NwwfDhUrQnQ0/PQTPP20Farbt4e5c+HKFbsrzhwybJC+fPkyb7zxBh988AGtW7emRo0a9O7dm6effpr3338fgKJFi3L16lXOnz/v8tpTp05RtGhRZ5sbV/FIeH67Nj4+Pnh7e1OoUCHc3d2TbJNwjaQMHjyYiIgI5+PYsWMpvxEiIiIiqahyZWs1kD17ICwMBg+GsmXh0iVrab127azhH88+C4sWwdWrdleccWXYIB0TE0NMTAxubq4luru7E/+/jejr1KlDzpw5WblypfP83r17OXr0KIGBgQAEBgayY8cOl9U1li9fjo+PD1WqVHG2uf4aCW0SruHh4UGdOnVc2sTHx7Ny5Upnm6R4enri4+Pj8hARERHJCBwOa7fE0aPhwAHYuNHaAKZkSWvs9NdfQ0gIFC0K3btbK4TcsHqwpP3cx5u7cOGC2bp1q9m6dasBzAcffGC2bt1qjhw5YowxpkmTJqZq1aomNDTU/PXXX2bq1KnGy8vLfPLJJ85rvPDCCyYgIMCsWrXKbNq0yQQGBprAwEDn+djYWFOtWjXTokULExYWZpYsWWIKFy5sBg8e7Gzz119/mVy5cpkBAwaYPXv2mEmTJhl3d3ezZMkSZ5vvv//eeHp6mmnTppndu3ebHj16mHz58rmsBnI7WrVDREREMrq4OGPWrTPm5ZeNKVrUdfWPwoWNefFFY1avNiY21u5K00ZK8pqtQTo0NNQAiR6dO3c2xhhz8uRJ06VLF+Pv72+8vLxMxYoVzbhx40x8fLzzGpcvXzYvvfSSyZ8/v8mVK5dp166dOXnypMv7HD582LRq1cp4e3ubQoUKmVdffdXExMQkqqVWrVrGw8PDlC1b1kydOjVRvRMmTDABAQHGw8PD1KtXz2zYsCFFn1dBWkRERDKT2FhjQkON6dnTmEKFXEN1sWLGvPKKMb/9Zsx10SzTS0le0xbh6UhbhIuIiEhmFRsLq1bB99/DnDlw/RS1gABrwuLTT0Pt2tawkcwqJXlNQTodKUiLiIhIVnD1qrUu9cyZ1iofUVHXzpUvfy1UV6uW+UK1gnQGpSAtIiIiWc3ly7B4sRWqf/7Zep6gcuVrobpSJftqTAkF6QxKQVpERESysqgoa7OXmTOtcB0dfe1czZrXQnXZsvbVeDsK0hmUgrSIiIhkFxERMG+eFaqXLXNdOu+++6xA/dRT1nJ7GYmCdAalIC0iIiLZ0dmz1gTF77+3Jiz+b0sQABo0sHZUfOIJKFbMOjZiBLi7w9Chia81ahTExVlt0kJK8lqG3ZBFRERERLKGAgWgWzdrU5eTJ+GTT6BJE2si4m+/QZ8+ULw4NG0Kn35qDQkZNswKzdcbNco67u5uz+e4kXqk05F6pEVERESuOXECZs+2hn+sX3/tuLs7lC4NBw9aW5iPHn0tRI8cmXRPdWrR0I4MSkFaREREJGlHjsCsWVao3rzZ9ZybmzUcJK1DNChIZ1gK0iIiIiK3d+CAFahnzoQdO6xjHh6uq4CkFY2RFhEREZFMq3x5GDIEnnzSep4jh7UJzI1jpu2mIC0iIiIiGc71Y6JjYqw/k5qAaKccdhcgIiIiInK9pCYWJvw5bJjrczspSIuIiIhIhhIXl/TEwoTncXHpX1NSNNkwHWmyoYiIiEjGpsmGIiIiIiJpTEFaREREROQOKEiLiIiIiNwBBWkRERERkTugIC0iIiIicgcUpEVERERE7oCCtIiIiIjIHVCQFhERERG5AwrSIiIiIiJ3QEFaREREROQOKEiLiIiIiNyBHHYXkJ0YYwBrD3cRERERyXgSclpCbrsVBel0dOHCBQBKlixpcyUiIiIicisXLlzA19f3lm0cJjlxW1JFfHw8J06cIG/evDgcjjR/v8jISEqWLMmxY8fw8fFJ8/fLTHRvkqb7cnO6N0nTfbk53Zuk6b7cnO5N0tL7vhhjuHDhAv7+/ri53XoUtHqk05GbmxslSpRI9/f18fHRD+RN6N4kTffl5nRvkqb7cnO6N0nTfbk53Zukped9uV1PdAJNNhQRERERuQMK0iIiIiIid0BBOgvz9PRk+PDheHp62l1KhqN7kzTdl5vTvUma7svN6d4kTffl5nRvkpaR74smG4qIiIiI3AH1SIuIiIiI3AEFaRERERGRO6AgLSIiIiJyBxSkRURERETugIJ0FjRmzBjuu+8+8ubNi5+fH23btmXv3r12l2W7yZMnU6NGDeeC7oGBgSxevNjusjKkd999F4fDQd++fe0uxVYjRozA4XC4PCpVqmR3WRnG8ePH+b//+z8KFiyIt7c31atXZ9OmTXaXZavSpUsn+jvjcDjo1auX3aXZLi4ujqFDh1KmTBm8vb0pV64co0aNQmseWFtR9+3bl1KlSuHt7U2DBg34448/7C4r3a1du5bWrVvj7++Pw+Fg7ty5LueNMQwbNoxixYrh7e1NUFAQ+/fvt6fY/1GQzoLWrFlDr1692LBhA8uXLycmJoYWLVpw8eJFu0uzVYkSJXj33XfZvHkzmzZtolmzZrRp04Zdu3bZXVqG8scff/Dpp59So0YNu0vJEKpWrcrJkyedj19//dXukjKEc+fO8cADD5AzZ04WL17M7t27GTduHPnz57e7NFv98ccfLn9fli9fDsCTTz5pc2X2e++995g8eTITJ05kz549vPfee4wdO5YJEybYXZrtunfvzvLly/n666/ZsWMHLVq0ICgoiOPHj9tdWrq6ePEiNWvWZNKkSUmeHzt2LB9//DFTpkzh999/J3fu3AQHB3PlypV0rvQ6RrK806dPG8CsWbPG7lIynPz585svvvjC7jIyjAsXLpgKFSqY5cuXmyZNmphXXnnF7pJsNXz4cFOzZk27y8iQBg4caBo2bGh3GRneK6+8YsqVK2fi4+PtLsV2ISEh5rnnnnM59thjj5mOHTvaVFHGcOnSJePu7m4WLFjgcrx27dpmyJAhNlVlP8DMmTPH+Tw+Pt4ULVrU/Oc//3EeO3/+vPH09DTfffedDRVa1COdDURERABQoEABmyvJOOLi4vj++++5ePEigYGBdpeTYfTq1YuQkBCCgoLsLiXD2L9/P/7+/pQtW5aOHTty9OhRu0vKEObPn0/dunV58skn8fPz49577+Xzzz+3u6wM5erVq3zzzTc899xzOBwOu8uxXYMGDVi5ciX79u0DYNu2bfz666+0atXK5srsFRsbS1xcHF5eXi7Hvb299S9g1zl06BDh4eEu/3/y9fWlfv36rF+/3ra6ctj2zpIu4uPj6du3Lw888ADVqlWzuxzb7dixg8DAQK5cuUKePHmYM2cOVapUsbusDOH7779ny5Yt2XJc3s3Ur1+fadOmUbFiRU6ePMlbb71Fo0aN2LlzJ3nz5rW7PFv99ddfTJ48mf79+/PGG2/wxx9/0KdPHzw8POjcubPd5WUIc+fO5fz583Tp0sXuUjKEQYMGERkZSaVKlXB3dycuLo533nmHjh072l2arfLmzUtgYCCjRo2icuXKFClShO+++47169dTvnx5u8vLMMLDwwEoUqSIy/EiRYo4z9lBQTqL69WrFzt37tRvtf9TsWJFwsLCiIiI4IcffqBz586sWbMm24fpY8eO8corr7B8+fJEvSLZ2fU9ZTVq1KB+/fqUKlWKWbNm0a1bNxsrs198fDx169Zl9OjRANx7773s3LmTKVOmKEj/z3//+19atWqFv7+/3aVkCLNmzeLbb79lxowZVK1albCwMPr27Yu/v3+2/zvz9ddf89xzz1G8eHHc3d2pXbs2HTp0YPPmzXaXJrehoR1ZWO/evVmwYAGhoaGUKFHC7nIyBA8PD8qXL0+dOnUYM2YMNWvW5KOPPrK7LNtt3ryZ06dPU7t2bXLkyEGOHDlYs2YNH3/8MTly5CAuLs7uEjOEfPnycc8993DgwAG7S7FdsWLFEv0CWrlyZQ19+Z8jR46wYsUKunfvbncpGcaAAQMYNGgQ7du3p3r16nTq1Il+/foxZswYu0uzXbly5VizZg1RUVEcO3aMjRs3EhMTQ9myZe0uLcMoWrQoAKdOnXI5furUKec5OyhIZ0HGGHr37s2cOXNYtWoVZcqUsbukDCs+Pp7o6Gi7y7Bd8+bN2bFjB2FhYc5H3bp16dixI2FhYbi7u9tdYoYQFRXFwYMHKVasmN2l2O6BBx5ItKzmvn37KFWqlE0VZSxTp07Fz8+PkJAQu0vJMC5duoSbm2vscHd3Jz4+3qaKMp7cuXNTrFgxzp07x9KlS2nTpo3dJWUYZcqUoWjRoqxcudJ5LDIykt9//93WuU4a2pEF9erVixkzZjBv3jzy5s3rHDvk6+uLt7e3zdXZZ/DgwbRq1YqAgAAuXLjAjBkzWL16NUuXLrW7NNvlzZs30Rj63LlzU7BgwWw9tv61116jdevWlCpVihMnTjB8+HDc3d3p0KGD3aXZrl+/fjRo0IDRo0fz1FNPsXHjRj777DM+++wzu0uzXXx8PFOnTqVz587kyKH/zSZo3bo177zzDgEBAVStWpWtW7fywQcf8Nxzz9ldmu2WLl2KMYaKFSty4MABBgwYQKVKlejatavdpaWrqKgol3/xO3ToEGFhYRQoUICAgAD69u3L22+/TYUKFShTpgxDhw7F39+ftm3b2le0beuFSJoBknxMnTrV7tJs9dxzz5lSpUoZDw8PU7hwYdO8eXOzbNkyu8vKsLT8nTFPP/20KVasmPHw8DDFixc3Tz/9tDlw4IDdZWUYP//8s6lWrZrx9PQ0lSpVMp999pndJWUIS5cuNYDZu3ev3aVkKJGRkeaVV14xAQEBxsvLy5QtW9YMGTLEREdH212a7WbOnGnKli1rPDw8TNGiRU2vXr3M+fPn7S4r3YWGhiaZXzp37myMsZbAGzp0qClSpIjx9PQ0zZs3t/3nzGGMthQSEREREUkpjZEWEREREbkDCtIiIiIiIndAQVpERERE5A4oSIuIiIiI3AEFaRERERGRO6AgLSIiIiJyBxSkRUTSwJw5c5g1a5bdZYiISBpSkBYRSWUbN26kb9++3H///XaXctdWr16Nw+Hg/PnzafYepUuXZvz48Wl2/fSUlT6LiNyegrSIyC106dIFh8PBu+++63J87ty5OByORO0jIiLo3r07c+bMISAgIL3KlP85fPgwDoeDsLAwu0sRkWxAQVpE5Da8vLx47733OHfu3G3b+vr6sn37dmrXrp0OlSXt6tWrtr13VhITE2N3CSKSwSlIi4jcRlBQEEWLFmXMmDE3bTNixAhq1arlcmz8+PGULl3a+bxLly60bduW0aNHU6RIEfLly8fIkSOJjY1lwIABFChQgBIlSjB16lSX6xw7doynnnqKfPnyUaBAAdq0acPhw4cTXfedd97B39+fihUrArBjxw6aNWuGt7c3BQsWpEePHkRFRd3ysy5atIh77rkHb29vmjZt6vI+CX799VcaNWqEt7c3JUuWpE+fPly8ePGW1/3555+577778PLyolChQrRr1y7Jdkn1KJ8/fx6Hw8Hq1asBOHfuHB07dqRw4cJ4e3tToUIF5z0rU6YMAPfeey8Oh4MHH3zQeZ0vvviCypUr4+XlRaVKlfjkk08Sve/MmTNp0qQJXl5efPvttxw5coTWrVuTP39+cufOTdWqVVm0aNEtP+v1vvjiC/Lly8fKlSuT/RoRyTwUpEVEbsPd3Z3Ro0czYcIE/v7777u61qpVqzhx4gRr167lgw8+YPjw4TzyyCPkz5+f33//nRdeeIGePXs63ycmJobg4GDy5s3LL7/8wrp168iTJw8tW7Z06XleuXIle/fuZfny5SxYsICLFy8SHBxM/vz5+eOPP5g9ezYrVqygd+/eN63t2LFjPPbYY7Ru3ZqwsDC6d+/OoEGDXNocPHiQli1b8vjjj7N9+3ZmzpzJr7/+esvrLly4kHbt2vHwww+zdetWVq5cSb169e74Hg4dOpTdu3ezePFi9uzZw+TJkylUqBBgjU8HWLFiBSdPnuSnn34C4Ntvv2XYsGG888477Nmzh9GjRzN06FCmT5/ucu1BgwbxyiuvsGfPHoKDg+nVqxfR0dGsXbuWHTt28N5775EnT55k1Tl27FgGDRrEsmXLaN68+R1/XhHJwIyIiNxU586dTZs2bYwxxtx///3mueeeM8YYM2fOHHP9f0KHDx9uatas6fLaDz/80JQqVcrlWqVKlTJxcXHOYxUrVjSNGjVyPo+NjTW5c+c23333nTHGmK+//tpUrFjRxMfHO9tER0cbb29vs3TpUud1ixQpYqKjo51tPvvsM5M/f34TFRXlPLZw4ULj5uZmwsPDk/ysgwcPNlWqVHE5NnDgQAOYc+fOGWOM6datm+nRo4dLm19++cW4ubmZy5cvJ3ndwMBA07FjxyTPGWNMqVKlzIcffmiMMebQoUMGMFu3bnWeP3funAFMaGioMcaY1q1bm65duyZ5raReb4wx5cqVMzNmzHA5NmrUKBMYGOjyuvHjx7u0qV69uhkxYsRNa7/ZZ3n99ddNsWLFzM6dO5P9WhHJfHLYGeJFRDKT9957j2bNmvHaa6/d8TWqVq2Km9u1fwwsUqQI1apVcz53d3enYMGCnD59GoBt27Zx4MAB8ubN63KdK1eucPDgQefz6tWr4+Hh4Xy+Z88eatasSe7cuZ3HHnjgAeLj49m7dy9FihRJVNuePXuoX7++y7HAwECX59u2bWP79u18++23zmPGGOLj4zl06BCVK1dOdN2wsDCef/75pG/IHXjxxRd5/PHH2bJlCy1atKBt27Y0aNDgpu0vXrzIwYMH6datm0sdsbGx+Pr6urStW7euy/M+ffrw4osvsmzZMoKCgnj88cepUaPGLesbN24cFy9eZNOmTZQtW/YOPqGIZBYa2iEikkyNGzcmODiYwYMHJzrn5uaGMcblWFKT1XLmzOny3OFwJHksPj4egKioKOrUqUNYWJjLY9++fTzzzDPO11wfmNNSVFQUPXv2dKll27Zt7N+/n3LlyiX5Gm9v72RfP+GXjOvv5Y33sVWrVhw5coR+/fpx4sQJmjdvfstfbhLGhX/++ecude/cuZMNGza4tL3xPnbv3p2//vqLTp06sWPHDurWrcuECRNu+RkaNWpEXFyc1hEXyQYUpEVEUuDdd9/l559/Zv369S7HCxcuTHh4uEsATI0l2GrXrs3+/fvx8/OjfPnyLo8be1OvV7lyZbZt2+YyCXDdunW4ubk5JyMm9ZqEMcYJbgyatWvXZvfu3YlqKV++vEuP+PVq1KiR7Ml2hQsXBuDkyZPOY0ndx8KFC9O5c2e++eYbxo8fz2effQbgrCEuLs7ZtkiRIvj7+/PXX38lqjlhcuKtlCxZkhdeeIGffvqJV199lc8///yW7evVq8fixYsZPXo077///m2vLyKZl4K0iEgKVK9enY4dO/Lxxx+7HH/wwQf5559/GDt2LAcPHmTSpEksXrz4rt+vY8eOFCpUiDZt2vDLL79w6NAhVq9eTZ8+fW458bFjx454eXnRuXNndu7cSWhoKC+//DKdOnVKclgHwAsvvMD+/fsZMGAAe/fuZcaMGUybNs2lzcCBA/ntt9/o3bs3YWFh7N+/n3nz5t1ysuHw4cP57rvvGD58OHv27HFO2kuKt7c3999/P++++y579uxhzZo1vPnmmy5thg0bxrx58zhw4AC7du1iwYIFziElfn5+eHt7s2TJEk6dOkVERAQAb731FmPGjOHjjz9m37597Nixg6lTp/LBBx/ctG6Avn37snTpUg4dOsSWLVsIDQ1NcvjKjRo0aMCiRYt46623tEGLSBamIC0ikkIjR450Dr1IULlyZT755BMmTZpEzZo12bhx412NpU6QK1cu1q5dS0BAAI899hiVK1emW7duXLlyBR8fn1u+bunSpZw9e5b77ruPJ554gubNmzNx4sSbviYgIIAff/yRuXPnUrNmTaZMmcLo0aNd2tSoUYM1a9awb98+GjVqxL333suwYcPw9/e/6XUffPBBZs+ezfz586lVqxbNmjVL1PN9vS+//JLY2Fjq1KlD3759efvtt13Oe3h4MHjwYGrUqEHjxo1xd3fn+++/ByBHjhx8/PHHfPrpp/j7+9OmTRvAGqLxxRdfMHXqVKpXr06TJk2YNm3abXuk4+Li6NWrF5UrV6Zly5bcc889Lsvm3UrDhg1ZuHAhb7755m2Hg4hI5uQwNw7qExERERGR21KPtIiIiIjIHVCQFhERERG5AwrSIiIiIiJ3QEFaREREROQOKEiLiIiIiNwBBWkRERERkTugIC0iIiIicgcUpEVERERE7oCCtIiIiIjIHVCQFhERERG5AwrSIiIiIiJ3QEFaREREROQO/D9Pzx8g4cF9AwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "from sklearn.cluster import KMeans\n", - "from sklearn.preprocessing import StandardScaler\n", - "\n", - "# Suponiendo que ya has separado el 'id' y tienes tus datos en X (sin la columna 'id')\n", - "# y ya están transformados (numéricos) y listos para el clustering.\n", - "# Por ejemplo, si tienes variables categóricas ya convertidas con get_dummies:\n", - "# X = pd.get_dummies(X, dummy_na=True)\n", - "\n", - "# Escalar datos\n", - "scaler = StandardScaler()\n", - "X_scaled = scaler.fit_transform(X)\n", - "\n", - "distortions = []\n", - "K = range(2, 11) # rango de k a evaluar, puedes ajustarlo según tus necesidades\n", - "for k in K:\n", - " kmeans = KMeans(n_clusters=k, random_state=42)\n", - " kmeans.fit(X_scaled)\n", - " distortions.append(kmeans.inertia_)\n", - "\n", - "plt.figure(figsize=(8,5))\n", - "plt.plot(K, distortions, 'bx-')\n", - "plt.xlabel('Número de clusters k')\n", - "plt.ylabel('Distorsión (Inercia)')\n", - "plt.title('Método del Codo para determinar k')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Elementos con 'id' NaN:\n", - "Empty DataFrame\n", - "Columns: [Weight, Upper_Material, Midsole_Material, Outsole, Cushioning_System, Drop__heel-to-toe_differential_, Usage_Type, Gender, Available_Sizes, Width, Additional_Technologies, id, regularPrice, undiscounted_price]\n", - "Index: []\n" - ] - } - ], - "source": [ - "# Filtrar los elementos donde 'id' sea NaN\n", - "id_nan = df[df['id'].isna()]\n", - "\n", - "# Imprimir los resultados\n", - "print(\"Elementos con 'id' NaN:\")\n", - "print(id_nan)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Conteo de elementos por cluster:\n", - "cluster\n", - "0 2\n", - "1 3\n", - "2 22\n", - "3 64\n", - "4 93\n", - "5 268\n", - "6 1\n", - "7 1\n", - "Name: count, dtype: int64\n", - "\n", - "Porcentaje de elementos por cluster:\n", - "cluster\n", - "0 0.44\n", - "1 0.66\n", - "2 4.85\n", - "3 14.10\n", - "4 20.48\n", - "5 59.03\n", - "6 0.22\n", - "7 0.22\n", - "Name: count, dtype: float64\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAIpCAYAAAChX6nLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmhElEQVR4nO3dd3hUddrG8fvMhBRCCmkkoYQiQhBCkSpIE4mIrAiKICKC4oqAICvYkGIBy1qQF7GsAroiqCiuoCCiwipNEKQjPbQkJEBCAiQkc94/2IwMSSDMCUxCvp/rYq+d5/zmzPObMxNz5zTDNE1TAAAAAAC32TzdAAAAAACUdgQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwC4SkyZMkWGYeiDDz7wdCsAAJQ5BCsAHvXzzz/LMAyNHz/eI69fvXp1Va9e3aU2fvx4GYahn3/+2SM9nc8wDLVv3/6CY1avXq3HH39cY8eO1QMPPHBlGitAUXq9UmbMmCHDMDRjxgxPt4JSzNM/owCUHgQrAJbt3btXhmG4/Ctfvryio6N10003aezYsdq1a9dlee327dvLMIzLsu7S4tixY+rVq5f69OmjCRMmeLodeFBBfyhA6VLS/rADoOi8PN0AgKtHrVq1dO+990qSsrKylJycrNWrV+v555/XxIkTNXr0aL344osuQah58+baunWrwsLCPNLzkiVLPPK6l2Lr1q0qX758ocvXr1+vRx55RI899tgV7AoAAJyLYAWg2FxzzTUFHi7zyy+/qF+/fpo0aZLsdruef/5557Ly5curbt26V7BLV7Vq1fLYaxfVxd6fDh06qEOHDleoGwAAUBAOBQRw2bVp00YLFy6Uj4+PXnnlFe3fv9+5rLDzF3bs2KEBAwaoRo0a8vHxUUhIiBo2bKgRI0bINE1JZ8/nWbp0qfP/5/27//77Jf11iOL999+vrVu36o477lBoaKgMw9DevXslXfzQqQ8++EANGjSQr6+vKleurMcee0wnTpxwGXOhczDO7eF8ycnJ+sc//qE6derIz89PISEhatGihf75z3+6jCvsvKWUlBSNGDHC+R5FRESoV69e2rRpU76x999/vwzD0J49e/TWW2+pbt268vHxUUxMjCZMmCCHw1Hoe1CQf/3rX6pfv758fX1VtWpVjR49WqdPny50/IkTJzRu3Dhdd9118vPzU3BwsOLj4/XLL79c0uuapqkPP/xQrVu3VmBgoMqXL6+mTZvqww8/vKT17NmzRw8++KCqVasmHx8fRUVF6f7779e+ffvyjc17/w8ePKh77rlHYWFhCggIUNeuXbV7925JZ/cqdu/eXSEhIQoICNCdd96ppKSkAl97w4YN6t27t6KiouTt7a2YmBgNGzZMqampLuPO/ezs3LlTd9xxhypWrCh/f3916tRJf/zxR76x+/bt0759+1y+D+d/LqdPn64WLVqoQoUKqlChglq0aFHoeWhz585Vu3btFBERIV9fX0VHR6tTp06aO3dukd7nvO/X8ePH9fe//12RkZHy9fVV48aN9emnnxb4nMzMTI0bN05169aVr6+vQkJC1LVrV/3666/5xp572NyMGTPUpEkTlS9fvsjn+f3xxx/q27evqlSp4vwc3HLLLfrmm28u+twLnU9Y0M+VtLQ0jR07VvXq1VOFChUUGBioa665Rv3793d+7tq3b+88nLdDhw7ObXj+upKTk/XYY4/pmmuukY+Pj8LCwtSzZ88Cv/vnboOhQ4eqatWq8vLy4txD4DJgjxWAK6JOnTrq1auXPv74Y82bN0/Dhg0rdOyhQ4fUvHlzZWZmqmvXrrr77ruVmZmpHTt26O2339Y///lPeXl5ady4cZoxY4b27duncePGOZ/fqFEjl/Xt3LlTLVu2VIMGDXT//fcrNTVV3t7eF+359ddf15IlS3T33Xera9eu+uGHH/Tmm29q5cqVWrZsmcqVK+f2+7F9+3Z16NBBhw8fVps2bdS9e3dlZmZq8+bNmjhxoh5//PELPv/IkSNq1aqVdu3apfbt26t3797as2ePvvjiCy1YsECLFi1SmzZt8j1v1KhRWrp0qW677TbFx8dr3rx5Gj9+vLKzs/Xiiy8Wqffnn39eY8eOVaVKlTRo0CCVK1dOc+bM0datWwscf/ToUbVt21abN29W69at9fDDDys9PV1ff/21OnTooM8//1zdu3e/6Ouapqm+ffvq008/Ve3atXXPPffI29tbixcv1gMPPKAtW7bkC6UFWbVqleLj45WZmanbbrtNtWvX1t69e/XJJ5/ou+++04oVK1SzZk2X5xw7dkxt2rRRZGSk+vfvrz///FPz58/Xtm3b9PXXX+vGG2/U9ddfr4EDB2rt2rWaO3eujh49qh9//NFlPf/5z3/Uq1cv2Ww23X777apataq2bNmi//u//9OiRYu0atUqVaxY0eU5e/fuVcuWLXXddddp4MCB2rVrl/O927p1qypVqqTg4GCNGzdOb775piRpxIgRzuef+8v/o48+qilTpqhy5crOi5zMnTtXAwYM0Lp16zR58mTn2GnTpumRRx5RVFSU848SiYmJWr16tb766iv17Nnzou+1JGVnZ6tTp07KyMhQv379lJmZqc8++0z33HOPUlJSXH4WnD59Wh07dtTq1avVpEkTjRgxQklJSZozZ44WLVqkTz/9VHfddVe+13j11Vf1008/6fbbb1fnzp1lt9sv2tfcuXN1zz33yDRNdevWTXXq1FFycrJWrVqlDz74QN26dSvS/IrCNE3Fx8dr1apVat26tW655RbZbDbt27dP//nPf9SvXz/FxMQ4/wCzdOlS9e/f3xmogoODnevK+84fOHBAnTt3Vvfu3ZWcnKy5c+dq0aJFWrJkiVq0aOHy+llZWerYsaMyMjL0t7/9TV5eXqpUqVKxzQ/A/5gAYNGePXtMSWZ8fPwFx33wwQemJLNfv37O2k8//WRKMseNG+esvfXWW6Yk880338y3jtTUVJfH7dq1Mwv7UZbXlyRz7NixBY6JiYkxY2JiXGrjxo0zJZne3t7mH3/84aw7HA7znnvuMSWZ//znPy84h/N76N+/v0u9adOmpiTzvffey/ec/fv3uzyWZLZr186lNmDAAFOS+dRTT7nUFyxYYEoyr7nmGjM3N9dZ79+/vynJrFGjhnno0CFn/ciRI2ZwcLAZEBBgZmVl5evlfDt27DC9vLzMypUrm0lJSc56WlqaWadOnQJ7zXvP3n//fZd6UlKSWbVqVTM8PNw8derURV/7vffeMyWZAwYMMLOzs531rKwss1u3bqYkc82aNc769OnTTUnm9OnTnbXs7GyzevXqZkBAgPn777+7rP+///2vabfbzdtuu82lnvcZeuyxx1zqgwcPNiWZwcHBLp9Vh8Nh3nrrraYkc+3atc56SkqKGRgYaFauXNncu3evy7o+/fRTU5I5dOhQZ+3cz+9LL73kMn7MmDGmJHPSpEku9YI+z3mWLl1qSjJjY2PN48ePO+tHjx41r732WlOSuWzZMme9SZMmpre3t8t2PncuRRETE2NKMtu2bevy+dq/f78ZFhZm+vj4mAcOHHDWJ0yYYEoy+/btazocDmf9999/N729vc3g4GAzPT3dWc/7rvr7+5sbNmwoUk+maZqJiYmmv7+/6e/vn+9zkNdfnsK+3wV91s+d97nbYcOGDaYks3v37vnGnj592jxx4kS+Of30008FrvuGG24w7Xa7uXDhQpf69u3bzYCAALNBgwb5esn7+Xzy5MkC1wmgeHAoIIArJjo6WtLZQ9iKws/PL18tJCTkkl83MjJSzzzzzCU/77777lNcXJzzsWEYmjhxoux2u6XDaFavXq01a9aobdu2GjRoUL7lVapUueDzs7Oz9emnnyo0NFRjxoxxWXbrrbfq5ptv1s6dOws8dOrZZ59VVFSU83FYWJhuv/12nThxQtu3b79o77NmzVJOTo5GjhypiIgIZz0wMDBfL9LZbT1nzhx17NhRDz74oMuyiIgIjRo1SkeOHNEPP/xw0df+v//7P/n7+2vq1Kkuewu9vb2de9sKO7wsz/z587V3716NGjVKjRs3dlnWpk0b3X777fr222+Vnp7usqxChQp64YUXXGp9+vSRJIWGhurRRx911g3DUO/evSXJ5XC9jz76SOnp6Zo0aZJiYmJc1tW7d281adJEs2fPztdzjRo1NGrUKJda3t6m33777YLzPdfMmTMlnT18LigoyFmvWLGic4/v+Z/rcuXKFbhnNjQ0tMivK0kTJ0502UtcpUoVDR8+XFlZWS5znjlzpsqVK6eXXnrJ5SI3jRs3Vv/+/XX8+HHNmzcv3/ofeughNWjQoMj9zJw5U5mZmfrHP/6R73OQ19/lUNDPNB8fH1WoUKFIz1+3bp2WL1+u/v37Kz4+3mXZtddeq0GDBmnjxo0FHhL4yiuvFPj6AIoPhwICKHG6deump556SkOGDNGSJUt0yy23qF27dvkOzyqqhg0bFunQv/PdeOON+WoxMTGqWrWqNm/erOzsbLfWu3r1aklS586dL/m5krRt2zadPn1aHTp0KPBqgR06dNDixYu1fv36fHO4/vrr843P+yXy+PHjF33tvKBQ0HtTUO23335Tbm6usrKyCjwHbceOHc453XbbbYW+7smTJ7Vx40ZFR0fr5Zdfzrf8zJkzzvVcyMqVKyWdPRSzoH4SExPlcDj0559/qmnTps567dq1873XeQE1Li4u3yX/85YdOnQo32uvWrWqwNsPnD59WikpKUpJSXG5SmajRo1ks7n+HfRStlmedevWSVKB5wXlXfxk/fr1zlrv3r01evRo1a9fX/fcc486dOigNm3aKDAwsMivKUleXl5q1apVvnre5yWvr/T0dO3evVuxsbEFBpsOHTro/fff1/r169WvXz+XZc2bN7+knqx+By9VbGys4uLi9Omnn+rAgQPq3r272rdvX+C2vZC8z1BSUlKBn9+8z/+2bdtUv359Z93X1/eSgicA9xCsAFwxeb9khoeHX3Bc9erVtXLlSo0fP17ffvutPvvsM0lnr4733HPPFXiOxYW4ey5BYc+rVKmS9u7dqxMnTlzyX+6lsyexS1LlypXd6itvb0ph/eX9Un/+XhdJBf5S7OV19j8Fubm5F33tvN7P3VuVp6B+jh49Kkn69ddfC9yDliczM/OCr3vs2DGZpqmDBw9e8F5dF1tPXj+ffPLJBcedv54LvW8XWpYX+M597alTp170tc8NVla3WZ709HTZbLYCv3+VKlWSYRgun5nHH39coaGhmjZtml577TXnuY1du3bVG2+8oRo1ahTpdcPCwgoMD3mfl7zPlJXP9aV+x61+By+Vl5eXfvzxR40fP15z587VP/7xD0lnfxYOHTpUzzzzTJHOC8v7DC1YsEALFiwodNz5n9+IiIgyf78/4ErgUEAAV0zeDS+bNWt20bH169fXF198oaNHj2rFihUaO3asEhMTdffdd1/wF/SCuPsLRWFXdUtKSpJhGAoICJAk5y+NOTk5+cbm/QJ3rrwT0Q8ePOhWX3m/aBfWX2Jiosu44pR3CFlycnK+ZQX1k9fDP/7xD5mmWei/cy8+UpC89Vx//fUXXM9PP/1UpPV88803F1xPu3btLv5mXKK81964ceMFX/v8wwSL8/UdDoeOHDmSb1lycrJM03T5zBiGoYEDB+q3337TkSNH9NVXX6lHjx76+uuvddtttxU51KWkpBR41cm8z0veZ8rK5/pSv+NWv4N5r1nQd14q+HsfGhqqKVOm6ODBg84LloSEhGjcuHF65ZVXivSaeXOfMmXKBT9D/fv3z9crgMuPYAXgivjzzz/12WefycfHR3fccUeRn1euXDm1bNlSEyZM0FtvvSXTNDV//nzn8ry/8l7KX+6L6r///W++2r59+7R//35dd911zsMA867iVtAvaXmHOZ0r77Cl77//3q2+8i5D/dtvv+nkyZP5lucF2POvjlgcGjZsKKng96agWrNmzWQYhlasWGHpdQMCAhQbG6utW7de0uFv58u7WprVfkrqa9vt9kK/C3nnEuV9Ps51sc9MaGiounfv7jxfbsuWLdq5c2eResrJySlwznmfl7y+AgMDVbNmTe3cubPA71Jxfq6tfgels9/7gvrcu3fvBT+jhmEoNjZWQ4YM0eLFiyWdvVpkngv9TPPk5xfAxRGsAFx2v/76q+Lj45WVlaUnn3zyooffrF27tsDDffL+ku3r6+us5V3M4tx7YxWXjz76SBs2bHA+Nk1TTz/9tHJzc13uS1WnTh0FBAToP//5j/NQnbx+z7/ggXQ2bDRr1kzLli3T+++/n2/5xf6K7u3trT59+iglJUWTJk1yWbZw4UItWrRI11xzjVq3bl3UqRbZPffcI7vdrtdff91lr1V6enqBc42MjFSvXr20fPlyvfrqq857kJ1r1apVBQbE8z366KM6efKkBg0aVOAhf3v27HHen6wwt99+u6pVq6bXX39dy5Yty7f8zJkzl3xvraIaMGCAAgIC9Mwzz2jz5s35lp88edJ5Do27QkJClJKSUuA9xfL2YkyYMMHl+5WWluY8vPLcPR0///xzvu115swZ52f83O/hxTz99NPKzs52Pj5w4IAmT54sHx8f54U+8l7/zJkzeuqpp1xee8OGDZoxY4aCgoKKdGn+i+nfv78qVKig1157zeW8sjxF2ZPVrFkz7d2713kvPenshWVGjhyZb+zevXsL/Gxe6s+05s2bq0WLFvr00081Z86cfMsdDodLPwCuLM6xAlBsdu7c6TyhOjs7W8nJyVq9erU2btwou92uMWPGXPSQL0n6+OOP9e6776pt27aqVauWAgMDtWXLFn377bcKCQnRgAEDnGM7duyoL774Qj179lSXLl3k6+urhg0bFss9aOLj49WqVSv17t1b4eHhWrJkidasWaOWLVu63HvH29tbw4YN08SJE9WkSRPnVfa++eYbtWvXrsALFXzyySdq3769HnroIX388cdq1aqVTp8+rc2bN2vdunX5bhZ7vpdffllLly7VCy+8oOXLl6tFixbau3evPv/8c5UvX17Tp0+/pJPii+qaa67R2LFjNW7cOMXFxalXr17y8vLS3LlzFRcXV+CVBd9++21t375do0ePds41ODhY+/fv15o1a7Rjxw4dPny4wAtxnOvvf/+7Vq5cqZkzZ+rXX39Vp06dFB0draSkJG3btk2rVq3SrFmzLnjDZx8fH33xxRfq0qWL2rVrp44dO6pBgwbOm+v+97//VWho6EUvguGO8PBw532YGjZsqFtuuUV169ZVVlaW8xf0G264QQsXLnT7NTp27Kg1a9aoS5cuuvHGG+Xt7a22bds6/w0bNkxTpkxR/fr11bNnT5mmqblz5+rAgQN69NFH1bZtW+e6unfvrsDAQLVs2VIxMTE6c+aMFi9erC1btujOO+8s8iGLUVFRyszMVFxcnLp16+a8j1Vqaqreeustlz+0jB49WgsWLNDHH3+srVu36qabblJycrLmzJmjnJwcvf/++85DcK2IiIjQRx99pN69e6t58+b629/+pjp16iglJUWrVq1S9erVC7z64LlGjhyp77//Xrfeeqv69Omj8uXLa/HixQoODna58qZ09qIgPXr0UPPmzVWvXj1FRkbq4MGDmjdvnmw2mx577DHn2LwbAz/99NPavHmzgoKCFBwcrKFDh0o6e+XLDh06qHfv3nrzzTfVpEkT+fn5KSEhQStWrNCRI0cueLNuAJfRZbqMO4Ay5Nz77eT98/PzM6OioswOHTqYzz77rLlz584Cn1vQPWJWrlxp/v3vfzfr169vBgcHm35+fmbt2rXNoUOHmvv27XN5/pkzZ8zRo0eb1apVM728vFzuGVXYPaTOdaH7WP3000/m+++/b1533XWmj4+PGRUVZQ4fPtzlPjp5cnNzzfHjx5tVq1Y1vb29zWuvvdacPHmyuXv37kJ7SExMNIcPH27WrFnT9Pb2NkNCQswWLVqYr7/+uss4FXK/nCNHjpiPPvqoGRMTY5YrV84MCwsz77zzTnPjxo35xubdx2rPnj35ll3svjkFef/998169eqZ3t7eZpUqVczHH3/cPHnyZKG9njx50nzllVfM66+/3vT39zf9/PzMGjVqmN27dzc/+ugj88yZM0V+7Tlz5pidOnUyK1asaJYrV86sXLmy2b59e/O1114zjxw54hxX0H2s8hw4cMAcPny4Wbt2bdPHx8cMDAw0Y2NjzQcffNBcsmSJy9jC5nShz9eF7m22bds284EHHjBjYmJMb29vs2LFimaDBg3MRx991Fy9enWR1l9YXydOnDAHDRpkRkVFmXa7vcAePvzwQ7NZs2Zm+fLlzfLly5vNmjUzP/zww3zrf/vtt82//e1vZkxMjOnr62uGhoaazZs3N6dNm+ZyH7ELyft+HT161HzooYfMSpUqmT4+PmbDhg3NWbNmFficjIwM89lnnzWvvfZa572runTpYv73v//NN9adz+651q1bZ/bq1cusVKmSWa5cOTMqKsrs0qWLOX/+fOeYC23Lzz//3GzQoIHp7e1tRkZGmsOGDTNPnDiR7+fK/v37zSeffNJs2bKlGRERYXp7e5vVqlUze/ToYa5YsSLfemfMmGE2aNDA9PHxMSXl+xl19OhRc8yYMWb9+vVNPz8/s0KFCmbt2rXNe+65x/zyyy9dxl7o3mYAipdhmgUclwEAAGBR3t7Dix2iCQBXA86xAgAAAACLCFYAAAAAYBHBCgAAAAAs4hwrAAAAALCIPVYAAAAAYBHBCgAAAAAs4gbBBXA4HDp06JACAgJkGIan2wEAAADgIaZp6sSJE4qOjpbNVvh+KYJVAQ4dOqSqVat6ug0AAAAAJcT+/ftVpUqVQpcTrAoQEBAg6eybFxgY6OFuAAAAAHhKenq6qlat6swIhSFYFSDv8L/AwECCFQAAAICLniLExSsAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFjk5ekGAAAAPCUhIUEpKSmebsOSsLAwVatWzdNtAGUewQoAAJRJCQkJqhsbq1MnT3q6FUv8ypfXtq1bCVeAhxGsAABAmZSSkqJTJ0+q1wvTFFGjtqfbcUvynh36bMxgpaSkEKwADyNYAQCAMi2iRm1Vjm3o6TYAlHJcvAIAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhUooLVpEmT1KxZMwUEBCgiIkLdu3fX9u3bXca0b99ehmG4/Hv44YddxiQkJKhr164qX768IiIiNGrUKOXk5FzJqQAAAAAoQ7w83cC5li5dqiFDhqhZs2bKycnR008/rc6dO2vLli3y9/d3jhs0aJCee+455+Py5cs7/39ubq66du2qyMhILV++XIcPH9Z9992ncuXKaeLEiVd0PgAAAADKhhIVrBYuXOjyeMaMGYqIiNDatWvVtm1bZ718+fKKjIwscB3ff/+9tmzZoh9++EGVKlVSo0aN9Pzzz+uJJ57Q+PHj5e3tfVnnAAAAAKDsKVHB6nxpaWmSpJCQEJf6J598on//+9+KjIxUt27d9Oyzzzr3Wq1YsUINGjRQpUqVnOPj4+M1ePBgbd68WY0bN873OllZWcrKynI+Tk9PlyTl5OQ4DyG02Wyy2WxyOBxyOBzOsXn13NxcmaZ50brdbpdhGPkOTbTb7ZLO7nErSt3Ly0umabrUDcOQ3W7P12NhdebEnJgTc2JOzKksz8nhcMjb21s2mTIcuTKNs2dIGKbDZbxps0um6Vo3jLPjC607ZJzTi2kY0gXqhumQXOo2yTAKrzvOvr82mfL29pZpmvne93PnWpq3E3NiTp6eU1FPKSqxwcrhcGjEiBFq3bq16tev76zfc889iomJUXR0tDZs2KAnnnhC27dv15dffilJSkxMdAlVkpyPExMTC3ytSZMmacKECfnq69atcx6CGB4erlq1amnPnj06cuSIc0yVKlVUpUoV/fnnn84gKEk1a9ZURESENm3apFOnTjnrdevWVXBwsNatW+fygYqLi5O3t7fWrFnj0kPTpk2VnZ2tDRs2OGt2u13NmjVTWlqatm3b5qz7+fmpYcOGSklJ0e7du531oKAgxcbG6tChQzpw4ICzzpyYE3NiTsyJOZXlOaWmpmrUqFGq7nNavinbdTCsjuyOHEUe3eUca9psOhhWV75nMhV2PMFZz/HyUWJILfmfPq6KJw4766e9/ZUSHKPAk6kKzPyr90y/YB0LiFbFjET5nzrurKf7hyvdP1yhafvlm53prB8LiFKmX0VVOrZHXjl//fE3JbiaTntXUPTRHTIcDoX6nNaoUaOUm5ur3Nzcq3I7MSfm5Ok5ZWb+9d28EMM8N7aVIIMHD9Z3332nX375RVWqVCl03I8//qibbrpJO3fuVK1atfTQQw9p3759WrRokXPMyZMn5e/vr2+//VZdunTJt46C9lhVrVpVqampCgwMlETaZ07MiTkxJ+bEnK62Oa1du1atW7fWw9MXKLpOg1K5x+rQ9o16Z0BXLV++XE2aNLkqtxNzYk6enlN6erpCQ0OVlpbmzAYFKZF7rIYOHar58+dr2bJlFwxVktSiRQtJcgaryMhIrV692mVMUlKSJBV6XpaPj498fHzy1b28vOTl5foW5W2Y8+VtgKLWz1+vO3XDMAqsF9bjpdaZE3MqrM6cmJPEnArr8VLrzMlzc7LZbMrOzpZDxtnw9D+mUcB6DOMS6zaZRgEvWkj9bGC6hPr/+nXIUHZ2tvNKyVfjdmJOzMnTcypseb5+ijTqCjFNU0OHDtVXX32lH3/8UTVq1Ljoc9avXy9JioqKkiS1atVKGzduVHJysnPM4sWLFRgYqHr16l2WvgEAAACUbSVqj9WQIUM0a9Ysff311woICHCeExUUFCQ/Pz/t2rVLs2bN0q233qrQ0FBt2LBBjz32mNq2bau4uDhJUufOnVWvXj3169dPr7zyihITEzVmzBgNGTKkwL1SAAAAAGBVidpjNW3aNKWlpal9+/aKiopy/pszZ44kydvbWz/88IM6d+6sunXr6h//+Id69uypb775xrkOu92u+fPny263q1WrVrr33nt13333udz3CgAAAACKU4naY3Wx62hUrVpVS5cuveh6YmJi9O233xZXWwAAAABwQSVqjxUAAAAAlEYEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYFGJClaTJk1Ss2bNFBAQoIiICHXv3l3bt293GXP69GkNGTJEoaGhqlChgnr27KmkpCSXMQkJCeratavKly+viIgIjRo1Sjk5OVdyKgAAAADKkBIVrJYuXaohQ4Zo5cqVWrx4sc6cOaPOnTsrMzPTOeaxxx7TN998o88//1xLly7VoUOH1KNHD+fy3Nxcde3aVdnZ2Vq+fLlmzpypGTNmaOzYsZ6YEgAAAIAywMvTDZxr4cKFLo9nzJihiIgIrV27Vm3btlVaWpo++OADzZo1Sx07dpQkTZ8+XbGxsVq5cqVatmyp77//Xlu2bNEPP/ygSpUqqVGjRnr++ef1xBNPaPz48fL29vbE1AAAAABcxUpUsDpfWlqaJCkkJESStHbtWp05c0adOnVyjqlbt66qVaumFStWqGXLllqxYoUaNGigSpUqOcfEx8dr8ODB2rx5sxo3bpzvdbKyspSVleV8nJ6eLknKyclxHkJos9lks9nkcDjkcDicY/Pqubm5Mk3zonW73S7DMPIdmmi32yWd3eNWlLqXl5dM03SpG4Yhu92er8fC6syJOTEn5sScmFNZnpPD4ZC3t7dsMmU4cmUaZw/kMUyHy3jTZpdM07VuGGfHF1p3yDinF9MwpAvUDdMhudRtkmEUXnecfX9tMuXt7S3TNPO97+fOtTRvJ+bEnDw9p6KeUlRig5XD4dCIESPUunVr1a9fX5KUmJgob29vBQcHu4ytVKmSEhMTnWPODVV5y/OWFWTSpEmaMGFCvvq6devk7+8vSQoPD1etWrW0Z88eHTlyxDmmSpUqqlKliv78809nEJSkmjVrKiIiQps2bdKpU6ec9bp16yo4OFjr1q1z+UDFxcXJ29tba9ascemhadOmys7O1oYNG5w1u92uZs2aKS0tTdu2bXPW/fz81LBhQ6WkpGj37t3OelBQkGJjY3Xo0CEdOHDAWWdOzIk5MSfmxJzK8pxSU1M1atQoVfc5Ld+U7ToYVkd2R44ij+5yjjVtNh0MqyvfM5kKO57grOd4+SgxpJb8Tx9XxROHnfXT3v5KCY5R4MlUBWb+1XumX7COBUSrYkai/E8dd9bT/cOV7h+u0LT98s3+69SHYwFRyvSrqErH9sgr568//qYEV9Np7wqKPrpDhsOhUJ/TGjVqlHJzc5Wbm3tVbifmxJw8PadzT0u6EMM8N7aVIIMHD9Z3332nX375RVWqVJEkzZo1SwMGDHDZuyRJzZs3V4cOHfTyyy/roYce0r59+7Ro0SLn8pMnT8rf31/ffvutunTpku+1CtpjVbVqVaWmpiowMFASaZ85MSfmxJyYE3O62ua0du1atW7dWg9PX6DoOg1K5R6rQ9s36p0BXbV8+XI1adLkqtxOzIk5eXpO6enpCg0NVVpamjMbFKRE7rEaOnSo5s+fr2XLljlDlSRFRkYqOztbx48fd9lrlZSUpMjISOeY1atXu6wv76qBeWPO5+PjIx8fn3x1Ly8veXm5vkV5G+Z8eRugqPXz1+tO3TCMAuuF9XipdebEnAqrMyfmJDGnwnq81Dpz8tycbDabsrOz5ZBxNjz9j2kUsB7DuMS6TaZRwIsWUj8bmC6h/r9+HTKUnZ0twzAKfd+l0r2dmBNz8vScCluer58ijSqi3bt3a+vWrW4/3zRNDR06VF999ZV+/PFH1ahRw2X59ddfr3LlymnJkiXO2vbt25WQkKBWrVpJklq1aqWNGzcqOTnZOWbx4sUKDAxUvXr13O4NAAAAAArjVrB666231Lt3b5fagAEDVLt2bdWvX19NmzZ1CTZFNWTIEP373//WrFmzFBAQoMTERCUmJjqPhQwKCtIDDzygkSNH6qefftLatWs1YMAAtWrVSi1btpQkde7cWfXq1VO/fv30xx9/aNGiRRozZoyGDBlS4F4pAAAAALDKrWD1r3/9y+UCEYsWLdLMmTP10EMPacqUKdq9e3eBF4O4mGnTpiktLU3t27dXVFSU89+cOXOcY9544w3ddttt6tmzp9q2bavIyEh9+eWXzuV2u13z58+X3W5Xq1atdO+99+q+++7Tc889585UAQAAAOCi3DrHat++fYqNjXU+/uyzz1SjRg1NmzZN0tmr73388ceXvN6iXEfD19dXU6dO1dSpUwsdExMTo2+//faSXx8AAAAA3OHWHqvzA9D333/vcrW96tWrF3ppcwAAAAC42rgVrK699lp99dVXks4eBnjo0CGXYHXgwIF895oCAAAAgKuVW4cCPv7447rnnntUsWJFZWZmKjY2VvHx8c7lP/74oxo1alRcPQIAAABAieZWsOrdu7dCQ0P17bffKjg4WI888ojz+u5Hjx5VSEiI+vXrV6yNAgAAAEBJ5fYNgm+++WbdfPPN+eohISEuV+kDAAAAgKud28FKkjIzM7V06VLt27dP0tmr8bVr107+/v7F0hwAAAAAlAZuB6spU6ZozJgxysjIcLlKYEBAgF588UUNHTq0WBoEAAAAgJLOrasCfvTRRxo+fLjq16+vWbNmaf369Vq/fr0+/fRTNWjQQMOHD3frPlYAAAAAUBq5tcfq9ddfV9u2bbVkyRLZ7XZnPS4uTnfeeaduuukmvfbaa1zAAgAAAECZ4NYeq+3bt+uuu+5yCVV57Ha77rrrLm3fvt1ycwAAAABQGrgVrIKCgrR3795Cl+/du1eBgYHu9gQAAAAApYpbwapr166aMmWKZs+enW/ZnDlz9H//93/q1q2b5eYAAAAAoDRw6xyrl156SStWrFDfvn31j3/8Q7Vr15Yk7dixQ4mJiapbt65eeumlYm0UAAAAAEoqt/ZYhYeH6/fff9frr7+uBg0aKCkpSUlJSWrQoIHeeOMNrV27VmFhYcXdKwAAAACUSG7fx8rX11fDhw/X8OHDi7MfAAAAACh13NpjVbNmTf3nP/8pdPn8+fNVs2ZNt5sCAAAAgNLErWC1d+9eZWRkFLo8IyND+/btc7spAAAAAChN3ApWkmQYRqHLfvvtNwUHB7u7agAAAAAoVYp8jtXkyZM1efJkSWdD1YgRI/TMM8/kG5eWlqbjx4/rnnvuKb4uAQAAAKAEK3KwioiI0HXXXSfp7KGAlStXVuXKlV3GGIYhf39/XX/99XrkkUeKt1MAAAAAKKGKHKz69OmjPn36SJI6dOigMWPG6KabbrpsjQEAAABAaeHW5dZ/+umn4u4DAAAAAEott+9jJUlbtmzR7t27dezYMZmmmW/5fffdZ2X1AAAAAFAquBWsdu3apXvvvVerV68uMFBJZ8+3IlgBAAAAKAvcClZ///vftXHjRr355pu68cYbVbFixeLuCwAAAABKDbeC1a+//qqnn35aw4YNK+5+AAAAAKDUcesGwWFhYQoKCiruXgAAAACgVHIrWD388MP697//rdzc3OLuBwAAAABKHbcOBbz22muVm5urhg0bauDAgapatarsdnu+cT169LDcIAAAAACUdG4Fq7vvvtv5/x9//PECxxiGwR4tAAAAAGUCNwgGAAAAAIvcClbt2rUr7j4AAAAAoNRyK1jlycrK0u+//67k5GS1bt1aYWFhxdUXAAAAAJQabl0VUJLeeustRUVFqU2bNurRo4c2bNggSUpJSVFYWJg+/PDDYmsSAAAAAEoyt4LV9OnTNWLECN1yyy364IMPZJqmc1lYWJg6duyo2bNnF1uTAAAAAFCSuRWsXnvtNd1+++2aNWuWunXrlm/59ddfr82bN1tuDgAAAABKA7eC1c6dO9WlS5dCl4eEhCg1NdXtpgAAAACgNHErWAUHByslJaXQ5Vu2bFFkZKTbTQEAAABAaeJWsLr11lv13nvv6fjx4/mWbd68We+//77+9re/We0NAAAAAEoFt4LVCy+8oNzcXNWvX19jxoyRYRiaOXOm7r33XjVt2lQREREaO3ZscfcKAAAAACWSW8EqOjpaa9eu1S233KI5c+bINE19/PHH+uabb9SnTx+tXLmSe1oBAAAAKDPcvkFwRESE/vWvf+lf//qXjhw5IofDofDwcNlsbt8aCwAAAABKJbeD1bnCw8OLYzUAAAAAUCq5HawyMzM1d+5c7d69W8eOHXO5SbAkGYahyZMnW24QAAAAAEo6t4LVkiVLdNdddxV4VcA8BCsAAAAAZYVbJ0QNGTJE/v7+WrRokY4fPy6Hw5HvX25ubnH3CgAAAAAlklt7rBISEvTyyy/r5ptvLu5+AAAAAKDUcWuPVVxcnNLS0oq7FwAAAAAoldwKVi+//LLefvttrVmzprj7AQAAAIBSx61DAdu1a6c333xTrVq1UmxsrKpWrSq73e4yxjAMff3118XSJAAAAACUZG4Fq7lz5+ree+9Vbm6uDhw4oBMnTuQbYxiG5eYAAAAAoDRwK1g9+eSTqlOnjubOnatrr722uHsCAAAAgFLFrXOsDh06pMGDBxOqAAAAAEBuBqtmzZopISGhuHsBAAAAgFLJrWA1ZcoUzZ49W5999llx9wMAAAAApY5b51j17dtXOTk56tOnjwYNGqQqVaoUeFXAP/74o1iaBAAAAICSzK1gFRISotDQUNWuXbu4+wEAAACAUsetYPXzzz8XcxsAAAAAUHq5dY4VAAAAAOAvbger9PR0vfTSS4qPj1fjxo21evVqSdLRo0f1+uuva+fOncXWJAAAAACUZG4dCnjgwAG1a9dO+/fvV+3atbVt2zZlZGRIOnv+1bvvvqt9+/Zp8uTJxdosAAAAAJREbgWrUaNG6cSJE1q/fr0iIiIUERHhsrx79+6aP39+sTQIAAAAACWdW4cCfv/993r00UdVr149GYaRb3nNmjW1f/9+y80BAAAAQGngVrA6deqUwsPDC11+4sQJtxsCAAAAgNLGrWBVr149LVu2rNDl8+bNU+PGjd1uCgAAAABKE7eC1YgRIzR79my9/PLLSktLkyQ5HA7t3LlT/fr104oVK/TYY48Va6MAAAAAUFK5dfGKe++9V/v27dOYMWP0zDPPSJJuueUWmaYpm82miRMnqnv37sXZJwAAAACUWG4FK0l65pln1K9fP82dO1c7d+6Uw+FQrVq11KNHD9WsWbM4ewQAAACAEs3tYCVJ1apV45A/AAAAAGWeW+dYAQAAAAD+UqQ9VjabrcD7VV2IYRjKyclxqykAAAAAKE2KFKzGjh17ycEKAAAAAMqKIgWr8ePHX+Y2zlq2bJleffVVrV27VocPH9ZXX33lcnXB+++/XzNnznR5Tnx8vBYuXOh8fPToUQ0bNkzffPONbDabevbsqcmTJ6tChQpXZA4AAAAAyp4SdY5VZmamGjZsqKlTpxY65pZbbtHhw4ed/z799FOX5X379tXmzZu1ePFizZ8/X8uWLdNDDz10uVsHAAAAUIa5fVXAhIQETZw4UT/99JOSk5P19ddfq23btkpJSdFzzz2nAQMGqHHjxpe0zi5duqhLly4XHOPj46PIyMgCl23dulULFy7Ub7/9pqZNm0qSpkyZoltvvVX//Oc/FR0dXeDzsrKylJWV5Xycnp4uScrJyXGeJ2az2WSz2eRwOORwOJxj8+q5ubkyTfOidbvdXuD5Z3a7XZKUm5tbpLqXl5dM03SpG4Yhu92er8fC6syJOTEn5sScmFNZnpPD4ZC3t7dsMmU4cmUaZ//ebJgOl/GmzS6ZpmvdMM6OL7TukHFOL6ZhSBeoG6ZDcqnbJMMovO44+/7aZMrb21umaeZ738+da2neTsyJOXl6TkW9boRbwWrLli268cYb5XA41KJFC+3cudP5gmFhYfrll1+UmZmpDz74wJ3VX9DPP/+siIgIVaxYUR07dtQLL7yg0NBQSdKKFSsUHBzsDFWS1KlTJ9lsNq1atUp33HFHgeucNGmSJkyYkK++bt06+fv7S5LCw8NVq1Yt7dmzR0eOHHGOqVKliqpUqaI///xTaWlpznrNmjUVERGhTZs26dSpU8563bp1FRwcrHXr1rl8oOLi4uTt7a01a9a49NC0aVNlZ2drw4YNzprdblezZs2Ulpambdu2Oet+fn5q2LChUlJStHv3bmc9KChIsbGxOnTokA4cOOCsMyfmxJyYE3NiTmV5TqmpqRo1apSq+5yWb8p2HQyrI7sjR5FHdznHmjabDobVle+ZTIUdT3DWc7x8lBhSS/6nj6viicPO+mlvf6UExyjwZKoCM//qPdMvWMcColUxI1H+p4476+n+4Ur3D1do2n75Zmc668cCopTpV1GVju2RV85ff/xNCa6m094VFH10hwyHQ6E+pzVq1Cjl5uYqNzf3qtxOzIk5eXpOmZl/fTcvxDDPjW1FdNttt2nr1q1auXKlDMNQRESEfvjhB3Xs2FGS9Oyzz2rOnDn6888/L3XVfzVmGPnOsZo9e7bKly+vGjVqaNeuXXr66adVoUIFrVixQna7XRMnTtTMmTO1fft2l3VFRERowoQJGjx4cIGvVdAeq6pVqyo1NVWBgYGSSPvMiTkxJ+bEnJjT1TantWvXqnXr1np4+gJF12lQKvdYHdq+Ue8M6Krly5erSZMmV+V2Yk7MydNzSk9PV2hoqNLS0pzZoCBu7bFatmyZxo4dq/DwcKWmpuZbXq1aNR08eNCdVV9Q7969nf+/QYMGiouLU61atfTzzz/rpptucnu9Pj4+8vHxyVf38vKSl5frW5S3Yc6XtwGKWj9/ve7UDcMosF5Yj5daZ07MqbA6c2JOEnMqrMdLrTMnz83JZrMpOztbDhlnw9P/mEYB6zGMS6zbZBZ0QeVC6mcD0yXU/9evQ4ays7NlGEah77tUurcTc2JOnp5TYcvz9VOkUedxOBwqX758ocuPHDlSYFApbjVr1lRYWJh27twpSYqMjFRycrLLmJycHB09erTQ87IAAAAAwCq3glWTJk20YMGCApfl5ORo9uzZatmypaXGiuLAgQNKTU1VVFSUJKlVq1Y6fvy41q5d6xzz448/Os8FAwAAAIDLwa1g9dRTT2nhwoUaPHiwNm3aJElKSkrSDz/8oM6dO2vr1q168sknL3m9GRkZWr9+vdavXy9J2rNnj9avX6+EhARlZGRo1KhRWrlypfbu3aslS5bo9ttv1zXXXKP4+HhJUmxsrG655RYNGjRIq1ev1q+//qqhQ4eqd+/ehV4REAAAAACscuscqy5dumjGjBkaPny43nvvPUnSvffeK9M0FRgYqI8++kht27a95PWuWbNGHTp0cD4eOXKkJKl///6aNm2aNmzYoJkzZ+r48eOKjo5W586d9fzzz7scdvjJJ59o6NChuummm2Sznb1B8FtvveXONAEAAACgSNy+j1W/fv3Uo0cPLV68WDt27JDD4VCtWrUUHx+vgIAAt9bZvn17lyt1nG/RokUXXUdISIhmzZrl1usDAAAAgDvcDlaS5O/v73I5dAAAAAAoi9w6xwoAAAAA8BeCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACyydFXAgwcPatmyZUpOTlbPnj1VpUoV5ebmKi0tTUFBQbLb7cXVJwAAAACUWG7tsTJNUyNHjlSNGjXUt29fjRw5Un/++ackKSMjQ9WrV9eUKVOKtVEAAAAAKKncClavvvqqJk+erMcff1yLFy92ualvUFCQevTooblz5xZbkwAAAABQkrkVrN5//33dd999mjhxoho1apRveVxcnHMPFgAAAABc7dwKVvv379cNN9xQ6HJ/f3+lp6e73RQAAAAAlCZuBauIiAjt37+/0OVr165VtWrV3G4KAAAAAEoTt4JVjx499M4772j37t3OmmEYkqTvv/9eM2bM0F133VU8HQIAAABACedWsJowYYKioqLUqFEj3XfffTIMQy+//LLatGmjLl26KC4uTk8//XRx9woAAAAAJZJbwSooKEgrV67U6NGjdfDgQfn6+mrp0qU6fvy4xo0bp//+978qX758cfcKAAAAACWS2zcI9vPz05gxYzRmzJji7AcAAAAASh239lgBAAAAAP5SpD1WAwcOvOQVG4ahDz744JKfBwAAAAClTZGC1Y8//ui86l+ekydP6siRI5KkihUrSpKOHTsmSQoPD5e/v39x9gkAAAAAJVaRDgXcu3ev9uzZ4/y3YMEClStXTk8//bSSk5OVmpqq1NRUJScn66mnnpK3t7cWLFhwuXsHAAAAgBLBrYtXDBs2TF26dNELL7zgUg8LC9OLL76o5ORkDRs2TD/88EOxNAkAAAAAJZlbF69YuXKlmjRpUujyxo0ba+XKlW43BQAAAACliVvBKiQkRN99912hy7/99lsFBwe72xMAAAAAlCpuBau///3vmj9/vm6//Xb98MMP2rt3r/bu3avFixfrb3/7m7777js9/PDDxd0rAAAAAJRIbp1jNWbMGGVlZenVV1/V/PnzXVfo5aUnn3ySGwcDAAAAKDPcClaS9Pzzz2v48OH64YcftG/fPklSTEyMOnXqpLCwsGJrEAAAAABKOreDlXT2KoC9e/curl4AAAAAoFRy6xwrAAAAAMBfCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYV6XLrNWrUkGEYl7RiwzC0a9cut5oCAAAAgNKkSMGqXbt2+YLVmjVrtHnzZtWrV0916tSRJG3fvl1btmxR/fr1df311xd/twAAAABQAhUpWM2YMcPl8bx58zRv3jwtXrxYN910k8uyxYsXq1evXnr++eeLrUkAAAAAKMncOsdq7NixGjZsWL5QJUk333yzhg4dqjFjxlhuDgAAAABKA7eC1Y4dOxQaGlro8tDQUM6vAgAAAFBmuBWsatWqpenTpysjIyPfshMnTujDDz9UzZo1LTcHAAAAAKVBkc6xOt8LL7ygO++8U3Xr1tX999+va665RtLZPVkzZ85UUlKSPv/882JtFAAAAABKKreCVffu3fXtt9/qiSee0MSJE12WNWrUSB988IHi4+OLpUEAAAAAKOncClaS1LlzZ3Xu3FmJiYnat2+fJCkmJkaRkZHF1hwAAAAAlAZuB6s8kZGRhCkAAAAAZZqlYHXgwAGtW7dOaWlpcjgc+Zbfd999VlYPAAAAAKWCW8Hq9OnT6t+/v+bOnSuHwyHDMGSapiTJMAznOIIVAAAAgLLArcutP/300/ryyy/14osv6ueff5Zpmpo5c6a+//57denSRQ0bNtQff/xR3L0CAAAAQInkVrD64osvNGDAAD3xxBO67rrrJEmVK1dWp06dNH/+fAUHB2vq1KnF2igAAAAAlFRuBavk5GQ1b95ckuTn5ydJyszMdC7v2bOnvvzyy2JoDwAAAABKPreCVaVKlZSamipJKl++vCpWrKjt27c7l6enp+v06dPF0yEAAAAAlHBuXbyiRYsW+uWXX/TEE09Ikrp166ZXX31VUVFRcjgceuONN9SyZctibRQAAAAASiq39lg9+uijqlmzprKysiRJzz//vIKDg9WvXz/1799fQUFBeuutt4q1UQAAAAAoqdzaY9WmTRu1adPG+bhq1araunWrNm7cKLvdrrp168rLy/K9hwEAAACgVCi29GOz2dSwYcPiWh0AAAAAlBpFClbLli1za+Vt27Z163kAAAAAUJoUKVi1b99ehmE4H5um6fK4MLm5ue53BgAAAAClRJGC1U8//eTyOCsrS6NHj9bJkyf10EMPqU6dOpKkbdu26f3335e/v79eeeWV4u8WAAAAAEqgIgWrdu3auTweOXKkvL29tXLlSvn6+jrr3bp105AhQ9SuXTstXLhQN998c/F2CwAAAAAlkFuXW//kk0/Ur18/l1CVp3z58urXr5/+/e9/W24OAAAAAEoDt4JVZmamDh8+XOjyw4cP6+TJk243BQAAAACliVvBqlOnTpo8ebK+/PLLfMvmzp2ryZMnq1OnTpabAwAAAIDSwK37WE2dOlUdO3bUXXfdpaioKF1zzTWSpF27dunQoUOqVauWpkyZUqyNAgAAAEBJ5dYeq8qVK+uPP/7Q66+/rvr16yspKUlJSUm67rrr9MYbb+iPP/5QlSpVirtXAAAAACiR3NpjJUm+vr4aPny4hg8fXpz9AAAAAECp49YeKwAAAADAX4q0x6pDhw6y2WxatGiRvLy81LFjx4s+xzAMLVmyxHKDAAAAAFDSFSlYmaYph8PhfOxwOGQYxkWfAwAAAABlQZGC1c8//3zBxwAAAABQlrl1jtWyZct05MiRQpenpKRo2bJlbjcFAAAAAKWJW8GqQ4cOWrx4caHLlyxZog4dOrjdFAAAAACUJm4Fq4udP5WVlSW73e5WQwAAAABQ2hT5PlYJCQnau3ev8/G2bdsKPNzv+PHjevfddxUTE1MsDQIAAABASVfkPVbTp09X+/bt1aFDBxmGoRdffFEdOnTI96979+5avXq1nnrqqUtuZtmyZerWrZuio6NlGIbmzZvnstw0TY0dO1ZRUVHy8/NTp06dtGPHDpcxR48eVd++fRUYGKjg4GA98MADysjIuOReAAAAAKCoirzHqlevXqpfv75M01SvXr306KOP6sYbb3QZYxiG/P391ahRI1WqVOmSm8nMzFTDhg01cOBA9ejRI9/yV155RW+99ZZmzpypGjVq6Nlnn1V8fLy2bNkiX19fSVLfvn11+PBhLV68WGfOnNGAAQP00EMPadasWZfcDwAAAAAURZGDVWxsrGJjYyWd3XvVtm1b1ahRo1ib6dKli7p06VLgMtM09eabb2rMmDG6/fbbJUkfffSRKlWqpHnz5ql3797aunWrFi5cqN9++01NmzaVJE2ZMkW33nqr/vnPfyo6OrpY+wUAAAAA6RKC1bn69+9f3H1c1J49e5SYmKhOnTo5a0FBQWrRooVWrFih3r17a8WKFQoODnaGKknq1KmTbDabVq1apTvuuKPAdWdlZSkrK8v5OD09XZKUk5OjnJwcSZLNZpPNZpPD4XC5WXJePTc31+WiHoXV7Xa7DMNwrvfcuiTl5uYWqe7l5SXTNF3qhmHIbrfn67GwOnNiTsyJOTEn5lSW5+RwOOTt7S2bTBmOXJnG2TMkDNPhMt602SXTdK0bxtnxhdYdMs7pxTQM6QJ1w3RILnWbZBiF1x1n31+bTHl7e8s0zXzv+7lzLc3biTkxJ0/P6fzlhXErWEnS1q1bNX36dO3evVvHjh3Ld6VAwzC0ZMkSd1efT2JioiTlO8SwUqVKzmWJiYmKiIhwWe7l5aWQkBDnmIJMmjRJEyZMyFdft26d/P39JUnh4eGqVauW9uzZ43IPrypVqqhKlSr6888/lZaW5qzXrFlTERER2rRpk06dOuWs161bV8HBwVq3bp3LByouLk7e3t5as2aNSw9NmzZVdna2NmzY4KzZ7XY1a9ZMaWlp2rZtm7Pu5+enhg0bKiUlRbt373bWg4KCFBsbq0OHDunAgQPOOnNiTsyJOTEn5lSW55SamqpRo0apus9p+aZs18GwOrI7chR5dJdzrGmz6WBYXfmeyVTY8QRnPcfLR4khteR/+rgqnjjsrJ/29ldKcIwCT6YqMPOv3jP9gnUsIFoVMxLlf+q4s57uH650/3CFpu2Xb3ams34sIEqZfhVV6dgeeeX89cfflOBqOu1dQdFHd8hwOBTqc1qjRo1Sbm6ucnNzr8rtxJyYk6fnlJn513fzQgzzYtdOL8DHH3+sAQMGqFy5cqpTp44qVqxY4LiffvrpUlf9V2OGoa+++krdu3eXJC1fvlytW7fWoUOHFBUV5RzXq1cvGYahOXPmaOLEiZo5c6a2b9/usq6IiAhNmDBBgwcPLvC1CtpjVbVqVaWmpiowMFASaZ85MSfmxJyYE3O62ua0du1atW7dWg9PX6DoOg1K5R6rQ9s36p0BXbV8+XI1adLkqtxOzIk5eXpO6enpCg0NVVpamjMbFMStPVbjx49X48aN9d133yksLMydVVyyyMhISVJSUpJLsEpKSlKjRo2cY5KTk12el5OTo6NHjzqfXxAfHx/5+Pjkq3t5ecnLy/Utytsw58vbAEWtn79ed+qGYRRYL6zHS60zJ+ZUWJ05MSeJORXW46XWmZPn5mSz2ZSdnS2HjLPh6X9Mo4D1GMYl1m0yjQJetJD62cB0CfX/9euQoezsbBmGUej7LpXu7cScmJOn51TY8nz9FGnUeQ4dOqSBAwdesVAlSTVq1FBkZKTL4YXp6elatWqVWrVqJUlq1aqVjh8/rrVr1zrH/Pjjj3I4HGrRosUV6xUAAABA2eLWHqu4uDgdOnSouHtRRkaGdu7c6Xy8Z88erV+/XiEhIapWrZpGjBihF154QbVr13Zebj06Otp5uGBsbKxuueUWDRo0SO+8847OnDmjoUOHqnfv3lwREAAAAMBl41awev3113XXXXepS5cuuuGGG4qtmTVr1qhDhw7OxyNHjpR09iqEM2bM0OjRo5WZmamHHnpIx48fV5s2bbRw4ULnPawk6ZNPPtHQoUN10003yWazqWfPnnrrrbeKrUcAAAAAOJ9bwerll19WUFCQbrzxRtWrV0/VqlXLd8yiYRj6+uuvL2m97du3z3d1wfPX+dxzz+m5554rdExISAg3AwYAAABwRbkVrDZs2CDDMFStWjVlZGRoy5Yt+cYYRkFnbAIAAADA1cetYLV3795ibgMAAAAASi+3rgoIAAAAAPiLW3usznXixAmlpaW53JwrT7Vq1ayuHgCAq1ZCQoJSUlI83YYlYWFh/PceAGQhWE2bNk2vv/66du/eXeiY8++0DAAAzkpISFDd2FidOnnS061Y4le+vLZt3Uq4AlDmuRWs3nnnHQ0ZMkTx8fEaOHCgnnnmGT322GPy9fXVjBkzVKlSJT366KPF3SsAAFeNlJQUnTp5Ur1emKaIGrU93Y5bkvfs0GdjBislJYVgBaDMcytYTZkyRfHx8fruu++UmpqqZ555Rl27dlXHjh01evRoNW3aVKmpqcXdKwAAV52IGrVVObahp9sAAFjk1sUrdu3apW7dukmSypUrJ0nKzs6WJAUFBenBBx/U22+/XUwtAgAAAEDJ5lawCgoKUk5OjiQpMDBQ5cuX1/79+53LAwIClJiYWDwdAgAAAEAJ51awql+/vv744w/n45YtW2ratGk6ePCg9u/fr3fffVfXXnttsTUJAAAAACWZW+dY3XvvvXrnnXeUlZUlHx8fTZgwQZ06dXKeuFquXDnNnTu3WBsFAAAAgJLKrWA1YMAADRgwwPm4devW2rx5s7755hvZ7XZ17tyZPVYAAAAAygzLNwjOU7NmTQ0fPry4VgcAAAAApUaRz7E6ffq0Hn74YU2ZMuWC49566y0NHjxYZ86csdwcAAAAAJQGRQ5W7733nmbMmKGuXbtecFzXrl01ffp0/etf/7LcHAAAAACUBkUOVp999pl69uypmjVrXnBcrVq1dNddd+nTTz+13BwAAAAAlAZFDlYbN25UmzZtijT2hhtu0IYNG9xuCgAAAABKkyIHq+zsbHl7exdprLe3t7KystxuCgAAAABKkyIHq+joaG3atKlIYzdt2qTo6Gi3mwIAAACA0qTIwapTp0766KOPlJycfMFxycnJ+uijj3TzzTdbbg4AAAAASoMiB6snnnhCp0+fVseOHbVq1aoCx6xatUo33XSTTp8+rVGjRhVbkwAAAABQkhX5BsE1a9bUZ599pj59+uiGG25QzZo11aBBAwUEBOjEiRPatGmTdu3apfLly2v27NmqVavW5ewbAAAAAEqMIgcr6ew9qjZs2KCXX35Z8+fP17x585zLoqOjNWjQII0ePfqil2QHAAAAgKvJJQUrSapevbqmTZumadOm6cSJE0pPT1dgYKACAgIuR38AAAAAUOJdcrA6V0BAAIEKAAAAQJlX5ItXAAAAAAAKRrACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIu8PN0AAMAzEhISlJKS4uk2LAkLC1O1atU83QYAAAQrACiLEhISVDc2VqdOnvR0K5b4lS+vbVu3Eq4AAB5HsAKAMiglJUWnTp5UrxemKaJGbU+345bkPTv02ZjBSklJIVgBADyOYAUAZVhEjdqqHNvQ020AAFDqcfEKAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFpSpYjR8/XoZhuPyrW7euc/np06c1ZMgQhYaGqkKFCurZs6eSkpI82DEAAACAsqBUBStJuu6663T48GHnv19++cW57LHHHtM333yjzz//XEuXLtWhQ4fUo0cPD3YLAAAAoCzw8nQDl8rLy0uRkZH56mlpafrggw80a9YsdezYUZI0ffp0xcbGauXKlWrZsuWVbhUAAABAGVHqgtWOHTsUHR0tX19ftWrVSpMmTVK1atW0du1anTlzRp06dXKOrVu3rqpVq6YVK1ZcMFhlZWUpKyvL+Tg9PV2SlJOTo5ycHEmSzWaTzWaTw+GQw+Fwjs2r5+bmyjTNi9btdrsMw3Cu99y6JOXm5hap7uXlJdM0XeqGYchut+frsbA6c2JOzKlsz8nb21s2mTJMh0zDJpkOGef0YhqGdIG6YTokl7pNMozC6w7XHk3j7EEThukoWt1ml0zTWbfJVLly5SSpVG6nv17fdH1vDON/28N0fQ+c9ZK0nUx5e3vL4XA434vS9H1y+R44cov82ftf8yViO9n+tw1M08z3vp87V37uMSfm5P6czl9emFIVrFq0aKEZM2aoTp06Onz4sCZMmKAbb7xRmzZtUmJiory9vRUcHOzynEqVKikxMfGC6500aZImTJiQr75u3Tr5+/tLksLDw1WrVi3t2bNHR44ccY6pUqWKqlSpoj///FNpaWnOes2aNRUREaFNmzbp1KlTznrdunUVHBysdevWuXyg4uLi5O3trTVr1rj00LRpU2VnZ2vDhg3Omt1uV7NmzZSWlqZt27Y5635+fmrYsKFSUlK0e/duZz0oKEixsbE6dOiQDhw44KwzJ+bEnMrunFJTUzVq1ChV9zktpe1XSnCMAk+mKjDzr94z/YJ1LCBaFTMS5X/quLOe7h+udP9whabtl292prN+LCBKmX4VVenYHnnl/PXHqpTgajrtXUHRR3fIOOc/gIkhtZRr81LllO0uczoYVkd2R44ij+5y1kybTQfD6sr3TKbCjidIkkJ9TmvgwIFnX6MUbqe8P+IF2Bwu70GOl48SQ2rJ//RxVTxx2Fk/7e1f4raTj2Fq1KhRSk1N1Zo1a0rd9+nc74FvyvYif/ZK0nYK9TmtUaNGKTc3V7m5ufzcY07M6TLMKTPzr+/mhRjmubGtlDl+/LhiYmL0+uuvy8/PTwMGDHDZ8yRJzZs3V4cOHfTyyy8Xup6C9lhVrVpVqampCgwMlETaZ07MiTldXXP6/fff1bp1az08fYGi68aVwD0hF99rcGj7Rk27/1atXLlSjRo1KnXbaf369WrWrJmGfrJYVeo0+GtwCdkT4lJXwdvp4LY/9N6Arvr111/VqFEjSaXr+7R27dq/vgd1GpTKPVaHtm/UOwO6avny5WrSpAk/95gTc7oMc0pPT1doaKjS0tKc2aAgpWqP1fmCg4N17bXXaufOnbr55puVnZ2t48ePu+y1SkpKKvCcrHP5+PjIx8cnX93Ly0teXq5vUd6GOV/eBihq/fz1ulM3DKPAemE9XmqdOTGnwurM6eqYU3Z2thwynL9MyrDJNApYeSH1s7/gXULdVvBcTeMS6obhrDtk6MyZM5JK53b66/WNgt+bc+bqWi9J28lQdna2bDaby9xKy/fJ5Xtwzrwv9tkrWv3KbCfH/7ZB3tWS+bnHnJhT8c+psOX5+inSqBIqIyNDu3btUlRUlK6//nqVK1dOS5YscS7fvn27EhIS1KpVKw92CQAAAOBqV6r2WD3++OPq1q2bYmJidOjQIY0bN052u119+vRRUFCQHnjgAY0cOVIhISEKDAzUsGHD1KpVK64ICAAAAOCyKlXB6sCBA+rTp49SU1MVHh6uNm3aaOXKlQoPD5ckvfHGG7LZbOrZs6eysrIUHx+vt99+28NdAwAAALjalapgNXv27Asu9/X11dSpUzV16tQr1BEAAAAAlPJzrAAAAACgJCBYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWOTl6QYAlF0JCQlKSUnxdBtuCwsLU7Vq1TzdBgAAKAEIVgA8IiEhQXVjY3Xq5ElPt+I2v/LltW3rVsIVAAAgWAHwjJSUFJ06eVK9XpimiBq1Pd3OJUves0OfjRmslJQUghUAACBYAfCsiBq1VTm2oafbAAAAsISLVwAAAACARQQrAAAAALCIYAUAAAAAFhGsAAAAAMAighUAAAAAWESwAgAAAACLCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEKwAAAACwiGAFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFnl5ugHAUxISEpSSkuLpNtwWFhamatWqeboNAAAAiGDlMfxS71kJCQmqGxurUydPeroVt/mVL69tW7eW6u0AAABwtbhqg9XUqVP16quvKjExUQ0bNtSUKVPUvHlzT7cliV/qS4KUlBSdOnlSvV6YpogatT3dziVL3rNDn40ZrJSUlFK7DQAAAK4mV2WwmjNnjkaOHKl33nlHLVq00Jtvvqn4+Hht375dERERnm6PX+pLkIgatVU5tqGn2wAAoMwq7UfxSFfHkTyleRuUlPf/qgxWr7/+ugYNGqQBAwZIkt555x0tWLBAH374oZ588kkPd/cXfqkHAABl2dVwFI9Uuo/kuRq2QUl5/6+6YJWdna21a9fqqaeectZsNps6deqkFStWFPicrKwsZWVlOR+npaVJko4ePaqcnBznOmw2mxwOhxwOh8u6bTabcnNzZZrmRet2u10ZGRkqV66cErdt0JmTGZKkvBHGeb0VXjec/3t+3ZCp8xVnPTVhl8qVK6f09HQdPXpUdrtdhmE436tz5ypJubm5Rap7eXnJNE2XumEYstvt+d73wupF3U7p6ekqV66cDm3doOyTmfnmevZR/vegpGyn1ITdstlsysjI0LFjx4r82StJ2ykjI0N2u93le3Cp740nt1PKPtfvQXH+jLgS2ynvO5D3/l/Onx2XazulJuyWl5eXMjIydPz48WL9GXGxenFsp/T0dEnSoa2u34G8uV7un+XFsZ2O7Nvt8j2QruzP8ovVL7ad8n8PCpur5/6be7HtlJpwdhucOHFCaWlpJfK/uReq7969W6dPndKN9w1RaFQVlx5z/zfGbhhFrhuSbOfUTUmOS6qbcpiSzTj7LudxmKbM/40991UdpqljiQe1Yta72r17typUqHC2txL239wLbac9e/Yo58wZdbh/mIIqRV9wrqYubXsUVi/O7ZSedFi/fPKOdu/ercDAwMvyszzv5/W5zy2IYV5sRClz6NAhVa5cWcuXL1erVq2c9dGjR2vp0qVatWpVvueMHz9eEyZMuJJtAgAAAChF9u/frypVqhS6/KrbY+WOp556SiNHjnQ+djgcOnr0qEJDQ2UY5/99quRLT09X1apVtX//fgUGBnq6nTKJbeB5bAPPYxt4HtvAs3j/PY9t4HlXwzYwTVMnTpxQdHT0BcdddcEqLCxMdrtdSUlJLvWkpCRFRkYW+BwfHx/5+Pi41IKDgy9Xi1dMYGBgqf0AXy3YBp7HNvA8toHnsQ08i/ff89gGnlfat0FQUNBFx9iuQB9XlLe3t66//notWbLEWXM4HFqyZInLoYEAAAAAUFyuuj1WkjRy5Ej1799fTZs2VfPmzfXmm28qMzPTeZVAAAAAAChOV2Wwuvvuu3XkyBGNHTtWiYmJatSokRYuXKhKlSp5urUrwsfHR+PGjct3eCOuHLaB57ENPI9t4HlsA8/i/fc8toHnlaVtcNVdFRAAAAAArrSr7hwrAAAAALjSCFYAAAAAYBHBCgAAAAAsIlgBAAAAgEUEq6vQ1KlTVb16dfn6+qpFixZavXq1p1sqM5YtW6Zu3bopOjpahmFo3rx5nm6pTJk0aZKaNWumgIAARUREqHv37tq+fbun2ypTpk2bpri4OOeNIFu1aqXvvvvO022VaS+99JIMw9CIESM83UqZMX78eBmG4fKvbt26nm6rzDl48KDuvfdehYaGys/PTw0aNNCaNWs83VaZUb169XzfA8MwNGTIEE+3dtkQrK4yc+bM0ciRIzVu3Dj9/vvvatiwoeLj45WcnOzp1sqEzMxMNWzYUFOnTvV0K2XS0qVLNWTIEK1cuVKLFy/WmTNn1LlzZ2VmZnq6tTKjSpUqeumll7R27VqtWbNGHTt21O23367Nmzd7urUy6bffftO7776ruLg4T7dS5lx33XU6fPiw898vv/zi6ZbKlGPHjql169YqV66cvvvuO23ZskWvvfaaKlas6OnWyozffvvN5TuwePFiSdJdd93l4c4uHy63fpVp0aKFmjVrpv/7v/+TJDkcDlWtWlXDhg3Tk08+6eHuyhbDMPTVV1+pe/funm6lzDpy5IgiIiK0dOlStW3b1tPtlFkhISF69dVX9cADD3i6lTIlIyNDTZo00dtvv60XXnhBjRo10ptvvunptsqE8ePHa968eVq/fr2nWymznnzySf3666/673//6+lW8D8jRozQ/PnztWPHDhmG4el2Lgv2WF1FsrOztXbtWnXq1MlZs9ls6tSpk1asWOHBzgDPSEtLk3T2F3tcebm5uZo9e7YyMzPVqlUrT7dT5gwZMkRdu3Z1+W8CrpwdO3YoOjpaNWvWVN++fZWQkODplsqU//znP2ratKnuuusuRUREqHHjxnr//fc93VaZlZ2drX//+98aOHDgVRuqJILVVSUlJUW5ubmqVKmSS71SpUpKTEz0UFeAZzgcDo0YMUKtW7dW/fr1Pd1OmbJx40ZVqFBBPj4+evjhh/XVV1+pXr16nm6rTJk9e7Z+//13TZo0ydOtlEktWrTQjBkztHDhQk2bNk179uzRjTfeqBMnTni6tTJj9+7dmjZtmmrXrq1FixZp8ODBevTRRzVz5kxPt1YmzZs3T8ePH9f999/v6VYuKy9PNwAAl8OQIUO0adMmzmvwgDp16mj9+vVKS0vTF198of79+2vp0qWEqytk//79Gj58uBYvXixfX19Pt1MmdenSxfn/4+Li1KJFC8XExOizzz7jkNgrxOFwqGnTppo4caIkqXHjxtq0aZPeeecd9e/f38PdlT0ffPCBunTpoujoaE+3clmxx+oqEhYWJrvdrqSkJJd6UlKSIiMjPdQVcOUNHTpU8+fP108//aQqVap4up0yx9vbW9dcc42uv/56TZo0SQ0bNtTkyZM93VaZsXbtWiUnJ6tJkyby8vKSl5eXli5dqrfeekteXl7Kzc31dItlTnBwsK699lrt3LnT062UGVFRUfn+mBMbG8shmR6wb98+/fDDD3rwwQc93cplR7C6inh7e+v666/XkiVLnDWHw6ElS5ZwfgPKBNM0NXToUH311Vf68ccfVaNGDU+3BJ39OZSVleXpNsqMm266SRs3btT69eud/5o2baq+fftq/fr1stvtnm6xzMnIyNCuXbsUFRXl6VbKjNatW+e73caff/6pmJgYD3VUdk2fPl0RERHq2rWrp1u57DgU8CozcuRI9e/fX02bNlXz5s315ptvKjMzUwMGDPB0a2VCRkaGy18k9+zZo/Xr1yskJETVqlXzYGdlw5AhQzRr1ix9/fXXCggIcJ5bGBQUJD8/Pw93VzY89dRT6tKli6pVq6YTJ05o1qxZ+vnnn7Vo0SJPt1ZmBAQE5Duv0N/fX6GhoZxveIU8/vjj6tatm2JiYnTo0CGNGzdOdrtdffr08XRrZcZjjz2mG264QRMnTlSvXr20evVqvffee3rvvfc83VqZ4nA4NH36dPXv319eXld/7Lj6Z1jG3H333Tpy5IjGjh2rxMRENWrUSAsXLsx3QQtcHmvWrFGHDh2cj0eOHClJ6t+/v2bMmOGhrsqOadOmSZLat2/vUp8+ffpVf8JsSZGcnKz77rtPhw8fVlBQkOLi4rRo0SLdfPPNnm4NuGIOHDigPn36KDU1VeHh4WrTpo1Wrlyp8PBwT7dWZjRr1kxfffWVnnrqKT333HOqUaOG3nzzTfXt29fTrZUpP/zwgxISEjRw4EBPt3JFcB8rAAAAALCIc6wAAAAAwCKCFQAAAABYRLACAAAAAIsIVgAAAABgEcEKAAAAACwiWAEAAACARQQrAAAAALCIYAUAAAAAFhGsAABXrerVq+v+++/3dBsAgDKAYAUAKJV27dqlv//976pZs6Z8fX0VGBio1q1ba/LkyTp16tRlf/2TJ09q/Pjx+vnnny/7awEASj4vTzcAAMClWrBgge666y75+PjovvvuU/369ZWdna1ffvlFo0aN0ubNm/Xee+9d1h5OnjypCRMmSJLat29/WV8LAFDyEawAAKXKnj171Lt3b8XExOjHH39UVFSUc9mQIUO0c+dOLViwwIMdWpOZmSl/f39PtwEAuEQcCggAKFVeeeUVZWRk6IMPPnAJVXmuueYaDR8+vMDnjh8/XoZh5KvPmDFDhmFo7969ztqaNWsUHx+vsLAw+fn5qUaNGho4cKAkae/evQoPD5ckTZgwQYZhyDAMjR8/3vn8bdu26c4771RISIh8fX3VtGlT/ec//ynwdZcuXapHHnlEERERqlKlyqW+JQCAEoA9VgCAUuWbb75RzZo1dcMNN1y210hOTlbnzp0VHh6uJ598UsHBwdq7d6++/PJLSVJ4eLimTZumwYMH64477lCPHj0kSXFxcZKkzZs3q3Xr1qpcubKefPJJ+fv767PPPlP37t01d+5c3XHHHS6v98gjjyg8PFxjx45VZmbmZZsXAODyIVgBAEqN9PR0HTx4ULfffvtlfZ3ly5fr2LFj+v7779W0aVNn/YUXXpAk+fv7684779TgwYMVFxene++91+X5w4cPV7Vq1fTbb7/Jx8dH0tnw1KZNGz3xxBP5glVISIiWLFkiu91+WecFALh8OBQQAFBqpKenS5ICAgIu6+sEBwdLkubPn68zZ85c0nOPHj2qH3/8Ub169dKJEyeUkpKilJQUpaamKj4+Xjt27NDBgwddnjNo0CBCFQCUcgQrAECpERgYKEk6ceLEZX2ddu3aqWfPnpowYYLCwsJ0++23a/r06crKyrroc3fu3CnTNPXss88qPDzc5d+4ceMknT3U8Fw1atS4LPMAAFw5HAoIACg1AgMDFR0drU2bNrn1/IIuXCFJubm5+cZ98cUXWrlypb755hstWrRIAwcO1GuvvaaVK1eqQoUKhb6Gw+GQJD3++OOKj48vcMw111zj8tjPz+9SpgEAKIEIVgCAUuW2227Te++9pxUrVqhVq1aX9NyKFStKko4fP+483E+S9u3bV+D4li1bqmXLlnrxxRc1a9Ys9e3bV7Nnz9aDDz5YaEirWbOmJKlcuXLq1KnTJfUHACi9OBQQAFCqjB49Wv7+/nrwwQeVlJSUb/muXbs0efLkAp9bq1YtSdKyZcuctczMTM2cOdNl3LFjx2SapkutUaNGkuQ8HLB8+fKSzoa0c0VERKh9+/Z69913dfjw4Xw9HDly5AKzAwCUVuyxAgCUKrVq1dKsWbN09913KzY2Vvfdd5/q16+v7OxsLV++XJ9//rnuv//+Ap/buXNnVatWTQ888IBGjRolu92uDz/8UOHh4UpISHCOmzlzpt5++23dcccdqlWrlk6cOKH3339fgYGBuvXWWyWdPXyvXr16mjNnjq699lqFhISofv36ql+/vqZOnao2bdqoQYMGGjRokGrWrKmkpCStWLFCBw4c0B9//HEl3ioAwBVEsAIAlDp/+9vftGHDBr366qv6+uuvNW3aNPn4+CguLk6vvfaaBg0aVODzypUrp6+++kqPPPKInn32WUVGRmrEiBGqWLGiBgwY4BzXrl07rV69WrNnz1ZSUpKCgoLUvHlzffLJJy4XmvjXv/6lYcOG6bHHHlN2drbGjRun+vXrq169elqzZo0mTJigGTNmKDU1VREREWrcuLHGjh172d8fAMCVZ5jnH+sAAAAAALgknGMFAAAAABYRrAAAAADAIoIVAAAAAFhEsAIAAAAAiwhWAAAAAGARwQoAAAAALCJYAQAAAIBFBCsAAAAAsIhgBQAAAAAWEawAAAAAwCKCFQAAAABYRLACAAAAAIv+H4TTSsXv7ou3AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Conteo de elementos por grupo (cluster)\n", - "conteo_clusters = df_clusters['cluster'].value_counts().sort_index()\n", - "\n", - "print(\"Conteo de elementos por cluster:\")\n", - "print(conteo_clusters)\n", - "\n", - "# Agregar porcentajes para tener una mejor idea de la distribución\n", - "porcentaje_clusters = (conteo_clusters / len(df_clusters) * 100).round(2)\n", - "print(\"\\nPorcentaje de elementos por cluster:\")\n", - "print(porcentaje_clusters)\n", - "\n", - "# Crear una visualización básica de los clusters\n", - "import matplotlib.pyplot as plt\n", - "\n", - "# Gráfico de barras\n", - "plt.figure(figsize=(10, 6))\n", - "conteo_clusters.plot(kind='bar', color='skyblue', edgecolor='black')\n", - "plt.title('Distribución de elementos por cluster', fontsize=14)\n", - "plt.xlabel('Cluster', fontsize=12)\n", - "plt.ylabel('Cantidad de elementos', fontsize=12)\n", - "plt.xticks(rotation=0)\n", - "plt.grid(axis='y', linestyle='--', alpha=0.7)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "df_final = df.merge(df_clusters, on='id', how='left')" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Elementos del cluster 2:\n", - " Weight Upper_Material Midsole_Material \\\n", - "22 585.0 Exterior textil Mediasuela Bounce \n", - "39 664.8 Exterior textil Mediasuela Bounce \n", - "42 540.0 Exterior de malla técnica Mediasuela Bounce \n", - "54 260.0 Exterior textil Mediasuela 4D de impresión 3D \n", - "113 664.8 Exterior textil Mediasuela Bounce \n", - "121 584.0 Exterior de malla técnica Mediasuela Bounce \n", - "243 585.0 Exterior textil Mediasuela Bounce \n", - "248 584.0 Technical mesh Mediasuela Bounce \n", - "267 585.0 Exterior textil Mediasuela Bounce \n", - "287 585.0 Exterior textil Mediasuela Bounce \n", - "291 585.0 Exterior textil Mediasuela Bounce \n", - "294 584.0 Exterior de malla técnica Mediasuela Bounce \n", - "298 584.0 Exterior de malla técnica Mediasuela Bounce \n", - "306 584.0 Exterior de malla técnica Mediasuela Bounce \n", - "324 540.0 Exterior de malla técnica Mediasuela Bounce \n", - "327 664.8 Exterior textil Mediasuela Bounce \n", - "330 664.8 Exterior textil Mediasuela Bounce \n", - "343 299.0 Exterior de malla EVA \n", - "352 664.8 Exterior textil Mediasuela Bounce \n", - "376 585.0 Exterior textil Mediasuela Bounce \n", - "383 540.0 Exterior de malla técnica Mediasuela Bounce \n", - "426 585.0 Exterior textil Mediasuela Bounce \n", - "\n", - " Outsole Cushioning_System \\\n", - "22 Suela de caucho Mediasuela Bounce \n", - "39 Suela de caucho Bounce \n", - "42 Suela de caucho NaN \n", - "54 Suela sintética Mediasuela 4D de impresión 3D \n", - "113 Suela de caucho Bounce \n", - "121 Suela de caucho NaN \n", - "243 Suela de caucho Mediasuela Bounce \n", - "248 Rubber Mediasuela Bounce \n", - "267 Suela de caucho Mediasuela Bounce \n", - "287 Suela de caucho Mediasuela Bounce \n", - "291 Suela de caucho Mediasuela Bounce \n", - "294 Suela de caucho NaN \n", - "298 Suela de caucho NaN \n", - "306 Suela de caucho NaN \n", - "324 Suela de caucho Mediasuela Bounce \n", - "327 Suela de caucho Bounce \n", - "330 Suela de caucho Bounce \n", - "343 Suela de caucho OrthoLite \n", - "352 Suela de caucho Mediasuela Bounce \n", - "376 Suela de caucho Mediasuela Bounce \n", - "383 Suela de caucho Mediasuela Bounce \n", - "426 Suela de caucho Mediasuela Bounce \n", - "\n", - " Drop__heel-to-toe_differential_ Usage_Type Gender Available_Sizes \\\n", - "22 9.0 Running Mujer NaN \n", - "39 9.0 Running Hombre NaN \n", - "42 10.0 Running Mujer CO 37 \n", - "54 NaN Running Mujer NaN \n", - "113 9.0 Running Hombre NaN \n", - "121 10.0 Running Hombre NaN \n", - "243 9.0 Running Mujer NaN \n", - "248 10.0 Running Men NaN \n", - "267 9.0 Running Mujer NaN \n", - "287 9.0 Running Mujer NaN \n", - "291 9.0 Running Mujer NaN \n", - "294 10.0 Running Hombre NaN \n", - "298 10.0 Running Hombre NaN \n", - "306 10.0 Running Hombre NaN \n", - "324 10.0 Running Mujer NaN \n", - "327 9.0 Running Hombre NaN \n", - "330 9.0 Running Hombre NaN \n", - "343 10.0 Running NaN NaN \n", - "352 9.0 Running Hombre NaN \n", - "376 9.0 Running Mujer NaN \n", - "383 10.0 Running Mujer NaN \n", - "426 9.0 Running Mujer NaN \n", - "\n", - " Width Additional_Technologies \\\n", - "22 NaN Recyclable materials \n", - "39 NaN Contains at least 50% recycled material \n", - "42 NaN Estabilizadores de TPU en la zona media y el t... \n", - "54 NaN Recyclable materials \n", - "113 NaN Recyclable materials \n", - "121 NaN Estabilizadores de TPU, Sistema de amarre de c... \n", - "243 NaN Contiene al menos un 50 % de material reciclado \n", - "248 NaN Estabilizadores de TPU, Sistema de amarre de c... \n", - "267 NaN Recyclable materials \n", - "287 NaN Contains at least 50% recycled material \n", - "291 NaN Contains at least 50% recycled material \n", - "294 NaN Estabilizadores de TPU, Sistema de amarre de c... \n", - "298 NaN Estabilizadores de TPU, Sistema de amarre de c... \n", - "306 NaN Estabilizadores de TPU en la zona media y el t... \n", - "324 NaN Estabilizadores de TPU en la zona media y el t... \n", - "327 NaN Contiene al menos un 50 % de material reciclado \n", - "330 NaN Recyclable materials \n", - "343 NaN Recyclable materials \n", - "352 NaN Contains at least 50% recycled material \n", - "376 NaN Contains at least 50% recycled material \n", - "383 NaN Estabilizadores de TPU, Sistema de amarre de c... \n", - "426 NaN Contains at least 50% recycled material \n", - "\n", - " id regularPrice undiscounted_price cluster \n", - "22 36umRByym4P5idSfddlA 579950 405965.0 2 \n", - "39 5YBCQmekSCOryIo7887a 579950 405965.0 2 \n", - "42 6Y8BXtu2vPy0I6eGn0jI 499950 349965.0 2 \n", - "54 8FyMNBTEgPGeqnhTm34a 1299950 909965.0 2 \n", - "113 H1SxT7RaEy2ke9VjSWpg 579950 347970.0 2 \n", - "121 HXuKHFQnKMYL15wuuAtE 369950 NaN 2 \n", - "243 XTyfd24nQsI0ydJ5HNOM 579950 405965.0 2 \n", - "248 YdluqvzyDKCaoIXf2Raw 499950 399960.0 2 \n", - "267 bXMGR7Ld3EpZfjLwRZXc 579950 405965.0 2 \n", - "287 ekzaoVmAEPT57hEOzM4z 579950 347970.0 2 \n", - "291 f7BRJbDjPGZ0R7k8T2BH 449950 NaN 2 \n", - "294 fD0hMnJthp7NyufrsX94 449950 NaN 2 \n", - "298 g0dU1EZ2VAcJp8GeFtDU 499950 NaN 2 \n", - "306 gfkoLBQme3OHzj3JXmu1 499950 349965.0 2 \n", - "324 j14fin6QCZyFNfHrLfUb 449950 NaN 2 \n", - "327 jQ8lW8Kba3VAUZgvjzpp 579950 405965.0 2 \n", - "330 jepprtx3EAEA6TxsC94H 579950 405965.0 2 \n", - "343 lDidMEQwKMrEEimwgbts 199950 NaN 2 \n", - "352 mhHNGEv3q2mIoQrUsE6k 579950 347970.0 2 \n", - "376 qcNdp0WmOAxgmOk9AFpa 579950 347970.0 2 \n", - "383 sEsYVzeezD0cJVpoX3Lv 499950 299970.0 2 \n", - "426 wSLYbxhlkuBI8YpCJOf7 579950 289975.0 2 \n", - "\n", - "Estadísticas descriptivas del cluster 2:\n", - " Weight Drop__heel-to-toe_differential_ Width regularPrice \\\n", - "count 22.000000 21.000000 0.0 2.200000e+01 \n", - "mean 569.000000 9.428571 NaN 5.499500e+05 \n", - "std 102.285595 0.507093 NaN 1.914606e+05 \n", - "min 260.000000 9.000000 NaN 1.999500e+05 \n", - "25% 584.000000 9.000000 NaN 4.999500e+05 \n", - "50% 585.000000 9.000000 NaN 5.799500e+05 \n", - "75% 585.000000 10.000000 NaN 5.799500e+05 \n", - "max 664.800000 10.000000 NaN 1.299950e+06 \n", - "\n", - " undiscounted_price cluster \n", - "count 16.000000 22.0 \n", - "mean 401716.875000 2.0 \n", - "std 140991.161707 0.0 \n", - "min 289975.000000 2.0 \n", - "25% 347970.000000 2.0 \n", - "50% 374962.500000 2.0 \n", - "75% 405965.000000 2.0 \n", - "max 909965.000000 2.0 \n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHcCAYAAAAqb0k3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeu0lEQVR4nO3dd3hUdfr//9eZSSUQAiEBIgEhIL1Jk6KA+iGyrIq69lXE/blrFwuKhWYB13X9uq7ddVF3FV17AUFUihQRJDSlE6RGSIAkJpAy8/79gXPMJJNkyASSkzwf1xWu5D5nzrnv93nPzJ3DmRPLGGMEAAAAOIyrphMAAAAAqoJGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhbASffPf/5TlmXp1VdfrelUAAAORiMLBGnBggWyLEtTpkypkf2feuqpOvXUU/1iU6ZMkWVZWrBgQY3kVJplWRo2bFiF63z33Xe65557NGnSJP3pT386OYkFEEyuTlNdc7S2zavaYNiwYbIsq9q3W9OvK4DT0ciiXtmxY4csy/L7atCggZKSknTOOedo0qRJ2rZt2wnZ94l6I3SSQ4cO6bLLLtOVV16pqVOn1nQ6J8Tjjz8uy7L0+OOPB1zeq1cvWZalG2+8MeDy0aNHy7IsffXVVycyzWpFM+YcteWXlNWrV2vixIk644wzlJiYqMjISLVr104333yz9uzZU6O5wVnCajoBoCakpKToj3/8oySpoKBA+/fv13fffadHHnlE06ZN07333qvHHnvMr/Hs37+/NmzYoGbNmtVIzk5obDZs2KAGDRqUu3z16tW6+eabdeedd57ErE6u4cOHSzrW3E2YMMFvWVZWltauXVtuI+H1erVo0SJFRkZq8ODBx73vmp6jQLBuvPFGLV++XP3799cVV1yhyMhILV++XC+88ILeffddffPNN+rUqVNNpwkHoJFFvdS+ffuAZ48WL16sa665RtOnT5fb7dYjjzxiL2vQoEGNvrCmpKTU2L6DVdn4DB8+3G706qo+ffqoUaNGWrx4sYqLixUW9tvL7MKFC2WM0cUXX6wPPvhA+/btU8uWLe3la9as0aFDhzR06FBFRUUd975reo4Cwbr66qv13//+V+3bt/eL//Wvf9WECRN09913a9asWTWUHZyESwuAEoYMGaI5c+YoMjJSTzzxhHbt2mUvK++/T7ds2aKxY8eqbdu2ioyMVNOmTdWzZ0+NGzdOxhhJx67HXLhwof297+u6666T9NslD9ddd502bNigiy66SPHx8bIsSzt27JAU+BrZkl599VV1795dUVFROuWUU3TnnXcqNzfXb52K/gu4ZA6l7d+/X3fffbc6duyo6OhoNW3aVAMGDNCTTz7pt155151mZmZq3Lhx9hglJibqsssu0/r168use91118myLKWnp+uZZ55Rp06dFBkZqTZt2mjq1Knyer3ljkEg//rXv9StWzdFRUUpOTlZ9957r44ePVru+rm5uZo8ebK6du2q6OhoxcXFKTU1VYsXLw5qf2FhYTrzzDOVl5enFStW+C1bsGCBoqOjdd9990mS5s+fX2a5pDLN/scff6xzzjlHTZo0UVRUlLp166Ynn3xSHo+nzOPLO74LFy7UWWedpZiYGMXHx+vyyy/Xrl27Kr3k5a233lKvXr0UHR2tli1b6o477tCRI0fs5VOmTLHznTp1qt/89s3dygRb32uvvSbLsvTaa6/piy++0KBBg9SgQQPFx8drzJgxysrKCmp/Pvv379edd96p9u3bKzIyUs2aNdMll1wScF5WxZo1a3T11VerVatWioyMVMuWLXXeeefp008/rfSxFV3DHei1IDs7W5MmTVKXLl3UsGFDxcbGqn379hozZox++uknSccub/Jd0jN8+HD7OJXe1vGMiy+Xw4cP69Zbb1VycrLCwsL02muvVVjfbbfdVqaJlaR77rlH0dHR9uslUBnOyAKldOzYUZdddpn+85//6KOPPtJtt91W7rp79+5V//79lZeXp1GjRunyyy9XXl6etmzZoueff15PPvmkwsLCNHnyZL322mv66aefNHnyZPvxvXr18tve1q1bdcYZZ6h79+667rrrlJWVpYiIiEpzfuqpp/TVV1/p8ssv16hRo/Tll1/q6aef1rfffqtFixYpPDy8yuOxadMmDR8+XPv27dOQIUM0evRo5eXl6YcfftC0adN0zz33VPj4AwcOaODAgdq2bZuGDRumK664Qunp6Xrvvfc0a9YszZ07V0OGDCnzuPHjx2vhwoX6/e9/r9TUVH300UeaMmWKCgsL9dhjjwWV+yOPPKJJkyapefPmuuGGGxQeHq533nlHGzZsCLj+wYMHddZZZ+mHH37Q4MGDdeONNyonJ0cff/yxhg8frnfffVejR4+udL/Dhw/X7NmzNX/+fA0cONCOz58/X2eccYb69u2rJk2aaP78+brqqqv8lvse73P//ffr8ccf1ymnnKKLL75YjRs31jfffKPx48dr+fLlevfddyvN54svvtCoUaPkdrt1+eWXKykpSfPnz9eQIUPUpEmTch/37LPPas6cObrwwgt19tlna86cOXrmmWeUmZmpN998U9Kx5mjHjh16/fXXNXToUL/mKy4urtLcqlLfJ598olmzZun888/XoEGDtGjRIr3xxhvatm1b0L9w+Obj7t27NWLECI0ePVr79+/X+++/r7lz5+qrr77SgAEDgtpWIO+//76uuuoqGWN0/vnnq2PHjtq/f7+WL1+uV199Veeff36Vt12aMUapqalavny5Bg8erPPOO08ul0s//fSTPvnkE11zzTVq06aN/UvqwoULNWbMGLuBLXmcqjIuBQUFOvvss/XLL7/oggsuUFhYmJo3b16lWizLUnh4eL3/PAGOgwHqkfT0dCPJpKamVrjeq6++aiSZa665xo7Nnz/fSDKTJ0+2Y88884yRZJ5++uky28jKyvL7eejQoaa8p5wvL0lm0qRJAddp06aNadOmjV9s8uTJRpKJiIgwa9asseNer9dcddVVRpJ58sknK6yhdA5jxozxi/ft29dIMi+//HKZx+zatcvvZ0lm6NChfrGxY8caSeb+++/3i8+aNctIMu3btzcej8eOjxkzxkgybdu2NXv37rXjBw4cMHFxcaZRo0amoKCgTC6lbdmyxYSFhZlTTjnF/Pzzz3Y8OzvbdOzYMWCuvjF75ZVX/OI///yzSU5ONgkJCebIkSOV7nvlypVGkvm///s/v/wtyzJTp041xhhzwQUXmJSUFHu5x+MxcXFxJjo62q7viy++sOfrL7/8Yq/r9XrNjTfeaCSZ9957z44HOr7FxcWmTZs2xrIs88033/jlee2119rzriTfvGrcuLHZuHGjHc/PzzennXaacblcZs+ePRXuNxjHW9+MGTOMJBMWFmYWL17sV+OwYcOMJLNs2bKg9j1o0CDjdrvNnDlz/OKbNm0yjRo1Mt27d/eLV/T8LS0jI8PExMSYmJgYs2rVqjLLSz5vyhu7QPPTp/Rrwdq1a40kM3r06DLrHj161OTm5to/+47t/PnzA277eMelTZs29jHMz88PuM3j8c477xhJ5tJLLw15W6gfuLQACCApKUnSsf8SD0Z0dHSZWNOmTY97vy1atNCDDz543I+79tpr1aNHD/tny7I0bdo0ud3uSv+LryLfffedVq5cqbPOOks33HBDmeWtWrWq8PGFhYWaOXOm4uPj9dBDD/kt+93vfqf/+7//09atW7VkyZIyj504caLf9aPNmjXThRdeqNzcXG3atKnS3N966y0VFxfrrrvuUmJioh2PjY0tk4t07Fi/8847Ovvss/X//X//n9+yxMREjR8/XgcOHNCXX35Z6b579+6tuLg4LVmyRIWFhZKO/be/McY+Yzl06FBt27bNvnxl9erVOnz4sAYNGmSfhX/22WclSS+//LJiYmLs7fvuimBZlmbOnFlhLosXL9ZPP/2k888/v8yZ70cffVRut7vcx95xxx3q2LGj/XN0dLSuvPJKeb1eff/995WOQ2WqWt9VV13l92E4t9utMWPGSFKZyzkCSUtL09KlSzVmzBilpqb6LTvttNN0ww03aN26dVW+xOD1119XXl6e7r77bvXu3bvM8sqeN1UV6HUoMjJSDRs2DOrxoYzLE088EXD/x2PXrl26/fbbFR0d7ff5BKAiXFoAhOD888/X/fffr1tuuUVfffWVzjvvPA0dOlTt2rWr0vZ69uwZ1KUEpZ155pllYm3atFFycrJ++OEHFRYWVmm73333nSRpxIgRx/1YSdq4caOOHj2q4cOHB7ybwfDhwzVv3jytXr26TA19+vQps76vATh8+HCl+16zZo2kwGMTKLZixQp5PB4VFBQEvMZ0y5Ytdk2///3vK9y3y+XSmWeeqU8//VTfffedhgwZovnz5ysqKsr+b9mhQ4dKOnY5wbXXXhvw+thvv/1WMTEx+ve//x1wP9HR0dq4cWOFufjGIdDlG8nJyWrdurXS09MDPjbUY1CZqtYXal7ffvutJOnnn38OeKx9+9y4caO6detW6fZKC/V5c7w6d+6sHj16aObMmdq9e7dGjx6tYcOGqVevXnK5gj9fVdVxiYqKUvfu3UOqISsrS7/73e+0f/9+vfHGG36/QAEVoZEFAti7d68kKSEhocL1Tj31VH377beaMmWKZs+erf/973+Sjn16/+GHH9all156XPut6nVl5T2uefPm2rFjh3JzcxUfH3/c283OzpYknXLKKVXKKycnp8L8fGdcfeuVFBsbWybmuwNA6Q8BBeLLveTZWJ9A+Rw8eFCStGTJkoBniH3y8vIq3bd0rCH99NNPtWDBAg0ZMkQLFizQGWecocjISEnHro9u3Lix3cj6ro89++yz/XIqLi6u8J67leXjG9tA4yAdG4vyGtlQj0FlqlpfqHn5jvWsWbMq/GR8sMe6tFCfN8crLCxMX3/9taZMmaL3339fd999t6Rjr1+33nqrHnzwwQrPvPtUdVwSExNDuqY1KytL55xzjn744Qe98MIL9q0RgWBwaQEQgO/sWL9+/Spdt1u3bnrvvfd08OBBLVu2TJMmTVJGRoYuv/zyChuiQKr6ZvDzzz+XG7csS40aNZIk++xMcXFxmXV9b74l+T4EUtUblPsajvLyy8jI8FuvOjVu3FjSsU9glxYoH18Od999t4wx5X6V/LBeRXxnVufPn6/9+/frxx9/9PsglNvtts/Uer1effPNN2rYsKHfnIuNjVV8fHyF+ZTXhJauK9A4lDcWJ0t11FfV/UrH/lRyRfv2Xa5wvEJ93kjHXgsCPU+lwM/V+Ph4/fOf/9SePXv0448/6tlnn1XTpk01efJkPfHEE0Hts6rjUh1N7Jo1a/Tss8/qL3/5S5W3hfqJRhYoZfPmzfrf//6nyMhIXXTRRUE/Ljw8XGeccYamTp2qZ555RsYYffbZZ/Zy3xmR6jiTVdo333xTJvbTTz9p165d6tq1q31Zge8T6oHeYNPS0srE+vfvL+nYp96rolOnToqKitKKFSuUn59fZrnvF4bSd2+oDj179pQUeGwCxfr16yfLsrRs2bJq2X+PHj3UtGlTLVu2THPnzpWkMrdTGjp0qH766Sd98MEHys7O1pAhQ/zuOztgwABlZWXZlzVUhW8cAv1StXv3bu3cubPK2/ap6tyujvqqwnd5R3Ud69JCfd5Ix56rgZ6nO3bsqPDyCcuy1LlzZ91yyy2aN2+epGN3efCp6Fid6HEprWQT+89//lM333zzSdkv6hYaWaCEJUuWKDU1VQUFBZowYUKl/zX4/fffB/xvcd9ZrpI3tfd9+KvkvWmryxtvvKG1a9faPxtj9MADD8jj8fjdF7Zjx45q1KiRPvnkE/u/EX35Pvroo2W2269fP/Xr10+LFi3SK6+8UmZ5ZWecIiIidOWVVyozM1PTp0/3WzZnzhzNnTtX7du3r9JfsarMVVddJbfbraeeesrvbGROTk7AWlu0aKHLLrtMS5cu1d/+9jf7HsAlLV++PGBDHojL5dLQoUN15MgRPfHEE4qKitIZZ5zht47vOtmS9/Ys6fbbb5ckXX/99QHvkZqRkVHurcR8hgwZotatW+vTTz8t06BMnDixWn6xqurcro76qqJ///4aMGCAZs6cqXfeeafMcq/XG9J9TMeMGaOGDRvq73//u1avXl1meTBnavv166cdO3b45VFYWKi77rqrzLo7duwIeM/e430dOtHjUtLBgwd17rnnas2aNfrHP/6hW2+9tVq2i/qHa2RRL23dutX+MENhYaH9J2rXrVsnt9uthx56KKj/Qv7Pf/6jl156SWeddZZSUlIUGxurH3/8UbNnz1bTpk01duxYe92zzz5b7733ni655BKNHDlSUVFR6tmzZ7XcTzI1NVUDBw7UFVdcoYSEBH311VdauXKlzjjjDL/74EZEROi2227TtGnTdPrpp9t3Afj000/tT9GX9uabb2rYsGH685//rP/85z8aOHCgjh49qh9++EFpaWmV3oT+r3/9qxYuXKhHH31US5cu1YABA7Rjxw69++67atCggWbMmHFcH0gJVvv27TVp0iRNnjxZPXr00GWXXaawsDC9//776tGjR8A7Hzz//PPatGmT7r33XrvWuLg47dq1SytXrtSWLVu0b9++Cv8Mb0nDhw/Xhx9+qPXr12vYsGH29bE+p59+uho2bGh/Crx0I3veeedp4sSJeuSRR9S+fXudd955atOmjbKysrR161Z98803evTRR9W5c+dyc3C73XrxxRd1wQUX6Oyzz9bll1+uli1bauHChdqzZ4969uzp90tQVXTq1ElJSUl6++23FRkZqVatWsmyLN122232JR6BVEd9VTVz5kwNHz5cV1xxhZ5++mmdfvrpio6O1s6dO7Vs2TIdOHCgwj+cUZHExES98cYbuuKKK9S/f39dcMEF6tixozIzM7V8+XKdeuqp+uijjyrcxl133aUvvvhCv/vd73TllVeqQYMGmjdvnuLi4vzu5iEdu+PFxRdfrP79+6tLly5q0aKF9uzZo48++kgul8vvT0L7/hDCAw88oB9++EGNGzdWXFyc3UieyHEp6eKLL9bq1avVqVMnHTx4MOCHy8aNGxfUvYhRz53AW3sBtU7J+7X6vqKjo03Lli3N8OHDzcSJE83WrVsDPjbQ/R6//fZb85e//MV069bNvgdohw4dzK233mp++uknv8cXFRWZe++917Ru3dqEhYX53bO1vHu4llTRfWTnz59vXnnlFdO1a1cTGRlpWrZsae644w6Tk5NTZjsej8dMmTLFJCcnm4iICHPaaaeZf/zjH2b79u3l5pCRkWHuuOMO065dOxMREWGaNm1qBgwYYJ566im/9VTOvS8PHDhgbr/9dtOmTRsTHh5umjVrZv7whz+YdevWlVnXdx/Z9PT0MssquwdmIK+88orp0qWLiYiIMK1atTL33HOPyc/PLzfX/Px888QTT5g+ffqYmJgYEx0dbdq2bWtGjx5t3njjDVNUVBT0vtetW2fPsylTpgRcJzU11UgysbGxpri4OOA68+bNM+eff75JSEgw4eHhpkWLFmbgwIHmkUceMTt37rTXq+h+rl9//bUZMmSIiY6ONk2bNjWXXnqp2blzp+nWrZtp3Lix37oVjbPvXq4zZszwi3/77bdm6NChplGjRnbNgY5hKPWVt+/Kai/PwYMHzUMPPWS6detmoqOjTcOGDU2HDh3MVVddZT744AO/dY/nPrI+aWlp5rLLLjPNmzc34eHhpmXLlmbkyJHms88+Cyrvd99913Tv3t1ERESYFi1amNtuu83k5uaWeS3YtWuXmTBhgjnjjDNMYmKiiYiIMK1btzYXX3xxwPvqvvbaa6Z79+4mMjLSSCrzunI84xLodSkYvvvPVvQV7PxB/WYZE+D/zwAAdV5ubq6aN2+u7t27a/ny5TWdDgAcN66RBYA6Li8vT7m5uX4xj8ej8ePH68iRI0H92V0AqI04IwsAddzq1as1ZMgQpaamql27dsrNzdU333yjH3/8UV27dtXy5cv9/rIWADgFjSwA1HEHDhzQvffeq4ULF+rnn39WcXGxWrdurdGjR+vBBx/kAzUAHItGFgAAAI7ENbIAAABwJBpZAAAAOFK9+4MIXq9Xe/fuVaNGjUL6+9AAAAA4MYwxys3NVVJSUoV/NKfeNbJ79+5VcnJyTacBAACASuzatUutWrUqd3m9a2QbNWok6djAxMbGBv24oqIiffHFFxoxYoTCw8NPVHqOw7iUxZgExrgExriUxZgExriUxZgEVhfGJScnR8nJyXbfVp5618j6LieIjY097ka2QYMGio2NdeykOBEYl7IYk8AYl8AYl7IYk8AYl7IYk8Dq0rhUdhkoH/YCAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSLWqkV20aJHOP/98JSUlybIsffTRR/ayoqIi3XffferevbtiYmKUlJSka6+9Vnv37q25hAEAAFBjalUjm5eXp549e+q5554rsyw/P1+rVq3SxIkTtWrVKn3wwQfatGmTLrjgghrIFAAAADUtrKYTKGnkyJEaOXJkwGWNGzfWvHnz/GLPPvus+vfvr507d6p169YnI0UAAADUErWqkT1e2dnZsixLcXFx5a5TUFCggoIC++ecnBxJUnFxsYqLiyVJLpdLLpdLXq9XXq/XXtcX93g88ng8kiSPxyO3223HjTH2+m63W5Zl2dstGfc9Nph4WFiYjDF+ccuy5Ha7y+RYXjyYmkrmXl482Jo8Ho+dS12pqbJ4eTX5+MakLtRUHcfJ933JcXF6TdVxnHx5GWOCrrW211RR7sHUVPJ1JTw8vE7UVFnuwdQUzPtQba5p9+7dyszMlGVZsixLxhi/HKsS9/2clpYml8tlxyUpPj5erVq1OqE1+dS2uecTzPtQba2p9PrlcWwje/ToUd1333268sorFRsbW+5606dP19SpU8vE09LSFBMTI0lKSEhQSkqK0tPTdeDAAXudVq1aqVWrVtq8ebMOHz5sPy4lJUWJiYlav369jhw5Yq/fqVMnxcXFKS0tze/A9OjRQxEREVq5cqVfDn379lVhYaHWrl1rx9xut/r166fs7Gxt3LjRjkdHR6tnz57KzMzU9u3b7Xjjxo3VuXNn7d27V7t377bjwdSUnZ1tx9u1a1elmtLS0uxxsSyrTtQU6nHq0qWL35jUhZqq4zi1aNFCkrRt2zbl5ubWiZqq4zj5XvC9Xq9WrVpVJ2qSQjtOvjHZsGGDevfuXSdq8gnlOO3fv1/SsdeW5ORkR9W0ZcsWzV+wQF6PR6tXr9asWbM0atQo9erVy17/m2++0aJFi3TllVeqXbt2dnzWrFlavXq1/vKXv6hZs2Z2fObMmdq3b59mzpypzz77zG62XnrpJeXk5Oi+CRM0fNgwRUdHn9TjVBvmnm9cS74POa0mX39RGcuUbJtrEcuy9OGHH2r06NFllhUVFemSSy7R7t27tWDBggob2UBnZJOTk5WVlWU/LpjfOoqKijR37lylpqYqIiKi1v7GWzr3E/2bVEFBgT0uYWFhdaKmUI+T1+vV7Nmz7TGpCzVVx3HyeDyaM2eO37g4vabqOE7FxcWaO3euRo4caZ9RcnpNFeUeTE2+MUlNTVVUVFSdqKmy3IOpqbCwsNL3odpa06pVqzR48GBdMvkfanZqexlZsmRkldi2kWRkySX/tqS8uFeSW9LwmDwtzGsgz69b80ran75VHz18h5YsWWI3dfXp+WSMCfp9qLbWdOjQIcXHxys7O7vCPs9xZ2SLiop02WWX6aefftLXX39dYXGSFBkZqcjIyDLxsLAwvzdT6beDUJrvAPu+963jG+xA2w41bllWwHh5OR5vvLzcj7cm3/put9tvHSfXFOpxKjlXgp1jtb2minIMNu57YQs0Lr54qLmXF6/Nc883LuXlWHp9n9pcU1XjvppKzpWq5F4bawo2x4riJV9vK3sfqo01FRYWKv7UDkrq3DPgvqrC5S2Wdi9Xi47d5XWVzMlSYWGhXC5XmVzrw/OpqKjI3n6o70O1pabyOKqR9TWxW7Zs0fz58xUfH1/TKQEAAKCG1KpG9pdfftHWrVvtn9PT07V69Wo1bdpULVu21B/+8AetWrVKn332mTwejzIyMiRJTZs2VURERE2lDQAAgBpQqxrZlStXavjw4fbPd911lyRpzJgxmjJlij755BNJ8rs4XJLmz5+vYcOGnaw0AQAAUAvUqkZ22LBhfhcIl1ZLP5cGAACAGlCr/rIXAAAAECwaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADhSrWpkFy1apPPPP19JSUmyLEsfffSR33JjjCZNmqSWLVsqOjpa5557rrZs2VIzyQIAAKBG1apGNi8vTz179tRzzz0XcPkTTzyhZ555Ri+++KKWL1+umJgYpaam6ujRoyc5UwAAANS0sJpOoKSRI0dq5MiRAZcZY/T000/roYce0oUXXihJeuONN9S8eXN99NFHuuKKK05mqgAAAKhhtaqRrUh6eroyMjJ07rnn2rHGjRtrwIABWrZsWbmNbEFBgQoKCuyfc3JyJEnFxcUqLi6WJLlcLrlcLnm9Xnm9XntdX9zj8cjj8UiSPB6P3G63HTfG2Ou73W5ZlmVvt2Tc99hg4mFhYTLG+MUty5Lb7S6TY3nxYGoqmXt58WBr8ng8di51pabK4uXV5OMbk7pQU3UcJ9/3JcfF6TVVx3Hy5WWMCbrW2l5TRbkHU1PJ15Xw8PA6UVNluQdTUzDvQ7W5poiICLlkJOOVLJdkvLJK5GgsS7JcsoxX8ou7JMsKHPfty+uRJatE3CgiIkJer9euuT49n3yCeR+qrTWVXr88jmlkMzIyJEnNmzf3izdv3txeFsj06dM1derUMvG0tDTFxMRIkhISEpSSkqL09HQdOHDAXqdVq1Zq1aqVNm/erMOHD9uPS0lJUWJiotavX68jR47Y63fq1ElxcXFKS0vzOzA9evRQRESEVq5c6ZdD3759VVhYqLVr19oxt9utfv36KTs7Wxs3brTj0dHR6tmzpzIzM7V9+3Y73rhxY3Xu3Fl79+7V7t277XgwNWVnZ9vxdu3aVammtLQ0e1wsy6oTNYV6nLp06eI3JnWhpuo4Ti1atJAkbdu2Tbm5uXWipuo4Tr4XfK/Xq1WrVtWJmqTQjpNvTDZs2KDevXvXiZp8QjlO+/fvl3TstSU5OdlRNWVlZWn8+PE6NfKoPL9k6FCjJDX5JUMxRw7b6+fEJCgnJkHx2bsUVZhnxw81aqm86CZqfihdYcW/nZjKjGutwrAoSVLSwa0yvzayGU1T5JI0fvx4ZWVl2bXVp+dTr169JPm/DzmtJl9/URnLlGybaxHLsvThhx9q9OjRkqSlS5dq8ODB2rt3r1q2bGmvd9lll8myLL3zzjsBtxPojGxycrKysrIUGxsrKbjfOoqKijR37lylpqYe+62ylv7GWzr3E/2bVEFBgT0uYWFhdaKmUI+T1+vV7Nmz7TGpCzVVx3HyeDyaM2eO37g4vabqOE7FxcWaO3euRo4cKZfL/2MLTq2potyDqck3JqmpqYqKiqoTNVWWezA1FRYWVvo+VFtrWrVqlQYPHqwbZ8xSy049qu2MrMt41HH3cm1O6iuvK8yO79m4Ri+PHaUlS5bYTV19ej4ZY4J+H6qtNR06dEjx8fHKzs62+7VAHHNG1nc25+eff/ZrZH/++Wd7kgYSGRmpyMjIMvGwsDC/N1Ppt4NQmu8A+773reMb7EDbDjVuWVbAeHk5Hm+8vNyPtybf+m63228dJ9cU6nEqOVeCnWO1vaaKcgw27nthCzQuvniouZcXr81zzzcu5eVYen2f2lxTVeO+mkrOlarkXhtrCjbHiuIlX28rex+qjTUVFhbKq2PN6rENuWSsMqv/2rgGGf+1XzIut4yrZM2WCgsL5XK5yuRaH55PRUVF9vZDfR+qLTWVp1bdtaAibdu2VYsWLfTVV1/ZsZycHC1fvlwDBw6swcwAAABQE2rVGdlffvlFW7dutX9OT0/X6tWr1bRpU7Vu3Vrjxo3To48+qg4dOqht27aaOHGikpKS7MsPAAAAUH/UqkZ25cqVGj58uP3zXXfdJUkaM2aMXnvtNd17773Ky8vTn//8Zx0+fFhDhgzRnDlzFBUVVVMpAwAAoIbUqkZ22LBhfhcIl2ZZlh5++GE9/PDDJzErAAAA1EaOuUYWAAAAKIlGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI7kqEbW4/Fo4sSJatu2raKjo5WSkqJHHnlExpiaTg0AAAAnWVhNJ3A8/vrXv+qFF17Q66+/rq5du2rlypUaO3asGjdurNtvv72m0wMAAMBJ5KhGdunSpbrwwgs1atQoSdKpp56qmTNn6rvvvqvhzAAAAHCyOaqRHTRokF5++WVt3rxZp512mtasWaPFixfrqaeeKvcxBQUFKigosH/OycmRJBUXF6u4uFiS5HK55HK55PV65fV67XV9cY/HI4/HI+nY5Q1ut9uOl7yswe12y7Ise7sl477HBhMPCwuTMcYvblmW3G53mRzLiwdTU8ncy4sHW5PH47FzqSs1VRYvryYf35jUhZqq4zj5vi85Lk6vqTqOky8vY0zQtdb2mirKPZiaSr6uhIeH14maKss9mJqCeR+qzTVFRETIJSMZr2S5JOOVVSJHY1mS5ZJlvJJf3CVZVuC4b19ejyxZJeJGERER8nq9ds316fnkE8z7UG2tqfT65XFUIzthwgTl5OSoU6dOcrvd8ng8euyxx3T11VeX+5jp06dr6tSpZeJpaWmKiYmRJCUkJCglJUXp6ek6cOCAvU6rVq3UqlUrbd68WYcPH7Yfl5KSosTERK1fv15Hjhyx1+/UqZPi4uKUlpbmd2B69OihiIgIrVy50i+Hvn37qrCwUGvXrrVjbrdb/fr1U3Z2tjZu3GjHo6Oj1bNnT2VmZmr79u12vHHjxurcubP27t2r3bt32/FgasrOzrbj7dq1q1JNaWlp9rhYllUnagr1OHXp0sVvTOpCTdVxnFq0aCFJ2rZtm3Jzc+tETdVxnHwv+F6vV6tWraoTNUmhHSffmGzYsEG9e/euEzX5hHKc9u/fL+nYa0tycrKjasrKytL48eN1auRReX7J0KFGSWryS4Zijhy218+JSVBOTILis3cpqjDPjh9q1FJ50U3U/FC6wop/OzGVGddahWFRkqSkg1tlfm1kM5qmyCVp/PjxysrKsmurT8+nXr16SfJ/H3JaTb7+ojKWcdAnpd5++22NHz9ef/vb39S1a1etXr1a48aN01NPPaUxY8YEfEygM7LJycnKyspSbGyspOB+6ygqKtLcuXOVmpp67LfKWvobb+ncT/RvUgUFBfa4hIWF1YmaQj1OXq9Xs2fPtsekLtRUHcfJ4/Fozpw5fuPi9Jqq4zgVFxdr7ty5GjlypFwu/8/fOrWminIPpibfmKSmpioqKqpO1FRZ7sHUVFhYWOn7UG2tadWqVRo8eLBunDFLLTv1qLYzsi7jUcfdy7U5qa+8rjA7vmfjGr08dpSWLFliN3X16flkjAn6fai21nTo0CHFx8crOzvb7tcCcdQZ2fHjx2vChAm64oorJEndu3fXTz/9pOnTp5fbyEZGRioyMrJMPCwszO/NVPrtIJTmO8C+733r+AY70LZDjVuWFTBeXo7HGy8v9+Otybe+2+32W8fJNYV6nErOlWDnWG2vqaIcg437XtgCjYsvHmru5cVr89zzjUt5OZZe36c211TVuK+mknOlKrnXxpqCzbGieMnX28reh2pjTYWFhfLqWLN6bEMuGavM6r82rkHGf+2XjMst4ypZs6XCwkK5XK4yudaH51NRUZG9/VDfh2pLTeVx1O238vPzA56xKPmbAgAAAOoHR52RPf/88/XYY4+pdevW6tq1q9LS0vTUU0/p+uuvr+nUAAAAcJI5qpH95z//qYkTJ+rmm2/W/v37lZSUpL/85S+aNGlSTacGAACAk8xRjWyjRo309NNP6+mnn67pVAAAAFDDHHWNLAAAAOBDIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBIId+1ICMjQ6+++qpWrVql7OzsMn+cwLIsffXVV6HuBgAAAPATUiO7du1aDRs2TEeOHFHHjh21bt06denSRYcPH9aePXuUkpKi5OTk6soVAAAAsIV0acGECRPUsGFDbdq0SV9++aWMMfrHP/6hXbt26Z133tGhQ4f0+OOPV1euAAAAgC2kRnbJkiX6y1/+otatW8vlOrYp36UFl156qa6++mqNHz8+9CwBAACAUkJqZL1er5o3by5JiouLk9vt1sGDB+3l3bt31/fffx9ahgAAAEAAITWybdu2VXp6+rENuVxq27atvvzyS3v50qVLFRcXF1KCAAAAQCAhNbIjRozQu+++a/9800036V//+pfOPfdcnXPOOXr99dd11VVXhZwkAAAAUFpIdy148MEHdeWVV6qoqEjh4eEaN26c8vLy9P7778vtdmvixIl64IEHqitXAAAAwBZSI9ukSRP16dPH/tmyLD300EN66KGHQk4MAAAAqAh/2QsAAACOdFxnZK+//npZlqWXX35Zbrdb119/faWPsSxLr776apUTBAAAAAI5rkb266+/lsvlktfrldvt1tdffy3Lsip8TGXLAQAAgKo4rkZ2x44dFf4MAAAAnCxcIwsAAABHCqmRXbVqlZ5//vlylz///PNavXp1KLsAAAAAAgqpkX3wwQf9/pJXaV9//TW34gIAAMAJEVIj+/333+vMM88sd/mZZ56plStXhrILAAAAIKCQGtnc3FyFhZX/eTGXy6Xs7OxQdgEAAAAEFFIj26FDB33xxRflLp8zZ47atWsXyi4AAACAgEJqZP/0pz9p1qxZuuuuu3T48GE7fvjwYd15552aM2eO/vSnP4WaIwAAAFDGcd1HtrTbb79dq1ev1tNPP61nnnlGSUlJkqS9e/fK6/Xqmmuu0Z133lktiQIAAAAlhdTIWpalGTNm6Nprr9X777+v7du3S5IuvPBCXXLJJRo2bFh15AgAAACUEVIj6zN8+HANHz68OjYFAAAABIW/7AUAAABHCqmRNcbopZdeUv/+/dWsWTO53e4yXxXdngsAAACoqpC6zHvvvVdPPfWUevXqpT/+8Y9q0qRJdeUFAAAAVCikRvb111/XJZdcov/973/VlQ8AAAAQlJAuLThy5IjOPffc6soFAAAACFpIjew555yjFStWVFcuAAAAQNBCamSff/55ffvtt5o2bZqysrKqKycAAACgUiE1sh07dtT27ds1ceJEJSYmKiYmRrGxsX5fjRs3rq5cAQAAAFtIH/a65JJLZFlWdeUCAAAABC2kRva1116rpjQAAACA48Nf9gIAAIAjhdzI7ty5UzfeeKM6duyoJk2aaNGiRZKkzMxM3X777UpLSws5SQAAAKC0kC4t+PHHH3XmmWfK6/VqwIAB2rp1q4qLiyVJzZo10+LFi5WXl6dXX321WpIFAAAAfEL+E7VxcXH69ttvZVmWEhMT/ZaPGjVK77zzTkgJAgAAAIGEdGnBokWLdNNNNykhISHg3Qtat26tPXv2hLILAAAAIKCQGlmv16sGDRqUu/zAgQOKjIwMZRcAAABAQCE1sqeffrpmzZoVcFlxcbHefvttnXHGGaHsAgAAAAgopEb2/vvv15w5c3TTTTdp/fr1kqSff/5ZX375pUaMGKENGzZowoQJ1ZIoAAAAUFJIH/YaOXKkXnvtNd1xxx16+eWXJUl//OMfZYxRbGys3njjDZ111lnVkigAAABQUkiNrCRdc801uvjii/XFF19o69at8nq9SklJUWpqqho1alQdOQIAAABlhNzISlJMTIwuuuii6tgUAAAAEJSQGtmdO3cGtV7r1q1D2Q0AAABQRkiN7Kmnnhrw/rGleTyeUHYDAAAAlBFSI/vvf/+7TCPr8Xi0Y8cOvfHGG0pMTNQtt9wSUoKl7dmzR/fdd58+//xz5efnq3379poxY4b69u1brfsBAABA7RZSI3vdddeVu+y+++7TgAEDlJ2dHcou/Bw6dEiDBw/W8OHD9fnnnyshIUFbtmxRkyZNqm0fAAAAcIZq+bBXIDExMRo7dqz+3//7f7r99turZZt//etflZycrBkzZtixtm3bVviYgoICFRQU2D/n5ORIOvYHG4qLiyVJLpdLLpdLXq9XXq/XXtcX93g89uURHo9Hbrfbjhtj7PXdbrcsy7K3WzLue2ww8bCwMBlj/OKWZcntdpfJsbx4MDWVzL28eLA1eTweO5e6UlNl8fJq8vGNSV2oqTqOk+/7kuPi9Jqq4zj58jLGBF1rba+potyDqank60p4eHidqKmy3IOpKZj3odpcU0REhFwykvFKlksyXlklcjSWJVkuWcYr+cVdkmUFjvv25fXIklUibhQRESGv12vXXJ+eTz7BvA/V1ppKr1+eE9bISsfeuDIyMqpte5988olSU1N16aWXauHChTrllFN0880364Ybbij3MdOnT9fUqVPLxNPS0hQTEyNJSkhIUEpKitLT03XgwAF7nVatWqlVq1bavHmzDh8+bD8uJSVFiYmJWr9+vY4cOWKv36lTJ8XFxSktLc3vwPTo0UMRERFauXKlXw59+/ZVYWGh1q5da8fcbrf69eun7Oxsbdy40Y5HR0erZ8+eyszM1Pbt2+1448aN1blzZ+3du1e7d++248HUVPJsebt27apUU1pamj0ulmXViZpCPU5dunTxG5O6UFN1HKcWLVpIkrZt26bc3Nw6UVN1HCffC77X69WqVavqRE1SaMfJNyYbNmxQ796960RNPqEcp/3790s69tqSnJzsqJqysrI0fvx4nRp5VJ5fMnSoUZKa/JKhmCOH7fVzYhKUE5Og+OxdiirMs+OHGrVUXnQTNT+UrrDi305MZca1VmFYlCQp6eBWmV8b2YymKXJJGj9+vLKysuza6tPzqVevXpL834ecVpOvv6iMZUq2zdUkJydHixYt0vXXX6/27dtr6dKl1bLdqKhjE/auu+7SpZdeqhUrVuiOO+7Qiy++qDFjxgR8TKAzssnJycrKylJsbKyk4H7rKCoq0ty5c5Wamnrst8pa+htv6dxP9G9SBQUF9riEhYXViZpCPU5er1ezZ8+2x6Qu1FQdx8nj8WjOnDl+4+L0mqrjOBUXF2vu3LkaOXKkXC7/P7bo1Joqyj2YmnxjkpqaqqioqDpRU2W5B1NTYWFhpe9DtbWmVatWafDgwbpxxiy17NSj2s7IuoxHHXcv1+akvvK6wuz4no1r9PLYUVqyZInd1NWn55MxJuj3odpa06FDhxQfH6/s7Gy7XwskpDOyLper3LsWGGPUunVrPf/886Hswo/X61Xfvn01bdo0SVLv3r21fv36ChvZyMhIRUZGlomHhYX5vZlKvx2E0nwH2Pe9bx3fYAfadqhxy7ICxsvL8Xjj5eV+vDX51ne73X7rOLmmUI9TybkS7Byr7TVVlGOwcd8LW6Bx8cVDzb28eG2ee75xKS/H0uv71Oaaqhr31VRyrlQl99pYU7A5VhQv+Xpb2ftQbaypsLBQXh1rVo9tyCUToIU41rgGGf+1XzIut4yrZM2WCgsL5XK5yuRaH55PRUVF9vZDfR+qLTWVJ6RGdtKkSWUaWcuy1KRJE6WkpGjEiBFBJxKMli1b2v9t69O5c2e9//771bYPAAAAOENIXeaUKVOqKY3gDB48WJs2bfKLbd68WW3atDmpeQAAAKDmlT1XfByKi4vtuwAEkpOTE/SnzoJx55136ttvv9W0adO0detWvfXWW3r55Zer/V61AAAAqP1CamRvv/12DRo0qNzlgwcP1t133x3KLvz069dPH374oWbOnKlu3brpkUce0dNPP62rr7662vYBAAAAZwipkZ0zZ47+8Ic/lLv8D3/4g2bPnh3KLsr4/e9/r3Xr1uno0aPasGFDhbfeAgAAQN0VUiO7d+9enXLKKeUuT0pK0p49e0LZBQAAABBQSI1sfHx8mQ9flbRhw4YK7/0FAAAAVFVIjex5552nl156KeBfX1i1apVefvlljRw5MpRdAAAAAAGFdPutRx55RHPmzFH//v11wQUXqGvXrpKk9evX69NPP1ViYqIeeeSRakkUAAAAKCmkRjYpKUkrV67UhAkT9PHHH+vDDz+UJMXGxurqq6/WtGnTlJSUVC2JAgAAACWF/Ge3WrZsqddff13GGB04cECSlJCQUO6frgUAAACqQ7X9/VjLshQZGamGDRvSxAIAAOCEC+nDXpK0cuVKnXfeeWrQoIHi4+O1cOFCSVJmZqYuvPBCLViwINRdAAAAAGWE1MguXbpUQ4YM0ZYtW/THP/5RXq/XXtasWTNlZ2frpZdeCjlJAAAAoLSQGtkHHnhAnTt31o8//qhp06aVWT58+HAtX748lF0AAAAAAYXUyK5YsUJjx45VZGRkwOtiTznlFGVkZISyCwAAACCgkBrZ8PBwv8sJStuzZ48aNmwYyi4AAACAgEJqZM844wy99957AZfl5eVpxowZGjp0aCi7AAAAAAIKqZGdOnWqVq5cqVGjRunzzz+XJK1Zs0b/+te/1KdPHx04cEATJ06slkQBAACAkkK6j+yAAQM0e/Zs3XTTTbr22mslSXfffbckKSUlRbNnz1aPHj1CzxIAAAAopcqNrDFGubm5GjRokDZt2qTVq1dry5Yt8nq9SklJUZ8+ffjDCAAAADhhqtzIFhYWqmnTppo2bZruvfde9erVS7169arG1AAAAIDyVfka2cjISLVo0UKRkZHVmQ8AAAAQlJA+7HXdddfpjTfeUGFhYXXlAwAAAAQlpA97de/eXR999JG6du2q6667Tqeeeqqio6PLrHfxxReHshsAAACgjJAa2SuvvNL+vrzbbFmWJY/HE8puAAAAgDKOu5F94IEHdMUVV6hHjx6aP3/+icgJAAAAqNRxN7KPP/64unXrph49emjo0KHKyspSYmKi5s2bp7PPPvtE5AgAAIBSdu7cqczMzDJxr9cr6dgfqXK5Qvo4lJ9mzZqpdevW1ba96hDSpQU+xpjq2AwAAACCsHPnTnXq3FlH8vPLLIuOjtbMmTN11lln6ciRI9W2z+gGDbRxw4Za1cxWSyMLAACAkyczM1NH8vN12aMvKLFtB79lbhlJefrzvz6RR9Xzx6n2p2/R/x66SZmZmTSyAAAACF1i2w46pXNPv5jLWyztXq6kjt3kddXtVq9K1e3YsUOrVq2SJGVnZ0uStmzZori4uIDrn3766VXLDgAAAChHlRrZiRMnlrnd1s0331xmPWMMt98CAADACXHcjeyMGTNORB4AAADAcTnuRnbMmDEnIg8AAADguFTfzcUAAACAk4hGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAjObqRffzxx2VZlsaNG1fTqQAAAOAkc2wju2LFCr300kvq0aNHTacCAACAGuDIRvaXX37R1VdfrVdeeUVNmjSp6XQAAABQA8JqOoGquOWWWzRq1Cide+65evTRRytct6CgQAUFBfbPOTk5kqTi4mIVFxdLklwul1wul7xer7xer72uL+7xeOTxeCRJHo9Hbrfbjhtj7PXdbrcsy7K3WzLue2ww8bCwMBlj/OKWZcntdpfJsbx4MDWVzL28eLA1eTweO5e6UlNl8fJq8vGNSV2oqTqOk+/7kuPi9Jqq4zj58jLGBF1rba+potyDqank60p4eHidqKmy3IOpKZj3odpcU0REhFwykvFKlksyXlklcjSWJVkuWcYr+cVdkmUFjvv25fXIklUibhQRESGv12vXXNeeT7/tx8jy+tcUaFxkWcfGxphjY/lbUb/GAx8PX9z165j68j3Rc6/0+uVxXCP79ttva9WqVVqxYkVQ60+fPl1Tp04tE09LS1NMTIwkKSEhQSkpKUpPT9eBAwfsdVq1aqVWrVpp8+bNOnz4sP24lJQUJSYmav369Tpy5Ii9fqdOnRQXF6e0tDS/A9OjRw9FRERo5cqVfjn07dtXhYWFWrt2rR1zu93q16+fsrOztXHjRjseHR2tnj17KjMzU9u3b7fjjRs3VufOnbV3717t3r3bjgdTU3Z2th1v165dlWpKS0uzx8WyrDpRU6jHqUuXLn5jUhdqqo7j1KJFC0nStm3blJubWydqqo7j5HvB93q9WrVqVZ2oSQrtOPnGZMOGDerdu3edqMknlOO0f/9+ScdeW5KTkx1VU1ZWlsaPH69TI4/K80uGDjVKUpNfMhRz5LC9fk5MgnJiEhSfvUtRhXl2/FCjlsqLbqLmh9IVVvzbianMuNYqDIuSJCUd3Crza8OW0TRFLknjx49XVlaWXVtdez5lZ2crIiJCkZbRKZmb7LhxubSvafsy41IcFqmMpimKOXpYTXL32esfjYhRZlwbxeZnKTbvt9zzouP8jlN85FGNHz9e+fn5knTC556vv6iMZUq2zbXcrl271LdvX82bN8++NnbYsGHq1auXnn766YCPCXRGNjk5WVlZWYqNjZUU3G9SRUVFmjt3rlJTU4/9VllLf+MtnfuJ/u2woKDAHpewsLA6UVOox8nr9Wr27Nn2mNSFmqrjOHk8Hs2ZM8dvXJxeU3Ucp+LiYs2dO1cjR46Uy+V/tZdTa6oo92Bq8o1JamqqoqKi6kRNleUeTE2FhYWVvg/V1ppWrVqlwYMH68YZs9SyU49qOyPrMh513L1cm5P6yusKs+N7Nq7Ry2NHacmSJerVq9cJqamm597q1avVr18/3frmPLXq2N1vfUumzLiEekZ276Z1enHsKC1dulR9+vQ54XPv0KFDio+PV3Z2tt2vBeKoM7Lff/+99u/fr9NPP92OeTweLVq0SM8++6wKCgrsAfCJjIxUZGRkmW2FhYX5vZlKvx2E0nyT1ve9b53S+yq57VDjlmUFjJeX4/HGy8v9eGvyre92u/3WcXJNoR6nknMl2DlW22uqKMdg474XtkDj4ouHmnt58do893zjUl6Opdf3qc01VTXuq6nkXKlK7rWxpmBzrChe8vW2sveh2lhTYWGhvPq1OZIkyyVjlVn918Y1yPiv/ZJxuWVcJWu2VFhYKJfLVSbXuvJ8+m0/VqnaJct7rGksOy76tXENsN9yjocv7v11TH3/01gTcy/gekGtVUucc845WrdunV9s7Nix6tSpk+67775yBw8AAAB1j6Ma2UaNGqlbt25+sZiYGMXHx5eJAwAAoG5z5O23AAAAAEedkQ1kwYIFNZ0CAAAAagBnZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHCqvpBAAAqG127typzMzMk7rPZs2aqXXr1id1n4DT0cgCAFDCzp071alzZx3Jzz+p+41u0EAbN2ygmQWOA40sAAAlZGZm6kh+vi579AUltu1wUva5P32L/vfQTcrMzKSRBY4DjSwAAAEktu2gUzr3rOk0AFSAD3sBAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAjOaqRnT59uvr166dGjRopMTFRo0eP1qZNm2o6LQAAANQARzWyCxcu1C233KJvv/1W8+bNU1FRkUaMGKG8vLyaTg0AAAAnWVhNJ3A85syZ4/fza6+9psTERH3//fc666yzaigrAAAA1ARHNbKlZWdnS5KaNm1a7joFBQUqKCiwf87JyZEkFRcXq7i4WJLkcrnkcrnk9Xrl9XrtdX1xj8cjj8cjSfJ4PHK73XbcGGOv73a7ZVmWvd2Scd9jg4mHhYXJGOMXtyxLbre7TI7lxYOpqWTu5cWDrcnj8di51JWaKouXV5OPb0zqQk3VcZx835ccF6fXVB3HyZeXMSboWmt7TRXlHkxNJV9XwsPDT3pNvu9dMrK8v+VprGP/iWmZ37ZdYdzllozxj1vWsfVLxV0y9r5LjmXJmoJ5H6rNz6eIiIhjdRqvZLkk45VVctwtS7Jcx8bFL+6SLCtw3Lcvr0eWrBJxo4iICHm9XrvmuvZ8+m0//vO0pJLjUt7c+y0e+Hj44q5fx9SX74mee6XXL49jG1mv16tx48Zp8ODB6tatW7nrTZ8+XVOnTi0TT0tLU0xMjCQpISFBKSkpSk9P14EDB+x1WrVqpVatWmnz5s06fPiw/biUlBQlJiZq/fr1OnLkiL1+p06dFBcXp7S0NL8D06NHD0VERGjlypV+OfTt21eFhYVau3atHXO73erXr5+ys7O1ceNGOx4dHa2ePXsqMzNT27dvt+ONGzdW586dtXfvXu3evduOB1OT7xcBSWrXrl2VakpLS7PHxbKsOlFTqMepS5cufmNSF2qqjuPUokULSdK2bduUm5tbJ2qqjuPke8H3er1atWpVnahJCu04+cZkw4YN6t2790mvyadrZIEaZP72OYyMpinyuMJ0Sqb/ZzP2NOsot7dYLQ5us2PG5dKeZp0UVZSnZod32vHisEhlNE1RzNHDapK7z45HhBdKkvLz8/3GrGRN+/fvl3TstSU5ObnGj5NPMHMvKytL48eP16mRR+X5JUOHGiWpyS8Zijly2F4/JyZBOTEJis/epajC3y4ZPNSopfKim6j5oXSFFf92YiozrrUKw6IkSUkHt8r82rBlNE2RS9L48eOVlZVl11bXnk/Z2dmKiIhQpGX85qRxubSvafsy41Le3DsaEaPMuDaKzc9SbN5vuedFx/kdp/jIoxo/frzy8/Ml6YTPPV9/URnLlGybHeSmm27S559/rsWLF6tVq1blrhfojGxycrKysrIUGxsrKbjfpIqKijR37lylpqYe+62ylv7GWzr3E/3bYUFBgT0uYWFhdaKmUI+T1+vV7Nmz7TGpCzVVx3HyeDyaM2eO37g4vabqOE7FxcWaO3euRo4cKZfL/2MLTq2potyDqck3JqmpqYqKijrpNa1Zs0Z9+/bV7W/OU1LH7nb8RJ6R3btpnZ65+v+0cuVK9ezZM2BNhYWFlb4P1dbn06pVqzR48GDdOGOWWnbqUW1nZF3Go467l2tzUl95XWF2fM/GNXp57CgtWbJEvXr1OiE11fTzafXq1erXr59ufXOeWpWYp5JkyZQZl1DPyO7dtE4vjh2lpUuXqk+fPid87h06dEjx8fHKzs62+7VAHHlG9tZbb9Vnn32mRYsWVdjESlJkZKQiIyPLxMPCwvzeTKXfDkJpvknr+963jm+wA2071LhlWQHj5eV4vPHycj/emnzru91uv3WcXFOox6nkXAl2jtX2mirKMdi474Ut0Lj44qHmXl68Ns8937iUl2Pp9X1qc01VjftqKjlXqpJ7qDX5/ifFK+tYM1qKsQJvJ2DcsoKKe/XbZUjlHdeSr7eVvQ/VxudTYWHhsTp9lwRYLhmrzOq/Nq5Bxn/tl4zLXepYWSosLJTL5SqTa115Pv22n7Lz1PIeaxrLjosqmJOBj4cv7v11TH3Pj5qYewHXC2qtWsIYo9tuu00ffvihFixYoLZt29Z0SgAAAKghjmpkb7nlFr311lv6+OOP1ahRI2VkZEg6ds1KdHR0DWcHAACAk8lR95F94YUXlJ2drWHDhqlly5b21zvvvFPTqQEAAOAkc9QZWYd+Lg0AAAAngKPOyAIAAAA+NLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHCqvpBOqDnTt3KjMz86Ttr6CgQJGRkSdlX16v96TsBwAAoDQa2RNs586d6tS5s47k55+0fVoul8xJajCjo6M1c+ZM7d69W23btj0p+wQAAJBoZE+4zMxMHcnP12WPvqDEth1O+P42LflK856fftL2d/CnrZKkrKwsGlkAAHBS0cieJIltO+iUzj1P+H72p285qftzy0jKO+H7AQAAKI0PewEAAMCRaGQBAADgSDSyAAAAcCQaWQAAADgSjSwAAAAciUYWAAAAjkQjCwAAAEeikQUAAIAj0cgCAADAkWhkAQAA4Eg0sgAAAHAkGlkAAAA4Eo0sAAAAHIlGFgAAAI5EIwsAAABHopEFAACAI9HIAgAAwJFoZAEAAOBINLIAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCM5spF97rnndOqppyoqKkoDBgzQd999V9MpAQAA4CRzXCP7zjvv6K677tLkyZO1atUq9ezZU6mpqdq/f39NpwYAAICTyHGN7FNPPaUbbrhBY8eOVZcuXfTiiy+qQYMG+ve//13TqQEAAOAkCqvpBI5HYWGhvv/+e91///12zOVy6dxzz9WyZcsCPqagoEAFBQX2z9nZ2ZKkgwcPqri42N6Gy+WS1+uV1+v127bL5ZLH41FRUZHy8/N16NAhRURE2HFjjL2+2+2WZVn2diUpJydHkrRnw1oV5f/il5vvkVapnI0s+9/ScUtGpZWMH9y5TeHh4dq3ca0K8/MqXb+yuPk1w8BxKXt3uvI7NldaWpp++eUXWdaxrEuOi3RsLI0xfnHLsmRZVpXilmXZx6qq2yl5rH3xQLlblmUf72BqMsYoPz9f33zzjVwuV5VydLvdduxE1VQy7pv/1X2cSsZ947J48WK53e6gj19Va/Lx1VQdc+Z44m63u8xrRKCavF6vPS6+GoKtqTrmTFXjvjlT3cfJGOM3Jr66Tubx27JliyQpY6P/63b5r9nlxYN/Lc/cuV2S9P3339vvG6Vz9Hg89muL7/0mlNcI35hLVTtOwe7TGKPNmzcrPDzcHtPjeR8qL2507Gxccky+fkr7Vp5fR9pIOvDTdoWHh/uN54l+f6roOX8iXst98zRQf2EFGJfyxjHYeNbOY2Oam5urnJycMrWW7Jkq6418cUll3lt98UOHDpWpOSDjIHv27DGSzNKlS/3i48ePN/379w/4mMmTJxsdm9d88cUXX3zxxRdffDnoa9euXRX2ho46I1sV999/v+666y77Z6/Xq4MHDyo+Pr7M2Y+K5OTkKDk5Wbt27VJsbOyJSNWRGJeyGJPAGJfAGJeyGJPAGJeyGJPA6sK4GGOUm5urpKSkCtdzVCPbrFkzud1u/fzzz37xn3/+WS1atAj4mMjISEVGRvrF4uLiqpxDbGysYyfFicS4lMWYBMa4BMa4lMWYBMa4lMWYBOb0cWncuHGl6zjqw14RERHq06ePvvrqKzvm9Xr11VdfaeDAgTWYGQAAAE42R52RlaS77rpLY8aMUd++fdW/f389/fTTysvL09ixY2s6NQAAAJxEjmtkL7/8ch04cECTJk1SRkaGevXqpTlz5qh58+YndL+RkZGaPHlymcsU6jvGpSzGJDDGJTDGpSzGJDDGpSzGJLD6NC6WMZXd1wAAAACofRx1jSwAAADgQyMLAAAAR6KRBQAAgCPRyAIAAMCR6nUjO336dPXr10+NGjVSYmKiRo8erU2bNvmtM2zYMPtvH/u+brzxRr91du7cqVGjRqlBgwZKTEzU+PHjy/xNYSd54YUX1KNHD/tGygMHDtTnn39uLz969KhuueUWxcfHq2HDhrrkkkvK/JGK+jYm9XGeBPL444/LsiyNGzfOjtXH+VJSoDGpj/NlypQpZWru1KmTvby+zpPKxqU+zhVJ2rNnj/74xz8qPj5e0dHR6t69u1auXGkvN8Zo0qRJatmypaKjo3Xuuedqy5Ytfts4ePCgrr76asXGxiouLk5/+tOf9Msvv5zsUqpVZeNy3XXXlZkv5513nt826tq4OO72W9Vp4cKFuuWWW9SvXz8VFxfrgQce0IgRI/Tjjz8qJibGXu+GG27Qww8/bP/coEED+3uPx6NRo0apRYsWWrp0qfbt26drr71W4eHhmjZt2kmtp7q0atVKjz/+uDp06CBjjF5//XVdeOGFSktLU9euXXXnnXdq1qxZevfdd9W4cWPdeuutuvjii7VkyRJJ9XNMpPo3T0pbsWKFXnrpJfXo0cMvXh/ni095YyLVz/nStWtXffnll/bPYWG/vQXV53lS0bhI9W+uHDp0SIMHD9bw4cP1+eefKyEhQVu2bFGTJk3sdZ544gk988wzev3119W2bVtNnDhRqamp+vHHHxUVFSVJuvrqq7Vv3z7NmzdPRUVFGjt2rP785z/rrbfeqqnSQhLMuEjSeeedpxkzZtg/l74FV10bFxnY9u/fbySZhQsX2rGhQ4eaO+64o9zHzJ4927hcLpORkWHHXnjhBRMbG2sKCgpOZLonVZMmTcy//vUvc/jwYRMeHm7effdde9mGDRuMJLNs2TJjTP0bE2OYJ7m5uaZDhw5m3rx5fmNRn+dLeWNiTP2cL5MnTzY9e/YMuKw+z5OKxsWY+jlX7rvvPjNkyJByl3u9XtOiRQvzt7/9zY4dPnzYREZGmpkzZxpjjPnxxx+NJLNixQp7nc8//9xYlmX27Nlz4pI/gSobF2OMGTNmjLnwwgvLXV4Xx6VeX1pQWnZ2tiSpadOmfvE333xTzZo1U7du3XT//fcrPz/fXrZs2TJ1797d7w8ypKamKicnRz/88MPJSfwE8ng8evvtt5WXl6eBAwfq+++/V1FRkc4991x7nU6dOql169ZatmyZpPo3Jj71eZ7ccsstGjVqlN+8kFSv50t5Y+JTH+fLli1blJSUpHbt2unqq6/Wzp07JdXveSKVPy4+9W2ufPLJJ+rbt68uvfRSJSYmqnfv3nrllVfs5enp6crIyPCbL40bN9aAAQP85ktcXJz69u1rr3PuuefK5XJp+fLlJ6+YalTZuPgsWLBAiYmJ6tixo2666SZlZWXZy+riuNTrSwtK8nq9GjdunAYPHqxu3brZ8auuukpt2rRRUlKS1q5dq/vuu0+bNm3SBx98IEnKyMgo81fFfD9nZGScvAKq2bp16zRw4EAdPXpUDRs21IcffqguXbpo9erVioiIUFxcnN/6zZs3t+utb2Mi1d95Iklvv/22Vq1apRUrVpRZlpGRUS/nS0VjItXP+TJgwAC99tpr6tixo/bt26epU6fqzDPP1Pr16+vtPJEqHpdGjRrVy7myfft2vfDCC7rrrrv0wAMPaMWKFbr99tsVERGhMWPG2HUFqrvkfElMTPRbHhYWpqZNm9bZcZGOXVZw8cUXq23bttq2bZseeOABjRw5UsuWLZPb7a6T40Ij+6tbbrlF69ev1+LFi/3if/7zn+3vu3fvrpYtW+qcc87Rtm3blJKScrLTPGk6duyo1atXKzs7W++9957GjBmjhQsX1nRaNaq8MenSpUu9nSe7du3SHXfcoXnz5tnXpdV3wYxJfZwvI0eOtL/v0aOHBgwYoDZt2uh///ufoqOjazCzmlXRuPzpT3+ql3PF6/Wqb9++9jW+vXv31vr16/Xiiy/aDVt9FMy4XHHFFfb63bt3V48ePZSSkqIFCxbonHPOqZG8TzQuLZB066236rPPPtP8+fPVqlWrCtcdMGCAJGnr1q2SpBYtWpT5ZK3v5xYtWpyAbE+OiIgItW/fXn369NH06dPVs2dP/eMf/1CLFi1UWFiow4cP+63/888/2/XWtzEJpL7Mk++//1779+/X6aefrrCwMIWFhWnhwoV65plnFBYWpubNm9e7+VLZmHg8njKPqS/zpaS4uDiddtpp2rp1a71+XSmt5LgEUh/mSsuWLe3/7fLp3LmzfcmFr65AdZecL/v37/dbXlxcrIMHD9bZcQmkXbt2atasmd98qWvjUq8bWWOMbr31Vn344Yf6+uuv1bZt20ofs3r1aknHJpQkDRw4UOvWrfObGPPmzVNsbGyZCedkXq9XBQUF6tOnj8LDw/XVV1/ZyzZt2qSdO3fa14vWtzEJpL7Mk3POOUfr1q3T6tWr7a++ffvq6quvtr+vb/OlsjFxu91lHlNf5ktJv/zyi7Zt26aWLVvyulJCyXEJpD7MlcGDB5e5FebmzZvVpk0bSVLbtm3VokULv/mSk5Oj5cuX+82Xw4cP6/vvv7fX+frrr+X1eu1fBpymsnEJZPfu3crKyvKbL3VtXOr1XQtuuukm07hxY7NgwQKzb98++ys/P98YY8zWrVvNww8/bFauXGnS09PNxx9/bNq1a2fOOussexvFxcWmW7duZsSIEWb16tVmzpw5JiEhwdx///01VVbIJkyYYBYuXGjS09PN2rVrzYQJE4xlWeaLL74wxhhz4403mtatW5uvv/7arFy50gwcONAMHDjQfnx9G5P6Ok/KU/pT1vVxvpRWckzq63y5++67zYIFC0x6erpZsmSJOffcc02zZs3M/v37jTH1d55UNC71da589913JiwszDz22GNmy5Yt5s033zQNGjQw//3vf+11Hn/8cRMXF2c+/vhjs3btWnPhhReatm3bmiNHjtjrnHfeeaZ3795m+fLlZvHixaZDhw7myiuvrImSqkVl45Kbm2vuueces2zZMpOenm6+/PJLc/rpp5sOHTqYo0eP2tupa+NSrxtZSQG/ZsyYYYwxZufOneass84yTZs2NZGRkaZ9+/Zm/PjxJjs72287O3bsMCNHjjTR0dGmWbNm5u677zZFRUU1UFH1uP76602bNm1MRESESUhIMOecc47dxBpjzJEjR8zNN99smjRpYho0aGAuuugis2/fPr9t1Kcxqa/zpDylG9n6OF9KKzkm9XW+XH755aZly5YmIiLCnHLKKebyyy83W7dutZfX13lS0bjU17lijDGffvqp6datm4mMjDSdOnUyL7/8st9yr9drJk6caJo3b24iIyPNOeecYzZt2uS3TlZWlrnyyitNw4YNTWxsrBk7dqzJzc09mWVUu4rGJT8/34wYMcIkJCSY8PBw06ZNG3PDDTf43ZrNmLo3LpYxxtTkGWEAAACgKur1NbIAAABwLhpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSDSyAOBg1113nU499dQqP7Zhw4bVmxAAnEQ0sgBwAvzvf/+TZVn68MMPyyzr2bOnLMvS/Pnzyyxr3bq1Bg0adDJSDFp+fr6mTJmiBQsW1HQqAOCHRhYAToAhQ4ZIkhYvXuwXz8nJ0fr16xUWFqYlS5b4Ldu1a5d27dplPzYYr7zyijZt2hR6whXIz8/X1KlTaWQB1DphNZ0AANRFSUlJatu2bZlGdtmyZTLG6NJLLy2zzPfz8TSy4eHhoScLAA7FGVkAOEGGDBmitLQ0HTlyxI4tWbJEXbt21ciRI/Xtt9/K6/X6LbMsS4MHD5Yk/fe//1WfPn0UHR2tpk2b6oorrtCuXbv89hHoGtmsrCxdc801io2NVVxcnMaMGaM1a9bIsiy99tprZfLcs2ePRo8erYYNGyohIUH33HOPPB6PJGnHjh1KSEiQJE2dOlWWZcmyLE2ZMqUaRggAQkMjCwAnyJAhQ1RUVKTly5fbsSVLlmjQoEEaNGiQsrOztX79er9lnTp1Unx8vB577DFde+216tChg5566imNGzdOX331lc466ywdPny43H16vV6df/75mjlzpsaMGaPHHntM+/bt05gxYwKu7/F4lJqaqvj4eD355JMaOnSo/v73v+vll1+WJCUkJOiFF16QJF100UX6z3/+o//85z+6+OKLq2GEACBEBgBwQvzwww9GknnkkUeMMcYUFRWZmJgY8/rrrxtjjGnevLl57rnnjDHG5OTkGLfbbW644QazY8cO43a7zWOPPea3vXXr1pmwsDC/+JgxY0ybNm3sn99//30jyTz99NN2zOPxmLPPPttIMjNmzPB7rCTz8MMP++2nd+/epk+fPvbPBw4cMJLM5MmTQxoPAKhunJEFgBOkc+fOio+Pt699XbNmjfLy8uy7EgwaNMj+wNeyZcvk8Xg0ZMgQffDBB/J6vbrsssuUmZlpf7Vo0UIdOnQIeLcDnzlz5ig8PFw33HCDHXO5XLrlllvKfcyNN97o9/OZZ56p7du3V7luADhZ+LAXAJwglmVp0KBBWrRokbxer5YsWaLExES1b99e0rFG9tlnn5Uku6EdMmSInnzySRlj1KFDh4DbregDXj/99JNatmypBg0a+MV9+ywtKirKvgbWp0mTJjp06FBwRQJADaKRBYATaMiQIfr000+1bt06+/pYn0GDBmn8+PHas2ePFi9erKSkJLVr105er1eWZenzzz+X2+0us83q/CMGgbYPAE5BIwsAJ1DJ+8kuWbJE48aNs5f16dNHkZGRWrBggZYvX67f/e53kqSUlBQZY9S2bVuddtppx7W/Nm3aaP78+crPz/c7K7t169Yq12BZVpUfCwAnEtfIAsAJ1LdvX0VFRenNN9/Unj17/M7IRkZG6vTTT9dzzz2nvLw8u+m9+OKL5Xa7NXXqVBlj/LZnjFFWVla5+0tNTVVRUZFeeeUVO+b1evXcc89VuQZfQ1zR3RIAoCZwRhYATqCIiAj169dP33zzjSIjI9WnTx+/5YMGDdLf//53Sb+dvU1JSdGjjz6q+++/Xzt27NDo0aPVqFEjpaen68MPP9Sf//xn3XPPPQH3N3r0aPXv31933323tm7dqk6dOumTTz7RwYMHJVXt7Gp0dLS6dOmid955R6eddpqaNm2qbt26qVu3bse9LQCoTpyRBYATzNeg+i4lKMn3xw8aNWqknj172vEJEybo/fffl8vl0tSpU3XPPffok08+0YgRI3TBBReUuy+3261Zs2bp8ssv1+uvv64HH3xQSUlJ9hnZqKioKtXwr3/9S6eccoruvPNOXXnllXrvvfeqtB0AqE6WKf3/VgCAOuejjz7SRRddpMWLF9vNMwA4HY0sANQxR44cUXR0tP2zx+PRiBEjtHLlSmVkZPgtAwAn4xpZAKhjbrvtNh05ckQDBw5UQUGBPvjgAy1dulTTpk2jiQVQp3BGFgDqmLfeekt///vftXXrVh09elTt27fXTTfdpFtvvbWmUwOAakUjCwAAAEfirgUAAABwJBpZAAAAOBKNLAAAAByJRhYAAACORCMLAAAAR6KRBQAAgCPRyAIAAMCRaGQBAADgSP8/rr8ZSm6NrVwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHcCAYAAAAqb0k3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqiElEQVR4nO3dd3hTZfsH8O9JStJBB6WULmhLQUBGESiIyBK0DBEURFARUEEZMgVBZVQUxMGLIKj4KktF1iugbJmyLRTZBaSslgItdNBC0ybP7w9+OTTN6EjTcsL3c114mfs8Oee5cyend05OTiQhhAARERERkcKoynsCREREREQlwUaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpYUYc6cOZAkCT/88EN5T4WIiIgeEGxkHWjHjh2QJAlTpkwpl+2HhYUhLCzMJDZlyhRIkoQdO3aUy5wKkiQJbdu2tTnm4MGDePfddzFp0iS88cYbZTMxC4oyV7Jf27ZtIUlSeU9DtnDhQkiShIULF5b3VJzShQsXIEkS+vfvbxK39jzIyMjAiBEjEB4ejgoVKkCSJBw5cqTQZc6kf//+kCQJFy5cKPE6yvvvU3mz9rwrDaVRHyo6NrKFMD7Z8/9zd3dHUFAQ2rdvj0mTJuHff/91yLYftD/o5eHWrVvo1asX+vTpg5iYmPKejsMYmyXjP5VKBS8vL4SHh6Nbt26YM2cObt68Wd7TpCKy9CbSUR62/cS4ceMwe/Zs1K9fH+PHj8fkyZMREBBQ6DIl4ZsnKo6y3N9Yk5ubi1WrVqFfv36oW7cuKlasCE9PTzRv3hzffPMN9Hq9w7bt4rA1O5mIiAi8+uqrAICcnBxcv34dBw8exNSpUzFt2jSMGzcOn3zyickflGbNmuHUqVPw8/Mrlzlv3bq1XLZbHKdOnYK7u7vV5UeOHMGQIUMwatSoMpxV+Wnfvj2efPJJAMDt27eRmJiIv/76C2vXrsXkyZPx3Xff4cUXXyznWRI53uLFi5GdnW0W/+OPP/DII4/g999/L9YyZzJ9+nSMHz8ewcHB5T0VIgDAv//+i549e6JixYpo3749nnvuOaSnp+P333/HkCFDsH79eqxdu9Yhb7rZyBZRzZo1LX4Es3v3bvTt2xfTp0+HWq3G1KlT5WXu7u6oU6dOGc7SVERERLltu6gKe3zatWuHdu3aldFsyl+HDh0wfvx4k5her8eiRYswbNgw9OnTB97e3njmmWfKaYZEZaN69eoW40lJSWjdunWxlzmTwMBABAYGlvc0iGSenp6YO3cu+vXrBw8PDzn+5Zdfom3btvjjjz+wcuVKhxyI4akFdnryySexceNGaLVafPbZZ7h8+bK8zNo5SGfPnsWAAQMQHh4OrVYLX19fREZGYuTIkRBCALh3PubOnTvl/zf+M57Pk//8nlOnTuH5559H5cqVTc7LKezjhh9++AENGjSAq6srgoODMWrUKGRmZpqMsXUela1zjK5fv44xY8agdu3acHNzg6+vL5o3b44vvvjCZJy1805TUlIwcuRI+THy9/dHr169cPz4cbOxxvOREhISMHv2bNSpUwdarRahoaGIiYmBwWCw+hhY8t///hf169eHq6srqlWrhnHjxuHu3btWx2dmZmLy5MmoV68e3Nzc4OPjg+joaOzevbtY27VGrVbj9ddflz+eGT16tPw8Ae7nf/78eXz55Zd49NFHodVqTepy/Phx9OrVC/7+/tBqtQgPD8fIkSORmppqtj3j8yYtLQ1vvfUWAgIC4OrqisceewxLly4tlZyKIjc3F1OmTEFYWBi0Wi0eeeQRzJs3z+JYIQR+/PFHtGzZEl5eXnB3d0fTpk3x448/lsr4ojK+Ji5evIiLFy+avHYLvoYWLFiA5s2bo2LFiqhYsSKaN29e7I+SC9tPGP3+++9o164dvL294ebmhsjISMycORN5eXkW13v06FH07t0bgYGB0Gg0CA0NxTvvvGPx+VJUer0eM2bMQM2aNeHq6oqaNWti+vTpVl+fBU+ZMD7PhRDYuXOnnGvbtm1tLstvzZo1aN++PSpVqgRXV1fUr18fX3zxhdnHnvk/2v/999/RsmVLeHp6muxPdTodZs6cicaNG8PDwwOenp5o1aoV1q5da5ZLcfZR/fv3x4ABAwAAAwYMMKlrwfXlPwdTp9Nhzpw5iI6ORrVq1eT95gsvvIC4uLhC61OairNPNNa5OK93W3bt2oWuXbvCz88PWq0WtWrVwocffmjx6H5xCSGwYMECtGrVCj4+PnB3d0etWrXw1ltv4dKlSzbva+t0EWt/Zw8fPoyePXuievXq0Gq1qFKlCqKiovDJJ58AKN7+pqiPS/657N27F8888wx8fHwKPZIaHByMIUOGmDSxAODh4YHRo0cDgLyvKm08IlsKateujV69emHJkiVYvXo13nnnHatjk5KS0KxZM2RlZaFLly546aWXkJWVhbNnz2LevHn44osv4OLigsmTJ2PhwoW4ePEiJk+eLN+/UaNGJus7d+4cHn/8cTRo0AD9+/dHamoqNBpNoXOeOXMmtm7dipdeegldunTBn3/+iVmzZmH//v3YtWsXKlSoUOLHIz4+Hu3atcPVq1fx5JNPonv37sjKysKJEycwbdo0vPvuuzbvf+PGDbRo0QL//vsv2rZti969eyMhIQErV67EunXrsGnTJvnj9/zGjh2LnTt34tlnn0V0dDRWr16NKVOmQKfTyS/8wkydOhWTJk1C1apVMXDgQFSoUAHLli3DqVOnLI6/efMmWrdujRMnTqBly5Z4++23kZGRgTVr1qBdu3ZYsWIFunfvXqRtF6Zv376YPHkyTpw4gePHj6NBgwYmy9955x3s378fXbp0QdeuXeHv7w/g3qcG0dHR0Ol06NmzJ8LCwrBv3z589dVX+OOPP7B//36z0190Oh06dOiA27dvo2/fvsjKysLy5cvx8ssvIyUlxeZzvLT06dMHBw8eRKdOnaBWq7F8+XIMHToUFSpUwMCBA+VxQgi88sorWLp0KWrVqoWXX34ZGo0GW7ZswRtvvIGTJ0+avIEq7vji8PHxweTJkzFr1iwAwMiRI+Vl+Zuq4cOHY86cOQgODpa/wLhq1SoMGDAAcXFx+Oqrr4q0vaLsJ2bOnIkxY8bA19cXL7/8Mjw8PLB27VqMGTMGf/31F/73v/+Z/JFau3YtevXqBZVKhW7duqFatWo4efIkvv76a2zatAkHDhxApUqViv3YDBo0CD/++CPCw8MxdOhQ3L17FzNnzsTevXuLdP/u3bsjLCwMMTExCA0NlZv1sLAw+Pj4WF1mNGHCBHz66acIDg7GCy+8AG9vb/z1118YO3YsDhw4gBUrVphtc8WKFdi8eTOeffZZDBkyBBkZGQDunV7WsWNH7NixA40aNcIbb7yB3NxcrFu3Tj6nfdiwYWbrK8o+qnv37khLS8OaNWvQrVs3s32+NTdv3sTIkSPRqlUrdO7cGZUqVcL58+exdu1abNiwAbt27UJUVFSR1mWPku4Ti/p6t+Wbb77B0KFD4ePjI+8DY2Nj8cknn2D79u3Yvn17kf4+WmIwGPDSSy9h5cqVCA4ORp8+feDl5YULFy5g+fLl6NSpk9VPEUriyJEjeOKJJ6BWq9GtWzeEhoYiLS0NJ0+exPz58/HBBx8UeX9Tksdl7969mDZtGtq1a4dBgwYV2qjbYuwnXFwc1HIKsikhIUEAENHR0TbH/fDDDwKA6Nu3rxzbvn27ACAmT54sx2bPni0AiFmzZpmtIzU11eR2mzZthLUSGecFQEyaNMnimNDQUBEaGmoSmzx5sgAgNBqN+Oeff+S4wWAQL7/8sgAgvvjiC5s5FJxDv379TOJNmzYVAMT8+fPN7nP58mWT2wBEmzZtTGIDBgwQAMSECRNM4uvWrRMARM2aNYVer5fj/fr1EwBEeHi4SEpKkuM3btwQPj4+wtPTU+Tk5JjNpaCzZ88KFxcXERwcLK5duybH09PTRe3atS3O1fiYff/99ybxa9euiWrVqokqVaqIO3fuFLrtBQsWCABi+vTpNsf17dtXABA//PCDHDPmHxISIi5evGgyXq/Xi4iICAFAbNy40WTZ2LFjBQDx+uuvm8RDQ0MFANG6dWuTx+3y5cvCz89PaLVaceXKlUJzKinj87558+YiPT1djp8+fVq4uLiI2rVrm4yfP3++ACAGDBggdDqdHM/JyRFdu3YVAERsbGyJxxtrs2DBgiLnYOm1Z7Rz504BQNStW1ekpaXJ8Zs3b4pHHnlEABC7du0q8rZs7SfOnTsnXFxchL+/v7h06ZIcv3v3rnjyyScFALF48WI5npKSIry8vERwcLC4cOGCybqWLl0qAIhhw4YVeW5Gxv1IZGSkuH37thy/cuWK8PPzs7gfsZaXpddhYcs2b94s78fzb99gMIi3335bABArV66U48aaq1QqsWXLFrP1vf/++wKAmDhxojAYDHI8IyNDNG3aVGg0GpGYmCjHi7uPKuw5Z1xfQkKCHLt7967F1+Xx48dFxYoVRYcOHUzitvbt9ijuPrG4r3drTpw4IVxcXERkZKRISUkxWTZ9+nSzv23W/n5ZM2fOHAFAtG/fXmRnZ5ssy87ONvn7bak+tmpqqRajR48WAMTq1avNxhfMz9b+priPi3EuAMSPP/5ocZ3F1alTJwFArFu3rlTWVxBPLSglQUFBAO59JF4Ubm5uZjFfX99ibzcgIAAffPBBse/32muvoWHDhvJtSZIwbdo0qNVqu74pe/DgQcTGxqJ169YW30WHhITYvL9Op8PSpUtRuXJlfPjhhybLOnfujKeffhrnzp3Dnj17zO47ceJEk/PG/Pz80K1bN2RmZiI+Pr7Quf/yyy/Iy8vD6NGj5aOZAODl5WU2F+BerZctW4annnoKb775pskyf39/jB07Fjdu3MCff/5Z6LaLytbzbOzYsWZHBPbs2YN///0XnTp1QnR0tMmySZMmwdfXF7/88gt0Op3Z+qZNm2byLj0kJAQjRoxATk4Ofv3119JIx6bp06fDy8tLvl27dm20bNkS8fHxJqfAfP311/Dw8MDcuXNNPknQaDTyUa78p0QUd3xpW7RoEYB7l8Lz9vaW45UqVZKPqpbWt9WNz+kxY8agWrVqclyr1WLGjBlm21q8eDEyMjIwffp0hIaGmqyrd+/eaNy4cYlqv3jxYgD3nnP5P3oMDg7GiBEjir2+4vr6668BAPPnzzfZviRJ+PTTTyFJksWad+vWDR06dDCJGQwGfPPNN4iIiEBMTIzJ0WxPT09MmjQJOp0O//vf/8zWZ+8+yhatVmvxy1/16tVDu3btsGvXLuTm5tq1jcLYs08s6uvdmu+++w55eXmYM2cOKleubLJs3LhxqFKlil2v63nz5kGtVuObb74x+/ttPH3OESz1CgXzs6Wkj0vjxo3lU1zsMX/+fGzYsAFPPfUUOnfubPf6LOGpBWWsa9eumDBhAoYOHYqtW7eiY8eOaNOmDWrUqFGi9UVGRpboo5JWrVqZxUJDQ1GtWjWcOHECOp2uROs9ePAgAJT4y0inT5/G3bt30a5dO4tXM2jXrh22bNmCI0eOmOXQpEkTs/HGxjktLa3Qbf/zzz8ALD82lmJ///039Ho9cnJyLJ5DfPbsWTmnZ599ttDt26tZs2ZmMeO5cZbOQ65YsSKaNm2KzZs3Iz4+3uRUBRcXF7Ro0cLsPsbHoSzOuSusnp6ensjOzsaxY8cQFBQkN2b5Gf9wnz59GgCKPd6ahQsXml0jsnv37kX6GNhWTYxfbMx/7dPVq1ebXQu1bdu2Rbqmsa1ttWjRAq6uribr3r9/PwDgwIEDFi8rePfuXaSkpCAlJaVYV2Mp7murtO3fvx8eHh5Wz4F2c3OzWHNLr6n4+HjcunULQUFBFi8JeOPGDQCWn0P27qMKc+TIEXz22WfYvXs3kpOTzRrXlJQUh35JzJ59YlFe77YYn7ubNm2yeMWeChUqFPq6tub27ds4deoUatasiVq1apVoHcXVq1cvzJo1C88//zxeeuklPP3002jdunWxr1RR0selNE5D+eOPPzBs2DCEhobip59+snt91rCRLSVJSUkAgCpVqtgcFxYWhv3792PKlClYv349li9fDuDet/c/+uijYn+jr2rVqiWar7X7Va1aFRcuXEBmZmax3vUZpaenA0CJLwtjPAfN2vyMO2HjuPzyv5s3Mp6TU5Rr2Bnnnv9orJGl+Riv67pnzx6LR4iNsrKyCt12Udl6nlmaY0kfTz8/P6hU5h/YGNdjfKwcqSj1vHXrFoQQSExMtHmdYWMNijvemoULF5p9cSEsLKxIjWxGRgZUKpXVGkqSZFKP1atXy0dx8ytKI2ur/pIkoWrVqkhMTJRjxuf03Llzba43KyurWI1seno6VCqVxfuUdB9WHDdv3kReXl6xa27rdX/ixAmcOHGiWOuzdx9ly969e/HUU08BuHcgoVatWqhYsSIkScLq1avxzz//ICcnx65tFMaefaK9j41x20X9PkRx2Pt3rSSaN2+OHTt2YNq0afjll1+wYMECAPcazBkzZhT5aj4lfVzsfV2uX78ePXv2RNWqVbFt2zaHvoFiI1tKjL+UVZR3MfXr18fKlSuRm5uLQ4cOYcOGDZg9ezZeeuklBAUFoWXLlkXebkmvyXbt2jWrcUmS5He/xmbG0rebLTUzPj4+AGDyx7E4jDsza/NLTk42GVeajB/zXr9+3exjVUvzMc5hzJgxJf5yUHEYDAbs2rULgOXnmaXnQkkfz5SUFBgMBrNm1rie/B+JlyfjvJs0aYLY2NhSH2+NPb+M5+XlBYPBgBs3bpi9abp+/TqEECb1WLhwYYlPNchf/4LPaSEErl27ZrIt4/8fO3YM9evXL9E2LfH29obBYEBKSopZA2/tuVmavLy8IElSkU/9MrL1murRowdWrlxZKvMrDZ988glycnLw119/mX0Zdv/+/fJRcUcq632ipW1nZGQUevS2uIz7u5L+XQOK/7cUuPdpxYYNG3Dnzh0cOHAAv//+O+bNm4cuXbrg+PHjRfokt6SPiz3Xe123bh169OgBPz8/bN++vcSfOBcVz5EtBWfOnMHy5cuh1Wrx/PPPF/l+FSpUwOOPP46YmBjMnj0bQgj88ccf8nK1Wg3A/nfqlvz1119msYsXL+Ly5cuoV6+efFqB8dvJll7Alj5eNn4Ut3nz5hLNq06dOnB1dcXff/9t8XIpxgaiqN/kLY7IyEgAlh8bS7GoqChIkoR9+/aV+lwsWbJkCS5evIgGDRqgXr16RbrPY489BsBy45WVlYXY2Fi4ubmhdu3aJsvy8vIs5mV8HIzrLW+enp6oW7cuTp06VaSPZos7vqTUarXV162tmpTk+W1rP2FrWwcOHMDdu3dNttW8eXMAKPXndHFfW6WtefPmSE1NlT/atkfdunXh5eWF2NhYh51zWpJ9/7///gtfX1+zJjY7OxuHDx8u1flZU9b7xPyMz13jR+mlqWLFinj00UeRkJBQ4udQcf+W5ufm5oa2bdviyy+/xPvvv487d+5gy5Yt8nJb+xtHPi6WGJtYX19fbN++HTVr1nT4NtnI2mnPnj2Ijo5GTk5OkX5p5dChQxY/FjcelXB1dZVjxpPH81+btrQsXrwYR48elW8LIfD+++9Dr9ebXIOydu3a8PT0xNq1a01+IvXatWv4+OOPzdYbFRWFqKgo7Nq1C99//73Z8sLe0Wo0GvTp0wcpKSmYPn26ybKNGzdi06ZNqFmzZrGOWhfVyy+/DLVajZkzZ+L69etyPCMjw2KuAQEB6NWrF/bu3YvPP//c5NquRgcOHLD7+oV6vR4LFizA4MGD5fkV9d1yy5YtERERgQ0bNph9weLjjz9Gamoq+vTpY/F86Pfff9/kS2BXrlzBV199Ba1Wi969e9uVU2kaPnw4srOzMXDgQIsfWSYkJJicz1rc8SXh6+uLlJQUi9cf7tevHwAgJibGZF+Qnp4uf/RtHFPUbQGW9xMvv/wyXFxcMHPmTPm0FODelyrfe+89ADB5vQ8YMACenp744IMPLH5snp2dXaI/iH379gUAfPTRRyaPeWJiYpEvNWaP4cOHAwBef/11i9fCTU5OtnqJvYJcXFwwePBgXLx4Ee+++67FZvb48eMm+5DiKsm+PzQ0FLdu3TKpm16vx7vvviuft+toZbVPtGTIkCFwcXHBO++8Y/FSUWlpaXad2z906FDo9XoMGTIEd+7cMVl29+7dQn9CvEmTJpAkCb/++qvJfuHs2bMWXwP79u2zuP+w1itY2984+nHJb8OGDejRowcqVaqE7du3l9n5xDy1oIjOnTsnn7yu0+nkn6g9duwY1Go1PvzwQ5PrOFqzZMkSfPfdd2jdujUiIiLg5eWFkydPYv369fD19TX5luBTTz2FlStXokePHujUqRNcXV0RGRmJrl272p1PdHQ0WrRogd69e6NKlSrYunUrYmNj8fjjj5tcI1Sj0eCdd97BtGnT0LhxY/kbtr///jvatGlj8QshP//8M9q2bYtBgwZhyZIlaNGiBe7evYsTJ04gLi6u0Iuqz5gxAzt37sTHH3+MvXv3onnz5rhw4QJWrFgBd3d3LFiwwOL5m/aqWbMmJk2ahMmTJ6Nhw4bo1asXXFxcsGrVKjRs2NDit4rnzZuH+Ph4jBs3Ts7Vx8cHly9fRmxsLM6ePYurV6/a/Bne/P788095Z5SdnY0rV65g165dSExMhK+vL5YsWWL2LWpbVCoVFi5ciOjoaHTu3BkvvvgiQkNDsW/fPuzYsQMRERH49NNPze4XGBiIrKwsNGzYEF27dpWvI5uamorZs2c/UD+N+dZbb2H//v1YtGgR9uzZgw4dOiAoKAjXrl3D6dOnceDAAfzyyy/yNUWLO74knnrqKcTGxqJTp05o1aoVNBoNWrduLf975513MGfOHNSvXx89evSAEAKrVq3ClStXMHz48GL9OpWt/URERARmzJiBMWPGyM9pDw8P/P7774iPj0e3bt3kn94GIH+D+cUXX0RkZCQ6duyIOnXqICcnBxcuXMDOnTvxxBNPYOPGjcV6PNq1a4cBAwZgwYIFaNCgAZ5//nnk5ORg2bJlePzxx00+iXKEjh07YuLEiZg6dSpq1qyJjh07IjQ0FKmpqTh37hz++usvfPzxx6hbt26R1hcTE4PDhw9j9uzZWLduHVq3bg1/f38kJibi2LFj+Oeff7Bv3z6L59sXRYsWLeDm5oZZs2bh1q1b8ukYlq6eYvTOO+9g8+bNePLJJ9GrVy+4urpix44dSExMRNu2be06HaY4SnufWFT169fHvHnzMHjwYNSuXRudO3dGREQEMjMzcf78eezcuRP9+/fHt99+W6L1Dx48GDt37sTy5ctRq1YtPPfcc/Dy8sKlS5ewadMm/PDDDzavGR4UFIQ+ffrgl19+QZMmTdCxY0dcv34dv/32Gzp27IhVq1aZjJ8xYwa2b9+O1q1bIzw8HK6urjh8+DC2bt2KGjVqmHz6a2t/4+jHxej06dPy67pt27YWr4QQFhZm8QeU7OaQi3o5kfzXazX+c3NzE4GBgaJdu3Zi4sSJ4ty5cxbva+nacPv37xdvvfWWqF+/vvDx8RFubm6iVq1aYtiwYWbXAM3NzRXjxo0T1atXFy4uLibXvCvKNfBsXUd2+/bt4vvvvxf16tUTWq1WBAYGihEjRoiMjAyz9ej1ejFlyhRRrVo1odFoxCOPPCK++uorcf78eatzSE5OFiNGjBA1atQQGo1G+Pr6iubNm4uZM2eajIOV6z7euHFDDB8+XISGhooKFSoIPz8/0bNnT3Hs2DGzsZau2Wcp36L6/vvvxaOPPio0Go0ICQkR7777rsjOzrY61+zsbPHZZ5+JJk2aCA8PD+Hm5ibCw8NF9+7dxeLFi0Vubm6h2zReY9D4T5IkUbFiRREWFia6du0q5syZI27evGnxvrbyNzp69Kjo2bOn8PPzExUqVBChoaFixIgR4saNG2Zjjc+bmzdvikGDBomqVasKrVYrIiMjxS+//FJoLvaydV1UW7kuW7ZMdOjQQVSqVElUqFBBBAcHi7Zt24ovv/zSYp5FHV+S68hmZmaKgQMHisDAQKFWqy1er/PHH38UUVFRwt3dXbi7u4uoqKgSXbfR1n7CaM2aNaJNmzbC09NTaLVa0aBBA/Hll19afW6ePn1avPHGGyI0NFRoNBpRqVIl0aBBAzF8+HBx8ODBYs9RCCHy8vLE9OnT5X1CjRo1xLRp08S5c+ccfh1Zoy1btoiuXbuKKlWqiAoVKoiAgADRokULMXXqVJPr7Bal5nl5eeK7774TLVu2FF5eXkKr1Yrq1auLjh07im+++cbkerUl2UetW7dOREVFCTc3N3m/UNj6Vq5cKRo3bizc3d2Fn5+f6NWrl/j3338tjnfUdWSFKN4+saSvd2sOHjwoevfuLYKCguS/HY0bNxbjx48Xp06dkscV9zqyQty77vB///tf8fjjjwsPDw/h7u4uatWqJd5++22T54+1eWdnZ4vhw4fL+9SGDRuKn3/+2WItNm7cKF577TVRu3Zt4enpKSpWrCgeffRR8f7775vtz4qyvynq41LS50X+689a+2frtWkPSQgLx/6J6KFlPBJp78frREREjsZzZImIiIhIkdjIEhEREZEi8cteRFQiR44cwerVqwsdFxYWVqTTFBo1amTzyxL0YLH0y02WjBw5Ur6+ND24LP1anSVF/QU7orLCc2SJqEQWLlxYpN/ibtOmjdmvYFnSr1+/El/4n8peUS8Bl5CQYNcVIKhstG3btkiv0wULFjjmm+dEJcRGloiIiIgU6aE7tcBgMCApKQmenp52/QQbERERETmGEAKZmZkICgqyee34h66RTUpKQrVq1cp7GkRERERUiMuXLyMkJMTq8oeukfX09ARw74Hx8vJy+PZyc3OxefNmPPPMM6hQoYLDt0eljzVUPtZQ2Vg/5WMNla+sa5iRkYFq1arJfZs1D10jazydwMvLq8waWXd3d3h5efHFq1CsofKxhsrG+ikfa6h85VXDwk4D5XVkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIr0QDWyu3btQteuXREUFARJkrB69Wp5WW5uLt577z00aNAAHh4eCAoKwmuvvYakpKTymzARERERlZsHqpHNyspCZGQk5s6da7YsOzsbhw8fxsSJE3H48GH873//Q3x8PJ577rlymCkRERERlTeX8p5Afp06dUKnTp0sLvP29saWLVtMYl9//TWaNWuGS5cuoXr16mUxRSIiIiJ6QDxQjWxxpaenQ5Ik+Pj4WB2Tk5ODnJwc+XZGRgYAIC8vD3l5eQAAlUoFlUoFg8EAg8EgjzXG9Xo9hBCFxtVqNSRJktcLAHq9HgBw5MgRSJJkMjfj7fzrMK5fCGESlyQJkiQVKe7n54fq1as7LCdjPH9+hcVdXFwghDCJS5IEtVptNkdrcUfWydbcjffV6/UmNVRyTs5Yp8JyMi4zvmacISdnrJO1nIz3sVU/peXkjHWylpNxvF6vh1qtdoqcnLFOtnIyriv/69GRORUcb41iG9m7d+/ivffeQ58+feDl5WV13PTp0xETE2MWj4uLg4eHBwCgSpUqiIiIQEJCAm7cuCGPCQkJQUhICM6cOYP09HQ5XqNGDfj7++P48eO4c+eOHK9Tpw58fHwQFxcnFyY7OxsA8PTTT2PYsGEmc/j888/h5eWFt956S47pdDp8/vnnqFGjBvr06SPHU1JS8N1336FRo0bo0qWLHD9//jyWLl2K1q1bo1WrVgAAlVqN57p2RdOmTR2SEwA0bNgQGo0GsbGxJjk1bdoUOp0OR48elWNqtRpRUVFIT0/H6dOn5bibmxsiIyORkpKC8+fPy3Fvb2/UrVsXSUlJuHLlihx3ZJ1s5dSoUSMA954zxkZW6Tk5Y51s5WR8A2usoTPk5Ix1spZTamoqgPv1c4acnLFOtnK6fPkygHs19Pf3d4qcnLFOtnIyNqdXr15FWFiYw3OKi4tDUUii4OHAB4QkSfjtt9/QvXt3s2W5ubno0aMHrly5gh07dthsZC0dka1WrRpSU1Pl+znyndThw4dx9epVLD+ZDL/QCJO5GbdU8ERlAyQAwmJcgoBkI37jwjmsihmBvXv3okmTJk797rCscjIYDNiwYQOio6Ph4nL/vZ+Sc3LGOtnKSafTmdTQGXJyxjpZyyknJwcbN24stH5KyskZ62QrJ51Oh02bNiE6OhoajcYpcnLGOtnKKS8vD5s2bULHjh2h1WodntOtW7dQuXJlpKen2+zzFHdENjc3F7169cLFixexbds2m8kBgFarhVarNYu7uLiYNCXA/SIUZHxQixrPv17j+qqERiCgbiObcy0NBkjQ6XTykUNH5FTSuCRJFuPW5ljcuKNyys3NlddTcJlSc7IVd9acjNso+PpUck7OWCdrORm3bU/9HrScnLFO1uZunI/xtAJb45WSkzPWyVbc2Jzmfz1a4sicLI4r0qgHhLGJPXv2LLZv347KlSuX95SIiIiIqJw8UI3s7du3ce7cOfl2QkICjhw5Al9fXwQGBqJnz544fPgw/vjjD+j1eiQnJwMAfH19odFoymvaRERERFQOHqhGNjY2Fu3atZNvjx49GgDQr18/TJkyBWvXrgVw/8s3Rtu3b0fbtm3LappERERE9AB4oBrZtm3bml2KKr8H9HtpRERERFQOHqhf9iIiIiIiKio2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSA9UI7tr1y507doVQUFBkCQJq1evNlkuhMCkSZMQGBgINzc3dOjQAWfPni2fyRIRERFRuXqgGtmsrCxERkZi7ty5Fpd/9tlnmD17Nr799lscOHAAHh4eiI6Oxt27d8t4pkRERERU3lzKewL5derUCZ06dbK4TAiBWbNm4cMPP0S3bt0AAIsXL0bVqlWxevVq9O7duyynSkRERETl7IFqZG1JSEhAcnIyOnToIMe8vb3RvHlz7Nu3z2ojm5OTg5ycHPl2RkYGACAvLw95eXkAAJVKBZVKBYPBAIPBII81xvV6PYQQhcbVajUkSZLXCyDf+gQkg95kbkK6d0BcEgbTuEoNCGEal6R7463GDZCEgAoCGo1GnpcjcjLGAUCv1xcp7uLiAiGESVySJKjVarM5Wos7sk625m68r16vhyRJTpGTM9apsJyMyyRJcpqcnLFO1nIy3sdW/ZSWkzPWyVpOxvF6vR5qtdopcnLGOtnKybiu/K9HR+ZUcLw1imlkk5OTAQBVq1Y1iVetWlVeZsn06dMRExNjFo+Li4OHhwcAoEqVKoiIiEBCQgJu3LghjwkJCUFISAjOnDmD9PR0OV6jRg34+/vj+PHjuHPnjhyvU6cOfHx8EBcXJxfGeD8VgOCUeJM5JPrVhtqQh4Cb/8oxoVIh0a8OXHOz4Jd2SY7nuWiR7BsBj7tpqJR5VY7f1XggxScUXtmp8Mq6gcrauxg7dixu374NAA7JCQAaNmwIjUaD2NhYk5yaNm0KnU6Ho0ePyjG1Wo2oqCikp6fj9OnTctzNzQ2RkZFISUnB+fPn5bi3tzfq1q2LpKQkXLlyRY47sk62cmrUqBGAe88ZYyOr9JycsU62cjK+gTXW0BlycsY6WcspNTUVwP36OUNOzlgnWzldvnwZwL0a+vv7O0VOzlgnWzkZm9OrV68iLCzM4TnFxcWhKCSRv21+gEiShN9++w3du3cHAOzduxctW7ZEUlISAgMD5XG9evWCJElYtmyZxfVYOiJbrVo1pKamwsvLC4Bj30kdPnwYV69exfYsdwTWbmgyN0cckU2KP4ZvB3TB3r170aRJE6d+d1hWORkMBmzYsAHR0dFwcbn/3k/JOTljnWzlpNPpTGroDDk5Y52s5ZSTk4ONGzcWWj8l5eSMdbKVk06nw6ZNmxAdHQ2NRuMUOTljnWzllJeXh02bNqFjx47QarUOz+nWrVuoXLky0tPT5X7NEsUckQ0ICAAAXLt2zaSRvXbtmnzEzBKtVgutVmsWd3FxMWlKgPtFKMj4oBY1nn+999cn3WtQLRCShbgkFTOugpAAAyTodDr5yKEjcippXJIki3Frcyxu3FE55ebmyuspuEypOdmKO2tOxm0UfH0qOSdnrJO1nIzbtqd+D1pOzlgna3M3zsd4WoGt8UrJyRnrZCtubE7zvx4tcWROljxQVy2wJTw8HAEBAdi6dascy8jIwIEDB9CiRYtynBkRERERlYcH6ojs7du3ce7cOfl2QkICjhw5Al9fX1SvXh0jR47Exx9/jFq1aiE8PBwTJ05EUFCQfPoBERERET08HqhGNjY2Fu3atZNvjx49GgDQr18/LFy4EOPGjUNWVhYGDRqEtLQ0PPnkk9i4cSNcXV3La8pEREREVE4eqEa2bdu2JicIFyRJEj766CN89NFHZTgrIiIiInoQKeYcWSIiIiKi/NjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpkkt5T4CIiIiIiu/SpUtISUkpk20ZDIYy2U5xsZElIiIiUphLly6hTt26uJOdXSbbc3Nzw9KlS3HlyhWEh4eXyTaLgo0sERERkcKkpKTgTnY2en38DfzDazl8ezcvngMApKamspElIiIiIvv5h9dCcN1Ih29HDQEgy+HbKS5+2YuIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIqkqEZWr9dj4sSJCA8Ph5ubGyIiIjB16lQIIcp7akRERERUxlzKewLFMWPGDHzzzTdYtGgR6tWrh9jYWAwYMADe3t4YPnx4eU+PiIiIiMqQohrZvXv3olu3bujSpQsAICwsDEuXLsXBgwfLeWZEREREVNYU1cg+8cQTmD9/Ps6cOYNHHnkE//zzD3bv3o2ZM2davU9OTg5ycnLk2xkZGQCAvLw85OXlAQBUKhVUKhUMBgMMBoM81hjX6/Umpy9Yi6vVakiSJK8XQL71CUgGvcnchHTvzA5JGEzjKjUghGlcku6Ntxo3QBICKghoNBp5Xo7IyRgH7p3uUZS4i4sLhBAmcUmSoFarzeZoLe7IOtmau/G+er0ekiQ5RU7OWKfCcjIukyTJaXJyxjpZy8l4H1v1U1pOzlgnazkZx+v1eqjVaqfIqbzrZLO/sKOPkNchSUCB/gIw/ZvoyDoVHG+NohrZ8ePHIyMjA3Xq1IFarYZer8cnn3yCV155xep9pk+fjpiYGLN4XFwcPDw8AABVqlRBREQEEhIScOPGDXlMSEgIQkJCcObMGaSnp8vxGjVqwN/fH8ePH8edO3fkeJ06deDj44O4uDi5MMb7qQAEp8SbzCHRrzbUhjwE3PxXjgmVCol+deCamwW/tEtyPM9Fi2TfCHjcTUOlzKty/K7GAyk+ofDKToVX1g1U1t7F2LFjcfv2bQBwSE4A0LBhQ2g0GsTGxprk1LRpU+h0Ohw9elSOqdVqREVFIT09HadPn5bjbm5uiIyMREpKCs6fPy/Hvb29UbduXSQlJeHKlSty3JF1spVTo0aNANx7zhgbWaXn5Ix1spWT8Q2ssYbOkJMz1slaTqmpqQDu188ZcnLGOtnK6fLlywDu1dDf398pcirvOqWnp0Oj0UArCZP+wt4+wijLzQe3PINQ6XYyPO6kwU9776Cgcb6OrlNcXByKQhIK+qbUr7/+irFjx+Lzzz9HvXr1cOTIEYwcORIzZ85Ev379LN7H0hHZatWqITU1FV5eXgAc+07q8OHDuHr1KrZnuSOwdkOTuTniiGxS/DF8O6AL9u7diyZNmvAdbynkZDAYsGHDBkRHR8PF5f57PyXn5Ix1spWTTqczqaEz5OSMdbKWU05ODjZu3Fho/ZSUkzPWyVZOOp0OmzZtQnR0NDQajVPkVN51OnLkCKKiojDs5y0Iqd3AZLwjjsheiz+KNh7ZCAoKQlRUlMPrdOvWLVSuXBnp6elyv2aJoo7Ijh07FuPHj0fv3r0BAA0aNMDFixcxffp0q42sVquFVqs1i7u4uJg0JcD9IhRkfFCLGs+/3vvrk+49sSwQkoW4JBUzroKQAAMk6HQ6+cihI3IqaVySJItxa3MsbtxROeXm5srrKbhMqTnZijtrTsZtFHx9KjknZ6yTtZyM27anfg9aTs5YJ2tzN87HeFqBrfFKyam861Rof1HCPsJa3ADp/+9+f39qiSPrZImiLr+VnZ1t9gTJf/4UERERET08FHVEtmvXrvjkk09QvXp11KtXD3FxcZg5cyZef/318p4aEREREZUxRTWyc+bMwcSJEzFkyBBcv34dQUFBeOuttzBp0qTynhoRERERlTFFNbKenp6YNWsWZs2aVd5TISIiIqJypqhzZImIiIiIjNjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUye6rFiQnJ+OHH37A4cOHkZ6ebvbjBJIkYevWrfZuhoiIiIjIhF2N7NGjR9G2bVvcuXMHtWvXxrFjx/Doo48iLS0NiYmJiIiIQLVq1UprrkREREREMrtOLRg/fjwqVqyI+Ph4/PnnnxBC4KuvvsLly5exbNky3Lp1C59++mlpzZWIiIiISGZXI7tnzx689dZbqF69OlSqe6synlrw4osv4pVXXsHYsWPtnyURERERUQF2NbIGgwFVq1YFAPj4+ECtVuPmzZvy8gYNGuDQoUP2zZCIiIiIyAK7Gtnw8HAkJCTcW5FKhfDwcPz555/y8r1798LHx8euCRIRERERWWJXI/vMM89gxYoV8u3Bgwfjv//9Lzp06ID27dtj0aJFePnll+2eJBERERFRQXZdteCDDz5Anz59kJubiwoVKmDkyJHIysrCqlWroFarMXHiRLz//vulNVciIiIiIpldjWylSpXQpEkT+bYkSfjwww/x4Ycf2j0xIiIiIiJb+MteRERERKRIxToi+/rrr0OSJMyfPx9qtRqvv/56ofeRJAk//PBDiSdIRERERGRJsRrZbdu2QaVSwWAwQK1WY9u2bZAkyeZ9CltORERERFQSxWpkL1y4YPM2EREREVFZ4TmyRERERKRIdjWyhw8fxrx586wunzdvHo4cOWLPJoiIiIiILLKrkf3ggw9MfsmroG3btvFSXERERETkEHY1socOHUKrVq2sLm/VqhViY2Pt2QQRERERkUV2NbKZmZlwcbH+fTGVSoX09HR7NkFEREREZJFdjWytWrWwefNmq8s3btyIGjVq2LMJIiIiIiKL7Gpk33jjDaxbtw6jR49GWlqaHE9LS8OoUaOwceNGvPHGG/bOkYiIiIjITLGuI1vQ8OHDceTIEcyaNQuzZ89GUFAQACApKQkGgwF9+/bFqFGjSmWiRERERET52dXISpKEBQsW4LXXXsOqVatw/vx5AEC3bt3Qo0cPtG3btjTmSERERERkxq5G1qhdu3Zo165daayKiIiIiKhI+MteRERERKRIdjWyQgh89913aNasGfz8/KBWq83+2bo8FxERERFRSdnVZY4bNw4zZ85Eo0aN8Oqrr6JSpUqlNS8iIiIiIpvsamQXLVqEHj16YPny5aU1HyIiIiKiIrHr1II7d+6gQ4cOpTUXIiIiIqIis6uRbd++Pf7+++/SmgsRERERUZHZ1cjOmzcP+/fvx7Rp05CamlpacyIiIiIiKpRdjWzt2rVx/vx5TJw4Ef7+/vDw8ICXl5fJP29v79KaKxERERGRzK4ve/Xo0QOSJJXWXIiIiIiIisyuRnbhwoWlNA0iIiIiouLhL3sRERERkSLZ3cheunQJb7/9NmrXro1KlSph165dAICUlBQMHz4ccXFxdk+SiIiIiKggu04tOHnyJFq1agWDwYDmzZvj3LlzyMvLAwD4+flh9+7dyMrKwg8//FAqkyUiIiIiMrL7J2p9fHywf/9+SJIEf39/k+VdunTBsmXL7JogEREREZEldp1asGvXLgwePBhVqlSxePWC6tWrIzEx0Z5NEBERERFZZFcjazAY4O7ubnX5jRs3oNVq7dkEEREREZFFdjWyjRs3xrp16ywuy8vLw6+//orHH3/cnk0QEREREVlkVyM7YcIEbNy4EYMHD8bx48cBANeuXcOff/6JZ555BqdOncL48eNLZaJERERERPnZ9WWvTp06YeHChRgxYgTmz58PAHj11VchhICXlxcWL16M1q1bl8pEiYiIiIjys6uRBYC+ffvihRdewObNm3Hu3DkYDAZEREQgOjoanp6epTFHIiIiIiIzdjeyAODh4YHnn3++NFZFRERERFQkdjWyly5dKtK46tWr27MZIiIiIiIzdjWyYWFhFq8fW5Ber7dnM0REREREZuxqZH/88UezRlav1+PChQtYvHgx/P39MXToULsmWFBiYiLee+89bNiwAdnZ2ahZsyYWLFiApk2blup2iIiIiOjBZlcj279/f6vL3nvvPTRv3hzp6en2bMLErVu30LJlS7Rr1w4bNmxAlSpVcPbsWVSqVKnUtkFEREREylAqX/ayxMPDAwMGDMB//vMfDB8+vFTWOWPGDFSrVg0LFiyQY+Hh4Tbvk5OTg5ycHPl2RkYGgHs/2JCXlwcAUKlUUKlUMBgMMBgM8lhjXK/XQwhRaFytVkOSJHm9APKtT0AymJ5iIaR7l/GVhME0rlIDQpjGJeneeKtxAyQhoIKARqOR5+WInIxxwPy0EWtxFxcXCCFM4pIkQa1Wm83RWtyRdbI1d+N99Xq9yScQSs7JGetUWE7GZZIkOU1OzlgnazkZ72OrfkrLyRnrZC0n43i9Xg+1Wu0UOZV3nWz2F3b0EfI6JAko0F8Apn8THVmnguOtcVgjC9x7kJOTk0ttfWvXrkV0dDRefPFF7Ny5E8HBwRgyZAgGDhxo9T7Tp09HTEyMWTwuLg4eHh4AgCpVqiAiIgIJCQm4ceOGPCYkJAQhISE4c+aMyZHlGjVqwN/fH8ePH8edO3fkeJ06deDj44O4uDi5MMb7qQAEp8SbzCHRrzbUhjwE3PxXjgmVCol+deCamwW/tPtfpstz0SLZNwIed9NQKfOqHL+r8UCKTyi8slPhlXUDlbV3MXbsWNy+fRsAHJITADRs2BAajQaxsbEmOTVt2hQ6nQ5Hjx6VY2q1GlFRUUhPT8fp06fluJubGyIjI5GSkoLz58/LcW9vb9StWxdJSUm4cuWKHHdknWzl1KhRIwD3njPGRlbpOTljnWzlZHwDa6yhM+TkjHWyllNqaiqA+/VzhpycsU62crp8+TKAezX09/d3ipzKu07p6enQaDTQSsKkv7C3jzDKcvPBLc8gVLqdDI87afDT3jsoaJyvo+sUFxeHopBE/ra5lGRkZGDXrl14/fXXUbNmTezdu7dU1uvq6goAGD16NF588UX8/fffGDFiBL799lv069fP4n0sHZGtVq0aUlNT4eXlBcCx76QOHz6Mq1evYnuWOwJrNzSZmyOOyCbFH8O3A7pg7969aNKkCd/xlkJOBoMBGzZsQHR0NFxc7r/3U3JOzlgnWznpdDqTGjpDTs5YJ2s55eTkYOPGjYXWT0k5OWOdbOWk0+mwadMmREdHQ6PROEVO5V2nI0eOICoqCsN+3oKQ2g1MxjviiOy1+KNo45GNoKAgREVFObxOt27dQuXKlZGeni73a5bYdURWpVJZvWqBEALVq1fHvHnz7NmECYPBgKZNm2LatGkAgMceewzHjx+32chqtVpotVqzuIuLi0lTAtwvQkHGB7Wo8fzrvb8+6d4TywIhWYhLUjHjKggJMECCTqeT6+KInEoalyTJYtzaHIsbd1ROubm58noKLlNqTrbizpqTcRsFX59KzskZ62QtJ+O27anfg5aTM9bJ2tyN8zGeVmBrvFJyKu86FdpflLCPsBY3QPr/u9/fn1riyDpZHFekUVZMmjTJrJGVJAmVKlVCREQEnnnmmSJPpCgCAwPx6KOPmsTq1q2LVatWldo2iIiIiEgZ7Ooyp0yZUkrTKJqWLVsiPt70PNMzZ84gNDS0TOdBREREROXP/Ph3MeTl5clforAkIyOjyN86K4pRo0Zh//79mDZtGs6dO4dffvkF8+fPL/Vr1RIRERHRg8+uRnb48OF44oknrC5v2bIlxowZY88mTERFReG3337D0qVLUb9+fUydOhWzZs3CK6+8UmrbICIiIiJlsKuR3bhxI3r27Gl1ec+ePbF+/Xp7NmHm2WefxbFjx3D37l2cOnXK5qW3iIiIiMh52dXIJiUlITg42OryoKAgJCYm2rMJIiIiIiKL7GpkK1eubPblq/xOnTpl89pfREREREQlZVcj27FjR3z33XcWf33h8OHDmD9/Pjp16mTPJoiIiIiILLLr8ltTp07Fxo0b0axZMzz33HOoV68eAOD48eP4/fff4e/vj6lTp5bKRImIiIiI8rOrkQ0KCkJsbCzGjx+PNWvW4LfffgMAeHl54ZVXXsG0adMQFBRUKhMlIiIiIsrP7p/dCgwMxKJFiyCEwI0bNwAAVapUsfrTtUREREREpaHUfj9WkiRotVpUrFiRTSwREREROZxdX/YCgNjYWHTs2BHu7u6oXLkydu7cCQBISUlBt27dsGPHDns3QURERERkxq5Gdu/evXjyySdx9uxZvPrqqzAYDPIyPz8/pKen47vvvrN7kkREREREBdnVyL7//vuoW7cuTp48iWnTppktb9euHQ4cOGDPJoiIiIiILLKrkf37778xYMAAaLVai+fFBgcHIzk52Z5NEBERERFZZFcjW6FCBZPTCQpKTExExYoV7dkEEREREZFFdjWyjz/+OFauXGlxWVZWFhYsWIA2bdrYswkiIiIiIovsamRjYmIQGxuLLl26YMOGDQCAf/75B//973/RpEkT3LhxAxMnTiyViRIRERER5WfXdWSbN2+O9evXY/DgwXjttdcAAGPGjAEAREREYP369WjYsKH9syQiIiIiKqDEjawQApmZmXjiiScQHx+PI0eO4OzZszAYDIiIiECTJk34wwhERERE5DAlbmR1Oh18fX0xbdo0jBs3Do0aNUKjRo1KcWpERERERNaV+BxZrVaLgIAAaLXa0pwPEREREVGR2PVlr/79+2Px4sXQ6XSlNR8iIiIioiKx68teDRo0wOrVq1GvXj30798fYWFhcHNzMxv3wgsv2LMZIiIiIiIzdjWyffr0kf/f2mW2JEmCXq+3ZzNERERERGaK3ci+//776N27Nxo2bIjt27c7Yk5ERERERIUqdiP76aefon79+mjYsCHatGmD1NRU+Pv7Y8uWLXjqqaccMUciIiIiIjN2fdnLSAhRGqshIiIiIiqyUmlkiYiIiIjKGhtZIiIiIlKkEl214MKFCzh8+DAAID09HQBw9uxZ+Pj4WBzfuHHjks2OiIiIiMiKEjWyEydONLvc1pAhQ8zGCSF4+S0iIiIicohiN7ILFixwxDyIiIiIiIql2I1sv379HDEPIiIiIqJi4Ze9iIiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREiqToRvbTTz+FJEkYOXJkeU+FiIiIiMqYYhvZv//+G9999x0aNmxY3lMhIiIionLgUt4TKInbt2/jlVdewffff4+PP/7Y5ticnBzk5OTItzMyMgAAeXl5yMvLAwCoVCqoVCoYDAYYDAZ5rDGu1+shhCg0rlarIUmSvF4A+dYnIBn0JnMT0r33EZIwmMZVakAI07gk3RtvNW6AJARUENBoNPK8HJGTMQ4Aer2+SHEXFxcIIUzikiRBrVabzdFa3JF1sjV34331ej0kSXKKnJyxToXlZFwmSZLT5OSMdbKWk/E+tuqntJycsU7WcjKO1+v1UKvVTpFTedfJZn9hRx8hr0OSgAL9BWD6N9GRdSo43hpFNrJDhw5Fly5d0KFDh0Ib2enTpyMmJsYsHhcXBw8PDwBAlSpVEBERgYSEBNy4cUMeExISgpCQEJw5cwbp6elyvEaNGvD398fx48dx584dOV6nTh34+PggLi5OLozxfioAwSnxJnNI9KsNtSEPATf/lWNCpUKiXx245mbBL+2SHM9z0SLZNwIed9NQKfOqHL+r8UCKTyi8slPhlXUDlbV3MXbsWNy+fRsAHJITADRs2BAajQaxsbEmOTVt2hQ6nQ5Hjx6VY2q1GlFRUUhPT8fp06fluJubGyIjI5GSkoLz58/LcW9vb9StWxdJSUm4cuWKHHdknWzl1KhRIwD3njPGRlbpOTljnWzlZHwDa6yhM+TkjHWyllNqaiqA+/VzhpycsU62crp8+TKAezX09/d3ipzKu07p6enQaDTQSsKkv7C3jzDKcvPBLc8gVLqdDI87afDT3jsoaJyvo+sUFxeHopBE/rZZAX799Vd88skn+Pvvv+Hq6oq2bduiUaNGmDVrlsXxlo7IVqtWDampqfDy8gLg2HdShw8fxtWrV7E9yx2BtU1Pg3DEEdmk+GP4dkAX7N27F02aNOE73lLIyWAwYMOGDYiOjoaLy/33fkrOyRnrZCsnnU5nUkNnyMkZ62Qtp5ycHGzcuLHQ+ikpJ2esk62cdDodNm3ahOjoaGg0GqfIqbzrdOTIEURFRWHYz1sQUruByXhHHJG9Fn8UbTyyERQUhKioKIfX6datW6hcuTLS09Plfs0SRR2RvXz5MkaMGIEtW7bA1dW1SPfRarXQarVmcRcXF5OmBLhfhIKMD2pR4/nXe3990r0nlgVCshCXpGLGVRASYIAEnU4nHzl0RE4ljUuSZDFubY7FjTsqp9zcXHk9BZcpNSdbcWfNybiNgq9PJefkjHWylpNx2/bU70HLyRnrZG3uxvkYTyuwNV4pOZV3nQrtL0rYR1iLGyD9/93v708tcWSdLI4r0qgHxKFDh3D9+nU0btxYjun1euzatQtff/01cnJyrD6ARERERORcFNXItm/fHseOHTOJDRgwAHXq1MF7773HJpaIiIjoIaKoRtbT0xP169c3iXl4eKBy5cpmcSIiIiJyboq9jiwRERERPdwUdUTWkh07dpT3FIiIiIioHPCILBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkRTWy06dPR1RUFDw9PeHv74/u3bsjPj6+vKdFREREROVAUY3szp07MXToUOzfvx9btmxBbm4unnnmGWRlZZX31IiIiIiojLmU9wSKY+PGjSa3Fy5cCH9/fxw6dAitW7e2eJ+cnBzk5OTItzMyMgAAeXl5yMvLAwCoVCqoVCoYDAYYDAZ5rDGu1+shhCg0rlarIUmSvF4A+dYnIBn0JnMT0r33EZIwmMZVakAI07gk3RtvNW6AJARUENBoNPK8HJGTMQ4Aer2+SHEXFxcIIUzikiRBrVabzdFa3JF1sjV34331ej0kSXKKnJyxToXlZFwmSZLT5OSMdbKWk/E+tuqntJycsU7WcjKO1+v1UKvVTpFTedfJZn9hRx8hr0OSgAL9BWD6N9GRdSo43hpFNbIFpaenAwB8fX2tjpk+fTpiYmLM4nFxcfDw8AAAVKlSBREREUhISMCNGzfkMSEhIQgJCcGZM2fkbQFAjRo14O/vj+PHj+POnTtyvE6dOvDx8UFcXJxcGOP9VACCU0xPg0j0qw21IQ8BN/+VY0KlQqJfHbjmZsEv7ZIcz3PRItk3Ah5301Ap86ocv6vxQIpPKLyyU+GVdQOVtXcxduxY3L59GwAckhMANGzYEBqNBrGxsSY5NW3aFDqdDkePHpVjarUaUVFRSE9Px+nTp+W4m5sbIiMjkZKSgvPnz8txb29v1K1bF0lJSbhy5Yocd2SdbOXUqFEjAPeeM8ZGVuk5OWOdbOVkfANrrKEz5OSMdbKWU2pqKoD79XOGnJyxTrZyunz5MoB7NfT393eKnMq7Tunp6dBoNNBKwqS/sLePMMpy88EtzyBUup0Mjztp8NPeOyhonK+j6xQXF4eikET+tllBDAYDnnvuOaSlpWH37t1Wx1k6IlutWjWkpqbCy8sLgGPfSR0+fBhXr17F9ix3BNZuaDI3RxyRTYo/hm8HdMHevXvRpEkTvuMthZwMBgM2bNiA6OhouLjcf++n5JycsU62ctLpdCY1dIacnLFO1nLKycnBxo0bC62fknJyxjrZykmn02HTpk2Ijo6GRqNxipzKu05HjhxBVFQUhv28BSG1G5iMd8QR2WvxR9HGIxtBQUGIiopyeJ1u3bqFypUrIz09Xe7XLFHsEdmhQ4fi+PHjNptYANBqtdBqtWZxFxcXk6YEuF+EgowPalHj+dd7f33SvSeWBUKyEJekYsZVEBJggASdTicfOXRETiWNS5JkMW5tjsWNOyqn3NxceT0Flyk1J1txZ83JuI2Cr08l5+SMdbKWk3Hb9tTvQcvJGetkbe7G+RhPK7A1Xik5lXedCu0vSthHWIsbIP3/3e/vTy1xZJ0sjivSqAfMsGHD8Mcff2DXrl0ICQkp7+kQERERUTlQVCMrhMA777yD3377DTt27EB4eHh5T4mIiIiIyomiGtmhQ4fil19+wZo1a+Dp6Ynk5GQA906+dnNzK+fZEREREVFZUtR1ZL/55hukp6ejbdu2CAwMlP8tW7asvKdGRERERGVMUUdkFXqBBSIiIiJyAEUdkSUiIiIiMmIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKxEaWiIiIiBSJjSwRERERKRIbWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjIEhEREZEisZElIiIiIkViI0tEREREisRGloiIiIgUiY0sERERESkSG1kiIiIiUiQ2skRERESkSGxkiYiIiEiR2MgSERERkSKxkSUiIiIiRWIjS0RERESKpMhGdu7cuQgLC4OrqyuaN2+OgwcPlveUiIiIiKiMKa6RXbZsGUaPHo3Jkyfj8OHDiIyMRHR0NK5fv17eUyMiIiKiMuRS3hMorpkzZ2LgwIEYMGAAAODbb7/FunXr8OOPP2L8+PFm43NycpCTkyPfTk9PBwDcvHkTeXl5AACVSgWVSgWDwQCDwSCPNcb1ej2EEIXG1Wo1JEmS1wsAGRkZyM7ORlJ8Au5mZ5nMzXhPqcCcBST5vwXjEgQKyh9PvXQeFSpUwKFDh3D79m0IIUzmKEkSJEkqdjz/42KMA4AQQn7sCsbzU6lUpTYXIYTJnByRk8njKwSys7Px119/QaW6/96vtHMq+FwyxhyRU8G4sYaOzKmk9StpTkbG12r+Gjoip4JxtVptto8ozZxK6zlT0rjxOePInIzrLq/65d+Xl3ZOxX3OOGJfbpyfI3MyxvPX0Pi30tF/nwouc/Tfp9KsX1FeT2fPngUAJJ46itzs2ybj7ekjrMXTriQgu3ZVZGZmIiMjw67eyBgHAL1ebzF+69Yts5wtkURhIx4gOp0O7u7uWLlyJbp37y7H+/Xrh7S0NKxZs8bsPlOmTEFMTEwZzpKIiIiISsPly5cREhJidbmijsimpKRAr9ejatWqJvGqVavi9OnTFu8zYcIEjB49Wr5tMBhw8+ZNVK5cWX6H40gZGRmoVq0aLl++DC8vL4dvj0ofa6h8rKGysX7KxxoqX1nXUAiBzMxMBAUF2RynqEa2JLRaLbRarUnMx8enzOfh5eXFF6/CsYbKxxoqG+unfKyh8pVlDb29vQsdo6gve/n5+UGtVuPatWsm8WvXriEgIKCcZkVERERE5UFRjaxGo0GTJk2wdetWOWYwGLB161a0aNGiHGdGRERERGVNcacWjB49Gv369UPTpk3RrFkzzJo1C1lZWfJVDB40Wq0WkydPNju9gZSDNVQ+1lDZWD/lYw2V70GtoaKuWmD09ddf4/PPP0dycjIaNWqE2bNno3nz5uU9LSIiIiIqQ4psZImIiIiIFHWOLBERERGRERtZIiIiIlIkNrJEREREpEhsZImIiIhIkdjI2ikzMxMjR45EaGgo3Nzc8MQTT+Dvv/+2eZ8dO3agcePG0Gq1qFmzJhYuXFg2kyWLilvD//3vf3j66adRpUoVeHl5oUWLFti0aVMZzpjyK8lr0GjPnj1wcXFBo0aNHDtJsqkkNczJycEHH3yA0NBQaLVahIWF4ccffyyjGVNBJanhzz//jMjISLi7uyMwMBCvv/46UlNTy2jGD7ddu3aha9euCAoKgiRJWL16tclyIQQmTZqEwMBAuLm5oUOHDjh79myh6507dy7CwsLg6uqK5s2b4+DBgw7K4D42snZ68803sWXLFixZsgTHjh3DM888gw4dOiAxMdHi+ISEBHTp0gXt2rXDkSNHMHLkSLz55ptshMpRcWu4a9cuPP3001i/fj0OHTqEdu3aoWvXroiLiyvjmRNQ/PoZpaWl4bXXXkP79u3LaKZkTUlq2KtXL2zduhU//PAD4uPjsXTpUtSuXbsMZ035FbeGe/bswWuvvYY33ngDJ06cwIoVK3Dw4EEMHDiwjGf+cMrKykJkZCTmzp1rcflnn32G2bNn49tvv8WBAwfg4eGB6Oho3L171+o6ly1bhtGjR2Py5Mk4fPgwIiMjER0djevXrzsqjXsElVh2drZQq9Xijz/+MIk3btxYfPDBBxbvM27cOFGvXj2T2EsvvSSio6MdNk+yriQ1tOTRRx8VMTExpT09KoQ99XvppZfEhx9+KCZPniwiIyMdOEuypSQ13LBhg/D29hapqallMUUqRElq+Pnnn4saNWqYxGbPni2Cg4MdNk+yDID47bff5NsGg0EEBASIzz//XI6lpaUJrVYrli5danU9zZo1E0OHDpVv6/V6ERQUJKZPn+6QeRvxiKwd8vLyoNfr4erqahJ3c3PD7t27Ld5n37596NChg0ksOjoa+/btc9g8ybqS1LAgg8GAzMxM+Pr6OmKKZENJ67dgwQKcP38ekydPdvQUqRAlqeHatWvRtGlTfPbZZwgODsYjjzyCd999F3fu3CmLKVMBJalhixYtcPnyZaxfvx5CCFy7dg0rV65E586dy2LKZENCQgKSk5NNehVvb280b97caq+i0+lw6NAhk/uoVCp06NDB4f0NG1k7eHp6okWLFpg6dSqSkpKg1+vx008/Yd++fbh69arF+yQnJ6Nq1aomsapVqyIjI4M74XJQkhoW9MUXX+D27dvo1auXg2dLBZWkfmfPnsX48ePx008/wcVFcb/S7XRKUsPz589j9+7dOH78OH777TfMmjULK1euxJAhQ8p49gSUrIYtW7bEzz//jJdeegkajQYBAQHw9va2+lE3lZ3k5GQAsNirGJcVlJKSAr1eX6z7lBY2snZasmQJhBAIDg6GVqvF7Nmz0adPH6hUfGiVwp4a/vLLL4iJicHy5cvh7+9fBrOlgopTP71ej5dffhkxMTF45JFHymG2ZElxX4MGgwGSJOHnn39Gs2bN0LlzZ8ycOROLFi3iAYFyUtwanjx5EiNGjMCkSZNw6NAhbNy4ERcuXMDbb79dxjMnpWO3ZaeIiAjs3LkTt2/fxuXLl3Hw4EHk5uaiRo0aFscHBATg2rVrJrFr167By8sLbm5uZTFlKqC4NTT69ddf8eabb2L58uVmp4tQ2SlO/TIzMxEbG4thw4bBxcUFLi4u+Oijj/DPP//AxcUF27ZtK4cMqLivwcDAQAQHB8Pb21uO1a1bF0IIXLlypaymTfkUt4bTp09Hy5YtMXbsWDRs2BDR0dGYN28efvzxxyJ/GkaOERAQAAAWexXjsoL8/PygVquLdZ/Swka2lHh4eCAwMBC3bt3Cpk2b0K1bN4vjWrRoga1bt5rEtmzZghYtWpTFNMmGotYQAJYuXYoBAwZg6dKl6NKlSxnOkqwpSv28vLxw7NgxHDlyRP739ttvo3bt2jhy5AiaN29eDjMno6K+Blu2bImkpCTcvn1bjp05cwYqlQohISFlNV2yoKg1zM7ONjtaq1arAdy79BOVn/DwcAQEBJj0KhkZGThw4IDVXkWj0aBJkyYm9zEYDNi6davj+xuHfpXsIbBx40axYcMGcf78ebF582YRGRkpmjdvLnQ6nRBCiPHjx4u+ffvK48+fPy/c3d3F2LFjxalTp8TcuXOFWq0WGzduLK8UHnrFreHPP/8sXFxcxNy5c8XVq1flf2lpaeWVwkOtuPUriFctKH/FrWFmZqYICQkRPXv2FCdOnBA7d+4UtWrVEm+++WZ5pfDQK24NFyxYIFxcXMS8efPEv//+K3bv3i2aNm0qmjVrVl4pPFQyMzNFXFyciIuLEwDEzJkzRVxcnLh48aIQQohPP/1U+Pj4iDVr1oijR4+Kbt26ifDwcHHnzh15HU899ZSYM2eOfPvXX38VWq1WLFy4UJw8eVIMGjRI+Pj4iOTkZIfmwkbWTsuWLRM1atQQGo1GBAQEiKFDh5o0NP369RNt2rQxuc/27dtFo0aNhEajETVq1BALFiwo20mTieLWsE2bNgKA2b9+/fqV/eSpRK/B/NjIlr+S1PDUqVOiQ4cOws3NTYSEhIjRo0eL7OzsMp45GZWkhrNnzxaPPvqocHNzE4GBgeKVV14RV65cKeOZP5y2b99u8++YwWAQEydOFFWrVhVarVa0b99exMfHm6wjNDRUTJ482SQ2Z84cUb16daHRaESzZs3E/v37HZ6LJASP4RMRERGR8vAcWSIiIiJSJDayRERERKRIbGSJiIiISJHYyBIRERGRIrGRJSIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIlKUtm3bon79+uWy7f79+yMsLKxctq0kO3bsgCRJ2LFjhxyz9Njdvn0bb775JgICAiBJEkaOHAkAuHbtGnr27InKlStDkiTMmjWrzOZeWiw9BkU1ZcoUSJJU+pMickJsZImczMKFCyFJkvzP1dUVQUFBiI6OxuzZs5GZmVneU3R6SUlJmDJlCo4cOVLq6967dy+mTJmCtLS0Ul93WZs2bRoWLlyIwYMHY8mSJejbty8AYNSoUdi0aRMmTJiAJUuWoGPHjuU8U+vmzZuHhQsXlvc0iB5aLuU9ASJyjI8++gjh4eHIzc1FcnIyduzYgZEjR2LmzJlYu3YtGjZsWN5TdFpJSUmIiYlBWFgYGjVqVKrr3rt3L2JiYtC/f3/4+PiU6rod6fvvv4fBYDCJbdu2DY8//jgmT55sFu/WrRvefffdspxiicybNw9+fn7o37+/Sbx169a4c+cONBpN+UyM6CHBRpbISXXq1AlNmzaVb0+YMAHbtm3Ds88+i+eeew6nTp2Cm5ubxftmZWXBw8OjrKZKD4EKFSqYxa5fv45HH33UYrw0m/S8vDwYDIYybSpVKhVcXV3LbHtEDyueWkD0EHnqqacwceJEXLx4ET/99BOAe+cuVqxYEf/++y86d+4MT09PvPLKKwDuNbRjxoxBtWrVoNVqUbt2bXzxxRcQQpisV5IkDBs2DD///DNq164NV1dXNGnSBLt27XJYLidPnkS7du3g7u6O4OBgfPbZZ2ZjcnJyMHnyZNSsWRNarRbVqlXDuHHjkJOTYzb2p59+QpMmTeDm5gZfX1/07t0bly9fLva8duzYgaioKADAgAED5FM88n/8vGLFCnlbfn5+ePXVV5GYmFjouqdMmYKxY8cCAMLDw+V1X7hwAcC9hm3q1KmIiIiAVqtFWFgY3n//fYv5btiwAa1atYKHhwc8PT3RpUsXnDhxotj5XrlyBd27d4eHhwf8/f0xatQoi9vLf46s8fzRhIQErFu3zuQxkiQJQgjMnTtXjhulpaVh5MiR8vOxZs2amDFjhsmR3gsXLkCSJHzxxReYNWuW/FicPHkSAHD69Gn07NkTvr6+cHV1RdOmTbF27VqTuRrnsWfPHowePRpVqlSBh4cHnn/+edy4cUMeFxYWhhMnTmDnzp3yXNu2bWuSY/5zZP/66y+8+OKLqF69uvx8HDVqFO7cuVPsx52I7uERWaKHTN++ffH+++9j8+bNGDhwIIB7DVB0dDSefPJJfPHFF3B3d4cQAs899xy2b9+ON954A40aNcKmTZswduxYJCYm4j//+Y/Jenfu3Illy5Zh+PDh0Gq1mDdvHjp27IiDBw+W+pezbt26hY4dO+KFF15Ar169sHLlSrz33nto0KABOnXqBAAwGAx47rnnsHv3bgwaNAh169bFsWPH8J///AdnzpzB6tWr5fV98sknmDhxInr16oU333wTN27cwJw5c9C6dWvExcUV6+hg3bp18dFHH2HSpEkYNGgQWrVqBQB44oknANxrkgYMGICoqChMnz4d165dw1dffYU9e/YUuq0XXngBZ86cwdKlS/Gf//wHfn5+AIAqVaoAAN58800sWrQIPXv2xJgxY3DgwAFMnz4dp06dwm+//SavZ8mSJejXrx+io6MxY8YMZGdn45tvvsGTTz6JuLi4In+h7c6dO2jfvj0uXbqE4cOHIygoCEuWLMG2bdsKfYyWLFmCUaNGISQkBGPGjAEAPPbYY/K5sk8//TRee+01+T7Z2dlo06YNEhMT8dZbb6F69erYu3cvJkyYgKtXr5p9IWzBggW4e/cuBg0aBK1WC19fX5w4cQItW7ZEcHAwxo8fDw8PDyxfvhzdu3fHqlWr8Pzzz5us45133kGlSpUwefJkXLhwAbNmzcKwYcOwbNkyAMCsWbPwzjvvoGLFivjggw8AAFWrVrWa94oVK5CdnY3BgwejcuXKOHjwIObMmYMrV65gxYoVRXrMiagAQUROZcGCBQKA+Pvvv62O8fb2Fo899pgQQoh+/foJAGL8+PEmY1avXi0AiI8//tgk3rNnTyFJkjh37pwcAyAAiNjYWDl28eJF4erqKp5//vnSSEvWpk0bAUAsXrxYjuXk5IiAgADRo0cPObZkyRKhUqnEX3/9ZXL/b7/9VgAQe/bsEUIIceHCBaFWq8Unn3xiMu7YsWPCxcXFJN6vXz8RGhpa6Bz//vtvAUAsWLDAJK7T6YS/v7+oX7++uHPnjhz/448/BAAxadKkQtf9+eefCwAiISHBJH7kyBEBQLz55psm8XfffVcAENu2bRNCCJGZmSl8fHzEwIEDTcYlJycLb29vs7gts2bNEgDE8uXL5VhWVpaoWbOmACC2b98uxy09dqGhoaJLly5m6wUghg4dahKbOnWq8PDwEGfOnDGJjx8/XqjVanHp0iUhhBAJCQkCgPDy8hLXr183Gdu+fXvRoEEDcffuXTlmMBjEE088IWrVqiXHjK+hDh06CIPBIMdHjRol1Gq1SEtLk2P16tUTbdq0Mcth+/btZo9Bdna22bjp06cLSZLExYsX5djkyZMF/zwTFQ1PLSB6CFWsWNHs6gWDBw82ub1+/Xqo1WoMHz7cJD5mzBgIIbBhwwaTeIsWLdCkSRP5dvXq1dGtWzds2rQJer2+1Of/6quvyrc1Gg2aNWuG8+fPy7EVK1agbt26qFOnDlJSUuR/Tz31FABg+/btAID//e9/MBgM6NWrl8m4gIAA1KpVSx5XGmJjY3H9+nUMGTLE5PzJLl26oE6dOli3bl2J171+/XoAwOjRo03ixqOdxnVv2bIFaWlp6NOnj0m+arUazZs3L1a+69evR2BgIHr27CnH3N3dMWjQoBLnYc2KFSvQqlUrVKpUyWTeHTp0gF6vNzuNpUePHvKRagC4efMmtm3bhl69eiEzM1O+f2pqKqKjo3H27Fmz0zsGDRpkcmpDq1atoNfrcfHixRLlkP+c9KysLKSkpOCJJ56AEAJxcXElWifRw46nFhA9hG7fvg1/f3/5touLC0JCQkzGXLx4EUFBQfD09DSJ161bV16eX61atcy288gjjyA7Oxs3btxAQEBAaU0fISEhZtfZrFSpEo4ePSrfPnv2LE6dOmXSzOR3/fp1eZwQwuL8ActfUjK6ceOGSZNesWJFVKxY0ep442NWu3Zts2V16tTB7t27AQB6vd7kXEwA8PX1tfllpYsXL0KlUqFmzZom8YCAAPj4+MjbPnv2LADIDX1BXl5eVrdhaZs1a9Y0q4Wl/Ox19uxZHD16tNB6GoWHh5vcPnfuHIQQmDhxIiZOnGh1HcHBwfLt6tWrmyyvVKkSgHuntpTEpUuXMGnSJKxdu9ZsHenp6SVaJ9HDjo0s0UPmypUrSE9PN2l4tFotVCrlfECjVqstxkW+L6EZDAY0aNAAM2fOtDi2WrVq8jhJkrBhwwaL67XVmEZFRZk09JMnT8aUKVOKkoJNly9fNmvEtm/fLn+RyJbCLqRv/GLUkiVLLL65cHF5MP8sGAwGPP300xg3bpzF5Y888ojJ7YJX5DDm/e677yI6OtriOgq+CSjK86yo9Ho9nn76ady8eRPvvfce6tSpAw8PDyQmJqJ///5mlyYjoqJ5MPdYROQwS5YsAQCrf8yNQkND8eeffyIzM9PkqOzp06fl5fkZj/Tld+bMGbi7u1s9iuZIERER+Oeff9C+fXubzV1ERASEEAgPDzdrhgrz888/m3zjvEaNGgCsN5PGxyw+Pt7siGh8fLy8PCAgAFu2bDFZHhkZWei6DQYDzp49Kx81B+79SlZaWpq87oiICACAv78/OnToULRErQgNDcXx48chhDCZV3x8vF3rtSQiIgK3b98u8ZyNtalQoYLdeedX1F/gOnbsGM6cOYNFixaZfImtYJ2JqHiUcwiGiOy2bds2TJ06FeHh4fIltqzp3Lkz9Ho9vv76a5P4f/7zH0iSJF8dwGjfvn04fPiwfPvy5ctYs2YNnnnmGatHthypV69eSExMxPfff2+27M6dO8jKygJw70oAarUaMTExZkfahBBITU21uo2WLVuiQ4cO8j9js2S8Bm/BX99q2rQp/P398e2335pcomrDhg04deoUunTpAgBwdXU1WW+HDh3kj7Wtrbtz584AYPbtfeMRaeO6o6Oj4eXlhWnTpiE3N9csp4KnNNjSuXNnJCUlYeXKlXIsOzsb8+fPL/I6iqpXr17Yt28fNm3aZLYsLS0NeXl5Nu/v7++Ptm3b4rvvvsPVq1fNlhcn7/w8PDyK9CtrxtdA/ueYEAJfffVVibZLRPfwiCyRk9qwYQNOnz6NvLw8XLt2Ddu2bcOWLVsQGhqKtWvXFnqx9q5du6Jdu3b44IMPcOHCBURGRmLz5s1Ys2YNRo4cKR/ZM6pfvz6io6NNLr8FADExMQ7L0Za+ffti+fLlePvtt7F9+3a0bNkSer0ep0+fxvLly7Fp0yY0bdoUERER+PjjjzFhwgRcuHAB3bt3h6enJxISEvDbb79h0KBBxf6FqYiICPj4+ODbb7+Fp6cnPDw80Lx5c4SHh2PGjBkYMGAA2rRpgz59+siX3woLC8OoUaMKXbfxC3UffPABevfujQoVKqBr166IjIxEv379MH/+fKSlpaFNmzY4ePAgFi1ahO7du6Ndu3YA7p0D+80336Bv375o3LgxevfujSpVquDSpUtYt24dWrZsafbmxZqBAwfi66+/xmuvvYZDhw4hMDAQS5Ysgbu7e7Eer6IYO3Ys1q5di2effRb9+/dHkyZNkJWVhWPHjmHlypW4cOGCfDkya+bOnYsnn3wSDRo0wMCBA1GjRg1cu3YN+/btw5UrV/DPP/8Ue15NmjTBN998g48//hg1a9aEv7+/xfOP69Spg4iICLz77rtITEyEl5cXVq1aVeLzbYno/5XPxRKIyFGMlw4y/tNoNCIgIEA8/fTT4quvvhIZGRkm4/v16yc8PDwsriszM1OMGjVKBAUFiQoVKohatWqJzz//3OSSRELcv1zSTz/9JGrVqiW0Wq147LHHTC49VFratGkj6tWrZxa3dHknnU4nZsyYIerVqye0Wq2oVKmSaNKkiYiJiRHp6ekmY1etWiWefPJJ4eHhITw8PESdOnXE0KFDRXx8vM1tWLNmzRrx6KOPChcXF7NLcS1btkw89thjQqvVCl9fX/HKK6+IK1euFPkxmDp1qggODhYqlcrkUly5ubkiJiZGhIeHiwoVKohq1aqJCRMmmFxuymj79u0iOjpaeHt7C1dXVxERESH69+9vcgm1orh48aJ47rnnhLu7u/Dz8xMjRowQGzduLPXLbwlx7/k4YcIEUbNmTaHRaISfn5944oknxBdffCF0Op0Q4v7ltz7//HOL8/3333/Fa6+9JgICAkSFChVEcHCwePbZZ8XKlSvlMdYuYWfpklrJycmiS5cuwtPTUwCQL8VlaezJkydFhw4dRMWKFYWfn58YOHCg+Oeff8yeH7z8FlHRSUKU4Kx1IqJ8JEnC0KFDi3wkj4iIqDTwHFkiIiIiUiSeI0tEDmfpuqgF6XQ6m9dJVavV5XL1g4eRTqfDzZs3bY7x9vY2u8QVlb709HSTK2NYUprXaCZSGjayRORwlq6LWlCbNm2wc+dOq8tDQ0Nx4cKFUp4ZWbJ37175y2HWLFiwAP379y+bCT3ERowYgUWLFtkcwzME6WHGc2SJyOHu3r0r/2qVNZUqVbL5DW43Nze0bNmytKdGFty6dQuHDh2yOaZevXoIDAwsoxk9vE6ePImkpCSbY0rzurhESsNGloiIiIgUiV/2IiIiIiJFYiNLRERERIrERpaIiIiIFImNLBEREREpEhtZIiIiIlIkNrJEREREpEhsZImIiIhIkf4P4WqdzKZlXC8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAHbCAYAAAA9NtfdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQIUlEQVR4nO3deViU9f7/8dcwOOCGKIqI4kYdMTeOuOGSUhaW55RlatYxNb/ZZpullbtZapvHFm21sk5l2eKpNMxMtBQ1FMsts9Q0CRRT8Liwzf37w9/MYWRuBIYBZs7zcV1exef+3HN/3vOG4cXNPTcWwzAMAQAAACgmoKoXAAAAAFRXhGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgH8T3nhhRdksVi0aNGiql4KAMAHEJYBH5CcnCyLxaIZM2ZUyfFbtmypli1buozNmDFDFotFycnJVbKm81ksFvXr16/EOZs3b9ZDDz2kadOmacyYMZWzMDdKs9bqoDw9LmttBw4ckMVi0ahRo8q8Pl/mrc+B6vZ1CfgDwjJQSRyhoOi/WrVqKTIyUpdffrmmTZumX3/91SvH7tevnywWi1ce21ccP35cQ4cO1fDhwzVz5syqXo5XzJ07VxaLRXPnznW7PTY2VhaLRXfccYfb7YMGDZLFYtHq1asrdF18/vmv6tBbwzD05Zdf6s4771THjh1Vr1491apVS506ddLs2bN19uzZKl0ffF9gVS8A+F8THR2tf/zjH5Kk3NxcHTlyRJs3b9asWbM0e/ZsTZw4UU888YTLN6Bu3bpp9+7datiwYZWsuaLDkzfs3r1btWrVMt2+bds23XXXXXrggQcqcVWVKyEhQdK530Q88sgjLtuOHTumH3/80fSso91u17p16xQUFKRevXpJksaNG6cbb7xRzZs39/ragfLKzc3V1VdfraCgIPXr10+JiYk6e/asVq5cqcmTJ2vZsmVKTk4u8fUBKAlhGahkF110kdvLKb777juNGDFCc+bMkdVq1axZs5zbatWqpZiYmEpcpavo6OgqO3ZpXej5SUhIcIZJfxUXF6e6devqu+++U0FBgQID//sSv3btWhmGoeuvv16ffPKJ/vjjDzVp0sS5/YcfftDx48fVt29fBQcHS5IaNmxYZT+gAaVltVr1+OOP66677lL9+vWd4/n5+Ro8eLA+//xzLViwQBMmTKjCVcKXcRkGUE307t1bSUlJCgoK0lNPPaVDhw45t5lds7x3716NHj1arVq1UlBQkBo0aKBOnTrp/vvvl2EYks5dG7l27Vrn/zv+Oa4RLXrN6O7du3XdddcpLCxMFotFBw4ckOT+muWiFi1apA4dOig4OFhNmzbVAw88oJMnT7rMKem665KuWz1y5IgefPBBtWnTRjVr1lSDBg3UvXt3PfPMMy7zzK4BzcrK0v333+98jsLDwzV06FDt2LGj2NxRo0bJYrFo//79ev755xUTE6OgoCC1aNFCM2fOlN1uN30O3Hn99dfVvn17BQcHKyoqShMnTizxV8InT57U9OnT1a5dO9WsWVOhoaFKTEzUd999V6rjBQYGqk+fPjp16pS+//57l23JycmqWbOmHn74YUnSmjVrim2X5PIDRUnXv5a2tgt9/hX1yy+/6LrrrlP9+vVVu3Zt9e/fXz/88EOpanfIy8vTvHnz1LlzZ9WuXVt169ZVnz599NlnnxWbW9H9/vHHH3XjjTeqSZMmstlsatGihe655x4dO3asTI9j5t///reuvPJKhYWFKTg4WC1bttSIESPcfi4XVZ6vvYp4bXEo7fNSmtcid2rUqKHJkye7BGXH+KOPPipJznUC5cGZZaAaadOmjYYOHap33nlHy5Yt0z333GM6Nz09Xd26ddOpU6c0cOBADRs2TKdOndLevXu1cOFCPfPMMwoMDNT06dP11ltv6bffftP06dOd+8fGxro83i+//KIePXqoQ4cOGjVqlI4dOyabzXbBNc+bN0+rV6/WsGHDNHDgQH399deaP3++Nm7cqHXr1qlGjRrlfj727NmjhIQE/fHHH+rdu7cGDRqkU6dOaefOnZo9e7YeeuihEvc/evSo4uPj9euvv6pfv3668cYbtX//fn300Udavny5Vq5cqd69exfbb8KECVq7dq3+9re/KTExUcuWLdOMGTOUl5enJ554olRrnzVrlqZNm6bGjRvrtttuU40aNfTBBx9o9+7dbuf/+eefuvTSS7Vz50716tVLd9xxh3JycvTvf/9bCQkJWrp0qQYNGnTB4yYkJGjFihVas2aN4uPjneNr1qxRjx491KVLF9WvX19r1qzRTTfd5LLdsX9F1lbaz78DBw6oR48eateunW699Vb9+uuvztp3796txo0bX3Bdubm5GjBggJKTkxUbG6sxY8YoPz9fy5cv17XXXqsXXnhB48aNK7ZfRfT7s88+09ChQxUQEKBrr71WUVFR2rVrl1588UWtXLlSmzZtKhbmyuLBBx/UvHnz1KBBAw0aNEjh4eE6dOiQvv76a8XFxal9+/blfuzzVeRrS3mel/K+FrnjeP0p+lsWoMwMAJVi//79hiQjMTGxxHmLFi0yJBkjRoxwjq1Zs8aQZEyfPt059vzzzxuSjPnz5xd7jGPHjrl83LdvX8Psy92xLknGtGnT3M5p0aKF0aJFC5ex6dOnG5IMm81m/PDDD85xu91u3HTTTYYk45lnnimxhvPXMHLkSJfxLl26GJKMV199tdg+hw4dcvlYktG3b1+XsdGjRxuSjEcffdRlfPny5YYk46KLLjIKCwud4yNHjjQkGa1atTLS09Od40ePHjVCQ0ONunXrGrm5ucXWcr69e/cagYGBRtOmTY3MzEzneHZ2ttGmTRu3a3U8Z6+99prLeGZmphEVFWU0atTIOHPmzAWPnZqaakgyrrjiCpf1WywWY+bMmYZhGMY111xjREdHO7cXFhYaoaGhRs2aNV3qc/R4zZo1HtVW2s+/uXPnumybMmWKIcmYM2fOBes2DMOYNGmSIcmYOnWqYbfbneM5OTlGly5dDJvNZhw+fNg5XlH9zsrKMkJCQoymTZsaBw4ccNn2/vvvG5KMcePGuYy7e57MfP7554Yko0OHDkZWVpbLtvz8fCMjI8P5sbuelfVrr6JeW8r6vJTmtais7rzzTkOSsWDBggp5PPxv4jIMoJqJjIyUdO7ygdKoWbNmsbEGDRqU+bgRERGaPHlymfe75ZZb1LFjR+fHFotFs2fPltVq1VtvvVXmx3PYvHmzUlNTdemll+q2224rtr1Zs2Yl7p+Xl6f3339fYWFhmjJlisu2q6++WldccYV++eUXrV+/vti+U6dOdbmet2HDhrr22mt18uRJ7dmz54Jrf++991RQUKDx48crPDzcOR4SElJsLdK5Xn/wwQe67LLL9H//938u28LDwzVhwgQdPXpUX3/99QWP/de//lWhoaFav3698vLyJJ37NbxhGM7LVPr27atff/3VeanPtm3bdOLECfXs2fOCZ/DKWltptWrVqtg1pY7b+51/SYk7drtdL730kqKjozVz5kyXN8jWrVtX06ZNU15enj755JNi+3ra77fffls5OTmaM2eOWrRo4bLtxhtvVOfOnbVkyZILPo6ZhQsXSpKee+45hYWFuWwLDAws1Vn38vD0taW8z0t5X4vO9+WXX+qVV15R27Ztq/RWkfB9/F4C8FF///vf9eijj+ruu+/W6tWrNWDAAPXt21etW7cu1+N16tSpXL/q7NOnT7GxFi1aKCoqSjt37lReXl65Hnfz5s2SpCuvvLLM+0rSTz/9pLNnzyohIcHtu+ATEhK0atUqbdu2rVgNcXFxxeY7wvmJEycueGzHdbbunht3Y99//70KCwuVm5vr9rrSvXv3Omv629/+VuKxAwIC1KdPH33++efavHmzevfurTVr1ig4OFjdu3eXdC4sS+cuvbjlllvcXq9cUbWVVmxsrAICXM/flOU537Nnj44fP67IyEi3twY8evSopHPP4fk87ffGjRslSZs2bXJ7+8ezZ88qKytLWVlZ5XrD5ObNmxUUFOTsm7dV1GtLeZ+X8r4WFfX9999r2LBhqlevnpYuXaqgoCCPHg//2wjLQDWTnp4uSWrUqFGJ81q2bKmNGzdqxowZWrFihT788ENJ5+4K8dhjj2nIkCFlOm55z06Z7de4cWMdOHBAJ0+eLHY2rDSys7MlSU2bNi3XunJyckpcn+NMomNeUSEhIcXGHNc8FhYWXvDYjrUXPfPq4G49f/75pyRp/fr1bs90O5w6deqCx5bOhd7PP/9cycnJ6t27t5KTk9WjRw9nYIiNjVW9evWcYdlxvfJll112wccua22l5elz7ngOd+7cqZ07d5rOc/ccVtSxFyxYUOK8U6dOlSssZ2dnq2nTpsV+mPCWinptKe/z4umZ8tTUVF155ZUKCAjQypUr1a5dO48eD+AyDKCacZzl69q16wXntm/fXh999JH+/PNPpaSkaNq0acrIyNCwYcNKDF3ulPcPC2RmZpqOWywW1a1bV5Kc3+gLCgqKzXUEsKJCQ0MlSYcPHy7XuhwByGx9GRkZLvMqUr169SSdu5PH+dytx7GGBx98UIZhmP4r+iaqkjjOEK9Zs0ZHjhzRrl27XO4UYrVanWec7Xa7vv32W9WpU6dUn3Nlra2yOJ7DwYMHl/gcvvnmm1479vbt20s89vmXIpRWaGioMjIyynx3Doeyfu1JFfPaUt7nxZM/cpKamqorrrhCdrtdK1euLNXnNHAhhGWgGvn555/14YcfKigoSNddd12p96tRo4Z69OihmTNn6vnnn5dhGPriiy+c261Wq6TSnSUrq2+//bbY2G+//aZDhw6pXbt2zl+nOt7x7i78pqWlFRvr1q2bJOmrr74q17piYmIUHBys77//XqdPny623fFDyfl3ZagInTp1kuT+uXE31rVrV1ksFqWkpFTI8Tt27KgGDRooJSVFK1eulKRit9Xr27evfvvtN33yySfKzs5W7969S3XHgLLWJnn388+hbdu2CgkJUWpqqvLz8712HHccl7dUVP/O161bN+Xm5pb79mdl/dorypPXFm8/L+dzBOXCwkIlJSU5jw94irAMVBPr169XYmKicnNz9cgjj1zw8oMtW7a4vYTAcXbP8YclpP++KafovZsryttvv60ff/zR+bFhGJo0aZIKCwtd7rfapk0b1a1bV5999pnz17OO9T7++OPFHrdr167q2rWr1q1bp9dee63Y9gudcbbZbBo+fLiysrI0Z84cl21JSUlauXKlLrroIudfq6tIN910k6xWq+bNm+dyBjYnJ8dtrRERERo6dKg2bNigp59+2nkf26I2bdrkNvS7ExAQoL59++rMmTN66qmnFBwcrB49erjMcVz/6ri+t7R/sKWstUne/fxzCAwM1J133qnffvtNDz30kNvAvGPHDrdnxD01evRo1a1bV5MnT3Z7Ccjp06ed1++Wx9133y1Juu+++1y+dqRzZ4svdEa/rF97FfXa4u3n5fw1X3HFFSooKNCXX37pcttEwFNcswxUsl9++cX5Jq68vDznn7vevn27rFarpkyZUqpft7/zzjt65ZVXdOmllyo6OlohISHatWuXVqxYoQYNGmj06NHOuZdddpk++ugjDR48WFdddZWCg4PVqVMn/f3vf/e4nsTERMXHx+vGG29Uo0aNtHr1aqWmpqpHjx4u94m22Wy65557NHv2bHXu3Nl5t4HPP//ceXeG87377rvq16+fxo4dq3feeUfx8fE6e/asdu7cqbS0tAv+sYcnn3xSa9eu1eOPP64NGzaoe/fuOnDggJYuXapatWrpzTff9Mp1oBdddJGmTZum6dOnq2PHjho6dKgCAwP18ccfq2PHjm7vsLBw4ULt2bNHEydOdNYaGhqqQ4cOKTU1VXv37tUff/xR6j/Zm5CQoE8//VQ7duxQv379ir3BqXPnzqpTp47zD1qUNiyXpzZvfv4VNXPmTG3dulXPP/+8li9frksvvVTh4eE6fPiwtm/frh9++EEpKSlur7f2RKNGjfT+++9ryJAh6tSpkwYMGKCYmBjl5ubqwIEDWrt2rXr27KmkpKRyPf7VV1+thx56SM8884wuvvhiXXfddc66Vq9erYceekj333+/6f5l/dqrqNcWbz8vDn/++aeuuOIKnThxQgMGDNCqVau0atUqlzmhoaElPkdAibx+czoAhmG43kPU8a9mzZpGkyZNjISEBGPq1KnGL7/84nZfd/dJ3bhxo3H77bcb7du3d94j9+KLLzbGjRtn/Pbbby775+fnGxMnTjSaN29uBAYGutxX1ewex0WVdJ/lNWvWGK+99prRrl07IygoyGjSpIlx3333GTk5OcUep7Cw0JgxY4YRFRVl2Gw24y9/+Yvx3HPPGfv27TNdQ0ZGhnHfffcZrVu3Nmw2m9GgQQOje/fuxrx581zmyeS+tUePHjXuvfdeo0WLFkaNGjWMhg0bGjfccIOxffv2YnMd993dv39/sW3u7l97Ia+99ppxySWXGDabzWjWrJnx0EMPGadPnzZd6+nTp42nnnrKiIuLM2rXrm3UrFnTaNWqlTFo0CDj7bffNvLz80t97O3btzs/z2bMmOF2TmJioiHJCAkJMQoKCoptL6nmstTmyeef2XNlpqCgwHjllVeMXr16GSEhIUZQUJDRvHlzY8CAAcZLL71k/Oc//3HOreh+//TTT8aYMWOMFi1aGDabzahfv77RoUMH49577zU2b97sUV2GYRgff/yxkZCQYNSrV88ICgoyWrZsaYwYMcLYsWPHBdddlq+9inptKevzUprXInfcvbae/+/81y+gLCyG4eb3fQAAAAC4ZhkAAAAwQ1gGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATPBHSbzAbrcrPT1ddevW9ehv3AMAAMA7DMPQyZMnFRkZWeIfqCIse0F6erqioqKqehkAAAC4gEOHDqlZs2am2wnLXlC3bl1J5578kJAQrx8vPz9fX331la688krVqFHD68dDxaJ/vo8e+j566PvooW+riv7l5OQoKirKmdvMEJa9wHHpRUhISKWF5Vq1aikkJIQXCB9E/3wfPfR99ND30UPfVpX9u9Als7zBDwAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADDh82F5wYIFatmypYKDg9W9e3dt3ry5xPlLly5VTEyMgoOD1aFDB61YscJ07h133CGLxaL58+dX8KoBAADgC3w6LH/wwQcaP368pk+frq1bt6pTp05KTEzUkSNH3M7fsGGDhg8frjFjxigtLU2DBg3SoEGDtGPHjmJzP/30U23cuFGRkZHeLgMAAADVlE+H5Xnz5um2227T6NGjdckll+jll19WrVq19MYbb7id/9xzz2nAgAGaMGGC2rZtq1mzZqlz58568cUXXeYdPnxY99xzj959913VqFGjMkoBAABANRRY1Qsor7y8PG3ZskWPPvqocywgIED9+/dXSkqK231SUlI0fvx4l7HExEQtW7bM+bHdbteIESM0YcIEtWvXrlRryc3NVW5urvPjnJwcSVJBQYEKCgqcawsICJDdbpfdbndZc0BAgAoLC2UYxgXHrVarLBaL83ElqbCwUJJkGIbLuGN+0TkOgYGBMgzDZdxischqtRZbo9m4N2sqae3+VlNJ/fPVmkoa98eaHAoLC2WxWPyiJn/s04VqcuxjsVj8piZ/7JNZTY75hYWFslqtflGTP/bJrCZ3/fN2TefPN+OzYTkrK0uFhYVq3Lixy3jjxo31008/ud0nIyPD7fyMjAznx08++aQCAwN17733lnotc+bM0cyZM4uNp6WlqXbt2pKkRo0aKTo6Wvv379fRo0edc5o1a6ZmzZrp559/VnZ2tnO8devWCg8P144dO3TmzBnneExMjEJDQ5WWluYSsqRzQX/r1q0ua+jSpYvy8vL0448/OsesVqu6du2q7Oxsl+eqZs2a6tSpk7KysrRv3z7neL169dS2bVulp6fr999/d457syZJ6tixo2w2m1JTU/26Jkf/zp49q127dvlFTZL/9amkmmJjYyWd+5p3hGVfr8kf+1RSTceOHZP03x76Q03+2KeSajp06JCkcz0MDw/3i5r8sU9mNTkuoU1LS1NUVFSl1JSWlqbSsBhFo7kPSU9PV9OmTbVhwwbFx8c7xydOnKi1a9dq06ZNxfax2WxavHixhg8f7hxbuHChZs6cqczMTG3ZskUDBw7U1q1bndcqt2zZUvfff7/uv/9+07W4O7McFRWlY8eOKSQkRJJ3fyIsKCjQypUrddVVVykgwPXKGn7Krf41ldQ/X62ppHF/rMkwDK1YsUKJiYkKDAz0i5r8sU8l1ZSbm6ukpCRnD/2hJn/sU0k15eXlaeXKlUpMTJTNZvOLmvyxT2Y1ueuft2s6fvy4wsLClJ2d7cxr7vjsmeWGDRvKarUqMzPTZTwzM1MRERFu94mIiChx/rfffqsjR46oefPmzu2FhYV68MEHNX/+fB04cMDt4wYFBSkoKKjYeGBgoPMbp4Oj0edzNK6040Uf1/EJY7FYih3P3XwHs/lmayzruCc1lXfcF2u6UP98saYLjftbTfn5+c7HL+3XfHWvSfK/Pkkl1+Q4dtHtvl6TP/bJbO2O9Th+hV/SfF+pyR/7VJb+VUVN7vjsG/xsNpvi4uK0evVq55jdbtfq1atdzjQXFR8f7zJfklatWuWcP2LECP3444/atm2b819kZKQmTJiglStXeq8YAAAAVEs+e2ZZksaPH6+RI0eqS5cu6tatm+bPn69Tp05p9OjRkqRbbrlFTZs21Zw5cyRJ9913n/r27atnn31WAwcO1JIlS5SamqpXX31VkhQWFqawsDCXY9SoUUMRERFq06ZN5RYHAACAKufTYXnYsGE6evSopk2bpoyMDMXGxiopKcn5Jr6DBw+6nO7v2bOn3nvvPU2ZMkWTJk3SxRdfrGXLlql9+/ZVVQIAAACqMZ8Oy5I0btw4jRs3zu225OTkYmNDhgzRkCFDSv34ZtcpAwAAwP/57DXLAAAAgLcRlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADAhM+H5QULFqhly5YKDg5W9+7dtXnz5hLnL126VDExMQoODlaHDh20YsUK57b8/Hw9/PDD6tChg2rXrq3IyEjdcsstSk9P93YZAAAAqIZ8Oix/8MEHGj9+vKZPn66tW7eqU6dOSkxM1JEjR9zO37Bhg4YPH64xY8YoLS1NgwYN0qBBg7Rjxw5J0unTp7V161ZNnTpVW7du1SeffKI9e/bommuuqcyyAAAAUE34dFieN2+ebrvtNo0ePVqXXHKJXn75ZdWqVUtvvPGG2/nPPfecBgwYoAkTJqht27aaNWuWOnfurBdffFGSVK9ePa1atUpDhw5VmzZt1KNHD7344ovasmWLDh48WJmlAQAAoBoIrOoFlFdeXp62bNmiRx991DkWEBCg/v37KyUlxe0+KSkpGj9+vMtYYmKili1bZnqc7OxsWSwWhYaGms7Jzc1Vbm6u8+OcnBxJUkFBgQoKCpxrCwgIkN1ul91ud1lzQECACgsLZRjGBcetVqssFovzcSWpsLBQkmQYhsu4Y37ROQ6BgYEyDMNl3GKxyGq1Fluj2bg3aypp7f5WU0n989WaShr3x5ocCgsLZbFY/KImf+zThWpy7GOxWPymJn/sk1lNjvmFhYWyWq1+UZM/9smsJnf983ZN588347NhOSsrS4WFhWrcuLHLeOPGjfXTTz+53ScjI8Pt/IyMDLfzz549q4cffljDhw9XSEiI6VrmzJmjmTNnFhtPS0tT7dq1JUmNGjVSdHS09u/fr6NHjzrnNGvWTM2aNdPPP/+s7Oxs53jr1q0VHh6uHTt26MyZM87xmJgYhYaGKi0tzSVkSZLdbtfWrVtd1tClSxfl5eXpxx9/dI5ZrVZ17dpV2dnZLs9VzZo11alTJ2VlZWnfvn3O8Xr16qlt27ZKT0/X77//7hz3Zk2S1LFjR9lsNqWmpvp1TY7+nT17Vrt27fKLmiT/61NJNcXGxko69zXvCMu+XpM/9qmkmo4dOybpvz30h5r8sU8l1XTo0CFJ53oYHh7uFzX5Y5/ManJcQpuWlqaoqKhKqSktLU2lYTGKRnMfkp6erqZNm2rDhg2Kj493jk+cOFFr167Vpk2biu1js9m0ePFiDR8+3Dm2cOFCzZw5U5mZmS5z8/PzNXjwYP3+++9KTk4uMSy7O7McFRWlY8eOOffz5k+EBQUFWrlypa666ioFBLheWcNPudW/ppL656s1lTTujzUZhqEVK1YoMTFRgYGBflGTP/appJpyc3OVlJTk7KE/1OSPfSqppry8PK1cuVKJiYmy2Wx+UZM/9smsJnf983ZNx48fV1hYmLKzs0vMeT57Zrlhw4ayWq3FQm5mZqYiIiLc7hMREVGq+fn5+Ro6dKh+++03ffPNNyU+gZIUFBSkoKCgYuOBgYHOb5wOjkafz9G40o4XfVzHJ4zFYil2PHfzHczmm62xrOOe1FTecV+s6UL988WaLjTubzXl5+c7H7+0X/PVvSbJ//oklVyT49hFt/t6Tf7YJ7O1O9bj+BV+SfN9pSZ/7FNZ+lcVNbnjs2/ws9lsiouL0+rVq51jdrtdq1evdjnTXFR8fLzLfElatWqVy3xHUN67d6++/vprhYWFeacAAAAAVHs+e2ZZksaPH6+RI0eqS5cu6tatm+bPn69Tp05p9OjRkqRbbrlFTZs21Zw5cyRJ9913n/r27atnn31WAwcO1JIlS5SamqpXX31V0rmgfMMNN2jr1q364osvVFhY6LyeuUGDBrLZbFVTKAAAAKqET4flYcOG6ejRo5o2bZoyMjIUGxurpKQk55v4Dh486HK6v2fPnnrvvfc0ZcoUTZo0SRdffLGWLVum9u3bS5IOHz6szz77TJKcb9hxWLNmjfr161cpdQEAAKB68OmwLEnjxo3TuHHj3G5LTk4uNjZkyBANGTLE7fyWLVu6XDAOAACA/20+e80yAAAA4G2EZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwEejpA2RkZGjRokXaunWrsrOzZbfbXbZbLBatXr3a08MAAAAAlc6jsPzjjz+qX79+OnPmjNq0aaPt27frkksu0YkTJ3T48GFFR0crKiqqotYKAAAAVCqPLsN45JFHVKdOHe3Zs0dff/21DMPQc889p0OHDumDDz7Q8ePHNXfu3IpaKwAAAFCpPArL69ev1+23367mzZsrIODcQzkuwxgyZIhuvvlmTZgwwfNVAgAAAFXAo7Bst9vVuHFjSVJoaKisVqv+/PNP5/YOHTpoy5Ytnq0QAAAAqCIeheVWrVpp//795x4oIECtWrXS119/7dy+YcMGhYaGerRAAAAAoKp4FJavvPJKLV261PnxnXfeqddff139+/fX5ZdfrsWLF+umm27yeJEAAABAVfDobhiTJ0/W8OHDlZ+frxo1auj+++/XqVOn9PHHH8tqtWrq1KmaNGlSRa0VAAAAqFQeheX69esrLi7O+bHFYtGUKVM0ZcoUjxcGAAAAVDX+gh8AAABgokxnlm+99VZZLBa9+uqrslqtuvXWWy+4j8Vi0aJFi8q9QAAAAKCqlCksf/PNNwoICJDdbpfVatU333wji8VS4j4X2g4AAABUV2UKywcOHCjxYwAAAMCfcM0yAAAAYMKjsLx161YtXLjQdPvChQu1bds2Tw4BAAAAVBmPwvLkyZNd/mLf+b755htuIwcAAACf5VFY3rJli/r06WO6vU+fPkpNTfXkEAAAAECV8Sgsnzx5UoGB5u8RDAgIUHZ2tieHAAAAAKqMR2H54osv1ldffWW6PSkpSa1bt/bkEAAAAECV8SgsjxkzRsuXL9f48eN14sQJ5/iJEyf0wAMPKCkpSWPGjPF0jQAAAECVKNN9ls937733atu2bZo/f76ef/55RUZGSpLS09Nlt9s1YsQIPfDAAxWyUAAAAKCyeRSWLRaL3nzzTd1yyy36+OOPtW/fPknStddeq8GDB6tfv34VsUYAAACgSngUlh0SEhKUkJBQEQ8FAAAAVBv8BT8AAADAhEdh2TAMvfLKK+rWrZsaNmwoq9Va7F9Jt5YDAAAAqjOPkuzEiRM1b948xcbG6h//+Ifq169fUesCAAAAqpxHYXnx4sUaPHiwPvzww4paDwAAAFBteHQZxpkzZ9S/f/+KWgsAAABQrXgUli+//HJ9//33FbUWAAAAoFrxKCwvXLhQGzdu1OzZs3Xs2LGKWhMAAABQLXgUltu0aaN9+/Zp6tSpCg8PV+3atRUSEuLyr169ehW1VgAAAKBSefQGv8GDB8tisVTUWgAAAIBqxaOw/NZbb1XQMgAAAIDqh7/gBwAAAJjwOCwfPHhQd9xxh9q0aaP69etr3bp1kqSsrCzde++9SktL83iRAAAAQFXw6DKMXbt2qU+fPrLb7erevbt++eUXFRQUSJIaNmyo7777TqdOndKiRYsqZLEAAABAZfLozPLEiRMVGhqqn3/+Wf/6179kGIbL9oEDB+rbb7/1aIEXsmDBArVs2VLBwcHq3r27Nm/eXOL8pUuXKiYmRsHBwerQoYNWrFjhst0wDE2bNk1NmjRRzZo11b9/f+3du9ebJQAAAKCa8igsr1u3TnfeeacaNWrk9q4YzZs31+HDhz05RIk++OADjR8/XtOnT9fWrVvVqVMnJSYm6siRI27nb9iwQcOHD9eYMWOUlpamQYMGadCgQdqxY4dzzlNPPaXnn39eL7/8sjZt2qTatWsrMTFRZ8+e9VodAAAAqJ48Cst2u121atUy3X706FEFBQV5cogSzZs3T7fddptGjx6tSy65RC+//LJq1aqlN954w+385557TgMGDNCECRPUtm1bzZo1S507d9aLL74o6dxZ5fnz52vKlCm69tpr1bFjR7399ttKT0/XsmXLvFYHAAAAqiePrlnu3Lmzli9frrvuuqvYtoKCAi1ZskQ9evTw5BCm8vLytGXLFj366KPOsYCAAPXv318pKSlu90lJSdH48eNdxhITE51BeP/+/crIyFD//v2d2+vVq6fu3bsrJSVFN954o9vHzc3NVW5urvPjnJwcSeeeA8c13AEBAQoICJDdbpfdbndZc0BAgAoLC10uYzEbt1qtslgszseVpMLCQknStm3bip3hd3x8/iUyAQEBMgzDZdxischisZRq3LF/aeeXZrzo83L+2h3PnTdrKjpusVicz6u3anJwzHHXv4qs6fxxq9XqHKvomtyNO3rozZqKjhddq7dqOl9aWpoCAgK8VlNZ+udpTe76VN7PmfKOOz5nvFnT+V/vjh56u38Wi0VWq9Xltbyia6qq/jn6VLR/3qqp6HjRHjq+V3r7+9P527z9/clqtRbLBd78/uRYtzdrOr9/hYWFslqtHmcjx7jjMd2Nnz/fjEdh+dFHH9Xf/vY33Xnnnc4gmZmZqa+//lqzZ8/W7t27nWdtK1pWVpYKCwvVuHFjl/HGjRvrp59+crtPRkaG2/kZGRnO7Y4xsznuzJkzRzNnziw2npaWptq1a0uSGjVqpOjoaO3fv19Hjx51zmnWrJmaNWumn3/+WdnZ2c7x1q1bKzw8XDt27NCZM2ec4zExMQoNDVVaWpqz+Y5PmCuuuELjxo1zWcPTTz+tkJAQ3X777c6xvLw8Pf3002rdurWGDx/uHM/KytIrr7yi2NhYDRw40Dm+b98+vf/++7r00kvVp08fSVJYWJhWr16t5cuXa+DAgYqNjXXO//bbb7Vu3ToNHz5crVu3do4vX75c27Zt0+23366GDRs6x99//33t27dPEyZMkM1mc46/8sorysnJ0YQJExQWFub8k+reqkk6F1iXL1+u++67T3Xq1PFqTQ4BAQGKi4vT9ddfr5EjR3qtpvP7dPToUb366qteqUkq3qewsDD98ccfXq2paJ+6du3q/JzxVk2OPr344ot6//339cUXXzi/AXmjpqJ9OnjwoN555x2v1eSuTzabTdOnT/daTef3yfF1782aHH3q1q2bJk2a5Oyht2oq2qeoqCh169bNazWd36fCwkLNnTvXqzUV7ZOjf96sqWif+vbtq7i4OH3xxRfaunVrpXx/mjt3rvN1xhs1nd+n//znP6pTp47Xv+c6hIWF6ZFHHvH699yBAweqc+fOiouLU1pamqKiojzORpLUsWNH2Ww2paamqqguXbooLy+v1Hdssxhmp0hK6Z133tF9992n7Oxs59kcwzAUEhKil156yeVJrEjp6elq2rSpNmzYoPj4eOf4xIkTtXbtWm3atKnYPjabTYsXL3ZZ08KFCzVz5kxlZmZqw4YN6tWrl9LT09WkSRPnnKFDh8piseiDDz5wuxZ3Z5ajoqJ07NgxhYSESPLumeWCggKtXLlSkZGRxc5MeuunXM4se16Tg91u1x9//OG2f5xZ9p0zy4cPH1aTJk04s1yB45V9Ztnx2s+ZZc/Gq/LM8h9//KEmTZpwZtmDmorOrewzy3/88YcSExNls9kq5czy8ePHFRYWpuzsbGdec8ejM8uSNGLECF1//fX66quv9Msvv8hutys6OlqJiYmqW7eupw9vqmHDhrJarcrMzHQZz8zMVEREhNt9IiIiSpzv+G9mZqZLWM7MzHT5Ke58QUFBbq/NDgwMVGCg61PsaPT5HI0r7XjRx3V8wsTGxqpGjRqm60T1lJ+frz/++IP++bD8/HwdPnxYf/3rX+mhj8rPz1d6ejo99GGO11J66Jsc/XNcgiF5lo08GT9fhfwFv9q1a+u6667ThAkT9PDDD+uGG27walCWzp0ljouL0+rVq51jdrtdq1evdjnTXFR8fLzLfElatWqVc36rVq0UERHhMicnJ0ebNm0yfUwAAAD4L4/OLB88eLBU85o3b+7JYUyNHz9eI0eOVJcuXdStWzfNnz9fp06d0ujRoyVJt9xyi5o2bao5c+ZIku677z717dtXzz77rAYOHKglS5YoNTVVr776qqRzvw64//779fjjj+viiy9Wq1atNHXqVEVGRmrQoEFeqQEAAADVl0dhuWXLlsWusXTn/GtFKsqwYcN09OhRTZs2TRkZGYqNjVVSUpLzDXoHDx50ueShZ8+eeu+99zRlyhRNmjRJF198sZYtW6b27ds750ycOFGnTp3S2LFjdeLECfXu3VtJSUkKDg72Sg0AAACovjwKy2+88UaxsFxYWKgDBw7o7bffVnh4uO6++26PFngh48aNK3YHCIfk5ORiY0OGDNGQIUNMH89iseixxx7TY489VlFLBAAAgI/yKCyPGjXKdNvDDz+s7t27u9zyAwAAAPAlFfIGP3dq166t0aNH65///Ke3DgEAAAB4ldfCsnTu7hQl/TEPAAAAoDrz+D7L7uTk5GjdunV6+umn9de//tUbhwAAAAC8zqOw7PgrR+4YhqHmzZtr4cKFnhwCAAAAqDIeheVp06YVC8sWi0X169dXdHS0rrzyylL/dRQAAACguvEoyc6YMaOClgEAAABUPx69wa+goEA5OTmm23NyclRQUODJIQAAAIAq41FYvvfee9WzZ0/T7b169dKDDz7oySEAAACAKuNRWE5KStINN9xguv2GG27QihUrPDkEAAAAUGU8Csvp6elq2rSp6fbIyEgdPnzYk0MAAAAAVcajsBwWFqY9e/aYbt+9e7dCQkI8OQQAAABQZTwKywMGDNArr7yitLS0Ytu2bt2qV199VVdddZUnhwAAAACqjEe3jps1a5aSkpLUrVs3XXPNNWrXrp0kaceOHfr8888VHh6uWbNmVchCAQAAgMrmUViOjIxUamqqHnnkEf373//Wp59+KkkKCQnRzTffrNmzZysyMrJCFgoAAABUNo//vF6TJk20ePFiGYaho0ePSpIaNWpk+mewAQAAAF9RYX+L2mKxKCgoSHXq1CEoAwAAwC949AY/SUpNTdWAAQNUq1YthYWFae3atZKkrKwsXXvttUpOTvb0EAAAAECV8Cgsb9iwQb1799bevXv1j3/8Q3a73bmtYcOGys7O1iuvvOLxIgEAAICq4FFYnjRpktq2batdu3Zp9uzZxbYnJCRo06ZNnhwCAAAAqDIeheXvv/9eo0ePVlBQkNvrlJs2baqMjAxPDgEAAABUGY/Cco0aNVwuvTjf4cOHVadOHU8OAQAAAFQZj8Jyjx499NFHH7nddurUKb355pvq27evJ4cAAAAAqoxHYXnmzJlKTU3VwIED9eWXX0qSfvjhB73++uuKi4vT0aNHNXXq1ApZKAAAAFDZPLrPcvfu3bVixQrdeeeduuWWWyRJDz74oCQpOjpaK1asUMeOHT1fJQAAAFAFyh2WDcPQyZMn1bNnT+3Zs0fbtm3T3r17ZbfbFR0drbi4OP44CQAAAHxaucNyXl6eGjRooNmzZ2vixImKjY1VbGxsBS4NAAAAqFrlvmY5KChIERERCgoKqsj1AAAAANWGR2/wGzVqlN5++23l5eVV1HoAAACAasOjN/h16NBBy5YtU7t27TRq1Ci1bNlSNWvWLDbv+uuv9+QwAAAAQJXwKCwPHz7c+f9mt4izWCwqLCz05DAAAABAlShzWJ40aZJuvPFGdezYUWvWrPHGmgAAAIBqocxhee7cuWrfvr06duyovn376tixYwoPD9eqVat02WWXeWONAAAAQJXw6A1+DoZhVMTDAAAAANVKhYRlAAAAwB8RlgEAAAAT5bobxoEDB7R161ZJUnZ2tiRp7969Cg0NdTu/c+fO5VsdAAAAUIXKFZanTp1a7FZxd911V7F5hmFw6zgAAAD4rDKH5TfffNMb6wAAAACqnTKH5ZEjR3pjHQAAAEC1wxv8AAAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAw4bNh+c8//9TNN9+skJAQhYaGasyYMfrPf/5T4j5nz57V3XffrbCwMNWpU0eDBw9WZmamc/sPP/yg4cOHKyoqSjVr1lTbtm313HPPebsUAAAAVFM+G5Zvvvlm7dy5U6tWrdIXX3yhdevWaezYsSXu88ADD+jzzz/X0qVLtXbtWqWnp+v66693bt+yZYvCw8P1r3/9Szt37tTkyZP16KOP6sUXX/R2OQAAAKiGAqt6AeWxe/duJSUl6fvvv1eXLl0kSS+88IKuvvpqPfPMM4qMjCy2T3Z2thYtWqT33ntPl112mSTpzTffVNu2bbVx40b16NFDt956q8s+rVu3VkpKij755BONGzfO+4UBAACgWvHJsJySkqLQ0FBnUJak/v37KyAgQJs2bdJ1111XbJ8tW7YoPz9f/fv3d47FxMSoefPmSklJUY8ePdweKzs7Ww0aNChxPbm5ucrNzXV+nJOTI0kqKChQQUGBJCkgIEABAQGy2+2y2+3OuY7xwsJCGYZxwXGr1SqLxeJ8XEkqLCyUJBmG4TLumF90jkNgYKAMw3AZt1gsslqtxdZoNu7Nmkpau7/VVFL/fLWmksb9sSaHwsJCWSwWv6jJH/t0oZoc+1gsFr+pyR/7ZFaTY35hYaGsVqtf1OSPfTKryV3/vF3T+fPN+GRYzsjIUHh4uMtYYGCgGjRooIyMDNN9bDabQkNDXcYbN25sus+GDRv0wQcfaPny5SWuZ86cOZo5c2ax8bS0NNWuXVuS1KhRI0VHR2v//v06evSoc06zZs3UrFkz/fzzz8rOznaOt27dWuHh4dqxY4fOnDnjHI+JiVFoaKjS0tJcQpYk2e12bd261WUNXbp0UV5enn788UfnmNVqVdeuXZWdna2ffvrJOV6zZk116tRJWVlZ2rdvn3O8Xr16atu2rdLT0/X77787x71ZkyR17NhRNptNqampfl2To39nz57Vrl27/KImyf/6VFJNsbGxks59zTvCsq/X5I99KqmmY8eOSfpvD/2hJn/sU0k1HTp0SNK5HoaHh/tFTf7YJ7Oajhw5Iulc/6KioiqlprS0NJWGxSgazavYI488oieffLLEObt379Ynn3yixYsXa8+ePS7bwsPDNXPmTN15553F9nvvvfc0evRolzPAktStWzclJCQUO+6OHTuUkJCg++67T1OmTClxTe7OLEdFRenYsWMKCQmR5N2fCAsKCrRy5UpdddVVCghwvQydn3Krf00l9c9Xaypp3B9rMgxDK1asUGJiogIDA/2iJn/sU0k15ebmKikpydlDf6jJH/tUUk15eXlauXKlEhMTZbPZ/KImf+yTWU3u+uftmo4fP66wsDBlZ2c785o71erM8oMPPqhRo0aVOKd169aKiIhw/gTiUFBQoD///FMRERFu94uIiFBeXp5OnDjhcnY5MzOz2D67du3S5ZdfrrFjx14wKEtSUFCQgoKCio0HBgY6v3E6OBp9PkfjSjte9HEdnzAWi6XY8dzNdzCbb7bGso57UlN5x32xpgv1zxdrutC4v9WUn5/vfPzSfs1X95ok/+uTVHJNjmMX3e7rNfljn8zW7liP41f4Jc33lZr8sU9l6V9V1OR2XqlmVZJGjRqpUaNGF5wXHx+vEydOaMuWLYqLi5MkffPNN7Lb7erevbvbfeLi4lSjRg2tXr1agwcPliTt2bNHBw8eVHx8vHPezp07ddlll2nkyJF64oknKqAqAAAA+CqfvHVc27ZtNWDAAN12223avHmz1q9fr3HjxunGG2903gnj8OHDiomJ0ebNmyWdu15mzJgxGj9+vNasWaMtW7Zo9OjRio+Pd765z3HpxZVXXqnx48crIyNDGRkZLtcGAQAA4H9HtTqzXBbvvvuuxo0bp8svv1wBAQEaPHiwnn/+eef2/Px87dmzR6dPn3aO/fOf/3TOzc3NVWJiohYuXOjc/tFHH+no0aP617/+pX/961/O8RYtWujAgQOVUhcAAACqD58Nyw0aNNB7771nur1ly5YuF39LUnBwsBYsWKAFCxa43WfGjBmaMWNGRS4TAAAAPswnL8MAAAAAKgNhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABM+GxY/vPPP3XzzTcrJCREoaGhGjNmjP7zn/+UuM/Zs2d19913KywsTHXq1NHgwYOVmZnpdu6xY8fUrFkzWSwWnThxwgsVAAAAoLrz2bB88803a+fOnVq1apW++OILrVu3TmPHji1xnwceeECff/65li5dqrVr1yo9PV3XX3+927ljxoxRx44dvbF0AAAA+AifDMu7d+9WUlKSXn/9dXXv3l29e/fWCy+8oCVLlig9Pd3tPtnZ2Vq0aJHmzZunyy67THFxcXrzzTe1YcMGbdy40WXuSy+9pBMnTuihhx6qjHIAAABQTQVW9QLKIyUlRaGhoerSpYtzrH///goICNCmTZt03XXXFdtny5Ytys/PV//+/Z1jMTExat68uVJSUtSjRw9J0q5du/TYY49p06ZN2rdvX6nWk5ubq9zcXOfHOTk5kqSCggIVFBRIkgICAhQQECC73S673e6c6xgvLCyUYRgXHLdarbJYLM7HlaTCwkJJkmEYLuOO+UXnOAQGBsowDJdxi8Uiq9VabI1m496sqaS1+1tNJfXPV2sqadwfa3IoLCyUxWLxi5r8sU8Xqsmxj8Vi8Zua/LFPZjU55hcWFspqtfpFTf7YJ7Oa3PXP2zWdP9+MT4bljIwMhYeHu4wFBgaqQYMGysjIMN3HZrMpNDTUZbxx48bOfXJzczV8+HA9/fTTat68eanD8pw5czRz5sxi42lpaapdu7YkqVGjRoqOjtb+/ft19OhR55xmzZqpWbNm+vnnn5Wdne0cb926tcLDw7Vjxw6dOXPGOR4TE6PQ0FClpaW5hCxJstvt2rp1q8saunTpory8PP3444/OMavVqq5duyo7O1s//fSTc7xmzZrq1KmTsrKyXGqvV6+e2rZtq/T0dP3+++/OcW/WJEkdO3aUzWZTamqqX9fk6N/Zs2e1a9cuv6hJ8r8+lVRTbGyspHNf846w7Os1+WOfSqrp2LFjkv7bQ3+oyR/7VFJNhw4dknSuh+Hh4X5Rkz/2yaymI0eOSDrXv6ioqEqpKS0tTaVhMYpG8yr2yCOP6Mknnyxxzu7du/XJJ59o8eLF2rNnj8u28PBwzZw5U3feeWex/d577z2NHj3a5QywJHXr1k0JCQl68sknNX78eKWnp2vJkiWSpOTkZCUkJOj48ePFQnZR7s4sR0VF6dixYwoJCZHk3Z8ICwoKtHLlSl111VUKCHC9soafcqt/TSX1z1drKmncH2syDEMrVqxQYmKiAgMD/aImf+xTSTXl5uYqKSnJ2UN/qMkf+1RSTXl5eVq5cqUSExNls9n8oiZ/7JNZTe765+2ajh8/rrCwMGVnZzvzmjvV6szygw8+qFGjRpU4p3Xr1oqIiHD+BOJQUFCgP//8UxEREW73i4iIUF5enk6cOOESfDMzM537fPPNN9q+fbs++ugjSf8949ewYUNNnjzZ7dljSQoKClJQUFCx8cDAQOc3TgdHo8/naFxpx4s+rmOdFoul2PHczXcwm2+2xrKOe1JTecd9saYL9c8Xa7rQuL/VlJ+f73z80n7NV/eaJP/rk1RyTY5jF93u6zX5Y5/M1u5Yj+NX+CXN95Wa/LFPZelfVdTkdl6pZlWSRo0aqVGjRhecFx8frxMnTmjLli2Ki4uTdC7o2u12de/e3e0+cXFxqlGjhlavXq3BgwdLkvbs2aODBw8qPj5ekvTxxx+7nNb//vvvdeutt+rbb79VdHS0p+UBAADAx1SrsFxabdu21YABA3Tbbbfp5ZdfVn5+vsaNG6cbb7xRkZGRkqTDhw/r8ssv19tvv61u3bqpXr16GjNmjMaPH68GDRooJCRE99xzj+Lj451v7js/EGdlZTmPV9JlGAAAAPBPPhmWJendd9/VuHHjdPnllysgIECDBw/W888/79yen5+vPXv26PTp086xf/7zn865ubm5SkxM1MKFC6ti+QAAAPABPhuWGzRooPfee890e8uWLV0u/pak4OBgLViwQAsWLCjVMfr161fsMQAAAPC/wyf/KAkAAABQGQjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgKregH+yDAMSVJOTk6lHC8/P1+nT59WTk6OatSoUSnHRMWhf76PHvo+euj76KFvq4r+OXKaI7eZISx7wcmTJyVJUVFRVbwSAAAAlOTkyZOqV6+e6XaLcaE4jTKz2+1KT09X3bp1ZbFYvH68nJwcRUVF6dChQwoJCfH68VCx6J/vo4e+jx76Pnro26qif4Zh6OTJk4qMjFRAgPmVyZxZ9oKAgAA1a9as0o8bEhLCC4QPo3++jx76Pnro++ihb6vs/pV0RtmBN/gBAAAAJgjLAAAAgAnCsh8ICgrS9OnTFRQUVNVLQTnQP99HD30fPfR99NC3Vef+8QY/AAAAwARnlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQln3EggUL1LJlSwUHB6t79+7avHlzifOXLl2qmJgYBQcHq0OHDlqxYkUlrRTulKV/r732mvr06aP69eurfv366t+//wX7De8r69egw5IlS2SxWDRo0CDvLhAXVNYenjhxQnfffbeaNGmioKAg/eUvf+G1tAqVtX/z589XmzZtVLNmTUVFRemBBx7Q2bNnK2m1ON+6dev097//XZGRkbJYLFq2bNkF90lOTlbnzp0VFBSkiy66SG+99ZbX1+mWgWpvyZIlhs1mM9544w1j586dxm233WaEhoYamZmZbuevX7/esFqtxlNPPWXs2rXLmDJlilGjRg1j+/btlbxyGEbZ+3fTTTcZCxYsMNLS0ozdu3cbo0aNMurVq2f8/vvvlbxyOJS1hw779+83mjZtavTp08e49tprK2excKusPczNzTW6dOliXH311cZ3331n7N+/30hOTja2bdtWySuHYZS9f++++64RFBRkvPvuu8b+/fuNlStXGk2aNDEeeOCBSl45HFasWGFMnjzZ+OSTTwxJxqefflri/H379hm1atUyxo8fb+zatct44YUXDKvVaiQlJVXOgosgLPuAbt26GXfffbfz48LCQiMyMtKYM2eO2/lDhw41Bg4c6DLWvXt34/bbb/fqOuFeWft3voKCAqNu3brG4sWLvbVEXEB5elhQUGD07NnTeP31142RI0cSlqtYWXv40ksvGa1btzby8vIqa4koQVn7d/fddxuXXXaZy9j48eONXr16eXWdKJ3ShOWJEyca7dq1cxkbNmyYkZiY6MWVucdlGNVcXl6etmzZov79+zvHAgIC1L9/f6WkpLjdJyUlxWW+JCUmJprOh/eUp3/nO336tPLz89WgQQNvLRMlKG8PH3vsMYWHh2vMmDGVsUyUoDw9/OyzzxQfH6+7775bjRs3Vvv27TV79mwVFhZW1rLx/5Wnfz179tSWLVucl2rs27dPK1as0NVXX10pa4bnqlOWCaz0I6JMsrKyVFhYqMaNG7uMN27cWD/99JPbfTIyMtzOz8jI8No64V55+ne+hx9+WJGRkcVeNFA5ytPD7777TosWLdK2bdsqYYW4kPL0cN++ffrmm2908803a8WKFfrll1901113KT8/X9OnT6+MZeP/K0//brrpJmVlZal3794yDEMFBQW64447NGnSpMpYMiqAWZbJycnRmTNnVLNmzUpbC2eWgWps7ty5WrJkiT799FMFBwdX9XJQCidPntSIESP02muvqWHDhlW9HJST3W5XeHi4Xn31VcXFxWnYsGGaPHmyXn755apeGkohOTlZs2fP1sKFC7V161Z98sknWr58uWbNmlXVS4MP4sxyNdewYUNZrVZlZma6jGdmZioiIsLtPhEREWWaD+8pT/8cnnnmGc2dO1dff/21Onbs6M1logRl7eGvv/6qAwcO6O9//7tzzG63S5ICAwO1Z88eRUdHe3fRcFGer8MmTZqoRo0aslqtzrG2bdsqIyNDeXl5stlsXl0z/qs8/Zs6dapGjBih//u//5MkdejQQadOndLYsWM1efJkBQRwrrC6M8syISEhlXpWWeLMcrVns9kUFxen1atXO8fsdrtWr16t+Ph4t/vEx8e7zJekVatWmc6H95Snf5L01FNPadasWUpKSlKXLl0qY6kwUdYexsTEaPv27dq2bZvz3zXXXKOEhARt27ZNUVFRlbl8qHxfh7169dIvv/zi/EFHkn7++Wc1adKEoFzJytO/06dPFwvEjh98DMPw3mJRYapVlqn0txSizJYsWWIEBQUZb731lrFr1y5j7NixRmhoqJGRkWEYhmGMGDHCeOSRR5zz169fbwQGBhrPPPOMsXv3bmP69OncOq4KlbV/c+fONWw2m/HRRx8Zf/zxh/PfyZMnq6qE/3ll7eH5uBtG1StrDw8ePGjUrVvXGDdunLFnzx7jiy++MMLDw43HH3+8qkr4n1bW/k2fPt2oW7eu8f777xv79u0zvvrqKyM6OtoYOnRoVZXwP+/kyZNGWlqakZaWZkgy5s2bZ6SlpRm//fabYRiG8cgjjxgjRoxwznfcOm7ChAnG7t27jQULFnDrOJTshRdeMJo3b27YbDajW7duxsaNG53b+vbta4wcOdJl/ocffmj85S9/MWw2m9GuXTtj+fLllbxiFFWW/rVo0cKQVOzf9OnTK3/hcCrr12BRhOXqoaw93LBhg9G9e3cjKCjIaN26tfHEE08YBQUFlbxqOJSlf/n5+caMGTOM6OhoIzg42IiKijLuuusu4/jx45W/cBiGYRhr1qxx+73N0beRI0caffv2LbZPbGysYbPZjNatWxtvvvlmpa/bMAzDYhj8PgIAAABwh2uWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQCSpOTkZFksFiUnJ19wbr9+/dSvX79SPW6/fv3Uvn17zxYHAFWEsAwAfuLDDz+UxWLRp59+Wmxbp06dZLFYtGbNmmLbmjdvrp49e3p07PT0dM2YMUPbtm3z6HEAoLohLAOAn+jdu7ck6bvvvnMZz8nJ0Y4dOxQYGKj169e7bDt06JAOHTqk3r1769JLL9WZM2d06aWXlvnY6enpmjlzJmEZgN8JrOoFAAAqRmRkpFq1alUsLKekpMgwDA0ZMqTYNsfHvXv3VkBAgIKDgyttvQDgCzizDAB+pHfv3kpLS9OZM2ecY+vXr1e7du101VVXaePGjbLb7S7bLBaLevXqZXrN8quvvqro6GjVrFlT3bp107fffuuyPTk5WV27dpUkjR49WhaLRRaLRW+99ZbLvF27dikhIUG1atVS06ZN9dRTT1Vs8QDgBYRlAPAjvXv3Vn5+vjZt2uQcW79+vXr27KmePXsqOztbO3bscNkWExOjsLAwt4+3aNEi3X777YqIiNBTTz2lXr166ZprrtGhQ4ecc9q2bavHHntMkjR27Fi98847euedd1wu5zh+/LgGDBigTp066dlnn1VMTIwefvhhffnllxX9FABAheIyDADwI0WvW+7Xr58KCgq0adMmjRw5UtHR0WrcuLG+++47dezYUSdPntT27dt16623un2s/Px8TZo0SbGxsVqzZo1sNpsk6ZJLLtHYsWMVFRUlSWrcuLGuuuoqTZs2TfHx8frHP/5R7LHS09P19ttva8SIEZKkMWPGqEWLFlq0aJGuuuoqbzwVAFAhOLMMAH6kbdu2CgsLc16L/MMPP+jUqVPOu1307NnT+Sa/lJQUFRYWOgP2+VJTU3XkyBHdcccdzqAsSaNGjVK9evXKtK46deq4hGibzaZu3bpp3759ZXocAKhshGUA8CMWi0U9e/Z0Xpu8fv16hYeH66KLLpLkGpYd/zULy7/99psk6eKLL3YZr1Gjhlq3bl2mdTVr1kwWi8VlrH79+jp+/HiZHgcAKhthGQD8TO/evZWdna3t27c7r1d26Nmzp3777TcdPnxY3333nSIjI8scfMvDarW6HTcMw+vHBgBPEJYBwM8UvW55/fr16tWrl3NbXFycgoKClJycrE2bNrlsO1+LFi0kSXv37nUZz8/P1/79+13Gzj9rDAD+grAMAH6mS5cuCg4O1rvvvqvDhw+7nFkOCgpS586dtWDBAp06dcr0EgzH4zRq1Egvv/yy8vLynONvvfWWTpw44TK3du3aklRsHAB8HXfDAAA/Y7PZ1LVrV3377bcKCgpSXFycy/aePXvq2WeflWR+vbJ07trkxx9/XLfffrsuu+wyDRs2TPv379ebb75Z7NKN6OhohYaG6uWXX1bdunVVu3Ztde/eXa1atar4AgGgEnFmGQD8kCMEOy67KMpx6UXdunXVqVOnEh9n7NixWrhwodLT0zVhwgR9++23+uyzz5y3jXOoUaOGFi9eLKvVqjvuuEPDhw/X2rVrK7AiAKgaFoN3VwAAAABucWYZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADAxP8DYCN3jQPLY8oAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHcCAYAAAAqb0k3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZrklEQVR4nO3daXgUVfr38V91hw4hJgQIgQTCFtlklV3ZEY2IiIriLjLjCqiIwiDKNijojMOf0QdwY0BnFFRQRxFBZRFlUQIJiLITQEGWBEhCgIR01/OC6TZNukOSzlbh+7mucJG7Tte5T52q7jvV1dWGaZqmAAAAAIuxlXUCAAAAQFFQyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCyOO1116TYRiaM2dOWacCAIBfFLKoMFatWiXDMDRp0qQy6b9BgwZq0KCBV2zSpEkyDEOrVq0qk5wuZBiGevXqlW+bH3/8Uc8884wmTJigP//5z6WTmA8FyfVSYrXtsW/fPhmGoQceeKCsU7GMktxmDzzwgAzD0L59+4p93UBZopBFueJ+Is/9U6VKFcXExOiaa67RhAkTtGfPnhLpu1evXjIMo0TWbRUnTpzQ4MGDddddd2ny5MllnQ5KmfsPr9w/oaGhat26tSZNmqTMzMyyThEW4esP+9J27tw5LVq0SEOGDFHz5s112WWXKSwsTJ07d9bs2bPldDrLND8Uj6CyTgDwJS4uTvfee68kKSsrS0ePHtWPP/6oKVOmaOrUqRozZoxefPFFr8KzU6dO2rZtmyIjI8sk5+XLl5dJv4Wxbds2ValSxe/ypKQkDRs2TE899VQpZoXyZtCgQWrZsqUk6ffff9dnn32myZMn6/PPP9e6devkcDguuo46depo27Ztqlq1akmnC/i0Z88e3Xbbbbrssst0zTXX6KabblJaWpo+//xzDRs2TEuWLNFnn312yZ/AsDoKWZRLl19+uc9LBL7//nvdd999mjZtmux2u6ZMmeJZVqVKFTVr1qwUs/QWFxdXZn0X1MW2T+/evdW7d+9Sygbl1W233aY777zT8/srr7yiTp06adOmTXr//fcL9NZ3pUqVyvR4BMLCwjRz5kwNGTJEoaGhnvg//vEP9erVS4sXL9bChQt1++23l2GWCBSXFsBSunXrpqVLlyo4OFh/+9vf9Ouvv3qW+btGdteuXRo6dKgaNmyo4OBgVa9eXW3atNHIkSNlmqak89cffvvtt57/u3/cL9i5r13btm2bbrnlFtWoUcPrmrOLvZU2Z84ctWrVSpUrV1adOnX01FNPKSMjw6tNftf55nf93NGjR/X000+radOmCgkJUfXq1dW5c2e98sorXu38XWeZkpKikSNHerZRVFSUBg8erK1bt+Zp677WLjk5Wa+++qqaNWum4OBg1a9fX5MnT5bL5fK7DXx5++231bJlS1WuXFmxsbEaM2aMzp4967d9RkaGJk6cqBYtWigkJEQRERGKj4/X999/X+A+c1+7PG/ePLVr105VqlTx2jaF7WfLli264YYbFBYWpqpVq+qGG27Q1q1bfV6bmN+10/PmzZNhGJo3b95Fx7Fz506NGTNG7dq1U40aNVS5cmU1adJEY8eO1alTp/K0d18+c/bsWT3//POKi4tTpUqVLnpdeVhYmGe/27BhQ548P//8c3Xt2lVhYWGeYyC//TUjI0OTJ09W69atVaVKFVWtWlVXXnmlxo8fr3Pnznm1TU5O1oMPPqh69eopODhY0dHReuCBB7R///6Lbp8L+yzofLq307lz5zRp0iQ1aNBAwcHBatKkiWbNmlWofiVp9erVGjBggCIjIxUcHKzGjRvr+eef1+nTpwu9rguZpqm5c+eqe/fuioiIUJUqVdS4cWM98sgjOnDgQL6PzW9f8/dctGnTJt12222e+ahZs6Y6duyoF198UdIf875//37t37/f6/n0wnUVdLvkzmXt2rW67rrrFBERcdEzqXXq1NGwYcO8ilhJCg0N1ahRoyTJ87wP6+KMLCynadOmGjx4sP7973/r008/1eOPP+637aFDh9SpUydlZmaqf//+uuOOO5SZmaldu3Zp1qxZeuWVVxQUFKSJEydq3rx52r9/vyZOnOh5fNu2bb3Wt3v3bnXp0kWtWrXSAw88oNTU1AK9zTp9+nQtX75cd9xxh/r3769vvvlGM2bM0Pr167V69WpVqlSpyNtjx44d6t27t37//Xd169ZNN998szIzM/Xzzz9r6tSpeuaZZ/J9/LFjx3TVVVdpz5496tWrl+68804lJydr4cKF+uKLL7Rs2TJ169Ytz+NGjx6tb7/9VjfeeKPi4+P16aefatKkScrOzva8qF3MlClTNGHCBNWqVUsPPfSQKlWqpA8++EDbtm3z2f748ePq0aOHfv75Z3Xt2lWPPvqo0tPT9d///le9e/fWRx99pJtvvrlAfUvS3//+d61cuVIDBw7UddddJ7vdXqR+Nm/erO7duyszM1O33nqrGjdurISEBHXr1k1t2rQpcD6F9fHHH2vOnDnq3bu3evXqJZfLpfXr1+vll1/Wt99+63ffGjRokDZv3qzrr79eERERatiwYYH7vLB4+Oijj/TVV1/pxhtv1LBhw5Senp7v448ePaqePXtq+/btatu2rR577DG5XC5t375dL7/8sp5++mlFRERIkn744QfFx8crMzNTN954oxo3bqx9+/bpvffe05dffql169apUaNGF825qPvNXXfdpR9//FH9+vWT3W7Xhx9+qOHDh6tSpUp66KGHCrS9Zs+ereHDhysiIkIDBgxQVFSUEhIS9OKLL2rlypVauXJlgZ5DfHG5XLrjjju0cOFC1alTR3fddZfCw8O1b98+ffjhh+rXr5/q1atXpHX7kpSUpKuvvlp2u10DBw5U/fr1dfLkSf3yyy9688039dxzzykiIkITJ07UjBkzJEkjR470PD73H4pF2S5r167V1KlT1bt3bz388MMXLdTz4z4ugoIogyzPBMqR5ORkU5IZHx+fb7s5c+aYksz77rvPE1u5cqUpyZw4caIn9uqrr5qSzBkzZuRZR2pqqtfvPXv2NP0dEu68JJkTJkzw2aZ+/fpm/fr1vWITJ040JZkOh8PcvHmzJ+5yucy7777blGS+8sor+Y7hwhyGDBniFe/QoYMpyXzzzTfzPObXX3/1+l2S2bNnT6/Y0KFDTUnms88+6xX/4osvTEnm5ZdfbjqdTk98yJAhpiSzYcOG5qFDhzzxY8eOmREREWZYWJiZlZWVJ5cL7dq1ywwKCjLr1KljHjlyxBNPS0szmzZt6jNX9zZ76623vOJHjhwxY2NjzZo1a5pnzpy5aN/ueQkNDTW3bNmSZ3lh++nWrZspyXzvvfe82o8fP96z3yQnJ+fpf+XKlXn6njt3rinJnDt3rlfc1/b47bfffG7ryZMnm5LM//znP15x9z7etm3bPPt/7rzmz5/vFc/IyDCvuOIKU5L5zjvveOVps9nMr7/+Os+6/O2vgwYNMiWZ48aNy/OYw4cPm+fOnTNN0zSzs7PNBg0amGFhYeamTZu82n333Xem3W43b7zxxjzr8KWw8+neTp07dzbT0tI88e3bt5tBQUFm06ZNC9Tvzz//bAYFBZlt2rQxU1JSvJZNmzYtz/Hvb5v589prr5mSzGuuucY8ffq017LTp097zbH7uM29H/rb10zT93PRqFGjTEnmp59+mqf9hePz9XzoVtjt4s5Fkvmvf/3L5zoLq1+/fqYk84svviiW9aHscGkBLCkmJkbS+bfECyIkJCRPrHr16oXut3bt2nruuecK/bj7779frVu39vxuGIamTp0qu91eoLeQ/fnxxx+VkJCgHj16+DxDVLdu3Xwfn52drfnz56tGjRp6/vnnvZbdcMMNuvbaa7V7926tWbMmz2PHjx+v6Ohoz++RkZEaOHCgMjIytGPHjovm/v777ysnJ0ejRo1SVFSUJx4eHp4nF+n8XH/wwQfq06ePHnzwQa9lUVFRGj16tI4dO6Zvvvnmon27Pfzww2rVqlVA/ezfv1/ff/+92rRpo7vvvtur/V/+8hdVq1atwPkUVp06dXyezRsxYoQk+d0WkydPznf/X7hwoSZNmqRJkybpscceU9OmTfXLL7+oQ4cOXtfOStLAgQPVt2/fAuV7+PBhffzxx4qLi/N5OUOtWrU8Z8gWL16sffv2afTo0bryyiu92nXr1k0DBw7UkiVLLnoGOJD9Ztq0aQoPD/f83rRpU3Xt2lU7duzIc1mQL2+88YZycnL02muvqUaNGl7LxowZo5o1a2r+/PkXXY8/s2bNkt1u1+zZs/M8x7kvMSoJvp5PLxxffoq6Xdq1a6ehQ4cWPuELvPnmm/ryyy/Vp08f3XDDDQGvD2WLc+qo0AYMGKBnn31Ww4cP1/Lly3X99derZ8+eBXo70pc2bdoU6W3A7t2754nVr19fsbGx+vnnn5WdnV2k9f7444+SpOuuu67Qj5Wk7du36+zZs+rdu7fPuxn07t1bX3/9tZKSkvKMoX379nnauwvnkydPXrTvzZs3S/K9bXzFNmzYIKfTqaysLJ9F0K5duzxjuvHGGy/av3T+TheB9uMeR9euXfO0DQ0NVdu2bbVy5coC5VNY5v+uj5w3b562bt2qtLQ0r2uUDx065PNxvsad26JFi7Ro0SJJ5z9EGRcXp4cffljPPPNMnv30YuvKLSEhQaZpqnfv3he9nGb9+vWSzl8642seDh8+LJfLpZ07d6pDhw5+1xPIfnOxfTwsLKxAY1i2bJnPu5pUqlRJ27dvz3cd/pw6dUrbtm3T5ZdfrsaNGxdpHYU1ePBgzZgxQ7fccovuuOMOXXvtterRo4fq1KlTqPUUdbt07NixaInnsnjxYo0YMUL169fXf/7zn4DXh7JHIQtLcr9A16xZM992DRo00Pr16zVp0iQtWbJEH374oaTzn97/61//WuhPq9aqVatI+fp7XK1atbRv3z5lZGQU6oyGW1pamiQV+oXEzX02y19+7jOuvs565T5T5eY+m1aQ+zO6c899NtbNVz7Hjx+XJK1Zs8bnGWK3wtzrtDj6cW8bX+Pw10dxeeKJJ/T//t//U2xsrG666SZFR0crODhY0vmzrllZWUXKaf78+XnOvPpTmPEVZn91z8N7772Xb7uLzXcg+02g+7i774JeM14YgR77RdG5c2etWrVKU6dO1fvvv6+5c+dKOl9gvvzyywW+40lRt0ugx9KSJUt02223qVatWlqxYoXXO0qwLgpZWJL7094F+Qu9ZcuWWrhwoc6dO6eNGzfqyy+/1Kuvvqo77rhDMTExPs+k+VPU+w0eOXLEb9wwDM+ZHZvt/NU+OTk5edq6X7hyc38o5uDBg0XKy/1C7S+/w4cPe7UrTu77ix49elT169f3WuYrH3cOTz/9dJ67MRSVr/ksbD/u9kePHvW53NdYCjvPvhw9elQzZ85U69attW7dOq8z6ocPH873Cy2K876ZhVlXYfZX93b9/PPPC3yGPb/1FOd+U9i+09PTL3r2trDcx09Rj32paPth9+7d9eWXX+rMmTP64Ycf9Pnnn2vWrFnq37+/tm7dWqB3u4q6XQLZb7/44gsNGjRIkZGRWrlyZZHflUP5wzWysJydO3fqww8/VHBwsG655ZYCP65SpUrq0qWLJk+erFdffVWmaWrx4sWe5e5PrJfEt7189913eWL79+/Xr7/+qhYtWnjernVfT+nrxSkxMTFPzP227ldffVWkvJo1a6bKlStrw4YNPm8F5P6D4cK7NxQH96f5fW0bX7GOHTvKMAytW7eu2HMJpB/3ONauXZtn2enTpz2XHuRW2Hn2Ze/evTJNU3379s1zWYiv7VcedOjQQTabTStXrsxzm60Lde7cWZICnu/S2m98cY/B/VZ6cbrssst0xRVXKDk52XN5RGEFsh+GhISoV69e+sc//qFx48bpzJkz+vrrrz3L7Xa73+fSktwuvriL2OrVq2vlypW6/PLLS6VflA4KWVjKmjVrFB8fr6ysLI0dO/aib6tt3LjR59vi7rNklStX9sTcH4zIfW/a4vLuu+9qy5Ytnt9N09S4cePkdDq97rPZtGlThYWF6bPPPvO8/ebO94UXXsiz3o4dO6pjx45avXq13nrrrTzLL3a2xuFw6K677lJKSoqmTZvmtWzp0qVatmyZLr/88kKdtS6ou+++W3a7XdOnT/c6m5menu5zrLVr19bgwYO1du1a/f3vf/fcAzi3H374IeB7cxa2n/r166tr165KSkrSBx984NXu73//u9c8urnfSXj33Xe9rmldt27dRd9Kd3OfxV67dq3XOn777Tc9++yzBVpHaatVq5YGDRqkPXv2+DxjfPToUc/ZwYEDB6pevXqaPn26Vq9enaftuXPnCnTv4NLab3wZNmyYgoKC9Pjjj/u8VdTJkycL/IeLL8OHD5fT6dSwYcN05swZr2Vnz571ue/l1r59exmGoQULFnjdu3nXrl365z//maf9unXrfN7j2d/zaUpKis/2Jb1dcvvyyy81aNAgVatWTStXriy164lReri0AOXS7t27PR/MyM7O9nxF7U8//SS73a7nn3/e636v/vz73//WG2+8oR49eiguLk7h4eH65ZdftGTJElWvXt3rE7B9+vTRwoULNWjQIPXr10+VK1dWmzZtNGDAgIDHEx8fr6uuukp33nmnatasqeXLlyshIUFdunTxug+uw+HQ448/rqlTp6pdu3aeuwB8/vnn6tmzp/bs2ZNn3e+995569eqlhx9+WP/+97911VVX6ezZs/r555+VmJio1NTUfHNz33P0hRde0Nq1a9W5c2ft27dPH330kapUqaK5c+d63oIsTpdffrkmTJigiRMnqnXr1ho8eLCCgoK0aNEitW7d2uedD2bNmqUdO3ZozJgxnrFGRETo119/VUJCgnbt2qXff/8936/hLYjC9vPaa6+pR48euueee7Ro0SJdfvnl2rRpk9avX68ePXpo9erVXtuwS5cu6tq1q1asWKGrrrpKPXr00P79+/Xf//5XAwYM0CeffHLRHKOjozVo0CAtWrRIHTp00DXXXKMjR45o8eLFuuaaa3zuK+XBrFmztHXrVr344otasmSJ+vTpI9M0tXPnTn311Vc6cuSIIiIiFBwcrIULF6pfv37q2bOn+vTpo1atWnlutv/dd9+pRo0aBfqwVGntNxdq2bKlZs2a5bnzww033KC4uDhlZGRo7969+vbbb/XAAw/o9ddfL9L6H3vsMX377bf68MMP1bhxY910000KDw/XgQMHtGzZMs2ZMyff+yrHxMTorrvu0vvvv6/27dvr+uuv19GjR/XJJ5/o+uuv93zgz+3ll1/WypUr1aNHDzVs2FCVK1fWpk2btHz5cjVq1MjrHbI+ffooISFB/fr1U/fu3eVwONSjRw/16NGjxLeL2/bt23XLLbcoKytLvXr18nknhAYNGhTom+pQjpXZjb8AH3Lfr9X9ExISYkZHR5u9e/c2x48fb+7evdvnY33d93D9+vXmI488YrZs2dKMiIgwQ0JCzMaNG5sjRoww9+/f7/X4c+fOmWPGjDHr1atnBgUFed3PsSD3d8zvPrIrV64033rrLbNFixZmcHCwGR0dbT755JNmenp6nvU4nU5z0qRJZmxsrOlwOMwmTZqY//znP829e/f6zeHw4cPmk08+aTZq1Mh0OBxm9erVzc6dO5vTp0/3aicf9yI1zfP3gH3iiSfM+vXrm5UqVTIjIyPN2267zfzpp5/ytPV1P0pf4y2ot956y7ziiitMh8Nh1q1b13zmmWfM06dP+8319OnT5t/+9jezffv2ZmhoqBkSEmI2bNjQvPnmm813333Xcx/S/BQkz8L2k5iYaMbHx5uXXXaZGRYWZvbr18/86aefzBtvvNGUZJ44ccKrfUpKinn//feb1atXN0NCQswuXbqYy5YtK9R9ZDMyMsynn37abNCggRkcHGw2btzYnDJlipmdne2zfX73Ss69XS68j6wv+d2D1DTzP2bS0tLM8ePHm82aNTODg4PNqlWrmm3btjUnTJhgZmdne7X97bffzCeffNJs3LixGRwcbIaHh5vNmzc3H3zwQXP58uUXzdOtMPOZ33bKb//358cffzTvvPNOMyYmxnN8tWvXzhw7dqy5bds2T7vC3kfWNM/fk/rtt982u3TpYoaGhppVqlQxGzdubD766KPmgQMHLpr36dOnzSeeeMKsVauWGRwcbLZu3dp87733fD6fLl261Lz//vvNpk2bmmFhYeZll11mXnHFFea4cePMY8eOea03IyPDfOihh8zo6GjTbrf7vD92QbdLfvfXzk/u+8/6+/H1HANrMUzTx/ssAICAOZ1OxcXF6cyZM34/UAcAKDqukQWAAOXk5Pj8co6XXnpJ+/fvL9TX5gIACo4zsgAQoJMnT6pWrVq69tpr1aRJE507d04//PCDNmzYoOjoaG3cuJF7VgJACaCQBYAAZWdna+TIkVqxYoUOHTqks2fPKjo6Wv369dP48eNL9ab1AHApoZAFAACAJXGNLAAAACyJQhYAAACWdMl9IYLL5dKhQ4cUFhZWrN83DgAAgOJhmqYyMjIUExOT75fyXHKF7KFDhxQbG1vWaQAAAOAifv31V9WtW9fv8kuukA0LC5N0fsOEh4eXeH/nzp3TV199peuuu06VKlUq8f5QcMxN+cS8lF/MTfnEvJRfzE3RpaenKzY21lO3+XPJFbLuywnCw8NLrZCtUqWKwsPD2YnLGeamfGJeyi/mpnxiXsov5iZwF7sMlA97AQAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlhRU1gkAKHsHDhxQSkpKqfUXGRmpevXqlVp/AICKiUIWuMQdOHBAzZo315nTp0utz5AqVbR92zaKWQBAQChkgUtcSkqKzpw+rcEvzFZUw8Yl3t/R5F368PnHlJKSQiELAAgIhSwASVJUw8aq07xNWacBAECB8WEvAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWVK4K2dWrV2vAgAGKiYmRYRj69NNPvZabpqkJEyYoOjpaISEh6tu3r3bt2lU2yQIAAKBMlatCNjMzU23atNHMmTN9Lv/b3/6mV199Va+//rp++OEHhYaGKj4+XmfPni3lTAEAAFDWgso6gdz69eunfv36+VxmmqZmzJih559/XgMHDpQkvfvuu6pVq5Y+/fRT3XnnnT4fl5WVpaysLM/v6enpkqScnBzl5ORIkmw2m2w2m1wul1wul6etO+50OmWa5kXjdrtdhmF41itJTqfTk3/uuLt97jZuQUFBMk3TK24Yhux2e54c/cVLckz55W6lMblzcTqdnj6tPqaizJPL5ZLD4ZBN/1ufacow/8hFhiHTsOUTd8nIlYtpGFI+cZtMORwOuVwu5eTk5BlT7mNGUoXc96w6Jjf3MVMRxlQR5in3c5ndbq8QY6oo8+T+f+5jxupjKq15urC9P+WqkM1PcnKyDh8+rL59+3piVatWVefOnbVu3Tq/hey0adM0efLkPPHExESFhoZKkmrWrKm4uDglJyfr2LFjnjZ169ZV3bp1tXPnTqWlpXnijRo1UlRUlLZu3aozZ8544s2aNVNERIQSExPzvBi7XC5t2rTJK4cOHTooOztbW7Zs8cTsdrs6duyotLQ0bd++3RMPCQlRmzZtlJKSor1793ptg+bNm+vQoUP67bffPPGSHJMktW7dWg6HQwkJCZYd0+bNmyWd3xcMw6gQYyrKPKWlpWn06NGqF5yl45Iqn8tU5MkDnrY5QcE6XD1OoWdPqlrG7574WUeoUiLqK/x0qsIz/8g9MyRCJ8JiVO3UYYWeOemJp4fWVHpoTTWolK3Ro0crNTVVCQkJecbkPmbS09MVGRlZIfc9q46pWrVqkv44ZirCmCrCPJ08edIzL3FxcRViTBVlnmrXri1J2rNnjzIyMirEmEprnhITE1UQhpm7bC5HDMPQJ598optvvlmStHbtWnXt2lWHDh1SdHS0p93gwYNlGIY++OADn+vxdUY2NjZWqampCg8Pl1Syf3Xk5ORo2bJl6tevn9cZDXd7qWL+JWWFMZ09e1bLli1TfHy8goKCKsSYijJPSUlJ6tq1qx6d+4Wim7ct8TOyv29L0utD+2vNmjVq27ZtnjHlPmYcDkeF3PesOian06klS5Z4jpmKMKaKME/nzp3zPJc5HI4KMaaKMk9Op1NLly71OmasPqbSmqcTJ06oRo0aSktL89RrvljmjGxRBQcHKzg4OE88KCjIa6eS/piEC7k3akHjudfrnkzDMPL056u9m7/2/nIsbDyQMRU1Xt7G5I7b7XavvKw8pqLMk81mU3Z2tlz639tehiHT8LF+v3GbTCNv2F/cJUPZ2dmy2WxeebnHlPuYKeqY8qZu/Xm6UFmMyf2Cc+ExU9jc/cWZp6KNyV1kuC8rcP8/0Nz9xZmngsfdz2e+jhl3PNDc/cUr4jz5Uq4+7JUf9+n5I0eOeMWPHDniWQYAAIBLh2UK2YYNG6p27dpavny5J5aenq4ffvhBV111VRlmBgAAgLJQri4tOHXqlHbv3u35PTk5WUlJSapevbrq1aunkSNH6oUXXlDjxo3VsGFDjR8/XjExMZ7raAEAAHDpKFeFbEJCgnr37u35fdSoUZKkIUOGaN68eRozZowyMzP18MMP6+TJk+rWrZuWLl2qypUrl1XKAAAAKCPlqpDt1auX1yfdLmQYhv7617/qr3/9aylmBQAAgPLIMtfIAgAAALlRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlmSpQtbpdGr8+PFq2LChQkJCFBcXpylTpsg0zbJODQAAAKUsqKwTKIyXX35Zs2fP1jvvvKMWLVooISFBQ4cOVdWqVfXEE0+UdXoAAAAoRZYqZNeuXauBAweqf//+kqQGDRpo/vz5+vHHH8s4MwAAAJQ2SxWyV199td58803t3LlTTZo00ebNm/X9999r+vTpfh+TlZWlrKwsz+/p6emSpJycHOXk5EiSbDabbDabXC6XXC6Xp6077nQ6vS5f8Be32+0yDMOzXun85RCSZJqmV9zdPncbt6CgIJmm6RU3DEN2uz1Pjv7iJTmm/HK30pjcuTidTk+fVh9TUebJ5XLJ4XDIpv+tzzRlmH/kIsOQadjyibtk5MrFNAwpn7hNphwOh1wul3JycvKMKfcxI6lC7ntWHZOb+5ipCGOqCPOU+7nMbrdXiDFVlHly/z/3MWP1MZXWPF3Y3h9LFbJjx45Venq6mjVrJrvdLqfTqRdffFH33HOP38dMmzZNkydPzhNPTExUaGioJKlmzZqKi4tTcnKyjh075mlTt25d1a1bVzt37lRaWpon3qhRI0VFRWnr1q06c+aMJ96sWTNFREQoMTExz4uxy+XSpk2bvHLo0KGDsrOztWXLFk/MbrerY8eOSktL0/bt2z3xkJAQtWnTRikpKdq7d68nXrVqVTVv3lyHDh3Sb7/95omX5JgkqXXr1nI4HEpISLDsmDZv3izp/L5gGEaFGFNR5iktLU2jR49WveAsHZdU+VymIk8e8LTNCQrW4epxCj17UtUyfvfEzzpClRJRX+GnUxWe+UfumSEROhEWo2qnDiv0zElPPD20ptJDa6pBpWyNHj1aqampSkhIyDMm9zGTnp6uyMjICrnvWXVM1apVk/THMVMRxlQR5unkyZOeeYmLi6sQY6oo81S7dm1J0p49e5SRkVEhxlRa85SYmKiCMEwLfVJqwYIFGj16tP7+97+rRYsWSkpK0siRIzV9+nQNGTLE52N8nZGNjY1VamqqwsPDJZXsXx05OTlatmyZ+vXr53VGw91eqph/SVlhTGfPntWyZcsUHx+voKCgCjGmosxTUlKSunbtqkfnfqHo5m1L/Izs79uS9PrQ/lqzZo3atm2bZ0y5jxmHw1Eh9z2rjsnpdGrJkiWeY6YijKkizNO5c+c8z2UOh6NCjKmizJPT6dTSpUu9jhmrj6m05unEiROqUaOG0tLSPPWaL5Y6Izt69GiNHTtWd955pySpVatW2r9/v6ZNm+a3kA0ODlZwcHCeeFBQkNdOJf0xCRdyb9SCxnOv1z2ZhmHk6c9Xezd/7f3lWNh4IGMqary8jckdt9vtXnlZeUxFmSebzabs7Gy59L+3vQxDpuFj/X7jNplG3rC/uEuGsrOzZbPZvPJyjyn3MVPUMeVN3frzdKGyGJP7BefCY6awufuLM09FG5O7yHBfVuD+f6C5+4szTwWPu5/PfB0z7nigufuLV8R58sVSt986ffq0z7Oauf9SAAAAwKXBUmdkBwwYoBdffFH16tVTixYtlJiYqOnTp+tPf/pTWacGAACAUmapQva1117T+PHjNWzYMB09elQxMTF65JFHNGHChLJODQAAAKXMUoVsWFiYZsyYoRkzZpR1KgAAAChjlrpGFgAAAHCjkAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkoICXcHhw4c1Z84cbdq0SWlpaXK5XF7LDcPQ8uXLA+0GAAAA8BJQIbtlyxb16tVLZ86cUdOmTfXTTz/piiuu0MmTJ3Xw4EHFxcUpNja2uHIFAAAAPAK6tGDs2LG67LLLtGPHDn3zzTcyTVP//Oc/9euvv+qDDz7QiRMn9NJLLxVXrgAAAIBHQIXsmjVr9Mgjj6hevXqy2c6vyn1pwe2336577rlHo0ePDjxLAAAA4AIBFbIul0u1atWSJEVERMhut+v48eOe5a1atdLGjRsDyxAAAADwIaBCtmHDhkpOTj6/IptNDRs21DfffONZvnbtWkVERASUIAAAAOBLQIXsddddp48++sjz+2OPPaa3335bffv21TXXXKN33nlHd999d8BJAgAAABcK6K4Fzz33nO666y6dO3dOlSpV0siRI5WZmalFixbJbrdr/PjxGjduXHHlCgAAAHgEVMhWq1ZN7du39/xuGIaef/55Pf/88wEnBgAAAOSHb/YCAACAJRXqjOyf/vQnGYahN998U3a7XX/6058u+hjDMDRnzpwiJwgAAAD4UqhCdsWKFbLZbHK5XLLb7VqxYoUMw8j3MRdbDgAAABRFoQrZffv25fs7AAAAUFq4RhYAAACWFFAhu2nTJs2aNcvv8lmzZikpKSmQLgAAAACfAipkn3vuOa9v8rrQihUruBUXAAAASkRAhezGjRvVvXt3v8u7d++uhISEQLoAAAAAfAqokM3IyFBQkP/Pi9lsNqWlpQXSBQAAAOBTQIVs48aN9dVXX/ldvnTpUjVq1CiQLgAAAACfAipk//znP+uLL77QqFGjdPLkSU/85MmTeuqpp7R06VL9+c9/DjRHAAAAII9C3Uf2Qk888YSSkpI0Y8YMvfrqq4qJiZEkHTp0SC6XS/fdd5+eeuqpYkkUAAAAyC2gQtYwDM2dO1f333+/Fi1apL1790qSBg4cqEGDBqlXr17FkSMAAACQR0CFrFvv3r3Vu3fv4lgVAAAAUCB8sxcAAAAsKaBC1jRNvfHGG+rUqZMiIyNlt9vz/OR3ey4AAACgqAKqMseMGaPp06erbdu2uvfee1WtWrXiygsAAADIV0CF7DvvvKNBgwbpww8/LK58AAAAgAIJ6NKCM2fOqG/fvsWVCwAAAFBgARWy11xzjTZs2FBcuQAAAAAFFlAhO2vWLK1fv15Tp05VampqceWUr4MHD+ree+9VjRo1FBISolatWikhIaFU+gYAAED5EdA1sk2bNpXL5dL48eM1fvx4Va5cWXa73auNYRhKS0sLKEm3EydOqGvXrurdu7e+/PJL1axZU7t27eJDZgAAAJeggArZQYMGyTCM4srlol5++WXFxsZq7ty5nljDhg1LrX8AAACUHwEVsvPmzSumNArms88+U3x8vG6//XZ9++23qlOnjoYNG6aHHnrI72OysrKUlZXl+T09PV2SlJOTo5ycHEmSzWaTzWaTy+WSy+XytHXHnU6nTNO8aNxut8swDM96JcnpdEo6f8/d3HF3+9xt3IKCgmSaplfcMAzZ7fY8OfqLl+SY8svdSmNy5+J0Oj19Wn1MRZknl8slh8Mhm/63PtOUYf6RiwxDpmHLJ+6SkSsX0zCkfOI2mXI4HHK5XMrJyckzptzHjKQKue9ZdUxu7mOmIoypIsxT7ucyu91eIcZUUebJ/f/cx4zVx1Ra83Rhe38s9W0Fe/fu1ezZszVq1CiNGzdOGzZs0BNPPCGHw6EhQ4b4fMy0adM0efLkPPHExESFhoZKkmrWrKm4uDglJyfr2LFjnjZ169ZV3bp1tXPnTq/LIxo1aqSoqCht3bpVZ86c8cSbNWumiIgIJSYm5nkxdrlc2rRpk1cOHTp0UHZ2trZs2eKJ2e12dezYUWlpadq+fbsnHhISojZt2iglJUV79+71xKtWrarmzZvr0KFD+u233zzxkhyTJLVu3VoOhyPP9clWGtPmzZslnd8XDMOoEGMqyjylpaVp9OjRqhecpeOSKp/LVOTJA562OUHBOlw9TqFnT6paxu+e+FlHqFIi6iv8dKrCM//IPTMkQifCYlTt1GGFnjnpiaeH1lR6aE01qJSt0aNHKzU1VQkJCXnG5D5m0tPTFRkZWSH3PauOyX0Zl/uYqQhjqgjzdPLkSc+8xMXFVYgxVZR5ql27tiRpz549ysjIqBBjKq15SkxMVEEYZu6yuQgOHDigqVOnauXKlTp69Kj++9//qkePHkpJSdFf//pXDR06VFdeeWUgXXg4HA516NBBa9eu9cSeeOIJbdiwQevWrfP5GF9nZGNjY5Wamqrw8HBJJftXR05OjpYtW6Z+/fp5ndFwt5cq5l9SVhjT2bNntWzZMsXHxysoKKhCjKko85SUlKSuXbvq0blfKLp52xI/I/v7tiS9PrS/1qxZo7Zt2+YZU+5jxuFwVMh9z6pjcjqdWrJkieeYqQhjqgjzdO7cOc9zmcPhqBBjqijz5HQ6tXTpUq9jxupjKq15OnHihGrUqKG0tDRPveZLQGdkf/nlF3Xv3l0ul0udO3fW7t27PYlGRkbq+++/V2ZmpubMmRNINx7R0dG64oorvGLNmzfXokWL/D4mODhYwcHBeeJBQUF5vj7XPQkXuvADbBeL516vezINw/D7db2+4v7a+8uxsPFAxlTUeHkbkzt+4VcpW3lMRZknm82m7OxsufS/t70MQ6bhY/1+4zaZvi6V9xN3yVB2drZsNptXXu4x5T5mijqmvKlbf54uVBZjcr/gXHjMFDZ3f3HmqWhjchcZ7ssK3P8PNHd/ceap4HH385mvY8YdDzR3f/GKOE8+2xWolR9jxoxRRESE1q9fL8MwFBUV5bW8f//++uCDDwLpwkvXrl21Y8cOr9jOnTtVv379YusDAAAA1hDQfWRXr16txx57TDVr1vR594J69erp4MGDgXTh5amnnvLct3b37t16//339eabb2r48OHF1gcAAACsIaBC1uVyqUqVKn6XHzt2zOfb+kXVsWNHffLJJ5o/f75atmypKVOmaMaMGbrnnnuKrQ8AAABYQ0CXFrRr105ffPGFhg0blmdZTk6OFixYoC5dugTSRR433nijbrzxxmJdJwAAAKwnoDOyzz77rJYuXarHHntMW7dulSQdOXJE33zzja677jpt27ZNY8eOLZZEAQAAgNwCOiPbr18/zZs3T08++aTefPNNSdK9994r0zQVHh6ud999Vz169CiWRAEAAIDcAv5ChPvuu0+33nqrvvrqK+3evVsul0txcXGKj49XWFhYceQIAAAA5FEs3+wVGhqqW265pThWBQAAABRIQIXsgQMHLt5I52/DBQAAABSngArZBg0a+Lx/7IUu/PoxAAAAIFABFbL/+te/8hSyTqdT+/bt07vvvquoqCi+rAAAAAAlIqBC9oEHHvC77C9/+Ys6d+6stLS0QLoAAAAAfAroPrL5CQ0N1dChQ/V///d/JdUFAAAALmElVshK57/C9vDhwyXZBQAAAC5RxXL7rQulp6dr9erV+vvf/64rr7yyJLoAAADAJS6gQtZms/m9a4FpmqpXr55mzZoVSBcAAACATwEVshMmTMhTyBqGoWrVqikuLk7XXXedgoJK5KQvAAAALnEBVZmTJk0qpjQAAACAwgnow145OTlKT0/3uzw9PV05OTmBdAEAAAD4FFAh+8QTT+jqq6/2u7xr1656+umnA+kCAAAA8CmgQnbp0qW67bbb/C6/7bbbtGTJkkC6AAAAAHwKqJA9dOiQ6tSp43d5TEyMDh48GEgXAAAAgE8BFbI1atTQjh07/C7ftm2bwsPDA+kCAAAA8CmgQvb666/XG2+8ocTExDzLNm3apDfffFP9+vULpAsAAADAp4BuvzVlyhQtXbpUnTp10k033aQWLVpIkrZu3arPP/9cUVFRmjJlSrEkCgAAAOQWUCEbExOjhIQEjR07Vv/973/1ySefSJLCw8N1zz33aOrUqYqJiSmWRAEAAIDcAv7arejoaL3zzjsyTVPHjh2TJNWsWdPvV9cCAAAAxaHYvj/WMAwFBwfrsssuo4gFAABAiQvow16SlJCQoOuvv15VqlRRjRo19O2330qSUlJSNHDgQK1atSrQLgAAAIA8Ajoju3btWvXp00d16tTRvffeq7ffftuzLDIyUmlpaXrjjTfUq1evQPMELikHDhxQSkpKqfS1bdu2UukHAIDiFlAhO27cODVv3lzr169XRkaGVyErSb1799Y777wTUILApebAgQNq1ry5zpw+XdapAABQrgVUyG7YsEHTpk1TcHCwTp06lWd5nTp1dPjw4UC6AC45KSkpOnP6tAa/MFtRDRuXeH871izX17OmlXg/AAAUt4AK2UqVKsnlcvldfvDgQV122WWBdAFcsqIaNlad5m1KvJ+jybtKvA8AAEpCQB/26tKlixYuXOhzWWZmpubOnauePXsG0gUAAADgU0CF7OTJk5WQkKD+/fvryy+/lCRt3rxZb7/9ttq3b69jx45p/PjxxZIoAAAAkFtAlxZ07txZS5Ys0WOPPab7779fkvT0009LkuLi4rRkyRK1bt068CwBAACACxS5kDVNUxkZGbr66qu1Y8cOJSUladeuXXK5XIqLi1P79u35YgQAAACUmCIXstnZ2apevbqmTp2qMWPGqG3btmrbtm0xpgYAAAD4V+RrZIODg1W7dm0FBwcXZz4AAABAgQT0Ya8HHnhA7777rrKzs4srHwAAAKBAAvqwV6tWrfTpp5+qRYsWeuCBB9SgQQOFhITkaXfrrbcG0g0AAACQR0CF7F133eX5v7/bbBmGIafTGUg3AAAAQB6FLmTHjRunO++8U61bt9bKlStLIicAAADgogpdyL700ktq2bKlWrdurZ49eyo1NVVRUVH6+uuv1adPn5LIEQAAAMgjoA97uZmmWRyrAQAAAAqsWApZAAAAoLRRyAIAAMCSinTXgn379mnTpk2SpLS0NEnSrl27FBER4bN9u3btipYdAAAA4EeRCtnx48fnud3WsGHD8rQzTZPbbwEAAKBEFLqQnTt3bknkAQAAABRKoQvZIUOGlEQeAAAAQKHwYS8AAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWJKlC9mXXnpJhmFo5MiRZZ0KAAAASpllC9kNGzbojTfeUOvWrcs6FQAAAJSBoLJOoChOnTqle+65R2+99ZZeeOGFfNtmZWUpKyvL83t6erokKScnRzk5OZIkm80mm80ml8sll8vlaeuOO51OmaZ50bjdbpdhGJ71SpLT6ZQkmabpFXe3z93GLSgoSKZpesUNw5Ddbs+To794SY4pv9ytNCZ3Lk6n09NneRiTy+Xy9GmYLilX7qZhkwzDf9zlnaNp2P5Yj5+43ZAcDods+t/6TNO7vWGcb+837pLhlYsh5RO3yZTD4ZDL5VJOTk6eecp9zEiqkPueVcfk5j5mKsKYKsI85X4us9vtFWJMFWWe3P/PfcxYfUylNU8XtvfHkoXs8OHD1b9/f/Xt2/eihey0adM0efLkPPHExESFhoZKkmrWrKm4uDglJyfr2LFjnjZ169ZV3bp1tXPnTqWlpXnijRo1UlRUlLZu3aozZ8544s2aNVNERIQSExPzvBi7XC5t2rTJK4cOHTooOztbW7Zs8cTsdrs6duyotLQ0bd++3RMPCQlRmzZtlJKSor1793riVatWVfPmzXXo0CH99ttvnnhJjkmSWrduLYfDoYSEBMuOafPmzZLO7wuGYZSbMaWlpalr166SpBppv6pydqan/YmwaGWGVFOtE8kKyvnjD7SUiHo667hMMcd3ycj1hHO4epyctiDVSdnhNaaDkU1ld+Wo9vE9CoutpkajR6tecJaOS6p8LlORJw942uYEBetw9TiFnj2pahm/e+JnHaFKiaiv8NOpCs/8Yz4yQyJ0IixG1U4dVuiZk554emhNpYfWVINK2Ro9erRSU1OVkJCQZ57cx0x6eroiIyMr5L5n1TFVq1ZN0h/HTEUYU0WYp5MnT3rmJS4urkKMqaLMU+3atSVJe/bsUUZGRoUYU2nNU2JiogrCMHOXzRawYMECvfjii9qwYYMqV66sXr16qW3btpoxY4bP9r7OyMbGxio1NVXh4eGSSvavjpycHC1btkz9+vXzOqPhbi9VzL+krDCms2fPatmyZYqPj1dQUFC5GVNSUpK6dOmix95dprrNWpX4GdnNyz7RoslP6tG5Xyi6edsSPyP7+7YkvT60v9asWaO2bdvmmafcx4zD4aiQ+55Vx+R0OrVkyRLPMVMRxlQR5uncuXOe5zKHw1EhxlRR5snpdGrp0qVex4zVx1Ra83TixAnVqFFDaWlpnnrNF0udkf3111/15JNP6uuvv1blypUL9Jjg4GAFBwfniQcFBXntVNIfk3Ah90YtaDz3et2TaRhGnv58tXfz195fjoWNBzKmosbL25jccbvd7pVXWY/J/UQguQvUvLn4jdt8j9U0/MedppSdnS2Xe4WG4bu937hNpo9c/MVdMpSdnS2bzea17dzzkfuYkSrmvmfVMbn3ywuPmcLm7i/OPBVtTO4iw31Zgfv/gebuL848FTzufj7zdcy444Hm7i9eEefJZ7sCtSonNm7cqKNHj6pdu3aemNPp1OrVq/X//t//U1ZWlt8NCAAAgIrFUoXsNddco59++skrNnToUDVr1kx/+ctfKGIBAAAuIZYqZMPCwtSyZUuvWGhoqGrUqJEnDgAAgIrNsveRBQAAwKXNUmdkfVm1alVZpwAAAIAywBlZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWFJQWScAWMGBAweUkpJSKn1t27atVPoBAMDqKGSBizhw4ICaNW+uM6dPl3UqAAAgFwpZ4CJSUlJ05vRpDX5htqIaNi7x/nasWa6vZ00r8X4AALA6ClmggKIaNlad5m1KvJ+jybtKvA8AACoCPuwFAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVZqpCdNm2aOnbsqLCwMEVFRenmm2/Wjh07yjotAAAAlAFLFbLffvuthg8frvXr1+vrr7/WuXPndN111ykzM7OsUwMAAEApCyrrBApj6dKlXr/PmzdPUVFR2rhxo3r06FFGWQEAAKAsWKqQvVBaWpokqXr16n7bZGVlKSsry/N7enq6JCknJ0c5OTmSJJvNJpvNJpfLJZfL5WnrjjudTpmmedG43W6XYRie9UqS0+mUJJmm6RV3t8/dxi0oKEimaXrFDcOQ3W7Pk6O/eEmOKb/crTQmdy5Op9PTp6/cTdOUYRiyyZTh+mOZabNLpinD/CMXGYZMw5ZP3CUjVy6mYUgXxO3GH9vRMF2SV3ubZBj+464Lcjdsf6zHT9xuSA6HQzaZ7gEX+5hyx20y5XA45HK5lJOTk2eech8zkirkvmfVMbm5j5mKMKaKME+5n8vsdnuFGFNFmSf3/3MfM1YfU2nN04Xt/bFsIetyuTRy5Eh17dpVLVu29Ntu2rRpmjx5cp54YmKiQkNDJUk1a9ZUXFyckpOTdezYMU+bunXrqm7dutq5c6enaJakRo0aKSoqSlu3btWZM2c88WbNmikiIkKJiYl5XoxdLpc2bdrklUOHDh2UnZ2tLVu2eGJ2u10dO3ZUWlqatm/f7omHhISoTZs2SklJ0d69ez3xqlWrqnnz5jp06JB+++03T7wkxyRJrVu3lsPhUEJCgmXHtHnzZknn9wXDMPyOKSgoSDVq1FCr4LOqnHL+mmzTZtPByGaqfC5TkScPeNrmBAXrcPU4hZ49qWoZv3viZx2hSomor/DTqQrP/CP3zJAInQiLUbVThxV65qQkKSy2mg527SpJqpH2qypn/3HpzImwaGWGVFOtE8kKyvnjD7SUiHo667hMMcd3ycj1hHO4epyctiDVSfG+lvxgZFPZXTmqfXyPwmKrqdHo0aoXnKXjUomMSZLSQ2sqPbSmGlTK1ujRo5WamqqEhIQ88+Q+ZtLT0xUZGVkh9z2rjqlatWqS/jhmKsKYKsI8nTx50jMvcXFxFWJMFWWeateuLUnas2ePMjIyKsSYSmueEhMTVRCGmbtstpDHHntMX375pb7//nvVrVvXbztfZ2RjY2OVmpqq8PBwSSX7V0dOTo6WLVumfv36eZ3RcLeXKuZfUlYY09mzZ7Vs2TLFx8crKCjIb+6bN29Wx44d9fh/vlJM01aeeEmdkd287BN9OGGEHnt3meo2a1XiZ2Q3L/tEiyY/qUfnfqHo5m1L/Izs79uS9PrQ/lqzZo3atm2bZ55yHzMOh6NC7ntWHZPT6dSSJUs8x0xFGFNFmKdz5855nsscDkeFGFNFmSen06mlS5d6HTNWH1NpzdOJEydUo0YNpaWleeo1Xyx5RnbEiBFavHixVq9enW8RK0nBwcEKDg7OEw8KCvLaqaQ/JuFC7o1a0Hju9bon0zCMPP35au/mr72/HAsbD2RMRY2XtzG543a73SuvC3M0DEOmacol43zx6r1QpuFj/X7jNplG3nDuuNPMdUmKYZN8tPcbvzA/T3v/cacpZWdny+VeYQmMKTeXDGVnZ8tms3lta/d85D5mpIq571l1TO798sJjprC5+4szT0Ubk7vIcF9W4P5/oLn7izNPBY+7n898HTPueKC5+4tXxHny2a5ArcoJ0zT1+OOP65NPPtGqVavUsGHDsk4JAAAAZcRShezw4cP1/vvv67///a/CwsJ0+PBhSeev7wgJCSnj7AAAAFCaLHUf2dmzZystLU29evVSdHS05+eDDz4o69QAAABQyix1Rtain0sDAABACbDUGVkAAADAjUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsKaisE7hUbN68WTZb6fzdEBkZqXr16pVKX2XlwIEDSklJCWgdLpdL0sXnZtu2bQH1AwBASSiO18LCKI/1BYVsCfvtt98kST169NCZM2dKpc+QKlW0fdu2crezFZcDBw6oWfPmOnP6dEDrCQkJ0fz580t1bgAAKA7F9VpYGOWxvqCQLWGpqamSpFvG/5+q17+8xPs7mrxLHz7/mFJSUsrVjlacUlJSdOb0aQ1+YbaiGjYu8nrsMiVl6uG3P5NTht92O9Ys19ezphW5HwAAiltxvRYWVHmtLyhkS0nN+nGq3bxNWadRoUQ1bKw6AWxTmytH+u0HxTRtKZfN/6FwNHlXkfsAAKAkBfpaaHV82AsAAACWRCELAAAAS6KQBQAAgCVRyAIAAMCSKGQBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAABLopAFAACAJVHIAgAAwJIoZAEAAGBJFLIAAACwJApZAAAAWBKFLAAAACyJQhYAAACWRCELAAAAS6KQBQAAgCVZspCdOXOmGjRooMqVK6tz58768ccfyzolAAAAlDLLFbIffPCBRo0apYkTJ2rTpk1q06aN4uPjdfTo0bJODQAAAKXIcoXs9OnT9dBDD2no0KG64oor9Prrr6tKlSr617/+VdapAQAAoBQFlXUChZGdna2NGzfq2Wef9cRsNpv69u2rdevW+XxMVlaWsrKyPL+npaVJko4fP66cnBzPOmw2m1wul1wul9e6bTabnE6nTNO8aNxut8swDM96JSk9PV2nT5/WoR3JOns60ys39yONC3I2ZXj+vTBuyNSFcsdTD+xVpUqVtHHjRp06dUqmaXrlaBiGDMModDz3dnHHJck0Tc+2uzCem81mK7ZcduzYoUqVKunw9i06d/pUgbfNHzFJMhQkl2JDz2h/4no5c7W6cLsf27dLkrz6c6+7qPOUX/z4gT2y2Ww6uM27v4KMyXfc1z72R/z4gT2e7Zl9OrNExpQ7nvq//jZu3Kj09PQ88+1yuXT69Gl9//33stvt+e57BYm7973c+3FR973CxO12e57niIIcT4UZ04XPP+5YSY3JNE2dPn1a3333nYKCguRyuUp0TLlzKYv5y/1cXhJjKsw+k996nE6nZ17cr0MFeS5351eSY8odd79WFPf8+dv3LlxW0q9PvubPfcx8//33nv4DGVPutrt2nX9t8vVaURKvT+76IiMjQ+np6QHVRu64JDmdTp/xEydO5BmzT6aFHDx40JRkrl271is+evRos1OnTj4fM3HiRFPnX7f54Ycffvjhhx9++LHQz6+//ppvbWipM7JF8eyzz2rUqFGe310ul44fP64aNWp4/XVUUtLT0xUbG6tff/1V4eHhJd4fCo65KZ+Yl/KLuSmfmJfyi7kpOtM0lZGRoZiYmHzbWaqQjYyMlN1u15EjR7ziR44cUe3atX0+Jjg4WMHBwV6xiIiIkkrRr/DwcHbicoq5KZ+Yl/KLuSmfmJfyi7kpmqpVq160jaU+7OVwONS+fXstX77cE3O5XFq+fLmuuuqqMswMAAAApc1SZ2QladSoURoyZIg6dOigTp06acaMGcrMzNTQoUPLOjUAAACUIssVsnfccYeOHTumCRMm6PDhw2rbtq2WLl2qWrVqlXVqPgUHB2vixIl5Lm9A2WNuyifmpfxibson5qX8Ym5KnmGaF7uvAQAAAFD+WOoaWQAAAMCNQhYAAACWRCELAAAAS6KQBQAAgCVRyBaDmTNnqkGDBqpcubI6d+6sH3/80W/bt956S927d1e1atVUrVo19e3bN9/2CExh5ia3BQsWyDAM3XzzzSWb4CWqsPNy8uRJDR8+XNHR0QoODlaTJk20ZMmSUsr20lHYeZkxY4aaNm2qkJAQxcbG6qmnntLZs2dLKdtLx+rVqzVgwADFxMTIMAx9+umnF33MqlWr1K5dOwUHB+vyyy/XvHnzSjzPS01h5+Xjjz/Wtddeq5o1ayo8PFxXXXWVli1bVjrJVmAUsgH64IMPNGrUKE2cOFGbNm1SmzZtFB8fr6NHj/psv2rVKt11111auXKl1q1bp9jYWF133XU6ePBgKWde8RV2btz27dunZ555Rt27dy+lTC8thZ2X7OxsXXvttdq3b58WLlyoHTt26K233lKdOnVKOfOKrbDz8v7772vs2LGaOHGitm3bpjlz5uiDDz7QuHHjSjnzii8zM1Nt2rTRzJkzC9Q+OTlZ/fv3V+/evZWUlKSRI0fqwQcfpGgqZoWdl9WrV+vaa6/VkiVLtHHjRvXu3VsDBgxQYmJiCWdawZkISKdOnczhw4d7fnc6nWZMTIw5bdq0Aj0+JyfHDAsLM995552SSvGSVZS5ycnJMa+++mrz7bffNocMGWIOHDiwFDK9tBR2XmbPnm02atTIzM7OLq0UL0mFnZfhw4ebffr08YqNGjXK7Nq1a4nmeamTZH7yySf5thkzZozZokULr9gdd9xhxsfHl2Bml7aCzIsvV1xxhTl58uTiT+gSwhnZAGRnZ2vjxo3q27evJ2az2dS3b1+tW7euQOs4ffq0zp07p+rVq5dUmpekos7NX//6V0VFRenPf/5zaaR5ySnKvHz22We66qqrNHz4cNWqVUstW7bU1KlT5XQ6SyvtCq8o83L11Vdr48aNnssP9u7dqyVLluiGG24olZzh37p167zmUpLi4+ML/LqE0uFyuZSRkcHrf4As981e5UlKSoqcTmeebxWrVauWtm/fXqB1/OUvf1FMTEyeJx0Epihz8/3332vOnDlKSkoqhQwvTUWZl71792rFihW65557tGTJEu3evVvDhg3TuXPnNHHixNJIu8IryrzcfffdSklJUbdu3WSapnJycvToo49yaUE5cPjwYZ9zmZ6erjNnzigkJKSMMkNur7zyik6dOqXBgweXdSqWxhnZMvTSSy9pwYIF+uSTT1S5cuWyTueSlpGRofvuu09vvfWWIiMjyzod5OJyuRQVFaU333xT7du31x133KHnnntOr7/+elmndklbtWqVpk6dqlmzZmnTpk36+OOP9cUXX2jKlCllnRpQ7r3//vuaPHmyPvzwQ0VFRZV1OpbGGdkAREZGym6368iRI17xI0eOqHbt2vk+9pVXXtFLL72kb775Rq1bty7JNC9JhZ2bPXv2aN++fRowYIAn5nK5JElBQUHasWOH4uLiSjbpS0BRjpno6GhVqlRJdrvdE2vevLkOHz6s7OxsORyOEs35UlCUeRk/frzuu+8+Pfjgg5KkVq1aKTMzUw8//LCee+452WycJykrtWvX9jmX4eHhnI0tBxYsWKAHH3xQH330Ee/GFgOeaQLgcDjUvn17LV++3BNzuVxavny5rrrqKr+P+9vf/qYpU6Zo6dKl6tChQ2mkeskp7Nw0a9ZMP/30k5KSkjw/N910k+dTv7GxsaWZfoVVlGOma9eu2r17t+cPC0nauXOnoqOjKWKLSVHm5fTp03mKVfcfG6ZpllyyuKirrrrKay4l6euvv873dQmlY/78+Ro6dKjmz5+v/v37l3U6FUNZf9rM6hYsWGAGBweb8+bNM3/55Rfz4YcfNiMiIszDhw+bpmma9913nzl27FhP+5deesl0OBzmwoULzd9//93zk5GRUVZDqLAKOzcX4q4FJaOw83LgwAEzLCzMHDFihLljxw5z8eLFZlRUlPnCCy+U1RAqpMLOy8SJE82wsDBz/vz55t69e82vvvrKjIuLMwcPHlxWQ6iwMjIyzMTERDMxMdGUZE6fPt1MTEw09+/fb5qmaY4dO9a87777PO337t1rVqlSxRw9erS5bds2c+bMmabdbjeXLl1aVkOokAo7L++9954ZFBRkzpw50+v1/+TJk2U1hAqBQrYYvPbaa2a9evVMh8NhdurUyVy/fr1nWc+ePc0hQ4Z4fq9fv74pKc/PxIkTSz/xS0Bh5uZCFLIlp7DzsnbtWrNz585mcHCw2ahRI/PFF180c3JySjnriq8w83Lu3Dlz0qRJZlxcnFm5cmUzNjbWHDZsmHnixInST7yCW7lypc/XDfd8DBkyxOzZs2eex7Rt29Z0OBxmo0aNzLlz55Z63hVdYeelZ8+e+bZH0RimyXtAAAAAsB6ukQUAAIAlUcgCAADAkihkAQAAYEkUsgAAALAkClkAAABYEoUsAAAALIlCFgAAAJZEIQsAAIBCWb16tQYMGKCYmBgZhqFPP/200OswTVOvvPKKmjRpouDgYNWpU0cvvvhiodZBIQsA5dADDzygBg0alHUaeaxatUqGYWjVqlVlnQqAMpSZmak2bdpo5syZRV7Hk08+qbfffluvvPKKtm/frs8++0ydOnUq1DqCitw7AMByDMPw+n/t2rXVsmVLjRs3Tr169Sq7xABYSr9+/dSvXz+/y7OysvTcc89p/vz5OnnypFq2bKmXX37Z8zyzbds2zZ49W1u3blXTpk0lSQ0bNix0HpyRBYBLzLXXXqt///vfeuedd/Too49qy5Yt6tOnj7788suLPrZHjx46c+aMevToUQqZArCqESNGaN26dVqwYIG2bNmi22+/Xddff7127dolSfr888/VqFEjLV68WA0bNlSDBg304IMP6vjx44XqhzOyAOBDZmamQkNDyzqNYuFyuZSdna3KlStLkpo0aaJ7773Xs/yWW25R69atNWPGDL9nWM6ePSuHwyGbzeZZDwD4cuDAAc2dO1cHDhxQTEyMJOmZZ57R0qVLNXfuXE2dOlV79+7V/v379dFHH+ndd9+V0+nUU089pdtuu00rVqwocF+ckQVwyZs0aZIMw9Avv/yiu+++W9WqVVO3bt0kSf/5z3/Uvn17hYSEqHr16rrzzjv166+/5lnHzJkz1ahRI4WEhKhTp0767rvv1KtXL6+36+fNmyfDMLRv3z6vxxb0utNXXnlFV199tWrUqKGQkBC1b99eCxcuzNPOMAyNGDFC7733nlq0aKHg4GAtXbrU73pbtWqlyMhIJScne+WzYMECPf/886pTp46qVKmi9PR0v7n+8MMPuuGGG1StWjWFhoaqdevW+uc//+nVZvv27brttttUvXp1Va5cWR06dNBnn32W75gBWM9PP/0kp9OpJk2a6LLLLvP8fPvtt9qzZ4+k839gZ2Vl6d1331X37t3Vq1cvzZkzRytXrtSOHTsK3BdnZAHgf26//XY1btxYU6dOlWmaevHFFzV+/HgNHjxYDz74oI4dO6bXXntNPXr0UGJioiIiIiRJs2fP1ogRI9S9e3c99dRT2rdvn26++WZVq1ZNdevWLbb8/vnPf+qmm27SPffco+zsbC1YsEC33367Fi9erP79+3u1XbFihT788EONGDFCkZGR+X5w7MSJEzpx4oQuv/xyr/iUKVPkcDj0zDPPKCsrSw6Hw+fjv/76a914442Kjo7Wk08+qdq1a2vbtm1avHixnnzySUnSzz//rK5du6pOnToaO3asQkND9eGHH+rmm2/WokWLdMsttwS2cQCUG6dOnZLdbtfGjRtlt9u9ll122WWSpOjoaAUFBalJkyaeZc2bN5d0/oyu+7rZi6GQBYD/adOmjd5//31J0v79+xUXF6cXXnhB48aN87S59dZbdeWVV2rWrFkaN26csrOzNX78eHXs2FErVqxQUND5p9XWrVvrgQceKNZCdufOnQoJCfH8PmLECLVr107Tp0/PU8ju2LFDP/30k6644oo86zl79qxSUlJkmqaSk5M1btw4OZ1O3X777XnaJSQkePV5IafTqUceeUTR0dFKSkryFPfS+VvruD355JOqV6+eNmzYoODgYEnSsGHD1K1bN/3lL3+hkAUqkCuvvFJOp1NHjx5V9+7dfbbp2rWrcnJytGfPHsXFxUk6/xwnSfXr1y9wX1xaAAD/8+ijj3r+//HHH8vlcmnw4MFKSUnx/NSuXVuNGzfWypUrJUkJCQlKTU3VQw895CliJemee+5RtWrVijW/3AXliRMnlJaWpu7du2vTpk152vbs2dNnEStJc+bMUc2aNRUVFaXOnTtrzZo1GjVqlEaOHOnVbsiQIfkWsZKUmJio5ORkjRw50quIlf64Q8Lx48e1YsUKDR48WBkZGZ5tmZqaqvj4eO3atUsHDx4swBYAUF6cOnVKSUlJSkpKkiQlJycrKSlJBw4cUJMmTXTPPffo/vvv18cff6zk5GT9+OOPmjZtmr744gtJUt++fdWuXTv96U9/UmJiojZu3KhHHnlE1157rddZ2ovhjCwA/E/uW7/s2rVLpmmqcePGPttWqlRJ0vkzt5LyvC0fFBRU7PeBXbx4sV544QUlJSUpKyvLE899Sy23/G5jM3DgQI0YMUKGYSgsLEwtWrTw+cG2gtwKx329W8uWLf222b17t0zT1Pjx4zV+/HifbY4ePao6depctD8A5UNCQoJ69+7t+X3UqFGSzv8BPG/ePM2dO1cvvPCCnn76aR08eFCRkZHq0qWLbrzxRkmSzWbT559/rscff1w9evRQaGio+vXrp3/84x+FyoNCFgD+J/fZR5fLJcMw9OWXX+a5xkv64zqvwvBVcErn356/mO+++0433XSTevTooVmzZik6OlqVKlXS3LlzPZdD5JbfmdS6deuqb9++F+3zYmdjC8rlckk6/6nl+Ph4n20u/EMAQPnWq1cvr8uHLlSpUiVNnjxZkydP9tsmJiZGixYtCigPClkA8CEuLk6maaphw4b5vs3lvpZr9+7dXmcncnJytG/fPrVu3doTc19qcPLkSa91uM/q5mfRokWqXLmyli1b5rnGVJLmzp1boPGUFPe1bVu3bvVbHDdq1EjS+Re2ghTQAFBQXCMLAD7ceuutstvtmjx5cp6zDqZpKjU1VZLUoUMH1ahRQ2+99ZZycnI8bd577z2dOHHC63Huom/16tWemNPp1JtvvnnRfOx2uwzD8Dp7u2/fviJ9v3lxateunRo2bKgZM2bkKdDd2y0qKkq9evXSG2+8od9//z3POo4dO1YaqQKogDgjCwA+uO9Y8Oyzz3pupxUWFqbk5GR98sknevjhh/XMM8/I4XBo0qRJevzxx9WnTx8NHjxY+/bt07x58xQXF+d1OUGLFi3UpUsXPfvsszp+/LiqV6+uBQsWeBXA/vTv31/Tp0/X9ddfr7vvvltHjx7VzJkzdfnll2vLli0luSnyZbPZNHv2bA0YMEBt27bV0KFDFR0dre3bt+vnn3/WsmXLJJ2/z263bt3UqlUrPfTQQ2rUqJGOHDmidevW6bffftPmzZvLbAwArItCFgD8GDt2rJo0aaL/+7//81znFRsbq+uuu0433XSTp92IESNkmqb+8Y9/6JlnnlGbNm302Wef6YknnsjzLVjvvfeeHnnkEb300kuKiIjQn//8Z/Xu3VvXXnttvrn06dNHc+bM0UsvvaSRI0eqYcOGevnll7Vv374yLWQlKT4+XitXrtTkyZP1j3/8Qy6XS3FxcXrooYc8ba644golJCRo8uTJmjdvnlJTUxUVFaUrr7xSEyZMKMPsAViZYeZ3pS4AoEhcLpdq1qypW2+9VW+99VZZpwMAFRLXyAJAgM6ePZvnOtp3331Xx48f9/qKWgBA8eKMLAAEaNWqVXrqqad0++23q0aNGtq0aZPmzJmj5s2ba+PGjX6/2hUAEBiukQWAADVo0ECxsbF69dVXPR/iuv/++/XSSy9RxAJACeKMLAAAACyJa2QBAABgSRSyAAAAsCQKWQAAAFgShSwAAAAsiUIWAAAAlkQhCwAAAEuikAUAAIAlUcgCAADAkv4/9EnEGkEg0cEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqoAAAHcCAYAAAAeFogrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrSElEQVR4nO3deVwTZ/4H8M8kIQGRQzkURFHwwAtQVMTb1YpHu9p2a7WtRe1hW7vai24vq66t2uPXbe1htYfaduvZ1h4qaD2rrQcI3qJWrAdeIIeigkme3x/sjAlJOAyYAT7v18vd5pknM9/vM0+Sb2YmgySEECAiIiIiUhmNqwMgIiIiIrKHhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKlE1+vDDDyFJEr744gtXh0JERFTjsFAlG5s2bYIkSZg2bZpLtt+8eXM0b97cqm3atGmQJAmbNm1ySUylSZKEfv36ldln586deOGFF/D666/jkUceuT2B2VGRWGuqmjBXais1zStXv2fVRNU5Zv369YMkSVW+XqqbWKjWUidOnIAkSVb/6tWrh+DgYAwYMACvv/46/vzzz2rZNt+kgNzcXIwcORKjR4/G9OnTXR0O1RF87VFdpIYvTYWFhfjmm28wcuRItG7dGh4eHvD19UXfvn2xePFil8ZW0+lcHQBVr/DwcDz00EMAgKKiIly4cAE7d+7EjBkzMHPmTLz44ot48803rT7cunXrhkOHDsHf398lMa9fv94l262MQ4cOoV69eg6Xp6en46mnnsKzzz57G6MiAHj66acxatQoNGvWzNWh0G3i6vcsot9++w1jxoyBn58fBgwYgHvvvRcXLlzA999/jwceeADbtm3DRx995OowayQWqrVcy5Yt7Z7a2bp1K8aMGYNZs2ZBq9VixowZyrJ69eohIiLiNkZpLTw83GXbrqjyxqd///7o37//bYqGLPn7+7NgqWNc/Z5F1LhxY3z99dcYOXIk9Hq90j5z5kzExsbi448/xsMPP4xu3bq5MMqaiaf+66hevXohKSkJBoMBb7/9Nk6dOqUsc3Tt0tGjRzFu3Di0aNECBoMBDRs2RFRUFJ555hkIIQCUnILZvHmz8t/yv7FjxwK4eUnC2LFjcejQIdx9993w8/ODJEk4ceIEAPvXHVr64osv0LFjR7i7u6NJkyZ49tlncfnyZas+ZV1/ZRlDaRcuXMDzzz+PNm3awMPDAw0bNkRsbCzeffddq36OTjVlZ2fjmWeeUcYoMDAQI0eOxP79+236jh07FpIkITMzE3PmzEFERAQMBgNCQ0Mxffp0mM1mh2Ngz+eff44OHTrA3d0dTZs2xYsvvojr16877H/58mVMnToV7du3V05TxcfHY+vWrRXeppyDvO8s2btW1HK/pKSk4I477oCXlxd8fHxw9913210PAPz444/o2rUrPDw80KhRIzz22GPIzc2129fRNaobN27EkCFDEBwcDIPBgEaNGqF3796YP3++zTqOHz+Oxx9/3Go/9uvXDwsXLrTpu2DBAsTGxqJ+/fqoX78+YmNj7fZbuHAhJEmyu8zRfJXn2fnz55GQkAB/f394eHige/fuNvmV99qT7d27F6NGjUJQUBD0ej1CQ0Pxz3/+Ezk5OTZxAZWfVxUhv8bz8vIwYcIENG7cGO7u7ujUqZPd06SW+3ThwoXo3Lkz6tWrp7wGy3q9V/Q1fStj48iFCxfw7LPPomXLljAYDPD398e9995r931AHosrV65g8uTJyvyMjIzEihUrKrVdoOS1MmDAADRo0ADu7u7o0KED3n33XZhMpkqvq7Ti4mL85z//QdeuXeHl5YX69eujXbt2eO655xy+HmVlXTvu6LVR3mtW3u8AsHnzZqt5X3pdFR0Xy1h+/vln9OzZE15eXmV+JgFAdHQ0HnroIasiFQAaNWqECRMmAAC2bNlS5jrIPh5RrcPatGmDkSNH4uuvv8bKlSvxz3/+02HfrKwsdOvWDYWFhRg2bBjuv/9+FBYW4ujRo/jkk0/w7rvvQqfTYerUqVi4cCH++usvTJ06VXl+dHS01fqOHTuG7t27o2PHjhg7dixycnJsXuD2vPfee1i/fj3uv/9+DBs2DL/++ivef/99bN++HVu2bIGbm9stj0dGRgb69++Ps2fPolevXhgxYgQKCwtx4MABzJw5Ey+88EKZz7948SLi4uLw559/ol+/fhg1ahQyMzOxYsUKrFq1CsnJyejVq5fN8xITE7F582bceeediI+Px8qVKzFt2jQUFxfjzTffrFDsM2bMwOuvv64UcW5ubli6dCkOHTpkt/+lS5fQp08fHDhwAD179sQTTzyBgoIC/Pjjj+jfvz+WL1+OESNGVGjbt2LXrl14++230b9/f0yYMAFpaWlYuXIl9u3bh/3798Pd3V3p+9VXXyEhIQHe3t4YM2YMfH198csvv2DgwIEoLi6u0LxZtWoV7rrrLvj6+mL48OEICgrCxYsXsWfPHnz99dd4/PHHlb5bt27FsGHDcPnyZcTHx2PUqFHIzc1FWloaPvjgA6vCb9KkSfjwww/RpEkT5Qdz3333HcaNG6f0d1ZeXh569eoFHx8fjBkzBhcuXMDSpUsRHx+P1NRUdOjQAQAq9Nr76aefMHLkSGg0GgwfPhxNmzbFwYMH8dFHHyE5ORk7duxAgwYNlP6VnVeVUVxcjIEDB+LKlSsYM2YMCgsLsWzZMjzwwAPIzs62+370zjvvYOPGjRg+fDgGDRoErVZb5jYq85qu7Ng4Ir/+T58+jUGDBmHEiBG4cOECvvvuOyQnJ2P9+vWIjY21es6NGzcwaNAg5Obm4t5778XVq1exZMkSjBw5EklJSRg0aFCFxvTll1/G7Nmz0aRJE9xzzz3w8fHBb7/9hsTEROzYsQPLly+v0HrsuXbtGu644w5s27YNrVq1wrhx42AwGHD06FHMmzcPDz/8cIXGp6Iq8ppt3rw5pk6diunTpyM0NNTqtWk5729lXJYvX461a9fizjvvxFNPPYWCgoJbzkX+XNLpWHLdEkG1UmZmpgAg4uPjy+z3xRdfCABizJgxStvGjRsFADF16lSlbc6cOQKAeP/9923WkZOTY/W4b9++wtHUkuMCIF5//XW7fUJDQ0VoaKhV29SpUwUAodfrxZ49e5R2s9ksHnjgAQFAvPvuu2XmUDqGhIQEq/YuXboIAGL+/Pk2zzl16pTVYwCib9++Vm3jxo0TAMTLL79s1b5q1SoBQLRs2VKYTCalPSEhQQAQLVq0EFlZWUr7xYsXha+vr/Dy8hJFRUU2sZR29OhRodPpRJMmTcT58+eV9vz8fNGmTRu7scpj9tlnn1m1nz9/XjRt2lQEBASIa9eulbttOYfMzEybZfI+27hxo9Im7xcAYsmSJVb9x4wZIwCIxYsXW+Xg7e0tPD09RUZGhtJeXFws+vTpIwA4nCuW273nnnsEAJGenm4TZ3Z2tvLf169fF02aNBEajUasWbPGpq/lPNi8ebMAINq2bSvy8vKU9kuXLonWrVsLAGLLli1K+4IFCwQAsWDBApv1Opqv8lg99dRTVnPn888/FwDEhAkTrPqX9drLzs4W3t7eokmTJuLEiRNWyxYvXiwAiKefflppu5V5VVGhoaECgOjTp4/VHD916pTw9/cXBoNBnD59WmmX96mnp6fYu3evzfocjV9FX9OVHZuy9OjRQ2i1WpGUlGTVnpGRIby8vETHjh2t2uWxGD58uNVY/PrrrxV6D5etXbtW6X/lyhWl3Ww2iyeeeEIAECtWrFDay3qPtOf5559XPiuMRqPVsry8PHH58mXlsb15aO91KbP32qjoa1YI++/HssqOixyLRqMR69ats7vOyjAajaJjx45CkiSxb98+p9dXF/HUfx0XHBwMoOSUdUV4eHjYtDVs2LDS223cuDFeffXVSj/v4YcfRmRkpPJYkiTMnDkTWq3W7inVitq5cydSUlLQp08fPPbYYzbLQ0JCynx+cXExFi9eDD8/P7z22mtWy4YOHYo77rgDx44dw7Zt22yeO2XKFAQFBSmP/f39MXz4cFy+fBkZGRnlxv7tt9/CaDTiueeeQ2BgoNLu7e1tEwtQsq+XLl2Kv/3tb3j00UetlgUGBiIxMREXL17Er7/+Wu62b1WfPn1w//33W7WNHz8eQMnRVtnKlStRUFCA8ePHo3Xr1kq7m5tbhY82W7I3f/38/JT//vHHH3HmzBk89NBDGDx4sE1fy3mwaNEiACWnNH18fJT2Bg0aKEc0nZmTMk9PT7z11lvQaG6+XSckJECn01mNVXm++uorFBQUYNasWQgNDbVaNmrUKHTu3BlLlixR2io7r27FzJkzrY6Ih4SEYPLkySgqKrKKRfb444+jY8eOFVp3ZV7TlR0bR9LS0vD7778jISEB8fHxVstat26Nxx57TDlrUNp//vMfq7EYMGAAQkNDK7yP5R/qzJ8/H56enkq7JEmYPXs2JEm65V+fG41GzJ8/Hz4+Pvjggw9sjmT7+Pigfv36t7Tu8pT3mi3PrY7L8OHDMXDgwFuI2NqUKVOwb98+jBs3Tjn7QZXD49BUIXfddRdefvllTJw4EevXr8fgwYPRt29fhIWF3dL6oqKiKnTKtrTevXvbtIWGhqJp06Y4cOBAhU8Fl7Zz504AqPApttIOHz6M69evo3///nbvBtC/f3+sW7cO6enpNjnExMTY9Jc/RPPy8srd9p49ewDYHxt7bbt27YLJZEJRUZHda/qOHj2q5HTnnXeWu/1bUdGcy8otLi6uwqfSRo0ahe+//x7du3fHAw88gAEDBqB37942P7qqzDxIS0sDALvXKss/pEtPT69QfGVp3bq1TRGg0+nQqFGjCs0P2fbt2wEAO3bssHtruuvXryM7OxvZ2dnw9/ev9LyqLJ1Oh7i4OIfrlsfXUmV+iFKZfVnZsSlvPefPn7f72jp8+LDy/5ZFi6+vL1q0aGHTPyQkBH/88Ue58cvb9vT0xJdffml3uYeHh7L9yjp8+DAuX76MgQMHVunp/bJU9DVbnlsdl6r40dOnn36KWbNmoVOnTlVyGVBdxUK1jsvKygIABAQElNmvefPm2L59O6ZNm4bVq1dj2bJlAEp+/f7vf/8b9913X6W226hRo1uK19HzGjVqhBMnTuDy5cuV+rYty8/PBwA0adLkluKSr19yFJ98xNTedU7e3t42bXIBVpEfQMixWx71ktmL59KlSwCAbdu22T3CKyssLCx327eqojmXlZtWq63wvr7vvvuwcuVKvPfee/j000/x8ccfQ5Ik9O/fH//3f/+nXM9WmXlQUFAAjUZj97XTqFEjSJLk1HVtMntjBZSMV2V+ICPv948//rjMfoWFhfD396/0vKosf39/q6PEpdctb/9Wt1uZfVnZsSlvPatWrcKqVavKXI8lyyPylnQ6XYV/VHnp0iUYjcYy79t8q69pZ98fb0VFX7PludVxcXaOf/7553jqqafQsWNHrFu3rtqOONcFPPVfx8m/wOzatWu5fTt06IAVK1bg0qVL+OOPP/D666/j3LlzuP/++8sseOy51ZuSnz9/3mG7JEnw8vICAOUD0Gg02vS19wHo6+sLADhz5swtxSUXE47iO3funFW/qiR/yF24cMFmmb145Bief/55CCEc/rP8QY4jlR3nyiorN5PJVKlfYw8fPhybN29Gbm4u1qxZg0cffRSbNm3C4MGDlSOTlZkH3t7eMJvNuHjxos2yCxcuQAhhtb+re6zKI8eyb9++Mve7fOq7svOqsrKzs+0WYfK67RVvlXnfqOy+BCo+NuWt58MPPyxzPQkJCRXOo6K8vb3h5+dX5nYzMzNvad3Ovj8Ctzb/K/KaLc+tjoszfzjjs88+w+OPP4527dph/fr1t3TwhG5ioVqHHTlyBMuWLYPBYMDdd99d4ee5ubmhe/fumD59OubMmQMhBH755RdluXz9UlXcDqW03377zabtr7/+wqlTp9C+fXvltL98esreG2tZpxTXrl17S3FFRETA3d0du3btwtWrV22Wy18IKnoUoDKioqIA2B8be21du3aFJEkVPqVYlsqOc2WVldsff/xh90OvPF5eXhg8eDDmz5+PsWPH4vz589ixYweAys2DTp06AYDd2+3Y29/VPVZA2a89+ZfmFd3vlZ1XlWU0Gu3GIq9bHt9bVZl9Wdmxqe713Oq2c3JylEt3qlKbNm3g7e2NXbt2lXsbKkecmf9lvWaBkiLY0edNdY6LPZ999hkmTJiAtm3bYsOGDeWeraTysVCto7Zt24b4+HgUFRXhpZdeKveUTmpqqt3TmPLRD8vbCck/rrK8N2tV+eqrr7B3717lsRACr7zyCkwmk9WtSdq0aQMvLy/89NNPyuk4Od433njDZr1du3ZF165dsWXLFnz22Wc2y8s7kqDX6zF69GhkZ2dj1qxZVsuSkpKQnJyMli1bomfPnhVNtcIeeOABaLVavPfee1ZHvwoKCuzm2rhxY4wcORK///473nnnHeUeuJZ27Nhht+AuTT4SX/pHQytWrFDu6emM4cOHw9vbG19++SWOHDmitN+4caNSP+jZsmWL3Q8yebzk+fv3v/8dISEh+Oabb5CcnGzT33IeyEfFpk+fbvXayM/PV04zWh45i4mJgSRJWLJkidV9SI8ePVpl16+V9dobN24cvLy88Oqrr+LAgQM2y69evapcYwlUfl7dildeeQXFxcXK49OnT+ODDz6AwWDAqFGjnFp3ZV7TlR0bR7p164bY2FgsXrwYS5cutVluNpur5HVhz6RJkwCU/CjR3pmGc+fO3fJtxXQ6HSZMmID8/HxMnjzZ5rWUn5+PK1eulLkO+b3iq6++sjqS/scff+C///2vTf+KvmaBknl/+vRpu9utznEp7fPPP8eECRMQERGBDRs22L1shiqP16jWcseOHVMu6i8uLlb+hOq+ffug1Wrx2muvVegU79dff4158+ahT58+CA8Ph7e3Nw4ePIjVq1ejYcOGGDdunNL3b3/7G1asWIF7770XQ4YMgbu7O6KionDXXXc5nU98fDzi4uIwatQoBAQEYP369UhJSUH37t2t7ruo1+vxz3/+EzNnzkTnzp2VX9H//PPP6Nu3r90fTPz3v/9Fv3798Pjjj+Prr79GXFwcrl+/jgMHDiAtLa3c08xvvfUWNm/ejDfeeAO///47YmNjceLECSxfvhz16tXDggUL7F6T56yWLVvi9ddfx9SpUxEZGYmRI0dCp9Phu+++Q2RkpN07B3zyySfIyMjAiy++qOTq6+uLU6dOISUlBUePHsXZs2fL/DOxQEkhGR4ejoULF+LUqVPo1KkTDh06hA0bNmDo0KFYvXq1U7n5+Phgzpw5GDt2LLp27YpRo0bBx8cHv/zyCzw8PKzullCWSZMmISsrC7169ULz5s0hSRK2bt2KnTt3onv37sr9bQ0GA5YtW4bBgwdjyJAhGDx4MKKiolBQUID09HRcvXpVOfrTp08f/POf/8SHH36IDh064N5774UQAt999x1Onz6NSZMmoU+fPkoMwcHBGD16NL799lvExMRg8ODBuHDhAn744QcMHjwY3333nVNjBZT92gsICMDixYtx3333ISoqCoMHD0ZERASKiopw4sQJbN68GT169EBSUhKAW5tXlREUFITCwkJERkbirrvuUu6jmpOTgzlz5lTJ9ZAVfU1XdmzKsnjxYvTv3x+jRo3C+++/j86dO8PDwwMnT57EH3/8gYsXLzr9BxPsGTx4MKZMmYIZM2agZcuWGDx4MEJDQ5GTk4Njx47ht99+wxtvvIG2bdve0vr//e9/Y/v27fj666+xfft2DBkyBAaDAcePH0dSUhK2bt1a5hmj7t27o2fPntiwYQPi4uLQp08f/PXXX/jxxx9x11134YcffrDqX9HXLFAy75ctW4YRI0agU6dO0Gq1+Pvf/47IyMhqHxfZhg0b8Pjjj0MIgT59+mDu3Lk2faKjo6v1/tS1VtXf8YrUwPJ+pfI/Dw8PERQUJPr37y+mTJkijh07Zve59u6vt337djFhwgTRoUMH4evrKzw8PESrVq3E008/Lf766y+r59+4cUO8+OKLolmzZkKn01nds9TRPUwtlXUf1Y0bN4rPPvtMtG/fXhgMBhEUFCQmT54sCgoKbNZjMpnEtGnTRNOmTYVerxetW7cWH3zwgTh+/LjDGM6dOycmT54swsLChF6vFw0bNhSxsbHivffes+oHB/ftu3jxopg0aZIIDQ0Vbm5uwt/fX/zjH/+we/+8yt6DtDyfffaZaNeundDr9SIkJES88MIL4urVqw5jvXr1qnj77bdFTEyM8PT0FB4eHqJFixZixIgR4quvvhI3btyo0HYzMzPFiBEjhJeXl/D09BQDBgwQu3btKvM+qpW5v60QQvzwww8iJiZGGAwGERgYKB599FFx6dKlcueKbMmSJWLkyJEiPDxc1KtXT/j4+IioqCjx1ltvWd3/UXbs2DHxyCOPiJCQEOHm5iYCAwNFv379xFdffWXT98svvxRdu3YV9erVE/Xq1RNdu3YVX375pd2xunr1qpg0aZJo1KiRMBgMIjIyUvz3v/8t8z6qju4PaS/3sl57ssOHD4tHHnlEhIaGCr1eLxo0aCA6duwoJk2aJHbu3GmzncrOq4qQY7906ZJ4/PHHlfGIiooS3377rU3/8l4PZc2rir6mhaj82Dhy6dIl8dprr4kOHToIDw8PUb9+fdGqVSvxwAMPiO+//97uWNhT1n1xHVm3bp246667REBAgHBzcxONGzcWcXFxYsaMGeLkyZNKv8reR1WIkvsMv/vuuyI6OlrJq127duL5558Xubm55cadnZ0tHn74YdGwYUPh4eEhunfvLpKTk+3eR7Uyr9mzZ8+KkSNHCn9/f6HRaOzer7ii41LW/Y7LIj+vrH9lfe6RY5IQds77ERERVRP5z1E6+pO5REQyXqNKRERERKrEQpWIiIiIVIk/piIiIqesXLmyQn+Fq1+/fnb/khcRkSMsVImIyCkrV67EokWLKtS3X79+vDaViCqMP6YiIiIiIlWqVUdUzWYzsrKy4OXl5dSfPyMiIiKi6iGEwOXLlxEcHFzu/cVrVaGalZWFpk2bujoMIiIiIirHqVOnEBISUmafWlWoenl5AShJ3Nvb28XRlLhx4wbWrl2LQYMGwc3NzdXh1Goc69uHY337cKxvH4717cOxvn3UONYFBQVo2rSpUreVpVYVqvLpfm9vb1UVqvXq1YO3t7dqJkhtxbG+fTjWtw/H+vbhWN8+HOvbR81jXZHLNHkfVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqqapQbd68OSRJsvk3ceJEV4dGRERERLeZztUBWNq1axdMJpPyeP/+/bjjjjtw3333uTAqIiIiInIFVRWqAQEBVo9nz56N8PBw9O3b10UREREREZGrqKpQtVRcXIxvvvkGzz33HCRJstunqKgIRUVFyuOCggIAgNFohNFoBABoNBpoNBqYzWaYzWalr9xuMpkghCi3XavVQpIkZb2W7QCsjgTbazeZTJAkCTqdDkIIq/6SJEGr1drE6KhdLTnJqjqnkydPIjs7W+kvSRKEEFax22uX17dnzx6UJs8hy3XI7f7+/mjSpEm15lQb95O8DUmSak1OatxPlstrS05lxe7KnOR+8ryuDTnZi10NOcnbsHwvqek5ldfuqpxklvPa1TmV7l8W1RaqK1euRF5eHsaOHeuwz6xZszB9+nSb9rS0NHh6egIoOUobHh6OzMxMXLx4UekTEhKCkJAQHDlyBPn5+Up7WFgYAgMDsX//fly7dk1pj4iIgK+vL9LS0qwGPjIyEnq9HikpKVYxdOnSBcXFxUrRlJaWBp1Oh65duyI/Px+HDx9W+np4eCAqKgrZ2dk4fvy40u7j44O2bdsiKysLp0+fVtpdndPevXuVNq1WW6U57d69Gz/9/DPM/4vnt99+w5YtWzB69GiEhYUp/VetWoX09HRMmDAB/v7+AEpeSDExMejTpw+efvpp6PV6pf+8efNQUFCAxMREq5zeeecdBDZqhK8WLYKHh0e15FQb99PJkycBlMxrSZJqRU5q3U+WHwq1JSdAnftJoyn52YY8r2tDTmrdT/K8zsnJQXBwcK3ISaa2/dSyZUsA1vPa1TmlpaWhoiRR+hCTSsTHx0Ov1+Pnn3922MfeEdWmTZsiJycH3t7eAFz/raGoqAjJycmIj4+HTqfjt7tyckpNTUWPHj1w79QPENC8JQQAAQkaWE9Te+1aCPT1vIqNhZ4oPanlLZX+9eC5zGNYPuUp7Ny5E9HR0dWSU23cT0VFRUhKSlLmdW3ISa37yWg0Ijk5GUOHDlXir+k5lRW7K3O6ceMG1qxZo8zr2pCTvdjVkJM8rwcPHgyDwVArciqv3VU5mc1mrF692mpeuzqn3Nxc+Pn5IT8/X6nXHFHlEdW//voLv/76K77//vsy+xkMBhgMBpt2uSC0JA9yafKgVbS99HrLa5fXo9VqlT7yJQClOYqxsu3VnZO99qrKSZIkFBcXw695KwS1jbK7fUc0ZiNwegeC23SAWVOxqW1GyeUDGo3GJn7up7Lb5Vgt11fTc1LjfrL3YVFaTcupIjG6IifL0/2ll9fUnCrbfrtykue15XuJs7E7aq/r+0kuRO3NazXl5Iiqbk8lW7BgAQIDAzFs2DBXh0JERERELqK6QtVsNmPBggVISEioVMVNRERERLWL6grVX3/9FSdPnsT48eNdHQoRERERuZDqDlkOGjTI5hZCRERERFT3qO6IKhERERERwEKViIiIiFSKhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUSXWF6pkzZ/DQQw/Bz88PHh4e6NixI1JSUlwdFhERERHdZjpXB2ApNzcXPXv2RP/+/bFmzRoEBATg6NGjaNCggatDIyIiIqLbTFWF6ltvvYWmTZtiwYIFSluLFi0c9i8qKkJRUZHyuKCgAABgNBphNBoBABqNBhqNBmazGWazWekrt5tMJgghym3XarWQJElZr2U7AJhMpjLbTSYTJEmCTqeDEMKqvyRJ0Gq1NjE6aj99+jQuXboEIYRVjJIkQZKkSrdbrltuB6D09ff3R0hIiMNcqyInedyFENDr9dBAQDKbICQJkDSQhBmwiF1IGkCSrNols8X2zdYxCqnk5IEkrHMFhDIGlvu2KnNy9dyrrpzkbUiSVGtyUuN+slxeW3IqK3ZX5iT3k+d1bcjJXuxqyEnehuV7SU3Pqbx2V+Uks5zXrs6pdP+yqKpQ/emnnxAfH4/77rsPmzdvRpMmTfDUU0/hscces9t/1qxZmD59uk17WloaPD09AQABAQEIDw9HZmYmLl68qPQJCQlBSEgIjhw5gvz8fKU9LCwMgYGB2L9/P65du6a0R0REwNfXF2lpaVYDHxkZCb1eb3N5QpcuXVBcXIw9e/YoMel0OnTt2hX5+fk4fPiw0tfDwwNRUVHIzs7G8ePHlXYfHx+0bdsWWVlZOH36NADg2rVrmPPhh1j5ww8YNmwYoqOjlf6//fYbtmzZgtGjRyMsLExpX7VqFdLT0zFhwgT4+/sr7YsXL8bx48eRmJgIvV6vtM+bNw8FBQVITEwEAGi0WvTv1w+9e/dGcXEx9u7dq/TVarVO52S5n65cuYLExEQ0N1yHe3YGCjwDUOAZAL/8U3AvLlT653oFodCjARrlZkJnLPmyIuHmiyf40lFIFi++cw3DYdLo0CQ7w2o/ZQHw8/NDTk6Osg+rOidXzb3q3E8nT54EUDKvJUmqFTmpdT9ZfijUlpwAde4njabkC608r2tDTmrdT/K8zsnJQXBwcK3ISaa2/dSyZUsA1vPa1TmlpaWhoiRh+S7oYu7u7gCA5557Dvfddx927dqFyZMn49NPP0VCQoJNf3tHVJs2bYqcnBx4e3sDcP23hqKiIiQnJyM+Ph46nc7pb3fp6emIi4vDPdM+RKMWLSFZbFMAEJCggfUuddReskZH7SUXMF88cQzfTZ+Mbdu2ISYmxm6uVfmNNTU1FT169MATC1YhuE3HSh1R1ZiNaJ2VgoyQWAirkXF8RPV0xj58/NAg7Ny506ro57fwsnMqKipCUlKSMq9rQ05q3U9GoxHJyckYOnSoEn9Nz6ms2F2Z040bN7BmzRplXteGnOzFroac5Hk9ePBgGAyGWpFTee2uyslsNmP16tVW89rVOeXm5sLPzw/5+flKveaIqo6oms1mdOnSBTNnzgQAdOrUCfv373dYqBoMBhgMBpt2uSC0JA9yafKgVbS99HrLa5fXo9VqlT7yJQClOYrRsl2j0cBoNCKwRSsEt42yu82qZIaE4uJiaDQa5ZuYvdidyan0eoqLi2GGBKG5uQ9KClPb+CzbhUXBbflc6/6l20suidBoNDbxV1VOrpp71bmf5DbLeV1W7DUlJzXuJ3sfFqXVtJwqEqMrcrI83V96eU3NqbLttysneV5bvpc4G7uj9rq+n+RC1N68VlNOjqjqV/9BQUFo166dVVvbtm2V04xEREREVHeoqlDt2bMnMjKsryE8cuQIQkNDXRQREREREbmKqgrVZ599Ftu3b8fMmTNx7NgxfPvtt5g/fz4mTpzo6tCIiIiI6DZTVaHatWtX/PDDD1i8eDE6dOiAGTNm4P3338eDDz7o6tCIiIiI6DZT1Y+pAODOO+/EnXfe6eowiIiIiMjFVHVElYiIiIhIxkKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqqSqQnXatGmQJMnqX0REhKvDIiIiIiIX0Lk6gNLat2+PX3/9VXms06kuRCIiIiK6DVRXBep0OjRu3NjVYRARERGRi6muUD169CiCg4Ph7u6OuLg4zJo1C82aNbPbt6ioCEVFRcrjgoICAIDRaITRaAQAaDQaaDQamM1mmM1mpa/cbjKZIIQot12r1UKSJGW9lu0AYDKZymw3mUyQJAk6nQ5CCKv+kiRBq9XaxGiv3Ww23zzKLMyQLGIUkgRIGkjCDFi1awBJctxuto5dSCVXhEjCDA0E9Ho9zGazMh6lc3U2J+DmuAtRsj0NBCSzqVI5WeZRVk7WBCRJgtlsttq3VZmTq+dedeUkb0OSpFqTkxr3k+Xy2pJTWbG7MifL9zhJkmpFTvZiV0NO8jYs30tqek7ltbsqJ5nlvHZ1TqX7l0VVhWpsbCwWLlyINm3a4OzZs5g+fTp69+6N/fv3w8vLy6b/rFmzMH36dJv2tLQ0eHp6AgACAgIQHh6OzMxMXLx4UekTEhKCkJAQHDlyBPn5+Up7WFgYAgMDsX//fly7dk1pj4iIgK+vL9LS0qwGPjIyEnq9HikpKVYxdOnSBcXFxdizZ48Sk06nQ9euXZGfn4/Dhw8rfT08PBAVFYXs7GwcP35caffx8UHbtm2RlZWF06dPAwDy8/MRHx8PAGhw5Rw8r+Up/Qs8A1DgGQC//FNwLy5U2nO9glDo0QCNcjOhM94s7LN9m+G6vj6CLx2FZDFRzzUMh0mjQ5PsDPgZriMxMRE5OTkwmUwoLi7G3r17lb5ardbpnCz305UrV5CYmIjmhutwz86oVE4Sbr54ysrJUhYAPz8/5OTkKPuwqnNy1dyrzv108uRJACXzWpKkWpGTWveT5YdCbckJUOd+0mhKvtDK87o25KTW/STP65ycHAQHB9eKnGRq208tW7YEYD2vXZ1TWloaKkoSlu+CKpOXl4fQ0FC89957eOSRR2yW2zui2rRpU+Tk5MDb2xuA6781FBUVITk5GfHx8dDpdE5/u0tPT0dcXByeWJSEJhEdq/2IalbGPnw6bhi2bduGmJgYu7lW5TfW1NRU9OjRA08sWIXgNh0rlZPGbETrrBRkhMRC4Oa3yNI5WTqdsQ8fPzQIO3fuRHR0dLXkVFO/hZeVU1FREZKSkpR5XRtyUut+MhqNSE5OxtChQ5X4a3pOZcXuypxu3LiBNWvWKPO6NuRkL3Y15CTP68GDB8NgMNSKnMprd1VOZrMZq1evtprXrs4pNzcXfn5+yM/PV+o1R1R1RLU0X19ftG7dGseOHbO73GAwwGAw2LTLBaEleZBLkwetou2OftzlqF1ej1arVfrIlwCU5ihGy3aNRnNzQkgaCMmm+/+KuEq0a+znKiQtzJBQXFwMjUajfBOzF7szOZVeT3FxMcyQrOKqSE7C4ohqWTmV2iKEENBoNDbxV1VOrpp71bmf5DbLeV1W7DUlJzXuJ3sfFqXVtJwqEqMrcrI83V96eU3NqbLttysneV5bvpc4G7uj9rq+n+RC1N68VlNOjqjq9lSlXblyBX/++SeCgoJcHQoRERER3WaqKlRfeOEFbN68GSdOnMDvv/+Ou+++G1qtFqNHj3Z1aERERER0m6nq1P/p06cxevRo5OTkICAgAL169cL27dsREBDg6tCIiIiI6DZTVaG6ZMkSV4dARERERCqhqlP/REREREQyFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKqkc3YF586dwxdffIHdu3cjPz8fZrPZarkkSVi/fr2zmyEiIiKiOsapQnXv3r3o168frl27hjZt2mDfvn1o164d8vLycObMGYSHh6Np06ZVFSsRERER1SFOnfp/6aWXUL9+fWRkZODXX3+FEAIffPABTp06haVLlyI3NxezZ8+uqliJiIiIqA5xqlDdtm0bJkyYgGbNmkGjKVmVfOr/vvvuw4MPPojExETnoyQiIiKiOsepQtVsNqNRo0YAAF9fX2i1Wly6dElZ3rFjR6SmpjoXIRERERHVSU4Vqi1atEBmZmbJijQatGjRAr/++quy/Pfff4evr69TARIRERFR3eRUoTpo0CAsX75cefzkk0/i888/x8CBAzFgwAAsWrQIDzzwgNNBEhEREVHd49Sv/l999VWMHj0aN27cgJubG5555hkUFhbiu+++g1arxZQpU/DKK69UVaxEREREVIc4Vag2aNAAMTExymNJkvDaa6/htddeczowIiIiIqrb+JepiIiIiEiVKnVEdfz48ZAkCfPnz4dWq8X48ePLfY4kSfjiiy9uOUAiIiIiqpsqVahu2LABGo0GZrMZWq0WGzZsgCRJZT6nvOVERERERPZUqlA9ceJEmY+JiIiIiKoKr1ElIiIiIlVyqlDdvXs3PvnkE4fLP/nkE6SnpzuzCSIiIiKqo5wqVF999VWrv0RV2oYNG3irKiIiIiK6JU4Vqqmpqejdu7fD5b1790ZKSoozmyAiIiKiOsqpQvXy5cvQ6Rz/Hkuj0SA/P9+ZTRARERFRHeVUodqqVSusXbvW4fKkpCSEhYU5swkiIiIiqqOcKlQfeeQRrFq1Cs899xzy8vKU9ry8PDz77LNISkrCI488ckvrnj17NiRJwjPPPONMiERERERUQ1XqPqqlTZo0Cenp6Xj//fcxZ84cBAcHAwCysrJgNpsxZswYPPvss5Ve765duzBv3jxERkY6Ex4RERER1WBOHVGVJAkLFizA+vXr8cQTT6BDhw7o0KEDnnzySWzYsAGLFi2q9F+munLlCh588EF89tlnaNCggTPhEREREVEN5tQRVVn//v3Rv3//qlgVJk6ciGHDhmHgwIF44403yuxbVFSEoqIi5XFBQQEAwGg0wmg0Aij5QZf8Z1/NZrPSV243mUwQQpTbrtVqIUmSsl7LdgAwmUxltptMJkiSBJ1OByGEVX9JkqDVam1itNduNptv/oBNmCFZxCgkCZA0kIQZsGrXAJLkuN1sHbuQSr6/SMIMDQT0ej3MZrMyHqVzdTYn4Oa4C1GyPQ0EJLOpUjlZ5lFWTtYEJEmC2Wy22rdVmZOr51515SRvQ5KkWpOTGveT5fLaklNZsbsyJ8v3OPkgS03PyV7sashJ3oble0lNz6m8dlflJLOc167OqXT/slRJoVpVlixZgt27d2PXrl0V6j9r1ixMnz7dpj0tLQ2enp4AgICAAISHhyMzMxMXL15U+oSEhCAkJARHjhyxujNBWFgYAgMDsX//fly7dk1pj4iIgK+vL9LS0qwGPjIyEnq93uY2XF26dEFxcTH27NmjxKTT6dC1a1fk5+fj8OHDSl8PDw9ERUUhOzsbx48fV9p9fHzQtm1bZGVl4fTp0wCA/Px8xMfHAwAaXDkHz2t5Sv8CzwAUeAbAL/8U3IsLlfZcryAUejRAo9xM6Iw3C/ts32a4rq+P4EtHIVlM1HMNw2HS6NAkOwN+hutITExETk4OTCYTiouLsXfvXqWvVqt1OifL/XTlyhUkJiaiueE63LMzKpWThJsvnrJyspQFwM/PDzk5Oco+rOqcXDX3qnM/nTx5EkDJvJYkqVbkpNb9ZPmhUFtyAtS5nzSaki+08ryuDTmpdT/J8zonJwfBwcG1IieZ2vZTy5YtAVjPa1fnlJaWhoqShOW7YCUJITB//nx88cUXOH78OHJzc203YKfStufUqVPo0qUL1q1bp1yb2q9fP0RHR+P999+3+xx7R1SbNm2KnJwceHt7A3D9t4aioiIkJycjPj4eOp3O6W936enpiIuLwxOLktAkomO1H1HNytiHT8cNw7Zt2xATE2M316r8xpqamooePXrgiQWrENymY6Vy0piNaJ2VgoyQWAhYX3Li6Ijq6Yx9+PihQdi5cyeio6OrJaea+i28rJyKioqQlJSkzOvakJNa95PRaERycjKGDh2qxF/TcyordlfmdOPGDaxZs0aZ17UhJ3uxqyEneV4PHjwYBoOhVuRUXrurcjKbzVi9erXVvHZ1Trm5ufDz80N+fr5Srzni1BHVF198Ee+99x6io6Px0EMPOXVNaWpqKi5cuIDOnTsrbSaTCVu2bMFHH32EoqIiJUGZwWCAwWCwWZdcEFqSB7m00ussr93RfWMdtcvr0Wq1Sh/5EoDSHMVo2a7RaG5OCEkDYecS4JIirhLtGvu5CkkLMyQUFxdDo9Eo38Tsxe5MTqXXU1xcDDMkq7gqkpOwOKJaVk6ltgghBDQajU38VZWTq+Zede4nuc1yXpcVe03JSY37yd6HRWk1LaeKxOiKnCxP95deXlNzqmz77cpJnteW7yXOxu6ova7vJ7kQtTev1ZSTI04VqosWLcK9996LZcuWObMaAMCAAQOwb98+q7Zx48YhIiIC//rXvxwODhERERHVTk4VqteuXcPAgQOrJBAvLy906NDBqs3T0xN+fn427URERERU+zl1e6oBAwZU+IdPRERERESV4VSh+sknn2D79u2YOXMmcnJyqiomxaZNmxz+kIqIiIiIajenCtU2bdrg+PHjmDJlCgIDA+Hp6Qlvb2+rfz4+PlUVKxERERHVIU5do3rvvfdW+i9PERERERFVhFOF6sKFC6soDCIiIiIia06d+iciIiIiqi5OF6onT57EE088gTZt2qBBgwbYsmULgJI/9Tdp0qRK/ZksIiIiIiKZU6f+Dx48iN69e8NsNiM2NhbHjh1T/mqSv78/tm7disLCQnzxxRdVEiwRERER1R1O/wlVX19fbN++HZIkITAw0Gr5sGHDsHTpUqcCJCIiIqK6yalT/1u2bMGTTz6JgIAAu7/+b9asGc6cOePMJoiIiIiojnKqUDWbzahXr57D5RcvXoTBYHBmE0RERERURzlVqHbu3BmrVq2yu8xoNGLJkiXo3r27M5sgIiIiojrKqUL15ZdfRlJSEp588kns378fAHD+/Hn8+uuvGDRoEA4dOoSXXnqpSgIlIiIiorrFqR9TDRkyBAsXLsTkyZMxf/58AMBDDz0EIQS8vb3x1VdfoU+fPlUSKBERERHVLU4VqgAwZswY3HPPPVi7di2OHTsGs9mM8PBwxMfHw8vLqypiJCIiIqI6yOlCFQA8PT1x9913V8WqiIiIiIgAOFmonjx5skL9mjVr5sxmiIiIiKgOcqpQbd68ud37p5ZmMpmc2QwRERER1UFOFapffvmlTaFqMplw4sQJfPXVVwgMDMTEiROdCpCIiIiI6ianCtWxY8c6XPavf/0LsbGxyM/Pd2YTRERERFRHOXUf1bJ4enpi3Lhx+M9//lNdmyAiIiKiWqzaClWg5E+snjt3rjo3QURERES1VJXcnqq0goICbNmyBe+88w46depUHZsgIiIiolrOqUJVo9E4/NW/EALNmjXDJ5984swmiIiIiKiOcqpQff31120KVUmS0KBBA4SHh2PQoEHQ6arloC0RERER1XJOVZHTpk2rojCIiIiIiKw59WMqo9GIgoICh8sLCgpgNBqd2QQRERER1VFOFaqTJk1Cjx49HC7v2bMnnn/+eWc2QURERER1lFOFalJSEv7xj384XP6Pf/wDq1evdmYTRERERFRHOVWoZmVloUmTJg6XBwcH48yZM85sgoiIiIjqKKcKVT8/P2RkZDhcfujQIXh7ezuzCSIiIiKqo5wqVAcPHox58+YhLS3NZtnu3bsxf/58DBkyxJlNEBEREVEd5dTtqWbMmIGkpCR069YNf//739G+fXsAwP79+/Hzzz8jMDAQM2bMqJJAiYiIiKhucapQDQ4ORkpKCl566SX8+OOP+OGHHwAA3t7eePDBBzFz5kwEBwdXSaBEREREVLc4/WejgoKCsGjRIgghcPHiRQBAQECAwz+tSkRERERUEVX2900lSYLBYED9+vVZpBIRERGR05z6MRUApKSkYPDgwahXrx78/PywefNmAEB2djaGDx+OTZs2ObsJIiIiIqqDnCpUf//9d/Tq1QtHjx7FQw89BLPZrCzz9/dHfn4+5s2b53SQRERERFT3OFWovvLKK2jbti0OHjyImTNn2izv378/duzY4cwmiIiIiKiOcqpQ3bVrF8aNGweDwWD3utQmTZrg3LlzzmyCiIiIiOoopwpVNzc3q9P9pZ05cwb169d3ZhNEREREVEc5Vah2794dK1assLussLAQCxYsQN++fZ3ZBBERERHVUU4VqtOnT0dKSgqGDRuGNWvWAAD27NmDzz//HDExMbh48SKmTJlSJYESERERUd3i1H1UY2NjsXr1ajz55JN4+OGHAQDPP/88ACA8PByrV69GZGSk81ESERERUZ1zy4WqEAKXL19Gjx49kJGRgfT0dBw9ehRmsxnh4eGIiYmp9I3/586di7lz5+LEiRMAgPbt2+P111/HkCFDbjVMIiIiIqqhbrlQLS4uRsOGDTFz5ky8+OKLiI6ORnR0tFPBhISEYPbs2WjVqhWEEFi0aBGGDx+OtLQ0tG/f3ql1ExEREVHNcsuFqsFgQOPGjWEwGKosmLvuusvq8Ztvvom5c+di+/btdgvVoqIiFBUVKY8LCgoAAEajEUajEQCg0Wig0WhgNput7lAgt5tMJgghym3XarWQJElZr2U7AJhMpjLbTSYTJEmCTqeDEMKqvyRJ0Gq1NjHaazebzdDp/rfbhBmSRYxCkgBJA0mYAat2DSBJjtvN1rELqeTSZUmYoYGAXq+H2WxWxqN0rs7mBNwcdyFKtqeBgGQ2VSonyzzKysmagCRJMJvNVvu2KnNy9dyrrpzkbUiSVGtyUuN+slxeW3IqK3ZX5mT5HiefEazpOdmLXQ05yduwfC+p6TmV1+6qnGSW89rVOZXuXxanrlEdO3YsvvrqKzz55JPQ6/XOrMqGyWTC8uXLUVhYiLi4OLt9Zs2ahenTp9u0p6WlwdPTEwAQEBCA8PBwZGZm4uLFi0qfkJAQhISE4MiRI8jPz1faw8LCEBgYiP379+PatWtKe0REBHx9fZGWlmY18JGRkdDr9UhJSbGKoUuXLiguLsaePXuUmHQ6Hbp27Yr8/HwcPnxY6evh4YGoqChkZ2fj+PHjSruPjw/atm2LrKwsnD59GgCQn5+P+Ph4AECDK+fgeS1P6V/gGYACzwD45Z+Ce3Gh0p7rFYRCjwZolJsJnfFmYZ/t2wzX9fURfOkoJIuJeq5hOEwaHZpkZ8DPcB2JiYnIycmByWRCcXEx9u7dq/TVarVO52S5n65cuYLExEQ0N1yHe3ZGpXKScPPFU1ZOlrIA+Pn5IScnR9mHVZ2Tq+Zede6nkydPAiiZ15Ik1Yqc1LqfLD8UaktOgDr3k0ZT8oVWnte1ISe17id5Xufk5CA4OLhW5CRT235q2bIlAOt57eqc0tLSUFGSsHwXrKSlS5dixowZKCoqwtixY9G8eXN4eHjY9LvnnnsqvM59+/YhLi4O169fR/369fHtt99i6NChdvvaO6LatGlT5OTkwNvbG4DrvzUUFRUhOTkZ8fHx0Ol0Tn+7S09PR1xcHJ5YlIQmER2r/YhqVsY+fDpuGLZt24aYmBi7uVblN9bU1FT06NEDTyxYheA2HSuVk8ZsROusFGSExELA+vpoR0dUT2fsw8cPDcLOnTutLl3ht/CycyoqKkJSUpIyr2tDTmrdT0ajEcnJyRg6dKgSf03PqazYXZnTjRs3sGbNGmVe14ac7MWuhpzkeT148GAYDIZakVN57a7KyWw2Y/Xq1Vbz2tU55ebmws/PD/n5+Uq95ohTR1RHjx6t/Lej21BJkmQTaFnatGmD9PR05OfnY8WKFUhISMDmzZvRrl07m74Gg8HupQdyQWhJHuTS5EGraHvp9ZbXLq9Hq9UqfeRLAEpzFKNlu0ajuTkhJA2End+rlRRxlWjX2M9VSFqYIaG4uBgajUb5JmYvdmdyKr2e4uJimCFZxVWRnITFEdWyciq1RQghoNFobOKvqpxcNfeqcz/JbZbzuqzYa0pOatxP9j4sSqtpOVUkRlfkZHm6v/TymppTZdtvV07yvLZ8L3E2dkftdX0/yYWovXmtppwcqXSh+sorr2DUqFGIjIzExo0bK/v0cun1euUwdUxMDHbt2oUPPvgA8+bNq/JtEREREZF6VbpQnT17Njp06IDIyEj07dsXOTk5CAwMxLp16/C3v/2tygM0m81Wp/eJiIiIqG5w6tS/zInLXK28/PLLGDJkCJo1a4bLly/j22+/xaZNm5CcnFwl6yciIiKimqNKCtWqcuHCBTz88MM4e/YsfHx8EBkZieTkZNxxxx2uDo2IiIiIbjNVFapffPGFq0MgIiIiIpW4pUL1xIkT2L17NwAo99k6evQofH197fbv3LnzrUVHRERERHXWLRWqU6ZMsbkd1VNPPWXTTwhR6dtTEREREREBt1CoLliwoDriICIiIiKyUulCNSEhoTriICIiIiKyYvvnCIiIiIiIVICFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVVFWozpo1C127doWXlxcCAwMxYsQIZGRkuDosIiIiInIBVRWqmzdvxsSJE7F9+3asW7cON27cwKBBg1BYWOjq0IiIiIjoNtO5OgBLSUlJVo8XLlyIwMBApKamok+fPi6KioiIiIhcQVWFamn5+fkAgIYNG9pdXlRUhKKiIuVxQUEBAMBoNMJoNAIANBoNNBoNzGYzzGaz0lduN5lMEEKU267VaiFJkrJe2ZkzZ5CdnW3VFwAkSQIAmEwmAEBaWpqybiGEVX9JkiBJUoXaMzIyoNP9b7cJMySL/kKSAEkDSZgBq3YNIEmO280mq9iFVHKgXRJmaCCg1+thNpuVGOScZDqdDkIIq3ZJkqDVam3G3VG75djo9XpoICCZTZXKyTKPsnKyJiBJEsxms9W+rcqcqmvuabVaALb7w1F7Veckb0OSpFqTkxr3k+Xy2pJTWbG7MifL9zj5Pbym52QvdjXkJG/D8r2kpudUXrurcpJZzmtX51S6f1lUW6iazWY888wz6NmzJzp06GC3z6xZszB9+nSb9rS0NHh6egIAAgICEB4ejszMTFy8eFHpExISgpCQEBw5ckQpiAEgLCwMgYGB2L9/P65du6a0R0REwNfXF2lpacrAX7t2DQ8nJODC+fNITEy0iuGdd96Bt7c3nnzyScTExOCXX37B9evX8c477yAsLAyjR49W+mZnZ2PevHmIjo7GsGHDlPbjx49j8eLF6NOnD3r37q20x8fHAwAaXDkHz2t5SnuBZwAKPAPgl38K7sU3L5fI9QpCoUcDNMrNhM54s7DP9m2G6/r6CL50FJLFRD3XMBwmjQ5NsjPgZ7iOxMRE5OTkwGQyobi4GHv37lX6arVadO3aFfn5+Th8+LDS7uHhgaioKGRnZ+P48eNKu4+PD9q2bYusrCycPn1aaZf305UrV5CYmIjmhutwz86oVE4Sbr54ysrJUhYAPz8/5OTkICUlpVpyqo65BwCRkZHQ6/VK3LIuXbpU+346efIkgJLXmiRJtSInte4nyw+F2pIToM79pNGUfKGV53VtyEmt+0me1zk5OQgODq4VOcnUtp9atmwJwHpeuzqntLQ0VJQkSh8KVIknn3wSa9aswdatWxESEmK3j70jqk2bNkVOTg68vb0BVO+3hvT0dHTr1g33zfgEjVu0tIpN3pIbBPp6XsXmwnowQYIZEgBhc3GwGRIkCEjltB/9YxPWffoWnliUhCYRHav9iGpWxj58Om4Ytm3bhpiYGADV+401NTUVPXr0wBMLViG4TcdK5aQxG9E6KwUZIbE2I+noiOrpjH34+KFB2LlzJ6Kjo6slp5r6LbysnIqKipCUlIT4+HjodLpakZNa95PRaERycjKGDh2qxF/TcyordlfmdOPGDaxZs0aZ17UhJ3uxqyEneV4PHjwYBoOhVuRUXrurcjKbzVi9erXVvHZ1Trm5ufDz80N+fr5SrzmiyiOqTz/9NH755Rds2bLFYZEKAAaDAQaDwaZdp9PdPD3+P/IglyYPWkXbLdcrn6oObNEKQW2j7PbXmI3A6R1o3KYjzBrnh/tc5rGbE0LSQJSubCEXcZVo19jPVUhamCGhuLgYGo1G+SZWemyBkheDvXZH4+6oXZJKtmeGZBVXRXISFkdUy8qp1BYhhIBGo7GJv6pyqo65d6vtVZmTHKvl+mp6TmrcT/Y+LEqraTlVJEZX5GR5ur/08pqaU2Xbb1dO8ry2fC9xNnZH7XV9P8mFqL15raacHFFVoSqEwD//+U/88MMP2LRpE1q0aOHqkIiIiIjIRVRVqE6cOBHffvstfvzxR3h5eeHcuXMASq6x8PDwcHF0RERERHQ7qeo+qnPnzkV+fj769euHoKAg5d/SpUtdHRoRERER3WaqOqKq0t91EREREZELqOqIKhERERGRjIUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVElVheqWLVtw1113ITg4GJIkYeXKla4OiYiIiIhcRFWFamFhIaKiovDxxx+7OhQiIiIicjGdqwOwNGTIEAwZMsTVYRARERGRCqiqUK2soqIiFBUVKY8LCgoAAEajEUajEQCg0Wig0WhgNpthNpuVvnK7yWSCEKLcdq1WC0mSlPUCgNlshiRJAAQks8kqNiGVHKyW2yWzCRIkCI0WEAKSuBkLJKmkv8N2M6T/xaKVAJ3uf7vNor1kmxIgaUrWYdWuASTJcbuj2IUZGgjo9XqYzWZlPEwm6/46nQ5CCKt2SZKg1Wptxt1RuzzuQpRsT/O/Ma1MTpZ5lJWTNQFJkmA2m632bVXmVB1zT24HbPeHo/aqzknehiRJtSYnNe4ny+W1JaeyYndlTpbvcSXv7TU/J3uxqyEneRuW7yU1Pafy2iub05kzZ5CdnW21Dnn9QgirdkmSIEmS3Xb5cVpaGjQajcP+/v7+aNas2W2Ze6X7l6VGF6qzZs3C9OnTbdrT0tLg6ekJAAgICEB4eDgyMzNx8eJFpU9ISAhCQkJw5MgR5OfnK+1hYWEIDAzE/v37ce3aNaU9IiICvr6+SEtLUwY+Pz8ffn5+0ABokp1hFcMZ/zbQmo0IunQMABB86RjMGi3O+EfA/UYh/PNOKn2NOgPONQyH5/U8NLh8Vmm/rvdEtm8ovK/mwLuwJHavpg1QEB8PAGhw5Rw8r+Up/Qs8A1DgGQC//FNwLy5U2nO9glDo0QCNcjOhM94s7LN9m+G6vj6CLx2FZPHiO9cwHCaNDk2yM+BnuI7ExETk5OTAZDKhuLgYe/fuVfpqtVp07doV+fn5OHz4sNLu4eGBqKgoZGdn4/jx40q7j48P2rZti6ysLJw+fVppl/fTlStXkJiYiOaG63DPzqhUThJuvnjKyslSFgA/Pz/k5OQgJSWlWnKqjrkHAJGRkdDr9Urcsi5dulT7fjp5smT+pqWlQZKkWpGTWveT5YdCbckJUOd+kj/E5XldG3JS636S53VOTg6Cg4NrRU6yqthP165dw9333AM3nQ4TJkxQ2ouLi/HOO+8gLCwMo0ePVtqzs7Mxb948REdHY9iwYUr78ePHsXLlSixevBi//PKLUminp6dj1apVGDZsGKKjowEAGq0W99x9N6Kjo6t97qWlpaGiJFG6VFcJSZLwww8/YMSIEQ772Dui2rRpU+Tk5MDb2xtA9X4TSk9PR7du3TDxm7UIadPRKjb5CJ7WVIzWWSk4EtwFZo3O6SOqe5J/wPKp/8QTi5LQJKJjtR9RzcrYh0/HDcO2bdsQExMDoHq/saampqJHjx54YsEqBLfpWKmcNGYjWmelICMkFgKSw5wsnc7Yh48fGoSdO3cqL9aqzqk2Hi0pKipCUlIS4uPjodPpakVOat1PRqMRycnJGDp0qBJ/Tc+prNhdmdONGzewZs0aZV7Xhpzsxa6GnOR5PXjwYBgMhlqRU3ntlckpPT0dXbt2xcg35qJxi5ZW/c0oOZNb+kdG5pLztqU+/QAJQH/PQmwurAfT/5YKAMKi/8UTx/Dd9Mn4/fffERMTU+1zLzc3F35+fsjPz1fqNUdq9BFVg8EAg8Fg067T6W6eHv8feZBLkwetou2W65UPv0M+pW+H3C402pt9JAlCstPfYbsG4n8zzyQsDplbtFttU9LAZqaW1e4odkkLMyQUFxdDo9EoRxhKj21J6JLddkfj7qhdkkq2Zy41phXJSVgcUS0rp1JbhBACGo3GJv6qyqk65t6ttldlTnKsluur6TmpcT/Z+7AorablVJEYXZGT5en+0strak6Vbb9dOcnz2vK9xNnYHbXXxP0kbyewRSsEtY2y27+iNGYjcHoHGrfpCLPG/rblz/rSl7yUVp37yRFV/eqfiIiIiEimqiOqV65cwbFjx5THmZmZSE9PR8OGDdGsWTMXRkZEREREt5uqCtWUlBT0799fefzcc88BABISErBw4UIXRUVERERErqCqQrVfv342t2EgIiIiorqJ16gSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVSZaH68ccfo3nz5nB3d0dsbCx27tzp6pCIiIiI6DZTXaG6dOlSPPfcc5g6dSp2796NqKgoxMfH48KFC64OjYiIiIhuI52rAyjtvffew2OPPYZx48YBAD799FOsWrUKX375JV566SWrvkVFRSgqKlIe5+fnAwAuXboEo9EIANBoNNBoNDCbzTCbzUpfud1kMkEIUW67VquFJEnKegGgoKAAAHDm0F7cuHrFKjb5mToINPW8hr/StsMECQIS8L//te4vQYJAaaXbL538E1qt1u42K7OemzE6agckADknj8PNzQ2pqam4fPlyyXJh3V+j0UAIYdUuSRIkSap0e0ZGBtzc3HDu8M38KpqT9n9jnZm2w6a3ZU6WLvx1HACQmpqq7M+qzql0u1arVdoqsx7L+Su3A7b7o3S7PP+rMieTyYSrV6/it99+g0ajsekvb7O6cpLJOVmuq6r2U1ntWq3W5j2iqnOS281mM65evYpt27Yp8VRHTmXtv6rOqSLbrM79J8dpmZecp+W8djYny/ay5kxV5VT6M07uU5X7yVF7ZfefPNZbt261ek8sKyfL2Esvq46cSrfL733Orqcir6ejR48CcFRfVK6OkAA09byq1CH2+suf9ZcvX0ZBQYFTtZHcDsBqvCzbc3NzbXJ2RBIV6XWbFBcXo169elixYgVGjBihtCckJCAvLw8//vijVf9p06Zh+vTptzlKIiIiInLWqVOnEBISUmYfVR1Rzc7OhslkQqNGjazaGzVqhMOHD9v0f/nll/Hcc88pj81mMy5dugQ/Pz/lG4qrFRQUoGnTpjh16hS8vb1dHU6txrG+fTjWtw/H+vbhWN8+HOvbR41jLYTA5cuXERwcXG5fVRWqlWUwGGAwGKzafH19XRNMOby9vVUzQWo7jvXtw7G+fTjWtw/H+vbhWN8+ahtrHx+fCvVT1Y+p/P39odVqcf78eav28+fPo3Hjxi6KioiIiIhcQVWFql6vR0xMDNavX6+0mc1mrF+/HnFxcS6MjIiIiIhuN9Wd+n/uueeQkJCALl26oFu3bnj//fdRWFio3AWgpjEYDJg6darNJQpU9TjWtw/H+vbhWN8+HOvbh2N9+9T0sVbVr/5lH330Ed555x2cO3cO0dHRmDNnDmJjY10dFhERERHdRqosVImIiIiIVHWNKhERERGRjIUqEREREakSC1UiIiIiUiUWqkRERESkSnW+UJ07dy4iIyOVv9gQFxeHNWvWKMuvX7+OiRMnws/PD/Xr18e9995r8wcJTp48iWHDhqFevXoIDAxEYmIijEajVZ9Nmzahc+fOMBgMaNmyJRYuXGgTy8cff4zmzZvD3d0dsbGx2Llzp9XyisRSk8yePRuSJOGZZ55R2jjeVWPatGmQJMnqX0REhLKc41y1zpw5g4ceegh+fn7w8PBAx44dkZKSoiwXQuD1119HUFAQPDw8MHDgQBw9etRqHZcuXcKDDz4Ib29v+Pr64pFHHsGVK1es+uzduxe9e/eGu7s7mjZtirffftsmluXLlyMiIgLu7u7o2LEjVq9ebbW8IrGoVfPmzW3mtSRJmDhxIgDO66pkMpkwZcoUtGjRAh4eHggPD8eMGTNg+ftrzuuqcfnyZTzzzDMIDQ2Fh4cHevTogV27dinL6/w4izrup59+EqtWrRJHjhwRGRkZ4pVXXhFubm5i//79QgghnnjiCdG0aVOxfv16kZKSIrp37y569OihPN9oNIoOHTqIgQMHirS0NLF69Wrh7+8vXn75ZaXP8ePHRb169cRzzz0nDh48KD788EOh1WpFUlKS0mfJkiVCr9eLL7/8Uhw4cEA89thjwtfXV5w/f17pU14sNcnOnTtF8+bNRWRkpJg8ebLSzvGuGlOnThXt27cXZ8+eVf5dvHhRWc5xrjqXLl0SoaGhYuzYsWLHjh3i+PHjIjk5WRw7dkzpM3v2bOHj4yNWrlwp9uzZI/7+97+LFi1aiGvXril9Bg8eLKKiosT27dvFb7/9Jlq2bClGjx6tLM/PzxeNGjUSDz74oNi/f79YvHix8PDwEPPmzVP6bNu2TWi1WvH222+LgwcPitdee024ubmJffv2VSoWtbpw4YLVnF63bp0AIDZu3CiE4LyuSm+++abw8/MTv/zyi8jMzBTLly8X9evXFx988IHSh/O6aowcOVK0a9dObN68WRw9elRMnTpVeHt7i9OnTwshOM51vlC1p0GDBuLzzz8XeXl5ws3NTSxfvlxZdujQIQFA/PHHH0IIIVavXi00Go04d+6c0mfu3LnC29tbFBUVCSGEePHFF0X79u2ttnH//feL+Ph45XG3bt3ExIkTlccmk0kEBweLWbNmCSFEhWKpKS5fvixatWol1q1bJ/r27asUqhzvqjN16lQRFRVldxnHuWr961//Er169XK43Gw2i8aNG4t33nlHacvLyxMGg0EsXrxYCCHEwYMHBQCxa9cupc+aNWuEJEnizJkzQgghPvnkE9GgQQNl/OVtt2nTRnk8cuRIMWzYMKvtx8bGigkTJlQ4lppk8uTJIjw8XJjNZs7rKjZs2DAxfvx4q7Z77rlHPPjgg0IIzuuqcvXqVaHVasUvv/xi1d65c2fx6quvcpyFEHX+1L8lk8mEJUuWoLCwEHFxcUhNTcWNGzcwcOBApU9ERASaNWuGP/74AwDwxx9/oGPHjmjUqJHSJz4+HgUFBThw4IDSx3Idch95HcXFxUhNTbXqo9FoMHDgQKVPRWKpKSZOnIhhw4bZjAnHu2odPXoUwcHBCAsLw4MPPoiTJ08C4DhXtZ9++gldunTBfffdh8DAQHTq1AmfffaZsjwzMxPnzp2zytHHxwexsbFW4+3r64suXboofQYOHAiNRoMdO3Yoffr06QO9Xq/0iY+PR0ZGBnJzc5U+Ze2TisRSUxQXF+Obb77B+PHjIUkS53UV69GjB9avX48jR44AAPbs2YOtW7diyJAhADivq4rRaITJZIK7u7tVu4eHB7Zu3cpxBq9RBQDs27cP9evXh8FgwBNPPIEffvgB7dq1w7lz56DX6+Hr62vVv1GjRjh37hwA4Ny5c1ZvevJyeVlZfQoKCnDt2jVkZ2fDZDLZ7WO5jvJiqQmWLFmC3bt3Y9asWTbLON5VJzY2FgsXLkRSUhLmzp2LzMxM9O7dG5cvX+Y4V7Hjx49j7ty5aNWqFZKTk/Hkk09i0qRJWLRoEYCb41XeOAQGBlot1+l0aNiwYZXsE8vl5cVSU6xcuRJ5eXkYO3YsAL5/VLWXXnoJo0aNQkREBNzc3NCpUyc888wzePDBBwFwXlcVLy8vxMXFYcaMGcjKyoLJZMI333yDP/74A2fPnuU4A9BV25prkDZt2iA9PR35+flYsWIFEhISsHnzZleHVeucOnUKkydPxrp162y+PVLVko96AEBkZCRiY2MRGhqKZcuWwcPDw4WR1T5msxldunTBzJkzAQCdOnXC/v378emnnyIhIcHF0dVeX3zxBYYMGYLg4GBXh1IrLVu2DP/973/x7bffon379khPT8czzzyD4OBgzusq9vXXX2P8+PFo0qQJtFotOnfujNGjRyM1NdXVoakCj6gC0Ov1aNmyJWJiYjBr1ixERUXhgw8+QOPGjVFcXIy8vDyr/ufPn0fjxo0BAI0bN7b5Jaf8uLw+3t7e8PDwgL+/P7Rard0+lusoLxa1S01NxYULF9C5c2fodDrodDps3rwZc+bMgU6nQ6NGjTje1cTX1xetW7fGsWPHOK+rWFBQENq1a2fV1rZtW+VSCzmP8sbhwoULVsuNRiMuXbpUJfvEcnl5sdQEf/31F3799Vc8+uijShvnddVKTExUjqp27NgRY8aMwbPPPqucDeO8rjrh4eHYvHkzrly5glOnTmHnzp24ceMGwsLCOM5goWqX2WxGUVERYmJi4ObmhvXr1yvLMjIycPLkScTFxQEA4uLisG/fPqtJsm7dOnh7eysfXnFxcVbrkPvI69Dr9YiJibHqYzabsX79eqVPRWJRuwEDBmDfvn1IT09X/nXp0gUPPvig8t8c7+px5coV/PnnnwgKCuK8rmI9e/ZERkaGVduRI0cQGhoKAGjRogUaN25slWNBQQF27NhhNd55eXlWR1A2bNgAs9mM2NhYpc+WLVtw48YNpc+6devQpk0bNGjQQOlT1j6pSCw1wYIFCxAYGIhhw4YpbZzXVevq1avQaKxLBK1WC7PZDIDzujp4enoiKCgIubm5SE5OxvDhwznOAG9P9dJLL4nNmzeLzMxMsXfvXvHSSy8JSZLE2rVrhRAltxhp1qyZ2LBhg0hJSRFxcXEiLi5Oeb58u5NBgwaJ9PR0kZSUJAICAuze7iQxMVEcOnRIfPzxx3Zvd2IwGMTChQvFwYMHxeOPPy58fX2tfp1aXiw1keWv/oXgeFeV559/XmzatElkZmaKbdu2iYEDBwp/f39x4cIFIQTHuSrt3LlT6HQ68eabb4qjR4+K//73v6JevXrim2++UfrMnj1b+Pr6ih9//FHs3btXDB8+3O7tZTp16iR27Nghtm7dKlq1amV1e5m8vDzRqFEjMWbMGLF//36xZMkSUa9ePZvby+h0OvHuu++KQ4cOialTp9q9vUx5saiZyWQSzZo1E//6179slnFeV52EhATRpEkT5fZU33//vfD39xcvvvii0ofzumokJSWJNWvWiOPHj4u1a9eKqKgoERsbK4qLi4UQHOc6X6iOHz9ehIaGCr1eLwICAsSAAQOUIlUIIa5duyaeeuop0aBBA1GvXj1x9913i7Nnz1qt48SJE2LIkCHCw8ND+Pv7i+eff17cuHHDqs/GjRtFdHS00Ov1IiwsTCxYsMAmlg8//FA0a9ZM6PV60a1bN7F9+3ar5RWJpaYpXahyvKvG/fffL4KCgoRerxdNmjQR999/v9V9PTnOVevnn38WHTp0EAaDQURERIj58+dbLTebzWLKlCmiUaNGwmAwiAEDBoiMjAyrPjk5OWL06NGifv36wtvbW4wbN05cvnzZqs+ePXtEr169hMFgEE2aNBGzZ8+2iWXZsmWidevWQq/Xi/bt24tVq1ZVOhY1S05OFgDsxsx5XXUKCgrE5MmTRbNmzYS7u7sICwsTr776qtXtjTivq8bSpUtFWFiY0Ov1onHjxmLixIkiLy9PWV7Xx1kSwuLPTBARERERqQSvUSUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJaJaY9q0aZAkyaqtefPmGDt2rGsCqoHGjh2L5s2b3/btbtq0CZIkYdOmTbd920SkXixUiYhqmIMHD2LatGk4ceKEq0MhIqpWOlcHQERUnTIyMqDR1K7v5AcPHsT06dPRr18/lxz9rA59+vTBtWvXoNfrXR0KEakIC1UiqtUMBoOrQ6AyXL9+HXq9HhqNBu7u7q4Oh4hUpnYdZiAiVXJ03WPpa0olScLTTz+NlStXokOHDjAYDGjfvj2SkpJsnrt161Z07doV7u7uCA8Px7x58+xuu/Q1qjdu3MD06dPRqlUruLu7w8/PD7169cK6deusnnf48GGMHDkSAQEB8PDwQJs2bfDqq69a9UlLS8OQIUPg7e2N+vXrY8CAAdi+fXuZOcoWLlwISZKsTt83b94cd955J7Zu3Ypu3brB3d0dYWFh+Oqrr6yed9999wEA+vfvD0mSbK7tXLNmDXr37g1PT094eXlh2LBhOHDggE0M8ji7u7ujQ4cO+OGHH+yOYXn69euHDh06IDU1FT169ICHhwdatGiBTz/91KqffB3qkiVL8Nprr6FJkyaoV68eCgoKHF6jumPHDgwdOhQNGjSAp6cnIiMj8cEHH1j1OXz4MP7xj3+gYcOGcHd3R5cuXfDTTz/dUi5EpC48okpEqrJ161Z8//33eOqpp+Dl5YU5c+bg3nvvxcmTJ+Hn5wcA2LdvHwYNGoSAgABMmzYNRqMRU6dORaNGjcpd/7Rp0zBr1iw8+uij6NatGwoKCpCSkoLdu3fjjjvuAADs3bsXvXv3hpubGx5//HE0b94cf/75J37++We8+eabAIADBw6gd+/e8Pb2xosvvgg3NzfMmzcP/fr1w+bNmxEbG3tL+R87dgz/+Mc/8MgjjyAhIQFffvklxo4di5iYGLRv3x59+vTBpEmTMGfOHLzyyito27YtACj///XXXyMhIQHx8fF46623cPXqVcydOxe9evVCWlqa8oVh7dq1uPfee9GuXTvMmjULOTk5GDduHEJCQm4p7tzcXAwdOhQjR47E6NGjsWzZMjz55JPQ6/UYP368Vd8ZM2ZAr9fjhRdeQFFRkcPT/evWrcOdd96JoKAgTJ48GY0bN8ahQ4fwyy+/YPLkyQBK9kPPnj3RpEkTvPTSS/D09MSyZcswYsQIfPfdd7j77rtvKR8iUglBRFTNEhISRGhoqE371KlTheXbEACh1+vFsWPHlLY9e/YIAOLDDz9U2kaMGCHc3d3FX3/9pbQdPHhQaLVaUfptLTQ0VCQkJCiPo6KixLBhw8qMt0+fPsLLy8tq/UIIYTabrWLQ6/Xizz//VNqysrKEl5eX6NOnj8McZQsWLBAARGZmplWsAMSWLVuUtgsXLgiDwSCef/55pW358uUCgNi4caPVOi9fvix8fX3FY489ZtV+7tw54ePjY9UeHR0tgoKCRF5entK2du1aAcDuvipL3759BQDxf//3f0pbUVGRiI6OFoGBgaK4uFgIIcTGjRsFABEWFiauXr1qtQ55mZyT0WgULVq0EKGhoSI3N9eqr+V+GDBggOjYsaO4fv261fIePXqIVq1aVSoPIlIfnvonIlUZOHAgwsPDlceRkZHw9vbG8ePHAQAmkwnJyckYMWIEmjVrpvRr27Yt4uPjy12/r68vDhw4gKNHj9pdfvHiRWzZsgXjx4+3Wj8A5RS+yWTC2rVrMWLECISFhSnLg4KC8MADD2Dr1q0oKCioeNIW2rVrh969eyuPAwIC0KZNGyX/sqxbtw55eXkYPXo0srOzlX9arRaxsbHYuHEjAODs2bNIT09HQkICfHx8lOffcccdaNeu3S3FrdPpMGHCBOWxXq/HhAkTcOHCBaSmplr1TUhIgIeHR5nrS0tLQ2ZmJp555hn4+vpaLZP3w6VLl7BhwwaMHDkSly9fVvLNyclBfHw8jh49ijNnztxSPkSkDixUiUhVSheHANCgQQPk5uYCKCkkr127hlatWtn0a9OmTbnr//e//428vDy0bt0aHTt2RGJiIvbu3asslwvCDh06OFzHxYsXcfXqVbvba9u2LcxmM06dOlVuLPaUl39Z5OL7b3/7GwICAqz+rV27FhcuXAAA/PXXXwBwy2NoT3BwMDw9Pa3aWrduDQA2t9Fq0aJFuev7888/AZS9H44dOwYhBKZMmWKT79SpUwFAyZmIaiZeo0pE1c7ej4mAkiOTpWm1Wrt9hRBVEkufPn3w559/4scff8TatWvx+eef4z//+Q8+/fRTPProo1WyDUuVyR1wLn+z2Qyg5DrVxo0b2yzX6dTxll/e0dSKkvN94YUXHB5Nb9myZZVsi4hcQx3vWkRUqzVo0AB5eXk27fKRvcqQf4Vv79R9RkZGhdbRsGFDjBs3DuPGjcOVK1fQp08fTJs2DY8++qhyKn///v1lxlCvXj272zt8+DA0Gg2aNm0KoCR3AMjLy7M6hX0rucscFb/yJROBgYEYOHCgw+eHhoYCgFNjWFpWVhYKCwutjqoeOXIEAG7pXq9yLvv373eYi7yv3NzcysyXiGounvonomoXHh6O/Px8q1PsZ8+evaXbIWm1WsTHx2PlypU4efKk0n7o0CEkJyeX+/ycnByrx/Xr10fLli1RVFQEoKQI7dOnD7788kur9QM3j2pqtVoMGjQIP/74o9Vp7fPnz+Pbb79Fr1694O3tDeBmwbVlyxalX2FhIRYtWlSJrK3JxWDp4j8+Ph7e3t6YOXMmbty4YfO8ixcvAii5ljY6OhqLFi1Cfn6+snzdunU4ePDgLcVkNBqtbhFWXFyMefPmISAgADExMZVeX+fOndGiRQu8//77NnnK+yEwMBD9+vXDvHnzcPbsWZt1yPkSUc3FI6pEVO1GjRqFf/3rX7j77rsxadIk5ZZJrVu3xu7duyu9vunTpyMpKQm9e/fGU089BaPRiA8//BDt27e3KobtadeuHfr164eYmBg0bNgQKSkpWLFiBZ5++mmlz5w5c9CrVy907twZjz/+OFq0aIETJ05g1apVSE9PBwC88cYbWLduHXr16oWnnnoKOp0O8+bNQ1FREd5++21lXYMGDUKzZs3wyCOPIDExEVqtFl9++SUCAgJsCuGKio6OhlarxVtvvYX8/HwYDAb87W9/Q2BgIObOnYsxY8agc+fOGDVqlLKdVatWoWfPnvjoo48AALNmzcKwYcPQq1cvjB8/HpcuXVLG8MqVK5WOKTg4GG+99RZOnDiB1q1bY+nSpUhPT8f8+fPh5uZW6fVpNBrMnTsXd911F6KjozFu3DgEBQXh8OHDOHDggPKl5OOPP0avXr3QsWNHPPbYYwgLC8P58+fxxx9/4PTp09izZ0+lt01EKuLSew4QUZ2xdu1a0aFDB6HX60WbNm3EN998Y/f2VBMnTrR5bulbTAkhxObNm0VMTIzQ6/UiLCxMfPrpp3ZvBVX6uW+88Ybo1q2b8PX1FR4eHiIiIkK8+eabyi2UZPv37xd333238PX1Fe7u7qJNmzZiypQpVn12794t4uPjRf369UW9evVE//79xe+//24Tf2pqqoiNjRV6vV40a9ZMvPfeew5vT2Xv1ll9+/YVffv2tWr77LPPRFhYmHJLLstbVW3cuFHEx8cLHx8f4e7uLsLDw8XYsWNFSkqK1Tq+++470bZtW2EwGES7du3E999/7/BWYmXp27evaN++vUhJSRFxcXHC3d1dhIaGio8++siqn3wLquXLl9uso/TtqWRbt24Vd9xxh/Dy8hKenp4iMjLS6lZlQgjx559/iocfflg0btxYuLm5iSZNmog777xTrFixolJ5EJH6SEJU0S8UiIioTurXrx+ys7PLvK6XiOhW8BpVIiIiIlIlXqNKRER2Xbp0CcXFxQ6Xa7VaBAQE3MaIiKiuYaFKRER23XPPPdi8ebPD5aGhoTY38yciqkq8RpWIiOxKTU0t8y9ieXh4oGfPnrcxIiKqa1ioEhEREZEq8cdURERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGp0v8DAAMDl9DN91IAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHbCAYAAAA3anmPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKN0lEQVR4nO3deXwU9f3H8ffshhyEhEAIhHATkFOwcgREbkqgFEGwXFUOqaBiEVGsqFyCoNai1YoKIqgVUbDgT9EgN3KJQBCxgCBBjhCOGBIIkJDs/P7wsdtssjk3IUx4PR8PHg/2M7Mzn+9+d5N3ZmdnDdM0TQEAAAAWYyvtBgAAAICiIMgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAugVLz++usyDEMLFy4s7VYAABZFkAUKYePGjTIMQ9OnTy+V/detW1d169Z1q02fPl2GYWjjxo2l0lN2hmGoS5cuea6zc+dOPfHEE5o6dapGjx59fRrzoCC9Xg8jR46UYRg6duxYabcCD0rydd+lSxcZhlHs2wVuFgRZ3HSOHTsmwzDc/pUvX14RERHq3r27pk6dqp9//rlE9s0vLSkpKUmDBg3S0KFDNWPGjNJu56bk6Q8i3BxuhD/eUlNT9e9//1uDBg3SLbfcooCAAIWEhKhz58766KOPSrU3WI9PaTcAlJbIyEjde++9kqS0tDSdPXtWO3fu1MyZMzV79mw9+eSTev75592CZ9u2bXXgwAFVqVKlVHpet25dqey3MA4cOKDy5cvnunzv3r16+OGH9dhjj13HrgDcKL755hvdd999Cg0NVffu3TVw4ECdPXtW//nPfzRs2DBt3bpV//rXv0q7TVgEQRY3rQYNGnh8q3DLli267777NGfOHNntds2cOdO1rHz58mrcuPF17NJdZGRkqe27oPJ7fLp27aquXbtep24A3GjCw8P1wQcfaNCgQfL19XXVZ8+eraioKL3xxhsaPny42rZtW4pdwio4tQDI5s4771RMTIz8/Pz00ksv6cSJE65luZ0rd/jwYY0aNUr16tWTn5+fKleurJYtW2rChAkyTVPSb2/pbdq0yfV/57+RI0dK+t8pDyNHjtSBAwd09913KzQ01O3cyfzeEl64cKFuvfVW+fv7q0aNGnrsscd08eJFt3XyOt8vaw/ZnT17Vo8//rgaNWqkgIAAVa5cWVFRUXr55Zfd1svtrcvz589rwoQJrseoatWqGjRokPbv359jXec5o3FxcXrttdfUuHFj+fn5qU6dOpoxY4YcDkeuj4En77zzjpo3by5/f3/VqlVLTz75pK5evZrr+hcvXtS0adPUrFkz19ue0dHR2rJlS6H2a5qmFi1apI4dOyokJETly5dXw4YNNXbsWB0/fjzP+y5evFiGYWjx4sU5luU2h3v27NE999yj2rVry8/PT2FhYWrTpo2ef/55Sf+b319++UW//PKL2/Mw+7Y2b96svn37qkqVKvLz81PDhg317LPP6vLly7n2sm3bNvXs2VMhISEFPoXm7Nmzeuyxx9SgQQP5+fmpSpUqGjhwoMfnhfP5f+nSJT366KOKiIiQn5+fWrRooeXLlxdof1l99tln6t69uypVqiR/f381b95cL7/8sjIzMwu9rezS09P1yiuvqE2bNgoKClKFChXUtGlTTZw4UUlJSXneN6/z3nN7XmzYsEG9e/d2PSbVqlVTx44dNX/+fEn/mydJ2rRpk9vcZ99WQR+XrL18/vnn6tChg4KCgvI9beW2227Tvffe6xZiJalatWoaO3aspN+ef0BBcEQW8KBRo0YaNGiQPvjgA61cuVJ//etfc103Pj5ebdu2VWpqqvr06aPBgwcrNTVVhw8f1rx58/Tyyy/Lx8dH06ZN0+LFi/XLL79o2rRprvvfdtttbts7cuSI2rVrp1tvvVUjR45UYmJijh/4nsydO1fr1q3T4MGD1adPH61du1avvvqqduzYoc2bN6tcuXJFfjwOHTqkrl276vTp07rzzjvVv39/paam6scff9Ts2bP1xBNP5Hn/c+fOqX379vr555/VpUsXDRkyRHFxcVq+fLlWrVql1atX684778xxv0mTJmnTpk364x//qOjoaK1cuVLTp09Xenq6K5zlZ+bMmZo6daqqVaumBx54QOXKldPHH3+sAwcOeFz/119/VadOnfTjjz+qQ4cOevDBB5WSkqLPPvtMXbt21bJly9S/f/989+twODR48GAtX75cNWrU0NChQxUcHKxjx47pk08+Ue/evVW7du0CjaEg9u7dqzvuuEN2u139+vVTnTp1dOHCBf33v//V/Pnz9cwzzygkJETTpk3Tq6++KkmaMGGC6/5Z//h48803NW7cOIWEhKhv376qWrWqdu3apeeff14bNmzQhg0bcjwnt23bptmzZ6tr164aM2ZMvkFdkuv5cPLkSfXs2VP9+/fX2bNn9emnn2r16tVat26doqKi3O5z7do19ezZU0lJSRo4cKAuX76spUuXatCgQYqJiVHPnj0L9HhNnjxZL7zwgmrUqKEBAwaoYsWK+uabbzRp0iR9++23WrZsWYG248mVK1f0+9//Xlu3blXDhg01atQo+fn56fDhw3r77bc1fPhwVapUqcjbz27VqlXq27evQkJC1K9fP1WvXl3nzp3T999/rw8++EBjxoxR3bp1NW3aNM2YMUN16tRx+2M168+gojwuy5Yt09dff60//vGPevjhh5WSklLksTh/Tvn4EE9QQCZwk4mLizMlmdHR0Xmut3DhQlOSed9997lqGzZsMCWZ06ZNc9Vee+01U5L56quv5thGYmKi2+3OnTubub3snH1JMqdOnepxnTp16ph16tRxq02bNs2UZPr6+prff/+9q+5wOMxhw4aZksyXX345zzFk72HEiBFu9datW5uSzPnz5+e4z4kTJ9xuSzI7d+7sVhs1apQpyZw8ebJbfdWqVaYks0GDBmZmZqarPmLECFOSWa9ePTM+Pt5VP3funBkSEmIGBQWZaWlpOXrJ7vDhw6aPj49Zo0YN88yZM656cnKy2ahRI4+9Oh+zBQsWuNXPnDlj1qpVywwLCzOvXLmS775ff/11U5LZvXt38/Lly27LLl++7PbccI43Li7OVVu0aJEpyVy0aFGObXuaw4kTJ5qSzJUrV+ZY//z58263PT2PnH788UfTx8fHbNmyZY77zZkzJ9fnkyTz3Xff9bjN3Nxxxx2m3W43Y2Ji3OqHDh0yg4KCzFtvvTVH35LMfv36uc3/2rVrC/Sadvr6669d61+6dMlVdzgc5oMPPmhKMpcvX55jjJ5eM548/vjjrp8dGRkZbssuXLhgXrx40XXb088E52t6w4YNObbt6XkxYMAAU5K5d+/eHOtnn0NPz3mnwj4uzl5sNpu5Zs0aj9ssjIyMDPPWW281DcMwf/jhB6+3h5sDpxYAuYiIiJD021viBREQEJCjVrly5ULvNzw8XM8880yh7zd8+HC1aNHCddswDM2ePVt2u93j29MFtXPnTu3atUudOnXSAw88kGN5zZo187x/enq6PvroI4WGhurZZ591W/aHP/xBv//973XkyBFt3bo1x32nTJmi6tWru25XqVJF/fr108WLF3Xo0KF8e1+yZIkyMjI0ceJEVa1a1VUPDg7O0Yv021x//PHH6tatm/7yl7+4LatataomTZqkc+fOae3atfnue968ebLb7XrzzTdzPDecp2aUBE/Pw9DQ0ALf/+2331ZGRoZef/31HPd78sknFRYW5vGT5bfffrtGjRpV4P3ExsZq27ZtGjFihKKjo92W3XLLLXrggQf0ww8/eDzF4JVXXnE7Ity9e3fVqVNH3333XYH27fwg0fz58xUYGOiqG4ahF154QYZhFPnT8xkZGZo/f74qVqyof/7zn7Lb7W7LK1asqAoVKhRp2/nxdu6L+rj069dPPXr0KELH7qZMmaIffvhBo0aNUvPmzb3eHm4OHLsHvNS3b19NnjxZ48aN07p169SrVy917txZ9evXL9L2WrZsWaBTCbLr2LFjjlqdOnVUq1Yt/fjjj0pPTy/Sdnfu3ClJBX7LNruDBw/q6tWr6tq1q8erGXTt2lVr1qzR3r17c4yhVatWOdZ3BucLFy7ku+/vv/9ekufHxlPtu+++U2ZmptLS0jyeQ3z48GHXmP74xz/mut9Lly7pwIEDatCggRo2bJhvn8Vh0KBBevXVV3X33Xdr8ODB+v3vf69OnTqpRo0ahdrOjh07JMn11n525cqV08GDB3PU27RpU6T9nDlzxuNj7dzHwYMH3UJNSEiI6tWrl2P9mjVravv27QXed2BgoN59912PywMCAjyOsSAOHjyoixcvqkePHsV6+kBehgwZov/85z9q166dhg0bpu7du6tjx46FvrpKUR+X4vhQ1ltvvaU5c+bod7/7nf75z396vT3cPAiyQC7i4+MlSWFhYXmuV7duXe3YsUPTp0/Xl19+qU8++UTSb5/ef+655/SnP/2pUPutVq1akfrN7X7VqlXTsWPHdPHixUIdnXFKTk6WpEIHIifn+XK59ec84urpvLrg4OAcNee5cwX5QI6z96xHY5089fPrr79KkrZu3erxCLFTampqgfZb1MesKKKiorRx40bNnj1bS5Ys0aJFiyT9FjBffPHFAl8pwvkYFPQcZKfCPm+d+1m1apVWrVqV63rZH+uKFSt6XM/Hx6fAHwL89ddflZGRked1jPOb49yUxtz/6U9/0sqVKzV37ly99dZbeuONN2QYhrp27ap//OMfOc7Dz01RH5ei/sxyeuedd/Twww/r1ltv1Zo1a0rsiDXKJk4tAHLh/MRwQY40NW/eXMuXL9evv/6q7du3a+rUqUpISNDgwYPzDESeFPULE86cOZNr3TAMBQUFSZJstt9e9hkZGTnWdf4SziokJESSdOrUqSL15QyjufWXkJDgtl5xcoaes2fP5ljmqR9nD48//rhM08z1X9YP6+W136I+ZlLh50n67SjzV199paSkJG3YsEETJ07UDz/8oD59+ujo0aMF2q/zMUhJScnzMciusM9b535ef/31PPczYsSIQm23oPsODQ3Nc79xcXFF2ra3rxepaHPfr18/bdq0SUlJSfrqq6/0l7/8RRs3blSvXr0K9O6FVPTHxZsveVmwYIHGjBmjpk2bat26dUX6Yxs3N4Is4MFPP/2kTz75RH5+frr77rsLfL9y5cqpXbt2mjFjhl577TWZpqkvvvjCtdx5vlxxXN4nu2+++SZH7ZdfftGJEyfUrFkz12kFzrc7Pf2ijY2NzVFzvm349ddfF6mvxo0by9/fX999912OSzdJ//uDoaBHjQqjZcuWkjw/Np5qbdq0kWEYBX6LOjfOSy3FxcW5TkcorMLOU1YBAQHq0qWL/vGPf+jpp5/WlStXtGbNGtdyu92e63PQeZUA51v/JcW5H28f66LuOzExschzk5dGjRopODhY3333Xb6X2cqNN3MfFBSkXr16af78+Ro5cqTOnDmjb7/91rXcZrPlOfcl9bh4smDBAo0dO1ZNmjTR+vXr8333C/CEIAtks3XrVkVHRystLU1PPfVUvm8R7t692+Pb4s4jfv7+/q6a8wM+Wa9NW1zef/997du3z3XbNE09/fTTyszMdLvUTqNGjRQUFKT/+7//c7296+x31qxZObbbpk0btWnTRps3b9aCBQtyLM/vyJOvr6+GDh2q8+fPa86cOW7LYmJitHr1ajVo0EAdOnQo6FALbNiwYbLb7Zo7d67bUdmUlBSPYw0PD9egQYO0bds2/f3vf/d45PHbb7/1GMizGzdunDIzM/Xwww/rypUrbsuuXr3q9th70qpVKxmGoaVLl7pd8/bw4cMezyHcvn27x2vj5vY8PH/+vMf1H374Yfn4+Oivf/2rx0toXbhwId8wVRBt27ZVVFSUPvroI3388cc5ljscDtd1l4vb+PHjJUn333+/EhMTcyxPSEjI9fJs+fHx8dHYsWOVnJysRx99NEdoTE5O1qVLl/LchvNdoPfff9/tdInt27frww8/zLH+5s2bPYZT53M++9yfPHnS435L8nHJ7p133tHYsWPVuHFjrV+/3uPpP0BBcI4sblpHjhxxfcgkPT3d9RW1P/zwg+x2u5599tl830KWpA8++EBvv/22OnXqpMjISAUHB+u///2vvvzyS1WuXNntk9zdunXT8uXLNXDgQPXu3Vv+/v5q2bKl+vbt6/V4oqOj1b59ew0ZMkRhYWFat26ddu3apXbt2rldB9fX11d//etfNXv2bN1+++2uqwB8/vnn6ty5s37++ecc2/7www/VpUsXjRkzRh988IHat2+vq1ev6scff1RsbKzHX3pZvfjii9q0aZNmzZqlbdu2KSoqSseOHdOyZctUvnx5LVq0yPV2anFq0KCBpk6dqmnTpqlFixYaNGiQfHx89Omnn6pFixYer3wwb948HTp0SE8++aRrrCEhITpx4oR27dqlw4cP6/Tp03l+Da8kPfTQQ9q0aZM++eQTNWzYUHfddZeCg4N1/PhxrV69WgsXLszzerQREREaOnSolixZolatWqlXr146e/asVqxYoV69eunTTz91W//FF1/Uhg0b1KlTJ9WrV0/+/v7as2eP1q1bp/r167u9s9CtWzft2rVLvXv3VseOHeXr66tOnTqpU6dOat68uebNm6eHHnpIjRo10h/+8AdFRkbq4sWLOnr0qDZt2qSRI0fqrbfeKtxkePDRRx+pa9euGjJkiF599VXdfvvtCggI0PHjx7V9+3adO3cuzy+uKKpevXppypQpmjlzpho0aKBevXqpTp06SkxM1JEjR/TNN99o1qxZatKkSZG2/9xzz2nHjh364IMPtGPHDvXu3Vt+fn46evSoYmJitGXLljzfgWjXrp06dOig9evXq3379urUqZN++eUXffbZZ+rbt69WrFjhtv748eMVHx+vO++8U3Xr1pVhGNqyZYt27typdu3auV2juVu3bvrkk0/Uv39//e53v5Pdbtddd92lFi1alPjj4rR+/XqNGTNGpmmqU6dOevPNN3Osc9tttxXoes0A15HFTSfr9Vqd/wICAszq1aubXbt2NadMmWIeOXLE4309XU9yx44d5tixY83mzZubISEhZkBAgNmwYUPzkUceMX/55Re3+1+7ds188sknzdq1a5s+Pj5u12zN7RquWeV1HdkNGzaYCxYsMJs1a2b6+fmZ1atXNx999FEzJSUlx3YyMzPN6dOnm7Vq1TJ9fX3NW265xfznP/9pHj16NNceEhISzEcffdSsX7++6evra1auXNmMiooy586d67aecrlO5blz58zx48ebderUMcuVK2dWqVLFvOeeezxeL9LTdVU9jbegFixYYDZt2tT09fU1a9asaT7xxBPm5cuXc+318uXL5ksvvWS2atXKDAwMNAMCAsx69eqZ/fv3N99//33z2rVrBdqvw+Ew33nnHbNdu3ZmYGCgWb58ebNhw4bmgw8+aB4/fjzf8V6+fNkcP368Wa1aNdPPz89s0aKF+eGHH3p8HsbExJjDhw83GzVqZAYFBZkVKlQwmzZtaj799NPmuXPn3LZ78eJF84EHHjCrV69u2u12j9dI3blzpzlkyBAzIiLCNV+33367+dRTT5kHDhxwrVfYa6xm9+uvv5rPPvus2bx5czMgIMCsUKGC2bBhQ3PYsGHmf/7zH7d187r+bV7XaM7NmjVrzL59+5phYWFmuXLlzPDwcLN9+/bmzJkz3eanKGO8evWq+fLLL5u33Xaba1xNmzY1H3/8cTMpKSnfvs+fP28OHz7crFy5shkQEGC2a9fOXL16tcfryC5dutQcNGiQGRkZaZYvX96sWLGi2bJlS/PFF190u2ataZrm6dOnzUGDBplVqlQxbTabx2sVF/Rxyetax3lx3i+vf3n9HASyMkzTw3tnAAAAwA2Oc2QBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlEWQBAABgSQRZAAAAWNJN94UIDodD8fHxCgoK8ur7oQEAAFAyTNPUxYsXFRERkecX5tx0QTY+Pl61atUq7TYAAACQjxMnTqhmzZq5Lr/pgmxQUJCk3x6Y4ODgUu7G+q5du6avv/5aPXv2VLly5Uq7HRQBc2h9zKH1MYfWxvwVv5SUFNWqVcuV23Jz0wVZ5+kEwcHBBNlicO3aNZUvX17BwcG8eC2KObQ+5tD6mENrY/5KTn6ngfJhLwAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACWRJAFAACAJRFkAQAAYEkEWQAAAFgSQRYAAACW5FPaDQAAisf3338vm+36HJ+oUqWKateufV32BQC5IcgCgMWdPHlSktSpUydduXLluuwzoHx5HTxwgDALoFQRZAHA4hITEyVJd095RZXrNCjx/Z2NO6xPnn1I58+fJ8gCKFUEWQAoI8LqRCq8ScvSbgMArhs+7AUAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkgiyAAAAsCSCLAAAACyJIAsAAABLIsgCAADAkm6oIDtnzhy1adNGQUFBqlq1qvr3769Dhw65rXP16lWNGzdOoaGhqlChggYOHKgzZ86UUscAAAAoLTdUkN20aZPGjRunHTt2aM2aNbp27Zp69uyp1NRU1zqPPfaYPv/8cy1btkybNm1SfHy8BgwYUIpdAwAAoDT4lHYDWcXExLjdXrx4sapWrardu3erU6dOSk5O1sKFC7VkyRJ169ZNkrRo0SI1adJEO3bsULt27UqjbQAAAJSCGyrIZpecnCxJqly5siRp9+7dunbtmnr06OFap3Hjxqpdu7a2b9/uMcimpaUpLS3NdTslJUWSlJGRoYyMDEmSzWaTzWaTw+GQw+FwreusZ2ZmyjTNfOt2u12GYbi2m7UuSZmZmQWq+/j4yDRNt7phGLLb7Tl6zK1+vceUmZnp6qWsjCm/elkZU9Y5LFeuXJkYU1ZlZZ7yGlPWnmSaMswstw1DpmGTTIeMLL2YhiHlUTdMh+RWt0mGIcN0yCZTvr6+cjgcMk2TeSqGMWWdy6z7tfKYyuI85VZ3/j+3+bPimEp7nrKvn5sbNsg6HA5NmDBBHTp0UPPmzSVJCQkJ8vX1VUhIiNu61apVU0JCgsftzJkzRzNmzMhRj42NVWBgoCQpLCxMkZGRiouL07lz51zr1KxZUzVr1tRPP/3kCtWSVL9+fVWtWlX79+/XlStXXPXGjRsrJCREsbGxbhPTokUL+fr6ateuXW49tG7dWunp6dq3b5+rZrfb1aZNGyUnJ+vgwYOuekBAgFq2bKnz58/r6NGjrnrFihXVpEkTxcfH6+TJk6769RpTbGys6/E0DKNMjKkszlNeY3L+wPn+++8VFRVVJsbkVJbmKa8xZd134NULqnTxtOv2Vd9AnQ+po+DLiQpO/V/vqQEhSgqKUKVLCQq8csFVTwkMU0pgmEKTT8g//X+ndSUFVVdqQCVVS4pTqN9VTZo0SYmJiUpOTmaeimFMQUFBkqTTp0+7/T6z8pjK4jzlNqbQ0FBJ0vHjx5WYmFgmxlTa8+TMF/kxzKyx+Qby0EMP6auvvtKWLVtUs2ZNSdKSJUs0atQotyOsktS2bVt17dpVL774Yo7teDoiW6tWLSUmJio4OFhS6f/VYeW/pNLS0rR69WpFR0fLx8enTIypLM5TXmPKyMhwzaG/v3+ZGFNWZWWe8hrTnj17dPr0aW1IDVR445YlfkQ2/uA+vTWqj7Zu3apWrVoxT8UwJufrsFevXq7tWX1MZXGe8jqiHhMTk+v8WXFMpT1PSUlJCg0NVXJysiuveXJDHpF95JFH9MUXX2jz5s2uECtJ4eHhSk9P14ULF9yOyp45c0bh4eEet+Xn5yc/P78cdR8fH/n4uA/fOQnZZX1SFqSefbtFqRuG4bGeW4+FrRfXmJzr2+12t3WsPKayOE951Z0/cJzbLAtjyq6sj8mtJ8OQaXjYr2GTaXjYeC7134Kr57pDhtLT02Wz2WQYRqF7z61e1ucprx6dr0ObzVaox+BGHlNR61YcU37zZ8Ux5VcvjTF5ckNdtcA0TT3yyCNasWKF1q9fr3r16rktb9WqlcqVK6d169a5aocOHdLx48fVvn37690uAAAAStENdUR23LhxWrJkiT777DMFBQW5zhOqWLGiAgICVLFiRY0ePVoTJ05U5cqVFRwcrL/+9a9q3749VywAAAC4ydxQQfbNN9+UJHXp0sWtvmjRIo0cOVKS9Morr8hms2ngwIFKS0tTdHS05s2bd507BQAAQGm7oYJsQT535u/vrzfeeENvvPHGdegIAAAAN6ob6hxZAAAAoKAIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJJuqCC7efNm9e3bVxERETIMQytXrnRbPnLkSBmG4favV69epdMsAAAAStUNFWRTU1PVsmVLvfHGG7mu06tXL50+fdr176OPPrqOHQIAAOBG4VPaDWTVu3dv9e7dO891/Pz8FB4efp06AgAAwI3qhgqyBbFx40ZVrVpVlSpVUrdu3TRr1iyFhobmun5aWprS0tJct1NSUiRJGRkZysjIkCTZbDbZbDY5HA45HA7Xus56ZmamTNPMt26322UYhmu7WeuSlJmZWaC6j4+PTNN0qxuGIbvdnqPH3OrXe0yZmZmuXsrKmPKrl5UxZZ3DcuXKlYkxZVVW5imvMWXtSaYpw8xy2zBkGjbJdMjI0otpGFIedcN0SG51m2QYMkyHbDLl6+srh8Mh0zSZp2IYU9a5zLpfK4+pLM5TbnXn/3ObPyuOqbTnKfv6ubFUkO3Vq5cGDBigevXq6eeff9bTTz+t3r17a/v27a6BZzdnzhzNmDEjRz02NlaBgYGSpLCwMEVGRiouLk7nzp1zrVOzZk3VrFlTP/30k5KTk131+vXrq2rVqtq/f7+uXLniqjdu3FghISGKjY11m5gWLVrI19dXu3btcuuhdevWSk9P1759+1w1u92uNm3aKDk5WQcPHnTVAwIC1LJlS50/f15Hjx511StWrKgmTZooPj5eJ0+edNWv15hiY2Ndj6dhGGViTGVxnvIak/MHzvfff6+oqKgyMSansjRPeY0p674Dr15QpYunXbev+gbqfEgdBV9OVHDq/3pPDQhRUlCEKl1KUOCVC656SmCYUgLDFJp8Qv7pqa56UlB1pQZUUrWkOIX6XdWkSZOUmJio5ORk5qkYxhQUFCRJOn36tBISEsrEmMriPOU2JucBtePHjysxMbFMjKm058mZL/JjmFlj8w3EMAytWLFC/fv3z3Wdo0ePKjIyUmvXrlX37t09ruPpiGytWrWUmJio4OBgSaX/V4eV/5JKS0vT6tWrFR0dLR8fnzIxprI4T3mNKSMjwzWH/v7+ZWJMWZWVecprTHv27NHp06e1ITVQ4Y1blvgR2fiD+/TWqD7aunWrWrVqxTwVw5icr8NevXq5HZix8pjK4jzldUQ9JiYm1/mz4phKe56SkpIUGhqq5ORkV17zxFJHZLOrX7++qlSpoiNHjuQaZP38/OTn55ej7uPjIx8f9+E7JyG73I725lbPvt2i1A3D8FjPrcfC1otrTM717Xa72zpWHlNZnKe86s4fOM5tloUxZVfWx+TWk2HINDzs17DJNDxsPJf6b8HVc90hQ+np6bLZbDIMo9C951Yv6/OUV4/O16HNZivUY3Ajj6modSuOKb/5s+KY8quXxpg8uaGuWlBYJ0+eVGJioqpXr17arQAAAOA6u6GOyF66dElHjhxx3Y6Li9PevXtVuXJlVa5cWTNmzNDAgQMVHh6un3/+WU8++aQaNGig6OjoUuwaAAAApeGGCrK7du1S165dXbcnTpwoSRoxYoTefPNN7du3T++9954uXLigiIgI9ezZUzNnzvR46gAAAADKthsqyHbp0sXtBOHsVq9efR27AQAAwI3M0ufIAgAA4OZFkAUAAIAlEWQBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlEWQBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlef0VtQkJCVq4cKH27Nmj5ORkORwOt+WGYWjdunXe7gYAAABw41WQ3bdvn7p06aIrV66oUaNG+uGHH9S0aVNduHBBp06dUmRkpGrVqlVcvQIAAAAuXp1a8NRTT6lChQo6dOiQ1q5dK9M09c9//lMnTpzQxx9/rKSkJL3wwgvF1SsAAADg4lWQ3bp1q8aOHavatWvLZvttU85TC/70pz/pz3/+syZNmuR9lwAAAEA2XgVZh8OhatWqSZJCQkJkt9v166+/upbfeuut2r17t3cdAgAAAB54FWTr1aunuLi43zZks6levXpau3ata/m2bdsUEhLiVYMAAACAJ14F2Z49e2rZsmWu2w899JDeeecd9ejRQ927d9d7772nYcOGed0kAAAAkJ1XVy145plnNHToUF27dk3lypXThAkTlJqaqk8//VR2u11TpkzR008/XVy9AgAAAC5eBdlKlSqpVatWrtuGYejZZ5/Vs88+63VjAAAAQF74Zi8AAABYUqGOyN5///0yDEPz58+X3W7X/fffn+99DMPQwoULi9wgAAAA4Emhguz69etls9nkcDhkt9u1fv16GYaR533yWw4AAAAURaGC7LFjx/K8DQAAAFwvnCMLAAAAS/IqyO7Zs0fz5s3Ldfm8efO0d+9eb3YBAAAAeORVkH3mmWfcvskru/Xr13MpLgAAAJQIr4Ls7t271bFjx1yXd+zYUbt27fJmFwAAAIBHXgXZixcvyscn98+L2Ww2JScne7MLAAAAwCOvgmzDhg319ddf57o8JiZG9evX92YXAAAAgEdeBdnRo0dr1apVmjhxoi5cuOCqX7hwQY899phiYmI0evRob3sEAAAAcijUdWSzGz9+vPbu3atXX31Vr732miIiIiRJ8fHxcjgcuu+++/TYY48VS6MAAABAVl4FWcMwtGjRIg0fPlyffvqpjh49Kknq16+fBg4cqC5duhRHjwAAAEAOXgVZp65du6pr167FsSkAAACgQPhmLwAAAFiSV0HWNE29/fbbatu2rapUqSK73Z7jX16X5wIAAACKyquU+eSTT2ru3Lm67bbbdO+996pSpUrF1RcAAACQJ6+C7HvvvaeBAwfqk08+Ka5+AAAAgALx6tSCK1euqEePHsXVCwAAAFBgXgXZ7t2767vvviuuXgAAAIAC8yrIzps3Tzt27NDs2bOVmJhYXD0BAAAA+fIqyDZq1EhHjx7VlClTVLVqVQUGBio4ONjtX8WKFYurVwAAAMDFqw97DRw4UIZhFFcvAAAAQIF5FWQXL15cTG0AAAAAhcM3ewEAAMCSvA6yx48f14MPPqhGjRqpUqVK2rx5syTp/PnzGj9+vGJjY71uEgAAAMjOq1ML/vvf/6pjx45yOByKiorSkSNHlJGRIUmqUqWKtmzZotTUVC1cuLBYmgUAAACcvP6K2pCQEO3YsUOGYahq1apuy/v06aOPP/7YqwYBAAAAT7w6tWDz5s166KGHFBYW5vHqBbVr19apU6e82QUAAADgkVdB1uFwqHz58rkuP3funPz8/LzZBQAAAOCRV0H29ttv16pVqzwuy8jI0NKlS9WuXTtvdgEAAAB45FWQnTx5smJiYvTQQw9p//79kqQzZ85o7dq16tmzpw4cOKCnnnqqWBoFAAAAsvLqw169e/fW4sWL9eijj2r+/PmSpHvvvVemaSo4OFjvv/++OnXqVCyNAgAAAFl5FWQl6b777tOAAQP09ddf68iRI3I4HIqMjFR0dLSCgoKKo0cAAAAgB6+DrCQFBgbq7rvvLo5NAQAAAAXiVZA9fvx4gdarXbu2N7sBAAAAcvAqyNatW9fj9WOzy8zM9GY3AAAAQA5eBdl33303R5DNzMzUsWPH9P7776tq1aoaN26cVw0CAAAAnngVZEeOHJnrsr/97W+KiopScnKyN7sAAAAAPPLqOrJ5CQwM1KhRo/TKK6+U1C4AAABwEyuxICv99hW2CQkJJbkLAAAA3KSK5fJb2aWkpGjz5s36+9//rt/97nclsQsAAADc5LwKsjabLderFpimqdq1a2vevHne7AIAAADwyKsgO3Xq1BxB1jAMVapUSZGRkerZs6d8fErkoC8AAABucl6lzOnTpxdTGwAAAEDhePVhr4yMDKWkpOS6PCUlRRkZGd7sAgAAAPDIqyA7fvx43XHHHbku79Chgx5//HFvdgEAAAB45FWQjYmJ0T333JPr8nvuuUdffvmlN7sAAAAAPPIqyMbHx6tGjRq5Lo+IiNCpU6e82QUAAADgkVdBNjQ0VIcOHcp1+YEDBxQcHOzNLgAAAACPvAqyvXr10ttvv63Y2Ngcy/bs2aP58+erd+/e3uwCAAAA8Miry2/NnDlTMTExatu2re666y41a9ZMkrR//359/vnnqlq1qmbOnFksjQIAAABZeRVkIyIitGvXLj311FP67LPPtGLFCklScHCw/vznP2v27NmKiIgolkYBAACArLw6tUCSqlevrvfee09JSUlKSEhQQkKCkpKStHjx4kKH2M2bN6tv376KiIiQYRhauXKl23LTNDV16lRVr15dAQEB6tGjhw4fPuztEAAAAGBBXgdZJ8Mw5Ofnp9DQ0BxfW1tQqampatmypd544w2Py1966SW99tpreuutt/Ttt98qMDBQ0dHRunr1qjetAwAAwIK8DrK7du1Sr169VL58eYWGhmrTpk2SpPPnz6tfv37auHFjgbfVu3dvzZo1S3fffXeOZaZp6tVXX9Wzzz6rfv36qUWLFnr//fcVHx+f48gtAAAAyj6vzpHdtm2bunXrpho1aujee+/VO++841pWpUoVJScn6+2331aXLl287VNxcXFKSEhQjx49XLWKFSsqKipK27dv15AhQzzeLy0tTWlpaa7bzq/UzcjIcH19rs1mk81mk8PhkMPhcK3rrGdmZso0zXzrdrtdhmHk+Fpeu90uScrMzCxQ3cfHR6ZputUNw5Ddbs/RY2716z2mzMxMVy9lZUz51cvKmLLOYbly5crEmLIqK/OU15iy9iTTlGFmuW0YMg2bZDpkZOnFNAwpj7phOiS3uk0yDBmmQzaZ8vX1lcPhkGmazFMxjCnrXGbdr5XHVBbnKbe68/+5zZ8Vx1Ta85R9/dx4FWSffvppNWnSRDt27NDFixfdgqwkde3aVe+99543u3BJSEiQJFWrVs2tXq1aNdcyT+bMmaMZM2bkqMfGxiowMFCSFBYWpsjISMXFxencuXOudWrWrKmaNWvqp59+UnJysqtev359Va1aVfv379eVK1dc9caNGyskJESxsbFuE9OiRQv5+vpq165dbj20bt1a6enp2rdvn6tmt9vVpk0bJScn6+DBg656QECAWrZsqfPnz+vo0aOuesWKFdWkSRPFx8fr5MmTrvr1GpPz0muxsbEyDKNMjKkszlNeY3L+wPn+++8VFRVVJsbkVJbmKa8xZd134NULqnTxtOv2Vd9AnQ+po+DLiQpO/V/vqQEhSgqKUKVLCQq8csFVTwkMU0pgmEKTT8g/PdVVTwqqrtSASqqWFKdQv6uaNGmSEhMTlZyczDwVw5iCgoIkSadPn3b7nWblMZXFecptTKGhoZKk48ePKzExsUyMqbTnydOlXT0xzKyxuZACAwM1Z84cjR8/XomJiQoLC9PatWvVrVs3SdI777yj8ePH6/Lly4XetmEYWrFihfr37y/pt6O/HTp0UHx8vKpXr+5ab9CgQTIMQx9//LHH7Xg6IlurVi0lJia6vqyhtP/qsPJfUmlpaVq9erWio6Pl4+NTJsZUFucprzFlZGS45tDf379MjCmrsjJPeY1pz549On36tDakBiq8ccsSPyIbf3Cf3hrVR1u3blWrVq2Yp2IYk/N12KtXL9f2rD6msjhPeR1Rj4mJyXX+rDim0p6npKQkhYaGKjk5Oc8v1/LqiGy5cuXc39LK5tSpU6pQoYI3u3AJDw+XJJ05c8YtyJ45c0a33XZbrvfz8/OTn59fjrqPj498fNyH75yE7LI+KQtSz77dotQNw/BYz63HwtaLa0zO9e12u9s6Vh5TWZynvOrOHzjObZaFMWVX1sfk1pNhyDQ87NewyfT0Odxc6r8FV891hwylp6fLZrO5PtzLPHk3Jufr0GazFeoxuJHHVNS6FceU3/xZcUz51UtjTJ549WGvdu3aafny5R6XpaamatGiRercubM3u3CpV6+ewsPDtW7dOlctJSVF3377rdq3b18s+wAAAIB1eHVEdsaMGercubP69OmjoUOHSvrtPLujR4/q5Zdf1rlz5zRlypQCb+/SpUs6cuSI63ZcXJz27t2rypUrq3bt2powYYJmzZqlhg0bql69epoyZYoiIiJcpx8AAADg5uFVkI2KitKXX36phx56SMOHD5ckPf7445KkyMhIffnll2rRokWBt7dr1y517drVdXvixImSpBEjRmjx4sV68sknlZqaqjFjxujChQu68847FRMTI39/f2+GAQAAAAsqcpA1TVMXL17UHXfcoUOHDmnv3r06fPiwHA6HIiMjXR8AKIwuXbq4nSCcnWEYeu655/Tcc88VtW0AAACUEUUOsunp6apcubJmz56tJ598UrfddlueH7oCAAAAilORP+zl5+en8PBwj1cEAAAAAEqaV1ctGDlypN5//32lp6cXVz8AAABAgXj1Ya9bb71VK1euVLNmzTRy5EjVrVtXAQEBOdYbMGCAN7sBAAAAcvAqyDovuSUp18tsGYaR41sbAAAAAG8VOsg+/fTTGjJkiFq0aKENGzaURE8AAABAvgodZF944QU1b95cLVq0UOfOnZWYmKiqVatqzZo16tatW0n0CAAAAOTg1Ye9nPK69isAAABQEoolyAIAAADXG0EWAAAAllSkqxYcO3ZMe/bskSQlJydLkg4fPqyQkBCP699+++1F6w4AAADIRZGC7JQpU3Jcbuvhhx/OsZ5pmlx+CwAAACWi0EF20aJFJdEHAAAAUCiFDrIjRowoiT4AAACAQuHDXgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsiSALAAAASyLIAgAAwJIIsgAAALAkgiwAAAAsyVJBdvr06TIMw+1f48aNS7stAAAAlAKf0m6gsJo1a6a1a9e6bvv4WG4IAAAAKAaWS4E+Pj4KDw8v7TYAAABQyiwXZA8fPqyIiAj5+/urffv2mjNnjmrXrp3r+mlpaUpLS3PdTklJkSRlZGQoIyNDkmSz2WSz2eRwOORwOFzrOuuZmZkyTTPfut1ul2EYru1mrUtSZmZmgeo+Pj4yTdOtbhiG7HZ7jh5zq1/vMWVmZrp6KStjyq9eVsaUdQ7LlStXJsaUVVmZp7zGlLUnmaYMM8ttw5Bp2CTTISNLL6ZhSHnUDdMhudVtkmHIMB2yyZSvr68cDodM02SeimFMWecy636tPKayOE+51Z3/z23+rDim0p6n7OvnxlJBNioqSosXL1ajRo10+vRpzZgxQx07dtT+/fsVFBTk8T5z5szRjBkzctRjY2MVGBgoSQoLC1NkZKTi4uJ07tw51zo1a9ZUzZo19dNPPyk5OdlVr1+/vqpWrar9+/frypUrrnrjxo0VEhKi2NhYt4lp0aKFfH19tWvXLrceWrdurfT0dO3bt89Vs9vtatOmjZKTk3Xw4EFXPSAgQC1bttT58+d19OhRV71ixYpq0qSJ4uPjdfLkSVf9eo0pNjbW9XgahlEmxlQW5ymvMTl/4Hz//feKiooqE2NyKkvzlNeYsu478OoFVbp42nX7qm+gzofUUfDlRAWn/q/31IAQJQVFqNKlBAVeueCqpwSGKSUwTKHJJ+SfnuqqJwVVV2pAJVVLilOo31VNmjRJiYmJSk5OZp6KYUzO32GnT59WQkJCmRhTWZyn3MYUGhoqSTp+/LgSExPLxJhKe56c+SI/hpk1NlvMhQsXVKdOHc2dO1ejR4/2uI6nI7K1atVSYmKigoODJZX+Xx1W/ksqLS1Nq1evVnR0tHx8fMrEmMriPOU1poyMDNcc+vv7l4kxZVVW5imvMe3Zs0enT5/WhtRAhTduWeJHZOMP7tNbo/po69atatWqFfNUDGNyvg579erl2p7Vx1QW5ymvI+oxMTG5zp8Vx1Ta85SUlKTQ0FAlJye78ponljoim11ISIhuueUWHTlyJNd1/Pz85Ofnl6Pu4+OT44NizknILuuTsiD13D6AVpi6YRge67n1WNh6cY3Jub7dbndbx8pjKovzlFfd+QPHuc2yMKbsyvqY3HoyDJmGh/0aNpmGh43nUv8tuHquO2QoPT1dNptNhmEUuvfc6mV9nvLq0fk6tNlshXoMbuQxFbVuxTHlN39WHFN+9dIYkyeWuvxWdpcuXdLPP/+s6tWrl3YrAAAAuM4sFWSfeOIJbdq0SceOHdO2bdt09913y263a+jQoaXdGgAAAK4zS51acPLkSQ0dOlSJiYkKCwvTnXfeqR07digsLKy0WwMAAMB1Zqkgu3Tp0tJuAQAAADcIS51aAAAAADgRZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCVZMsi+8cYbqlu3rvz9/RUVFaWdO3eWdksAAAC4ziwXZD/++GNNnDhR06ZN0549e9SyZUtFR0fr7Nmzpd0aAAAAriPLBdm5c+fqgQce0KhRo9S0aVO99dZbKl++vN59993Sbg0AAADXkU9pN1AY6enp2r17tyZPnuyq2Ww29ejRQ9u3b/d4n7S0NKWlpbluJycnS5J+/fVXZWRkuLZhs9nkcDjkcDjctm2z2ZSZmSnTNPOt2+12GYbh2q7TuXPnlJCQ4LauJBmGIUk56jabTaZputUNw5BhGAWqO+9f0PULUs/6uGTtPTMzU5cvX9Y333wjm81WYmPKXs/aU3GPydM8Oee7JMeU/bnkrJXUmJx1h8PhmkMfH58SG1NR568oY8oq6+vB2+dMYep2uz3Hz4jiHpOzfvjwYVWoUEHxh+J09XKqsjNlyJBZbPXE40dVrlw57d69WxcvXiyRMTnXLc7XfGHnL/vP8uIeU9a6aZq6fPmytmzZ4tpeSYw1++845zrX4/eT8/dsSY4pa+/Zl5Xk76finr+Cvp7sdrscDkeJ/8511qtVq6bq1asXSzay2+2SlON3q7OelJTkcczZWSrInj9/XpmZmapWrZpbvVq1ajp48KDH+8yZM0czZszIUa9Xr16J9AgAN4sxY8aUdgsAyriLFy+qYsWKuS63VJAtismTJ2vixImu2w6HQ7/++qtCQ0Pd/mpC0aSkpKhWrVo6ceKEgoODS7sdFAFzaH3MofUxh9bG/BU/0zR18eJFRURE5LmepYJslSpVZLfbdebMGbf6mTNnFB4e7vE+fn5+8vPzc6uFhISUVIs3reDgYF68FsccWh9zaH3MobUxf8UrryOxTpb6sJevr69atWqldevWuWoOh0Pr1q1T+/btS7EzAAAAXG+WOiIrSRMnTtSIESPUunVrtW3bVq+++qpSU1M1atSo0m4NAAAA15HlguzgwYN17tw5TZ06VQkJCbrtttsUExOT4wNguD78/Pw0bdq0HKdvwDqYQ+tjDq2PObQ25q/0GGZ+1zUAAAAAbkCWOkcWAAAAcCLIAgAAwJIIsgAAALAkgiwAAAAsiSCLPG3evFl9+/ZVRESEDMPQypUr871PWlqannnmGdWpU0d+fn6qW7eu3n333ZJvFh4VZQ4//PBDtWzZUuXLl1f16tV1//33KzExseSbRQ5z5sxRmzZtFBQUpKpVq6p///46dOhQvvdbtmyZGjduLH9/f91666368ssvr0O38KQoc7hgwQJ17NhRlSpVUqVKldSjRw/t3LnzOnWMrIr6GnRaunSpDMNQ//79S67JmxhBFnlKTU1Vy5Yt9cYbbxT4PoMGDdK6deu0cOFCHTp0SB999JEaNWpUgl0iL4Wdw61bt2r48OEaPXq0fvzxRy1btkw7d+7UAw88UMKdwpNNmzZp3Lhx2rFjh9asWaNr166pZ8+eSk1NzfU+27Zt09ChQzV69GjFxsaqf//+6t+/v/bv338dO4dTUeZw48aNGjp0qDZs2KDt27erVq1a6tmzp06dOnUdO4dUtPlzOnbsmJ544gl17NjxOnR6kzKBApJkrlixIs91vvrqK7NixYpmYmLi9WkKhVKQOfz73/9u1q9f36322muvmTVq1CjBzlBQZ8+eNSWZmzZtynWdQYMGmX369HGrRUVFmWPHji3p9lAABZnD7DIyMsygoCDzvffeK8HOUBAFnb+MjAzzjjvuMN955x1zxIgRZr9+/a5PgzcZjsiiWP3f//2fWrdurZdeekk1atTQLbfcoieeeEJXrlwp7dZQQO3bt9eJEyf05ZdfyjRNnTlzRsuXL9cf/vCH0m4NkpKTkyVJlStXznWd7du3q0ePHm616Ohobd++vUR7Q8EUZA6zu3z5sq5du1ao+6BkFHT+nnvuOVWtWlWjR4++Hm3dtCz3zV64sR09elRbtmyRv7+/VqxYofPnz+vhhx9WYmKiFi1aVNrtoQA6dOigDz/8UIMHD9bVq1eVkZGhvn37Fur0EpQMh8OhCRMmqEOHDmrevHmu6yUkJOT4tsNq1aopISGhpFtEPgo6h9n97W9/U0RERI4/UHB9FXT+tmzZooULF2rv3r3Xr7mbFEdkUawcDocMw9CHH36otm3b6g9/+IPmzp2r9957j6OyFvHf//5Xjz76qKZOnardu3crJiZGx44d04MPPljard30xo0bp/3792vp0qWl3QqKqChz+MILL2jp0qVasWKF/P39S7A75Kcg83fx4kXdd999WrBggapUqXIdu7s5cUQWxap69eqqUaOGKlas6Ko1adJEpmnq5MmTatiwYSl2h4KYM2eOOnTooEmTJkmSWrRoocDAQHXs2FGzZs1S9erVS7nDm9MjjzyiL774Qps3b1bNmjXzXDc8PFxnzpxxq505c0bh4eEl2SLyUZg5dHr55Zf1wgsvaO3atWrRokUJd4i8FHT+fv75Zx07dkx9+/Z11RwOhyTJx8dHhw4dUmRkZIn3e7PgiCyKVYcOHRQfH69Lly65aj/99JNsNluBf3CjdF2+fFk2m/uPBrvdLkkyTbM0WrqpmaapRx55RCtWrND69etVr169fO/Tvn17rVu3zq22Zs0atW/fvqTaRB6KMoeS9NJLL2nmzJmKiYlR69atS7hL5Kaw89e4cWP98MMP2rt3r+vfXXfdpa5du2rv3r2qVavWder85sARWeTp0qVLOnLkiOt2XFyc9u7dq8qVK6t27dqaPHmyTp06pffff1+SNGzYMM2cOVOjRo3SjBkzdP78eU2aNEn333+/AgICSmsYN7XCzmHfvn31wAMP6M0331R0dLROnz6tCRMmqG3btoqIiCitYdy0xo0bpyVLluizzz5TUFCQ6zzXihUrul5Tw4cPV40aNTRnzhxJ0qOPPqrOnTvrH//4h/r06aOlS5dq165dmj9/fqmN42ZWlDl88cUXNXXqVC1ZskR169Z13adChQqqUKFC6QzkJlXY+fP3989x/mxISIgkFeq8aBRQaV4yATe+DRs2mJJy/BsxYoRpmqY5YsQIs3Pnzm73OXDggNmjRw8zICDArFmzpjlx4kTz8uXL1795mKZZtDl87bXXzKZNm5oBAQFm9erVzT//+c/myZMnr3/z8Dh3ksxFixa51uncubNrPp0++eQT85ZbbjF9fX3NZs2amatWrbq+jcOlKHNYp04dj/eZNm3ade//ZlfU12BWXH6r5BimyXuFAAAAsB7OkQUAAIAlEWQBAABgSQRZAAAAWBJBFgAAAJZEkAUAAIAlEWQBAABgSQRZAAAAWBJBFgAAAJZEkAWAUrJx40YZhqGNGzeWdisAYEkEWQAoo7Zt26bp06frwoULpd0KAJQIgiwAlFHbtm3TjBkzCLIAyiyCLACgUC5fvlzaLQCAJIIsAJSoU6dOafTo0YqIiJCfn5/q1aunhx56SOnp6R7Xr1u3rkaOHJmj3qVLF3Xp0sWt9vrrr6tZs2YqX768KlWqpNatW2vJkiWSpOnTp2vSpEmSpHr16skwDBmGoWPHjrnu/+9//1utWrVSQECAKleurCFDhujEiRM59tu8eXPt3r1bnTp1Uvny5fX0008X/QEBgGLkU9oNAEBZFR8fr7Zt2+rChQsaM2aMGjdurFOnTmn58uVeH9VcsGCBxo8fr3vuuUePPvqorl69qn379unbb7/VsGHDNGDAAP3000/66KOP9Morr6hKlSqSpLCwMEnS888/rylTpmjQoEH6y1/+onPnzun1119Xp06dFBsbq5CQENe+EhMT1bt3bw0ZMkT33nuvqlWr5lXvAFBcCLIAUEImT56shIQEffvtt2rdurWr/txzz8k0Ta+2vWrVKjVr1kzLli3zuLxFixa6/fbb9dFHH6l///6qW7eua9kvv/yiadOmadasWW5HVwcMGKDf/e53mjdvnls9ISFBb731lsaOHetVzwBQ3Di1AABKgMPh0MqVK9W3b1+3EOtkGIZX2w8JCdHJkyf13XffFfq+//nPf+RwODRo0CCdP3/e9S88PFwNGzbUhg0b3Nb38/PTqFGjvOoXAEoCR2QBoAScO3dOKSkpat68eYls/29/+5vWrl2rtm3bqkGDBurZs6eGDRumDh065Hvfw4cPyzRNNWzY0OPycuXKud2uUaOGfH19i6VvAChOBFkAuIHkdqQ2MzNTdrvddbtJkyY6dOiQvvjiC8XExOjTTz/VvHnzNHXqVM2YMSPPfTgcDhmGoa+++sptm04VKlRwux0QEFCEkQBAySPIAkAJCAsLU3BwsPbv31+o+1WqVMnjdV9/+eUX1a9f360WGBiowYMHa/DgwUpPT9eAAQP0/PPPa/LkyfL39881FEdGRso0TdWrV0+33HJLofoDgBsJ58gCQAmw2Wzq37+/Pv/8c+3atSvH8tw+7BUZGakdO3a4XZ7riy++yHFZrMTERLfbvr6+atq0qUzT1LVr1yT9FnQl5QjGAwYMkN1u14wZM3L0YZpmjm0DwI2KI7IAUEJmz56tr7/+Wp07d9aYMWPUpEkTnT59WsuWLdOWLVs83ucvf/mLli9frl69emnQoEH6+eef9e9//1uRkZFu6/Xs2VPh4eHq0KGDqlWrpgMHDuhf//qX+vTpo6CgIElSq1atJEnPPPOMhgwZonLlyqlv376KjIzUrFmzNHnyZB07dkz9+/dXUFCQ4uLitGLFCo0ZM0ZPPPFEyT44AFAMCLIAUEJq1Kihb7/9VlOmTNGHH36olJQU1ahRQ71791b58uU93ic6Olr/+Mc/NHfuXE2YMEGtW7fWF198occff9xtvbFjx+rDDz/U3LlzdenSJdWsWVPjx4/Xs88+61qnTZs2mjlzpt566y3FxMTI4XAoLi5OgYGBeuqpp3TLLbfolVdecZ1TW6tWLfXs2VN33XVXyT0oAFCMDNPbixkCAAAApYBzZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCURZAEAAGBJBFkAAABYEkEWAAAAlkSQBQAAgCX9P+3VAatZ00L5AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Elegir el número del cluster a analizar\n", - "cluster_a_analizar = 2 # Cambia este valor al número del cluster que quieres analizar\n", - "\n", - "# Filtrar los elementos del cluster específico\n", - "elementos_cluster = df_final[df_final['cluster'] == cluster_a_analizar]\n", - "\n", - "print(f\"Elementos del cluster {cluster_a_analizar}:\")\n", - "print(elementos_cluster)\n", - "\n", - "# Estadísticas descriptivas de los datos del cluster\n", - "print(f\"\\nEstadísticas descriptivas del cluster {cluster_a_analizar}:\")\n", - "print(elementos_cluster.describe())\n", - "\n", - "# Visualizar las características relevantes de los elementos del cluster\n", - "import matplotlib.pyplot as plt\n", - "\n", - "# Seleccionar columnas relevantes para el análisis (puedes ajustar según tu caso)\n", - "columnas_relevantes = elementos_cluster.select_dtypes(include=['number']).columns\n", - "\n", - "# Crear histogramas para las columnas relevantes\n", - "for col in columnas_relevantes:\n", - " plt.figure(figsize=(8, 5))\n", - " elementos_cluster[col].hist(bins=20, color='skyblue', edgecolor='black')\n", - " plt.title(f'Distribución de {col} en el cluster {cluster_a_analizar}', fontsize=14)\n", - " plt.xlabel(col, fontsize=12)\n", - " plt.ylabel('Frecuencia', fontsize=12)\n", - " plt.grid(axis='y', linestyle='--', alpha=0.7)\n", - " plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Elementos del cluster 3:\n", - " Weight Upper_Material Midsole_Material \\\n", - "7 213.0 Parte superior de malla Dreamstrike+ \n", - "15 334.0 Exterior técnico de malla Mediasuela Dreamstrike \n", - "32 247.0 Parte superior de monomalla LIGHTMOTION \n", - "35 248.0 Exterior textil Tecnología Light BOOST \n", - "40 254.0 Monomalla Dreamstrike+ \n", - ".. ... ... ... \n", - "414 243.0 Exterior de malla acolchada Dreamstrike+ \n", - "428 290.0 Parte superior de malla Mediasuela Dreamstrike+ \n", - "429 290.0 Parte superior de malla Dreamstrike+ \n", - "442 213.0 Parte superior de malla mediasuela Dreamstrike+ \n", - "450 295.0 adidas PRIMEKNIT 4D de impresión 3D \n", - "\n", - " Outsole Cushioning_System \\\n", - "7 Suela Adiwear Dreamstrike+ \n", - "15 Suela con inserciones de caucho Dreamstrike \n", - "32 Adiwear LIGHTMOTION \n", - "35 Continental Rubber Tecnología BOOST \n", - "40 Varillas de caucho Dreamstrike+ \n", - ".. ... ... \n", - "414 Adiwear Dreamstrike+ \n", - "428 Suela Adiwear Dreamstrike+ \n", - "429 Suela Adiwear Dreamstrike+ \n", - "442 Suela Adiwear Dreamstrike+ \n", - "450 Continental Rubber Estructura que absorbe el impacto \n", - "\n", - " Drop__heel-to-toe_differential_ Usage_Type Gender Available_Sizes \\\n", - "7 10.0 Running Mujer CO 37 \n", - "15 10.0 Running Hombre NaN \n", - "32 10.0 Running Mujer CO 37 \n", - "35 10.0 Running Mujer CO 37 \n", - "40 10.0 Running Mujer NaN \n", - ".. ... ... ... ... \n", - "414 10.0 Running Mujer NaN \n", - "428 8.0 Running Hombre CO 40 \n", - "429 8.0 Running Hombre NaN \n", - "442 10.0 Running Mujer NaN \n", - "450 10.0 Running Mujer NaN \n", - "\n", - " Width Additional_Technologies \\\n", - "7 NaN Contiene al menos un 20% de material reciclado... \n", - "15 NaN Contiene al menos un 20% de material reciclado \n", - "32 NaN Recycled materials, Waterproofing \n", - "35 NaN Torsion System, Recyclable materials, Huella d... \n", - "40 NaN Contiene al menos un 20% de material reciclado \n", - ".. ... ... \n", - "414 NaN Sustainable dye technology, Recyclable materials \n", - "428 NaN Recycled materials, Optimized lacing system \n", - "429 NaN NaN \n", - "442 NaN Contiene al menos un 20% de material reciclado... \n", - "450 NaN Contiene al menos un 20% de material reciclado... \n", - "\n", - " id regularPrice undiscounted_price cluster \n", - "7 0n2Tyl34QdVdkCKgAdcT 649950 NaN 3 \n", - "15 1f5c8gEndKxlI9IEo2FT 579950 347970.0 3 \n", - "32 4rs0wxAzoGLvCI8BHwzh 379950 265965.0 3 \n", - "35 5BnxAht8eNgpRagM6Xcv 949950 NaN 3 \n", - "40 5iyHRy6zWzpmfnsalDBK 499950 349965.0 3 \n", - ".. ... ... ... ... \n", - "414 voNjPj9u2oFEimmwnQUZ 799950 NaN 3 \n", - "428 x6mqNLTCjvwPX1Zp7k7f 849950 NaN 3 \n", - "429 xDe8Syqrat9Xos53PdXL 849950 594965.0 3 \n", - "442 yFWhoK8BDTP6VF8QzBMA 649950 NaN 3 \n", - "450 zVnQ4LTK528Lins9HzaW 1199950 719970.0 3 \n", - "\n", - "[64 rows x 15 columns]\n", - "\n", - "Estadísticas descriptivas del cluster 3:\n", - " Weight Drop__heel-to-toe_differential_ Width regularPrice \\\n", - "count 64.000000 62.000000 0.0 6.400000e+01 \n", - "mean 255.125000 9.419355 NaN 7.233875e+05 \n", - "std 36.080818 1.300043 NaN 2.401337e+05 \n", - "min 183.000000 6.000000 NaN 2.999500e+05 \n", - "25% 242.000000 10.000000 NaN 5.799500e+05 \n", - "50% 251.000000 10.000000 NaN 6.999500e+05 \n", - "75% 277.000000 10.000000 NaN 8.499500e+05 \n", - "max 334.000000 10.000000 NaN 1.299950e+06 \n", - "\n", - " undiscounted_price cluster \n", - "count 33.000000 64.0 \n", - "mean 511087.272727 3.0 \n", - "std 171176.978698 0.0 \n", - "min 239960.000000 3.0 \n", - "25% 349965.000000 3.0 \n", - "50% 509970.000000 3.0 \n", - "75% 639960.000000 3.0 \n", - "max 909965.000000 3.0 \n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAHcCAYAAADBWPI0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdgUlEQVR4nO3dd3xUVf7/8fedCSkEQiAhQIDQBaQqTQJS1AUVC+pasCHuz1UXu+JiQWBRcVfXdV3L2hZ1v7uIDcUFQUV6L6EpvRtESICEEhKSOb8/4lwymUkyyaRdeD0fD3yYzz1z72n3zCc3d+5YxhgjAAAAwEFcVV0BAAAAoLRIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBlLt//OMfsixL7733XlVXBQBwhiKJBX41d+5cWZalcePGVcnxmzdvrubNm/vExo0bJ8uyNHfu3CqpU2GWZWnAgAHFllm+fLkee+wxPfPMM/rd735XORULIJi6Ok15zdHqNq+qgwEDBsiyrHLfb1WvK8CZjCQWZ5Rdu3bJsiyffzVr1lRiYqIuvvhiPfPMM9q+fXuFHLui3gSd5PDhw7rhhhs0bNgwjR8/vqqrUyFeeOEFWZalF154IeD2rl27yrIs3XPPPQG3Dx06VJZlafbs2RVZzXJFIuYc1eUXlM2bN+uuu+7Seeedp/r16ysiIkLNmzfXFVdc4ai5j+otrKorAFSEVq1a6dZbb5UkZWdn68CBA1q+fLkmTJig559/Xo8//riee+45n6SzZ8+e2rhxo+Lj46ukzk5Y2Ddu3KiaNWsWuX3NmjX6wx/+oIcffrgSa1W5Bg4cKCk/sRs9erTPtvT0dK1bt67IJMLj8Wj+/PmKiIhQnz59Sn3sqp6jQLDWr1+vzz//XL1791ZycrJiYmKUmpqqL7/8UtOnT9ezzz6rp556qqqrCYcjicUZqXXr1gGvGi1cuFC33XabJk6cKLfbrQkTJtjbatasqXbt2lViLX21atWqyo4drJL6Z+DAgXaSd6bq1q2bateurYULFyo3N1dhYaeX0Xnz5skYo2uvvVaff/65fv75ZzVq1MjevnbtWh0+fFj9+/dXZGRkqY9d1XMUCNaVV16p6667zu+vU/v27dN5552n8ePHa+TIkYqNja2aCuKMwO0EOKv07dtXM2fOVEREhP7yl79o79699rai/mS6detWjRgxQi1atFBERITq1aunLl266KGHHpIxRlL+/Zfz5s2z/9/774477pB0+jaHO+64Qxs3btQ111yjuLg4WZalXbt2SQp8T2xB7733njp16qTIyEg1btxYDz/8sI4ePepTprg/+xasQ2EHDhzQo48+qrZt2yoqKkr16tVTr1699NJLL/mUK+o+07S0ND300EN2HyUkJOiGG27Qhg0b/MrecccdsixLO3fu1Kuvvqp27dopIiJCzZo10/jx4+XxeIrsg0DeffdddezYUZGRkWratKkef/xxnTx5ssjyR48e1dixY9WhQwdFRUUpNjZWgwcP1sKFC4M6XlhYmC688EIdP35cK1as8Nk2d+5cRUVF6Y9//KMkac6cOX7bJfkl+l9++aUuvvhi1a1bV5GRkerYsaNeeukl5eXl+b2+qPGdN2+e+vXrp+joaMXFxenGG2/U3r17S7zN5b///a+6du2qqKgoNWrUSA8++KCysrLs7ePGjbPrO378eJ/57Z27JQm2fe+//74sy9L777+vb775RsnJyapZs6bi4uI0fPhwpaenB3U8rwMHDujhhx9W69atFRERofj4eF133XUB52VZrF27VrfccouaNGmiiIgINWrUSJdeeqm++uqrEl9b3D3bgdaCjIwMPfPMMzr33HNVq1YtxcTEqHXr1ho+fLh2794tKf+WJu9tPAMHDrTHqfC+StMv3rocOXJE9913n5o2baqwsDC9//77xbYvIiIi4LxLTExUnz59dOrUKbveQFlxJRZnnbZt2+qGG27Qv//9b33xxRe6//77iyy7b98+9ezZU8ePH9eQIUN044036vjx49q6daveeOMNvfTSSwoLC9PYsWP1/vvva/fu3Ro7dqz9+q5du/rsb9u2bbrgggvUqVMn3XHHHUpPT1d4eHiJdX755Zc1e/Zs3XjjjRoyZIi+++47vfLKK1q6dKnmz5+vGjVqlLk/Nm/erIEDB+rnn39W3759NXToUB0/flw//PCDnn/+eT322GPFvv7gwYPq3bu3tm/frgEDBuimm27Szp079emnn2r69OmaNWuW+vbt6/e6UaNGad68ebriiis0ePBgffHFFxo3bpxycnL03HPPBVX3CRMm6JlnnlGDBg101113qUaNGpoyZYo2btwYsPyhQ4fUr18//fDDD+rTp4/uueceZWZm6ssvv9TAgQP1ySefaOjQoSUed+DAgZoxY4bmzJmj3r172/E5c+boggsuUPfu3VW3bl3NmTNHN998s8927+u9nnjiCb3wwgtq3Lixrr32WtWpU0cLFizQqFGjtGzZMn3yyScl1uebb77RkCFD5Ha7deONNyoxMVFz5sxR3759Vbdu3SJf99prr2nmzJm6+uqrddFFF2nmzJl69dVXlZaWpv/85z+S8hOjXbt26YMPPlD//v19Eq9grqKVpX3Tpk3T9OnTdeWVVyo5OVnz58/Xhx9+qO3btwf9y4Z3Pv70008aNGiQhg4dqgMHDuizzz7TrFmzNHv2bPXq1SuofQXy2Wef6eabb5YxRldeeaXatm2rAwcOaNmyZXrvvfd05ZVXlnnfhRljNHjwYC1btkx9+vTRpZdeKpfLpd27d2vatGm67bbb1KxZM/sX1Hnz5mn48OF28lpwnMrSL9nZ2brooot07NgxXXXVVQoLC1ODBg3K1Jb09HQtW7ZMNWvWVMuWLcu0D8BmgDPIzp07jSQzePDgYsu99957RpK57bbb7NicOXOMJDN27Fg79uqrrxpJ5pVXXvHbR3p6us/P/fv3N0WdUt56STLPPPNMwDLNmjUzzZo184mNHTvWSDLh4eFm7dq1dtzj8Zibb77ZSDIvvfRSsW0oXIfhw4f7xLt3724kmbffftvvNXv37vX5WZLp37+/T2zEiBFGknniiSd84tOnTzeSTOvWrU1eXp4dHz58uJFkWrRoYfbt22fHDx48aGJjY03t2rVNdna2X10K27p1qwkLCzONGzc2v/zyix3PyMgwbdu2DVhXb5+98847PvFffvnFNG3a1NSvX99kZWWVeOyVK1caSeY3v/mNT/0tyzLjx483xhhz1VVXmVatWtnb8/LyTGxsrImKirLb980339jz9dixY3ZZj8dj7rnnHiPJfPrpp3Y80Pjm5uaaZs2aGcuyzIIFC3zqefvtt9vzriDvvKpTp47ZtGmTHT9x4oQ555xzjMvlMqmpqcUeNxilbd+kSZOMJBMWFmYWLlzo08YBAwYYSWbJkiVBHTs5Odm43W4zc+ZMn/jmzZtN7dq1TadOnXzixZ2/he3fv99ER0eb6Ohos3r1ar/tBc+bovou0Pz0KrwWrFu3zkgyQ4cO9St78uRJc/ToUftn79jOmTMn4L5L2y/NmjWzx/DEiRMB91mczZs3m7Fjx5qnn37a3HnnnSY+Pt6EhYWZd999t9T7AgrjdgKclRITEyXl/xk8GFFRUX6xevXqlfq4DRs2LNOHGW6//XZ17tzZ/tmyLD3//PNyu90l/lmvOMuXL9fKlSvVr18/3XXXXX7bmzRpUuzrc3JyNHnyZMXFxenpp5/22Xb55ZfrN7/5jbZt26ZFixb5vXbMmDE+94vGx8fr6quv1tGjR7V58+YS6/7f//5Xubm5euSRR5SQkGDHY2Ji/Ooi5Y/1lClTdNFFF+n//b//57MtISFBo0aN0sGDB/Xdd9+VeOzzzjtPsbGxWrRokXJyciTl/6nfGGNfqezfv7+2b99u37KyZs0aHTlyRMnJyfbV99dee02S9Pbbbys6Otrev/fpB5ZlafLkycXWZeHChdq9e7euvPJKvyvezz77rNxud5GvffDBB9W2bVv756ioKA0bNkwej0erVq0qsR9KUtb23XzzzT4ffHO73Ro+fLgk+d3CEUhKSooWL16s4cOHa/DgwT7bzjnnHN11111av359mW8r+OCDD3T8+HE9+uijOu+88/y2l3TelFWgdSgiIkK1atUK6vWh9Mtf/vKXgMcvyZYtWzR+/Hg9++yz+te//qWTJ09q0qRJVfr4PZw5uJ0AKMaVV16pJ554QiNHjtTs2bN16aWXqn///mX+M1iXLl2Cun2gsAsvvNAv1qxZMzVt2lQ//PCDcnJyyrTf5cuXS5IGDRpU6tdK0qZNm3Ty5EkNHDgw4FMLBg4cqG+//VZr1qzxa0O3bt38ynvf/I8cOVLisdeuXSspcN8Eiq1YsUJ5eXnKzs4OeE/p1q1b7TZdccUVxR7b5XLpwgsv1FdffaXly5erb9++mjNnjiIjI+0/xfbv319S/i0Et99+e8D7YZcuXaro6Gj961//CnicqKgobdq0qdi6ePsh0C0bTZs2VVJSknbu3BnwtaGOQUnK2r5Q67V06VJJ0i+//BJwrL3H3LRpkzp27Fji/goL9bwprfbt26tz586aPHmyfvrpJw0dOlQDBgxQ165d5XIFfy2qrP0SGRmpTp06lanuV1xxhYwxysnJ0a5du/TOO+/o9ttv1/Lly/Xqq6+WaZ+AF0kszkr79u2TJNWvX7/Ycs2bN9fSpUs1btw4zZgxQx9//LGk/E/p/+lPf9L1119fquOW9T6yol7XoEED7dq1S0ePHlVcXFyp95uRkSFJaty4cZnqlZmZWWz9vFdaveUKiomJ8Yt5P+lf+AM/gXjrXvAqrFeg+hw6dEiStGjRooBXhr2OHz9e4rGl/GT0q6++0ty5c9W3b1/NnTtXF1xwgSIiIiTl3w9dp04dO4n13g970UUX+dQpNze32GfqllQfb98G6gcpvy+KSmJDHYOSlLV9odbLO9bTp0/X9OnTS3XsYIR63pRWWFiYvv/+e40bN06fffaZHn30UUn569d9992np556qtgr7l5l7ZeEhISQn4EdHh6uc845Ry+++KJOnDihf/zjH7rssst02WWXhbRfnN24nQBnJe9VsR49epRYtmPHjvr000916NAhLVmyRM8884z279+vG2+8sdhkKJCyvhH88ssvRcYty1Lt2rUlyb4qk5ub61fW+8ZbkPcDH6mpqWWqlzfZKKp++/fv9ylXnurUqSMp/5PWhQWqj7cOjz76qIwxRf4r+MG84nivqM6ZM0cHDhzQjz/+6POhJ7fbbV+h9Xg8WrBggWrVquUz52JiYhQXF1dsfYpKQAu3K1A/FNUXlaU82lfW40r5X39c3LG9tyiUVqjnjZS/FgQ6T6XA52pcXJz+8Y9/KDU1VT/++KNee+011atXT2PHjtVf/vKXoI5Z1n4p7y9x8V7BruovZIDzkcTirLNlyxZ9/PHHioiI0DXXXBP062rUqKELLrhA48eP16uvvipjjP73v//Z271XQsrjClZhCxYs8Ivt3r1be/fuVYcOHexbCbyfRA/05pqSkuIX69mzp6T8T7eXRbt27RQZGakVK1boxIkTftu9b1KFn9JQHrp06SIpcN8EivXo0UOWZWnJkiXlcvzOnTurXr16WrJkiWbNmiVJfo9M6t+/v3bv3q3PP/9cGRkZ6tu3r89zZXv16qX09HT7Voay8PZDoF+ofvrpJ+3Zs6fM+/Yq69wuj/aVhfeWjvIa68JCPW+k/HM10Hm6a9euYm+ZsCxL7du318iRI/Xtt99Kyn+ag1dxY1XR/RIs71/CQnmqCiCRxOIss2jRIg0ePFjZ2dkaPXp0iX8OXLVqVcA/hXuvbhV8YL33g14Fnz1bXj788EOtW7fO/tkYoyeffFJ5eXk+z31t27atateurWnTptl/OvTW99lnn/Xbb48ePdSjRw/Nnz9f77zzjt/2kq40hYeHa9iwYUpLS9PEiRN9ts2cOVOzZs1S69aty/TtVCW5+eab5Xa79fLLL/tchczMzAzY1oYNG+qGG27Q4sWL9eKLL9rP+C1o2bJlAZPxQFwul/r376+srCz95S9/UWRkpC644AKfMt77Ygs+u7OgBx54QJJ05513BnwG6v79+4t8XJhX3759lZSUpK+++sovORkzZky5/FJV1rldHu0ri549e6pXr16aPHmypkyZ4rfd4/HYz3Uui+HDh6tWrVr661//qjVr1vhtD+YKbY8ePbRr1y6feuTk5OiRRx7xK7tr166Az+Qt7TpU0f1S0KpVqwKeY7t377bXCm4lQKi4JxZnpG3bttkfXMjJybG/dnb9+vVyu916+umng/qz8b///W+99dZb6tevn1q1aqWYmBj9+OOPmjFjhurVq6cRI0bYZS+66CJ9+umnuu6663TZZZcpMjJSXbp0KZfnRQ4ePFi9e/fWTTfdpPr162v27NlauXKlLrjgAp/n3IaHh+v+++/X888/r/PPP9/+tP9XX31lf1q+sP/85z8aMGCAfv/73+vf//63evfurZMnT+qHH35QSkpKiQ+Y//Of/6x58+bp2Wef1eLFi9WrVy/t2rVLn3zyiWrWrKlJkyaV6sMnwWrdurWeeeYZjR07Vp07d9YNN9ygsLAwffbZZ+rcuXPAJxy88cYb2rx5sx5//HG7rbGxsdq7d69WrlyprVu36ueffy72q3ULGjhwoKZOnaoNGzZowIAB9v2wXueff75q1aplf9q7cBJ76aWXasyYMZowYYJat26tSy+9VM2aNVN6erq2bdumBQsW6Nlnn1X79u2LrIPb7dY///lPXXXVVbrooot04403qlGjRpo3b55SU1PVpUsXn1+AyqJdu3ZKTEzURx99pIiICDVp0kSWZen++++3b+sIpDzaV1aTJ0/WwIEDddNNN+mVV17R+eefr6ioKO3Zs0dLlizRwYMHi/1SjOIkJCToww8/1E033aSePXvqqquuUtu2bZWWlqZly5apefPm+uKLL4rdxyOPPKJvvvlGl19+uYYNG6aaNWvq22+/VWxsrM9TO6T8J1tce+216tmzp84991w1bNhQqamp+uKLL+RyuXy+5tn7JQdPPvmkfvjhB9WpU0exsbG67777KrxfCnr00Ue1bds29erVS0lJSXK5XNq+fbu+/vpr5eTk6LHHHquQX25xlqmwh3cBVaDg81i9/6KiokyjRo3MwIEDzZgxY8y2bdsCvjbQ8xyXLl1q7r77btOxY0f7GZ9t2rQx9913n9m9e7fP60+dOmUef/xxk5SUZMLCwnyeyVrUM1oLKu45sXPmzDHvvPOO6dChg4mIiDCNGjUyDz74oMnMzPTbT15enhk3bpxp2rSpCQ8PN+ecc475+9//bnbs2FFkHfbv328efPBB07JlSxMeHm7q1atnevXqZV5++WWfciri2ZYHDx40DzzwgGnWrJmpUaOGiY+PN7/97W/N+vXr/cp6nxO7c+dOv20lPeMykHfeecece+65Jjw83DRp0sQ89thj5sSJE0XW9cSJE+Yvf/mL6datm4mOjjZRUVGmRYsWZujQoebDDz80p06dCvrY69evt+fZuHHjApYZPHiwkWRiYmJMbm5uwDLffvutufLKK039+vVNjRo1TMOGDU3v3r3NhAkTzJ49e+xyxT2v9fvvvzd9+/Y1UVFRpl69eub66683e/bsMR07djR16tTxKVtcP3uf1Tpp0iSf+NKlS03//v1N7dq17TYHGsNQ2lfUsUtqe1EOHTpknn76adOxY0cTFRVlatWqZdq0aWNuvvlm8/nnn/uULc1zYr1SUlLMDTfcYBo0aGBq1KhhGjVqZC677DLzv//9L6h6f/LJJ6ZTp04mPDzcNGzY0Nx///3m6NGjfmvB3r17zejRo80FF1xgEhISTHh4uElKSjLXXnttwOfmvv/++6ZTp04mIiLCSPJbV0rTL4HWpWB88skn5vrrrzctW7Y00dHRpkaNGqZx48bm2muv9XtGLVBWljEBrvcDABzv6NGjatCggTp16qRly5ZVdXUAoFxxTywAONzx48d19OhRn1heXp5GjRqlrKysoL5KFwCchiuxAOBwa9asUd++fTV48GC1bNlSR48e1YIFC/Tjjz+qQ4cOWrZsmc83ZgHAmYAkFgAc7uDBg3r88cc1b948/fLLL8rNzVVSUpKGDh2qp556yn6uKQCcSUhiAQAA4DjcEwsAAADHIYkFAACA45xRX3bg8Xi0b98+1a5du9y/6xkAAAChM8bo6NGjSkxMDOnLcM6oJHbfvn1q2rRpVVcDAAAAJdi7d6+aNGlS5tefUUls7dq1JeV3SkxMTJn2cerUKX3zzTcaNGiQatSoUZ7VO+PQV8Ghn4JHXwWPvgoO/RQ8+ip49FVwiuqnzMxMNW3a1M7byuqMSmK9txDExMSElMTWrFlTMTExTMwS0FfBoZ+CR18Fj74KDv0UPPoqePRVcErqp1Bv/eSDXQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOEVXUFAJx59uzZo7S0tFK/zuPxSJLWrl0rlyv437Gzs7MVERFR6uOVVXx8vJKSkirteGeDss6ZkhQ1pxhDwPlIYgGUqz179qhd+/bKOnGi1K+NiorS5MmT1a9fP2VlZQX9Osvlkvk1WakMUTVratPGjSRB5SSUOVOSouYUYwg4H0ksgHKVlpamrBMndMOzbyqhRZtSvdYtI+m4fv/uNOXJCuo1mxfN1rdvTCzT8criwM6t+vjpe5WWlkYCVE5CmTMlCTSnGEPgzEASC6BCJLRoo8btu5TqNS5PrvTTMiW27SiPK7jl6cDOrWU+HqqXihjDsswpAM7AB7sAAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHCcapXE5uXlacyYMWrRooWioqLUqlUrTZgwQcaYqq4aAAAAqpGwqq5AQX/+85/15ptv6oMPPlCHDh20cuVKjRgxQnXq1NEDDzxQ1dUDAABANVGtktjFixfr6quv1pAhQyRJzZs31+TJk7V8+fIqrhkAAACqk2qVxCYnJ+vtt9/Wli1bdM4552jt2rVauHChXn755YDls7OzlZ2dbf+cmZkpScrNzVVubq4kyeVyyeVyyePxyOPx2GW98by8PJ/bFbxl8vLyZFmWHXe73bIsy95vwbi3fDDxsLAwGWN84pZlye12+9WxqHhp21RUPNQ2Fdxenm3as2eP0tLS7PKWZckY41P3kuIF9+2Ne+tZOB4fH6/GjRv7xMt7nLz9ZVlWpY9TRbWpqLnn8XgUHh4ul4xkjGRZsown//9/ZSxXftzjW0dvGcuTJ0uWb3kpfz8Fi7vcsiT7eJYnT7Ks/PLG+Ja34x5ZPnWxpGLihetuKf//N27c6NdnpZ17geIul8tvXsfHx6t58+Y+/V5wHKvrGuEVzNyzx9B4ymWc7Dn26xzwzinvXAoPD5fH47HbVl3Pp8ocJ6+C739Ob1NFjVPB/Z0pbSqu7qG2yTunvPHC5cuqWiWxo0ePVmZmptq1aye32628vDw999xzuuWWWwKWnzhxosaPH+8XT0lJUXR0tCSpfv36atWqlXbu3KmDBw/aZZo0aaImTZpoy5YtysjIsONJSUmS8t+gCibI7dq1U2xsrFJSUnwmTufOnRUeHq6VK1f61KF79+7KycnRunXr7Jjb7VaPHj2UkZGhTZs22fGoqCh16dJFaWlp2rFjhx2vU6eO2rdvr3379umnn36y46VtU8uWLZWQkKANGzYoKyur3NpUcCKXV5tWr16taV99Jc+v9VmwYIHmz5+vYcOGqWXLlnb56dOna82aNbr77rsVHx9vxydPnqwdO3Zo1KhRCg8Pt+NvvfWWMjMzNWrUKJ82vfjii0po0EAffvCBoqKiJJX/OO3Zs0dS/ry0LKvSx6ki2lTc3EtPT9eoUaPUPOKksk4e0fGoumpweKfCck+fT2mxSToZXkuJh7bKKrCAHohtJklKPLRNpkASmxrfVm5Prhoe2m7HjMul1Ph2io0Ms48XmbZZuWER2l+vlaJPHlHdoz/b5U+GRysttpliTqQr5vjpuh+PitXh2omqe2y/orOO2PHM6PrKjK6vuIy9isw5bsfTj6XLcrm0YMECbdy40Y6XZe7FxMTo7rvvtmM5OTl68cUX1bJlSw0bNsyOHzlyRI8//rgiIyPtcSp4/lXXNUIKbu4VnDPK2Fsu43S4diMdj6qr+kd2Szo9p9Ji89f4Bx98UOnp6XYbquv5VJnj1LVrV0mn16ozoU0VNU4Fz78zpU1S+Y9TSkqKpNNzytsmbzxUlqlGn5r66KOPNGrUKL344ovq0KGD1qxZo4ceekgvv/yyhg8f7lc+0JXYpk2bKj09XTExMZJK/9tGXl6eZs6cqcGDByss7HSOfzb/BlVUPDc3V7NmzdLll1+usLCwcmnTqlWrlJycrOvG/l31m7eWkWRk5V/VK6Co+K/XXIqI+3+Scf/ObfpkzB+0fPlyewGXynecsrOzfebUmXZFonDdU1JS1KdPH90zaboatetSqiuxlvGobepybUnsLo8rzLe8Al+JXTPjU03904O6Z9J0JbbtVOFXYlNmTtWUp+/VTc+9qYTmre14aede0XFLkrHjB3dt06fjHtDSpUvVtWtXu98Lnn/esfKqLmuEV0lzb/Xq1facSWzXuVyvxLrzcnRO6gp7ThnLpdRN6/T2iMu1aNEi+7yvrudTZY6TMUYzZszwef9zepsqapwKnn/ev544vU3F1b2sbcrOztasWbPsOeWNHz58WHFxccrIyLDztbKoVldiR40apdGjR+umm26SJHXq1Em7d+/WxIkTAyaxERERioiI8IuHhYX5JKDS6QEozNuhXt7Bcbvdfvvw7juQ0sQtywoYL6qOpY0XblNJ8bK2qfCf8cujTZZlKScnR3HN26hR+y4Bj1+ePMq/JcHlcvnVvzzHSfKfU5U1TgVVxtxzuVzKycnJT8a8fzK3XCpwYdVmXL5ttTzGjhfelr+fADHJPp7PaywrYHlZLpkAdSkqXrju3lkfX4lz9NSpU5J8+z3QG0xhVb1GFFTS3LPH8NdfWEIdJ5+4/OdUTk5OwPO+up1PgVTUOHnnWaD3P6e2SaqYcSqcyAXitDYVVF5t8pYvPKeKKl9a1eoRWydOnPDrzMJXGAAAAIBqdSX2yiuv1HPPPaekpCR16NBBKSkpevnll3XnnXdWddUAAABQjVSrJPYf//iHxowZoz/84Q86cOCAEhMTdffdd+uZZ56p6qoBAACgGqlWSWzt2rX1yiuv6JVXXqnqqgAAAKAaq1b3xAIAAADBIIkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4TrVLYlNTU3XrrbcqLi5OUVFR6tSpk1auXFnV1QIAAEA1ElbVFSjo8OHD6tOnjwYOHKivv/5a9evX19atW1W3bt2qrhoAAACqkWqVxP75z39W06ZNNWnSJDvWokWLKqwRAAAAqqNqlcROmzZNgwcP1vXXX6958+apcePG+sMf/qC77rorYPns7GxlZ2fbP2dmZkqScnNzlZubK0lyuVxyuVzyeDzyeDx2WW88Ly9Pxhg77i2Tl5cny7LsuNvtlmVZ9n4Lxr3lg4mHhYXJGOMTtyxLbrfbr45FxUvbpqLiobap4PbyapMxRuHh4XLJyPLkyViWZLlkGY9UoO7GckmWVXTc41t3Y+XfOWMZj3wZWZYlj8fj0w/lPU7e/rIsq9LHqaLaVNTc83g89hjKmFKNk7eM5cmTJcu3vPzHz7jcsiSfOSPLyi9vjG95O+6R5VOX/DlWVLxw3b21so9XQpuKrHsxbSpYd5eMatSoIUk+/V5wHKvrGuEVzNyzx9B4ymWcfNYInZ5T3n4PDw/3Oe+r6/lUmePkVfD9z+ltqqhxKri/M6VNxdU91DZ555Q3Xrh8WVWrJHbHjh1688039cgjj+jJJ5/UihUr9MADDyg8PFzDhw/3Kz9x4kSNHz/eL56SkqLo6GhJUv369dWqVSvt3LlTBw8etMs0adJETZo00ZYtW5SRkWHHk5KSJEkbN270SZDbtWun2NhYpaSk+Eyczp07Kzw83O++3e7duysnJ0fr1q2zY263Wz169FBGRoY2bdpkx6OiotSlSxelpaVpx44ddrxOnTpq37699u3bp59++smOl7ZNLVu2VEJCgjZs2KCsrKxya1PBiVxebTp27JhGjRql5hEnFZm2WZnR9ZUZXV9xGXsVmXPcLn+4diMdj6qrBod3Kiz39DilxSbpZHgtJR7aKqvAibm/XivlucLUOG2zT5v2SYqLi1N6errd3vIepz179kjKn5eWZVX6OFVEm4qbe+np6fYYZp08UqpxOhDbTJKUeGibTIEkNjW+rdyeXDU8tN2OGZdLqfHtFBsZ5jNncsMitL9eK0WfPKK6R3+2y58Mj1ZabDPFnEhXzPHTdT8eFavDtRNV99h+RWcdseNFzb19tcIlSW3CsxVbYD6Vdu4V16bIU8cVfyR/3sRFnNSdd96Zf4wC41Tw/Kuua4QU3NwrOGeUsbdcxsm7RtQ/slvS6TmVFpu/xj/44IM+5311PZ8qc5y6du0q6fRadSa0qaLGqeD5d6a0SSr/cUpJSZF0ek552+SNh8oyBUeiioWHh6t79+5avHixHXvggQe0YsUKLVmyxK98oCuxTZs2VXp6umJiYiSV/reNvLw8zZw5U4MHD1ZY2Okc/2z+DaqoeG5urmbNmqXLL79cYWFh5dKmVatWKTk5WfdMmq7Etp0q/ErsT5vX6/VbB2n58uX2Ai6V7zhlZ2f7zKkz7YpE4bqnpKSoT58+umfSdDVq16VU42QZj9qmLteWxO7yuMJ8yyvwVcs1Mz7V1D89aM+Zir4SmzJzqqY8fa8e+M+3+ccroU2hXondt3m93rzjci1dulRdu3a1+73g+ecdq8LjUdVrhFdJc2/16tX2nEls17lcr8S683J0TuoKe04Zy6XUTev09ojLtWjRIvu8r67nU2WOkzFGM2bM8Hn/c3qbKmqcCp5/3r8iOr1NxdW9rG3Kzs7WrFmz7DnljR8+fFhxcXHKyMiw87WyqFZXYhs1aqRzzz3XJ9a+fXt99tlnActHREQoIiLCLx4WFuaTgEqnB6Awb4d6eQfH7Xb77cO770BKE7csK2C8qDqWNl64TSXFy9qmghO5vNpkWZZycnLkkZX/Zv6r/Dck/7oUGXcFbquxCsctGWPkcrn86l+e4yT5z6nKGqeCKmPuuVwuewz169WcYMfJ8hg7HmgM/cdPMlLAOZOftAboS8slE6AuRcUL19076/2O590e9NwrJl6g7h5ZOnXqlCTffg/0BlNYVa8RBZU09+wx/DW5D3WcfOLyn1M5OTkBz/vqdj4FUlHj5J1ngd7/nNomqWLGqXAiF4jT2lRQebXJW77wnCqqfGlVq0ds9enTR5s3+/7JbcuWLWrWrFkV1QgAAADVUbVKYh9++GEtXbpUzz//vLZt26b//ve/evvttzVy5MiqrhoAAACqkWqVxPbo0UNTp07V5MmT1bFjR02YMEGvvPKKbrnllqquGgAAAKqRanVPrCRdccUVuuKKK6q6GgAAAKjGqtWVWAAAACAYJLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOE/LTCfbv36/33ntPq1evVkZGhs/Xl0n53yoxe/bsUA8DAAAA2EJKYtetW6cBAwYoKytLbdu21fr163XuuefqyJEjSk1NVatWrdS0adPyqisAAAAgKcTbCUaPHq1atWpp8+bN+u6772SM0d///nft3btXU6ZM0eHDh/XCCy+UV10BAAAASSEmsYsWLdLdd9+tpKQkuVz5u/LeTnD99dfrlltu0ahRo0KvJQAAAFBASEmsx+NRgwYNJEmxsbFyu906dOiQvb1Tp05atWpVaDUEAAAACgkpiW3RooV27tyZvyOXSy1atNB3331nb1+8eLFiY2NDqiAAAABQWEhJ7KBBg/TJJ5/YP99777169913dckll+jiiy/WBx98oJtvvjnkSgIAAAAFhfR0gqeeekrDhg3TqVOnVKNGDT300EM6fvy4PvvsM7ndbo0ZM0ZPPvlkedUVAAAAkBRiElu3bl1169bN/tmyLD399NN6+umnQ64YAAAAUBS+sQsAAACOU6orsXfeeacsy9Lbb78tt9utO++8s8TXWJal9957r8wVBAAAAAorVRL7/fffy+VyyePxyO126/vvv5dlWcW+pqTtAAAAQGmVKondtWtXsT8DAAAAlYF7YgEAAOA4ISWxq1ev1htvvFHk9jfeeENr1qwJ5RAAAACAn5CS2KeeesrnG7oK+/7773ncFgAAAMpdSEnsqlWrdOGFFxa5/cILL9TKlStDOQQAAADgJ6Qk9ujRowoLK/qzYS6XSxkZGaEcAgAAAPATUhLbpk0bffPNN0Vunzlzplq2bBnKIQAAAAA/ISWxv/vd7zR9+nQ98sgjOnLkiB0/cuSIHn74Yc2cOVO/+93vQq0jAAAA4KNUz4kt7IEHHtCaNWv0yiuv6NVXX1ViYqIkad++ffJ4PLrtttv08MMPl0tFAQAAAK+QkljLsjRp0iTdfvvt+uyzz7Rjxw5J0tVXX63rrrtOAwYMKI86AgAAAD5CSmK9Bg4cqIEDB5bHrgAAAIAS8Y1dAAAAcJyQklhjjN566y317NlT8fHxcrvdfv+KewQXAAAAUBYhZZiPP/64Xn75ZXXt2lW33nqr6tatW171AgAAAIoUUhL7wQcf6LrrrtPHH39cXvUBAAAAShTS7QRZWVm65JJLyqsuAAAAQFBCSmIvvvhirVixorzqAgAAAAQlpCT2jTfe0NKlS/X8888rPT29vOoEAAAAFCukJLZt27basWOHxowZo4SEBEVHRysmJsbnX506dcqrrgAAAICkED/Ydd1118myrPKqCwAAABCUkJLY999/v5yqAQAAAASPb+wCAACA44ScxO7Zs0f33HOP2rZtq7p162r+/PmSpLS0ND3wwANKSUkJuZIAAABAQSHdTvDjjz/qwgsvlMfjUa9evbRt2zbl5uZKkuLj47Vw4UIdP35c7733XrlUFgAAAJDK4WtnY2NjtXTpUlmWpYSEBJ/tQ4YM0ZQpU0KqIAAAAFBYSLcTzJ8/X/fee6/q168f8CkFSUlJSk1NDeUQAAAAgJ+QkliPx6OaNWsWuf3gwYOKiIgI5RAAAACAn5CS2PPPP1/Tp08PuC03N1cfffSRLrjgglAOAQAAAPgJKYl94oknNHPmTN17773asGGDJOmXX37Rd999p0GDBmnjxo0aPXp0uVQUAAAA8Arpg12XXXaZ3n//fT344IN6++23JUm33nqrjDGKiYnRhx9+qH79+pVLRQEAAACvkJJYSbrtttt07bXX6ptvvtG2bdvk8XjUqlUrDR48WLVr1y6POgIAAAA+Qk5iJSk6OlrXXHNNeewKAAAAKFFISeyePXuCKpeUlBTKYQAAAAAfISWxzZs3D/h82MLy8vJCOQwAAADgI6Qk9l//+pdfEpuXl6ddu3bpww8/VEJCgkaOHBlSBQEAAIDCQkpi77jjjiK3/fGPf1SvXr2UkZERyiEAAAAAPyE9J7Y40dHRGjFihP72t79V1CEAAABwlqqwJFbK/1ra/fv3V+QhAAAAcBYql0dsFZaZman58+frxRdf1HnnnVcRhwAAAMBZLKQk1uVyFfl0AmOMkpKS9MYbb4RyCAAAAMBPSEnsM88845fEWpalunXrqlWrVho0aJDCwirkYi8AAADOYiFlmOPGjSunagAAAADBC+mDXbm5ucrMzCxye2ZmpnJzc0M5BAAAAOAnpCT2gQceUHJycpHb+/Tpo0cffTSUQwAAAAB+QkpiZ86cqd/+9rdFbv/tb3+rGTNmhHIIAAAAwE9ISey+ffvUuHHjIrcnJiYqNTU1lEMAAAAAfkJKYuPi4rR58+Yit2/cuFExMTGhHAIAAADwE1ISe+mll+qtt95SSkqK37bVq1fr7bff1mWXXRbKIQAAAAA/IT1ia8KECZo5c6Z69uypq666Sh06dJAkbdiwQV999ZUSEhI0YcKEcqkoAAAA4BVSEpuYmKiVK1dq9OjR+vLLLzV16lRJUkxMjG655RY9//zzSkxMLJeKAgAAAF4hf51Wo0aN9MEHH8gYo4MHD0qS6tevX+TX0QIAAAChKrfvhLUsSxEREapVqxYJLAAAACpUSB/skqSVK1fq0ksvVc2aNRUXF6d58+ZJktLS0nT11Vdr7ty5oR4CAAAA8BFSErt48WL17dtXW7du1a233iqPx2Nvi4+PV0ZGht56662QKwkAAAAUFFIS++STT6p9+/b68ccf9fzzz/ttHzhwoJYtW1amfb/wwguyLEsPPfRQKFUEAADAGSikJHbFihUaMWKEIiIiAt4H27hxY+3fv79M+33rrbfUuXPnUKoHAACAM1RISWyNGjV8biEoLDU1VbVq1SrVPo8dO6ZbbrlF77zzjurWrRtK9QAAAHCGCunpBBdccIE+/fTTgH/yP378uCZNmqT+/fuXap8jR47UkCFDdMkll+jZZ58ttmx2drays7PtnzMzMyVJubm5ys3NlSS5XC65XC55PB6fhNsbz8vLkzHGjnvL5OXl+VxddrvdsizL3q9Xamqq0tLSfPYhyX5t4bjL5ZIxxiduWZYsywo6Hh8fr+bNmwfdpqLiRbXJ7XbbfVBcvOB2Y4zPz5Zlye12+9WxqLi3jsYYhYeHyyUjy5MnY1mS5ZJlPFKBuhvLJVlW0XGPb92Nlf/7mmUK/9JlZFmWPB6PTz+EhYWVW5sKz6nKHqeKalNRc8/j8dhjKGNKNU7eMpYnT5Ys3/LyHz/jcsuSfOaMLCu/vDG+5e24R5ZPXfLnWFHxwnX31so+XgltKrLuxbSpYN1dMqpRo4Yk+fR7wXEsyzhVt7lnj6HxlMs4+awROj2nvP0eHh7uc95X9PmUmpqqgwcPhrT2lxQv/LmUZs2alapNXgXf/ypijahuc68sbSq4vzOlTcXVPdQ2eeeUN164fFmFlMSOHz9e/fv315AhQzRs2DBJ0tq1a7Vjxw699NJLOnjwoMaMGRP0/j766COtXr1aK1asCKr8xIkTNX78eL94SkqKoqOjJeU/s7ZVq1bauXOn/RxbSWrSpImaNGmiLVu2KCMjw44nJSVJkjZu3OiTILdr106xsbFKSUmxByUrK0u3Dx+uA7/8olGjRvnU4cUXX1RMTIzuvvtuO5aTk6MXX3xRLVu2tPtLyn+Sw1tvvaWuXbtqyJAhdnzHjh2aPHmy+vXrpwsvvNCO//Djj/r7K6/o1KlTQbWpZcuWSkhI0IYNG5SVlVVsmySpc+fOCg8P18qVK33a1L17d+Xk5GjdunWSfBP0jIwMbdq0yf45KipKXbp0UVpamnbs2GHH69Spo/bt22vfvn366aef7Lh3nI4dO6ZRo0apecRJRaZtVmZ0fWVG11dcxl5F5hy3yx+u3UjHo+qqweGdCss9PU5psUk6GV5LiYe2yipwYu6v10p5rjA1Ttvs06Z9kuLi4pSenm631+12q0ePHuXWpj179kjKn5eWZVX6OFVEm4o7n9LT0+0xzDp5pFTjdCA2/0038dA2mQJJbGp8W7k9uWp4aLsdMy6XUuPbKTYyzGfO5IZFaH+9Voo+eUR1j/5slz8ZHq202GaKOZGumOOn6348KlaHayeq7rH9is46YseLmnv7aoVLktqEZyu2wHwq7dwrrk2Rp44r/kj+vImLOKk777wz/xgFxqng+VeWcapOc6/gnFHG3nIZJ+8aUf/Ibkmn51RabP4a/+CDD/qc9xV5PlmWpYEXXaQe3bv7rOVr1qzR9OnTNWTIEHXt2tWOL1iwQPPnz9ewYcPUsmVLOz59+nStWbNGd999t+Lj4+345MmTtWPHDo0aNUrh4fnz0+V26/bbblPz5s2DbpO3Dt61qrg2hbJGVKe5V9Y2FTz/zpQ2SeU/TikpKZJOzylvm7zxUFmm8KXCUvr+++917733auvWrT7xVq1a6d133w36SuzevXvVvXt3ffvtt/a9sAMGDFDXrl31yiuvBHxNoCuxTZs2VXp6umJiYiSV/reNvLw8zZw5U4MHD1ZY2OkcP9BvG2vWrFHPnj11/YQ31LBFa5+6eY9U+H4NjyxJJmDc8nnbDhw/uGubPhl7v5YtW6auXbtW6W+6ubm5mjVrli6//HKFhYWVy2+Fq1atUnJysu6ZNF2JbTtV+JXYnzav1+u3DtLy5ct93kTK8zfd7Oxsnzl1pl2RKFz3lJQU9enTR/dMmq5G7bqUapws41Hb1OXakthdHleYb3kFvmq5ZsanmvqnB+05U9FXYlNmTtWUp+/VA//5Nv94JbQp1Cux+zav15t3XK6lS5f6nPMFzz/vWBUeD6dcDVu9erU9ZxLbdS7XK7HuvBydk7rCnlPGcil10zq9PeJyLVq0yD7vK/J8Wrt2rbp3764bn31TDQq8VxhJJsDa74275Pv2XFT812vNdvzgrm36bPyDWrx4sc4///yg22SM0YwZM3ze/6r7Fb6S4hW17hU8/7x/RXR6m4qre1nblJ2drVmzZtlzyhs/fPiw4uLilJGRYedrZVHmK7HGGB09elTJycnavHmz1qxZo61bt8rj8ahVq1bq1q1bqb70YNWqVTpw4IDOP/98O5aXl6f58+frtddeU3Z2tt14r4iICEVERPg3KizMJwGVTg9AYYX36R0ct9vttw/vvgvu0xijhBZt1Kh9lyBaGTqPLL9bJQor3KaS4oHaGUy88J+zApUvqo5FxS3LUk5Ojjyy8t/Mf5X/huRflyLjrsBtNVbheP6f5lwul1/9y6tN3ljhOVVZ41RQebapqLnncrnsMZT3tpogx8nyGDseaAz9xy//jT3QnMlPWgP0peWSCbQ0FREvXHfvrPc7nnd70HOvmHiBuntk6dSpU5J8+z3QG0xhVb1GFFTS3LPH8NfkPtRx8onLf07l5OQEPO8r4nzyvhfWr6T3Co/y11HvbQbBtsk7zwK9/5XnGhGI09a9wolcIE5rU0Hl1SZv+cJzqqjypVXmveTk5KhevXp6/vnn9fjjj6tr164+V7JK6+KLL9b69et9YiNGjFC7du30xz/+sciOAwAAwNmnzElsRESEGjZsGPBKaFnUrl1bHTt29IlFR0crLi7OLw4AAICzW0iP2Lrjjjv04YcfKicnp7zqAwAAAJQopJsSOnXqpC+++EIdOnTQHXfcoebNmysqKsqv3LXXXlum/c+dOzeU6gEAAOAMFVISW/AxUUU9SsuyrCKfRQcAAACURamT2CeffFI33XSTOnfurDlz5lREnQAAAIBilTqJfeGFF9SxY0d17txZ/fv3V3p6uhISEvTtt9/qoosuqog6AgAAAD5C+mCXV4jflwAAAACUSrkksQAAAEBlIokFAACA45Tp6QS7du3S6tWrJUkZGRmSpK1btyo2NjZg+YJfJQsAAACEqkxJ7JgxY/weqfWHP/zBr5wxhkdsAQAAoNyVOomdNGlSRdQDAAAACFqpk9jhw4dXRD0AAACAoPHBLgAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOGFVXQEAAIDqbs+ePUpLS5MkeTweSdLatWvlclXM9cDs7GxFRERUyL4DiY+PV1JSUqUdrzyQxAIAABRjz549ate+vbJOnJAkRUVFafLkyerXr5+ysrIq5JiWyyXza7JcGaJq1tSmjRsdlciSxAIAABQjLS1NWSdO6IZn31RCizZyy0g6rt+/O015ssr9eJsXzda3b0y0j1fRDuzcqo+fvldpaWkksQAAAGeahBZt1Lh9F7k8udJPy5TYtqM8rvJPpQ7s3OpzPATGB7sAAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DjVKomdOHGievToodq1ayshIUFDhw7V5s2bq7paAAAAqGaqVRI7b948jRw5UkuXLtW3336rU6dOadCgQTp+/HhVVw0AAADVSFhVV6CgmTNn+vz8/vvvKyEhQatWrVK/fv2qqFYAAACobqpVEltYRkaGJKlevXoBt2dnZys7O9v+OTMzU5KUm5ur3NxcSZLL5ZLL5ZLH45HH47HLeuN5eXkyxthxb5m8vDxZlmXH3W63LMuy9+stm1/GyPLk+dTNWPkXuS3j8Y273JIxvnHLyi9fZNwj69c6umQUFhZmHz+YNhUVD9Qmb9zbB8XFC243xvj8bFmW3G63Xx2LinvraIxReHi4XL/2qbEsyXLl90uBuhvLJVlW0fEgx0MysixLHo/Hpx/CwsLKrU2F51Rlj1NFtamouefxeOwxlDGlGidvGcuTJ0uWb3kFPp8syWfOlOZ8yt93/hwrKl647t5auQqd96Wde8GuES4Z1ahRQ5LvOV9wHMsyTsXNvZ9++klpaWmyLMs+Pwryro0F91Fc3HtuF4x7922M0aZNm06PofGUyzj5rBE6Pae8/R4eHq6NGzfabSvvNhWMe2+Ls/zmTAhtKuZ8cil/HfXWI9g1wqvg+19FrBFOXPe8+/Ke9wXHsSLen9z28hcgvwgxj8g/pu/cKzhnvP1YnuPknVPeeOHyZVVtk1iPx6OHHnpIffr0UceOHQOWmThxosaPH+8XT0lJUXR0tCSpfv36atWqlXbu3KmDBw/aZZo0aaImTZpoy5YtdrIsSUlJSZKkjRs3+iTI7dq1U2xsrFJSUuxBycjIUFxcnFySGqf53rubGt9Wbk+uGh7abseMy6XU+HaKPHVc8Uf22PHcsAjtr9dK0SePqO7Rn+34yfBopcU2U8yJdMUcz697XMRJDR48WJKCblPLli2VkJCgDRs2KCsrq9g2SVLnzp0VHh6ulStX+rSpe/fuysnJ0bp16/LbU2AiZ2RkaNOmTfbPUVFR6tKli9LS0rRjxw47XqdOHbVv31779u3TTz/9ZMe943Ts2DGNGjVKzSNOKjJtszKj6yszur7iMvYqMuf0bSWHazfS8ai6anB4p8JyT49TWmySTobXUuKhrbIKLEL767VSnivMb5z2SYqLi1N6errdXrfbrR49epRbm/bsyR/rlJQUWZZV6eNUEW0qbu6lp6fbY5h18kipxulAbDNJUuKhbTIFktjizqfYyDCfOVOa80mSjkfF6nDtRNU9tl/RWUfseFFzb1+tcElSm/BsxRaYT6Wde8GuEXERJ3XnnXfmH6PAOBU8/8oyTkXNvUOHDmnO3Lny5OVp8uTJ2rFjh0aNGqXw8HC7/FtvvaXMzEyNGjXKp00vvviiYmJidPfdd9uxnJwcvfjii2rZsqWGDRt2ur/S0vTWW2+pa9euGjJkiD2GythbLuPkXSPqH9kt6fScSotN0tG0X/Tggw9q48aN2rhxY4W1ycs7ZgnuXJ95UNY2lXQ+xUWc1KhRo5SXl6e8vLyg14iuXbtKOr1WSRWzRjhx3ZOkwYMHq9Ov64yl0+dfRbw/1W5aV5+FhyvCMj7x8sgjJP+5550zJ06ckKRyG6eUlBRJp+eUd5y88VBZpvCvl9XEvffeq6+//loLFy5UkyZNApYJdCW2adOmSk9PV0xMjKTS/1aYl5enmTNnavDgwfYVTynwbxtr1qxRz549NfL/vlGTtp186lZRV2L3bV6vN4ZfpmXLlqlr165V+ptubm6uZs2apcsvv1xhYWHlcoVv1apVSk5O1j2TpiuxbacKvxL70+b1ev3WQVq+fLm9gEvle9UyOzvbZ045/YpESedTSkqK+vTpo3smTVejdl1KNU6W8aht6nJtSewujyvMt7wCn09rZnyqqX960J4zFX0lNmXmVE15+l498J9v849XQptCvRK7b/N6vXnH5Vq6dKnPOV/w/POOVeHxKMvVMO/4XTf274pr3lqSlX9VvQDvHgt/qKLoeP5frALFLRltWzJXs99+MX8M23Uu1yux7rwcnZO6wp5TxnIp5evP9MWfHtR1Y/+u+s1bV0ibrAKxLUvmaOZrz+v+/3yrxj5zpmKuxO7bvF7/HDFEixcv1vnnnx/0GmGM0YwZM3ze/7gSm1/HNWvWqFevXvrDB18rsW0nuTy5OmffSm1u0steb+x+LIf3p7WzpmryU/fqvv98659fVMCV2IJzplu3buU2TtnZ2Zo1a5Y9p7zxw4cPKy4uThkZGXa+VhbV8krsfffdp//973+aP39+kQmsJEVERCgiIsIvHhYW5pOASqcHoDBvh3p5B8ftdvvtw7vvgvvML2/lT6oAjBUgblmljLtkfl0RPbL8bpUoqU0lxQO1M5h44T+jBSpfVB2LiluWpZycHHkK9Wn+ye9flyLjQY9H/p/+XC6XX/3Lq03eWOE5VVnjVFB5tqmouedyuewxlPdPsUGOk+UxdjzQGAY6P4wUcM4Ecz4FEy9cd++s9zued3tp1oKi4gXq7pGlU6dOSfLt90BvMIWVZY3wjl9c8zZq3L5LwHLl7Zed206P4a9v6KGOk09c/nPK28ZGldDG/Tu35dehqPeKsrSpmPPJo/x11Ht7Q7BrhHeeBXr/K881IhAnrHu5ubn2eW9UODn1r0so70959u6LmjNlzyMCxQvOGan8xslbvvCcKqp8aVWrJNYYo/vvv19Tp07V3Llz1aJFi6quEgAAAKqhapXEjhw5Uv/973/15Zdfqnbt2tq/f7+k/PtUoqKiqrh2AAAAqC6q1XNi33zzTWVkZGjAgAFq1KiR/W/KlClVXTUAAABUI9XqSmw1/YwZAAAAqplqdSUWAAAACAZJLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADhOWFVXADjb7NmzR2lpaZV2vOzsbEVERFTa8TZu3FhpxzqbFO5Xj8cjSVq7dq1crvK7HsH4AXAKkligEu3Zs0ft2rdX1okTlXZMy+WS+TXhgfMcTftFlsulW2+91SceFRWlyZMnq1+/fsrKyqqi2gFA1SGJBSpRWlqask6c0A3PvqmEFm0q/HibF83Wt29MrLTjFTwmykfW0UwZj8dvDN0yko7r9+9OU56scjse4wfAKUhigSqQ0KKNGrfvUuHHObBza6Uer+AxUb4Kj6HLkyv9tEyJbTvK4yq/pZzxA+AUfLALAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHIYkFAACA45DEAgAAwHFIYgEAAOA4JLEAAABwHJJYAAAAOA5JLAAAAByHJBYAAACOQxILAAAAxyGJBQAAgOOQxAIAAMBxSGIBAADgOCSxAAAAcBySWAAAADgOSSwAAAAchyQWAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsAAADHqZZJ7Ouvv67mzZsrMjJSvXr10vLly6u6SgAAAKhGql0SO2XKFD3yyCMaO3asVq9erS5dumjw4ME6cOBAVVcNAAAA1US1S2Jffvll3XXXXRoxYoTOPfdc/fOf/1TNmjX1r3/9q6qrBgAAgGoirKorUFBOTo5WrVqlJ554wo65XC5dcsklWrJkiV/57OxsZWdn2z9nZGRIkg4dOqTc3Fz79S6XSx6PRx6Px2e/LpdLeXl5MsbY8by8PJ04cUKHDx9WWNjp7nG73bIsy96vJGVmZkqSUjeu06kTx3zq5t2jVajORpb938JxS0aFFY6n79kht9utVatW6ejRoz51tyxLlmXJGFOqeMF+8cYl2WW9/Vc47vF4dOLECS1atMjef6h12bx5s2rUqKH9m073abB9kx+TVGTcfzwO7N4hSVq1apU9nt42l7buRcW9c2rBggXavn27XC5XwDlTXm0qGD+0Z7vdnzknjiuUuRdsvOAxT504Vqo2WTJqGp2l3SlLlVegpsWdT2m7toY0Z0obT9u9VZL08ybfMQxlnAofs+A4HdqzXWFhYX5zxv1rX+1MWRag5uUzfjknjlVIm4o7ZlFzpqxtCpPHZ04ZSQcDzpnybVNBh/ZskyTtC/heEXpbC8+99D07VKNGjYDvE5L/Gl+Qd61yuVx22WDWvYLvE2VZJ0v7/lR4W1FtKq+1fMuWLXK73facKcv5V5o14tCe7ZKKyi9CyyMCxb1z5ujRo8rMzPTLjYrKmQLlRt64lJ+nFcypvPHDhw/n1yHAHCwVU42kpqYaSWbx4sU+8VGjRpmePXv6lR87dqxR/vjzj3/84x//+Mc//vHPQf/27t0bUt5Yra7EltYTTzyhRx55xP7Z4/Ho0KFDiouLs38rK63MzEw1bdpUe/fuVUxMTHlV9YxEXwWHfgoefRU8+io49FPw6Kvg0VfBKaqfjDE6evSoEhMTQ9p/tUpi4+Pj5Xa79csvv/jEf/nlFzVs2NCvfEREhCIiInxisbGx5VKXmJgYJmaQ6Kvg0E/Bo6+CR18Fh34KHn0VPPoqOIH6qU6dOiHvt1p9sCs8PFzdunXT7Nmz7ZjH49Hs2bPVu3fvKqwZAAAAqpNqdSVWkh555BENHz5c3bt3V8+ePfXKK6/o+PHjGjFiRFVXDQAAANVEtUtib7zxRh08eFDPPPOM9u/fr65du2rmzJlq0KBBpRw/IiJCY8eO9btNAf7oq+DQT8Gjr4JHXwWHfgoefRU8+io4Fd1PljGhPt8AAAAAqFzV6p5YAAAAIBgksQAAAHAcklgAAAA4DkksAAAAHOesSGLnz5+vK6+8UomJibIsS1988YXP9mPHjum+++5TkyZNFBUVpXPPPVf//Oc/fcqcPHlSI0eOVFxcnGrVqqXrrrvO70sZzgQTJ05Ujx49VLt2bSUkJGjo0KHavHmzT5lg+mLPnj0aMmSIatasqYSEBI0aNcrvu5WdrKR+OnTokO6//361bdtWUVFRSkpK0gMPPKCMjAyf/Zzp/SQFN6e8jDG67LLLAp6n9NVpS5Ys0UUXXaTo6GjFxMSoX79+ysrKsrcfOnRIt9xyi2JiYhQbG6vf/e53OnbsmN9+nCqYftq/f79uu+02NWzYUNHR0Tr//PP12Wef+ZQ50/tJkt5880117tzZfth879699fXXX9vbWc9PK66vWNNPK2lOeVXKeh7Sl9Y6xIwZM8xTTz1lPv/8cyPJTJ061Wf7XXfdZVq1amXmzJljdu7cad566y3jdrvNl19+aZe55557TNOmTc3s2bPNypUrzQUXXGCSk5MruSUVb/DgwWbSpElmw4YNZs2aNebyyy83SUlJ5tixY3aZkvoiNzfXdOzY0VxyySUmJSXFzJgxw8THx5snnniiKppUIUrqp/Xr15trr73WTJs2zWzbts3Mnj3btGnTxlx33XX2Ps6GfjImuDnl9fLLL5vLLrvM7zylr0731eLFi01MTIyZOHGi2bBhg9m0aZOZMmWKOXnypF3m0ksvNV26dDFLly41CxYsMK1btzbDhg2riiZViGD66Te/+Y3p0aOHWbZsmdm+fbuZMGGCcblcZvXq1XaZM72fjDFm2rRpZvr06WbLli1m8+bN5sknnzQ1atQwGzZsMMawnhdUXF+xpp9W0pzyqoz1/KxIYgsKlMR26NDB/OlPf/KJnX/++eapp54yxhhz5MgRU6NGDfPJJ5/Y2zdu3GgkmSVLllR4navSgQMHjCQzb948Y0xwfTFjxgzjcrnM/v377TJvvvmmiYmJMdnZ2ZXbgEpSuJ8C+fjjj014eLg5deqUMebs7Cdjiu6rlJQU07hxY/Pzzz/7naf01em+6tWrl3n66aeLfM2PP/5oJJkVK1bYsa+//tpYlmVSU1MrtL5VJVA/RUdHmw8//NCnXL169cw777xjjDk7+8mrbt265t1332U9D4K3rwJhTT+tcD9V1np+VtxOUJLk5GRNmzZNqampMsZozpw52rJliwYNGiRJWrVqlU6dOqVLLrnEfk27du2UlJSkJUuWVFW1K4X3TyX16tWTFFxfLFmyRJ06dfL5gorBgwcrMzNTP/zwQyXWvvIU7qeiysTExCgsLP87Rs7GfpIC99WJEyd088036/XXX1fDhg39XkNf5ffVgQMHtGzZMiUkJCg5OVkNGjRQ//79tXDhQvs1S5YsUWxsrLp3727HLrnkErlcLi1btqxyG1BJAs2p5ORkTZkyRYcOHZLH49FHH32kkydPasCAAZLOzn7Ky8vTRx99pOPHj6t3796s58Uo3FeBsKYH7qfKXM+r3Td2VYV//OMf+v3vf68mTZooLCxMLpdL77zzjvr16ycp/96q8PBwxcbG+ryuQYMG2r9/fxXUuHJ4PB499NBD6tOnjzp27CgpuL7Yv3+/3zeseX8+E/srUD8VlpaWpgkTJuj3v/+9HTvb+kkquq8efvhhJScn6+qrrw74Ovoqv6927NghSRo3bpxeeuklde3aVR9++KEuvvhibdiwQW3atNH+/fuVkJDgs6+wsDDVq1fvjOyroubUxx9/rBtvvFFxcXEKCwtTzZo1NXXqVLVu3VqSzqp+Wr9+vXr37q2TJ0+qVq1amjp1qs4991ytWbOG9byQovqqsLN9TS+unypzPSeJVX4Su3TpUk2bNk3NmjXT/PnzNXLkSCUmJvr8hnq2GTlypDZs2OBzlQf+SuqnzMxMDRkyROeee67GjRtXuZWrZgL11bRp0/T9998rJSWlCmtW/QTqK4/HI0m6++67NWLECEnSeeedp9mzZ+tf//qXJk6cWCV1rUpFnX9jxozRkSNH9N133yk+Pl5ffPGFbrjhBi1YsECdOnWqotpWjbZt22rNmjXKyMjQp59+quHDh2vevHlVXa1qqai+KpjIsqYX3U/btm2r1PX8rE9is7Ky9OSTT2rq1KkaMmSIJKlz585as2aNXnrpJV1yySVq2LChcnJydOTIEZ/fWH/55ZeAl8rPBPfdd5/+97//af78+WrSpIkdD6YvGjZsqOXLl/vsz/tp1zOtv4rqJ6+jR4/q0ksvVe3atTV16lTVqFHD3nY29ZNUdF99//332r59u9/VoOuuu04XXnih5s6dS1/9qlGjRpLkd2Woffv22rNnj6T8/jhw4IDP9tzcXB06dOiM66ui+mn79u167bXXtGHDBnXo0EGS1KVLFy1YsECvv/66/vnPf55V/RQeHm5fge7WrZtWrFihv//977rxxhtZzwspqq/eeustSazpXkX1U1RUVKWu52f9PbGnTp3SqVOn5HL5doXb7bavenTr1k01atTQ7Nmz7e2bN2/Wnj17irxXxqmMMbrvvvs0depUff/992rRooXP9mD6onfv3lq/fr3PG8S3336rmJiYgH+WcaKS+knK/2190KBBCg8P17Rp0xQZGemz/WzoJ6nkvho9erTWrVunNWvW2P8k6W9/+5smTZokib7yat68uRITE/0eJ7VlyxY1a9ZMUn5fHTlyRKtWrbK3f//99/J4POrVq1fFN6ISlNRPJ06ckKRi1/WzoZ+K4vF4lJ2dzXoeBG9fSazpxfH2U6Wv5yF8GM0xjh49alJSUkxKSoqRZF5++WWTkpJidu/ebYwxpn///qZDhw5mzpw5ZseOHWbSpEkmMjLSvPHGG/Y+7rnnHpOUlGS+//57s3LlStO7d2/Tu3fvqmpShbn33ntNnTp1zNy5c83PP/9s/ztx4oRdpqS+8D4+Y9CgQWbNmjVm5syZpn79+mfUY0ZK6qeMjAzTq1cv06lTJ7Nt2zafMrm5ucaYs6OfjAluThWmIh7JQl8Z87e//c3ExMSYTz75xGzdutU8/fTTJjIy0mzbts0uc+mll5rzzjvPLFu2zCxcuNC0adPmjHp0VEn9lJOTY1q3bm0uvPBCs2zZMrNt2zbz0ksvGcuyzPTp0+39nOn9ZIwxo0ePNvPmzTM7d+4069atM6NHjzaWZZlvvvnGGMN6XlBxfcWaflpJc6qwilzPz4okds6cOUaS37/hw4cbY4z5+eefzR133GESExNNZGSkadu2rfnrX/9qPB6PvY+srCzzhz/8wdStW9fUrFnTXHPNNebnn3+uohZVnED9JMlMmjTJLhNMX+zatctcdtllJioqysTHx5tHH33UfgzJmaCkfipqzkkyO3futPdzpveTMcHNqUCvKfwoPPrqtIkTJ5omTZqYmjVrmt69e5sFCxb4bE9PTzfDhg0ztWrVMjExMWbEiBHm6NGjldiSihVMP23ZssVce+21JiEhwdSsWdN07tzZ75FbZ3o/GWPMnXfeaZo1a2bCw8NN/fr1zcUXX+yTbLCen1ZcX7Gmn1bSnCqsItdz69cDAAAAAI5x1t8TCwAAAOchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHIckFgAAAI5DEgsA1dQdd9yh5s2bl/m1tWrVKt8KAUA1QhILAKX08ccfy7IsTZ061W9bly5dZFmW5syZ47ctKSlJycnJlVHFoJ04cULjxo3T3Llzq7oqAFAqJLEAUEp9+/aVJC1cuNAnnpmZqQ0bNigsLEyLFi3y2bZ3717t3bvXfm0w3nnnHW3evDn0ChfjxIkTGj9+PEksAMcJq+oKAIDTJCYmqkWLFn5J7JIlS2SM0fXXX++3zftzaZLYGjVqhF5ZADhDcSUWAMqgb9++SklJUVZWlh1btGiROnTooMsuu0xLly6Vx+Px2WZZlvr06SNJ+r//+z9169ZNUVFRqlevnm666Sbt3bvX5xiB7olNT0/XbbfdppiYGMXGxmr48OFau3atLMvS+++/71fP1NRUDR06VLVq1VL9+vX12GOPKS8vT5K0a9cu1a9fX5I0fvx4WZYly7I0bty4cughAKhYJLEAUAZ9+/bVqVOntGzZMju2aNEiJScnKzk5WRkZGdqwYYPPtnbt2ikuLk7PPfecbr/9drVp00Yvv/yyHnroIc2ePVv9+vXTkSNHijymx+PRlVdeqcmTJ2v48OF67rnn9PPPP2v48OEBy+fl5Wnw4MGKi4vTSy+9pP79++uvf/2r3n77bUlS/fr19eabb0qSrrnmGv373//Wv//9b1177bXl0EMAUMEMAKDUfvjhByPJTJgwwRhjzKlTp0x0dLT54IMPjDHGNGjQwLz++uvGGGMyMzON2+02d911l9m1a5dxu93mueee89nf+vXrTVhYmE98+PDhplmzZvbPn332mZFkXnnlFTuWl5dnLrroIiPJTJo0yee1ksyf/vQnn+Ocd955plu3bvbPBw8eNJLM2LFjQ+oPAKhsXIkFgDJo37694uLi7Htd165dq+PHj9tPH0hOTrY/3LVkyRLl5eWpb9+++vzzz+XxeHTDDTcoLS3N/tewYUO1adMm4FMNvGbOnKkaNWrorrvusmMul0sjR44s8jX33HOPz88XXnihduzYUeZ2A0B1wQe7AKAMLMtScnKy5s+fL4/Ho0WLFikhIUGtW7eWlJ/Evvbaa5JkJ7N9+/bVSy+9JGOM2rRpE3C/xX2Ya/fu3WrUqJFq1qzpE/ces7DIyEj7nlevunXr6vDhw8E1EgCqMZJYACijvn376quvvtL69evt+2G9kpOTNWrUKKWmpmrhwoVKTExUy5Yt5fF4ZFmWvv76a7ndbr99lucXFATaPwCcKUhiAaCMCj4vdtGiRXrooYfsbd26dVNERITmzp2rZcuW6fLLL5cktWrVSsYYtWjRQuecc06pjtesWTPNmTNHJ06c8Lkau23btjK3wbKsMr8WAKoS98QCQBl1795dkZGR+s9//qPU1FSfK7ERERE6//zz9frrr+v48eN2wnvttdfK7XZr/PjxMsb47M8Yo/T09CKPN3jwYJ06dUrvvPOOHfN4PHr99dfL3AZvMlzcUxEAoDriSiwAlFF4eLh69OihBQsWKCIiQt26dfPZnpycrL/+9a+STl+1bdWqlZ599lk98cQT2rVrl4YOHaratWtr586dmjp1qn7/+9/rscceC3i8oUOHqmfPnnr00Ue1bds2tWvXTtOmTdOhQ4ckle2qalRUlM4991xNmTJF55xzjurVq6eOHTuqY8eOpd4XAFQmrsQCQAi8yan39oGCvF9sULt2bXXp0sWOjx49Wp999plcLpfGjx+vxx57TNOmTdOgQYN01VVXFXkst9ut6dOn68Ybb9QHH3ygp556SomJifaV2MjIyDK14d1331Xjxo318MMPa9iwYfr000/LtB8AqEyWKfz3LACAo3zxxRe65pprtHDhQjtxBoAzHUksADhIVlaWoqKi7J/z8vI0aNAgrVy5Uvv37/fZBgBnMu6JBQAHuf/++5WVlaXevXsrOztbn3/+uRYvXqznn3+eBBbAWYUrsQDgIP/973/117/+Vdu2bdPJkyfVunVr3XvvvbrvvvuqumoAUKlIYgEAAOA4PJ0AAAAAjkMSCwAAAMchiQUAAIDjkMQCAADAcUhiAQAA4DgksQAAAHAcklgAAAA4DkksAAAAHOf/A9tagRApnKaaAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHcCAYAAAAqb0k3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABr60lEQVR4nO3deVhUZfsH8O+ZAYYdREREVtGA3BdU3DEKl0zTMq1MbbHX3DVNMxeyNKtXTVNbXkOzLJdKLVMz19xTcVfExBVBQQFlFeb5/eFvTjMwAwPDdvD7uS67muecOee+n7PMzZlznpGEEAJERERERAqjquwAiIiIiIhKg4UsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwpwqJFiyBJEpYtW1bZoRAREVEVwUK2HO3atQuSJGHmzJmVsn5/f3/4+/sbtM2cOROSJGHXrl2VElNBkiShS5cuRc5z+PBhvP3225g+fTpee+21ignMCHNiJct16dIFkiRVdhiy5cuXQ5IkLF++vLJDqZYuX74MSZIwZMgQg3ZT+0F6ejrGjBmDgIAAWFtbQ5IkHD9+vNhp1cmQIUMgSRIuX75c6mVU9udTZTO135WFstg+ZD4WssXQ7ez6/+zt7eHl5YUnnngC06dPxz///FMu665qH+iV4e7du+jfvz8GDhyIqKioyg6n3OiKJd0/lUoFZ2dnBAQEoHfv3li0aBHu3LlT2WGSmYz9EVleHrXzxKRJk7Bw4UI0atQIkydPxowZM+Dp6VnsNCXhH09UEhV5vinK999/j2effRaBgYFwcnKCo6MjGjZsiHHjxuHGjRvltl6rcltyNRMYGIiXX34ZAJCTk4Nbt27h8OHDmDVrFmbPno1Jkybhww8/NPhAad26Nc6dOwd3d/dKiXn79u2Vst6SOHfuHOzt7U1OP378ON566y2MGzeuAqOqPE888QQ6dOgAALh//z5u3LiBv/76Cxs3bsSMGTPw5Zdf4vnnn6/kKInK37fffovMzMxC7b/99hsee+wx/PrrryWaVp3MmTMHkydPRt26dSs7FCLZjz/+iLi4OLRt2xZ16tSBEALHjx/HZ599huXLl2Pv3r1o2LBhma+XhayZ6tevb/QrmL1792LQoEGYM2cO1Go1Zs2aJU+zt7dHcHBwBUZpKDAwsNLWba7i+ic8PBzh4eEVFE3li4iIwOTJkw3a8vPzsWLFCowcORIDBw6Ei4sLnnrqqUqKkKhi+Pr6Gm1PSEhAp06dSjytOqlTpw7q1KlT2WEQGVi7di1sbW0LtS9btgyvv/46Zs6cibVr15b5enlrgYU6dOiALVu2QKPR4OOPP8a1a9fkaabuQYqLi8PQoUMREBAAjUYDNzc3NG3aFGPHjoUQAsDD+zF3794t/7/un+5+Hv37e86dO4dnn30WNWvWNLgvp7ivG5YtW4bGjRvD1tYWdevWxbhx43Dv3j2DeYq6j6qoe4xu3bqFCRMmICgoCHZ2dnBzc0ObNm3w6aefGsxn6r7T5ORkjB07Vu4jDw8P9O/fH6dPny40r+5+pPj4eCxcuBDBwcHQaDTw8/NDVFQUtFqtyT4w5n//+x8aNWoEW1tb+Pj4YNKkScjOzjY5/7179zBjxgw0bNgQdnZ2cHV1RWRkJPbu3Vui9ZqiVqvx6quvYunSpcjPz8f48ePl/QT4N/9Lly7hv//9Lx5//HFoNBqD7XL69Gn0798fHh4e0Gg0CAgIwNixY5GSklJofbr9JjU1FW+++SY8PT1ha2uL5s2b44cffiiTnMzx4MEDzJw5E/7+/tBoNHjsscewZMkSo/MKIfDNN9+gffv2cHZ2hr29PVq1aoVvvvmmTOY3l+6YuHLlCq5cuWJw7BY8hqKjo9GmTRs4OjrC0dERbdq0KfFXycWdJ3R+/fVXhIeHw8XFBXZ2dmjatCnmzZuHvLw8o8s9efIkBgwYgDp16sDGxgZ+fn4YNWqU0f3FXPn5+Zg7dy7q168PW1tb1K9fH3PmzDF5fBa8ZUK3nwshsHv3bjnXLl26FDlN34YNG/DEE0+gRo0asLW1RaNGjfDpp58iPz/fYD79r/Z//fVXtG/fHk5OTgbn09zcXMybNw8tWrSAg4MDnJyc0LFjR2zcuLFQLiU5Rw0ZMgRDhw4FAAwdOtRguxZcnv49mLm5uVi0aBEiIyPh4+Mjnzf79u2LmJiYYrdPWSrJOVG3nUtyvBdlz5496NWrF9zd3aHRaNCgQQO89957Rq/ul5QQAtHR0ejYsSNcXV1hb2+PBg0a4M0338TVq1eLfG9Rt4uY+pw9duwYnnvuOfj6+kKj0aBWrVoIDQ3Fhx9+CKBk5xtz+0U/lv379+Opp56Cq6urWbcvGStiAcjfIl68eLHYZZQGr8iWgaCgIPTv3x8rV67E+vXrMWrUKJPzJiQkoHXr1sjIyEDPnj3xwgsvICMjA3FxcViyZAk+/fRTWFlZYcaMGVi+fDmuXLmCGTNmyO9v1qyZwfIuXryItm3bonHjxhgyZAhSUlJgY2NTbMzz5s3D9u3b8cILL6Bnz574888/sWDBAhw8eBB79uyBtbV1qfsjNjYW4eHhuHnzJjp06IA+ffogIyMDZ86cwezZs/H2228X+f7bt28jLCwM//zzD7p06YIBAwYgPj4e69atw6ZNm7B161b563d9EydOxO7du/H0008jMjIS69evx8yZM5Gbmysf+MWZNWsWpk+fjtq1a+ONN96AtbU1Vq9ejXPnzhmd/86dO+jUqRPOnDmD9u3b4z//+Q/S09OxYcMGhIeHY+3atejTp49Z6y7OoEGDMGPGDJw5cwanT59G48aNDaaPGjUKBw8eRM+ePdGrVy94eHgAePitQWRkJHJzc/Hcc8/B398fBw4cwGeffYbffvsNBw8eLHT7S25uLiIiInD//n0MGjQIGRkZWLNmDV588UUkJycXuY+XlYEDB+Lw4cPo3r071Go11qxZgxEjRsDa2hpvvPGGPJ8QAi+99BJ++OEHNGjQAC+++CJsbGywbds2vPbaazh79qzBH1Alnb8kXF1dMWPGDCxYsAAAMHbsWHmaflE1evRoLFq0CHXr1pUfYPzpp58wdOhQxMTE4LPPPjNrfeacJ+bNm4cJEybAzc0NL774IhwcHLBx40ZMmDABf/31F37++WeDD6mNGzeif//+UKlU6N27N3x8fHD27Fl8/vnn2Lp1Kw4dOoQaNWqUuG+GDRuGb775BgEBARgxYgSys7Mxb9487N+/36z39+nTB/7+/oiKioKfn59crPv7+8PV1dXkNJ0pU6bgo48+Qt26ddG3b1+4uLjgr7/+wsSJE3Ho0CGjV4rWrl2LP/74A08//TTeeustpKenA3h4e1m3bt2wa9cuNGvWDK+99hoePHiATZs2yfe0jxw5stDyzDlH9enTB6mpqdiwYQN69+5d6Jxvyp07dzB27Fh07NgRPXr0QI0aNXDp0iVs3LgRmzdvxp49exAaGmrWsixR2nOiucd7UZYuXYoRI0bA1dVVPgceOXIEH374IXbu3ImdO3ea9flojFarxQsvvIB169ahbt26GDhwIJydnXH58mWsWbMG3bt3N/ktQmkcP34c7dq1g1qtRu/eveHn54fU1FScPXsWX331FaZOnWr2+aY0/bJ//37Mnj0b4eHhGDZsWLGFelE2bdoEAGjUqFGpl1EkQUWKj48XAERkZGSR8y1btkwAEIMGDZLbdu7cKQCIGTNmyG0LFy4UAMSCBQsKLSMlJcXgdefOnYWpTaSLC4CYPn260Xn8/PyEn5+fQduMGTMEAGFjYyNOnDght2u1WvHiiy8KAOLTTz8tMoeCMQwePNigvVWrVgKA+Oqrrwq959q1awavAYjOnTsbtA0dOlQAEFOmTDFo37RpkwAg6tevL/Lz8+X2wYMHCwAiICBAJCQkyO23b98Wrq6uwsnJSeTk5BSKpaC4uDhhZWUl6tatK5KSkuT2tLQ0ERQUZDRWXZ99/fXXBu1JSUnCx8dH1KpVS2RlZRW77ujoaAFAzJkzp8j5Bg0aJACIZcuWyW26/L29vcWVK1cM5s/PzxeBgYECgNiyZYvBtIkTJwoA4tVXXzVo9/PzEwBEp06dDPrt2rVrwt3dXWg0GnH9+vVicyot3X7fpk0bkZaWJrefP39eWFlZiaCgIIP5v/rqKwFADB06VOTm5srtOTk5olevXgKAOHLkSKnn122b6Ohos3Mwduzp7N69WwAQISEhIjU1VW6/c+eOeOyxxwQAsWfPHrPXVdR54uLFi8LKykp4eHiIq1evyu3Z2dmiQ4cOAoD49ttv5fbk5GTh7Ows6tatKy5fvmywrB9++EEAECNHjjQ7Nh3deaRp06bi/v37cvv169eFu7u70fOIqbyMHYfFTfvjjz/k87j++rVarfjPf/4jAIh169bJ7bptrlKpxLZt2wot79133xUAxLRp04RWq5Xb09PTRatWrYSNjY24ceOG3F7Sc1Rx+5xuefHx8XJbdna20ePy9OnTwtHRUURERBi0F3Vut0RJz4klPd5NOXPmjLCyshJNmzYVycnJBtPmzJlT6LPN1OeXKYsWLRIAxBNPPCEyMzMNpmVmZhp8fhvbPkVtU2PbYvz48QKAWL9+faH5C+ZX1PmmpP2iiwWA+Oabb4wuszirV68WM2bMEBMnThQ9evQQarVaBAQEiEuXLpVqecXhrQVlxMvLC8DDr8TNYWdnV6jNzc2txOv19PTE1KlTS/y+V155BU2aNJFfS5KE2bNnQ61WW/Sk7OHDh3HkyBF06tTJ6F/R3t7eRb4/NzcXP/zwA2rWrIn33nvPYFqPHj3w5JNP4uLFi9i3b1+h906bNs3gvjF3d3f07t0b9+7dQ2xsbLGxr1q1Cnl5eRg/frx8NRMAnJ2dC8UCPNzWq1evRteuXfH6668bTPPw8MDEiRNx+/Zt/Pnnn8Wu21xF7WcTJ04sdEVg3759+Oeff9C9e3dERkYaTJs+fTrc3NywatUq5ObmFlre7NmzDf5K9/b2xpgxY5CTk4Mff/yxLNIp0pw5c+Ds7Cy/DgoKQvv27REbG2twC8znn38OBwcHLF682OCbBBsbG/kql/4tESWdv6ytWLECwMOh8FxcXOT2GjVqyFdVy+ppdd0+PWHCBPj4+MjtGo0Gc+fOLbSub7/9Funp6ZgzZw78/PwMljVgwAC0aNGiVNv+22+/BfBwn3NwcJDb69atizFjxpR4eSX1+eefAwC++uorg/VLkoSPPvoIkiQZ3ea9e/dGRESEQZtWq8XSpUsRGBiIqKgog6vZTk5OmD59OnJzc/Hzzz8XWp6l56iiaDQaow9/NWzYEOHh4dizZw8ePHhg0TqKY8k50dzj3ZQvv/wSeXl5WLRoEWrWrGkwbdKkSahVq5ZFx/WSJUugVquxdOnSQp/futvnyoOxWqFgfkUpbb+0aNFCvsWlpNasWYOoqCh88skn+P3339G8eXNs27YNAQEBpVpecXhrQQXr1asXpkyZghEjRmD79u3o1q0bOnfujHr16pVqeU2bNi3VVyUdO3Ys1Obn5wcfHx+cOXMGubm5pVru4cOHAaDUDyOdP38e2dnZCA8PNzqaQXh4OLZt24bjx48XyqFly5aF5tcVzqmpqcWu+8SJEwCM942xtr///hv5+fnIyckxeg9xXFycnNPTTz9d7Pot1bp160JtunvjjN2H7OjoiFatWuGPP/5AbGyswa0KVlZWCAsLK/QeXT9UxD13xW1PJycnZGZm4tSpU/Dy8pILM326D+7z588DQInnN2X58uWFxojs06ePWV8DF7VNdA826o99un79+kJjoXbp0sWsMY2LWldYWBhsbW0Nln3w4EEAwKFDh4wOK5idnY3k5GQkJyeXaDSWkh5bZe3gwYNwcHAweQ+0nZ2d0W1u7JiKjY3F3bt34eXlZXRIwNu3bwMwvg9Zeo4qzvHjx/Hxxx9j7969SExMLFS4Jicnl+tDYpacE8053oui23e3bt1qdMQea2vrYo9rU+7fv49z586hfv36aNCgQamWUVL9+/fHggUL8Oyzz+KFF17Ak08+iU6dOpV4pIrS9oslt6GsW7cOwMPtFhMTg6lTp6Jly5b4+eef0bVr11Iv1xQWsmUkISEBAFCrVq0i5/P398fBgwcxc+ZM/P7771izZg2Ah0/vv//++yUeWql27dqlitfU+2rXro3Lly/j3r17JfqrTyctLQ0ASj0sjO4eNFPx6U7Cuvn06f81r2Nl9XAXL/gwhzG62PWvxuoYi0c3ruu+ffuMXiHWycjIKHbd5ipqPzMWY2n7093dHSpV4S9sdMvR9VV5Mmd73r17F0II3Lhxo8hxhnXboKTzm7J8+XL5ISsdf39/swrZ9PR0qFQqk9tQkiSD7bF+/Xr5Kq4+cwrZora/JEmoXbu2wfiOun168eLFRS43IyOjRIVsWloaVCqV0feU9hxWEnfu3EFeXl6Jt3lRx/2ZM2dw5syZEi3P0nNUUfbv3y8XCU899RQaNGgAR0dHSJKE9evX48SJE8jJybFoHcWx5Jxoad/o1m3u8xAlYennWmm0adMGu3btwuzZs7Fq1SpER0cDeFhgzp071+zRfErbL2VxXLq6uiI8PBxbtmxBUFAQXnnlFcTHx1v0DI4xLGTLiO6Xssz5K6ZRo0ZYt24dHjx4gKNHj2Lz5s1YuHAhXnjhBXh5eaF9+/Zmr7e0A6EnJSWZbJckSf7rV1fMGHu62Vgx4+rqCgClHvxYdzIzFV9iYqLBfGVJ9zXvrVu3Cn2taiweXQwTJkwo9cNBJaHVarFnzx4AxvczY/tCafszOTkZWq22UDGrW47+V+KVSRd3y5YtceTIkTKf3xRLfhnP2dkZWq0Wt2/fLvRH061btyCEMNgey5cvL/WtBvrbv+A+LYRAUlKSwbp0/3/q1KkyfTDDxcUFWq0WycnJhQp4U/tmWXJ2doYkSWbf+qVT1DHVr18/+cpTVfDhhx8iJycHf/31V6GHYQ8ePChfFS9PFX1ONLbu9PT0Yq/elpTufGfJoP4l/SwFHn5bsXnzZmRlZeHQoUP49ddfsWTJEvTs2ROnT58265vc0vZLWf7IirOzM9q2bYv169fj4sWLCAkJKbNlAxx+q0xcuHABa9asgUajwbPPPmv2+6ytrdG2bVtERUVh4cKFEELgt99+k6er1WoAlv+lbsxff/1VqO3KlSu4du0aGjZsKN9WoHs62dgBbOzrZd1XcX/88Uep4goODoatrS3+/vtvo8Ol6AoIc5/kLYmmTZsCMN43xtpCQ0MhSRIOHDhQ5rEYs3LlSly5cgWNGzc2e1Dp5s2bAzBeeGVkZODIkSOws7NDUFCQwbS8vDyjeen6Qbfcyubk5ISQkBCcO3fOrK9mSzp/aanVapPHbVHbpDT7d1HniaLWdejQIWRnZxusq02bNgBQ5vt0SY+tstamTRukpKTIX21bIiQkBM7Ozjhy5Ei53XNamnP/P//8Azc3t0JFbGZmJo4dO1am8ZlS0edEfbp9V/dVellydHTE448/jvj4+FLvQyX9LNVnZ2eHLl264L///S/effddZGVlYdu2bfL0os435dkvJaH7NrGsr8YCLGQttm/fPkRGRiInJ8esX1o5evSo0a/FdVcl9Mdh0908rj82bVn59ttvcfLkSfm1EALvvvsu8vPzDcagDAoKgpOTEzZu3GjwE6lJSUn44IMPCi03NDQUoaGh2LNnD77++utC04v7i9bGxgYDBw5EcnIy5syZYzBty5Yt2Lp1K+rXr1+iq9bmevHFF6FWqzFv3jzcunVLbk9PTzeaq6enJ/r374/9+/fjk08+MRjbVefQoUMWj1+Yn5+P6OhoDB8+XI7P3L+W27dvj8DAQGzevLnQAxYffPABUlJSMHDgQKP3Q7/77rsGD4Fdv34dn332GTQaDQYMGGBRTmVp9OjRyMzMxBtvvGH0K8v4+HiD+1lLOn9puLm5ITk52ej4w4MHDwYAREVFGZwL0tLS5K++dfOYuy7A+HnixRdfhJWVFebNmyd/kAAPH6p85513AMDgeB86dCicnJwwdepUo1+bZ2ZmluoDcdCgQQCA999/36DPb9y4YfZQY5YYPXo0AODVV181OhZuYmKiySH2CrKyssLw4cNx5coVvP3220aL2dOnTxucQ0qqNOd+Pz8/3L1712C75efn4+2335bv2y1vFXVONOatt96ClZUVRo0aZXSoKN39mqU1YsQI5Ofn46233kJWVpbBtOzs7GJ/Qrxly5aQJAk//vijwXkhLi7O6DFw4MABo+cPU7WCqfNNefeLTlEPLH7zzTc4fPgwGjRogPr161u8roJ4a4GZLl68KN+8npubK/9E7alTp6BWq/Hee+8ZjONoysqVK/Hll1+iU6dOCAwMhLOzM86ePYvff/8dbm5uBk8Jdu3aFevWrUO/fv3QvXt32NraomnTpujVq5fF+URGRiIsLAwDBgxArVq1sH37dhw5cgRt27Y1GCPUxsYGo0aNwuzZs9GiRQv5Cdtff/0VnTt3NvpAyPfff48uXbpg2LBhWLlyJcLCwpCdnY0zZ84gJiam2EHV586di927d+ODDz7A/v370aZNG1y+fBlr166Fvb09oqOjjd6/aan69etj+vTpmDFjBpo0aYL+/fvDysoKP/30E5o0aWL0IF2yZAliY2MxadIkOVdXV1dcu3YNR44cQVxcHG7evFnkz/Dq+/PPP+WTUWZmJq5fv449e/bgxo0bcHNzw8qVKws9RV0UlUqF5cuXIzIyEj169MDzzz8PPz8/HDhwALt27UJgYCA++uijQu+rU6cOMjIy0KRJE/Tq1UseRzYlJQULFy6sUj+N+eabb+LgwYNYsWIF9u3bh4iICHh5eSEpKQnnz5/HoUOHsGrVKnlM0ZLOXxpdu3bFkSNH0L17d3Ts2BE2Njbo1KmT/G/UqFFYtGgRGjVqhH79+kEIgZ9++gnXr1/H6NGjS/TrVEWdJwIDAzF37lxMmDBB3qcdHBzw66+/IjY2Fr1795Z/ehuA/ATz888/j6ZNm6Jbt24IDg5GTk4OLl++jN27d6Ndu3bYsmVLifojPDwcQ4cORXR0NBo3boxnn30WOTk5WL16Ndq2bWvwTVR56NatG6ZNm4ZZs2ahfv366NatG/z8/JCSkoKLFy/ir7/+wgcffGD2V55RUVE4duwYFi5ciE2bNqFTp07w8PDAjRs3cOrUKZw4cQIHDhwwer+9OcLCwmBnZ4cFCxbg7t278u0YxkZP0Rk1ahT++OMPdOjQAf3794etrS127dqFGzduoEuXLhbdDlMSZX1ONFejRo2wZMkSDB8+HEFBQejRowcCAwNx7949XLp0Cbt378aQIUPwxRdflGr5w4cPx+7du7FmzRo0aNAAzzzzDJydnXH16lVs3boVy5YtK3LMcC8vLwwcOBCrVq1Cy5Yt0a1bN9y6dQu//PILunXrhp9++slg/rlz52Lnzp3o1KkTAgICYGtri2PHjmH79u2oV6+ewbe/RZ1vyrtfdFJSUhASEoJWrVohODgYdevWxd27d/H333/j2LFjcHZ2Nnqvf5kol0G9qhH98Vp1/+zs7ESdOnVEeHi4mDZtmrh48aLR9xobG+7gwYPizTffFI0aNRKurq7Czs5ONGjQQIwcObLQGKAPHjwQkyZNEr6+vsLKyspgzDtzxsArahzZnTt3iq+//lo0bNhQaDQaUadOHTFmzBiRnp5eaDn5+fli5syZwsfHR9jY2IjHHntMfPbZZ+LSpUsmY0hMTBRjxowR9erVEzY2NsLNzU20adNGzJs3z2A+mBj38fbt22L06NHCz89PWFtbC3d3d/Hcc8+JU6dOFZrX2Jh9xvI119dffy0ef/xxYWNjI7y9vcXbb78tMjMzTcaamZkpPv74Y9GyZUvh4OAg7OzsREBAgOjTp4/49ttvxYMHD4pdp26MQd0/SZKEo6Oj8Pf3F7169RKLFi0Sd+7cMfreovLXOXnypHjuueeEu7u7sLa2Fn5+fmLMmDHi9u3bhebV7Td37twRw4YNE7Vr1xYajUY0bdpUrFq1qthcLFXUuKhF5bp69WoREREhatSoIaytrUXdunVFly5dxH//+1+jeZo7f2nGkb1375544403RJ06dYRarTY6Xuc333wjQkNDhb29vbC3txehoaGlGrexqPOEzoYNG0Tnzp2Fk5OT0Gg0onHjxuK///2vyX3z/Pnz4rXXXhN+fn7CxsZG1KhRQzRu3FiMHj1aHD58uMQxCiFEXl6emDNnjnxOqFevnpg9e7a4ePFiuY8jq7Nt2zbRq1cvUatWLWFtbS08PT1FWFiYmDVrlsE4u+Zs87y8PPHll1+K9u3bC2dnZ6HRaISvr6/o1q2bWLp0qcF4taU5R23atEmEhoYKOzs7+bxQ3PLWrVsnWrRoIezt7YW7u7vo37+/+Oeff4zOX17jyApRsnNiaY93Uw4fPiwGDBggvLy85M+OFi1aiMmTJ4tz587J85V0HFkhHo47/L///U+0bdtWODg4CHt7e9GgQQPxn//8x2D/MRV3ZmamGD16tHxObdKkifj++++NbostW7aIV155RQQFBQknJyfh6OgoHn/8cfHuu+8WOp+Zc74xt19Ku1/cv39fTJ8+XXTq1El4enoKa2tr4eDgIBo2bCjGjRtXaAz5siQJYeTaPxE9snRXIi39ep2IiKi88R5ZIiIiIlIkFrJEREREpEh82IuISuX48eNYv359sfP5+/ubdZtCs2bNinxYgqoWY7/cZMzYsWPl8aWp6jL2a3XGmPsLdkQVhffIElGpLF++3Kzf4u7cuXOhX8EyZvDgwaUe+J8qnrlDwMXHx1s0AgRVjC5duph1nEZHRxsM2UZU2VjIEhEREZEiPXK3Fmi1WiQkJMDJyalMf4KNiIiIiMqGEAL37t2Dl5dXkWPHP3KFbEJCAnx8fCo7DCIiIiIqxrVr1+Dt7W1y+iNXyDo5OQF42DHOzs7lvr4HDx7gjz/+wFNPPVUuvzGsZOwb49gvxrFfTGPfGMd+MY19Yxz7xbSK7pv09HT4+PjIdZspj1whq7udwNnZucIKWXt7ezg7O/OgKIB9Yxz7xTj2i2nsG+PYL6axb4xjv5hWWX1T3G2gHEeWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEhVqpCdOXMmJEky+BccHCxPz87OxogRI1CzZk04OjqiX79+SEpKqsSIiYiIiKiyVKlCFgAaNmyImzdvyv/27t0rTxs3bhx+/fVXrF27Frt370ZCQgL69u1bidESERERUWWxquwACrKysoKnp2eh9rS0NCxbtgyrVq1C165dAQDR0dEICQnBwYMH0bZt24oOlYiIiIgqUZUrZOPi4uDl5QVbW1uEhYVhzpw58PX1xdGjR/HgwQNERETI8wYHB8PX1xcHDhwwWcjm5OQgJydHfp2eng4AyMvLQ15eHgBApVJBpVJBq9VCq9XK8+ra8/PzIYQotl2tVkOSJHm5AJCfnw8AEEIYtOvm159Hx8rKCkIIg3ZJkqBWqwvFaKq9PHMqKvaS5KT7f61Wa7B8JedUFtupYB9Vh5yKit3cnPSPpYIxKjWn4mI3Nyf96dUlp6JiNzcn/XOMbp1Kz6m42Hk8Wbad9I8pa2vrKp/TjRs3kJycbLAM3fJ121Y/dkmSSt2uy6uijqeC85tSpQrZNm3aYPny5QgKCsLNmzcRFRWFjh074vTp00hMTISNjQ1cXV0N3lO7dm0kJiaaXOacOXMQFRVVqD0mJgYODg4AgFq1aiEwMBDx8fG4ffu2PI+3tze8vb1x4cIFpKWlye316tWDh4cHTp8+jaysLLk9ODgYrq6uiImJMThJAA83/LFjxwxiaNWqFXJzc3Hy5Em5Ta1WIzQ0FGlpaTh//rzcbmdnh6ZNmyI5ORmXLl2S211cXBASEoKEhARcv35dbi/PnACgSZMmsLGxwZEjR0qdk0ajAQCkpKTg6tWr1SKnsthO+ieA6pITYPl20vVLdnY2VCpVtchJx9LtpL/PVJecAMu3k65fbt68CX9//2qRkw6Pp/LZTrp+OXfuHJo3b16lc8rKysKzffvC2soKb775ptyem5uLTz75BPXq1cPAgQPl9uTkZHz55Zdo1qwZevbsKbdfunQJP/zwAzp16oSOHTvK7cePH8emTZvQs2dPNGvWDCqVCi1btsSZM2fQokWLct9OMTExMIckCpbxVUhqair8/Pwwb9482NnZYejQoQZXVwGgdevWCA8Px9y5c40uw9gVWR8fH6SkpMDZ2RlA+f4llZeXh61bt6J79+5QqQxvSX5U/+It2DfdunWT36f0nMpiO+n6pUePHvJf1UrPqajYzc1J/1iytrauFjkVF7u5OenvM7r4lZ5TUbGbm5P+OUaj0VSLnIqLnceTZdtJ1y+RkZGwtbWt0jkdP34coaGh6P/BUngG1DeYXwsJgCj0IJQWEiQISGa0CwBCr/3u1X/QL8QTXl5eCA0NLfftdPfuXdSsWRNpaWlyvWZMlboiW5Crqysee+wxXLx4EU8++SRyc3ORmppqcFU2KSnJ6D21OhqNRr7yp8/KygpWVobp6zZCQfpFljnt+svVbUxJkgqtz9j8OqbmNxVjSdstyam07QVz0vWNSqUqk1yrQk7FxWhOe8ETgDFKy0lfaXPSP5Z4PBnmZOzDpCCl5WROjMW1659jiopdSTkVxOOpbLeTrl9066rKOenW4xHQAHVCmhqdvyw9LHIzIEkP/68ytpMxVW7UAn3379/HP//8gzp16qBly5awtrbG9u3b5emxsbG4evUqwsLCKjFKIiIiIqoMVeqK7Ntvv41evXrBz88PCQkJmDFjBtRqNQYOHAgXFxe89tprGD9+PNzc3ODs7IxRo0YhLCyMIxYQERERPYKqVCF7/fp1DBw4ECkpKahVqxY6dOiAgwcPolatWgCA+fPnQ6VSoV+/fsjJyUFkZCSWLFlSyVETERERUWWoUoXsjz/+WOR0W1tbLF68GIsXL66giIiIiIioqqrS98gSEREREZnCQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSJV2UL2o48+giRJGDt2rNyWnZ2NESNGoGbNmnB0dES/fv2QlJRUeUESERERUaWpkoXs33//jS+//BJNmjQxaB83bhx+/fVXrF27Frt370ZCQgL69u1bSVESERERUWWyquwACrp//z5eeuklfP311/jggw/k9rS0NCxbtgyrVq1C165dAQDR0dEICQnBwYMH0bZtW6PLy8nJQU5Ojvw6PT0dAJCXl4e8vDwAgEqlgkqlglarhVarlefVtefn50MIUWy7Wq2GJEnycgEgPz8fACCEMGjXza8/j46VlRWEEAbtkiRBrVYXitFUe3nmVFTsJclJ9/9ardZg+UrOqSy2U8E+qg45FRW7uTnpH0sFY1RqTsXFbm5O+tOrS05FxW5uTvrnGN06lZ5TcbHzeLJsO+kfU9bW1lU6p3/XIyBpDXMSKjUgBCTxbyyQJAhJVUS7FpJeLEKSAL12FR5O08Vb3tup4PymVLlCdsSIEejZsyciIiIMCtmjR4/iwYMHiIiIkNuCg4Ph6+uLAwcOmCxk58yZg6ioqELtMTExcHBwAADUqlULgYGBiI+Px+3bt+V5vL294e3tjQsXLiAtLU1ur1evHjw8PHD69GlkZWUZxOPq6oqYmBiDkwTwcIc7duyYQQytWrVCbm4uTp48Kbep1WqEhoYiLS0N58+fl9vt7OzQtGlTJCcn49KlS3K7i4sLQkJCkJCQgOvXr8vt5ZkTADRp0gQ2NjY4cuRIqXPSaDQAgJSUFFy9erVa5FQW20n/BFBdcgIs3066fsnOzoZKpaoWOelYup3095nqkhNg+XbS9cvNmzfh7+9fLXLS4fFUPttJ1y/nzp1D8+bNq3ROaWlpsLGxgUYSqJscK7cLlQo33INh+yAD7qn/frbmWWmQ6BYIh+xU1Lh3U27PtnFAsqsfnDNT4Jzxb+wZdq646+SFGvcT4ZCVCnfNw4uCunjLezvFxMTAHJLQPwNWsh9//BEffvgh/v77b9ja2qJLly5o1qwZFixYgFWrVmHo0KEGV1cBoHXr1ggPD8fcuXONLtPYFVkfHx+kpKTA2dkZQPn+JZWXl4etW7eie/fuUKkM7+R4VP/iLdg33bp1k9+n9JzKYjvp+qVHjx5QqVTVIqeiYjc3J/1jydraulrkVFzs5uakv8/o4ld6TkXFbm5O+ucYjUZTLXIqLnYeT5ZtJ12/REZGwtbWtkrndPz4cYSGhmLk99vgHdTYYP7yuCKbFHsSnR0y4eXlhdDQ0HLfTnfv3kXNmjWRlpYm12vGVJkrsteuXcOYMWOwbds22NraltlyNRqNfOVPn5WVFaysDNPXbYSC9Issc9r1l6vbmJIkFVqfsfl1TM1vKsaStluSU2nbC+ak6xuVSlUmuVaFnIqL0Zz2gicAY5SWk77S5qR/LPF4MszJ2IdJQUrLyZwYi2vXP8cUFbuSciqIx1PZbiddv+jWVZVz+nc90sPCtSBJgpBK0q6CkIys9P/btZD+/+1SkbGX53Yypso87HX06FHcunULLVq0kIvM3bt3Y+HChbCyskLt2rWRm5uL1NRUg/clJSXB09OzcoImIiIiokpTZa7IPvHEEzh16pRB29ChQxEcHIx33nkHPj4+sLa2xvbt29GvXz8AQGxsLK5evYqwsLDKCJmIiIiIKlGVKWSdnJzQqFEjgzYHBwfUrFlTbn/ttdcwfvx4uLm5wdnZGaNGjUJYWJjJB72IiIiIqPqqMoWsOebPnw+VSoV+/fohJycHkZGRWLJkSWWHRURERESVoEoXsrt27TJ4bWtri8WLF2Px4sWVExARERERVRlV5mEvIiIiIqKSYCFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkK0sXkJiYiGXLluHYsWNIS0uDVqs1mC5JErZv327paoiIiIiIDFhUyJ48eRJdunRBVlYWgoKCcOrUKTz++ONITU3FjRs3EBgYCB8fn7KKlYiIiIhIZtGtBZMnT4ajoyNiY2Px559/QgiBzz77DNeuXcPq1atx9+5dfPTRR2UVKxERERGRzKJCdt++fXjzzTfh6+sLlerhonS3Fjz//PN46aWXMHHiRMujJCIiIiIqwKJCVqvVonbt2gAAV1dXqNVq3LlzR57euHFjHD161LIIiYiIiIiMsKiQDQgIQHx8/MMFqVQICAjAn3/+KU/fv38/XF1dLQqQiIiIiMgYiwrZp556CmvXrpVfDx8+HP/73/8QERGBJ554AitWrMCLL75ocZBERERERAVZNGrB1KlTMXDgQDx48ADW1tYYO3YsMjIy8NNPP0GtVmPatGl49913yypWIiIiIiKZRYVsjRo10LJlS/m1JEl477338N5771kcGBERERFRUarUL3stXboUTZo0gbOzM5ydnREWFobNmzfL07OzszFixAjUrFkTjo6O6NevH5KSkioxYiIiIiKqLCW6Ivvqq69CkiR89dVXUKvVePXVV4t9jyRJWLZsmVnL9/b2xkcffYQGDRpACIEVK1agd+/eiImJQcOGDTFu3Dhs2rQJa9euhYuLC0aOHIm+ffti3759JUmDiIiIiKqBEhWyO3bsgEqlglarhVqtxo4dOyBJUpHvKW66vl69ehm8/vDDD7F06VIcPHgQ3t7eWLZsGVatWoWuXbsCAKKjoxESEoKDBw+ibdu2RpeZk5ODnJwc+XV6ejoAIC8vD3l5eQAejrigy0v/J3Z17fn5+RBCFNuuVqshSZK8XADIz88HAAghDNp18+vPo2NlZQUhhEG7JElQq9WFYjTVXp45FRV7SXLS/b9WqzVYvpJzKovtVLCPqkNORcVubk76x1LBGJWaU3Gxm5uT/vTqklNRsZubk/45RrdOpedUXOw8nizbTvrHlLW1dZXO6d/1CEhaw5yESg0IAUn8GwskCUJSFdGuhaQXi5AkQK9dhYfTdPGW93YqOL8pJSpkL1++XOTrspSfn4+1a9ciIyMDYWFhOHr0KB48eICIiAh5nuDgYPj6+uLAgQMmC9k5c+YgKiqqUHtMTAwcHBwAALVq1UJgYCDi4+Nx+/ZteR5vb294e3vjwoULSEtLk9vr1asHDw8PnD59GllZWQbxuLq6IiYmxuAkATzc4Y4dO2YQQ6tWrZCbm4uTJ0/KbWq1GqGhoUhLS8P58+fldjs7OzRt2hTJycm4dOmS3O7i4oKQkBAkJCTg+vXrcnt55gQATZo0gY2NDY4cOVLqnDQaDQAgJSUFV69erRY5lcV20j8BVJecAMu3k65fsrOzoVKpqkVOOpZuJ/19prrkBFi+nXT9cvPmTfj7+1eLnHR4PJXPdtL1y7lz59C8efMqnVNaWhpsbGygkQTqJsfK7UKlwg33YNg+yIB76r+frXlWGiS6BcIhOxU17t2U27NtHJDs6gfnzBQ4Z/wbe4adK+46eaHG/UQ4ZKXCXfPwoqAu3vLeTjExMTCHJPTPgFXAqVOnEBYWhuzsbDg6OmLVqlXo0aMHVq1ahaFDhxpcXQWA1q1bIzw8HHPnzjW6PGNXZH18fJCSkgJnZ2cA5fuXVF5eHrZu3Yru3bvLv36mPz/w6P3FW7BvunXrJr9P6TmVxXbS9UuPHj2gUqmqRU5FxW5uTvrHkrW1dbXIqbjYzc1Jf5/Rxa/0nIqK3dyc9M8xGo2mWuRUXOw8nizbTrp+iYyMhK2tbZXO6fjx4wgNDcXI77fBO6ixwfzlcUU2KfYkOjtkwsvLC6GhoeW+ne7evYuaNWsiLS1NrteMsWjUgmPHjuHgwYN46623jE5fsmQJ2rVrh2bNmpm9zKCgIBw/fhxpaWlYt24dBg8ejN27d5c6Ro1GI1/502dlZQUrK8P0dRuhIP0iy5x2/eXqNqYkSYXWZ2x+HVPzm4qxpO2W5FTa9oI56fpGpVKVSa5VIafiYjSnveAJwBil5aSvtDnpH0s8ngxzMvZhUpDScjInxuLa9c8xRcWupJwK4vFUtttJ1y+6dVXlnP5dj/SwcC1IkiCkkrSrIIzdDfr/7VpI//92qcjYy3M7GWPRqAVTp041+CWvgnbs2FHiobhsbGxQv359tGzZEnPmzEHTpk3x2WefwdPTE7m5uUhNTTWYPykpCZ6enqUJn4iIiIgUzKJC9ujRo+jYsaPJ6R07dix070NJabVa5OTkoGXLlrC2tsb27dvlabGxsbh69SrCwsIsWgcRERERKY9Ftxbcu3evyEu/KpXK4Ebg4kyZMgXdu3eHr68v7t27h1WrVmHXrl3YunUrXFxc8Nprr2H8+PFwc3ODs7MzRo0ahbCwMJMPehERERFR9WVRIdugQQP88ccfGDVqlNHpW7ZsQb169cxe3q1bt/DKK6/g5s2bcHFxQZMmTbB161Y8+eSTAID58+dDpVKhX79+yMnJQWRkJJYsWWJJCkRERESkUBYVsq+99hrGjRuH8ePHY/r06XB1dQUApKamIioqClu2bMEnn3xi9vKK++EEW1tbLF68GIsXL7YkbCIiIiKqBiwqZEePHo3jx49jwYIFWLhwIby8vAAACQkJ0Gq1GDRoEMaNG1cmgRIRERER6bOokJUkCdHR0XjllVfw008/yYMG9+7dG/369UOXLl3KIkYiIiIiokIsKmR1wsPDER4eXhaLIiIiIiIyi0XDbxERERERVRaLClkhBL788ku0bt0a7u7uUKvVhf6Z+8sMREREREQlYVGVOWnSJMybNw/NmjXDyy+/jBo1apRVXERERERERbKokF2xYgX69euHNWvWlFU8RERERERmsejWgqysLERERJRVLEREREREZrOokH3iiSfw999/l1UsRERERERms6iQXbJkCQ4ePIjZs2cjJSWlrGIiIiIiIiqWRYVsUFAQLl26hGnTpsHDwwMODg5wdnY2+Ofi4lJWsRIRERERySx62Ktfv36QJKmsYiEiIiIiMptFhezy5cvLKAwiIiIiopLhL3sRERERkSJZXMhevXoV//nPfxAUFIQaNWpgz549AIDk5GSMHj0aMTExFgdJRERERFSQRbcWnD17Fh07doRWq0WbNm1w8eJF5OXlAQDc3d2xd+9eZGRkYNmyZWUSLBERERGRjsU/Uevq6oqDBw9CkiR4eHgYTO/ZsydWr15tUYBERERERMZYdGvBnj17MHz4cNSqVcvo6AW+vr64ceOGJasgIiIiIjLKokJWq9XC3t7e5PTbt29Do9FYsgoiIiIiIqMsKmRbtGiBTZs2GZ2Wl5eHH3/8EW3btrVkFURERERERllUyE6ZMgVbtmzB8OHDcfr0aQBAUlIS/vzzTzz11FM4d+4cJk+eXCaBEhERERHps+hhr+7du2P58uUYM2YMvvrqKwDAyy+/DCEEnJ2d8e2336JTp05lEigRERERkT6LClkAGDRoEPr27Ys//vgDFy9ehFarRWBgICIjI+Hk5FQWMRIRERERFWJxIQsADg4OePbZZ8tiUUREREREZrGokL169apZ8/n6+lqyGiIiIiKiQiwqZP39/Y2OH1tQfn6+JashIiIiIirEokL2m2++KVTI5ufn4/Lly/j222/h4eGBESNGWBQgEREREZExFhWyQ4YMMTntnXfeQZs2bZCWlmbJKoiIiIiIjLJoHNmiODg4YOjQoZg/f355rYKIiIiIHmHlVsgCD3/CNjExsTxXQURERESPqDIZfqug9PR07NmzB5988gmaN29eHqsgIiIiokecRYWsSqUyOWqBEAK+vr5YsmSJJasgIiIiIjLKokJ2+vTphQpZSZJQo0YNBAYG4qmnnoKVVblc9CUiIiKiR5xFVebMmTPLKAwiIiIiopKx6GGvvLw8pKenm5yenp6OvLw8S1ZBRERERGSURYXs6NGj0a5dO5PT27dvjwkTJliyCiIiIiIioywqZLds2YLnnnvO5PTnnnsOv//+uyWrICIiIiIyyqJCNiEhAXXr1jU53cvLCzdu3LBkFURERERERllUyNasWROxsbEmp587dw7Ozs6WrIKIiIiIyCiLCtlu3brhyy+/RExMTKFpx44dw1dffYXu3btbsgoiIiIiIqMsGn5r1qxZ2LJlC1q3bo1nnnkGDRs2BACcPn0av/76Kzw8PDBr1qwyCZSIiIiISJ9FhayXlxeOHDmCyZMnY8OGDfjll18AAM7OznjppZcwe/ZseHl5lUmgRERERET6LP7ZrTp16mDFihUQQuD27dsAgFq1apn86VoiIiIiorJQZr8fK0kSNBoNHB0dWcQSERERUbmz6GEvADhy5Ai6desGe3t71KxZE7t37wYAJCcno3fv3ti1a5elqyAiIiIiKsSiQnb//v3o0KED4uLi8PLLL0Or1crT3N3dkZaWhi+//NLiIImIiIiICrKokH333XcREhKCs2fPYvbs2YWmh4eH49ChQ5asgoiIiIjIKIsK2b///htDhw6FRqMxel9s3bp1kZiYaMkqiIiIiIiMsqiQtba2NridoKAbN27A0dHRklUQERERERllUSHbtm1brFu3zui0jIwMREdHo3PnzpasgoiIiIjIKIsK2aioKBw5cgQ9e/bE5s2bAQAnTpzA//73P7Rs2RK3b9/GtGnTyiRQIiIiIiJ9Fo0j26ZNG/z+++8YPnw4XnnlFQDAhAkTAACBgYH4/fff0aRJE8ujJCIiIiIqoNSFrBAC9+7dQ7t27RAbG4vjx48jLi4OWq0WgYGBaNmyJX8YgYiIiIjKTakL2dzcXLi5uWH27NmYNGkSmjVrhmbNmpVhaEREREREppX6HlmNRgNPT09oNJqyjIeIiIiIyCwWPew1ZMgQfPvtt8jNzS2reIiIiIiIzGLRw16NGzfG+vXr0bBhQwwZMgT+/v6ws7MrNF/fvn0tWQ0RERERUSEWFbIDBw6U/9/UMFuSJCE/P9+S1RARERERFVLiQvbdd9/FgAED0KRJE+zcubM8YiIiIiIiKlaJC9mPPvoIjRo1QpMmTdC5c2ekpKTAw8MD27ZtQ9euXcsjRiIiIiKiQix62EtHCFEWiyEiIiIiMluZFLJERERERBWtShWyc+bMQWhoKJycnODh4YE+ffogNjbWYJ7s7GyMGDECNWvWhKOjI/r164ekpKRKipiIiIiIKkupRi24fPkyjh07BgBIS0sDAMTFxcHV1dXo/C1atDBrubt378aIESMQGhqKvLw8vPvuu3jqqadw9uxZODg4AADGjRuHTZs2Ye3atXBxccHIkSPRt29f7Nu3rzSpEBEREZFClaqQnTZtWqHhtt56661C8wkhSjT81pYtWwxeL1++HB4eHjh69Cg6deqEtLQ0LFu2DKtWrZIfLIuOjkZISAgOHjyItm3bliYdIiIiIlKgEhey0dHR5RGHUbqrvW5ubgCAo0eP4sGDB4iIiJDnCQ4Ohq+vLw4cOGC0kM3JyUFOTo78Oj09HQCQl5eHvLw8AIBKpYJKpYJWq4VWq5Xn1bXn5+cbPNBmql2tVkOSJHm5AOQiXghh0K6bX38eHSsrKwghDNolSYJarS4Uo6n28sypqNhLkpPu/7VarcHylZxTWWyngn1UHXIqKnZzc9I/lgrGqNSciovd3Jz0p1eXnIqK3dyc9M8xunUqPafiYufxZNl20j+mrK2tq3RO/65HQNIa5iRUakAISOLfWCBJEJKqiHYtJL1YhCQBeu0qPJymi7e8t1PB+U0pcSE7ePDgkr6lVLRaLcaOHYv27dujUaNGAIDExETY2NgUuoWhdu3aSExMNLqcOXPmICoqqlB7TEyMfLtCrVq1EBgYiPj4eNy+fVuex9vbG97e3rhw4YJcVANAvXr14OHhgdOnTyMrK0tuDw4OhqurK2JiYgxOErp8dLdj6LRq1Qq5ubk4efKk3KZWqxEaGoq0tDScP39ebrezs0PTpk2RnJyMS5cuye0uLi4ICQlBQkICrl+/LreXZ04A0KRJE9jY2ODIkSOlzkmj0QAAUlJScPXq1WqRU1lsJ/0TQHXJCbB8O+n6JTs7GyqVqlrkpGPpdtLfZ6pLToDl20nXLzdv3oS/v3+1yEmHx1P5bCddv5w7dw7Nmzev0jmlpaXBxsYGGkmgbvK/zxMJlQo33INh+yAD7qn/frbmWWmQ6BYIh+xU1Lh3U27PtnFAsqsfnDNT4Jzxb+wZdq646+SFGvcT4ZCVCnfNw4uCunjLezvFxMTAHJKoomNnDR8+HJs3b8bevXvh7e0NAFi1ahWGDh1qcIUVAFq3bo3w8HDMnTu30HKMXZH18fFBSkoKnJ2dAZTvX1J5eXnYunUrunfvDpXK8Nm6R/Uv3oJ9061bN/l9Ss+pLLaTrl969OgBlUpVLXIqKnZzc9I/lqytratFTsXFbm5O+vuMLn6l51RU7ObmpH+O0Wg01SKn4mLn8WTZdtL1S2RkJGxtbat0TsePH0doaChGfr8N3kGNDeYvjyuySbEn0dkhE15eXggNDS337XT37l3UrFkTaWlpcr1mjEU/UVteRo4cid9++w179uyRi1gA8PT0RG5uLlJTUw2uyiYlJcHT09PosjQajXzlT5+VlRWsrAzT122EgvSLLHPa9Zer25iSJBVan7H5dUzNbyrGkrZbklNp2wvmpOsblUpVJrlWhZyKi9Gc9oInAGOUlpO+0uakfyzxeDLMydiHSUFKy8mcGItr1z/HFBW7knIqiMdT2W4nXb/o1lWVc/p3PdLDwrUgSYKQStKugpCMrPT/27WQ/v/tUpGxl+d2MqZKDb8lhMDIkSPxyy+/YMeOHQgICDCY3rJlS1hbW2P79u1yW2xsLK5evYqwsLCKDpeIiIiIKlGVuiI7YsQIrFq1Chs2bICTk5N836uLiwvs7Ozg4uKC1157DePHj4ebmxucnZ0xatQohIWFccQCIiIiokdMlSpkly5dCgDo0qWLQXt0dDSGDBkCAJg/fz5UKhX69euHnJwcREZGYsmSJRUcKRERERFVtipVyJrz3JmtrS0WL16MxYsXV0BERERERFRVVal7ZImIiIiIzMVCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIlWpQnbPnj3o1asXvLy8IEkS1q9fbzBdCIHp06ejTp06sLOzQ0REBOLi4ionWCIiIiKqVFWqkM3IyEDTpk2xePFio9M//vhjLFy4EF988QUOHToEBwcHREZGIjs7u4IjJSIiIqLKZlXZAejr3r07unfvbnSaEAILFizAe++9h969ewMAvv32W9SuXRvr16/HgAEDjL4vJycHOTk58uv09HQAQF5eHvLy8gAAKpUKKpUKWq0WWq1WnlfXnp+fDyFEse1qtRqSJMnLBYD8/Hw5fv123fz68+hYWVlBCGHQLkkS1Gp1oRhNtZdnTkXFXpKcdP+v1WoNlq/knMpiOxXso+qQU1Gxm5uT/rFUMEal5lRc7ObmpD+9uuRUVOzm5qR/jtGtU+k5FRc7jyfLtpP+MWVtbV2lc/p3PQKS1jAnoVIDQkAS/8YCSYKQVEW0ayHpxSIkCdBrV+HhNF285b2dCs5vSpUqZIsSHx+PxMREREREyG0uLi5o06YNDhw4YLKQnTNnDqKiogq1x8TEwMHBAQBQq1YtBAYGIj4+Hrdv35bn8fb2hre3Ny5cuIC0tDS5vV69evDw8MDp06eRlZUltwcHB8PV1RUxMTEGJwng4Q537NgxgxhatWqF3NxcnDx5Um5Tq9UIDQ1FWloazp8/L7fb2dmhadOmSE5OxqVLlwz6ICQkBAkJCbh+/brcXp45AUCTJk1gY2ODI0eOlDonjUYDAEhJScHVq1erRU5lsZ30TwDVJSfA8u2k65fs7GyoVKpqkZOOpdtJf5+pLjkBlm8nXb/cvHkT/v7+1SInHR5P5bOddP1y7tw5NG/evErnlJaWBhsbG2gkgbrJsXK7UKlwwz0Ytg8y4J7672drnpUGiW6BcMhORY17N+X2bBsHJLv6wTkzBc4Z/8aeYeeKu05eqHE/EQ5ZqXDXPLwoqIu3vLdTTEwMzCEJ/TNgFSJJEn755Rf06dMHALB//360b98eCQkJqFOnjjxf//79IUkSVq9ebXQ5xq7I+vj4ICUlBc7OzgDK9y+pvLw8bN26Fd27d4dKZXgnx6P6F2/BvunWrZv8PqXnVBbbSdcvPXr0gEqlqhY5FRW7uTnpH0vW1tbVIqfiYjc3J/19Rhe/0nMqKnZzc9I/x2g0mmqRU3Gx83iybDvp+iUyMhK2trZVOqfjx48jNDQUI7/fBu+gxgbzl8cV2aTYk+jskAkvLy+EhoaW+3a6e/cuatasibS0NLleM0YxV2RLS6PRyFf+9FlZWcHKyjB93UYoSL/IMqddf7m6jSlJUqH1GZtfx9T8pmIsabslOZW2vWBOur5RqVRlkmtVyKm4GM1pL3gCMEZpOekrbU76xxKPJ8OcjH2YFKS0nMyJsbh2/XNMUbErKaeCeDyV7XbS9YtuXVU5p3/XIz0sXAuSJAipJO0qCMnISv+/XQvp/98uFRl7eW4nY6rUw15F8fT0BAAkJSUZtCclJcnTiIiIiOjRoZhCNiAgAJ6enti+fbvclp6ejkOHDiEsLKwSIyMiIiKiylClbi24f/8+Ll68KL+Oj4/H8ePH4ebmBl9fX4wdOxYffPABGjRogICAAEybNg1eXl7yfbRERERE9OioUoXskSNHEB4eLr8eP348AGDw4MFYvnw5Jk2ahIyMDAwbNgypqano0KEDtmzZAltb28oKmYiIiIgqSZUqZLt06WLw0EJBkiTh/fffx/vvv1+BURERERFRVaSYe2SJiIiIiPSxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUyaqyA3hUnDhxAipVxfzd4O7uDl9f3wpZFxEREVFlYSFbzq5fvw4A6NSpE7KysipknXb29jh/7hyLWSIiIqrWWMiWs5SUFADAs9Pmw82vfrmv71Z8HNa8NxzJycksZImIiKhaYyFbQWr5BcIzpGllh0FERERUbfBhLyIiIiJSJBayRERERKRILGSJiIiISJFYyBIRERGRIrGQJSIiIiJFYiFLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEREREisRCloiIiIgUiYUsERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRIVpUdABEZd+LECahUFfO3pru7O3x9fStkXVR+uM9QSXGfIaVjIUtUxVy/fh0A0KlTJ2RlZVXIOu3s7XH+3Dl+yCgU9xkqKe4zVF2wkCWqYlJSUgAAz06bDze/+uW+vlvxcVjz3nAkJyfzA0ahuM9QSXGfoeqChSxRFVXLLxCeIU0rOwxSEO4zVFLcZ0jp+LAXERERESkSC1kiIiIiUiQWskRERESkSCxkiYiIiEiRWMgSERERkSKxkCUiIiIiRWIhS0RERESKxEKWiIiIiBRJkYXs4sWL4e/vD1tbW7Rp0waHDx+u7JCIiIiIqIIprpBdvXo1xo8fjxkzZuDYsWNo2rQpIiMjcevWrcoOjYiIiIgqkOJ+onbevHl44403MHToUADAF198gU2bNuGbb77B5MmTC82fk5ODnJwc+XVaWhoA4M6dO8jLywMAqFQqqFQqaLVaaLVaeV5de35+PoQQxbar1WpIkiQvFwDS09ORmZmJhNh4ZGdmGMSme6dUIGYBSf5vwXYJAgXpt6dcvQRra2scPXoU9+/fhxDCIEZJkiBJUonb9ftF1w4AQgi57wq261OpVIWWLYRAZmYm9u7dK7/P3Bj1YyqPnAq267Z3cTmVNhb99ri4ODg6OhrdZwDj+8HDV6baje1j/7aX1z5TVttPN59Wq5X3F13f6ytu3yuLfaYk7Wq1utA5ojT7XlE5WbLPWNKuv8/cu3evXHLSzWvJMa+/z6jV6hJvP/1zeXnkVJJ9pqzP5fr7TFZmRpHnCMP20n0+GdtnyvvzqeA0c7aTpftMWW0/c46nuLg4AMCNcyfxIPN+oX4vbR1hqj31ejwyg2rj3r17SE9Pt6g20rUDKPTZqmu/e/duoZyNkURxc1Qhubm5sLe3x7p169CnTx+5ffDgwUhNTcWGDRsKvWfmzJmIioqqwCiJiIiIqCxcu3YN3t7eJqcr6opscnIy8vPzUbt2bYP22rVr4/z580bfM2XKFIwfP15+rdVqcefOHdSsWdPgKmB5SU9Ph4+PD65duwZnZ+dyX5+SsG+MY78Yx34xjX1jHPvFNPaNcewX0yq6b4QQuHfvHry8vIqcT1GFbGloNBpoNBqDNldX1wqPw9nZmQeFCewb49gvxrFfTGPfGMd+MY19Yxz7xbSK7BsXF5di51HUw17u7u5Qq9VISkoyaE9KSoKnp2clRUVERERElUFRhayNjQ1atmyJ7du3y21arRbbt29HWFhYJUZGRERERBVNcbcWjB8/HoMHD0arVq3QunVrLFiwABkZGfIoBlWNRqPBjBkzCt3eQOwbU9gvxrFfTGPfGMd+MY19Yxz7xbSq2jeKGrVA5/PPP8cnn3yCxMRENGvWDAsXLkSbNm0qOywiIiIiqkCKLGSJiIiIiBR1jywRERERkQ4LWSIiIiJSJBayRERERKRILGSJiIiISJFYyFroxo0bePnll1GzZk3Y2dmhcePGOHLkSJHv2bVrF1q0aAGNRoP69etj+fLlFRNsBStp3+zatQuSJBX6l5iYWIFRly9/f3+jOY4YMcLke9auXYvg4GDY2tqicePG+P333ysw4opT0r5Zvnx5oXltbW0rOOryl5+fj2nTpiEgIAB2dnYIDAzErFmzUNxzutX9PFOafnkUzjE69+7dw9ixY+Hn5wc7Ozu0a9cOf//9d5Hvqe77DFDyfqmu+8yePXvQq1cveHl5QZIkrF+/3mC6EALTp09HnTp1YGdnh4iICMTFxRW73MWLF8Pf3x+2trZo06YNDh8+XE4ZGAZLpXTnzh3h5+cnhgwZIg4dOiQuXboktm7dKi5evGjyPZcuXRL29vZi/Pjx4uzZs2LRokVCrVaLLVu2VGDk5a80fbNz504BQMTGxoqbN2/K//Lz8ysw8vJ169Ytg9y2bdsmAIidO3canX/fvn1CrVaLjz/+WJw9e1a89957wtraWpw6dapiA68AJe2b6Oho4ezsbPCexMTEig26Anz44YeiZs2a4rfffhPx8fFi7dq1wtHRUXz22Wcm3/MonGdK0y+PwjlGp3///uLxxx8Xu3fvFnFxcWLGjBnC2dlZXL9+3ej8j8I+I0TJ+6W67jO///67mDp1qvj5558FAPHLL78YTP/oo4+Ei4uLWL9+vThx4oR45plnREBAgMjKyjK5zB9//FHY2NiIb775Rpw5c0a88cYbwtXVVSQlJZVrLixkLfDOO++IDh06lOg9kyZNEg0bNjRoe+GFF0RkZGRZhlbpStM3uhPG3bt3yyeoKmjMmDEiMDBQaLVao9P79+8vevbsadDWpk0b8eabb1ZEeJWquL6Jjo4WLi4uFRtUJejZs6d49dVXDdr69u0rXnrpJZPveRTOM6Xpl0flHJOZmSnUarX47bffDNpbtGghpk6davQ9j8I+U5p+eRT2mYKFrFarFZ6enuKTTz6R21JTU4VGoxE//PCDyeW0bt1ajBgxQn6dn58vvLy8xJw5c8olbh3eWmCBjRs3olWrVnj++efh4eGB5s2b4+uvvy7yPQcOHEBERIRBW2RkJA4cOFCeoVa40vSNTrNmzVCnTh08+eST2LdvXzlHWnlyc3Px3Xff4dVXX4UkSUbneVT2l4LM6RsAuH//Pvz8/ODj44PevXvjzJkzFRhlxWjXrh22b9+OCxcuAABOnDiBvXv3onv37ibf8yjsN6XpF53qfo7Jy8tDfn5+oVtt7OzssHfvXqPveRT2mdL0i05132f0xcfHIzEx0WB/cHFxQZs2bUzuD7m5uTh69KjBe1QqFSIiIsp9H2Iha4FLly5h6dKlaNCgAbZu3Yrhw4dj9OjRWLFihcn3JCYmonbt2gZttWvXRnp6OrKysso75ApTmr6pU6cOvvjiC/z000/46aef4OPjgy5duuDYsWMVGHnFWb9+PVJTUzFkyBCT85jaX5R+f1ZxzOmboKAgfPPNN9iwYQO+++47aLVatGvXDtevX6+4QCvA5MmTMWDAAAQHB8Pa2hrNmzfH2LFj8dJLL5l8z6NwnilNvzwq5xgnJyeEhYVh1qxZSEhIQH5+Pr777jscOHAAN2/eNPqeR2GfKU2/PCr7jD7d50tJPnuSk5ORn59fKZ9XVuW69GpOq9WiVatWmD17NgCgefPmOH36NL744gsMHjy4kqOrXKXpm6CgIAQFBcmv27Vrh3/++Qfz58/HypUrKyTuirRs2TJ0794dXl5elR1KlWNO34SFhSEsLEx+3a5dO4SEhODLL7/ErFmzKiLMCrFmzRp8//33WLVqFRo2bIjjx49j7Nix8PLyeqTPM6Xpl0fpHLNy5Uq8+uqrqFu3LtRqNVq0aIGBAwfi6NGjlR1apSppvzxK+4xS8YqsBerUqYPHH3/coC0kJARXr141+R5PT08kJSUZtCUlJcHZ2Rl2dnblEmdlKE3fGNO6dWtcvHixLEOrEq5cuYI///wTr7/+epHzmdpfPD09yzO8SmVu3xSkuypX3faXiRMnylcfGzdujEGDBmHcuHGYM2eOyfc8CueZ0vSLMdX1HBMYGIjdu3fj/v37uHbtGg4fPowHDx6gXr16Rud/FPYZoOT9Ykx13Wd0dJ8vJfnscXd3h1qtrpTPKxayFmjfvj1iY2MN2i5cuAA/Pz+T7wkLC8P27dsN2rZt22ZwZak6KE3fGHP8+HHUqVOnLEOrEqKjo+Hh4YGePXsWOd+jsr/oM7dvCsrPz8epU6eq3f6SmZkJlcrwVK1Wq6HVak2+51HYb0rTL8ZU13OMjoODA+rUqYO7d+9i69at6N27t9H5HoV9Rp+5/WJMdd9nAgIC4OnpabA/pKen49ChQyb3BxsbG7Rs2dLgPVqtFtu3by//fahcHyWr5g4fPiysrKzEhx9+KOLi4sT3338v7O3txXfffSfPM3nyZDFo0CD5tW6Ik4kTJ4pz586JxYsXV8shTkrTN/Pnzxfr168XcXFx4tSpU2LMmDFCpVKJP//8szJSKDf5+fnC19dXvPPOO4WmDRo0SEyePFl+vW/fPmFlZSU+/fRTce7cOTFjxoxqO/yWECXrm6ioKLF161bxzz//iKNHj4oBAwYIW1tbcebMmYoMudwNHjxY1K1bVx5m6ueffxbu7u5i0qRJ8jyP4nmmNP3yqJxjhBBiy5YtYvPmzeLSpUvijz/+EE2bNhVt2rQRubm5QohHc58RouT9Ul33mXv37omYmBgRExMjAIh58+aJmJgYceXKFSHEw+G3XF1dxYYNG8TJkydF7969Cw2/1bVrV7Fo0SL59Y8//ig0Go1Yvny5OHv2rBg2bJhwdXUt92ERWcha6NdffxWNGjUSGo1GBAcHi6+++spg+uDBg0Xnzp0N2nbu3CmaNWsmbGxsRL169UR0dHTFBVyBSto3c+fOFYGBgcLW1la4ubmJLl26iB07dlRw1OVv69at8riEBXXu3FkMHjzYoG3NmjXiscceEzY2NqJhw4Zi06ZNFRRpxStJ34wdO1b4+voKGxsbUbt2bdGjRw9x7NixCoy2YqSnp4sxY8YIX19fYWtrK+rVqyemTp0qcnJy5HkexfNMafrlUTnHCCHE6tWrRb169YSNjY3w9PQUI0aMEKmpqfL0R3GfEaLk/VJd9xndsGIF/+nOsVqtVkybNk3Url1baDQa8cQTTxQ6L/v5+YkZM2YYtC1atEg+L7du3VocPHiw3HORhCjm52GIiIiIiKog3iNLRERERIrEQpaIiIiIFImFLBEREREpEgtZIiIiIlIkFrJEREREpEgsZImIiIhIkVjIEhEREZEisZAlIiIiIkViIUtEitKlSxc0atSoUtY9ZMgQ+Pv7V8q6lWTXrl2QJAm7du2S24z13f379/H666/D09MTkiRh7NixAICkpCQ899xzqFmzJiRJwoIFCyos9rJirA/MNXPmTEiSVPZBEVVDLGSJqpnly5dDkiT5n62tLby8vBAZGYmFCxfi3r17lR1itZeQkICZM2fi+PHjZb7s/fv3Y+bMmUhNTS3zZVe02bNnY/ny5Rg+fDhWrlyJQYMGAQDGjRuHrVu3YsqUKVi5ciW6detWyZGatmTJEixfvryywyB6ZFlVdgBEVD7ef/99BAQE4MGDB0hMTMSuXbswduxYzJs3Dxs3bkSTJk0qO8RqKyEhAVFRUfD390ezZs3KdNn79+9HVFQUhgwZAldX1zJddnn6+uuvodVqDdp27NiBtm3bYsaMGYXae/fujbfffrsiQyyVJUuWwN3dHUOGDDFo79SpE7KysmBjY1M5gRE9IljIElVT3bt3R6tWreTXU6ZMwY4dO/D000/jmWeewblz52BnZ2f0vRkZGXBwcKioUOkRYG1tXajt1q1bePzxx422l2WRnpeXB61WW6FFpUqlgq2tbYWtj+hRxVsLiB4hXbt2xbRp03DlyhV89913AB7eu+jo6Ih//vkHPXr0gJOTE1566SUADwvaCRMmwMfHBxqNBkFBQfj0008hhDBYriRJGDlyJL7//nsEBQXB1tYWLVu2xJ49e8otl7NnzyI8PBz29vaoW7cuPv7440Lz5OTkYMaMGahfvz40Gg18fHwwadIk5OTkFJr3u+++Q8uWLWFnZwc3NzcMGDAA165dK3Fcu3btQmhoKABg6NCh8i0e+l8/r127Vl6Xu7s7Xn75Zdy4caPYZc+cORMTJ04EAAQEBMjLvnz5MoCHBdusWbMQGBgIjUYDf39/vPvuu0bz3bx5Mzp27AgHBwc4OTmhZ8+eOHPmTInzvX79Ovr06QMHBwd4eHhg3LhxRtenf4+s7v7R+Ph4bNq0yaCPJEmCEAKLFy+W23VSU1MxduxYeX+sX78+5s6da3Cl9/Lly5AkCZ9++ikWLFgg98XZs2cBAOfPn8dzzz0HNzc32NraolWrVti4caNBrLo49u3bh/Hjx6NWrVpwcHDAs88+i9u3b8vz+fv748yZM9i9e7cca5cuXQxy1L9H9q+//sLzzz8PX19feX8cN24csrKyStzvRPQQr8gSPWIGDRqEd999F3/88QfeeOMNAA8LoMjISHTo0AGffvop7O3tIYTAM888g507d+K1115Ds2bNsHXrVkycOBE3btzA/PnzDZa7e/durF69GqNHj4ZGo8GSJUvQrVs3HD58uMwfzrp79y66deuGvn37on///li3bh3eeecdNG7cGN27dwcAaLVaPPPMM9i7dy+GDRuGkJAQnDp1CvPnz8eFCxewfv16eXkffvghpk2bhv79++P111/H7du3sWjRInTq1AkxMTElujoYEhKC999/H9OnT8ewYcPQsWNHAEC7du0APCyShg4ditDQUMyZMwdJSUn47LPPsG/fvmLX1bdvX1y4cAE//PAD5s+fD3d3dwBArVq1AACvv/46VqxYgeeeew4TJkzAoUOHMGfOHJw7dw6//PKLvJyVK1di8ODBiIyMxNy5c5GZmYmlS5eiQ4cOiImJMfuBtqysLDzxxBO4evUqRo8eDS8vL6xcuRI7duwoto9WrlyJcePGwdvbGxMmTAAANG/eXL5X9sknn8Qrr7wivyczMxOdO3fGjRs38Oabb8LX1xf79+/HlClTcPPmzUIPhEVHRyM7OxvDhg2DRqOBm5sbzpw5g/bt26Nu3bqYPHkyHBwcsGbNGvTp0wc//fQTnn32WYNljBo1CjVq1MCMGTNw+fJlLFiwACNHjsTq1asBAAsWLMCoUaPg6OiIqVOnAgBq165tMu+1a9ciMzMTw4cPR82aNXH48GEsWrQI169fx9q1a83qcyIqQBBRtRIdHS0AiL///tvkPC4uLqJ58+ZCCCEGDx4sAIjJkycbzLN+/XoBQHzwwQcG7c8995yQJElcvHhRbgMgAIgjR47IbVeuXBG2trbi2WefLYu0ZJ07dxYAxLfffiu35eTkCE9PT9GvXz+5beXKlUKlUom//vrL4P1ffPGFACD27dsnhBDi8uXLQq1Wiw8//NBgvlOnTgkrKyuD9sGDBws/P79iY/z7778FABEdHW3QnpubKzw8PESjRo1EVlaW3P7bb78JAGL69OnFLvuTTz4RAER8fLxB+/HjxwUA8frrrxu0v/322wKA2LFjhxBCiHv37glXV1fxxhtvGMyXmJgoXFxcCrUXZcGCBQKAWLNmjdyWkZEh6tevLwCInTt3yu3G+s7Pz0/07Nmz0HIBiBEjRhi0zZo1Szg4OIgLFy4YtE+ePFmo1Wpx9epVIYQQ8fHxAoBwdnYWt27dMpj3iSeeEI0bNxbZ2dlym1arFe3atRMNGjSQ23THUEREhNBqtXL7uHHjhFqtFqmpqXJbw4YNRefOnQvlsHPnzkJ9kJmZWWi+OXPmCEmSxJUrV+S2GTNmCH48E5mHtxYQPYIcHR0LjV4wfPhwg9e///471Go1Ro8ebdA+YcIECCGwefNmg/awsDC0bNlSfu3r64vevXtj69atyM/PL/P4X375Zfm1jY0NWrdujUuXLslta9euRUhICIKDg5GcnCz/69q1KwBg586dAICff/4ZWq0W/fv3N5jP09MTDRo0kOcrC0eOHMGtW7fw1ltvGdw/2bNnTwQHB2PTpk2lXvbvv/8OABg/frxBu+5qp27Z27ZtQ2pqKgYOHGiQr1qtRps2bUqU7++//446dergueeek9vs7e0xbNiwUudhytq1a9GxY0fUqFHDIO6IiAjk5+cXuo2lX79+8pVqALhz5w527NiB/v374969e/L7U1JSEBkZibi4uEK3dwwbNszg1oaOHTsiPz8fV65cKVUO+vekZ2RkIDk5Ge3atYMQAjExMaVaJtGjjrcWED2C7t+/Dw8PD/m1lZUVvL29Dea5cuUKvLy84OTkZNAeEhIiT9fXoEGDQut57LHHkJmZidu3b8PT07Oswoe3t3ehcTZr1KiBkydPyq/j4uJw7tw5g2JG361bt+T5hBBG4weMP6Skc/v2bYMi3dHREY6Ojibn1/VZUFBQoWnBwcHYu3cvACA/P9/gXkwAcHNzK/JhpStXrkClUqF+/foG7Z6ennB1dZXXHRcXBwByQV+Qs7OzyXUYW2f9+vULbQtj+VkqLi4OJ0+eLHZ76gQEBBi8vnjxIoQQmDZtGqZNm2ZyGXXr1pVf+/r6GkyvUaMGgIe3tpTG1atXMX36dGzcuLHQMtLS0kq1TKJHHQtZokfM9evXkZaWZlDwaDQaqFTK+YJGrVYbbRd6D6FptVo0btwY8+bNMzqvj4+PPJ8kSdi8ebPR5RZVmIaGhhoU9DNmzMDMmTPNSaFI165dK1SI7dy5U36QqCjFDaSvezBq5cqVRv+4sLKqmh8LWq0WTz75JCZNmmR0+mOPPWbwuuCIHLq83377bURGRhpdRsE/AszZz8yVn5+PJ598Enfu3ME777yD4OBgODg44MaNGxgyZEihocmIyDxV84xFROVm5cqVAGDyw1zHz88Pf/75J+7du2dwVfb8+fPydH26K336Lly4AHt7e5NX0cpTYGAgTpw4gSeeeKLI4i4wMBBCCAQEBBQqhorz/fffGzxxXq9ePQCmi0ldn8XGxha6IhobGytP9/T0xLZt2wymN23atNhla7VaxMXFyVfNgYe/kpWamiovOzAwEADg4eGBiIgI8xI1wc/PD6dPn4YQwiCu2NhYi5ZrTGBgIO7fv1/qmHXbxtra2uK89Zn7C1ynTp3ChQsXsGLFCoOH2ApuZyIqGeVcgiEii+3YsQOzZs1CQECAPMSWKT169EB+fj4+//xzg/b58+dDkiR5dACdAwcO4NixY/Lra9euYcOGDXjqqadMXtkqT/3798eNGzfw9ddfF5qWlZWFjIwMAA9HAlCr1YiKiip0pU0IgZSUFJPraN++PSIiIuR/umJJNwZvwV/fatWqFTw8PPDFF18YDFG1efNmnDt3Dj179gQA2NraGiw3IiJC/lrb1LJ79OgBAIWe3tddkdYtOzIyEs7Ozpg9ezYePHhQKKeCtzQUpUePHkhISMC6devktszMTHz11VdmL8Nc/fv3x4EDB7B169ZC01JTU5GXl1fk+z08PNClSxd8+eWXuHnzZqHpJclbn4ODg1m/sqY7BvT3MSEEPvvss1Ktl4ge4hVZompq8+bNOH/+PPLy8pCUlIQdO3Zg27Zt8PPzw8aNG4sdrL1Xr14IDw/H1KlTcfnyZTRt2hR//PEHNmzYgLFjx8pX9nQaNWqEyMhIg+G3ACAqKqrccizKoEGDsGbNGvznP//Bzp070b59e+Tn5+P8+fNYs2YNtm7dilatWiEwMBAffPABpkyZgsuXL6NPnz5wcnJCfHw8fvnlFwwbNqzEvzAVGBgIV1dXfPHFF3BycoKDgwPatGmDgIAAzJ07F0OHDkXnzp0xcOBAefgtf39/jBs3rthl6x6omzp1KgYMGABra2v06tULTZs2xeDBg/HVV18hNTUVnTt3xuHDh7FixQr06dMH4eHhAB7eA7t06VIMGjQILVq0wIABA1CrVi1cvXoVmzZtQvv27Qv98WLKG2+8gc8//xyvvPIKjh49ijp16mDlypWwt7cvUX+ZY+LEidi4cSOefvppDBkyBC1btkRGRgZOnTqFdevW4fLly/JwZKYsXrwYHTp0QOPGjfHGG2+gXr16SEpKwoEDB3D9+nWcOHGixHG1bNkSS5cuxQcffID69evDw8PD6P3HwcHBCAwMxNtvv40bN27A2dkZP/30U6nvtyWi/1c5gyUQUXnRDR2k+2djYyM8PT3Fk08+KT777DORnp5uMP/gwYOFg4OD0WXdu3dPjBs3Tnh5eQlra2vRoEED8cknnxgMSSTEv8Mlfffdd6JBgwZCo9GI5s2bGww9VFY6d+4sGjZsWKjd2PBOubm5Yu7cuaJhw4ZCo9GIGjVqiJYtW4qoqCiRlpZmMO9PP/0kOnToIBwcHISDg4MIDg4WI0aMELGxsUWuw5QNGzaIxx9/XFhZWRUaimv16tWiefPmQqPRCDc3N/HSSy+J69evm90Hs2bNEnXr1hUqlcpgKK4HDx6IqKgoERAQIKytrYWPj4+YMmWKwXBTOjt37hSRkZHCxcVF2NraisDAQDFkyBCDIdTMceXKFfHMM88Ie3t74e7uLsaMGSO2bNlS5sNvCfFwf5wyZYqoX7++sLGxEe7u7qJdu3bi008/Fbm5uUKIf4ff+uSTT4zG+88//4hXXnlFeHp6Cmtra1G3bl3x9NNPi3Xr1snzmBrCztiQWomJiaJnz57CyclJAJCH4jI279mzZ0VERIRwdHQU7u7u4o033hAnTpwotH9w+C0i80lClOKudSIiPZIkYcSIEWZfySMiIioLvEeWiIiIiBSJ98gSUbkzNi5qQbm5uUWOk6pWqytl9INHUW5uLu7cuVPkPC4uLoWGuKKyl5aWZjAyhjFlOUYzkdKwkCWicmdsXNSCOnfujN27d5uc7ufnh8uXL5dxZGTM/v375YfDTImOjsaQIUMqJqBH2JgxY7BixYoi5+EdgvQo4z2yRFTusrOz5V+tMqVGjRpFPsFtZ2eH9u3bl3VoZMTdu3dx9OjRIudp2LAh6tSpU0ERPbrOnj2LhISEIucpy3FxiZSGhSwRERERKRIf9iIiIiIiRWIhS0RERESKxEKWiIiIiBSJhSwRERERKRILWSIiIiJSJBayRERERKRILGSJiIiISJH+D7yLCKRveTAeAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAHbCAYAAAA9NtfdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQZUlEQVR4nO3deViU9f7/8dcwMOCGKIqI4kYdMdcjbriklIXmOWWZpnVMzW+22WZpZm5kqW0eW7TVyjqV7Z5KD1bmlqKGYq6ZpqZJ4JKCubDN/fvD38xhZG4EhgFmzvNxXV7F5/7cc3/e84bhxc09NxbDMAwBAAAAKCKgshcAAAAAVFWEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAfxPefHFF2WxWLRgwYLKXgoAwAcQlgEfsHLlSlksFk2fPr1Sjt+sWTM1a9bMZWz69OmyWCxauXJlpazpQhaLRX369Cl2zsaNG/Xwww9r6tSpGj16dMUszI2SrLUqKEuPS1vbgQMHZLFYNHLkyFKvz5d563Ogqn1dAv6AsAxUEEcoKPyvevXqioqK0pVXXqmpU6fql19+8cqx+/TpI4vF4pXH9hUnTpzQkCFDNGzYMCUlJVX2crxi9uzZslgsmj17ttvtHTp0kMVi0Z133ul2+8CBA2WxWLR8+fJyXReff/6rqvT2P//5j4YOHarY2FiFhYWpevXqio2N1ejRo/Xzzz9X9vLg4wIrewHA/5qYmBj94x//kCTl5OToyJEj2rhxo2bMmKGZM2dqwoQJevLJJ12+AXXp0kW7du1SvXr1KmXN5R2evGHXrl2qXr266fYtW7bo7rvv1oMPPliBq6pYCQkJks7/JmLixIku244fP66tW7eannW02+1avXq1goOD1aNHD0nS2LFjNXToUDVp0sTrawc8sXTpUq1fv15du3ZV//79FRQUpF27dmnhwoV67733tHTpUl1xxRWVvUz4KMIyUMEuueQSt5dTfP/99xo+fLhmzZolq9WqGTNmOLc5zpJUlpiYmEo7dkld7PlJSEhwhkl/FRcXp1q1aun7779Xfn6+AgP/+xK/atUqGYahG264QZ999pl+//13NWzY0Ln9xx9/1IkTJ9S7d2+FhIRIkurVq1dpP6ABpfHMM8/oxRdfLDK+fPly9e3bV4888oh++OGHSlgZ/AGXYQBVRM+ePZWcnKzg4GA9/fTTOnTokHOb2TXLe/bs0ahRo9S8eXMFBwerbt26at++vR544AEZhiHp/LWRq1atcv6/45/jGtHC14zu2rVL119/vcLDw2WxWHTgwAFJ7q9ZLmzBggVq27atQkJC1KhRIz344IM6deqUy5zirrsu7rrVI0eO6KGHHlLLli1VrVo11a1bV127dtWzzz7rMs/sGtBjx47pgQcecD5HERERGjJkiLZv315k7siRI2WxWLR//3698MILio2NVXBwsJo2baqkpCTZ7XbT58CdN954Q23atFFISIiio6M1YcIEnTt3znT+qVOnNG3aNLVu3VrVqlVTWFiYEhMT9f3335foeIGBgerVq5dOnz5dJBisXLlS1apV0yOPPCJJWrFiRZHtklx+oCju+teS1naxz7/C9u7dq+uvv1516tRRjRo11LdvX/34448lqt0hNzdXc+bMUceOHVWjRg3VqlVLvXr10hdffFFkbnn3e+vWrRo6dKgaNmwom82mpk2b6t5779Xx48dL9Thm/v3vf+vqq69WeHi4QkJC1KxZMw0fPtzt53JhZfnaK4/XFoeSPi8leS0y4/gB70JXXnml6tSpo7179xa7P1AcziwDVUjLli01ZMgQvfvuu1q8eLHuvfde07np6enq0qWLTp8+rQEDBuimm27S6dOntWfPHs2fP1/PPvusAgMDNW3aNL399tv69ddfNW3aNOf+HTp0cHm8vXv3qlu3bmrbtq1Gjhyp48ePy2azXXTNc+bM0fLly3XTTTdpwIAB+vbbbzV37lytX79eq1evVlBQUJmfj927dyshIUG///67evbsqYEDB+r06dPasWOHZs6cqYcffrjY/Y8ePar4+Hj98ssv6tOnj4YOHar9+/frk08+0ZIlS7Rs2TL17NmzyH7jx4/XqlWr9Le//U2JiYlavHixpk+frtzcXD355JMlWvuMGTM0depUNWjQQLfffruCgoL04YcfateuXW7n//HHH7r88su1Y8cO9ejRQ3feeaeys7P173//WwkJCfr44481cODAix43ISFBS5cu1YoVKxQfH+8cX7Fihbp166ZOnTqpTp06WrFihW6++WaX7Y79y7O2kn7+HThwQN26dVPr1q1122236ZdffnHWvmvXLjVo0OCi68rJyVG/fv20cuVKdejQQaNHj1ZeXp6WLFmi6667Ti+++KLGjh1bZL/y6PcXX3yhIUOGKCAgQNddd52io6O1c+dOvfTSS1q2bJk2bNigOnXqlOix3HnooYc0Z84c1a1bVwMHDlRERIQOHTqkb7/9VnFxcWrTpk2ZH/tC5fnaUpbnpayvRe6kpKToxIkTbr/OgRIzAFSI/fv3G5KMxMTEYuctWLDAkGQMHz7cObZixQpDkjFt2jTn2AsvvGBIMubOnVvkMY4fP+7yce/evQ2zL3fHuiQZU6dOdTunadOmRtOmTV3Gpk2bZkgybDab8eOPPzrH7Xa7cfPNNxuSjGeffbbYGi5cw4gRI1zGO3XqZEgyXnvttSL7HDp0yOVjSUbv3r1dxkaNGmVIMh599FGX8SVLlhiSjEsuucQoKChwjo8YMcKQZDRv3txIT093jh89etQICwszatWqZeTk5BRZy4X27NljBAYGGo0aNTIyMzOd41lZWUbLli3drtXxnL3++usu45mZmUZ0dLRRv3594+zZsxc9dmpqqiHJuOqqq1zWb7FYjKSkJMMwDOPaa681YmJinNsLCgqMsLAwo1q1ai71OXq8YsUKj2or6eff7NmzXbZNnjzZkGTMmjXronUbhmFMmjTJkGRMmTLFsNvtzvHs7GyjU6dOhs1mMw4fPuwcL69+Hzt2zAgNDTUaNWpkHDhwwGXbBx98YEgyxo4d6zLu7nky8+WXXxqSjLZt2xrHjh1z2ZaXl2dkZGQ4P3bXs9J+7ZXXa0tpn5eSvBZdzLJly4xp06YZEydONAYNGmQEBwcb9erVM3744YcyPR5gGIbBZRhAFRMVFSXp/OUDJVGtWrUiY3Xr1i31cSMjI/XYY4+Ver9bb71V7dq1c35ssVg0c+ZMWa1Wvf3226V+PIeNGzcqNTVVl19+uW6//fYi2xs3blzs/rm5ufrggw8UHh6uyZMnu2y75pprdNVVV2nv3r1au3ZtkX2nTJnicj1vvXr1dN111+nUqVPavXv3Rdf+/vvvKz8/X+PGjVNERIRzPDQ0tMhapPO9/vDDD3XFFVfo//7v/1y2RUREaPz48Tp69Ki+/fbbix77r3/9q8LCwrR27Vrl5uZKOv9reMMwnJep9O7dW7/88ovzUp8tW7bo5MmT6t69+0XP4JW2tpJq3ry5xo8f7zLmuL1fSa41tdvtevnllxUTE6OkpCSXN8jWqlVLU6dOVW5urj777LMi+3ra73feeUfZ2dmaNWuWmjZt6rJt6NCh6tixoxYtWnTRxzEzf/58SdLzzz+v8PBwl22BgYElOuteFp6+tpT1eSnra5Ekff3110pKStLs2bP16aefKjo6WsnJyerUqVOZHg+QuAwD8Fl///vf9eijj+qee+7R8uXL1a9fP/Xu3VstWrQo0+O1b9++TL/q7NWrV5Gxpk2bKjo6Wjt27FBubm6ZHnfjxo2SpKuvvrrU+0rSTz/9pHPnzikhIcHtXTISEhL0zTffaMuWLUVqiIuLKzLfEc5Pnjx50WM7rrN199y4G/vhhx9UUFCgnJwct9eV7tmzx1nT3/72t2KPHRAQoF69eunLL7/Uxo0b1bNnT61YsUIhISHq2rWrpPNhWTp/6cWtt97q9nrl8qqtpDp06KCAANfzN6V5znfv3q0TJ04oKirK7a0Bjx49Kun8c3ghT/u9fv16SdKGDRvc3v7x3LlzOnbsmI4dO1amN0xu3LhRwcHBzr55W3m9tpT1eSnra5EkPfvss3r22Wf1559/aufOnXr88cfVo0cPvfnmmy6XHQGlQVgGqpj09HRJUv369Yud16xZM61fv17Tp0/X0qVL9dFHH0k6f1eIxx9/XIMHDy7Vcct6dspsvwYNGujAgQM6depUkbNhJZGVlSVJatSoUZnWlZ2dXez6HGcSHfMKCw0NLTLmuLNEQUHBRY/tWHvhM68O7tbzxx9/SJLWrl3r9ky3w+nTpy96bOl86P3yyy+1cuVK9ezZUytXrlS3bt0UHBws6XwwrV27tjMsO65XLsmttUpbW0l5+pw7nsMdO3Zox44dpvPcPYfldex58+YVO+/06dNlCstZWVlq1KhRkR8mvKW8XlvK+ryUx5nymjVrqkuXLlq8eLE6deqkMWPG6Kqrrrro6yrgDpdhAFWM4yxf586dLzq3TZs2+uSTT/THH38oJSVFU6dOVUZGhm666aZiQ5c7Zf3DApmZmabjFotFtWrVkiTnN/r8/Pwicx0BrLCwsDBJ0uHDh8u0LkcAMltfRkaGy7zyVLt2bUnn7+RxIXfrcazhoYcekmEYpv8Kv4mqOI4zxCtWrNCRI0e0c+dOlzuFWK1W5xlnu92uNWvWqGbNmiX6nCttbRXF8RwOGjSo2Ofwrbfe8tqxt23bVuyxL7wUoaTCwsKUkZFR6rtzOJT2a08qn9eWsj4v5flHTgIDA5WQkKDTp08rNTW13B4X/1sIy0AV8vPPP+ujjz5ScHCwrr/++hLvFxQUpG7duikpKUkvvPCCDMPQV1995dxutVollewsWWmtWbOmyNivv/6qQ4cOqXXr1s5fpzre8e4u/KalpRUZ69Kli6Tz1yCWRWxsrEJCQvTDDz/ozJkzRbY7fii58K4M5aF9+/aS3D837sY6d+4si8WilJSUcjl+u3btVLduXaWkpGjZsmWSVOS2er1799avv/6qzz77TFlZWerZs6fLfZnNlLY2ybuffw6tWrVSaGioUlNTlZeX57XjuOO4vKW8+nehLl26KCcnx3mbttIq7ddeYZ68tnj7eSkpx2/rPLkzD/63EZaBKmLt2rVKTExUTk6OJk6ceNHLDzZt2uT2EgLH2b3C9x11vCmn8L2by8s777yjrVu3Oj82DEOTJk1SQUGBy/1WW7ZsqVq1aumLL75w/nrWsd4nnniiyON27txZnTt31urVq/X6668X2X6xM842m03Dhg3TsWPHNGvWLJdtycnJWrZsmS655BLnX6srTzfffLOsVqvmzJnjcgY2Ozvbba2RkZEaMmSI1q1bp2eeecZ5H9vCNmzY4Db0uxMQEKDevXvr7NmzevrppxUSEqJu3bq5zHFc/+q4vrekf7CltLVJ3v38cwgMDNRdd92lX3/9VQ8//LDbwLx9+3a3Z8Q9NWrUKNWqVUuPPfaY20tAzpw547x+tyzuueceSdL999/v8rUjnT9bfLEz+qX92iuv1xZvPy+FmZ01XrZsmT7//HOFhYW53EoRKA2uWQYq2N69e51v4srNzXX+uett27bJarVq8uTJJfp1+7vvvqtXX31Vl19+uWJiYhQaGqqdO3dq6dKlqlu3rkaNGuWce8UVV+iTTz7RoEGD1L9/f4WEhKh9+/b6+9//7nE9iYmJio+P19ChQ1W/fn0tX75cqamp6tatm8t9om02m+69917NnDlTHTt2dN5t4Msvv3TeneFC7733nvr06aMxY8bo3XffVXx8vM6dO6cdO3YoLS3ton/s4amnntKqVav0xBNPaN26deratasOHDigjz/+WNWrV9dbb73lletAL7nkEk2dOlXTpk1Tu3btNGTIEAUGBurTTz9Vu3bt3N5hYf78+dq9e7cmTJjgrDUsLEyHDh1Samqq9uzZo99//73YP+ldWEJCgj7//HNt375dffr0cV6v7NCxY0fVrFnT+QctShqWy1KbNz//CktKStLmzZv1wgsvaMmSJbr88ssVERGhw4cPa9u2bfrxxx+VkpLi9nprT9SvX18ffPCBBg8erPbt26tfv36KjY1VTk6ODhw4oFWrVql79+5KTk4u0+Nfc801evjhh/Xss8/q0ksv1fXXX++sa/ny5Xr44Yf1wAMPmO5f2q+98npt8fbzUljnzp3Vpk0btWvXTo0bN9bp06e1detWrVmzRkFBQXrzzTdVo0YNj4+D/1FevzkdAMMwXO8h6vhXrVo1o2HDhkZCQoIxZcoUY+/evW73dXef1PXr1xt33HGH0aZNG+c9ci+99FJj7Nixxq+//uqyf15enjFhwgSjSZMmRmBgoMt9Vc3ucVxYcfdZXrFihfH6668brVu3NoKDg42GDRsa999/v5GdnV3kcQoKCozp06cb0dHRhs1mM/7yl78Yzz//vLFv3z7TNWRkZBj333+/0aJFC8Nmsxl169Y1unbtasyZM8dlnkzuW3v06FHjvvvuM5o2bWoEBQUZ9erVM2688UZj27ZtReY67ru7f//+Itvc3b/2Yl5//XXjsssuM2w2m9G4cWPj4YcfNs6cOWO61jNnzhhPP/20ERcXZ9SoUcOoVq2a0bx5c2PgwIHGO++8Y+Tl5ZX42Nu2bXN+nk2fPt3tnMTEREOSERoaauTn5xfZXlzNpanNk88/s+fKTH5+vvHqq68aPXr0MEJDQ43g4GCjSZMmRr9+/YyXX37Z+PPPP51zy7vfP/30kzF69GijadOmhs1mM+rUqWO0bdvWuO+++4yNGzd6VJdhGMann35qJCQkGLVr1zaCg4ONZs2aGcOHDze2b99+0XWX5muvvF5bSvu8lOS1yMzMmTONq666ymjUqJFhs9mMkJAQ4y9/+YsxZswYY+fOnaV+PKAwi2G4+X0fAAAAAK5ZBgAAAMwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAT/FESL7Db7UpPT1etWrXK9W/cAwAAoHwYhqFTp04pKiqq2D9QRVj2gvT0dEVHR1f2MgAAAHARhw4dUuPGjU23E5a9oFatWpLOP/mhoaFeP15eXp6+/vprXX311QoKCvL68VC+6J/vo4e+jx76Pnro2yqjf9nZ2YqOjnbmNjOEZS9wXHoRGhpaYWG5evXqCg0N5QXCB9E/30cPfR899H300LdVZv8udsksb/ADAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATPh8WJ43b56aNWumkJAQde3aVRs3bix2/scff6zY2FiFhISobdu2Wrp0qencO++8UxaLRXPnzi3nVQMAAMAX+HRY/vDDDzVu3DhNmzZNmzdvVvv27ZWYmKgjR464nb9u3ToNGzZMo0ePVlpamgYOHKiBAwdq+/btReZ+/vnnWr9+vaKiorxdBgAAAKoonw7Lc+bM0e23365Ro0bpsssu0yuvvKLq1avrzTffdDv/+eefV79+/TR+/Hi1atVKM2bMUMeOHfXSSy+5zDt8+LDuvfdevffeewoKCqqIUgAAAFAFBVb2AsoqNzdXmzZt0qOPPuocCwgIUN++fZWSkuJ2n5SUFI0bN85lLDExUYsXL3Z+bLfbNXz4cI0fP16tW7cu0VpycnKUk5Pj/Dg7O1uSlJ+fr/z8fOfaAgICZLfbZbfbXdYcEBCggoICGYZx0XGr1SqLxeJ8XEkqKCiQJBmG4TLumF94jkNgYKAMw3AZt1gsslqtRdZoNu7Nmopbu7/VVFz/fLWm4sb9sSaHgoICWSwWv6jJH/t0sZoc+1gsFr+pyR/7ZFaTY35BQYGsVqtf1OSPfTKryV3/vF3ThfPN+GxYPnbsmAoKCtSgQQOX8QYNGuinn35yu09GRobb+RkZGc6Pn3rqKQUGBuq+++4r8VpmzZqlpKSkIuNpaWmqUaOGJKl+/fqKiYnR/v37dfToUeecxo0bq3Hjxvr555+VlZXlHG/RooUiIiK0fft2nT171jkeGxursLAwpaWluYQs6XzQ37x5s8saOnXqpNzcXG3dutU5ZrVa1blzZ2VlZbk8V9WqVVP79u117Ngx7du3zzleu3ZttWrVSunp6frtt9+c496sSZLatWsnm82m1NRUv67J0b9z585p586dflGT5H99Kq6mDh06SDr/Ne8Iy75ekz/2qbiajh8/Lum/PfSHmvyxT8XVdOjQIUnnexgREeEXNfljn8xqclxCm5aWpujo6AqpKS0tTSVhMQpHcx+Snp6uRo0aad26dYqPj3eOT5gwQatWrdKGDRuK7GOz2bRw4UINGzbMOTZ//nwlJSUpMzNTmzZt0oABA7R582bntcrNmjXTAw88oAceeMB0Le7OLEdHR+v48eMKDQ2V5N2fCPPz87Vs2TL1799fAQGuV9bwU27Vr6m4/vlqTcWN+2NNhmFo6dKlSkxMVGBgoF/U5I99Kq6mnJwcJScnO3voDzX5Y5+Kqyk3N1fLli1TYmKibDabX9Tkj30yq8ld/7xd04kTJxQeHq6srCxnXnPHZ88s16tXT1arVZmZmS7jmZmZioyMdLtPZGRksfPXrFmjI0eOqEmTJs7tBQUFeuihhzR37lwdOHDA7eMGBwcrODi4yHhgYKDzG6eDo9EXcjSupOOFH9fxCWOxWIocz918B7P5Zmss7bgnNZV13Bdrulj/fLGmi437W015eXnOxy/p13xVr0nyvz5JxdfkOHbh7b5ekz/2yWztjvU4foVf3Hxfqckf+1Sa/lVGTe747Bv8bDab4uLitHz5cueY3W7X8uXLXc40FxYfH+8yX5K++eYb5/zhw4dr69at2rJli/NfVFSUxo8fr2XLlnmvGAAAAFRJPntmWZLGjRunESNGqFOnTurSpYvmzp2r06dPa9SoUZKkW2+9VY0aNdKsWbMkSffff7969+6t5557TgMGDNCiRYuUmpqq1157TZIUHh6u8PBwl2MEBQUpMjJSLVu2rNjiAAAAUOl8OizfdNNNOnr0qKZOnaqMjAx16NBBycnJzjfxHTx40OV0f/fu3fX+++9r8uTJmjRpki699FItXrxYbdq0qawSAAAAUIX5dFiWpLFjx2rs2LFut61cubLI2ODBgzV48OASP77ZdcoAAADwfz57zTIAAADgbYRlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADDh82F53rx5atasmUJCQtS1a1dt3Lix2Pkff/yxYmNjFRISorZt22rp0qXObXl5eXrkkUfUtm1b1ahRQ1FRUbr11luVnp7u7TIAAABQBfl0WP7www81btw4TZs2TZs3b1b79u2VmJioI0eOuJ2/bt06DRs2TKNHj1ZaWpoGDhyogQMHavv27ZKkM2fOaPPmzZoyZYo2b96szz77TLt379a1115bkWUBAACgivDpsDxnzhzdfvvtGjVqlC677DK98sorql69ut588023859//nn169dP48ePV6tWrTRjxgx17NhRL730kiSpdu3a+uabbzRkyBC1bNlS3bp100svvaRNmzbp4MGDFVkaAAAAqoDAyl5AWeXm5mrTpk169NFHnWMBAQHq27evUlJS3O6TkpKicePGuYwlJiZq8eLFpsfJysqSxWJRWFiY6ZycnBzl5OQ4P87OzpYk5efnKz8/37m2gIAA2e122e12lzUHBASooKBAhmFcdNxqtcpisTgfV5IKCgokSYZhuIw75hee4xAYGCjDMFzGLRaLrFZrkTWajXuzpuLW7m81Fdc/X62puHF/rMmhoKBAFovFL2ryxz5drCbHPhaLxW9q8sc+mdXkmF9QUCCr1eoXNfljn8xqctc/b9d04XwzPhuWjx07poKCAjVo0MBlvEGDBvrpp5/c7pORkeF2fkZGhtv5586d0yOPPKJhw4YpNDTUdC2zZs1SUlJSkfG0tDTVqFFDklS/fn3FxMRo//79Onr0qHNO48aN1bhxY/3888/Kyspyjrdo0UIRERHavn27zp496xyPjY1VWFiY0tLSXEKWJNntdm3evNllDZ06dVJubq62bt3qHLNarercubOysrJcnqtq1aqpffv2OnbsmPbt2+ccr127tlq1aqX09HT99ttvznFv1iRJ7dq1k81mU2pqql/X5OjfuXPntHPnTr+oSfK/PhVXU4cOHSSd/5p3hGVfr8kf+1RcTcePH5f03x76Q03+2Kfiajp06JCk8z2MiIjwi5r8sU9mNTkuoU1LS1N0dHSF1JSWlqaSsBiFo7kPSU9PV6NGjbRu3TrFx8c7xydMmKBVq1Zpw4YNRfax2WxauHChhg0b5hybP3++kpKSlJmZ6TI3Ly9PgwYN0m+//aaVK1cWG5bdnVmOjo7W8ePHnft58yfC/Px8LVu2TP3791dAgOuVNfyUW/VrKq5/vlpTceP+WJNhGFq6dKkSExMVGBjoFzX5Y5+KqyknJ0fJycnOHvpDTf7Yp+Jqys3N1bJly5SYmCibzeYXNfljn8xqctc/b9d04sQJhYeHKysrq9ic57NnluvVqyer1Vok5GZmZioyMtLtPpGRkSWan5eXpyFDhujXX3/Vd999V+wTKEnBwcEKDg4uMh4YGOj8xungaPSFHI0r6Xjhx3V8wlgsliLHczffwWy+2RpLO+5JTWUd98WaLtY/X6zpYuP+VlNeXp7z8Uv6NV/Va5L8r09S8TU5jl14u6/X5I99Mlu7Yz2OX+EXN99XavLHPpWmf5VRkzs++wY/m82muLg4LV++3Dlmt9u1fPlylzPNhcXHx7vMl6RvvvnGZb4jKO/Zs0fffvutwsPDvVMAAAAAqjyfPbMsSePGjdOIESPUqVMndenSRXPnztXp06c1atQoSdKtt96qRo0aadasWZKk+++/X71799Zzzz2nAQMGaNGiRUpNTdVrr70m6XxQvvHGG7V582Z99dVXKigocF7PXLduXdlstsopFAAAAJXCp8PyTTfdpKNHj2rq1KnKyMhQhw4dlJyc7HwT38GDB11O93fv3l3vv/++Jk+erEmTJunSSy/V4sWL1aZNG0nS4cOH9cUXX0iS8w07DitWrFCfPn0qpC4AAABUDT4dliVp7NixGjt2rNttK1euLDI2ePBgDR482O38Zs2auVwwDgAAgP9tPnvNMgAAAOBthGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMBHo6QNkZGRowYIF2rx5s7KysmS32122WywWLV++3NPDAAAAABXOo7C8detW9enTR2fPnlXLli21bds2XXbZZTp58qQOHz6smJgYRUdHl9daAQAAgArl0WUYEydOVM2aNbV79259++23MgxDzz//vA4dOqQPP/xQJ06c0OzZs8trrQAAAECF8igsr127VnfccYeaNGmigIDzD+W4DGPw4MG65ZZbNH78eM9XCQAAAFQCj8Ky3W5XgwYNJElhYWGyWq36448/nNvbtm2rTZs2ebZCAAAAoJJ4FJabN2+u/fv3n3+ggAA1b95c3377rXP7unXrFBYW5tECAQAAgMriUVi++uqr9fHHHzs/vuuuu/TGG2+ob9++uvLKK7Vw4ULdfPPNHi8SAAAAqAwe3Q3jscce07Bhw5SXl6egoCA98MADOn36tD799FNZrVZNmTJFkyZNKq+1AgAAABXKo7Bcp04dxcXFOT+2WCyaPHmyJk+e7PHCAAAAgMrGX/ADAAAATJTqzPJtt90mi8Wi1157TVarVbfddttF97FYLFqwYEGZFwgAAABUllKF5e+++04BAQGy2+2yWq367rvvZLFYit3nYtsBAACAqqpUYfnAgQPFfgwAAAD4E65ZBgAAAEx4FJY3b96s+fPnm26fP3++tmzZ4skhAAAAgErjUVh+7LHHXP5i34W+++47biMHAAAAn+VRWN60aZN69eplur1Xr15KTU315BAAAABApfEoLJ86dUqBgebvEQwICFBWVpYnhwAAAAAqjUdh+dJLL9XXX39tuj05OVktWrTw5BAAAABApfEoLI8ePVpLlizRuHHjdPLkSef4yZMn9eCDDyo5OVmjR4/2dI0AAABApSjVfZYvdN9992nLli2aO3euXnjhBUVFRUmS0tPTZbfbNXz4cD344IPlslAAAACgonkUli0Wi9566y3deuut+vTTT7Vv3z5J0nXXXadBgwapT58+5bFGAAAAoFJ4FJYdEhISlJCQUB4PBQAAAFQZ/AU/AAAAwIRHYdkwDL366qvq0qWL6tWrJ6vVWuRfcbeWAwAAAKoyj5LshAkTNGfOHHXo0EH/+Mc/VKdOnfJaFwAAAFDpPArLCxcu1KBBg/TRRx+V13oAAACAKsOjyzDOnj2rvn37ltdaAAAAgCrFo7B85ZVX6ocffiivtQAAAABVikdhef78+Vq/fr1mzpyp48ePl9eaAAAAgCrBo7DcsmVL7du3T1OmTFFERIRq1Kih0NBQl3+1a9cur7UCAAAAFcqjN/gNGjRIFoulvNYCAAAAVCkeheW33367nJYBAAAAVD38BT8AAADAhMdh+eDBg7rzzjvVsmVL1alTR6tXr5YkHTt2TPfdd5/S0tI8XiQAAABQGTy6DGPnzp3q1auX7Ha7unbtqr179yo/P1+SVK9ePX3//fc6ffq0FixYUC6LBQAAACqSR2eWJ0yYoLCwMP3888/617/+JcMwXLYPGDBAa9as8WiBFzNv3jw1a9ZMISEh6tq1qzZu3Fjs/I8//lixsbEKCQlR27ZttXTpUpfthmFo6tSpatiwoapVq6a+fftqz5493iwBAAAAVZRHYXn16tW66667VL9+fbd3xWjSpIkOHz7sySGK9eGHH2rcuHGaNm2aNm/erPbt2ysxMVFHjhxxO3/dunUaNmyYRo8erbS0NA0cOFADBw7U9u3bnXOefvppvfDCC3rllVe0YcMG1ahRQ4mJiTp37pzX6gAAAEDV5FFYttvtql69uun2o0ePKjg42JNDFGvOnDm6/fbbNWrUKF122WV65ZVXVL16db355ptu5z///PPq16+fxo8fr1atWmnGjBnq2LGjXnrpJUnnzyrPnTtXkydP1nXXXad27drpnXfeUXp6uhYvXuy1OgAAAFA1eXTNcseOHbVkyRLdfffdRbbl5+dr0aJF6tatmyeHMJWbm6tNmzbp0UcfdY4FBASob9++SklJcbtPSkqKxo0b5zKWmJjoDML79+9XRkaG+vbt69xeu3Ztde3aVSkpKRo6dKjbx83JyVFOTo7z4+zsbEnnnwPHNdwBAQEKCAiQ3W6X3W53WXNAQIAKCgpcLmMxG7darbJYLM7HlaSCggJJ0pYtW4qc4Xd8fOElMgEBATIMw2XcYrHIYrGUaNyxf0nnl2S88PNy4dodz503ayo8brFYnM+rt2pycMxx17/yrOnCcavV6hwr75rcjTt66M2aCo8XXqu3arpQWlqaAgICvFZTafrnaU3u+lTWz5myjjs+Z7xZ04Vf744eert/FotFVqvV5bW8vGuqrP45+lS4f96qqfB44R46vld6+/vThdu8/f3JarUWyQXe/P7kWLc3a7qwfwUFBbJarR5nI8e44zHdjV8434xHYfnRRx/V3/72N911113OIJmZmalvv/1WM2fO1K5du5xnbcvbsWPHVFBQoAYNGriMN2jQQD/99JPbfTIyMtzOz8jIcG53jJnNcWfWrFlKSkoqMp6WlqYaNWpIkurXr6+YmBjt379fR48edc5p3LixGjdurJ9//llZWVnO8RYtWigiIkLbt2/X2bNnneOxsbEKCwtTWlqas/mOT5irrrpKY8eOdVnDM888o9DQUN1xxx3OsdzcXD3zzDNq0aKFhg0b5hw/duyYXn31VXXo0EEDBgxwju/bt08ffPCBLr/8cvXq1UuSFB4eruXLl2vJkiUaMGCAOnTo4Jy/Zs0arV69WsOGDVOLFi2c40uWLNGWLVt0xx13qF69es7xDz74QPv27dP48eNls9mc46+++qqys7M1fvx4hYeHO/+kurdqks4H1iVLluj+++9XzZo1vVqTQ0BAgOLi4nTDDTdoxIgRXqvpwj4dPXpUr732mldqkor2KTw8XL///rtXayrcp86dOzs/Z7xVk6NPL730kj744AN99dVXzm9A3qipcJ8OHjyod99912s1ueuTzWbTtGnTvFbThX1yfN17syZHn7p06aJJkyY5e+itmgr3KTo6Wl26dPFaTRf2qaCgQLNnz/ZqTYX75OifN2sq3KfevXsrLi5OX331lTZv3lwh359mz57tfJ3xRk0X9unPP/9UzZo1vf491yE8PFwTJ070+vfcAQMGqGPHjoqLi1NaWpqio6M9zkaS1K5dO9lsNqWmpqqwTp06KTc3t8R3bLMYZqdISujdd9/V/fffr6ysLOfZHMMwFBoaqpdfftnlSSxP6enpatSokdatW6f4+Hjn+IQJE7Rq1Spt2LChyD42m00LFy50WdP8+fOVlJSkzMxMrVu3Tj169FB6eroaNmzonDNkyBBZLBZ9+OGHbtfi7sxydHS0jh8/rtDQUEnePbOcn5+vZcuWKSoqqsiZSW/9lMuZZc9rcrDb7fr999/d9o8zy75zZvnw4cNq2LAhZ5bLcbyizyw7Xvs5s+zZeGWeWf7999/VsGFDzix7UFPhuRV9Zvn3339XYmKibDZbhZxZPnHihMLDw5WVleXMa+54dGZZkoYPH64bbrhBX3/9tfbu3Su73a6YmBglJiaqVq1anj68qXr16slqtSozM9NlPDMzU5GRkW73iYyMLHa+47+ZmZkuYTkzM9Plp7gLBQcHu702OzAwUIGBrk+xo9EXcjSupOOFH9fxCdOhQwcFBQWZrhNVU15enn7//Xf658Py8vJ0+PBh/fWvf6WHPiovL0/p6en00Ic5XkvpoW9y9M9xCYbkWTbyZPxC5fIX/GrUqKHrr79e48eP1yOPPKIbb7zRq0FZOn+WOC4uTsuXL3eO2e12LV++3OVMc2Hx8fEu8yXpm2++cc5v3ry5IiMjXeZkZ2drw4YNpo8JAAAA/+XRmeWDBw+WaF6TJk08OYypcePGacSIEerUqZO6dOmiuXPn6vTp0xo1apQk6dZbb1WjRo00a9YsSdL999+v3r1767nnntOAAQO0aNEipaam6rXXXpN0/tcBDzzwgJ544gldeumlat68uaZMmaKoqCgNHDjQKzUAAACg6vIoLDdr1qzINZbuXHitSHm56aabdPToUU2dOlUZGRnq0KGDkpOTnW/QO3jwoMslD927d9f777+vyZMna9KkSbr00ku1ePFitWnTxjlnwoQJOn36tMaMGaOTJ0+qZ8+eSk5OVkhIiFdqAAAAQNXlUVh+8803i4TlgoICHThwQO+8844iIiJ0zz33eLTAixk7dmyRO0A4rFy5ssjY4MGDNXjwYNPHs1gsevzxx/X444+X1xIBAADgozwKyyNHjjTd9sgjj6hr164ut/wAAAAAfEm5vMHPnRo1amjUqFH65z//6a1DAAAAAF7ltbAsnb87RXF/zAMAAACoyjy+z7I72dnZWr16tZ555hn99a9/9cYhAAAAAK/zKCw7/sqRO4ZhqEmTJpo/f74nhwAAAAAqjUdheerUqUXCssViUZ06dRQTE6Orr766xH8dBQAAAKhqPEqy06dPL6dlAAAAAFWPR2/wy8/PV3Z2tun27Oxs5efne3IIAAAAoNJ4FJbvu+8+de/e3XR7jx499NBDD3lyCAAAAKDSeBSWk5OTdeONN5puv/HGG7V06VJPDgEAAABUGo/Ccnp6uho1amS6PSoqSocPH/bkEAAAAECl8Sgsh4eHa/fu3abbd+3apdDQUE8OAQAAAFQaj8Jyv3799OqrryotLa3Its2bN+u1115T//79PTkEAAAAUGk8unXcjBkzlJycrC5duujaa69V69atJUnbt2/Xl19+qYiICM2YMaNcFgoAAABUNI/CclRUlFJTUzVx4kT9+9//1ueffy5JCg0N1S233KKZM2cqKiqqXBYKAAAAVDSP/7xew4YNtXDhQhmGoaNHj0qS6tevb/pnsAEAAABfUW5/i9pisSg4OFg1a9YkKAMAAMAvePQGP0lKTU1Vv379VL16dYWHh2vVqlWSpGPHjum6667TypUrPT0EAAAAUCk8Csvr1q1Tz549tWfPHv3jH/+Q3W53bqtXr56ysrL06quverxIAAAAoDJ4FJYnTZqkVq1aaefOnZo5c2aR7QkJCdqwYYMnhwAAAAAqjUdh+YcfftCoUaMUHBzs9jrlRo0aKSMjw5NDAAAAAJXGo7AcFBTkcunFhQ4fPqyaNWt6cggAAACg0ngUlrt166ZPPvnE7bbTp0/rrbfeUu/evT05BAAAAFBpPArLSUlJSk1N1YABA/Sf//xHkvTjjz/qjTfeUFxcnI4ePaopU6aUy0IBAACAiubRfZa7du2qpUuX6q677tKtt94qSXrooYckSTExMVq6dKnatWvn+SoBAACASlDmsGwYhk6dOqXu3btr9+7d2rJli/bs2SO73a6YmBjFxcXxx0kAAADg08oclnNzc1W3bl3NnDlTEyZMUIcOHdShQ4dyXBoAAABQucp8zXJwcLAiIyMVHBxcnusBAAAAqgyP3uA3cuRIvfPOO8rNzS2v9QAAAABVhkdv8Gvbtq0WL16s1q1ba+TIkWrWrJmqVatWZN4NN9zgyWEAAACASuFRWB42bJjz/81uEWexWFRQUODJYQAAAIBKUeqwPGnSJA0dOlTt2rXTihUrvLEmAAAAoEoodViePXu22rRpo3bt2ql37946fvy4IiIi9M033+iKK67wxhoBAACASuHRG/wcDMMoj4cBAAAAqpRyCcsAAACAPyIsAwAAACbKdDeMAwcOaPPmzZKkrKwsSdKePXsUFhbmdn7Hjh3LtjoAAACgEpUpLE+ZMqXIreLuvvvuIvMMw+DWcQAAAPBZpQ7Lb731ljfWAQAAAFQ5pQ7LI0aM8MY6AAAAgCqHN/gBAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGCCsAwAAACYICwDAAAAJgjLAAAAgAnCMgAAAGDCZ8PyH3/8oVtuuUWhoaEKCwvT6NGj9eeffxa7z7lz53TPPfcoPDxcNWvW1KBBg5SZmenc/uOPP2rYsGGKjo5WtWrV1KpVKz3//PPeLgUAAABVlM+G5VtuuUU7duzQN998o6+++kqrV6/WmDFjit3nwQcf1JdffqmPP/5Yq1atUnp6um644Qbn9k2bNikiIkL/+te/tGPHDj322GN69NFH9dJLL3m7HAAAAFRBgZW9gLLYtWuXkpOT9cMPP6hTp06SpBdffFHXXHONnn32WUVFRRXZJysrSwsWLND777+vK664QpL01ltvqVWrVlq/fr26deum2267zWWfFi1aKCUlRZ999pnGjh3r/cIAAABQpfhkWE5JSVFYWJgzKEtS3759FRAQoA0bNuj6668vss+mTZuUl5envn37OsdiY2PVpEkTpaSkqFu3bm6PlZWVpbp16xa7npycHOXk5Dg/zs7OliTl5+crPz9fkhQQEKCAgADZ7XbZ7XbnXMd4QUGBDMO46LjVapXFYnE+riQVFBRIkgzDcBl3zC88xyEwMFCGYbiMWywWWa3WIms0G/dmTcWt3d9qKq5/vlpTceP+WJNDQUGBLBaLX9Tkj326WE2OfSwWi9/U5I99MqvJMb+goEBWq9UvavLHPpnV5K5/3q7pwvlmfDIsZ2RkKCIiwmUsMDBQdevWVUZGhuk+NptNYWFhLuMNGjQw3WfdunX68MMPtWTJkmLXM2vWLCUlJRUZT0tLU40aNSRJ9evXV0xMjPbv36+jR4865zRu3FiNGzfWzz//rKysLOd4ixYtFBERoe3bt+vs2bPO8djYWIWFhSktLc0lZEmS3W7X5s2bXdbQqVMn5ebmauvWrc4xq9Wqzp07KysrSz/99JNzvFq1amrfvr2OHTumffv2Ocdr166tVq1aKT09Xb/99ptz3Js1SVK7du1ks9mUmprq1zU5+nfu3Dnt3LnTL2qS/K9PxdXUoUMHSee/5h1h2ddr8sc+FVfT8ePHJf23h/5Qkz/2qbiaDh06JOl8DyMiIvyiJn/sk1lNR44ckXS+f9HR0RVSU1pamkrCYhSO5pVs4sSJeuqpp4qds2vXLn322WdauHChdu/e7bItIiJCSUlJuuuuu4rs9/7772vUqFEuZ4AlqUuXLkpISChy3O3btyshIUH333+/Jk+eXOya3J1Zjo6O1vHjxxUaGirJuz8R5ufna9myZerfv78CAlwvQ+en3KpfU3H989Waihv3x5oMw9DSpUuVmJiowMBAv6jJH/tUXE05OTlKTk529tAfavLHPhVXU25urpYtW6bExETZbDa/qMkf+2RWk7v+ebumEydOKDw8XFlZWc685k6VOrP80EMPaeTIkcXOadGihSIjI50/gTjk5+frjz/+UGRkpNv9IiMjlZubq5MnT7qcXc7MzCyyz86dO3XllVdqzJgxFw3KkhQcHKzg4OAi44GBgc5vnA6ORl/I0biSjhd+XMcnjMViKXI8d/MdzOabrbG0457UVNZxX6zpYv3zxZouNu5vNeXl5Tkfv6Rf81W9Jsn/+iQVX5Pj2IW3+3pN/tgns7U71uP4FX5x832lJn/sU2n6Vxk1uZ1XolkVpH79+qpfv/5F58XHx+vkyZPatGmT4uLiJEnfffed7Ha7unbt6nafuLg4BQUFafny5Ro0aJAkaffu3Tp48KDi4+Od83bs2KErrrhCI0aM0JNPPlkOVQEAAMBX+eSt41q1aqV+/frp9ttv18aNG7V27VqNHTtWQ4cOdd4J4/Dhw4qNjdXGjRslnb9eZvTo0Ro3bpxWrFihTZs2adSoUYqPj3e+uc9x6cXVV1+tcePGKSMjQxkZGS7XBgEAAOB/R5U6s1wa7733nsaOHasrr7xSAQEBGjRokF544QXn9ry8PO3evVtnzpxxjv3zn/90zs3JyVFiYqLmz5/v3P7JJ5/o6NGj+te//qV//etfzvGmTZvqwIEDFVIXAAAAqg6fDct169bV+++/b7q9WbNmLhd/S1JISIjmzZunefPmud1n+vTpmj59enkuEwAAAD7MJy/DAAAAACoCYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATBCWAQAAABOEZQAAAMAEYRkAAAAwQVgGAAAATPhsWP7jjz90yy23KDQ0VGFhYRo9erT+/PPPYvc5d+6c7rnnHoWHh6tmzZoaNGiQMjMz3c49fvy4GjduLIvFopMnT3qhAgAAAFR1PhuWb7nlFu3YsUPffPONvvrqK61evVpjxowpdp8HH3xQX375pT7++GOtWrVK6enpuuGGG9zOHT16tNq1a+eNpQMAAMBH+GRY3rVrl5KTk/XGG2+oa9eu6tmzp1588UUtWrRI6enpbvfJysrSggULNGfOHF1xxRWKi4vTW2+9pXXr1mn9+vUuc19++WWdPHlSDz/8cEWUAwAAgCoqsLIXUBYpKSkKCwtTp06dnGN9+/ZVQECANmzYoOuvv77IPps2bVJeXp769u3rHIuNjVWTJk2UkpKibt26SZJ27typxx9/XBs2bNC+fftKtJ6cnBzl5OQ4P87OzpYk5efnKz8/X5IUEBCggIAA2e122e1251zHeEFBgQzDuOi41WqVxWJxPq4kFRQUSJIMw3AZd8wvPMchMDBQhmG4jFssFlmt1iJrNBv3Zk3Frd3faiquf75aU3Hj/liTQ0FBgSwWi1/U5I99ulhNjn0sFovf1OSPfTKryTG/oKBAVqvVL2ryxz6Z1eSuf96u6cL5ZnwyLGdkZCgiIsJlLDAwUHXr1lVGRobpPjabTWFhYS7jDRo0cO6Tk5OjYcOG6ZlnnlGTJk1KHJZnzZqlpKSkIuNpaWmqUaOGJKl+/fqKiYnR/v37dfToUeecxo0bq3Hjxvr555+VlZXlHG/RooUiIiK0fft2nT171jkeGxursLAwpaWluYQsSbLb7dq8ebPLGjp16qTc3Fxt3brVOWa1WtW5c2dlZWXpp59+co5Xq1ZN7du317Fjx1xqr127tlq1aqX09HT99ttvznFv1iRJ7dq1k81mU2pqql/X5OjfuXPntHPnTr+oSfK/PhVXU4cOHSSd/5p3hGVfr8kf+1RcTcePH5f03x76Q03+2Kfiajp06JCk8z2MiIjwi5r8sU9mNR05ckTS+f5FR0dXSE1paWkqCYtROJpXsokTJ+qpp54qds6uXbv02WefaeHChdq9e7fLtoiICCUlJemuu+4qst/777+vUaNGuZwBlqQuXbooISFBTz31lMaNG6f09HQtWrRIkrRy5UolJCToxIkTRUJ2Ye7OLEdHR+v48eMKDQ2V5N2fCPPz87Vs2TL1799fAQGuV9bwU27Vr6m4/vlqTcWN+2NNhmFo6dKlSkxMVGBgoF/U5I99Kq6mnJwcJScnO3voDzX5Y5+Kqyk3N1fLli1TYmKibDabX9Tkj30yq8ld/7xd04kTJxQeHq6srCxnXnOnSp1ZfuihhzRy5Mhi57Ro0UKRkZHOn0Ac8vPz9ccffygyMtLtfpGRkcrNzdXJkyddgm9mZqZzn++++07btm3TJ598Ium/Z/zq1aunxx57zO3ZY0kKDg5WcHBwkfHAwEDnN04HR6Mv5GhcSccLP65jnRaLpcjx3M13MJtvtsbSjntSU1nHfbGmi/XPF2u62Li/1ZSXl+d8/JJ+zVf1miT/65NUfE2OYxfe7us1+WOfzNbuWI/jV/jFzfeVmvyxT6XpX2XU5HZeiWZVkPr166t+/foXnRcfH6+TJ09q06ZNiouLk3Q+6NrtdnXt2tXtPnFxcQoKCtLy5cs1aNAgSdLu3bt18OBBxcfHS5I+/fRTl9P6P/zwg2677TatWbNGMTExnpYHAAAAH1OlwnJJtWrVSv369dPtt9+uV155RXl5eRo7dqyGDh2qqKgoSdLhw4d15ZVX6p133lGXLl1Uu3ZtjR49WuPGjVPdunUVGhqqe++9V/Hx8c43910YiI8dO+Y8XnGXYQAAAMA/+WRYlqT33ntPY8eO1ZVXXqmAgAANGjRIL7zwgnN7Xl6edu/erTNnzjjH/vnPfzrn5uTkKDExUfPnz6+M5QMAAMAH+GxYrlu3rt5//33T7c2aNXO5+FuSQkJCNG/ePM2bN69Ex+jTp0+RxwAAAMD/Dp/8oyQAAABARSAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIywAAAIAJwjIAAABggrAMAAAAmAis7AX4I8MwJEnZ2dkVcry8vDydOXNG2dnZCgoKqpBjovzQP99HD30fPfR99NC3VUb/HDnNkdvMEJa94NSpU5Kk6OjoSl4JAAAAinPq1CnVrl3bdLvFuFicRqnZ7Xalp6erVq1aslgsXj9edna2oqOjdejQIYWGhnr9eChf9M/30UPfRw99Hz30bZXRP8MwdOrUKUVFRSkgwPzKZM4se0FAQIAaN25c4ccNDQ3lBcKH0T/fRw99Hz30ffTQt1V0/4o7o+zAG/wAAAAAE4RlAAAAwARh2Q8EBwdr2rRpCg4OruyloAzon++jh76PHvo+eujbqnL/eIMfAAAAYIIzywAAAIAJwjIAAABggrAMAAAAmCAsAwAAACYIyz5i3rx5atasmUJCQtS1a1dt3Lix2Pkff/yxYmNjFRISorZt22rp0qUVtFK4U5r+vf766+rVq5fq1KmjOnXqqG/fvhftN7yvtF+DDosWLZLFYtHAgQO9u0BcVGl7ePLkSd1zzz1q2LChgoOD9Ze//IXX0kpU2v7NnTtXLVu2VLVq1RQdHa0HH3xQ586dq6DV4kKrV6/W3//+d0VFRclisWjx4sUX3WflypXq2LGjgoODdckll+jtt9/2+jrdMlDlLVq0yLDZbMabb75p7Nixw7j99tuNsLAwIzMz0+38tWvXGlar1Xj66aeNnTt3GpMnTzaCgoKMbdu2VfDKYRil79/NN99szJs3z0hLSzN27dpljBw50qhdu7bx22+/VfDK4VDaHjrs37/faNSokdGrVy/juuuuq5jFwq3S9jAnJ8fo1KmTcc011xjff/+9sX//fmPlypXGli1bKnjlMIzS9++9994zgoODjffee8/Yv3+/sWzZMqNhw4bGgw8+WMErh8PSpUuNxx57zPjss88MScbnn39e7Px9+/YZ1atXN8aNG2fs3LnTePHFFw2r1WokJydXzIILISz7gC5duhj33HOP8+OCggIjKirKmDVrltv5Q4YMMQYMGOAy1rVrV+OOO+7w6jrhXmn7d6H8/HyjVq1axsKFC721RFxEWXqYn59vdO/e3XjjjTeMESNGEJYrWWl7+PLLLxstWrQwcnNzK2qJKEZp+3fPPfcYV1xxhcvYuHHjjB49enh1nSiZkoTlCRMmGK1bt3YZu+mmm4zExEQvrsw9LsOo4nJzc7Vp0yb17dvXORYQEKC+ffsqJSXF7T4pKSku8yUpMTHRdD68pyz9u9CZM2eUl5enunXremuZKEZZe/j4448rIiJCo0eProhlohhl6eEXX3yh+Ph43XPPPWrQoIHatGmjmTNnqqCgoKKWjf+vLP3r3r27Nm3a5LxUY9++fVq6dKmuueaaClkzPFeVskxghR8RpXLs2DEVFBSoQYMGLuMNGjTQTz/95HafjIwMt/MzMjK8tk64V5b+XeiRRx5RVFRUkRcNVIyy9PD777/XggULtGXLlgpYIS6mLD3ct2+fvvvuO91yyy1aunSp9u7dq7vvvlt5eXmaNm1aRSwb/19Z+nfzzTfr2LFj6tmzpwzDUH5+vu68805NmjSpIpaMcmCWZbKzs3X27FlVq1atwtbCmWWgCps9e7YWLVqkzz//XCEhIZW9HJTAqVOnNHz4cL3++uuqV69eZS8HZWS32xUREaHXXntNcXFxuummm/TYY4/plVdeqeyloQRWrlypmTNnav78+dq8ebM+++wzLVmyRDNmzKjspcEHcWa5iqtXr56sVqsyMzNdxjMzMxUZGel2n8jIyFLNh/eUpX8Ozz77rGbPnq1vv/1W7dq18+YyUYzS9vCXX37RgQMH9Pe//905ZrfbJUmBgYHavXu3YmJivLtouCjL12HDhg0VFBQkq9XqHGvVqpUyMjKUm5srm83m1TXjv8rSvylTpmj48OH6v//7P0lS27Ztdfr0aY0ZM0aPPfaYAgI4V1jVmWWZ0NDQCj2rLHFmucqz2WyKi4vT8uXLnWN2u13Lly9XfHy8233i4+Nd5kvSN998Yzof3lOW/knS008/rRkzZig5OVmdOnWqiKXCRGl7GBsbq23btmnLli3Of9dee60SEhK0ZcsWRUdHV+TyobJ9Hfbo0UN79+51/qAjST///LMaNmxIUK5gZenfmTNnigRixw8+hmF4b7EoN1Uqy1T4WwpRaosWLTKCg4ONt99+29i5c6cxZswYIywszMjIyDAMwzCGDx9uTJw40Tl/7dq1RmBgoPHss88au3btMqZNm8at4ypRafs3e/Zsw2azGZ988onx+++/O/+dOnWqskr4n1faHl6Iu2FUvtL28ODBg0atWrWMsWPHGrt37za++uorIyIiwnjiiScqq4T/aaXt37Rp04xatWoZH3zwgbFv3z7j66+/NmJiYowhQ4ZUVgn/806dOmWkpaUZaWlphiRjzpw5RlpamvHrr78ahmEYEydONIYPH+6c77h13Pjx441du3YZ8+bN49ZxKN6LL75oNGnSxLDZbEaXLl2M9evXO7f17t3bGDFihMv8jz76yPjLX/5i2Gw2o3Xr1saSJUsqeMUorDT9a9q0qSGpyL9p06ZV/MLhVNqvwcIIy1VDaXu4bt06o2vXrkZwcLDRokUL48knnzTy8/MreNVwKE3/8vLyjOnTpxsxMTFGSEiIER0dbdx9993GiRMnKn7hMAzDMFasWOH2e5ujbyNGjDB69+5dZJ8OHToYNpvNaNGihfHWW29V+LoNwzAshsHvIwAAAAB3uGYZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZAAAAMEFYBgAAAEwQlgEAAAAThGUAAADABGEZACBJWrlypSwWi1auXHnRuX369FGfPn1K9Lh9+vRRmzZtPFscAFQSwjIA+ImPPvpIFotFn3/+eZFt7du3l8Vi0YoVK4psa9Kkibp37+7RsdPT0zV9+nRt2bLFo8cBgKqGsAwAfqJnz56SpO+//95lPDs7W9u3b1dgYKDWrl3rsu3QoUM6dOiQevbsqcsvv1xnz57V5ZdfXupjp6enKykpibAMwO8EVvYCAADlIyoqSs2bNy8SllNSUmQYhgYPHlxkm+Pjnj17KiAgQCEhIRW2XgDwBZxZBgA/0rNnT6Wlpens2bPOsbVr16p169bq37+/1q9fL7vd7rLNYrGoR48eptcsv/baa4qJiVG1atXUpUsXrVmzxmX7ypUr1blzZ0nSqFGjZLFYZLFY9Pbbb7vM27lzpxISElS9enU1atRITz/9dPkWDwBeQFgGAD/Ss2dP5eXlacOGDc6xtWvXqnv37urevbuysrK0fft2l22xsbEKDw93+3gLFizQHXfcocjISD399NPq0aOHrr32Wh06dMg5p1WrVnr88cclSWPGjNG7776rd9991+VyjhMnTqhfv35q3769nnvuOcXGxuqRRx7Rf/7zn/J+CgCgXHEZBgD4kcLXLffp00f5+fnasGGDRowYoZiYGDVo0EDff/+92rVrp1OnTmnbtm267bbb3D5WXl6eJk2apA4dOmjFihWy2WySpMsuu0xjxoxRdHS0JKlBgwbq37+/pk6dqvj4eP3jH/8o8ljp6el65513NHz4cEnS6NGj1bRpUy1YsED9+/f3xlMBAOWCM8sA4EdatWql8PBw57XIP/74o06fPu2820X37t2db/JLSUlRQUGBM2BfKDU1VUeOHNGdd97pDMqSNHLkSNWuXbtU66pZs6ZLiLbZbOrSpYv27dtXqscBgIpGWAYAP2KxWNS9e3fntclr165VRESELrnkEkmuYdnxX7Ow/Ouvv0qSLr30UpfxoKAgtWjRolTraty4sSwWi8tYnTp1dOLEiVI9DgBUNMIyAPiZnj17KisrS9u2bXNer+zQvXt3/frrrzp8+LC+//57RUVFlTr4loXVanU7bhiG148NAJ4gLAOAnyl83fLatWvVo0cP57a4uDgFBwdr5cqV2rBhg8u2CzVt2lSStGfPHpfxvLw87d+/32XswrPGAOAvCMsA4Gc6deqkkJAQvffeezp8+LDLmeXg4GB17NhR8+bN0+nTp00vwXA8Tv369fXKK68oNzfXOf7222/r5MmTLnNr1KghSUXGAcDXcTcMAPAzNptNnTt31po1axQcHKy4uDiX7d27d9dzzz0nyfx6Zen8tclPPPGE7rjjDl1xxRW66aabtH//fr311ltFLt2IiYlRWFiYXnnlFdWqVUs1atRQ165d1bx58/IvEAAqEGeWAcAPOUKw47KLwhyXXtSqVUvt27cv9nHGjBmj+fPnKz09XePHj9eaNWv0xRdfOG8b5xAUFKSFCxfKarXqzjvv1LBhw7Rq1apyrAgAKofF4N0VAAAAgFucWQYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADBBWAYAAABMEJYBAAAAE4RlAAAAwARhGQAAADDx/wCEE3i8rMiOnAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHcCAYAAAAqb0k3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeuUlEQVR4nO3daXgUZfb38V91hyzExEBCIGEnsskSZFcgLKKAiLjivjDjDiqiOIiyjQo6OvxRH3FcGNAZBVHUUUHQQRAVVAIJiMMqAWQJkAAJBEhI+n5exG7TSXcWslHx+7mucJHT1XWfu05190l1dbVljDECAAAAbMZR3QkAAAAAZ4JGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhZAES+//LIsy9Ls2bOrOxUAAPyikUWNsWLFClmWpSlTplTL+M2aNVOzZs28YlOmTJFlWVqxYkW15FSYZVnq169fscv8+OOPevTRRzVp0iT9+c9/rprEfChNrn8kdtseO3fulGVZuuOOO6o7FduozG12xx13yLIs7dy5s8LXDVQnGlmcVdxP5AV/ateurdjYWF188cWaNGmSfvnll0oZu1+/frIsq1LWbRdHjhzRiBEjdOONN2rq1KnVnQ6qmPsPr4I/oaGh6tixo6ZMmaKsrKzqThE24esP++rwzjvv6KqrrlJcXJzCwsJ0zjnnqF27dnr44Ye1d+/e6k4PFSCguhMAfImLi9Mtt9wiScrOztbBgwf1448/6qmnntK0adP02GOP6ZlnnvFqPLt3765NmzYpKiqqWnJetmxZtYxbFps2bVLt2rX93p6cnKz7779fDz/8cBVmhbPNNddco/bt20uS9u/fr08++URTp07Vp59+qtWrVyswMLDEdTRs2FCbNm3SueeeW9npAn7Nnz9f27ZtU8+ePRUTEyNjjJKTk/Xiiy9q7ty5+vbbb9WuXbvqThPlQCOLs9J5553n8xSBb7/9VrfeequmT58up9Opp556ynNb7dq11aZNmyrM0ltcXFy1jV1aJW2f/v37q3///lWUDc5W1157rW644QbP7y+88IK6d++udevW6d133y3VW9+1atWq1scjIEnvv/++goODi8Rnz56tO++8U1OmTNH7779fDZmhonBqAWyld+/eWrJkiYKCgvS3v/1Nv/76q+c2f+fIbtu2TSNHjlTz5s0VFBSkunXrKj4+XmPGjJExRlL++Ydff/215//uH/cLdsFz1zZt2qSrrrpKkZGRXueclfRW2uzZs9WhQwcFBwerYcOGevjhh3Xs2DGvZYo7z7e48+cOHjyoRx55RK1bt1ZISIjq1q2rHj166IUXXvBazt95lmlpaRozZoxnG0VHR2vEiBHauHFjkWXd59qlpKTopZdeUps2bRQUFKSmTZtq6tSpcrlcfreBL2+++abat2+v4OBgNW7cWI899phOnTrld/ljx45p8uTJateunUJCQhQREaFBgwbp22+/LfWYBc9dnjt3rjp37qzatWt7bZuyjrNhwwZddtllCgsL07nnnqvLLrtMGzdu9HluYnHnTs+dO1eWZWnu3LklzmPr1q167LHH1LlzZ0VGRio4OFitWrXS+PHjdfz48SLLu0+fOXXqlJ588knFxcWpVq1aJZ5XHhYW5tnv1qxZUyTPTz/9VL169VJYWJjnMVDc/nrs2DFNnTpVHTt2VO3atXXuuefqggsu0MSJE3X69GmvZVNSUnTnnXeqSZMmCgoKUkxMjO644w7t2rWrxO1TeMzS1tO9nU6fPq0pU6aoWbNmCgoKUqtWrTRr1qwyjStJK1eu1LBhwxQVFaWgoCC1bNlSTz75pE6cOFHmdRVmjNGcOXPUp08fRUREqHbt2mrZsqXuuece7d69u9j7Frev+XsuWrduna699lpPPerVq6du3brpmWeekfR73Xft2qVdu3Z5PZ8WXldpt0vBXFatWqVLL71UERERpToVzFcTK0nXXXedJGn79u0lrgNnN47IwnZat26tESNG6F//+pc+/vhjPfDAA36X3bdvn7p3766srCwNHTpU119/vbKysrRt2zbNmjVLL7zwggICAjR58mTNnTtXu3bt0uTJkz3379Spk9f6tm/frp49e6pDhw664447lJ6eXqq3WWfMmKFly5bp+uuv19ChQ/Xf//5XM2fO1Pfff6+VK1eqVq1aZ7w9tmzZov79+2v//v3q3bu3rrzySmVlZennn3/WtGnT9OijjxZ7/0OHDunCCy/UL7/8on79+umGG25QSkqKPvjgAy1atEhLly5V7969i9xv3Lhx+vrrr3X55Zdr0KBB+vjjjzVlyhTl5OR4XtRK8tRTT2nSpEmqX7++7rrrLtWqVUvvvfeeNm3a5HP5w4cPKyEhQT///LN69eqle++9V5mZmfrPf/6j/v376/3339eVV15ZqrEl6fnnn9fy5cs1fPhwXXrppXI6nWc0zvr169WnTx9lZWXp6quvVsuWLZWYmKjevXsrPj6+1PmU1YcffqjZs2erf//+6tevn1wul77//ns999xz+vrrr/3uW9dcc43Wr1+vwYMHKyIiQs2bNy/1mIWbh/fff19ffPGFLr/8ct1///3KzMws9v4HDx5U3759tXnzZnXq1En33XefXC6XNm/erOeee06PPPKIIiIiJEk//PCDBg0apKysLF1++eVq2bKldu7cqXfeeUeff/65Vq9erRYtWpSY85nuNzfeeKN+/PFHDRkyRE6nUwsWLNCoUaNUq1Yt3XXXXaXaXq+++qpGjRqliIgIDRs2TNHR0UpMTNQzzzyj5cuXa/ny5aV6DvHF5XLp+uuv1wcffKCGDRvqxhtvVHh4uHbu3KkFCxZoyJAhatKkyRmt25fk5GRddNFFcjqdGj58uJo2baqjR4/qf//7n15//XU98cQTioiI0OTJkzVz5kxJ0pgxYzz3L/iH4plsl1WrVmnatGnq37+/7r777hIb9eIsWrRIkjyn0MDGDHAWSUlJMZLMoEGDil1u9uzZRpK59dZbPbHly5cbSWby5Mme2EsvvWQkmZkzZxZZR3p6utfvffv2Nf4eEu68JJlJkyb5XKZp06amadOmXrHJkycbSSYwMNCsX7/eE3e5XOamm24ykswLL7xQ7BwK53D77bd7xbt27Wokmddff73IfX799Vev3yWZvn37esVGjhxpJJnHH3/cK75o0SIjyZx33nkmLy/PE7/99tuNJNO8eXOzb98+T/zQoUMmIiLChIWFmezs7CK5FLZt2zYTEBBgGjZsaA4cOOCJZ2RkmNatW/vM1b3N3njjDa/4gQMHTOPGjU29evXMyZMnSxzbXZfQ0FCzYcOGIreXdZzevXsbSeadd97xWn7ixIme/SYlJaXI+MuXLy8y9pw5c4wkM2fOHK+4r+2xZ88en9t66tSpRpL597//7RV37+OdOnUqsv8XzGvevHle8WPHjpnzzz/fSDJvvfWWV54Oh8N8+eWXRdblb3+95pprjCQzYcKEIvdJTU01p0+fNsYYk5OTY5o1a2bCwsLMunXrvJb75ptvjNPpNJdffnmRdfhS1nq6t1OPHj1MRkaGJ75582YTEBBgWrduXapxf/75ZxMQEGDi4+NNWlqa123Tp08v8vj3t838efnll40kc/HFF5sTJ0543XbixAmvGrsftwX3Q3/7mjG+n4vGjh1rJJmPP/64yPKF5+fr+dCtrNvFnYsk889//tPnOkvy3nvvmcmTJ5tx48aZyy67zDidTtO8eXOzY8eOM1ofzh6cWgBbio2NlZT/lnhphISEFInVrVu3zOM2aNBATzzxRJnvd9ttt6ljx46e3y3L0rRp0+R0Okv1FrI/P/74oxITE5WQkODzCFGjRo2KvX9OTo7mzZunyMhIPfnkk163XXbZZbrkkku0fft2fffdd0XuO3HiRMXExHh+j4qK0vDhw3Xs2DFt2bKlxNzfffdd5ebmauzYsYqOjvbEw8PDi+Qi5df6vffe04ABA3TnnXd63RYdHa1x48bp0KFD+u9//1vi2G533323OnToUK5xdu3apW+//Vbx8fG66aabvJb/y1/+ojp16pQ6n7Jq2LChz6N5o0ePliS/22Lq1KnF7v8ffPCBpkyZoilTpui+++5T69at9b///U9du3b1OndWkoYPH66BAweWKt/U1FR9+OGHiouL83k6Q/369RUQkP9G4WeffaadO3dq3LhxuuCCC7yW6927t4YPH67FixeXeAS4PPvN9OnTFR4e7vm9devW6tWrl7Zs2VLktCBfXnvtNeXm5urll19WZGSk122PPfaY6tWrp3nz5pW4Hn9mzZolp9OpV199tchznPsUo8rg6/m08PyKc6bbpXPnzho5cmTZE5a0YMECTZ06Vc8//7wWL16sCy64QF9++WWZ3o3A2YlTC1CjDRs2TI8//rhGjRqlZcuWafDgwerbt2+p3o70JT4+/ozeBuzTp0+RWNOmTdW4cWP9/PPPysnJOaP1/vjjj5KkSy+9tMz3laTNmzfr1KlT6t+/v8+rGfTv319ffvmlkpOTi8yhS5cuRZZ3N85Hjx4tcez169dL8r1tfMXWrFmjvLw8ZWdn+2yCtm3b5pnT5ZdfXuL4Uv6VLso7jnsevXr1KrJsaGioOnXqpOXLl5cqn7Iyv50fOXfuXG3cuFEZGRle5yjv27fP5/18zbughQsXauHChZLyP0QZFxenu+++W48++miR/bSkdRWUmJgoY4z69+9f4uk033//vaT8U2d81SE1NVUul0tbt25V165d/a6nPPtNSft4WFhYqeawdOlSn1c1qVWrljZv3lzsOvw5fvy4Nm3apPPOO08tW7Y8o3WU1YgRIzRz5kxdddVVuv7663XJJZcoISFBDRs2LNN6znS7dOvW7cwSV/4fZ1J+3ZKSkvTEE0+oS5cu+vDDDzVgwIAzXi+qH40sbMn9Al2vXr1il2vWrJm+//57TZkyRYsXL9aCBQsk5X96/69//avnhP/Sql+//hnl6+9+9evX186dO3Xs2LEyHdFwy8jIkKQyv5C4uY9m+cvPfcTV11Gvgkeq3NxH0/Ly8koc2517waOxbr7yOXz4sCTpu+++83mE2K0s1zqtiHHc28bXPPyNUVEefPBB/b//9//UuHFjXXHFFYqJiVFQUJCk/KOu2dnZZ5TTvHnzihx59acs8yvL/uquwzvvvFPsciXVuzz7TXn3cffYpT1nvCzK+9g/Ez169NCKFSs0bdo0vfvuu5ozZ46k/AbzueeeK/UVT850u1TEYykiIkL9+/fXkiVL1Lp1a912221KSUkp1+cUUL1oZGFL7k97l+Yv9Pbt2+uDDz7Q6dOntXbtWn3++ed66aWXdP311ys2NtbnkTR/zvQLEw4cOOA3blmW58iOw5F/tk9ubm6RZd0vXAW5PxRzphf2dr9Q+8svNTXVa7mK5L6+6MGDB9W0aVOv23zl487hkUceKXI1hjPlq55lHce9/MGDB33e7msuZa2zLwcPHtQrr7yijh07avXq1V5H1FNTU4v9QouK/OKPsqyrLPure7t++umnpT7CXtx6KnK/KevYmZmZJR69LSv346c8F/U/k/2wT58++vzzz3Xy5En98MMP+vTTTzVr1iwNHTpUGzduLNW7XWe6XSpyvw0PD1fPnj318ccfa/v27Wrbtm2FrRtVi3NkYTtbt27VggULFBQUpKuuuqrU96tVq5Z69uypqVOn6qWXXpIxRp999pnndvcn1ktzpKWsvvnmmyKxXbt26ddff1W7du08b9e6z6f09eKUlJRUJOZ+W/eLL744o7zatGmj4OBgrVmzxuelgNx/MBS+ekNFcH+a39e28RXr1q2bLMvS6tWrKzyX8ozjnseqVauK3HbixAnPqQcFlbXOvuzYsUPGGA0cOLDIaSG+tt/ZoGvXrnI4HFq+fHmRy2wV1qNHD0kqd72rar/xxT0H91vpFemcc87R+eefr5SUFM/pEWVVnv0wJCRE/fr109///ndNmDBBJ0+e1Jdffum53el0+n0urcztUhbud/Y4GmtvNLKwle+++06DBg1Sdna2xo8fX+LbamvXrvX5trj7KFnBawy6PxhR8Nq0FeXtt9/Whg0bPL8bYzRhwgTl5eV5XWezdevWCgsL0yeffOJ5+82d79NPP11kvd26dVO3bt20cuVKvfHGG0VuL+loTWBgoG688UalpaVp+vTpXrctWbJES5cu1XnnnVemo9alddNNN8npdGrGjBleRzMzMzN9zrVBgwYaMWKEVq1apeeff95zDeCCfvjhh3Jfm7Os4zRt2lS9evVScnKy3nvvPa/lnn/+ea86urnfSXj77be9zmldvXp1iW+lu7mPYq9atcprHXv27NHjjz9eqnVUtfr16+uaa67RL7/84vOI8cGDBz1HB4cPH64mTZpoxowZWrlyZZFlT58+XaprB1fVfuPL/fffr4CAAD3wwAM+LxXlPl/zTI0aNUp5eXm6//77dfLkSa/bTp065XPfK6hLly6yLEvz58/3unbztm3b9OKLLxZZfvXq1T6v8ezv+TQtLc3n8pW9XdyK++DpP//5T/34449q2bKlzjvvvHKPherDqQU4K23fvt3zwYycnBzPV9T+9NNPcjqdevLJJ72u9+rPv/71L7322mtKSEhQXFycwsPD9b///U+LFy9W3bp1vT4BO2DAAH3wwQe65pprNGTIEAUHBys+Pl7Dhg0r93wGDRqkCy+8UDfccIPq1aunZcuWKTExUT179vS6Dm5gYKAeeOABTZs2TZ07d/ZcBeDTTz9V37599csvvxRZ9zvvvKN+/frp7rvv1r/+9S9deOGFOnXqlH7++WclJSUpPT292Nzc1xx9+umntWrVKvXo0UM7d+7U+++/r9q1a2vOnDmetyAr0nnnnadJkyZp8uTJ6tixo0aMGKGAgAAtXLhQHTt29PkCNGvWLG3ZskWPPfaYZ64RERH69ddflZiYqG3btmn//v3Ffg1vaZR1nJdfflkJCQm6+eabtXDhQp133nlat26dvv/+eyUkJGjlypVe27Bnz57q1auXvvrqK1144YVKSEjQrl279J///EfDhg3TRx99VGKOMTExuuaaa7Rw4UJ17dpVF198sQ4cOKDPPvtMF198sc995Wwwa9Ysbdy4Uc8884wWL16sAQMGyBijrVu36osvvtCBAwcUERGhoKAgffDBBxoyZIj69u2rAQMGqEOHDp6L7X/zzTeKjIws1Yelqmq/Kax9+/aaNWuW58oPl112meLi4nTs2DHt2LFDX3/9te644w794x//OKP133ffffr666+1YMECtWzZUldccYXCw8O1e/duLV26VLNnzy72usqxsbG68cYb9e6776pLly4aPHiwDh48qI8++kiDBw/2fODP7bnnntPy5cuVkJCg5s2bKzg4WOvWrdOyZcvUokULr3fIBgwYoMTERA0ZMkR9+vRRYGCgEhISlJCQUOnbxS09PV1t27ZV165d1aZNGzVs2FBHjhzRmjVrtG7dOoWHh+utt94q1xg4C1Tbhb8AHwper9X9ExISYmJiYkz//v3NxIkTzfbt233e19d1D7///ntzzz33mPbt25uIiAgTEhJiWrZsaUaPHm127drldf/Tp0+bxx57zDRp0sQEBAR4Xc+xNNd3LO46ssuXLzdvvPGGadeunQkKCjIxMTHmoYceMpmZmUXWk5eXZ6ZMmWIaN25sAgMDTatWrcyLL75oduzY4TeH1NRU89BDD5kWLVqYwMBAU7duXdOjRw8zY8YMr+Xk41qkxuRfA/bBBx80TZs2NbVq1TJRUVHm2muvNT/99FORZX1dj9LXfEvrjTfeMOeff74JDAw0jRo1Mo8++qg5ceKE31xPnDhh/va3v5kuXbqY0NBQExISYpo3b26uvPJK8/bbb3uuQ1qc0uRZ1nGSkpLMoEGDzDnnnGPCwsLMkCFDzE8//WQuv/xyI8kcOXLEa/m0tDRz2223mbp165qQkBDTs2dPs3Tp0jJdR/bYsWPmkUceMc2aNTNBQUGmZcuW5qmnnjI5OTk+ly/uWskFt0vh68j6Utw1SI0p/jGTkZFhJk6caNq0aWOCgoLMueeeazp16mQmTZpkcnJyvJbds2ePeeihh0zLli1NUFCQCQ8PN23btjV33nmnWbZsWYl5upWlnsVtp+L2f39+/PFHc8MNN5jY2FjP46tz585m/PjxZtOmTZ7lynodWWPyr0n95ptvmp49e5rQ0FBTu3Zt07JlS3Pvvfea3bt3l5j3iRMnzIMPPmjq169vgoKCTMeOHc0777zj8/l0yZIl5rbbbjOtW7c2YWFh5pxzzjHnn3++mTBhgjl06JDXeo8dO2buuusuExMTY5xOp8/rY5d2uxR3fe3iHD9+3EyaNMkkJCSYBg0amFq1apnQ0FDTrl078/DDDxe5zjbsyTLGx/ssAIByy8vLU1xcnE6ePOn3A3UAgDPHObIAUE65ubk+v5zj2Wef1a5du8r0tbkAgNLjiCwAlNPRo0dVv359XXLJJWrVqpVOnz6tH374QWvWrFFMTIzWrl3r9S1oAICKQSMLAOWUk5OjMWPG6KuvvtK+fft06tQpxcTEaMiQIZo4cWKVXrQeAP5IaGQBAABgS5wjCwAAAFuikQUAAIAt/eG+EMHlcmnfvn0KCwur0O9tBgAAQMUwxujYsWOKjY0t9kt5/nCN7L59+9S4cePqTgMAAAAl+PXXX9WoUSO/t//hGtmwsDBJ+RsmPDy8mrOxv9OnT+uLL77QpZdeqlq1alV3OjgD1ND+qKH9UUN7o34VLzMzU40bN/b0bf784RpZ9+kE4eHhNLIV4PTp06pdu7bCw8N58NoUNbQ/amh/1NDeqF/lKek0UD7sBQAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2FJAdScAAKgY69evl8NRNccnoqKi1KRJkyoZCwD8oZEFAJvbs2ePJCkhIUEnT56skjFDatfW5k2baGYBVCsaWQCwufT0dEnSVRP/T3Wbnlfp4x1M2aYFT96ntLQ0GlkA1YpGFgBqiHpN49SgbXx1pwEAVYYPewEAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsKWzqpFduXKlhg0bptjYWFmWpY8//tjrdmOMJk2apJiYGIWEhGjgwIHatm1b9SQLAACAanVWNbJZWVmKj4/XK6+84vP2v/3tb3rppZf0j3/8Qz/88INCQ0M1aNAgnTp1qoozBQAAQHULqO4EChoyZIiGDBni8zZjjGbOnKknn3xSw4cPlyS9/fbbql+/vj7++GPdcMMNPu+XnZ2t7Oxsz++ZmZmSpNzcXOXm5kqSHA6HHA6HXC6XXC6XZ1l3PC8vT8aYEuNOp1OWZXnWWzAuSXl5eaWKBwQEyBjjFbcsS06ns0iO/uJVPae8vDxPLjVlTiXFa8qcCtawVq1aNWJOBdWUOhU3p4I5yRhZpsDvliVjOSTjklUgF2NZUjFxy7gkr7hDsixZxiWHjAIDA+VyuWSMoU4VMKeCtSw4rp3nVBPr5C/u/r+/+tlxTtVdp8LL+3NWNbLFSUlJUWpqqgYOHOiJnXvuuerRo4dWr17tt5GdPn26pk6dWiSelJSk0NBQSVK9evUUFxenlJQUHTp0yLNMo0aN1KhRI23dulUZGRmeeIsWLRQdHa2NGzfq5MmTnnibNm0UERGhpKQkr8J07NhRgYGBSkxM9Mqha9euysnJ0YYNGzwxp9Opbt26KSMjQ5s3b/bEQ0JCFB8fr7S0NO3YscNrG7Rt21b79u3Tnj17PPGqmlNSUpJne1qWVSPmVBPrVNyc3E8469evV48ePWrEnNxqUp2Km1PBsUNPHVWdY/s9v58KDFVaRFOFn0hXeNbvuWeFROhIWKzqHE9V6MmjnnhmaD1lhtZTZMavCs7J8sSPhMUoK6SO6h9JUWTQKY0bN07p6enKyMigThUwp7CwMEnS/v37lZqaWiPmVBPr5G9OkZGRkqTdu3crPT29Rsypuuvk7i9KYpmCbfNZxLIsffTRR7ryyislSatWrVKvXr20b98+xcTEeJYbMWKELMvSe++953M9vo7INm7cWOnp6QoPD5dU/X912PkvqezsbC1dulSDBg1SQEBAjZhTTaxTcXPKzc311DA4OLhGzKmgmlKn4ua0bt067d+/X8uzQtWgTXylH5Hdt3mD/jFyqL777jt16dKFOlXAnNyPw8GDB3vWZ/c51cQ6FXdEfcmSJX7rZ8c5VXedjhw5osjISGVkZHj6NV9sc0T2TAUFBSkoKKhIPCAgQAEB3tN3F6GwgjtlaeKF13smccuyfMb95VjWeEXNyb280+n0WsbOc6qJdSou7n7Cca+zJsypsJo+J6+cLEvG8jGu5ZCxfKzcTzy/cfUdd8lSTk6OHA6HLMsqc+7+4jW9TsXl6H4cOhyOMm2Ds3lOZxq345xKqp8d51RSvDrm5MtZ9WGv4jRo0ECSdODAAa/4gQMHPLcBAADgj8M2jWzz5s3VoEEDLVu2zBPLzMzUDz/8oAsvvLAaMwMAAEB1OKtOLTh+/Li2b9/u+T0lJUXJycmqW7eumjRpojFjxujpp59Wy5Yt1bx5c02cOFGxsbGe82gBAADwx3FWNbKJiYnq37+/5/exY8dKkm6//XbNnTtXjz32mLKysnT33Xfr6NGj6t27t5YsWaLg4ODqShkAAADV5KxqZPv16+f1SbfCLMvSX//6V/31r3+twqwAAABwNrLNObIAAABAQTSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSwHVnQAAwJ42bdpUZWNFRUWpSZMmVTYeAHugkQUAlMmxtAOyHA7dcsstVTZmSO3a2rxpE80sAC80sgCAMjl5LFPG5dKIp19VdPOWlT7ewZRtWvDkfUpLS6ORBeCFRhYAcEaim7dUw7bx1Z0GgD8wPuwFAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3ZqpHNy8vTxIkT1bx5c4WEhCguLk5PPfWUjDHVnRoAAACqWEB1J1AWzz33nF599VW99dZbateunRITEzVy5Eide+65evDBB6s7PQAAAFQhWzWyq1at0vDhwzV06FBJUrNmzTRv3jz9+OOP1ZwZAAAAqpqtGtmLLrpIr7/+urZu3apWrVpp/fr1+vbbbzVjxgy/98nOzlZ2drbn98zMTElSbm6ucnNzJUkOh0MOh0Mul0sul8uzrDuel5fndfqCv7jT6ZRlWZ71FoxL+adGlCYeEBAgY4xX3LIsOZ3OIjn6i1f1nPLy8jy51JQ5lRSvKXMqWMNatWrViDkVVFPqVNycCuYkY2SZAr9blozlkIxLVoFcjGVJxcQt45K84g7JsmQZl5yWFBgYKIdM/jKWJcvlnaOx8s9c88qluLjD6Td3S0aBgYFyuVzKzc21bZ3yp+Q794K1LDiunedUE+vkL+7+v7/62XFO1V2nwsv7Y6tGdvz48crMzFSbNm3kdDqVl5enZ555RjfffLPf+0yfPl1Tp04tEk9KSlJoaKgkqV69eoqLi1NKSooOHTrkWaZRo0Zq1KiRtm7dqoyMDE+8RYsWio6O1saNG3Xy5ElPvE2bNoqIiFBSUpJXYTp27KjAwEAlJiZ65dC1a1fl5ORow4YNnpjT6VS3bt2UkZGhzZs3e+IhISGKj49XWlqaduzY4Ymfe+65atu2rfbt26c9e/Z44lU1p6SkJM/2tCyrRsypJtapuDm5n3DWr1+vHj161Ig5udWkOhU3p4Jjh546qjrH9nt+PxUYqrSIpgo/ka7wrN9zzwqJ0JGwWNU5nqrQk0c98czQesoMrafIjF8VnJPliR8Ji1FWSB3VP5Ki3o3rqMW4cWoWdErHT2fpVOA5ij28TVaBF7vUunHKcwSoYdoWrzntjWotpytXDQ7/4okZh0N7o9oo+HSWoo7u9sRzA4KUWjdOdZx5GjdunNLT05WYmGjbOkn+972wsDBJ0v79+5Wamloj5lQT6+RvTpGRkZKk3bt3Kz09vUbMqbrr5O4vSmIZG31Sav78+Ro3bpyef/55tWvXTsnJyRozZoxmzJih22+/3ed9fB2Rbdy4sdLT0xUeHi6p+v/qsPNfUtnZ2Vq6dKkGDRqkgICAGjGnmlin4uaUm5vrqWFwcHCNmFNBNaVOxc1p3bp12r9/v5ZnhapBm/hKPyK7fsmHWjj1Id07Z5Fi2sRX+hHZfZuS9drIofruu+/UqVMn29Ypf0q+c3c/DgcPHuxZn93nVBPrVNwR9SVLlvitnx3nVN11OnLkiCIjI5WRkeHp13yx1RHZcePGafz48brhhhskSR06dNCuXbs0ffp0v41sUFCQgoKCisQDAgIUEOA9fXcRCiu4U5YmXni9ZxK3LMtn3F+OZY1X1JzcyzudTq9l7Dynmlin4uLuJxz3OmvCnAqr6XPyysmyZCwf41oOGcvHyv3E8xtX3/E8I+Xk5MglS7LyFzIO33P1mYu/uJ/cjSzl5OTI4XB4bQu71am4HN2Pw8Jz9Ld8SbmfDXM607gd51RS/ew4p5Li1TEnX2x1+a0TJ04U2ZjuvyIAAADwx2KrI7LDhg3TM888oyZNmqhdu3ZKSkrSjBkz9Kc//am6UwMAAEAVs1Uj+/LLL2vixIm6//77dfDgQcXGxuqee+7RpEmTqjs1AAAAVDFbNbJhYWGaOXOmZs6cWd2pAAAAoJrZ6hxZAAAAwI1GFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbCmguhMAUNTu3buVlpZWJWO5XK4qGaegqpyfW1RUlJo0aVKlYwIAKheNLHCW2b17t9q0bauTJ05UyXghISGaN2+e9uzZo+bNm1f6eFU9P7eQ2rW1edMmmlkAqEHK3cimpqZq9uzZWrdunTIyMooc3bEsS8uWLSvvMMAfRlpamk6eOKERT7+q6OYtK328w7u2S5LS09OrpJGt6vlJ0sGUbVrw5H1KS0ujkQWAGqRcjeyGDRvUr18/nTx5Uq1bt9ZPP/2k888/X0ePHtXevXsVFxenxo0bV1SuwB9KdPOWatg2vtLHccpIyqr0cQqrqvkBAGqucn3Ya/z48TrnnHO0ZcsW/fe//5UxRi+++KJ+/fVXvffeezpy5IieffbZisoVAAAA8ChXI/vdd9/pnnvuUZMmTeRw5K/KfWrBddddp5tvvlnjxo0rf5YAAABAIeVqZF0ul+rXry9JioiIkNPp1OHDhz23d+jQQWvXri1fhgAAAIAP5WpkmzdvrpSUlPwVORxq3ry5/vvf/3puX7VqlSIiIsqVIAAAAOBLuRrZSy+9VO+//77n9/vuu09vvvmmBg4cqIsvvlhvvfWWbrrppnInCQAAABRWrqsWPPHEE7rxxht1+vRp1apVS2PGjFFWVpYWLlwop9OpiRMnasKECRWVKwAAAOBRrka2Tp066tKli+d3y7L05JNP6sknnyx3YgAAAEBxynVqAQAAAFBdynRE9k9/+pMsy9Lrr78up9OpP/3pTyXex7IszZ49+4wTBAAAAHwpUyP71VdfyeFwyOVyyel06quvvpJlWcXep6TbAQAAgDNRpkZ2586dxf4OAAAAVBXOkQUAAIAtlauRXbdunWbNmuX39lmzZik5Obk8QwAAAAA+lauRfeKJJ7y+yauwr776iktxAQAAoFKUq5Fdu3at+vTp4/f2Pn36KDExsTxDAAAAAD6Vq5E9duyYAgL8f17M4XAoIyOjPEMAAAAAPpWrkW3ZsqW++OILv7cvWbJELVq0KM8QAAAAgE/lamT//Oc/a9GiRRo7dqyOHj3qiR89elQPP/ywlixZoj//+c/lzREAAAAookzXkS3swQcfVHJysmbOnKmXXnpJsbGxkqR9+/bJ5XLp1ltv1cMPP1whiQIAAAAFlauRtSxLc+bM0W233aaFCxdqx44dkqThw4frmmuuUb9+/SoiRwAAAKCIcjWybv3791f//v0rYlUAAABAqfDNXgAAALClcjWyxhi99tpr6t69u6KiouR0Oov8FHd5LgAAAOBMlavLfOyxxzRjxgx16tRJt9xyi+rUqVNReQEAAADFKlcj+9Zbb+maa67RggULKiofAAAAoFTKdWrByZMnNXDgwIrKBQAAACi1cjWyF198sdasWVNRuQAAAAClVq5GdtasWfr+++81bdo0paenV1ROxdq7d69uueUWRUZGKiQkRB06dFBiYmKVjA0AAICzR7nOkW3durVcLpcmTpyoiRMnKjg4WE6n02sZy7KUkZFRriTdjhw5ol69eql///76/PPPVa9ePW3bto0PmQEAAPwBlauRveaaa2RZVkXlUqLnnntOjRs31pw5czyx5s2bV9n4AAAAOHuUq5GdO3duBaVROp988okGDRqk6667Tl9//bUaNmyo+++/X3fddZff+2RnZys7O9vze2ZmpiQpNzdXubm5kiSHwyGHwyGXyyWXy+VZ1h3Py8uTMabEuNPplGVZnvUWjEtSXl5eqeIBAQEyxnjFLcuS0+kskqO/eFXPKS8vz5NLTZlTwfju3bt16NAhr7jD4ZAxxmvdlmXJsqxyxbds2eLJxTIuqcDyxnJIluU/7vLO3ViO39fjJ+5Q/nrc27Sy62SMUWBgoBwyslx5lTInr7jDKSl/TJfLpdzcXFvte77ihR9PBXOSMd7bwLLyt41xyfLavpZUTLy4fc9pyVNDGVNxdfKTu1XK+p3tdcqfku/cC9ay4Lh2nlNNrJO/uPv//upnxzlVd50KL++Prb6tYMeOHXr11Vc1duxYTZgwQWvWrNGDDz6owMBA3X777T7vM336dE2dOrVIPCkpSaGhoZKkevXqKS4uTikpKV7NSqNGjdSoUSNt3brV6/SIFi1aKDo6Whs3btTJkyc98TZt2igiIkJJSUlehenYsaMCAwOLnMvbtWtX5eTkaMOGDZ6Y0+lUt27dlJGRoc2bN3viISEhio+PV1pamnbs2OGJn3vuuWrbtq327dunPXv2eOJVNaekpCTP9rQsq0bMqXCdGjRooD4JCbr9tts8sZycHD3//PNq0aKFbrzxRk88LS1Nr732mjp16qShQ4d64jt27NC8efOUkJCgPn36eOLJyclatGiRhg4dqk6dOnnivXr1kiRFZvyq4JwsT/xIWIyyQuqo/pEUBeT+/gdaWkQTnQo8R7GHt8kq8ISTWjdOeY4ANUzb4jWnvVGt5XTlqsHhXxQVlL+eo0ePSlKl1ykzM1Pjxo1Ts6BTCk7bUilzcjMOh/ZGtVGYw6Vx48YpPT1diYmJttn3Svt4Kjh26KmjqnNsv+f3U4GhSotoqvAT6QrP+j33rJAIHQmLVZ3jqQo9edQTzwytp8zQesXue70b11GL32p4/HRWhdUp+HSWoo7u9sRzA4KUWjdOdZx5XvWza50k/4+nsLAwSdL+/fuVmppaI+ZUE+vkb06RkZGSpN27d3t9ZsjOc6ruOrn7i5JYpmDbfAZ2796tadOmafny5Tp48KD+85//KCEhQWlpafrrX/+qkSNH6oILLijPEB6BgYHq2rWrVq1a5Yk9+OCDWrNmjVavXu3zPr6OyDZu3Fjp6ekKDw+XVP1/ddj5L6ns7GwtXbpUgwYNUkBAQI2YU+Hc169fr27duumGp2epXrPzPHGXLEmmyCcmXbJkyajwSTe+4kaSKRTftnqFvnj1Wd339lI1atOh0o/IHtiyQX1DTygmJkbdu3ev9DqtXbtWF110ke6ds0ixrTtUyRHZvZuS9frIofruu+/UqVMn2+x7pX08rVu3Tvv379fyrFA1aBNf6Udk1y/5UAunPqR75yxSTJv4Sj8iu29Tsl4rRf3O9jrlT8l37rm5uVq6dKkGDx7s9VkTO8+pJtapuCPqS5Ys8Vs/O86puut05MgRRUZGKiMjw9Ov+VKuI7L/+9//1KdPH7lcLvXo0UPbt2/3JBoVFaVvv/1WWVlZmj17dnmG8YiJidH555/vFWvbtq0WLlzo9z5BQUEKCgoqEg8ICCjy9bnuIhRW+ANsJcX9fS1vWeKWZfmM+8uxrPGKmpN7+cJfR2znORWOu9/6j2zWUjFt433epyKlpmz3PLDzm4eiy/iNO3zP1Vj+467fVuTeppVdJ8uylJOTI5csr3wrck5F5Y/pcDi85na273vFxQvWySsny/K9DSyHjK+PNPiJF7fv5Rl5aqjfPidRIXXyk7upoPpVd52Ky9H9wl94jv6WLyn3s2FOZxq345xKqp8d51RSvDrm5HO5Ui3lx2OPPaaIiAh9//33sixL0dHRXrcPHTpU7733XnmG8NKrVy9t2eL9NtXWrVvVtGnTChsDAAAA9lCu68iuXLlS9913n+rVq+fz6gVNmjTR3r17yzOEl4cffthz3drt27fr3Xff1euvv65Ro0ZV2BgAAACwh3I1si6XS7Vr1/Z7+6FDh3y+rX+munXrpo8++kjz5s1T+/bt9dRTT2nmzJm6+eabK2wMAAAA2EO5Ti3o3LmzFi1apPvvv7/Ibbm5uZo/f7569uxZniGKuPzyy3X55ZdX6DoBAABgP+U6Ivv4449ryZIluu+++7Rx40ZJ0oEDB/Tf//5Xl156qTZt2qTx48dXSKIAAABAQeU6IjtkyBDNnTtXDz30kF5//XVJ0i233CJjjMLDw/X2228rISGhQhIFAAAACir3FyLceuutuvrqq/XFF19o+/btcrlciouL06BBgzwXeAYAAAAqWoV8s1doaKiuuuqqilgVAAAAUCrlamR3795d8kLKvwwXAAAAUJHK1cg2a9bM5/VjCyv89WMAAABAeZWrkf3nP/9ZpJHNy8vTzp079fbbbys6OpovKwAAAEClKFcje8cdd/i97S9/+Yt69OihjIyM8gwBAAAA+FSu68gWJzQ0VCNHjtT//d//VdYQAAAA+AOrtEZWyv8K29TU1MocAgAAAH9QFXL5rcIyMzO1cuVKPf/887rgggsqYwgAAAD8wZWrkXU4HH6vWmCMUZMmTTRr1qzyDAEAAAD4VK5GdtKkSUUaWcuyVKdOHcXFxenSSy9VQEClHPQFAADAH1y5uswpU6ZUUBoAAABA2ZTrw165ubnKzMz0e3tmZqZyc3PLMwQAAADgU7ka2QcffFAXXXSR39t79eqlRx55pDxDAAAAAD6Vq5FdsmSJrr32Wr+3X3vttVq8eHF5hgAAAAB8Klcju2/fPjVs2NDv7bGxsdq7d295hgAAAAB8KlcjGxkZqS1btvi9fdOmTQoPDy/PEAAAAIBP5WpkBw8erNdee01JSUlFblu3bp1ef/11DRkypDxDAAAAAD6V6/JbTz31lJYsWaLu3bvriiuuULt27SRJGzdu1Keffqro6Gg99dRTFZIoAAAAUFC5GtnY2FglJiZq/Pjx+s9//qOPPvpIkhQeHq6bb75Z06ZNU2xsbIUkCgAAABRU7q/diomJ0VtvvSVjjA4dOiRJqlevnt+vrgUAAAAqQoV9f6xlWQoKCtI555xDEwsAAIBKV64Pe0lSYmKiBg8erNq1aysyMlJff/21JCktLU3Dhw/XihUryjsEAAAAUES5jsiuWrVKAwYMUMOGDXXLLbfozTff9NwWFRWljIwMvfbaa+rXr1958wSActu0aVOVjRUVFaUmTZpU2XgA8EdUrkZ2woQJatu2rb7//nsdO3bMq5GVpP79++utt94qV4IAUF7H0g7Icjh0yy23VNmYIbVra/OmTTSzAFCJytXIrlmzRtOnT1dQUJCOHz9e5PaGDRsqNTW1PEMAQLmdPJYp43JpxNOvKrp5y0of72DKNi148j6lpaXRyAJAJSpXI1urVi25XC6/t+/du1fnnHNOeYYAgAoT3bylGraNr+40AAAVpFwf9urZs6c++OADn7dlZWVpzpw56tu3b3mGAAAAAHwqVyM7depUJSYmaujQofr8888lSevXr9ebb76pLl266NChQ5o4cWKFJAoAAAAUVK5TC3r06KHFixfrvvvu02233SZJeuSRRyRJcXFxWrx4sTp27Fj+LAEAAIBCzriRNcbo2LFjuuiii7RlyxYlJydr27ZtcrlciouLU5cuXfhiBAAAAFSaM25kc3JyVLduXU2bNk2PPfaYOnXqpE6dOlVgagAAAIB/Z3yObFBQkBo0aKCgoKCKzAcAAAAolXJ92OuOO+7Q22+/rZycnIrKBwAAACiVcn3Yq0OHDvr444/Vrl073XHHHWrWrJlCQkKKLHf11VeXZxgAAACgiHI1sjfeeKPn//4us2VZlvLy8sozDAAAAFBEmRvZCRMm6IYbblDHjh21fPnyysgJAAAAKFGZG9lnn31W7du3V8eOHdW3b1+lp6crOjpaX375pQYMGFAZOQIAAABFlOvDXm7GmIpYDQAAAFBqFdLIAgAAAFWNRhYAAAC2dEZXLdi5c6fWrVsnScrIyJAkbdu2TRERET6X79y585llBwAAAPhxRo3sxIkTi1xu6/777y+ynDGGy28BAACgUpS5kZ0zZ05l5AEAAACUSZkb2dtvv70y8gAAAADKhA97AQAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWbN3IPvvss7IsS2PGjKnuVAAAAFDFbNvIrlmzRq+99po6duxY3akAAACgGgRUdwJn4vjx47r55pv1xhtv6Omnny522ezsbGVnZ3t+z8zMlCTl5uYqNzdXkuRwOORwOORyueRyuTzLuuN5eXkyxpQYdzqdsizLs96CcUnKy8srVTwgIEDGGK+4ZVlyOp1FcvQV37Nnj9LT02VZlowxXjlalnVG8YJjuuMFc8/Ly/PkUhlzkqqvTsYYWZYlh4ws1++3GYdTMkaWKbBtLEvGchQTd8kqkIuxLKlQ3Gn9notlXJLX8g7JsvzHXYVytxy/r8dP3KH89bi3aWXXyRijwMBAz/asjDl5xR1OWZLXmBVRp4Lxwrlbv21TY4zXflZZzxFej89KmlPBOjmt37enjKmwOvnL3VL+PuNyuZSbm3vWPUdUxPNewVoWHNfOc6qJdfIXd//fX/0qa0579+5VWlqa1zrc66+o1/+C8aioKDVp0qRK6lR4eX9s2ciOGjVKQ4cO1cCBA0tsZKdPn66pU6cWiSclJSk0NFSSVK9ePcXFxSklJUWHDh3yLNOoUSM1atRIW7duVUZGhifeokULRUdHa+PGjTp58qQn3qZNG0VERCgpKcmrMB07dlRgYKASExO9cujatatycnK0YcMGT8zpdKpbt27KyMjQ5s2bPfGQkBDFx8crLS1NO3bs8MTPPfdctW3bVvv27dOePXt08uRJLV+xQuvWrtWiRYs0dOhQderUybP8N998o5UrV+rGG29UixYtPPFFixYpOTlZ99xzj6KiojzxefPmaceOHRo3bpwCAwM98ddee02ZmZn6y1/+oi5dumjVqlWqXbt2pczJrbrqFBAQoMjISHUIOqXgtC2SJONwaG9UGwWfzlLU0d2eZXMDgpRaN06hp46qzrH9nvipwFClRTRV+Il0hWf9nntWSISOhMWqzvFUhZ48KkkKa1xHe3v1kiRFZvyq4Jwsz/JHwmKUFVJH9Y+kKCD39z/Q0iKa6FTgOYo9vE1WgSfX1LpxynMEqOFvebvtjWotpytXDQ7/oqig/PUcPZo/fmXXKTMzU+PGjVOz37ZnZczJzV2niOAArzErok6SlBlaT5mh9YrU6YQzf786cuSI1/5UWc8RBff7yppTwTr1blxHLX7bnsdPZ1VYnfw9nuo48zRu3Dilp6crMTHxrHuOqIjnvbCwMEnS/v37lZqaWiPmVBPr5G9OkZGRkqTdu3crPT29SuZ08uRJXXX11aoVEKB77rnHE8/JydHzzz+vFi1a6MYbb/TE09LS9Nprr6lTp04aOnSoJ75jxw7NmzdPCQkJ6tOnjyeenJxcpI9wOJ26+qqr1KlTp0qvU1JSkkrDMoXb+LPc/Pnz9cwzz2jNmjUKDg5Wv3791KlTJ82cOdPn8r6OyDZu3Fjp6ekKDw+XVLP+OkxOTlavXr109eQXFdWspSwZWQXWbSQZWZ6jcCXF80fyF5cydv+ia9o2UExMjDp37lwj/4pfv369unXrpgf+/YViW3f4fZtV0hHZ9Us/0oJJo3Xf20vVqE2HSj8ie2DLBvUNPaGYmBh179690uu0du1aXXTRRbp3ziLFtu5QJUdkkxd/oI/++pBnzMo+Irt3y096+eZLlJiYqPj4eE+8sp4j1q1bp/3792t5VqgatImv9COy65d8qIVT87dnTJv4Sj8iu29Tsl4bOVTfffedOnXqdNY9R1TE815ubq6WLl2qwYMHe9Zn9znVxDoVd0R9yZIlfutXGXNKTk5Wt27dNOLpV9Wg+Xley7tkSTJFzh91ySrSF/iLu/sCd/zQzu1aOPUhrVq1Sl26dKn0Oh05ckSRkZHKyMjw9Gu+2OqI7K+//qqHHnpIX375pYKDg0t1n6CgIAUFBRWJBwQEKCDAe/ruIhRWcKcsTbzwes8kblmWz7i/HN1xh8OhnJwcRTVrqYZt44ssV9Hyt0CWHA6HV74VOafSxiurTu63Vlyy8l9svW+UsXys32/cIVP4GaRQPM/8/sDObx6KLu43Xjg/z/L+467fVuTeppVdJ8uylJOTU2R7VuScisQkn2OWp07eY3rn7n458LctK/o5wms7V9KcCsbzzO/bU7+dZlQRdfKXu1H+PlP4eeZseY4oLl7ax5P7hb/wHP0tX1LuZ8OczjRuxzmVVL/KmJN7/OjmLRVTBa/3rt8eh+5TC6ujTj6XK9VSZ4m1a9fq4MGD6ty5syeWl5enlStX6v/9v/+n7OxsvxsQAAAANYutGtmLL75YP/30k1ds5MiRatOmjf7yl7/QxAIAAPyB2KqRDQsLU/v27b1ioaGhioyMLBIHAABAzWbb68gCAADgj81WR2R9WbFiRXWnAAAAgGrAEVkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYUkB1J/BHsHv3bqWlpVXJWJs2baqScQCgqlXl81t2draCgoKqbDyXy1VlYwE1CY1sJdu9e7fatG2rkydOVHcqAGBLx9IOyHI4dMstt1TZmJbDIVOFzWVISIjmzZunPXv2qHnz5lU2LmB3NLKVLC0tTSdPnNCIp19VdPOWlT7elu+W6ctZ0yt9HACoKiePZcq4XFX+PFpV40nS4V3bJUnp6ek0skAZ0MhWkejmLdWwbXylj3MwZVuljwEA1aGqn0erajxJcspIyqqSsYCahA97AQAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLtmpkp0+frm7duiksLEzR0dG68sortWXLlupOCwAAANXAVo3s119/rVGjRun777/Xl19+qdOnT+vSSy9VVlZWdacGAACAKhZQ3QmUxZIlS7x+nzt3rqKjo7V27VolJCRUU1YAAACoDrZqZAvLyMiQJNWtW9fvMtnZ2crOzvb8npmZKUnKzc1Vbm6uJMnhcMjhcMjlcsnlcnmWdcfz8vJkjCkx7nQ6ZVmWZ72S5HK5ZFmWJCPLleeVm7HyD4hbxuUddzglY7zjlpW/vN+4S5YxclpSYGCgLP2W12/x38e0JMuRvw6vuEOyLP9xP7k7fhvH5XIpNzdXTqdTkpSX5718QECAjDFeccuy5HQ6i2x3f/HKrJM77it3Y4wsy5KjUA3LU6fft2N+PQrGndbvuVRUnYrsYwXiBWvonm9l1skYo8DAQM/2rIw5ecUdTlmS15gVUaeC8cK5ux9/xhiv/ays+15pH08Ft3NlzalgndzPMw6Z/GUqqE7+cvdfv4qbk3f98hV5zFfgnArHHX72mep63quJz+WVOSf3/92vhVUxp9/H99FfVMLrk0P5z93ufCu7ToWX98e2jazL5dKYMWPUq1cvtW/f3u9y06dP19SpU4vEk5KSFBoaKkmqV6+e4uLilJKSokOHDnmWadSokRo1aqStW7d6mmZJatGihaKjo7Vx40adPHnSE2/Tpo0iIiKUlJTkKUxGRoYiIyPlkNQwzft83r1RreV05arB4V88MeNwaG9UGwWfzlLU0d2eeG5AkFLrxin01FHVObbfEz8VGKq0iKYKP5Gu8KxDCmtcRy3GjVN4wGm5JNU5nqrQk0c9y2eG1lNmaD1FZvyq4JzfT8k4EhajrJA6qn8kRQG5vzf+aRFNdCrwHMUe3iarwIM2tW6c8hwBaheUv+yRI0eUmJiorl27KicnRxs2bPAs63Q61a1bN2VkZGjz5s2eeEhIiOLj45WWlqYdO3Z44ueee67atm2rffv2ac+ePZ54ZdZJkjp27KjAwEAlJiZ61SkgIECRkZHqEHRKwb/VsLx1cssKidCRsFivOoU1rqO9vXpJUoXVqbh9L+q3Gh49mj9+ZdcpMzNT48aNU7PftmdlzMnNXaeI4ACvMSuiTpL/x9MJZ/5+5X5cuJV13yvt46ngfl9ZcypYp96/Pc80Czql46ezKqxO/h5P9c8J9KpfZcyp4L6XEpz/0tguKFu1C+RfkXMqXKfgWqclSSdPnvTaD6rrea8mPpdX5pwiIyMlSbt371Z6enqVzCkjI0OBgYEKsozXPllZr0+RQac0btw4nThxQpIqvU5JSUkqDcsUbJtt5L777tPnn3+ub7/9Vo0aNfK7nK8jso0bN1Z6errCw8MlVe5fh8nJyerevbtG/fsLNWrdwSu3yjgiu37pR1o49SHdM2eRYtt2qvQjsgc3J6tv6AnFxMSoc+fONfKv+PXr16tbt2564N9fKLZADSvriOz6pR9pwaTRuu/tpWrUpkOlH5E9sGWDp4bdu3ev9DqtXbtWF110ke6ds0ixrTtUyRHZ5MUf6KO/PuQZs7KPyO7d8pNevvkSJSYmKj4+3hOvrCNI69at0/79+7U8K1QN2sRX+hHZ9Us+1MKp+dszpk18pR+R9V+/yjkim7TkI7335H168J0vvR/zlXhE1v04jI2N1QUXXOCJ18SjlzVxTnl5eVqyZIkGDx7sGaey55ScnKxu3bpp9DtfFu0vKuH1ad+Wn/SPkUO1atUqdenSpdLrdOTIEUVGRiojI8PTr/liyyOyo0eP1meffaaVK1cW28RKUlBQkIKCgorEAwICFBDgPX13EQoruFOWJl5wve63UiUrf8fywVg+4pZVxrhDxpLyjJSTkyPjfnPst3jRMR2/v39Wmrif3F2/LexwOLzmXXjb5qdu+Yz72+5ljZenTsXFLcuSMUYuXzU8wzoVF88zvz+wK6pOPnP5LV6whvmpV26dLMtSTk5Oke1ZkXMqEpN8jlmeOnmP6Z27+/Hnb1uWdt8rLl5w3V7buZLmVDDufp5xyZKs/IUqok7+cvdfv4qbk3f98vl8zPvL3V+8lM8RrhL2map+3isubtfn8uLi5Z2Tu3Er/FpYUu7lmdPv4/vpLyr49cml/Odu67fHfHXUyedypVrqLGGM0QMPPKCPPvpIK1asUPPmzas7JQAAAFQTWzWyo0aN0rvvvqv//Oc/CgsLU2pqqqT8c1ZCQkKqOTsAAABUJVtdR/bVV19VRkaG+vXrp5iYGM/Pe++9V92pAQAAoIrZ6oisTT+XBgAAgEpgqyOyAAAAgBuNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2FJAdSeAmmHLli1yOKru76KoqCg1adKkysYDAKAk69evr7LXwk2bNlXJOGc7GlmUy/H0g1JoqO666y6dPHmyysYNqV1bmzdtopkFAFS7PXv2SJISEhKq9LUQNLIop5PHj0kK1VUT/091m55XJWMeTNmmBU/ep7S0NBpZAEC1S09Pl6QqfS3c8t0yfTlrepWMdTajkUWFqNc0Tg3axld3GgAAVJuqfC08mLKtSsY52/FhLwAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFuikQUAAIAt0cgCAADAlmhkAQAAYEs0sgAAALAlGlkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAACwJRpZAAAA2BKNLAAAAGyJRhYAAAC2RCMLAAAAW6KRBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtmTLRvaVV15Rs2bNFBwcrB49eujHH3+s7pQAAABQxWzXyL733nsaO3asJk+erHXr1ik+Pl6DBg3SwYMHqzs1AAAAVCHbNbIzZszQXXfdpZEjR+r888/XP/7xD9WuXVv//Oc/qzs1AAAAVKGA6k6gLHJycrR27Vo9/vjjnpjD4dDAgQO1evVqn/fJzs5Wdna25/eMjAxJ0uHDh5Wbm+tZh8PhkMvlksvl8lq3w+FQXl6ejDElxp1OpyzL8qxXkjIzMyVJezdt0OkTx71yc9/TKpSzkeX5t3DcklFhBeOHd/+iWrVqaf/mDco5kVXi8iXFzW8Z+o5Lh3en6ESzcKVuTdGpE1mVMqfC8fTf5rh27VplZmbKsixZliVjjFc9SooXrLU7LslrWUnatm2bJCl1s3cNK3JOBeOHd/8ih8Phc5/xt56S6lQ0x9/jR/ek6ETr+kpKStKJEyfKvB3LGt+yZYtq1arltT0rek7ecUtpO7eVasyKih/atUOSPPuoW1n3PX9xh8PhtX23bdumc845R/u25D8OK2NOBePu55nUzRuUc+K4KqpO/h5Pabuqtn5pO/095ituToXHPFLgcXj8+O9jVvTjr/BrnHuZM933ypKL+3W2MudUMPfCt1XGnNzcj8H9Ph6DFfmaW3BfOrz7F0n++ouKf31K371DtWrV0rFjx5SZmVmu3sgdl6S8vDyf8SNHjuTnYIrm5Z2kjezdu9dIMqtWrfKKjxs3znTv3t3nfSZPnmyUvw/www8//PDDDz/88GOjn19//bXY3tBWR2TPxOOPP66xY8d6fne5XDp8+LAiIyM9f53hzGVmZqpx48b69ddfFR4eXt3p4AxQQ/ujhvZHDe2N+lU8Y4yOHTum2NjYYpezVSMbFRUlp9OpAwcOeMUPHDigBg0a+LxPUFCQgoKCvGIRERGVleIfVnh4OA9em6OG9kcN7Y8a2hv1q1jnnntuicvY6sNegYGB6tKli5YtW+aJuVwuLVu2TBdeeGE1ZgYAAICqZqsjspI0duxY3X777eratau6d++umTNnKisrSyNHjqzu1AAAAFCFbNfIXn/99Tp06JAmTZqk1NRUderUSUuWLFH9+vWrO7U/pKCgIE2ePLnI6RuwD2pof9TQ/qihvVG/6mMZU9J1DQAAAICzj63OkQUAAADcaGQBAABgSzSyAAAAsCUaWQAAANgSjSxK9Morr6hZs2YKDg5Wjx499OOPP5bqfvPnz5dlWbryyisrN0GUqKw1PHr0qEaNGqWYmBgFBQWpVatWWrx4cRVlC1/KWsOZM2eqdevWCgkJUePGjfXwww/r1KlTVZQtClq5cqWGDRum2NhYWZaljz/+uMT7rFixQp07d1ZQUJDOO+88zZ07t9LzhH9lreGHH36oSy65RPXq1VN4eLguvPBCLV26tGqS/YOhkUWx3nvvPY0dO1aTJ0/WunXrFB8fr0GDBungwYPF3m/nzp169NFH1adPnyrKFP6UtYY5OTm65JJLtHPnTn3wwQfasmWL3njjDTVs2LCKM4dbWWv47rvvavz48Zo8ebI2bdqk2bNn67333tOECROqOHNIUlZWluLj4/XKK6+UavmUlBQNHTpU/fv3V3JyssaMGaM777yTRqgalbWGK1eu1CWXXKLFixdr7dq16t+/v4YNG6akpKRKzvQPyADF6N69uxk1apTn97y8PBMbG2umT5/u9z65ubnmoosuMm+++aa5/fbbzfDhw6sgU/hT1hq++uqrpkWLFiYnJ6eqUkQJylrDUaNGmQEDBnjFxo4da3r16lWpeaJkksxHH31U7DKPPfaYadeunVfs+uuvN4MGDarEzFBapamhL+eff76ZOnVqxSf0B8cRWfiVk5OjtWvXauDAgZ6Yw+HQwIEDtXr1ar/3++tf/6ro6Gj9+c9/roo0UYwzqeEnn3yiCy+8UKNGjVL9+vXVvn17TZs2TXl5eVWVNgo4kxpedNFFWrt2ref0gx07dmjx4sW67LLLqiRnlM/q1au96i1JgwYNKvZ5F2c3l8ulY8eOqW7dutWdSo1ju2/2QtVJS0tTXl5ekW9Nq1+/vjZv3uzzPt9++61mz56t5OTkKsgQJTmTGu7YsUNfffWVbr75Zi1evFjbt2/X/fffr9OnT2vy5MlVkTYKOJMa3nTTTUpLS1Pv3r1ljFFubq7uvfdeTi2widTUVJ/1zszM1MmTJxUSElJNmeFMvfDCCzp+/LhGjBhR3anUOByRRYU5duyYbr31Vr3xxhuKioqq7nRwhlwul6Kjo/X666+rS5cuuv766/XEE0/oH//4R3WnhlJasWKFpk2bplmzZmndunX68MMPtWjRIj311FPVnRrwh/Puu+9q6tSpWrBggaKjo6s7nRqHI7LwKyoqSk6nUwcOHPCKHzhwQA0aNCiy/C+//KKdO3dq2LBhnpjL5ZIkBQQEaMuWLYqLi6vcpOGlrDWUpJiYGNWqVUtOp9MTa9u2rVJTU5WTk6PAwMBKzRnezqSGEydO1K233qo777xTktShQwdlZWXp7rvv1hNPPCGHg2MYZ7MGDRr4rHd4eDhHY21m/vz5uvPOO/X+++8XOV0EFYNnM/gVGBioLl26aNmyZZ6Yy+XSsmXLdOGFFxZZvk2bNvrpp5+UnJzs+bniiis8n7xt3LhxVaYPlb2GktSrVy9t377d80eIJG3dulUxMTE0sdXgTGp44sSJIs2q+w8TY0zlJYsKceGFF3rVW5K+/PJLv/XG2WnevHkaOXKk5s2bp6FDh1Z3OjVXdX/aDGe3+fPnm6CgIDN37lzzv//9z9x9990mIiLCpKamGmOMufXWW8348eP93p+rFlS/stZw9+7dJiwszIwePdps2bLFfPbZZyY6Oto8/fTT1TWFP7yy1nDy5MkmLCzMzJs3z+zYscN88cUXJi4uzowYMaK6pvCHduzYMZOUlGSSkpKMJDNjxgyTlJRkdu3aZYwxZvz48ebWW2/1LL9jxw5Tu3ZtM27cOLNp0ybzyiuvGKfTaZYsWVJdU/jDK2sN33nnHRMQEGBeeeUVs3//fs/P0aNHq2sKNRaNLEr08ssvmyZNmpjAwEDTvXt38/3333tu69u3r7n99tv93pdG9uxQ1hquWrXK9OjRwwQFBZkWLVqYZ555xuTm5lZx1iioLDU8ffq0mTJliomLizPBwcGmcePG5v777zdHjhyp+sRhli9fbiQV+XHX7Pbbbzd9+/Ytcp9OnTqZwMBA06JFCzNnzpwqzxu/K2sN+/btW+zyqDiWMbzPBAAAAPvhHFkAAADYEo0sAAAAbIlGFgAAALZEIwsAAABbopEFAACALdHIAgAAwJZoZAEAAGBLNLIAAAAok5UrV2rYsGGKjY2VZVn6+OOPy7wOY4xeeOEFtWrVSkFBQWrYsKGeeeaZMq2DRhYAzkJ33HGHmjVrVt1pFLFixQpZlqUVK1ZUdyoAqlFWVpbi4+P1yiuvnPE6HnroIb355pt64YUXtHnzZn3yySfq3r17mdYRcMajAwBsx7Isr/83aNBA7du314QJE9SvX7/qSwyArQwZMkRDhgzxe3t2draeeOIJzZs3T0ePHlX79u313HPPeZ5nNm3apFdffVUbN25U69atJUnNmzcvcx4ckQWAP5hLLrlE//rXv/TWW2/p3nvv1YYNGzRgwAB9/vnnJd43ISFBJ0+eVEJCQhVkCsCuRo8erdWrV2v+/PnasGGDrrvuOg0ePFjbtm2TJH366adq0aKFPvvsMzVv3lzNmjXTnXfeqcOHD5dpHI7IAoAPWVlZCg0Nre40KoTL5VJOTo6Cg4MlSa1atdItt9ziuf2qq65Sx44dNXPmTL9HWE6dOqXAwEA5HA7PegDAl927d2vOnDnavXu3YmNjJUmPPvqolixZojlz5mjatGnasWOHdu3apffff19vv/228vLy9PDDD+vaa6/VV199VeqxOCIL4A9vypQpsixL//vf/3TTTTepTp066t27tyTp3//+t7p06aKQkBDVrVtXN9xwg3799dci63jllVfUokULhYSEqHv37vrmm2/Ur18/r7fr586dK8uytHPnTq/7lva80xdeeEEXXXSRIiMjFRISoi5duuiDDz4ospxlWRo9erTeeecdtWvXTkFBQVqyZInf9Xbo0EFRUVFKSUnxymf+/Pl68skn1bBhQ9WuXVuZmZl+c/3hhx902WWXqU6dOgoNDVXHjh314osvei2zefNmXXvttapbt66Cg4PVtWtXffLJJ8XOGYD9/PTTT8rLy1OrVq10zjnneH6+/vpr/fLLL5Ly/8DOzs7W22+/rT59+qhfv36aPXu2li9fri1btpR6LI7IAsBvrrvuOrVs2VLTpk2TMUbPPPOMJk6cqBEjRujOO+/UoUOH9PLLLyshIUFJSUmKiIiQJL366qsaPXq0+vTpo4cfflg7d+7UlVdeqTp16qhRo0YVlt+LL76oK664QjfffLNycnI0f/58XXfddfrss880dOhQr2W/+uorLViwQKNHj1ZUVFSxHxw7cuSIjhw5ovPOO88r/tRTTykwMFCPPvqosrOzFRgY6PP+X375pS6//HLFxMTooYceUoMGDbRp0yZ99tlneuihhyRJP//8s3r16qWGDRtq/PjxCg0N1YIFC3TllVdq4cKFuuqqq8q3cQCcNY4fPy6n06m1a9fK6XR63XbOOedIkmJiYhQQEKBWrVp5bmvbtq2k/CO67vNmS0IjCwC/iY+P17vvvitJ2rVrl+Li4vT0009rwoQJnmWuvvpqXXDBBZo1a5YmTJignJwcTZw4Ud26ddNXX32lgID8p9WOHTvqjjvuqNBGduvWrQoJCfH8Pnr0aHXu3FkzZswo0shu2bJFP/30k84///wi6zl16pTS0tJkjFFKSoomTJigvLw8XXfddUWWS0xM9BqzsLy8PN1zzz2KiYlRcnKyp7mX8i+t4/bQQw+pSZMmWrNmjYKCgiRJ999/v3r37q2//OUvNLJADXLBBRcoLy9PBw8eVJ8+fXwu06tXL+Xm5uqXX35RXFycpPznOElq2rRpqcfi1AIA+M29997r+f+HH34ol8ulESNGKC0tzfPToEEDtWzZUsuXL5ckJSYmKj09XXfddZeniZWkm2++WXXq1KnQ/Ao2lEeOHFFGRob69OmjdevWFVm2b9++PptYSZo9e7bq1aun6Oho9ejRQ999953Gjh2rMWPGeC13++23F9vESlJSUpJSUlI0ZswYryZW+v0KCYcPH9ZXX32lESNG6NixY55tmZ6erkGDBmnbtm3au3dvKbYAgLPF8ePHlZycrOTkZElSSkqKkpOTtXv3brVq1Uo333yzbrvtNn344YdKSUnRjz/+qOnTp2vRokWSpIEDB6pz587605/+pKSkJK1du1b33HOPLrnkEq+jtCXhiCwA/KbgpV+2bdsmY4xatmzpc9latWpJyj9yK6nI2/IBAQEVfh3Yzz77TE8//bSSk5OVnZ3tiRe8pJZbcZexGT58uEaPHi3LshQWFqZ27dr5/GBbaS6F4z7frX379n6X2b59u4wxmjhxoiZOnOhzmYMHD6phw4Yljgfg7JCYmKj+/ft7fh87dqyk/D+A586dqzlz5ujpp5/WI488or179yoqKko9e/bU5ZdfLklyOBz69NNP9cADDyghIUGhoaEaMmSI/v73v5cpDxpZAPhNwaOPLpdLlmXp888/L3KOl/T7eV5l4avhlPLfni/JN998oyuuuEIJCQmaNWuWYmJiVKtWLc2ZM8dzOkRBxR1JbdSokQYOHFjimCUdjS0tl8slKf9Ty4MGDfK5TOE/BACc3fr16+d1+lBhtWrV0tSpUzV16lS/y8TGxmrhwoXlyoNGFgB8iIuLkzFGzZs3L/ZtLve5XNu3b/c6OpGbm6udO3eqY8eOnpj7VIOjR496rcN9VLc4CxcuVHBwsJYuXeo5x1SS5syZU6r5VBb3uW0bN2702xy3aNFCUv4LW2kaaAAoLc6RBQAfrr76ajmdTk2dOrXIUQdjjNLT0yVJXbt2VWRkpN544w3l5uZ6lnnnnXd05MgRr/u5m76VK1d6Ynl5eXr99ddLzMfpdMqyLK+jtzt37jyj7zevSJ07d1bz5s01c+bMIg26e7tFR0erX79+eu2117R///4i6zh06FBVpAqgBuKILAD44L5iweOPP+65nFZYWJhSUlL00Ucf6e6779ajjz6qwMBATZkyRQ888IAGDBigESNGaOfOnZo7d67i4uK8Tido166devbsqccff1yHDx9W3bp1NX/+fK8G2J+hQ4dqxowZGjx4sG666SYdPHhQr7zyis477zxt2LChMjdFsRwOh1599VUNGzZMnTp10siRIxUTE6PNmzfr559/1tKlSyXlX2e3d+/e6tChg+666y61aNFCBw4c0OrVq7Vnzx6tX7++2uYAwL5oZAHAj/Hjx6tVq1b6v//7P895Xo0bN9all16qK664wrPc6NGjZYzR3//+dz366KOKj4/XJ598ogcffLDIt2C98847uueee/Tss88qIiJCf/7zn9W/f39dcsklxeYyYMAAzZ49W88++6zGjBmj5s2b67nnntPOnTurtZGVpEGDBmn58uWaOnWq/v73v8vlcikuLk533XWXZ5nzzz9fiYmJmjp1qubOnav09HRFR0frggsu0KRJk6oxewB2ZpniztQFAJwRl8ulevXq6eqrr9Ybb7xR3ekAQI3EObIAUE6nTp0qch7t22+/rcOHD3t9RS0AoGJxRBYAymnFihV6+OGHdd111ykyMlLr1q3T7Nmz1bZtW61du9bvV7sCAMqHc2QBoJyaNWumxo0b66WXXvJ8iOu2227Ts88+SxMLAJWII7IAAACwJc6RBQAAgC3RyAIAAMCWaGQBAABgSzSyAAAAsCUaWQAAANgSjSwAAABsiUYWAAAAtkQjCwAAAFv6/0f2rPpV+Km/AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqoAAAHcCAYAAAAeFogrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtwUlEQVR4nO3deVxU9foH8M+ZGWZABFEWFVEQVFwBV9yXNNGsq+XNtDLUFitL2+jaYuqttLJfN20xbVHbtLSrdbNQM5fMFQVXxAXMXQFZFBVk5vv7g85xhpmBGWZwjvJ5v17eG89855znu5zDM2dmDpIQQoCIiIiISGU0nk6AiIiIiMgWFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkTV6IMPPoAkSfj88889nQoREdFNh4UqWVm/fj0kScK0adM8sv+IiAhERERYxKZNmwZJkrB+/XqP5FSeJEno27dvhW22b9+OF154Aa+99hoefvjhG5OYDY7kerO6GdbKrUpN68rT56ybUXWOWd++fSFJktu3SzUTC9Vb1LFjxyBJksW/WrVqITQ0FP3798drr72Go0ePVsu+eZIC8vLyMGLECIwaNQrTp0/3dDpUQ/DYo5pILS+a5syZgyFDhiAiIgK+vr4ICAhAbGwspk2bhgsXLng6vZuWztMJUPWKiorCgw8+CAAoLi7G+fPnsX37drz++uuYMWMGXnzxRbz55psWv9y6dOmC9PR0BAUFeSTntWvXemS/zkhPT0etWrXsPp6WloYnn3wSzz777A3MigDgqaeewsiRI9GkSRNPp0I3iKfPWUQAlI949enTBw0aNMDVq1exbds2TJ8+HV988QW2b9+OBg0aeDjLmw8L1Vtcs2bNbL61s2nTJowePRozZ86EVqvF66+/rjxWq1YttGzZ8gZmaSkqKspj+3ZUZePTr18/9OvX7wZlQ+aCgoJYsNQwnj5nEQHAtm3b4O3tbRWfMmUK3njjDfzf//0fZs2a5YHMbm5867+G6tmzJ5KTk2EwGPDOO+/gxIkTymP2Prt0+PBhjB07Fk2bNoXBYEC9evUQGxuLZ555BkIIAGVvwWzYsEH5b/nfmDFjAFz/SMKYMWOQnp6Ou+++G4GBgZAkCceOHQNg+3OH5j7//HO0a9cO3t7eaNSoEZ599llcvHjRok1Fn78yz6G88+fP4/nnn0d0dDR8fHxQr149xMfH491337VoZ++tppycHDzzzDPKGIWEhGDEiBHYt2+fVdsxY8ZAkiRkZWVhzpw5aNmyJQwGA8LDwzF9+nSYTCa7Y2DLZ599hrZt28Lb2xuNGzfGiy++iKtXr9ptf/HiRUydOhVt2rSBj48PAgICkJCQgE2bNjm8T7kP8tyZs/VZUfN5SUlJwe233w4/Pz/UqVMHd999t83tAMCPP/6Izp07w8fHB/Xr18ejjz6KvLw8m23tfUZ13bp1GDx4MEJDQ2EwGFC/fn306tUL8+fPt9pGZmYmHnvsMYt57Nu3LxYuXGjVdsGCBYiPj0ft2rVRu3ZtxMfH22y3cOFCSJJk8zF761VeZ+fOnUNiYiKCgoLg4+ODrl27WvWvsmNPtmfPHowcORINGzaEXq9HeHg4nn76aeTm5lrlBTi/rhwhH+P5+fkYP348GjRoAG9vb7Rv3x6LFy+2am8+pwsXLkSHDh1Qq1Yt5Ris6Hh39JiuytjYc/78eTz77LNo1qwZDAYDgoKCMHz4cJvnAXksLl26hEmTJinrMyYmBsuWLXNqv0DZsdK/f3/UrVsX3t7eaNu2Ld59910YjUant1VeSUkJ/vOf/6Bz587w8/ND7dq10bp1azz33HN2j0dZRZ8dt3dsVHbMyvMOABs2bLBY9+W35ei4mOfyv//9Dz169ICfn1+Fv5NktopUALj33nsBAEeOHKl0G2SNV1RrsOjoaIwYMQJfffUVVqxYgaefftpu29OnT6NLly4oKirCkCFDcN9996GoqAiHDx/Gxx9/jHfffRc6nQ5Tp07FwoUL8ddff2Hq1KnK8+Pi4iy2d+TIEXTt2hXt2rXDmDFjkJubC71eX2nO7733HtauXYv77rsPQ4YMwW+//Yb3338fW7duxcaNG+Hl5VXl8cjIyEC/fv1w5swZ9OzZE8OGDUNRURH279+PGTNm4IUXXqjw+dnZ2ejWrRuOHj2Kvn37YuTIkcjKysKyZcuwcuVKrFq1Cj179rR6XlJSEjZs2IA777wTCQkJWLFiBaZNm4aSkhK8+eabDuX++uuv47XXXlOKOC8vL3z33XdIT0+32f7ChQvo3bs39u/fjx49euDxxx9HYWEhfvzxR/Tr1w9Lly7FsGHDHNp3VezYsQPvvPMO+vXrh/HjxyM1NRUrVqzA3r17sW/fPosT/pdffonExET4+/tj9OjRCAgIwM8//4wBAwagpKTEoXWzcuVK3HXXXQgICMDQoUPRsGFDZGdnY/fu3fjqq6/w2GOPKW03bdqEIUOG4OLFi0hISMDIkSORl5eH1NRUzJ4926LwmzhxIj744AM0atRI+cLcDz/8gLFjxyrtXZWfn4+ePXuiTp06GD16NM6fP4/vvvsOCQkJ2LlzJ9q2bQsADh17P/30E0aMGAGNRoOhQ4eicePGOHDgAD788EOsWrUK27ZtQ926dZX2zq4rZ5SUlGDAgAG4dOkSRo8ejaKiInz//fe4//77kZOTY/N8NGvWLKxbtw5Dhw7FwIEDodVqK9yHM8e0s2Njj3z8nzx5EgMHDsSwYcNw/vx5/PDDD1i1ahXWrl2L+Ph4i+dcu3YNAwcORF5eHoYPH47Lly9jyZIlGDFiBJKTkzFw4ECHxvSll17CW2+9hUaNGuGee+5BnTp18McffyApKQnbtm3D0qVLHdqOLVeuXMHtt9+OP//8E82bN8fYsWNhMBhw+PBhzJs3Dw899JBD4+MoR47ZiIgITJ06FdOnT0d4eLjFsWm+7qsyLkuXLsXq1atx55134sknn0RhYaFLfQGgHKvkJEG3pKysLAFAJCQkVNju888/FwDE6NGjldi6desEADF16lQlNmfOHAFAvP/++1bbyM3Ntfi5T58+wt7SkvMCIF577TWbbcLDw0V4eLhFbOrUqQKA0Ov1Yvfu3UrcZDKJ+++/XwAQ7777boV9KJ9DYmKiRbxTp04CgJg/f77Vc06cOGHxMwDRp08fi9jYsWMFAPHSSy9ZxFeuXCkAiGbNmgmj0ajEExMTBQDRtGlTcfr0aSWenZ0tAgIChJ+fnyguLrbKpbzDhw8LnU4nGjVqJM6dO6fECwoKRHR0tM1c5TH79NNPLeLnzp0TjRs3FsHBweLKlSuV7lvuQ1ZWltVj8pytW7dOicnzAkAsWbLEov3o0aMFALF48WKLPvj7+wtfX1+RkZGhxEtKSkTv3r0FALtrxXy/99xzjwAg0tLSrPLMyclR/vvq1auiUaNGQqPRiF9//dWqrfk62LBhgwAgWrVqJfLz85X4hQsXRIsWLQQAsXHjRiW+YMECAUAsWLDAarv21qs8Vk8++aTF2vnss88EADF+/HiL9hUdezk5OcLf3180atRIHDt2zOKxxYsXCwDiqaeeUmJVWVeOCg8PFwBE7969Ldb4iRMnRFBQkDAYDOLkyZNKXJ5TX19fsWfPHqvt2Rs/R49pZ8emIt27dxdarVYkJydbxDMyMoSfn59o166dRVwei6FDh1qMxW+//ebQOVy2evVqpf2lS5eUuMlkEo8//rgAIJYtW6bEKzpH2vL8888rvytKS0stHsvPzxcXL15Ufra1Dm0dlzJbx4ajx6wQts/HMmfHRc5Fo9GINWvW2NxmZebNmyemTp0qnnvuOdG3b18BQLRv315cuHChStur6fjWfw0XGhoKoOwta0f4+PhYxerVq+f0fhs0aIBXXnnF6ec99NBDiImJUX6WJAkzZsyAVqu1+Zaqo7Zv346UlBT07t0bjz76qNXjYWFhFT6/pKQEixcvRmBgIF599VWLx+644w7cfvvtOHLkCP7880+r506ZMgUNGzZUfg4KCsLQoUNx8eJFZGRkVJr7t99+i9LSUjz33HMICQlR4v7+/la5AGVz/d133+G2227DI488YvFYSEgIkpKSkJ2djd9++63SfVdV7969cd9991nExo0bB6DsaqtsxYoVKCwsxLhx49CiRQsl7uXl5fDVZnO21m9gYKDy3z/++CNOnTqFBx98EIMGDbJqa74OFi1aBKDsLc06deoo8bp16ypXNF1ZkzJfX1+8/fbb0Giun64TExOh0+ksxqoyX375JQoLCzFz5kyEh4dbPDZy5Eh06NABS5YsUWLOrquqmDFjhsUV8bCwMEyaNAnFxcUWucgee+wxtGvXzqFtO3NMOzs29qSmpmLz5s1ITExEQkKCxWMtWrTAo48+qrxrUN5//vMfi7Ho378/wsPDHZ7jDz/8EAAwf/58+Pr6KnFJkvDWW29BkiSbH6twRGlpKebPn486depg9uzZVley69Spg9q1a1dp25Wp7JitTFXHZejQoRgwYEAVMi7b1/Tp0/Hee+9h/fr1GDhwIJKTk916xbkm4Vv/5JC77roLL730EiZMmIC1a9di0KBB6NOnDyIjI6u0vdjYWIfesi2vV69eVrHw8HA0btwY+/fvd/it4PK2b98OAA6/xVbewYMHcfXqVfTr18/m3QD69euHNWvWIC0tzaoPHTt2tGov/xLNz8+vdN+7d+8GYHtsbMV27NgBo9GI4uJim5/pO3z4sNKnO++8s9L9V4Wjfa6ob926dYNO59gpbOTIkfjvf/+Lrl274v7770f//v3Rq1cvqy9dObMOUlNTAcDmZ5XlL9KlpaU5lF9FWrRoYVUE6HQ61K9f36H1Idu6dSuAsi982Lo13dWrV5GTk4OcnBwEBQU5va6cpdPp0K1bN7vblsfXXJcuXRzevjNz6ezYVLadc+fO2Ty2Dh48qPy/+dvAAQEBaNq0qVX7sLAwbNmypdL85X37+vriiy++sPm4j4+Psn9nHTx4EBcvXsSAAQNuWLHl6DFbmaqOizNrrbyUlBQAZRcFtmzZgsmTJ6NDhw745ZdfLC60kGNYqNZwp0+fBgAEBwdX2C4iIgJbt27FtGnT8Msvv+D7778HUPbt93//+9/Kh8UdVb9+/Srla+959evXx7Fjx3Dx4kWnXm3LCgoKAACNGjWqUl7y55fs5SdfMbX1OSd/f3+rmFyAOfIFCDl386teMlv5yPfz+/PPP21e4ZUVFRVVuu+qcrTPFfVNq9U6PNf33nsvVqxYgffeew+ffPIJPvroI0iShH79+uH//u//lM+zObMOCgsLodFobB479evXhyRJLn2uTWZrrICy8XLmCzLyvH/00UcVtisqKkJQUJDT68pZQUFBFleJy29b3n9V9+vMXDo7NpVtZ+XKlcrnEu1tx5z5FXlzOp3O4S9VXrhwAaWlpRXet7mqx7Sr58eqcPSYrUxVx8Vda/yuu+5CXFwcmjdvjkcffRTbtm1zebs1Dd/6r+Hkb2B27ty50rZt27bFsmXLcOHCBWzZsgWvvfYazp49i/vuu6/CgseWqt6U/Ny5c3bjkiTBz88PAJRfgKWlpVZtbf0CDAgIAACcOnWqSnnJxYS9/M6ePWvRzp3kX3Lnz5+3esxWPnIOzz//PIQQdv+ZfyHHHmfH2VkV9c1oNDr1beyhQ4diw4YNyMvLw6+//opHHnkE69evx6BBg5Qrk86sA39/f5hMJmRnZ1s9dv78eQghLOa7useqMnIue/furXDe5be+nV1XzsrJybFZhMnbtlW8OXPecHYuAcfHprLtfPDBBxVuJzEx0eF+OMrf3x+BgYEV7jcrK6tK23b1/AhUbf07csxWpqrj4s4/nNG4cWO0atUKO3bswOXLl9223ZqChWoNdujQIXz//fcwGAy4++67HX6el5cXunbtiunTp2POnDkQQuDnn39WHpc/v+SO26GU98cff1jF/vrrL5w4cQJt2rRR3vaX356ydWKt6C3F1atXVymvli1bwtvb2+6JSH5B4OhVAGfExsYCsD02tmKdO3eGJEkOv6VYEWfH2VkV9W3Lli02f+lVxs/PD4MGDcL8+fMxZswYnDt3TrnK4cw6aN++PQDYvN2Orfmu7rECKj725G+aOzrvzq4rZ5WWltrMRd62PL5V5cxcOjs21b2dqu47NzdX+eiOO0VHR8Pf3x87duyo9DZU9riy/is6ZoGyItje75vqHBdnnDlzBpIkVXqnCrLGQrWG+vPPP5GQkIDi4mJMnjy50rd0du7cafNtTPnqh/nthOQvV5nfm9VdvvzyS+zZs0f5WQiBl19+GUaj0eLWJNHR0fDz88NPP/1k8afrzp07hzfeeMNqu507d0bnzp2xceNGfPrpp1aPV3YlQa/XY9SoUcjJycHMmTMtHktOTsaqVavQrFkz9OjRw9GuOuz++++HVqvFe++9Z3H1q7Cw0GZfGzRogBEjRmDz5s2YNWuWcg9cc9u2bXPolb98Jb78l4aWLVum3NPTFUOHDoW/vz+++OILHDp0SIlfu3bNqS/0bNy40eYvMnm85PX7j3/8A2FhYfj666+xatUqq/bm60C+KjZ9+nSLY6OgoEB5m9H8ylnHjh0hSRKWLFlicR/Sw4cPu+U2VkDFx97YsWPh5+eHV155Bfv377d6/PLly8pnLAHn11VVvPzyyygpKVF+PnnyJGbPng2DwYCRI0e6tG1njmlnx8aeLl26ID4+HosXL8Z3331n9bjJZHLLcWHLxIkTAZR9KdHWOw1nz56t8m3FdDodxo8fj4KCAkyaNMnqWCooKMClS5cq3IZ8rvjyyy8trqRv2bIF33zzjVV7R49ZoGzdnzx50uZ+q3NczJ05c8bm7wkhBKZNm4Zz586hf//+MBgMLu+rpuFnVG9xR44cUT7UX1JSovwJ1b1790Kr1eLVV1916C3er776CvPmzUPv3r0RFRUFf39/HDhwAL/88gvq1auHsWPHKm1vu+02LFu2DMOHD8fgwYPh7e2N2NhY3HXXXS73JyEhAd26dcPIkSMRHByMtWvXIiUlBV27drW476Jer8fTTz+NGTNmoEOHDsq36P/3v/+hT58+Nr8w8c0336Bv37547LHH8NVXX6Fbt264evUq9u/fj9TU1ErfZn777bexYcMGvPHGG9i8eTPi4+Nx7NgxLF26FLVq1cKCBQtsfibPVc2aNcNrr72GqVOnIiYmBiNGjIBOp8MPP/yAmJgYm3cO+Pjjj5GRkYEXX3xR6WtAQABOnDiBlJQUHD58GGfOnKnwz8QCZYVkVFQUFi5ciBMnTqB9+/ZIT0/H77//jjvuuAO//PKLS32rU6cO5syZgzFjxqBz584YOXIk6tSpg59//hk+Pj4Wd0uoyMSJE3H69Gn07NkTERERkCQJmzZtwvbt29G1a1fl/rYGgwHff/89Bg0ahMGDB2PQoEGIjY1FYWEh0tLScPnyZeXqT+/evfH000/jgw8+QNu2bTF8+HAIIfDDDz/g5MmTmDhxInr37q3kEBoailGjRuHbb79Fx44dMWjQIJw/fx7Lly/HoEGD8MMPP7g0VkDFx15wcDAWL16Me++9F7GxsRg0aBBatmyJ4uJiHDt2DBs2bED37t2RnJwMoGrryhkNGzZEUVERYmJicNdddyn3Uc3NzcWcOXPc8nlIR49pZ8emIosXL0a/fv0wcuRIvP/+++jQoQN8fHxw/PhxbNmyBdnZ2S7/wQRbBg0ahClTpuD1119Hs2bNMGjQIISHhyM3NxdHjhzBH3/8gTfeeAOtWrWq0vb//e9/Y+vWrfjqq6+wdetWDB48GAaDAZmZmUhOTsamTZsqfMeoa9eu6NGjB37//Xd069YNvXv3xl9//YUff/wRd911F5YvX27R3tFjFihb999//z2GDRuG9u3bQ6vV4h//+AdiYmKqfVxkGRkZuP3229G1a1c0b94c9evXR05ODv744w9kZGQgNDS00s9Akx3uv+MVqYH5/Urlfz4+PqJhw4aiX79+YsqUKeLIkSM2n2vr/npbt24V48ePF23bthUBAQHCx8dHNG/eXDz11FPir7/+snj+tWvXxIsvviiaNGkidDqdxT1L7d3D1FxF91Fdt26d+PTTT0WbNm2EwWAQDRs2FJMmTRKFhYVW2zEajWLatGmicePGQq/XixYtWojZs2eLzMxMuzmcPXtWTJo0SURGRgq9Xi/q1asn4uPjxXvvvWfRDnbu25ednS0mTpwowsPDhZeXlwgKChL//Oc/xd69e63aOnsP0sp8+umnonXr1kKv14uwsDDxwgsviMuXL9vN9fLly+Kdd94RHTt2FL6+vsLHx0c0bdpUDBs2THz55Zfi2rVrDu03KytLDBs2TPj5+QlfX1/Rv39/sWPHjgrvo+rM/W2FEGL58uWiY8eOwmAwiJCQEPHII4+ICxcuVLpWZEuWLBEjRowQUVFRolatWqJOnToiNjZWvP322xb3f5QdOXJEPPzwwyIsLEx4eXmJkJAQ0bdvX/Hll19atf3iiy9E586dRa1atUStWrVE586dxRdffGFzrC5fviwmTpwo6tevLwwGg4iJiRHffPNNhfdRtXd/SFt9r+jYkx08eFA8/PDDIjw8XOj1elG3bl3Rrl07MXHiRLF9+3ar/Ti7rhwh537hwgXx2GOPKeMRGxsrvv32W6v2lR0PFa0rR49pIZwfG3suXLggXn31VdG2bVvh4+MjateuLZo3by7uv/9+8d///tfmWNhS0X1x7VmzZo246667RHBwsPDy8hINGjQQ3bp1E6+//ro4fvy40s7Z+6gKUXaf4XfffVfExcUp/WrdurV4/vnnRV5eXqV55+TkiIceekjUq1dP+Pj4iK5du4pVq1bZvI+qM8fsmTNnxIgRI0RQUJDQaDQ271fs6LhUdL/jipw5c0a8+OKLIj4+XgQHBwudTif8/PxEhw4dxJQpU6zuN06Ok4Sw8b4fERFRNZH/HKW9P5lLRCTjZ1SJiIiISJVYqBIRERGRKvHLVERE5JIVK1Y49Fe4+vbta/MveRER2cNClYiIXLJixQosWrTIobZ9+/blZ1OJyGH8MhURERERqdItdUXVZDLh9OnT8PPzc+ufPyMiIiIi9xBC4OLFiwgNDa30/uK3VKF6+vRpNG7c2NNpEBEREVElTpw4gbCwsArb3FKFqp+fH4Cyjvv7+3s4m5vLtWvXsHr1agwcOBBeXl6eTuemx/F0L46ne3E83Yvj6V4cT/dT25gWFhaicePGSt1WkVuqUJXf7vf392eh6qRr166hVq1a8Pf3V8UivtlxPN2L4+leHE/34ni6F8fT/dQ6po58TJP3USUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpkuoK1VOnTuHBBx9EYGAgfHx80K5dO6SkpHg6LSIiIiK6wXSeTsBcXl4eevTogX79+uHXX39FcHAwDh8+jLp163o6NSIiIiK6wVRVqL799tto3LgxFixYoMSaNm3qwYyIiIiIyFNUVaj+9NNPSEhIwL333osNGzagUaNGePLJJ/Hoo4/abF9cXIzi4mLl58LCQgBAaWkpSktLAQAajQYajQYmkwkmk0lpK8eNRiOEEJXGtVotJElStmseBwCj0ehQXKfTQQhhEZckCVqt1ipHe/Hq6JOcj9FohE6n82ifjh8/jpycHKW9JEkQQljkXlncfNtyHIBFWzkeFBSERo0aubVP5s/j2nO9T/JzjUajMpc3e588PU/m43mr9MlT82Q+nl5eXrdEnyrLvTr7ZL7/W6VPco6enCd5W+bHvKf6VL59RVRVqGZmZmLu3Ll47rnn8PLLL2PHjh2YOHEi9Ho9EhMTrdrPnDkT06dPt4qnpqbC19cXABAcHIyoqChkZWUhOztbaRMWFoawsDAcOnQIBQUFSjwyMhIhISHYt28frly5osRbtmyJgIAApKamWgx8TEwM9Hq91edoO3XqhJKSEuzZs0eJabVadO7cGQUFBTh48KAS9/HxQWxsLHJycpCZmanE69Spg1atWuH06dM4efKkEq+OPsmLJjU1FbGxsR7r065du/DT//4H099j/Mcff2Djxo0YNWoUIiMjlfYrV65EWloaxo8fj6CgICW+ePFiZGZmIikpCXq9XonPmzcPhYWFSEpKsujTrFmzEFK/Pr5ctAg+Pj5u65P5gcy153qf4uLiAJStT7lQvdn75Ml5Onr0qMV43gp98uQ8ycd7eno62rdvf0v0SeaJeTI/f94qfQI8O09nzpxRxlOSJI/3KTU1FY6SRPlLTB6k1+vRqVMnbN68WYlNnDgRO3bswJYtW6za27qi2rhxY+Tm5sLf3x/ArfNKqLpf3ZWWlmLVqlVISEiAwWDwWJ927tyJ7t27Y/jU2QiOaAYBQECCBpbL1F68bIv24tbfHjybdQRLpzyJ7du3K8WQO/okj+cdd9xh8WrWvK9ce473yWQy4ddff0VCQoJyxf9m75Mn5+nq1avK8a7T6W6JPnlynszPn97e3rdEnyrLvTr7ZH7+NH8H5Wbuk5yjp+apuLgYycnJVse8p/qUl5eHwMBAFBQUKPWaPaq6otqwYUO0bt3aItaqVSv88MMPNtsbDAalqDKn0+ksfpkB1we5PHnQHI2X325V4pIk2Yzby9HZeFX6JC88edHZy91e3F19kiQJJSUlCIxojoatYm3u351MKPv4gEajscrflT7ZOsDL49pzPPdr164p23HnPDkSv5Xnqfx43gp9cjTuzj6Znz+rkrsa++RojtXRJ/Pz563Sp8pydDZelT7JOZk/T019skdVt6fq0aMHMjIyLGKHDh1CeHi4hzIiIiIiIk9RVaH67LPPYuvWrZgxYwaOHDmCb7/9FvPnz8eECRM8nRoRERER3WCqKlQ7d+6M5cuXY/HixWjbti1ef/11vP/++3jggQc8nRoRERER3WCq+owqANx555248847PZ0GEREREXmYqq6oEhERERHJWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqpqlCdNm0aJEmy+NeyZUtPp0VEREREHqDzdALltWnTBr/99pvys06nuhSJiIiI6AZQXRWo0+nQoEEDT6dBRERERB6mukL18OHDCA0Nhbe3N7p164aZM2eiSZMmNtsWFxejuLhY+bmwsBAAUFpaitLSUgCARqOBRqOByWSCyWRS2spxo9EIIUSlca1WC0mSlO2axwHAaDQ6FNfpdBBCWMQlSYJWq7XK0V68Ovok52M0GpWr2J7okxACer0eGghIJiOEJAGSBpIwAWa5C0kDSJL9uMkyRyGVfcpFEiZYEpAkCSaTyWJuXe2T+fO49lzvk/xco9EISZJuiT55ep7Mx/NW6ZOn5sl8PL28vG6JPlWWe3X2yXz/t0qf5Bw9OU/ytsyPeU/1qXz7iqiqUI2Pj8fChQsRHR2NM2fOYPr06ejVqxf27dsHPz8/q/YzZ87E9OnTreKpqanw9fUFAAQHByMqKgpZWVnIzs5W2oSFhSEsLAyHDh1CQUGBEo+MjERISAj27duHK1euKPGWLVsiICAAqampFgMfExMDvV6PlJQUixw6deqEkpIS7NmzR4lptVp07twZBQUFOHjwoBL38fFBbGwscnJykJmZqcTr1KmDVq1a4fTp0zh58qQSr44+yYsmNTUVsbGxHuvTpUuXkJSUhAjDVXjnZKDQNxiFvsEILDgB75IipX2eX0MU+dRF/bws6Eqvv1jJCWiCq/raCL1wGJLZwXe2XhSMGh0a5WRY9Ok0gMDAQOTm5ir9dUefzA9krj3X+xQXFwegbH3KherN3idPztPRo0ctxvNW6JMn50k+3tPT09G+fftbok8yT8yT+fnzVukT4Nl5OnPmjDKekiR5vE+pqalwlCTMV4TK5OfnIzw8HO+99x4efvhhq8dtXVFt3LgxcnNz4e/vD+DWeSVU3a/uSktLsWrVKiQkJMBgMHisTzt37kT37t3x+IKVCI1uV+1XVE9m7MVHDw7E9u3blWLIHX2Sx/OOO+6weDVb0XzU1LXnSO4mkwm//vorEhISLD63fjP3yZPzdPXqVeV41+l0t0SfPDlP5udPb2/vW6JPleVenX0yP3+av4NyM/dJztFT81RcXIzk5GSrY95TfcrLy0NgYCAKCgqUes0eVV1RLS8gIAAtWrTAkSNHbD5uMBiUosqcTqez+hKWPMjlyYPmaNzel7uciUuSZDNuL0dn41Xpk7zw5EVnL3d7cXf1SZIklJSUwAQJQnM937IC1DoXu3GN7b4KqXxcghACGo3GKn9X+mTrAC+Pa8/x3K9du6Zsx53z5Ej8Vp6n8uN5K/TJ0bg7+2R+/qxK7mrsk6M5VkefzM+ft0qfKsvR2XhV+iTnZP48NfXJHlXdnqq8S5cu4ejRo2jYsKGnUyEiIiKiG0xVheoLL7yADRs24NixY9i8eTPuvvtuaLVajBo1ytOpEREREdENpqq3/k+ePIlRo0YhNzcXwcHB6NmzJ7Zu3Yrg4GBPp0ZEREREN5iqCtUlS5Z4OgUiIiIiUglVvfVPRERERCRjoUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqqTaQvWtt96CJEl45plnPJ0KEREREXmAKgvVHTt2YN68eYiJifF0KkRERETkIaorVC9duoQHHngAn376KerWrevpdIiIiIjIQ3SeTqC8CRMmYMiQIRgwYADeeOONCtsWFxejuLhY+bmwsBAAUFpaitLSUgCARqOBRqOByWSCyWRS2spxo9EIIUSlca1WC0mSlO3KTp06hZycHIu2ACBJEgBYxTUaDYQQFnFJkiBJksPxoKAgREREuLVPRqMRAGA0GqHT6ZT/NqfVam3GdTodhBAWcUmSoNVqrXK0F5dzFEJAr9dDAwHJZISQJEDSQBImwCx3IWkASbIfN1nmKKSy12SSMMGSgCRJMJlMFnPrap/Mn1dda8/efNyIeaqsTydPnkROTk6la9t8G3IcsD5u5J9TU1Oh0Vx/fS2vmcDAQISFhVVrnyqL32zzJO9bkqRbpk+emifz8fTy8rol+lRZ7tXZJ/P93yp9knP05DzJ2zI/5j3Vp/LtK6KqQnXJkiXYtWsXduzY4VD7mTNnYvr06Vbx1NRU+Pr6AgCCg4MRFRWFrKwsZGdnK23CwsIQFhaGQ4cOoaCgQIlHRkYiJCQE+/btw5UrV5R4y5YtERAQgNTUVGXgr1y5gocSE3H+3DkkJSVZ5DBr1iz4+/tj/PjxSqykpASzZs1CZGQkRo0apcRzcnIwb948xMXFYciQIUo8MzMTixcvRu/evdGrVy8lvv/AAcx+/31cu3bNbX2SF01qaipiY2Oh1+uRkpJi0adOnTqhpKQEe/bsUWJarRadO3dGQUEBDh48qMR9fHwQGxuLnJwcZGZmKvE6deqgVatWOH36NE6ePKnE5Xm6dOkSkpKSEGG4Cu+cDBT6BqPQNxiBBSfgXVKktM/za4gin7qon5cFXen1Fys5AU1wVV8boRcOQzI7+M7Wi4JRo0OjnAyLPp0GEBgYiNzcXKW/7uiT+YFcHWsPAGJiYjw2TxX16ezZs1i3fj1MRiNWrlyJtLQ0jB8/HkFBQUr7xYsXIzMzE0lJSdDr9Up83rx5KCwstDqePvzwQyxatAg///yzclI1P54eePBB9OvbFz4+PtXSp1ttno4ePQqg7HiXJOmW6JMn50k+3tPT09G+fftbok8yT8yT+fnzVukT4Nl5OnPmjDKekiR5vE+pqalwlCTKX7rwkBMnTqBTp05Ys2aN8tnUvn37Ii4uDu+//77N59i6otq4cWPk5ubC398fQPW+EkpLS0OXLl1w7+sfo0HTZha5yXsq/9kKEyQAwmZcgoBUSTz72BEsnfo0tm3bhri4OLf1qbS0FKtWrUJCQgIMBgMAz7xi3blzJ7p3747HF6xEaHS7ar+iejJjLz56cCC2b9+OuLg4t/VJHs877rjD4tVsRfOh1lfhzl5ZSE1NRY8ePTB86mwERTSDgAQNLE8zZc+0F7c+biQI9PO9jA1FtWA0O0pMkJCddRjL/z0Jf/75J+Li4mrs1RJn+nT16lXleNfpdLdEnzw5T+bnT29v71uiT5XlXp19Mj9/yu+y3Ox9knP01DwVFxcjOTnZ6pj3VJ/y8vIQGBiIgoICpV6zRzVXVHfu3Inz58+jQ4cOSsxoNGLjxo348MMPUVxcrHRQZjAYlKLKnE6nU96+lsmDXF75bVYWN9+u/LZjSNPmaNgq1n7n3MgEyepjDeVVpU/ywpMXnRy31748SZJsxu3laC8uSRJKSkpgggShuZ5vWQFqnYvduMZ2X4VUPl72trRGo7HK35U+2TrAy3Nl7VU17q55qqhPGo0GJSUlCIxojlA3HRcaUylwchsaRLeDSWOdf0lJidUcurNPttzs8yT/v/l+boU+ORp3Z5/Mz59VyV2NfXI0x+rok/n581bpU2U5OhuvSp/knBw5T3qiT/aoplDt378/9u7daxEbO3YsWrZsiX/96192B4eIiIiIbk2qKVT9/PzQtm1bi5ivry8CAwOt4kRERER061Pd7amIiIiIiAAVXVG1Zf369Z5OgYiIiIg8hFdUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFTJ5W/9nz17Fp9//jl27dqFgoICiz/FBZT99YS1a9e6uhsiIiIiqmFcKlT37NmDvn374sqVK4iOjsbevXvRunVr5Ofn49SpU4iKikLjxo3dlSsRERER1SAuvfU/efJk1K5dGxkZGfjtt98ghMDs2bNx4sQJfPfdd8jLy8Nbb73lrlyJiIiIqAZxqVD9888/MX78eDRp0gQaTdmm5Lf+7733XjzwwANISkpyPUsiIiIiqnFcKlRNJhPq168PAAgICIBWq8WFCxeUx9u1a4edO3e6liERERER1UguFapNmzZFVlZW2YY0GjRt2hS//fab8vjmzZsREBDgUoJEREREVDO5VKgOHDgQS5cuVX5+4okn8Nlnn2HAgAHo378/Fi1ahPvvv9/lJImIiIio5nHpW/+vvPIKRo0ahWvXrsHLywvPPPMMioqK8MMPP0Cr1WLKlCl4+eWX3ZUrEREREdUgLhWqdevWRceOHZWfJUnCq6++ildffdXlxIiIiIioZuNfpiIiIiIiVXLqiuq4ceMgSRLmz58PrVaLcePGVfocSZLw+eefVzlBIiIiIqqZnCpUf//9d2g0GphMJmi1Wvz++++QJKnC51T2OBERERGRLU4VqseOHavwZyIiIiIid+FnVImIiIhIlVwqVHft2oWPP/7Y7uMff/wx0tLSXNkFEREREdVQLhWqr7zyisVfoirv999/562qiIiIiKhKXCpUd+7ciV69etl9vFevXkhJSXFlF0RERERUQ7lUqF68eBE6nf3vY2k0GhQUFLiyCyIiIiKqoVwqVJs3b47Vq1fbfTw5ORmRkZGu7IKIiIiIaiiXCtWHH34YK1euxHPPPYf8/Hwlnp+fj2effRbJycl4+OGHXc2RiIiIiGogp+6jWt7EiRORlpaG999/H3PmzEFoaCgA4PTp0zCZTBg9ejSeffZZtyRKRERERDWLS4WqJElYsGABHnroIfzwww/IzMwEAAwdOhTDhw9H37593ZEjEREREdVALhWqsn79+qFfv37u2BQREREREQD+ZSoiIiIiUimXClUhBObNm4cuXbogKCgIWq3W6l9Ft68iIiIiIrLHpSryxRdfxHvvvYe4uDg8+OCDqFu3rrvyIiIiIqIazqVCddGiRRg+fDi+//57d+VDRERERATAxbf+r1y5ggEDBrgrFyIiIiIihUuFav/+/bFjxw535UJEREREpHCpUP3444+xdetWzJgxA7m5ue7KiYiIiIjItUI1OjoamZmZmDJlCkJCQuDr6wt/f3+Lf3Xq1HFXrkRERERUg7j0Zarhw4dDkiR35UJEREREpHCpUF24cKGb0iAiIiIissS/TEVEREREquRyoXr8+HE8/vjjiI6ORt26dbFx40YAQE5ODiZOnIjU1FSXkyQiIiKimselt/4PHDiAXr16wWQyIT4+HkeOHEFpaSkAICgoCJs2bUJRURE+//xztyRLRERERDWHy39CNSAgAFu3boUkSQgJCbF4fMiQIfjuu+9cSpCIiIiIaiaX3vrfuHEjnnjiCQQHB9v89n+TJk1w6tQpV3ZBRERERDWUS4WqyWRCrVq17D6enZ0Ng8Hgyi6IiIiIqIZyqVDt0KEDVq5cafOx0tJSLFmyBF27dnVlF0RERERUQ7lUqL700ktITk7GE088gX379gEAzp07h99++w0DBw5Eeno6Jk+e7JZEiYiIiKhmcenLVIMHD8bChQsxadIkzJ8/HwDw4IMPQggBf39/fPnll+jdu7dbEiUiIiKimsWlQhUARo8ejXvuuQerV6/GkSNHYDKZEBUVhYSEBPj5+bkjRyIiIiKqgVwuVAHA19cXd999tzs2RUREREQEwMVC9fjx4w61a9KkiSu7ISIiIqIayKVCNSIiwub9U8szGo2u7IaIiIiIaiCXCtUvvvjCqlA1Go04duwYvvzyS4SEhGDChAkOb2/u3LmYO3cujh07BgBo06YNXnvtNQwePNiVNImIiIjoJuRSoTpmzBi7j/3rX/9CfHw8CgoKHN5eWFgY3nrrLTRv3hxCCCxatAhDhw5Famoq2rRp40qqRERERHSTccuXqWzx9fXF2LFj8Z///AcTJ0506Dl33XWXxc9vvvkm5s6di61bt9osVIuLi1FcXKz8XFhYCKDsjw2UlpYCADQaDTQaDUwmE0wmk9JWjhuNRgghKo1rtVpIkqRsFyj7y1xlV5QFJJPlxxuEVHaLWkmYLOMaLSCEZVySytrbjZsg/Z2LBgI6nU7Zv7v6JH88w2g0Ktsv/5ENrVZrM67T6SCEsIhLkgStVmuVo724nKMQAnq9Hpq/x1RIEiBpysbFLHchaQBJsh93cD4AAUmSYDKZLObW1T6ZP6861p4cL7+viuLunKeK+mQymZQ5hBDumae/nyuZjJBw/V0codECKFsz6enpyjEpSRKEEBbj6M54SUkJ9Hq9zfbm4yLHy7ogHIrLx4F5PCgoCBEREW6dJ6BsjUiSdMusPU8dT+bj6eXldUv0qbLcq7NP5vu/Vfok5+jJeZK3ZX7Me6pP5dtXpNoKVaDsF/TZs2er9Fyj0YilS5eiqKgI3bp1s9lm5syZmD59ulU8NTUVvr6+AIDg4GBERUUhKysL2dnZSpuwsDCEhYXh0KFDFld9IyMjERISgn379uHKlStKvGXLlggICEBqaqoy8AUFBQgMDIQGQKOcDIscTgVFQ2sqRYMLR5WY0GhwKqglvK8VISj/+hfRSnUGnK0XBd+r+ah78YwSv6r3RU5AOPwv58K/qCz3QMNVJCQkAIBb+yQvmtTUVMTGxkKv1yMlJcWiT506dUJJSQn27NmjxLRaLTp37oyCggIcPHhQifv4+CA2NhY5OTnIzMxU4nXq1EGrVq1w+vRpnDx5UonL83Tp0iUkJSUhwnAV3jkZKPQNRqFvMAILTsC7pEhpn+fXEEU+dVE/Lwu60usvVnICmuCqvjZCLxyGZHbwna0XBaNGZzVPpwEEBgYiNzdX6a87+mR+IFfH2gOAmJgYj81TRX3Kzc1V5vDK1Xy3zNOZelEAgNALRyD+LlTl40lTmIOkpCSkp6cjPT0dOTk5mDdvHuLi4jBkyBBlG5mZmVi8eDF69+6NXr16KfG0tDSsXLkSQ4YMQVxcnBL/448/sHHjRowaNQqRkZFKfOXKldi9Zw8ee/RRBAUFKfHFixcjMzMTSUlJ0Ov1SnzevHkoLCxEUlKSRZ9mzZoFf39/jB8/XomVlJRg1qxZiIyMxKhRo5R4fn4+XnzxRXh7e7tlno4eLTsvpaamQpKkW2bteep4ko/39PR0tG/f/pbok8wT82R+/rxV+gR4dp7OnDmjjKckSR7vU2pqKhwlifIv592gsLAQGzduxLhx49CsWTNs3rzZ4efu3bsX3bp1w9WrV1G7dm18++23uOOOO2y2tXVFtXHjxsjNzYW/vz+A6n0llJaWhi5dumDC16sRFt3OIrfquqJ6OmMvPk4cjG3btiEuLs5tfSotLcWqVauQkJAAg8EAwDOvWHfu3Inu3bvj8QUrERrdrtqvqJ7M2IuPHhyI7du3WxQprvZJHs877rjD4tVsRfOh1lfhzl5ZSE1NRY8ePfD4gpVo2DLWLfMkCROiT23HodBOMGmuv74WGi3SflmG5f+ehOFTZyM4ohkAwAQJklLSXmcrLgCICuIaWJ4iD27+Has/momRb85FyN/7K9s2ABvt5Z6U/zOA9uNl79LI8exjR7Bs2kRs3brV6piv6jxdvXpVOd51Ot0ts/Y8dTyZnz+9vb1viT5Vlnt19sn8/Fn+ezA3a5/kHD01T8XFxUhOTrY65j3Vp7y8PAQGBqKgoECp1+xx6YqqRqOx+61/IQSaNGmCjz/+2KltRkdHIy0tDQUFBVi2bBkSExOxYcMGtG7d2qqtwWBQiipzOp1OefvaPFeNxvovxsqD5mjcfLvyW3SA9PdbkNaEZCMuSU7GNRB/D7MJktXHGhzNvaI+yQtPXnRy3F5769Qlm3F7OdqLy2+rmsqNaVlhY52L3bjD81H21q5Go7HK35U+2TrAy3Nl7VU17q55qqhPGo1GmUPIb2+7OE+SSSjtyz9HoOxKZGBEczRsFWtze+50NusIACDoBu3PBAnXrl0D4N55kv/ffD3c7GvPlhvRJ/PzZ1VyV2OfHM2xOvpkfv68VfpUWY7OxqvSJzmn8nWMWvpkj0uF6muvvWZVqEqShLp16yIqKgoDBw50KhkA0Ov1aNas7CpFx44dsWPHDsyePRvz5s1zJVUiIiIiusm4VKhOmzbNTWnYZzKZLN7eJyIiIqKawaVCtbS0FJcvX7b7+YLCwkLUqlXL4auqL730EgYPHowmTZrg4sWL+Pbbb7F+/XqsWrXKlTSJiIiI6CZk/cEEJ0ycOBHdu3e3+3iPHj3w/PPPO7y98+fP46GHHkJ0dDT69++PHTt2YNWqVbj99ttdSZOIiIiIbkIuXVFNTk7GQw89ZPfxf/7zn/j6668xe/Zsh7b3+eefu5IOEREREd1CXLqievr0aTRq1Mju46GhoTh16pQruyAiIiKiGsqlQjUwMBAZGRl2H09PT6/0/lhERERERLa4VKgOGjQI8+bNs/kXBnbt2oX58+dj8ODBruyCiIiIiGoolz6j+vrrryM5ORldunTBP/7xD7Rp0wYAsG/fPvzvf/9DSEgIXn/9dbckSkREREQ1i0uFamhoKFJSUjB58mT8+OOPWL58OQDA398fDzzwAGbMmIHQ0FC3JEpERERENYtLhSoANGzYEIsWLYIQAtnZ2QCA4OBgu39alYiIiIjIES4XqjJJkmAwGFC7dm0WqURERETkMpe+TAUAKSkpGDRoEGrVqoXAwEBs2LABAJCTk4OhQ4di/fr1ru6CiIiIiGoglwrVzZs3o2fPnjh8+DAefPBBmEwm5bGgoCAUFBRg3rx5LidJRERERDWPS4Xqyy+/jFatWuHAgQOYMWOG1eP9+vXDtm3bXNkFEREREdVQLhWqO3bswNixY2EwGGx+LrVRo0Y4e/asK7sgIiIiohrKpULVy8vL4u3+8k6dOoXatWu7sgsiIiIiqqFcKlS7du2KZcuW2XysqKgICxYsQJ8+fVzZBRERERHVUC4VqtOnT0dKSgqGDBmCX3/9FQCwe/dufPbZZ+jYsSOys7MxZcoUtyRKRERERDWLS/dRjY+Pxy+//IInnngCDz30EADg+eefBwBERUXhl19+QUxMjOtZEhEREVGNU+VCVQiBixcvonv37sjIyEBaWhoOHz4Mk8mEqKgodOzYkTf+JyIiIqIqq3KhWlJSgnr16mHGjBl48cUXERcXh7i4ODemRkREREQ1WZU/o2owGNCgQQMYDAZ35kNEREREBMDFL1ONGTMGX375JUpKStyVDxERERERABe/TNWuXTusWLECbdq0wZgxYxAREQEfHx+rdvfcc48ruyEiIiKiGsilQnXUqFHKf9u7DZUkSTAaja7shoiIiIhqIKcL1ZdffhkjR45ETEwM1q1bVx05ERERERE5X6i+9dZbaNu2LWJiYtCnTx/k5uYiJCQEa9aswW233VYdORIRERFRDeTSl6lkQgh3bIaIiIiISOGWQpWIiIiIyN1YqBIRERGRKlXpW//Hjh3Drl27AAAFBQUAgMOHDyMgIMBm+w4dOlQtOyIiIiKqsapUqE6ZMsXqdlRPPvmkVTshBG9PRURERERV4nShumDBgurIg4iIiIjIgtOFamJiYnXkQURERERkgV+mIiIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqZKqCtWZM2eic+fO8PPzQ0hICIYNG4aMjAxPp0VEREREHqCqQnXDhg2YMGECtm7dijVr1uDatWsYOHAgioqKPJ0aEREREd1gOk8nYC45Odni54ULFyIkJAQ7d+5E7969rdoXFxejuLhY+bmwsBAAUFpaitLSUgCARqOBRqOByWSCyWRS2spxo9EIIUSlca1WC0mSlO0CgMlkgiRJAAQkk9EiNyGVvQaQhMkyrtECQljGJamsvd24CdLfuWggoNPplP27q09GY1n+RqNR2b4cM29vK67T6SCEsIhLkgStVmuVo724nKMQAnq9Hpq/x1RIEiBpysbFLHchaQBJsh93cD4AAUmSkJ6ebpWPEMJivCRJgiRJDsXlbe3evVt5TBYcHIzw8HCX1p4cBzwzTxWtPZPJpMwhhHDPPP39XMlkhATpelijhQRYrBlnjqeyfZatMXvx8rnLe9eUO+6d7ZOj5wgNBLy8vJCenu7SmjSPy2sgNTUVGo3Gqn1QUBDCwsJu6No7efIkcnJyqtwnZ+P16tVDWFiYW/pkfv708vKyeTydOnUK2dnZ1don830GBQUhPDy8yn0y37Yj5wh3zp/5+bO8st+5QGBgoEPzd6POezfDuVzeliRJHu9T+fYVUVWhWl5BQQEAoF69ejYfnzlzJqZPn24VT01Nha+vL4CyoiAqKgpZWVnIzs5W2oSFhSEsLAyHDh1S9gMAkZGRCAkJwb59+3DlyhUl3rJlSwQEBCA1NVUZ+IKCAgQGBkIDoFGO5UcUTgVFQ2sqRYMLR5WY0GhwKqglvK8VISj/uBIv1Rlwtl4UfK/mo+7FM0r8qt4XOQHh8L+cC/+istwDDVeRkJAAAG7tk7xoUlNTERsbC71ej5SUFIs+derUCSUlJdizZ48S02q16Ny5MwoKCnDw4EEl7uPjg9jYWOTk5CAzM1OJ16lTB61atcLp06dx8uRJJS7P06VLl5CUlIQIw1V452Sg0DcYhb7BCCw4Ae+S61fW8/waosinLurnZUFXev3FSk5AE1zV10bohcOQzA6+s/WiYNTorObpUO55BAUHIz09Henp6QCAkpISzJo1C5GRkRg1atT1befkYN68eYiLi8OQIUOUeGZmJhYvXozevXujV69eAMoO6o4dO6J379647bbbEBcXp7Tfum0bvvj8cxQVFVV57QFATEyMx+aporWXm5urzOGVq/lumacz9aIAAKEXjkD8XSrKx1OAt85izThzPAFAkU8A8vxCUffSWfheyVfi9tbe6dp6AEBzfTECzPJ0tk+OniPqSAUY9/DDePDBBx1aewCQlpaGlStXYsiQIRZr748//sDGjRsxevRoDB8+HD///DNMJhNWrlyJtLQ0jB8/HkFBQdBotejXty/at29/Q9be/v37sW79epiMxir3adSoUYiMjFTi5fskW7x4MTIzMzF58mQMHDgQPj4+LvdJ/sWdnp6O9u3bWx1PkiSh3223oXOnTtXap6SkJOj1ZetTo9XiodGjERERUe3niMOHDyvz544+mZ8/n3rqKaVPADBv3jwUFhbiX5Mno1/fvsr8efq8p/Zz+ZkzZefC1NRUSJLk8T6lpqbCUZIwL41VxGQy4R//+Afy8/OxadMmm21sXVFt3LgxcnNz4e/vD6B6XwmlpaWhS5cumPD1aoRFt7PIrbquqJ7O2IuPEwdj27ZtiIuLc1ufSktLsWrVKiQkJMBgMADwzJW6nTt3onv37nh8wUqERrer9iuqu5KXY+mUJzHyjY8RHNFMiZtQdqW8/GdjTJAgKaWS/bgWAn18L2NdkS9MuH4VLvvYEXz/2lPYvn07YmNjb4pX4c5eWUhNTUWPHj3w+IKVaNgy1i3zJAkTok9tx6HQTjBprr++Fhot0n5ZhuX/nqSsmeq+opqavBzfvfoEJn6zpmx/VeyTo+eI3auWY9m0ibh76hzUb9qs0rUHAAKAqCDuBRP6+F7GhqJaMEJS4hoIZB87gh+mT8Kff/6Jjh073pC1t2vXLvTo0QPDp85GcESzKvVJA8tfZfbiJgDns45gxb/L+igXU670yfz86e3tbXV87N69G506dcJ9b8xF/abXzzPu7BPM4vIcbt68GR06dKj2c4T5/AVFNHO5T+bnz/IFirPzxyuqZfHi4mIkJycjISEBOp3O433Ky8tDYGAgCgoKlHrNHtVeUZ0wYQL27dtnt0gFAIPBoBRV5nQ6nfL2tUwe5PLkQXM0br5d+e1hQCr75WKDkGzEJcnJuAbi7yPeBMnqYw2O5l5Rn+SFJy86OW6vvXXqks24vRztxSVJQklJCUzlxrSsCLDOxW7cifkQQiAwojkatoq1+Zyq0JhKgZPbEBrd1qKwMuH6266urL2qxt01TxWtPY1Go8wh/l5Lrs6TZBJK+/LPEYDNNePI8eRIvHzu8inaan/y486cC+zFzXI3CuDatWsIadocoW5ao/L6bBDdzmJ9AmX9KikpUT4SANyYtVdSUuL249C+630sn1NV+mR+/gSsjw95HIOb3pj+yXMov61+I84R8vy5Y43aO3+aZenU/N2I854tajuXyzmVr2PU0id7VFmoPvXUU/j555+xceNGi8+gEBEREVHNoapCVQiBp59+GsuXL8f69evRtGlTT6dERERERB6iqkJ1woQJ+Pbbb/Hjjz/Cz88PZ8+eBVD2YWD5A9NEREREVDOo6j6qc+fORUFBAfr27YuGDRsq/7777jtPp0ZEREREN5iqrqiq9AYEREREROQBqrqiSkREREQkY6FKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKqkqkJ148aNuOuuuxAaGgpJkrBixQpPp0REREREHqKqQrWoqAixsbH46KOPPJ0KEREREXmYztMJmBs8eDAGDx7scPvi4mIUFxcrPxcWFgIASktLUVpaCgDQaDTQaDQwmUwwmUxKWzluNBohhKg0rtVqIUmSsl0AMJlMkCQJgIBkMlrkJqSy1wCSMFnGNVpACMu4JJW1txs3Qfo7Fw0EdDqdsn939cloLMvfaDQq25dj5u1txXU6HYQQFnFJkqDVaq1ytBeXcxRCQK/XQ/P3mApJAiRN2biY5S4kDSBJ9uMOzoeck6bcHLo6Txb7Lzd/5uNY1bUnx+XtOBJ35zxVtPZMJpMyhxDCPfNkNq4SpOthjRYSYLFmnJmnsn2WrTF78fK5y3u3WjNO9snRc4RWAry8vJRxcFufzMbT/HjSoOwYTE9PhxACkiRZzHXZbqW/0xEOxeVj2zwuSRIkSYIQAgcPHrw+h8Lklnmq8BwBKH2U++ZKn+RtpKWlQavVWvU1IyOjbFtWa8aNfTJbe/IcynnciHPE9WPe5HKfzMfI9vFU1j+TyaScFz193quOc/mpU6eQk5Pj9PFkKy5vOzU1FRqNxmb7oKAgNGnSpFr7JMfLt6+IqgpVZ82cORPTp0+3iqempsLX1xcAEBwcjKioKGRlZSE7O1tpExYWhrCwMBw6dAgFBQVKPDIyEiEhIdi3bx+uXLmixFu2bImAgACkpqYqA19QUIDAwEBoADTKybDI4VRQNLSmUjS4cFSJCY0Gp4JawvtaEYLyjyvxUp0BZ+tFwfdqPupePKPEr+p9kRMQDv/LufAvKss90HAVCQkJAODWPsmLJjU1FbGxsdDr9UhJSbHoU6dOnVBSUoI9e/YoMa1Wi86dO6OgoAAHDx5U4j4+PoiNjUVOTg4yMzOVeJ06ddCqVSucPn0aJ0+eVOLyPF26dAlJSUmIMFyFd04GCn2DUegbjMCCE/AuKVLa5/k1RJFPXdTPy4Ku9PqLlZyAJriqr43QC4chmZ1QztaLglGjs5qn3RIQGBiIdn/vz13zJOH6gVz30ln4XskHUDZ/PXr0AACX1h4AxMTEeGyeKlp7ubm5yhxeuZrvlnk6Uy8KABB64QjE36WiPE8B3jqLNePMPAFAkU8A8vxCLeYJgN21d7q2HgDQXF+MALM8ne2To+cIv8Z14T9uHAC4rU/1Ck9bjKf58VRHKkBSUhLS09Px2muvITMzE0lJSdDr9cp25s2bh8LCQiQlJVn0adasWfD398f48eOVWElJCWbNmoXIyEiMGjXq+njl5GDevHmIi4vDkCFDlDlEwQm3zFNF54iLOecwadIkpKenIz093eU+aTQadOzYEYsWLcJHH32k9EkmH1sh2lKLdeDOPpmvvUDDVSQlJcFoNMJoNFb7OcL8mDdeOutyn8zPn7aOJw2ApKQk5ObmKn3z9HnP3efyK1eu4O577oGXTlel40mWmZmJxYsXo3///nj66afx888/w2QyIS0tDStXrsSQIUMQFxcHANBotbjn7rsRFxdX7b+fUlNT4ShJlC/VVUKSJCxfvhzDhg2z28bWFdXGjRsjNzcX/v7+AKr3lVBaWhq6dOmCCV+vRlh0O4vcquuK6umMvfg4cTC2bduGuLg4t/WptLQUq1atQkJCAgwGAwDPXKnbuXMnunfvjscXrERodLtqv6K6K3k5lk55Ek9/vRqhZnPo8pVvUylanE5BRlg8TJLGYv4+emgQtm/fjtjY2Fvyimpqaip69OiBxxesRMOWsW6ZJ0mYEH1qOw6FdoJJc/31tdBokfbLMiz/9yRlzVT3FdXU5OX47tUnMPGbNZZrppquqO5etRzLpk3E+IW/olHLGLf0SWssQYtTO5TxND+edif/Fz9Mn4ThU2cjMKIZgLJ3HMzJGZT/7Jj9eNk7T7biEgSObFmPtfNnlc1hy5hqv6Ka+usPWPHvsj4GRzRzuU9aCPTxvYwNRbVwDZqyK6dmbQ9tWYfkD2fg6W/WoJHFmqmeK6qnM/bik7FDsHnzZnTo0KHazxG7du0yO+ZjXO6T+fnTciTL2p86uBvzxw7Bn3/+qRRZnj7vuftcnpaWhs6dO2PEG3PRoGkzi/aVHU+SjbgOJvT9e40a/34pIMzaZx87gh+mT8LmzZvRsWPHar+impeXh8DAQBQUFCj1mj039RVVg8GgFFXmdDqd8va1TB7k8uRBczRuvl358jsglf1ysUFINuKS5GRcA/H3yjNBsvpYg6O5V9QneeHJi06O22tvnbpkM24vR3txSZJQUlICU7kxLTuZWediN+7EfAghrPb3dzJVnidh/ou93PzJB64ra6+qcXfNU0VrT6PRKHMI+W1TF+dJMgmlffnnCMDmmnFknhyJl89dnlmbawbOrT27cbPcjQK4du2aVdyR3CvsE6zHU0gaGEXZeAZGNEejVrE2c3a3c1lHrs/h37m5Ok+VxeU+NnRDHzWmUuDkNjSIbmfxQkp2NutIWS72fle4qU/ytk0oO4/Kb+/eiHPE9WO+4vlzpE/m50/bx1NZ/zQajVWunjrv2eLKuVzeT0jTG7NGzdcM4JnfT/ao6stUREREREQyFqpEREREpEqqeuv/0qVLOHLkiPJzVlYW0tLSUK9ePTRp0sSDmRERERHRjaaqQjUlJQX9+vVTfn7uuecAAImJiVi4cKGHsiIiIiIiT1BVodq3b1+r+4URERERUc3Ez6gSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhSoRERERqRILVSIiIiJSJRaqRERERKRKLFSJiIiISJVYqBIRERGRKrFQJSIiIiJVYqFKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhUiYUqEREREakSC1UiIiIiUiUWqkRERESkSixUiYiIiEiVWKgSERERkSqxUCUiIiIiVVJlofrRRx8hIiIC3t7eiI+Px/bt2z2dEhERERHdYKorVL/77js899xzmDp1Knbt2oXY2FgkJCTg/Pnznk6NiIiIiG4gnacTKO+9997Do48+irFjxwIAPvnkE6xcuRJffPEFJk+ebNG2uLgYxcXFys8FBQUAgAsXLqC0tBQAoNFooNFoYDKZYDKZlLZy3Gg0QghRaVyr1UKSJGW7AFBYWAgAOJW+B9cuX7LITX6mVK5/ApLyv+XjEgTKKx/PPZ4JrVaLnTt34uLFixY5SpIESZIghHAqLo/N5cuX8ccff0Cr1Zbt+++28vhJkmQRNx8zZ/dpL56RkQEvLy+cPXh9TB0dm7IYALtx6/nIPnYYACz2J2/blXnSQqCx7xVkpW6zaJ17PBMajaZK82e+fuU4YD0f5ePy/LlzniqKHzp0yGIO3TFP0t/j+VfqVhjNHhWQkHPssEtrxtl4zl9la+aM1Zpxrk+OniMuHD8KnU5n8zxT1T7pYLIaT7n9heNHlfEsuXypWvpUPkfzfdpbM1Xtq63cs22umar3ST7e/0rdilJorPZ54fgRAMBpm78r3NMn83nKPZ4JLy8vm+cZwP65o6rnCEeOeWf6ZO/8Kfc1+6/r/ZN/D9+I30+SJMFoNLq8HUfO5YcPl51nbNcXzv9+0lZwzAPX18zFixdRWFjoUm0kxwFYjJd5PC8vz6rP9kjCkVY3SElJCWrVqoVly5Zh2LBhSjwxMRH5+fn48ccfLdpPmzYN06dPv8FZEhEREZGrTpw4gbCwsArbqOqKak5ODoxGI+rXr28Rr1+/Pg4ePGjV/qWXXsJzzz2n/GwymXDhwgUEBgYqr1DIMYWFhWjcuDFOnDgBf39/T6dz0+N4uhfH0704nu7F8XQvjqf7qW1MhRC4ePEiQkNDK22rqkLVWQaDAQaDwSIWEBDgmWRuEf7+/qpYxLcKjqd7cTzdi+PpXhxP9+J4up+axrROnToOtVPVl6mCgoKg1Wpx7tw5i/i5c+fQoEEDD2VFRERERJ6gqkJVr9ejY8eOWLt2rRIzmUxYu3YtunXr5sHMiIiIiOhGU91b/8899xwSExPRqVMndOnSBe+//z6KioqUuwBQ9TAYDJg6darVRymoajie7sXxdC+Op3txPN2L4+l+N/OYqupb/7IPP/wQs2bNwtmzZxEXF4c5c+YgPj7e02kRERER0Q2kykKViIiIiEhVn1ElIiIiIpKxUCUiIiIiVWKhSkRERESqxEKViIiIiFSJhepNYu7cuYiJiVH+qkS3bt3w66+/Ko9fvXoVEyZMQGBgIGrXro3hw4db/eGE48ePY8iQIahVqxZCQkKQlJSE0tJSizbr169Hhw4dYDAY0KxZMyxcuNAql48++ggRERHw9vZGfHw8tm/fbvG4I7moyVtvvQVJkvDMM88oMY6nc6ZNmwZJkiz+tWzZUnmc4+m8U6dO4cEHH0RgYCB8fHzQrl07pKSkKI8LIfDaa6+hYcOG8PHxwYABA3D48GGLbVy4cAEPPPAA/P39ERAQgIcffhiXLl2yaLNnzx706tUL3t7eaNy4Md555x2rXJYuXYqWLVvC29sb7dq1wy+//GLxuCO5eFJERITV+pQkCRMmTADA9ekso9GIKVOmoGnTpvDx8UFUVBRef/11mH83m+vTORcvXsQzzzyD8PBw+Pj4oHv37tixY4fyeI0eT0E3hZ9++kmsXLlSHDp0SGRkZIiXX35ZeHl5iX379gkhhHj88cdF48aNxdq1a0VKSoro2rWr6N69u/L80tJS0bZtWzFgwACRmpoqfvnlFxEUFCReeuklpU1mZqaoVauWeO6558SBAwfEBx98ILRarUhOTlbaLFmyROj1evHFF1+I/fv3i0cffVQEBASIc+fOKW0qy0VNtm/fLiIiIkRMTIyYNGmSEud4Omfq1KmiTZs24syZM8q/7Oxs5XGOp3MuXLggwsPDxZgxY8S2bdtEZmamWLVqlThy5IjS5q233hJ16tQRK1asELt37xb/+Mc/RNOmTcWVK1eUNoMGDRKxsbFi69at4o8//hDNmjUTo0aNUh4vKCgQ9evXFw888IDYt2+fWLx4sfDx8RHz5s1T2vz5559Cq9WKd955Rxw4cEC8+uqrwsvLS+zdu9epXDzp/PnzFmtzzZo1AoBYt26dEILr01lvvvmmCAwMFD///LPIysoSS5cuFbVr1xazZ89W2nB9OmfEiBGidevWYsOGDeLw4cNi6tSpwt/fX5w8eVIIUbPHk4XqTaxu3bris88+E/n5+cLLy0ssXbpUeSw9PV0AEFu2bBFCCPHLL78IjUYjzp49q7SZO3eu8Pf3F8XFxUIIIV588UXRpk0bi33cd999IiEhQfm5S5cuYsKECcrPRqNRhIaGipkzZwohhEO5qMXFixdF8+bNxZo1a0SfPn2UQpXj6bypU6eK2NhYm49xPJ33r3/9S/Ts2dPu4yaTSTRo0EDMmjVLieXn5wuDwSAWL14shBDiwIEDAoDYsWOH0ubXX38VkiSJU6dOCSGE+Pjjj0XdunWVMZb3HR0drfw8YsQIMWTIEIv9x8fHi/Hjxzuci9pMmjRJREVFCZPJxPVZBUOGDBHjxo2ziN1zzz3igQceEEJwfTrr8uXLQqvVip9//tki3qFDB/HKK6/U+PHkW/83IaPRiCVLlqCoqAjdunXDzp07ce3aNQwYMEBp07JlSzRp0gRbtmwBAGzZsgXt2rVD/fr1lTYJCQkoLCzE/v37lTbm25DbyNsoKSnBzp07LdpoNBoMGDBAaeNILmoxYcIEDBkyxKrPHM+qOXz4MEJDQxEZGYkHHngAx48fB8DxrIqffvoJnTp1wr333ouQkBC0b98en376qfJ4VlYWzp49a9GPOnXqID4+3mJMAwIC0KlTJ6XNgAEDoNFosG3bNqVN7969odfrlTYJCQnIyMhAXl6e0qaicXckFzUpKSnB119/jXHjxkGSJK7PKujevTvWrl2LQ4cOAQB2796NTZs2YfDgwQC4Pp1VWloKo9EIb29vi7iPjw82bdpU48eThepNZO/evahduzYMBgMef/xxLF++HK1bt8bZs2eh1+sREBBg0b5+/fo4e/YsAODs2bMWJ1n5cfmxitoUFhbiypUryMnJgdFotNnGfBuV5aIGS5Yswa5duzBz5kyrxziezouPj8fChQuRnJyMuXPnIisrC7169cLFixc5nlWQmZmJuXPnonnz5li1ahWeeOIJTJw4EYsWLQJwfUwq62tISIjF4zqdDvXq1XPLuJs/XlkuarJixQrk5+djzJgxAHi8V8XkyZMxcuRItGzZEl5eXmjfvj2eeeYZPPDAAwC4Pp3l5+eHbt264fXXX8fp06dhNBrx9ddfY8uWLThz5kyNH09dtWyVqkV0dDTS0tJQUFCAZcuWITExERs2bPB0WjedEydOYNKkSVizZo3VK1iqGvlKCgDExMQgPj4e4eHh+P777+Hj4+PBzG5OJpMJnTp1wowZMwAA7du3x759+/DJJ58gMTHRw9nd3D7//HMMHjwYoaGhnk7lpvX999/jm2++wbfffos2bdogLS0NzzzzDEJDQ7k+q+irr77CuHHj0KhRI2i1WnTo0AGjRo3Czp07PZ2ax/GK6k1Er9ejWbNm6NixI2bOnInY2FjMnj0bDRo0QElJCfLz8y3anzt3Dg0aNAAANGjQwOqbo/LPlbXx9/eHj48PgoKCoNVqbbYx30ZluXjazp07cf78eXTo0AE6nQ46nQ4bNmzAnDlzoNPpUL9+fY6niwICAtCiRQscOXKE67MKGjZsiNatW1vEWrVqpXycQs61sr6eP3/e4vHS0lJcuHDBLeNu/nhluajFX3/9hd9++w2PPPKIEuP6dF5SUpJyVbVdu3YYPXo0nn32WeUdKq5P50VFRWHDhg24dOkSTpw4ge3bt+PatWuIjIys8ePJQvUmZjKZUFxcjI4dO8LLywtr165VHsvIyMDx48fRrVs3AEC3bt2wd+9ei4W8Zs0a+Pv7K78Qu3XrZrENuY28Db1ej44dO1q0MZlMWLt2rdLGkVw8rX///ti7dy/S0tKUf506dcIDDzyg/DfH0zWXLl3C0aNH0bBhQ67PKujRowcyMjIsYocOHUJ4eDgAoGnTpmjQoIFFPwoLC7Ft2zaLMc3Pz7e4IvP777/DZDIhPj5eabNx40Zcu3ZNabNmzRpER0ejbt26SpuKxt2RXNRiwYIFCAkJwZAhQ5QY16fzLl++DI3GsnzQarUwmUwAuD5d4evri4YNGyIvLw+rVq3C0KFDOZ7V8hUtcrvJkyeLDRs2iKysLLFnzx4xefJkIUmSWL16tRCi7JYmTZo0Eb///rtISUkR3bp1E926dVOeL99eZeDAgSItLU0kJyeL4OBgm7dXSUpKEunp6eKjjz6yeXsVg8EgFi5cKA4cOCAee+wxERAQYPFt2MpyUSPzb/0LwfF01vPPPy/Wr18vsrKyxJ9//ikGDBgggoKCxPnz54UQHE9nbd++Xeh0OvHmm2+Kw4cPi2+++UbUqlVLfP3110qbt956SwQEBIgff/xR7NmzRwwdOtTm7Wrat28vtm3bJjZt2iSaN29ucbua/Px8Ub9+fTF69Gixb98+sWTJElGrVi2r29XodDrx7rvvivT0dDF16lSbt6upLBdPMxqNokmTJuJf//qX1WNcn85JTEwUjRo1Um5P9d///lcEBQWJF198UWnD9emc5ORk8euvv4rMzEyxevVqERsbK+Lj40VJSYkQomaPJwvVm8S4ceNEeHi40Ov1Ijg4WPTv318pUoUQ4sqVK+LJJ58UdevWFbVq1RJ33323OHPmjMU2jh07JgYPHix8fHxEUFCQeP7558W1a9cs2qxbt07ExcUJvV4vIiMjxYIFC6xy+eCDD0STJk2EXq8XXbp0EVu3brV43JFc1KZ8ocrxdM59990nGjZsKPR6vWjUqJG47777LO75yfF03v/+9z/Rtm1bYTAYRMuWLcX8+fMtHjeZTGLKlCmifv36wmAwiP79+4uMjAyLNrm5uWLUqFGidu3awt/fX4wdO1ZcvHjRos3u3btFz549hcFgEI0aNRJvvfWWVS7ff/+9aNGihdDr9aJNmzZi5cqVTufiaatWrRIAbObF9emcwsJCMWnSJNGkSRPh7e0tIiMjxSuvvGJx2yOuT+d89913IjIyUuj1etGgQQMxYcIEkZ+frzxek8dTEsLsT0kQEREREakEP6NKRERERKrEQpWIiIiIVImFKhERERGpEgtVIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEt4xp06ZBkiSLWEREBMaMGeOZhG5CY8aMQURExA3f7/r16yFJEtavX3/D901E6sVClYjoJnPgwAFMmzYNx44d83QqRETVSufpBIiIqlNGRgY0mlvrNfmBAwcwffp09O3b1yNXP6tD7969ceXKFej1ek+nQkQqwkKViG5pBoPB0ylQBa5evQq9Xg+NRgNvb29Pp0NEKnNrXWYgIlWy97nH8p8plSQJTz31FFasWIG2bdvCYDCgTZs2SE5Otnrupk2b0LlzZ3h7eyMqKgrz5s2zue/yn1G9du0apk+fjubNm8Pb2xuBgYHo2bMn1qxZY/G8gwcPYsSIEQgODoaPjw+io6PxyiuvWLRJTU3F4MGD4e/vj9q1a6N///7YunVrhX2ULVy4EJIkWbx9HxERgTvvvBObNm1Cly5d4O3tjcjISHz55ZcWz7v33nsBAP369YMkSVaf7fz111/Rq1cv+Pr6ws/PD0OGDMH+/futcpDH2dvbG23btsXy5cttjmFl+vbti7Zt22Lnzp3o3r07fHx80LRpU3zyyScW7eTPoS5ZsgSvvvoqGjVqhFq1aqGwsNDuZ1S3bduGO+64A3Xr1oWvry9iYmIwe/ZsizYHDx7EP//5T9SrVw/e3t7o1KkTfvrppyr1hYjUhVdUiUhVNm3ahP/+97948skn4efnhzlz5mD48OE4fvw4AgMDAQB79+7FwIEDERwcjGnTpqG0tBRTp05F/fr1K93+tGnTMHPmTDzyyCPo0qULCgsLkZKSgl27duH2228HAOzZswe9evWCl5cXHnvsMURERODo0aP43//+hzfffBMAsH//fvTq1Qv+/v548cUX4eXlhXnz5qFv377YsGED4uPjq9T/I0eO4J///CcefvhhJCYm4osvvsCYMWPQsWNHtGnTBr1798bEiRMxZ84cvPzyy2jVqhUAKP//1VdfITExEQkJCXj77bdx+fJlzJ07Fz179kRqaqrygmH16tUYPnw4WrdujZkzZyI3Nxdjx45FWFhYlfLOy8vDHXfcgREjRmDUqFH4/vvv8cQTT0Cv12PcuHEWbV9//XXo9Xq88MILKC4utvt2/5o1a3DnnXeiYcOGmDRpEho0aID09HT8/PPPmDRpEoCyeejRowcaNWqEyZMnw9fXF99//z2GDRuGH374AXfffXeV+kNEKiGIiKpZYmKiCA8Pt4pPnTpVmJ+GAAi9Xi+OHDmixHbv3i0AiA8++ECJDRs2THh7e4u//vpLiR04cEBotVpR/rQWHh4uEhMTlZ9jY2PFkCFDKsy3d+/ews/Pz2L7QghhMpksctDr9eLo0aNK7PTp08LPz0/07t3bbh9lCxYsEABEVlaWRa4AxMaNG5XY+fPnhcFgEM8//7wSW7p0qQAg1q1bZ7HNixcvioCAAPHoo49axM+ePSvq1KljEY+LixMNGzYU+fn5Smz16tUCgM25qkifPn0EAPF///d/Sqy4uFjExcWJkJAQUVJSIoQQYt26dQKAiIyMFJcvX7bYhvyY3KfS0lLRtGlTER4eLvLy8izams9D//79Rbt27cTVq1ctHu/evbto3ry5U/0gIvXhW/9EpCoDBgxAVFSU8nNMTAz8/f2RmZkJADAajVi1ahWGDRuGJk2aKO1atWqFhISESrcfEBCA/fv34/DhwzYfz87OxsaNGzFu3DiL7QNQ3sI3Go1YvXo1hg0bhsjISOXxhg0b4v7778emTZtQWFjoeKfNtG7dGr169VJ+Dg4ORnR0tNL/iqxZswb5+fkYNWoUcnJylH9arRbx8fFYt24dAODMmTNIS0tDYmIi6tSpozz/9ttvR+vWrauUt06nw/jx45Wf9Xo9xo8fj/Pnz2Pnzp0WbRMTE+Hj41Ph9lJTU5GVlYVnnnkGAQEBFo/J83DhwgX8/vvvGDFiBC5evKj0Nzc3FwkJCTh8+DBOnTpVpf4QkTqwUCUiVSlfHAJA3bp1kZeXB6CskLxy5QqaN29u1S46OrrS7f/73/9Gfn4+WrRogXbt2iEpKQl79uxRHpcLwrZt29rdRnZ2Ni5fvmxzf61atYLJZMKJEycqzcWWyvpfEbn4vu222xAcHGzxb/Xq1Th//jwA4K+//gKAKo+hLaGhofD19bWItWjRAgCsbqPVtGnTSrd39OhRABXPw5EjRyCEwJQpU6z6O3XqVABQ+kxENyd+RpWIqp2tLxMBZVcmy9NqtTbbCiHckkvv3r1x9OhR/Pjjj1i9ejU+++wz/Oc//8Enn3yCRx55xC37MOdM3wHX+m8ymQCUfU61QYMGVo/rdOo45Vd2NdVRcn9feOEFu1fTmzVr5pZ9EZFnqOOsRUS3tLp16yI/P98qLl/Zc4b8LXxbb91nZGQ4tI169eph7NixGDt2LC5duoTevXtj2rRpeOSRR5S38vft21dhDrVq1bK5v4MHD0Kj0aBx48YAyvoOAPn5+RZvYVel7zJ7xa/8kYmQkBAMGDDA7vPDw8MBwKUxLO/06dMoKiqyuKp66NAhAKjSvV7lvuzbt89uX+S58vLyqrC/RHTz4lv/RFTtoqKiUFBQYPEW+5kzZ6p0OyStVouEhASsWLECx48fV+Lp6elYtWpVpc/Pzc21+Ll27dpo1qwZiouLAZQVob1798YXX3xhsX3g+lVNrVaLgQMH4scff7R4W/vcuXP49ttv0bNnT/j7+wO4XnBt3LhRaVdUVIRFixY50WtLcjFYvvhPSEiAv78/ZsyYgWvXrlk9Lzs7G0DZZ2nj4uKwaNEiFBQUKI+vWbMGBw4cqFJOpaWlFrcIKykpwbx58xAcHIyOHTs6vb0OHTqgadOmeP/99636Kc9DSEgI+vbti3nz5uHMmTNW25D7S0Q3L15RJaJqN3LkSPzrX//C3XffjYkTJyq3TGrRogV27drl9PamT5+O5ORk9OrVC08++SRKS0vxwQcfoE2bNhbFsC2tW7dG37590bFjR9SrVw8pKSlYtmwZnnrqKaXNnDlz0LNnT3To0AGPPfYYmjZtimPHjmHlypVIS0sDALzxxhtYs2YNevbsiSeffBI6nQ7z5s1DcXEx3nnnHWVbAwcORJMmTfDwww8jKSkJWq0WX3zxBYKDg60KYUfFxcVBq9Xi7bffRkFBAQwGA2677TaEhIRg7ty5GD16NDp06ICRI0cq+1m5ciV69OiBDz/8EAAwc+ZMDBkyBD179sS4ceNw4cIFZQwvXbrkdE6hoaF4++23cezYMbRo0QLfffcd0tLSMH/+fHh5eTm9PY1Gg7lz5+Kuu+5CXFwcxo4di4YNG+LgwYPYv3+/8qLko48+Qs+ePdGuXTs8+uijiIyMxLlz57BlyxacPHkSu3fvdnrfRKQiHr3nABHVGKtXrxZt27YVer1eREdHi6+//trm7akmTJhg9dzyt5gSQogNGzaIjh07Cr1eLyIjI8Unn3xi81ZQ5Z/7xhtviC5duoiAgADh4+MjWrZsKd58803lFkqyffv2ibvvvlsEBAQIb29vER0dLaZMmWLRZteuXSIhIUHUrl1b1KpVS/Tr109s3rzZKv+dO3eK+Ph4odfrRZMmTcR7771n9/ZUtm6d1adPH9GnTx+L2KeffioiIyOVW3KZ36pq3bp1IiEhQdSpU0d4e3uLqKgoMWbMGJGSkmKxjR9++EG0atVKGAwG0bp1a/Hf//7X7q3EKtKnTx/Rpk0bkZKSIrp16ya8vb1FeHi4+PDDDy3aybegWrp0qdU2yt+eSrZp0yZx++23Cz8/P+Hr6ytiYmIsblUmhBBHjx4VDz30kGjQoIHw8vISjRo1EnfeeadYtmyZU/0gIvWRhHDTNxSIiKhG6tu3L3Jycir8XC8RUVXwM6pEREREpEr8jCoREdl04cIFlJSU2H1cq9UiODj4BmZERDUNC1UiIrLpnnvuwYYNG+w+Hh4ebnUzfyIid+JnVImIyKadO3dW+BexfHx80KNHjxuYERHVNCxUiYiIiEiV+GUqIiIiIlIlFqpEREREpEosVImIiIhIlVioEhEREZEqsVAlIiIiIlVioUpEREREqsRClYiIiIhU6f8BHi03gHIANuQAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAHbCAYAAAA3anmPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWDUlEQVR4nO3deXhUhdXH8d+dyUrIAiEJW9giAorBGiBEBNkkUEqh0CJaFahVqygKCgWVzQW0tUC1oKIUq2/dwGLrFlRkKassQcACQgEBswgxCwSSkMx9//CZaSaZyU7CHb6f5+F5mHPv3HvOnJnk5M6dO4ZpmqYAAAAAi7E1dAIAAABATTDIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBdAgXnjhBRmGoWXLljV0KgAAi2KQBaph3bp1MgxDc+bMaZD9t2vXTu3atXOLzZkzR4ZhaN26dQ2SU1mGYahfv34VrvPll1/qkUce0axZs3TnnXfWT2IeVCXX+jB+/HgZhqFjx441dCrw4GK+7vv16yfDMOp8u8DlgkEWl51jx47JMAy3f40aNVLLli01cOBAzZo1S//9738vyr75pSVlZ2drzJgxuuWWWzR37tyGTuey5OkPIlweLpU/3p5//nkNGzZM7dq1U0hIiCIiItStWzfNmTNHP/zwQ0OnBwvxa+gEgIYSFxen2267TZJUWFio77//Xl9++aWefPJJzZs3T9OmTdPTTz/tNnj27NlT+/fvV7NmzRok5zVr1jTIfqtj//79atSokdflu3fv1n333afJkyfXY1YALiXOU4puvPFGNW/eXAUFBdq2bZvmzp2rv/71r/ryyy/VvHnzBs4SVsAgi8vWFVdc4fGtwo0bN+r222/X/PnzZbfb9eSTT7qWNWrUSJ07d67HLN3FxcU12L6rqrLHp3///urfv389ZQPgUrRt2zYFBQWVi8+cOVNPPfWU/vSnP+mPf/xjA2QGq+HUAqCMG264QSkpKQoMDNQf/vAHnThxwrXM27lyhw4d0oQJE9S+fXsFBgaqadOm6tatmx566CGZpinpx7f01q9f7/q/89/48eMl/e+Uh/Hjx2v//v36xS9+ocjISLdzJyt7S3jZsmW65pprFBQUpFatWmny5Mk6c+aM2zoVne9XOoeyvv/+ez388MPq1KmTgoOD1bRpUyUmJuq5555zW8/bW5enT5/WQw895HqMoqOjNWbMGO3bt6/cus5zRo8eParnn39enTt3VmBgoNq2bau5c+fK4XB4fQw8efXVV9W1a1cFBQUpNjZW06ZNU0FBgdf1z5w5o9mzZ+vqq69WcHCwIiIilJycrI0bN1Zrv6Zpavny5erTp48iIiLUqFEjdezYUffcc4+OHz9e4X1fe+01GYah1157rdwybz3ctWuXfvnLX6pNmzYKDAxUVFSUevTooaefflrS//r77bff6ttvv3V7Hpbd1oYNGzR8+HA1a9ZMgYGB6tixox5//HGdO3fOay6bN2/W4MGDFRERUeVTaL7//ntNnjxZV1xxhQIDA9WsWTONHj3a4/PC+fw/e/asHnzwQbVs2VKBgYGKj4/XypUrq7S/0v75z39q4MCBatKkiYKCgtS1a1c999xzKikpqfa2yioqKtLChQvVo0cPhYaGqnHjxrrqqqs0ZcoUZWdnV3jfis579/a8WLt2rYYOHep6TGJiYtSnTx8tXbpU0v/6JEnr1693633ZbVX1cSmdywcffKDevXsrNDS0SqeteBpiJelXv/qVJOnw4cOVbgOQOCILeNSpUyeNGTNGb7zxht5//3098MADXtdNS0tTz549lZ+fr2HDhunmm29Wfn6+Dh06pCVLlui5556Tn5+fZs+erddee03ffvutZs+e7br/tdde67a9w4cPq1evXrrmmms0fvx4ZWVlKSAgoNKcFyxYoDVr1ujmm2/WsGHD9Pnnn2vRokXaunWrNmzYIH9//xo/HgcPHlT//v2Vnp6uG264QSNHjlR+fr6+/vprzZs3T4888kiF9z916pSSkpL03//+V/369dPYsWN19OhRrVy5Uh999JFWr16tG264odz9pk6dqvXr1+tnP/uZkpOT9f7772vOnDkqKipyDWeVefLJJzVr1izFxMTorrvukr+/v9555x3t37/f4/o//PCD+vbtq6+//lq9e/fW7373O+Xl5emf//yn+vfvrxUrVmjkyJGV7tfhcOjmm2/WypUr1apVK91yyy0KCwvTsWPH9O6772ro0KFq06ZNlWqoit27d+v666+X3W7XiBEj1LZtW+Xk5Og///mPli5dqscee0wRERGaPXu2Fi1aJEl66KGHXPcv/cfHiy++qIkTJyoiIkLDhw9XdHS0duzYoaefflpr167V2rVryz0nN2/erHnz5ql///66++67Kx3UJbmeDydPntTgwYM1cuRIff/993rvvfe0evVqrVmzRomJiW73uXDhggYPHqzs7GyNHj1a586d09tvv60xY8YoJSVFgwcPrtLjNWPGDD3zzDNq1aqVRo0apfDwcP373//W1KlTtW3bNq1YsaJK2/Hk/Pnzuummm7Rp0yZ17NhREyZMUGBgoA4dOqSXX35Zd9xxh5o0aVLj7Zf10Ucfafjw4YqIiNCIESPUokULnTp1Sl999ZXeeOMN3X333WrXrp1mz56tuXPnqm3btm5/rJb+GVSTx2XFihX69NNP9bOf/Uz33Xef8vLyalWLJHXt2rXG28BlxgQuM0ePHjUlmcnJyRWut2zZMlOSefvtt7tia9euNSWZs2fPdsWef/55U5K5aNGictvIyspyu33jjTea3l52zrwkmbNmzfK4Ttu2bc22bdu6xWbPnm1KMgMCAsyvvvrKFXc4HOatt95qSjKfe+65Cmsom8O4cePc4t27dzclmUuXLi13nxMnTrjdlmTeeOONbrEJEyaYkswZM2a4xT/66CNTknnFFVeYJSUlrvi4ceNMSWb79u3NtLQ0V/zUqVNmRESEGRoaahYWFpbLpaxDhw6Zfn5+ZqtWrczMzExXPDc31+zUqZPHXJ2P2SuvvOIWz8zMNGNjY82oqCjz/Pnzle77hRdeMCWZAwcONM+dO+e27Ny5c27PDWe9R48edcWWL19uSjKXL19ebtueejhlyhRTkvn++++XW//06dNutz09j5y+/vpr08/Pz+zWrVu5+82fP9/r80mS+de//tXjNr25/vrrTbvdbqakpLjFDx48aIaGhprXXHNNubwlmSNGjHDr/+eff16l17TTp59+6lr/7NmzrrjD4TB/97vfmZLMlStXlqvR02vGk4cfftj1s6O4uNhtWU5OjnnmzBnXbU8/E5yv6bVr15bbtqfnxahRo0xJ5u7du8utX7aHnp7zTtV9XJy52Gw287PPPvO4zcq8/PLL5uzZs80pU6aY/fr1MyWZP/nJT8wffvihRtvD5YdTCwAvWrZsKenHt8SrIjg4uFysadOm1d5v8+bN9dhjj1X7fnfccYfi4+Ndtw3D0Lx582S32z2+PV1VX375pXbs2KG+ffvqrrvuKre8devWFd6/qKhIb731liIjI/X444+7LfvpT3+qm266SYcPH9amTZvK3XfmzJlq0aKF63azZs00YsQInTlzRgcPHqw09zfffFPFxcWaMmWKoqOjXfGwsLByuUg/9vqdd97RgAED9Nvf/tZtWXR0tKZOnapTp07p888/r3TfS5Yskd1u14svvljuueE8NeNi8PQ8jIyMrPL9X375ZRUXF+uFF14od79p06YpKipKb731Vrn7XXfddZowYUKV95OamqrNmzdr3LhxSk5Odlt25ZVX6q677tLevXs9nmKwcOFCtyPCAwcOVNu2bbV9+/Yq7fsvf/mLJGnp0qUKCQlxxQ3D0DPPPCPDMDzWWBXFxcVaunSpwsPD9ec//1l2u91teXh4uBo3blyjbVemtr2v6eMyYsQIDRo0qAYZ/7ivuXPnasGCBVq3bp0GDx6slJSUOj1iDd/GqQVALQ0fPlwzZszQxIkTtWbNGg0ZMkQ33nijOnToUKPtdevWrUqnEpTVp0+fcrG2bdsqNjZWX3/9tYqKimq03S+//FKSqvyWbVkHDhxQQUGB+vfv7/FqBv3799dnn32m3bt3l6shISGh3PrOwTknJ6fSfX/11VeSPD82nmLbt29XSUmJCgsLPZ5DfOjQIVdNP/vZz7zu9+zZs9q/f7+uuOIKdezYsdI868KYMWO0aNEi/eIXv9DNN9+sm266SX379lWrVq2qtZ2tW7dKkuut/bL8/f114MCBcvEePXrUaD+ZmZkeH2vnPg4cOOD2NnNERITat29fbv3WrVtry5YtVd53SEiI/vrXv3pcHhwc7LHGqjhw4IDOnDmjQYMG1dswNnbsWP3jH/9Qr169dOutt2rgwIHq06dPta+uUtPHpWfPnjXKW5J27Ngh6cc/Irds2aLp06fruuuu08cff+z2hzngDYMs4EVaWpokKSoqqsL12rVrp61bt2rOnDn6+OOP9e6770r68dP7TzzxhOvDC1UVExNTo3y93S8mJkbHjh3TmTNnqnV0xik3N1eSqj0QOTnPl/OWn/OIq6fz6sLCwsrF/Px+/LFVlQ/kOHMvfTTWyVM+zutXbtq0yeMRYqf8/Pwq7bemj1lNJCYmat26dZo3b57efPNNLV++XNKPA+azzz5b5StFOB+Dqp6D7FTd561zPx999JHrvEhPyj7W4eHhHtfz8/Or8ocAf/jhBxUXF1d4HePKeuxNQ/T+V7/6ld5//30tWLBAL730khYvXizDMNS/f3/96U9/Kncevjc1fVxq+jOrtGbNmmn48OG69tpr1bFjR911113atm1brbcL38epBYAXzk8MV+VIU9euXbVy5Ur98MMP2rJli2bNmqWMjAzdfPPNFQ5EntT0CxMyMzO9xg3DUGhoqCTJZvvxZV9cXFxuXecv4dIiIiIkSd99912N8nIOo97yy8jIcFuvLjmHnu+//77cMk/5OHN4+OGHZZqm13+lP6xX0X5r+phJ1e+T9ONR5k8++UTZ2dlau3atpkyZor1792rYsGE6cuRIlfbrfAzy8vIqfAzKqu7z1rmfF154ocL9jBs3rlrbreq+IyMjK9zv0aNHa7Tt2r5epJr1fsSIEVq/fr2ys7P1ySef6Le//a3WrVunIUOGVOndC6nmj0tdfslLbGysunTpou3bt5e7QgbgCYMs4ME333yjd999V4GBgfrFL35R5fv5+/urV69emjt3rp5//nmZpqkPP/zQtdx5vlxdXN6nrH//+9/lYt9++61OnDihq6++2nVagfPtTk+/aFNTU8vFnG8bfvrppzXKq3PnzgoKCvL6i8n5B0NVjxpVR7du3SR5fmw8xXr06CHDMKr8FrU3zkstHT161HU6QnVVt0+lBQcHq1+/fvrTn/6kRx99VOfPn9dnn33mWm63270+B51XCXC+9X+xOPdT28e6pvvOysqqcW8q0qlTJ4WFhWn79u2VXmbLm9r0PjQ0VEOGDNHSpUs1fvx4ZWZmuh3ZtNlsFfb+Yj0u1ZGeni7DMMqdXwx4wiALlLFp0yYlJyersLBQ06dPr/Qtwp07d3p8W9x5xK/09RKdH/ApfW3auvL6669rz549rtumaerRRx9VSUmJ26V2OnXqpNDQUP3rX/9y+yrIzMxMPfXUU+W226NHD/Xo0UMbNmzQK6+8Um55ZUeeAgICdMstt+j06dOaP3++27KUlBStXr1aV1xxhXr37l3VUqvs1ltvld1u14IFC9yOyubl5XmstXnz5hozZow2b96sP/7xjx6PPG7btq1KR4omTpyokpIS3XfffTp//rzbsoKCgkq/hjMhIUGGYejtt992u+btoUOH9Oc//7nc+lu2bPF4bVxvz8PTp097XP++++6Tn5+fHnjgAY+X0MrJyal0mKqKnj17KjExUW+99ZbeeeedcssdDofrust1bdKkSZKk3/zmN8rKyiq3PCMjw+vl2Srj5+ene+65R7m5uXrwwQfLDY25ubk6e/Zshdtwvgv0+uuvu50usWXLFv39738vt/6GDRs8DqfO53zZ3p88edLjfi/m41Jaenq6x58bpmlqzpw5yszM1MCBAxUYGFjrfcH3cY4sLluHDx92fcikqKjI9RW1e/fuld1u1+OPP17pW8iS9MYbb+jll19W3759FRcXp7CwMP3nP//Rxx9/rKZNm7p9knvAgAFauXKlRo8eraFDhyooKEjdunXT8OHDa11PcnKykpKSNHbsWEVFRWnNmjXasWOHevXq5XYd3ICAAD3wwAOaN2+errvuOtdVAD744APdeOON+u9//1tu23//+9/Vr18/3X333XrjjTeUlJSkgoICff3110pNTfX4S6+0Z599VuvXr9dTTz2lzZs3KzExUceOHdOKFSvUqFEjLV++3PV2al264oorNGvWLM2ePVvx8fEaM2aM/Pz89N577yk+Pt7jlQ+WLFmigwcPatq0aa5aIyIidOLECe3YsUOHDh1Senp6hV/DK0n33nuv1q9fr3fffVcdO3bUz3/+c4WFhen48eNavXq1li1bVuH1aFu2bKlbbrlFb775phISEjRkyBB9//33WrVqlYYMGaL33nvPbf1nn31Wa9euVd++fdW+fXsFBQVp165dWrNmjTp06OD2zsKAAQO0Y8cODR06VH369FFAQID69u2rvn37qmvXrlqyZInuvfdederUST/96U8VFxenM2fO6MiRI1q/fr3Gjx+vl156qXrN8OCtt95S//79NXbsWC1atEjXXXedgoODdfz4cW3ZskWnTp2q8IsramrIkCGaOXOmnnzySV1xxRUaMmSI2rZtq6ysLB0+fFj//ve/9dRTT6lLly412v4TTzyhrVu36o033tDWrVs1dOhQBQYG6siRI0pJSdHGjRsrfAeiV69e6t27t7744gslJSWpb9+++vbbb/XPf/5Tw4cP16pVq9zWnzRpktLS0nTDDTeoXbt2MgxDGzdu1JdffqlevXq5XaN5wIABevfddzVy5Ej95Cc/kd1u189//nPFx8df9MfF6eDBg7rpppvUq1cvdezYUTExMTp9+rT+/e9/6+DBg2rZsqUWL15cq33gMnIRL+0FXJJKX6/V+S84ONhs0aKF2b9/f3PmzJnm4cOHPd7X0/Ukt27dat5zzz1m165dzYiICDM4ONjs2LGjef/995vffvut2/0vXLhgTps2zWzTpo3p5+fnds1Wb9dwLa2i68iuXbvWfOWVV8yrr77aDAwMNFu0aGE++OCDZl5eXrntlJSUmHPmzDFjY2PNgIAA88orrzT//Oc/m0eOHPGaQ0ZGhvnggw+aHTp0MAMCAsymTZuaiYmJ5oIFC9zWk5frVJ46dcqcNGmS2bZtW9Pf399s1qyZ+ctf/tLcu3dvuXU9XVfVU71V9corr5hXXXWVGRAQYLZu3dp85JFHzHPnznnN9dy5c+Yf/vAHMyEhwQwJCTGDg4PN9u3bmyNHjjRff/1188KFC1Xar8PhMF999VWzV69eZkhIiNmoUSOzY8eO5u9+9zvz+PHjldZ77tw5c9KkSWZMTIwZGBhoxsfHm3//+989Pg9TUlLMO+64w+zUqZMZGhpqNm7c2LzqqqvMRx991Dx16pTbds+cOWPeddddZosWLUy73e7xGqlffvmlOXbsWLNly5aufl133XXm9OnTzf3797vWq+41Vsv64YcfzMcff9zs2rWrGRwcbDZu3Njs2LGjeeutt5r/+Mc/3Nat6Pq3FV2j2ZvPPvvMHD58uBkVFWX6+/ubzZs3N5OSkswnn3zSrT81qbGgoMB87rnnzGuvvdZV11VXXWU+/PDDZnZ2dqV5nz592rzjjjvMpk2bmsHBwWavXr3M1atXe7yO7Ntvv22OGTPGjIuLMxs1amSGh4eb3bp1M5999lm3a9aapmmmp6ebY8aMMZs1a2babDaP1yqu6uNS0bWOK5Kenm5OmzbNTExMNKOiokw/Pz8zNDTUvO6668yZM2eWu/42UBHDND28dwYAAABc4jhHFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwpMvuCxEcDofS0tIUGhpap98PDQAAgLphmqbOnDmjli1bVviFOZfdIJuWlqbY2NiGTgMAAACVOHHihFq3bu11+WU3yIaGhkr68YEJCwtr4Gys78KFC/r00081ePBg+fv7N3Q6qAF6aH300ProobXRv7qXl5en2NhY19zmzWU3yDpPJwgLC2OQrQMXLlxQo0aNFBYWxovXouih9dFD66OH1kb/Lp7KTgPlw14AAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAl+TV0AgCAuvHVV1/JZquf4xPNmjVTmzZt6mVfAOANgywAWNzJkyclSX379tX58+frZZ/BjRrpwP79DLMAGhSDLABYXFZWliTpFzMXqmnbKy76/r4/ekjvPn6vTp8+zSALoEExyAKAj4hqG6fmXbo1dBoAUG/4sBcAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWNIlN8h+9913uu222xQZGang4GBdc8012rFjh2u5aZqaNWuWWrRooeDgYA0aNEiHDh1qwIwBAADQEC6pQTY7O1u9e/eWv7+/PvnkE/3nP//Rn/70JzVp0sS1zh/+8Ac9//zzeumll7Rt2zaFhIQoOTlZBQUFDZg5AAAA6ptfQydQ2rPPPqvY2FgtX77cFWvfvr3r/6ZpatGiRXr88cc1YsQISdLrr7+umJgYvf/++xo7dmy95wwAAICGcUkNsv/617+UnJysX/3qV1q/fr1atWql++67T3fddZck6ejRo8rIyNCgQYNc9wkPD1diYqK2bNnicZAtLCxUYWGh63ZeXp4kqbi4WMXFxZIkm80mm80mh8Mhh8PhWtcZLykpkWmalcbtdrsMw3Btt3RckkpKSqoU9/Pzk2mabnHDMGS328vl6C1e3zWVlJS4cvGVmiqL+0pNpXvo7+/vEzWV5it9qqim0jnJNGWYpW4bhkzDJpkOGaVyMQ1DqiBumA7JLW6TDEOG6ZBNpgICAuRwOGSaJn2qg5pK97L0fq1cky/2yVvc+X9v/bNiTQ3dp7Lre3NJDbJHjhzRiy++qClTpujRRx/V9u3bNWnSJAUEBGjcuHHKyMiQJMXExLjdLyYmxrWsrPnz52vu3Lnl4qmpqQoJCZEkRUVFKS4uTkePHtWpU6dc67Ru3VqtW7fWN998o9zcXFe8Q4cOio6O1r59+3T+/HlXvHPnzoqIiFBqaqpbY+Lj4xUQEOB2rq8kde/eXUVFRdqzZ48rZrfb1aNHD+Xm5urAgQOueHBwsLp166bTp0/ryJEjrnh4eLi6dOmitLQ0nTx50hWvr5pSU1Ndj6dhGD5Rky/2qaKanD9wvvrqKyUmJvpETU6+1KeKaiq975CCHDU5k+66XRAQotMRbRV2Lkth+f/LPT84QtmhLdXkbIZCzue44nkhUcoLiVJk7gkFFeW74tmhLZQf3EQx2UcVGVigqVOnKisrS7m5ufSpDmoKDQ2VJKWnp7v9PrNyTb7YJ281RUZGSpKOHz+urKwsn6ipofvknC8qY5ilx+YGFhAQoO7du2vz5s2u2KRJk7R9+3Zt2bJFmzdvVu/evZWWlqYWLVq41hkzZowMw9A777xTbpuejsjGxsYqKytLYWFhkhr+rw4r/yVVWFio1atXKzk5WX5+fj5Rky/2qaKaiouLXT0MCgryiZpK85U+VVTTrl27lJ6errX5IWreudtFPyKbdmCPXpowTJs2bVJCQgJ9qoOanK/DIUOGuLZn9Zp8sU8VHVFPSUnx2j8r1tTQfcrOzlZkZKRyc3Nd85onl9QR2RYtWuiqq65yi3Xp0kXvvfeeJKl58+aSpMzMTLdBNjMzU9dee63HbQYGBiowMLBc3M/PT35+7uU7m1BW6SdlVeJlt1uTuGEYHuPecqxuvK5qcq5vt9vd1rFyTb7Yp4rizh84zm36Qk1l+XpNbjkZhkzDw34Nm0zDw8a9xH8cXD3HHTJUVFQkm80mwzCqnbu3uK/3qaIcna9Dm81WrcfgUq6ppnEr1lRZ/6xYU2XxhqjJk0vqqgW9e/fWwYMH3WLffPON2rZtK+nHD341b95ca9ascS3Py8vTtm3blJSUVK+5AgAAoGFdUkdkJ0+erOuvv17z5s3TmDFj9OWXX2rp0qVaunSppB//unjooYf01FNPqWPHjmrfvr1mzpypli1bauTIkQ2bPAAAAOrVJTXI9ujRQ6tWrdKMGTP0xBNPqH379lq0aJF+/etfu9aZNm2a8vPzdffddysnJ0c33HCDUlJSFBQU1ICZAwAAoL5dUoOsJP3sZz/Tz372M6/LDcPQE088oSeeeKIeswIAAMCl5pI6RxYAAACoKgZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJV1Sg+ycOXNkGIbbv86dO7uWFxQUaOLEiYqMjFTjxo01evRoZWZmNmDGAAAAaCiX1CArSVdffbXS09Nd/zZu3OhaNnnyZH3wwQdasWKF1q9fr7S0NI0aNaoBswUAAEBD8WvoBMry8/NT8+bNy8Vzc3O1bNkyvfnmmxowYIAkafny5erSpYu2bt2qXr161XeqAAAAaECX3CB76NAhtWzZUkFBQUpKStL8+fPVpk0b7dy5UxcuXNCgQYNc63bu3Flt2rTRli1bvA6yhYWFKiwsdN3Oy8uTJBUXF6u4uFiSZLPZZLPZ5HA45HA4XOs64yUlJTJNs9K43W6XYRiu7ZaOS1JJSUmV4n5+fjJN0y1uGIbsdnu5HL3F67umkpISVy6+UlNlcV+pqXQP/f39faKm0nylTxXVVDonmaYMs9Rtw5Bp2CTTIaNULqZhSBXEDdMhucVtkmHIMB2yyVRAQIAcDodM06RPdVBT6V6W3q+Va/LFPnmLO//vrX9WrKmh+1R2fW8uqUE2MTFRr732mjp16qT09HTNnTtXffr00b59+5SRkaGAgABFRES43ScmJkYZGRletzl//nzNnTu3XDw1NVUhISGSpKioKMXFxeno0aM6deqUa53WrVurdevW+uabb5Sbm+uKd+jQQdHR0dq3b5/Onz/vinfu3FkRERFKTU11a0x8fLwCAgK0Y8cOtxy6d++uoqIi7dmzxxWz2+3q0aOHcnNzdeDAAVc8ODhY3bp10+nTp3XkyBFXPDw8XF26dFFaWppOnjzpitdXTampqa7H0zAMn6jJF/tUUU3OHzhfffWVEhMTfaImJ1/qU0U1ld53SEGOmpxJd90uCAjR6Yi2CjuXpbD8/+WeHxyh7NCWanI2QyHnc1zxvJAo5YVEKTL3hIKK8l3x7NAWyg9uopjso4oMLNDUqVOVlZWl3Nxc+lQHNYWGhkqS0tPT3X6nWbkmX+yTt5oiIyMlScePH1dWVpZP1NTQfXLOF5UxzNJj8yUmJydHbdu21YIFCxQcHKwJEya4HV2VpJ49e6p///569tlnPW7D0xHZ2NhYZWVlKSwsTFLD/9Vh5b+kCgsLtXr1aiUnJ8vPz88navLFPlVUU3FxsauHQUFBPlFTab7Sp4pq2rVrl9LT07U2P0TNO3e76Edk0w7s0UsThmnTpk1KSEigT3VQk/N1OGTIENf2rF6TL/apoiPqKSkpXvtnxZoauk/Z2dmKjIxUbm6ua17z5JI6IltWRESErrzySh0+fFg33XSTioqKlJOT43ZUNjMz0+M5tU6BgYEKDAwsF/fz85Ofn3v5ziaUVfpJWZV42e3WJG4Yhse4txyrG6+rmpzr2+12t3WsXJMv9qmiuPMHjnObvlBTWb5ek1tOhiHT8LBfwybT8LBxL/EfB1fPcYcMFRUVyWazyTCMaufuLe7rfaooR+fr0GazVesxuJRrqmncijVV1j8r1lRZvCFq8uSSu2pBaWfPntV///tftWjRQgkJCfL399eaNWtcyw8ePKjjx48rKSmpAbMEAABAQ7ikjsg+8sgjGj58uNq2bau0tDTNnj1bdrtdt9xyi8LDw3XnnXdqypQpatq0qcLCwvTAAw8oKSmJKxYAAABchi6pQfbkyZO65ZZblJWVpaioKN1www3aunWroqKiJEkLFy6UzWbT6NGjVVhYqOTkZC1ZsqSBswYAAEBDuKQG2bfffrvC5UFBQVq8eLEWL15cTxkBAADgUnVJnyMLAAAAeMMgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFhSrQfZjIwMPf300xo9erQGDRqkAQMGuP0bOHBgjbb7zDPPyDAMPfTQQ65YQUGBJk6cqMjISDVu3FijR49WZmZmbUsAAACABfnV5s579uxRv379dP78eXXq1El79+7VVVddpZycHH333XeKi4tTbGxstbe7fft2vfzyy4qPj3eLT548WR999JFWrFih8PBw3X///Ro1apQ2bdpUmzIAAABgQbU6Ijt9+nQ1btxYBw8e1Oeffy7TNPXnP/9ZJ06c0DvvvKPs7Gw988wz1drm2bNn9etf/1qvvPKKmjRp4orn5uZq2bJlWrBggQYMGKCEhAQtX75cmzdv1tatW2tTBgAAACyoVkdkN23apGnTpqlNmzb64YcfJEkOh0OS9Ktf/UobN27U1KlTtX79+ipvc+LEiRo2bJgGDRqkp556yhXfuXOnLly4oEGDBrlinTt3Vps2bbRlyxb16tXL4/YKCwtVWFjoup2XlydJKi4uVnFxsSTJZrPJZrPJ4XC48i8dLykpkWmalcbtdrsMw3Btt3RckkpKSqoU9/Pzk2mabnHDMGS328vl6C1e3zWVlJS4cvGVmiqL+0pNpXvo7+/vEzWV5it9qqim0jnJNGWYpW4bhkzDJpkOGaVyMQ1DqiBumA7JLW6TDEOG6ZBNpgICAuRwOGSaJn2qg5pK97L0fq1cky/2yVvc+X9v/bNiTQ3dp7Lre1OrQdbhcCgmJkaSFBERIbvd7hpoJemaa67RsmXLqry9t99+W7t27dL27dvLLcvIyFBAQIAiIiLc4jExMcrIyPC6zfnz52vu3Lnl4qmpqQoJCZEkRUVFKS4uTkePHtWpU6dc67Ru3VqtW7fWN998o9zcXFe8Q4cOio6O1r59+3T+/HlXvHPnzoqIiFBqaqpbY+Lj4xUQEKAdO3a45dC9e3cVFRVpz549rpjdblePHj2Um5urAwcOuOLBwcHq1q2bTp8+rSNHjrji4eHh6tKli9LS0nTy5ElXvL5qSk1NdT2ehmH4RE2+2KeKanL+wPnqq6+UmJjoEzU5+VKfKqqp9L5DCnLU5Ey663ZBQIhOR7RV2LksheX/L/f84Ahlh7ZUk7MZCjmf44rnhUQpLyRKkbknFFSU74pnh7ZQfnATxWQfVWRggaZOnaqsrCzl5ubSpzqoKTQ0VJKUnp7u9jvNyjX5Yp+81RQZGSlJOn78uLKysnyipobuk3O+qIxhlh6bqyk+Pl7Dhw/X008/LUm68sor1a9fPy1dulSS9Jvf/Eaffvqp2wPjzYkTJ9S9e3d99tlnrnNj+/Xrp2uvvVaLFi3Sm2++qQkTJrgdXZWknj17qn///nr22Wc9btfTEdnY2FhlZWUpLCxMUsP/1WHlv6QKCwu1evVqJScny8/Pzydq8sU+VVRTcXGxq4dBQUE+UVNpvtKnimratWuX0tPTtTY/RM07d7voR2TTDuzRSxOGadOmTUpISKBPdVCT83U4ZMgQ1/asXpMv9qmiI+opKSle+2fFmhq6T9nZ2YqMjFRubq5rXvOkVkdkBw8erBUrVrgG2XvvvVcPP/ywjhw5ItM0tW7dOj388MNV2tbOnTv1/fff67rrrnPFSkpKtGHDBv3lL3/R6tWrVVRUpJycHLejspmZmWrevLnX7QYGBiowMLBc3M/PT35+7uU7m1BW6SdlVeJlt1uTuGEYHuPecqxuvK5qcq5vt9vd1rFyTb7Yp4rizh84zm36Qk1l+XpNbjkZhkzDw34Nm0zDw8a9xH8cXD3HHTJUVFQkm80mwzCqnbu3uK/3qaIcna9Dm81WrcfgUq6ppnEr1lRZ/6xYU2XxhqjJ43pVWsuLxx57TLfccosuXLggf39/PfTQQ8rPz9d7770nu92umTNn6tFHH63StgYOHKi9e/e6xSZMmKDOnTvr97//vWJjY+Xv7681a9Zo9OjRkqSDBw/q+PHjSkpKqk0ZAAAAsKBaDbJNmjRRQkKC67ZhGHr88cf1+OOPV3tboaGh6tq1q1ssJCREkZGRrvidd96pKVOmqGnTpgoLC9MDDzygpKQkrx/0AgAAgO+q1SBb3xYuXCibzabRo0ersLBQycnJWrJkSUOnBQAAgAZQrUH2N7/5jQzD0NKlS2W32/Wb3/ym0vsYhlGtKxeUtm7dOrfbQUFBWrx4sRYvXlyj7QEAAMB3VGuQ/eKLL1yfYLPb7friiy9cJ/p7U9lyAAAAoCaqNcgeO3aswtsAAABAfanVV9QCAAAADaVWg+yuXbsq/LDVkiVLtHv37trsAgAAAPCoVoPsY489ps8//9zr8i+++KJGl+ICAAAAKlOrQXbnzp3q06eP1+V9+vQp9x26AAAAQF2o1SB75syZCr9CzGazKTc3tza7AAAAADyq1SDbsWNHffrpp16Xp6SkqEOHDrXZBQAAAOBRrQbZO++8Ux999JGmTJminJwcVzwnJ0eTJ09WSkqK7rzzztrmCAAAAJRTq6+onTRpknbv3q1Fixbp+eefV8uWLSVJaWlpcjgcuv322zV58uQ6SRQAAAAorVaDrGEYWr58ue644w699957OnLkiCRpxIgRGj16tPr161cXOQIAAADl1GqQderfv7/69+9fF5sCAAAAqoRv9gIAAIAl1WqQNU1TL7/8snr27KlmzZrJbreX+1fR5bkAAACAmqrVlDlt2jQtWLBA1157rW677TY1adKkrvICAAAAKlSrQfZvf/ubRo8erXfffbeu8gEAAACqpFanFpw/f16DBg2qq1wAAACAKqvVIDtw4EBt3769rnIBAAAAqqxWg+ySJUu0detWzZs3T1lZWXWVEwAAAFCpWg2ynTp10pEjRzRz5kxFR0crJCREYWFhbv/Cw8PrKlcAAADApVYf9ho9erQMw6irXAAAAIAqq9Ug+9prr9VRGgAAAED18M1eAAAAsKRaD7LHjx/X7373O3Xq1ElNmjTRhg0bJEmnT5/WpEmTlJqaWuskAQAAgLJqdWrBf/7zH/Xp00cOh0OJiYk6fPiwiouLJUnNmjXTxo0blZ+fr2XLltVJsgAAAIBTrb+iNiIiQlu3bpVhGIqOjnZbPmzYML3zzju1ShAAAADwpFanFmzYsEH33nuvoqKiPF69oE2bNvruu+9qswsAAADAo1oNsg6HQ40aNfK6/NSpUwoMDKzNLgAAAACPajXIXnfddfroo488LisuLtbbb7+tXr161WYXAAAAgEe1GmRnzJihlJQU3Xvvvdq3b58kKTMzU59//rkGDx6s/fv3a/r06XWSKAAAAFBarT7sNXToUL322mt68MEHtXTpUknSbbfdJtM0FRYWptdff119+/atk0QBAACA0mo1yErS7bffrlGjRunTTz/V4cOH5XA4FBcXp+TkZIWGhtZFjgAAAEA5tR5kJSkkJES/+MUv6mJTAAAAQJXUapA9fvx4ldZr06ZNbXYDAAAAlFOrQbZdu3Yerx9bVklJSW12AwAAAJRTq0H2r3/9a7lBtqSkRMeOHdPrr7+u6OhoTZw4sVYJAgAAAJ7UapAdP36812W///3vlZiYqNzc3NrsAgAAAPCoVteRrUhISIgmTJighQsXXqxdAAAA4DJ20QZZ6cevsM3IyLiYuwAAAMBlqk4uv1VWXl6eNmzYoD/+8Y/6yU9+cjF2AQAAgMtcrQZZm83m9aoFpmmqTZs2WrJkSW12AQAAAHhUq0F21qxZ5QZZwzDUpEkTxcXFafDgwfLzuygHfQEAAHCZq9WUOWfOnDpKAwAAAKieWn3Yq7i4WHl5eV6X5+Xlqbi4uDa7AAAAADyq1SA7adIkXX/99V6X9+7dWw8//HBtdgEAAAB4VKtBNiUlRb/85S+9Lv/lL3+pjz/+uDa7AAAAADyq1SCblpamVq1aeV3esmVLfffdd1Xe3osvvqj4+HiFhYUpLCxMSUlJ+uSTT1zLCwoKNHHiREVGRqpx48YaPXq0MjMza1MCAAAALKpWg2xkZKQOHjzodfn+/fsVFhZW5e21bt1azzzzjHbu3KkdO3ZowIABGjFihL7++mtJ0uTJk/XBBx9oxYoVWr9+vdLS0jRq1KjalAAAAACLqtUgO2TIEL388stKTU0tt2zXrl1aunSphg4dWuXtDR8+XD/96U/VsWNHXXnllXr66afVuHFjbd26Vbm5uVq2bJkWLFigAQMGKCEhQcuXL9fmzZu1devW2pQBAAAAC6rV5beefPJJpaSkqGfPnvr5z3+uq6++WpK0b98+ffDBB4qOjtaTTz5Zo22XlJRoxYoVys/PV1JSknbu3KkLFy5o0KBBrnU6d+6sNm3aaMuWLerVq5fH7RQWFqqwsNB123mVheLiYtcVFWw2m2w2mxwOhxwOh2tdZ7ykpESmaVYat9vtMgyj3JUa7Ha7q6aqxP38/GSaplvcMAzZ7fZyOXqL13dNJSUlrlx8pabK4r5SU+ke+vv7+0RNpflKnyqqqXROMk0ZZqnbhiHTsEmmQ0apXEzDkCqIG6ZDcovbJMOQYTpkk6mAgAA5HA6Zpkmf6qCm0r0svV8r1+SLffIWd/7fW/+sWFND96mqV72q1SDbsmVL7dixQ9OnT9c///lPrVq1SpIUFhamX//615o3b55atmxZrW3u3btXSUlJKigoUOPGjbVq1SpdddVV2r17twICAhQREeG2fkxMjDIyMrxub/78+Zo7d265eGpqqkJCQiRJUVFRiouL09GjR3Xq1CnXOq1bt1br1q31zTffKDc31xXv0KGDoqOjtW/fPp0/f94V79y5syIiIpSamurWmPj4eAUEBGjHjh1uOXTv3l1FRUXas2ePK2a329WjRw/l5ubqwIEDrnhwcLC6deum06dP68iRI654eHi4unTporS0NJ08edIVr6+anEfjU1NTZRiGT9Tki32qqCbnD5yvvvpKiYmJPlGTky/1qaKaSu87pCBHTc6ku24XBITodERbhZ3LUlj+/3LPD45QdmhLNTmboZDzOa54XkiU8kKiFJl7QkFF+a54dmgL5Qc3UUz2UUUGFmjq1KnKyspSbm4ufaqDmkJDQyVJ6enpbr/TrFyTL/bJW02RkZGSpOPHjysrK8snamroPnl6t98Twyw9NteCaZquQqOiorx+dW1lioqKdPz4ceXm5mrlypV69dVXtX79eu3evVsTJkxwO7oqST179lT//v317LPPetyepyOysbGxysrKcp2/29B/dVj5L6nCwkKtXr1aycnJ8vPz84mafLFPFdVUXFzs6mFQUJBP1FSar/Spopp27dql9PR0rc0PUfPO3S76Edm0A3v00oRh2rRpkxISEuhTHdTkfB0OGTLEtT2r1+SLfaroiHpKSorX/lmxpobuU3Z2tiIjI5Wbm1vh563q7PtjDcNQYGCgGjduXOMhVpICAgJ0xRVXSJISEhK0fft2/fnPf9bNN9+soqIi5eTkuB2VzczMVPPmzb1uLzAwUIGBgeXifn5+5b4+19mEsko/KasS9/a1vNWJG4bhMe4tx+rG66om5/p2u91tHSvX5It9qiju/IHj3KYv1FSWr9fklpNhyDQ87NewyfT0o9lL/MfB1XPcIUNFRUWy2Wyun/f0qXY1OV+HNputWo/BpVxTTeNWrKmy/lmxpsriDVGTJ7X6sJck7dixQ0OGDFGjRo0UGRmp9evXS5JOnz6tESNGaN26dbXavsPhUGFhoRISEuTv7681a9a4lh08eFDHjx9XUlJSrfYBAAAA66nVILt582bdcMMNOnTokG677Ta3Q8/NmjVTbm6uXn755Spvb8aMGdqwYYOOHTumvXv3asaMGVq3bp1+/etfKzw8XHfeeaemTJmitWvXaufOnZowYYKSkpK8ftALAAAAvqtWpxY8+uij6tKli7Zu3aozZ87o1VdfdVvev39//e1vf6vy9r7//nvdcccdSk9PV3h4uOLj47V69WrddNNNkqSFCxfKZrNp9OjRKiwsVHJyspYsWVKbEgAAAGBRtRpkt2/frvnz5yswMFBnz54tt7xVq1YVXlGgrGXLllW4PCgoSIsXL9bixYurnSsAAAB8S61OLfD393e/fmEZ3333nRo3blybXQAAAAAe1WqQ7dWrl1auXOlxWX5+vpYvX64bb7yxNrsAAAAAPKrVIDt37lzt2LFDw4YN0yeffCLpx4uqv/rqq0pISNCpU6c0c+bMOkkUAAAAKK1W58gmJibq448/1r333qs77rhDkvTwww9LkuLi4vTxxx8rPj6+9lkCAAAAZdR4kDVNU2fOnNH111+vgwcPavfu3Tp06JAcDofi4uJc3/YCAAAAXAw1HmSLiorUtGlTzZs3T9OmTdO1116ra6+9tg5TAwAAALyr8TmygYGBat68ucevfwUAAAAutlp92Gv8+PF6/fXXVVRUVFf5AAAAAFVSqw97XXPNNXr//fd19dVXa/z48WrXrp2Cg4PLrTdq1Kja7AYAAAAop1aD7C233OL6v7fLbBmGoZKSktrsBgAAACin2oPso48+qrFjxyo+Pl5r1669GDkBAAAAlar2IPvMM8+oa9euio+P14033qisrCxFR0frs88+04ABAy5GjgAAAEA5tfqwl5NpmnWxGQAAAKDK6mSQBQAAAOobgywAAAAsqUZXLTh27Jh27dolScrNzZUkHTp0SBERER7Xv+6662qWHQAAAOBFjQbZmTNnlrvc1n333VduPdM0ufwWAAAALopqD7LLly+/GHkAAAAA1VLtQXbcuHEXIw8AAACgWviwFwAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS7qkBtn58+erR48eCg0NVXR0tEaOHKmDBw+6rVNQUKCJEycqMjJSjRs31ujRo5WZmdlAGQMAAKChXFKD7Pr16zVx4kRt3bpVn332mS5cuKDBgwcrPz/ftc7kyZP1wQcfaMWKFVq/fr3S0tI0atSoBswaAAAADcGvoRMoLSUlxe32a6+9pujoaO3cuVN9+/ZVbm6uli1bpjfffFMDBgyQJC1fvlxdunTR1q1b1atXr4ZIGwAAAA3gkhpky8rNzZUkNW3aVJK0c+dOXbhwQYMGDXKt07lzZ7Vp00ZbtmzxOMgWFhaqsLDQdTsvL0+SVFxcrOLiYkmSzWaTzWaTw+GQw+FwreuMl5SUyDTNSuN2u12GYbi2WzouSSUlJVWK+/n5yTRNt7hhGLLb7eVy9Bav75pKSkpcufhKTZXFfaWm0j309/f3iZpK85U+VVRT6ZxkmjLMUrcNQ6Zhk0yHjFK5mIYhVRA3TIfkFrdJhiHDdMgmUwEBAXI4HDJNkz7VQU2le1l6v1auyRf75C3u/L+3/lmxpobuU9n1vblkB1mHw6GHHnpIvXv3VteuXSVJGRkZCggIUEREhNu6MTExysjI8Lid+fPna+7cueXiqampCgkJkSRFRUUpLi5OR48e1alTp1zrtG7dWq1bt9Y333zjGqolqUOHDoqOjta+fft0/vx5V7xz586KiIhQamqqW2Pi4+MVEBCgHTt2uOXQvXt3FRUVac+ePa6Y3W5Xjx49lJubqwMHDrjiwcHB6tatm06fPq0jR4644uHh4erSpYvS0tJ08uRJV7y+akpNTXU9noZh+ERNvtinimpy/sD56quvlJiY6BM1OflSnyqqqfS+Qwpy1ORMuut2QUCITke0Vdi5LIXl/y/3/OAIZYe2VJOzGQo5n+OK54VEKS8kSpG5JxRU9L/TurJDWyg/uIliso8qMrBAU6dOVVZWlnJzc+lTHdQUGhoqSUpPT3f7fWblmnyxT95qioyMlCQdP35cWVlZPlFTQ/fJOV9UxjBLj82XkHvvvVeffPKJNm7cqNatW0uS3nzzTU2YMMHtCKsk9ezZU/3799ezzz5bbjuejsjGxsYqKytLYWFhkhr+rw4r/yVVWFio1atXKzk5WX5+fj5Rky/2qaKaiouLXT0MCgryiZpK85U+VVTTrl27lJ6errX5IWreudtFPyKbdmCPXpowTJs2bVJCQgJ9qoOanK/DIUOGuLZn9Zp8sU8VHVFPSUnx2j8r1tTQfcrOzlZkZKRyc3Nd85onl+QR2fvvv18ffvihNmzY4BpiJal58+YqKipSTk6O21HZzMxMNW/e3OO2AgMDFRgYWC7u5+cnPz/38p1NKKv0k7Iq8bLbrUncMAyPcW85VjdeVzU517fb7W7rWLkmX+xTRXHnDxznNn2hprJ8vSa3nAxDpuFhv4ZNpuFh417iPw6unuMOGSoqKpLNZpNhGNXO3Vvc1/tUUY7O16HNZqvWY3Ap11TTuBVrqqx/VqypsnhD1OTJJXXVAtM0df/992vVqlX64osv1L59e7flCQkJ8vf315o1a1yxgwcP6vjx40pKSqrvdAEAANCALqkjshMnTtSbb76pf/7znwoNDXWdJxQeHq7g4GCFh4frzjvv1JQpU9S0aVOFhYXpgQceUFJSElcsAAAAuMxcUoPsiy++KEnq16+fW3z58uUaP368JGnhwoWy2WwaPXq0CgsLlZycrCVLltRzpgAAAGhol9QgW5XPnQUFBWnx4sVavHhxPWQEAACAS9UldY4sAAAAUFUMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlXVKD7IYNGzR8+HC1bNlShmHo/fffd1tumqZmzZqlFi1aKDg4WIMGDdKhQ4caJlkAAAA0qEtqkM3Pz1e3bt20ePFij8v/8Ic/6Pnnn9dLL72kbdu2KSQkRMnJySooKKjnTAEAANDQ/Bo6gdKGDh2qoUOHelxmmqYWLVqkxx9/XCNGjJAkvf7664qJidH777+vsWPHerxfYWGhCgsLXbfz8vIkScXFxSouLpYk2Ww22Ww2ORwOORwO17rOeElJiUzTrDRut9tlGIZru6XjklRSUlKluJ+fn0zTdIsbhiG73V4uR2/x+q6ppKTElYuv1FRZ3FdqKt1Df39/n6ipNF/pU0U1lc5JpinDLHXbMGQaNsl0yCiVi2kYUgVxw3RIbnGbZBgyTIdsMhUQECCHwyHTNOlTHdRUupel92vlmnyxT97izv97658Va2roPpVd35tLapCtyNGjR5WRkaFBgwa5YuHh4UpMTNSWLVu8DrLz58/X3Llzy8VTU1MVEhIiSYqKilJcXJyOHj2qU6dOudZp3bq1WrdurW+++Ua5ubmueIcOHRQdHa19+/bp/Pnzrnjnzp0VERGh1NRUt8bEx8crICBAO3bscMuhe/fuKioq0p49e1wxu92uHj16KDc3VwcOHHDFg4OD1a1bN50+fVpHjhxxewy6dOmitLQ0nTx50hWvr5pSU1Ndj6dhGD5Rky/2qaKanD9wvvrqKyUmJvpETU6+1KeKaiq975CCHDU5k+66XRAQotMRbRV2Lkth+f/LPT84QtmhLdXkbIZCzue44nkhUcoLiVJk7gkFFeW74tmhLZQf3EQx2UcVGVigqVOnKisrS7m5ufSpDmoKDQ2VJKWnpysjI8MnavLFPnmrKTIyUpJ0/PhxZWVl+URNDd0n53xRGcMsPTZfQgzD0KpVqzRy5EhJ0ubNm9W7d2+lpaWpRYsWrvXGjBkjwzD0zjvveNyOpyOysbGxysrKUlhYmKSG/6vDyn9JFRYWavXq1UpOTpafn59P1OSLfaqopuLiYlcPg4KCfKKm0nylTxXVtGvXLqWnp2ttfoiad+520Y/Iph3Yo5cmDNOmTZuUkJBAn+qgJufrcMiQIa7tWb0mX+xTRUfUU1JSvPbPijU1dJ+ys7MVGRmp3Nxc17zmiWWOyNZUYGCgAgMDy8X9/Pzk5+devrMJZZV+UlYlXna7NYkbhuEx7i3H6sbrqibn+na73W0dK9fki32qKO78gePcpi/UVJav1+SWk2HINDzs17DJNDxs3Ev8x8HVc9whQ0VFRbLZbDIMo9q5e4v7ep8qytH5OrTZbNV6DC7lmmoat2JNlfXPijVVFm+Imjy5pD7sVZHmzZtLkjIzM93imZmZrmUAAAC4fFhmkG3fvr2aN2+uNWvWuGJ5eXnatm2bkpKSGjAzAAAANIRL6tSCs2fP6vDhw67bR48e1e7du9W0aVO1adNGDz30kJ566il17NhR7du318yZM9WyZUvXebQAAAC4fFxSg+yOHTvUv39/1+0pU6ZIksaNG6fXXntN06ZNU35+vu6++27l5OTohhtuUEpKioKCghoqZQAAADSQS2qQ7devn9sn3coyDENPPPGEnnjiiXrMCgAAAJciy5wjCwAAAJTGIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkBlkAAABYEoMsAAAALIlBFgAAAJbEIAsAAABLYpAFAACAJTHIAgAAwJIYZAEAAGBJDLIAAACwJAZZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEtikAUAAIAlMcgCAADAkhhkAQAAYEkMsgAAALAkSw6yixcvVrt27RQUFKTExER9+eWXDZ0SAAAA6pnlBtl33nlHU6ZM0ezZs7Vr1y5169ZNycnJ+v777xs6NQAAANQjyw2yCxYs0F133aUJEyboqquu0ksvvaRGjRrpr3/9a0OnBgAAgHrk19AJVEdRUZF27typGTNmuGI2m02DBg3Sli1bPN6nsLBQhYWFrtu5ubmSpB9++EHFxcWubdhsNjkcDjkcDrdt22w2lZSUyDTNSuN2u12GYbi263Tq1CllZGS4rStJhmFIUrm4zWaTaZpuccMwZBhGleLO+1d1/arESz8upXMvKSnRuXPn9O9//1s2m+2i1VQ2Xjqnuq7JU5+c/b6YNZV9LjljF6smZ9zhcLh66Ofnd9Fqqmn/alJTaaVfD7V9zlQnbrfby/2MqOuanPFDhw6pcePGSjt4VAXn8lWWKUOGzDqLZx0/In9/f+3cuVNnzpy5KDU5163L13x1+1f2Z3ld11Q6bpqmzp07p40bN7q2dzFqLfs7zrlOffx+cv6evZg1lc697LKL+fuprvtX1deT3W6Xw+G46L9znfGYmBi1aNGiTmYju90uSeV+tzrj2dnZHmsuy1KD7OnTp1VSUqKYmBi3eExMjA4cOODxPvPnz9fcuXPLxdu3b39RcgSAy8Xdd9/d0CkA8HFnzpxReHi41+WWGmRrYsaMGZoyZYrrtsPh0A8//KDIyEi3v5pQM3l5eYqNjdWJEycUFhbW0OmgBuih9dFD66OH1kb/6p5pmjpz5oxatmxZ4XqWGmSbNWsmu92uzMxMt3hmZqaaN2/u8T6BgYEKDAx0i0VERFysFC9bYWFhvHgtjh5aHz20PnpobfSvblV0JNbJUh/2CggIUEJCgtasWeOKORwOrVmzRklJSQ2YGQAAAOqbpY7IStKUKVM0btw4de/eXT179tSiRYuUn5+vCRMmNHRqAAAAqEeWG2RvvvlmnTp1SrNmzVJGRoauvfZapaSklPsAGOpHYGCgZs+eXe70DVgHPbQ+emh99NDa6F/DMczKrmsAAAAAXIIsdY4sAAAA4MQgCwAAAEtikAUAAIAlMcgCAADAkhhk4dX8+fPVo0cPhYaGKjo6WiNHjtTBgwcrvV9OTo4mTpyoFi1aKDAwUFdeeaU+/vjjesgYZdW0h4sWLVKnTp0UHBys2NhYTZ48WQUFBfWQMcp68cUXFR8f77rQelJSkj755JMK77NixQp17txZQUFBuuaaa3j9NbDq9vCVV15Rnz591KRJEzVp0kSDBg3Sl19+WY8Zo7SavAad3n77bRmGoZEjR17cJC9jDLLwav369Zo4caK2bt2qzz77TBcuXNDgwYOVn5/v9T5FRUW66aabdOzYMa1cuVIHDx7UK6+8olatWtVj5nCqSQ/ffPNNTZ8+XbNnz9b+/fu1bNkyvfPOO3r00UfrMXM4tW7dWs8884x27typHTt2aMCAARoxYoS+/vprj+tv3rxZt9xyi+68806lpqZq5MiRGjlypPbt21fPmcOpuj1ct26dbrnlFq1du1ZbtmxRbGysBg8erO+++66eM4dU/f45HTt2TI888oj69OlTT5lepkygir7//ntTkrl+/Xqv67z44otmhw4dzKKionrMDFVVlR5OnDjRHDBggFtsypQpZu/evS92eqiiJk2amK+++qrHZWPGjDGHDRvmFktMTDTvueee+kgNVVRRD8sqLi42Q0NDzb/97W8XOStUVWX9Ky4uNq+//nrz1VdfNceNG2eOGDGi/pK7zHBEFlWWm5srSWratKnXdf71r38pKSlJEydOVExMjLp27ap58+appKSkvtJEBarSw+uvv147d+50vZV55MgRffzxx/rpT39aLznCu5KSEr399tvKz8/3+rXcW7Zs0aBBg9xiycnJ2rJlS32kiEpUpYdlnTt3ThcuXKjwdYv6UdX+PfHEE4qOjtadd95Zj9ldniz3zV5oGA6HQw899JB69+6trl27el3vyJEj+uKLL/TrX/9aH3/8sQ4fPqz77rtPFy5c0OzZs+sxY5RV1R7eeuutOn36tG644QaZpqni4mL97ne/49SCBrR3714lJSWpoKBAjRs31qpVq3TVVVd5XDcjI6PcNx3GxMQoIyOjPlKFF9XpYVm///3v1bJly3J/oKD+VKd/Gzdu1LJly7R79+76TfIyxRFZVMnEiRO1b98+vf322xWu53A4FB0draVLlyohIUE333yzHnvsMb300kv1lCm8qWoP161bp3nz5mnJkiXatWuX/vGPf+ijjz7Sk08+WU+ZoqxOnTpp9+7d2rZtm+69916NGzdO//nPfxo6LVRDTXv4zDPP6O2339aqVasUFBRUD5nCk6r278yZM7r99tv1yiuvqFmzZg2Q6WWooc9twKVv4sSJZuvWrc0jR45Uum7fvn3NgQMHusU+/vhjU5JZWFh4sVJEJarTwxtuuMF85JFH3GJvvPGGGRwcbJaUlFysFFENAwcONO+++26Py2JjY82FCxe6xWbNmmXGx8fXQ2aoqop66PTHP/7RDA8PN7dv315PWaGqvPUvNTXVlGTa7XbXP8MwTMMwTLvdbh4+fLgBsvVtHJGFV6Zp6v7779eqVav0xRdfqH379pXep3fv3jp8+LAcDocr9s0336hFixYKCAi4mOnCg5r08Ny5c7LZ3H802O121/bQ8BwOhwoLCz0uS0pK0po1a9xin332WZXPx0T9qKiHkvSHP/xBTz75pFJSUtS9e/d6zAxV4a1/nTt31t69e7V7927Xv5///Ofq37+/du/erdjY2AbI1sc18CCNS9i9995rhoeHm+vWrTPT09Nd/86dO+da5/bbbzenT5/uun38+HEzNDTUvP/++82DBw+aH374oRkdHW0+9dRTDVHCZa8mPZw9e7YZGhpqvvXWW+aRI0fMTz/91IyLizPHjBnTECVc9qZPn26uX7/ePHr0qLlnzx5z+vTppmEY5qeffmqaZvn+bdq0yfTz8zOfe+45c//+/ebs2bNNf39/c+/evQ1VwmWvuj185plnzICAAHPlypVur9szZ840VAmXter2ryyuWnBxMcjCK0ke/y1fvty1zo033miOGzfO7X6bN282ExMTzcDAQLNDhw7m008/bRYXF9dv8jBNs2Y9vHDhgjlnzhwzLi7ODAoKMmNjY8377rvPzM7Orvf8YZq/+c1vzLZt25oBAQFmVFSUOXDgQNcvUNP0/Bp89913zSuvvNIMCAgwr776avOjjz6q56xRWnV72LZtW4+v29mzZ9d/8qjRa7A0BtmLyzBN3isEAACA9XCOLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywANJB169bJMAytW7euoVMBAEtikAUAH7V582bNmTNHOTk5DZ0KAFwUDLIA4KM2b96suXPnMsgC8FkMsgCAajl37lxDpwAAkhhkAeCi+u6773TnnXeqZcuWCgwMVPv27XXvvfeqqKjI4/rt2rXT+PHjy8X79eunfv36ucVeeOEFXX311WrUqJGaNGmi7t27680335QkzZkzR1OnTpUktW/fXoZhyDAMHTt2zHX///u//1NCQoKCg4PVtGlTjR07VidOnCi3365du2rnzp3q27evGjVqpEcffbTmDwgA1CG/hk4AAHxVWlqaevbsqZycHN19993q3LmzvvvuO61cubLWRzVfeeUVTZo0Sb/85S/14IMPqqCgQHv27NG2bdt06623atSoUfrmm2/01ltvaeHChWrWrJkkKSoqSpL09NNPa+bMmRozZox++9vf6tSpU3rhhRfUt29fpaamKiIiwrWvrKwsDR06VGPHjtVtt92mmJiYWuUOAHWFQRYALpIZM2YoIyND27ZtU/fu3V3xJ554QqZp1mrbH330ka6++mqtWLHC4/L4+Hhdd911euuttzRy5Ei1a9fOtezbb7/V7Nmz9dRTT7kdXR01apR+8pOfaMmSJW7xjIwMvfTSS7rnnntqlTMA1DVOLQCAi8DhcOj999/X8OHD3YZYJ8MwarX9iIgInTx5Utu3b6/2ff/xj3/I4XBozJgxOn36tOtf8+bN1bFjR61du9Zt/cDAQE2YMKFW+QLAxcARWQC4CE6dOqW8vDx17dr1omz/97//vT7//HP17NlTV1xxhQYPHqxbb71VvXv3rvS+hw4dkmma6tixo8fl/v7+brdbtWqlgICAOskbAOoSgywAXEK8HaktKSmR3W533e7SpYsOHjyoDz/8UCkpKXrvvfe0ZMkSzZo1S3Pnzq1wHw6HQ4Zh6JNPPnHbplPjxo3dbgcHB9egEgC4+BhkAeAiiIqKUlhYmPbt21et+zVp0sTjdV+//fZbdejQwS0WEhKim2++WTfffLOKioo0atQoPf3005oxY4aCgoK8DsVxcXEyTVPt27fXlVdeWa38AOBSwjmyAHAR2Gw2jRw5Uh988IF27NhRbrm3D3vFxcVp69atbpfn+vDDD8tdFisrK8vtdkBAgK666iqZpqkLFy5I+nHQlVRuMB41apTsdrvmzp1bLg/TNMttGwAuVRyRBYCLZN68efr0009144036u6771aXLl2Unp6uFStWaOPGjR7v89vf/lYrV67UkCFDNGbMGP33v//V//3f/ykuLs5tvcGDB6t58+bq3bu3YmJitH//fv3lL3/RsGHDFBoaKklKSEiQJD322GMaO3as/P39NXz4cMXFxempp57SjBkzdOzYMY0cOVKhoaE6evSoVq1apbvvvluPPPLIxX1wAKAOMMgCwEXSqlUrbdu2TTNnztTf//535eXlqVWrVho6dKgaNWrk8T7Jycn605/+pAULFuihhx5S9+7d9eGHH+rhhx92W++ee+7R3//+dy1YsEBnz55V69atNWnSJD3++OOudXr06KEnn3xSL730klJSUuRwOHT06FGFhIRo+vTpuvLKK7Vw4ULXObWxsbEaPHiwfv7zn1+8BwUA6pBh1vZihgAAAEAD4BxZAAAAWBKDLAAAACyJQRYAAACWxCALAAAAS2KQBQAAgCUxyAIAAMCSGGQBAABgSQyyAAAAsCQGWQAAAFgSgywAAAAsiUEWAAAAlsQgCwAAAEv6f7FePLWj1eHiAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Elegir el número del cluster a analizar\n", - "cluster_a_analizar = 3 # Cambia este valor al número del cluster que quieres analizar\n", - "\n", - "# Filtrar los elementos del cluster específico\n", - "elementos_cluster = df_final[df_final['cluster'] == cluster_a_analizar]\n", - "\n", - "print(f\"Elementos del cluster {cluster_a_analizar}:\")\n", - "print(elementos_cluster)\n", - "\n", - "# Estadísticas descriptivas de los datos del cluster\n", - "print(f\"\\nEstadísticas descriptivas del cluster {cluster_a_analizar}:\")\n", - "print(elementos_cluster.describe())\n", - "\n", - "# Visualizar las características relevantes de los elementos del cluster\n", - "import matplotlib.pyplot as plt\n", - "\n", - "# Seleccionar columnas relevantes para el análisis (puedes ajustar según tu caso)\n", - "columnas_relevantes = elementos_cluster.select_dtypes(include=['number']).columns\n", - "\n", - "# Crear histogramas para las columnas relevantes\n", - "for col in columnas_relevantes:\n", - " plt.figure(figsize=(8, 5))\n", - " elementos_cluster[col].hist(bins=20, color='skyblue', edgecolor='black')\n", - " plt.title(f'Distribución de {col} en el cluster {cluster_a_analizar}', fontsize=14)\n", - " plt.xlabel(col, fontsize=12)\n", - " plt.ylabel('Frecuencia', fontsize=12)\n", - " plt.grid(axis='y', linestyle='--', alpha=0.7)\n", - " plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From d9a85dc0e825e8b5b2dad79d9c230d7f62b0e5ee Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 12 Dec 2024 23:34:26 -0500 Subject: [PATCH 41/84] se mueve training a scripts --- {src/comparative_analysis => scripts}/training/trainingText.py | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename {src/comparative_analysis => scripts}/training/trainingText.py (100%) diff --git a/src/comparative_analysis/training/trainingText.py b/scripts/training/trainingText.py similarity index 100% rename from src/comparative_analysis/training/trainingText.py rename to scripts/training/trainingText.py From 7186116d6745806f7c12140aa4a17fa7ba50fccd Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Sat, 14 Dec 2024 09:26:22 -0500 Subject: [PATCH 42/84] Se expandio la metodologia y se integro scrum al cronograma --- .../business_understanding/project_charter.md | 105 ++++++++++++++++-- 1 file changed, 96 insertions(+), 9 deletions(-) diff --git a/docs/business_understanding/project_charter.md b/docs/business_understanding/project_charter.md index f6106e459..dde755f23 100644 --- a/docs/business_understanding/project_charter.md +++ b/docs/business_understanding/project_charter.md @@ -27,17 +27,103 @@ Se propone el uso de embeddings debido a que los datos disponibles consisten en ## Metodología -Se utilizarán las metodologías CRISP-DM y SCRUM para llevar a cabo el proyecto. +El proyecto seguirá una metodología híbrida basada en **CRISP-DM** (Cross-Industry Standard Process for Data Mining) para la estructura de las tareas técnicas y **SCRUM** para la gestión ágil del equipo y del cronograma. -## Cronograma +### Etapas según CRISP-DM: -| Etapa | Duración Estimada | Fechas | -|-----------------------------------------|-------------------|---------------------------------| -| Entendimiento del negocio y carga de datos | 2 semanas | Del 13 de noviembre al 28 de noviembre | -| Preprocesamiento y análisis exploratorio | 1 semana | Del 29 de noviembre al 5 de diciembre | -| Modelamiento y extracción de características | 1 semana | Del 5 de diciembre al 12 de diciembre | -| Despliegue | 1 semana | Del 13 de diciembre al 19 de diciembre | -| Evaluación y entrega final | 1 semana | Del 19 de diciembre al 21 de diciembre | +1. **Entendimiento del Negocio** + - Actividades: + - Identificar necesidades del cliente. + - Determinar los objetivos del análisis comparativo. + - Definir métricas clave para evaluar la precisión del modelo. + - Cronograma: 13 de noviembre al 28 de noviembre. + +2. **Entendimiento de los Datos** + - Actividades: + - Recopilar datos de Adidas, Nike y Nation Runner mediante scraping. + - Explorar las descripciones textuales y detectar posibles inconsistencias o valores faltantes. + - Validar la calidad de los datos. + - Cronograma: 13 de noviembre al 28 de noviembre. + +3. **Preparación de los Datos** + - Actividades: + - Realizar limpieza y preprocesamiento de las descripciones. + - Convertir datos textuales en representaciones vectoriales (embeddings). + - Dividir los datos en conjuntos de entrenamiento, validación y prueba. + - Cronograma: 29 de noviembre al 5 de diciembre. + +4. **Modelado** + - Actividades: + - Diseñar y entrenar un modelo de recomendación basado en similitud semántica. + - Optimizar hiperparámetros para maximizar el rendimiento del modelo. + - Cronograma: 5 de diciembre al 12 de diciembre. + +5. **Evaluación** + - Actividades: + - Validar el modelo con métricas como precisión, recall y F1-score. + - Realizar pruebas con datos nuevos para garantizar generalización. + - Cronograma: 19 de diciembre al 21 de diciembre. + +6. **Despliegue** + - Actividades: + - Integrar el modelo en una herramienta funcional. + - Documentar su uso y entrenar al equipo en su aplicación. + - Cronograma: 13 de diciembre al 19 de diciembre. + +### Gestión ágil con SCRUM: + +El desarrollo del proyecto se gestionará a través de iteraciones de una semana (sprints) para garantizar la flexibilidad y la adaptabilidad frente a posibles cambios en los requisitos. + +#### Roles del equipo: + +#### **Equipo y Responsabilidades** + +#### **1. Juan Correa (Product Owner y Líder Técnico)** +- **Responsabilidades compartidas con Daniel Galvis:** + - Definir y priorizar los requisitos del proyecto. + - Asegurar el alineamiento con los objetivos del cliente y del negocio. +- **Responsabilidades compartidas con Asdrúbal Zácipa Corredor:** + - Liderar las decisiones técnicas clave y supervisar el desarrollo general. + +#### **2. Daniel Galvis (Scrum Master y Desarrollador)** +- **Responsabilidades compartidas con Juan Correa:** + - Coordinar las ceremonias ágiles y facilitar la comunicación entre el equipo. + - Eliminar impedimentos que afecten el progreso del proyecto. +- **Responsabilidades compartidas con Asdrúbal Zácipa Corredor:** + - Colaborar en tareas de scraping, preprocesamiento y soporte técnico. + +#### **3. Asdrúbal Zácipa Corredor (Desarrollador y Especialista en Modelado)** +- **Responsabilidades compartidas con Juan Correa:** + - Diseñar, entrenar y evaluar el modelo de recomendación. + - Implementar el modelo y contribuir al desarrollo técnico del proyecto. +- **Responsabilidades compartidas con Daniel Galvis:** + - Asegurar la integración funcional de las soluciones desarrolladas. + +--- + +#### **Justificación de la Redistribución** + +Esta reorganización tiene como objetivo mitigar el riesgo operativo en caso de que algún integrante del equipo no pueda cumplir temporalmente con sus responsabilidades debido a enfermedad, emergencia u otros compromisos. Al asignar al menos dos personas a cada tarea, se asegura que el flujo de trabajo no se interrumpa y que el conocimiento clave del proyecto esté distribuido de manera uniforme entre los integrantes. + +Además, este enfoque fomenta la colaboración y la versatilidad, ya que todos los miembros se mantendrán actualizados sobre diferentes aspectos del proyecto, promoviendo una mayor resiliencia y adaptabilidad en el equipo. + + +#### Ceremonias: + +- **Sprint Planning:** Al inicio de cada sprint, se definirán las tareas clave y los entregables. +- **Daily Standup:** Reuniones diarias de 15 minutos para revisar el progreso y resolver bloqueos. +- **Sprint Review:** Al finalizar cada sprint, se presentarán los avances al equipo y se recopilará retroalimentación. +- **Sprint Retrospective:** Se analizarán las lecciones aprendidas y se identificarán áreas de mejora para futuros sprints. + +## Cronograma Integrado con Sprints + +| Sprint | Etapa | Actividades principales | Duración Estimada | Fechas | +|-------------------------|-----------------------------------------|------------------------------------------------|-------------------|---------------------------------| +| Sprint 1 | Entendimiento del negocio y carga de datos | Entendimiento del negocio y carga de datos | 2 semanas | Del 13 de noviembre al 28 de noviembre | +| Sprint 2 | Preprocesamiento y análisis exploratorio | Preprocesamiento y análisis exploratorio | 1 semana | Del 29 de noviembre al 5 de diciembre | +| Sprint 3 | Modelamiento y extracción de características | Modelamiento y extracción de características | 1 semana | Del 5 de diciembre al 12 de diciembre | +| Sprint 4 | Despliegue | Despliegue del modelo | 1 semana | Del 13 de diciembre al 19 de diciembre | +| Sprint 5 | Evaluación y entrega final | Evaluación final y entrega | 1 semana | Del 19 de diciembre al 21 de diciembre | ## Equipo del Proyecto @@ -58,6 +144,7 @@ Aunque no se cuenta con financiamiento externo, se estimaron los costos básicos | **Total** | - | - | - | **1,000,000** | ### Detalles: + - **Servicio de luz:** Incluye el costo estimado del consumo eléctrico asociado al trabajo en el proyecto. - **Servicio de internet:** Cubre el acceso a internet necesario para reuniones virtuales, investigación y uso de herramientas online. - **Uso de equipos personales:** Considera el desgaste de hardware y el consumo eléctrico de los equipos utilizados durante el desarrollo. From 6a7f6a910aa410e4031717d0ce3dd6a780fadddd Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Sat, 14 Dec 2024 09:29:39 -0500 Subject: [PATCH 43/84] =?UTF-8?q?reformulaci=C3=B3n=20sobre=20el=20web=20s?= =?UTF-8?q?craping=20en=20el=20data=20definition?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- docs/data/data_definition.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/data/data_definition.md b/docs/data/data_definition.md index 22e4614b0..eebd3ec4d 100644 --- a/docs/data/data_definition.md +++ b/docs/data/data_definition.md @@ -4,11 +4,11 @@ Los datos se extrajeron mediante web scraping de las siguientes fuentes: -- **Adidas**: [https://www.adidas.co/](https://www.adidas.co/) -- **Nike**: [https://www.nike.com.co/](https://www.nike.com.co/) -- **Nation Runner**: [https://nacionrunner.com/](https://nacionrunner.com/) +- **Adidas**: [https://www.adidas.co/](https://www.adidas.co/) +- **Nike**: [https://www.nike.com.co/](https://www.nike.com.co/) +- **Nation Runner**: [https://nacionrunner.com/](https://nacionrunner.com/) -Posteriormente, los datos fueron almacenados en una API conectada a Firebase para su gestión y análisis posterior. Las descripciones de productos y características técnicas se estructuraron en un formato JSON para facilitar su manipulación. +Posteriormente, los datos fueron almacenados en una API conectada a Firebase para su gestión y análisis posterior. Las descripciones de productos y características técnicas se estructuraron en un formato JSON para facilitar su manipulación. Finalmente, estos datos fueron exportados a un archivo CSV, el cual se está utilizando como fuente principal en el proyecto para simplificar su integración y análisis en los diferentes procesos. ## Especificación de los scripts para la carga de datos From 9861875f5178ae6aa65d2319f17afbf7a476faeb Mon Sep 17 00:00:00 2001 From: azacipa <52643112+azacipa@users.noreply.github.com> Date: Sun, 15 Dec 2024 19:00:12 -0500 Subject: [PATCH 44/84] Se implementa rutina que permite realizar la generacion y comparacion de los modelos de clustering KMeans, Agglomerative, DBScan y HDBScan --- src/comparative_analysis/models/models.py | 174 ++++++++++++++++++ .../visualization/agglomerative.png | Bin 0 -> 73351 bytes .../agglomerative_silhouette.png | Bin 0 -> 72512 bytes .../visualization/dbscan.png | Bin 0 -> 67581 bytes .../visualization/dbscan_silhouette.png | Bin 0 -> 76753 bytes .../visualization/hdbscan.png_condensed_tree | Bin 0 -> 11757 bytes .../visualization/hdbscan.png_linkage_tree | Bin 0 -> 21965 bytes .../hdbscan.png_linkage_tree_focus | Bin 0 -> 14683 bytes .../visualization/hdbscan_silhouette.png | Bin 0 -> 94543 bytes .../visualization/kmeans.png | Bin 0 -> 88945 bytes .../visualization/kmeans_silhouette.png | Bin 0 -> 72467 bytes 11 files changed, 174 insertions(+) create mode 100644 src/comparative_analysis/models/models.py create mode 100644 src/comparative_analysis/visualization/agglomerative.png create mode 100644 src/comparative_analysis/visualization/agglomerative_silhouette.png create mode 100644 src/comparative_analysis/visualization/dbscan.png create mode 100644 src/comparative_analysis/visualization/dbscan_silhouette.png create mode 100644 src/comparative_analysis/visualization/hdbscan.png_condensed_tree create mode 100644 src/comparative_analysis/visualization/hdbscan.png_linkage_tree create mode 100644 src/comparative_analysis/visualization/hdbscan.png_linkage_tree_focus create mode 100644 src/comparative_analysis/visualization/hdbscan_silhouette.png create mode 100644 src/comparative_analysis/visualization/kmeans.png create mode 100644 src/comparative_analysis/visualization/kmeans_silhouette.png diff --git a/src/comparative_analysis/models/models.py b/src/comparative_analysis/models/models.py new file mode 100644 index 000000000..2b8cbd356 --- /dev/null +++ b/src/comparative_analysis/models/models.py @@ -0,0 +1,174 @@ +# -*- coding: utf-8 -*- +""" +Created on Sun Dec 15 18:04:17 2024 + +@author: azacipac +""" + +# Importar librerias +import pandas as pd +#import re +import sklearn +#import matplotlib +#mport matplotlib.pyplot as plt +import numpy as np +#import time +import clusteval +import sys + +#from sklearn.cluster import KMeans +from sklearn.metrics import silhouette_score, davies_bouldin_score +from sklearn.preprocessing import StandardScaler +#from sklearn.cluster import DBSCAN, HDBSCAN +#from sklearn import metrics +#from sklearn.preprocessing import StandardScaler + +# Version de las librerias +""" +Este codigo ha sido verificado con las siguientes versiones: + +Python 3.12.4 +Pandas 2.2.3 +Numpy 2.1.3 +Matplotlib 3.9.3 +Clusteval 2.2.2 +Scikit-Learn 1.6.0 +""" +print(sys.version) +print('Pandas', pd.__version__) +print('Numpy', np.__version__) +#print('Matplotlib', matplotlib.__version__) +print('Clusteval', clusteval.__version__) +print('Scikit-Learn', sklearn.__version__) + +# ** Carga y limpieza de datos ** +ruta_excel = r"..\\database\\Adidas_etiquetado_new.xlsx" + +# Crear el DataFrame +df = pd.read_excel(ruta_excel, header=0) +df.info() + +# Procesamiento de columnas numéricas +num_cols = { + 'Weight': '(\d+\.?\d*)', + 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' +} +for col, pattern in num_cols.items(): + df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Procesar precios +price_cols = ['regularPrice', 'undiscounted_price'] +for col in price_cols: + df[col] = df[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) + df[col] = df[col].str.replace(r'\\.', '', regex=True).str.replace(',', '.') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Eliminar columnas innecesarias +cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] +df = df.drop(columns=cols_to_drop, errors='ignore') + +# Generar array de caracteristicas +ids = df['id'] +X = df.drop(columns=['id'], errors='ignore').fillna(0) + +# Codificar variables categóricas +df_dummies = pd.get_dummies(X, dummy_na=True).fillna(0) + +# Escalar los datos +scaler = StandardScaler() +X_scaled = scaler.fit_transform(df_dummies) +df_dummies.info() + +# Analisis de clusters +# Se realiza comparacion de 4 modelos de clustering +# * kmeans +# * agglomerative +# * dbscan +# * hdbscan +# +def cluster_eval(X, cluster, evaluate, verbose = 40, savefig = False): + """" + Función cluster_eval: Realiza evaluacion de clustering sobre el conjunto de datos que se indica. Genera grafica de el score que se indica vs numero de clusters + y grafico de los coeficientes silhouette para los diferentes clusters + + Parámetros: + X (Numpy-array): Arreglo de muestras y caracteristicas + cluster (str): Tipo de clustering: agglomerative, kmeans, dbscan, hdbscan + evaluate (str): Metodo de evaluacion: silhouette, dbindex, derivative + verbose (int): Nivel de detalle para mensajes de salida + savefig (boolean): Indica si se almacena la imagen en archivo png + + Return: + results: Diccionario con diferentes llaves que dependen del metodo de evaluacion utilizado + sil_score (float): Silhouette Score + db_score (float): Davies-Bouldin Score + + Ejemplo: + + >>> results_kmeans = cluster_eval(X = X_scaled, cluster = "kmeans", evaluate = "silhouette", savefig=True) + + Silhouette Score: 0.25816924466629976 + Davies-Bouldin Score: 0.5575649799417841 + [Grafica plot] + ... + """ + # Initialize + ce = clusteval.clusteval(cluster = cluster, evaluate=evaluate, verbose = verbose) + # Fit + results = ce.fit(X) + # + # metrics + sil_score = silhouette_score(X, results["labx"]) + db_score = davies_bouldin_score(X, results["labx"]) + print(f"Silhouette Score: {sil_score}") + print(f"Davies-Bouldin Score: {db_score}") + # Plot + title = f"Clustering method {cluster} with evaluation {evaluate}" + if(savefig == True): + plot_path = r"..\\visualization\\" + plot_name = plot_path + cluster + ".png" + plot_sil_name = plot_path + cluster + "_silhouette.png" + ce.plot(title = title, verbose = verbose, savefig = {"fname" : plot_name, "format" : "png"}) + ce.plot_silhouette(savefig = {"fname" : plot_sil_name}) + else: + ce.plot(title = title, verbose = verbose) + ce.plot_silhouette() + return results, sil_score, db_score + +# analisis con kmeans +results_kmeans,sil_kmeans_score,db_kmeans_score = cluster_eval(X = X_scaled + ,cluster = "kmeans" + ,evaluate = "silhouette" + ,savefig=True) + +# analisis con cluster aglomerativo +results_aggl,sil_aggl_score,db_aggl_score = cluster_eval(X = X_scaled + ,cluster = "agglomerative" + ,evaluate = "silhouette" + ,savefig=True) + +# analisis con dbscan +results_dbscan,sil_dbscan_score,db_dbscan_score = cluster_eval(X = X_scaled + ,cluster = "dbscan" + ,evaluate = "silhouette" + ,savefig=True) + +# analisis con hdbscan +results_hdbscan,sil_hdbscan_score,db_hdbscan_score = cluster_eval(X = X_scaled + ,cluster = "hdbscan" + ,evaluate = "silhouette" + ,savefig=True) + +# Comparacion del score de los modelos +# Silhouette Score +print(f"\nKMeans Silhouette Score: {sil_kmeans_score}") +print(f"Agglomerative Silhouette Score: {sil_aggl_score}") +print(f"DBScan Silhouette Score: {sil_dbscan_score}") +print(f"HDBScan Silhouette Score: {sil_hdbscan_score}") + +# Davies-Bouldin +print(f"\nKMeans Davies-Bouldin Score: {db_kmeans_score}") +print(f"Agglomerative Davies-Bouldin Score: {db_aggl_score}") +print(f"DBScan Davies-Bouldin Score: {db_dbscan_score}") +print(f"HDBScan Davies-Bouldin Score: {db_hdbscan_score}") \ No newline at end of file diff --git a/src/comparative_analysis/visualization/agglomerative.png b/src/comparative_analysis/visualization/agglomerative.png new file mode 100644 index 0000000000000000000000000000000000000000..f415c24a673b2f89209ff115858cce328e62f17d GIT binary patch literal 73351 zcmeFahhLM~*Da3YsH2WLie*FvXQT)Ui~=GxIu-~BNbjH`Dj-b=NC~k!sDOl~bOq@} z={2#ShzLkagaA=G1c=lCA<5kb=X>w_-rxNh{(zT{Gou4Zp65B|?7j9{Yi|Qj>uRi9 zBeX_9KwuqK^SFV4z={q5f#th@Sqc9~sW4F${m1i!nWv%a1yAp@SL_9J&U(6CcJ;jM zaBjDk{S^-fR~I=MB^kN>yDxcqx_Kze$~yn=ACPgqa#8l3;WJ%$lhtmT<{kn98_uGC zmZf1*9R!vM2w;yNHM$x*(&=;6sEk~Y{CdtCpEPj2G+D?IM`2IDr{*l|Ne}BJw#sB;s zJ&ON%4&OJ#|2&8P`Wy;Mi@SWa;|FRcRT<$0@{TQged1Fk4O7fgM?z&tv*+MX_hm_+ zm7m#!s80N&+F+QVj?XguNx}ZZX84wV(n<5wkryU8R*ye>=USCEDOaD8iocJap9&rD z@$C)OFrf4)Q*C>OxLu)IL6sX6ydE<`4hRU;d?;8iAW*Vr>wSm$sUhFK2vd32E>-7_ z68&e-o(+F~ku=X@<|c)xTL?<%wmkgfSeD_A!ZWXas{HnPE&8swUi{^_n}=Ta{3^en zyOsnOcr}D=uPcSVZ}I%h^)+kP;@)k)Xg08WMVBu_x^kLgIozDuAbj9)a0{&rmpMja zyI`AoYr^+tRf4W4+v$8$f*2-3( zx5CO+eEa*`*-L`1mD7g-D|uPtl8n1H{rS}r^xAs4-l$6*!gy1%Am zTMDv2XImB@x~dkSyX;!$HjR?y0?|_wwX#kNv*Y(pCbc`|R!%i1aE;*gMe7fL5x}a1 z_{&O3HBAjQeEDDZMNJ;&bPammJNj2 zV~k&uAJbgQb&5N^VsIyS*Q-vRiu37zOxZ3VaQNnGc#KKvoGC-=t6y)!#|o)leSV=n zHa%X=k5Z<)cXQLLRU%n8H>jIo*li7-HDXb}xBj%aBR`+TZikoVkh#8Fwr$&|qGH*A z;rYka%vf*Pym|2UHk;D{0Rj0%^jJYh1zc0>2KCt^usw|EBz#0%T(;L}d%8EXOL^wA z9d5Et(P?_PHIU&OpXy3r(}>B&nI>XIJ9vilKyC8;@IGq-XIkjMxmy#Hljyaa8JZq_ zuHL)AbExTp!nQ429J;FlhuiW~Uw?JW9zW#O)DkVxo|%^Ri5b9BStp`yHQHWi7!W`T zRv9~7In(a6E`TZOP#wIhZ2a90g-f4y_x1K(Vpg&!lBuyz+ww0`OG6?*Pv5$iX_DP! zA7!0_XLXvkwY9YqcpMyOn(73v45aNh&pW=&=IRsQ>EUN1BbRr%y9K*4nDCc_L*)q#l2oF zk)|Cb^P#S;^^dzdpQgt9X4H^MJqCtfua!MD)i*G}_;hST>u52(>x-S`>tU$F&g4m+$F0xC-tL5umk*+WJs$vmE->E^1+@R=?6UQWU zDu**Ndwt^9tA2ZVvf9?b;3;e`2$5>s*&dt>?6~rP$r$?JKYM~tA3b{g&(MF+s=>AE zG0D7uBw9`bJl(wwli`mar#sV%T1ywo=^U4Hs_4qyDUx_%3YIq1=UDh@|6M@I&tN6V9At6&iVl*g+Can-xL zFV#j$7v>~ngn3J-M4q3SPM@7KaGVQpY)R7}rWLz(^Vl<^mJFrM%+I>DZVt#sZ zteYn`w*j-@);$lqN5?8YH1w-C99BvKoipZLSj2m`!*v!`{nX`sJJ++}8`=v56O%|D zJp4oL3lPxfzq);n>h&J{^s1r0K1ZR;E<}wI)l0wH6ND>jF86k|B@!S`&)wbSW%l$B zSy|Z^_=d@ayTZO{UChoq>vk->y19xv91>DJsmjwM%o}#AI|d{~+r7QFC2&+XL0#=d z=lWgBvrkU%b#H6b5E(T!GMa@waW5ezhM^6MH|eD2A}D_9(zgKaOfh*bR5O`k7aJB9 zHp`nCrLpBM)@R{jB30|d#C0ab=Fq%S|}V6yi0{L zFTB&c!#%*=-Mz9H4@^3+ZdU3NtHzG&=juopqDc9BbMaRx-q7E{{X!&28VlJ&>tW$E<~u$Y7J0bhkI_ z0tc#csBYdlT>iS zy%*1)Z}E+zbOgA#`aF5fCQ*QNj-s%7CRUm`n zACznM;?MDE0*7H6m@8|Zm)ym?&SZ9As;g}b3=9}~PoMrtzSs~SIC|^vKgf9YOksR3 zKqIG{G?ziPFrgF0TAU1%nrnNGZEB0h#nsAIPBr=3GN#qG4b;am&_|B@zK30tpYT}4 z+ogLxyE97h;z*6^KsUQ0I>ZluGDxUTdqNi8$ig-RV=FfI`0?Wa2p2S+y?!*byynKKS4uwu#` zNAipwh_&JIP6W~vr+3EiV!TfZ9Rg|<4zht2L&>xM@x^(PNJm4GfWVGZfG32eAQ^}U zJR|^QBX;Rp>Xa})zt}UrApvm9Cm!6wrl^SU@Y%_M1{Pr^KVdGHH1C*AQP6TMa1 zBK*`6E`;v*k`RDAlv2*;7k03lb#;SzkOJoV`ua#r zW~|wxzs}xBh=_=Ibj`W$mLKF<&H=l3vyeij@pP89wl)X$vEqSJH;9hxxw$zmpuSCl z>JXDyx#eSJRfoFZ;48Dn=NY+d*uDW5E~M}#6L=lAFV5YzwYDBLH8o||M#-|OLqwR` zDiU+1*%ro(qB?wRPndX|GHxP2FKtnCiZ`T3 z7$yVU8#k&(EtS7=0X#~Kv8I~!SQy@d z2mA;|C}=)JZN}^z*$vP=<#AOYM)rz_2PZ3QKTiWQA4+!bIf<4B5=!8}v6Cn75C8(O zpPYVA1}w8FH@DDP7xKb4^zAKxuyF z9dU}I{^6MuC8WIvd=Q@9W{)*R{ z8xV2TT9vmjxz2^GPG9I(ggj$xYHiG5*apnmpR@g=Mnv8JY8-8h%;Qdvt=-`#b4X!G zh}w?#F(l&a@!wvp3al>a_cPJ~q^EW2YW-umREoVK-9MiP`M=(_;_3@qbMqlKx4woa zrX4v8==D^EE+xy{@M5{M(pT=wkph;v8`t;mD0vlmHrcb=cn%fHm z9-A)R?xGWO5$Og62^S$kpAX@mQOqxo0*K2!zF zRb#mB+12(8N;VfZWRI=;+bw|{yp@wgN7ycHr>RP&C@ z>QkSN?ND2jtt2=G8LX@3VbBgm@!;nRG&}mzBhmN`N-JuqGlYBqrEw*?PU0Qp z@gP@G@kyt7N--&-q<*zT>=!s*)Y5vCD7A5z6C3ZpU0A;U@XM%P%(s`z*LlgyzoIm) zX1yb=TD8mbp==F#s!7`kUs+JlBD;4l;D&(&LO^9PEVQ2>jgH&Y11D%kY>vZbp@Yxp zn1M8;-EjyGQ_8}aH+fQQ&hFiVbdNS~(qvrK&o=%OIVpX$QB>t~o~Gk96qMK59gpNL z>L%GaU8es9_{X+=ZYXfx#uCzi!8uw3)Iiy_j=~XSM$ZtNWNU2P#~P(6y2n|%ls>D+ z6*Mm3!Ccb>08~~v$yud@PBRV_%`ISDcy2o-FkR9hC#I=8!mMI(j6Wav$Dr6Nh zeG$Wc{P&a7nZET(13RG*dR|X0hoWRp@ZrCS1(zD1T12T$ev~76;;vDbw!9M_{U1XM zJT6bGDV_`w&W0ML>}}ost%G4o1!Z&lvp}IQ$!t9h?b#UvquWuNYbU=})YD+Om?eEaGC3~fF_VpR*MRDV-%g~q)N)1al6GqJ8U0`^sL<%)4C~r!Dq9;Z?UHsKq(Ll;h8&q zd3oJ}#_A*4wIlw3|8uYv{C|lGI(eD$B(Csjg1R4WVsu< ztZ@hivW~4+N^WGJqN|W3O!yU@{@?BJQc_Z|j6-HlJFmR|V_iUk(7bR%0>-wfzGj}w zVN?BRu#o79!Nbj}~GQh)!q1s+_XtDuAg`FsdtrqsXe3K@u;Am7S@n*l2l-8*Z1sod!aO#PkK*9z& zIk_F3GZ1JK3EatqLehW&um^}v%4OxvdR+PT<&`7k$|S18pbr}mP^M+E%etAjdS}`` zP0l<#wqD=F#N=jil-F27icU-lKpTfwH&)CKXXXy8&7G+e)JWCJwW&meB09_=81B{X zsLk#Q5)N_)x!w;@f&A!_Dinw@I9te;8HKVAA7R&`a@V=N0P9McyU-o=w}M1RZEfvz zF`1(SXQNSRAa)Nn(Dt|1g}x(}nip)l!YS$lr0HzeAye`^Vnfz0maaHr4b*^t9T?i4 z@QK#?`u5ss$gG2~omxLc>@xzi35mf9}D!nn|1XO7$_JZ{=l^FYj)J%7GnIv_*L zU~Y1+!0y9~Sh;{|<0r-?+1Ey%lu(m~vO*{3kPd>_CRt`rfQ&PN?`H#g!U2>T1}xG9 zKt4PshSu$zYh7;AR8ROK&q{mN)YRllj=x8kDsZKfUez9y^CrcanwU`LeHRAn-w783 z9RpmW6K8(fxoMlLQ$5aWGz7B}KyRJzuOB{qh;D6vc%D?fL(wI?VDeJ;yQz`3e9E*p z$Iq@fgnno{5Edj|rM~d0-cnIO&5}SK#ScgVFWa1=L-gYAQB(hFGx`3@yLikxT=C3I zP#}ShN&{x-r290!!O5|{C+?%ipWKSh7j_!?!Mk<5$odu*8HRdlg%tgEb8~YQpo1}5u*MxG7SsnK#5gH!Ypa@b5V=0&bGFt(BV&50$tI^)ccWD}+(qsJ#6s-rcIV0jtrW2>DEZxZLp%ul2EJzpU2~x_E$#jD z9-;`->g^3Y71G$P0h&A0{lZNa_P)?{rc~^M+c6_B`nY-2cCPvJw=$ERmSN3X9EHXHcoV{}5! z-hKO=D6F*ppWQr0l%ELmTo)Li59kAlHa%V~;smw8Jk*U-eNnbrj_lQ}qKEeetQNNI z0kZpYcT^Na)M0iS{}GXqju0pV@wWaog=&rPskvMBnG6Dh)C?!i^X0Ntm*CsJ zbA3?|O7PlyPCob)t>Ba;r?cWkf}?}BRDkdbfuHXpUi&8Gg|Z+hfDi-b`{nwo0-!^IhB2LoQZehsji2!F#_MuwJ0HzfPXPGZJR9nh-t!Qi?hf#&ONw;jR=%hSIxnH#Md0DHEef@s zoYq8ik*@k&ud>GWLsK<(W<4|<7v`EzTROSYAI-9y;nWre+jJV^>65#Ep00>HDk?3nY=}mh=RG*^6mT8(x0S+-|WMsrbgJkJAN+KyVJlQ>CSXZdBpt?rD@6W~R1RaNZ z*eO^Qz2WH^i3E9eQJq?JHe^s@_~EkW>LUK%j^;B>+e<;agcBoCc*w~^cz~ij z`{kzC=)x+(vD^@|{gGxlPy3Z;RtaA{^YjHNO!r-@)yz||?%Z@4>oWPnfrp(aS-xZv zJ%BByn?wDy@pF*%p>tLLRQ0+ZEOtG$;AdlO+&bu?qF!{Te%B`xID_W-7Zj8mn=Qtx zy{rD&IBi1$FpLL?xvoo{J6kX_tv`7j&!Fb&EhxA9|q8poi@wa%pA~hK+DELRhI0@er+$9qRri z$#EL5D69<$P#g~PxJ=$~rL&!eDmDXm+_H|a;5qo|DA6(7sWKBvzTF3uJUVey1*Q1N z_>%pnb)9l%8v@M0dt-??r1{~h8vPx447*RU)un~Hhriyc zDqWv)>ahV6Ck*RbrQf9xvS}0uqwe#Ufg#nX6tvI3P}c;QFUrUgR2_iU4V2>`uM63C9e28j{rdfIIjs*hUWfNubGs$K^~zt-o*IK5by#j6p$i zA#-LdG<4scJFsQTmc`HnXEGJ#%r+Wk;{BdhVA-(<3CRNsGDpe( zlb{rOh9p)cQ%t-VxCgYU94C5fh{>x3#Rn5_uFt@+5hn}L9mqs#iF?l!q$urnpW}2; zpR=JnRCG`F(cXn?(FZ^t=TD~s9*Q~KbdWp$J3N&nMkcR&8~HSFpD4LQC3?VJcom(c zaIt=8oM#g@NZlLQUvYpkz&Q=Z&=*n`x4`FkzcHmah%JRSQPLZEQy+jAO7f^z(%5H` z^{`;_d>E=iPF3vm=?x7`^17J^r4$39Y|$Y=KdoAQ{8?O&Euc3poyR5&Q*#qQ z2!GhZd9X_b&}(2CEUL^nHUj0^8*61g!Oe6IvJ|=Vk6=4z>OPMO4Gn$t2&qz2pxkQg~Kv)EI;ZL4~SSFp2;PHCi2C23qsSWQjdJVFTlVMbWi2nkstz zDra5_KzfvVQK5Oz>91;X2(w}`I8xR&-pI-6*|3r~k`1AF0V=#{#Wt(Nyu5=*dj#sx zv632sSrr8UPGsTBs=z=J&=7-wTs}deVaVuZNV|hvCbehJF`z0au)+yuhmrv?0)3r^ zuETq#P!E;LMVH&21`0}uuiu;oIx$)|Scn&mVOQUYG(Xdh5}#h%Kq1K%Jfpdi zts(N}2}1#4q1|;nNnZ^PZ!p*#evWB%!N@`Ov9)xhgDCz)E zU6XIVx^*j;mX-#9>?d1;`EqUf0=kYa+M@8|3mPUF%8}OLp{~ku^5wQXWtI}~rByg^ zJ}{y5r7=6piwVF_w{G_?cIn(iU3dF$u8rSl9}rnBWlY4GP)4JLJanMw%mOkFL^_5Q zWl=HXeS5P(@hTe|CJr1C{JXXEGAPB|m)DmIN`u@60z#5(4bu8hvPP`_JgACbD&!dcg%p$I3+fRD)34gQnj7%bY-uR!Hf3xVqC<^aRFftcjTm3 z=P9v9*+CfBjLb}qEoa!Ya2{gD0#H-68*cwyNRj~1=8|7**$kyC2Liu%QP|_hLjwZ? z5?mgnK4(w*1maSCb*4ceL2HD$()+#&7dZ!*U zDBw%ShxE}2o@7^C-JnLxt)@G_ohu(YzN(&?9y3gQS5Y?-1gZ%{des=wl7_e zJ5XCf8A){^&Gmm*hg&nF=&&CNuWzj`%%M^iiAc9wKt!6Od;(lA1Mp)@RiI#Nt}Vv? z;zcJ=rJ;KLq_45-8B{;IAYwPenSSDSxMRdQ0Rk&Z3!cO2sTpvYkfZ@FMCDY@Sm0;B z-YwL%F>Y2Q&*=clwVMYmHya?I_48UmOIz;raZ|1Vp(>a`@8L^_VVlr zQXB@^%os>LR51dh0GG=E3qdPzNx2D}k&8GN8l^kX1}0#$9|_{}Avc%~n{8FpI+SjbR{ zhB|M!G3jm&I3%R4N=_fUyWV+f2I`F9{)U8Hz0A?bD_jAgIr2spKMY>!XES2+_ zIFImwa$mS1Y##|IP&1)2F5}KK6hKg_I=Hz;l?9m4u@0EF|M+WwE(43sAjBmIXr0fH zBs>gPc)vJiP5i(Rk3;6Ap18kt=-$2@C}D1HUUR#^nRe(uew6^wHHUyG)y`_58C3eQ zD4?%R$1(jS4%7o<5a&Cb9R^FElvgm2xzDkeOl*jesRJ={x-Cy|AP00Zq`GAG1YEXP&3Ci|> zp_+l9-{&xpYLA#mWokN8G()--9smNN$`H_6k~B6zX(|n{zgA(vJ0fGCBd4}nz99CL z)dI)$^YgRd1%h2Gr0kjIQa*a9E>6W106R8h2rM9oJIQ&o0ki0H+P~EhU>kzIiw3d1 zn;pLuk>~1Mr@$aKgmw)84`ftnE}Az?Q3vSF?<=@lBtf8O?;mDk|I@ zxqlgAQHrj>24R2=tOeqD?jOhQfMrS1{YD!y`~ibgj2KqMS&yjOlo3W4XYOE*0z2K7 zI}wE}O`agKfp-Jhy9(9y1&dP`i$S4=5S}&|en;E^+ZawW>9)kFx7%#ffVzKo!mS2k zbSgp?h!D8Y5Z~EN(~CWnJpm!As z2h5(uYQ>(}nl=Q&POEFcY0w3(DRC!SI5&Hsk_Vt9%o6*&_uhIS>An<&LB|xx~4}K4w9TY@jzC=aX6ZEGAM&JgZy7M{^KXG z28VZ=Kzu3$uCuDw5Axg;NDL0|AO7Kt`5k@aFGo^v@SjU6K;4nYN_y7UMJs5F5Efp* zJv=(>@Oh)g&L_39WGm3pUeq6t2Hk}C_mhWR0c_`N^Zb(lqfB78pbZhGtBggmCTI_h zUq+El0LSdI24ox$)OD(~Wl1(-0k{u*iYxppiFNe1fb- ztv*7Qo_B6^y&qsXMSDu$$|)Kw?(-$!@7=!-)kAKT|Hg+>r%LQXHrk#{fuL6Y_LiT& zY7XhZCwPTlPRRBD^0E`(->G(*`|kP3Uj{*|y$?wpU4J;En@WxpwJ&nI zXhqyf#RQ-H@r5P-3ffss;K?LNx0LPJBv^0xW6-hw50=fYwr9C zmhZ){BWwPG%aS_iUvj0)D`MsP0=OF=pVAMtU@|81xjNCv@MSyuA|gNRlML0;$}%K& z&sR61Bln~2`(ML_;MlcHe|lM>u@&#I5U1#e+tSQnrCY>+`L=?kJ#2SClmC86zC=e2 zvYsYUN@`z_HqlUD{|QJ5j0ee$uC>zvHJrr=@PA^);vOpP+VFFrn7x1oLNS$Iq#=9r zYSBOBnnyb~@VU~fg#y8A?!GaQ&(P8caf8Z%vO0SS8&Cr{TkMsYJ=Qtgr@Mm#EOS`e zWB>1%1Pho2i{{7)Qgp0HW@HU4J)Q(Bd|q zwSvQTScaQ2&>m=L_u|pH7mt>(MjPQ|aM}7fSv=j6a<6V9DwUALHyXoB{BE?knM8`R zg54VCU5hjMZ3W`NYdziCAF^yJEn*HiAI$l;X=}y`G}D}UCh_3*_*BH?USaHILFI5s z-Z3szp3fF}k^JkI44#bS9xM`XpgKtbS~bq?_3AtNby0C~&in%`0KYSef1RuP1v?gZ zc+2-w{5cNADMyAM)1mg>7I0xm?cX2XOCcTvp%k3Y#r2v?2_QyZQ8Fq#Voc28*Brpr z6maXcfZFjUuiu@2GFiN=PuZ4=0LXytc4~Zjf}-^O>Rt*5B7{&L5W6oRynJ8nhZ3&) zQl3+q*9P^yxg}=99p+HEE5I#t0B?KuSEYl8dJ$~=IGCcN{0(?jyHSgDjSWN97_YIa z^!R}#WckH#%B0TIXNd>zZ<95#w|{m*|2|M)fQ6S3825B6Gaa3v^`UMJWB~+#hvLY( zUCJ$cvwU8EeZH83ejHr)bX@N|4s@Mi?T4%J15+AH2wcy11j_E~c^zm7BzBzHe99mE zQZ;t_8O83Vjbs18Zu}nS^Bw6vx5}Ap2adZem7X=kCz;(+dA?&i*qz~qQLzpd=?vgb zDA;vZI7xi5$vW8O#E6JzP;_Z(@$BubFkb;P{xAswHrr`zZI<@=$z3fFbs3DD*ux5- zK0SUs7V!QKpEy)u0Lcv4Z_#uBzlEf+4}pf685vpp0~iE@;0ZjrE4MntO^>yjb!XoC z=#O#BA`HI$=BqDR-G9~%=xzlk${;Wd2EgzBB;ypngm<98t!}yhcJuwW!~T`1{s2ll zc}o35<&yx@PkhogI*VO8fNm#0Rr-6Cgn9?V)wY zcYY|fdHxq~{#Xs}`FiKWwGz5G&aHj?_9Y-S<2|lk~p<1}az)BsC$fB2+_o`x&#z<9}{k0@9YyS>a_k6wqx%XT@>(Mo-vzR;^V# ztjltHgo93Q2|BrilnL)e+hR7`En$sTcbqQrs7dp%)cOR z*%|c61hqd*jnYhaDSMs;<<`?ilL(+yRCFlsap3pVvD;tj8-p{tVwAR}%PH4a z7MSkSK&YUa7_zzpFfq%v9jc!WN#X})ApU6>Ls6emF{TV**X5h?xV=3nF29}rH(xy; zfZD^&$V0t8q8@Dt{-p}KIB-PPFj`c>DvkGvr&7%8D6w2mepo2jjeZl{Qr3nkry7CB zg2w@d8vkA3Ynz8;l6&voz2u@&klBzFhTIzS(~MMTE(6vr4T6<2NE9GX#h!GICCn!#*%r@$ICSXy z5J60ahB!o~0KW%q2UH*d75rvUcUgKH4b1hjNKl+3CCpktvj}Ksz@ry}sE({yNQ@N* z&EfXnPgWLhS%25~^yyDu`W`=4#d)k(J-wYl!K(RcW|~s{;@l2rLBt${cDG`E&Cdgpt8MeF(Xw#K1%Ld1U0ayZD zzac{qaVN(m`El)=WJaJN`1|6xZ&&jT@ATzr^Mgqi;7%7s-MB~*5W|8<5Dm=}Aeb-1 zHa*xbC+{~ia>2D2sP1{7O(C@Iw+15@VolGLqkdUL6hkwu77?}c=@xB#=&9!J2wdTm z;rbzdg~h27=5=BGls>j;urUb-vR_N-0w^+uU=b3-qHcry;uxT-fE9iIs#dL`SuD!x zPpp)rWFz=uEr>y)Zy`k#uV#JtpoLhFi=sh%k`jF0S?Hfr03RE+2}pk{CQh|MduJeU z#<{6eT!T$s@W%riw{tzcpK)S{@LHDvyh0Q`9 zGF^d$AX&~s4cEkQNWx(HRJ>XV!ipmhY|zw*_;=JBTq{$)e>Aws>nQwru}^mh7hcX_ zkog6O)hxA-uptErOz`O5q-Oe<*U<{zf#G}#iPl8;Q|gzxE4d;;+{69 zA#nlmn~g_T?Men&MqNzJkLaoD?g&K|lzCbFYw`ev!n8cu+Z-qJK6_Zick5{%)U7JmfGziRI~8S>XddA3lBr z)+qv5b09N;y@p@lKxDE(RxuLY6v|`+u@U&p1G1kJM{QFes?epNQ`4M@*UVsX;f`T# zB7V0dF|~;x${E{OSTNMRb~S^RB8o*320~KPxl@oofj$om%aO;449y&dV5l}uYg^h%oS+lv=i-A!{RnbK(5?N6gx=?aev4 zbWcBmqvNUZIoKak@NpUM&>JO6gPhimN^_Z#FFzp}3>FuxD;Z_pOdBRnLN_)INlA#* z1?-v}SKAPKwL5UpNb&xUyP8C>=sZPcI$tuP-%%$b0l3+S_UlULAxRRGZ?D}Z6t$qY zQ1{6=hjsVwKTUNw_6WWx_Z@$`4NVNtBqF2bpf58h@a?&>FE`ds zfe{WKh#_)tK*K?7a*-GonT5bLy&JpeM^I*Dt<1HgZyc-iokrP8$h!XBmR2?2z2EC2 zhw0&yx#i%F17o;x{6IQvVvt#u86Vou4P0(2vi66WgJEc8l?6uC&I|Fs487^JUH7M? zLdbsG{0lla1;@Zzmd-jP4Q(-=&=)rhX~6`V>*>%rYNAu5-2_a0=qwxjm|cUoJ)xT2 zJtxYOcIm19k^A&-pA{=~Y`lSMHvu-h&}-BJDQXE~1#WC>9hh!=rNIp5Cyl~X%Coh5b6UH?hwK!E$9rf##EqpSS*&FG`>_2frhi+8Y& zK#MI=v~sRLX8y~~4Z~L4k8%y7kxr$9Pw!h4jLwFRjw{eob>rGcYGzW@;~^H|z@>&I zLI_TUevE=NXKzC|42OHXJRbah;BSNZQzgX(m`=Wh1WWA`vOjqao(B69^xInIUu=jJ zg-6W*CA<*^2#8}BANVOpy~hVnEROETwkpk|*u&){_zp|jU$`(FC=q|D@!&yMGN&jQ ztoO+6WMSPSnh23CTFtL0Sbcu5O7<6*lCLX~#U!wisea``gGv3qTrik6WihHHI->TQ zKLr3*bjm3b{3Z7G_U8N(Yt~oNDu})<;08&C6yyZ(455jLn3zlmX#f(n+m)1{o3mxB zvp49&$jc=PUG>&JeGz37ANK92;Ht4Y44wY&V&OqNR2g4;4KO3*UR{vQwNL#9ZNGyc zN40{_YI1AgXmDOmnbvkEsurL$g@B`t4@r2ocs+>&4Py?o-@Yz0`aV`dz;8XE)nn5` z%^Ij)S*O^M2w3j@q$+TqyF5P~ErXT|G<^gi#uK!xoE&IM%F8p@ap>};DLshf*|ZJ2 zl#ReBco!K>k+uka=ysSQ0zM6SfCr0HF~A--1!+rJjJ|xJ@Y}Cnp#_)X4%Von!+sWf z7ZcbLa7jG9<#pRjm!}}mx!>}>yM9-ehedXoM#$D(UuCdi5_%MPI!PdZYk^4WO+dQc$KH^8x6$|OI^+Es7^V!-2JcuIMoIb7IIRqj1wxa->5iR2O@~!eTuTt-e#mB{ zdiFzY7<7D8R8(y3+;1K1#v(4i-ZuV^@ufa& zH%@4dr6Bc& zP*%z2r%UE;J+r|cf6EU7ehnvO37p!@X&_?2k(u`N>E94#u6L1{?CV{&8T_`)YB)8m zsd^$1xAg&Awt{gLHva1)Obm<@@+GA6tK4;?*Ni-Ya_3Z@tl9J3-`G&-0FJ#*cg^6N znBbGQCb$)wRd+6t*ZPc=NQas#qLkHzb$v5Ym7YV`$-g*T9(=FMFIN;?L9#>6RT3TB zV7d~d5Bu{!vz}~Qny`xG@FL$G;Ozs%-v~r8YNO5syQJh^r+A|&%cp$KIEaKve}-yi z7H@?31c?}t3m_Ez;`v%_3n!A_R>vAH(*VYS7~*LjcUZxgW5VwR=xn@yANoP*i@?yA zo0f&UG6hplB3iuh2vaVC->X4TNjgZH*FuCvwrXQ~>n%SoFRw&alp~)Ljl_iwikCnC z1!O5IPoahEKjOl*d_=xQJS}WSXa>ei0Wt<}FVXps#&@N5c{$mLpE?AQ5-7uPXGdsd zKrNU+oyY^_5$;@kU+8CT9LgRrP z43)|R7Fv?#bqv-vhOWVP8^8pu(=gkkHUFX>w(04K`wyJHUxx8Xuw$?p3u z?cO^wmMP8e2qA6v1X#Uo%pd2iU1N|}2`Q@*NUG~gjxsOxxpM=xQ9ycyUzQ!*({b#{ z>D{d6CG9XkbKx$sknBB&42+G8pf79RGaB7EgME`<%s{+26xk3p+GfzmAQ(%M4iHHM zIGYbew1-BlRZBV5YY5!Z*9rcA;uqYtiUxe*A;OBS$j>?jQ#G2MUhnf@5GBgmT?+lI^er^83i&pCoiwd|yB>3IDA>ANkw=H6D6aGjeiFPM)N3 zbb*9@%I`8v*Iv7IefcUWm`(-^z&u#3!T3f#R4%&&0U5aIhYw*S6m%a$tDC*OKRt@c zcJ>u<4&JPkj$L(IurRF1%-}fEg*_!qS)fd zPJ&Sr=<8bNY7~2mD#!1TYzj2zsbmAv=x*Iup+)|mcA4$WZ>Q~-Tz*)pDYc=V+}oex zPeXbzIQH5A;{YsmE*jm<@4^6+wQOt&H2iND1Y{AAPF>=(V7(F^uxa|xVG`4!VL7u3 z99%!dndo{lItBIKgJEUOn&etpy`dsjyOS&!7`0)l$g{07R%vJ&*)v*H2Y*M(qTOb; zh!#G5-&T{ydu zft>TYxdguoyoGC&T7y%wy**G!FrDv1@s7>>cWdHNlt|hyyzZP-O~vrF7(uxElvt$t z8p^<158@O#BKuX%Raax1^o4T*m**%o6wFt9HP zCO4Lcz-id~Z)kxkHwiVr+0(q11dW5Ge1^oZ2GGXJpvHb+H?@Xtl`}*% z_~mO*=XP#sS*_hZ3`lKBF!`{QoZO=*S4)67Y1|@y3y2If5U+nKO^6m8BQaA)6x)wZ z7ca%aCdF>j?sM+ik7J1I#I;{w$pI#_KY#ubaPp`X8T816@XJ&dC;W2t5}^0a2qo{F zgOnUFpI&Na*T6JE=tY?Z+8{kGZLhuH*jKm1Vzd|h?goH#BG%cxy9EeaXavn0UBNFj zLH%;cz;daw@HO$mw@X?!utY|0PH;nQKZW2^2a9j9Z_EqV@`6kt^-cZ58kJz1(iWF#s*0Pa7{~Vss

*TzZWPs!!TLm*WQ4CJxr$0!H1MKF>wW` zu2o(HpnHLIG;oZJSY3u`aM`b$TD_9f2lqP#y@C8(xYK)Q+`qY**7au_cC_> zSp#TFLCpq)xmw%a9Xj%|{>a)a>6ZrM>l|P}n?>oBXQF6s z22314@({FxDBy;TQ1?R|G&;^4f)Q`p(=aiWa_j1kBxv8_Nf>B1oE)ax)L$1Ph6R}b z(IcqQuM*CuF9f-1XvvWT*goefKs51KRP3?33yM>-y4r(6RFT1PyTG1l|^0{EhIOGC=OV1Z@aNa)pK^B;9Ef zxq!_aKZHw8yVwCcs|+)r3VkLopvkm6_)YU-OWRbK5#?c81{%XcL_!1_Kf6Ko+ci-K zm~9ITw^x2K4Vqz)2nCIHk!XSx^cTSVO&H|G04{(E?cZWp)NBICj&T_%;IU8OQ9#pE zx654^1iBv_)Asg5t1z?IQTHsi2__b&feIvA!xXUCBO##y+(LLunY}#}Me~ERp3nyH zLoYm%6OfoM>HrN7%H99$8MZ=FMLI~J#AMVn*+#2tXrMy#>E|zf(1ZlNAfci#O7T)# zo;@x{kW7wVr+|2JxLgo4o5AG}(|M;w>usQ+wJnc-;#rd5T`0qbUczZ;oRM#j1VR#) zzD%e6lYjc*|7gJm5u5qBb;mQ))jonS53`4*u`tO*^CtDaZBYQn*BJ&}tyr-_vUE`Z zZ>kqN2SdJX8F|2gwUqMiv~#&EG6OzR3mcaCLD>KFy_2mnCqi_zzcWC;&Eo%U^BB7K z|IxYIfTS=y_>}}4GzS{YB1O@50K?8DV@qhCf=R|OH`$aq4O%xu{%#($fr^c)et?OB zh7d}i4{AbH4-W5FH#3OXP}f3d9sB~R1pYs?dc(OPGTESI0#63N;5TqI;JfIBcv}F$ z?xF-Ztl4B3*M>C!j}R!-jLHqz=`NT87XkBdH`!&Xk35efG`v6U<=~Lb2Hp29!F&R? zA)0>jp`pQb{1GZJkXY30V@NOd^ovCYV$E$ME31ydp70zy(8$v!Kg+X9qt+u;xE$WK z0D4ZtE8_RRgN~~wm*k^o%`RlHHae@N5Q)SpyWd&@WFzd5=(6F)-#UGEQ~fyIHH8mD>Nn0RjQsnv}G(&f=dXx$_VW`v29EFXYj+ zTOW1j(m|L({rG%gSCoWY3czPju%HucQISTsz?zPc zVe090YMeN6;@qzk^qvI_5Td&hqJ>~vhcVgh&}%wJQZ=^AV0PR%BK17^qwoc|pg{6K zfB&JYmC;eH6*_tFa8NfK%yr3tDVAs;dvm|@e-n+*<9+Xu|1jSR{hO#y4r>9Oum-e$ z$Y;wxOmk;9{GOBN&rQ9@u=}ELrgnN@1D#-5evDk(AVS3u$tokfq2f1_)s(Ss9B&_9 z&E%@j9#>(iB4y(*^{4?9+Pt-hi+yHbyXj(}rbjgCSPTn_s!gSYsdElI1C)tihWiaD zQ*7YaRuwswL6_opfe<_ZJ5;wZdC|oV=>T2fZidlpb*LEPksL2UV>mfox=8IP0u(oUwQ+3k1ea|f zFV#1oopf?V01p+^(3$pVD$o#G%J1F3!7o)pST?y8KTB^ zh&*T{{Z_g13VI~GOr(^Ax-SyVX+1Je)@O(lkf+3WiEi*{l1ILIpi z>zxAHbykfRc0yIwod6I3^_VlP20{o6Nf0w3{A`jS++No(xoD-Fv$y|_;}$6zzeH%{ zcYsU|5fC*4Lsz9V7Kk(ow8|%ef9Vv_bD~DV>EojVg)SCG~R8ub#pqX)# zgr>9O_Q%$osZ@+Hj1w?|nPKid?}nh~G+Y!=$eB-!FE9gadk~#MQ8OjzyB-!WTNr`{3C5ug!m?2# zOl{h_3rit{3legnF&xTzp~?U#&nj&(FgyhIhXI;ug#Hc=0pFVxMRcA>Gugt1zCJuGV|2BQTTvV?0Ew{;1BI{!6BEtf;yH$n!nlR@w z0(wnpBeZAQ1n3CmXZ8P*_HRea6ZAJN09H1rjf}uXanJwo8UEW8*4O2Jx5Am0EMuL# z!&TmSJN(@UX!acHbb$upx-y-^J6(D*iulE2)Ks)3pm(D^XFQ~d$4S6x87xUmf!i0z zHkqtSuY*0`c2eOLKcO6W35#sxx&Z_48f0{XV&n3}p(m%)oRivr|6%Sr@(_AOj%1>i zd-Qk7v@9fn(DAU@^)vq^5|Gq4GfP8V5%AYdKzFm_#Qf6g=-px#zR>iH!#<8XE_=8MlwQF8ngBLG)YrRA%>&XqdcJTwpO->Y)3tDL#NI{2C*cqR zP?q|worwO@=Wp1d^XKt2dOVE2)1wlh{G_7$9bx3=res2|GfhW zlcBEuyLUkbtg)t8C5jR;8Ah@~2cZLuO9URZ33$RC6)sR1Ub9cv;9K#5w*!WX+Gkns ziwHMMZ8?Z0zujU3?5BU31_kn(@lxI+*~mjLc6bRrhC11YBP(|>|OF|bvQX&h2XqRs(rpj;19z2BDG zsC84c7m=YJ{5)*f89~beOLYlWf}hkSy?YP*i+U$aP*i zq1X0+t_g*ZZy4@(mYk9i;<=B($1`-jb(^|Xh@pz;pG`J!2R-P6rG}<%vuFCXMg=&v z&6h9WUFiyrrfvP=<;#UL*f%whlU+-_}J}Zi|G8fI(PSRh*}GvHM~UHYS4KRO)woYH?MByVXh`Dq<%CWg+`C*dxIZ zV+Lct6X!q7m*-Ed9nF5-%L-K{ox4>vsOjJMQfyc#K0~-4^D%Fb8}yH znBR_x&l31kj1EVpnGGQth1oYYfjc2 z$3l}fw$fC6`A6*`{gO0>`#u33D4=&AY3r)y-lr{(oC)55`koEwnjzHJxe13`Y?{Z{ z1$Xs1@%&?yoAbL2j+s92On#fEO z6LAAv0$KmzL|(t3@k+6Ww8nrFkAUMnU6#_-a|U;rGc|G6>mq#r-ct~y?Gaou1ap~T zT_di)oyk+)c}6k-C|%@unZeju(d40F9NzEP-=|q$T|X=wJMj_Od*Sr?Y?@~v^9OL> zKu2(Y$PL;`E5o2gkh}Dk{xdLN5ouZb9lL7(=s6M);Qv2~0nN2_NRreaNkaK_^R)V3 zI#5u(27FV)$v3bB`0{60i+Y~Kiq77Q9+Hc5Z12X0Cb_}VW9)(Z3jS|QLOxd3FxDIF zasQ;*`xjO>u$5R9?SCCMQ4H7&lj|AjRS-5NEt?;<^#sTfh*2Xa$Uk)+>XlT4PHRP^wKB6NzV$s!%bV&tnVSB%2bAO6Q$K2Td|WxEz~M z>Vd-NJCCMo9r7h#ZoqSbTcS8`oD^0Y|fBWW0^BII^mzmQ-TU3k+*uJpu;_h@?c?*uRq?FL!1sVBzN~O$jOJgGjB$GSXJ<=l)_X50GIV2P0L{xTvO>Zn`&sQmm$6E*!S~Llj$!&h zJa9>pOycIqGBjXwKoV<`(RFeChp#sn593zgWeCymEv&#e{S&$7jb*m%14olGL%Oe@ z;Q2UJY5ltMQjAh>b5GUoD02Y(<}BpI_>{MIitr3ET)&G;-DPuv1Xxu`ax!`gK2M>6E63W+4lq4Igi~ z?c@7ccJ{U(`f%m;!#1}9X7bR$Wy9FkACQ153zopvguM}(0vwp;ZR(e2KbbqCgR2v0bMRI?m zpu(I0)!%TQ!!w74QUi3c4Qg)F)1i7LWtEbtbLD#glBOgKLe6VQ4nr*>grs!)E*=kGv|w0hUfP7j8OZ!?!dWK3wS?(`j=J$ja3 z(AGF7nSfdD(@AaBaK%hK9jWs_{tqxNy*A$YSd~63lv+OS!Wu(-C83>2mNE0p-W|fc z+Ua9U`yFBlmg5W*#cs&xh5w__TlU|D6^C`Oe_~8Up|+No^1@*$Y40g++^NnMMG!t3 zC~m+swxpSY1Ia?eV0#RBcCz&{~BYz1x&}lyCBi#9g{M3%h!)jWWht zpuo!MyXcyU>_zxAA?IV5Na%~Mto-p&`>kq9F$X)lURUL;21R0$kEd}NnA4-2<-53 zqYzj>V}I%6fVhUZX7IZ8&ZbT z!-D$yicg)H`~^;W`QqvVZ53ftTEw;#mfZ{qczjYYWTc5p1%=I`4#bGuTiI~Mn0-ej zr@-GDp`)uYCnnu4nNmVK&)8;5dEhJF-aRJ8=epm|?Rr1XyW<;sQa zeZROZC`19)p7L9t{*QXKH~+h&;)3tC9XoQGRLR|*Y)>IJF@X*I^6f9R zjgr(ly*EegJ)+@|OgvFa@`62b$kQ|8ff%($FC6N;3l9HwZJEi);3*4GBC=iU!Q*S|?bOFkZ zW)MBtMRWf@u`$--Qm}ks;jPDX6%O?S#|#6&`oa^wc2%LU;6T~$99GOrlnj8QT(O^D zMCGGnv#>m1&oQ;y!Ihnib#IA5emSBPv(JbtLe-nOpE81+*_HDe=F3}4xNQYBVjVEx z;N+VzX$h8pX670(gQ1ayjYumW1IHuy7zf7s*-515Y^9p_!>m3gN$$^Pq3FbY#ariD z8hL%b1l?rj7WxAaH(Y4U_%gp}`l0K{OHh&Dxrz>cfW;q5uUpzNO;YJcL9GeK`I|UH zbH}P`Z${>3QtK0FckUd@$Diu_b#$b@>HLY|fw?WNi-^@hM3Tq*BSdTrI@)1V2yRFR ztv`wmmbFH_e${hrC8=@Q^Kk_3etqXJ3=YdP{WZ_$!oMUG2IsdRh750XG6^~Di6E6+N zT_MMn&sc*gJ`I~cM)ztaZ+x%80MuVa!yQrzKv|yW!VBJi{5!;Tv(2Yc`AsLP$oUlQ zmY4AOrznKQ{ExF=1^kW>Zk(W{`{5#y1;DWYJBS72S_J)zPvK80-0#(Fx$w2 z-;Bt&p3|K5mCi92#v9|y&RDJ~@Hx@SJU*)v8kuSw);ME7ws@n`yLe;`VK>j(6H`0_ zrqot{`OB+q<;(v1Ax%=osswq6ZC2uZR+(-H*+*lA5mWF=d?iidaVrOmlDqYUt8J02 z`-S*n`Q~yZ5&@cF`7wn-rz><>7%58*T?5In3I9#-d_mmZr#VbShF$fo+X%H^7Y7bD zwLjtU19Kg^jcDHCYJ%>8{Ik!N+A3hEt?!`nl>*Y{53)75Wje!Sp1IdtWF>9WxhJ1f)uXd+EUZz>qY+z5D013V$sh+e>K4U8V$$#M zp~#PtgfPjdM{FJv4l%g(-5@=%ARETsWQ`7CA@(Q9Sz$4On6Ig_a5#@>?5llfV}c#g zSE*J-BFbgmUVU4uKh>S+ETo`$#@_}k8Kkrp5i~f)M2$ujOwF4MxrzRieuIVLg)6f8 zg!oNV{xSjV=_NmBhinn&TFxS?ayA}IQ(acCF-BTDa^)Lrh8yYZKmq;NqzF}QK1_5v z#|6%TVJiA0;l`O1+e|LT&aR&k_a;hp_JT10JiepWJ&#}IA;)0V!F|4*IE@xfSSaUp zLyB*lmR;HGq<1@@mP=Wb6a$8go<$VIdorl57@mFDS!sUxZ;iIbf@K-0M*n-VCG6T= zM0N@+J4J_3)UJX|C{>ATKvf4)+_X>yV#A_DG5VX2$*${{FRvII*^X3Vz2#*iZjTZO zEU`$9mgE?$uy0Q&2}iiCT@=MC>oGrovSQ-sn0r1_z%gf1>X08c6jLY!oI~9&UMvI0 z>6OS6W7&Nw|8WQjz9Dqv(#dk;p=g zaRV;<1m(bGX>nj;@38!!t z@=(cT7(|Y=sa4RK79AbEj!R-;^i8VdD}MZcBgr*q;0dc&fAuaS(kpy2z$Nw9DOjNf z{6a5DP#bk=k};Zyu5KsV>KB~5%+9)s69MbK9M;KT|1bi zU+F$PHnf$W;>>W!ed1mOwT3(}6^mvhsrlmVVbfCq!|}CgUP?!vnPzzX%h%lbYdzLC zF9a_sFWZulj0}qVl?t_gv)vtzTNK4&=6OsGW1AR{Oa!6t6nAQT&+<(Y@~i&ZCZFHM zs{;hQoYVa^P1j+c1%P4O`CKJH@U+iR#8USQ;|(M1|NYDM$rG*8)C^bVZqLjuuwUDd ztBCZ1I&4rCs5;cIzM3a47o}p@RV)4&%w~i^B<~15LA+%YD<)W}^d`ru;xsoz6-X7> z`lIe!n0CI@R(+%S+vt5PU+l|MM!7^q7Yvp)JA;KhT1MaG+r?sGa#UqrU3ilK?CTM43Xe7-(&KUy!|cn zo`Zz@es6S21>i2)Wmt8fiT~G6I}2f>=q$i%4@;@g5P72z+q(OO?q)udBvzcBF>MYQ z?UAcYhUBVfbhTqW2JtEYO^T?wMe7y;AVwkg&7I9hs7s>1eFj|J)v0dc5v_6Zt)1Z_d$3A-fZz=tcEf(RUdvJD89F^)y@9o?5GQ7`p)`eU!7C$IN?v*J$ z+J+z+igX6Z7(^AL$tn_ZdtL^4`jt78r%!Q|ZUKt|BkEl2uztup2B|>T(PKoZuk9Z# zIMS;N5O)qd^SD-kyepv5%0{zCN^|(~lbqDJeeTs z0--lpgP`Hj7v)_mB>XztP+$vhd<$i4EHc0;hC$CC16e<5{WA3T4QwWp56NaaiU5)> zL{Y=Me#(?FF(Da`^f8+$jG%u6y}?P58UsT@7^vVhh7TfN@a$Ok@zemOmlzO~d0Vroz6?o%aj=0qUWNy#w1~j(rnOHq0{!n^9`{ z_YtWsNIt|zv6u^%EHDRvfn)c|XD~!AaraVH_3rX1tb3cv`$T_y#baH4MarrGzkL9b zl2W%*?Fqzh5<{gq-4*hV>~-rIEY#L{bB7ws@ZMTn1ol+)sb+CX;s$RlbC$1dZHX}; z^ng^8xw*{OzpnHVdmybYe;4{CbP<1z9BIWYt%f>OTVx`LHF-O=n7q+}tj1ZJU9p+q zcx;4>*4L;8MuX2T^imnH>5M=!>C3AN?mgIkInSf3M`}g%Xqcc)m6Z+Q-bI}9YL*;A z@6q;V$1KE1AJQfiaT~78?O_%mFKxg$L0-a}|JT`yzqEJWUCgTB|GN^<6tmo*flBh) zg;ZP&C`^R;9Mlk|&zJftCbK`aL4{dnA5m2R^4}q0Y^u&w==36qRW2X6@ZUuutqy#O zDbF3I72_BR2w_6*7Y!F7mGHtIW;`+DYMZbB8c5p8BMAv3Su%L7pHLO6(zbn5Mf{ae zm>*Z$IQhA~P*}y7{f431hd1HYxC!MCj@>?aYMlPz$UVDED>81IDb?*-pcfpxMKjRK zJUBZiGsn*^T+gOQpBuNLf0I2qS$3T1!NGT>&vOL)2lHyx#`R5ku}#@x`^L27iGvW8 zslLYu+_Uze+3=W!$N2(%J zE$^NiXis|!&$wN<;EM{GK?WX!Q-U-s_?*thH0h6z#+{?GmB`McMvbzB*P02+ZZh%% zYA@rR=If}h%p3iC_UPBM$9Q&(7)i;?%Lnm5nKo4R z)}$#b&1rEKuDBIs@vw_`TNOPT?Mn_62iK55J3D$04++4OFM6$j*T{EL!Zf&s$5;6G z{%<~O`#tu8n^-xe)6+Iax>$OugU+{hfrCpg?RD)A3gsP)5Z-ANSi^5@l(NGCZm$Oe zXaJzEKaH_cQ*)5*XqswMvLY;cZfQoZxWOLU$s-~sB3i!Rsd64JeFA02AnnCNouho9 z=&hg(Ul6H=_33%T?x|%iyVLqb9n#)2CXH{>BpHJF0!|IHC7HSF{=x1wn-K~$hnVH$YGKR9JmNFMFUi@#-0|c4J~`+Wfhgc{cGy`K2_hw`z+D`S2&XL1dg! zSUD2B!V_anJcqJkV-SAh7^ghP){eboIN{fm6Ckl~+_uj0{Hn z_)sIXD6k==-KqJv^M3B>)ZD^C>#BYI0TSgQk)=r z{^e{JPp@J(v2z=R!NtU!Tedrnv(J&Q(Al;5p!oYi=i|qZpWIW0X&%zsJt#sOp=G+L z&$ca%N{UkDt{C0fbwcjR!Lj4zfS^X01XcTnNi^_>Tmgss&mDs?S{Y) z`_i5(d#gga_#PsHPm7VzFH53j5eoER?JcPKVi)lM@s8ea%qO{LdGc30Biotrv^i&qIj2&$dvKp|C+Po z#o5PqXSW_BCkK-8PMGftC;1uEGR47JP4esv=kpLHXna(A2873wmwO2#Y=}LfqE?^; za7reh7|GdHXCvLkwYk6U^5q)4de-bY!D@>?)HW4Wlo*ZLhR92V9kYCY?>}OxWq$gn zDvd5Sns>ME+7zxSo5xo5cHDuTdC|CQi^jd;82QJ!U3AuA+I0G45Hk`xKK{jnu`G~T z^5Qbfcl&cU5|D1m-!AMlWQ(@BcawA3sl$T>WHbsH7Y$FqcbXV!_+Orj+o7TB9UT*_ zmj81jyQ;S7Fb;$L;x=9VChC=Li_bfKbkQ;n$O`qg( zGLdd#=?;o|*tsbzk8w_4=V^UZXH1TzVicpcly`L6%ZlhfMvPd#%|66?W@nRlT6qVZ zeSJR(8ZV1HcY~t}wQ%l3N%tskV>oYOXS6jBxE9e7(@S1XZYifieDD44M7PVz%JO}3 z`i~O{3A?x}Ms;zi?t>8yo#JhyIjrZ;bn8}hRYu)E%C2%}SGktw?)DNqtqHa}^FcDB`^x3HG=@N`ip9yfeSINztyPV%Q zzlv*$J(l&*NayJd6;`K*4e>2qGH(XF&u6;{*t4gEgxM+Pec4_6m@594U19AzFMCM_ zMtV;tT@O=u^9)>pqS__`*r6p>hgre@j1@z?r+0dfahvw8#Z!T@C3w!_9ocNmw#Dr~ zhp`?iKJ(;vnt!rX3~b&rs070_`kdY_#D}j3p~e{QYRwq?|CurOwXid-@*+9Z5br?s zyy~RpzMUx$>T{joD~)HmzwzkLG`#zDE*TmlC?95TKAf@q%!M-xo+?a|JhW)hp+)zL zOeGMRP81JIi_0+{S7;Nx?kJ? zp=P}7=S1vdE`%xEu65#!bD4KY>sez@g6)okQBC8l!^w(qEPql;kT=VdqcO*LtNNucdD-j2ve*mX3y>sk z42GF!tmgFk6NfvQG~yhP(x6y*%3BTxBE`_Mvy1I<=%7xJ?sep}f5L~OV;BR8Oh1k? zuuH-kADK`@E#aDQF;`>3ykf1E)(!0aGzOp_s0RR`RLOkBOA_dr>^h6mWZ;6w3jWWx z81thLMNK+#Lexe074VxRuCt$Dbr;Jj`8rM}7VsOS z+_>lugS~&L=1a`nbdZ2;V(X3hsMnLWJXOH!m>pNW@VwL+o!TN_J zGLsl&hJYl535=E4bZBmkDt%ps*Tk2IvC8u^qd5{KP!Ls_55t6P8eqv52x$d?#z2K> zQ*Eg!e2G}TKqd<;Gu1`IQ$`Z6ph_X3uJ@~vFU2ZRO0V6z)o0&;)(yY_WWX`RW|)Kl zta=8B+evBl#JPe-Z9KycRN>fg&fZi#!*%P18~E_0RhkgnP??Zs27;0TLko_uUbs?c zlSX`oC+3qZ{S1xy?|ZhLp3`)KURQCp1}7mH@R!N7H=O%&=WB!3GLP+`&62~EX0G|i z+9tC2VPt%Ga@r>+5=n2_Sy`5^=fZMb-0su$HRel-p5*1Hw>Txi$6#uJ#ecidJAg5o zn3%96!TXFX$d@--56>eM(YL~BW8gXPBjt>uz;D}QzL*OR7;^1)hG$%~db>3&XK6ON*h_W8P>tNL|TxnsVY3QBm-8UFtMQTB0exe@W2HYNfEajS@UC#Iq3)En2x zh5s1C-YuK4a;27;Suply6av7FinzSu+NQNeMxofpCP_)%PE6bg5DiC<$*x`CX`sh7 z*}a>V1uiMVMoDJQLp2UcVhzOST_w`j}m6w-axNsq>B=;=-Gu^doHO#j5 z?tUYzn)h5?UHx`&$ewz6gFoTxbQx9Gk)-i#cJ9fim*|NjlLzVsiTe#6Txh{8kmsz+ z*(r9bIDAFi;9K}q0|pE*bo%_{;U#K#i;A|{di`;(O8PYY=Xy{v=)*pMxPC~`dveS0**78rhc_X~M8|K~2%gejev|;SCO8}#X_vv|9*xMzd z)SvHS3`NJR+ItHx%#yF-EgH8;K!1#A5kv^+hq1c0l+X*|4AmMpc(u0n`KGj*)lcE& zGiHv;^Ccs(&JC~RTiLF{1?>_0o7%H$$+5+5`WHMs#asRaRntmq+X8`3NQrc`u0@`) zKZCUq{uKkwOPiamaAk0h!c+TPuHYH%7qZ9cB%M%vUY~rn!c_vz3-vEt6&0abnCRaa zxIZQj8m!_lw*Sm07s)=x-`goxvJ56m6c3VK!lCICv1Z*!PZ9e_KAW3dTFYQjC>F&# zaSHb!rU7*QIOst$-^W%{VmA@FZUKSCWMB{1+D!btGG;17Y@0SMu;Mr8S?Wi6PupCf zWBl(XyA{#X+{hRn_{?qk zxlyAp)(Uf&*6Ou!gSK#@KKAX~*JIY!<6{vAk1Fk2L0_&er)v7whke>c-WBP`T(6$y z=3C-}pNktBVJ}QgY=WLBOfSLC$~}2({}1)mV%UO2LBZ*R9uGosunK3d)T&F@<`o`T zLfIB5AF(MfOzR(Fqy%2etq4!BDzNQntE-b)epbm*9yVAXkXV){$c*s&pG0EmLnn>d zqXRuOEr*^4X}TWqOB9rXw2Kv2qMVBbso&}ogL1$+7|=kIndb*uC+xIMvBiR84q|B><6IV=Jh+l`q}8zw4JU|Glmi*Sy~=EMa#ghB^)OFZ2{UyCKv7h zq8J-u+JT;an*bknb54|=p)gBZvkd35njr%ho%QcLj+mah@NeEqYOl)knSbv?0j zu)@=nEtgH_?%cVv0y2&)=pb$ax%s3btX1L0s88qGd_xU}I}1I$*nLG#N(ppp-*UD$MJVcd&t7Fg+I233Ul2K}T9x3#c^DeE^(DK1&*Zn(oU zb9##U+J>&6;mpm~+%t-+P*j%z!deojD`9v9+^juwFapCIK-5GO%0y(x+CzIC~)tl6NqzHhkEy@L1*Vu679b4^Yj3sUNsow^#Z;m%Bz^e{{{!1MBNR zMASZC`Z5<`kCxFowl@3t)!Hccaf)b=MWa)lk3<<$$YlnfkM))Q%yf2wdHW5d%mW}W zSJS*Az4-GxIPI)c_O|*7vhc;V246@)dS@jC5E4> z`m}YW6Vi>=ug@)Zu5oi8J!;g1nL|^mxF;4?i$6QTt{P-7j7jWer+J`76Jsmvkz~1q z@!@acfGKh|c;<*TBt37p!FON3AaT^%af8ne%RfIH$CDP&2nbMaksl{ch6fb}-`=^c z1k%^f_hZz!F+&3a`o>M1GKC6HnjN5CFDS1mWSZM<$h%k7d%&ooBD*4`_tg_)*h~}| zW#IU0<9ln1RVr;4W}3rYhHeTx2o}*$5?wx9Htyd@UR|9fnGNBKAA)_qKJ1%bv4^xC zV{xwVY?v`47v1U+2_$=))N?UShr6iU=TH=$C~pdi`_`5`FDok>FV0yD-z%3`Ip#P8qa#^yJ}x>EE2cnBcj=DNZoy)6&X#kAtol zcLXJCKxRHr%hgFve7Q~cyAAkr<|00iOXh9l=}acL*NzONY*PBaO?<&gmw>qH#;|2c z!3n(n{rZWJPC-jkEP6DT+X|un9A@sTZy(Dcs@s|J7d5@ZUPNHz-}3G#PkmlNk%6#K z^b|JaR@r*N=|J)7LUVxyh>3=Fr*Ef~;^f)5w*}>1vDd9D%4>zD?)=}=l=U= zdZvU*7?NV`x!%@!#%M-KtVN#W;67%6-C>s}uo=+q5q)m^&jOj>19*K#yK|G4CdoIOaSFT<(|TS*fdOvUI&6<2a0a}BN7b0up+Y$5!zy&p z?u%%wBfa(MneiJfX$;1NLdm7AWPe5k5~%7THTs=4p&C>sVNmhQ?)C@iw2ATO5T|gXo)Q>oA?166aux-Y1MZ`lWte)B=yC zgU&QzJ}P?!!x@6&06BYtotv{@^S*t;s3N~lNx3|~Pp;Q*-dv8BA%Eu`%-aZdZpKlRT({w!pjG@C_atL!gQB_6DiL-jE?gcCxxka-R3 z;)B2j8OQCmZdnZ-35yrA$}v2)u6!H7WiySyxW8+q^^d_DA!=tLmZHwFt|}CdkH;wh zsq!rdedy<*GK6vz=EuMtD(d*)^TGOj8Ie&Ac}9wzu#GLa$w{gXZO{fEBmhhhtW zKvAjYpNZsBNx^R$q>oMa;3Z+pBaxZZ3q^|<%zK|p7wpc7v#ENw)ZuwbW2CIU`l}PQ z=I?C1a332M=sDteKs})!$985dvMfQ#YH{XAwV#$YXSLqEwG< zv5?WTD;L=O-tPLno0{zXnPxy@i&?mtV1X>9<`PPQAdAH#o(a$f8hXq$Pc(p5?B>mz zXZ6Lz#BetH;QRwsV=BC{38+TOIofMn{x{`5_$nyPa4=^Bgh&qvJ%?K0{o|HGrt9OL zjynYdfZf#NkPWweY=_k!#~r=!z`x2X0wu5>%5y`#L4JA7@#MH}r`4vT$?=}Q?*@TM zXf8w%ljy#E400AISqaGpy>&^7o{GKej!L}@!o|~-KDrI@jw@HK%7VZL_PTRXoa#zj zIk%Q9gs0kb_W*thSGW=HlTr(S>rSHe^5x6XE|#R!@(nAq19O$nKYl4=?|t?jz7B3g zPO7J31USb!V%0LjLWdYk3ULHrTOr&l5ur{RE`GL$otP_L&0~hwA24ro{MSeRpl4?M79+dLei=poDM9^2Nk zvFlA}mI!YctAf9!RuKE952oo=Hi|D-Jc^PZ$Dds%AoiVn2t+W zSD$MX#j65vdIKE?$KpcuDAW zA!$Rc|Mh4!C~iD&h!Quv^w!SYB2?gbkn`w(WK9s(_Bt3|zE<^YNF4w&)S&BuNGC#yVjbmq@nUw#?3pkv zUcF_@7Tu4Z2g))BsnzNGU>#L@1Cf!W40$TVF+2G)J2LfC3XlDJyIt*|&nVfLrHSye zuB`zfZ;S1=J<$Y}oHlA%3`5lQSmhWkApp6sm{Ge|qhH>1;8oc@ZS~KWn2DPeI#@m| zRJ$Afu)I2R|6u_%f^VugNU-7dX$FQe0Lh{v7X05MeSiTk-|bkxYj2ai?hW=Rex%)g zY{z^$=%I757nQq>k0h3dVb7}(*mQ6I%-%X~B+z0N*;qcz+D^9p#P-Fsi}rT(dYff3 zS(h%ot}HsRLaa2wo~xs!wM*scBSTklPr&SllZsy3A5KiL`qaJK`xI1NMAHW`=+f1_ zy}NZ=l=c*}*;^$OeGEN=EMnN;^C+^L&OjAB7O(ufinp6v4!(HlZyD2tdv;T3kva#B~JSrK1& zc!7+}ONGEp1Gez{@o$cxneYW%ErLtzVC83p{$*JJu1d4O)#}@=JHfwP)$RUYPDw_f zbZ3$d58i|ecZf6&POYQJ-jtLS zLc>J#UFcKROs=?k;I%MJ^vF=%xu^vVFg{c_rIm0ZBG(3n7K#ru8rOd4M=2UxK6BCy z0eAajMhf~&2lv?W-Bc&|zSd7x+StGhYG2CYd1K86dV{jkX5F+7#-E-XbFd|Vl%i{n zi@9CyUOUyqg$seB~4FPdeC&WnUDOY~K!U z^R=f>pH{vo4?mD63`5uP^%$t0gr41q*TJz1?3Nl^|%<1i~_?UII_kX)> z*KAytz9Lu~_i&5O^pKBWxE}O6%{|iXOpUrnc806gYixqB#!*k-$xUOY#r3oE&H4`1y< zTd$p>`}zHtvY#KdZCbmhPZM+HsknVtyTnWM+`IN!zPZ|=gBLtyJolfn(r_mp*U>v2 ztX=#0CBeETsX05e4z2-#nBAZ;DOjDepgLN(wSCd{?pBe6V0CK&t=5V}VG?DvShs^I zqx2x|ZwWT|(FStb1t;&cKMZtspus6P zmu>u$4>Q#}Eq2^=Jf|xGQKa@6+2Nk7=IMug+!NEwEWT2x3){u-t|o5pwd5;smB7dh zlCfTnIQ&GRnxC#?hY>w|t?U$qiQ76jFfQh3YHE@&MUu1NS;5L5U%QoSp{;$UIX$$MOl)0a$elFglXx zosQmCm{G{3&gv_o2BIxK++!DdhLMDaxA`~l? zeo;agp{+;S55&K9sftxg?*v(Va1`Qr|5{=YWpeGxm8V2Y>3dSlw6_9~!AX7$u5)xr zns+EN>X)L^?C=7_in@?idOq#F)!Q;OMBhBTrVSMx1r)!lDrwc1*Y>7Z4@yvyv616D_$Cey5R_QGH3IDirxF-_ zsat;d-3ge*pxOKB?>-u+xQfCgF|Veyj6N5v26nufD05XdWVR=vom!ieR@#4TF|??E zHZ&-l=C}1%qBE4b;=Vumjx4@R?mq6q858o~(#-U`i!MTURo-_N!xBo>Fq-gC(U7H87t-luuQkt8a_b{JZ+jIz(&Nlq| zFs*RNm%&K>yQ)HzQd%7tdf|>$;Mxtwcoobaemp?SLj;g+O~I1`q&b@=i0}~K)1=V; zBjLNueBTVlcKhuYY6E~MRv(!T0|;NfrCfBoRENMZU+ZP{P-wUe&#kgOr1RWY?fn1^u2a3OkBiMleVww za72_>66nD%(_~T!jj_&*hr-hKn-ey8`bYwAa-X8HOsrL)atnN(#^7(~A8+MGZbcE> zu2!|-`ro`s0cfJ_a)kr0{XG#;{*o#c0&cII5)*?54ch~_u^o5sU36%F0=H~EKAjW4 z!f1tMe)|`q^+pXS>jLZCW`iExy1lwb?p~}q;@5)LKmf_UA^4;QNY^;%1LOig{EyY# zspUdAo>*e+kW#x4XynWr`8(P@hNAulQbAuy8@4aZ#=n22(#zA*(%gqNb=-@H!#}C= z^>yDH6O8lcR$MqMDJ6xGd-{(%*^O+J0^=Cy0{1O-{nUO_YRn!6DEGXERx1%6>33k& z>lhiCdk!Aap~XlqR{@}!1zs|R%TXLjfWOzMbDX>FmI9URN9n{az4zl1+Ep(tDcMug zOAlv8SchLk&4CB0*}TKfdgBdSyyJ4i3^EMvI;5CCA>kB_$S-ogC#keeq3zDs6>Imf z6Ackgl|BB%7~=E;88d;pqB)-}kV>n~OJFbi!*Ezju<;5BKo*0-2CSD;8^f9S=TR9iSE1^-9_3j6B9TK5eEu^3Rv;1MxIsOgWeLKaDsfQi3Imx zEs8>TqL4KMjp5colZziG@dQwR0zn&iTed@`4yf6Ldt}bmxU?TDzf;ys@LhfX3I3Sc z;Y1pHf=D)G56h|pY-UPNXv5V%N%r1cVI-W&ARq;!ad0WwX!-CaMChgdaqF1{%USsT zLDNE_7tbrOJTF-WaE{Qf3G$Nj|M}^MfSjuh6@OSbw*7ATA1IY2`B86|tASv$27Nw( zps%;OTFHwmoh-E#4=I(X=&+$Li(`V{mU;NbzT&~$QCiLH4yjba8ZZ~q<^8Wy&O%7!0G%I)dw_@EaMlO7hj4;lX5Yo?&ED{y~8k_OQO5-QikqsPhIE|Lnz!EO_=rz-Q=A#NPTU1o^?)4}kdsNdTXXlk)Seu511{BkT!vc5os?d=!J;Q32y6Z@Gb95$q`XHvC-i2g!A~LE4G>l z-r^-+GTlzhzPV`J;1=fDdg5tj6>`mk7OHTnOy!uur{%Sof~VnJZfO6s7@6d(mKX?9 zYrTuljiO%VVCDTGl_#gD@ZO|ZJ{i9L6Pjhf%s0TFsoUvgdlS*E1@D}7OH)1L*ypX@ z?td*9=<^=!LGMU;55TI8Xp-BZX6Cc=-*xGQ;Nk zXK$+}pmi8=+rL;iWDCH~$Cm-B{yxL}&0Rlm8o~DnxAhL$9hV@X^D;m6*|YMDZE=$1 zh5Fz*dvvBl)BOFF^L#|GmFQP;+n4+38Fr z2^MY95+I+BH#^b3&tqJkZvpMe)bX3sRCt*4WmIxJLPyWsw8)=n|E6YgW9n|Q4fD*C z%_|XRhhEtKWO#;ruC71Mwa3R$8;Y>ieRRxiK|=99DNu!Ahk7_tbXnrS(32% zipb0#D{pcE>1#RfBSC2;J&~nt{!6$6c)lwxsek*??PK6ykd-Pp9v<4EYH@3Y37~g~ z(u=(_tz#kn@fEzuU@ZvxS3L%Xl@@&1iu;8^3c;#7BGGa!6GjgX5As!@@`1MIk#bZM zMk7I}uR-E2w`cP<239oKC>+AVEO4lO$?`?(W&*Ds&pj3A9NMaN1-@IytVB0*I>`hf z0A@0N7z-=;nzgUgQQ=&tbVe#~U~fZ)Y6!eu30zUXBeLl;GeiN)*QCc^i~698D-6 z`qV?|kO4Ku5^<-r^xxbroNJhFQ3TpdI{-XK)aN2&AOrwP1#YEV=;NA@kS> zYmOdEi(klq-X`Q=~(*o0|c^1$=|FqS-Tj@=5;`8T8ghu72LebeJv6jpV z!QL%XLDQwRTlRCog8s z|I*hIIy8>-fFhg~$UF%xe!yAryG@S+kP>tp*C*DJt@~+E?~XU znjTD`-8E;AQ0q`6JXtIx182-k1Fv8I3%1IYKYSsG?XJoV-@Eq7v`|$R=2~W>hu*-# z`?1wOb&(oXa5i?5%`~)9S2fr(befm6^1TVz3gP~i{+LV-zMsH+kJ#fS0K)wtf>EFT z^0y6`HwYg6w&4fsmWhZ>_wGf2*hH4+lpCYarjPpq8i-adp(X%hY?@^Z+haAuzYRjr zA6Pd#g=I*59UNg-mpCa!&7z;7tzQQAl-QR2=oX`$9uDvD2!&-KYjXwzm%z!tN=&4W zYejO&hvd+%EsT-(*C5BFO<+JB=cE|^#}3g@I@9aZ;9~u~LyTu5bAw3Q_62(rk=@B}$g zE>8q-m2P*#MDO%NrsA{_JZVj@AZ$cL9*0qr@rj@R^4^OdH7$WSW6}NWYJEfW@oa@n}J<*q$q8D3(k2gW|@y6Kt4n1|s_rVdrG-dGk?qV7x5|-{`?CSVb z?iWIy7z#cuf5kQ6iHyNnO7P0p-D(j7mB(kfQnoNi9ekBw<2M4<*8#5#;?f)$Odsfp zB8Wr|Kg)M%&aK*9pdUx(I$StDm*|^-LnG5VI>KWeq|= zCgez{FLXLcTxk%-3Y{XOep*(Xsu#dQ_Y=l+xmU~+1Hen<7fGuaTR8@CTS<+>UHPDq za5Q}3Pr3%Q@qS}t3Wk8SOOnV1=L%cWlbB32bm4I>pxDWBlUWBGTDn!AYP)jR4j(>j zE&aCpIGvt7y2Cdk2HazmNDu>rYv+T5TCsPwBLctyEEOn@>vnR;7j1b-)Ua5);}#uG zAK5y3c%gSA2{WV^1?3#BY@LmWYI!PxNVX^&f%*|&5P8D~VuD>;g;0UWwpWuL{}LS! z-Vnp-H5=R)<}^U}D-voEkKcEd7As%Hsl#%Pd8K0gSr?}1tANU65pGU=TC1;bx|F$O z$&xGQ-}A0aH?Q)6xFyI7wi(va8CO(5OME!iM)KdruwpxGb>QUAJV(5YA3#&tI-Y|v zX&a!v%SGq>g|!b@{!#5hGGhgSfp}|>NBwiY_@%Vh-{CMm#Yksb<2mrB%Bx5i1nB|H zKFBxtcj-)CUD-tMiM=ginj4Lmw^F2OHdv@IetL%<&Y%p8k{KdXlm~rf);H%9`QTCR zLfgXl_-7%8aSB#3*RPMiA&yx)N8@js`iXPq+WDFi5t+FcIu?u<4cmGP~V`O|`&8%nlb@Z$yX z1FwEUiQ$Ep3J~kMGPXi8CYufP8~aXe$|78hd_L-BPr6HB^EVaQLK);sX12x8{XKplX4ywjlP=l8Z=__YSbzX~s^{B~&3(!3k;wqQfqkZsci zX1z&MdAV=U^s-Mr!4|PEeuO*s2QcA?PA-~t*n&-wf*JenaR002=Kc9|v0FjW5dcPJ zAe5A7nl`JSU9Y3l%YB7&c**%gJ9g}-tlbHm70`h^80XT`X@-t1a#V+c>=gGq=p-?v zQ@>Y@!tHBU$E8$(DMT*z-ymFi!@UoFPpz+V5rhQ7$_I=~)bhl^^Lzf1Ib+5Q_fp$} zjNF{Z2W~O(-qr_Zzbcuu0Z&Zq_UQ#K$u#wC>%_XPvdry&9421v;x>!*2wo;Dej-x> zp~qXvcr`1fX+ueTLhQX~jDfbcSQrrq&}Ic7N6gcsrI2k#ias!I!xH(<{>hpm9#AVi zyKfTvC*zEedS-<_TMN4>lq9kVs2GSZ9(4ZUhdhBf>e7At!YEM=yl@kGL=ih-X2x-n zPP^j1$N2&tQLJDr4K;`#AGo?P&8zm;vafh}kXi~SZCJ>z{haE12-_5m#6+jurU|SW z8>e?*>Ff_y!GICQRIeZmzKzz^6zD+?V{=%c5H}KB>Ao7*qFU|+r{PpR%9n>|LE&o8 zsu$aA(MM0XE7%7O#_Rk$+xU%rMSZSlHxli$Eu5dQZ=OG)K8M7cblO?v8t(KIb5pGn zwgQCKc0C-St~OMD<1bPScwy%0k0-RgvOpi?{DP|VqL=QOnVAq2O;D&@9n;uoj;u%= zU#((^kW=S`bti87oS%YVqjvK;x6^!FLT#XP%KSQQN+UlePV8|l3 z`C(6rjG^2BCs-KkOIvy110(Vj!m7cMmz$k!)l>oFEt~m=3Tt9tZ)llK>c|%$T7`x4pDRq#1Dq z(N>Z{=)$mjV&!D# zg-XRt;})`K)RdFcvcb_BoJL=;xH&(j!*Njz3Y$N{Xe^|bm>P(U`XX5&tfrNiG4fw8+u3Mp&l#RiJ8<%bu#Jap`};U)6?WadAkF+t+2NB3S*KqSBC0UTlO^2gWE$yy^d>QjekjX+_$?ySka~))+xMgYpInT+7rqeD zzVDEJayj5?*2V|=9&Y;C1(`p!{;frEeuUbnnTzb+{|?s(3x0}6`yKpiMfAiya-s8dHg4Qw zFm$B4i;KO})|@QK1@muWuE2mTK**21c>C{Vu2$PJxFU06#-+V0-l88mD~X0ND_Zg) ztkmw_3!c{cR#y>@czt)ty1{=byBd8Qry(aVZ;Zy796=n;gfeA0P3oW9voC&hirado{R-_W>8~w8Vy-u2U zX7>u4ce(SvT?=sXzFrp*-AhZ$@}tYVsqi+!BBLkb8^QXA$5z9mU)wJ)>IsV4msc8c z|G)kD-APa*$^hDD!8rfgtgTNc1MSDqY}D*+Cu#miF$xhHpI^bu9M(?r%0O|*g?5NS zUO>UFFUwqk;ngc7+$f@2)7@$P2BER`fIHr;2!fjGgq~F-w;Eh*eg8@l$?Qp}*YVu@ zurKNz^M84pGJHkBOCbLTi*eI0JF;75!QY|ctu;ls;j9iBIR9NY3`S6is*4xr3Kq3tNx*(Jn9?TM=$!{=P2l z%DhnRv;i=r-oC0K3eHQuG`>3Z?Xl|VF@=^3=@=Rc2qVmn=dAnb~@+&RH z1b6<;X8mT^nqhde!x#$`OmZDKmkeA`G}sU%7fL;d^HXH;XT<+|nDP|6|JG~rf(0Ak z)R;AL=T#CtTbsrWyPT^Fk`AR|QC1NMbyG3Vg11HxLYg&D2tC=&v}yV5vV%E2UU{JZ z_z@c=Y?75Ni;?ZkS=dcOb>+$$$=_AL=1KVb@4t1tuR!p$e%-q5o_ROHaoOT6fG$3w z*#J!|7hvTEf9pI5LrZXjBS$R>f)=K?5@X}y#fNi~m`EWdX<0?qzyxqNHbR$lgr^8i zc?Dv<0-3n-jrSESB*Zzj5L?@$DtsUSmXW7mBLP3CLInC0ny7#TYm3_xtZai|gbn_Y z6-YK-7MN3*U~lh~q|(T(awt{Y2-B$zZ2HyPp~cDYf{AAHLUqF)l3w`#+WXR|rtbA? zd%bGCPW4)g6H+ybBVH?@GIl^QqG%mJ8LcCOfXF|Ou0-tX_1cfEcoT9lJ>&hHuav!A`CW&oeElQ!Tfc1`%l zPgmc0sg;e*RruL2J)TE*3-5cUh-6ATzL}|MShD02CSwmFO?9piuuTa-6&o(F;+GQ(H61;a}}lnAB!wXAj{~Huch#I-whoN`SWs;O5q}rth_U zgT8*Ca73Uu%>{|k38eKnXm*UYK|7=gG1s6RTIdA zv>-ME{c7y5dU$?T_N>++)Y2<~A|rnApo=oLY72S?R5-Zkm58I*gH0z}h`adpni;i- z&?}Pf+}simnZjpv5F*kb>D#e=G52z(onXw2u~0|;tcl)_!NDz-lo>A*ddTRzXa>sY zfjc=mxp-RG#FgM*ShySKie|Tj+uurr;03vQa>|C?2veO$M1X!^5w`%a&|EadGOBq* zQl3LN-oAZ3xWp?$2@fXGsdyW{S~jwj_O?l^iBql)Ci5}={#RwYhUd?p4=<5rm|9>U zz8`~??;*E`#x5UEyj}5_th_wU?f%oKGKZ8sANpo?&~`&}1jE}5%*-RACVijA=mLVna-+hQKoWun3t=?<)n9jYywWrb_hd7VCfUo z6BQFv`kmbT2-!Rueo_Yna)ds7j3`;)&f-xv&)R8n9WiE1@(uayvl!LxH{tTLE8A3F zs^N_ZXX%Zu4(slP^=|9_+7IKq6KtJ=Zaxs(FAOV!RNV4?n``i3K7Ypo6DHe7E{6Q~ z&$`t(LuFbfMr&eOsfIe=wD2vJesLi7NMNXY@vms>FG#p+Cp!SdXS=k#9`J?UGlFPM zJKpjqblej(Vb~Ng`MFY#>B%JFY;SO4gHWiBv~>X>RWO3U)D_q|haKJ3lOHrF`()CB z7a1wf!iO@QgX)t4v_r9RIO4#91ZD`kXmPf)>xC8Y zUA`DtObND=CPf)#XJnkW=r^l;r5T|&+2DgD7ftn@f+m;%U}@q?5<`MxqR=amR;HUM z&NK)|S?9o_D-7u{T9lxMtY9$SYJ3we{N1g}NIza@Ia1cff+>3Uzr0u(iN6qf#4jW& zxxRk)T8J3MydhVondyAnbQQYlsS78QCtmUMR{e5g+7xy|JWFNUPZk+83)OONyPt>l znNgx`REUx6-k$T{FeRZTav%i-K2kbER{p zTW(b0-H(ENKsMbnX%6!sQ zBqV`tXNF_gP?Lw?mNM};rZ>S@ru}x z`n$S?@!DydsO0^#ApK~$cR|=-T?=Xqz2bLY(IgB53zC+m(hYEQXFUh%u#NagE0{E^ z#i-NMp|OB=vDm3_o7s)^w=xn1X!oNVM^>0&2qZ>$TF)X+zPlLdv|Qg=0ZlZERl1Aq z0}49&$T|x-xsGgcD4=5`aD|Zwp6a>{Kk(||mpGqPdd%Up zec1n0-V%J=x|g|!aV;E3!H#)2Vw60D=3;+ZzB_I)Z91fy*4EOH1c}0tNPmC#8ju;% zPPpt_O{W&YaNq6|N%l7nz%b$N(Wk_9bb;g#n*jwAD2$^lPrrM2_n0jOXURfNjfpv+ zVI#Xu*?Ee2?#Q_nGCSWcB^SPk7|QZzz4}DUc}cYCCKh3U z`Spxlkd+_}UwNaKv=jt>nz;8}_b zrCt2fy1)7EKowz=ZAbE<7>K*#!;*D4$<@(W_gGkZ!UJ@5(9&Y^L=&XAOGD+Fk@A+@ z!x7L-!r*l}_IaJL=uM7t$ot;jB2#3^3T|Lk@2RiY@L5_-LK-OQn{k%Ly!t={2KSzt zG1B6uDQ6w+(S!0VZnLpVa=BAlJqU7Y7z~542sRC-!?Q2topVWg$Hv@y67*cV#MgFS zIN!Y=(rxO2xbm%RdImm1oi(V>s^J48lC1zY5xlv2NF?OoFV;vrUhwX8y{LxS&n>O3Laa}O!!fWMvmBbA z(7r0vXiTAe2wwONwTPvzx|1hHS;GRG7|*Sza?0Ag8dn~9{JL`rx1h8wf`7UG-%3{) zY*S}6gkrxJws}pMpdLP?{4LfeGqh&TA@>NR!y8XFO?(*fyYLpfJJ@v@6c86F0a@#rrmsS`@+Pw zlJMIM6-1P&03^;O>a;#VsXa9BcAQ)hOWmq<_WTdra@CIdr2IOf;&on&bVR-mMxa0K z)rX6uLJWN0W@IT8gZH+dX!zbz`zE>|D>j`x*Xa{=sY)MT z7!o=Ep9lY*N{rAQ` z{F4u+H3xYFqc)_ySIvhg%?sG#`5>CdgJ+2MAPqLqi$8QM!+1+K;pA!P=q~-(RiIZ| z8<^^qaf9x5GC&|@Os@bn{7b``C_e87II}bTEaBy$*@`c(ujKn3N-DtS0KB38>B_j zpK^3eglrG|L%75?m|~X1$PYTS?~hef%J3!OwySJ809kpUK9gw0f#ZJZUcxe3Rl%LW zt3t{ijx5zsFk*=x*5SLcr*g;oL<34;e(s=R3Q;Wkg3?Kf;1$W=A#0J5 z8*Tg$ubQn7uE*7po5!Atj@QcmyDw9be4Qjj0AkEZxKq}1D}K9Cu^Yy{6*mtYQYlI3 z2BtU7SYS#8y5mF|D6Xy;tf97s_QbAXT%H27$AyQxjmtu_V;wgkiNFbBM4WYl{lh9+tAn#C6PW?PYT{k1WgC7kKqFZvguX>Mjn9GYexU%wy2YG zmKEvB;!n43m0~aP!IOu6-yR?4WgY0mU?~Kpt$@&oLN(&^AR3(oC%;ylDOj?5ghl6D z5&>l~qp!RZU;M7tatd7Z5>9KE{k;^#P^)M~X7T&3uMB+&^#P_#0rqK1;RW`j3O`~5 zN{P59*q=QDHA&ZGG1p7jk3bg0E7N$)<@Ye2$9j}4V6rAINlWi(;R zbh8f!ahc4Pd)C3LT?^%J@g1$D{HyB@pN=a>CF$w$FIybIg_zSZ>p^Ru-C*@4$*Py@ z=G^bNU}LpI-wKU03mI@5n+^&la~Aoz>ml~k#91JBU&yDVj}hOK!(eT^zXpB-s8d&e zn4Yp9%L%r$6H5&g03>-(xMw&Q_RSTwI5P8X1D+#W>y#{jG$I@xT#C6qJ<1?-MHMMV zYm2&XT(wt}+(eimdCaj!=`WG2&nKRy*gFq>KxBW|7UW6oJLp&>ZA^GAZjRrdpGU19;m(8sX$zup~J?C;PwIPPc`*=Kxg3v-_?5&%6-Vs z2_*K{?aR)c5N|%dItbY9J_m=@E962>nJ2%fJ+%ou>&E`REs+c6mXzT0wA)E?k5v9L zncUOkc_hZj_N|<(Yq5UC36SQdIjP^o>}*LKbTeDz`1Jf*3mc@fG6Jgs;M$(N8-``T z<^wa=1xgQkwB28K3@T?ZG5}8J*C+5qT&fU>sBkj?m{k)6}5L|2P9Qs_9mFvH#da+wpy&I71!Nkyk>c9cHJRqmY`KPA!f^&*W*sNwgnapIWFG&D5qSFFjRjY8Dcx=eB*xv{G$2+ar%Nndyy z1^re-mR@XlNO^gfB*;mc3kf`83A!Bds|HnKHSUu(ApbTq-Ub7M37VLVcnL^=x9*vk z4I|`|Qmw|HSc6$l#o1FZ=jiN6(qeD}eIhc1kIlJ7mHf)$%W;Vu)$mEr(4 zOtNB%9*SfWbQdKBc1#Ad`G@4zQIs+^M~~hF{dK5R61MiQGp5e6=)Rq1O2Rn?vGBQR z{VT!mv$mUKtrHoZ{dq`jEoz=_sZxo6emU=WMtWE6qx!nOk&y7||NKW0$R$ge*ir|^ zc}o9oQL0iI1PfSzjZJ1epq#y!hQu(CdxfAoho!XeX4955x=%eErm$rhO&Y%z+jrjsS~3t-Jj48`4vKd{f&!yaZmK zLH1nF{Fg(H3<@BuQi}GVDdr7mNUb9nx$Q7UiY@^!Yohtt>Ds-_0ieyjHp#+~R7^Q;3b0j$ z?2m*~0!y60BvBCR0tA$i5^P+ihq5AC@M30)1Nz(MhMJHxf!mN075mj*aK1iGlCE8` zqB;aYqBuLpco^5S&kM0xfO@n8_aLK54ktyCsza+>iWdk!29fa%Fk}oR)E2VTjO&AI z?F*hkfoQ;Nq#RniA@KhxMXhJ}q4Xrwe;zxOi~5uYj8H%CWN(0%iUg5Bj$2`hF$wC7 z#&{fCX=*W!*rh^s>@}UWcr;F^@wxd0OB>Z_IVb2Wp)yW^zZZ<@juTR;0(U;RYJtyo z=`g`pUBg0n=1QpRAS;#j$xp}s^dtA=>u*8v^-f}Vb-%bSz*cQ>wrK)yKgj(8nBOck zsqRO<+4H0DWYeu~08g(#<{mJq~RE)Hw6!Sz23LXRf2r()_zNV8lTb{avVw%vHYP z1Zy0BIe6h^wVf`KsuxglkN`v5FY52aV9KTG_n4SY$m_NXBk*^C3fCJoP;E$KSZ{3G z_xlLx4G9|_oGiEn7Gd_|jqq*oO#b>`Y31t`;(p2dUBk|Ra@$3!a7{Q?W8mj-wU>o@ z-rh0p+O=M~>am#`3m!eeIA@Xq`K}R#?zLI{(JwXlKTi0SDdD4alf;#eVvM-~IBWa{ zcv-X)S+VrpyLUFi`H*G*`k6c=NrWyo2(cMRGZsq^a0}>><1G(Hwc?xEnwpk2iS>Q+ zs5gFo)e+6TTC@2jH6j@uUMHw4N_~)e`DjqoKC<2YZx8I%Z}S;GypYvPE&`bY@mD~z@L^U7IH1lkeq$Jij? z2v!3cB+ebSbF-;}L!Z_NtPYGzGM2xjW9|fKE*Ctr>^-geI9$}C+7+Dm9sh_GCO|~i zr129?%5?B^ffsRWramQ?66(S+gKYvYjk-JdrI5mVk+gD(A6>AWL@T;(Kv`H;7G7Rk z3q*^b*tir|kf%m|aeH<5s9o-%GiWJ^M+&wdV8!Y61Vr4cF|tB9FF^Xq_6bSAEpea` zjv#ylN=v17j~+cDRw~6NIm@K#hHg^ew__WB!Qs&9Y#_I58jI3!of+zk!GJXV?sK&Vo&^L5Z`$)y#a?V2jLy#^GzLn&!4YZTP&ZqZVXr2I4xH?yzvY9q8Bkr6EE{AmLxVt zzkXD8?9%=C<+yQ+fBd*jK)?UL`1POOq+po56UE9sYr2q*d1FkI?mB|35`MD=dWhKG zTH1$q`)bMbJ?N?l#0ZjgVV|MV2wI%u&aK4040wSXaH@#^ap3r%3o=d-nsoXtxMlck z_aBULO*;OR&E5{~rv1Bch?SnrZH~2M3r{l(bsmEY2 zx?}AbS5;aYxQAL~rUr$gWVl@L}5qfswLx;=ah27XjpQ<*+HDQSdDR0dF z1ADfRG`aQMc_KYu$46syuXC#i?OMvrDI2~Ga{K4?hMc0_l|-+m$rL6=xFQlJjo|y^ zafpHB?t{Ysi8U6t9Y?F3lRB+ zYXZtr5D;y6jsb~a5j4Mjdk_-bBv0v%wVjIEOY;m?W^w4VfSz*ZBin!)ko;Z(_g&Kx zZ^5r~O;%3BY|<8E5PhHtn55QdC|*dkrx_Seo-OGs?k}<;;~@f1);N{iZ;I{#OP^kT zN(+g2M~5+y%_OB6CUc}Lw5MCx0Y?$K*8rJrB8J{;Qejzw)Vq4YK$#ju;;(-SK5A8Y zi}3j=2~vC|l7nNJ22>-J&8(7WDL_Db+>C({6&ZIeE?O3vel0Hh6|})0a#i>)N0}@)9ZW? zY>Rz0q?TBcp>!D_kQub4iy!3QeNQ4!l(Y;2`W?un2PA;$A;n-z)Zvw0!Xz`;bmWyh z_Y&cd*J)minQfOy{J$xdX~K3f>F`Z z)IQ(}27v@-;*fhOQj~9U`*sWl40_cS2YAsvr5ymw3saC;xG&13AuiluY_6Pvd|f^c&P)E#u@+X~us#nh6_2mkKq7!^tsjTUybKF!IZNw=K6zI+9mVQ1HC< zGWP8Pj425d|Bo;&+|giQE`Gp{Vd=Alkc|Q_q2MN`D|cJ8wpR#dVuLCP%XxZJHD8u9C%wHp7n3FCT>n&_7yXn7Ft4N526_G?-5&8 z0-^MSijE6lCUz<`kSt0mlADsFHPWLys zA`&Btja|khVRA)b8758Kwo`DD^FaH>NfyL*^=-@6eRc2d-P3VE0$WQp5CK`q94280 za{c7DGGTqqjNox~Kl{`-FibYbPEHB-bvr9|>>5ya6Jsw`8dZ>l|Av}D!9E${TrX~p z9D`dI2oNz0qzp|xygRiCudfhiW@ge1gR&WFdhqjr{sWp^$}9q4IRr2Z2g#aECZu8# z-!{YhX(%ZUk{u&Q1R7M)R2K<-Q6Qfdq=3(2vG}bW!q1y_KL~zLUs$Sc|9M71k+T(v zlA*%mV8@ou2%R)Iy3H;r1JM$hw2=nlsDE?!bn;u_@_l>m`eS4B3~+`PjD|v53`6b= z1bIg`JehRr<+%Mnmi}FM1k`QTB3-ZMxkV_O{V+Yj&gwTr-$c8g2J;{ysM0neMkmN* zXQoG)2wQ3U0d;-`c9&_Ya_rbG+7g3|bSW^eikm;Q3}D_Vroa8eNERzVo1_;L>xuS!38qsBQ_xq6fhL;)t*z>qIl#-*Not7lg!Xb!L2g83aIHz$ zL}wf@E4+!aab%vO7yy^g{O58;H#TmU(e9V|hl&}f?O(K)Z3id}1rP+STi?O=0brr+ z)>f*?{(JJ!1Ksc}QyvpfW!7V_DUHg2IH%wY!lRiq@}cw~t2K9~te1JzUVa=ICs@G` z7)sGmEf0JXgijtW{aJ^K?(9fwFIQ=M1xd2`f-l(vaGlm{h)ss2vrBW=Z?SdoK0|JV z1cr>XDbU{CRHHB;g_CH!J*XVXQvpQm^rk+Vg}!|nCq@CyLt(}NK7Si<50=^HnT6gb z4g-+}s17$a6~q$7!BqO^cp@?wU_F&&v_KOiVjWF};r}>xiPjy&bpGXmX!9ZOt@vu} tSI2^}Y&-V#XP=CvkN^Mm|Fic&qx1OC+?W&7Y*_S=nVYRGINu&T{XaGpkfZ9536rv?O~JpgzcO~<4;j1NN9?pL&)7MfusJS%ZP8@u)@gB&dOF+Lc;uyZxFY%IVQ7`8z>1yjy@A+*w>cd<&s6hsu(df`zRV3Z~xGBdu-l3-{Imz+cM~_2#dckir!=*Aiq5|z& z?`g-G(i5ErtVQlcrtNNsw)rPee`kRi84hKk?`X$nsvI>1~SMzQ>`AUGF=LrqZ z8|JH_c=XDZE3)`^>Zj`>abaOQO62=*xedk}bPTtJ(z|M(4S)Cr_jin+yGBam8r<03 zBLfv0gEtLEcd!~A3~~%+Na&>PyRdBq^QnM>Q&+*tuzQS#%xAI=%Q~o! zTEu5go|MHIs;3TCX)`YKsF&(k=0tK>&Fuu>lGe|kjm9}F`s1U|7Bty&Mh3G!`>0mNYfIn@F*`lx$PQL& z4U#9NnHw4!cQu^VP~xO`$@i(G8dvPe%*^a;&dal)b*E*t4i?Mz?^6qrKk6gt*!MZ( zw1{v)ORv%Mi@zo-(Z?LVJUIJCp_r8(ueZ~w1DSl6rf+$x=`H2RR@yCznTX8*3Ru;TX0 zoeRY8e0x4s(CFP=QF1eT_wK#x?;kz!mnrRE0xb`(U0B!gjhQ#@<|r@F=)_2vp5%@J zZtXp1*W}ptT3jdlT=E)?5I#mjnz_zwzODQHb#1N(*(TRZRrVH$gjRn2__FHJ&Z(_m zzQn2ei_3P#gb!fCn0DE;bs{3l<89-kf_e^(WaE_I)7C%Qv*q5sdjYc4IJbdtK~V__ zjmXGIUMZ8iP3KxXGwLHv*u(hgfoGwdeT`XEE$lBWg2!dy%8UnRL++&XcV}gmgjX*y zaCyX|zI8k1e4VIhnRPzDzg4LDjbH_jHq4?3CcAfEA8;g9>+(R?RMi|1B)yiJCa`dS^rrmX^BZEoq3D`Glao_lB#pUTd3v%bA8rEhz zK8xD-AdJ~aD{Sk3?dQrFWA{*dUoVNbY|c%l=NaU=$&QcqAJWuJuAo0!iE*z=!t&23 z*iKouc5P{-zy3N(a`ytPJR`NO+*+8h_vq0FLLExu!`^eYemH+ue$U#4rcDHux-fV zwk=VJma+ZPj@@6M(5p+WI+Qj1C9o>hR6E$NoI=Kkk(8HMD3PZ-bBTB*kB0n83a_+9 z&=$+4$5?R34D-DbSR?y_We;sW^S<=PqVl{~Vh01anA^*K(Xq(f-R#oud3DyZu-=w@)BZ0-P8cC7mQV*ix_Y3a zg5g^9r6`bEbHXDwB4XFsAnU8uiF)z*0?zxw_js016?B=Wqp0OGHbT$q#9Ws>Iq}l2 z!8$)SE9+Q)TM7M;wq7Kw$=Nd6*FuTYp+T)Z?cZVP&JIk>_;kaGK8~roClqX3EaMYV z6|Zgj^}}qBv519p9zgf0ULc&|EPW;G|ZRi^})Mokl`MqJr z4>?!kxuOldWcIYY@vNvzH66q@Gbs*|aYEU*d%M!(m4e%fd8PA}`5qeXs3tCa9^wJm-~j2ZlmXZy|kUIJ8${EYi|94&9Blj(Ieuull1Y~8sAP_ z`|_2|@u_UjC7ttrD}FnF_;W{esJ)M_rsf@5*VDp=AQ{_+kwM0CPQb^P9<(gW;I^W` zHlfT|t>`y;`uh4zq0D5%{H$#&=Fvu5{SEAW8t}-UER-DkPKgxgVR2jgE3q1E)qNNh z(cU+At@8AWtd5}g1_`B`)jq8`Es-;DpvyYlqLG&-&+D1hU!v4ZvB566p*MzhD@$Rb z7Mk^$YMP>!CuU^SP`m4@#0+xfnOP4upOvLppiEBBOG}JY^{=LFSU4jSJF)Kc>C>5u z)*pVQCsIJM$s4Ik`lO%4?#aW2+kzeR8@jb0ANly=qgBJ{GNa01YV}cdA7{XXPl>7n z+3v%I2DmDEsI|Xk&6DS78yUaM*}B5M)?ln}iAX^s+Tmab{p#%HpTyr!Bl{j`H1sp7WPg*ys{)a4w z9%fy-Wlx%U{bHK@gZdIQZQbqLFRWj?)=JRr+ld@Dd#K*h(7mbFJ}17UrN@2TxuH8L zt23@9EyFPHs$`ptORY*Ep&70t1Bxr-o1NQ z(`=f46TL_{yC-z?vxxZm^@Ta;me&66oI!eGOw8NaOMiRVbi^cY$suj+d_8HbO-!6k zf$*R}^wX#1Rh5;m#&XSSH;ITc9lPTUy%nk{HYEzI28-q;ST3dIPhPFXpU3W@P-#{~ zYxvu$<99k1L1m(z++atAvR2f-vQMvX`u1&gAE^kv8yw8fX5Ud3i0$jM0kU#VF1+~s zAqFh=>C;Vmwnb9b2JR>&9qr-X)zZx_;rP$iKi?WNx7UYB>&eX!9+DUEw#XemgBDnX z#p&PUu8aYFLhw(ZMHU6)U`QE{dVWO5-lOSIsX9lul|I z{Povgvs(RhJ`awu@`KQ93eYcdnB_zLd(WIc{aWt}n(Fgkm#FyYyA8Jnd-aa?m-wf+ zW|r|2R5fGrq~!3a4rtBVJx?)(%z@;HZe_VDf!>txy6}@)323iAX%g3U*yE&VD)U)i zcI&-q@TxHlAS7$FuQ1i3F>6hZ-+})0P!9no6%@TJY&N?O7p7Lz^6)jO4(mX+{NY61 z*k5NZ=0chhx1nbl^#-nkRo2S2-TR(~?6eiGn`3KZ1F%^Wku;708>rT?G%k;zphq8U zpgQ;Dq!-Jy@wpDwo}KQ`n=@Fg!=vc7v*kM$R`2Q|%}?9FHBwvOF_L0v{uan2dWrtI z?c{E~$f6??=EOsm+Ab^*Y+u`BiK?^0D&niX1a@vCKqsiDMU-ftk z<$AKiFJ7Fa@b&j!rYDsE3x(~zY2T5{qu?hbrkk-JeKgj=RZY#aI>{gj7&#s{@7bh% z`gA1V+7<=0y<<;LT}L1JlxUFSM9oR6#p5&7tSZG%WMJ`U6kdA%kaR+Yk@oOoDMokF zP;ndte&5A1pyMf$R_?rNgocvU;w5*IXQw;6zWHuwsGzi?8nSOqIN4D$9%Y(YQ4G~EiSFpM@?x^g# zux%SCMZAM+_bE1>%I?K$;D#n;jUrnD6s`H@M6&WiOB$;XiioM59%F)~#D-M=(A1Vs-7=(1b(rhhOtg ztl>*-dlv`9CCcmhW-Rw~;bO`GG$fv;Twr7C^!i08Ne8#`RS(h)nm?F#s^@kW8&b-F zHLKdYF=@QPD`ri(1gdgb5s$)u?!yJymRp-aht`CaM5AFb9(f2HSTQe#MV+nYH|(Og zd)1wcLUqOAQwsg>H`igNsddKDvDjLDY)%~z;Mi!Jl1TRWu41_!d4l1|Q%RkEw~(x) zP}iXcYt#Z3rt=SU)oS%*_j^UD1xB@ny6bx@jb#WKV~DGI+*q_4`s-2<8)gx z_>Tsvbej$}*p_r;wuP8}wWroQw3j|=x*VFqasEPf33i)0VQnGqV~&&qEM_AWu%J^r zZ{(0~XiKp?(5)zq1F4S z+@nFzVxereq5vuDbl-(???m|K&}mq(I~()Yu3ztKoA`X(4?v>648;(V_&C| z5#SL~H>-9Hwy!f@Cnn}8w)q%)d{^Pkp`K;~f|Rk+2hju>C@>Xhk9L^kZo6eiz4ODL z70asjRLq#tUGGF!?a)7!>u$>QJT{H@l)bKQY%**eqxP1Hkcu7m|tKevfsv%Hq z(6ml;NG&Rrn!_;l7nMgH*I5D@KyMIwMxf9(*>}wwTqFezsj-Euc_YdRfbm zE(qNLb>&uPVvL@?O;=6wV4^dcJ@&Oj_IQi8Qf^b(fufx8>}+`sHVPfWMHnHg$@v0W z5HA3dOQ+<$>0z0^y}dFE%xlm;Z*+IDi~{hmn%jG{X&`EG`=)F%9^esb&)ziZqUUQ< zsi|HHLp3#%YXRCec;{CryCNpJ%uX_c^IDm~UHpW5Cu(<&|_`>Qc%fP8iaAuDdGCPol>Ilx@@2 zwcc%Z(kkD&JC2Mh&zgPv>(k7oESuy3JIFpj>K&n)GWu7N`Qj+nso-hEo;fX($034fiy3kAKToS|h*U zYuHV3A0dJr>zGS0c}DpR8iq$M1z;_8BYZZ+fZe1 z0R>63n%`WpyGQbs#^yWFmRn{gmr*ja0{Z!QZN5IAY6^~V?8))%T~Cky7NaVWlhS1F zFJX{~T1}_Pm)Y0Um~J`u^*9m00%UBX1f08)o#@KpWf{F)?;!}>`TDkSSIdkmJGi&q ze{jp^D@*iC!Qm^T)RqICX}Ge7%=_p>06J_vhv<_j>m;(jUIcy{t$C&6FRpj+(4k0g z#SxXHys@lo{UpK`fz`Y2^fuTOis8mCSY&*hLLiUq=i56|T!w8FdSCIpD=DF0nya`} z=kUQg#p^bJFeY^=#v|WaysKyqmO0~N>=B?mDVJ|wo$~GqDmbMi<_sO=8&Y10#$i#?|E(`>|t$D8O(reSLj)5UEVj>y!J72$c1SSnaiS2dQLu zG`p_k{B_dO+P_SlQ+a=*VP&qXGwJBjK{hwACt^@6P0@M|t(bRB?Kp6{QrS(3+?saN zO+X-nXjJJU9Zp7m#RP`EySM+()flA%O92I(3bJ z$J%FS8F)O)Ax;m(71`0RF9&ho>miyz&nRIuegP0K!>))w@$zacq{emP;?@2JZn2~t zn%AdQeJ=3Dg0pUU6PuB7Wargcn&=xl9^L*@92`$}KPrb!!_x$Et<>YsCy|+hs%6yI ze;*1YK%bB?`;JwipIC)yQVvlz3nhM8yHfP1$I#nM@UXI&&Qx?SBk;mw8CH*+hPq;- zL!9=O7pF76D0mxw7=|sLsjek3_l47&WOAf=@Xlsp!zL zfoQTk8ZvDU9XoccXVi&cQ+3%6q1giRM=-6SveeE9fSnF}j1Ophk~@b{W3KGQCyI6y zpOkydz@_&J)VhPmj>Q2>srV2|b7!@($){J>i4ZDfRJsDx#29;_FV*B8s#7$U*k#{fs@Sm<6{3Pb1c0`* zKwP`-*;$QX2;yqI>#riXUw#5tLtCTAGfYk_B0r2ELOCH8!t_ zK1)!sp~{sZkFqIJpcX7E#l)xBXzS~Td`;$Q^tLUA#!#$hSGGGbJG)_+<3y1PEz!7Z;DdQ}0x zQ~M((D{nkUC)4J1gL$YkQ^o;hg@&FaB5Lve(f+r3)~^>Oq7oIi^~+E!z-p`w@{Gz> zIRJdnaD)EA!QI%rEmLMK{UDyzzKVtQw8ll9DyElJsdoRj=c$&>O|5NhH0<{p0{Um? zGJP7LfATbGhpmBhPCXk;^<$Jr-YhICqW&^vmKAhQf1NBl;}>m}`)S9>*!X^4qaJks z>j-*&elUJZbRQo}Oi8K4G-g8Z$-*>e5S^iMi)KEUX?^gyPuIyHkugS>ltuw`08`F5 z{@Z=4#}L^}t+M5yrkXr{Ce$|Qqz9RkXd-d|YmK;!A98j3D1kq{|A3pq@ ze3*WYQzrIcCID8=l^u_2%(ap^E`S!yN-Yg4znr}t8B}INEkDXE6QJCare|1BwGH*K zEhglTnbG29i)KK`KKEOI_f74T%v7{OcJ8dtwJj#K(c<^>6UF7^>dEBjo%?tt@#)j2 zO=;uMWV6;MWtY!hw&@kMz4ZC%vuA0L{WE;kWeak!tOuD6kj1z^EFzLmiAxtWZ^$Sk z#gB}ZxP(Lrbnh%OTF})RIcRn_AiXy)&jS*4fapm3Wv+ZFROZZ}Aii|EzH=s7n2=Fd zG1IViRJZzFt<1IXp65lsxE^Vc8B>9-vUWu z?RS6cxb$P4bam(MRR1jd?l{u$1-wNXcao+u;h|>GC9ctB|D4FN&=2;LG7UH>WnL$_ zW-9j+#3pf#qzO-EhMfB}U16YfXD8N+MRxBV$O{{PUWsz#u?k}U=+20MG?|(h7 z;PL;MyY~IQ{vWph|8H*c{48sjGVkEg0GV_M?7ak)2$s?v<_XE8VZG|$8n9d-PJ8R6 z0S!PqBK6YQ&SgTU>GbBAZ6%=+sN=>JQIXD&vmRdAJ77yOy?u-21d;uAeoGkuz0a1! zEYfB|6r7{F#wJd9J9*!{Nk*F3w*TldPBKn@CYYjA_gTE_q)o!`F^0svi4%;B6~BG> zB^W!Dbf+0JW)PzXwV82ib8#v9P=#z7Xg*+Y1a%gy!)M>h6@X{s-o4w)Z(nnQm~vIo z8iJgX@lkKmGu${%InWchUINg}AhS`fai&>_Jua3eoQjJfu_ev3JZ9qauVW>Py+u7pglBdz@7rq$J3^J& z11(Qa7cQJOxm+@<`UL((jWsVIGSZWXgWC#G2k7mf%f7HqCV*VVH+dXRH?NNZkJVbf z#Z0AwIMJPk*EJ`Iy+Pv_qmX{LK-{w&615Z04iwFbqi2I7F-FQLU{J0qw@>Adz+*~$ zG^`YVnPF13F4%3P!-Sp~eB;IqJM<#cj`B#KG{JjYEE=|^n%5sD;sq)!;kU0EOT5}r z*nrvO8{<<_4ic#aLiqp?z9b_v52_CD<})Lw8#m5H@43-%kgsu!r z&b^@(V#ZxM;~tg;TpB(Hy>6d->kmJUVU2VV(*Y$Z7_3zZg)a`M$#rC)49xIT?qQ!G zTPFy7#DrM1WXXCZC4;H_cDDtfcAUxPEhpXs6!v()mUl%(hk$YIDm9fmVB6iIH70I| zABH1rH2SUAq$0`_i-r3|{0!w>eTmYzF0fCWtX=yCCNYF^mgS1xjm@4XXfnh>Hn~N^}KyRrC+^Y%+gv%4F@kVlWQG03%GBxRo{L_PX{q z=v2ItMz{O=`&-hUp>wxGwKxnsb1yhJ0h((E5i#D~ThCDVg7%*T{CxyG9P$P*`&}&!M-FnTU%QT--r&fcBH2* zkUzf<`mr(ABs8-6R@<3VE^TiFm?kpdkV;K>1R=R&Bc@=pIZbpks0kkY_V)>H2dLm0xP&wj@JyCA zac4N7^VOul%vJohji_;`8ZnT>Q=43YBM%Y=0gGp#&|vHUHh3v4jz=I$9eC=hl^%Rg zE847p@7gcU6yI-b9E;UO7JEBV4s@b#5jKPZre$w$AI|y+Qx?K22jr(3^@X_blzNd{ zChkT-(v~4!u;Odz@9_gUPJ;&=9UU*R82{iMCMP)*caXJ2cm}Z_F-_X=q6jquzSAMr zFG(`2$q^tHSY@VdTg}`s)9S}%fU5DNz6bnv;)Qxo_{u_m2|9uYu=qJD1Qe5?2r-&r zw^tH-z>8n*jRpJ7a!aGi7|j_|E^*aG>^}nkM*2g?ACuGu(NXbS>4k>VCr{!9bw)5I ziHJ1#Vj37D3|tvdgTq8igFnBDLV_6x-OM7gG)ZrOb*<~j^PQj-tzHF{I0@@D!(dWZ zh9Fmd|9gWxxnd*n7)kBMPUV{4SgeSJR1j%PS-^1@^dXA|h65@4PoEwj9yUTMP}0^A zg^oM~pLFp}@hlZ`dju_#5iB2~e1d?JZ(%?uMG6XtCK(c_vdaVKnKJFSBE6z8_N}GP zeVii&yA%3DJ0Y*xj{O5o&OOE-e!n2+swbZDVG>DVDDzYA!tYD^K_SaEmH8tM->iK-Ow}{7)YD(`Up%r+1#CoY@v)0U;)_!fZS1F#A#FyT+^~WL&q1Ln* z%)lN%ZNJchGRL;yC9M7(t7K$kD6U=qO}@Z|BwWtCzyAmw!Kkw`HaV%ex9tK^PSAAj zf$EcfljH2*it?ESaZc)NF&{A!AXi>@9<2*aojPmjLzHj=Xlgo2qOO}YWN4D$4XH5v zSW%>76JSLyNpvnEhJf&8G|{Va=`sK(RMP0dFw5|-G3X|G7zT@mb4$c^VWaMejf>kW z5@dC8WT-oycp+eh9{T4#{z~>AY^WSw{ZduY%P}`hB>_j<`VZFnL{dAH~?rxy^1PQS~%4C^+Fu48Ieb$SKQK1w$cl8-b zcESYQDpKGIUY=a&FQ&7YmINxeiJ7bK(z{!v0KV}GW*mP1F zCt)bi;l)A#NN=>)2~XOdkT=>Y0iPWj*hzmby#%!-oRa7OxcG*npM)|Y>c=-RHbZ`^ zX;$J4Xo(a+XijWufll(>$nK%_C_E_#%QFa`+mkly@tOEvscZj z+x{Su4d~x3;xu?D!9ot*sq`!;?lc$d7bap{HfV(wRdI)s3wg|y)Lcj5jpAuhSZv@t zc<1`eNp(!V57TB5oS5Gcl>xu|xIv}IElSPr|_+r5kA890|; zo=69U3C>+pEIg)|;xuSNM<$M*ZrPkss5JJ?kf;v8m7S@#_Jms(nWneGaAhIwQSE#S zN)^HuC|jPiQDm`fd>X*0=hMuPDN^^Lp;mV`YQSubkBzl1ma+`BR51^S1+peP*ItKN z74NSD&$X+M%BapnU{d?w!OxQ}Z0qVfWuAwIV-2I7C>gE@F%Bj+Thq+iWhBokSr(f< zXlGY@x%K&mW;}lU*s0l@G;jRy!Jg(o)WI6l!+LuB4tiSYzalW%h@ynGiXtS-{e}&8sMZG?T7e3Vcl9!I$1{=PV0cO| zos|VFniUon=G4=#@6MqjA=;|G_2cD?LRc%R)g?$4pIYFz^w-jpLC}H%kZKIFCBN_S z@{F&^sK1pbB4i@_Zgp^ppP!AG(_US0l4oZX?}zRsAf zd25NDoo1H}s3~;My$4`d40_AOI|R^;%OR zpP9g%#6#D%yH>{ORa@q-=0|oX`sEzCeWb=>vK7pcG_cQ%SR+yLfE#51C? z6$h?BM6ppf_pZLKuCAK0ZECLKZh1;fMUyI5&j6AlB2k7G@py%kWSQR78-g%yQs5&j zJ5*yRWl|Y~{e&x+)Tbqk4VSpDTRMwbzBQ~YhMCzWK=^6eEW-rEWJ%-@xB_9au~bzU z@~DKOlq}Rhfd6^4hL&Cuee}z3F}7JQ+B@{bFp!`V(jCV~OU8*KKWI@8k+LS#)L%V# zi}|qzO;u8xT}Ncf4uq2w2vlr_UQ1wRn+TKS zmJGm3lZdnH3VGL>E^MNGqq#<2ek62610w2ZKW5a9HLH`eBtH>|vK-#uD&(%IK>{UqtS~SE?_2 zHmkx?8%@PAjKs1@uh90z1l-1ru1* zV3bByKQr-dL4hV%5JPW_KtO_VNQc_L_F&IQxR-2P6FandY$zQDZ52o~pH9FSB*v<~ z)Xj3;m|#-+%lay>Hk!hX5Q~9jU6Z(Q(ABT#a+{OYS5pl^&Ia9>DJ6w~?L?J`nwQ?yKsYRw@-;2pB&o7RK z(M!xcGKiD|B+{HaV$z6Al`MSoR0vg&&et!UWdeRb^7Z9hDwLp3D1G}8Wd(8X;yXfh z*OUuY>TG96AC(K>N4Cu|+k z>T|%6Y>GPwK1TNEZeUp=MKT3~Vz!|42M@vc;;r;UY_NG=XG0;D~z%YqtQ$(1~SsS=m(TkfH19 zJ1SjI>ookfRHhG2rN2?UP38YzvEEDOcsS6C5bX~mMxFa;i{N11 zI6IG|$H)N;M8b#-ZSUn<*R5CTBWntKsZJ^clxm7I-7>n&~53Qwt2n;vCzK7kNc zz(k;b=qmN}Idn}kdaRZRksC;_!YP1f%7Qc;V{t-nCB%vBIwvqvVG8LS zNE|i4c01GbppM0ZeyAOu9v>HXBXC7St;~`@u6YkYw$hmGkxF;~JbOsk#MvCdJT4gP zYN`xPHw|r88te7mlb`&Ib&JM+hFf@WRd~gejp4X`c z(ujZWF-Rh1D?L=Ty9LcvYUBuzx@oy9X|{mXr3fSqyqGD`z9jG46|%YEx959}#Ob-6 z#Y$J>)sf`&abaPOLcDOH%Ohlu1cB?!)2!u z#J_qdjc!Lu5tjbbGbJGjh`KS*c<6YnN}&8Hd5N(~mUP9uvmuUAWo^DwE@bcwPS5!sR|uQ@WG=TXM>`c6A^ zpA&e2;$-~o>&N8P2fem_n#Pr3UC-ap~m}HbLYym zEf{+dC6lCPXky?CM@5Xeb8@OT2ju;AqlL15k~Zl$pe3AN;|ka5F0bDgeKnHIiF`FVE?l65`{ z+>giFcW|zLVb#hsa~E`{&W+4#bC6*d+qb+^?AM;&$vH=L0Y}Ez&ENCPh#A7lxHtyn6O%1hhAz6A08sZ=% z>8I9xd^`_IC|yS&Wys|sht0Aa7`@~(5O2WQs~D<*xbY+8R33aCa~Qhx$%~}kU_ety zyfGKVyJnMk`B1@26`?S|La`xM@KK0Yei8=yJ$-c=W?#O1c_U7154%YK7{TEm%f*Ok ze9nN1!j#u^S$XZk8)D0!wHQXd!@&%0#^>vcnNC+APbG~cD)Asm3*5TB^ugjU=UK(@pEVC8X?dihE1Jj093av}H+4IVUQy}R)Zm&4 z2f`rWBnt~O1eR6Z|6=Arq)ZaY>Dhu4JP5)Xm8VsgvK|Fm=E{6@#SIO^04$fH>xPp! zf?ivY>bb;`(+;jeujgI-VhL4Y9DZ`&~X|$ zzla!gDGAU4%&*bSdw~M+0{br(U{hN~Ft&+&wHaK3;W7ABP{bKs>#< zfyLu1qH!1pPTWvm*T}!#j>KcRVoHDt(ned%>lU(VkfJ6igg4lZsBjF9d@m_kfzp=M zsKos>^Bj1@A zM{17~d>WjaqT+-j2}hL=@uac-K6JHr_&(trq-~P?5jjgm#5n+y{VF=Fo|^!;eR3h7)V_ytEXv+1dH><9Q2Xi%QKQhW3H z9fAm`Mfi<@>QhbNBn;+8m;NGa1Ka-`q6+w$3PFd#jR#A(58osf03ie<$rX1fegG`8 z10Pog%{&3ViAtT@ZYdbVjViPHc3FLNs)ho&N07?02q(xR7$Kzn7!O3oMQyxNWyVktU7 zV8scx$-$7+N!pyCPy)^J1>Ie8Y~Mg<-3CdPMk)&j`hGc?JRmtK)9Q9Sdj&Z-hcV2d zlnjz%awk0aqlidAYACUx3AGJSa84uU0}#B3eLbw8P9o-`CZ-|}M<5!Gt5hLhdk?H( zrg+A-1N}q8SG({;#N8Ee9nd7lXCZ9jz;zZXs6$ql&8mVrH#r#2Aeu*z;;zKHB$~Vl z(fm;dh~`gXi=grc!&zlPoNSq-R=B0)s46)=fTFaYLb*=t8szdRso z8Hn+>t$Zw%A=Hw4rv5ky4!`9w26^!P<`N@=EMhkTr>F8;>J#?5`CX zZhbuDz>KIPha3(@S5YNLL`Wo;q(RAXNo)p59D2VTe_f?~x=7GNLU6I7yn?;0o3b5A zz2K4q3x7atVg`|w3BpT#HDB2XdK5VYpM3HPS?d74gnrNV+PI9{t*!Ycq|CdySj>i` zN4dg3OnF`0ItjhyIJ4|=?vSYGZaKsshz(fBu?g$Fx+Glgno0vpM(AL%MLN=iR=GHx{$K>KZ4M>M{>XCF_ z79`9palNdqdCfg=h1xL3pA)nD_Of87c6UYIw1rq9LrKKJ9&sEZ(Q|;owUvT1JH@Ks zQmF=^SO?X5j;;4B;QA)QnI&O0*kmt>vd%k1u%I03o-Vp%P;-w1E=5Hi)e5B5 z0WGw?;~Ozn9I#BYNP;jhkbzp#fR)>b10F3GpC1ozp%#;qjW_~`kxwq;hRCM5gV#$xNCFVQfk%UuM>>CxrC9Y0@KTx<_L&4vIPY$!X#_7DZkZt8yd@d*uU zs}Y-xB>oBu3aoKJzzU1R9+stdeHPWUp&LrxVaW6bxHiLc7)p}^$#bA!1ou1TK>bI7 zXvuYBHe_17zrQgN>#ewlMN?7BBmrfI_1cO1z6IG2K>o_YrmMm_t|#$FAD;!% zs9+9-V(G*~LDNNRXh7-hMh4*vgfT|xqf5(i@WvVHJfm?4=7JTOdMp9&?!vk9U$^Dd zOQl%StL}DNK^U+==oAh{# zn{sYNSlJ(Na)R;n*)u&zZViY;Hvqsaqp2Ah7?3!*1+oa_x(Iw`LMx@gd!?bJ<~K5t zvay4~pDYKSsRzA;3?j+(1xgzGkT}oD^!j_Qig!p(b2h|(U?&-hbu*intzT1P+tk>d zUX2XGXLXb!I$|nh0^5p%8*$u$fj~fQjX7_9aX?n6G%Gb|qv2KVY~llaI$cX@GOWXC zUjj^Z(a3SwHH26L7=0?%Llzry^&*G*tGR7k=>vrBS7Mrbh>2B*;|KX9w+S_!4x`)w zjwlU9_f2EkBbL-1l~=&$MM$SKk}xH7^Lh^2vOP+00&6ol2iHPcIUUtZ``EEg7$LgN zxvq@}J2v3x@F%7;PPrm8{erChVVB&?O5+=jrMx9EGLk(dmjqx+TG4Z`?v0QI;A2g}cbdVx;A8aHkQ1 zZRpqJJT_B~o7f~_PCOae>nQYXq`xPYySyLyZoIzF#<^%zh@&X!J9=M_NLe|ANV0r)&?Hzhy+a?{JrWX8j%`0b@ zBQGbfyuF8fKaNsWC?IM#A>u81P&^Vrk1?hZq=VZ#E+L8_zL;m zH@m{?U$Kqy1|ecW(13E&q9ysbZQ->M#EsBkm2Yu-&+Q+KN{0M4cCU z^v3|sITj|KHvQ-0W6Uo3ZToWa;=FC|lB+Xtg&#MMN2+|i<;2gMCS$+gt!`KFgahJy zbE2K6sVq2#Z_#PTV|70i?mQXz?}y#c(f< z|MFw<{_JXUZbNQb>A=7H>`@o5-k4QKD^Hh$yDHTp%dM7wIn7MKV z<;SAuPuZns#`AL(a_8g1`&Km;e5*M@x0n7H@AL0}|G99l>>vww#k^^2=S_=nUaB(b z$3mRSuepSs{=b$`@~gGy@1iT5keRp|XQV0=CJRmfyD|Qwglszi+3nX!6L*J~+0BK` zEcE^JCr|pZaR`r+k#TtjVr$&4i=R)(ka=+!u-<8=JdGk!BUm zUl4BpWWygz{a;qI*6M{bL>JC@&5;oi5sCDse4nig?_baVSq^=0_O7spMQ3kD1db08 zxD~BOPF8x=39p0$Rw2KjOZ?|p6s~po+^Vrzt!0O`>aHH;k`rQNfQ6#XNnO%{x9|r*!7B5z^5*}eW!NPh4V1~ z$>QRcx=ScM^Qp=1^*?qYw`}2-l*zgcEfERzwv=9Mb<*+YPXEh=^4hWsyEMOr%x}BV z&&~dyx6enbBOk4{Hon}p;K{+qKiA5?%)!t4x9!U(G@%2i8Vls3xM(knmtPUVs(2m1SgYU`G^O!?6E38BtAO390q0Uf`%h zJ_F=b7^qruAwc{QVnX80AU@;>8+pmpkYTb~4W7V0{j4N!6^;TgoN?tdi(Lh%zL<7V z9pxF{DN3o!cC_v4gT??+L!QY#W!rt7e%-a=N1sW3@33LQv4z#V=`Y**3))(q2`~Pm zDb{Ry4=V#f73e}nISk}Agef>hxcz{@P3}WKr71YbZ;FZ(6n+MW`?9}W8w~qY9afHr zzQ~Z;k8<`pWcrHMRd=ST-r}7<$K!t%p$ADwalrz}8DaH=etl_{+9sfzea`xTfH$|t z;`$u7Jd(6{3wjh9ai`l6EYw!b^K35fUav5AR(cu@>S3xRE-nI8XbZ4!Mwmh=9#3w4Z9 zm+*?Kw>ZPkH>XfWB(GVJ{V=$>2QT!1K7=@(O|dAdF*s}a(CLW|qqaym3yChBg%qB! z%Ph)tK?%M&`F`^oY7NiH3!tP9bH)x220=1ebbZ%81(BP<0V6>$^iQ@lR<+^f3KDHW z$Sx7NV=Tx%S_{Xo4{B;Yg6IVVOEQ```!>VlC62Sw27^%2NkkjL4ZJmN4MzsL{_7BB z)taFVOpO8;b+BHe` z?1EP`QR-~rCUOgHj_A?TG4?MeZ29J*=)|ijS1@x$Kj15OCFIT8cv0H!XV;T6dN6F_ z&1cp=?RnkmiOXeQJgFvcO2T%QWHJz#P8=N_t#S9kJrFYu_Q9!HN*0-Ub@?&uwnn`L zPei?wTS6VQRUOF_`$Qmy6d|v_Mn3wKlD?{wIwVp|QZoD5*PwurbJZbQ-K^TEu0Yzz zQtEg%?U-S7R=TlDw{z?+L(|w2V+XLoVg6ow!yo z&4ol^!eKx}8x@&-L@@NRLqZM#qc`I2Phr;-;gSSZ<#oN?ziB#Fwr*p_QGvH$LVxu z4(x2A=6(`)#_J_o{AMNuuP}QL!Wd6p2S+@q(DBi;$ZMG(f!rhGLG6XXJw)B=<^vq+4+g3c> zw&FJFLq9Qx-7dYZ=AV1wXX(V-DGrE3c}EN2;y!6<>F?Cx$CO;ps`&Q#EH-$h&~|K>EDyqQxNQ+ch5Eg#{mafFu&8D=mkj;!iLZbg6jpFSBlxJw#pA!d zwMoW)_&zd!!{^$x4j(>DfY{gJZ)ac5_@n0i1qVxZ02)ItNb>*1PwaRY{m5ta_{OP=Zet;#Ods>53No}$F zd#3vTjlTU?LqF5wW%jb)E>c_m#0h`3^0=k8hxIJz{Cw^v{0COpWH)!hHpcJMuS5Cb z{(3u$Tg&h|i2ZBtlKuW)5&^v5Q-vsHemuXe`oG@w3ujH?ZZTjRgn7%c+a~^~S(m(G zzC*Zwl`(K+7dpbL82*6 zJNnRLaIz;2?~#f_r@pLYxF=i_whjyk$DG;jYZTFnn9)PM4lY3ubci1XfK1NyK~#gb z_Q`@CW&WW0u-v_GFW0>E*!NAuJ;9r+qq`WVeV0WS+8Z<_&7Ya`%^ zcy@3kL{TUqL*bpHezxlP`ym|gG<&R*W>yAKm%M;rbkqe%iFCh3I_nPc7ajKaWMI22!egUKwYJ)7}zD+awM$UjN~e}<^se*SIpawx4HmN zo=j@<62puV83gb4s$pc%7NlAj>6modUwH51)stE@+>|1MdlBnkmxkP>Bnh8CH~N{o zFt*KHG{+;=rgbmgyoP*PEY9@rTd*pej4ED+;1hv#Ks^3!_E_IJi1f#DoKl5ek4aFF z!PpO0)gW}@JLEsfvmFBa-mS|p*QqC8&yZ;&_B{!&;S>v;;6&C|9|CG|fS#QELrt*f z1oUXH=cCrO4;twm3>X_aR`PzhI}wGVSH&?oS9cz2+mYmZqkrrMzO2vd`Vtdm|}> zrg%y0@Ut|7FZNE}vq?rK;%cb-s$$Bx`_?|E2(@u{nhzaT>ODYvH*OL!S; zDb;<+eof7?c8>J!oe4bMfohH7w;hKDSan}qEbDwtl(P4)Uxt{ZNs zVAOX71(g3mvANHMxhA5T5SGa4S7mdmdvlyv3zsa(=j6o1#5}K0Go_1vY{eOFU=nM8 zY%}l+CwFdM6UX}Pl@MFg#H()XWtl!cK29yumD4qT*%MYSy?p1071eXcoo;_e@_=|d zizoL11-u8wJ;Gyr>rzB-(sD(U)U*ViVT7!k9Xj!fvm4I0vhrrG#d)ZKvB0oL)z^oL zqAZrYm3JO-Hs?+kIj-ui@kTKvy0>S|?aU(%lefLA8vA@g!?VbCH{T*!{!zkk2wr-JX= zj+_FWylxV%xFL&YjtAjHgfg^9+Ru4W*Lye3I6k#XJ#y^HjJ|%V8qH$eyZ(;&s=%sr z$#_cJipR0BnplIE@c)9J9LaOb!L9}mOM<8gBT|~lcX?5uG_piyY?*1=NpyX^dUK_z zCoJrrm25x4lCo^)yPVqW05r2`+T;}M^Njwq?wVEeru}%$D&;6|@?Q)SCKV@Boe!`c zDR{a|L-DhA{v`cw!UB@*B&U0^7JGd6`aRao+%)v^@}c6)jMFBa`u^=hax}FB{$>^7 ztVS=oh*Je{>D?51u6=A^okmJnYuFD6_4r8g4h82S$#KQGgHi(mpet!+;xWXIXob^PDUg~^#P-8cODgP+aay4l>qjlGZ zJ*RN!=DPyNeXPHPr(8US(+u}lNM4kt{_RuTB1)de(dA!>%Q~l+D?u`GIio{@vOCWna!z%fClLR0o~DObcU4s*!Jr@sycrw zM00g@;L`)%iKa%Ip4f*$pVT1&5GDH*XDZ~G(Ah8}xQ5AJOM>4K*;@;Vjh#U#h?um_BaOd*zMaV z`d(W0Uo8j-AD{cBdg|4>pN1jMyJ3C6_J5*8+%*?utERZpT9Wq=`jM?V3Ns**dT)Cv zU(k`de`XLbK0bNz@vFM!k{MTo%*Rh@y16MT&pGq3ZVxe+{$}F2GHP+LMY+wSVi}Z9 z)U161-e>3DnpN~VbH&fq`p14;j?V$2i^37JGocH9dGMzo*gI$1ws%seMK9FVfByXW zH<|m-|Kh35hVk=6heQYwFZoA2A<9`rWzrv_AJ@aESu$(NqFGax=Xlzx>nHhZEIOU> zA9?T7R&?+{96J<>g}DIGM(MwHdsbKAPxTh8HbNKL8cHn}(pp$p`~_<)^us%UHL%8R z>{>-&C51xC^0+K?yqRl1f_!2{E-Qxma=z_uG8*lhM z`Wur2KTO^iyOl30dj6mH=&dqQCG(BnQfe_2p;wBj5ANMd^-%Ws@{cqMbC+UMTp$yT zgL(Jv-u=_&-FAcP;h36T*W?O=XbxL@cFz3$U&z*9GTr7k(7K_Y01ebM2irmi#Q&gF z!pH+G@Lau13)SFhy3f;MZc`JLQ=F3!WbK4NLA09i4g z!efs?RslzQXN#=2*bdG6QsL{c(|>ULzp^~I46CibN^VCfWAN!?qnV%khqr1+%>P-J zWSPs5sSP1P8XWH+$M49A9w_jTmzS`Am?C$UHS?@ zM=Z-ZB(sgoCMX_89jg*4BaP)V~&rJ}y`TD2<5%lFUs$9Mc39bVg;)>_YV zKlgoI=XDNTsCtcWm}f4EKJDtn8cH%Utw0%z-2ZA4iKvV=c3|av0;g7S@w7}3U@koz zJonKL6LA7xm}4^>iaTW=jm$nD-LrQmX5JQG`3{OGg}Mh&P)fUis-0Te-VWjn^%GD~ z5^ast`c#cB%~tM*rah;V2b;p|3sU{yk1fG4)!6I;iH1tu0}ylq@7`T(4jC65Bqp`A zU@Ad~A>}Oi6wdfGu0N#J&wsbs4itg;dwTial0 zbvxui<$U5qk#ij=iMgMSvfzHwYe*xSpcn8*(YAsn0S)a~z)|T)F>qm&T);d)hyz`u zO#&pS>+yv@BnzXFr9)IW0J|7acWHSU8JPkfcun(4quE;J1NR-NO*mswfphpr&kwlMavoJA}e@~F`~LZ?sgi+04Fb9Hcy`dsJF`7IVt zkyA-@)9SZyrr&^b5G4RO8AcDzUc@jS3j<%I?L=#iiHtL^WxP6dpOA>?aLw@uYMxx5 z9hH;)U-zo52dgv?1dqAJ<(elHWQ8}7zZme-P%?IF3K5t;Umh&A2;;KXYBuK~lu#zl zB1}>g$d3JS{v44Li?><-L>k$gNcieA#^OPK>v!xRi=$iQ0=wuM8W)T|FpdaY*O+$i zv-_l8Fl$TjTa)pN)Z^|K4SSElSp?t?g>KThEA_7*hyy2^02B0q zVdLLL{}ZUY3vE62jTKex%a2)5p(Rr8iQ{aa-ih|_HbhO0h!8AX_tXFv;0HECVkUWY z8$76(OSDT5A)|c-W+ors*cECip?fC3PZvLcF={ir9!1z#IY>rAO4Cuwo>>$)tS!XFeA)P&{ryrbY!UCyA&63nn&4A3^h?gu(OSIpH|43E>ix5TFl zDz9Q;znltHBpHVi;U-DvNT;dc2Fd*=@SwM&wY0%sG8PegJIjAN{R zVcios2Ey$up zQErPBF{`!?Y^yC9Qsy%Am9vkI^=SCczWOMwhX(-2oEVcu2OFUgK(*g^%Xv&>`Q`PA zy;CRM)+4KE@Qw0-eZ|2m$>J@lYH)-mn<;$ePUZywCtM>sq4IVRsgFp4<{0a9a-4`1 zS+-6;;CUVH7xHkD2_afFWs_6_D5yOgYu=$sSJ+@+pP*C2CaY=m7P2B z#(1RBZW?WD%2eBM;K0U8l2AN=D8wvn!&I^pm51R2nZ96*ZXQsQo938e#*oMSpt^;!V>`6r zn0TI7QQy9=IO2?V=MFf7p&EaY9G&ChI`y)A#!?unk)#GNmB%+)8C;C%yN^e}nxqG6 z$gtqgLl^`~b&ZQBP*3?b3GV5WUagT6T^JeB7ONVejw#Td zXrc0d&~yX1#Kpoh9avjFuF|`45I-zjw{lOA`VkH5qV#O`{{knFcr*&|Gn;nUlHtgS zy~#t+;kM?hORiGmh|R}sLRGVuaWW7re>B;G*WH9Ygs5Syva21~$14S9uGzEuOaj-@!cCMYk&`TpVZ;=(?rC9p?+3 zj1+OR&kdw367!3|fG9)go-2=n@@!$6l6A49h{~h_9FaLq(wxPjzw~r`DoX>);p=;w zT)!xBi=+uSx1p!q1f7v=ORDmzExLAv8+!+E<2Yv7>wKvl zoi!LJ(lG*lQxn$``{;j?Naszmn}>}7SRa1Jfe2!Zuv^6BQ6_8m&GSqHEDL*dB1M{F!U200-`~h}cJieB-#k!Qsj07ph~#y%i%dYbm)*ht%gBU7LNL0x zdas?~J^Am`T?DKyD)z7Fh|2EZ;-P$E^tEAsiLJF7`_+%tc&>dJGw0M zO=T`>sc39%{ zHxHVcv(AJ8;T3>UB`6ob;)+D$0PH$~L;Q-DR}zNvr5``~{{b>Rjcw#Gs&jDxfe*v6 zPR~hpOcyi-TK=1-TL$mhiJ}b%BB*9qPWh#KetTXpnGb#TF?q*1k~P1@o+h3;wha%+ z<2{Re`Q3x2pTS2wiNPkNp=_PUi(<`*aWT7o*vZEcPJ>@<`(K+pi-1pX1FFz7nOw_( z`UavF^+|DyY8+R4tC{0J?be<1`+zY6(J)5XL8mN{tJyLyYIR-;m| zjoC==9rnY5y{UUOw;Kxuj(7_&Bn+_rwOn|R(NVbc4s7d+iYLoVh`QvRRG72wx-;@F z3VebE8gt~8Z|HQD1Dfr=>jo`7ftf?6^z-c5c(AZBG3x>rc(gI|^6l@U087mis49Vz zOq&KbS8_!)@O8|)fLvvVTmQrp7k|+Thkg? zl_3Cl`A8Y?{m`qe>zeDADYRJ+YCoK~)jHx`a`Kv7d8-wNcehx@!%t8lNMyv`%{q4e zv|hk`mJl8!6|+T@Z?-w-k5|L^D$v%23m%LJvyJ8e{d27Bm~35Xy2RG;>Wzu#YH!Vn ze3qQnCE1`lf+0V|{Ii|u|11rdXcdacZnDlb-~Y*|xtB0Vn1y%_IyQ~Tkm=g$f4p=3 ziA&aesZUVl+O4Pci(1z~GDFof5FMnzX8kZ#MG0N~+Hi3#P`Tt9-{8MoTz3G>cjiRkH_8Tpv`e>OW{7LRTkaW$mseMgVB_PV z%xn6^ZDNrD8}WKwz6@ffHMS~$E4>!+UG*GsAaNRW;fJQ2^+TJP3j=)~ z&Y<-J4=B3ICDuU%T3grau|&5(QX^}(@gJ^ zsV>0!nTS3VA$|FG1F3)j0q=Ll*~^seup}mf9xa|b^7xoZ7}$(ETh^E-a^LNz!($+R zqNX0(5bf)DjBrxqNk`yKfX;xCF5bks$R2F@S8w7NiOzxj<-pZ(jx^>H@k2KawoeIM z4p<;U@I>!c)g>$mtZ7A0sspJf$*+OtK;$22I(}@@vxm&N7<5>4o7ZD&hJf=GPYq6J z3?K-MzI((^Pj4NoRAt?{%;q}?SS5pJc$43>mdf4GJIWcgmU}3M%ouxkd>3>`DPMM2 z{dx9lrT~Tc`FfC}7EkCKTFc0_yIf7v}fzD)_rU0EHDab)$_yhy+EP#9$ zSI9Ck%+2~Ka8pyHWUv=bGkt1j?VTEC$W)dAbY*Iic5Zq!uFvyb=Dh^|LS#PxA~=vc zuvX78Evq6jWQive1hc$@0WA|9B+2fV@@;8W0!?XzMg2a)d8m>60wE=-vtz{-2bPkd z+_sG8xO;HTyniD$r>2X!5U zMYX}Q@irkFVY~Nzuj}jxwLz9>rH5V!i z5I_0g0a*}VAv{kSm^9%=z!948qBUP^D1dj93jj|4`*Qbvz)HrtiT~nc`)wWSiTs-S zd;MfL31K6gjWMEJIYjcae{#=|h*QCkNpXe~yMK`xY)oBvVNP)^t^F26_D@carl_4v z(R3Ine!`$c5ztN%u5lq(f0YY!Fx-3Ij6A(|;n=;ySYsl`z-ZhbX?d)aDmAjlBDYC{ z3}+a&p}d|O=fqiOeV`@dpZ)}4kcz7(dOGJ0@3TlWD}hi-y?yAXJsZbmSblZ#(Q1p> z^N-?N7s&NE5kA4FEr1wct078T7e66K|(QZ8_afot0nhV!M*^_T@=FV#p14r6?_5QFjnICOBO zFe)w-y;3gj%+ZGrv%JHu1NsamS#V93PKWFu7)I;2U|vEj8G9>PHqqr}!gK=CjON^h z(_Q~m0oNOyc3}4mrN){&p}6>iPX?4Zf9+&SJvIIvEP7;BN8a6@%_K3q#Q&;6I-Khg zGV%#ZSDW@YWknQ<7JNF=_>f1ZhTCpTk6iqGzE>Y02ZW5}VuB|z5)x#W0VKtXle58U z*SF*$HUcB@n2HQ`HjebEU6aU=59?)_xLZYT{Jz}Ov>5bq#CKgSeCWh!==QQl*`U{> zY)Efzc}Cda!i5J-x5!`%nb2-hqmlW&(J@*&OQZU0d1013WDDlotWQlOHFmXZbAy%lqol>msECG9*%q=Yi5|?{I*5j?nSn|Pe$!3$<0S) zBa08{)y2+{;Il~>rT2B(@MGdP!e&OK8Vi+c>-1TVIk~NaDZUMd#0m?8$I7HD$FX^` zeA>ZkG0+yFl!1_@W%umpx%*XchK08kB{`(78Bx=0(FHFOm59Xzpb`(14&ht0 zC=4qwW3{dT|36?A3>|aJ0Irhz9Z|yYm*ruJfTgYBJ$I|f_y$4Nel?p<*M6;NhH;Y; znSCHlb{Pg{1HLX(9U;hGw*I~3=QF)~1iwNG>;o|xpm1M`ha*{7DHM7fHR-a~xe|>jS1PXEuCPqroGZ|lvgYtt-EH??fP_Rm)F6i-QkKDfEETh19{Fg*W~kQ-syK+%Zxl{{Uddi^x23$N8avb96jmco|gzn#&Ztun>uJkV|Bn3 zbwPOE6G5k8u`G#h7>pPZQN4q(Zg62*4&5D*^^g&o@BK3~?Rtyl>dnt*i8FP|iB)CC zG)H4U8i45WV;$8^(gwFll+Fs!RtDlWyg7ohiYRvH?Co(N=YP`Ivp(~5FYPNhvZO^f zNSeGjUdZTMO|aj^da6m!u@vLt-*u1om9I|g&ZHkU+iuE|doZ?A^oEys^^4+mf!L~T zYMd+_fHDhyG=!3%2gBdy)<{43=r}aisYiYn_HkzFF-&{QRl_^&C4DQntX_=j5vc!K z=lkX$wsE_5Yiwb@(c^~=p`mOy{S_N*b-mG^mflJNWhwhzcs-kre|(-qHIo;gkc;cr zG`I)D`Hf~$OloObe)-3b5V7fiI~&F`@?zTkn36}e8b1?h*x`jTQwI+-r3a%tZ-PV2 zW*5afJFinbJb5iq3oo{5P%dKDl!)+)Dx3y4U+i_@@eCCs`rElH_Fi!`LJeFk4Zt9F z50+3H46J-H@ucvS3NG0f8kXBcb=}^+N=cDxl)4+s0ykgn^j_@0!y#2pXsj<>8*ur?p@yGJzWvneQ9?FA z2@!bzmV`i`$Ba3I&56IxDR-c;_uky1HbcvGi(U=uaeH1Y?m#(-M+xOC=j_zF66UJPL5zW zr_<}>W(&s;)t|NS;N)D#?tX~qTIde&OnZDn8NCgZ$TMSS_)C0yKc3DGUTI1M4M9RD z3}}?0Y{)2c+wJ}Ff)*E3#{^aR07dm3Qv_{v2GS`=#}1sAN+Nljv-c498RZ?CA@4sLRV(-`C+L5Ta_v$0_?plS3 zq%tiy1mQcJfhE4&=G#}(@i(9EK}Ffe?&0idSCrUPr9L>j_snViA^F{47z>6i8dZIR z43nXDK$}8+2+qv&Y`}v^3JpC@-?t`Aw;yFg1=pGB{hth`d{o&5Iz=^PGEjO3S>Dnh z9=+TSux3n=Qv}}m?80@!@D#Z0!^I?qSQBiO1FR9>Mt(0PBiCNDgHK}+uxC~KsRD{f z=ppNAsuAE>mI`yVI}}P`1-U3?xl-;{1($*3D+u&|a2a^IHj&2Sa9Z{dv%E)of6gPH zAJa@QzVRib&a@D8*fkUP_P?x9)ybGQPm)-yYky;rj-=A9ab((U}D zf=I>SA&MKsbtBD%m1ho)G}y7gVC15Mv*o8m=x#9DyKS}RW-0FQqLi7QZ)RQO)G|)_ z)?k^S9+-_#C`oalA##)qK*jVYg0zzuCN+4Tx+MkiXAp;XN zFLIwnZ>dHmVmKg6pG4#Zf4nMC`f$(UPt7BxCU;{xxH(w#`px5$Ta!Nf?-H7Omy_Sb zC#Px$jF5oef(u|Vel3s1!ET&JfNkXQ;pdUal01IBZqfF`Fy-|Sw>I~3vV_B66Q~>& z2*T37Jl*6kLrEM@&enuWSWO+7n3zc1P4bE+e{?dypXxvKm|97b71o%ACX9@=!*`-` zTMTFD=#7hc*c}>XxJzOOm6mUBu2J(I7JIJyNZ6LK)D2EjfoY9CSmi_|#X#S{>$ow8 zlOYQQ@8Xg+?>jz0`wp_nztzzU9B;zQC|UN>oM%H;k<@f-*|5rI!@VvW%~ zbrqqxZ&^}VBB9T5j<=A;Cc93CPvfMc>&s>V&nOCw(*qncc99is zeo?8|hQ-si&-({2>o+*RcM^R!)fm*UCT}kL=U?D|M`TAUu(Qmt(4uPh2)}-^2po|De8>kKTx>Pen`P-6hlZ|I#8HTv^T=TZHK)4hvr-O)Q=Xy$_-J6I-id)j3UrV zR*tv*x^96i%yLkzjlg@>YWrSiDHRse_@xy};!01QeHzLs=)SpjiS^A>Es z`}`K?!Cu#-r%%{?r>Y)W6F>SCY>+uc%`*|=V+za9&noYeo|TZ_2y-9lz7tp_9u*X1 zPB8~44*BFvIG|&Lib>*og`5>g9(3)hfJz?LdvgauK|p1NTtjspDfR*uc;4X5ozHV+ z-}@^+orBi(1`Vs1QOGxXRjCefsGBe^YdwsQL~SMv=MQPb-O0&q-u{x4%jv9Zj|h9A zDLum{>(=emK*0x-d7A|?m+~!+{AhY}Z|dk%tC!V8<&%q^LPH(cs5!7l(^K;Y9|G>0 z`Za0y)CJi!uWsW3q=c`04eqhM73;VeEAG5fnz#x@7#M6jtHxX^`Nb;$A8kXI>tZ_- z^lLKoMiR8N3z193k;3;DUeSf@OZ1o;x@zr%YnU9QL$tcOVLBB19yMQPT$JMd>hM|X zLw#SjF$_Ct2TC%1{cnIa7AdJzc`I<=W=y&sZxMf&3G3Ko?qlM#(g;*QB?%gAF4C!u+<|YwlTP@?>K@vs2IZ^nv;03uMZNBl8OzMJ;=PB z@8CCaJt*YCCd7k>n!sNv0QJsolug0n`;uP|{E3c%TUzsl(Oi+i=Wwy~p@mq;&V?VF zr%4Ts>h(9c5X8TE(s1iL9_mgeM=}rrQSjn+$W^M21ZWHaY>OwW*udYzRAzjuYRK{1Ct)v zj(cA)DWc4dxl_NHf7DodIyAhi#LKh)Ywfkc*f9rp9=mCmQm!F7n8*C%%B>f?SWC=R zSrI<&WNAz`N#o8|#lJyNO6qHcGOo>x^(r~a{Jv@04LhbT@8kr1#cBqg(~zbXu%Na0 zv*{d5F1{MOnm(n=E)K?ph@-Kks8vNqpAxk>4`3KjhP+amFnq}Ih+@gJ z<2WN|O%-2lpHKd>yt}6>HMVRi*3t;ij5~4nW8LylZai{L1~cE{=q+6^vZUU^K3Xa% zCB-eJeDgzj0kbuCu)JVB1dj3bIx7d= z?5ehwwQ-%oQYWilEa@Gpss+_b4Ot6s)x5EuP+P6P!cS|BE~AC}APiw~H!|VCX;pmk zE(AiG;d{75b5EH0&QS5 zQNYE+_k7vojmDZS*G=rEH-oK_1wIXgnaDj_Gp%HYT-%_QE<-ia!E`s)X$y z9?!CeMkWe)p zr>w3k(h(vN3Oq%d_O5xJus!1^J4-t71v9`M{!(Y#se;JLWpx2LYaj1%t{HazWn!WN zfUv%mp`u6#Wbg+(jm}W;HEIbR7&O0Xq#P_HgvvpsXlD3`<4M1jo4fBHZDtVr(BWfJ z5s}vfvwAojj+2KwGw>u`HMl>1>inM2S)P6gwf<_WJ2<@%rt1f1^=r$Lh1TJ5%($_^ z-lcpd;099lcw2lJHI`E(Gky)z6o&r=)l1;xZ|-Qp(kF=3N`NtBui8NY-Hosn;SB_< ze39GIg<`FiwH&b6|`(9RUUl`v~ucM@R>e+xD<18;46lfx2Acd zusuJ>fSdb1GRYpxH`BZb686qnv~pE24?te$wP% zKv{xblm2>;PKlZIAZ{g6slhpzR?Gyu^|>HlW8e)#YC2FgQP$s zic{Kmg9W!4lnhi-^CLJSq`rg^go*)MMG!!*t73+Lj+puNn7hRa?KQ{2hc5%CGMBCse-Jti(aqv3JZ56r&6SEu+RxStx_&8v?y_4hIF6hvbwcl^r_&-ua^u~R$d2e zy_-uEZ(%wlDZ;#lVDtxRiKo`i0=^fSzCH$qvT#M^m*dB~F>pF2$kH~K?n@*b?z94G0PEzittVy2?!|&%OlJ3vUfh-)FNpL1BowhL8K!|c+h}fjbDu-VJ4;F zp{=865oF-#VbrDfMFT26Fee-8fC{?!VT=rBR1ms#%vUfv0c)8&XRuikW0y=6T3u8? z{;P8&hERayVyG~!~c1!cV zu$>K;ugeskfq?^DAdvK<&_aXebBq!Q*R*QkZbiL&o2`y%u`k{KA4OjyFweiJ zv6F;w*d($5pcKEps43yZcxpX?9j@W5?jj~P3{@vKD4C8zBMxE5k`L>f76=Hq@q&V! zV{HRFm*B+ZnomxRA}l7-=DQX8zfTkzLs@P#$|6YeL%oIXObNt(;2-gI3P#Lxw`UBi zWaQ}f;jZ6vW4wA%_x0F98oO2i*v~n_XrA1zw`kGu&3Pfrwe}Icz zm9xJsT68=8 zRgSFq^7qq^AW;yYL1BN$JinXv*AuwA6-3=$GVmiB@raPQ(1Z?UT%;Vz0mOh4&ki$| zl0tLPpWPRqjg9-R0;L=@)#NLY@cH5QW)+W~^Yn#dumN*Z`4i!A>Jj)Av=O-a((-BIT zU9+STY_SK3)+T9VF#?PtliP80hl0AShHSY=*_~4M3H;b!Q)@Kir^yw;8r(#Bw#+*s4*z(c zsXX|{eUY<>H+R6-(L+_}fzS^C_q&MmNkdm~K4~6{u#=TlR>?voV~Cf6puX$ivn&VK zjijd($wLn?W`Sb*%S^Vg)LbmoNFr>6@}rXaOzQ_FLdr0pqY4G9BdTG0p1=jEc^9Pa ziw{pf7QBzupODisrngNLLPjUPM_e^9^Q!MPP2DYs`?Sz;jz6UrG=C5ud0f&WUL9&# zd`Tn8@uG`ualKP4&<9 zfW%V%6>5$uRRpL&q$^7VKQqj^q8cvc2}~Gy7ft))J*hPlo#%F+tmBktPhs>})OSNO z)O+kh(#)&QW<2^7oRlH6GG^sg#}7&WF{^q!eJ{BP0e)uvsU{ADo=`VV2YzH5xcK1? z#rD}%ef{Tb9k5i7SUvl~t?*Qmn3FIcyDl?O3%z0C&5C{ci-uC+I3E8!y+F&ZZG5cl>>WXaI z^^YQvjsOZ0LA%XO=I`GH1M+hRCK(K+WodCjN1Gnbvn`alC1=~FAe~NyKHN|qEZ>(6 zYYLbcQg_f7Glhm!Hy0!?(yvp`xQ7#(VwqFG&I~2$0^~-!oG6QVv zmRBE+93+i>@^+Kf0~F(sCZ*v(za*xg@Vz+$4Qj~?3)+;GsoE4NyQDw^`b-at* z8d5|Pjic2(CM+k<4~pkS4Pj>e&!FIilkBu1Ie+D44djGMqu{N6HK9eV=yyySvT8(c z*F79O=$IFST1i5?z;bc@)=sn&fI^(GM}Cz7zdnnbs^U!2F>_{ujl`tm>Lyl?UvoFL z9!|$f2=SQ_zXiWHA*hEcTz&wUdL=fy;Ekj2rK_|>RLz`X&~=}j)E|L}!tp?mZVP7Pz@*aVOE z@DkgAsKhcvxiAG;>Twu{`%}RL6pCHKCeEfg+z0jzSyn#yCs8!dp(@>aomN<;exUPJ zpsxH5eU2{7o8v)1e}FdSqDoE{(nCC!YM!H_ej<a-tnyI-M+wVB}KTn&>8w1D2;hdcNY|iQ$T1tJ*R!5@sa%73sK-@BnPa2wh zr+kil>#ABi9R}Gj&<0zt+jbNaJS7NrxFMaAQ#3~P%X&5u*{Fg6?O zHfk{`4jJ{5aRaigIY4B1?(!0vwuCY!jZ`~(&48rG<8y- z&`*xw%;AXpLu5``$wBa!1Ax=CDmc25IF88g$fJ(t=h@lQO^L*mASj~fXp0)v4tDEr zBx^!-voGw*=!`P9fj=%*;qVm7BQr~v=F>q6A93@{o=;JV_^>}ufXk_I9S=`#udO(! z7F6;hSK=ndWx!x+u)xsbvl$=g;$1K+5f;Pa$l(!w(g2Q3-|7TFRnj(j^r@zIW9@#N zV__53LeZm#I*m^HLN31Y0e%z?Y8^^-MI62A!hazff!>rX?8qg_sCqx{K#E z{q!gkdnU1`uLnaHmJW2vz{xqBIX5^(*VID3NA?a(d;RQLKnJQWpKQ{f_&jP`l16{l z0!lXS5>(A9=h+_z?Poog<~y}x0J~$v_I%*aHWXv2gp8TQI}((2Y3E?PUzzC8XH@#D z>Tu7e)azhAiZ+GCnLdo#xo~c1P8A{D+JcpR$VDUgFPzipvDNS8Z?GRiJz4W*$SmE_ z%#@{WDDww^$tn>8Wv5kbQh+ z-1oK}v~&@e?NsUwPv>UZxyDjM(9KG^5X9MusOt(uRc7EAHGMLQkMcXSiP)_5W||tP z#s*Gq8T~=PP|#TpVTVFtMb0FEdv3KX1qBennJ|E3rXfc)oXQgbhZ)5?=$k)WC0)u2 zQ~+&;z#CAo7c!AJYzMx?)Fw7Mw8wepZ23wnmmGi4z5jMkF+WT>wVH>Sj%%7BQ&|vW za?<`}dh=g*(Vl-gGs7SiBv)l4Dw4U6(i~w~irBIkp?T7nTBnidf*{fh8@ULGc%;a* zNOUeC23I}IrHGD9$J^Do>M2U9)S~M^1RcD1mjN6p4$j%L9>_lmG@|9OB&IL39Lb>o z=tHGvZA*I-Si;05OGQ(Bn2?Jdvo9Rl`=sFcfFq1&gaH8ydblfJIhk4p_i*q{bkQ)4^{%V8z{w>josL$WOyRSqGkIdpiU*hc zE%*e!59|&r+8aQCR2LW@w4F)yd`1;uA3hY1k|^;{+7N0PvFGuL;Q|WbQWlT@no9oj z!9r>S3=XKGTMy%^CSZ0e+Z!mR7zpX*$9BdFy}TZk=RG0_@Lo`qhM*J@rEzy!V%EWx z%76(lLySr{jp0{9Th%>}VRgr7iFh1^KTadxDllbEqsg2RUyU$I=6r!je_rp6|6`P3 z_r?VgT!(iBC2R~Rny30cfO9LYzD~rEo9Xk&PZ7M@Jd(Nr> ztGSJQ$IjaW_-2&++|ds7u0Z%){bC?k>zCgQ0$dbACnk)f4xU8|U9;Km!(3X&{>P1Yfja=R06}R(?OchCFAD<72q*<*t}LF#KL8wwy1>~8Hx*IAT{rbg z&Ay&CJatJpG$b74UJ3eKCWIDI899^fpPK^egSn6{dUy(yH)|<8Tm`%{6HRV#RcL}b zG<#bT-wcE<4VsQfCXG#Bkp8Igl?KBYGT)$6+p#q7ng>EieP>De4%L(B7qTfVp0=eZ`h~$${AkpO6Glb^wiAykPJKbkt9=0< zivkcjzG3!-((!ls3&;T1#0Q->nGM#%mYtuJlF&K1-GW=KB2jsOb#sG|W66E-VX2Ck*4=_O(#NJP5Ckl=lp0Y7^T_s` zGM~l&Hctc3b&fQMW+s-Cs^@nTS{Q&u5p6LZR|h16mmtxn1C!T{ZwUF9Sg0+RZI=5~ z5q9Z%J!v^1NSK;a{3IDKij=p&_Yu=OheeaJTmF6meNm21$`5rOVjMmmh!JC)oxuawLA{Hhb#t{yIar}V*_!49Y{_(bbuBw$P=Wp$Wxu>f%+IKv1ZP^z zyy@ACl$F5vCjtO9*>B{a*mo9-kBd_!Z6-FKMfcyGh6dligr-4+kmMpMy$7hA1GpX z$%Jp>O=JT_ym|A>>OygdB+Np7IB?u|5swJc2|X{UJd3kL^cjCWc`;_jiY z#9AMyDuAj09~_A4v@s8;KSe(L@9G&gI>e$T-#y+tC?2pr{axof;5m$rWc3U9TTpE! zAdvFAffJ@!J*WM(v0(G8eu1f76!H);Q-SD}YCjePojNhFe-{nh{iRUUw8)eCeXT$T zKnDRR_q>w+Naj`R>FSU5{l~w0m99{ScSPok>TCNmK*gwz1ke(yym?qJd8`xi0Ti^% zgaT$k8{3@*A+ijx!iP=+Ua8^DI-WW7Us; zT$>o@!u#}(9zB%Y1E}i;T%>p?ST}G`#4KjLF2(x5X;_Yul`@%(E!@9U)?0d_aJ+qdFw-_81UI(_FYV6CB6R%$H_Z&3$e8c{t{_*$B0PYglRgFF+`DfS$ z-iTE^0T#bGWx7{6(2YOs^MihxhWrAm<}Nw1Y9?Ci_brVnXQr?^;(@*yf)wi5S)84N zeXW@X*io=_wWmI0S(-=1-;egWQI)U@S)a@98TPTIsf ziLTl^X)l(*ZomSh?~LGgj}5b3D-nvD71pFX$Arsy3@?|0|!FGSM_h-Tet~y9aMU$+{acOp5t&^XSV!k zhwIXth`B;+EfbKND;B8<(6{biz`SiR(ILndw=Kza!cQ&Ti2Qk)WPj%i@|YUc-Ow0O zdZF5bhalAwrdu&RWN`mC!`xC}VM|lDpN=>8UGO+a$mfZeHgMT((Zr4Sc5fGa_b_{o zKne$%H=WdLYlz=mzy*=`pg~K|Fkiqyau=`QY_e7ZT2t4+o4cd?(RTE3eL0r82`~+J zRz(n14Q$?2_@mBt_wrkY9^MF5kcE*z~qiOeWC1DZ{uYqZ|O zH(+g-2!U`<{98r|{s6iqS`l>rjwRIO!&M`_IXKq*Tb)O7rqlY_ApbTMo$<3W6kxN5 z1^C=L6^&?|4ZsfI`-Y5Fw2)iWLoYK~yLA~5`Qe2r&}SJFAt(p{HE3~S9`FX7^Ij!2Z7ut3lg)=my&=j?l(Ss_)zLY?YDJ|$4tptEzB9% zvZ0R_D!PiK3CPwsCW){!S2+_f}uywhHDVx^r4$xdf4j*5v zuqd{AsW|k?G%NBQeF}biG5R|+28Nzc{E`zw-!iisB9KHt#0D4Ti2w4Y^=n9(fOME) z9A})*$=<#B<3nab6lN$H#z*^41bioV!2n&7s$N>g2>$TRn3_Ou9EjZ$3aw?9ZBWu? zLL(|tXGe5+@*#2Y10hC&f7zj*kz=Y;@#~o9J$z@OO?!=tADaC+au~a*HZ1Lu=wR{? z1WkPqWMzoAk@D`q46~9vahzwZquh9~`>IG|ffSS*0L7|8Vr2mW=s3hOH=y8i^lTzY z5L@-gK1H*p7MZVs4IFAl!gHmn2+pY^XDo$%9C=8Av>ixp75JXp(6TX=F7~^>ttHct z{5QY8JS9eilJu?Ql(n*f=9US`h70V*JgcrO@%3v8!%0qKe>N~2!7x((GL&P#K%X}| z(7D2F2mY_Z@8_TKe--`!qp^MeSK$xTi2YxM-&LW&JLCT<{DCp}|G!lD%pt|kx}_1R_3ep4(on5knS3~TZkDrQ5C@a)zJkTqu6A3AlUd=O&@i`uK-XG z1b!CT42Um*FhL`#1)*+J7plB#Z0*az`z7YKh|Ru!|D%z=LsqGI!7#DAdFjIz9FRlM zU6fe-b$w#>48z_ynE{%57EHL1&4ge=&i_eHNUUmRT}k|}@_6RR7Mw#!w0}dP`x$EJ zHA5N@5ny(V3?p%relnOpU(k>JB!g{e)Qo! zqsNUho39P;Pj5Ir;pGs=k}Ecs)#m*p->sJKTf7f&^Ks>NT|1EC4gS2b_4)I856l+e zJ#@bz?#&<}>>o@F?c&;}OW5pb!14>p$1vT`{fxcT(}!}GfC50Jv2qU+>zc+#=vKuc zydz@_SZ9Tj%>@_&|M57c?(S^M@v<_kqmr4==g2)0*ir#b>5UXLmmTw?To3{Tw?emt zOcBeQRv0UofjJ9Xmepj~FAFjQrn6O0UuO!~)Q_fYHPWm>xawhcl)O#eg){Iq-0e_(*tIOH?IvwkJd)kc|@-*$=>XFoTFKplJm)zS0z|q8vIk*vYjA z112+G8dSH5rQ8M&OmUgkn^a7Hv+#GN6_^iW5O|9y|73!N1W^-@I5-{oLkp<{T7yH8 zWjQA~mbh$(44+IR(FCOeR0#pqTPr0e)#Te2@rQ?1Iqp23y;rL~Qe-7mA!u6`#r&6p z#?)$R2bpu?DoF9BmugnU8X)Ks^cY}y7`rz?P@H^284Nc#j{f7sfL53$=0~AQ2cQ6P z9Axd7fS=JYDikbHI2x{V)x7RX=+%@@K4BZ4WbUepmB>5C@CSGEseIzWue%mG%i;it z*efUAbcxcH$%uQi>%z1(BRKsa#P|fHMXss_N^S~lQs*n^Bj7cC<4IY!2!6gs zTDSONJpBae^f=2#4>L8Ql0N*_u-VJDqxBX3e~_57LB9?Ku7-~gplLu;s--KtJQ+ng zy(lWSym5Key(YE8ypyC2^f{auRY%9a#Zt(6umxy^uFdXZBMw~rBk%rN3RX@i6u~Y2D@^wU5bO3#1YIYT?yLmM?*=_6{=d$!@`99fB5Z zWOC~h6d-)n+8y<+E=NNGs_|cRaH;1Gl<&u+HE0~6{O*fJ0T$b zHeTZ)R&If{J;|wy^gnw&6zC2aCvm`AsejX@s2SEa3~7UJJXcja(PLO;yWd?9XCHr zug<)_ZUpi=NO=SFF3DZP5K1(BJJ`$NRSfUv3V6oEHP}I z7I;VMqb~5osfXeiM5=&s{+sRakF#697PRf_TW{q#%|e#kw>9^e@*(wxv#*=->a#4C zOB}?~OnMl9tvDck(RE2f9yNGOH^?Q8Pcj+Y+5GlHOZzgLJHBQJY#g32eCQ!J#`^{Q z@7Pxs=bD3H0-Gi`5*B{{v{7P{cgNM@Z<4qO84zPf=p1)`P=brCZ5n` zG%cF&5T}|5PSY&hP;xU*Qs=nTQFr;|SpGqZ;5C7k?x4OAK`#a>Sp$M~+P=6+U)bej>1kx0hBE zz2Eqn-Oq{d;rA>pM<>@9N7vZo3lYmX6k4OMOfqh{eC5bf%@Np%G(To79A{pcDUAvs z@UVTV|0MvhuP^=U0p+u#6PH?5+^%q~IRY2Q^~d3$#ymseJQCkNpCpAWVSJR5Ou9^@ zWZ!HupJaFC+qngwTKt==(%RxW+oK{!DSs4GUg3jX>Di>e8Ix{1&iTh~&i2M}$(Dmd zo9lMndTec$Hqlz};a_TV!!+%In4WZXhcWyXFSG1jU~&1vdq3ly_2lgTBz@aZ;82hX zc+qp^eqck{e$TPhdH3izXmG+-@Lm82UkNl>DsccX5g+1(8uCwcisc0_Z{!kg*#Bik zst6T|Gp5?jiMT1^e_Kk`<)1Ism&#joqE9$)dJvIO%h{L}JWp#^qaIAJfd`b#JsIhqETH3!uzIs-0 z-?Ncpr!QTP@roigMG`ua1{E2!ZUho9T{-Z)L`>a>V|=LmQljwO8wYDvyxk-f--hIc-qX<2gjd_ux1=F6G&Frt8Tu^tf4*JWKjeM^Tyx7{i1`3B9*eO-NDX-$&$l# zsQHVms`#m%pxOdBI$6+@uMHxBHs$1UOg_`?vC?JxUHzQ!YGJ$kVzN&#ydOs-l}I5+ z-{n_>rZlt*9xM)-pC1s^T%mX^ZnZ(2(pqY*$gzvo-WX1i?T#7uT5S0F`SrhO&}vSC z>_lm!-ai9>Vh-VkTbdHjUhRc^jK=U?Uo!qrtQKa!7*ZN1oGfr&On#2{s$*dp$qRw$NG7a7~ci45zbG%;MU# zGNL*~^DdYdoDgfOGv;OR-1OYuUe{?I&Xv+ByLH)_182wQZgAlD6iRMxQM$A-a%kpT z<-&|FqVYEiQZ9wFi{BK^zi-X{ZSzUKERnSEr=4w+^6L(WvFm;MkmMble8B&B;!4AZ zb3kZ%GU``QTOsg9PVW^(!UD=OQsC`Y#> zxYa-FIBcJ``c`&Rtx&OJj(VM0z!4j<+eba3KPK0FUQ$$AEIzi#;Am%^OzSBN@koi? zfj$x`o$8XJsMqNXQ8~X*G4hR4{0}xPHHyN$(%bFuEiqST|*FNN2K4yq<`I zzzd7Xj#h`q1Rm^M^>(lRwd{@AyFN+9yv;m)*5mYFay6ru-xr#lrM5HhX#2m1L%kan zLSwTF@9Z*_R^z_C%%t*!WN?tqp2qUbOv!j@7LdHNc*yn@2@_lJRP##1 zV+D3mrvEXj9^RfBV~59mVC4n(=x;5;BjC34vS!IrEu6b9ewdiv7a3t*_%UglwEWp| zU53_tpO_wZD0&AVj}gSdp)v|C75`I*!5lEvYdu2)#Ip7q5RK{92y_!XSjYY^Us;vq ztJhPj{^GNCONamWi!-T45Bs{{^&~0t$oKcaX7c8GtRMd8$A^ZE1sDukJ>v<;K2x)* zAFFNK_P&AFoqT7cvGQRwhJyUz{&_*;x(41;~Sa~yTDH$4|Tmy-A9#TKVyndQ(-h`yWKjkw0Yk2EXCRbDy#qZO6(?(_xzY+*^m2i zuUP*lljF(yk3rh&aJ7}C(dJNT1EMh*HQ~t2Q8jTuL8)RY-coFvuqf{HT2701$1z@q z@)WsQ23ltfp3x8+hHtw#MNGHCz=wQ(D$(5-q?y4xzVJw65}dw#u$D5z56B_lOdEO`QxAXMjKVb~QDx_Z4Bjrecc@laUrYy*Hythq1#x zcD@Y?=~)fvuyaCfnu1Dm@{+wot2RosU7##Jtv$Meyqw~cCk9(6J-A~i;Ehp1N}f1Y z@UoiX#8@UMY)(Na74REl+7WbhS~?m2kzcJKGOC413AxCUAuKGu$R>$AEGuTR?}Ac+ zsUIO!1H5cBim)2kN*1&9>J3+t*9aWb>HH!*6-axn?pdlre28m3YW~2(6d?c4R zyhg?Vgz{07=L%YKq7Ww(jGQJ&odeA@DF`}RQ*3X;)r(};nebv(yuVUEKP2i-NQk11 z%|oo>GvhdK4<0(4^5(m}-j-{pawmC-DxoRWyJ?+iezU~Ly^>F&)s9@yK#(A6J7O1g zhtJ)3+cfe{>&gQdj+3QHCayP?=K$Y!fMSCoxXXL%A^(btC$v>Apu7#Te`lqckqCn-*Eqi^L%&ZJ3^c#G|V&j?zCXoSRRKxGlrVDG8zy+!Qs8PW8nx@83|6i7lsXp#%UxpO;o zQCZMDG(p3jXvD!Z?Om>WDPQA;JLO}89#TbCY$Pe7mK~P{TzY@S5Y<44c=S-9H&|JI zpY(42h}AC&AuM*}Er-S<*sKjbVwIFJ9NeO`cIUt*tMraqY&LMenCg3p9MaH8nWPIF z_@dklM@27kee26zFmr480yc~&z5B^yhI^r87PJ(Hfb%ZTD`9xRd9I&*LF_xc&4PGd zwdSSRxZ2f+oivR&zkYTyDKQTg+z(5xpwJJVS22yrqRW=7GItJPlsQs7%0`#Q0EzFf zE|i|1wq$mag72yd-CgSHwa_3iD)7WLLgbNcE&4Lfw2AsQPU&P=U#L`lfdz{&9v36t z$gfKrT|u|Vaq%ff`!D3;3BRSNPa;K7M{RUjhM+4xj&Xc)wum6br$ZKChVasRndFo6 z4J+0h`Y$1x_jM>bu50Zs{x`t$24q43)^D_|flD?)i(83h zkb~IRivd%?BST1z63ohRm9EBlCw#9lbn(N7&upvtge=xA=xEP&bhISsL3pm?GqaPA zlYi*(V+Qx%4~MNTZUvHOy?DvhRmX=j@@AFMt`Zpfrs73HU_J5al7j53N6)mS9w>MG zKkZ#L#V~7DJoeaH5L)kJDuioL1FH!73S>5*<2$p^`CvWPU^2nd zIu}I6E6kx3(2vpGSV)iRQ}ul8LvNs+u{?7kjJXgf$i)3{)~C`UWdyfglf zEjM!bZBD+pta`d-*^8Z}CGv-FnyUw*arHk}48tCEJ8c$2OpbI3^YP4&Hz=ie=EvLm z8{ng+!{Hqp_{=+c?y9-inm(?}D|Uj*OchLHmDBIv#{Uq=d7gL|8+Se4Y}nkfK+~*H zCe+$~>U8b!A_J_&ldvbB_|RmGwm`~HrznMY@7 zBNYCzn5?HebZH!E3F6{0SZgH9EpYf&lsZY*hJ;2T80jfqw$RdE{_>l~TVr~C-na!< zcxd|VCb<_(1m&Hqxor4I%-%9SrDw-d_kH%FeSGn0;d!;$t6L`q`jZiZSC5bA7`7=G z{)>2aUoUV(1lBej3*QWVf6HPX$>lrpv&Geqr+Zq9ZsC~4h&&(Cz|ywWRo#k|u3YSp zpL0(5>q3r2`2&-w-+qqioq4dl=LcCFIYVO5h)FAyROwSHV6E2>Ma6-i)C?OwLwd7F zxjcwo*{(jbBe8^*pI~9u@YS4`tJx;KI~rVv$Z3}%A#b|Zp4_0ki{>AI7|AgF^=yzz zaVDt;kcu?X`_;>Do|Y@15fvqms0<#MdhKDMRfOg%tBQc%Qb`U5x^hpCo?C$hKhkf+ zP9Rq0KPD!KDtv_4-PBcSZlB}3lD_4-DgUCIH*dBM!Q#Nnd1JGoLTw=6rH63??N|;* z2N4!Sp>|CPg#4`7rdsi9oplK#%uHm?R0|bi3DlIer23bI)m4Gu3NUF%$pl&{Zcp&1 z8v1Uh5E@CD`$=HAE~_uQCL2>+NU5pQW>05Ql-C=H!gR>qK_)0$qx4y~U{%=W@vyhP8U~3 z!+92;=sO3N>7Yk60n57Xkq;ivHOyRcs@|3#9Z!MAQjlEQFq+5mgvuQbm=KTO=FSqPSrekxHb z_&Xb%wJy&c3tz;zVY&KDCHChDfsmvkeadF718d)X_g%2WXw66=>Y!IVcA3_K=>cXI z4(=QjbueyzOPXu+#Hn*JIfxCnT&Q`7rlj|dhrfIsOQd^$E-5RTpj@NDuSTd3_a`GdmXqaVAfBBnE{?{*XfY zjIwcL`hvvp2~Yg{qZ{6G+gDI5gC+)-*6I+UQW2Ofo79mb5NmS;i625{y(*f|19ag` z9Jgp1m?}*aPpene(R3c-ha>hCYoKY824lMvzLkMZLFnqqL(e8xF?z6W3eC!;J+wSX z3Ubr(nJMfk9at(Xav^ol0_40p@RZ`CFY*gi^^O7@_M4^}l|KrftYkd=3t&Xx3Q1!G zGR%i*J)^Ony{4~c?Q$J;|9wN!XRsK0`71%?yP2)c|L{HCkYT_DGRZ@mnH=&AJSs0{ zSN!8aYI0|Fs-+GGjW`V6S`S)715t+qm_`u{NvDQw;)O_orYGtsm)SD9mRZt8ONxC> zKY8qBg&uCa@fm#0Y(c8Up8S?gT9hd>M;B-vr5*uEL*gn+kC?b9jwQ}?(9`+Cg0x0S zcl8>E4deCQqi_?V>r1pwpG{1BxUh#pT_}zPHJ(T;lb|=LlDg=b-_1?wDvE>tu=2$! z21=IAwBJp-VUS1Jr`WO=?T>88=#!o)x`Dx-cjMsa9jguP%Ud!bKGapg`Qsh9lLVhg zZwc71o+S@hLCdhzgo7*APX@apCsL9RMaJL11JPi7?RG%++a~6H7F%64NF@e|_OT)$ zBBjHjR*nEd&`Rjq1jI{9qpDRmP4H=SIB?F1=uNQaJ7D5l7IngHr-gin_G%9F*~5wy zGkE=&d%-g1<@EFo6zD59ZG!$!{mM5s3Q52UB>+iB&OVwZZ@oN=mzw?-6i%VhYsq{~ zVaMA<`a+rKgXZq#G^5Sg3j`v3hY`p)*s^QOla3vMFnefnknn(xfNUVPbWIS7@?Z!U zhlRuJGaRai!CQbNcUeMEbjwAE2GMchf^&e{cf3g$C=(eDOy4WteyqUSIybQxFQdRE z5g-CMDMQf%JYW&SN4J)Vge06mqud^NE-PtzLrq9(g{6Htu7*cRww}`IQ=& z2A|D{Q;h?_0L!7(z4;^N-qdTI@HNNpAvD{t zHh^>uhwWX2_s>wqH;HxCI*FFTdivBP-nPLp_fcQK>Fuy}5NI=J1);u~mp$C(-Vya9 zfj)>}$WZd(&0;3MeOB!H?#3}({{(;omc-u9j!A0VK)U$2&gT}~jxvdAHDC|rv|7LAjS5@Ypiy-1Vd7ut`W(a1hhZUv4+s3+dwoA=~Lj4fyU z(7(U=Y*Zr7U@gui4FS+BJQk^cqW$}&E=NA5zJ?55sbpQYvE^27Cq&h&q4=W10qTq< z19ym(8;@Vj#FV;&$SLrIHk96H?L~+&NetXFUrs?Qq-eA(51s@)iJ$-#JQ+aw@AVP70VjJ^Ur({z4*e4F}e|CTY}TQQyu z6JL*nYC2>!Ha)y7w2VH#IseM_^}60J&h?Lz0Osp&>H9jdR*KRvy2Y-p3&ahRLA$Xl z+q*&LiGaxm0B6fhN1cvKP^k}3HI%43p(4cOMz1toQPS3r9B&MllR#oq)-E}jbGK;g zuB7AYQ}3~jgpII8H5x12urivBT$+@H(GoU_&K`7<^}T98Pyj}H6tQ2nuQO@zd%h^s ztX#Lk^B>P^S|XCpJaHK8*T3OtqkCb}bi<9GK|v{oq@?|F0zF9z|Y5- zi%eLVPhA-djZ2(uAKU)M$b4(=jaU9-s))g8dW*I<{`Jel6jMn5`rYh?@}Iv0zxmRC z5k>j)kAB~z{MYaP&3_hu2pbo~sgZ74vH`93{K2qEYfM*0Bgs1`VN(2{3{p;z0FWAK zZuWx%4TTgSAF!6m&<4vY8zM9iU7A&s*H{_Quw)<~@8_X&q^W2ggE2A&+`y=ua47ie zGh^=YHFsnrA_aGgYtRTK*Fu3T39r7!Ix!toQ0@K|IbL`rR{JS^YWY(x#!yx@fJt+Q zF#jsK2k+~^kA3(tl?}8!fHH?iRRRQH{|GgG)he*=w#X&k1EcvCvD-(yLre+mjEbF|PY0M)t|ysbz^xjFgvT!@$#;K0u6sGtt^8xcmE4E`PR zwFNbK+t(*{zGIB(H$k1ZxZgk;My7Ygf4lBDlK> z=fBUmcpur(lnTQSH*ByC2)MpIYDMEyqwjeU(>WXSJKn*lkpt;1It(wrfvi%8 zetumh&z$Bo$jGU!q$C`2+}9xfBg_{IXY?V11|YGAavNwfIHbUL<)F?xCs?A$`(G9y zKw|=HK8Cw^V4ewQxuB3?iF|$Hz*^#H)ZQ}eCWSueS3BU9VbEjC;hYE`FXwroT+T5o z21yr_f(fGX_5tk~6q)vT7j^KQ(c$3FEfejtbPh#AoY|!W^3A0A3QgKH+6O_)d>A-& z%jD2n4r)Qt+6I1Hg(*3jD?<=VBH9>op=tGp%)xOHW^F>4hb3$+WZEcQ- z5y-5|WVb5f<$^FpUAE_Q(^uWW`hmK-29q4(IN<;S{X84x$a3!|35o31?{V^b5Dh9( z+SgrowIE;#-_uQSW_-rv)A`CU@qd z$FqAUSWu#mtw2XtMf)vKpAGxAAuIVoYe`V)r1+{%se+_NFq21oCaqG{rp1y&6nz4p zGtiN{QT+$Y;l?Xw%0obmHCh#P&Qs z@O=-|&(a0?@rn~M27axD4*CtpGHa{*uLU0qA4du#*CbK_6ptn)ZE`&x1#*$hkT5dD zdivGNLEvuIt&H9>mj4ptwg$~Ddz_)UM2K2T2s04DC?HFCtM>J;r2eHHD1^NlK*g{eP`O)W~ArcjMB_(M-q4XIh z9Xd>RdIWZ%ilLgQ5*U;&CPg`X>qKf()#>biXD$&T+OuY-K&-?>&_E}m9}L#20sbW- zmrxFPP_ESenPJESggZKA)EW^_nn0Opp4`&;qg|-8U!l}b$BDojnU9jdJxM>3cs6~# z)zy3pnstPrV;YfQu*Ez>Gl0-I{FKNpl%_P(q0`@w;&eTyp!e#v7|piFle==Elk6@Q z#QkWUltHp}7Vimcr9*&DpQ71ep#kC;mXF#T$hJ3N(nm@di&_;R*vQzY1RCwID2xLd zyvNsuwsP?mG&l*QgXMF^t2a6b#3ZN{##ao~RiaO=qVry;d zliOBv5o&Dq?d!&ePpR)*3MVk^)GNT?`vztJfZjRNLHJ7`YexUi2JNV+$$KXjqX5A5 z_HyRN*no~yW+Q*HViG`QvOqF&64g|H;2`=#yGiVCoL~a7x~ELpI53PH#RBONfHA=# zP_9PIlkLVb4A9~S;=i#H6tk`CF!>DS$j-b^&eWq5AA(>HAa{{6L?SThZvIp84zlRk|%?t||?fkFmE zU(b%K{0nrIQL%JiJ{j!!;K2*Ns{+hI9dm>TRMdxG+-A6gSj>?@FhvH1DUG5R;=Xld z`ACZ1&gzhoNwHSh`OSxRN^4+DngGDa8kKCKoQy24_c zHhy!L$Mf+(%Op_*KC~bMF4ZjZ-EJQmPna#{GmHBh;`Qyr+U)zr3MXKHe069OI$*)t zOav-_ppRI|+IL=45GjW<0k*4GjDzeA7dA%aYEo0eY4;KbBX)C|)V+5#$jXbNCET&L zqcriCmILEd5iA=1Wqqc0-e#Yj;o;%p8bo+xJBQGvUip|?tHT&kN82sH40340dT$lj zhPc_25R(GESpD$}lIoGs%t^9IK;c8Nm~C2$rrKq6t>F%kD*OCX{ET|Yl3zy4El`pf zVL`#2R8|SEp%BcGH3K%0wZt0U+fC>2Q%G=K8$EJSV4g46}2p5#DAS2`RB$ zeC04hh-C?SQ;c2=Ynd;PwNdfM#hIn*_AQ3Z^7=+W99uxO9QUd2!80K(q zjXgW5Qx|@$FCAY_8m=MP-9R{P_K8xHikuat@=-LH;(TrOYM$N&vg7V;QcaKX!O`?PX?iKz-l6rV8 zry(nJu}I zUDyzYHR=-5#1-WJVwD3g7mmvB>-|HC+SHsSA`0!%6yFD8q}XXo;6{)SY}Ej}nU82X z80tNv{yYqK7Hr-`nRWPO5*!9c`VX>M;Z&0nFwyCvlBq-DKI0@}@S%uKPBEyXZIxmB zkw&x1^;5k(Cu_LuUDN_1|IgX^O88Eqr&8ZBav!Ba{@n@%n>|!`4144SsL)A6TZv?f z=x-;DF1yEnXbX?>-BRB3^Z}4^SKuZ_hT_WUn^RL$9bteaEX>R>boUOm9%NtLzx#2( zuU~*jkE!jr*1NZ4zZD!+)9E{*0|@B)87)A>q)^5O)gcWZILXWQP}^1%nFFx(q90P! zuxIG?dtJpEH_Qy-Ee=X8(k0{SRWH%fSG^A_5kc$m=32Ua4S$60S`2I@GuQZKb@6K| z*Z1!=|Gp>p}j;Fi}TElY}!z& zp7sT|$vC*J;*(P9r2sbxL>brMS{M({bj&7@x1cxbKce)ntk1al3Hf58MtwR{L78P1W#(#$h^SNTs@D1;@20aeK*PiVzZ`-%|K8cu_CcZvoB6QZFg*19E zgk5NZ4rh@<68>h5VY>`soSzQbWw5h$JdQVYq?S!3NMRMa37^0>P5h6=KCx2X4 z4#%}=bRX?e{SO1{dO!@%GEre1h4z=s?MbW5Y>7j)ntlk%Rg!e1nvwV)&6zO^;xuUz z2kp5F0uq^O{6(r@>xLaRa(%D>b}`#Xo0qzz4hmDyS7mvJJu>3VMCnzPhxK8=hkBXF z)stNaE~{I=eT#AWZGt)4o*;QVZ*gHB4+z=2rDS~9VA%UE0D9TZ5w0{NK{5&W=1Y1L zwuHQJ;xy-dpS~xn(=F_zyJ55Miz}%~nen5O-raVGBE?A=MnpscPYqM61r5kZm)x$f z54_Fn*?%+$B~w$!sB`Ek4sd@DV@{ZQ2fNqG4Lj!jsDEfYc*5>GIth@xpceQvM3QX} z9ZC&{QAvHlBQ!VQUy-4Snem(@^L2Wtje)`Zc!A^j@D0!5)zM9hM`RL8Wg=W-kXpS4 zRCrbgul<Ckz@b0X7H^2{K<4lps39}bNJ&}?-bD(JDURTcN9cV)xs!dWwS89ZPCK7j#Yq!%jz z6my_G5g?lI!Pq2i>rA0eJ!LT(3kbuLR~^1ZD^3uo*iDXXFrtcODWKwLIIh;L9`QR1 zas!?^&i#dAmSCq$L}S+t^e)N01+%ZV;-SSSwq-4OfEOUC2;66HQ~`qGG&oDxKEiHD_Z8@P!9rH4Csjrhjov#G*EKw^V%6z(u3^E^@;}$WJB3NAet{;D`!QOE^wbKct3DEiF2w zWL!vOGf}(QHQXAC(GCr5Io|fB$SkzoHCwD9Q`dqyx`z2fsxAL8l_k5RoiRj}(lk(# zIgc&|)^DJ>NP_(&cL@t!+-p*{opry4C@NKWhu@&wPk*Rk8k$WbRAh|?r~3v>EM&vZ zY8uC=!r=(TWfc-tH--f2kTjEHxhxKz+w8|j4N?T2o|>9i3?W}S+S#H(Y*O5THwbki zK}ggADW?G=6x9nP-Vek9xDZOPoHBbiT!x}*6!HEcVB^t zj8K$pn1Wc_bIvu2gn^*sVSske8uMJZ-Ln9k43CcZpzTM~X)rmI3YH;S@ur?FEdU}D zP_>I^OXiX^EQfc7HIc0S{CVGgJPiZJTB6fGeUrJ3ZZYY^B24Z9ekg0(+_uNE$sCnC z^}X?eZ}q_ekw`pvz-dzMrE(NAeRtg|UIQ~2PqDRQb(4i=*jW>)TWREUoQA4yp2DN^=Pluik2{dx9w84W9^GZcQ7~H=K6_n*hK9$s;nES?(?l{N8 zd(dYLnHZYO*edg9F#K0YQc~`DK2Q1%q$MVRsGeZVFvzzo-~(g)1ObIC2a(t~0F522 zAaSKNI@BA=;V#FzC|Xje%9Jf`pEfLx+%87XrF_{(UwlQcbNB8ilJxXP=Qp`-FUrEy zSZh8!GZMIB787F-GF16JkKzr>&$9$q@pD-MFLCt#T%YrNG!xli9l0>qrjeorfBoq8 zc;?K6o`O1T((-W74>GX%&u3ZgBPIg3L?d5^z|T2c4u>O+Zo3(fJansVTE+yUkbqPq zxp?t5eR4kL;AVOHqR})nL^~N&VmlYWzgK8V^qoEk3L3G?**FOc;btbXoEQYDF~k(t zty>oWW3qm5ZHrVcA(n1FR~&7qNHje1+#G*ThMC-iXV1P|`|j&Zw2x#k_)fqG)y@44 zPg)WqO^>gTs9lc$P|A?2dO_^|4D*|XW@gI=5wVyt7|fzcz5YWWn)vYGSfg1&vt4Vf z&ON1K6)&E~w=x{ghp&MQxGMo*kqyVLMpQmxTn_m-Vu(gzTZQio?zyqZIru#P_MG{% zm;>a-R+W2(zEcFOwXnROdltp3oXsBqfWpSog zuTT&P-n4>=>5v4>=CSYqX$)s5S#$c~I8a+Z+`F%q$(J%1OO8MVcyrOKxO#v5TE+ft z<$s!`{=exp{P}YKW{cwg{~0<7fByRKf{&FwSS( LZ5f|@@y$O0un3VX literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/dbscan.png b/src/comparative_analysis/visualization/dbscan.png new file mode 100644 index 0000000000000000000000000000000000000000..fafb369bf541b043deacb1a661079c879f06543a GIT binary patch literal 67581 zcmeFZi9eKW`v4-Bvd>ZKF=zrs1VI%$6YCsr_akoMPq9&bBSxb4^XgH(H_e!u3@V^6W)-_!p8 zFaQ5n=Km8$u&7aNm#o7ZqQk467I84-867KcNd5b;i^iXexpt40&Nl|u54SpvL>(a} zw3~INY1$O&jCbcI2CO$liYW7j$W?pOW!f@jHY^W)#F&;=Oc}g=@2(c+mie5Mnwr{U zBqcUBwgs2JFmjaY@wFj8G&tV*sn21++42W^V3mP^Ve}c3 z#p`yfDhXj>b@Eh6X0hGa!S}(R{AzyeHmv+H`>{}vr&@y4`;LZ5D9N}fn&xotdS?E7 zqnJO$q7%Hgt#(r7$!3<$`F!?e;>^US!b**&q-L~+8Am5ex~|^L!IWoe<;xKP; zMS`+6fA-wDmjq8tDQuxaS_D-rwa7xV^x|-c{^#Oj&o3s%xD_i%tuJT@pE?Woauu?` z&HW6$Td2|-g$G>T*)~b2>t(8M+p(`X!m>OW9_?9LU}R*P7oDWWPF9z!jPg}e`LGKd zH`1v$LuER3V8T`^ttet2AM1LJi|>`gwu zIyOE~QPJAg)=}*po8MdtQ+2oIQOhS*E+mn?$$}kRa*CsKpOD&6d{Y-ct zb%AD?bAF=)Ne4~rls7Rk8E;GUw&DE^ z^_glqbf^E2(-LN>+gQ+L*(%?p?Z&ZV$3$l;x1p!YNGS;k2~|S8y2UC#KKm+%@anz^ z4^Oe5>@gXt4RHScf>T9Tw{Nh3veM*k*JF~H4EG_csE98oPo)wwN)+H0X)N#>mZh`L z{KTd%4G#}7 zsv5-NG<1N5RZ?fNCqJ;}#~ng}dH!@c*>r7r)_HBVrrM&!`p1p+F-7-QkDV+@y}df` z6BEslMM+MKP7$&FnG_dy(r|r|h$j{hEZTN+M#h%AlF!0kYiepTp1=DzK`};en)s3L zl2@?N80>wArQ1By@X!$AgVNr#9m=QPDU8&(Pp-x5ir(W-4udlg*lik z^%D4T+SjjNE2p`*xH>1gbD18^=Qc^2If=8#VS@q#4ZzHw9-jvDF-PS*_!@f0SPDW( z7P}^8ZA2=4VC|={hmfI>5%tovO;K76t9xmGjRmnYz4P&wZC87yrC37hjU-@?J;=M< zA{h<9H9giPNxiln>pzEvH0tW=JP3Z`b2n3Sa#|7VOMmrhAAD>?1k+rpFRPT~#Jc!m zyRw?8scEfkWOOvkvV@oz!Fj$xSh~RE%e=VLoS__65dJ34)$`FkqF*bO%Q-C{&QRd1 zu48?@c0K^I(cIDFwqNc>h%?I8~ic$c%unaw( zoVdf!mPEoaUSP_do9C|UK6X! zIB$^A6`TQv4&OdJ^%$86(RbTjG7ULM3!4Upr3tp^L5zW2f6e{#=g%Ge4r@~CdQL`V zWPugULoN{%*9&4|VnfB&KR#=Abab#0m|bS7)ZE+v<*-;NN7KaUd*S9P2%)( zE{4X&-fR8o+QMcKplAx#A>q=vY#={1%&{G5>`ai4_#i3yt#q+dn{9H}M&uq63;o(k zuG{+Rje(yZv$=JP1>#-9!ot|xj|`2B;K_Pz&BRlo?ok|a!RHAqT@-T)2USz zF*aYgg7HL}N47Q04jPETma>9@v^z0t1{+1Wt&XXc*iUXHn?T;F6@}#Ld{cYRo;_(E z+je%=XzAz`Lcr+k$u~<+NjY1e!);dmjHc5lMECHS zuj|w9l)Z$XX=&VMUqksji_yfbILMZGk9uFO!jX{?ZQWwKY(1CR>xen$aM!PbRi;L8RXsYrZg~O-YkFIfLlqUE3zAEN=n#a z`;v4iNFJT5i^TNsaK_YxgwLDz1A9-sXBVW}UEKxQO}P~_p)oO*5Pmfr`p_Zywj&Dg z%*2rxcUmqVUcJ)7#wEnjx8d|5Sa(7;c&Hh?&R7Z!GrqhHF z6l~O;`8M02X2%kxRgUlJBl1w7BA7D-XJU2@OD;ShygLmZ!3>Ej^G#BgzRY3;jjrXe zc^-TQ&uEw)K!D`F{ba$ptP^}JEm=8nhn|_6`*JmF8uFQ|tHjK0M6!z{5nvJRP%PLk ztf^+#kFQNlIDk3n09~j%35C`Mu@50kGGO~Y&$!>Ssob)&y~rH$?e0>yKrD8gA(XFh z(DU*gaSiF|nZm1tKZQknUCAiR= zsZ(^pY61)}7fjO@HYT;WxW{>AI3!&mN>me@=DO6)`MP6uN=iy(x^44ipy-d9G z&oJYyF`tmY!t}_%bxq``py``M_^j<2e0+R3wM;$pKC5aPv}8==nL-&GZmG2y=|KtG z%Ewze0etQ+oLnaj-~e9hL)ZZy7o{fuJlva_k^)!X$>JEh_~l&YcD)~v7m#$3zBEbD z#-@$6CE~j+4a#*aN3-`L?gg-fZ>BrnZmhL(;0RcM)>JVuqcY?e#C}Dun!Qw&(VM9I zESR+GAZzA_4p$ZG%*SW7kZKb~f!2 zVs##U>v7f9l~LIWvKSl*%4)Q(VLsAI-_bN+>rBc$laiX64p3hMo94~xcIlCrg2*tWh(&Ly zHMXJEgu^UM&iiOZM^DIM(chjPd8VVUruG2PM1fjN8~jYh}fh5>3w zTa+xc%5BrXDiGW>lIy%UZiLG5yY&6}YrXJ>JF2QilNFSWd%62vA^{~@L=n!NJ)71T zB?hY>VNslnBCU@l#%N*t$n%Kz>QvmTes`Jr;2(K2gI+q1eY-;13baG946?6F6JFg7jVluTz)gJG4c;+h1R)NLH|oJ450 zou;%VJ52Yp>0euRovY*Y;G@_}wVhkuka>0V&NSu)#g$h=q6`&Nqm8qmnZSVI`}Q}! z@Wim!*wk@^Z1-8*;8XW9?=9q?8Lk63#>#_Cx2?G@w3) zV3A#5(Z^^L5l9UXZ++TBd|7PE#MH`24351d(M4I0o{DP1j~}V4zVKD79W3kxdp%kZ z?*@1lJHda=i!lDg({pPXgeyqti+<@7!X~Zks8+G*QhNKysnpDJEr1{mrcGVh27m@C zMDf#rSQ$m_lGw)}(9ji`Lz;yPJ?2!1)G#K*$Fn2VQG;p7z#(;=x9#oiqIgztWRH6H zm3sYg=912e#;HknfcuLL!UIWAFBC%}ukOcDL>vLLoH8xZ2V5%PG&kgIDF*I3ZvF$( zQTikSC#Tdko6T1;aREKvj>0ZLExt2j0Dxd@gSx(JJ|qm{BMbzLozVjcs{keQ?I*QR zOFH{dC^SVSN)(*}HD*qYD?n48^FoeUgZSofL9+$K<1OY#Z0m!0d@bg&9CCSX>&~cF zNaN{m-n_YCNq9XpWEf@jVK+9OPICFggfj%1y~p?ne1IY*h<1ug1Mcqm<^;81Ba=ET zhX-*z#9!p+QD#6>*m$VOg{{aCd$;;ucQv<>Wk(7F3ww7mVL%ouxjK5vl{|?<7hu3b zI8ab*s808nMYI>tD~j`HO-nSS@0Z`OcO~^X$bY$IFtMQ*7!YvBII7BP=g!X!F~XL5 zU9P$Sq8H0UA^{0wkU5Aw#I*Z`b%S6W3>t%p%dgU{vZ+SJngEh;YS28~VTv2&@gZ}7Gsfj43INZ$ z4+^bNbDuBjn|gqoh9sCyT7|-4J1?tEEgMaSvWg0WO&LX`tH?GH-g|sWBosE7o%-~X zm+frc#}6)9?;#z{)X2Vy)y)cOqE$Xvi zb{Yy;%m{q*rhSn8wc7^jI?;A0KxT)YbXAS;gRe)ShAUf}t7nvO&I8Dl*bpHs>?j41 z;4OPHEGAN$k-9SaAiLfgiE@YrB$1ewmiBr#1qxhy)Sj?wP7VP>j}$#QnfCD}k@;A` zGCVw;U2#xa_mB6NVFIUexlTGkqO{Ewg9o03x&o_WoYV8=i>$=_*Na%wy-Ov8Vst8$ z6>r~4d#6AU2RHS=S3&W>-W`}awGnNgg+jdmj7^IaIi>^UWl$k)o!rCgDZIew`w^D( zVCc>HE(3p>l75KioOK(X9KBDze7o@7J^iLUrYs&RW+>*d@$?Fpt{}#_0Qm*bSxyW2 zxr(yC5mJu~FwI}u0Ho%@*ANc*RST*2*}L_pp4F?swn9;&k22jbzJKZI)2AM;`c_rc z_XsTjF)BX}B=l^hy1B1`VhPCeQY(-~mBZl6-fQ%XblAW^LH7+81iETfxRq_pg;b34 zxv#vuaN&a8@;7hdtBZ}zLv?|~$p#$f#)rG|^1cx0dXmh+ILFJNj9-#3r}P;C)Glk# zpXe>SJO?(1Qu1ojHZ@HFY>J;?3HsJ^MCa>3n`jAcfO32p5~jpXKvTY^W|soQKLeK# z7%#DOa2j4*yIP`e@eo5PkRKj!2Pix)L5}4jTPC>zk77zFNZ$;xw`7i6Kd~s86hb1L zR^Gz^gtaNGFz}a93p_2K(q>Dbh)%S;t6?GJl}N!7dBhbPR!9M^-|1Wz5*!T0t1f($ zdY9|9ImU;t4xG9%S~L>9mn&%}$;uM8&3R$;Ercf%h(+TNYzOTF%Lp77YbLI3h78l6 zU&FxB6R$S1I02r{cO}~cB7F#;7+pXfedjL#whE-mCkIrDX>_Ukdh(`?n1Znp*@p-dQslB zOnj-!06|R)klMyRGg-C+F_Q%Nj~V<>6v|F?74?y$BJ~-`H3#c3OR&A|sp^?O1(dPt z!l8I#kP4}O%<99se5+2Ce&lK{LuvsP)xm8No5={0`L+=Cbge_x!A~3jNRHO?RkQ=^ zm-v#m_@>tm8YL&EqJF0lW?lPkqj7wue(m`qzQfZT18=2wYA%WMVAjUEbB)W$rc+iI z8V+TUOiSmbb|T@2asBv-avj&j4#cRY5ENkFV}iH^(17s(W5+@b{8|dFe_Y+86;Q4= z;6|RjoV}h?&)arH--Qi`O)yV0*n*xMqn8WClRgFir$c@NHy6h|FEfdZFS zS$V{!gzg-Dx@XC51w*`4+E7M)kp$`R;KQXFi2ost=^2Qd6`)>r*EFrL@2@qV8va-&fp7hz- zSK@#NkB+`!WP?b+orXT$vjN;$x~6$nnGt@-#m7ir2VH%kV;BmwZcwJEbxk zfiP^9vPQlOtf-UX7nqj`2BZm%+!JP)GP^>Pnx-JAjj){c? zUj}6o1bDkBy{`e~wBhrb`A`8?TA=`$wSgxR7rKO2R`)d;Nl&Y85PB^f+DFV$va+oZ zCo?hAW$NeD(wYI{3pz~cpr`wFuV23|IudCccj4G0J{Q|0njO)FNJ@2oP}D9tyO zCZy=SYBK!M+Ei38Jb+t|RUK=7>(wYee+#u_=&$d-j(&$Te?%wYPWQ=|N%)!W2vlSi z3+u8=QVC$8*+~3B*-x(x&UUQppA=}n;r=!eA~H~{Hv*@m^!6RQa1FZv<b7>{aM(&he3!H7!HsAFI7Lf=#E`rZ~px3H11`d zabktJs;a71!6VHwA^^CDW3BHoy?A)iBTLpg@Y6xT_E2j)iC`%uu{!$BV}vw`8=&pA zhnOvAx@tS+PB{v!Oc_o)_|QB{PSuaXophW(j`UXdxs!nxW(u{!Wyj4H4+Q>vfN#=Q z(a*Z;0VHt#-KwolWqJ^{6%0PVO3p2(ptFE=c*;EYBg&!wMG{ZLO4^?O)4gVSZ|$iS zCyv$4Gp_07I?jI2BCZguAbdQD+I3MYCpQ<}C^EAB^hj?p+U%Nfsz|bWrk)4iNyhn0 z;7LM;m%;`wUieVv_o3{WIE&)lj5k32yf>kts2cP$G0tldA*7tp4=A9fdYrIHlb{g- z9XRvk(o!AphtDjS>ce0|UoSTG8f4m4Y@@w&8QZtFq}*Kq2aXEWOJ2YE`j4<@fk4C+ z9$!;5R8a6^fBI^+qy!45?RyOIx($7|?z+0r0>EeSBfa8HpGTL%9+pm#;)}W$#fWLS2*V5ULxD2roL+UWU8#O*|nhqTw1UTi9`Y}X^T9ykNbg)B}+g~7U zJ)cA83^mnaM!RTFs_WS7n#gd(C1_TaeEt<;Q+PNcn6u{O+yjR%1DY=N6e;Nffb zlb4lsTTyZ){)XT2WCUyYO8$H(GFN*F z>7Jl+C?e57eD?C8Qujlvl0KjXyoc;d7OQr$jsknz`u)>O>CbB$ z5K$K)zK^|@rfu0qC%!+&)gWf%=S@XLI)f)cKWnBJ zt>_s;GSV=EA`#)v(9jctu0T1~kR*$^cB3ef8z9&9-f{}Lf)Z#*ij{)cxb@SbkIxxCQS_Wu=L^ckd&@K54m8m>M>eHw ztdmorIg5?wQcid{{3XbPfYg1^&nm5Yah|+1$rQRq0s`-4QV1C=p54FZ9nzcu;?pG- z=LmpT53&K$0EBSd16FSbnON9~60izgyL`$9nK)H4y-Bh9zctcCeuy4>A0nH>d9n`* z?020RR?xE1g4H*Hj}iqWCtbc@x7?-3Phv>}=}(*YldoQ%Y`yGGK$cGD{pucX|Ww4bh z_72j+Nrno$avWg@xn_V&ypM24z-;c(8G*LRZu-+2K%RP-hj42iEG(0Jd6*{$iQrMt z4S{Y#1J)4wT{YoQ7nc#FWFbOXK*JqaAF#ZW6HDOS z1?-yecZMwiVSN!gulcZljRCAU5Rbrw5CddbvWp$2El@d7JK|~zc4$|)x!$cH;xjWH zqCSh$Zj5Bh__HkbZ+zIxr_tTr%~sP~V6J@*$b})1LRjqaM}*LkqPI1f+2*C+ea>CI z@EV9{D2gl5r*6E;@_G4^*tZ06t^gzxcl&yKdn>cyCYpdnEMY92mM8)~@hVH=U;$F% zb_(Kk41g;G0~95!>PO&pY<M{nve2(W>RJZ|G-UP0D-f$f%=gJWj zlqy%3aAb0DauYNc(jY@~3@t_k1l%(+G=#+mZzBRE*xg%TScerQAk`)t!G5~GZ*xC~ zgVc9)cDKzVmE}25ORxuSEXn0S8{$E_Zb?C-z3;lXS8AOlVdlgbWT`UI7d8FE~oehGWk+4^3N zsdPF@%t4DY%1$YY)Cr{i>!t%Zg03+EG67$ff{jfMG;R|sG16H`&=~?ugtJidXOT#o z{ZZqcrmms!klDWL9@}&Yka6h#5eOB1g9bD}{5DrJQ#G4{6yuh@+sb={cz8k2nF5?5 z=o*xv+=rm`?v&r9tAHn>04paVVhYrc3Kn460JnuHh>o!jkBlItdS5ZRO@CwVNILN3 zhMpOB6C-VWpp<-v)Eh`69>{&9qXBg^5#oObQr`)hbtdUoxS}mt zOAoYZ0WsemVHgMEbPSXhov;zf@BBn%;r@HTv7w~zsBm|W!b}w*{a%o~L??(x-f07x z4rvUv=~GtKCxHeAx5g4CJ45*m79fNn?Prf~HsNi7J@IV{Vn||5NB9l^94gR+KrXDL ztc*r#MDUY#kafgDhAD0=@O6!jK)REyaLH6?$SFft?6!$XGQdE=`yY3$lLsiBP_OA4 z&)uj%s>=EhK0HM5G^hk?iHj-Vdc{A(%@&}kCpSizG6{N$8{>oo-hLckU zSp-P#hIb2(*G-A6f&ge!6hgpdinI80*SEg)W=R2$xea`-O%zJSfUU5`*){O3-%uAyPu1tNgN^B;J5*^3aAx?7 z)#V@lNXKD^GuGJ1$fPwMwF+p>4&Ey4H~^u{8Dhc$Ks}^^2$Wk%sa_`FsrL7BM|>Ft zWpTYWa)XbO@5(Tv-ykc)jG4%W{b~cR+BQv7g=Ek^D18v34`cv&CT$6oVIoyXtqSSt zGEyOOB}T?UuPHe#?G|JxM3SZed)Eh4hBMII5py$Jscw7M=iI*}c7TfNGCji5j>A^6 zmppDu*Tx;i?b_5YF(ItT<(J=MV$Gq;#6SSWDixLWQ$z^*{2USlcuQxlmcfz(b+Ef= z0~l^RFvV;r^l67p3F(Q>qe>v5`WU1rwXOmPhITDFBH~<3Qz9^Vm1qR{BXXY4aZa0` z_T+jMGxB0A_MilyMrWuQ7J$Vw0Zt6D3BU`2cB8iu^$8|2jShLsV~u|bQIA4=`t`N5 z(4dd%gciIl&$Qz#=qIkAP%ikt#ILWDK$ZY<5H%VWaSaP$4y8-p>huRcr>Lgd0SpBh z*k9LpP7k-|js~mvSbXf^^)rR1?%Bb0u2j*v+M{o52Qb>E*x6Vbeimwn6MK3s;&y~y{p$&6|Gv;Je>w^daS{p7;4ZnFC-pB&gQob-;H=~QzU{FcC-om|8tyyqy?GaxPK#+XN{V-; zKR-9LcNZTbNwgkSQ`agc<(KPb%|7EQp_8a{BSrW{( z$2|8={Po!ky&h)h}&VX~Ji$_}ghXd17$IzXAYPtMS7t=Qmj z5^s&Llx<67GM9{d%<@ZLi6cT<(`~REH{2G z;@|6)O%Rop;_LZBd|tjc%LMV>N8V!6B=KR}f$P5>^rThsAu8j5f11egi;h`Ci#>8T zWqVyXIAzKwBSn_xCUVVQPF5wz=X!@GX9WLj^j&k?k3qKiCTQg#sH8<~$&>x_8Kuj^ zf2L-}v$|#R`LpO!L^U<->6}r{#Prd;y${aE?>nfd876VLa|#>yesH#CT)T#kt4?xf zQZ{kQjq)ua%DyOmaJNi&j)hZ^iZXpUb68kFy7rxW?q%Z;l#b;m4my=7sRmsnCM4n| z8-s$dO(S26O-%Cj^@WXeW194&BHLB!CM{NrRaKV^4k*a_NQ`PL*5G*-0WiXMn?I#$>@q_oqf8>HkNY|CmnVBPfgU9$_Th_euMcUF@0b$ zvmW!rRitP7z{W^4>3K16j^#jiaj8sK$a)bSsVn~t>G^8su*8S*jA?+3b*1AW- zC{X+5>(@L`#UT>gu3}LB@&GkE>jp%jAyQ9v0$-I5DZK_DXl`q3YZ_<|wV)_1$Ojhg z#-uTD44tf$Wtmg}i%2F9f>MRq`s0C4sOe3CqrTQ&0DLB>R-%?@};28T$GqQ>yBMrBmY_`NYQ1 zmYHJ8y5(dsZlHgr7$jC1!{bHT^oM8TAPtgl`55K-__^yv$Kt0vcZPFO5;(@FgSBJ&Urk;qCiA9&j$?jD@n~ zA#fa^u6oT5H5ou@(@#E!w6gC%{n;3m3Q+l+lvD+Z+*fG*4xlGnea==q^0FN6LktW_ zAe5gUX~MtZQeFV5;2DvxmFnlzGuja@9Z=47?3YBos>i`xy(5AErQ!-z=uCZgpx$FU+w~|8m_I&$><-OIJp7ax3W{u*|Xxy&Dn?WwQgJUGF-T!1}@2|bo4 z&U>y<)JH87T4B=9_O$@z{uaQUNn@l4!k_^DeD`$kkxjuY(3D64(_@w?Xfgmi?s!Kk zMA+lWsKC=>&~8N(y~xV}q$>fFov!CR#(`=@#M)2`W;aUOPxU5)4sf&GhtG_Oc9}yV zQp1$Aw07{Alyez{SD~REqUW3pdU}u3`Ic=7^5dQ95khW@LB;lCN)FUsiB>`DjJd#o zD9k@HPxQp&coUs^Lf+Yh8+T`hTwHS+RGC@DBf;S-=2{@0=NwnS*|Vk>3ra4z`#!!L_t8FS6lzUXYa zJ!211@cmNlzO;z;O0zz!AvId(rs?1!;SHK2`Sdelzf*lbqj;g$n!nPG8#myJT`C$$ z7GO$%#Zu&MMlYuATfGK$F*axTFv+!>2|IZ+=WEEgpz z2txv=7<%cy0{5E%HQ#OQ0#F^Mqs?#Ga7_`yia;a!v5!Fk+EN>Eim41K#K)lyYy+|L zcv)W#_oi_EFpm(!ue3LS6$@051`k&%w!ws5k+e zTfQS4Ia6ran*`cuA!jkpiQXb*>>E(rc95wLZuw_|uG$?8B!eo-hWJiKukD_);wyCE z_p4^LA>xjYDTnJ=6)mk4sDnB*Yusb1CU-#vD}b~mpuh*I zp1BhFe%-K5T|PPfB-QaN|AduRp03yzeauA-8+`^n!H!qU!xL;rdg`A({f3_(2o99a zF5`GN7=0NEqC7;a(F(#WqHfKw&Daxqh1cw5pp^8(u@%Z-7A+E2U7$8zg*{+=1k$cx zM3ZbVdGXVvJuYRo;W1o#6OaFeX01LfO>TTsJR5{hHMm7Ms93AswvSN-W zm}@xYork@xg(^>Fo_I;q%QLW?iDIr@@Tdh60JC{DkSiQ0kXxgld1*2)__c*D0e{ok zQV^!1s`@_V*=OqQ`}zNg=Dp|(9%a`ADdK63f`cdSO@6!rPim>3OwQ!I$*rYA5iPMt z)dzQn$oTpwl-%7xP1>FV^E8#iyo>UTT21Cv1OYtK!T<^cwMlG8_U%YBH6;VZrmCei zu0j5*Q1LV;JWv!TsEWN=s^{akpwT)TA{Q=DS1#^eu5$afLlk*BL{@H61k0)L%5;A4 zeB=7f6C51*10OrX-b>t^K|VzWN_?QVp(?w8^ty2U&Z!2I^?NQR0V)j=e)!XlvH?7^ zD$F1OZTdbT;R|dlaq-KK*;@E!WS&bzL=#FCAY)(_0fZn>bzzM(=N!d>sZ#?ezsU~( zG*Jc(1b00aH z8bI?;ncc@He((;~o%z;PBcs+PDZE}x@L^F}vZ^}DU*fcR_sJ;7I00inyXGrOM(-Dv zf3)gTOfwx?uG{-N=IJb0`P;(m)t+0|4%9WpS&bxL10i4#v;mI;=cUBrF9RN;Ix^UO za$gY;_lO%WAKPEOC2Nh9g(`A{VzB%1v0o+9%FC(CwlI06E8n1g=au$B{ewk~{Ek_9 zc)ffnCgC3ZfVIr%Vg*@u)V`>wH8oS#oFHq4m)*&#BPKF#6w>{abmv`s$+X`Ff0ZUL zFqay_Tfae&k%K0=+ebph>}Mtq)NOsI;X?=!gpF^KB;NwEXXyUP5ORcd|@-=95C;vA=sqX zq2r<@-qSEGmG%$SwWevJGY5)QizkIjmdmZ*_0hXEpTMkhDaW%H%itXManX-JKQcB@ zL6qzJq}RZ*Cno5~;ls~(3gPe05_x4+br_tnZR+r(-unjTxIm?P_EC0O`O?#Kg=9iV zU?6=#7cVL~IoYG_B|GLTNn_SgoWH~}HviNgCFeb|eTg@j*CDy@`Z4T5G5tl~ihc%W z(VGr^MwD1|+#t({Js+d63{XWuZ{Ea1%MU0gt#>m184hJIPa=mE1(7)f&ue!2(E1L) zWE~gn^fT;owkvQ$G#2!|fo_ZA9WZ_6?lt*xct5{<1F<- zB~Vti1i3~IK(m<|`TkpI)6a@*k^V(Y{8eQubY)j_puQ+_1-g_U#hrHhivigEU~Z@m z8xI2lqex=3C4YFjcM+&MIV?vj?Is5+(c^$>a@5Rk+eC^?(fI>?s@}9T`jT zudbb#g2^c*P>vyS4p^)^fB@gH!+*x1E7^{a#HiNmM|9&sr z65J~AcR+ULWf2F!ZP0t>fK%FJd_h!#yzaKu2-gAG-dzPiJ`Y<&0O(`dG_--@D0nL_c<3nn-SvqUbpEJ0(U#D=l5WLJuO* zww<)?Pj=HIxA0tHFD%_|oh9JaL95_J3<(LrW7eCtOo-F!`O<;g;93(|5 z(wEnV{XnaU0G^TdnHf6@Mc;B!x1g%^81>cSBafD#k;rhsDQZT zZY>K{;~!j+fV#Y|%AJ6-sN!i{;?14M_y0KjiEfViNzLmEml>>54&D6^#Ra6s+ag&x zj`|#O%7Z+`0BoQ^Z`|^g^2aly-+qn7Pduoh#f&LE<#nZ0X3__Xx)RCst zzgfS(F8DAb?j$BG?d0Odlvr{+djXBlDIm7|*^C||G=cBGIHhKt4VJ08o&)s{K61eA z$y5QG2fBfOv2AaQ&J=pfz&!z_`h069{u~s-#0OOA2mcBE{(ceM_%)B3A20sb$9a~h zi!F4wCyT~v<3bBKqkpq_|6@_ss7bPu&7Ii>@5`2aOfcVfgDDx@Ja%Fai~_ny>i>)I zc=q$`*_;rQp0`u=!6*VW7q3`9fo%s#Zrq8#P(rrFj^?v}P%Yv01Jz}|KJC*95%Hd$ z8bX{I$PGPvvnB2^9owJmnY1mxiK!#9oSRGk;J=richA(ffM1;C`LJF8y~Qxizz(a3 z_xg29NagmJ>z{ZEIyNL@M1lsG$tzct^PID-WTug`eQRid|sOI zu?B0g73s8c#(d1UV*L#6yao7P&++kb4dE>h^Z#)AhHtD2H+tSLBVkw7+fle=*T-MSOg=hUDeTGmS-9#%JgnbjKH7{e8tT<9}Uo>RWVV z7}w$yb9LuOR=98o191n{i^?2s1>Dwsf6%=GGFDY(iAJcA=yU1%tks7<9r=A9|Cfh| zcDz~4^P z_WA7DvnqG)d>fTS;IWQQ8VICiNPF`HPR~)tB4qwwx7u)}s_fqHy?{mcbHD7*ET#rw z9_dHEBU5WJ(ywg2jWDa5H1)HeNz55#H_PoOt3y)7D&4w#RM(+VeGxr%o#~I@Pwm%moV2+M6@J*ha zl3<`$C*qL&CTI6kTj1vJKzylua8jSj^zVMh{$wPiM(U)6Gv2Yv+zB!06!T?Nco1G&KB}!Ef#JpF1ba&NhS!9Lfr-J@Q!V z@BYTM%|+_xMSbbZy3%9D2lFWg_@qnHVEs3D?5Bn%=Kubfd}@+DJ1V)Z4k{11(uA!@ zSb+|}VIR-Gc>TutBfT7$n_+o*c^ZP$m-k+y1ADv``QTH0@?+n&qg#+R)UOo*6CK2| z@0nUeo^6xzh5^{wwsf$k|GwFj0&g-cKrv;V44JqQv+fHfYmUig>Rf`VrUQDSQ! zTm!dn7LJ11PaSMjm%}YXs(XFmUuIK9O3wwOtH|+#;ZDmGpOKOgbJM56%Ek zQVSNaODcO3|FHpIO(%!zd!R2#eq{3F24+_r_Mk~8H`hgF=Wo<7eeYv(@qhth-boo5 z_AY7Y|6$%GBrAM^d@Cyjnq*x3^Qx*G4Wak+SuR`)7sInC-N^9{3KQ2Xo>w4~+&7e0 zH^^Oi^x2yUn%*D+?DekPLiV;TZU0#5C{J>MIZWyhpmFfkC0&Qhyw6m>d`^}tIXVRd z1xk9+x{>bV$w@+V)=!W%1Tq1JrQmsQh41OQHMI9K&)-eNlXo<^f`V4u&*gZ(xx)M+ zG?RwOl#lM{ZHj1JUB2{s#bWS^5St`qR;@FTD-jQ@)ZFNwi&ht3R2@bB$508M;f?Qf`7iakEcl>+*Hwb-V!3mQIAzjLoCG8{BP zO>wKkAxk)h(rEVl3>Q$boa5w7yaViiSe{#%-AEKf;2x=})rEjY(R!A06n1W&*@9bZ zd%5wJxDy~7LtIm7$Dgj5ef!X%rR7%an~)=I33}{C}fD{tH_iTd&f`}1zA%6~=pt1Ek_ z_HnjdTClP_x{{JwtW`X85Hp$}O&8=RCE3YyHEky9^nPkMPY0$8TU;-I>-`z^-<~NH zmcL0yf+rD+P~PSV9m;ZwUh$OZSfJvB(*gG6gd1ArI-sm@p1m$+koy3&dwFJ19f^gN z#6?+~r3h>Ap+|pYC~hbo%Hjw6FR=wCfKo(7=Qv@eksH(OmKeEtA~)_t++5 z3dlDWKI~PZY-F3Ay1!{KEdDjKu1Z!r|Lcm7nlNr|w<22ZFJlThwXPIp9~9J=z<^FS zBF`=vk}DGHMMRV;+#n=&Nq?EaZb48664j4RJ?1%}Xs|u*#cz~w*oVz1{B*oGxhKE1 z(7N@*)7HmZ_$@SDZnnD&52IjanW%Q69|7K#BT~59E3dx&x5uB^GbK-d!Nm0XQ(Zd} zT@TG1wZLXv-}qh__&@BAp*P~RVXI0zQWhad@NyONd2gwOfAFinHo@WVm)!lXat@-d zukx{fq@&-j(v#Z+R)~DyJnW}JoI>ZeYkPl#rp?v=+T?F8rseY*rCfpz)N@AlV5X1a z&i>*YE;AJNHOly+l>aMH?7dD$`kc#suDM#`6y%s@1rd${U!RMB0e*=KfQJKy@^~Mo z^cO0jKY$k`SIiF>VXma~z#%2A!91-zxPRyu?rH{e*W3J$+yvwztj-6i$X5$ybfks| zXfyxPX56+?yba+qT*NkE2}To;gKj{)?tR?m`NpijdlHbB-`5WxK0FTc?PeJNX)kfG zgf7522?^aY=fzg2$`L7=P~kdgL4l6r8?yvcL3DJ;xap=h$N|adQ>dH$bJlTa))5|x z+Tp)k%QPqmwb5A1&`bIXH&{OmK|mJhlNbb0Y~$tlXXDJ!U7NV*oPYn*9yny-Dln8C zAjA$D_!y>wkar+6ed1Cb77zfFMjZ-mw4ApzVal{@KtEm z9Pz((>(Lhki|nKNk8s6w1%u<{lnV>vHJZ>Y#^r z8F;4Cp%Zx$@LaMi=R9!E{6_=*~f)sRSxJ7?pkp=i{hi z7eLyl4T)r5NenEW>B4ABF(^+LK%yk$oMinT=J99gPMwyg{?kR%)Ml(MwEL634pd9P z*Jqv=`UrSrncDpTW)oK7oGo?~a+(y(UZ1U-;*oG$bA&GPC=6@2fbuW{+KkB9qHn*0 zn_IbBhE6h@^s^^AF+lol*|uX8nIVGaT;9W$lZX%txt}+|!H09EU{|%FXXMl%R(r|t zyTCal7DayE^&eSKs;Y`1UxedH%!fIW6&*wG{9Jst!7+bMC>KHKf$Y-mVVenj`vrbqyY8r0?@rE9AjN3A{!Gob;%dfvOv`5#`K zA9_CDWKE*?;)M$n=a%}lwF;Z{t^&!xc(qEx0~(NP}&P(wZpQzIgOY&_^)Au-ovyVi)&Cu$*h?uW{a|Hy+QTd%ipKV{9j#@Q)Kh!n_3>4wJE7!n0^NBT`~x1fI)`V z2(Wd~6hXdOaRFVI8q`HVqrl;Ey%umJO$ul-5%IW?g?|mm35VuaU`z$H#zTwF+oVTS zR8-FJ@W{i&-fgI>dT^F}C}_&QAxvhFB-uMK?odY{M|2$59?ne6K|&bowifY(L9*?5 zC}T05-wT614!4lmQoT?C z<&3 z6wxZOc@MoJq+bu(I;M&NZHuDoP$hfBfcG4&XtDy))izcIg?sxPDnBQ``j3b#TT9Ho zkR7$MvT)O4A25x_{&I`0b&ZX*Iu@harGo@d+>2|_zCaGngYNkqXkUONF%J%V>PT}H zLS*Rgq#z=D4D8*zSMY8n6%vF`ojMiI=`Jm?5dmapZvXm@0pl6bfPNX*N&ip$9XP*a z@?dDVyLdx|$(MNi4s)2^TDatJSTBii&Ge39CJwt^QoC zf4%Lva{8)dwbm-X;IO18ADPlHV3x@+{8OmxqJ}t&vaO(<`-Y!6JiNW`5dH%OTAS@p zgg&+*pG!|_!4eNZyz?o&cNq@rtSN#ygwgmw1s_K;BDWtN)EkDLOAp9nh!`vFkY@q~9$uf%BKl(^EOX;gH=i%k`>v5gVKqOzetfK#h3Ot{!EW<_h zJC6eny2Iuqo^7TQ`B$O*BQh{?bYXfxAI`Z#Sa;AH2!g)C8Lz!gOd~Lh*{i_(=*eO} z_ogLa=TF~$#46?H^3mLKY|Y@6$O|?jsz0l|)azAcCeXp-pr+vpe8bM~BD)LtoSLIk zyV>D@I2ch1jL$MC(GGqOr|~IcPqM5+AlHJXyTZ-vbr5CvrM2vO`B#A)%MXyyw_=cG zvzRSEul{a-u>IyDy7` z77To(<*tL&W7wt$nTWo9d%sPD``66{I)BBKy}EV{(iEGN8ywZbh8Gr?H7n)k$KWak z^>lS7N8LPvKmWnfbaTV4D0duF+VKle?fyJzPekM?Ft)3zp^=2lg2Qo6prmToG>&@z z{ri1H`HHmY=gLFiJja!JI86}35S+o00J-wnI&`0m$NQQp_n5GOs~eWD=n=Mv9nL#!%XYmGzwf`$y^#C#(i?^sPP|Os zEK{4|_)H;Z(!|6go2_an)bw=wd#sX|K^p1K3iHA!*dpxaq2qW+o#R&|Iqdx z;9R%w`?%_9htd#*1{y-iC^9OUm81xvvXhZnc8iqE^3FV-x4_Z~3_ zZ~S77`)+C?aiB_fh{^9AbIDSY@TQ&QOJ6Ht=lwsD*FQFb+rcBX?M`<%%fz zQRKe7D==`4e~6-wxhRS=BL-5TowAf;;XZWW;lJ*}ySK30p;aK&(mGb>l;K0{Ctny7F}e3CslM(N_oR^*>HO`SwALmmNUVb9xXZ z(>KcLEvs>Ca`e zL(_tB7(GJ`5`p!tG(0ghxu@dLb(3ExBQPDWp0b7<(0w3>=4kjwD?MJ!n>Ox{wlic& zh!oZht*@jbGiyd49p^5#JZiQp3bad`w~I#{L=q4_K2L+`u>L=PnDS_;(75cR>9kHr z=rd5_{{b-!SlAtGD=IA%0k%gN?X(UXgc}`?1~pQZEoA>=y~&T~dzA`R(h5lPY~E0t zfbwwn+X0|?DLVA<0@BJH){fD1KS4VXw5*XlI}WoIb-wTZyHVS5l{mAL@zN&c4_A2V@4;52%YWSDS zXN;S*Ut>N~aWHo^4Uz~w3(#k$@m41FhhcaWGQS2GbeGuO^?y7Xv@>6OsGGMic++6J zibHMIcunS);V-q5POmS2Pi5@AB(HL5^UqO7nW5m2kZobbvW#||f-0l4Pi_1)yFi`@ zKpf|ZPulDjuHT+Ldh(-JZa%wF*b-$8*3VJvy~xzVWu!6ytHrW(@ZdhSEOx#13mlPQ zq0h3#y z?A?WT0=Vf{p8_m=z8?duLw&X8kqei1Mm9iI#xPWW*sQ^jqx}ZYnKGGN5=)g&{UA_> z)Yp3-7R-PcMln5E{#hd%Dq@W;+IA&y%A@Kvlk@DXIqndM*B3nHnq+V&Mst}O)8Nj| zZ~k2im8T{Q+p7(`!Un9zQ~E5$Oeor0>#hBB?KC}*(=44E#m&^~5)3g_IX#bE%8W}7 z(VpRh9UlrJ*YA(e5!)0l&y-Y}6&$n8;iR#BT8?~d`%W_O>BA^bv|Q0Msv3Nxl)6bV zRNz2ON}+Su(9@Wte6xmhm9u4er^1(2l0|8JX3kANAB(%4!cQkm1EWh;Yo=7a9g5&= zf1Y!uJ}4kEDzE!4YM~1`+W&}+pL39B95xskP$9@Z^ydt7rJs&1S@SoewL>d4=Ah`5 zqw(w64xU4g?)lAQOflC?R>&CAXa^oF^2KKrf51>fgGKW)iiVP?>n_#f4F_3?y!hP$ zX1X;rNXTf(R0IW-ngU9G(iYys=i|kr7Kvw=0xxt6Vs(&moE&B_Iuv&LH_9tg{(}1B zY1bL3J17(cTw~~PsXJe~Otz}wy(2Xl!0(W#+#Xuc)K`b#V=on8-JcC4=$74hkHTD_ znsiVvMiota(9XE9Ba4ghdOPgq`R4Y#=wh)YKr8@ zD|X9y9!ONAR$SP_zHvPAUthzMbh5%YYHgFG^CytJ9%!XXuc>WoXh|NSZJa@dw(oX;WPBZu>K8^y0O4_l#~3~{LE z{QMf6UD?@G@q;pM)~{xjYMNK49=f|u%TBAa#-j>7P-zVE_!qZXIc85@c6b;Hj^@rg ze|Gi?+A@C1$qaO!RJU)OMLu*e`Op{~xwaTl5v=Ar6Afb49o(T8qXvFFEiF?jdm-*i zYgVGFml^5^6THKY3n{8^?yKo2$Qu6mo%T_rR066u*}E+?HnbJA_~m&eySR=)I`QGF za${ADCH=j%T^NTaChiJ{AK0LqjBDi)p)ioE2-q~(k)l~TKvL2jXFaDiM6czYk_#k@ zJz(KpMpC(%xuBg1|M6q@8`*c$K0;x6R;Kmam4EWj#d#6YNGPN_WL~o!zVGg^)23@{ zy^UIo=B)eIP7!v;OkaD%IS}yB??CW;6RjQW6o_1K`e9@Fj%jRl8c;S}2UvI>Z4!-y z;-=p?%JWTPb`{!1g}1cCG`0$;g6a{vUVp;?Dl!PO@Th^#o|_?b{?at9!RR$Y5I$I} z8ld-&AN=;*t4f*6ONJ2F*^}Tj9c1Yq3Cxa~UJCKk6GN@*|GjAB{(k37)ur7|fziL0 zP5eRQmpythtHkS?1WA6!Xm@|^^pI4Ey|RV7%J-%(2hCE;pM_@r<0{@5I{W%%bn|KL zvhaVO;i~0}x(oN`oh7?ws6hupDJN1l&^Rl!)SljH@nJyYf2|s@VRz4J#9#2Gw<1Zh zKwoy6MT61gInA-OE;iqDU>7jxSGxOQq{{+`Agv1z>N86Xc*$incz`S5;U-C}sB8KMX~%s#bK_4N92U|!NYQ%NNGWE{(x2pR2oPSs&kk$> zHXr|uY%Y%E!u+-AA3u2_V41NJ*Y987CIW}AwJkq|jdvwW;-{SYS(1~R3qy?mT7v%? z@pC)wd?@HD0Bv{4?_aC8m@{{H9ZBo^C0#fFys$@RNb&C{TjCQcX2P$s=@#u**tkh9 zOt!$?pz_Z- zV1S)@aNRF@hP?cagny?v1lsJUy%d{I82_P=cT4j2l4Y4oHZ{%4CFwBgL%+*nL5M*N z-#;rtrtL)PY^lY*(^Q)O8d==XmMVK7Y^jHG(Qf{+V{#47CVv)gFUm47{MI(axh%2c z=GnX9uRyxg?Y1%PQ@@x~@$AmnK>T#+g?Oj29lMR3>E(0nc3ne-uv7~i`(uy`FenO% zhQf~$M!r837Ji0C;zO5-W)8rbo)@wKVA(fbnlETpw`;JwUK8yY6cUh4$`m~P<{u)e zC6nr{hQ92R?G`^+{@#82Fls8o!IC)Ykfvhc?oSrQKZ^VBF30~e9+d5IWv*FWnldEC zee~5Yb%3@BL>6k*q}Kt6#N@;6E%p#$oSpMvSF+Qdoi;%$|J(bzbJRnLgwyTzrNrrd zy8Iv-PGtC+3>pCgvWLJXSoVB?hK(mDNIp?PMvpOqFMP29{9o``0T7i#--2K_7($Ou zN;*cS*P)TSRelTtYq8J`7tM0ofZL6nr^7f;SMgw8>0_m(tkH7XjtPzmz?|#l$z;DZ zv{Doj7N<7ndxJ3{xlP`lNcCYpj=M`tQc{NuIzd-89Pn2(FriCMjH|ax@xT0e`S7l$ zf8t>2JsTLTXd8a`9}Lq(!IDJLPX-f~J)(RRo|2mr&_}R*N&i~c@jxlh zi}c$38@Pi>v6hX((CT-gfvM;(j(RaE?qbcUB4tSJ_q$`{b9!ERx-GHj|GF)Kq51q9 z)3w`weQ8hjZm;TO#j#?SnW5nB6C!k<5~rs;v@))0@sFfH7wRb#?7Zrx{vP&d_{KPa zMOQ@S_Rbl2$Da`QCi=0@gw3`^-M$-jkpp1X8+1sA*}X1_yz(H(oUUA)#d{&Rbu&MI zC0dHaIR;8Y7>PC)%A$5Rq>On-LN^SZNXVEU!9)gtKZp+icgJ7Qj=+_4hgOqqq7-m} z9Sv+=J%9_37MfCE%NJniBVpU9qXZcPN!WHV^UJFe5u8IJ0fH$K^y=n3(j-$IUAC1D z9DYACv+)AZg#5<~>iWD#jE3zql_j~S^r!Bc9%fTX0~Wq3$|64rVjoaF1+I}C^n0`e zBPIm4hVD#k>s^iJ{@fkOA9c6#^4`%`N7v%45b0SwIrSN4bkICBd_uPnA;=vOYHk*Wuteuq+7K;!Ewn;&Hg>VfttsP zA)M$}5InGfA9>5%$-vpC+@g!O(|udq)KzubuKa!B9lwz{@iP)({7qAb2kiDB(ud?t zotC=r|7toT^M9Gn2v4APi`UI`H6Y)tjDTX=7cb}@Eon&t@EWtUy))x{vt)q65td#G9H)`tX`jN6iYd512i zyIZ|!JIL8H?C!S_hp$%LTCe}L4xMZw-*MojlbM-WqoqaMPY8!UpF50y!<6F*_7;(6 z(SSA=_8*!PNwyPp?mYrI;?N|_ANJ!i?}Fu`8ax0Ix-8Y-4nz2Jk*EJEHf< ztNrqXpVo7&G>ZpOheNl@6OCcC+0_llaqG;>db@4&<^}16lC5KZrYADq=e!d%9KT?2 zcF62smCFBkum1;)i3BCyAYs!WjL57WYJ;!SdE5&IG$O`-1l%Ta8BI)7rG!WRiHlZ} zOh?cKA+ntvMPfbWASc8@jS5lB2#Pd8+fQF6O%H$>+&v;`-#hw8iA~JBO33Zo;e9}= z@a(LVbQANB+Ta`b;TIOM0L6XLI>cVPgSIIE;C?roFO$ohSYY8)J&><04B4$hsBFV2 z@L7OJYa#6tU76e7#PIXl@>8rdU}J&%t}fpqv^NeS7rzTa7(=ttZrz`_-&H4KAj z$)8$~M!sS2ADm%nTqDnHzf0rx| zBm%gArBnL*Iv-Y$7SnKpi)2*SS&xagQW#}u4#;(zn#x5ZAD2d6nvjtxAg>t63Yrg( zMs(G76}YcGlO=v#i3ZUQ=F=l?{<)$DxA6EsdD2-hI!c6^$>eojin7rsXw2RR0Y3J~ zLuWVB>e8QGQzP!ypN|i^$DC}^^YiZ-WpNpM&wfP={d5ei zO`WNHzUrN%^F@pXW4uli8qOHfC|T6YqMDu0kxG$WyT0p%`MKK5RWu0|T=tys$P&%? zceOqCk9R}2r99!~bw2Ec4D6YTX8}gzam}J=d2#3Q?!Ac-C47T}F-xx&KhKbuIHHkS zl;zlTE#7qT85+C?@clpPiz8w6n-0?RrG*>6TfMfqR}SsC4%OV1ea9);b`ECG1kFy8 zPo;1Ju5r>{w7#5ch5qp67cM7m4-5?4O`7i-0SNN&?zh^r2RHNHS+(ssztY`xZ=3BR z;zvWvvpJ?nav1c?DOl-JPHKjPhI(`|C20oKsn5MXeJnfwNX${5^I1P z^YT0Ewq*9*5VSIg(PR?QP$2?Z$4;JHJ0dP5l>FZRO;MORbA4nL{ignj{-LX};WF}! z;w$WHIi@z(JD7L%4A&d#*yXc*GSz*EeJ(wVlyMeYH_}9K*6V!gAI?_1x$14k%0p#O zDd6D&%b0h!ET|9Nc~_qXLnv_t9-6RhiO=tBnKfT-KHIk=IYHlBC>RWk*yz0^a}vBi z{!p%H2fHm?2gZgp+n>FNSgv&2jnUgyQBxATV==G~WY1NJVJ<0@?D0@Ri&N)nOIL5% zQfmCDn!=L9M)wgNo>*c?HwYK2>(WzlchuxNX-v_5AQ#1Eat&N-Z zZP_9pBz!1i${BuLThfBTjk`X(Z2t#z?U>X}MDHxSE=#Kf4|uzr97rq1zR#-ZSgTb?DdG8PyyvD|*>20Frj~7e~_Y>SEPXPFgz zX)XiG1GRw*2r5!iZZ5l~K+<@tIB6XGLc!y{S37Me4M1_fK{l`PE}vF}%R~-oDE2*# zxqZ+6LzZJ}U_3RXI)49$B8JRv2)H!q_Vq_X)jl&zWfMr$W4-y0g?F5$m2kjxuvV-F z=%UOLQ~@h@iT^7zhyd7DC7fW`v{7DNeP|*}BJ5jlRi)FuMYwI@k)OYvF@y7e_ z(oK`~f*caMBe<<&PgVaDO(Aqha_}S@uA7s0WRFi4lc&&bT1{ z`Wm17^35qIYUks=kRNdTTrQ`y2PE~KdH1dgR+N@@?x^iamxY4oxK&Stf5gJ&`zrB- zzc?uU_@c!sv~?A)DU}B73zXk+`#TyQkTuzow$lwz-i}ux(#4fxJz$*5#fNPZI-we1 zO&z3<^Y`1}G-iA($p1NcfmfiQ?)GGxX}hUeCk0#<6R!&<>k6)9<7-~44GZ=&iR*;R zd}gR-;)mu7#f8eFo0zY0=Fyz%c+^|}0}KD8jJB5M+1H`+DmVs>cPFWlN)jG6JYN@$ z-jK9vt!jQRIe8&Qb2d4wGk|3dcxnCpx;38Hk-*TEtj5^O%9XrUmw#4p(}bfg)piNv z3jF&5;Stp+@DcEA`eKdkrJk&yaER9G|N7~HyMmaV!nJGhW(&#JgTj^mH)}#y{f)G) zWQ&b#JdDQqMqLX}efc|gdPR)vmiWev^t($|6|n3)Q_DaA-8bm-&Xc(Nca4VC8MrJ) z+jW@fi5uB@=Bo8@eQ9TPsk-5gE~#zjyXTX(+<#Pd)4xSS_OXG~CaN9G9ol>4ip345 zA|5GXt~>kitP}19Tu#GU12uOylTUr>>`@hv;Vw|;Oe3PSk6g66`w)pMc!@2WA3JEN z2U3?aERPA=OKT-G2Vw3008S4HT1^AYd_njBhMT4=J3GnV#+3PtPu#A7+~x6RvnI$} z`9S?t?_cFJme!Kdt{`D`P9_U}&;K4D{o2*E8)~Hsx0095;>P@l=wE?$L0ptfO?p{Y z9n<1&)LIsSXld9f* zNoQP<)~!|{NF$jL>oshaG44F!00}6ifO}3Ae9tNk5s=nR)tJ!kM$(v%qK$Kr+i^N+ zYz4aI&a*35%;j}xZ|%nYI6Vw(5!n-ONr1m0i(Kf~(KEvqVUi75-F*ceI>RH)T`g0S z%%Le*lVR%y|KSFTV^-d8i%0GbdbH-#4at0VOkdhRZW?ryXwT^A?ENC^E!^-- zTACcAX(q~uGu1yz;b6#(T>U>ELygw0*RA!E+u=sQYqH;5Ae^Hh?>pJc*bb)voi=1A zZzl3N6sxOC^(hBZZ+Tp%b$H!x`>xJs^SJq&FfRb=vBxchSa$F7$eX0lSm{j@kURL~ zSpdXCf0R5Jy4jY)n5y%}eeDKbP44vi(vaOpU)aW*TA8%KPuNu&^d!$t%HNUyuZ7C* zObtsiR-vKlYK}p>lriR&F=5#b=5^duvCCQh;cin#G5EuLGS{J{X?uT`@E->7_~(9V zO{QH0*o3r*gCVi@r*WMg$`pQzuz89@rd{V|`Ze6QRsKkD$-dNi*{u+yRQ^+w z8YB<&)^edSMH`q?D^NRGXPNEeWd{X}OMrZgAsRsFwMb`)LiS0}0c|S!FYL)^yu28N zzc$dE)k!OQX;)d6@Dhn@C`p*^{BEA8P{J` zmcPG0n9D$wO*bKK|;uiZ>=>>@>mE8yKx0yoQ_(VFK8KY&+Jh|E^KZLO(a zrwBWM`0UBSxG|UtuogsZU>I?T(gO&QWezT!^`DcoIqeD#O-oBDq*uT(^OYsRFmo^< zGi3Yvfic5-z7;X?IvFk#;h8U+8H~F$+I?js8mN3@_ylm2gqjnL3yC?E$M7T~gB~?6 zFD61f=`*yl38YD8ePH9l)`5=@fo)lv3ff;D)b z8$M4*h5URrP7K4+voLj3jS_NP8{>Bl%Eoe=#P5Z-=tk zQ^$L13p|#a#K9Zx#e!^uL*+q~BPcIti#rUJfM(d|Z4yW}RK)Cz`y7um7 z68&H>3$8QKW3M>0ck$^yLJ5I5J){+^5i?SMN#UG%cg!DB!x^?3;RT&&53fJDN4}1Qd34Tu9Q;rz+|IABaK%+lCz#ASptcTpyU0<;6`jUwbd!3L zDb{%`4?6hN&+yxYomyE$9v`s)`2p($V(aGwE_l2dgNEz$3=eCy2+)eZRy_%|sV-^U z(o*8Kk><$2on7o*I!^kG{AJHV1?`?Cjmy3-Q>rakw(;SYk5^0fDLuOxOAJ@g=Zq)! z3Isw=5H}5Y8%9B{ZNB}QN<+wQE1%r~TYaJQrq>U5?L8<4`t^~7C!SfHb(mNX@ zD`IE88LMrG=r8gI$TL|wTC%^xt4v#c3q9LbYO6@8$ELi8cVamZnnN(AWl0q^qd-gv zL4qcRpKhWq!^?@l%+ z4DmmQz6@0bN&!dONkMT`dWBJeKae(6Su7hr+%jNV+fGjh=%MCOKFo z94|E9yn<#42877GA#tq2%mq5rXIezgzsiBi5Ft1xY~!)ef-l^*f}?x)UP3=!5Xwb@R~NjCUf}f014m z9TGjxKK;WatwEAL1A+K)VdS#3B6bL#>PKbVpq)LnO=~NxUaT80eKINg;vnL*hN3vu zE!I}+_ucPIJ)N}L{~x{miWlBwWCJcBVG^U?mak-Heu_&8X}}n+1>z{Z1@ob>>!^hP z*_VflK4K=iYPRNtN{MhO>62ij*B)gX?L0O-@3JP;S0Mi zKZrS_!1-}l^{mF;z0JL5-$FnK&vmylsld@q(i zYh<4vZTCR|6To-ZNN+Qd7sW7_Y+Uwa22y0=Mk{RJFgiL)@=xT2OqNdQ$q{=ec)aa} zAHgRW$5~^j@;fX-R5Ua+-eo{JF3zq2u9Bb0ya+CT%$1%1wevH)tRmp@Ak_3-*B$P$ zR;$I9&gh$1k;;0xQq3(Mu&u~JL%$&HJjop8%N-HN{kg0A+YSfA*h%Mm7Yj@2diN^H zPeYK`ZOF2Egnn9Sf3c#vdTGOySt@gp;z#RU-(aUu9yU3!30iF#Uuuc5SUrqmScT3W zyREtE3+NeK^6)!Zu%h-#DEJIyn3LGF(q=B_4r2~W^zG0o`}7#B{g# zXv6?@7)oWOUAV}E9&js})!E~Y&1W;rj-c=f)kIu<>m#rX&Nh>gM8^!~hp;XNI8PMx zKjSt0-d@z#QUG;0qD#j{DTpN2n|=e}4eb8n*2v!Fd$2DZ zer>N>@NM&bg_Es8_Czg(z*>cby&m{8hGEX%hd_Iuf`i9ZVMDLXwIYXWOiSEWg}b=4 zPmV`2O5W~H-&7H697^sVbV17o+RMmxA)Xp!yMRP62>rMp@ERfnAzV#1^lYNX;A1;B z&_0HlDBb#Va3|m^S!`c&fA49Cg{J5itTJuLs{bUsjXL-=5sf?7Q;;uJmSu}10@9G`gw52gP%|vhUwM-isW?!V5zvfjhmLk!(wS>cqxY{sw%dmk z*%gKN1e5pAZ~x{WS*d-~RBTOi?(!~S$x*!+%~DY=Re`mZusn&5ijqOzngC_B(N{j~ z&R~a%HeFqA4ezUVPq>Ei#Jzk7DOgRVPUG!dIl|^&)~3}VQa$gO+mLdxpJqz!I}V4F zOm_S4>*Y&vl1N9umbkbQ+R)$^TX^z<2c+(mv_<3Ky|bt-JouEA^#39B^;>Gn>xEh( za=xAs(+SXjymz7JWid{P96En|ow;+NPw6x|-qW?CPEn!rjg3K6l4&rwtV6}um=(PD zY-B)zK z-hIPXh8uErCXYtJzh+>6(8NR6s&sm{H@VltDc<|+*`U5Kn-PZ17BUJ7fge6-w3@_` z0z%wc545&@E$^ds`=&V5k01X$Ej-HGbhoahMS()X0q3OfqG+oThxF83-9E;8&{G~_ zG;b6=(s@H{A0^kPa)SL&jqHZ9L-ZpBcJKOT>XWCP9qbMt*)v+aU1Ac0(|!(C4pHW& zr^lPgcjV&CSHYAQ-Z`Ja{}O*z`&5k|#hx+9RLklsW7HFYQEZr0Pcl-L9`19v_XL_1Ijv~6K&N2M4 zDX3z=r3!b-z8|v0_9U}oF5|W%DjUTo(@?W%oufoxK5w)?at_0Dm+Vo4E$mAFY~FUe zNUXTqso}DWiJ9`rfVT@h55e$$4IVVOa@OAFd!M*C86*cLNT!fx+r2O` z@~-+ZHZkFtUrd#p>X)P?sBoS6fj76Fn2<`?NvqO~VtX8A?K^mli`F_sYMS`)C-(LE z4IiDX*v!XQLHx&wEe)!AZHm7iQqIGo-%N-~Bj^d>&Sd6aXp!crgEZ!u*rfdo@oF9- zZJ6P>$(LZB-S0KfWiF<5u|Mjd@#tiRsBzA`_Nhsw8`7OUzAjTQtUqk&E^ph^-urYj z1N?X3vK0z$!R&%Oo_Io3*2V`=TP~YbhAg9 z^~wsa)a7Axe63^=!#{P>d9D>6g-d!q<=ktoVI3T_&C(dZFtV7ZPRy(4w8cTrGgAi| zk~_LvK1xsy!=|Fx{CwE!yHU04*_|(Z%@<;O{@g6ofqqy$v6I{0BtR8j;q@+(g|;e2 zX{p3RGa1=7^}DR(QJ7~5oh^TCz%dL-_I6pxG2hvjT#F>9CTufRA2vKm&IeThE*lT> z@?=PMj&#U)==@XFSU*nGyy5k0qJ#wnX$Dg-FZO>eL_abw`Na@o z4*oVz3eVR3wCz`TD(|o1oEft%`gsZaMXNj(rsaMgA2fYoAU33v1CJ!zA^l!TEUHLG zfb_si$2sAAv&6JA31zQ6#JS3N<`J3m*ZnHXSJ zKnT{qRm6qZUJ_SJVs_kt3cDKZSBujP02S%N!8bP5M-@yI|zi{ z8x!HBcVjuu!bgOrZ@YFTgO~XvF%QWlx!(_S&3_fiFwUiAesSC< zqIdOEHKyrHx9(Ezg4AKgsqR^>-vmqo23jbkYs{+(hmXj8DDdCPV<%}aW^LT3 zSFCU~-zaVT2&9__iO_$ZCky6L4N1OoYWrhic1I!=K1+?z>_^5qB1|6S;^dXcYG?HI zBf`tn7JipcP|-<-gP-Y_m+Ax@-}k_WL1N?-No|QH19)jKM^@iCwrpJA&13YY;Gd=b z^kuZ`+hUL0)>Os5mPJP&k=Ez;@W>}y-y1foXnbvRwE4lAIhirgCaDOE`lPdWj%k^C z`|NJ#G_DbB&s|@XY!~9~4Tx>5Y}KF6^WGHjsx1wQpo0!$w)*rqdTlL4ky_>~5ha+)I6`m`X0jSeU!R zq(xOX-|I6d$^+ngCXZCXOz;Ph$RT#?AQzTJE^69zjuaS;u|v-+<};nnIkxV-<5={7 zf0!JjI47Is^~%q5z*pmVq!dZmg@!k$JRswC2@Wx!bK>xYgTk@|y&Z=x6a~D(`1Sv( zlge{-!heOxbP}S$x1U&>`V9Hl&@-m$rRs*& z#p#pwiOHiZ_+sC2fkQPm$+G2xlY}k2QJ%!c9#>ZOU3_P~`rIpf@n>V3SFA-FMf4}n z%(pW#&k1#0zl@d84lNFbNesC~JB?k?k}qAS^M!|>Vo-GZ$BzhEcH?@h*|U%lceU*q zxt}Y=u#-Fuu>H|kic$*8D$WnMeS7oL1x8Rt;ydQ1w{pQho?2#asMkbuatrI7dyb_iot$NIGT8`y z6A%)wMv@%K1_F3BhwMM%-(*aL{GTAiXZ(2bbkE}z?>8`cY-aL6F#CJyQ=1NF`7Gce z%-+VkrnQ|#-%?Dq)%*nCQHHf$>b2t~%ud#ZiJ66nYeyxOk7m4zite(6r+9~#Sa%8B zaU+NjK=Gb_Pl7taI7Qx%7+<2S+sb-N!H={Kkf1rJ3+!1HoM<-tuQxuXT9cn5T=$-t z>B023zD-eN*5c&VG+@l0H>xoEsah@laI?4hxRtkfg>(0l<3*KoS-ZQ2rY0MvRG?;L z-F!=gu;Ud2wtYhU*eH){*pJu;*24laW1_DhbK6S!SKmZ72p_uE(0hfQ(CUVGQ{H4g ze{Nd5QAh5o8)2P7A++yHis{k4m&)()A5aa*JhCpuh_2{i)0bJ~@+W4>P;HR`J2(Xe zYmC&o`w#*94s+FVOKYo+h;CcH}L%cF0`J5W6YKAUyUA2NM zjTmT82HjH1aE4v#Bevtm-_g4`30A;s}-OgK)Q_bz?PaANsb3CPUrdbbt#WDw2gjEfj}qwC_jsVfWPZzH?d-?4V(`7kl0;j-=TtL?jj^h$z=na2E2P>6lB}eUfdV`pPPpzdWsTXL!7!w#~JF^_H?lB=JLDeHgk%20dXr4ZTQ`y{mbNIGoda ziyLsGz(YBhAeQh+`hllq^;D0O#s6tBVrfrW#vB47@^-viM1tw+EzO8R*tmWyz zxpCQiY<3~_M^d*%KRaCWvU>9I(^~3ivsWU=csR#JEgO6CuE69DXk}P?hzJMUV;wl< zVFNr?WS5m#NhNtXRsz!)dM^)i^7~WN$vd8Bp^OE{qiu%|=a$H&U0JMu4RKGG?%Fu&&JHV;PK;nm{^v)uBmFosVEW^p7IS#RF# zL*>m9yX<`-PBiZBY~65nBB+)W6CNBjyYTd{prdd&f9-x1ahB~zqgFEPYNR_5u1w%a zhx%01O><|@B7Ua}!?H0Igr>uLJr6lcUpZ-Cx!iZ@>e$EAWo#A2OOV9R(-EGCWNTGU zZgU!ob|SiONmtz*c$Of$@*DUb?%mxxO58^|9DiQoY~NtC z>DTtH$DfUDQGdPm2Ziyfd$jctoW2`E)*3fTjV~a^lPIiIS4%p-MCY3L&NoaBr4lVE zc=9|!0~u3MM4i!)v#Mqo#>GB*#g^_a>H+$lmOOvOA&*!K{%z;Rt;iRkt;$*zRmj{L zaS*dkUQ}O;NOEKcUl*(m@$iKLZw0Br?(nD~fuLdK&d$z>#i1hR*!oh5Yo5H3eADzC ze|)X-4bsXi+;yhQL2NCV4?g^Y`3c($(!{RftlhZ-j?fE!6AYnhNabYSS;eanfgvgJ z$u%#l%zOD>bP7su3$E0q5EeJFMH)&s`Hk$e&3=h9WnT zG^Dk>vNC@vQ$8nCmv*zvW-92*a6P7s@kyA?Xk+S6-O+3u&hk%jQF1vR-oCmV7|4nx z^N8DS`mrq&ZoUFQlfSgfLFfGNxe!ljudzlm*&h*`4LY>dXS74uDW{r zh??4__aB$Y{8`n26RP>FLGW zuDVvkN8$`m9m}RUoW6*geoS#s>3lYzF0|OIrKL4t$@3`Qc-p;jpV0856+Pl?YSwK1|*NqDbgh$D`uOO@=epA4@>Mu zrdtzIilQ|Zn{6mkazHFGze zr}Y?!eZ&_{TlXIsx1y-%Q8&l*O~O%_A7C$oCg+}K1`VX{&UCPgE0DWLyA!#>zGOz; zT9f%~HWNO|N^Zko5v2I=Axkrop#6U6I7cn)!W#xRArF=g zC#^_Y8VqwdOftZ4I+8!@X9lZFbEUG>4Ll$KCL(wq?hfS9m(~Xfl|li!Qk!QbGf5^P z1H@+GT3*VY+CY8gAT&0YtSEND$EKq+nM=+*xxn(hIrU-Fk6mJ;jNBpF4#|n<)K7j= zu8Tzuu48jud{EoqKn|O8zCKNFQ7$H-RASZ41BhqoMm%6wn=L{+Vs}Ee6?8U#5*4hQ z#e8Dk)V!O87UbDYXB~3638GnVLLJlHS9VWI<55A{`HOQcDZLbAlCJs9C!g*0sgkO6 zU7osX!IjR_@QTm7XIe))^W%n)DpSN*Sy@+jNOOL&7+yo_gzjyyB&a;jxw3CAXF!w9 zELRReLBZ7~*LNPBHOEex#PlhcGh%jYp(F0W8o z&p&y}Qk8R~exu#TGjl=dlIjmxy=6bXeQ;Bei}_TO2}6EocJ@FxM>Pp<@9)RNbQO>G zxJ2qu6~KTnN(n~Pl{=4TNJm%KhQD{8x+dnz&{3-fS*Wac=pWm*; zVwfLKvAkRkhra&7x2a9?-xU1>1c3K1Z{S#zuBNzwp1zc0a$UXi3&1nB;hA>kU`}O> zoEaB?b&`_a7Y znPa6$sW}9P&D1qrfq_FYqkc@$YW#6e`m zuwn-PLq7cN*;C1~<96NWyiIq1UuXPP+PL?OowiHA0SPJ_y?pLn%ri@I>2bh#scnC# z!3(<+ByO%{P!zC=K7Ow3n87d5;fkbbEjOg+6}i0!o3yL=ZVG5=h*i7bM>vEaPNTbmnx!z$E@PqD`=s5 z^%7RGKXBvgFi60T<#1>WS5b#draJzt>|xQCr>K9$f+qHHtyq-2OW=_jzwwxLdx%x% z@ox`&%1hQ|jz6Q0R%-jRyPQNmX8&`ql}%-Z!X;NKj1_>*n@Y;ATjw;H-k&_mM!RbG z6CWa6^^YUcLAS#>$u`z$PwVPvrLbIYv0mwDhvA`YhEYodDzda6e|#>5M%v}MAR$+N z=DcS8L9JILD+e!ID7KysXCI_rL8f3L&N^jDi_9vAIDXcdRk`|E*fh1Oe7*-Ni1<z!=}^0B8+E(Q3|M_ycwhT*;r z3#nR~EQHVo#6<^p-KNk!7$e8=X=UuP&AK!vk~&O*GN;q$kcEPE{>-$+$zFz=HxVh# z)==k?IeyDnu5f&^P~!Kz-HStvdc`#tR}kMR0BwgwwLUE1+$bTENLA`i0i>;VkN7w#OX3#OO|0YL0focBIh)*9)79q0BV1Po zdUBy+!A`t5SP0|H2;&*H$#$QFslin%zE(QMYHmW2C1@2T9#)^wS&StFoN|k0BUHYr z={(PT7{orl&}d?t;+peQ3KzC*cU7HWK?1NXbC-f8Q`5KGWSMoyLARzBkiFQZmn8q( z7t*${e$RE(o1NBn35lB;mmJ^kw{QIxNgc5F-!#>GgBaItm)##FalspVU^dSXkJ220 zpb5q2@$tU56dT2+AD2sA5baW#iJ0eVIO`n~(M=Pq%Wkc7WV>*Gpz#XMZRvatxhZO# zlg-J)UgB}o+~tw5L2Sy&e6~Ux8#`?s?PUGF;(l_7pyDiG`$!AJcbh96TUr$)M?I*s zfQqnL?A^crO1zazViUv2EgC1~KYpG(@hZX3k3bG3jcfEJo&rvWa(f9$@X?=;9UL6& zk}!wJBm2c~%WlE%2tISi%*>tv872zLw>TuVrzYAYYi+&|2<7;?rAP1wseP?hm>Mp6 zPp6&aI8N7klg+k3A_Mc~Sa9};Ta=vV%5I4yvwBh3)b0c1>=*I!<(_Lfr+Kw9jww?3 zK8NhKA}w~v3kZkWk^X39Tm!q+OSBg7;0WOWoqs4eoF$qrDAYB@$G#y%SEA8X6Q$vI z>%C%Z(4<{N6N6-5N2I5#=DXFTIB9oxd*OmqJjz53h)>;UtIvja%s#7m>YTV)Z~Xwr zgG>bwlRcv8N%ZKU97n{g(UHxZnjD9*Q@;v{t>jLWXl#XV$c+WPP37`ZJBLd z+Iiwnz}XI?bazm2YOT9b$b$oLFfMZ_2nLQ3XjHu|)`Gtk;ad_OKPTusJ>JDf&%NhO zt$Rp31trI;i><*9Pl~>$$K)Z6G|e+4*jHdCXK9o)dxol^^=(iW6HguWIx3*S!P2~2 zB)erUVPfr;*h!O!foZbMn}wS?ZKmcjpS%ygHOS@{zIq6UzJQk^V7)^ZT-GfuflW83 zyqH~gIhxfPdm4y%O#`*tP86cLFp#=BR1-WVuvcY)qsw^20C<@36yP9*F z5Dx?NG3Co~XtY4Go^{K91e;v!5p`S{%?4zbGMl6s8W;$eSGmuW!QoBa8$sOh5YYo= z@!eJLoAs$6{D9t8_=%NfS4m_89=Njy{XCyN(ZZi>P{^uf-yS*kWjL$Nh+Z2hpu@?c zANbUNR+FT|7vtR=p71yB9jDb{NP$~yW?2*i5dWHb^TrJ(iD&Ij7#=yAYF5AYA{BE4 znD}<_;Y7>tFyJC|nR~LQvbwXz&Dh}NJ=SIJ((%s3p>Tk41durzLV9J#Mwq5t=OKms zxrP=hURGr(d;0gHG?|I_<8n4OHWRjB(Y(nQ%8YBb5`CDGLYg|qvGIo*TwKT`Mxg{B z>n(E5Zpeg>)%Q3*dd4Lw?uWl$RZ4r-buJjnbozWAWl_jC=kn!@7^@M2ey$}bb+7z3B+Ye4zP*Tjj zS34;|wy8Iaaa1($q7q0bex2$$P^~fUy;s`Xq4z@^ANO5COlDE=hn_8L*@vTl-b*-Z za)-x3GQ%?{DCvR{8&&k}*xDV@BlpfUFw;Fk8vC9&^j?y>U(dmxIp9}mzW0;SF(RLx zpkDyIM98pcEgWH=R_A}g0uw`eYlzTwO!OD`l)&q}Efit+y2}b?X1ni>Y|9wjkDFVF z^jDo=X?^tCJMA_B>0c{tQ+)Ddk(^(KtJ=o- z(b-IkPgsBVs{wlmR~aQ~d=!+=Gmgv433rp&t#TTplO($JwaASFH&?Y|5Gnvf|MY~n z7kkD_OG@rTncj$qTz&We;Y7*U{vxrs>ilPLzlDvxGJ4%$l*CFnjdh-%Ld!XZSb2Z} zx0Rp2q0PjlpMUB<2rdmO4!O=IHKljvviVXdk7{Z(?ocS?H)OQu$f-v4&mCc7xe^9h zf|js$`tn=qB&C*rw3y#` z9Rpx|*(dE`I$yFs^VvKpzwoAe-?FL&yRYxPGViUSQ{4YemdHp5j=VhVpXwum%`&z$ zHCM#x#7)Fe*z4^YoHAO2OlppY2cMDr9z0fPj;453mC?5eDS@4#{I7a&+eNgyMPG6q zCF}QA<^vKB0!UzCsU12qF&n9r9LAp97&-Xl7a9^teu|E>x}P;jim4qoXLR*~glqZJ z8ZQs64CM})cqMxnJS(W&fA zK5u-^U>xKNf@NcmLN3(zs)f*-xBoNCPVhV#@T?tALcI>0Pyu6Vg-tdMof&iMS#4sV=BO6ihL+B$7 zO%Q{*94F>5?r98mb5sqeeoU~$k2CMKJXMX{V_+q$K`J{obO(e$0;9~<*eB}v*kx*R z>}L+6kZ#@*(uM-NMg=(QGTF5cAa6v50uThv`Y#5b}N&yM-=E5Apf zmUT7|)p2d`-7(@(3n)sTo!-ucP>3eS6)9S+w5o2F2QZXqq%>qSDWfZ;wr1d^pC1#9 ztpyz#rklQVJ`0(Hr;6J-Aih7CqyqQCuv~w>07*ReU;~jakYaXca!d`8qpMX6xxj1# zlo8hpGeuAo{pW9}PX9(l90l{x-emY2d>eqe?bQb8HAw2(u0!|mO4#-saVmDK$jm(@ zH=hRY3`~%p`MtkU7i4@UDG9#Kub*7KWlqE_fG%`&)+f(hb2$Crk^ZZ_IFxjBW&{kK zT}IJBtsZuM3+bQWeU5TdpTDVZAaiHwi36EEG(<&85pOs;$i?iJIh9APe4$CpLGpL9^)yRe?5bPy5TE4!2xc})0JC3D?rl-1t>gjAIMh%db!i7|SL+qVh>*22uoVwMPRyF0dl7l$(>XS&N$@;cx6?4s*Zf;~x^z!JSg|0jKL`&H*weJ&tL@`_LnBRf%a~WM73n2*cmFy&}id zhLAaPDKaPX{5$WpmWKVk-*pF*PE(^hk=_OY;^?@$o z$G#eYDu!2q2~5t4bBy?77un4_Zwa(0^3(FS#z|6wl?;=^4w!Xf2ek|z~isE++ zPpG6hI_mDyAnXb>$x0|(cuzNvV~o8cSDsk8APzq7=z9=l#c1-^B}kB8TMZL z^oOl?4IBM4GsjyzYQ+nh)tpOPqh{%W98oaPSt41~G10k>tYOl)vo>SQ14QC^FlH8% z&W%fBRw^I6?-)%>FSz=|8Xo%l1%CaK#B=sM(|TNB!-1sfCT>jpgD*?zc3;+I81!b& zWp=sJ%h25)yUuDdjlH;rhPp&#>m2)`g>1G6Y3%>$U`$1Aw_NfNu`6T$lxW2-$1kx; z79H`{%8UforYR;(Li{`~ujp3p9OmWe0Za489p=E6guvV~Ik#PeJ_qMN*fNb5tT#Wl z-fZ6S(-vY~2(AX}Kh8M?VJ;=(kQ>0Od#qwpgw&e~Xhfc1AI#{^DrsvEbiUX=sORr= z`_(*q@R^JuLVO&@PQsZVWJH7DWRhY`fBr8QF+!$6?04&KTU;LY;x~Q`$I_jve+y|r zhxyy47TCB-V3Ur`>G_+#8ZB941d%8#B3X+wMpaccm;|BM>?k^29Hgp``BFSx&}cCW zO0w8X8~#RL)+KvB({sy35ktT>WDyB(Zmu`R&rg*KKeheFG9$?oxwagyWWD!P49ZEg z7`3L}8Bym}mN8Rq?y~QY34fg>qIVoZ4LdwZq>53#TttFvWORFUe2HZ3`)~IPP2{CZ zl1Gz2=C31{XSoJi}7UGL27=g>5rep{Kk!vo5C8pfoERK*3-FY_|F{dp)j2w0Fl9`j5tZe zl^7OPLz}cyIEjB_W|Xw4cC@%ezf27qj_d&;x&E7dAFk=?aKtZG5PQKdYwzbUaAr_i zv(@pS$Z_&6=*@kKOiDWIsh}P#uM36lY<^exg0GHf7~3uTSs?4xD#0G{-|^VQT(F-4SWiY<`o>s3ZLLAc>m4(&v6r-`s) zq(#kvHMF)0pd(|VE4bS+{jak5O#nDGa660!y(fN0i?2o#`7Dfitj{6}`&!hp?^>D? z%)O(Y@6IcTKanJ9^V^j#8MCmNBd0AFp01!0s-383k;i#vr-;$KKR!jfjz@x*HIODh znWHeVUt#E<`DNfV+XW&dp>c@4F4IV9tv1818J5)FRR22&n`b`x61#G=9L~8qk9XC? zjK;=w&L5h~WiP;mV5))hf}*6#WNincT`}^{d>72bgMBe@3;i|}J{I;EXR$Nn?NE8J zi}@T5>x13(C24~Wx-+*PIAF~0I_WqXA~-xe(9;G>h3-v z88Ca^LcvNxL7*t)1`i)jJsA7=C4cF|ZWr^8(~m6&g?PFYdHyWb5|G9naVuMRV|RaU zC6`|q*B}w*Y54V1|(1+7<7}Zz;Bi$sj*h()kMmOMZe&{PIhcZ`&jIkOWSuBsUrbEv``C= zsCG`dmzg5#mZ0o=og?gJcJ2zhs$-6iZ`vIP%My3yMc{Dfx5P!X_PkW)JbQuRSJ}B| z+Nd)x2Kh~+oV?hK!=YpwMC)Y8o)%Qn?Y8%gu!J{@z|zLmb@UhNK8;vMyDei_tc@2& zMjXm3D|xplfF+IK{b^Bi;u`HxW!5c4)z;ZFtQII6exfLdUY(JLFpHkig5?)4ddMon zTH%LN#Sr5`^Bb*Ru+urU`|mxpd_~}*05$#%Mw(8N3SV#&(z;`pw@`6>AOU7}-Cq|J zT=#U|aGn*MZRT*L z%kUEWGFEL=YYyNI%RX}k{7?y@jah*JkEe3ZR?5*|Z|uGi6pSt-iM8K8_IBj%r+aHc z>(&^7`NXKMuHLxGKG$Cc0UgW6haAjUHYRRBVaEVkD7L-R$x4F*MB7Neeg{;hwvp@N zvE?WpJe&79v32ijcy z8C>qO5oPZ;P3$-3;&@nIQ4s;-VU2e1I&c5*`_4U=;NCPv1maH0gw+w~LsQAuLqZ+> zes?!_63-auDAujhg4krCyx7K^G&$yRxyDEU0pRmBaYl`0$ou*k*#Aw{^O-RF=V1~W zacDfmnH5f+(&qIW)r_I4oHJwEZ2n5`#VFBM@JwmWnQzt(eSGaN zQ()~r^=u@u7yzq_ZrM`vt*}vhM7Fic((X1&^_s<4QpMGm9pURr!ox|a2spYXwgS&$ zJ>tfDz;s{CediTE8^izY9Btaa5KI_bB=MTtvI^E8iXRqWm&cWP6fISES8Ce9+*0WD#?YkahATS~B5#7C( zzJ5bj?*T2X&)$1hz6DuW+PYEkQ**NjrXNqAHLn=z)_wwWyka+9I(kE%M7o#oAs&Ck z6QgM4!wX%I1}|2N@}|-L_J;)pd(qcD2{FrBl^vqUZozcA^uNP^HgB~Pv`S~%|N7eVT z-90q4oaVD+2>?mR7-S;kr<%Zhn&_LU??f3nH+a$0+D+`Lh#dt%-u8#=el}7Ivx&nA z=C?5|IXR~V1BGD^%fgW0sX&N@b(m3_4F7Z|$==9kr?=KzV;^Byz}|Tps|?(HV6h}X zll_u8y{0d&4cSzby8JLhwQ0G5&Sko!q?*j9MX+0W*DlexDt2a$(^$-zo>wK050xBq zKc}mzfdLvgTbS2OXTXObJD^jQs13xR7?IQx&{Zg6@!xJHg|m z%_>g5_F84(x=~)67A?wB?Kz7X1VSYD#qU&>w<0Ky~UsKqt@@+2u&zaVot9pvbfhLb_VS7n!@B zMdJM))xYhhMFH=-cB260V2`(?A{F2dM~||>(j@yp>F6E#hif2&k+$nNNTL9E?-1PA zm3K68%Y6KmC>~_nAIC`nRfdWMshC;MhgZxkVg62{?o*ir ztpU;hIDU{5bWlfmp=E3wh9CC%Dpy{9DB{VpP3CiF*_+gCbae?ls~$cYgcn|XV>jeU z-W!=vQmRl(JsDU)1v{myI^8+t?VuJ6vGQYY1_r(XboJ6v;!Du+Nj0$Fk5n_!tI(H@ zvW*mz=DoX8Y&9|3%pvt5w+kUdW46Q6Nhgu?hrpaUz~Yo67?h~XZ8b-EvQwiQF5rW# z-FxevQNEw>vU#THTmypAiStbR@?x%S7T2cF#XIKT*z_{JJ!Ruhr2#}hL56AcG>4Gj%n=A_?}%>e6ZNE2f1F%eHgEo~!xaa>8C#%{uk)9zV1*my&)v93Z(ZI0*^_LmX;`~C{K%$gQ5w(K^<1s9lOsbyEKl)~I7r=YM%7*l(EXBUt zuCjP#j6V0GMT?fnOu|V+8tOm%#H&f~UxqHVI@u!MP;uwC^z;dT+?ULAuaho^@OCHa z(I|$>qXL~D61^v#bYoZaHcTpGB5zBuxGhi+Y1%5jug@U2?Qbp3@saVpTXk7cD{hrVlx*9Lck47$e98c|6}O+-vX_dA_*G-iZeT1D%o zB)rPGy#4;rr(JZ6=l0-Ev)gm4Ug-2IrtNO0FC|uNyq14Y{`^G6acnIeFefuQu-Ogjh|~;P=-{ zi5`e4iJK?c>kWb`hr5c#C0l|R31x(Cx^OaW&6wQ*HRV<`iSkFq9eQn10CuF zePFYV+9pzV8}qGwIkBy(xcJWwX*WY7S$#f~`r%^lBxh|VzDe|s%PG7+ycan$plhKs z*jnK(y+QGVPX**7i~vPh$h(>wIRYL6$K-IGc|)b$G>G$HU2u&Wj$@k`#00eWUNt&2 z>g3Az4^(a_-E9{kgeMyoEo)>P%u2IrNRLWgIXsPJxCbuF<&>hmL0b=9=^elnU|AT^O4 z{Qn^qI=MpZ8gE(BM@h0Ppwf`G`KSaG%dGG7TXLQl7+^F^8q*EAc3JyyJvL zRFO*9o;0M@#9>v)2wrbWZmR%*jOw{J+rWA|Tc^_inTp z*uDBUi+8c1uW~9YD!O`FKwL7zQ4CX)EAU|mhr5g^Tyn_gI&~^WO}3S)>oWWa39fa3 zS?`@ztDTS0&J-M-?||~Jjk$ws^-%mU_ibshKxefeB)QIMjc>Y9W**Eu-nhW&INLk{ znasWVG{=;YYEXmdhDAY}?xXrcGQ1C@D5M3~Q)hWSCi_4vN%77mbqphHjfhN*nsqXT zxo)C#QxHX!`JMaFiN1CtgSCFF3%-8(N!?$vN?&i_idQ|MZ)Wy&Kf_lAm4OD{IFxzJ z^&W~B!A+-w`ZALA_0CV{yxZL4lAl%YGuw&L9uKDO{DOc6J&dAq^56K16$k!scOoz# z`oeQA0oy}b#9T;I_e8U{{txZd`t0dvte?zOTAq2=Fym$nlRxfogtJ(W1R3ENF3ma~ zp*7y(nNmMB#HSF4n9C_fhnz|;cHb)0*>i9S^1>0i3<4(_2%88FO4LO;^H#2N9u8$! z+=~Gt!A9|VkV1vEe}{Hg%x{uz{N%UGm|_o7hHB^DMSLTW2Z=8i4K8d0yFNNnNrXi# zQ{)*k&f-(F`TL1w(Q7YR`+@jHluY@v_`np#-$e@kg|MHA5$GZ1APHFdzs{Lhr`|(gM3QWe4wHCZ0)EJ@MUJWaw)6~o?It4_N7aq<)hN`=NM^G zQe#!aKiD8HH<^kfCdha8{O?Nxw*)1#>;-QLB~EhFg=2<00ShX#c8sPL6|`|YH`kW- zq$UOo;Jcl2^xm!<9jq@5EQu>puGF`Rc2K~K*_lq;&bz;Qu~3Ti>%zhnZNLqrgs)0? zQTK)r=Y>CJP7iI5>P?+C7E-Xp6-9u|Z{b>B9$<{@F!Vvas*y`q<_a2@Na(eKXX4kmJ) zX{B+B)6Xl8ZA78H$+EE80y#AM1L{dnt*X2{MsHD~eXilfweZRnv`T+II`9vtqYh{4 z4rpbh_=b-wvyM#Ax9w|R>o~rhx{96%c1(djw_0=aI&_5Owl^=$c&f0;`W}21>nmnj zk=6Grp!E!r5ApD(JbJwDUiIN7aZc)uwzfx9VTFdK?ROwZ9Pr-t$H_=I2p@zg5RMl; z{{{To*$NR}g$JG-7R()A-erm038XJ_%qHAjk@9XrHOpN^T~2WLtkofX(lEZ)`g-YU z5AQy4F8-Bg-am6QEP2&FZQzP->)R!uRJ15eK2OLI^QJUj1uKAS#pdGj$}=q|c4iX( z`xHytuH)}XnMHGi%ktFDd9DOX6o2|5Y%|86d#?#i>GnICZp}^miy(0J#sPey!jB5} zsyu(*+IwSuRbthg#*br@=~nu1G=LT-+z`FV9^+9+$F}MpS~=m6t7bO&mV*(2q>_|^ z<&}mL>zTXS=5*+)9oTB2I_Zd*gG0Tl@VC_ z^d<4U(jgqYb6w;{5`OV4F1jD2tXCOywc*2Q4$mMF`rvBWz1?Rzx0lO^W-G=tEL8Jy z=@(7uaT#e<)4rC%wOKXm*q!LhvxL{|m@{L6LRh?(L$}=Mz~8?`-MmE2LKtMz89tjGJfK6R7X|?Ow^;lLngdHyR6XgBmnlk_2qNA znQ+{Wi^I>`{K|Jh!!_i|J3OscWB>m9V2;6JDI8=OJ^wXVn6A_0Ai34l;`HR;s`2j0 z>cqIXP|QrJK5SAMRp+_<4@DT7w7ty=;Ca8EM9$h<7731wy)TE%ICB4bcV0;-ro0nJ zxze4*J6P-=6tbI*iv>)|MOyD&OpT(N;F8lE$h@#?OI5nlMJ=kS7Ih*<#>&p4%6s@N zqOF7f*p~OEKl$)krW&B5!#tz~vfmhJbeTM(O@cL-!xu0Om6@41#>jbWegTaBs(!C; z;QB!OAP~1-0LkEjpoX5dAXf9CgSr_9C0;-FjTIOyZVcOYM!s0wznhv3>2h|W4?4_U z^(tmgN`U>PiZg(<@H$wXcIIA!;Wf;ZemJ+7?aZ+h-mV&>LpOHo&sEw8ls`#$IlBAb zA2(^W6NIHW9t1O}Iw>0a(e*<8D=4T#I(QUHF%l_`rO?r#*e|Ra4%k@B3+i_ox7T%0 z#jI5T0-@@}X-*V&wlb%_-CMGvAYa3p2@`)7@%VaObyW85<6N##wlS`S_0~vA&`+q& zV8%4&?UMPT2$>HXYB|&FCiS#M>9*y{0|0xXi8@%r#^M&7MkushyGjD>0nE8A^4^;N z&`qkjUg@?n#4q+BPPVRIzG<&7q8jTkwBCy`TxXd;Fp(Ss2x5_rzjf*}*W+I1R{Xeq zf?Y)5SI*Xb5@rSIz)W@aGuK14Da1PR$zDbD2mgW~;#1iW$vz2Ue;GLkak$d>`sDko z!vI8_NhA^bW!A;rMf!)9r=ZH2FaV>A7iivT&}7k}we7C2YquF-kt6VIr#gEaOOs?Y zE@QP_R$1=NeaFLxmN5Cy=gCTeKrdF3HRGbje(xVp4G32H*fqq=q*aH0x-$ih|A5{7 zBMkzsNxO?OQr_$3g6G5s3PJ6!N8Sfr=dx!eINv{QsaEDp{4B)rhmh>Ow}Jv9DYRAT zwjt9qpOvm1h`Q-8$mX(;J$@c^eY>ukc7s(oNnOc<0+Yr~0XZc}4tK8B*mddqbx-pN zxT19+TQ5Y@r)iX0|_U6u< z`SxU4)$@#Z)}$K?afOTpSgCXdV9p4@@+-leSn$gXDWkka(fKD2{HON^dBd(NjLZHC zN_KvqVVi37-~?%#>d%I-Ot?4>3;9aSV(_q2&K=y|urm3EAy{wwW0};HiH*%+a6ch~ z_Y~zgEdJv!jXA-#oShP{%W9uSQ8;<>$vziFJm1o8Wa z`10phjYzPqZUyR!UO|1K5N;#fL?+rYTU$@Y2OApNZQKt0@Dj|3z+}_$286}JZ^Bn3 zpkK?$dDsLgtb{~T=DhGVfVmi}e`=p*&V(Wvnp3X9eXo)Cq2@G@&{sR|!U76`j;4z<4Vj6KBZ$|?RfAJY);W8^3fwNBDu#O zw=?8ULdhP8(td?Pw+Ekwx%pu=4`*R;@rG`MJIRED3k`Jv9lsDR1VoM@^22>4%Gg`U zWu}9d!!_&@>Q0h{t}1dgZwL*17~_bbDTOJ^Uy@hcQ$>?sF#@$Bx=YOc!MrF48!Dq< zz|407e4bpPjTvdc&hrWikZO^uvsmzp(z|y9zflGNc~4a_G7j}68Y`o&M&AjA)@XyTxX>$}u3fu!LDL+sD`GfL zN&ANd0GLhqI;?F>K~ln1c)h52?0uR0+0=;&_XDuN>w9`PR~zrlt?*7F197QnLK?ML|Bn8_rBFX8L{eLD%#9T43W4=zPEaXS#w9JV2^Njp5++%TzY@`QS|@FylW{m-I3MrgNYRx(+#IiDVMRc;}F`I_dh4DKwvLxLt>=~ zp~=mF0AlXY3PZ1QH0XUbT%U7J;{dRdQ*;C+>)g3OohK!H#UDCBe*s-Hok)w$9px&v z`{C+x<}DL=6KuskBrm1RM^i=(R?9?PMHLnoS4X>zXuL{7RfrP8*UvBF>C>mGEp<_mNo-+Kl_ zMWPiL!H8RZTUf}w>28>7Szz6e<*D_x-Lmz#vnPzwsIZ)a&&OeoF{{WMUc%C^$nV|Rn4b25qZcu zP|%f8p&fu=4&$0bVVT=TY!@+2Q;;@-oBbGmyMMJDg54i!!h;q0nS2Ifh>c_x4IPsl z4?YK&LXpuGpk5{nDqL(w?u7rET8wb29!Ztl%fKt z(l8SICUyPMqp0vF!5PWXdt^dU6_sB-{HPCRRMlu5FODOxRItnG92ZaVWtuYU{l)g^{>RK$iiXV(9hS`=%bA& zqD=GGPm8ciNay>fU4rJK64Xrf@JpqYz$oI5^Im~p|Bl}7`pH*kMf55mAt9HP=ZBhN z)=s{>var;&musQ_;awpbw$GeXOtJ!(cYO&!(+f$whHmVMc}hkF7$v@N*hT}nMM*=7qQnnZusQ6WBHZWMIYO476GL{R z>rRdTSwrS17ba1$&5uk*i9qw*0R!#(U?Z)MB}d9@BETV#-^eR*m;1z%5gxE=FDmCT ztrHy6{INlR8a|4OQiC}dH1mibfbQ`P@JQsEI9Rl(3&6+T2Zj&!3kD7Ru}ljX3IHLf zt&9%&p~HrgAAi4jg@`xbZt8Gy=J)yvFBJk%1YvFJrrt?2)LrV#s1lE?lX`A!=OH0o*-$pk)Pg(FGuw&W~^EIXV3lplI5i-GR$ zeaOQ=6vnW1%i2e1=Epx*U-XMo4xf;&Qw+r6pfA1)78m!o%+Mv3yMp@N-{D2-;eTUM zrqXTdCLG~`=sk71xNP$oKCY^x1FjC$JV{4OOKS9Pf+?)15znNF6}7Q(8+@nsR+;+` z+_le&8^x>R5~xGP}l1!XVrNk8CnCX4`z}iQ3dakvF&;;!$vgVU%|Cel~-Vqh??@6$(@5!ITDH>XSopYu`8FVXe=#Oc?BL$k3HeUXKGIJ;q)0xMM*!PgjiU z8dRiKdp|Pig4_Tu6eGSND1sGz3fI(gYDXcm3ckJd9I#9xLC1)Il*;kBOV$;WJ_*fd zt*UA7uz_fefn-ff!R^urW5>Pbdd|?W`HAbNSB?`IG|rFJw2^_tj3-?<4xVS9`R&Mi zy@MzD;gv=WMpE4RdL2od6-N%Io*nG`=c1hG^p(dM*O{2({HjR zNbSlA0fadFl0Xd#D>G1|vd(+`x|q+t_U**vuVRsrkv@j{MvXUjf)e=n(85U`4wrpL zj)>BbZ1yM7)6zg~!g1zNX8gf%83heIz!262Z}(tq27P|cL+bYQJBiLIXIcUWI(^jW zFl#8aX@p~`ybqLn#CB}W9uF<#fCLr=d@Q|jWAk3ds|by_9dpPfnaBm4FB znwq2f$;1E5XJGK@-)oM$PMnA5z`$?=pVB6%jp^faUl|f3b$C`a^d`?E3#hZd^IfE@Zp2p#8xn%?A9Bmj+nMuxyD(+KI%-_e(pu?Hy5$!7@1t~rPKUz3j=6O*;BZzfAvDH8R_be&YU@xqQBPoOy8%U+uqw9hR1pex&oz zdzbNk%p$K!>`qZnZsy^fyDN`Y_{mN2j!99d68Ki%QXD2fszg{HLucAb&UIuYras}!y+~?N$k!_cDJIu`{K3Xsa2epz9PR6Yx#jyoC+Wa<@&>a+ zYhpl|cbl73His0xY~mBqV%@@7%s*L0db`2BAJM`5&T;@spkTFj+O6IH@!#Mz_h8nopMKAJ z??bhco*Xs>fhFW@vz@J2{k>s8`s~e5vlxOZsZp!LNduJJ)OB`clAn#}u1JV;f}yRj=F@-UJArHXMV9r@`tv%L?di#788MjEv2kM{#x4$rjU zU(fWr5X~H)pMB%L|1uaLX!0siKm6Cv7M65yq)#*4-inZ%2t3W|Gk^TAKe-lDBsUkc zReSl&mAfwggN-%M{vbMlDhKrD|8P5)Hj!+p08uo)&du%lPy2@1qbBiz z{NYA(#3=-aIK2;w{-lX&@FDFE96b1W#B6%2$4~40=JoYQ$_|wj;(wD)g;aimiPCGG z#|n$umvTV)z}-+qnuV=NO&+~T3z)C%Wuvy`P5YcbGm(Lk&=j4o$TRz(x$wMT2;m%1 zZrUPni>%42Gf^gu4HTnbsKMB%yY1iaO*svo#Ely_NI#N{Dt)}Jf|?~mpa^Jcc7UTs zN*%Z?r;2eZiT>Be&-89%UJ`{9I4tWsN+t)BExvt~D#TUjF12g8#s7y#y_}3*X8zgi zM%=}wz9)77tUufkbg{p6n~qAD{e2?^OMBIS+p-CP3?({$x&}ynH}sr(c9CgS%xM^q zUZ4Ym|De%6tGm+cYx+o=C~?MxA>e+{~CU$r!n zgT4@P(jA5)fv2*UlO7V32K}H&n_|{4{7T+p3<0srf|sv8JjeTzwFHb7FIj>qAN$F? zi@v^6^+?RE)AOIfxB+oOlgAb{_`dv2AQ(tKOi_&ydUdG3o(RnWoe|qti*?Q(74~v~ zrTFG?WO3zmK^5?8!%?=vXLko4_#HXNgk<~fC^W*_kO&;W(7DP_(}bU3n}NIz{}jHA z%xNpih;x5^s?7Twno!_J+beD@=mKmu|B28juzyjkCC*7;|9onx~a(&z*)JD28gA8+3qhoqa+7vut$jvE=OP>a-Z0` z3aa>>)m=cz6q>qNCR2N33jM={xnjlWHd1MX8z1?Mqg6msvb24HTYSaQxU}#p5qsL< zyio;@|3{7z5ZeJSARf$4XIJaK?J!U-iCao5*#Sjm0*t`3O zG1Z_w{9%yB?~A_P6A^f(4S~jGUQ5D2!wAh*TN%Z}WPxMnYlHBG=>Z+9(i1@U$twjr5i7OgT(qNA;jY@l1Oh{ zaO?hj`60y|_`SLGT+=7P&?d;~D~-$~t4vJqUyq)(EqV7qu-6Yk*#f3;$OoNcqy{FY z_himYT%oKAy$?_OGjyH(v09m@5%oDSCo{*YvaF2ibd<2wIVo<2XU6+0b9CYxV7GEd z!su$wVvg2N=pGk?h^|Ry-$vcwAA>n|a7P!9dO6?##wm=#t*t+OUJ} z3=l#*wei$0w?rHU+=O*KW`{@5HeI4nlr}Qmw=hCciB3MFS=96FnhS1Hc4YM2mWE*u zD)Fo8PvQ}PA+oN(3LwhXith2aQ>dYA0VXiG;z{x=g|JYlkPzmLMAWQ}4 z!B8Rd2p)&KD%iAiGRLYNZZ~!96Eo*7c{#aC+N6Z4V>X>~PdX}NVniKwq|$IzQtZEi8UATn8Dx+xrwT(77R*s>7Fx7qaZyUe%^~G&uv(< zW(Vd!B=Z_^(BOm6_%zo?$P5D>;ek))y1+_J@Ex!Fx*tfqyF+&0_!^7z0s~}B36IGW zvKiXI<(H}o#O&Ntbf$)S>FrKjhPZ(t#oZipSO~4Q0Q0c{3dr4AiqZ4MSfrt36@p5O zO`kkaZ6^143B|3B2V|DCXgX8=4l3g2Q6lTCxi!Ux=GJW4%Q8MQrELe;3c2Q9^V9 zmMNVZX`_1KbN{qz7+bky&ZV0;SKHc5FJ-+SY7zeyaPq!B*ehV-Magvg-;~5P?GhZ6 zsvRAs-c_hy65@x>My=*J9F1P(VW1~uBq_F}4!}#;D<2^qV?f^9pr5V)))I==ItJTS zw%c$}{@w!FQ9sX{E$gov?Ok6b4ugK5UhPT&6gU!`*F ztd6o7Le#16|A)+P>PP;=j}H|its*0zKyC{gB|k`1kN9G($YhKwMkJ`+|YiD?&jimhm?Noxm#bmHCIA z^=_@maCJpuNgAw3Q<7nldj`@XVTk-7Udt$yA2mGUu2K zxyMW)GbCpoRmF8)6bh#vZRa+vGV*|ufZpSaB0UMsbCN-s!a|MY9;iy<9r{g4ONP+y zqmn+%S+Ae&A=yC zB=-U5sw$#LIi_d9dy8mZ0J5yznuD+!owL$$FG5i?(p88Y2{*niHebxgu*iQBX<_TZ zH@HZ*Bdh|28)w3vYy5D&w2do@jEI0U?p%T#!%1&x2sftv!8h&!QETlAd7H-bj!cxH zwvwPB({eXt-|y61y>s6nCKTm%(VI3UV4;E~!W+^95CrjUnA#@5s8;z^MP4GNh9o_Xv@g1Jdg2=3;) z7NRFXP_Az81-?zvcPb46z><|kp36vQv(-$Q0JM;92WZa7Q}wU5oSNXoLFM!YXG3Xvgcm zG62;CF`vE9i!}5yCi|8*)~}dAq0 z-q#}}mqc!W=qyOH!%wND_iXbTIlEK!)~ znU7H@Iz(|n0tBrDyPXV(NYCnjrDqS~`+9jXJJ-{;svc4R=X!r^BDki- zpA90KZP&3L2i$TJ#Aqc1jd?$Er_fkEzNa0Nst0fNlNx$xHuI4S(8fj^CMz(9ZE(a1 ztQIoMmR2JC@a_YAitO&W?pd>o{BaWC$fDUTOb;O&oe)F;8DvAW}20NW5Vv`L^Z zB*XXkTvYMm0_f7RZaM~&lV2g_C_pkggJ^Pz3&=h44e-S>ao6E|xu9OSY#zZl7+-P- zA-jI1kYQ4~7TLQhhGX2Ow#JvLwOczQc}hl(CP+gv>W=|hWJIk>tWH7$V5Skgf+&qF z{xXCZ?hF#@yp&0OjXz48P%Kxq7zAO`2JsvOO zSb{AUX#HZgquhzE+UE{{)cdf>9--zy6?FheYKF`B8N}^&LUkam>pk`URHG9o%piM` zg+EFELxph~s36*i@vw_g;5%Kg;f}0r1Tai~*#QS!iK57C*#4c8fdBvi literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/dbscan_silhouette.png b/src/comparative_analysis/visualization/dbscan_silhouette.png new file mode 100644 index 0000000000000000000000000000000000000000..7f519a684be73eaee27ab61ed92b794a5940af21 GIT binary patch literal 76753 zcmeFZcRbg9-#`3SX{czSVO3fpl#;EIjwm6SWhNt|>`h53Maw8Nk`^s28rf*?!#axh^+xYJn>@zjfuqt<`fE@7WqF_q*#Ojg^EHsDRD%> zCZNB`+Tm>H+_K>_U*7bvSo~GA`(yJlmHi$cKWvkJAEWz?TK8>6sQS&&MPhOr=yRwd zl_bQe7;h>62zp((FYM)_a4xRX4INXna_dh%^6}Yu`e#Y^teq{lKzB#LkU((v^OHdV z-TIH^X(ayn)xjVfaDlS+pI_e0R%_P%^9QMG|G)o(Cdmkyz>o@k&KI#4(ik@1Tl#3{ z>DPYhv8o3ZViaTh?}Y8widlWQu>9GvXBGPQA3s*u*|2@uOu@-5qifB=STwEpH3$zH zJ{1?gZ!pce*Hz-bosEqm7)a~AS4ndE#{jR>j7`AdtGV?%1WRV7#_&cw&T|g_V@0pS z?iPM{e)17Mzj)r(&Tbn!`;w%~wI8ytE#@_C7QT4t(idH|QbVzn%e5Cvs`k~yUFhqV z@7HcfHooQIam>c%u!SJAVRf|IiuF6c;!{ia-MfXak9*#f?sFmEMRMw1yclvJ&1$kQ zK1(+7(&?E#jrpU>${XX(r(PduNYUx7ii(sATWVMpspV9vq~YlH@+Idk#nXcwf!57A zd*jouOL=p6_gGC&40+vLy=4*Qb7kd&$B%E|8nr(?+~LQgwJ3A$=Vc4L&8f@VUc0k8 zO;XW`&F~0|h*V@bJ1e|YUh99zIM?4a^S0Rh%=*hUFR#f&m|HzrSZKO;m~W78IutLJ z2Heh?`?>Or@W_&`(!k4>2P>n_MugP%alJSftD3|q&CbtAPwy5P8M(h@(1mI-kIk^A zhk;!N%K^R8_c8IAcbYTob;i0%^c&w^eNroF5n>PX61|1Z@Yu+DHN$a zcbSD4Se<8ho1Nz!(?<*U%EUch7$l>sx8%0r%WSV&vJn;KE{n*QE?M{L7^M?U?<~1q zG<|w?i{GR%`#_nn>$h+E-z)_AOd2;z`*0?t_G5yF`xDDT?Z$h{dn|6Hr90S}_MW6`Ph~_yz&!rrD8{ej8E@-iDjZI!yntG=9-;0PO=FKZocr&BIk3sw5i%q z;O8ET$uj3TSFBIA0|zQE?UIs|T)I;x;MUUBo3m?c8MkiT`mH8*%OR6S{e*z9FJ+mI z)5G7wyh6=73(0WaxpQ=4uxX_7j2P8h$FzMtPJT?nHfu8MCnPmB*{-{~RwU}3@$WXe z+GxUhN84~Zx$fOALsiwyJ5Tw!{2cEid+^ASBateJJKNgZum1dQK$(g^@MzbWrIhy{ zK0NhO%CWqV>9DCxWP-`C=H-e&8TaAgE8mA&TDq?CRGZEIw7k3Nz|wQk3fB~44$@8A zwdPU_j};$?JQw3LHCY>@L>DG`@2INk7h|tuT8B)V?>>IK;rl>CZKJ^Q4%U=CXJ1e# zqO;%6dYIoQYwRQQFwN0lYfMW^i{cV?!YkCE@&#?Zq>0JCcUA*;s;U(5(X1*eDwBh0 zLp=KBY%kBJuEWkf$nF2|;q^ntU%tM-z5ZKO)cU1#EO*aF$Y^2zO?LWfyfUojcyqZn zPGS5ms~8LZ;dr=|cX_;q*pg+-bg;N=dcu8Q88;l_R8QYXDNixgIG^RjT;$7r;{5r5 z>X9dhuWsuq3-+pvIHS|{{&rVS%Dxose4168`IfV=u#h6-&2jF^xALtH-z!ciCmGTw z8#ml6FE4MX5jOt9$0X*&6swl<;TWCBjlSA=oz6n3Fq{b`~kW(O>({vhODD?1_8X5|=X3=~ZI0-`5LTd~*pBvER0L?@HWE{^Uq| zf=+>FgVj5c(U040THP3j^BFb1;(n8#&e!V&Q&EB(Mo&_*r^dP~Uh7JuP=+eStJ_Sr zx<7dG;4Y6i6Woy8_i%6- zh3W7Wig817{=F^yWRj|)&#i1oF+G77R-g~8V{T~ccg@%xULLE)Z`6>y8ZSMLEzsK9 zdW}p`{vCRo{)B=x>(}cHzPXTM!i6PYTACI5|a1H;LaC%=73+RI}1 zZEHtI$JeT;vy(sj;zw}#PaDq5%dd-8iud&M+vqQLbN9Eld=JW~^NgJAUwY|WEix*d~{Rzki^gTMm{WTGcMYeh<5aQ-FV`q6 zb$#|x^%QQNo?_WswP);2i}QR_dJ}HUFJj9*$%BSfyQ#&wR9?Rqc5F_!rEz)6Z>pZ) z<@O2XT0vI!ezZc=Ln$e#*M2EiT8~nT-`jNHLznqVLEF*i)o&Ub&yQy>rrUky%o$7E zmWM5617-Ys62m6^DtUI{LY|Xw8dw~~!O1|3I z-cu)kJbP8kM2W^OIaJHKetnp>wsx`C{LemaYVmPYFvI%(ek1P(544<&3>jCfSaGP< zvBhy>4+bR3tW(OP=Y%Jd+_h`hqR~1Oll;^@UcY|L*%hmtaFj|GyZL3c)&Bka6|Ah1 zr$*4kH&8rgISLEC_tH}iUim5>V_O@q!QVZO?#6K0k#v6v`73|AFP-Ql+ofVZs_+f? z^O{N1yRE{)OqlNXe!MzY`s;YpjJjthTHI4oQl>`mjTcrUT4J6s*REa5Rx<9B0IpGY zp0)Jop6IV%PbWM~@njYAJnes|=_)g;6I6a4srF!)THnQ-G55^8k&3|V6pJ#fQ0nmlYwQ7Nv6yOACTq6&%!ffiK@636XGt%X)f5yLF%z|RKrBiJ9lu=+dirL&jAn=N zudxn}jV6#;7iyc&X%NjZ&&vr?zp*^XaQy#hYHLrO=|t zd(>wIHzg-iQ}FhA*iA3H^z`)Fu>jwib+A7 zK7wJD#OEel{Ist4>A|8#-tV}D?6R`5(6Puf!J-?*oP;s^_pow9>?a1l)g^2n%$y!< zFj@9-h|PYg)3@T4*0EKa_AkL*Ep*50*YAuwoTy9CS+;8F;_r4MJ5N8oc(A3aKFH7S z7Vfmg%5jIW7`ntVipN&_A&HX{IxU%w6ixGQEiNt;KI1P{U5?zw3ALgdlrrqb%imtr z;XMC#O?PSFF}$oI>g+D^l2Dylt5Yg~W}muv4`jT+xT>xi=mR1}M^oWyd3J1>#PQ== z=v#FurmS`ogZDg{g+kRc>=Y;Nd>2u0Hznx5?DAYcAVLnm}rJcDDE`ro(F%FQZ*Tc^)3#ioKSWPp_NM82Hv|VDsqcD39%E$5G!s zbyJE@jj6H=Se?&zm_2#&fSvOA zTO3?@bv|ffEn!E9q2X|SIg(^p{mQaW@zhhk6(B8pGw0{*DdN~YBOkVy`ZZ{2sXL4u zzv1Sl^`pNYh3n>2kQ=5YcX}wxH1XJ%=2L+$Ff5e0Pxj~v$JIMk8-JYp`~$pvDck&= z*PnL-R5bw@{0W7`&(_vfvB+O=3ysNkPR>A0ft{ETBqub8T{$98^vS;3SHTM_nEKZfzOTcsTP?mVKa+jP> zw^<8HI&AFzpjw}Aqo~7StNyxc0P73LuQr|)_w9*Yre^8#r2#wp)#ciKHgc&e>GOmVBha58I~|*N2zl< zP2lBAmBjl20e6qN)3%}lA9bUl=egP@aVl6eL%D&EIZ-9?61{CP)>Et@*Qx60bG*<4 zo#`$pc{B(45 z96{kGRp_t3{>ny|l8sjv0ftO2??xMYX4zNcCv3Z)0G{39!((M)jQ0N6klz|o;-@lg z-D#O~N7@Ud6|7H|`0*|VM^0)^>xjx^H!iJ!M2;CwdiVHwphC%~Zj}xE4 z=OvU^SKB3HYzYy^Ym+sWa-kjq+0d7 z9M@&BU3$8@PlhfiZm6W!rWVo!b9V=<>Q64qsvKt(wkhXuZzCj&@>OI0CnKPik-ErR ztXcnK`A_2xjg5@#G224G=i3w8C>>p0Pu=a($EWm41CD5GhnC26Km6P`PIh~d3Ht6d&)q%Pg|z}(RMTv@az+q~2Dlp3wFAM06Jz0hKc{dn^(MKs0+UOG-Q+h0$TELslE}%&=N5t$Ok?<;upyrxHE5hP``0(K?n-T5FsVObcgf6Y)*JflML;cV} zfvH0Uf-H6oNTm&O9J+W|weKkEQi1dQvEL*+#xjb zgv4?LI9?7t_1n0e`LYj=6HV@@w+yzYetz$9#m3db--oY!r4T6xjN~gud4Y!SkoI}p z>z86wzYb&k9?Fv!kZ}lhI~p+Jd5J<=1fZ>f?*7G-ESk zW$hTG6R5i*AGdn}#L)p?O8)iNttrtLJAvMgXF1K5Lt&_j*I=dJt0-Y+wjWhtDIFc1 z@I<3|m#&VE4&>b7-kA6{NCeAiY4N+uKiu84n4+ACcX$hQ_=FYf*%MS(oB)#L)qg@FQVX!nbzkjRf(nZISLxF_^Sl8eG zrZbOD>^%V{c=gu(``3|yLL+_P?d`^$Ie9(LgGlrb?By4Vnh85EuiWWi(F-EO*^8qg z9u^i9oS2%NjKl;-PEOh+nRm;?bX)Y-$C+4HHN2j!S=_*;M!YQdikmI5OZZxK*rlLYZ*ytG3<2{upj!Q`F2Gcp0pnbd=n`6Ao-!vKut}^Fz5qDN3fX8kP4Grq-&@RHkM~k>) zqR+)}#45&6$d!6@@7lRD8lW)}`>k_eAQrvs95#K`+pFzWKL#3%2hSeabtXt*c6vey z15j92b|y)`;wUzbwHu4|Z?>zu_Yq{77!=_cD7l^O?O_;)=c03yI+mjyC;g`tl&y9K zJI_J1fXZfMK8Jcy{qe!}bHIYAWgM*DtoONDK_4Eepeo!_%_L4N6i` z5Wr#p{`Wv!CNpx-s$ZFq{^}q2h!}O-PWtM1mY3-_ZHh|I$T$axat=G83Tyvm4eGH& zb)?*ONE;g{F=J4TF889gDXrdeNFg&blYA&%FTHxxeu-HCG=?IE@h>*e5XXxTlto@D zc^dWV6%T&53PN}+mPs|b9+!`ZW$)t>)jO{*m29pKmuAEV8#v9{L(r=pY)bRUpj{A_ z4EUt#H;TCtBzo)C9b+^m!XOjyJ1DF5^_{;QnYHw{e>n>h65;nDo(sYA zJwFhq2UjkX#=h_#+d{Qlf3e+#jYs}4d7oEL{ri$g$6C8qu3qa`&-(SB*r!|m{~!Dr z3-b5>%g5t^$3{Vm-B5Rc90D##J;QgfU^@Eu-zibdfN^+TGAswXp`;T34o{BV4tl+{uYQfTt*F>88N`l2$VLU>DNKv~$4aIgfwvTz;PY~(z zR6@&dN1p#*IE(89@&`oqeN##=JoE^>yrVl#gAME4n;&!`_tx6&vN4KWlhf0AFkPUI zX6tx~+=Rg;l$0zJCZ6eCV95lhImn!S$f7WKLVPLqq zS1C>tsDWr_1R9}s9!^t8pk)had{ zmV?hgZA$k&lPFZnSlDL@bLqHBoB7#^iZ=#l!TsL%o```g`u+r~;|=sy!KkC;iY_y0 zKfYCX51p4nA09qjCylf$i%XCr8#Z>(9f#>IXpgVDUZG%0m;CC}YY zpFR;)AG*=njT>(PJCVz$jK)j#HKcHJC`7stbz>tB1#a7G<+9j`H$pbUY-qD?_wTO( zybb{puS>eDbo+aeB@hEnHWo_(Oux%xuFi5v8?2l?0s@%Q;W_Fzrwh!?&XUnV6D9_Q zVwuJ(O)8g}G4ZepzZAXArE4h*TtKfci1mcdchd&_S&L_*iFwuBgZuYg z(5Q%oh!3=GvSj>{Vrn`TAY?nrJ~un$9QL=#DuMN2)GU1wpq&^SQ^F?rv!v66InxZt zp12rCj~?YzKOps)HZd^~0?sPJAainZAQhfK1Bbm9a0CvN1r zb?ayxO950X;FdL7)?R=W87Uu5gP*uVAb9GVYFYOQ##0z10-{Rl>j4XVAbSkzsExgS z7~IQ^yxL0u^>mU-0KdOJ(F-~PV*M3HEY<~K2fw_-r?#mN1IDO<_E$g)q__b1sl6$< zp4ZM1KHTcg8j7_}Y*1(|San)_n~mcdSOyp=7-)Aa?+qXXH)SG@DJX0pG$h#RXHRk& zSC6fFfKEMBzf(cNn<#6xY`H9|PF-s`HL6PhE8#523}6)!e;#I3NV#g9MwTbWCXKezX79I^IYm(fY$LV+a+Z@}-VI%cLO`G8%wKXYe6 zB%zMEMU4kSK9uaEDJD%ss2bCA#bVb29yu;*JvG`%5dX}~3_9vHv~o2^QGNl--VLNo zD8#B(&xo3SD}R>aNOxJ=t86KXL);CeHS6S3*D^3Hr5v{VzWeDRW7U`4r~D7C#*#k) z1~XEAjII^4NoA)0{hie)EHpFWPdDGOKxZNDA*#3bO=1IV!ue8L>3e~?50 zkHh4Z{x3-@v0?I2+lRrxRAc)vQN$+%uJeQuL_<~v%(4pTt21~Dtk!Dd38D-Vl>&T6 zz&DZV8G?Z2G#BFKX)xk>pb_QC#%dNr&CD=x4?F(kBcuU&@NrI(S?xJA|I~FudZ}N3(~>B zFQ=o+YFCBQP1Y^Oj#%Mj#~_6;0wBh=Zyzm|K`zu&3I*B+Cvm7T>aAoSfnK>d3sR8~ z0k+HbojX6YNxP_(g+WqUNV6zJts@&1@dl&1S5({?-`8PCZUVQpBzIxIQ#=0rPTm9C zehnfe&;k1!Qs|(K9wa43jVTK?e(Uz_i^*7m&^>ti^bWiYT)XJ2NOQzX{0?4b;5Zk3 z14M-KafqGekddG5)OBKMq_j8@pJEby#_*ey}Swt0S9x^0eQwwhUCME>O#aN z6r_&i0$uPs{m;)=ytC-J4sn%z*Df6pRZQ+mr^(i3@ALCjIOpNieogHTas_!L-Yk|n zJ-Sle+pF7sI90BL1mZQ$^ApaH;>6FNXF`~O238%S4&DP_l8#A9(GbM|d5f=5F($#P zNSs2e{lh(?ep863NNgOUg&~FD&SJM*KtSLywiU_sq{F-hrQKH{U@DE0i}ceC>Xi&3 zFb)|44PIDX9z{9O!bp85{Un z@v&@ZWF(RS9g(a}WI}R~(HX8d!KwwMM(ze=lq=cv=gTJ0qE*a-8xTgw7|=VbM&bi{ z!Hx{bS`m$5?dHvQ5J1sJo17d-X?f)|YxhRKBDdG}#e^UjwK!k|u@;K``RO3LW@GPh z^)}({$>5T!9&FlztxJ?kBD}R?$q||R3a*?{B|=1W3rb_^hT{?nG6*QZs)kG33jrHw zBUT;~$(~UGFyuE+ef<4nSZuyhb@uc`$pBpN(zz@O0q+#>=s6=Y{&-Oc3R6|_lLIA{ z_awu5>k}gugX-cuaqy$CFtx1YtP%- z+sB|BtCZ}uxl2eO)}DgIbb(5CD1FS+_Gyl$EWj`_ z2(Sks+9D})$Fkpq{+A`r`6A- zV)hbM(Fzi~oa5C}WT<4vd#le9d;Cn6)xgu}3u(!VLTchQOoM{%-`6a~&dqwGYJKuc zE3`Xr$uK!|bFadpqD190>gqvKr%z`L@X8hb=qm>@IcH(<2HJ^F{&$Eo9OxtT%*@8# z;SgCrHdgt}&dye2e07uV)zv8@k?`a|f%Z@MX)h^}5ZwGD{$b_Y{kHPuqc3(lXr0=0 zI^b|cmjjlydd53J=ecxSJ1MCFY=OmarF;gkY zMY%tov3J{^^bC)!ja38fcPy-|tn3~C25p6dho`)E=rq)mDL-9ZU6ta!CTeWkwuL$b z3R=ojs*u-{3+=A|Ijvqb&0eYJ1H3!NSE-k-CKmP-s%v%I)dElEb6OgU)ldF3m?JwKCgcq^R zb9{im{3HU|y;Us28!1M#d(bDY*Q(o>XsZGZT>-z*fu@tfY-j;k`LU>o7)-@VvQN`z zMvDN}vUA;5dYpH^ZJ?Z`7H@G1tpNC?9Lxh-ZSlgoTqfJ!Dgfsu_C=3{AgGBSEAjD& zcaEuF1zB#)0!q+WwRnCLBmT?7(r<&XF=_K*AQrFp>^mZChdo zV+#0Gg;NYBn*w5i5aGGZ%*+NOX~QaR)hFr!;%@HJ+ISlAA6~qKWQvdveH%8;h|guE zq9EwG5^H440*ONeMZk?W2yMx>vVVKfAEkb~fWRg~JIgcdtz&dSJdNg348BzXVyc`^ z+OT=E;oNv)>@!J!;4H8RmDAiOg{t)VWTkQn3YM|3_?SLH1T{9!X7AnD+Gj|8k!&3n zO5(=P`WQc+&G-EF>)xqe^ANNf_NQXsPn6Sp#0ozp1f3jXFPr7$NCFECWB92X>Tes; zKkso{$oLfQV`IzitsTr4=$7uwnxEwk4Gk^!$^%DaWOToKcNLR>*?Zw8^#N-rMIVs~ zM)=7EvX@FpR?>wpXAQhMq2ax<9lL~XrVtQ+XaJy z3ITewqEa45&3kt6OJ5=tq?x@$-%^MZo}U@BLBC8u7|5tOeG|&>dqAw=kpk9s5AIB2 z2Mz--J@qa7_%R#On+H%qD+)YD;*D|(s#9#T91$a?rc_QHa6H+Byh6-0>(j1!RV9Ev zBd1Rd$UR|oFC`|9$VB7WZ*y2@^pxUb@98@_JKf&Dml)Ggn}{Yjb)7c1ZEiis}0>+T8I&3}2gyfzF)Q@KXpA4)|kzyil zw#11OI$z!xDE9F>)}>i$&>Vn#PxhF8-K(v@G1pNtk+!5ot~AAQaA3pBEtB1@bEwEA zm8T|hUR7T+d{@>vlr`@OE}?AMxS`;|_7nGkA)z+=PwatDNhO=!evU~k#l$Tu%lX;F z_3z{3TvmtRPcOzkzqj?+&98IQL&Tbiy{X!i=_o`Y5<l%v z;LuL!Aa9;t65I({;Ei3$=fFh~-T90%k0 zr4`=5CAGsNu6tv!9$8W7Vo=eRV62E^cEXEAIn9a-x{hswMvh^UDw#e%K7(~6$;qg0 zLq#Fn7ro{y%wpGwh+Xn$&pvy6)XeO4$>!5ER$sr2BCWX%feVs%MS8h-qWW8P3?s?A z`zu|hSCX6BylN@hC%5#JD#9k^7?)6)LFYS4IA>TL*8a|9M+2O2iRlc2sQsWW!Cp|DHl zODjs(2%O<|DCGy|1qI42sAMQmL>s$){W@`MF_GGUQw;IP z3=9mA2vF2;+K^w9>GS5^Qbd|TAIY%;h#k9TkWZz!fQ^0iR#MLatyvv1*_|%3VZz~! z(lpn}v^UG_nWZcH^8b;IVQ~eG_GfnbwJaZ#a{1S(Q^eIn^y%!2hB(F8&B-QBchF}@ z{mTb`qoYKsrR*bq`Iuf;18+t!u^c?k??awF)OFZu;yh;@yuC0;hKR(zgnG+`?h5To z6HIPFNh=%7pG`OZf<`gqe7xpr+Qi-PStD_53d6(icdzxfhb}dV&^toCu0&u(n@9YQ zw-IS3vJkOTbV!nDzb*~Qg_$cKJMk7Y=s~3^^Zp8kO2&?!o*r2#`k%qKV{KDt&+5Nx z`~z+@m~f`o5_Mq#mMieq~Me=Sht zG~-#6UQuic5~m@?G&vu##WbDRIYc;CEONhbLwt`Lpkbp`Q+|Ez!#5Sc$=Y)>Q-7U2 znS-{>gH$`xG2{q{_N~&kfHB=q>H{h41Fv~@2$WGxGfAJli6+G{x{>tmYE{3sWWqKV zL3mwBIdsBd&z{QNi;|nqZ1~as8Cd{wMuw!ITg8*_a; zGkEvmnaB)DMj`+qs)mi`tO!Gp6{pQUt{WeJC zy%yXFqH_%THU80HtWZJilmJ7`k>1u;xo_#nh_|9m9~x@6jX-&>0Q!Rkz=$``50_pz z$3U51b$beabBmS8apudFe3jm}^P{5p243NMNxF+fJOHlEr}s%|#UGQ}$fY;}!BCk9*ny>gG+3|Ce3rz|kVslWP5s1O z)$;vZ)2ClNBagHzegsKeG3|8$NO$ZfDO?i!x95D~1PIkG>7fg1MUq0r3HfsakiZo4 zT%Qi^g7B2LZAff61rb0#Fpv+P%pTYkb?4^?M0YnwV^c&bCu}3t6z^Cke0Syj7F&Iu zjl*E=Pgz@Jpfo`7d-=lODWRvmT_*@9bq-(D)ouN>EBK9oMGP51dfYrs7;0(ivVW`Dw#8kIM zMFiyn0h3b)U;5dF5paR@Y2grHqf_m4f!@e$hx#E9gK;JLQX-!=20!lvKiS% zmgZP$ifWcqMhQ35Da)s?ZBZNKQq6Q7#!C2+)bg$#O>x?){jS$wwBr-QvD+`g!=Jc6 z=CsjOkb_rnR$l(s(Jj(eYx_K^YiR75p9)$=msomjK1c%wh~P{uIqcwJi-k2Im=q3< zct zeozrdAdcWb6og)_Ifum^^UOhn+>C+&z7}Y7I@xk&)s{o6z|d_5l4^~b+o1UsnTV+- z?bx|KI+rVA0oi$ZiwUxV_24qI zC0Pj;C&6>q7B3^N7x>Z=91lD|wH{0{ZDAo8hN#)tM&Kq|BW?M^)k{0Kagl8phew(@ZcJe*MJ^~PmA+cmD;r%V1Z<=>!^{*#vtdmw6N~k zvxlfv34_;?vDrvR100rsKPLyh|F;A?JUskr<0V}jeye+DxtD=c*#+kaogx1Rtykm6jaAd?6EPI1+%{W67GI6SDi!f15-N(eOwCh9GCe(g(d;2NYlunF=D4 zhoCCr#32DM;EqHfCptTRvgE!q^*6%2V6C>`aFZA@=!=By)(OM2shF+N(2@SBaL6J$wX7<~zds@cKLuxe5?P9FkoP5{;8L z#3`u2WQ}oOw-jV1sc2$Ch}eA>$2H?{)B5KT5jwyP@I3chJ6Iz?2yG-EWPmJzu~$U6 z%TG1$=0SylZT_sT-upT8&Rx605S1ko`DT8TyI>}yJ1A#52oS3PMWWft9y&vAy6spw z{48>84Sp4wGOMBHdyw)~nhwN~BaQ;*J3$`Y!4*T$v&fABhbKUOB|LHdz8%URK74>U@|EP~aXo99nC^nPle38w5*LK^q7Cp)?hvLEEt)Ojt4nc^ z^#~x_>%>G4OJR=&21rETSjhxhSsfyDfNUBh8zq4eTEVHY9a_D_=CU!{##WrZ6f?bbDU@lR_ajYj4F6u_&iqu0) z)Byk@3lL%v6*vxYVTu0&s~-n%Zeja}0^NLT&JgOYiCvkYZaOzo`8(+-*fDtz$92hG zK%l}MMl?}&2&~0&hmCO2oNq0K_zuKYpjy1tZ>Ycz<{8Ko2^H{gM^yH_!ubqT%f-a| z2EeI+G_TLMIY88LGxR)h92O$^_Sg!R;MEwN^PbzbaqPlRs$oi0FQyX?!Fjhh_~nni zyu5JK>E<0TFC|DFZ|q934bK6%os*EbF*-JO7Lv9s&WHp`{e7CvXIThNxalVaVOaN2 zI7CI84TEAWo8Hafh85rfoWl_`a#{AM}mDFvI6J7nd zq$CGPb|I@gwt^MJ5%EYcvE`7f@0?T=EI$qkI7W_eY^1|VH7|K7G(`==Y!@mHVd3-S zx)IPLQLhc}SUniI6;YSvo12@Xfng1yMsjT5ek}j}dy?Xd=^Ps!t-^9uz^W&Mg5$!` z=%~@CJtRNZi!IAgg!sb+5+}nut5iGS6z)MdG4w1faVV)9C%2xsq@o^|EC#AXJgS;!)7-VmiH8#o|D?p5f@xOA@TRc=0(l$A7NabM)&0iJ^g&%wbzY5A@E$noRHNuCaJdn~NYIH&1> zlm-?rwabPL$+0x6Rw)3nkyxG~B(_5hZLwuNO=&67vd^xM{`jE?H(!y27ZFY0&waLP z>@zWcuYvW+C?eZny$511Jw1Imw&*h_=zwGUk0&Lz1$FNb@j)O-iOim0pbXV3 zyAm*&r*@cYl7{q-kB_HWzFd~1A&=c$B?ke^HUBl9iLm?JOftBwL=8?^JOen3gP0M8 zi)II(W9(PK~x#RGAawD$nH{QqP4($vHx z&JL)EgcH3LW0Iz(b|LI~ZzJzftgqc<8a8i^CizY*qX-0lP1Faif`jkK*V$(vlpKk| zwimG_vXamio&%L@nNNYRJ`pQJhWHc-k52vk8I7#sL5pv)mRNZH4WibA0d`$a^kBj! zJ;ohDgo{R(>BW&KSz<~mCx4yZVehzri*{@dr@31xDPe*$gCzAeiMZ<(s8>W`M1Lbt za=8&lU~3XWa5@@mRS z=FdyLp|wNY7Q;_jl({rO`0M6!tw%o}0GC?{T8?a3lS zLm_9sfbef2g>yJ{KZxz0FEe)aBY$xtTb563to*r-_!j~R=}Oe7T{48C6#~) z4}5*~co&|FAtkfN4O<-(keBD0;$*$6)WPcvc{|U%iAna=@oem7pVQ2Lc|P@ZVo}Kc_Y;%k#ji(1L{H}IU4A=YHxJJm@i|uSkdP33DmhhX*T*#jE(0;) z2pBUjIcL@_Hh&F<;e`~-AN?vAJUo>kJFYMMweN!mR9}OWr8^lDAG_HW=5TtP!1)z4 z&waDaZRkPzjc<7qEsnWm6u=GKOdqAW!ID!y=-$ zbHEXI?O!dhVZ#Q6F6J9pnUful&J2U79d=NA!B5f6@Ve*>G(tfNsjovS@{M0OXYpCu zODe)Btjkxevgo1ff^S91-nz3%R%>WPL_~y&f*|t0edwi67%XZMOFRYqXl7(Wb!yZ8 zqEWAf3%k9R{IbG*_jei4^B z>ONWa=~QN|lsT|*6~sjbvFKDw6}3K2Lm@Zg39F)}p0R%3AsJuugUN!npE43of6U?3 z)e17>A-~O3{P3gYNI&~F_XADaKjOe=eYor%n3hzO#0@ULC&ujUPkK*fasT-vkj_fqK8^i)_=W-9RC z?`&ZcqOelILv(V$AuwU2`ZprP)s)iNd(1^{gjf3S-&vOU{Q7^mh=nbQZOzGYCQy(b z?zcEP#6TvO=fQpWbk{#O!6VIa%lIfQnVr9XC=utOw`=WINa8rTv6`Idb)Sjeg+uUz zeeB(uK7WQtp7zp7>i;xuEH@->5HASY1lU<*qV(23N1>Mfk1%%}8{iR=PtG1`81?J9JpgZa>uwQ%8-7+(eTNe z;*`qx%)`PGQw6_QkN^gs8oNy(ZOQBP|9xm%gx91dAnUalXSH&WrDA>;h+`0NO|yY} zAwAGGF$nlbhEZknTd(`Q80ASsOwU(*-v>>e!~f|$5vMhI3Cyf(c1}ZGo#nASs&)rs zP-j4e{*r9&xE+61DAS8l^=<2$olpGRgyS7Lt^g{64}aypxrE2@YM{UWKg-8Sc3)IC zY)2ujg_`uQ<-V}%yL)<8;9#$7PPR<0S?Tu}?n=fw1*e6r$W$y(o7w$)4Jds;`7%3< zL-x~yX><@tkdc<^!AhaHfb2xn90~t>5W&;>`qzET$H6FyOIB9aqrJ~QYybOacYJvG z=+Q{<{LC_0%ux7oYT~`NPbcf2{rA>(>;)+? zcvU+-OXkli_(zFJjlv^a$a6DD<_lRK;>>_EZRO)bGyENCmlKF6JHRGzaEtd*$B;@p z!89hUbPkeoHZg?BNJ6DpfO(_Y1w*%=ef9v~arkln>u-aI6b zy6zi4xw$c%l-muprnqh-oQ*6Lq$EzghXEwzJUm4Ml?=}*n6P|k{y!9ef(iqXtJXK1>y5os?ksdtlr=IT z(ctul%{p%7zrnM4wjowH*zj4O&q`yL!2hByk~ipuZ<0sYD{#&h1nzR7hma>SkqA59 zt8e^c(E;(8PVSq9X?O2(QZ#)Q{n^HzP)`KYmYDJ4iB=T%+J}Ey3F+~Em{{#)TOarv zR)kU$2ZlW5$25IpDR~^rlLLBf$WkOtC-ZHlJD=u*N4Z#}#rqd3Dk{#s9jUJ`ex0uK zduK33MM0-ifwyO7wc_Hg-*fv5dE7qFNPwd;Ge!h^V$Z8Z&;Q zVmYO-zEd`;W4^aYQ`7Tb`*9dcyUh_05OVfnWYOF}l!!Nrs+)&{;nHtdkU4>Xu@Ues zA4$-)$nhiA^EEc5ITyJI;}koG_Rl(1G;%R7&?9NrxZEj7B4g$F5=7U4if*q*{gq(+H&fFbEVI`AwJz4uuD`py3f8 zQ8mf1K3v^NVCSFK{tHWNtIbEf<3DKdnH?5Ey|yY`EJ%v_6WFBdhJSQzxjs7Bb$UDH z(jKZmC8=EhF1ZM#P?$&r5Go@S!#lWFUmIrRfF}VvNy?bGUSQi47eom{KsCwZzF?~8 z`q~Mk`=I19*mp$zqbB(bWwm~)HPx;ky!hQ%eMPe>-Hh$G{erb#5)v+PRee_9uePQB z6Ii7t0KtF7Nb`u*7&4DN%=TYf^v`Wu{CNafR{35_2c$D7E;y!Gi3eg)NKc3RHw^8u z9l=7V$%auW`G>Y*RKnlb_KvOcdo{yT8s03?DXWpbRw=&GYTZtatlMwBlCvXSxcLLG z`9>^Fm2`V@Sw=Iz?ofCyJEuqcd-Jn@>Qg%J(g#~A4U=GHgid8aHgPvDkPGxuNJb&~ zv(jA!eCW^$5xWqBTX*>&B6lVf7aWYO*HshFB8BJip|XV{n6ZL#*w=3Tr>OcL9I?e* z4S}oLTT+fFQq1NucbR$S+`94pv3zVAr|0^z(|<4_j*fqXTxGQiVWPL_U?cEz+i;__ z^)l$Y*mO*}hrd5=$)lVdI1m)!kzpgr*@Y zP{l|gf8hK6bE;4J8q(JZ&t;aMSe)H(0K6h%nRcJ#W5Xuhs{uA9zlZ_K*@X#|Gq?$U zV$PyOSA^ZE3BN(@Db_TE*G zcUO<+7n3=2W*G&(&ykpF@;DaI2pm^L%=g-_qbguot!VU!9m4~HRw<5`adXp2?E%UM z`_0Dx@O%xaJ>*{_Dv#`;&QPag4W8ky!|4pJx!B51y2XBv9xaYlyllROVq^kEqD;84 zcOV(3^V@n@mTbUXV#f>l!^l4ABnG3OE2}Qbwo^h^DTCq z+I!$n&RtHmkf*`GRwed5+4EzrKqygfi>%^b1l2Ly^9hfH8tL+L@i~@ik&cE(oJz3{qbGml;1>) zMsdUZczKnU_XGlQ^Mv^?r>sF73L;87@nJRiTbBHnj#~VA{7D=WXFtu6 zN^cjp3tIa7@l;9@=3*#|0T98#isE@Ha^HxKiHp046uJXkO|`r*-Y_!}TXfiPOUhi@ zo5CVdWN|6t36ko2xTh};4R}X5?gx?TvFI8}yVj9o;80@1_bsOaH-z zeB#RB+TcV2iKVYv>RRo%{PYA1Uz5ix9>Ks;VWV?${}az4C(uBpmqE=ujO;hg3@pbQ z6~+_gtXh10eHl$Ibs~P!FxdCvwRd2k*s4{Dob!L6p1XS4Gxj1^9A$2Um68WUk4Cf1 z!xmG$h!WFdeJ8K!no_)2hlJ4uAJ$KbYT$+z?y&BsOKL_{5(P9gRU(#>mTIV+HAgRTC{t~Qn$lt8#u!IYR^(pwr+hU6L&+(wO_0<{t^NIg}f7m0xyL~&(z~rE_47@WT^ks4qk1Qx4dQwF7(#8LjA#S*hFy>$U zRN&s7wBb(=T+o?rpZ9f7T*_Qmj zzZz^5TTsit(RHF1o`!R`62T&pnk}isBexI?@gh(90{jNiwyO7$iAXH6`#AMa^q?Yt z#AyA$y&YlyXOR&TBjH_MW1v%#6`LCip0A7jb9{V3aXr71AZ!J=^mt&0K5q#M8jMQC zO6k7Bdqr;@#)N0g7xlkW=dgcb@PtB{XL8=9bTmAFK{t3S?L$LD?-;hWYkg0@JQFO@ zg8CizJ$RE=I6K#OrwIM`<-NeW^}h3LQ+l+_wb0yZkAhSoR^1WVL?`CWnXE#sy8 z@}9j>b*kDX{U2^jSm^dgBa9QRN<3Qpn;=yiTN|N^vkF#szszvQJ<Rz#0 zL0i!JC5kP1#ov(szp{eP&Yb(Z<~_u%@B8`(hn3cTa+8hvRq^5i!sVmcrNbh_@9j`k zntBXzfpGg*|1P_cr}Hq$gjHlO4^unO#TNK^Bh}jiZ`RLvpF-mxYQfug2KT=fNnt;` zGSJ+=H2R@}L8`WO5e|jq_8|O z@?O1~!pf>4uH#tsGWv5}(Akjv9-T&W@%dNxT=ajMn=)FK`6W6cyJjw^wY}%M@5wJ~ zhmwx|M|F*;k}JQjx>j0CckRf6e6nZpCW=dTi1_cNbah<#V3*9ZT)`&IirZFcrQxAM zC502*3YDvSC@yUCY~*F$zTJh)KRQnuQ-@rICdPp)}Q=Ed4L+=OK-@|NTGZ?N9w~6T#N6o12{m zE5%b3-H}IVMaGXLP6jfWU2`ZvjHd9bJD>j}X~M@C@wkx$$`Ctw{Ca*&6y) zk!ul~Q;D{GCmn=G?w$x1b;OD8)yV5XS`|oRPc!%BY@#NjEtGJg7k?lO00Hi8TwJTk zbBFLuXmT8TLgwiIAo=z{Du^OySn=?h5hMVh&@BQpIi|0#A63)0&-M~V0IogB+CiV| z?l)t~z3|$Ck$4HeRhbVswgaQXBg?XB-C%_ox=>h7&bqnFAFix9}jBY|e*P8FgRR*)|&aB zy~@Ok1L=%oLV_S-PueY0$Tj<|yS_NiIyNhn+MeoOu~=YNuxc)KQMIC6_LBO?<{P@L zOE?YEE22^*tPgP8&KQvowNSn}cv{S5zj{VzO0}wfdr3omRIX&il_Hb1bprQPUhh#n zdL?K@*1Nb7htL`2g|AGsv&1U>qi@}2McwclVEmeQV)r(M_?1ZIEx}wiM-kgY=4GbVbTpLdQLUAe%ZW|5$35wed#-|4;IEnXE{ zCPAaVk4)kEWs$x{vplmtX1%F=?VcwR^k5(B_R^sI&rkb3RIlVZ&t_w0EQ*jH8kPr? zN}@noNd7k#311LoDU6T@nJb`*-n+MMCC*ZHiMor|^9Hj=w|y#p6h5bLc5UYnqX?<7 zP@zy=1Wi937iJ0Ky(UX(tiApJh4Td|wP;VLcPQsfPRJ}@zN%v9?_Y#?ou(=qM-%}r z=NC7XC4M#?5_y>6wEBG}Xahf6u{0U}!67-`a_^g|pLqNft{UFS_BoVtN%3r9XVgOW zg{3Lvo@0rwdJ2D@X2#Aw_UpB?5Zq7{ia>(?Ti=$HA}d85DSsMNr? zcSB@=(#N50p?4OM*XXFL?)PSH=FrOBZ5F-iowz)Gar!8q$I9YP10C^gLMENFMT&1- z+);W}LW}P?OWO6Krz}0^S*~n765G)h#(s59-kMbXZ5*1i&cIO|)@#1r^XW-6dy@$B zUfQqa`X3ru{P!)6+8R>)ly&VJ_D}H!LJu#mNL!VD+rvHoTid3Qq0(6uix*$l>et$v zp0(>LUDxYnEAMW4ZYno(K&La~AI0VQsUpov^WHYq9*a3$d468wz>*nnT25rQ?YTOy zYc|y*5py~yI`%RPaXm#`p0;wein6qU5xjiri&iKHj5! z%|Q@#tz>0ez4qSkn;?lNNnBA^*gx&Lc_83}vJQ*p%DW;i#-tbmazQl^&Odju#mIyb z3?ciJ#P3Vbpx`;JL>`)~n`YufO-F|{4ELwXJJ-9Up1Zt#Bv5j*pC z^<04ygC`!zq+HALOSNQ=^!b$IdvB$+n2;X5$vjC*8|&lwSJz9WS}gWo#>u4GUl6QT z^W_$c*kCVPxD^|-@45T@Il*VxGjES?^YWyY_`=scrnJHW1ud<$mv6jH`KD z*XuhnWvj<>R{zjidOe$yuN$+Dt9WE2@K8LrIqm)v zs^ub-d(nHZS5IGB(<`eWl;=U?P8+Ym81Wpx*!4~AXHK+tU(Mnnr_c;ZL93Z#mr$3a zpNK8kdN_Y)1p$eTj?S4X8EKuD2VQ0|w{I7=W7QQjrKZ9kG5xa4B1QE!hWo$inKxm5 z0gBtHEXaL)u&UcKNpZecwvULH%hfc|)GhQmUNS4kA1ENpuApZ{^R=J>dH$-Tl<~~S!_E5+v>_5NJa7%!;``W10^LqQ=d}2vw)z~#~R&AY_Y3VM!WifL+HI>-7 zM1*MS<>+cV_Lv$Eo;i+d*>;C5+{d<(YI%8LP{xjujYhL-I-VCVSo+NopHw|J3qa;O ze4H0S`EwXMwx2zmcG5RvsnZ@cl|=v1MCHFcY5o!6-<-vleROR#W^ms&RtX}OC}pla zvQiyFGN&VWVCrkvt`Wg7VPr^k0fikvp8&s^6|B=bP%u;d$|ZYl&KOL;*(QGXpCDyN z;bff^U-7i90{~rTlgl2dYZlYC%d$&dq%D$VCa_5kj-b`g4Q8&L@ifh7;|K9MaxI9wC2uUW--Jq1rLJmal(x zh4lz`pk;p+a?wuZ$EooENYc5dG+WWq(G$tLk8pXaLHqAT8K3*^(D>`X29xp{E2 znn16J^Fz7zXGyd*HV!Q5x0#fU414JYT3_uGh+1^Hnn81SdZUEWysp=tUWZP}1~bp; z$p4ltC%wGt`NKgrCz;aRUE>Vwhhx-koUC@vjdMLEQoO0!(Wv;fOufy@8RN-qMK>7U zUdtAYu2te5s#FZkvsqyOa+LR$D!b z7Em40zNU#85!p+_1p7BpbVy~nu{v?gcV52EL=i&SI7>0esY!GSv~-YDIcg--)n#aH zmifQe_=W)#`yg2)Io>a$b^_M=-xLs} zwAcjM2V!@q0Irz59}*Y0T5JTc>$ei)@6DHqDN+Ytqm;Y}VKRvrVknzkJ?D3X_pj{- zVGrr$KiK#c&}3P79XRpBA^22T)=UmwpBv{iL**M3SYsm|trVml-!w2-Z2o>I^v7?z z@|29^g@O+ep@9O%1fZEzh)|*?gI0)EEFs$DjeBfB!6{NmP1J_IE>ACa^>Y>KyNq>k z^2&a8UB$Wc^2Kg18(R1(o?jJD>QeU(Qo*cPbG4|&7zrprap<0sDzE(R|%p+C97 zQ>P05hAhM?puH|D(9tvTl9&@>EC3ZH^is^T;ee__)8=1PDbJiav?F%eW_KTtCDTyl z4Q5y|6{cCX8qaGjeivC@z#KV)%|c_H@HLg}ohub4IoMyK72`m$;hv^bodbkC#J7z> zAcw^QCPyA^>A*}Py`tz~?s#oE@1t?1JZtNWO<`Ng*@Qv#_)OlUv)o$sVq7571Gn4SkH) zeeYd9d4KKHC!XvPv%a0PYO79L1=R#__~qNqEg?KH0!!20H;^d+;IrSMw7lWULueRyvitQfd`k*^mE&Y-e zy-@Rk@#HnamDMbG-j7wdVL&_(l3shl-)nqggW0L$T~?P9hDKr_8doBN@9gJ zK{9hPiX9Cu6%6vToQoR6)cIt%S*J;Ks2{2^N-SQY6jYA!H{vAcn2`kIK^oaX!j0ew zU?}tG95Q!)>Y2q>UG(9XMq;8xy_Zqk4TD`?OYb_hv1#j{R;AurU0jBH#k4n5B=;GX z1>#LYfR(V>F_r@ozf&4Y3(6^d#gQ!2k%3M$xwK&_5!WG3v_<1ZJiy>=m4BGShsaE1 z5`bt~kA~`*1oDRVOvunEJ!>!I?dVxI+|}=te2Yc%tC*U;Y=L#Y!?$z+54c)LXgLV0 zcj#&%9b;V5GWhRZC9ol@UVBYDnWI2D zapE}zc)C$Dc@7my`+p!mz8lUXDkeCcPd5?z4?IY9Ebwf@w;JJcQih!nxsvormD zX;;QT*-k@6`~;iHq!{SZbjp@}=lJ*Qg0G}PRK^99bxLZ}K;{!!ZttB4^c_1=j*hUv zpq|m{!dB6hHitBJ_0z4%;R{P_A_s`@BRC3v?i9FV6zb@gWG*}H%;q(7 z`g(VxV_2ihUk%W>Qfkz|+{O$tU@z*h~z9E;fRs5r-i$OhL~@2T{E(Wce1A zE+Dy8va8vpUQH8reT+Fza4_Q7Lns2AX~Z*Ti+r05d)TnaY(%eGdEY-KN?poG^BYoO7XqHS|&T!rB*s%jMBR0WQOj5+e zMmo|-8XJabTsaxV15g>DZu~qC&u@-E_dwL=3i|?Ub5sw! z6>H7@Pf@>LzEEFP8Bq#TwrCBoxU(Ip5ohU{(ett`DZ6deZ0IFg|4;|GxO;j!BMf~J zz7pbEQW8xK-#E=BnTG^BBq5`qu`|@P;N9B{Lqg`#dC%uc<5+IpxzLF)c#{ED-)=*s}n`Zm=A>0+&V;MU0W zI2dz?FMxb{+_DTv;#gDl2~M2Vo_qOfh!UJkP>x(9pbo~+t#(`Y zn+Cu|J4x_3O8tm>NOtB^AweMNWRxMyRG5g!4S@}L7qE=8z^Yk<7CTY2%Qs#&SRvev z=>4Ig)&CMlrZza@=o5MQRP@`=5848rF&%&$$p|Sz5)X_L>9|0hFuMxdmQU!tO%x%i zBAJiTNSelwzhzX%1(-?dG+cNnDM<=f%g}qP-;PI-5`oC3 zxx8;N$nqlrhU0Jt1oHGS{j6>(gmZD~pTH`BJ(Yn-gWxnHX_F-9AJ46~hUT?IQ;$WP z4-H$_xgWU=?LU?@v7zJnGEC`ZBI%CKhF%jI_{12peRp-$IlDLKeRvpz*!88-EMS@I3{TT`*WuQ=LA0_Snd=;6iFD zJc_=>=kyI|E`Dl-KInCMd3mzoK7B-#NJN#UXJ=5h^@q z9zS|eNb*czbvuPZfzZ6fVoEfDc;uEN%6(7&haR@ZlG3uShlMc2OK{93l<#Mx^^?(% zviCPpBTjQK(z8f#5{Z?ys66Ph@U!(s){cT|`x7R*Rzm=;RXl5_pLhF*ip`+#&LF-^ zlGQNs0-ilG0x%E8Kmyd0bQrjxL)SXLvqs(?8In|PkX=}KchC8`SXoUd+gxP58D}~< zIr+jxE`%9(&twwW)gqWA{qq6AdBekjMVMZueYF#DDzzwWGr*J}RR$I(Vpl@OIt@(B zMvc$qyzTdXw-z|SRrh1<)e7Z5^b-w=ktYh9^g4RGojnBCZ7em3-9k-OWk2?t*g-wf zmfF?)+{Q6GpJya^2b9!nGUfs0{LxR0^XBc<(b<56F4N3%%deMc$*%Sl11NUGV8@LSTX6s96mnGE9)>n&2O*F{(s z1D*$GG(#e0^jaahrV4>d*;BgnG5f2+08Y!R&mAzB}4ZnVF!bDQonD+ z@H}MNEkw-~ZRPOB4SF1C;m(|4N_+&R6kLlL4$n6PzN&7>dc~W~Z|6hJskp@t63e=O z*nkyYU&hqBXZN>t96*!ymFJ$+D-cdj?mEUIov8GqH>e`-RDRzxsl*fF=W>9a-tX!@ z@hC~5NAE*K!86mCHYvIS8DlS(WBu{I{+u~A&R4=WeY+xwq|dt=ED(>4TOw>E+qK6jpKd&j^NcV0MaYDFq9432NgL=xR|m zMys8jg8lC&49@d#)pb0uCUsp{c0T1&j~mxmuaDFcbKao!btuD>ikqD~;554nM#Rw* z)mA4`lxh)vN)iO18YY=|nM>^G_n)@fQa5}14^bDjU25k)UtrNuSbSms%+GeBdkZLB z)WL?(U0z|YJ34DuHFveWyEUSvJ!|Hs>|X_@dPl7t2Wu0qc_y^Zly(U$;~wlZz|eJd z36)oapkFMdisTV=yd>%hk$4zy>J{AnB|iJyRRzrbf^m2j$wfYYo)_xo9|~LBjUig* zeN1rkjoZev68t^4-0tr;G!{tE>}tJ0mp9@awVqL{P5M<_q~qaxI~g@3UDk{@kFz)~ zoO_Ln;O|tg#-FP(n2rEiw~RPjxwbT+p~pO+@?)CGrq(kX`+N|L^`$1`%l^B^`g zPy>(EN)_zeJ6gG_-H+PkQL0nO?UyofF3`A=;||XLIEPCKHCK5Zs!W;UFL%A%zLq9# zz^YyNrj2i7>5;Xu6yM1U1Q%KA%74=mcWc=^BJMU_2e_Zxu>Pw&_DjqK5hf)xEbqr* z(uQU3Eer=F4I~-jIslgstp?GPk?|0qvDxt7o%69ref$JDB}528QiFlLki1-yMh%dN#rzN>$XwGCU+>;dsUBF<69ETt%e}p zkKL=x!<66l-e~yh_o3Z4YO!LE`=`iv3sw6JRA#O0W8Dwgt*7C4zYB%uEUIVU5hZiT zgda`$fu^;$O_s39kj!FI_5c`Og9-rF;x}=+g&l~qSfeXu{oR^*|U%h7YtQd3lkLfpNNc0*x@Y;nfO|7(NB1}VT z#}kP$S0|=h=dY!lEy#;I*TFif6Y@3n;Xlh}UHr1GE6SiEt#&nYybhdqqVBtGV{Bzt z@>bih8O!-=7+4;@*bpRu%QcvOP37I4LQi?l`p89${LSZG-gmWKrSg@Q8%geGu@;PY zSF`V0+il5CgQ&d+@1lZ(*cw9-*PzNOs}qtvb7pM*z0uL^(v{0&-%YE?mu*xhp16U2 ztJ4wD{R2Ps>O>Afal=TfCS_kp{Juk|V?HiFMY4UtV#R6NX-LIumcPp3$W#QDoXpII zKKjFnzjbMo;N_Irlo(OI!J{|*mw^+-K7lM6csecqAKudCUv8f%tn|0HqafDJ?$FbAekM_>ZsqI?}JgTI+6vnd8_Tef#%uWq;e*z%qMp5-3v6g2Wvl0KG?ccx5G z)3p~cAHT1;$$aP)MKEh+9C8#K0!7{m+4Ns+p98nV7Yh4G-W^}%Zo|U#%h)+3{P_9P zzsdHjHqadZXiDyCVj>H-3f+{na#Aevm!IL%p_*@K#eFF_IQZ{i_`h#39@qlQXh-=u zsiAi#g;W1=!H7-kyAiWC)y>&wJ$G5WIU>uUO|MjY}I4^fk|CcTF|8%o;eLwHoF!Qg-Hw9<<{UZ6l zTio$A`_|0=;Zd?bb!e|ku+o@=Qd{S{f@w#>UroZ4iYI5!3aV2+WFfr&^vV2xTz1Y| zt#zmmF>tQF^#8I{YoizZ-#(I+&`YYdZn^3A>6Z&Vx;PUeVN7tQINT<|+bJUEw}+2x zmgp@Q`588IJ552plMu`Q%l^u8Qpp9XCN#gIFXzS5Os&KJ!=CQ4=VsRH|N8>@j}0Ar z5w7&T*Rg_Lh$6VTqA)gCVVjxn8j$9ykezG5G3<2H#8+i=5GCZ`oQ`gtJ$2D$3q97C)bIV-fyb^(` zzj<!9Lc#Cv>wuy2@}Dwp?*D9)yjYLR;Rz+u~A zfcihg@1E(Oczd*mXF3N)w`J;YJfhjf+mz_@=;1BXP(f;{1_i^l!pdW#X<0HJN@5dK z3}p|;Zb`+AYyFktw<=2$F<&;>gE<&{haUFrS}%x7?lb+21-% z`%B{z)vZ1}3uv%LDX7HIJBtc`kh0LZwDEl1IvH-ZNwy}56Ko9*f$!ps9PdBX+35%T zf(R*ElQ~@+863-F#Y55VpA(J+`rT59V#^`$dplWudHt&9&38&A%_aGHH;k zhb8gU@BL36_xIJkPJDVLwAX+Po4J$Db&K}vn(==c+b*W>1~)(X9Q^&fd3Kj5+HYRm zB0`om13j@r{(O4>W90x)3YoV-g6r(ET^7Fg{g+SO`6-6$Wj zLf(|5ssZNwU*4Z#^MSn#XL~xnE%4v{cb&ylSx;bcSY0S$*oi-Wj>i)whr8o%57;j! zKa}57M$kPs@kkn9JuGY{;{87s4hxrhN&5dU*W_pGkbXaNjpP-;v-nNwph@fcwDUsI zhoqa6=`x5?LI4}Wyi3ah56`7^@2F~jy3Z%-*=4*kU+d~-@$)k*f$SFQ8Efcb=g!^0&3&C-X5ZWw3lgp?Es0ZpRT37_&&ZRI zFpI}G;z?Cxamh-VSrzf$_zbSnhleQ5Qdc{?SM~HA@k^`rX0QIfo`*W;`y;Dv zTlFIwPn@}L<(g}{`#op(gEP&A!LINUX4oaU>Ij61w!PQ`GDG>ynIH@(i^3S@(l0NJ z{m+`3*q85;ImT_xv}{=mz@Ad5-)sA&J|BAI^*pbTL2btCj0-=gIUd*Eb68y$!{@{r z7k997>XB4z=d+W>I` zci0Uzy2)(J2b#3as_Qh;9&Co-I4%M_LF40o>J5Y17lr(8#Kzs@z?_zXOkJbZLW25! z!K`sJFW;E8n@W0_Nv*<@kL{bkUOIX+;$(zxAYV_MqlZP_mcgv7EVEDBN;fQ_(*+Sh z9IhO?KvkQI!#xol8xB|b20_7us$oo1en>tFa76W7v2NKq!I-fIhq3(t#8bvPoOeS1 zAWbXApE>m{nXJF;l3D%Y^T{O=1&Jmc&W8k<(D-uk@qNO_pjP{``;e%PE-mX_LnwRH zFu6PO#kcEO8M~yxC6_=}psc1A1{q&#ul-nGLYlN2aD=0EoE1?ieQKCJzYibbCh&N> zSKU8vLZdD%-{co=|4bt#QaU$ALT9E{Q5o(K`O8+{Q(d1hP{vIFk+009OP4H>asxhm zq}}e`y?Z)fPepJ=^^yznj9I)*bA-7!ZY%*eXY%v)vy1wXZ?}PmM}|yoEsgZvG1SPO zw*NBiudB=_NzLJ1`z~;A1^If8Lp*;Mu8#+tudah4@7nPoBVO0R}l{=Q~p#c}9j9gsK7UHqE<*JCwf%|*$t zQpsy#<|fC){d%m{Yn?dZ7tqDGPp=R|8M4Y*-rN1KdiiCq|KWZ9`B~M=mM)cc1H2h% zB=pqHZPC893*GPC+rWH_n~zVBwd&Eha>x*(%6Cb;ts6W_HsxE1_t7%;&=QLptdUN=~G$cN4n=m zq-Gki?9bOx0x>~bY|72Wby!SujOMnA&)tlJz2cmi#%7Iv&fJTxg@lAi;T3=bd2;B2 zl5-0{47wg*Sg!6zycS@mOk~AxiC@BRXOpzwl zRow817t;J2gS-sFy3QgqG6ddM6?-WKTwqDbfAC;5dx!cVja6l^<$7kwSc|yf-KUwK zyGv=gm3qem->Q5kt>rgIs-4-dd5Um}1=<*1rS!4^QMb zC^gtDE$QFkymajysk-ONy*2mA3Q+1{*?iIoDT_7jn}k;XdVpKvuv%IIq}M!O6unwp zJjEo}GGP1UTe05d-?>xEtp}q7N?#a28=-8V=t-g*VKN>9X9bEijJq^3GWM7ZX$f`V|VXj

;so`urvSM==kpPvoPo(m4SQ11|-;w3Sf*PvMkjRi(CqZ+6;-JNM?-c>VrNDlT8Z+ zw6pGUm(M}MwK|Z}%Vb)Y9YhmIvMj~(8%{=j!gyZtc&vx>P<tHQ=p+~v2WNoiopniTc-Rh=Ae$n^dsmx&7yLKVAx3tWQw3BP!Y_IvFYHY0o zB?i?IX&=W_^b*>uTJ(9WncUwBw71A{b9c6_EF0be^<6^{<#d!V>ZIH4%Ye|#GO}YXw@h!cF~b# zf2{W8P32~7LFrQZ(msV7A8Cfyl-haI(7KowPMnh{{N$bYu3b}V-ap8GM`}Ra`m58T z&0IMa_%dYwKK!>Y^I20hS>@Vze@deh&!?kFkyYjU{SWgE8a$)B;5qIUZ*)Oc=E$<` zL(m`pT6#QlE{Qxvk_TPM>~VVbLpkr-r8$Dm0K z=>k0F7=E|b+pe!nLMt&~heMeDT zl%`SBT<4Q)h1~YE-W>MH3(6#N@WGaSh@*YHF}Y*69aLJ(ThGY4w~#PgtPC=BZin1` zHK8<|QIscdvU;4cCQky#kqSJYJqQyeX|_Wj4%sUV-Ys$~dU?T6zbaW3Jo+P7#TmHj zRRh?mNWi}?l8QtS!|#6Q&f(hanJlI^J@~cS(#^=Nxk&Sxyee6G$XdrBA+Z!p`x0q* zWE!Tvioux_AvzeBv_o#Wy5HUv$8ItoR!}&3COgiNbz<$M@6IGC!gqGH*=H0RRnbA>^l zG^@4hZt$ndBeICR*WuI*od?yYUeTZ=v9Vi6tw8hZ%fsEEhB(Aqk&t#V@0>}_c8mtq zK|X6z{X;$5hnwP!C|$wyf>eC`;%sukdWsYeH6drCbS~#3`Pw14n{`n9CSh>ZN{1I0 zO}%d~`PQ(IH>6$s>TR{Dher)+uwrXGJ-vto(I965Mp|-7lL9?;sF`Q!vSoT0=gPe0 z^wl)SpgHuJGqdswD0>Q}>_vql+9yFXTEpldk9p+~iSMkmYVaPy*}6^|Y-y2xLS>L? zuJ{qCKMF9R`$u=c>spaDA8HD3&B84>AS2U_n&;x=tqH8fOz3bZFG3N#rS{SyLcO#Y zW%3iq<(hDe6k@nbP5)Ic$L{jUgKy$q@mAB!zvt;0Or8a#CM2~!FaIv&f}h5?$_=IF z#h71A9z;^=R{PI(A%%2nyM|-Yq8k|_Y}9Oi6N~!jIV&_PjSuxA^D&|+UcY=hiS0#E zZtv=D!ppjtR`mBr1a;uBFQ)jZp#s;mY2AkGZYfBbNU}3oK=YXeq)@2ZyDpb^`7UJ7 zNX;l@CNOz$;W<=Odx)tnL1%reB;AUTXpj7^w+*2Ro>xxIsGGP!6GsKvo%~T(!v~{> zXWib_ZOiAAMGSqn5~jTzc~|Iq(lR%tzuA1rWTG9MH~@r1FO8DgA~ZT$o{TI+Y@j6#yW4BD-qM6kCV3~ew*N3O{{)xY=i~!otw8-*CSjs&Jr-~38?hVaQ^OyK= z{G(azEkVQ_=e5HXLq&B6N~K*edXyjszo~x%Sr}BVT1MZI> zN5R$K2wg!Di11$2K&s>kLQ1jO=M&C@;s(Ai4ocAl4vNnfd-Z$)8ePga6XlJwg;1#o zas8-M6_Av36~hif@k&LOt5%=`DA!LI6wq#tHj?#anOJ9}O-4bHbI|t^qRRa-97q8nDPGsSpr#~@SoTTs0MnSAJ zHiS7k#gMD2wX_~xeSZ0$3+3b`Y$uq&D2Lk}L?+8Jm*UN2kyBKJZmI{d;6s}<@)G|j zjh(M}nAU&94yMSAFg>oSX4JcY&~47*+9k7v1& z#-qpzh`?|JY0O-9V=SEIRl7c5CcP6=v|;j8OG?iNQ%LpK^1hZ*{%dzXAE!L3L8%PF z4@AU*ui1ZoeysJ_=@4@!(W;}brjA-HT5~dRP)~h3rnR9{Z+v8$lMi8YZySbA86G@gmqOq2uDdlhXD2>@l#twodCfubj6he`g)n(tT{AzXcH?H%YD3?hMJ%vik51B{PzQwXQ8gd za0WaxTX!3%ABgt8I15d(8;mYn|5d_hFJ3Pj(mzBlGd@xtvNWr3#0ljX0z4sG>(6~r z!U+3M(TRbM8hh8{l7meCP4=$TjL@tNO?#Szma8$W*g^z}g_uZ#Ku%tiPsxro_l1s5 zEY*n_1HhR5wa@OlFUL$#dszC z#C#SZd2%NYigoVA38I3T1tn<1$p(cu%OP=Yd{d)Wkf(kZI_O>cGBTXqMQAtUj)CLs z2WOG1&@qGF2`6f&tHV7Ga-Klnqqt#70fvWf!zh#1s+42U9G1xNrvz~NSiWhHc63Hb zc>LI$$vei%^n7_rb6EH}jn(t6?9Te|;V@LqB%R-$JNeSzi$LVerEW}WT#Ne=(Y2-2 ze4R96^z;2)cZA_{Ng#!`7{_u;>HSM@(e0x5`TeZG;aohmiReq8$weJ>jI@~u&4LV& zab2siTNA&-;El22wDDt@m63;JuMkY5*^36h%jT(?vB6|p*}k4pKpr3y$$T6fhUgbC zz_YG?KY1wxbe2M%+K>souMtadRm8j7B2zVt2x2nRa{AXiC3Mm3FtuMX78%PlOs3rm{RuZbOupb zI5WdX?C@v2?O+#o0>=GdP|Ztbo48l>>$1q{2@F?9pt*l}2i31S4o&cnUS%f?VhzC1 z`n;({C9}o44baBU@xk2QgtSpPjGp$Xx^T)G;#7i@>R>{U2&O{z?i}ylNiuzpSF2t5 zZG&(8e9E;LsHn!^Fopy*W5t$W4DJSLGFPGp6KtCApK|Hcd;98ukgmd2)?0j1fY_`> z$}`j?rgr_9lcJ+T9E;}Kubq4#J~R%NSC6SIQ#ZPlvt#)Dq4tE$?j9b^IMO1zSa$o} z#=rcL)$TZR{?smp4M8Ap)-rWpSb6jis^J!J%ph@JWJ@!a+7UcP#hCx2U!AIfho{%7 zfXd`i7h{0fv}I--ZKjT*2`tAb8~eJSHEnX+Ai)SQndzaB@sqRtP0kpE$iwCu4)1~T zM#I9OTiefn{#vNiTRU}fXco{2P6o`kRk@IOw?mkE+bcg^@>RC13 zxr*$Vwmt%uWIwz|N{9tFVw9gQoj9yql=Q7Iy7tK6DAeaqFgc^-g@zbgll8V>fmCALpa#4t{^Jy1u6mr2h&M*vtDzQG6X>+Wu5N~Z&zb;dJ zYQ{E{+x#{ds1{5}frC2+zh{AVeNmtLI0}Ojl=5{1v|S!U=MUst4(i)e?%6n!_haKJ z2@Y-ccS5w%PvST#M$S59!hhkN<{k z-wES0H8tgN5QpsA+pIuZd1Lw*<(h0eldYqwu9x5*vgcsX+M4gSj=jU5GOX+Ui-)Wp zA8f7&tGO{opIR0`TcsN5mD3cq)#Y5}23J*2SC#Ymd)haa-a30h`7t{~agg`nPh7OVMOONvTYa8G4>U1Z?k8^`SKC5GrRjSm$X#GizuFq?w z3$kTO^oDvmDq`06Fc+`D^_r%p1Z;|d$wmz38xoQ8+*n-A(_Fpbui<#I@;S@ms| zW2ul^tU0U}*y+S(ZFog<)b(-EQI3%jXMMHkGojWjb&Zc(#`!XZ52id@nJRTuX;ERG z^te(@+x=LtfR-zIHp;3uhtJfm*S8oCbkPsEf9$FLON&w~EiVg6^L+MICHF5Fy2k7@ zZT;lpwnc9Iq_?`XR%ErG%xsM(!)@gOsC;zM`x4#=!!RPa4bx&Rh7IOh_v~4xuA4<0 zzODA3#{BWM~~{BSq<(6JuYZFHiQDq1w{Y*N8n1ZT&$^JSr(yC$*NC za&wHCEXxn(@VYPh>xNDo8+=2GV7=Doi_CRfTc4-q+A5hhJUTm`D4F2n@KJNTf~K7} zs%x0GdieQkddfAkYOD-t?4J`>#J z&R-JJpU=8-JJr^WRj)emqTps=OOMys zeu06_DQ~AP%C{dgo5}3uwEdgX!6kSRp5fw=Ob}?4C#^NQpo^T(1}|H;FJ)pXu}*18 zGGTF^^=5XoiL7s@n#KDMMK!{5+*-Rnui-50&K$rRv$py$lvS;jAAaJ-X+iJ8_^zc+ zZapubxyTNkDye(-?4=3k*jFAB>`Gb;P_ z|G8^&jQgdubsbNywOQCub2^*;OPy!K{KDK?IxYD@GT!~>^)b#(e*G#%Q_o3$#KV^C z-ntu3E&-7d58Hcl)oo2^t0^ou@z`yWQCBOm~TXa{;%EL-G$?n%C4}1NF!IcAQUhJU$8XVVayIqO=uIlBmV$ z)btAt*VTDymE2ylrwHd884W~gv5aL}Phndph518a)1Zxs-xq1X2Y7yelJoVb&hUhW zk>~!Kk8LlpS+HX`cU#hvBbj#gjBoJpsHBOuydSk@d^2kGG08UW~2RFVcE(r+U=&fPu#kWH1;;$(`ec5Q+>W7AaJLBFq?i-Blgqr zamCVP8=IS>5A+Nz?%mTJtY>Zh5|;Sz?Dik#vj~EWheIG_zl~P4+|6%0|OB$siwXB!f;{p4`|N*7fO;_~X*0N7Vhc=87p^s4#Y3RU63i zw@zhs6H6lR0_NAt%zuFdW;ZiVo~s-hf1aUN5O59Cn>6dTqkewE#IITL{%+v(Wb=smlYKHhEAj_b>xwVI4;aa`Q9T49xXlm&5K1b5 z@GyXadyKP+UjKIG2!26nJW{OVNmbOpoQvx_P%R3s7;{uM<|v`#CwXw^D=uj9LZ9S^ z0Al8n20na~Vdsbuf$j1D7W!h&o+ePPBplbHtOEP~gcwtfU!2{HTAWPaB5gKKSag6vww|}dNPihI(1xcU;S zO(tIjV18R8{D4oBQ-MK#Nw#`MXuRI`>gu#z1bU+yzDep)LWm8vz)eja*Z3-zS#KVq zYjFWZFRg$@Yv(hQ_WHyDc{qQIJ8}y((d-mr2Bz5;-QXr*6H&1e%cp_&2Oo(1y^pMR z7*DBY58wr7;>fq=$J8R$5e6DCpH1v&u(ySpcftoO7zCjZNMHL;a1ndae3IMRPq-cl z|FR_Wa5T%!DYq!HfLmJ^kZ<;C>zXuLDurU?ki?_sOUsm+`-@LFnJti4z)bWZqP%A3 z(Kdje&}`R7s02O92AFCNf4dWx7ED2!XuJIJ!r{Q6-AhRe4&!SohQBJV;+z*mNCi^M zgJ8TP_4fBQ1`OVX062t$iPubnwfU2e_%ZynJ^LY*NSr@{m1cKg)?RvTF9EB;G^xVI zRuMdG%o3dA3gpXjJAXsMB)T;L+zz;i=ScumE+!3yVd|hH0P$G01cL}TsKdI379SMa zg&>Y1Y>NIMA2KqfY2F)W?Zh>@y@d#88UsBw6|hg6VcJCtAT@UmP^F5iY&$NoS$?Gk z*L?s(6-@neRn*m=j*QsyX(TBjU8xAiTqH7B8ewN9PlABM*od8VnpZ_dh1xP2o1Vs+ z$~i){L2nuayLw|SYiCwXQ{Sua!^wz2~$fEkBTh{YHd(%$55xLK_pjk1KU zZYW16!1^7BF4OFrs6s+?9%SK86Xb{tCQPWb@M6h?7$m9V4SiiwBtkU;2u=krzg|xn zSv2IcCRCW*Xv2rh$|kf?3l=~=!a+lzf)E%OBd>PijT49Lki*{}SaJyoX{KROrfpue zo}d2^F3c|WgYL}goE%p^=YPIzbU$tT)2Rnpw+yI0pH`|m0eBEb9)LPB4E7_Ur6CIv z^8h3te=ygO^AW>#s!C{xF!c*SpegtVtpCY}=$&r8&e}|^rnZL&lqTqlN8S=N5n5@Q zD0Rd8x8u>u$jG=QaJbpX`}X%}37uUa3Z_A;E=uRE0AMtM0WF5NcAYdK@qnNgKiNl5 zR+%F$W1rO<6X5ElP;e>9%gfht=6h|^3j$z(@rkNL0|s%(XW!w9RJ)gCC^KRDoLNk+ z4)wK$gZQu!xxme~IAoHOn}EwH=r7tAEVze2e=#&%>-kYSk<42%*Ip1%oE$j|zb>38 z6ZUgIw?$i21eHV9tT(Xa>VfXxrWx3f0JvSo4f;K`mR`u-icw?50a%&MzrY@PiKMp;AxNxZWKR4P z4v7Und9oHtqPp+j?^_*Y65ZA#jDS$NYkPOQeH7!o;mzFj==$~ROKwSq+xo~AH^e~| zMD5Yx#^!qo;kUt1MKl7<3F#doPcs^x1T$O{!LHMxukNs9wy*h0ooW0%uVCiXHMaPe zl~sUZjN73-DN?<(*Z9d7RPYDffUD@Gq~gg`Hb@X8H7e~YTVJ3l;n;-8+RqVf7fV5| zJy}~zT}#Iu4ZuSvSy))q?bo>B7HTQ$YhfGtoFXTj*oGh=$dgE@vJOA<@xC8Hp1@ER z0H<9it!3BizGL7kO(j0>^}TD82J5}-fVBLJpSp9M4;*P2DQNI~Mpi661s#?e5J1iG z^Wa7M20I~3)Tnd6V6zqYgNW8P%hiD3Q@PW|K}kO$fEVFS@P?F&bav;ks<(qZ%;ZT; zL0;SrTHr}BT7gLV+*c_K3TC2B*Bl(CiEro&v#DzENsCOKrMHDGJ-neXFO&X_X_!#j z%B~80+@_ZC~%Q;#$UmkgM&Wo@3apBkwN$#D& z;%T!F)HTE2kZT?dU)mv!Vbm0r3)GQC=sVYijs%BMy#JBm1jR;gAe$w~r{MjQ zXuHn0?Do(kZW;Qyi@nW!8L8*a%JqcV@}gHlkZYE3$iGj-NjK8+5Bcsb0>U!s1 zW;q5V*pDV&U-drRlK)L}Umx3*`O2N~qp7?niBLcy>^Kh7{bWC}?|)f6C@y)x7~Jy# zg5a-Snjo{Mb?O3qiA6O-)UX`7IGCAX@g`v+-Ac;%w#u#L38hHXQdU=2*A5Q>B}YU; zDBL2uQ>a#Ad=>Trq&mJ`rhTYJ0wE!VC2ml&ayPiX^ zhMYpGswC2U8?eiea+}lC^bfAS&W2Kug~1_AM40AP z^?=q3aYK6EE3#U*dt$K2e08z+&`QioAbvi@w^689tNARi&H zPeBQ_00mY7%5RR_rII)baQV>u<(ni12L~UDUNESu!$g6!D$CmW-hdI|srLs$i3spf z86;snXUWXh8tYodYW#Mg&&TtBEyvg(tgO-QjyLiaAl0w9c;&Qxo|f-!I1X~GHy_0J z`4X8it|B4Yv7RGfU?z0_{G`XwwGidy5Zb~X>^>oJaZ1=2i!qRx!WTn(=kw{~<|$fr z;>=Oma?$Rq(7^~#@FWCy#e9i#(3PgAuva8i zjI7+CoM_6y z$gWEy&;(=Dy(!F2&Gc*bC#u1M&0mcR1zbDChF;vX0$0X>+NhAt#UQI+KKuB&e%J zkWIqPFG^S>G=~G5*>LT?hL#(=lq38O+0}|Iwf$<5wjbpX0e<5Usk9F*e)6VtrA1@f zSZ88tRdjm$VJd-GIZ=P>n#X!^x@VQ#mhjzZc`281-D9-6B$t3mT4x->_p-7{(Q|F@$a4O?pS`Esy^1aK3AZuP zrj39%Dn>PJZCDs_OwbPWJnG+bG9`nfz5lQ#jTo+Ksnqr|AFSSS=1%m&j>In>N^Obw zSj)t_{Mzhn5;t0Z-xE=pdaU-0ZD9GC5z7Bk7y^oHvZ#7lB#}?bmhF3^qniBAG<>7` zu_x<)ItYkrVgm%h7=ri@NjxI8JAc|pEFB%)Jr55RD=!G?8<8o{Z=7`;{krJdJ9BP) zm7Lm}%|5<=p9lD-Ipq`nym#kLzSQEt=cm1^9ke>^+^cuS7zH-CUJ4sf*O%e$e>B>D zYZ4$n!>by+>bW~V)mXHC0?|nD+$iO)@u=QWb6~4SWVc=gO{~Q+>01pd8r%tc<)%0s zfjnH-FyI7)greL+DGr4?J2f&N9b8;E9^bL~b2%Q=3T=D7e9yT_B=cw^QlBI!B_9?D z+z)DXNsyq+L9hPo%qN9iyDlAC9OQwIohIgQ>Rzo?DVW=xDWQxaaGkr25BQNRDW35X zO-VH=$Ajmh(oG*qxiRGGK7rCAY2Z5p-Dq0yG79)QyseG8>GoaK+C*i~EWX2we~M>a zT9P8G_fUnN1OoAJhg}j!Q}E8wP;|mPQO7{RB5;U{2q&A-COWo7{RY(XaBZc1?ZJ1f zI8k})sId+|0ctUD&x->p$;<|6Bj3ql0)w;^;I*Tprzd?-T4otPd_s=UD*6NZXo*f| zAUf_aLg*qZw}`09fK!Iq4fhS<=9cX{#kf?f_K4x*kKMy9^F@2!zHv`VGW2mVD6i-q z-cPv>#Wn_CRun(d_7eDdzXWs{(muTB&LpVxp` z=U8}aVk=kiu_xTtUrvN-YiKo4hhCqx`_+Eh>=`vd5m!W>n0t&_Hhr*ny-X8l+Hg=> zLB*r8w)gmCJ%U^wZxOS`+g;USkhD44lm3=K&0STSu_-70h|M+w!x@fKbjQKvV&-#e=Xej8GKg3R{BEGC z=z4}Tzi(V*+3BF@>(y*0LOtzE(M*vnALbHj_O^#gw;kKH3R>+z3cSr29Y&Pb8daTAu=V5P*DR=@RCsNJ=kaUuu~o2ShUTc zR>&nQ>oea;!>25ZeFL|Vl{R_g5-n?DVxqa`g*S6K8EU8M0SsWYIi9PKw06ZT!bZSHjO(~Xfe6Wz32bC3OB8d$`$pW z0pxzSqBbpz+`R@MT&9Z)COyWWodlcI=|MeXIBuB<71w4CYi`IW_+{`v|R17wJ_1Aey-Zq;cwB$6V! zpV0FCWGNGvBG0 z`vjK-R09Y+B`4|zVgOAEut$6{?1%1KD~#TMH9n!w{k1IRogum$5TCI?XnHl}erycA zS{}-eDC~;TZp2PWTBRfE#`|uSla%JDwimSwOmkMQc6XhtGyyzLFf=^h`>CjY(62kG z@Ther?^Q{En9!y}{0i~4q_NVlAFTTlbILhKxPisnVQi4V?u69Pa2V~icl9jz6KI4Z zBIO0@EHtuD0l;cBHN_j=RfYc$Um*k#%@DTI>i3IhYpuPP1Ci#xWOY)-9$;mnAi^P9 za{w;~+*G18BcM}J0L<_LCdCLY#h~b=k2+!2J5b7r&F@xI~c zh8o2Wf{~_@V}`|W%`hA9ZnquI?e9supb?xI^`Z1Jf4iR?kLRHHA{36yWoW_8A?G-< zk>P*>fSMk}yAg@CHA*ya=SO0cmyp^#KnPEZwbfbPpM`hmLW8mj+nnIW=i5VsN4?S=I?}gr_0x^YIGhOQbfF=*mmI2R6iZB=1 z0)Of6i6;|_<_$kWMABS*{&5@U)Y>j6S)#0wbv@drSO%lUdp#J$8qvnY?gDnC8(}TD z0?bLE&fqf#oK_OGDLuJjUj67tB}ytxdmuNlfwnU#ZTw-k?)WXSR;r zCI~zj64a(1I)h%@_L9<5YPs$*MS*x$l+dPz0_2nCIO$r(Y9 zHub5g`N4C~t=u)*H06DhSP{0Js2$EN+Ul$IZfo2+6E>tg$zZBzUD5F=`yaGNZ~X1c z0D0dT9vZWYm+l%CxNm=?}b8THK)I8j&*jY}e zwlm{%T5)nynVzU}qGX)5^FhJ9kcoJ|`4U5Q;mh|^RU6J}$G5T`prcE6)O#mqpPs(9 z@gAQD=}nmas1T_e7J$UkL-ySO->C|-Qr`2wh-}%%v?`{;r_R4XMnFembVCm$U~w-e z$?tOS4o}i(9ksX9N;IX;ae&?3%UA#Eo`HYSxqVML9$)bth|KfFpQ|#I%VGxtnz|Ai z+Or1bo1rfBgJ9fFnK;#5KXwj%J8D1lwYEz%rg3HCJqU{b^;W5?KYu4e;0f4pWz;{` zIlYv#kg=-@KoND)$ET*pJe}u4!ENi(AAehx^l}b!6~r1~h5wN!Q`B9g^1L`G%1_w* z4=|}w_1x|Pw1)0W%1GM0XXv6AT<~cD7kmQ#M1@)Rt(LnY_v5s^OvKG!ym*sTA?B%j zcFG02&SlW zIy;)%I*FY|b%iMm+d;m(PTmaY`WnqQSi0yf`St*69^aoKb+$ydXT`hioPIJXyCO$-11;re_0dmUBm!)|PL4b%`C;oK zm!PscfT4uCy**l2dTqiqF3kJD2$=CBFv}GX3kHyYc*no&gv>e8KvlmtZYWFLZ22?M z@V8bM(h`^pGogiI39yLwkNK}xOpr>`j$6RKM3pi8(tz#|70<+z2qHYHsjDl-vSrJ9 zV3>&PAV5vm*GWuCu^c(%ke0Ug6zumtKH+xq^by3k zjV+aNx@pM@hBwU?&1tnmwmkCY1D(v96b_ciqK1XXf?}W#)FGDa4&5&!Nz4d?qoShf z$K{PCtAxS!s!(&Gok2gmh5H-Ms;G$8PCR*{M7HZU>{T&*#j9y8%(z}@{TieUhDuNG z4Na%Z2eVgvndJLzHk~FRaauF!+O{2F8ta9%dX=S?_dx3$!>9em@qIWHE!`<=2VXIW*@z z3--*}>#%}Rj$H>%su|ZFdh59c3Sut(ui^y~fX9p;O|xPR7*K@ASBj}^`El@|(##Op zBOV8c@NPdzp=aGSXy%+adR>x}Fk#REjt86`u$Y3@255IW;2u}zhFt)NNOH8a^apQm zfM5~2cW+j2VL$gQWhtLp0&adE{_iAme#TZv z;a-elFU0B<`mJ^Bn+jtFRL$LRmyrmpUqI0%0g(^CVc<^;uI2)3PiWXGUp*y-`!^>R z@Tx^Gu#F1U*%f>@J;R)%t?^~Ky}f-?Q4;20#33DXHRlNLPr5?#kNwL({(Y&NB{Zbh z+G)7z`H}B1Tk6pv^DHKuQiK=P(-28R*h1o~=>pHcO4lm>1S&scx>gT2&F-lL;&pOz zzxL!M8>hQdPrYp7HzyUZAy?lC48MClur!`!$`TiT#@!??zYqMwANYOyJOVwwfkMf@ z0c!3=FD5UkKzFqaHUmBAG(4{$oqXLt-i*JGXVQN&z<+eBni?A49_2jVjB6G_wd>Cc zO3Vto--RK#jC%rh@z{Fyr{#w$e|#=SUu7^Q-@@W#Vd1)=n5^_rF=r0X`SI-H@=v>@ z>s{~IRjBo3WP!-ilY5&vEXVSP`LzOv0cVx{{zDZ#H!PNYYBWx}`+(+I0>2tanv?%Y zJEGJZp@`>7z!l3JAed^|F5FjmXZg0@yEivp-BowdywAC$Ti6I0Fpo=hYs8`#^Ubln zyTg*{r@aj%NIh;LXfkg8B(>+#9o%}>8NI*N5~~sPJoT(6dwHsPd*|?IbGS>1r|P%Y zCcy(b!ow*gzwn6S8}gWi^KSh5h#C-4n0y#;0{rZ;JJ2r7xV!kSZ8{Mcxj)=$xnE_1 zjO1h@8~@tFUfsesz9KDV?CNIXoXnm3@|!J}$K}Fp>wZJV&Y>H*Elf|<>Ey|idt!mT zKas;$Zat1P`lkGG?8LOx@9GJ^A(sBfHuPn0IPK;2D_@Ui z8O3Ykp_aK!&ZG8t^uHUw^A_96 zbn(2A@ngr-?Wjo~tq*9r(tz$sEJ!>_Fzj-`|4vS!@95^wJtcb9PdsQ=N3ub1`<)E* z(u~Q{3061((EDF0QXJ>L9G$#4F;_*EiC298?G03yAjxRL=K(NAT(~&UfMbsc833yp zEe06Quz-PA3(x>Ov5!hD@e|zUbXx=bDGbT*`#2wg@F=tOc7K4!pKtceU%&=lqOlaO zWu;l)%nQ1lK`cE&6kyrb%~*z9Dje{`vWXkt&tG4iok_Ii+_dDmVP6={;9TIl^kg*e z=Pvy45lrs&7aSrk_1ExuxH;?P16$_ee^`@{{~_(99>R#7rYsLB5@VJvPK5_XI)*PW6v%u zIxZl+5?u2zOZ!KhDkvk!fa_KZwXh0EfFh4CTafT`V1W5EoIoU`&k38aL;-Zm-&8?0 zg>e1T)YmU~lh6Ox9RJ+k?*9`95??PCdr}8C!S2(5mNbp$AGqvRNoa=g2{*6 z_ypz7cN0ha*hPRaQ1etmkS4DDI^gf8t-KxZz>!FOt1w{3n-0NlwjtSrlIDd8g-Tg! z$B&If@6~boh9i$Qk=H7~JKKlDR%jX~feJ^Go5zmtB=l~tBC&>O#ZmF_kN^Ds1J;O> zksdmw>7WI^gi+B9<=4|qCE*!tIK*8OK}9Cd5KuC75#r2dBk(4HWGvM2<2NC0 zIG5D&eq16b=s>eb<_1C5Pr3-*xLl zz6w$Qqz=dIZ4qI3pc&af=29h-+~WTG5W#XDy*}i&xZgayg5cSi11V%&c>bGwr1a!C zv|(Mb%gP+*>t6bCE9x2_w0#^b*q@c;G-=4a<=yZa?{PcTHZRb09{#^_nqN3E95bc6 zNp;=8#)4k!ChjrnYcBER$&-&inGA)WDDKCQ9YA~px<&MZD6D90!7J)dM=^Js{H3j;8ga5Gi;zj$_X;m%uP6`&)XYa+C_)9fwoa$lnO1;vl?R!txAGFO!x0(Ld3$IECwV?m3+@PKCVCyPURr+x}?J=oUc# zbPmj|d}-9V8DmO}WWG6*d6e>WJZ+ox6FiT*o!yvu`mnO)?GZP|{|_FoBWvVn_6tLq zpFO_-GQaLzvWMZP+|^J152l_!Y(2alHQ4h$B`NdP3EcxgC zD00NwB@}>X`NA5T@(}iv`s{$lc7-g$^>j zzKsT1D+Dd~*EcjcpXaLE*MI}&=Kn{W<@9^xD$UD?+1=R%R`QjwC(O;!F+v|M@WGP* zcV3_SKL`}=&Z`p8UA>0f7bCQ+Ku^b6n8JN0@8m9)$L(MvvOuK{01dcJVGw@PjlrGb zeB;9RBOWTy&~6xQ>P2M3j!K*5KYTtzh@G{bgF)sw% zMO?WM_!>AMop_{YN^{FXvbW+zjj*YCET0^(>f99~_e0~d_^N!-y@MG!Tw>Z+Yq_pT zi_%}>+M$^+aG`g&^;}M6jDgKbbbn2+%_1tOrY~}8SWTA6R)PVGn`O2>7lb$5G#Ebg z7$^=FlGB7uXjXaF)l==qhZOkTDPEJ(_(6AsSrDfqq5;eIJI~>UOg}U8BQMdP}5WYuZ!vu>I<3d7^TVgpb}6cJ(0%?GPd9fKAdwqDRR8 zU*Lc7tTse0^k8O$tnd_OlD|?AMvh$b%|HLT0(pNwp9Sm7n&~SoK9F-W<`;zCn{b>awMFj=q9FZtO#A|~uZ zQvU73CH=dUVdwm74_QDtyHXgx2mlWz*4AreO1^c%in5{N+PM zdY5%LB~zOuhtF$_v%B0H8m-{#_peRp?Xka|upzKYbhx_c&1PTozdv>hh|15(3(47J zTDUY^5Cg@PoGuGt^2hYIZ+I_Vo&D05c>KXT^mX`s1@ngLD>>a#A9z8Prdro6X-C zf^}fS7g@lr%q)?L3bx|u+{`d(s87X}1!Q+_aIbk@G!I<&q`B)CJk zsKnaVv>a=zhax9Bnd4O=Ys$L0k?z4A;oMa-E}V9)Ni}DN!}8p$pc4x(t*B(4PGgP# z@u+%>RAc`GBx&)HA2U4eb)8*8Za!EP_?y#)tFAQ+*)n+H zp*i)L>tDALN$oxMSd<2g-`MS+e)v?!4r?ug~Xn%a&Dte7^ouevnqXltWW<`{K%O zfA3IuY=CI2^DQ^X+2I-+UZtka*L+12J6o$-UuC#l$MIJM`J^T=9|0R*vP4->o4~b- zelp23)YAFT5Fv=Ro;!>gXy*9aM#3kf;PchZ0D@daB0BW5p`=mCgF%=OkFOx(N&n|+ zLRZWq$Lc-O{o2g1i{P~yR6lO{;MxB?IiWjd0NmeK4~CI08Q+sjPJ-;Tj$(1XDqV(z zn3#sDs%m2Mur8fH{}1F=Zd3EGjOsi7uVV~8Fk)ihO1acq-|C2NwCObpih}QBTVt8{ zXhH9pM&V>&pJq!gtw4q0Hx$v&XYISQH@e;PzvytNGqVXFv1w1{;iEFgmREk=yk@tE zjppNr9mlhCa|3c`ENPzd>m(x}J{HTjFP0d+xktKz&8qNobGKF^o=P3YP*|*M%N$2& zW1<6_`g6$4P-oZEF^(9GEb@+rjV7EJfuO@bUj?da;+=!_^8+0OD2U%MS!T&+%Av{Z znM1P`p%UaofCs6yxi*4axgPHzCz(wT52qDJ7~Ih&M_yQ2!Afhry}hhpZfWW%Eifxx zI$B8>VOo?BcU{dl94yBQ=*`wblL#XKo?JpAk$%StPrZeC0pd86U%<%UsA>ml#Sn?1 zxm$rmI>4t>+NIqt5uP2`4J#2p0GkwHR3q6Tk@Khg`JG6Hs274V6XFI^=k$HMFvlL> zZ6?A%Dl$p|M7C{pXsW!1>nvQptqFI#$1?8nP$quXhY}gfp{v?jpUL(g^HZKhuY@Yz z{m&vswb+cc>(3W@=X;-iTsq|)mtRz36ZM}+6C@{$X-6iH(j9jzrHmqg*?4n_R zebrvP3&vN>nLD?GODFoz&-xuhN_;>c5v}TbIPFUtL{lm4O8Et}KkphuW!FS?ODbPS zn!KE%oKTi_FEBi!?nho_Qi++fmq|3JnY&cG&*tDMhr}OP``jUCp_s(Pai>ieeZxAqR>}-Y_T?uS=Y{0((C! z8UA@U^;)C_3B+J45r`@g^?tq8H_Y@08Y(Q?=*=lZqAiMxpodoj*7AAUNHN!Onbpr!>@(sW8Zv=4?7FOXzpSl0B7Q0Wi~2&2+H`}jG!T&r(x z$HhgTx&KE0;6g1TnB|d!02z#_Gb=aP`|$PC?N)Umjp#?U-51jA*Oy@k@cn>rfBi%5 zdvyQGZQlSW^(IXh6MI2UwFL$Gcyma1D&TvNizA@9!bRA=bQonTkOK^+lyD3wh_gO5 z*G8cit~w0OAfJmT!77p=jJIszs;tRv05Y^GCZ^f%7wN`_htRf;4u#T6{7{ff?|7|A zj*O&50e@fA-l016Sc8=s5s`7&BF^KvLbE>q)JH{jIaV<1CMyY@7W+@|)6G$HsUM*L z!vp2B0=9Km%HVn>h5Q{M$LdHL36Y;0tgH>x6q-)ItFvQHN%8Sfe?lFb?=5+Xh8QuESDCosFCtsQp0A<(j7Q`G>+lxD*8 z<`-X1-v-7j^-?I-5uRvb?;_iuLj%}`mnk|fJmP%tGlLgbzf=@wv;(B<%kE zC5af@;@e*$M>&EJyo{PBeI`>JQhlNpk*f^6+6XnC7*aR9MM{@F5G^s=`uRafvhUmE zVoqmsJZcRa%uNHq2qsMkda7_8Lwj;nf3?*&2YT`j;SqzQ>>IXFav-d;UZ79C2B$)# zKJFmaFjSq__VnX3MU^z@fL+J%H{xR!y}&c~+^e+6Dt(5QWHS4Vp1yL8!S2GGH*F3O z{TE_9dMCUp9=Rl8;;EPBZuRgk$rT@cERJxhaYvRFzylCtT<5l3&4E`vtme*{Qvg9< zO_Pg{-MfK0Oh@=c-8r)CN_{=Va!ub6pX-&>L+5e_-Ksh2Q$3J_AN-Ri zf-WeHb!Qazi+l`xb(n3~=-Oue<)#q1j9>IzRs4B*djwD2B>lQpT+Qu#^R;kF0e!vT zP1_wf)gyI8FCu084ftW0Jvurn{@qdWY)Ev{(r?|mML`xgN5~$}G0``<rkj|5fl{%k7Gj+9_Mj&I{b9qac3UN1oH(5TaiM0uF6G z%rw^}V^VG5R3|PY)9hAr^<9-Oxn+?KC83>M69|lgC!|?ZWe#8C*a1mHgyhNzY@;Yj zc0C?JC@IaE4_RtK?_*0mUXra9cZj{XpIt}v+;;Y(;*0?YeLJeRBA+nAvgNO>7cV1V zVH=ixDgpY2+ZS7KfN6D94eMFGJYlfBEyZDEq9{1vQw9Wt8)#aiLg zU$zawWgxoDRF=Mdpb$Mfx&G1_fM^GWyCzv<-(y*|G#S|%wih1DPGPAns-N6eyqJ-Y zQtY`)boi09n3+MJcMoB3KCU07bd&59H7?aoeF^1JTC-UdG%K4uZW~oPE~G<4TU(pG zqw*#!2__Fe;=u9Ml+VT0vvi}o92J@Yuh|JfpIq%8=o#L2f^N5|K7D2tmIC!!Kt&ZU zjcRJRVho2x66r^q7wS^J5`};+n+S7H(s_{i0Zz-JA)W#Wax(BI-9p+Ln^aaIYb~FYk=D^*OLLgeK?{exY3&?AB zVf)9W9q+~@XFfeQSKRg8ZMlASZI*ZBK+@QwFD94URooDM1WPc=>eph!8TnV>sM*t6>3IP*-P z*y0g)P^>k=H-QXhvMF1}sQuj-7xyF1A7L$5NoGCRt)gIP+f<&lG(X0IMbRLN?Qi+< z44oM*vF@(SD!1kD*~$E5e_Oco!QeD_{NnF?$T^(H*Y3#A*gN^8(l!LiorfbD9P|VX z?Acx}p8GpaczNNz!Y3sPH-c6Ul}~gH>0I|x6y>`sg5lC&DFnEHCMNUw6C~j3tZ)Ny zSFy-&-$j5#n3~OMGk;&b)JIKK^?9G-6rY%-R(4r8;}N~GjA|^D;;2?^3M^BEK3>dQ zFjH6c!o1ZKEQT$LpF9s6{>qwV=;Gn!e@rqy@Np9j1Q5>sH+fJ=44raL$9LJ#@>nAGHD2pwt%3gs}ZL%_4p_nDI6uc1g z;Od~6y7Q1#28jKHDD2H{K5iQ2jU=MBy9XZ`+Gkk<{nABDCCYB?IN8_$Y|Too$<|}< z!P|8%b|qEvg+}4+Ue(e%wW+!`ng3HGdFa5z^IQ)M%AK=peCh=srNM@r1q0k-h9B8a zk2vU{71)$mAb^b;R5xS0idd1EJtA~EhxB#(ZOQmoFp>>Mk!%L4oV3ftXe4XE4OtUk zAqV~lzEcWhaB?&K$y@ueExuE*)rEL0CW;<<0pox$+*YkP)po4k^RfQ%^&+E%~ zBy3xMd6OkQBV=O+Ym&rqBOS5v`?i-(rR`&V$z~YJF#Q1$>T`o@Z~1mSEvbl{8u2`x z4E~snwXPhzf3FJzq=xuA&VI)K};%Mnuu4+V~5t*`A zjf@%%tWqaahAAp@K_UCnlP;e91xF^d?;gsq(2^K}+jvSq&L)s-vu{u(l#(cCYo_2xN*8ggo{c&Ob%We1HMU=w zRyrQQhdZERzToA>P6A!hT}t6osaE=HC*WA&qA`Ac;|HF)Di@(EsUMr^RVoZhZVe7W zv6*lXOw5N2Q)c9#I3sK)Oy9u?mG+HUEAB80sNCr)03DysPKjj}AftKeIkn$%pfAnx zDpfr<=UQ%+%#PQkE*MtTfX^4KzYtPk9cDg~DP=H@FziHMi#icy@)Yas{h#0=tyn&B zSPag}8f@n6!hFKIcz^NKXJolKGJB&D$7OkCUOozt+jjCb$V)EpDm8SdxMofq08v3V z*N!S9bBJr*(~liHRtSDC3uP`I)`hEn-=GHHGxL&}Dt-C9aqXKv)!KG21td9Cta$S-J@jxxLw4Kc;w*#K?KZA~LHwn{v{+x@rN ze5`+$5c(|5OPs7SDM=3x%gXv&Zlwn4IGU>V@CmQM-q3{NUlS+i+$~Qt;Rr-Y*d}o9 zb#H$)*Z-(kFo@Ek3T0WAZnuvV*9Ewb*T!8BTAS2Tk62Baa?Jc)G?zG;M=2p4%9q57>3= z=uy*xU3heDJF`u2`^1Bud%|jUDkn8I{0>T22vIX^Q3k!8heXj2h;nVCraji+k(z7H zrx8w=-q*l~s{l;&`_G;{*@-i)suP#bN@jar=70>ws3HEwk3!Nb+nzjowj*Jx^@#@D zW)GdAtq(%Zz#YdDK#FDzHfD2ds0BFX3!Tw0osw4wZn%Qf&K9+1*aFz*0G|w*uO*iehnD+&@aJ$qESf1csthv z2DNoQe>%Zk*u_~Sp;aPU%76OafXl9mlkz^XYq$2#FVdaYSbSr^L6lT^iAcyTKq2#- zcAarU4i(b0OlZ~yw*{yk3?~fg-~U@oj3NZS{>Ze$@Z{^Scz|-Va+E?4X8uef4QhSU=vY4895Nbsh4n(g^n8~1jhYa#kIvL1lwjo3GV zTRgE84AYOhne~2YePYL_d@TA1XvhIt(H@X!$U=)b-{V%X=X#dq?pg0Rz!n!(2G^RI zz?4%huNFY5yM@u1rTVPZFGTZ<#C5{yc$9Yfyc4$0(T|%D0ZGA+;n+#C*9k_OveUc- zq_&+vjU9Ay(h9P-mwSJ9^Ct&`VC)X3L`TQr1vN6M07SxYIsQKf+tFn*UO)^r*xIsw zZ7|+V27MzYgLANCOe##N){K!YzZv0OJokA3V zDxG8;p1iMAXm@PF04LaK}P}-F|;K z3hu^B=ILOc&_;3T1!4Y#v-N3BGW?yvm{%vfA6lMI=m9A&R2{&d7vwC+I$^~< zdy7pe!U#JMxbCNb-{XS@;J#JARC^MRkt3>e4ZLg)urO3l8aS_CQrCF@{{6K44;gK~ z&~4zc$)L*&{RcS)5@G~gS}6xa4cWZuNiK*+>;Cb%O~knXh1Mj8p>akNc}nqaWx#nRfY zynf>sOf>-gss^UyxU4TGd+T2zFVuS+j%W}Zn-K@;N9nq_x8maBD&&x49$zs9+jUsl z4x&U+kOG}@1ns3?`Ab+jTEL^Sv70b0(bPTTTP-%85 z%K4C97w6PsMJP9{OteLZXOV9iC9z;wI!RBoAH!{t9MCAN3~={lN~?t6Qe{z;kY=Rg zlpV9f#Mwxtwx#JqlGBcPDA^1UsVxUT4|@9aXg#uj#BObQ12OG4$?q;-bG&;+OyEMy~K5ngyAZd0crjU2-j2G{43B zD7(6&t(cQb!J`!94LqFgxu>uKq4@-`$kja@!8M~RT488t$d+MXAqLP%BKap4`px=X zAa|`HunA@PHo$%HpWhvewk%mr%rY#U7l2^`kknOc`yTLE6~+F-9WDn$3cB%F^Awo@ zHI5A&=U^|pg4qZrRS2pp5QQiK9aCU#A%rpbjrsOYL;u{RExt) zl}zg~*S?G_h;3i=C)ucj(#qPfT`Dup6Y3tPDH;{GttMQB#`yTd>y*<<5dvOSz)a^l zqvD_j0pqC&%G7b!By(IY+2*dVL{16BInmIw(8Pk*Jk5ZeXJ^{?!RcaJ&RS5C;z?Z@TIgUg3n6@GPr2GVNfFn? zJMTnrcEzGRq9->P4*xVxCjtuqAr(TJlR8_?3ZW+SYF5NWD|Bi50JtFR=85&iPY0{l zea5|E;kl0j*kk<9KT1q;^``BZ7+x7JpXM5G-D-Ak?{5?|5shMpa1L3&l;0WSjbj;% z*zgMo56W$3-A7@muN*Ggj0mR)t3m)P6)UZL0j#8@W3d)O#~6dLU(LHm$3hBR@N(vG zfOkYTY>jO=Zb1&Jcx+zM;rZ}-1geWTS`=95KyXTG#$6JXL4lrT47MV$VeA;YSYdiP z_AR&-1t^c>0kH1AnzfD1CgYFAWhX^MuOHZBDwQ5 zLR{kV6CIm%Ir_F#BuobiP?> zHC6TEI(9vd8yOjyn8yu4l>S?V*G%qg6<}#aIbp~kKC=y*nE1Gwpm$E6sTW|^zwR{B zbgCJv=;Gww7E~o$mWFm9;P!0qzVL)vlG*qP2~c2?dWgzpg# zqDK&Ids8pjXn5uO0`aE$2t?6mX<>ghUkAb`Es1klLv;8nR=}D^J7Nm2??Qe>XA;gQ z`kQ3UO|Mg5kD6JTiRhxDG+%iy828oePHww|F=FG>xf#{Xf|M2vYbYtpcMk>h29r$} zWj*=84Xh)HqcCIr&1K|pNf~T=_wE&Ak-1kqYF;s;VY06k#wH-*r(zZHDmKfb7`n zkDTO0N6(;mr#G^lZ+DJZyKHFL~t~Yk-S@E6B`L{GCZFyagkaaz-`hE2K zvGF&X4y9i^aKZcJ!7)*yu5W}5k%rf z^eTbaF4MQ%3c{psaLu@~qwigOAhr&I8#&GyrNmYM3QT`&uraYBpW2#G1y_Lz)|3_! z91Nvs=(~6C3{{=iYat zYL#JEY!1^eu{m>Y=CtN%9O4%_6A=-yeV*R2=N1)q%m4m6byHAVv)=P0&l$#%>j-Vd zkvDz80xE$|iXzOY9MlRN7utzzSs9C>P^|3fAaQhXnlxwFG z&2Uk^tW;7u@obBkRm&zk%C5(ft&?6d?d|{mn*^d15&5S8ANH$SLI9uuI0o za5`FQG6V-waUJNlvId3i!sFHi2diWg$K_dvJU+Q5e)r<-jjsJ7<1CiSZB91A<7{%Z z3EXHA+3`_EW`HZmSoJE)bd|k*oM;fH)T<3&x>yJ}G}LrD=IJ_b52~-XLc-rI!*wkE z8A2KFT|`8dSy|nLhZ{lID;AwSdGhVFJFI$kI>r9|#>ZDh-nFP{DnF+;(Eu66xQW-o z!t|U-{=tK_Ko6tw4?Zynf6B~k;8c`3f_rb#v=9;;`BkoEPANHYuW%|hAtXT@mpv;h zYo)5H_L?;(5G-QT*=|n<{*F0^5{#B+2;s&B2L%zAKtMhw%x5-(@i|}uTHC0Bj+v1l zvAPQ@wC;I5XyCvsbSYYTdLa;5Z-cEl)gY8DgP|xzb%kZIm$$UFRiU%lt&8nUdWFye z#~Ye!*RG97QdoB<*;!f6zW$#J3B$^&b$y-ck6@nh>fNrsefx?k>xAo@e3Fj9+Kg)d za?RY_7%6(;GX@S6d2bglHgVz-b#--OtD>W1fA|na>>hb}eH6jFvP1CUQOi=ms*s|K zKAt4o(|>Ko-OdfIif)W~la{w)*)n3}=j7zbIWz|DswoJ^y}7`oii;gEa(tHUGV}Ko$>K3d{6^( zfF5srgM(UB*Jcb1x3V?gVq{pHr12f;!U zcGgfx!d^dw?fS^!!>sW^tR5;<*vlC3_L~ivN z91;lG~`ofTwW|PHfcoj~&?9Y@ZE!jK_hxTrY2LacSx3 zqNUEbHs*!#la-GiIil{n(3xTuoZCLc*jAFg1z<30T{iok$gSM0LVFhT^!f9Z>$FqD zuV24@PiDdgeW8pq1OEI|)6y~$S6_eO?spH5)HgP2!pUgPoH?a$->T0XU;R2d1e+A4 z9AZH%@bLEXGQm0ZEJ@qWE*1>7KtQOuao(&5BNke%s+`@n)mWyLHulAbI*OqJa=ZO5 z%_$(V%2=4$w5W8ia;A`0_S6X;_?j}{3MN%s-vFflm%Z0uR)L5h;A>)-{0S` z1#k#<1jV=lNd|+nTw?Yh#B)rtvZf!Z~=)=A|oT?cfQ?=Ng))}{#d8kCW^AM>j-c~|1FLDk;$T> zfq?gEfj{?EjOb`CNI=^3G{)OALvn&q(qjFo0U*!9 zV4yOp5PSa-I7pgc_ykFU&boDH$#4{(y%G->xt;^dqihH%yQGkkSHtV->g23S4-X$P zf~*`;Q&Lvo`W$t4-%($HC23Onc3^D}yi{3fddkPgeBz`@?kJWj5S$kIYWo!6*(Sx9^*qBU z%@o(v-PhOmFN|JLB3nE~iF8~PNW*!DGPIwMSDl;lXkD0gNlD3Ox!pC}@k-B7IXnYm zQI$PILP83_;G8~v`aFK{;Hsf77Gza-T4IC!u$p1Aku>Yth3i7R=PXYpig zS@GMWM+Z@W-UUR1j#E?1_}$fa@OoecC;t&WheB|En00fFK?7{VWnGddOqhU5VE*+h zSMIM1%XKIYI#}}vLp)>DINN|N7&|#Rt-@^a8Dx~((dr1a7d#VcLoYrT+cte!6cER8 zK?nZv$6S0NsWJG^K6T(Uw>w*%F==pzb#40-uNGBX+vsx$oEtcB;B4SP?$2k}=Hy+> z9m{&phD+_1f>_Hbva)%wz%Tk!SUwMiu$S*`O@ox-Jb>yf8;m*ENt|)WSQ##_BP|_q zJO9>JPvw;>=iIw@?{R*9zD-r`vp+HBlURTAp+3TiQrmuG+;!b^X!heM+W}l75qumv zLiZ>DhwJ_!v!u(ug!}8*VW?HRf82GabF=%0`F^*5<=ZYRZ sLifKj-Yg&R|KIA%)%bsR0Xh9Xmh4oRl<#zpK8o_+s>{NcY}ot10A5wQ@Bjb+ literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/hdbscan.png_condensed_tree b/src/comparative_analysis/visualization/hdbscan.png_condensed_tree new file mode 100644 index 0000000000000000000000000000000000000000..1601745087ffeaada3665b3c0ea5deeef7c679ee GIT binary patch literal 11757 zcmeHtc{tT;+xCj)!c!EL*gNx3#4?qsgq9&}N>ql-Btj&yNW()R3z_G_u26<#rfHd% zlFBUeEYmVu?{%+L`)Td{e&6x_`5oW!{;`kM{`n2}a9!tlUgvcO=$=w%+PZfu27_V3 zojmae2D4rkgJDqKyb-S0zWBTce&pO#&${V5S-W|dyI5hg&E1?YIk{c3yZD>Cm5ZyL z(`Cs+a)%^Ef3tOSb9Oxfz+es< z<4znixE43wfqxKh<*l?bzeRKByMNu}Cs^}refnU%sNe03e1bBg#_xhBe8N9C2IT7J z``>)2oN4@a)6Gm<^d;|>Ehd)#&}M;a5F;3@}j@f zya-E;9IuUQ*Zjn&lq+dW&Wk)|!%m9wPMp7bAt*&K5Jrdj^ffAH6Z*$jeFkRuNg}W3 zgdgScEwCII-&R&<_`&20bfX`8or-nv^C`iX5q>fh)}beLz5e$>Scd->7KbS4Lfr4s z_xugBrlFzXZZVVdWVDNo(rCAH?wTzyZQtG}mF=lLQ8Lru=I%c5)gq)mvV5h#E>13Y z>;v3t7Gmdof9L4uO!NX~xxNSY_aBuWjB`D8=Gj?2@>%q<-3-BcDdpu#P3bz^MI9|I z(Q9jKI|UdZSjfYIUYI9V!yg|T6}j0FESJgSiyuOK45m+DFg&Dge7SW?iqk&+ zG1Q5d{ZT3R|h zKCVr0^YEC=U&LV4!c4a-ma3bUQzloQX@@mFA#!n76*-lpjFY_D|5S2Xc71Kj*UiBf ztU&(y%(Pr_pY)}wJi8{B-XNI)P1B`6S}fLK?rW5D>2fYbPy`r{lI@nHSju||-#7#K z19|=Th(T`iCp=jZ1ahhJNamU1|Qo|kH}#ny0{f3h!``Djkz zVm`ZmM62R(V4O>hkX(Pbehn8RhtbnBr}?{+T;S4uH?L`8J8n54 z%xR+JMNku_G0^5=#^&Cnn)RFp4J*O9niOL3gWKP__iJD<9EuFg3rr*5?+)QCD1u$> zdJ}3dPDdp(m-I4Yc>J~1l3O8T-)O!1pg3-8*!+9NdQA6iR%czgHI7H|t@-U$-0zyZ z%Na3NLVs9RP*{#V4ifUh_827U4 z+A%O^WSk)f+hWVwXAeI#gd0-*d>MtGY^}WYU<0O`l4G;cAl8?0A#**z8%c0ydWQ15 z7E3m`FGGQe+3dvfK(JVZ0s}_;`1XeinC~T68mKgN!yUFMC%;9V&5&iH!4CCLF+zlO z8<;b&2w0R^RWC_wJ#7d6f28X8@=;v3PUsfSJ><!l`dpouRqxSefb<+IZ z$xq)P32hvFpY1km;t1VeE0g$yb?vA_{ei?Wf`sjsT5Z{9AcZZ-V=Z!XpY+3cQCP>x zxqfVJj>sh`9zE(lc9O6%Vpv|&Vv`u3m6cT&Eh)gFwDMhiMLH>l_BDmvYTM%MGY5@w zcqOgtIEuWd-mwq9-X>P3!lDq43*)zH$+5x_tZE-xeSC!T97?|H^6fVJK+ip~%gas- zPc#q#=$gk$JJw_tbjEm;j$XhKQUr6X>tjUEzY@oNY-$QSce#)cmvix5;Oy)yFK+jt z^HI%D4bue!{}{Mas*Rp+JP~RsZqe$K-?KW2$16?+=vdZ8*>F(+jrx5VnNO+{C2iCI zp3(qia38z65{H}81#m}>9Fe%v^H!ex)nc4-TX_SOpfqwkX9fTiST1Nr9`gP?Xqagn zA*7$y7iAGFWOqD+h4>bLDbFm)mU8$-n1IeHQ`0V|)fJEO<&J0P3ndCV+|MQWEDc}k zD3Y4=>RQf$X^*w$i|pUOza`I3KTSLKA#b#_qp|em_Na!22J|N##YIb#rH_#>y)S1R z_z`_r4LQ~R8j6BPo8GgG#i?t{X>&A%CprYSbj)R^&ERaL_7U7 zyX?q4cCkaAe|+^4)r0l4t?b?=`#Jw=W}>r%$3%Nw{81U4OV#gpEjx;?l054crg~kQ zv}N)gWHWZrC7U4OA-V3_w~cqc$(g%-?1oqb5<`iV6mTHOT#kRYEjKk0w{6_j{kQN< z5hVCg?_kf?g~yV}wDh&N6o*6}R%a_;o1NNfsCX_W38FeqSxwo@mjbz*yzFW`S;a($){M$ML{P_~*}o2?pMQ zYggzJ+DzG>QTVTbY=rc-qkG04fMM6*E(AZH5)gU-A`vQIb8+fgQDI>BcEJjj$DX$# z!Z7*im9)U7e&(;lRSO8(Cu7}N;u$UHY7IFO!Ke8!Twy1?u*U3t-YP>Yac6{HN@^-k z;!2-@>+A=0o3@vZasyEo68N>1Uq~6T;-C8I)+3+(#1Xcz@>{;Yzh`)Ik{y6ad0XIt zJ5~SPR=R>29}SOR(c&#aOR%r$^n}MPiw{1VI3Q|1>Z0j zdFVpSW6el@oU~JCNdXZy-nZjGH;1bGM0>O(NnUa=-ovCpw)cM5LR4pG=Pa4bk1HxJ zo*%dd5MV^&WOdNj&5+1$)B|xLYMdtsa8jkpe!+mIInIDg=qc`6y_{9Pw)D&>mtTGV zRfFIoBN^@PZH`tUu*3O>AE>p7C3%bL?cwWOcrTL%8ifdBFc!WDgFZqRsyWqy2Jwc1 zu+l%6;2=kykRZ&N8m%cOHv%L_SpP~D2cN?uvA;f|4Y1w_yY~}Uf57_T7e8S=5CyC( z9d-CY=(W;8bDFc3s6jmKy9Z9``8~-!fua@h9gKZ9B9k-}3;&53V44vs_8$C~vvR&s z3W}G%0&4GGPTea%;)OOKGjX_N_3I_9zO3qoC#Pu8xnmu08J{q`<0mme7(dab%Y;BI ze6xr4O~Lgr*Mb<#Tb=DQ_cYF% z+%h~eQUkn&z%o)+VeA5pRs-c-wJsHBTfYz57b)fNxvy(&ylc9Gk)<#A=tNa(zJu%k zl&ZJ}y0#nKrS4Jm0iiqJ?9)Ej_VI~%;s}<54e>37t~Psv)IL8m3cJ0Hoga7o`gNDu zg9W@e(72%q2?@N_uWxV5y*@X>mU)ARV;yxFcS(zjKS&KeBCMaLRlTw};|jz$@Pn() z3A_Jaxax5|vsak58bpM#cof-5Vriy6wyC2-!L7KUKn7$j>3W^w@>tj=u4})YdwHq4 zt&{w6g@|8KZyWRtRi?5np*l<;Jv%%5F_Fu;Vjbd>iPHJbOD#Ek#qQ%8>gwv!G?~nY zLxcr@la`w+34f{y(@~6$ESr7&W|2qP3IdbLyf(oBj`PiR1NE`Fz;?XVZr3aXQrwB~j7Nz#%=MM7O^4iceptI%0kh$lIBj2cG3N)cl#A5ECtFGZ5$6P;I)} zY-$CXtls5xIr%yB+99>4O+0 zH~p1gRGHmo$RR4f{$#}sWRBbRR7v^sO7v@BjjPn?J##jd;qM4^Vgr3*?q(x*`_g3U z4|b#jo3xWDmFps?=pnv!^_}U8>dVU=G4V$|2Hvvj)b&+|xxQhN30K%XCQakYz?4

>};{+iDD;{l^%AR{+fu#4ePy*(_U7(HkVEE+r$+Gi7tT4>GE0bKj`GC zS*>3=LB-0XT|Aa7!IZU0$|*b^|I(=|VR^D#=^dqI+zkp(&yhdVH4>QJ6VXnZu`Rxr zDGMFVDn5iHC$J0FjdE)XtINAxhT*b%#`aJbLQ++uOEUEWQOq#!$e#19lkWKaxYe?Ys78+`K=?XvrUp9F*#l94)2kc( zf{RvDSXzqeEt;Ys?DuHbBXcxL2M6r8+PHC}1b8ZO*GK-Ol5O}9lhZX7t{dMgbBMk# zKXh|gJrp$}?2)v#gn3c#n3H%-?p|o{C<{YV%D&$GRN`{`D>l_owbW4VmF`VeAsdTT zp@zKFnkR&|N^v%srGMmU_8~8*6fz=r>~?PVSsu3v!8k&3tJ+Cfn;&FNTsZO4vF!{Q z$Wa-G0%mo-ONo_VOVEqWRs@*;g?;lAt!N28BB!g?MA2wg*U~E>eQT)FaRk`q$;ZPW zlX?Pq-&K9JoDEqU3dw;7&=S~TVaqA!wBdJgSO;(1VT9&yYm~S@;L`k2~A(V6tJhS$N1Xsov&%oS{>Tpi0_QNFmswRa7P-J zhA*pRy5_uRe*}(DJW(WqUoOBemwW^B?fWI3smyN?B8CGK#gnH9AZEYV-TM?{aSPHU(0#rME31}V=sIXU(Ozg30#Aewy==Q& z%g7@C;IKu4XIF80xUoEff~Fg9zTeztIos|^s&6lJoq=jbDM*dS@WR#8 z%twZja)>uO_`3n2I36RwzA<>T3zzz#D(gb=^viFwF&m?T%NMHk*I_C)OLGcjgtu?@Bzbj);g{0!HKFQU(LBMj2heRZo%3Y{D93G` zKQ(%F&LrI5BgyaZ`B}BP;&iB1l=$yR?UhkhCnFX1Vlel0o4>N<#Us+gQ|9qHsZ({N zX2=$!T znwwAeoOo`7m9@9+@}94+sHo8WSOkSwa_-Z07+-UV*V21BUOJw$u8Rrao02y-g6iD6L=ni8>2T90 z^zm>np4`)m!Bh;1zh+?Ou!HyH0UR-Tugo^-*fc*mO;uUw`K+%KJ+-m@S0v^N6G>Zz#19gRC)FfuZ>lz8T@$^g1WNvTzFadIzzCAuv3 zN7^){X%`Nq+)J1%1ULWz6plp*r_PjVoNqtW3#nGJ(l4f?ewPvsvwo&_vf_pFx7Vob zjx_c0R9yMS5~;wP7gQeTFx2hOa>#2v3~K;gM)+I^U>(NmI@nMT%xpYu@O&8-L&E&^ zt>ni-&?!dK*ylFz;@L$KUJ)fXNEw$;dg@l=t@)m-qoz&;7BCyD zNR#V!)}(}Zh_%Opf$iS&9Y!VBuC!QGUf!oq#*{dtC+Ev4tDJzri{ygxc*HE5IGvS| zUsq9e1||9sN>`*N-|w;MtCJ+vL2kx^ds6%<+Dr%K64c9*J}V0}waV$U@NID_1b?0y zYBzW7IZS-JR)lJ?%9|SiVjO>mC0*tc%gPin9i(E{(&vI2E{J!vtQ{{;^alteRDp_j zX}?0WDqkh|)3st^Uh9Ex)R|V_ zD6OcJEj4Fb&kWRiF1K|hkh~{cQ2|Wb1nJj%Infl?W|SzBqhGQ~+$)vbeGrv36&0{g zm6usz4*+FmfOC$ZqOm0vmQrf2kmP*`OrHAQ5TyiEE<^oGN?aRGw4NJjrtv1Mp^2we z3lAiG#vkOgq&MGU9I~p5u8vATJ?PO2kX_E6oQy!}i8G!WIZ2THezo zSbn#HjkKC`LZ{dbjC%#k=)8B$l$Ff}zr%Yl(P z3^)cxnI%;0K(umW&)1-@k z_fJ(j10I{4>p)+l3QN7VOh@>9*?g(ocwW==pE};c{{H?}A>ftpv~6zlw|ISPi^?}O z0w=gp(cZl4gv^B&?^|O=fweYZ(u+F01BBBa(;F_pwaxf zM6Wk@m=KD)0K8ZNMyRlVilCZDA{w^NZf4{}P8P)lvmb7fwQYa~XsH+}2b1rv$9Bse?!wXtELOD+5ccu{hW0n zHh@)N?R~!x&gJb6bxRPIVnc?Q)6~MQQA@9ZKecOh!oziS?#o~mPe`4f`u+&s!k$18 zmukMqK2$uzKDd0Z+%$*~i_jOYf2!KCpyMHmvxRqJ4f$V8mLbmIwTKj4!4+0?UbS-mQ2gjq)cis*0b^01k?}} z$uGK=kX&NHFTC-(vX|yqR|ul2Q(>^obZt7)=;b9NE-y&@P5FG(1bMgF&iO_+BR9v= zHJF7_jwLRul-vqNg&b*#^HY#7;2@N!yxk`WKmqcImdjw-)1Y(!{cp;z9b-T~`&^wm ziqtB^frALAu6udSfb1GTHd71Fv2)nK6pmwZyyKrbI^xU9%Barf$5PvoSn0K=mXw%a>Q*;FCip^7Uq9Q1SlfX2(Ax^dGc*q%GLX(KC|M147s zY1V%l~lG^K{^IUF2b1r5h zQ4oO-60>)?eXgO(!E3U#U@R1-mUIxRy3l!mJz}R#z1|W3ly=Fe*@IF_H5(j zzT_S7eS~~tV_@665_q?P)q=BP7Ze3$-p zQu#47211c732&#?yBJ4-Zg{_K%8uBZ$D3Pzb%m*MK-WZNu?)ggC+KHS#n=pDA@mU6$joh?S=BDnrmRGe{x<#E;Y^DkyAYi?^G$%LpmNoa|XOP9|QZ8sYf)vMrw;=o`Qzf2Vk- zTGK9D>_=Pd9Sdy6ewvL5#_jCw7?99QOG_q=Ur>=t;t7!_K#?^7->(iA(kJjjZCndd z?=DvX90<{hmCnqZIUYfU7G0igyG5&@xf;d`giL~NgrXaTz3lsKu+_ljvj(SAMbpR( z+t>}`u~j|1eOEAlgTj1!`_(TO7NOisfa(pY6p&t;E}xBTPy<|Uq1%6^Ion4H2ZuS* z`@lm&=V6f7IoRru-7z|IJes!q9Kn3T^*0u4P1l0vvrS5u0(M$NLD+n}14+L;%15S6W z|9*oG)>A@}H-3d?zyeWyq_fg@z4_2>n@15c&!g)*M}IrQ@1AIW?G(pjx|dPgaQ_EN z(MJRl_hVV1>DZ^AxMYBOt;i@FOz^slI{Z|`ye>Gc<)7NY4z@7u2orwZ10M37 zQXN#EmrJJJ=MWLLa&X?+X1fpE(;SB{S*QX;{S;uFh_1!>E+H>o6iVCR&xb)r-uUj% zU5832El}O80;lSrHV27-m?Jbaa3-kE6B(PhD{2#kg9(H3StQh zt%b&bW)vF+BV2=8*!!(mDmteE4NDHd$m`LN*-M91K?Pm~)}pf9Nb*Su!3PKeIryN+ zK~1m$NaF@%E>>1nLZA1c!fu#g-fduImlmtY{+!xFBFN>+_+3*YX@qWPXzUFI-_OQu zX5(Ki4r-**Me~!Bft5LTF$r{8kcm3Av`#LRF30=n1cL}12%zVbUCb14o(-uMI&-Uh45Ipn}Xe-mtQ%3r#5`x{n!haJ%j|4ecx6u^)U$W+x6o57n zeLP1)3)&G*EB!O`Xi0PIA4!HijgA*kj}83%f}|?p7>rBe*Uq=G9_sySQ3>=!=p$g8 zzbD_;zld9S3^hv4@9syX0+f-j#;zpgPns$OA@Z$4TL)QQP0N@LDpR*aXBO$7D^Yb=Kv%@L{M~@zD>gqD>IiY*uVaE4! zrQj`yAnP&XmQ37@^FC`cOkn&&@ts~=>^0=>$8Zw%cG3?@SN zb9qoYt$oSd(MdaebEZaA_bQdn4L-dfa>XK2gX+5Fg@roGRB%C(#$F^5s52CPf=*E^ z*4em#zh+}*_8X#GK!MZbv${Aq{zzUkLVhL2(elS30R&9{d)oE?w-ddq_{ygn9C){n RzeSskQ$2Me>$us?{{r@h?K%Je literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/hdbscan.png_linkage_tree b/src/comparative_analysis/visualization/hdbscan.png_linkage_tree new file mode 100644 index 0000000000000000000000000000000000000000..424b128fa9e56eb2c9ed7a4212658e6e09707f4c GIT binary patch literal 21965 zcmeEugpgRsCw0b#z= zcU@hb?n$0MZ~yNB0*)?L=Rav@sKH4NJ6$)thag8zp#O-F*!WWjqAQ8HdRgaw{M?|w zPs{4w-tR42MqD7yv)S*u%`zKp-m3hUFb*C*My2Ck>Z^Vyz3O=vJQfzJYh<}OHdl8w z$uUZw7seI+C|^9L(e$%F*TQ8NWN$TDQ|JFh?NgtVyJ=Ccd$p;+WJhArvgG8Ys2i`V z8~B{DGYmn@J51# zh>Y;Y=@Ky&;myeXgG_`s_}~BkME`$|{@-?V@|GJ>ago$QjrI{bzTzqhm?ykTLVtH# zikY;Z|8Vnc!?KkFUj2}S(={?`meQ(&=mB(8J2UN70WaWyxcQ&0-?8;a2?i?1t%5Q2 zED$(=H@xuZAG2g87@-D_HcL1a75?kKDJIhd80)CyH6u=RcAEQ^9I8l0FyIIx`D;Yp zY5)8C!#!X_2qXF<0+306pKp!<2vnc38%NjQ&8cD{<(PO z2W}p0%PWO_pOawuJ4RB|yd#K{p6fr}_ID6U=1t=-4e&pwMo=r_Io!FLSo6(slcja1 zpoHT6bMsR(ep~!PCJTlpXOVbu!j-W~?_6s+J^fb;k{J1<#W!p)T3NjBEUSjXHOI{J zno7jAm)h_|eGL0P8}W_??zwvZ&UlF6{4`8#B-I?4X8rlLU|lJ8jNpqOxU1`=h~mG; zh^j5IEESA7MvXcavSDUiKZ@cGNqqhKTrsd)0g*To_>>qOEYk4rJt!>+-KHrP-3JG* z1LfJs+9x_%!a*bV_iq{252mY+d4D<({O|oc#tJRQ!U68r_Aw{pW(fIB|NqC#pP}}b zrRZa*mnY0PcI@A&f3Ari`gSLX+a8scIPqTJ^}(#~-@h;I+#w1& zJ3<&yTz`dQ(vZ)xYJpk3>9GG^?Io75OqG~hZiZO?zssg%`Psr~dHp>J35lfNc4e+k zPO3#i=yWh|VR1SYet!RYNSsYu@`K&Y-g+J(A+6QfUi|{2GS>!X4+9gro67t6s6noc z)4%NJf7{ZMTTHBH{gjlu-K*A}xr$*C?=`!*p;}|vz3q}40?{(ti}JR+9Ee!M{=5}m zAFOgK^V``Jmf8Dw(rl`Uw@3&6!hu;I@-C{|UQ(7`#2MjS`*vuBj|nXxDS^`g$$GilDw&Pqy3TFp`Xw8xL9GCEXV=H})m zDmvgqynnXhS3lkd*={WU(2FMO`wRXN4|*T+^B_&3+B$@3{C5p9E^v5mY?Cif6fkZ&3u2J{_^wUyEvO|!w#j{VAn(1xM+SJ zY{7mIqwR{36lc$Yvs}kLypnX3hzuKyCB(37tV(a?@kxj4oNkUI@%L3ipOE}|`u7v^ zYH_N~9u7Chws{@CZ6idQ!c+Z+U&xcu&?Vw>z zT8(Sh0%f*-2}^G;zQ?h5ij=udYjJRJU~rqOvss2EcMJ{A5axIHBSk3r-Ota@cuhp= zMm7Ce9c&TM{h(P?g=qP6Kb>JW;887{GJe{ct_ALQYbl;C;kx%`ux zk52^*QnIKwj9E(W)vH%v3A%cEQAv3O^i1|?d#m|2-?Y}~-p?=X+kciLMY!s7|lhc50Jbg+bdbch4LvL1kIu{3r0*;1}k@0f}deH$POD7e+oA+FubS|8) zUBL+n36)y4vZ%%gDZt2j#~Z`D3r(a{lVnVABF>{%-DZ1QMwQSnTK(qvyg-fYzF){z z8l8wX>v<_?(N*be!7S-|{QwzNX%#zR0=5JBd1wuMd}>C=#yBv~7(_d&+-CFn55b2{ zT%8e@m}bfUZ$QWp8m9%k`v=LjUfu#g@z|!?N8^9vz=NQAR#LlX`xbChrB{M`oT0Hs z3s>qhK~-Q-CJ&f6)1CDu-N*LGL9B}$0i1M>X4=N96e+tnK3AzY--lYF(=%3=XI`se z;iVn@SC~IXoGEGqJlc;#Sn_wS&!TG#>)f_mw62At}breNO1gSkR4@FO*0mDFOUPN7PN=)&oDjpfd+ReB z0J!_Luzh@Xy0jn8l4-t-Aiw@Hz9uXVpN5|`h0a=^yK(d!)9Z8G=(>E% zdc$5(MxsZY$$lP|+IW8!?dDYmv?a}s6(macVyfO&jUxDSe?zhkDNJ_UmP%LY~w~qWLG_)sEHI5y_5~fJWAfj>W)-C)j62A{7 zNE6<|`M@@gL)o=kSD%}Qr>R2{sosw+c1^PkoSkuFQkOHPR%kH6Pbi|<=|x$hOPk*D z9OKf?RB4BZWaUPWwcnpzF}KW4ZNd!T(ns3fo*m)x&wT3gEfp6TnbFs0Ff0i^2iTl7 z7@d?wmB#wAUu=wILMYi#dYk}#WqjIs=))A4@-&(bL&a=ick)#4VbJ~gl0IVo_3!B)X0 z(a|`V{o~bZ+4_4#qg^zJ1T(={Zk`Aj&|2H-`B;(hJy{et@Bh%kyg=i=O1>K`XGG|5 z3c>yViy{1no(Y?%zQGT(1Z;Xpo=dKU!)VU4B zWt5AXox{xdD3t125@9X&V=JAM_Bv|#UTf9@jrR5ro^#8a-f=?8_o&_ZUdl!bgKC&z$!fO8w&GaamI{wQWP~f`vlnBjB5#(RsB5L?Ry!Q8uA7&ZO zcgFDth~U0B4Nr69Xim@zV1#Tg30Ox4=n`Xv{|<}mGd<@-QN))^n2z8`so(&{6MGTdGU#}8e|KR7C^33ZUgOs<}F=tZbuj0*RGl6XV+8-d& z1pZenzCQwl{KlBCu{L{Tr8EiRv`bhbtc%_V!+FPf^3VXc3)-a2OxTuvtC{#R29tk# zqlf9p5oC8Ch9Vvj_a1EYzKXkj&@6}6jAhv#^CErf^C3)p>?pe_%2nwJ_n|>WUM;q^ z+4E6d#X6&mv+$k`IkG|a_ZB~m)6nAQ_w7TL*GcvHF`oAX#&iW_MYQ)Vnt0cXuyu#*D9-`#YBd@DaBf;m8-#9VeXmUn<$jDRO z4rBPrCQAj=dsVFM!x=&Hs_cSp%Xic&^h>e3{>UQhelD@BLF4d}vphY0lk|z0#?nrU zo4Ub|)9ue0b~supinTUEFsC7vAdq&vCzq4&X~$jinE9gHRrMWn&Os}`%xq>Kol%8f zUsqkyIUPjJs;8xe1GMZ)$DAlIEcrBpLyS`i`IZEkg0T405iaiRA#P!DhU>U10`z>O zPxLOC8g{-FyuWyJ&~q{&R>rq#X?fZ0SD&Er%s=ZcK}J$YecNkoqo<+)Q_;{J#qMU` zb`_@+5Uw@CsTj(nX=9T+O(dy3C)h)BpwGAP*3nth!R~js`*(4xcwYY|0Or~hV zhj}2~z(sWTc6U~Rhv(|%>3NMk6W2+*_6*xg+{X-gAf&TGTu!zApHfoyPW50|DXecf z2XHxNT5s&U_>0RHzxrN%lqpG0mSYsNYfB50$$iEso_p;X1H(m^bcH=q;Z`b1Y;jzCnm}CVT^oW-bfcI zyZwVY_&@(?gAhl{%v`{s9F=X|nfX7&euO!rnUkF>QA6iRts+H~hy zPj_TgjpLNZ-K)E++-%+EzZ+V7dfMKWBHvx@;V8ZInT&XHgE!AfuC#lI5MISc_Xk5zGxA^ezONPvMjWUa-FzbbufFz?2N-XdZ5E z46dulOtvLfwD}zmN;f6Gm+~m>;kSDKdPqSy!y4F%dh-&cy=UgD7xdtM(G}SlW8G_`6#t(5 z-~gGC2@iaGjCfB$wuHAd#>*7^sl;ATG zfR=}{!ZuZ9p$NyWzFVPW@@LSRGgF1(c-qj8<1u*!BD^61Vl}KQ!&GsGi{XwY9Z$G% zI-(KU+D?*z5B~;CEP2b^rd;OwbN0qV;c+w0dBFYt`oT?!J&7P(`8z^ zo}EdRP@Hg9;Y0S$jKCDh1>hDoIdww5oT4CvI(v^y=vdKz6VZtaMmus~b$5HUA zTm!+H?N7y(&mO9{-f-Pp#b+?>FJ8o661j$R)okJ9;4s$Vjt>Sy-%l8@X$ky&{|U8A zZj_I+p8sL&s%|eSh9sXQgb}R8MD@AGgsp%tC*-dxlZ&%UijAd#Cj`RlFDba&Ty-Wzo5HL>Z*kLjKuBHCxAif|`USvNx*eQo1iZEvV@ z1P$j~)7wTeu~?Y9WmEi;v{-pFnb=w5xlF^#T2xsn5fBi-EiSGvyStGVNXeM_{rin) zEYe2&My177I>|Q((}V8`mW1%(MJ{#)CNW5_u%9Ex>1!anZuRYKi8b2DZdLKYbTItr zjql;=GC7b(a!E@|<8_H1?1y_}sj_=xIwI1 z$Xob!{`9OovZXCd{(*PSbwy^v)&u}QvufSY&B^q!?1(l7XQ z;OvN8a*Vq)=h|cM`8SH{mwrEXWTvOj`90QPY;f$T0R=rEGE2&aF)HitLT8AL`OxD_rGb6!Nv+>ua-CAp8-OSz>|S)s&h< zm0_>>c<%nn-wmDfA=Z6Y!^sq{k8&A|sFd3eWbzxAPknyD7At5GxUkutrU-(Ct+}P# zO@eux9&ritPwuRJoMq+47Q|X z>v{X9XN!z)K7~C<}H$4$;W$o4e{_U@bCKvZ!74EvP4|>?{ zZvUC-$O!4qK%!2g=!G4oAz>t$U%2gcPl@U5=I^$1{im(*Hvww=QNFY?8gf3@sLUo; zDkd{Tw^y-t|}-f*k5ce|D?6T?wb&vmZ*m?COpYS_}-s4 zM!_j>%QWYEAsNROicODpC1KnxUO#*MBhku zu)8n8OUM9W1PBsmTy7U5P`|xYGBoC1y;{Gwqn?wKgG=AoxR3goZm!PZt52{K1Z#5o z>LV=9PC{amDQeceYOnkv-S#Y-8*2kT_1&vUy2!I(GMm}o9V%G7e+gnb(lOyHQ)yu{ zwd+GAl|rX4?8me_4PmM;DsCo`e;;m~Z4nT2l;@!klcDdw%E%%8MX(rab}BGMYQ9oF z&>UpC%Sspw_wTx*`dy=8zpVnt!8%`W6OTc+2RtW=_tE`pHdh;$kZli*@7CPft@RHg zcBx@xiZ(qz;<{_am>IM2P3EMEpc3A)u<)IYh=}MUehLIR=kg;`Nv9F)@#Dv7PMk;s z42fSeef#!p|C@VRg;g^=n2th|Y8ob{Uwf%UafB6?6KuGlJ^uUlbsP-b)^aBEc(q6{ z@v~=~g}oyYG&-&mN1cH8u9v2yWPyslm^}fQ%W>|U4XSaIG69Fss&=32%GP9y$;>G& z6;XY8;q9Kn0Wk$anwVr!$lcUpa=O!7r(;2}&h$jPob;xM?t<6bgA8)Wn;Qb2wWa}q zflU)G*6pbZo0GD8hNHEhF1D%5?xfER9I4JvO-s`Saa1nqhyfu{NIw3#)i}?LddT=! ze_mRN=w?~`tzNIy{KCb>QT{nWP1V)L=hp|tPpft4PnhuBRL^7=UX;HkEG!)P@+B9B zhl{IiXMGqgb(MVZzIX55>hRvKK7c#U{8ZJ>+Q8~(wy>$x5CQVrjaW;~e;~ZUQ3o6iR2`(Zrv2beYu8H?tnGl71oVa6o<&|U~f|E*I zH{BJNeD3D)%GTnV)$D5TjgN&1lKKa*tOgfuuiW4>D8|nmN0bT2_Q{#im{a_U)qh(PbvGel;Z<}3mVdUy3R{Kl{toju zFkwIt33bmuabq>==ozz=yNdXr ztM)6~GiO8wfj^6Q{u#E`zvesFlwIUYCfUe4T_*UgN@(=tu*Kp|uQHAyaG|1953$l< z;mqF1VH=M!c6h-Ki`^^hcu0aqmVclRr1QcADUYTLa+_;RCUIZqocv4nV_ebCdNlasTMyLLpI`Q^|H--%z_ z2Jo@nhs(Y`|J`NQjP&%o1LgK;rK_-JNy&HPN044L#Cx^R9(&18zpTO1Fx-krzne*# zLW=m`-yS522W8CG<_^KBz1A~nl1}L&t zqIX<}@7rrXhNtQ-o-^L_<8Sa#?-es~wVU{8#Y9eye*j^-6!LXIhB5#pQKu2Pyk;Uk zdAzxW|K8T{>Pn}2p8H%sE*$_*73vo~N6y#Wv^Pf(o#TJzlOm$NmG_ltKYALT;HATh z9Ml@F^IZiyfoGCaDA5V3Q`QJ#5y` zSDdU~>v?InGr5X;M3FO|W_)q(VD^Yz|69%RR}C!T19LqVVbbR?Pzl1Jc`Hn$H=RD| zK~h+I&r2*56B9WQEph2%4Po~V(jdqrcm2&U_h0n|ePw%3FXrw=o%wJx?l6KWrR$?o0@UtQ78qXb{ygv7|Bd-ULlSha!qA`Z909DgH$jsX((9Pw5J9{@fn`Q zZ2Ipl?B!@@sllg^OC~56zX<2KLV;LXG?h1epraSHiRdr0%>o>16j9B{$gqC*_%N8l zK?ZW3>65AoKyd9hQ-$Vi#Ir)dgyUb#*-RAhjY1L57+A#OPRBMT0*M1ON0w4Z${jm}``@sB9N3d|;YjGgU-+#47yg zU8MNoV9-;))o%UROP;S&Q&U0Lq8vU$f+B2{$m!GQtw5#)rOD1He&dL^xY=qMzwP@+ z@`#aUUR*(83Rz@uJaj4>}nlo(rGScRrzMkRNiIlP&m%WHn6bIa%Tor0GRZuAIt zd1djrkrKU;vA^T}G}G_PWxGR**D#}{03f%QsX`$ZS%VAYYG;MAPlM=Kwc2BRSVF@Z zg_18Z!rl3X!n#GKCLTkcSz?Yu`Msvzs??VjvE3OYDr&j6W5xDl4@2l`G*LpZc!11M zAY{I?ZEYH6eMCB>;GpGq+t1c6HSxw?yqC!!W|s{pmkm}O$uk0zhy21{0M)_u%S%CA zIwXd?0s?A4d&A97#Y%gZ8v z^17si1EX)^7KzgD;Z>LoL*3&y4--={R!=5+qa+>rKV~69CcS?B+O=Kbq#^2<2*T(& z|7J2@fT)-R4rK(bI?->_8f0@cEaYmY1>R{*w0AQ^kd6B_7me!I$1M&~)^7DXGOT}E z$U5L=8_tEP5_AbmAIJ8PA%2#f{5%S%-yLJShKdT%E>ky)B26*RX(vFMyP)#g4A<4( z`SMb8bQv(y5z7lW-5|pR~Jn|%hCRou-Y+;TjB^CRDt)o7Dif2g>MJWD zImJ0UB!;<|({XEI;lVXE8&93Xh?s>rSp%bEP0Bgd*r}=ZG^-jbi0^>wagd)nhA3Gx zkH{%p!JEq~Xg?n)wN3*$iAzL82e$&0X%_S|p5?7y-%1og0@i`@1(0mtw+*bji)5B} z?rheBHl0Sv#isS78Ud8Nqjuh>QuWtWV%&=UxvRfzQ6Fba?tX> z)cDy;yktn%$ubAGVHE#6ya1jbODX=!LEp)hq>rGqrjR7gP-8 z78qCLq7{=|isF;tAl{2_$=o_s#kmDvE#9w%=A7x2AQqlgH*ihRu{4roe0}Ebf(+WZ zyR)TR@8>%=TyJJ>Zq89BwqLf#rNaX6`LH2~F~fy%A<9!OF^+?hHgObbi(#Z+IuPvf z2zfF{xAk7hdL(U6I%80A>fO6{UAelv!%@q^hS1AZSikFK;yDqSt5*=a@SHgGiGn4H z4y`g<`H~*<`H{Rw6x-E-3yObtdT(fE5t~U$#gvV%Vk2kLipfHMS>8Fd_-xcfM?X9P z^~(574;4~86fE6KW2}CEM_kostXFu*-=p>NO!tDObXx$H5h2b1Krw>&OP^#`>s9vi zOHA6Io!tRT^D@P=6j`caBy%(SB`db&MgFMvdXHZxD(X%yI??UyM5g)x?#Be0h@sD z${%r%$DGd5eHpnwoe>R5*Le&s>bzMYq?=_QoaA{1azf-3uA!9&hrxc2{9idhVvmp5 zAc)?@TJN#vMc!;O0#}-QGL1Fq5Q$h_`D@KHV5X3e3#n>DA*;XEy8=XjG6--4iU2AZ zR%v8>{@Fyhfc`rW2x*NS`-(5`?JW2=zv02lpgDZ@X}w=hdKz~+ zIX&#JD{!W%bRM~d2AX zh7^B*&L8;9b`mC&fmFs zX`4$*YGD0yb8{!CI~m_fthUzW5ypSoF)jN2KTq9jm9|2;8bNMA@NYNQ7yLi5-J*Qo zR_Q!OeB;D%A%$4%;KaV6r^1IR$sfT+(Md$z)m)+H+1E`>ac5wY8r#fZ($qVS$pNUq+ zQRr$`2M*_1#2rKP3)+{eQWEUekbrsp2sl~lJa$cbwM*Lzk{;UQ@4~#ZZ)}`rL8Z33 zNh8n51@z)KUwwV{F7#Q3UIZyp{9t_iw(oL__-3=&ZYmm`A$pvkZ^`%zNf910`88>U3F!BUGC$=7{8$v|3pyl)8&nLZaO$dhl=?OP&?HCuQj+!p} zi}7BXC&hGJdrroQ?k0$rI?oD_1nKB{U9LMmR$rOCeh^FESh_$LnU(0JWLl&T(O(54dDY`h@kN|Ed^Y)cKlE=l0+2BB$S!xcxS%fU(LP4P|mB$#%O4A3`xE! zMg{Br=_!4dNuF+A6dKT30m9NzWLo`|V(5yoB>Uc!!i{xZbT)WBVv}3@K)-rlRN9f*Lie z-^OKt=WuoiLnu{1{W1g8%cD-o@6d7?K8!A_ENZ~JuR?&kOTzPcmTXWUF~U;;%wqE$ zC5HUSk&J$M<_VV^u&*9EvV#cv<&!smB$hX=@BTFQU%3{QS>u`9C(Tp~ znIo2afQ)Gm>N+A8pC~|_R3cQa(I^Mn?zh*LboyiwvZ&L3ZBH$AZ(3$rDv0T^oyd{;eNOT1=~k+_W?nNJSodV zKh%5SiSF~vy5A+4^{XKZf5O9DEU$B+CQ2>Ao&y1HradjF+j74QqN5~DW|orpsHm+k zk8!$D+Toe?T{i_#T$0+_+Kz`k5>?fP#seTsbUGvl(N5{)cQ2Eo((OEA9i``5d^cAL zcC2dZy$9aqEG4j6SwEfXgYO1#54bzswz4udA-;J8wP?kdq#?ziWsi-Xq`H_CddHm` zGqXzl58oX|TNY{2W+S}dS2~C9EWJA2J))61r*67}r{h)>W=e26XRK`4L5FB;n&zw< z`kooV`3ui2x@a9)*YA8rj1b)d_KuJP$A)Xb z3m>rGrvu%M$>=Tzur#cFi?Y8){lw0caqE3y`I6n*qCV-r02hnrMh6#(ZZp6O&ikId zv7Y$y&F{;ukJ$yiiIJlcP!J`wz7;35cCdC8SxtSflrD_X>h&w4MknDQeDS6&dh-Lk zIrq?(WC{8#XzFt!ee$~zNIqk-2Nt>|_?wQz28YOjoc5cAgA?Q!uz95 z_y!K9n+S8$z)#~=pL<1j_N2y2w@|3MZP^rOd=oyIeKJr&jdS`K; z`Oh0@`aWXV=Bx?ioZqBMC;EoV6JW4zizeh z?WZ|$vpgF!g%fuXx2^T$CY#a?;epX61R>I=GS-0< z5!$+EjrV)JGy0^_(oU&$I9ewC@ZqX2h%h!oHE;Gph?vj@2n~Us8M3(t-VFcg;Ur_= zl=A!<$V^MgpbBZ+8jY#(FO$2?7f6wjOQ70zLuS(K>iD+{HR#RH=hMy6Qh+9w9*A3I_kZ6) zb;}3m4>}=Wqj-`=_l4dtMVa-2$(l0#g-|2iUx~14BKQ7?KsY?xHbI1p+}&DV&<8p@ z{`)?N&)p?f>Vp6(pk5MI9IAqq{_UU4I5&F4rTGR|oNR|T!(Ym_Wq_(DqaDR`VjxxF zi2e6U!9`XI3D{JCjMUt&_HSQfOX6(}FYr2PQbcLy&?%nhkM?%GKS!rahR9tkhH{~X zJJ>f?sM+1hX6wZtT>2&TP&)pEJW8`fCYw{aCV45O)YDm0MhR|?Weo+~APOUqRB-xa zop198Hh+BfnecXTg!*touIiy&Ict>pCpIZrxWaJ6oCFcXHEMA9S$^{Bu#X za~2KT$uF5aqRN?ezf}0GM;dOfyeFv=&DrJlV5ln9lb04uPfDcRQc2tEH#;tW6<8*L z1!CE`8+Ug^G3w&ckK%ucZPU{MR&Umvj+7`9CQbJmV=KEv%x8LY!|O`=y{jcG#y0n zYZT#+4-^Z-%4Ls)o@DCjf5f`k(?WLLf|Pxu$G6BwaouFQbZF@%tl%9{Ik6oPMGttV*b(m!~9ksRT ztF=~VQ{f(y)8%AmLk6Q4v+`(8bYHDy znaP>-N>|3!UH8?)b-iji#2lf+Hr|2l1}{V+ASpzOV=lD{`nuiCbd)yl%JSOlj`=vB zV=8>LLb|QEugrMsYQm|5{Z|JPbIxImekEi+PQE?3rej7j`Z)aQN@IWG+N0xR;;0NT zvFoXpLxN}sMl=Y%5(z+{kBSJPyXU=JDmkk?y!og%i+65n{o}m#USBtkyduJ9#b4OX zBht^yqc6tljseHn+L*IX?=)e`@(&vK5JNt4oee>o;jxGdoP)sku5TCYF!ENJpO|B!OZ`K_nydWzK)>_on+>mZ+sAjJ77GE?+WP)>7)6v2cNSQZ z$^0&`HRT-iGdVHrHRpDw-*a@9=W;jk4Q9BIh9D$G*rfYkhzlex3|1sc*i^}!+R1sC zcW}BqsOaL{Zfd7$&rD}$B8*DxYBdQVNH~Sk?FeEQ)-}dTO%2SI^mopu#2EW^7r$5p6AG zX=C-3&VJV=Pps%052kAMMP~35o7|OpWv}YRyFKBQXxzZXa<|s;EB(6vh$M2$3|0Oz zk3Ym+%s7Z>Tzokp{OAC75AH>d8^&gmsWR8}Ew#nW;Wr7R<`2!LO@Gmql~(E1CR%NE z@4>{{pss~iza^cV@?1i9^V`y%aY!E>nE^&W3}+z3$&8J&%i56Vvv*etT(7v%djq#J zM;Xw2eD`_2zN;5rll|9H=BCd~-ljzt+k_doJ)(gj)IebX6tHitxcW5gFeJPxHNZLX zhJ0VQbtr8=To($Vq3dW>+iI`0nfnPiD@y8RuL zBkUo5F=vXVU$Fab%;?O08RB8A1@iodAM;`ku_-D!)Zm(#fPI2MQ85M-G|Y7Kq9_t*B-G{CDG%(`kQvRdrTzxpiAc zyT2tdTCTO{niw>bJvxW<>Ki^OUA;yRZAYwDBOx$}*rYwyoB*KL7SGATI0f zDNV&_%c9PF+D^BLnk+ZV+fs8%#x|&`+86kvtcn=10#C=6N8J|a*7PW6=k|3AEO+R0 z>6i9YTwdwmEQ(*I9y>POLSrtXt(H67RB+Tqi=$J-mstQ*0e0BCfNs%{dt-=ub3^gF zB0DDO=^q1av#s%XQ`SMYYbQ;NcG7tRgoR!Fr3%lH#qo0Lq9_z9yZjz9Rz%|)*bJ9= zGgZDu|EpSDdTy;i`+-_gC0wdNXxouq8IP|E`lWM^Q<4B;$?i>v!cKr6B zTk_?49=r9-%P^6hRc<={aSDBpFum30^D=Xr`egdk0fv(@@?$rynht96MyY7N|BvLv z=EaGOsR+8C0W=N2Yk=ZdkdmRhJ|drjG(|D?v=!a0N9a3(oQfnj-=$(3&tTs?bOu8{ zW2h|cO@(9s_*krG@uzrbnr?XGb^!YN?&v1PY5>CH;EO6L6j{F*z_W4rZu6_;+fS!6a; zl4`r%rdpNhAJ0CW&}T*K=PV6nF~|u#0@2XIOr%J1Z`gO;`p?pYFPT zCTZ_A*gH5z1EoZ$#2A@m4%1Th%r0$6NxFW>kSw#=ct^d_;H;h~dEURLVo3P6a)zpr z_ROq%O}(1b(D_T3*{?YMDID(h#?HT4FsGdH3fT*R_69^_8n$*`fU=nLlip}lSyURi z?a5McJZf*SLM^V+Xxj3SaB%3o!IJgoj-j7E>`_VBYuwF~t;^iOefnx*n}wI|*cJH9O;F5JTcO0~J>Ic{{A!BAbWg|QsLzCm3S0w+()YDHW zRtrepbk+q&RQo5q4%TfL(!ONDbPQqgN*CUDTh*+et%c~tX^kbNV91|mHr^73VB)uj>&SnU zS$%gYiO4kGj;AXfv&pposdwiq$b&C&HM{B(gsf?6E2%_FOABVvrQa7yz^Ha$>c8U# zCB)7JH-r{)oe?rwR;ko!Z!rjNd##V}QE^?F>Cr22@7?Ng^MW80$~TbyF#rAJiYcVl zf6AF?0wAU$#aZA=HqhW$eeJPVaJZQ76SbDJ>uzV z#Z$f%9eGm|WmE1rZEV(4lE6Ma)j`Q4aX-DQ_vCHno|K$sU8x^bCOtXfbTVD)&t|(W zt~<)b?*c2*aNz4pg^q{+DjZPw5MdvIN~Sg4cjvKt27mkfiY14Pf8$&Qm&D3(j8=ib z;icP?TvijY#}^6)r>RW(--KtLTi5zUOZl}rlR1bgr*ms}00$ln_67M9BX4Ef)sXSHhfgszgGuG|D(`=YjUpmHI#rH#vpH)QeN109J zwDg15w>H=jgrnrv=eyAHW*JMTE>6M(n;<1ZihDeAO&0uOH#c@NhN_*{Wu!M2a+IQ1 z>J@C=nnhoHBo2+&F=^Y27lQpo+frk#TdQ)0fW!V2~`I6QbrVGaAF`rrv>2o)R$_ zlqx@Dfa))iFK8h_i7DHvh2Oacnor=(R2UsUF%MXaekMxm28yu8;lk=sR75z>j$qlo7``?ndzLvPYlmBNG|YSoD$QP$<>XGqmV)drMU(K;?=R4J znA~GFC}~^&Pj%rNiuY~OwWKre|ID^-$gqAjEAsZDyfo{5)g(Mw+M7CI(qrD=JX*ZF ziG;PWdJ2l{a2<)jGmRHi>t&G**eI=$Bl@&X{%`!ulJ5N<-+ab0b=-J#R(5lnkvX?V zC1G#7{AayrcHcekH5RS<28kXhnJ2$nG%`W3B~TGy%I3Os@h=5Wm<{7{Zn3LRSQMHK zX<^v=%Gh7&7X45@m#6l$S>W&MF={U`U|-bUH{e-r4ZursST=Bvdy zuDLdI%M5|Gx4Iw00!0(KDdkPC7$Nb?BLfu)T1F5IcwfI$U<#M8BTFo>$dw`+HgQOwvO| zirr$tGdHK5EA&qFuOG|!>TQ&>oT#_eLy>_l3l9%eBgh!gPYPcOU~KCD+(Q|sv%;FL z>$qKm7+byo940{zD-WeQB8j82rNCN(=hmga6l4PTs;(PI~@6`hu__ zbwmS#y3uQw%_l|ThQ=^8atc;TfxR>Eq!Iv4yYrBInPo2McF&ZR-rG4w&$czw^x3^X zvb<}igHP90#|~0@7p(%Q%^=Cg(dT}E8dzKlsYPeC9`q?1{W8f8wZCRyg8CeSzw`1f z(dpA@fV`$T2PV7bXfXAU2^pF|u}E(Ei_3jvkrAfiph{XcRb7F?z7>2jzJWHqV1vQ$ zxyWEQh7Bxe-D=w}H#$8u^Yy;~r$+bGYfzo-h~s{D_usr7n5KeA=>nUQiROKr+Ez=F z{^r|iPyt{QEc&zytkP+?Mfz#uQt3Ie(1-%LV6_hOMPTWO9R2}0JAB4iLd7GIp4)L` z$?{a#RAM?2!-c!WRUUTcZk|@FU*kn%w|;wX+9~~xp^?2Vv@107us-ac)JjPlTp0fc z_M;aF5aYi&1(WkUjn}aTM{C+}PeJ`|_x-u)usI4E{viMdtn{> zkwtA&1_pxQd0d_Fnte8C^2>Wl2%f#s$HdI!6afurM2VT!Je=J#P%{NJ{blAJJfLEK zw*c4*3&0V)lKGm_#@;RN852j+{`Zqx_(cA3ntI!$1*2Qr(XnrQVgqy|>mj{tF%lfC zV2Q0QeCOW^BlyuY`?7Du<-U3{4z$YRws?*>x3;^vQVaLxTEqfpCLQT?f`8;(%pvrN zvFD_{(BZDLLN7iM^3N`A^l=@K^c3fSLEP2vKmO)nSdPuA5il!*jst{#R1HtaYs%rF zGx$#o3T_%d3(JE4q-55FP#Ks&#RM`hy1&oi;X$7i^!IT)|Fy6B6Aijs`0rByEPwC^ zDRTc;&Qm{pM1u$}kTnJ2kU^oW7l5*KVIZKt(lr=t&_Le>20j;N^(j?BLZ z^ek1Ty|6SxFB-f9!UG7?PIUj{ZM5E@0@PsAN|{WO`#j`d_4eaJ(gCyw32z9T1r`_x z&BYu&ebmsKQQkr=0X+bDz_+$`d>=IZ=S&)Ue!}B;W3v$`Ab$S0lq_bUUbSqq{0leC5ke;Bwx3dP*kf3);z zzJ93`dY#~IZ^(s#_Mr0D`JF%#Mi{Th9*y8zpeExhobtGsqm}7VaGvj>^uO$EU}qg* zsHwGq)!z<^->@-1`3iSzOgqSU(2R)!l*MH-GVE)}xd^xY@53+n0N4IL`2bPURs*11 zWc}Z`sAQ>>NdPxsx&KZY`Ud+NeO?q=%lL``R$QktocC8{58iZ5)#Hmv4Ls(SF8~5! z^7aLIc!4yCh?DG`x=kyE-G7B4y=ZiS5O~ZI`d_jgO86N-(?x$HJZLBRD)qXjv3FAR}la1y2BIk4CST zSe2ftmsdfM0q=rme8AuTvvMc+LToz}gpjXc+>NtkRpf{jOcHtsfT2s_#{sHihOVMEis`*67aEH^nNbp3DR!66a+ zv8fR`K}g@b`(9aaU5>~HU|1+7Sf4R+N*w<>ybmxu0Y;CLTUJZE6eD$s$ zZ!dj)bm~@gK9k?5?YidZ(nYe zEebetQVD1Je^&KU)$`K*f8Vwn?^6S=Z3eC)KIz?k?B1w~q%NWfFLOUF=#t$e82)gl;cYLEwQwphfwwuB@C4 zJX8x*fTo?D1zCCcfM=OzC8+w51dgTv*Zzu^zPxl4xO^J~K0r>D0Io$jCeE}Ca=HaW zYQiQ^>jdMlu~d+-C208t5FierGE}X62|O>M2U2A)z>gh^oB`VX3OUMwValN?DPU7E z@^-*o(4U|^}vTcO)<7gmcTR{j02aTM5%108Mz+$ib++({J*?0lP6e|y7Fv$^3j zXmt?K55B+^v;KmDg8NE=hJkv%iLMQ`z@}Mx$lm&{N=kyZZ>Vl% zD1#j?wi1-Ou3*Fj+P+(=mBgpAJvPs#(1O@qPc*_yDb h6H?O=dH(3V|Lo~5PfILwf9(YYqo=E%%Q~loCICvT4VM4_ literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/hdbscan.png_linkage_tree_focus b/src/comparative_analysis/visualization/hdbscan.png_linkage_tree_focus new file mode 100644 index 0000000000000000000000000000000000000000..faba42a62f5707ab16ad9d0b05dfb3cc037c59d6 GIT binary patch literal 14683 zcmeHuS5%Z)x9x{0XiI2CR3x>6f@H}^R0KpM2?ms8AWM)8MN$kc2uL9yNJa%wLm{AcZB zM~uA_Ci`#?%{=_Yro9B{(jMLnI&$>Jx!pH6zS_9K(BYOE--*3{Z7F=Zhjl*AckIZf zM!Fs$4Uvud8m%>UVNdRdgakeK5S04xZ)35eJWW{{u?E5Xe3zJR9@}yt&SW$q5*wC` zic>amm?SSxzYxG3$demTj!o<$1_Tn?1w+y{!`9Ton1ylhiUn0}cR{ZO0)yzqUcZ74 zUfPm^=;0+(nT`=&3~(D*;3b8$kqchbCbxjOu%K?X|Nq1PON`U~x#fwD+u(J^r|Ic@ zb0hV_ICN3A@tTG^G`iF!=8H>8=2kigDun|9xC43#5BVaLBrTR}&Pw{s4&`dWO$Qxm z9kgXz?DMiXeE4wgK)|ZiXrfm`oJ~@kM(ECH<(;sa^sS(DU3U);t7Lyt7m4)YE?aAR z`{{4T;G-rbz8an&dy`j|M|O&wyU*X1Z)X%RpUxYt)a_IRu2^F$jJ)>yL`Q}2sKc@pxCexe!r`Z40-UNN3u`V#Lg)vJ~~Kcl>Q zu0VN;plb4ZpTf7lhceUS51SK|=g97z7psF=W2D|&nz9%LVricrsY6TOqv%-#ox>mZHqzG* zJD9v2Rf**J5j8GXerRlrqt{V7lqeAYM37;T+}4-K#3?)7)0w+}dATvFY>}ta@oHbZ zslSKwwD;0ia(TBnE~($s=R>x>)o7!0osryR920SXDSgptHdMlbY(GmT3dEY?nFh*J zo|wVj6&L$R-A@Om3w01ShE^HRDRf{>ZgPYTVjba*Xm8i5(0pOKn1_@4jRQ3D$PtUC%Bn%MS6LFWJ@iII5jW_RIAd>shw6N0*N2 zRu5H|ITl=Bn$N&d*S_t-5qPYYLJ2>}YhgUfuZE9WP+Vu9=`V<7thL0xp{~H%FHEX) z0{ePMia$~&31NXN8CR&}s2qP$1?pOWMfS|40l8qa8u`w^IbL7e>48S-T4V6m&G;dy zWRBhi>iBpp`RAt+)s@)}0%fKD@}D8e6nBFTM!~3{^soe%cUu&`-ejxc`94gpADAx> zk#aVlEeyOsk{*8kjx9~nv8#pCce3DYR}_<}A-`8&`>Oq%TEH@8At%bKOt{OLF!a;H znc}Bd5vsyr@3l%)UFz9AG3wFzmreq!iu_xSGdVnK{!8z6`9@Uko?xO*vj&$?VhO!C zrcaNxgG&NhdO{8wURxO})8T*9@hPl~u9dSNE>)nca=2bjAdoUz?O>iq?hp?dx-f8p zMajhy7r4JMfY;pPwDY4Yxca!ciN$8MKripLnf?PcOEdH(0T%>Y%xq27qGdwT`jU^# zoO-I47|$+zW}=fiwlrh6HesVkqHcK=%r1QP05^9};K#4;84DS;yu4iBZK<9r5rB+E zvQYIQ-R*pEuxv7Ia^VA8bRf?`_x68DukaD}FIQodKI29Q=D?Y`;}T$EDV%GtE|y|8>? zVsSn_f@KL;eEbv_ZldDlz`e@@{y3YZ5`wVv?e^zJz3#0QIRuxBM1OB0j?t5xk=#!z zIBwX&S3mu=+Od#Xsn_=Q>&sEZfI^CB*+C=xVyVsGqeBgekJc)Al}dW8abY}tC1Vr) zIDtDnhhO#VR#Eb)y}-cZ#9y|zR_%Qlzrtw3&>dAS@3)a{s=dd3A3X;zpmz>ho8c9p z5~&MGR$EfS3MvSjoBTBJ-wJX>iFZ4tr0U`q@Vru&Gx9v^nC3>JrQXMgHa58QI1c-Z zGT=&wMaveyE(Qi#4%|~#77r+LqRfip7Ee5sd0xsf(x6M3X2r#7GJPoNZ!b}8vY;+h zytMdR|Iy2aiwLktjR;lUVFPJhi`8 z=XQdwW@`6D<&gp=Qf&LEIiZ2D)UsOhO;2%Q>ix_~=92IRRl?%w0=Gu)&IOBwtX%|C zIk%Dd^7G1{$t>}&leJ!7(#UO8p0-E{ za?s4jD%ZAousmioIl0&SvgD;ft2}GbbdCp+e2f8oaKFoQxDM;W)#vTO3w0{=B}DTE zszpV!pGrgp%a^FMF~%mPm`npvDeL(p^?-(i>t+LNf7@hV=vY1WvOzzDGpy1vphKvC zE-6>QmKlT8HkYRJ=YMQD#;5(=!2(yUyw_=9HafOn>QaPq%ef-Suuw4} zB1_xaoc>mOX?&ljFp)ZNG(ulH>l$yC1U+WJv4JHsvs{mDHMdHpL#ZV7+h5XnX|Yll z%e}R+KIGhAaWqE3 zEq;40R?5%JV#z49-Nx{GNM5yI_LFv@L3){sM`y*Ucz5>)%3G$HBJ?p#{X_*_wtdUv zT!GA+f&FX4xmwumn(41r`dEHkQZ6HA9uq`w9&+~Fb?cTv+awtWyaidP3rEZqpu>cY zRUC1!8)4i0sDsY9_2w4zo78u9W~sARB~cI2mc+oQR`Nng4Tx39&=V2W%u-m|LK2+dO3}f1+W1P}0Vn`Rn4Htt+JeEdqe8u2c zFnyL@aPXIJ?9kB!y?I4O_=9KW)>`H?-TeE z)^ulIm^;pYw@|&lVD?Ah$FQ2Cb}&8WdGpLx%L`vsu&V-(?j0=v)E_k2F|DK0WDW;! zx4DZBZ-Aq1*Wdne$@GeZaa^*&d7bCk*Wg(x7O<}ru?ZZVLHs`Lh>km{Eo(P7z)uP? zD(OyJ$1!7SR`Q{L7(ZfQgi9k0W*+4(V^@i264Fz6ve+0WrNd31!p*KhJdj?m5;W30 zh?$$SAKjVK5hfR-Ob5TEZAV~jW4A%Xejx+9!-lZ*Kds4%0smOTtEar=c0dUSjh+sD zVADT|e{sG*sP(C?j+T~IgZ%eP!HQAT+;;DE9uysue3J(UVXYN$bLJz zKgTFoR4A=iS97#6IaxdEfFo}8##XVhr=~8In{=rs)lS1MEwyY5us7^e^lG{dLbb z&>n%D{m8joK^qc5T3w=|oVFy6G$C@~jmWL4tKBz|a|S}+wiLEcTmQBU`9}n+{}1)$ zwhWc%i|>6^1Nw?Rx*QApBrhE!D)1qM|MKNae(keo&yu=qlKHFu-o__sUH9bK{5#vMMAj%nug_ED+^a#KK*E)3`~(z40NQ*f;{P0fZ+8hCWF@u4 zma^6I`=_wl5O!hnSt7Cc=SvauQu)GuUx%cCm9eXxulDk;4Kn5hkXNqu70d8x-uoOc z;~)vpnjcUZ9~k;*?39>0@r{>~=IOhbdxMw83M;8WUr&l8Ibo zBv#cmmzO0|#ZVMqFSo>&KNxGx0GQ}}5-(!nreYZ@6I9u5Z=8%=Q2!w)66HB=XS{A_7%jud|Rb|31M zd`@*`>kauv{BL@Dg$yS_m>RbN;yj6McOA@^L-3t>lIjJKcttyK)m-$BPHAdVbBa_}8NH?&8G%YE*0}HBo zb!<}>BnIQSRtbpS`A`N%>=jwME=bmhf9zWPxlC!*)cl=~?!jmI`yr=bK`JsW+_iU7 zYko6Pu(Ev0%0@_aIC#3mF-Sx9Y)3X!girUjsuaFEn1a#_CaM8h2TNhqXoiOhHRub% zM*m4Lf+wA!U7KcBtAa;)|&)$EK|DBK@ojU$=O|Enz87Hp_Q^Sep4R6|lC%U!7@~E@{{D z7@F(?b40_arwHPma4u?3w#auk!IBBk?MOfh6UM>TGnvIh{nk{oPiLEGSXLG z&`^DvmnW5&n5d0^W|T4Yc?PVP>#NV^U}TUfshaATCKv*NqYx);cd9{=SejdvN+_+_ zoUIPmWqBMn_rc7oFIqfcCe)*?H`Y^)B@*AAtfBxnWc*^0jeV`Ap~VR$kT9#m3~t{ za;w`9P|=@$ya!|WXm=^K8m% zhV2(lgUkuzM~;+!+#e260%u7WqciBfC>IZ81TF--C%n26NV3z>6%WQ&o20S zXglq|-UqWuS2kv{M2KSrMvqe~>DXa|D4{|+j<)^<6b!7syj6Eln9Lt~mVs9$3F7eA zSL`*rZF0k0;sG0(S2wk~Rrvr=kawBGsRN?x$im+a5BS5M;=D{_+Ig)T8}0LK8f`KT>I*ZrWuk@gbQblZ6J`EJFG_ z8sq)vpETPJozC$+jYk38m20K5CrtBy0wH!$Y}sh$`{U=-RKvwP+%d|Fy;4%vb)PA# z#Nv#fg# z`CSej*5hr@ditj(CQjPejLxZ8FHL`4?q4jAUHI8Cnn?7sp^yitWn*sZevCc1();$B z3AA1W70<#x&)WI1R<}mw#Vh2M1!$8T(6eM5zFc{CbBi{93)_J!3*+r^^4BiCaq5eQ ziZ2OJpvs_sQzny+F0Ek9 zJJ;pwy9B@4YHfU+l#TV*cek|h==~}l+|@nI8HG=jZ6U(2`DcMP%3bFEW#86*q(@j! z^%jjyP3h_D>+7kK=M%iY-HlW7acxkVt6N)6rusZR8Ha~#D4^}ypfEaQM)W<4NYmA+ zl2L#~4l8vAr)jnh@qN$Pe;-oz^d{nfGlA?n;J;WlNd5;!yyDXguGvO=cyM0!(Sol3 zL@E{(@T2i*iWB*J{mD^ust`emoTE+VpmM}u5 zv8R#r^Qp(xE9lq(vX|}%6|s{k&!EF>FYe)*KDB4N@A-Q~J8bt3adx!=+Uhib4tXyY z;Q$ZXQ7Er8Hwo2mXaBE{14JSFYXi1sw>0p;5l2{vr*=b`e|h_ly%<(+NW&ep`}%iN zI+4()2tgWwoime(R5Bs&;``fIyK?teaeJA53ge7*$SHd>@!GP2c6zeGj(XLadBmG> zDEqp{h?oGIJmmpY?48*_N+b24m*DP=>kg6ru^}zjsy2qdTC}hi->Ro5dim46gFgFq zbJ1dm^YGZ?DA%SVjKl0X-Wn8=Gga21<7NHlNWNO0tqgVOZ~$FSp~tz;eB3oURYGh4 zw3`bH4M*qrS?v@zHyuAIv72TP+4-k(Wd}=$<+$6dyh;3B9vx8 z&aU9^Ho%&qSOU*fS{e*K7?9U9cAJ@Vw#`UCT8Wz}0f{UrVZEL`jzuH!4!PF#@d;l2 zK0W=a_HCJ_zGF}J>oElL4T9Bw=tQN?8o3|Cf?F>UcmhTh2dZT{Orr)?vIlAa+T+s%TWqCgbEqph zRuK&J`vz_K5a*7rOLa9*wHDC2AxXZy!#4YmeXvH`CAuoP@|mz)t)QpdUGgJ;wLD>* z&;vsEX@FHK~BN%L!e;1k%;m}>;4cWj3 zW+Vq3hI4-ArF`Wb>2}ER@2~Rk^hD4}The2^O;Qsqbh`=FGgLo>e74()(P=$;JCR%K z3iV*W_SD<&;cM*{|4eUiz|6OgMRN^`QT$b0Zujy; zPdRL0St9b_UQBGUjhULdGBXrOfon^6737=tMpt1IJF336hk{pVh z%-n3AM>z+UEV@a&_z);rJ{#T7!J_o4lmkoo*z5Z!5X$WjWMz7lS^$fCn@E-HDRVluKg*XOlJfxKzb&x9FB z#|J*R3JJeQOm%rEYM6P0E&xAipyC?|SM84ZF!ZGPj6d5&=yl3!(nNTt>5|GybA&bc zV4RA-Z%EqbM6dohA7CAocQQQ;3jQ+ND{#b0dGGjC0L6+<%b&cMV^xxMl6!gC?a(`%-z-Z+owJInJ;3fe056LN9c{ul;%Av zr<%`$7nI6l%CcT5Jx0&&57~S8#5`q@pc=U76&MS}UiuD~>v15c8%ODRm(+^XEB~@} zX=_>?pi)345~+<9Z$zOAfXUeb#!&ImsoATTvDe zj2P^;%V*R^ym0P0<+Oy4D>3=|C+3NjbS=WtuxH-Smsa}sC(3aEvDIqFe*AzlD&iDa_eGJt}`twahQ2Ol#KrQG_>Mlnp$IvoHm|Xuu{eamhtB8+M zp4|uIB%e$iJdW=mlrQei)Z|lG`7u&&^ya#l3?%3)EAt}_xn<@vAwwQH!d?uR?V-kr zF~;np6^82YAX-L*>akzjseE|^GTO7DXF)Z2h5{IqUZ{+GxYLteu77O^KfglM{s|<& zeg5U8Dpm7O&R@ZnQE4t_jRCEUo~;RP7DoLG(niixKox#Rf&@kenWgn zy3&b!F0g0_T0l3!uu;bqrvcLid=1rvhO zH8sQb6gb+|xUp+QYNkg*o_-*~E}CN-84EbZJ1GL>VZ^FP+B78aSFbJ4xqLa;(H=S14)!w(SC$`yYiEqyW>>r3oGXT*Tb^zCEk`D_;s@TbpdYpj;D56qU z^WX#{7Y0_&@Ic=%@utTKk_v`pXWL3s1!;K)M=X=eNb#N`^ZMF&0;rXrVcTfWre+!09b@LPCpQIDQ; zmrY;Ux& zsH!+F!QNKdd`%L=rj=q%UA4RTP_eiFL8S~(AN|ZBs30h3mysAF?)P;o0_$Cu;Ykh- zuNkV)^OM(x1WbxttpbRP0ph@S7{gH!>N^QmeSS8l0dQIuqAaW;z?^MuyUM3;A;1u! zO7W)rBv6FS%*=dtDMkE&9akvzOSB%o?CWgxK`$ep(F_UCiy zyktS3pIPUEdDs3@h02+G>0?MPauWMX5IS*+UQSPSAH_gK(z7ZxZD+UF4Nljj6{ULT z05`y)g{2@LHx5wA1EaBoH7o0egg8VmSw%qKEIJt%ruoR{!C1@%r)tzVLiZ*YI4cl{ zhlbeiJLiBP0^`i#dx`+@%(mwQ$m9epJa_wgYnL^URtl>Vd2@hU-%K=v)#5=PpPS2e z_7~>n=GMjoBBa(3sTATUH_=Vq~Bzy0_uNuOh54O9o_(M6w!R)^7~NZk8t_-a7D3Q=H3^PYXPPjMvOTE+%HUv zB!$nutn(tQ_LUO-iM8lIyUHew^c40Z8Xb8j6X!^Q^Ehor8$-og;+XfDIB%N<1B52BCOz62^VpJw3|@zXw3~ zWc}rZ$?}Aa>Z9g#Ema~BK;s_z&Xa4f?2+=NkK)#Vyn13XLH>n8>Q~~tHA}66u4!Ca z4meYE^)S&;I#Go>S_I@06x;w3WgHk&F8e8^qmPb?1eRY6N6*U=s17F|N_^FDUPLa3 znvV&%PTgWT12M&FaFBTv{}$BRw9g>dM}Z85Zo7v>`Ne45+PZ55@_j#v0@F8vCjqGf z(*&3NaF9ss` z@u1Q|dAW_i!{mf8VAh5h(F?gS)nxttHuHXc2Kx1GIAW)R3m}ARJ;P~&NHFV#Lc3pY zWAJwoq5PQ9Bq|OY-N1+idA8X~yF#@bg3=6}`ECi?=~bjpHJBLRZqb$N%b#=wlIP5e zbCHpJT7Vh=9H5R|6#(55kbUKovnYIuJIcgDcZv#K`$Z)buZ%zc&vs+eJYq5t)bg$- zI7shV?yORIL!WV-rj*mf6>$f!wSVO*WJ8N#;QMMof!fH`29h)FVUH`X0YY>xDTVZ2 zm#nIK*23Qdkxipy?zVrsd;Y=W_$uB&rL(5jG|K0nh+9EO`M|)Rq~}B@6pAA>CMiD> zv@6P4r{b}v;LRh*Va*q^&PFS5m;U$)L~dv^gEgDi(wUMe^BHrk$rNc+81ukcY)}&o z{0bO88oWMMYKQc7&}Ba!NQa7>>+9=V!$Wr)R7l!>ZCOE)r_mtgJGQx~ef*ue5(Lp8 zB~V)4Rut3@$gnyzftU=Wa5OO6u!rABSlWH_g4iUjWBmIs{0{=r{X1{VyN937xnaR^)em&+MfMBqbRtCS->1Y z$<4gOX9+8(5sbmqjF3w7CHul$1wHGKKM`j^!<#@h#>qMNZ&h)sys;_nu!lVwrz&vh zh>pOPn7-N&PEQcds;GA4wl!Ds`5EJz`$<9kmTYx)sfuNDF##?seM4Auw6W*gBzU`{8Mdfd^?_%Y(N?*GbJg42;I{G#BID zbL%F37LAhoMQ@%$RH8gH%s|jM=x+Qvlg|X|OY~8i=mWrgZx}Ktn08(A03sEsm%6_x zvXEbR$9Edo{b$TVJZJjUCQL0P6&%@?hmLW2cEV}{)}*tpU91Pe`a}e1lVPAHoc>Ks z2<-IZhQl6lc+ChQrjGV0`#a^iE#vO3kXAS^{1zVnkJOslY(&~vQM=9o|8i%VbN(AN zgVL`J9AQ92jF!0Gq*fkr*k%v<>5dToTYoSb#~~Zg6w-V#M@a1PpV#MQ&W9S%V?n9w z?)9%V&d18aw{=_ohQRSaLno=whN@j?8BFom0s_2kOqvU*x$<<3*&3O2SjC?pdS(5G z^0hVV2CO0-h3*Iv1NsUaWSu!|5{wU=A4b#=z^XWP7KJN4tN&B@lDcB7wjaWCeR-Y8 z#~HSi<~xg}qsk`5?qhTP;NYcP03r~24_BOe3w@Zl_H3B5A0GlJHPOO(K<*)o!Wq)I z(KrSep?z)OQnyMMvYqRJ!ljfhiUJIA8*R|Vqp=FP0l&F7ivVYcdO-AX4lI2_+ChZM z%8zg!juU+U8sq7u&Ea(3AUH_UgjsXkWHd+yBHAtO?a?s)Y|~Sv3sD7a0sU&S8nZ$u zkdbQIUtXF$0{PSlSF$dqlFI|qn~%TWin|XJM9*giS-`4eKbEWrST8e%BCvm;m}$(RkK# z7@S=lS^1fxk4KFK(r#Np`#K9$U=b8MuccCh1IRTTz_Ip9?$9w_nFUgOSYvF7Ns0G8d^Jguqn!x{+3JV}X!x3cH0cz9n7Qu^AhAC7u z8Ia8k)WZq=E_zJ7YCHS+*jK39IIin6!Qiwg5NKaQgB3^CO(6n97108N5CuPsA|bkv z*ht$XEvqyY-vqK(+ED%aKZ*k_Er8;BffGf)bQBCFwEUL(bt0vq)NSxqK*Lr@a$#bJ zVXOaCjNmU&l&}f|L&)4HpqY3n-(ulFwvbNpV=lg@wWv&|-a{PH=CvT5t;gXU)BP{| z&^}RU=kG)SNj>#=ixKJ1irSg~!)GaxNPW46w(;8CHDDr2@! zQ*B+AqS@m$Aq{b;n0ovPrej_gNhOUl?sE4p-oeP1S^t|}v>w2FX?5t|M1gb=_B~t% z*Z#?nK&pSXftCx2qY5yB;)+~pEF)PA#}9e-&b~6{aBE(*R;W?OVBm-Xo!nvJGcP`~ z1}?n^`2cBR!Z;E5W<=6n`JkuUfXD}B0(FE)^g{)6qHM9>D&iQow-s12lMX2JhY}Z$ zs?0`43>D<~JAR7bO$H5e$k7>hq3g0CW0)o|l$i0+biw!ltey}4ZUK=AJ4MewK#fp_ zD%p;Pvk*UDStSZ>Jj^%M1D%)$?Em%yaLS-b0r(N<7;UK6U_(8nBpe~i`8xfIf1Iqm<>5wx)0P?L|6i)fMMfs zt$g=`gwP*Uz#(f9i3VKVDD>^R05%URD$>4&#UBL#f!dU!rEj4?@j#3I8NWRf#xdb~ z|D9by8a_=c`?sJ`n&7V1SphV6F#8*p(bqUN|3G=;wB&C-%?dLXfPi4t6_`uPRQjzp zu_E{W{p$$*&;Wcg5*`zN6CR%&Z)r6m?Wm}28ie)!#Zam+Uh_M+`v-NQXBzV>qgkTg zo~jc`lkuZ}(;In7zm9e%FH`La%tFBL|3QluFc0;*8m5qbl|1;2e3A9vy{hhr`QLw% z{0E%v+iz!s`l1EW|4D@Wepys7L1Rc=p6JAm017(^ zLxj*ZpC!o~n9#z6Z19PPtFNzbxq?yUK4NhY;sW*{4mD{o{iEo&bNy6_hDB&O_o=Di7RlA+t zyydwCc|2Du<>U=!EXc9nZ_RM|qxcyavZoxdNdL76=~Ag`ihsIH<733k&XZu~&tQuc z*-7d5KYH21b|P*QnoNb@2ssSuMxN_%4ML@;0|Rz07ETePywi9cbZLa`KC~}+wRhBY zZKf)tq(sps+20e9dC-WQu-|d(770wHR`&1xAxHn}7uy?nr z!`;r$j#{c}&2xKB)}CKEn_Fs*67z26GizB34$8d7Gy6 zE$J@Wi_aW-%VPOj+p0z@caF^Nt7_GvIg%4XNiXNq`+8hx9UmQudpi6^ytTgdlm3a) zPd2R5^fWww|A=2Y!26tL@83UEtwf~u|Kkh(mL69w{_P`{y@}#p^tTTs;XE4YzrSpR zsTZx+-(O>I6+Ioj&);6-V*H|o%!~i_8jI9cuUNI_?=KQB`~T*JOeYx@T|T^lg}o#q zGBW(|hRr7L*7&#BbyUlIerCs)Xr;<+J9w7OsQlh;{LsaKfTSy9u`XG$6TZ%Gxo575 zSMk^NnHZfoVK6rE-MISU@;7hahO6=_J-0uVX3@aeTVZ1nbDzKyA08Rug)|0$bEN0N`-H}>B zTp{1{jb&Xq)02Wu!$17T20LEn<<0u`?VE9B?4rU;%RRlkW`~qH4zw-G9{;g(n_2aI zVbe;F^mJhtS687^AGh6)jy}@E$xN14ZG~s?X^Q--!tY9G=w zxzqSi7o&xR1tq1a$^NCedC|(1{;yu`cbOcl8R^PsC{HmgVmP%#$x$QANmxKP`_lGP zA9E`z7D?0R7Zw`SXF6go3)2Y=? zoMttN-YF?5)qQK_gY;^X^>1!7SzMi{{Xi#M|K;2j5-!WKoQDhX7=%NYEM9!>(4Fnv zTed9j#^N(t>?CWeB-6|iNdkUNlqVh2EGjQA&sM>%t-am%`~nVBe&-;QMO(LQ>8aSq z_2TvGd2&&U{W*5X9zTA+^wI0rua}8CZPU`$Mj+{1SOiQ>jyHFHNYylwHw6U>CGp?8=IW-bl z+Q;BMYvoS+{LjzNEMjN(y)A5(m!CiT)W@_6QJF8j%|(kiITzyTYaBiL0$-Pqkhm#o zv#zhNFZ5$}nETXn{C4Vzx9^_1m4%8U*q2GTJaPKaQW7lW(4%Kpx_$fhp25L_wu(q@ zufxH70!7$<;d?GDOwP!-kdh*F_wL>Dr#2@a9?SR<*X4QytAv*n&7K-FJAUHC7eB%5 za^CBRV4o%HBa|X#Hwy`!MZ`a|@A91-A2z$;tTfqL8K>ef-jzZ2Q65fz(Hyjk|->C@eD zsu3sN-fpYQNGfeUTpNUt=GnDtgN6Sh>J9T# zr)a3@iGHTr+f4eT+h3KG>Q9zH(C2kJ?(c+}X73vIu@lhNM3apOEU zH@7EFgS=w)ofi=otFU3NUcFlT_!Nizk54|x3gYU{h5j5DZf!joaU?;r?R^Z>!-o%( zEgB>)t=zd3w{t{Sl*B&%W$-@w5dFf1)nXD$)+^*cGAgm09J4!kS41gm;j)nUII9=QC)g80Q@>Y}>oh={4|KenrYjpZlOqkm& zDs#BrnewR1u!uyOdG+SaUaWP`w>uU*TemI=7St__kn!8>JY>FX8OyW~KM&6=F1Hcx z6)RU(JU?SW5~h&QB9bt%waYUs8e%x#xAwkXAEsCR@M!H*oAt^nD*8r7b0~+NMw*Gq zNvj{9MAJ^yEnO{piKI;ALoW{x>Y?`YrQF=yl+MBFqZy}H&Rw{Io_qGWbLSeHn$9{8 z|7hxIda3c~_&j_i^kY)VGcL+?`Jb zRa`7x_xRKzF0KIl?!7bJ^{?K(mC@2#;Wpm2!)5GyOuGad7Z;Pdy84qRPueDg_8v8_ zd%S?!ro$2HlIc2bKPWo!)rN&(&a7FpLLZ!-iEv)|nUZzD7y&lR1DljN%%#rT#-MOV0AR zcRvSkKIfXBT^J|MMVXBNq0kz;0?Jb<9GLcoIWr~POPFXKDB8z?W#eV6XxtF zPC1%-A`d0^Qr zE-BE-hUy}gG1>kgiNV#?mE<7*7Nn=eOP4OqD=OOeV3T)}44?&j$99W)e(GXH-pi`uB+}{2BFH)y!-<=IG!ZQm!mn-3ZrZ@~ArUEbLP)XqW0|Bvy7eH zbdz8v?~sg*we_qX2f0sq(}_n@=OPmFlJ#G1EB;tlXNbJJUrvs0<=oSn3 za{9DRd~4V)$HfF(VVhN?o2mQTEnwf4>)f4nVe84#w!5abNRwh6f{EIIvxj*D+l#PZ zdESg{$w+(3>4OJyrl)qUQw+W2K0V$rg7qy=Gg0aMm@eNjD2qi#QX84*FSBZ|-1sJB zCmZT{L7YlVITCZ`)L4g6;vLdsv>CnFC`-DH{hD0v6GHXQ-QuLUkc+y!a_4yz8N;SL zZ<1eeEuK1APU8JT2?+^y3oWY>wU4@oeKa&QwdrPT28MozLW>a=9Z60J;!-dm3o9tcn(E+d;0b+Y2qC3f!Q0J=l!l6`wy zSpL%yCnvEJWug9neqY+F9-!=0YPgRNol0okW?U|1<`HShfGguN>^}*_Fjq=bv8K51q(3xk4!qMWAuEC-{1Fgxnuj$7ePzYW&qj5hz{R-91GXYaicscD^*=aTY@#xj2E3>xY8GGl|LU<649e`RA%|IWl~Yfaa=J` zQ8bi}V+(6Y%gU82g^R`g=$JTHNlJ2EU#}?e_+Z70jMg|tYN>#hhQU*$(#3T2z|$2e zhWqY{Sj|GGP_VN*llIuLW6PE;TO}dESrRO`PeI{wb-ynM|JKc$rFQQ=Tli>4y#wvB z$L71y6A~DbS6|P0{``4|ksj`EZ|}s|j6a*tC9wjHMWHV%A2TQCWvoXt+BNzG3#!`a z0HO;Jj-;WT=q=(JnH+AQp%!p#&%d!zrE)S^1O;Ft5F@&jv!XWNV!MylM($&BnVuXL zqq|>ntm$4{NXSZ$=@!?<+_Q_5tT&yS<~5r>aOlvSo)OmC1sDvbrfrAGX#8ie5$T;xc7aO@en>V zY29+0Yu*6qH+3ZC6b5ZN)`PZgVoU-j$0*MUPSxhw1s#&^xVFaC~3o=#`})% zEW0bJV&Ezh6Toi@BqCz$CF=&oCn&%?b20`W>^>)oIBIt%7%m` z4MG98MXRW&2vq#IwiQJ&0{imjF2^lyBTaPl+{xHM$~7if6eO-e*Z$Hl$t0mCy*$`q zbhtQlW2#J7(#=0CX7G+U=oox*+N3I;m1-=LoOVehl@S1(@*q8ELdmOFQs(C7agS+l zoZ|9TiIiOsLVKyVw^vi8L*hXA;oSG{m+0&3lS)GA^?!TYKFDg7*b#wNY2BgQjY!cd zO!Fl^B=#L~FzUQMJPdMa4z*_OT9ZIQt)Z{3i)Q$<XY$^@J!F_1XH*hIdEk@Djp-lH zyKQymiI`SypmMKp@3EYoa!nu`;~{{>Vd@{d@Z*1IuK4TOTybsc0a4cQr! zF2Tnq@7n$78jBA15nF2Ax^>Z7(F1&^$6HH7-WP{&1KeFmjnw2!c@GTOhNv@fO1f#a zs-}3W-&xMV5v;M#);6tBd@;=`K|w|Fs^;ruIabYc1#~iFZOWfM1eD)wR?UC#)|NSd z2<$~gFJ91Kb&DF@r~L^i(Cnh+Y*6fZZGYqB^t=TNyq`W51@wxvIsD`G?$m4Tn>ySO zurC`LxMCE;3h@iN{?@>$f>wtUV;^wkYTmAdj+WFck|}5gCSz91iolyoc70clI{_8Ujto=lcrK* z@2cX5M^i}w0Ld1C;wEC>xvVr)+;8DZF=N+_4GG6~9K5-irop9u0oV*=t{s4+jc7fd zShp|?b=6$}gvvu~QjM*xbO191S#8|7v3>llKbIsYRUW6Zey^--ghfL(_JS9f8o=#E zEG)Bk?%au{gJE)P&@(AX5N+dmw8T8?*Y6Ye=mq>YD7w6IE$8)n_f}OV9Ag77l=mU^ zWD^pge6WCiM|DEm=jS_kR<920xS3&E#gL$xp4Xi-eHlc_J#0_39&^zkT;ddWy5Tqu zI>xvmTO8L)7p3fjovr@h4Z*zyer)7P4|dcLssL1$rnt^Jp@x*)dMz=ZCCEzy@b*o35-ggyzKfe$<~}vL9(>j1jCvFYb^=}EhI z@#18wW?2$OZ*B^;KLUD1XEM@PB1p&x!rguR$llb{M0wzM2mwnwcYf}tr#2N2k8Ztr z^JXJ>AQ6Y2Rj5H%LPE6To0H9I1PBX+^eF>~LdpjSQ+;Hx&D*!jYG~YiW{v^?*w*yr zON32wYV7!M_e;dnCe1Xdm**EKJvg%I{{8!n;QdG~<=?a^#bwmmzm*`bTF{$rlY{Cj zB;8h^E15+R)&WK70^!M~{AV`IyG1j9Eq>9+tc#u>p;~kAtVBF2jGwf0QE(*QNDOG-#^8C zdBiu+Una>&8RUAwW+Jn#u?2OuxG6dxtmhK0h$CZ}#pj^BVpot?|A9Ft_}YKM(mF zsh1Wl-d z*6s>{K87zqsH`f12uSo)>jQlOJ-Y-7QKtk)jt*b!X!s6zvddLNc z&1CZrkF3qqm4Lj7{;FF$1aKQa3zBe!{92Ik0Brk^Mu<9vdjB!qEYfv+h!7lLRy02x zS`*KrIDT*P(Sje>GDV&ov9B6r+zW*y_$?GFA=|dYPo6)2`R2`hz|vUV90?*GfI)ho zTvv^@d;^QG+$maIl-j1bfuAX!h<9>|iu<11cUg`Nn1C8=(w!b-L%)0##d`I=%Y@b= zFVbFyLSTJ=A0uR5yLkd^mu8OJB|pDCNa<_S6P=8q zL>lb~KdAF~XlC}?x#;Hh?-mxF~@D9cVCDdi^9vBSFU)RrKKY( z7MOP_C?b|9LTKjX80XD9i)MhIpTDP&!=e#vEPI_}U#LB>{vQ08-l6_7xW2m0g{(AE-?ihg}-&#mV|GCeCmWKBuXkuQ`@JfTR|d4 zr9w_US&`%JURzhUCr&l5s){voUqJQfi=6w9SjN1R^jULz|pio0# zAI&n|Y!^|FqSmw0;fHI~MM73nq^YR+{_JECYDCXRv!rlTcA%8=VBQGx2Q?>VMf$Xl zudlS8-YUqQ_f&a%i}{l7A-KiLo+4J75J49nJmAB+b#`?T7Aa(S@zH0t8v*5$D;8L!5OsuipKd^@2?&bl zHSI+HRu?6d8fhshiqh-*`kH+*rETB|9%auZX)r-@O0kORr-=>=ehZA*;}K^&kRh@XyT zi@6_H>-XGZ?3a8!=xoZt!GQ%f7-*|tmZlsgIM=RQCp$UqJ?(qC162})4+R_ps4*K% z(xnxm${qc0ub+Bq*)$6#js?e#)t$`FKt>bzRu&eJsQo+w(brx!m#jDXK6#fP2%7SE zH9mmPywcKzfOZvQE;<_^)B;0$;sKAj*5BLh89K)K_^_kPc5qSgat?F27iDexyB@3@ z-|7MhoOE^{(@Z?;vz(j3j@G6a(xE56Ogb;XD$O$J%Da*C8XFru%F7RfQI`bv;zR#) z5xrM9;*s#I=jSg!*IX1}h=nI&=1}K{$n*q+PB>652@8plMp~^Lx0U!3;Ep7|?};ra zX~%_?WnQ{;E|BKzIdfiMJE9YOnP&2ynU&Q$Hg*H_mcS~AWBbqdamO%ANqhWYg@bGwc>|jIRFc*8u z55z2SwvYux_VGg8N!T0%i$NOgz5DhNrW|O014x79Q+3;C)6p4DO^nhrG0{=zZrK6t zU!wn>@rIx+%blJ}vrggeMTEr5f&!Uld5`sFk>J+#NgYyquoT84T0TC$&bkaHw4DWn z`9@}7Xb+GirFzhY3HbSpLX?ct^x0RKPDy;kBh{rva+%z zNcA^&b|^-MM9TW-O^o)FR&D-DF_zrs-Cux{AC#~S4mY?P;!Wx4>2t@sbCNij`OGBI z`V^2}9gU)4PvZ;7I8Pk=*P*@;H33^hV(^KVxA%*h8aD7w=fN-k>PQJek7u^e(lS|g z)Up2?X;0zfAP#`0&dy7q-#Z&}xZq1Lu1O4$9VKiJ(v&oE*E8Giv%q>%0lIv3>1G#j zZ-}gL*g&wo`Q1ia*Z?TzpzYj;{*{98aGa=tVy_jdA%=Ps2kodKP>dp^2249K#s9{rdGD_~loi5ea_K)ALZ*ag3^TJqy6V34vfa z0|Ucmmk~?sH_ZCc+~V9tkNc#khh85zjGq?%bOqRy@d? z=gDpXQQY1tIqFF0$F_zX$$^0Z<`pY0iP^O`;_(w8LF^!eq(JFnA7pc@9_sCVfwTj1 za5BbidsPd^H^qREdvvF~ChR1IiYLp(|2509d%`xzQKGJ6X-NR=g<0;Udw zhHO_6>#rAOotd~KE|EP1peOD;yC1UEx?V(v+UkG za1BJkb!rtbNdEdT7am;XMzAyTE~V&H(t=uAT6{pIYqxcD_~9Z4SH?@AxC1DQI@2U>Af=j%*}W^qbxz=OCZA;a@dN1-GEsAf~E!1snLxk2%a z60=vd2FD;EAi!Qid~Y;T-~o3NZoMxpZ5s$JM$#B#b5@qv4Tim|o`xTSfr>zaKy$b! zOAA#LHJqN}*|J5s)h4VmMv;p~3M7eXg7cO;ot@?+T@WhZu|-3o+7P(n_UQm0pGA~c zOiT>at8k}L&T;g4#a#v8Yu` z1$7>#xIoyQ<1(w35S)$ny))`#TwdZJQ|DzT1+DXS0ouEc~ zgZr=UK#~bYzVohb;2^dLp%U11HPk<5OQAgouF9Po(0!djGS%z+ z`S@T~w?gN>t)}6~TV}g{z*@24hgt5|ugCRGOg6%6xfZ)ZxEj2u9K{T_PV*GaDwyFq zlsmho+r~a!3klf-A~8x0Wj8esD3#Pq!%;9XRfBA<)BRvSjMG6xtAl)1*U-=~&ML$1 z3M)ra#-^*(&>6@&=IHtpMu-$_0E~dS#~TWv6g|-i2}C3ap4i_&JwUcJ6ECW&QZu`C z_AHI;rDbQ&otqV+GI8t99Ye@?>?K5TK(k=5LfG_%(^Khi&`z|JRO=0%>gwtdkipx6 zz-h52Weu?dfAm+z$+8LRT$-40c@rk7>pI6Myi8(zzP-IYBxE(8x(%u#2@TiP#XvfR zgK;DI@-nBm@1;xg2d$~7(9riYJ_qGEFQoOcUTEb+i$`ac2P~8I31pC~@L`kT0{qXA z!yCKjk+q#&0Wgqo5UWm#J!;h8BjoQ!Flr!`_QK&HTufXQ$tfu>;KI9l=g#=SuETMv zNIp^^x2xW7Uiv6GIhTlaSm%ejIa9YD>sI1zDGGG+YN)=IC9Di{up{SrODnaTQ=ccB zUYjEwfPbDn(V;sn4ZM<83`6NLz(pkZ+uIH_$49XXo5s3NJ~WH3K+mO*I;vTMO@SBk zVkS*PXy~_N>rnF&`09NlJM3No0Rxv6Ah!!gZ_~_l5K`r3jaCSW7xum{9qxgRQT>?I zd9>@s{LjIjqZ~K3w0OhnrfB#XGDCT?{vL!1-42WTN{tx4o#@#Tbe{)*yX&sAWZgjz zf{Cnsk z>{{=-6ecOKS?@IKW0h6|gXy8R!0Py3vjHa2gkgluAS)UT!YjtdL^l9^VZRU(En(OZ zw!u9>4O1h{O!uRrSnCS=#>}xBRRb-3m3W-uTp*M?bY~4G!<;mMR*L8)FbiBF1l#Lt zYc*0&EWl=n5(tCc6y2dAjNQaLi7G4n_zbaZh@q=R^BJG=ut&ZfD9G&dbh2eg;wj-% zA5~j}Gm*K9khzIxVVgyLX6+=9E;AJybCIvOyqp=4uPRw>m*k6*{SuH5lIJ=2vYdJZ zVbes%`Vx)-PiRm2#WyzAW>|2|qNS}eVxVL7Yer8+AXinq+7r8urGOBSF7|CRdAGND zkIIoFOR=+P*RNks@V{o=#);(Nuh}dou@OgL|7e8n0!+*Uwx4(^qoP_=!p67B)Ge6k z_MAe!uPR~a_6#?p(t9L=iPiv5-+f_A6?SM_(sFVPXjX0OW7gmTrM_QQH(4QOOOM1@ zP|x@-KmUH^2kZ$>=)f;PnD&ys7lEp&lE5iyJ)0^=a*R2hdf!mHRubK3diD3)=VBjD zmcM(q7^XB-!HKg7e`3dI0~&)m7iZ(~Oay!KCHT_hlVzN1)~ta$WuM_BR<%ku|3*tK z3zB1C^`kt)cj0^J5^DI-NsNq-H$xD;=$-}9h{s@ zcjctDx;T~(evIvK;ZK?x=P#Oayit?FKe5wl_=k3gJ1xWTBwmMoI9z!9_Uh3w)t^~B zP;kQrdPKn<4UJ{?-Sz%Ryu`Sy7{Z$xn>V}!ww*#W3+dG-Po7*YD!LrDANKAp?AD+ zUa)d)BrF*GY($1|WqKH)TS;3kT7Fzlucy-PnOlX%C-Dso!7D(-X4 z09{dK^x%WgfW1{>^y?DJ1APEm@ZKtQ-QBvnTo4$UrB`ut?>@=F$htDOss&zN?}UU+ z=pBjuchFVXX`t;ax(uDxD$OW0OGq@wIkV3|;qe_dl$2F@ZOpT1Z|2O*!x5vA%{+95x zRzt_ZhDQS>eTQ|59`y_wps9mJ`°FDETzj1XG4s4hmJih-Mu`AD~p0s}rz)%Y`* z)cB{vewnrs2T;{TtNkRCxo( z;$N>vUSpD`51~EqY_0@i2{Q!-z(}M`LRg*0hzYSbp#dXgRp`el#5gB*1DT8=8a2$m z2FUzm1O+acShaeT2x)rAv#oJ;0&lZ}q5{PJ!;o{((6{v6-G0_Mpx2{gMpnhvp|mYF z{ES=gO1iuG6s>|t`XHfT<0)NmM?Ckyqfqy33WFc<-j$K68Ta|(ruEM-QM8k%O_l7836!7>^e(UWC`S1`hSxH%*;FN0>j^ z0UpMu%cZ_-E&^C>0R*D`3=H1V&Gjl&rAj1d5wpMsNS@wl9U%4E$H%_M>(;m?hE_ha zGoz;O^tCvOJ96a_ZU~*atG65yJE1SkYm;fDzIRJ%?EgRgH58}r;CIwam}86&E*Qxq zE;x)ZplKsrwut-GE|`{-PuB@5=%0r5TC)QM-m0@!2pYKY#JMMEZN=y~0V>ij`~1{9 z$u~pPquZ5l8d}lbcXDznNHqKDP)h2T2rVmyLxzx)(CaV4%hv=5K-{1n(}#RU(OF5@ z?OeOEBhScNeO*xWp|bZ(+S=MeAmouUK*(!-&XHIC)NzGbx|MCak?8id8+WY(J6kof zXt(}n@{bL}Yf$J=?PrI%4&8FvyuT(p$hI{2tBGs+!{P_iK}9KoC5}_~V^)@2yL_~% z!3V9Egw1n5m6-~r8Ulny4?sTaykmE#3M+qUh6*Nm{R zgqLNO)`Lf*eK2s)En*wU3kI;C@Qo@MIs$1ZKnCvYw{=Y{n{hnxBmY&YBxGNlbPoFK z@wP>!IP@A2BSY&ml8%vn&|@8GFpTS|@kh^7vw>sD5>MC@zZYyDnih8%Ic(-so;NsK{)S;6y<*M!K9nK<&SR!4QIjTPrug+98&qrV0a6wZ}dkolvKbH`jN# zD1Cf<$`5735QNGI0OhvoLvY-H>np+pNtBi3W$-6FaBm_5v>T!67=c!k{@4N+2je~k zX{ZQuCGj>_dH}GWoaqkzyL-wU-a6!o?^-+l)o4}PDq#X-E0$xq!ThBDc1X(7sIn;r z1q_{^o~k^UxUPGVMQ3muo{E3mUYL=qROFUsZHZrF^!)-zT+m++kKDR(g9X&ljrb(i zVX&@{CP0mrxueK<+H&ye*?Z!yA5-3!Of_sr?f*U8u!WE5Bg9!NG& z0n>m{Vrma2pxxOiWaw58FG1v<_x7HXJ=V?_k|BaY6W$E2gm!pA&*4V>pD{8p^n8yA z3leD?L*6lQ4JBEKQ^MsU@ddfcoB;5L)=%Cp&V9r1eRvKMhC5^ei+Lr7jAnMra zzu~1;!x#z>D2x5W3@aH(DKa*P(T{$Wux=o48Na1Xo=g%R7cS5d6AvP7HGE?LxqDzi zg3jtSJ<%!|by|fCmdRaNPe*es-E_{@ty|&#d-3vRr0TGgACN8F3q&AraCAg=r9llO zej%_T+oF#ymv9jwJR7>hW`J-)y8*IW0@K2By@=pbAQ|E4y;W;52aGxk-`v5WX01(MKd zz17DoUQ|}HfNTf4l^j2@W27izm+5kzDaWU2xm!Ps>Pt^_sV&=k1P$+_!HR;J@TI zpneAMsVC}zV!SD4#|tZx{4N2)X`^STNYvg*3}`?FNIFHxCgtGx2L;as%B^*qo;*X$ z@&K=G)d?Kn`K|^9orjwSa%CJ{_T=QGkoDL71aZ{Y*SDLf*Fa&!UefaQeeXL&CM?*CvT>VcDDMx2NNJ7Dyom^7*O{_$b*(I zdwIoZrAe^e#-u4TjG>bLoOI=wbt=cw17xm3V?$ybOP&HjVsVC2P=6+W(H3-+SXxX% ztVLR(gEpaY?AU6|*HFo@_ACem}tN}QXy+rKu5PvIE zRanL#10|#KpeKxkHw^l5KHScTSNGh)!np|KBf(vjaZ5mP5{uRBxpRq|97G=YSM=d4 ziR%-;M$`-3>K=%1SFc}>oa%l5ASv4ynq%gb<{b!%36ylm6e}UJGNG>p8YJxxJujETL?t#=&CnCA}+)eAXy#oBOS_Hz;Bq@@@jC9Wzmr5b@7G63trvvK41xGvo^JtFt+W?>e#=Cy?_$*HMJh*#{zi`^rm zqdpedqq5j3ds-#LO|VU8ei1>Lhk+INH|Oc<>JlIRjM=SEJyB~BLWvbsXDN9JOlx5L zMri^rG)*ISXk!(RjN}Ph1!f2TORz2osgnte=8C?5|00n3JY;9+g&W9yf<;6gyo2GH zag~6g>!(b~&0!7`ByI#S=$Db+X0h=v*UP?tNR0toI^$kM&qBiK3(8LWmbKzJhh1DU zVZTkbw6$e{`UK@(X+GyJ4Fbw;>~x>X9BGRT*o(OeH2VoiKM|O}BKFO@JI^R+|2SIe zsEshT9?0DW1gUOWJDB<| zwADyF2$Jd&C^^JeM`KF9v=xTBnFh0J>YOJLfiB~nu{$F@9I}M;Om^k zwtV?Uafq1$=lmp(TCK=f7^srJyH zC7_~VdTIxON8~(%L(RQ#&3_?Z`tj*0t&L5;oatc6YT#qcHA3(#fXR#ZxhOW??+??v z1~+1FL%n?GunXr?;LD9DfaEj_K>2Oe7HHy--CKWK5#i2SR3WdB^oT=hZ(tIzJsD_6 z(wUf;NUP?8RT#h?lDhHQw99~-zdwqXB&}K#Ur1O`$Z*F`o_q;%4fX<$;NajRPf6Pi zPcmkdOxLDe`~5rkyLd_W?)|F%WEKERxF4$vP0Vd-^dzBj<}a3T8lb;?`SQ)p`m;b| zU6(W8M6T}FM<5+6YgaYFK#`*}_;oThvN~bee~FvBdgThWbLVq8^Oe7U7=H)S)q7sK zSPAAHUGugeGQS7F|Hpz!e)8%X2PWwVx%J7&J8+55RiU2DKcp4lRkC$NBngcTd=_pGa-AX)<7JEAu|NOisn*aT~ zcZcEO!S$Q;+;NJKQx$2sf@_GH(%-mYLoTo;9P9q-x~{A^?E|TO8_I_#Y8U|>NTV;I z0U;TdY_Vv7O%MG$68BfCNnQbbBn1uW$m>nvtp)rodAnL(@VAgzVXBekdeve5Z&+7$ zTCZI> zH90N=NRhO6nUh0x1Oj4PmZ&PCsRjt6qazFb>m#0WJEo{Q2X2`cuU^IGbqo#-$(oz< z!ySj2P#+wA!cF`~C86+uG-nOh(^7ZqG80_L=}%9TzBxIx+#|2`=S6Sgv?2*^rV|_4zHR*d`GBh3cQt$3i?Qtx)Ly-Q zy&HiBjNpahXY!Ef&1f!^zjd{DbUa9syC2MvO5)*XRM6Snk8t>B1b7}@tfsvpdwqN~ zw(12?*(kXL{Q>*$1%(d19tzx9Na*Bv0Gu@<1J_wH+#RF|LP<7C>?!XgEO#9sRYX1y03W5IkgxhKzz!xwr(UhyK*7L-O$OD7)B_canwg{Cs1h9;W@u_U_Ga*Njyo3^uCmXkvt+|dOi$QAyPO9bh@g!) z@WQFPg@KU;>Pb2>0Qe=UOfieEAb|gh;ne#Pwd?=SSI;7cGO2L_)~TrYvqyhrLBy%2sIt=k$VD@c0J(Xu zDLl4FequERg@v<-A+aP=d(WPittLy=xZf!M-s=pn3>w z-9ms9ORz;4T0fGght#Zjm$-Vq7J!|2@IrfCYaX zx`RGpr8GUiZuSarJ0gyKYv2yJFR%j$u662~GWvx{@AVdP6V`lh0z|VXe%;bq0vPb2 zHXEByO$7}ndqB*gJLl1W5F9El1#Qj`W{yVGJwRob#4$L*;Vv1~s=HSleC^sS3goEl zKT9#5{mdePP^2hW8+iY|gfrD+tx{D1jWmz+?%g!7H27h<1sw~GgA3DrY()bYa4`4c zkk|#j_+@SF&0&>m^nYy#m(iogj?E+_q3zof|1$}u;H-#Ts6WVQIEJYRpc7VxITQ&t z9oIoM^!)19e7{O%o6+^_x*lFP%q!#d=SR_Wzm`{S1phVinD&{SEL4P8mZ^N5wvCL%_Goe|=wt9UIrEBrbeM~#WHP=D!i5Y{YGpa8nVCLBHx&U|5%Q>jiuheQDQv=j z-G?qhiamZbN9p&-D{L|4xca z<(xR*0H@b4Z1D?Ku#&t@>**`L5;Ft7gkBmQ9i=FcoaAr=SW9F8naELdaNm<7=`g%O zdB8w(a_kY`&Yj1y7C1fK7+73#pCIPt{#c$3(R1VgE6pp#0w2q9EjNI7dU632c+h1-5m3riIUf^ zVexlZ^n5q#CDFen;iJk*olE|N%|8+e6(~0+P);q}4$e58W-GV`$WDQv9Eolh=Qjm7 zh2Y!^;-8+sY%>LSkThHi#j5IXhvVp(lBmzBPthPymYVd-e_L;z^p${MO z1HA^Gd>?lWxAG^~;~%`fuF`+@zzhWa{kVRfNY~GhlmSda{2VYhfT|;8JrT+<6GD+G z7DBKgIlchgCWp(d5V54d`548omz12A*%ro&iC;{moh_dCyTH-?Kd8imPM|Z%FcBa; z;3IfBp6%wfhrc<2kPc5u(hbF4$m9PTI9j2b$;x*`Z=|P*%+_G60hk{A+L3QvuyPO@ z8MFjBxDGTUG0bT_w@=WjEBQAZ&g!-IezbC2<&K2{a`ZIZds8~(^LEf6+WrI_{vlWo zLdFWjVdcZ4OVFfZm~(9Fsgrp75wMdLK#Z6vWq_t#NZi_xBbET*;RrhCr)k0ew*Gk2 zDpl|tq?rXxLT0Goz>-E*sCOGbMHqdYA_s=-EM~yT$Os%Yggb>yAZVkFSyvKT|Hy5< z1>?97az+>&+n1IJeYy2`5oQ3$QGruaQ>6PLCmxY;Y9eKD?sD(|^=oY=_%r+7*cU1~ zI_F8y4WGLc=d4ZDS`N5e@nx+uxH7Ve^}upb4V$m)u5Brv+M}Cd(UDY=(H zI>Hou95*H$A=Z)8{%|G&bd5$d9?#Eo^I)a|l?4zJ4iuys+!T%=#4Uiw29OZcBM9R7 z@qeHcM_}3`_Dk;9U=Os`7lPNHO^x7i4?UdXsKdEz*+pWtfgX~N`q|joIq?aNfNyL4 zT(t$*V`XP*W1!$D07C}FIaML-jLV3#+FRYb-lZJvqwy44fNUc)CAc*(R#4{ z5$oKW&&PSU2MllO`ofk=g)w&v^0`X$pc2EFNf14!47he z4E~S4r>Ash_pUSAyOKzN_hmY+yMMeHb&1MNxUp~l{@1eNJ5&3NHND3>^!Nw*xO6wg zZg_Q8{|L{cx2CHzq`YJO4zx8y3~jY|&U1N5*`c3U4=4}Tk(o9DR=;0u!pU2N)zs9K zc+WKmSLwoqayWqJ#=u`7O7F6oF4!N!HQ_k9km16OnZu1BrAnf*;UFChpxRmrXRfe1 zUjNcZ;e!-~!gue;g62L`P4AA*n%TUbMe6eyT-Wv;TuD)~V@~wO#=}~5i5HvmZB+gw zpB`}~VSAWZ0A_wAIE>%XW@cul6|Y^tzWI(t_6v0L(+3A(54eX_!qKFz_3KpD$}1|; zQQ&D*t>xPsg?@or$4}X=;7+6z(K|3uK(g*s3!GQ%olS}~gOSq)T@j*CrNSdA;Ujjx9ZYa#JV*~-)4lE@C z87DXu76#<#m6euOkGMzm^|DRi<V`8}VMlhc?@*ZcJ=S6T^*bETUfyc%-r>|N`6@^XVIPRqwaFSV*T z{!jsi0P%%W&F+6#zuboRtprdyH=KRVc0)#=W56bP>|cj@=J-Mg#LNJ$hzc^M3=tZ# zJG-YBs4k*~;fdg=i~A?zi{PciAjgVTH$1|_xv9^ll%fv6MHUzs=rmSZTn%R`SO6|R zHo>_)BfRIqpMkMwK|7~5-534PLD&n``%eMi1yj>u=y|;T5{mW!y!q&%l5M{$&u8Bj zt6KIN#S}-IWM*X%XH~)=DDIaW7MW);LaGOQP{HYaHLPA>>?(>w{|6{IUi>KDHCTQi zlT3%j#lh_#%t6-fV>+2D#H7Z=8&6Magpb>2v;5y`a!Gs{@;#~u^qf5yCa89$XY3Z& za1hM8U5FDL{c%?6$&>6X#!AM$RHfx z_*`m`jlb;Wt5+A_&)XldZMY^pnD#GN<#Dem(hfpO6S^oi^>2Vbr&+RvXFKB9QRsT_^4vktpi8G1w1{LG|7h^$} z>e5TbnsAm;V0 zeZ{-~8EyX!d;gVlMH)%`8uYWppZQ$j7oq-P!K#S(JyFV8SH33`jshpN{HTla1s(V2 zVqdKIt0DXQwGw&czll?7|G|TMF%t<-+^ojlNrp}Q`~WiZIXLcYsWO6l;Kq#`)(v#= z4tJOSh1~zQzTwcXoe9rA3YrHo^o)MvAWRPBF^6%f9z=rnKA=F#gA9k^;B}*T}i3ySdj_v}tdoXm@a^e$#m_%$Ka3$+uY?+Wp z4h|v!eZ{*(=&7G><4v0qCeC>Asy5wVj*gBF{Iu9f=T8T8SJub(%jl-xy!9V2IkT<* zr*cI+6G8k(&tarI0#-s84Mj1_?gJSw9G$FD`~$=w+{9ot`7?%8T2P?>$G-k|@@;?| z#;-a`y0|~^hzUdWFsgA9!Chd+xv_I+Gt9_F^==pqBK~g$L85X0`cR!S!+a2~^ylI9 zq;dMimEr+=0SJ?!@!}l#o$-Hu8*zYyyRuS?@fQy8P3SyvSoAj|-KTe1mE{)^@(-pC z7*5TQlauqW_KX}B4qRlNRFvx>DE#Q3ZHg+(I4OKTrH4O2HuZWe`@ire7j`tbEWyQ) z`LRMZFPtlkQ+D>;>Zqux5ljNyGW?3c-oS6a^Ot59Slt1hjH7!9w&gGUM+) zJ%tVjQHTM$BDBebZ~sOJz+UjHLBppH&uPx={gWQ>kAGiFJf_=QgoR}=L_x;=(8rP^ znt;e~io6|eZVI&lGTusnN&!$Wv8^Gfy!=>6e%fNg(OKO zBr^>pMD`vPQXz!M7NunG@qQ1bThIUgKkxH--#*>_^!w{MrY8B41R zsLc9@tGq5ql;iK??q8XNs1J2pZd`lBIe-3D0DDJKxO_7pJ~|wrgu}<7 z3%y7KC_)(a5Bqi~Fd;#MN$^c-mDGik~KS z>cI?E)&kI#0Yzb-G>Qe{=|QIE@qAs3vI@h-@J4GoeVZ9c*wR zu^czt-SInzpEmW!jUjtn5tkPYJuC2HC_5VzCWcg9^B&1|)!f}>QTXCf4=77^G6(^5 z6DVp1yef%`L*00xWnB`>Q!Vc;5_1VDPk;P)v!bd*s8Tx%laU9~X|o`dGx;?5;AE*G z9AIaOND*}jMa|+Gzmz%t$(aP23JLMz{kMG-=K#>7ymjl>YCmsp^rUv!xzfTuKVZ(W zYMNG9{N9=h-^_+`8*)N&%>m<*XgT7vhtGfywy@#1R0_iy`M5%u?Xf&~ZpgT8{Qr;qnu~I8k|0w|sqx$cbg)>KO>gu=*x{SIr*% ze`UJO1`=qG^7jEWN5or1=>rTQ<_^RjkjxuwP$;fZwepclg20sonnVqe1t%kc#E=um zLKMarD}Z~p3UcXRDi?q^Jh*2B)G3D1nPe59PnNPDl|o-|`1@I#PviFR4U#7ll;&l` z9ZupsF8ua@S3_4%6b~Nm{BzIH%P&*$&w^659-ed*{3IQP!~g;&(%2!sGX0yka7iJt za;ayHjriujD~~Rg_TZIarV!6Q8=;3z0M(8_;{iD?<+AV;_p}@tY)jACy&# zLqLIg`Z*FW@IQ`WzlSRNN=Ak}iZYTANo#3qQ9}}0NTPiD3Q0*0P=t@8A|7><_&{R! zB|1<7E#R~uLTCVe#CroL1hHC>Ni{@BKtchbDTc=N3X!eARwHNKOHo9j3$1AmWFwN$ z$-AeR)@86_D~62^tKtFqCNOD|Z3rU4M&D2D6v@LxC=dzBp-41^2l|aB3_0Okt(Xs3 zr(C?~&U*}n>D<=X<1mUE^ zaY;yP4qBr5fvS#%!sE(7fshk`0vjFb++;4e*O(Qgfu%{o3;>IWgta(4Jgw+Ue62Pq9zYH3F5op@zbf=BN*bdfHVoT z=gigf->It`FY2gsV4@_~yx5=k`0xvFEHk;$F+F5$azbiz390jOMqS3fpAZ8$%lV4L zhSm86RlbAW2?OlM1 ziMsv}(C3(H@W)D!vvm=n_pdBTl2Q8{u@+E=3IV|-l^t+&Vnvyq%2?lZ-jO2x@lkjV z$@2!d6X6CKhtpBqSstuFHb97Z0Bk9&Xgyl2D`(F%EU8sI=8w_;)yRT@fS!+{iH7b z!-v>dzaF(oI%-2dghG*#A}hpqWk}?>LF0u105jrFHo4%6g!x2k#&bI|jLq8P_t6C! z3Gml3#^u~`Mh!YSALD%Q(_X#GDdQ}fzCd;Sskg4_pU!29$$w^xaAA^%f_^+YhWMHf zPGov`utNhtOt}p>p-Di*dlO{vHjzvy&{C*h>7nx@Y0_uX`{pBD`X*c9-Owt$Fa*5@kEgcf|M&)w83g z=K*JJtAa_$HW8?3@6S5mq3C-MskYO3QW->^-M8<&BsWB-`Ssd$W;24aktLU-f_%qmpLG5D^$&w)7Jc8;$&3qxb<863 zr;zGHG*yJwB3buOq<>=%wV=SV{tbKZf^Zb&IcYtS7JoS+qWwV7+(nCKQ4k`mNOG)F8<_^^%*oUooZcmH`k`!Z1T(u0tUVdFfP@mVGSO#>S7dLZ5O^$dDbLXxq6>;o z)ln0j4ynMf2ocM&9)=f5*#8O5MrvHJy+iAQu*B6w-&H#PdrwbL2r zYsAkThwe9NsQu~$ca~q}a-Jkwo6lR=&wXZniy;dF9ZBj{z?q;ED^yOa7wt6 zqf1&^vprY6fwiEp>7Cra=zesM2W>BWpIgw*UQ+go+xzuZiD!J)H(CdJb`@DUwTEA< zKia}H>+ud(gP+Snv7ynsEq5ow>dZE zX43g_9st{P5N@MbI&{nrWLTy7IG?mtRqor$1%Q;5c3z3V}PdDQpIU}o-le~ty#GlBg&c1xy5_c*r(626_rxs)@ug*C>8X38@6<*u9#Z`M zU$4b!`H&1dI3q~JTH8V%7NNp}`cHgjp$0%M?hLdwVxRFl`Ri;xjpU_$pwNQ|0! z`S>v6*piZ#K8n>!qUvy-k(`UupHqlKOTt3O+0h+v*2N%YQU2-lD_B7+wr6(-tkjaP z+jvZby#E>ZT{bOwkZC`EOZJb zqy_okeAK+Hxby)0%DN|ff5UW1bGSS%1)iy|?JHcK|8A=e*NNV*pBF)3Um?Zix%yo3 zsqszC^TYHXMZ2uqY)6!;8`p#iiFB=>XU(iAxc8PGwM%PP($L_h%odqLLuWZY#P-D0 zXR)64TRmg_O1^ya(^nnrhqgrQS-&SG>xX;Mk>hurB~mqW-(+#091__+F?66e$YD#w zXcnJILvgTh#)y5?M`=4cx?cMeOrKoNzv>2da2-X z!RM~wBA-Ss<}vcy&V1~;@nfKz^JD%2u~i5Bmg>}hXf>aATvjnx%kQ~@HG79}olCeo zT^il+;)o*`!P!w+DeRgG0|H0>h5S|2YfV0^efa6H=y3dck#%%2i@35%BOq?9fybZJht?!fs6XU~c}kF%DwwEX%(?op7! zwI>yZ3c6J%S$gmHYWS3|NpzgJ$JEz!=1ThBA{83}Rc0IkmGc>bDMw ze(aE^p)8k23GDFS?<0}lo%IS%Qmf{r9VfozWGV7zAMlnlEp>O1^ow1D9q=gL*3h@s zmhel4QQ^;5hs~m%uMML~zjW~S!8~e*&)i!9_g#}R4irDQyz%|#f>)OZwO1eqLzL!T zs-;leHXGZa>eZH&V?Qg`nr(No9MI}(>L{r0%nk^enAj(;G?w-}y|sy^uuHs8-=x=4 z0YQassfV*ZZkgqN>;;Z)Vh$uWI8>sygMvI9(l;>2EE`8Qk3387yv}E5oRdckBiiHC z%JMSSF~-<-*{)s0Gw~ z>Rs?T9Pq!fNuKa9E(`k&7BN@73Yx?iB6qWtysUa!(=M>bHqu^xrN+(WX{Vfb(kC6- zI8W-jRprc&3B4Ec0@CshveXu=*)~fekvSrD2^*`H&_UUZ zZ|e@W<(52D7fuZOK6ud+8h#AI@d^{w@eYJp1gRlJHU%#AgfGhV5DbsQ;Hw?J2?2qD zm!Cb;E_-&8)y{5wWrM-e(m0NC-aouv=z_=$QS0lNF0uAu%!d8A&DTraG^h*>h0MGG zf!$7SUYo-^HZ9=yxsnpKZf~v>S5hpOS&vI#a->GphuTvsMT8jlad~nS7qb~!(^HpH zed(p<1YOs#h}1V0H52GyS#55-xZ@`CPua6S(+(u=?`m&Yw4gX`eXoF-$SOKs?oWct zROx5UrQ=CC$It%aTuEe%km-^Wf{j@x&-WK>W!%Qzte1I1%1bVaSAllmpp2ljAp7TU zA`dLhX8M?azkNIKa>bZ!{po|7KYu)SuqmeF=YqIXW!$>&EuN2^UVOhi=5@dM#fBfp zFJE0+l@w>rdY>`VUHirT!4^f?t8tOD*coTlKv|D-{W4UYZzG@WvN%m>F>p?{yfHJ+ z418navRUJw;(JZ2%BSSXO^FWel&eHLTqL(@@5k;dp`P>_qZu?Z7k(;dDmtVMyw@Ta zC#?;GprG&~m5)2qhK;pkE!8e1*Euk%wjS(+Rs9GaF4DHXeH-}0SYGEa*G1EAJ|~IL zHeIoCIIun&mtQy+e~ ze^9U<5Ce%>)^q^QL#Df8YF!qX2+b!Zp^qL>lyO;D*WEj6<*TNV;UvlxUiZj3KYPNC zat`nX{niz>~pUExd=|WFdSw`m}cKXvBGAR1u__6g587$`7k>J+>Tl zfVWflpe@}UB+m;7&;!Ak5c749-@1IxtoO{v48DmwXY9LJWD5GGI*R#VK2mjHI&c=`<77Qg5 zuVAN9-M@Supk!5v?dp90$eHi{<55xmD2rEY0NMu*=9{(y`X@4G4UGbErhsdpL(>7D z(?dY$(m``k7eO6Kkle?n+i-cv)(q!|ps+AK$ge>t;?A~z6ep=KzWtF>v4)3rRuKv= zq$^Gg4r}O2UZKS-?Ax5>NoMedx~e(}D;yA8*oJY2M0kgg z;yGlL7a}*ISkV1$PB=|;x7qLCN0t2mK>iY)J;{6qpQH#+3P394IS9NNiP|>p9l2pH zt@;5aCMOq{WB4QlAO*1MCO)!)pEmFjI#fHmS|)9V>6Pi*+f!UCzy~7eN5zE%MS1{} zB%y_vgYKpxag78gqg6pyNF1<97;PsUKRkrTk<1cBqRFKfFVa+*@1iVC-(0oA6Gogx!l|2B0@8Iv@`*BHLF{8q0E=`#Kr2BXX(Du*A{2j!ANqoX~bVu6d5 z1)|FwNP$Qm0B8vTgi0cBLpl|awjdo4lLdDv9T}dAXIV{D-T7xv4?-gN0DwsXoUVZ} zPl<^bn2>378LDBxIWdOsxZPVx5IP~ELC18z?bF0q7sN)B@wMo15b8RbmKt(-ns5-L z=u;qE7;X`G82sUuEfj@7|F9U_?z=x{^NcvhK?733(0Y)G8}Uz=IhBI3Cjc2| z1nP0=)~#Es%MVC}EkvRrda9>B1K7hrPe8Zq_0jx^YS2x9j_ozN7^;TNJ;a`ei^~OO zc|7Y`RaFZ~s5Rh4fGh;DCGb7d%$ZhE*;{q+z)V^ae?Ks^=VE(~7~Rr)U}4{xed5~9 z+RN}BDTS}S>Y-}xrm{&0&L;xZS$7h7tdHQCWaXNzyum2ifrEo${N) zqA5ic6*e$fm~WDD18QC9ARq-DKetE#v!m9Nq{=_~379FGkhnCtU)Ny635wt+Bpg5$ z&5;g#Z-C1_RyH`EHj{J`5<9>`{WkfUk=S=|B3PI!3Caj!`6%&t)r>cS3Yl&xqQ}?; z=80og-OWdO+qsxkRrScw$;FLYH@N#G5U#?wbg4&luZ-QWl>Bg;4h#1@#54!cLK_Jf z)e5n`Ug7DuXvL*XYP72%-wR?r{736IMIy%pxQ%Fy*L;dDC7(<;9(#*Ey;Cb66{1`Dhztm#SYo(-7+cgtNo>g>Z1^$u>zp5 zBS=L6S6#l}R{esgR)fXQR=y6R}}3WO5k4 zZ6^(xdz)|`3`Sa%KBYTL*_=AG@DFKjJ*uh9_Ttj{R-o~Dw^*>s% zxVp$pLnz{rr$?3=Xyz+zZEak!3Y^oo8yck$(cqH@mI1vKE%d^0TFTy@ud_eO87s8m zdzB|VblD3w#`2R~Y*4C4A*eu{hK_H7&fqK+>mje+h`rXy|9O+YeOQ+?uvYcULhK`u z^pSuR?12eeld-dsKvzT#T?KYdCJ?~SL2L+GBQ%rMP*2b1U#8p`R4aXI!5EI0O(H$u z`v^5{Jy~ks4|UqaP>}i8=BJSZ%?;a3L)(F6(@&?hvC7Q|M@ANs)11eq2CXefLGasrTlG3f^g*vf zc3`~63*qB>acAnr9|v;BrTvec<{jsNSYeJ|0GEov{(KNem|ML30I#i(0F+&S#9h<2 zR&XYVlFu2$INIPnAyi26z`|r;&@}dx^v(-uEdS#Kc@o$!R*2Rwr=Vaa znI(8=9L%18q~vo5Rz+!0_2K6)84$ksrI?8|hO~v++g)D^RVh0vSQH&x;9iNymlQ+$c#PCSX=m5Z%!zIb8odLTq&+24ZTqY@$$iZ4&-nU$a{bYERO+U$0bDR+JN%zn5K(Lj^IZBBFuAFZ6RSIhV>@7ht|!yJ?fs z+>;*!T{bHM_-*L~XvF5QfMh~IX7i;SJ)-Ad-*6|ix_2zx^;$1cyWVtyN z<^-O5{+Q?Vj-j(bw;aXO-DKqO40blS@RMomE6SV1aB?0bQ@4pnn5YJ;VoA(42?C0D z`7$>xT-b}(=1sQumRh&DPFuY0$^^yoK+^lxaE-2I13lun9$;i1DP_n!pb!(C)cen#NW4S-6{4M8r@k;HqpQ=isW$Yy6`D%J%z4VD2` z`SpU)TFth&`#C-q+vvw@4}9CBp0!}tXx$G7_Fkq)4aP`~gSR(^`7dza8toRCCt7Ls?V5l&rLV@TGhSS-5;Kf zSay za3O(nsV5(|$$JqIPHOMkSMp1JWKP7Sm4~mKm3~m<+xX(2%dK@bd~Qgodslj9eqv?h zNAf1%X$Lqn#U0#e12pK;RkU7yEI8O%`a1S`D9>pTMy>t!HOrdych&hA z#5d+0vk9)KzU9@SSZ5uHc;M*%=V3Sg$L9$yH+~RNKhuX@espP3#hMctZuWLs4KH1D zlg9d0sB=s2kJ63KUdXBb#N=?~`g@~s7!kVF_v7YoyLRrRrHt05jR!}+IJANyIykRw zN`YCE*D_h$^;}nlfyRnJLE5k%z7Pd$xtm4<=>XL-pCK~-S^#(%!+pXXxo zs!w~MLw3ITdcF}Fgggj^$lMo5QU<&|knBoPTa=Z(dfKLh$oOwqn%R|GVRyLk@i2Gb z226hfP+)>^q0n}4+}pj>U)E|4DB0J5cHA+NhNL4|HaK$?!#NMpRP2`O)qd~t-^At^ zmfp=f@PPSz(^h6GcqeB zY8q27_vlfqV2i<8?s7g_E2dws^y@|ESV^d$!QW3*mH>K+Gwf_CPp>EAc}ZW3ZIy*0 zgK6L^VW9}6LINP3>87Ws1@*_s_&=}WDgH`DZtZI83BKM^+{{ywb2Gz3+~A1n#>)L{ z^ryG~(k=hmZp(1=OsD-(6=&K>i2 z4^bXhm>^HU5)XP84hqb=h%IYpV_yH@RN`>wnlA08jFob7ycARmVcpxqo=q*Ur1P$< zVmYMfLl=pbfcLp(Bw@!1Jt?^PYEs`IaG*xCOA_7VICket2|JwpdVaJ|i#g%fLpQbR zZ7t@^=3!$5spkTaAOs|JRJ9%s8!}K0<@bux;do7PTE{q~%80e^-C-adKu1;Xr+$Bz zjjPw}F=pSChL<1^38sRUf1$G(?r{r0>`(Ay23IiL@HLzM-N$EiU`4&ZM zMD$grY}Yw0vdf@jC|}5<9wI82Dt~jb-4Rjf;7|GH4`*BKGp|{?TmFOw9KFo%eP21Ck*iG=9N*cVGhZHh6;wvtk zvO_kO5{TL%)&(`omK@o2Sk$}-X^AAQoVb;6Gl*V_;FeI>li)rQBMoMD0VJ+@C`6wl zHcS>-Pyo_hKW&y!GcXmIZKII}LDDgle`HYc>Gg}qxIfr&8&IEJ4B$JDh^VCYs8muC zLigAdXwz{yTVD}Z6~*xl*+MA;iSo6yr@pC?1>!#CvHCaLCQ_f`86h(R5ifzd$8*xk1}LbY}b zu@04)4hob$F6cc32k6=l8OVrKu6#r@ALVKXY|=|jV~FWuULh-bi0 zGu|>!h;bNg;wOpL_-tz5yK$xR&>~EFBgvp`d=}@-u^(r2N9>%!VjCi`v!0UAjz z)Yt1rkDd7v*%b2Oh-%+sVCVT8?Uqy8$>->y=6`+6L+&bh+6jR2;n7U;L1a3T9%gkX zo0|IGxzkuadGj*nxQd3OI3uD;$ptJVofR4%7ih2+;$UGp$ujx91!sZzo4ebINgp&3Nx z?x}?rN9!iW^a7*zES*cfHHHUyn*?u&sXEQ4#TD)*ZV>)m4$a1Ov|Xtgfk>a}$eb8g z^08}=Oq4__>2+>RSM`4H56?qW{@$FZOTYL^c#XF0Z6kHF;KkfB-#JU$YKiyenJk%`s` zLt#$4uACp>K9d~@gPLCYSgTsr+gW& zp&K2oRwM$%{g@r*I3e z;~9WErMP4!&Qej4&{E&lb~NW9KwKa+4{uNKQz(HmYEqwtU6klMNvgoWh9^e)iFDGu z!R4Ji-5I;1-wmB`=HIdk6~_FZ=d3IlAzo&ho}K@``aNDbmZ!EXN=4vVvx-$_S7tB1Df zJe7s0Zsv5|=r3k&k4wMSn@N@NF<4#Gh;ZJT8x&e5X+LTSJdy!gWF@4dYbS0aK>7W( zC-0oFdQo))ABh}=R^COh{5k{uAjX?Igd+^G1zy|flo`M=`_h$G&LRoOf)F)MgcC1QZ*a*S5vU_$MB^m*(3St>@3lDl;rSwK?;sWNbPdc+P`o#kb|iQdUFQl(+R* z;^zyCI+B{$NLjb-CeJ4Lh^}j2z~j3>!QM8|qyk~XaL`3zTTZM#BDp|2v_m2S?MFqO zdE)JfpBp3&=vF5U{WNG1D-s!4UV^>M<8;xYK+n*`)?N6W{984BJ1kW?OryhEk0(}> z$v=2y9Fvt6&3oWVc&Zk@Kg2|>+5F9z{34__nO5gd48-2)w?22#rb9NgMks}OkzcfY zXsqeOv>?yYuP=8=q&uNMK7uoXUZtfL>OImn0FYv0W4ns~k4MV`E|tcDWkD-Cd-fxV z9O`2dfscZjjK8H1bd0um`j&sWpf712oC6QaRv@|3$w$|ECg2QWr$ER-yY#bK9s8xc z(iX0l9TdMhY+v?s@0|^s^HXDfSIK7^XjSKG1)i&WE{%N=S;&5^83_I)vky@V7<}3a zuLG53asOEe+TIGk)>j1%4D8)Hr@yAISTD13iQhh@NX_O1ZG@g<1Bm{D6wv{YAzIxNXd6ShL$}Ws|cP1zM*AI`2 zjn)#0<#Sso_Q3eLz@cV4{52F=m=*v_MOOP?<>fU+rFP`N$8i&?|HVaic>YnitpI=Fii*X{ zcnte4!CrB=nRPWPqfJX5s|>M!-P*3jme9Lrz8`O?22b`-^NKR&b-~+uA`Xoe>^$`1 zS^gCom&J@(dS|lk_Fqz=tK?C1OZahS;||MppRbJ6)w!NdrDKR>5DWVG{r(bJ3voL3 zcXdBBFMNH$i$8PEIN@m9vP=Qt!s{HKe06f4AH4K*+MrNz|H0BU>F436?npKaG*u=D z@^QN}fE`ps&h_^TGV_!-d5Nlbe%K{(1XbqbED{jJZNsNz%jTwXJ=@~W@zZ)U&g#RJ zJq}U2yOfo343=M~4J~#37+HAY&fa~@nQu2~Yx6)8tD{#0zLej7Q1CrQr+x2!WyinK z;@dn#cOLi_qnmc;YI>&jrR-qk3kkd?GG$@6b|{^(lJLntV7d52$j*-B*1%jGBp}OQ z(|S58z7Ms>jFD@Qu^a=qNenY^)OOD?5gMS)X&#w&S1My{KU=j15Fa+_cQJOR;s=zw zM0U%B(ZuG@Np6wgOF3vl4kw0gTvmA;&!FZ$Je}H zc7lfDxqp61fU1*lA*~UWzGl(oFJeZA#ZR2$$RC=J+on=?E`5=G=9SYn?@vB{@q_L3 zXw%d7j58Mk-o5zVsQ3Q!IlGbfHHtgEInl@&DCbn=s6N*A_X}#r-PYc|KD9$D(cZH? z#T54-tLCBtwjZb5268u0g3h4Ys$MMfR|#z|V$`zVEswL(0nZPu5dP%-&d@wS zCeU`#G?+rhTOvTkg_x26$)JqRgK=Wjk(?PMT#tisO2;(Ec0?+u!M) zC#p+g+)v0CE2~v?as!kti+nFO4#JJhciK#>M4*D8L^%e3n56ISBuFZD#YNuHeQ_&| zYufeH^3KF=N`|qMo|CwdP$Up#3>o8#LDt_sN~2A_1ZUY1aA4ba?!1Ej42@zZ%G+b3 zgI%CJ`zkGyNrRM85LVh)etA!iwqvoRD0h1TPxhFJUsF88s!IDt>7!5m%tmXJ<4$Sj zMV{ig%E%qlJ@meEFi*YLcurs|x06K#y*{>*m_Z+N%ec+riBX#teD?v;=k!9vh8i+I7DsGb9`>`!v9oKRQ2x`_`}xElMljOw8tV^a>}or-DU?h2&b11GCHrsRZ;i|- zw|YfJu-bGaGqx55xqLQt(TE`NmBed9k|l&cX@C>of8ecT+viMEK`R8guuzvWCn6nU zgnz#N4YTC66uKrwD%0r(J(?r>?ZoJf8~zm+6)C;CjGO;}Et~i6(sjJ`s9`p4n;HVE z$=oCmH+(3a(R^mZ;Fx=9!!77k;-$(}BVrkyr^u6_^LK z1$GTGk`y}?@9%C@X8;W&KgiIWy7B%EfVkSucQ}lo3n*SL-TC1|hH8VtqN7tl+yh0M zcIUADT|G@zYai+VZbGKO@rwf2CebBY3bqxo3%+0&=j>slRW!TC&u9IJvsbz)l51(S zHwY3+(sxvyZ>AULRQ(Id+3T`{<$Uy$c@MMqHIO<8<@*AV5CoG&kOo)EThz6a#zx?& z!n&DNr>|x+IXQQ!(Ppd^5owL%0OUJ`Qf)6R4wIYFz1r}_LaP2}5j!p>=}B0C*}pu(+!W*BIWl9Fz6BGzqBxuF<16@Ctl~WVK|i2C>;z5zUX| z1p%aozp0MiduLejbw++-3<#dz80mANmb{9@sb5arYRegdfJgtc1foFrV26k*$cAO# z76U&?*f&ZZN&sRi&B%{GOir$qu6%a$oE4v1%#E!N@i?&q9r_>i&Hn&mZ*vWf=`W_G zThm?h<-GL7@T~f`6I6xHdq3|Yo4Sel7PWDs6U352VW4!8Y@w>dkV(zOpShJUE;1sN zfR!==<`rm=p_js1vM;{-MtuG%=>Vzo^*mI4c;>~z%y~l#l=qcQ!({)ETmNzS(-cRa z3U#hwm}lj1xgc@znH8qD)AZIot78*C)9!kIpL@MoWmnH@DeVkv?(6Y1_Tydb)RCmn zx;4+MV$EMCHOxvIEi#ZCqHpZX*v(UWvDaH`yw3meLiGsFvC;gChgQtT7LfT@(=C)J zyl-Vj2AGCl*J$ebC*+Vmvt(BDiLhc5`H8pHRv9;M1YQqc!?;+akA=JJ6g|~eH!z#Z z>hc`n$fRLnS)Wy>)?G>~#lyV#;nTZTZy(9yLHRc>6Mq9^t1G3i@_QRQ>5)%g?^P3yZ&g&NLLXk_eoy^bam} zr@KjB@He_X9rL!LQSjumU)m?Xr^!r8^6UpU!mfTwICY@j-f>l{mh#EGlL-`?OZwZU zC4Gk@H3)&0^LuyvuPnoKL^D$RV|00U+a{6eh1P$2Gyj49wZyWH3;cg(HWF(RULBZ; z!|V^YknMe!e_$q1`NkU2(;So{5@S%Z!)H2^$^w=&8_4s$dkY}uOHLP8 z-gnESsDIQmm^p9OF7P;$H|`&1?yslj@je@B%cGl^)FK28B$QrcOh`7~n}|{3$NLq0RjXqby5}Of=ip zF?h%${7SmElt)M8VA1MlijdQs%8B?WQNaoZbBm{=76RsbBgsysUHJpvM z_j2GO$?zQ0#9Y(F2sxJSKP1L~{WRBr&q$iqNReq&IHwt@B}c@6Q2wzki>A zx7t&#{5t=jW6btcm3KvQwh+{*$eSiedkOB;d32Fmsz0=?%a3~^RMoiLBb1h&nYM3J z@kz@!SGo=VCI|nQgD9)zty_NCV@~U!xgC60ey(UfB zT|4##3rGjge>$X`lx#059ysUEP2O1f-!@OH%Y|Qd_+S-YJ z-tQAF)cpkGD>H?bHR`$5Zi!B{p{S_ix;gm|R5yi|HoW+$prp8$$_UI{P`%;%6=fgS zQ(p>EAMZ32-K{w{XS2{5>-j^0Zu{HxX01GU&0mPgao5_VqP)P9DU62QJDp%{PFV8h z)qfT%lZV*(;!UAy-wR_-)bX`dCFber?Qz;#lA=;#HT-fRPmMWKVd4ZA>-{oDYPZdZ zL9g*AE(Hla50|S7dqYeX-e4GPr`sze@Y+-LvReIr5dr*taIQ6GzjW=KN^ba1+-C2^yFNld?KhsC}R_dkQc-B6@;#|khb4xZw7!@9?RLh2v zh9Yj1mfL#|PvLd9tM4r5(yRM(5>3}76rbuXp0Kc1jc;2kU9q5ds~k$ptBC2DGrN2- z8151zb&v>UmCzS2kFj>Mi+TupGFxggO&w!@R1kk(fJt-_!;Qod!3Y}o3S#*{KRyJF z3k_nxr_FGvPW=d3UB8aWHS7@94zh#tuxMhCu*||E_55W!SOVF1-W)`1^1C+vzI|v? z?eXiElcYWPb3TX^c03LZZ33(p6^(I+&HzwwL}Gvk1Idh-jSd!vCXcKo2j0RfL}nn@ zD|617LZh|T=h_}Eo=$N-8vRAmO^RG5l>)!CO1ky?U(-K2bwKRAUywr_Rl4lGnVlTK zY$_|)gY|W4P?{rM-ki?pygFsWtxG9^XT}RYoj>XBwyKg&uWg(+|Chl{;SuVs5TQ6nYAuw zcjua#VR1RPcQrJ321Kcf8%7 z+Lv=27Je!l$gCcWn??abUS?y*J9YVq+QzG*T?X&ISk-ge~2j5O4-Oqpu~R}+?>zf*kB`u+=(%Cw0&qjB8+QWxpuG?h7Jb{NG}tulEv z+h6s)5}*=Y-b%I6B@d$GmJE;!|4Vq%OdrQB9(Vux*rxQ&KQFWuk2uV=<5u=O!LrRk z=4vf_pHjq1aT;o$hjK%!Lv(Hd-LjHoy}UUlg-;IAM3%0hTc!>@z=_RMdH}L}iACET zt@B;9y&#sB+8_IDyOiIR4)>>Cg$c_U(O5U=o$_cM8V=}N#vCBf>lMg#C$>JcoTBi) zwYR@f8p{t3@ljphWP5HtRgZrWBwIqe->)a*!=0Mk-&&st&-__4zBzIP9~@w`@O;m| zX;{CaLi|%=R&8JAk>ZDR`@~~K=Un)n_v(O8=jhv2R^H|=C3WoOyE7c5xoG1wtAeB= zcTY8!P#8t0^}7;m`{kpHyqhYemp;-?*gTPoG0F?-5+AfPDN&XU?-`s|wu;G}a`H86 ztYIBIxlXd0H*B_{sQu7hg))|P$u|X_&Hi?9laRW{|Gc^>%6&>^W(7+>%SKuq66?Lu z(KMXWbHx;aF>9~J*~|b12aFZNa2IZsl?r*;uCilCSM%N-${G>s|D$%%v-&YN+kRsx z=N??pkE;Y_(~aos+p9O6KQ-?r9)c{HcGY@knML!gSe5j?emznAU|YoU#OO^%WhcA7 zWj*ow#_cry63!5u&G`-K8hIeaNY)w20m1meY)BP2V2Xmfp~jki!@hZs{kQJmbe~oU zh>K))*DSj-)+-xnMBmt6eG#v(+x$|0rQSEZD5s5P$>T2Ea4F-dtrY(i6`Rx&VQhF7$|h|+4}JwcN)qD~$&7Z40E8#=Te(u% z`jdo5w*EECUj9o9o${DuP{3~SGDO*JXWyXy0j89)Him~mCAmTmuX}s>ntzk=%-k{k zAU&&`JoygW`eauhn%Y;UN?!myAzGSoMzb;NptIhQ-TPY?*pscV*f(7jVE4Eo>Mz_X zwKrkjROfU<&7>f@dUtHqj|?`qm{|k@SCpiNX#M;~Kme zWJIr*H7|o>wxiJEb<<&;e=Wkf;~5pV)S4jimdqOief7A1?^JDq|K`(8;y&^4MiEIq z=u#Srn7ELUOpU`0%N=K5I-S4JKw-49{z~zj%1X{6_|%Lc5Oj4??Hr zMMk4Al{kgT&Jh)x>bO>h>h2@DvK8}ZQ33)2iqkLrKNZV9;dq4gBATJR&jN%Eh89mf z-O%K3f&Syca%Kpg;8|itKyi{+*_*D%NhGY5Rkt-hBIL zH+jmR#8vbx{h9l_i=K8Pyvk5l5Lq^LDP%d>A|PgJPH{jnZ;1#TB1=y;jX<**o?u{c z=tzQAaEWnnxl!R-)BQdnh>vv7*%0;T2o+EvS9$V>+FGpDeKepSNQAGh^;cn%xPuAV zn;~{z1uKuN=QY#lqHmY7AGqv^$?b@9oJ#qqMhQ{7Zj~ zAaHEjC7u3c(h`yon+w5wA*z!mtvKP~$+AUG)-^~1?i$%OWS4iEdAdC4X-eeL^YQYf zrzD5`)cyicpK50p-h0|FneX;*!pYRWEozr?Z<~)j#H^Y|XD(feiZlHTQN;HwtTgS$ znMxGXdWP(}m#WM|DZ5X+@4H+1VPL9GJ<`(@@AC`2%(v-kT)IU~5lnJ$>DOYsQ`y7~ zCZ9;RCf+st*6>C9dD`ac|Mx!a%B^e65P}fR7)DRtZ|z6@_W%$9w&fC|-v7Vbay=|f z#P3SxHIc0d@~muP@M@#=t#if9_4BgIz1f|4{6P_NDT|skoer?^I zZJl|YU9Ca-1>KKvu;6HpJLT(*$*k%w>k)plyd=T&(dSD+@0lDNbX5x~u*@j^T{Ke# zM83(6yKaP%`VY)0f7b3wS$2kr>vA>YO0RdU<^M#lzG&;wp7z4xrWO~D(#Ocgc{_Z# z(&8%>QvGqW4_C)oxvdW?j^g)(YrWSmN{ZB^8-39}mv50m_~z(}2w>nGQwzB=wvo(6 zB{UGMpfnNXMCq&#if6&<o4Y0!j!q3HYJvWRR=Y{@nAYW>d1NsGJ zOf^R_*YzZtQN5Ie%V+x7aLi&5nIbJMDC_}eE zK?Ur_$%W6F2_eCGpu}#%V0;WNDs(CmJ%|3w8x`nJxZKIkve#rJqHERg$BrvE#ZyvD zZ4`P{zt^VnR&TR&%eti)*H*^uanpup(*r?aU55)-7p`+$EW7dee%Es2^ggBLxl^}L zzp(qniz))l8Lj1pu$dm%Jp;AdZ#^ro^m!76B?)H{86;WRM`Ag;y1FczZ*L>xyOU~P z5-noa_ZLNtEk1g$aT4$U(shpbHvR_dATUbHvg@;1JSmGmf8Eq|6YJ0Ob|wqYaW);z z3&wm_GB1nhE!hM8+~84GiV&~rn^XG1vNw31u!(9d#BRUj#tADNFb^~fw$d)Va_Uk> z8iD_iL2{-BLUzVNVd|g1Y>=4)bP$tyz9d;5gySsF0<|aq-N>_ zA;Ac`9BlSfC4+qsM-sWaspUV>YWGic0*mYRM(fI{MQE@R;d|GyNDVR7Wdbv%aiB8Z znedR%QQ-U!)o1*gLY?9*@&*^A!Ay!-C+}T*M!9uO_J5)jI9g{Xw*bJwh#6^w(Ci#N zq;WLI-#doT(wXVH?5UsG@DpF)mjJ*XmN4N9z$?g8 zr8aI;svW(E-=av4yGp3o`9&1-=fHP{j@kNVa*2%zIBRiQ_gdRMwpIZHhH{5`DZ9)y zpvF!GB1H0+bfdX?{Fhuf*SZnID6);?l^&K{vr?HOlRV-N2|d8aEpp_~Td5=~(0v}Y z`*<+u03-z0mY}QMC+r31TB}hOG+_V-Xka8Gdj*luK`<={Y!D~@q$CQ*ags`f+8k-# z%<}DjA?{vz{u|BV@_wteGPK+{S&u3Ez~h3D(y!WcGn%WC!ms+iHeZj0X#v}OMAi>7A00Pql~J((#L`4j zL`HiNX%BHIf?E`>`{=4OSX5$}<)KhHBz?l0j`yLaK*A44V|M2^%Lm%7ULUXB+~P>w zJ{zGk@j$f|-fgaH&;`1dNJWSh5yC31`tjgk0ch1o$c%DS6P$!bwP_oPJ7pAqk{$%= zkHoGbhw-_j;-9N3yRS`}S?0>~=lzqujz62IVEE(vKU?N_G1}YS&Y$%%=o8ySFeTM6 zZfkeed}OG?(_sgsFu7dp!8*|@QdWafccQiP9(fps9IKO|q-HxDVGJDW6mB+cY&!X~ z@kNomqqw%q$WeaL^D?j8?W$enlI~rg|9aSav5#P#{&VBmyc|)e59kJm1b#6Pj^c%N z?$jxo4{EGp(+FKu%SbTcgX!c(=s8$zmrJrY( zo7r?t*m~=)j=5DG#kbL|`Ds=BC2Vy)W2@?T`+!mR3crDj(NoDoF*{dPFMob|RRznN zOujua6AiA9=8sb823Q1)U7tzHL6VL5JaozLrtCKy6>O+KgN4SPGv(bUxsc15wGveW zhO#+hxqD@#q>EO6t=J#a;uer};yu%7Z+8V#&#aZtZ^-b>m$~oqF)xg5v)rol`}b*T z-X|1ngN4TNKl}H^TB~Jv#9c_(EC0lxOZ&TVD9=d2&)`TSwDpFWxC2t&!AX#mQ!LA< zYP6>AMAZS+B+2&G<_{UhZaNti3jQ3-j{% z;S|OepgUJx?o40ay{jiQS+j%X9kmlT@~}Z;%J@Rpp7U4`x0`hI#3h$SeR)apO*_-Z z7i}=LJpJs^%JIF+{$PZs507JM6G0BCr-`)ZAIC-`E;-yVd=zLSig3{?qG!X!O25N|8A5?CO_eucp&9k+j-O?E|CiZoQHYS2nEeqtw@ z;!Lm02l32SHzuMNyovEH4~M%}I@aldp>sK|OoJ+T#kNN4raw2SUQd`8sO)($I>ZBW zB?%)2mG>2`c7O=KCkZk(?{!^sBH@C!J#CxBM$}^x^E?>3`C3~g@4@T zw{CyxZvm4drxfRNU20n0J4F(vS0l;O z5$>0YAe1rlQ)Q=Lxyf%XX*+0!yS=Q)gxH~QjY%QlV`+!Y;lO4guYc)bdrcugS1{gS z;%wm}@vz8bwo!GQeN16%|L%2KF+bn3#)a$9XWIvEFt}12mj#HJdx{H;Q6q&TpO79-+SFojIn7#TJtL;$mmNh&|mL&B<4^tFc+Z8 zU(e^9e0SwQA%G5P7vZ_n-9$Xz=l=mz(zTxIxSUncxttrWU+yb*XkWCv@w_z~TF*=0 zHjHWPitZQuM+EuS(}~OU_>p=>nFcf3voi0GzA_KkxZ}|KzdV*9i=}vO?$>cBIyhcZ zo$25Zcpwryq#(k4$$ z)*UYM8Cp0oJWpI^_z$gngJJxsvenSg*+xC)gkDoe)9A}dyeDu;x#<^FN^^^4POL0y zA#*<&DAK=>ro2X1f=BR4VU!S)R-V({La8v@N%10<1vahB_&Fuw1~439M58id@o|o; zcXJx8z4Rse%my}>6O7w9#RixTU+A^_z0oy0V-dT6h^`}APQDlDu)4ct%SL0hRY!1_V-`0oW=Ob+tc#^&2+sQT3B@f)LYm$DkEpHj_9>3}>)8kn zcqV72QpkQXSQIHWun}BF`5rFkf9{2GxhRqB!+t?>Zy{#f7pYmG`r>HJsd|<(j+aEU zTO@Zr-R|9d9GJgR*k8&oEpv?@f|iq|7KS)fTX2v0sb>E?FWuGl(4+B3V%=*vBg(l$ ziX{Ceq@ABnX;^+9e0aU!N2%49ewJB15%k#I(GfLMt55*v@x*{L*8M-@B;NnYYdy+ckv^wA?E0!bZBS zF2n9YDW_edFU}(D@{eh^wWJOXYZTcHe0D*5wut0y5!Cn8#}y<<7QOIe%_(=u6df0M z^ltth(uvkzW-LaQ!(yLsgyN9No|hkrrvD4Vtrn@tN$v|ke~+-R5P`6~XQZoTuidxIJ*+C8rSc8GM1q^ zLM07Kqgkbq(uAZ;r9w9;uiP9hyNeE3yD$RH4oj!)X7SQlHOm{^eJYbu#S zl1j!~p@_P@6X`k`Rs%5!SOz=xTPgA%$HW9O=>XLcEFcMX2-@Gx?{|JYHVpbnU&g~z z7f`lK5=J_}P=$;YjY<)viJ}v!;8Y43Sq-@pIF*E74eBgmk=8&tL>-zoM%330xMj6F zA=th2(<0w!?PS~+T`pDmELUn}PRAKyQ%6TeGeGvZ*_Gi@)Xkd+CG()DW?y6Kr^eeY z>fjh358Aqlib@VKzXxn^faF7XCh93-|5*Is!93f7k;{3z3>;4bDhb7qu<75bGpvPi zFD^C3NSm+y0oE4{Ldgor@(1Zu;ulWl&tcQ()~Rj_+Bvg%meZF&2aRK8sI95YE)Vwr z4e5?)WGDirSk({?GMN1o3V}PI2O=R2LMe!7c2~I$(9#XMi?0H{R}@M^3B^qxvm5?s z-&P9(#AVb- zT1j)S`5b@u*T$#BZi%sS7D|3=N!B?U7R}CEO$CZQ{Je<}9q`I2GP44wtc6q%so(H4 zmm`=spl@T!P<*Jpr&W)GUO85rftrR<(XG;6MYA}JTL*4U2)x91017xfbfj?NXl&qx zh;bj(7qK$hWbYD}0501GCRj^d>Fd}TpTe<8$rP0&6*Ri^#_~;!CLSy+4*5%gffoQ6 zV7JD}h=lN(gtV_gdh--PjS?k5mYo9`+{jRWl#WNZAQu-~?CD>2?CqWB$?QBpJv0sJ0fuXvyI5i=FL@3<{U)g7-f*2^XZ}uSkb=#AF@dU*pU}~Y>ITTi1AZKG z3gk$^A96d=DxW_Bs6${w2wF{J%Z%=oOG~WW&hmFUjU`J~C#)Oaj=uplWu92u@Dm;c z_G)c`c($UcXke60WB-bQW&-nRWo_OJL0qzQ1dV{F}b2Q#tYD8wAXpm16i>l zYS0*%4t&Uc7=_H7{52u59(5C(5wI%{z%HF^JsJvRnUuX{O@zaR_uLbH)Fg4STUWzD zi5}^uw8YYb>oHMdYW2R}F&l=A=i;=+qY|uMy(6?QOWU3;32Q`RQhe`_hV)2ZJshlh zi{XZVPs^I-eIZ=XrqO?w_QI&POLsK3QE@(Mj{_?IbQ9EbWS$HZDDGqc0ylS#wE>v+ z`p(1FnH^6TU0rE3i%N$-lA-sxi58!zO=%#@yiB7e6Mpg z%*JuZ>o!{ka$8+=cRckIxBk)p>il?8`E2G((qe!wr6KIfr+=GGOPd3b>kc4IWHH-M z7u&9j4nM86_)^zXk^a@uyeBPlDwg`kL}sQM9rKk@>nNynFbF%J*0I+=Jm6SYw$|l~ z;s-g^vYM>B$`U*TpAA-aiq*fgY^eOJq{_-(v*lIxmZP8=etyl(?QsSSlDy?3g$p1Hs9wJ?VI=e z-k7}QqPP9kU8LbA)Nq6t_udF2_%5KW9d&9`!}{(NovAwxE3B~Xy>Zv-@EMU+M3w!q zYUQYV>8sSRzH^Bi1a7JI^*s&{wqh0SU|PdAd)jc7_X2{jijf78#zfegkT^_dm@GGu=S}fYv;q{t0qfvE#>%M{Aq zjLYX{t6rnUaL~Lg?_Vk$%Tfa1!~YYBeK=D8>EA}-kCKE~FS6&ZB6*a-hxbkdf$2n3 zkCfMazl%~qJpb}D?)@R5V+J(t17Qba=$d@*F>)S}x8c@UAw=`5g^N2j|J|IU5TR^@ zOoZ4mRUXUdL>7{Rf{IMyAV~{3ZhU-wcd*|+i8Ixd!ByIQV)!nAKS+k7)L%|3hu$G( z!xq9ZL^C=se(H_74R;rW%~(Gtb4D2LKT2vS>Skvy@v+yeB16d`Z9ndsPoPU;Cqt%& zEin{14-JFmKW$!jL6J%mlx_Q2^CW zI2kUJyg`5#sBt^0@%>1d(jby3O3+)+wnWRfEVmqu}c#EP{2F{FPTXlPvlH5t*3k&&_H+9O}n2?va&?!aA0IauvSF+Y%u zR)!_m&X+C@9RDWWZ4XTMP-N0Ptqy4f>P66oVI_L&g9J2iP-hT88L+$BCS_$q7(Mni z$&J!+H~H2f)dWPd1a;}o@Sa1JX|wjq%ozP}JB+-Jy1VRs>j@<7x1VV#V<@S1`&nsWGF=1b$mOQ*C?v`p`S%|) zc8%M@loK)2F}VE54DNa@1OExMvM8MNi&rmn`u2wNSLB*%6~=!DY9eBa1169HCRKzL zppkLo)y_w}U1snB`1fLk8f2c`gI5Q0VH0x)jyD*T^2qwSolx*3ag{hU-2hdQoP*6) zQr#_O2(j%`aonFq6K4qO_%vdci!&6*Q@qTZl`w&rM%kO?umDC&2^EBzjC?hIwGg=_ zaVjV*U}&K95hXIwg@2t2g9`>c<8CY6 zUJ{^!x#EPzdFc{`A^{~V{%nDhUC{Fss)bq{`uWJ+$Yi(+>?@{VNN1GPX}@A)ceK~P zvT*MpZgJyjkflm9)X5vL_1OA|^*@nfLoVLfu#c{t7T2pS4vf=VHl2jmX~^r4}MKkQ}>b{?@MQxaP%Qk8LcVF#-fx6aklnTDr2|8K#_ zlCXMIo1U5U`x8*dlF-Jsny32dSo5#|ene!79*8#NM!;HR{YSVYpi`95(}y(j02$^- z(uuF-ZX{K}GLUfSTTaHQqI+5k8=S{j9Z3X##smiW*Cv6kfzKa3_?9u791+l}wIkrw zqtbkW(Oc7y+rw&S2`_JM%0p<_cmOC8w*>UZQJvtH&U{eyt$0)n{IaJ=Ht%4d6FM9B zaU1R64562J4nwPe}g~EURQ1mJsYzdATo*9q)wuc;+6ZDHgI=Vr`NPww`|jpA;uLz+mObiyQFeex*5E9xGvSV2TvRt{{TNF`p6jC&;YLaeWO_$SLezb>vf%!UStRDPI@lfE(`BC(yH3sSCRS=p$sreSe)&Qefl-w@lzjQqA;akB?u4# zUllfA-QSxJ6nV>1_|dr`8W0;)iVHIN$1s*dV~I@q1Od+#O`*P*YiN(IUG(*Yy{p!l z>zkLBiSq`BcQBl}c}#;#Mv$U0`==g_!#}DXq;ps-gnwV|FlGG2MqlSCp?l!K<&l-; z0%1Xfv~u=gV3t`TnGOvHAw;+*s|uxwds766ZqvWDVP5g-g>%X9N&pMB=mAcnkh>1J z>@l{a1#VS6xC&3e%v@^h zRAmfb?R@fgni>RFLMI!tl{shTEU1&>$Rg&M*-kQe`_sfl2=_XVc!EHQtlW4xLjYbX zmmN`o?hTjT;#iNrv%cJ2y0RTlSZuRKu(6K8Wq(Qm zo_bl&%$al8w<$z)9nH$n*rsq~*?C}7s0mk~dZkE4Q)H}~8HxE2>f4gr*2L8Y@U4of z>LVO%gs%qzYxx>g6p4nI9yy!X-lNZ{*SnsBo{~etG#a3lDZ?P!)L&NSQb3Xvwz$Ue zYf^p@5?A6ZirP1qOe+KgHDxj7yB|!xYJlU~KD`URFd2!4mpeYVqS5QublX=y5q2|* z!4+h}E`q;i6qA1yfv^OEZKkX-eS=dY4|uk>GMDW%h^=~>PbBNyRxVTivj6W>w*74Y zusEw>Jxx|VK0Yk>up%QiB?Y`;2Oh5W%NmEk#BVIxjJhwFF@pfN`BVCBoa}@LSOt)WcUf)0>F27VcV+}>=%?ZeYa&?6dY1g_o|!G^6eA1R z|Mh*+^ng;+6o~khE78# z16M33NJAccOGMHi9uaY@yIGSWS#6KFW=rZW5=`MTWnVy~dJ;jer&I{XS0)iq6p)qB z@&LHx*2YE$zc{W7?-GE`^9jZY<=OGWL%|bv3X(21xMJUnayqhk^M#qp+egs4LMHFh z(D2t2*q|U#b~g{$3jIPMa!6@>Wqvjv0g4QrxAP4g$=}sWClte@t8?T8JTM|Q#Vo#% z(P`_}^Co4E!@U*}t`=6ejJK5`-PLwqg+@}oOFZp8de+SAvG89vl*+9;r9SGNklQ#APhfz2Z~hsXYd%IB1pFJvQPFa^u4e#;?)h9nJ;G+N->|9-g`=ckML4dRDF{n=tW6 zgewrr8F2()wEy7z$V{=|7oDv;nn^?H!$xbzUS}J)+WEBY9<_hY8eRHX+n!PJqe?`v z-_;&an_m5rUx+wZD1%EmSkLR#L?XA>hkTA@((3^pW0la}WQhQn(;8 z21@9Q<9vk&{@%M}01Q%~s1JpzKuR3%gNk$cB%lK`h!>DU!`n0oeeUpdwK$AUO(`ZLHY90lR2Sp_ce9}&ECu$ zoE~syQCZ@~Xo*V!mrtW_=GNc#Iu}QcCQQ#SfR~SRLCEq(Z24#Qj4vT7Ns+Z*o9x46 zuAP3Oeva&KQj`{_kO-y2T-d;#56Ktw*P}e9fetsfzGMW~A zts3PmDM_54@$l2d&5yo|ALN$#EEH__W!YEw1fnm5Vt>pJ5z|;nK!$PB8K=(KP{Giy z_}o!d%Bi+m^=g3W(~{Az9;I~BD>Agg3P|&K?b>%eJ^slenHk?%11Yk0&1+M+wDkKN zcOo5z{X|MN3dhw%faQ+b!_V~8oz)x#`loWMw=Jo7VRTZW{rURC?YY5n`;SY6y%jXp zO_Xw4XfKysAdpl0=%~pp`p|=mLi2sO_6o-;MAyqL+D=vag0WP7B{C$*wN*vY zV=Y72#v2|K%2bbJ`737DN&U?`HtRdRPucspoYl&lmCSXHZ9WFGD!*HSyw}c4&B;^n0Nftw-&cvkS+B zZ^TqM-ZzF82hpuGukx2JuY9#EQ@?-mbbQ}AXe+X)nj!V=oV;MU#JcAisWtIl9_>SV zuVgYrbzjWot~sS#ruxOAw|RG`)6dGxq#w?#b^g2bkzuQa^{x-vD(Hzu@;a4rftWg- zcVl)ozAdzm7lt`;RX;ThI&kMmHGf&z#S?-~D+SB?vgUSiDD*uJn)|}>hSGwv=>5UG zwE4Y9FE!CV*55K~>)!jZi#|!6T3+!<@m_Nd^U-@-6t&#h-7Xza-FS8d?d|w=ua7&s zT@{qrF20ebW?IqmrFWlMSG|*BmUD7uUwdP!RM3pnl$U$%Z)p|6Qq@zQdf%Hay(dkr zr4yW0bf@FCfa8O=@u$25d~2tLQqm&y{h5!J`i`&FF%NK!6>5>; zmANIpa>I*GZDF&YR_kbp{84O$(Ky)TE14s!^M1}xP2xS)qz|)Nk zGVb(tfP)b|y~8^4#}P)I>>539oAj`K_r-%;RXY#f z=Zq;|=&I*oZ}m{SVZ0Vj=Ml2f^eE{k!w5Jx`f_1=>_hpVMvdIfIYdIpzAGzT3@Hqng*Gi(HeJX%&6# zUl;b)bU(baP(;lMkuI;Vu)G;%>kt$PB5cA$Q;bVRo#^RKvZ1NY&Dcp!ik>PKU-Gn5#K3iRX9Nx zDKhSKnhjr0h}pQR14=(n6F(_5bz<|&8!$#bMoWJh7$9zPz!k`tS*UN=LmWEkNW&ce z3p9x8NqEmhoqZEf9S=sSwC=aLkayrw_2|e+nClL#f~7E;mUa%h@ci5v|F#~x@KRT0GL>umZU3ViWOKi4elUJ%s$WZ4` zXYI_F*#qeDg5FPQ^h;z<|IN=i~Z1b7J-VNSy-I{lU$_sSVg5!J4$1sZeurRoi$ zv%1#x$4(G4Ns8=BplP$#wr4jw0o3mT=lXea!`&<}&xOJ3tAkT1N2;?pNvTZ?Edjs9 zt>3n|rYXNHh4sfNN6j!BURp5v-yU@!i!tp+YVX?!rD zZ40P@*kmtDJ=*@OMTd&iCuRrFcA>JX zXqC&VgQCX<7RMI#Pv=5f69%vmREUcoa>uS){1S}50gbUfxB$DryaTaUX_%OH93X`X z;THjO2C9r@AzL_%iewure_;q9N%f#dMCqFeA%+H&C6rSodXQ_ zG`4P0u2`bMyJ{6n^~-DS6*pGroI5_h)>(|^V3W~BGhzPRIY(1;+RZ;cB4>Gi=>}rM zJ*M#YaM!wkS#337{p5)ewhq*`+C^s_7LA`MStYCBG)oM2L9TZNFn*`V=vzjM7&7DZ zthEch*w#oV)(DF}mmx~vaVLL&d7zZ2`_CXG&O_VY4c^A(M<^~h)C}>ci2pkLmn)cW zufrTW8n^q>XZA*xuNMmsE@siH-t(CvKMt7=|6t7G#fqQmsrS@)HR`pyXvI1@MDeG4{5_Xs9X~&R z7+zN5#8-B+?BNrr-s|x~34?fy=dk?har7R73|ExAS(~7#-`GI;@zUZ6S7+B=tabdf?fmCBzAunAMjJ zFZHEE6FCQWSS|CLkl`m@3BhN+U_-1LJ-KKeSBCeoh>#rN-jAnc1{n?vC6{S7ek*2Q z5!qhq?-$^6ot|ItWkd^~HLU5U{!NbM6e2_rTgVaFf~NB0OEqBQhlQQ|V8 z4GJ0>P~o`8`QO2?=RrQfBCz!dwwhk524EsWHYecs=3wda)}FT@jo>N-JuZ(hj4$Ht zb|0m?1}6!0#X0uY<)k`kxmNBoClP0eFl}b}6JN1} zH?d+H`&}O_hkH1zj@ed+-#rIf4OoYrmG6>Gv@j^^O?^e2NXX7xb0&0l9g-Rm8IG0d zoeYD(m*Rp{g$x6L-||z^vO|!RZ)EyJNGD`Y6Bt1A`}pi&nn9rXzCN44^(X1UD6>2q zL`;Xl67>XghfF<%U;?30R9ec+pi&^l0s!ipU?d$I@y$>ioKst+Aedrgl=t@lnHyNB zo{5^JMVZ4F6wy) zjyVQhzdnmXX4q|wc7ruyv9Tf`C?pRcBh66K+?S$*^qOSY_=6x0dQQx0K$oc7P6jr; z_=P{Yk40UN#)6yybnDg+|377QvCzFP{Uw6v0aGu)kSmRlf%E5`#K~U?%T(W znn%w7l{IufY|7ecP}NZ6LADI*ojGd#Wu&sv%m^KSGVl)==^1<&V5(C|I3}$FyfiL* z{$QWv@lTLcKIw^$QB@sVIYauQ=M%d(gYS*SM;Kz19DFqL2eS6yO@CF&TF7a*XBRTC z8EA|=fu@2qr9*5lK4zH^*`p*LcC3@-5w{|Q)#f4^aK7@1fg5^xWHzS+0DTgN39U*- zh7)MFaA)bue!?P!!V{%(!n&10FTi2~A#A3zvvVK-VyxxIB$>}_e>|J3dgsA|OYa_~ z@4L2{%V6D(Tb1kP4i69i;?0SaDQ1zDmVZc>T0A-zX#C|8Y#xMQ5HMz+J2nvvy#XBto`zK*_lByO3aik263dVKv#0k!qv36+FbNoiTMbb zID+2&Mny&USrI!temJV2IoGc*rfFM)8L*Xa5RV+t_hgrKkO0Gl2GcR#f<5F>`dJY! zouoKSlaXwmi|icr!M1M|&sQI+FO0vo{5nTtmZ*@yo&_cpiWWsqx2}bH+NYh6gbSYE zdony@tUHdm5_?n8Ews16!titq3>Qo&UFrXXD15_PPGVdhJ80TgoRYiWFr7+|?i2Y! zyYVFC!(`|p>Cxh>JRiipdZAZB=}xxj)uUd|)&r=|DnW1y&f|K^xp=XGYedJ^Up-kg z=_;K^hY10I)WFyjyr59S+pPJ05-*qY&@t#@@gW1AkzN`n=UlMz3GW#-=CZfZ*+kU; ztXHP<8830{cN*$Y-V5Od@rgyPR*byWvRvQJ&Mubg%AjjznLn=4Os<$+1HogUo6vq07c_-+h(y4?_1az^y; zAr4Y`y&5bJ02N%^;%(~#O#e%4bUSjvI;_lGk`?qm{QluE(SU$n)+xOdSuvjM>FjLh z;8h2S2^PA<7>H4LZwLoR`_o0{@`+{j006%~OS82TrSeH8=ro>fA-5Viif0fv2Di&$ z1vId*xcBdf-98;d97umhI_q0qg0FnmFNEI$xJtyxxbr;hE>S01HexzK^s*=%*EOV;_nn_1AN?!tLZYAG!5e0dc4lc+4%BG5!lpnHr~JvW@#h~DB(AXqtY zi^1S=FNl10v?fwyNpJPdAM9$LCZcZ~`x%LBrTYb#SWH?Lgv!f06gn8>HV#b3k@ zB}F9~{;^G}637d0esp=EfTchV2{J{&2L8ka zMvGo&k6fb6p*}S-+H#y6t$%@FF_sb>Ky~&K|7K#@jOt0tiN*bdu<4Fso=7$M^jjf9 zTP-bL$F^_^)Wg2E^fz|lTE-Rmfd4GG!Q(soLUR{h~kFyqgWY)4M_%RLK7B& z=Dmx7(v;QT9P^&c61@)t2VRWR?#!qc=3rzC!vy z%<`}x`We=c2ponWlF(v)#jnb&x7`>K9bYlhV^tFp3q_o+dcJNH5HeRoGhc(_X(I|x zg3F;Ut3}sv$I-xVAHYc>PBeJtRn|A4)ImT*U9uP+2J-PeFN)MheSqaPRPT- zu=GI}o$V@jB^*`J`zuC_Cem4at~7`Kl_WPI)-KMYBh7DOebsosL(lTl5tka1$s+~H zm;<$A?Z5!C3ZlUyLu<&X3IwStgAEoggg|3S1}=f;VQXd&|Jve6RhG?x62*qNK1@5L zn}B|b-w(tj-{3?5X`V>VYLGbRL3?uTP$!hJL@S?*lx_u<{w%Ioa}1L>HER-uh1m<7 zGsjm{Ax*%nRd`(GSnHxPA#>2yoY{3iK|ukkf7{>+^sKibtD2H(zv1Bhxof?~Fj0S_ z*Cx*be$M>!wz}80&H;s!1*VzRpfxUJ5fU!Q4o^3b2i$h)+fK*B(%$dx*Mg??ElCHu zlU4IhXS|(aHca7Rt~bq?PG&-2ECH`{5$y!O!7E*ls%M*&wGS7!vcE|aHl4OZ%l1js zuJ^}buUgxbhBsDUW$mYaa2X>{|D~!y zLt&q~@fUZY=U2qzW!zU*V3j=e=G6VV5^e3g(c$XR9e`wXZG-g5haPIT=NXzKMgH^c z@Vw`$k1e0V)uFCHCh?}O#pvLAbYW|%dIXXh%DwxtdjyWjO3q%haf^-hKCQh4YEN_6 z3Uh0dmwdZuo^+sQP*(DX5#eR&LeWvaF!9vLQxnQyEu2MTYH%{soAj6AXN-(curO9a z14jx{^Ee5$-dEU62&MT*ylE(8q!7YQK+{TOWOvYCK1hrN(aJ zRHAOXhaWZyu5x?i0wxPeJK*vV6GH=*bvsj5CGAr?f8PR2r(d8KSce#&c5k-TzRWy(cn1Rl(MOm-==O@!qdhx1{EL2u%Gx zM`!Mg`{y>1!5X1pyRX?WygcUEE@Qty1}5~JW~}{k>w`@}_@)>G*QS7w2@le<^s|*_ zvMXkVS=>=oRM3u-q2)0kNh2u)C}hMPafC`3BpHcA&)Z#OQYF!yq`td?5kXKR5w`;g ziL|{>_cB9`L*UJJsPOHq9?lmx$V<4lF0_ZCyV)+bZcm984dtnPPwy_FMN}IaA8~^x z^(XIlT}M?@56cilCl(@dLMjje5CEDQDH0Ds`>O%u0;u^ZY=|5`i7aFbiwWuQ_4TEp zgoTB1Rey>-yx{Dp4AZc!UGXf&+{;~MaXUqo%r{K?!w-!PjWT|Id*o3 zr<+;BYSCQP77hzOI(8NI>54{VrZAgrft(O*T8Jqs>3fi54D`OP=7G}E(#zM5xb5gKSE!rJuWF={8_bgL+J%APSxbJCzNU8kcN;1ItA-<# zqm<4qM;`kKRN}`O}V6Fk`9J1jv;29Dwk_~vV!Zv>e!#00k(r)Q2 z{a=mhJ^TW|#mmhe=@BPJT&S97KzQhCG}b85+HaMm^gPX%2%CS)saz|&1%didT5EJ-uH5p$ce4X_F1csd zRo~mtFU9{^YSVXP*F@(^_lghJ8E^#4TZ=B?iMCxi|7(Ma=lQ7&mSx z01y2D#s>v*bTdx&p1TAtdyq1NOcg^GdT#L|CSyhUO9tti=cErV;k37WodU+)E$?Q= z?93Ly+Gm~StAumC8Ra+^zNHoarkR&mdVB7bx)uD|`+`!lYTva8cC9rZw$X6ZIbSya zr++6sohT-V%mPM};<4n+@5B(myx(pxPc1(}28v-m$T?^}N%`=k#cY=_E6RQ&j{TqE z%<|IVgcQL#_d90TISembCh4oSiBnwdYfIqkS+aBdUd*L-44HM%TV=}nd_|OSj-87$|1ny{viwYynfR5S z?Rmdwdw0+g?^ET8u)$rAc@fRjO6uQWY-^mr>%Ug@TE<;h<;#>WmP(j_=6fdMea;X!YZ z$bXobr}#bx6!N*pF7oQ_J2wxFQ7`U}s7=fkSI2+g6?}l|6Bd4&4jo5$wPD;c7S^cB zN>W3Tfir5u@1YB~x8Q562R(NhrECog(Ueo<$LFTWWZYhKt-Mcc2~)XFgmRfWTj8~! z>6C4Af`b%qqHjOmZByRai7}!ulvURGC*j~cl5?eIj16N|TK3k^v9_rH#^|w~tkc1S z&j*+0g^})_fFrx_-V3{Wp~zINx7sh$E%(|z^TY3p(HNbLGx>ms~YE ziY`VsQ3aIaojJDsACgU?g1I9zr)+j2<40%gJK3(aG3#aQ^ZrA*&%I@-ieSdu<{@g& zO;bn(fHWRsr>{!GG)c-7mIq?y`*oP`Db$(VN}~4KmvvWtvEGo#r|$7 zvt2~?hmBz?U%Y@y>*~lP8j1Xq6xo{T_jZf4Yq{K!hYUMxrP_>j z@#zLt0x@Xo{Id3lC2hki;st=>FAUU8rLFW+TpsNszM#Z-_()}1(iG+0cEGubZvmzR z(@@|xya`>vBrw7KmC@Q&R5UHma$HY5Td#9Wb3tf;NQVm_CKos59B75@+M44vzpS@1 zXu|bGplxg{h~9X*uGo4Y`ncek7&h7rOnmx>6v zne!@ZbeU>uhUi@Pua}lhcTth}1K!&E&@QED z5DF;lZ!~JM2EGVOaL_|25PC|v`GL)(Kw%6!Myn_S#H-ZLf~W(SpOU2av*YLvkzrtE z%Qn#f@*uOJ2{*!%cWewm3K?ZW$lRSyN}5EeN68_ue`si^=K^+uJ1{ZXvLb4Gh7}v5 zyHutBk=O`!c&Xd#!zToffqa7*yt8tMoU8cg0=D&BN9LVzsS)DR6W@{Pm+gIqHkLVV z;%s>d=hv-mMt~?Lo(`KDcytP@CVrw)9mImvqQ0EO>Q3Ar&m4-KXoQ9;0W2^o zTmP$Ndi0{(;Jw5BM~jFlzU{s5;s9vbvkMORfBXvzBJR@ zy^b$oj{OUpn0U)d+bl=xX=j5a=CtJ#ZWTs(6QLp5U@(6pViK^yArs`FCp!qLjqlC( z@n`{uwiaVOO@M2DJ8ve2onXI6y*)@%5~W8jk_AT3Z|APaMfO>a!{s+?H*_PcQP4 zStM#Y!*Iw&h&X?${L?D=caO=I#>=NmIWE#_l}`zj_-@iUW>@SZ4;xWUXMS^$DDlM^ z8=^gm`FcxNzuP>077S{q6fP2{<_*7}DHKyFxmrq|hyvN?NHc3w&Fz2s8T=ZPNM}4; zE$8#gesn^Ae#HR>#7*`prI)agqM?H|EV}!|UzJ*q|7KRx@e#zL0?E9X%EKZ%m;O|9 z|IdYllX^UgjsL!b2RA<4GWytVng=^t_g|WcVTSlMQQA0j{dT8GFk#Rj!!4VNnr%Hb zm;8CK4KXR4@TJKQmOPKpN$I>84rx*MpHk<^=O!XKRBZH)X7?xdyvD0R%$zWxE6IVM zk8dAlP!MzK$GN#6PY?r@FFnJggoksPW|SHmG1Uhdrw@*=_31QjiRQ4m8B5W|?iHcB zV1TP)!`gq2G~AO#suhyQAdr)e9Z0}x4-?ST4hLf1-qn@+w?*awWDpVn$zkbOb9u$_ zf7`JVhe_P&_cpj=lRe{tG8`Ub{-t0FfTIHN1RM|$U#DaI6p?Kbj2vOu3q~>#XaW&J zC{Doo%PYFZbm0Fy{WQ~$3+l+{P7UA(2c)RQHe)v(wUN6oztb8F>ss_l#JilEa3Izo z2OIthJNW^#uk>WJMwP>>4O)K zod35m=Gc?nTAw_X{svj^cXVvyb}#$+A=RrbKzX9bBj=o5IUlM(;()nQ>ACZVTi|(6 zczkZQaP(smBilCJ}X2N0;L{Ft> z#V>@Kzy3;lC)_Bh`nBQPaWz#{cq`m*nR|q;Q1yVo$zUx|89~*7P4d+yz9ioVh07!* z7eLe4|=<*oBq+uj<)6dof{fX|mfZHZ` zSSu0bJ#<}rosrw`Xtsn1d*NK?r2*q4;=bd4A`89F$ega}-NVxs1>#Kf2RH7xTR$eE zN6$avRxG!zwbt)O{PWnD#aw60W~6G`3u(Oa$kDBl9cw2k* zj$6R}qEdRD4;wVr8`JTLFQuhblJ)GeuiN8(mvro>si^>{bbq zFlP7ViNDahkCr|Dw=R(E?uIOhrC&p%M7xuJyx^4Q=kuIto&KWG?Ve9?EK4n`HFL0 zWt5FniX=UdV3!%Dw${ZK|y`J@d5+Lc-|qp z@T;P$?Pa!Tjj49G6!Ph_Bco_B$KXx~2?!{Ic6QN>VcL}Iun$1V8HsG`Gp5q-z~1ix z8DB_F&H&^~O*69u0mDy|-EiEbD3uXEMTV(d7@xbPo3Vz8dYeS+4@1X!UGn(B^rPUu zYo#9@)L`6s2!vfb@Y2@6X5t~JR94& zS_MT#|M3R#I1W+<4tG~pR+=VO!_Y!>_nn;cVLQ$lKK`*ROlHfphVoy^yvjWd4?}V( ztyfLtYwEwv6lFR;`FAoIcs4Xucug0Xy?>_Y*yq67IGeZP=ikT^WLD81ddej~B$?Va z)kEgv?hk){U8h|_N@~n9b8NUd=mqR(+iCyTi*II}a`wSlIqs-CfiBY@?OR^F(M8#K z?1G{=lNCk0>DK@F+t|vL?>umdk+RM3Pak4dfnb<^Xe<8_wC2C+I@gkzB1`a4CkLNB@-7+{fbc@d&DCubm|utKDx_@4K}_N zCcPg1O*BvRo?PMS?>}Lvu$+DKf4Cr*zOMf7j?}kvaW_20C|}vCdmwpidwZTgzhm#- zz+bjE&%BG~|9nKRfgrhIJa#_GudqO_n*_`Mc8AOnP%huBT_4s3q%J?>bGtcMsEcvzL~?D&o3_Lytt;6+k zQ{H){Qe*n0cL%2$mg?e5+xxIob#!$8^x};g-4x23sjpiHf8JEO{INHDuzlHM%PI5R zH!L~5A&f-qpAVZU>EFlK;Srj%4;6ZpWZl6n3jh6mM(VgWU(||bdM^r zAkl@DjV%_`SaK3lLztDK2v_w#?+kMUrB19)!w5@f_q?A$e9}NYd61zGIQ=s(P*8pX zdKxu={|MP4D`t&HqkYS-HZRHH{lgld#HwDH6H%% z0F&ozSIu0KM39W5>nTHCX$ndACjBA?%&SmtVULO%GYV7(8jTEDWLWuDG;yeJWdHe4cn@^^D=F3|AK^{Ut|m2~6J{gDT@~Mz zA8%hq-gMS!K2?-kbX;`wY(G+vh+F*I&g7?3SKE&xY;1k;jA#e2uYrO<=8q5RoF+B& zQ9`+D+1%x2k_U#%Qfxjr7CVRZ4ra%_S|O0%I`Sh6Qr!-pHfCvN4xt~Xzw#dS&^iCk z7EUq7ct{O}XX|iPi4L^gx~cr6hrGluF|MF*0P5k@Xem2_j6DD>I>o49USngU35b#@ zS+^@I_ck^)?XoL>^zoq4WM_IPms-IyZJinBbLLPeF1e*BHNxRjvkcibK=XI#rP6=? z4ot!tG>%>GgKylhS4o{suJ*YnV!Tgec-8a|DMk^qQq2SSj#j6&CB`gTZIV(g%Y4v!Sb!4M3uJ6e^o1EL10$cn@0ju8~+RZU#Zzj8txuiUBw zpM3f4T3}l?GU%26?Gj%Pht#Hr9(v9yshk~ADo$Bd|5{ZAeNx}j>X~KSb?X0>b~qU_ z$op6w`PeVDwr!}dGOZA4Jg!Ow`LGHKr6OqOU`x%5Avqh-B2w$VL#~ z+Yohi2UNEoT-vtZHZ5Yjf;{1u@}zb@DxZZic2?;}(MK;jUMLd{?)uKbbi8!fHo<{5 z+*maqbmk)DxkHf^Pj^#bV`Ys=OWXZgvfn}WbngDB$Vfqcex+KA-LfGXuJZB-%a*T~ zty!}pDk@4yRCEU{nFEibcA7QA4ga5Y)-o9xy^^e`2j53W?`FRd7Zcmb%^1@y%eTYM z89%C~u73WTu61v1S3m2l(|*^l>m+_RAx>)*DR(vIt$%A30!C^Wu7%UK;qt-n&ksaj z|5}Pq%u4UUc24o-SKqv?YpSBrQc-d~s8cR*KFIX028z>Jr#Cca6>=pEVxsC=nt(nQ z84Be)N!_|ypPs^%$-88WCb>{kzx>?%=HiGRfL|?;mTlj^KMYKbSadWomqE7Vb94x5 z(i1xd`(YEX9hRBh5qLj;{lu?VG$n?LNizS))=$)kMM+|)!*QO9zHCzS%A)skwKVWdhU6GaaL)?msJen7dW2dz-~s+-Tl&>jLgmKS~mcf3#%Pa0wXf zqZ#hu>xUlCu5bP)XM&o$8}!%M$KUTJTI=fvV>Cfsd0#?iry9CH>I^d7m&_jayc0^? zRW3{m-zMEKnO}Bo?)HMa)s2?k48nc)7Lvp?YJ22rlJq>TMH)0AE41AQU~~ugd0vTf zu)PA%QE!CC7ATqlvY-{23eaL|nN@k*7mI&oyf|{cxM+0tGt1E0M%OTQbmO z0{9BCw6yfQb}g1T!(Eqi&U##X2a{E{LL!hTc7l%V*e|T(XY`Pd96xyyzoeCuLKH@T zC_rLJOh!+h$d*1p5>DuJkKAUqoLOX61e*<+MXP>S_58qletjDPR9L=#+c%J&p6;(N zCoZl51WBL%w%Vi*NUA1MXK2dI=kaT^&u+A&#+BceWK9msPEib|b~zo zV+vro!;O%}I_u9+K^MbV5x#m2d9=Vh|9Dl%4aVOOzrW!fOO>7ZMEuW?f;luMMny?U ziDb?4RP=DN{33vTI^#(uXQ6)}4U?97|1OHgD(DFrn$%=C0rH8lQX63BFMDmW(g3Hh zyjQb>sL-l zEU*5l02-?&8+;uy8)K&fmOsZeMS27EA^koxAKJ{g@R4c|HM^TM9Ufb}4hh zBjPX~f9vL++fw5dMFq-!3pb2E#VJGY@0_9@gp*+)TtTQKns|K96VO8*P|tta%2G9a zO=G7(aq*o01tX26EU$rfX^laTYu2p!V?Ikj7y`i|-S}^JS|EQ~7*pVz@}G(M@16;@ z=KUj9Ggk37eRr(6lRpv8|K01pZc~d=!EK{qfDh>(w*pyB^E+lnvXWTCKIgwwZ4}cB z6Y|)}qH#e;GY#cV;bJ=VC=r2u3WBWL1zFWlHqlTY4ky$3e^nYCv&KG3^xY>hOdy8+ z@or;F{tRGWm`KdzRKM^+Q(HR{GQdBgI_ejI4WRmT`@^N22jctlZF+D7V0kWHMi9M; z2is)VGX{m6@7vBNS8XOjJHze2To9wPY;_g`_5Chcj3M8^o&v^p!?9yYfLBR?rY3Nc z0z0?*X9C736z}i1pEi36jnk3c|8p&l0f#_hv2Oo+JZZuj1HAX2*O+yVK)=H|u4&RW z{{?L%rQM(4z#oBv9QgkwN~qgW?L`4b#dS4_wK%|VPOU4>lnpFjmf z(NKDc=jnWaF9C6Ao(k1K?%zDXNEli;vJ=eQ`8L40bZtK7+rJh9zXnC`fkJh-}>NJ&ngKCP2<;51(>XjZ8G z-p&@!f*2^iOL0rzSPhCP)Y)6}Pe|0;r~J|zT{B8~QkBKONo%ah@Go@a zmLdlW#vNY9Sm_vi)NP{!W!ZeHkn%;DWqiKbY(3KT zsIcw~w)yj0;A;ajD|jM&LI1bA8nrNawPdv4Gq~`aaj9r};Zk|`$F3f0z94-oj*7Fe z`I$81k#}}DKBf~;@frBu8V`xLiVyq`m#LCciwjd3o2@a8gOm^upd?zaTsyl@|0roh zjaN5gT{ZbirJ-1|;~>bLh&>q&q3|IKW}&2IBvGB+x+Ss(bK?LPl)!)~42iH#^(Q!d zMWS>d)5>1Fe5noL=^B7F8u@zjFScPxuxyo30E07%FBbje;sTIi$pk&s52?3|uK`Nl zw>(CLk9qQCLT*6rQ}_|A#vCr9TK`fKb>1wqW0T&oJhlNy}MDjCtzs2ptpTp(6Yjp#fJ=>LV0yli=nSxjcM(w zB`~r{fJ@RIV)92Y3rM~Snz}xB7Kn@Y_QRp!9aeqt*|4d{*o2n7U3X(Pn~-GtV){3q zGLp)w_prVzS#u-hUd$K&;|CJ&*`8Dpcj$Y#wvFC4OWY%F=^zjndS}0Ek z^1%7H2K#$a?{mlucRcEESVt)vhi=xs}cR@Ve%oD4hz1{+-<9T~6^ zXzU&A!Cc%pG`@Wz!Mr3*{x`VVC>U=n6A);+l+T%%-|Khild(#o!E=G^`$Ng9KC8_? zN~;bo)xyfvoIZs{4>1AohUIG$kh2@jawVfNsliT4te{Wd(T3LF@5{GzgU=qV_SV|I zbE=Lz?V3Jy8C$|G9Kv-z+lNDXvm|S*g&(vAc%2%s%-z~5BBXg@Q=C3~sg_qsL1O5= zdxE!WwdAxPeY|sb)%KoL;f$8fZ0E?jlCxa4_Cfl?t+A$;*`ymBJ2rgXEnE@uSDs-h zwX;T&1yVpvb5oe^wnOe%UhU67o8Jf4xtCd5?HNm7Hy^U1VfeqpC)w(A$-=64(3wQQ z4uU+ji(Bc{fUw*r&S2PNhaqtczOY{ZV%w^%ru@~Tqi>vEIXl0LHpmoj+M9k66a~yc zB+-RUOn8ut-)l0w=h^nw!((ykeB6S;rCHAJvv$duB@QvHJM}2^K3nXjvfE$pmyPU= z;k54^RycyolpRb6ecZF_Q`@#jPGzUHfTPtLfMPfvNx^Gkf3Z}~PJy{p-wxT@UDpVu z%?EZK+O>CqunGwa3)=<7xo-%we0cI(WL>FLQjXU2|g+d=`(tug<&7oQfG zAnG3+SegF~)RnG+;SKG2>hlxonN_+q7*B3hSLz?S%d@B$~WR)4U;g1Fi zW{byHpS#`jF)qZa=aQ?Ch=?B_p1&|7t+w4_AEAfYK0eII_mz4@WgM#&6)`L(eUxE_ zTW7xmb^>0#$0{T)Bm1xNXuwSI$;sNa7Vlrm?)l0}JI!j)W$lNw2o>cuh1)wm%6!m$ zE_<{(OD``kZ(#VEB>9&urBNkym%g*^%GO9_Fpda0c_l_^r+gkilVeXQ7iYyvEwN-} zd!EMLWlAM))TKUW>u&h+?&js~Y$daIg~aq`e~b%0dhbonu5cN9wfL&&yMya_ghRt0 zR|$C;Mw?vWj1XV=5Xf~(JWL2AFOCN9sn6f0!>yG5%1vn5 zGR@_e!VOLwnKv9|X>|7#&G22r06sKRwO`#kl@V&+;+Bye_bpd=ZmHJW2OCQ*vscS; zwBIWWkmqLXHRQDB#nbJVVV6J9&rxmS>Rt{S6|np@pGF@h?sL1P$RJ?0*1S5_TlB6~ z+Z|tK8CH()yV;vAIu3+g<(iCFm;mtwPW5k~)3k;>XjfV$#GtUEIho???*H%<#);o&`_T1E z_eLZ|WKd76sqfCIE8UdwCZj z;DlOXtiTtH9*^y42<^^JlzaiqKSG^6br?~F&I=(5ouB^pc4f_1q3N7A_`Ijh7Mzi!A?YE zEHpu-3`J1{h89tyK%@^NGKdIB2ZaHIp}cF8m~(PY-s{V`uJ8Nz`6E|oGxI#peeZki zwbx#|#pplFTqs}wpM$q}v+v<7Ad#>im;J#pJbq^ZThJe;%OqmF;QqI-9+~8+?!NqA z%FX`#Y)E1U=F3RZKLiDF=*_hMr8a6eg26r(Qr6zru%qZ?MuTEX0n5$Z9fK<3Tl3j4 z#$k0mH&Ittw}79Qhu{2vlwo)c`g7)ktKGt}_DvwX2%BJIbY)#xVRs6Dsx?RTKUmfY zvWCiNe=hva(LqlR((Mq2*7!)@MQeE_rBvbM-K>v4n;i|C5F2PC1puSbxC7|)X~Q7S zGFXe{&RzBRhp&IHjlVx)e-p3#Q?~afF0=SuTYY|hxO@6=IEl`5;?To{JAMD!^kj?w zmCGIbLb5R7UjCVNy)o}O^Z$j%gEr{9-+5}tM*ojw<{#O=g~gS>QJ2MPar?V`*f)7! z6_$d`{nvE=ujF#?&T1Wg=MElsy5HZZ*)xs+G<=u72u%EmtD&wt0xwQv_-fLIe?!_7 z@^k-a?P6u_?wFv@RUci;b%=tElg4fQAV5>a3~l#cXr0OYZpo4f&DXz*MgEGG zBbxf>ynj`6`~kQAN?S6aUAhr>Cnp|)i$8wzuU`1iG&KHhV|1EICXW8gFV8;|;4ES= z5e^J~1H$hWEVjU+A>O4IhvO67{r{w$3Azzx*Wwl4_+aX{pB$O|oX6ra5)fWd=cXib zH=;L6WQL+;MnUk7Sa{OiAK&KUe;=u9Z{9WW=K0}6z|5P+jp&4c3jh~sf;F`F--}#b zKiLlA7w7G96rq<_A8rU!kjTZDjDW*HuX_T*< zwEF(!uYb}F9M8*`^t7ZzyOXV3O{2Nn9|cxR{_|!Td*%fVKj<0kh>ty&*z5M^i^Mr; z({yAw$exRj|Jy%Zt%Aw_rZr?3Et_41{;Qd!FbK^|R1%xZL2dh|a6(+V`(1 zArU|CKct0!{BVMEd;ish&MEpFW^8TCc;U-MF$!?);?=8MGz?f_=z9vki+a9L3chQo z)-V}~1SyK|LbpvK@j(D24`9-E*l3@45N|wF$=CVWtu^o_;@^HO%f)zbstC8&W>8Lg z1Np4lS!uD~>&x~l(P$dsR`ea}&%lRQU@DaCBLBt7*0+!4%+MeniV2pmU29D%R;+|~ zb>nFC`B0SR;D@V6IUE&wO-;in;-i_a4R8K(dBAMaF?hhc^gvnk8Vo8w?ynt%lO(Ej zcY{QZwwL}M@BY3yCkIgsY=;Y2IjV4|F#?v~NC4!(fVFsxvO3?|a4ig=*#kZ1iJ(gy z>Uim>3i08wOQ|m!$IT{U&7_UJ>MbPj*Z)4MsiVm!3X#if$c}estPnmZGzQfh}G??Mh0roZBgxuckhY&@=-@G#A+q9P7@iosqts<6u6ZY!5>~jh1lt zs&q#)lDgXj^k2jiT*)3AQR|t)aPbX11 zmMCjUzis)=uV0fE95~Nx-@como>X8%h3JrIn&A$IXb0R95?XkasJHA#G`OPWcMr3? z@1h-?Y}B+h4`08H`Gc(wUs9PLb{p{sBdNIqS1^A)8tMqM)VyH_QI1?8`D6k;$KZ2T zVQOLkI)RIdi#I)ybBo#c>QMKYhi}?jl)vbKJ9#cC#$l^yjJ6yz0HwRQL%A45?pD%P zV;{xG;r^x8=BhH}R#hm|6Cnr9g(>}FfY=i3iA0<$lG^H7=7JR?D z7+IR#nX$qF{PzLV4d8)&*2NKqR?e_q!1cjkq>+*J=(Lody3hei4FSexNPYHk9sF=& zYrQ(3HNdi~6Q5s*QuPdP%`IB}p%S8ho_q0aqTQM`N3e<_ z9I;KrhzpBzLC)yY&2$RFcp=Ql*%8hojLKC-o9#44ta1|DX$d*imkiFU|~7{Xsq!5mIzND z=>K@k7z}E+f5v7tX-_;tuMlC5Pu~~IR!E3#PsyH8ZV4w7Jn(6wZClt1UNuo;B6&MI zI}CF@ppuvCUZTDMtyv=9ODY2xV@8v&c_Y2Wd~h_a1L*UwgMqYyqGB~#$nXeglI21u znhX>M1?9HCoH0fdv?!Q8vJM1MzyHWP8|%B94Gj2lV{ar?4pdw(7ywtYjd+u-rH{|` z=J;BM)#Uixp=f({_VTsZQHIj`XA-^ny)JC=)jV;xra|OtbNO)Bwa1G;JaU-xK!0XV zyZJp)6PoRdom`-50`a)`K)p@tH+dy$jh{6)HAz=Eg+`1E!QGNF$5}_*d553RX2aos zBmAA}zOIuDu>qbX`fic3@*Uv-0&yLDGeXqZ8bWC=;USHorVGgOue4r^{&*rb`n>I% zQ`iu5T5+qjwe|6?{9%6TO1R=s77qWE?|**cx@;tnoz+*j0%9V9>5R6H)cll=-IGq> zT>ghWg(MO@VU*za>?t&>GXT+H7{|$%D+``~xAR;3e^M+Tj<1acEe+onBUrmCgg+7E zbn$t88H7R=yf!+YMjL;pWMLZDDaF{l{$Z40X=--21_Vv5KjlW^yEzP#9kV>)!aWSDohn3e8NbfkL24FN7~2)L zzI1$#&)YjvK{_Q-hu@tZ?3*v~qOm1b=KMy+@W4X5Qg;c)^m>ycYCAFOmtis#xPmM} z^K5oPx6|RaU-AZT^gvD84aBJ!K|&E&)UQsiPaM4xS|>;i?B}kNUY__$ueg16f7P}S z1@^0HEG2q zyNvX7$T@s8y|=&Q+x9{KBydd4y}8plOAl7)`dNeX50*tAu?`%vv)jAZTRYI3d+U}F za_%aerK!k9r*eAOW5F(+4z_U=FP;+=C5E%)q z9ASYyfjQ83vwp^m_(4>FUnO;NI%+^wSiiu?Q8&RRPnDXe54%pMrxrF8oencG2cm!p zaUyg(?GV3cw=R#_m*bGN`@zSf-Cp^Xb{wml7|vKHscnb&RTL}?2!{%%P@pR zBf|UD$rsb+9(ph|V|o+jTU4PgKu;127MK@Z3;GDOYRuJ`a1waBT|cz zIq^rNt(c|9 z3de9`ntpPz9q;&BJ7@o#4nU}CU>)$}^ciIkPl8q(N?(#%ih&*p7$brK#UpW0JarGv zHdeL{48C|BGoe!pn&C1Txvw-b84YBYrWC04wTnBkltQDTQZcwj9|1Y^ZqLa9*u(gZ zLWb%KGDd{6spHh*lsC?A-blCT3`lqO9ozA5WQ{QbRF3qw4o|p|8w1~Z%TE4z=lPB6 z&8%1#sS}RwcJ=sZ{4fVC(wauit$Y_89mHLIOI3Sc203FhRpw>DtSsVPCnC;Q-`t9Y~;sW?5~ zj{8!L-5k;S^`!ozoYG?w-rR$3ZvZZ<0sLU$xFoDxm4Il-^{T3>$-$EkOCQc8m=(eB zdMx7=S{sP}0%+lQQ_9G_b*l{iVP=XtI{D9QWt8`wxzGf7-`W2Y7y4H#+yYl zfnWAmB@E^`3?ZavBP+;8$QZ<%3(8w>>!ezkzDByp3K7CM>eVv0hrNl-7~S%ck=1xk zvjiu&7B2wMGX-n6q-QW2SNG7z<)uj}U^Fg)c3Tz4tY&&T|KX=v2di8?O?bg6^wJZ>q#VD?03K*K-C8z|-0 zty={H1qExps?F`yncZmrcmF{D<6Ue>cDdpM%;-SSFWaNE14KhDQI5bBgl78j@F)># zM^kf{qE+IVGiO@+IZMoACVlwvB9M6n#a*y0qi)$vAru5j@QIYi$fM@=r;3@nQkJf3 zEC=mDbW$FKl#kVRgOiAYpD#Y#MMS9Yw%yzh*1Ejo95@Y3(yjsso}eZNP=iHz))9TY z?RD81*b*YRs&w4oSd$bMIVB~s4_P{{txGeUYHvcTY=OHiFt?8|XL1xy&qs_Ni*xf-4QJ?#+#+5D5Py;MbVqoM4&(A!Xoc+ngiUJH z;zs4PW>Iwk4+yM(Ii*S$3^kbaZkT|ch^I*W^A%-#!w&{h0xzRw_XT@AfLVb!BEl~x z!epo1ETA8AdIXm4XBh{6&!v6|mP?)T<+q{P5r7@0NbD-1$BiQhO(26vQLIJ;@6AY% zQYuH+*6oCq5=MWg;HU-I*^aSF39gVv2tOPdrT6(7;2Q;JWOxrCU^fDhC({Jx33h&+gBJapp-5P`e^1~Q3=zb_m8>$ST}{8;8JIgr+@4CVfCso>%rIY*Z* z&v8&k`s-EnU0fyv9hnIK0!(@yMC0@$AJK_sy;3~uGCDI-5aAX7@ku6bupoBBj6oPU zXG1-$@$A#k{)BehrYGmI9_4iMiu%%kI0m7J;L)CknnRFeuB__+&UFxLQBYSh|5{N= zKUe&cZy&_DvQn=%p{>-Ok@0-QU*ApBsQ8L@ke=H+{Iw94`W+Z8t|q{sS*cGZTY}yZ zVsefUAi?MOqMsP=#TCR~83j)W_TN)k609JI;@*kg5K=}GXoQ` zSkyJ1K!pHxgW5|wWRRTF7R^?1QhO#h_?-nlkaS+6Cg)=`BuxGSZ3(({+^)SR+!YNM z+`o?kL@voJFooU$+5Ak!D6B`A%*P|CH@hUA?ts{+fhqzYH}R~jmIZi@isgu|KNnA@ z@hS>_88u*eF)B$BGx&{C}FvKUh-#v4Eq!KbDbmY9< zun(f+P$2#wM8GHgDv8b}Q+r9G8$a9do!P~DDg-wZAZu=wN zBgA(~`G*H^0sz>7HlM!+uyQ^V1Q{z?QM2l#);Uewv?>f2s>EWE2T0xD+f>K{@cU9D zvb}^eN#d|Uj^x)8(bY65ozgvrXSc3VTTsJsDbuW98{mA!bxg_92RpoN*=)?$NM4DJ zZ83Vh69*oqVo_TK6Y#F|Bm5X1txsjy(dIwUZ2fuXE{lcx%jotL0d=cm#ZuE&8g%JO;8z`&VfF-SoO zJvQWzcDbZO^xzg%4})Z81?T|cspW`88y_20IrM5hvjW>AhI4T#)BH7bF4apjgfSH2 z@9#1~ycJ+ddq0?ts&^goOsZzRAKp8p~ScQ#o^TtqvFf-Y60+q`aJ>OQI8j-H{Y4C7O~j#J<_r_(W2p*C4m4Ktu$k)peEU*a z(jLiZdM5R1fQ>kckaw4o0CAx4O5~&c-F2GJm#C_msR~_>L6p{_;9}3_=d#Yz|##D@z`T;RU~J1fQg+;43$BzJjY_lzEou1yNeXnv-p-(t z1`uZ(uw7zqKDJam&Q1yoA5WK_(5%t31~MlkS?5{ngp5(Ubu?>qpf(+>Py`Y}I^V5* znr9kZTDFFM8FO-^b0ggifjKK7RpW!atOFTKln9-$*hX6j061qghaHm*V&tN~gp!x0 zK`{%Df(8f;1181hk2EV;WV&7>*nwLR4~A+k9w>Bb#*`!TULO54Cgc3otMf)b`Wa&w zRot4Mv_9Mggcd8n$r(X~SGmAc?k&+7e02| z;1YiX3Y6>Ru^Sf8{>%Xzmy&ntbpj2xK12k7>IlY>h&0sJLs8WL(cXqz&j(cpZnxJh z^&z)yHbEea(Q!oPF>@dbpV-8DmgercXy-dbJC~1fWmc~DKhk)0Vu1+rsKCs>s89-g z`>70S!jU3jJs3!SwwDW~p}h7)?p>6Nh|ysDV0XSk1p{7o?_FHOG!R~3Pv0FT>iQlTGtUdt#I*M(Kbg-XY!HWYhm73 zg+4UjjlubeRj=O(Z|yz?2df0Y)(BvuxyWIremcRsBZ#moF`DM9Ph5-8_c+}~MXP>} zPGHWyUoTyw9LYtd9K54~OE%BFEp5DdAnO5UtwqzO#kZ@EOIgQbPqv;_eNlF4x$Rv{ zF{eW#B9g%< zY$2CHS|XH61$ortuv;Z9AyJYQ9xiQG7knJ&m?qOO#1AX0*lN|Dho68G#z2sAC#+OO zRaF7vL|MRaTU>L>_zSdtDBb+ts2ka(fVIdACoR1TIyF#wX@xE6wkeBn~- zoJ?UqBP%B-$E_Cj<86#A1ifr1^VVk|X{%9j7Cxibg|$HI05Vg37yI!p1g8|F=>&lg zhGkrrl&Gr$Ims6qL}_dBoUjGyw4}_&8D}m&j?ldn3B%2+&ZnHk*nc3TvBIZju%pFZ zC0RCL!4(%Se3T2n+2(tx=68OfH^d7kSCpQ{`>V+pf}kz92+l0~AONE?l5P<8$WyHF zRmAnFgFaBYYBIYMxhWdgmz!pk@~y%+9J7XJY}7Eq8G_`Usu@_~ZXD4184%MsxQKW8 zeeVWyXGO13#EoF^->@Lc>H;8Cl$Vby7~9^0)eJ@*D9xrJEiDWM+SATr1hANCgJuKX zG%}~iDYetlcp#Tx=}hOi#Kz23U2>S}@*7V-)0vIWKl2`rbH-J0)F$46xALEd_iXoc z-uWdzLP;=?GlCeL;5rX#D>`-Q2B4pplbw{-;;1sm%&wF>ppyzlFnh6oNsQjdrj5K!anl^ixuG90o#Qe>i9u!-<;QR^Vq|)KeCKQNIEI4;!m9YNA z=L@J$mVU&cWVDU)Ajf1jLV;|E2 z4D{HWAf4^c#yI&SdLbf=Y5?1!%&Wr*3jhYz$rpR`mA1BoM98F$rIREanx*pJ=^c04 zAj1k}9KgaZcY=c|hmmZ4=VryAENPIy4~>cI$J;}<87B0OA-=}pV5CEa+vavep&y)gvS3ho?}-B2TNd~|9iNF=M{#i&i*MQ1tG z*f)eL!h_sw$kgeElWD58%%}^icz+56K)|jQbL_*7cPIS1gP61JLtk97>tUwtFaHLg zPan^w@8B894pf)61Ls*=zgQD6c7FhLUG~UWFFW6)=B@WF=)gc33$gBWC zl8iD_dq)1K)A43C8{f8tkbs%MGb;g=F6-_9bHG{GC$^_dY6sT+_*ppx&Ur35#u!6z zuSBC`3DCEU>(Cw&OzVA9>NWj!jz5+w>5S+UPe$`9N~q1+^0F;I-8NkP_Msd5nfX4{ zW}(=w+O|c@q^$+y{Q5!2DLTNVOH_Sd<9DGe_2Amw<0p^d@Mcy_vN4eo?_F*RU2T|> zO$y15slfTVG)jr-fZARl;3;*F#`E9V@;%tJ{z1Z-`p&aU)lF*Se!Y0xK>si?<6ZqY zcV_q;z15j#%^qcuAfNxjj0FVGU}7z*zYGWqa7y%Tw(1m=ahJ;`9XXmS4rS)cXS zjGkOr-j#Z<%iY~Q9W`45HAK>4*)L=gtwg5-<+G8&pCj#1T-fU$cdun1PLpn1%%R9nhXf_VMtCoUhGjkFLKtzqJZeuAP< zgC&Uh+cN`e9$IvEZ6ZG8Rqv_HqV5jRZ2|+;I*+o9O5}3P3SxO1#UqH%3c0HX99#Lb zXP6RrN_Eq^#4O--n(rjQN!$lctpwDlK{fb-(c<6OB!%+(0^eMOpE~4xBm|&=9x{g> zeqLT2?oPMc(St21-Vtvg2EA^LNrI5)R%6Ct3=!%OQ&fVPI)pg=4Cvl}O8SD8 zx2@LwPL_L1I{*rw*iu~4#q3T1nczIuIs^WIW!h#F?o(t^8<8brWN`vtO+w<9t1)Q8CW_4 z{B7aWqHjx!!fJ&!PWje$J%eU^Zc$>kkh=kZZ~vAfnhhqcdPpah|Do@o&Yw zB)Ax}+A1DZV&&n56~3BEd4Od95Nr7uV)3y+lLo}Y?GVCayi_ZU+^a#8_hVi2gsgi9 zYhtikBOroq{#J5f8jL#JNF|_5n81?2d&~v zGt1BGtOveN0%Wv6fsq%0rj(0{*&0ZhDD7gudmtym<(g*tgJvop9RF!R%NS)Ts-P~G zaRKWV+jyD}hdNZ|Heu9NIL4YCpUToujOeY#3nw;BonW{NM9jzYInK z(h_vk$3mnKP5L4s^)*ZgnK@RT=AwYLIddED^8kkyG9lSHtH|Ac6Vrc+%+`h_IF%kN z2l7U=MoWxd`j`;cY6;yqwY@;gvoNaEZ1>SOIKqrjgQG3ng<%FfFqd7!z`Hve#neke z0v%xRbfKUZ*Ij|qv{}P&y3;t0>+QT87b|u!p3Vsl;g!MFFLzZ92$vx34pCSw*a^~b z3>2-IuNYdy8)18 z1KD|lkEKdr0+2Dz!lKer0Z}fv0+~0{Ue^2f8Ps7AQhQ}wFk}}=_;wr6QaQbzNF-`q zZOvgO}spQ=mGwELgz%# z2%8S~-V1$8mofU$GWKK~)g*E3gC@K~Dw_xxMnZ};j08!937M@}xn`u?7!<2uk|MR# zV9r1_eQKl##Pt#d0_*_8g(kO*F2q3^4M66!2jJ-o|BDNXId9fdbQ?wto$&0qSL<9! zY({g7;9kppwXVCBBK)WWnyqRgY)OX&SP4sp`bj#3qKPlKi*tWyH1Kzxw>hN|=`OV- zT?>+}Aa(&<_16sAA1qY`Q$CZXS?s+S5Xtpw*<4}mHEix6h0@kKvy`IZV z*Q{5^MXW?cmoiCOYls4|EpC$BRW18~A;|So*8j~K5+P|o#FviL4V=&xQcvJ;+tx5Z z^{l6nT06mO9|34)kj5dWucUH{e7I3Zi;1Kg>K~A=3}5KZ9kiA~ubD#$0mceyHU+RX@-cxVw$gr^hR1et-wxaMX@9ry(DTjb}1|~i3M*;WoSsBf0I+s&0hDmYuXFOCqGeLRsl=4T? zgsjKGay=6=CQhwlA<)sq+EoaC@`cn4IJ5gsV(pZm2hLavDcE@Q*C=%Ha&lIyLZbTp z<2>L%FAVMD0bcX4I0eYxGf+zYBe}~hXn`L5xfSYabTL>QS)emAA%n=Ohn%1r!FY*R z9q5%zlwPPJrb+SWSMn!4XA)9eSoq!G5O$|K)zRy)%zB8w2bn~doDDLxjtUcP+9qg^ zd}45U#UobF3oT#G$FhD&U?ak7!S-c!5CrxFALEXP=7octJ_y|ts)AM2raYa^ZTE~W zMtn(JJzxW2qAK(<91I6Q4--n0tOfdKT139Y~G7%o|G}7i! z1-U2_8V08OkAohL53?dDZWc#WUUr?y8{Lg&y% z6FG5|9RIbyy!7;JI`8y$w^(aDB?!T}S^1Q*lr( literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/kmeans.png b/src/comparative_analysis/visualization/kmeans.png new file mode 100644 index 0000000000000000000000000000000000000000..8efc493c57cd8169c7f381e0105eb357b42bb132 GIT binary patch literal 88945 zcmeFahhLP}+BHmKl&Db?Ys7+45Cws#ph&gLNben@hzLp%7!VM~PK*T^L_`HtdRL@Z zV?#hiZ~&zZ2nY;KX(J3X^R11^^PKnly@%lsc=?%gP-f=7@4ffc)>_xaMP2QEb7qOm z5)u-cLs8$YFC;X*K}cxYsvl?IU$$l5RVM%EvB%WIz~!)q*8w*>A*}-*uE$(FjyW7$ z&71A5nPIOq$3NZa|8kPao{l@3_+p8bEB^cask7fL===9ChlKv$ z_hc>p-#UCd5&v%;{&OAF%`=V!DOUt{c-O3-Q+0R8**5Qpz9Nou_w`*>)h0I56@wnb z)g~5khK^;|*AFP`ge!Ta4m&Lyd#_6)FY}Iw+i`YAOyQL`;Y#I$%35KY#BHro%b&G6 zcIo=)#P=0G$}6{|UHwi-;r;oPX+lCTqj#^qXZGlDS3ixP-{jA6a%w6tn?8NIV^cwH z9<@96osOE7?TgELY1W0w21%JGN8JjCsx-(?or^{fcQ0owh_JuwCR;c}zaeXriVxxB zeSR`K#r@iMmljJ`-QRPGk?Y>E>)@spVcE7Nb5+JVqv+AMU5d%`~c4the^(@t&h7VTW-;>u7;XC()+|GQ@UJvqat9;MD&n+!0FMs#2WMz`= z)om{npU+hC?0KugZiw>j%iV|X;|Kop&Oet)r5$0!>;3iopkmL1r$eIrFQR#0KVGWN zJZeJWjGW{*pPeUnv}OahONUl9TejftnKR$p+1oD*&2Q<7i_Fp%a=kXnrt!VFoML`H zb%w}IPG7zbyU{C>x_8yytIHFD*6cI47ZN)4lkJlgLd^wuJcpk54{?;`5?ybwz*tTt(&zI** zq%^bo)9lJ`_+VA8hlZL&_13nv9THaTVkz|(L~XQv(HS3gRbN~Cs>oL7WbJT8hvvtp z^Vm(kna+)Q45~`SJNa76H5BuFPbbIxQd&rOjz{?o>Ab-=O4KJaCDzHx>fkzx*l_s+ zPk!(l|576F$RjIp_|>l~jz9b5uidNLUsyC!49X)i9^~Yh&Qtw*_o^E2guHWuskgVc z$fiSoetH#V&~7V1@n!c_TX{9ctW@z?w{@#YibZzKwvIbdqk|nLIe~Sij}B`&UOrlr zTv?ZSl-fwG?RvQ;&=9wMb=#+38@)Ti>+-!^SX)H>hJs#PU6FKkg_5L%#6E0ubsCL( z^m*%-X-&1Sw=$Fa{rY_!tD-N8$U8>&HRgB6-gd64wV_$HjCCnjP%6~;1vBP|MBk9M zNYsnkJH}%drVyMo*>pp5 z^F%ye_lspNhQu zC3`j5+_<$jHkjRiXj_tK5T{*MTB>Jl9igo{dZ>}c=Pt6I_T_{nteD>6?StJyrt^cQio7f5I`V77@(g}zBRwB%}W+TkA07nyYSW;0V=Z?{zp!bI0le7M84Qp$05 z%=)8lRSb`&@)6P6@zFsl`~>Us(|IO18RTljl=tk}gJnG3*3r>@|B}r9!lv7}x2Ql> z^QQsxYIn_3iSDh>4$b$s(pIoC&a)lG>Gh~KGKuj|wa7Sf&p=1TC{T4Q{@_E?nC#ML z{k!QIzHDc1pI5N~pU16Ex6{}YrAO^~uNSp1u*Slr(5PkX?2I{8diz#{jPduapc>{z z-aDkDTfFN#Azf)vA)x@Lx{T6_va$j3(FJQY)qRy_FOeA%9}V%7YogX#6^YSceh!WP z@cKm^-U;PVmGR7EvqubmXq!%i@-`}W3zk!cyuUuf!Jv%rSwT_Wm? z#pZumw$=I082`hE4?ISKL6Va{Z?uD}F7{Dl0FV8tqpj`wvi`@Xr}4I#mvgkT^>NW6x8xk?b+|U~*~JA?emzCp5sP9t?DnzX)-TEx{51Yp8pH3p-yO$; z!>sCr-Z!`8r7{~2zrHnkPj?;l16*C-k|j$xh!9Nf-YX)b^znj%0=J5KyHG3RcJBCa z8f`eL@%vc8yn5@5x|}4m@7(kW7Z<(V({s#*&Mfrx;VDg?+wpk^Xr$y1Kf(POyez4tx&Yd__cF zvbHMOY%^_ipnZ{ZF`{Ado=b}py3gWiDx!i zIOoPZX|J{Rb&64oggMEWr9X3d7kec#IJi|~z}?MFvS14=iJs?g#iTiI8d>I2@bHPd z*@%75d)vU_+GI0>KF`wHF1UBY-VxzBB5ip3qA`{mQ>REqY_!Goy~~I67}2=_<=o|} z{PDpM=SO)J$*iXGqi&owJ3Crx8BfzEqC*XSr`>sQxYmY)N2mD7>{%T&tD@`j(#?{W z3lk$NJ(%TXSG!LOul%f1q0v~>bJX^8^WXjy3MC{^$B0B(H#G^e0&Mqnr8YUP2XgB* zBb0N?*l$=e<_jwM4C~F*T3>R_5sQzZNBw7I&xS zzu~t9>*({37kc)Z^Gnot#~q)1Dr7e$rRP$D*YXfaT4`flaS7$ch}n!<`7l?P%KPV; z_jU>M;co^mUApAQWOFN2Ij{O_(`;C(o-pZ_5&LlJ4cXF)*RO|h)H;_eS~OZz>_Y#P zUM@5E=+PsC1u;~74zeUQk4{~FYoOW)K4kW+S>q+5G-Y``_l|I{F+@2Y4*!i?%Jqf5 z*)&9i=&X%+&n)&vuRcpPDXH>#0Z(}q{v(@dFerZqhXfmQa~2JY!Hd_6(hrV0TAM2E zRewvhqI72bVrlcQ#Im2xQ|sw($bHB5V>0uoM;&(>(A8+X@mbk4__K|)yxD#*3^wq%&`VgA`aGc*&xlc63 zHU9#y!GG}eR^H8xw&Ncj*>mc%oHYDs*cM(}X)t%Bx87vi4lB=N(&ibTg@5|>nh*Cy z>v0-B${z`qe((rqnW9I$Y-#_yxIjL<;wa*0Q9s9j!{R|K|7`xffRzKHCz?;QB5urj zqsBjJL#H9U8U1QMu<=@(C~f@9B4^)M8%qqw#!~tUhqni(QmB6XZP$>nybEp1c5bZW zw~F#_`p96{xaVgt8I!o&75 zOv)s6sP#)uKZmoHuQt}XhW6^_#v-v|cpcu@aJSU4Y*mSd$ddyUerkT-K&XrrtK{HD zCflz#BZI+bC8dqucFrqhD_6`rzmv!5FSbeQy&NHtnMx(qjHFZH> z*VXnA6Kjf<|KHP>e6{f#4#BN9t%>j->tggv$3^%!o}bCd)6Q{u|KPXbea|k*jZf-=W6$4ymQ|g?r-;3_qM4D3vhD-)Ez>wgHYiW`PC* zjdpL!SZy&cv%&7t5?O6|&D&d2o;WSIcuwua=Vk_#wW)=Nj6_yG%%%p95|;NS%swLQ z)}0OAL+^ChF@NpT6PrJ?7`uaul}bb=r$;50mepzJn6Q7nbK>Jg{A=COG-);$33M@X z0Q`NRTsCbeD-e03BZs5&W4PbQ2ke~|WP3Ex<{l!Jx^CfsySuxT3jHzL zk5-#%m7qdpM=n=}`%Utr@p@fo-5LXd$^$R=)3zkJ!?BLh$8kH^Pwa-bwfL_pRpCe} zeN4uNQ~hM6^1b|xT8lgHUph(QJvi_*(W!yyUZE1|6PbJkdmX2A14(f-?+=p?_OuV| z(6G(+#y-q0?VLbSwWiQEo8!+H88xYTGZ;MDPTGCU(9vprxB5nF$JF-F)GJL)E;nX~qB&F(TTA^`!T^6Y=7R@@( zVz`%zhsGl{UsOc<+7ggNRN=O07fP9I6BR6YFa=B(`3Wo1?2UQK3ksnH07 zdn%7)JYny<{AcY_iK@nk;cCIFb32FIs0Xm z5Za`i?re3jc5G};ta0Lf38W=^_SRA85#FD|7;LYe_d$+46j_N44GpuhS8P1En>Ct} z^zq}tD@!-;#e)BNYl~B&iH)C8sFml3?_4@Qy8EJJN}zVvphQSR{c7Dl%wzI7v=G%k zc)+amM~}oQa0?r}%m)1ITVGtsbWD8H{P$V$UJGFwYMq3BS<4(Yd4t-c)@l5w+=}lDj||sH^`x^0ZW1fj(W% zZ_Hz~$fhOhU948H7;ZMUE;Ch%oQ(bSrW37K%o|gSs_jjzn##-m+8br$f7sgf@9A_$ z{v-Oy*S$@J`3>G{SQd)5W)BaZSLF^FP&jW+8+@?mqx6Xj)=@R9Dsun*(0)BVJ(hQF zZ&rO`f%SmjFyaIwo9Tc1AxBm!n8ex##Sf^c7KI<7G|AAhmbNLyjfufOALDNxg2d5BBQ8>vOIM+jHHYxGX2l;XuX3pCok4Brh>BY2 zf`@aLZi+5T{cYC;Lmzs6-FpPqH!5t)LKGB^NVs?%G~PZE6RtSd>qge&^R;ftQDh4~ zpHYR!cdE~lrgGEEBILYjMun+QS{}?*8+T2yDK2{A&O0kQzMaoy@>38H97^fpia3qc z*)BHnj*R#+&bDi$F2U)o!;LMLv5eP{Ei}|0oyop`e>E4WZS|Syvprxi>h#4MOjmXB z*Yx5wf5|%VbOwdPvwaxrduq|b zg@$8X&2iyFu!p3A4a=L@Qu~xw%Cfm_5$V+`E|o_NkuO%^+^}L~KNtsh_b?+*&i(l1 z#FdD%Po6vx$ut%ZFFApVfF3;;Wq5w?nyU);8;05Zyu5k|7mFp>?wzb|6Kn677s0*y zPft1{JSQJ`dLg8qqYPw#zgTgCMY)85oLv}Vm)ZcWT+W3Q= z_pTN3x&7S@?iJO@scDZR1GwMNx31BS$Xc@D09KG06jdQgR7dTbm+4f$Wq4m$n^^u3 zZNb2>N=w9>R*zMsk*5oN*)>Pf+PO>{cq#Qc%N2A9c$VStu1qUOg6-U2pY0Ok`-$H& zkM>q;Yvc7>FGrMhkUb`>**0tT>`ZLKc6RKI=p{BM^+Ij@b5W48d|%&^H$bJUTw!qh z_`@O~N&#Usj+BUjAokNdC1x}1K4+tOigI(zQ z`4<_E`NH%!ru0CKB;yoGl}+oqwg=iO($m&csJudP1L?4@6I=f<`X`~s4oprHTi=HE z`ETJ1;zmlmudTx$>?0j&lFjmXW8K()*+q*NvodR~-v!dfZK?fDg-_@|%Lg@dC!!u0 zV26jcpW-Vb^XRd=jBHN1Xw`5m{i_4596b#qTo6Hc@(xk`^lB+6cm4&2K+_TfH0)By)5K~2tXtmD4-;3xA3f1F+{Yn>d) z?XgdY+6^Qp)`rV6VPSX7%Xjyv-HRA!wy_BkLR@$xjhDOS*!#P(#pC+SlY>{H$0A+R z=3%qyo%2)nR`3Z1a%@d5du*^mEpjYM6Lk{ni;j$vK@CdBL;`UlwFQ=R9j0ToXwjms z{Qe>hZjbW#=cn{d{6_}i@HSmI9mX3Lzq|I^u8bpEU{39_b4ZteYYJhLm@4bFmCO_x%B)X+}%-KN+$i}Tvnc;rr-XR zg|2tSSJFd6RqF2b)K+UPv^zLI!M)=R0ksvWERrA`K~=f5@lkpfYoOsp>lemK4p1ji zkJs|GhNg6}Aaw?(V%Q-rJeDNUE(KpMpx(NNV{HZ_F~-)u2o$yH&I}3;{)7`*1&CTw zGbgn04a`kH)T_HDrN)=B^@p$%el~8U;$^R2SEpL#4q)v`66Agz}CLu-ZgGgb66>eUNp_xi&wZ)v+YLJ4n4c z0cNC2AW^dZ2C!ck4pGv7sQbLRgxSwLRh!)w;N_NG$R! zt`d{^#z`xpBTum_I#{gtwsHb%I7nSgUxRkts=GiZQZ?a4y2O(Pn-Ai?QQKw5KQTn&sPY&s#81VL?d}o(A4}g)N)*6Z_n$o3Y2{J5 zN4TMW1m^kfIkw?(VO21}p@G~#N$pWvO@afT*UwKK%Bt>FS)0(%blQ%;D;)(JJ$i+b zr=fQ}PFU>PyuO^)tJAK=Wl5Z#y>sB%Uj&cdT%l~x;>KhT*E4xrI+I0~DW7lDUy*Zz)$$sh`5^W8Y9+f%%*GgiA!8+(f;;^YRuBHz5hAf&+tUwpLrBq*4K_suRqQX(d8%<#Z`mXld2X^!hkU35pbtxy z*u7%ja9X+aAbkjKG1i~?fqy)?yni>ItY(pk zZc94D0DfvR%xp|!=nDAj0{5(d_lY=-f1Su%Z#6Xy^B53N5yTF8!h z0cDqm-}y3;>hZ_zhXJ?{=&P);D7M1gs_oOK*tKyHej{ew`eLqy$I zi|$BGe*c^q*gep&#i2?pliik*-IO?e_TuQKH6(!!cYm|Z92q*iepcTmk!ZE-C(cKH5*>ejzI{X$W{!jEpP}_&|I4aFPvozg3c72`!FCv7F|PTz1Ne^ zbvej?LPA1fNQ6e{(2-uIZ)zH!U=Zin_A;oQcS^tJbIVim0?-3Tff6Ou9zv2u;7o_F zpIfRUo^2kz;}7TQzzs@G?YA2yk)alkk%H41Vll9G@ue;o8t3-Plb?4`s(`C5Gc};n z_ti>U7np`xx?MC*vzB&Xx|zO<)6vmNkMvb7 zRT%qlN`oaryD#pI;vwNTPK`r_#>0s=Z&3vab}LUCcg6*0NbvRnQIM~*TAhIuvhwcf zzElHAI*to_$xp)EYNyBkW6qT0BL)^vnV$&^r1TDCz+(B4k^leFQ-@70=bba9EW=!0 zBZ>DzWUq}Aut#A(%W!KJ%$ox?Fj=-#?bA)$@w8%|BGqgc&6&W2TLE4)997E=cU9<7 z;|{$uD)MyPw1t^Ao@p|YRmwh#usR0hw!LWy@G7%*&!j={l1U9Ce83xqId6(#$T2eg zfLcT9^MGap2f|uOS!VfhJo(_Wbesroo>2ROP)xnH4~lOU_$TTEDCU1$QoN2m7S(xqw<9mDMvn>zx)k-yT1v%!-d1?|K(!GJ5M$NozvwBe4la zq$8uJqV;q{8aRcyLpfjldsUZ6)q8%348qgi;N*5yMgqPlvO#F zHiXA1)EVk)thXul_lwEaVtd_>#?n9QhihahnwgpTBRwrIwBJ7vFlU)@OBURiOD?+_ ztnL^&YO?t~>29@2{mgqpLh*BbbEXN+6`3~Ur?&*mAoUKBGGJ4#2M0$1;~+$$VsFMf z4+Nl2C>^R1v7?X~wK@gq)N<+UctDeXm9&C1PpL_@vS|6a z>$_<)I)Tc*C3NHFHwwFe#MRP(_B)J70bKvhz!<<4N&?2p&pqNZz4pH?#}7aw648v(gBh zCtLLOzCVJ8agLK#WJjJ4aJ5@3#fh=xF&81UK){NVi) z+V41alYBL3-^%q4Og$m{JID8)?>6+DUtQ-23WqmZL314HtYp2tch<^c z(gLF^K7S^VFbks3Agi!e>sGW%EFqKO@eIh#<{Y=hYy3cS)f}=PTi41-W1O%hVk0a@_Y;J%&jd#)tS+XKbE5ob5iQ#Tu?WP<; z>JGnL1Y_Kz4v9;E@CzY3iDJw=tfR*DAle!q6bVV=R)0T{&ThCLqY>%|p$O~!!>C!a zW?jF1JIS9r)`i6)^uI~_U|3)OZi%szWqAL zkz#z~_(0C$R{HjA4ELy_K)Yd{?QE61#*scZgqYf#;113O`_xE+2+d;9v8fk}7ot{N@`Z>krlGIDdz%83`t zzd-RT^m`^~c@-?052DQwtoA6JjO6a`02AhF6dJ@1f7#%RngWekmO5i8I3S|F$(N|Yp?neZdPY@ z$Jno(*?Wqm$DAr%F8Nyw)!%0>=4M&;r@cbS!2kuyIQh%9^_n@Y*Mcnf#v<((etyo^ zO*z&7_qTYxZ))J_|9R8@d`|f=kM*GE_f1!3dOg-dFjl;$O@5|QTeAKCf1%Fob|1B$ z#X!OCd)|7y`<&uETzFXa1*OeHmcPq4Uqy6;H0{!RBrLw2(IQV46shLc6$^zCoe~VPMM&JK^UHn(6YvxS* z{g;colc)Ad)X-CWWy@HAynx5S;{EYt_-Q3s^x`(&|9#_y&yd5pAT`qUyx=EEbsK*w zvog>^f-zI@wU>wF4C#mTy}$RlCBPysT3qCc`PANLG=7_@PJeP`*|N~+62bR>-EM`@ zDwT((nh#B1DXwuMI~LJxdzYN+|J*jRqoO~~NBq7Dq0d9@_yy$bR19w<2m4<`_~#9| zP4j-Zr~;k9x38B%GTt;ZqDPp`3N7AEDP%a*)_<*uEva~!F9<*f&*Ng|~AzxWUWvs5*=vfqm-PNP(~4P;>%Yzc)o{(W%un7C$`y~^s4ttsX>JeqikL)it)Y1^&~ofln-g4&wWH%;Mf zJh|x#GGH?53M~-o3|0r}u3MO{o%qXCec;vdH*bs~<;!xJ$acGs8)RuG!re{9*;1B1 zJ{}Q$Z&$#6x1(lZ04R5_J|OsDVv%wZU$t1S*?aj~Tg|!r?(X7Bm-1o%Qtp2>d2u@- z6VzknZRa@kF2yOxG~!Xi?A4PG4G(vkl07xAdYfP%vBJ0K;eN6Cx727wR3s?m%T*mQ z!?oJq{zoq-voO;Qv8Edi3w{P-(21Kg%G5b)8vsBZZ|~?RXZv|`teW1owY8ZF_NVWk zu24|_3G5Hb!LhOKv|%JG79HPiNhkn0#drI9PYh}~*%X?Of#%gmJxm2Jpy6g~76zUX zB!iiK^c4Y-0r``HWXI>HY`@BQJ(e#PoIpw;k&$Ucz!IN)*ivn|pwB=iw|w^-#qJFh zqVWD&zWLid{`@<+MI%pziOjUf&zJB$SGG3&E}67+3XYUGU&nEV!GLEk9kNm9LL)j1 z>cTwHR6?Pvso8*|+?<+hE+>*X5fCO#Dj+Ivj(@p8XC0@A6Ai+G&HZJ~UUkQ>657Mc zIuRXHSf~kK&fQ<^2Xq#>UW#R|{<1B{epE>ObnxL#{Gslx6CA9Y6D4`+C*L0k0Q9a+ zXFOoL1@2yr^mz)gXhGlO9WT$@*-c?TaI3=iUgV)u?E+3U#5?Hb*uq0)3l>iSD z4bK16E2Z}91`MbgotQ;dsIK2ZdUGt?a0hW3B=8DaXV;(cKqP~XzL1}+xo)A`*tFXM z4k5YWgbPJi^ScA01l#$kvxaU@xTw8r(9{qT8ftH87||_ZAt-E3c=KYu-{`*O_jGS> z39)Xi{UKqrsV9`31-o?;n#u+pPgb`n_RVp4q9Srd64|j}M~gEaaEees5giWgWg&H_2B}xY z*n$&EoZBSFFFR@>(ICY(JsKS}H70r~&kk;UesE*=D2{>sUD(z}476E<$ zT7uzB^9L%Cl#`>7;#346A+PnS5>fULQW<(pU9tJ3CYDF`Ll^_e4I5s4R$p#(N!%{_ zLUyty5;!+Ew`74n1qEZ!4Qvn#gxEXMGy{>mdQrdB;!6%)RWW0M{IBx}F+#LHDcKwV zAFS+RZVI852wH`n0i>GHNTN08k_WV(UA|0C1lW{IKEGD~ExoNp71%cLl~$2&F{iot z={Y6G6af8@)J8yS5C!tYaQXmB~~P%*HhU62bK08vQI`8ca^jFm)kkPCBH zn72AXaqv3Cpa0jL%=pko2BojdqAaZ z;l$SNd#zI;IvTzNh4grhxAO`eHmr3!M(UrBIZAt23%Ho5F(Wol2 zI}VN7Uw{3DrlWT62;?NIgZ_l#2f*UGh5GoTyfU=Idse_xpj|=z97Jj4x%h)`2K;Qk zS=xkQ#%QnAha>LmZnHTDmG+H+@N9yuB`a> z<_L|uC8Hv4+LeU6cOSR;rKy%Yo4+kyHo4{Mj4qHiMDz%G*IFokIteHUivAu1X?ws! z+=&3;H_f>fnk@rsYipJb^sm#_&AZkSLw)p4TS@ER+Mu1U&9H#JZdO1e_qL6~a?c{Q zg|m>>z8)^IapP}mmOoZL94WezW}(c>vZRfB^Ru6~x?Czjso&2Z9~TOkTY(k<#qax0 zK;D9w-l0Jh1G{h|$3v|9+e2+?z#pumKwD*(*$F1C+_#rm6U;X|^eYf5NCW3=8V?S(L?vKYplq%#*l7(0MISDFp0rNy7 zDmiRF8}O7j#1Nw7qUu$zgZZ*RP%_xD<20dagJ;y%(gdRx@tNS#D0HGu^lI{sd(yty z{tW{{XK@O8q>>y98rwcZC2jT|I7Iq>=yFHi-W73K29FUsX8UJ#`X+I4ae1FN%OnM6 zfmh8*3mIB)rI~ChBppY2Lwtp4je+YD;0yu!u0Kn~Zuy|=5paRe-n_KFLTsNQl5 zEd=dIJn=+hZ+*YmU83D0WEzQT^k^bE#_dwMKYjkW^5>f4|6nI`*DjxZ#(Z|b(_1RO zSu^IXOvc_G0jdtgZP0!V4I@KCF^Xc#xdqTq51G680wyvqIPp+yJ)jS00V_f48=0Ek z%zH!Vu25?q3VJWYmcIRs^=fm)^$u@y$fW`0U#kqRuQ}Hpa9_|ysvxaF{XzPQ#@c0R z2@rmi4l3_i{YyAn6MQ=F1q?yAmjn_iv+mPHiHLZR{SHsg%~V8Aftn=__{2IXDUFil z?w28djaj<+@DW5TRzt2k_otqpt4Okk&zVT}X87}`g7PSz&mfr%yTLt>bZ3b$KVivh z8oiiS?IWbq6$HWI_|MH*>@fSbMN5(>a_gut>0|O` zxZHkf-J3suStB-GttBEnJf)|nXM6wVU_nr|g7WEa1>fJRlh2f~XLA}S2 zASNp-YjE*fXn*|Md0^5ecAY=9;3vjtO+sa!@yFk1E+2ceb^<^!{evCqAh_UpY!ngt zQ0od7os@joH)N(SFFR!`LVS0+LB~%}6%2TKUG~-d$a^Xs|L{<|=8y_wlfp*TBX3us z5&bAqQu9nlqZe5g;oo4S>25Z|;EpEcN`NEfNS@UwgLKL?F5L4LbnSPyxql)A_tJV# zqbZ;kK#{iVkJ{ONTQDKU%8A=5sPXycVNc)jZkSR=h-b-(zAQ#Umt%ca3h9GIsM)nE zVD9VA5%!WRd%LNe;VD2`If;}7qguE3Yu!3@$UUNCdS3G74)1|YK6u&w{e?TO0bOViUmv;=MtfxVECEoA~{idbJUm~rs=EF#TE7%2bhCsw_W zc1_T+TnVFKwYsJnrqrH^oKSA9pW|p2HpZGag<^Vn zb!Tcmqciq)bR-XfOG`Va;`UY@D4v%#dYYjvPHKU zzIyM;8SaiFssogw6PX5*ce`WtcDcMAS_0tm5m#YdwE9&d{)kuiPYEgqU}<>G(wIn{ zhCM~6K&;`|-#znxntUt!m$~`ekzG@`yT4IZ#elq(3{pSx_nGO#ZlZ|2NI(-porDD$ z9PosAhM9f1cml8HIP!*~{@U`avtVrnQ3!^TxyhRT{{Dq0$~UAC?h?H!ptpKG{`^hK=;u@mI%#7CtsVi_#Phkg_ zhrrdvF#Y0OyKAr|1fPbS7-du1GUuG%P&jgR1zmgst{VB;N{@y*gHi8CB35>z=WUW7 z0n9%lck7{3zJK~6f%y)2>6L-C9KYrN;aV_=R{exbM-3a-ILr#2xHB1x=y&lAK zF$>ew%E|Xv5D}2snCj1PH97_IhrhLjM<5#XeL4b;3eQ3S+8kteLBL5tFuc3>sv>J0 z0ps8lNVCenbky7C-+@6&HUo%zB_m~EX_@@-<3~l85>EXlW+T?#gcJ$<&XQ^ z2?+62lt%(JTJpWArZsD)3VuT#Dq}+zk)PG0iU|bK>SFgvHjX|r7L<8)^^iC%-7tHl zfK?*-ABc%*#TBs3&Wv~3?;te=hHeu#)9VsXQ&53Mcwx*W(bmX|mNMwhu^6@&v;-3u z9A!!EDf+q-c>VT%Hu^B>Vx&Rtq3MR+-g8sph0_*-0C%r2s<|)+GhWbia=Nkqc*%-5 zNQ|MA(=ty#bn(JZOX)S9Adfd$F5V#M)Z)~cfAa{ThU|Y6pa}#`$WeMh_f*c?i5Q{y z%>S@#L`(*5$K2)V6mq7OeL{}CWEM)Ks-GAI?KxUUmjT;gb2Sf7|4YC@g-cV{unG;i zIKg9uY0g?Gc+aohK*WT{at@WSU+88#bLV~h z??Kz^U5WJG+Z3UqUw)%%xb`;nClNVytQ_!(8c4$vkhauxdQPD*g`;1-D7RnL4obeN zG=ICg%4o`haL+mix~ValeTc7sEl9jfst=Cd7`yRCv2O|=imkA0_pX_~o+JbWIly#> zM2w9B941_#B_}fHZZc00e2apN@qySaN`xao4`H{IE6%On5d|}b_MNR0dBnwTe4CMEIqY^pac1{ zw;Z62vHR2hsRf8c)&nz4jJ>UD=j{=Mi4o8ftki6vFK^CQty7|96c+*Fv$Y| zFP{~#tZ9d&yj4lzy^&f${tce^DpGie)CfzBNn#A5&ctY@{b{wjoTGyLDFQ$A7Gb)CQxD3zM~h^c>}eayrw~_~<3H2IzX7m+E5@9G=Ajc_ z&k#7MOiuHe{b|VFzfUcj!UvtYtRW)>81arI|N97aF@P6mUX`sAaA+X9ICYtHxq*j3 z7fT8u^w33_;<}<%EnW~yd=BqDiq0v*E0FjMWG6&>DxnZ*&h|oe8L4385nb(5sNt~7 zsgBK}9yp!fyhzTI_HQL{XYyr1cnZq()B)x0GmaB@161;44i@3O&|@p(K+N##FH zVV!(}Al*kFy+-0mv#F?Ki1%6k^=^{$3id?)zSu+mg&>CqiPXN3%c8O_9ol=$Gt;#b zstCkDAyX5{U8Bi(Ejlx`uNoQe74%UACJ={GogR%zcQ3?^jyC3HjtzB1v6(a*BoNgY z=i(6l!#D5FSO#zXzhP)vBIqHLv7{*!2+P~cCNyAg!6n6g^Bjg|W*pv|j{P*Fsf0o! zGI|a3&z#T?MJV5YQ)pcm5*b6@#at4Rciyn#_&MtSOq90r7~Mf>4-J`uT=Sa@AbGZ9 zayk|BZsPA(#vAE}3wHa0srXczVr$aEC+EmmNA0TG1DKkS&;%-g?OGxwc=>tV&*zXr zkq!yi)6&{+>nt>UHaK>*G&<(0(XL2_K~VHTH6S8ocy#HLen!$d0*({SZ zGp~)~&+>(|pWe?ge{}c?;mipdJ^u9zn5Q^2o@`RtkbT|zjz}KqIw4JUB>cltSZ8L- zsB`sVK{mXgb_p^R-<+r#OB0nu;>vq zDP-0;uMWD_&ml4*Od3oi{gQ~#b&u==$#?=QGVlcB1J`x|;!X_++VFMbnm~+qt!P9lIe+YR0E7|qv6+~x?W?JFM zEi(HCV@y;t8=(jpXNG> zzAGw2Zy(0jV1$#1%T`Rx1d)+2;0BQj8gMC9xZ)6WIyGyTy&&udN-j)&+fU|Dd?aB! zhiW_p1)5_FR+|iM5hKHqLaa*$3m6fdFxl6gT+IB7E&^hbeIi6yHz7q?7+7MYudm-7S$N_1 zSP<5dXjCrhw{Ig9IM{IrWXSlV;eiPb9O}vDe&4X=26}oy^DmwQx2(l1f4AbD7t=4a z?rHozKh^3(nh>>v5XUIoIUffTvTXMk`Oj18c`$=LY8bo`w54=r%7qc~JqU8>?I&n# zLelR~_a}Te1XOcA5o$Zck2_#Gxv&12(99nrog+@RDneL6qi z#Ft9@dgM=H{t%dGp~y?>D`Z=Dj0Iczje{qev^VE}dFwggtx02;jRf5LXV8A@s^5j#n61YB~0p>vEu&s{XNGZ9;S~* z<(^B?doCp#IL1Jg!+IANDAt7z{;jDL8;H%s=07BI{z+Sk_N5>!s-uPTn%L{G&2d%T zUyIVvgHK8PG9YUQ9henHocVzM)DP~3Y)M;fY*mQLfirG01-c?iHHtAcWinE&iEU;K zD*-)DdPkwA4xRvp`Y|T?d^u9z1mbS1iWVHI+3Qv@Li+nr8{AU$Qw;7kIu2X{5gE`l z+<>EH@XFfSw5Z8?Ss*STEPVnR`XIg`b6B8@kfmV8Q1z>@&17ydh5kmBa}1M%Ga8&o zC#83U1lXVn{#?BF7>zungu30*Fvk-S)E#xCGy;fr1T+cB=cwA|$Y(-`^c`Iwy}7FY zz1!;Qzmz&rLXkjADD{S%hh(M+8CwM~qiUwaoxAAjt#!;t=%~bqP%#S1&kM_(bs@q@ z8VBcGQC;%+=TlIl&H+q7A9^xd_Wg^0(vqdXPphh+T}m+pDm>mUOJ@IIG!g>X0v%<& zc`8HK$fR-f)!sL*-;kf7uDr4qv&bxZi!r`Qb6&ahT-o(&C~Njzy)K6N<r-M;Rg0GD-^$pPlX*C715LiVPro8hzmKn zWMrtvn{6GY64m>my1;aS`JTW0_cIx??fs{VZ(Sc?X8D53BXXI0`Iv@#<>)`YC=VmL zT|-)h;}&Az4_Y)s#a>6KSU}CVQ6}*pZgoO={@;4@(1UiMTS&-(6c~!77;y}Mj)5U# z7+30xv2nMY3x|!nlSRt^>4}QyRD1nD$aW~9MjT6^MlEu>9W0?4 z!s~aR^ap9xvq+nogo6d$A9ZuDkalIkD?8AVnWgJkGpZ8Dsqw! z&%IH?G@6t^CWS9__1<&STCKCxASlKu%doFlS)MGSbaN$b$)vLL35sVT@MAqwj`5Ku zrOH_4k&)WBwzTEp zad~%-6<_-A?*1Qj#LMgJ%XqD#F?^m&_w|e(ngT|vv|dMnN5A@Xah(W^T4K!L@31y2 z)(~*-LJLCtOe4|1Od7toVAc(EIMt*Jgl~8DzqXM6(<-U=q2&mc%fyNr5`BR-U^ta0 zG^9QW`O;dVLAS;@70}!pF&D?3dv4=Uy}RFJ4V)LzxMpN18oUNbW!^3I9zQ?<;vWh+-D1Eel42Y@hNLjonAP^lx^M}oYVdW zvPo^1SWemSy!>gy?Cx3}w14Yjs1_!5{_+QGrYDfLt3yElX>&Ygh7bK_CCp+g%Tfmz z7Z*s(2r;r1=Cm^33bfg>;RQDs(R_?%GDPk}CK;e2n_+0YIp9ev^P0f7OZvRoR;JP= z=J4`o*x5I0aZGy$!Du**2PqmBcY2VKt$ddY)P?^&QlN{rIsR=iFXnAWq=wDO1L5== zP*@+4^LgAY9vTt`M+=cHKvGjJ4pecIcv&pwiQo}$;>6|8HaVeN`f=)FOYyWLqj9)l`H`(aN ze&b^0i~Nb@;5QmLI5_y(Rhv3-mWfQZG84^kyN*znQt~jo771}2p$nmT5ZQ9fR3$|4 z`T(p~_zhu+%{e?V8m8ke*V>j?0^`XC64qxOXiuv=TAqyLP^D~ii$588&lQ&qozm})>+z3e!bSGerZpL?yxgbzw zDpwE!83U%cQfKYtTgS$zlOA{s0=W1s5=8rP)&wf+Lz59IriEXhU|=S1TS(7PXD z`k*Z3)+W2ZP?H~@^X*8^r7oZS{o~zh=kCdGJ~P_`&3+E(m_QFkEoRFHpH9DZoU1#j zOD4J6f-r^U(jr&Lzz+HuHSa{h?n7wpNoHt2huZY!+{^`Hlt=azHDqFALE)`3!{SAg z9o-49HBo;h40@7ZsDsHPWKB-SL?VRFV*E9x+sTE+x_O7a(VTDz(O#W1Ot9{ld5ZPmiMaEG@D7ySbO77 z3X6XF+3ZHLF-vl)B zEzq{h|K#zm>q!4EnQXIRF*?pIVmV~M3Q=Z|W+9Yo5YZ%l{wiSX!~~^^!IhF5uHV`k znws-OF|Gz3RGactz5#q(3_7Vr^+3hw%R?Rn(u_F+P=~^!Fe}jsQ@Qc`PzKe z2f-87^}=M0JzTLowM_ z6s5dRWCP1%z*rR^OP_2XjC!!#^aMt>XrW5Hud1O>LrZbW0yT~SkDxC%e z*#}JQI!2T281jvXBPBuEc={&NtTNfu7sBGSkF{9t7`E|l4*?wG(_hHWaBDBS>=a6R zTP7Rsfs7`~4Rd*~0O;}mx(f;94=6^UUg}08FT%hrx%Ia7Q~|ZfEDPb~tiu%%knx=) zeYgNo(Y5E#N(ZmOg2WDu1uSN9@d0s>`=1+f|7BvurCVHGUDQyIza=3OVwNs44eEa7 zk?`!LhiHD2p4PO*Ysdg%nY_-`g-9CcVobKwc+BrWkIBS7GBOflK@G?x?>&;bvY=eP z&rbvK8xH}rd9i;Xxmk3OReRswF;Xi$*_J+xzD!0@lQ~epcEd~naga^q!L-Hg`q~l%U14L3b2ElNN0C{QL`O)-gOwPS zfCC&|)jcuRJ{l$S4`Dwt@_`nqi_L$}y@E=dE{D0$WF9)T$@(ofZ13duIp-C6ECE+x zP;sh9#Yno(Fe?Tc2249!eOGbSubAZqS-=C168YU^Xm$nUj{yS=Z{Hnkdy&a}&rR2@ zpD~g_YT+!>fGJ$yj21f#*vQ0C>als#zCZNkfC_%q8Knwy7m3m-&MB8yK4Y>ERB%W< z4KlZ(!4h2*B38v&o%_E>_dY%MIp>~x*!%bUzO~-kH+_vBYMgRs>Uw-uvS$Dzi3@m6wkt50OuEz%%kw69 zK=_s$EZ_8(HBu0pcoo8|kGPw{K=f|12!{EF#ro!L9_s^}PLUmb4)8i73nGa$k@%IN z=Rm}YIJQ&O-7_z%4IOIJU%m~8?ek~{i!aq!R(45hwH|>%03;=Mb;Av<&-^}~3Sx@< zsFofvQiG8SC~V_bnmG{%G4(`@bMNSeCwNOcZ^DWDto0-B+emGGJGmL-zT^{NqOwv+ zK-5>7nt7u9iGR8ydBtdVVW9PWClwlN3`adCqlJUo+TW+KN$L7Wz zs0bhIs9BPDdky4lMcgo((iQlscf6y?%=OKq3I4OmxZwZxBhe|9pEnQ22@iGnL=XS7 z=y>;MxqR93S!E6}T*O8R9?qF>bE9jo&zJ|L)ci zwK|aiQJE>!V%YQDxBJT~3N*!$(1_6!=WYt%4H`%3Ox32Q4~HAYpNcAqld*H2jX3&$ zZSW!~!X!ZqyeG-DG|!%}GcG=da##+whF8#;IZGlVZ0H1a7m7(Ib!`*k2 zMS|$1S%y-s$6F0X-zJ8Q2u(caOp<${&sMEDK2?vZG~9E00sZ}TA09aRJZ1iyt9Nx! zS-6V?wH-dhPX5g|;oCS#wZ}*J&K7?T>mZPZQ&{Qkpk0LcJ7H%>hu)wWF=llQeVQS4 zcw@6U`=@%qt-t`Dy(N%O%+W&Qco$~-OJJZ_|ELw~U-r_lg#zTt!UrZYRCOFHH3 z7kY{XZ0HuvOO|%~SDA|8aRwTrMKFHcA@))z9Mw9U#t!?i33MW#21=D?jQnl~%@UVs zwZ1)3WVo0BMB`6Ry%It!9Zc67h8scv+4yq=`XvzNILEkN#I2x>;1UO`)zIE6p%x`- z8saj7{9a53Nw;mgjbBZMI*AYweburjPph%Dg@`JMj|ORg?Ms!u_my-aphP(GvlH=W zMJDy!E5j3OL$(2{J%(Pw0n4-6u+O&ydFBZ!7c%h$3(3!9@c{JBpyMiG0YPR|9ZtT* zy2j)ajoMmRJ@|O}v9cvvdb@T7EzW3PMi#*YL?bBe>}@JYEP0xk*`rN<5*n9r?l4|G z3d8Cfm(+bUb|vWdKiXgPXg^_qyq}A7URnNAWx~`6GYmafW;*RRi7W@;_C7{^ac)l$ z-xXr)Fn{W$JB$4`L@Bl1f82-cy@S{vfEkfK)iC~fT@M5|@>)|N2Sl&Zw6=$AC&fnD zfZ3{WK~Da9a-MjcOU+DKn2o=kvP>hrW(4lZwQJXwzg`cfYT8{Owx8XT_#S7GWZIo! z?<$@yjA@Ml9mv|=lc!gU3zLO)fuy6mtTAf@`~PzlrW1#K72R|A zkx@xb($advS4xAVVLKX^pg+X78Pmx`^H4gV|4x&{_Wdxd+J;%3w&eI_JYcbq&c%Mr zIWYbif|)MlBTyYcL4tpVJ`SWY(tZH9DCzJQa5{i}1DYm~#sK@HKE@yX1yCEDa}F(+ zuVzg0eF-DwSz567lV>=bXt|B-clQ5FWjG9lcbE*6$47RQS$vV0B*WDqmUcy^S?#n` zF{EpsK;V)jWBL&S$v7gcHg$Z$RZx{3%+a9%ZTf{>2AhG51yXp3L4sK zFrbd%VBu_GbX1k1`@G#f{0TEL+mv2+VZrR3Zqg&5P*{Mo0wj~aDWuI0E~9oIub4hx zQ9D#{rA=KOrMD9cCCflBhxkND_(A+t%^e)%6P+GbFk*|R3qra>+k=!ixa^T0D>15R zp<|uL3StvXL<1y3z(j6-P0}iB3axu{~jj(!&5?Q3O{eR8JgC-RVUE&6Hx`Jvx3a`q*#R#;|em}0T&QB z+F=cv`#z&AU7nmrlGU|rZs2^EJzvU4k|-#uFycr&wrx#aV&*|?p>dsCVF!@%6F9Bm z&qII$Bm!$d7LGUrh0&o&YQ_EpdB@NOPa#siL+TM|$bDys6UZ~VFd=&}VoLY&oY2<_ zu6DQ4?rA=Aj#b(X_(!4{apflKBt8{N1WaR>L=4xWWXW zB94H70}N`L&#cQIu{(eczK$$66FKrM{lDpaR;)H}of+}IA<-8^rk7+q8E^&55GJ)x1EEq%lr}Cgi%qHU}*T;z>%_6!O3DcAJ)qX#PLb3}B1k=ub+W z9=>FC3$n>(LK+@2`Y}uBaW299!?$On|3$_VKv+frB%Lqa-$K4-J10X~iCp-D9rbs3 z#Yf1EqU`WCuwQqwyLfWr;Tnh;{t)6GMv@oGM2+F{1jmnZ;Rxm-ZCjyL1FQf`avv+a zHwPfuufW~KPGtvP_SuWzjJ2(#^bKo*gT#Y9kM9(9V4Y-g1uYuE>>AVELGHM!c!QLC z>IuV?po==%dv_;DT|S8=%=fTw8Ij}@q!N17jxjX(VKW7462dlNnL#t$B-LviU?mfe zzdQ7!MY#nXSS-CPAwnHUkYQ!C0}rnR=$$M8!HWsjQLG)gHC#>gK?h)WZ6jw6SrgWn z&CTH#+jnHsnn0C;%^i*TkCy!??(T_B>=XonIKPD(6n8Hl)u0@9-w<=J?8ir9P)89o z<39M#G!C~3SqCYHtQwGZZl0ON?k^{n?GE48exN^3GisGlK6xMBMp)CSO7v*~d)a}* zo$i1pX14Wo+j}k8hKPj@RHC~SQjxlg%mJjk6Z+FWVD6FnPB!Fg_4M>Sv1`%+W`3`9 zH{Sw8T&8ixwaU0a`?d!#ntkfnWx_MpytMhqH#8VOlZOcH^d7Q8(vHpicm9R8OsHIC z{8Z6?n^g}{J*~i!iVa6i$x?H&ehk-`vfoCl;k?{6w`w;;OJcN~7DQVRurV5oQnx~) znZ{xNhLPtFYbt5=3J2|o97;DBDMzBh&ql?)q@T1Oan%6r*I~rv{ChMc(v=KP$R6YF z-J6#zVedfve+XHG^T~HDcm8GW{?$;(PB?FH@RI@bg8-{oOY&xiaa*;_Z!Y)}7)ua# zr!&3HqcjU@D|pR7!7R0A$~Y-Wbjv|O%s$*%kp@X;s2zKM+Q2~YZ(Of4JTd*fmY5G= zdDjZ48r^`pCMEQO%xS%_AmJk!?L!}=65BEbW7e>LP}-lTB%eUiI*R=Tkldk#^W=a1 zWyr2=t7wClaF2l(nfWnE8P_0mAq86+ND#VVdw{F~PJ9K!hZcu81MZ%8a#20jR zMmqrcd53kO6^MMqcL^OG3o<0cRE>vKJcyrd_Pbwv zT?tThoVgLVL^!bk~5oCB~>LbjTLO<~JavGL85{!9en z8+&+QjxDsFiai#Dp=ZMvX*-OgN!TXzJ`Emx1b&AaJUCO^?U**qbGLY=N`dG#0UdoX zQ#)H4LF~f3j+EldVO&L)9icVxnFzMYV(RQJ$PM=J?T(5-6@^F$KV4;mA=QFn^ukG~ zZ$?W8u3zw^s*Jg+qof7;Bsu?nQEtyb#`}MFksr;V97FZ|W6#Kan=e?_ejl)PbAT20 z<_HH@!;dl`nyj*NpH+M77B-k*LLne(vuGN}Jc~*tIuz*2Td?T~n)V0iN@<5;cV#+u z?&=#D95OIWJJZqa=>P9__Y*t$25|p@e*f6Nf2V6IvB=cYJ9+Xcj`|bfU<^N?t8o}F znO-$I#cS97Z39`1Xht~e+GZPntn2ALdy`6s1 zk9Ksp4Gv;!uqO@lg?tuv!tD=;CU$5bk)Ac;nZP3S&=r^0BOGdnM(>VmQ^$fiIuzv1 zFpJv-_}_;s!`o0s3@d?SMjGJ@4|Y4A9rgiyj06L-1SinQXu+ zP>JSNze)8?y)v?WqHBD)_eHQ#5 z@9N5E746Vf-Py?`PGq3i=V*~-w|!56<90%@b6K&@$N9L|8I^+c+d3Ha!XNlOANg9H zdCHEQ@4wU$K5Hs`_RewB3NOD`1C95Eh6Nq@0~7ZWd&9V8b}1=klr% z@}jmpjoMG+*_h&Lh#-ke>JVAj4HwPBK#b|waN~eh}00@&+GOEn>$DSQaZRV+SME?D}>6IzfZ1aZ{jqDb}N7(Y9yb9uKXk}yH zmTSn4&tmnwL%~ee1M|iuV%|b`w)<=_u z4#~JEG~%&0Os7DVLA)jBPsh;Nl#ImL($ry8=tP_y*YIlEBwD>F4#tBWS7u_qtB8OF z($c}}Alr06YANunf)_1H&L?FUN8N=ny-FXO8(CNH98NDg-F|7_dcL)5`^QCl9J?}e z+FGf5J|4oS`2$j!3Y(>-CXEEK0d;6M z2$O;KdK*rUzPeEVI}6&v|M;&G=J^rl$8>63SQheONyvwyDL0eU9bnw|5_4ut@S-&~ zY_PzX!@M1L#u92__MADV++6cb!&;ki-1oExzx?Na#W<^PpJ9v7wbQYavUDkf6D+-X z?b@}?UmnYePFM1Rt)~E-z%ap*1OH4P8ke(I$3;hsk|*r>E_u%~gUP0bpEg%Vry8d#07?xO$i z6X65KF(wL3kgPbbzkkUlNvAoAij#A5bIH$4uQpq98wg*~bzljmBhE!f&vwP#orek& zt+tl#Zbj;;xNv^v{v=b0fBsicD_g_!1wQWt^W{_VC+3gkS6d5i{2>QhB_C9}U=*at zPc?CFnF9bO)ZN`}CF9*2e0ON|!~gtQ_|dUdy5gIRY~*Ce?~0$aD}JZa`afDYC{An8 zDmzr2t=fK489?+bwn9nZnPu$lQmE`&RKnz=7kIKCl_~iC^S?IJ-6Pl3omL)ye#zvq zOXg)Rx-32Pc>lX|pcKtv*!VhRl>)jqge0xOgucd>EnDKc;=SFi?^TK2qYnE7H+i)( zX)Uqp^76ufS?m0yRVfr)t2MEDF%PjVYh$)w*iiDeESYUwssHz>@FDfPGnofHnjmIXRn7`)*ZmRx)hVPYnJ{&Xe#9Do~X=gg`hRUE6^oZ+9G^F`PU zOk^^;@?c3Vb|%*Y-!?+y`~-tkn+W@<2uA>k-4h6j@1rA4S-(r@)9}}Z_p@R@nkHFjwpV6ILc=lt^qDhBHnr=n&D%Z# zo&jDZM@rnNNA#~#4S#n7FE9rWzDU@^ztC7dH1hoOT94by!vM3)i<+4 zBW@gF?|*wO7c}Ei*kxb;aNxdihD4zJ&S$_I(Z$QRALq>f?GHZiIQPI~yvkRcoIh@C znY_e|f^x-IgP!H_Ruj>hM4)>k574zM42%!$9aXh|o!eg@q5x zJ4OlXwJ{Rq3t+loXZHUBSpPe{tnhhPQfqXg?>(fqd1g2wJb0WFiLq0Wm@q*$v}RHX z!8I4gPFYri*f@Y?!P~N3PqobUyQfB7!~XZ5_$fWw-^Xa3Gh@RcZ_zacVMX(!XIy>b zg=<5hz+7<7wDlT4{?m88=CrbZoH$K6^`(X9OAG(}kL|Y2i96#ZC@Ul@c7_job}RJG zZQ3b##@=)Hy7lX0CT8|1_N_Yfk%Hc&8e-7-w$j8|5IGm^vD)Fr@fiB|pxZ6%C>v=n zuN$T^&p3TK0tQNgS)qS^#Ap>Zo4v-=DlNGn!P?ny=tYm-MR{9`+>oB2z zLB)A-2bVn23MD(ifhL(2@vRFb#w?WZwLf>jZwD3NdwZPz{IZUd_-Pwb->b$I{4OTW zf4gs4?!IN@9=Y!k>yLl>;9_g<@1oCzWs}Eh)1nbtrQ7{3To_?vom**@vibKPUlkvJ zf3hLY+cWapb|)B3nX+tO4rUX((K(E89qd`RzjOQW&yt)t&9l`0DbHLOfi(HG)4*u%~CX|l>DNSz>Yii+dD+k@g{BUb$WUMWyy^#z&)x7?3puXIsxhMQLu(# ztbI`V?=PF|_?00dD?_#_t$&=CW_s4`cX2JVoNxU3ZR~0E`ig&EEuq#oz zeU-JW;zm(iE`93!uk{t-tE^3~$?p^v5|e%by!IV*n!v;V?Q-=z7o&K*e!Z!7!f}1t zm$&s*B=$+EIE^DEZ{z8V-`q8q)QR)o9!Y+7BpIh07xXY)IVJEsF9?e1|Mu}^J_Arc z@OY0>?t=E*1T`5wpSzQNMl$bP@XE0~w0J-8_SKV_=zYj-EgHrHv+*z}<~ znQJI zZ1Tn6K`m5GMN>31{8ax+>=P&YU%x(&_rnW<6=bx77LLxSyo_G(P};xT5&g~-gN5*% zkciWdJq^*!=B7iDJuJTdi7|2{yYp$-($?{oc-mw@&z(x>f4>4ks@#P*C(D?nO z8=?>tTON?Yf--LUbdik8&cuZ&vHuOA>7}U;F4zg{o;Y7xv5R)&Ab-1@wk~-u^WsZ{ z<4fd2Bc?F-pZaPFz=7hm4zaQf>u+S<{r4cbxslT_rV~Hz8Mr2aqffS<;!v39izec+ z&VOsRB*$#YCf;Ln8lcm0c3;rdD>33k2w;+0o{590Qnm8UimuXGh+0^yIJ+ki% zugnfr8C{%Y=@IF8W49YOrLU}u^)5|X;=hN}*su6$8xZzYpb{Fu!W#<3S7OmKau(jH zM76R)%XF`~^Jsu?f+FK~MU2>%@f7(}OG^u>CLsUgLe>5scXK8u*zUi^m$-iAl&i7Z zqXe}B<@&9QY0$#iih?kGl&I(i zkf&xVLz1XmcNUnAite$|szkjOh;4&za+q{=C{ws3P zOR7!_eGkga)s%{6Dun_`${&!=yckl6sAFBVRNp?7E8tkvj_PN!iqjJ9;Ki4ac=o-$ zHhPl0eh!2MxTeh|NeZUf7uDQ`Ze!GC)R-~r0oS)9l6Nj;OkVnDqK+x$T)8ri2cz1b zF8i<1LccBL%P|9*yQ+uFn9es$T)E2_0<6dHHh^jFzB}dmA>1=RPswuleU2rB9ZI2* z$e~^+F<)BbqSV8pTbW3Umlsk`_1?K-NhsxcdmhaulmmF&nIKG{49kU7@*})!J|&t~ zw+Xlf9DMx6?D3cAKbCJUU^|!ncc>P0gpGyLl2%oj=TYTHt~)EtpbH5IR66$RPrA2~ zEA;cdo?1A6{%8nio?-sff5Gm>qzJXOwe|7y%LBEHU7~`dwuX-qW1tLyWdm4$TlSCx zxfEqtF00TyJ%c@7_zi+{ua3qec!gQ&Cg#K)m+IiOmd)Mk-08SD6}wsZS6Nkj-~TV^ zI`(r{1uYA`KAb}Ldo;w@QNqH{@TG0~nzzSpNs0aC^B#M3af+f%4TWL`pQD71Ij2vb z{s`IDmRpMBDG$-=D1BF2u>wn1jMD8#o12>x+Ujkvf>=$}N(r#~5-4v+P_8dOJOK^o zZ}B_yuIA1#t_j4e_VV&Vv( zDOjtu;=8A`-f@nY#g9YSQ-+5^sbDTT6{8&}?aahV@pE_yd=w}XS_+dw{dCH=L)20 zl>k=AQ@h-bwFm+bTnbanfS|2pm`G2GkSWLIUA}lx13aXvT7P|W|JUTyG^+YTmlOmk z@PHD&nk1c6b+M*i;$bPq&VPG3pSb8h%>W$;a&2Rh#Y;+bh0LT$XXV0Oc_^4PE%Yky z6tQ+Z`w?gxFco|`RiYGOjs7}sb@j=XqB$uHCpB#KTHh7^HAzfHt^KpD%(dyADp9@ zR1>EI^top(H)Yn=*y?@DB5;N%ebiq4z;EFbkW^)Ii}<30#z-zs<*1@g_j5JsNij~f z;R91eA55~euoyROn(yn^uf=5;HP)v1drC!ywmNR#=+UD=&4SE(Xs{3vp8SR3gC$ch z;Sc$X$zv0yy+@L`zGZG{Wg1FoDN&*OyB54Z@CW_^HECPOwsq^Cxp6yLwJY%iL4MA6 zA4{3m2CZeK1AXOW54j52*nU`11ICw3Qd+|GC z^~)D8Qq_b!hwKW1oAxCe0*DcqGITKQv)zUB=WW^F@27O>cHX*Lazu06ws8|CPIO?f z--OzoaAzw?iB`H%wcBoqN~`!_DMu~D(9aMM%$7{Hr~mx_7%r6PR)3d#s~A$Hn%V4w zX+h-QY^^Ogv8d@9t8LX4YUg0&t_arplf}xa=DXoYabaeGyRE()%%FZm# zHJ0UlldP#ZS+vJ_FJI;!NtRu@bm_~)YVbU@Sg5OMZ@--I*Kjy$?IF*__r(hhRQErA zHM*i`yp@zQ?mo$X12(MIM#bJJ%avMmLI-bdMvst5t&X%7hku=u)4(j5VAk@~meb^~O7VEh}u}z`Gmt3f+xn}CI6isO~g{M(EjVFb-jo%v=ZGYA! z+jY=}*?)W=hKW8%XFa|+g@66Ah3g(25a3Xy<3V6Bu*Q@rG3r3; ze;c&Om&O@-N3Y(|7QW)B1iDim2z<5GRIcW>E1ZM^ecl&mqq(palOxh04zfjJZ1!mF z^dMxLQkpXN;a07llsVM!HPYqBR?fos5rf^UxYUikVx8bviW=8Q>1h4PSaLg}|pQ`B4D!$UH zqB(In*gMZLoelo52G8KILG!yb)CbTO4KfFM%AmG)ZQyjYoUT*Q(b}|Wo3pY|fAtQ+ z-sNCgHd8G~?$;+)#%&6x)I5?agyL#^!$L(cix^#CVnB_VLUv+r_CHH*UAs1CllI!3J98vR{98U&a z&eYyC%XtNnUNSWuOTKYu{OGDN!+Tr%@kZ3_sh6J&y+bPtkeXyIyKnEikKUD#f3Lpc zC#IHeD@&S1F+++h`TZgMt)pWvCMpLj&@l1K%3Iz2$tdSAJ_?dh2Qou0HW5*Vv zPHJnkY6$}GdC%S3uD^QXgbAl{!uUu16Cdig$t>G9igFusKJ#|nFI&$Bv6lxdY~n zHCy80Q9Q7Zh+kKgeodx8kM9Eaz?Z*xPY&1rA2>2dn~iGV89uk!@~OsDKkZl=AZdao zqq+Hzu|j(Ma_+Ss&9rJ7(jBZeN7mG`%lQ~X=vR(G&jca{Gj#PiuRm?+>eU_d^N8e; z{tTo$;tLJNVR@enNR%@^KBI6sZlkdCK|nx{WkuG=MLX_nG01jZjYh^fs2ZX`RwRT( z^|zLcLD0Zvr^S$$ba?*}wMGv$Njq1j=`?UcIcd&>OZ~Cv*E8Sh*jZVHF$eKQhT=I< z%uwG>U_vnH8=&yDPis!#p%z{*l?$IXIRa;)1s#FL%&F#%&c1_h0t6s8q1>j0+--H^ z95(-1U_@hqRvC?|E+{h9i?Ej{R`)F z^y&@HYkzqk2MF;DjBitu!}sFVE7`eo1z{|)7G`hbCQJyZV~&+pnJntfk3Rq#t_?}B zX4ATe)f>?7K8HAsJn&;xnNyGtH+L(DMoUK(j*2P-4Kjt z(7fChy=i)UoBU-{?V3a(gYPQd zVBP%ZdkEYNHsgZCS@w;C6ivpX-RzJR%&w-2U2}QdZsox|H}PM{D` z`A(M*Wi|re3j`hqoP=kr9nXI>)VXPH%#~;Wjh@j+jx_Vk>C;BL({w|XN*w)7ih5a< zxqlK07mS~db$n_qwDQ;$ok9(CHj}vSJLB}%?%OweF-lB?fWh`uzh7VBSrExpQ(AfRc(11!p@lttAA?lY8^5x0liN{t>!_hf6LO?irV6yHI_$Z&- zw`V{VB>?@KpTdq6#lL;OL}VwskE9~Pv$)4 zAck2228|LCL4$h1M|ci*YdU5Xs4x0~tr;@F)_z}g1i#-W)ed$x@=?sN6}C!f$Rn(& zOO$|X!dU6s*et>I1}sPZp!R{I9sS}T+-?>_nPG)Wa27hvtdHfY9lF`g04gV*9Q&eY zUueubmb`91TkZj#djT`F{4D?sKdyY0z<>NMJ-rFQk|=rh{r*stlM ziGyJnbCgB+y07kryWgy{eA0&;R-T;o-kQdqo8FwzG?;Pb=e4oztXM6j>MRb`1f({v zX2~=irt0g9pZNBk#~0%vsm-HbHficw{MVO0lwvjN=vVPWr8?;BdOzp$em;{Nf0>}a zE^;M3U>Efl@-(K2Q=rBiOZf=Z7UJNNmwAUe5_jAcMYVgfIx^$MBtPdcn(~hpewR!> z&4mV8)9YKSd&$S4z1g=8d>N&={#&ebC@teJ4k~wV%Cjft{NI^fpbJrq;18JFvhYW1 z{?TIGoXAE;GZ&b0oRri>%ySO-`}N-8LOJ)UC}y*!WF=jR>KI!=?Qh@18mRXxOSO%% zzi@!ihqUEc{TYv`%C{fTfc_{R$OE_3sU~}G`!zdoI)B!@kYxPHOjuIi1}LPKcbp8D zLGSplhF*{fGt?!;v8AZdALqY{QTkx7B!1r6FUMXX*ndPw^jMtUhM%bSp!!I%1x7%~ zffJTk=;O&R1ovAdz=q9+4JM|VuT5|JlM0py*#C$DbMlO!;;5AHDL+M9@KfUCY7QCcW5YH44xjF zf^sfsvGLT8nvSaZ)f40T!j&9^iQGU~e4YnJSS`TEq5zw>?KTCs6_yp}dFq;C%eeR4 z?PUs^{ou3Rl?OI>-1zaHa9mwll6R!T5d}T+pL^E5xr_eeqn=pafA{^dm1KiBg_ZFS zhFi5?j+UOa#&blh+UMQuH;MM9>Gt!X$en)W$7gfyOfh@_-Nj7AO>bGv3pJSIeD=~; z5+%84Ut6hIo}Ww}+E&{i7_LCTk6e33ux{@bC+&h>M9AT= zDI2l!IX*ifMxmpAVpaJyvA3|Cr5Y2=K_SXQC3z3G7oYKhb@rej>b?yC>D^fMT90va z1ARZ?RzrGD2ttS21(LlIagikwfd*sOWlNoInrkVbtSBSaGfvVmd zddg9wN87d`;;XX>S%l%R(_p=53h8Z!Ifk1U7<3tnXQGMrImG2h3DyLy1eBjw_tMuE z@xT?_6b?k&vNLD$0b9R< ztMt`x^;sG zGHJk&*H>9fgDzaM|E)M?npb%$PEY(kILnuv-I$pggMVR3s_ojK6n1{dT~q^m_K7-& z(C+>jVRv4jMm;uI2o?xkT*&nD1qc*IH6Jcx`fGR_T6O%Z7fRjfAZ4J(@hI>@ z42eqE(0c(X54aW@EA*DiUtvS2hP4B(9^h3Xk*CU#?FpOt(0o1NcTj!2LNOWk?b6As zE)Qw2&KZFH1|LO+%36v&_HDhr-{+`N_a#-QsC=PK|DH|5k041LwkS#13jQIlP}{nf zAr9#6XVyZIEt(s$^MVl%+XFeT>r<_#ZgyqI_pNSuP4`Z|6{AzVwIj=2fT}Bxv zMKHxEVACb+=;%})K4-H8*8EDLl*_;OCy9)l%&(~roONo|Nby#P1 z3-&a;sV`&-#nBL^8H>_Wj+W-j`F0ldGJ+JC_4V~II2@}F^$2S7XQ=!V$84l*DLO)Ip?dRnjZz757*tNlQlkVn4(_~zm9@|C17 zg{lDg{uP`b$o#r9>)m9>=+7j??|&B*VN?4|@l?-j;@?}5KB zp$$WmmTR^K^B@!oiplO)gRr7^tYl>A$;%IogO1D#Ka_~%inOG6oZ@JBzCv$Qw#OGR zn~N(nNfe0*LjzhPLFo^Z(Uf+W`hw33>!y{;b`PD`*SUH`tpc!-&$u;bddJjFT+ zA7}vSfS|~QMycZv7<<2zv>U?ufS)ixh`0|i?f1mGS{ho8``*pAeMn_>2#1KwYm<+Z zjNo(w-J^o?K>)2o?KpZMZ+9Vh&n1{MJ68Tw1j7s(s89lsccMgP zae41SB8Na!Buyauj<1uz&w2rELQ9_ny9_CHcPZp7u`=oW&OS*66DdLglIw$*=BG9^ zZ^rS?P1Xf6S>`nB`+HMFDc>=Gf^Pn^4o2@zDn9dgl!KJ(N)B}a0k>_4(zWxbJ&-;dtK z7u#Q?ep+;bkuWy=I#fC3PW>kOsw1D8vo#r@2#y-s>xvbGO8P00zsuwc5_6;q`co_Ke3H zKKEwdGyK-Vn9Y(6`JvM=bhH>e_w3MHvOAk}XM>N_&}djis!33XuoU;=VM=eGO@}cW z@)99y+|;QTAhOVEI)qW>SqlvwQqX~;v3kZ3j}Wcf5au=mnmy-61u^>kCq%CtAOqxq8g><3#TJn z0$m?`hdN+Ourp}}-c^{_l?JpplWUe!mSl;pjQNtu+oCpzya#*MR1ltrVX!l#CyGZu z07yiHdHV6YL=eYoCpBtZfKb{$4#KJtiFjgy?b@TLW;7RoZS3d~$w~PKc@WU-h`WoP zF6B069A5`62>xcNRlvnC=u3nt^JO=dU`2&}^T*sMO~)2@Yt=H0K^?y+qb?0>zW%K6 zq$S|VU%Y%7ftK&&)hA{nld6MREUKu9ueE>BUoETg{IR+s_3uSNh*;xe6;(|D<-#tac~ zGtoaV1}*;quqUvAlXLMC+z^3Z5KRN;`tCn465drU%VqDj_6 z><)rhlSCgJB<0Iet50KqjH0X3?PcHNrV@&1nS&vxZ2;?NaYP|HDB69yC^KdULs5lV zrm#_rozE^mS`ydTEfU~XS&c(W$-y}w!7h9{V>>dxE@^E8(60f6grfPQJ|RxFrC1p+ zG<-4&@9ZVO%w?dkT0D`-OD#r{84%K6$6hH=U?SgdR78DcouADU+)ci;!H;|To?N?Q zIG{Qp27&6jmt+4X!xnsGBQ#SHu(GmO-$6t%vKK>*kEc+WWVta#qLNMIDzO2#4x zF-$@U`Yqcc)(MQAyo3S~g2tgk^GJ6FYWA9%+%wIU8LJ*0_#ht|I`=_u!S$uHFt+N6 z2U<@iAwJ)~@%r<~I2EciNXBTUrKM$(8}lUPYri#PBdzyaEQtb@R*aS;nc1pTN0=8y z0FFHTatw2ID`2%fDyP>SiH&4Yd~t&P)YyGH8s6WSh>GbI_A6~qwK3Pw)HDYH%$Fu} zLB3b6h#xv2|50ahZ%vTx|Ra|jiNOyBV` z(zBWqQrsy3S~-Z7OEA&~2M}TW?)9X?0m*eyYV`zsM9p>UM&L_d03~7pzsXda+7V>R z1!6+oG2n#Rg--B1{d?msh|jO< zW-_B_n6k$vhKV}iY8~k};%S=-s*N#2IUNw%myFKX*f5$i; zz>68-bg_^?c#^yq$if<2*WQxDDjI=<6I=K&O2ZojNvi%M|M-50>)cK>`u<(O-e1#? z&W|M+E~0AzI&(X*MKzy>-VS(H6wuM>&5J9$Y!q#V`VN!uhe@SZWEzMlL||S@=9s{; z`XK|(nm2D0Sn#z7g9K+1S`0t+If}tT3|kR;yIm@?wuANV+Wa#BbO6d0n3o&CxT~8% z@XD4ZzZ4K3>D6h}jG*{(K5n1)*|QMjADkB9SnA4g(Mr<3y3=p z;!+#dfGx>O2u>sO!`1yz(L@2*9>P+_0{2dBowIln0yI6JO&T*ydcNtlGqzxCf^aJU zCAGj*WKttbDeTwBLLdPfCMP{_N;*8;o2s#z4?}heuY5 zPr?A3AE*vgx3Ue6jkk0#C=~rT{n0oK8i3s2@l_!N?up220bSLj$z70`c^b7s1abh$ zQ-rg^zdLk$@$p+|sJY~YfYjvD9ntGS-qNCaOF6e`T%tmL+!f`VI=L0_K0=lXZsFIqCVtjQuq7e){meDvM;tq~Q zvvVxgdW~>#n{ea90qg;t1{n98v@1<8=%g*SE5YbI`1@ICIUd}d(q@bhNYW?Bjj6Ej zK8I8Q_$B@@dqTze_ZepFA>&6{K(-A4EadP62%c& zho$||@S02%Uqr2hI2>b_DIp^xMj0h0Cb_uq9Q)DiA-OHrJ@82rv@L z0hS5Qwe0ahv7!DBU%Y_9_A>eRROpS!c>%>of+p@%nnb1B7lJd|zb3y+&dEmK2fi!y z5qXUtLP{MPox!J*a@y=&s0(&`Z8UZIryb;6AuTj_FBspaLVX~eLOSjcMnummG0n%2-UN2O8;?Op zJe&z^cGK_IR5OmfVAuT|DAibi8^XOnEonzxZeY{L2#=$M#z$$DR(W6-JIkkjL!J<; zd{T_kn>6eM`ayM$M<}EZ-MWPttRt>pWW>e2z?+UH&=7q0IN(Wq+ZoW(t1%~w)v-YT zD_b+Hg;?dp(vA%85xF_&1XA%2uq>Mg2a9oB$d^Vwe-5cxa2@&5s0eY@B9Z3_g+a=Q z_hG8jaCO(CmGvFKGYSP`GX^2aOkj%p+Q=qc6%p&3+R^j8pLc&0^N}~FEj-Ub@mB-0 z49^b->^jtA1OGl03#p_kC*3g0cg!o#LX%8QJ)8F|R^wGRrKcT0a0K^V(FxtN61iR| z*&}chi1d-jJMow1V0#tqo5ul`lhBT=REM{g17>90#EEB+gUw#}j3>=JUCDAjhi}|@ z*_~pba|mzxX@_ntuF9dZhci(oxt(MQ*>WD0C9><4BrAYOI#n*yhCn!6L^VeFUj1PQ zeTX%P;_5quk~s*>@L%=IOuDDf#XPk)LKF`27$SkgH6G*p@-##sQTU8xb_w_83=Tnz zvs6}o_$I&9n6WX_{K_|wvbkrX$T~gBz(h1^$)P%cLo*X z{vNeqRdP{6)B>MtqJBXpyoA2$v%7h_k8_Y+HsWSO!T1qwtt@PY21kL${+v0rIiCEC z<05v5z228WmwMtsr9M4(3YNZZC;u>XBs##scrJ3sJ%c1!Jh^iOP@qZR{v{*47Xz`! ziChUx)+`85L0)@(IriCJipsG5`eZbsga+x$nPgtCyA+ibk=LZVWy@G7wa?@8L}4Uh z06tjKg9cgT{u9(lA`Z}xu`xQvure0Gi2Hd^S?cyB874z+Ew+2*WZ5+s&$=Mo@^#W$ z$;FgYJrttjc52TJ@rymj{tC6G3>k7n+(l6_UOc+v>@GZ^QSVoSHblXLiH17^eks;i zVY>o7v35r9ccGH-^=RJ}aL^s3_2w(9nI04R6hcMx=A#_{`Xm=u!vESeFC4B~T(*P< z<|n(VIt)i`N{yNzrm3m@3ZO}e$Q3=ELRcx#T*ppoA|ApJkfv6NNBO) zCS(Zw4-I578WOEz`gx^>b+)}5KhiRuZmU06VTjM^yXZ`Xb9ZNW?rb`h%t zh;Lhh(Q1%JVr2dsaNEtA!x`hkAgSb>o z9xM1hTwMkLjqxREH5GiJ5y(#hoS`ZpKbK7Pf3p;b!Jzi-}XMfPG7m0II1W%f}Di z*FV+K7|O-OpU=G8t)+>6cuVHM$2T!C(+?zMiJS2nmCDx?Ys|8b@{`Pvp+9|6m3L_Q zPe1oLo2gQa3;u2A~ftNjl2c>;*{P{8vpr8Y<02^LgY;33` zx0O&WsPrB}<^oahq*)s-UeW3C#rK&?=>Ds^YUjza?WO_!r^mj02mN1z)1Qa%xdfK& zaKD*MWH&f!R~GGESt@ek{Ji}?rY#k8k_;A7`ncunjpnqIcxXa4UEbb56SlO>`jSBi z6ea;#5-tWufE4n^R*p57Q6myI>m~Ta^W<0}TB=naEDhIp69u}n@2r>ta`FXfG(iLc zB5JSFJIlEI>NhfM$UfGe8_P$@gmKpEphY1Cm)SE)ni3nC=fZGN*YrWT^UTD4dkg8IDq3POsKnB-`Y56 z2iCnb{v!!YDO|P0V0XtUV+F}PIRf?zIBYBh`KhsSV-)gM(P54ByWCQv3ESU_8+WQb1Td2hAq_kPqL6_@3>M&!^(EpfM#$sR3WJ5f3I%*}DM|hZrlMJ5D|d z0)MbhkI#jInG_7l2qJBdrT}f7J9<>4LMg^`vYd zag;zNK=4rqU^<5m&5W5d*DCqWGb3{XC<*ve9nWUSgFz}pYNps6wYJ0Fc6DhK0Bi6J z2oW7)Qmdum`5bil&iUCfTh^^RU8KGwsap9*L+ntRV~RaZ4g5g5Of!Z_Cx){Kd`3`FY3WZQ7K!>9w zoj0J{|GJco4WPMT>HL>kZlIY~irR3B%DQfVTQvt3BtZZd>NHOKbE}l2YSO%S@g>!E z7RIs3Hl7AR^0s<`M?CdHC)}m)A!`rArYjQ;(jaJnNg4Q_ zB?xY05?SfPqPP!K2xrLrHvTD6Ir_n#_`p$U&=RHu7{jVMdr@f1N}_5s<#qb8rIjx& zk)QW%7GN%f@a>=m3BL*;9sA9a0Ku*)P5r*vWjcbRj!}^W&?yu_2HX;^Rwutd>%*DTk{Hmt(Ibo42k#P2OzizMDzkW ztcBYbABB`#Nl8i1H2s2+T+_M# zXU`sq|5N{v;8Tr0r~2@58sKSaC{{)^(Oc>YFlxa3u_cWW85v1ARGw!n#y*Uk9Dj7Y zGlZN@je)y6T{485uG|!2(uP_Wh|k+bAw5-KOaTm}z2zM|hqiM#cqr@NB+qDTF92yn zZZ@7UVF%PQPQS0#zrl?fh^xkYGByEFJh0P13?y*((Dlw5QmBX6DY#=RpC4PvV}bWLH#>ILV?)--igbr}QH+xH)FXt&CVf$83s663AlFGd zU#u#axk#*kBW^m@I#N8qhnO&2F2pb6V!4PJT>40l7>5t&im#%YOWJ{;7buiW(vx-W zyJwJ?@#8C#dRNiu`wYlv#XrWE^OAl(Y*660tCVx#aRgGawDndwT$lcL!uz-&&?pqb zji82bJMn%^fjTfa#AZS@At86QRjEULEoZ=4MuIw;&&jGXcIEsOj$O+&+ctE$8Oj0g zUn{UIqtC|9&D3j{K_#(|2rD3k1-^VDzL)MQ+PNu~hIHnHT`b1C_sh+lD_jz@_3U8y zYP(m-f$x!Ex=}QxRrQ;3H_Etq;n)#lp2V#FsS71G=eVdwKxJ3&%MnVnD!8@!vDn*+ z=L8WmWT?pP_x3!Vi!!SaB9mK;nn~eB>?#Wym^G%Q@|5#~5Vq~fbXtnn)>)D?dkDwY z7ZP#IDw^S3qmx(Yy72GUXOYzGzIM(Ee79itrk$N(RtutnIYP+0nJ`u?OFk+IzBmz07N+OI6VCad1OPg-L2fve&|M83U5Xd{aY3>-UYWQyv$eVMCyHeYM@(FsHiF zM8^~#pE!cZI(-#}B+<@>tIkaHJe{zS$aUhkx%n`?$&!Rv8JC&3viu^TNu_5yH!}p8 z`vu~v4?IqLYSxW$>=!J6Dw5o0LOhLI-rs8A+3Dx&YgZ{nM-W&GRwGMEI-JWBsGk>~ zq-HTvR#0>#huf-H^0)G=Yub;5;Aho;4__H$lcJ!Ai7MWGuu)Qcu@RJKC2gxy+qSd8 z*1_42MX9OE?gUdLY=3iapBfj!4RZ*Az+*lK8P)Jr`_=py4uW<@zYU>WQ4aL1X>=y) zV&4?@%8(BZ4oqk%#^I#$<(p1ry3GQSLHhP#(5$vs(_}zCoh~`DwU^yjlsJieV=CxT zWP8D7`(Arsvq$d1yuh2ZUU>$tiIc+_#u^5Z0uiRVr>VdX0ja31zI*V`na?|j-pfud zTyp9W@l2peU1DdG5kexQ005Tm$c+o;G{B!staN7_mYN^GxqDVix0H&%Ar+KQAru~9 z`HAd%Wyqo&hr^I?>Y_p>EIs8ryfvfn!NpX+ZD(Uk0qMr^Q6T(%b#{y-Yg)WN5nWm{ zL8178_#xjipv!+EFDg@5u#KJHu@9@= z&m+2pPv3onNFy}?p-9OLX7;d}&I~34{X!f+e#%@>Wa#HOxo!FLF#C^+FKPX}bCdH+ z_i9W;k5+!B;N85l&uCD0*y$SI2sZPB96D8{VBOpcgw~N5>TT7$AbzUBvba?NeSCy} ze#!v8Hny&aR=;xA^6O=IeI|qk15TU`ttV%&^Gy}Xx@4fgT}dWnC~Jt~1CLT%=5DFG zV{8?T3?Kuv6Pqv#4k}$tR>=|(5hh9A-pvbg<&YjSq8S;>Al~RLlRcZ&F*F5h-?5a* zs?N(F9W3a4Y#Gm?$N%(1BLYyUDw#T1{Mrq}Ddev-6SWYDtUfN@9Eqh!)4ag6(BNYS zqvYM{LybCA1S_m2Au1Nka9E<3&KI{ir0N?qr=)35y2+?{P-Ee)V9R0F!-?5PqNUPr=|FnNvcKr7t3{IjwrS zJOfX1GQj_Oh%s$|{#&HBj#x@JnmOzD%MmZ;>g51 zzYJ!Hk3wuyfvaCuAGX5h&$~3un+V!~R>6I=&PoZeJ#iQAZD!z@=Yjtx!YHuAt>1PE z62aV)K6NJt7n}mN|FLHPtNA9l|Z~Z3=S{#e6ae zwQQqr(yAW_#n@b$C_^#BRVAv&n_cx*R6w^SaF<1Mn%rY_EWW3gN)mO{lRh#ogvO61 zzNO5mKPuMX)R#`|XYNKICKL|QKwul26Eu{zj85aya(Y#`#3Uv}R_9Tw%|fCDnu6Lb zYz{iM;Wjs#SgKsa@p{~SL5iQkHyiK1UOCX@JoWwYRl4+pTnI|KF*-hil08s2MqFP1 zb(73`XHM0hhFlu55XfJ-b`3^jQW+&s2X@XDWFoucegRLr8EV{=Fo?Y>dk1frur=~IZ&9K>PD zk-obdk~tV;iiD!Y$Jci~bQKSs=|@Pv4a3T0o3wpc9v+Iww3QSJfYurGga%jx&Q2V~ zza%%#ec7CLDi{gdw$F<&cUNUyp50>3soM6_qfA3qO4Qrx>B^6%+1VJD+aAAb5vB9^ z|MB+baW(I2`}o4fHf(KVrVJ$&+K8lKnW<13WN4sFm6YarvCTuGBt>N?sVEtmYh|c} zijrs^WHo4>TdlQz*S*r-=R9XW-{<`G+pqKN$9Wx=)#vkm-@|oZ*LBOzBY2F|^@P#^ z2_(WR#!&Zrce?c9apd#y0Fq)WoIy1hKXGDpw0s;GyI>Luc^r@_1MXau{b>I!R6(_ePFVlM^#O1J%YO@%Nbn)W0z+43}Ul@9=$C-Zy7&`)y6C4tpTkG^Rsz4 zB=HW7(}|tyRaR&$Y??7!hKg$m>Ug$c`lGYGuIqlf6kfgiLoXt2N74$dltk1qn7|SO zv2IxxH%N*buh9uM%XH!tAUM)k7$}2<>UA;Z$e<5-Ol(^gmDc_Rb;u?GpT~oVj>>yM zPiuA5hO+>;TCm*t;j?1+@(uIOhYF_jV^F>6Lfod;bN^E zbaZEpF+S>O?H>g@3ld5=d9>@YI#B7&Ao2fk*C`8>;e)EG;$h=*gRL-ViYQ&*bWQr4 zaq`p~%QivBaWi|w&FuNYi<6sBkqR;*S}xgwOt=H@iOaFKFTp@3JbA@us2Mvh#-!JxU!Y&S_JOd(ZZLs8|EyUC8rL4D)(#YCFX;|TiJv#yM8Cx?^z&yOymE4~Z9A-sEj z0|*O?03Jbg)>h)pz}Gf^cX=J$&UEQmfa$pi(ibKWeKn@FHNE+Ryd4!6-;>Nf$P&E3 z;k}J=6P)SWnqIuwbb0^sCDrELoJFz#Hso$jeRW}&a6QH(OILhGEg$Lb4)#}pn^OBJ z+(&bAc1Mq53lcrT>>V)F7)_0p{#UM4G|0zo&K1z03+%(I5cp#3nO@Ch9B#Dw^7xL0 zaURk~C6&zLucm}>nin~8eT+-V4Hr;VpHlXsx&wTdbbeYxIh%>Q@IBEg1Gy%|M?Rn1 z4-N|TXyhaX(DfyHJmM}E768Nuz2d|n)IjDWa>TP_*}F{yk& za;>ml*@AUm2|SO~CU`0@L*0u$Wb!6{K$4Hq_h{ciuh9+Re4E8x@8GC{4gtu-{l56s zU68BaL7PHNgpBTkJG;U}Gw<3fKxVUV#J9G4W2&Ilz+ZGT-6_0AdBA+#{!0@-9RprZ@#Lf2Sn zeH$;Eq>wh>-kiXXPNNGH29P_C^DbKhd#-rDDn+i=>1!FbSTz%48J?n#kN$ zt9Apdb_rxb4u-dX7Rd|%?@-u^tpx>J%*CLM+}iHp#DZ)5l7#EE`?vNlXF-OEespL{ zIlu9EY7mo{-2Z~gJnC*eAbZon%l?y9vW>_5bu*T3+A!y#oAd1* zi{PRJ1uV2B(Ek7E_QF-8?*NMI7W?rlwCEIM5}Jjki%7vV4*wd{Nhc(ZM}ILgEKT%) z_|KJ=&N^#v<`Y2YgveEp?{ClFv2k%*XBD~ri1z-~r z4$kQADvr_)y`bq8U6^|!$?YQ(bld%C;IIx-ia2}arxMgm_z*ve5QR+0$R+(yc4pfK z7G$oZUisOH#=CQ4^)uUFSM&R!ii(OXX7<(2LyP{4O!gu#Zht3a_ynQQ)P;IsoFXE2 zV0X!8SQuKhQ%eMXCaTRdP+S5IRVY}rUF=6Raxq3xA~&<|zt(Hw2e54gFjujdx8M!y zoxF=Hf2DC<-2SWyxX+8SGr4yGtPmBB{0C9HeuSrf^kvSdlR(2oL zw0u!o&ciE^qkUEYZV4j*?YpBl^Fuo)ZB}Y+E{u*hUYy>-KrNtJD_*;=N$4`h(pI-m;rl$H{wt!F_U|{k`R@`i;c`nkX&xXhZ)r~bqXGEby3hyX> zH@|b>dHgnF80I>sa8HkXc{~JXu6>PR(NIMJBGG^e0GQ@EQr$ya4zNIDGZ-@ymC=sX zQH$Mf1q*06hm&IG`qz{2O(vsm6s0sFLmh~9KAz}$=d4(n<%U!rgj6IuLNEzJ!zeJ+M;m+$CJh#0LqQ#XVvOwwNY zI-(5{^6b~W19nmc$DOviR`HPT+%>!1O3T4}A}6TdN{u2+D>L+0G*C$W)3sULhDF?TDCN98!sl-U3`_s%Wk^e+*t zZY&@7hRG63cYfXrO`Ep+>GPlYg!yBN#b_#3cmS44(b|-d!rr7opY*E{@u8O%pi#yk zo_cy<5LIY;J!%_Mo0twirecFsgG)HA(Qg&H_M)of zpgweo01af~WRXJe1kBi4~;mOa0dm!{P%|c87&kCob;>^o_MlPdJA&Xe=tC!$V?7M?Z3PSN}XeV0nna*y$*5*7? z0AbcS?(C~dpUCgL7lrMRjw&~)acnWh2P@BothcsURWKxWoVk$+% zRY%V}BtFis2jivF7oR;vs(ZAbkVAZB!&O;}5Sm^pH75^apis{@eV*dQ-Wser3zf|p zl&3TfteZJEkKWCfSj!nGkx$du7T>l9L%YzYuV;b!ONvnw6B8|n!$|Q8fwZb%C7w1> zMbQ=7cfT9QvNkF;0=FEgde@4LS3viqi5>%OLT6nJaF`{qBqJOM&AW$l*@W>b=K!|~ zt*yT_v!GLBXd78~>w!(U3Agna!Uu_Bpbc2Pc{BI~_Gd>2pZo*`D4zR<)~fVl;0>{j zPJCRrzSc`@b?V`Bugvj(C?&86@dyk|$G@v1 z`!vSRRQ~j-@|)3j{w?U`3HHKqpKRr!!vvRT?d~_Bc@}^Xp(^N1$)ZdxNbN8*teE3T4zdaFI+x{Q*Vwm zcot!I9&9&Id46(JcI;zve=NfYnUo*E*Yf*g`d|39gZmmaynFQzbROIW1)M+PGalb$ zT+?JG!17g^ic+RCc56MYxhmxjj2ZsMDZCTy*5oNQGe-CC)ePA{C@v7@S3q$+rnZIx zJF66qV5!&vq5f_zbA%cB3U$CShCw|I%HT0m5^@uKFTv^zToB@=)nVr+7_=167{?J3 ze*yDm!s0x+i|Kbi6*R8@mWm8Yswz@qg0o2rE5QI=nLZ7w+zWy>W{dRD3kSbcR; zgeLi;+sd@y%Ya)a#BR_GSM(Xl1L^7b@pU3*Y{uuqM}O)Elyi~DKKTD{P~eeC8HRDr z?gozBk?_Mot-R1MQ51JFtWdmA-%XJP0}u;oxU3>b|)z?)4-w0VGBFHPJK#8yvdoT6rG@AUIZ|3IxzJZCOV29?{`d zy{4dPfHX`D0UB#yyG-5F$W`Kg99COoF%eeaPFT6LTX}K2K1PRTbqZ6*62(8mOPsb{ z00N+4_*~a%BTe`Nqxjdr?1-mA#&+blqJV3P z`D8!jH9=_vk}&T~fAELk(_gVw_waM`UtQ~^Z?7FL?9n4Nr{oUx z86;@kT|Y|vTEeE&(dF>^xDBio0_Prt^Cs6lyXpN?>;f0d$hl@xX{p90c#CZuET?Hf zjfe4-HmRg>qclq7-@MKT8eJ{qgJ2{u3iP{f!;ld&?&Gv4Jm3RtsKyefVGK7^ zH$CWd+-wYtyP8Xr3ZFlE18ln$u1bC1;=@OEw1=?-d>r2qphgN!KTKkr?2|Jqdzok# z3kw=^ZYGCU9lOEg);t!J1r@XUTSt;91`hshfV`?){hnN|7s{$tQMNPMt$hla@4%U zL8~r{4_bRd z*C`$nv2SAHEG-sUmhxQ*@gqq$@a$KZIly0U(vOma{E?@_+Y9?a6s_y4X$7v>AGJB@MsaX5!Fgk~LDw^y&; zt#SvxU>p8==>$UztU>r8a*JFUaahhk@4&OJQWHRw`~hN8GKRs2!@WJ8X$xal&TPpO zKPcoeJ(PiMJwEVma$&Y^O65RRf@qUDQB(N@T9y$%BE-*gFt%_ukZTmf8ael3WoPwH zjsOrN!0O@P;OQrTpV7(5h0~TG7=J%0U`U2dEGQsB&Yg$uDWQ{qxCUAh<}cP(7oP#| zrJ~)ePJon8cLOk=2`DNaGPanEVSZ>&ZqLS_dxk$lxLTmYAVVP#{*Wpq z1Mlt0F+NNqVU*MwoiXG?PD3g@3!L$mjG*-rmx;STyOm;?kKtMmcou*DXt&68`CkbR z-MMor8NT2KbCn7#BizS{Nqj7aj*sSRKvzij50gQ8@pr`@5QN}5VXe>|_|w4VH1xZv z*___~Y4GwVJ8f#`5ZD4@d$zasvLPxa1~D=~CISbgnZlu0%yngBk-%yNCm!Xpy=M)Dt%1E`^S940h-!7T~!s<9+r z&&%j|=HhZfC-Crl^TlqtpEzsx>;50G&X^_T{j%50b!dJK7~=x5*f5Z32ZM z2yTGLoH}1YGRGMt|3n?EN%|8-^KH<77{_6x@T+@YM{Ab*ChvAV0ZtT2+%Vy~i}GSf z(u#uT#E=?}QO3swQl&+2jALPh{rGio_Q?AesV&p?LLvm-WwcUz`l- z)3~;vvTt8Kh$LIvB{RILwvxq5EAG=!25KNLWZ$*<$CBsp`lU%%jrN<-9jo^>#Wijd zShB&__XM$jI5HT!^VHU_(TzL051JwJTA;OWn4=EccyBxr^I~D)1|Ic2Fc0$l1M0}- z4?IfdZm=-m?Nga({2sV?EAAr3MZP>}93*t2nb2v-sdC--BR} zMzO?k*_!#G2!2HsMd~Q3R*;zbzE|@i7)YQhIs>=}*#BTjUW|Qk{A-Y0js+`fTpQHK z1Z#n?`367V2-KoDO{Rb^F%rIelv|2Y>xbW@b9~~C0lgyv1XXAVGryuDZq15GX=H+h zN;5!_Uw~XXOLx<6 z4BUjXnfl|*>u7TpfV&Y4NR95+wrjZXw-FYI067+NdsG&tc#B6VdTZW1sycmeZ2aO>}s&k%Y)p7_B6iJBrYQNobN)_^~L3<})n%i+%j zxLU+FLb5oG;*-4RA$Gi|zi79U5|Qigp-gA&2Q+#g6A-9xeq(&Yrj7nS@GxcYWX}K? zq3#;%AxN`n$dbZwnF+XF!k|u!lv#r(Yr}BAh36|cLBlRg@xxY1Fv8)iMLm!48H{2v z$5Z{p1gcSJoJ?&jP4|a1x1Yl5NGX*L76?Zq%+Co@X=vU0M7h!NsH7>_TPW$|kCuGN zHweyq)gMTrP@%T-12Q5m-ootet3Q~IO*3IjVz64`iUR+ay1+E%+>O#mKz!tjS4M5+PD>%KH z(%uZF5j8^?7i^8TX~$5Q04*AKU|3EI!BiL9dR;JPk2v|l-j@sP2eve)sAofx1|n0% zl4?H%SLtnoRo-~)$dMVHmf}}EpMAFuUt}ZsAeC_EJjBhN>n^&Js9ZwA0?lPo-IK~y z=^C}*)XWAfLwf`JyN>BDM;s+fMd0PoCU|OE{a!l;njq-f)}d?9Zk(QgNFn*cldFmM`1zsZc8CWKpSxT!o(Eu@!QRXTWBt( z551T^mzWy|!i$VyatN@i8kv|j4>A~q(Z-tyLj?m18)HR`-8+4)LtS-wGgo3?5zaC2 zQS$ExF}2>oM~X-4f1#rX{>)lT%$9feU4YTZw-W97xS;frBrOi>>sj3i{<#TWr&HzW zDO#|=CX5t{jt3x;Q`rRu>;UB~v{q;-M@vIP`aq@fr1VE*1t?LeK12!V-@^tv$VSZ0@N6L!L(=46!Tn) z_BvVYzX|ynf8-Gp$AKexi3GB+vjEW+6}V8r869PwWZy8EOa(}|Okz1-*(nISV@I59 zm?2v_F~&}M?)U6r9{gSZx~n0>W7^O9fkE;m++`BTlh_v#A->Cd#|hy*?4%JI5H<;N zow>8_Y+|QsQ&%}WyPo@QK|lQg_C;217BAjR1J zc<&lQzYv5@z!(7MnG9`cz=a6#xu0`dX!ZyS|H3Rj@HL^^&QE4#gr4lB845Y~Oyi4* zxd}9o2EGU)WTQZO!$)M=`W+zodwG~<+of!y>o*vv< z7`aD}_B3@4tnU35gPdD|MeFJ0qTEuk1|wTcF_FUvr;F!=j3NULiW?hQ0;pi%I53%&EwKk?bO$>_5LaO8I`;yMX19 z4U*|#Kr9DeyY{ImO10k!eMBYDIzaICibO=N9w>xs%1`iBn@Wsij8omf?3qpUDb!U$ zBMHik_Vv1@<>e>NiCMwVtp}hRvH3_R1X+SAyEp7rrBJJi84!l0RcMBe89r`VS%+yj z1wqUe2)fHt3@-v@28B3zUEqyx<}9f5)i+uLe4fBBNII7kxIX%Qyju02O3o4}acB~O z&m@`-Wu1TAGgH{Vgs=c`*{V?mya12EZKvSI_WjW>H^F{?HS}ggwD5!XS2;*oz#-u) zhS4Oz5=sA>CBDp&$N9KF*-tP9nPC>15y=0R8v}%H4$yPehECXM2A2@=HPOxt4`eto zOiPclYL~#80n2=z>>ou8d8DBVxCLXJz6QM!@8o z4EzHqDWm)7&@vQMpdW&POW;^%WQo;(FrugAtgy~RYIE; zQtxA{Qs9=|3N>8{D$0WAqcPsXv5$cX$${pCe?4ti(JBBH8OAt{?(r@n7UMY3RF(*FDu>=VP@O7heAfe}bDtuJ-`=m#Clo8#P{bxWwY}sQG9dz7IY!@k zTTSke+icQ0qnV!z=oAz5LjejO)gy^63JJoQfw?o;uNq6aZm??CTnv#9C@kyHU?M_R z_l0h-Nv&nWKbyvFP+Q+YCr`eXm>i?MKTYKmdRVf+fNVLrZ>97{p?fvbCloUHixGYH z0S~9L5F1u&>}IQs5Ijf;$P+31`g%o@fAZ3XP=*W~*B z2uqPLbkA)!j>Juz2S5V#0v4M6?0>$|V`Rj~9oh{{9-LQf=J}r3z(d$jQB9R`m792V zAxE_cBdMs!SLaCUi>7s0eD}p0m}Qx%ex~Pzh)y3H75Ph+yQKOxYs(kQkSr0Fiw|Y0 zf{9+{-ff7|bBefI%MdD%@Xc<+Vt~{n#4=Cr$kT8OR~#=*W-(Y6HDthGm`sSw%Ytl? zNxB;?$}sUYzF)76=h_NJ_K;soARtO~YMqM!09T~rh!h%}-^Xufz*MpX7AIbKxI=r& zua6VKW>QkWF&Icwqjv5|e7)$v`WWNSu**1$;?M+B^SAuF+pxgeh>NIy24{`LQDC1t zeG7^Y?}Wn#%@Pn$Dsgxs6a5%1;1%p)L6JKgY48;&Vlea&FCZOA zLexPPC(yA4!L|4KE?L%lFr&+b>N$j2P^mtIWqMq>?!l2|)2;`6LhrnHmM(65*b@&f zyY?wY!l_C$nf*M)JJ2f0u5JRDW8<&H+Nrh5cH@!1KloG_OMJ;*)Z+7&IzRaczTyXP z{0{UYF7CuYXr8ep6j|si3U@380PXxu?nWs5ezKrZ-V&rN1U_I_Lxp2uaY>^WldBP;f*)1_ghX`Y_J*!idWRRK)3`dy;A_93TnejmH%eh5p9VBO$tBM zmigpNkN@Bo_^(I;c%b+Nb{<)b|6|Ua%2bx4hpjrM3D(xu7sQ9Hz90@S!K~*Zj}TPv z3)trQN8{$rQRSz4-Fc~)o}OOnX!_up>Y1{fIzS5;1E72g_Xz56*@mx)x&r@IjM?2` zy$zYzW_fQ_gIbkvN7BXgs=gCn3RxR_xVM1wmGGTTsD@GZf!j6}dpM~1rrYKOm31?B zDyB2Qn|4HYrsn3;Jx17^jdM&D2Gj@97j0cy+U+?;4P5#ol~^_if#>MO5(A;GJT6Mn+UsQtDqNIE+Yo%(G1Hkio- z%Iig&xrrVoqaSq%_|-j}`zUHj+}~BYP9zr~5sfk$%mZ zX6}~&17JJT$4^IdZZ~Fv|wGg^l|-de^rQbJBZqp3GNov{Q^bIU?I)cEG}mYFugNyeF9EnE~Uoft_llXKZzt$ zlL)Y32m_U9d!O9ooJc11xOVlQvKqTJ>PB~?HLQf51>*O6`deN0=K75MS09@9&i491 zbF9y=Kz4PZP3R9kupOI?$lL;OH_Xz~;SOK#Qhbs}lqmFDv=0(vyjf^?CYU++AwuP# z#l(yQ(+egUp3#oxU*T2@BOQpA$fVs3VVM}n4en4mUxu}OH5e8Jr76>e%MYp3(XE4c zbR95jS}qDu0{k*^YKr2cR3YD?m7vRDL!TF<9kW4Ve_3GG&LQ@k78=Zw_+!J!pAomp zoxcPM3n0Rj49Qvv?zNKPZT&1!+CtBi#L_T$?&X_49WV^Zvdj_;ogxtIxe+4KTPz{S zJG6o(vKd^y^R1OZZWFpn5>DJw1PpWR=;_-s^bxcrT(=gMG7DAvTh=ksFahHU58w`D@bo4z?mZ372Hw~x z8VaGcAw;)yQS7jKAd5nfC8A@~`t^HJPLq@w1p5y#ULd+O!@9FxkFp3oA965wxcj;K z`E-XgHhDANYvA(ncY2g}`KDHxv4cRp{N&7Mjz-^0%-fPzyd{NjPQ&TdYUfI^6y4D$ z7z!wvR3f2nZFR?kWQ&%cb!*50GIJcY&$}~+u_A6@EBU}pl;H)tcTFS50hBuwP(l3| zdYsFJQi@od490ydf_*J_SkIqjL;M4vprn+f6M^6PXM^uy+C>EKQL>`}G`=og-clxq zsVLmn=H{@(?DBRNV1^}da3m`_ zdf-(2xwvWeAuPmzUC2m7iTfje+#_8Ve%Ps>+25#=e`DFrY^SR8Qt|>HH<2_r(TrHL zraNdUEXCZuW!j}K0@Pumuw|>rErnUzG1iYU4yxzeR%fAv3j*+@78 z78--ZyLLxK3hsHSQV&LJ-(X{I5dX0E_!CKS$5>+}Kw`#iOqPaNYFL3ypC?y`X1?p44sRwl zYOOdj)dp}0&S6rN6A-ppM7?0#SYa8klv_TuKAV|}L& z<69DT5uyg_*}TAeYO}wK!+3*8b3*MLk`R~=K^;onR)y~zmL4z4Wx+J*=k&;D6HToE zn829xHV*ktz%q<9m_gtx(>R!M8=v#QFsW-@Gt;SMZ=vT3pdW!%nE?Ka+yyI<*UP%g zb&`%*xcuH#=K5>%m+`e9*MaI)U={z8-X&!`a~?fT^pFe&sRb~3X#vcLB|(w~DEuVa zmG2kz)0-a%7u`@?iQ_f+Va2dkdowh<)GpId096Pm3Q0VaNaP^IsO6jqKi-!M?!h3@ zS`4x%+OwhsG^HQ4BMFl*(FMv)gX}pVzG2XmjvFb@x`cA4yxS`u#6epWnb1IB{oSq? z7N66e*-1Y(ISsiOmRbHfZbx@&_Fw7c3waTfxh>KQ#-cL7T`$s*8Rfk1w)PvqD1UCg z8^Gdmf@`7cVN~G$+LeYB?`i6?LV=D74TGyq*bU^?7UO<`-07u+yO70XAvf)URXkx- zn67}q045@3>LpnCN|6Jy!mBwFff|2Lxd$^}5iKQ|3lJcx3oYrKrAxKr-`c|GNO(t) zr7#@0!Xvr_oilL$Oh6-mKTHzY9(O(q9Gk}RlK;7WV=FlZkTWYfaWYi_ct<|l7}JEf zR6hm%8D}L8#|5G(Pyl)Rmkm()4IebL0nH!A8Gyeb$#>*-#qoxD43Sm6E-1Z_&_FQuGj|PUvPp%zUF+xq%*-FoB&n7wF2jg3R{i zw7lZ)<%g)`w!-*5WD#%VRr zR*3EhBM|+|A|F|q$cf}u40kPgaj8dqunfrmiO>gv5wpcJjq#n*e|{%;2h9lld$k*S z(vhE-BL{XB5>83KT7lOF(#tOlT1NueYrfsBXMKU(xI&x+KmDQYw47vp-KNKOjPYis z76qfb_Qd^uOC@L+Efm8;L3Sh`U=`JkyLm1^ zim@YMI=xY{|9tQ|I`z*3KX&fzu?9m*m!(J%Q+PK2diuh1*ywFs!^gyf_9cjk&wEbO zKog)ojEBk(oIgJn_Lwxw)i5a+4(;nqH7qK{zQQ$vIogP`uPAG(E6jr zb8h=auwly9&M|epu2eNPOO2L*WuUZ-yu2uyapA;gAg%rTmurSix+!`dA>=)K{``!4 z-I|Z!JIqB;8GG_Yh2eu>_%H7fKC11r$zglopS;u9#X=jvX@KF;Q#mqtmO?M~oR1H+ zA`<4c-UQC?UEh4t@-;QW4trzQ42)<7=!cyi|8YKCbD=2_t{;UJY87-VN7>Ey`cV21 zS8NCae)f$g)de43^`~G|G&oQeJ#fzJ?3@*o&w2X(+#dJOC)g7MV!~76fzZ=%J+8cY zJMD8A$sm?9b++!G>nvRS**pI8hxGiWpFr$KG@>2#P9@vUoIB?YH1?PWhU!G?;0r^|b{eJ*zMpXQFvnC!zpqE&X?0!r=KtxS zH-q_|5M?81N@~VFqfYs9sZc&5O*NV+YA4Wb@~+k|a|vKi{?8vF5ZvS27=+OZKq#NW z>!#*J7Q?gd5(Xj0-^Y)?dROS0pB{Hj4QRu_65fBl81AyY&_VXM3`2IjUSF+KuYW*k z+G;QoMd{oRm?dcYV!KK!TCuH z$nK)e_ps``J}~4M%;xLo{w+NGndbgI5b$UWNHgOq%ziN|*`(U^!h_?m6oe0LlR4Va z?T%Ca(EIAhK<5d4G@5Z;3<@8%jHu}%QLD(_@UG!uGA zLQ9M(ZlgIHVp;HW>Dl0mM;(NJ?%G8IuYG_$aiC46!Zl4-JhI4P>H77eD}_;^E^WxE z{$8mTPB8ZD;h4zsyygG-jPQNkIb5=nDnr`eGEf=*j~_`uqX`0Qp=v^*3=V7#dFfUI`T<_P7PaCjb(OGz^^t=y zX7edPJFhASmJR*W%@jzo-@2nP295Ax13nN8oM8-V$H}V1&YXO*uom<0kIUNsXV!l2 z|Lvl)_R@?O=L=R#>AAtl3+bTo+t5C~)j!|(VPOCmoPhe!t0xUbS_%e&Cyc z|DTdoxiXD7h73t) z>W(kx{a2AL4DYBBpq8b7I(`N9Z3Kh10Hmcv7XNm^m;qa7KDj_{C@qTpO<`N$(91Kg zf}ioXs_h>mhhHmDB=Yi%5=7VY8wUz-;a_%CdR@qa4?n&(^E8~|kDS{moKyW{)pQFb zwkaqDDF4xU#oAq-535=%s2rrX4SePG;R_%{MN>YULB_Avzl|SXH;vr!Yuu#u~{Q;sV;Uo)@C>9@=skXMZf>3JO)ZhVM=g1O@~O( z_yiY}R=fRUEjQRj3PA+gB|*~T|NF-ne;zw7{_k(z$L?xUS{1RhRnQ}qGGX(t6IMMC z9d9jpVe_suqqNaO|GXRjrRRz4+zWRnh;F}7JJ)2_BvFIkhflJb6fQIQ+WZT@&b{NK zrM-DxXD{zX7Edzd%KrJz2P=514&_W+>UgF*aR2x3&NdvQPZIM>hU~25a1JTGknAX~ zY2mIiJ{3u7p4kvC#fJahtig6p?{&xA|zQ()%{;#$!kK6N? zRE|pN^j6Iy%_mH3 zI_@|6*Iyt1x4-voZf@Lv`+G;HHm>NMsUnm9dh^98#W~^fR^>bM|En)w6X*QYO=RYk z>C2x4YD<>!kIDbv59^c?LpGUrO7_1w4rzOwdova*C=@#UsZkq;*Cg5e|9(bsZLKke z72d${ibpNJL(k4HnKkP_UO3)=a*Fr^wJq_(9=|MRUfxJAM9x{T>cjs$m^i1-u1qZ- zH_MTX2Xp1hzZ^JpNLERy*kPmZ$N%#Yby<&0_Vp9jp1*SCm;dS~aE%|v82G1R#E;6$ z%QjZF!mdH-V8Uya(QWOT{pk;HuWoy3udc4{EwN$4hFy!pr~e-hTtjCi^L1-o<fu(z=a)_W{7B zw$`@lU=1n$gksE88cUP(!FGwYmGPu2lw172-6svxOWSwv4!}a81;)mg6MyU8C*pW( ziJQB70f49CX-B7kuURld>HmH1nbTZj@2zU#%=r0G7$wIMB7XiuzfRK_K76MdZEfu% zQrESva#CCJFv>1YIDjR_{zsDNCdlBrr>pt?xDh!7kmZ+(_QIqLn0EUNT_j%W$aDd?fs_uzT zo;*>GWiJH$$!?#Duj^>hoMk{Ws>lzqWMD4#)mRrSBU(=e_*OSPmTrxm+)n#oLckj3g-rYTLab^DaLkr&V=B0_x@!yE=t)~&E#Dycw zLqLQJ=Fi`F;=~E_54TSoO>W)j4nkN#(c*+dmwc~ZzYm_lbE|SA;Gz*IY!;{Xn54iG z`)yWM>lc2#Q}d%N56!9KNqH5cs;ldr#-$u^8>_1{EKRnD%blT?BZ+W;RWp-7AuBYp zfT8S>uVW9SnXxO*Q2S7!kQFOD4-gdc3zM(@_n&gH25<=Wfe zpZR6mqC(Jvx8gAea+Ln~;{ygeVPCrU0!oTqrm>(|G1{1&dj7%%n?A5tES2I;{rTrm zTkN-*h*chYcpkL7$s9Ego6n8>NFy ziNoXgmP@W$pC0WgOwe?4a*AopzyQti$c*sT_YG)yocFWLa3*&B;O61@#VJgw zQKwxxmn0_s{<~I_!(3I>vU%Jw*}=?m6pW%=mFQZwr2n^X`@QPRf&WU!FWK=9H(VrXB=LT#(mf&O&mY235w>WMGWvFI|%N@bJhf z#GHA%Wn)IXY6fsZKQr*{V=Px|XkMPm8HjLax`rn8oxk$jZuk`{vCD_>qJloJ3&G z5vxOoLUZ%x572>CF5J`O(j|c>_<4p^@*K7L;<#uiJEGpd-*VvK!FsUUKR`#YKn;JX zpK@FN3KEe&zrXn=8RgaS04wVHR7z8%bR&zNoicXLL=8l z6dVvS^h^(YjmQfQ4wf^$M4y|2B?m=VuY`MZEhs1op<`vVr(>COSW)-nhxP5O^hx@M zalwlo?>mXqdB3B>E;KBx0j)QM6mZ!@K_9`yco#B-ceoS3R?! zc|Dv$600vONvI(fCBms&CBoQy{(e`U=^0JuUkrB_*YoFW1BQ@@2Exq!5KGL`qSS;WX2lnwoIX z>gddZyL1~fA$p|#{{8_>Rw|4kLNU2BN2(J0Dwoil5*K0M&bRdPGBj&B)f%G|yv}Nt z_^^VEu1n107j}URoe(#rlxv4&Fw1poRDl)Q_hIN~p~SgHT8nvEW2ei%`KpxdQ?5Ox zd-kKIl>P{fjT_G>0@<|KuPHSHlQ89ZS+GIMc2Ez8J&c)zKeiafeM(8QwXwO?oQv)8 z3q`LlLNV8?yB^VdD=yyo1LU4GFAH(;CiaNDTN^5E-^@WPsCQWIDQG`=o269kv5Pln zLY(HUl^-`R#h)pN^?M@A3oVUnQF(s9%R1VerLKNq7u&<#KW>Vs=nadggp98Z^0Kn; zW+h0*xAh0V#p$keVm8RR zvC$(Mej0Kfk|17u5-x|7Dr>E{2Y*=sLq&P}WseU`P0hC{xqq3HA-vs<_c1|OFLme#~ z=jiuE+7^Su*x~xJCw|ooa}&28IUZIs@M=6&N`}ZCi@@@zQdtM^O9}$39YF4Mh-!wH zxJg!cdS<2tU^l8Sh>2FLc<2-c`G@h=E}TFA5&SkwPJ98fZcTFV@Z|=~6W1 zl4?^7tWWgwcp4>QzyE%l&1#2dn-1-*UO`wI?16d9otcDb#s zO&%1ifNj?#dV72IdQ)Lr9uzXswK)!^Gp`##x6pEOif?Og4^$adn(gbM-_)>J&ypH{ zOlEg}Z$w6zj!Y0TG1~KGVPcXV$9Ct$;zN#|Wb8|K6SUJ%dgqJ0c8w2eS@vVJejnVI zq7Y^bLD!$IXcICcQYI=fNPwUqt*E$5yYpzUVVzuws$ZwsWn2Mp^LBVgSaA&s_>coG zP*U3CP1_B${iOT9?ZO$sCK(?Y9y6>8Zvw&CUhLj86_<-g{l>%udm zKJwsvV{}sAH1T1QXf$ul$C8b}2K>mAH6p%aKx!WqY@4GvS!0_e9t=fTa4Z3)snFwp zxkepCunWA0!Q;q0R849`I+F8K1D!=Fyu)b8!svGdw_+6vk^PaI<$P^=ThGhnqT-ko&~oq(LxuR zW@dtdG^Z0}rs6T-r+)l60t%J}E`asrtIkacoCt)Y>+jxn1q=E&LHO`tlD@$mOs4Z4 zwuR18b=wIE>u3=XeJ~bsRJlif6H|`=lIslf9#(}sy`_ICL3~XWt$Tdd)9QrH3h8&$q3>ek>NAr78Dg@tgzHiHo1}RM%R2%{T>**Os(zTmzjUy zz=1k&L_R^i23hn1wY+ix-_h&lW7&FI_yBB^61vlmZ-<>>ws#jfRa#zN7iHjJ5s83X zv`tpW%`JJ{%$2k2UU&6^gI_@TW5jRM7ohycZ`c8nQlOfe)e|iK1s1ICeJE&8s8(f{ zGoI{pXt^;sms4AsaTrpp`qHGhy!?E7c_sw&&Zrq*WHCzXL!SU=Q-gqsV z4sDnPG?tiL2s-@uVO9tJHXgL)-rIiscH`>R?Gw$8ZeRITQVlW&8QX-HxEmMF2M}+R zjF!AV!MxDR)m_y0$`$IqdV6{n;Pde&@<6Qd4GesQ>fhW=;@zR-g+I5?T)V3oYA2&>)8d81hRy}L$ z$9SL75DYy4vCIYBy+zk|l;KLuGrfcWyc}wTV#NdW+Qr;Ew)gh+nL`I?UJ@Te=^I8W z=xpd*PhWQM61MzSjz23R9Wl3x;I>mq`re_*MbdV{wIkYvTkz9fx0$h`BW_cAjwc1KBj4=!Q+38ct6!dK{>`n8{=oL>n7Z*VHw>4WDHOw)}+)7oP0Y zk4;Wi=7?mVSpo>4edJ`ArD1RxT zqkb$vkBb&jN(C;ZvF+;1VUbRuwXe9Ge;>xbUl61X?F;lST)e0Qwb!i|o~XKEMRXTG zetpIat7{VI>GQwl7wU+57{s;oAs0S^Xi{eO?A6|%aAa_gjj67XFvC6@v4k*w7R5+3 zXXVO2~OZpj9J@g5~+NsY> zL9eD-9tdFa;HvQ;UIdgu$x$AaW=dauWKP4~`*GQ2D>G#3w>15IB=VXYaU_bSF^nwG zP;B(Rx__W9T)ZpE;SoUx-tX}hk8nhNu3Xs*rMX3afB$==JA4SI?+xFl}yfZiosY{LxRFI~>P2Q1>JG)=PAJNI@)~zE-VFuX4c>C)9-El`P zf!U~+1o``$p_)4&;Scujt_8}^H;FmF?(JRKi=Rki8Hzzp`PZ*sV{JW`WI)aFe)CcQ z7P7YfXxf!Z!^6W5Eba!)U+En>M7?#EYLn{ZH1;(h!jzQhZP#neefMrzT&cs&tNRf? zvvF*9s+0?}||1L@7XdI@3Zu&h{!ThEOLlw=78rZQVTjAzJoA~CKKmkYvvOEH()IZ104L$&6EW^%ro7+N@p?Cd&f zx0gaiM7=i3hl_@znX$6rpQ4>lQd|MP=19T)hiM~r6|WHYf)UuT||mi!GE+#;IG%;w(T-u0&m{DnNZAmsi`#0^j37u_wT!- zqHbx(rF=?g$|~lx=O{(LuSquJ-nwz4_D6wpp`oL5$+6svR4SqA5~z7Yh$ty89z5aQ zE&I>Aa@597S+x7xF-`)aO(6_II#5MKf<;bG4nN?1q%I58Bz>r{5kjQZmOJFtUAP=0 zlf+Z$RV_#_&OAqbTVm4F7a2YAcX@|i_Dr?*Wj8Vyz6$U+gC&EWw>&zB(+BNmtl;&aaMmVt7u>J*hAJ^ z4gNp%Kry_P1=WCRtQ_Y*%2DLpTIy#3=NDTQU}TD)lceg3o<~9zy}RBL)twLF$D#9m z3}F1G#OZ@(cE|S+{mM~w7q+>*NI|2v{P2g_?wFJ2>~}?pXL%@L1GeBkgPPH+R25gf z+6DW&arJ=+drT4=~iZGqi#3oto``PW^3;Sv1QMbRX|Fg7}!wO zHGSKbEuVn9OJ;qY_+ig8^MbdE{-2?w-BrJI+O%nXSR*aT6BJG;k!3QC(L%V!WOWT0 zHsVW;%^1^5%N}>d7IxKDARpO9xfaDPLN(12aLXn2j&OfeSKotNvvB=x-$@=9?xD64 zV+~D7A*kA3U(_EU#p~qj=B6yk=-t)U*{KIJK#RGN+D)n4qiRxJO+AP_>Lo^6S{41? zUl82vks;@|%N(GW{;dhfql$+W8v%8Jgv9#1^Gwle4r_~WV>$PtfRUi@Jnp&x&Uik8Geg$uXf zO*wDfucwaw3CtwGe(TN`=jZ1y2NbK8hm=YT*@DBy2N3f&qBr#U)*Gzqqx-`#@JZJn z+34O8CZ*KsKioNqS&n%~_AHu+2)jzGl;6{|Z@8ge!IB-7uJ57zd4?Zkf^btx&M7l{ z{)@CdndeRqlw|5Br98bN2lDSmUCxlIA@R9@lmaJuL6w$`!V1QgH^(fFPor&F-*H%F z9JIsG+}}XHEyFNin%aCBnYY-G@WI5g#<@>zAF$(W3}y_fdVvWj5L%poydTIPDdv=B zWBCTx}nq#uPF^5gdQ4lry)xh?<^H+6DqY80jV+q=6JkOv;brqKmYJX0F$V8)gZFxNSl% z3#npPs#`(=hBASLFVQkJa)K&LiLQ?;N%kc^WzZ>W`+kqkZUtFB{CV_`vb;k3_ z28Yye2T?HPjC%L<>CiwQK?f^IxtF6);OBd8GJ_?>&Hfv)~N##=`?I|9N4Ymc?Hi;Ifx zzkBcARxK^9m}uZWr8yF@QtFzT3KY05KH9W@|Na86IL88+4*qU(xrL7{PN36!O@~;;ecdQ8n;lXWfFM6 zkf7G8R3xQk7$@3a4@YSoW1n0f5gFk=G|QKNp(HxdxLU7H06&hv=#jtta?6IR%;LLw z)#DiG#S{aA+iGX`4B)zSS0`N~TqpfKu6kU}(D_m&rLFyNDY{WxTWb<+h$ljVB&YqX zJD@@Z07P5$?$ntx0YC_+xLVTgPqAXFOG{8^&c_Cf%}WLS9A@P6=kj`ubSlq#dM=9H zLIL^glb7#suvMOr9>L*gdu!_wFpdbJ>)j2#aYScI<}A~P$m1a3wwvU#(CGg?Ejq%o zPwxJ_p6WLt+J4Ml^=y!;>In0pQd@^7uZAWyreT9u`py7=uJzj@uHgmM)1UzW$8)6b zSu3qqLzZ|I^-#bH%Lx3ys};(e?j2?G95^2)S=0WY2KYC8M2~$NW6L@)ThV9lz*m6P z;T?EZ97bVwAZSaT4nm6=MtCj|Xv-hUnTdgfl{!ZK$n&2tJ@TBoHKwZu@pjx$H1XZNQ7dfHDFJt^t+FXZqqG zh0ap6Sr2{yRZm9~Y9^OLCqDYO-<}87dBa7>^6Qfg5G>}Qu)dFOO9sK4;31Uc@+c%t zGP$Q+MN3sV-@gahaBung>XoYbPM9$xk|1q_aC8@eXymB0#ptFE(B5|70QLaYBVc-u ztnxI_waBbIHHE}(@bp-NfkGsdPIs?e69t46ffBbK;iM_0+X$oEG6(Yn$dI4GGAaAU zl68>(pP=E_!-or(Ta_9389Ml5s6OXsqpuE#vAiw7bq`b#C1i zZ+fW!6mHA1LL&PA+B^TJsOvnAGxx(a_eK3dO{tLSZix>3lA9#M0hI;1aVR2~6hfof5}?Po z4S@*8hMbT>7jS8BB@}R7zUT;wumYKioZ9HQ1B!xy5*bT^E-VI!dyg0LSKJ&wF$nJG z%j@g&`Fy?JAwSpRI$LbF0(cw(Gt5XD?#U&3uS0D)PayFji-F@ZydK3zD z^;s8wNBshVGAE~mz%&f{1V^uQIm@4}eQWwQd-G)Omy+|%w6wHz1`6Y+|6}i2U?fgX z*{|-R-jv;bDhsWmoh`rN6U%cK^-NLaq_YkQKk>v;E>X8^hcVgFfm=zn%g=*mAYRtG zmC`I$mX?;T%CBPp+t}#a?{exh1~-JDxbnK=)0~`~zk%~YDu%_!R|_|YVEkr8J-ex5 zuN}%68K&j;&c9D_NWHdy=VMZdNF_wzL4>18nm>1L8JyL6)@ujk=-1hsS$|^^Z}K9> zf{Svv^?yX-Aw@106OJaN@#-9&Ldg0j_42Z_^+~riH%xH;6L_f?kU>pkW9>WnbvWp( zg|EE9f>eQfVO_hPa}U;+OTPamj9vXwhzgbtMLGES9RHA{q*~gzzIsR9V$$j!3aJX% z7?qZ=gwm~W@7_`(Y%Iu(fP9Rhxv7Ydxxg39Rwz`onRsRLqGcW)m7RT*o$pgzGy@6! zW#GIb9r%{PzEbEoaB_iSnL8i{+1?xoORsOE3201P2C@d$QOpx}i-5ig}n z9A5k#yw{eDCK(2Yk55=ircK&$nUd1$Mr0Yh^buaUI0W`wsMSgwB31`uN$K?Y_TenY z=^rlGS{5*)^T}H6B#Qvz=)xeBLbx7Y>L{3&_4{XB1)1)iYRBw*|J=H0hC%Oyc3kxvj@Bn_jp6#bk-AZ`t>t@u#u1m(|yY0nAm56l0MGK>5Q`) zoKV^UDh!r2G`-W~`1JPsiz(pp>??0+-*#y-YTlS}T3c|=9>b^g&V%}pPvcfzGb0{wQ^}(5q~v5z zjRPXc+-yqtr;YSPH+<%Pe)N1&(|*M)XXV=@Ned>+9{7LgTvK^BwQqMI&;AJQBLo)>-?~#O28-IL{wyA>-<~>`RK5W%%I3G1L_M%n$qTy`U`$rZF40s zJ7pKl1nBEvSM!{mP1GAj-lmU&_k8)~zOb=_8!8X|q6*9>5m=SfZN^V!J;%qEa@BkE zCgLenAeGE-iKc>BUQ}GX$#nFrrl|XL%eFtDO>s%>KFA<$9AbP9UHujnOF7u3`l@IN z&$!H(hbNP!Oy=%Wh?2{PQt%|26!RJ_oZr3rg2KSSK%X0IUVPuG@a zl+1kkc21ZT)(4{>1;>AHkTLt|Agj|EiKgcM^CfsxD7BeF3NyDI%LrraF^INij@WF5 zKBMmNgT#uv1;0{#U9rOjDu?BC4V6Vedcwi}MguA)x1x-U2#Dj$&CLlexntstM|)QW z$%R}KY0QEJ?icONHGOyQ{?ym^SGY0iv#QWXHE{S$+Amg3^nN}kg$c+wT=vR+dVvXI zpN3UAR+zK-=|51l+)f{?(Uvo75zE;RAolwdMBiYERh-%pY0Z3ezsm?J8;juZRzqSL zq5?w~|5A<3KsK1KX)yP1)RW}|iJU6AaucG@N3oG@w&`#huwyf;Qb6;+-Y z%&!Bd{bSAWMR~QLY8zQTz=@@khGS~AI*tp`E4Sq;2FQlTEPZmPUef5kHnQ5qVcaCFbnjT?H^8 zH7{AH|Aprcui)4Rs3E@!5{L(gkkoyM$(AO^$KIVK_T!=r~d#ipEDa7hf-?#4P% zBcZ$+pPa1X^$WWxt6c3A7Uwg+#T4*&oDfAu;1mKDG2&61D4Nb-<( OtO{8B_R&=z?D{X`VpXyL literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/kmeans_silhouette.png b/src/comparative_analysis/visualization/kmeans_silhouette.png new file mode 100644 index 0000000000000000000000000000000000000000..bf65516af061b15392c4b068a0c7487e016cc658 GIT binary patch literal 72467 zcmeFaXI#|h)&)w`SYnHkSdd}?u>ls44t5<8P*CZhVxbr5U1K4rh@yg0Rgfwm(tA`C z6{W)nLs3wNnPEW6(1vo?Gm0nYoV>~V-Y@sd<(D=H|MHZ**IsMwCw}`icF+Dv;3qyl zzS)#LJGA)trcLMLo0LC&D!#-0!rF#^$vf`Ub=0;!>F9Fw^a(!oqmFh~wvJZj$Cf&u zIPG9=YqLpGUUJjArDl$fb`AWL*8FqX09QgR=9wmSO5T_bz z&i4Z!A7#hZgRWs6O>V9?KQ)bymhU_HN@Hn`ansF)ajACb=?(suY>bFlnzOi&@Cqle*HzI~RFR z>C5;1JZa(sU($5`^WQ&gS^M<=gI{|z`I+zB;F2~ZB=Hf~DNDf>8yT^@7Dvv=F+hpA!?WQEG9=chA&B=4PKP#`KCSLnf zx9j}zPoF-;KYX~)qcbN~L;lk*%7gFEB_t=?1eLt5>rabf3phQ`x}4)cKk2b5uOliz zrRtWBar}X(UGdv}=itc%R6JcXeSgFQ9ls?-n@pa}IW{3-jga%Zqr)F>Xx3!env9l@ zj|99fEzNLd>lgHvDdu*+SW+9SDZ*h?i+9V+RULVhX;mNi{6LgU&WDRj9EUyyCmLkg ztLUI}kr^>5K^^3)?ed;Gk|dLvoQ9$iTe($#@tYQOw+AyAT4pGNN# zT&|xZX_OnM7A%=JYOkp>blhJ=RfX|*|Eg&6yE?{h53VY9$`uTK4sEb48g=HrJ7Z-3 zdUb63U|Rt7%ny^(ZJKf)c9`IvTau6Z9l*cS*VqL0CW{(Fg!;;Fpe_2usKmF^hskN!5yTjd?@xvWy z<;=#+d#TcnooTU=-ukLz-2t_k)&`&G^hBTWvD{BV2EX|4x>4v|6-^0@rrcO5CZV{R zA{?;0_w!q|5&5x}Vn6;H!mJybDwTuXZM6^77XCQtheHPswvY6dQ*)hI&V#wn-`?4@ z`&5KmOn-x=)UOK{CT3^rP7`vx)>$ynoSqdRwRmuJpvCg(`56{1g#|zT^pmvfm-p#v zqJ`sQ+z=(V$HN0%DVwbu;_lwvGI{E(3V+$=I6JxgXWdOc*?Lu zXXIPZU1iHm&MR^G}VUS6sUoRJzYaqvrMNy+#giWg1*syvSCos?y@HX*&EX_f{-)9QUxTy4_&!&buR#6%rpSUdS)pvlb zB=-*&7CP1(*ezz0ck-=(kbC<*{dBYI7w3v3cej;Tz6ulz*XmNJ%KO$m&E!nk!3PsBkSI!nzHg$ zv}5*FV$-Hu)o)b4vr)``s6Q)I-XTUqnRC#sz}R0%@vyRcU&TTb&wGlU+1t}jzOBN= zu&8N5SBGLkZK^PFNl(sAW1Z*MsKC`ZPiIPzg;S|x;`PA5wjiU7N(KM1nUY81`s{T}@1ZB80uS?pjV(B5o*mtG@wdS$mF-)d~ zgkko6mnNrRo19MzhCDgruFkjVzIqd_9Gf`4T2s}iOx}O-rd=NFjNrp5#z{lHbXJPbXyS`2i_@O5bK}dm2dZ#8 zHqBnVaYv}EZJnQZM4b2NFeBWhx$@ew?djOHvWyJtHx6c!xQ>9#-d=h+6@MV@-e-o{ zkub>Ix9L<_&EivG_by$!R2M11l+RU#Ffn9;bl*~@Fokk8_;Dlk`t z+dZ9;kd#!5Xx#U5ML@f3(UAJFPy_s_`#@(BZk{f35sRI#Vh_oAW;@A{h`+)P%~q4l zDaJA_O)|>Me3G(wv(;@iFP74&GC}cIWWh0dE?xRb{1p~j-Gy!Uia$ve^abAdh>&p0 zk&6f^PwB)O*poYwLyvF>G;AsKGLjaswp(Y9y=)iQh{u^9Trk*r*{`H2-_4=5M|a)l zGUWk7@mFteZ&+bJbZ)LnyJ*fd5zj}JDLWe*GAxbE&Er{hN#x1RtDLH1HC+N5KfbzA z?QNa#{PIF-&N{(4c`E{xs<13_PLu|T8HvB5oGu!!O$jtk;dT|ZP)^gs95kxf!4d|a zmtWsgbs|;wO}N|VI~su=qa5muWVL~OpP^C{1&R&80wp-bAgk=hb6Z{h_+gr;B)8OL ztW`7zi7KhAS3k?fsH&yfNf5DO=9EdDxOhr0N3p@%<@oEHt2F{cRlMBKWhst)c@{1@ z&{HZUE~z-$R~;^jh&CYB)Q=x`!N#-`QgF0G3RX944x^PP97;4iaNzpdHET|bcz)R$ z&gFg%wVm(NTR05`^GaMJaEYvqVK}X>rY1WfA)&aXjrKfD-l3{_Ai%qCMR0I1-PrZRh3L|vVdh#L zEv?q6vli_?wXVBsr$MF_CD-Qj8;nO@`~AyIB@Kl8#Q1p1h!>)khE`Rt#id(obv6%% zki4JtquLc-Xp|otY;$5IWxbYXF6Z7*8b&Q-2RZ&G8-fU3ldAWkap_;Ie;NCIp8|_Pk z0;4^;3Uqev-04@UEF55y-@S{VtVk8F*e)Lrf^3i$qX{~}AW*146~>dN&8Y#5YKY@9 zoAO-3OR+J?(%Kny0693ejDu_CGGanMa>fQq!e;QVd`a&WE9k7s?A`nM(b&)u$$ zh$@soV|T^_p{w1E4&}Gft#c~b%6Pb+E^PCQnwF)rfB$~^V`p{)`%9|mtFD1qqvadC z4_d`Iu^SFmWs2Fijr(+@mN*vA+ue@5;Z|j>=-d&fCRK3IvhJaIjpb??FRokrJ>P>y zMoHLaJEjS{9tr2NnhQLlgtOwyO^13ug~-}Q^wVrrNlI1E9R(!3<9M^_sx;NXEWwd> zbp4`(_V)Hsg=5d=s@8k=%D@lVp$nhtD|A=e*w~$>6PQOAUrTmV~}C#jYBY@nIe1{&%Jd zm~)rmvC`MCt2FGKx|)^k=j@>9KRR;O!oouOSn>2<7c8jD8U20U3TcmiE3dxF-3r(X zE*9$m>oO5<`u>el|_k z)#T8jLj->H)o5#)SKi+V+^ms1hRl-KD}x|@DtyM(!TA@l==bI3XJ#IDX|(qxxmZH? z(H6vI4TZT!a=DrrE#6%7FYlj_8-3M0p)U`wMtQrGk;3QUPW6 z^oz5X#E@6@4On3vx-_rjacNDFk59PwFhgL&vGa2jJJ#O{3fjzMZTf(vd`Md0(5hdm z0QOmiB9T@m7zu!!Y@uco?W{ux22)iIHuaL z{9bB5un0S=#XCgBE0@H5WO@x0FI0jzq*Du5bRTZ<8TV?St{YQ6@#ME3DQeu$bh_mq zXMS+9QFUzJ@5HFuDckHCMIe|EhCl$Z8kdYzpkM0ajyjd`&%`9(W!zpm1@JlXpqAEs zZ4LRIv0Dtl)>bV^#W$HGSD@7>}G-}6&JBKJZ zcdROENg=4G+-J<8fvbrKURDYC-IrA~st#yZN8k~bxdmV|g|-z{T_3iLC9@`ec%W!J z2}#i~Fdan!%cY2GbWHJKxvh8al3T&SEMShhq^#x;xll3n zxdO*%T*M!p4E!pH-CPaNJsYJVm&)tlxFm4d$_^ZP%r~F&i0Y1TAE@6cwF(bNe0u7t%s=l?>G|>QLfgMtZdd?Zd{$ zD49qN)a*52l%$uoYkZhmCSWKFw+OVPKeU9fRY>i+_N{wJhr*Htb=%K~qvUtyO0E+r-J z-0@ClVBMdM?E(I^uN%A5$s-7Vr(6UV(C(l5xY zMj4ULe+9*SQd)XvzmjkOiC_S~ZXwDZnWE;v5q>O}lER3qR8}p5*xgdeymcEkWRGT( zF_fPBl~+kXW>t2_s;f30KzJuf=^)T=m0Q|Iv7e{6i>nU#kvxFhzKoHJ!fh+yuNHvh zjg_HuR0fYwsxVc7Hsd9#V;k7l&nz^wJ1fd~v#GoW1vk^M$f9{~Y zTF7BLRWn4IA|@s_%(nGOELR=RFXIsC6PEXIS@()!E%76t--gCwncMoB6r~M}578s3 zjEY4FJXb{-K4WyBgMdZ-?N0_;d{o(5soha;G51S6ub|{v8NT8`;L{Iw$Kp%aMc&BZ zNQqk;DD)UW22zi3@>)hUoNaBqxJ35Zbkupku-qGTU}8)|OMjMupvr{hC<1ep$Bo=mf3R6PJ{ zFm8R^(4cRGOzvcp=g80ksgqvziIMs2qH)^Rb5j}Dw$G{TV^niUv6Z8;;If$isog5$ zBfaUnjboPR$O+c{_T$W|h}ijwbI58>U&9+I1m@ym18TC-A;17`3d_+ z!^CGa!`Oo@V}$as;Z&rTD8*OUJr0bCBh5O?{Mp6Xe!XvvoN5mRMz6Rkw+*yU1uDa6 z;6eSNp&`P9$eet$$f>e#URC}mB^{RnNff7Q*~e+*Uzct;bW;0g8ko7)?h zwTZ#xalNp{nFw!%z|P75SPCD`^Gln)xMJk~cG_%#Xfn3lB_h<`j^)Y&W|&xJb!@<1H8sxjg(mHI>nxN! zu_&Wt1{bxx@YhE1Gj*=;Lkz)%XGh;gC>xM~rlB(QG5Umo4?=@^bG}>1rc+nJG&Hx< zH<-SdMG#O`=86wN>-6rUq(5XyO+ExBgrv@-vf?3(-h-6F;k~HG?+CknoJXh%q`7L$ z8gDKD-D~hBhjevU#k*xiUKLVge()8k1G^=IVqM5*q#N<3ARTn$+elRtaH@nP6f-ZO zIcZ0hAP~ea+kUbAlq&a5ggbLJl7VJde(zO;{ifo~ibd*fb2vGu{Wyp<%-g0{D>c1) z_<_bO`aA0J5Ncs1(w&3{B~>+s)f|=6A?%rqW6yt5=G18SxEB!4Cp?=Ckogg49qE_Z zTdt}D=H%ev!!fUJh^qz0XhtT_Td~V*WUxDzok=5^Q51>9!) z*5YDoEmcR7t8dfsk28ml<3~Dyyq$LoyG65_^0G?H%Uy82WX(tw8=w`!`T@aWwK~Mx zhST5NX%o#^tsNt3WPISjhc#=~RH-=Ua_!41xQb?ZT`dA0XJi zATmH@_~qzeiK;X9R&siJ4XMRJoK&daUjKx08aY3{S0?RLxic22J*hXni&~sI8|%qj zcOr%q7!-PHTq<$|4=_uFri#8;cY`C#|X$hrPR@~QHOGJ3B(g*-3Cr0B?#NiKDI zr*g0c7fzpINXxWt0x#S6<3hvt$dBRa<*RF3pI>gmX8Wk%*#7>fnKPS^TsnZpE8R_8 zC^qjN9X0P-YjmSFQ6~>DuNtLNE%?>EA0|)D26C*HFwU1_J0zqSHDW_{iROSXi!B%f zDt0E(mxYbDcI{e+AAkHY*`&zZrsv};oBGEmC|T;%?&Q4A(}Vy?L?ukdI6uE}wt)1@ zCakvP%*@SfU5u}Gmur^niPtxGoT8MmIJw{zsVGuiP%`I%WT*gWrE*Cou*U{S<9?Xy z(~eTb5Q&#e9?FX_5A0qeIYEua&HS`-UlH$iLbOriwZ-WJT%%w~qsGeJBJ2pnh-jKj zx{)l$O^)6ODw%mz{_`RoL&J`}d-w8wgrK&m1J8z~Kg-u-u@&i!{F+K1P=>#sboLCZ zF(*wCq1XsTPq_6s$~yaC6YrcQO0JJs?^2_{Hjqi_1R>}M?)z{!H+-{o$ddI(&di*8 zPD3kv)NFK^)0vQ%e0r2S;6g?!JNq5>UO6dTIwQwNPE}bi8Ezg#h{>KQm0uy``u;2# zEbtszCBh!r$UNBy^h%6OEFFqs(8Xetyo+N*aL`{8;9y>-NftPtbOUG?CwjOG^HZ=% z-Mrm`*V!M)_xUQ8^3pork%bQd?L0bCeUXS`q>4tggagEB+ex9xcXw;pxu3~@I6p=1 zkDaSBxP?S$BwZOm%9Yc2caWI$RXcjbAK}_ML%FYFJF_7pF}Y~WooEIVS3013>=$w+ z-j~_V{CeSu57>ZBzC4)r^*eWeJ^CB(rr&;)R|kFjVf}euADZ{^%;EF@|F7}=--hIj z;0F8F9iU`@Go)$T;~}_Je);e$P5H_$HQDBP?bz3C-DaTF{7L}?)&!J9`SFW))^-07 zmnh~b6{hHt4DcAE5gx+6hiO}|rm0*kX{$p%6`?$Y{E2#KomJaj#0)7g{cBAJ=JIWk zJo4MmTP|w>gRoMH2-yQBB=xr^cXM63lEH=;l45>=g#JzTvPpWWQ6lLE4Id>tj-5_o z=(D7L{(;ZTycxALDSDXHlt}FIgZua2Rq+~bzp|;UqN6@7O(7G7YiV2eai>{)d`q(i zA1i|wefWP6+-TcnSOm)+J$f|Lx6(|)I-jgA{RrK4F)bsXWrx9siK4V7@Pve|5$~b} zQpOMI5gr;oTv|&X!HLM&PMN+a+n4%bMM}K1&T5K*XtqOje5l;1t6-pRsITp-zV=u; zx9%vuQ`Y};Nc02$g}Bp}Qis|@It)#p;Tv=0-t&P_jVkj!oMqFLK&nTOsHIgz*JK`p zjwbN}yqy?@Q!k6J_xh;@ymWZl+jLWGBtWt$cUA2mci z)KDFD%&=`S29{O;Q$lhkg?4o>36%u81P0Cz_w0E!JjU(1(RqsN(BL&TL?=H8N44TM@*Z`>z=s_qeWpS{c z+8+cP@6DAgJpKuy5HnwemiX{t4XHE{@pZ@pOGq3-ogf23Jv!xzj4TmQ^P*?PfpixcAKX1#P;NgM z$2F^0R{}vL-`RAkZfF>gbx&31=pSv}qQX*zVNs%QLuIAxjdC5Fm5?8Xy90b4qQqLG zs%nBzPL;@Nyl*C*drpU4gvu(4U|DE-hcH;N8sUyeOtDRLvV=@VS{H)y%)({>c@l?Z z9IG7s5)@1v5e!mANV#cln>E^V%eHVRhNuI#Zru{|DmQ!WtgEdZMHpOA2}MNj!K-4! zsl`UPTNKcCCSbI-fc7{9isfcxWD1B+bC8WdoEiltz0AZEi^gnw&@MM{XF^~gryan+ zxwmenNh!)h7$<`OkV2s$XO}txM#KX;{WN6~v$-IzOo6oyXgR;k^iKj^EWijJj#uV_ zJ4t-~`gJiovP+AG~Z-#O(xn4#WOzNA-wj);mO$gCt$^Wxv<`BB$$ z3W?+bl8{QO54;tSSIP|y1qx~uy#mwvZ2PE{nh_6$mE8$>+#mnK27C1gt$Z$l4}g$F zO^Y_Fi~-9TZ0v5{+R`^Ho&Jl57hT;X+wR^<^^lvcnoY?@ifq)_x!~JBhTTYKE5C*c zG~egyc(A((5z}7;h@{|QSN%La?*9F4^hh7?@JQQCky2oS_-_iBqLJtGc{07|k#Wfl~ zc)ZL0JXnt)Z1{BEc|QFs*mjgEpRryMA-g|*@E;B#wH>LwNF74%j-6fu6mi#~Onx`E z@GYAHPMv~D8bncIOke`atlW3|?)V5@)g3z}1MpE94@0LN+R)@TGi))QC_<#JP)egc3kg?nFWPa!%wku&zmPIcT0ZaYA6z$tz^B zlLC@QO+la{Qv2C0cb{;-xEByEbPUykIhHfo`1B_AiP`vx0B@&Noi#Y zYNRTIVi~lnK$!4%H4oH+i|5`?Je*Vogd61posy{2&aNUHJ+Po;B#G**(EDanhFRru zGCqV~E*$Amb7I!4wx^-QHzJyfwRIAK{bWZH)591Bl?8scme7Zw$-DY=x81u&YGfk4 zo|!zSLhn@g13NihPQkXV1&U7QRYj7y?aLvEsuLz!GXKjqY%$7km*^iiS8F>$SWm#V zX9V-nx^|N!O0*UyR-HPk_xmI!V1uY*HOGH0k4(Y$j`^B;cjnNgQBISc3R06<_26>d zL%pZ~)iK=wrJmotyDyuF7I*_&B7G)EThy!~@(g6F3arjJlFKM<`R{+5>Bwbg5kHCo z>tULxb*N~Bw7FJme|)oNuey=XD2I#*?@}v^Lvn>QZm-{p8)Or41pWpJwtS0cuRjTl zD6(}Bz{cm81e4W4V%e^%g7I^N6wIDq`W5ngtn}%Rdq#UB$7`UW->?~nHltUB)o}XIvza(!BjNPEh5GBi>pG3QCAiAy1BUpW_qP4;ZI2&NphF! z;FGz1m=OlJ?g~O;lbIvsq$tT_0vnI>Xb|$tB$rrNT4o%7HJ|87!*6Z9qo80(n@4J% z8vOEMf*prDW1aa%iNdBAMo^)M7(|Q{L`l|E=G+8eO2D=sMV+!I*BU{tDwECZtJVy5 z&_JzM33}uKAd}_T$j~sP@dWSz(oAoGsMM4bo+h_(E$qx|w-+^zaVFde&}I(r7IL~t zYzFvE7Mvh8K=FOhFR4QVD}VWk@%xIa1g1NUbeELUdx7gT{F@iR5w^KHMjiZptvo&K zMqlqXg(pWI>4|Vb99Q4ndXDH@a10zKbUutE8L*@@fg2)%4lEhcCtm+T79&Qe8Vhi~ zNzrKeWWt%m$40D4p(du9mL%*B5FQ3g;8-H$Vuqy^qUuwKOdQ%b*d3WMZPuc@K$8|t zxlW2B_0r+kkSv&csz{nOy(+)UnwCjQQW=NO`;<{txpQiDoKWXdhjIr!!XfkPt=N6F zhHN2JfIKdX)UnasWgs-jrgL)2AY)FpIf%|$kTNd3%MkhiOIlj4>}$LXYvsFp!F8As z8!k#DRmq%>^JU>Z$U>5wT6D6z^|_PeOy6gn5Z@iKa(GoMm2x_;5q1Jrbm>>oIr-tk zH%-noYrj&{)Z2>i#e|6t06K|Fnmj&EX)Tm28tIAV5_3tIsO*tH&P11r@4Nk8G)GJ= z2Le^ajUxa;ieL1uOV?>4@Fa<1u~uW(4V zCj>Q(Kt+Tf_({M;sEv$bSnLCl%-fhs#_H<+i3tgNM@GSnIR!RCcrmoLwr=g&zv?44 z2N(;)TwC9A)AxUzmHc^nHsS2coZ?dsFkQnPY`$vY00^y**&a=qh>%Xn zv_f^f5%Cc8x)*d}Fj5?7z(Fg!>2AHBL31Fr+Y=$tu+V$dJqvJLfzpZls~f7EDhu0D zN&sV-m+T2ej80Uqt5T=0>d3vzJC;)h`2BV?g12-Y43P^S<5nOF(c!3K5}T3Z5Lok% zNFpqN;_x6y0r76029nVEi3KaXWD!E!jgN?;5z(c9;2PqugzSsw`IRCoF+_7NOXkLv zje>H{2?-IP8&>xZ4HqvV-U~LT+d9Xks~Mt0p_*YKf{@PP!=FJh7_RzduVJ$xt?NG> z1+1(VNtVYP_4@MA9{m_@VMc+-X!~wSDXEmQfhZ7xui^Np85)Q|0_YC0u751X$o-0G zLV+R`DV;#v7FE;-+<}671C;JaJrY5(*Ntsz?pKX^0a{j)(M8BC&ZvMLyCH*+QOF!` zNlnPeh03o;A&iaFi{-C~yUX7-bNp5(JqT|#fYel%!v>H0`O@XfO)synxFP97XySm# z;W0YGPs*ldL^>)8Kx{58x>qx3$Ip<4h&3SC(T(Ym^?CR!YMCDe)B=gb7}R-Um_sh7 z&Oin!hZHHWh1G(!K>T^CU{XzroZul(m2d>;OS_`Xg9q25!a-aLcC05%Bk2?MJ@)2_Wm%2q9(@xpZ^J*tlPssbE2hSQuO|98^|t4KajSFngj$o11y zjWw`vL{JDp8V@fGeJtdzBrH!y-5`}BJ0ziPY-}99qM3Q4le-_h84Psd<{zG3pr{En zffBm({8%pZ1m?PBjBeK&$aM+>oXaL7+hBU!lWRqM5lF=SO)e(kpxP)@GKCGOOF0M^ z?cmEOxspbCt*xyJkB@yr@~}-Y@NKDn-&AQ zAa^A?49)faGMV_$un`j=A%(McUlr7&kCxlQ`2%dlz~gAFQy+(}X91BXx35Z#m0zw1 z{2}e!p*zZL8LtCT!W1%f7_~zAFG&ot60bq?JxnWCF_6mt@*9CtsE<5I{_I4Y83iJ) zC0;)47ZrOh$c?7cr4j@or2~k94Ha)9l7$X^1EN^$)2C0POIwSgn*kG;VdLw)jdHmP zU;da}Jr+1XT+kpp9uhrBb>zcbmRBJ$dWebz{jTmE6-4C^^IwJNsd~ksR1MV^}2wb>- z|Gs?^$n4G2*t`P+cEL^Wm<_u?hs|fMO|(9;I+9=za*<1WPMzj6C-G; z1=CqqUq68$6sTK8WL<=xe!ZIaUeM#y`D-|O`L3xp*&n7B^t@gRM+U4C`>QxmL5x}# zZcul#Zk;+?;2{0+pyfuZcaIcW(vV+Bf%N0d1qc8tT9A39|Hc&(onqUe(jr*pWxFp+ zbu+a;Z&S)>vRN{9<5*WQbj`^AmNSD6aItKyax?4g?XC9qvFOMIt@PLyVpwkLrL{y4 zXAttYy)sG$Paq_D>&}`n?_+?Qz>^2US(X+SL>Yo{a5JM|6gZ|xTkTRzFBozLG?6;c zcFFJr)ZY2oFwfb#%C{uiT2&{OuuMcMMhRm9(1g0%wspu06Jp*Xm874sH&u5Z3I-p? zimlTg2$@W*bV3Dc|AV3B0xC2>ZW+%(J1?XbvT~hXEIt(n=b1{Rl>MBCH6}G`dlf4I zNu6Dday6yvT;^OF{Dh4+TZIbvr=}I&Yh5eebi4{SZ}3+u!D13`3*;%1>|Kpjq$43f_H>9um8&^RD7R?@GTQ0l z7kS4;bj-UIE-fx#`f}fz{sX0 z++OFAp;5SZZ0!UU-OIBRRhRJbU9*HfvE?!~Mtw;Wph`kqTm>K?!3=vFGOv6<$#Iu3 z2C#dc?JVTl5H*|hr!<_Hz3BrsjO~{mcJRJ^;$t%j^nFD_TJcIPWD@g9qDSu96+pg?waQ<3%j!#0&sv+=ms(Lb09mxhy=fGHSQ@ z)!|E0MQM1lUH%fVAY2V;Y=+GKDNIfA`c0cw(^Hwxo<7}1#zY^HkWibXN+*hQ-$cpo zA~!~en1)A3&ms54)Tf}><@)m z8x?Ccc~g?);e^)$GD6`OoWA3fY5!1DJb*!rRWQf=wYQ{9x#eP8SFjVZg97_*ufJEO z%c_2doX@vs`^8z;qtn+GN+0t4^{iu;IFoB(yVKJaE! zx%A)&MzZd`oD1g^G`Z8WA(HL;;;KZUM+Dx~6*vKK<76|AF=7YV6Z4W^@9+bU5l4DX zL-R6U!R3r1wZe`BcKLP!MG3oLfBrSZyL%*W6C0MO%-F~|d-${9YzQD;Na8XGBo75R zJlqI?-iMICQet*?BKS=hi{yA-Q0$C8Vp%`{u*u}6Xy((fFj;W)8YK}%4k9Eaa;Xi( z;s!rouwiv>>O@F~dy)w_qULejLZSOANBx?6L9=^`;>T;-NuN(Ty}MBlx&qV9YUMvgg2hFdJ5`tQIFV<3R2bMIxcA1MB0;{o`4 z>*m;GweAN4thNCz0R~3sARzSga(Wn1hl@G&?y8lGE-#SK%5!ErzB}qGW>k2hbOA|B z9N?-*maJ{_LtuqH&?@{M9NyGD;{5sheCuB!#YPw6MFWc%D~Q2~XP7WuJ;rze&Pkb( zNwysFMR5I-vGL6|jk>4YDh7w9a0j|t-VaR^V~`dKVu)59_XO###2)QxpZ1*1#%vJE zmb7y4TvI0uqpfd1ygHcGcv`KsOY!k{CsDVi70jpNl6k0*((&X3h?@u7=z*wc;O>=i z>1VQ(N$Q+E46D)#KJ6d-ulZm3J z`5i`n54yQed1Jyd_4+wfu$jQ156i4KTfMuxe^pJKby8v1c4U0h2CfQH4+36nVsh?Y za9C=&W%9xOhOvx3#F!Pku2g`rH>Njw5|-rHcvoeVZ?tu3eGGSsGqbSqrdOegV#DFk z1Vo!ZJHC4LH-CQlG^T^D?k2Is{VjlAG_;!?#H&PzG&%&aAn6Dp-Xi47WI&vd%kOU71;6Y~!P&cYssdH{!X%n(H!%!B2GH^6YD;x$0i38_cUj zQTn&T7G&L^EofE$_(8o&dWZ&i7`*YdzIRvxMZh5fVUAu1Qp^#hZtxyF@}GE^is#)S zvQT-1GKbu>dutB+!m|$wT~uwEl5+INeiSI%I{of*SBQU3U^x`1RC29zeXn%6(Mgg#A0$uMsU%{0|ZnlAv6~dixuj>bZ87-c2BQoyMqx~@Z9EO9kfjW#lP)jgI z(a0w$cf!(>f}rEw0rKQXK?#JSCrOH!tj%fj?qZu?CLDWv^bHLyw4y)`aRf#dO~!U9 zA<>=y4Fvvbh-oRLpYs3U&=c@9lFWWT3G?Mb81))(Iq(YY1?oqKYZ zATrW2h?Sg9#0+B012(L}XVTRqy0Xw0RSqgf6O48qIwB)=ojHW5#>Ygsq_zOCT07>& zSoxB-B(8IE1!V6?VnhKS#Q^#`42L6Z;Gse)%|uru)USBBV<2(!5N9}{qsX{nvt^da zx51cm7i~Z4#9T@$S2Gl#1j>P4>x1mcBqmB|^L24_;$vk!dN!vTDnJtPOv6N)0$-&A zagq@}2>1$)H5d$>u#YStFA-MZkg;(x+LtV$Uc4?ZrviqE$D4CKz4{R|NG}N~8oyc_ zBmp|{>OQ`ulCjl>G~1G^LLAiImhiWcm3dWl%oRJym>9!}K122pXmpD&Dj|;}Wj|#I zf@p-FB00ZjFHzzxs$={isY=78PN_n1ErY%d!gOUdIfqW2BNzwul^7Vw3L%0{NJz-8 zf(ZX6Liqa-Se6hUUl}>pCr)lj&~XjgBZfx3CG;NeAbntUNe02rfwmrK7)B5*B-S0G z0FzJw|17Ux5C|kyVP_*+w(gUhhN&ZK`ydKqslvf+q%f|9K1v!`?P>q-jGTjCs!7vR z!I!5q7rTv;gh%?#$O?1>&q1_x((4R9OWJerOM0T;o+{w%y={r7;JmBywq~+= z@e0}G$7c&Gy+atO1PxD3JEiFY?|v>q(^|Hd5(-nBk1ww$0|SwpAP485NX~<)pcYpD zlfG?5tmM2#gpV%77DIF$ua%N=IX89oX_U}e$otlI`DOC3=>38gz&o47?e(^MvGPRd zVO-2cBX)TQF+aj9LtK6^=N>I6Z$rqp12JfKcFP~c*BI_IHk6!@@ET^xZ0H;cSphqi zccMnL2L`bRoRVBLD;GBETofRAAkJxMG>~WX6UCkdCr~dsWnSc;{7n{U#0|%X0vfa<(je4--TuS!x3>me`8gR98?-K+@M>pS=Q4`W&n{6^+}nKm}Qj zjH+mw7f7*Am>C?2{6S{y$&m^+Jk2~4E8>x6qs^)QA;)HKuC=VyyY=MuqGDcMmhB!# zx0k!=WVK`?S67hM=wwjDWMRP3kPViqfmo>hXwvE7GR~^DOiSVtfwaYkeHI?A(6Xs6 z#iT1am$`6PQ0)Aa?_Sg{5Rj|1$=1#+}zAcs~hgFbdW-Jw1YNhTPfadxm{9WBgQNeCmKu`e_J2KN3 zkAG$s*cRIwC>&OEC+E%U>c;o1+LTou!t(d>J}yh4jU8AmA@R1yY$F}>1qLK^e)+;2 z2`MQ}qg+P{*KdIEb%9`7vhsW{oZO{m&~83Wf~}irb%*!`n#a?(aSBRKjc1+<%B-lK zqu;PiQ*m8JBU-^>oq6KndHczfW!H9g&$tbPa5evVQqPG(m^tMp`tG{!x|I;6tE#Hf z`OgyzKs0#ZCS_^qO}wj^neRsDtC*kIN`rgD&24Euw5?xnZhbFSXn{eGu*hMYmU1Ku zmJ~nP@1wfZL+-}PGgqJw|K$6uUU;g&vIUo4bq!FtlsG6ewRLr!pARhKH#489%)a|T z$Z^M-ep|(FpCtOy&joGiY@NQ1Z!x`hNY4Gy1-mlxyB-DQC8|pfS5z%$<9y>ex|wJEj3=%sl)ht4=8TC?-|lb>9P10T9qe3w9kcTG z%!6Zi7T%vZSIm!px3c5gC*FWg${`I>i|HJ9mU67nX>6?fk?i-kU9TNp+d@GJB6Gym2Ay zqf2Mg!|qqc9ZS6poI~s?N7n0hvGvx}eVt`9tb^;9te;MNA|onxEe~GcGl$nKxV(D4 zADmqAXuLu6!0{F@`yWj#{KYTG0(aUA=e3v{KdI{b@O+PdU91?9WDo)3mTN z^Sp~xY1_AKy7zaJ((-Qd%WRk_Q9iPd-d+6Y;KPZr{L4q*uyy*O4A%4PB>1Hhr2@L2V2tj{$4PF9Z&nn&&A z!pMW3-$oimdF$@mj@`OD`q;niU$Yq>C4(0Ic+LLFk!zo(TzOeuUf%z6#lDG6^H)on zY?`lMZ^_*M^3&=Cmw8XIbT-1;aj599Tv=!Oo;|rAzDS_ozkYyCo3PprC+XiBv~}4x zzv}CT!?G-1b>@nx-vLG41>cw3zZPHl8=N14-A?hDGxgkJuYF&m2j1a(c&)Gk#DMx6 zt~#0TOyd){@itx++r|D}YQ_Ow-P@n8AJM7&wzqY6&4_FZ6qUEnWqp&SkEtomW7-kcf zJQuX*`R1b&pT6CIHx39Gdqe{fF#KZ*DW>tde}4l(vd`c;W__ah|A?@U8o0E7eZ{Pa zVRL+wUo^_LRRB~b(iAuhVt7aVQ7??denXNn0z@Uu1hC^>auy0GZTqyV!K1YQ2t{%v z&SE=k*b4iPgCfT%|6bZen%Y|WCJ*iza@Y&;Ga%Ph0+Kj0y$N6;X8;X9nd^O*)WA>) z!$~1cY8`jfzO^YPMJE?a{a5VlUgE*Gc%k18oNJV(Jj+U)7j`!f?Wp`a=%z4@a8$cnGn+hm6#*q%pB0cez{Ed0^1@tiNFyPr= zW=#$4%fPak2m+;VmdKy}DA`g1{2)#lhWL^Kt3>t)aX_H`fOM8wz%9VU*;A6L3wUpT zLdWC9u?>Wg|6r%TaCxzl*Sb#I!eL37XPVMaAIQ58v0d#4|A9q*DwXa5XtLut^6- zgWHsWvx|oboHOYCyI-XDMIFZ#Zua9?5;)^r7=6#jeGm|pj#_2Q(|WJXk=UIODZlv?|tAki()P!HQ!G(XkKHbsjHGOf(PE? zFei-2{bte@OnJSIns;<~3&R(6m8rm;uuYzhHbByv%b};Q4JTf0oFj!=cr~okaIoPv zcnUmuUSAlB?_Z}+AtrW|WG8(zAocmtE9Yk_U*>8%s1T@%6pS)xQ~9f7u`iTjK|HPc z(ETJ<;C;y4?9b#fvU4FAOD{1GKFOu?an2mYeJ|QopZ=3?2Gf3 zReP$4(6u)fcMWv)6f!vOH@xE;1JU>Xk*Ys!4XI62}>=E&~{KY zR&&bD#@5k4kBYM5!$pkP`W|M@=!mXbys>!MG(XTg@J=Z-8a z8oVIN0M~bz=Y1rcKB0{c>=t@}H#xa@GB;}?7k)#f_Iu`@xdLM#mK+d$W?Gusm5a|l zoD`n%_`<)UR~}A?;=pFC7Dz1m#V2shTcW%Z{ZNrgQgYj_DiTAs1*jh)3%9DE=iwe& z_~^O#MPeBdLW7-t&gloj9vvIVsRrOcJrHyM3gBL|KfC43gDF?c-V8ZaZ2VUQaYKtn zE{@{37hOv9$>>kp+W61UMu_*2MiJWtMrat;u!rc@A%{o}!?jQPq@-!C_5X?aOWWiM z7rqREQXP-KaiZEmb93`d-y0iH!5%zu;sKnAkCks8E|-smDIFlCt7c;qCW===eHIpQ zo+zP8&~i*#aC*CX_v?6db=QBzHs9tA-2kOsrz_p+%gpqsuSJ9qr+4MbU z&6@y4f0}TdaC02h^TDM*za;4!VIWO;iZuVX+U;NPO!FHYKoCYko~QwEFcvC>Yxei{ z|1P%6KQ2E00KB9GA8whz=qt3ohIdkLe#;pPacsv+xu8XFh01b_hTVfMJo=u#)S{1t ze*c6TlwepO&%3vN-xWpH_quh*pMq@Ved%xDp<7fROHkjC?SqaZ-~@J!*P}mGAPUQW z{qLnnDi^ek_HakB6h-k%uiCmh`l!>+Jvk{j`?24|di<-$0UUi~(D6F@dy}P^3J*SE z2ESqRn!38jh7adW#J|6K03H-Z>7?jYrucC|WPs1+hu>%EuWH8v{w*(XKAKyB;G-~g zgrTZrDbDL1DHA*Ff38)Yet3jaz0huFfn%N!!J%ozrKdXvcV7Nqma8s9FJ(HE=wZld zfOsxBlZF1d%EftFC8sCJ-<5B^mioUdRRiUw3F~hTx|H#^E5SCCFel%>jtqSGR^sa( ztC{{!i>P0Nmn`)D7eC6Ybk;4n;ULM|JW>BV$RpmWr8AEEIcUI(h5j17&hoAS+0xOa z+zBxJm$epw=#r?iNQt#5NlRMb7Eb(uBOsJLc4YDdZ2B9t{xtOLI(vd3)~c!&>2(G; zwf*zV0BPuHEWHflQd*OagT$dr9Z`Q%9hZiJy)qM$Th`r)E(Qk;BtP1AP*1$Ck3aJU z3N1KrW@3Rc<>=5WaWKL=tAWKoUBD5iA?&eh%Kx|v(4)Oh{KyW6@Y0{_cTYr(zpCtc zr%rymIqw+Vjgr6o6pu!BGEM)-(9<-Ee7P$MCnof`hjyhcT{rW4NrVFF)+_7f^Zm?V ziAO@cR$dY?bmzrb0gFI%oCXV%M&}n!W4>G3x6`=R{yg0b?gAL~G`O2i0$Ruk2DNnA zexcum!?<{~Sj2~0@(L0m)V6~tn@2`Gfs+&O-d)OYM&!Y+(uV&YzyyvXz_oNI)?w^b zaug~G0h}!vgk=Fw#6bgtwLDCG2wD)F<>XjTpioFjW%5XLk_@FDA_~I5L(X~t_=BVr zk3Ktmb8km4DJa0hed4%h;5^1+FMvX^2<-z04n!G;)==+5BSqdpg4!owFv8V9KETOc zXz(I1teBPKbs6W;q7J|htm{_jOmIwM(Sii>jFx5{Z}YI$E|g_!piRlT-^Sk`tMuRUWZGpMf_Ai$uw}CV;Dy8|SgJ&@Q%j-xLTM^6caLvFz}8E9qg7)MDWmBt;XN6dv}< z1rqZGoccR)n&5sMpk-Ke`qS%Z8b*4xfd9&|Lh${?kt?q63FrEYr~~GSQ9wHQl@RFx zbC7`vMk%zWJB$jg&b3K2J~vmv-Ur7H;dTd&jU%#0k&F3nn9eTPtTmc4)NhJ3qF?Bl zL(Wd*z`}=Di=A|K%l!-K)`#v5ITIsVbZu>z3x|PT7Ja3>9p%m)G}c?a!;CO&HNbAG+L0!d*s1slUhSe zMH-q0UHJb@o9vo$ZYz$s`41ZCb%t$gh%Sg>kCmr58FIA$)wa8_MlKG1zFZ; zLvA4F79wp2N<#8MCUzPNO90P^LlNv%K`@h(O@F;z zs+J|a4bq=CkZ{@OC4LAOtpbLZybGA6D9F89Lse)htbfOzlyl0(C&l{pKui-kjf>Is zHgzuBW+V@=qE6_CYxZx4&dnEyl~*muRo4GAuXw^D6w`sZJk@GwzD_E{t)nGxC6rM# z!jW2Eg81~_Ky_gJC05!iBi{&U1jp}^o>0yH+y&f{@FP9 zmpqYg328<1{NGDIj%i`KtD@KH zp7B+fx0T8oIQ@8uOhgU)2)7##p3XhVtn|X$Cb~R?ZbR9<`MLPCOx0X-E-On!lguVt zz+;Lg(_vqM$m$`k#?qhT97g*kAU%b6X{|6~4S#(ZiTXif+RZNYJnfbJ_nQ2CWI^G7 zBc(k9-DK^{RtwI-yc|DXKO@LA^>49-x9QxaZLMlaOVbdxV1G_sr{NIwzsUW|um8>i zSVxVKz+1X>(0RVGpRw+rpbW{KVN}+q9q;q}sI0f`RkQENt(jNR)Wc-w=8{1pu`6pYZTs2?jh`TW)bGpw8b85-;N$8w;1tSoEQ{yZqv>6WRT*F3M9O zcr^d69YiAe;qCdq!_~YI0p{W{_Wz8zz#gbw5%@5`{l{{JSD+y8pvjE(Y<;PG@Ss$+ z?mx>P*X&buugrLQ@)sZFtjJ&bz}dJLEFM3&z?L~7?EH<)(>wIBx0@Z4vt#)@NC5Z? zVSxOHrwab*R?vJ!WpnAa3F!iY%U=i?MXA%S+2>gfmDWWg8iIRkUxg%EUO`GiXbVIWHadmR7G$+obcFVHud|j@?hno6lCm-jEs8Wi!Wa% zrRPqRo6Cn*}iQWAJnzg98pJD*APql#^SvSHeKdW-3fM3Fobjt+<# z*gEh4s}@}5o&8p^hF8MPys&NEhK5v=s1GHIJB`l3^(3|gP43YD>|5LfkdpcB*WRQr47g;VI z8BiN9@xA7?A8-Zcb9%F(Bn}u9IaB~=JAtn6M#~s5H()Vy)E36?x0?_Dm(qKz90UZ2 zLdfX5AN`wX`z9YgA#(aJ@sOd_><}7a$Z_Gsd0sg5c?sz@@h?n4KQ-|?$2qvc9u{Jq z|6fcSFQ-6@<}p{hE`KJ3u&CdIW3#_YiyPCh1jwE?jk4EqLYVHv3>3d+cV~m{!L^js_6g2+jqzHxWE77 zIL5I#CnSjmhlY_f$vBM@p(t8Lq)k&p*&HX8;zX39NRpC$`bbP=mw3UUL)$|1cWWyT5pn>|Id>?2QVo>}ZQUB=j_WHI0Pd?wvZQA4!(c)sfH@ zW%Nt__(6jjJX7>U>Tg7q!*8OgBI*qa!V?otc=haM`F?=Za~s5mO1MO4P$UUhAzH9o zk%STm8dUT&@HOnQ@rB2k8yYRFU+@Ye;R%HQ*A~YW>@oWVoX+zx7y@|jae2asqvokJ zD#do4O?XnsijR4Wc`W`Xt__?3yZL~fs4}q?Bv#OtGO%G zC_$=2~!XP^jEKr&x^k&u?+ zLDtLUc?NhjU{>dslUBDy{`_+zcEkwq$h;j-gAu7h97>owP65Nv_kHd)sUr)u?FZ}! zk5y9M)WvFrb2B4T%*eh9t}1%6a}m)r{5E27qItiG!9~J00Kc2uu<7m7zGrPM$o)xfEB|{ea`gnf8 z(83I5z5|AgFqBpDtBL9x=y_MtqXprOA;1Oa`w5u2qW#jA+?(B$wsbQPVHk8}-MDrk zN*zD}3@3uFU)Kvr`cIM0&Lvynynti%{^Mr;=y|F_QO55wi)*rnxSM&2frru7Avh*O zp|-J63iDK19-fe8QOlDC)kjN=VCocutQ+#PH3a!lF&i4r1!kAL|8SOTglI$29i@h~ zqi^mG0%CMS0+l!rLV2^> zgikOnE+2sq;FSSK(f`tkJ+h}PKx+uL*xlq6>-TnPbvP!VS@Qb&E(~}E30nC0JGT|I zXwgMDD?Z;I+;FB7YuAZB;_!;Yu2UTsLhaU;*#^1uwILKH7{f#UwT-9#bRVwMUD1mQ zLWXAjr>}ZYFpFO}1fE%N z+Q-<`*QcXusk+ggF3t7l1Qd;)Je#G(NEC)p3)?`$<90WF5k1|Exu*p%Wy{RY=~ zC6!D!$8jBTF*_cgnEAd2J^2**r{bmVE}vnLqzkh_izn}aTTIDS7v;>}WY4|7X1f-y+}R}9$KcM_ClGPCfjC@y4EUtxP7zYwcJ%3igb^F2o@^LG zRG&weBzdiOpPEt3!K$8wmcWjr92(PX2;Yh2PBdnShwNbO7=dv)>6#%LQ7>$w0T~&O zQ~c6JakHI;bug4rAbL1a!*Ea60X)hEF4KTHi#%?7HZDVfv92ETfSfI;Ighpn!%OUN zTr1zEr`>dx$X^ZXIeg~1rCxvkVtWgfwP242oNds@27Z2?f*0{zS_sAJGc&J7TiS8^ z@-s8FYn`%3JQm#FG+twQ-`C#@$0|F>E|-EjOOh<0JS0OkjVTxKw$3qdj&Y@g0n%iX zOA#(DHSo}3#DGs=33lhQN|8%M;@X`8So1a1w@>`H@=eZw?i&_b#K%VeZh%#cQ7%{w zXVH}B-YBVnq!#Ok{9V9;^RM>9*CiYZD;t05?&Ffbu9?g_R0fO)RU(G13912=3J$k( zLzJiZ_(Sy@j2Ugg4Min9*~|K{26I!}ji(%5apK9xqh5G)EgEN|jVVrldm3!rvV}so zj9@b1-03*ZSJ<`4I7If1aZb1*YTJ!8V^UJOE8}%~D`sMlJ?Xbfh@Ds9n-h{9gpGce z{XB!j^C<=fd*wDx?b(!dOP>EnzLG7?wl{+AH-D`vU`;8(LO6NNBe-OLw7!ga&2aT0 zF9LDMNtO=PxZQn}5;2K2Ml1Vg(}15GDTLk}RuqdtK@AgK!<(3<=@w*eHhp>(SMNPz z!$YH4lld_VWJ1HAtjP{71^1occWr$q%U(sy%;9+6LY2d7Mj8(6!`qq#fHlfrnwlsUL2~F z*dKRg&*#LHY|+YlGa1qoZY=7{U2%bZ958mvmO+!!O3$VxMP0)AI0q^rvKX zp|%YiLxfIH=gx2=&Z5*sVUKn>Oy+l<06LDLrXV*O@ICZ0vK(Z3>9sbyVE@d|(A6=< z`D6S^&<;h9epR`HufCOgwDljXhPmXm+kDlw{is3eN>Wg*6WI>3o#&-R@*Qgn?X6Nm zyJuH_yHD;C5fTcvi1o<48`x&oSHU;8Q60l^@VV1WgFl5b#2bM2%6<;(NF5@pjBy8x z!if$tVc+83{YBm%^PKqZsiY#t)FoUiVuuz4X`VnyCib=Y9`i1(O|!C0gl6TK^u2Bm zE|c9p_YYMN(Y(+L{s-Fo+PD#G8~U$#%v$ClHxc$ng*UDOwmU67zSF5Ab~m~&hr(wM zzZSeQ_*3RmOh{WdZ*S5u$Ap8+oJH+5{#Ftl-^*4%WA<_1z1Q9o_`&l9-Hw@xuc+Oo zl+C%^Do3N=_V1Y^03^z;sVWf9B_=HOqdW2s;qCqrnG5-?256+qtLv_+q?EtQa>xhc z9tbF%a5ZrBb3P6l)$3-8BogF&rFodpjRy^3f}JK^A&teeIRlOHk2 zpSW(b>#nK-A$foy@l%eP2?g#^ZMH%o0D{-UNhKa0S(ByYdMPivv~WR!G?aPn$K6OO zTGTA?&w78Bbb>u#Y(JNwSDiW=s9EZzB=}JUr0D98qOorxH{IIJT6pY$`ghw7aSaLc zMOzH#S!~Lz?mp5OBz`2I!C;!nXh1(y|N&&yN^F}S$xZ?*R5{u|CgeB52(9e zk8MX=&LvbWV%WqV6-7ftRnTo>6p#D9GxHTl{lx1pIRuL@ z=9g^BgT3LHuKmX^hXFH4(nPByDj*!NVF?p#Xntn*?7kTeixd|qQv(AqvXTWYRuYyQ z4RHI|WoD`WTQC3mwVh+oI36R6_no%w%tGx)-7Ox0&9#1WGwON?mpz@2N45QO^qnyv zoKp`O}@;_daQa=#%jS13UWIg0hJ>6cw2!mMS2G-M}d;ZDXQ4aUtI8?m(ey`?X zlZL+^4<;q2g!!&QN$gD&e~Y}T=Y^v(w)75gx}{9@EgBt9F8%?2ZqGs456!n_kLC;H z%Y#=!UNq>p*W)@dmV@{4JhLqQ_rA9$(T=#s zST){=iz}73&FAR)i?xt;f5P02EI+U@Fovp#x>9f_s~bda zC=fnRM#W$Ph}x_mKLov(7q5}%p%o@|m%sAAq1(uqGLW{D4F6)Kbr@(}DQ*vVJ9O5= zM|634EB>hihJNbP^z=1-SAeN^8>o^3$`I~b^iig^oR6QW|71^ zf(J4vP#brgq9kA(1Fh(KcT2J%b$A4RRB8q|v{w?kI%+Wgs}y$a)-6n~nLcWG136VA z!NR;S1{(puu&uBR)aQ`@=jqPg$B%Z}ZrO(Z@cuK?MfET{TA)adk02vsF(_sNTjGp! z#c@oTIj|d1_vRgkrAyjyiob;iOKwSR7&Fv}tg!_)Q+dDb^Q+YpWc(>bgRC4Vc?m0G zx9vIovAxT+8*X4VYx*Mw9ABPMY^D#YK5&ctlf&s+ylZuhJ=_#vxAA2<;CWLPiipy^5>rFa?@+p{6t4v!+iW9-5s zK6{N%bzPlC5dFu3by5uR=)if%*=pA}`<6Hzy!u-odhg*mbwx$UeZMxah5Ui5e6Dja zJ{W6x`(EL16!@jM?UkSW1d6rnJR2E5cl_{S;Od#~TkDMVc(0`Xzvu14tTo!azyFxUCT99RNU_*!87}| zp|iKjUR9s3_JNkVM$kg2&+@yrJm9ILPyXiEB8l3zbz2^jYzH1V)w8P>k4d{CAzo@D zbh>x5TvQ*qV#Rh~>}m!e5jI}dTxjYl({u(gfz4XS$9b171YmZPWF`rg?CJX1D(74F zrBc^~(pQ3HAGYzqZMoMAYS!PH?&{&p!U>XIfCF}cubd20Eb`%E?QW{-gK0QzP-IjO zf}4k>w}mp9rNHTAykwcLHn+$i?sUZG0?S|C3Ze9Za*1+0@c03QJ9X+I5Oa7vkPeHf zic{u$IQ8*)lU}q@dc#j*?OT-_NMPV^qIBG}tGtPvFsOf8f3Q^*X;oEqHUk;(8elJ3 z(1>%3;G05$QE+FZkaUdUPD3kkh z6!5Oa^%1wyc#Fa6g82|;@W~IW`!jPSKXa2k64^jfN*LS(7-w2#Z^?2@CSLQO*UG#> z*8O(y)Fvl1N{T#))RYET7L?t(o0WPSPmv%h@^{1oBY2p5 za@A~Hd(=FCyJJ;h)36*axA3==kfJRm!4i9*T0b_@GK=y4WkK? z>~-p>sAPVq##+GE58Kh4CzFo7%(xd=^x(E`?;(wjLjS+QDTi}sb^K`}WuApb6};q2 zkAa;$n?B3&>lKQNBd;cyxsVwjpCY-sAYOJU0t09ylj1l0kO}Sw*t_d#)(6GZ#)Jz^ z40n=d9FwPUW?yrP2FY~00w0W@59?ydwA=jNp+UdAHq_EUr}&vL+77p zPAI0H%&w8-@W^=Foy6^=i;l(&Fd<`#d2X|yuyAV5fGZ3?hl|_cAj~OceT&$Yh=$oh z-d9@W2BJ@8HnfX(mp$P6?~lm}>X< z8Th)<^c0zB+DsG1%HYWJx+BA*$R}vrx6#3_>cc3W>pNF04 zJUI+fNsNh=!HO>t@L!wj!SyTkOyOLZmy2d1Y#{{9kU>8CH;4SHdY$E%Xaod}_RyN;F?Qs50@V&Z4WzcwE%{=w7iED8-8 zqn$#cWzB7R zm{fr6I7x{}Q_Z7M;C}x8TlM9k5evCp_e8BATD~Ah%5z;j+2NK@9;Yt|i6euArdEvZ zDL5%}0%B6~r5DrncyJq3I(>iayap%&$G!iACyLD6_P_c^!-Zi!#c9r3!c>+w(R*PW zmmBPAvX!{AiJUCzMQD00oL90aDu(R1t(Fgu0zgNmjTC%>9?tvPq)0(_Lo!+3nTWt- zl*2IiA*1IYiw?3yDP??~rR4(k5CA*8@ATerq}lKtOAO1n*643#4TLx}U@GNF zE4Lv#p>s0|3sMd9DH1UWWqTmZ=I8@~6lHEbGH2D6w*sN#dZ4R50+?v#W_9grR4L4q z+(cP24VaHBxnDlmX{!y#NKV*MlC)GwBwjRy_oWO`v1&edSwo zOPY%IBfg$I?m>?MqSoLjabd@fOAo{besQv-@Z|?@KI`~Yof{|(ZX#h4RpHUBkZmg> zOmfxmD7t|Va#!X_w}cS}z>g;rd>FeOdjRp&8eqlNGqpXW_jJ-RSzbUN8c4ah$04kB z1DhutSJxszJ(D~E$=#FKUyLUv1;WD1?XFCoS0VhTQzrY>CR2rp?+>(Scl#pE8U1kl z9al;~Cm|6|rnIvBZ$!my(Hp*_YH>Wn34uVHz=9=t; zXk&yB({#3a_Jy6@Hx1@EL_8s@f|9Y)9Q{$H!*X=g0_vC%_Y&DAH{rgtXPNVjk}seO z&E0;ipk{z42#3aa_|N68UYN){Tkq^^Is^Sp76Vo}-gaKI`vr!1FhZe}*RW|%T{g~Urua1FcP+|_ka=CI%) zo=azZ!Qi;Zqjv7ln0pJXR%;HA(g>2dk)`|kH~r07ermBs9lzbMk}}lZFnp@mq~I|c zCcjSlb(8GYyDRnL4<7uI!nJs-!lSjHJ@;RBtt?d06FA%aC2piZOL6Dv+#;TJHm2SD z-(4accnYKuf6yol;|709*`oDNR*ytpB(#SjhbhPc)>xatOtapRQ>E6Hs4kgxf5jSL zRqmSS-*f_XI$(Bw2bqvfI@9YjGe+nna*wOB)!KJ`P2DOk5IR%H!UtCglsnj4U~{yY z04c$Mk8*m}iu>=Etuai~xP(9n*e|Nq=<2{NmfRZ2UGCD03rd;M9RV0AQv`tZL9F&0 zdo%qN#|clwti2KrW|{EzvwZ$%KpEEl{vDD--Y&(70Dp8ySB3VI~ZwOO%XJH!{|GY1j{#EmI&cn!w zy~vSZxK_NK)zR}wI~P#_baA;u%zL{^Ap&Jgq_(((?OVHDYQUxzzXb(tIWjEX!0(PX zp&*1{TuLTD@-T(-Q5-@hm`t=`LJ@pV=B9*85#K@n$)g?ro{6tN4n!(k^!80Q zuzO~6_4LTd#R}c9(St)nlT)~o-1zXim97Wd{Sd`4lhT#!;KZ26xnu!EYI-J%G}=m| zi{2f9?dS%q9Kc}k=#a2a-+g7nvw`a-V7<@hrcu|oFl%N%g(77m^iZ9Qd5P>r;o(T; zh?Y@1+NWy|n_6Hn@?s#;6Hx8#scXgr868n_fqlHrIK(JYwB(GU-4R(n(ymEGpg*AB z0iiq@2wr&V)}#2_82EzH1Cb%O)6uPnz!Z&sJ4le*8N}A?L{e>xF4}&M39^C8b+_j0++Ib&bOsExYy>rRl1?)8w8I3nV z+U;i}eP&K`O+p=mP7CoQXc;-%6UY2hg(8aoj?l4RdzOhyjz_dHh;?wX2}8a?R+$O6 zL&HWob8Btl#?4Jx*Zp}2Vs{TG&&ZJmBWQ%tZD7N!)U|N&Pav$Ry#po`6bPx0Sc_J4 z0{(Dp)Jl`CKTW*DsR1vPBgPz#(ER6b6%=$fJI)+ME11j6v#zhU{roj2c+sgfM`o27 z3XDk_9@(R1?&j0KbLwb4q(?r%;mBAdCuny|&;e7-mma*BNnlz1BW2MeVh}Rkgg-#6AD0-J)2=aj2|cIZw{ibi1tg{HS96y zFJLlcJ|-jQ?k{fk;z2!*dho)tFTV%DE4Xa2GIGivTE205((yvA`6}&Trv-Hk)KT)4 ze>ghf4b-B6;?3NBn#{R%@7~GbY&ZDpfR++Kxe6D%p1zCsiTb1zpjHNKP;+j1eY#_qrY2qo3 z6J$`=T}0d8ksT$f$}@2TWPp`g)>#|n%Q1T}Gq|b^U&Q8eYTwb=@F_B}eAMMIF^R~9 zR8pyXu@Z8TkmfFB$@jH$4_Y^=%3`gcO%(cT97qeMu7^ZfGK^xw6l7}6?J7VNE^U4& zZSy{uV3I&y*py~rvP8=z<+bjx#*DDr1QNgiRk8Cv0>gxrUzrmdg7xV9y2{rZi?fw> zXBvozAR0}w^J@`uI1BBfn(g9)-;aM#*;u#pLBDGM*=r990`;$!T2%$NkQnGdC~DU( z3auL5OL$7ZeZ%|dmX?gbhFL)oFUt^^YBFdCum_cJMO@W3?lo>NA+SR0QjES%A?(SaPwH~>F2m@8{PD!_mwp;6a zABd&`AD#Blm{yg!E90iW!s>%(>RjxV%i4+} N4oF%5;oF98r)eI>$grTE_Hll1F ze>_Br?(l%Tf>R^B)k5q#DB3;wKal$0VEF6v0m+KCHgVvwCwVF!qaeq(s7dK8fb!;i z!M3hkBNXk)p3s|c-aFa#>TR4<8&|NW(H6D&5706ZUkwgoI7SF~bW| zg{IY0FYs#06GL;FImbeTlT-vMuR-*-_ov^E=-+CY!-Lw?b^E`^b%*6fY))A-=L)#X z{8LBSBmA}LuSZzCWR33@?%)=TguRym=Xhd7D<*e|MJh~Vu*I8p^`EOO!u4)@2L=Wzc7`_4jR67J zTlj0lC*8%z2VM)xCAH`}B;j&a`Vz3LZOeVulb<&wwO|N`4@OWlX53_T&6T8>Qrg&Z zz!=U7MvlY&c*n9d*%7!K5(V@n4nU8uXUyUz2i07gn|ZqB7xZg#ZtjL+{<77^wk~+b z1pDX$?Xz;+rla%zR$>f-b2rp9O9@YO0h1gB+1@X@MpNrGS|w&6-1dZBLP&?k8#68( zMcJA>d9}L0pMdK?HkYP%Fcla7Pi|MGocp@Uczg7~7rg@S{Q3y+=ZMn$ccuC-wWNr} zU)qcbnUr>w(aWS=za30t6-t-AWqAQa;zSPqBiqcc6v|48fw?L=hxZ>EU5cJT zRww&*teVT{aP1Vdn=nt4KDuz?DE|%%OU$D2@sbOcH4Db%@2|NiZ4uhk?Aht%Tn;+6 z_g_g!I1@N~GXGx>V)F+@Ab^o06pY!IW!}g%^ zW$fLwjEm9M*Wo{wdezM0y=K_bS!e%jmoe&YP^p$1izmJnDBL-4F3!IeZi0fe_-X+P zy4$2O!+QUR0uj(wZ=vOVVUcd;eXDgbsdC3+%X*FffE|!Y6HQCWCn^6x{Yxs;Ql;zH z(y1|qLogjPA{o{oP)+VnrL4rcrFx_FoBe3fl%U_Yn4h_(nJP$er2ZK)X5gH(4+*_QL`-!hDBHOy1);WO7Q`^=mW>U{U9^TG9RLF?)7Y)CF|JEL7xwxqta_8 zQYq$EP~tF7Icg7x*6{|W+#x6m-Y5QPagvUR9=c9XW%{3X&?s3B&3L;AY|^FAOW~JJ z#s%&HMcKl`;1~!-Z1IeXBN=M!t+qcuW5?Yh_^D}{!cmBv^+hZ2Z!97`Fn*X`y1;o! z?Y7pRiX^t8T->r{2`$bTs`6-?CH?_D6a^ntfA*C)Qu>Win*HwV`NPg6QotZ~uyUaA z2CvdIW9My&<+(?Szia?-z5EVtmQxwnqKHff7 zeD~+j!JVSHMa0m3E75I5AkQHpxzwDCLOZdIs6sn}yP7II{>@IQp)>kzB!(%lDyu|d ziiQ1YuU(B7^j!x4nN82D{}|~zj;#0Xfa@-{?y9xXq8G%1r@h-X=|2TNK&8}d)Y>d= zie3UJ=bp^4Og<>5+)*Tz)$zUE%&I?gJk;R0QI0^{4HP^q@o8FAQnDho83UigW^}v; z!21x{)Oihq(51XJ0qRJRz-BNvZQ3pEX$@^167k~mkc)k$8zE2ySd^>FGmh0ys7c<| zidNa3UB?9qo$VF))j!Uv~37#GQkc_jL> z;ur7|k-8VCG&mklS zlQ+Z1f#&B2FDrs()}l-@btPCO+>@N}!o$OpbH!aiXvq`%g&{X)KCNsTB72)UYwB&I zlAeu*O5TJqlv{LXH>bYAII56ma!67IoN``dZ=INrV{2e59OLDtl!&oKgh=Ioap8_5 z1f$VR4%l^aC5j~(?*nzoRM=~KEtG;S1Aa#($#TL_InrqPi@uF zY!L*=QR)X+T*YFSjbs1)_csbg!hy9BrpTB{-;Vt(i2^vH%n_ZRUjj%4K9RPzjx5S9 ztEkmHJ?tf!NKudk6X0ET<>XCTv`B(Gn>`CwxfDI#iI@)xO)<)FP*+z^sf>u#sj0Qe z(+h<-p2HPW1}@lj?I#l~2op9(||N@=k<2O@D4;{au#AY=$zA>za+ z*_}UzybKR^9v~FqubTY`ip>15^8+$|GM9E7apo8qgf~bc)5$7D zD2ho$)bW8$D8T!8WG@QcufY-v3Jp!KnzIAWtZwQ5@8MyHlsV2N zdZ$hAx99=sl5p`OOw*-^WOsI$PLc(bm`^owfT?x61tNqF;nj6@xChzTZ(<3DQihr6 z>bo@|5C;GsOn%_sb#l-SO5Nrw%%lA2_3>Rz{i0w#^jfMW?p0wM=s#$CV;AeFp)adz zYpHxXtX~_EX^!5X44nw|Bz%jWO7txhBH;}%>UP`-D=vA2H-w^!wL}0&cJyZo@1)ch znf5P_g*14K$Dn-d;cl{kkGoU!uhW1Q!H?_SBR8H@#fi-(9aSJ%8Z}itYkFE*AB{bb zWs&0MB!rwL4JKd-xGcrB7nlppQ79oRZN|n)sZQLxZ62*KLXoE;FSJ%hIn9 zzDer{rCPw&=4jYq5y6jIGn!9dS$)zFA;bpWQd3<=i=G}(ArKm^mxJIQVoZwKUP69U zOjx2yB&ZE>(-zL*bdDML5rKC&689}y_AN$2NZ`Kqeyg1+eJZ}dgI%5DbPAACL4kR+ zW}Ak6#GLUeH286;yD3SLzwy7!BPg5j5XkiUyPub>4*N)51QSoUelT!&L$lLUiA}h&-L})>xc+ z+~B;uv|WoH7OzjOyl2v`JE|75UP0Q6!;CNag)U_I60T4`uYwFAwcu`a>jm`Dd=Dlo zmk+&Y0L`@>P!x*l6|?D}i7?D?jR;W4wF#>#t+jdK!~af)-2A)Mck;s4sGQSLikwZ@ z&n53tbWeQaV@!Mb717^~)7ge7u2O5MB^ZrRh7H|W8li))OfglNG%2PBACO$KD@Xu0 zkr8q>fm8F`i$vXF?OB{50h2A;AU&h*bQ;>ynPucU$W7z12w5yWI(@ z289j3!piZxWE!K09S+1NMZXm8;W;?vN^1tj3YNBIwzVJ?hYhV3A&dSj@QVS>S1 z4w?jbyEu37bEhpG&^3u$0T9LLEvLu-rDOZ*z#CVV$?5F)((`_7(wUuPvo7 zV!b`Fl_T0J1P{)t6)nl@VXeKa9LbhJ`(x>YflP4{1L+pEy-pVu_$;gLBpD)Jj1s;Y zkn4IcBUj9F#0~_|R78{x0Nu72Zf%Rt)3S4(AbMO#?yw%G_s_#^}q^NuV2)hjkT zpu2o-#s&T$jeiZA3b)&<*h?-qpEZ+Jgjg5vOxe~^q25}){@_iVi}P*Y{W3w?m$G4! zUF&V6gYDu#``GUEJ^^EhG&O{vecasW3pxbz+# zBc9&W)lC&$eY<04%$-Ah)NAvI64a=H$P>dOB{>Ui_VOIS5t7GJNuS0@%^8*z=BGxUQ_|Zl9IvkO|MZ< zz18hDOnAvxjgqjfgbQG9L^+Fqyt1R)iRdB98Qd(v3=j~N2dM^m*k>+YHn>b`;nu&7 zJ(hH8$d0q~ivqc3y(p$kH2E+Q-`ZrstX-KAnf)%8V7TCd1s3+lu=-|!d4)W3f--;y2W4~yP$0WX(5sA;Y*-MI#VN&O~eM?E}WV-QCJ zXdJE?;GqXVF-DX)!U_b|U%mx_mR^1uMUxYBjv_UK_=>;*0T5EGF`=GTm}vW(=(&88 zn9@`z)g(IxqS6r}*whLR)H@Rk9?wTa?WT7kZVL0<6zh}mAUNJob2n-rI-MEi-u)`2J4eO9>p!$*eiU_y}y4i$J`mecGD z5Q)}h$+jm&W=)*SjyUvlPMs8JGpK0WgV&oTX1t~D)TK|bL}h%8vOT*B5VwjDc+61G=FONVU#s_omLC1u zHG$6KLYW2)5t{Aqme(DFu97bhY%}5YN3>bugBvEJvkC|7Y6y+cp_O|E{k@PS;Txb6 zkb5N{g*g;cCA{u@{E>$|xud7Koj+gNG)jSG_$)6RsfCF1pcU3QvkbhRT-TBoNMFci zxJaSY+dAu};@AXD%F3OOa;s3>t*xtiMCrX4X}fOW!xki)IvtF(x{fGK9IpYkob<(H z1(*sAq&h3?)B;mS@*Cjm15m@qRb16$9sbr%+{1fN88#`=qw%xf>mJ|5UN*L`jm7{d6?q+Tjd#S%n$ zLW7pNFzP=k?rKI6bpQrdC_5|9sVZlHwx&_@Vim|JWK|+r?thjl(pb^ih9>zjo9QP| zOjR_^8mo~h`ZK-6&Gz8co@U*xF zT8yQD?aI)JDCvL`{?OBW9PHo#Mw+@F7KP<*a*N3PJ1nguCX^_PH-KBGUnfQkJM_Tm zXwM?o$|UU9;@agFYVu`&giv%Ih;#a{Z!)t2Vlbl6!$Tz8vcOH@1~|TOynO>49Qb*K zm&2`7Yp%Z6Rr)VQXyYtK>KXrb=kNL$LM$dCBNN#Um{10OP84v9sik|=R*E)%t2==P zh!3}KAW8(z2f;(EP7DCo;%Q?I(FLu0uZMrer5asdJ97$frknL`pgz`fub8g)vBkOT zY>Es{31G?o)tW0%nL_i=5Oje%quQ!Cuoe%BvT3t=n~imQSC(~j-sHv%4Elz>a{?x& z7gK)y5~V31kg#meiZ;(xS2lPz8xWZa^a%1}X+H5{XJD?%>}BYLH2RSS%@7ty;jflx z<^-Z{2Z5#`3bHp<(NH&;8$8N$4=mk}k!VHxeP~k+y0~sQB?Oryms|$knEVdYF7yZ( zZSyHIV=|g5TP?pH8XEetbnVHUq_eGEQqM~~Zn!ehGTj458X*uXm&zqRMRG@j!Kr&T ztcJA6=!QZ{qvT#_WayupI!rFh^pBMF*GgGVD<_XvzwRnM*eOpm6(sukqv(+(f)^pH z9cZ&#F~Dqqeb^245S6DTY z2?ZhvJ_)9R`egy4ZkJfd4~NEQd=ln^R&MLkpb@kV=tsp?s8fk&`U|Pe(jk$Vt-b;Ztlk0QERjreKnnWa7qk@Q(_;0 zyFdt2sVk@*D)%02yM)J`QZg|WHu7<3`WQb_^V#!7Lp3x=Ys{MCGmH*YL8fo2F|F+^ z=xRGS{jxyRlbv@)M0Lr24s=kpDek=|5gxerRDI^^7K<7st+AKup1`wE2x4%o^I0CB zT#3hpD{05!(4jgZ=YL(ri}J2NvIswsL5DaECjc?h9SN+XmB<(SuJ6G0N?Wh_u) zN4(b5U*ys=SnbTo|2+1_)t*3Sv7E$(K%bo^pIQ^2ix3mc)~8-i5gObu_W(!EI{Q(q zVq;Uzd~o=eMk-?QKjX*AVcVp+OE1aEg$nhBjg1lVvHvXLjqM&7G@zLb$F}OZ2|gmT zHB%lfI$S+)w=E2k;#o)F&?{xBbqCvvW^Ls$9f{qi+%p%MrY*o8 zZ8=;<8}}HM_q(2)Xb%iwor5CT3IckZtPi*T!kT|efx&}8ERfig!tEEkStZQR_GmSA zq@@mvQgRHHgH|=~^Q$+8DKlN|e*3ZhLpA$6GD6eMkwvQt_DUZ2x|2vlW*drLPG1R_lP~{GB`AgO@9bPST-$y$il2u$M~bW$!l#aum%?c=dqY#gg{* zw2u6O5Y`(c*Frd`Mef*htMN?>HZ4ZJ8R54q>;gDE$n96q@yKEiyG%K;v}R3R&%GKv zln}YEJ3;gnDuEesdEILJ98dyUMutpcGxZn=#s=_q`~`K9xGzU2aSps)4A^a?HL&fE znevI_JC_8k=REG&d%$qQZ^HY&TutqLJdb;vTC>VAAtBZC=s1%}iIE#$>as1Jd5Yll zuX&pD;nuMJcNWe{xx5#44*rqanfAVuFj&)XOd?*T^V#C%NoHS@&3XI4bn+!#)ayOp zGXp~D<~(irfqOs_gO+=!mR5o-1co0Sy2!!k&v-!4p!heTBk!E>2uwl)X4p7vb_JRP zfL-*HqmHlY|C7abDY%mBS9Fke5XiN0gH>%pXQPM%a;;;Sned~$vz1B1J0}d_gHu`Q zd;!29zVRdLVPbuYTwXY;y`ZaO8;v(;Q|Ak$4IiMLB~m}LVyjnl)=tQ`s|*&LD7IR7 z)|4Ag1Cghu_Fov=NH>KibY26N`MB>b{Tpi#pjG`9#28h|O-3tZ^=R~5$|HUQ5LDE< zY74!qsq6VyY>Rg(Gw{TMV9rfx-cWBJjXJev4xyX))qov8#(C}w$KJU>f94>sy5@UO z?nu;&oq&#Q#Y~Vhmf{^5ObzzqsH&c-wFjRGN*Z4A4FL&tfIwXB(-{{<4cx7BO`_zc zj=WYqW;;xfUeig5&MNZbF)D{!1vSDI5RR>9ZnnW4sCE$6mnwJ&8R%7Rf_QT#_$rmn zJV{iaeZ-ba^f;^6o7JluB1v0JxE|Jc#KT?D{F6_G{nw$Ez-73Xx?; zTXV?%=z^MT%))Ntr8gYxYAa|2^=Z?oHII&uwwOA&Fm~GLI~v+}7i4LF)iZHLxPv7g z5^Ca27H&1&;j~feZC{|D{O!mpNOG7HtnV$byK5Q05P?L;7!RPfc_rlh9u7u*c%H99f9o3g4Dam zg?U`}5a1y*Bi;OGj|QQpFM2dJ&dg35Mzap%Q(ZmH-(2H!5AP; zklrZ#{zDhignn zQ*NbJjkpV5goyF^SVh9?Jo6c8nDUm$2LnO#l}i4F7Y4=$F$8OG2%VYasAT^06hTOH zl5n{8E2@AA&GJUXH0ONES-p@gf=``>^1dBt5U$%BSlLI)xM%=`zHsbAHOh0dk)}Pi zUxf#wm89Ovq>r*dIgYdTOyqoczqa>j`Of8lJxY-o>LYr3`?gt1WE%8o;!Kep%=+b9 zy>CQ!Fe}(U!~4#8wr9m2GK~QpHK~X`|8~s*QLOB0KiQ`eF1$%*^u)^!a3g2`mx%_4boN>M;!W+WIXFZNgINe=Awms7Yv|=y^{m7H>7cU0YShxT@ zMQG(=)J2cmqmK)7`=oomx_aIgsS-3LCfFE6!1&kAQ?Pfw+kGD9i$vDP?sn1=*mVU# zp!8wrYg0r`%8S9|gkNE)McK+c z+mRih5~N0(aRJys-%gna2bSYs@JH+hcni#Z!K?#e5x-$noMcAy)ZdN+X#u(kQWT$J z@7T^A-x+@XM}1bS9Q6@_%xT(KfmxcWK4hcKI7)^GB~jpI+_nX-$ff+Wocd_Q9~3VO z6_OTk^1fJq0b?^VOH<%`!Tg7|3#36_GiSDIlJ2KP@Y?oDA_nR{ajnvtcUlf>fdft6 zKDvOy7rI+w!)-TaH}`t`T$n*)IFkaE@Yw)Xl5<7%FqH*xsoYudDq#IlqWZ=Oh;`El zbmZR^HrkaN3_qAQ>>UL7E=5ffW$lSJ4$C74jN-v-v$Xd*4NwSiOJsze$Ng(8vGU#h zfic{Z?lXVWh2j?;$N_kBT=3#1@vY<{Zj{8K)aLrOY9A|DZ=0v2e}Z?9zs|u9 zD~emffx17w5_05VP%Q>AdJ4gaTOB&WA+O+%RKky^?l#&s37tV z$r(PdvracJ#Ro!17X5+v@H7atx{XPzH~uT>;rvT12JOsKFLhy;dOz~Pcm~Ds5xR4z zr-fLVl(#`mO+XQY6Xp0y*!gOgipBoRjun82m)d*yO-p{~ooNG>yfvhK1o^^QdShuF zNlL-N54dboIGTDQ1bC&SSS8KeKX2OD3Wyfgri>lD&ac@IF?nRhh0T7ziM@n$axs|H z@+*P|rKBU~*#5QH1dP_p?OhnNDpL?Lh*~K7Jmd0enkxayz9H9U7`Ho5Um^!$At7^Q zMnKL$m_4jZc`>+vqB8@JADtP4hB}l{^zyx> zWGR7F!Vp6-jgmyUpDDIvPyvI6cF1(t2fy8!)sOe?yIT(em$<)HIO}L=%Z>>?c-BYJlhLR5 zVSATqU=DW=;*T|RJ`yQ6azLgi`wd1*ntM-z*-xNy&+h&7e7D337Q9X040D@`bw7mW`%frry{LgP9LqGJ`*WbgU@7)#(N)_>QU4lxCqHr_wOSu*UTTx&*bPfg74`g22A|fBbqo@ zi)yKd?8l^FyR|c~3@)uAFIIqukMsfb&N0*p61hMbDRqikT zVtaL%c8UDjX>^Zf<0ob-OwKRIDCcjaZEPQPrmbkSvt9JVHlP0HROmaM5*etf-_)Az zMa20i_Hf4J+#j7?hhYnf-4oB|qnc8maSK=jHFk5OZ?}ja11#wRgJu=qzYO&)xF7$> z@_gt=W?;K3Gi8Dj-(=%OhCc#F=&GUG0dUD&H77|HPkJW1FNnbyuErqI1KW>Go0NEx zna%2*Keg+?VJalMvRiFX@uM%u?3ZXVdnVuCXq(w>8aRD?*M)i?8ux?a;YS!fTOfp4 zU;iJ05Ds!)1Zf?_mZUcmh9c)J&buCyROaDec1zY@#FCQOkT5UrDB>=o} zorcv8V#fxRCAHiPG;_$Sj1*cIMp4<7?+Q?7okTH1g z41m*v3*N||eDxdF%Jv!8UJxQ{N%D2@aY;f92b^f7=4?naL8axFdAxM6HiRh@AcQ6@ z^tUM4l1ikQ?Xy3|QN#uW#YNdO0edyiB?y@@`_(pja|?<)HzJzBZSI~76RW;!EVE^C zI)^FfuYtuRA9P$9C5oXztd$)hpm>a3PkB*%1hI9&Gvj+Vy7H>C|b|55h zzqoQY7+H9<0RW(~#_rTDKo@txP6>$%xV_yzzu;f&um0KeovJYQL5shAZ$g}4%v|MD|zTc z{ALFQnpK`zQXoQ&`mt~!;CS_++Av}I@x1Q&M~I(sp!U2~pNnd?^4QyA!^`6yrXK== z3G!8Mksu!3pQ-EFMPTuR*bLUBPp;qgsYLIYyjReKHQf2%_`nTtu^WX$I_?U0a|koV z3TWH`QPNrrWI}+}=g95NPM?0vp|v3}`|^Ml0KsT=v$?JFgau#kaN-bgO8lxgoA=wZ zEH9cwFNl!FbOh!~`5%VuxUK~=9h&L%`_OdHHd1*gLX=^k@!53{R&HYrgagP^w|wiDKI*^k zZUzCs92tv?7?i~&pq+094Y@LYZffQ=B`a{kl-$9FITHTj!5}~p7%Ejl=FjPGV!-gX zJM?27amL8lO3q#Dvs|X7i^e2mECTIYuvYY9+ZM32uaWC6(tA_^06_b6gM8FN?zi5= z6{d*?AkJGt+>_~*!~dkM%`2@`S8C{hQ^S*8cmIOAd-zt6+(YBuzAKbF27zh?%}hlc zYsbJ-XR*l=i$P#bnsRrg;F?5DXn%g2zUS7*CnuaQ5`TH$0oV3ul*obw2+7(d1c1Es0S~3C;Vnq z4?%S#J6Hjj1QU~AU(TyXm5TB(PC_6es+#`>BG2FCO=`JiWuJoOL*nC~zyZ+;fGtK>?ZaQ*KL%-f7(hSj zplFlwDiV*Iednik9k{$@S2C!;x04q(Uy!DC03v+1FD#>$V8guPpJ)lv1<)V$^UGkn zSK4;rQ9Dq+7;!q`$s`-F2f) z4fqCzx3t6lBnFVmBRW7w!S01wWP`+=%uVj2!?J5iZS%QVj|u2KxgQy{m+A8Rj~>`z zQvaibVMjcnyTneY^Sy(LqE_iy|37R+J)FazLV*iw#oL@``~Yudum&)q2^FMSd>{Gp zySQ$s>oQ(ev=5Ix1I?qxq(UAQ0|u}7{j;@0nD?Pcpy~V&ieWrEqNaJ`NCYOo4NO$C&dgrja6X~^ zFUTJgn_JM8Rifrq3sCkZi$TU%7p9w;l7sbJg)-f>j)ZRFzkf(V&H`s~Uz!6#+!ce# zE0YjHw)8pPbD60Z8jA~Y z?P!Z$1MpaC@o6oIbqIa1w%dj_nxu!IRB;GyfdqVnqC3YtB7E+h1|TS@^< zrr-y0m-1~7w})eF?Ly83x`*+miGlm%MSygwnp&g#9h++M%cqVB*u*Jz)>M^yI7ORLf_$|Ax(Lu#ZAa`_U32$8OuBF6RWOl2Tcg|LhSfaosa83~ol^U`|$ zG%YL+B#VH#jL(MWoRMm3;a^;e@K@#|1Ko@ZNEGxO24HfggVuXF?~WhtW%6COZ%7~f zH9<`l3b|1ub8EX+Upa#r8TKmBcr|9J>iURia;w5_56npOJ5L`$hK+3XAYg4cbg`0< z6m50Xm4Y?k=0=`>S2Ogz?|!;yw-$y!3c_DtfwlnnJbr{yzLT(c=Ovj@C>0E=DC+?J zJwaF**d?(V&$=2UrKxY->X|``HwvKwlPLmfH7|)K!>CjF(9LVDXcAoRlheA0?7?7c z03!yLc$^Hv@FVaDv*=tzaVLlPvA=EQ!BD5s=ea%TAdO_vO{V+gzy=s8>z$r~`tQI0 z?qA~g;r`lA|M@u_y-$%z4J0j@WY`3Rg_?TPH%a*1aM-%0zZ&=1J<8w(x!=IDp{l_G zs5E%NdM{tAz#l!Re%-=d9tAa}#{Y1AgbmBs5fts6t9Ko9S5(5_Is<5W={TNDrk1(K z>x6)k<6f}I^qI?^qSuah5hxQ`QIAmi%*2}Jxd%%!P37Bjjhx^l{Pm7YBm&20bVyA* z6e~Uc;HzP`18>~efHjAeqrKwj7fQ4MmkJipc4YadR5@%%_4shacoI0+=Q%`lZb3CJR=Hf>g)0!ROU@wK z*yOZpTEWhRcI#&HUyn|t@>GGD6W=s&)TJbJx7@a9)spniL8o5P;E zaakFW`UbsYV-KljD3}Bic4Tp3^R_-Z<`}^Vn-$%DugK*UIC+7j-3JJ7h6k$7Jl`y7CXjTZ zHoscDgdKm*Zqc}h zuLcxLR%Cb6N}KD|o&Om4DL`Jrw!~K+7;xF}ix{+lFxt7ac;}N*@gOmiUn%jb z_(Vny*c_~_!UYD;Y-?7Il65CpP&wJx!$x$DBDu1Rmnfdt0b8;Bk~V9ufW(3)E3L0y z>ureHp*+;ex%<}^B`vd`aoq#k$MooJ;WGW64R+Nz1CnvO#xgZ)A8Px(%Dm|KA$$gw zb28iNwtM39Z7A*_z6et@*UCM?d-f6A*pR6iOsyBo`QbZj(WIQbrhCmG*iQTyIoS6;T+NZWhm&0EGT&YDDp9P+yynzx zU(LEcNiZSfuf4pWdZTVg?Ladl4~;kX?-wmyerx;TiTg5OWXP|G>4BLoLDjn+;m>fw z#5d4ijq1eR#u@zd?VES+<_E`c*qCF7oD2_|>%r3Ide=reB4Erxjx%sTd{%81I;L;; z^@E!-yaJcjp3T(vq+ zASytRC*K#gDe_HjMHHd$;a^6QN)tofR~UJO;DDarv6^=Qc3Y^4ET{vbu?rGRNTf;L z&Up7n7Lp?wu^R+hbRM9NTZfO0jdZ`gVAYzKZBmbCmbW%f|BL}m4U-oJVRl7s6l{`x z$q@H$s-zNmm*f^*ISyMpOGvg2;h8{{30*~qmdSzuBShpLTiLG};@)%Hw;)9?7`iSE z8b`~aa#=lIVvUlAV1}23g{aM!?eOH1#fp9zBZ5R+MI!xjC1s$`65anfPpo5@CCUrV zrH1G59-?|LrjaQPq(-lhA7_~+)2t6xuv9#9x33V{9(G!9$eIOmc_IU&ZdyUn9r5@^ zsD(9WNMCF+QP+Hvl{F6+53LWrdp1&`H-m!c!jYBH^b1^pnXki|3cR48XRHYh4gCeaeb;D$iN*zY#PGzd(f$n$ z?G-^G1q>AazW-Ui=@P_%6v_mmRWbXU#NwGKt6n zS;3miOy0+BrRW;^B8bnTvPnmzRAlIF^C7$P;Qqm-m9 zK_`he!V05dIBc8CyD!0mVCj@hq&doUI14J$qgtO{7$#X;HT!nX&DMp>LoS*H_EhNQcf z8?XFzi(R`2A9zES?8SJDUPs4a7%TyMwV8^kxXVSEmio^4XfIlz(C`LYeM>v`ja%`# z|Ne`X;ox*Tm7Th8y=13@oV5+$Aus3#U&kJRWHuL;X9 zNm})M5->@z+_89w)Xr1f&lci-;>Cl2ypY)0yOK=n$P5DyooQ2txB2rwD>D4#W0H&` z5y7QIPRzef)gt_aUql2(CXiE;J2t{fsu~<&JCva4eqGsHqcp&ea#O3ZW-0phHu}tK z4vy_Umf>TE4UkDpm;B*tLD9 zsDQQ*xi%Q#93^r&xjMa$eP7cYU|}peM_a}y>asNMO{La*5K3mkSjauH>zMH3O4x&{ zD=H=n=gU`D`j8_Ms_^8L^^)a$6jOknAOm~Y{&EYRHrmM(z9xzQI7^Z|zrX73#%vw? zU_PA{B^Q4gFD{GB*Bit`@$;RY*?~3kcTz&yv+>aRy27Kl8hO!KI%5Mz|P8xRR$git-9#gv6QlmHeu&^8FIAuHj54?mzs4%!Ex+5ja z^z4#e8B1nr!WCjPg1)dGyV>6OsdaSZct|yEicE+*2OoOgF7{)R?f zplhw+iflx8+;y7bx2RnI-8n4eH7bv{+3?0^zN@QEnw3p%wxouF^g<1%g~tDD?@EKB zJkxEPb)2}|8I218jR7^rh+{y7W@!@_Xhl#^7(gHi6A=)Qr2$(uLt>H%A~quiq)`Ki z?2)ZyX^CbcAlk^<><|H)rh#T_5SpgvJYD0Rx>dL8*3_-KzphpJVM>~>zwiCt_c`Y| z&p96Z8yo6B`r~(lWMBo5IQ0!{{^R(~Hum)1SAving5u*THupvo(;>Dva1td$BaYM@ zGLXg`qZ5DT-C@L+P`)%y1J=l-t`N5pzUNLlp}pr}rKHH~8CNWC-|osN)t3aaloi~$5>cZy-7|w|VzObuE>uLWkMI|qd*Te-Hq6s#2}2 zL`b-IyT`uCv`P7&*+dD*Tq4QUnQj9f^Utq*b|GCRZvzhX#(*{L8B~3-J1UwnF@KqWYVK=R#=G8ugY3vud9~diLf5w@vr( zGP{D)UhNikhX#REQyDBx&W6C^fj%yprk`n^ns`2qLn?d*;CL_^aL(|C%OnIMaa&1_ zW@KF$NqcL9sK@4{hy3UdK1p0tjCrAEZ?;}v3ulTL z#bQ^8kV;(MS!Hr1HU&tG%w#WVB} zC3D5FIw}|WXvM=liMkM!IEs>K=!C>5mgd?ZNjwT55Sn!Bz}|-X0{f9?pPH@{lj$XN zjA?#HhL16w76vU?4G7G&mD78+nXP$HnEoEDVlDV5WmLsBC@M_h619;{_Ig7u4(A*p zX@XOZL3%1;WiRXbwElGSz6>6P+u5fj$-1D+c=>AE=5;F|)$*3z>E%&K36Wl8y+9ox zK!Mh^OoT^}zN>{GFw2tNTcGq+J+P zJP&d+8GN=ex@RI}%yb=SbhnUtwZ)PD^X2{+t(_md8n1i2%t;?^(U<$R&-}bdgabYP zYCcLXX;-D5Q~KgX{ktw^$eVGq;7tlDRk@-83M->1AN&t|O^=D2@BWHai3$#G zm0A_B;!}ulVWT;2mG?vgWUj1Rvla=}h#ZQ)T8Z}(wITL~MD2GR`(Zu6!6r#D-X55x z^Su;pNHG_>HCxC_ai!sp>1uP`km2DTkG}{)O-Ezk{D`_2BfQoGzVwE_B$o?oGy{aS z+1c6r6*i{zD0Ja4pl|iYrxxp~{F6)E5?*V+3cF-NZP&vlzSBUnL{1Q$%{-*|xYVTOBCCk-(!X%np{Yes3xD zHim~RT=T*)y?Tj`N*r#&7tg+@u!$gmra}1do$9k_F;7pGP_qHsF8U>Oo;Q-=6a6}h zP6bWGq2LHeKRLhE7jFmP|EW7d>BDY7>okjU9nq0FoTAX+dJvCS^dNBFPi`#auLpm| zrqb)R`sG&ib2tPTR9(~aCCU^vHw8oyh-#nmzd1sOIdUt}erZ9wwFvxfOZj0>PpP%~ z;(=+zBxjOa7rR3+7J)Wz6Sj5oP}V3gyV9jk;}YhTF~cpq$m^H8yxdsy;SauA45mck z8;E~DQL@_j^GAQ%QihM!_-n%26LY@gqeP_ufz~SRz!=Slsq!Y{MDO(PH$HWRS>CUu zSg?Ha@Hrz)kVwH2kU4J#5+AyKVAawwXv0sqa>baZrP_IRqW>{#O_e_$mzf05DhRYx zGJ-WE;B3#}jLPH+vQ^Uj3lU!;@%mvRfN3GBZeytVrSMe=L`n@4M~8Q`MU+!{L&5ZL z!L11NXN$U`Jtc(Be_i|4sHHg%DT*k`pN6+`3$@s z5+m602F*uQ+8sI4yJVed>n!M$UYLsQ3SD`7q_H(02?QJcOmNKy+^)ioLW1h~3_YRE zD}QfXK2mZm5I(8KFd+Y;!)(pntm)ziyGkSFhXTWlEd@4#Y9KK08h`>{6YsXp{Le1y zQ1FZdt)D>pj0{vsu|4t-n0oB?fR~5})mQb}ANM5m{uhbRI0-FZ{)sC2<&}SNWe4B1 zKhI!j1+n*ieC&VX&0c;2LqpsB=imO#AG_g5ZCe;FV$t3;JD7UQD)Bx1jUZ-eXW#fK zgl};4-(f{mfTO}ZZ`;Yq4U@Ecz;!zdn>fyD+7UvyU1-DudpN0#-!U0&*IoD!7Zl)N zm!H0f5oH!3Kw@^0FhT!_2Zh}Txz;Srf>)okd%3#DruS4%;8;tC!$7rsavO^pEpSw*@x>5&* zQ}7?|d6xfMXP9t!JQM`T!{v#K7*8Lfij4|Bg)w1;emS6zCM$trIn9N6n<=ja7EPigKS zZUlHI`V8A*67mh>qVvd!$I9qt#1=@!HHm*^&nZ{Vfj)AaJQyLbgH|KwEM#4u(`J`84A3;K3)f*HJ7EQODT0#ib+IQg5N6b0FV7{5&O& zXgr7eyrnT%a(_danW8G|bI(&1`VN-0?>a1e^EVuCw?WZ(kqaHvemIF>hSkcvUYXhQ zL|WSCz6NXm-u%QNa)Cy%Pc3o|#^+@;CKA$dJlozAH9BW*ck$1a9GN}wu|S_*Q@e;* zrrQOu;HljGS2`D9)%sCe4t8MTAjm?}kjpah8d4n!3G2*s3JB8&qNWI9x^9s0WW|do z-GW--$*LO4*wBfbA186i^vJbIZWZ26oZmI-d{uK(N%~=7Lie}=!}!;z(@F(C@q@TW zl-xr*C+u5qG6mV;{P)?DlDd3@z!CAmZK^V_D)Ch+=FJEGifWnCo>OeTsqP&XdX zGf2T0XmW_49T~j-HiOYZ^!|?0RDdK1Z53QPV__cS608c{w_ z{4jaA14fA-UD>L@Vsjzx5D_88K=Zq1XGzdcUjBIX$?<`%2YeG{fRQs+gd*E5^X}cd z&6gyE^buLj0pCeFB`&P448M4^5-&elEY)-XuM=P+Mi*DHo`QENGZ;idF8*^tNq0T3 z^m&qf-3B%>BOC$D+x@g*;CwHuJ)gwFQld z0-ugsl#NRy3|>tl77+3736`2WcK=Ndz83AUyfi^i1UaQ5HK?9)zR?LL17xI%N0EAf zC<0Mp=o9`OoIcc+#eVJ}-?3cF@OHh-cD0oq<)PDerox^shF%U5atYBVpdLJBjonI@ z#F9xDd7i(ieI`o(-iy!4vW4#9ftWQniS@?Jk&Ssbx-M?KAOw|fX5Gu2xkeO=h$;IJ z>Z83HOEu=uZKgO9W!@ZO962~l(cH1*QDS8m-fCJ^M3#dTpw&X**oNn(Pm@V_`P96( z)uGrrB1TX-P&kgY@xV$lzoe%(F;J_Z0846V&qugUyuyg;Z0;1BfD&rK2oiYpET*5% zj#E!>9FUi1iW`d6K2q^A>PyqhODZ{RlSNPp{fOe@FuA~zNhvOA_gOW41|2>K9Av(g zc=$=DcJcK{jIe3p)h8zA(?7khNj)M5+bmLN5rPEOK}V0+C4^6v578cS{cvBLdKX@0 zMD-cL^3~c-{o!N2iTHBAWdIdIOfh&C(7ME8*3^PsvU748TDfW!6D2vABSf-19iI&o zq2XTESnA4^ZnWS9;!eY%rl6oflc*PgGYcpJ$d%)}nXp23VB1~)K5e!&PSa%EI=$_v zh=q+fHZzc5viO@{YHB?m|8TkDy3TgDVy`QW5Mopz^A7B8tMo&(?Lb@yYUt}jt|f?N z%s|7EFi>H@z$2!B9wX4raR-+x6~o~0gY}G|Zp#i)n<(e;vlcp>zx7SdCKHD$8UQ>C zgnbCB;(iDKap>Pqn1>l+!@Wm@Pbho=y znkgd$qN5}l72pZk1r)`{6r+mwKr`%ccZm17g8?XrMNEMjOi-U?fQE#gK0D*0-K z^%*Dt3EeWqJEs&*fzQ1LWm!6I4mL@KncY>76Ah{~u=7!7R@OlRLCL69C4kC!nSIV+ zN-+nHgN!}jFM)mo3(S>YOK%^$qfS4El#LjyvZX}^HA5Uzz=91q=iyq9K^zK)eZRPC z0HRN!zZI!;@2~Wd?!Dayhba5H6tnnBISLJtQQs24EH9A3nsu;&U51l9o^|#EpGb8X zF{Kbo5|VT_t0HGc^sUH)uiJhvc{NhJdPWL2t9hm}73!@)yo&W$Y=+o$nPTcHl?@lv z@;tuUwGjvk|Cq#x>q2`M&4%4$iou9dtAU4Mx%X%%A>VIdov~+w9!J`+-^O(OD-9!k zI+q2)f~PTAM)~c`m!WotiEVd(m7v4}i#iDHspisQ-XZA0WkUZKfLnQbM8YqI%@OEGh{7k9ng|AXQk{^5JAz;>tTjmY@>HS~cNjrO z(RmdU2Wh&LIsW$*Sehk`Bi}eW;~()tV62L zcO1vcgzc#dWLV9PmEr~S99-FE$C&S3B=jJJR0VrhXzVf!&t9MF0_U=lXu9MkB z&e_Eavh(t~2VQ^BUZ?SFM%b_CMBvVJ$T@gT44M%5o{ohvL}_gT5eeHEDDR=ForzdX`WJI)e0yU>@+b#q@Oq(90Y7pmAI#b`^WA zPJqf(*df->N$;-I3kTV<)>t?1W}SkXISwwIhI67;0i z36j)|4}M0n|7`^(W+j=cvXYnZt!;I_)`1EXQhlUtzbW z)VmO6^if*QXx#jf!mv1b=TLR>{JNf=*cQIcG5b!}Nw6IlETK1W)e~Ud{V@AuysL`} z?>)9tMW}!KXe0dfkWDj31wy~_lL|mI&vNxG?SSeHq{dwUU)xgd3j&T;;lI7su=y zq$RLm%^l_c`Z1fl!3x}|QUfGYlc=gVY<6N*B*=jl3~Vr}zon!=^wgUH zBQg+0(o}A)b#Vx(Qr%M3Jle^=V>yNGwE(HX;jJgvK=z_XK^jMp>Fc_He%v4)Zal1i zZ6YS(`v;0WJ~zYhh*ersyL!88XKzV1p(zw49LiSeQ7^zc4z0wbF!gdz z@d+RcE;0o;!a67$mJfwO&CFspb^;EPZ4UCF2a4;o&$Rz=mG_iYwbQndHZ4-GV(*69 zsPWk)Vegl3^-s=DA$moModH%3nSwocaaeDKl7&_v&{0xF82YnwV7%Lg>*zse0sjNR z*z#Gm)Dr@NbryCAic~;*t-aItd{iOu8s2lOs9#}i=k{jNfkSTB0Lm?Gh4~5!W~x+; z_$`fyC721G+-IyTA;P8DK&^07Z)BGN0v3ZSwqa`SnKM1uNhwT2V@3fWMf`CSfMEvow4jVBMhhS%bqbmnHV>`9ml`FIipK%N zpdBYSY}}|*pzy$Nm7$7IV9`5+YJpjXU4Ziq#J<^*5CCKm38`c-6GnXQJ^OsuTrlR| zXaqcQ3N1tTO#z;Dh*aXVeaBlf**IY-^B#QlPLk20&lLwbKEz*n5D!UdmfcvAoJv`; zfOvS?jrf=85Y`ro!ZW-dwiw}i0SK!!%3cbif?|WVIx$dS26=4LQ9|f!_uM$GF?uqZ z_FGT`oB8|)_mxZD*a;Ip)E}oa)_0)!K#T&#GvOj)&F4-*d)HEWQ7mhwiFyrSBeYAM zShyl$yQKJ4NZFfnjHB=0hyZ#UiZvO1N`)f5$mqv$X9uq0SWlSWGO1IXrb0XM7L^3_ zr0AQVC{qE&)q|DEqIHLuAg`8WI=e{wWUc=roe?#)ULl=EROn)r9Q10F@$oVCB-|mS z$;VeAX5n6fcWy$(E|Za>#$!%SS#+|3CrVsqI<|+(8c1K7kf)?TGpVIqt@!|?U{E-; z4mMu2|Ecdv3X|d&vMjzasu4{H4K;eEyU+O%$4-F@*s>I0y1cNa%kXYfg=VilyND5I zpv_=tS8ds{#Xo7z<1+v~dS^V`Unw}W-d}fIzk(2NY1a8_&`gZ%Y_s>7yUFlB`VKa->gGg}AS3hy){_7%?hdsUSUY3~Y2S+z!gr3L2 z?mE<~a;s#c`nHO*f&31l5CdowAp;F)Qa91Xz!203olC#5d(I!ZyLSZ#yTGI&wQ2#M zB8geE(m>D z7ww|?=<||Dyn=j)Pdbf35b;3+83UGCV>97r=aoHjEcQBHs5ZqaZ?_#0>t0l~k1LKI za+T9FBRK#c(m33QSI zAp~Q>c%M_@>L<*<;xxg*G3+4bf&}K1>`jWUC-nT5bR2UrONWWmLJm{PS;i5&r+jFa_}P&;P0)^YTOfuOGmCWVv!va{9B^=IIL9 N`>proee&s-{{TvNgu?&; literal 0 HcmV?d00001 From fceb51eab1238340cea54b92ac6add6fcc8cdeb4 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Mon, 16 Dec 2024 15:47:18 -0500 Subject: [PATCH 45/84] DBScan --- src/comparative_analysis/models/DBScan.py | 163 ++++++++++++++++++ src/comparative_analysis/models/K-Means.py | 109 ++++++++++++ .../training/trainingDBScan.py | 163 ++++++++++++++++++ .../{training.py => trainingK-Means.py} | 0 4 files changed, 435 insertions(+) create mode 100644 src/comparative_analysis/models/DBScan.py create mode 100644 src/comparative_analysis/models/K-Means.py create mode 100644 src/comparative_analysis/training/trainingDBScan.py rename src/comparative_analysis/training/{training.py => trainingK-Means.py} (100%) diff --git a/src/comparative_analysis/models/DBScan.py b/src/comparative_analysis/models/DBScan.py new file mode 100644 index 000000000..58b7bde33 --- /dev/null +++ b/src/comparative_analysis/models/DBScan.py @@ -0,0 +1,163 @@ +import pandas as pd +import re +from sklearn.cluster import DBSCAN +from sklearn.metrics import silhouette_score, davies_bouldin_score +from sklearn.preprocessing import StandardScaler +import matplotlib.pyplot as plt +import numpy as np + +# ** Carga y limpieza de datos ** +ruta_excel = r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx" + +# Crear el DataFrame +df = pd.read_excel(ruta_excel, header=0, engine='openpyxl') + +# Procesamiento de columnas numéricas +num_cols = { + 'Weight': '(\d+\.?\d*)', + 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' +} +for col, pattern in num_cols.items(): + df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Procesar precios +price_cols = ['regularPrice', 'undiscounted_price'] +for col in price_cols: + df[col] = df[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) + df[col] = df[col].str.replace(r'\.', '', regex=True).str.replace(',', '.') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Eliminar columnas innecesarias +cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] +df = df.drop(columns=cols_to_drop, errors='ignore') + +# ** Clustering y evaluación ** +ids = df['id'] +X = df.drop(columns=['id'], errors='ignore').fillna(0) + +# Codificar variables categóricas +df_dummies = pd.get_dummies(X, dummy_na=True).fillna(0) + +# Escalar los datos +scaler = StandardScaler() +X_scaled = scaler.fit_transform(df_dummies) + +print("Media X_scaled:", X_scaled.mean(axis=0)) +print("Desviación estándar X_scaled:", X_scaled.std(axis=0)) + +# Función para explorar parámetros de DBSCAN +def explorar_parametros_dbscan(X, eps_values, min_samples_values): + resultados = [] + for eps in eps_values: + for min_samples in min_samples_values: + dbscan = DBSCAN(eps=eps, min_samples=min_samples) + clusters = dbscan.fit_predict(X) + num_clusters = len(set(clusters)) - (1 if -1 in clusters else 0) + + if num_clusters > 1: # Evaluar solo si hay más de 1 cluster válido + sil_score = silhouette_score(X, clusters) + db_score = davies_bouldin_score(X, clusters) + resultados.append((eps, min_samples, num_clusters, sil_score, db_score)) + return resultados + +# Rango de parámetros a explorar +eps_values = np.arange(0.1, 3.0, 0.1) +min_samples_values = range(2, 20) + +# Explorar los parámetros +resultados = explorar_parametros_dbscan(X_scaled, eps_values, min_samples_values) + +# Mostrar los mejores parámetros según Silhouette Score +resultados_sorted = sorted(resultados, key=lambda x: x[3], reverse=True) +mejores_parametros = resultados_sorted[0] +print("\n** Mejores parámetros para DBSCAN **") +print(f"EPS: {mejores_parametros[0]}") +print(f"Min Samples: {mejores_parametros[1]}") +print(f"Número de Clusters: {mejores_parametros[2]}") +print(f"Silhouette Score: {mejores_parametros[3]}") +print(f"Davies-Bouldin Score: {mejores_parametros[4]}") + +# Aplicar DBSCAN con los mejores parámetros +dbscan = DBSCAN(eps=mejores_parametros[0], min_samples=mejores_parametros[1]) +clusters = dbscan.fit_predict(X_scaled) + +# Agregar los clusters al DataFrame +df['cluster'] = clusters + + +# ** Análisis de clusters para DBSCAN ** +def analizar_cluster_dbscan(df, cluster_num): + elementos_cluster = df[df['cluster'] == cluster_num] + print(f"\n=== Análisis del cluster {cluster_num} ===") + print(f"Total de elementos: {len(elementos_cluster)}") + + if len(elementos_cluster) == 0: + print("El cluster está vacío.") + return + + print(f"\nEstadísticas descriptivas principales:") + print(elementos_cluster.describe().loc[['mean', 'std', 'min', 'max']]) + + print(f"\nValores más frecuentes por columna categórica:") + cols_categoricas = elementos_cluster.select_dtypes(include=['object', 'category']).columns + for col in cols_categoricas: + if not elementos_cluster[col].dropna().empty: + modo = elementos_cluster[col].mode() + valor_modo = modo.values[0] if not modo.empty else "Sin valores frecuentes" + print(f" - {col}: {valor_modo}") + else: + print(f" - {col}: Sin datos disponibles") + + +# Analizar clusters generados +clusters_unicos = set(clusters) +clusters_unicos.discard(-1) # Ignorar ruido (-1) +print("\n** Análisis de Clusters **") +for cluster_num in clusters_unicos: + analizar_cluster_dbscan(df, cluster_num) + +# Visualización de distribución de clusters +def graficar_distribucion_clusters_dbscan(df): + plt.figure(figsize=(8, 5)) + df['cluster'].value_counts().sort_index().plot(kind='bar', color='skyblue', edgecolor='black') + plt.xlabel('Cluster') + plt.ylabel('Número de elementos') + plt.title('Distribución de elementos por cluster (DBSCAN)') + plt.xticks(rotation=0) + plt.show() + +print("\n** Distribución de Clusters **") +graficar_distribucion_clusters_dbscan(df) + +ruido = sum(clusters == -1) +total = len(clusters) +print(f"Puntos clasificados como ruido: {ruido}/{total} ({ruido/total:.2%})") + +from sklearn.decomposition import PCA + +pca = PCA(n_components=2) +X_pca = pca.fit_transform(X_scaled) + +plt.scatter(X_pca[:, 0], X_pca[:, 1], s=10, c=clusters, cmap='viridis', alpha=0.7) +plt.title('Proyección 2D de los datos escalados') +plt.xlabel('Componente principal 1') +plt.ylabel('Componente principal 2') +plt.colorbar(label='Cluster') +plt.show() + +if resultados: + resultados_sorted = sorted(resultados, key=lambda x: x[3], reverse=True) + mejores_parametros = resultados_sorted[0] + print("\n** Mejores parámetros para DBSCAN **") + print(f"EPS: {mejores_parametros[0]}") + print(f"Min Samples: {mejores_parametros[1]}") + print(f"Número de Clusters: {mejores_parametros[2]}") + print(f"Silhouette Score: {mejores_parametros[3]}") + print(f"Davies-Bouldin Score: {mejores_parametros[4]}") + + # Aplicar DBSCAN con los mejores parámetros + dbscan = DBSCAN(eps=mejores_parametros[0], min_samples=mejores_parametros[1]) + clusters = dbscan.fit_predict(X_scaled) +else: + print("No se encontraron parámetros válidos.") \ No newline at end of file diff --git a/src/comparative_analysis/models/K-Means.py b/src/comparative_analysis/models/K-Means.py new file mode 100644 index 000000000..728fb528a --- /dev/null +++ b/src/comparative_analysis/models/K-Means.py @@ -0,0 +1,109 @@ +import pandas as pd +import re +from sklearn.cluster import KMeans +from sklearn.metrics import silhouette_score, davies_bouldin_score +from sklearn.preprocessing import StandardScaler +import matplotlib.pyplot as plt + +# ** Carga y limpieza de datos ** +ruta_excel = r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx" + +# Crear el DataFrame +df = pd.read_excel(ruta_excel, header=0) + +# Procesamiento de columnas numéricas +num_cols = { + 'Weight': '(\d+\.?\d*)', + 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' +} +for col, pattern in num_cols.items(): + df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Procesar precios +price_cols = ['regularPrice', 'undiscounted_price'] +for col in price_cols: + df[col] = df[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) + df[col] = df[col].str.replace(r'\.', '', regex=True).str.replace(',', '.') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Eliminar columnas innecesarias +cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] +df = df.drop(columns=cols_to_drop, errors='ignore') + +# ** Clustering y evaluación ** +ids = df['id'] +X = df.drop(columns=['id'], errors='ignore').fillna(0) + +# Codificar variables categóricas +df_dummies = pd.get_dummies(X, dummy_na=True).fillna(0) + +# Escalar los datos +scaler = StandardScaler() +X_scaled = scaler.fit_transform(df_dummies) + +# Método del codo para determinar el número óptimo de clusters +def metodo_del_codo(X, k_range): + distortions = [] + for k in k_range: + kmeans = KMeans(n_clusters=k, random_state=42) + kmeans.fit(X) + distortions.append(kmeans.inertia_) + + plt.figure(figsize=(8, 5)) + plt.plot(k_range, distortions, 'bx-') + plt.xlabel('Número de clusters k') + plt.ylabel('Distorsión (Inercia)') + plt.title('Método del Codo para determinar k') + plt.show() + +# Mostrar el método del codo +print("\n** Método del Codo para determinar el número óptimo de clusters **") +metodo_del_codo(X_scaled, range(2, 11)) + +# Clustering con un número específico de clusters +k = 8 +kmeans = KMeans(n_clusters=k, random_state=42) +clusters = kmeans.fit_predict(X_scaled) + +# Agregar el cluster al DataFrame original +df['cluster'] = clusters + +# Evaluar calidad del clustering +sil_score = silhouette_score(X_scaled, clusters) +db_score = davies_bouldin_score(X_scaled, clusters) +print(f"\n** Evaluación del clustering **") +print(f"Silhouette Score: {sil_score}") +print(f"Davies-Bouldin Score: {db_score}") + +# ** Análisis de clusters ** +def analizar_cluster(df, cluster_num): + elementos_cluster = df[df['cluster'] == cluster_num] + print(f"\n=== Análisis del cluster {cluster_num} ===") + print(f"Total de elementos: {len(elementos_cluster)}") + + print(f"\nEstadísticas descriptivas principales:") + print(elementos_cluster.describe().loc[['mean', 'std', 'min', 'max']]) + + print(f"\nValores más frecuentes por columna categórica:") + cols_categoricas = elementos_cluster.select_dtypes(include=['object', 'category']).columns + for col in cols_categoricas: + print(f" - {col}: {elementos_cluster[col].mode().values[0]}") + +# Analizar los clusters 2 y 3 +print("\n** Análisis de Clusters **") +analizar_cluster(df, cluster_num=2) +analizar_cluster(df, cluster_num=3) + +# Visualización de distribución de clusters +def graficar_distribucion_clusters(df): + plt.figure(figsize=(8, 5)) + df['cluster'].value_counts().sort_index().plot(kind='bar', color='skyblue', edgecolor='black') + plt.xlabel('Cluster') + plt.ylabel('Número de elementos') + plt.title('Distribución de elementos por cluster') + plt.xticks(rotation=0) + plt.show() + +print("\n** Distribución de Clusters **") +graficar_distribucion_clusters(df) \ No newline at end of file diff --git a/src/comparative_analysis/training/trainingDBScan.py b/src/comparative_analysis/training/trainingDBScan.py new file mode 100644 index 000000000..3281fe487 --- /dev/null +++ b/src/comparative_analysis/training/trainingDBScan.py @@ -0,0 +1,163 @@ +import pandas as pd +import re +from sklearn.cluster import DBSCAN +from sklearn.metrics import silhouette_score, davies_bouldin_score +from sklearn.preprocessing import StandardScaler +import matplotlib.pyplot as plt +import numpy as np + +# ** Carga y limpieza de datos ** +ruta_excel = r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx" + +# Crear el DataFrame +df = pd.read_excel(ruta_excel, header=0, engine='openpyxl') + +# Procesamiento de columnas numéricas +num_cols = { + 'Weight': '(\d+\.?\d*)', + 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' +} +for col, pattern in num_cols.items(): + df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Procesar precios +price_cols = ['regularPrice', 'undiscounted_price'] +for col in price_cols: + df[col] = df[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) + df[col] = df[col].str.replace(r'\.', '', regex=True).str.replace(',', '.') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Eliminar columnas innecesarias +cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] +df = df.drop(columns=cols_to_drop, errors='ignore') + +# ** Clustering y evaluación ** +ids = df['id'] +X = df.drop(columns=['id'], errors='ignore').fillna(0) + +# Codificar variables categóricas +df_dummies = pd.get_dummies(X, dummy_na=True).fillna(0) + +# Escalar los datos +scaler = StandardScaler() +X_scaled = scaler.fit_transform(df_dummies) + +print("Media X_scaled:", X_scaled.mean(axis=0)) +print("Desviación estándar X_scaled:", X_scaled.std(axis=0)) + +# Función para explorar parámetros de DBSCAN +def explorar_parametros_dbscan(X, eps_values, min_samples_values): + resultados = [] + for eps in eps_values: + for min_samples in min_samples_values: + dbscan = DBSCAN(eps=eps, min_samples=min_samples) + clusters = dbscan.fit_predict(X) + num_clusters = len(set(clusters)) - (1 if -1 in clusters else 0) + + if num_clusters > 1: # Evaluar solo si hay más de 1 cluster válido + sil_score = silhouette_score(X, clusters) + db_score = davies_bouldin_score(X, clusters) + resultados.append((eps, min_samples, num_clusters, sil_score, db_score)) + return resultados + +# Rango de parámetros a explorar +eps_values = np.arange(0.5, 2.0, 0.1) +min_samples_values = range(3, 10) + +# Explorar los parámetros +resultados = explorar_parametros_dbscan(X_scaled, eps_values, min_samples_values) + +# Mostrar los mejores parámetros según Silhouette Score +resultados_sorted = sorted(resultados, key=lambda x: x[3], reverse=True) +mejores_parametros = resultados_sorted[0] +print("\n** Mejores parámetros para DBSCAN **") +print(f"EPS: {mejores_parametros[0]}") +print(f"Min Samples: {mejores_parametros[1]}") +print(f"Número de Clusters: {mejores_parametros[2]}") +print(f"Silhouette Score: {mejores_parametros[3]}") +print(f"Davies-Bouldin Score: {mejores_parametros[4]}") + +# Aplicar DBSCAN con los mejores parámetros +dbscan = DBSCAN(eps=mejores_parametros[0], min_samples=mejores_parametros[1]) +clusters = dbscan.fit_predict(X_scaled) + +# Agregar los clusters al DataFrame +df['cluster'] = clusters + + +# ** Análisis de clusters para DBSCAN ** +def analizar_cluster_dbscan(df, cluster_num): + elementos_cluster = df[df['cluster'] == cluster_num] + print(f"\n=== Análisis del cluster {cluster_num} ===") + print(f"Total de elementos: {len(elementos_cluster)}") + + if len(elementos_cluster) == 0: + print("El cluster está vacío.") + return + + print(f"\nEstadísticas descriptivas principales:") + print(elementos_cluster.describe().loc[['mean', 'std', 'min', 'max']]) + + print(f"\nValores más frecuentes por columna categórica:") + cols_categoricas = elementos_cluster.select_dtypes(include=['object', 'category']).columns + for col in cols_categoricas: + if not elementos_cluster[col].dropna().empty: + modo = elementos_cluster[col].mode() + valor_modo = modo.values[0] if not modo.empty else "Sin valores frecuentes" + print(f" - {col}: {valor_modo}") + else: + print(f" - {col}: Sin datos disponibles") + + +# Analizar clusters generados +clusters_unicos = set(clusters) +clusters_unicos.discard(-1) # Ignorar ruido (-1) +print("\n** Análisis de Clusters **") +for cluster_num in clusters_unicos: + analizar_cluster_dbscan(df, cluster_num) + +# Visualización de distribución de clusters +def graficar_distribucion_clusters_dbscan(df): + plt.figure(figsize=(8, 5)) + df['cluster'].value_counts().sort_index().plot(kind='bar', color='skyblue', edgecolor='black') + plt.xlabel('Cluster') + plt.ylabel('Número de elementos') + plt.title('Distribución de elementos por cluster (DBSCAN)') + plt.xticks(rotation=0) + plt.show() + +print("\n** Distribución de Clusters **") +graficar_distribucion_clusters_dbscan(df) + +ruido = sum(clusters == -1) +total = len(clusters) +print(f"Puntos clasificados como ruido: {ruido}/{total} ({ruido/total:.2%})") + +from sklearn.decomposition import PCA + +pca = PCA(n_components=2) +X_pca = pca.fit_transform(X_scaled) + +plt.scatter(X_pca[:, 0], X_pca[:, 1], s=10, c=clusters, cmap='viridis', alpha=0.7) +plt.title('Proyección 2D de los datos escalados') +plt.xlabel('Componente principal 1') +plt.ylabel('Componente principal 2') +plt.colorbar(label='Cluster') +plt.show() + +if resultados: + resultados_sorted = sorted(resultados, key=lambda x: x[3], reverse=True) + mejores_parametros = resultados_sorted[0] + print("\n** Mejores parámetros para DBSCAN **") + print(f"EPS: {mejores_parametros[0]}") + print(f"Min Samples: {mejores_parametros[1]}") + print(f"Número de Clusters: {mejores_parametros[2]}") + print(f"Silhouette Score: {mejores_parametros[3]}") + print(f"Davies-Bouldin Score: {mejores_parametros[4]}") + + # Aplicar DBSCAN con los mejores parámetros + dbscan = DBSCAN(eps=mejores_parametros[0], min_samples=mejores_parametros[1]) + clusters = dbscan.fit_predict(X_scaled) +else: + print("No se encontraron parámetros válidos.") \ No newline at end of file diff --git a/src/comparative_analysis/training/training.py b/src/comparative_analysis/training/trainingK-Means.py similarity index 100% rename from src/comparative_analysis/training/training.py rename to src/comparative_analysis/training/trainingK-Means.py From 806a349af6496051bbde1c704728e46af42e59ea Mon Sep 17 00:00:00 2001 From: azacipa <52643112+azacipa@users.noreply.github.com> Date: Mon, 16 Dec 2024 20:42:54 -0500 Subject: [PATCH 46/84] Generacion de modelos de clustering Se complementan las rutinas para preprocesamiento adicional de las caracteristicas con el fin de realizar el modelamiento de clustering con KMeans, Agglomerative, DBScan y HDBScan. Se actualizan las imagenes y se generan dataframes con el resultado de los modelos --- src/comparative_analysis/models/models.py | 178 ++++++++++-------- .../models/utilities/utilities.py | 173 +++++++++++++++++ .../visualization/agglomerative.png | Bin 73351 -> 0 bytes .../agglomerative_silhouette.png | Bin 72512 -> 0 bytes .../Additional_Technologies.png | Bin 0 -> 20745 bytes .../clustering model/Cushioning_System.png | Bin 0 -> 19909 bytes .../Drop__heel_to_toe_differential_.png | Bin 0 -> 12121 bytes .../visualization/clustering model/Gender.png | Bin 0 -> 10823 bytes .../clustering model/Midsole_Material.png | Bin 0 -> 30842 bytes .../clustering model/Usage_Type.png | Bin 0 -> 14628 bytes .../visualization/clustering model/Weight.png | Bin 0 -> 14622 bytes .../clustering model/agglomerative.png | Bin 0 -> 92092 bytes .../agglomerative_silhouette.png | Bin 0 -> 65263 bytes .../analysis_column_Cushioning_System.png | Bin 0 -> 19909 bytes .../analysis_column_Midsole_Material.png | Bin 0 -> 30842 bytes .../clustering model/category.png | Bin 0 -> 10762 bytes .../visualization/clustering model/dbscan.png | Bin 0 -> 70932 bytes .../clustering model/dbscan_silhouette.png | Bin 0 -> 68237 bytes .../hdbscan.png_condensed_tree | Bin 0 -> 10781 bytes .../clustering model/hdbscan.png_linkage_tree | Bin 0 -> 19324 bytes .../hdbscan.png_linkage_tree_focus | Bin 0 -> 24206 bytes .../clustering model/hdbscan_silhouette.png | Bin 0 -> 79871 bytes .../visualization/clustering model/kmeans.png | Bin 0 -> 106043 bytes .../clustering model/kmeans_silhouette.png | Bin 0 -> 65969 bytes .../clustering model/regularPrice.png | Bin 0 -> 17810 bytes .../visualization/dbscan.png | Bin 67581 -> 0 bytes .../visualization/dbscan_silhouette.png | Bin 76753 -> 0 bytes .../visualization/hdbscan.png_condensed_tree | Bin 11757 -> 0 bytes .../visualization/hdbscan.png_linkage_tree | Bin 21965 -> 0 bytes .../hdbscan.png_linkage_tree_focus | Bin 14683 -> 0 bytes .../visualization/hdbscan_silhouette.png | Bin 94543 -> 0 bytes .../visualization/kmeans.png | Bin 88945 -> 0 bytes .../visualization/kmeans_silhouette.png | Bin 72467 -> 0 bytes 33 files changed, 276 insertions(+), 75 deletions(-) create mode 100644 src/comparative_analysis/models/utilities/utilities.py delete mode 100644 src/comparative_analysis/visualization/agglomerative.png delete mode 100644 src/comparative_analysis/visualization/agglomerative_silhouette.png create mode 100644 src/comparative_analysis/visualization/clustering model/Additional_Technologies.png create mode 100644 src/comparative_analysis/visualization/clustering model/Cushioning_System.png create mode 100644 src/comparative_analysis/visualization/clustering model/Drop__heel_to_toe_differential_.png create mode 100644 src/comparative_analysis/visualization/clustering model/Gender.png create mode 100644 src/comparative_analysis/visualization/clustering model/Midsole_Material.png create mode 100644 src/comparative_analysis/visualization/clustering model/Usage_Type.png create mode 100644 src/comparative_analysis/visualization/clustering model/Weight.png create mode 100644 src/comparative_analysis/visualization/clustering model/agglomerative.png create mode 100644 src/comparative_analysis/visualization/clustering model/agglomerative_silhouette.png create mode 100644 src/comparative_analysis/visualization/clustering model/analysis_column_Cushioning_System.png create mode 100644 src/comparative_analysis/visualization/clustering model/analysis_column_Midsole_Material.png create mode 100644 src/comparative_analysis/visualization/clustering model/category.png create mode 100644 src/comparative_analysis/visualization/clustering model/dbscan.png create mode 100644 src/comparative_analysis/visualization/clustering model/dbscan_silhouette.png create mode 100644 src/comparative_analysis/visualization/clustering model/hdbscan.png_condensed_tree create mode 100644 src/comparative_analysis/visualization/clustering model/hdbscan.png_linkage_tree create mode 100644 src/comparative_analysis/visualization/clustering model/hdbscan.png_linkage_tree_focus create mode 100644 src/comparative_analysis/visualization/clustering model/hdbscan_silhouette.png create mode 100644 src/comparative_analysis/visualization/clustering model/kmeans.png create mode 100644 src/comparative_analysis/visualization/clustering model/kmeans_silhouette.png create mode 100644 src/comparative_analysis/visualization/clustering model/regularPrice.png delete mode 100644 src/comparative_analysis/visualization/dbscan.png delete mode 100644 src/comparative_analysis/visualization/dbscan_silhouette.png delete mode 100644 src/comparative_analysis/visualization/hdbscan.png_condensed_tree delete mode 100644 src/comparative_analysis/visualization/hdbscan.png_linkage_tree delete mode 100644 src/comparative_analysis/visualization/hdbscan.png_linkage_tree_focus delete mode 100644 src/comparative_analysis/visualization/hdbscan_silhouette.png delete mode 100644 src/comparative_analysis/visualization/kmeans.png delete mode 100644 src/comparative_analysis/visualization/kmeans_silhouette.png diff --git a/src/comparative_analysis/models/models.py b/src/comparative_analysis/models/models.py index 2b8cbd356..51a36f0b5 100644 --- a/src/comparative_analysis/models/models.py +++ b/src/comparative_analysis/models/models.py @@ -7,18 +7,19 @@ # Importar librerias import pandas as pd -#import re +import re import sklearn -#import matplotlib +import matplotlib #mport matplotlib.pyplot as plt import numpy as np -#import time import clusteval +import df2onehot import sys #from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score, davies_bouldin_score from sklearn.preprocessing import StandardScaler +from utilities.utilities import Utilities #from sklearn.cluster import DBSCAN, HDBSCAN #from sklearn import metrics #from sklearn.preprocessing import StandardScaler @@ -37,48 +38,68 @@ print(sys.version) print('Pandas', pd.__version__) print('Numpy', np.__version__) -#print('Matplotlib', matplotlib.__version__) +print('Matplotlib', matplotlib.__version__) print('Clusteval', clusteval.__version__) print('Scikit-Learn', sklearn.__version__) +print('DF2Onehot', df2onehot.__version__) # ** Carga y limpieza de datos ** ruta_excel = r"..\\database\\Adidas_etiquetado_new.xlsx" # Crear el DataFrame -df = pd.read_excel(ruta_excel, header=0) -df.info() - -# Procesamiento de columnas numéricas -num_cols = { - 'Weight': '(\d+\.?\d*)', - 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' -} -for col, pattern in num_cols.items(): - df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') - df[col] = pd.to_numeric(df[col], errors='coerce') - -# Procesar precios -price_cols = ['regularPrice', 'undiscounted_price'] +df_adidas = pd.read_excel(ruta_excel, header=0) +df_adidas.info() + +# validacion de nulos/ceros en el dataframe +Utilities.null_or_zero_values(df = df_adidas) + +# rellenar valores nulos y eliminar columnas no relevantes +cols_to_drop = ['Width', 'characteristics', 'Pronation_Type', 'Available_Sizes', 'undiscounted_price'] +df_adidas = df_adidas.drop(columns=cols_to_drop, errors='ignore') + +# limpieza de texto +# Aplicamos limpieza de texto +df_adidas = df_adidas.fillna("0") +reg_numbers = re.compile(r'[^0-9.,]+') +df_adidas['Drop__heel-to-toe_differential_'] = df_adidas['Drop__heel-to-toe_differential_'].apply(lambda doc: Utilities.preprocess(doc, [reg_numbers])) +df_adidas['Weight'] = df_adidas['Weight'].apply(lambda doc: Utilities.preprocess(doc, [reg_numbers])) + +# Procesar valores numericos +price_cols = ['regularPrice', 'Drop__heel-to-toe_differential_', 'Weight'] for col in price_cols: - df[col] = df[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) - df[col] = df[col].str.replace(r'\\.', '', regex=True).str.replace(',', '.') - df[col] = pd.to_numeric(df[col], errors='coerce') - -# Eliminar columnas innecesarias -cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] -df = df.drop(columns=cols_to_drop, errors='ignore') + df_adidas[col] = df_adidas[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) + df_adidas[col] = df_adidas[col].str.replace(r'\\.', '', regex=True).str.replace(',', '.') + df_adidas[col] = pd.to_numeric(df_adidas[col], errors='coerce') + +# rellenar variables numericas vacias con 0 +df1 = df_adidas.fillna(0) + +# normalizar genero +df_adidas['Gender'] = df_adidas['Gender'].apply(lambda x: "Mujer" if x == 'Woman' else x) +df_adidas['Gender'] = df_adidas['Gender'].apply(lambda x: "Hombre" if x == 'Men' else x) +df_adidas['Gender'] = df_adidas['Gender'].apply(lambda x: "0" if x == '5' else x) -# Generar array de caracteristicas -ids = df['id'] -X = df.drop(columns=['id'], errors='ignore').fillna(0) +# analizar columnas +Utilities.analyze_columns(df = df_adidas, cols = ['Cushioning_System', 'Midsole_Material']) +Utilities.analyze_columns(df = df_adidas, cols = ['Drop__heel-to-toe_differential_','Weight']) +Utilities.analyze_columns(df = df_adidas, cols = ['Gender', 'Additional_Technologies']) +Utilities.analyze_columns(df = df_adidas, cols = ['Usage_Type', 'regularPrice']) +Utilities.analyze_columns(df = df_adidas, cols = ['category']) + +# conservar el ID que identifica cada muestra +# ** Clustering y evaluación ** +ids = df_adidas['id'] + +# Eliminar columnas innecesarias +cols_to_drop = ['details', 'description', 'characteristics', 'Pronation_Type', 'id'] +df_adidas = df_adidas.drop(columns=cols_to_drop, errors='ignore') -# Codificar variables categóricas -df_dummies = pd.get_dummies(X, dummy_na=True).fillna(0) +# Realizar codificacion de variables categoricas +dfhot_adidas = df2onehot.df2onehot(df_adidas, excl_background=['0.0', 'None', '?', 'False'], y_min=30 + , perc_min_num=0.8, remove_mutual_exclusive=True, verbose=4)['onehot'] -# Escalar los datos -scaler = StandardScaler() -X_scaled = scaler.fit_transform(df_dummies) -df_dummies.info() +dfhot_adidas.info() +dfhot_adidas # Analisis de clusters # Se realiza comparacion de 4 modelos de clustering @@ -87,7 +108,7 @@ # * dbscan # * hdbscan # -def cluster_eval(X, cluster, evaluate, verbose = 40, savefig = False): +def cluster_eval(X, cluster, evaluate, metric = "euclidean", normalize = False, verbose = 40, savefig = False): """" Función cluster_eval: Realiza evaluacion de clustering sobre el conjunto de datos que se indica. Genera grafica de el score que se indica vs numero de clusters y grafico de los coeficientes silhouette para los diferentes clusters @@ -101,8 +122,6 @@ def cluster_eval(X, cluster, evaluate, verbose = 40, savefig = False): Return: results: Diccionario con diferentes llaves que dependen del metodo de evaluacion utilizado - sil_score (float): Silhouette Score - db_score (float): Davies-Bouldin Score Ejemplo: @@ -114,61 +133,70 @@ def cluster_eval(X, cluster, evaluate, verbose = 40, savefig = False): ... """ # Initialize - ce = clusteval.clusteval(cluster = cluster, evaluate=evaluate, verbose = verbose) + ce = clusteval.clusteval(cluster = cluster, evaluate=evaluate, metric = metric, verbose = verbose + ,normalize = normalize) # Fit results = ce.fit(X) # # metrics - sil_score = silhouette_score(X, results["labx"]) - db_score = davies_bouldin_score(X, results["labx"]) - print(f"Silhouette Score: {sil_score}") - print(f"Davies-Bouldin Score: {db_score}") + if(evaluate == "silhouette"): + sil_score = silhouette_score(X, results["labx"]) + db_score = davies_bouldin_score(X, results["labx"]) + print(f"Silhouette Score: {sil_score}") + print(f"Davies-Bouldin Score: {db_score}") # Plot title = f"Clustering method {cluster} with evaluation {evaluate}" if(savefig == True): - plot_path = r"..\\visualization\\" - plot_name = plot_path + cluster + ".png" - plot_sil_name = plot_path + cluster + "_silhouette.png" + plot_name = Utilities.image_path + cluster + ".png" + plot_sil_name = Utilities.image_path + cluster + "_silhouette.png" ce.plot(title = title, verbose = verbose, savefig = {"fname" : plot_name, "format" : "png"}) ce.plot_silhouette(savefig = {"fname" : plot_sil_name}) else: ce.plot(title = title, verbose = verbose) ce.plot_silhouette() - return results, sil_score, db_score + return results # analisis con kmeans -results_kmeans,sil_kmeans_score,db_kmeans_score = cluster_eval(X = X_scaled - ,cluster = "kmeans" - ,evaluate = "silhouette" - ,savefig=True) +results_kmeans = cluster_eval(X = dfhot_adidas, cluster = "kmeans" + , evaluate = "silhouette", savefig=True) # analisis con cluster aglomerativo -results_aggl,sil_aggl_score,db_aggl_score = cluster_eval(X = X_scaled - ,cluster = "agglomerative" - ,evaluate = "silhouette" - ,savefig=True) +results_aggl = cluster_eval(X = dfhot_adidas, cluster = "agglomerative" + , evaluate = "silhouette", savefig=True) # analisis con dbscan -results_dbscan,sil_dbscan_score,db_dbscan_score = cluster_eval(X = X_scaled - ,cluster = "dbscan" - ,evaluate = "silhouette" - ,savefig=True) +results_dbscan = cluster_eval(X = dfhot_adidas, cluster = "dbscan" + , evaluate = "silhouette", savefig=True) # analisis con hdbscan -results_hdbscan,sil_hdbscan_score,db_hdbscan_score = cluster_eval(X = X_scaled - ,cluster = "hdbscan" - ,evaluate = "silhouette" - ,savefig=True) - -# Comparacion del score de los modelos -# Silhouette Score -print(f"\nKMeans Silhouette Score: {sil_kmeans_score}") -print(f"Agglomerative Silhouette Score: {sil_aggl_score}") -print(f"DBScan Silhouette Score: {sil_dbscan_score}") -print(f"HDBScan Silhouette Score: {sil_hdbscan_score}") - -# Davies-Bouldin -print(f"\nKMeans Davies-Bouldin Score: {db_kmeans_score}") -print(f"Agglomerative Davies-Bouldin Score: {db_aggl_score}") -print(f"DBScan Davies-Bouldin Score: {db_dbscan_score}") -print(f"HDBScan Davies-Bouldin Score: {db_hdbscan_score}") \ No newline at end of file +results_hdbscan = cluster_eval(X = dfhot_adidas, cluster = "hdbscan" + , evaluate = "silhouette", savefig=True) + +# Ensamblar en dataframes el resultado de los cluster generados por cada modelo +dfhot_adidas['cluster_kmeans'] = results_kmeans["labx"] +dfhot_adidas['cluster_aggl'] = results_aggl["labx"] +dfhot_adidas['cluster_dbscan'] = results_dbscan["labx"] +dfhot_adidas['cluster_hdbscan'] = results_hdbscan["labx"] + +# agrupar la cantidad de elementos de cada cluster +serie1 = dfhot_adidas.groupby(['cluster_kmeans'])['cluster_kmeans'].agg('count') +serie2 = dfhot_adidas.groupby(['cluster_aggl'])['cluster_aggl'].agg('count') +serie3 = dfhot_adidas.groupby(['cluster_dbscan'])['cluster_dbscan'].agg('count') +serie4 = dfhot_adidas.groupby(['cluster_hdbscan'])['cluster_hdbscan'].agg('count') + +# generar dataframe con la cantidad y porcentaje de elementos en cada cluster para cada modelo +df1 = pd.DataFrame({'cluster':serie1.index, 'cantidad':serie1.values}) +df2 = pd.DataFrame({'cluster':serie2.index, 'cantidad':serie2.values}) +df3 = pd.DataFrame({'cluster':serie3.index, 'cantidad':serie3.values}) +df4 = pd.DataFrame({'cluster':serie4.index, 'cantidad':serie4.values}) +df1["%cluster_kmeans"] = df1['cantidad'] / df1['cantidad'].sum() * 100 +df2["%cluster_aggl"] = df2['cantidad'] / df2['cantidad'].sum() * 100 +df3["%cluster_dbscan"] = df3['cantidad'] / df3['cantidad'].sum() * 100 +df4["%cluster_hdbscan"] = df4['cantidad'] / df4['cantidad'].sum() * 100 + +# mostrar los datos de cada cluster +print("\nComposicion de clusters por modelo") +print("\nCluster KMeans",df1) +print("\nCluster Agglomerative",df2) +print("\nCluster DBScan",df3) +print("\nCluster HDBScan",df4) \ No newline at end of file diff --git a/src/comparative_analysis/models/utilities/utilities.py b/src/comparative_analysis/models/utilities/utilities.py new file mode 100644 index 000000000..0ee4de2ff --- /dev/null +++ b/src/comparative_analysis/models/utilities/utilities.py @@ -0,0 +1,173 @@ +# -*- coding: utf-8 -*- +""" +Created on Mon Dec 16 19:11:45 2024 + +@author: azaci +""" +# importar librerias +import pandas as pd +import matplotlib.pyplot as plt +import seaborn as sns +import re + +class Utilities: + image_path = r"..\\visualization\\clustering model//" + + def __init__(self): + pass + + @staticmethod + def null_or_zero_values(df): + """" + Función null_or_zero_values: Genera un resumen de los valores cero o nulos para las columnas de tipo numérico del dataframe + + Parámetros: + df (dataframe): dataframe sobre el cual se realizara el análisis + + Return: + data_table: Dataframe con el resultado del análisis + + Ejemplo: + + >>> null_or_zero_values(df = df_icfes) + + El tamaño del dataframe es 42 columnas y 3316179 filas. + Cantidad de columnas con valores 0 o nulos: 32 + ... + """ + zero_val = (df == 0.00).astype(int).sum(axis=0) + null_val = df.isnull().sum() + null_val_percent = 100 * df.isnull().sum() / len(df) + data_table = pd.concat([zero_val, null_val, null_val_percent], axis=1) + data_table = data_table.rename(columns = {0 : 'Valores 0', 1 : 'Valores Nulos', 2 : '% Valores nulos'}) + data_table['Total valores 0 o nulos'] = data_table['Valores 0'] + data_table['Valores Nulos'] + data_table['% Total valores 0 o nulo'] = 100 * data_table['Total valores 0 o nulos'] / len(df) + data_table['Tipo de Dato'] = df.dtypes + data_table = data_table[data_table.iloc[:,1] != 0].sort_values('% Valores nulos', ascending=False).round(1) + print ("El tamaño del dataframe es " + str(df.shape[1]) + " columnas y " + str(df.shape[0]) + " filas.\n" + "Cantidad de columnas con valores 0 o nulos: " + str(data_table.shape[0])) + return data_table + + @staticmethod + def plot_col(df, col, ax, kde = False): + """" + Función plot_col: Genera gráfico de tipo Histplot para la columna que se indica + + Parámetros: + df (dataframe) : Dataframe con los datos + col (string) : Columna del dataframe respecto a la cual se generará el histograma + ax (int) : Posición en la que se mostrará el gráfico del histograma + kde (boolean) : Si True, se calcula Estimación de Densidad de Kernel (KDE), para representar una aproximación a la función + de densidad de probabilidad del conjunto de datos del dataframe y la columna indicados. + + Return: + hist (sns.histplot): Objeto con el histograma generado + + Ejemplo: + + >>> plot = plot_col(df = df, col = col_age, ax = axs[0]) + + """ + # Plotting a basic histogram + sns.set(font_scale=0.5) + hist = sns.histplot(data = df[col], kde = kde, color = 'blue', bins = 10, ax = ax) + hist.set_title(col + ' Histogram', fontsize=8) + return hist + + @staticmethod + def plot_box(df, col, ax): + """" + Función plot_box: Genera gràfico de tipo Box para la columna que se indica + + Paràmetros: + df (dataframe) : Dataframe con los datos + col (string) : Columna del dataframe respecto a la cual se generará el gráfico de caja + ax (int) : Posición en la que se mostrará el gráfico de caja + + Return: + hist (sns.boxplot): Objeto con el gráfico Box generado + + Ejemplo: + + >>> box = plot_box(df = df_icfes, col = col_age, ax = axs[1]) + + """ + #box = sns.boxplot(data = df, x = col, palette='afmhot', ax=ax) + sns.set(font_scale=0.5) + box = sns.boxplot(data = df, x = col, palette='Blues', ax=ax) + # Adding labels and title + box.set_xlabel(col, fontsize=8) + box.set_title(col + ' Box plot', fontsize=8) + return box + + @staticmethod + def analyze_columns(df, cols, top_n = 999999): + """" + Función analyze_column: Realizar análisis sobre la columna del dataframe que se indica + Muestra estadísticas de la columna col_age, asi como gráficos de tipo Histplot y Boxplot + + Parámetros: + df (dataframe): Dataframe con los datos + cola (list): Lista de columnas del dataframe a analizar + + Return: + None + + Ejemplo: + + >>> analyze_columns(df = df_icfes, cols = ['PUNT_LECTURA_CRITICA', 'PUNT_MATEMATICAS']) + ... + """ + sns.set_style("whitegrid") + sns.set_palette("pastel") + new_row_group = {} + if (len(cols) != 1): + fig, axs = plt.subplots(nrows = len(cols), ncols = 1, figsize=(10,15)) + else: + fig, ax = plt.subplots(figsize=(15,7)) + ind = 0 + for col in cols: + new_row_group[col] = df.groupby([col])[col].count().sort_values(ascending=False).head(top_n) + if (len(cols) != 1): + plot = Utilities.plot_col(df = df, col = col, ax = axs[ind]) + else: + plot = Utilities.plot_col(df = df, col = col, ax = ax) + ind += 1 + plt.savefig(Utilities.image_path + col.replace("-","_") + ".png") + plt.tight_layout() + # + data_table = pd.DataFrame + data_table = df[cols].describe(include="all") + print("Estadisticas por columna") + print(data_table.head(top_n)) + print("\nAgrupacion") + print(new_row_group) + # + return None + + @staticmethod + def preprocess(text, regex_list): + """" + Función preprocess: Preprocesamiento de texto + + Parámetros: + text (string) : Dataframe con los datos + regex_list (list): Columna del dataframe respecto a la cual se generará el histograma + + Return: + preprocess_text (string): Cadena con el texto preprocesado + + Ejemplo: + + >>> preprocess_text = preprocess(texto, [special_chars, spaces], nlp) + + """ + # + # Normalizamos el texto + + # Eliminamos caracteres especiales segun se indica en la lista de expresiones regulares + for reg in regex_list: + norm_text = re.sub(reg, "", text) + + preprocess_text = norm_text.strip() + return preprocess_text \ No newline at end of file diff --git a/src/comparative_analysis/visualization/agglomerative.png b/src/comparative_analysis/visualization/agglomerative.png deleted file mode 100644 index f415c24a673b2f89209ff115858cce328e62f17d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 73351 zcmeFahhLM~*Da3YsH2WLie*FvXQT)Ui~=GxIu-~BNbjH`Dj-b=NC~k!sDOl~bOq@} z={2#ShzLkagaA=G1c=lCA<5kb=X>w_-rxNh{(zT{Gou4Zp65B|?7j9{Yi|Qj>uRi9 zBeX_9KwuqK^SFV4z={q5f#th@Sqc9~sW4F${m1i!nWv%a1yAp@SL_9J&U(6CcJ;jM zaBjDk{S^-fR~I=MB^kN>yDxcqx_Kze$~yn=ACPgqa#8l3;WJ%$lhtmT<{kn98_uGC zmZf1*9R!vM2w;yNHM$x*(&=;6sEk~Y{CdtCpEPj2G+D?IM`2IDr{*l|Ne}BJw#sB;s zJ&ON%4&OJ#|2&8P`Wy;Mi@SWa;|FRcRT<$0@{TQged1Fk4O7fgM?z&tv*+MX_hm_+ zm7m#!s80N&+F+QVj?XguNx}ZZX84wV(n<5wkryU8R*ye>=USCEDOaD8iocJap9&rD z@$C)OFrf4)Q*C>OxLu)IL6sX6ydE<`4hRU;d?;8iAW*Vr>wSm$sUhFK2vd32E>-7_ z68&e-o(+F~ku=X@<|c)xTL?<%wmkgfSeD_A!ZWXas{HnPE&8swUi{^_n}=Ta{3^en zyOsnOcr}D=uPcSVZ}I%h^)+kP;@)k)Xg08WMVBu_x^kLgIozDuAbj9)a0{&rmpMja zyI`AoYr^+tRf4W4+v$8$f*2-3( zx5CO+eEa*`*-L`1mD7g-D|uPtl8n1H{rS}r^xAs4-l$6*!gy1%Am zTMDv2XImB@x~dkSyX;!$HjR?y0?|_wwX#kNv*Y(pCbc`|R!%i1aE;*gMe7fL5x}a1 z_{&O3HBAjQeEDDZMNJ;&bPammJNj2 zV~k&uAJbgQb&5N^VsIyS*Q-vRiu37zOxZ3VaQNnGc#KKvoGC-=t6y)!#|o)leSV=n zHa%X=k5Z<)cXQLLRU%n8H>jIo*li7-HDXb}xBj%aBR`+TZikoVkh#8Fwr$&|qGH*A z;rYka%vf*Pym|2UHk;D{0Rj0%^jJYh1zc0>2KCt^usw|EBz#0%T(;L}d%8EXOL^wA z9d5Et(P?_PHIU&OpXy3r(}>B&nI>XIJ9vilKyC8;@IGq-XIkjMxmy#Hljyaa8JZq_ zuHL)AbExTp!nQ429J;FlhuiW~Uw?JW9zW#O)DkVxo|%^Ri5b9BStp`yHQHWi7!W`T zRv9~7In(a6E`TZOP#wIhZ2a90g-f4y_x1K(Vpg&!lBuyz+ww0`OG6?*Pv5$iX_DP! zA7!0_XLXvkwY9YqcpMyOn(73v45aNh&pW=&=IRsQ>EUN1BbRr%y9K*4nDCc_L*)q#l2oF zk)|Cb^P#S;^^dzdpQgt9X4H^MJqCtfua!MD)i*G}_;hST>u52(>x-S`>tU$F&g4m+$F0xC-tL5umk*+WJs$vmE->E^1+@R=?6UQWU zDu**Ndwt^9tA2ZVvf9?b;3;e`2$5>s*&dt>?6~rP$r$?JKYM~tA3b{g&(MF+s=>AE zG0D7uBw9`bJl(wwli`mar#sV%T1ywo=^U4Hs_4qyDUx_%3YIq1=UDh@|6M@I&tN6V9At6&iVl*g+Can-xL zFV#j$7v>~ngn3J-M4q3SPM@7KaGVQpY)R7}rWLz(^Vl<^mJFrM%+I>DZVt#sZ zteYn`w*j-@);$lqN5?8YH1w-C99BvKoipZLSj2m`!*v!`{nX`sJJ++}8`=v56O%|D zJp4oL3lPxfzq);n>h&J{^s1r0K1ZR;E<}wI)l0wH6ND>jF86k|B@!S`&)wbSW%l$B zSy|Z^_=d@ayTZO{UChoq>vk->y19xv91>DJsmjwM%o}#AI|d{~+r7QFC2&+XL0#=d z=lWgBvrkU%b#H6b5E(T!GMa@waW5ezhM^6MH|eD2A}D_9(zgKaOfh*bR5O`k7aJB9 zHp`nCrLpBM)@R{jB30|d#C0ab=Fq%S|}V6yi0{L zFTB&c!#%*=-Mz9H4@^3+ZdU3NtHzG&=juopqDc9BbMaRx-q7E{{X!&28VlJ&>tW$E<~u$Y7J0bhkI_ z0tc#csBYdlT>iS zy%*1)Z}E+zbOgA#`aF5fCQ*QNj-s%7CRUm`n zACznM;?MDE0*7H6m@8|Zm)ym?&SZ9As;g}b3=9}~PoMrtzSs~SIC|^vKgf9YOksR3 zKqIG{G?ziPFrgF0TAU1%nrnNGZEB0h#nsAIPBr=3GN#qG4b;am&_|B@zK30tpYT}4 z+ogLxyE97h;z*6^KsUQ0I>ZluGDxUTdqNi8$ig-RV=FfI`0?Wa2p2S+y?!*byynKKS4uwu#` zNAipwh_&JIP6W~vr+3EiV!TfZ9Rg|<4zht2L&>xM@x^(PNJm4GfWVGZfG32eAQ^}U zJR|^QBX;Rp>Xa})zt}UrApvm9Cm!6wrl^SU@Y%_M1{Pr^KVdGHH1C*AQP6TMa1 zBK*`6E`;v*k`RDAlv2*;7k03lb#;SzkOJoV`ua#r zW~|wxzs}xBh=_=Ibj`W$mLKF<&H=l3vyeij@pP89wl)X$vEqSJH;9hxxw$zmpuSCl z>JXDyx#eSJRfoFZ;48Dn=NY+d*uDW5E~M}#6L=lAFV5YzwYDBLH8o||M#-|OLqwR` zDiU+1*%ro(qB?wRPndX|GHxP2FKtnCiZ`T3 z7$yVU8#k&(EtS7=0X#~Kv8I~!SQy@d z2mA;|C}=)JZN}^z*$vP=<#AOYM)rz_2PZ3QKTiWQA4+!bIf<4B5=!8}v6Cn75C8(O zpPYVA1}w8FH@DDP7xKb4^zAKxuyF z9dU}I{^6MuC8WIvd=Q@9W{)*R{ z8xV2TT9vmjxz2^GPG9I(ggj$xYHiG5*apnmpR@g=Mnv8JY8-8h%;Qdvt=-`#b4X!G zh}w?#F(l&a@!wvp3al>a_cPJ~q^EW2YW-umREoVK-9MiP`M=(_;_3@qbMqlKx4woa zrX4v8==D^EE+xy{@M5{M(pT=wkph;v8`t;mD0vlmHrcb=cn%fHm z9-A)R?xGWO5$Og62^S$kpAX@mQOqxo0*K2!zF zRb#mB+12(8N;VfZWRI=;+bw|{yp@wgN7ycHr>RP&C@ z>QkSN?ND2jtt2=G8LX@3VbBgm@!;nRG&}mzBhmN`N-JuqGlYBqrEw*?PU0Qp z@gP@G@kyt7N--&-q<*zT>=!s*)Y5vCD7A5z6C3ZpU0A;U@XM%P%(s`z*LlgyzoIm) zX1yb=TD8mbp==F#s!7`kUs+JlBD;4l;D&(&LO^9PEVQ2>jgH&Y11D%kY>vZbp@Yxp zn1M8;-EjyGQ_8}aH+fQQ&hFiVbdNS~(qvrK&o=%OIVpX$QB>t~o~Gk96qMK59gpNL z>L%GaU8es9_{X+=ZYXfx#uCzi!8uw3)Iiy_j=~XSM$ZtNWNU2P#~P(6y2n|%ls>D+ z6*Mm3!Ccb>08~~v$yud@PBRV_%`ISDcy2o-FkR9hC#I=8!mMI(j6Wav$Dr6Nh zeG$Wc{P&a7nZET(13RG*dR|X0hoWRp@ZrCS1(zD1T12T$ev~76;;vDbw!9M_{U1XM zJT6bGDV_`w&W0ML>}}ost%G4o1!Z&lvp}IQ$!t9h?b#UvquWuNYbU=})YD+Om?eEaGC3~fF_VpR*MRDV-%g~q)N)1al6GqJ8U0`^sL<%)4C~r!Dq9;Z?UHsKq(Ll;h8&q zd3oJ}#_A*4wIlw3|8uYv{C|lGI(eD$B(Csjg1R4WVsu< ztZ@hivW~4+N^WGJqN|W3O!yU@{@?BJQc_Z|j6-HlJFmR|V_iUk(7bR%0>-wfzGj}w zVN?BRu#o79!Nbj}~GQh)!q1s+_XtDuAg`FsdtrqsXe3K@u;Am7S@n*l2l-8*Z1sod!aO#PkK*9z& zIk_F3GZ1JK3EatqLehW&um^}v%4OxvdR+PT<&`7k$|S18pbr}mP^M+E%etAjdS}`` zP0l<#wqD=F#N=jil-F27icU-lKpTfwH&)CKXXXy8&7G+e)JWCJwW&meB09_=81B{X zsLk#Q5)N_)x!w;@f&A!_Dinw@I9te;8HKVAA7R&`a@V=N0P9McyU-o=w}M1RZEfvz zF`1(SXQNSRAa)Nn(Dt|1g}x(}nip)l!YS$lr0HzeAye`^Vnfz0maaHr4b*^t9T?i4 z@QK#?`u5ss$gG2~omxLc>@xzi35mf9}D!nn|1XO7$_JZ{=l^FYj)J%7GnIv_*L zU~Y1+!0y9~Sh;{|<0r-?+1Ey%lu(m~vO*{3kPd>_CRt`rfQ&PN?`H#g!U2>T1}xG9 zKt4PshSu$zYh7;AR8ROK&q{mN)YRllj=x8kDsZKfUez9y^CrcanwU`LeHRAn-w783 z9RpmW6K8(fxoMlLQ$5aWGz7B}KyRJzuOB{qh;D6vc%D?fL(wI?VDeJ;yQz`3e9E*p z$Iq@fgnno{5Edj|rM~d0-cnIO&5}SK#ScgVFWa1=L-gYAQB(hFGx`3@yLikxT=C3I zP#}ShN&{x-r290!!O5|{C+?%ipWKSh7j_!?!Mk<5$odu*8HRdlg%tgEb8~YQpo1}5u*MxG7SsnK#5gH!Ypa@b5V=0&bGFt(BV&50$tI^)ccWD}+(qsJ#6s-rcIV0jtrW2>DEZxZLp%ul2EJzpU2~x_E$#jD z9-;`->g^3Y71G$P0h&A0{lZNa_P)?{rc~^M+c6_B`nY-2cCPvJw=$ERmSN3X9EHXHcoV{}5! z-hKO=D6F*ppWQr0l%ELmTo)Li59kAlHa%V~;smw8Jk*U-eNnbrj_lQ}qKEeetQNNI z0kZpYcT^Na)M0iS{}GXqju0pV@wWaog=&rPskvMBnG6Dh)C?!i^X0Ntm*CsJ zbA3?|O7PlyPCob)t>Ba;r?cWkf}?}BRDkdbfuHXpUi&8Gg|Z+hfDi-b`{nwo0-!^IhB2LoQZehsji2!F#_MuwJ0HzfPXPGZJR9nh-t!Qi?hf#&ONw;jR=%hSIxnH#Md0DHEef@s zoYq8ik*@k&ud>GWLsK<(W<4|<7v`EzTROSYAI-9y;nWre+jJV^>65#Ep00>HDk?3nY=}mh=RG*^6mT8(x0S+-|WMsrbgJkJAN+KyVJlQ>CSXZdBpt?rD@6W~R1RaNZ z*eO^Qz2WH^i3E9eQJq?JHe^s@_~EkW>LUK%j^;B>+e<;agcBoCc*w~^cz~ij z`{kzC=)x+(vD^@|{gGxlPy3Z;RtaA{^YjHNO!r-@)yz||?%Z@4>oWPnfrp(aS-xZv zJ%BByn?wDy@pF*%p>tLLRQ0+ZEOtG$;AdlO+&bu?qF!{Te%B`xID_W-7Zj8mn=Qtx zy{rD&IBi1$FpLL?xvoo{J6kX_tv`7j&!Fb&EhxA9|q8poi@wa%pA~hK+DELRhI0@er+$9qRri z$#EL5D69<$P#g~PxJ=$~rL&!eDmDXm+_H|a;5qo|DA6(7sWKBvzTF3uJUVey1*Q1N z_>%pnb)9l%8v@M0dt-??r1{~h8vPx447*RU)un~Hhriyc zDqWv)>ahV6Ck*RbrQf9xvS}0uqwe#Ufg#nX6tvI3P}c;QFUrUgR2_iU4V2>`uM63C9e28j{rdfIIjs*hUWfNubGs$K^~zt-o*IK5by#j6p$i zA#-LdG<4scJFsQTmc`HnXEGJ#%r+Wk;{BdhVA-(<3CRNsGDpe( zlb{rOh9p)cQ%t-VxCgYU94C5fh{>x3#Rn5_uFt@+5hn}L9mqs#iF?l!q$urnpW}2; zpR=JnRCG`F(cXn?(FZ^t=TD~s9*Q~KbdWp$J3N&nMkcR&8~HSFpD4LQC3?VJcom(c zaIt=8oM#g@NZlLQUvYpkz&Q=Z&=*n`x4`FkzcHmah%JRSQPLZEQy+jAO7f^z(%5H` z^{`;_d>E=iPF3vm=?x7`^17J^r4$39Y|$Y=KdoAQ{8?O&Euc3poyR5&Q*#qQ z2!GhZd9X_b&}(2CEUL^nHUj0^8*61g!Oe6IvJ|=Vk6=4z>OPMO4Gn$t2&qz2pxkQg~Kv)EI;ZL4~SSFp2;PHCi2C23qsSWQjdJVFTlVMbWi2nkstz zDra5_KzfvVQK5Oz>91;X2(w}`I8xR&-pI-6*|3r~k`1AF0V=#{#Wt(Nyu5=*dj#sx zv632sSrr8UPGsTBs=z=J&=7-wTs}deVaVuZNV|hvCbehJF`z0au)+yuhmrv?0)3r^ zuETq#P!E;LMVH&21`0}uuiu;oIx$)|Scn&mVOQUYG(Xdh5}#h%Kq1K%Jfpdi zts(N}2}1#4q1|;nNnZ^PZ!p*#evWB%!N@`Ov9)xhgDCz)E zU6XIVx^*j;mX-#9>?d1;`EqUf0=kYa+M@8|3mPUF%8}OLp{~ku^5wQXWtI}~rByg^ zJ}{y5r7=6piwVF_w{G_?cIn(iU3dF$u8rSl9}rnBWlY4GP)4JLJanMw%mOkFL^_5Q zWl=HXeS5P(@hTe|CJr1C{JXXEGAPB|m)DmIN`u@60z#5(4bu8hvPP`_JgACbD&!dcg%p$I3+fRD)34gQnj7%bY-uR!Hf3xVqC<^aRFftcjTm3 z=P9v9*+CfBjLb}qEoa!Ya2{gD0#H-68*cwyNRj~1=8|7**$kyC2Liu%QP|_hLjwZ? z5?mgnK4(w*1maSCb*4ceL2HD$()+#&7dZ!*U zDBw%ShxE}2o@7^C-JnLxt)@G_ohu(YzN(&?9y3gQS5Y?-1gZ%{des=wl7_e zJ5XCf8A){^&Gmm*hg&nF=&&CNuWzj`%%M^iiAc9wKt!6Od;(lA1Mp)@RiI#Nt}Vv? z;zcJ=rJ;KLq_45-8B{;IAYwPenSSDSxMRdQ0Rk&Z3!cO2sTpvYkfZ@FMCDY@Sm0;B z-YwL%F>Y2Q&*=clwVMYmHya?I_48UmOIz;raZ|1Vp(>a`@8L^_VVlr zQXB@^%os>LR51dh0GG=E3qdPzNx2D}k&8GN8l^kX1}0#$9|_{}Avc%~n{8FpI+SjbR{ zhB|M!G3jm&I3%R4N=_fUyWV+f2I`F9{)U8Hz0A?bD_jAgIr2spKMY>!XES2+_ zIFImwa$mS1Y##|IP&1)2F5}KK6hKg_I=Hz;l?9m4u@0EF|M+WwE(43sAjBmIXr0fH zBs>gPc)vJiP5i(Rk3;6Ap18kt=-$2@C}D1HUUR#^nRe(uew6^wHHUyG)y`_58C3eQ zD4?%R$1(jS4%7o<5a&Cb9R^FElvgm2xzDkeOl*jesRJ={x-Cy|AP00Zq`GAG1YEXP&3Ci|> zp_+l9-{&xpYLA#mWokN8G()--9smNN$`H_6k~B6zX(|n{zgA(vJ0fGCBd4}nz99CL z)dI)$^YgRd1%h2Gr0kjIQa*a9E>6W106R8h2rM9oJIQ&o0ki0H+P~EhU>kzIiw3d1 zn;pLuk>~1Mr@$aKgmw)84`ftnE}Az?Q3vSF?<=@lBtf8O?;mDk|I@ zxqlgAQHrj>24R2=tOeqD?jOhQfMrS1{YD!y`~ibgj2KqMS&yjOlo3W4XYOE*0z2K7 zI}wE}O`agKfp-Jhy9(9y1&dP`i$S4=5S}&|en;E^+ZawW>9)kFx7%#ffVzKo!mS2k zbSgp?h!D8Y5Z~EN(~CWnJpm!As z2h5(uYQ>(}nl=Q&POEFcY0w3(DRC!SI5&Hsk_Vt9%o6*&_uhIS>An<&LB|xx~4}K4w9TY@jzC=aX6ZEGAM&JgZy7M{^KXG z28VZ=Kzu3$uCuDw5Axg;NDL0|AO7Kt`5k@aFGo^v@SjU6K;4nYN_y7UMJs5F5Efp* zJv=(>@Oh)g&L_39WGm3pUeq6t2Hk}C_mhWR0c_`N^Zb(lqfB78pbZhGtBggmCTI_h zUq+El0LSdI24ox$)OD(~Wl1(-0k{u*iYxppiFNe1fb- ztv*7Qo_B6^y&qsXMSDu$$|)Kw?(-$!@7=!-)kAKT|Hg+>r%LQXHrk#{fuL6Y_LiT& zY7XhZCwPTlPRRBD^0E`(->G(*`|kP3Uj{*|y$?wpU4J;En@WxpwJ&nI zXhqyf#RQ-H@r5P-3ffss;K?LNx0LPJBv^0xW6-hw50=fYwr9C zmhZ){BWwPG%aS_iUvj0)D`MsP0=OF=pVAMtU@|81xjNCv@MSyuA|gNRlML0;$}%K& z&sR61Bln~2`(ML_;MlcHe|lM>u@&#I5U1#e+tSQnrCY>+`L=?kJ#2SClmC86zC=e2 zvYsYUN@`z_HqlUD{|QJ5j0ee$uC>zvHJrr=@PA^);vOpP+VFFrn7x1oLNS$Iq#=9r zYSBOBnnyb~@VU~fg#y8A?!GaQ&(P8caf8Z%vO0SS8&Cr{TkMsYJ=Qtgr@Mm#EOS`e zWB>1%1Pho2i{{7)Qgp0HW@HU4J)Q(Bd|q zwSvQTScaQ2&>m=L_u|pH7mt>(MjPQ|aM}7fSv=j6a<6V9DwUALHyXoB{BE?knM8`R zg54VCU5hjMZ3W`NYdziCAF^yJEn*HiAI$l;X=}y`G}D}UCh_3*_*BH?USaHILFI5s z-Z3szp3fF}k^JkI44#bS9xM`XpgKtbS~bq?_3AtNby0C~&in%`0KYSef1RuP1v?gZ zc+2-w{5cNADMyAM)1mg>7I0xm?cX2XOCcTvp%k3Y#r2v?2_QyZQ8Fq#Voc28*Brpr z6maXcfZFjUuiu@2GFiN=PuZ4=0LXytc4~Zjf}-^O>Rt*5B7{&L5W6oRynJ8nhZ3&) zQl3+q*9P^yxg}=99p+HEE5I#t0B?KuSEYl8dJ$~=IGCcN{0(?jyHSgDjSWN97_YIa z^!R}#WckH#%B0TIXNd>zZ<95#w|{m*|2|M)fQ6S3825B6Gaa3v^`UMJWB~+#hvLY( zUCJ$cvwU8EeZH83ejHr)bX@N|4s@Mi?T4%J15+AH2wcy11j_E~c^zm7BzBzHe99mE zQZ;t_8O83Vjbs18Zu}nS^Bw6vx5}Ap2adZem7X=kCz;(+dA?&i*qz~qQLzpd=?vgb zDA;vZI7xi5$vW8O#E6JzP;_Z(@$BubFkb;P{xAswHrr`zZI<@=$z3fFbs3DD*ux5- zK0SUs7V!QKpEy)u0Lcv4Z_#uBzlEf+4}pf685vpp0~iE@;0ZjrE4MntO^>yjb!XoC z=#O#BA`HI$=BqDR-G9~%=xzlk${;Wd2EgzBB;ypngm<98t!}yhcJuwW!~T`1{s2ll zc}o35<&yx@PkhogI*VO8fNm#0Rr-6Cgn9?V)wY zcYY|fdHxq~{#Xs}`FiKWwGz5G&aHj?_9Y-S<2|lk~p<1}az)BsC$fB2+_o`x&#z<9}{k0@9YyS>a_k6wqx%XT@>(Mo-vzR;^V# ztjltHgo93Q2|BrilnL)e+hR7`En$sTcbqQrs7dp%)cOR z*%|c61hqd*jnYhaDSMs;<<`?ilL(+yRCFlsap3pVvD;tj8-p{tVwAR}%PH4a z7MSkSK&YUa7_zzpFfq%v9jc!WN#X})ApU6>Ls6emF{TV**X5h?xV=3nF29}rH(xy; zfZD^&$V0t8q8@Dt{-p}KIB-PPFj`c>DvkGvr&7%8D6w2mepo2jjeZl{Qr3nkry7CB zg2w@d8vkA3Ynz8;l6&voz2u@&klBzFhTIzS(~MMTE(6vr4T6<2NE9GX#h!GICCn!#*%r@$ICSXy z5J60ahB!o~0KW%q2UH*d75rvUcUgKH4b1hjNKl+3CCpktvj}Ksz@ry}sE({yNQ@N* z&EfXnPgWLhS%25~^yyDu`W`=4#d)k(J-wYl!K(RcW|~s{;@l2rLBt${cDG`E&Cdgpt8MeF(Xw#K1%Ld1U0ayZD zzac{qaVN(m`El)=WJaJN`1|6xZ&&jT@ATzr^Mgqi;7%7s-MB~*5W|8<5Dm=}Aeb-1 zHa*xbC+{~ia>2D2sP1{7O(C@Iw+15@VolGLqkdUL6hkwu77?}c=@xB#=&9!J2wdTm z;rbzdg~h27=5=BGls>j;urUb-vR_N-0w^+uU=b3-qHcry;uxT-fE9iIs#dL`SuD!x zPpp)rWFz=uEr>y)Zy`k#uV#JtpoLhFi=sh%k`jF0S?Hfr03RE+2}pk{CQh|MduJeU z#<{6eT!T$s@W%riw{tzcpK)S{@LHDvyh0Q`9 zGF^d$AX&~s4cEkQNWx(HRJ>XV!ipmhY|zw*_;=JBTq{$)e>Aws>nQwru}^mh7hcX_ zkog6O)hxA-uptErOz`O5q-Oe<*U<{zf#G}#iPl8;Q|gzxE4d;;+{69 zA#nlmn~g_T?Men&MqNzJkLaoD?g&K|lzCbFYw`ev!n8cu+Z-qJK6_Zick5{%)U7JmfGziRI~8S>XddA3lBr z)+qv5b09N;y@p@lKxDE(RxuLY6v|`+u@U&p1G1kJM{QFes?epNQ`4M@*UVsX;f`T# zB7V0dF|~;x${E{OSTNMRb~S^RB8o*320~KPxl@oofj$om%aO;449y&dV5l}uYg^h%oS+lv=i-A!{RnbK(5?N6gx=?aev4 zbWcBmqvNUZIoKak@NpUM&>JO6gPhimN^_Z#FFzp}3>FuxD;Z_pOdBRnLN_)INlA#* z1?-v}SKAPKwL5UpNb&xUyP8C>=sZPcI$tuP-%%$b0l3+S_UlULAxRRGZ?D}Z6t$qY zQ1{6=hjsVwKTUNw_6WWx_Z@$`4NVNtBqF2bpf58h@a?&>FE`ds zfe{WKh#_)tK*K?7a*-GonT5bLy&JpeM^I*Dt<1HgZyc-iokrP8$h!XBmR2?2z2EC2 zhw0&yx#i%F17o;x{6IQvVvt#u86Vou4P0(2vi66WgJEc8l?6uC&I|Fs487^JUH7M? zLdbsG{0lla1;@Zzmd-jP4Q(-=&=)rhX~6`V>*>%rYNAu5-2_a0=qwxjm|cUoJ)xT2 zJtxYOcIm19k^A&-pA{=~Y`lSMHvu-h&}-BJDQXE~1#WC>9hh!=rNIp5Cyl~X%Coh5b6UH?hwK!E$9rf##EqpSS*&FG`>_2frhi+8Y& zK#MI=v~sRLX8y~~4Z~L4k8%y7kxr$9Pw!h4jLwFRjw{eob>rGcYGzW@;~^H|z@>&I zLI_TUevE=NXKzC|42OHXJRbah;BSNZQzgX(m`=Wh1WWA`vOjqao(B69^xInIUu=jJ zg-6W*CA<*^2#8}BANVOpy~hVnEROETwkpk|*u&){_zp|jU$`(FC=q|D@!&yMGN&jQ ztoO+6WMSPSnh23CTFtL0Sbcu5O7<6*lCLX~#U!wisea``gGv3qTrik6WihHHI->TQ zKLr3*bjm3b{3Z7G_U8N(Yt~oNDu})<;08&C6yyZ(455jLn3zlmX#f(n+m)1{o3mxB zvp49&$jc=PUG>&JeGz37ANK92;Ht4Y44wY&V&OqNR2g4;4KO3*UR{vQwNL#9ZNGyc zN40{_YI1AgXmDOmnbvkEsurL$g@B`t4@r2ocs+>&4Py?o-@Yz0`aV`dz;8XE)nn5` z%^Ij)S*O^M2w3j@q$+TqyF5P~ErXT|G<^gi#uK!xoE&IM%F8p@ap>};DLshf*|ZJ2 zl#ReBco!K>k+uka=ysSQ0zM6SfCr0HF~A--1!+rJjJ|xJ@Y}Cnp#_)X4%Von!+sWf z7ZcbLa7jG9<#pRjm!}}mx!>}>yM9-ehedXoM#$D(UuCdi5_%MPI!PdZYk^4WO+dQc$KH^8x6$|OI^+Es7^V!-2JcuIMoIb7IIRqj1wxa->5iR2O@~!eTuTt-e#mB{ zdiFzY7<7D8R8(y3+;1K1#v(4i-ZuV^@ufa& zH%@4dr6Bc& zP*%z2r%UE;J+r|cf6EU7ehnvO37p!@X&_?2k(u`N>E94#u6L1{?CV{&8T_`)YB)8m zsd^$1xAg&Awt{gLHva1)Obm<@@+GA6tK4;?*Ni-Ya_3Z@tl9J3-`G&-0FJ#*cg^6N znBbGQCb$)wRd+6t*ZPc=NQas#qLkHzb$v5Ym7YV`$-g*T9(=FMFIN;?L9#>6RT3TB zV7d~d5Bu{!vz}~Qny`xG@FL$G;Ozs%-v~r8YNO5syQJh^r+A|&%cp$KIEaKve}-yi z7H@?31c?}t3m_Ez;`v%_3n!A_R>vAH(*VYS7~*LjcUZxgW5VwR=xn@yANoP*i@?yA zo0f&UG6hplB3iuh2vaVC->X4TNjgZH*FuCvwrXQ~>n%SoFRw&alp~)Ljl_iwikCnC z1!O5IPoahEKjOl*d_=xQJS}WSXa>ei0Wt<}FVXps#&@N5c{$mLpE?AQ5-7uPXGdsd zKrNU+oyY^_5$;@kU+8CT9LgRrP z43)|R7Fv?#bqv-vhOWVP8^8pu(=gkkHUFX>w(04K`wyJHUxx8Xuw$?p3u z?cO^wmMP8e2qA6v1X#Uo%pd2iU1N|}2`Q@*NUG~gjxsOxxpM=xQ9ycyUzQ!*({b#{ z>D{d6CG9XkbKx$sknBB&42+G8pf79RGaB7EgME`<%s{+26xk3p+GfzmAQ(%M4iHHM zIGYbew1-BlRZBV5YY5!Z*9rcA;uqYtiUxe*A;OBS$j>?jQ#G2MUhnf@5GBgmT?+lI^er^83i&pCoiwd|yB>3IDA>ANkw=H6D6aGjeiFPM)N3 zbb*9@%I`8v*Iv7IefcUWm`(-^z&u#3!T3f#R4%&&0U5aIhYw*S6m%a$tDC*OKRt@c zcJ>u<4&JPkj$L(IurRF1%-}fEg*_!qS)fd zPJ&Sr=<8bNY7~2mD#!1TYzj2zsbmAv=x*Iup+)|mcA4$WZ>Q~-Tz*)pDYc=V+}oex zPeXbzIQH5A;{YsmE*jm<@4^6+wQOt&H2iND1Y{AAPF>=(V7(F^uxa|xVG`4!VL7u3 z99%!dndo{lItBIKgJEUOn&etpy`dsjyOS&!7`0)l$g{07R%vJ&*)v*H2Y*M(qTOb; zh!#G5-&T{ydu zft>TYxdguoyoGC&T7y%wy**G!FrDv1@s7>>cWdHNlt|hyyzZP-O~vrF7(uxElvt$t z8p^<158@O#BKuX%Raax1^o4T*m**%o6wFt9HP zCO4Lcz-id~Z)kxkHwiVr+0(q11dW5Ge1^oZ2GGXJpvHb+H?@Xtl`}*% z_~mO*=XP#sS*_hZ3`lKBF!`{QoZO=*S4)67Y1|@y3y2If5U+nKO^6m8BQaA)6x)wZ z7ca%aCdF>j?sM+ik7J1I#I;{w$pI#_KY#ubaPp`X8T816@XJ&dC;W2t5}^0a2qo{F zgOnUFpI&Na*T6JE=tY?Z+8{kGZLhuH*jKm1Vzd|h?goH#BG%cxy9EeaXavn0UBNFj zLH%;cz;daw@HO$mw@X?!utY|0PH;nQKZW2^2a9j9Z_EqV@`6kt^-cZ58kJz1(iWF#s*0Pa7{~Vss

*TzZWPs!!TLm*WQ4CJxr$0!H1MKF>wW` zu2o(HpnHLIG;oZJSY3u`aM`b$TD_9f2lqP#y@C8(xYK)Q+`qY**7au_cC_> zSp#TFLCpq)xmw%a9Xj%|{>a)a>6ZrM>l|P}n?>oBXQF6s z22314@({FxDBy;TQ1?R|G&;^4f)Q`p(=aiWa_j1kBxv8_Nf>B1oE)ax)L$1Ph6R}b z(IcqQuM*CuF9f-1XvvWT*goefKs51KRP3?33yM>-y4r(6RFT1PyTG1l|^0{EhIOGC=OV1Z@aNa)pK^B;9Ef zxq!_aKZHw8yVwCcs|+)r3VkLopvkm6_)YU-OWRbK5#?c81{%XcL_!1_Kf6Ko+ci-K zm~9ITw^x2K4Vqz)2nCIHk!XSx^cTSVO&H|G04{(E?cZWp)NBICj&T_%;IU8OQ9#pE zx654^1iBv_)Asg5t1z?IQTHsi2__b&feIvA!xXUCBO##y+(LLunY}#}Me~ERp3nyH zLoYm%6OfoM>HrN7%H99$8MZ=FMLI~J#AMVn*+#2tXrMy#>E|zf(1ZlNAfci#O7T)# zo;@x{kW7wVr+|2JxLgo4o5AG}(|M;w>usQ+wJnc-;#rd5T`0qbUczZ;oRM#j1VR#) zzD%e6lYjc*|7gJm5u5qBb;mQ))jonS53`4*u`tO*^CtDaZBYQn*BJ&}tyr-_vUE`Z zZ>kqN2SdJX8F|2gwUqMiv~#&EG6OzR3mcaCLD>KFy_2mnCqi_zzcWC;&Eo%U^BB7K z|IxYIfTS=y_>}}4GzS{YB1O@50K?8DV@qhCf=R|OH`$aq4O%xu{%#($fr^c)et?OB zh7d}i4{AbH4-W5FH#3OXP}f3d9sB~R1pYs?dc(OPGTESI0#63N;5TqI;JfIBcv}F$ z?xF-Ztl4B3*M>C!j}R!-jLHqz=`NT87XkBdH`!&Xk35efG`v6U<=~Lb2Hp29!F&R? zA)0>jp`pQb{1GZJkXY30V@NOd^ovCYV$E$ME31ydp70zy(8$v!Kg+X9qt+u;xE$WK z0D4ZtE8_RRgN~~wm*k^o%`RlHHae@N5Q)SpyWd&@WFzd5=(6F)-#UGEQ~fyIHH8mD>Nn0RjQsnv}G(&f=dXx$_VW`v29EFXYj+ zTOW1j(m|L({rG%gSCoWY3czPju%HucQISTsz?zPc zVe090YMeN6;@qzk^qvI_5Td&hqJ>~vhcVgh&}%wJQZ=^AV0PR%BK17^qwoc|pg{6K zfB&JYmC;eH6*_tFa8NfK%yr3tDVAs;dvm|@e-n+*<9+Xu|1jSR{hO#y4r>9Oum-e$ z$Y;wxOmk;9{GOBN&rQ9@u=}ELrgnN@1D#-5evDk(AVS3u$tokfq2f1_)s(Ss9B&_9 z&E%@j9#>(iB4y(*^{4?9+Pt-hi+yHbyXj(}rbjgCSPTn_s!gSYsdElI1C)tihWiaD zQ*7YaRuwswL6_opfe<_ZJ5;wZdC|oV=>T2fZidlpb*LEPksL2UV>mfox=8IP0u(oUwQ+3k1ea|f zFV#1oopf?V01p+^(3$pVD$o#G%J1F3!7o)pST?y8KTB^ zh&*T{{Z_g13VI~GOr(^Ax-SyVX+1Je)@O(lkf+3WiEi*{l1ILIpi z>zxAHbykfRc0yIwod6I3^_VlP20{o6Nf0w3{A`jS++No(xoD-Fv$y|_;}$6zzeH%{ zcYsU|5fC*4Lsz9V7Kk(ow8|%ef9Vv_bD~DV>EojVg)SCG~R8ub#pqX)# zgr>9O_Q%$osZ@+Hj1w?|nPKid?}nh~G+Y!=$eB-!FE9gadk~#MQ8OjzyB-!WTNr`{3C5ug!m?2# zOl{h_3rit{3legnF&xTzp~?U#&nj&(FgyhIhXI;ug#Hc=0pFVxMRcA>Gugt1zCJuGV|2BQTTvV?0Ew{;1BI{!6BEtf;yH$n!nlR@w z0(wnpBeZAQ1n3CmXZ8P*_HRea6ZAJN09H1rjf}uXanJwo8UEW8*4O2Jx5Am0EMuL# z!&TmSJN(@UX!acHbb$upx-y-^J6(D*iulE2)Ks)3pm(D^XFQ~d$4S6x87xUmf!i0z zHkqtSuY*0`c2eOLKcO6W35#sxx&Z_48f0{XV&n3}p(m%)oRivr|6%Sr@(_AOj%1>i zd-Qk7v@9fn(DAU@^)vq^5|Gq4GfP8V5%AYdKzFm_#Qf6g=-px#zR>iH!#<8XE_=8MlwQF8ngBLG)YrRA%>&XqdcJTwpO->Y)3tDL#NI{2C*cqR zP?q|worwO@=Wp1d^XKt2dOVE2)1wlh{G_7$9bx3=res2|GfhW zlcBEuyLUkbtg)t8C5jR;8Ah@~2cZLuO9URZ33$RC6)sR1Ub9cv;9K#5w*!WX+Gkns ziwHMMZ8?Z0zujU3?5BU31_kn(@lxI+*~mjLc6bRrhC11YBP(|>|OF|bvQX&h2XqRs(rpj;19z2BDG zsC84c7m=YJ{5)*f89~beOLYlWf}hkSy?YP*i+U$aP*i zq1X0+t_g*ZZy4@(mYk9i;<=B($1`-jb(^|Xh@pz;pG`J!2R-P6rG}<%vuFCXMg=&v z&6h9WUFiyrrfvP=<;#UL*f%whlU+-_}J}Zi|G8fI(PSRh*}GvHM~UHYS4KRO)woYH?MByVXh`Dq<%CWg+`C*dxIZ zV+Lct6X!q7m*-Ed9nF5-%L-K{ox4>vsOjJMQfyc#K0~-4^D%Fb8}yH znBR_x&l31kj1EVpnGGQth1oYYfjc2 z$3l}fw$fC6`A6*`{gO0>`#u33D4=&AY3r)y-lr{(oC)55`koEwnjzHJxe13`Y?{Z{ z1$Xs1@%&?yoAbL2j+s92On#fEO z6LAAv0$KmzL|(t3@k+6Ww8nrFkAUMnU6#_-a|U;rGc|G6>mq#r-ct~y?Gaou1ap~T zT_di)oyk+)c}6k-C|%@unZeju(d40F9NzEP-=|q$T|X=wJMj_Od*Sr?Y?@~v^9OL> zKu2(Y$PL;`E5o2gkh}Dk{xdLN5ouZb9lL7(=s6M);Qv2~0nN2_NRreaNkaK_^R)V3 zI#5u(27FV)$v3bB`0{60i+Y~Kiq77Q9+Hc5Z12X0Cb_}VW9)(Z3jS|QLOxd3FxDIF zasQ;*`xjO>u$5R9?SCCMQ4H7&lj|AjRS-5NEt?;<^#sTfh*2Xa$Uk)+>XlT4PHRP^wKB6NzV$s!%bV&tnVSB%2bAO6Q$K2Td|WxEz~M z>Vd-NJCCMo9r7h#ZoqSbTcS8`oD^0Y|fBWW0^BII^mzmQ-TU3k+*uJpu;_h@?c?*uRq?FL!1sVBzN~O$jOJgGjB$GSXJ<=l)_X50GIV2P0L{xTvO>Zn`&sQmm$6E*!S~Llj$!&h zJa9>pOycIqGBjXwKoV<`(RFeChp#sn593zgWeCymEv&#e{S&$7jb*m%14olGL%Oe@ z;Q2UJY5ltMQjAh>b5GUoD02Y(<}BpI_>{MIitr3ET)&G;-DPuv1Xxu`ax!`gK2M>6E63W+4lq4Igi~ z?c@7ccJ{U(`f%m;!#1}9X7bR$Wy9FkACQ153zopvguM}(0vwp;ZR(e2KbbqCgR2v0bMRI?m zpu(I0)!%TQ!!w74QUi3c4Qg)F)1i7LWtEbtbLD#glBOgKLe6VQ4nr*>grs!)E*=kGv|w0hUfP7j8OZ!?!dWK3wS?(`j=J$ja3 z(AGF7nSfdD(@AaBaK%hK9jWs_{tqxNy*A$YSd~63lv+OS!Wu(-C83>2mNE0p-W|fc z+Ua9U`yFBlmg5W*#cs&xh5w__TlU|D6^C`Oe_~8Up|+No^1@*$Y40g++^NnMMG!t3 zC~m+swxpSY1Ia?eV0#RBcCz&{~BYz1x&}lyCBi#9g{M3%h!)jWWht zpuo!MyXcyU>_zxAA?IV5Na%~Mto-p&`>kq9F$X)lURUL;21R0$kEd}NnA4-2<-53 zqYzj>V}I%6fVhUZX7IZ8&ZbT z!-D$yicg)H`~^;W`QqvVZ53ftTEw;#mfZ{qczjYYWTc5p1%=I`4#bGuTiI~Mn0-ej zr@-GDp`)uYCnnu4nNmVK&)8;5dEhJF-aRJ8=epm|?Rr1XyW<;sQa zeZROZC`19)p7L9t{*QXKH~+h&;)3tC9XoQGRLR|*Y)>IJF@X*I^6f9R zjgr(ly*EegJ)+@|OgvFa@`62b$kQ|8ff%($FC6N;3l9HwZJEi);3*4GBC=iU!Q*S|?bOFkZ zW)MBtMRWf@u`$--Qm}ks;jPDX6%O?S#|#6&`oa^wc2%LU;6T~$99GOrlnj8QT(O^D zMCGGnv#>m1&oQ;y!Ihnib#IA5emSBPv(JbtLe-nOpE81+*_HDe=F3}4xNQYBVjVEx z;N+VzX$h8pX670(gQ1ayjYumW1IHuy7zf7s*-515Y^9p_!>m3gN$$^Pq3FbY#ariD z8hL%b1l?rj7WxAaH(Y4U_%gp}`l0K{OHh&Dxrz>cfW;q5uUpzNO;YJcL9GeK`I|UH zbH}P`Z${>3QtK0FckUd@$Diu_b#$b@>HLY|fw?WNi-^@hM3Tq*BSdTrI@)1V2yRFR ztv`wmmbFH_e${hrC8=@Q^Kk_3etqXJ3=YdP{WZ_$!oMUG2IsdRh750XG6^~Di6E6+N zT_MMn&sc*gJ`I~cM)ztaZ+x%80MuVa!yQrzKv|yW!VBJi{5!;Tv(2Yc`AsLP$oUlQ zmY4AOrznKQ{ExF=1^kW>Zk(W{`{5#y1;DWYJBS72S_J)zPvK80-0#(Fx$w2 z-;Bt&p3|K5mCi92#v9|y&RDJ~@Hx@SJU*)v8kuSw);ME7ws@n`yLe;`VK>j(6H`0_ zrqot{`OB+q<;(v1Ax%=osswq6ZC2uZR+(-H*+*lA5mWF=d?iidaVrOmlDqYUt8J02 z`-S*n`Q~yZ5&@cF`7wn-rz><>7%58*T?5In3I9#-d_mmZr#VbShF$fo+X%H^7Y7bD zwLjtU19Kg^jcDHCYJ%>8{Ik!N+A3hEt?!`nl>*Y{53)75Wje!Sp1IdtWF>9WxhJ1f)uXd+EUZz>qY+z5D013V$sh+e>K4U8V$$#M zp~#PtgfPjdM{FJv4l%g(-5@=%ARETsWQ`7CA@(Q9Sz$4On6Ig_a5#@>?5llfV}c#g zSE*J-BFbgmUVU4uKh>S+ETo`$#@_}k8Kkrp5i~f)M2$ujOwF4MxrzRieuIVLg)6f8 zg!oNV{xSjV=_NmBhinn&TFxS?ayA}IQ(acCF-BTDa^)Lrh8yYZKmq;NqzF}QK1_5v z#|6%TVJiA0;l`O1+e|LT&aR&k_a;hp_JT10JiepWJ&#}IA;)0V!F|4*IE@xfSSaUp zLyB*lmR;HGq<1@@mP=Wb6a$8go<$VIdorl57@mFDS!sUxZ;iIbf@K-0M*n-VCG6T= zM0N@+J4J_3)UJX|C{>ATKvf4)+_X>yV#A_DG5VX2$*${{FRvII*^X3Vz2#*iZjTZO zEU`$9mgE?$uy0Q&2}iiCT@=MC>oGrovSQ-sn0r1_z%gf1>X08c6jLY!oI~9&UMvI0 z>6OS6W7&Nw|8WQjz9Dqv(#dk;p=g zaRV;<1m(bGX>nj;@38!!t z@=(cT7(|Y=sa4RK79AbEj!R-;^i8VdD}MZcBgr*q;0dc&fAuaS(kpy2z$Nw9DOjNf z{6a5DP#bk=k};Zyu5KsV>KB~5%+9)s69MbK9M;KT|1bi zU+F$PHnf$W;>>W!ed1mOwT3(}6^mvhsrlmVVbfCq!|}CgUP?!vnPzzX%h%lbYdzLC zF9a_sFWZulj0}qVl?t_gv)vtzTNK4&=6OsGW1AR{Oa!6t6nAQT&+<(Y@~i&ZCZFHM zs{;hQoYVa^P1j+c1%P4O`CKJH@U+iR#8USQ;|(M1|NYDM$rG*8)C^bVZqLjuuwUDd ztBCZ1I&4rCs5;cIzM3a47o}p@RV)4&%w~i^B<~15LA+%YD<)W}^d`ru;xsoz6-X7> z`lIe!n0CI@R(+%S+vt5PU+l|MM!7^q7Yvp)JA;KhT1MaG+r?sGa#UqrU3ilK?CTM43Xe7-(&KUy!|cn zo`Zz@es6S21>i2)Wmt8fiT~G6I}2f>=q$i%4@;@g5P72z+q(OO?q)udBvzcBF>MYQ z?UAcYhUBVfbhTqW2JtEYO^T?wMe7y;AVwkg&7I9hs7s>1eFj|J)v0dc5v_6Zt)1Z_d$3A-fZz=tcEf(RUdvJD89F^)y@9o?5GQ7`p)`eU!7C$IN?v*J$ z+J+z+igX6Z7(^AL$tn_ZdtL^4`jt78r%!Q|ZUKt|BkEl2uztup2B|>T(PKoZuk9Z# zIMS;N5O)qd^SD-kyepv5%0{zCN^|(~lbqDJeeTs z0--lpgP`Hj7v)_mB>XztP+$vhd<$i4EHc0;hC$CC16e<5{WA3T4QwWp56NaaiU5)> zL{Y=Me#(?FF(Da`^f8+$jG%u6y}?P58UsT@7^vVhh7TfN@a$Ok@zemOmlzO~d0Vroz6?o%aj=0qUWNy#w1~j(rnOHq0{!n^9`{ z_YtWsNIt|zv6u^%EHDRvfn)c|XD~!AaraVH_3rX1tb3cv`$T_y#baH4MarrGzkL9b zl2W%*?Fqzh5<{gq-4*hV>~-rIEY#L{bB7ws@ZMTn1ol+)sb+CX;s$RlbC$1dZHX}; z^ng^8xw*{OzpnHVdmybYe;4{CbP<1z9BIWYt%f>OTVx`LHF-O=n7q+}tj1ZJU9p+q zcx;4>*4L;8MuX2T^imnH>5M=!>C3AN?mgIkInSf3M`}g%Xqcc)m6Z+Q-bI}9YL*;A z@6q;V$1KE1AJQfiaT~78?O_%mFKxg$L0-a}|JT`yzqEJWUCgTB|GN^<6tmo*flBh) zg;ZP&C`^R;9Mlk|&zJftCbK`aL4{dnA5m2R^4}q0Y^u&w==36qRW2X6@ZUuutqy#O zDbF3I72_BR2w_6*7Y!F7mGHtIW;`+DYMZbB8c5p8BMAv3Su%L7pHLO6(zbn5Mf{ae zm>*Z$IQhA~P*}y7{f431hd1HYxC!MCj@>?aYMlPz$UVDED>81IDb?*-pcfpxMKjRK zJUBZiGsn*^T+gOQpBuNLf0I2qS$3T1!NGT>&vOL)2lHyx#`R5ku}#@x`^L27iGvW8 zslLYu+_Uze+3=W!$N2(%J zE$^NiXis|!&$wN<;EM{GK?WX!Q-U-s_?*thH0h6z#+{?GmB`McMvbzB*P02+ZZh%% zYA@rR=If}h%p3iC_UPBM$9Q&(7)i;?%Lnm5nKo4R z)}$#b&1rEKuDBIs@vw_`TNOPT?Mn_62iK55J3D$04++4OFM6$j*T{EL!Zf&s$5;6G z{%<~O`#tu8n^-xe)6+Iax>$OugU+{hfrCpg?RD)A3gsP)5Z-ANSi^5@l(NGCZm$Oe zXaJzEKaH_cQ*)5*XqswMvLY;cZfQoZxWOLU$s-~sB3i!Rsd64JeFA02AnnCNouho9 z=&hg(Ul6H=_33%T?x|%iyVLqb9n#)2CXH{>BpHJF0!|IHC7HSF{=x1wn-K~$hnVH$YGKR9JmNFMFUi@#-0|c4J~`+Wfhgc{cGy`K2_hw`z+D`S2&XL1dg! zSUD2B!V_anJcqJkV-SAh7^ghP){eboIN{fm6Ckl~+_uj0{Hn z_)sIXD6k==-KqJv^M3B>)ZD^C>#BYI0TSgQk)=r z{^e{JPp@J(v2z=R!NtU!Tedrnv(J&Q(Al;5p!oYi=i|qZpWIW0X&%zsJt#sOp=G+L z&$ca%N{UkDt{C0fbwcjR!Lj4zfS^X01XcTnNi^_>Tmgss&mDs?S{Y) z`_i5(d#gga_#PsHPm7VzFH53j5eoER?JcPKVi)lM@s8ea%qO{LdGc30Biotrv^i&qIj2&$dvKp|C+Po z#o5PqXSW_BCkK-8PMGftC;1uEGR47JP4esv=kpLHXna(A2873wmwO2#Y=}LfqE?^; za7reh7|GdHXCvLkwYk6U^5q)4de-bY!D@>?)HW4Wlo*ZLhR92V9kYCY?>}OxWq$gn zDvd5Sns>ME+7zxSo5xo5cHDuTdC|CQi^jd;82QJ!U3AuA+I0G45Hk`xKK{jnu`G~T z^5Qbfcl&cU5|D1m-!AMlWQ(@BcawA3sl$T>WHbsH7Y$FqcbXV!_+Orj+o7TB9UT*_ zmj81jyQ;S7Fb;$L;x=9VChC=Li_bfKbkQ;n$O`qg( zGLdd#=?;o|*tsbzk8w_4=V^UZXH1TzVicpcly`L6%ZlhfMvPd#%|66?W@nRlT6qVZ zeSJR(8ZV1HcY~t}wQ%l3N%tskV>oYOXS6jBxE9e7(@S1XZYifieDD44M7PVz%JO}3 z`i~O{3A?x}Ms;zi?t>8yo#JhyIjrZ;bn8}hRYu)E%C2%}SGktw?)DNqtqHa}^FcDB`^x3HG=@N`ip9yfeSINztyPV%Q zzlv*$J(l&*NayJd6;`K*4e>2qGH(XF&u6;{*t4gEgxM+Pec4_6m@594U19AzFMCM_ zMtV;tT@O=u^9)>pqS__`*r6p>hgre@j1@z?r+0dfahvw8#Z!T@C3w!_9ocNmw#Dr~ zhp`?iKJ(;vnt!rX3~b&rs070_`kdY_#D}j3p~e{QYRwq?|CurOwXid-@*+9Z5br?s zyy~RpzMUx$>T{joD~)HmzwzkLG`#zDE*TmlC?95TKAf@q%!M-xo+?a|JhW)hp+)zL zOeGMRP81JIi_0+{S7;Nx?kJ? zp=P}7=S1vdE`%xEu65#!bD4KY>sez@g6)okQBC8l!^w(qEPql;kT=VdqcO*LtNNucdD-j2ve*mX3y>sk z42GF!tmgFk6NfvQG~yhP(x6y*%3BTxBE`_Mvy1I<=%7xJ?sep}f5L~OV;BR8Oh1k? zuuH-kADK`@E#aDQF;`>3ykf1E)(!0aGzOp_s0RR`RLOkBOA_dr>^h6mWZ;6w3jWWx z81thLMNK+#Lexe074VxRuCt$Dbr;Jj`8rM}7VsOS z+_>lugS~&L=1a`nbdZ2;V(X3hsMnLWJXOH!m>pNW@VwL+o!TN_J zGLsl&hJYl535=E4bZBmkDt%ps*Tk2IvC8u^qd5{KP!Ls_55t6P8eqv52x$d?#z2K> zQ*Eg!e2G}TKqd<;Gu1`IQ$`Z6ph_X3uJ@~vFU2ZRO0V6z)o0&;)(yY_WWX`RW|)Kl zta=8B+evBl#JPe-Z9KycRN>fg&fZi#!*%P18~E_0RhkgnP??Zs27;0TLko_uUbs?c zlSX`oC+3qZ{S1xy?|ZhLp3`)KURQCp1}7mH@R!N7H=O%&=WB!3GLP+`&62~EX0G|i z+9tC2VPt%Ga@r>+5=n2_Sy`5^=fZMb-0su$HRel-p5*1Hw>Txi$6#uJ#ecidJAg5o zn3%96!TXFX$d@--56>eM(YL~BW8gXPBjt>uz;D}QzL*OR7;^1)hG$%~db>3&XK6ON*h_W8P>tNL|TxnsVY3QBm-8UFtMQTB0exe@W2HYNfEajS@UC#Iq3)En2x zh5s1C-YuK4a;27;Suply6av7FinzSu+NQNeMxofpCP_)%PE6bg5DiC<$*x`CX`sh7 z*}a>V1uiMVMoDJQLp2UcVhzOST_w`j}m6w-axNsq>B=;=-Gu^doHO#j5 z?tUYzn)h5?UHx`&$ewz6gFoTxbQx9Gk)-i#cJ9fim*|NjlLzVsiTe#6Txh{8kmsz+ z*(r9bIDAFi;9K}q0|pE*bo%_{;U#K#i;A|{di`;(O8PYY=Xy{v=)*pMxPC~`dveS0**78rhc_X~M8|K~2%gejev|;SCO8}#X_vv|9*xMzd z)SvHS3`NJR+ItHx%#yF-EgH8;K!1#A5kv^+hq1c0l+X*|4AmMpc(u0n`KGj*)lcE& zGiHv;^Ccs(&JC~RTiLF{1?>_0o7%H$$+5+5`WHMs#asRaRntmq+X8`3NQrc`u0@`) zKZCUq{uKkwOPiamaAk0h!c+TPuHYH%7qZ9cB%M%vUY~rn!c_vz3-vEt6&0abnCRaa zxIZQj8m!_lw*Sm07s)=x-`goxvJ56m6c3VK!lCICv1Z*!PZ9e_KAW3dTFYQjC>F&# zaSHb!rU7*QIOst$-^W%{VmA@FZUKSCWMB{1+D!btGG;17Y@0SMu;Mr8S?Wi6PupCf zWBl(XyA{#X+{hRn_{?qk zxlyAp)(Uf&*6Ou!gSK#@KKAX~*JIY!<6{vAk1Fk2L0_&er)v7whke>c-WBP`T(6$y z=3C-}pNktBVJ}QgY=WLBOfSLC$~}2({}1)mV%UO2LBZ*R9uGosunK3d)T&F@<`o`T zLfIB5AF(MfOzR(Fqy%2etq4!BDzNQntE-b)epbm*9yVAXkXV){$c*s&pG0EmLnn>d zqXRuOEr*^4X}TWqOB9rXw2Kv2qMVBbso&}ogL1$+7|=kIndb*uC+xIMvBiR84q|B><6IV=Jh+l`q}8zw4JU|Glmi*Sy~=EMa#ghB^)OFZ2{UyCKv7h zq8J-u+JT;an*bknb54|=p)gBZvkd35njr%ho%QcLj+mah@NeEqYOl)knSbv?0j zu)@=nEtgH_?%cVv0y2&)=pb$ax%s3btX1L0s88qGd_xU}I}1I$*nLG#N(ppp-*UD$MJVcd&t7Fg+I233Ul2K}T9x3#c^DeE^(DK1&*Zn(oU zb9##U+J>&6;mpm~+%t-+P*j%z!deojD`9v9+^juwFapCIK-5GO%0y(x+CzIC~)tl6NqzHhkEy@L1*Vu679b4^Yj3sUNsow^#Z;m%Bz^e{{{!1MBNR zMASZC`Z5<`kCxFowl@3t)!Hccaf)b=MWa)lk3<<$$YlnfkM))Q%yf2wdHW5d%mW}W zSJS*Az4-GxIPI)c_O|*7vhc;V246@)dS@jC5E4> z`m}YW6Vi>=ug@)Zu5oi8J!;g1nL|^mxF;4?i$6QTt{P-7j7jWer+J`76Jsmvkz~1q z@!@acfGKh|c;<*TBt37p!FON3AaT^%af8ne%RfIH$CDP&2nbMaksl{ch6fb}-`=^c z1k%^f_hZz!F+&3a`o>M1GKC6HnjN5CFDS1mWSZM<$h%k7d%&ooBD*4`_tg_)*h~}| zW#IU0<9ln1RVr;4W}3rYhHeTx2o}*$5?wx9Htyd@UR|9fnGNBKAA)_qKJ1%bv4^xC zV{xwVY?v`47v1U+2_$=))N?UShr6iU=TH=$C~pdi`_`5`FDok>FV0yD-z%3`Ip#P8qa#^yJ}x>EE2cnBcj=DNZoy)6&X#kAtol zcLXJCKxRHr%hgFve7Q~cyAAkr<|00iOXh9l=}acL*NzONY*PBaO?<&gmw>qH#;|2c z!3n(n{rZWJPC-jkEP6DT+X|un9A@sTZy(Dcs@s|J7d5@ZUPNHz-}3G#PkmlNk%6#K z^b|JaR@r*N=|J)7LUVxyh>3=Fr*Ef~;^f)5w*}>1vDd9D%4>zD?)=}=l=U= zdZvU*7?NV`x!%@!#%M-KtVN#W;67%6-C>s}uo=+q5q)m^&jOj>19*K#yK|G4CdoIOaSFT<(|TS*fdOvUI&6<2a0a}BN7b0up+Y$5!zy&p z?u%%wBfa(MneiJfX$;1NLdm7AWPe5k5~%7THTs=4p&C>sVNmhQ?)C@iw2ATO5T|gXo)Q>oA?166aux-Y1MZ`lWte)B=yC zgU&QzJ}P?!!x@6&06BYtotv{@^S*t;s3N~lNx3|~Pp;Q*-dv8BA%Eu`%-aZdZpKlRT({w!pjG@C_atL!gQB_6DiL-jE?gcCxxka-R3 z;)B2j8OQCmZdnZ-35yrA$}v2)u6!H7WiySyxW8+q^^d_DA!=tLmZHwFt|}CdkH;wh zsq!rdedy<*GK6vz=EuMtD(d*)^TGOj8Ie&Ac}9wzu#GLa$w{gXZO{fEBmhhhtW zKvAjYpNZsBNx^R$q>oMa;3Z+pBaxZZ3q^|<%zK|p7wpc7v#ENw)ZuwbW2CIU`l}PQ z=I?C1a332M=sDteKs})!$985dvMfQ#YH{XAwV#$YXSLqEwG< zv5?WTD;L=O-tPLno0{zXnPxy@i&?mtV1X>9<`PPQAdAH#o(a$f8hXq$Pc(p5?B>mz zXZ6Lz#BetH;QRwsV=BC{38+TOIofMn{x{`5_$nyPa4=^Bgh&qvJ%?K0{o|HGrt9OL zjynYdfZf#NkPWweY=_k!#~r=!z`x2X0wu5>%5y`#L4JA7@#MH}r`4vT$?=}Q?*@TM zXf8w%ljy#E400AISqaGpy>&^7o{GKej!L}@!o|~-KDrI@jw@HK%7VZL_PTRXoa#zj zIk%Q9gs0kb_W*thSGW=HlTr(S>rSHe^5x6XE|#R!@(nAq19O$nKYl4=?|t?jz7B3g zPO7J31USb!V%0LjLWdYk3ULHrTOr&l5ur{RE`GL$otP_L&0~hwA24ro{MSeRpl4?M79+dLei=poDM9^2Nk zvFlA}mI!YctAf9!RuKE952oo=Hi|D-Jc^PZ$Dds%AoiVn2t+W zSD$MX#j65vdIKE?$KpcuDAW zA!$Rc|Mh4!C~iD&h!Quv^w!SYB2?gbkn`w(WK9s(_Bt3|zE<^YNF4w&)S&BuNGC#yVjbmq@nUw#?3pkv zUcF_@7Tu4Z2g))BsnzNGU>#L@1Cf!W40$TVF+2G)J2LfC3XlDJyIt*|&nVfLrHSye zuB`zfZ;S1=J<$Y}oHlA%3`5lQSmhWkApp6sm{Ge|qhH>1;8oc@ZS~KWn2DPeI#@m| zRJ$Afu)I2R|6u_%f^VugNU-7dX$FQe0Lh{v7X05MeSiTk-|bkxYj2ai?hW=Rex%)g zY{z^$=%I757nQq>k0h3dVb7}(*mQ6I%-%X~B+z0N*;qcz+D^9p#P-Fsi}rT(dYff3 zS(h%ot}HsRLaa2wo~xs!wM*scBSTklPr&SllZsy3A5KiL`qaJK`xI1NMAHW`=+f1_ zy}NZ=l=c*}*;^$OeGEN=EMnN;^C+^L&OjAB7O(ufinp6v4!(HlZyD2tdv;T3kva#B~JSrK1& zc!7+}ONGEp1Gez{@o$cxneYW%ErLtzVC83p{$*JJu1d4O)#}@=JHfwP)$RUYPDw_f zbZ3$d58i|ecZf6&POYQJ-jtLS zLc>J#UFcKROs=?k;I%MJ^vF=%xu^vVFg{c_rIm0ZBG(3n7K#ru8rOd4M=2UxK6BCy z0eAajMhf~&2lv?W-Bc&|zSd7x+StGhYG2CYd1K86dV{jkX5F+7#-E-XbFd|Vl%i{n zi@9CyUOUyqg$seB~4FPdeC&WnUDOY~K!U z^R=f>pH{vo4?mD63`5uP^%$t0gr41q*TJz1?3Nl^|%<1i~_?UII_kX)> z*KAytz9Lu~_i&5O^pKBWxE}O6%{|iXOpUrnc806gYixqB#!*k-$xUOY#r3oE&H4`1y< zTd$p>`}zHtvY#KdZCbmhPZM+HsknVtyTnWM+`IN!zPZ|=gBLtyJolfn(r_mp*U>v2 ztX=#0CBeETsX05e4z2-#nBAZ;DOjDepgLN(wSCd{?pBe6V0CK&t=5V}VG?DvShs^I zqx2x|ZwWT|(FStb1t;&cKMZtspus6P zmu>u$4>Q#}Eq2^=Jf|xGQKa@6+2Nk7=IMug+!NEwEWT2x3){u-t|o5pwd5;smB7dh zlCfTnIQ&GRnxC#?hY>w|t?U$qiQ76jFfQh3YHE@&MUu1NS;5L5U%QoSp{;$UIX$$MOl)0a$elFglXx zosQmCm{G{3&gv_o2BIxK++!DdhLMDaxA`~l? zeo;agp{+;S55&K9sftxg?*v(Va1`Qr|5{=YWpeGxm8V2Y>3dSlw6_9~!AX7$u5)xr zns+EN>X)L^?C=7_in@?idOq#F)!Q;OMBhBTrVSMx1r)!lDrwc1*Y>7Z4@yvyv616D_$Cey5R_QGH3IDirxF-_ zsat;d-3ge*pxOKB?>-u+xQfCgF|Veyj6N5v26nufD05XdWVR=vom!ieR@#4TF|??E zHZ&-l=C}1%qBE4b;=Vumjx4@R?mq6q858o~(#-U`i!MTURo-_N!xBo>Fq-gC(U7H87t-luuQkt8a_b{JZ+jIz(&Nlq| zFs*RNm%&K>yQ)HzQd%7tdf|>$;Mxtwcoobaemp?SLj;g+O~I1`q&b@=i0}~K)1=V; zBjLNueBTVlcKhuYY6E~MRv(!T0|;NfrCfBoRENMZU+ZP{P-wUe&#kgOr1RWY?fn1^u2a3OkBiMleVww za72_>66nD%(_~T!jj_&*hr-hKn-ey8`bYwAa-X8HOsrL)atnN(#^7(~A8+MGZbcE> zu2!|-`ro`s0cfJ_a)kr0{XG#;{*o#c0&cII5)*?54ch~_u^o5sU36%F0=H~EKAjW4 z!f1tMe)|`q^+pXS>jLZCW`iExy1lwb?p~}q;@5)LKmf_UA^4;QNY^;%1LOig{EyY# zspUdAo>*e+kW#x4XynWr`8(P@hNAulQbAuy8@4aZ#=n22(#zA*(%gqNb=-@H!#}C= z^>yDH6O8lcR$MqMDJ6xGd-{(%*^O+J0^=Cy0{1O-{nUO_YRn!6DEGXERx1%6>33k& z>lhiCdk!Aap~XlqR{@}!1zs|R%TXLjfWOzMbDX>FmI9URN9n{az4zl1+Ep(tDcMug zOAlv8SchLk&4CB0*}TKfdgBdSyyJ4i3^EMvI;5CCA>kB_$S-ogC#keeq3zDs6>Imf z6Ackgl|BB%7~=E;88d;pqB)-}kV>n~OJFbi!*Ezju<;5BKo*0-2CSD;8^f9S=TR9iSE1^-9_3j6B9TK5eEu^3Rv;1MxIsOgWeLKaDsfQi3Imx zEs8>TqL4KMjp5colZziG@dQwR0zn&iTed@`4yf6Ldt}bmxU?TDzf;ys@LhfX3I3Sc z;Y1pHf=D)G56h|pY-UPNXv5V%N%r1cVI-W&ARq;!ad0WwX!-CaMChgdaqF1{%USsT zLDNE_7tbrOJTF-WaE{Qf3G$Nj|M}^MfSjuh6@OSbw*7ATA1IY2`B86|tASv$27Nw( zps%;OTFHwmoh-E#4=I(X=&+$Li(`V{mU;NbzT&~$QCiLH4yjba8ZZ~q<^8Wy&O%7!0G%I)dw_@EaMlO7hj4;lX5Yo?&ED{y~8k_OQO5-QikqsPhIE|Lnz!EO_=rz-Q=A#NPTU1o^?)4}kdsNdTXXlk)Seu511{BkT!vc5os?d=!J;Q32y6Z@Gb95$q`XHvC-i2g!A~LE4G>l z-r^-+GTlzhzPV`J;1=fDdg5tj6>`mk7OHTnOy!uur{%Sof~VnJZfO6s7@6d(mKX?9 zYrTuljiO%VVCDTGl_#gD@ZO|ZJ{i9L6Pjhf%s0TFsoUvgdlS*E1@D}7OH)1L*ypX@ z?td*9=<^=!LGMU;55TI8Xp-BZX6Cc=-*xGQ;Nk zXK$+}pmi8=+rL;iWDCH~$Cm-B{yxL}&0Rlm8o~DnxAhL$9hV@X^D;m6*|YMDZE=$1 zh5Fz*dvvBl)BOFF^L#|GmFQP;+n4+38Fr z2^MY95+I+BH#^b3&tqJkZvpMe)bX3sRCt*4WmIxJLPyWsw8)=n|E6YgW9n|Q4fD*C z%_|XRhhEtKWO#;ruC71Mwa3R$8;Y>ieRRxiK|=99DNu!Ahk7_tbXnrS(32% zipb0#D{pcE>1#RfBSC2;J&~nt{!6$6c)lwxsek*??PK6ykd-Pp9v<4EYH@3Y37~g~ z(u=(_tz#kn@fEzuU@ZvxS3L%Xl@@&1iu;8^3c;#7BGGa!6GjgX5As!@@`1MIk#bZM zMk7I}uR-E2w`cP<239oKC>+AVEO4lO$?`?(W&*Ds&pj3A9NMaN1-@IytVB0*I>`hf z0A@0N7z-=;nzgUgQQ=&tbVe#~U~fZ)Y6!eu30zUXBeLl;GeiN)*QCc^i~698D-6 z`qV?|kO4Ku5^<-r^xxbroNJhFQ3TpdI{-XK)aN2&AOrwP1#YEV=;NA@kS> zYmOdEi(klq-X`Q=~(*o0|c^1$=|FqS-Tj@=5;`8T8ghu72LebeJv6jpV z!QL%XLDQwRTlRCog8s z|I*hIIy8>-fFhg~$UF%xe!yAryG@S+kP>tp*C*DJt@~+E?~XU znjTD`-8E;AQ0q`6JXtIx182-k1Fv8I3%1IYKYSsG?XJoV-@Eq7v`|$R=2~W>hu*-# z`?1wOb&(oXa5i?5%`~)9S2fr(befm6^1TVz3gP~i{+LV-zMsH+kJ#fS0K)wtf>EFT z^0y6`HwYg6w&4fsmWhZ>_wGf2*hH4+lpCYarjPpq8i-adp(X%hY?@^Z+haAuzYRjr zA6Pd#g=I*59UNg-mpCa!&7z;7tzQQAl-QR2=oX`$9uDvD2!&-KYjXwzm%z!tN=&4W zYejO&hvd+%EsT-(*C5BFO<+JB=cE|^#}3g@I@9aZ;9~u~LyTu5bAw3Q_62(rk=@B}$g zE>8q-m2P*#MDO%NrsA{_JZVj@AZ$cL9*0qr@rj@R^4^OdH7$WSW6}NWYJEfW@oa@n}J<*q$q8D3(k2gW|@y6Kt4n1|s_rVdrG-dGk?qV7x5|-{`?CSVb z?iWIy7z#cuf5kQ6iHyNnO7P0p-D(j7mB(kfQnoNi9ekBw<2M4<*8#5#;?f)$Odsfp zB8Wr|Kg)M%&aK*9pdUx(I$StDm*|^-LnG5VI>KWeq|= zCgez{FLXLcTxk%-3Y{XOep*(Xsu#dQ_Y=l+xmU~+1Hen<7fGuaTR8@CTS<+>UHPDq za5Q}3Pr3%Q@qS}t3Wk8SOOnV1=L%cWlbB32bm4I>pxDWBlUWBGTDn!AYP)jR4j(>j zE&aCpIGvt7y2Cdk2HazmNDu>rYv+T5TCsPwBLctyEEOn@>vnR;7j1b-)Ua5);}#uG zAK5y3c%gSA2{WV^1?3#BY@LmWYI!PxNVX^&f%*|&5P8D~VuD>;g;0UWwpWuL{}LS! z-Vnp-H5=R)<}^U}D-voEkKcEd7As%Hsl#%Pd8K0gSr?}1tANU65pGU=TC1;bx|F$O z$&xGQ-}A0aH?Q)6xFyI7wi(va8CO(5OME!iM)KdruwpxGb>QUAJV(5YA3#&tI-Y|v zX&a!v%SGq>g|!b@{!#5hGGhgSfp}|>NBwiY_@%Vh-{CMm#Yksb<2mrB%Bx5i1nB|H zKFBxtcj-)CUD-tMiM=ginj4Lmw^F2OHdv@IetL%<&Y%p8k{KdXlm~rf);H%9`QTCR zLfgXl_-7%8aSB#3*RPMiA&yx)N8@js`iXPq+WDFi5t+FcIu?u<4cmGP~V`O|`&8%nlb@Z$yX z1FwEUiQ$Ep3J~kMGPXi8CYufP8~aXe$|78hd_L-BPr6HB^EVaQLK);sX12x8{XKplX4ywjlP=l8Z=__YSbzX~s^{B~&3(!3k;wqQfqkZsci zX1z&MdAV=U^s-Mr!4|PEeuO*s2QcA?PA-~t*n&-wf*JenaR002=Kc9|v0FjW5dcPJ zAe5A7nl`JSU9Y3l%YB7&c**%gJ9g}-tlbHm70`h^80XT`X@-t1a#V+c>=gGq=p-?v zQ@>Y@!tHBU$E8$(DMT*z-ymFi!@UoFPpz+V5rhQ7$_I=~)bhl^^Lzf1Ib+5Q_fp$} zjNF{Z2W~O(-qr_Zzbcuu0Z&Zq_UQ#K$u#wC>%_XPvdry&9421v;x>!*2wo;Dej-x> zp~qXvcr`1fX+ueTLhQX~jDfbcSQrrq&}Ic7N6gcsrI2k#ias!I!xH(<{>hpm9#AVi zyKfTvC*zEedS-<_TMN4>lq9kVs2GSZ9(4ZUhdhBf>e7At!YEM=yl@kGL=ih-X2x-n zPP^j1$N2&tQLJDr4K;`#AGo?P&8zm;vafh}kXi~SZCJ>z{haE12-_5m#6+jurU|SW z8>e?*>Ff_y!GICQRIeZmzKzz^6zD+?V{=%c5H}KB>Ao7*qFU|+r{PpR%9n>|LE&o8 zsu$aA(MM0XE7%7O#_Rk$+xU%rMSZSlHxli$Eu5dQZ=OG)K8M7cblO?v8t(KIb5pGn zwgQCKc0C-St~OMD<1bPScwy%0k0-RgvOpi?{DP|VqL=QOnVAq2O;D&@9n;uoj;u%= zU#((^kW=S`bti87oS%YVqjvK;x6^!FLT#XP%KSQQN+UlePV8|l3 z`C(6rjG^2BCs-KkOIvy110(Vj!m7cMmz$k!)l>oFEt~m=3Tt9tZ)llK>c|%$T7`x4pDRq#1Dq z(N>Z{=)$mjV&!D# zg-XRt;})`K)RdFcvcb_BoJL=;xH&(j!*Njz3Y$N{Xe^|bm>P(U`XX5&tfrNiG4fw8+u3Mp&l#RiJ8<%bu#Jap`};U)6?WadAkF+t+2NB3S*KqSBC0UTlO^2gWE$yy^d>QjekjX+_$?ySka~))+xMgYpInT+7rqeD zzVDEJayj5?*2V|=9&Y;C1(`p!{;frEeuUbnnTzb+{|?s(3x0}6`yKpiMfAiya-s8dHg4Qw zFm$B4i;KO})|@QK1@muWuE2mTK**21c>C{Vu2$PJxFU06#-+V0-l88mD~X0ND_Zg) ztkmw_3!c{cR#y>@czt)ty1{=byBd8Qry(aVZ;Zy796=n;gfeA0P3oW9voC&hirado{R-_W>8~w8Vy-u2U zX7>u4ce(SvT?=sXzFrp*-AhZ$@}tYVsqi+!BBLkb8^QXA$5z9mU)wJ)>IsV4msc8c z|G)kD-APa*$^hDD!8rfgtgTNc1MSDqY}D*+Cu#miF$xhHpI^bu9M(?r%0O|*g?5NS zUO>UFFUwqk;ngc7+$f@2)7@$P2BER`fIHr;2!fjGgq~F-w;Eh*eg8@l$?Qp}*YVu@ zurKNz^M84pGJHkBOCbLTi*eI0JF;75!QY|ctu;ls;j9iBIR9NY3`S6is*4xr3Kq3tNx*(Jn9?TM=$!{=P2l z%DhnRv;i=r-oC0K3eHQuG`>3Z?Xl|VF@=^3=@=Rc2qVmn=dAnb~@+&RH z1b6<;X8mT^nqhde!x#$`OmZDKmkeA`G}sU%7fL;d^HXH;XT<+|nDP|6|JG~rf(0Ak z)R;AL=T#CtTbsrWyPT^Fk`AR|QC1NMbyG3Vg11HxLYg&D2tC=&v}yV5vV%E2UU{JZ z_z@c=Y?75Ni;?ZkS=dcOb>+$$$=_AL=1KVb@4t1tuR!p$e%-q5o_ROHaoOT6fG$3w z*#J!|7hvTEf9pI5LrZXjBS$R>f)=K?5@X}y#fNi~m`EWdX<0?qzyxqNHbR$lgr^8i zc?Dv<0-3n-jrSESB*Zzj5L?@$DtsUSmXW7mBLP3CLInC0ny7#TYm3_xtZai|gbn_Y z6-YK-7MN3*U~lh~q|(T(awt{Y2-B$zZ2HyPp~cDYf{AAHLUqF)l3w`#+WXR|rtbA? zd%bGCPW4)g6H+ybBVH?@GIl^QqG%mJ8LcCOfXF|Ou0-tX_1cfEcoT9lJ>&hHuav!A`CW&oeElQ!Tfc1`%l zPgmc0sg;e*RruL2J)TE*3-5cUh-6ATzL}|MShD02CSwmFO?9piuuTa-6&o(F;+GQ(H61;a}}lnAB!wXAj{~Huch#I-whoN`SWs;O5q}rth_U zgT8*Ca73Uu%>{|k38eKnXm*UYK|7=gG1s6RTIdA zv>-ME{c7y5dU$?T_N>++)Y2<~A|rnApo=oLY72S?R5-Zkm58I*gH0z}h`adpni;i- z&?}Pf+}simnZjpv5F*kb>D#e=G52z(onXw2u~0|;tcl)_!NDz-lo>A*ddTRzXa>sY zfjc=mxp-RG#FgM*ShySKie|Tj+uurr;03vQa>|C?2veO$M1X!^5w`%a&|EadGOBq* zQl3LN-oAZ3xWp?$2@fXGsdyW{S~jwj_O?l^iBql)Ci5}={#RwYhUd?p4=<5rm|9>U zz8`~??;*E`#x5UEyj}5_th_wU?f%oKGKZ8sANpo?&~`&}1jE}5%*-RACVijA=mLVna-+hQKoWun3t=?<)n9jYywWrb_hd7VCfUo z6BQFv`kmbT2-!Rueo_Yna)ds7j3`;)&f-xv&)R8n9WiE1@(uayvl!LxH{tTLE8A3F zs^N_ZXX%Zu4(slP^=|9_+7IKq6KtJ=Zaxs(FAOV!RNV4?n``i3K7Ypo6DHe7E{6Q~ z&$`t(LuFbfMr&eOsfIe=wD2vJesLi7NMNXY@vms>FG#p+Cp!SdXS=k#9`J?UGlFPM zJKpjqblej(Vb~Ng`MFY#>B%JFY;SO4gHWiBv~>X>RWO3U)D_q|haKJ3lOHrF`()CB z7a1wf!iO@QgX)t4v_r9RIO4#91ZD`kXmPf)>xC8Y zUA`DtObND=CPf)#XJnkW=r^l;r5T|&+2DgD7ftn@f+m;%U}@q?5<`MxqR=amR;HUM z&NK)|S?9o_D-7u{T9lxMtY9$SYJ3we{N1g}NIza@Ia1cff+>3Uzr0u(iN6qf#4jW& zxxRk)T8J3MydhVondyAnbQQYlsS78QCtmUMR{e5g+7xy|JWFNUPZk+83)OONyPt>l znNgx`REUx6-k$T{FeRZTav%i-K2kbER{p zTW(b0-H(ENKsMbnX%6!sQ zBqV`tXNF_gP?Lw?mNM};rZ>S@ru}x z`n$S?@!DydsO0^#ApK~$cR|=-T?=Xqz2bLY(IgB53zC+m(hYEQXFUh%u#NagE0{E^ z#i-NMp|OB=vDm3_o7s)^w=xn1X!oNVM^>0&2qZ>$TF)X+zPlLdv|Qg=0ZlZERl1Aq z0}49&$T|x-xsGgcD4=5`aD|Zwp6a>{Kk(||mpGqPdd%Up zec1n0-V%J=x|g|!aV;E3!H#)2Vw60D=3;+ZzB_I)Z91fy*4EOH1c}0tNPmC#8ju;% zPPpt_O{W&YaNq6|N%l7nz%b$N(Wk_9bb;g#n*jwAD2$^lPrrM2_n0jOXURfNjfpv+ zVI#Xu*?Ee2?#Q_nGCSWcB^SPk7|QZzz4}DUc}cYCCKh3U z`Spxlkd+_}UwNaKv=jt>nz;8}_b zrCt2fy1)7EKowz=ZAbE<7>K*#!;*D4$<@(W_gGkZ!UJ@5(9&Y^L=&XAOGD+Fk@A+@ z!x7L-!r*l}_IaJL=uM7t$ot;jB2#3^3T|Lk@2RiY@L5_-LK-OQn{k%Ly!t={2KSzt zG1B6uDQ6w+(S!0VZnLpVa=BAlJqU7Y7z~542sRC-!?Q2topVWg$Hv@y67*cV#MgFS zIN!Y=(rxO2xbm%RdImm1oi(V>s^J48lC1zY5xlv2NF?OoFV;vrUhwX8y{LxS&n>O3Laa}O!!fWMvmBbA z(7r0vXiTAe2wwONwTPvzx|1hHS;GRG7|*Sza?0Ag8dn~9{JL`rx1h8wf`7UG-%3{) zY*S}6gkrxJws}pMpdLP?{4LfeGqh&TA@>NR!y8XFO?(*fyYLpfJJ@v@6c86F0a@#rrmsS`@+Pw zlJMIM6-1P&03^;O>a;#VsXa9BcAQ)hOWmq<_WTdra@CIdr2IOf;&on&bVR-mMxa0K z)rX6uLJWN0W@IT8gZH+dX!zbz`zE>|D>j`x*Xa{=sY)MT z7!o=Ep9lY*N{rAQ` z{F4u+H3xYFqc)_ySIvhg%?sG#`5>CdgJ+2MAPqLqi$8QM!+1+K;pA!P=q~-(RiIZ| z8<^^qaf9x5GC&|@Os@bn{7b``C_e87II}bTEaBy$*@`c(ujKn3N-DtS0KB38>B_j zpK^3eglrG|L%75?m|~X1$PYTS?~hef%J3!OwySJ809kpUK9gw0f#ZJZUcxe3Rl%LW zt3t{ijx5zsFk*=x*5SLcr*g;oL<34;e(s=R3Q;Wkg3?Kf;1$W=A#0J5 z8*Tg$ubQn7uE*7po5!Atj@QcmyDw9be4Qjj0AkEZxKq}1D}K9Cu^Yy{6*mtYQYlI3 z2BtU7SYS#8y5mF|D6Xy;tf97s_QbAXT%H27$AyQxjmtu_V;wgkiNFbBM4WYl{lh9+tAn#C6PW?PYT{k1WgC7kKqFZvguX>Mjn9GYexU%wy2YG zmKEvB;!n43m0~aP!IOu6-yR?4WgY0mU?~Kpt$@&oLN(&^AR3(oC%;ylDOj?5ghl6D z5&>l~qp!RZU;M7tatd7Z5>9KE{k;^#P^)M~X7T&3uMB+&^#P_#0rqK1;RW`j3O`~5 zN{P59*q=QDHA&ZGG1p7jk3bg0E7N$)<@Ye2$9j}4V6rAINlWi(;R zbh8f!ahc4Pd)C3LT?^%J@g1$D{HyB@pN=a>CF$w$FIybIg_zSZ>p^Ru-C*@4$*Py@ z=G^bNU}LpI-wKU03mI@5n+^&la~Aoz>ml~k#91JBU&yDVj}hOK!(eT^zXpB-s8d&e zn4Yp9%L%r$6H5&g03>-(xMw&Q_RSTwI5P8X1D+#W>y#{jG$I@xT#C6qJ<1?-MHMMV zYm2&XT(wt}+(eimdCaj!=`WG2&nKRy*gFq>KxBW|7UW6oJLp&>ZA^GAZjRrdpGU19;m(8sX$zup~J?C;PwIPPc`*=Kxg3v-_?5&%6-Vs z2_*K{?aR)c5N|%dItbY9J_m=@E962>nJ2%fJ+%ou>&E`REs+c6mXzT0wA)E?k5v9L zncUOkc_hZj_N|<(Yq5UC36SQdIjP^o>}*LKbTeDz`1Jf*3mc@fG6Jgs;M$(N8-``T z<^wa=1xgQkwB28K3@T?ZG5}8J*C+5qT&fU>sBkj?m{k)6}5L|2P9Qs_9mFvH#da+wpy&I71!Nkyk>c9cHJRqmY`KPA!f^&*W*sNwgnapIWFG&D5qSFFjRjY8Dcx=eB*xv{G$2+ar%Nndyy z1^re-mR@XlNO^gfB*;mc3kf`83A!Bds|HnKHSUu(ApbTq-Ub7M37VLVcnL^=x9*vk z4I|`|Qmw|HSc6$l#o1FZ=jiN6(qeD}eIhc1kIlJ7mHf)$%W;Vu)$mEr(4 zOtNB%9*SfWbQdKBc1#Ad`G@4zQIs+^M~~hF{dK5R61MiQGp5e6=)Rq1O2Rn?vGBQR z{VT!mv$mUKtrHoZ{dq`jEoz=_sZxo6emU=WMtWE6qx!nOk&y7||NKW0$R$ge*ir|^ zc}o9oQL0iI1PfSzjZJ1epq#y!hQu(CdxfAoho!XeX4955x=%eErm$rhO&Y%z+jrjsS~3t-Jj48`4vKd{f&!yaZmK zLH1nF{Fg(H3<@BuQi}GVDdr7mNUb9nx$Q7UiY@^!Yohtt>Ds-_0ieyjHp#+~R7^Q;3b0j$ z?2m*~0!y60BvBCR0tA$i5^P+ihq5AC@M30)1Nz(MhMJHxf!mN075mj*aK1iGlCE8` zqB;aYqBuLpco^5S&kM0xfO@n8_aLK54ktyCsza+>iWdk!29fa%Fk}oR)E2VTjO&AI z?F*hkfoQ;Nq#RniA@KhxMXhJ}q4Xrwe;zxOi~5uYj8H%CWN(0%iUg5Bj$2`hF$wC7 z#&{fCX=*W!*rh^s>@}UWcr;F^@wxd0OB>Z_IVb2Wp)yW^zZZ<@juTR;0(U;RYJtyo z=`g`pUBg0n=1QpRAS;#j$xp}s^dtA=>u*8v^-f}Vb-%bSz*cQ>wrK)yKgj(8nBOck zsqRO<+4H0DWYeu~08g(#<{mJq~RE)Hw6!Sz23LXRf2r()_zNV8lTb{avVw%vHYP z1Zy0BIe6h^wVf`KsuxglkN`v5FY52aV9KTG_n4SY$m_NXBk*^C3fCJoP;E$KSZ{3G z_xlLx4G9|_oGiEn7Gd_|jqq*oO#b>`Y31t`;(p2dUBk|Ra@$3!a7{Q?W8mj-wU>o@ z-rh0p+O=M~>am#`3m!eeIA@Xq`K}R#?zLI{(JwXlKTi0SDdD4alf;#eVvM-~IBWa{ zcv-X)S+VrpyLUFi`H*G*`k6c=NrWyo2(cMRGZsq^a0}>><1G(Hwc?xEnwpk2iS>Q+ zs5gFo)e+6TTC@2jH6j@uUMHw4N_~)e`DjqoKC<2YZx8I%Z}S;GypYvPE&`bY@mD~z@L^U7IH1lkeq$Jij? z2v!3cB+ebSbF-;}L!Z_NtPYGzGM2xjW9|fKE*Ctr>^-geI9$}C+7+Dm9sh_GCO|~i zr129?%5?B^ffsRWramQ?66(S+gKYvYjk-JdrI5mVk+gD(A6>AWL@T;(Kv`H;7G7Rk z3q*^b*tir|kf%m|aeH<5s9o-%GiWJ^M+&wdV8!Y61Vr4cF|tB9FF^Xq_6bSAEpea` zjv#ylN=v17j~+cDRw~6NIm@K#hHg^ew__WB!Qs&9Y#_I58jI3!of+zk!GJXV?sK&Vo&^L5Z`$)y#a?V2jLy#^GzLn&!4YZTP&ZqZVXr2I4xH?yzvY9q8Bkr6EE{AmLxVt zzkXD8?9%=C<+yQ+fBd*jK)?UL`1POOq+po56UE9sYr2q*d1FkI?mB|35`MD=dWhKG zTH1$q`)bMbJ?N?l#0ZjgVV|MV2wI%u&aK4040wSXaH@#^ap3r%3o=d-nsoXtxMlck z_aBULO*;OR&E5{~rv1Bch?SnrZH~2M3r{l(bsmEY2 zx?}AbS5;aYxQAL~rUr$gWVl@L}5qfswLx;=ah27XjpQ<*+HDQSdDR0dF z1ADfRG`aQMc_KYu$46syuXC#i?OMvrDI2~Ga{K4?hMc0_l|-+m$rL6=xFQlJjo|y^ zafpHB?t{Ysi8U6t9Y?F3lRB+ zYXZtr5D;y6jsb~a5j4Mjdk_-bBv0v%wVjIEOY;m?W^w4VfSz*ZBin!)ko;Z(_g&Kx zZ^5r~O;%3BY|<8E5PhHtn55QdC|*dkrx_Seo-OGs?k}<;;~@f1);N{iZ;I{#OP^kT zN(+g2M~5+y%_OB6CUc}Lw5MCx0Y?$K*8rJrB8J{;Qejzw)Vq4YK$#ju;;(-SK5A8Y zi}3j=2~vC|l7nNJ22>-J&8(7WDL_Db+>C({6&ZIeE?O3vel0Hh6|})0a#i>)N0}@)9ZW? zY>Rz0q?TBcp>!D_kQub4iy!3QeNQ4!l(Y;2`W?un2PA;$A;n-z)Zvw0!Xz`;bmWyh z_Y&cd*J)minQfOy{J$xdX~K3f>F`Z z)IQ(}27v@-;*fhOQj~9U`*sWl40_cS2YAsvr5ymw3saC;xG&13AuiluY_6Pvd|f^c&P)E#u@+X~us#nh6_2mkKq7!^tsjTUybKF!IZNw=K6zI+9mVQ1HC< zGWP8Pj425d|Bo;&+|giQE`Gp{Vd=Alkc|Q_q2MN`D|cJ8wpR#dVuLCP%XxZJHD8u9C%wHp7n3FCT>n&_7yXn7Ft4N526_G?-5&8 z0-^MSijE6lCUz<`kSt0mlADsFHPWLys zA`&Btja|khVRA)b8758Kwo`DD^FaH>NfyL*^=-@6eRc2d-P3VE0$WQp5CK`q94280 za{c7DGGTqqjNox~Kl{`-FibYbPEHB-bvr9|>>5ya6Jsw`8dZ>l|Av}D!9E${TrX~p z9D`dI2oNz0qzp|xygRiCudfhiW@ge1gR&WFdhqjr{sWp^$}9q4IRr2Z2g#aECZu8# z-!{YhX(%ZUk{u&Q1R7M)R2K<-Q6Qfdq=3(2vG}bW!q1y_KL~zLUs$Sc|9M71k+T(v zlA*%mV8@ou2%R)Iy3H;r1JM$hw2=nlsDE?!bn;u_@_l>m`eS4B3~+`PjD|v53`6b= z1bIg`JehRr<+%Mnmi}FM1k`QTB3-ZMxkV_O{V+Yj&gwTr-$c8g2J;{ysM0neMkmN* zXQoG)2wQ3U0d;-`c9&_Ya_rbG+7g3|bSW^eikm;Q3}D_Vroa8eNERzVo1_;L>xuS!38qsBQ_xq6fhL;)t*z>qIl#-*Not7lg!Xb!L2g83aIHz$ zL}wf@E4+!aab%vO7yy^g{O58;H#TmU(e9V|hl&}f?O(K)Z3id}1rP+STi?O=0brr+ z)>f*?{(JJ!1Ksc}QyvpfW!7V_DUHg2IH%wY!lRiq@}cw~t2K9~te1JzUVa=ICs@G` z7)sGmEf0JXgijtW{aJ^K?(9fwFIQ=M1xd2`f-l(vaGlm{h)ss2vrBW=Z?SdoK0|JV z1cr>XDbU{CRHHB;g_CH!J*XVXQvpQm^rk+Vg}!|nCq@CyLt(}NK7Si<50=^HnT6gb z4g-+}s17$a6~q$7!BqO^cp@?wU_F&&v_KOiVjWF};r}>xiPjy&bpGXmX!9ZOt@vu} tSI2^}Y&-V#XP=CvkN^Mm|Fic&qx1OC+?W&7Y*_S=nVYRGINu&T{XaGpkfZ9536rv?O~JpgzcO~<4;j1NN9?pL&)7MfusJS%ZP8@u)@gB&dOF+Lc;uyZxFY%IVQ7`8z>1yjy@A+*w>cd<&s6hsu(df`zRV3Z~xGBdu-l3-{Imz+cM~_2#dckir!=*Aiq5|z& z?`g-G(i5ErtVQlcrtNNsw)rPee`kRi84hKk?`X$nsvI>1~SMzQ>`AUGF=LrqZ z8|JH_c=XDZE3)`^>Zj`>abaOQO62=*xedk}bPTtJ(z|M(4S)Cr_jin+yGBam8r<03 zBLfv0gEtLEcd!~A3~~%+Na&>PyRdBq^QnM>Q&+*tuzQS#%xAI=%Q~o! zTEu5go|MHIs;3TCX)`YKsF&(k=0tK>&Fuu>lGe|kjm9}F`s1U|7Bty&Mh3G!`>0mNYfIn@F*`lx$PQL& z4U#9NnHw4!cQu^VP~xO`$@i(G8dvPe%*^a;&dal)b*E*t4i?Mz?^6qrKk6gt*!MZ( zw1{v)ORv%Mi@zo-(Z?LVJUIJCp_r8(ueZ~w1DSl6rf+$x=`H2RR@yCznTX8*3Ru;TX0 zoeRY8e0x4s(CFP=QF1eT_wK#x?;kz!mnrRE0xb`(U0B!gjhQ#@<|r@F=)_2vp5%@J zZtXp1*W}ptT3jdlT=E)?5I#mjnz_zwzODQHb#1N(*(TRZRrVH$gjRn2__FHJ&Z(_m zzQn2ei_3P#gb!fCn0DE;bs{3l<89-kf_e^(WaE_I)7C%Qv*q5sdjYc4IJbdtK~V__ zjmXGIUMZ8iP3KxXGwLHv*u(hgfoGwdeT`XEE$lBWg2!dy%8UnRL++&XcV}gmgjX*y zaCyX|zI8k1e4VIhnRPzDzg4LDjbH_jHq4?3CcAfEA8;g9>+(R?RMi|1B)yiJCa`dS^rrmX^BZEoq3D`Glao_lB#pUTd3v%bA8rEhz zK8xD-AdJ~aD{Sk3?dQrFWA{*dUoVNbY|c%l=NaU=$&QcqAJWuJuAo0!iE*z=!t&23 z*iKouc5P{-zy3N(a`ytPJR`NO+*+8h_vq0FLLExu!`^eYemH+ue$U#4rcDHux-fV zwk=VJma+ZPj@@6M(5p+WI+Qj1C9o>hR6E$NoI=Kkk(8HMD3PZ-bBTB*kB0n83a_+9 z&=$+4$5?R34D-DbSR?y_We;sW^S<=PqVl{~Vh01anA^*K(Xq(f-R#oud3DyZu-=w@)BZ0-P8cC7mQV*ix_Y3a zg5g^9r6`bEbHXDwB4XFsAnU8uiF)z*0?zxw_js016?B=Wqp0OGHbT$q#9Ws>Iq}l2 z!8$)SE9+Q)TM7M;wq7Kw$=Nd6*FuTYp+T)Z?cZVP&JIk>_;kaGK8~roClqX3EaMYV z6|Zgj^}}qBv519p9zgf0ULc&|EPW;G|ZRi^})Mokl`MqJr z4>?!kxuOldWcIYY@vNvzH66q@Gbs*|aYEU*d%M!(m4e%fd8PA}`5qeXs3tCa9^wJm-~j2ZlmXZy|kUIJ8${EYi|94&9Blj(Ieuull1Y~8sAP_ z`|_2|@u_UjC7ttrD}FnF_;W{esJ)M_rsf@5*VDp=AQ{_+kwM0CPQb^P9<(gW;I^W` zHlfT|t>`y;`uh4zq0D5%{H$#&=Fvu5{SEAW8t}-UER-DkPKgxgVR2jgE3q1E)qNNh z(cU+At@8AWtd5}g1_`B`)jq8`Es-;DpvyYlqLG&-&+D1hU!v4ZvB566p*MzhD@$Rb z7Mk^$YMP>!CuU^SP`m4@#0+xfnOP4upOvLppiEBBOG}JY^{=LFSU4jSJF)Kc>C>5u z)*pVQCsIJM$s4Ik`lO%4?#aW2+kzeR8@jb0ANly=qgBJ{GNa01YV}cdA7{XXPl>7n z+3v%I2DmDEsI|Xk&6DS78yUaM*}B5M)?ln}iAX^s+Tmab{p#%HpTyr!Bl{j`H1sp7WPg*ys{)a4w z9%fy-Wlx%U{bHK@gZdIQZQbqLFRWj?)=JRr+ld@Dd#K*h(7mbFJ}17UrN@2TxuH8L zt23@9EyFPHs$`ptORY*Ep&70t1Bxr-o1NQ z(`=f46TL_{yC-z?vxxZm^@Ta;me&66oI!eGOw8NaOMiRVbi^cY$suj+d_8HbO-!6k zf$*R}^wX#1Rh5;m#&XSSH;ITc9lPTUy%nk{HYEzI28-q;ST3dIPhPFXpU3W@P-#{~ zYxvu$<99k1L1m(z++atAvR2f-vQMvX`u1&gAE^kv8yw8fX5Ud3i0$jM0kU#VF1+~s zAqFh=>C;Vmwnb9b2JR>&9qr-X)zZx_;rP$iKi?WNx7UYB>&eX!9+DUEw#XemgBDnX z#p&PUu8aYFLhw(ZMHU6)U`QE{dVWO5-lOSIsX9lul|I z{Povgvs(RhJ`awu@`KQ93eYcdnB_zLd(WIc{aWt}n(Fgkm#FyYyA8Jnd-aa?m-wf+ zW|r|2R5fGrq~!3a4rtBVJx?)(%z@;HZe_VDf!>txy6}@)323iAX%g3U*yE&VD)U)i zcI&-q@TxHlAS7$FuQ1i3F>6hZ-+})0P!9no6%@TJY&N?O7p7Lz^6)jO4(mX+{NY61 z*k5NZ=0chhx1nbl^#-nkRo2S2-TR(~?6eiGn`3KZ1F%^Wku;708>rT?G%k;zphq8U zpgQ;Dq!-Jy@wpDwo}KQ`n=@Fg!=vc7v*kM$R`2Q|%}?9FHBwvOF_L0v{uan2dWrtI z?c{E~$f6??=EOsm+Ab^*Y+u`BiK?^0D&niX1a@vCKqsiDMU-ftk z<$AKiFJ7Fa@b&j!rYDsE3x(~zY2T5{qu?hbrkk-JeKgj=RZY#aI>{gj7&#s{@7bh% z`gA1V+7<=0y<<;LT}L1JlxUFSM9oR6#p5&7tSZG%WMJ`U6kdA%kaR+Yk@oOoDMokF zP;ndte&5A1pyMf$R_?rNgocvU;w5*IXQw;6zWHuwsGzi?8nSOqIN4D$9%Y(YQ4G~EiSFpM@?x^g# zux%SCMZAM+_bE1>%I?K$;D#n;jUrnD6s`H@M6&WiOB$;XiioM59%F)~#D-M=(A1Vs-7=(1b(rhhOtg ztl>*-dlv`9CCcmhW-Rw~;bO`GG$fv;Twr7C^!i08Ne8#`RS(h)nm?F#s^@kW8&b-F zHLKdYF=@QPD`ri(1gdgb5s$)u?!yJymRp-aht`CaM5AFb9(f2HSTQe#MV+nYH|(Og zd)1wcLUqOAQwsg>H`igNsddKDvDjLDY)%~z;Mi!Jl1TRWu41_!d4l1|Q%RkEw~(x) zP}iXcYt#Z3rt=SU)oS%*_j^UD1xB@ny6bx@jb#WKV~DGI+*q_4`s-2<8)gx z_>Tsvbej$}*p_r;wuP8}wWroQw3j|=x*VFqasEPf33i)0VQnGqV~&&qEM_AWu%J^r zZ{(0~XiKp?(5)zq1F4S z+@nFzVxereq5vuDbl-(???m|K&}mq(I~()Yu3ztKoA`X(4?v>648;(V_&C| z5#SL~H>-9Hwy!f@Cnn}8w)q%)d{^Pkp`K;~f|Rk+2hju>C@>Xhk9L^kZo6eiz4ODL z70asjRLq#tUGGF!?a)7!>u$>QJT{H@l)bKQY%**eqxP1Hkcu7m|tKevfsv%Hq z(6ml;NG&Rrn!_;l7nMgH*I5D@KyMIwMxf9(*>}wwTqFezsj-Euc_YdRfbm zE(qNLb>&uPVvL@?O;=6wV4^dcJ@&Oj_IQi8Qf^b(fufx8>}+`sHVPfWMHnHg$@v0W z5HA3dOQ+<$>0z0^y}dFE%xlm;Z*+IDi~{hmn%jG{X&`EG`=)F%9^esb&)ziZqUUQ< zsi|HHLp3#%YXRCec;{CryCNpJ%uX_c^IDm~UHpW5Cu(<&|_`>Qc%fP8iaAuDdGCPol>Ilx@@2 zwcc%Z(kkD&JC2Mh&zgPv>(k7oESuy3JIFpj>K&n)GWu7N`Qj+nso-hEo;fX($034fiy3kAKToS|h*U zYuHV3A0dJr>zGS0c}DpR8iq$M1z;_8BYZZ+fZe1 z0R>63n%`WpyGQbs#^yWFmRn{gmr*ja0{Z!QZN5IAY6^~V?8))%T~Cky7NaVWlhS1F zFJX{~T1}_Pm)Y0Um~J`u^*9m00%UBX1f08)o#@KpWf{F)?;!}>`TDkSSIdkmJGi&q ze{jp^D@*iC!Qm^T)RqICX}Ge7%=_p>06J_vhv<_j>m;(jUIcy{t$C&6FRpj+(4k0g z#SxXHys@lo{UpK`fz`Y2^fuTOis8mCSY&*hLLiUq=i56|T!w8FdSCIpD=DF0nya`} z=kUQg#p^bJFeY^=#v|WaysKyqmO0~N>=B?mDVJ|wo$~GqDmbMi<_sO=8&Y10#$i#?|E(`>|t$D8O(reSLj)5UEVj>y!J72$c1SSnaiS2dQLu zG`p_k{B_dO+P_SlQ+a=*VP&qXGwJBjK{hwACt^@6P0@M|t(bRB?Kp6{QrS(3+?saN zO+X-nXjJJU9Zp7m#RP`EySM+()flA%O92I(3bJ z$J%FS8F)O)Ax;m(71`0RF9&ho>miyz&nRIuegP0K!>))w@$zacq{emP;?@2JZn2~t zn%AdQeJ=3Dg0pUU6PuB7Wargcn&=xl9^L*@92`$}KPrb!!_x$Et<>YsCy|+hs%6yI ze;*1YK%bB?`;JwipIC)yQVvlz3nhM8yHfP1$I#nM@UXI&&Qx?SBk;mw8CH*+hPq;- zL!9=O7pF76D0mxw7=|sLsjek3_l47&WOAf=@Xlsp!zL zfoQTk8ZvDU9XoccXVi&cQ+3%6q1giRM=-6SveeE9fSnF}j1Ophk~@b{W3KGQCyI6y zpOkydz@_&J)VhPmj>Q2>srV2|b7!@($){J>i4ZDfRJsDx#29;_FV*B8s#7$U*k#{fs@Sm<6{3Pb1c0`* zKwP`-*;$QX2;yqI>#riXUw#5tLtCTAGfYk_B0r2ELOCH8!t_ zK1)!sp~{sZkFqIJpcX7E#l)xBXzS~Td`;$Q^tLUA#!#$hSGGGbJG)_+<3y1PEz!7Z;DdQ}0x zQ~M((D{nkUC)4J1gL$YkQ^o;hg@&FaB5Lve(f+r3)~^>Oq7oIi^~+E!z-p`w@{Gz> zIRJdnaD)EA!QI%rEmLMK{UDyzzKVtQw8ll9DyElJsdoRj=c$&>O|5NhH0<{p0{Um? zGJP7LfATbGhpmBhPCXk;^<$Jr-YhICqW&^vmKAhQf1NBl;}>m}`)S9>*!X^4qaJks z>j-*&elUJZbRQo}Oi8K4G-g8Z$-*>e5S^iMi)KEUX?^gyPuIyHkugS>ltuw`08`F5 z{@Z=4#}L^}t+M5yrkXr{Ce$|Qqz9RkXd-d|YmK;!A98j3D1kq{|A3pq@ ze3*WYQzrIcCID8=l^u_2%(ap^E`S!yN-Yg4znr}t8B}INEkDXE6QJCare|1BwGH*K zEhglTnbG29i)KK`KKEOI_f74T%v7{OcJ8dtwJj#K(c<^>6UF7^>dEBjo%?tt@#)j2 zO=;uMWV6;MWtY!hw&@kMz4ZC%vuA0L{WE;kWeak!tOuD6kj1z^EFzLmiAxtWZ^$Sk z#gB}ZxP(Lrbnh%OTF})RIcRn_AiXy)&jS*4fapm3Wv+ZFROZZ}Aii|EzH=s7n2=Fd zG1IViRJZzFt<1IXp65lsxE^Vc8B>9-vUWu z?RS6cxb$P4bam(MRR1jd?l{u$1-wNXcao+u;h|>GC9ctB|D4FN&=2;LG7UH>WnL$_ zW-9j+#3pf#qzO-EhMfB}U16YfXD8N+MRxBV$O{{PUWsz#u?k}U=+20MG?|(h7 z;PL;MyY~IQ{vWph|8H*c{48sjGVkEg0GV_M?7ak)2$s?v<_XE8VZG|$8n9d-PJ8R6 z0S!PqBK6YQ&SgTU>GbBAZ6%=+sN=>JQIXD&vmRdAJ77yOy?u-21d;uAeoGkuz0a1! zEYfB|6r7{F#wJd9J9*!{Nk*F3w*TldPBKn@CYYjA_gTE_q)o!`F^0svi4%;B6~BG> zB^W!Dbf+0JW)PzXwV82ib8#v9P=#z7Xg*+Y1a%gy!)M>h6@X{s-o4w)Z(nnQm~vIo z8iJgX@lkKmGu${%InWchUINg}AhS`fai&>_Jua3eoQjJfu_ev3JZ9qauVW>Py+u7pglBdz@7rq$J3^J& z11(Qa7cQJOxm+@<`UL((jWsVIGSZWXgWC#G2k7mf%f7HqCV*VVH+dXRH?NNZkJVbf z#Z0AwIMJPk*EJ`Iy+Pv_qmX{LK-{w&615Z04iwFbqi2I7F-FQLU{J0qw@>Adz+*~$ zG^`YVnPF13F4%3P!-Sp~eB;IqJM<#cj`B#KG{JjYEE=|^n%5sD;sq)!;kU0EOT5}r z*nrvO8{<<_4ic#aLiqp?z9b_v52_CD<})Lw8#m5H@43-%kgsu!r z&b^@(V#ZxM;~tg;TpB(Hy>6d->kmJUVU2VV(*Y$Z7_3zZg)a`M$#rC)49xIT?qQ!G zTPFy7#DrM1WXXCZC4;H_cDDtfcAUxPEhpXs6!v()mUl%(hk$YIDm9fmVB6iIH70I| zABH1rH2SUAq$0`_i-r3|{0!w>eTmYzF0fCWtX=yCCNYF^mgS1xjm@4XXfnh>Hn~N^}KyRrC+^Y%+gv%4F@kVlWQG03%GBxRo{L_PX{q z=v2ItMz{O=`&-hUp>wxGwKxnsb1yhJ0h((E5i#D~ThCDVg7%*T{CxyG9P$P*`&}&!M-FnTU%QT--r&fcBH2* zkUzf<`mr(ABs8-6R@<3VE^TiFm?kpdkV;K>1R=R&Bc@=pIZbpks0kkY_V)>H2dLm0xP&wj@JyCA zac4N7^VOul%vJohji_;`8ZnT>Q=43YBM%Y=0gGp#&|vHUHh3v4jz=I$9eC=hl^%Rg zE847p@7gcU6yI-b9E;UO7JEBV4s@b#5jKPZre$w$AI|y+Qx?K22jr(3^@X_blzNd{ zChkT-(v~4!u;Odz@9_gUPJ;&=9UU*R82{iMCMP)*caXJ2cm}Z_F-_X=q6jquzSAMr zFG(`2$q^tHSY@VdTg}`s)9S}%fU5DNz6bnv;)Qxo_{u_m2|9uYu=qJD1Qe5?2r-&r zw^tH-z>8n*jRpJ7a!aGi7|j_|E^*aG>^}nkM*2g?ACuGu(NXbS>4k>VCr{!9bw)5I ziHJ1#Vj37D3|tvdgTq8igFnBDLV_6x-OM7gG)ZrOb*<~j^PQj-tzHF{I0@@D!(dWZ zh9Fmd|9gWxxnd*n7)kBMPUV{4SgeSJR1j%PS-^1@^dXA|h65@4PoEwj9yUTMP}0^A zg^oM~pLFp}@hlZ`dju_#5iB2~e1d?JZ(%?uMG6XtCK(c_vdaVKnKJFSBE6z8_N}GP zeVii&yA%3DJ0Y*xj{O5o&OOE-e!n2+swbZDVG>DVDDzYA!tYD^K_SaEmH8tM->iK-Ow}{7)YD(`Up%r+1#CoY@v)0U;)_!fZS1F#A#FyT+^~WL&q1Ln* z%)lN%ZNJchGRL;yC9M7(t7K$kD6U=qO}@Z|BwWtCzyAmw!Kkw`HaV%ex9tK^PSAAj zf$EcfljH2*it?ESaZc)NF&{A!AXi>@9<2*aojPmjLzHj=Xlgo2qOO}YWN4D$4XH5v zSW%>76JSLyNpvnEhJf&8G|{Va=`sK(RMP0dFw5|-G3X|G7zT@mb4$c^VWaMejf>kW z5@dC8WT-oycp+eh9{T4#{z~>AY^WSw{ZduY%P}`hB>_j<`VZFnL{dAH~?rxy^1PQS~%4C^+Fu48Ieb$SKQK1w$cl8-b zcESYQDpKGIUY=a&FQ&7YmINxeiJ7bK(z{!v0KV}GW*mP1F zCt)bi;l)A#NN=>)2~XOdkT=>Y0iPWj*hzmby#%!-oRa7OxcG*npM)|Y>c=-RHbZ`^ zX;$J4Xo(a+XijWufll(>$nK%_C_E_#%QFa`+mkly@tOEvscZj z+x{Su4d~x3;xu?D!9ot*sq`!;?lc$d7bap{HfV(wRdI)s3wg|y)Lcj5jpAuhSZv@t zc<1`eNp(!V57TB5oS5Gcl>xu|xIv}IElSPr|_+r5kA890|; zo=69U3C>+pEIg)|;xuSNM<$M*ZrPkss5JJ?kf;v8m7S@#_Jms(nWneGaAhIwQSE#S zN)^HuC|jPiQDm`fd>X*0=hMuPDN^^Lp;mV`YQSubkBzl1ma+`BR51^S1+peP*ItKN z74NSD&$X+M%BapnU{d?w!OxQ}Z0qVfWuAwIV-2I7C>gE@F%Bj+Thq+iWhBokSr(f< zXlGY@x%K&mW;}lU*s0l@G;jRy!Jg(o)WI6l!+LuB4tiSYzalW%h@ynGiXtS-{e}&8sMZG?T7e3Vcl9!I$1{=PV0cO| zos|VFniUon=G4=#@6MqjA=;|G_2cD?LRc%R)g?$4pIYFz^w-jpLC}H%kZKIFCBN_S z@{F&^sK1pbB4i@_Zgp^ppP!AG(_US0l4oZX?}zRsAf zd25NDoo1H}s3~;My$4`d40_AOI|R^;%OR zpP9g%#6#D%yH>{ORa@q-=0|oX`sEzCeWb=>vK7pcG_cQ%SR+yLfE#51C? z6$h?BM6ppf_pZLKuCAK0ZECLKZh1;fMUyI5&j6AlB2k7G@py%kWSQR78-g%yQs5&j zJ5*yRWl|Y~{e&x+)Tbqk4VSpDTRMwbzBQ~YhMCzWK=^6eEW-rEWJ%-@xB_9au~bzU z@~DKOlq}Rhfd6^4hL&Cuee}z3F}7JQ+B@{bFp!`V(jCV~OU8*KKWI@8k+LS#)L%V# zi}|qzO;u8xT}Ncf4uq2w2vlr_UQ1wRn+TKS zmJGm3lZdnH3VGL>E^MNGqq#<2ek62610w2ZKW5a9HLH`eBtH>|vK-#uD&(%IK>{UqtS~SE?_2 zHmkx?8%@PAjKs1@uh90z1l-1ru1* zV3bByKQr-dL4hV%5JPW_KtO_VNQc_L_F&IQxR-2P6FandY$zQDZ52o~pH9FSB*v<~ z)Xj3;m|#-+%lay>Hk!hX5Q~9jU6Z(Q(ABT#a+{OYS5pl^&Ia9>DJ6w~?L?J`nwQ?yKsYRw@-;2pB&o7RK z(M!xcGKiD|B+{HaV$z6Al`MSoR0vg&&et!UWdeRb^7Z9hDwLp3D1G}8Wd(8X;yXfh z*OUuY>TG96AC(K>N4Cu|+k z>T|%6Y>GPwK1TNEZeUp=MKT3~Vz!|42M@vc;;r;UY_NG=XG0;D~z%YqtQ$(1~SsS=m(TkfH19 zJ1SjI>ookfRHhG2rN2?UP38YzvEEDOcsS6C5bX~mMxFa;i{N11 zI6IG|$H)N;M8b#-ZSUn<*R5CTBWntKsZJ^clxm7I-7>n&~53Qwt2n;vCzK7kNc zz(k;b=qmN}Idn}kdaRZRksC;_!YP1f%7Qc;V{t-nCB%vBIwvqvVG8LS zNE|i4c01GbppM0ZeyAOu9v>HXBXC7St;~`@u6YkYw$hmGkxF;~JbOsk#MvCdJT4gP zYN`xPHw|r88te7mlb`&Ib&JM+hFf@WRd~gejp4X`c z(ujZWF-Rh1D?L=Ty9LcvYUBuzx@oy9X|{mXr3fSqyqGD`z9jG46|%YEx959}#Ob-6 z#Y$J>)sf`&abaPOLcDOH%Ohlu1cB?!)2!u z#J_qdjc!Lu5tjbbGbJGjh`KS*c<6YnN}&8Hd5N(~mUP9uvmuUAWo^DwE@bcwPS5!sR|uQ@WG=TXM>`c6A^ zpA&e2;$-~o>&N8P2fem_n#Pr3UC-ap~m}HbLYym zEf{+dC6lCPXky?CM@5Xeb8@OT2ju;AqlL15k~Zl$pe3AN;|ka5F0bDgeKnHIiF`FVE?l65`{ z+>giFcW|zLVb#hsa~E`{&W+4#bC6*d+qb+^?AM;&$vH=L0Y}Ez&ENCPh#A7lxHtyn6O%1hhAz6A08sZ=% z>8I9xd^`_IC|yS&Wys|sht0Aa7`@~(5O2WQs~D<*xbY+8R33aCa~Qhx$%~}kU_ety zyfGKVyJnMk`B1@26`?S|La`xM@KK0Yei8=yJ$-c=W?#O1c_U7154%YK7{TEm%f*Ok ze9nN1!j#u^S$XZk8)D0!wHQXd!@&%0#^>vcnNC+APbG~cD)Asm3*5TB^ugjU=UK(@pEVC8X?dihE1Jj093av}H+4IVUQy}R)Zm&4 z2f`rWBnt~O1eR6Z|6=Arq)ZaY>Dhu4JP5)Xm8VsgvK|Fm=E{6@#SIO^04$fH>xPp! zf?ivY>bb;`(+;jeujgI-VhL4Y9DZ`&~X|$ zzla!gDGAU4%&*bSdw~M+0{br(U{hN~Ft&+&wHaK3;W7ABP{bKs>#< zfyLu1qH!1pPTWvm*T}!#j>KcRVoHDt(ned%>lU(VkfJ6igg4lZsBjF9d@m_kfzp=M zsKos>^Bj1@A zM{17~d>WjaqT+-j2}hL=@uac-K6JHr_&(trq-~P?5jjgm#5n+y{VF=Fo|^!;eR3h7)V_ytEXv+1dH><9Q2Xi%QKQhW3H z9fAm`Mfi<@>QhbNBn;+8m;NGa1Ka-`q6+w$3PFd#jR#A(58osf03ie<$rX1fegG`8 z10Pog%{&3ViAtT@ZYdbVjViPHc3FLNs)ho&N07?02q(xR7$Kzn7!O3oMQyxNWyVktU7 zV8scx$-$7+N!pyCPy)^J1>Ie8Y~Mg<-3CdPMk)&j`hGc?JRmtK)9Q9Sdj&Z-hcV2d zlnjz%awk0aqlidAYACUx3AGJSa84uU0}#B3eLbw8P9o-`CZ-|}M<5!Gt5hLhdk?H( zrg+A-1N}q8SG({;#N8Ee9nd7lXCZ9jz;zZXs6$ql&8mVrH#r#2Aeu*z;;zKHB$~Vl z(fm;dh~`gXi=grc!&zlPoNSq-R=B0)s46)=fTFaYLb*=t8szdRso z8Hn+>t$Zw%A=Hw4rv5ky4!`9w26^!P<`N@=EMhkTr>F8;>J#?5`CX zZhbuDz>KIPha3(@S5YNLL`Wo;q(RAXNo)p59D2VTe_f?~x=7GNLU6I7yn?;0o3b5A zz2K4q3x7atVg`|w3BpT#HDB2XdK5VYpM3HPS?d74gnrNV+PI9{t*!Ycq|CdySj>i` zN4dg3OnF`0ItjhyIJ4|=?vSYGZaKsshz(fBu?g$Fx+Glgno0vpM(AL%MLN=iR=GHx{$K>KZ4M>M{>XCF_ z79`9palNdqdCfg=h1xL3pA)nD_Of87c6UYIw1rq9LrKKJ9&sEZ(Q|;owUvT1JH@Ks zQmF=^SO?X5j;;4B;QA)QnI&O0*kmt>vd%k1u%I03o-Vp%P;-w1E=5Hi)e5B5 z0WGw?;~Ozn9I#BYNP;jhkbzp#fR)>b10F3GpC1ozp%#;qjW_~`kxwq;hRCM5gV#$xNCFVQfk%UuM>>CxrC9Y0@KTx<_L&4vIPY$!X#_7DZkZt8yd@d*uU zs}Y-xB>oBu3aoKJzzU1R9+stdeHPWUp&LrxVaW6bxHiLc7)p}^$#bA!1ou1TK>bI7 zXvuYBHe_17zrQgN>#ewlMN?7BBmrfI_1cO1z6IG2K>o_YrmMm_t|#$FAD;!% zs9+9-V(G*~LDNNRXh7-hMh4*vgfT|xqf5(i@WvVHJfm?4=7JTOdMp9&?!vk9U$^Dd zOQl%StL}DNK^U+==oAh{# zn{sYNSlJ(Na)R;n*)u&zZViY;Hvqsaqp2Ah7?3!*1+oa_x(Iw`LMx@gd!?bJ<~K5t zvay4~pDYKSsRzA;3?j+(1xgzGkT}oD^!j_Qig!p(b2h|(U?&-hbu*intzT1P+tk>d zUX2XGXLXb!I$|nh0^5p%8*$u$fj~fQjX7_9aX?n6G%Gb|qv2KVY~llaI$cX@GOWXC zUjj^Z(a3SwHH26L7=0?%Llzry^&*G*tGR7k=>vrBS7Mrbh>2B*;|KX9w+S_!4x`)w zjwlU9_f2EkBbL-1l~=&$MM$SKk}xH7^Lh^2vOP+00&6ol2iHPcIUUtZ``EEg7$LgN zxvq@}J2v3x@F%7;PPrm8{erChVVB&?O5+=jrMx9EGLk(dmjqx+TG4Z`?v0QI;A2g}cbdVx;A8aHkQ1 zZRpqJJT_B~o7f~_PCOae>nQYXq`xPYySyLyZoIzF#<^%zh@&X!J9=M_NLe|ANV0r)&?Hzhy+a?{JrWX8j%`0b@ zBQGbfyuF8fKaNsWC?IM#A>u81P&^Vrk1?hZq=VZ#E+L8_zL;m zH@m{?U$Kqy1|ecW(13E&q9ysbZQ->M#EsBkm2Yu-&+Q+KN{0M4cCU z^v3|sITj|KHvQ-0W6Uo3ZToWa;=FC|lB+Xtg&#MMN2+|i<;2gMCS$+gt!`KFgahJy zbE2K6sVq2#Z_#PTV|70i?mQXz?}y#c(f< z|MFw<{_JXUZbNQb>A=7H>`@o5-k4QKD^Hh$yDHTp%dM7wIn7MKV z<;SAuPuZns#`AL(a_8g1`&Km;e5*M@x0n7H@AL0}|G99l>>vww#k^^2=S_=nUaB(b z$3mRSuepSs{=b$`@~gGy@1iT5keRp|XQV0=CJRmfyD|Qwglszi+3nX!6L*J~+0BK` zEcE^JCr|pZaR`r+k#TtjVr$&4i=R)(ka=+!u-<8=JdGk!BUm zUl4BpWWygz{a;qI*6M{bL>JC@&5;oi5sCDse4nig?_baVSq^=0_O7spMQ3kD1db08 zxD~BOPF8x=39p0$Rw2KjOZ?|p6s~po+^Vrzt!0O`>aHH;k`rQNfQ6#XNnO%{x9|r*!7B5z^5*}eW!NPh4V1~ z$>QRcx=ScM^Qp=1^*?qYw`}2-l*zgcEfERzwv=9Mb<*+YPXEh=^4hWsyEMOr%x}BV z&&~dyx6enbBOk4{Hon}p;K{+qKiA5?%)!t4x9!U(G@%2i8Vls3xM(knmtPUVs(2m1SgYU`G^O!?6E38BtAO390q0Uf`%h zJ_F=b7^qruAwc{QVnX80AU@;>8+pmpkYTb~4W7V0{j4N!6^;TgoN?tdi(Lh%zL<7V z9pxF{DN3o!cC_v4gT??+L!QY#W!rt7e%-a=N1sW3@33LQv4z#V=`Y**3))(q2`~Pm zDb{Ry4=V#f73e}nISk}Agef>hxcz{@P3}WKr71YbZ;FZ(6n+MW`?9}W8w~qY9afHr zzQ~Z;k8<`pWcrHMRd=ST-r}7<$K!t%p$ADwalrz}8DaH=etl_{+9sfzea`xTfH$|t z;`$u7Jd(6{3wjh9ai`l6EYw!b^K35fUav5AR(cu@>S3xRE-nI8XbZ4!Mwmh=9#3w4Z9 zm+*?Kw>ZPkH>XfWB(GVJ{V=$>2QT!1K7=@(O|dAdF*s}a(CLW|qqaym3yChBg%qB! z%Ph)tK?%M&`F`^oY7NiH3!tP9bH)x220=1ebbZ%81(BP<0V6>$^iQ@lR<+^f3KDHW z$Sx7NV=Tx%S_{Xo4{B;Yg6IVVOEQ```!>VlC62Sw27^%2NkkjL4ZJmN4MzsL{_7BB z)taFVOpO8;b+BHe` z?1EP`QR-~rCUOgHj_A?TG4?MeZ29J*=)|ijS1@x$Kj15OCFIT8cv0H!XV;T6dN6F_ z&1cp=?RnkmiOXeQJgFvcO2T%QWHJz#P8=N_t#S9kJrFYu_Q9!HN*0-Ub@?&uwnn`L zPei?wTS6VQRUOF_`$Qmy6d|v_Mn3wKlD?{wIwVp|QZoD5*PwurbJZbQ-K^TEu0Yzz zQtEg%?U-S7R=TlDw{z?+L(|w2V+XLoVg6ow!yo z&4ol^!eKx}8x@&-L@@NRLqZM#qc`I2Phr;-;gSSZ<#oN?ziB#Fwr*p_QGvH$LVxu z4(x2A=6(`)#_J_o{AMNuuP}QL!Wd6p2S+@q(DBi;$ZMG(f!rhGLG6XXJw)B=<^vq+4+g3c> zw&FJFLq9Qx-7dYZ=AV1wXX(V-DGrE3c}EN2;y!6<>F?Cx$CO;ps`&Q#EH-$h&~|K>EDyqQxNQ+ch5Eg#{mafFu&8D=mkj;!iLZbg6jpFSBlxJw#pA!d zwMoW)_&zd!!{^$x4j(>DfY{gJZ)ac5_@n0i1qVxZ02)ItNb>*1PwaRY{m5ta_{OP=Zet;#Ods>53No}$F zd#3vTjlTU?LqF5wW%jb)E>c_m#0h`3^0=k8hxIJz{Cw^v{0COpWH)!hHpcJMuS5Cb z{(3u$Tg&h|i2ZBtlKuW)5&^v5Q-vsHemuXe`oG@w3ujH?ZZTjRgn7%c+a~^~S(m(G zzC*Zwl`(K+7dpbL82*6 zJNnRLaIz;2?~#f_r@pLYxF=i_whjyk$DG;jYZTFnn9)PM4lY3ubci1XfK1NyK~#gb z_Q`@CW&WW0u-v_GFW0>E*!NAuJ;9r+qq`WVeV0WS+8Z<_&7Ya`%^ zcy@3kL{TUqL*bpHezxlP`ym|gG<&R*W>yAKm%M;rbkqe%iFCh3I_nPc7ajKaWMI22!egUKwYJ)7}zD+awM$UjN~e}<^se*SIpawx4HmN zo=j@<62puV83gb4s$pc%7NlAj>6modUwH51)stE@+>|1MdlBnkmxkP>Bnh8CH~N{o zFt*KHG{+;=rgbmgyoP*PEY9@rTd*pej4ED+;1hv#Ks^3!_E_IJi1f#DoKl5ek4aFF z!PpO0)gW}@JLEsfvmFBa-mS|p*QqC8&yZ;&_B{!&;S>v;;6&C|9|CG|fS#QELrt*f z1oUXH=cCrO4;twm3>X_aR`PzhI}wGVSH&?oS9cz2+mYmZqkrrMzO2vd`Vtdm|}> zrg%y0@Ut|7FZNE}vq?rK;%cb-s$$Bx`_?|E2(@u{nhzaT>ODYvH*OL!S; zDb;<+eof7?c8>J!oe4bMfohH7w;hKDSan}qEbDwtl(P4)Uxt{ZNs zVAOX71(g3mvANHMxhA5T5SGa4S7mdmdvlyv3zsa(=j6o1#5}K0Go_1vY{eOFU=nM8 zY%}l+CwFdM6UX}Pl@MFg#H()XWtl!cK29yumD4qT*%MYSy?p1071eXcoo;_e@_=|d zizoL11-u8wJ;Gyr>rzB-(sD(U)U*ViVT7!k9Xj!fvm4I0vhrrG#d)ZKvB0oL)z^oL zqAZrYm3JO-Hs?+kIj-ui@kTKvy0>S|?aU(%lefLA8vA@g!?VbCH{T*!{!zkk2wr-JX= zj+_FWylxV%xFL&YjtAjHgfg^9+Ru4W*Lye3I6k#XJ#y^HjJ|%V8qH$eyZ(;&s=%sr z$#_cJipR0BnplIE@c)9J9LaOb!L9}mOM<8gBT|~lcX?5uG_piyY?*1=NpyX^dUK_z zCoJrrm25x4lCo^)yPVqW05r2`+T;}M^Njwq?wVEeru}%$D&;6|@?Q)SCKV@Boe!`c zDR{a|L-DhA{v`cw!UB@*B&U0^7JGd6`aRao+%)v^@}c6)jMFBa`u^=hax}FB{$>^7 ztVS=oh*Je{>D?51u6=A^okmJnYuFD6_4r8g4h82S$#KQGgHi(mpet!+;xWXIXob^PDUg~^#P-8cODgP+aay4l>qjlGZ zJ*RN!=DPyNeXPHPr(8US(+u}lNM4kt{_RuTB1)de(dA!>%Q~l+D?u`GIio{@vOCWna!z%fClLR0o~DObcU4s*!Jr@sycrw zM00g@;L`)%iKa%Ip4f*$pVT1&5GDH*XDZ~G(Ah8}xQ5AJOM>4K*;@;Vjh#U#h?um_BaOd*zMaV z`d(W0Uo8j-AD{cBdg|4>pN1jMyJ3C6_J5*8+%*?utERZpT9Wq=`jM?V3Ns**dT)Cv zU(k`de`XLbK0bNz@vFM!k{MTo%*Rh@y16MT&pGq3ZVxe+{$}F2GHP+LMY+wSVi}Z9 z)U161-e>3DnpN~VbH&fq`p14;j?V$2i^37JGocH9dGMzo*gI$1ws%seMK9FVfByXW zH<|m-|Kh35hVk=6heQYwFZoA2A<9`rWzrv_AJ@aESu$(NqFGax=Xlzx>nHhZEIOU> zA9?T7R&?+{96J<>g}DIGM(MwHdsbKAPxTh8HbNKL8cHn}(pp$p`~_<)^us%UHL%8R z>{>-&C51xC^0+K?yqRl1f_!2{E-Qxma=z_uG8*lhM z`Wur2KTO^iyOl30dj6mH=&dqQCG(BnQfe_2p;wBj5ANMd^-%Ws@{cqMbC+UMTp$yT zgL(Jv-u=_&-FAcP;h36T*W?O=XbxL@cFz3$U&z*9GTr7k(7K_Y01ebM2irmi#Q&gF z!pH+G@Lau13)SFhy3f;MZc`JLQ=F3!WbK4NLA09i4g z!efs?RslzQXN#=2*bdG6QsL{c(|>ULzp^~I46CibN^VCfWAN!?qnV%khqr1+%>P-J zWSPs5sSP1P8XWH+$M49A9w_jTmzS`Am?C$UHS?@ zM=Z-ZB(sgoCMX_89jg*4BaP)V~&rJ}y`TD2<5%lFUs$9Mc39bVg;)>_YV zKlgoI=XDNTsCtcWm}f4EKJDtn8cH%Utw0%z-2ZA4iKvV=c3|av0;g7S@w7}3U@koz zJonKL6LA7xm}4^>iaTW=jm$nD-LrQmX5JQG`3{OGg}Mh&P)fUis-0Te-VWjn^%GD~ z5^ast`c#cB%~tM*rah;V2b;p|3sU{yk1fG4)!6I;iH1tu0}ylq@7`T(4jC65Bqp`A zU@Ad~A>}Oi6wdfGu0N#J&wsbs4itg;dwTial0 zbvxui<$U5qk#ij=iMgMSvfzHwYe*xSpcn8*(YAsn0S)a~z)|T)F>qm&T);d)hyz`u zO#&pS>+yv@BnzXFr9)IW0J|7acWHSU8JPkfcun(4quE;J1NR-NO*mswfphpr&kwlMavoJA}e@~F`~LZ?sgi+04Fb9Hcy`dsJF`7IVt zkyA-@)9SZyrr&^b5G4RO8AcDzUc@jS3j<%I?L=#iiHtL^WxP6dpOA>?aLw@uYMxx5 z9hH;)U-zo52dgv?1dqAJ<(elHWQ8}7zZme-P%?IF3K5t;Umh&A2;;KXYBuK~lu#zl zB1}>g$d3JS{v44Li?><-L>k$gNcieA#^OPK>v!xRi=$iQ0=wuM8W)T|FpdaY*O+$i zv-_l8Fl$TjTa)pN)Z^|K4SSElSp?t?g>KThEA_7*hyy2^02B0q zVdLLL{}ZUY3vE62jTKex%a2)5p(Rr8iQ{aa-ih|_HbhO0h!8AX_tXFv;0HECVkUWY z8$76(OSDT5A)|c-W+ors*cECip?fC3PZvLcF={ir9!1z#IY>rAO4Cuwo>>$)tS!XFeA)P&{ryrbY!UCyA&63nn&4A3^h?gu(OSIpH|43E>ix5TFl zDz9Q;znltHBpHVi;U-DvNT;dc2Fd*=@SwM&wY0%sG8PegJIjAN{R zVcios2Ey$up zQErPBF{`!?Y^yC9Qsy%Am9vkI^=SCczWOMwhX(-2oEVcu2OFUgK(*g^%Xv&>`Q`PA zy;CRM)+4KE@Qw0-eZ|2m$>J@lYH)-mn<;$ePUZywCtM>sq4IVRsgFp4<{0a9a-4`1 zS+-6;;CUVH7xHkD2_afFWs_6_D5yOgYu=$sSJ+@+pP*C2CaY=m7P2B z#(1RBZW?WD%2eBM;K0U8l2AN=D8wvn!&I^pm51R2nZ96*ZXQsQo938e#*oMSpt^;!V>`6r zn0TI7QQy9=IO2?V=MFf7p&EaY9G&ChI`y)A#!?unk)#GNmB%+)8C;C%yN^e}nxqG6 z$gtqgLl^`~b&ZQBP*3?b3GV5WUagT6T^JeB7ONVejw#Td zXrc0d&~yX1#Kpoh9avjFuF|`45I-zjw{lOA`VkH5qV#O`{{knFcr*&|Gn;nUlHtgS zy~#t+;kM?hORiGmh|R}sLRGVuaWW7re>B;G*WH9Ygs5Syva21~$14S9uGzEuOaj-@!cCMYk&`TpVZ;=(?rC9p?+3 zj1+OR&kdw367!3|fG9)go-2=n@@!$6l6A49h{~h_9FaLq(wxPjzw~r`DoX>);p=;w zT)!xBi=+uSx1p!q1f7v=ORDmzExLAv8+!+E<2Yv7>wKvl zoi!LJ(lG*lQxn$``{;j?Naszmn}>}7SRa1Jfe2!Zuv^6BQ6_8m&GSqHEDL*dB1M{F!U200-`~h}cJieB-#k!Qsj07ph~#y%i%dYbm)*ht%gBU7LNL0x zdas?~J^Am`T?DKyD)z7Fh|2EZ;-P$E^tEAsiLJF7`_+%tc&>dJGw0M zO=T`>sc39%{ zHxHVcv(AJ8;T3>UB`6ob;)+D$0PH$~L;Q-DR}zNvr5``~{{b>Rjcw#Gs&jDxfe*v6 zPR~hpOcyi-TK=1-TL$mhiJ}b%BB*9qPWh#KetTXpnGb#TF?q*1k~P1@o+h3;wha%+ z<2{Re`Q3x2pTS2wiNPkNp=_PUi(<`*aWT7o*vZEcPJ>@<`(K+pi-1pX1FFz7nOw_( z`UavF^+|DyY8+R4tC{0J?be<1`+zY6(J)5XL8mN{tJyLyYIR-;m| zjoC==9rnY5y{UUOw;Kxuj(7_&Bn+_rwOn|R(NVbc4s7d+iYLoVh`QvRRG72wx-;@F z3VebE8gt~8Z|HQD1Dfr=>jo`7ftf?6^z-c5c(AZBG3x>rc(gI|^6l@U087mis49Vz zOq&KbS8_!)@O8|)fLvvVTmQrp7k|+Thkg? zl_3Cl`A8Y?{m`qe>zeDADYRJ+YCoK~)jHx`a`Kv7d8-wNcehx@!%t8lNMyv`%{q4e zv|hk`mJl8!6|+T@Z?-w-k5|L^D$v%23m%LJvyJ8e{d27Bm~35Xy2RG;>Wzu#YH!Vn ze3qQnCE1`lf+0V|{Ii|u|11rdXcdacZnDlb-~Y*|xtB0Vn1y%_IyQ~Tkm=g$f4p=3 ziA&aesZUVl+O4Pci(1z~GDFof5FMnzX8kZ#MG0N~+Hi3#P`Tt9-{8MoTz3G>cjiRkH_8Tpv`e>OW{7LRTkaW$mseMgVB_PV z%xn6^ZDNrD8}WKwz6@ffHMS~$E4>!+UG*GsAaNRW;fJQ2^+TJP3j=)~ z&Y<-J4=B3ICDuU%T3grau|&5(QX^}(@gJ^ zsV>0!nTS3VA$|FG1F3)j0q=Ll*~^seup}mf9xa|b^7xoZ7}$(ETh^E-a^LNz!($+R zqNX0(5bf)DjBrxqNk`yKfX;xCF5bks$R2F@S8w7NiOzxj<-pZ(jx^>H@k2KawoeIM z4p<;U@I>!c)g>$mtZ7A0sspJf$*+OtK;$22I(}@@vxm&N7<5>4o7ZD&hJf=GPYq6J z3?K-MzI((^Pj4NoRAt?{%;q}?SS5pJc$43>mdf4GJIWcgmU}3M%ouxkd>3>`DPMM2 z{dx9lrT~Tc`FfC}7EkCKTFc0_yIf7v}fzD)_rU0EHDab)$_yhy+EP#9$ zSI9Ck%+2~Ka8pyHWUv=bGkt1j?VTEC$W)dAbY*Iic5Zq!uFvyb=Dh^|LS#PxA~=vc zuvX78Evq6jWQive1hc$@0WA|9B+2fV@@;8W0!?XzMg2a)d8m>60wE=-vtz{-2bPkd z+_sG8xO;HTyniD$r>2X!5U zMYX}Q@irkFVY~Nzuj}jxwLz9>rH5V!i z5I_0g0a*}VAv{kSm^9%=z!948qBUP^D1dj93jj|4`*Qbvz)HrtiT~nc`)wWSiTs-S zd;MfL31K6gjWMEJIYjcae{#=|h*QCkNpXe~yMK`xY)oBvVNP)^t^F26_D@carl_4v z(R3Ine!`$c5ztN%u5lq(f0YY!Fx-3Ij6A(|;n=;ySYsl`z-ZhbX?d)aDmAjlBDYC{ z3}+a&p}d|O=fqiOeV`@dpZ)}4kcz7(dOGJ0@3TlWD}hi-y?yAXJsZbmSblZ#(Q1p> z^N-?N7s&NE5kA4FEr1wct078T7e66K|(QZ8_afot0nhV!M*^_T@=FV#p14r6?_5QFjnICOBO zFe)w-y;3gj%+ZGrv%JHu1NsamS#V93PKWFu7)I;2U|vEj8G9>PHqqr}!gK=CjON^h z(_Q~m0oNOyc3}4mrN){&p}6>iPX?4Zf9+&SJvIIvEP7;BN8a6@%_K3q#Q&;6I-Khg zGV%#ZSDW@YWknQ<7JNF=_>f1ZhTCpTk6iqGzE>Y02ZW5}VuB|z5)x#W0VKtXle58U z*SF*$HUcB@n2HQ`HjebEU6aU=59?)_xLZYT{Jz}Ov>5bq#CKgSeCWh!==QQl*`U{> zY)Efzc}Cda!i5J-x5!`%nb2-hqmlW&(J@*&OQZU0d1013WDDlotWQlOHFmXZbAy%lqol>msECG9*%q=Yi5|?{I*5j?nSn|Pe$!3$<0S) zBa08{)y2+{;Il~>rT2B(@MGdP!e&OK8Vi+c>-1TVIk~NaDZUMd#0m?8$I7HD$FX^` zeA>ZkG0+yFl!1_@W%umpx%*XchK08kB{`(78Bx=0(FHFOm59Xzpb`(14&ht0 zC=4qwW3{dT|36?A3>|aJ0Irhz9Z|yYm*ruJfTgYBJ$I|f_y$4Nel?p<*M6;NhH;Y; znSCHlb{Pg{1HLX(9U;hGw*I~3=QF)~1iwNG>;o|xpm1M`ha*{7DHM7fHR-a~xe|>jS1PXEuCPqroGZ|lvgYtt-EH??fP_Rm)F6i-QkKDfEETh19{Fg*W~kQ-syK+%Zxl{{Uddi^x23$N8avb96jmco|gzn#&Ztun>uJkV|Bn3 zbwPOE6G5k8u`G#h7>pPZQN4q(Zg62*4&5D*^^g&o@BK3~?Rtyl>dnt*i8FP|iB)CC zG)H4U8i45WV;$8^(gwFll+Fs!RtDlWyg7ohiYRvH?Co(N=YP`Ivp(~5FYPNhvZO^f zNSeGjUdZTMO|aj^da6m!u@vLt-*u1om9I|g&ZHkU+iuE|doZ?A^oEys^^4+mf!L~T zYMd+_fHDhyG=!3%2gBdy)<{43=r}aisYiYn_HkzFF-&{QRl_^&C4DQntX_=j5vc!K z=lkX$wsE_5Yiwb@(c^~=p`mOy{S_N*b-mG^mflJNWhwhzcs-kre|(-qHIo;gkc;cr zG`I)D`Hf~$OloObe)-3b5V7fiI~&F`@?zTkn36}e8b1?h*x`jTQwI+-r3a%tZ-PV2 zW*5afJFinbJb5iq3oo{5P%dKDl!)+)Dx3y4U+i_@@eCCs`rElH_Fi!`LJeFk4Zt9F z50+3H46J-H@ucvS3NG0f8kXBcb=}^+N=cDxl)4+s0ykgn^j_@0!y#2pXsj<>8*ur?p@yGJzWvneQ9?FA z2@!bzmV`i`$Ba3I&56IxDR-c;_uky1HbcvGi(U=uaeH1Y?m#(-M+xOC=j_zF66UJPL5zW zr_<}>W(&s;)t|NS;N)D#?tX~qTIde&OnZDn8NCgZ$TMSS_)C0yKc3DGUTI1M4M9RD z3}}?0Y{)2c+wJ}Ff)*E3#{^aR07dm3Qv_{v2GS`=#}1sAN+Nljv-c498RZ?CA@4sLRV(-`C+L5Ta_v$0_?plS3 zq%tiy1mQcJfhE4&=G#}(@i(9EK}Ffe?&0idSCrUPr9L>j_snViA^F{47z>6i8dZIR z43nXDK$}8+2+qv&Y`}v^3JpC@-?t`Aw;yFg1=pGB{hth`d{o&5Iz=^PGEjO3S>Dnh z9=+TSux3n=Qv}}m?80@!@D#Z0!^I?qSQBiO1FR9>Mt(0PBiCNDgHK}+uxC~KsRD{f z=ppNAsuAE>mI`yVI}}P`1-U3?xl-;{1($*3D+u&|a2a^IHj&2Sa9Z{dv%E)of6gPH zAJa@QzVRib&a@D8*fkUP_P?x9)ybGQPm)-yYky;rj-=A9ab((U}D zf=I>SA&MKsbtBD%m1ho)G}y7gVC15Mv*o8m=x#9DyKS}RW-0FQqLi7QZ)RQO)G|)_ z)?k^S9+-_#C`oalA##)qK*jVYg0zzuCN+4Tx+MkiXAp;XN zFLIwnZ>dHmVmKg6pG4#Zf4nMC`f$(UPt7BxCU;{xxH(w#`px5$Ta!Nf?-H7Omy_Sb zC#Px$jF5oef(u|Vel3s1!ET&JfNkXQ;pdUal01IBZqfF`Fy-|Sw>I~3vV_B66Q~>& z2*T37Jl*6kLrEM@&enuWSWO+7n3zc1P4bE+e{?dypXxvKm|97b71o%ACX9@=!*`-` zTMTFD=#7hc*c}>XxJzOOm6mUBu2J(I7JIJyNZ6LK)D2EjfoY9CSmi_|#X#S{>$ow8 zlOYQQ@8Xg+?>jz0`wp_nztzzU9B;zQC|UN>oM%H;k<@f-*|5rI!@VvW%~ zbrqqxZ&^}VBB9T5j<=A;Cc93CPvfMc>&s>V&nOCw(*qncc99is zeo?8|hQ-si&-({2>o+*RcM^R!)fm*UCT}kL=U?D|M`TAUu(Qmt(4uPh2)}-^2po|De8>kKTx>Pen`P-6hlZ|I#8HTv^T=TZHK)4hvr-O)Q=Xy$_-J6I-id)j3UrV zR*tv*x^96i%yLkzjlg@>YWrSiDHRse_@xy};!01QeHzLs=)SpjiS^A>Es z`}`K?!Cu#-r%%{?r>Y)W6F>SCY>+uc%`*|=V+za9&noYeo|TZ_2y-9lz7tp_9u*X1 zPB8~44*BFvIG|&Lib>*og`5>g9(3)hfJz?LdvgauK|p1NTtjspDfR*uc;4X5ozHV+ z-}@^+orBi(1`Vs1QOGxXRjCefsGBe^YdwsQL~SMv=MQPb-O0&q-u{x4%jv9Zj|h9A zDLum{>(=emK*0x-d7A|?m+~!+{AhY}Z|dk%tC!V8<&%q^LPH(cs5!7l(^K;Y9|G>0 z`Za0y)CJi!uWsW3q=c`04eqhM73;VeEAG5fnz#x@7#M6jtHxX^`Nb;$A8kXI>tZ_- z^lLKoMiR8N3z193k;3;DUeSf@OZ1o;x@zr%YnU9QL$tcOVLBB19yMQPT$JMd>hM|X zLw#SjF$_Ct2TC%1{cnIa7AdJzc`I<=W=y&sZxMf&3G3Ko?qlM#(g;*QB?%gAF4C!u+<|YwlTP@?>K@vs2IZ^nv;03uMZNBl8OzMJ;=PB z@8CCaJt*YCCd7k>n!sNv0QJsolug0n`;uP|{E3c%TUzsl(Oi+i=Wwy~p@mq;&V?VF zr%4Ts>h(9c5X8TE(s1iL9_mgeM=}rrQSjn+$W^M21ZWHaY>OwW*udYzRAzjuYRK{1Ct)v zj(cA)DWc4dxl_NHf7DodIyAhi#LKh)Ywfkc*f9rp9=mCmQm!F7n8*C%%B>f?SWC=R zSrI<&WNAz`N#o8|#lJyNO6qHcGOo>x^(r~a{Jv@04LhbT@8kr1#cBqg(~zbXu%Na0 zv*{d5F1{MOnm(n=E)K?ph@-Kks8vNqpAxk>4`3KjhP+amFnq}Ih+@gJ z<2WN|O%-2lpHKd>yt}6>HMVRi*3t;ij5~4nW8LylZai{L1~cE{=q+6^vZUU^K3Xa% zCB-eJeDgzj0kbuCu)JVB1dj3bIx7d= z?5ehwwQ-%oQYWilEa@Gpss+_b4Ot6s)x5EuP+P6P!cS|BE~AC}APiw~H!|VCX;pmk zE(AiG;d{75b5EH0&QS5 zQNYE+_k7vojmDZS*G=rEH-oK_1wIXgnaDj_Gp%HYT-%_QE<-ia!E`s)X$y z9?!CeMkWe)p zr>w3k(h(vN3Oq%d_O5xJus!1^J4-t71v9`M{!(Y#se;JLWpx2LYaj1%t{HazWn!WN zfUv%mp`u6#Wbg+(jm}W;HEIbR7&O0Xq#P_HgvvpsXlD3`<4M1jo4fBHZDtVr(BWfJ z5s}vfvwAojj+2KwGw>u`HMl>1>inM2S)P6gwf<_WJ2<@%rt1f1^=r$Lh1TJ5%($_^ z-lcpd;099lcw2lJHI`E(Gky)z6o&r=)l1;xZ|-Qp(kF=3N`NtBui8NY-Hosn;SB_< ze39GIg<`FiwH&b6|`(9RUUl`v~ucM@R>e+xD<18;46lfx2Acd zusuJ>fSdb1GRYpxH`BZb686qnv~pE24?te$wP% zKv{xblm2>;PKlZIAZ{g6slhpzR?Gyu^|>HlW8e)#YC2FgQP$s zic{Kmg9W!4lnhi-^CLJSq`rg^go*)MMG!!*t73+Lj+puNn7hRa?KQ{2hc5%CGMBCse-Jti(aqv3JZ56r&6SEu+RxStx_&8v?y_4hIF6hvbwcl^r_&-ua^u~R$d2e zy_-uEZ(%wlDZ;#lVDtxRiKo`i0=^fSzCH$qvT#M^m*dB~F>pF2$kH~K?n@*b?z94G0PEzittVy2?!|&%OlJ3vUfh-)FNpL1BowhL8K!|c+h}fjbDu-VJ4;F zp{=865oF-#VbrDfMFT26Fee-8fC{?!VT=rBR1ms#%vUfv0c)8&XRuikW0y=6T3u8? z{;P8&hERayVyG~!~c1!cV zu$>K;ugeskfq?^DAdvK<&_aXebBq!Q*R*QkZbiL&o2`y%u`k{KA4OjyFweiJ zv6F;w*d($5pcKEps43yZcxpX?9j@W5?jj~P3{@vKD4C8zBMxE5k`L>f76=Hq@q&V! zV{HRFm*B+ZnomxRA}l7-=DQX8zfTkzLs@P#$|6YeL%oIXObNt(;2-gI3P#Lxw`UBi zWaQ}f;jZ6vW4wA%_x0F98oO2i*v~n_XrA1zw`kGu&3Pfrwe}Icz zm9xJsT68=8 zRgSFq^7qq^AW;yYL1BN$JinXv*AuwA6-3=$GVmiB@raPQ(1Z?UT%;Vz0mOh4&ki$| zl0tLPpWPRqjg9-R0;L=@)#NLY@cH5QW)+W~^Yn#dumN*Z`4i!A>Jj)Av=O-a((-BIT zU9+STY_SK3)+T9VF#?PtliP80hl0AShHSY=*_~4M3H;b!Q)@Kir^yw;8r(#Bw#+*s4*z(c zsXX|{eUY<>H+R6-(L+_}fzS^C_q&MmNkdm~K4~6{u#=TlR>?voV~Cf6puX$ivn&VK zjijd($wLn?W`Sb*%S^Vg)LbmoNFr>6@}rXaOzQ_FLdr0pqY4G9BdTG0p1=jEc^9Pa ziw{pf7QBzupODisrngNLLPjUPM_e^9^Q!MPP2DYs`?Sz;jz6UrG=C5ud0f&WUL9&# zd`Tn8@uG`ualKP4&<9 zfW%V%6>5$uRRpL&q$^7VKQqj^q8cvc2}~Gy7ft))J*hPlo#%F+tmBktPhs>})OSNO z)O+kh(#)&QW<2^7oRlH6GG^sg#}7&WF{^q!eJ{BP0e)uvsU{ADo=`VV2YzH5xcK1? z#rD}%ef{Tb9k5i7SUvl~t?*Qmn3FIcyDl?O3%z0C&5C{ci-uC+I3E8!y+F&ZZG5cl>>WXaI z^^YQvjsOZ0LA%XO=I`GH1M+hRCK(K+WodCjN1Gnbvn`alC1=~FAe~NyKHN|qEZ>(6 zYYLbcQg_f7Glhm!Hy0!?(yvp`xQ7#(VwqFG&I~2$0^~-!oG6QVv zmRBE+93+i>@^+Kf0~F(sCZ*v(za*xg@Vz+$4Qj~?3)+;GsoE4NyQDw^`b-at* z8d5|Pjic2(CM+k<4~pkS4Pj>e&!FIilkBu1Ie+D44djGMqu{N6HK9eV=yyySvT8(c z*F79O=$IFST1i5?z;bc@)=sn&fI^(GM}Cz7zdnnbs^U!2F>_{ujl`tm>Lyl?UvoFL z9!|$f2=SQ_zXiWHA*hEcTz&wUdL=fy;Ekj2rK_|>RLz`X&~=}j)E|L}!tp?mZVP7Pz@*aVOE z@DkgAsKhcvxiAG;>Twu{`%}RL6pCHKCeEfg+z0jzSyn#yCs8!dp(@>aomN<;exUPJ zpsxH5eU2{7o8v)1e}FdSqDoE{(nCC!YM!H_ej<a-tnyI-M+wVB}KTn&>8w1D2;hdcNY|iQ$T1tJ*R!5@sa%73sK-@BnPa2wh zr+kil>#ABi9R}Gj&<0zt+jbNaJS7NrxFMaAQ#3~P%X&5u*{Fg6?O zHfk{`4jJ{5aRaigIY4B1?(!0vwuCY!jZ`~(&48rG<8y- z&`*xw%;AXpLu5``$wBa!1Ax=CDmc25IF88g$fJ(t=h@lQO^L*mASj~fXp0)v4tDEr zBx^!-voGw*=!`P9fj=%*;qVm7BQr~v=F>q6A93@{o=;JV_^>}ufXk_I9S=`#udO(! z7F6;hSK=ndWx!x+u)xsbvl$=g;$1K+5f;Pa$l(!w(g2Q3-|7TFRnj(j^r@zIW9@#N zV__53LeZm#I*m^HLN31Y0e%z?Y8^^-MI62A!hazff!>rX?8qg_sCqx{K#E z{q!gkdnU1`uLnaHmJW2vz{xqBIX5^(*VID3NA?a(d;RQLKnJQWpKQ{f_&jP`l16{l z0!lXS5>(A9=h+_z?Poog<~y}x0J~$v_I%*aHWXv2gp8TQI}((2Y3E?PUzzC8XH@#D z>Tu7e)azhAiZ+GCnLdo#xo~c1P8A{D+JcpR$VDUgFPzipvDNS8Z?GRiJz4W*$SmE_ z%#@{WDDww^$tn>8Wv5kbQh+ z-1oK}v~&@e?NsUwPv>UZxyDjM(9KG^5X9MusOt(uRc7EAHGMLQkMcXSiP)_5W||tP z#s*Gq8T~=PP|#TpVTVFtMb0FEdv3KX1qBennJ|E3rXfc)oXQgbhZ)5?=$k)WC0)u2 zQ~+&;z#CAo7c!AJYzMx?)Fw7Mw8wepZ23wnmmGi4z5jMkF+WT>wVH>Sj%%7BQ&|vW za?<`}dh=g*(Vl-gGs7SiBv)l4Dw4U6(i~w~irBIkp?T7nTBnidf*{fh8@ULGc%;a* zNOUeC23I}IrHGD9$J^Do>M2U9)S~M^1RcD1mjN6p4$j%L9>_lmG@|9OB&IL39Lb>o z=tHGvZA*I-Si;05OGQ(Bn2?Jdvo9Rl`=sFcfFq1&gaH8ydblfJIhk4p_i*q{bkQ)4^{%V8z{w>josL$WOyRSqGkIdpiU*hc zE%*e!59|&r+8aQCR2LW@w4F)yd`1;uA3hY1k|^;{+7N0PvFGuL;Q|WbQWlT@no9oj z!9r>S3=XKGTMy%^CSZ0e+Z!mR7zpX*$9BdFy}TZk=RG0_@Lo`qhM*J@rEzy!V%EWx z%76(lLySr{jp0{9Th%>}VRgr7iFh1^KTadxDllbEqsg2RUyU$I=6r!je_rp6|6`P3 z_r?VgT!(iBC2R~Rny30cfO9LYzD~rEo9Xk&PZ7M@Jd(Nr> ztGSJQ$IjaW_-2&++|ds7u0Z%){bC?k>zCgQ0$dbACnk)f4xU8|U9;Km!(3X&{>P1Yfja=R06}R(?OchCFAD<72q*<*t}LF#KL8wwy1>~8Hx*IAT{rbg z&Ay&CJatJpG$b74UJ3eKCWIDI899^fpPK^egSn6{dUy(yH)|<8Tm`%{6HRV#RcL}b zG<#bT-wcE<4VsQfCXG#Bkp8Igl?KBYGT)$6+p#q7ng>EieP>De4%L(B7qTfVp0=eZ`h~$${AkpO6Glb^wiAykPJKbkt9=0< zivkcjzG3!-((!ls3&;T1#0Q->nGM#%mYtuJlF&K1-GW=KB2jsOb#sG|W66E-VX2Ck*4=_O(#NJP5Ckl=lp0Y7^T_s` zGM~l&Hctc3b&fQMW+s-Cs^@nTS{Q&u5p6LZR|h16mmtxn1C!T{ZwUF9Sg0+RZI=5~ z5q9Z%J!v^1NSK;a{3IDKij=p&_Yu=OheeaJTmF6meNm21$`5rOVjMmmh!JC)oxuawLA{Hhb#t{yIar}V*_!49Y{_(bbuBw$P=Wp$Wxu>f%+IKv1ZP^z zyy@ACl$F5vCjtO9*>B{a*mo9-kBd_!Z6-FKMfcyGh6dligr-4+kmMpMy$7hA1GpX z$%Jp>O=JT_ym|A>>OygdB+Np7IB?u|5swJc2|X{UJd3kL^cjCWc`;_jiY z#9AMyDuAj09~_A4v@s8;KSe(L@9G&gI>e$T-#y+tC?2pr{axof;5m$rWc3U9TTpE! zAdvFAffJ@!J*WM(v0(G8eu1f76!H);Q-SD}YCjePojNhFe-{nh{iRUUw8)eCeXT$T zKnDRR_q>w+Naj`R>FSU5{l~w0m99{ScSPok>TCNmK*gwz1ke(yym?qJd8`xi0Ti^% zgaT$k8{3@*A+ijx!iP=+Ua8^DI-WW7Us; zT$>o@!u#}(9zB%Y1E}i;T%>p?ST}G`#4KjLF2(x5X;_Yul`@%(E!@9U)?0d_aJ+qdFw-_81UI(_FYV6CB6R%$H_Z&3$e8c{t{_*$B0PYglRgFF+`DfS$ z-iTE^0T#bGWx7{6(2YOs^MihxhWrAm<}Nw1Y9?Ci_brVnXQr?^;(@*yf)wi5S)84N zeXW@X*io=_wWmI0S(-=1-;egWQI)U@S)a@98TPTIsf ziLTl^X)l(*ZomSh?~LGgj}5b3D-nvD71pFX$Arsy3@?|0|!FGSM_h-Tet~y9aMU$+{acOp5t&^XSV!k zhwIXth`B;+EfbKND;B8<(6{biz`SiR(ILndw=Kza!cQ&Ti2Qk)WPj%i@|YUc-Ow0O zdZF5bhalAwrdu&RWN`mC!`xC}VM|lDpN=>8UGO+a$mfZeHgMT((Zr4Sc5fGa_b_{o zKne$%H=WdLYlz=mzy*=`pg~K|Fkiqyau=`QY_e7ZT2t4+o4cd?(RTE3eL0r82`~+J zRz(n14Q$?2_@mBt_wrkY9^MF5kcE*z~qiOeWC1DZ{uYqZ|O zH(+g-2!U`<{98r|{s6iqS`l>rjwRIO!&M`_IXKq*Tb)O7rqlY_ApbTMo$<3W6kxN5 z1^C=L6^&?|4ZsfI`-Y5Fw2)iWLoYK~yLA~5`Qe2r&}SJFAt(p{HE3~S9`FX7^Ij!2Z7ut3lg)=my&=j?l(Ss_)zLY?YDJ|$4tptEzB9% zvZ0R_D!PiK3CPwsCW){!S2+_f}uywhHDVx^r4$xdf4j*5v zuqd{AsW|k?G%NBQeF}biG5R|+28Nzc{E`zw-!iisB9KHt#0D4Ti2w4Y^=n9(fOME) z9A})*$=<#B<3nab6lN$H#z*^41bioV!2n&7s$N>g2>$TRn3_Ou9EjZ$3aw?9ZBWu? zLL(|tXGe5+@*#2Y10hC&f7zj*kz=Y;@#~o9J$z@OO?!=tADaC+au~a*HZ1Lu=wR{? z1WkPqWMzoAk@D`q46~9vahzwZquh9~`>IG|ffSS*0L7|8Vr2mW=s3hOH=y8i^lTzY z5L@-gK1H*p7MZVs4IFAl!gHmn2+pY^XDo$%9C=8Av>ixp75JXp(6TX=F7~^>ttHct z{5QY8JS9eilJu?Ql(n*f=9US`h70V*JgcrO@%3v8!%0qKe>N~2!7x((GL&P#K%X}| z(7D2F2mY_Z@8_TKe--`!qp^MeSK$xTi2YxM-&LW&JLCT<{DCp}|G!lD%pt|kx}_1R_3ep4(on5knS3~TZkDrQ5C@a)zJkTqu6A3AlUd=O&@i`uK-XG z1b!CT42Um*FhL`#1)*+J7plB#Z0*az`z7YKh|Ru!|D%z=LsqGI!7#DAdFjIz9FRlM zU6fe-b$w#>48z_ynE{%57EHL1&4ge=&i_eHNUUmRT}k|}@_6RR7Mw#!w0}dP`x$EJ zHA5N@5ny(V3?p%relnOpU(k>JB!g{e)Qo! zqsNUho39P;Pj5Ir;pGs=k}Ecs)#m*p->sJKTf7f&^Ks>NT|1EC4gS2b_4)I856l+e zJ#@bz?#&<}>>o@F?c&;}OW5pb!14>p$1vT`{fxcT(}!}GfC50Jv2qU+>zc+#=vKuc zydz@_SZ9Tj%>@_&|M57c?(S^M@v<_kqmr4==g2)0*ir#b>5UXLmmTw?To3{Tw?emt zOcBeQRv0UofjJ9Xmepj~FAFjQrn6O0UuO!~)Q_fYHPWm>xawhcl)O#eg){Iq-0e_(*tIOH?IvwkJd)kc|@-*$=>XFoTFKplJm)zS0z|q8vIk*vYjA z112+G8dSH5rQ8M&OmUgkn^a7Hv+#GN6_^iW5O|9y|73!N1W^-@I5-{oLkp<{T7yH8 zWjQA~mbh$(44+IR(FCOeR0#pqTPr0e)#Te2@rQ?1Iqp23y;rL~Qe-7mA!u6`#r&6p z#?)$R2bpu?DoF9BmugnU8X)Ks^cY}y7`rz?P@H^284Nc#j{f7sfL53$=0~AQ2cQ6P z9Axd7fS=JYDikbHI2x{V)x7RX=+%@@K4BZ4WbUepmB>5C@CSGEseIzWue%mG%i;it z*efUAbcxcH$%uQi>%z1(BRKsa#P|fHMXss_N^S~lQs*n^Bj7cC<4IY!2!6gs zTDSONJpBae^f=2#4>L8Ql0N*_u-VJDqxBX3e~_57LB9?Ku7-~gplLu;s--KtJQ+ng zy(lWSym5Key(YE8ypyC2^f{auRY%9a#Zt(6umxy^uFdXZBMw~rBk%rN3RX@i6u~Y2D@^wU5bO3#1YIYT?yLmM?*=_6{=d$!@`99fB5Z zWOC~h6d-)n+8y<+E=NNGs_|cRaH;1Gl<&u+HE0~6{O*fJ0T$b zHeTZ)R&If{J;|wy^gnw&6zC2aCvm`AsejX@s2SEa3~7UJJXcja(PLO;yWd?9XCHr zug<)_ZUpi=NO=SFF3DZP5K1(BJJ`$NRSfUv3V6oEHP}I z7I;VMqb~5osfXeiM5=&s{+sRakF#697PRf_TW{q#%|e#kw>9^e@*(wxv#*=->a#4C zOB}?~OnMl9tvDck(RE2f9yNGOH^?Q8Pcj+Y+5GlHOZzgLJHBQJY#g32eCQ!J#`^{Q z@7Pxs=bD3H0-Gi`5*B{{v{7P{cgNM@Z<4qO84zPf=p1)`P=brCZ5n` zG%cF&5T}|5PSY&hP;xU*Qs=nTQFr;|SpGqZ;5C7k?x4OAK`#a>Sp$M~+P=6+U)bej>1kx0hBE zz2Eqn-Oq{d;rA>pM<>@9N7vZo3lYmX6k4OMOfqh{eC5bf%@Np%G(To79A{pcDUAvs z@UVTV|0MvhuP^=U0p+u#6PH?5+^%q~IRY2Q^~d3$#ymseJQCkNpCpAWVSJR5Ou9^@ zWZ!HupJaFC+qngwTKt==(%RxW+oK{!DSs4GUg3jX>Di>e8Ix{1&iTh~&i2M}$(Dmd zo9lMndTec$Hqlz};a_TV!!+%In4WZXhcWyXFSG1jU~&1vdq3ly_2lgTBz@aZ;82hX zc+qp^eqck{e$TPhdH3izXmG+-@Lm82UkNl>DsccX5g+1(8uCwcisc0_Z{!kg*#Bik zst6T|Gp5?jiMT1^e_Kk`<)1Ism&#joqE9$)dJvIO%h{L}JWp#^qaIAJfd`b#JsIhqETH3!uzIs-0 z-?Ncpr!QTP@roigMG`ua1{E2!ZUho9T{-Z)L`>a>V|=LmQljwO8wYDvyxk-f--hIc-qX<2gjd_ux1=F6G&Frt8Tu^tf4*JWKjeM^Tyx7{i1`3B9*eO-NDX-$&$l# zsQHVms`#m%pxOdBI$6+@uMHxBHs$1UOg_`?vC?JxUHzQ!YGJ$kVzN&#ydOs-l}I5+ z-{n_>rZlt*9xM)-pC1s^T%mX^ZnZ(2(pqY*$gzvo-WX1i?T#7uT5S0F`SrhO&}vSC z>_lm!-ai9>Vh-VkTbdHjUhRc^jK=U?Uo!qrtQKa!7*ZN1oGfr&On#2{s$*dp$qRw$NG7a7~ci45zbG%;MU# zGNL*~^DdYdoDgfOGv;OR-1OYuUe{?I&Xv+ByLH)_182wQZgAlD6iRMxQM$A-a%kpT z<-&|FqVYEiQZ9wFi{BK^zi-X{ZSzUKERnSEr=4w+^6L(WvFm;MkmMble8B&B;!4AZ zb3kZ%GU``QTOsg9PVW^(!UD=OQsC`Y#> zxYa-FIBcJ``c`&Rtx&OJj(VM0z!4j<+eba3KPK0FUQ$$AEIzi#;Am%^OzSBN@koi? zfj$x`o$8XJsMqNXQ8~X*G4hR4{0}xPHHyN$(%bFuEiqST|*FNN2K4yq<`I zzzd7Xj#h`q1Rm^M^>(lRwd{@AyFN+9yv;m)*5mYFay6ru-xr#lrM5HhX#2m1L%kan zLSwTF@9Z*_R^z_C%%t*!WN?tqp2qUbOv!j@7LdHNc*yn@2@_lJRP##1 zV+D3mrvEXj9^RfBV~59mVC4n(=x;5;BjC34vS!IrEu6b9ewdiv7a3t*_%UglwEWp| zU53_tpO_wZD0&AVj}gSdp)v|C75`I*!5lEvYdu2)#Ip7q5RK{92y_!XSjYY^Us;vq ztJhPj{^GNCONamWi!-T45Bs{{^&~0t$oKcaX7c8GtRMd8$A^ZE1sDukJ>v<;K2x)* zAFFNK_P&AFoqT7cvGQRwhJyUz{&_*;x(41;~Sa~yTDH$4|Tmy-A9#TKVyndQ(-h`yWKjkw0Yk2EXCRbDy#qZO6(?(_xzY+*^m2i zuUP*lljF(yk3rh&aJ7}C(dJNT1EMh*HQ~t2Q8jTuL8)RY-coFvuqf{HT2701$1z@q z@)WsQ23ltfp3x8+hHtw#MNGHCz=wQ(D$(5-q?y4xzVJw65}dw#u$D5z56B_lOdEO`QxAXMjKVb~QDx_Z4Bjrecc@laUrYy*Hythq1#x zcD@Y?=~)fvuyaCfnu1Dm@{+wot2RosU7##Jtv$Meyqw~cCk9(6J-A~i;Ehp1N}f1Y z@UoiX#8@UMY)(Na74REl+7WbhS~?m2kzcJKGOC413AxCUAuKGu$R>$AEGuTR?}Ac+ zsUIO!1H5cBim)2kN*1&9>J3+t*9aWb>HH!*6-axn?pdlre28m3YW~2(6d?c4R zyhg?Vgz{07=L%YKq7Ww(jGQJ&odeA@DF`}RQ*3X;)r(};nebv(yuVUEKP2i-NQk11 z%|oo>GvhdK4<0(4^5(m}-j-{pawmC-DxoRWyJ?+iezU~Ly^>F&)s9@yK#(A6J7O1g zhtJ)3+cfe{>&gQdj+3QHCayP?=K$Y!fMSCoxXXL%A^(btC$v>Apu7#Te`lqckqCn-*Eqi^L%&ZJ3^c#G|V&j?zCXoSRRKxGlrVDG8zy+!Qs8PW8nx@83|6i7lsXp#%UxpO;o zQCZMDG(p3jXvD!Z?Om>WDPQA;JLO}89#TbCY$Pe7mK~P{TzY@S5Y<44c=S-9H&|JI zpY(42h}AC&AuM*}Er-S<*sKjbVwIFJ9NeO`cIUt*tMraqY&LMenCg3p9MaH8nWPIF z_@dklM@27kee26zFmr480yc~&z5B^yhI^r87PJ(Hfb%ZTD`9xRd9I&*LF_xc&4PGd zwdSSRxZ2f+oivR&zkYTyDKQTg+z(5xpwJJVS22yrqRW=7GItJPlsQs7%0`#Q0EzFf zE|i|1wq$mag72yd-CgSHwa_3iD)7WLLgbNcE&4Lfw2AsQPU&P=U#L`lfdz{&9v36t z$gfKrT|u|Vaq%ff`!D3;3BRSNPa;K7M{RUjhM+4xj&Xc)wum6br$ZKChVasRndFo6 z4J+0h`Y$1x_jM>bu50Zs{x`t$24q43)^D_|flD?)i(83h zkb~IRivd%?BST1z63ohRm9EBlCw#9lbn(N7&upvtge=xA=xEP&bhISsL3pm?GqaPA zlYi*(V+Qx%4~MNTZUvHOy?DvhRmX=j@@AFMt`Zpfrs73HU_J5al7j53N6)mS9w>MG zKkZ#L#V~7DJoeaH5L)kJDuioL1FH!73S>5*<2$p^`CvWPU^2nd zIu}I6E6kx3(2vpGSV)iRQ}ul8LvNs+u{?7kjJXgf$i)3{)~C`UWdyfglf zEjM!bZBD+pta`d-*^8Z}CGv-FnyUw*arHk}48tCEJ8c$2OpbI3^YP4&Hz=ie=EvLm z8{ng+!{Hqp_{=+c?y9-inm(?}D|Uj*OchLHmDBIv#{Uq=d7gL|8+Se4Y}nkfK+~*H zCe+$~>U8b!A_J_&ldvbB_|RmGwm`~HrznMY@7 zBNYCzn5?HebZH!E3F6{0SZgH9EpYf&lsZY*hJ;2T80jfqw$RdE{_>l~TVr~C-na!< zcxd|VCb<_(1m&Hqxor4I%-%9SrDw-d_kH%FeSGn0;d!;$t6L`q`jZiZSC5bA7`7=G z{)>2aUoUV(1lBej3*QWVf6HPX$>lrpv&Geqr+Zq9ZsC~4h&&(Cz|ywWRo#k|u3YSp zpL0(5>q3r2`2&-w-+qqioq4dl=LcCFIYVO5h)FAyROwSHV6E2>Ma6-i)C?OwLwd7F zxjcwo*{(jbBe8^*pI~9u@YS4`tJx;KI~rVv$Z3}%A#b|Zp4_0ki{>AI7|AgF^=yzz zaVDt;kcu?X`_;>Do|Y@15fvqms0<#MdhKDMRfOg%tBQc%Qb`U5x^hpCo?C$hKhkf+ zP9Rq0KPD!KDtv_4-PBcSZlB}3lD_4-DgUCIH*dBM!Q#Nnd1JGoLTw=6rH63??N|;* z2N4!Sp>|CPg#4`7rdsi9oplK#%uHm?R0|bi3DlIer23bI)m4Gu3NUF%$pl&{Zcp&1 z8v1Uh5E@CD`$=HAE~_uQCL2>+NU5pQW>05Ql-C=H!gR>qK_)0$qx4y~U{%=W@vyhP8U~3 z!+92;=sO3N>7Yk60n57Xkq;ivHOyRcs@|3#9Z!MAQjlEQFq+5mgvuQbm=KTO=FSqPSrekxHb z_&Xb%wJy&c3tz;zVY&KDCHChDfsmvkeadF718d)X_g%2WXw66=>Y!IVcA3_K=>cXI z4(=QjbueyzOPXu+#Hn*JIfxCnT&Q`7rlj|dhrfIsOQd^$E-5RTpj@NDuSTd3_a`GdmXqaVAfBBnE{?{*XfY zjIwcL`hvvp2~Yg{qZ{6G+gDI5gC+)-*6I+UQW2Ofo79mb5NmS;i625{y(*f|19ag` z9Jgp1m?}*aPpene(R3c-ha>hCYoKY824lMvzLkMZLFnqqL(e8xF?z6W3eC!;J+wSX z3Ubr(nJMfk9at(Xav^ol0_40p@RZ`CFY*gi^^O7@_M4^}l|KrftYkd=3t&Xx3Q1!G zGR%i*J)^Ony{4~c?Q$J;|9wN!XRsK0`71%?yP2)c|L{HCkYT_DGRZ@mnH=&AJSs0{ zSN!8aYI0|Fs-+GGjW`V6S`S)715t+qm_`u{NvDQw;)O_orYGtsm)SD9mRZt8ONxC> zKY8qBg&uCa@fm#0Y(c8Up8S?gT9hd>M;B-vr5*uEL*gn+kC?b9jwQ}?(9`+Cg0x0S zcl8>E4deCQqi_?V>r1pwpG{1BxUh#pT_}zPHJ(T;lb|=LlDg=b-_1?wDvE>tu=2$! z21=IAwBJp-VUS1Jr`WO=?T>88=#!o)x`Dx-cjMsa9jguP%Ud!bKGapg`Qsh9lLVhg zZwc71o+S@hLCdhzgo7*APX@apCsL9RMaJL11JPi7?RG%++a~6H7F%64NF@e|_OT)$ zBBjHjR*nEd&`Rjq1jI{9qpDRmP4H=SIB?F1=uNQaJ7D5l7IngHr-gin_G%9F*~5wy zGkE=&d%-g1<@EFo6zD59ZG!$!{mM5s3Q52UB>+iB&OVwZZ@oN=mzw?-6i%VhYsq{~ zVaMA<`a+rKgXZq#G^5Sg3j`v3hY`p)*s^QOla3vMFnefnknn(xfNUVPbWIS7@?Z!U zhlRuJGaRai!CQbNcUeMEbjwAE2GMchf^&e{cf3g$C=(eDOy4WteyqUSIybQxFQdRE z5g-CMDMQf%JYW&SN4J)Vge06mqud^NE-PtzLrq9(g{6Htu7*cRww}`IQ=& z2A|D{Q;h?_0L!7(z4;^N-qdTI@HNNpAvD{t zHh^>uhwWX2_s>wqH;HxCI*FFTdivBP-nPLp_fcQK>Fuy}5NI=J1);u~mp$C(-Vya9 zfj)>}$WZd(&0;3MeOB!H?#3}({{(;omc-u9j!A0VK)U$2&gT}~jxvdAHDC|rv|7LAjS5@Ypiy-1Vd7ut`W(a1hhZUv4+s3+dwoA=~Lj4fyU z(7(U=Y*Zr7U@gui4FS+BJQk^cqW$}&E=NA5zJ?55sbpQYvE^27Cq&h&q4=W10qTq< z19ym(8;@Vj#FV;&$SLrIHk96H?L~+&NetXFUrs?Qq-eA(51s@)iJ$-#JQ+aw@AVP70VjJ^Ur({z4*e4F}e|CTY}TQQyu z6JL*nYC2>!Ha)y7w2VH#IseM_^}60J&h?Lz0Osp&>H9jdR*KRvy2Y-p3&ahRLA$Xl z+q*&LiGaxm0B6fhN1cvKP^k}3HI%43p(4cOMz1toQPS3r9B&MllR#oq)-E}jbGK;g zuB7AYQ}3~jgpII8H5x12urivBT$+@H(GoU_&K`7<^}T98Pyj}H6tQ2nuQO@zd%h^s ztX#Lk^B>P^S|XCpJaHK8*T3OtqkCb}bi<9GK|v{oq@?|F0zF9z|Y5- zi%eLVPhA-djZ2(uAKU)M$b4(=jaU9-s))g8dW*I<{`Jel6jMn5`rYh?@}Iv0zxmRC z5k>j)kAB~z{MYaP&3_hu2pbo~sgZ74vH`93{K2qEYfM*0Bgs1`VN(2{3{p;z0FWAK zZuWx%4TTgSAF!6m&<4vY8zM9iU7A&s*H{_Quw)<~@8_X&q^W2ggE2A&+`y=ua47ie zGh^=YHFsnrA_aGgYtRTK*Fu3T39r7!Ix!toQ0@K|IbL`rR{JS^YWY(x#!yx@fJt+Q zF#jsK2k+~^kA3(tl?}8!fHH?iRRRQH{|GgG)he*=w#X&k1EcvCvD-(yLre+mjEbF|PY0M)t|ysbz^xjFgvT!@$#;K0u6sGtt^8xcmE4E`PR zwFNbK+t(*{zGIB(H$k1ZxZgk;My7Ygf4lBDlK> z=fBUmcpur(lnTQSH*ByC2)MpIYDMEyqwjeU(>WXSJKn*lkpt;1It(wrfvi%8 zetumh&z$Bo$jGU!q$C`2+}9xfBg_{IXY?V11|YGAavNwfIHbUL<)F?xCs?A$`(G9y zKw|=HK8Cw^V4ewQxuB3?iF|$Hz*^#H)ZQ}eCWSueS3BU9VbEjC;hYE`FXwroT+T5o z21yr_f(fGX_5tk~6q)vT7j^KQ(c$3FEfejtbPh#AoY|!W^3A0A3QgKH+6O_)d>A-& z%jD2n4r)Qt+6I1Hg(*3jD?<=VBH9>op=tGp%)xOHW^F>4hb3$+WZEcQ- z5y-5|WVb5f<$^FpUAE_Q(^uWW`hmK-29q4(IN<;S{X84x$a3!|35o31?{V^b5Dh9( z+SgrowIE;#-_uQSW_-rv)A`CU@qd z$FqAUSWu#mtw2XtMf)vKpAGxAAuIVoYe`V)r1+{%se+_NFq21oCaqG{rp1y&6nz4p zGtiN{QT+$Y;l?Xw%0obmHCh#P&Qs z@O=-|&(a0?@rn~M27axD4*CtpGHa{*uLU0qA4du#*CbK_6ptn)ZE`&x1#*$hkT5dD zdivGNLEvuIt&H9>mj4ptwg$~Ddz_)UM2K2T2s04DC?HFCtM>J;r2eHHD1^NlK*g{eP`O)W~ArcjMB_(M-q4XIh z9Xd>RdIWZ%ilLgQ5*U;&CPg`X>qKf()#>biXD$&T+OuY-K&-?>&_E}m9}L#20sbW- zmrxFPP_ESenPJESggZKA)EW^_nn0Opp4`&;qg|-8U!l}b$BDojnU9jdJxM>3cs6~# z)zy3pnstPrV;YfQu*Ez>Gl0-I{FKNpl%_P(q0`@w;&eTyp!e#v7|piFle==Elk6@Q z#QkWUltHp}7Vimcr9*&DpQ71ep#kC;mXF#T$hJ3N(nm@di&_;R*vQzY1RCwID2xLd zyvNsuwsP?mG&l*QgXMF^t2a6b#3ZN{##ao~RiaO=qVry;d zliOBv5o&Dq?d!&ePpR)*3MVk^)GNT?`vztJfZjRNLHJ7`YexUi2JNV+$$KXjqX5A5 z_HyRN*no~yW+Q*HViG`QvOqF&64g|H;2`=#yGiVCoL~a7x~ELpI53PH#RBONfHA=# zP_9PIlkLVb4A9~S;=i#H6tk`CF!>DS$j-b^&eWq5AA(>HAa{{6L?SThZvIp84zlRk|%?t||?fkFmE zU(b%K{0nrIQL%JiJ{j!!;K2*Ns{+hI9dm>TRMdxG+-A6gSj>?@FhvH1DUG5R;=Xld z`ACZ1&gzhoNwHSh`OSxRN^4+DngGDa8kKCKoQy24_c zHhy!L$Mf+(%Op_*KC~bMF4ZjZ-EJQmPna#{GmHBh;`Qyr+U)zr3MXKHe069OI$*)t zOav-_ppRI|+IL=45GjW<0k*4GjDzeA7dA%aYEo0eY4;KbBX)C|)V+5#$jXbNCET&L zqcriCmILEd5iA=1Wqqc0-e#Yj;o;%p8bo+xJBQGvUip|?tHT&kN82sH40340dT$lj zhPc_25R(GESpD$}lIoGs%t^9IK;c8Nm~C2$rrKq6t>F%kD*OCX{ET|Yl3zy4El`pf zVL`#2R8|SEp%BcGH3K%0wZt0U+fC>2Q%G=K8$EJSV4g46}2p5#DAS2`RB$ zeC04hh-C?SQ;c2=Ynd;PwNdfM#hIn*_AQ3Z^7=+W99uxO9QUd2!80K(q zjXgW5Qx|@$FCAY_8m=MP-9R{P_K8xHikuat@=-LH;(TrOYM$N&vg7V;QcaKX!O`?PX?iKz-l6rV8 zry(nJu}I zUDyzYHR=-5#1-WJVwD3g7mmvB>-|HC+SHsSA`0!%6yFD8q}XXo;6{)SY}Ej}nU82X z80tNv{yYqK7Hr-`nRWPO5*!9c`VX>M;Z&0nFwyCvlBq-DKI0@}@S%uKPBEyXZIxmB zkw&x1^;5k(Cu_LuUDN_1|IgX^O88Eqr&8ZBav!Ba{@n@%n>|!`4144SsL)A6TZv?f z=x-;DF1yEnXbX?>-BRB3^Z}4^SKuZ_hT_WUn^RL$9bteaEX>R>boUOm9%NtLzx#2( zuU~*jkE!jr*1NZ4zZD!+)9E{*0|@B)87)A>q)^5O)gcWZILXWQP}^1%nFFx(q90P! zuxIG?dtJpEH_Qy-Ee=X8(k0{SRWH%fSG^A_5kc$m=32Ua4S$60S`2I@GuQZKb@6K| z*Z1!=|Gp>p}j;Fi}TElY}!z& zp7sT|$vC*J;*(P9r2sbxL>brMS{M({bj&7@x1cxbKce)ntk1al3Hf58MtwR{L78P1W#(#$h^SNTs@D1;@20aeK*PiVzZ`-%|K8cu_CcZvoB6QZFg*19E zgk5NZ4rh@<68>h5VY>`soSzQbWw5h$JdQVYq?S!3NMRMa37^0>P5h6=KCx2X4 z4#%}=bRX?e{SO1{dO!@%GEre1h4z=s?MbW5Y>7j)ntlk%Rg!e1nvwV)&6zO^;xuUz z2kp5F0uq^O{6(r@>xLaRa(%D>b}`#Xo0qzz4hmDyS7mvJJu>3VMCnzPhxK8=hkBXF z)stNaE~{I=eT#AWZGt)4o*;QVZ*gHB4+z=2rDS~9VA%UE0D9TZ5w0{NK{5&W=1Y1L zwuHQJ;xy-dpS~xn(=F_zyJ55Miz}%~nen5O-raVGBE?A=MnpscPYqM61r5kZm)x$f z54_Fn*?%+$B~w$!sB`Ek4sd@DV@{ZQ2fNqG4Lj!jsDEfYc*5>GIth@xpceQvM3QX} z9ZC&{QAvHlBQ!VQUy-4Snem(@^L2Wtje)`Zc!A^j@D0!5)zM9hM`RL8Wg=W-kXpS4 zRCrbgul<Ckz@b0X7H^2{K<4lps39}bNJ&}?-bD(JDURTcN9cV)xs!dWwS89ZPCK7j#Yq!%jz z6my_G5g?lI!Pq2i>rA0eJ!LT(3kbuLR~^1ZD^3uo*iDXXFrtcODWKwLIIh;L9`QR1 zas!?^&i#dAmSCq$L}S+t^e)N01+%ZV;-SSSwq-4OfEOUC2;66HQ~`qGG&oDxKEiHD_Z8@P!9rH4Csjrhjov#G*EKw^V%6z(u3^E^@;}$WJB3NAet{;D`!QOE^wbKct3DEiF2w zWL!vOGf}(QHQXAC(GCr5Io|fB$SkzoHCwD9Q`dqyx`z2fsxAL8l_k5RoiRj}(lk(# zIgc&|)^DJ>NP_(&cL@t!+-p*{opry4C@NKWhu@&wPk*Rk8k$WbRAh|?r~3v>EM&vZ zY8uC=!r=(TWfc-tH--f2kTjEHxhxKz+w8|j4N?T2o|>9i3?W}S+S#H(Y*O5THwbki zK}ggADW?G=6x9nP-Vek9xDZOPoHBbiT!x}*6!HEcVB^t zj8K$pn1Wc_bIvu2gn^*sVSske8uMJZ-Ln9k43CcZpzTM~X)rmI3YH;S@ur?FEdU}D zP_>I^OXiX^EQfc7HIc0S{CVGgJPiZJTB6fGeUrJ3ZZYY^B24Z9ekg0(+_uNE$sCnC z^}X?eZ}q_ekw`pvz-dzMrE(NAeRtg|UIQ~2PqDRQb(4i=*jW>)TWREUoQA4yp2DN^=Pluik2{dx9w84W9^GZcQ7~H=K6_n*hK9$s;nES?(?l{N8 zd(dYLnHZYO*edg9F#K0YQc~`DK2Q1%q$MVRsGeZVFvzzo-~(g)1ObIC2a(t~0F522 zAaSKNI@BA=;V#FzC|Xje%9Jf`pEfLx+%87XrF_{(UwlQcbNB8ilJxXP=Qp`-FUrEy zSZh8!GZMIB787F-GF16JkKzr>&$9$q@pD-MFLCt#T%YrNG!xli9l0>qrjeorfBoq8 zc;?K6o`O1T((-W74>GX%&u3ZgBPIg3L?d5^z|T2c4u>O+Zo3(fJansVTE+yUkbqPq zxp?t5eR4kL;AVOHqR})nL^~N&VmlYWzgK8V^qoEk3L3G?**FOc;btbXoEQYDF~k(t zty>oWW3qm5ZHrVcA(n1FR~&7qNHje1+#G*ThMC-iXV1P|`|j&Zw2x#k_)fqG)y@44 zPg)WqO^>gTs9lc$P|A?2dO_^|4D*|XW@gI=5wVyt7|fzcz5YWWn)vYGSfg1&vt4Vf z&ON1K6)&E~w=x{ghp&MQxGMo*kqyVLMpQmxTn_m-Vu(gzTZQio?zyqZIru#P_MG{% zm;>a-R+W2(zEcFOwXnROdltp3oXsBqfWpSog zuTT&P-n4>=>5v4>=CSYqX$)s5S#$c~I8a+Z+`F%q$(J%1OO8MVcyrOKxO#v5TE+ft z<$s!`{=exp{P}YKW{cwg{~0<7fByRKf{&FwSS( LZ5f|@@y$O0un3VX diff --git a/src/comparative_analysis/visualization/clustering model/Additional_Technologies.png b/src/comparative_analysis/visualization/clustering model/Additional_Technologies.png new file mode 100644 index 0000000000000000000000000000000000000000..bc60ad89ad037e0b6e009f706842a6a6437e7217 GIT binary patch literal 20745 zcmeHv2UwJ6*7jhHv9QrKiXy~-nn(*EAYEgWAWcO;rKvQfD%GKliBV%vP!N!A2_n)# z7-=(hqzy=wItmO!ADN*I)BbZN*_QqGyY}0EukYWz{>^peG8t#ynfH0lbIyJ4`#$fL z1Lj66Ki=>$fk0Sk{Ovb~2!sWV1j3@7A1#4bKD$0@41Z|*?>*vg>Er4jbi&t#V0Oa) zjHi#k=joH51-kh9o%ZooSJqZmSN!ahzyBFO9TgR?KfXcP$Jb5em1Vj)Tx8jqZ;$#B z2+P;tzY>JRe(1u9PZlj&`^BMe zK3v|h_=lgA_I>l>?Opn}N_*qJe{}xaMHlZb*q(L1=I()Ai&wYhUnFe);fM8~ZH_T^ zH69cS?j)@K_A}Yn1F7;+RRKiet?pTE7OyVheZuq727AlQ!`meYgg6tg;-v(_d8;eu zmk`b`Sg?UW`1qq!1i}}e-IgHSKL4K=|Fa6FbKzOudS)&Eb_sweG7C3QQEG-y=Nj~9KPCk{>ZF(P` zEPTl!e3%${s84wEaHMQBxAywxJ?z%Ja1CQNyHUttmw5~5r>5Z%(+nqE+#>h$Vr z_3ovcZtjuP-?3(!c^!V=v*juS_mjM9Iz94I03frl|dB2 zxQ|=o?cGQ7kM9*+FEc_;q=a8GB^s4=h!H!(3W*Jj-84&~G*sJoeKcAt4(m#VKDv(;?Bk&zLF*TYgSs6Sfd z%5W4i9HZqq%!Y<1-!0S?jkVf1n%UdiuhJR1?O8T_zr!g?zv=DUTS-0??WNLZb{PmK zqnK5O!m|_QEQ%icwH!B3G@pn6QTqPU#%OuoIN8x)wzPo(x76^dt>+CR*{~h6y&*oU z^rsrf9yObDYiuadxc1wU&wMQtJah*)e8Gkza-}~kd>7Uk&Ku{H(*?@LYQa-O$)W7( z1XZVfIyySO@4j0)2$50`Z-|#zxa4P>JO|_G`T2Q&fB&EF-`{H7bk8WNrKRQPLzx3| zvfOXY^`~2;{Tp{nsX2c;KRr4d>6KeV)6pKyF7jgEC=V#4pZY%q04I&A7qf||>I z<;tlhn%Cj&u{1_vVj^DkP^P~(sX!>;Z8OH$sY^37)E&#;!|V^9o#@df!6LbPc<72& z95?GsFE@5^a8?A8}@Tk-}Gqj8=jE9m$fxMMLB7?E#aS4yMi^E+N{TySsTjj zyZT_}qpY=6Ul6h`l(|bj`Kh__`dGP7amJC#9U2e&9^EEn0b%Z4@^}Ao z^>mkg@zNn$E@ghCf;*Tr+?r(rQPor)#PTfZa3xN?F|xF^O@hN*(kZuqkRPqRP@p^m z`z{?aRzU2(rsWIoaC>!Cs+2|H`F5YJO3%#9?Ch5y99T@-MUCjK3}Hf&GtG0TjF#8X z(8$cm8Mjl`INSGPtq#5G+IrQm-v&wW{P&K;FI%(qaLA9XkzxCTnCo2v=rAhoTnP1$gm{BTVps}J(1?MS;(q;zTYHb6Ax zXIAbY5PttVfOiLW?OI6KB_XkrKv=x!-|NLE`g|*%~#t-dN>q zuauUzUGVfs?9&TNRc3WANy?_adi6>%@6)%Ci~GcXTBg1vcGP7 zdp$+o5C@c2Oj z;mF180ttQhmIr!Mje9!6W_z;qq4&(Xt}(M=C@YVmqdW1~DYtYm(LHJb+=}zHl|yA^ zWf;1USpRTQsYXKpT7Dm%E@iqI@{TT9x#95mS@ETBNc41fCo7e_{d`;Mxs!u+36_8S zi^?BP=91x>l0(W zN;HF_wOtByh?m+V1Hx2BhCJaf&H6#muEjLYn3@!e3DdH_DN&y z@N-$=nOD~~#(%ePscV$}%^Y(w+I`lt3w*O6Z{9gvwA3px!Q!lU9)Z^1?kfPnA@;lF7wRQyHLpVS2^PSBd zL3DSEg85VK?)zcy9_qhxXUtObW)|)IM+)PIgT0Hrp&vC()zgNr7xF zInXP?Gh?N`nk7GFX3mYiE&!U~l#$wDc+Prsc%(;&vng^yc1OAVRAV zEss3PeY2#vy%C?fz+cj!9LHlPy;SDh@z@MkGga^I$MV%HwYslU!g%-Z+}X?-tT%y^ z#h&Yra!UzltA_I1ftM>Cx*NeRhze6QoO>#X0K%C+H+kCAvknP~9CB}2P2LY0Z!9hJ zV`I#9svSQZ8HcoE3|)<1)utflxexD+h3v`Eh-a zNQPhx09C|E&<*m2y6HP`!^rjdO0Bxy5LU`?bA}thq55UplCSevR70R+h$UU#?{XVa!l!$U)_pGz7hkLH#uue0|* z2sG3U8^Kz})QbIzIo3rTRB5_^xOoXV7J$yA+8O)v);~_b5W6%c33m$B>_#>Go^5 zDr*>iCC~BP`-@0d=!%G)k4{VJ26|4EGE@1JQKY)HHg-2)L+^0X=uv?D4amL0qq-E~ zlZBE4$P8u}OlL|1wX8keV#$H7uVS<;(oi_pH!iBB@=XA27TZPX^TvuI+5|HK@;Qo2 zj@#JVg1w_lkHofEg%HlK9fnY^H{O5LS%NJtl%h=c+T;92Lq%9$D!61Ns= z^k(Ehva)L7SEND$6#qJpyvjJ>a8&^;l!}BrKf!c+2IQ0S@e*5v0et9S>wf%1j$NnT zFu>PYdWiTKQT?PiFBMEjr~4Gda5c4N>8YR`826#=fVOVU!o?!%W=IXn2q zNVY!vXc1DRz{?F>Rj0kKRiP%|i`3bkM->JmH7jO)rdw_NUP-wP0GWt{a4(R-$xu{M zy2|)0$n0S&#Mn^exk$`>_*hqGUq2NoZa5_&N7&-h}W=fC)o`RB+lF(6G zdJTke3fwd{-q`t!jPwc|*FZt3N!Ipb%Zest5v9*h4aeM&GjgrD`6Uq&85;^4m8l4+ zi?lCNI>CZ8-&`u3A4U4GE=5-h8ZUD^O)k*t*EU-iri_<#DMx&&B<8ATit}>votE6b zd47rY#_{oSgj*cQpL$eavDrmw0!1L)?IR85hmxUS7)JxErQiSRS}mu+Fijz^Le2OP zFkd}^T}mP2#WoHQUh>tkHVz3al8A?Us9Gf*v&KSC_4#GV2COVhN71ySy5C^k7=<@+ z+QXx^Cy1V6C>XZD^cUwr<4u&S#B8&mX?A%cQL8ue)~OVDd_SP%U1`bMr`_Fa?(U6X z7w3g3!9}Vsu5-9$AK0-4_9P^7XWx%v!VS_>b8l}d@)SgN^)|m&E1NCGz;XkP9yM?` zLb+zFqsVW5I3okZ4Y%a8`;h;o^2({B$^Dq@V4(|vZFij+>qyvf`jA67moZjQCBuEO z&EN(A%`JmM;Vd-`c!+Jr4xy7TX?ZF~@;~#bnA``yHOdpzjSe7Z3nyP~bQ{ef(-`rN z!qg&cK;2S_u5b?t&sXUxLOQGAGSkwq)vC4uGJ?;Jrss*^@WRl1Zm;3MUY!@|No zRXlQix$@)B;ElL>%)mIK^h4Ef>FZEIHL#Pqv}#l0#pUY)y=PI8fR7-x0*x{Rykda> zE{ps;&BoTY{6*QitehOP^h3rT9;0fqyc$|dTFuRCW1E?X^OsnS+XB4Cx?tD8n6_f>MND4yr{!9 z2}_G{v_oZZfI&$?!P(MT)m=8eOEw(w;`5n?4bVqook0Zx+g~6nVz36n#?(S2B`uWH z`-;vV)S`dV`25n!T9Rxj`m=QaHWE<)z#Ss-t4IUq7p{7ZBx_xQ`Zgd1`a*J@B9uzLh5neP$Em}v zTEUUKU-|L7?@|BK9e-p=;iRyfpMJlX+Z0c^39CE^2%!NoP70U949e}lzGqc6q`x?b zhpqMX^>E}ZA@p3V0~jYrVJ@f&m*|HxFf~I8vRvKjuS_toqGb>>w&jP z?I?0X?X1YH!C_*2VYaD8Y;^NhLbk6ssk1~vA4omwfH{)SJX_`}F-KUmGw5rll=;QOj^#PN00ouqE}I}B1#;c#d%n4 zH$I+3p091~r4Y;8eT&J|vbs~fR!+USe0q1Op90)qp5l@G+nvi=y|foru2!UY-n(<> zM0!|sn=RS0kRP6Alf!WLp;xpz=FZI2cU8t^RSH^N_HlAIZ~`^{$pS_q(o-R@ELQuV z3%;!buu0w3RLyCh+VLl@fLPrv77_B@f7j@dFQp!Rx;c7qFcMj({F*b%z!&iEMU>yp z?Od3>{~vD2TY-MsUwrw9RmJ>B)=^NJ3!%mg4rip%_O7$P`R1MxmB~R#3^a|{uimpg z0NKASNOB%&*?(zeR&@|XeM?SGPOHpv!qC=Vsa^M|H~Lmbya5~rFpLc64`Q2^Z5KS8 z9-Eb0=3bf#JoX_e!|>2__$Oi;KVq`Kippd|sW~X6@$e8Fs{M@SH1A^*%z%u)88GRw zJxW=?A+6g9r6Egy0fAsO_*;4IKemqFbQQl@5LCvF#PZuo0-F+gIL|cAK)*6%miGR# zti$*X;8d%VzjH7Lm}SxC5HfCe_T^gb`JsF2;3+_^dDq&OUjt_?ki*)iPoJ)S_w<4~ z;2}HzH+!M9O!?}QA@6|}FxI!M7S5yV*jqET0QW7=FSQQn(i5VA*+<66e+>W(3nwS1 z;;Nz4?TTbX6tQTCh*ijaeAgEmJ;hlLv?tp!!C+GAIpd=m&YzpL3x{&G{oX#S?YuF| z%+UE}vsyvL#G}8NrXCfRyI2iu7+L^bg-5Xwh@~}l{|Ev0FRr51y8}2XKt?O80Mr74 zLenkP>VfJc=Ln@}Wbt)MF zY5JN^s2nuyV8RJMgxbr{t3^|eN|aEr@?>`2BM=&|EgPb4&~QJDP7?(5Vu8iGPNR_& z0Ns%ra5Hrp?RJ)b{A_D$tILOXPvPTYA;{lpflhT4iQg|B`r#?Jqai$Q_k|^5IjKxl zA_W~0ww?uh&GjZ<0Qk!2?EmE(<(IEh9<%fI_Rj5-ClLIDCZ63GKune3mYM*Xp!C@n zpR~#VY3*&gYg-3+k9<2%XIP2#D2ZR%{@-M<{~daC_z<+Ntui2@U0mJh55AjdS^n`N zuxSwTzix#F+1gRvRldG{Q>)BEcnjd(|4la`bm-@;s-YD~(V~Z{R|Ze-H#0K>BTfo% zH5Hvs@Ebu=vOf;JO)UWKB(2_aa^O7jcdfg1@Rua-4l$h$)cW?p`lNUh=x6O2!`)7!X2vF4-SgR6S+r3g(cd*oEH0{`nCE#K@I>WZQ`Zs zJ$kLYe!-G|f(EP#&cpvV&>*u6!WoDhLVh`Ycmgr zYyf#@?=H?N2tUgV>!u8gVlaCQh1)#?i|hZ~+>ssU?k;4DVBc6Fn`8${p-yB0wA^L0 zUQHhSSP6Q>7&y|tH0|2iir?Oj2Xhg@T7N-eYui<+>XyvdsbNcD#V@!zS84^}NIIC< z{*hBLTmk`y@a~B&Qc>r!e*4AZbu`}9JpPyK81!d2{>c{U#Sma>fn#r_fpYl^%g-Or zM_cw$=wrQnfeIgd+#hLTX=w?@FR)T%L3xRFmn_(hvcU_S-vUo?Fr*(V5+Q%Xtj9y=T-|ds~tOb91dA@#D!=nxhtS_ zNn-4MvD=i-xK~E*_B~Zx^_|sU!48kD67~Bvpat_f)7zT#v#;s~Gzu!Fc@#!m5|bpXQYGZ;tZr=FTQ+aL$=@P^$`bH` zoG0w?1FyG$TjRg*Z+-X_SQ>@Ulwy+L%TaH#+UQU1$L^MoOA?MaOgxhyX}Fp;ky(vv zDZQ|6YS0A}*;_kKMhqnTSxw2HwVli>cIJ7HFM0BC|E}kb^|vPDZKDEO%QDP! zezr(cJ{mTu7~xZ7T|Zu4ypfQ#{jV1)d(t|-e7E9gfInl@HZ>sLo2naTSk|nVrOPY3 zDp=ggF#93<&8PHDPUN14`qjLm?DAvTSIg}c8&dYZx@tVwKw^ytWt98*XB@Q-nwjP` z+fR%v^iY$i-{3XbqpC@-=!~f#)s|)LwV{unBu*%*IlW^0P<4A!?&;PSmKEjI24s}a zKS`|ltM!?3KSk_K>1k}tU%mCHL9vha$8?=`TdJ_F{n0rhk$%y^l0yp!{hdNEU1_{n ziPfKVCyOj{pwF(=c+SptBDxOeJ`9_UWe_K7=Jg-l9n873wpid!jcmOrczv?>o5vf7 zc|k?g=}jzKZ*6~u>PT7?np|ppVEtat#}hTK@uRt%~IsP zEvAQ2)h3Ry@te+8U1Ib^)h4Ew_p074?+#=1q;`>6w$u!JQOM8*TDe}(jp6MI>{;s| zeOH^sGjbpw+Q`*%yk}lU4b!P1mHlBy{VJzN{g}$7c5LOTwUfEixo?AfDwn?oOU>-2 z-46v5yx4&D=pY^???+wDn`2e!^-U?P^=~#!P}trLVZ7N#Sz(RDEN-R44Jx^eqguW_ zUzVu**Ly4uy}V0t0i!uCJ!&xdx zYs<#z>`*~Y+>B1#Y{41EQ;We zWehD(#L)BrDdfc(W0BCr+ikD1iq|VLO*oQe;uub@qK5U7C#r(Ff@+KMY^EwSG>qvK zc-K)5C9S<6n>8F#|M-#9y9;&2*$lEw5sUfOu5HYRp1~>+%<|N&by(%~y<}D)nVKyX zA5`j34{M|^>j~(U)M*c?KN6fwX;;nvJnHh=vvrg(ZqJ~70*~z6yO!%Wy_?x{GJ;|s zzOgyBRVho2TwrUaG^%-=H8Ypqlj?aCPHie9HhrqieM^*Ms%?ADgE0H~xtHWcwy8vV z!{|9fa=UF?zu{}U^e#nxO*$o&k;1qTN;hGKkvr&KJXV12li6d+JwdWlL0<=@%wC{P zJE+IWWUvBOWWVk|u~)jt$I;;v-dUH1^3S81C3Sp?y`5^J{|s52SysjK2L;3xXvN{4 z@}O0Qd~hx=1Ov$Dx9J%`GjHFP;(rJg>e--4!s=%`w8)>T zw6`kNHQvb?Zr-NgS!$6ss}(`CNh8`^L^u}<{m)nTh~={t8-2PH!P{DYh30TJ?TQQd zTP>qx^ucc%!IGO&2D9}aWP8xLlU93geRSc#65t)nu1mbUCY5FJVFMQ&t@ZTG&4ZcnP zI2DZS-Jp2mXhfC4Ou-n8XPAU_qcR8HVohXGW}vI>8#hhTRFX89JC15Wy0_nC)eTs< z=jiAvgtpk_{j-b6v7_XTD$(2g6Qw}Mp{N1I-!Id+b#CkkNB-v^51>##0gYSoxxOo? z!J}2HJD}bED5yC|)`fCw9ci+{50~+$l(K6SicsH0`Wd@xpu<1MnFqi*<_6pWyE9K0 zcfg0SfzAsX_u!&V0-U!SX!$S(;)Ir3v0n{!KAfF^W7NY2Z8F`hAyw=ggbTa0JU9qB zi3Hxe7;V2nXAlKCfS3n%h>8C#o;5Mxjp@Ptnv6A|v?LbcuULeBeqpI3niyk1`S+j5 z!w;huI-bgB&{!{V5rHN^0-+T2IbEs&*z@f`zaauyE?zZY^4tgh7EPzN<4!C5l}x+9V3=*Ui|op)Q(e)t4H-1H!Xc@ zzRbX--=27OQnh@J2g#o73Z4KI|1oTEXa&4exXUP4;_wToku`TN%OrxJfvkbu$uQPT zrDH_{-Jl6+K?Ka>1U2^sjKk0CfN3G!sOF`zp&#s{a$bTzBU)@djpozO3TNn9 zwe#~`m0c_*5H`A~>x!p&L_$zRA}#J#GE+lz4E_7M=)yqM3{lw0t6=Y^8H)H@WI|Ai z0iOp>tx)D(stn@T2#ysc2ecj42GN*Z$qG}!m_tVdO45$J&UQ5TXTaHVc zXuFDtM-?Saw>ygGTF_2n2TEc`V3$`j=ybqAqKaeY;o&hs6$w2bz1b&TWYBux=P3iw z?0`5!^E1v$Vbnte=~8`A@ZJ|ClTxom*8|U59Z=(M_+xH{wezESX<)SZ3QfDIFxle? zeiRrasDHXtHW_`fAh(GHb@YJ1j8`ovK#3seZi8SrF+(Sba1~_d8!!7p5^>GSDX9U8 z{|1gQftp(layX6%q27!V6|VP6&9|R{?nFZiEF_shB-I?krd#E!!89cv(n|Emt%miv z0phtHGmR7;E*N#psI1h7Z*{|4AkAlxYQR~-fuHUMI%Pdd!8l}wYB$;qy8WBY(Eb8I zU*uWbYK?PQn4t6oQ_UTq@Ue&PMIkR|4z4IQ=hxTet6`ET8O-gjaHx&~Yp6?Y2SLPi%|`-$$B^a2)tiF7jNvQ}Wt-a|Vq*g2lcNy8{qqtoS+3OX{xh`Q|iK ztufE}&b`0vhC3dO(tf;sAli;^0*kBwN7*PG4j}`_n@||U`7QVo4?G;mVRzuz7EZyD zL_#ouHPHF>bbsLjZCHk8Tn?xU#?dfIl>uRkb^x)r3AYNSv%D)NU*V({`n3+hd=#eR zk(NxH`+~u(c!RKcX9%fUlO|=B@;3LOJ&CDt;DgGQa`3^vze9|cpShug^qt` zTy#*BL5Xi7`_NJM1j|V^8hgO@1p3`)aJ<32WeOib-%+?=J{`zBka)0Ag2@iWSTqO= z`CRm;V5UXk0GOO#M{5dE560|`F#*@~gda)dPgX&tY39CH#96rss7O$1w-{(vfQJ}r z8O|oaFN&KB*U;3w4`0UV*I8#6I4PQitO%E8otx-0BxR-Nh_c5oLZ*HkyGshVA!= zrDuRm4G#PpHBw&osjTN`A7{58fVBpT*OYF+q#qig+8s$@nNdf(7sFd|D}j?Pe6w$3 zI_M!-bb+A*b+-ttEO@BW=36q@wT?nHP+jZ6MhJHKo06ot=U7d!?urdEAj%+^!Ssf4 z1b!J`df03LrR2o(OD=Ej?!~!Fw=^&^I-@ra!)yRd3Joz91_@E&Q}@t_As$I_Slyu~k6y5Af|JGF@tw$aUAWdT)W31({*)Ya@ebun96?EJ{4N zs1o{qIqs;gsIMGyV}Ot$0RFKaO$zZ2!C!)_>ov%Sspxk=!vY32ZH+P-4w;U*@ze3s zWLtjxEOq*MR_>Ud&Hz`}$M5^+?6JrDC2-ZK3lkXX4RhlXUl0%%#WXp+J*hW-JV zk)eIn<6EnQ))vg|XeR_yFzQpNOrTJKHcA|Ggs2)>abSQbNX#sRBl?S?vOaI(cVY>M!p(0 zUB^Ni3>?m|lPPx$k3Tt&XDW<0QxD2ICJK46xE3-qhQ>sM+o>cWcMOU_faPhe6|Qi2m&-mz#Ef_4u;erTR?|?5IHVr+Cm5btQJ;32vnSp zbla8Y-(;-a_oJK|NNgzDA#n`et60DfagGbaaM~2?So{6_{9yU99AZv1M&BpS-x>>j z<6Hnyh#fajb+>^n3Bdxq7e^ZrisH^;{(`_|pbZk}=SwT3!~ynlouesOObcP}U9gTx zES0{F7eQknYDEx`*^pf^?*QsY)D#MZ$pRc9&24RQFc}F+1$v9E9Z-ER{lT%rj0Wt; zuhXvaU?s*>n<8t~0iS^DO^viFV8#O%JCq_FN6Tp11BYzLO7O#>2Ae^nft5U6W~c0w zQ^mTpYfA_Z?x%;nn6;%^TUy2d9Z6Fk!cYSEgT7DPL@2}N@VO=^Kwu540~;6o0(8V~ zP4bL}j0o@XPu)ZZ*Od59q2itP^1=~jbP0iTL%ury#PdSHv52Q|v@q^e%bh)!#X1&< zNeEs*f@;8fS_MPG@+9qLov;xVfbmT#QW0LDbqEbkE7pJY8F;rsF+u=u7wFyQ!ODX= z<_rh(HF|R8Q=U^bCa^w&iSr8_IB|e_1IJ(h;Ex4-x7vwkKj08G9vz4m^?;EURP|uN zUPD$a0>=oBFrv8&fhfp$JKOF2%pln|0mLv(-0>wW4py)xSZ`bnh!(&-Q94e+lL4n- zT>z^3LI_~bfIdi=1m6#yCY*plJp*3y&mmvaNO~5b$3_1AU!)8 zdRvil)oJqRIBY`D#AR}-sNi>&0y|^Sfi~W`$*1{ zHAmp|is1}275l+v(*~zyi;M^x2uSWw%S^KGK|#U;iL;$p#UVgwpi%lhUA*q5&^e53aJAJ)X3<23bYnR>w?EQOcwxNXTTC5~<+#89Pw#4$T; zBU_|YsC+iW{#9vhH5{TslQfv*#NPu+zz>{s;`RqCGB$9SyrE|Xuion$avba@v1vm0 z(pX`wGNu%Oa276bzj#>D9f>3I_ymAJfI*lDL6vni;J=s5fRloxHRfAbH&|XIg3-3= zSG^@32kvQzPiR`EeDpMl4S7&f5dRcGLBw`f3I>O8L>tcu9&~I+vBSiH+rpZR`;1bILeQmG@b@T$NjRRo%H!OvM+c|aTXsPF}aWX zewt#@4bj*xoL~u+ARkf>#c3eVFmIzQih?_sqro?aP#>Tz5LYH84n{&EEd9cIb#QcRUX+6 zF1Rt1@kX!}Q3;=n7z2Z;I8MOnicl7}5;6>CPFh+Dcm{RQWQ#BWw*`^g$jFGAc=`dK zK7oJ)YUMF(w7Ov%N&zVrI4$EH9aHlb>IfEJJ9Ss*DqfUKQu`` zg<528D40Ubf+rY524+3J#I;205T+$$PsGpQfMpp8jhWmA&;39mNJ{VA88HuoQ^`0n z0`!0uz_JFUYJfb_LQVu8C&7u$3l%$J5i8)>0TvN807TLOEe8=P>(E1az(9D=fsu`agC;XLh4OY>^n@MM5w+At8qfmL&b&*Gs)?8XQGEX~M( zeIps@pHj$H$j(&&ktOaeAr&*B)HVQ86*B|qMjoW4Bmq)!gKfd}!DbRiRpTAQiLmI` z#(+k_krZ*bp-~U(7dppNe9rV>rfA$F>5}AC0&KQ`1Je_m@%(at{Zxl~+X1#+;8u78 zS&jmCB!&=8oAB#MC~G3@McM;80c-HfUcsFMNPij#417Wdp48X)m<=Uzx0*`j)FI(; zn(#|Zm`L6s@r2BWF9spr(kDjJH!Q;0F__ix;Ueka`iEvt>>?ww2Y_tIP|sgwF!xUU zI1uQzJGd+g+MMAZ%+BhN!EnuR6QGBY6_32&kp^5kh^vnE3<@(ej7r#6;yPj6ZS;C{ z5NBQyI$}A@g}Ej@U=z@-?Ds@ssq=-EnnV2A8T1Py{U#<6F!UYgo8s~0>xuXr?kq_( zOA{T_hiL#lVydaI2e0-C6Sa>LCn zs+i_xEfkLlbuaxZYsuVs;J0K4ep1LC;v;8P?#BiF_%#+?akj#-FgzA;XzeBfRKkU} z0!WZ`$gE->hGZTRHxEkveFmm!U$6cgj5ttm)!bu*evjDj9aV1DcV9IR*1|DZGL@bejiVtoDk!-5CdTAY1JA_4M9zKy$=GLWHynh*`!KNtg3=c~KS zqs6u|04WF_`=bmE@CO1A75iD?Msa!#yBfTwG+s9oAGrZMy8#zuS0<#3?19Qv2kdFP z7KRcqT?2?}0`hXXO2t=I(tf7ECSMj?*oJOjz-Q9<8w4VZgPs^3;UX&=Qm0xap6bG# z_k?nethpK-bSzr>Av2*>W`g)Z?4WTV3(gW^PlV}ck%Ff+xqzj;0Vgi7S|C=$!vnoQ zkf*LOa)Q$Ev>SAkPr!74C_5(2?&J*F8yh!x@{I*NxM;HK(ZcLiU=m;Y0UsNMr-MwH z&Jn|Hd=e9^zAG?SVpfkXoFS(~ZQ60_08{@5s3Hw^0j*Y;n2K-(C*K=e=uLhD42zE8 z&m%p!ZP*z?4#v7WfFm}uFlh#>c>IcFNbu-9oiZ*j_D;ZhxncslO`|#`k$w>{pWFY|M;W&M24p(es7xIshI*L@5A4UGFCIA2c literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/Cushioning_System.png b/src/comparative_analysis/visualization/clustering model/Cushioning_System.png new file mode 100644 index 0000000000000000000000000000000000000000..96e47dda1dfd8552bb619a6ffd62660016afe2a8 GIT binary patch literal 19909 zcmeHvc~sNq)^4n|w6)6V@vBHhXe&xv2UJ8rCR^Jg4p2o!1c??QDhf(u3=pifo*q#u zsK^vl6hx*X0y4&-GDB1*nS#m?8Ny5;goOL-v^_oFUA^D^*0;_&_x{nddX_d#e);|0 zckgFE``OQ%AHKG-nDzGiZ!;K-S(Y2V*v4SI_L#wV-SEvf@X7~2_E_Q%qvK!hI&S0c za@>2Lhcjc#zT-y^yB|M%@S6|3oIThF-QDz-8!gvc`oV$Y$B(kt>gpc(#~YTrd$4qi zY;IWLB5xhtV8>=KX3nAiPh&(z&tovQtg`&#v+X|7;ug+@7SDkGsd^sAWmSYj>DhIg zgZ?s0?X8bK`1Fy}XE*=8^rxD(Z;ma^OxbIcReLLQ^gz;k9Fvr96E?nAc6Gb>eZ|MFXzOT^tI$wx3;-^aqY* zIQI4B^;b<-HTf}{FBfMD_ITFrkcOE{!&n8qG2X(6`1tr}uf~IdgPkFPBXM2b-DM>u z8yqKJs)<53E%&V}ckpU(mNtvb#-iQaH?D!YL!E@g2-AQRx-@P^G_JJqYG(2mzO8dO|QKLQetoqbF z(k8yVDS1!cn)U0~OP{NlUw&)O;{Bqk80q8FW*5vAZRS;>i#FZf_wf7tPW`k}o+;;P zb93}q;aEY0zU$81+}xpSY6Ty=`&CB`iMR?;go&?*rvJeG{3&_A;0GPvT|vI7si|-K zd5a^$$i3Dz>HFu&~+HK2^{Qmpzn>qaj2M-^vs7tYDOFP0@ zExDf3#`?lb2dm>dj9aBv-=99sZa!Ar@wbKNN?2yY5z#&`f1oSVQzhGFEXH&2W7n3Ptywxy+|;m$!DvyrQ+9mVE~V+v{Plo2cX*jK3qlEypP*`kt# zAr&{m9V1l(UadcP=up{uRnrS+mgjzKK7LIz9 zZuo?%{|Btt0I$M{+O+uWYy)?$tZBH)yHL*?t6^5pxj#d#UEa^-_T6ne=ifHJwZupi z9j5C4e7ce3nNzHnu&%Do!MEe0G>R{c@_)5nYa^4%Tx`vYrieaop;<~{933EO@SPki z)^n{(o~)mmV6w5WowP7L%&7@~Nk;4zdwcuETOuz^jfYHa2#r4a;H{jYvLzX8QB}TN z>@Iku#*EJEFXY5F70CMXhJ|B=2K@-#VeVA_REvn8!sMHU=~!2}%j?{4WM=B?1`eKK zE2JV(qib5F3KrUb{GnD=!I&_LK4o|J=svT76RN#ziTrl?^76E)i8N7fhM?+TLd+$J zL}D^FF6^x3-Ur}LdcOxH{)`llRa z`g&sGCuh%|_3f^@i{!YTn!5br#zoVoPfy(bX=b@u%#Ng;&ZFJ6N(}HH zIH^@3A8U=>61AoS`CiIYbTB)|+d`}}cUQh=>u`S2rc3Sg%#E3@uHjmmnpJdPqCNe7 zwpOO2HQMH9hP06bn~{u1`gAzbawab%pw~(Itk~=lLh?ZDl-J-RHBqo$Rf%ok&_#-o z%(Sb!Q|c7*#3@;On)}o1mJPR^Hz7R)*KgcdRII_?ES8J~aw8)n4~5THSNCn~pLOs4 zy}7fW|LFbXOSO)LTG9POD5f_LY9QGF}j6Ww)KnJ^BmAI$xgARh-hd zSm3$6aO8$=2R$khY1OfpKUYNRFTvM7eE86JII1wK{;K5RLR`g(V;X&(TGI4f7Mur|fJ#+5Tl1b_CaDyOl4S(2}A4Ypw zQj=)I9xBxlRp<#SV&x679k-HF%V=N9m**vWEm*c}nL5^ffp_!yS@YMlUk|hLb99+* z_;@n*&1ti*6l-x!Vy7lW)s2mjsi~>7r<(%;Z#>Fe(TlrD|vaGSOX&l z!|>SxcE!qr?(SMWD`#(fZGv$CF*B55{8H%Mxc2Lv$-5}dcCr7GY&4H`yYsO6e^1wZmk~6*MEw;j-Lt1ogVURyBkhbD&dM%W784UA4d+V3 zC$py{t*e~NF7!T2cS^Q+o$;J;3mMwIOZC`Kd82jq8K@Kvfzpng&Pdm%b#<5M+p>jz zu8w25_0HWji2@&~LZL|BmHv{kWhP@F$^Q0!%gCsxV!z;%HWyi=9lG2cKj6HrxvW93 z(>;H%sQaO+xdW<-ys4Xo7q{*yOiN44J=}2n5R=&&$Qw~xW}j6Nd2&D2CrtmeF!JQF z#jdjp^i|q6>$d9)veSDn4L;C(we{}vZ)b*TCq#Q}6tis|eLHrYozA#7@2`&sUVBm< zw*6CCpxcvcbE=zU!y!qv*E2`&Rn1_uoelb4?Qa_w8I3gunAbNngaP#$i?dt2f=<5{ zbgU%lDC7UW@_)D;f4=xfL3?FivdTPNw>)tcHh0mUJ$nuwIkE+REH4;&nyxt$fmxyc zYAax??A!ul5BX@l=!iSVeyy=_v7a`BQMB&H?v$Oyet#Q$4tj8WIe&6!>Fzrpqm-8F z*E@tQNxl2c_Hc23zu@ohEs+d=H&8Km+1iyXUc+#(YvGiMfbwd5kpp%VYTF63^ zIwy_jTft>&g#)L$0r0j36WvKkvGQJ4l7Y~t?WS&1eZB3TtiyJhX=(1}R^ua=mf5>h zesnbqBuxKm)lZslHD-jX3GHZ@hLuc*6__B#rUeC{~xKfl~fUAOmy=8e{gl-Boq z-UXh#`E2?>(CE()`J)i|Z-Lz(F5Q87J=2QLXiYv>u`BTNoRG<=uApi<_;uZIGM&p{ zs9e^29Cut`Iz~jJRo>_Q8|pck{*}RSy0R^0XOffY&prbQ;LOqz3$sx0epcbv%tub4jV=-2-V?zT$nvI}<< zC?-8Dv?WfK#($}cTTl8laui{FYBqL3#WZKw+#-E3-F+a1B` zlL?;Q;7Fu*6GYD=8zP4Y@9H%CTxS6G<9aA){|H7#gqlp7=NQ ztm_``Qe82(aI!;}B^~PUE#2f8D(mN)bLI71)4GMz7%QyuKbQ_49q8#I;KfLXMWX!S zs`)*~7>s!qjz8KP##_ho^7?X@AkmztJxJG7VFVp(pW*w)TFXvBY%FoGn5_x>9r_N^0jlW3+`R>tBxzg;v>W#SBT@|$z! zig6-IPNrpdYpcUXB#Oz{FV9#ti`s<3*pz7u!wdO)1?vn}uilS(2YyQL+mWa(;-R=0 z8*`otg@uC1CO6}I>!&e#S-K^9kL#J-fWS6`z=h252WnJYe|u#0$7r04x^Kn}o%7CL znCB&a|F>nDX1aRycG*~8U*F1Tdce*ZIVuy>hMG-02|)+j(BwOv@pbzQ^~XfcWUW(* zbj|5lnpZP&PC?k=E%}}K{9(fUzkN}eu3^@JLt)DBIXmAV9u13{qtA<7A+Iy;P3wGT z?gqBS*MTwPxuo@kTM`S&HM zC4W>3RD^$&tAoKBx{QrW?QUyVR#rNh7Tr%QyD2Z`PFjpcwNAQ>YT;XNF{Nd;Uj^h8 z78Z6RKW_yD1jyX)GQR=$mmS$+ZJp`Y8DT!f>UwG_^Y_PJ?b%m4jh@vbhpkN=t-ULF ze)&ayF0N(u8o_#Y>{ltM5Plz~`4*ma&JI?StW)zr=V4a2kil3{^gqwt$1Cclud}w^ zmN+@th9KSS-e2f?>ojeb?vHHI-9LD&f!!H>Ba@mi- zff2WIRVbwm-4W78J8@@NUEOqJHO9b$g;&(oKE2r9%;qYNu~^oPO-*BV?4~0sJ|8ol z&nTTc`(Ljz0=up{-PnKmMp!SYSM7@#YOTwpqHmx-QQj zc<>8#0;hj1&9~Ckqw7YvOYyk{IqjjFZiA|)YrX|ymHbbND|vBR%kj8W9$?Wc-a^|g zbzreXX0b_W)|Zy=$rVI)l!x~Z=iqvd){5rp6yI*K>1YAo4T~ z*B8{w+tyVb-Xi_qTY%}FFWpV%Jf2}T_=9yY)xzMFoPVu=P3u4KdEFm35~G`o+A0_W z{(pVE;(KLekIC_b6xps?tzJ#jG`sDBizB8zm+qgbg0Al98}HBdSh%o(#rfi!^4A%` zi>A#|F|uFGc>eqw<$wQo0Q37revBZsYdqfdZBl75?YB@EP`^FN(zWMA%*-H`&XsB4 z+o92%K7n~(Z?7eXBQtXab7!c|xOel}gK6lgqffZ--&Zd+<6crYbK~D&%+q~+wXF7l zVzd0Ly9QE+5jZ33_Xg_li=c#g;zBWt^D^m zrp>Y*^e@PNW|JoBO6}R(G-ayE`hNZSaHH=|MlI7oFMLn^mD)V+HPP4Yf)<9xhSw%$ z6ve(W`VT4FfT0qqe8(>Y(%vvg)N(-5sH&D0;fMF(2H<>a^2&1@MS zEf6x@pP1Fjvc$$6>*k5&?>K(^`s&lc({s`WzHWKwv%;^iuwK@)tg+ayH7g)N<4xgu zhQ#?F8$V5WEoQL&YoV9N&B8BQW;R^)=XT`Gd3^NE0nv`4u=T!8KZy67=B<}1%Gj*m zqX9}%&{XS*z|#EmTwX$6>XZD;iQ&x7y;0JxI@5Z66%X$4fj%vjrh3nxTGUkA<)dA0 z{kBG$5{Hmw)8ra0fiiK!-D6I>?d{nwPN|(6HM}?cd|lyw;Vwr3_ThkVw_NJLUQs!D zyeIIYzDn7Fel3;ide0R?HPssBrE*f!MSi_+y%HVhD7z>^Ti%hU*os~5V7vOdI zr>@Neu|LTQzE=R+;UQO&^d7tKc>&aw#w|b)@N14qMboDkUklG%Yadx*qnlr6uO#5?jm>e7EdO*?sZS zrAz)}d97R6Z1&>Kmw(i&GF&JYi=~omehfbD(v)??jvp8RxpteaZFuYW+13)ePw-_T zw??BiHW^OE=aQi;&zd!h6n=`L2Iue&o7jo%omDYW+6`Gp?AN#pqrW^e*V)I%kkm@e zfRQKuU7MI?_QIh{)PYG~S(r!a`oEaz`|<}JkKXj+&YvF6E+=T>#_V4CcmC#J2^Hp4k6*w1NjZ|ZFU%pV@FO%v^LVm3+Gv?g6b0#B?*XO*tb|zHY z9L(4QWWU3--`CoY!^!ZM4lQ-eH>7$Q>fqhtndzhyc4>RW%Y- z5eN_zFB`Et+wZGrRrEj!OSaEmp6A_PMIT2&?p(r@Zp0HQ;v}YpBTqN6>-Ttf5Y3#s zZ1)9-rAxz^fxZwr^xTE{CgaafO7Ye<2cH+GEJN+x3-m+GCJta6R;Ynlgwe~tEgYgD zgD-9)5=z@~PtT4m?tV5$#FzwKrk%f2ZB~6A5AQ zd|fW-GI=1!lOa=s=0oR0{I!j}dP@+qYUY_y%HHS;U1eDV&`uno%=1}a|ac^&> z7;lCw5@DXQ39}MS?&M%athqVph9zRb%J9W^6m%FdZN$GiDu%*E=2OGw)j}bU7W!hE zzcVRGw7u9^+jGW!cWKen{5zKDL3qVDrh;c`Oo=6C8Cv!g%KAvg_boOSo<~MB3WjKK zm7U+QEN8H2{%}2dSG#PtJ=B@@r18zPAOH;A&<*$`gC(%S-O*);$0AE7S ztgfyOJCqrTSiF&tpp(XF=^1jLlDMlwy~4y}6>fp%Pz?nfZ_FkXix7e(?^{)|Ar@D{QjQXVRQZz3w8|Fm))+ix$AW$z3yPBcXmlDfSk~fs_#S=!l#CyX zcGSO*9lOcN$tkdZEKs*~yvSf^D4d@!$+&}YkAFX>brX205ZLTO#e$}e>Uu8w0W-f~ zKtR_f`p$E>ZF+Jv@kSjNY?NH_goAR4PCEZmE78qMB`TFP*;Yh92p%&hyF=JzAu|Z{;aI5Xv`Pr zovMKYCpSl|QVx7*y&K0kib<(2@QikX!Z#r{(2r1;I$P;!?)Yg!zZ{ay57pix5L09N z9|I_6qZ2a?F_r9!-x77HCC^(#6F3Ya+;Y3(>HF!jlxz?)v}smDMBg95P#&zVH}uRY zq{CU4W5>g6wx+(G)z_Ru!F$eZ;+4j+pWn@a-js2?>*+hQX5GLflSaeUQNjx}zym~- z+`G4q!d!>v^AWTMij}!bcm0S#e6nM~S`1q&A3y$@9xh)onkJ|;XpKhvMROHWDG6iE z0KUYuGy%28E(o=*-rmijG*hNsRNfdywoZzPw5heU@Mj!HuK9P{#Fo*_p7shaZlu_m zY|~1>y&)Csay*=s*^Us$48rKecXOV?2|#rUgId+$pXXR(tqLUbvN5rsCC1#g>bhl^ zN7*L{`y1~ZG#akZV^`|eldK2mGLnx}XK=>)C}YmdT~dago(`ud8_0+i%Ju%D6-f{G2S*zGi`c4q$?pRu?U;^ z&6eO8;3s;R3Lb90yAq*H!};EZjOvDl2#8xF5=lIObW`~9O4G6CFih|6WM(>}zoS82 zMTFikfII=SQj9VIJ+}(Nwz|8!i|>0Q(rFS*PJ$;-&LhAQwk5WIsq443E_IJRr@jco zSA>UiRkTqu!0H= zY#TRC$Ek+c<#`?1y?ghnfQb=GjiO-nhM)GWC%9S4EHuHkyHQTl$Qn7#f-cfb1sA3$ zJXd+y#U&&g;|?^up6!cR>GTzW^r@L@E&LC>YFo92rpJm;-L)Yc=&BGRNDZ}=zTD|%L zjo>I(G6H0hk+Ct>{{7n62Lw`b0QdCw-yb?*3_MdlW>Ql5g->ieo?7aVKOno=W7A@* z=*uV%wBmHd&dMlk>riNTzBbmhgwpoJi4(!W!PhbVc605oFC4RUML`t1HgT9o5UMD4 zhx#|KWmQEthSg)-8IM~-6f0Fd=(cpH$X={3{>hY;3T2Ol{g${uC;=cx(rX#Idd-@; zZ(Q6D8?0I5GSprQL`mKw5T*f;u1fUv@gm|8i49pMEycX^vJ*XVRaMpIn6>)z4cspL;A+veHDN_^aOhNAh3*HM^e(3i^Y{lT$FMf znG_zPTLGpE7Azomqmgh^6J6y_R+h`&y&oV9Q2=hr-c``uB z*sDMSoBf9?Gh<~$IbeFojLpG))6i_omMunDf}u98DMQ>U9@>ifjN`|T@5j;+Lq%S? zTHg&NTp~a){R%k~?b{h4ov7#Yz>4yr%PTD)SbW+XA~4NDE&;UPQB`G8jez@!cqw%r)S2D>=F#5~Ka?T3^kxo+Lj@drSEIR!=uX=? z|0);0iD>=e}l;xdE9TCubq@WRl3gS_Y&8eX=sHr1ygKiV;+cS)Jc@EhIO6yAwp zKwxM)k-s_CCg-)O#3TGO0_78pVLi;buO@>{AFHG{x#cZGawMBJ6`*@sgt}R&aP`VxN8u#ad77*ZL zcjv%X`c4D{c1T2SGE7!p(ptfBM!P|57?Xb!;Cv=?8?J<{B~wmlwEs}4`n-8iI7?R+ zYY@psU{V^wbz>PQnOV3ku_o}t9Z9u!?%dfAe5Zm*w}p2FT=RSI-CJ~Z$eZ*a;EY7& zh#n#_2-{Ib8a*|E?lgSH&Jz^^;9dtAp-qAR3OVY^Y7e~*fTR+Ns`a#{<^mqA^O0`g zu}?2rrvB+a7!>7;!;RfLQGtMaO=Q+O zt_2zYECc6$$>AP6+*(*5X?MbOIuX!JEeSTB+B||LJi}9T8RyTR&j%T=2pDS#M=6R& z_=2~QF_5Yn2!ab42`gA;HhC4y$wy2ewabeKr^tE(f0U%LN zMEOvs0pAGPgf$kM+7=k>=z>`3h}8$Ti9IfEyfN1W)Cu5AZ=s5W#UeIO-|tcxxnt&c z2#4t7Pc2CvARudubRsODSLQ6$f2in?z>RMS@C!Ac)8{2DAXpp^{!3xJDw> zl@z&#Quhc0Q)d5^kXgaOcsLRJnJHn{fV)AYsOhUGLZ~75OPNtxI2oy%O9MYSq(&|G(+EgkVu|)Uo!<(#46{FRVKp~ zjm#y=mXmM-bO>Lj=R4F+brkUgAlr<^4iwi1rp&#K-sYPs$Ym8V#s&ysNrnu3tQ`)> z&j9isRYs!r(v1ouT-N4uHD1v+n02@UB1h-DU+(i#GKh(@M6 zS)gIG;e2a;r11`I1&BC2s6C zqznDgMl|cRalf!Y=r z+zzqUkMYu<$<742zbPolime9N5Kr!Mtwm++l+km>KDeqQC3rR zz4xpXy*(*?csbL&1!nH$0BqvxmTBnXNbse$lF$u$j}ksrRE86+13smG zj{pjCnJyN9P*xMhI?~8M*NCl<7xqX~R-?KI9Tt%T)JQ008_-4pgKv9ul%W@^EmRad zam1JMcs#Ic;q23ZQZ*}|@aACSnfM5oC5z<6~yA@AwY|=x> zO;(%BZN!^dB+}uzsBHupAXm1nE!nG|V*E~BFh9oe7}Eow5go3K z)Nd#Z;D}3$QLlz#`u%lCgl9DOmIxvwt*z`-AnZdm-y8xAP<8#) zONtVWTb*pzF;A3lKHQR<>9sf;u35ql88g%by+1u5S`a@!KT~xya#GdoGAYYMoH6jYd{~%oMA9nO78fBn)y|nx$Xtuv@%e*pZdT~G z2L_H(eJ$4HEFJEw+=RUejXm{Jm{EWr%*^e%|3@3>^|R*D6nW|~sZYC~^9NN+)lAfS&8`wXH_ zc~$}z?;AilNJO_xv%~@4ZpWoKn`6+0i&y$Q`ulsn&rhfj!=R-u4w;#Iy;rFwoMFxdi&s5QR(9)4~N9BM9F(hh6N6DQE$JJi%iUHO#zORqD1qY#)uct z7Lbz5NbW(`L6&-yp2n~gLR^qXuQgN9^lqBkHRNdpAOlHd2jg(HR`OkB5fFz8EvQrj zPD9X;>3U91j^ys$vF{#|2VhD*#zMSM`YVrYP)!)h(3_;A7&}uPB0%Mq?#W#Zj|}B8 zkcNbBB4@ZM`jFBqg)^>o44KppV}KPBQ7FmEHtm_9aSF{$EOlZogjt*Ayjok2RVNLYR!Hf1m-jFQFe_|5 zKA$^mzzs9tODi)?EBW2^VcOt!((z(*o_9gd9@Nbx6T7)PR9>!;oF=0gB*Rp3wf`-V zhsIYu6Fq4HRqpshk^#vv!5iyuQe2itNM@UbmovHYQIfoc(6wD4!p7yEOXJFW8gkgI z*~Yy;(FqRzKx=I7n54@@s+hnSVi85xvEl{c-uZ0{9xio@v|4z^$cEFOHw1U~_^!pWD`hSyzzK49G+Js@5NO7j zSn=53yR z0rIXV6J*h*URHTdf;GXVaoAR z^z|#2Q`@c_1%XspqEBOsV!Rcf-|R==K`1*;Nk~wM(=c+r@+1`jDQ$pFf>q@VHHRP3 z{<8p?bTTZQ7_0$Ic|&|f{Zv`0PHZ$`1qv4I;A}QD{c}&e=RAMj_Ri{i!^w$>iIVqw zNpA{m>?wt=nkUK4#1RJn)cm2cUrx%9ibvDkz^O5=InL5dMN)fh^Q~*#8hb!F!^+>Ng^1U{V;n>I+ZA2&_-nW_e)Tp zQggd+Ie3&VB89H_kVDY=@0G_+|H&qzbX@#93^4y+d{NwEP^YncktsoIsPe=Tv1O{H zPA2NGEbk_xttL2yK0@vz{f;&#c{T?Rv7_m5*O z+iXP+J=O0%j#~j)kvcp}rDl(^8+Yynsz0P2FYZ|t#z4L?ghg0a&0vhb@cQu+;J&C7 zM#z?O3{Jxh@?Xq~%XNUl5gOa_E(n4|^tWD}B|DQ#Fl#IFdxtl@*v+3kS)^O+Hu?U% zc_no8O8!9iuW%^i=v<9LUbZA{X>PAjuNHg+lqJwn^zz=ZUV8tpAM?);kA!EW&-hmy zJN>WS9e*Bnri0!}PvL!Wb}R39_w7EKe4+d3{C4K@638&db#2oaM;S)bP2XN(n_96b z+#wWg$RbN()nFFrhC&A6%h5PcwJzjyXxX7OoB*Mwp$9eK{y1_*pIX)3L&kZ<`{$?c zg=O5y^fkeGCxb$xz_xIw;;S3ig*-t2&we<|K-&`hh=y9C_$arsG3NaXhH$W*Q5vfz0)b*+D4oI0<25ajs>&bNnpx+=A1ePBVQQ8dt?E zgXSN#(Xv^g%X2G~c1C;F*?n1`@r!S@Kjhs80XbP9ou3<>XQJ}k=Uc{WTU-0Dw`Tn1 zaokaeM!my>(1?uw46A?luSNL%2ifo@W2c6>;78fNU<8Lh#&I%v4@Y-CL)v3<%Pw6M z{;QawG+cmADXq~f$sr%C@>>wmL1LUI^&Pmc0>vp3XUGoJ)MsEcBiH{(<=#+7d9mN? zyoJA2rE}{q25Fvx?A{3{^M+6&=r~;HOfY%P#|pr72}RPE8(b2YMP{=-xyO@>pBo+R zEix!}pY-T0N>eBTb>zHLxCk2|q-HjTGv(}e7ULL7a>Jje!RTD>zk}|nCRCnseD?fC<>E=ak47);q>8_A_?Dl78-Osg- zcRV|G6MX0=(B)r@p>!%5lUyHCw@JJM$?FB4m4+??K@u{ZZfh-rX93^5pl7AeY>m9Z z%E9@3{E@`xw_5U9A6~I|5zVe@5Vh&TRpqq$E#yL_=AS>`@^AV*n_pms45K7xVs1xq zL_aiA4MCjZ3sKSjOH65BvDo*|)@f2Op`Q=Iz^qRv!aQK8HSOt0sy!6CfA8MC+>o-s zn$}kHx`hK8U^l;#oNA$CLzC|0N2qDPV%cp0-}cjsTlWM)J+~yqRj&7e%FpPyi~bqH z-2CUmkg#b}`L2*-U;lIb1$wa>q2Q!KApyB}pI6(_)Y#}zv9kDjdit@NC$ktU=KjMy zy{0ZsSGJ+ORlN@aJ8@$k*a2%8>q5?v|87V3Xqlk!7lnjE>jFbQYf_jBeqob%J zRTvAPbO8xvR3Hu=mEMF%FCjt-1j0TqGqZE=?m74Fp1phT7ITirh{?zIz3)^0|KIb5 zeP?E}>I<1KFbrFD@POel3|rEGVav2X6NR5_zCL;o{?hR>I_YKMan6f$_L3uZxdpqsPSM~Nsh|Kd3D*9>KZ!?Zu+GA*@a`a21 z4Hw(akQ{jelUG4TYxLE#KS!v zUn{Z-?sSO^hOJ$;3&Xzp%o)QDtbql&zBx$*+x*SGrP#hJ!J=63vQHoUv^;-1D1u2p zr&*@^%-}a^xkt9xk=?L|e&i~hJEUXg=H|t7AFG$n-ordXgGIRqR!XTwng@NnN#rzH zF$VQ{&kLE+y0hcnL6cYIe@d7tUuRxEH#1e>=UNx1Ll5Y7E9lx#kLTHpJoEYK`E#Ay zD%NW~2kWA!RCUTsHF2KP!YKBe>Pt({2+z;YFYumwI(VsCwV-^KGg=_<*C}(7vh(fr zNzAm){kn9f*2A4wQa0DG&g>?$y5=v7h@L#sxD+dnF%KNEAU0b&85x#Kl}=vs70wJY zLpHfn=XpH_b$dsj@Ed7C>-UFKL zD8fNXC4q+D(A3n#7GIbY*YM~rK3NtN=-Qg~rCQnCN8jNGcls0!W)8Zx<2)7mXjaw~;Z!0cJ+oAX z$oOJsrLbT4;W(M=qFRcZm)^qM6#K(X^GbMtuA%Yq zsDn4ZHga)s(VO{jlgMpzGV%1B+M^rD?+qoe`zjh68rG;6Pkw9T+j}i=@X{Qc!9WWZ zyT>g&o4~02@XJl6XQIF+&Zqr+HZ0OcEq9yZ$(JiN{62oTtLOL8y?)i?xr}{FCC|?B z+1U;i;rv(f!Zn@)HDRi!^UEbnWF_q9`lOgOn)Q)nR*9Cszki=*;>=+iQkQqCa`Vlv zkAzcZA5p@k>;p7TJUJ;5A*CMu;_3>M{rmUB*UG4r1s;VK5)#ttQ8wSlX2|zU%!JBb zIuMD&@6{KwX^bn&S2|2|J}16frB(j&+Dbv`qqH<7v`KgOdSB=a5{whs6;g~i9nWMs zU029j5PHyC0&*Gh6uru*O;RnkB-_Jxcid;OiOk9h*e+)AR9ysm|45&cDp%L>?%jI$ zOxNnN=GNAYckKMnziVkRIdbGk&vRGrzA(kg)JF+2E93(vSJzWa>?rdbKD|spFSYl` z^BHd+8W{->Tc=o=&A@F^jQ2Vg04o#il;C%c9^Xw_m?tu$v?{mWu~~Z>_I$v`I7&uR zUeL-&PEFm8^B=lTrTQ)idgK%5$DC5`-~X~sXE3gCET`H5cFeI>>^n89q|4!1-~aLh z`eAZ@{+73e@w6wHj=q#+3(abWOrDeapJX$yfh2-N(Mv(ZjmtKFlnC3Z-)echw zwb_o1o5%<0FE(%PVkHc*q_4lb6M(@!cIA z9Xw*{@o?B*SKd93e2(lEg$oyagjT%hfi8b29j5{V0}Tz|H8&fZo7eAQj6eitLP!%K z)hY{#Oo#re82aq^SS%YdW=t>_Rp3>;Fwde@tI<_Zb1xcxc(TCVwk82jF0h-TZi%MO zb34>ap)4`lpSdt2?B^V8F8#8VJyTE77Zu0J$_pn$1*N=?)#@yPZ)36%yVfH}v(8{) zu5hAgG#PCcp4WMIr{kf+KknSBpdcJA6DqrxaGLpZg9h>oT#tnfD{#JNAd(oZ*@Oae ztyb)gv)}4X{=9TCBr+-UquR_!&F+t~-50uT1KrY(rWkX&(&uJJGa2t+TxFu?f{Lyx zBO}un$RgX%l-<{DXl~xHa)S!>#uk%GB12AUg`C%SdLLhJL0LNPv-kVg*Y9dNncX_{ zU|iVi_5SjT%5~;?5;Oy$Z;yc*Ci-n^OV8e)?fPD>RPXFv_{q4xXgt58k5{%3IM*vq zq5g7HkpY2zYWe`SM5dJtyI|ijFqM#yFz!CC%_^RP@+h%Xr&+B8BB^8kc({d`&SELO z@^!o2)|$^6>=zXcf4l5osu_8L76#=YIVEMw1s9isnVBpMBj0;!aJ2-MkfX`rZC&Dz zd3kx2f9$W0z%9j+TupF(-;2rZ%^T9-9)SNt5mqk0uz9u2uE#xgkDfi-EwgEpV4Pn( zHTEQ@)ygqDvx?wE4uKdz<<`C|3onAl^1JgjoEwrJr>Bp$w2ZKrQ+2tyRSxzs6{SkF z_;H<1pV{Wl)+K)@Eygm6-aB$P*~FLOR9!G4ZzT93zAaikKL@8XEYjTXh4IRD2( zpJSL$jpYA+#kbo?JnIpCW+0Y;dclRJw8xp5v{$QjRgg%qw6xT4X?~K-Sc;tqe!iq+ z9Zm1!0ojW`ix4~93My)T)Fg05nzDV_eRuI>pS*$sDLf9tmS0@%ub2S6ytUZRGw$Nc z&m|;|D#av2nPV}ZG&eVsyh^oPE?j7jcp2oJmzTF5Umo0QRp;q(_O}f^`uU*}co~Uj zE0UpJJ9HI!vmtL8S!Z84e0Y5$8wx18M`_J-x4a|k>gt@`+@dNgD;J}~uU1dwFw39>Xqb=9TgiI#Ccq@W^x6CSu)K^e8?>5(OFLaz^8VCu7hEPQx zr=^Vuw9}tG`t#5Fc^W2QP!|6YEMUpeLhug3jjsT0uCS__E; zS>N}Uv(LT?*|^8`WTdRlPLv!R4o8Df8JQFPwyjP2>C>l;AUC|dz32B%NjpuC_O7Ve zFD{9H@w4;!^I;DkK1^mL9p+kEkEMTXZA&=2nf~Ay%BRG+4~ir{|4*N<6ZJ(wxc>iC z5TXrU-z(@@2!cE>=d+oFUw+uiR$ut2ZbVy#?Yq{hxO6t}tyu)GlvhF=x*u9;?G$f0 ztqs=tdf>+m(MwlrZw4EamD&_D z_n8>#P1R^>kS00{habj<bMghdoJ7HFqTz1Z4}GprAQ4rY!#YHgXcHXf#8c z+e%oH8}wf?4t-Me=q+X2@wqAkJpEpLOz>*x{s1dI{nBXn8Cn%o}BLNa6V z*WDE9YHXAUl@Ia_7|=`%RI) zZ{JQ1-MB_j3B#-$IhwfXO_5?)+cPMmzPg7Nys7J_hY zMk9bfIn4%fk&=-y5idWzDrB`>dnQBv09@6G*1$S->J&HZ&yt=T0<9#dY{+VO*|gal z$iLCm@`*dnzQoLzU_U3k#DBs%{{)z|7;ZFHwP6f(EHcdzeL3#hxU70&~_|uxW8Y( z;V(^v*O0`lt*L3XKJkxhxz;zdwY9ON=9S`u)n4VDf2*M2@bXWe2hwc)`eTfu0484U zT>6PP{u4MWXyorwH>jRkpMK(L`0VWLUHw3R)QfiPTQ==}s>tiS4Y5M9v9q(dnl%mq zNu`2)5#p4&J!L)i4*R@(Hh>Hm?!05>qkd*lM@V;>EYrQ%(x1!=YfkHD^+BG?H%%y<1ZAT+KFr*{X|E zwOWkN730>(&o+dHNw|7N_l)cTg zc9tn5^VZvHwlbPdb&*Z!R#Nyc91$d}xwl)n`H8i~^tM~QH%xG0AQF;>G!F19)Pp3h zimu8j_<{|l+vN1=(}4aS4;@WXS>msL)Yeu`qW9@bWkV2`yR@_zPpos%-RQB)*Ddm| zrpzEqxMJ$lr>Y1FfM(n7zrG5PnRIk#XZ$PqYLccp8}|Gvw#hPrka>tsA1xaSL0On?&rxL9YuFx$dxKJB4;F{i3G z>NwW@Ep*XoU_XZCmAbm*_J^*Hy1zek1K!REW*@r5Mk6UBAb|mW>k_H(>`D*K;$;lxhs_BMN#7t` z%Aaj1!^to387TY^A}i3V%dOYn)WfgTO3uho1NZ%y->*)QMl{n@?fF*&wXssLXsr{B z52}D)?VuV$O{VoM2zl9XONFx|=_#O!ZmZklK+Us3OR6JzKH8E=gVqobOOT_?u>%>W z@?EVFuwi$4)*HcNBS{*eUb>MXN3tpAw!5%FVpWO*KyS@EZ*e$wk80`1n9TC!QZ{SE z_4#Ld&~;fAh|{Q-&0Ru%fL*1WX$T-!*8AO2_B@MX(ERlDpzVjGC6O|_l|sbjapm zlsC{1nu_f~eUN#5|LQOhQqJz~(ST+*8UzKX*cEFd{<8?#h94z%PnL{1XnqkwYfRNcGF-y$qpFum#||}1wBDzwA};s ziSkgr5qtLVe4@2?JnwB^wC)6TFp;7ktv@?7K0sz3hAQfz({bWe$f^j??%E0ph<~F% zg@FOY&D#!sm#AnJyvZkz!AM5=%nwx`P=1CyoxHB50At;fIg65Gf37Q zje#}usO|)Da}zm%L5NTTywyIF3A~xdxUG5`jV+2u>&LN}LyHqd^50$G|BoM6IwF*W zDl5A$LfzO9&9;~Wu^!Q|H>K}?!LW_as6~H{5(#ZTmHN!3#TbeZ)aotB!WRxDNBGRl zf#n+-8ltwhw?plk$E#sKyN^P@hP`ukcBZB&wVWau?z?mL-Q%Mu!>H8985w}GkEI^> z5hMM|GzBhtSTLy*8jm#8Jyrim{13rq$mJ9j75Ty}j(NIg_C#DDx6Kis2|1u37 zQ($=7-qAs5&pWT-GuFDuMZrkehCDF6Q~4VXm5^uzu#ZN#s4MD81G%b|9NKyOH)R(N zzJ4R#-z(0$*_xdqKfmo&ki7e5uktu@h2)4Pb_Ug?8Q^G*akJBlb(1|{7DgXq=H=&eTc~2e2%4Cj(Q31G%q^>OB#k{?<|SPjDZLI& zoTyZo0~!Jd0V#w>n(Q6%S5T5+VEj|!v%EY*3k!=zLe{3=!jN9o)Ydkf+@to{&`y|- zImXt5Sg*SBHP9*N|5L#7f9Po)N948w26cPFSTH<<0@K}%qj0P!mXpUJmA`?OHT>p* z2F&kImiT*5bGel;RcC^BQu9{<(1svNOcE&MMZ~5DvMD=ge%5y+^-&*0U|34@-n9Q{ z*r3A+MCeb(U^kQ!wkZ6kqK3}U7qr!H*Z~yQ$W#2&fvNxAV`7NCAHQN0v7rLa6eX9I z>LVYf)p>D0IuY~GJP`+7Wjg|~qSv9QoCJvR`#=R|Z^SmoJ4R3g@}51D#KZYEG<*4@ zgMohXop?Uz(3ED0%;CGm=0(sGJ@8kXSGlQr$$G6WFN?UK+2O@gDc~jB80TGGBSAa~ zWo`z&1NXT|XJ5Ey(W}l;kmRv)a(WaILY!?Eg?oBqNCsqFNp4)%|+0E?pf-*B&* zL<568Ztd$W9+^corkE^Fe3u^hwFChLvoeIz@WhtB2f&g8^cx~rtx6*)+q~*Q9+zuu zXlP|+MWG!s7#SN=@n7b1^LM54QslG{Az`>tGo6 zs{Z-++Ww4vt!;4JsCn)%GI=1pLx-EJ?4vvaM^B^kQ+GIXV0*Q}(1JJ39~%jaj>7h_w+&mf$_xKwmpv<>Wf5TyzB{YfmGdQnE>^U1X7Ntp2Xo<92pC;aBv^G9 z(*I1>AP_I9C*2Rv2#TF~P0Ef6^8#Ic{tIys<glv+qBrFL@{&P_~?f?Aq{GI9i%RD0wobcqH+}!(} z?|kp_-3woPy6bH`RZ^mpyt{tX0acR=6*~hrF z+sdpti1HV+wcEDo_M~fTk1hWy%>7vk%^~~v_Q;Qq|7l&DPIms8j^7pK7JcO}T;4Nr zc-{BUm+U-x@uQDE{rIT8-t(ZQImEcv#oGrFLJ7)|LFL~0?754wN$%_*4K$yA*fSQx zfS_b6zYZC=M!~1rt3UwW4ew&`oAMwyB{MxeKQD(s7aBuRDalJ5c7i-}oxGabMaPLn ziPCssn*~K&fW#e z_2%KYLAb8H?rg?@N%=O-G)!n~Z~rluxEccZHhkH=$kxxQjf5oL;nVEPmX`mI^B zh8Dr2_mqYQBo67J^Vg(qc|aylzk2R%KadcG!{OMEA8)UcCQ2!G7)}=kHI=F04XAkj z_Yc&w`ZhQ@`Fpv}9ZZx{&_zlqliASF5GEI~lV0p9{&kD_WoS*7S@s(M$Mn-|+8&9%tW zlIGHAvC@9UFhV^{S4tS-j8I}hNQxtgFn-3Oi&GSU8K_Rg)#=;MchB_EFup2bj`}DP z>7sm9V)w-t_cSxagvln6L{bcg7sQI&1;UR?OiaYh@M5`f{A^#QTFgY{%s#dhsg+VH zHc8nlf0{~oSgjhva`_0&9GUDi(-$Saw%fX(Ez6!OM$ORimRd#Pwlnr|eN>7$t#QL0*y8pdzW zreO!F@ygx-lr)YNFY1e871dud;_g3h<^%4)#RWbbM)OA^*=#nl$cF+dpQ@QU|5X*= zMOpygPl}T$UnG?#HO&N;9`j2SY_lL6f)P$13uTqJmkW(k=;xj4GQCeFM{DG2>C=d^ znWVljS{Mi#8~$HoWJ;JF0;@CCX3s5Qxdt%D^_cfGQ!A|l%af8~V`JCvyBDmHYPH%+ z+;mKTykt$!kEj^A0pA6gN~Nx~v=m=lSDe2l#o@N=Y^@=OYFc=_@=dMu``OX7= zaB9Pc{fm5pB5N1R`)8`l%)xiAGBKf)v^%ZqpW;agWs<6yey92II`L)O_WU|SM5XKW z{ZzKD>-Z`9$c=!olPAmJuZkt`V?`hl5F#CmSvS?7E}~nr@tV=+LG*{_CkIc#JJ=$)8v#-aGVIu~LOdQnt@(o$l)P;(g9qJ2dc{c5% zj*`K%Y2mWzX&*Ei4W>KV8sLa`OhsGVoxe}ZRv$xkYeSHhmi})YT+Z*=v#BarV!Ucq z82-`C7mgp)1a|Ob5XlRRWj_zKuR0K6Y-U!ZR;x*&t;T4jf2STasA)Gl0zvP+_y1#v zws#r)dOCxZKvFB28is-Mt9xK;&?1K(;m0uO07KW=V34Z0)>X1+Buj1Ri_j02%_4W1b zT=sh!o14dYIQ|%y5<{Grm@sAvxxz)Vmh!pLtRxYYIkFy`G4dG%nf|eI$#25A|5Kin zZntcihfR9?xpU_-iC^$f618=offNi@3&x6^l&?s>t?TdHxx*e97?53d9KoP5c&*6% zDBXY68|HZ!I&_Wk7-hvwwL&pApdO=xY!qF=CWK_i^c=;pTxPxnbp=ygK@whopw{2V z<{Acbi-Twf>M!;@IJA2`sA+UMU9=88_f=5L^FuH`_Eg2kb^;=vzC+?>QFFY}%vVQ8 z2L~tx7Y1?8dBpsX)8vyi6n0pBs@=wo8+G(F+>VZ~ucV~33ue+&13QIXQhYnaji$@F zk7r+Ii6DTmj>ZwVCXe670R*C3> z+m|wlT9DiMjI`KX3K=F|^oa%&F)1q|3=c%1*}?uL(OzC&NTggYx2s$PC3|kfq909I zCQVwxj6xyHL-1tFA;{@TrM|!fTX`QqGsuz6E{maLgN;}nJj@r{u!IuATv}3v&>2!MMrbBc2XfQRNYhf)S*Rm5jUgc+`qm&Aovkf7 zkB-+aHtNzv%)OXfvz?YM!Rvh5Ib_^NY%#+qzCmS1P!TzJDe$Z4eUV^h<@>gsCaKtE7L5qDA%1D8`$=%mh8`Arn@j%~=1 zBl*JjqZ-D??}?x92b?H$o`lX@*5MsFbk@iR$qwkByrE*2#*FolM!{;Wrk+{?B_}7p z8~&jfBpYRo`O9>>F@9NzZbj}<~$xOZ76tUg^pP_9fw(usw}St#fCGIhDHIHg-cQJ4REmh z<+a@+ev+CmZZN?XlF2@l6^W`RPoC^)?ZF;7va^c?(85X1Alla0Wk(S6I@{zoBUE-< zw)DyV66fKjD`7~h7gVH(LM_%e+1v#XL?%CT<_r+E_O`=nCZLqYiSu)Zqocd*vJV&Y zWs|1a#>GO}1bErDZJX_M_wewrEuoXz`M#hAY`i|%A_!VF`k#3DuieM*=KWmF{Qc1Y zb(^)8V{R0ym)C95XU3eeL2%(y)&AAgsKx^XQvmYQpgeVVVy*4(?4zw z@A)=o{-ve3Bu90u(>vHdZXI^C>QKuKc4>I82sV4bkD|f8dau`(iS0;acznz{0pyDoH#O=Hl)j3C zRrw?in+)U!V5?{g7&TVfE4qEjnv6{p2f&UJEPb-0pY77u>`G59J@)(?E-Jo=Ik6$w(!<#V;u)LU+~RhYtbP_mm$G zS*W5jRZ=!E^?ZSzLrhJ!{7PT#RxkCMKP7MLa0kXAeX@C-_&PP=P~r?@ zpa|R;W66>waEt-MA^~xi!v+!#7=&zvTnsPrjr9S*_W_qUE#U>Yn;zfpq7dAXx5rkO zpyXswxP4iQZF&MXP{S7O>zj0&mU7*Voqt&`n_Lz^)W6TKEhOt>_1D z&w}076+eQ_1w0@coxuQi69kePaI3$BCLdj!t7Wj2;!7=NDkw~tv%&z9jpO*q0U^5w z%UH5vAT}lda2*v;-tqAFflv1w&128b&Z=2cqX?*zwc7!-9tJs}crRMC>ECCNEq?_h z9&jOjd&{s?G8u+IcZA}p0<2o+_(s4L17bUMoN9}M7-97nR{%<`k|r@%uJ`{Ij(9JY zSyf#A;-U^g^;gpg?2k5CAe4ND0~Qh#M|iT{%5tuv^F4vpTOJ8~#5a4%!|_}ruy}!^ zWNT*#1@~m1d~xBmh~9QB+2B=w6+@v=EL5S?r1@cZ(f0_&z}q5=+`S$Hx{z`6$x>ru z;{qV^NTHD*-V6$jB4oEb#}!|=aG?h{-)h3p-9@tHK_`dKDiJ6~Ot_3@(^nuF8!G}- z^C++W)$tg3`er`20(^GrL1#{zUI562)o`hOH~dp$04%#?&wEEZNj>*N+}8(|-}5Q* zM*=jaK7IO>KK@7#15(U`rL#c$TownE9xH%51nt?*6mr;%ghvZy5rJEbJqbL^k~TAe zl|Uo{_1K4k1fmP~=zYsB=l+Ql1=!?DV3xK0U=e!o;6c*bje4*MA=Yd?5tH3EhqDfC z4E!uNFL-Wpgm!$mflOWnXe_9=m9Q!VMo!6{M&s8)BqROFQWIe0-@0|{m#H-|aok>I z;O6F43&hh*h-Mxpp!(~9>iakG2>uC{?k{2LS6aldHxYf>BWp7|#mqTu=+RkP7@G_W zN*L99`=?9sDlvLMw&k_P^}Yv4%v;+OW+17qiX%86_g~as$|5d-YCezB#eeX&5W!t3 zGtlb7J>6l%HmV*!3!AKY^A4b$WoviU?+aKnEHb!OB0knmjdFAz{UdOQTGDK&S4`}I z_ypYyH0Xul_}Q@>Ai0;hv;*55_!n)Dw;%2XUe$t8dgjdFE2pd}abSCK)Roj!hAw5?u6;8 zH{m95L^3j;eEzYyc?4ctx9JVGm_=PrCZ2}5Wy2K{P|uz}I798`ongXjy z%kH14$#uTPg(eZ@xA5`t7&aM6OPHG^@wK2YF7=%vo`%(BrX2=uivkKOh7AP(91E6r zCj_M*lDK(o1r!&Fr1=+#gu(*Qu7<0ah)Wpb-fjdGCgVa}>ove%NtTh{y`?c5eBT#X z?W<0R3-2qxPbL!qIid?mS)#&{cJg@(Lb*@jz6~Qk;ZN_-{X~i(vy!wYA z=+{Eu--Id`(2S>@7-@DI`t!0(qAoz8k6xD@`g9Kl19bV{pxB9^+d?J-R+~X=Ub@P{ z0{gS#5)_KR<%<#+p}zWAl36Ir*oSSQcfuC}avGM3NR^;TChPR#HX_s$^ug15B$@ou%Jt-BUR&-1_DwS7fqHqQtk({F z9K0WfZ~lbBj!80yAX2N>5O}=lZ<~%eIxgEPRk5M*6LUp@6%QiHht7!r9Y<1p*pnkI zS;R)I`IpQjVDc?!%kVNDN4CjeFi(Z$!_SS3g<~n;*#x-dGW?i7U#Z}PF{ zC3&DXYJzI`_EirJqd`YMY-w56Vf#{}m>$?9t`FsOc6!4Po0vJrbREsh=8SJ7y{PBU zbZj$Z+p@NJXW3(m-Ob~E96DtB^#WFH@S?DZ>rpkY52+yH`%KAW3$b!qc&QWXKn0HUNGd_f6~V4 zoTbe{)4fNjg_^$q@?-Zzd^$Cf|2BNtq66z$hTH|bgcRK zX3eMnP2#%~^gSP+eVgjeZHF!fbu~FS9~#W%^$m9g2JRcW`AhJ_sb|)&PMBd)JGn;B zEWTE)+Typg?nGNN%Xss&`+DER9jrCei#uw$Q1(#t{q6Z{x7SVi<(IA^(G*cBYgf06 z*2iv{<}FHo%pSS;F*-2lmGj2UQvG+NSS51eMafg~FrjKeii-G?uPk6LJ}#g8q{&P1 z$A+z2r{IriGmP=?$9$9K;E(Tr2%UsKrc9N_zfZWk)49z4*AM;cApUQ#2)TWSjvTRT zG_0K5IF@aM7Yp59P79M&qx4 zTevROqDkJRWf|+C#$8#<5Q|4|e=QxWH!SimWDj#jO0iry-KOT|hu8X5XsRra zD3WB3Nx6N9jZ3JQBCzFSrbOcX``c$NmZ&Oq9gUE7;e>{D)_nvnD z;}+hmUhUJT!z^+Kk8s~iS1x;Wz9rSZS3lUU!NkmHtz z@6G8S@MVnc)X~v7#&pfK$QwDk|Bkc?(?P`hs$EyzJ$jf=j=7FQ^+wfIRpG+ic9pEQ z5GQ)p7u|MdgPql%E^dj9kFS=g)eZaf=>iwWeAvPwLEnvQyV6(nhOn~!<>>-7F2hYx zs=ljC3Otw7XZTQj*S6J9+w|!#-!dGV4j(>j^2gPAca+`o8X6i79X=d!+%osDu7)zDBrls%Pi?D)~Aliobc zFf3ZMKS-{8d^E_qL{nY8L@eFR)bya4S)8Xrk6iG@ch`Kv!@QJ^DRb&eZ-s;;batAm zR(xtLlDY7H5BGC{a!sI7NX%mWi`&YL53xQ!m$m6mtL?-|*Y!G=D)XG1ocoI%TW-h> z;CVW(8;sp|9cvLb8)z?|9wa+=Mtc@Jq0-WgbG*rs9sk?2Q!ih>Jb3ctJv#kbeW(3K zAr6s4UG-tOG?&3RgX)_Yc8#jf*^;1` zyOw!63l}aN{UFPX`RVj?V_di1XyfFq8c02YL%Y3%;_X>3wd12+ZewBTmMjU?y%7gZ zO-+47TR(j0P`K26_ zB^gz@#v}jU(2(6`L4J;rz?sU({cG2)tDGbII+UK@tTq95dqkP>UN2s+GS79%k|nV*G38|K zsj1R8mdd=$8!KTKum>BI1NKJnUu@#rYWes(em;*}vfGR%ySsTjZg0_Bt7tdg_*w~x znk7a-_jtp+amLJ9vsS7m9o1k?B87z>rAWFugr1iuWD$BWhXNA zE#d3|XGbam^1{h)A|fJ=wI@z(!ZdkTuVc7C6i?-94sVld{fBz<2IN6yR54HvQ6Rm4D?YMy?Z&gSE~817UZW# zee~$)4iElnvb{t%E}JeaAt*?2xywNLou5wsI?iG8j`x2ku53s%v#ma?UEk*I?;m+) zV~lL`#T`z=J=O0EeFa{g<11_WtUPb>R@sIWBQJW_ZzfMdQ0k;0R@B;AQ93>lrCc4l z?XnF5h0wb-%FM{fRZTeAPb1DlS>`nxr^vlV@ltjf?n3df$G)MfK1JrtiGVc?&)5~V6jjXYm zS!3@Ge*C;+wr1GwH4A1A4t$^c-K3^DFpzLByFW@a8agGGZ8}F`wk~q?#&#y|~ zJeJ;ZLn^8GZN`4fppHGw9}b+T?_fTEy6E3O{(rWBW9ZCP@A@81zT_UH9`)f>U}fcL1k2F7 z=ci^}Ka!xkCb2e7mgTIat$Y5;)3;U{UTFN?h2DJWZbpBesL8w28>P>_`rf=DRdv=P z@iGMV?17Xop;zvY`I8w5;b(l#zPjq%xk)WxTB<{TL(h^Kd}VPrmdUCsF%qK++JnVy z3fCp(oKhV7m|rtC(jU+1WwIQ*k_xiMQj(6oTDyLI+Nq?vAA>$V-m9io9~p42vQlc- z3V)f?&&PR@`%LP4*?Yq6i(hT}Kxwb;!^g%**%BL3OY4V&XEFvBKDg9#U#fIVN|Xxh zb*tp#rT-0ZiN{TqQwDxP&8r@FB)+09>2#W1_pv71TD>m;Vf3oV#?UAYM#BC3E9NYh zKa^rr+S73!k6-2?=&dIA>C>lFlz)n-5RW~wI;r7>9O16?{_2*=>s6^dLbX^`d78Y_ zYx4@Pt!fqMd1Ne`w=_Al1uH5NN;P^@WK*c3ke6s-TmRrkQGBIc&9iQ$pzLd_%Lij_ zQT;PGfCR+XzQeQ5Jp|1unw*LIpZw*m=Cl_{WbboBV`)3qS1|nd@0BUjP#OteweNOl zRET42luAd+ig|06atoL~KB^p-}0TQjgBKq&|AU5O_eS5;RH6Xn35GAzh7kc z?`7562Jw-Rks(6U@i#6n<}E3^w)5$DZ+d#VP!M5NF2(aQr;T={l-9uJB^adz1r9j0 z$MlWQo;}MN`Eb|CaW=khV4KQ&6v=#iZ~9mKpXb&83{gY7zt!LqhsD!BUEq1x&@ck7 zE|K%`X^7Cb_?S(Y^B=WV*_>g?TmJq+$>uBO72Wx%Mfj_SFOgDeh|K=b(cL&Ouuquh zw7lJNsE?_wQTiXd{U$4fkfDJY_?Yb{A6)uhggL(H>6qlcXXgdE@jhGCLeX7e9Lv)> z2Y)EbwMN_&oH6N!P@C1Bl(XCxww2ud1FKV6o31am?>~Tt;7wMO!yo@8D5%x&0N+;a z@Ph}XN4*l&_O9w4P7~GfUogX_R~NSZV#n4n4J)~DofLcsIYG_U3mPo%eyusJcAol{ zoanyt)WhB2sAF!C*2VFE&s>jJA+<{`ERdo zzgOnkD6apyc*i8fyDKZHxOSi9xm9?#Qr?zrqwl}Fk|3_p{&K`7WHEf(`&W0R-<_Qu zejX@XIa5z3q|C41J3K&tG{+Y&J)kH4mhR$z69`Sm?^5Wip%eqyZ-na#oB%zh-o>|9 z6cwqf%9^JVIwuIo*c~Y&&!tP3+KjXY#KG;NRPbzDWv!3;8x9W4b=d_Js3&(=AFqHi zQ2T3kRqk&?#@=+U&gwYHlD##cwlbjFuYcrG z!a3^=rR@H5)(?lgdV&JYUuFEYr#!(|x59V4TgAJArzx?5Y`04oFq&Wi@!~>Cy>`(sJxy^svh0}-S zd$VW3wLSa=%6Ss74r3dhxwzWQsaf_Ce2)Xr@!P8zo2NR;PG0)?_T|B$Q^LxODZ$#7$9YYQji&Ld zzNDSx-N^3U0cdNtlXC-iDPIz<|s9Gf<=)ytP>WickH z%$&T`<3^9J_QgjDC%bO&*Vwv5E8WkHsx?pPSxo6&c zD}B2QkMedkd3RYg8}yCLD|>v>JwUrWK(M4p{b;l8=gmRG+Rm#yv9Z|mBI1m{qklMsd*>B&`IbMF(HL>}Tq+RW} zV`vd4r}5#3thRY&j7kKH!QftJmHxI;-YfHXp3`VUbF=FnBU8(Ol`k^QSIvbROL_y}{GGu9Sc1&;QZGs(yJl{jymS{mnhuXY#q63|DEu-gsi>8udTi4ZZ=zgXfIG6Pjc&lKmTm1Hc|Xjttxy#MV%R}ot^1@YhqSe$e*0}^ z#KAS2gViU>=(b?{_f~SZe0{@OJQdXE%$XA#9euO0`v^d5REG&!oofm0T)N?eyJ$>8 zf_imzH2?|Cje%8wepAhAB?#8d!bCyFs6?;{6Dq39Q!QCagy7-GD$NpeBln2j$MF?* z*u)~myeuiH`QzIB!6;>}s)&l`t)kY71ikEA-rn~vZb`5%*{lM*Tz<4YOvY{8+3@UH z)5di3toHlYMOB5JKVCxj5=CG$1{~Ba-Tvt`KI2MN0mXrvT-j`Zegi2C?yK>u!&hc4 zHsuU;H>8{2U8Nqh8kjSX<8}Z5r>*a>3*A*srG|1m zbu|8lg)M!Q6lo$wV+G8WWMpOI^78bpKfEgMFI7$)X1THQJlkFchP4(2uu(4`QB}Q0 zXGXvcFrB4b++thB`UaUrEA%Fm&)0)pP1j z^9h$Kk=p^xUOh@nw#mlV0#m;mf}0OoWE?;J{C7=M{WQ`U8*|2IF~e&fOEdK&cy_ds z(V5<8p#@Z`qOy|SF&YgOkn+R4ajwj{x((e;+1jN_oCol{>YAF!UYA~{EEu+o>)6F- zr+(_LPf?+U6E_5OSLXb?orez{ijIxli^m|mX?%Q`xo*MC7@X&wP3CtNN$NkK(agxF z)}_j>IWLQfWXv0+(=syF&7Bb)9lZx9oMf5rlX~je%=HF&y4nUVX%!U}U5%eGceLq< z2%>h@2gn664=GLqZ(d>K03tlm6M7bhF&cf4-q!N9=4(O%xT zC0@=1hAiLmyA&P9oTbux=rBUu#vK4j$3{dv8(&saQ`6bV8c)aAa^Ue4ffp@(?Z;W8 z{`!s`E0;TUB@LO!#Kfp#KI2dQUUt_;vMkA*k3WCv?>~%y&}hljE8WundvbCzjr0~S zSb$eB?yQQTYOp5$c+`(OeqFt8otn=fP0f3L>$E$^`b#s0JKnuJ<&dkdh+szUnuhuH za_d(=0o@PKl?cFV!86k^xr>O3GJE~#JdKSdB#vll`7T<2Oq9t=#K|i<4Xs{!!?Yq? z6-RaO?Agdo<_)5Z(kS8aj~=6F_o9!A6XK6&G|T^W4q$zXxiG)Mp+?Jf3JS-=cHgML z7^j=<)LwS4A=fE`%m`DeV5_I!Hl&*Px&o76Qzr}Tm8Jm{9WfiD;Q-mt+66OBhI^V` z78f7J#gp6G+Ss(mM1>p_UsPFkZ%5kc0)9kFRUcMw?Ulv)(KG~mSz21#)0AzCdo^a| zxm?K9rO-(4iy15#jezpl!^nMs_wn(JrDGBK;366rMmA(vG8!5i{Q?4_TsT89a4qu2 z^XHSkyY>raM~99dkHe1?`iimD3`TuITt`h{PaUtVORHPFloN;u(0ZW*t$QAhY5~8; zO4T^+#G0xYtu&`$i(rIJ%v-aoFd7Fk+|iTWTa#>9MBy0_G@@8LQr02qrH2u=k;=(A z@f_;}`OV(_aSdTdz9ZaspxLR{1fK|oIOL*hZXW+D|MFN2m<`XIAydF1RsX(3DitU+ zE}fDG&e+t#;)sJo=H9(~>Fa~+T8$?s4v2+Zybt{FR{`M!1XveSWx+jd=H?h34{^&z z2id&Vq0hB5+VxFAC7`@9*kG1Ob5Ogv{s94T@O+9mDk>glU){b}Yv87rnVI?9&J`~U z3n}R*r=%RlL3xX)td)||B2PoW#7H&Ox=kHpqB%=8?nIbt%&^q9vrB*a_MyDI{GkH} zLQw-{>Pk3l5yCyJ!St}Lf6dYxU<>TmiriQJ(r;aB-^B&9r&X7gg<{kQ^EWOHQM@1@ z47vvX84_EvD@>D9BI~_}oM8R>^)Fw&Is}6O4EF1sWszV#)G-=v?_1@!N3@FR=7!j~ z)^G0`JYRf#Jf_8+?d=EF`uQ|=`xmty+#;k6Gsp29JANF9R~QT&CURyYX2?GV6s=TU zy5-_SR1ad9Dti@#UECs3lq_xAd59eL-hn;%2eUznE|{#-S-^SGSnA*)>^_S6s&Xpt z+_`(#&)XZX6@fV=3O_tLLKel-gD;cCInwa3Lu(^|vj{&a#E}2^@w*5F-3qL4 z=dUtGy@7nAg_s8?#+TDT+n{5mZ2LebCG}+fG|KE$meBuoZtNs1#f{$+&*| zUgwIX*PnH<;;jt^FK&V3q$vlcBJB(iC02p#0VF2A5y2O~h=xo;P)b3a2#53%!zn%Z@o{%^ni_I}Xu zu#V1}sLB}RcRVGE8KQ5&fmg0v>DZe)d@C@}gk_`=EPog$OJzl&7~=ua2)_B|o3)aX z+Ta<*#>JuPA&-X7sv>rP=A`N9n1#coN)y+E=X&KTxK>=e3PF1ioQK%lT)kRd>l;)F znK!1Jpw3(5x(<|njhI+Lb1j%b(so@( zDW@Uk;UCn*D8TSh0%41h>cO#xvq%aX577kfabZWE2|CvN3|$FSf%9`7`R4tXo`kWnY@%BBe+s3_1kOm@y!#em+;8kA6n5-;q|-AS5L%cLjH8wsSa9!JL<5iva%mAx`S~qx2@8= zASZZ7-ZmD0CE9WSx;6u%vIvHk+{AI`I1h;LsX&as< zAoSq*^WCb#yENM_?{;y?<-QMl`0xM25k{D72a^=2!I z`oi8}_Am3*4JAO|l?psWbAZH3X$y%D-49ae zJ-EVhx3NBuy(l3f_#^P3fa@09AFN`z(gd_Qs{D=}JBDhk`v90?WsCDZextA#VGQxi zMY@|Y+*ra^fRWLG;w5k|V$jGRN*cW@y2|=DoEr zXxtnbDDVc+fFeT=6GS3hIK@mH7HkP!#0&oZ5@sNH379y-A*GQ$sd7R3Kmx@RQ|n4# z1I%X5vQ4k@iajy8L4cpXYTp5-D;JSz6-*k3=vGr zvxQ0y2L}gq0B}8u_qh7C@GdxqrE|-&hD_@yRAZDqTHn8~(>Q@}+`UBpbY6cR2AgJR z1Ca-aW7@TWJ?6UBFFBEsp1vt9Ee(-W1<55@_&6Q_qrfP9TB5k!1Va^Q3AJl*JL-~$ z;uf+-Ycj~I;Y;vHJR}P1)$m*7I~a+4>n*LWo59j1K4(iq;wMd+hEk?3qX{)lJB`*? zc$Y0^e%=-A*csE1ZJ&rT4XC^rcx*(wOvz8`|6$w4z|`JaJgQL=(~;>wzjoV<-bhUqH4azmV2mN zRq;-TR(L=33fdi}iHHf(FV&XFA!aoXl7v^IScB)K+Om(}g!cHLP#pw}^30Qs3q&KJ za6#6*Asl5XatYC_FAFFg0Px|mKxFO=W0XNd<>t6-oG(=*SAFx}KD4}wzzU0i=M0sX zm53|~78nSgSCu)o!h272SlAA5#~xmGe(XL8Hi$UuBZ|wwP2kZ85{is`uH;j(q#rd9 z&?_`0X$D#ABqamjULlH3AbcVyV6@XUy(2k!qs!;F9@IG@q=B@I~R$Z&YUl|{*fC<3^xG(;*aAYf-}`FNQKFSV%th)z0rPM;6D<;w3o5f1 zTtEH}$8v4wcJvIm3w#rzHIiEO3vUrbbaao0_4O^3Llbo~D?DMQD?mC2bU-2IyKAsq z6LwAfkoo=e^cp1}VB2UoySN%Y#HWUlBC%1~*>WE6L!C+;vd0SVtDT*lD6}P1hrIh? zXUK+#sB{*N;Gq)tn@Y;8tYZLdsouhkukgMp8n2gKGtQxMv8^Aa20aAO7hoI|&CznM zbXo9QunO{dqRXKNh%5T~{lE%L(e_iiK&km0b!ef9nfnNwI3kYv7}R1sBj>3mC!?^ z(8CB#uosT|&NihAhfIhU++m`q0l?diLD7kqkBf;Z%(G-W|NP!YzME48Pvt0GL~VI2 z!y*_qn{Lq*3lyx{bxSl{f+4qH@nSPXx1n_wKo9&x38|FK9q?HmoNeEG1ZLjs$}uO* z6d%cPv?GctU7Wj>+yk_yI3(4BNRWt#%@D?JDZVR<&Y7TO^fW16 zkKlZ!tuOtEEsRdk1}N$3?`IQk>I+{d>L_cvZL=4=37s~s^F^{a;scPDIG_zEF@{5~VA?$h- zM z#_Wcurpq>;VXOQQzz2fJF@mWz5b1dV!0^PVqfV|u4BOnj!ipx27-9{8YMi0g=CHbVmXeybD`U#FohztH*zGCk z@VHlTYwjLzOLyVeaRInggF{Cup7Ek? z6r4u9VV{+1N`qSzSZ-NyuEW`^j(Z+L6{tS%X>gcXubp~x^^`RD9;$tuCSk7n^=o# zk-BSKi~*pigMfvEF20!rpq_?Uqs5l4VI+(pcLz=ZWJ=m`pj{|y)1=Vhw=<;q1ka#h zaupat=vPfz%UOr!XA$5`~YV zJ7qe5SIl|HleT>kbAF`;{J$sTbflU9d0C_?TlDgH9gaX?#X@;fy=%HGGGDe!gE<^Q0wGz=<%*kkKOk+z7i>ZqjH39nQ6K*i}Zm~}|ji#Z8 ztD<=Urea7k?O*2wH2XlMOHC$#kXxdFu{wZZ-9j6Uj&$$_dMNh*10b+aP*EVK8bcam zJ=KbzznMiC6bezcnE~gHzobC|v~BH}m6ci`QJusAHzYA04Svzh<8;9F(!nI16b1vBrgUIdRYv6t zrzcwjwFF&_s49&*1YAE(p}T*OQc~f$TwwqxWamJoM(x9s`4dt>oJ;NIwjhzB6N z@5=Z_1;Ia&JB3JuW?q|Qq8Q60v4&Bi0<#uXaAkgeCfP{?D?sXs>yM@G0iee3(K5g7 z?!HyFG^U-d{P~jl=GI$No~MWsk|xN{2Bup>@1lw!Es1Qzijr-rG*wWqayFs}1c)?v zS$J&X2&TXiH-r4j=V=V_ z7q_dRJM-G5oLR1RE7KgLD=sS>_v@nNGV2(Q?DRSS7 zDTBCDC;3jH?I;RxvOa~-NpGy)K73>}h0mGaYs;sr1kIw%LnhY~V>n+RK7Z5C$VEH4 zkoSmB(4EM2W#$c~B@VvX37*&VFN~Qtyq!d&{hN$GXO_x8L~NVi9N!KC&cLEzORXid zr?uK#crdtiM!Q8>P0d-iTfmkL_E2g*I$2OYBqlV#7< zg+di+TePXk#lgikGEd&#GAJgoq-mK^XPou$^T5&0*SY8E%Nn}PPiPE5vp4R~8hD{? zZOL;IYt7saS=x8LG!%MZp2hhz+PTlgwx?N6%OE&gwxmkCt>=c+V0ETb3w=4{QO@NX zhEcqwvyKxh=zpvD+&w#L`r{|_Z|vnS7>~NKL`pTOZahlI|NXE%3lv;FkNJ~FH@vgj zBW2X%cI*oUw>LGwpy&BL{3XBCe^BG$@BX{*RhZzLCtd72gwhT90I_9DWm>hUi&d2 z0?gqKH4>19ao9f-0Zwoa1|0{X8}9sVUBUr5!JZCpa*Qd2-YF{XH24@M%$*Qu1A-0% zG-3jID;Sa%0j`?>Yy%MSxVYWq)ooSzk@qi*EQT|f-+(ySutP}z4wMaS>np`ueNonX z6qQNTAkz+q8mOi%Ni(E3UjGlh#awk`o$_eI;@e3)<{GVIO6QMBXYoqGGIIUkU~hQ$ zvV*=y|NkJO#$;zjNS>Z!vpCq{L!hD}80>tGlWP981m^FZIS%AM9kt1XmTf`BK@`2` zp3CFX%xXImvU@te7>U}vGM~tQCJeit^vjNe7-Uhk4(i=LECuQMA{o1We(ET1Hi}bJ zDw-NzNY(E8o+4#DBa{!QoI-lgg@y=0YsHuQ{Uoj%korHV!itYR?Q_Fol4$@oxg8pA zogJEFtJmk@=bLjJfQe41SV>dn_|xQ3o-R0zqv${q(2(Rsso>4FN+K@u`hmC7$_|=%LvC^hizFw6HiDOqKK+r%R{u^Ih7Y(Nl!-cC6WDW? zeeo2b8K=MX2&Ww=87$XqXC-0bHVD+*HFj-PBZ>*&=GR}8bOI;-m(lxi#e4(1%cI|0 zb-6Vli7mL^?RID4!xrNf9EB#$5p;(ZAt>{!76D2Oeb>xo9&oJO$GkLjW8GmMZ zlZ-fPiCJhi6_!9PDhk*ucNexB*0B#(RCek6-UGuDcI!e_%FP1tmgM69NyiH z5v}v1prhjHnwWGLg=lM+v>60zYgqIWaLYzOT0?{n$9mW)QH2?!(FI`{i+8c6{&EKR}s#l^T2m2!QFV2@0 z_*LP*4g(om(2HL74x9bM`8a{fi@yr|m016-tmO?kEPv4N!0EQxf462drqO2b6Tkmu z2R$M2>1@l%koo;XU+H)B>B%=(W1>m)Z4fFH(JT@{rMy(QbNNq;d`UrvB@=HofCqx=;Ps^wYdlJw*n}9e z|HsfvJ6^rLdA4M%pmsw1Wy~~3z@4ye# z_;@oX&3SXRzi;@1ztYI~>l|5GzBdN{X_=Vi>FI*IeN?-L^`BRWu~`t=}YU5yk#|Y^z$*3n(wCYmDx^}{`3F)Yn$nB^~Rdr z>BK)}tNrL_&J{IAj-~u)ds_$bLC`mQStdbPPrrf+GeEh%s#SO8WNbvm89T3%x zFP|#yDfi$WblW`sf2;W_Gjbl|x(K9NWM;Dh9<7sFUNYM0v`cuOuz?n9*^nCF<9oZd zhLwK)%;C5?Hzikb%>vN+H(eXn9e;mkRK#4E&s}8RU$1nfph~ESOOr&|LOmVU96q^? z^UD78h4tr;Px>c6BKP2-McQyjC+qzlx5W2eOh)QJA$v{Wn6XJ=l(}_i_vp*PCcojT z-NT(PUF(}T2Q7oXRS|-GY+-Z2qv4b5&)4Epghx#2&DP76fF!N-(r{IeOIDVFP>0mp z7y1A80{H|_dGt4oB|K2^JL=o85I>Wh{5;t9V-x#Ce9?!YDtidOp_DH%>(5RWI^3Df zG_c>8iSId*Bbgx98^?YlP?L4eLc?YHzy0J}C9UKVy}M(*45q6z^s<_=F1Xkax z$myPI$FXP`*_ z)?a`k%b>zDJzmVFrYBYP>w*ClT{x<%z$k)fA&daSzo}?#8!-z8m}FCV2G7CE!*Jc@ zROU>j?OWZ{6LUWOhCv?qfic#lio;qN`~SAG$-Cu%k|8Yfvn-giV448V+Z>#8vhmVa z?fw6R-YmCD!}ZgAGXfQgc9wESh`N~ znQN}t!nOwdW8jXyVj4AIjTpKmmtpzTAdU1v`Xt&s)CyP*2pP;Yld5PqsW~0(XYj;TvxXYXY=aF z2OxXao1bUV0F1N@VB^-(20&U;*QUTK2a9CAYF1Zr5tdkRRiR$2g$~ZlZGEAVIV1dG|0F&WrELv0MA0G%>n$grn*C5fb%6;K`uszz<`N!*vV#N=xNjuY~Nf?_g$Un zdRQ49nT+*^eG}|yG+h#)GfQGQpX1vrix+qmVCEve9vg{3#ncAV7V`32dqkyAKAjqW zJVTvsg;Z)_-w@-G9J1Rb4U8B}XRDW4<`Bc1L|A|uDlrr!Em*KqPbRH*0~v=}P_Q{@ zd_q=33rUPhg+Sv8zVLF*9l7)O?Rs9vU{#_T4J1L2qY)5Dk3_?^%<21;8cNzB0p>lC zDxP}@C)TGJsrf7tKN<>s5U{-cq^jNp_##%5pNGH|vsD+<8AmYb^0typX z`ut{!3q+Y!7!8A`Oj-=gxm1Z`B)&-Nhq(tJ3j-e+G#%nBqxqU6tfY&%v=3;mAf}cm z4(rlPi>Bdp-GNd@o$xU&BCNw>P5d_3H}z%8Pg9;BQc zbI$o-#!^lx>o{fz-%#CW|67ym)E+pczJr;t{0ztFSAKy~HIWZ>FW{ zyrCBW+u}ejfG~NSv$WIDIgHN#cyBRoor$lZ;#`ZdN{5Q_sJH8QKSTIq-&^|0acr~f zEHW5RMssV%)0>WAJR&sF*T7>0)e#Iy@Zrb;X<#1*&ObOyM1+DIN#fC)$pEcLI0_mq zu|>(`K=>pTB*xoiBscZK0RMc%8^eSVM)#hFRbt8U;YRC4(SVeEX*ziMc~} z0C+|*VTf6fkkAAzCL)5y3n11LM+FH{kz)^RINtK zGJW_Y_&-2Ka1S`mdV5b84lQgOXEVpuC^^B=NG6Mgv}`OKqIIamoWg!nP`-klKNW)5 zSba?_B$~%%@v6UBtQ$)7Cb(;IvvdD`8cV1wx4lJT(=YG~%_c!I1Sy>;{LoIok#K1% zK~s&nMk5TsE28y1`>oY81*U}TZe=&Hqmf)gR}B-87v2I!#R;ZXL4^CP*E1XfV)0CcMd zpqqd>fFq7+D!A@odc*i2+yOf&h72TGTwzEB{|!L~iR*BNhzS^c(t2HN%OwF4DSdJ5 zpjXn!@-XCEP&PpFhEE4JiWy=&ZJUKku9ocwQUcDIMBAVO5H)f_EC9M|C#Ie?kdv>% zPl0#<(kaH@L?weHhjb~JXcOrfwVMf21#rZ@t9+MkJaZMkBW+yv16Yy3`-~yeATbDN z7l_^v%7FBUB*uM=_zIpb{vT%BVC&{ue&)J@h)S$u_&ll`pKy}eK@&{$q5-HDbPx#e zF4(lHxn;b(phq75iU~K~191?%sDSs76@n?-KhjkMkH@{1;Sr%WqN~~)fz!m2f*YFpo@|qj`9x)h>a0v z?#P(=yJ77?5uO_KXm1gwPU?A6gVI>6SEtGc!1FOpj|~IcEmlpEc@0YA2AfOn*?G;6NBH#h>f97 z87;6yZbOM)e=itm3B+b7wVA^D) z(7Qq3cLb*G5-fn@bQ8c4SWD9X;gi%XV)-5FA{sV43HJ*MxYWT%_v@-GFED8 zRbFX)T%0eYmngqQsjfkC>8wp;fUJC)#rt*pj|dH*p%CZ=KL_7qBB+5m3q?R20xq4X zqGKvzL`{MoX%^o*f-e*P#KA*Vx!q82iqtLD&+0jdbZWf zu36B+LdUG~8yfZxr#E(c8bO$I7>H4SFejymsG2*0f zq4F495ao%Ks%WVYqNrd1>Cc{2FYs3C%WCt6WXNL4wP}9_#G8;5*V{k94I|>%9e_j) z_Dd}ngzqFZgdCY)ln1#YLSy)<1N-7P7IXt=jQHy6KEk8iW zp`{;GGvk4&1t88ZEDr=55-|urf_#GjOmrkT5Y7yJh$cas0RtP70r+hMBxokcO(2Nk zxge^d5)6|kFuf3Bs88#Dov8)4CUwjJ<^a9+;bn-ZsAgb(I1yxLs2i|p1BDSj%FuFG zqoWjS?vYF?Y;7>(yXqy$!78nAq2)jOkVw0#>WuP%@TjP`u(15*QcS4uUMLdRse(0A z34v<2u_~O<(lTR;3~mHv-NeRyBItl)4UGpnMjxfofmp;^TslTs97p)2T^BqOOmI>L z!m#1cAR8e6I$}KvDado3hUxjxJRihS!?wYXgp1S47202iD=4qUDl00Fz>`PigXSAD z5t4tS{zO^VI_QYofhsW?K!L(s5^H2w$q9mHFA<;y`B~q^*Pb~g8-Ohg4MJN%OFr=S zCM45@hy%C7oto4ioeY`qyw(#NjD@$Ui++b6#&#;t5xO*-D5MD}i%A{_=f!$iv?&Ng zIH7Pa{oIb%W;J&>+E`MbAb6`!lSh88h%`BwQGiRb9oI&A7&LO@i#h|Yq zH6}HeByvFwfaG~(_wHZGjG?STe+QKrwqx%i${^GQrUgR)L_pOtRi4+g#j$zhmlbno zAhkmZl+WK#BK9d*YI06Uo4s4R)S~qCv-uhG+_b zXUIIkIwJ8{=@?bX{Mn#T?;GBLMRvwL3 zI1P#e_&H@D7(5~tXZgZCt9)T2NxfSTM@R~f_6yMtc81&Qc(&M}iUiBpqeNTzU{c_s zYa;@X_zbjB0zKe`DQAl-@cRwAL}Wlf_lNgE+J#67JW14Lpzj0Ho88=B^G|Yydk_o| zJdw`e@i64&OF_y;>_coL-2~@FZF_kb#a$pH zbt(&CAKhVzz*UAWYfy+d(LAEr1;4?|AOxW-es~&dQW}+h8wY8%;iTa8XS8%-I{7Gk zT$CIijssbWU7gLeZEd~tq100_1dWd6U>Bm@Hg6%kE)m5TihV90RB9(xPPf&Pibb;* z5)tr?8`XY<3I@eqmq>lEz*9tXSSWQo@#sTP8IcC^eCMDebVu*-T&N`QNg%g70Aoe@ zt;mVi46AzmS{(jImBH&r<>SZCK+9YH7Qeb=_B0qjiL0(Zqn*OI66$R$R8$NUhWkpy zE(fdVOo7;X@3o@VWUq5bi3&62!_bZ3hJof_g-zW(BOQMnHv%t9+3*X=@FF?K$SDWR&+DyN*Fe#D_dq7Xn|NxGdN(3?Q``K9fQKykkg0g`eYhH)*_GSo!6KmHYW@Ke$arHZp+U@;+g_v!)5TY z!Q@4yn#y>bk(wF}_A?})sB5+0hKky4EG*O@g&S2K*l>d{x-=FS7AEzw6auuMi$Wac zC`I-kzDL_40HNSpaVUfbz!bYVyb>{Yta$*KM3i-Og0x%W%XR_kB5Az?ypx3FT3RAe zl_ttDbfx%?ldRsTgKLn(;?RSmGeOBjbaq;Lgo2QBI1gA1p))A!NRC9@#nI6Cz;7jKz=8F4+ehAOE=FIA(Zs< zNR)(G;kl=G-4a=%5-PBRux-MEL9rm@WT~u05F|}Y@b0AYpOEViZkWyDCXg786TyVx zlTHqVOrqY8x4Dh0fS)OK_7(LO^sKbn0SoY`w#@bK0kIqfi603}fLK6~-JtYI8|^mg z(;EGN@4X5J5!);Ba?qpf$EFM)>PzVJgK$mSP1qf+qySz3^t_RMbS0fGY4j0xDN#}T zBNU*f>1$b}-fGh1VI#c)^Mm2=)WBf$(1#0fF%>}W8*6EQRkut%)RTDc8 z327b#5@-UB(*z}4Og`A!X4=+WyRPIuw}Q$Gwlnd&DTwzC)0)7%XgdgWGqiIFh$Jb( z@ocn{4x4Qzek~1@R<)ibC1E1LZUNvt12|#RMrwd^Bx=TvSUNwKQDm#J~q?H^MCuzX%gX+2e?S+s%GQYa~$Iau1HYd2$)xFl}XoMwJW{b>oot zFfanr=F|A<0W?y;0?hC>6N?S;j5rV%yBE}T0MbSN&BC608?**Q!XL#ihkAhD@KNOY z?f~iy^lGud^2h*DUzW(T#ff-9`*;vTF)gr^WOX`kY;bVtYR;YDyJhOyMV~?M2iO9E z4j=+aIxnY7*(qGk=`Va7uIdW|C#=M&ek)uNWeo5mfNG|a)*Wcexl?od3tOo1`5{A` zT1vaAq&~s>C%2ThUZ__IMUq4U&;9)*kY_S@jATfyfzktM637jkEvDrXfTL1O|kHbr8R?DH@ADXlEYnd7-@{z;jUH*J61D7S6-~j>G#|q zBs@vok4%cF^2;$@qL|ITZ@omnEqN}0Okpdl>?VQ^&}opE8XG^o3QjXkYe!6XW7iqM zBluC6B0w{8ZOGHn?AG$eN_p)hb}@+xj(m1~G37cmP`J<#tWusBI|1_tn{gCOLrPL; zd}zfHkD2S_5dZE?i`-b+DLv7v={v7qYu~Q-T8ahF2+oobMcyLgP+H5>50st{ntNj$ri=z zZdGAmY0&KcY)CgDv+>5xw}^}kS>U@bfd5=TD>#O!V@FrlK5cDn1k*e4KiP4u&jqL7 zcqxzH7G3iF_b;#=XKBD96v;p2=jWFS&SF8Qq?_lwxvi8@iVAh(rcM6PNVQ?iq2_}X zR3e~;z5)c8?9l(=xmgDk$H|tgyxDW+7$Q1vhP$D2mBPzh#8|zxn00GzxxfmMD6vx5Nfq{YW%*@Tm(uK&mHxZOX&=?k?F9=S|8;w2x z>8ksOg_V_+zE7S!*~d`g2Bvf{FMt3wFgVx>$L(lu|GsU#^JWxQMG#)5STtoZ2S1~B zX@iN4AdGJ`DhUd3e8sA_PrM!_X647aGF?FEJ@&^e5fprdb%o2sEL(DKBxWz>&bDaI z3B;=VR=oFqBO{|0y=Q&NMx`O=>XTPuIUCQqJ|rZhi^WvN=PNLlQU08?($6%6r8s!-4~A;5q1(Mc{U$QLLx4 zmT$fwib|shu`>XJ-V?eZEw<-zgQ*!AMuk2rd4rKTM`&~Nf=AQvdopKE{3o&HRugsL z0H}J;>p?=jn~;zoT8Nc3DR8;xAHB!N$Di-{ym&K|V?eV4l(~*>Zf-!?8XpyW!nUW7 zdWUq_Vuq)=7Jw59@E^6IDI^6aw(tWSr(~0RfzWq62osR#sH_Smuqa zf&^P9=i>R%(b1*(GCJ z*bv@czJT!`t9IBL4}X7uU|(vIinxB9Pjz**-M=4?RZar04KX$`0iM+`@yqw`&w;(X zlP_Lm96NTb2-rderjpc8Pfosk|Gqx&E^s2oH$Ok0jg8F+nB02$`qF@_3NrKZ&H*=y z8Rg&Gvj;d4bbd`TaEb|-sxo*~XIhnJ0T0EQ(%9HopTC@8&mtC+1N#$z%VaHqbCk&y z=YV^ai-8LRO3KUCJ(DjzJ8-}Oc<$>=;LU+%$LjoN8mWTP$%zvlzz~`j{T*1SUAl5* z3NW6mJ&S<7XJDOc?my2avnP2!Fc%mD*FIFdTHb6pug{U~!FtIhOdq%^|NJQQ1K#iV z;|Hihd6_wd;ZHp{)(b!jibYTo0K)>%S=0`Vz*S}qOrYgkte_=|SW?QU!Vwod2j6$C WJzW=iZwhFm6oaR$pUXO@geCy1U5IM{ literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/Usage_Type.png b/src/comparative_analysis/visualization/clustering model/Usage_Type.png new file mode 100644 index 0000000000000000000000000000000000000000..a3629f74e99e2dbd3653fca32877a7e3f663d88c GIT binary patch literal 14628 zcmeHu2~^W(x_1zlwu+4PT2T<%g3?wY2(mBHYb&NGw6%%|1}&S25FjkF#-(Dd3JMCc z#ukxjLBb*+5QvHrAV63Y2uLEbge4FlkPx!n=cPK+ncF+x+?}vE>lYEH*CWe-VCfnXW5fTzevch8h|8jsKG1v!NcOb_RPV#o( zUKbJuvvMu^QNg5TXkaiF*YTh3`ucRnL|;q@Cp43%bZ+1A!^cHA!MYdDeX-*EwTCj^ zH~gM?)#}xV(L|*b9oMreJ?9Ln**or!9*rdj_UNoTCEQcshCgkiIEhUZh~*V_T{rE7L!TEU z{{Szz!`k*9z6u6&Y}*=GfiK>_t%A9|bEhh1=h-vMF=v*js9`Y6mTbge-dVZ>gZa0& zPGB$}{ppVb|5%>?b5NW&Q=txzx(BpKYZ45;e=N zo>D(y1uMod#Vr`$VkhNCPm(Ci#LW%_;dCrXq@1NF4s_5Fo3?IZPe$Fe1Z00RF zt$Wf>gu!?;oLjci*vRPG^E_uBODSWKx{ihq{gj*4NF~e1W&JveU@?YJA= zztX*4WrbE@7dr*(o;A^1&O_h2yDv4-z_n~pCS0Ft2!Gl-dYlS}h(vp`!nvo00IAUZ+`b?7vYtYYK zdSsYIp?JhwZgH}m`+7A_HWd;U<~`JSQ!?gE@2NLX(Fj_y@#Vq$_wUoj{8@I=Q|R6^ z!g_p1`TTw1;o%%nS-IC}dya(7icLOy_H0JPaH{0t3cEsS`L?vW~(*`z;PEI<)&BVjWG9t%*O0^CT z2&f#rd#bn0fTEbqCCR24JQIp!pLcWGO|nv;j7jw5wPaQ-jOCRauZ_!ynyg?K9^ak3 z%_Y%YxzH6c{dBzvkwcpmiM$&UH>a8tIg>0^4JX>SsxJ@j%d|4hbEb0SVh9+Y#v313 zygauuxbfrMK`B=ms~tV{$c-$YL#IGj^*M3kBiHhPzD?YF_pmXS{C#~J$g%|Gc63+5 zmhc+VVIEE~KOm$k7pM^hTjkUWw%^h*j})KgFX*kNTAUT}LV_ zD--pUvrftzRe~C8Vg%FGIA&pXm6}@4y?X`|6BEAv{`>9i8HJs18@*StL~ZI5j+7%F zZm||L$t1!O60arW^s7s3vQl1hdivF@Se%=av)NuJCgkq^^kmpaBY47Qct67+%NP1>0?;FJfm71Jk%%~vBx#SHB!_x z%~nMn#dsWLwiY<7#>iT-AaZ4Lt}@2T+IleyB~160Z{J?q$f%G`R*}Sg;V4HP?CtH} z+jjUGgmsK%|F>%i${)y=VJ&uWl?t&5TnbioXr=r7du>sT@m-`TYu9Q=S{&(9o!Va%rvmT=NDDX3u44uqcj`^qn|z z>zC}LGukSU7cMo?5hV-^MxzXJ*IS&fU!<>MyJU-F#;w7e72iZfMJ44*`sU{5a;mDT z*dDT$I;PdTejD!9F^~MsyRv}3v>|4SU~)YHzcb;?QEcxCB2mYjNc7v3olttkalp%9 zz-!Z`(kq94d55R*L$I{MW&f92x%bySm8H|Xk4B#>WB9l&68>(~7c;lu5FY}G4a?$VyF87W;Ub%DMDTTPm6v-g1l z20752VM$7})rM;{tsAL+pj1dnFVC(R9!@8=@Yy9Lk#l1U zS=JRjzYQ^evm4!2i+IXgeS4ZMoYaLL8uLUVEw^y)iM z9o227b`G~>rYjVRElw*iJ56A@);rlrJQYw*cQBI;m=H9&uLf zkMAP4uIcRUP0z~8ilgM_<>mdr5C{asdCM^0S-I&~QO57)d(CdZj_=L)y1x3A;qq9GkQ$pJDx;AfPFxeNne%CntzG>8%Hhw|XWaCOK?V4Q7#i79G z^PAf2bu$0K9-}^Q5+&m26RNHL(;nZ4BCci{^Mm|CG>A1V!a{lG{lAwXQ-%M}zy4HcAv)ymDnK#>^86|@t3<(W2 z73tw)Wdm`PZ=Q%e^$s&fObDIV4>M1g5;~0uo!dE;IcsRkBe8~+BR@J<%kLyPZtO=n zZSecf>BZ{pUEUYwY8LR~R;G2hcW;@$<>Z5bV5rgFzb@b(zAoUWl~OLnk~HiY7-)3h z?moP$tE=|umuH(Yt<51unzhw2XSST!uyNzYlcGOmKS%hboGdM`82RyXaQE?xL#WyN z`1lMrr>AHJJoq5RJyuc}Z(?C_tEQ%Axs!Fx?Ck8|leG+n`Ns~)AvxvcS6>QRx=bm2!kwF6zXd_HM~Yy|8k<_t>+ah6b*ttoVjVBt}L? zZj8->P8X+5hgUzZJEu+Dwf8q_cI^dv%-YtdAo*MueQZKMGo<}3rzMz&C;CnQHH5mg zldqE2AH|gtAex1Xjk7Yu7ZR@0J7Fp2p~iIFsu5r#ra*X3a27hthjn!%drKH9m}9FV zcGrA6@K9B~>Abq#EmvZ->B{wnr$iP|Y(F5@Z*9fTbe7kc@+jn31Z0j~iP%jz>zK&U zA=`Ahk@go}(9iD2{eqb>Y=zY>QICRa)y)qJvB97jLe%X8A%{Zvc}nF;{LW z=f+08`Fwc@L<)ko@OpCxt44^i!gL9M$21~Y+KbR+n(gYvOB&x^v3&VVS$VZV%F!?v zvs2xz{2)lT-JEMG)iF|0A6Z*NRke*;>a zoSmI_Cvf34MdG)QNd4~oR&BGeuqZHGFg z?8P+p@43J4meB{|7bGXciory!z=tX>0g6+0U$TK~@biPtL+4f+)+0>c)01Y>VxfzZ^{blz^Jik|G`8*%jL|u_vz&{- zgFQjKl7Lu{^h?^}etUZ>0LLS8j8^~28hgFPJnrm7RcxkcVPSzFm`=M3Z3@uh=qR2{ zChull_x!ZwdWfk^@%cu&zHY;jJ(TI<_$Np9NsN&2Oyw2R_D2^}- zy-(V*zwy3rM_kO6$;ru(kdPgLjn~`WK$ZU{B2}-g;AN%jSwbR*al?jgI-B`vVK8a+ ze!puCxhKu`;bA0Hezf&a{$9`wdU|`&J_8)t5w#7<)wQjy%a|!x){T!31PiLg-jgpX zMghc&_ClX1e8U0{*}ztVTEj_%#57E>6&*(S6Q#dYMgwtYc5d$K!*2)d-+<2Z{{`qI zJpOVji6YZWHz&5xB80_({f|M$DxH=58e;xa`xe+w{(6SqSDqa?mJi;? zlvVI{)jFJte4_z@W|4R3-sjL+K}e%{C#dRvqgSx!>XU<|j~?C0&hF0*x=?t6W>a%! z+G!_!4`Px?Y&-VoTudy#we^cc&+)ftdnIR7H^zQ{znsV%Y&frG%XoQgpv(B(@x66j zN8;iVNi2W9vnFiPi2i?%{aG$`!=>)2$%%-M}+4X9F zdg7(Envvh@=?XP8FA-b!j8zo-yLyPdoT;l!7cMh3I*kW85&IRxM8y{2a5GcQ{KYjW zM$uHAUXWoxCQ4}a#9-)ENOAgBMMe_tzzV5B&BAl)Fi|NY3ZGMBO`UM^S#9NnLMl++BW@rIo6P|> z(<^YAW~b_PL7}f~s>E_-!{&$#zBoN_75ZggUW;gEZc*jmZ{BwU>FGf4G&?Qhg!8>! zT2iYPVijvELBMN3s%E}hg)uZfmtxNbf)1!K-Z*=L`sMZ57K8E^iAY#!*7hnN6XtxQ zSL291T=>2@H(IFe?vWKEV!sGtY|0ssl~KLu6QbO#$WK6nf2Li2b(Zend^GgnB&fA| z4Y{CdBA-JyGBzy_BrKx^=;K}xFD})Qp~>J6AjE9174#_z1fVD7HFNhOK-5B7Eh3%( z5s^mRdCyhIFJTQMC!r*zkg+j#>b%Y%C?c%a{zs~bkM}^`Rd$)bE85CZzpi2MH&|dG z45QUYY?TCwKPc)Yvg)pC3a=+b>!HWfv?2m_vlFJWJQ?wuTpk1--?BgL1_CkP>BiSn zW9Rbp8jgnd-9#P(T9%v?LfYJT7jHd%{xhUk0s*kI-xT^aAm?k%>E=Fg5;l=8pFsu7 zI*eb>z$vC>U`8}Hn{zY5YlNApb}^AzAV?z~9vB!%A=mN*n+oAC)hF z%X-2J5{D4=r^wlqAy@^jEyD+%P}Zefa0j{VI-+wGiiL5~+U8wX}Y<#bz|eAGz@NdFU5xV6c$=@(IgYT%oV>zv)LLsxF1;BY$9ZpI8;0GyeY z25ju~Wf|WG*Be9UfLvAO6RVK$ke=^3(Nh}He_?%aizUx<`qfk96aHr2SFZ*gI#n*Xh6jf zk}HQ%ARw9sKNjewL>2DN?lGa0a1z;UE^gCv*7dGh1To19*&69x4~w5!Dd>J9xKd6E zJUPvfl@tTi%MWp9uczOy^Y!y%GC=Kz9)%RGUio&1x!ZNVeMCK@)u z2|8rFt*Bd8i<9kcu^70rFWt-lk_w5kkRvI`wh%;iRn1&>mwmWsxApp$=YV{NC>I1I zy^o#h}EAlV~6IP+w!lV@|9X$7n=vUW@w9NcZ}6w?Vj36H{xQ`0o|Y021^w&SOU z4*KAbADrRyM1FUXF5++C1(rkzhtcKN6HfPQ6REN7czp;Y#|H2jN$CA~cEFDgtLvc%&|AI?y%jv^2pg7o%^*>(q% zXZ#?YJ}_=9C4))gTf$9()AsR}!?yr^dV&x%Ix?~sIxTW}H<)-2c6%iB#a!9!knH*R z+qYqHSjbuR?=9;a-!Q2?QOUKJk_N-KAAkI<9^1nQRuN?qz{fHQfK7G-# z1fAUiv3}&^2^91{RcTA{!Tch|U8tzYcZGOJgQYaW&mh|v)huK%X+`miEXVUpX2=Sb zvH`A38qG-o8nt)@$lnaD@E1YI)eOVMJ5veOj3US&@m-Lbj~+ehQWZ8aNm33AB}3!n z;Z&a)v?*|F^@Uxo&!O&s5rqXz!@lo(04)!MkB3+|nCg?|+g;&nsM1U{g&4Du&vvkB z5hN&lGk49aKQ`|RIe>&Oy(k5E56^ERB?cU%=8fWm&8a5(T=`@;iD^&{wRCEoGEh-Q zr$Yowa>2GkW?YrB&HoMvkEk~;`iqDkLPhJIl*XipM526mx}8r(P~BuNT6{PVm1VF) z*hL-;ZDru(5f(@R;&~}R8VIG56Ky}U*|T0qNU4_AE9jA8>uQipI~VuC9l32|>&mhSt(OV7E6hmlA6Q+8$eem0``9 zj^B3V{zpirb+nTVp6V|A0CEcn|Kh_PFd~3_#>wrB*49=6&jzAMc$FBf>yTpDC+9js z-<5HdQnE0)oaU8a2?CH%so*M^&^1e9{GcnS3!xi^XM#mG4tn*( z_CpUMJYENfV>d?8rCvnA57I|% z#ToQG=-JXt{bs;b#NvaIaXj96Z*e@Jt1Bg)SYxT55%}*Q%mf2|;X&*(CI`Tvj!0lk z7mW0U@;f^_^A8t&2#LUq-((GCI@z|fY`i8?vXJXU$$||J4ZmXkm@W-hF0zQbj+tq& zb*I?HoA2GbN4<4nX`u*DiZF0xJ~trzW{@q=Q0ur>4F1XN9wp^c`%ZJUIS zJ@Zbuf#6CwCxSOF3cf6e=2@ebqIjvUcwZlS^LTKRcLWq5G)v(H%}WAZExoL)O)_>L zp%wc4Q*1F9@2C$qYxBa5H&S%@M@=aDRfIItM8&j@ayvqlTR_XmPchkbVbLzd_GA8T zlxXMLiG@C9g9Du;4ljc2UJOz2dPoCT&Ap)oQ5oN1WN~eh>@f^+Cj!{+$~pJk>S|k` z%+Nz%vK_;SU&82_0Eo+YxieZ1c}qL z_>tk|NW2E1fW}D>0J^!=838ZJ6MehuF#R#ai4q_Qr31J-{FkEBgA&^5A_1-RCj2i_ z`~WOC!WLFa!z-Lpjh`Mod8P}7t#-7nz|B8G-IVqC!b%}RAb7OMHgnGopmI>=-r9TQ(f3!5Wg^dNYqLElFznt+_XoX5gY z&vI4OjF!KEnGQ&C#B0Opb76@#AVEgJkx8`KGA5R+n~erw(3)>faZ6mb@;y%=xT!V~ zGvBdR8*vr~z^2{>{q+B@F|b)9lyYQ|4>{R~5@Uu(L_B)J&z(tEjML2`j6oMTf?Ug$ zsFb>tcyGo77`T9ZgZ1vwLC81a0X!YF!;$|wCeQ(%<46!NtdhTBSbq1Ydv>bV!Z3|7 z3V-a8={_^6`m@{h(=;FkYG#hI^#THLLi2-KG{6BR_KO z-U3lr*kl5T0s*WFd=duJdWxX>$Aszs!d&g52fGZB_@58vwZkY1-~}w0dQC`N_(479 zBf2<>-o>8=`)gMLR3F3_UwiE7X8w)euiM%VO${*AjwqM|-gE2Mv4kd((0mv20}<*& z4Wri15k_3H_joQvvlLNF3A%48$94jk1Gms{gu#&;dW(&yr)MTp5UmebbkC?oUtb?k zf)h`^+j008cQws+IrVI{W-p)H?Ioxyc=Tx3dbwy9+#`VJ3I>--n`zv#e+g!1Nrc)T zBg+5k32yDUrWy1G9&CjoiLC11eAZYDZdJw-Me=qTPhf|GE=0Sr~MLy zYq#v%n+Q~6u!y0}1adtylASO-&Cp@N@7DYQP#sK9e!6ETY<`LTOVi@lRb6^;)?ADGi{;A5NgbDK>{^(-=JAWO54EDNnP<(t~ zv(c1T1TQlM&EkOeyBJV_X3U~&kUs}?0%)|CLMA~<@qdNGVZ0k(96H{)C*gBdC=Y+r zqpt3+iu7`(Pr=OBUxJN2z(OE=K?ZbnGal4?&MlP-5 z=Eh2Yf#vG8O{peGInl$~-s&tknw}m|`7v-<=IBsta^NGkDfUg7B zfyWVI;(L_iolki|k-}}D;n|(y3{3oZFPhis8y~N%_gHS{M``oQFk_{{RKoLfR zUum}Q)lSV+_ktL9DF5*Fva&J|A#>Q-+gD+^bUifpVCLU*17@nWIMoHhl!Uj~+^WY* zur%bntbnN8PpXb)A^Ht^#fMA#1M05iEG|jtJwpfgx!Ztgug3#NzN0 zl3s2%Bz;*F&}TJKtj=lF1YhkxIhub!n}0R5`Q6VT{ZIdP@0?OyJiMXIa9`_T_BRy}1OXB0O=qM?AKFl7?tVsdZgTHAH{UtyuJ5jMPFyPs7MXeHdEaM0d;j@Zs!RXRTMQ9Rkm+D=k9*VO-o71`7bX}B)B>#Ra@LQg^R4Y^qsXEhOOgA z|8Zb(@gf+e5w_28_fhZo(QaZ?v`5(-y@A{9C(%_`U*U~|VoEoLd%6mY$34?LbIkW} z*lU5@?Mmkr4w)VMc>Z=smLga8gIjUwKF8W8@1{x}3%z$oDw;!NXczSl-bM96Yed zuf#BH!-`!PwrTY_4EyeDcox?;-sQkH?l$1W41Nsa!h%-(`NBUR&mRXxP~H1ia!Fku z8ISDBwCub;T-k7Ns+#-bakaFbo*wW1+YbAS&4SeT7;xJBJe*yj7pXl~s4)=lMzu&< zIC|25rrD^o;gEWFly7|*qepzIzm8ai&pTV!@o_4vkQzGIl*EkcXsv#ITSZPwOUr(C zq@9n?<@rkCO5yT}E3w*M7vueB+jH%!Le-xv$B_Fy1 z@(n4*5uxbs0rW6j<-~`V_`aHGI*v7ibD3>-pj=+VpL|%pGHR=ZJ!_dE{U#uQIh91| z_Ue^1DA(!6dY@zwe4cbD3uzf z6nX2`tq0lJ5Grte(a3nri<4R6mov&9(`(4^@Tf9q1$xb3n zXh$eHU^>O6PPMi2rZ@ z9AV;prW;LC($eJm>l4IbRdjf5)jqj|>EZ?lFE6j9`G&yARZ`v?nQ&v;3kwVOHBnm| z+uKEXbtVi-;bLS>xBgOUe2)u7GWT3#@;N7`aEf%Gj;Y@KM<%}AA<3UQRx%!`>ex~_ zN2lS3-lfyi&HT5m*PVWI{PFku4#w{MMk;WL9;@YX;b4N+j7I~{M8nA+xVF8h4B@AJ zxF#K0u{=spc5Hd%O|KHh$Jly?Gz2oI=viK63b4&r2S-OEnoPBK)a$dB-U$wGwMeau zsaWcptHm)l@aivJ+J54Re16A;479A?rG9mK*|@)wn7BB;lEmlIpv!QYSaP9NSIu@3 zq{oT9i_{v0?C|zH2Z~ksWON~OVR*43t+-eV{&$7O(1R4}!;Gv@3scR_XY1kwb#-;= z6n&;kus<`8I94RLI1w^X95Hl>-7(eKyvmp(+)ceb<$!E2bt z6)hbdVrhxK7k2I1Wq9b&Ay#gw6NDLg?|RKm)#0LfjkMm_nc-GSAafvamNhP|%jj~; zz1UqGtK;K3QZ$h0@{D6uA58-+wtU z>*2#tVVocPamJ99Ws+0-p9XpmoO)u&E_j^dxpO2EsiUI)Y9mNhKqX51@yp zSor=&@3Eo*>QoZT&u@t)O>PL7%|lPB3U=}xtIQ$Z#h8^Oy#4ss5G=ej$S2`b4f^^J zt~5B55ndIG-Sjc93T+t~hzh1$z(lZgrGx%r`&>tBxlrfD5@!e|bjsA*2K4XjI)9|g zwRVRK92-h7ub#*?Nzb+nsh1gbCF$8^P9tr(%ZzQ=xC%XVItpo#+SDt;cBJa+YVTp2 zUag6h-6TPUW0lcXcA_aJSP^W9!we8W$H=qgySs&mhLY+1c5!bb8MtxIjmMmbP}v)2C0*bvjJB)o%-%vb2uR zuA#*{i?(Fi2p@=1932-{+jRH9`@T-Kp`oGV^78Tri`!;r+n3_=YN&peLIW9-8V)w= z3lhq;)boG8(0^Q<1^)u|!F-HQ?T*KAjV=fFthzahh^ZxI7G#CJT(7_oxI-B&h#`K3 z1x2{6{HK?Idkz(?YI|$z*?vaZg<9ziC1_&Zi9y4wB%h$13BEizuAf-O7_c z1n{gARt$H}Z{LE1g~o@={M7Wc#89I!p(;=pDTn2wh&mWn^GtBC^%4rzj;D@zD63&4 z5+t(+Sy^K&w_^?t17{P)lVIC**I(V+>Fv+^&cv?3f_D5s{8PRE z|Ls{0Ta0n!f3M!_=ca?oFBB}3dxuF^uU>6CpO%merSf4$1|F()pA;V!w83rVf@?{4?memg^>L|%DQ~GB5Z7E z2vre^4uhqck(cL|SI=mGO2=j1rfx(e5{s_Mhum|G55Dqih?uW=2(h$Kqg#1vD9$k} zq&dTilHYkzJmXkq=ufgH)q{;G@K07uOpH25BTK*WEG{WY$;(qYVPlhml9YhGq@shgTsID-nD9*p2=Hnr>{v;NwSgh3=L?puYcpS zj-uA-#P8MZVRh1@*;1L%Q|d~F#(Jgb4XeAdGM?~y4UpZnxp5G-w@YPdQt34ynFELEpT)(6Y-wpxBfTi!+R@ort82KAJDMi39RvbYeyM@*{TuJ%UJ6&tRf*{O zx`&IZY{@E}tPxQ;doWx|SF6A7j&NOF-KWu~`T546efy=SrFW^S3VJNwf7jA-Y>Y27 ztE|lbJBfi)AO7=1j*X2a|m0fE&z;VXcxDbB}$-P0+Ou;EnKBWR|dm2e_T7gWjn51rM) z`#N4zW$l$cUB1JaE^qhARXs3I0mvcvxt6%D^yROPloW?3K@0&B1awEBQ{l&c0;&;i zWX4($tLE|op~d94=l_OKSv|yi!VSN`x4BG$n)bk&I6~~d9{juyc9YY{rrwApF|?^9%D zH-;J=T-xcESB;QXY2H#%0KiB_=9Z%EiFdczTrGJ#d6SlQt?uqm?(6RdORo4e6FSv4 zLdR|6{M53D(k5d$Ge1x@3~gyarAmVizpP1QcuJ(!kZMH%ums4i$@%%72G4o0!-}v} z^u~yY2y@#}{g_S>Hmhb@LlOBSv~4CMu}KJ;XfwU}?@>prOp&k{b7{Nmm|doJEc1k* z4WZ0K0+>^u)HRO6k;k?6s0r|AbQg4`?8GV-nzQYJoGH70{AKRhD!s$#op%W3nu&lR zj~86Djd!it+9$P2?Umr*ZhQ22zvw*6F>{e1#GfGB+s{w-^+{dfI9_<^v{PQ4TAx(# zWkjFMt*i!0ElCLMgbFGoLnqpm@+@dIT&OMQG#{Vdw$eRl!LV8OY*~4Qqma=NMlcr9r{GX+Vqw`nV}0pt>-2MNp0$x%`d1ztvi&xtqghYXQ&WC zgA;jWo$xK90N492w}uF>vSHiYRy$%e{9*9=-t{4Wa zY7BcI0GQ}^JvX$nr&e2+csj=e1fv6dyU)t)Wic7_gmFJMqKI;NT=OCLC}vj$_l1~| zj11_hg3^1uA7gcip7CBiKI!AbBO~F_3Rcz6S4o#XXY7DHDWrHZmieAdltH-C5JLrW zriZjFDAszNsn-I1EFRm2Qz%KBSDP-G( z)m{JiOf7Y>mlXghlLB415TiFR5D>@~HgxMMa)ZZpCb;00O{uqw&f-WOBxmZUw4_M1 zBF%w#e#DLMABZsqO)F?_d~O5vI~d-A&v!^*oH+=1 z0Xr70jZq@Mc ze~~3uKD5lR2jrUT)c%-6V!yjSUNaZgSA{q)qk`p+>LH?uqobqB4)yV9b3*v#s*{bv zsP8PyB7k=9WKLYucgo3(>4wAVLJg6t1~|VU-RaS4ON+%vh5#nm8~_-d(Etii5H`T< z-Me?C_C&<_@nl^!$S?MbqXlHR>?|Rps7MnS5iLY6u`N7fy+9K<2hvKV6MIVM>j;r- z)RrQ>EFX90POa`Sqf0Br-m5OXU!{*w!5sV)L7NGzO9i0@_WewLd_|wh4%E#mUl{W4 z?ChD1>rBsLF3yB{l}{zm-v{#=Lu8GVPSqp$+TGo)9I!Npo;ekrJ%oL4ZMWW_-gRj& zLgGj*B2;Ld!X!J!{*yUyhx}y%I*$O8KSUd^O z0E6OGd0>2cK>@?kf!O}bPqM)F#(Y2c*suHxS{Bh+vwK*pE1_XC)xBk~5aI&p*)WEc8T}r$OWk|JPzM)~&si_BB85kBl z@{E%=d~v)&A00su@uA2)K(1LKJW?8`^qj#-pxC(q%L~WLd_7Qp%ys|tmPDExvZ@e6 z4$Vkj1G~TDQ!?^`I*Hl~&~4O46X^)#)b!9Jy-NGJflx-Ej9I?ar)1*h=C(^st@`JE zHy4sv0ASUmfXELH4TX~ZNATu0HsYu}(GC%OEuc2&f+4mflWLkEhE~U#BeO`z*h3r| zLE;07MVs`d@9|azERG6;?Ivyi;_@2y{u2lUDkLcQU{v!4lf&4{JKvOAHQ857bHpv4Ff@d8Qf2Ls zAc&G{3g~;tyDfn;;-};{yuk?1kjsPII~vOM$Q(lQzjvXffC`5`5_$k&_qx~bx59sFZEQt(r)m<6I8vgxPPJN9*Ps>)|-qRw5s7)c@lnr8$Ops^gbkq_E! zXuw&z8$o=J;T9u9wrPZ$dm&7XcdHM94i~+h`eL0@I4V=fJ0p?W&cxUz1Cam^EE_%B z4XY&G4U|ElZ89SAd@1O3U&=;!u|P#pyvkctW%K7`8!Nly3S>sQ_8-f-4qypD=9bASOLgxc0y9;UF^HDiEj<@h-u8*t|RcmwY zG+P|scX=)hb+vu<$6EHU;SwbIcXT6q4QC{GynL}5j;t`kjAnrgP0E4HrP!UP_ej72 z|J+P&cylMmZ+=olKfrGUjvRe3g^U`%?RKRaCr+F|(z8#B7XW4k8YEF*d~H*VPWzTa zaRML@o&EY%l0wpw0<<94mlRIFJwQ`Qnt#0|sTVdINXX_`0qoS&7ryOE&NXsfsdW#6 z7d)zQ7E=j%v=Ef0x)p6om0xgo$LuQE|MEaiot*33#i5Her5*wtpI5J?0Pi2|WoE|H zFv6Q+4?Y&F_ob0#C@V#=ITxGo`btd1b!bRtz4oKI#jOHs8{fS<`pzGqy16>Wrn?$)taCY%X1Uhc62n#f z8}F`q01O&nSqdmGWd9=_gU}kpAXjMw&@===JHkQ#H39^CGRkY*vfW{4rWGjnMh0l< z{g0ELyPC>ywK_f$cw`khBNhwE=*G$EjPJkl#ULf;KgT;HcpMYm0&uhIS0W~o0~#}> zOBOR|FS^1hlJggvjL`MjCfjyf;a_ty>RxIWr_(3o$)oatw6U+RuZ#>eh;uz@erf>C zw@@JyC{A65{k{SF{g)g8rWQTK%ufdB)PKtnZodIjz>DYl)hk3{s^BDK)@rD;!YD{C z*g#$|iklpV%?>LkKd+ACISCUdpjjb5i0+CW(Fm@wpE?9p1C96P1k0x?sSUxuP!@tky8{5HhcWljyu+BSMg?#ld zt`&4Es89@|hgz=z2jna4@SZFK!V6G6_@z0zOSebs7uU2hv!F*zF2VgsxR~lT(Eq}TH`eN2;Q2E=i7 zJ9_^vKb%YQpAGSu>Nf(hDskx<2l7-<_W_xT+gluV-5iSc6VXmcA^%VakVyM(Zkf^d zY_WETb_6@4<`><+>*(*?q#rWzr&;vRY!?0XvDd-NE7u8CGRhfcZ9o=ik82gfK(Wv-EYolt=h}GjN3Qc4BYO;j>ToCeWCF*Tn$10}} z6tFEL|DRHcuTEbR^qAW0wm9m63g+}Oc$hKY>j&@qgRI!7v|y>lk&pv+HU(iYS271? zAUaQ8{qHjy%!cN!O^4L00O`TtjvkudfyNHlm-$#O#uiKb0Jp^upoUP`@vAk+j)*J+ zIlsZZ(xEWQId}j7-RZ?7i>BHQ2=agu>8=SWH4|y5w|r5a0Ne~5_8YxHwZovO3Y4G7-}4l+fPSEzY&S@@JjDfO9325~gA^hFHSUt-~4GtCQd`{Ala zy(T~o_sy!ra^Gq_zBLjJw7_3e!!Kh-t++BVccC#DfgF8`S{C8ga zuQ(U}c}tP=4X6=OW>7o!K*Pv^EJmObI^xzx}(Mo}pp$q}`ZVI#zn#1_6sqE+U^mLRS zU_vu_9I$p7(lA`LAaE&P1n;!itjcZFJGMT923&YK8F!!m%^KYDkX5ZNw2x={rT*UG zenF@1Vpp@AdG1s^2ba2ZAJ5_EpF6283nwY|NC?JNE%-lN)u=zSC}_WGY(OASD*oP5 zX@sP}?E+EGZPC5B9GAc14*ai18@De&4A_ZiVtAcBx)B4I5Q8w!FD@pPF%%KzFEa6Y zd9k9bi~s%F|5r!S?|RMflfTPD%UY3Crg`CLqnG)H?(X|tR&+15*!tR28n=!}!f3bI zE;S*>jOy|FeU-g|V+ZIeny~`JGOniK;X{ON%!co`3M`s@?6dPJ!nGZ?OltPAEeAiK z3iy!}LR28gXyAy!@cG;O2M+8K#h!^53}=1c&S0qA%beUo_j{h-TlF{pKc+KmBDeYN6GcZC<&A zxlPrnQxKa#j+?;Rm5yo{3~*Z?jMvCzF=A$XJ&=*H-6nrKX#13`tore6j=ARS0Ko&d zwueA(2UB!8XPwlt40tz$2`feNn`(TM2=l(KvjNcYk^qZN%wZp0yqNZqw z3h-1vqZM0*J|qO-B(jFi*R?%bF}+dQsV#@JI?26o4W1Gi(cj-MqJHtDVd)b)@H$$Y z(b$zecpHeR@+oCTx3)VHVaA^-D?R_6&ca{{-)XP|p`DIEJRZ%JlXC3tOy1-5mq*46 zqNy@3#gioV4m3Z_d@IcHe$)SQVbjwT1`Y1f3;4Low!(0 z4u^~Xc_`<~h4be_kjKUB!!b8A=P3Hd5Wih8+k`CZ zHn4A@sOqA*?m~LCIC5@CDP%pExzM5_$p%_$2h82|RsmO*LbEZ9dl>gNNJvii)@!^E znqx95q+v?P>Roel6+8C;&ew0j@A9Qry%A)HA2?6TQV-Ptx-^raYNSV7RX!G&aHs0i^ZWS4%6d}w494GmSW zP7vV!kYCp)CVlG7C;NhQN g2K!f+xh!7Cw!98L-AhjJWk777k*Q(Uo>M>m2h(XM&;S4c literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/agglomerative.png b/src/comparative_analysis/visualization/clustering model/agglomerative.png new file mode 100644 index 0000000000000000000000000000000000000000..4a83b329ab22ac0f189335df25980be791331a30 GIT binary patch literal 92092 zcmeFZXH-;Mvo*XC1r-z($pQ)rDo9X7GDa{Us6>^FfaIK$2}Kc5K|z9`C?GkAF%$V&wb7v_r1sC^XL0_8RK{c+F|dtYgNsfbJlu%MOks%R`#tJhHblW z{_Hgj+th<$)O$D6z~4w_$H<`nIiAyURJAd2bTP0u#x5H;+FIH;TACT|bvCwlFtf2f zCL}3zOmOdQM@L%+DPdu&zg{3@V{a;4t@=S3K4gpS`RfiC#$bT{qe_sEH^Znf?84bo zYOaw}y>419BYn8}273ApKkjW668upflQ&%a>ALy#&z&DtRs6YB@*-}Ugm;?fIo2xG zBwOZ4nQ$Gc!zYU!b4XD-xpRkY*|uj+pZgbS>oy-P6{)Rtv0g1qozzxg$SRtRcui&F z?Lcu1k2BlL^ViS28;zG}ckKM@M~6OlK>6%nKf_eow)}s+m}dbK%4PiPwL9G~mY&Cc zfBneZp_}>ZooCN-m2PtR@3-z#gIsQ>S4|GifKx5)n;7ylPh z|Bect|Gzho+UW4;s8MU8dM<@bv|Aksja7|T9_uTTw$2-2u8o%G{`m2uvJGJ}t%PUa zKB_HSwxnwb%B9LR7-pz-jcvn=+H`-eGY$Hff1j2?VP<@}~`iN{pL?Xw~{1EPWbhO@#MV3k3>C>k-aCxs7=ovpD_EX4@ z9z58n?bNE?bO>v44N6I=tyRK>H8nSL>gj#9WZSiCmo1^!CA5HCwf06=L%oEuvgX3e z!}BijS8ACEsf##aG&fKdCha2RO*(vbrc1&GU!Lug@LK!i zxSbR*o8hFXKC9}<0AK3Ec#!kt*|Wm}Hbu+K%tG3mvE0Fj93pl<&Q{`Z(n1aO_0>sf z#ZMUI*LMgPukbwa_ZM}VP>@5CDSWoEXxt9qOvUo${_0~eSMSp9h?5nM_ z^1DhnAknIi{8+Dh?dLbPLE2@e^4&Rq3}fV1t{navETGMQ^yn@Xxz+vbC#;{2)PxRY zx9e66l-+O4b1>B#U3=*~-F1O~$MZYSo;~v?FYB>XYiVj*_AA~mvuzB3e4mgy@apK< zvyP3;V%t6Kl zxb<}xJ=@WZI{A*L`is3pt$QS+V^ox40yDm+4v-IXWRaoWp{_JR0Zx&0wo<&1h!O4G5xp`t~s*{n> z?<0?&>AgAbMJT}nw7*n zDI@}`r2T&P<%y9Mt|EMw#Ypj}@%0o9^aT}<7!+swiqJ#U_F8TY6E#xseU+J+m6c&T zc>32(!F9K4>IL}Hv1mwaxpnz{eEd+}=$ncoIX(Aui`*sOrnwpvpYxjGft}B===HLt7BA}66y6r^I9U-0kfrT1j9B+`!JqStcpx5@= z@Z)rv+IE|yTxOn@-KQO@V$n-p@^GJMIV3|_Uu2bXJSbGObj@+Lj}u}=y3c*`NJvPC zT5d7v>|=lCBjxay{`<~6jDa9xm9X6_M_G5kEt@ZpKF)Ymb#6H~-JfI{?e)3I&3n03 z6J;TfnY{R(_RD;XeO?5e9;bGlvCb_1eCO#W@FDu-_0=!+^{Go_Au+Et$Nl^F>(@t0 zG6_lB{df@T2KkXmh%!?!i-In~I{)K0(e3PFU+f|#Qwvg?Mol#|n7Mq`?dVxWO6R#m z9eygsH}Grj=i@W{S^GM7Z6XOh9TXl6GILll{BGY4o9I5xHpqPUhKjmgOFI1A3+eTk zN$o+xGA#MPJdPWO77cO%y1m?~%o-8*rQ4p6poIt;E-ws;i_R-^gG@p-H8mBGoC7^( zi&(sf_;c~fQQwm^h1Z9;DW#dlHP0d1 zn`G(>6_7Sd6hJ%MZm1gV(!lmkI^n`ABOVk@July@u?lbXO1uO6srfF4KhX1Dtr}lW zlD?2a%FD3q%-kBR#oA*X#a;#7i}2+145z!YH*ei~T3dTh zAeZcu67m`yto>O7gMH4keF57z#AD2w<8C*{ZQITz;}`8iW-B4#Iogu1--p|ln5i+$ z(1%|-(haCF^uqJ!&!03g;S;y+@q^;BAY3F{~dh;c9HUX#*E_ zQcZ2Qp^?$^SFav6$Pwu|PFPpgzCI>uKm5f$C^#(457uiCii-#Izh zM{a(ONk~Yjc37Xz={M~9WG3=jY4f&i=aiJ_#V((LYxX8BYvL%nu7kezIo+AYbbKmr zo|c!Ne(>;N`E9Wu5T~w_DLJshKQ9t!3BwK}EAvAugc3>sBs*#huKY@gx7Yjk@Aa1_ zTD3~NWtj!F?!Y6_$hEp~VT;03*1NJE_`On6>=_vu=PzHbijVew(p%tS1X~?Sk zQ8A@1!n-$MzE^6PW=hvW_$iLqbR((;q1tTSTYKdSP#Bxy2iV;4K< zQuO})etHgZ`qBERGf%~T5?R*E8)`fAsvSR8fqdY^wM&B-Wh%4v0WpH>FwLM zenCNs%F5dTeN0Fk8iupzda-R53)0J5tihp`~I(viZ^~tuBikaSmox68G_-xh9 z!_QA^W@hF}T5iukpSkdrfAjY3&f5K!;zkhED*!Su3^3Q&_qWvO-k00;h9DPLe|gS3 zKNcI*mROS-H@iu_NX3na5GqfO8Eit9yhEySw-sWqa>%&arp%Z^iV1JL-SSi+)kh_!b?9x&b4pv&ouUL%eK&r z5AAj7_d=h-EUc?NGYL1?1=uc$EkMC)ePzB2;2CGAv8kzrQT0>wZs%U7cC&Nm&M|eN zUjP!DyScdmLD2R3n5kGqU7T6?&)oIVXdh?y0(chMutEKYGNEMOKGE-)g)Z)4^a z4tR6h+cUJ&ke{2AHIm?M8ft3qWg+7Q62;g9lt-J`h>?K3t>9q>itc7%u>b&6GBls> zIQ}k0ucXhe0Fb>^=^ZL`N9dIM{c}_tDa6wN^SC98|TNhA7S>#_j$~kg=*VB ze)a5G3_$kmp6ORYI*I6Y6!I+Pu;VMv?t7c)KHa;w;c~NBok^A%Kn`1NdW_6?dmJ?;0%4~Rp$bru7_X(JNO2Ggjl=bFVAl{JAXE^#E;&C^*Va==$;&D@Acfa zcolB+i4H$&8|@t&I72_g$6HX=N9ECd^+MeosaD66`II9QUWSC+hNm2_5}n#gh|iQP zuwBO!3L)*Lco1gLGw@!YSDZc#0ojb=V*Ep>Iph$BTAYqcFS@sBz&~x*u3g*H-cVE1 z%;mLo6@4#&4yRfJbwIJBu6-dz!k3#rJ>qiz(%1vng4W#E)j8h{ zAg3u$et&x(#k+cvhGbDmVxLhBIr&>{Z42~0=y_T7Q^X108)+zt0@BIbF!553yR8_BD zyLL|@fL&eU9sY?xYAG}iBDcQmV5O%Cow2D4KYm_CMG=BK-Lmtjm`z`g-Sx9)H|n~N zA3zBlvN{F2^~gRPKtxVO+lP-Hor!PGTk1eP0BW&t6mB-Q$53Z>oE*Q}201CP2E7+6 zh4d)uxnhfZ-cwdq=DI$Qvujn?%v%bp7qjkRrDGPfefk#q5>)TEVbD^t9yi~OwheAM z_T4*M9H$F*GSBKdw1y)c?+jKKMslI`;|$%jaicx}V$>#yU9Na>;F5Wd8!WgH>_niB{t^R=;4e{ojMhE)OagGdYEnGZq|dcFBTv@ z+-^zO3F+nuBq&KC4iS9}fc`wY%WO{`qe&JUtZdjZ)9rxc_k{XBd}s*eHE`6z-ad0E zGpEm;4)W?)SGEA^cA>aSS9?Lf7E@r6e<5Z@{ zejFLOhklR54rm$9!M5TIt*Wjzgf#*TSOGh9eke#@$_ly-zI*rXVUa$14g{jA>b`yZ z5Nm;9(eTZ_HPd<=M{oHJo$sA3CT{n@Po27TYrjUS_G8$1QmOqhr>JEJJr21`O_%KO zQ=Nx%6f@}P=*~d0qQW3Hoji4##nz$CgKs>83*>wr9DKjB@+@w|hqTP194T>^`N)kJ zh|c5O>zg)EQ_n+o2;oq9w4HO0VuWUPN}I2)=lr?b;SV2id$U4YdXVt-E^Ky$+^{={ zFEDL*v+2qjmkFiiRo1L8DVPTC(xEUKHdDjq&6`g`u!?xEuh`2QA&vve*@lC%6OzY| zw~mm*C7dR91FqhTA!dk&mzOhi+))YvC9kz5DlF%-)uBl!nr8rvKULs`Nc~_x>nkcM z>N=g>4ovx7Xdr$7YH)Gq7A~ASoi}<3GBaoY5a7y!7Q3IdY>_fiGP zx6sHtw+{=Gu;W4D3XN&~2O<&QZ9|2fd9>Xrzv_&wt;j=qwhdU|rk>0tcUhoHbej$K z?%i8DUT)eMWYSG|Dr@&+BY97e=vbcaZqM+uVqsz$S((lB|KN=G zeUnM-B17*3u>LmiB_D2X>R_4ip^#i6<-GD0qUwv|rJ}Yg#O^#fUj8(SF(}oeS8B z4vVP;Glz531AAo&J*tBYm)>}%B2EOm1B?+5A7Ayj)09tSCtz-fam~R6x*UZK_3|aq z16?(cyMOQA4lXWO?Zp~7?wlTb|K>onm6@v}i!=a~MFy7j&IU|oCFGm_KQ z&O9dbMA&)&>D7JHx^wuT7quJr2589X6Y_D&O;o=W0}L9Qo15G7rVH=ZmuqK~HwlQ3 z2JIY6StFO(B7z|-D1z5fa>|`43g$$ak4n%^rUQVP>dtAHFV=k3YVNe25eFZl5oAnx z1Es4sQ2yG>)`Y9PJx~L%dU=(aCr_U`t~rzzUzwUJDt|pUXN&Wg2RQT;`l3>kEJ>jf zpuf=GL;Q{7I63hs^cwLcv>nl*#y-`ks|A)9=y==wC}yk&uqCv20LLSZ(i~mfhKfpG z;v5LS5Uq+q^W{&VXp1)clD=cFyNE zdbf45OtuvhXQboXC1F=$68LnXB!h~FBg{9n(S5|{Bx$C-87i6P=aF%p+bee2Vd}`V z5`Ynl9{qOUG`H#r6g-=>l#4o|)D=`HX*7i3QP zGZ?dkP4y=w;x`BS`=bQAu(o3L)g!}zqof^@euLHByhaF+@5T$MX%~ijtMef`Y?Jh z9Uu_)!N)S?Dd|?eaWqT2jtl1-x1VgcOiT>hQ*{Ep(x9<)2&*#zRuVUE@kL)`0KmH< zDr{~qA|thDiY*{Al_8~MW@gR-c{l)79s1~#& zfDL`t(eYDzK19Sr$PP&9=*V;6SAHY&82A=_C?A{Y=_{em&sQ?4y5%w>k7f$x4}7)0u9YsWwTmz{?v#NvBJwv{+&wF}yaL zM7+`K5aUf+0|Ldxv!}mrcxv-$X;Z~w%~4pPO2FcemX?<6^@5&0t%PhJ6z#qCHN%(D zmh7RcQ{&t30`az8F^*)gDH z>*D<5MuF30+n_ItuC1k=AqyvGfb>i*HENS?4kbJWYG&vwe{`~Kr6cSyXoq~Krlu~k z+|p6UJ88Ere)Ya?U|`_8Nmnz+$)O66_T#pcn?rCz)qpDyODS>aqjG%39V+TMNI&iF zgS{N`MpF)I-A9c7?nxJ&x=&*Os384D3eaoPsX&UG+d!UVM`V_rogI*5_b<^2yyV=b z)rwn4E5hH<_L$B_#1?FqbdV5Gyh(Vjhyb&3EK=HKJG6`m_>41v7@%6 zjJdw;A{+HFPDMe#Rt8A%+|4Pv`qm>GJA`xe`iq^;t2^j4r?7vv=?{d4yv!u)EhO^X z)t?atV(g8nI?}kEWMe`B?Kk1f_F>}8_~;XXMJ+r7zxt7-c7@J!Led{{WPiZ=DHRN|}7Wi7oi{3q#cb^FU0rt>6JeNo%C(1|Y&PNEXiu zZ6w;gd&R_BGISmSyqpxVXcNRfG&};9g&A1T+wG~G?8nVFW_3(b;aNK6?N!e;R;s+r({iO~imBjvA;U z2*Jnw-o$Mv)gcZDij)3SM+Ov)qIT&iZ4#T2kB=k1PpflQuD+Pi=PsP^bSu)g8mk_A zfES_hoG>3BO{lK>p*u~C%o+qyH%QJ}wzmP3W&2O#y-o>q^U6s}7nHYyP{G+PhkZ~C z+6GGp5mFA_(_LU!s1K4lvIP`%I)i=)7aTA11=#|vL`Zi@Yv>da$IQeu2q{fDO|^Ry zvx=>;kpGh>C~kldbm*h)@Z0!kfz;Yq zuLjpBh;Bej`EPzSM2-zOJpUox+`U6ojKghYoe**l^!zQsL9Kt6~Zh zw_+zlQ)n>%qYAs&-)`>lt|L6X;!#c1vy5byJ~vv(l{onD8#9db_}QR%yxeCWJwV2U zi#g#)p~gaH3~clgK1YWw18d@ve;Yd0pNCoSkzZ?TH(tqSDaZXy-W?)cHtD-9 zJNZ6zGLqG-F~&1 zqOts95n>Zh>+A1DHUDyixMWd%qI!~khSrW~CoHxarDS=5&0J}k^C zfXr?818LW-TOcP^0EbA02^THxic^W!9rTL_-cn|Lt|IVU>SIR!chJtZ_T_jr^Z-)) z0c5Cy;Kt#fKMkQfRwkGiLuaio!ul*S@+myTm&CDUKz4JmUeKA^Hx|oow)LK*B3@vc zo+%>e0zJG}R+baGLR@34BIpr7tvrA6V#EEi0g1aY4=x1rQ5__`FM~8S6(*3?`4lww zK_Kf{EV3XwmCI9BRj|@C46M9_NRmXWA@ka}Qax4qh z4M;!t;MU;na`N)rsIDQ$14uDwJ%#$yq>MR3Un{v!Dk9GcpJH^leNGMp|2TaFZX)RD2lfCBOU%czX=f z^&vT-%s#?w>@w3co?8g9J`(sNr(n75=1!0|kVpm+x`L&pAYdT%L3jM<*NN7o8j`3G zTmq<)NUfb&2^Z*A?(`vBb!Kh?RVI6Ava_=@OvWv<`JB4P8AC%J5EKP)?Z+=ysK}EZ zKu0A>mT(+=WqI5yh*Q>GY@$6a2$*N3*GE5St0*YYR0neU19$uuB5b9-gseVI%9}(% z@9HXHZ*MOG)UZ9jT?2s9LWa+vzBUExc$|Stv4dQ*;b8C2Dl(2eW@)q+@VFm@6cvUN zqIH@Jkw6B3CPa9%2oX2%_7Ru;nrpV3aKePw#pQqH)(TnRBNFOSYDR<$qMbXy#eyVB z==(n1ZrlJ2SRmszc6u7PSR}$ak9*V7v)%!M&j8Ad>rCG093Y>4GBSH$)gE?QR=>Xx zyoaKn?GG3k%q=2D)%1msELI?;?%?2{OKN=rT2c&z-r(RMdiS^9nHQIY${-PC7*x=J zaQ#*@P1hBannvg&3qfjUmG_o`r~VKC<68h9ptvD?^z|0X2q2eCNo>7Q4h@p1dCS3M z?YvzmBoTk|>c~wV*owfcAgT*#Me&MbYfT`{+5M>8V%b;72D?-dsIl-9Hi5~>g18Oi z&-R@Wahhnc&zbDV;Jwr2v!v(J>*NRb0a;2diR21`uG>?N6NpnQ^V`Y0gNex(wDG;i zk29^VuA&lww00mvq^x7xC+ExQg!NkzuC741{NiK-6m~N)A=b6Au`!VMzRqzl8CiCJ z-o~%;rn2rt|I^%DiH(~!?SpIf_4U2o^nMF8s6f3{+IL_3WZAh3Bt)4w<)|kVD4{D; zSqaof-}i;p{j`TBL{1ZkIiy2A<&tGbZV*%k;nQ2v^!hW-DMHKl z#(T{y-aq6G@Zc7L*E2UFs;fGHV;<55T4EqB&tJN9zsm3w$joTJ;G9KLZ3#qbHFEK_ zsF;|&J)Vnou2Al%LWI_&r1O%?^h<%MM^9jnge`^)S?JoIJ=^jA!v{(7zzWjRRt^p! z$PYCYKHe`N;GCLT$WSIU?BEXRoqv=F_K^b5k^qhq3LscRPl`NPpRBr>RpXTAyRLo* zg`XD?9%8ZuZ+zMe4FNmI$hN@S;dl(8xTVAW#^>0yC9|a#E?mU5N#^uAM>J1Dx!A_Y zr&J0649T&$R~+Nx;|C8Nva_571$<}d=TOvvrJJ`N2Je_5=v?T^;I2U>*#QkMU>4BiWS{OG%P?|_jCMDjeKHK0}i7BT?5x;n@x1sgoz@nh6#h#G&}{mb|R zlrz#mA@ZU6p&kR&2v-1pQCwEDhk&$p1)*lHl$t>w9>WTB322)X=|Yc5znhtvXaD|< zK&j7le09}XhIK^RI(m@^eEL}h1>jPcp=-CbJmUmBlKM*2ZO{ulklrU74^J}iNV%b* zp)HWs(&QZ`nh}J1iGA^ElwR1}LUJxz%CDc*RXQ=B-;1u!OSP7QOpFOUELHh`VLhGQ5MNrsWno~$yiA_!MQSiS?g0dD7kZW<0y$~@>q z5~(hOhAB{TAyFX2jjq;lx{C=C#aUoyZhW?U3?DWC-juaec4VgF{{{G#^x3tfniXX?$I?LjgNn~_HgvERUU z2FCu-Ot~@AwzC@82A4g(H}GT5(m={cMb&2%`6VI!2f4WboB-SP@{LNVDhQK)tx1|g z5Eu%;8|-3a1XCnd zv^{76oz`nJh5Ix=z^WkX0<esomXCDknf*aF;o?C7YGFuWS6YcJRda~%($RJd z&pB~mKavC*A+y|p3j+!6asDt+UI6f@LS`I#;DSP}aid$|Jv(=<@^TF#lfRrp z^W_tRK&h8Q=N+X>22p6kL6WP4&K@q0DN*E-T}a;Em{CB=Iq(`Jl2QKpvwvl4}Ss{JzCTH$h&3wCjmj-yMO;VqyT_^W6SQf zVWQN?K;U@T4Z71U4;i=vAw^Lg?7dV3c@`dT$k6+zh^K)s1SB?=%lX$A{2E_)t`a5d z!Hn`vF$sV3ma*~MgoMqoEMu)nEC3|9v_bM|dOU0ZohNcR0TuG>&6_~*XYGYe%qitq z3ck*Vu;ZkP{`z3{|7R|O@J~|{C-s*#_vO3Z4yTEj{?T#nLbD}?MJd;nM7#z~%Tj!7 z$$jI)N0&xh!X_3QyxkIm?vgS)g#G{LAD5QBO_$s`9i^fiX>=asK9X)dq>;4Ew0`$_ zQ`gEo2RG~v%{KO}p}CLH+f79-G{x`^*XlFUFk>=4G&^H6s2mE z*dYJsZ`r!}3UTD7y}o?1q-6SoN0;Jr&n>T-{^O0zx1N4~FiCwn$iXb!@zivJ9OXZ` z!c7*fAODkA9u~PW9hx>lEcxTBi*NYtHqN^KfzkZja!Fv)fAZnqOtLQUx4h^QnE8(u z=Nf59TdIl>a@C96`TKxS8NTG1z2neDRWB9h)mftg)fACK0OJ`!{NiaAwzB}hXTK7xSypVTA7tpgnjoDm zuH=Qg0iHoH>WTomiIi0`7^n3X0X}bt*vM2z4`s> zgyw#rfBugC;ok8FHyTgz!#)2;Vbt`oNOxORd-uyf-A_))zH1?!me9z(s<(}(GNi&f zEX}Qt#Qy2BTpz$)fH@b%NX%Yt0}OcE_o_XAzMTQ(_Xmq~r@5V(vo>v}f6!|FT-nb5 zpED>tN3>>w%tXb!(`Ti7U`T*2sc!4u9UA`XQn(|B8{|v9ePaHUu;S;~E&<;f1d*gG5L_Ybu%nKV0ChM-LoxGDT-2eXl*{S+EDr_UuaD_?MsWi>W zJ@tS7a+EVZO!SRnKq-x_*aUxl5X_&|Sm;Jq_AXr2jZB3nQvX8=|LAo7&`zD*aN#v1 z3LBf^gNuJnUCBIBM2WaH$l-Mz-~0D_PDgxS^RsT;^%@tn@7OVFFsVFOPTHwH+8_AO z`$>}y;*lhw2}+$H^Dz_Wi6?wC)XI;Jm!{Uzk0-OMI+3UUp*H>33WcC(w!Uyt3d1(j z%TVya9|!IgBre+E{&|0*=emJ<8@%;U&VY6HhAR$bI<2cYM*mn1e&r|e2z9BlBVWH> zz`hCRni_x18AzR2@6Pz=y@Y}!@N%^Nb z{O@}$i|NDVfjK4+6uFHwG(6zw5Xan$xUgrh-8OPcY4dPsQ6H}N`9m2ka>RD#DK=lE z#J?CGK8u|M6#Dl5c5KIvD{C(Dt#~_4JMtgu`}}4Xo^!A3;z}q2YM)~HUc9)-(i2d< z{ri(kIl)^tZ^p1&w-T}kQh%)fDNUlsaPQs(6sj;U3jV=^?cYgc={t*bGl@|W>Q$?M z%E(8I{l1vKc<}<}X18#1>ZvZnb^X`RJGy^eq*4`zaP;7=cF?_f!OU}V{MFGgQAX?; zDEpSAQ+d2S>Jb#WKR>^Om>B)>2kaM=m1(fE3gU`DnLT;(1j8Dwx~VYeEw*NLCfB}h z_zynp1O3j`v-bAmTT~f$Nre#IvrKj(Cq9fxfhNND9605F{S5C!DInyl+SJPV(5>~+ zBH4}v{&CM_IyO-WWoZdYI3_qUxDa0*9ToSXwNT!^p`v0ZCnw#>6j;r0 zpV5EZw$d=dasDcw>K3KAUE}njdn8{3LY8^(-~kU`oTDAM!f+$dMPYYpYk7IRX0Di# zqYVCWSN?j=Z1gna8$&w@HbFrrPNxZzq@z=7^>7W`gKx%(5+^>2QR>tGyhEduqk`+*BXR*I@)NSh7B`DsRyDLdET-Z6&-o1GqjT2wQD?g7U*V-8SK&^MtFE5hAJNqefjq7 zieZ_~pFakr*rhdWY?-QwtyRitVn1lHn}GAdPX`31>8+TF5g)4_JK7>)mw0$lkL{nq z+%Ncln0xf1vXE?kk<+9EJTi%5T@yt%>;u1YZ?*-0X6AqPNeC8x__lg+s{1Qz0B2&M zuA?J8<`ihFX-pQV_+t!0^>1-qmFh3y-2CM6-6Jx49x4QYrexdj?c1DHOoZBN%D3M> z>!$G~AmyId@4a@fE6w?xRIR!C(2zF%i1DsnQm=^a!B>qi%)nq97Giyf8e?NK7tBpM zN_qL)_;Ua*PAO7?y|a@)-K^OK$f)OzyPoR}T~LJ^G-D#1BAfvCJaC+wFxG%ABSHn~ z{oW5eobg-0<4#O&)Hz)1qyF2y0&_<@coqBZS3FYP!Q6%+TpaAT&V?R>ntlwW#1ov% znxJz)kb_8BwVHOy?s7OjnMagaX#C{&&7~UU_sN;*ea)h`=70L(9&@HcR z?O0gc*^(>zj_>j&3|Q&ChsLp^$4EZhF8_ENS>B`@wNXSgYnobUkG=8n-Xh4HbHT|Z>|&5@$+H6jjBSy7Zo3Tzrol$l9Q@~7C{k$_D}*^7t$asO40xAE zgOB-tmg|eeB%CkXHum_z3MDDZFS2QU-BJM9Dq03UDhz^2qwrqvdRSP~CPK0xMbDN% zSWVmhyAIW*(^9-}uKYBNq7-0vd?+4bd@9~wGGvoWpod~aP472L@k{(_hX7mwWsl~< zCfn?ogxVvMa}^bFQr45R>t5uf-|d`PS(B_SDl(!RdY&0OF%hpdL7<)%?oF=P$UiR` z{Hp@1eJzesBH|U|xuXi^_9tRHIIZN(%xNseIhNchvT0c*4L(l4i`Amo^mGig`)V*M zKSdfHX~`3qt2(CC(KOOovLE#L-xg+3Zq>|)QaW(s)9uGFHWa4BhuAB~-`R_&__p#GA)wq~uZ1uB$JhpoA$MXkvRQ zlEV7E-T=5-@!SBUGHkAC+pS(%wf=VyKT?~{m>lSnLFo19h4 z=$P?=dw7a4@8N?7wWQu&yl~+$c38f=xAWD}ljEO{zJAU2rMC8D!<(X_HqD!4IZEsA z5(Xi1cz8b~jID@bt$CF)H<2W;lcoLhx9$~Hco;*_H4fWJN}7UlWQU#fEL`O65m0sJ z{x_&uhy)Yy4`9A4z6SF*7JJF`xsAq}vvfaBFacZJ`-8zBS@~2m93QIUN!_urMmvDF zT#~B)9CE1WvLJ?{aCFsW({G~CXWENG%3(b*<2^hYeTFb2JKuIQNn6e(Tz-l1RHqkNjN^~sqjeGOFM8o(psrjUCs+h9UG6dG1f${B0rf@Ei0D1IZUB`M>qDm5+oUzlG>i6>9ZMQ zm35Z^*_1v?S#yYZ&5H~am`85A9c*l*$oj&tEgNVBXwDAgA*6Yu2|%!Tr_Os7gI^xa zEr{Fn(PQWpFmH-HT40DBgwq4;-3y|mU49^!378o5vpV&~*bztWxzwnL1Qk0NB)k!@ zY-l91u}pvSi~5ApTSo`y26tn38nssMc^H$xcej~=fp(z3``gOodcl+5?2{4`;HP1# z#~@jkw9iqB)1=;$9z+#8iww>yKInevW}JGCHOSlt*7YrjS7`h#9V{nE3#DTbItzL# zh^7y%xBg09e%EeJZ;G!7Jxge0!-z?V2{!VNgsTlu6f-skfUGzU<=gm zGB_O|!)a1u9R~6$;LS+(L`Djb)xc=Z#aZ&rF~5nj8Ud9P+#BE14R}Fd&TN`AJ5crg ziNC&pP@?T?Qsu|%*U1F~Gii&nhkplr+DAr5hstPi1E5o#)Q_Q}V=lZ?Fw3QzL{$6r z;NV6(p7ScsfxGrpTDwu>yK}cY7uJ7_!L%V7!p3X`V+znHD27JCx1gDBU@kBy<)>WX znIPjIxF2rQJCp^ zuO5dJ06w)5lGfIL@phBx;3wD(K2f-yGvJpH(Dnu^A2o)?k3pQzcZ`;GUn&LN%MLU@ z&0MAU=Ca#j8&3KXvxH0g?Qon-)-2F(6)0(C<6ey}S&z8a)*uX&GFZ%?b=M7i#^=F@wCJS6< zfq{Bhrl0V6#4x^{ILaWUsT{Udjdb;2$T-k7xu$vDiLCQGx=$~=vXUA`DZ~I+`z9pZ z7St==m2wm3HbqvC_W8vFI%$DQhV2y>|J*bQS|Ak$YNYwHmSW(ZGB|GH8H`IqinCWN z<(9mbpODx*4pZl<#*e<+KtVm(WMNiB{4ew#tEezg5AA7EZEw#HC|N+w$)V>i{W?3cDOG_HjuHo)ZlgDeKXe zg3~H=6-6V-;8lRBU8KT+zPG2mqC&tCVatPGR@u^~Iq|O&$>*XmwdP(S333mr@470SjH)L`p_h<>|xO5g;=)bhVVZ&<=PS-kP!3nk@DcK9t=$eCo;-+t;{sipv(@LdP6G@N)pcu|gEB1%F5&4*Mqe z=3(hcYIrLkPZ&ZL+a?lm8O)s6ot~a77MV9aVcrxkVGK=(gPfeMmHaYrix2l;su??+ zCSo8SLH3r}d+^{6$Ow?RBwR&y+Syr=W{7Iq+D`!?K`BmJAl~9uUBx}~nR#7jq9r&| zaw1iZux_9P25xW!96Wq@>C5B=LnRn713ik0>aMO^&>TJtKAp3lTCZr<&0dMwpG`bs zdKMS#A?)I!bnaZ0H*xXnOVR6s8e_{+k~I7jj_$KEyFnVB$DAYrcg-8-HV z;_C3XFhOQISQkt2h!u}KX`@Vv?li;f$jsBPmf~m9+J}1bWabI>F4ebuNE6FcKhVE? zTxd`8S@%q|R{D^pw@t$$@Yfp;3kf}pdr8h&LZ5QjYi1Hj-@o3fhL=6RR@4(Es_sc@ zBg?|!2SMO!p@YYeTI{~pq``Z`-Mi?%Kx6+dwk$G@{%cRoTv^M1y^@u}Q|~ zvmfrirjXVitDe+k^&pU|Zb2#X(e)JOk_bxp9Bx$Qa)-~UYuCpKr94rCpZ$l9$IPsE zTQYZ8PSlswnOt=zxB8G1NL-0)4e3n;6{l$ViG~vOae~US5BY|E)<@#Hu+DC^96i!# zP?x-qtRy8oZZP14Zq>VUbTMY^)&g445uNy@(?ur#$~|0Yu67Ax-0q5 zEK0mOi685{bPw*|-!e{mMVYnFu^qa4`Z>T5YzMP5Io7br=;CErdJKl&FXaiDI!eik zg^;N}EJIt0i^ZBGqg?M2d`Yhco_&rW+DXZ{9xO_1 z4vQqwJ3ML$t1s~;5k^(jr~Ct8xX_!hI6g~B`$lXYkCgRU9~uo7FtR5tPevOxO zw4YrTkmn;#wv%mk_z+jsIEjXut!e$4Idf^EoeXadQ*2l%tMJ#FdL?8jK2xacKCEzQ zB;xYT{s3a?mv*Df8yu1|CE{uP0LWGsqsw3lfd+fZLD*Xz7^O8ha8@PgBcH_%^1`tk zDJjmNGkmiH$C9>Z&Bp4slBe)BFtarA9JdD!4}zgU$Ql`7;jrgK`!FIZ`cAB+k-A5H z`vKU3fhh;q&;26!q`_Z0?UY1}x#z`AsI9HN;o^2*zTW5Z?+A)eu7s5@ys9AaC%tVR zpX)GEG3d#q^~z+tGqL!K1Wv1%;?J)AmgrftooEc>3$1<8ab^-QjR#|cBN7XZuc0wd zISn(fo3KDqkCiwFFq0a_ionT#heKY>Z%%CRAxbR3*vqrm*YovC8nsCG3N%&&k7D&c zQar~N&!==3mi7NEiTnFxt)Vk34~H%ADY5#(%qJQ>psY6RT3?K&jFy!rf{FpQ4+PY~(<0CVZfx1WpW!pB-Wg4aH#6`V_i2MM?8uEzXJZut;E1STT7^?tH?EeP z;*AegR16i$4V4{Fm7mX9O*{1Ws7^hUsPd+^y7I9R=pugU=^}+IKLp^!nl#$U#Q0z6 zC&)If0=(<)SSc(XI4lOYhWY?p!|up=t-)a-`CUYd&dd)(32sCyVJP8zw@ghdVC)Iz zq7%L^z?_U`ZUB^TWFceO`ZA@w~$&ylb|H<&; z#T4BPr%t}N6Dj4!OKaH>cy(lC$;voUcN5`tQ1yyTgi5Ot#uhDpm>jFN@ixM z>^*j@!p>gDXV7L*PxbF9x1`i%%0f*;n4H%xsL_oXLkGa3*WUQaENjAM?7%O?V^>xb zNXNi{1Eb75v`%0FFGkaH08AR;s08F2f+0MefLRBa4@W~I=#VOCMQJZwxPS)Zz}WEs zov5X$>-M3!TL(@ALFO)vWUadZi}%9FA{b(G;ntDy5qClCV~9Lyz6@qV;0Oau8(57O zA)D(g6}(9z4|KZf#+}~98j*EvuZzQIE4jf_B(c&@+rc)zM3oVWthMuq`4nk=i$pMRQ} zeFRJdMs2xw?-KiGxv_dOfmh4HVFxRh?#MmjOt19w*RRLRZZyorue#9wJqph36a%W2 z7YqSXRYy|mDUY~|AB{#w(_*jy9CK4ybZ~&naMjWF1oHa6fB8#*Y9o>K7D_BTkd~lw zM|ZaC<32GpN;7QyCDm=OUn}+mE$;FO_i_3A93J`fDQ}pVnP5}XH8@sE;FAq^(8|h2 zV1IA-_xZJ@46TzlPfh&P15R;$VOQbmPYVn>%3=nvusg5zcl5oz~sTdZT~#bN+p7@ruq11G_{66UQ5{J<`s*!7Wzx>WI8ls*wom z_s>=yl{gLxS#QISp@7?Mg5@84Jl0ODFWO{i&Gk5_81&|=z@f8p5=;y-B5gKZRDfpA z?n2{|*{>qC-5(Sr5pxO-^YJlb>-PUP7A&Opdv^!I*(LA51V2Bo0Ebv@059plK-sN5 zGGQ%#^Srz9%e0^rXNc{foI3^5(5s^gv6G6q7DAR73zNG0FESl^=onpD z%Bp{UNo`5N-v(!YPVwr`OSNxgsR1X$WKZ?6hFUb?%YJ;TBJg&c?OC0c67FJjAnQsv z9_*a=3EFc32WNpm4+ehQj9xphU!zuS#(@unW!dEpAMQ%(&XI_q6c%cOU7ZSy+NYt! zrt6m(YCF{JO*`K5(7b`0=fW=u|H_qg#|_xP@K;OduV_H6o$kgJcuH%^v9o}=7fySK zg~da3{pEjW`TImU>k0F(Ve%9+IgjIz1-@p;}{GVJ_Z)_6fQniwlS@F{Co2Cjp4`rPg2OC(#6&pT443lu)Y)y zJTBT`{K|W9j~Q`5My&>aqM>1jP1e1YSON1?8f#|O9+bCdzM^CRvlRf__rQ^ykAWk| z!3_(LQNrQ>rSFzR?&~S`@wluKHZjrJHciYmy|vN~{LOD;*#pic6Y;=TfIZs=I@-Ch zSQRv$FXX~$gQumTc?TN{hB0Nq!#c6D22c;}L7cM~o_7d*rT}_|S1NOK06l%%vn_g# zaL>~NX|D$pxV%?KOl#keHiM%E&Iw}?yoqNI7c={jZRhqvUf#!VeH-X@AtPP)vU3jb zceC{9$QvBS#_mm=V%bBlbDaM)*wHs3n%z$LyT!T@x%clK7=5S}6! zOG{$daXnibsl}_n`)f<3P-{2K6}03+bo6rqnI509BD4?$|4>Zj1c zgM9*rbJf|9b#5|(WO0`K02wjuofsT#>|LbUN|(uS01FQsG6J*(SZ4Qw^4z|XQCP

+6Vpr(S#53q5kl#~P^+Q&PTKOH5v=rIDx1Vx_Im_7Lciy1bQhBlhXt2YD$`dR@2Mi5oJvj%1u7WFv(w%EbJL5f`LLEhuB}RHD5R3mKZjzx;^Yr4Qdzrn&Xs61!oLP4*2t z@P}h3PoKuI_ZQzL2<^6}Y#Mc5zcK9;8yict^8XR`C15eH{rg{1A%s+zmnwkIo49-jZuK&4S=RMbj zX1>ewJfF|~xtFrzN#BM_{?3Rk$)|CW#y;JzKFTla9F~M6hH0wMyc(sZIMEKphCXN` zwz_BkWvdwOub%{s&p#?EQ)6QvS$nu|a%3g;%_>)1e4bp)8aKA}->HlhcMpo;v7Cj- zMVPWLF=kX>)RtVOrIjaQw~X@($9B+T&Y3e|%(yr}B%KNyl!S$Zc&Jxzxwy!2uYC{zJ|BhRa>_X|rTj-i_J`RP4=aB#n80WImb-LWDNE@7NF}D31X_ja zkc%~%0&VZRO?UtGL7OU~JOEto3vFv0$^&#L;Sid*Bzn?r(!SG7O&5Sdyvsr}|H|ck zruH!d>{hM37njeRl{L241gSO$Eunk;3NkrsSU9RCrw^)hlA)W0YqXvHGHS*M%q=MC+{`yiW@Ws;sOB0=?lqxt2 zR8>Wwxdw1;?>>FH?!Px_x_{lK*v;^C+Y7|N9@y&=YmsB<0W!@wUbRD9#%o}|6-bwP z`-RMPm=}&)p<;0>}{9 zI!Xpnu0mV47D^`3^6B&c$L21z*&E>LwLIvv_`@wvg&B>FJ1DLF_h~m(^bfPukNtJ3 zBo}w6%wS`v#cRS*lJ6BaYYQ^#EhkUjc=f#uI{-nKZVdAZ5?$T?MntkyFR5 zkfe!wcPnh__4>gfeY^kZtJSzO*Lx6hrNtIt#t?ax9A+KsBH9STG03iCdefu2a+QaX& zV0!}2z;R#_C{@(mx+GlI<Uvg?oZ&u&7AJ1U|mo&ckO4>fz&Vky`47;UbLRQY2IU@P1KHk*6sKJm4v=b86 zPYiHhn|*PY`U~m*>tZ5WSRl1b)nt!=g~xv4dg>=iKUZd(lzHN$eq_tfr$hEsAl@QJ z%fEi@){ZYZbv0CQx2=4X(x+O5x!JVMH)WMLAsK&RB}K|JLRB0_3e7#Ya>JVykQ`4` zNO>kss^&e$z0F-ipx6G;H+)^ZspyT3Of7rN_6lJMW4AAQv>iVLAQ1xFwhNkP_-s|d z3Ro4F`Kla6#^ zr0_gZ!DVxVBYQMs*1IKn+S2t7n|lL_{ZK2Uj-)Pr)0Kg!|ZA_C>^}e zfgUQ%I`R*f8L)2aWXsWU3h~qZpPSmdSn32p#|iq-NKk?ltt+-nj|jaT{MYMlf+8xe z^OJc1#yrq?-{^d=lRHUlR~0`VyAy>G4BX`suk(N0-H%z7F*r}>@AQFVhY)37<;lrdC79=9(k_)_W%8}Nz5PGc z%A1n1z=payxGdkL)Es@1ZnU(5dYK-go^;{jO!qH(>8-Wu$NzF6AG6Bsly7vtRSYoC zJk?8i%WRi~X{_Mskfkjvy)J(d=@TlJ;5HGZHhh$iPk(*qzn8$lJy`lg7&Z<&T9}TO zI@74rXJphJtPHMxJDwENP*wD|?a?@jg`F3+j$$utS(DJMxqdm55a0WeHhPLd>)v3R zKKD^_`&lh5Z(XVOp)uQ+yM1MgRV*HNz4Tl)-*_vhqz4bCQd&4f0-WM=OS;<+{_Q-M z&t~7e`4s9_aSXFi@ zQ(~`i*a}r1AuU6b+Cp~PyTsunaY|=_WC`$T^w@uwIr#mb_iQ6eM#dL5(DQDpIEY`o zn1{u?0f3LfXTxB>gKYhK|4E@z)sFg?+N{MkL4}lU%dTK!noVr3VIhc-(`qB5-2pux zE^7v>z4{Z`(W&#oo~$2Pxx&^~ey}%*>@ce{Px;?_YPGsEOHGpaHTuyP4)k~QsIf!Nr85|KAU08ia9RC!Se#j!&^Vdr0qW;qbapw!LCG) zhm*eCDiKt8CIM0=wJC|M3)cirJWan0<`$?dUGpO;H?HJ3p$Gg<{Jwh_8f7 zP7sEAXR`e>PwGV82R9y$n_n72<6x7oy#;ekd1Lu3AY(&bm96rp1`LC^+8RPsjWX~n zkjzaDK3DiD-JDjOZ_+o}CSlp=ae~@qoa7yM%hqb={DZ?kDCn^C=H9v?cb-3*p>466 zXdQ4fv~jD+j$dM=IQ7gK8r1N@XaX)=cA{Y0D@o1Js61_wGRXb9g?E>t8T!Y_G~{fz zAcYw!D10!cRyMDDQ?dv3{6L+dS>c^IfU2(KI|gx;1$Poppjpy;L>Pr?aWwZsr3{CH zx0lr&WQlrmlD;jJ=GT;4R}j1hhwn8_+9Xw{M$8)cNGElqb#VN07xpRRB(F?xukAbb zEXF)CTU+YUNa~rjXuHbDRLcUB1D~G-b(|hDZ8~zxm!v7EvIF6!wx4sT`u+{uES#GH zC(>u^*s$8EldDnj7;uONCV|(BE3%92(-Zzh`ej8LoQ%Gx1i#Dd$032SoUWQc#e}~Z&+><2S z`o6XHn?jVSoAcFqfh5a^$>V+xsLnONIZb!;tNw?Wk#djGK{;{~j}F-EKXSBLwn2LF#4 z@jSrAJl_BMwR(#ca3UU)o{SJEpM8$nQKAK2FZ|%)lSzRE!KhYGs`}Bw-#_?|r4FNb z$X(!%XVJxAfBCXkZQ!eoM{n_5VtIRa;nA*D=Xooy_xSqyn!mf%0zUy~LMISM%15rl zD35LLM0+#lBhr z&7wiPEn&sQnuj0uYeDJ1ndASpy&$yt@h{aiFW=yPx;n_X2tx6LDap}qUe-_7RbsKC z+ystZ3x8z|&ODjwqydJ=AH{H80Sm6GFP|M0{1TwqHxtB5$9gqz(`*%7f zt8p~>MO_FC^iy{~vh2m}^&8c^VL`cX-#v3K{)}$I;=Fe|fm0a#J961?0Cm27J1*zy zLioZ;PZ0kUFf=rTr!!%~ik$O-Ln-l<(}GoPf0FuwWIra`1@vI@7cLC2&Ng%)CR%wScNo3b1^@z zNJ(|#gBL8!{&D=DKiLb#I~)U8@SJ&MUxC{^bLQ>4=GNB$YZ3?;{vP(sPFC+gEof;( zr}+Iaj4U=3XhTar-G7W^YQtww@dbe5ff~=8RXaM-rM>C)+>!w+cFLbE#DF;mLqG)J zNUp?jvn%d==KC-?ppiF=THKz}VU+<}}KFz~~!!*oC&X;a=W zqij1gg?dL2*}`_f=P<2lkrl1BevkSGZS5Wo`~9qst$yEt{5-NZK9Nq{jm@mmeiSJG z7;W8zW5+^_pL7y3#jh{hv~j5eDu#!jxSY3-X-#cG)zuHH!wW${HMj3v@BI5>3HRDm z)KTNxUVBnh1oou2@l19+Yn+2*f%x}j{ZBw9SZL%ma3y}IOKt>p@+2=@!D8@i;84j! zkXlk{V#+s;f=%xLV^T+$c6yv`#r<;n?uceh=jMG0Lf6^7C0^i5MP&41+%`$dZvN8+ z8!ew%mq_xhy5MVh>mQmMJO0Eka^yFn4RSK`UXj)rG|EruPhCuMy&$Rx6Dil%G#&Tn zdJpu19TP@SzDm{_BPon3C9bJ6&sd52&ta}w)pD1{$t|RF>L_pYNx;EPawI!onDOn{Cwfj=+Wh3`Zag|F0!2s^SPYKhFW}XxjDr5bjR~OxM}y>8l&e_i4$Js4t_h zMXUo2cP~5T&*oxa6%FiD$)o#ZVQNU6k`5N_hp#p*sb`DBQL6FdKpGcIKQwr^7Y^=1Y!f+1o$X z&CwVBK5hFh!X+pGFYi&#gVWsOt_o_bmDjI?G%i^<`{koDo&W3Wu4h>8-@m8ps{<(r z)6-{?GdVh8|ApMRz_yqTu&Qxmw6&;|TEj1ZJ=E=zGpU2lNiB)xByJ90Wn?rx=f%Q6 zqxbMBkeDd8%k=Q*;w~=-0EYc6g*c*jSS?%j z)KV0a>eH|&fO;&4)T66>b?!Y)z7L0^^N;prp9`X%mimAqk#6<;j&+GGe6cTWhH-;t zSm1;i|1hp?%vu<9Hf361`Pym4zV& zv*f! zz3AZkXS)<$II_7W31^xo5cSGDyU>|x%MzT3a`C)L0u3YD7A9%7x-{f+84xl4tvemK zqq(S)y1#K+0LBT#*m_5DzXf=YWwRK016(%+>4@c||B3pnu){FRE8~ODsDk#YHW?fw z)V}lfjJ_dvsXzA>TTXzcR{(bTwOhB&{PN}Vo~HN0r~MDLrfXLZajh4GiiLj>-o;eV zJ<}@=^yD8;l74YHR;tG9+YXT^1M5faF>{mEIhEOe03ON3*z92!dya5LMDu%ff)HSg&x`mb86ijzv zIs+%tf{YZ#`Hs(O4*xx3?o4rStZQp(N=op!>YxP{6xQ~~*y>8`YUrKhl9zE()BdfbQ>Qg@s|- z&n@>4_Pu;q3D^BULEez&Dh$BjF6aXZFj(!AbpoTkvGy)9qsRWbmbf#Cm7I<*#y@i<1WZl zB_Bje{{AV+y$;bRVDE)V@KG_6b?^6O%%-%kEdjB^iOv;qKDUh+^VfxDRfIwnMq7T! z0$fT_B_{6b_4&r$fOvH4^dsd9=$gd3;U~fomv49&gG^A8eSDX$K;z*eIVz+@lU^Ot z6tvvwVsnGvpMYaqAI#{##OCb(0?WY>6d3Q4wK=+710s{0o!Km2I6eHV;75*3?(W(I zWuuwZ%9Z>vAt%eXv$k#xbB_;Q9_WkO8zsi4S&ZEhc6s!eKkt{zpe_;%9&XP;T}KDc z7_No|H3(|xTnQxb%Meot#wXla5x2{22ioS9p?A0N1~zgd+PZb40fpIjeO(XB*nTwK zySv+AFfq&sCGtLtf5Nw%udizzush+{jCJjlL;R-iPppj?tzcimOZ)#7!@z%^D~5S) zEs7TBBuY@?#ug8=!cH28K?7I}DGBkYL_wC**IGtIB!CQRkZ+j_gZ9Lz`G_a2sxCBh;^i;)U;;j?gU)4M`km zpAwzrh)M>Qmo@OTiYoMkU3}7x$9qPAvkZ8t@Wr9s=)*;b3lWL(aHw6I3u5vC( zUCe^pf-n;z+0l&++M4GoTWAg>!$&WdZm$xsBnG4 zLqnh?W%Fz*Led3ePwA7Ap}nyZ@%;@|Rm5e8`=XYZ5fKEY4SY}}!(Z+;uIhX)`m0l5 zi}Fwq_SAQI;^J?B^iBM{_P@Qh)wbmt9J@$B2IY-XUK|W3N23?WXF=zE3pyyo7T&HE z%>Z{EqSk3Jjpd`FjFUdHMwssV&SBSXF9Ood?CaF%Z+YHeP~Ix#-&=<__!`ahPaTSW zZ$o|ko}vD&JLp~u;QvdMPERd0YYer+Ox||KjQp{zc^RrCedlDc)f)5@?@~RPV*^Rr z0_BZzt`=e?`HBV*(#KNqP4{oyG^wQ1Xz)msqB_u!sHP%@1Y$p!Sm70vEsxd-eD9f% zEC0U48KiefPTjI)rGUg-7fKXI-SEJrc9r5=w{FFFF#}ELLYU;q zwu8}GgOtseIH*Z-MR-Z!n{TuBJ`dr{`RPhoS$QjQe>e^!`3Rc_I!hF8 z#=i9ONs7bQt$xi@E+Nnc_V0<;`yzVoC5L?VA7IS+^DK_y#8tg8N4FVxUdDV$(P2$jbJ?We)2TT{_E@BlELP%?8evUxr>ST@fs(YoP~)SFGh_*5x}#R zIT62neQ1QnQ}6&-A69Y@wuBV11bFV1j5soqpG;xgKw8awhnlztTmp9-WfyK4nm#vA3fuuFRX}GG4I+838zkE8Y${DSgun%# z`v+m;NvjIv!{1r4BHcnVlU+3j6q;K_SJ)ORGiFq`=PX2=)G|q)c}!O^Sh_qeje<@D z5BS}ZG#lk*`4ddoi^`>nQa#;AP$;2CkA4T4T~4I=dz&!u2(O<4edJo++#ErBm+TM8 zM|BAHJ*RGle9E(=61r|y)*9e35BivTHx?c3PO!vSa&Ihb-9PjvGzgl%$;~~MK5>** zH&=m^m30y$gYyh&UAnfb`$m`_qZ05KOl^1#sm)w$&|t+DLMfAT85)c}DL-}}QQ=%U zzlPs0E9$2NC-O{cVAAsYjtz$;=$wHvgu`aa7oGI=^$w4lZCCv?VuAortAWJlJHN@x%V(bu)HsdEiZK)>)#t`Cv!#*8 zNK~mLN^&L=bU~PaouOt2!U)X}_X7k?p^eV*f_Y_O>v=zr=Vjw|81Cj5yxMjNN1%sN zNzXW47&6?fs^T;j&JU=xvv|9|AfFx+v~ljWyyiZ52wcm9>>Hj|jI^Tm6{+{#=%q$? zdb)FL%}vO%evnCn))?M-{b02C#X5Lbrx# zw4T3IEsR>hQ9NEd>JcQd-_x|)!HP*IfuV5H=0@VmlT_!}J?SHfPjwZIqfTaZwIbBx zU58X0@25Q~8=TI(I0!+EWCA@$D)i*|=^xF9`q!ftxuf0oR5qt1`q-oRslA|{6zx7$ zJjgbPVNdLC&^$q;)i7`<(ReHt5<)Zm14IYPQ$tXs?t+3$kXzq@Ujgw$E_{pI-XB!D z!?iJj4d8#ie`)3yUw6lcZIloJQMJ6hT$W)OXZjJ62eB#|231s zTx62`%YVA~wa?#!Xe&I{lc`K;VKBWTu}2^BNr6BNSS~6KDQ=ed_~KC0nK@6N$W|TC z%ELl+8n*l1!_T`F3xSmP(y=9*YlGQ35ta)AWegyy-dExvX?@^i*R zz!%S97w(AN8}`JnRW^^VNUFK-^dzDuA=anFr1yNQiM$gI{G7e6jJ9Z+o&yRPlJAWb zR|xZts2#C)-jw;mUzEKZsTAcL(~nTF$r;h*pN7tRDKtS!V;sm~VEB^}pJY;1gzFP2 zYS(is;_33`%Ri*y#_f?z;Rqc4+qYhd*eAocHy98$ARc$HFNIVy$6mdv&#-uY_sx*u zDdGnC9U+_qX*0@y!COwphB|685o!%nVB`(-N=meTo-_sW54`3h$=8OMjVR2E7i5EjGtH%>?!Y70;+N-4#G%CtbWw z93IHaUU-*t5=39jzoyj}nED9IRj!8H#rvbce7=s9k1sKU>WS1*n9Tu{nT=7%a(O0_ zU}B;Fr_zxBD_7o!CWVADA31U)A*LWmksp4dB-9M)iO)C0otDwTdC_M}gP<8LkKN_v zjto?1XAzVCO7r^Ms2=uF}ac*!z+7d}$%Z=Ti zJlATM#a&tUC6*a=PP)N#V*-!2f(eNlUV zG&eU4PM`QSmbqc`i_nF|E&^?;uIzP#7y}dHyEI0vUx#%503r&YY@0!f9w?|sZE@Qi zw#+ePZAo;6tWk*+)0&i-Kx%MNqU9~|ApJ*~q=*sqO=|xa0mL!Sz;FlvQ952M2Sm&! zc$lJbxlv1ZJbd^u8a3G%yQ)hSwov}ZH%CMwpjT=Sd}@goGZ|qK4GhBgVA>4kqE;TC z>!j`v`3gVP(TzdNollA$iC#wYNn(hW3s)S?`Gaw$9u7lSyW~z;;8zPEQ69zbyC=hE zeSAa6q|xJ?*t*WNW(Z1tB7NwnSFTz`-ZdN>uj|UlG8Rrff`8XSvmc|cgEI;^ch#;6 zZDS~UM^H0oK2Hh-|6nFOZ&1TyS{ls%#^~pAU;z=pl;M9S5bINSc%Qxv_}M+L|| z-MKTYK{9c$`4~{I39w<-uWKC&t1{;9DBr6wV2`>It#4!i6eue1MqJw4AjgIF)q4VM6)Fhz^1n(CKRcyTQS;ku z2;p5DY7c-|sta*@M#e}&tsXitl()TG;g2~}g*gO~`}4Fx+?xZIlD3u>)s|qXk{uAL zceiRMNR(Vx*Z&b>_AcVEOrJB=49TXDs%|D*9lXE-=iq6g0mLDTK^l61j(+n`N3Gal z!yy-1o`lL{SZHgUfnx_^trHv#-v)IrQFVGSFmMT^xZgi)L&NP=FE3rXMD_RkJfxBj zf7C-IxCj~KYmj?lDEjxO;mpfBfXMb~8iS3V1avxi((L^`UlJ>tkfOx%9R>S!b~@?< zyY2?KP0;_4PQu-t9%Vm z{MduHArBM5F=*{v1yGQkVPa#q<(O<0|wWD(}&Vh+j4`6yNh$sRFWM5y+C+D~n zmz$v0=@5Ny_Cr?Lv3GRc$-J zYj840(p?N=_3nQ29{}z5*$Z)_eIq2*@IKrQYG_-FTyKv~5D2a!jz%h3_!)FSD{|yKIj`{9)g?rD?0m zWUvHZ&=-U7W43TA>SW^9^UO-P?n+Ll!Jp_Lt;y5o^Rr3N!ck!M0?l@7(M01k&d1lC zk-YA=$4i)x!cz}CC~k$)lSK6)ksS|7P(LC6-|J)Z_O38H@W9-Cnl4%rtw@8dMAd^a zc8N&2^>WVpVJp74m)+B&hqHd17Xno&Ex>9-PJ9~-osd_N2F9T@(6fG4C|t_r)1B7N z?$D<~Q-iJ|WL?C?qW0AByKRZNUtyo7f?H22OohN7XRx<8(|=iM#6Iq&V;p3mkV{_+VrEIg-d0fqT50nhM}Y3oSE{c0p9H9eA^YY--% zN7v+fS^swd4?f?FSzWYb_S~zsGUiL(%#U~Pq+D`BdMed2jC;GYhHYLE0xWdHEgwCP z1DqKFiYmBM@!k1Joz*9bkg&(ou5EBz{w-aTj8uLh06Z=2VbD%~?0-Q>7O39gVgU=N zWXnvWdq*9z)aPcWR=1_hDz{eTu)Tkuz=5YoYuvIJaltYe?@!li>hmMa40+?k!3Tha zm_y9vTx0H^bXCw{BO3Y+kqwiA9R>WhzC64q)>)rpfA(^(L zy>{IRI2?MbG>8f>UUV1*a>vEZq$Bu8vlkHC9`=wW;kHw0N+sj6-v$NT1~ntY0=412 zf4JkCeX@L1-1#lK8~(+SvL!JfdFdMMoNDk^U<=jr=D7Qz`YNem&m-{~7rjR$%`y*W zYYF8I;L)u9?Xq|r!2h1nPrO!dy5{$#0u$(OipB8+?zCm|AaY@!Ll_+8h5~|PVuXWSkyZUUnr%po z2;A%#^rlkNswTK{#x>xlDkdN1{5kNvdX@!@hiraQp3lZo_IXMt z7Fy;P-Qf?7*WvoRa*t|mp$KhRrDP+1Qdr!j&Nj(5f--w!Mw)4(47;kXj#;j8Rm@>G z_hE4;K zKhnpN_0JxqD_wj#i4|=H_88Dtz%2GX2d?I{SCz4bPe66Tu%9kDH`PIu$mB@H*!jf* z6(bV|z`dgK`|pRAqYEVu5yJ}N758S(!Vmq*Sn1>ly8ul=V_A%uob0JEvsFt{EUx9W zn}!$7L<}N+dzPZ25ZpaF8(B$MPCmb{-m9`K)HnhFzt3W1$sPH@AP0)Btvhzi2sV(5 zcuTY3mOETvml*RRt-8@kiMh@Yq?8{rA!11+{dNs6-DVYAuxge|Zh(pVIaoz_LNlaB z`=aMkUllrRS!}ya>unZX1a|A!x;hXNbYiWFbC8zRvqwmHFp|5;{yaXo&Y)R)A9f-i zH!jXvGyw2BxwH2Vn$XVuFhMK`RVfZ0U`P+ENrn=tke{N-2?{`-(nQL>);|s!jruz# zDc#b8-3?xbKY|JVNB(H)RpNMWIQ)d=^H4%9xR$S-V=+XyyM!OkW{nxvh0$6Ia&xoJ zP1{alEw#dnP{SPr9bVf|MXbn_30tRMsw=X7!b(bpMmvK77e)YgQ;*4nX5|fz(qDi0 zHx8|@ZMj;6ET^{L(n@yB!EOJ(i@c+C+~3&3*?9VcdCeJ#iBV@y&Rugse#YpL+g48z zHgb4my~3y^T27XI;p)0cmt`;T-DB+g%wkQNEF*I%=(R`tYY&rx%vp;ST`C)9UrKu& z?1)sAfI1Hp-G@(r>m+!7#dNdXTI_xXHjtApwBKvu zKWnCq^Ixu`27ghULZc{vy^qdB^n{@>Lx|cu1qG0h&+7(Md>Sa3KCI$$YbseXzCF2{ zZ*73rXnYnNHxy7Lq_~NejbQb-|7e4`8Z_w;!mYUU&_SW98R~bTGMHp1%ls>rB~|rc zfruR74!}+u2?tVHIo~qJ_S;a)_+gJ-y{D}8$oySPq!67lf!g!#RvFStw*wa*uVEm_ zs{9!VfD>=%3?ZQ|3-)(kUSh|LE1`W1p!b{WOuJ>ZJE)nLq2c+j$C2{ve0t@uauPyr}Y^q@g>%aS%hW#E*%F}3J zap>g95%M>$hqRRmgexCm_YQLdzPgVSLzhekZ=(|tJ|#%IwY8+_2Zw-6 zl&haO`cYIui(;!3sf42DE`5;lws3xu!4?u z&&7iufn3r9Wy+Fr2Fc#h#?v|Zo1pXgv1{^9ASUv4hnH2P#sJK~cN&3bem{Vh@xYzK zM{Pd`=R41Z?3HQh zgwT~>Bp=uA{`J*N74ZoqY)U`!IM_Sv&zp#eURl55~=JiFO$xF7FOA+5h-Cf=dD zq^O560dl0yMn;QOUo!teIRaH-o;{cKawMsul_{yxQ8um3&7muy&R$qFQ%v~e%bd^y z?;AF(TbGvVc@mbx-KEFf&Ff7AhMky7&K&q|_{wabOS17$>+gvDvIcQn#g;h@-^nT8 zUo1jvj`}zwt}Xna7~;1CwM+%tqHo%$2#nnmr>{KVIA`{=Ow3d~69bZxx?>E7ZR^(~ zh{Hu^w(9)dFGkA;!dHRyc;D*{0B{F-j{fY=Kj}_UAw;M7jLQ5gK|#m<{de!RJP{|r zPG@fP$iNMRx)9=3?yIfOYIPd+^F6BU;>wW!>=^6CVp86SVHAKPj!)K?fvl}9+5daJ zw9GDpJXi3^=E~y)ha;}N>{c)l4&I?XbIlHA(s2zu6!sD3w`*jL6%_*|a>JHL>NicNMk@Qf=M-q2;k%iWaZ;y~S!LS#w6^5buP>KnypWP(v1PnV z%l#N$7uwl?m|gY-uU>f_B_1NrNK02*t>GH43saVV)>!@o)Q)o z)>zWM7-moHcfc&wh>F^MtAM`bzny|BrgEtyGJ78|wyDA0+>b#&h|_@_UU-<|K;L@@ zuSL*|3DOvogjC^oL{hw zpTZzQ1juoQ(v!(Tp0pZ0QXe1I#q>+ktH1rzc2 zjAk0el)a|d72Ejw4@oheEvYh6(eIUeHY^dP>mH{%orNMVsiQVPX0)K)F?58}Xal*P zUY{o!H2-KeN>XU?>CmOCokG0)k&Nw4Iw)(x_G|NI!TF3XqA zd@wkUf#6kThfTH5`&sP-bi9oZ@$rdRVBz6>Dk*KuPK{xnmAMs!g7Vqg8b7>XWziC& zBc;OddR+F;tli27O;?SyVE6t6qmL1N%h@Mot;CKu(GKtF49YX4rg95CX3p%{6oomw z$6+-ZgDE!b+;tfQM+RwmXLL16DGF)NW>9)vm+!L{^cg5o{O?`)-l{Dwc4x+#(=%-2 zW+6E1P+2zf;TzBKz06%JR~BDg42mH!Hyr%u3A>Gvb9IjECd%=#|4ZI@LIA)=|dH$*_>{ z@9J7?-C(5jT>$F)0PUf_2$vX4qHI_jE1lKAfqMkgDBpI`x}GK zB(*5aMX^@ttgo+y z9+w@0#iyi{&YzXU=VwjJ-v%j42n!3NiJC>q?A9`u3;Bm{G$Y0Be_egnn991xR(=Q}<#`g~s3R z^1XXDIXz96;LFK3K5@L9Vd}kdu9b%&7plTd=GN2LpkY}5;=^Erg+&;wo2OEq3h~ot z_gx+VYwy#CYz(?X|CP<>1buID zxsWVvTesc%)uRG)ceaE|sku_nF2FPpbW^YB!=WDpvxO!{^f@s4#{KOhoV&h`0a0!w z=|GC4$LMM-GyJ+sE%nalq0pZRdSpf+&E27zqF6U7@G`);FtNACa`W9anyQnp=bjXq zbkWPR(#PirRoy$S%{h-Q`}^z2BJ(A<%cQ}k9Wjv7K*&dq<2$jLE5!tA%AK<7 ze%0k_ceA!J%M!Rpb86hB5#AU2BT_y*!glUi*{oPzR21OueDg0i3t+`Uuc3J)B?1#s zaQcN;uYIxl=+Pjj>xRg{Nc^KSEPg&Gm(7wjTBvWU6NJ-%p0rms_g~u-=DvI=Z-k!8|yaOC~T?IV73{*vr(RM(s$OEE;&|TGJrPVC@Vl( z#0jNlVjpvet^YgUwCWjqpnz8WD9(hRQtSONk{p7T710d#sUP=?v<$vmRlQGpgu5*d z0&63E-{LVPA7bn?-M-RUa}QT?0;@uovwPT`O-+@?Dp#;!JXkg`)UAte{|}YsGv<;* z(WVnVeq<;4kV%@GQXApNrLy^hiu!$a{1KJW^XH&OquPPm-=JOjy{B2~k6LL@{o99> zw|m>bbkb=&uhfl!qs=cZ844|Q+Bw&itcfQ$$)1MC9ygmZsa*peL}_=;+bUD0qcvXz zk_N1&h?y@sk3Fz|pQ`FKkFfj$921QCt4|1a6lzP=fGjspPHq)c5>Qa?QtNs(3t7}X z`yb?;Ef({r3}wBjt}Lor=3n2GwZRi*Msvo)g9mfeHP#;Lj+y-Xxm;C7=ZL~-a_j_O z2~aVF=5F@50~_+DSo)&h-KP?5c8cl@3Mf*6z5rj5&h_Db@MhO@H1y3&?|d8Yj(LuwV_{ zE6}Vm*>ca4F8_CE-d2Zvsk%3^98$kn>k@e=HH08|rlIk0BWb$@YTe^72s4N_I)fmK zB+q2nYtG;Cm_pMdsL?+I;;8dLwx%LuD+AYJpUx|~2mF|8h=V;EfS6Hb!on4hkEZ}s zNRqGWfxu>xWBu;-Dt_?6KMcleIk%N1bOCe^4jz9Z9X)!|n5zlehjj=%ac-Qg%w5@H z=7`?^g>f>1F{&kd9O#0L(E7p4Ej8cejzQ6Oy7aK8@C|f{elQ5kmWajfdp#Ki_5J!6 z2*@^nc^Y!ID{_X3o^PL9mylu+Hj;2Md%u%rM*nhF4w9Gxiqc^9Y)3q5arp~(hAoL! zMzL@GF)DpdpwTwR-KY)V1u0IY!5zUDydXE_>iyYR$1Soo#bvLFrtbD_vu!(Vi!!e+ z##hBV&1jt3kWaVzeUtD6wRB{Fy7FW?+iet@mh1@qm>Fn#(sP=^s$jDD1HvOk7lV3% zXm^$1%^+d%8z(v~YwrUkcmxF-PjYI0Tm*LRSZeB$16v-&nI5gXGFl*V*Elv7krmqm z%mOMxWH8A^leYYFt^!>gB(+S4rus!n#7-5_BlHwV|HTowzrpXE%^8se5$qK~(Ad^& z%@3jV{=SOcbDNxyU7Zu_Xeqnv+37TV;amE0E^&u0w=>|{`yCnzowvolZn1Z3c>|z*XXbM7< z6;`YW&u~s*lp@}HgO1J!$~eh@m6e*DEDrWB>d+r)-+0qvEpkPGN#DjkM@T%-#TX_i zMtPgX?#LhHKtszzLCh+1vFHF_P3SpkUZP@v;Y_j zty#Arg0(s*aUH|`=Ry7*Uyw{Y?C3axLZp~;WjGk-l=sk(M@(qUvu9I~cTQ2zP744O zKx~4AMS9)g5ft+Ej=5twCNHqTc$P@%J*<0NU#mBI{?0k6a+IPaOUfC_^AKA4c-ml*zdtcH`kA>){IO6A z2<{OU);A1{wi~g0-n_;rrW-O`;s5MFgt2Cz+oF5EUKUZ{%I}R05-F#nBH;nv?!{QH zr>92(xHFN`PO>P-IH-PPM2LNYk&@`^XQi^6O*=BF8;>Sq6a(Jv1YaIJv9)){;6M0y zFlVlDQoVH$s;pDFbw0Uu$MGNc4?Zqy4G#!Q-yi9NLm=BxkCTeOEsQ@NSB9^$S<_d7 z@5Jr;W!{RRx+ef5;BOW+p<&chtNEf)m+ zvUU}<1;n_gif>=DW|@(^wD<(y#*)LjIeI&G*bhpn^Hq4#4qI-#az!|i#r~Rq&C8v& zvd20h9Guu!%UOd;jcv?J%grMmJn+UHsjwC0>}q>WT=lnRRhPuL!+S34<}yW!qOn@4 z?8^?h+Z0AL+Z7q33txen!dm~eC*F&8D2e$mocf`4>C|%@3N-Eetao5c8a8Mhzw9mj4J(2+ zULT=U>F0HtfdU)oU zgl|uBx9r$)T0hdDCb1tI6eRWYu^niqt)s*b>67C;8 z!G4oQj0wUup}sI1>}hI{&@Ngs)EPhnsLVH4H{=|@r0cE11yr?D;)OuN&m9uNTRiW3 zVd5+z?=cp`iMilOdu_b7aA*8mb;~}TSFhIPzyuEF$a`|H2Kx_=m@=cPeZg-f4?BCk zu5P9$WBeN6PV)3*%@CTGbKdgHYU%%hkRXAU%vDt#H&=*uS}QeYfyKxjdU{jvDz#LE zrVPHgcJ10)DGr!$Qy1+Wg`gLZ#ur+=nF5>Vp=2iF;y(<*4&<{!|3O&zhUti+CYZ4x z@2Q`W^3n;uck3BIBt~ilgIn{IIR_d6KKR=nNs=fn4Tr@4##(ig#HwModTqJ6xtSp9 z{DZn2P~}VP8x6&Km!}PUZxDYx2_f1!p)>>rj=IHOpcG-(f^y{Ud4&EMjFV6$$=t&t}Z@uKfRrCh3;Y1e1H&|`1??i(zc8sUWwLR{rm<#G2KdgThXwY5W6Z^`PA zs(p*m8AKeic>i7uU_tYMq44hrk~?6Ig-5>4B7GxqvjN~XrlzLGL@Mw8@jt17IxkB=An5JN9 zlGL1R+FRM$`uVwIQrI%ZptlQy-jWorg9l}h3qBOiQTd+*tYBtP1b#&;t?5x@@p z5}r|DWW-)CQ?~i!jk1=a5Dit>E$I%Hv$%%GR16ALTM8`SUONVzD2n*nut1ZD(iit< zx|BQcCmv}%i_kR^)P;$5L_%wLs8ju3oaqyU{;)FCCc%E{1 zbE}OJ*z)I9Rp}@^${6fzM-{Y%k&Ykb@ z-oWvQ2lsq=TS9{*K!^!^f=l0DUu4cVL0rX~hkpXG-C2qHaSQh9r!Gts&O`>;ExFXA zzvKF;lLDe6DM$cMa61sl4pI5ubPHv|UNhZ$1P`Uxn#+cd`Reh z7#yMdJ6Uh!VqOaAs?`*#+?e$=p}8*d3%k`@qt8oc-Gk2|uP*U2{#Yio3XP!-b;NI> zTKxQMC){u}2ZxsZH&^+Nl6;9=lYk1vo5da-V z7UBvz2O2_au@OOV6OSF(9yQRH!Il^o<_;WpF$10}R*XO;-I7AHwQbwU3B7jhG@P|a zdR0Fz4e!7r1p4)~RZPdRk&Pdjr_f<(pKz1%TArD*d+BqL^4^Y1ojyLmG^W$THuerh z{+=&JKT_oxHwhyE&^V@c&TC6{Ja9=(aQOR}^5G$#RSjzPQ-ud!LN*!zL%;EgmibW$ z4;ryb&S6wBj+8}EVI8xMPT-5Hbc@t35C)TuG?h?P*=p9~4AN*XAd-`E*u+UH>A|fc zeO7?lai}9-M%IoR8JK$#Z2El``o^COp7XkBd1a*xejbI0HXza~SFiRd3wYGZZzlWu zNL8~6c5X25aYX|{d_9oV7F7^>S8Vtt*q1y+PnCiCo)DZta)dW+t=;Z6#0b=)oL>Va z;QsuZX9P8e-qrHDY`X-td<-2?A^PC@L!mLZG76agQri& zziQ2iVA~4(emp&uSl%ax8Ph1>j{Ozw(fCNm>pkr|fAS8$Q?N8U?>tm}4i-7tyA)^x zIw_2#?)>G5^z{#=u}gI=?ukM=0?!&sPc2EpO(k6-EvW3x5?d*kO+~kw%uK}ve}|Mg zbD>7VUZ&;cr6HgESX4y8gwHSQ%O&%YlfxDx+jT=Y0{5UpEZ{5H41XTP+BF<^r!ad^ zV#Y-tN!O#^IX(Fj0^|@{N@ch73fs7)TQAan@3;(Q7A!z0oFLY)1g0k)u#}s*WXW6U zoajGZAl!X;hoja{aIQjAs%+JM&`J`6PHa`9sdp*vx;59c1zKEWj4Ui3kEOL4gw}*y z{TMG0zU$G7O&4pI{@y(4`$>}K9=vTS)U+VT$idaGbA@r{@TGV>X*1*~0t5x9&$~f( z4%PNJ3=$yN7>m~Fxm3$K!EZ;VgQ~gkJ2s)@UvjuZf{b6b6rO+i@(2Z&q@J}J+oUWT z-G3WP@E)OKFITkW!-WjK*AG`N ztCRw~Xx_lv5ouZtkyeM}%=LiADe(#X8JW9p9V&Bey1DjgsjS&k{SB6`9;cE_2GxHX zER9Uz3^WARUeZ-YoFGh9>l%w&_DX$Jn*XkWOBeeO>r~4$4u>E?b)49e(V-q)V{GZH zBcwBw-h7jyF#0xEacZ1+UVPa|XomBYN~$5vm?A%y#zgZoLa()|@|_9CZQpY~9ciln z5HaYR|EcvzoWhd(fnK`5zI{08d+GDwaFH#hv-`^2}5X z4;37_%f(gfiLEv)Y?;_exUFl4BRIXISE3a;Hw;`BYiO+MhPQWOw*ItDA%iIDIS^r?9GM) zSGwHOF#Y>5KR#*rd?QM$Mf332g_7G@lFKk`|^Wnr6XkA_f-%h@A;oSsG{VTEHAY_`P6b8g^FEUNA@4lQ9*pq#n zw;;o&UbBYW*`9N9&Z_#`wjD?GQRgF7J?Y|@iO~nIJFWCbFD?*%KRi5%HMO`Q^jA6^ z?*lHROQBD(@ zE@bV!vbp2zh{JX#H4HsGdXFbDE#o6KIKS=+audl6l#J4dC781E1dt#3psx0MV7+6; zTYAWE%pklQR){7e(|>hF`H9|^l3FC%0gXM8TNlwS$}4i>c5~nprw?q9Jr3H29*r3s z`gKMfRbSbDI04iqJ!sH`K@)Oi4+P>hsivp#Eny6leCPFkXAy_Go=V!hDO5uOx)BFV&J0vAJ&wedDd;&0G?FH(yBRg+B%V?l{=xCp(c721v_%c1gow;tueovVC8y(o zJ>7R5fHxUD+J!*#`53z)*wvMDvZuFnpavO9AqOfzE@mj0{-pfl%?2`Kx+9f8Ra8LIH!_bpms-WAu=*NC& z;MhviYQRbvNu`+wYDCT0!pDYlk9zeqRc5cK{FoA=5_F z0ew30p8!;%V|j7LiOS8B?CxE45j?p+Zq~guK2Brd;!+bQ5T3ZIcfj)3T0ZX);V6KY zwB*~7<=9@`)Y$!c#sOOk4z>McxqTm^w3LIH0*BJWV3ds~Kw<%&{a|0KA1ockQBw)e zpDi=@(r1OL$3X%=mGd{Y|Kp}LYdZWRaCfb`56C*R=k#U{4fr|JwQU`*(}aJ0 zvG-k`a4XTXuhf#%Hyy|`O{=ljDtdO^6tK9Aj11AIANhGlefu_U{7=11F_iTcifoulj#Y-w)iDrXl}GRpX;l@UtIax{Z3*A7<;kUqhCg)L$>Zk?{;WUtAU6r?7%LjP$?w7``O;ac>E=(3j zA-wh8QdiorZR=sB;M9e7l{WY8w`sY$su(nPJ`8&5Z1J?zDjWk4KX zmn&*sn;nA@4SagK8$Ul!ax%F4K#lWri20qAW*ojbMC}ZwG9YS3RWea0--baf>?FFj zPitD!>&0$P}pbKz^JbL6Q#7`)iSj&!u4Qbp0XS-=|P5Xr-khIykt$Z3nebQlJ@D3A2)piC(0@ZNx z0Btpn6l+HE;ZDa5d-_jw_V?qkNpw7wMCSNMBLa^7T;t7z0ht^-LC#?QvCJCiUjM0o zdsGbWy_Yw4U)z9Oi(fzU>S9&r?!2X|ik4t}CJBJ$d8ITOQm6>w_nijxqOoD+zx7V4 zHBJ#j<8^6rZT`zLjfXw4h#pZ95#meGQ&IhTy8N&6 z5_0$;CD#=wp+kR%**I~PiSS@rK#o1o%rPR*BFg+!_MkO--dlL0QI8w-jI>b=#8fWmA z$`m9`XN0Sdj!Eeg1AEJi9J}z*Ea*T>T2gM}dHXCjFStIM5KBNk*)fH+SLgfR$z~qPKBr|sMcy6Kc?}sBK*+@ z;Uvkyk2#5&cp^HVWy-eYr_smU!mxl0Sz*RQMx=N+4b20Zdfrc>BAq7TPtAGPbmR1rig&J%%dE2d?BXaE^ zBu1JggA57vzNLIWhfrMoBKxJ^{pNDg1)LF*4skIfLg*TlshOw{eBPYC9u86&DW{ft za4B|UZLo&}Qp@5IEcXKsd-mKHIj9p)fNm2}c1eI#W)BW_j&qUNo$9g7#H|T=?I>v= zRbpN*J1?nz_QMBKtVnF zlXljy$|Ee04X09g4hRG09Z!*E3@MOfLD|ZBBey2TlwnuL>k>SO*D2Pm*9wF{RK&sX zfX&(&r+Y(rJSa1Cq5_<-#yPGJa3m*pT0^_=8scTcS_GCec)fd zi7z{N`F3)j!4)Fov)7lx&0byj9Cu+^pyXf*SK{=0nL-R`z>6T548SJl(KuMd3LrXc zC0PE%P9?eTvo%N|UB~+SS5xCdYlzq3v7EZYHN7RAV^`z?Gn$-8zSE9p2bRHPTPAod z8BnXHtN%aN-aD@5_KzPwB&$f0N)#C(%4kq3D_L!okwOxsK~Y+Vj3{IlX;^7Vl9tAi zq+28{p)uJt z7aOZpP`cPp2ZsXOg|Y$MZ`!hDmP1F}%WwUN3LRN9?|95i7uCVod$aGlGh^YU0M?*9 ztQ90ZC9h`u8Ke&#ad_&>v33BTfYE=dB&*I=46{=pd@j%DJ0BfTZtZw#U&$<6w)pJY zrQ7wnnkhFhs~Q+sN1jU?_H!u`tTcXb|NU)5`&9MLJR&?LR9B+RRvt@r!ZO3evACAq z6~TW7C19(sPg!naTaTbmGA72S&~2fAd%ov9EM&0o0$rBQPXg0}-6`+Pm9D!Wzi@#x zo|?a&&fYMnPkD?#th-v{ANDhXj*Q0?gnP799a8wyGLw_FmD|qm4GO52;2Myr9iI1e zQfPqqIagYmFml(}x6UOXTRm&YjDgdDF zczA0;Z-uDSV_RQlp{rx@znY@3CH?y)1sH9f`mOJ{vQn^!L2kt&7J75Kv-x?~>LE=p zsUcaE{Zoy=r8Xe@6+zHa2e91$kCcf8z_noE!h^tlK)aOSl-TB;T7Cl!S#s>1V?Eq< ze_dx8T`FeR5Kdjqd_bE(;ht?T@l1m{9jpT-XOUr%!yw%~;R`zQgPA@usQzH5%5pu! z&=CCX3m1F4q?k`ld0Wbv79tuRaB#+9Gpl(2;5e3T6^Z2G;A8(Tc*q6ZgeUv?}UVVRI5}!5dgB`zat;jF^5?DFM zh? zPvA?A{DY%KfJcvle397%t1DQQ>Izt4WHXmgbx;f*!XhCJJ2c2{&^Bkhzb$zCBlqoX z#R2#C@bMjN`pUbZ>F181yroLXX5f~;{wd`fI=Zo4X4U7XE{?!56<7>fBaD|=HKV5J z9*FrqbzIj#!O|{Z9Do_pOT9a891-Fnp+?-@r(30&yoK`X_ovuIX}E?f5G? z-gxi;=>%u7r$rx$O!~PzwrDKQMtGw2uD)-(KDQ%@$6-@P2@^AoXsNh{B-*@@XThi2 zjHbfavMg%yoPDvDTR?gxrl0_}dYmKYO#IwiK+H6U>F`3$^43UP19NFSq{8woF#url z1{lZ_k#9MTH^p!Rw(Mcsgtt*YABi?fc4&!6)->C)B|n;vyXN@rAQth@zutJTSAPDX z0~r_qpk^V`N9WEAeZFPizGSN&NvLEbtjMl z4tcO;2p9+Is0@yyPpOez@u_H~(>TwG?H|t32d{5-fEaLesZr$Sa~*@_Z2%M`f4_fz z!0p@DFs`J8=_~VKEREQ?ifeL=z_7H_4|~55+V3FO2of-5|D1CP&2P9MdYkEQUoi>y z7~v6;DIcy0w*l56j-_kY3Zea5({e)8xr3KLb9iphb!k5IUGSsnG-~^!lb^?lFW9wz zO>_**sYj14^S{wfHSnMUc-oc4m!xyBCAMC%NW)M53M_P^7-RmLwk`vMiX18f zy*9)E;p}{1=K``qnI00aHo8b-f|rK`17cERX*m@XHb{^{>|2sz!M+EP^g4VGz!0Td z&a;uci%8DlyU)fppn1GpkNWHe=IOM7S3E!nO_#^{X^`zwC0u*;n8t6=5X2iis`QJ+T(-Y zSl3I@8pGmaHp+}%t>*d=Rr>n+ItYA)!jfFAjEsyea}<_4>9)!lK(KQ;Oh)tlR?uc!BI*}Z_Iv;I); zH0F9V=$eMW=T;_^@YX>pyL{~$Y%rGr+nC13=LW8gPg*Ae<^i0-#qry^7m109T3Juz z&UN%YVL1)675pq!>h$c2pAD2+CMlvZ80_e%e76wIR&u%ZcYGnYoSa*$XMT>#+PgKP zq(1QJ(>Sg4sVL`;A1@N(s#{6EB7j_kr<>2rfo+N{(~iQL8fvigBeebV3^J+DLvxHk zXV|i(Zx8jwcIy5=#Mh9Yu*PovARK{;G=HfD9IN7~5`VtrPo{`vuTU8;rZQO2sd z9JJM~p%GJtQHR5o877gtg_Cbz56KC*abw~`vmHX-pE#dnPh9WEfG%L@xYG`Y?gy3^ zTZl&YX`pVB@u$P9@|Qhio~}NV?MCZXi6Er5?=>m7#Qw*vY)M)8PsCp(0JA(oK|sNG|~a zH&xL&=i!JZbP&G2r~I{!G0X?86h_<)73`3dv!N~389s6oUcj^S$>Xob+E&&1%HPjC zLX?2uq~G-S*NYmxXK6p8#l;E2=w}@aRn;)@1wE$7vBesekEz!3e)u=%iiplZM#KMj zM|2x?366hu%>Yqn!ofMw8dmN3>IcH7;NaOc7RkZiD4F|}#?<|LWHcncA(D)fLokK3+HG~~eNImK7j?pvDm((EmoU6R({YCfFwT=l`Voe45TFus zOV8`^=q89&HD>$-HPh6b2Kt~Yrl^M?dV0CHIN{AHJ-wOmF9d!teE`FGgps?dDrVl? z5UBIsJW!o_=up0E|NX!E$BvxAr=k3=z8;vQ(9(N=`_%6c3vN+iI1wJyDfF#JT8{wh{ z+S>(igd0K425j|SJiy5nMx+hTQapWvtx6h;DGye{bp+Mu#nX2})}|_=2_!%?50Adf2y|>) zm+0D)f*u0O*H|qa;wERqtmeW4tK_t%)mbCkSk_X$nlolW%_t?oEuXa06v1`&E4Ew} z9793sM_^&PLBi?fP^QTg7@TJ@Qcr#6*Ecvv0C);Z$AT)oBnIxKa~E82JbyFslzeV(%r&8Z+jtM0hv1f3)@$%M<6DZ>N z4sRkd$U(aVf-A}3{EdJ(W7;t8=Ky2PdGuD;l^W!#ijm<#1Qh~iPk zzxG*#bdG`JUgFFjOMyGHc~TN+u3)_&Gk!eM<1c}SP~f-@ z9|T`iENK+po&Dvz>ias|Zw>)uDTaiEkP4EQ%r(RXH;uW?QAK!@2=ueZCsk1L;_vp5B>githSW7G~)WF5kocrt86g^Sbr;t z_i9spqDH4{KRi^0*ZG5Wm9KBKzr`8r@&Z~J%6iCIvJ&VZh{F7o6W-J?{pChjm|Rcd zx$Qa@X??S^dDczLtlPZXV{6@vSYOA{NJ&^oKPkBQCH&K{sc@q~OZ*pmzr8sMQ)rlQ2@s~?i}>nU z5&jX9Xfvy-s)8OYJrF&9%!;?5+=EAtn3U9V7=T{LKI)2}q-aL#-_NZ(`)mwg21#!| z{2lxR^AXF~041;Ss7&?DTZOW;=>6MwFVhp`K3i<*_VKVhefDWV?n^#3lrK(7Q;tM& z;%`Eyhpo_O{P!l=HM6hp_21;T^6s4(0m*7%LOS{Fbv8TmmG5oep>Q1l@147M-*leH zX}E`PR%X2hkJK!Be308p{u#eg4@FYGI{kLIC8)D!&l1Q^DA|MDdr;Z?cJ5<37q?g4 z!~c&nP+v3qbT$a^*F)msrmfFUThY-)hkNvorkGsgR}CzheP2_jaMkUC+wd4cT*J#l zX;J_D6a4edbNz@ND~^0#V{met5oP_sgXgk7fW5ET-mRR(BJbnA;yRp8U^C=H9q1KT z3nG$}m1U%#Wn^r}uz$bP^6tYsbt8;~rPcV@4F1W#8|;;wov3Cs*ZzsyL{h5Qabf7P2_Lioq|0l~w=W0EWef5^kRExv7a4J-z~kE3r}Uw#4XzCS?F zGS;x=W^vsQlgFA)^qB%M_5wxjsD4Fc-%CL zIA^ogPhId@z01@P#w-*thR#-A-)8qYclM#V)Q91QU}3EOetRVt7hyb=Iz_ICJ0U4Y zJnO`Zdg|fO?evI%`WOzpRs6bOWX5MSseuX^_mM@q78u4zp5S^ zP5>SNKUr@)aaYlXS(m*XLx$LJrd^+DQCC;jQz^=vNa-nMGTbm;+9K!svCej$R775w zajnXkGeYRf7VL_9zxqsJ?8c}<-WfBmx0X0RwVCznWW06NU1zO5dtfrqD}~CQ60E=s zr80s`c!HJLLw%zT0i+cMdi$pQDi1>59c2-=0@$@DNYFb zw||PCys6a2-A$Rv&kw`XcMjdA5y{~WCn8tEdHE{u{4MC#I8c0$5gQm{SqY^OOpz}J z)xodlX{SR2>Xny%qSjcf;o>@Q-Cg?-B9^4Zz}rO0y9L$bW>qv9AJ(c5qg&bI zJ=3xjV`udCo}rvo9w^_t^Iq#XaB^FoyzArqJz^p_G$7~LjVXwAN39kS37!e4FNEyz zYp}6Z@f&{Jb%a3iy1Kf)1ig!ZmC+^L7%@+v;9#0SWS{lxj&$B{#-IB@5`Xh^XOoAK zrqdquX;xmpr60(a81F*gHATSCKD$m?*M_0X9MDP<)ueK>8cqMM|2j%U1-?mX))+~R zC>~kGuE<-^+OB~k_vT1~w~Zfiv+v)(PdN)z@Qrg3*zo0#+(b4K<~tf=JRJr7J%~j^ zMy+0S$q{rys}>n3k9s1&j2S z$C(~}I>~z)@6E{|#Ff}r$|U~IFoPPJh}Bxl<_Rh~%*M(MY$tH(<={!J8I&>4A&rMN zaT<^}kTcI?Z~|c^^o*EBqC|ou)W7>X_yB~VjTqUyJyfV-$U!@Q%^K3+XrK3J`nC2! z_*mI}7i}-4?@BbZ+4#=tuS$9rAtjW;oAVO4(1jZReeT5W;p8?^oOQI;U$@)e3lu*1 zQau>m5e0QAn zJjwyUH{V~Ga8c&s6WT!4+#N59iIm}jd@eonm%ui56=^S;_h=3UBgi$&yyh-U*Hr7w z68)oQ)iq**d4r&%+@5kbCI5Vowo^L9i5zMq{3?zagHx@)g#HkfX7`iO5XaTSD)Ul+Uc^M&StCm{Q%4F z<-t@p`{wvSfJ7XWfpVULL+>t#gEHp$@w2>4P_I7kzo!6!ef;k_f5-HF*uHb;d$|0Z zsLxvh|AqyAl`Hd=k#8^|Pn3iFExl9BFMc6_>K&$hNJ;KQ9mm}@Y7rDpsbP1?|Qu?^~8`|^u5P_YDz zC5ex1t*K8|*w!k-E92d%W=%)59>YW*R;$SzoHlKz)F=B%R9}G}{-1xmUd_99hehxK z^#M5RT|ermZ}A27<5eU9{i{Kg@T-=+TO)d4$gF6%+hX|_u&`3CXju8+~Q zV}yZlHF%aVb@lWPwN(VQ!Rvc01>BfJ=>NC`_S;5U@2Lz~!!-SO6GvWF`xH-yS!kC& zXahHIzGxJroT{Pu)YH%Qv5@IsQSies)Nl+1TZ$D7=Vuc$hGWOBSo_(H;`?C9 zv5oOa>i5+xd<5ydl%AoZqZv~*VTM)VQoo$VL|wY98}Sn5v$8@)y^{o}J{VQlXCCS| zVw@C(fwMUDQXK11*N1g;ddr-uCJvx2_O8)12 zqsO8?g%CaM)?U|c1a!FB%H&rX~C!XoZ5qAP73!dTVX)3*RbpCZHb6w zd>FM#2_cka>}MNFKP?%J-~nPNww135*!LP^Uiu7p#rs7E8`33|m1$p$F*3V4Mv-(gBmhjK|qA=f^i<`HnI*iscVJFjJX&WR{W+EzxoOgz4E#7RHc+2T36 zpJ_&O(k;<`2B$&r2(g7%>nI1v4Tp$MaU*7dvan+hKsNky=F2^P<<57F!guq-$ z$>ys}&rQc0IWK!8fU0!UlzyP>pPQ+1mDkS!%$9K#K*ri(wEQV0=#w&rfL{Mo=-cZWZstO;NfkP zwKMj|aZ6=Yq(xO!NUkw1PjqNo_o6z>*tqg5l;94riou^a1q{v-x(tAQVvQt88_3uq zy6IMZ0CR9Fa%^rb-*iv9Zslx@eBj>zrv={blK$>3&dY~Q?pSE+uxJ1SMi!{3ZJ#y= zw&HD2O};(PQ&JF|4z;R()Mdl|`*mbEy~|Jqz7c5M2D)iRa~GN%_jMv>|M-(!PAa*0u>nqNhI=0 zm}33IME^jF>q5-yJ8SJnPik21)XHu78=o##t5V!U*-SqpNRjTnU!+!LMNJSbFlblB zG(b#Ve*8=i75NY?AS*2;&SNMbj=E+ZIiGLF4?m(mS2{roP|xi}*I=8dJchF6s{IVl zb*pAAy8W@z_#``XbZCsv-W*xpF)UaxxCA&TNEhS~%vmB5S=dAjJK3D7RES{L{nXpw zULT-5cuNy%5?W*reYm;=stL&N7a&IED!MGQ2+zO9Ji}Pg3=>2Gn@@+1M(-5$yApy463dm=j*yMADg~B=VoM!G?Dw7V z(NgO&T=wYFw{4?S)~7g=5$WKT)qwHWHC1FB9f@@Q{*qQ9%Ct{4^=Q%^JzN4cwvs`Y12ttYVGOwUd&dd{uX_($EtXkO^rY%w{n56e3IVv^o`Le&~01cs*aAsrifP zFT^@y?`SzPvKnJ|F9SDQigGIEF1S%_Kb&(vnGF%DtpzlO5a|R#$|qxNBq#McM=Ji+ zr4E0tn~#^xlvp-13>68trsEEw{2FEvqaKsrc@r=^3bKE0hC6t*pUE&LMrQ)pM0`aEQ*r?`=rIs^# zYyPdo2NPnNX@FE_Qp%9Hn(oTEW16sV!RAv_xSsYBquoDeISc2ozl3rG;*ZAD38e2U z)!u?-5KF`C47B|lIMz@uyP7orxhgpUFk7WD>Ha=xU1TC6l^myM3vP`s%cJyvy*f*> zqc3JPhda|!)!JhwHX*!RRuc~Z&j>^BGLSd1T_6}LT41TopM`OOfnp>L9S3+@xPMzo z8pVs`J{~pEnoH~NQ5A=5<5*vbg@2GWy=qoI*(<>8vLKU_0H zh*om%OmxD+r~+=CnPMi%vP<~)y5i-{-@0AfRMbvPyAZy~Wl~fj*K5KwSBNn?>Y`Rs z8Dhm!!@C`E6+{JaG9;M}$3!E2YH9K|%2^|-qAQ$b0O$8WyEXLXcT|xb>7%%)ab1q- zfv6u}V=UI;#J>&_(r)=oi=|o0Z(Z2wC+y;oKr+aYAq58XgXip6Uw8ieeQ>?E1j82o zQFdjJD7M<%cO3f4UZE_WoSfC^%$ck7jp!3#Cbtm=e0QdpFZc_RXJZySgv3;i`HWYq z(>1?am>$`oc57t!L9SPxAhxQfiNG9_6FfBd*@e7A5+7b_-yaQ|Yvao&9FtDaB$5t38^@n1oK zsDRxVOg%j@=Q>#PWrl%sr;N+8KRZf}BeCP2De3D*wqFYTQ1r=l?`S;3OL>TOuqw;k zA%OYE%5P|ZMJ&KgB7@QFQcJQ!qZRkaZ5@xw@NPJ)F$oDiQ8~u@(q&c& zIQ$(b;0`-#>FK${4M6#Byz21#g);#Z{EFo1xoyKcZt6Kkk5+4kDL@8dLfuO zjv9l_Y921`E$WxWLdL*eHzADhebl#&KXP$-CQ$@s8x7Ghi_DvM zt?<+BzxtU$^2cT|_v9Y#FRo)jWVr+DuW@jL-E3>i4WqwEbk^|8U*@-Y^G4uUk+84< z)3=av7RMS%IqU08*co>fj~|Xyqc~Dm?4l}oKRbrW4c0|*otz*yE+?u0_R{N(qGGxM z4Pv3$%tBmFDX_?<7%q<)HkKd39m=v6*S=G)KM^l6_-aiW>dkKOQPj2*P=}!tyRc%^ zB0eh>gqJkfR*#{O+z6u2g+?x?;g4bch}Xq!yA#;u8r_H8q8mG(Bqyb@=>B9NGf{h_ zN@a)k5WUe?n5?^_XrUl1w)sO(+ie&;Ha{^f8}eKqY)7$0O=g*n1N@ZT7l_&? z54BHIuU#x{hxZF09|Xq#PGg!X-}&=gKobCz0TY6={Vhxh7>WXi`-b79{tBCF15rs_ zl)w?QP8QhWW~i>a;PDnn4{=FWE@tGO$ge3acEJ&!?0lPK*rK;pKo?N4Nb=84W#-P< zpWyNyYOfQlxFUic6Hd_4>~}R;X`|7076h>_6`Kgk?I!21{OS|(0+=5<^sOYG1pR54 z!10%mkicpAM!36^G| zSybcx+qb3CU=n`Q=M4uMsNBuE%{oJmfj?44WC^fC%(L0Pb}*Sa4#TkmxeW*DV^1(T zhZNuJa%+h9l^+3H+CA5rG_dtO1W&`~*%hN@!+W<(3>9YOSdcT|Rmw#v)1bcLg+O4V zt*tFz9(*;bjjTpiZ^Kr+tM2Ey^u99EGwyfnd@~LpKceGVK3cIYU!@OPY7c$v<}QSz z3{;9nltBp%mce>3C_wVR9anzoflnMdwpC1rVRVdj&J7kw87v(^qj&yy2As1EoK9E~ zL9$u>)V4o!f+}?;c&X&WBWGQS@;17FF)24l`O3X}-=BRk*Bs%1Fp|!W;GJVRoFyL} zo#z+?E?jK+W4gtbbzyu%xYGaV*|M2%RVpGA645KIvq z@K#N3%JkByp?huosrd#A{gXLlK`iwu!exJ6#EGu!mOhK)MsbE&|NXw`0SkEZqQf28|=?g;xFu&T*v5WA6pi>-mjfL;A>`$4Mz&J%yCf3F|MU#tzI z!vuyXl)#d+A7~4SYl=~@Wy-`5FTj5-R#q)f`1dWJ9$U*lWDGd|47g*vgwo3*(6L(z zpykBFmbAim@7|58aA)Ay@+2xXGzA>>poR}k%l;G;??p9umt zB};@*N~n4=++pue*gNp{8@$7%(rhv`#@$3eJT!=AMleoQY@Ue+n&iG7e8(ra>X+rh znLoqoPBEaEWP7y_-jhN92|pt5hxu6;Yei88oV1X1Msw-`4HFt;W1t>{Q+Y`Ql9Jg?~Hd3ke) zn!Dq~@NP2!0^ z74X+8Zfhu|Kxp9(CVRj-N$U{jOL63Y&+12Ob44mHOqo?3QKMn-G(Kx9VeiB1E!I;A zYh1vjA%QL+s_t$q;j=i6$H;Jf^`6b(~);rQr(Uo+FFWm2rGL&!0l9MdI0@QdDFEGFb z+AHuiENg3o(mu!-zBkoO0VHOC(bTnT3g#>6pVK-4jDgCM=ji+HofG&~6f?LKzN_&Z z@_ZS7zT7tGIOlt;I}M9GLeIeGBtqouz#ZOEmPSN2?bN0Mp<{VdZ0YHSdk~<%XEM@u zM(a{2rgOG!-mt4%nfNj9hHm&wEJ9#~sLcM-F%;nXYMEncL7wKzf^sh=CTe?%gvnJ^ z>F%2<{d(~eeQ_mwo)_+u$3-7KcW>VW_Q;RjqeVjITE?_D$Y1!5vrpwN>dDh)B`^VI#8993#Y8RWJj8tD~VfDJVC)%sE`I zVQt|X-=wpKbSAc^45J6Gtm64{Vmh&mhLbpDJ#e=0*jTgt$!%?IkWRhD2U%g?TIS$c z1LXbqk5#^4tiU1~R-~rMk08Q!=!{!$8l_9ov`g`!ze>bO{$>U~gbMn}n?r|TXje-~ z5?_0DCTwumW1XN(Rtx8<&-bWDc1Z2XdHeHwBUqsfBOlQJd+KHA^8K(+tk16;>z6-k z892RNpMJ-nxD)*rLFEYvSv9nDH6xY9#f1^1coA7Yq73Wh{w@xaHg3uAv1PL7fvPc&~2JIWH=n zbe&lI;?31f4?j`vhCu^3%cP@NbLRIrpp}=DocnrC?TnBA@pAVvigZAt{{kg-1lu4d z1b~zItq5K<#b=mXfU-$*DQ-Wq6J8-3P)~tZUykuS)*0$7(W!3xS-9z8O)&UAtS73FOO``0y5^UIGoRiD?D~5)8Hp}WFs*-2v?AkTaUUHQT zr;8rvirXK5bvY-k<$4KQcfvr!5jlYZYk6(I{tx{XC(gl~#n;e!*WI6{UOt&-S*Y>P z{b=0Jgg|f%WuV8{oyUDv`tg{z$6xfjU0m9lmcIU0+9BO)8A2{8r+1ffQqWRNX!?0d zlVKi=-|1_|pZ+#*UPmRA=F+RUQ!l@JMRb2}?|fByZ|qXKU0i6deykCl#tc?uI?<4o&D8tG| zJKZFlyxqowUA5`s2v4vfA95woO$8- zI)(x>W5OJ_fNbSxUL?Fz-5+go0|}c0XgVw=)`Blqa@dn=^P<}!T7_flJb&)Xz^FgD z7W%yTAjhFteThkk=+IQ_d`bVDsS}XwbD8ZrlA5a_<(l17Xyn*YQabIg`Pm;02q7L$ zp~w`*_%?t|53qV1rK72^psCUlK3F`89n(N#`-&}&$X37sG`_7UsVQ_#S74mhT>)>- zubgQ11?Z?Cw{6okjSqU-*s3x#^Q>h#9~w7&%S8Q<_R1s+-N*0eg`NMOpC(iwDi$n% zoaw%H{g|Fid1w~Vec{5m*z5Pbye{3GuL@?zSny^(;P;xo9ZCxFCUzpB|2hbaDygU zjucorb3lkgJh{or231!k)&dz0=$V)6t?R3OQlr=fQ3vp?6}X$Hz6E66TgibLA3O^_ z?2t;@6=k8eX`QpdT;$xXSnTW*m(f(8MT;1k?exxv-+Dp1jW>HqCv}O++ft%TH6~C7 znyh$;WlLzMi$jwg0GQG97FMjg#*sS8Eg8@oiBsZ)sk70~6<@F{e)9+fl_M=(2$Oq) z7P&^zvZuA2oYtt5uK)j7@UC+)c(|H0$e|49y?Fj~sfanqeylPMwM{FA?oae1Je*G! zU1H<7UyZ3?(0=d~Jb(nApOfFn#MQxC4xfII%CzGw9=&%Mx_ZFfwE}e8^zu}< zgGh(}Vd7n0;@FY~AIp}m$QUc8#f~eku4A7*d-lzd3BGiMh(N8cI@3?BXvU0Etu4Ly zY_#m7sE}4A(@)RW)`{)6Af6={=AADgRAFMv^ZKt;0=WFDPtb>RznbvAy?L%}f5k#5%oaE&_)KElw-PhFSkW*y z7pu`zh2dpDhDi4_XClY4j@xss3!T3UwxV61ve*L#XD}2DqQiHhN(`72rNpkXpZ3eB zr4sB6TvuM;A3&<6dZf`s{-ntMz1B#cEJ9g954x4mENaa^^X+W@i|QWU+gLP+mIfd| zE|jzA8PQmbKc5nmt~~e{)-eb#jj%gV^1%9V^7{`TWa|G-K_c_FVLafZye{)dP}e@7 zfK;RI?)p=cV33ZZ&l*l+sJ*lQy!=N7j8@Xyv!o_a;D9m*!+(p8m4C50$jTfXg9U#$ z?)Okt&3U}74n}Iu#iB4JfZ}c3k|hd2lb?KKnYdvZu(cCpYGaT$z&wZp0KD?>KLLvJ zQ%5uSS=$J#5xU6)``f0Sp);q-~+#ZwLx-17}%}ew4#RF zm48u}$Wr|SrlgR026cx}bPX+p;Ky*WGP3y1GHXFk-Kt81H01piW11ehB6NNQyJv?Wg~qoXyb_O@aE?mxRDMPj8K1nuH}BpZH`*Y5xD>#H%o;(a960)F zwKDxthg;_2-fHt1mVJ8iY4b6c*XhOuM|kg3>CBi_?ALcHX0}kN7s%j-vcjrFjOs@S9&5doSunkgT&{zdGL}N@ zFfj$~)Vl9D*7zW9+rKimpBi>7&q*^?)pQQK7epVahg)}sv#~NUVz1K_a4cmz_QG^@B$ z_9uwNscKxXZIEO!fJ%)>GtlEOR3VDf3BJ}sW6mT^R!rlW*T;qO33cpmQW}B%$;#3m zDkY|$YAK~qhy}w!f56D}eAY-FVRe46Uc>l8Y3&PEEr01l7qvaJz`nOifI>m=f{Lez zfGm2Vu_LU$hra}NNmd+a)k#EaZ8NpMN`EzwPY9IQpC3cWPaF6hm32LgbqgP@q$5r& z<*Lx_F_hFxbbde}-|iffnk_(5{Z2~(hvE^&^q`X0I8kcAs~Y?k!Jh}~$j8I2Li)@B&R1kBN4pYIA# z^B?^7JY)@w&Ox_+`&i|ZQ%v}c*s%v0o%mYAUzznYd~anRG3`6Wmfq^E86RuBQgscu z&3Db1E?ST-6hXSS{wSIQDNANxUL|;~g!x>5=xqSDufjB#`R;g388*yK$B+ApW)$&F zY>zM7x-2*2acKeJ9Y5p|T3kG_&(T<`Ec-37nPc zKEXaWHSMSl4zr%^JTn`P2M7^(=V!3n5u*Ydb{^ZoQY@^dYGT@QWbiwH45=paQ%<_S6*f7wr*~N4y*hE5=G@Q32SD z-67U0jRx3?nqVFJ?3f{SfDLr#eM6=>NvP(S;IaXH3s3>Zgyk>QL{RV=CK5eJ&i0=l z2+EBDaC6=-Lh}VqgV?FEp0+1BYx6e4!0D6|qgNbpDI`W46#eC3Y_R_MrOyg>g|X>_ z@Qw1R#`S>Sy9W9bl+i)~xtK&LJubl}Czlryx3fb(Ua3&dPU2fM9|ur~bgXnNiMwNM zR)2oLnHYO#9_SfXHDJKLT0mNDGH)iSymRb|s`4Xob5Jh({-6TATBISugM$HBUE0fo z-IKlIgVz4V`WvjoK_BJi?N!mvvFeZ0X(zJUD}3o<$X6rbP)G~8!#p>O)$H-!42mmL zf4Z31>@&PpVKldSbio>NJ&?T@9|_xRV!}zn5Wt1p00ug+mMh?L*5RAE!8>L4sB1jf zYLIFw<4`2nW(zAmocp>|f;aE+MOLXsy~02xYhZs+s_{n@S4fBg_1;e399P(D zwHVX;x=D(qb-DKYbn&gG@!|hQ9$AeCi!IB2Dby&`tgXLveg(3@K8>N?P;a|j-!7GJ zloWn7c8KT#)oH>@+hh4E+UZw?SmyKAT9ud&{QVTNbposk8qr&)6ZYedH+nD3N3WOU z*?&6XI=R(mp7U0(<^Te4DYg9Vse)p1O5IU6lfL_xFpYI-SiKkPf*fA8P2Bz>{ngXH z{*G;~sC*-hRd0ee58T6({kqp-j5g3;DheO2-o;CnY;c?E2XTqhLaAG!6$1fR{@$6` zGdh+o>PhyvCtAf;_6S2axTs=1W5!k%uflt%FecmS5)n}rFF|+{7_p>h+7tDRxYiT; zKelmrXBfz5&JWFG#*f|ru?w=t52SrMxhAwUgI^4x7JME8Z*_OGLM@gXE@I>Rhl%2V zFdZ=JsO)R7>ZlbYC+|1G=Z&FM1v+r!d67?$+ZaCHhh}{(b2n8 zC0c)(0sZyjCaXf|zjf)3(O51&0`BaB-#DyjKw&4g#lp_q*j~Rf1!1-VR*q>I{8bSn zf@Bl-It%JQVF~T zZ;_u+@8F>5P`LE!l{V4(!zptr<)L%`RPrrA$!Ljc4k~c58$Q`a?H^J;+c$4^(RcQ8 zgh^@nbopEq<7LeW6AG5a@CculDmi0H2P!wXiS1GtQqQF=H#xkmTU^}8ok!V;XUP)( zrb@};7A}Wbn@mg=8rqkyO=R?iVb%aZ7O99Dm9IX%2yS2LP~Sc7?>+1fNrFsuST75S zB;%7*Ka7%GU%qT*CDsXathy9HE%6Xq{j99D{5<6>GM+d{WIW=Jg8vttaH#7fL`WIS;0D-1fdG&p@ncfV_gAmVLEekcqHxM11>FeVKS(rs?aaj`+k zBa=`6oa;E!S?u%&%ULwAiAIj{;ddT6{R!q${eu2?!aTX~!g-T052`S1c8DiL7mAeT_9s=Co8{;Qan zHmi%GiI6cyX_Tn|fCkNADaJrnPylru@;|C+p4KlJbw(Ihh z$B$mQtc5(-`|Md}M)Q+cpfrYZUYRJ>I^Ijpb$m zVV|>X&npV}2xN->{>p7K-bwoTbK8GiE5X6^`mUH|aBX*UIiI3w=;HnCr@)67tu2%jLb9bQ?9U$=8mVshuUBQ+vY{1*n+R+BhRJw6lGiNMivqn} ztfV^y5zf3C=Hbh~zpmSdLI8;cLgwERNj8(x+T?msj=#<{{E`$8tcH1SacRq5&&CA1 z4N*TdXNX+C{3+tjmt)fT@JV2kO5w3{q1e){-@+YK*)2NP9s%{k^x>iuZGfBdHLB(! zyb(7fDJDVRkMrjUiR8{G9ROlguw!s44XHss-NFQ(TT_g# zKYIOo99|14fIRboG82^nF@uMrTkc_xrcf&Pzm5gg=!Df2m`(A5cXO=3@jI9`HH2VL zCkiuJb5hTgGP=(0^UT(v1v$xFLV;BAQ9Ov8pTJ>A;_3>syfxz{$TiIlVXPdjrX8vV zQDO4l3a#ST~f`xL7(1zq}%0S8QYawL*Y%3a46i`Iri3IBO( z$RVgrpIpwa0~keRr+ zHE{9b(cdrgaMI+4puY68|2ogfG?f%JuegJ#H*x$J8L^~x6iiWzoGv8yDdxtl1PPJ? zGW86sr?ErE?o?)}7{qqFn1cTrWfKwrCu{yPNRA;>{XR6xicE(F4fPi#>CO|R)y!Mx zOmk@HzK~#y%iB|vIYZ-B@LmQNuG@6a3&uf%y* z(kC@oWmi>Ie2+BBhGZIsy|FGDajP$Z5RBCHr7i<2IVp&Z<^Z`<2L#xMA?>rC{?~Ou zy$biHbRQXWmc^K&;vACVkRK)hg9s&V!LlEEoJfHD06)zew{E$@43pSw!!k_}ZqJvd z&Y2vRzqg?h!J@?S=J?Oolg^wua~UAdU46qVZlW%Nz*M`A+{?UP@Az;i3HlDJkiyg2_m&AwQ;VDUvDcBZ z9_bVZzxW10yGkgN|M|2UO3S>>^ivSPx7$cO-=S6&XefwCC*HY8ntyv-*0?I;?)Stq zQHAL{wrvBoiwnq7E1YZ&^>;P(kX&*2!V(0R@XB!BT-+0N#IJLWTk1JPI^w2sf{$3( z3J|OEJde^_AZSDs$PZ#6<^yAqaOJGXnE~&E6|?f4Cq)@~iS&m_`TF?$Y`v({`Mq>^ z4XLr6`s!#WYW!jkv{$#_th})8_Oo*EXLE}WDLiES$8*`UebND_Owtjt#Qh}uGTiMR z!oWr*c8bV4LB!5cD9;VzbDE67zMF~0*~k0^vF`iwQ@$Dz18-Mnt>d8dbmVG4Q=n^8 zh}XCZiUCPZ$3#yA3@n7vt_F0=-O*6M13iv?Q*=S1(8;JnLxVzaiyRtTiW7J~A6bp% zbMyXvtrlnUeN3;XCT#Z4r-ITU}2$UapnW(4Z}*CAQkZq)WmV35KE zr+OSo-tCs6vd0C9{)``%K9+NAummY*5$=}n&`%zemoHaP-om7AS9=X^=>!VA^1^GH zS}a!xw$>;!h1Tb9RMb7OX7+YkAR5w+@1oGeA)RIH*VaAF(8WBjUwIsg9CGmX)Q2(2 zO2`XNe`#4<2+v`Lb7SCtuBqm7k+&c!PNHm8SAWsjh3aLVk`hVQ`5t2-Jf26yprsAv z6mk6F6IXv|M01HQQAI*kse<1ZpY*1Zq=XVL@ChmF5g-QZ^)K?m%9tqDa5ox-{l(SgH`S5k(>;_3j)_xt952%)JO8Ut@1lJGBS*)6|!Ee?dz^zYO zj?$Z*nEoF7Kz!NMw})XTv9Gt?5X6(R%kH<>+fo7J*Dsgdv6joVwPOk#m6N&>%psO0 z!NnwZgB-5?g&b(K8qc(}X0QIwQcr&e+lOCq5pklI)%DAph#+YEv3a-| zQR)0JH9*^~5K;NLCM+T_F|nv}s`n?|c6(SQ>6uTXaKNMv4j14*!VWK2zf?A*-1_Z- z;J$4y{$JbeeLsG>j9Hk_-Wpt=z+^@|UvPH)%d;6XH%x!N>{aM`-9!8@XQTz1@K4)( zqIdFSSH0(tIjNHm?Oz-mr?YFCLF@R}>-ooRI2|tbkNWPXDGQGOsOg@NIq~qpRYKLy zNVDxbV*X`ymi`V0B(> zIwf_d5EdALuC4>j;(%iFGcOC_R`!UmIcrDzk{cEoU%u!eRo6)=pr%@9ZlP_*Q7>?@ zVYFq^w^yW5mi~L-T33ELpWmTPYxG zAbQv!*A2Kgm(wMej{G!LR#T&pD&Ve>49Ea(~ThdVB@_oq{5!w?Yn)>^- z?>0DB&Y08GEPg>1sl9FAD_$n_E6dA=?u-~yo|kxrYg@W{g7&T8#j!37_~%R8))q6; zx(Y3YAE%4-Klmcwu&nY`nct+WbG1k9JQYxpbT!(nnFc1FdJDCi>Qdw|Me%+EbNtc) zj;OGrQf3KVPIGQi04-ZRz)K8v8+9(^5BbxYTd1-9=d4e5-<@2g7kNm<rmfjEzQtYMsposP*4?GLN>%i`1;>6oW75kPh>2BDl{wB8x!J{pwDKsY zw=e+%sJYD$7It)JRQNJ1-ZZ}Ia)3GSYZv-n-SECoYZ;!jVzO?W!w+rs*GMZ?4UVZx z7nL)s{h9!WWp&->yS0#YcSl>>B?7dNkc}57FHBrChssq_xTwyXCq=1C@IuY0mb`A> zo~D`IvmDk%SmjD(oqO9-u%i&$k?7(u3lJmqk?+Z5BuNL1)#{Oq>gloP`66Dot8mvq zmZ!Jr3)=x%PR2kdT%=lh&1q^Evr6BUZb+03P!D`K_eM=iTWNW?#ZrcyV9Vzqok<KQI+nj`ZjjIm&`={m?dJal{Zc}yewl# zc-^@1@aom8+F4f&?SEkEzrVV$6y**oL)pM*&z6dbZG@kqHj_d3Xj**7-~Yu@-Ow5F z>V}5?Q&CFTe!3srDq7flvVTGIix#R>H>mD=Z^0CMi^<`qVP^SeDlaOl7?qfwtcPX6 zM6$raQOYi5Ds2-mxUt})pT*)y^qAUM725JXi)x1b>xWs%>W`1wT^^r*n(EIR-o)h_mhTc?kmTaRW`Ct}54IZO= z=n*Jf*kY9$@^$Fb%pCrJ@g+PL__&&BhmdsWy?|L~s2*e2Vu%xa->p21M9x~-rMdIZ zT4(%zGR(9yPEMkA)9w_-Ox1J(-$vo$&{;u%7?`FplaOG$7 zWv!2rv%`9iPN1PT7a(3H?7K|{t^G?R&#Xq+yR4r>8xJ~mMrLO8mx(@EV4xIq(+c|G z^gMqXPzRGpZ^vkAck?c!$LWnn1y$A6uahhcT;}bjey6

osW%7(#~HwLFMEQ8`{03&_x=_f)ZUYUV=2QjbE-ng8|8K6<-Ukt{)rqBt#KIm=z( z`yp@P>F3WonelmWgnot!i@!ISLGPE4kdy) z6`gP+$s*gdvDl>#z8hDJBGyNlnhdVib37eK(T{D{(D*;?eRoup=k~5G7Ep66Kva+< zf+7ech)7Y!63d{{iwF#fN~qEisiU!L6dl2_&=hd!h=3G-;=q6kihwY}P^1i< znfttW%J1YJlk?ZT>#lWOD^XF0?|aMM&wlo^_qN!*`*+ZxCl~4dEa58q9j$A0nOwy1 z*%nui0KAqc+^d4?$K%#^zfC~HvJ`krch0(eF2$=&#~%|q&>fQX^a4HU>>}H$TwbK_ zxt_jSjZm3?p8J2hn8UTaUm2ND zvOHiftQE&OZI4cqn(Bb8ru(K9+Z&S1k_rh>=q?P1cP;R_3(jWRXt1iwR=@vfCTzny zxJs)P&t)81F`!u_Gvz&1*=o5?$XIq`D#k`!#rFPwJ~-W@x)fruzB>kR-4D?S8-u+bri{!$UzwLVffMts6xu19eFjw(OBT z^U#vIqu#A9%Kf^X=(n!`2H270Lpy3ySeOyAKEC*{)bit;|M;XZXghMIUp#j~Q1P;G z^Yik{sybGMoi2PvbWWkj<|BkkhDqj!)agQzqo51|$$NbNj^AWqwJz3(>Cu0{;+ z=ki?xH71quu=bnZMv8}QcKpKnpIy-~bxNe!k$uIcwEf!q_;e%R)&-Gb6s%la zv{e1%yFa{s_AB3qMxbql26KEb^P}oIM}@v|V}!}xBh6^ z2I@TvWM{9s=srtYVu42|y}~os2584(6g_RZx3|5lE)DMvj;ds#CjzTG=Rh=?%nRxp zHC|>quHAC~l}c{^H=!rKXxL{-huypxP_$aZx@B~=9XSF5sYvr*1s!Pa_Rdr(%!!M&)mK{7Asp%FCDKK- z$tzK3P=n!MzWd#_NSui@e(39B^0r!m96oB;yW6bG<>M zUb)Iux#E(N`cpHWmgYzyj%H*_DNy zyKsTKB4k5qs!f`>(V?HM1Lo>)|2I%Jd4XE}DSy)se+-M}hiN)aZ!&Y`9Jz^UWj7thmabdp(^3D6t;?)QQ)a(XvSBKkQ?fh`ec*e z$i+)%f67$DxVyQDjlBN$C{dsZT72IGgsO?9t_5ke760kTZ!45B(a7L&5tL<9@P;aMxxbwj1`{P6MRGSAh z7F1R7!0xQLb$?UQomujw1tqTlw8lT->G_}$yR@I4@oTw+j7$n9m^(ohrajcqKW!8> ztiEh;yvtK;+2-ic2yi)7&|aOkTYQjp{Cvox-Y?lkV(z5u;~QkO8m)|H!qpH+v}>674a3aF{K=wJRZa_#5evFW3*w z)3}KkUyC04R`xT>1(b{AqIbEy?tA5Ehhd^VrNUeFf6@x1hNj8=A$oE30M1W;t6hUqwYlr9m$G+wws79Q2(Mpa%RF ze3FHLzv@)_K#g_KT(N(mi+`ACxO@V%S)o&Hwu0(DCa z%9=eNAXH5qv`8?<{J0D9RE(h1YPyHqPsdd&VRG?#iUq-5t_?>}tL4jH1=HdCC!b5~ z9qPT|llNkkdBf)(;L%%!Mb)Lrv;vMO3&dr-K@`QAU#pyG#+NP_e53Bu&fzNl_^k?M z=E8~EKQ8oSFf?iB($ghyor?t~rNlRPyKxhfn8O&)9ahgt{El^ad@-9FbeCtNSiTPLsRi_fR=RIprF1J8@c>W03z@2|BoS7iH=N?JO^B zL0r@09SJ)^boC3oidsuH-ELg^M>9U@EXmD+ZL(Yyy30Dui4prubN%ToESf-An^Nyo za&BU1uu8tZ`vc=S`4p^B1WJGTx3_K26E2wRD)MO%Oc<~?e(_Zi ztO6%3Sz;GqsFKQFR{mf7?N%g6r71DL_y75Nq`#jJhp^&_4R2J)YK-L9|H+BDi0%br z?aQpPQ^gi8Tx^n+_!(ah)O!Uj`{Ql=dnj?%Ui^Lhcwly8g;`M5&s5{qQu`&$872SK z^J`VLgYWpOMUm+mtY(q}@)r*QgN{8XIP@PjpQUqb0aq7a5} z=X#Or)tgsWN-W-a`SLlfF&BQg8Zh&h?;Bh5^5q2;?6KwVp8WQ&Pj_z{w-o!w_u5Kq z;^!ZKoA!V4*B4(u@J)MqQ6@>nCNJKvzs>1gey;G-Y0AfTRunQgH+*ObXnk_X-M(XlWM+Q;hPN01p{K78w33nRrN3HUejChroKSV`+G_2L zpU_RHnlRsx9LJ;IMn~1H`R^M@Y zeJ>8P#%~cy13OXc#|pi1BM}MQpD<1iC^rEE&%8km^HGHz;Or^|D{*$oYwB?Rj?QeChZ~ifF^{aq{8^mx(FU^7rCFZ)ke#|E5%5`O@LE z%GOQyAC>jzuAxv)=BwYF-agdlGTΠG@f|?J07Ze^3x4rM~&&ON~1m+i{wK&=t zFHrG(+pTcqsrHI*kzgf^E8-P^3tF=P(PGhFi5%3!@{x+ZD#wjC+B$Ek`s8;+r4XNt zO`!;Tzs_=Ne3x_Y$etVOMudvXAIE@`H+O$IE|(BIG1^qBc%`Ps6!>@t#1Q6)+7>Qa z_q}%RycjmA zt0C6}RoPXJDq_~(cG05Bj=3CX^1LjAgD>*JUQ6#}Gwr>i#~PFRM@%PZQRT-v>8h1& zn??)NZyxvCIK-Jdzj%Y#;JWpTe`_bdxl_EWf4%7#N2y=x(+t@ut1v8QSOv3EY>kZ> zZtou+!$BMzQLRrua5@cab|DhJwt9N!RF#yFOO4wH_E&ZF>gRPhll)M%n?D{n zMSko1a+}o1JGv;y7S5oO*FO?09I~Y^r4Ff0U#TU>M*C6pPx8-ESXE*hXy(xZjh_ zo=722J%kf>N@;AyG1udGW>ktls)H6;RPv zW7eA>U_o(Ov zFKizw5%_fmDvoyaNJ@n0I5KF^lACNCM)kG(5B3gwq+sbd+@7-7P;`-XK z%a?EAD}2aYYAo#|TG^c;^zj%pqy3dy@~-IPIp}*fetI|^tPDx__~>sE3*n$PL``M& zP0Ux=hymt|SYr6rH@F`MwJ1mBCYn{F1l}ycSRSmYV^h(|s|lO^uw3ex(MS?ckPs(> zMohkP?p20;2w71o2Sv!C*RFkJuYp-SK64(!yEC_YTUx>34PU_5#g^iE`QbjT}RpA_kI#L=4|6p8p=x zDySSBqQ~$Ubop(TWzvJK5L9va5<58r+7>zIS@AIp#zc6 zqpzeE=jMZbX2jxqobD22t*O6+6NS8nBbpf#GmUmW+gT5-)D_j z*9xy#R<@B9yIJ<82VZy>6}81YBR6@1c9X0*$7Oz-paBQ`mEYn--fq9Is(a#=Nbf$+ zY;#i>j1ypO&v=3T{YLHJ86<~d(K>+rgbz$YRTCYJy&C##*|v#~W_D_cD{oFbQig)gSjlFXI4sWw)aszhvGDqA>OZ5VX> zp37rQwIn_;5q5O6%vMN1#m!&`cgrChMo-J^N6!6Nu9ANET$qB-OIO)CGNKj9by0C< z*Zt~cIrc9Te|Y)H4lNVfqk#a&nX{^!<3_CB1+||X5kIm(y!+@1RUu)hLGytG*c50S-iT^WW+fKEWTe zqOv?&^<=4oCkzHFB)# z<(89U8rpdu=!2NeO=Yw@?y1n?Nf!)ocI7pnQ<|11#Nx>()WoQY(_c4YUZTQ6gM>Bp zhOkn5uKlnXImF&4r`IukL;)TuOrK?X``1Ms?;0xo*E(uMZSC!M)0#Z2udQqUb@`7+ z?6`GfNvp&px>2xN)8^(kTA)Uss)`U=b1NEm(5s;?l8}{617fq}g*pkxM+oN13K~1y z`r*UJ2CquwfOHcv8gwr!f&SwB7V?k7Md<((lymxvsVi!VM-S&|i+> zE0|w%kd#YS9QUs*Eccf6s+XC`NYF|Hk=g7PS*} zMMe-gX#gL_$e_j^5S^iAI$Q>z zK4@*8htxYC4NuJBT%ZgwL~yb?uq@BJGdz+w064&`z!6X4%|I`os!g*^!`&N`l}b~v zKKjji*KkOzmjPdG#iYIKwW&5q&#$aXLMHT0jz^3ud*X0q7V{vonZj(V`AgKE zB%55=Xp^agqN!$6-t4dI+C0CL;;qeiU2$C_>Uw!oD-LD5pdoBYXU7J`#W;2MwW=i3 zDjGSXHj(U2ns>n-bf1)>RY4BwOXUzb>JvxH(ZQ}HbXs)iZ7wERQ;Y>>VcB+|Ia@#5 zr^XqJ6pL}lhG2ckA5Vym9xjG}g$1OCj2v3dWYyK=`8b2;PeSe-$+?^F{Q1iGEg!nv zI-rOYF9XBjU8S%c1CXA^}c6Hm@46S_Y zYvpkTkq>@2ZWFn~*nNWbrtMzl5f9AbbpL zR2;Ov3+G-a#C!xj22c0noln+B;i+pe*n8}I=6Z*!P3Y|_D@PTVTr=C*>MqJIm7Yg@ z9T0>o2z`&gNb3|CTxb?=xOvW;IeED0NLZL6a&m-FU|(Tiu8->i_~JT93`|ju0#{Fk zN4LO=V{LVav0MMv`wHf`%p}}T*ahe57LYMf6$Q^;7R5~0VzssN`u?z3`5SIdN1V_% z_i)g1;)f4?4iPQ|*YQ;UHXnicd@Ro;$U~D!6v|0A&=O(Da#N@6)n)1q(NJLSV~oo_ zYnG3q3v+*caqSiq)E#K2VRu?tfCNd$*sM(HdRAfcfQ-wqjHV_Gz3UydbDh(asaf~?SC@cKsNmn1V-p6 z(4OC4q11c)B%VQ;`i4!XYgSJ)KJug*2Z0N5(ZaMLGD`H(ELqd~`-d=&+U=y0>dy$= zF#=1e*ZK+!HDgFW;pN?5w!$@L*Q_`rc5|0b$Q_Ht%UkPEOd&e$=x5V3t7V--RrC|S zwfm#Vz;~6@NinljYfC`js-sht@XZheEB9)jWXi8xc`Bi! zuB15E`dRD93zz%8E6eSF&5!|{y_X*u;4$;ThLG6z62 zRd@-LP?POu+x03PC4ojuH~ME{r5z)D^vJ1#bT|RJK<1I|ydwG~|K5)r^o}*A_)GwV znZYOndYKjY`xvOa5_G?{LYQonMk^o}Ln3v1$-^<#fj3EjG>3U40x8R# zj1H6^q$Wp`IGo{)-cVpHQ$1Ttp@CEp$d1DY3HkozNWKcn*EcF?X;}j5DS3_ncTBLY za|UwM-QHPaRDBJM@cDv3Y@qO~>lk@*BE7TjG56n=!E4y>kOosAXmDQpO5itXUUQR` zX*bz+?UY4rpHKTm%tLyK;k=m#O6Ef=Jp-O`Bf+q=KrajFtM~@e)er4j`kp zUGxms4a$>C0RBicVO`wTyrjJKpDT6e1rE%-f5tyHQ9FnWzd0HDC_9U;|3E+H{$3ie z5~?FRk?M4mAK6BX?x>00d>oTOS@_I$fQmY}i*Y950hVgIM+1Y@+}X3t#)oTmD$YKY zD2y~T%(14`7~-j~xzy?Lsd?n@U6j_k4XpGL!v7!FC=+Z#29%dc*rqq9t`hY0=Q1$!v-avtp67RM8Olui z4DYr-Svmoya7Kk3p=Q5bwQ2`(gFp;L;p?2Q!q%BJ3)0Zh*;v#e?TV-4W>o4X;pH6x zC-(v8Kp+@sXK(L}i_VBeL#Vx#8;8Qz^1kujgC|4{avBCPf5g`fp-J-r{8Um^trQ*Z zft2YZ(1PK?*dd|h7;d67-0LVBDWrV2^%TLTW(ZfIA={3mU?LC?c);7d$^{SH8g;29 zktMXi0ADI5lC6Whi_io&K$BpYNg6DCVs!K-if}kaOiax5!Qn#$i9`98QK5Vr!68EW z(B<@TkB$8=*82CCuSW==OiaqGua}z=X=IVOs%BP|@yDjqvbA9T$O9nLh#V&s5y=31 zp5LpxzZ5UmI@9M7q$0Inx85^IW0(C?V#z-N9#!&lrGCB3?^n1cgkplbwqCkZI8-|B zGr^nnNewBXSuRkwp{Rio3viYKpi+Z0wJk;3(vAbT5`?+ABu*qe8;p;Fii$q$jxky> zdbeCyFX^Wwvn2`QF{hgN%d~*5bwMMo%r|*HNuV^Kq!jn*dSix>;-5a8zDG5-whqTk z*yIq3a4(vE)C@J!)8GRw$@Zs8r_0YK;xFD7X%$iX-@5& zxHtFg&O`N#bDRt~H$(&!rg3@_{1*!e@i=dpMh%>6B0jDiQnV_!;QnPcK>{xEPI?nn zTB^Ht?yN#@y`%&amJ`}Q6DcA-jf?0sW_2qeP+a^to8Mph$a2kU%Qlu zXXI{x54`qIAK2>HTQoj-G}RYCD{e3IS>!ck%29s)$h)8ZLDow@{vR~{!~Y|{4$i`f zj00;z2<;EgF0=B5eXV5^bwjs{?ju)y<1orTo(~Ag^D2E#A24)>-%p1~?wR&uN2_dC zF5I`^*@}?8EbS_FH4_2yIbL2ivT0@;PZw2x%m3Sx#HdU>1ZrTHj9@f?!JnFK6Fkyd zObZ^LRniSv zz_C?H#&LRt!$EQ-2F^{9LJ?(llBIZm@bmc-nXrR{kO&BZ-<|T2Efl1w1&MF~h{kr? zc}YiT$VL%waDlR-_Z{whb&FVSk_kX*6>6z>LFT**h1u+ZzA{xM7$#ZzcsdaEf|{_79xgblSF-RCV8Eqo<3_chx2y#MmCN3p zHELjIy{;G1QR$)$R#T3OAmnUL{i8~qO#URQUWz(`S_{9;KtXA>=0yE0bbOg zw3Ikc0HWe|7|vHP-Xn4Z>xul7oIM)VJIphg6P7ijHT;ctvh`bEmD(lV8X@<_0$mP5S=r~O%oD? zBW%nf&Gp0r}v) z!ijA}73hqCTXz9DLgm07tX5X;3azVr@nX%r_cV^I8ZpZR9RZ@(BC^P$i-Lp3drL;a z%*ZD)W>NP?vF zbZc;uX~JzFNGpyi>wwm4RGP+8CfW^{JHShI;uCS6X>IXQ1#=h>7LN zfp@}`*6uvM3Z#vDu-PV%mJ_QEe;er;02DfIoV|@fl5-?jLvB>1H)Q%MLKx~rL>e0~8J8}7ONFmi81z;-DeK^$kEbGs-UxJ3CS4@_o|*0Natq3-7;+Me7Z0=1 zhVQ$Ck1q#c5klnv?sg*?iTPDUC+6Tz7d{R8(tSv3!wYy7CD;}YH;eBH*EC|N zyT5;E?8bsC2OD-7x;K=pqMBNsN>0EsxBOf1>}k)2K&$U1Ko>e_#6~RS4@OnX5OJar zw-0LfkV5M{;Z-lCQX~Qc2HK#XUH}A0ZVg6;c-J4whTNUIs^J}~qSaC8OywNPetQS~ zo`d%QQJzOsN|*~+P;-or?X^Ap{^3-SE>Se#&`DMunufP*ef0Uzn8ZU^L>&G`;c(05 zAQ2o<7E%M?r_Iq<)qGQ<7hLv7jOgY}|9V3-h%n;6NdAe#;bhuZE~j$lt#61%LO;x3 z2MC9tt#!EY<=5BlI4`AY4zNqK3IhY)g3i|_BtD1R(;qGb&z6WQLVQIq?rsuzb7Hg+ z1C#Q|_;`g2OV(}&#Wh5)MChVGC4n@7(*OcaI6CkaRbbJ5#=5edk@kennMEulUeAeF z5rOz2R8G*-XbX@&`v@Db!UWiaduG9k0o1TKA$CVHE)w$NEJXJ(`~c{iQQ+G+t#A)k zCVInXQ#7sWfv+1eMKCzC>w^v>Hi1aOU%<7<@@_YtKpd55czPo2pp`btDo%zj8%T6_`gtVhbcgioTy*P~uJ};}2!4HcGZXT)q!J*ZJYmsQ^kZ z=QMhO=NuJnLZdCpY9JHhZ3rJKFDK`KEDS+IL|1@1mCZ=@ITDjUC>2cv=aL_r nW`k({{LBCU>;I?MVO-QW*DdSRh|5v(8q{t2Kc#N@`M3WC8K_R! literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/agglomerative_silhouette.png b/src/comparative_analysis/visualization/clustering model/agglomerative_silhouette.png new file mode 100644 index 0000000000000000000000000000000000000000..490c3640b806d2c26c7142019e56e9e19cb762da GIT binary patch literal 65263 zcmdqKd038H8$KM{OfrvYP|1+mgft^0QIsSa%xO@X=Q3ulgfcXsk_JVkd5}|NgX{T;vW`2P4DhrLzLb3gaJ*0rwdyw3AntBX72q?sqoo4~}x#4NLA zqXHAt*l|ouBV)&n!FPHZYd7G3!p58S7%S=@H8wk7c!X*D0pk<8`o_9i2RTfS7#eBm z>k0A;^9%BE95XgPVI(3TaQx>B`1K7n1zs!q$l)U6Pi#>!Vq#)BKz~O(lJwPLV(M3w z*|>g}xm#VKnRRwsd~%bSbNCLIaSIoYTli_=%A1@V=C=%Y*w=9`p6tYF=w|-8@*Z0( z8!HFfRD-_{r`))Inqy(e4BmwcLw4?JuiIkV;rMCYvCGG=w~zIV_2@8YxVfsVCv92R z>UTm3`eF`cYe(WPzWdV(^QTi(ic59Q=Z5%BEW!qkew%VBGYxKfhQv`Eho-DSn_-_WEi|U3ZI@P4}V3@`1Q7mzM2{&{H$1{jj|(*^xy;BI%k& zU&|L$54(N~o<)oBaY|F8;(IOS8j9lfNjtK=Ybm&RR(-qa!<_Zy)n$|VXLu>QasrHg~{7{wY z)mCU$9JMw&G$S-aBEXqP_G{X4@z(cJA|0QNcx09=S@J2yEZBu#&Hq4>eRW?)ab9h3 zLeS~a6Tj9(w**K!hE6ZC=};4I%Tcs!i0jz(Xa{G+d855!S=e?tvWd6iwf>qJ9!oXi zW9brh13kr`o*X#S-`8LlBfb$&^n3;*22PIaE;+-}nkmh$)mV}^Z|#ZwDH+}E^#ST} zmRh}?P1=Rg&w^r`x5_9a*)tc;(e}uX(D#h*ZI)HDZhFP(E3hwo8*cR5q#C{tL25D9 zF^|8#yBnYyWytBar=%Dy+ZRQ0cyX<Kqi!oKg2P%ag-ELCT1>cJLZ7Kk)2rEuEpKnF zkXpVk{08?sH(|j}_v05YUfdgF`q(?HL4Cf6@v+90xXK4FM+yJeSLX*HnzggMFWNKD ze`wRw-dEAb>0?v;If+Fw@Zt8m{`jfCO6bE+5&FRwr}Nso=~unK@4x%;9n){0{p@I;=T!E< zHPQrz9a`y%AdjAhx~*WIQRuzUG4ojkegi?%zLt(_X@&LYvd z&Rx`OH$Eaa(%?{BYnCi$L5p(u@q&l2a(3@r<)&QXR!bg$rR$qvl+Sh8^H3d(hh@pBu{n?T37J%9ZCbWF@crA{g3q+F z7cr7&Jgt06X+e=+Cg3)=IIlAMrYhd}{IBlz0)46Yfxmgb#dWB^^OV%cQ!{gqHm-i~ z*VxI&USFAubm+SI%AEVVAMf>(a~H8}OdPw~y7NSCklH@AXk%KL^tjrsRhgecj$HPz zX;--^prP&@X47MeY^|1>np*SeS-=~Yft{BtCYSM~z4&-YbAk5-4I z@u&UmA!1VV$hxa}@00zf`nxjhmh$uScZPNpS;_nP`PF=U>cw5{Vf8Juxgsq$R8wBf zFqNmf%u#Zc!IzDNm`}@&LNg_#t!)uqw>3R7UtXM^>mxh6?OWkKq}-evOBAV)#dX&N zM7Mv^F=7*%&!5n1D8su*m%AE^HVdi#v0=rVY7Dya{SD{Bth)>;sC4pza#OBxRWz9| z%o;!$P^1U&-g0e!?W@bPYg2hWbJE>KO$Pcpq{~egZNKAi9Nc)X16-kMAzs_2}Meoexz=mU%3az4vCTn{(F9%D1TNZSfq) z`S|ouTZOAe&HeLi6C~7GSl8ae3~1#AsnvXr3gwS$RXAQ4twb}1qO|JBn;A+dF6R3Z zdYc*3TxeQw+}RuJqb49YK8uEUsgnOAyMg|tJMNuy5zq)yR=3!+FI;zg{_EE9uiVyJ zwmu5iFAl;yXd$eSwq#Do9Hmg7`i1^`;Stud2nFADC#NaR3Cs6}olrL~9bJh9%2}CE z{qU~a*|Vc~d3atKuqNM@u!+XYO18O+tTy*(t=)s9n{vdewW^exn|tlP2t56@qnhIq~HAXUbfT$`_?JYg=3HZhtuZQAJp4Bvbn1S>&EE49QYK>Wwqx#wl+?NH%u3X!1 zoaQQEhU>T`v)hR!eUxi&&6XFX7e^G^&Nu8v;&#WQ_yRj5X0us0uIJ_COtdJ!CcPnD z^w8@olRBiZCft$JMWh{A#|t-{9Y38OU9;}v)5L64yf3S?a~5|tV0d52Y}s-`qPH>0 zDJ@(p`?VHI!Sr#X+{CTg4@cV|rcCyR>)yU^6QNgldH@6e(5R~J}>pS;r zT+&A^CHro+CYQ9=7lew*Tjmw$#k|A#3S+VqgVn_=U(eS!c6N5&klxeVlEHX}Sc{g^ zzUK-OELy(GVZ7Wm?D|%l@8y_s!m{IAy{f^hndu(lRxje+rOrZfl;s;_ zeJjSoV~p9Go6ACD9a)pdJ7^+par&|>5Xr%ljPtP7&TCDsbXmS{1HV~K%MxBkcdLdt zA*no!<7YnwpG%>rm`-T}on?-4C=F6<`>Gu;Yh^z?=hlHGVoW0rAjehSiVPu&W!K-! zTHKBi;+CO6ZvR#|zqi=ioBNq=z5?bnt*K)v+u9TBJZ-!EwDW=<18tmD)vtJS(HmaDDov%iFN3k7?$C~4xRuSen zH(}-k4;ME#R0NQrMMTh8%SN89#U9{>1cJ=N9ZvYpo!ZrT-gY^M#9Hz4lb z#&Dfn|Cy>qE0@hyJ#h-_#7n5yT2a)r&WZcx62;9EXY)^DTXAQ$f`S6K&vK!qGKl9q zKv&~Jle}u&4QC&4(Q+Bzde`gy1fr*^RiTa`m*-WuIo@tt2T zmox_m#CJYeB=5m$SgxzLO6S8i!r5^hMFD+19RYwz-QBgpNzv5OG2P#Da0dRD@|SwB zGQiGGcM%hA8LYa@EFam`maWIAfXGYsg>Ak%@1|ERA4-dTHY(L(nZ$-Q2#~wn)mgFv z?@ko8@{Gymy=iz5tIF9M*jLlS13=_!l?axe|2mF)084w?YV$Ihtz~3nkRR7Qlx#5< z+q!*w?xUSvttbjwmFe!Ea6zm!ZlCS5JZfTF(kFJAbsv76T6y*2#Y{l7Rdhd}!em6v zzU4S95ItR)T4$MklV6Pn@2W(9=b`%I1PzpnJk)&@k{nD}$?^V5$$?B@l^Lqdt2sH> z(@Q^vX?Y=2AGYX|7jL^^KWXj*O%IFB8DcG0-na?`Bkj~+d{`uknqL&fS@FnV%x@Tf zS+U~a%W+rdtXPX$R8-82LDdUm@u0^@WbPMwRd!acH-?}2VY%c)vz;-k9lw4#%Jdu;dj&B%PPxp zoJdzlQ&ZDCaZ6(t*Hm4Fa^tMz>{ttWxyIIG65ua<3*YI2f~B z3p|mnq^#zHjIL>UyY90iK%U*|qi^TjT&66Caz-eXz-3O(F6KFZmk0|XNBVn+nA?R4l@)1F)`}EdKq; zl>8KUY=D!dMoG}@Xnm&=7JBbbJZ;(XPDlxv$mH8+;lmd*j1eE%=Vq%vLdhymor3@r zkm;`W^+X3>=;TSO&)FEDd8^0@PG{TJ($s#WekVIujP6|_{SQZ6)m%!qyvD++#q*{$ z?Ubs%ek9qEJ>$vQ``o|}Td*3Gw{81i7v76yuv1ml4U^{Ek|8N+-uIaim$3N|=^sovlvKz2b3f!~Ps=Y1~wSG=-S83AuX9tqT z&=dm%>`HT4&f`<)3Xt(3O(4Oonp<8$!Fi4D$9qQU!qQjg3r&_gtydhc7V+8ea*<{2 za>Cx5F3m`7Yu9{jz>2J7)odB3o%!IL_w>FAGZs7DFUIxTFa$>}b9AEJTID76yLVpZ z-S_n1xrg$eK@v9IRhO0pjjJ^UwBwNJ2Cx%!)5kri=%x8Z+{|Aqr1$v|B0m7h7QuAD z-cz&9TC6SVRzb1@_szvSH=tr<_4oA%#t8tT@dxMKt(Y29y+*$%5Hs)yWwCzBj8IY}5HkTdM7k0beosaiEdvkq-s#&3lv$v~;t#Em}qJqL{=>Z>4-oBX6 zSf#E9uK4mZ-?qJtM6#m16>D4v3y#Q$#zz6IURUMR>;-K`a`&~iq>IWctC`%yBY2ed zOvFm^KlRsGZM4q5g+;hMKeQHe7d=q7s$VTL*YWII2lO&22CSIJ6^9KQ0ek03+FFMP z39VVP8v&4w?mVbE+c#j#wS|cnS!IYIv23lnR(j!W8h^|-H2v=k6^ua_)nxfxMt+=S z*u81Cnzw?_*3`15!?oj5-R21%z49SgBN!lkEV~dTS;{+zNzusOW6_ip2&q3qRw~gd zZA~DG>fyGz@9qi-B%RI28egSf6kBqL!>vFI>pxw%l6AY=+MVbpCVA**c!+ZrFS&h_ z9{HJeZkDg7tv@=tbG^ENEr}It1+Pma+SFV#^exhpV-v0J*wmfrDB&rOYv&=@1yvge z_S^P#SNr*Th}3(>ax+MnRlX%pNtBCF|se9HD+6XwJ91{P1J7nB5Ht1M$@F zFwb4dEw7gVxJ=8@T)~vp{%%aQ@2K#0Rud>*CYBefAkibNpzP!oKp6Wz;S(w zwFsrRAivnNj?TR=H8yUbzX!184z&+Q-`!cVdbJXDbx4%PXo<%1I&8hMm@_yp0I5_5 zy(A@3^qcd0`=7b0TgsrPR{~|%iquhyC|2;4u*rF*qs+t2U4@DNP@Z~SDb~En$?Mz7 z>_8PkzzbOvC}ofeL~7V{mYyg2<;#~Z8x~oF)S}!gVF>|M@XcJhYYXTQ>Q+}7ecjgA z-_ziH<8f_0g1^YRWjifx1dMFT)Ez+TK18XY>8&kEJmbGFBB<9kVHV$>djJVXqY96_ zxv>-NTO0Mf;RSk%csLaBFx~u>HeD62(P({$)|1hao(UMRyCTh18A~bTS^ec%%d?^? zJ(evwu9b%6dkhn@H_q}ILCf=OmW$1cQ0=OpCbMM|SpksdkCs4Wptt3jVZ~PJ^f6v6 zD%wJB{VP_iuxw7{T@6J0OutwiuwL=vG#+9Dt3lW0I&n&!o~~Q^Sz5`QtU}wd&2e1%+e41x7~g0aq6HAPCP>`cpn2|~ml84i76>9i(=rOTQIo5z zk^AI8QkYSt9K{@1jZCDP8HNSI7Iogmv%#=|yt|r%`U_-avp4kURr|>c{E=||fy27d zv97XcKHOz3A&zoj7j+dyHX9eu^^#^GXaGhc3!#DAVt`o?JCi+xY!-%~A@Ge$$G~h6 zw`_fXa>QRbc!Qd8<|e{}=v4S9&12FUG#n-(=GV1bxYb!-BYNCD7x2miC-g^CHUw(k zC@ZXK5tYqTW7*y#O(^-wEr@G+J>NNNQOIUTw#Ni4=oyv#Z-7Mz81dJbQLff+ z-=JSabr7fqznFuBet#Oz*2MsoW}gkt(}D$lp(ZA}>cQnz##KAOUn+v~Igru@RzV4+ zGUuvL(W3#BVrOr3W7UXUM&{*`cBn#gnMXhhS)AzVOINSv0s@u;#fE7qLJ6q3E-#V# zcRccI?Opx&OsrYKZCMK>toLBNvcZKD&%M=osd7*to4Dm!W07YzTen^!ij~*~Ko@;BtB607i5#^%W>poC(G3*1d%%l9<6k&Rn*;3K9ANq}8q` z``3ej+l)lDb>LF%oJZHbB@Ec20Bl8LsrKZMDZ6NlX?>P>$7ipG_#Qb-SngPMYmO!L7gC6J z0kir+KcVlTQHHoOLVFh`Qwi}f$?Q>7m9Yqn0IiO0JS=avEdEiuQ z{f!wR0;zAXNLwLOP$Md0T;;?cSu&DZ*uTb1N@-4!#fo5xO8PDqm0zRGj-HT^dw~=o z0Va+M4UB4WQtXLo{azbj{F8l4gig>qcE=6W@Dx&G9TW_koyf?ZnfgIg2G3 z>eR`Cwcquug((dkwcyPZa3^h8YL2Pv=@XvMJd8!hbruOG%S z5h@vq7#O5D$YJ72kM}AOC>k?q&ONk~k>atsI_T`?3F+0f|9u+iEH}=|EaLn%AH{}X z8W z5Q^&$xJ~^rcx{bIEVXEQ-V=EOI>Ej-5TXuoWz@-l4PFn_@ixMsDS9++1qtEs7c^I{ z+^bP~lQICAjB6i9Y;^|yzaCshg_Ox{fka=cBH=l0fED}H^-JpY(*SAr0)YUN$AXbP za03}+?+VD&w-+mTU*N8W4!BcWTif0<;#lSe)HcNg+rABQ8c3bp9Sy-_nCDSLv;)kI zF?vhQPPsEAec?X$##=`r3qPE#(LGlaxczcf$kVLUU z%eo1ahBEQ)kd@SI+H#}O{)MzHmHP#QDo*OoOzF+MW)xzet1>;L!cire1LMW`rcS`1N(x0bZ;gZ;vJ8G z&q4V4gRS)gL%$v^>_D1WY3UOgc(%pqcDT(G>v9Ku-?x?h)YsVXNx5brJ)ip?%fv>Xy|! zeP!$eJ5cn9^`ScA>!j4PikfaC3JbKU4=@<%)*xv- zi4b&ZIgb8Y%6`&LVESFpw3XDX>YouZ3j-X^)-xi#9;HRzIR|$<$uS$~zZRfb5lXjG zoTUi?VhHQ%_O-(1jrZ(X*r^2>?J1uh)n^RNn_53&)F{dzFjCNj;i32hjG`Mts!{h4 z3sQ1-Q5`83@z)=3r{#zw;=7K6V@Yl0zGxDk2sNYmpy(skDanY-M)GgXbXL%kGWce$ zNuHW7kny>`PWUpq1Z=v}@r*|-JSGan?!eq+0+aJPCSR|%NDt3jo_`aO{`63?KdIG9 z0WMH|{S*4?^(~~8(h`Il_(v{WeLHyKl-6fQIHrv2njc6s0I-T+?3nbo z0H47?35t+46|e*_^@7av*Ibz?$i%ehY4{wb!w*0?SwdG>ZBny~s3FR8qVc9NnEP*?%7`mG+mH7YSOC zG2-U(eQUCh%gV`ppa2DjwUs)4^uG__G0Ai$+Z8-nvtK$?k;(sX>ks-CIDiD?{Nl29-xJn$jWi z3`<<&i;2#1)~*$>oG{84CR)U>`~od?HMWJP9>)dnEMa7ep~rOVa_bRLqNU&xU(ZPa#BsHsAbzyiGb#<0Msxi{lm zyDard1>)y!X``<_}U8c(ct1&lP0416?>q(?%R zs&SU(&!pA`eu$c{clAHei$P#eTV7Kb69Hoe-8%G6ZFCmoE+Jw9B2fUi%iDS#e$J+<^y@KcSFb z)>K7yAb{^@ni*_`b_0DX62;ur1N{vHt4!+_bQ6Uk?* zB?%iS?h)2KtsPvx73$kDB*9OS23~lcX@>pdr!RVh5v$1$^~J+^ql;GtAMDv)mp^@F z5CT{k1b7~0H0mCnpZe?0ibMABjQCJEAsyXz&_pmqcYVDJ#bpWc+Gx;n^EB)pC?qI3gkw^3-pHs}Q){U_Qv&J}!3mxPMJzB0Yow&$H6TsGNA{0Xu8s2<Oh)C zjbX?-qG-b&lhAC9>Xw)dQu~`R<-LZpXU{s>>)yNNUFOi+r!t9p4HIqQHQXO1&0_Ed!Em0S83k z6iIC1;o%X+4;bT&KoG`9L2F=q30P+@#twu?Ua87A%Yr8rW%w2e5JWCp>j3Omd^q|l zKFbJQd_A8^NO@R+$Ms4(({RZ?gWb@6CiUE*kD*7?^t1tq3v!M|qY|W*AuI23Ps8Rl z5BGuV%SJLPIdmNTs2n%}L2$E9Eg`NSAoY2e7D!*2!*Ckl-X?jt^v7aN?PCQE zAZCM%Gq-&w-ISuw)|r}E^_+PS%=m!GfxzsTYHF&!NoiqrP5# z$SVW4>5g}?3Jyo6BLN8GW)tl?>I?Gx&_tw!dp~?ALZid5q%9AvEWnber&$N5voYm3 zH!rU!NGL<{_*8;nH(;%NX?qVTlCzSzqiH-7(`SSzvoFA~aQx@|-e{g>zWr*?pcGRO zcjYDY-z<#Iu|?J)fP>5PdtVk%Z?w_WAPzK<6qzTD;KEYV%X)z#O(EkdU#)`AS1z=*z(Y{m@aRkrvMWQF1a zDDp77NT|9@R`OCKnvyJVJo8iyO)#a-SuR|KkY`DGt1uy~L98Tb-ghM-Ye3&-zBo7W zjPzAf+zHe?%To`4cE9o)7R94=r$+9LJW;BZ?B-sOdXfAxpjIaLi!NHU88M**q6(tu zG8s!y**r2(-6nT=YY}P)){sPzB*|VlzJALpF(uo=oOAzeDcSsVF(dr5RVbhzu#@QPXl~GHfSncppHR8pRvf_AU?I!!!3F$_|WJ0xQ zu8Vm3)rtI(>ky5(it^$6fuj%f~mefBrZf*zo-GaQf8&l!J zr!vj(Hej4cd2y+P1SkYiYY7b(JJ*Vt5gHMPm7&zOy_&62g^Ix}Yy*~i>E5tM+(*or zKcZ6tL(SjWfKUj)hk|0=b7Iq71fYy_5bPmN$G2?VssK=lhC<@8O6a2O6+Q|4w&(%d z@-;n|2n(w?!}QBS-l$&-rDRpCdN3pnFFe(jtv!Dca{!S#49vkJYMYUGoo}pJk4}bv zkWK?f`V4EYq(jVmV1V>hMO9VR6fKaPDB5qI=w8gLeb+j%cKWnwE8R>}d0da7!Tc1e z>6nh9G)b};;tRS78zb+LQ&^p!Ka_MiqQ=J5hi@`AezU^|dAT^g(xV;oj~cCfuoJfBR~e zafp$q@U?tH+v>Ex9}aLvVdBA=F3zrC&UU>k))gZWvMh$#C}h`8tbpp`YZkcc!;#kA z?BxodY(fsoz>8V+uTT*Fd|Gawt2?r)&*nKV};`^$(zDcOhx^{q#{d{L4qN#To4E zef0f0kRRv$z5nFFLx&(=Ft0}Ujnv6fd(}xX*{;UuFj|FA33dtX4aIh!Hd8HhajaY* zYFhQ#D1({*vPlS1Ql)7X=eOuu{>K^#>eCl(dk^OqL3m;#w2NY+5JpfI4)-~W^jS^O zhc3jIVN_#Oo71!WGXu9tBRZa0v>fH(<<;yg5D1R!i{{}44Fg}2HI|7gDCS%|4>f=# z#Yw*X%O-$5*|g_tlF$(pU9*(BX6@qm zILMQ3tomF`Oqwg<950zc>x2K(HFsyRDZbb zyozZ;_H*c|mJ49R^o{F>Yle)H#RL6jE_rH5Qly0eqnp`#QksQf2gF1syjDc&KobkV zgc4ClR04`6T5}ly{ikTZ$z65CVjrn+vzG7m#wsQ92~5FF61NdF(v*2%Gdy$Mi|9RM zOxNl*w{I+kbwzS=ZruxR+=eAYNUfVaCf~yAIT?{POy_^yNYUt+QRl!bs8VR=yGBM* z1DO(@(G0#|fxbscP$Ee3%)`KtVF{~eYjAAyC3VO!)YJL8SEUceo%=W2YcqP!T6Wuz z>4bng@lf@~WnX#t0(DG)7<;}3JeoBhdHTDL!x}!X^)8Ztdlx&+65YCG21rkaM<5p>bpX0QZ6r2SsrzKUL5b3a zxXdXX?ZIa=UmAoFQktfvha&HJ!Iq9g(;4E+p-bgdF6>T=+R| zc@?akj(nL+%@1TY@-2}ch6pP>3c1@X!40m`Om~~)DqL8+zuGQf)W{L9l9P2{Bv$bd z>g$P?M=ffFb5iH|$r02kN%YhSB5!V{ho*od3o&fG!k@9_CtVd=UY;)@6EQj2NX|hU zE7(^?Jyr+!EXb#=pLBw&0UmRpmd#vga4nyG&9#!X4uBmlrHVJmRRUcq0J@1# zb{bhczzOXJCR(XmfG0J9B0Q6C&kp?H0~*q674<@}mjV3;QHurwSv8{2^e(p_5Z0ZQ zM=s40P!AMH=v|qenrVzgM7{zN_bD>~PrBSNy^%{qL`0FLEClKa{9M4XXtbvoE&zYd zZrzxu#mgCLCCV#MF=sp?JP#ibNQ&{=OD9lioo878#nH!7+sYM?g%w|mHi}dF%+ZJg za^-n8ZnmP;o^|5+$jYm1x{c97@phi?fXeC(ByR84kkj)mIJ~;Escdezj5DnYbpOkM zNYHi>y$y%+5pdAEq0=!t5N(|e<cE$|sV zA=v>4p}DS7Pq2-HY3VVLs0!I*AZ7*Ox&1*ek--?6Fdx)ot9D)S&XO~r^W4xe_-xY` zPz8+JLFQ<9iMP$C#D&EUoR`upLKi1Ch{Q?tSo4$&HmkZ7V3d|d^3|t?Sf>I#EeoC1NP?wtO=h#=OFG{rSM>0@ zPw+~^kk;VcTO^&IU=s`(8u(-CLM8>ogFjcN>wGCI6O8L8stPVb+9E*BFZeuI8&-Fo zV&o*Cr2TS2Gnq~b&MF2O?%VipUybc=z8dEn?bXuB2D_dfeC3pS3gwtK?KrQr4H2C7 z+F`-`<_7Y)BBw;7X$%#6@D({eo77w^hI4N5Rvmg^2P7k{3z6Hsz^EVYEH)-`zMcqyhvY&k|szqN7JXCM*q|6#3pk1@e`*l8FNV!8y6?T3#(fW(n6-0ZS*E^b+reJr3cwNE8uvV@nnq?=hgscWT&y3lzc3Hek2{6Yv)!qU}3diY6RejTWTX`jp zSk*L(Nq7pBhxJA~2BV`PXDSkGTI2bF@0J-cnt1c#IJBjl8HqP;+$ixq6)KXoq7eIc zd;@}_w<1$uM+uj#D}OE)2l?`3Ch)uBy8cLvircom)pGQBo64yDH=$*ZO3-X9=ep$+ z)-b9Mf;1sn>M+15(awXF)|TBs1&WyuHk~P;?Fs(!o)V-ZHHxu0@^(IauVJ%Ptgq5n z;&ljDpYRiuVH$yQP08NIGw9cReLXB|!aD50%9XEmz=n=`r|g98nq^=Pc{;osB_gUWLK{>^QMs{7%2n3y`974D)~avF?HNS-F66!h?N! zQJX-@n>2>qx^=50q%BH(?=-~h%!Wlw>lR^@B>LdHArcEY;UVoI!GhQdHWt~m4NPw> z=#@MGMQ$IP+2l?8ld&eN-~3`21u<4Wso~^Uqsoo6C|R#yLly);_Xkkpch=?w=fPp} z7_AhMY$9OoA@xM*F0k1RL7s{$=0JhQ({9yF0d-YSOqn34d=bS}VX|s22s6O49AXB+ z^lS&qcoUNWPM{SWANk-W*lsX^^hf#vV7WJD%@4Ou`)F1p)nfNcf0*>rujQr-{UDN1 zTSw-SK0GJ{pxY$(!)vC4bsvqwaa#H;wNFHnUYRR615R?3{2J`3%7eHf$ZB)zx_x!= z_-1nAyqGAki#T0KM>qLY6sQ#>4S_5r_<*+&J)N{q1c9C#Z(~KIE_K7w>^9z%>mYw* z0wn}PpVJ`e2Fo%B>zDAjvp4zs@R7tmhqM)5Bl3boN8;V^S~5nUP0<8iSAn6D#dc&Q z>g(1mTizoq9s%M8pqi5}g_0vk-$GP&m7>k46cF|DKlNwZ2vvXp2_ih?Ao^_ws4Nrk zQVfFiyKgjzgjI!4&cT#(B=})DS(Z>7JbL1+V<_T@#~V;A$lofCjSkpY6KtG+#FeN~ zDzO0D$ne40Makq-=8glbAww2)tC)m3!w@7Ed2mbw?#T26wL^-wuK@S)A^Cjv2!zLL zC-t}Bt^+~)%P4EuJfl99_o>M1#?-EN@6E-`mM93J;j7B$cZ zW`iIkg$IrsSg*B+Xou~jpD*E1544O-5H`6W8%ddoG)#m2n)VdHa>cW-U^3J5+o!S7 zIAtRWcPo|xMqPz=SdnR!eD`33iHIQ=3&VjEwnJAp5Va`)f|(q#!6XEsz61ar!0~yH zATAbnnt|H|TjdXwX}}d|cQ%%aRJs|Fe~*X_-@fKnU{f9JB_bV;yt*XQ(DM@?4=1f> zd&~+sdL*&~gX|tJeA)*d!)|1zkZ0wE)8)nPZ@sxx3pYD&#lf?1FU94xILn0;)5kWfwUtlj^oAmQ1(sY8~rtttPEzSCFc3Zm@<1(f4e2 zy#_GeZvYgd?WHaC67g_cuf}#X>i7{p4{_JzL?gK-y3`(KupUr(q=J&XMHFy(OBb;` zFbf$$hu$7Oj~n}-!7~t(AkkU!7pYg&;3K?g_ZkWN&NJBAgN2IBrO5S7JBNjhzAlDc zmL3bF^FuUSM=a(G+w^Oi^@JMIawfYQIy9+pP{MN9L~7T_%mQQxl%b6VhC+e%D9F4y z!R~>?o!G>O34!~_f%E}dTV%h`h##L5etaLzA@y$9IC8DbhadI(F;ZsjO=a~=5~;$2y=DBCJAu*ROHEd34#47Ce{ZmcP&++`m%P=HaUYfI{Gn*^w`t@ z8{Mk%tKkSczZ0b|s4Hnj*H(*+u~hNl6~blc?ZKD!iL`1n#dpD zc@P)~+t5t9(|Q(vufWPcVRQ|h{@$)T!bT4%chRba{eCy-Q<4LznYObK*G#K*sU!GD z8!RCOY)7{cLcR&IPQv<3W^7t+(JXojGQTEZ=G`g#QU;*pKW?-_45g=xP-varQF zL8j*_2cRa>Ez_Q|l2K#7873X3 z#D4sS=STefZ0n2d-qs%|_xo#XyR37%uy15Q*}BeST4R?Vzwf&sEX>Qi$^6yp=E~h+ z6GpMt7g})_>p9w-#}Cf9gul<8y!TV-=Co-%6VfUVot|RaID6SivDx$ISGG@?!uj(h zBU6~$7vQGw;tlembm>!#aH~Y}&2!l5Xn*|5te>yMO_%es>Hq7s7KMx_Ezpo$EVETc zW+zC;f~0k$eqB&{RqX4e+h_i9TkB;xtTC1x8Q?D?&Yv82-v{@6&cpQmv~_w<8lGSn z21n`G__K~Q79NY&vK7@<%nqOV>wcy(2REJgy8j=;_kP+q_UUI&rnxQNW4Cnm>b?^L z=E}*Z8Z&=B-=A&=4R?x>_30vv!+P0$RTzg6T;`Zq&A4!O-SdX; z@k-&5<#5dW>UqJjL*|8!4>@Ub>Lk}ip;W%cp1$TDixEdheE+CXh7GXOl2M}-%=D3- zm4ce-yFd&O+pcExZZ%oOP2hJEV?9zdG?-xTuW8+uEDCiQI{`GXwT2lwa+ux zbfyL#Zx^<_UPVsu3sbpvCD_`Keobxwa_xdDq9hCIaX*{G+K`WCm>&ezL~*S81!1FJ zB#+|6bg0-Y-5Z`QA~G0%_4khStAN8|v+XQpUC`A5Om__VkJ<$kC$3t~#)hSA16!J}_eE|-3tJ8ZsqJAHJme3$i#olo5}IrxK4e)%#X zQhd@zrXSONCQqWPjP@sx#TP)1M5FZfig@tGG77)}QgR*UVgw`znp2B-n(N)ZI?*~B zAVy}u0v=gc>aJep<=n4c&CGehTwuJt>w&ZP zn2JNIds-TDAG~?hZ0?ON7n}7Y^|>~oCpVv;l^RjGc+sNWxQ=at22@5vw=kcWEXmuR z;R{B$9J#x)NF6s(_Tb>%_WGW(3@#_xJNb()yN85sA3M43W^se^#c7qd8Q+Q7Zq?rV z@Z-nG>v|1!#ou4!`%QDX?)6u4`S}k~ZkDXh4Tf)|0@{TDn}Da|rnv{kQeu5@plgYz zz;0W+=k*6TMrLWKmexss&zJQVupD;#$ba+bEj+6kqV2PxV}9fbRTo$u+>(XaGA*nj+Zy4g~(kZsI~-KbSGNmG<)(-Cce z&h}g&>0!#P530h*rVpkibMD4e=~2?nRVAIB8=SpO5_)p)S?e~oHrRF4I)|L=7n4un zF*I0qPA)p`Z3LGivqXY0H-S zZ@Z|lZSuV54I}=YT11M(U*x~!VhcsZ`i?!S%op|a6b}SJ?}`J3#wl%uUGDpc$wT*4 z@}ZSTCV^ULPoEOG?6aPGz3`?G6+&+Y~O52NQ=PkNu8D}~t zgY0(T(sRhL24i9a@rRTZ;o9(ngv0MBqB&efJSkS$(skob4TZ}|+~{|lzyL|>%858< zxPM}sUYCrz&rRD9(J|*hVQLMw>yw3@*#p~o{IPSMS~Y%$wUt9Yqtc-B*s>CTtkU`d zGX~0%I^UkwAg{3PN=!oJ0${f(JFYE!RngM4aG?-*j-@h}90kgMOAyIXm9LjAvd=iQ zd0B$wy*Mk!@`C!O|3ELFkEuM^c%aMLT4#P;iNJ0Y?!Py&kLy%9nsxyn``Z(lHfD|O zx;O+QG2j3ji^e?Nb9rgL-hn?rBGb_MvBpdJW$%iGzAI~5I$@3AQuDYU$m%<++?b>z z<|aI348B*MJ(hw~#%+9My7?~`eSoj;&@oYmy_|QrRL_yoG{W*1E*j-De`uaQJ>`VT zDn7}Z;V&QcAy_2X6V?pgylLa7;U0AmDmf%g^V;3n2M{v)SLsNRAMPX8d6f07_}^}% zqRp~mZF_{^yq7NC3_`We8R>J93^H}<1S43FYjVZmX^NLk%8?Y zZVC5YntE?*jMmRNw`|I|Nbyk{$NfMfe;BUY`vT;J9k>!Cl^l$k1r#g2FRtb-kM&jU z4yzP3=x-fhcPbxWmUc$oj@LbsWuPX#HKn%gOI-fpUTxv@BPz}*J*h|N(M+|>BEuTEy^Vs;*;UlQPOF&X)H==j9I z;9BEKDY>VrcYao3g@uy;jPdUXox@)kjJn8*`z}J)HBYSzVU@g49;joKS={?xd^&g)N0Wa{^-=NHDa*@oUa zWw!GB-)}CnaUP52{jGkp)GCLY{0|IPKk}_zr+-v8#*x;Pn_`~ zx+gwyuu1z<;120e8TcDvJmxdon1vj|!ZJwP^bG5ME7@y}hV}4DOz@$@bu|-JTd*YGvrau2##g zJ&vO#JTrbx56{WZLomH(pUQZqARJgRLELbv=CWYd*&079qgbHDS?i%Ih|%yQ8*o2; z`DnDC-x9n2*|kD$^@HI#S?9_^_Tg3qQ`cGf%ze)@r=WHDPtjj4?3kP+aGdKwY0pZp z|D5;AR7L^JFMs-K<-S<}mcPwR{r-zPhsoH~p#S`HvNs8P%bHnbuY5{uW*)pNQSC4Fk$4c$iuwvqzzgN5f$Rg=2AJqL3fKJG#FJN={j z{h3?9_SwrWT{Tyh}5={tWzo!@Yg$)GL> zVH3_o6ZKo(6cx*CT*#t1X-J-FauEMHy^LcnRc9^7f*)y1xowM_1dQutzc2X{4@x(& zrOz2!P%rMJ9NE3=(=;zYhg0J&TwYf7TkAd9W!UBSef#70JD{^U8P}NculO21YQ878 z-HhbMXcvDL$*}*x4loHnk8%GQxyLT{zASt9PkMsiWzJ}@Gy(EH%U8@}3_dbFECo@& z_oFp<%NHV1#GUFFjkja$C|LEd0?9=l|?OON6_Ddrmfa+d6s zy-s)T)ciiOe@bjj&7(bQo+j2-1n4~e&(JT$NbCBUZBzD^v~_=G8@cf8Aci~d3gP+UjArJasdxAw0jgpOx!NHzNRa+v6*I0Uy=~I}f-}p7lMTw78lSRF z962K4x9JuA;~k{TMskzFp&z)Bn9D0-H@aM`mX7IALpx zyFJT*BM#yH((W{vOV>%1jzcoTC_<3chtW&4STDnXRd_P3-(lFI^GWl(Qly7wRYoBQ zlz27G%k+u$nV-`4Ez}igFEO7 zyPP+lXTG*uMy1jJu#PI5%(+*rKXxiF?XtknAoDoZHDgZtxZ#F*od=5TwC~w9-dHO3 zSEcn?0D$)OGTgC@LkggkLA3OuopG>n?Z!@%{^k%OZ)64Hydi4UKs^Ri#zU?Xocyv8 z?tpjaGo>dFNn;QLoa8%a#EoWUhJwQo2}Xr9fE}dMd!NCuMdCFbBkcXzi9Ns!mpM*?#U8ILcs}kgQG7@~`>x2KZ=v zUwt)i1I*y-$w@(*f$6LUXL3c*#x(5byaA7j@5&=@4qN8qk*evV;YWahxwW+NlztZt_0}4bRwT@P-LH zT(6$?0EbrX#I{88mh%Y|<5&(g9OT51A`?f?ragdU{`0`rNZK6%f1i>1WXUf>#w0m( z+&T~0eFrZe3Fq5i{i_e>TX831@&XZV8CZCCJd|{Fbj$-;91kKo#%$#s&Nz(FLsCA^Gh!;QqcrIJYZ;Y2 zEo&4YDV>hsbhoy0IC${j%yFH_r8DQxUzU7LLBUx*x~MF%AkFdkgt)jW1`V86yS?Y+ zshh_`J}wb0Fs^!^C~0RJbeq16DYy~tc~!K!J-z?OPa8}6OU6bqm{f4cuvgK^MhX|L z3m$%XRaVjRbTL<5N#-OD&&EZ!M_YS(|Hy^YQalnYJ=QuHeezn1J=#9Bg$@==vWvCC zWK;`Jm~%#@BD@}SMz*wNip3?H^E_c;3+pYa+ZRt+Qm6StMX59Zt_Z?|W;!g0`OLQ2 zV{6Yw2YJ{lJPM@N-^!94&;Cz-AN1WUaD5r|2X4^;Xygy2eE?jJV$P+N@K|QyJhq3l zA0Q74>#~yPmtS==)<+ z>*DfOcz?7&?9*nQn@&znnui=$4M_(?rEnCaKVZo!6BwkhkKOLji|;y0r-ovva$y68 zTXYj014U;=W3%5q9B3xv4DD)BA(HCbke(*0c(x4jLPE;-eDJg=J?R?I+e@P;6Vze>Hn%lGTr$xlt^2S5fSFEE`@ zgfnz<;3kHTt*4}G7QZSI?Pe|7(KY@B`PZ=bFpvCNa53n>FoUz`F3^!zuxZeF=={f( zz764LGRoYxYXmaQx#8^m0Or0Z@hf6C@7!7FnCy#F`ZDV8b8N%2T<3=WJceO9_|E7W ze2Y3aW4cj0>nZz`=AOSk#dK_mFJ$}2EGJ!c;n_OFB_la+apGhI>);>8FG)bhH^$Z^dvtEKZ$6Uz*0~OGnS2HyVOr;jeD(4^9jY&%f6n8!VmfzDly%<2LfYC1nSr$2D{C~pb8P=U!+S2rk zzaJZHGhBO1H5p2=Xs_*Wgihk{K?1GO>3D43prhuG13=e1c(C)?f&YP>LxONT@7T6y z%DB$oruWky?_gbg$@Z1=8NZx^JR<**C?rxgj(UOL8}~g2h9l*mVw6vJ;0Qa(wSKU9 zHg%ddJbQ;_ReZ#utWmb$0yO8}+QL7y+jxBigEWhbL}&7o9IkKNm~>gpZN*TWL>YYS z+G#mIIg;hqJk4YC|LKEx#VJlQYsL0tgBdh-|3{QHPS66|U89Kl2o3~qOQHqiy@&^HSNk4TD*giSheuK=AMO+`8}JsuFT#0QA96Zupxv z@CRxX6#d}yHd~CE2;KiT=I0N&gefKb*sb>t@N|7&z9m)51Zn^-2C9+t7U~=#)wQl>-d8(_;Y$0(xVNpz^(IuBG8+)=0#;$o;_S<-$zKj zhhrGM3&ahB%S+Q$DWNv#7jb!JSYDCQI{lpWW)=(?Gz}Zb3^KYg4Xl~49K)?L6tDduGXIa$ zn`ryb+5G{P!uVFq8_Z!{k;2(F`Fk}|lc|1XmmWBva3s2Kz^ zmv}bUgYYl;MJ)c&YlqooDrai=sq{d~7|Iky{zgF^V+=mpQfzH4|K&W(`m>_I7=H*w zS5Grv9f=;}w-WOwd?0@dmF}YYPrcE57&?+zu4dIw)Ak|1uSZY)kMb~V4JA!~HngWP z!LGqU&wiw+KLjykx$Toz5@S{S8^5JBmfc~)P-b-SR=fg3kBs;&3!E69h5gQgpW%eA z{huRyVd_r#WPCRg9G!u&i!w6JU{XzjtTHCNJ>$}<`6^T@``E)G4me= zhg9t1D_5_Q=I3;4&TkUIlm70>nzM%Vd`)~K8CV$v$9Fg~NS*%40!o0k@+XM;fiwQV z(lhY;C8>S}bMQUW|LL;e6n@n9wBJ-F4ut%0P}ZrEQ7%b=8N};<5RF_d9_;V)`w5?Z z#_gY5lSuw~lh6MTmh2PXE!htaMAiMSd;P?K|HbF9#O{hl&&Y(@by;i?=THCbW1juN z%(o)n(M2=J$ePDkZrepxwMG0v``NCJ>ALD-`lqXr6cQoXcs|@$&spgC`ZP_^%8VpV zv1E(v7G3EyLB(~pH!m*tEW;j~3%hBTE}CLGexEiLfB}6<8*S<6T5PDp*6~{_4$(<| z`1K_8OTePB;|NFDwTZC_Q`U`SSfb@-1WMklkr!3)a|(Wx#G&BVNunZu}noNGA#sutU| z>3l?PI(9k}Tfc%p7SP5!?B3Y+(6unmDgqlXm(Uqzw2!y(st-0HR@1(GoDg*n9OKu5 z@UxePs5rrr6VklRs`@E7mC|d3R-OrNKttd!Qj(tb1wjOBO8}cPhII97d2tUmUKj>nQ}k z%GNgD&G3_*S;xU4)7-tbyG|D-QB(l#r(u^c?r;NJ(3TWB?>`qir6vXE;Z#XZnQok6 z2DS@(26siCI6%LX%NcfBf3zf^GU%X53!z4_p>!AB!ko1yIMSpxoy?fcCBL-8YcyMM z-gjsttIJo+qcwW@sk(d&9&2){@%T*qrkY3C9Rq*1w2Ldq-|KK^dx3_nfk8YMo@#KS zG|#l%4%=A%AKu;soXYikA6KVNQm0bVWGHcPq&SFq#^^q+S)3|wb+T`iq4YwcKLivXQ+`0iYcIpbAY$nYSl3>Gt(QV9C#qe!|c;RPT04(4KpDX=6znDL?8DPAG=GwKc z0A>&X0qbHU7jdXJb}nJa&l)~UnpJ|3{iU=qsBn#s3?D}5R?GP}q~|GlB$tf-{I6M4 zo#Yv3=S?$5E)Fza5+BZ|ETH#B}}Z0hWIx}+A$ zw69LXP>AT9B+mj_o@IE_VxpqTSeI`ak5V0Co8XU*!*(4N>=jsEoe^}tuqn+Ji|8U2 zQMkUY6rke^3RqmN5Lc`s6+9>ir59DfGhj1~fI(&y1Esa0I_m`M)-4X_;5Iuh$i8_? zN@R(#V-_SN@UfYc&Ib#fQCAxj2 zUQ1MVG;touJYVFVT;tL4^cX(Hn1+xu+ij=-bU~7k z6eK367E6br+2kEG$9)Jl9Hp4rXt16(iQ>-NfZRlhgSUg4ggKb>6@j( zvuAY6`J7LfBJ5e{F^S*qOXce?N$G#-+f~+`-YPI9+T_d9`=8umKivpDJg;(2v;_w9*6vhiA2EEojK#g)Mt8ftP_81SdYb$qISqI+hC<7a z8>$8pirG4txVMzytNR=${URNWlptu6S7TW5RZ|lbWv>fXp^FB(e@j;8#Ral6hUU?u zSIitm7M%pCBQ|ZONe0y!7z)s#?=UOSigf}%qre?i>+B%mb(dXY*hn8Hn)fc#`$6!g zZ#6H-sud0-XaVK->!i<%xxo<)S4j&7N+VC=G4W19^OBF#D5T&45kngca15My3+ln! zMn|8t5Ilo0Rky1n7h2Ak5ZH)LGtb%A>sWO$U)htUCk7zaTU%TItA2V4+U+E>h(=dw zW@Xw|novsj?>iOAFK$%qv>pY!3(ayugq4g=XBFn^A#jq-Ko{}5!RsvTumT)^XPa&3 zYSW6ezx=qN1AQo8A}J|}PL1@Y`*^Q&f+RZ7#83}C-G^=l884vWrXLo+Enj@dMV3fo zPbgvJ9pVb-%hGom7?1}fkDlS;ZUI8cD)*un+SqBKY&cT9ZoB;P=lIZ=36Gv*2LTP5 zXBAA&J`Q=i18F{z)1}OA;-5nx>#-jb9VBu}Cr#0aLXz0TJrjYDHMsS-mk?m3wkpI% zB(OU+V98`av;lu}n8s6KcB@^#^rO(wtJN7%s(|PH(5iJmx$S28+u;zWo#+;}2nQ91 zggwoFC@3PhxD@(-qvf3HsT~bRAgH!4v=^(AO`-mRIx!0@c;L^jqRaJ zc^z(EecSx>{Vbo%2`CXDvV}vjh2jAXXyX7wC=96yd!j}w6Y5?WN7rD44kgHWeXyAPC5>7Z5ps)uN zX+DE29S)6uF|@yi6t(mzoiZeEM!F1ScY=0fiZKs`W@=|4H4R5^jD+!y9lvSFCH!>8 zF0HS7Xb3f_prWU(96UdAwe8m+43GHPG@iViBSq0C}&_grV@u&ZzjHh?El zA&?)7r8GmmOwNDJuJJ?2FsL|9u30pGA!$5sd3P6=4On^2#;XiRfyF;Ai}P>jntrnD zu&y6BVh8$zqN1+IHwbLp(SVM%GR8nFE-vtJ#A?&y&!(7_tYgPcZ#kEIp|2CxrN%s3H6!n9!c3ND+sl&1(n<#Wurwdq*?mm$E`JEUm=)2V zKP^*tpV@8P7yYU1;3kh8)27;`=j1i}w#Lu;dudvk$IPt{WESzZ@@rP*+*g^iakk<` z=_A|y1*?2a)84x5n8lxw=>{snSK1_?^(-f?K;WZoy6hu5^17uMKmWGaY-EpItK6A!!I`6i3GTlm^9g}pP9s5YhqBE zc+peb&Uk3oXA2DpG>}bbgk5jC?_aFen#5VeL4d)y9YvvSP%qhKWrchd%RGc!J0Yg0 zAm`3OcPn7VBnO4LwJ(cc%mb5+y@%9`*mqDmJ-+u=67TadR?_#g!i(Ar{2ks;dA>?12er^2{e zlpLh+jZrn5Pt9e!PR>UYf;na2O{3BizYkzgb?V}U{`6Li&6*vbYPe)bP-;ATMPZx_ zvO!Wa*?4!$5{i7D?{BP|L81>(YD60H9woeq#ogHBBiPt4Dt607oCH9!;0Yc6%-Jqu z?;%Tb3Q%&%uQ&%ugP-&;h_wYG1k*vCrg=%fhSGh|AYe%lcyOB`jT}|?&!=IqWg_AS z1|5DXJB4FW)Lr)TgUBA_YSd^H7$P)HmK&p3Cy^wc((eq6VaVGsexw8s-ZPV-9HELs zKN||4WJ~l&`rRT|=&B1}P;b#LYRt?)z3O%ZqoQ}vXIeHyMiN93%rAEa_(=2 z0$vn^6`-QR!6gw9e-yijNJ1m~^l(4PwF@cc-VWR8?lL@$haDWx?ZGju4uZM!L=-|^ z!ZJNAS(oLaY~=i*dudG)Jo@trZ8?Wdr7%N1Igpa!4-!jnL6XOSsME@?70^}MXkubQ ziIJ9n)2Qw_k-Jwt?KIU*h^zz5T6@x}xCp(KwwY>e72`6Nt+J)r-# zbRRFtG+V{epz;Z3Ium|z_VT-^*E3@M315Ls2WNM5i3B8Z*WK`MLRhqdVFDNXh$d5~ za@MN^jr>-K@Ku83M@nyk%A^GH_u5O>h&T&1o5$E0rYMi@wcL=O;6&q-_VUtAouQP) z4}d@kZITc)VJ0**KkBtq2WP-WIx1gSW;KMsJFB#2>fNDtm?8-YtaKDoA^>vPR-U() z=be#PI6RJd4iG;|XpWPMOBS@;NgY`^6GARzM@p7V)6!~?tw079`Of?V$9){EP))Ux z(qIph091Xsa)+_Ui2eC417YGzbE9V(9nE!&T!1zN&Upr*P`r&&$0tLs+|^igM~oc|mko(z z*d0DEaa3NQ<6+V{x$w>XIon|_8GV||ads{i@}gEqKQ#93&>0xxO15)jr(5|>4g6OrsZgJ7||0(brxR)svPRZ*&dS_ZY} zBPV?vGI7&NT%2hagW{?`FF|Tff4T+MC9~7TJdf2LLFxV>ln9m_{=5}g?j|s@S|JQp z3IE%T@N6V<7*&I;Z~NzIBTTmAH^`XOA^gH@3pTc5lf;HeVt8%dEKwT)*lar^ISPHUF5l7Tlze##QB*J3{j~+eJm1`_XCLhu%ihKTG z6*^3=;Rmh0I17`eGwCi$Av7-33kZj*Qf_=22Fm|=IYrF9kXadBd@U%pw=-Ly{n@{+ z+2=njsc7Ra`NC1&Jrl1W!A{NQiFQ+WeH9pcTsk-KoQ=ZMP8VI71&_fIwmw~;V~2Qs`Ke} z7r=)*AI(^$`=Zi*D?B3WUC5A_w{YNrSg}cSdy~Fne#j{J!TtD=JF|y2rEfk;-K#cd^gnK z!bAz%E2?GPbsdxVQ_~shm5%a8C9g{pOdfui*2{R1UHrOQ=CV=7t(~bBZX1O+d2-b_ z%f2;o(64{5`=<8sqOD6i`qX$=zFg4TYQD?-j^DXiyLbYHQ|x*^ZGwou`&N6yc zdh>i}Lv$$rFdf-LvQ3pajo4)!!%r{F-_v%eY~J)e$6Wp1F{GLgy#Cy}htd0Wm$6k; zSY3F7``ExHAFHs?CrX;J(NNrw_bn}b&~pG_nA<#;MPpF-TeeQ3fQB=KEIA-JdKWpt zY|%R7`gR7{ln^wy0RmQA`KoeRHbNwiK(cpDw^UElf!1On4vArsRedERxY#=b3f|4$ zBhv&FL!`&B-P-v1`EAXP+iS~Z@B5X%mWZnDF7;Yg zC3`(&w{cj4jI82LncZI&3Qy9OWMo$f2Q)n=fsn>8DJOTP`HPRq%pCp=I7zG=4MBvB z$P}O$jNwK;vHkNbQrr>&66&!seBrSnYkPGpOkYLS3H0V8%6>A$#br`Dk0=W@v;@+#gI$%NV|L{$G5;^IBb#=` z8V*k$EpqN|1ApS>xfnH`s5pVr?@F*yFq)b%$&E)c0K&S4oy}w=jbt-5nKSnVD{zKK z8~Vt8a4o{D4Da;P#)o=o| zAlID@Ig9gwqgVJ_-(Ej|R`|cxYm}6gwRWg$5D#|#y)WXutG<2aYh|OC;<2@Q$GM<83hb0&p-}F7SceFT2*FRcG<~#NAj6+}`uf>~# zaeWiVY6!5ZI}jsZJK^7=RqsJ;vOg|-C-TSR(O+f+YhBK zZi0}Z+Q@8!kZTttjmfRzD5)Mo>KIMYiG{qA{vHyX!R9{q2b@4i1RJ`XH^$00GkVBX zmqdkm^g@I=+#K7RdQPFl`PRi}wn$UnATbMu>L%ICc?MyZkS+G(5;tiw+ zjgHP^vs=*Ao7{a2?i>$blru$f7ypn04|L^M_Q=$!5O{|kKp1?PR6GF(3yRjQyGAKD zj=e+U8eO^G`d^Fw_d7>Gdp%HlGO0jSNgz_0gd6Z4{)PK4UB;cA@4sg6_#y8lqqf-Y z!Q@xL^ihy*e?W1G8l|PLuHcx(#@(O$8q-q+?cZ^0C z?T4nFkD2C3U@7HMiUcLn;8nmBBghTHR(`?@jik*IJiziDzqDEK{3Q4^Z;RF)Ee(6N zs|%lxOPe`DWoAXs2J#fdCoN}mK#KhV#x|f~9+A_2nf*XZ@sX(Pl?q;iR*gVvBgY~% z41A4WP9rm?`}gm+ApN?D5vSW5Lfo=fE^^s9SS@e4>Qh;6cKeByAMajeHtf&?A8Ff7 zQkYaw0*ZKPxeLMZsq-v!C}F6V($j!ijcLXQ7e^VM$rL(^_Rg6we02_N!yw`7$tc7@ zPOku{qggN8nCI@+7)^Ks30b+W%9$rUp=kY1^hv(addvl%^MpSl@pV*EmcUUZ%)yJM zn&z8SSboV9c99jp>#2WLOJ{REMdg$>!{D*{XdurJv;!{T(EeZzuE9IJ0cL&(aU&$T5n%DiHE zT-yiz&OhvLem!<(xB)1H&k5FLeQN*#l5#G$onLvX` zH!?Ulcy(Rxq#cY~+wKc|G8NI?^hU8kE-UhWYma?sWx=d7LZY{J=~jM81X|AAi%JfX zd}=(bUfk;`Ub9J$dz>S&7eptplMw|pujXag{QZ2}6A4a5Wx1*#jts^#-m!`S=G#Q# zl>}>BCrrR35tHfZw(3$zapJRxpQY}K_{KOWjAknJ;)b^Xp8JPq+ySUc0wwhoBo{Lh z5l22Q~9(p1(VdtvVv*}Rx}7S_P2 zuy8NHkw`>YswOnD1)zw9Wa1=E37@x&uTwcWM%wjk9;u!@tiAsu2+fgzonN!~1XNZU z)22-$Z96i&P!bG)J}mC;Iw=4*N1+^SwRp=6mh09YLh1RZ!_X_-izY7`ihJvm$MZ;B zqkej&oN8D0hus=8MMY=%844&Vi&p&f#QhkgRBPFL978X{r;#NhA7SwALZuuws3_iVwoq_v ze}wH<5yP921iBR<%_X~DowMf004@pmV!W#2*{j+i3!j#Y10{}dE-a4;1+j_FWyRTa zkJPpz+o9RJfP~)GaI(%cdpXTeL`+OoH|k&pkkGq*jD$Y&ZCV!YNbDuH(WghQc)F7! zov!OAkI17dLFi1LZLd2(2`-mQh^fAPrv;jfRV1|ww5G`#T;RWWr8Xj~YujtK^vIB# zG8}sclncpva}D6ufH6d{L!Q@fIEZ<96&1;F#}gvgzX`R@Z|yvbm`U{+nHa*JJj%Q_ zXO^-Qpjd)4@8FdAJnkKv+t2E%!`iiRloi!Rrl&=}n~Z3M+!o_rdQf1rC&2Id@v;xI zy@age(1`4hdDqG!(3iQ1rm&Ul*uV~}pZWTalIWV}p{sVCpMm&f1_QHdtl>GdP}-Om zKL3)CbKMLADO$kNG@sx8x&dnNS0Ix?K&HM7R7bzKo_( zSpD%84ini&eTN>^uvxI<8LN4TQ_ck<8bt|yMuHv9@>>&X_D^QXSY z5b7;5-Xwsr;o2KE|Mc{{KWCsF6vsC_;G4q6^MKUUwMaoSYIasI+K%5wC&!q}S?NieVbu|lfYf&$ch~SLn+PhVY4oM#o=JJ#6K(o_ zXVuLV9_7o|m16xDCbs?MJrF|PRP)T^4vQ(DUSOQei>-VSLVjhfN7jD%^&DeHe{`H0 zS|@O{sP0iZaEzzp==C%W3C~FFW4oTst!N7D<8_nZSk1Fq!0o=BUg{V{xBR6(6$y5_ zm1CsU{6;QMHg?;R$f)bH(@RU~IVQpL@%3a+uW7DI34UuU8Lj+s%93{58`^uKc=tVR z*zmOBd|}1;LSdm!nhN)vCVU4r_4%|K0S`HTs|-{;46WB{Tv%TyL7J`81fYLaDM z*19Wzo}$Xm3*_{+8FFMIH{sfWNFV%IPdQD{^<~?Jnq$ES>Obiza+g|rHe{cc^tY8B zqu$k;FH@1NYNN?}%(aWA$3+c|8!Br$O&Uzqt)gywsb}6TnEp=@ z!zd#i*WXoW+4t6at8kdY3H}*c1NZq-diNgmG-CQb!{5N(^q}0f`k~AF80UHilssM? zNgU8+$05hX=*q~kedEDp9F%3dIjz+uX+_M5jSsCAmi*&;sbpp2=@$nFDd&l=v5SNb zLAc{~K30o;HIXLm-j3xto&7^!MdcK$9VX5Xuc6PNZzp28G2HWXF|zSHAKtjG?vunMKjHsfLIX8t;Tgx+B?AX zt?)aJNNgt~Z5o8Nf?F3I{oWmI`a>6AgTT{Zkg}Fj#e^g5)*=51dFqm*n`9;_2u>Wl z^A!csZ8Ed6a6(Oh$$@11eH!(h7yI=jS=Hi#%VK)bE~TL5-C?|N;ljlxrAp+6Kn~kD zli(D(u)wChfE*PUTeVag6lN3lg45f}Vk}D4U!!}s{&+T#F^FwM4HV%?>pNB9-`5>N zZ8@^Z;&TlRRmz|8D%5$Ez?oG7`s4r5_=b_}c!rZ8j9Hi#+C{8FKE8v<#=N6sd=SczJW_O`{!xkB!k*2QtQI>@ zGR;R5yA`=Y781B7n^=&8-@JN7y|`9*I>#lp`%ieH9+7l&8UUZ&T}g|&|NS;-yHBc6~Kn#^ghWiKwqYqP|IRVg~rIdhV~qSY0XC4j|R!9D!m}_^x)u3iJ+N9rLA2hgT`kpu3Af zPC(l9c$K@y(Cx@AX(z|VEt1O z03+^anzAnesgy~m*_*aN|Na)95|NfY+9PZj=45JvlyE%~eU&9{lSU5N;y$Owa1~RB zm6Qxhp#!EL4T>U}`hjq@F(6sV;qEdUTmNp`UcP51y}V5H#}Ct3@uSkx-$9BYU_9Og zoP!hFHr~Auj%-9{C36~bY5^cNuW@HkNQkN@oxnxO8#ZjXaQU)MW!;P7dxxIXEu}U& zFiP>p5`J~TiLY(Cw}1T_UYI90@{|t79K9jzU~V1-7IAm)iTja}WzEX=3ZBo44@#za z7)1(r+!OF{f;SIP?iJVHg}0Z9Oik5PQL$9cgw8Hxta13JZsVW5TCUJzO4@Myr{V6L zkcvpL8CzAEY>K)dR7o)Oh(svz6iGKOj*+JBs)~M!osVQgV%;xFq>D}+OLiiQ7G8bG%lS@anzH#L6*q5WFk=va)Qu%I{FKjQ8;sI2(sy1$Z=fmNC-ywYSk77K}1m=p= zn)q|<)N6p1NR@#6ADXus!l{n-AsCTo9!{=|aEtbZ{?F>UnQB*;uG?nac$ysT@X;p9 z_c|wQ2-v;NU7;x55znk)GseZw8x~EMus+V}C?+XFaU&VV3n|LH-GEj=6{})q3;sh%q!E zB--BR-V?2>$S-{I*^8KV|MteF`~WWZro5e8Z88R}J{)$jGSMPQfj&9uRh8aJ#|-3! zU3||p`{1V$7KSA$g%(;&_03Nanq-_@OyMLL=R-m?rf~ zMy#A3x&yGr3b^64q6t|8`lHy#){AHgFG`aLM6_VfqwvNnnYZX#?KkxXW(p<(id!}) zm6ON*Ii?`2u%Z0`5T-8F&Y?h~FIM&*$PN?7S&Wrm!O*s{dW<83qhNF?IJcXylu0p0 z7TuXnIa}DRDR~0R(Ww+DasHR(q1p|PlWcO=#c@)JT6s>>V~DK3Lu?90%$cbc_y?6n z2a|H+BLNN$nq{QHorq~hHua<^4~=bcoQfqGG=vW zz7mTDe}iGDv@{-zyB`q<_*P2*uS!1vl0$as>+`MP6H}n~3_|%1iT8hmgo58$TGFzP z6Aln0%TW)(B}Sh%!XoET?Vo&qunPD*$vAocVJc&!yvWxV3v>gG;2Q+>tA&niUcC zfAM+QiI5f75B4;v-nhfCXuld~Reau8s_s}>z~bALUA-6A`WkCW78G2avg^&`9)_KV zU{C$AO|rbB@&}gh#=BQ;m+tE2TcmON1t;u4L=L$p|5TKG4cPr~|K!Q+_f)6X7A@0a zTL2WmTu?Z~0`o|tzbRO;#_lX!qeGVKJkP%Ky-3?4;5VceO%|0skv!4he4$gIlHiwC zkqINQp02NdRkLFz#{g(GdO`Aw(L-}g0K5~9%lTV(>$s1G9emBKnJV8fA{G!DN{^>I zM@JkfS3Os8nXTLQ?;irLml!kshM+Y7IKN&x&(2VnR5OrCA92pt7kI(#kdhO}f1m|U z!b5U7gi-p`=Wrm_I$2f~39CB>W zh_89e?ie|!lKk{6e^g`QPfzQb5W$Zpk{7Pv6yMr@%0z#KiC6nbp=1v?8%xoOlC*IC zzRvaY`Bsjk1w>ze-cw+=n6rp0BQxAqroPoDuiT{3u={Qmk* zY@XtgmIwn*{2uvIeyn0||KKSk1hYLMFphyqkKaf{iHV2&VF}wdA@!49 z$X~2h7=A5Jy%Ttf>n|DD*N9}1FHS>lw|>NTA0xJj>{uV!IR;$2mF8P$KPv*PVJ|X( z^GL*safN&R+@?RuCIEcAOsgYF6!_PwRo1l ziYxoNWq7Sz62eSSkXQ3yKt|eCfaOMITR%MZ(?BNyc$JfI{4a9ehm2Lm7d;%2V}o5( z$Npy|*VsMim8|+M$Scn3F#;CH?{w^(LO`aZWbS_k7&e87PK%X7iw5FW&?*+&dHAdo zIi@^OxeEoPrSpEgWH9eqR?s|_(#&xkE_`A+|9t$`+8ljtF{@~$P}?a{SIChdUo;4? z9#<~M;_)CzO*jsG^3S{Mo0_!hz^D(o8yIM4@b?#zKf!Ovg? ztEh@zltL|qh~oKqKTL7{hxcyWLh}O5p8W6Ld#8)WB2Ukbh#xvTEMrc*3tOV!i>10+ zs|2v-2Z6FIgDyUlMA68FV#p!};n)9DoZ8O#q23Sfp|L;U#!t`Ms#z}qHZO(YK22BV53JS) zt7IBmf0kQ6;<-?67WXG?e`t2I7O3HXBP^Zdjt9`kV>Vi`y4GSPtg1isJ zZQ5|;j2(RBuuPZ=SNCTcgLg2?K575Cu3!6IxPtZZ%#5vTG&S!JS{Bm3OEMK|CA&Ad zPxesC8GIJ}?(HqaIrXK#(9LtaY_0RH-Se9qQ(x7gAf#Ik5L&pRy@-<99>$;Gg7(t_ zSg)r3XfN?2hiT zYd95I)pml{LR)M;#eNwXyz%yJ1(n;=_04W&ucWe+`DOeZ)kC&Sj)7T4h}h9BHDM|> zk}GsZ*=m;0lYiOLh^Oy{ZYPj{LEu^45sM96iJU`HNURr&x2Fn1PL8tE=)4`G_T6GsFd~ga6wTqn{d2Nd85<7B`d^I z#!YXeCjI1&xy@shtDmj4ZVCHN&x#x+gfQzcs4TsgB*G$lrgW_QS^Wml$+vHIHXL@! zDFhV{kDVl{AS;(!6OBC1Ys`m_-L^NS5Uq=ju9^=qJSVC39l9))EkonbK(6t}0=;#6EtPw`ce6eK5}@ zy$H-p%_NSsw0Z424C6ciw=oV~{r%`5@<5-K)k2)v#^Y!d<@#%jaD#u&RoUZFU?p9n zNjm_Zo=q4$vCz2M~)v|#7UN7J``LzVAoYQ9l!5=B~LVsal`44}z& z1=Gc@)z%*DwAP$?F6fAauG?%NnxYd&i%oPE0fEb{M1+f@$7-7!wncD|*G0kLkcQ3Z z^5chkx~7UYbq1{$2~wE(wPvRSMtV*7S4wp?^57rE@CrQR#3Utk+-9F%@oXFayb4P% z_dL@#3=8LGAE*_GBou}O2}-9!`r?aBNNVcX(=T#WR5&hKs&PwCZkObhOuNBz)JL50 z?FU?4Pc?PgN~dkHpntEB-RkDn5JoutBZ2 z?e&v%lciT?8T(9JqMcwHM-vXbG8XH}Y0aNzdiPa{)zl$(~8@LomYw%jg!x1OQZwZqj}0E5yrsjl4@gc2Wjg>klFJHcl zma1Ar{Q=j;0U2Q^v%DSGq+Sfii75DG2Uf_PQ zf;-s4tB^17UIpi!ij5s5WihKo`N|S))fA)W#7|=MgX%51DL#z3jC9e2L`${PyoLn< z=eZgxHeM;Ib?)_1dGXwo!|{cuWpfZV^H{0c!P$4YTtqh9pKbbj+O2w8vrXr@ ztP&vWVvNwf$8i6O!{~W6RKx3YJ#PJy<88GI<0M3YFZ~dj!qC&Bs#ZnV%C4>-OQp!E=?M(z0MY2YJRq_DdG-kVPjT}L^>K;!^8@4ut*~SpZ#Rk}jMI}1u?c7RBx&HeZVPWKnLSptCjY?=}a&(-T9C0#} zqeUpssX`ybrpwvE>N=Peu|tA+V`phey46}}+6*d+f0MpD$@**0T>QMjuxa;q0b!QF z2I}QRzmiuw{KY5Tk2H-sq}2KYK>RI4OapUPq@O#{&nYf`$N{~ ztM!y&PO`v?XY>3*pkf8p+J^rCBiUx!N}QU|j|lxIXiNYOoi)$eez=hRuBu{NfABxK z#mwr^H7IB>BMnS9RuDWBv+KCS2RP{7&*{-`ItN<>V$Boj=8gMNW&ak;Ma@qHr5=6v z;Tq?BQrmv`8?jzZIMwm=Rzb;UfaJ{rxnTm=qrbjLb(Z)>8ksPJO8c8O$$`=Ldc2s> z`_Jsxas0A<7P?KTu@$GA-Jykbn#n)*3JK~h%&%9_2;9ULFP*9nxQrQwbn1;5+X zW6HaT50~L2o4f-#BJ$rs7xC%Yd+II)9zmK;E*FBzA--C=Vrb$~ z65ap$4&U^{Luzvhts`~dX*~YJP2=0BbQPf+u@PMCc5k-_mdMIfV z)-m3b1W|Qdm_JzHAC3>gVLiJ9k*(uzBZnIGtAw0-2c$R@fVS zV`Wc>h%7-hSpHU*>(^hVlWIr=@1hXuqm9M4WXJQuqg_>omCr^AU#$G)jRAVFaa}Eu zICy!_h=J$lO2D?TH%Tbm(TckZ=B)y>7lW4`>b{-x%N>YF9S3;A)=iSrF^kEl`sDz2 zo0P(PEdMSh;GS&!^;Z$m#D_)sH&Kw5+>!e$?P>e*qbx9OdblbxhpAbvn>w&7S)pl3 z1Yk`pGMomU1n1a2C`OwGMa)r$9Z#}ApP8s{KiCb5x#gg=#+)@`G_(OoEdwT|KV%+& zr)}zLo}pc6?m+4@w9_vQZVCVI-;epLEP4o0Q&+R-k_~!0wBC|_oC&PPV<=Zqh-frd z`JU3V3etScBpH|})oCcx*Nc=6uBOacUdJ>vOD7hG>siZnc0}?`g4Ecc^Z$44pmbqw z_Oo9ZKM>lw-=gIa6%r;nhA9rUwLW)eXbxs({4NtgxR;pm{J(mEjeHJ!{!h{B=g`jz zC-*C?`F`v|3yz;jzxZEu5gP=MO8!#iv208ti$~@*&LxhtYOGM8vjuB>bmN71ovKY& z3q<0Knyo~HeeQppczS@qLNi6!58r~M*WmdqYJP^?H>*`rm%k?LXR$VcQP2>}_h$61 zIS*H53_3ab(XZbJ$K6#q8Zjo5f!v+KY|)0_yaZ?hUq5k%bYDfz*ErBw`LCRh!b#~a zbSMU_44(ZKw&j{3d~yJ?z`_0H)*Rcob(fpGvR6vXx{%~8GIby-;#BJgaBVM1aw>W# zB~q|oas3+p8&s)W+eKr&kYc!lntp%o{a})+B-m0r`Y*>9#GfVis5`q;ysJMwyu)W% z%1JVtF9Y4=hSb7H;nA``C|^dM*k8)p7s-5q3od$iT!--Ceh}-XFWluceevFFc-<Bba5WDA0k#5zx)mtt-j}Y^cHf>g1hS_Xi?266xsitS z^CYSaVzIC?Np2l2yRdmbF{Z#>#e~_WBBN|5M`19eDpPgd2jGFG^TIdX@#Z^TyMVxA znC>ZW^<$PM7WUNjj7SoBbB@_PxF21|-88V?K#@>MB}y0IkIj&GHJyi1WKwWMAqd%^ zhbs<0*_(lpE+|d;RltlaVJl|vFzmHs?Mt4ad}SuZ09BjDt#1(i-~>#=J1S(33yA0s zcc*Y;)_zH0#baboo-K$jffUVN&qqdfc-Y1T>~@SxAVYQEUW;>7;li?kQp-{Cf6EY<(w}_GL!z z?Eg6apc>9R{C7X&?W(b?X+N`-npWGvzr3i=#}q8-Aksme$qa&Q%%-iO!zA z5|=;sLx+HeQhmv&Q=sQ+s(GrTutzowKA)GbuXsY?yaf6G10b7yV_l7jzbewzmRv*r zf5h(wTgw3y$82YJ*VI{^*75nt=iF>%6qS`%62OTah#nw^|t$yZj=N@+mbE4T1=kd{^{f43C$H7AMU?Bd{|n{N!~%s z7&jkh-Zyds$f30B%a4uR+j)~kTbG7Qw(Dt?hbQ}u*2%f-Au_`)_QdO9i6?<)boPMB zU@xMqrltYWINIET!WVb??NMmn62jG4$acn&4#v^*U826@Un$zRwIc!qCtG=M$M6NV z$A;3nF;D7>Unr)P-UZY97D2M6>8oVAT#NSl@%mh`Dy@CJ?rMCx>C#e63WQ%-qTbgk zWqC;BjACcq*tgI96zBMD$oPiUPU?}ouxG4r7jdII+$4<@PI&#z9nw}^T@)P{zNT;nk@V9dHo9K#Aa2$ z+e2v;Y0=@yWAbG~r4fT7A4JpE_@(#*Tt2;G7A7A=mY#CsWEHW|cOI8_aGHm&Z{1+N z5Wv@EkQa}`Fu`L?h_oV%-3BLp3$zU6I*R@vU(nkaoeG&KOvy<4~jtFO;SEjd#3G{1(XI?z-2KmvhN*oF2%Oqkq0$ukuZr5Zx6 zABZ6h$>kfVJxip9oEvhESypW7J(p~?+vjv;*6c`pKYrA>JH5(fOTrAVWUsVWMbm-^ z?;G6}her=23c|h{mn$oSUop(x;XkOd^G8en?_n(h7?QMJn&++H?0>7@Ww;R)%@<6M)Is7!+^*i_wsON$200--&_C&IP8z%NZ%T3%kKNT!0L7~R~1uV$d ztgO<6>Blu|H;MDFZ#~0vXpYmW=YwjmI@aA}FoG;vXH7?d!2+c}xP6C?n{!>8&{7lPcZpGGrSJYu}?I9BoD8@`57^O+zi`3UX?Nx7eP+Y1-()W#iu0kItTQW##WE;R5BKncKi z-@iMjK)tzvFJh_={FzN*I7TzRf5+sMe*bPX1{A)3!$cszf5&8#4Se^1do!o=5Q*Ja z^wfSoWS^yu)rV4o`U(BETlGvu;gM6ePAKE_&L?gI=3gKQvl@Bi#=hPj(sksjiNahE zr2c&7VwUUS!CXz!XrieYOuHppycco0>Ma?KY5P0KdBaG(8!993mlax1D$xj>d1wn? zO|c`t7J_Um903$9y+r0l%R*oME+jQ>L6Qc_ucsiz7>rC%=HJhvG{t8MDlM^ zI{!H~X6~b+;WX`qcIE=UC2od*;PxY6JG-6F@R{^nt~}3teqq$9&M5KJ=sFlSOlmfo z8RZ$v$99gLRFu~F$>>0NBhx6l;0DGr_aYi^d18K-bZHTsr!eAa+5>`|8n8)lEp~FB zhhz@=RPXTvG&MKL2TgN>%70q^Ava_*bHbcUk!RcK44==79Wvlr@ zOrhCO5z`GlMdmMKz+ZGv$(rKNRyE=wSlcnp_rLH62QCp_^##ibH%1ya=DBs=xbnQV z`GtReIVHZve(G_wsV8%s#%Su1&YlFD6w-~yRlLUxnfq~m@H95M^U0FHSr5D~+PZ6( zD{sL(CC>IR?6PwG@^%KvVj;7MYx{KI^k;Lp0DA_Z#*#@#o?;t=y1}JYa(T<6eVrue z0=5O#&l^)qJP)(-%ZAnG)#aSO-Hazt>zM4kYO%%FBJIB>Cl$3xT)lkx7PYle!^B*~ zqOD@;M18ibNHVK^m9j1c>LSXXkn0GLxp=JR<2p|$3H@6+e(GwPyIcZ81?zS0!qZJx z2y*|rwZ>p;*&?tR9K;^<41%anMNEE0^DUIXP_IuhZeLs&vD0z?$Ix4ta#F)x_V@IR zE#Q?vLJJ`a4eX<4qjm3T#`GVP^d3k=+(JsbKj+>KzZ9{JH?JWKL~OI;i7}G2Y}!St zoS1*IoO_H%5lk!7_!Lg*L%QYKKToAPzt%RkK6KocYzQ$5^GwZ>psyZVU z=9KZucuusqsjZeRo|)y`!pBGN2v#ApI{Rg>1`i2rh)3tc!GpUBlh`6{bpZ>0_ux^3 z%zR0n%1{ly{?yqnO>ieXG#_-48A#X<73;6Kr_ z36Qb}1fWU;F-Y2exW8NV;h};pNZYe8>@_Lnddbv7x)`b?i>ORe4xwo{TqRAo(cCmt zjyBnWwPhe_&9$ABU*K}!<>{#zkhglLno}b7KbAQK)YF|&ya)|D;{Qr?j}DnNYoRmzJLEdKfy<=whciN zG_FjKbY%n~JvT1Iw%yA~#SoAUncX1b8OyHWa?kU|ITKxAeiax;FvJ62?s658ioE5TZFauwxOdlWMSZjTOE_qpCgi)({=aMt&Mk%DXv03lv1wgZai2@_j zq*RI5M+8CR zogXq>-W--X%KwFR$p+nBA(QQkWLan@VylfEX>@|r7k8qH9qqYu1Cx=`i zXkW+lF|reSg_Iu`|2qR4K^Xat*p2jI3C4^#%TN14ls%bB8~iCTuI+wja6gwBeG0;? z?d)`y$(bJF?zo3HaI{oiJsj`c^@!7kyTZYV_m}W`7R%D!6AvZ}V^1S@ZGkc|j5iewRn2MjH5pQN$COhO;IZ zzO+HqBZK)s`Mq4Pj8v5g5M6BiWfke@;)891lBB^xEv~ogQXnc<4YPsQ$2vjCdXFrx|>Gt@)ym*kvFE9rzOGLuHuIz-SwIWm?!xs!Z&*gk>VJ-hh zh~WA{hNS47{0G)Jc3PkQG5#i2<`voFOXq1>ggy|*ExH3K&t-*u)gSMQDdR)kN|SBh znzqH=KM^YG^{cV^4oyh^7k_Jstgm@1AIE7QVSnq)Do7n>L0mipIbs^Ltg0d3__A@@OvQa$C|5wP_{q3$ z3dd;~i#5(EZ`;cvOv0j($WC>ey4pC;6e(L8ZnzIVv;;ohG01uTZHOGlc)F}x`HeDU ze8SMUWx$veqUjHoGCj0k{F?OFIl9poI_e|uJ*mB%BrfSBv@h{Et=*t;nlB4 zu#o|dVDEI}oK@2X%0D(GuGmrkKNp)%ABt|caT8_~NnM4o>JwF_xp~6OK-P6v?7K=D z>*P_^)8JDNVx9)cmf;izr7`j+rJY4X2N$)A=>j>Zbp)Noo#>h^B z84U^BFf0U-%*|L2g7)Rm!EBb8mOkfW`SGNw-f;2$qYWGxW}L~O33FH;tC5SlGWwfy<4DzD32 zMD+D3J_lZEoZTD3pN6zB$C#{0fmZkb%ztsgdf2GPw1 z!065NKJx@2=Ve)EmrUD%hZ2a7cW_#**%6d%7(v5qDti!?$hM0bD%tH1F=B9f#dQO{ zV<_pFGKYP=g?*+ykCHcd8V_STQHjADZ;7R!Zye$=2 z(E1|3C_bAO4Ycw)9=UUlb6kR{3?yZwn5>0xO^yy&R{x~8sxQFVjU!5;q=xsR(4Ou%zdPQL;J0%4(fQ4fTNs^ zj1_TYnn6ap8aT?~`lBSJBo_8)MW#pHGK5nf2HzPFjYz1SR_(gW3x(R39+FG;B(@$7^|2rYxRI?cR&w!ARK>1>ga8Vwl)=10Dty7UVu1r z6ABaHMenI!s>*NE;z8RF=dX&UU;7hlNZ$!6qb^Ia={+4csu-EZt(3V>){>$ky(p@o zvKX};XWf>`RYkXl`N-KkCJY3N<~DLy(q%*wQx4qu`RT13HKq^fl!FrcM#pojkrD_C;FtaZU42VS6NF_tmLqFt!=3 zKsp?0+NHwxnBSrJ&OJ;?E2-qP3#OkZ^=eZsfcjWanIFMEK1SczZu1cyMY2UB#YqS~ zA$#3JAC#OHk-gMCD*2~2t{ObB9_!{3#4jXR8j!9Dc^_q@i*#xYUd&T)wSb3Ag3Cjr zJT0`8g__r~vAI3(-NeSG{@1jHt4I=?d`pS7ji1g$hTnpzoZIAj=r-s1R@=@pqRsz1 zj+YYUDrE9mBr^*w3iiND7Ej3(&pf+MBK6$w%gOk5T_`LMxcuQAs=GW0>9@I)Si` z5wRUfP;Ec5I{GuRPWWE5;saEn;>D&bAql)&I0i<#^*9Ury(4WgtUZ$Ef?}6Xd7AGX z(r;3iX>@=px@Kkev&NSd7;*`hhn^Pho)XEQ;Z8DjSYQt(1xYc)*^RsWcj}pCtd=VC z+Ry?&k$uoHvXqNrHp%&Wzm8%m*&e0qM=nla$|k4e0bN|B3nOTe$OCHfJ&?vFXaW_}UW}NKMkYP&I9$;51qKd~ zR==QW^aoCZ?MYCUha!|_>CxxK_rhYERO)gfR-)Im2^kli0i>``V^k3OV(OD#6`RuL z_f^)aWj*4>Q3#0NTz=|Liasb}xRiw$dOIM*M5~KVOWi{;tD)j7-`D9*a$ul2Y=qo0 zb+%n(!%B33r7k`EIh0J(AVKc}6;DBB8jhi#)sM4cQWSc77$gb{1;4eZ-|19UZH1}F zr7w`${{wP7#=!76dO9G~RZdVKsuBQ$JKbfO-_Zsxk#L*jyb3X^OM)CwBM}B=vTb0D zM46x=nue?0f&nL`LF)8!#eIYrN$kvH2+W>_sibCBZwF+hgs?yC(&@>@JcbZFq;Iou zB2)k?dmE=O!exSUuYB==kExQ@9ry5-k$AF{G{(Tp#8*ks^LPPfvO)~g{nB&{eajB! zMZGoVN!GcyeYszS^#cU=Lf|Q?^>*t1as`yr;SOA>utMQ)EM-<%L~64!7qOaO(!U`e zZ4_u&G~K@h+lUFDlCpk96IQqcfvHfy@}W0Fm{P-O;{y~=G`*E%xux*WF|yEIqFE~m zLh^k>Lql;lP+t4sZd9CI_W4!ZLCB|d#(#e4#>>QK^P&%@$JOTCfJ20@=|>$yNi2@H z%@Vi?rZ^iK#!j98)Yzx{tjfapz=T6oJLcCQ9SMPR3ljkbypx~eUbo>ABL6$Oe8i8) z{1lYOzBuJ7-12Zk(OyV{9bpBJl$l6+9c~g61cso~tGHT=!apR@aUxK6D>i@3#h$vu zcBWUB8dZntJz1K56idEO3I}U?4_`N6WO}F-hwT`;el>UXo_wqVC&s>z_$UWQPdtr>`JDzaC1hLwJC)xW@;K5%eyYxu|R%QnCno$D_ zBwuJgZXm)1Bz1X0UTJq)CocQ%zhMC4P>#4dkuxKNH78DvVa=myHJRi18naS|lN4*fXF8#=}6 zpjJuxmG1#O>lD?gEQ-fjri(52w&yU;1A?lMyCVRoIw$*?{#yj$CzE-{G0yc6D~A(Bpr6i9Ir;2bckk@1r#|9p1vsHmGHn35Z3eWeqSM;Py6N?P^r_IN38Z#8 zkPcW6-X}vVwBTzXKj~#w+8hamtez@$I}=%wXQ{!-eO+PZH5_L;0RJ9CEo&arF@pr} zF>*Qg%$pLg(qpFy`{`@9>kC0)S{CDuT6;9^ptgx+Mf)1kLuJq$~xwwPw9}_!#ss;?j_| zi76A^09LqLzbu%Xjf)pjCgI5Th?6fb2QDrVtE~CkP@}1`ea@UPBx%)@Vnx3G|~ z@PWoJNh-?98pxJS!Y^XZ6v4EL3KBH*0>OpYkJ=1V7@l5?zC+k(o9U7J8ToQFfq2C{ zn~Us6k;QTkx;qyHA#r~TbrIypw$*3jq+;XP3|~3=w-1may9to@O#{;-jsPlRL`Amz2>XH6gv0j^ZGQ6r8r zc%=S@8KXhbMO5=zH`n#Yp=b}T6S~ijXps-h5n)(`0AO_nJHEAnJu-U$lcjI zSmu2;zuNZKOXpr2J$m0a0zBXV-kwsi4|MiUh3PJOmnlgu{efvaVi(5!@$TTK)?>#^ zNPJ5*oO61DZEHY` zu;kT>uFI~kMF3Vk9l8T*w8Y7&+NsAixLe2Na@cdim|UhIbRZrM@m2Ihru;{efTj{O zPq0cU1eLYp9H?H+qsV8s|6=%g&+ZGZ2tea0*-M4&6v+Vvo%a-KC0{3RKgz0YUdap0 z5lMkFdM|9Y`N8^-kdVJzNbvB2uUzA7HEB|TKPB$hT}9O9E-)P-0ve;1TM;H>hq|3w zmdt++X>;0(>O1!hI4X)6xA?zG$}Ko5B&ZaTw!XwK%jmGngUJ!8G<5C9H%Sd`+KL<2 z9c_!PN6j@gQwM#ROJ$4&iQk?Of$U5{q7u$hG8j1CAFWKHVGAf8FdYd;02rB}i8*gjiU4^PQI^%;k z(Jwl;n(VDOs%Hm|w5y=-e0UHG4c4)b6I4(KgSrJJoMA(>qbZb}s7QYW>p0i$orwZ! zLA7J_SX8gI?HDk9;hY{8#wlL$AoEZ>ks1|)bsgz>sM!3X^`ORbHjV^vvw8i6FlM|c{Gk%tn zzo8P4CJsR4&*s3wita=Z4G(tWD@qTcP&l7=UB3Cz1~ik zX(!jKV{4NU6F){pW&h#cQn91imm~-()kCkkmQ1Vu^G2MJV*@+*9I=j zV=uc@<-*duJ7d(19t)Ry7`1Af3Cv#RSLhA3~SS|9+$CE>;JT3#*d7|A}agjGR`m_P&O4Y|Kupn#f?_y@5!bzrjaK5nUCODmE-; z?FwLIl@>p+!2}#tiM)}P7?tar*zXFIb#WENK4nw}FJ_kvFL$xvjm@Xm=e&hO@vrQ+ zmTw?FH8PUE5z5fST*>eP`Tlci;I0nsg}-YjvemIe`rdgIu&nC9@bm{y#Sb3TV~~3S zCw=y0TXf=w;*9}bxn!d$p^9sjmI$;@YK+w#iZfFxJ5k;YAvY6CkxDB%S7;}>ZDNZf zvp(3yOI4wMd&ujzGe*0!&}z4mpoBo9&Xw}MoQ5|A-|81W<;zvSnsD zlF}~*?cBM0?8(sQP^1%j$_1Ox{cXT<(*BK#e`_N}K>6((3S!7#;;j4z^gY%(_iYd} zgMUv=XlYmlG5!Xp-__=>)N|?Fmw}qSYO7hldHYX2p8no-5bX)&6z|OZSyQgzP-;fT zNgnyb_%U;QSgAveu>(?s0Bcj(b@_*K?Gkk-Jzx;w_Kx)2`gdQrEWvZd3>kun6I5w! zXV%{I`LT~z;*aqBK)Eza7MY%eY39kiQd>NH?yaz^_QNf=$BrXFBHJ)c-1gc~Q4g#f zs6#hdiioEpuYO2fwt;OqY}}!Y*Mi8?kFR_GBf{EB$Qq(XgZw8LAz5`B2hc%Zp-us5 z>T0tpD6q@=-RHsO^qW9e=jYph)e1n>oRx4rc6O`i7g4{J?wU5Qv)5ZLg~VF)*?JOb zHk$Uu?SZ$i?f)Pp75iu;dv~ERqh?xZGIMGmpH#J+J#;aJdV!0id(#K!zm0Hs9pShT zP_hA=juhgo$Vg4zoevk-eFi$^Z9lZ2x)*C5$h4@8=H4Sh*D-VK|mCezP zpyAu_*ar7j$8fGLSb1XkYl1d50N~o?BL(XCs$?&SCVr%GpBhQ5bnD0}-;cSaIvm+X z26oK!uK0Xl;d)}wlnlfc)zvJPh|2(|Vm^^(I01h*S*_@)iMHf2#()X(Oq*)!S{@o^ zwOP=y2Lhcjc#zT-y^yB|M%@S6|3oIThF-QDz-8!gvc`oV$Y$B(kt>gpc(#~YTrd$4qi zY;IWLB5xhtV8>=KX3nAiPh&(z&tovQtg`&#v+X|7;ug+@7SDkGsd^sAWmSYj>DhIg zgZ?s0?X8bK`1Fy}XE*=8^rxD(Z;ma^OxbIcReLLQ^gz;k9Fvr96E?nAc6Gb>eZ|MFXzOT^tI$wx3;-^aqY* zIQI4B^;b<-HTf}{FBfMD_ITFrkcOE{!&n8qG2X(6`1tr}uf~IdgPkFPBXM2b-DM>u z8yqKJs)<53E%&V}ckpU(mNtvb#-iQaH?D!YL!E@g2-AQRx-@P^G_JJqYG(2mzO8dO|QKLQetoqbF z(k8yVDS1!cn)U0~OP{NlUw&)O;{Bqk80q8FW*5vAZRS;>i#FZf_wf7tPW`k}o+;;P zb93}q;aEY0zU$81+}xpSY6Ty=`&CB`iMR?;go&?*rvJeG{3&_A;0GPvT|vI7si|-K zd5a^$$i3Dz>HFu&~+HK2^{Qmpzn>qaj2M-^vs7tYDOFP0@ zExDf3#`?lb2dm>dj9aBv-=99sZa!Ar@wbKNN?2yY5z#&`f1oSVQzhGFEXH&2W7n3Ptywxy+|;m$!DvyrQ+9mVE~V+v{Plo2cX*jK3qlEypP*`kt# zAr&{m9V1l(UadcP=up{uRnrS+mgjzKK7LIz9 zZuo?%{|Btt0I$M{+O+uWYy)?$tZBH)yHL*?t6^5pxj#d#UEa^-_T6ne=ifHJwZupi z9j5C4e7ce3nNzHnu&%Do!MEe0G>R{c@_)5nYa^4%Tx`vYrieaop;<~{933EO@SPki z)^n{(o~)mmV6w5WowP7L%&7@~Nk;4zdwcuETOuz^jfYHa2#r4a;H{jYvLzX8QB}TN z>@Iku#*EJEFXY5F70CMXhJ|B=2K@-#VeVA_REvn8!sMHU=~!2}%j?{4WM=B?1`eKK zE2JV(qib5F3KrUb{GnD=!I&_LK4o|J=svT76RN#ziTrl?^76E)i8N7fhM?+TLd+$J zL}D^FF6^x3-Ur}LdcOxH{)`llRa z`g&sGCuh%|_3f^@i{!YTn!5br#zoVoPfy(bX=b@u%#Ng;&ZFJ6N(}HH zIH^@3A8U=>61AoS`CiIYbTB)|+d`}}cUQh=>u`S2rc3Sg%#E3@uHjmmnpJdPqCNe7 zwpOO2HQMH9hP06bn~{u1`gAzbawab%pw~(Itk~=lLh?ZDl-J-RHBqo$Rf%ok&_#-o z%(Sb!Q|c7*#3@;On)}o1mJPR^Hz7R)*KgcdRII_?ES8J~aw8)n4~5THSNCn~pLOs4 zy}7fW|LFbXOSO)LTG9POD5f_LY9QGF}j6Ww)KnJ^BmAI$xgARh-hd zSm3$6aO8$=2R$khY1OfpKUYNRFTvM7eE86JII1wK{;K5RLR`g(V;X&(TGI4f7Mur|fJ#+5Tl1b_CaDyOl4S(2}A4Ypw zQj=)I9xBxlRp<#SV&x679k-HF%V=N9m**vWEm*c}nL5^ffp_!yS@YMlUk|hLb99+* z_;@n*&1ti*6l-x!Vy7lW)s2mjsi~>7r<(%;Z#>Fe(TlrD|vaGSOX&l z!|>SxcE!qr?(SMWD`#(fZGv$CF*B55{8H%Mxc2Lv$-5}dcCr7GY&4H`yYsO6e^1wZmk~6*MEw;j-Lt1ogVURyBkhbD&dM%W784UA4d+V3 zC$py{t*e~NF7!T2cS^Q+o$;J;3mMwIOZC`Kd82jq8K@Kvfzpng&Pdm%b#<5M+p>jz zu8w25_0HWji2@&~LZL|BmHv{kWhP@F$^Q0!%gCsxV!z;%HWyi=9lG2cKj6HrxvW93 z(>;H%sQaO+xdW<-ys4Xo7q{*yOiN44J=}2n5R=&&$Qw~xW}j6Nd2&D2CrtmeF!JQF z#jdjp^i|q6>$d9)veSDn4L;C(we{}vZ)b*TCq#Q}6tis|eLHrYozA#7@2`&sUVBm< zw*6CCpxcvcbE=zU!y!qv*E2`&Rn1_uoelb4?Qa_w8I3gunAbNngaP#$i?dt2f=<5{ zbgU%lDC7UW@_)D;f4=xfL3?FivdTPNw>)tcHh0mUJ$nuwIkE+REH4;&nyxt$fmxyc zYAax??A!ul5BX@l=!iSVeyy=_v7a`BQMB&H?v$Oyet#Q$4tj8WIe&6!>Fzrpqm-8F z*E@tQNxl2c_Hc23zu@ohEs+d=H&8Km+1iyXUc+#(YvGiMfbwd5kpp%VYTF63^ zIwy_jTft>&g#)L$0r0j36WvKkvGQJ4l7Y~t?WS&1eZB3TtiyJhX=(1}R^ua=mf5>h zesnbqBuxKm)lZslHD-jX3GHZ@hLuc*6__B#rUeC{~xKfl~fUAOmy=8e{gl-Boq z-UXh#`E2?>(CE()`J)i|Z-Lz(F5Q87J=2QLXiYv>u`BTNoRG<=uApi<_;uZIGM&p{ zs9e^29Cut`Iz~jJRo>_Q8|pck{*}RSy0R^0XOffY&prbQ;LOqz3$sx0epcbv%tub4jV=-2-V?zT$nvI}<< zC?-8Dv?WfK#($}cTTl8laui{FYBqL3#WZKw+#-E3-F+a1B` zlL?;Q;7Fu*6GYD=8zP4Y@9H%CTxS6G<9aA){|H7#gqlp7=NQ ztm_``Qe82(aI!;}B^~PUE#2f8D(mN)bLI71)4GMz7%QyuKbQ_49q8#I;KfLXMWX!S zs`)*~7>s!qjz8KP##_ho^7?X@AkmztJxJG7VFVp(pW*w)TFXvBY%FoGn5_x>9r_N^0jlW3+`R>tBxzg;v>W#SBT@|$z! zig6-IPNrpdYpcUXB#Oz{FV9#ti`s<3*pz7u!wdO)1?vn}uilS(2YyQL+mWa(;-R=0 z8*`otg@uC1CO6}I>!&e#S-K^9kL#J-fWS6`z=h252WnJYe|u#0$7r04x^Kn}o%7CL znCB&a|F>nDX1aRycG*~8U*F1Tdce*ZIVuy>hMG-02|)+j(BwOv@pbzQ^~XfcWUW(* zbj|5lnpZP&PC?k=E%}}K{9(fUzkN}eu3^@JLt)DBIXmAV9u13{qtA<7A+Iy;P3wGT z?gqBS*MTwPxuo@kTM`S&HM zC4W>3RD^$&tAoKBx{QrW?QUyVR#rNh7Tr%QyD2Z`PFjpcwNAQ>YT;XNF{Nd;Uj^h8 z78Z6RKW_yD1jyX)GQR=$mmS$+ZJp`Y8DT!f>UwG_^Y_PJ?b%m4jh@vbhpkN=t-ULF ze)&ayF0N(u8o_#Y>{ltM5Plz~`4*ma&JI?StW)zr=V4a2kil3{^gqwt$1Cclud}w^ zmN+@th9KSS-e2f?>ojeb?vHHI-9LD&f!!H>Ba@mi- zff2WIRVbwm-4W78J8@@NUEOqJHO9b$g;&(oKE2r9%;qYNu~^oPO-*BV?4~0sJ|8ol z&nTTc`(Ljz0=up{-PnKmMp!SYSM7@#YOTwpqHmx-QQj zc<>8#0;hj1&9~Ckqw7YvOYyk{IqjjFZiA|)YrX|ymHbbND|vBR%kj8W9$?Wc-a^|g zbzreXX0b_W)|Zy=$rVI)l!x~Z=iqvd){5rp6yI*K>1YAo4T~ z*B8{w+tyVb-Xi_qTY%}FFWpV%Jf2}T_=9yY)xzMFoPVu=P3u4KdEFm35~G`o+A0_W z{(pVE;(KLekIC_b6xps?tzJ#jG`sDBizB8zm+qgbg0Al98}HBdSh%o(#rfi!^4A%` zi>A#|F|uFGc>eqw<$wQo0Q37revBZsYdqfdZBl75?YB@EP`^FN(zWMA%*-H`&XsB4 z+o92%K7n~(Z?7eXBQtXab7!c|xOel}gK6lgqffZ--&Zd+<6crYbK~D&%+q~+wXF7l zVzd0Ly9QE+5jZ33_Xg_li=c#g;zBWt^D^m zrp>Y*^e@PNW|JoBO6}R(G-ayE`hNZSaHH=|MlI7oFMLn^mD)V+HPP4Yf)<9xhSw%$ z6ve(W`VT4FfT0qqe8(>Y(%vvg)N(-5sH&D0;fMF(2H<>a^2&1@MS zEf6x@pP1Fjvc$$6>*k5&?>K(^`s&lc({s`WzHWKwv%;^iuwK@)tg+ayH7g)N<4xgu zhQ#?F8$V5WEoQL&YoV9N&B8BQW;R^)=XT`Gd3^NE0nv`4u=T!8KZy67=B<}1%Gj*m zqX9}%&{XS*z|#EmTwX$6>XZD;iQ&x7y;0JxI@5Z66%X$4fj%vjrh3nxTGUkA<)dA0 z{kBG$5{Hmw)8ra0fiiK!-D6I>?d{nwPN|(6HM}?cd|lyw;Vwr3_ThkVw_NJLUQs!D zyeIIYzDn7Fel3;ide0R?HPssBrE*f!MSi_+y%HVhD7z>^Ti%hU*os~5V7vOdI zr>@Neu|LTQzE=R+;UQO&^d7tKc>&aw#w|b)@N14qMboDkUklG%Yadx*qnlr6uO#5?jm>e7EdO*?sZS zrAz)}d97R6Z1&>Kmw(i&GF&JYi=~omehfbD(v)??jvp8RxpteaZFuYW+13)ePw-_T zw??BiHW^OE=aQi;&zd!h6n=`L2Iue&o7jo%omDYW+6`Gp?AN#pqrW^e*V)I%kkm@e zfRQKuU7MI?_QIh{)PYG~S(r!a`oEaz`|<}JkKXj+&YvF6E+=T>#_V4CcmC#J2^Hp4k6*w1NjZ|ZFU%pV@FO%v^LVm3+Gv?g6b0#B?*XO*tb|zHY z9L(4QWWU3--`CoY!^!ZM4lQ-eH>7$Q>fqhtndzhyc4>RW%Y- z5eN_zFB`Et+wZGrRrEj!OSaEmp6A_PMIT2&?p(r@Zp0HQ;v}YpBTqN6>-Ttf5Y3#s zZ1)9-rAxz^fxZwr^xTE{CgaafO7Ye<2cH+GEJN+x3-m+GCJta6R;Ynlgwe~tEgYgD zgD-9)5=z@~PtT4m?tV5$#FzwKrk%f2ZB~6A5AQ zd|fW-GI=1!lOa=s=0oR0{I!j}dP@+qYUY_y%HHS;U1eDV&`uno%=1}a|ac^&> z7;lCw5@DXQ39}MS?&M%athqVph9zRb%J9W^6m%FdZN$GiDu%*E=2OGw)j}bU7W!hE zzcVRGw7u9^+jGW!cWKen{5zKDL3qVDrh;c`Oo=6C8Cv!g%KAvg_boOSo<~MB3WjKK zm7U+QEN8H2{%}2dSG#PtJ=B@@r18zPAOH;A&<*$`gC(%S-O*);$0AE7S ztgfyOJCqrTSiF&tpp(XF=^1jLlDMlwy~4y}6>fp%Pz?nfZ_FkXix7e(?^{)|Ar@D{QjQXVRQZz3w8|Fm))+ix$AW$z3yPBcXmlDfSk~fs_#S=!l#CyX zcGSO*9lOcN$tkdZEKs*~yvSf^D4d@!$+&}YkAFX>brX205ZLTO#e$}e>Uu8w0W-f~ zKtR_f`p$E>ZF+Jv@kSjNY?NH_goAR4PCEZmE78qMB`TFP*;Yh92p%&hyF=JzAu|Z{;aI5Xv`Pr zovMKYCpSl|QVx7*y&K0kib<(2@QikX!Z#r{(2r1;I$P;!?)Yg!zZ{ay57pix5L09N z9|I_6qZ2a?F_r9!-x77HCC^(#6F3Ya+;Y3(>HF!jlxz?)v}smDMBg95P#&zVH}uRY zq{CU4W5>g6wx+(G)z_Ru!F$eZ;+4j+pWn@a-js2?>*+hQX5GLflSaeUQNjx}zym~- z+`G4q!d!>v^AWTMij}!bcm0S#e6nM~S`1q&A3y$@9xh)onkJ|;XpKhvMROHWDG6iE z0KUYuGy%28E(o=*-rmijG*hNsRNfdywoZzPw5heU@Mj!HuK9P{#Fo*_p7shaZlu_m zY|~1>y&)Csay*=s*^Us$48rKecXOV?2|#rUgId+$pXXR(tqLUbvN5rsCC1#g>bhl^ zN7*L{`y1~ZG#akZV^`|eldK2mGLnx}XK=>)C}YmdT~dago(`ud8_0+i%Ju%D6-f{G2S*zGi`c4q$?pRu?U;^ z&6eO8;3s;R3Lb90yAq*H!};EZjOvDl2#8xF5=lIObW`~9O4G6CFih|6WM(>}zoS82 zMTFikfII=SQj9VIJ+}(Nwz|8!i|>0Q(rFS*PJ$;-&LhAQwk5WIsq443E_IJRr@jco zSA>UiRkTqu!0H= zY#TRC$Ek+c<#`?1y?ghnfQb=GjiO-nhM)GWC%9S4EHuHkyHQTl$Qn7#f-cfb1sA3$ zJXd+y#U&&g;|?^up6!cR>GTzW^r@L@E&LC>YFo92rpJm;-L)Yc=&BGRNDZ}=zTD|%L zjo>I(G6H0hk+Ct>{{7n62Lw`b0QdCw-yb?*3_MdlW>Ql5g->ieo?7aVKOno=W7A@* z=*uV%wBmHd&dMlk>riNTzBbmhgwpoJi4(!W!PhbVc605oFC4RUML`t1HgT9o5UMD4 zhx#|KWmQEthSg)-8IM~-6f0Fd=(cpH$X={3{>hY;3T2Ol{g${uC;=cx(rX#Idd-@; zZ(Q6D8?0I5GSprQL`mKw5T*f;u1fUv@gm|8i49pMEycX^vJ*XVRaMpIn6>)z4cspL;A+veHDN_^aOhNAh3*HM^e(3i^Y{lT$FMf znG_zPTLGpE7Azomqmgh^6J6y_R+h`&y&oV9Q2=hr-c``uB z*sDMSoBf9?Gh<~$IbeFojLpG))6i_omMunDf}u98DMQ>U9@>ifjN`|T@5j;+Lq%S? zTHg&NTp~a){R%k~?b{h4ov7#Yz>4yr%PTD)SbW+XA~4NDE&;UPQB`G8jez@!cqw%r)S2D>=F#5~Ka?T3^kxo+Lj@drSEIR!=uX=? z|0);0iD>=e}l;xdE9TCubq@WRl3gS_Y&8eX=sHr1ygKiV;+cS)Jc@EhIO6yAwp zKwxM)k-s_CCg-)O#3TGO0_78pVLi;buO@>{AFHG{x#cZGawMBJ6`*@sgt}R&aP`VxN8u#ad77*ZL zcjv%X`c4D{c1T2SGE7!p(ptfBM!P|57?Xb!;Cv=?8?J<{B~wmlwEs}4`n-8iI7?R+ zYY@psU{V^wbz>PQnOV3ku_o}t9Z9u!?%dfAe5Zm*w}p2FT=RSI-CJ~Z$eZ*a;EY7& zh#n#_2-{Ib8a*|E?lgSH&Jz^^;9dtAp-qAR3OVY^Y7e~*fTR+Ns`a#{<^mqA^O0`g zu}?2rrvB+a7!>7;!;RfLQGtMaO=Q+O zt_2zYECc6$$>AP6+*(*5X?MbOIuX!JEeSTB+B||LJi}9T8RyTR&j%T=2pDS#M=6R& z_=2~QF_5Yn2!ab42`gA;HhC4y$wy2ewabeKr^tE(f0U%LN zMEOvs0pAGPgf$kM+7=k>=z>`3h}8$Ti9IfEyfN1W)Cu5AZ=s5W#UeIO-|tcxxnt&c z2#4t7Pc2CvARudubRsODSLQ6$f2in?z>RMS@C!Ac)8{2DAXpp^{!3xJDw> zl@z&#Quhc0Q)d5^kXgaOcsLRJnJHn{fV)AYsOhUGLZ~75OPNtxI2oy%O9MYSq(&|G(+EgkVu|)Uo!<(#46{FRVKp~ zjm#y=mXmM-bO>Lj=R4F+brkUgAlr<^4iwi1rp&#K-sYPs$Ym8V#s&ysNrnu3tQ`)> z&j9isRYs!r(v1ouT-N4uHD1v+n02@UB1h-DU+(i#GKh(@M6 zS)gIG;e2a;r11`I1&BC2s6C zqznDgMl|cRalf!Y=r z+zzqUkMYu<$<742zbPolime9N5Kr!Mtwm++l+km>KDeqQC3rR zz4xpXy*(*?csbL&1!nH$0BqvxmTBnXNbse$lF$u$j}ksrRE86+13smG zj{pjCnJyN9P*xMhI?~8M*NCl<7xqX~R-?KI9Tt%T)JQ008_-4pgKv9ul%W@^EmRad zam1JMcs#Ic;q23ZQZ*}|@aACSnfM5oC5z<6~yA@AwY|=x> zO;(%BZN!^dB+}uzsBHupAXm1nE!nG|V*E~BFh9oe7}Eow5go3K z)Nd#Z;D}3$QLlz#`u%lCgl9DOmIxvwt*z`-AnZdm-y8xAP<8#) zONtVWTb*pzF;A3lKHQR<>9sf;u35ql88g%by+1u5S`a@!KT~xya#GdoGAYYMoH6jYd{~%oMA9nO78fBn)y|nx$Xtuv@%e*pZdT~G z2L_H(eJ$4HEFJEw+=RUejXm{Jm{EWr%*^e%|3@3>^|R*D6nW|~sZYC~^9NN+)lAfS&8`wXH_ zc~$}z?;AilNJO_xv%~@4ZpWoKn`6+0i&y$Q`ulsn&rhfj!=R-u4w;#Iy;rFwoMFxdi&s5QR(9)4~N9BM9F(hh6N6DQE$JJi%iUHO#zORqD1qY#)uct z7Lbz5NbW(`L6&-yp2n~gLR^qXuQgN9^lqBkHRNdpAOlHd2jg(HR`OkB5fFz8EvQrj zPD9X;>3U91j^ys$vF{#|2VhD*#zMSM`YVrYP)!)h(3_;A7&}uPB0%Mq?#W#Zj|}B8 zkcNbBB4@ZM`jFBqg)^>o44KppV}KPBQ7FmEHtm_9aSF{$EOlZogjt*Ayjok2RVNLYR!Hf1m-jFQFe_|5 zKA$^mzzs9tODi)?EBW2^VcOt!((z(*o_9gd9@Nbx6T7)PR9>!;oF=0gB*Rp3wf`-V zhsIYu6Fq4HRqpshk^#vv!5iyuQe2itNM@UbmovHYQIfoc(6wD4!p7yEOXJFW8gkgI z*~Yy;(FqRzKx=I7n54@@s+hnSVi85xvEl{c-uZ0{9xio@v|4z^$cEFOHw1U~_^!pWD`hSyzzK49G+Js@5NO7j zSn=53yR z0rIXV6J*h*URHTdf;GXVaoAR z^z|#2Q`@c_1%XspqEBOsV!Rcf-|R==K`1*;Nk~wM(=c+r@+1`jDQ$pFf>q@VHHRP3 z{<8p?bTTZQ7_0$Ic|&|f{Zv`0PHZ$`1qv4I;A}QD{c}&e=RAMj_Ri{i!^w$>iIVqw zNpA{m>?wt=nkUK4#1RJn)cm2cUrx%9ibvDkz^O5=InL5dMN)fh^Q~*#8hb!F!^+>Ng^1U{V;n>I+ZA2&_-nW_e)Tp zQggd+Ie3&VB89H_kVDY=@0G_+|H&qzbX@#93^4y+d{NwEP^YncktsoIsPe=Tv1O{H zPA2NGEbk_xttL2yK0@vz{f;&#c{T?Rv7_m5*O z+iXP+J=O0%j#~j)kvcp}rDl(^8+Yynsz0P2FYZ|t#z4L?ghg0a&0vhb@cQu+;J&C7 zM#z?O3{Jxh@?Xq~%XNUl5gOa_E(n4|^tWD}B|DQ#Fl#IFdxtl@*v+3kS)^O+Hu?U% zc_no8O8!9iuW%^i=v<9LUbZA{X>PAjuNHg+lqJwn^zz=ZUV8tpAM?);kA!EW&-hmy zJN>WS9e*Bnri0!}PvL!Wb}R39_w7EKe4+d3{C4K@638&db#2oaM;S)bP2XN(n_96b z+#wWg$RbN()nFFrhC&A6%h5PcwJzjyXxX7OoB*Mwp$9eK{y1_*pIX)3L&kZ<`{$?c zg=O5y^fkeGCxb$xz_xIw;;S3ig*-t2&we<|K-&`hh=y9C_$arsG3NaXhH$W*Q5vfz0)b*+D4oI0<25ajs>&bNnpx+=A1ePBVQQ8dt?E zgXSN#(Xv^g%X2G~c1C;F*?n1`@r!S@Kjhs80XbP9ou3<>XQJ}k=Uc{WTU-0Dw`Tn1 zaokaeM!my>(1?uw46A?luSNL%2ifo@W2c6>;78fNU<8Lh#&I%v4@Y-CL)v3<%Pw6M z{;QawG+cmADXq~f$sr%C@>>wmL1LUI^&Pmc0>vp3XUGoJ)MsEcBiH{(<=#+7d9mN? zyoJA2rE}{q25Fvx?A{3{^M+6&=r~;HOfY%P#|pr72}RPE8(b2YMP{=-xyO@>pBo+R zEix!}pY-T0N>eBTb>zHLxCk2|q-HjTGv(}e7ULL7a>Jje!RTD>zk}|nCRCnseD?fC<>E=ak47);q>8_A_?Dl78-Osg- zcRV|G6MX0=(B)r@p>!%5lUyHCw@JJM$?FB4m4+??K@u{ZZfh-rX93^5pl7AeY>m9Z z%E9@3{E@`xw_5U9A6~I|5zVe@5Vh&TRpqq$E#yL_=AS>`@^AV*n_pms45K7xVs1xq zL_aiA4MCjZ3sKSjOH65BvDo*|)@f2Op`Q=Iz^qRv!aQK8HSOt0sy!6CfA8MC+>o-s zn$}kHx`hK8U^l;#oNA$CLzC|0N2qDPV%cp0-}cjsTlWM)J+~yqRj&7e%FpPyi~bqH z-2CUmkg#b}`L2*-U;lIb1$wa>q2Q!KApyB}pI6(_)Y#}zv9kDjdit@NC$ktU=KjMy zy{0ZsSGJ+ORlN@aJ8@$^#WFH@S?DZ>rpkY52+yH`%KAW3$b!qc&QWXKn0HUNGd_f6~V4 zoTbe{)4fNjg_^$q@?-Zzd^$Cf|2BNtq66z$hTH|bgcRK zX3eMnP2#%~^gSP+eVgjeZHF!fbu~FS9~#W%^$m9g2JRcW`AhJ_sb|)&PMBd)JGn;B zEWTE)+Typg?nGNN%Xss&`+DER9jrCei#uw$Q1(#t{q6Z{x7SVi<(IA^(G*cBYgf06 z*2iv{<}FHo%pSS;F*-2lmGj2UQvG+NSS51eMafg~FrjKeii-G?uPk6LJ}#g8q{&P1 z$A+z2r{IriGmP=?$9$9K;E(Tr2%UsKrc9N_zfZWk)49z4*AM;cApUQ#2)TWSjvTRT zG_0K5IF@aM7Yp59P79M&qx4 zTevROqDkJRWf|+C#$8#<5Q|4|e=QxWH!SimWDj#jO0iry-KOT|hu8X5XsRra zD3WB3Nx6N9jZ3JQBCzFSrbOcX``c$NmZ&Oq9gUE7;e>{D)_nvnD z;}+hmUhUJT!z^+Kk8s~iS1x;Wz9rSZS3lUU!NkmHtz z@6G8S@MVnc)X~v7#&pfK$QwDk|Bkc?(?P`hs$EyzJ$jf=j=7FQ^+wfIRpG+ic9pEQ z5GQ)p7u|MdgPql%E^dj9kFS=g)eZaf=>iwWeAvPwLEnvQyV6(nhOn~!<>>-7F2hYx zs=ljC3Otw7XZTQj*S6J9+w|!#-!dGV4j(>j^2gPAca+`o8X6i79X=d!+%osDu7)zDBrls%Pi?D)~Aliobc zFf3ZMKS-{8d^E_qL{nY8L@eFR)bya4S)8Xrk6iG@ch`Kv!@QJ^DRb&eZ-s;;batAm zR(xtLlDY7H5BGC{a!sI7NX%mWi`&YL53xQ!m$m6mtL?-|*Y!G=D)XG1ocoI%TW-h> z;CVW(8;sp|9cvLb8)z?|9wa+=Mtc@Jq0-WgbG*rs9sk?2Q!ih>Jb3ctJv#kbeW(3K zAr6s4UG-tOG?&3RgX)_Yc8#jf*^;1` zyOw!63l}aN{UFPX`RVj?V_di1XyfFq8c02YL%Y3%;_X>3wd12+ZewBTmMjU?y%7gZ zO-+47TR(j0P`K26_ zB^gz@#v}jU(2(6`L4J;rz?sU({cG2)tDGbII+UK@tTq95dqkP>UN2s+GS79%k|nV*G38|K zsj1R8mdd=$8!KTKum>BI1NKJnUu@#rYWes(em;*}vfGR%ySsTjZg0_Bt7tdg_*w~x znk7a-_jtp+amLJ9vsS7m9o1k?B87z>rAWFugr1iuWD$BWhXNA zE#d3|XGbam^1{h)A|fJ=wI@z(!ZdkTuVc7C6i?-94sVld{fBz<2IN6yR54HvQ6Rm4D?YMy?Z&gSE~817UZW# zee~$)4iElnvb{t%E}JeaAt*?2xywNLou5wsI?iG8j`x2ku53s%v#ma?UEk*I?;m+) zV~lL`#T`z=J=O0EeFa{g<11_WtUPb>R@sIWBQJW_ZzfMdQ0k;0R@B;AQ93>lrCc4l z?XnF5h0wb-%FM{fRZTeAPb1DlS>`nxr^vlV@ltjf?n3df$G)MfK1JrtiGVc?&)5~V6jjXYm zS!3@Ge*C;+wr1GwH4A1A4t$^c-K3^DFpzLByFW@a8agGGZ8}F`wk~q?#&#y|~ zJeJ;ZLn^8GZN`4fppHGw9}b+T?_fTEy6E3O{(rWBW9ZCP@A@81zT_UH9`)f>U}fcL1k2F7 z=ci^}Ka!xkCb2e7mgTIat$Y5;)3;U{UTFN?h2DJWZbpBesL8w28>P>_`rf=DRdv=P z@iGMV?17Xop;zvY`I8w5;b(l#zPjq%xk)WxTB<{TL(h^Kd}VPrmdUCsF%qK++JnVy z3fCp(oKhV7m|rtC(jU+1WwIQ*k_xiMQj(6oTDyLI+Nq?vAA>$V-m9io9~p42vQlc- z3V)f?&&PR@`%LP4*?Yq6i(hT}Kxwb;!^g%**%BL3OY4V&XEFvBKDg9#U#fIVN|Xxh zb*tp#rT-0ZiN{TqQwDxP&8r@FB)+09>2#W1_pv71TD>m;Vf3oV#?UAYM#BC3E9NYh zKa^rr+S73!k6-2?=&dIA>C>lFlz)n-5RW~wI;r7>9O16?{_2*=>s6^dLbX^`d78Y_ zYx4@Pt!fqMd1Ne`w=_Al1uH5NN;P^@WK*c3ke6s-TmRrkQGBIc&9iQ$pzLd_%Lij_ zQT;PGfCR+XzQeQ5Jp|1unw*LIpZw*m=Cl_{WbboBV`)3qS1|nd@0BUjP#OteweNOl zRET42luAd+ig|06atoL~KB^p-}0TQjgBKq&|AU5O_eS5;RH6Xn35GAzh7kc z?`7562Jw-Rks(6U@i#6n<}E3^w)5$DZ+d#VP!M5NF2(aQr;T={l-9uJB^adz1r9j0 z$MlWQo;}MN`Eb|CaW=khV4KQ&6v=#iZ~9mKpXb&83{gY7zt!LqhsD!BUEq1x&@ck7 zE|K%`X^7Cb_?S(Y^B=WV*_>g?TmJq+$>uBO72Wx%Mfj_SFOgDeh|K=b(cL&Ouuquh zw7lJNsE?_wQTiXd{U$4fkfDJY_?Yb{A6)uhggL(H>6qlcXXgdE@jhGCLeX7e9Lv)> z2Y)EbwMN_&oH6N!P@C1Bl(XCxww2ud1FKV6o31am?>~Tt;7wMO!yo@8D5%x&0N+;a z@Ph}XN4*l&_O9w4P7~GfUogX_R~NSZV#n4n4J)~DofLcsIYG_U3mPo%eyusJcAol{ zoanyt)WhB2sAF!C*2VFE&s>jJA+<{`ERdo zzgOnkD6apyc*i8fyDKZHxOSi9xm9?#Qr?zrqwl}Fk|3_p{&K`7WHEf(`&W0R-<_Qu zejX@XIa5z3q|C41J3K&tG{+Y&J)kH4mhR$z69`Sm?^5Wip%eqyZ-na#oB%zh-o>|9 z6cwqf%9^JVIwuIo*c~Y&&!tP3+KjXY#KG;NRPbzDWv!3;8x9W4b=d_Js3&(=AFqHi zQ2T3kRqk&?#@=+U&gwYHlD##cwlbjFuYcrG z!a3^=rR@H5)(?lgdV&JYUuFEYr#!(|x59V4TgAJArzx?5Y`04oFq&Wi@!~>Cy>`(sJxy^svh0}-S zd$VW3wLSa=%6Ss74r3dhxwzWQsaf_Ce2)Xr@!P8zo2NR;PG0)?_T|B$Q^LxODZ$#7$9YYQji&Ld zzNDSx-N^3U0cdNtlXC-iDPIz<|s9Gf<=)ytP>WickH z%$&T`<3^9J_QgjDC%bO&*Vwv5E8WkHsx?pPSxo6&c zD}B2QkMedkd3RYg8}yCLD|>v>JwUrWK(M4p{b;l8=gmRG+Rm#yv9Z|mBI1m{qklMsd*>B&`IbMF(HL>}Tq+RW} zV`vd4r}5#3thRY&j7kKH!QftJmHxI;-YfHXp3`VUbF=FnBU8(Ol`k^QSIvbROL_y}{GGu9Sc1&;QZGs(yJl{jymS{mnhuXY#q63|DEu-gsi>8udTi4ZZ=zgXfIG6Pjc&lKmTm1Hc|Xjttxy#MV%R}ot^1@YhqSe$e*0}^ z#KAS2gViU>=(b?{_f~SZe0{@OJQdXE%$XA#9euO0`v^d5REG&!oofm0T)N?eyJ$>8 zf_imzH2?|Cje%8wepAhAB?#8d!bCyFs6?;{6Dq39Q!QCagy7-GD$NpeBln2j$MF?* z*u)~myeuiH`QzIB!6;>}s)&l`t)kY71ikEA-rn~vZb`5%*{lM*Tz<4YOvY{8+3@UH z)5di3toHlYMOB5JKVCxj5=CG$1{~Ba-Tvt`KI2MN0mXrvT-j`Zegi2C?yK>u!&hc4 zHsuU;H>8{2U8Nqh8kjSX<8}Z5r>*a>3*A*srG|1m zbu|8lg)M!Q6lo$wV+G8WWMpOI^78bpKfEgMFI7$)X1THQJlkFchP4(2uu(4`QB}Q0 zXGXvcFrB4b++thB`UaUrEA%Fm&)0)pP1j z^9h$Kk=p^xUOh@nw#mlV0#m;mf}0OoWE?;J{C7=M{WQ`U8*|2IF~e&fOEdK&cy_ds z(V5<8p#@Z`qOy|SF&YgOkn+R4ajwj{x((e;+1jN_oCol{>YAF!UYA~{EEu+o>)6F- zr+(_LPf?+U6E_5OSLXb?orez{ijIxli^m|mX?%Q`xo*MC7@X&wP3CtNN$NkK(agxF z)}_j>IWLQfWXv0+(=syF&7Bb)9lZx9oMf5rlX~je%=HF&y4nUVX%!U}U5%eGceLq< z2%>h@2gn664=GLqZ(d>K03tlm6M7bhF&cf4-q!N9=4(O%xT zC0@=1hAiLmyA&P9oTbux=rBUu#vK4j$3{dv8(&saQ`6bV8c)aAa^Ue4ffp@(?Z;W8 z{`!s`E0;TUB@LO!#Kfp#KI2dQUUt_;vMkA*k3WCv?>~%y&}hljE8WundvbCzjr0~S zSb$eB?yQQTYOp5$c+`(OeqFt8otn=fP0f3L>$E$^`b#s0JKnuJ<&dkdh+szUnuhuH za_d(=0o@PKl?cFV!86k^xr>O3GJE~#JdKSdB#vll`7T<2Oq9t=#K|i<4Xs{!!?Yq? z6-RaO?Agdo<_)5Z(kS8aj~=6F_o9!A6XK6&G|T^W4q$zXxiG)Mp+?Jf3JS-=cHgML z7^j=<)LwS4A=fE`%m`DeV5_I!Hl&*Px&o76Qzr}Tm8Jm{9WfiD;Q-mt+66OBhI^V` z78f7J#gp6G+Ss(mM1>p_UsPFkZ%5kc0)9kFRUcMw?Ulv)(KG~mSz21#)0AzCdo^a| zxm?K9rO-(4iy15#jezpl!^nMs_wn(JrDGBK;366rMmA(vG8!5i{Q?4_TsT89a4qu2 z^XHSkyY>raM~99dkHe1?`iimD3`TuITt`h{PaUtVORHPFloN;u(0ZW*t$QAhY5~8; zO4T^+#G0xYtu&`$i(rIJ%v-aoFd7Fk+|iTWTa#>9MBy0_G@@8LQr02qrH2u=k;=(A z@f_;}`OV(_aSdTdz9ZaspxLR{1fK|oIOL*hZXW+D|MFN2m<`XIAydF1RsX(3DitU+ zE}fDG&e+t#;)sJo=H9(~>Fa~+T8$?s4v2+Zybt{FR{`M!1XveSWx+jd=H?h34{^&z z2id&Vq0hB5+VxFAC7`@9*kG1Ob5Ogv{s94T@O+9mDk>glU){b}Yv87rnVI?9&J`~U z3n}R*r=%RlL3xX)td)||B2PoW#7H&Ox=kHpqB%=8?nIbt%&^q9vrB*a_MyDI{GkH} zLQw-{>Pk3l5yCyJ!St}Lf6dYxU<>TmiriQJ(r;aB-^B&9r&X7gg<{kQ^EWOHQM@1@ z47vvX84_EvD@>D9BI~_}oM8R>^)Fw&Is}6O4EF1sWszV#)G-=v?_1@!N3@FR=7!j~ z)^G0`JYRf#Jf_8+?d=EF`uQ|=`xmty+#;k6Gsp29JANF9R~QT&CURyYX2?GV6s=TU zy5-_SR1ad9Dti@#UECs3lq_xAd59eL-hn;%2eUznE|{#-S-^SGSnA*)>^_S6s&Xpt z+_`(#&)XZX6@fV=3O_tLLKel-gD;cCInwa3Lu(^|vj{&a#E}2^@w*5F-3qL4 z=dUtGy@7nAg_s8?#+TDT+n{5mZ2LebCG}+fG|KE$meBuoZtNs1#f{$+&*| zUgwIX*PnH<;;jt^FK&V3q$vlcBJB(iC02p#0VF2A5y2O~h=xo;P)b3a2#53%!zn%Z@o{%^ni_I}Xu zu#V1}sLB}RcRVGE8KQ5&fmg0v>DZe)d@C@}gk_`=EPog$OJzl&7~=ua2)_B|o3)aX z+Ta<*#>JuPA&-X7sv>rP=A`N9n1#coN)y+E=X&KTxK>=e3PF1ioQK%lT)kRd>l;)F znK!1Jpw3(5x(<|njhI+Lb1j%b(so@( zDW@Uk;UCn*D8TSh0%41h>cO#xvq%aX577kfabZWE2|CvN3|$FSf%9`7`R4tXo`kWnY@%BBe+s3_1kOm@y!#em+;8kA6n5-;q|-AS5L%cLjH8wsSa9!JL<5iva%mAx`S~qx2@8= zASZZ7-ZmD0CE9WSx;6u%vIvHk+{AI`I1h;LsX&as< zAoSq*^WCb#yENM_?{;y?<-QMl`0xM25k{D72a^=2!I z`oi8}_Am3*4JAO|l?psWbAZH3X$y%D-49ae zJ-EVhx3NBuy(l3f_#^P3fa@09AFN`z(gd_Qs{D=}JBDhk`v90?WsCDZextA#VGQxi zMY@|Y+*ra^fRWLG;w5k|V$jGRN*cW@y2|=DoEr zXxtnbDDVc+fFeT=6GS3hIK@mH7HkP!#0&oZ5@sNH379y-A*GQ$sd7R3Kmx@RQ|n4# z1I%X5vQ4k@iajy8L4cpXYTp5-D;JSz6-*k3=vGr zvxQ0y2L}gq0B}8u_qh7C@GdxqrE|-&hD_@yRAZDqTHn8~(>Q@}+`UBpbY6cR2AgJR z1Ca-aW7@TWJ?6UBFFBEsp1vt9Ee(-W1<55@_&6Q_qrfP9TB5k!1Va^Q3AJl*JL-~$ z;uf+-Ycj~I;Y;vHJR}P1)$m*7I~a+4>n*LWo59j1K4(iq;wMd+hEk?3qX{)lJB`*? zc$Y0^e%=-A*csE1ZJ&rT4XC^rcx*(wOvz8`|6$w4z|`JaJgQL=(~;>wzjoV<-bhUqH4azmV2mN zRq;-TR(L=33fdi}iHHf(FV&XFA!aoXl7v^IScB)K+Om(}g!cHLP#pw}^30Qs3q&KJ za6#6*Asl5XatYC_FAFFg0Px|mKxFO=W0XNd<>t6-oG(=*SAFx}KD4}wzzU0i=M0sX zm53|~78nSgSCu)o!h272SlAA5#~xmGe(XL8Hi$UuBZ|wwP2kZ85{is`uH;j(q#rd9 z&?_`0X$D#ABqamjULlH3AbcVyV6@XUy(2k!qs!;F9@IG@q=B@I~R$Z&YUl|{*fC<3^xG(;*aAYf-}`FNQKFSV%th)z0rPM;6D<;w3o5f1 zTtEH}$8v4wcJvIm3w#rzHIiEO3vUrbbaao0_4O^3Llbo~D?DMQD?mC2bU-2IyKAsq z6LwAfkoo=e^cp1}VB2UoySN%Y#HWUlBC%1~*>WE6L!C+;vd0SVtDT*lD6}P1hrIh? zXUK+#sB{*N;Gq)tn@Y;8tYZLdsouhkukgMp8n2gKGtQxMv8^Aa20aAO7hoI|&CznM zbXo9QunO{dqRXKNh%5T~{lE%L(e_iiK&km0b!ef9nfnNwI3kYv7}R1sBj>3mC!?^ z(8CB#uosT|&NihAhfIhU++m`q0l?diLD7kqkBf;Z%(G-W|NP!YzME48Pvt0GL~VI2 z!y*_qn{Lq*3lyx{bxSl{f+4qH@nSPXx1n_wKo9&x38|FK9q?HmoNeEG1ZLjs$}uO* z6d%cPv?GctU7Wj>+yk_yI3(4BNRWt#%@D?JDZVR<&Y7TO^fW16 zkKlZ!tuOtEEsRdk1}N$3?`IQk>I+{d>L_cvZL=4=37s~s^F^{a;scPDIG_zEF@{5~VA?$h- zM z#_Wcurpq>;VXOQQzz2fJF@mWz5b1dV!0^PVqfV|u4BOnj!ipx27-9{8YMi0g=CHbVmXeybD`U#FohztH*zGCk z@VHlTYwjLzOLyVeaRInggF{Cup7Ek? z6r4u9VV{+1N`qSzSZ-NyuEW`^j(Z+L6{tS%X>gcXubp~x^^`RD9;$tuCSk7n^=o# zk-BSKi~*pigMfvEF20!rpq_?Uqs5l4VI+(pcLz=ZWJ=m`pj{|y)1=Vhw=<;q1ka#h zaupat=vPfz%UOr!XA$5`~YV zJ7qe5SIl|HleT>kbAF`;{J$sTbflU9d0C_?TlDgH9gaX?#X@;fy=%HGGGDe!gE<^Q0wGz=<%*kkKOk+z7i>ZqjH39nQ6K*i}Zm~}|ji#Z8 ztD<=Urea7k?O*2wH2XlMOHC$#kXxdFu{wZZ-9j6Uj&$$_dMNh*10b+aP*EVK8bcam zJ=KbzznMiC6bezcnE~gHzobC|v~BH}m6ci`QJusAHzYA04Svzh<8;9F(!nI16b1vBrgUIdRYv6t zrzcwjwFF&_s49&*1YAE(p}T*OQc~f$TwwqxWamJoM(x9s`4dt>oJ;NIwjhzB6N z@5=Z_1;Ia&JB3JuW?q|Qq8Q60v4&Bi0<#uXaAkgeCfP{?D?sXs>yM@G0iee3(K5g7 z?!HyFG^U-d{P~jl=GI$No~MWsk|xN{2Bup>@1lw!Es1Qzijr-rG*wWqayFs}1c)?v zS$J&X2&TXiH-r4j=V=V_ z7q_dRJM-G5oLR1RE7KgLD=sS>_v@nNGV2(Q?DRSS7 zDTBCDC;3jH?I;RxvOa~-NpGy)K73>}h0mGaYs;sr1kIw%LnhY~V>n+RK7Z5C$VEH4 zkoSmB(4EM2W#$c~B@VvX37*&VFN~Qtyq!d&{hN$GXO_x8L~NVi9N!KC&cLEzORXid zr?uK#crdtiM!Q8>P0d-iTfmkL_E2g*I$2OYBqlV#7< zg+di+TePXk#lgikGEd&#GAJgoq-mK^XPou$^T5&0*SY8E%Nn}PPiPE5vp4R~8hD{? zZOL;IYt7saS=x8LG!%MZp2hhz+PTlgwx?N6%OE&gwxmkCt>=c+V0ETb3w=4{QO@NX zhEcqwvyKxh=zpvD+&w#L`r{|_Z|vnS7>~NKL`pTOZahlI|NXE%3lv;FkNJ~FH@vgj zBW2X%cI*oUw>LGwpy&BL{3XBCe^BG$@BX{*RhZzLCtd72gwhT90I_9DWm>hUi&d2 z0?gqKH4>19ao9f-0Zwoa1|0{X8}9sVUBUr5!JZCpa*Qd2-YF{XH24@M%$*Qu1A-0% zG-3jID;Sa%0j`?>Yy%MSxVYWq)ooSzk@qi*EQT|f-+(ySutP}z4wMaS>np`ueNonX z6qQNTAkz+q8mOi%Ni(E3UjGlh#awk`o$_eI;@e3)<{GVIO6QMBXYoqGGIIUkU~hQ$ zvV*=y|NkJO#$;zjNS>Z!vpCq{L!hD}80>tGlWP981m^FZIS%AM9kt1XmTf`BK@`2` zp3CFX%xXImvU@te7>U}vGM~tQCJeit^vjNe7-Uhk4(i=LECuQMA{o1We(ET1Hi}bJ zDw-NzNY(E8o+4#DBa{!QoI-lgg@y=0YsHuQ{Uoj%korHV!itYR?Q_Fol4$@oxg8pA zogJEFtJmk@=bLjJfQe41SV>dn_|xQ3o-R0zqv${q(2(Rsso>4FN+K@u`hmC7$_|=%LvC^hizFw6HiDOqKK+r%R{u^Ih7Y(Nl!-cC6WDW? zeeo2b8K=MX2&Ww=87$XqXC-0bHVD+*HFj-PBZ>*&=GR}8bOI;-m(lxi#e4(1%cI|0 zb-6Vli7mL^?RID4!xrNf9EB#$5p;(ZAt>{!76D2Oeb>xo9&oJO$GkLjW8GmMZ zlZ-fPiCJhi6_!9PDhk*ucNexB*0B#(RCek6-UGuDcI!e_%FP1tmgM69NyiH z5v}v1prhjHnwWGLg=lM+v>60zYgqIWaLYzOT0?{n$9mW)QH2?!(FI`{i+8c6{&EKR}s#l^T2m2!QFV2@0 z_*LP*4g(om(2HL74x9bM`8a{fi@yr|m016-tmO?kEPv4N!0EQxf462drqO2b6Tkmu z2R$M2>1@l%koo;XU+H)B>B%=(W1>m)Z4fFH(JT@{rMy(QbNNq;d`UrvB@=HofCqx=;Ps^wYdlJw*n}9e z|HsfvJ6^rLdA4M%pmsw1Wy~~3z@4ye# z_;@oX&3SXRzi;@1ztYI~>l|5GzBdN{X_=Vi>FI*IeN?-L^`BRWu~`t=}YU5yk#|Y^z$*3n(wCYmDx^}{`3F)Yn$nB^~Rdr z>BK)}tNrL_&J{IAj-~u)ds_$bLC`mQStdbPPrrf+GeEh%s#SO8WNbvm89T3%x zFP|#yDfi$WblW`sf2;W_Gjbl|x(K9NWM;Dh9<7sFUNYM0v`cuOuz?n9*^nCF<9oZd zhLwK)%;C5?Hzikb%>vN+H(eXn9e;mkRK#4E&s}8RU$1nfph~ESOOr&|LOmVU96q^? z^UD78h4tr;Px>c6BKP2-McQyjC+qzlx5W2eOh)QJA$v{Wn6XJ=l(}_i_vp*PCcojT z-NT(PUF(}T2Q7oXRS|-GY+-Z2qv4b5&)4Epghx#2&DP76fF!N-(r{IeOIDVFP>0mp z7y1A80{H|_dGt4oB|K2^JL=o85I>Wh{5;t9V-x#Ce9?!YDtidOp_DH%>(5RWI^3Df zG_c>8iSId*Bbgx98^?YlP?L4eLc?YHzy0J}C9UKVy}M(*45q6z^s<_=F1Xkax z$myPI$FXP`*_ z)?a`k%b>zDJzmVFrYBYP>w*ClT{x<%z$k)fA&daSzo}?#8!-z8m}FCV2G7CE!*Jc@ zROU>j?OWZ{6LUWOhCv?qfic#lio;qN`~SAG$-Cu%k|8Yfvn-giV448V+Z>#8vhmVa z?fw6R-YmCD!}ZgAGXfQgc9wESh`N~ znQN}t!nOwdW8jXyVj4AIjTpKmmtpzTAdU1v`Xt&s)CyP*2pP;Yld5PqsW~0(XYj;TvxXYXY=aF z2OxXao1bUV0F1N@VB^-(20&U;*QUTK2a9CAYF1Zr5tdkRRiR$2g$~ZlZGEAVIV1dG|0F&WrELv0MA0G%>n$grn*C5fb%6;K`uszz<`N!*vV#N=xNjuY~Nf?_g$Un zdRQ49nT+*^eG}|yG+h#)GfQGQpX1vrix+qmVCEve9vg{3#ncAV7V`32dqkyAKAjqW zJVTvsg;Z)_-w@-G9J1Rb4U8B}XRDW4<`Bc1L|A|uDlrr!Em*KqPbRH*0~v=}P_Q{@ zd_q=33rUPhg+Sv8zVLF*9l7)O?Rs9vU{#_T4J1L2qY)5Dk3_?^%<21;8cNzB0p>lC zDxP}@C)TGJsrf7tKN<>s5U{-cq^jNp_##%5pNGH|vsD+<8AmYb^0typX z`ut{!3q+Y!7!8A`Oj-=gxm1Z`B)&-Nhq(tJ3j-e+G#%nBqxqU6tfY&%v=3;mAf}cm z4(rlPi>Bdp-GNd@o$xU&BCNw>P5d_3H}z%8Pg9;BQc zbI$o-#!^lx>o{fz-%#CW|67ym)E+pczJr;t{0ztFSAKy~HIWZ>FW{ zyrCBW+u}ejfG~NSv$WIDIgHN#cyBRoor$lZ;#`ZdN{5Q_sJH8QKSTIq-&^|0acr~f zEHW5RMssV%)0>WAJR&sF*T7>0)e#Iy@Zrb;X<#1*&ObOyM1+DIN#fC)$pEcLI0_mq zu|>(`K=>pTB*xoiBscZK0RMc%8^eSVM)#hFRbt8U;YRC4(SVeEX*ziMc~} z0C+|*VTf6fkkAAzCL)5y3n11LM+FH{kz)^RINtK zGJW_Y_&-2Ka1S`mdV5b84lQgOXEVpuC^^B=NG6Mgv}`OKqIIamoWg!nP`-klKNW)5 zSba?_B$~%%@v6UBtQ$)7Cb(;IvvdD`8cV1wx4lJT(=YG~%_c!I1Sy>;{LoIok#K1% zK~s&nMk5TsE28y1`>oY81*U}TZe=&Hqmf)gR}B-87v2I!#R;ZXL4^CP*E1XfV)0CcMd zpqqd>fFq7+D!A@odc*i2+yOf&h72TGTwzEB{|!L~iR*BNhzS^c(t2HN%OwF4DSdJ5 zpjXn!@-XCEP&PpFhEE4JiWy=&ZJUKku9ocwQUcDIMBAVO5H)f_EC9M|C#Ie?kdv>% zPl0#<(kaH@L?weHhjb~JXcOrfwVMf21#rZ@t9+MkJaZMkBW+yv16Yy3`-~yeATbDN z7l_^v%7FBUB*uM=_zIpb{vT%BVC&{ue&)J@h)S$u_&ll`pKy}eK@&{$q5-HDbPx#e zF4(lHxn;b(phq75iU~K~191?%sDSs76@n?-KhjkMkH@{1;Sr%WqN~~)fz!m2f*YFpo@|qj`9x)h>a0v z?#P(=yJ77?5uO_KXm1gwPU?A6gVI>6SEtGc!1FOpj|~IcEmlpEc@0YA2AfOn*?G;6NBH#h>f97 z87;6yZbOM)e=itm3B+b7wVA^D) z(7Qq3cLb*G5-fn@bQ8c4SWD9X;gi%XV)-5FA{sV43HJ*MxYWT%_v@-GFED8 zRbFX)T%0eYmngqQsjfkC>8wp;fUJC)#rt*pj|dH*p%CZ=KL_7qBB+5m3q?R20xq4X zqGKvzL`{MoX%^o*f-e*P#KA*Vx!q82iqtLD&+0jdbZWf zu36B+LdUG~8yfZxr#E(c8bO$I7>H4SFejymsG2*0f zq4F495ao%Ks%WVYqNrd1>Cc{2FYs3C%WCt6WXNL4wP}9_#G8;5*V{k94I|>%9e_j) z_Dd}ngzqFZgdCY)ln1#YLSy)<1N-7P7IXt=jQHy6KEk8iW zp`{;GGvk4&1t88ZEDr=55-|urf_#GjOmrkT5Y7yJh$cas0RtP70r+hMBxokcO(2Nk zxge^d5)6|kFuf3Bs88#Dov8)4CUwjJ<^a9+;bn-ZsAgb(I1yxLs2i|p1BDSj%FuFG zqoWjS?vYF?Y;7>(yXqy$!78nAq2)jOkVw0#>WuP%@TjP`u(15*QcS4uUMLdRse(0A z34v<2u_~O<(lTR;3~mHv-NeRyBItl)4UGpnMjxfofmp;^TslTs97p)2T^BqOOmI>L z!m#1cAR8e6I$}KvDado3hUxjxJRihS!?wYXgp1S47202iD=4qUDl00Fz>`PigXSAD z5t4tS{zO^VI_QYofhsW?K!L(s5^H2w$q9mHFA<;y`B~q^*Pb~g8-Ohg4MJN%OFr=S zCM45@hy%C7oto4ioeY`qyw(#NjD@$Ui++b6#&#;t5xO*-D5MD}i%A{_=f!$iv?&Ng zIH7Pa{oIb%W;J&>+E`MbAb6`!lSh88h%`BwQGiRb9oI&A7&LO@i#h|Yq zH6}HeByvFwfaG~(_wHZGjG?STe+QKrwqx%i${^GQrUgR)L_pOtRi4+g#j$zhmlbno zAhkmZl+WK#BK9d*YI06Uo4s4R)S~qCv-uhG+_b zXUIIkIwJ8{=@?bX{Mn#T?;GBLMRvwL3 zI1P#e_&H@D7(5~tXZgZCt9)T2NxfSTM@R~f_6yMtc81&Qc(&M}iUiBpqeNTzU{c_s zYa;@X_zbjB0zKe`DQAl-@cRwAL}Wlf_lNgE+J#67JW14Lpzj0Ho88=B^G|Yydk_o| zJdw`e@i64&OF_y;>_coL-2~@FZF_kb#a$pH zbt(&CAKhVzz*UAWYfy+d(LAEr1;4?|AOxW-es~&dQW}+h8wY8%;iTa8XS8%-I{7Gk zT$CIijssbWU7gLeZEd~tq100_1dWd6U>Bm@Hg6%kE)m5TihV90RB9(xPPf&Pibb;* z5)tr?8`XY<3I@eqmq>lEz*9tXSSWQo@#sTP8IcC^eCMDebVu*-T&N`QNg%g70Aoe@ zt;mVi46AzmS{(jImBH&r<>SZCK+9YH7Qeb=_B0qjiL0(Zqn*OI66$R$R8$NUhWkpy zE(fdVOo7;X@3o@VWUq5bi3&62!_bZ3hJof_g-zW(BOQMnHv%t9+3*X=@FF?K$SDWR&+DyN*Fe#D_dq7Xn|NxGdN(3?Q``K9fQKykkg0g`eYhH)*_GSo!6KmHYW@Ke$arHZp+U@;+g_v!)5TY z!Q@4yn#y>bk(wF}_A?})sB5+0hKky4EG*O@g&S2K*l>d{x-=FS7AEzw6auuMi$Wac zC`I-kzDL_40HNSpaVUfbz!bYVyb>{Yta$*KM3i-Og0x%W%XR_kB5Az?ypx3FT3RAe zl_ttDbfx%?ldRsTgKLn(;?RSmGeOBjbaq;Lgo2QBI1gA1p))A!NRC9@#nI6Cz;7jKz=8F4+ehAOE=FIA(Zs< zNR)(G;kl=G-4a=%5-PBRux-MEL9rm@WT~u05F|}Y@b0AYpOEViZkWyDCXg786TyVx zlTHqVOrqY8x4Dh0fS)OK_7(LO^sKbn0SoY`w#@bK0kIqfi603}fLK6~-JtYI8|^mg z(;EGN@4X5J5!);Ba?qpf$EFM)>PzVJgK$mSP1qf+qySz3^t_RMbS0fGY4j0xDN#}T zBNU*f>1$b}-fGh1VI#c)^Mm2=)WBf$(1#0fF%>}W8*6EQRkut%)RTDc8 z327b#5@-UB(*z}4Og`A!X4=+WyRPIuw}Q$Gwlnd&DTwzC)0)7%XgdgWGqiIFh$Jb( z@ocn{4x4Qzek~1@R<)ibC1E1LZUNvt12|#RMrwd^Bx=TvSUNwKQDm#J~q?H^MCuzX%gX+2e?S+s%GQYa~$Iau1HYd2$)xFl}XoMwJW{b>oot zFfanr=F|A<0W?y;0?hC>6N?S;j5rV%yBE}T0MbSN&BC608?**Q!XL#ihkAhD@KNOY z?f~iy^lGud^2h*DUzW(T#ff-9`*;vTF)gr^WOX`kY;bVtYR;YDyJhOyMV~?M2iO9E z4j=+aIxnY7*(qGk=`Va7uIdW|C#=M&ek)uNWeo5mfNG|a)*Wcexl?od3tOo1`5{A` zT1vaAq&~s>C%2ThUZ__IMUq4U&;9)*kY_S@jATfyfzktM637jkEvDrXfTL1O|kHbr8R?DH@ADXlEYnd7-@{z;jUH*J61D7S6-~j>G#|q zBs@vok4%cF^2;$@qL|ITZ@omnEqN}0Okpdl>?VQ^&}opE8XG^o3QjXkYe!6XW7iqM zBluC6B0w{8ZOGHn?AG$eN_p)hb}@+xj(m1~G37cmP`J<#tWusBI|1_tn{gCOLrPL; zd}zfHkD2S_5dZE?i`-b+DLv7v={v7qYu~Q-T8ahF2+oobMcyLgP+H5>50st{ntNj$ri=z zZdGAmY0&KcY)CgDv+>5xw}^}kS>U@bfd5=TD>#O!V@FrlK5cDn1k*e4KiP4u&jqL7 zcqxzH7G3iF_b;#=XKBD96v;p2=jWFS&SF8Qq?_lwxvi8@iVAh(rcM6PNVQ?iq2_}X zR3e~;z5)c8?9l(=xmgDk$H|tgyxDW+7$Q1vhP$D2mBPzh#8|zxn00GzxxfmMD6vx5Nfq{YW%*@Tm(uK&mHxZOX&=?k?F9=S|8;w2x z>8ksOg_V_+zE7S!*~d`g2Bvf{FMt3wFgVx>$L(lu|GsU#^JWxQMG#)5STtoZ2S1~B zX@iN4AdGJ`DhUd3e8sA_PrM!_X647aGF?FEJ@&^e5fprdb%o2sEL(DKBxWz>&bDaI z3B;=VR=oFqBO{|0y=Q&NMx`O=>XTPuIUCQqJ|rZhi^WvN=PNLlQU08?($6%6r8s!-4~A;5q1(Mc{U$QLLx4 zmT$fwib|shu`>XJ-V?eZEw<-zgQ*!AMuk2rd4rKTM`&~Nf=AQvdopKE{3o&HRugsL z0H}J;>p?=jn~;zoT8Nc3DR8;xAHB!N$Di-{ym&K|V?eV4l(~*>Zf-!?8XpyW!nUW7 zdWUq_Vuq)=7Jw59@E^6IDI^6aw(tWSr(~0RfzWq62osR#sH_Smuqa zf&^P9=i>R%(b1*(GCJ z*bv@czJT!`t9IBL4}X7uU|(vIinxB9Pjz**-M=4?RZar04KX$`0iM+`@yqw`&w;(X zlP_Lm96NTb2-rderjpc8Pfosk|Gqx&E^s2oH$Ok0jg8F+nB02$`qF@_3NrKZ&H*=y z8Rg&Gvj;d4bbd`TaEb|-sxo*~XIhnJ0T0EQ(%9HopTC@8&mtC+1N#$z%VaHqbCk&y z=YV^ai-8LRO3KUCJ(DjzJ8-}Oc<$>=;LU+%$LjoN8mWTP$%zvlzz~`j{T*1SUAl5* z3NW6mJ&S<7XJDOc?my2avnP2!Fc%mD*FIFdTHb6pug{U~!FtIhOdq%^|NJQQ1K#iV z;|Hihd6_wd;ZHp{)(b!jibYTo0K)>%S=0`Vz*S}qOrYgkte_=|SW?QU!Vwod2j6$C WJzW=iZwhFm6oaR$pUXO@geCy1U5IM{ literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/category.png b/src/comparative_analysis/visualization/clustering model/category.png new file mode 100644 index 0000000000000000000000000000000000000000..2be2277bc07394303fbb45785323c8a55a3f7d66 GIT binary patch literal 10762 zcmeHN2~d;gx{kFiwJw|-KOM8R+W7I-k1-g`M%=gGe22ljZ-l|DS^Vfj*u$=JWx&Qb=+Ma^d!koR=$SxI zjLn�AFH|ulLz6LOcUW-b8;rZDVb{yl^_hF35zVNXAV5)r9@$00QmPfW8(JV^abbs=}F_*y& zfvx)vZ8}u-%Vn)S(N_X9-AA-_PIKR2*4#g){_Dk@0hin-4F**k1B`}_ReksI(6OIy zcLbi>{iR=9?BIeGeeitk!ChMXh}X66)LI9*RF1H++HgVEWQel~g@5o`n2%35i_jKB zOsHA|n}4$#K)-(02tb<`n_)CC7vHYi2Ac!3?{9+5y|DKbU~|mu(puQ;V*YX2Z$mN@ zujTUi;n*h~Ej`0)F#Tj0rJ4AY;0`Bc(UOK8lOdhva0GmoY=RJ{E=UP=+abhYD)6rD zFp3q8y`>~lvwr7;f&xA1M1kGm>!063XLg^B(rPUs^0!e&?k8H%Y5p9UxO~3Vx^%iy z+S=dGRHQFfcasGv!dxO%^NNBZHzl+`F`Hd!A{P_o@e-jRqoM-Kk}nH{*?8HW7_9hY z&2^=??gD~fu2F}lLz|6y)!shz(o&IH-K|O%qkInC zEn@ZsgT5j$o_hQ)U%(6>z8|UDAnjkM3RZm44zlXOp4UEFrz`6o_~1J2MEtJQ{^^mt8mx3(9^SEPjH#o2BGi<&ubC zk=S@OC*6s&GdFgxxn57Okah<#&<+1&h1% z#YlQxIawGeY&I0cT5CHIqIcV;KPW9V#?3w7Y&Ty{d-3z9PWc`>sF=$Jpi3WbB&inX~ULCg*F|hAp=KUc=9!9rkJ7%P(@6^}VCohd=kRUX? zUj2I9+uIvwX<2QOkeiuV?^ro^XD`0etfVi*Sv6wjDYK-#qa(enOsX%(1`JfG*RRuH z+~mlm9G+_U#H}Y!g4N;~fepL6gF9X0JW}e8;qfdzuF>}OTeO>;2q||m?K5`P`}Ci% zva&jV{yfDkLH)*!8@O0yV);JJ6FGHH71S8%>FMe?ekCn7h2Uav#1x6u z2m{{ys-we;MHSZ<_xLA=PgfW!S}X^cn3%M7cPFmMqymA3oE&YjvdFklqcl1;*6^rS zHQA27)K)t3OO&oh-OZ+CLmf2Fk1xENYbMh4&{H!rm`TaR%2Giw8fPw-yDfa;5z)KG zTBl-vk6(#vO|(j~R&m!~R8&+-A)4HRopm_Nfm~w&V}q)hQDcG*USM)&AQw%)PDpeLnQEwU`0FyZSySXyO7^8j)W)IyJ>jBrqk{5-bD^lJ42( zKi&|#e^J7xh0|o?_zXLixwpSR7pIX@c-&tB^Xu=0j>r1x1E_m{S0E*td&<-E^70Bx zO3;N^x|<>fbDGrB*O!9k7g7mJKhNm585qznDk%}%vQo{YY=Fvol#l^ZD^kogN~GI>nK%pd@+w{3nN)kKi+u8G1$r z`xMk70(ROm?(VRTAN*mnZQU=2q5^AGLI(|T#eiqbj;!BCa5ApHwZ{2N5g@#_kO^FVQv&FZ~>Gczpe>>m4Q}0LH zG(o9MIa7Vjb8+TPsra>zUc}IdDA$)8NO_bTi6?)O4>qSC_PdGzT#qN zH2>)zgyJ8PrT#*P>@4QMB-Hs#$`7IwOH*qwr`@x&DVTfPM56jj3Ma5HmVA7Ctliz+ z+ud^#oQb)V_b`}|KE}W3sJ1&`G0Oc=)kz&rgrPXrvWHjG-CGM4)6{Oil0IF4{-DrM z0YG&&2uPISaqq(^m(W$^T8$-|52RNnu=Z?kib^1>9Bb@#4 zpz#&=&HDiYfcSWpO%^vQn9p2t33&Q}l37>)fMow%a5EDdzWwMTDqs&FcgFVh#|H|C zd&9)~4Jn*`dIW9`<;Rk=d5N{xUkfy(BX8Jtpz8;?))dY-YHx2Z=F{bc#l`6WKmaea zw$6ROr{DA4opxxlx95};7Z?8`&>@RkL;t57+{jK%O?9MICv<8A`2G@YGWM%u#ngP8 z9sBg3(EuziZ~B9-|I<1cM@JE++}J`kYNtmUZbFo?6qqXM=?7cB$D-+&-};`_muT*N zA-c%C@cuYUMQq{N1vqriad!KjtDi%l(S*tT!6)N+){yw^@8Hk@_S+57m&*m%>H2-O z+w4WqG-6(k8(m5Lf+XNJ1MyD~@+>%G$5-$2iP6WcKt9xgH(I`kLsw6~wfg?!z~Mv! z;@k3Np4>&W3*906qir7;PnQc3u0X71S)qdMc4%N%T?TwXFOdFjA9h8SDk3_RPdV^7 z!`=YPkZ#X}<;7ZyJj%bp{t<`wqc21EkOrg~xT`}9R3}Wu&sE2NME!@Fw5v8yCh8=- zym!zc1~rPShs0v>#KY=M#zVL5=bo+C`5ucRbbb#EjT=oe#7yYv>Ct4o5Bn%;^h0TX zid3V8AxaJCGWs}J+s3YG((`;)xS(s%7?|5-zgVMI-d(ej%puU5%+{pP49QS`Rntn8C|L!Xv zZfuC%VV$M=3A~%ZE<%9sWz^XLx%LGrzuFj}5ll}X*1~sAbQc)ThY_8vt*rs;vsB;t z?G9b3xlF*P_DYmdP-R7iIUiwhJpP8#twMa4f7xVwM@I)LUegr|wh%suj|>kF8&Xx= zYol$TlQ_%>l1-+1M3EP_7+jGi)N z7(u4KSG#lU*VO1Eu@lf$VcDj#`L^t>NCYt0!@2T@3h*x?j2u{VA~%b2xg;YkEe&K2 z=g~3+Oqa_mz-0{m6qOn{aLK{$(F(+FYggAv(dXks9nRTI$P>eArT?vbB;Y;wf9qd9 zTVp2fa`!%W?prFA3N5qVg}2YMYN5dVmUEA-RLSbjenk%cm6Bmb*xR4HeSESh>JX1z z1AzKJnS$almls;0iDZ`82PnNNE z0&2NW?YoiSTaTl@~$j5qz){wrg~&rO8jQ~n3kR(6A)o4tHZhix~|_1xy} zSNF$IX*iuKH2p(p`$K#DtFAgyw3=$7&eax-XkA~Xa9a31Pz(^IGb+uEXR5L?PFg^h z=I!g7L%A*r8P9dF0}c0vo)KnXiR9|cn-~YX(TmU zRpH)8J6H#A8bw_cm7H%+;>rJfM^$WM5_|0$y6tKRg!FcXMZsh=Nj5m>J zCts1FuD&neN}uD4sccg9MxSU&MZG5PsvFt=n`y_k$^O^AE;6v(CNndW zO!yFRdSu6wva$k-Xl#C(Z&6f4qk69UUB}i%Jm!C+VCccH=c!2zwj1a28+m2DRB3 zPZqZ6dN$m432t{N6>?2U&@5&Y73qVNaVFi4#f;LaG~$C`-3rPy%sipt_U=So&m*ez z<=KdFXMO`HleeR^pX}19m~X9-RB66~^I!@Ji;6r!WiN$U(+eJZf_1y}jFBH*~63z23pm^$tgp%)!M@6m_~8 zzx{E0;PX$cJlGZDBaruFV`KTE4rdJ~p}ZzF#yshG>S57xcz-#$nHv+#3%#Va z_I6R$yYa#LxbVtrHIiO@>NuF+s2$$iL(65Wyj1q1 zS)B`uD(?15MzS!(xJz-@*(mk;`O!AvR4B(3r|Z*^v-jk~FH%xcP&W?X9z6juDyg$F zU)8J~@zmgSo8)+PBsBw0-+}iZ1Yx%xI)^qA7Swvh{PDapFFtjlx!n<;vcQqclni`N zs)DJ4svBYw%+ZT!&dzZU1eactc-Vxcr6pv(K+SE+ zaVp4fHs~4ba*vrLSB1Yks4x`Hm%2q858v&DQ-Qjy%IL^0K-q9b(fqEpcBwiJDdc3~ zu;=_p3l=}X0#^W0>O?bgAkwbwXmfGK;QxeA#W@vt4V7?Ye*F-DUfubgN+v<)K(2@d z1@S8Zi%#<_%Q}S;FV7|MP}FBb5YvY?naxxkWttgJPEKOWPE}BXd4lPgH`N6YCjyib z=n3mK?;NbPSh*0dF9-25;R&!l($l&2K9^bLU-VhSCgKax}7Q&H!selC2|NZ)pNC1-S(4NAJ|ie@thOiWFM zci0g-65J@>5XlALU=hIBkyNX#+(b@Q)x|Z_UDU->P#vB?0YJ@aDMU(O-ItMr37ln5 z-sT~X=FZEAZo*6B;dbH7b7~=7XUGGW6e!FCid*;Z(qKgd+FHowBP5OZya)^BYA_6L zdo;(f;ec*NO2{b$2IUa=iC>-hnhAawN@wJ10mF@91hwLjCMyJ6%y1eaXbz=nw|fj$ z7hJdNs#ufFJCD}Ez~P0(r%s)s_!Ge(K!#eNT(*z_If|RRsuS@gU%s-?#>R7?zZ1I{ z;F#p$MEG+U5UBCtnQDW%6O@v7(Wctfk&1S)Ncsf`+akO{jMxs&19G-(%_V~o@09u9 zg6Q1QO^#iSaw3s8)}9?6?U($scUyW|Zmt$}X&z@|WAo(6lYHOq{H7#*O=Ma@T@iwV zm`h@)82Y=wT-?5I899uCCUy|~p~hv2Q18sMAC{LoIozsCYYW6XJgwSn`gj!H2S z4X$r9)Nr$uGgsLr{oj`ZH~pyB^JJUpb;=2I#RvL%Ko5WWO3zomh1w z<7+<|`Gwh7R9HB8U5{J0UZ?z}a6ocrT*)-Vcaz2PjM>WKJ4u0sw15%tY#kYpDK1Bn z*LtB=B>`d?5_PRHAZtPOCe!lmYT=*Snv6a`v4Bbo7@3KtZA$0;A)Sgj#{#1Jv$QJU6D=W>B;fAb7_?{er3FL{Mck2TLEO0j@ zf`HXJ$6P4afD$ui?0&Df*dT7F%@IdONAtN`F&<;DGO?^=u<&@hGZ?X#)+%_x9;JO} zzd0PEnu6>_n3f?E{w*J92q8k}CJK1sa(`e%+}1Q}A^h@6_A9Oj-opH8v&QghNj`g5 z9gw8gL~j#J+Pm5q9^#4wbO{V2YoB|KM@Nnm8OQ?inUPT=p6CXeI<0TlZ}@7K=9hZ- zMgvM@s1h1DbMd2?RmB;4+t?iPvoOeh@r3Y>`)ROzKTTUGV|G$e<=$x6 zd()#iQ3nMB(xQSxRvPgux~SNj3ln*R4Vvtn^UF89p#F_^vhhrSq4LGIQN|Fn;pPcy z;4mZg3WOt9fl(P$j^V3Y+)fHkQV`75ZI5Y^E$~?YLgujgKutGruui=mSVsa-Qd1<7 zLC=mR4lzchuTCF8HIF$yGBGhBd7UqQG}fCTPHOKK$CAV>`9Ckt}m z6Sg0|UWclndOa+;h#hpW8-RhdcXUiZvkR1nPzjtU1K>PzTj00aj|VQp$_h__9z3DO zaRu-C=@4r|t$Qca9OkAZ!}SarPgb!Y#KK?jYcCL6J0lM|;S1g2P>1+YwEg}_v{b^%o zeT90mGm$Fsz@fZGUf##nK9Ea`hCW5H$~Ag-{V2m|pR21Y!im-95Ai8PX#u5DHB>8g z-SdZi#F}{14w`SFcy?y3+TsE2(!p4_&Dq@%?LlnWhL6LnR~G1UL*PObE4vqEP=V$a z-^C!dgMfzrsK?V)F5}BnUPNsnL}?Y*!IBJTk ziC!A9cVO#!;L#yac7oWeoVlulYS~d(r~;kGou^k6P^{`yE}li{fl@#wUErbC7>MQ| zjEBx!osHnd$AC<7F|-L{es0u`ZUVfB2icvN!J?ULw~B5;RRAp`0UCn3sLgg}x1cdK z2BY33*5m2r4-$}LMag5RuC27&W2D4$FsE&8ygxC68PuC?;n literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/dbscan.png b/src/comparative_analysis/visualization/clustering model/dbscan.png new file mode 100644 index 0000000000000000000000000000000000000000..acf6d102c17991be39f77884dd8a2a1fe2669de8 GIT binary patch literal 70932 zcmeFZby!tf7d4KZV1YrZfJ&p3w1sd$x?4fI{hl$9Oa6!GH{VS))MM=BqRrJp?|j|h{l_cY#|}RT)V8~6guAJ z_)2MDxqRAnbm2P1v$%A#ElStOsT`WrI4OO1=pW;8koVjv#eH;q%c%_gr{}NxDsbzS z-Sgi4xQ)a_YRa6Wv3APepj`Wv#du*Te^yT&);WLN*=UeoaIr{`_?dsoMm^AA4~${+ zpX|pSlUslPAhDCX6Na(*59ggng1>*i^NaPaUw?l~LOJ>S*T*lF(ft1VHsic)zy5xc zgw*l(ulK*{CHwXFJ6rzW#sA;5{G5URA4bca?eZ!rah~h55e5A?Df_ltUM4;6i_Keh zQNL-F5tKe4vh*g9P4noYgRbWqVej6(N^){<;u&ACKvtBj3v;Dyr-3?5t7b zlyOETG(k~TSlM%f*fYV-lXim3aQLO7Onrw{sf8ocWBsq01_g5sQrK2)$FJIZvRf0S z8|yY969jE+v+`&|tk3D^k9FLpKWZy6ZtfFfW|VB(Zr6tLYh>Pj!Y~4HV`X2|Gu687 zfY6&`x^D7|U5>iZeN=@@I&)WSAecUrb%<=N+WAuRD_niFzrKVxnSB3%h#JJi7Z!X` z)TNW@W$vGYd8BZ2i=`Xd5MBikQDdFD>gun{{ps+%WnN=1q$h>OX$8)_kjN;Oo_d8YWV7f9USN$M>u zE(_xb8!F1NzLCXupO8`DllP*c=E=+PVMun`l1) zNeEzhb#?V^qV$BejM!VEk|U9BGF`S z+qwUX2XP|4&tFu>bEPpN+q(C?3!Txz_}7Bv!4T|Ry?C;2sfR%Sv#Z>;{Sxl;&8jvP z8>_Q*1+%q+*apm5lW%YDj<(_>Ht*oEJm4}_yy$Ser(xA<>Jz=c672aivf)K#Ih8NY zR_Gk@Im*_4iwKLKaPQvMF4w7I+;?4W!kagjHWocM&SEr5J>2i(Gx+TWjr%`67g+js zpXcUV5_s4f{=y4wGDdNU_{abjRa1QNf&yIGV`U`XWy-28{g$BCx8_V%cNi_&8TRm} z8SE{zu73Q3$9*YzlDgeKHnx5Ajh?N^v*~kaQ&Ce(AWoI)#)mls?fCzi1`Dy}Qq&_hEPObU784)`(ajN*w26Q%k=D zD^-jp00m(Mt!oOc)3+@aUo&GXMdK3^72`+0`*5_tcboCLq9`bWbX*c)R#GGw6pYN> zk4alRHBfgMOU<1l_H5|vqPD)XlZ-lnt4>G}U$Tvem9ZU4J+<=7b*p_3`ct&{jN14EK{|iEo2XO@Lo!3U;i73rAH#cL; zulI0W(}o?5(lg4ZJ9C?JYzHK}?COLC)|dL4OFcbFDY+$v!W_eOAZYUHL`g_0y%`Ni zNYXLcHs7b6>_46I;vV7kqIEGg3uM5oREVxeqS;iavE_B0AOz)Db|tB28Je`DsH1q` zw)uX|S%{Wk)uXd*7gO zx;o=ivh;nQJ5(B%wfR;;tB&i(Nfz?GBMTi?t?)qx%tS}7Duk*^szxk|1eorK$-F)? zZR>YCa4|1ml9N(jlrw8hYi=i)1-yQpxVq|w9dEPo5;%L~)f=mlWsy3E|6TI5? z^{pE z%&e?UuutO`dpvbLm#cN{2VWbNmmj5|7=dY3xpgaY)uR+{c`BkV{{8zaXlDd-o8Zpe zc$I#2b`p&i;+VcV^JPd#GHm%&?Lw8tc-hvukwz>8#%QQr?GxXP*3$J@;$)%hbBSyG z{QRR|v*MGIlCn*kncWw@8f`8gq#l&)1;^`Z`$fZ}{Y5koyqE`+Fr3{elbn_6(C0Y# z`E^xY9X@OAg{;VP281N$yEoq6-9|8|KFX$Bq9qa`yGC5}7o1GZ?QZDIw;Na_5@53? zBqT_n7=Up`k2J=Q`SNwknVOnL6X|(2c$$h`9Z6}0)DV0^I~EPdix|ph6&}c;o0gr; zjSvIQG&m!-)7B?WCX5*~+L@oVvM`Yx6?HmQJ?r|5v$8D!5t8>DIb%HhB~m)c-NJehU%aN^YZ%jYuK#` zvxW34?T>Tasv#4^p{<+ADpl+ySv8xwx`0#8s$zp zATSCXr_xZ}02q?7K?`N?%*OsPE|)oD6uniImGV>F#RQjm)3qOE2UdE$=(s)CS7}-V zb#pDl*h`l5*t83jaC*f2+m(ll7uwA>_vDwW2S)l|$XeQ1DAafsw9&3b1Hs z8v$e~C@OBQOlGEn-Qef?P=33)TEQt}$OKiNK5=Gxl8`WP?*j<(9Rbvt+1b=SKfyGy zMJ~I+8!V!tJ#gLJd+%+F00cOV{WBIMV%-uro!GFOG-}5Y)RET){%3oZ0DFa zOIkX*{}Gvs?~+ndIwNz?XJBLGKssWr&P-v`%u#zT@gb9yC1=ftqvWw`VHug==M|`* z`W-EJU8^vc(L@ywj}mOVN&G~*6&jt6>x98tAKga!``&Z|^+08HbrV!5Gl-w->imgW zPtUG!Rl)nr>u$rHf3}`C{r8 z(V2IC^J^JUy^a@lp@!wmTBzfKh-#Xax=~Mr)Av0r2Y0IlD$i1*Dukwl0BwMV&oK_a zu1RPio~*I*S#?trJusLj^H6T;(INw~Q;9E!w7R*h-L6v>P$cX3KD-iW&@5zi^W$L5%7x>p%a7^(+Ir9XiL4B_>32e4wLm!NcR+}fcPvz~;JHma zSF>_64=X@-T`s1V{6grzJD^S zQk`)k0=vrE+B6*t&8oWUuyUIr0I2)IWMBW#kfy4Z%|ikJ$+nyWqN`upA*eRj8j|SK z!k!LIXtL0~=BIi}Ym08H^VIdBP=qp}2_V8^oH%d5*cN#$W6*#2*BlUqYGSTwVv;x?FS^FG5FE~DrDLw?E;`j7)nPU@Re&8!d3S%; zW^4@CN2h-O{=F>+O2?REDKQKUAk4AbdA?h>D5W`fVkp8hXJvlOh=QD4O;%|7T3F8z zpy+7q`#opXP;jy3b{=-5BO#ICWo6n%a!1u^s^Xi%ZOfIX)R6C%(c`gaa$&fj}z~* zE+fsLKRr7$({Gy}JlE#fg$;tM{b(x{#E!owtvoA-2j{H>$t!H!Ew$mhYkx#S=k_l zd@XkLaHCy?xiP`fjM0NNA@NYiq;TbaG^o$Im{T*gI0mWGpC*;2_*}Y@-S&P6zknAn zqBHa>lCFA@Wmv#}nql6*ju%LG4l%`tMp0SjoeCTSe9{FSwZM0+lh0tzL3cF+@5;8*j6i$iIxQdv@w7Dvz){2b{@iJk0J%S5u`ucWObDu`buLaq|f;omcV{nfS(4|4n zQ;iR`l`O8l%~PRn6c!7!ba8=eZrQD1BBw)7{CjJ6-D0<^EbOf;1qFpU$l)#gc1&Dc zikp}W0_EKC{pB8kY|~I$k^#{m3I`rh#K6d?B4>WM{wiccIViR;ajDQ^W`FeOv+TUM zW9t?KL<@Q!QH_S$WY&ogjUo5UI0*$`Fz`Ogq0{-jVjIcH`g$N*-=3)-6z4piosZL< zfChfXrI;DINMI~<;w#T!TD9zaQMf@NjKnN10(y|d$%riXtG&p`X=+kJ9UM-Nw6h(S zj_l&MJA;#tglJ_u&p1yQm_?b1;&n?!asp?Zhr*66uCM>_66G#@lz<|)<%1tUTFvn> zr)tc#5E(*i{5m{2`R?sa@v?LifU9iiSlaUvc548{PuWgQ1HuxS?1KhzEhAQxVFaeV z)v?Dt-g9kC*QTP?((t1udp!TL)#IKif1ZibrSCp%i_y9Oh^9w7a`BL+#!{?wi2Ub! z+w}c?1wF5|zO)>r>=7hVN=ixjxRadF_C7P(C@ZQgFaI18rb_%fB7D$feRbI;X!S{V zJj0HycWGM4`3B&(%>ezAA)|9n?xKS_oN?g1gCSFV0`veCB1?%@X+q!bY}2z_7N>L1 zE?YQt_0c&-Mgy-YaV||Fw&hv4u&ZR!vYZK!34$p;9>AWBWK__iMmNOXlk^FnQCwVH zxoJXJHSkkvIQ!4%D-v86CvB!URxXdHsAmNimCip|pX~BrN=P815%?gI?!8!;%fI#R z9TDPq)=oM+wDzbWWUV%x?%P80ZF>qZ?{}o5#^RuZ_^K(v2JKO+L6CMF;EkzGNC}No zGHe(`IM@SF9s?4=yyehx{q-@}V6?fFr<*k&()QKdpt=zgiL7x*{r|d2*l^AzE3>vb`%nJbGZa}fgh|}sRaqsIcADT^+jS$Je z_J+Lw;NFr;SN~|T+?PsOK_O~<++5pbBo_6&sLKN0K~e|L=MdQpz)JyAhHh9E=iYt$ z7!%*QVWE-jZXc?Pz(ZSSGEfzuk)ikSD4T}T5JB%_{zZMenVwhre*D*`N;gUnr6|Qw ztki%fU4#WRMxV~Jjx?+dO@wlun38fM%cw4}XUeMn^(g|+*$`5bO0(h5Ty;$_WoZak zLu5LR4+)wyFkl)^7=>n(edVL|7l&X$>{%eYb`m00mS+Yu(r?~vNzTIj~0)JHLdU z=sHT~rL3lw*I4RURb7pm5e$!!?JA(*$AatvXS%1l2h~d4oX4Nu72Q~_!`50RSU`h* zo%R3;$yuc7Kx9c_Q#5mBV9QDiWI6(TOG-%i0*SEO6pI>2#8j;>*Lj)(ztx^+6CHQs zbrh3g9LoNH{#t-fX^wG;7O!X5EphXrC(S)J^|-`IT!>dpF|gW`0e;jEBemV>o|IL=8I%Fbc*zHT3(21I>MFUTR3vQ?@3e9|?M>`!U4P%hb8-ePW zFQ>8^MoqY+q<5_d(YydL#OU4LFSJp%msU3tluDz%#$GBRrJ zfc}X4#aOKXj3wBQG_+lyL>)Gj`*?PCc3T^e4h8ko4v%?1P-*BzGu9kXjKY#ZU4vvr zAOsrsrDT+2>|O2M?3cYCd9+9iYw#zx)VIlI&!V>f|Geyft&C; z%C41w?g+F6S_l=qPU=`%p$y_RP#4;^YfDY#7fq|;SWq~$ahq5$(DEw)1q9q~a<<(p z>xzMOrLlgyC0N)sr(}7MYI)5=SxE`;47T}Nh&|OOU6wmXuIW+HWP9NZVUA}GIt>*l zf3Hy71C&&U=i7jC%I);y8%?cF9t>cvXJcIzR&^-U&W}uB_#~pp5W`?+Q-_aQijJ0GYq_==x)ARIT{Cd|-g){ty4Bre(#z^9Dk`SHY-;4&#=h^hPHxTw%0?o|Rlaos=tzc^ z{oZLN)LmXcC-6^N0A$B8N(C$XJRzo7J-I(z&@b#V_n0RGntwdZUwQBn$Q_jD^&TLh z!(U`YqN@O_c#*oLDN&JetzghqOza_0hZKu8&~MVCJ^%`RI>QKTvOp!f=M})J$e@)% zZMC3+Cw!T7(%%GuKL!)vc~)RwF*dWFrEhjSm;wEC5>S}4gEfuu5gyFB9W;f~r%gu8 zjF*1&BFG0pSXEV}HGn0E)S)`IDD}B3|{&MI}D& z#_UT^Df=rb-<6OW82+J+1qB_Zhaa)a6^IdrK0G;s#Dg$UEwHsWAB%{xsmJH%49^Mx&*l;|`0Aof zR7^0>cr=~qHI55Qkb2Fa6bN=20);Ke8rg9C$Rfn5)#Q(2$ZRllWk3T%FcPGWL9=yr z{QVmOcKFLF2X2$OE3Y6rBQ_iNnFyyZl-!J6}M}qwIbjhGy0>ThwA4+&v7$a1-!xFP}d@ zRQSWLDVWDhk9cH?|LL{UD^s2uR76Kb5o$AI5rE_#o#kfS;wWA^eQHY(Gj-s0Zk@bh zPyx1#uu5&C3N zO?xVMrl1AwO*+BoGb=?>(-B0FxKB>HBW@oTgJ>lijw($Jjih}XMRH|c2YPz>&4w4n ziY$OX&G7lslB=^?6~Kb+b{-l5-nbDckYkSfLELz-87-S>3<{(q4)Fk^Fx%a|!_~^k zDkFiKmQU8?-D-GR6FfK8eY+R$?xH=HIA~n!3E(6{^qG&354M8F@q>29e9Q|OT-{J3 zh#YfB7Ub7<2NdG+{mEGd3_^hBOb13<6|16;-SQCt9j!S-U!3CT(NXA;y|ua7Ts-+Y zt?z>vavJz_DfaxBdUsPc;9F8-g1JcH={7!isJy!=*H`Y_C^%K5uW2Cu71Va=O4rPVsU&aJSxK7O9iH=_ajqIJo{RN~1eTlrvhyk3hJ)U5cIC$IZE^Ktk8GrvljJNyl`q1c(XghHm8=Gh;T(**w&Q*D&$1*m5ZVfaT`EW$GvsZvr*mdD4 zPab5buL8bA9 z)t=BXYe{*+_V8#}sY3uruJVxWlhV>!U?O#fQc!cz1zj&ny+t~B%lv`Bww&%_*NR#R zC+L0jt83K)V*#Eb=G%sD3fN{j7ncG64AJt@*PHq8n**FF`0mZ31ZIkq6xJ}$^<}Ij zmHVXGMv0|)2Z&KD{uR+kb$YjpF2#p6%fC^2uaTmHW>&>pL#zH9=A_h~S7F zI>*5w3zD8P=kX@Ed$LVmd2_xrP#<^kzd z_}$AXv#FqouVyd20q%#;$)Z^qr1ohS*vkXo2YvUZA_`E`$MxlKnmz1UW5}|>BJKrg z1*6Q^(IyNu`YnJ-^hpB%H;g=@vP`fmgzBfMARRsM;E0SIdYsW@Jnz`KmI)-YQu5oz zKzh^EcIthIz&Z$d@dnj_s4D{)1>5;*%4N1@>Y7ymrkhF~&@VA?Y266mS8N&{LqtL1ct)DQHMMMzz#yfLB+# zraa<-MPz~npyD-uOk?0SnLh-9y$G~o1F(Jb5a*_I!}Tse%M&^*3r(7nl$n{Calpg@ z-*rT=@jJloCg6=zK{XwNq59GYYk@{SI%edG6#-ftaW>8%XZjSRV>&rvH2kMLO z5vOtbc2`nb+Ly;7`q)zoZ;<%%yDWiu9fJ+1gr*7+Bm9}IF=6hcVl*JogIC2@dp}?M z9Xx1(4g~-y=R57{OhB_;fli|-%SbjLC@48ST@E%eXjguzuBGr?0(3Xa?V6QUN5E0j z3e7eGn@P}wqrEgUP~8kNT^OJi!O+V#kfVnoV?6DO1FdO>xCVR;N@r+UU~8Fy2rAg0 zP{LmuM92_y^M_YX0mDY`;QK)P?_RYYu zQB_;p0?;@cn*90kuZpTV&avI_pwMsR)>^QGCv9!gu~gC0G7TxM5BD7_&jDpZ7n-+v zo>r}Bq$LB2L&*m65VzZsbupl$41>$#+@?+EeCb4Wz-c6p#S)IPs=Yz^X3e#`h2RAtL~+meh+g(%v-1Gy%__M?%(9 zhoT*Z6bn#>OdyOw`bA!oaE}!eq?ri{)uN^b`LEEgq4Bu4V;|Tg?BN+lAshS9II}f# zV|$$XNRc)^3Tg*pe!v%ox;DNZw=AS#xvt4Xh!lSn#fQlgPbYNnb*_1Mj_)1^_YJ+n zZLH!PtQ0a8y3CKpB86MKFsD*ndFmZ0HXab_X5EqL5c6V3R)FJ}r z%xrAUKkplx?UhXQc+Ea4|hpIyA&8XWXIL;%TU z0u+e=L{AgJOf^+4;|gRWIe%JV_L}W~G))7;VBMo0dbs_+yC;&s`XnW;A2WRvh-YI0EMCt`F)8{7_U}GyO)Qrq+ex}I_fnwuXwANs3 z8-Z5HJGG1r6DcQw;u*w29w3Cmpwr-0*>rA8*dq~+q`e5r-w22)jbJ@RW&r5nV&mdW z0j!{k(=pKkCN_Iu0$FRVARu?Ls;%Me$0FsU}48-Es(ig@zdcOC&f7*vc4lnKj2Q#2;6Sh z-ijk9b$lDyX{qwy-ih0L;+`?Sx)OMEEB`&F-#^^>P|iYbo$#dqtKqn4tc=$%ab&W- znA<_0+oA7xLSpOB&t3AnxmW$ymriEbJP`aQ*E@RWy_i_$`&)%lcgvu*6iQvfos>cY z*lxQynp5b9El;4s{idYVy6us*?{Rcb%SAFYYDl|eNS{b_gCuk3p?!CEl z^G0W$(f|513{}Fs=*kway;(2!@89FaPjkrde?74`5MkdX%O?Zwd6YW&t$m;c8ILy*mXJoH;&O}oHI>0Zk& zQ@D1X1Vf6%14i#Jw*PC2AXccEm9$ba4~WX;#k5T-e6t3740tRiFFe~0O9hj2m-^>Y zp&u^k^-+_=mF`mR&3!FwD`0uGyJ@-xSs4C{}so$&jA4`d*AVKcjZO1(lhu_`& zGI{tJ!~eQhbT8ROB}vQh3y-LoWewxHV&C?zu9N?NEudVt!$i|$(Y}5usa%*U+Iaf+ zn_>2^m^=LJQ>Vi*lAA+HK|x7+A8p09Zb7lJV{7x??MV~t+c0-FgY(FzL%*I5F2TS{ zIeF)5eh#_GEd2qNbO+y`gHc*uOLPdj%W&y`tOmr(=H`I^pc4`ol{i0*=yTE^Oi(x} zXYhXw*?Oh7k!~Vsl4M*LDGvSbeQ;>i+>to?#z@(sE7ys5WsFUDf(kv*0(_+tGOXXC- z2@bRpzEV+AX%VhyuFrcH=-31(6gVg|9DK%_Y_ix9n(^)q`FXCEfyHWq#hy?J&U0d? z4a-;DZ1c@z+A^-3Qt!3a^PhJam~jdg<)sd!*xM}H()YZ2%wj=J{gC>*H>W#jL7($& zdTOCSy0fBcBCum9`GlEz=GHA&^+To$9NVZf%G$I!#nn3eG84lX2OozW54magfClf% zB1hAKkL%>HyOw(4u#=zhNZVlDA=CD@YffEU;@P8ZfwhOGJxZIO8u%GcxA89IUY}q+ zFV0Y_cDBSnp*WM(?pkAcxqFx93D!m*6)@3TNX|d<)o`n6w#hY^qkCi7+CxrU#8Kf> z7lVv6Jnk0staxU4auiM+eON8o=O;bVtSKzsLqlAgDV&ruo*m57U(+s3YArtSVZHeK zx+qJ!p>$^kRhDC;<9e6!((10H1*dFR=X`}x=jh{s*+MKV3sY$n6q3n9zN*(6GBxxI zm6XmE-{murGWDI%QcwK6v)hTS=JQL!M38!X60-r%k2oWB!?@EOCsj=nBHw&aiy=pJQ)2b}=v$kEv zrlf6nPn$J1C}m94=&Eog$SBYIYexjeWm@QST|I?OOG$AYf7GNDVCgy=M7uXpYMVY^ zTujmjT`pe6<4u#KP3ioMVqzWLF|iNI+KZ#2x-&FaJuJEw;wtE#B)B>|7wh}L&)vK& zR8JC&w(0x0i&#je=5s#l$ZRT1N$Jjr6^Ye?pdPC)K!4N@s@IlX~x}1ay0iB z?TT&cc9p>8cr2Ch7EedGR7`qQTS)epSz#2WjUtT8O4rq=+R|FP-hAFdl)_1ttV@pR zx|MWiXkXV!O}TuZ5o6F(Ti;$Po8V|Zd54Deo0eDiF=Bc%71)ZW3tTD;>0Dkp6!zOUtI!auu@}g6kpE0nhaJi6`J@leaZ$oFTUq4AJn{!ev zs0UwiB>c&m>%@b2rS-MdJbgx{jr=DW_*UV?r&WWW(;Uqsre&)M6ONxB1)WXmujUw~ zDXci6KTuN@$Y8Nrm&_c#Zd0uPn%Ur)c0iY`l0zmXx9M}U<#Cp}SL zF_uEQ=%5=WDLV;%h-qf>^?wm_xHLQNi4j@gQY=4N^g(Lc&=H+AI{CXW~gOA(V;%W~uTAH|Xq2S?pMem?z&Qf!T zE=@h=mNXq1$))$RO?D0!?tJ)`nXqlUV0!bodMZOuhMi>v(l`$PGxQkIUZ`sW=N zJi<6t*gyIOzGP6{7Ju^02Q`buV6)mb?H>jH=7It_4uLS9fwm8xH9S~zhQrSXaGmv{ zXI|3>^Qt@%7SDDv=hCH0&UrK-IThug5$$EQs$HyqMDO+SKp*4g3^r}{DBF$`mrYDM z-1k=FF0j#cln1`t%&i|zjD27GL zE#6PCGBCoU33k1_zu=U-X`PNk(6(JHY;4aN3=DYs(lIB=exjSa*(aVR*m=vU-Kq6? z^~c(@$*7<5{{noUfp6z(d9dq-9_GZ`$RZknb5l`LdSiRG3i|LJ{{%Z1OFUsqz_ zJ<7b5nprMe>?2(XUd|>1mGt+$&))a0wBFnv?EMo2G$@+2wE3#7R^AW1CG!umoSr;l zonS4WA$g`aR<2&9Pzp{|N?cSwk%)`geRdwsTHZYNz3c2Zxo`{B7rQjP8xP(32}{rP z-!_n74jNd1Lsis%e}=z_ZLKewqnaG*y&HjK09L11$~Y3W*!_DDEcNDfYn*)#*~idd;P{drf?+QU-31AytCGuH7tptl zJxLcj^!wYN=g8HcKi0C$<+Wmq?DY#P|Mypw&K-QFtj@&3s0_wFgK?p>T_nGr?_DOV z*!$+0yhbH01xrVMYtBK2pI92ewprdb8G_Ay-p={6%6J_EM@H+55p`!H{1p$^{{ph# zW|wb2+=h!uWi;Sb-F8<0&+6Eyv3`@&qTBHcJ|QF@$e4fnGDZPo5?j;!w(`}BUu}Yf zIm#@1AKr5ay2Eg2|IQruk2{>|FZ_f>2lwyn&%A<*X_#RSNxu8y{MlbP_!lUjU7ldy zf_XnBn*p8Ao}bbEgQ(bVBX%3ZocsnRqTG(Rn94ps$n(tGe4irZ_8H;Am(3aX z1-duhC=@KF17_7aDHnU`4*kY&ynb-EQsr2hdVfx4aO_h0>|aBN_7LE)X~D~2_Mniu znlBeTJd+SC{}~PUdLoj@BQ%w9%*kbFFa9+@^@-c4ne%Sl=k=pYe!GHo2!eop_DrFO z$8%C?mkD&TBsW_(5$l^2HRXLCDly)TpT1lO_4_9-0mFLNDbHd*W&TH;!J!tfndMb9 zo9`$le+T{28dH^o)bpg6n{5XFvCPm@Wh|Bb2D)ga*kj{csNWpS`9!X9Z}sg@1pDk0 z0<8%*Id7s3a`zHp>s`~r>Pv@zh3};|8YYRf7=^a)b+qF`e+3bAu>$n_woboT;1XAqkLhOlx#LRT)Iw|eRhJgQ$wFP;(J+oclXo+0%&EK236|lvxC@Mq z_sujH+qJN#9FLp!J7Rs#B5 zQ09gi=4@ghDO$AW4?3E~~nBJj9`S^ymCIO$8Ir!m) zWi*0Meh1d!iePDjmByZurno4{{4REF>joV-JsHVsp88bKqeXU1N#l@GE7=K32MIh) zj#13A{lJMeWsO5klVN!}5sK4$cTiV#Mcx*EpJCn_M^hm{!I@ZsFG&LLG6~MJUZ;!|`m5$U9mc zyjjOaCE$mjTPljbs#3DG{>fIB)?87%Ql3UU`LtrdeTz>7c`Y3W{np*HMsbe<3v-1gupqmfy z`r$1SRkbpThPd$~~d)oYe-<(p&SX4ShJ;9wge^#@Nsek9svK7j5FhzYdEsyn$ zAUkEsskOonIi%f2eAtO+k!EyZX#-|bbJOD#HXJG5AH<@+*La%05x(g&T}!>S<2lMnW4kMnkGmL;AKKp% z`iPuN9A_AD)Bn=RbC?;IwSV36%3Vo}dV3M!!QzcJrr$`WU+Y9-i3RCms7u9MCmX2F z9{YBw3Q#~vNNjhMBW@61tZEk`Duey_enb&&|4F!AvwIo%{RI>gs6MAJQv6;n{?^H` ztn9?Rq<8m8Iwym%9qzPsY0Uc`Z8BVp^omuVUUpQRZ8ttqD*Evc;dClE`l(Wc66+3n z_7IkPioa_-&W>X4b7PSh6~TC*#ib&pU5**ko_ci!UC<^`^KImn5MI++DUNf%Zv$+c zPONF+L@3_5TV@Z650BFNo}j-;VOTp(Ay1l0u;t6{#fozdnzq}g@hZ^mwV`Adw;urXn&VwMyr;|m50w!{YdjnL?-(Pu8$%9dyA+?`?Gj$syBpcJwf44(#Z%n?rFZ+f-8y}9+v z_t(5Se-#-q)|VXW|3{2nPnNWK=1&fL?9B8#I>~ev#-OV5owdH{E$qZTbz|$B9PJo0WemC9!GEo6)N#s-dQ^JjwHwg%(Zr`emi-9AbNFR8A;G@2w%DT!{)Ml%i1|a|ESO+H z$F!D|uhUn^rrqEaF)l_?hM#eA)2mM(J?J04X_i|98Bz*ozj;uwq!64BAluMmT;Py) zu#&juv-Xk~nX)UsMf~{)`pps*`56yg|J7!3i%-~@`5m-#bxTS~%FJiJc<6TyLMnnQ z71+LnFb!a7I_~H?R2$Zus>z3G0CzuSaVfZokUkFEAp#wfcYJEF=0Y(6CwU6HR+nd~ zQVihuKQ0E@$0ynezAX($oosDi+RZS{3=YB@FyQSH@2je7{M?IU6Pn5;VcowR{Q}c~ zJn$IsfFwBH$nJ%sRx{V9>LwhJ*S`tQU!=m(Cbr2}b)p+uAgAJDO5BN(IAoYivJj_g zRt3#h8^pC>Eh$YoWrdW6@MaFuP1ex10MHI5!>ow6~R;(Oa^5g7sewX1=r1Uon64weY5=!++mX|ojmxgdO$MRU9x0N`VOqZ=(65_uV zAt~ka!ZHFk?QHvAL|N%&_1L_mWVm}~pY!OKQ;L_&zU^M*Wi7ZSrFbpmtYCCfk|Z+T z%|ozYaGTpa)giag`Mf!Xt&)L!ZwJ)gYn;d7F)|DHGu*w&86)?YHF5x;`<2KyT?TJ^ zP3ti1$%7k=23p({HL6@^r-`I&6;ph#;9wZVejMXTd7B5WRDp2%?E7~;IBDZjp`_YM zEfyABV5eFNDLyN$WM#B%hXy`>kP^K|L9j`lI6W#@Rm?K4$U+ZTa8gh|BG}8_ zG;vr&>@>WXW&U#()-vOWKTvfFGVSrftUMwu7-Eys_>0@75guVL8V2O0k1HS=R{erafOg5o;4vCm>My-kUG@9F;r7N8KSDa4U> zfQ5?zldOtQbG%`%39niR#`d5?_6Qf4fl@4q!PJ96{Y36pcI3$N(>_Qj(SV~V5a&gT z1O^t>3ct~%c)@^%)DXmiU5PvypYwkAPfjBtj2_>CV^CIl&caRi?@X5iM_Dln=J`Pr zP_1Ran+Gon00X^rNe@`@N07k|&KKL-+0BDD6?q8FfAGQ!Ql2rmgLTs;SG=?bQX_I| zRT3Duf~r5dEO7qZ`iLKb+m_}IZUi)^l=%++OCQB)=_#H9YnyzaMfOn#$dB|^kT=d zE$228T?QnP4(KeT<1CcI`6%!gU~cD^oNf(u(WUqnHES&L@1&OkJ^+D%mx|eH`F-X#{J2bL{DIccG#qZ5uC z55fR1R^W(4Jfl<~oEkFy@$DUQ@5@~5eQ>6y6#&x_VgVe#g!hD4Sg*oK+_6=Y@ZV*9wy1;-s#bD`iGDjzvpD519t6 zFMj6Pa`RWm)l@4lqY?+yvNWQWvsf=4{3{LEF$1;i;=KHRe}q5q+`n8A@D*YaD+V}a zd3CYaOfIf*=6z%z{_vrFyJ3RzuJ65(!8)^@>nGj4`EXnY>OA5(R$r^W-ZiHEd$Ymk zQMp0L@&1+__qY7T|F!eaxCnVaFfHj;&@wbqw?6sT_skSX$O3R3GOxv{nPd$EQFi;6 zhv31)CQrkm%osbstGqq_Kc=OsBQ0#ERz$TVoBJop?*x@@{B2aj-Vhex{4ZV5M^Z&n zwWLzX+%d7FGl>a%+m#N5djAz|Vv4YK|3%lDN6?qnrS8QjH=lC-cc}qtNM^vc zIv|)iU&}#tYX$w)-#p&v;JN0Zz4;Dl5aiA;0i3xTeUX9})!*@cG@ z!<~BR&L2k#j88$))Q@NH7i)2@zY5#M_h6KXs5AP*NrEls{Q|Vt^B4mK&d>7yju1rl zQfTDLjL|OnB(#Z%w{jb<~ADRAdn+*i(%NJoxCO%rU zrNV#lv5@2uy*lGyjCTmqKBZd$ZT(iSJ`KU&%L9*~;{f7NpOo@B>cG~r`n$%If7WQz z+2p4Fb!Nixj*yATX2;{Sq)hT_U&0s()zyCP+FA;63(ow71q>I-|4IO2Z$LpY?~00A z>{d?5`-Gyn*IJ^NGoB%8;OEAM3mC-3S9&+GR^~dJC2AYIyZcvp+9ZaLQ6$fWG3|v@ z%rN`4nWpR8G=2$iId#uFCR7-d*f7k@Oj(Kl?zZgYKyPqTcO*A-Dqdy2^UFGRkV9OB z;Utsx$Jl|wlE2tPXwQ%{3AvlVadf&v1`pcYPa5v~z$b*Ny`@+ju>TgKkn4+;a+34G z0jpo4(U}j`&oy~Sy&GndwEvbb|4|_W8x}+_P0rb)tZ(y=N9uvoFHRGm(mnt0#Y3*K znQSZkLXg%OPnSn1NwKEoY`gk%`cCQi6o?ek{?Z~CY%8N>o6kQ@s< zeJsKpe^@jw~S)oRpx zH{VkICA}#%`*_O71S9E9tC#kdmI(_wU}$BQ=bE=9^nW<}4tT2D|L?n@L2)OeVU&*I z7!663Q9_4AoMVrcy?1s?g(AlaA$!m486_(tdrKlCM7HpJE?ND4&;NNn&vU=(esy=_ ze8+WtuFrT6|MdYfWpgOC^3+!^#sK@=X2B(q!g%&G>i_B&WqaKhw$7*XBjK_WDEw5X8^l|Oo%G{oJ7(dQ`%ESj7CtQ`&S=U%%GxEqO0Z;t{lz<`L zRgRLrWdE};0r&@tTGuy#dcj8ThO^~xg9EMH#t|CvfpXWAsgI?F1L+jBtduFxlfB6j zdO|HQ?&=3(&9K}lDxC;y3R_C}o-fiN(!T^wlML-g72}Rg7`(52EF9bf4`U%>T6T1U zTk02~weGRk`6hjAy*Gt@xO{gK@8!jZp3^c>d1=SHm(=TNwCCC=15H0LR8-zB&%Fy+ zE@Kw;1@el;MeB+5-ZJ*I=cTd&|5HC1dsG^*j9o3*Jc zzBVw?d}}mQcR^5R>Z9pi#+<0>(auC_?4v;Ktgxza8_zq;%vRQZF6s-JZ6o>aG83jh zICql!5M|7q7VcUbyc75{50_SVtE>MVOQbT%EP{-=<@?N#-@RBTQ+;g zq41t(WVJ$U=LHSj4>;Syg^n%m02O(im$xTZ;#6@ntCSwIhE^0S7jAm@^i`kc?LSs4 zn5n+#C07_XmzXO8jk zr~-Y)z&osE_}A}mjOn)|oT@M8xRctXdR*8)0{I5vz`;yFXkul!US59qbdbj>j8nGbdG%6<>d^6l($r53tdzdr!1Ye`v6Ot5(@}^etqm8dKeY-yAadCY7^P!SYj<%vBWB8NVOXzwC@IN4 z&cQaL`H?(hL0rY7OXxH)1#0}XW8U?pPweOva(cfB_xyO?)T@8ys<({AONi9#Aez@P z%B9yvI^&i!?$RV-WlmAufI(zM`L!EKovBv0ED+oW&Q4L(}K+CbSdpG4O=oU~8)^kd6?bw18O^x#)$zqpD<*TFW4ZDsNmz>6gfRddba2 z(7%fBV))FZp8{e^JhO8oaXUFJ!k~B?>d_kutX7IA#YRleFylClT%ZxzVd!@0^82+< zT}}JMaWyaNxW3)iIhgjcJNWiSx(t_U`W7zLFjJn|yRqWa)pqZ{Q!l#eE$8vt^`Ztg zONu1t3;})u=T&K0Wx2~ni}~eq6o3e-GT{~0X4Em!>ll?c6&o1wkOI0nJ2fX^?(S|S z7$iXiuSF<3{EiQbY&yaUOyQvqo;>-$@#vmEbzkI6U59V#1$u zk-&f5q(Nu-!y;XT{{CWqWeuUfx35gY34>#Xu$TIGT8f}3;v=;;c%y=j8yO~|g_Tvz zzl!L7{KWJRPKP5(@xl7pw+6Q_uO>|IK2aXvqY0((Mc+=6BRZ=qaS>8Db|*-uNGw(V zN)u6;Lrx&%5tz-sv#8uKL^U+PQXc#xLA93cgoMz|UG%}k+SozOJ%mt9%5MC)7&2$=ETlVhAL~xyhRj zgFhq(>7IWbj}$+beipW{#$h^-6hIWpbLP7#>zC8<}p|*p%=g&+&yAR;nH^yR+-5%WBe$8j$ze z>BY+{QXv%5ZRA?oEMk6x0IPc@@_y^)WraR#Wt;ukCNQ^z=c}O=DIP0#oZsn=Q~d;3_}xFm^pvlaa*Hh;?a&~`d39cg)N zERmga+6j7Y8?27Y!n_rg)n0gvZ)xH1f7i((!Sqjl`t99Va9+NitT? zOdf-rUld~1A;KTD(b-_GLgwzvEq3ck^RRbw<@Y3Q-ak(W9;9_PH*KI*b_bS|^*(1+m?8pL`Y}e`1*kRl{2&*iIS)WPPj~!I9#D$Vl` zJyA;&3B3XE1KP}=p~D>x*PT<6jsXJwN<{Lw3d)@=n<55!TbgBU(`vdBCWDFWe|3k# zdb<8^$E<+`%g*~x41rvaSy(SpEe7G|*qj_CAbr*Y2Qd-nd3+Fvg$=-Rgz+9IkRrkI zz(nTOdwiDorvaknh03((gapYAfp-t~{mB+!0|Cy8sYe%A*L2&>SnThJ+x}nk)5@e5 z?MOHRxR|~ekl0IXoyiA5QyA=8*uZ<#;J#&&0uy4SB-h&7dWcK&d1|We^6{h+QClso6}7w;LQ3AMR8h^#Y>HU*+RR(-pX5C~-oSKuNc$jU)O#e{TSg=0M?e z8v2w|gY{ZZM-X2gqXWHlrMH@ro?|m;Pz_B|)T#xswgI3|>Q0^m*-lRklCuMF?*)BO zsw~9lz~E6b@mMPfk5Q9P^HRc>{wlO#-m=Hx7@u!>v5F7)X!^}%J2Nfq7kR8O;M$TEEW0?TVB$`4BcwqDKZhIJ%$U#XWdSd>{;SSItHkw!@2kmX3 ze%68FP^=sMg>!@FfTsSM4+JOc>SQ{B-i~F9QS8b>n~DKS^*~a#gzzlMc+n^Y6gygBb_n00wXw2hW7J zriVvG>3#j+e281u3zUhL2azaUO%Q)NtQLc=JVlTOs)KzL1_}#Ntuujn=k52b7JdjC zx%Ye7a0ZnZUhQBDci+3BjWpmcnmvK2IgZ$^zU)!Q+Rj;akiOj?3IBqW03vB4-7c5_ z)3w9U=R&qhqUcyJu+kH(+Cg9zroRw;%-W2PNT-kNzvTj~%J07_`(k+)D|^TF zZJ)nU;gtVzI=szYt9*Eh6~2*<9KN7DHT>qOHxmY0TR?HUOq^)%;&54g=5$L`Q&-f) zM5@9_dFt9EQ``kgLXZfL3jZ^BOO_H5QO-z^82U3MW&J!e*vuPqr^9~2KrhSJM;?@e z8}==DJ+JZHKdrOC%X)B{^P)mmp3POh4G)cPIR5PSzZyi1V+)p-Y*$3_0p7t4Lw;4$a%T8@-MFS6 z%u=4E_=Vfi9e$7zuK)(V{esqyk{h&_f=`MFsK=r~>7f8myDtBkOu~b*MC@*I!k1m`b-w#3-z`Pv-JrF=bfZ}B|Xx3f@QPFvrXn-_YzHB<^Uq}X2SPo@4AGZm2 zP*U=*@_skCQOkccos247PDp=ny&|P)z@$hrZ@BoEBuxVz)?3;lpw!UNqLXrNPYP-G}^T$dpz#ixppQMHm( zE*{Ay*-9YYUbb)L38ik|f2i_?l6X~X(1U+V8AERUm4O(v03PTlPAT8UBL7ZkI}m6a zbu9o-q50H5<2wk~=UN%zxWzsRo6=J24QCZ%lN|#8wD}ua`0fcwtR^jYAZba+cDr%v zlZU~7291?DCK2XKv{nm1O}}0B6J*=oG!B)0`aQ)&4GIv^Rvqwvtqy=P-akK{KTm^P zsVsEG^~g*+EAtj$Izll>o?j`)e2~0d-F}LIIG_X!?e9^~pBCh|knNMYIocKnI1oGE=R;~Zz zfU*659x&>f&?D|O5{*E@ThKg+M(leeUjQNVMI$I+JsmjdI49xC$flTe(J-5ftIyO7 zPown2HFb^JsLd{>cyN%2#qjJr{pLTG&Hu%aQB|%Iv8TUzhz)tmt9=F;dxTg*(za+4 zDPWfcM08H~r~Rg0ak5$#IWrCscfYrw`M`la;>5Z-ea`J}tGx?&Iww!a)*a8jNO$zv zlePX4JRB7tD3WQn{J{EX=+sA^$*nvUnwO_3c;-yjGxk*kDjIjgjj%QAH*_w~su3qA ztHdh4_bOmMtfz>Y<^wNTX`{&AP$#1rwr6TMeW^e&&ZeDs;axQVS4`iY-M42I4*$`# zfs==Ada6H^sCwf+G6lrDC3pjRv4WIjWmZK>Ld_(0YL)Q{n^4pymZ|3@CMFugTYdk^ z@XbxEiZ09-{OjrM!sngHR}ZDjvXGO+F}uqvyFw?);jdkLU)W@e;;XNlSvcsc5hPkg zscZhf8{ni*fu{g0j4n$){#u#UM9hmWJKp~^ly?b#ciKN9IFNK4!5&R<#&$(#O0U zj8mJ6_LWL5*gIkJ(#~?vpj+?=&TpRXo@GYU^cV$F5tZCG|6O1PP184w7Q6OINFfq7 zU31%m)hRr>xTrZ`B0kIY-qZwLErF?{S>&^_t^$9#V&qplyl?gcd-NAvD2!@X2|4iX z8d~Avq-^XpoH4tr*E=cBBaZ4E&5wBs>KPp~3!l)}agDx$o~_MreTjeW%|`&P_rh2h z`X&}Fm^b|lvG)q_PGysLa*M8F%Xu%oN*V))pAIBV@hPYW*B#7M7_8pEp6H1~vnP`q zt3vnm@%-ARmielbb~{e(^~9Y=cK~><=xAr2bKEfluXoNn?v9~<+xKwYsgGy!dF@jY zZS`|}5?H%LsKdB_R#U>F6bkSP^yZAgPZ(z$0W}D}FuTm@CFxct% zRIoidlqG*c)vcFVg!@F-~5#G0n}JdvS?MySi{4oS(@~H z!#mrw2Bc^yu>LswI+E% zwh^?P?^H#eQJt$5vzc0SB8HP)Z<7d|s2ieR24)8_{L%Da{3O1cyxr`KY?^$MB{5uG zj>hlgf!yto48cFzo)f02x7CeUu>?`RDln+1H4ku&O^b<^A>sdZcH;S#p?ZG#u^RSx ztKY4qeZ#d|R2viSh=$G3J1ZQQDB-*UP5;>Hz=pY$6JGwFT0kJn8i;wOqci15N^zFt z&p;T~F{?u`Q;2SMJ}VT(vNMVFRs?I~f7iCOINgYuti_DRQ|;QWz<{#?gny*-y}ab5mV(7cU@oS(>aIfJ-r4f zew`mnLG}wf2|J6$$8F8EmlHpZ(&j>!D~(sp$W$fgU0a^wVRf4ux#}hnGCAfchzC?7 z|JG0?HSgR_#?_Ku*Ue7Nmx=hWXP2L_%Gx`=Ta7T_AewKJ=?L(-+<2d60flI(LRDtm z{NgxCMb+0w)KM!v?UPC47OAh_Wik`ud^iZ2F3Nt0G(a}DzFpJkMn1m{fNpRTTBh_YZ4iBV(3NESS}Go9-|eNMzYdzCJJ4{MH{C2Wl+2lPuFCPVe_Ejuigl zHfVQ}+eu?ymvC%Hd7o*k+(A+7 zBejffVv|8ju`Tw)`nxC(3B^Y5RG%09MPuNFp-*w->AW{8G^cW*6JTgwN zB>SDHs?YAUvmswYy~LmqYpfSuv8rg#vvp+BYXe};jK2Em)MUu%+dfiP#x*}2E^OPb zO0x$N&+}e9Y|4H+DLhWR;BK!y^B1HbBnAL$*%2@C^x-{jvuh_tdG^DQXG;^s%}Tl1 zDr)Y^nQrH$h3Bo(bJ-7k6uW(2m_Tbl7(ciH|B0PRd4 zCLF2AfZCCDY@TUkaXK?L4pOw@eG-BvyX(Hpa?+o%6j9VBSCs;EV!`S?8$Z8zRQ z#noTU&odPa_K&ZJ`P;S*leC0;Eqzy)L}@d zdZdmuY>d4>e9RRG2I0Yj;+=X%*|M@L2l%)_Un)8a$ZD<5uKdseF_xQ2;0)q&fJG}aH-8fgu5eRs7gQgz*^ zI%M#5ZGVp+?C5r!$Foo&x57U?4aGVnu!3C=yJW;w^ZF~I(Al#y;dLA zBaaXhaCHGTKu+Hm55*&wVd(dUYO1R>u-p{z;Q=6bKhO}hf?XzFcR<66*1^F+_<4KfL{?5wMSr9Kb z3(Nay)9eH;r+Zk=DLhsv>%T7tK2a#ZXDEsHLq6Zt6$@YvVR(dV9NbNa1T)h~z4x8E zRm3mSn-(!})akGh_F{c|1ZBHAE~2P6XXmhKE%tw7Io5c>8yAusN4<%8wYrk}s>!ws~=AA>CgA!4SC{7J1T@`?I3n|4KyZ^z^~1e6y`e=JjebAQKi+1{k{RH8 z@{=)?b-C8>*MZ3J#CYN~odqiU^fo{2$M+o6GDM{E1*G~2mkh9pUKpoiK1*|5HNh@I}QwT4@im>7)?#WV;B#@8A0Zy#4y?nWLsXYn08N zPj!$S#^832HY&y}`Jek)V4EginrF_TsH(4=Q0}&(XAl`#k!fp{ZAa(q9qOY&p>?`Ii#mo9UF$-9FA14t0s5imRpme9;vc@nD3K)r0=EN@ zyS*HlSZ1!u6*$|eP0{x{fFNY^8*nk)NRD{P~pC|J!^6FGPv|e5FQx+=q}M{ zRLU4(ncmXQ-I3{qXXS9>npYx&6B6aN^=Q7ZMn-Ogzd5U(d0kN{H|APErs}Dw$~nEe zxS_hE!nx@+&t3#T5tHEs>4g^g7k!Quyj+rE9Cv0%^y)aPcVi%0Rpmjw`zp~z90r3H z>*4t;ufC8xEQ?XQc?o`=!JU$J-%n&?_VVAf0wg8HWT;oD;i(94AD(9(90L2=u@7eWk!?O65DvV0&W1Pz*=;T zV#G94`xv!X6Jg>0uF*ku+9wxWBu(KqqC!8D3$t&mk8EDkIL)g1I?_X<(d#I;f8D#k zf8Hj~m`G8m7^0!)0_@+&>*uqc0%WwU5Ll`Bu|!_J`FEpyBhUE1S?1~|p11y!E1zOl_y)fg4 z^~4vwn2=f79TA5*lf}2XqSsGzLpM7H-&kgX9Eoz&rar{cpafY1!DHUB;X=>I zcWin_Z?#M0rbdE*o1q?te&_wb_i037OTNd zw=;FWWt^#=XDP*OI_8cB@dzx5aN<4-?}W{wBY`92_ga_M+rX1UJMPz+I$eL-TgcVo z-2(?lyDgHF+YvA<`et$)LM3c{;4hU|4?Vra?bla(dhl2^ZCt{iF~u&Y>7_|-Jdo6LHcXDJCDiP-G> zy5_1gFO=CPhjx;2YkZXHv~N9%9cZo2;PVVzkrSk|GD*o;GRWIH+}w^b!ZE2H?96&A zEFjD>Tak!?gfbSJ=>152BjW6SQk=8kmo(X1S0yenu6uPkQ8##TctY6FSHe%n0dy8D zzSpbky!RnJ94BcA!JzbOTm7jL<_$K0HJlcnfGm_S(P3-Y_I-VW{TM)M7Oic!sVB?o z>zA!w8!o@UG}OS!pOLTStIt0Z)te??V;M{Sc(N(V)gb;{HVOwYKSWT3D=P@pV{>cb zDzzPSpry$|nP}~p9`WqS1&8(0@Y(mbMk|c1{$CXFRxhRjcWTJHECiYj_PNIIITMpd zZlc(br-oW~-+yhY5Pw{AiThKL9t3n^v47<3I^+Fl&@&Bg-osGL z8S?Pz!nqJqQ6Ub~Lo+m=M?4(pV@HGAbPmilxy=WpkGY%FOY*Gn%R!$#3B0PBE^q=j z8JQ4(D@p5A9>w%4fqqg2eZ!m{9&RSJ&{L`XM=HfL~ z=FVhg4eN2+^!f+Ad=ncFSK@C_<85>owJv#i?M%C^8k1wGKYR7wkBd#lM!mq`o_s3! z`x4UDM~1#YOvUo^t8!_6s->1!2|)t3CGO)O4n72wcpVuIT6Mb=a5YIl9&#YejimZP z@f>*}4Ls+n24&D;B^9YuV?^Y%-W|4zF-92Gz;X}eTR0g-5rUrACgRHnGwAA2lZu@+ z8Is!TX4{`IM(up%Z1S6W&e-^op2pVy4+w(i$1Y&mBhD0>FC*iC`bf!on6XYGBQ79| z!4NAQM*fKif$+E~p*|;9EY7BJg?9#X*6dDp$;WHFGq~zf101n}E&DwG=5_fzY@UUy zDoKaScld$x+sTsO+_BNIyoYc1&C68H8m1dE3JM3;C`Y7GB|V|&tnYX6q($u95*KR! zi`J=-b})ct2MFFVXBdD}Ne+xMnQ>r%pf_y~t_GKoC^CcH&r6CvjRUjD0tCoxK&VB0 zwzJ4aC*$G6hYIyeAc$QL$ddq7sWYVVJE=IaL~3#r9XP2-O*ZO9xB~!weqEm-eDDnL z4*l%AM^4mVoy$=n?&G=i-4937YjAI~zkU<>f5$eQ z9gLnte&oi~M?! zpZ`&xoBy%X)ayF`Z3>Gr318-trONVapT{5B4khu>M{JuJ(l?7Jf8iRLaSN!=o*1Ov zZjxy=+M$S6CJ^bsAb}kjJmF??VWG;2>_K(?4#G0o^5QfLv;ctBz=Rs)X{HX>cBL@duRrG zEMbW(rkGtV#6STA`Z0)CIOXPiuEY1Fde^rFdJz9bveXx3>|uhu*DVP~<*)YY3 zq|vWGxO-~$jv;*gk%L)9h0}8~vU%c?ttpEOZBNP4b%p&51x_wq%F;e~Xp}q!IZ1;J zGPsNJfn5!3K7@gK{``4hK@EtVOAtZ6T7K+RM~4c)a1xXQ>yFTq07zKjv6rcX#}Plw1%wedDPA@VBu~Izrlh$5k}9XjA@a2cj#F zXgb@m?dauA5A>_`)FMe+l+^;?-kEtjUdMzcefD+|Lb~MHj{O~A5EB7EAM_$?eDQD7 zDv)G5FnWhk+yRaEB=GmVlo+Ux7Y9^o;vxN;QQ_eY2ip&U>)IW4b(qc~C2};-Z@Kj} z2EGIa!--%SeJda2&Ox}{O;w0H2)L6OT?P;?Ji)LXFftf`R1jetQ4Vc=Aeu{oX8=e< zfX|L$rWpKzQ@(0Y33xU>%+~p8z-@*`5BvdKqHmtc8Yy5$)b<5gJ$}*2VE}VDWUBys z+pDy`$g4FWyN~+Au8R{9=yQBO| z+n4@;GNf6+0xYkym)CZcRqk~868K$O=Xb5cG8!8RxJ-oFV4fFPo|351H_DX><$s54#e_B}@U={4TQ zCmhuCqrNXL*cC>ni8I=%DvXV=;|^!YX_w>>{kaxuv9smJlK}!Jf{2 z2tR1UBPT%c6?N9^E-dYJw(TDOEof`SaFU?9Z1US)Gk2jvW8c63?mKHzMAD#QTCPeZ z>AEM(RPuCHN6IHt$+u^l8`6H`baij)YU^^wykYwCgr%(DeP^bkqvP`qOxCU$2hD0; zuB7k1Mep1BwW{Z?&Da-m&2W9UD^%4PFp4=@GtTfrbj5c9j4?bhaJ~*g6d=InOw9U9 ziWs!>00c?`3tz2xhQeo!O|c^{mZQPpBRt5ygL9{V&$Z*;*UpIS%Ypud`26B-U&9dF zoHNJ0X(CQu!G$ZZ?OgVTulQ;zbKt7Ggz_}c`DEU~9o%t|HjQRRoV9_D0TI8hcd3f~ z;4=1HNE7L`ndqyT9I};2H&u0YA-#O4uJCdgMF&uECmXpA;=QN`JYvk!5_<}1%lL>s zNjgo848e2W?ozlm1MM0PJJA-U>n>L0K`>TeL{8;Cz2^@JI^?+tF5LsFGXdrfK48>( zCp|qKJZ|Pa!Dx@1nQ}LR7=YXBq+H+~@HdN1N@@nh{19;N*7sbv_UhCnz$N7&w^OJF zawKXr%8AVM@H&xYC`dYN9Z{=wX__;!8)_brktf$d`O+TolLd-b8k&v zww2iu7JB^~#`MY%9=O^$dI$ITn zNYON6sm#y5k;*=#9IB)m5aiL5`;?*{RQ-Qfm@V3Vq+IOFcE7MRGt@@o^k@sght_ib z)qPL3x0=RDeZ0tq*iYMr#4lZvTF87zQh&E|Ja7hqw?LxvgmK z8yW_XO$(qZvm5u$0LH7ax!K6lVS1|F2K+~yv{E!GDwh|wrqo}*U|`BvYJ${$P*4S{ z?`j1O2g*GreboB#!Asi)pb^7%cQ;KAG0Y{E33obT>#c={UzDHYlA*EY#BN=`5S;MY zg5tWo-aE>-^mt2|H#IYCkZ#$<)L$;p!yD*qaR83!=n=makkekWc7*I^Fie zq##Ai(f*G668*C6WX*BCr&|a)Jspd=%Xe!z9wc><7~TW2KQdbZTczB9&N1cgd7s$0 zxG8YtGO{d`R21Z>1UHroomz_-;7?;PHJ*v!uYCP3?xJCVqqKV>4}W6!_y1VMnoJar zDBFMSC9}d&iR4;uI)YEscTnP^H;&H=m))-ghB?pVg+w;BXwIk> zL@F)^rCiw}mNU@6&*wh^s2jERA?2q(j^J$W4xLa|Ep0I(ufJt$l-ub3i2u+iL%Lxn zp8=Tks9Wo~_MQia%kCXy?uIcSq9REItH)20hU$pW&!K!A2UPVBa*U1=B#$nQfWQwi z956{1Io+V-!i?Lt!){8qa_$I2_wN&t?|fWJZo8D6TaNsv1>{uZ$|%{*nZ>;On2F&+ z(f6%=K0i2({xbe0^O!YZp?bE1KQ=E<1<;S(q4wYipIwy3t~>;4 zFkTo*aH9zGThstNB+)BqI3FBH4jW{e1I`T4Nnr3`IAL8lQNf0cOF@C4V6MtYGmWN@ zB|2WFykLPZMZbFCnXqH$jN(mc8)cjgnG3*9{uGXB#)8+#Jbmk#Oi- zvN+PuE3j`#t{N58D&oV{HD|>mgV|wxk$uA$LYTsp&Pv<;KR?rO_Fx(Hp&%tUvP`XqWGgGD)EAb8FZP zPZ;keJJ{6Jc({4n^6j-4!e)b~8KR9E3k#?blorlN_+7E+nKI(EWV;t2<%O==}JF?!A?uWuWPT*-v9xHMgTW~t(%w* zs5j_pYY)82T}0Ai4zN2v_afOWP=V3~2`l7YontVT_AcgB|8$+`#5} zFT+Izw_fwJ-5_A3j;wh*1>_U8jSTU(N0g}bd9G~fPZ#645;n*-3t(Q=#O)5yNPzH zKVg4b>!SW=(#O&dFoF>%gR@<23)L zCU9I|K?y^3td8ui&^iH2KqPt5k!8XM?o=GXO`0e;pi+v#X5i=|c*r$?#S9=+kqy)! z! z#M|TB4?f0x#I!(gyX^CW9ZZs;DjPOOKu&F&f@$sf*omuIzk*dSoqyG3#g-)GIM-QX zic$R;xR38%&E(e@uKsu#_8{q`*xP|-GBzBgN89Cw;)jhgDpg!U@CIx0MGBznl8%9xH#Y7~tT2@6Re)s<4+F-k+{QDKi&FQ$#i~ulP zVD4_EoIEEMi!8kpp#HOUbuUbhjpZveD3vPardGm2ns+sVcjEOInu%?2(5wVG4zb0I z!3gF!|Fbu9FY*2=*w-mSj#dPz;zXR#yBlXb{08s$pNx^Wu)ZbsR+Xq}mn!ZSo^Lfj zHu)(()}=8@%-Ki3&x^YSy2bo}1{y*VC6Gr?K~q2%u+8m1va*jbF=^(*wCXzwo}(*x=#<#6-RKe_^X9Tq z!Bo(^ywSyUrU{BWC=A09a}LYq+L&pi{wuD9C+ZZXjI7?Z&kCva_D$-oYX9ywY)lDI zx^t+*=>4@%^X5Rwn|-;rd716m_6vy_Pf?t*fL4nRtdx2<=aLxsZO{TV^!4KUI$ph# zTM!pfm&wRXS^gSb8P?lj-wCnx^VvU4!PXUz52220^0;&rLJ9p!I#O66!KADEA|@r` z*Ia9JO{bb-+uX&m02%zhc>8)s_gsBRPr1g7G84Ly)J4a`qs~`k*qSq<^DuedjdvtY zw|a^#f;Ck$S^`%dN(Iy&6eD%Ql$zxJ`_Di3U+*)m%e2l+Gw8gm0j*MXjrJ}LVmM(~ ziLXdr##v7I~~j+3$mq&XZ3}=;j-u#BpoaY{M&E06*%_E z(K9N8_XK}zObia0M#1}Ok9ZenGb1y0*hub{NJP8$yYEZ6#r(Z{bDplf2Nt?(tjA-r zIeZ?(ei2)X3vkFnOfBq*5S`SQ=bKUTjJObifcI~M0ucGNfq@Yui$eEnq$Y57eWnTa1DB@wf6-AV z-{Z`Apy>SPg3#KHK0@bpTc%x;hD+FCJ!vhRpJs2obZmaud&XxVXJ>a4Byad`|H+2a zCkt~Gr1Bz$-@YQQN0yK+rG09dY~9NtaRQlDf=KW;{$e0FC&w zxuTdd*)a26lj#=W4DOPz|J$zijD{;+^8y9qDLh^I$ zejC{OT705j)({~%8tCx*CnqDVvfGnfv8va+Z+nOF*gmzRKjVdt3|Q_i+gEf%@!{Up z%+^0F^x?|}ObO*jlA_G@cb7RqeCEK_^AG>rSk2^oe1uY7?2V8&VLk0LwI&M`O%Azd zTpx6!TSX@5hQ9x}-yuD!(DVKIj}D=C7vBg?q@$@{`_^`$ddC@$36ik zlB4!B&*-N*k6E6*Fy?Kws1?U(Ho~jUb3t&)6)yP&9dF$T;}tVzFO;a8JgpTO|R6IbmA^;*JuM)ylfN-9C(;vWz|kdX=9 zvTa9nT3W+M>X%Sy$rrI7m!*6BgJ4Mqn<<#=6#cW92Xx&k#7QyfY<)kYDC^c9Mseix z#s1{$ndu_?m6~fK{elzagk^KD^Xf-i9#rux8JZv)W8yai3(6G-M4&9OdCZPoA-eTy ze|WZUzO}|7a^Er0EQO;Tl$>nx_iFN~?|M_2%bqHe*rLCFoO%0FyFR&4@O zMMC8?%xI(RsqPmgJl%1QjL>)D_=D+WtzdgO)aeEKlVnLRVBKQe9Lw*@pbiNb6Gnku zXO=2fd1n#RIgWu_Ke;jqvdQsl57g>kw`g`;^I%_wjK#q(9)1qJ{irQQL_iH zHTjDS%_kkk$vBkK%0`GD8qPU3+}9k$$8(f2k=%dTLBgN>U8wwSU7s$*O?`qdt*+46 znW`o8^!A8vAR59j1x}sO`T43*uT5Q$)TwUa;xzO;oIs=lY9Qq1hRofY!5uHYsY#9> z{M!wEpR<$gP%I-m_ps>SOiVE_npbMosv8y>*_d*Zt+7Vhshng2A6}tq4i4FzIPOF8 zvJyYytgiUh!YW4IZ?Iu=ChH`4a=SHrRU?awFXsbmPce3n+IS!D;)BsImRB|{ZZ-}% zte-=0dPZVV4*TrCYvza5=fZzo^?+;SH3nXrS4h%T)(yH{ea! zg4?j5gm)2_3~MHvklR%c<^${dhIIQ@@#CSSJ6!O}HPoXwS5LCt0TVw31xM}fh`W?{ zLO8{72`I9P)fMDURw)_GJ%LRFlm>1d9;43%RaI5jP7fx$91y?`0Pe7w_aG5%9fshJWAM z0uQ9)EuVZHxmPkluJ2vx#>V<_G3)8;seA=T{6kGsOH)m?6g(9T z^fRTmS~X2hv})0yAS(~;pmyzGNV z)IVz>fAky6o5{Sa7gc9Fie7EMu=4iL_02PmjalxV-Kxsxe&~W_JnHU4^Hd6%mLqT9 z5pa%!wukJUJ7EI9e+uWrve4DjtA}w!5?B@IsGdnRn8GIH4DO&-vq&f1Np6~ZXjb9; zr;%sL>kpX9oG31?tE-dAwyU6IZP|S>KxO8eH$uq2uo^t*tNggckm)t>PqN)chH1+V zoYQ}W3}fLy%OPM@iVv}(aJrKGJ#>P5p}NY7jfvpUm81CWx)v+mwL_k&FxHhn1>L0~ zAUxG0Q%IOY#ARnIf?!>nVeSZ`%?v;_d$*|JBDH&I2j>=ECK~1LYd5#3nN$4PEuG~z zFyHJx8@mTIZFgKN#&!$NHvZ}qc+z{7;@ZWIH-~dv-Pa-3aB&W2>R`x*O9`F>zeNjs7x{JCr|GBAtSA_o9U+pSl`#r^x%xUKGB- z0n-t(zRt8F?;ns%uZaGE#-Q*{I^+AU)S&(HPj&>H*`YFL0gU#~Klf^+3iyjhD3cGu zll);-xDW_K76x1$>L)+gw$oBy8LDv2Pp?8UyB(BQ?2o~=FSFvYgbcr4!>_hsLhaj3 z6bwT@p94+%8y=P3@5a_I*o91Z@QLkfoay>XA@8)k-_CrKYpWsceaQe|vyB!k81lM> zq10bPL*uZ1Ay^+zLXN2ZKu8E2EuVJT40HHmos>yQT?q$n`UI!iK30h%TTxB~uzV2aj zE8D*oq^9TyUf$t_yB?2JJaAv@j(LqWHDwNU6&5CWg+H3%AT z=FB}2_KZ1-JNG%LUu3Wy>T{y$T&?=8Oz{LYEY9>{$BkWUh3(Id0I~)eN$urMP&QAo zjn4ZP*ZtOuM$Eib$5!t{t(vZZyWWs8*%@_hc>AL_P-XyUB|4H-%|DAE%T4%TYS$9H zynGbe7rv^Ne$ZF!1~FY-u=Pf#CtLJjOodTk=)YDxZvuc5U3@F?i||^e5J*RWxIpok zw1MG;q7Mnfi?Ex@1s?r8AZn|T}&7eG)|gTEEem`~Z3$tqt{!Nj51==GrDh>25fRG`gJj15?r zPfaB`s>1Lm1|Qq2e&pX;K0g>0mysbyOw+9LcY9(BaRcSIU=Pmb zEzU|u9+#D+U}0e~UvknR$=m1ps`w)S=lIA?TW zMvXM(QRWE(vu-2Ebee`k34`P7e|2ZFN!dsTjG0m66c5r4(AtuOxMLi3FY7oSA71um zgo^f*U7FjF+7sYi5+_cUIlNconD@Mg&HR z7OcPF;XsS8iSw;7wz1(Xpm*03W%W+5O8j5TUoW|i z-&d)~%@=Hk>ED8Y5DeDe_MrxSEJQuf`iMn_=ScOs?>um=%%n!Ldfg85kAfU_?$X%u zk`$bLC<6{L&59L!VWZ*@!DPRXqq^IUlg2e0-Og%SU3Ejz#3MY5@@r!8<`0GZ^(IIp z@PSpg1whY+XbWdWN@rwayr58=tW;kzeY7|RsV&sh%XI+8c>~j1unj*Iag71X!s;z9 zPQ45AB@zKzXMG#{UEnSKr>O6wgMEk7#aHzFeTyB8gZn_)r64hXS_wSt3wxX1z!+T^ z%J*c%S3d(8-tb@;vxz#2)OtJaKJ_-1$C#N?eOu>?21LgU<85#B8Ya7pL zv@bd|{tEHi_Ux=JYp3ECwU2#=7)(JedobMdx{R>!BT&3|adqX%?gq{{5bSmVpeU!l z1n;rXc6g{^qPkt2&f-i|)y=B76=S!n(UAWtWz@gI7eZO7S0)x4jEqfvaCXZgrqrAxRNw&y^lt5=6e_2EXLNOT5 z1rSYeGQzTNE0KXo3(KyjX}`WOm}+NhA)-rE+o2(9<)7J1xuc0kB(2QfJIZH4kDTGp z>Ss6o7T(0uk!>KjkwQuOO$=S!J0KgmGL?4Vk8?3!bf2k_A3M2i&>BHl^){{BWGT2TfdE3+*P8#l6Ka2uC+&-%qo@l+s|P!YEW0#IY(8z3);x< zqUc6{KiIc&9q6?xd}A31r}Ay+sJJ~fx6$(whZwkR!7C>16~kJO|0rJ%W$DIw(c z3=M*B8~Q$=1J7tEh98Q!6&HD7Vj^B#?BDdki?-gnC2ch68TBVkkvwnI)(3A;F0%d6 zC6Y(qcCV(`@Xbsilgy73Ms~YyI&N>tR`Z(hFcWc$U%Pmwmh!k=O01W^(nNY~vBMs4 zX2I9XUT66MBTU|n0LX5N|Cju#2}F0s_)WJ_A-Ke)-ag6Fc!I21=d0?nNAGzoD=8ag zm$@397?`v5C?=i}M9ZvVuvL~nDNme4qYoXluBFZ0E@h-M8!rrx|Cjhx=4?!>S+=_5|q;x~UPx z*bHqIGnyvd>S86yWo@U#1A;OkH!Xc?FPe{SQRJm4I8+z{pLP2*bAZ2>_?ak{oD&{5 zNz7XQB(6nFVi6@I#PGY=3yv)B1J;^H6HmGY=Y!;$Gr+p%j4H1~I5hFSF_O#1PKLjK zwc9L&dE0#LlbRZN|0G+5HT8v+8`|#4yZe|2vrRlzqQFVA;4Vx?G#xWUiRN9ImSfr( z5_M&P3j-e>S-r&MpEB@Zn<`SxGusZY|1QC_WuyNG7o-s(LTvLUeVnWQuibhdW+oxQ zXk^wVx1jH^LH8}82#k)T>ab`#JKgfz@=n2Lz1kB-qE^f2TXxB3Z4>amddhnbn9iCQ z;vTOaPw>hV)tI34+qZdLW+!P8Zj?6v@@X#`O9X$kqIn_d|)I7ey0;rhn;b_tMSDrHQw7p-=L=6v^1Y2Il)zaaZwGu+^l zg`XpO&*O@10D~Uv;^l=sb2oac69iw>Y0Q#jSWOop&RK}~Vaj)JZ>VjEub4 zezgW5@~D^(1?7xe$?gW+QP-19u^?8RA^uMM?&X|s>W`rts zwNN&8N_}b?e(Qr}jyXlyFyp@D@7C&QEULS0uhq8@X%?}>Yr65Wi>}KuJ*P`qRa8eT zxqqfem(6`Ghi)ThJTJpIb8RoPvsZrW?;Rat}IIL{96pE)mS3THzzF7#jZ?k_WYc)_&KYU^s^UxXEl5V^&jS<)CM zbu!g2YBu}*O8)b$z$fEXV$S!yRjT-?kp=mI)UmM$`kiud9R9TdV<($~m&QYue$KL2 zDJvy02B#@E4eRMT4~?GaZr0=SWnqqi>~6+=&fl#sb~+v`Rr6$(+kaT@K0egkfFm9{ zq(oim@qN2hT6#K;Na`1~tMkgAm`ZR{@*j@4>D(1K?%^Ufs(<5<-IKM0>9DtV2@HzI zG?Q+Reeyi%7@6%lgooN&J$TUqP<2sr&W|7Q-41>L4=bCqV3C`D=HpiSWM#pTGZ@=n z5mE~`vq$Z2`wShbmroyqwANu_WS>f7kjU8%538@^;V^f8RzgV(zry6lRkM5anP`1n z`_s$cc6AD`UD?->1X3Db?UGoFyzdq3vx@AoDaA?*E{x(p$7lWJ)R1klX*1XJA+}N5 z^yM=v>SXbxe>AU=eLFR@CsEgG8{tBH4A8vm>S%9@nC!b~flcmY=lCs!)2;VVN z=3#rNzSd&+R?wKvK@5jZI6$o+%t$U6JIN&)l;7j87gP$lzz`gf^YL7w?#w?ZR#M~T z;wJBJqh{wYLwgV-^97CC{^T(VeJo!vUc`om%kTL&{q(QJ$)S=XO3f`@g8~-n`fS)w zDhuh^+>y3`d^=Z@5J9pldXH7>r`Gwv5_a8P%>|>Ovl?lzP`$kw5!Qe$1t+UxI|x{9jVC4>`m|0R1_51_7qcL@Q+MoSY#iad z@yquA)!lmlMYVO^q8QL4iWoqSBoiP(K#?F>5yS>0G&y4?=PU@K7(g0n2`T~-nj9o& zFe9QUSpmrzksvwVxf&YU@Bi%OX2uj*NKN)C3|d+inG9COSupk8r!w`T6W)s!y9 zj&_@fSx8+|#BmXpg?pq0GELnSr!O_%8ZkF~^%a?+3aj614wGG~#2j|5J$WwIH;+2N& zEP+gw1yrWGrluysIIdKX zFgKRxR5|B5Qq&oyBXu;F$v(d?0}KGU1J9cPgxdJ%&{?4-NvB`hm>SU7%(nQE$s_rD zJ74h&;M_~Y_iI3*@Fr-6S!)~&km4HMZuskZ!p94{kD&s$AXxaX3jc0eqPw(uyx92kb!-_Id4ah{}-Pdo;ve^9dWlPHeS)s#$ zRec-zI5@r=w<#6^S~b~m?*QV`iO#g&E^>JI<-(bhj)Ur;l!%knj;YS&>lL@B1+W~H z5N(+tF904r;G6J+2#$8g-JtXDg5@!Q@>X1thUZR%d*w5bSihpY{d$Ngb6E zj}HmCM!@2`Hrw?QUo-S|pzJcfHnmTE7dU2MZ;jHA9GMmAX||USz$D^MaMDMp@h&}I z7=6yb$XM#4q*NsyufHHN+aZ#ZEx=7Xcga5x_*hm8&&|x_DX(m#o)+J?V+(ND^GuA6 zzWsB@6JTyMg!Q26XJGrDZoh<9+Wov7?hHEu77jefJv+xH!l+*qb&lQX9Lq-uEvQiv zp!!_t^;O3o6MU5o|Eznn&Pz#jILU*vbl0fiwx4-Rlc`>gY8#a8u*LQt^^nu1hert_ zs53i#zZlkX9r$i;Ao?i?%hAANvfe=SE1pe3G)>$S{nDoW6?Lv$jA}S|XCZepHJ>EX~|XX;~>KXmmhwmGuO( zibuClUTe8$6Q)Ljo;kthiFwF4HEHe&!SI~Cd5d#=FZXhH2GaHni;VPG%mpghl@uIU zW=*3DQ4$@9rG7U2z4)}3kzwrL8YlNvbH4bI z07T>jK=&IN^ZIHE4yo|rCx8*#56sbihq6hn!bs;{V5au5)>R)hzSTi`|}+NwsFX`_T=@dmhLHJJPH<#_*kHk zz-@qLZZhmbVJ-WhM*>)w4!`Ih$Yg&JYQB=PPikBJgv#W=b*`4Icp~I*dnXBU_^is+ z$}20KWNwlx#^HXObZ{Xor7z=1fH)S~zmnsWBhyd=8&nk-Eh3>B89Sjr@-tk_!yYav zS1HfKb>}o1#{H>pt>0Yjp&AjAejR-n)d?wY7t_81A1egMhKR_sMdRhwmETJ6kwU4> zE{u;)_hkTEeE>96H4X=UyR&UC3L|iqXfFe^+oKp!U>gg${Q|o+0T2pJ)y?5DpS*Oo zy2&wVzAwwSv9Z8_%AGgxK6hYyhzu#B2obTv4s_KC=RRSgSt5n;d)h7CSws5Rm7XUQ z*!LmQqv&8li~zKA3JM4~eExY8&I80MY3{d0u>w3$!E2xY{b}=-`Ufu~evjj%nR~CP z#&AZwG+i*lbQK6KX%q#k=S3wGWssp*d}7X*-!Dd~Nw5cnbxcP@ACO@upl(6rr@(m; z@A{{gla|U9IyjKS?M|r$n>+=Xquz%!S?~F)+z;JIN^$w+&KymQjg9Md%DVhUigX@s zEcS0xNq`#1UUo$^T)8tRK#HgYuf%jG1n=^95_@*Y){JtaPceHaxJwHWJwkSa5MgDgL z0kz=%S(&KEv=Nt1MGb4_Zzp?Ek`&8r8x^{Fc0(l9RDTqUl(<1)=N>dU2LtMBA$%cPus$n_mVGteWC;-MVP9g=JTb);2Z-X zTp0M2k0z>rWtc1+6XyEv#Y_{5LF9{g9+TrbR*s=`E)Y*<7c0eaI+txIZK)~u%E2Ar9K;$Xan zMu@X}Nm^R#Ja9b}_KforHP7#-zx(X+}LeO_MskEL!Gr%*x^Xq|??47>+9- zzHxYr%0V`andybltWCi(gT-s zagj|z1e-Cw+FzslfjJMR3@sYrGc?r_~ zBr50A;qX?1LHQ{Qed}5gmv}QU6)23N@{fC@?jc%LTI@vd7RV!NzJA0^%faCQ$uQG; zWv4-ei_`af4pzM4c>(#|%}`UibA5}s=l0yWbhYrInWiCk2%#wHj_|B zjDK(^NRcC0@zb`^dj|@6gF72s*01_1n-BhyysyvDpS2hP;#&eBW;u2QO?~&kCVD}>49^4C=@B*mQ*gjPTAn~OiwHcQe&$m=J&&U}E`ID$2sU_8QNe^V6X<4{VIcDCcR2V)4aY_CBEV5$smgk8c7Fbfu=Z<>@VwO zhmSJ2=j!_Sy6-ZQf3~gP(+PUYcD0VP7W5p6_&MVl(`2A1(&vA;`rMDY(m0E*m7>* znkf%nUp>1cW8T=D_QhCc#Li}PTqV`kTq{zPwT7N9yQhh4Z%E8wO9GCz6LXDPJd==m z^AxXrk$AorDm$4ar)#`@=p1ZfipVtj0!?WqL7cwdJl2N8hjL&jI2ukkD$*6Tjyv2_#{^a)rF+b$o1VccLtVcE&#BAsV+_h?sx0! z3MS$v<=i`mX1=k^-r`2ZCnl>yx2el**V-51lY?o`v0}zpJU489Pt?)S6mlne6&rs^`ed|J-r45u^GIjQd-*NW! zQl>mYNj3T7+)n$vsIb+N)!JBUgwS#SwCP*aBKxTAA%f@eTPAqbfDVZ8;A|Q#6X5&F z`yFYztj))q*_ca3Icvju0L?ODjft;Bn)2#ZgwC(;sc_dx9DKpqN=nBskx$OwdK%53 z4N1vtaI?=7wXHB(EPqY8>Nb}%J2x9Jr3y{0!t!@Oy86h-9qEFxflFu3%zaAIca^kR z;gO=4)c}Hbh4MVHAO6a>ni0u zkdVWZb`p0W?eM80SufK1pN2vM2J4}w zuJ!OhqKEU3xXaBS(k49h-y4AV{p&|qC2Tj34K_-?O zXFdEbp{6ZdNXSI0&HMN7d9^l{t&n-p_Q(EMo`AP|?j`vw>wGiKuggwkYk##vs!b{V zQrmO5OQ=FxHs-nCzBca$i*Df6?#0O(F+YUYLS6=f41{?9J=Shl`8S0 z`7tFD>=<8}kGn~|K#Dya`_0vkV^e~Y8%>SN4CBi03X}HT?o#}lQBX7SRhr)a{b)&V z>nBHj)~D8Jo2A=v;yQ=L9qIMV?dc~~uKmI4DRbwRT&n0v8&5&H=LmmlqIL5x%15_O zyR}XoH!tmGzV-|Du&3RRExw;;-z(3)cRd`Hjm)Di+7bY&r&RK|S{rgf7U%`5y{naXk0*K&mNK}H1*gw9KJmU-bD zDJfTqQ_?N?fA+5Kgj{ei{A@R|vJ{pQDt@pwGc22n6oDPa0m{EdZM73LS`HS;mL|0q zJYD5dhiwtiJO3MS{I=2NZ8Pc?!@7b?LzI)Ezg>K8OxU0q$Q5k29vJWkLoi23i0y4K zIftVeS>F+>n6msD1hWUi1GEOUXcW~hTn*%sKcbsotU4xxg+4xqiu@AVowgrEP-5gR7Cw(s_O9+$sb!g0s)MuOVQ+IIW?lvtSvW%O6PilXK3(sY2gu^!#!RDjgYU3Q}| z79d4*hQ53wu}WKflnDJfoM~rMC_`e#wF4Qx7E_kX8MaSi#+LaUE0V4~%HCwls*D9qW)FEzu3FAAgC@T`0x0+cjTi=V6x+@ z?1OQde=fhh@%Jrir99er1bFx>43&NSPh-5G9C^1l_hI;^*1xd14Uw0sgtWJ9ab4s1 z!HbO#67Ix?G)(=+s~7HWgfc%XG295eU$jmMd-_>*#_#S8dq%bSo=xjh_Hwm46!;{} z)jb*l=ziBX4`X3=jLV-2Dh)2n2`9Sq3cW+D7$1dCv@E55-m=H=-oHE6vZOJC43>z6M3b~=KrKcaPZl5K_jaSl8qV#-a^wEmMN~e?#nMI2cd<&it*EW|o%qfa}Fyk8nK)WeQd3eL@vQ5Z$=2 zmD%A@g~-jh+DPQQQ~l?w6tR1wucy`s!rGJ<~ zu;;Ox-I?RW{7CvD*+u~O&Z*yKodR^ zc3YfmoSYjIe;llN>B!>e^r5*3i>S29YN-=y{qe zms*NK1agpI`k8c8i}i8Kn;nc5SD-6})cgW-O|a6ymfLUB42G61^l1H_{#`UO2v@7c|FjN_ zfzl9*UoB3t+C04^4jC393oNL3PC#dUab-?7gQ4+7w!rfofd`dIO(*b}GCL=tCoz=h zjMz>#LjR@8XC7vmJMi7<&9qs?@wS41C0Vz zYaD?pVSU{3v*i4*7)I-2Rr~}v+?fDHR?k40*Ec9Q*(JS%?ieqTnsSOs^VDaa2V|Eu zUIWMi-QTkZVbcG1MZfp^41y)WrwvmBbV7Ns_}` zsiuDopj}0sYmtW3Jq}~zJ3cXwy?6J9A=%;63nK#vd=Tp}^i+klv_f%Za;Q-m>E}!g z)H=fWSXA5gK@%KwAtHh@>K?3bZ7uz=2qapol1WWuSOhv&jqKC2;~L{FLc#kiO*NxS zm3%gB;o5cWgpPy3v3-l3$(OW-yp~s>pGOtY?GW2YYbQ+!bB}6sK8`b#6vzRB4t1Yg zn+|DAjn{@v&}Q!O*5iLu5&X3T{YWrJ+pkT#!Ufc|fYn6P#e2-T`62qfDSGia!UpO1 z^*W263>Dg?NC!!8LZf zoD8aSw>`3W82kslxAT5OE`-L%6QC}CDQo_KTYprz6>7hNwiaDIy|PnI&GeB}V!r2^ z>2}@&b}m4Epu7U96a2s=N44dwJZq;sAr@BC75*r|Sl|aJ@@pTPdY^$sZ+bv`bAV~6 z%u4GNQ()Km3~j~N#-o1r@48PZm5apkMe-3;I8v_gmuz%}*~%4M>XA~As0!qbx)R}LhbC?a5%@IwJG@IS5A6QrJF8Fj*jMK zPn6QwuM-P=#Y@kZ#Mmc4f3%l>*G#*E&a5Ky>Y$Fnhp(LXB5Rj%n1a#gc4K|r_xiG( zhLiaA6)N_ueYSzYF#T6fAjnksN2&q+87KIPfxHe_Zp*L#D-FZ!YLuJL=uWyi^S zE$0Do*yjiG#~08qU)|bNHhuyM$@KxA3tc!L15gLi4~NpAf#`B5)E-lHYU_r(T+S@E zC})qy4GDUQv{YXh8kytZ>U44;H6=c+s-E^7%lDR*5V)3pnA!QsaFFllKGKlM)z9O}b029|=gUH~X9zL5wR z1~m?R-3iOeWhA^t(n*r}F!WT?qp(W+k0R8q5;8NfAVRY1%hZ?qsrre*c?;*N=_(-v zFYUYUns<>DdiMgg_Ij^{sUNxlsc=I7yE=6Zl6R)A4zo>;gI{LuiD&uwU!wAT}d zFiw~(jDvY8Wb%I{EA+IE-?mdmP)I20@fksOs*~Y|NBrXh}@+DkM3u*VL$}tn7&fZIkii*1YdkQ!rDyaG3TmT~k z10lQyNkFIXzsqRVuSq>pwp@xjH!)aH5W6{BX=LTJ3~DWU5T>Z)RXyFVjbU6Zqe7cD z+&0~v+gN?G0Cs*imV7c?6i%%In1d3a%UB34ER!wvUrk$!U8#Je8AR-2QRmWI8Y%HE z!D6U9G8;A4*PDX$V%Sela1VXTTS33ab}9e1zsqy(KcqZLu@B@Re%b_lP}?s-(?S-_ zD{%#PG9Mm42LRAB!3$QQ7o%})hAW#_;CpVZfdmh_V_ZaZ{NOIsS+WXs^M}XO zL_-%vL^sVOd4_T98P$yX4TIFd^$;KmiSd zXFB>~?k+q0czwd%W-V9u${S;Z;d>be1rYnR!)yd%h|Ui5%+-p`M+c}fDg?>1_iWy% ztJQY?t;9XDnU6BaJ!ARUYA1rPZ;#FPlZA&?suUyyrAqbSE*1XjG~*ZNb0#nBm!NMU zyKsjAib(lX{ixtjqok?#e#EvCDxZ9|-R!HW(>WaWK>}-HT9imk->o9D+^J3JRXjEY zzwrnWQ6VOG=Wx%jC;~WN_iW7mHCZM|EbzLB|3;+94DHWk!SXrWM)|S><|c6+5tU@0 zO+;^?-2kHMzY7eEB2=d^1XjVE?CT5qK`0-Jdwf{U`x49rkYAp)uwgizNsl}h% zqQ9dn<{BqtfgeC`gUZ8{vTRt@2TYpma>BBI^`QunD1%i^q6KT+4%Rmo2+ETKoua_O z@k79R;>=*ZuE*DK-!$DGCr${MT!G~bAWAtN&_xQ0V&kP6H;K77N3B9PgrYl5D#=i? zJW!l|#oTWVyCACxOAA2}g;zX)q%MtJZ{sA4UnYI(|IvLCX~Tof7$uwRfK*%; z5DO?My0b*KHx5*IddA(9P;h9fHUeNapV-c_T0+yK2@ zs?ck?ylv5{W(Q|*jdE$pJ*qdwd>@?;O)`ac^3o^sVkqnSn%| zMjm;Q1)bpan+~}bF?(J?OL*wc?c7GCW{o0)o#I~3cRz|nG3n$-C&cN>%CSVfk?yrT zJ1ui~AkcZx^pPZUCqKHku={+AtHW#lp8Gr6G`MO(7{wt5_ zMOD+P;_`QKqgg)0z@cJ0bXv~+j2Wr0WkRZDzR)yK3d8`{_}ttdfC|@nj6VqZ>EM@J zG{-vfAG`zPc;FtyBVhaA`#@&UZ<*b`SL8MGm<#-fKSB!9V4+}C zp+|wcu`WqjdFgwVENSB{7(wvntm*a~%Mon2TQ?3?O8^n?Jr4t_|qz@_3-r);tJZim6?^x!iwaZZT%WbY@C| z*tewVYO^1`TY4a1*HoI}&r#IJx`IPLX!b?oybbIkhjUq)e7A zFyWWRV&@uy5}@z)_FT~Q4AFcd`~?%kXWp9oD2QCZj!q`q^C*>xutyccmSp|e-_iT! z3DP2IasG7itRws<_H!x5NGe?;CslOzTa>6px7RVvEqv{$#D4l~#Ncd}g1U-sFAA(= zyayhT4tiTVdU}8^rH7m(IW{I63=YG387Q(2rl~aaLhs364XmpgWy~{ z+MRKAyhvJ%{1V1X=Z~_${%wN*%XE|Mx95G2ymEU^Mr!;9X5XbXA0VPlBN@} zSMgQ+n~QPyTmFA(tbEjjn81%sP=2SUZV%V`>w(dNCQ5(wI6yx1XL#?T|AS|icPYaO zL1y>QH3KQOz+j8rDyRzgtKpi+S`pO|k+nYI{O4IVL~1WjQNdS*K6^kE}0g zA;=Uv0VHO(8u_}m-$9^B1Zbrf=H8q;#pJXeHD>~*{P+zwAh!K zSf%6r#Ml=AUDE6g6QL5}e9tDBW0P}{mvlC+hRl?1lbY#9`Z3;_cEriF(kZ!GfPgn{ zt)-rBn9^>jdhm-3B}cg`R#BukOR^BSoYF&G^#kj`=+>Gs+~= z|8AXDxdmW+)coq<2yg9}a0Pu;w2H|hN+RAIEs-Q+5RTop^z!Vq%{rCh3lp8JH%gxf znNCVq$Rc0}Y8DWQ<<6wjY6u6WEMSA%@yp3OsfQd7m+)TH85$ z6Jiri<7t&^HdK&}F){Yv2CFAf#=ChpDN%-xj^)5hUiW3ov|E4XKz@gKNV`_8zAqyE z{75S?47Z&Yd$?MV|H2d;OpEd5s)*DQS*sYnYIc$PXGT3XTRo838T;ZT;&a$X?OJP- zgt>y)M4U;GmgLwUzCpIcZom@rP1Q?os!-yF8S)wOR1ZOScYHIchbMFvq?^r5xgakySk;Ob=YNAdN0TdDgM>eja{M!X?vpS5*ql9byH6(P285e*}Q zUZ$Jjl})5*&MWl9J&53kzxbQ!WS_1usY9b#ZBhhOPqOW~Swy$Z#@d3tsNg?Xc|9q~ zwM}g;vHjyjjs>8pfG`%4ZLd|TD}B;UXvULQCv3LDCg^2FMOl+KEu3Tb{t%q#lB;FX z1NNv)3hh&7>lsOv>ZvD7*5)_F&HH4W$N(3=xQ&u@JF~b%EY@{b9t{H@a6``hyEn+U z4pb(q43s`pVcWtBJ+KEy=+4!I=I52~Ato6V!e|jDIrB}Hj$NbM`ENh8jfiOGucBD{ zGQ(q*g<8~f#Exc?5y**!RGU+sYsWh=4|KxGQ@zDLrd76?zL-X~0}<VF$)&JH811$2qTUo_tARA2*#}A*#6U^W#K93+sni6;bH8 zNXAzx!;XyZMWdY{SMyh^FNB1Y`u)eW|r*~{HXHkKn>AdTOg??xpwGrEP8 zra0laDt&{k^6zEAydfvjW!wfp+7W=IA!xm-8|`>2XjaDo%KB0@AOd>H2^YCE5zhdk zZqUt>|6>tl4M-dmp!pZ57Pe{UsnenQb`L-_`MRb;+WB`~XpQU+D5nju7dwpX3xG81 zV*wBd5?Z*U{gIdaN&#kTtf`3xL5lggw+EJ9uqlL?++%i9v9--W&2HhYy-(5azYW_f zJ`=!v760>D>$kAylDq%@ljl6=o7?K(%@^O^718grm_Rn!XZ2D}HBp?jf@&vUjiy@ih@UGkugFEln>lG z9~_-%GEX14(Ka6e3OtjwkxS~}l3zX#FAEx&>TRVSlc?3r#|NM+5QBNJ_o!KV$rMt$ z01KekscCFlvO^7tOGaP04UI;KvHjsR8E>-vTuko0ETueKtyXShgW#3n|Jc1E%8{Rp z%;6}gfEs`l@DG!DK-bwY$lxjSYGv+BK40;uH||vDKNmoT8k{kZ^D~1L1OYlGaJT{`U|fX@_EZc zrI`Pw)P)xSj~nQ(doE%R-F!&^{42pMdbm@x|HYTzk&5gfIrZyHLnbKEoX3NzT1ro4 zsI@Im!Lk2rnD=KQ;8lU-xk>F)_n!5=x-0Kw0FQn?NFswvlG5}5^wl9;7BnR-#%!mX z%=s=vi0iz)OZ}LYMC{>UDs}5Zx(1|GYWQpB~P5a^YbNO^6 zg$9TzeXhp#9 z64TOfK5C84-UVZ~crw_Aj#22XlJ|w}XjSIC@5hDYrbIG6CF6CYzMZ+`Ps`3#6MWn& zU2P3xJ%23ILK+&X(*H$$fMP#|Ry*3tq8YtDs;HEH>erN`iufjr_On-eB3jGedfDk+r}ifw+4a4U zu$f=SFY;7om;1Cw#ns3|d^x z|IbD%eJ~F(<-vW(ePzo|ru^4a&;Z&$(-jcPS^}Ux7aw0+x9vH920~$>=ufwyRAkXq zq^>}O=?gOMYj_Nc5_I)6s+04c?}`kM8iIji!}Rpft@8(8`!j`m4!<>{nySy0HJ_-A ze2&lgb9gN)%T!fUYZ~?wm3m&LS>|T^?3vzWs?AK6wJ|ak>hj!;Ie<$iCZ(J%6Sp_A zYz&Rmkc?6YEr+fobt9v)A0pL_)$d9#c<4E9Zv~A09S#awlt<)?W}# z7+vjpuKy2KZ~HkM)f?P1JXSC0{V%&Ul5Fd@I)>UwnhRR?=889deOEx;*czen@x?kB zxjJPYSMEw0zEo;lGA;aF+`UWo&1aQIe7RPX*)dJ*dAG1P5(Ef3=R*H7i)ykSpZ|?6t z!mnGIR`i<-<2F(G| z;NqLjumQik+}vI9*s;xH8iNP_oag>5MJCmUksxleW-5Q;RcK>oIBx8PcKFD}U)Q0@ zlFxzxnh()Ah}6hH3vZ%i#N%r>D)W2g;G-S>908Y5&?FUhI32w6hq)d#qjpKf@Z^PI zH&4Sku9*!UpE7kA^gl!=x>`ZEGHS}~tqM<$!HLSBy|+{2?Af#B`h)a_E>S=pDD!6# zzPaFn?0G<_w3=GD<=e0*6&003B~M;II3Y&GDTOCB8s4}7T5S!`eu_jcVc(Hj=%8Ud z_VU@tn(*smPN#1YAm_xI2#ot4`F7{E!K>-qh{3RVvlR|Hdwywh4b&NPaogRZa$hR4 zS^{3w@~Os4GFY@rOzzs`^P5xUWu7mlOr)W;eyW*}-rRH0@86z3`WhO+NJSX2Vu-$f z(7*_LHY%Be&SWjLHb>;>I{kFiLPr|3hsL7-4Ylxb@$l5|mSc*tuM&|H8_s@Q;VK=~ zlAjTiouZGY#f_Rj{LRV985|^5#<GU%Y{T;*S9<9}?cNjBQC44V2^C73# z_=Cst8EGfR!BGL<)%}5|G!+z3mL#T4M|I+p6Zj&70Jh2J0hg%pf@&i`Wx+)Kc9-4E#b<5Xh%=8)jKzk&N(UT%o@1>06 z$?J(uS5upOxro+Mb#-7Z#nU4%PC}8bdiq}&mWa-JO^90C#qk85I3%u4B<3@}ydh<9%8AD3>ERQ62m|m_K7VngWf!py zyZ>3M{~Bh-rDiPTM~_v9(5CKNWIM6|=^`+Btu zD59hu`|-O_%Q2EVexb5ah?{mtKi>9+S)0LJp}{_JFH}5>8n+8(o}l*e^(D5YSX!;V zbEC*AzgF`jURZo=JbumsQ^Gp%Yp*lm2W}^^tFNIkdAKWp_Q#DNZvvDeHywaV?t1o4 z{sHpYj#eZ1Bx;2DAsIv+PN=Iscz@vvujiy+DX#89T?d--zDKby%qDeYF#Y-0_49^W+#~Bzy0Sx>#LPcO!8TcR38BNA_*}bCJ8Z;P5jjowXX&s zbi};$KNbe@BNqNADa5}%41HhH3*cpOY8+fCt+0|S=KM9n`)rCRC=B+Z*0BR_r!(r4 z5$h#%uJgb*gOyF3{MClU2{(0DG^hAa?jD{mL?Qx^zWj5G*1>|mE`^8?{5PFrcG`7MmuD;_H1vI^` z{xOEdN&0yU%+&u6e$6ro;+YzdS=Dw0NVO8m8ygx1!MCaw^fQw{Ucek$<7>hAB_0^B zP5Y>nhpcc*jXZfR2rL)?nkrJhi7C=S>?+h^k1V5#er5Wdd-!h@;?yA3Sv9rCwmGAj zzpo7-Cqhbk{TIkJ0`UQFZDmP7QN%Ne8@aZGQPH8s{J1!FX1kAv5KIDOs%v(NAd-?v z>wgZ}mQgbbrPO)?ETOd}>29O;LkwuV)Cb(0I5G?b9R|=wM|%B>3w=_J;K{m!+o#b{ zP$7)*-qJL3aR`YT+;ATI5n9A8EWn?ma3C(MaA5{4W=(#5&p_TFAX9@>0g$3GN~;as z2G|ThQF5*!uk@<+iQq4j>AmBQFMFKLt!P@wMi}jrG;6@?U2B;5(Ebo9-s|c=ycr{$mr4NR)m zmv$}>WO1dxK-9aQ5Nep@B5q|TJ|pLxmF+UtiMuwx?dbCtfR7}lq$uJiz|v_5IZ+k6 z{&9FsN#CFDxtM%)VDt&xC2*vO63#G02+Jz$kM={vZy;_;EedvLnOeQB7ZwTySpEx*NH<7BfmJ6S5|*! zD>Eww33J~Ze;jForUZmVf>%G$ir_A5h>FL-q!uv6#y10xv~;>;1cNUf^SAC#$*LNx z5uvcy5A7)8(cnyiAgr6Cw+|$gmX=nQKLvqxB%IONdFiM7pD!?Ak61yS2ElLO;F%3- zGhklLn_SazNK-^NJu2!98bjXVQEAy2)!S4Z^qM+zz}rqS5l9MmYQli5k^!>ya%wU? zikR1s*rSwW0#=oF(9VF2Pc>lT84ETnpay~%jap~U+=`tTYDQ~<+2+*-NTl6M$Z_W zYd|tXk>*(p|K!}%RU%+_V?+W8>4Q;9%*G8(w@$NY~r1ukxm?{>@e(|FF@W*q?H zt_s*t7CNMW1id`o0j6M5VWC^haNBH^Gb;w#{i1=NS_pIfBflJe0)*HH!rB(%z+5>N zWQ;-P%2AW>rt4T%_Dz;r44?$afX6sD&Z~J+P|!MJWX`Bd2n*Z!T@ATQ z%@~JtpU~$ExjMEXMI=J{7Mb4}H~r@`&A~ze?8A|Hh>4xJOPFH_aLA5UGD(1o8?34( zSbst$x#_~juPBgcP9a!1sB37{rxtcdJazZbv#xqBQV44OYy_h}ULaU2n$}Aayq2FpC5$KR71q;DwM+0Q?htkU;Tm%2yxf+7z zWmA(bc!UNA1@*(CN8Jr|z)f9RoF9TYbM0KYRDLgV>3AkgiTbyD0#%&j5Lj z0Trx4=pw0yi>vrIIEH`GZ~&acLeV0H+X3+^)+2osFQM1PYwHfCQ{TFMi|6L%aI!qY zg5jUt0RGc0bVvlSs>nmh<(>wvp&5>n&p1lYj4JGP@Q*+QQF*-E^zT&I6otE>5_6Sb z0Vyf7fIBr05NXF;^Z~g=HXh9uvw`gUjD@lF>Qlm`R-PCx z2EnSs!^4ago^Xmx`dho7MN<3Vetn^8oAt|2ssaqC6^0c9&?hJtJr)4Bbm}Qrkj5vL z8aik^K?>P5@9Q?}iV0xgkCf`+1>7b~42QgqU6S8_@SeM?5~!Bf4BQ-|e+JcW3M&i& zOWbZz6A2!e-F96;Hi!d{*0gJXrj|@bDgoif00HXQ@W+Nk~A6IpA%z~|; zt)&F0(rzH+HVIGh91Jybr$Bu`h1#48{b0yh4L*|T!2Hju60IDz^D35p%lz?>UQx}d zJhqKCX94hi_h9cN0B#C+#HR&+pr)Rrc44@>jB8&bQjuaeI#S_qCfZ-vyr#4Y-4dV& zOBN|#)6vrpL7daIxU0|tGz*dS54+-%7f8_vg%W@&K;RMsx2pl`9#}-x;I5nmf_v|W z?K;jFm2yXymKq`-52aHbn-NN!ovjXtdjlL=H!wA*7iSp)5vyRT1874(hC%K`I$c{n zLQ;2nC#3NMGolRsPK9lA!cI^=*q^?QqBI5M3PF%CVhK(s3|>imOa^U5yjqk}NM#N# zs1Do|{SQbPB2F}jF%iJ)+`d56jEKrdFYp2Xw$rAmo@%G&GZ0*vK`8qKFAj)dmys}3=!>mcoMvQlEFj%Cmc`6oUsL5*Y;BR2tZL3WDCt9 zx~gGk{0*h1y3bEfvSC2E(k6uaj*&hXp@;pHwD^7;Qv(YeHns$dpv?!GVgBZTRlo%( zz5$HZ+|M=jBkQ_z3g_$2_WsYd<;?NWBsK)0XanpTW!2)p5$!+Bx|9@tqeI)*%xLH*)@$3!5?pW@=;aF(#HYoSl( zGE{j$A^%w%z37)}aGZDnVe$}!bfU2S#eQc8#`E+*=~V$X#4%=(~_yWD6HF%Ug4%6o(K3SOgFH za;JR*NcRN_7||L;uC&kv;*=5(N}5{-kjH}_;q6%=VfLSPl{}&#*otg!{F%ixH*MVs z(vyK;$*TrcF67Nn2w}E<5|iN{jdW{nt+b#ZtNcwiTdAE7Zbk0H;06@$0Gsy^WGXda z>kPg%v8enGu}UFwYRXgC{AeqLq$Rilyq>PEQ2r%zH3UBc`gC9(cIQ;&hcVseS%#tr zP?bx9%^%s3IwG$FNV-D0PFaO+I~edBcAO>%42W&4Xlg=W5{Jj{LHVla*t@-ga5jHn zb0?ri5jY=EtS$fvhzFeK&`yb(^pLlj320D5+Gkg!IPg`(Z7PHG4o)1UyGa8r*`~D)5O-qm z$TrVMdO&J7Z_zJ)35aGzK{gUe$X+kuh4;P+SOGrv3z&R62r{FdJvYIqPA6dt{M%{v z72Jd$s*Ik%)$-HF+8UcC*!46i{O^9WAZJ#CKFiSf2J= zjtA*oFhM>89lprA5hp%=KHPo00vu?V=bds*275t0Q)0IJ@iYFbzQ_d;8bIso>P+B3 zX@K)E2SOa{m&*`A6EmQ=xN}H;7@hC~(3@Hd^MM_MJ{CD9g@b*G9aFs6avtLLrV-8C zC|tgS8%Z?s4}yak%?L>LCsFC8Aq|OA94RY@!1i?UGOtH}G7XMB<~uZoisx%qQWuXOT2AYU4tW2K9HN zrG}{i2F}q`y}Y!_95lpMfYQTXSH2-LQ^2!4ddf^|<1EL=kbxi6WnlHj<3{}dJt2)! zUDg2@_Qp@a+-w+h-@roAP*shBsMGCs*RQhWCA1--1ek+qr}IF;XBZxY7O@V%HdYIM zC!)E~u)f%RRH_=Loh4?_WMMgd1f17Iq4`@h?InocexuXUKU8iD4;XPNchFSr7@5iaYNDxAu7?|4ITQU-$8^j zZ%A2Y&?I*R0$+3@3l)5YZ2c^1QbYd4sO|<$a#k-Fq1(K*|AdBy2C}$%JrnIRH{S>G!(U$a zV83=KOa(Dayih*Z0@#1n9atLOigs1#uhT7Y%Za!-XNo4VXuH=Y2k1yo&dA76$Po|} z#0)N&EldJ*#)^T?WJb&RqyY_M3&xwl~aQLhE|&00dbd?tOL*` z_{$*@f)q#h^T$C(H&qf1fBSVJOf9W#dKju&^hm8q+A}a=ByaW_$ zptKgswMon$-l^GASVL3O z%8>_B064q>X%k&u_#u}2dx3%#|Aegg?~Ccu9BR$0G#6nT7q@yMpAJ241xTF7CdHX zF6Yf}-^gtL`GmpBh-(o?+-ryKOXD+gw-=IA42qm$Musyhc?)NI!-xP4Y;C}lsreXq z1gRi1gUdJLuoUb&$X*j+0!VcNslYPrG;e=(3#latLNyyHYtPO?>--?l-~1xn202lP zi?RgGWzQSVDsK<&+N|P`ype{Z!+YbygB$t&IV)rS;@;hbI|8oCudY=|g*_c&s1@+P zs`DY&@^VC9^T;NOS5h}h%6OcC)X9=FGJoo;eaet1uFJ&@9&h_rrC-DAf|pl2 z+65^nHoQivcN7#GadE_$;`A$;mB8Vjf6z3hpxCvGxI8Eh9{fLjg7->QWAoa7*7u%JV?f?J) literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/dbscan_silhouette.png b/src/comparative_analysis/visualization/clustering model/dbscan_silhouette.png new file mode 100644 index 0000000000000000000000000000000000000000..e48b7eaf522a2e81f038ddb218dbe5598ce66590 GIT binary patch literal 68237 zcmdq~cU;c<{|Ao8v9pelXc(o83W;`B(ooW%G>}wMsjl`y#>ps>QW`34N_!W_xG365 zTBtOxhU#jM>wAA*ILG;L-tYJA_WRwwe|+6;-cDTO^?HuS{qntTyNjYtLe5IX{ zwT-Ezg@};2kjTcBCKSpU8wp`y^S@poWNB?I{6ala1s^i|%sy=!7M2Ca$nPmJveBk2 zQ&?CO_UzPf2Z4%&Vf#>P_MlF{ z>(`Dd-2t~0Lc~iPIH^|Ca2;QNtz7L;&;9)e7M8Q&Pp7T=>&JyV@2vd$rK@MLUHI#t zc1$~Ve&Js~{jpMc;ncr=`u)OeGFo4MtvtVJCkFD{uRROb&cfY({dIQMpZ~vn*|AwO zJOa0w2RaRPKiqqLdF;tIf!Uv~Y@oCT+n;JLkJL_R%(1uR)qn&c{q8&r7Or~kGLmxvZt9g;=>30XD zo#>?(X0z?`E;+MUlkw-fVw)1_=;r1V5B2l1cXTJlgjD3%b(JR>Qs=lzPB*7|am5`< z)Q@WV@ap`NduvsKVg|cvmgXoT;X-Ss|ADaE+tEth>=SVNvOtxTS0Uj1h;$?gOGLVC^pBf6Z9 zPsAy0H%13&(f!4es*Leg+1>u$93p!SUtBB8Xmq1}YAcp1k?Oxz=(|pxx7KO+<7Le_ zjdcnKb#wx8SeFgm;uQb=vpj_Iq7gz>{F#=z6HP zx7T6;fAwH@ef;FaSg7@Jo0m6M1xh=o>!hEK4Uu*})&Kd86YXIJeWW#%7Hr?3=DCRP z%9&@lwX^fSu8a}-$vA%bLxA=k53d9_loGQ&uMkY!$cgJ zJ$rU`PyW~zJ-4p3>PyA?q^jJo|28(hckT$ZKjV3nGWI(C?ZYEx_1U%^jRo#)$+B)U zKE`g;N!=GLX|ILVU^~*{Z-${C?aF9O*0n4S67Oip%jtOgFh1Ls7Uw+FjXAN4qCL>h z(|Pskl@l&5xo#3G{eZQ#byN{qkIHxM&F7Mc!Fr4{D9E?S>DuNxIno+Ndwpl~?n4Hy zX}qSNUk8MhoK{j%dHX)ij4yb&Gi}xGOBXCs%&LW?2j3Z`A!3)~r@ zZnF2;LbngST;m-hcXer;c1jevBrh(>j)xfyg_JyeK#bNyo%dNb(UXH21+i)od*k$S z(zES*60ib|vKnu1ICSdq*(s;W?|U+Lok{7A?e&yfG9%5mIH`T@(V^?b#kEzXdiVGx zP7KysW;gpN(I5Y|V4u&yg9qvK3e|Y?+H~@X%SBJ!#{xATbvx-&pfdR&d&kOqWfAi6 zdO3D+M=}yRsuL5jkIY{A@MVpOucxHRl-O5ZWLu?Zz=C_Xbm(YfLn*zGmG>Hh> zG>!EX9BRyW6}4=Ts(N^2do69+)G1_{XLlwS?V{E;QN4?LhBmBSyLYJG-k@z6=>aP( z4Z>+40RZpX|A51eT+l5_IZRD>PrFeV&E80LI?Mygb#kVpsK80b@*de~_4(zpk|>iXX2+prm~Qx67BEuKjPe z2goos33uo8$h--aH86jls)moCeEG2R4c2L%^U&LuH`kDR7sX0hAWgrq_u8^BRKfTo z85VI`4+BFSKXY718ANd}6Dg63Sg#qk&nMloF=2&8=1#W)gZdo%Ly?NN>8J^2ea){% z+akQl=D#hZCqdn8-k7hamrYSSefohDy)A6clJzD--StjrD|B!7@!c|^s<@?Dda}#r z#u=A{C}N}3+c!S^ZRY&8v}*l|vr~TCYTvD^cjn1-9~I?=^=KAxY7v)6iN0`Qnt5HO zT1C|U3hdtmbes0@t3riaLU8vn7&@ItN6$@84i#YF*V5BS-ED7g@2Ja4;cahl?y0)6 zWJ4v&3i)KR|LJd!SYnzj$|ZYpBRZ<$jdMy=WhYV_oM?i!w72_RN9ko@yDx7wDqLLe z*c$BAa{CaaO7l>Qw1tqaOYd`BTe;EUT!$o5z)(rGGwSW`erjq;JN|sm^<|rPp-WZ8 zs6{mQI?TDx;16{Pcbgbpw|VpCN+)a{QsL5UT2-XKJpOHZafbw}ga$voyudhn^7{6MHeNnHaZ^)MuO_i#dV59i z{rkMe9hI?Rv=eny-1?UKbSxXZ*(U`zL$%^GeiJB4eyoUA<)QWrT~6>14D6tHR23;G zDq3qL>UW8GH9gQtDa86e_4W!MJU4 z;1C-iz4X&HpUCxKla#LOsj%W~O|P}E5z3>Nmkx_OIGpq+`P57ExdM$&^E-FMMhD?) zTkl%tzoLx1xW0m1d$d7;TUZgdQ`;)$H_^-FMfB`nT;tHrUx1mW0D*OIN;_?>u;o_? zV%~bwi|ed@$1V)trH3+o%lsXMJsGWox8=!l?H6L)Ne~ZGnR3xst_P2te=)xa7l=DhKEY1 zjBAjRP}Z{=;KO&d;x5CF)H5vfTHl)`&XW$|YJE18vD0G)bAnD)#c>wMdo^8nk%INF z?7x6x%QFnv9KA_u0*7~r;F0tb+4Vf3s*aAGb=a@k*{Ic(Xm6KN&|sA_7#}b51Yycg zI-NF>5{lY?*RMTWRc7S=EnnZ}arChOp#q?xV4wtJN2z9cJL*o{QDXimbE<(eC*SV^#d9 zPNAfxThzyGHhdA|IyR{7*H?5MWhNH45+GD`_>v{cn$P{|tV{R#%$Uy^)7I8jI&l2> zaZ0tGy@Jo@lF-mr^OC#URedU>_OIxw%@C#+R90%}xeipJ>AQ!>9_sz@#A9^0$y>9) z&6RKM+LPIhC_^;t?5aO6vZ^}r?7lR&3|mhF*r?R#$ z&Vv_(&=3NFIUFK#% zKR2_%o#Bc-D45!XW_-~vt3AVKCz9W)w*jGqC5TlCmUUdf&t;8XbCwgOV(@5ss}zOlVyyk zz6p^&!l&pv%UN>6p@d2R{mMus_UF%^U+j)J{`^XIcQ$R3?wsn*aC04Pk0ul(IcSO# zV`9h*`0Q9{{nBDX>~g`wk9M%@o;gR_Q@gWTlrjf8@1YG^4@v=0MCubzL<1&C4_5NQ z1V@#~GNe++J6MHt@4dRk&uG^^`|;)BC|ls{|fE_rw)WBszZ z9Zwg?YGAY5#COG_Aale5Ot!PxT5|Nz(+Vo^>mB;2Z>I2m&w?0iDzr#S@cNSyg_R?%-`Y=DSyVN-7m z_IsH5WPd2565r0L(Uz#y zX<^hO$KGXFhVsTL2W;_ib638`DSmK`yw~f&ZP8B3&5;anBEEICuhMWcA=Y({H7YOq zTXXx1i~0so34*O9%RMLN&G3+5jQ6LwJj7>&_2`NH>Dbv>o1r>$K4rw-WE2P z^bKVr8pKNDZ`|Na=ex~$eT5t1FeXleodNA;gi3r4G^0FUa)@9;9rUe`9@*`odTnAV zUIs;XDhuD#NOKrZ3wEi^%oGC*T1%}xv3;HOdX6U3s<_+OFSnZpTx1Nq4341x&sf0y z;N82!q}2iSmdmm0-7gZ#QASTH8r+sOA~QMG$awoM$&j?iszd{W>npZvSz9M#mTiHE zCfmCt?Ykck9*G+S{=NITIGD8ESnHO;Fk0%VDn;zls=k(@fnF+)8H&QK7Q?E1%kG+FqXE2nX<<6iFlb-Jk-k;iwrM36OlDtU7fwjf%Q>m@Nn|(p zFQr(#)dUdz;+9KH_~|y@D-StgQ$_VQi#h=XiPj(+-U*piK30PtU%6qkC^Hgtvy!)2 zHaxg0lr2yca1Bhf8m*z<cpyh8=sgTM~2oiw|8&U>?(1a&&?e&I;kdM2O|~R^M)EKK-Lqn zL_5MRbI);|0C;%+=$Oa)LkSP?P8~u9@3S=)$+(WTfteTD`JlaOuGn_ERNFW>5-jK9 z+MO9d)W8bb_=ZbFzIgWRnM;qm9VfLcrzd|yVs$*otkP(nLDKQ($#hBU=09X6hnr59 zIK8>yKgm)3M$D}D1gWS1Nw!6T8ErmFLbJ^zQD|=SPGI+HCuCqQX|sW@2D48pZMxrgD#Oop0TZ{p*V zV_U2IvT9S$+5$yV1<3Yzn!wbs0*PcO~us7W#Q6WJo1-L`s(u)Y*kp$yG9 z7PM*kw$q2Bib|x1bV0^dxV`xg8SndCg^i!)HsNI3^onT6Kod*jAEY($aNag$4A z^<}q)IH#hlml}Pf7l4*)BpsK-s0$Zer~%&u!OSf+Tp850)%?ANaj>l)VJBP?6ah*e z7T(EG}2nPdYAq;0WwNyhm($n&3>;QJaA;81S(X7 zy!R=vivXceDaT}>G~f7=tAy6xSYpgnE=MS6*tE+$Zba%MRVdB8RtqEH*Vt2y-ZB6J z)(&R!7M+FFXbgz+Ai$F-$Q9vQ)%wm4c}=mJM!{GsAuW}*Rt7tFXAwG`>NId_9=FtC zQU;-!khcW8PmTl>p9d$ng^!iSzwEEgusnqBd^;p0!L%aE6#wb;;oQt!Z1Ryx{(jZ8 zs_0O+xLEb*IQ(OrM(n}1{%U=fUOA#pg87$~hV8a(y1u=`?}&vOF6*|h@BL7>Q3VuH zEtCq8U|auS&>pBZ+Jp@SZnsSE^<7N3j!ur;TUS!vgK?NqSy5jA92sIu8 z!$Y*)Q&{dkzVTySV50i&6SjH4tf=%yqC_?d=g|*}nwIl!4J&(eZ1?o3QwYjILwIdf z0Av$`y~0!jfz_+R;k|D%g3!RV0Ez0cT)Hiv@GZ`;$L z=hb9VeqW&`W0$04ZBC6j3NXHSEYqs=R^F5OrP zjBWej@s#H;Uc{jfj?xSmagcRSN{BqP?`a@c0-7r!CnskL;zv|u(#TL0G<|%7f*vrN zOu>X*lsWc=B6iwav&1|<(^rq}8yw|HCkK;k=^xR^bF!^J^K{-R2;fn*JvAxv3~>Gd zOk@Yj4AD{U?est`*^)Q#_6SsTU0c2H55Q;GhT>_ai?1&D0!AnX3s%8}` z@k0OF4B`$Eo|3O6 zVkwP+?}$3~HE+B{k@w;(L+wmE`ef<^{?_L{nL$Vf0TL5Qu28{=h70Y;6j&VMWcG*i ztYqa5bk>MaW*mFb)Yd#vsPMw@%Lxco&#$r{g0hg1^?A8%dpTdNLNbJDrpf|^`;+l!9xot3Pw9N5ale?eKKq6xgBl2_I(_N)02Wx3Omr)%CQp`uUJ9+ zj95V8QL5}@7}|k4CSIat$Oh6DNJT1vQK&GapAz*CC26;DtI<#py1zG*8$edPa`kG( z?L+#pGr1jhkShQU+{I-x_HG2d%oct`2Wr12(dghCC`nlDZ7vcncmQlhv^d}?U!t{6 z`E5oFu%yS}W-7!Ja2UaaAlN5H$9FPcr6T|RRZyK%9eR(G zF=C9AxZmL<-H0XVcQGc^V7{2;kCoqE&HVBIpWfNm&;NhPsQdrUmsu~IJAVEdeODpQQ_j*kZPY_+v=hm$OD5d*+ z>^k3t!9paxz+&F!lBws;LY)q2>4T!Qc;e{MawxZ{DB7h3jNx2yt{<#|Fbn?Z))g!) zf1D-~C=s5CaS1qnsxs#0=wMeo3>c%Vgy+?QA9H1N^PJMiS3;5r-ex$Jrx!a%(hl?zz#PVG~vHAGY;__Oxu%QD!5_Qe0OSP=2} zG}<-Wp1&EcJ#R3)<75Sb5Mm}lRpc0ZrC$wORRzk1a ze`nK9w7=_6Fc13gbv)To8s<^ETPzZwFiZNv)HK&IJJNWyg&5F~mn?Z+#B#wB#u-r& zYM+V;Hq%{z=x@?)%5#?iJthLmsKP-kqNl+&iigrk+6`1?O+eE4moJ{vmcpjRuD@}e zlyo1E^!|+oS3Nz;U~H{dKpWqG(~FpeEN4y*<7=5P5tX5Mi?~4WaD88FbjU#s4PR93 zl~gO;Wqg=74e?!s|m~@ye1J0 zCkE{$PCeQS9#r_prbQj>xIMh`OoinT!a^)V;QIDsNOv23gq@gM(7i9q=5+x!kiL#Zcrx1syq@%C_!`MBs#s0vQYRF& zWj!`6oMl39D?>LACbgKjFTe^q$tM*2%o#uo*+UJ^Rm6jOpsh~GWQhBuBbTh(xGFWc zwyU{CWCb+zDD;twGNINm64Ap={JK;yy#O@_h}Q`s6{i|11B+QZibi}N>?f$rI(}VS z&E6^t>ZHD;Xj?4z0_4c3v%bn}ii^R8&Ud}^2`oGn_5|_!A)1EOE`C0A*awI;8f)nY z5is(c1}ejL&jfZ}SHvSn)JG8QcnHtLB_y^aSdwwJ$_ry3Wn553gA;+pBw)~v@w>@O ze0gu_!8?$4qwt%+L9%5Adm2OA-H5L)&+WJeY6__jRnVS*|HZ16j6V;Kgx;MfX`_Qk zbXdBN-9-nDT)RK84Xwn7m-KoksO!7ODj#TzNCO&-5+TW)A03MrJLppJU?TA_Phk!h z$UuZruCC2@%^?a7m<4ejzh?|+;Qul$GH8`YNOR#;fE)CxPfQxSfZKiC3MEVfEldj@ z!2lS`$*fRpN7HA2{C*0Avu(upZkO>sC8Y|WvZ@3zf5(tamnq=7H4<&9axqhwbagewT zA@gK;5PuJD(K~Nd7M26_Eq*d&!j_QCv znu+?-!XAJzwD%=M5ff%^}N71JZj?D0QqFmrX6f8JhNBpWE z*NouSDO4_d<_pP8B^xOL!(Uq>!ospPDSa8si3s&*6(^XHqP86xf_m8+SaSzZEeNEG zg^1GUl-K7ZQb7F#8?jn?s4fB}J_a>Jao@gDR6x=wh~j`1;wO~d7G634wO^`Q? zQ8rFYRG|7)_(_C!z<|y>SrYOPn?)0H^GkYyI@PKYrcf|s;nCX0$*5pSd*Y~<7vA15 zfR+=3YpChI3xc!5#hn~M2wic^YvA$LL`JO#hr_@p;vf|0 zWS$8l2)5B}Y(GTq-208PMb==cq<>*TWQa~Ja`N>7)cdU`Ufw7b{_J?O_7a*3Vd7*( z!Y>CI(E%}jORQZ|{AdFmU=i~tc80~|Q$t<)Jc---?Aab-I6}!U_2E;ZH{Vh{g(X91 zHLn6=$ej`G$;RIS$*ByigIB?(wYZAV23-4IZ<$e(s4j14!R5-}IB+O`w+lnrB;PF4t}M}h=|=C zG{g6JmNtEa8bY?d+vJEbVT0`Y4q?P_BH9`h)xa%AR|sEg8j^umj*T&jNgz5mnHLi9 zAyUh!s`U^+1gTBOEC>N3ceMMKHH;o`fDmHq6NU2JOzxMxBWo2HqtyjlE$YNb0mBOu zVcU`n!@Omib}Wz`f5aq)wJRhjG3cfbh4ix9ptN1_^i+ek&^Iv*gxx)iD!XLKl1Nml zkUl4JlaI`^C$jm3goLUM^N5&*y+8m8@V`15q|9jB8Y0jT`4MDri=O+ZXP#HCUq|W5 zTg=0gNGR@5qk93OQFl#s!D~WcoF#5Ee;myJgn=^5!Yf!}O*alx&Oa z_O)p9Dx`4{iU3BU$i}ZyNirzdZp~tztbiS_rm&naL$6T*H-ayFUzveqP+C8-9Fmt8 z@Dx)fu)-v8akgIE(t+)LSkDp)3JS%UR!zJ7F)Ve&+C}-TFEzqqwM8nen>fL&>_T(( z+z_Q`MH{k18NXC&L?RT#l%#jnRx7BgF3`(|;Ydu>EX=itIgM%LI(NQHBCe>2`{cNC zQ(c~OMn#O;npQ-&Mk;#V{PFu5rgsc^WR4y*B#~AG*{q50i!((E7mq4yJNjE)V+WNNt9o5F&vV1o$IJU zce}(?-u6^q70zec%@CT-5To0&k$HQt04WgBIkWXal`BxvTd~Kjym(~0@!79~#4E_C zkdz7kvbmQMoQJ<0YXxAl6UrYxZcKao@c)?h+ArK-5lBExSTG?eJnzth!^C(O7tSC4 zw5}&bpnys)9G$Oi9P26|y%E)#`F&UpG@#=b3$4;>KDShxSg~idJeejSv%q#449F)Cm$#Q7HnHvjA zB)poWV5AmfenQ&^Bw1LNK6)m=(tHoI94PCakM!pzHy;BPl30 zpI@uFxVW@!DQM)8sQ7|H70@k zizU=meIV6E0z;Z2RtY7jrn?&Sgycqn`S(E^Wt}K#?T>{HG79f44bri?o8^`l{#Hvr zLIRC3aGwxOZSKI7@&zCEqM$aNLe29UvV{k21~}w2F;Km`=)DH?Mp80@Mblxzll;;l zJ=@#opB#;{+HTpP3!|cfxc%av>rV3v6C!|4Ax!Uyi4h>k3^e3DFgez<>tR zz&m$hK(|Pr1ad0rPiGDP$g`wsXc+Lk0)8=x-o@^^I47*uNs4=dc)gu9Dd;$}iMs5w z6)umQy!_<^b{Jnd-Puazo{_gy-ab0^RJr6bblna(bXu79+js8VF%3o4OF#r`d#Wlz zqzDvL01k>GpT#BRaKMN1Mzq?bA=h!V$Y9dC(6ywiUp8YbGz{xLjL$ogt>|6?IwZ*h z0&j|355q_j-B1QgyQ@Cu&_9z1`<(|nZ&E(J8-!j((n?`_eMqMw?HVu}_ikMz7${=w z1tQ^C=qh^~P{LTER-&oCA0aXgRhR$PGW$3X$NgR-c}gE{YcqK$h-4n|I``p`I@v zpAx^=*Uv8s%j#tI8*HAC_QsDgG9c%Y#0W0%U$QjAAfuTWF#`Y=wEVH|BFYHbmS(Pl zl|o_P@<%}RanMcM8sR>}LyAWBY1fALufN4Z?kbPnfSO2rL(AiC>#aFgJ6BhV6pOAW=jcpH!0YP_; zz>O2p^L>(`e47pTmPuJ+vo2<1yVbr0w$K)%!V}u*&u9ZD$IcC4?`jL>KpI8Va4nfE z%zjDV0O~l2L29pMS4js!Bpywe?5@xUxHBx25Tv9d@Iu04Nv>rH7uQ1oU=xV~0uBh){IG;yG7c1>8l=g?{cRGN0B-Lk2qP_V&D1Enh3H%N#+49=rb+pgju4XyA zq7kEwPw(_zZN>rza0u<{yTnnnKV)2+C+l|YB}eVJ7+_b9(3_4=rn8^Oa(yA(T<+Nu z%&X_{@uGHuf5lJ&GdlsLKnt=x(fXsu^&_LA;;>H$YZN{HY!=iYS8x&%Hzbi$TOp`zJ&04 zVDeQ8L}i#UciBDUUOE6NH4rL-a}@!$8H+H+v58g9-c5`qn-h?biOMpcQ|wIP-h#Xs1mVmi6%ix8BmkJ`t_~;l^mfS4$xsf zI|R$hWK0gbvVN=YVY{Y-fNCQoRMg{k@p)IZpyTf-0wi96I)o%`Jkiwv7%#c;Og8nD z)=XI3=#?-*TMrmq744n*(t>9T7Q|lgD6$gikm3Yj-uvs>1rW4>0aJrXsTDHxJImP$ z4z>#{UuI(ORuJNY6le_5;Pd@pfSM&_?IocTND~|q>MA~y$TFCrFJOlxlZ-L&^#%l% zA@CF2oN}5!+TgYISilUps}}i(CjGMA=>kFP`Yj&|_?ox%`~@@V|#BX7BeJ1n>s8cs1yz zGH}(xBI6dj`}o|#&J){X@2+a{udf>qTe)!7iT4F{+g@J{ALTZdlChBt>1?LwjTzp$ zMnl+A5v-)JcXCUy1WIyrLf)Vb1UzMuVgjHUfSyhx(Fq_r_d?I^IvIvd4nw@FA~s*x zXIIaGlHrE`5(rr!O-1Mv@pY$mxP6r%k#t0OI!Jtod2BiD*MPi!T7 zwi~sIGtnNkuyr^Mru$UJ#yhh46$RKXffBZHu!>fYOC`^q=wM1HgsPYzAAQ7v%9qMK&G>+uD&l&|DM&k*K=FV8c&K`|0Ub92}wG!Io z8WgSQ5GO@Yh-g0{y*SvFd(7TGAdxvb0JjM$NE{eG_t0XjMt0_E#Q6-;mPu6x-x94g z2vPJE2qPvA5Diijpa#SNA<|g~zW?P`tDE)0+onIU;)KN_Sd=4xmi+*q8H-I>(~y9S z4iqJSk|Hx|#GS^&v>_HCP#E#etn1uRk%`h^f}TXe1eF<<1_}p3KS``uP&;`K7OhpqOHHL#bBp;_LK0Bbc zD=633a3`dUD{iCh{P37XinK3)ZTa3WGiOD3xj&jZN3O zPUNNx{g@uP;MO|{m{Ub?K=oMDPVUc=L5u&LlGu;C+S{Q0E3)V{$MfMus0j@6N@Sod|%+P&I|oaDx8JjB5|FO z!QV`s{U;(gca1?lj&@P00=DX?B&+ezATHf6=hX#cLw7 z5#M=0nkvb$CwCN)sHXFf1+tMw&J1|rm1uV490Ku6P?oivoSfR`X%pQWV-l9zy`F_7 zT9AZmCLhxV;-JC2Pcile>A%^;H~f|#{&Am=^>g)%4yyhg6Z z#ygj7x6qApFTo)JlJ!Rb|85fp)PdA8q$&qM>>yynZbs~3hsj8GO0k3zG~ZW!1#|Jo z>^zZvz^AZ8Jp{-x2jsX6Tsf7j)FQxiqPqb4ZLDY^#xGDZzc+Oa@;^lH#SX%}+WC3j z23a@x^5IFKjH}bT+I1!z#-H+rKV1zd9xoi89COJp9pX2f`h}Td;UP+kj*gDs*qi;k z+lTCHCaoN~LreVIlTm05tY7iP9Zm`d2k~!VXJBH@085EX)aE<{HfZEDKPocvV#Buiec30zhM=a$=YA8l>pZM5N6>$a+M;O&VL2uyMm>b)>2 zKsWB0Q!+ft!(*6rvzL>ELLpWLx0^M(GxCTj0U<85Z>$mW91cEVTlG#zFXB9cF|M!Io}o65E2qU(zc zM+j!b>9?C*#;-#*22uH8w5Z~3mG~BT@|%jx?AxEUY9P5=uL!{!qhRB5tC6{IA;t?U zzz-;#y1>Psey^wbmK9Svp9kkWq%h7q9 zVh3VlV{5$Hft248J(Ve8XlrO_nAD7phX~GQdE9=bU@gmzZQTV7w+T2+ft!ww=r}0!!5o_14KvG$)?2WJA9n}(4at{KqjKiLTRHR{o{o8XJb34jUy`r zAYj_aSq-|9I%h5C~l5O(n3G21TV5U1OQk zdo+dILn17dP+KDJ-zTqv zS#cL*Gg-=UjPNJ;_~ZcQ^JmY9RY_7(h;(#rH0JpndF+Mp`Hdh+(E7cIYKKA{hh#1D zHE!b$dQR<;Fl8)mx_X01D3GZEs3gZi2puNu3W_!}#EOh*JTj2vKpfUwIM!M_WTe}? zZ-ONck!Uvw&&HQ{aY9ldq6pz*fxJa(v-^Hl_S+ zP+aMmCLoY-dzWrJd=Dt}(qJB_q7!Ck0Eg$=h=@**`NY_e8Mw$5FE1@99;zeKLSTcu z?Z~E(HB$v&PPWTB8UCdKDUvw3NK{l}(-e&NU4;t0F|>sJeP|E`aTtKe3P8jA7$r5b zXa+lLB2d(oh?hPx1d7Sb$d+?80RC84bB0RFafUX%7dO;in(=fIEk0dYeKA9Xybib(O(f(gUcGlz9x=4tX)MsKcBfnHyC`b-4 zK~@1)%$QnZ4?min>D%Ij)Bv0h5|SgQwW3r*Nur352yBsx-xf&SgUxZNcqyjtEp%8q zFw-gcW7w2|h5o{c=#OUKvOs9~tEg6U=qbtiZX-r8B~{k!y~fPeVv2DDpzn_jL41B+^J4 zhy;AGaU+SdOhQE?#G4r&7isFG8)kf;W*@k|ly5AgGSt@IRU z7!D91NCpc{A|CY-QOqP_CnD{pf&9G)f3@LN5`ZD3oaNlp@z5KZ3XC=FLlECj-^ zXvoa7>h=V;TOo60Oqn5w}~Q6itJkGLPRM5 zb%=yX*rD3fs_Y1}77LqP2!UcGKXwoYsKK8&Ng|fiNn+HY^%(1PP#|qV*||)Tl!R%K z+`=tYnOH37O9@T=BXn|bmbnf~Lbyh`a3Jm!>{c}7iB4T;B+S$2;GdV*S}NhR2yi&r zXfBg0SsrtG+w=t*vz!(AlbrEJ!zDgb*zEaVV@WJ5)*dDQ>r)O~W~}=DE|!Hm!|U+m zgrQD^0nl2#nR@^yg-EX zN}8BnuBL?hpsUtC^>Mn@hsQGFDuKB5hcPj2Q*#U!=RqUe=Tj^Ze?Puy z$FPYht8^DWo=@q;I*CAojMbW(+7`Fb+GU?6J)N)fey7rrHq)7cU1uVU+RJD6joevz zfouH5oIRPyQta}n%o!5An0`G*AQa7$Gx|fZ;swd@2*Wz=sdHutnukSmrB1uS^UurI znflT2{K7NZyg|3SdmTh3WQ%ogesQ?I`1|eYgbVaKqA>m^NQU+^w?`HGP`XeUDbdmfK`(HE9|^ziRt_uA)h{c^=j>U_-1 z%&)hGPuMYx!zQ|)_dFg|Z*S*_9;0SS%)j9M_qDJ7D9Ww!%K_LC*2G08)A{w{XRnkM zvwKJG_SN+Mg}Wva&oYYrHZ3W6 zAAO%^D~a3}yPH3}JBFqDZFcQS7tP{P?_?oIBXHP$xVCOf9)7K;rAN`iVG#7@wKxka79^ zCRDxKexL1~mkF?Z9o|JR@8U?UDH<5*%7AX!x{Ve%4FXE4juURXZh82?_;c2bIj|GS z7J+LYmoEQl#5R*MyU4HMn&&!%GWU=IvXD((dGqGyb=))Nuzb6%HH-9{g69*VtlqgN zFA(h);#{t7V>dHFMjqu*(E?aPWJriT_i+@G{lh+1_MeK$*GD<9oY_lUN*n;`bIE}n zs0p-!_Kt^aki?PCeQXRO1s?NG64+RuuNHFQVR`R~i8LLb+Nb3F+nE_hQC|btrm&tI zo1pS302m5+Px~1DR|g@h&R*hWN%K8k0xy9OYTN_?m3=7C%3ZuSEStL?*|u`e)&WoZ z4Cm&d==JbFarw~AA;suYALQ1#Yzm?GngF)xX(H#gr zm6erQ2eB#H8|8{Hp1D0+`bx&AUOx^^W%cpU!5&7JyYWi@%_*u&C0kC0&gZU+#{MXe zEDEgQzZz_vqYAxMi$Zy=P%GI#^y+wYU1tT4cgoViumAbPW9)Va_kn;dEmuy5D*9c! zRYDEF_Q+%QuE$0Cd;a_9{r&wyzLaB8_Qg%FpOsAcN9W|Y zaF$j#LL+J;4(CkcTN`p%V%@4$JMpZ8KXB|Uicd*KpwyfYUgX^(=X1U@xHrVQ-J$ud z;nL~Xze5LVMGXl}fPv6}&Ml)-q`{dVf(FMUe<Oi%AC>nTYKhQ?LJ_o_O%>RplY!G`KkfAX68F z;*n`1@h@^vi{xITRD$C`HQNwQ(Au<@LTboJ7<+D?FeFb{w&S#u_vs`-o%hPPoJQAlWZGp0PFkp)j zJnTIaO+1VPNTU+bfy4$7xw5r-=1BbqRwM-)iFW^Bp-@#kpg{tT!~vhm1U>51Jj;^y zffs?g z(WURVO+Cj_beiL4NJ#hK!UH@0?r1yJKK%p<;MmLwratWp*LtM!;2Wx5w8QO8C&0u% zRx-0LoRP?_rd|JI;@UL*#FDO6_s)I?Fb-WF;m>|~+j4)F-`%+R)Xbvo0CZo`^M|wr zR~G&1P7btz@U2zAFxois&SK}^{rxRdntzQom(DIy1rgnwc1kY}%PUKI@r75dP1H+E z{tKjVSUN@M>V=l*splvt%cNwT-Ep>M#e?r)Y0sZ#Qb97mYUgKnQ5&g$6Oex&DwI%- z#g~@@P<#i-q=bH?Kly2tLgdaCtv)sqdvw!>uk-ca-hkD#IQ!_Pwtu|(->5~v-FQ`q zw@18XW%l5=GR%-tJSu}6;_Rq0Ya6BIEPiJv*3$R`q&Rv}Z86_Z&A)f!RNc>SJJgZs zFT1b6=6mO`uFqn4g)_N_bHI1Hvy69~Q(2h&%rp zHn02rp!;aM{F{J&FSO(Q2|E%M2tys!f*W9d&U_78``V~GP6OH6e2PJuM~AM4v$Ltc z{^1KGr5;3y@4t4G zeVhvr;MIf#agOx0UAO)G)?c9g^fF0 zseLM-f$IMJ%5&hR_g!Htm46%wzP)O{es?k$)Ig_W3VA!#o97Vn9E!eTMO|UvFLGfo zv+@l%X+|k)XIxf`K_ZU1eSowS@D)?OW9)zXinF`exwxACr!Az->ms$Ex6|cKK9x1s^H?#eBX2(yT|eusb#{6|HR0@PSby)UpNIW)Su}fGyVgo6`8Q# z+3$o%%}AK}l)pPk=E(8|H!uIhWWoM3Ut5_@#6m!ZXgga`d1C@Ob&eAg_)mR-TAW1ft-m;94^&-y+XZwvM2S)uj4$NYX9&)kR$l+N;*$DrRd?;IbF=U;K-Cjtjo;VQX*a37$2|z^eErqTrF0Dvk;<*hKj`5iA|sTh=$G8l<5o1CLZ*=oE1gYutBFH`v%b_uklI_i6FmX)Oc2msuCfBv!Znqk;ad0cSp%)VMgun0AqU@*xSdRK@AVz{6V7F*u)F zEK085?cmA-F?VVT2k2##gRP5jGHiA>!#^V*0l|gt5h-`cSk6D^y?i|!-`9rne^LTxq z*!7<|=Yr=fx}RTks3Z0d=XwJktvUtBYDq`)J<4%ULBE>hbANNxmw)_%fJW7vn}rAl z2hNE1<8ULdG(y^V6o;@zv`XHtS{%O739H|JW$9nA>0dn%tY;i}?ZK0S)9MS=yCJjbT~>Ehfp(pd3$!x!D*>9%91Y zF<36OPGWJIe3^>x6~|Akwnqd`Z><0CoFQO^l92&L%?C*W_A95IW82rwaq^fmTz>WR zT>(xv_c-2lLSCK?e{C-h@7=#v0lreun6_oWUte`yHroFHGaSit*~eUpJ%?5gJE$_B zKtb9@0x`89y3$m|V-Joe9dwzzH^q%%H8Mf{QP}x6M5WR?g;~h03JZQf0RILszCIf1 zYkMWnieSo@zKx;l3uLSQHvqnI^PGF7a`M#7uNKC)?)WRjK)TY>**vOjv&WX9O#DYi zXGq-6n~z2{aKsB5?^lKVf9glUC9U6D!+)zeamoUxL?1<<^0|UGEn${lk9&(SOa?gx_Gi-86R};g<`#Mf70Q z@H%>QKRm#7W~#)7xUFm#jwz~^9KN)sxXS9@QKqLzrbT5YiLADjMWmg0wTSrac<5dT z0#*??-8kNEj+05@h_{gwI&kBhNhXRMj)n26h4jkRqx9)N6BS??0SaVxZpXzvk|~p= z=O0W}$>x34YSTld_I}uGrLuQeEaf@V6J0rkBZg5&Eb}yxHzh%5TbxcX!Pzlltk97& zX~)CpU-qVxq@&nEkEdtoAsLg8vj`-Ri;H5_)5jTt>)g^hBF4oeM0Vwb?3}4T zp|rXqYv!Njwf76fgOCy{)_6;WISmM@7r5CkMSbL*9=sA7;776fg4aQamdv`J1CeVX za|sMPY7di~3?eS=%(Tkq0jDZtrcqkkaj|cD(-CDuPP;|e{T0O#!A(8|#0B)8EXZ7F z^^+`UY6qp@yu>0gUis+JH3z#VAN%$HIA9fBl zJ+j%cbGq+Rdh5t!UvkU&94)mC@6?ujmYETJmiN_)*A7#(=#6UbUot=C&6dm8gMl+D zhG*XrH;FuzsHi3o>8_i+t_YZmH{|Q2v02_2BZ+DxW=dON*xlqMw$OB`X|87xgq247vN$+-v{1NnL~0hd9rKYuyhie+F~?9lJ=tY&C^^RyrrP7b9VJjwjAyTY^S^pEBj9;UI&-8d=v zt6hdC>pq~U)*(lU9x%jnJ<6a z<2NMT2X*nJYG2D_9X!E?ATbz}x+HSM2M^raPvU;$nNWxjvC|*1&I@HT_q4g< z?e#dI`B{H?m)gC1XM)l^yzIW@PW!Xf3g9w9!p}~l$ZjJZ&2zEi@aXS+PKs^iDS?wC zx2<%F9Qa*yb%V$}eg_(niqAK!k85k3wshUL)9>!#ydF6hM$TH{fh{1HD|XCj z%SM-Y%; z;~_JfF3O91NdDtam_4WX&7|nh!G{Z1eHh$yfaUuYmmC0; z80$>2$(_K8r{Df}ikA8-Lct~)D+~Y<}mi77HA4UAW za^Z)I{@>*NMKAv!_TD@k%e8GAFHNE%A(g3+Au5e3V`Z$&MTrKfG#Cn*GNe+7NTel% zGBk)}D3K(hB$SE_p%gMtnST3ubBo;GwchR9w%_;9*Y-Yd&w5t5ulu~t^Ei)VKlWqa zZ$Li*)5+V)?OV6`#X$5~$0r;_(p6a{Sub7)am+Z_^T^|SWx%RexnofGJY3~gZe9xF z8CA_Wbv0&&auyaAss5jz|2Q|)@*+1|=?C=0i3As9|4nM+u#-W1C!Pa%xyL;d`!JIk z3ijm@++zVt2QZaLf)tVZ!))KVH63SO(*E3UDa+PLddCHSxFKg6o)t{RjPm1}zE~7) zBNLcJ#0@NlA6T4XFs>iLm_Vwlf(V}m@>4YFv5-Xm1`|zNe263kMb;Tp07PaD(QpeH zY{1=j57RPISo)Ukyui1YtD6swNV^Fo1a)o6q6*i5s>wAHfgPrDIAe|jY>hu9n5Bof zIMoIqY!fjIG(eAlnM-u+@?-|=i2y&4_8I!7;4sXGpc=Sjtk-!(_oSu}5+!gMWsuz7 zVd5J@u91XP3iAwNyRpUYs>~SFx>e#(!L%h4rgClD5S>}V{+Qs-EE3TVQ;aM=?cDZ- zo8h^ykIy1y41Q2rLqo+)n0A!4y!?%IheB@d1)Yp=ys{HUx8JB#tu79MkLjcn%DIl= zvDAf)Y*oUyIn+E#G6pk8{C@($>&LrA$u-}B8rIGA7EMm}a%FO+&gG7~SsLRXIt}fM z^o?TU!0rLXRomm6AJ%GfJ<+G z)y=|w^MhfdxC*prR{(54A-gLLsA{NvK`l1NV}T*Py6=8Aja&Y?w89^-pdm!Sjm2v% z$zG`Nxu0y(;7=Eosp*W!X;iZuq?G&{?1!v;wh)LD7$-6nSj=9WdOGa~M8I_j3F>nP z;(5E?Plp?~e9k4zWW6-H=}If{2EuF>upn5i_1BY?WGo5hA9X3MONEMF$ti!fw}>$4 zHjiGz^?65RiCkr?wPZ`vO_jw|u!v@5NRZy-*x#7_(c6A=qdfASO+*L-k_oLFzm%m` zO#^phRu>c7Pb>8<+-_)>{TdnN?k;zuQEn3EB#@yRRPnsZq#J|*WClw+120#vnQNZc z)tnZfg4yF1&E_KZuCs1{D6D2&^>XG3PDLr(QeA*D*7kQF8l5e!8;PCG^4qYH2GB&H zD$cndg2@A%XByBUAjyoRxL_gckp*S3H0@0cDqdf!mD!53|Jn?G(Cb@V=T4fz(mXP2 z?oxwT)8}b4D0E0-D9E~;AIEAw=Dj1CRvok}(g_S)j@%Dj(kws!Ye9x4@I^6U42bxM z3zQ;Mu(D-(%^aq3jf0SrekOqnw_l2hba?+b`pCtTB+Rf<0dopr^M7a`PebvK zp`m3(4HT@TFRXSLdm4{dxx$OFPVJt4PXLsg`LK)_ADjET134bs?=|YH{zQX}OU2d~ zc8`hOqf3b)Ej3!PzdXyUW?XD z$tKx}H>o$`xb%x4dI_Ggx|(ST|FJ_ANU!TCA|+L2F(9Fn<=ixy14gT9OL{G>ll$C0 zwca8<>gictOP=Z)M_ErN7wcG1`EmMQi=C7a}~*-JYd z)1@|ODwx=5oOlu(UN>8_d5BeYEN8fSB~DEh)Dh(1D7r@W`mqsdoD2$NN8PNjQY0Oa z8(Dldk|{jtbR+gzI!hSs&ko67=UFWwM^M6NEi zH?SKsqKS#S)B6Z)pjrREeZg!wKKsG%qKg6wr%jk9P2mLtXfUJ{i)q-}=ee4(2ZvJWak5rcX|L*i-WqdK42Gif&{9^<9%m_Qv1R95kb7|izrv;F zJ?$%Z0&lUzyyyS(<>R#Rd$STZQ{5T8iq>Ys43spKsiA3GJZLS(q1mAEv4mMorW<*% z$Gh_J`CWP#-l0q!jdSBnIOi##&~U-+>mTmnEI$rfFZ%7GXUA35xd#>|Dr!Wg7%N_7 z&t(Z?pX`F|GE6%iKk_BzEfKt(RN^9}?Vu)pi+#y=686u?Ew;TkbPUJqU@^YruWb@o zOW||*oY?Ba`n?4u{>byfFiyA!x#qv-p|Ur(Y}xXkTNia|e*)IOm6Hfdb&D!3y8c6Y z;a}V^af0_!7Qft%9xc?YkCC3EeNDYmFPts5mN-2YXreH+V|$BW2LWM|WiVfg6M+|l zZD;B&^+c$6=|y&Wg>Is91a5JOiqon9$z3z0ututPi?>Nj?fo}D%OARn1Z!!WnrX9n zt>rO2RB~K0OS9(kWo}2%M-bzUt1nO6L+l8^UyVQ2Xn^rg8zR_&Ic1+aCCk8YhJX?D zMC(`~^n}D5l;vL<7++g%5Q>(Vuh&j*;Zm9VMFSUB1=KOys#e`X3} z8yWh>m}ns+4$N~()F2B-WQEB{dSY7NHljU*$>b;y2{gz&GNc3C534;N4Z;j@pc8FU z7+&(T{#cwg(EcEY&8wJEYFS}ZcX{2D({kHoo>*5NU*3>p@2qV@=O8WJH6v?Ob`jr1 zd^pMAA{k=D^oXhtk-zw2RdSr5Pf!pAIc3Q~yAll88bhst_^(og#(4aQDlyz1b`U97 z3|;CR=wVq(i!l}WoXopgKEa>)-k-y*tRdesNvvYs{YplM{7)c0T-JFn;^%E&wy`8= z&WxNnTbIQ5z#3V$IsoFi_?r=+Z7;P5z<2;;rXHcsO)()Uj@grtcmq=~00Y`8T$m2p z7TW-zYtP@rBrGNMG(U?%y)*&(BykRE76N-3`wgJZ@++qPxv-_bwn&t>)X%w}I>5b= zl*{9af7YmW^+n4}b}G6t1mx=yK`+Q8cmszAp^9G_qcWDBiF*J|W2ja;t^Z>23pBvU zv=1O;I2!9)Pg=%LtCW*C2Zu2B{uXsylfK1OMgd}&>=-q~c;XOx6(=|aO9VF0nKS1q zCd#mNs;zq;Q{5O9yFR$?GYr1z49 zPl4CmeyiQp(|_~rU$ly4`P-w^y1>QnTpc7|e8OSDcPxz?#A8Twa+*5U<}XBN0Z=!H zHSEN8j!0XZSG^=nzkHa3!kzGrz1K46XeKmv^5|^cDz3~8h7e}o{h*m+Yx@{;Q@FTD z2cua@dXMk_+_+fX_KC=vYGXoJGRWiji|qd}zr!gk_GTch!KhyGn0Lca<3h?-mozuM zvR+H?toQxrw2Jb&XjxufFU6tOh1Q3v`hc{dMg_OjA}__8Rd>&wj{7LQw#OIo+gbMa zfU1hnb&MFUP)*&~du?$@BogE5O;Cfy*nb$NqJA!O>~_Ztxi2*D(CVw{%L@!i=?|MC zlU=C9%c0IIqUz~&sw416L4m5hAOD@Tg#R%({Cao!uB85B({&)pnSACPWQ{QFZ&|o) z?GFs}+SRsT06hwW>O@Q&+F~{@@18OL>UG#4lf6OlpD^aY!!`#cf0-RIHvYjdbrMOj z_^Xm%nRmSQ7Z*Oea*wU;{NM#M&%UZ^s^pLjvd3tf?bnNf@s0xy%4A3#T;to=em@~3 z@Lnvj)F+~6OJ~H-3eS7z#ES|Qa$>_y*o(V~>17h03yA36{GggXmSj2WJ_NC9#2p9> z4YQH?_KG4!07n#pgO|e=0Q9rEFfVCMbUoPq$x2HyfuamyO+mY&9je?1yP>Vq4hiGA z#t-f)I`WZAqsysdY;(}ZtZQp8+>EG@^X>yH8;!- zHrpaa{R1DTZzyz}3u_06zYtj&i-YAvJ_y~V+JHkr@8Dt_f^Cm+piak9NN4$=EeGNH zt2IZlUq3(_#Db`gS@#efE@B1-eV%`6j?VKp5;e44JeIau_(hgG1>^oiKAOP!=r5f0 zTN7>Y^fCD-Xs7Lgo1AUXuazvSU!}}*9Ip?S0z+9+0hy}v*CUhg(p?pki1aa}M5muN zC5DM4ViWUQBEV4dLmD9jLp!TaL%(%rY6n!SlzoWvE2rrm$VMp(=56i`Lx+XfDnil7 zX8x6bXwl6tPa`ru>n(qVCnY6`HZrJf-KvcsMcSB;S3NHD&#J1_Z^O7PHH&m7ipP-i z_=(m@UR%HyVpoVD)n1&|za3UX*{yxhTs0s{C9n!y@K}^%#u3Ff^js@~pA5?(W09oaQhpf_0~0k27c6fO~WRkgW6q$5v#vD8V}gRW;7zRtCn<3umvS-|V6rVl%Ki{XR^ zo!L7OQa$T;38PN$(NTn?G&vc>LbIjYJ~{PmTbolyb09JHAW;go9Q(C{g!Cvz7_D!2}R#y5o zbj*li4~`GOa$>m&WkCfb9X`eXB=WEz@UJ)Hy>(gP`csH~u$^vur@8%(l{fzn?5+<} z=CYQpQ0ZafdFQ>?BS%o-&NZ*MRqL*BtvjLXgNdTj8gJg+R8FyvKou+3n=@kbh{1{? z&uMLtjQlP3v(3sfCsXWM+;*=^ciPKK$^9LD1?HT6aGs!^CR>@=AC=GIdM_@hVpL_w z%JXJ&Wk7vX$nfMVQ2u37OBMS1UZUixz0cW{Wdz3E7iK=zOkkOld^}3|gn*)8{O%g|fXmyd;Q7 zUZSh*uI8zQS8FG0zn)tKX!MTDlO?VuLtfX2ZT~V_V6*3MpG_8C^*dii@%DjY? ziMJ3DGr~cx!*!wqN_I{ALH%7AIIMU3y^?<2Cob-LnDV5PC@AP*kh_AZPoz zSB2jr!f)NGd*&SIFZQUSBE8Qi{9&F*%^-J~T5Ag-Ieqsog-6Q=iDGv|akI4~N)(OR z9=8uq{-3+`De?(YArG1tEHPt%*~LNcV}i`_QfiIvOBXv>d}f|Anwu&r{`(22MWW?i z7=I^9SJ*@N0>mt`wxIUd*yLu;*=NG5j(vQPpIFJHa>t5mXU9b1T zcJM+gW{HjLY{1=w++oB(Puf5sD)XH$!U)IJDf{K*g_oI#n=(>Fix!5bD6Q6mrba>m zkr6HKtWk zF?NX0u@fQ^2keqjjST6kMS~tAFDar&I~{~_p9ZRM3RznNH zg+`jysgQ_;F|Kp`#45h@QCk_h#HI%cXSIa!t|(0b;(s>&2VrDWWJi5x`#qvE3IRLu zwnnVt57@Mr86J*U?Iju5Y9zUH5#6HZG96TLMsc|bsVbD)yeMwR8> zZI(U-mv>CjqoX>?nglt39=&U-0}5YA{Ux41^?CnAjSZ+@NA)k+6da2&Kd$8G}nQ!+FPi+IdJSg1A!ykHQrYroL0SVl1$F zk0q|J+*Fd z`q+{J0YOW`#yC8MXunVNs($?qhH=Ye9*H$|cg60b_N(}O{5h_M12~KZ=hr73#VAxK z?tfBc4&6Hz1U)p{jDe)Lsr^Y;noW!YE3&;aSi%;M!pX@G>J>9@$8vVLwdH=Qob``nVQ#P|t3Fo~N8j|#oUMMbGBFD+; z45P?WK9kzo$l8!uUxkF+F67+4aBOMFqV;Y`sY{&}&2U@feujSI&0ES>TKhGkiW2fW z!q+u4mIl{d@4ULoIH=7eIOy9e8 z>}%*dzRsAv64V{@~ zH#YGH%#76)El=1RIm8VW5GDS-#8CW(`OA6h;Z@GYa1OccK`zJMW*}j05vr z=Bisc<{7I5>16{>Rx8bV>$CG&KnOL^ZcyrW-NYoN4RMdRJ*QAf5wd(uUk^~y56J4C za$KJ`=EEh^-^>7}0-h@eXBfn}1rbJdv)p`FlVm#iAI6C@3pe4ioY z6aU5-*NN8I-F=Rc!@6@8rFT$%5G7944GpV^uoXm73Wy{m^x)bLw?k_rHCZSikT(4o5ELDL+OrvE3d@>;> zla%5(&|vCFu{I~-?g%~G@tKmG`k7g!qXopwmc6Q*IDzdIyvQty^-sa8W!w56;a4m^ z?sH{(Z21lB*T(ePoS0HEg--`_&-nW07%)vVA5v0j*z5l8`DsX95_FhE-J&Ax?e|}I z+Dk5{v7v>W$yMP)ybo%julTAn7T{=>IfSoqGLe9FG(*YvCqa0T3@lN;4!d-e)u@sp zH~dQ4L?lA9_{g7|;JDA3S;!f9iJjD02H{ig8XceFcsa}XlvTEEYq#b%qvD2@53&vi zAyKJ?50eIP6Ks=ZMD5b&MB3Z1cN8sNE~}6Gh~GpO-@T-3qcjM2(fx{*rT2Y?_y4_} zS%e>3$ED%VB>02OS{`&1B0z7m?jeE49DIo9s{P>(tYk48=hAlQ$99ALqSYo z-~klVAw%>e+lvRFErwPP(J3Ba8gq)k(ow0vc72!D-@c4Aj2`25ZVl=prbKvM65E2M z^??L7Tl>~%$fi#yyfo$2D`Dt>HrsMsm^5@Hx`Wdk0qI}X?q;yaln_$4Ra~gw_iMBw zO;Xm%4%z9Fh-(lpNG7g!c)D-;WyE_XV1+!6OA#vO#!C9!2-&g$Ir+Kt)%{Ft)Tu}p zPe%#pVG@%a;udG)4_kQoFb!hd3N>*}$h=B&?i+gmyu=ioS%^E^YWps;a~p5c@oZ61 z(IgNunq=0?<616>p$oiukq^I>>7PSgzx=l=kwVAHIg>J+%OYQn2;Ek}X%;0HUe^|s zmW2?ktE3q+fF%2>L!H{KS66~_hpMV7ouZccWNT%w={MCQ^QWB9mK^F$vqRXr7PCh0 ziNY|Sr^H5#1Q(!w0YzSn=yhKgH=NqYRmDQ{weg~ALfP+0Tp;Oq+!exzyFw9^UYHbi zq)uVo>zsdK@8wC$hG~@!(jCcg?4c-dV*=TSnAnhjMT|<8KB-^frFdu#%@3-84u1h| zWlLh94L7AL{6+^49)Sxv=_n9aZpNia&#E;1WRmqfUZ&ulQ}T?IVamHUmH}9zx8vy7EH3;h1eQ4>7R~lFYUu${t0xq;_bUn5ZCwL5Qk@V&(sEXh>a{}y5N@2#~U}o2JUy?nxU}M;lTNm+N;-v z%$X(gvF_%xTX*k@Dt|qFW(M`Lb;ih1S z%>C5!UtXi)MpLNKrTNAT=RW$*wlbT#P@T@MT;>)&omgi%do`9OYaxp+QWm^Xjc~mT z+GbW9s~66HgJkEzoFU?bYw#Y|btkHoxGak_P&r)1jZfhEA4pJPOVOUfeSPPcn;D^5 zB?NWA@6NP=d$6-g%=bzoPK=GIJ#DB#`K=EiSjl!@_Vo=%i|1Qk53v62@XmYx@Q@ml zB85NsaW3Q8XAXCf3*!!b+ml!&L7Yw7aqqDv-LH}$wvRBAnIrMsZDEKLom|J1L|)dB zX<6Bv8YcI-%XZ)bOW{6mJmwL*gy}lM(1RiVB<)ZtSIIdY`W=;F5z*GJKE5=$+Gq33 znCE*D13!+a0)i7c`iOy@t<>aJTA{yQaXClP95uJ~pKu~YjdUHVES=Wc&CMk-X@_$*ovI71 zGu64Y%QC0lfsR2an>}nXzd-D{`$J!6FR&=Pe6+1M>D}~XnIQg$3+LBV z3!VQbr%JLnsBG6 z{bCQ>x|W?^P;kk*05MKc>N$FlffRAn89}zh4bGLoa(L|!0R@!0e*DChR0YNzMBonO zX<BD$_-HUI_C>$do9xM@?qM8hkG5Ud z{5)+yhfOVOV&`D4FCZ!b$vXy7=KE-?Bb|jw&Bgg^P44Q7-p0{329&%WO%cnMSAuq{ zb}bmQkR(Bo#e`p(-4Eh^i=I;*39v%By;aw{dU%rU(mPO&RglH40YN zirT={q_xiuL$#C((t$Yo98}u~d}hh@8fGRDISh`%yWWhO!LDa+7!_$2=M9E3>0iMVCfbNT+!$%~gF{^ za6cTiZKby2FHC4+W2c|!n>>`3Kh;|se*3nqBuf&N{DaI~X1CQRqu=-%*on)GG33=P z{Y`>ms0Phgn^o(_*-sA-zL}MzuRXZ==d22Kb4L23q#RY<&de-Gr6XE#^ld_TB-U8y z1t}5@bjV*$RW1Np5k&@J(a5=*IBAs=%~jw;4mpLL9yvJtZ{}itRvEFKczQ_A=ekTU zSu$c$$|(=$KM^DIu$)YPR~Y%!%>A(&Wy+9VPWH;4HKw2wWu`MPfG?>&a5~%i*enb5 zQS77wPY80*Y8urK_i%Hs1UPs#A)8~6j(F&_yBll&TN6vP> zI78?Z9fR42wAs^anN+nosY|QbzYhii6wfP+DMCkIQ&?Eofaw({&4;8=8C0%{7%+uV zviuV#PK-R~>9fKdtzjMZ9)qGpzTJQ+Q{Ov|jk)s=YA!%d{qmg6?#Hws zDvH@7gZoF#mCH)kS&W#bpa=c!9sLq%T1(dxi{qsE#dGEKRz{%^*~{gh+0Sn5{rq4E zN&TG8j#q%nt)<@%wq57A4O`n!xQ;m%GV;$H0xdu66mW=JG?WYC=)Lmha|KLwLE%#> zk^dQ_zv_AP?*n3Nz?3dY^LgIE3fSNcr{HMJY@+YfF^N0ik-j7_B%X4gnLcp}>j8I- zIX*sJkA`8!jK*ava&vMDFn-#O<0Zn%Ku%)8l)1Y@Q1`MX{UR_NEV>AyC6F47WjzW) z1;tdRE+*|~WSD0GffaDg_;;No+wZ!Bc_@V(W8d;hAoZ#L*qcRba#9=e_d7uKacMW( z3f1`Wx$3lY0AL%LwN!o=Q&_oT1*uaAXxtcwJVl2X$H4leC{*6vzIXr*FvL;Rzsq68 z%9X3(W`IAa04fH>%>cv$qP$Iv8v)zwsDImzq=^`w2ykz*N&kCSFRN{z;N-R!Wj65~ z4}Etg&6;8h5?`oV2y1Rhj-8p6-vwWZUd-I@mTA37nUQ+CTO&47v?72`7Xw|52D})p z7A#HLBbcn!j?R4cd@Hz@Bz1?Zg{2t*WP4Z@l@;>26NN(d-ykX9;Q~ z3BeM|n>3OHs}5%51?aonB@c(}NaX$LV=y`LtYWqGFaTVLRKpnhAU%DY#G4e{M&bj8 z`qTF%rG)04socluq`zyZ;q}V^+_xc|Jax zuj&@^s!~B^N9j9n)Zn=oftClL_;>>S6mBM~r{n{Ym}YI3 zmX_Alt5>&IHxR%K-toli33fq3&3!ydqU^a(2F$GAHp-MtJeTnah!0>ebyZcO%z7sM zGOi+4dZnA{KB4b8*Qx$W*cq#<9jm())KN^pdMj0TzO51B%-f-&Vx(LELW?ij4tMX~ zEpOzLcb5G%=g>{{+RmN}LO|iaxW+g3twWx>LzI2{s`=Y-`En|{ZGLXks`;xbGVno` z??8WV>$T^V4-l&3;^JOQE_T1+)_RRRz$FDdzVSElo%PzKS=wen_qx2Gl>SxnwwXkz ztgKDz-E&z7Vztb7xtA}8g+FysH1tf8vHS2Rw`)g7~f>H z#L83DbKn|RhvG|P)qJscr_u0N*7QC!{h*N%sZP&1z_`bVkhV}avk;APR28|M$pEx& zfe#afB9>w5mQIFds3rjIRnF-daO^it?6@I_blfIbW}vU;iM;Ty8m}IqpXR>r4Ml$U zw|og@?bJ-=DNGe}kFl2-d^h;hc%h%apVaBi(!T7-t)(!%XwNs*dY)+|Ht5atwxw2{&77|e}yYw zA#Lhfm~*S;*CKOwYPly-a_R%}3sO3&wAlc|iYBf>kSUrXjrY7lnN)I&PmjaF!2;%& zbCc{5a|uJ096%WJ?gpkU`tBMj140%73;*Z^tt8R_gtMhKVcEHk;kE? zWpmGrH_V!qxnCS4Zz3c(@Vhw8*Y}0j`{3BjNG^cXRDO6yqn^j&=kSK382ow1u#$@$_<7a3&|M>bCiHZAFbu zj4QK_gNgCXVLc8fyI$6bLMI`JBOasZY<)rDLOMoHy^6V?9A{L-u^ zCVEZb-&yV)eL_<^f)T~{Rs zQ_VCQ71Bhn?tPuYGLi~uBXv3#d3QOCcJNBdqFd;+V(!JWjsr0wL7tO-{hA{Q;j=<>P4sU!+FG3iZzLKR-^ak zEkgy!EiTXIstvx&#-!nZcO?@xERuTCJ2%Ev<92B5wfWjxG!uUscuh9BH5%xersuK9 zn^thQ&J!PCX!S7D-jGp$c*fA9$=W=lTUZh66fW`#wZ6vfj?E`nhjNWFlZ5fN);c#)cX0nGlhn$f!@Y?$q`ZM9yn1YcK zxZd{9k2LMtCs(qJ8a=}|)7-&L*LcV44dTP49# zax8%PQru~me{F?;GQ%1$Q?i(fA5K=EPjl;kbA1DskO|=Jc>BJH`6DXB*~2?_t2b*+ zwtmgD%nF57E|XVLs;=nIkx1xxZ5b+k=k=c@7jP;Vo0Z_Wh|3(4zWOBda6Un`M=tmV zT1OAh6H;&95;8Av`VnfLD(Q&&O;^%<+=58wI!<5auNF%RZW){;caQE(eL1 zo4UuILj1MikjaBYxrsy1BXrSp*G?hMva0sw%+rPe1Q%C5Asu`uX5{l_BqSs9SLiH8Od4Dqp85L!3K@X-pKvy^j4>q6X=+DK078>1V2| zS^xFDO~?uATdiK+lx~|~N^PefzPR~o&uCY<3hs!u3D^`JTB@RpDahjHMQ)oHje4r| zh1@x_$2=9eZ{9F1J2ibWEB)^Z^WU<6Cv>!S1-?h_!Q{q=wXTXs_AJj%r)vBa%#ulY zyNbqlr{2!6DKRG$r@%nc*|1$dD~X!AHD#=6p}hrp7t#gF9i}_<$6sjNFr zhHo+Q_)G3{-aHmCR+~*ZpqS=)u|{w4=CF1Dn$OU>t6wwyqxM&E<03{Yw4<9XN#YZ} z{;UMkVU&S(4oC^US#!7C>}dYC{xjv0L7R?YvURQ&BL=-k!l~o_bnKO*`X~0ht0Hgk zKPF^N*Li{@Pau`$kyPdRZ}}MI&Ufb3^VoGc@O8&bYO7&`z1aoV6K83Z+7oiP1(~i_ zy3R4^qvGsxTliVZM{9Rb3J|PjXM}m+wf*7-3Z`=WEd70H(bj)<6m47_;l{}Q9Uka9 zLd_@~ZJbbZsQ#}|b8T4y$ED1nPP+`pV3~i7a^8P^*>S=#ibUDzO~>-qx7y1*=8NG z8$rAr=RP4aUzCf2UWB8%ot||5?f#@hlT{9)FFhaL-^2jA4_&wQ=rpW4oX>j$jlj&* z2KZ8jfhk4?e2Ek)A!iYPy@_F7JY&Kd4v>&tN3rbb3?|0U4%GUR*XUF3>(@oZ-X2bI z?TzJofT9&VKgVd<(~x)+ZDo*}biEVbvg z)wbkNkd49sT(K<(@hZl#?`T;Kp-PfJ+=u`91K3eFE@#bV8j}cpY-K`@63xBfj9h~I zaDAJ(*0f9#kFAAPf=QVX&@w1mZwHD5g=5X?98*pw&;hl|dO|C&w%kN+qP)=gX$5o~H(5y38xy-V2qXLZ@<* zM{V1-?K^htxG4P{KaY_91q1|$QpNq3bKNsre#zkE`}(T*&@s3^yb5Voa5Mu01IrU% zG6)L_Dmpu{G6)FIf8$-H1aQ_ZGt@0}KY%s}P2*Nhb6l#3`UE-H7M~R>tb{;Z#xI97 zFV-n^n*1ypLae|0q!%Hi+jK5$uygdpzXS)J4TyJOplFu&BJZZg&csf0ZPky4IgV&% zYz2_5xtv2?)91zz=DlObZD8{P0_O%1^PX!bzJKyP{q2+6z%@}Tkvzkk*QK{)E4*wz zJU5K{7$xCl{5EK7O?5RW6TlidUC2aT3}_c`sei3zPp9D z3$`aGZEb{?N0Udy-x>emPwVsNUH7c=jZ6o{!{U>XzcHx%M5G$8Wl7?ut&!?NQO}RN zyFEX*ap5;6zOI0Hfm1;>5^v7zU4Ahl(u02Ll^5EKNg1YVo*5b(lWuRfV=Vew1OmH_ z-qZHiX^&3UyS*~kR#$CO0Za2K1kpiy4e7=+3HR{ zg>xyHKSl?^0*yFhDBIr8!fgK4>(@n;Z3YJ34m9jI@{{L~+OHcMG_|w_EF8N{G~DdE ztEAm*IgQ${xuvGrCkkag^=-_GH_iRJqFZc2JsZ|x5o}4+a< zcSu~tnEH;px*8RRP?EpG|LAy$Ra$TrA*qrsX1?4s0*S6~elaKaz}<_q!-7roMt}B* z;CojamlZu(`LeF!x}xuoj?jWKu>_D{rzD$BFO`z3drxN zR$j4Sf9$mpRF06YsZ88=F*di8sOAs>e**VHJs=+|8%Y?20N;K25lvJuA+ZBYRRqhG zfU`dSo7SD z{{`%fF`(NpKr|o%5EL>Nq^4DG2B$$vgYDa)xKNKd(-cMxmoQ2Mewbu^L~+OFx2IDu zD&iZ}uygkNyDSBJ{wZ#;6*3cEc`}hdO6BS*FGadUYGp=xV(S6~#d<~NUotL9_%i*8 z%&4!G;qJHkNVqWTSAP1B>3i;yt6!l}LOgSSibvTQCH}8}YGxK$ngq!vU3r^5bJo(K zcPM9|Zz!jtA~2%tu^Jzsn;@`vz(Z$%+WX39x%i@Uw9D8tG1VUvCBM0gDH!5`G{#9r zrny=RDUP|RDanY;F-jqqO-fb7;}O|N{P;P{a4}fHN9r0wcMWa+$|mk}8FnPGqs|Fc zx*AIQ^5ELhHSNX$`dR;QgN>BO*#~6>rnSH^pgUW^O-%~_!gq%YNYTXJ-qwLa5NRUR zvw76ycbfcAY{Rs(6~WM{MX>tq&k0g;#rkVEDl7LRWTR2hNQvC84G|a$xoXjJ6X zeAhM8k4dK2RNtXH6Z^}rc$2b_yI7w`kQLG2p!?MvCq{512N75|4JB<6BXF!iBu4jG zcV}8TasbJFvA2TX5x|ZL)Jydo4N0wZX+Ku}*L!q0yw0?YF2?mTv%}#Zg2UfR%a)4f zT>)ygcuWi4s;h#TsfM0b#7p_+>i>ikLZ_P~PV=%d*o??6#|4ax9+r0QY|G$#w2Y&A znA~dY%2Re|{{H|QXPH+^;HAl_=9S%Bpee;Qtu$7*(|1)pWyiM|Nth0LAUhUktcswg;*9&zG{U_<@^sO};0*FH88rM$ ziIZ|${MXVH4Gk1B-?aYPv$T5>XaMk^t#ZGm-eVm{g>h*yhY4&>DrpRMOriTX zVUz`d8D?t!j}W_@Y&DtVnqJ(8eq`|!+eoqEp?H}HJUKob7uK7T{V@u>)6Gy#GK;;h zHtNm;Q6AerA($`(5W$6!OpmO_hk%B#-sl|-ypWNY1m1Oqo8{@z$wQ+YJ%G-jhCf0Q zG%$xmOhr>ZD(B1oRo@88h$J4vS0ngA<6UNy1BP2_(lGLOV8kIMZ#b-X!P;LJ_v?Eh zwhubtQM!(3J;fbzoLRKC_d!U*Tq>%mIZoq-oS^XwPufT_F#h+3lk_sFl8fV?f$^)o zb2QL33QSs0;O|J%q8QQpcQNFl(Y+**V)AI-=D0h*=?UUvlU~UM^$UCcIL?0D&q|~1 z5xj_8U-miXoEMKLZ2g;XNqZrA7h1c$o*Gm~-45foV7_TN%Q_uT@EARB?0Nd~*vX4Q z{BQ1)YLnO+8lc;F-8ejp&+GHLqTl{K&m!F>vNvnV-W<8$G+Rx09`z0hoBSDhlc}wy z&vGiX-;7sxrGG%x3s(2$6}F6vyf2K%t7$jMo*7Q$sh44+pUO5PE;I7)A%)@8Xv`fs z!Plv8r9t1Y`ob1|&CDK$l9cX4V0DT`>pw{#x@_Kjjcv9{HJdY!UJM;^S~7*DoU-g= zGY^a2CcPZm2b5$FO7ejlfP%y=eSG)<7?g6yp)M!WpOja(@G2u)tN;VGoE#cE`FGqd zY*8K;ct$&1rq1M7R^-&sA^MKXM_-AxShc0P`b3PIc<@A3p-@!^p<_#C28{NIT)v~cHqwc2fbeTu- zo+B7P4rd07g3)dq6v#Y7?PQk6yh4lYg{#{@{`!GIjSuU-w`u44-Am!#QQ8%C%W~wI zkfjfK-8?w}(D|SCIzC=aMoQi%-r@&~nEvAzMPEazWBfjh_+FrZP>#}7U*Gz{I82RD zgP{xyqq?qU)r}K5#s*A$zj{9wh){u*!Q3Cc3Y{k}NQFwqB>oM!$EU^KRoWVJuk>sC z@|>ceyQ1%ttb6WJ3zV-SrQoL=Nj=NJgm+dG!oxY zZJ3YyXkD3vDR48y;zc?p%M=2B+X(6%+nH`+{3kJ?(SM|r6sg}`_8e4wtuaKyP~yL< z#1DA}YCD!iD1b~76h&(MgxKD$L=!Ok0DJozh7BUeECU$_}c0VH8kicbhAq*s3 zrI9sO00J3R$~TvW2)cBqLF$HzTf;;BKI-t}?7d#^R``P?zi`v}!x-28S)P_QA20?{ z0U?xq=v5$UKIkj!NBk$l`tKntM(p4SVIR!LsF>8>DwyPoR-YL_Lp^|O@<=lxU`RQQ<{|}w*)WAmIZsklZ>%R=#dypr z+%F?G6 z4={-n4jc=k!4CH@Z2dWYovQ!t6H&z(t*<-FW8SCrTY3@IL?B2ojfDIJ|1)3cX=r=N zNUMU#4Ayfoq%q4X+AljXxS-;W!CfJ88I7#xm2Qa*>~iWk3DbUJZ491ZY})q+m-g;~;FdzH!X_Dhd$FK*jf zjW@x2V!stVPx_I3^82hyoZU>9=3A!q_mn4ANv`nqEq7QWR#I}}SE;{6&DD%{bV>9U zthrl^C1|%jEPDs0PDz;EA`2486uEOO` z-8IAOOE_oYhv{>Bv1Fz?ipOr}Z7%m5^8ioyyggKOaJV!25IR=_h2uEyi`K zHV2eRx=KASmH!+FN-nJ1M|Nap0t92$d1}?NhmzR=tRlKr>eUVCo_$}G$b(tS1mbk) z;o*^VDe>;pCl=2AooU-`dv3`8uJIT135T{P!1@_L%dN;Lgk8r08%dQ34lQ3!9kqa( z($Vb8x$mP2cN#EdX)W0yssm!Z*6oxKP;A+jhqqcZ?Ru=aT>!okm=HcPt{J;r;>Y|zR%A8Yvk$1U_KO{EvusPa)6-+r& zp5Q_{Uzq*0d)$!l55F=1;T`-e9}>&&dsj)U{~pNw`Oy--M(Oa=jc+wHHRJZjMuxtN z#F#rAFG&l!zeCzHXS&VSDUHkYAeO-}IUFN2>OyTjr#C|nWvkR}M8JNB9rZU4a$m_* z&9vFN!RnY6MjtNCcMY)Fn)w4ggZ2{B5{xy;u0Cqz@zNuC55{Qn0YdBSJBJ-Lm2SM1O<4j#%00NX5GHnHt{~-rwU;wC{&tZ4*1X$eh|j zobn~qK5vN8PH3lJ319S<<#kSuCNvN_?0P~?o}k4OkTQ+SLOqJ~e_Hc4mv(woSO;+h zUcYYFQT>^x7_FsQxlimHypH+?mHqCls~((rSh>m_ouKAx9gc&oA>l@^s8xnSjg&@E zc_&YBMxNns7f0^GRR5heTiG{Utro}s>G)=8v#|Avzd!zY>w<*-z|Ka#>uU<3o2Kc} zQ_}g+w>Nc34r8{{SIkK_U7z+ujmz>#@YymRkdkK4I<#ef-G*Vd=P~hJ2^fC7gC-;T zo^!i&6%@{6{KT@W(zUU(14hcCZH6*%OP{r_ni*$CJg>H)tY(>Q-@Q*qib5`a=ucAk z@}xJjZejWq2POzo=@9_>cD&iGa`S%(p7IY*SvgI^yxHy58kPpT&7S}xKCF5skp+ZbB z_h7!!ScVCqQ`>oFtkF~Wn~%9EIBqQ_w1|$-V+^6RW6balddj;V>~)szZQ4W;Ld3id zzcCt_#6uRcPei0mIY;Wr19Z)=!!v+HR|p?$&-Gtc41z#Wtf8XikAlox*B$$5wx1`Y zT+d<{!Su}3`S0B!>oU5V{A31*I1|@@dicn?c|Vs!S0$NJvCL%C(N59{Tlu$G(_n+> zr@x2PxeFaKeBOrut_Ks@S)8Jm>5KjtQ*Jz36?L?A0#QX-^5pxd6a@KSxjM^aBhwr0B;q~e?! z{#ajKMsIBl$ph3UuXAT6u9o0`PyQZP`Y~l(+qX5Rxl&KKi$g`zQTzXV%s#1Q7XY;<9jAyAoZGw|mljii{ ze|n}!>DUeZv;En@Nu#09{lEFIc;%p_e+NbawNMdy4}rXBh(GCVu&Nh&|DB8@6XAp` zo3jFm(8MBPh$v$tgQiHaL6;))@$psj-$O9s4iSyO-0}_xakgQw>nM~5jUI%e$qo6vV43Fk}sn8!=!M&QH>UK>q87n{XIX()O1TGTDrfU+uV-$0hS%oZE z2|EOXtV79wGB`#4l@~Nv*NUCOAS0P-rqq`Bnczq1BbU}xP*9lXHGf(h=I=0Km$JF_ zfTY*-eLPtuR%R*3r)8BS4F0ypJY}ZuJ$@)ZcBPX75HzJ|Fr*$st)B>BkWn$B(?=>f zXvfU$ISESBHcSiaV74sR?8P*{|MOx~lb2a3pU?RpKV)-AnlEEDHnd|3ny8~;G;WpQ z%Nb%j<2Dmt929nb&lIanO&phYQYYMvBzAFLC<(%tTmiJ)Zo)aN4};x02M^x9y)^(T zUXPVl9(=71UdNm^rHb1|80RIEpknYWBGwk46HQ|vFTV?aCLcVr+t45;JgDjRt3KAD z63>VH)4jv1cGZ`>XuZbVVNO{(vVx3*3pppNM3zosLJp*I{t1M-mju?%GW6ZyvKq`~ zpTx-O4J3!`b*%>u9$ZhxXs^JcH#{O@L&OcMT{~wc>k=sxK`E&(Hqd@;T?#$3JOTgR zUol1g{1a4&y%UM6_YHid?>qxtimACgcJ<clty?3Ea{W}{CG!xf-Es3*bYyIMi&y&z)RIeu ziKcr5SFT*y*uvw`wXpFN3rp6vT!04a$xlWy6V%uOZTli+HMLVjodiGGtpiZlda?;N zEM1Z(IWNX=V;6SS=*`t(mNJunD!Tnf^+ZMs>>bbxS!eV&^A$t7kPPEOsb*cpcU=_x zdF$&$3C#!6-#5P>Vp1tcv1!$QcyJrVcf@~+i`-1E_1fM_n`5BD?41bfnEU)czPc~V zJJn63qmk9@KfR4v#$;D2^dHFNHd3Kh{jyMbMlJ}t{BA2$%N<;=(_bu$^+8L+K=YoR zGubjLtb*P^5(3klcZ-UOQgXc{Ta>;)bYp#uuU3vlefHaJxsWbW_Q49iw)e+S`c9vC zIMsA9ar9W?r4bK^Dc8A`Bt55BF5@&UNpDWz!f(&1zpc3}f%3wL3?ci38+u8tDX+nB zE&{^`%&s#fMRa3_Yr{i?*q@X5;_F-8@ax&UdGm-+4zMEqy+=c#aIaM0&{;~WFrVJj zE_k`bkBoC--aTAh$hYxCmU$cGD%g`ajk1pCJ|)uN@NpmmyTx+TxU?4=W;!P~bR%0` zA||#?FwpEwcr-^F_{)Embs%@Dgcolf68lTAfgS@>PU zSM#m(0~OXKvpf?U@EiN!Z`_`V&M%rfR`G|>EdaR{`EhJ{9hs%h$<9{awQJW+p7NfT zNzljY>5~-bJE!}hLpp$HCvKDpx_0X%gB>@7%~spA471JK0$0kBj7 zfR$BX4etIUao)A@9B326UYhL-pDkl}Y-RxfD9`9L@ zff9Zbu=2Z8%=+$D;RZ)&GV#}x%zd)xx+jmO6S6x;>? z))W(G5;!#Y+um1bPCia{avhA2w4fB%RGDG8Pxs6zb6+T4nowF?Vw!djQnx}&mTXD6{F-Y{X#L;k@X}L> zvZ*SbVY5O!hzJlq3qnv&80_oOGT5=4LmM$%ieu*wz$t&r2K?&W7Kq$NulD$@(wJ8Z zT{%Mm24)^l5xQRDXGfEg8OwtJ3=Apf)hmh=9Yw>HT@cK)Z+lI2 zH0yb2^J2E5lFzIS^$+NHO6=w}N?qkJ(YueacOrj~D!3%PRLpDrsb6=Ia{NFR=H8Pu z+mYRCx`x%?ukob;r|BdC%qq*yI|>xN%(`mkJ>A$v<^NpX;2DNg=?;oy0B6yze4@$! zt&CrrGrEk|5K0si_(7Wx`cY=BSWnxJFxWVyf`AP@77W%CE3zo4B&T$4q)YDmbPSIL z)Nz1F;7z#?<<|9}{1EUx)kWcEX#zw<&^=hvW(Zlr0_Vi-8@u;5Ut>0M9o(zfvU-DG zxjwUbjrs{9wHizE%U7>n5kr(#E_GseqnB`u002^)`akd~TSza~03Hk}xnP76y$BSv z?Vz(}mq0pA%LmFY;r9MAxOPCzX6rbrsgZ2l4L`CUxF>Y*_g5eP|Ju9uu$c3{oyXcN z57zmil%*HyU+gdUhn(wdtL8!z5CZjW`2k7_w%_w_viDy@0U|fUi|3h?N0S<^h-DI z=%jp1ToJ}|6QFk#@BPcFjoYSb@{_<|yD5yX#bHQvERh;O>WBr?O@BFY7{mO@SU@RI z$Wi5lVYrmSYS{D>&ZVRrdGWljy~}_1I)A!@yBw;!OXyir*aaGb@jv~2$Qj-=ZK9H) zZcm3dXbT0)ALD2PB$D9Loop`5-fC6d)xdV^C5jf8;p^IPpn@vm6WlIM2e>)CQQG=W z-1Rk54BrKjHqyc76D->*b%!0f!qceIS5c)y#fx6`IxZp*V29A(KGMv zLwd!1VmRey` zWw>?bfM+u$*jj=eap=H-^18~--%}TlPT1B~72K)NX3>sL@D#|fh*l(9%cDJdUA_ap zojdWB4x-oXG@HptzNha<|65;-K93NYjkr7T=UF_mk>LMSfPw8p>CoT)+x#dW2wHNX zV>K_G6Fb~q)YjhW#hX{42t5YT6OT9La{F<$b%c9q9iOym_&6$8UIW%~)fkBUy6A0h z`KBIC?(KWkFo$!-z(>7sYDnYv8#2?F*Q_E zn+*Zxdh=YIg}CNlTw# z`a=Td!i=4tqX#AU`RfSWGwn&Mv&v(}CC&Y)9~F+@S<_Vix;eWT%)bxeTXDz6GOayq|B4m?Mf{?nqgG~h^=f*tJd}>vxi{G4w z`x5F4j^6zmS2*SvWL2uzfkiY~5s?n19-I*$P?Jr)=Secdq+E!RrK>g59sgyn zr}t%qP77nKc$3w5L2%Sgt%nPQwHDmtf<1VTYO++^#oOfm=pUGCZEd}GPEu=3DqfQi z)rOw!H5~KmWia(y#GPV4*)R(JpZ$HpI-rU)gN<1;fVo)^7h~q(6E^M>K%L%OjgfoG zWwEXxDgvMoS-q>j)9*KTbZx>_t8zR9iiiz(RBZT?xgg!k`wvtrgs-;IYy?j&4TaMB zlIy=h3GOU_wWYGDS|G;R~hO3QOD`}{J+u9onOwE*9 zp%grF+*zPYm0iaf#mI73i_{kLU6OoXr ziWV;@hLBtmVBXstk453l*y_Hi_yQbq3)>M($v*5Yv>B7?&9&6~d3(sU8bY-$knk;n zK4&i@+m`L>wTp}7<8YjczpDE}3gFs(yxA2t8(S0w_wx3SgrID4n4DsUNa@9plx0;z zc8H>pm?rSj4(o&MYW&{LJQ0C524@OKh%z^nOr=a+y4Xv2l|FsvD<@$H6^62&%^Zf#!g>W_5WlPMCddjsh6Wp|B9JFmIW ziH+IA&^V~NNB|b3m{QXa9-6^5h^mglOXHQw)hsyaO%Y?+Men)3*0qbCZ8202`5JX6 zR609CNjgCt_Zc!kI+C;F1L3Y4=&>)wCZNq38-w(L!reMBqm$+VFdZ0dOo!^ms=|QZ zx()vR_fs=q0FXlBDlI+Rk(MR-R^|KpMF+zWa(T9YYMVway4`!)w-ist^<4|7ap7jz ze^9Gmg*t-kzUEH<1w{z48Bj?=i8B}9dSfG`y2RbYaou;{9{R5}d!+64-!#>hxkHrd z@>E~NMbH;B2Cvw(gMbT&znak!bU> zvLwDxAL#5cJ!7orFhGz_oG5K^fF9%`^mzx3ccZxmjiR7}AH@hsrEEE*A~V+9?}z2L z<-&>^n-%g_n5-?PVJwDCF5n6Au8p?7>JpB|I1v?103})l%dw?MTNoqxCrWw&J%{)@bsHNNT>F*!`a@R^|1vM9 zgQ|zvfN5AXXwt?ImD5>)zBWfEc{Z1*3dl;)u_6S!U`kla$1vj)I$npSz$R7n69iY2 z0%kyGorlIg7HZP6tLv)hdkcQZvHj$}$QPGAchgq_o23eq5NYgVgI{stl_`Q%!{~-N z*C_a`Nfk*8h&)-Wx~YdXG>>j5SS_@wrMUIEm!A)U1Lj_EB{=iAHdp>L3TyoNHPE13 zb_j08_#Wb7ct&dB@p&2*^0HTMH_mHz*~2pxa<1WIjv)WIAGtf3i_7_bhf5athbaNo zOA@dGxMSd1__g-^WCGHaVRex-xx^9F!J#Yk>!I)IgRvc*0ucm`FJ!-QE|x|-m_sj|Tx&Itz~Bvk zQsJfg8_N7p5)?v0R|S3SO~`pC)!A5JX9)4Wjkog4^|VHuP5_}aMY$GJnw#PC{$`(n zrMdFxf@vQz#1Zzufqzno&N4qkF9^Z%$3iICsc>qiAjiX`pC3xM_c|sMdYk1|F_U3q zLGJPf@^OOO_`^YE5T{GQ&`3TKU^%46^Zg8E$LvA_r82Ro&}rJ^Dl8{O?r5j@N;0N2 zybY3o6SiWM!~Bq{LU=&Y!s;R~yAfpknf&&R$85#wjo`P+G&Po43?J|6d`{Ozz*5z7X2m zL{1lwKqYKeB~yEO3-|^r@GN;j_HYQ&fz-y@vJ$`eAEO=rB@NH@-3G}!aSf133b3ye zqD}mxM~}o0J4;i>P<4&h7X~6R_y|s-TBV!}S+B?%Ci8Yq#rK@{Pr0273fwcI-&AR07-7E4Cq8gwZ@}*q#e?Z1g0a96Fb|z zq&3|7PMFi_`NqJu3a$U_JjX9*-5QjQBv%vhQRMBF*0aLu3*$?uU}= zkI5--L3?#TODR*f?xC)fhUJ#O)CR3K>32UU_`8Ub_n%HQ;CSYkj~4St6eB@|9Z`cJ zu0q1!0t4-L(>gxayD7rJy56f)v{)*%L0DWS0u-+MO(=Kg^X%di$X%a?Ts*SI+fO2_ zW_mk=SkF*ut?)`H+gr^t92?9;KvEBtUyu0krG{YievtmU4Tpw{unM7HicgsDTzmLX zoIl9&chjOS0ug7w**lJ-CJ-t=*dm2ks0D3Kc(Ah}d;36wnYz< z@f!}FJn6A2>e-(ja>ZsT@n>MByB;K4uvhQe8sJzLxLpt~3uqd04b35hi}^sS4=j`M zQ0K<=elD@1MeO%eF3?vZ^iUvcY$(Iq0cS@l(x;R|{k0q+0pnU1G*Uwiam&ahg5or};dt`H9Dy?fx_-x+;gTlS`?7dTo>*fGE% z>aCHAbo0(&o?Wo~im{rQMp1Ijr|&iETX<5>cCMAH7;Zswy2{IONa|8L&`gg=2SQuI z^!0G~jDx+e^<0sp`8c`otkMO74i_sVhsKCbO~la2>%Ns1Tn0|Tn5^U8g3Br?rh{n4 z6Ly4lk#T2%6W$v51_oZw4*YNdP^t!^A9qeUfj6;nnKAH|c?`R{t<;e7$I;W^GhatLk97Xe>r-25k>^vUHd3;&7^qin+ zGD*}S(>i2F_TPftRRh+Q--{-gylkIRBC3Ple==GLgKUyX3xTeImC~p6ZvshG!XVPV-iymDDQ-4@Ee$aul;!gEFfQCkd{7A9$g)RibNitIb;`Usp62b}DhmNdP8F zr3rlLU0s+`uuYkB$;7cO(*YE-&Q}l!h?XxIu$bMT5L>HfABZWxvvx%&z1;+Y)N&9z*-Vah!Wnm8iAB1nBB(U-Mb7Xor!)iiZyp@e93BQGPHcigfZ@I3`2uC` z;}3Expx(Ip1hX5tS~JHfLmz98zn9dK)unD|$R`-6e%dB|Lm|iBw$1kA9=AA#7~id< zw^?V4%)XKQ6)_vW@f z+>}^YKMA29JX=usasl+x#ndg|%9pr4{QMh+r+w3(()A^w52Qify> za1|X^GPPqF_Lqyu<5z@XHxynWia|#y!^{>LnoCYRLytM0a+_MzXcUx&R8DUdFWpd+#O_M)?Bu6+B08EMm&7Vplf^JHb)8f)Q7|*mw7Bv(Jj8 zIlY#`gj9VfTMMtB6SM(j{KJgSFD8tq-O`U7I&?1Dz_J>${EsY?3D^Hoh~U84^}!)? zJOm#kiP&b+n?rU|^&IzSvAH5|gs`+oQ1M!vU2h-8_GbNRHhmEMWNUnuI zZM%MgBP_=r>bJMg4)^nN*{i4bMXg}gj3vIcWrO@h5@lBsU^_&+59XNqfcC~-$ncSy zGwomzE=EpdIV^Z;sSHcPtF5{$Gr}1=oJ-LoCjf>3s>SPYT}SXNOa;_xweYW8$nJu9 z&t0ai?%%z>70H5W3jUNsQ?2O$x}~ejlu}uuRyxlQM7rtF2At;?!6RUR)u>Kz2pQX+!yPEj7)LV0JdJhTEc-#%7!y9pX(tWxE6Y1ItHkd4}H3Q3~pN(?tY z!yxmqOvx{evNZ2bapamY10Dn&D-roY(-x(5Mo828aCH1yzix)x2C?`;IB0M`AX0)% z@@@mLXb}3|+V#bQ{QP`vHtRtQA5uTQULp4ru{wkQUVC{Wc z1|ywNJ0JGCQ4WJ+A8rndsJ&_rFmvwBSH*mrj| ztChWW?<5h6ZR_(!wwf!^m0?~If^5gLFmG0M)w?-J@fWY8k*a#qoZwsrc}%kS3|3_ua@? z+cR*jo-;bZKaN`SEL{IA&Fb@q+rGban_{>VpY@$-!X=E)^cfhE zbH#Awcj3({R+4-U^yq`4|5|A`HU57&>p}L#2^B!3yoCBbiSD35uaGsO+Dk#-6l2|{ za1qnS2<`!l*=%kASmgzk!QN>RRLE1o2DtD7Veu9X_I5NW%-|2_N+(2saHtTgUo?Lx z882YlBuyc4Bl16(4sQ{#Mqu`3Z^ws4m#LNmW7S@O8A5;i6xRpZ(wQug? zLk4G;&s^kKuX*mBl90UHC}bX$K}e2a9^4xxBc64j;?}A;bM9@E1)%Kp?r3jivFQ&0 zM=N{6HZVV#t7C6qYLnJtBt7}Xz(26-iy;&Qn=-?)%>Mx5yzqSiYRaW#6CX&JmslUN zorzNpJUM{bm@G0VACz(5GRe?Re1Iwh)kVYRk604vCl#Qa{F^_V)qNo6Lqf+;X4Yueua8aT za1uXlxXUCoc0Dj;Lb`I_kjXv7@>R(67NN~Q&^eM8S02G{2M*hu_mxgg3>QibcIVpA zNihbNPPEg8GFX$cv%?jC<`siBlwD}^_+oi4upl;xlHpP0bhiAZ?XPY*l~aSr_(O^&kuS$;`!GP|NmG2r=LcB=e!S_Bi*;3dCoT~ NnC&zx-C@;_{{~&p0w4eY literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/hdbscan.png_condensed_tree b/src/comparative_analysis/visualization/clustering model/hdbscan.png_condensed_tree new file mode 100644 index 0000000000000000000000000000000000000000..5ab7ae297cde4f5c7f93a15d2b9f03a81c7b9344 GIT binary patch literal 10781 zcmeHNc{r5q+a60vLK2cS3Mmw2-zu6mds5aSOObW#Yk3oqX?dmWOJ&ItmE8=5A(FC8 z){&*bSQ=v=%y&OC>TPVO?Jb+Z9jBr$esEDi=w3vaxH%wvuXx(S^sXS>UEB~Z*K9?7>^;4%xw$IH zs>muF6m>!%+`UxgF!S>%ht#j4@Ie5<_)8ad{?L`v#``{I=~S^^Z^86SP$$ zB6Sw~wFCn*b&8NvUh^pY1nJ83<$lZ5#iBWDfWRzF_1ay(F1>m4X504>>_zs?kClU#-1BVEnzGe%UtTmbfuqht zxX)!@YE? zUqn;ZmfmZvzV{mz!1ec(dXv+*7JFDER7 zlb_l|jRnc!GJ@rzQR#uR`7F_vrdV&akbviL<~;5#D2D;O@cTSdEe-RC!%ig!Ru-P@>f^$6ZPOhy{~q0QMwTeo8FlaGF7&ZB7;8_%%N zY_hS_c_O@ZJ}iitw(qB<*>l|)jF-R! z*0Ee6>shdA3$){hBf|0(b^o@*Nt+gjRi&XMXPODZgsB!0J(ks~w(E_Fqs7)O4A2}8 z!5nH4F~{i*aanQ2wnXvj&Ylly5NiM0^H{WgL#TLbIWN6=m324u=uu4z4r-QzKYx?p z{YNxI5UJ<5cT6YF+agLv`hGmkv>T^|$dGdo;%3X=N8Q>Xi$!~3dFjEhB&t<5EiGZR zgv~5HbkFJO)z{Q$Tl#d{7kS}Z#|VUILP2H0_-vYo*a_-kj5V)EMm|YNiPZ>PXz>?R zcE8;ER>W`cX4#K-Y{LbW(|3!CilC2KM1l?#px0NF{eE2LPUUbCqMinOPnn0^WPhb^ zt5>4pjk_Ncl~PyzFtI`&BaIKrWGlhDp*EZNN8x&oJ0RRzn~Ch zVA~~sIB@EpE({K!SeQG}OJ-xC+@@VO_9bt3*Vd=^bd$yUJUiR;w^f23l~{R*axyO%I^$DOJE2)mmFg@x!b$=tCH;71nJM7E>l zq)nHMG+48X5wy4fYD9%Gd-wAt$G|JQVxw;7(an5Fz_i6da9aXcH#JP!m^S>T!?cTE zPz9N^iRu!kRl$M~E=D)=Xyg8xoOHN|YM{BisoqjdSH8utS1Q?3M@N12$9s=yg9eS9z~GBQ_H zvuw3Qjnz8 z<&ZN>90lbQJpMSMC-~KjvjIR~pan}wwss{Q zelrRQwz<-Sca*g1gQ9TpKSvsTa?weNW1>dU6r+BDxoM$#0#K7z8h#GISJ{Pw>9HAGizn(@>L^nm~B@ zP}A%I~&uG@hm!Ev*2lW1!0zF^X*~?QqqpKx3?ELeo9e6GO=*9_s?*)3x{=Q_K2+q7)R_w?xyDonF19Ya{le`fHQchk zW#H6X;sa#RUNN!U+`C}fN9fH|FT2-Ma>JsfwYAmX)!p5_6=Spf!EETP&5Chf03rXd zrlv3e0}o<7ALg-)h3)d}DBDGuH}M;BVRi`_rBT%NA?|^<8aYvx9R|C5-uD~BNM?8@ zT;@_S&76GIW4gpfab#Ub$9YTdPE*G>t!-_a`lV*_5GW-I39!klSJ=S#Y2MI6I&)1S zyK->_E>7P=22a`%Uu%(HA68M}&&S#Ay?WTMtSXkAWWtNw!q;0Wz zBy|`AybuD&B;-u>;y{En11wDVL7>fPwRIt`003LS96!wp(o~Ng9m|?nSrW$wXlwq5 z0DUMe=8U}!c;RWfw}1^nWVNX}V+*31n)dXw~*09aSGJ~c9^fD;h|5j#L9&k?+jTk+YAM;_bl`VCdUhzB$(+W!&PXxj+tZ?0 zT}W`J-Bi!f!z$(EgCY3K3+5@#h`HG(PriPhCjd}Qt598UEEm3iFD%?P>1>$$!naci zV3&v0`_@GFv0T{(9*JfaJh-(yG!4Cg>)W0hyfl0X+cH&or|`+*a(t>>9}K1};2pgB zz)M3^gzCh1-{~9qk34`6eJ!#hj%6Yn2-b@g)7IO}0SVE#-nH!tEKGN*kg`%Z-1tEJ z@S#JZgO`ndaD&{beV6;hNiWTcu_BCcbbR%sy~kKvdVw`d&v7cpL8^f2Y4x4l>haYj zB*iai^nlH^3c-upX~$^_Euq@AdX5AXlhx}W(V^85I$rY zKhz|d8Z#5JSg9A!#6}w%TJzJVPoo6fs){Q4Zt`+bp|nwB*PG@OCuh)<^(P4lcXM-@ zg${0|PA5!Sn+es@T&m?%wAy@7ih<>b3(d%Z428;NVOYi#-7Cgc!CT2_ii0*OUSCf<1y`W{V9$-7H zwmXkG%r#*CrHv4$`VVdOwYhd+vo?gvD^X^_8bN%Ik^E}ZqJ7@?$>sQKFwx3)5iznB zB?lo+(_3<*zk2(dzrvWFWX>55Y6Xq?NjC9?nn<$3?q9mX01pif?epoqQRF%LVcL3& z`SBW~v=etY>NoLOwjucMcOH-n@K-m|O0myhUw?jhbv!6}Z^bcK*p7V5a(M`hznqo3 zQLz))KlWYF5O-?i`#YSNV*BQyw$mXjA^tyAO-|#)i z!21TJT7LX+KX>k2U7VS9H)1~w_NuId%k-FnGGOGDfecPhQ7_mATY^Z5xEN5Q*Yly5 z>R+4%$Ws4&`d#MPg&ACGl^$=vZI0M?eTa5FE-nvzvag~gC|uhvh^&plGYbpltk)*Y z0Lg2(Cm>L;rNW@b=!u0}^-+**9z1vejRiBGcx>SsRTw3lA_qk&cKF;qsJ<)Ru24EejecvvQTVo^0H#8~hty;>)~;* zq)KVh{m*$!XYoaVjruiP4D7Hdb)A~NowjcqzYH`KD4FU?QS!{RM~Z1=-cr_Z^q)4^T{&gP1(kN|Ieecu}W3n*dcsTrmT`G z1NS(wGQh8BE)*f_4c12t8XUFA-7n6j@5#aCq33yKVk;#>3Y$A$web$!c}rRCGN`Zi zMZY9q(^U$sRwByCHkzFXek)?nCv`%{V;kS=Y_H0KLB!tM2npNyiB5nuAl9W~GOyfJ z@K6*I;o=e(7fC5SFm`^`*?*>T5^l|ZCne!pMNGSD_hHZGcRn#m>@xyVXRl%EI5;>O zfCsBDk38Cl=YYB(t;X1xJ~jNE4#gnx;9QZiRErr_J?vUv0={=g2jZUGUbtS)o~9F= zdf?ST6`PsAN<#DlyT?&oz)A*{Ck4>1@%dFpI6i82A^1rNNqx!l!S6|?rlWJ^CQieF zC7oM)Gvw9P1-ZGoJx1fqd=`(l0e$CI5V;o@izZj1quoNuy&x1wAC;6Wxo#MLP?CJ! zvFx(1E2-UfrLGk3KoayG4GQM&*yo7YDY#kO7jEW9sVLhyx5g z6H$^Wk?HB_FPg(P4eyM*)fYHZP1UOo*esv<1~lP=Z<643vNc9UaHQ}(&Y(f2{^~7n zB00cXeuRs}L`F6>H7zCMmXrN((0DKUl@0_r2jSIlU}!%v;efI9i|CNx_I<~& ztjb%DsH*OU!l>OI2CK<1{&N3wqHD!|2}#M}RLXMdFi)YM?xHNSjBWIpbRgU%$bu-~ zjj#AX8OuPgyhKCsyo;ZIe8M|ThFX)(rG>L_HsDr2;&e<+J?eSPj#zOZXbe#I3Z~B5 zvuPi(8NJ#Zd&c22wM?5!LsQ6TBwQr;2!IDD-;8^v5vX*OHMddy>JgkVspr*|_e8?^ ze$(0nwZ!;|ZU;5a6q?Mzy0_FGNl&$KQ~{pnXJ?3C`q%$D`egA6}Qc~C)oFq7IzV+Y|N-PwIg(eM&x;ShX6 zN`O2C2{b2JkQ+qo?CcI}Xb5p?E?u?^U7Pp#F<2WReaGi>Ekn&|68rw31z1I-m%wpf zi4)sX1N%)5??OhJ;B3UjE%4Q;eQH^cXHzsZ)8>@)mv^T+D!;uapwuu>9f(&iz1IE$ zAS0;>$+CI#&_b^plJrSSi>`t>RM;MT!gn>XT+N_7!tJ}?o*OCFxG93t8a}hM96j4i zR9TC&S<&euNzODGvd zKKbTvr9tu+7qg|TuR-a&fpe{m6KL>X`STSNyrfixi1ONn-K8^^+xNYSEW;@$+a7-< z%g(=Pb~`ANya`<&mzTaLy18cW0DBqJWMFAC=_;_|e)Oo)Af%6$msIgbL200t%L7yP zdTL+<+`*q!IV?r230PwiJLxr^!#||t!2?{tKn;7JBf1y&JCx>jElvn{-HIx>?f4 z>ea4zw8C`C5`r)HT5CBftI)q4GmKns5j8e{2ZWrXbV9@BMk#u+$@s~ir42LKMkQ4l zGzQE(-{DuK0*tvILEEC#zy`YUucZJW@tFMjSz$$Equ2t!)vOxhN@)rI@w21Va0XsT zF{vjpvHvZ(NcI^HUG4w65IT_Pt>;%T@$?^YeLv7ME+|~x38wmKC{vyD{FSocK7E$~ zh#5{tsRhkeP?aapRpr?eEmSccXgy;d8-*bk*Js+v@8;s#Sf|8U3qwuL(ZB`lkMfkY zqrn9og~XgLgYwp=)|{=KUNhax)1MToMJkKFKRx3w*P4Y6y|#@rbSbZpP|aotylPGv zmnVcL8KPbCIzW!MP{%kAjn`+5LxtGcA{p zJrR_n)A|-hbB2xn0<~ZIl`TEru|ie^vC?u)Bq-)g>f+Mx^sS_NOLt8*9P2 z{51`-a;MI}{d?tTz(VR`cPPr3qE1qIM3&KolB@9gM;C(bTo+y-Z6_!VPyJ1}6IW!` zztcj}^<(h`i#N+G<%-xY_ULb)DtE2Ny!jj0ymK2rkh^{!(lJx``Q$1B!!m7w|B49K z+!jn-PX?p^Kfw$VnXZ*c=!hj}<4HQLqUDzg2-)a2pVf}fv#OMkko47>S*GP>GHE^K z^XFzeTU&VPS?A}=nl>PshQAhNdZk#jq-NGnb}wRH&qTZSbIQ%F>m9{a2TJter>;U$ zGH{TJI!;N)27I*1r7?156WL=j%QZHiTjbj03ha5Y?sNDJ97?0awSRXixeqTUHUw36 zt-h$&-*N$QxH?bKl2*jL-wt))K49^wmRFKD9Z*cN@`hGAg&2& zsQTj8dCV-iC_gwU_vb5aP^u2T!G{QmrBL3EHDIr3q7-$?IAN_3bO{1z_8#xqmFlKS zaUmzaoz$tL%J(|W+T{yVYF`noSqRFS&FKKEX)SoKmKg?Y}y)cZ?NIHv|*s+ z9{rc557S zsEE}|R6J@WcBJ)i5pbma6SC@JPzPgSvReV~F<5g`C4QjP%_b%`wn2nK6v516ZA4f& zg=6GGh|$E7(rOv&l`ruPK-8;Ty>n-Qs_wR>(J>E|JIqz9qjJd6=6KA$cuP=go0``9 zlJ7I(l*qI&wHTZosAPM&r3%7~XzpZf{3>$i4LZS$~$%e(cFK~e^z z3aj$irT-0M!*%WV;G#dFx}pf|oHz~q(dVl|Z681N_ETnayb6%&-_ec~r&i}P<&OSW zKCP*ywi3yM+>QwL#U{q4DqUR^gTJYF^3hw*K<{1fZY-&s0cP$z*@@<|KofBZvcpMv z7l{vFoIN%BxCjSmyN3G;pG3u2M(vV~1?6nX{N*BAQ+ntUywbsfv++gYIHc{tTH_#b zHjEjAjQWW6dElMGB030epZene9g@lf=#r*kr}uXm>4j`vEyP;^(y=CN>QVZVvqs5%t`df>cng!|T!p?aGDoRqD-2Xrm*2q37 z5o)SHetBPtbl)iO{2!f#&l?;19d!2|0^MSo7MT%Sb>ifx!2P)26X>&S1rcuN=&e`j zy68JWBk%%Uui=)oya+d87tcnk{@-jP9nw61hrplw0R}Thr1(P!3CI>O)kcfUxWoHA z=*-Y}D{n)&j_T1ny>$?tn+2C2LtQ9srVUPqSI5#ad%)~44Kgvu<4+ zirW^)**dl4Ju#$-d0|Fg0g!KB4X(E7nw&u|o+(88ff--&Q`-O=z5K197j&KO(5M@s z8acxRuR)dkX$D)SCg^9`Y8Vj}EK@Pykzh9)!#o5m3T=TpwqvhIA?HkCC8-y#h>}xInQN7 z-B-{SfSNuL>;gljq2$uxcWiPoHmmhEF=kamJbLlKxkq!{Nq82DZeU+Qv;;}EnKEP8z&^eiA$Uy9~~g~^&1 z4eis5zuy4be%GOT#a=jTPZebhC)Ev)v;{2OUOO|I%!b zNQ%Gw?iq}L3-(h*h5ZxIHw$XbdrRGrz?!>u?TTa&QU?E#QbJu>Fnp*V zxBccm!|l3@?V+yJro8PRfE)q--Niq-2rg-UP)z>!^8eEW6wcJs;zP`a;vvwHpVrma KDL8)l*8c$g`=YV{ literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/hdbscan.png_linkage_tree b/src/comparative_analysis/visualization/clustering model/hdbscan.png_linkage_tree new file mode 100644 index 0000000000000000000000000000000000000000..28620ad980153d0d639f718b106354335b14887a GIT binary patch literal 19324 zcmeIacUY5I_bwa;2gU|7Itog&fG7&6^o}x$h%`k}s)~R}2@-lqP!vXKN|hEAq=|sE zPy-@LFH!>ph|&TCh!TU9a~=;eFE(*a_1!^^`J>gDQu zbDxicC(Ie@t{|r-r*LfFZ7(kmn7X{Y+m8$6pq@_h&6l!`!A&-MoVx~tK(_AW{O~|h z(u5(9^YaG(oHF-ITVe*L**FBNz!8p~A)>;bu77O5a#$u$H=fie!_Q-OTrxy=+nLo~ z*7-^MLH;^4+A0t?(Xd-7QLo~oW%+6Ia?!{9iudDBzdzi*KQH93W8n|}JjAo(*^^ro zIO`9EZb^k?rM8sCYjM<64BVl(seZ_J2|Xk}tAQibq%4pFw7}{hyN1T*IIj>?(k6cJ zV(Py`6ujup7Mj;yCc{1LuoA{R{4!!0}vNo{9jiC5P^y zo4a=%PLPuU7wFD>TP>wM>zI)g>i1uNy*wA`6B_yMxm080a}q*cTNcOqd@#KOrsMa| zEc3(D^bT@ld(A9q?_Ybty+X||q21?f12CgC$`zy0=zqcrRW+v$xh;AJ%1)I93>Rt~ zKLCO7^-Z_cDycs>jkJc}Rz~SuvkYtsH|i+Q*O4#O8Xoz!oW)aTJ6yLOZ#@j|`@>9H zM$YngJu!!NemI@aH4r2r_dYK$SBPbBe^w_YWaS*!Y^F!6BhLR1CK?HieDx{BllusW zjLGlcOmgWCdF7Q{yX)2`pN8{;h=I6{zHGxXHj9pbzthCk3)tQCh=brs^$S8=t7$yd z7x$N}CDsRq2_|8FgFvp|{+haMJe>yXZW9k&eA*Md3{zXKn%aVPoP1xxD>|5XrEqwi zGCP}d0a=HQ-VC7Cwih{Dp0uVid6KiQJ~C`t20IyrLS0BzF8tzRX@$wTQXqKU+-mPo z3&pY!Ih5eybM6>$QcXnNZ|(aUOLnT!7t2J%z_ZP-6xuGoeXg-a{P+0uHt`taF)FcmF8b@`dYp9TB zy9n0s$w$&Fy)ke_yR~;h=QXsqDRGf>d-?Uo`{GAcYf_HiI9AJ9yh1$vJc( zzuh6fMB7d(mXP~We&ZU%^ju(DSzi3ee;?N?P~*b)`8L2opM1Lh=Q>5lsC%(NTgi7~ zJ&JM1*#*DeB!En85=>4EID5-{>D7RO3?Ze*<@!tTtZln@h;CD7vrG{2$r&tD0gW#U zX-wamf$UCi3m(XI-N8QdJC(7PlB&-y)Z~Fx{>M^iwWXX#4^RDSDCMX|vx%xb z&EPC;xZFouPoV_h%U)(2Gjp)V{Ipenph70ApMj4-B=93@Wehxr8~Z)i_V>q1k|SG- zDvBL!%JOgWK!k-W6tl+_OOD?*@G#vB4AqfGae+oc&=+qxzAx+e)o%+x&R(qL?9}xqW?%)^|1jMEMf60P<)cfrLqk2vvc7La*aIFGLWOu}_ehuXFmBQT@YtT&;#Ghg&_ zvXOu7xm+vr4gZ9XKp=W%h0}5}N;c-t&3A~JHv?GoTw<_0F+}ENW9=Kal4N`8R?eLr z63R_{bWMospy`h`@h8BVF2^a*p~hXZDsXu=da}eFE1=c6wd_|sNoh-u{{n~Ro^<1>?BJ!WDH3^?p=bB&jyOqN6|2c07M5%M zM3T1txPZhCdQHU;C*T)TNEecn1SQG*>PdHKS#_eECB<5zk5ud^*g)Uw(qEct;c=XX(hf=igyoN(w0Hel9wXInBaa~#k025n`= z844w$in6n%07|BJNT+$6zEW(P9s^&^(oomT+qPkPzE=_Liz8*EflDUdSY_YkvCdSL zVr)%|c;GQ7q`#wcOZbbk+}L$*_pz%V?SI#|aKRLHJ=na{=hjtIweL+MHw8z(AczwSn$UE=tjDF{r}-=YX6^}P5k^ZUH*FS*&!cN7Off1CR< zC-8qygG>!C-H{U5X6a}Z!cAlLF9DNl6H1?$-CV&DPs$1Fj9lB6*a2AyLDo!8Cn80 z!y8vWZ?X5T2$&+mI!K5?0>yWcCAde2F^CoAT|5Rap$xd@72g3VX8d#8m3>*>oWKl1 z{>da8pKH;olmCjs*FHxHJmd@X99amOzJ$s49vQ#JT%D9f#fa-1gQ{0hCEIo2_;i0~ zZ@RJsdt9haR$&5Rjb9$l z@kxW&K^N=_vPXW-x_)`8OaZ=_r?dE_mnG(8L|33uFT-kIUrV6duIo9p*Vop|)&hG% zgzN5*a|X_f0vrU$5uM&X`5~greY~db%e$=)kE$Lr7S(ubMs{799^WEQrPSH`ul;M3 zjcC$WgqCO-*jhH+i13a(w3OI;P=8hDi}+1pof{WoT9#xdy0mb0@Cfgnha%giA8A!y z8(7M}yZb%4L=>=4y>8X;G6I6??Ivg^i1)`b1qq)}{Lo%6*L+M|)E;+`jEpzNOK239qy z?3(<^k20dPN9iVZhiIyVJ^7W8f+ObXL(0;T`pZ4&s+pS0@{SILc;yI7^uh=C9+jB8 z9LWBf-T@Vd-3e21!_gtUZZ5bN6_)50y7+acO9{7%op0Xoi2F3$CL9=g@8rVs zECuF!U;HaIh4rz@+ZS&Qx8{g?4Gnb9IEaY1Cs=3?R0pvuwG$}h4?8`iGZ3eZt3SP$ zG=QbRE_BpxY1oY#Y_xBP^M}cGrW?9rZ(=oY)Qig29$vAx{^@@&s!5p@6BCCpO%2;@ z%t43;(dn&#is$E;6>GtUMX9#Gq-hjs&PX-#EP8;8JaLc1Ym6*F9$M5*FRs%zj5~%VP1G%I zr@JaOnysqhs%G`ahk|`Z9*$fk3S*{c#wunt3}QbU9h6cPHWkA#XTiBDcg?F*-gf}9 z-T`ulDv$=~jn3NeQV>11>AS>i21g0W@Nu|7jjw~*2uMl>_ciitb4D`g}J;@AD2H(X4j$)?Udc^wlgbzlH~V-HoN{xD+c25^wkDiCwB?P26S8rFk|EOSZ`w1x~*iudlFK;#urmkh1U? zxa^?|5F;eLed9>mr8oyh6H%;2>5T61Vx~KOWri4RF`?=fW3)A6k$qR2I)HN=Y<9A{ z_6m=}Lk(gt2x}YMx0fC|QP5L;Nv;)RVVy3iMvJps9%F^Fsl3?W$c#d@qw<)HiDe(i zaIBon@v8YuPUY}DFE;l8hTzx)lBfBtss!2B`PZKgm&kIl{YQoNc4I5v?t^s|Hnf_+ z{eqWSz1z{tuyvtXU#p3k=LgG(CB)YIq@KNVUxquwi>i+Z7W*l?QRUk^440R!+0w+( zqX(O#hi|gCyGXR(CoW^EgBbqOGY?3(r;>YAf~cY+p3`snjT~P4!QI^bKYbo!G6`jC zi4zSw9|s<4g9k4wnHp;%T#ey&hOxIUkTRyfjMw+Qxe7s@k(~h%hBCDAPf9;OIqlcSps8>zBul2u%}?7ESQ{ zCMC^#DV7r4T@YeYBhIjS9fA{H7BhM~HX!pZvSex7UkXFX6^=w4C+po>-OmI6x zJ4zKZYda&iP9*l@5U%(Y7ya~jv#u#0KT(J-4V?e`mO`kR`dxxj2JThNdt>Wp=&W=l z>ji=ZwxD}b%GYU~Vd7P!v0l{=8|@@{_MM<7?QW@46LP$pWcPfx^mz2h=hn)ePBZDQ z_OzV>6U+8KlAA3vY}3fHh_!;25-9rElyrj{#yZ$JXGslS8>8?fMLZD3`l>*jk0b%J z+?srpRl_{FK3yr%7KejN8mz>PSqE&}X^hZ2)TO!4V5OLD7e5{rBgYh0ywXB_FGyTB zaGpoqdkKSns&Qq3Km?jIHv$yUmo+z14>`jT1 zpJ6u8Txs_d=47o`O_4$VL{UUH&VltIms*3{Dl#;)hGi)kcp_ry2r5akZKPP+!&FMO z=8#|QI(sYtwv3?6ch7_#T6&65`&?cx!nj>B<-(-uhg(*vdxGU!#C)xPqA0fRJ~mf!KdV58UZ&Gw(Xc+a zSdB+&oK(#F`#*X2K>j8A81-eGvCLA{adQwFba^>}jI-qC`q{j0@BUnbwto6?1?f7{ zVy7nME#Fyw^FiR^vlfQ#fWpvj`&>C5`~CdCse<@y0yn=MGW5``8u~$Re5i}ITHzmL zWaVBr1**jBsa{NX+D9dona{g=lvOkL=O8b(d^(4&%L#c|-OH(nA+GY@fb-&tu;`JJ zy_=qV3b}XEyD4_8dKy(nh&NPlX6&yfQ(Q#EE@mLDQR))30dHp;AKxp*42R~r*^k|B zE%oHm$PC7;HH@5{jKZ&JW7j|1G_-Z81j)K&TN-s zR(~-Tlqx&fj3qT%a4O%fv21^g=(y**w|v`I^KEgfhs(5{Ywi#|uB*QO7O6m3IUC*w z-AUCfwK|Y>@N2KcRw1o;X}bxHa0$<=vvxrNvD4txzf^L|ZZSN;iT;?fk$&oe*5nV?thrdxy8~Dw!|mISfI?E^1v2OG(wicbHcXsR zD<=9^)N%iJH`1qg(=}%92Qf(&(2|~~xLO$zLd96dGz&Ko_t~gxhbZsMTzaYfv6#yS zwki%6du(i2KG+yFc3TfVpKKyEqG&bq4iA4ONt=3#IM#ULAJ>Vc@=)jeN+ZA|EGU*_ z115Tdj5RAx(ujDxi9f#Jzs>@vG5J)u$AZg32;chd_vr_5zJA(mtA=cK{WL`d{dCQv zPU6AW&qj%sjJMQ&rto_bsP)MiV*z>@bn&n4oibvU6T#P;yHpQ1rKZ4|R@o)vB_I97 z`V)L^!?8CEND}M+R$>;CSvu?&Fxr!Ax%iI?PLBV;U~+y-iDhrLJy4LV@{FKo(cY@O z%+Jn-(S+pdp3F-$=C}lZClzzth zQfr7v>E#5QW~iFjs$PLar_$DjF#>_|tiq0>Ng^A>HUyLF7Apt?OObnDH3H5GB&%;O z(Z3&FdDdF9J0XTKi7)Hm(RW;bL|pcN9}xB+x(Cr416@qhE^hL7vPn1?qq;x0OH*E2 ztPG(yi4B^je=F-+vkb)1Qxj-qFaBMfcV?meY89`i8y}_`wg6*qT{qS4s5AGKAmy`UZH=e}n%O{ta;dt9nr0kV9>glKpr@CXDus zUjQD;^DZGx{|VPeInF<8`@FaFV2(D(gaUZt zkPsrlj9#A)V@6)8f407k67_!9nf9f-Oo24aDd~qk+Z?&)a_f6XY ztG&&gZx4so{@&mqujl9|FY(Mg{RG}TtShujcnqv*t{*0kn$cONc`w(`tTR^mRa`HL z^uxR}=#c^V)RXH2D)<;*v5aCP_FHAK-1FU4pW4giYBdT#q9?hB{z|V;)Ab*u3+{3NjZ>1djFAZnG1|wo&PLzXjmH)jpVG%YCB#X_In`@l z>h{x%otB_5Zy$;gZD_i=={g<|PP!RLs8y27a-GVaT9ZTRU%xU4cAf1R7i92B38ZDZ zC(^RACLZ)G9l44U7M+(_EWyAqW=C=(UBt+3#WhQk2m1t z>pnZam#u~LVJQ{I`KhC29=&=yM0K;l&V$kx@XlPbLLiUx8df*~Qn4!v@S7m93gq^i z4s&ZG?q9#}%wK>&=j`|Oe^V6KKXWpHG@nUXTHF!3qGZ?}cFn#5+dCaKc5?0OfkZh* z&5&e2iB`A_o4cmqIXsdpZO}bRc)O^5bAa;T{KE_5ZzO%?s%44lGkq8KBF=53W$`cR zTE3)rRz7QA@m?BuY@N zotv>Lb9=HPDMYfZVHsft(usi7DcNIbvl0mGLL82z5OtQ@&u+A7%rG0nZ zGBz>@BXEm4ZGEW@5nl%Vie~v>aCG%bN4A9Tl9)&-Q9~zIvU*j4*am1iYHgH~h+R7! zK^loY7|LS`QmPYt{PFF=fDnp)d3O8(7SKZoGLIi5+YGGNf3c+Hq*HfVXNHarF$k}* z^;=)=a?c@?iNX!0C_H93zC}bk(?4QK%S}Z4=GCO7CX}BM;wH}075$;MVg`v)Qc>|` zVX-W&bUa|K)GK2$jvoR&<3u4$A?~J4tStsAJ5-1!YAxaVwYAc%OiEUF*+J>6)X}-6 zwcvRoeHaVpvRpWWxMs(9?pE?xIZxuM_jV&>oz+lzF%jkdZtW(1Vr*<+$sa+??JBe> zd(lGXQf1?);w7={TNR%37(NLx~X+4OVa=GSR7z!suKe)-$UU=_ft)hzMA!sxx5NPUK*g zT%Ach*GWCu4LW5!uTF!l@uZIX;`Mdb&1|VPm|buq7sBYk9S!Y@I?tJucO7Ug;?;?& z8~yB0?qjCdn}H@+W%t{}QgmuO}_+iMZ&dO@p*{bjgfl*n>3{>wKEU;Z1s}C5A z*i%Mm6~~ZKP&<5S1r?pk3>?kPg%M1~Y_QAD87x~7v{-|@RRlUWIFKnim8PuOc&?P+wS5MF|E5)iO)bJn0Co*W?Vr7ZUcK2vus}a6A)Ix! zz-pW~A)bO_nqWQX@(-SfiKhB`UX_^KDgUSTuD08+7DL&1tVD2d!=biUN>;Y=1(tT5 zas;~FTg&M{N0*K>M4W6x#5z^MIS}qh_QkQRJA$v3ea*J5tN^4SAsm|gI@8z68j%_- z$7Cj>51Jn>>3ilbg`-bUOTFg%78}?swXg4YitOOs=EI>YVLe)vz54+uq+Y8J@*l<4 zN^4nJTK0kesu`^ZV{S3lzV6W;EB5#(;>+nx|HZ3lwD_Zmp!ltc0HghPr&%4NLmh)v z&*!ABbSm`R8mqdS42r7e$lk(;bZ#l9YsULAFtG9d?^;(pyvP}#-R$h*(oyc*UsKpX zD5~`wy5{7tI@f!x%+YAKob|JQ6CE^T--`{&!QR^o1Noq(O&M{bRD}J!~NsJA32ciZwm#LIx|jZYE?3_Ejpw+3VT%6C6T>gkdL~C{`s!bUwlOMW zEM0fzgbFFn3ObyFX^_G#!ZPkE2(+&Cs|2es==azPO)2X-PmcY45jqO$DD)1^FK>CT z)%v(KM~PUR4>Sc`rsMC8kRDg-?=r(-%kf)R$h&aefIGPDbuO6GtEiq`FjR2s`D(Co zeo@fvF*BBrAG2>GI7y8Ur8C;(@g_I7t)HJ;3|!PG{lq9+4`!4WxBNGCa>NaVaZ#JP$F@3eb^PzTwaJJP zUtBN=h$$4+|Gs^AqfTES8^xT&Vr>nR z*U6|9^$04envID1!%erM5cdQsAFxk{)<~w!3qt3DTWrqW8qPpFM+{1{iVI?sR94qZ z^&HcYdOc~$HeuU)XvHHdWQ_ue33BRKP!pzfu0@4Xg`V#bFzSD!!$`m77AV`##xumJ zTDNBB)m(>OUl{f_?_TS_H!s1OE*+$`<`x+eN^8s3=RcsAsnH$UI5+?4)R@kygA*wa zB{UJblMBTLSrXl#-_zkNJrS#uTxx<}FUn|{rNU!5XzJ_t+Ce5LL&(Ep_umt~o%#F@ zmA(x}Y6T?{2svy-C86r$IepQ)|8P2xXTy26OM?oY@rhrj6*vKm)TQFoz@)f%slJ8W zwi!+Y*;u?J?R(lwEI8x@XiAWNrhA?`*d%hCFa+(a@EuEy9F;~WPEA#RYcejmQ>%yw zDS1~vHL6rK@w44ahxb6)Vsq>#zSG;*p6T8F4(c>dD&TUR%!tKW`U4(A53grGVV%`D z@jZfdXH?l;^y5|3nU-KU0LH!)R5uwNEDk!b`#^`*dxprqSJM-?f~3oJkVLTS6MxA} z0~hI7o$m*3t(XSfqXcx{Zwt1&^o-%YT-ezGJ>@A?N_(oAl$$_#sGNZU< zmn6p=47^Sc5Q6m&4BT3Ffk1{IF$V3Jms3(wE*1>#72Bf7ak#r67S8tSOBh+D#u|ds z^iOgQ2iA@@MyX6Z``i?sTV1UN!*|PO8|59?9KC-s(aODTxWvBf?w=HCK1j&^toL#< z4kO+e8wK~Vs@JyYn%)<>ddY`;{uR~^@;e)~mx~n|$$A26k}=xrdH2qa%;$d+KG3a2 z9gEzfa41HLa`oGhKzbfkJ%5LAk6*l1u68k&19RZVOD*d3?*<;*cr0xF9pJPMJ4akF z)d)zu1k~rApAFxXP&uj6&-0u)Su2@!Rjdz^ZRNp~o~Ve#>HBd4guA%td>y-bC$k~;%5otJ>(#m6 zc`qwmBD6roy>r#Xw$DlPATH=uv)I?6V~kI<4<IKI z@vTz&PJWC~f&7O(slzat1X2FnI%_;x{59)y#I^Ftg)~kyr%B>!rtaD96czJPo1W{7 z`%|nfPRzNBYTK%UP|_hbtgLG$O*dySWrzVJc<9N--WwPdiFBi98mcmU1rH;{+vDVk=~F%Hxbb?0o@8(T7Z?P-SKpIeW+GjT)i|j0wO3TpIfl`( zId{8xmH&;V8c_tc;gG?yi6@%~M@p*E2l=naH9nP$lNKFH{zn}MCj8Y*lvFbtp~sDP z2DV8hO^-NbbfqY{tbl+&4dgH5tg|mNUr~)N#JB@gDX*yDq?-O%?8ML2j5bb$Ck2CGNf&vrB@TExM|_B;PH2E!6Ck?zFev|=zNKnv2#QT`B458S zht&qiM4iJ3 zJw>v=VU?QRp`WIypkHr)Wg@th!0+vS#>}R;By+s{am}6X$Zk2Ch`69Rj84bX+|G6l zfgqclMQxOwo6%mT2dA%KtnoE5XuiM>ca#1YkC{#67w;a&HE2gbt6yMzl-ZgZk+`WZ z9O^zholZGC>gN8=&3D?O*el7(_w7^K$2U)Fc-+FfY9$=k-Y7OKeUhcn%S?igj0_`R z24WJZ%=yMWy_&A!@7ueVfcms8*$Fu^cl`NhN!73r9CO)MZ6VKy$;>rQAN_PYuLiU! zM%d39T)l){&v3l0ViN2BOuBs_J`tjWv!R=S?XO(#YRTSZh zI&Ki5Q>)JLt7Ar`tKESll**!lU1@d>Tpd}yURU|pC)EW+mL?rG zwT36*WfuL09YFWi4CY)$TwR~H!+cKBQ5Xdtx2eTc;g6%LvD1|eOt+$%g;xNiXEGz? zWOB{&_5ncsRN5ie;Z`}Gs8atm3LH6oPa>KM@^()Cp|<)_5A@D~jUIH!H)z_?M=_og z{&)va25qD>FB^eODV8xQ)X$ z62H-MplD*zPaNSG-MA^GpMlatT@9Yjt$$XI2?!q9UuN9%!l}FS-`QE~FQc;j@((kk zwJ5^?Ch>_@kH^b6t-9kcy|*>{f$)A&XI2($6JL7UPJs@UBDM#91z@qn8+)U)wOQ-+ zWU5y;>-bMJ>v_XJytb*+$h$0ji&B|`(3v*8?QnYms%v_4xHtWbdv|VeS7~gIv_W&! zo`jrKWals`rk!NKVoD3nc4i5@3fgg2uYX2&|?0+j?VWDm& zkR6MnL{-bT1;>oVnKgwOdYFIMCw6O^%_#n{>svhl4a8#mK<2N|t(wJ& zB^$ir$M{%K6}*Ttl&h8mWy>{mfH$Z7X3Xj9$h^3mmos}7B<7H}sA^DU!3NCqvq9rk zWx~%stLb}{@P40Y=v1tsT-%q=O|aQyr`h@3jBbz^)iR?_pV^=$pXb}MvUEV&PngR$Hv*+NV${q^x-iS0l}5$>lAuwS_Lu&IX1_&QFL{Q_-Ng>l}e8 z0*N=jxZm|0Y?ZX;@ToIHw|MDzkp8T#ESN@?Hx2^NLJ5*?u zBxLKiKU@OthhL}G;kB-n-!_A<_h-xw7Q-v1`81Tcg(IKko9m}yc8S{9fFj4r%fuiS zloDeeP1}=!usreDwOCNyq{=0xCvKEryylH3ycY&e*ZLNY%`F%~11@!I5bJ`N1iPMf zGNI$KfQ&wOWg%{Rgv*O5?Qh`B^`OsN?OOB9vQFNeeDAsU;g*ved7|z^F`(4jqvm;w z{8I+rSO6P&t@t8kQAoJq3lh9cNF5n{-Ae;EL)!_da-hk~8a|%M*I{N$7rsO{F;iMBB{rmS(kbfS5x)8-5fA)ts9x%*+5n;^wR-#uJpZWC5V9z)V z3B6NckFuxhZh4zjduYRvZ<3Ar-WP639CF-7kS&=-3BH7{*^?V|f=qU^TBIlPMw`Ue zRn7KlvO4XPRq&s!gW8+|TuCMP43lq|7p+Cp&u*~bL}iVnF`%p^8RXclW2}P5tprrH zEv!i&;1W)Y1p@P$8KBTAGjh9ZfL-5Cqh#{0#7S6ZWU#)3xnph5on$^{$4UMivZ=$y z{b7^~))ksDI;5+y(>oFLtI=xCj(`^W64H#j9d}kI4LmWi-?&anMZPY(_w%-Y#qL7W z)_UxWu+35aG~}6U?2cOc7`sPDqoIYYUmxtqp_M)pmTR&FXK6{887GWgMxc9DiQNfl zgZ>P$l$;xgHI1oJie(PF2Wd~}Skn@a*rDShlQn(K+}uMKC|R%nd*@q;#0jZGGghnv z=V_cUSOj>RxQ;9MgBdkNy`STAyl+@7+uVg3v!;_YFwAL!1t^a=8DDH<*8rf-6OB5O zR>x*-juv&PA=Z;dz6>?-A6w>>Ui=wB>Js&o+H`{a_ZYff6Ahaq-mQTzC)xU+0WzC< zoZIEL8nOrs0M?-_N}EL2nqLupZ81_p;}uq0qISCZSa6WTZn=Ow>ZX=vOV4rpANgfN z9D^D|6kFLG4Z^yAaP;{^74_JA{h-B+LsOS^#)LBbP4M!c9dIJGqMlyg(|0C(sV#%y zDQ>uORi~&HDjR$}rZ`yJpIM+VNk$}CM2%}>V$fP)qdh6@AJ6>G2bA$YIjQa? zphi5uwEWw~z|pIXX`JsZ5r7qcY!(n6*cd4I-pS(I^RUqfFw-kh(4d1oI_#k4Xt7jq zj?mnA4mqC{(QZ7wHWkxD!)Ih99JNs95D|RC1KSNtSCf)v86zaru(I=N6RnF_AKz~r zq|bYxpeo>z;B#{sRi6WZ-09wBVf|Dv=o9ZlJB7QG!#t6BzJTJt;#XaXKVz#A^bZW* zAVvs}5gu}&zY)hC+e@dsAHupQieOtd4#xCxo_Wjv}!9|JGtpMBA(?$OMSF^^iwi zP|yMdP4(1r|LPS#kiI;h~-d3ZHtXs9B8(1)QyY)^3Es)SozfF9SIg)M>&>iIR>9>~l1A#HCc3>zGYLmAf7jPvDYA|Oyj?yP z#rd;mEke|uH1)SuPbSXE%8I(tRS1qCV?D(|%b}Ry4fMX+_M=1g)bhFt3}rVF6+}T- zT%MjFI#=sp%z9@ssqH8v0@@{-cKg zz1p|J+$K7>=I zV82ZOM6Ux2ykE|7vI9{BWQlK&|MQEcH8b+-=Fo2`f(;*^ zY$52^{$kybdwXyFeK`D=Y0Mkj03vat?v~rHF#YE8@<+|UNCMYdTrn^QwQS6I zf5>Mq?A#if`v1Kp00!HEPJ#QR?{iCBDeRHIku$Xx`=itw@CyYQFm|!#m=&Ji6+fS;4tW?`K9dP82_`_as z1lpw-+dv1kG7(pu5<%b`mzEm6Vo!J9W&8gHb)&98Zt^zRNm<$f*yn&4)}(g z!$nOsvedu(QR20^GlghWrC;StnMpu>PsA8qOO}dPm#MK{wcVpqM8})0G6FSxdVBKb zyvwyPPT@H@Iqp65K)990#B5Eoj_XxerQ1)jryw(9CR$rC5tu9T1G671%JR;VS_&mUrNOWygpF8)I^=vYw3 zM7I-3IY0x`m1I$5eQ9l-(|!h_F54Z;`BQsJ-ZQc*=F+NW1U$pdZM>|f$cSD;ksX3| z_^WeTyr?npGY!x%!zcOTtwW`Cej8KQJJPmBfoncw)pGk_CIEoEmp~Y(FoXl6% zN0EdwJ+v*6QrCd5teA2ua$zhjRk&kEv6U>?t$lyfuJvB-?eWyl&<}qld4=!J6SL={ zAOa^RD>x~ugT5H#a5@)j_LE;~Lqa_u*&9Q)nP4<=MZ~mdw%!+nABgbS#(?<=-TwE# z&1_6SewX_z8|}2R9eL<{^M&=s*&VR;j~@{?-TMo8=w3pDq0e2x=Fczu8W%XA!i@`u zUn1j23;zlG@AwmwH`CB%(3-=x74{%^U<=0ij1FTev+QLzjaY6%Ukp5Rd1BU;v-+2M1*)|H@1K(Ho zEgEmcXEV+R(?`^B+gw66US^zrACKm#JZ0|g?7jWJ%_oAB(g~+8Rc7ghp5Ksw-3;N| zlm1Y*u4vw`}^D;_rv_M%Ro@|4Z+V0EX)}1wE7-Db;;a)2XPC_l@}}i;#B9_ zLL-}nxx=ZPMB&a6|0lgGDL;)HgNL3OFkH^Oc*j?0Vv(;)jb(u$G9m6 z2J9H12Wk&C1v}>vK&~)B9K{E(zYbdJ$F;YQBU^>)zdV#|1FD?f3$|qzv0m;(KWzky z!KEzz(ieS7C~l~SSz&@zphpc@{*5swU8jf3i|tY?jwX85*Jq(wbN?2*xZ1>wD4`0| zF&T)-t+aU)qH*kN=8{Q(ma)Ewy`A^Dl<=r?g~575+HjNN5?5BechrkYR19ZW(R;wm zpwA6gm~PloZ=Wmrkv36(mw1A?Ze3IFq%Y=eUI`n~T%OP_>%w7>D4q2So^&x^UpUK3 zqw)apOfR*f665n;-DT)CV>MT2iEJGZAn`b8HdP+VQbR1-OAyGmmetsuG(3^9Kc}m> zt9}`s!I+i?D@2Uqoksg9$Wbg~VtkbDHJ`wawV|jzFH297u!$Wtbm@yLB2GON>LL0B zuX=6w8gHm{dDH6Dhw&Y5V0Ed$TACfwaogot6ubdFOm>p^6-JmrFDz*W)FxI|VZx$X zpJ7BttI-E@iinqbd-4^A;MVq5ff5=)Uz#Mkpmui_f^aCxh_9%<3)SBar=T_7A*fBc z8KdL$cp}#(i5^(2sl4#Wnlz3M#IP3T6~yT& zS?ZO(*1o~aV^s)0t;z;Z8!0d`nKY_Jb+d3~UY>Sx?4#rRu;9xCa(hN!;LVf}@Q>1^ zlaGe_MpH{M?-^Jo!p<`AO&J&-e8lb8KHhb-6tHk6>LDV^a%nQv8tk;$kG{+aqYxaolf@fNTR*HaGRIcur~KAEm-7YM7khit*LtQ@zL{9JYhRF3!v_RZ|dL{W_%9~ zi42|W%4*KED}9{UP3qCXxiQD8VG7WRy6%}9O<__7pa*kvk zekf!M=51zoiR!F13YOmd@R*}eNCxTzfyh5!0f7{_Fi#VNTkx9j|GrP?{~{w$+589e X4@-YB5!(;;9%69D_@AQF*YE!?Zz#g) literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/hdbscan.png_linkage_tree_focus b/src/comparative_analysis/visualization/clustering model/hdbscan.png_linkage_tree_focus new file mode 100644 index 0000000000000000000000000000000000000000..be9bd0c5be8fd4412176ae44b63d6655ad28f6f9 GIT binary patch literal 24206 zcmeFZbyU>d_clDNO#8| zHFU$gXYjs%-+12lUF-StS?l@3#S)lLoU_l~*S@Z66RQ41kr1B-9|D08Dl5rpKp>Yz zAdtUgu3iD(v4Rg#gD;|P@_KHXjxXFip1W8;RG+&!**Ut|S(`Gxv~Y2?c61Qr73CG= zX0&p1b8;2q+_k(LkUjOF1lr-PuWowDMj*;inlG+7r@*2rm_&SVC5##S6CztBc^@+T- z;{21a+`-2k%lM3=jf1vq!Jg!&h*{<)hV^2d9`@W3Fi0~nMofGj~o=L{V+hadz?$rH|-Hr42fMgW zpKL_fGo0b?AcX9-6s>2ce>ajl~-f);9GGS z=})H+FYN6OHx(`8J<=O*ch_x63U=1_z+RNVy2f9`^Br{%m`)}*a?*^;r7cR=vkoDa zhAsU{HCM~L28+#F`HVzt(=^LG&2}4RapcxIPJg`W*cJyp+Ai74 zI33fS`z3sCqmYJdawA=s8~}_S^L1|8j6ny?1cFKW?_Lg?te| z?J+6DKQu0$bBfe8p%3cqZFhHTsm*AtT{cTt8O}>x9_|U*bFB3r5>tV0W{a$c33szY ztB+7~@xuvhRfb&10%4@J2>zlMVo4AqJB!KkRc&kWzW1kveH#?O)cPz)N@ zI-3TQ%sGWi*Re*PPosaZPak|xL&9N4DC$LG*zR}!&nQK~P6l6ez1i|?a8a0-X-1jv z5tr#6*SVqmxK`g(_B*w3!D;9D68FT@d=#=y*jNySrAR$3bohruIe(+=5 zH*Z3$g)Mt+sl13Ut3Mvo+nzxE6iv_lq+d}vbvr)6R-gU|2P4UZ(Q|oMol3(~j7T-| z`L)0zLNgFV`2^$SvR*Yj#1UJ|5fMSg$DsP+@}uW=CBAu&R>%a!kn1a-wCK4q_?ql- z-SLlTHg-bT<44eW#~SkXI-l*IdwQNGk-||b`-{CRoya1t43qr2GlPQV_qrbrxwRz= zPpxs+$(CYDcp|hvt9_IlnmF;P^2>~m^(&L}^7q_F81$}Y$*t`aLd!8aK8S*4385&l zATPJ2HwwBGOC+-Le$@lj+UXgO5~Fmy5UI!`KPj|u>%iO||MvkzQjcQ1veRQJ2cBcQ zn_Z{_`3T8m^YEeT0hhfbFA;oq*Rn8jy8o_CqOZzR=Ur`nrh(>7@}P(A%DMqBo?pg; zKyoK5NoYx7djdM`iYyMx~u@O~^m@yZ`350jA>RGsQ=P3x=A-_(j#c~q&yBMV;Qc3xP< z+D#P~-M;RJF9uX3bvm{SweedqGLPb=-zEqNW|$c+R+DR&9beNLjXl%4)-s)h#AJbFj#ovNRn+rWkvM#LV|Zm z>|zx`P%f+6b<`k3@kDj@injDC&XnGcih?`LjImA7RWJxfBXJmo@h_W}c0K@^-I5ScO6lp(FAyUE5<;HN})SO9tmAaiNPlQ~`>2%=JP zA*8h3lmV}I=^0UM6Qk?+E$SFHTb4X!w<8d@KIA5xAzP1vOiXKdNARKtm7annEl;T+!ey%Ky)b+gE zZwIXV{4{#|9s2w4qn-bAdr0z|Tv^$z(URGA0-bI|Q3kxd zRqr)hW@;QYODBlIKDJd|v;qMnwCm7|diz6#Ld@&MPqS$;Zg+E(FhPEkfbWeb zLB8KKwG2|{8J~VEkoksRDwDaTbyB{sOjy90L<5lrOKlzfcDBYkv&kRerW+m(7)Qah0tV(aE5is`ZI?zj_~@OGz#C8Yk8Q9G1CTBb}qV zta+xxxlC94cwHx3EGw2`YP7MD7N$~)=ir3M>>oas5sX`d zu!9v7uy~+o{=(wWl4kC)>~)TWFypu|#-jM@=za<{Li5rTbDpVDa|aaP-4m3^$!)^6 zY}Pi?(?}6;3uX~UXIFzjW}N)TM7?P z1niM4_FLS!cl=j&Vm&jQ8JA4C4NOa(#XMEwDr0B2h@Ad4Dq)C-ipi5|0I#~Ez(_Al&uwrB4!AJAw@hhoAGXdB1mlp`K?l4#_!5!%m z#maY5g8HGNL8MI;(G&8xeX3w-hT?6VWbSy{KTM`Bct8iZ^uS2v>iNTkSo+ne%k?*uYF>yWSU!+)34OxFFOQ22Di*sZ zwobXv=bULwmD27^vblSY;p(CXVqJ~AMaXs%fBf!y1)+)hlL?+By`|E~CpuvvMBc`| zoy+vL(3hwn=Z%;wjfr7|>)&bMhrE=5=?{C;+f^(gnXd-yUujN9B*tIFO+c(~cdm_? zYGVYs0jY_(76@w=YzB%YaUw0d7IHN_f|P^=wuuM3(c`-$Xf}=T>z$mWL#4VtnQ$LA z?(OR%O)~MeZu}lt7bkEzz{NKa!q}D{&vJH?1P;TTdoIK%emtX<^mZFFgPn{|M-CS2 zB0tqk(TrEyho7AsAUzN}X z#(sN)&Oe2QAD^Fei=!i&o0~mn37}LYB(+Ao1_lOqV0fUF%aj;?2a%IQ+~C(y+Pn`( z?i|%jzBG(@_fGZ1P))6;5(b5x?Kz{;Jle8kgH2EN*WvzW$9gpm#uL6fKjFSd+byQA zxv{-qKxM@hMa~FTU&@5g>L=psm0>GQGq`;3pT2CyrDUNXHct}*jU(eaKC3_8vse;Z z&@Pa-QyMU3%zQGAvm?0sI&gq^s&K2DgrsVptISy@0sUG7Dd!ikwZdVEAJN*`y z1e&iBX%uNOF=u(q<8QMR>S_K88~LESeIpTEkH75i>t%)u$J^*`m6iBc@nzQ*v!`pg zr-4@w~PFK)++(gaPTFJTp0TK`3l}et=v^M zEN8Zug{WGsc=6k#+V2P?ZjvRijQ<5-&Dwi!ACZh|aJ`Qp$3QyyUsDB8WoQU2-G@gT zfU~+pU5*bS>>(o$D36$dWGWvfUJp3xP~_dl4Uc$epbW}0MC%#10cl!xthr$T2d4~a zvR8rK2UPk+SoeMPXH?x)1nCEROlrxltASKm*q?intDJG4uv?T@k~S>fiE$}g-73`g zb+d*2AN0nnDZZPZ5Ni*~$mX@@n5B+CmsP3=uym91*g<%7lCSN7uu)jJNZ+p}&%>C63f*HqXH#O%Iot zkk-zlz7`(iQ6d9xx)-ex)aDt(o5JjaDLmRVEmjy-ZKA%*uh5zd&?|<=OAq!^_-VIn zDjBL=r!2%gv*lF?kDpEv=f6_2d~}eDkQfa0H?DgEKVDz|WHByL8>JS{S5yti8{Sy+uy(UcTcWMx{7<}@7$arYZj*3ss6!pnLyH=#@sC{;6@TxzvyLUX zx8@*WP(+FCnEQ9TC?A)mbawRb-(lL<)&gH>h8SfN1X8d}-+oF;OK3CS_73iMvL6!S zx!u8L_A^)|CvurjMEXe zHUjUM&hTB)TQGRx&wStQvnNBD9J+Vg&$kExRth7t<=Xlz)U{nb!OzQWw?)*<<_r#> zJM&%%Imlj5TJF+Z+*w?GEF>VHQ|(_UC8cNIv{9T3B~Dx)R*byfVihA6OniWRM!vP6 z_%Wm2F!)8GQC738D|%khr+9TJ*m0A{Lg^BaL> zys_&~A@`8W5D3k8Z1S#*g}(;*jwKEOQbxcJ!PkLqK;x7wn>RiBWSJkO!EFl=fb6WnmjIO))Z2z8_xYm?b6#9{$7`#>0k7d(rG=?BM>4J0O9AG6HgQ zw8NivD$k3DHy|F1(LkDQ_38X}DN|~@H+H#>8lWw6P)+XQy&d=q63q+p|B&jfa)YM3 zkN^YD_`|fIdla=)Do&FT{7@>HY*6c!g2vQ1JV>s6Jtf2M;Jt1mO0JX$fHG*>mH@2B zLa(=vI2QeVzKsNzxDMJ@k->)vU`qCm;kbgUb?9E+10%{mdBqhs3=*O)HdEVZj z2Rs7!9kJkb1LC*M=DT1&P0*e)Uje?X!;Vhu0(`@ruj$9Kq`Z;=PMM9c)-Q~I9$8r!NQ zyJg(_-T$#!6qy$+8$(LeVzj_ad35=}_+rDr5|C4K$wjb!xx4(nStOcWQ!6veGwE`` zTl2U0STG9t#d00z$}@lbYkUF*pWE57Wv{$lSa=}q$yJC<9q7MgR?HXM_#gx?RziD~ zu~^?|;igd_^F;#zc^_wB6kYoa5Atl|@BIZxpzcpSW@Nag_B3WDK<)zlLd?_uKqIFV zJtbjmOel$aJiWw@B_1FF_zMIbQ)5DWy11d(g#&R?Um#QWA^V|N!jBhhdw0~Oj1igF z_VC{(Q+yocka|2AGI)>ES^W`Ru?C*A30_U7Jy%h>dJ1cud(}GSqlP3a&5t)BE+$8vY=g)P0S?cdvNx>5Xu7aQft9a!CjL6_l z+@a|EdGQE;jva_YvK6{ZB;XOo{_IV5w90-r8wf`b5ZF(G>;R;Y%)gG><)va9R7-nBexXBGQop8aVUv0t^doD=orWPDH;N;hoe`g5V_U}N%@ zVU5E(V&54Y5|Ws%#q7L1i){~?i)AWxs9&$9x^*i>XQ;nlaD96EY{O&TaQaxscY&E9 zbbY)AdAzr3Hd*KHyz^5SxxLs$dDlRR534c-;FICk$~oQ??;WzvPt&R1ur=99&R(Q6 za(ZC8B{TGAb28PH_IWv#@2Eh+BS7B>A-o8u0Q`ZS`*0br|6E9$s&@A1>)_H$U*C_d zxvVkn{ID&!1=s^&u(6q`*G*tc0#t(LiIlW5oPS57FE&QY|CbnL@l6?7NdD{Fe}(St zQSpo~w~4R_9s<$mVVl)b0*LcD=)vPb;TfxSwOkvo;j62!pPvioizJ2}e(&w=B}p=J zQMQ}-0-u@%2S6sfq`5b9197tP&$i$PJv4G3)ZRKpNlO#aOX#70fl!OX7dpHYYxZwK z3+4Lyx-;hN0EzHBG3`p^(XPURPJ=hPed+TUN9&H({|(TYEuKir*Ao@d(ipcGo^#@P zG$J!@epI9#p5v;$hm}Mk_FHk}=QboK=!nTVGK$>wb=SBwE$yr=C7yol{yNt!qWqjhIZUHbFt-fuglrug4oT)TBEJ)#KgqxMSJ_!uJLih@I;T7I=_dOl+vT;2M+gRox#dLD`c~x>z9*}dCwJ0e{ZAhP=tO%*(Hc z8)9bWJU0)~gZn{7YPxG>rsG+yXfaSE9xR3(9B2R>qk-Dcc(k`_>i%S7{^nwM(fV*WYPgK8XSl1*R6fQtkq;f2 zr@dPYZ{FuXZLs#jeH~C6g^_!_ygmqCYinJJ`$+qfdU3P4)wsfO`gNNqX8BH)w6csf zJ05Su)btchpnNBT1J_iNrQp9nX7#pTZBEYaQ5~sfk8D?>dutJX8UK@w;hT$+l8fVz zcA9IESE`)n+eQ$6K5}vr$ICfey;1)6{Ff~K?`+hf(nl(-HCxwd0W{n`3hLoO?F0eb zIkipB%vmZt_-n>$bp6V4FluC9X%J2)I>Ep!zd|oIz<`77+F@qa>^#XX+wnY_nK3_l zh2z(ojxG>e3JIAF^owg!d*`$11nb={jHIJxH_Wf`D6mUAM{K)4qNd?QOa})mq9&FG z5YUe5))g}R)~=l+-`?%s-Z_BD%;dX*-*PT@;V^4U9w5wQEmjZqi4;o1?h`YtL}fAU z5!0`PBTBcn;RrDKWoLa-I~&iv=|sls-Xw0{bfk!;ngum z#6@%x_YS1|D{Jbcq_knMt#c{$?5HF$C@~>9x&jL%kqQ7-cABP-V}WGO;>q@=)6veJ z-N*FcNN`o(Ap1S=7Ai4yicvaKZ4Z^0W-D*tUn^^lS@xy}h%yI@DD%%wxS&Um(wHuR z(h{@VK`u*af1C9oXDcU;7SMIhjqFt|49zg^N7~>#ogT>kr zD@9($`>@|Q?WrSYL=oOSN@a=IG2SBrZS|EG*jiZDV11)+8eH}#phs!mtO-MYar?qG zrE5dv6pg>U4Pv<{FaLue{;orX74E~`BjY~z=Bf?Dbq{^z6csJ66BEm~fR+ljeGsNI zUHSWTr17M?W&Scm@2=FD{ zI7z*TeMo8Nv*EC6k4jY+Y-#NMlbgQ+-fWUv0PCW_0-Adf4ayM^$Uv-+2;<mlMx?N)d4o?$0~x8t1_ z`(P`9_4^US2iLWO^-Tj~PqN1Ll>;9poYj;c6AUXCy~E_bTdm;vt=_@^cw0obU#qac z%t4qf=;62EKIZ_eu%WTXP^yc$%EYA06lT+5~tO>0lKoQ zT=ySsFQI+JSc`~O$4GVV(|M;6e2{6TEhJ^~M;r5Bf{vAwwKz#>af$geulC4sDY%u|WsJ z@cUeaJA)YQhSMR#uq4<%aaa=OJlHaE(%GlwWJ<`#$YX+jE7A5vnXAhg%Zio;%*3y@ z6Pa8zGw^fM5qo-{4C_;><$~%%wCgxkcj##Uk}|%H`u!s6i;_ii06hSeQsm&HA=B{voppPw zX@uwIBswBw<>Vn+8YaDu>FLpGSZ{Vb)t1<+D*Iu836(x_p*NC@0}ZPx#B$4`(D!op=19>Hr^&5iZyV99)Y zhN~J6U*o)gfn4JGz|idcvkpT$?K{1wZBGnQ*J&fArK6+Uf=BsrV_AD3wdKCKtayb^ z{3UlHx4s7YF5}Z%PehrI@fDwt{Q$625eaP@OYyf|VptkkdYdQtocn5Fg5YbyfH~~P zN19-;RQDnMJtABRaG5sW70ryWSFc{_Rom$sc`YV@Q$)HGTMCVoJ{;&_LtH_Ir^ER- zd{#O{k%Loxq&_}TZDSh!FFz)um~w61IW{}Me#$LBjsuuAuc(=E-% zna_nXYWdH#B}|lp&hSrEL+Es=~Qwu|Iu_d-qc!d(KVMcefq-4cdK=e zD1W2-%WT>n5x@j5VzT5Fi0LJ$xO7TFQmc}!m`G`;|^QaEMPVXK%T=w5OMgQZVr zt*os>Eu~LJNl3QFh7r}>BoEe=!SxlTwqx2CU9iNncko{j8RJ8R^zEs=QjgYyCd?UF z+7II`efL;I1YVe4#=BPxH$$2(_bO()Z_O(FQHC*R z#ENoqyh-5?XAj>Gi91AjPS?L6UWgnw>qkl7s`scLwPzl$v$b5~aj(hH@Hi~2KJCF& z`ZA6;sc);L+)pcG_=`I_Jw5#p1v^KH?EDa%M`O;>^L4AG#U4uPuHYR7_`S_uYe!ov zsGW@t&$ZWJc$tctxH=z>156?B@$`ei6#P6w4Mnd(w0~ zmK`Pi6y+0C1z#s%NJCZJUI#f!U|ncy#%G#bmROpWq#w$40L2*cdpj*nzS?L!?rbL} z>SoVaR*dOt^~&Irl5{DDmg$k8PN&#Do~_G6C1Tpg&+590Jry9o<5WCjdgUm&c}xLS zyS1X*B!<|{;~U(6#mH)~LI+7mp=#V}XO3z~m-Jbo13av7B@Rxo19c zr#qw3?^*Kcrc<`Q_^wolJr+1O213GPpU0&G~6GPK{jC)~QZ zss0<^f}RiE-xQSf4m-3<}tyBl-QcJE+SO%VR{$$3Y-&-y{nOf zP1{9!N8xNbMj8A(AKx@KD$b{7z^u2VbxyLJr25U@SGZ{EiiwGJRX^=;E?&GEX}bPc zs*G$5bP7X~_I}%hNy#s?%IsIQ>49GCur!I<0KmDk>yd*XTgLg}8mtKbYT^dA56GfB zSvpInt44--5vou1>tEWhO*M*}9Dbu5!X78EehYxo2#1{_VG$=A^?ZPNYS?NMQi@BTJ|pgL`#V&Z0HxzRa&W15BVO7hj@DT+!NqB21EB*de&}>#r2=S@Ese?SWw^ zi6ozQN5r=K@aYR~uWnah;&lG*s5o4U>SmW-^<#+WcF$LoYte&3Cp^}*1v~XcT0fR* z3Cb@nJK3HtBo)y%!y#C(Qw;S|E@@b{kjF@kmhsgyd7GTZ>aV8yPa2wS3BpVjjy?z@ z*eKE(v*zA!%gQ>VwH+fuLR_WJ3$0c;(ht*qa+M-PnV8N`iKlOnkOUG-QV};gp5nMw zp?>9f_zTmYoT8R0*EOM-ev!i_jA>hS)O0m-8o4QB;TXf%Q%-p=c~4}lUi4FO*DG%CsYo54UIYv)%#lxiG^pJ zrHY*W9R7I(_r@G$m|`%e-vKOH7cPy=>%nw{nTjvEmql6d9q|cv4ja3xa(hkfSUP+O z$oW>#h(I9ps%*3yzX#yX^Kw#eCzScJDkvzJet%0CdkX?#=`roCP}!z{6F3!*WMyS} zj*n02jN`o`_akZ$y_=x1HUjw(ipa(GAP69@bEK!Go{-XvO0~rqod>L z`t-T|f=jLEl3<4ZpEC>kPRg&mvIOPsV zpY=<(&PPep14l$@(>bWFI6`dAm%h^KJ-$~@E8Z?aAU3SZ3oIV@YCne6EySv{F(_ta zDeIY&K?F*6u+TW$Vrx!JQ3LA3+jMW=$lqFGZ%_IYNa=-G$46RP+EydluWTyo>uW$u z7qtI@Yv~;@4>z~A&COqxVpxomM(xAhURPD-uUg`_XS+hDU_+*WT%mg??|+OsS2?xn zk(|eTnco+!=?7WZwrP9l15D4*F9rKikm;6a3GM|&d};>i1L)I!etuPcj7rz85oI!o z-**h%aj30Yo{l_QHHM@6GmN5<-oD6vk?nQkP)Q0IN#7I4bE%ESm3IKycO#|A?Ik5G zs@WYkv+(A#4jS2*vKK@v;}1->ULB%?d{A^a_v(yp&vI}IJ#peTX%KO#HEQ^+>R7an z^Wc$^6C|3JVEvK|=LNZI#7h|%80b7~?9sYj)8ki3WgZ0Rj}CZ;tUY@sU3 z9D4!gW43KFsFu{cZDZC|d~Uc_i#cSE;LI;@tE@pTLu_3QytjJnYbGfGzZ6o_xNhG&HfDf!diLN;IDm$^X(TSc)eD-{-qDJ= zu>*(A+>oK;J1mmC=q&&EK-7EW6`D>L`H(TpirK}*TwoCas7H#TQg3=py6aW~k3e3M ziP)!eK(eP9Wkv%v0zz#@q5{c;W0`t-uZ0+EX~ih|G#wPme*-nwr^5Fx5RbSGfPGWU z`Po()+Lw*Deyw~N2&=h6GL-y?tCKY*n75);n7$+gBVZDP+3+{m z;qPbZYI-~;MkUTB@{yF?u%%SfZ0E=O)56A5^Nw^dcg5>bk=^WAqUg(F!ww}=!{g+w zWS+TtfEY?c{R~ZC^{MimJztyhv+SFF@ZEFW7J4g6>Ug=bytoV@R$9B13?d%9WWMy- z@8y-1Fzj>yCD1A2ns7*I)dv>jw}l+Jj}Iavy8)SUXzFwGKKJ^yBo{J4FU2rJ#}9Dt zGi)1RY=#AnC4cvB1f?l@mdn9#pOW40 zw3^P@e0cf?JKl@B_3Cj`J3BiA{R=l#6G{>t3cyt>R=W6qaYNxoQ1k%}AZ!HtsE0=w z8e9MMCf&w$Gw7i&?b(L(03#<&D>${;_KTe&s2qk2?wv~n5P?jEno!C0%KlEBvk|0} zPUY!q0$!!NjP3XTs38NcF;6oku$-_fs(Yly5sD3&R!S%>6qMPy_84a8R&w2zFmkRH zI(m@$SUQchXa*)drX_3ZTnr5jja)idoi}Hit!(4^Uzd!611NzxkfyaA-fubHvjx~A z{jdkXIdH~GJgfxCeaUf2=KH&`=`2EG&%9CgQY`R>;VH$d)e{y~RS7Y*>1xpfm;@9I z&!4s?H$A4jEbT_i^X6Xad@|4|z7am=dWzxUsnx4^@jGI>dMMF)(bc}m^{HXU%R4J> z?jApW!-;roGEN&O_HRa2*?D`@in%BWwmi6C+e} zCU|#@l9(*C{=msYLMzv|Xvo4CUiLT*o|m>I_dyINTzp>UgP0={o^CJs7l21Wd8H z!~dQr(Kkd2Trtuk$>Bh$_zz9u&I<7NCED*SNJ%|KEa&=5KArOGtMw^|@|9*n`HZ!y zyUW2EWa}|Nr|49|(~wCX^13nikypm^Q|puDklVFQHL4;*^T>gpw?=4d*3lag zf%4UoV}mAxN5>uAL)oa+v-MB>dby{w)i(_UQdw#>;UQxUQD|0(x1|F1LrAgV~W3w4gFMo6MM_$lfcX~bs z+Ei|7r%b-F9Xf3!EeXHxXUFY>LT6(74L$>@K{zvx#p>=pQNpMGXPI5D3n=8>dP1Xa^6iXu*29zJ93p7ir0 z-(8&oHkl%3#Ve+jdJNJN41ul3ht229R$MMbRARk~fM2ArXWn7Z68E&)@H@3~bO%z^ z`T5+LU#1)bpF4t{hK9>PNis#vd^FX z_QF_&-p2|gvzHH4^J0}mctU7^{engIbDji?7<-kA*G^ zJbsO1#ePwEZPg}(5sg(s3U@ZRn)ZRqY2MUdyxeB$(R44tbWzdMCm#h@ z)fgUru!CR0%T310EEhli2XcqJN3`#p_e_&DdiaCx!yi?MYQ-EMR}oO(`4M#)d;$m! zEJ$x0talfp#|{c+G;Q%rvvR|o%ou?5{@o(LsC_}(X88DMkGr|KwQO!~9!hT%JToM? zRSx;{BX@`1rk_KWw>~*`S07rnVC}MaFL-6@ULH%0ey(K0HfJf2ECU5&85?CMnYa!h zwIZZX1KX>r+kQJDN~dNARHvKH7>U+TSM^SRShj{i56kw5f;q4y%(4+3*ju}?8&*RN z0M!2{8Tp%lJ`xl^q(iN!K@xXpf9V$&|K{&xSU6ZAeHgPWvKUVd>mnv>ZPab#XJYC; zI?T`hWGQiJbJfy_8uZv7ao<%8Ju&fhTVcx4>|!`tK;~ekVRv&*9nX;|a}oRJL08E; zv4a(0<$jst%gXj*7%=pHU@Xo%SVLFs>?lJX13UGRI7;9f2F<-4m;}qgNT2&{<4}VA zGskX_3@#9d{!J1CMN8`&4Q;f|zhwK-SiQu0Us=)>ZT10};~>wQa$=)7bl!cg!KsGy zXFM;TJaisvT6HoaEz5eSY7)W<~Ah$OZtfyPjyXoTl>gJ#J1_4 zu)Ub{OSHo;UF&Wwi2xTMG*FY_^S-sRf*rhTdUsM0V3zaezMO(97EJO4D&$lF^orQ zH|qd7b9V5PecERp4Ew>6ce!@;kVr}^cI=vgpH%S2GBeq@*WlTt2NbkA_fuvv0RyCfmje$iq_4gHCM49_u)1XG zHblr}*>E}{A92h^@_frCS(lf|<=WDA-pFlzQd+=@?H1RYORatRfdd>?SOO1{%I#jE z&__Y6Y7ZQYBS6B7t5Lf`p`LX`TE-Ok!d^Ukt{_lyw+b^<%;$5BUstGoXfgQ8O~<(F zPAMa9SmhM!ftD||Ef7z;!O7Ho9YW9s93RPVh?56iIgVvzEnuxZE1#~BvNm5Lv{(w- zy=d*~5=ck@D#B7_Kr#e<%0z7@d~o>hwlBnL<1E_ZBB5HAa2(e}Mn;0{MUO$!)u^5P zEk`a!Z4XFkJi-!n@r4!E{YP7S9*F$4`DWj=2}|)YaZ}HQ!_{Z&hpU-==g{(>9H_2q zRZ@=K#|B0|J{{YC5cIdH;S ztzY85$QrlUGQj3P?S$1of3G7X4(3OS^aFAFGOtkH46+$_d!Q*7w-HwfXsb9D zFsWg1=5eK-h4m5b)&8P@>%g=1zUc*ms&nzh86@t)>CUOXBO+MNV8zapM%RkDo7aTe zRpm5|e8kDpa3%N+!-WrD)JgtI#fMcg62?Vr#S)aq4cJv4FNli|!hw8!jLlQ#%44Jf z+#wSK)~d%clfVq0n?gdH8yDyI*ORptYl6rj)8_i?yxF>YOeJ}@l6x{J6=+^7alY~1 zn+}=?vKBFkzUoIE5Cmpdesb7DeYLh#AD6a;hacT92m$jenVk2y3mhQXW1`{ zCabQ|;fGgrC!Gmfx_CqzfUt)|zjVlsC8D4Xx_CORObB& zTtG=m^}fv6x6IKmOo1g-zB8||=K+q|Rspo}j%g&mj3~C|J>;nORMQtxe|I_~(bud{IE)eU)9k$$UfIe1P>Wq_Aa#65ln*yul;;b#vInG# zyL+c?O&b{Bh4p&vzx57&nC4z$NQn)jN;h{&ld!||?&#*@>s+WML3)07Kuj^|a z4xAa(Ky=Pjrn>gmR|yc18o*B2UT4$+gZv74JZ|%-mZM+81sD^^z$Qa}&%CA!hLR9OSkNfIp$~3KknhborJD4Tx@4C5zbfS}CQv!z%fk;qM9ZYHNXWMy;6`%;Ph8+Vb9Da=*_C_0rL6n% zjYBW=gDT02q2J5P5wo*dH*swp`3%t3`JciKVJkt(Z*_Gql3Jr8b2Ti>ZgM{{k*WiQ z#B9N*)2cSw&}Xu~2Y`2%t`-kt2)0J9=86INh@swNTC@yV8eDkhwz4x0ppnLw9jOSi z0q8IxJ{w1~p|45HDq{bT&UY}QSn6vS;pqS1Y!=8lf@f#Q4tgsIQrfSlLObfCAZ`}a zFXk?l0*}zabSX6#wYPfeA1PK&j_gy@y1sA=x@o7@`Ot7W)#I`Ch0((h4iHeITKuPa za3YwQvR5Z|<|1xQiQ1;IN_#zEf`0-j2o8wYpT~OOZwtupHXO3<_&0P8Y`A;5NUt}c zg16eyu-q3>y2Rj(sEH>IBdPrDU~*)zG;%@b5?zzsa%`k6(IMr0(k#=-EgMf7cO0TX zozYVg!WtLNLvvaG1PJ!j-g^rOs`=DujGP|r6$%rq*vK|cA5D9Ws9mDC2xeQJ4M~J(_+P$A_GC^b=$QVkt>Z!N)Oq)l`rrC+@zNhAi8OO~tIADY4N<5l8{>9E~ z?~aV0_rKf9n`9^`;DxYZM}+=s_Gov1zb!%6L?2a9^pq(rO)Ihf^-GNybz$QBJCEqU z#V!hoENR#1hf^xOgZAe>tg^kQrPDM<**l?4rdBA{JshuDCY9ZFr^IPa2d;eT$&8&s z{?9+t0sfXt&9uKyD(w7dkEj@*Rl$Tsh%pD;gnvJ0z-gecDUqFx?olKYuf9oOpq_h5 zmFFw1&1Bv^ANilCFiiLBqL(AS7JJ2hBtMPix8jQgGf<^H_k+C{P@?H9algxHh56-K zI~W*6KNj387#bQ1p=t^^o+XA+1rswwGMvufZ2_f^J^g$)Uw5LrNL$5*-1MnWB&I2k zmC|;IJMHPz(3rrd1|#vbv`_Nmzt`;eM!PTOp~C1_&4Veb)Xq&DPC}6e)nLwtGSsy- zY(q~Y*LSg#6~2t62w41m8+`YQSbGt64Zd~-%o}O!&_)&madFFc7SDF|B-B|proK;Z zseeHA*OhSXClm@+R|=-HYg#^Ywxng(%#X)Ovv)4}51Z;BwD#P^B`tK@sMHhcU~SDY zg&Yq{s`02ySnjf4JaN(eeQr|nH!D=<_Eg)R7uriF*?PPk*4iuCn-m<(cCuEK5U#en z)!Td1&v!4@YIP%hOC-m*_6zzDjeY0+S!bs1^H;4~Gs+eToq$d^>lMPWk3!uVPy?!sNc__7*;k1KG!UJXq;^u)^9~z0h*9ZZze?#DsOadLyJ7nz-mWhWGnQ zJxd;^&9a7v?XRA1bc+D$XgNDlL?icfCcAo>N8{Yw(zbVJ?|grVid*B{X*?ADn{(1K z@3_NAHNBo|xr>f2uV=V5)#zYZb8>5QYg$bzzkB}+TSggMr;m4?sdgx$f%}yojymyw z3{?RpQPs$2y=v>X8mz8pK|!wN6%LXq19~{%A_Wa$%UDZ$Ds{mub^iLL*Ly50%WN@D zz06R$0>3j(Py1g}R#C5*0JlRQzMohc62ku2_eNMqKGrTeyG4LFjSt_>PZy)$q5ICC zGK=&7?}!zHGkpAC=B?0ON4{GK2{D5PUvtk&IVi7*)ZkZ{qjM?kX?Rxoo{tY6v#xwf zF!3Hz9ggrV;5)8s1EyTIf2sa3JwW3VxFivJ(ftyl5IWl zWc7|pM1!Fy?O#bJcx^r8Y-L<`-3cQL7o+@_G__mriY42E+}os9lH;_{E)zjvjoO?&rz)AN?O7hi8BB8w zqvq~K;$3MAO9U?J8eazKmv*16(k^(YXHH+Nj($Dc+S&f4z9pil5SA2`usol@KB)Hp zv~%YFQ0;#lAL&xLS_WfDb_zvgSEg&n&R-%aCr0L0N|EOA}cq*|Lq43CYNo zxRqpNEqBH`!;J6ekbC>yf8qQ6$zvX~opYQy=lyvt&#&G!(fHF&Ursx}?h0ZpY8DjK zaN5XrF!o)zP{UagwlsZ~WCS`}J5tmh=x&h$s+Qc&*T>_Z`cyU)?N1ua3Soz3Iu5HI zHj)WugC&5BUFJKXX`XIk z_yg13N4-7`x7$TV&NpoIcl~1O1;#k67Fa(1yP~ayq>@sqyatNaQjpY?AGK^{JhjL7 z)tvKcqg|D&4*%)vC-X-@IF}tudcts6ENI4pKAH7yrc_e3ltRnj#R};r+H6_zN3qZG zr-*kayVE-|JaTytP1G0q`uJo8Po4A(22GSFs^Yx;f4xfm?*==IrAPtse#|gpfKh?8;;73Sh5pyBD-8Z$Zc)?&_iya@lI9Z81TRMfpQ5?!KWRE@|6JW0{kk5Sidu zhtPw;Ki6h9dF7N4C(sCxc8My@2_E(08VZ|~cHupA2=p-8E{)UYm}%hP3GnNJ=ykd=R(ZQM``j2xy|uaXd$d4g(%Z`Jds2Sp{_ zbE5b%JMckvvzqxkOa7pdLo+d}b^a`V*cWS{ z&93e!(U{9B)W&2`&BEH##>IOat65;as?H8AmbA66m8-W@`X5ZzSWZPUQZ9v^bp=8b zr`u&|4;RcfAwj-!uZGdIMCw4qrvW3GFOF7fQz{1RQ9vF3fwSN~@ee@6@}Q<+v=A43 zmd)$>6%!ka)9kc1jmvimZ>Sy&Op@k==Yqir7xOCrC8} zE9Q(j343&i(xYHJaOdTRRecB%u1uhh&kV~nycOZEWlWFR(eXs7A@p8_x2PERA^oZDa!H^==#`Gi3Wb5?yJhpZ zH4!hh&B4IlJg~dE%SqW^<*;d2?|jBwwxUQ06SN8kh?{4g2B5HSbtfV@X2RTJPc7ql zQZ)UfpqEM_yJ$f~Mx9%7-F1W|2XdJtR>g7TZbRo}$4>8nomj7Nc2_B#|MTIg(Q34p zT0>#$)92g5$8BRt>l-?MHeT~e5b5IK)*Knv^fAS2N0H^WMJ<;+s-xv z3Ho9^wtZ*6h$%uy1Lmluk}l;s4SoeqRcwq~zV76F8Lf+JUy{+u*c_le0Lfm9@6(5! zYt6Km@(jKt)l6_^f7|nafCiN8*#$3h z9C(vG%oGPorG{O!`UtigdLlW!8B?!mUD? zEb^@UY_uOfFmqW^i&9AGcpQ`Si#ga17*>;5e7JPn(JYfVcqogQ9%Kd8&cN#nfi59* z+o_ouW_|=Plq{&>`Vapy5hqL|6b}1beRK=-PfLHUi`)+$VDaO5VIkW9eE@qA; zx8_6s5D`<6k-0QPIiQB?36$%Qlp7N;u-4>|@9p@i$JmV9*{d$IRfcJ170J>J zR)p>dTMDJ)iOAyYJ)5hJDOat(p&rZc8NO3uo}xZ(?I)0Jt3FUVIMeK#lktmfdXrMm zs+?o7Q(b)x5m#~7uLpE4AgUK{khj4qUpj{Vc6T0gHU+WbNH0ZRP!5D^Pl2T&SU&fS z* zX}6vsB-?{h>3xZk^(Y%RlkoGy5A+%lz24(1*5?tq<>s_x+2ha7iK(ng`0kKjJb4JPy@#ji<~glg|MXMPz1XJ0;Gg9u&xZgKz{eTi2A0r)jq1qW3@ zJG3_Y$j#fr3sxEB2`U$fe2e-XVR43m)p=H+^$MXqqK=n-)_Ou6H7Vpx3_NwZ!{NzT zegVnB(QE@4dMIG6fUW$kG@Fst%Ei3OP(dIU?FT>-Y%vS)`S5lds()8{|h_%z5CVEA-U`AD^1mB3IcZo`{& zhvlK$w^6UjG8xomPF>x?Ag|sU3Pv_kM_WS>D8_+tsv?C~s1!Tu({#PciU@}r9VNx> zuhUyjJE(DEKGgY447g5qI}22x(^JcOj)(aBXgG@7*Q8o8rz>b7j|H!o9%rf>Z`XRZsSF|22lhMT_* zyUlkd@%EOb#%g@>r!5V?1Ytcmb-cjSrPkYlT57vde=I&xxBCl$s}@=Cs5-EDv#uts zd;srlQ@-&C9GQm?OY1~M8i^61TaV}ZA8`%2(5$$%Q5S?p&s9p|BzK+E+nl?oniD9%F3g9hj&;Z?V`qNT;@;#eUm-K*9U#BBl2YTj*t#U#M7`f(! zKD*F1wxaY_2D{wG8e{rK8(J!~ybBd!scvPmG)L&&i0uz@UY_NdTR`i08piWGYQ$D#!^(`iE0!GrevSDLs z7jj_h!3s3DUdO0aF$UK>J=uqMH@TJ_+)o8D9qp+M51lF6sUi$6q6Y`T8G*Xnk4H{E z?S8nx8bT2eTsJp7K>jP$A!JBVZtXd96{(?D+J34=87~BNxhOPB-XiaTWim{*AFz3M} zY3z+IzuE5)&clo%MvRt>PkeO`*L)gSX)QBpowZ#a$tJfog;C*zIT4XBUU}3H&F~x8 zj-7P1sr1~oZrT;;J9-TTQc_czchdOW=ydpi)-rZgP1qDRf;Bxt?_WOP^M3ZT-p;R~6mYSHJv> zXRrnt(1a^9IJgIG->o~po9I0at|mjqpFtyStBmN$f;cSpvgpKvGFfJGGw3P^-30Dy z4t&pKf~7(#_1S&3*Mc3KIQxO$1!?6_(+;8zNWA;FPZ$F0+&_Y!*#*nr4c%4jA0+8w zp-;NKu?3d{Vj(jh27C$(;tWRVDvFmRrF_n}01Eb?%?osVOi4O4`+J%B6V&}-u#;`B#IrG5H>UVgTzjUquVz#mT|aeIW}c!gHqa{OYRED zL9!s?)BWyvh0pPlG+D@_0?rO_^!|mNnF!2VcPe*oQA4eGMAnrCLlKf2N1b6&MSg33 zk-s8Gnm*ral8`pw+TQE!^>$5UE2zj-T8V)TGY^AYB^c%yNt6Oyr5bR@1`naiD)_VQ z&u_he>llg6Lf2))@5%vi z-{t+n96Mq(%sf`}MTkX7VMUI5$SZurdSO$Ox=aHpndBP90>wiCabjrBb_m-7G1cC` ze_zwOytJeZQhub?1&~<3zL+(}p9iE%jszyY*xjtv4z=C}En49GvtA>CBqmvjm6dgZ z3wK?IUp3&81N9#$0!Z8e4pe%#xB#<4oKwMt8E5dOP?gXnPYCL!OYIU>!IKkw+o9kw zsOzKAviR#vqJPY9RRzJ%G$J4D^#1|d|5FEHeUqtAPTDNv^mrrKZn7=stvh?6)|2)gv#PWmY5trXU@RDe4hMwUbtkK z9>Y8a2I(UQ6>a=_8mw&;FE+Xk_Mcp;mvrF3f>rXXUzCJMuku;p_IQ&@#^b;y*ME7 ze8De&y*hp8|HfatzG>xR-B)+kcU8v)ZV)nx9vQI^G;UNEYOuKHz3beWj#=8&sDi4h zuY*J&m)_@h4^PO*l;2su=jyn$jEq8mWA>J@bD0kF>O^@@hEixGV^fF`MIg{XTc?@1Vl}^;97?%6( zH@9eU7mC!%b;=lTw7(W;j#phnh5RatiuZ5Zb4W~&^_E|m_mg6bs-XB(M{s@}_sIv3 zm#p5_5fztXX4)?+;UPJj_STDs^=?96MmL`qubQ&weIK7NjZ7=O&a%)A5)NsNPSb|8 zc1gOtx_bQ*L(wxd+W=beBjcQiRa=hfHfGtLIDXv3-kPFMpQUwGM)^2Rwy|3FH)^!| znNyTw)gx}L=I+9mm4!&(yE^{<-Mb3GYW3jJ?&>JHK#54r?2NU%sv-7$=~ALrJtgi! zjUAu1Ao3YxHNQj}cZa`qW9cGJhsXHFbJrFw-#L&l@27>~xMA#p8(&7pX1u}HGvv~H z-}Hp2qnF0}8dNi_Vj{79&0`k}y?5~Q7yJ8*+_LN}+j>DeS+D$^g#6M_zC7@GD8#QW@C(fgY`%J`}RwegKzKQY=Z2{^jsZ-R3+O&ydD!dxM(z z^S*)x-rl@wPnr1A4tVah>{4_belN5^Q2#z(dh5^9XFNE>EwJZ$^=YPEWudosDn+)| zYR}!2@-6{VOZ*-S8dM$kR86^ju0uN^AtB?luK|~Ilu8_>!)abnTAR0;Vwf!Z`v7sZ zM?%I{_SV0ZJU#V@i$%gJ#i&8mbEG%5X`%5War=}rXUQTBY-dYjd?CR^Ol@Aal(@;dv>bZHT#kpf@XBITC4l!Mx(`zW9#@dbbMC>>Jye6#}i+kVO`)OE! zU1Ui+7F{2366` zf^}tOW%uvi{iU-cx%%evjcaH84C_)lbEf+gZm;FN9}p0W)zzOE_*k25Kd$8@9&)() zQD%F9eMO`aPiR3_+xtL4R_#nUfxs8Vgm<)JaFTO z@kOyWSFrDte*5-q+3UMoDuWI$A|L3!QK)LUQ2puV?uYczsg~rf8K>M=?i<5o_|lJ9 zc2_AOI4k0`BzZNnCLZKyazAew3^%Bb9h#=yhz*{6$*R@yYNN4Y@G*CCv6fvG()YOK zyqo&@2i83=rFX~WR=pQ$ir#k0H(WE@j)aY-eXrnt%IYf9M%#9Fl2GJ3usnM&y?Zd< zqdo3&W7fHXo6E}?S=AqlSayYLQz>?1A9R@Qd9xkxbJRIilP9~H5IIZ5y|r!olJqNg z3d>ia03rGKClVZ|$2t?J917i4G1sb(XLrYDjui6eu349f)aoh;y4Gmd%`0eFtB6Z2 zZSj!g>ns_kl4T>8s2ro(g%AmFn$o+dqr+NrY*vt$eqyw%a;tQAbsWEm{p=_gk89=G;NO>XARy&oqmE( zk3jUGsO9WbiQN@f%@a5NqVe81;=YR_+IKomGrJ;KiaF+N!lA@V@5``{;p_KYTF^f} zP{3@^RS_XFUT-dFGw_>q+05jyC6(Q}12?wIgjUdET4$K5_wo4+{id93yOE9{gqJ@0 z0O=RUJUC)ju#1GBFSwa8TqHVLqwPU1qN_C6wMcCEr1Y-BW-94MpRnf*ECNqXfY&h&9-1e~wuy?Y*Ma%w4;OWS<3V$;%uu}Cs3 zJjxYgy>+9X9~pNAxpJIAt+pHOV##vewDNSIgd@oW^J4sSIhd9)`| z0eAfJ%fUh){%UOx@uzq0EOTcURp#*E-bF*=X)j;*>j7zL>HMnOto&8im?gqv)Kc|3 zN`lU>Z%?k)EGIvys8DP$E98BPo?#G|{WLl{T6;>wkxm=$YRF8T?{Woe7FsSRse!^- zr64CB+MhEmD`OE({Hur@%`Ahg%2F)Ba(BPPHF$ot<5#wM<{K z$m;7y-t+Nk7pAmiVe`n#VHA`F{r7U+v4gA=^%9O#!VwV>MaXzIs;M7-D2kV|Xv_Zf z_4Um(Gcz;49LH%9@*Y%h@*Xc9mARK4rNK<%H&J-@hLis4#-=8&nbvn=(OGGZu96QBY zn<{D7dRNL1d)Yphh0{}`-Tru`lXqoaeqCSIuy(>KpFVvmf~yzl*@rynN;0VKyZ(v&=Gg>FN22lFX?M4n7)I51%}FvUFGH6gr7M_NJ>gIZBMf!_(7K@!9Xv*$8G| z0qtWZJt!=UKB;1!3bOl;lHwx6pS?y*A@WS<3A_I6@vAy_*51g<5|dua*PVu|>21tb z!@^dhOfMbD?09mUt23NN38P~Vg5N(9ioy!!hi)4lZ!4AJtOQ_Jj8u&HlX@=U!j0W~ z_E=7~`S3_cNTj)+@Y>0e*4S{j2Ok&cFm%gT$XK&uSxKF7u7-Jg(ei*$yC;Wi`-CaM zM{lo=GhT`gNCrgmiqX5vlK)lrC_xJDLKa~3N{d1e>_I|$t~j-J_8e}SX-3p}cZ=?>@3cic$eINZKkA@g%F3gXzGe@*1G#t)qJb_qUD%L3JTs+cUEf?rC6@feozrn;B z`THAB{hIh7d}64qzX;0%b#Y}mvBB%;^`o^0ag4c6hP6rZKzEffYC;W;;|-*B|Gawj z*3LgUtc0M<5zIXjqTLzEHKb9AWZR3G^8A5 zA_3*;z~P(AFhlzJ?$vv;&#<-w{ZSbMdF7L%w+oz#5**kO_0r;)K#*u|qyhkG5@aqB zD2EBYT+7KR)ulKC@I&X%8jLzP+FZOoo5EAB51w@1ba|}F(R?l76FHOJ$!ghm;NO&zi!=1 zR@N}IP3f&N-ijE=n05_5j8lv_BQjc{kc{fF`GYGu{s~W~iI0l}^((^js8w-V{LT#v6SU%DyPv<^H~}=2)mCrSS>KUbOQSF z{ThTKU9Vkx49l*F!8e;WR!2fV$-G^*!M5E$--A=wM%T{lnW4fBVm9$8?Zo}<^5IRW&xj39_Oa+{2Wq(_J!evfced1xg=eHn&A5|900^FqWx~K+ z8C;lJopxH}V&>x*Oqj8aF6eDXAPAm+zCZ);0r>k|kOyby^k8w*ZSJZ1yCJQuzi;K@ z(k%`UccrQB(#lcSj2r($r{{BB{P}BEef1Fwmv88ZPAn?J>>Y=mCqDFg3jv^?iv#0$ zV$(i_*G&Z1)SR^y3)m9y@Dcsy4U|K)n@&{iWwK}KrR{;v7{IthkgQi)sDfYewHehI zxlNm$?zihnpsuk0T#WD=rHwa59d=!D^cgdOo?Pynk~w)3wzjtUiS(iVd(OP6ak;Y@ zB@(l?daq}SZBdGr);l%l%_B7qBka-uOE2e?(m;AmpyWJHXM2=brCcXRUag$0l2Ilf zK8;9BMV*uFfs$P<4cYdo7;u+zO>gy zZ9A=4d|VxLk2GR)``+{WY=?g5JsZDif^G3dKk!8n7M*2wqm?Sj#!WfRH0;v3W?xUK zGdT{nz|L}{Ck*)7PCk|O-=IzzHW}hh%S98KpGvo_Z?Pr0K2+><$IXp&vLsB6hw5m3 znf(?8%Y}4b{IN>P|GrO%D~H{26%9)z7lR1z?ed$2585XsIx%za*de`q!`>3^K!-CO zgU+~sx36EHM)SQ^{SeSK(TO&y@;*>f(k2%{@a7&j50VR&Y|zx58Qb5yvS`x+{8P3B zjUg79sHyPuWa+bug%yD4O2}RS9(*3b4KbKRq)>Escn)p^8;X9SkHyABD>cB}Hr!rZ zO%MvEh6Qm7*0p+J5l*xzQaNufTmJ;BqlX!iw2UI*mOJxx4qEosDxn&r0Br`LdWHk< z4NW=#FWn>~anNDch1?XxLffd_C>WIvP-mx6krmU;+L}kJ!N~$_Ziv9#l|i4KwtUH= z(t(6iM!I#B-*)aWpLO2fVvusPBT=#UV7s6}0FJh7(_ z9l9EFScm1(@4tuRw~;DwjRN9h0OML98oexZ^$Pt(t@S@VyExT)Pp;ze!JpT_5^8n0larl222AH^WMNsTk0!`byB+)Y zpW}2GaFLkm*n$M*63$=yR+w~@W|u`4m<%GoFp-aAqn2VswyN24mASo%KAVb?vUIeg z^e|d*Wkgs&q@2X$5mKO$HDH>13!F6Di~L9H&5QL2%a&mog%nHr{msubP$-PABm&xH zXR9w@dd_IR%2e_6)W!y<>0Z@ryJSo-PjT6i031^&W#EVQ9zA-r6BUSFNVP%icifYc zkOz1m2^<;{q6;?Nt~a?Fy=be3Md{J}>CbXUtUAlu_;ZbLZKy1?iYOI+r8rFukOILN zU7w;1iVx)dls~O$+vepfY8^|y6D3Pk$ItX8!9IW|9iV}PyB5agp2_1>p4G= zj_IQt!C&FZ=@kC%-ASSe3^eDfW>`dMI*uwKs`+f1FgTEQ<-13R0uU5J2m{pMjIPM2 zrGD(((sYbUBhQ)mJ23l_O|C$JC%2N(LJ>ukSxBHaf6l~{ki)Cb5#)`;Ptqyoz*2|H z2OrDmeER6Bj0DFU$OVFz-mS}??#o19cST~7JOja@i8ZLk2s_ef-`|;3E?W-NL!dBu zCu2&cUimiCcgd*4f%+$1h5`$~us!Bn;;}`{9Exc0is%L?U&qPzojiG`(V6ZD9F1%_ z0iXufi>{(e$2!L1Di0y4dG<!Z81;YE2M(pa(rAENsDc=y( z{*xFC2&N&7Ey-ZUB5x)sIv9L)vQ(s_=QeRV%z}j65#16E`jAXM*yb4Uas=>`k!rN$ zFmoq{BY8xw$J8hw7^k37y)YpgQHLT`lOqZ3gj%|=xJa~qd_;=VF$Ba&CqSRPgF_Zy zTJ!wn>>`TnA{M7nWUjG$jHVBR_~-z}s8rE%3?(EX6brDRcV0sp(TAu*O4nO&-Y7E0 zL1w_%aVe<%=xjo#hs0#-YSLQswbjvwfs~oB^4ljaxy(>^MC2v39#6Ua;mKeNwL92D zq71{c($kac31^E6at1rHwB8y7$Odt{q_zB-(bpC+ciq`jRHCG!5sJzKHXZ!k49&gByW#m!(&?>q1Zc!v=*{V41HMx%bBVK6W_-`YcP2t)IN zQxASUNYYngX5g?Fgf?vSP7~U}xp&P{gs-h6|0erqQ-3uPa)3m;0530^&HdQqO!G1# zqkj4Gc-_bUcy<2j+?(cpx&7FKxz6|Hoo=h81;TK9iFDu zKD#IrR3~Iqzi!gsMVg3}0Do8Mv%}->oAObb2o;Wg&C)3>HRbdZ1H;QY&#f{RP}`zF zz@LzlQ$dzmqQ7(j^zvJ1-HuZ`Wb2p)!V9&x6OC`Gu4gp^!&)LnyRKTiU@sUFP_>Sb zEK5LYSzsCjzoV&|>y&MjHFyk&v%a@MYzHCxF@XMAmuY&0%#Xlz5~JAwnJ|%Fr$!H6y)-Nr;UM!)6$i;SpsI5RHtxPshX>g{~GCsNS zB!NODWz<7#==h8A+ts`b44Z0u*%_|n1{0Q_G<~C-$XS{&;u=yti}jNHo}Cffac$lqLpQYyK4i?mv1&qJh!a_`|bMH002%tgPmC=8gMKf~TnfeA^4boFIA( zQ8`B0qgC1&H;>55QeJs*#zFB}5a(=4_6W_JURX>+z4t=U;Z<&4FB2=DBBB@E|Je=$ zPy84FR(hwy@MqP9W?#TddaQ;?ud?E;MU=E9gN3k;lZu-&LG<&;{g5y`n%6!wiX ze#af$w|1iO|3F?$KIFXSApjN;cF}u?&P%W)NO*;2iOFg%z;U*L$AV=0@xJ+WAHZOM>fj(MduL}SrsRhhCd}T+=x}t8(-XvI zXJoZs-6_ol*9fnK4B0<2*h&*V)&k7xLQbOpl7H(;ZF1uIRaRNq`xu2Sg6MJxEqxI3 zMrj`xI!<+lG4`ciEL=-wR$PH1mYFYW;1GdvQy?2CQxB#A@^k_nl|3tRo#}^)%b^B$ z5MT`H{wa2(yG({3G~e)2LmfmrnVu`K0?p&)33med`T6Bgsj`TePr?jxgA2k&*{~-5 z;~#6@lnP1{-P?NYVT27_V+l-rd0D% zcM1uq+}n2Q42Up7$YW!=Iq4Iwec9uhy_g(JXg|4J39$XVUc)4x5kcY&W!0{x+S}#8 zMfsRX+#Efu?c(_}MIw<{8AWka+17k@Rlex<#rfnGy-wgalEA zUeBI2$A$xyl5(3b>6<(BmZvt&G#CY{B2h<9!|KCDf`}nFF@pYy%*&Kzr^s3V+n1aKX>^W#Fk>GpYmyBbVNqQmVrXsi?M`EKTy~u zx}HVo1lT^sYCQFjm9f@R z%A|^W^J~Ro$PRay93tugDdWUtfGUv`Lf0rX0|1;0?9ASM>|!>j_vjQ=pcwDHTod2S z|C!oyb|VpNFx1=4PPSK~S|;P=n>TOlfJ_BJP1|N`&P|z;+mCb^5VUFlVGWj#Gf>GD z6D}Nu9pNm|hR6b9N+$HTR>73J-*0RD8QUoy(G2M~08_^|$ z28QlH!bT7Z1?@#10;(5^Ex>Q2S=-wwv_-Pgv?e+&kW6k^i%FW32K-J_fQpr=##$s& zNMC|WWfat#9{f}%q^0+N(v}S9r)xXTc#^S-)HZx=9N`g=o?T$?6_J#dm>S3?VsBGG zK8Jy(gQlswF>*~B#wj(->Fj!wj6xD8e9l#KVT(vi+`OB5>3K?6<-9* zP*N};vlw9NA!IO8#q>qX#{@!gSa!#xF63?l>p)Cb;$t=1wdv+zFr(PL=ogZ<`*e$Y zuU;7!ksm;!ML{J=`YnGxX_#1ZA26Yj^IHhM(6390;me&dV+W%Odr?$Bx}Bhgt{)I603F zKDS#8LmFYhnd<2%;+BY*&urj+^LnAPSrS25`rbB1V*@NSkwf1-65_Y118DPyrD0AU zx9`tp&2mI27wvENYe6X&wW-5E)(QPpgqWyWh9|G4<{}{HG;ECCtn0e3GVv{*okmbw zlP`eyvbLreCnob<4h-Z>kM~=nAHu;=wEvrP0I^j_&39ddf>n^P1er z+FfT)H#?zISdo5DJPKl6+MF1f$=`)4x7$W-cKkhN=C%piY;!MhHCfytB&I(iPh|c2 z^^7Ug7(PUScWwkIID69_$6ltK!;j-N&) z3OSTpjEEJ3m{D}mM?<-JR20KjJZxQT2VuHMGWmE2oklS2jt+<-!gfKN4F>_r=$-oy zjegH^BIW-!4WR&TF^z#H^tcnUvdXu9-Z}@(dP7fmoiQ_eM!KOcC%7m!F$FnKDB8h$ zipAy{!;BOCJSX9{Ah7QMXLA-r=h9hzkVe?+5)4I;IiaY9YdxBw6-wS707+MZpk1qO zW(i%>a|N$dhVAerbl0&z>O|V^DSx1cn19g_h$I9Bf#0U825C#UKMgozmM)mj zIFJfUl@Nuka@(K41f@gp{m-ZYc14y|1 z7DpH-Npt#7^TbW!cb0ag7-C4JfCc2Z%!P7%s*LbHU__G|GbZ1hK*n3GjoHHf?y#sNSd)p$;-?8idgEK+^XF25ZETb0}Tg;L}Fa?Y=9;Q40PU{<=+MwAl*0FR>YamH5)goHKzd5f}f8qdA1b-WISuM9GZ=V8Y=N9Je>L<{Uc8Y9SZU= zu8BX0mT+Sm>#Qy`*SY9$zCIg#|Na^>DWfWv6G;hnR-&i7-MS?Ywt-*|!h;Icn;aex zVUc>YiA~_bbs`tt-6Eym`uZ+mN6COSXL+)uV+Fa0uEV5RIAAjEu$Q{KXi&J`%xSXl z*U$9L>Bu%nrfgQW1v72i=r%DP+LqDFJ#-?T9Cvgdj=Osf735H0Ae|}QqQih&TF2i~ zIcS=_(?BK1VRAmbF-h+pEP!Af3xb_uh+hO)w*g5=W;vpayy+f|gdRi$42#ZCpS2H` zN%(yUZRZf`2%I5>rhfAaS?Hx0PhyB1fM`gBc@*vqM@4Lripl;eR84Yzz(?Ke7G~KU z(vb>b6ygI!L)RpS3NBo@K#bau8xBEy*E{aKcyf4_K573u(w%4z;EBvDj^#q>UKNN^ zK9dNRccc2+ZVyyA$0wPZd6M)=Il}HETqB_~Mgl?mJI_uMN(WxRIOyxSAw{_>KC!5% zo4%NynY8aN)=E7c7zomZotQ|G2Vg(cI;?Y_d>ZTaZdtW)V-(N{F$1A8-a~-sU@qJ< zF+C9I>?%>;zi=|{8tSlOvjAJ?&#bQY%O=U!01T4T5K{;%z~M0HBi&FSDu@IH12yNk z_5z0H{yQL8C+;DKiSsiOei}mHH)|sefPZdRz%r9;)F5K>)Q?Mivh^MrR+K_du)rI3 zfbbxoBhcJn9DRDIg{_k{Q9Jvo3mI$oIY>0grve}=;?3gNOsRS+BwvzMuPXSD+!88~ zKX+Vp6!C-SUuDFxiAoSaN?3G+PB@5iq8niMM{taS%n?wFYgbVTMK%IW$^dbUp7s!> zEELR5CkTvcQh=b=GIC4V1BU~sa$1Q>O&=Y{xW?g}v#{+Wo6#8|ty%s|>X7UF+$OE& zL3V?JmQ@jPrnAGtXUE%3C?m#a)<0X9~MNv%TRg?hx~vIff)Jhdkx*V%i_(FR7Wc znwpw5ag4+5)>A&HpTu3AGczPZE)f-?0=W`KY(&_7QY~HfXwbLQ1t?&Wu&1us#ev+e z%;T0!ZFA+Z6qSjT9VpAt-K^%+O!&VVtm+Jj;NoF$C%2{BTRXwJUvspxT#ASR#KA+D zmS=^03Lp;%yJ*l?pMFE4T{rhy8$I^t#S7MOa>fA?unp!+R(H=PqIMBq1QD@_7D?tM zqB)WQ8kka+D8!(RJcjSiXBZfNiPJ_i(y$Y0+I4Ovq60=M$sT?=z=SfQc>0T4!|wv8 zC(%#l0s3?ta^vWeIVu206KTWX*X8H5bS?XlV8Oq1gaG7Dwkwcj`2ufUB zP24*9k_@f%3;xcRlyd6p)q5d3=6!fftsStz;O{3XJ1c5W*9DTX!whKwQ^6wV!C7Pl zdUf#p@#*2}zBmpAD=VuYD%W@Z9bIBxgoRuMNmr3>u7e{;`_tseU2T)~vw5-PLCYjT z1I{7V-0ecI=^JJ~07q?t840$Tt~{5Yh=Buk#wTFs7=8B60%}$Q?Za}SiFR8JMl}{a zj2s2&YRt|g>MGTAFMtd&{P>F5J|km9&EO#~Kfmbf*BA7DNNkUH$9D4}tB_|ZJ-EUn*}XY1CjX}fwk**ooJJ*|3bR?QewO$jQ)S%fHD31Pm7bL*!? zD|F!~SIx3XAo@A11VevJbF+(dPZY0?!N64p4o2}ez1o5$UxK_mLV+6@c?yH1_@@OQ zQ5%Rh{1VnS7&?#iO&St{{GKF;=>361QmOPrAop><2-P!A|upRN#kH1|lM@6-y&05y(GrGa6uC1FV1hpoAg=!)!|0 zLd5nhU;^-bBScijIStXC^^(Mk3bz4at&fY0^hy2Yvw8i+XT!zfq@yEz(syq}UM?%f zaEzy2s3j7g)(aAYD(JUS6!tY~jv#SyBIY-f$qW*ph`}4PK5_U*zV#*iStx0R@?F?H z+J!{&Z0eWnD&qr|Cg+;=I!p}APYtxH)dP=nm)dd{7YXte#7ZWM>W?`a5hwoz?OCs?3 zJ|Yn*9)YuIHyXtWvlj(gD4#k)j%pB#7r8 zwEgCDLP`JI21J{}VL)X{O9%1WnoJX-5}e|qrq_cylQLl-*Qzn8g1mCM7zWmdL@hb( z0p>Hm?w+UT)k3j$=jAKLY2I}63vhPd2q+}z5n9!&0!{5Pk3+UjIF30EvhXzAft4uf zDjmt079Ap$=mUx5I2gRyTXNp?|8Cb{7H!qv$V=P}fV3#g*Ww!JGno^_&K}4;C%wU` zMZC$){lSyDTf~On?O~J{M~-jU{rexVuZ8&e`4#k)zqqv;MNFj=2#UFJEk+#ml-VQ2 z-UK4J^F8z$(EL{9^k zM3lo6VkowN?TOtoq7YWt2&g8cvJ*8C zU!Xi>BSxS@Rjfu740@XZoH+&&|Aun!3w{CwB%WexLv>Ohm5(1CF?~;Qnqy0FB_@|6a zYjtNP21zNmK%wZycC5?*)C-MF0-5-}mp zM|(afz{914^RlC$hr5XP?Y*zyHRnG?>c`bk>@Cppy8+FXN%&}MYYRgCaU6Wfit({n zOOr?7emgg87}Z-m#Ga7zXlU4Qx86mDhG85qtWT3CA_`_uvWOb+L`l`Zn(IWwazng- z?AG-`L|}l&io`T=^T3*fbFXoETwxX+r>rqZogvgcDVTd|R?CU4QeXZQ4jVg69)jAh zmXTv@Sak2=c5)hePMBsF8Tq5SCI_x0LgEl%ha94btsjE3JOUMwmY4<4+;JRpryOW1ev?MmUN4-#n#2SzGDe!*y} zPHDM5s(KCwd@68gc!Zq9gHw}8ljI-?$LOa{AXMTi8zE*;taueP976h#qgQ19qu3eV zku(7HNz6$E%;l}$g$*f(fMj`6rjgjoL{Q!Y?Z+;=bBL=t}0noK*avW#$ z`S>okA5DvRr(iiffW(#uD?pIFK78_w-uJ}kXZGwo6jF@fU-tk1X%pFX`w1u%%VZe!5eB@6ImNBIMy?Y=4p63iu z-CkS)@itK_HW3XO>eBTks|niF#Q=vUF7LX6-J<-I5GiLqTmU=Ws1FrH?;>p!fSnBg z1iuqg8hCKwPwS}DH0Nj!`tc%>?p^Qw_AAWw;|D}=fE4lT#3E+kLvY#pL#=N}BokK< zxD!F})D9-jWJ}0lWK!@!W@31dqqT9mfC!3)63_vcd)@|FmP|~ZMXNNg^n{u_#tIiO+g-LT>^I$(*69ul!DiHYv z9j7eF2}ZC>k;*Z?H<>wOvH3InxyORUh_;f6$`MMRX_r(*%OXxx0_q@(C|A(K-7osE)!3fr61hd^KpoEM3b$ObBIem3oDjSWK*ojyKOR)iPCEdkDkx9!87WS1eGwGK}bgAO4W zjQTfxd+YYirAGY>4AyKAvxxpjY#TtWG( zA`ll0X`X!j>%YBq`w3JoK65rHmjkUTQyS@JUQlu_Ow#5_mywDJrlY~8C9m1=BL-Ej z{X;fcKm_L-_HE{IR?-&?qV>9O z3>?lDz^U)k);5`>Bj;V0DIWqPvx7RgV@JfD3l~nLWs5G(#}fs(q>*W+mXa$)RBI2( ziR$V}J={I$cIzYU!Aq|u&XQP-MO*f9P*>m=i+Bx#!q}6N3f#Tlyt(D(HgxQ=*yHfQ zjXbB9@v83CTE8Ao5#UkYrBWT+V2SB`k|yEBANU0DWoL8?R6kc*^pUhJ+qPBpY8-g* z^+FlAuWGyEBd>XK{YF1b!Ax4m)!hojSxVK{f!=EKdiZQC&zq>q{fHGogpw#fYt)Il7uuFG`!^>HZg z2=0_YcENuv=QZyG9WW`HoRdHKn*BB=_;ACz!#Yc$G#q3WGf6#h{|^PMXn}-xbs@6> z&v)ApQ*E<7K-jA02RBR&9Su81ao9c4lx?piAEJ#x=dI}sQ3|p&Wz{7fPC5V|@mCoO ze<=MHF?Q~*pKkqVGhUWFIXdihH{qCP(uJ31z)>GgNJl&dR?wx-I^r<0*;#4}`^en- z&jrwu<|8KmSg0k3@-7<9{MucUa8JalC*%fGdxUa~NLT&jZb%T~BPEV-7~4OWXbkFR zeq}QDc%HocOildNuThcDxof2~n`jT>{jaT_AJh^zdZn;l)oJIR;m3f4kwyOe_qcFU zvks4uc)C+dVr!2!LU59n6K~9VSL*Me*d^e0{8P>OMZCzLxec)@`FSz>>gxvt1f6Hq z;m+MU(GT05nqi%liK)l8d_BNr!oi0~@(#q2?o%d*On~u`0y{-AbXP3#8#4ax_EJ*8AHn z`6EC7BT`UcPPejAS2=G9+ zcwu{?xxLWJg#a{8lKgqQzAkUxt!V%yB{*~lrAD3EPoA1U*j?b@NSu$b8^~Xj412`p z`obsq2?cXi;L8d;-nvo*$4%5fzv_ZB>%GdcR~w|u+*k@NM=PtlT{)|wj@&xy#rr6l zCoXFrO3YE)w&Aw7?S(BP^n2YEhg~_c7 z!zZ2y5`^KHhmS9I@wjl-KND;Hb;R3QM|k;VVPjkb3zXyXbtd<4s3;UrnYbNByM>lb z+fY_-CzWYGMYQjIX4&$InNlB13&PocL=PYa=-m&sGvy!V>S?Z_{8QB{b|MaEW zEny3UDy)mc0|cRk$@)_!hsjYf93CLHK+S%-6EC1y;!fr0aP-i%FZ1{#_xpN*mn}mo^EV#{#4ynCx>vMzsRY zjo45=@&pAVmpX9{qISfPBR=pNFt-G(jj5^m8SbSp@*Er8f}4Rj+O>v-CDgvp_CRTA zX$Eaf?f#=e&Jx*$Gi>Onf43#|Yb&=u#XKIIVkmmt(1EGQ= zgTjszlN+a=^jtd1?Nd?iAs(j_Xh+O>ysC5bpZ@fiAsz{`x51=f6T5J{r0~rV>LA-u zDeCr>1BLzLq*+qTbvt8ctUq(wv6-&2J$Zv#D1Y)~G`=1-NMKz$`WUI!d#xeQ%x}nN2NiI&nhrTEOzk$2x~!_K1dWET)a0r!T&loBQCw&uo%+{TwF{4c`vx{1>jcI@Q z;9ArQpJVG1g~bbITh`})6cZJekT~dR5i6+?sCRf^%>1WLgw#Yo&PKmla>sMP zb#Mh;*zJ=5yJOb;K-2lbGYy>Ow|WYiXaeVYEPAx*#v83T%IRwYsUy_7=($B|7ho^e zmN>^zJ{UjvKn&FXEvm({ESF`%%3{Iud{|uD!W?qc8Rzd3&_8HoWMwib>R0~_OTGLk z*!U(IQwBK`yn;OUKpWEHBOG%@8R&Q(z@9ti9(Q`GKWxXPrh}CY<~M7Fa-R2U99lfF z|F>_*@h_-jdbVnlh{!P~NoTIaP0qbGet!YlFJA*1-LBo=dIXbEBnGVfI(BL)OgKS= zhQZ-YzP^uxdP=#jsu9hi?WSg*+OK@;Q7cpd43-_rvmB$_wGJMkjnntH`pt;#Tv7bt zlgqbkrsgIBT<%2lk@HSV{d)I96d(_e0F7dar;_~xpM?{A_HbjN-2cS6aNLg*w_`&_ zd*`RyqOO)=fyLa^Tgny|C(owdeqH$f{oOTJ0*iTHEWQKq1!yg9< zt_zg2GW4z6_6{@uXoc;jHU>P+JMjRAhRnpx5=NIkAB1{J+pyp4z68x88Q%~mZf|8U zF)%G?HoErTa#5B!b7E*8Gx5%C?@UaR8dd?3?`{Z5U|e*z03)ot9|J9oOt zY|md2@E)Dl_er3nb1W=Io2jMlVuw z;Q4djtses>u;)B26t>CV2Xd!JGc%4;F|Of1W_}0mQm#E|A3c_y&9r#+cLn;i*gvO< zIgqTr(4zFo8(uAYW438)) zDkeR7Vq<)Z@f&9MUU&2dBh=hY^Gbfj-bW>8;x*M$XQMmIwZI%W2B~O1WE)GEaSDX_ z>UoaFk$|TDdrieZuUPwS)IED)&D|IOfQ?UUTrTMM)(XOldW{@z;|{Pn=DGL6i=Voh z=)UnDUjF_u;`UA|w|+Kt^N?FSJ+^B9Obi)72`>5f0S1?8)_U)T5uOIO$nAGL6#*KQ zSFw)@SDjSr5vgJAf~8+~c#+JV&7S{A8>;oH=G{V=Ad+-*cJIa``0yl#*jZW}G)BoC zFzz&Djw`!wXuobL=0W9oBmcFCFfEud>YxAo`nO@|=iooM{;OKBWXTc`rK#ZAd3ZHv zjB2F1mHHW!<+d7s?#ZS*^M><8KV;L;+uh%bZk3eOOz9jYjM+|uMoOMyfc zbVl$kvUpt3vv(cRe6XSZ7lgxbTGA|@uOhdQK8+JUyk!YlnjUCv4iZi#fjxkpY5!gN zTE1*kocJ^(91|S;cSrgGEAf&rGc2y5&v0S_KB6bV+Vzbr*S8A^Nu{UnH|k&b{L0te zmS@v!`PhH$A9FcQM$HX(UiTGMO-+}mJC|Gm8cVgFcmB}V@p1c#xWR$(e-2dJ7Q0-~ z{l3D)=1kc^>}N(9g=hUKUuMrxyvLgl*S<}@GvZ(H=XqKL3dr}A4A}JL>~^W3f{oHI z{)YH6H%|n{g0F(J3W(jzJaOwS?}gtIwcZ8{!|i|E$sFB-x%l0?Yf!u*aNuUE^xHRY zN^272Iw1)yojyxx!GkUQfqZ^{SbC4G@V}Ul-6CKwgk6fyGX%VCCn#kcVN;2+8{GpM z1qFl){KxsGec$d-Sb{usc6%Sl1X431&+X9wvV>HYh)0g#0h=-~(QrSPP=x8S zi#cp+V(a^9VBKvdLXLeKi#OkDe}wq@emudWJrNMm5?KGUmkR&DsMgkI$}7$E4ZdZK z9Q;A?#Sz*y=?@;@$sZiJu(WKR#iSK}#}fRAtO5n0{&~m3_5v!E8z4$~aBv9@a4P7J^$3klw8*(SiUoR< z(_$vH3T;%ze+mlzN?62aiTr?9LHxWt4Fpt?pv}#zE-VLKsuU$5(y-1+0d9i3ciIPS z9&qiwn)nO&qkkpf=I*JAIq~l(WXbBi#@xv3nE)6-CX1~nUL=ruveS)oBkgHXCenKPrZgs7G95f^vuZWUa6RJ@|BY7O}+@F=_N!q`Q zX(Qa;vl7FWSK?Y++JyHQ9B^8|bT%jduS)!{{f7)Y_nSEXY*|p>xcvIO@3QIN3&y-7 z49=Spul|>G(?+#J93CpAr2-@TvP*=)1(@sg6#F z20@u3jBA)W)+@LgJU`x}&X(^PRpgcg^hY|I4;$oSS{1g_`>q z#{nA5i`ngl-Uys$F9vc&tq@4i}xogSl2rr>r_hX=yZH`|;?vg0STWL5PB|MgcObd|e7Vm$Z*Y zl?KXCNKemY4QHA=t`V#$Iu8mQm)CNFf6#tG3CD8VKKq()|C;)ydbBSr=J*ZPlnVTJ z*Ruq4u+~wt=g%0An%>+||E*G)bPIC0asQ(T46@oY9F0A4>#$^e%coBojW~PwVWg6d*v-nPEfyeIHJjpYJw#oktR|hBghY#mGA8Zm!AFP)BE6J0Na1A;ney2o1 zC2^aB_`4)A1%?V}2PmF7BMmY7@To^BCGCMaU&tpF$c#(6Z9pAiv@tdH8*+X|hUXVU z%l{8Re-6(4=TCCU6r-wack$~Vz)6tr>hF(2JPUH)>H2h2 zM_;m`7hayo=uHs?Kdp(Qj_&LC$Zt6&7UabvsVpmNb(T78BZe4SOk%`?x`mllY4=|w z!w-S$S2Fu6#aR~Ay^2q5EC^5l-n39WjAfEG8&7E;o`e?pJmXZ_ck6ie{Ex;QJQ&d} z2uDx#D#E2;K@!AX0C*w&xO*p(M(i7I63a(le)9{u{(16IpGR?LCmkPjOt@pgt`u z*{U~e$S(VYEMHh+k%(vyv<1`fgumBM^v6SI&TUM`2{Ve5Lpx5KJbB-u!|pono=kf; zS7c{m%%0xg)&zv~tvvp?m^{y?vFnME}?-^`#yBNDDGu2o)6f>2~|J0vKsXLQ&wlumzIUonb2FcxWrj zVqtg|>Yj^eT3C>|UGgepY3cVG+z-c2RC4HgyCiW=;k*5)hBlxWQ5HeWD_zyb>&6CQ zeuO{h;>%awi%I)(xuWHArKz{!z`Ach>cl-X_VP33(i-iKPU4z6yTEh z^W%E8Nf8(oR?P7sE(bP6*Ih>;`ro$OHtmaq^IhTPktTZuBPom$LqiTbSG~GN6K-n) zlKN|#e%P`n_~y?EQyLi-<>B%ky0j@vbZnS%$}qW*2WPo&@Q*{sLOu&qU<{0!n7B^F zWvZFpw=@(ze(PV9Nb-n6_jQ9uTv2 z^rLMj65zXkCLx{;rj27?heAUXOV;Zsssu{V3Pd#V7;#LzWBpBWC%m3#=p8wG`SQBz zfE!WYCJ3XfSBD2*{)1`3b8xDU&RR_1JPmo^HXsWUDWfWurnqAV%bLX#@Fx1ldsuha zxl&Ge?^-`*xTWlSpvt>STCC}RD7!-$**_gHZGUC<0e0mxFWtOwqQ+VuUJ5+*{T}>v ze3&{tUU@ig>uK4_%?+Ceg_L&8V`xirsP>!YCi7&|4_KHlIv(l1_vrzZxU%bbyxl|M zF@R)$RLYeezjEWou%WgV!Z&GN-o+mCmyq~FWp{1@LAt{0v;`JJe>@HCgH9Nn28&3Z z1&B|lW!ry4IFA?OvGdKlsW(Q$h_gRZQ4c%?tn4&+^h5DDY6+M$rElGmKF?{~-$?$i zB$5F$Z#vff5nW$@x$X0%%)eDSJ=cwKgQp$-Nh4yYBV`DOViNEF`R8LmKJ0-8>`i6= zA7j@6Pj$cl+nU;G7!5^K+SytX6$vRBl_;r1R%TlgA|oMLnUS)RQK?R-WF8{YA>(9^ zWBb3qipc4?|L67G*M082UC#OazT@+Gf8GOJ)er@_)%SJBy?f`jANZ2fnMF=-o2Cse zNaouRGuU6{&5+v=f`ln}WcGYY!T=EM9Od>uRxxtDbLS9u(O{uNarpgFew~P-8xJeP zAqteEooJ|bfT;F3xvy8m+x%RDjLXE*7w7T%xTV3KI99X*CFEdD@$Z3s?y!mn^eYOH z7lKOV1qhleKW&>d=ws99ZQnQtck@5DiG4zr`$zv>*Y3-jR>=!PRE!|g0Mh0mTi5Qa%gDO>*8*Br3M zbml&&C)hE-#9)5YGpTc~UE4|E7t)8cR8dmJx7~A5JOEgX_H)}@9* zbw|Try9|0$7pu-{78r@`{CHn&Mq6WI3GceF%$( zIF~>O+CmZ+KvtJbq?S=e9864VBSPH5Py)*|7*yXImcUv4p>Kls!U4cROYQz(1TUj9 z{%2N<>6^^f4vPe^UR!}ML58;G0N8;oka^Kbh5%f5Lcu2hNnzGZi;cczOoT)AQ*@wR(N=TrJK zL}SnGF>Cl)Gvq)>lyjIZxYAvB`!>vitx__F-r2WObw%SyOw7uaEBiU1n<1RR&N+xB z4F}wknGz-tO*scxchk7WpM&}&hMV}*P3mK1TQZ_2#8vh1J(?kDXWSCiO%HHjzPv(2 zvv`aL&@N2zetZ~IYUymE#eb720h-}*X$f#UFBAVRUTLD4ejOi2&e;Y=>aTm=iVr=H z<~z}lfB)Y5&GS81AuL!SC_^!7sr4zL!l+^W)@l`~ zRqjHLuC{&S%9S{pZHc>xV|xcksR!VmLtHGYG2WL4-p9Oi(~y7grwoL{S|PNA8AmsQ`n3<7l?*Q9Yv zV+P+{U)xzfKdQ+z0Obd8j~Rs3DbqY>$=OD&B~=b@MdUT^$8bbKQjk= zmqfP^1sPGg;1nhPppe?FD1M zA{+cPlUuU6No9pnEgzKr@bYp4m1jR@8`W8OV3*+4vT}ZatV#a(@m2Lth0-cgX2XEL zq(W?4@Ia-dm9YX`i}c#BYr!HnszEhPOhX~BiTg~U!{M7u!J(&ocT6G$eny>8V-i~* zFwNJRV!!uAfUOS}lPm&BBG6jOp6cuFy<}V~Y`WdY{4bRGT=ZU9*>XM4wbxH>K!fn3 z>V;wTBS#7KN7!}S;k=!L8Uha9tRFo#C`=bK^a1>Rh=S;YJ~6ws;hxv0u&%E72Aax@ z2?Ll*iOu2YA%@|d1+e6RVR#6#44PUasn8^%XqbBsCT*+N5p^Lk>h6SXP-=3i1-(c zOx|QV+S`kL_x#?JGF|SGwEBoMhjc|x{Z$vfy3y%HVs++d9LS=!m4UC~vl;V6y z6Zcrgkq2MBmivJJe9c8-t*jm z9fYBX-La1E(=sxkl3X62z%`NMcjxV(1}4Fyy&isq`~JyG2vHFaVeCAWSPYRUt*Z`AgjAf1n_XRaOcdk9dV<2Q-nO$gpZmJ z^d!dIM0+QNebecHA#HtLc;R?Bp(R7-_E4YpV0xD++H;_W?d?zW7CA}&sW|&LU}w3| z*lA@I3>L(byt-*Wyudi`uVr9>`J&j;jfPdL zW%h_j0rGU^^TxO;b|qhW7|4aevfgILI0OJhUmi94>O2s~h76zo%}r4CS+Pvh-uZ3@ znM8;s#bVg*f6~W$6)t0>f{6jpR*%Fl6Ey!kYC4W~?NLllfb}^~siQeqGL5lZ3nKs3O9LcBiayIFIpO0IXSVE)f2rNsjR|d)sJyXIH z$I8Z?D`(spGulRLmz;sR-q3lb@sskIOok=>Luk^rpj&|{?6X<3W}%BiulzVXJ1~P6 zg`aM|g&#DXH-0g^%GAW>4aMdEV=uXYIS&9DG*g!c>WJ2PdO*audrcZfd%D*x6L*~K zW+AUc_Qn8-=bu~*(9iP1Jt8_=7lm%WehW`e#1ITGqe^c^dOd?4ThxmPMd52kiNUxggS?E4B)R!;Jw1kP)Hzq)nL+T>#YneTT>B44o*D4oKZ1SN zq_F9R_+Rl5^(g8haYdDi%R@bm8&(giX7ECbawe3U!^x=QNkRKBOTrsHqq z_|%t(0h08Aw*Y&7Bk1kyJTpiKPN2v?l9Yd7yJXw)4%=Wb>^d+^yZ}iG@48nRg;ytx z8?(1X<#(C+Z@?ih=yd*G<(|%IO1|5Pc?<`9A|`Y;Wn>!lcI;D1wvZ{H&|IvC9#36TYt=-Q}6LLshe`ME?C9&ZD`4+X(x%v6hkDRDa zO#Adn$=DcnevPX(m^o);fa%XRW5utkkJ(oBrX0J^ao#nvl3MrG1HQ~o!siz&uxzm8 zbN6~Pu1tCjstsqn*!rdiixq#@jt)r;w|KJ3soPEtoN~n|84&r<=d`j!@ zr)``4Q$oXT`T+lm8LW7mFq#%sHk=!_HbO1C?1&wG@Gvm}1{AxUztd*FPCx_pM=A0| zcFI3a4@`n)a%~v4K(s%Ys^x|G1QI5K=jPf}arHB2R14xJnf!SZ|AO!)LC!{KC>SD= z6V9kU$>db+m#GBqnKk=vOQiL*>}!+mz82ShAh7tL$pGN?(o%KC)bkz$@Fj;WY&xV5 zq&WwY-V%4IE3f=^b-niKQ&?C}=oIOBAYXI}0pl?_#j-ITTE+k4I6FxcYnmM)p-OVp zH@2EC&IjZn@P=c(n4b+-ZyXLyI)K+c+nD(<4zzDxQ>g05lJD{H9z9n4kfvNhxxC{NrC7yrIXWuy9 z)wS%H;VFe0hUP!+l0`ikdW0dWW}#pC#6j6_=WSMY!#Nxu&1cCPgG4@LG|KEi{-r&N z7u^R*%5olec;v!s`K)Ez;T!4ha`K3QcwU)5xyw{vUmkboweK{|*U4vhx>0DKFtz_Z zrm20%Y--<6@US0oGQg6_drd;{Gbs2TWRpIdHHJV z$1NHm$V0~bnukZ(yzN9r<&ZsF}BWfSt&3t%`_@%9q0n` zxT#kA{QMiQV>X7+p#OsD6O2k%f*<4@tyc=Qn$i8AJ>{ zg_w^ao{fFGKQA;0nbPZ^&Sm zzWzBb7{{2gXvZ!2`<0^bh7$sj*ea_ewtsyhH)EHSxsvbkF(;=le90v;AoTlZ)zRNe z!KDM4zrJKKqZ{2ZmZc;dbN>AHMmgR0cYLt`g@srA96Diy5Ecr|cA30rqZWW5n$~76>?VMKWQK^X=(qsX8Gb~B7xj4RUBVEFlTCT&}LGVqc<8+ zX8};l0?TC8Z}MwNiP+&U?KxI~R0oBSZ2e=U;!7#@mDk<>7k!<`+IHDr06}{8%tZn- z8c;Ct^4Qq1fcttJ)4Bmx9}Dx7g-C3-9P~l4u?07j9iV<<%%k!}2*^(BP+BQCT#J@d zoMc?S-MR2oGiKv|k5f|ev7mIj6EK<%o;;VY2ABWmmzTGo5to8UEszM7f6_3j-hbvy z!Imj(Z{E3`|5NPzt8ezEB0XWo#b5XCj{2u7QBMQIMU2fcAT4Tm^|?d$9|b_Uj-gmzwzm!T%k^tEzD+|73hgI|& z*Y(TGH@ney50tL|mZ0A96*D)fs!-kqC+-@E(`$?iw_3)n*%2mwQCYcd(T}z|qFf_? zU0V8v&{zu&Mb>Nyot3q&)VzL=w@SwxS2^he7~_{;*c_s`z(?kdkmOSVDD+&Z^fHXE zhE9l?QyIyci=_I$c~fxH;c%on$ELGp$wRj;i~wr<9p|y7C7UMM9xGi@Jaf?z$dLw> z=OWC`DGqZWhkq!L#rf*MeUOe0pOlq$bjW>)@=wo`tvKh0(pW^y*YC9`GF>HzWD zSKXV-=M@^I>4To=7PLG;1{Jb-udY6yJkD!rp?go)bZoNo=_#YZ_;$wk9Wzk6GX1`l z`t2X*p3l2HR>HN0k8wLQX zfSpWO#RT$-ic-(hQ(O)>oKfN~9MiOt&&N3cJ#TdqV_tO{4-YSP+jI$wxCA4;+4+FP z1sChN*gRvI*3faQ)6DheoPno7k7jmvlDCi99n-fT6_o`%)i)quR#S(8-BIhMUG4h~ z6V=`12lV7j3%dTPOi*g%5r%g^xeeoTH*QQoFg@>Qt(XEwNGu8dTT6cN8WVi3zfLA- z!f>1dMnC%?qu7CwPkt-46to!DpPBh?_U1;ikJE3R1i5|T5IXLE6*PIl`VOGuZAZ-k z8({dHJA#8x@G1BZ0hMu-nx*HrWbH?x^P3c4595+qsbD)RTcmzf zZjPMXe$eF3B^fu0MgZUD?3gm|L%+LGbx>H0CWRIF zkqo9YDFal=_O5$>5GZCZx1Wm!_+%Pa?>+97=+Ou}g(N#d!Hc0+ZjfBc6Gt|TzQ%T4 zz+GLi#eSll!w<@hL8z2D?XrF;`tCInMkN=gA!l?Nw=}GU1fJ^0_Qh(1iFY3EJLMTV zIf#31p&+l>{}W;W8UHGa!StTKSE}xealUxB|DzA-|7MIx!+Z{&6NBET0M} zeD2N9267M&w-a^gwSy7ehX`ky zgT$UJ|8BY{X*{OKkn{CB3H--JURj1-bWC=g+TocT7uv!P^BoS2J{X}INX978%28dE zfADVM0S!IsOJmoz<=ofmIRu3Y9sK+*g4q@owR{LWB04p7q5sXrBYFn{{I1%tLHWW- zi@90rbRQHdIM1o*Q&0X`Z={m+sFQlRe$`5du5N;BgxIO#>No_Pc73krpzgv zfAjWlc=^gucsZVZGIK0~*MKupiu1>WeK+mxhrl%1tjw1&Ijte<7AdMsF9;L&4ymd- zgjukbcCBlvPte(vzJL-nn+)2d(oJK>j+TmA?l)(4su4+En;}jN(O?cuY>zKIeP9)|fuGqj1d^WW==B%VNs3U;PVT-C!^b%2FME@2-D)%F**2EwiU>_;P5q?p0~Gl4 zhcu(#L*L$?$AW2TUXUCY;xW{~63K?&gFj@lRfxe7t*Oksw{8bX7J)f_YovA09%${& zDqNKfNhm028wzG-Hu zmn1=NwGjQ$l_y?IjWH{vCLduWL`o9p9rz&>=wF`EaA@&2<;TV4y-PheRL&ls&F+0s zTWa;8wQ?~A8)D9vjoEbSkX)^U(E2)>R)hJMsj+$k(D9d7^ZaeM5aUB6<}BNFdp``f zmrE1>=!leFGvYNyT)g0n`-EDLeexK|9+-})5T^+dpF_g1#UOz^RU|{Qy^(ge?a=YJ zUxxdn+~i=Jc)91^hLf__lOr*l*MA^wfv}UkdBO6S4q6hsRXWHJ#LCX^^4R)Dv(tFb zFGmwwPGUj@SNYoRdk}RXd37MC_4BkX#rQnLJY7juH5`fXnsLhBuv&VR(ELecuB~bF zJhE6u-C3o&cw8GTfgTa|IV>dw9$sU6RRm&v7OpR!DV^Qj(U)~)d~&xJ@pt_QfQ)Oi{H$?7W0=kiO8B6W4cIqmuCqlVzV^!BEGiqNcMJ8Z6__F*tW+s zrFa^ehMm#Uo-lhe>nwr!Q!k2*e>0%>V*LO{N<~7QdfbeUX=(CMA>d8KWY+g#W=pbL zi4h%13=;2YQ9v1jEGIe~C8)4Oz5l+N!lC<@YmzZ}IQ|+bR+G3=Gw6<)q8ntYs}~?q z(gBN`kYwdI)`VL3jn?O&RNg(o5Z0AhXOSdYF+jgP<#Fixb)3wglO$P*Z`h!KjFqnL zULYLrjns(iAIZwzXi&bJ7y`m@4U|z!!c3+kAv(OF+b^r?Q)5QD%$&)AdzwPR!xdj0 z-49-g)9#(b3&wgY{z2Sl&cuK;{iOzKD`5ne73_a%V<^J-o=1e87wo1-sbbtxXHoC{ z`t`@j*S9xy7~h`hoXLY1Fn-Ks4a!7#mDIBD=&Uu3$j-iUYZnKe$kDaDRM*#KPc7NDZh~WcyHZ4e9P);1Ww;I{Jf1t_v8IMaFTLp;s+Oh%=7(t`aI*|=(6*N zoZr+Z_x`E|HDm9_4j5mvi8>|LqIPYpqKyj)YUX>ZaTeD>uRhU!rymnd2~?Y_sbpK$!m z`0Wq9;O)ynYzO&xdGB!V^AeQD2O$=%;8brWfk~X14UCT-&9-o7&Gk(UQF(Iof!pdX z6?~YO`?dUtLI!K)Qv^P%|96<-|Q z+bOU9>*V9#5*G_@1ked0FF$YE<$b;JJEQqT(9kNEKgYy&mwy7t4e)>b>21=6^JgFN zIt5Z7PqH`&=K+@TtnK$;pXdxzOq>&pcGY9Ye8Fu+{#lQul{NV&F!Y2Ki=Ja%}{J5`ceC}*6a$L!OJe?h2i^Q|*1{}?d zSSgunOLlN(y}Zn*%H9*1E6roHzrMt>6h4JmtKY+xgRFgE*>7w zDPgZK7#JAB*p%e6x1KVtfN5G3Tsz}b;=~W6-mnM6!>E$8PS{vS+c`#yZ?8tsfjHhe z$}R)^mb#m3e+$lE`{9E@#%l7U}(REI}Tv?u6Pjsvq;Dy3=nI(4{cmX z+zsbWzHW%C^Jla93nTgpX_Ae^ev)c_jkw(-$=yj-u!Z%QknFbdhDusk(yugydEs1aj>3v262z^=4C&RWCfN z@?NoUsYYm;J@3igka_!nnc0nno6@OBc6o%`KWxQ5);vT>%r3pm?xUI#HfoQoYo(xS zdCY*;AJxl?6WZFL!KX?^q!CgrAQSm=(b1D9PMm_3C%i=hND>&fO9&ic%*vgla=~@> z*4XmfMite_*Nd0;JA*_o%VE`CMvRI%FP6{54Ia9~hLuF>!SL%qU5Badh>QHeW0v$X zIqS~5Xb6vyWCh}l8c-X_TKeSJRWPRlkr_j>kvTJ)Uc%e-_eqbML*851Xs*4maMSx( zeJ=j_`;=Rs3d>B_e%n)kiY2(%LA>)6aT`sjOQ5&47sE=vH7=!RpA?6Y;&lgajOB2! z|77SAb{`ytYg;d%D*IY{d?~4S0?55naUN#ZI=$T;P(&`!R^n2=OBwBxXZh(jCw2z*Q=g=t%;QxubhnP#P zUfr89Ca$|^2=V{Sx`aJ2$|oMOBwK|n0dC?gYoMkKnaM(7!(bA`?s)QWOw?a4h{r20 zbO)QtE!-v~;;8%NGd3C3^!RD?}Q(DklBd?Fw$MfysKX7iB*my)} z`||OxDqbp0R4kMY+rkH0+fBOKeDli_E8{?`Z9$1#mD1N!|B0>8+oCBAfA&6A!A^u? zdz$v{tn?zsVJob`PwU*d*fE!zzOs)|)b3{E-#;4OWc{HU2+QF^I3O0ZaCN|47gwcT zMnSVdR|w7*)DjEeWcUeI!583fwxt?0PrEKb9i45G-IwFJ*wWnH=CznjzBynj!*b+y zodFt|P-uP=kQR{_r70B|q{;l`M0l1ogwH%C$@LGTdnP@^%}p1u?yw`FLzo-pzi0QXn@<;NAzl&N z{4O#hC5f4>rF~X}C8i5y zmr6p5E~ZN))m#PdMSqdN{Bk#I{vpg5j$J0t;rX@+-oV7r8ruPCvZiuIeMiY^*B(h@ z*9A|HgE z0bBapZE2pAn{S5T(JFNY$dQzBR=4gkg4w#Ij|KyDW*(hgZ7A-B5bwzAAdh4}92pU~ zQ{UX|yMH(KleCxonJ+OS2W!7@ylD0@QRTfImwi4eJ^Pkx-Hka7Q9l*6%FY)?T7PL? zDik{J7d$)3?p$(*c1L{Rdf$-;gNNBec6iz@-RH4h66cx{+!u|z5ZLDlM-4?a6do1A zkKE2mIs>^ga81;eQ!>5{RI{5i*E% zWtyf@J-N`(Dxy?`B({T(@41~1NX%(dOAh(?`+iQ{G$`=)vEd5_`?V+v`smrHvK ztKEB|FSAVYRwswh<=wB}Z8dme`A0b%JHN*gEhtu9o}Z*0j8^5UAlhJ<$tcZZz6+s< z>CgQ+U-lXivKQCPc=WnXp<2g-uT@X!((<76Dc7@;9*p@u;KAfHxze=J;LS{_D(oYKA)qUCXPkkFPRNCwKsh2IL>?3MGUl8h6+O8F$@LwlUu zwNgxMhYd%*DmdDRNi&4WxB^w9lqZ5V?(5#Xsay7&EiAG-XenAWpm7DR!Ezc2zLO_h zRhRR>MXUeI73LsNf%Gy&ujQ`{^72Fa$3YSyz}4HpqGnzjL)1o1jewCU&i#+r01UldV!YPlnCfXs3fWd!Wu^OCF* z!^8J#Shl*7V~B(mzO@atzLxeBI?ivaU6~yW4_kP^^%3aNzDD6 zc+m$}LF;L1-643O?@&wVmOop>$-!uZdR?aYxYkOM{%*o_$B^k*aRmY%O6aAv5DmcY zwg%!O_tJXCQEg*pd+Q-Pt60na)vEFPvAd(Vt4Rk6$(o6k6+&yFW#XrzmnMFgT)SZ<#s!ls>_Ym zAJ8=%waHS$2Z}At6mjrJmRl8mmu&X!pT}weCW8C_%iiYHq&E&zu5A_aGOv41sxK0B z2xoY2!)$3d;F`CPVwNNuz@Ro@2dmHz-r%5Vjj*(hmSGIMZoqR~tpYzB;QIJyPt`c(^HVyJbKDPX9%Aro{K8AH?N?%us zSh6uCB?zJ&9wUc*rt4x1;K``wOi~~q47$AR3}4;v(*nWr`QP7a;0Mn{2sqn!aoJ7Q zMw^;rzW1<9+g;|lkldIvBn~y?%wR8fwp@vzKY$52T%q`9?p0OYOcdLy= z_maY#jZC*mS7Xs*r*tBgWa*AkKP!RgjE%S~0)zHIa1hwhETO#k&b=eeV=r&i3Q^ha zU|&9YTzkx*VsV*k+QCv~M9`-X<*HGB%NfKm4>PF)drRwGm;}@yx z(MI6*RNt35ZUhk2zH*G{kBT--2RU%gI(+TO^p}$Gyrb`T&gE?E?VGzehHjPfb9dN{(wDNar>ByW-xhGR<}kuUX1C=y}cl3j_ppD2W$3uG+nvD zYPlCCt~Jz1lVX7x+FhYxhgEcyj0Pa<61(ugf#P$YWgNv<}5Z;&0weBGR@9-V#+6GV(EY@6lpT8nhwS>m|c`A24-BPpU$ z!^k^|t|#*ZcQs?JF}u)y4Q0l=i2yb{K=O!?FGIqycW_uDT_^f{q4Pyq!W-k|VmaU`YK=jqe+*eZm7sV=v?j-4meeo@@= zv!cV^bE=&ic-NE16}ZeaZqNwdDx`Yh<0i9jmsz5()vsBdC`>KSod{lkl-mIOxD(Zw0?cN2-kGxZyHj1 z8E5gXpBqTT+zZQ3mCb2JY8@8IXoB~S-=?v+qxdQF-{}R(o)Fo&x5UC2n zBMQRjr;FOE;vEKiAiBPj#h)JNm59*KrxqOsWGaEQ&;2C#7b%F+MSTxYsGyKj13f?( zXr|}`ojj(~NrQG8SKoYwrdd>vB0zJq)&%*E4twwgEfpaUO6fK7gFgpG!kmmL*NTVd zHoUD`1K=f^^fLIJz=bi@+2L%6C8UceCL&ZMYH$6^YbP*!tihLnN7kT)?F+(1O($?7 zeiHfOP-c9ghj84Px7y*e+iFiE#@DefKGt^t3d6vm^AZNK!RH0N?yTE`D)N?c3!Z1d z{Y>$$y+q?l-0QDgx$;#UN?$QGv+6+n?JjzsgFN+s738!Hy^m^9o?vgiP3|dGm>1=M zXGMncWI-c7Z})S@%C~I_ID4UEUnp)7Ku+E8!;j7DElHv2fw4}X_~r3|^yu)GDQ9ix zboa9PA3(LKbog+{P=KE_iv)f}`dnAH1zOH%oS@vF-g6FH+5M9TFjZ~f8l{2u?Fqi- zIB&!XcV=kxE`{y<=N(3PqI6sX2T<0M968663Dz+Ad~@>{O#74lec&7>#~9@*V6cGHO;j%0{n_zNfETEc=_+w2GjN7*vJqS@Zlvq)#6v7MOSVb7!W{ z8~L%w8pZiQA`!?G3{uU)iFvXq^(9Ehkut`(SZFo*jlzt}tX;aArO|J)$ck zv)c4yXxnOv;v&afe#z;xXV0FT>ul=y+`C-q_d=d@DZbI4W50`R^`jJXMeQbIXC=U9>0F3WI-sKyLhf_4Qfg=hfhxMMzo^Z#g4uTAwIMTY3@)fj%4#u` zN<26M3n01*k3f8SosGb%Rrs1)_#{%I&OHxwM6P`h=mpYEAzB&BXyWRv(JH4oPleU! z#C*3p!|h(0nKr<3&Sn+()W~NCbch(p?uSXka>)0>;bIVhGdU2;_oAqX=ZGq>*<5V& zL%!z-og?t>DI{SL{WP~UOb$?fJ0Y*kAEdx4q)Dx$u2Y-d=5sph`$R%~Few$=+R?#6 zTp)5Z9qqFl${ck&Ta@t`F)h2FN}svv=FZo*cD`1Z8>>IS)@}IC9{Ci#%XFOg_r3dy z0oKAvqbPMjA!Wp@C9_~`#b-#+$uNn8zMx&v?VJqU^L12M#m zfe$*{2s-2@`(CJREcQgI=n9=1Z6lhJ$_ok|fseP2#~#^D;#{!LAEF<}dnX}yB60G3 zj=SH;Z`&q6M*F!QTBoe?w9K$`Upq++k6B!_MaO!A`CXg+B}|j@j3!)?{*k|>`iGpM zN|HmUr@BA{=5oL$_spuFePYz_h3|jx@hT|Uf5b|WNHRPG#R#6W=)K)m9d>?sc)2@m zC#sIv0Q=z&&@^lPmMupvkMe|51S-h%W0bBS^lrNV$rRF>aROw4Uv2o^mWQ)pT~guk z=s*;9t8{2*r?I6Qshzbu;~Ky9P@s_Pn?FZRAV)~I@CN`UM+ksTCTghFFbeh*t_k*c z@$so|&HZqkc@z7yK;BWT?H)kGXliB(8TMj^0SM+!xrb{eb_*2n^YbFSiE;~`6DlAS z5Nn=eW%JO1VtS)B{wcR~p^lKg*czPvd_Le$kZmT?cM-2I;rlIqlA%2P&LN#i|>foC{)lGM*KwHL|;aly2m6;c|tK*t@MmA|FTpmcpsLjU?1VbaiMtRnYEr%?#`b~vE`R;F#{-G*1ylp zR0fvJ9ims7EZp_;SswBL<2gz(m&231IWtu;?wqBhzXP@>AHq~tuU@xjyNXIjteRxS z5Z{3_>u#MGv2;FF8ia7%w516W>zcU}#{qod>7S={rIy_Uo-O-3nX$4Lo5D6IM#v$y6Zq3=ifR7>lZuruTIc*exmlu?svjeF`%JA~NO*aL@aH0LX z)_V;%Xo5q4sL_h!MgRb+braIdfRa#24CL$A+oiK5`a0xDW-0hgIYz0|ww!`1KqpnQAOjK05#{Ww47PheVB?BJc_+(pk&!1wSY!QUVg z6nAuhKo$(#3w(x)8fqNVhZT9&9T_vGaayFHNH)rnbbn`=`0-1)T%46(&Qp=lb7o2L zTwH0hCkLAUA`AdcznBJbSsG{5DyF> zJ$m9Sd8wG3@oa{+bkl7-`|w_VT?5Xj^)kC;g{FmY6Bl)nuqmK$e}%hnZY`=?pt@<=$2e2<>1hD zPe`Z2TyGa%L&0aX7-E2F0gjvZhlk(U!HQu*2+Rk~@vLP@2vCcAO7~m34&uy5ZIvk- zv*g=4P)o@@@TZ=-m)vdO>mc+)Q0pX*_LR?0pUygK6dNk9O}oaX@DS#W#>H*tFxqzb~azzGNH9pc=ZeannzT-u0|(O-~9>027Jd1*)Y7pWaj`f z&_a4adDa2S;v8^wy7(b@Bt38tuHn_=IW=nJDNII3fci>kNK_J3i96?wBEuhAZ$*eq z1S;k4_WhJcpRviXN>h4Kq@c2%ZOO$*3*< zfd@E?E)!w4#Aon;x#$J2hFLIg-bFA+YEEI~@U90IespqpBV>68rnJ#$$mdfVLv2Dc zG`=ess~j((%}AR)70Aor1n{*Vfb44UYVx`}nlZ2@GYn_#6VsVJ#qWgPabMWz^z&qj z9V2Mv@LCIT8+>r3iC(xxoOcN=PdYLzN7p+<_>6!`MNf(OdB2*0i|USn`^;s#Kuowu z&bK^xXIERUes5KB{t_ z6N#XCOx1spGTv$TuqyZG+Jp=e0zYL<{8l`bc&frWJEp64ElRLob3Z#af&Aj<7xDmv zl*@*WaTCyZgf@~u4y1$2&dF&_=NG6Bi=2l@4jvMAXiqlB&x+>zYkj4o(2x0qr3Xd&(sTt=aqtv zj?O~imeFb#_BqBoGInGw+}Cr=%`8AI;8EV}XZ9S$L!W#}a6>gru49Yv+Rv0#E?8LMYTbui{G8c|VTV$ntmfA)!w zad$3=%izyepZk`TQvg-n-=zt>`{sX@T znFP8*%(2-&*&?6{Z0b1u14&ye1tJ}Q0Eb`+0i#+`ozDM)2m+M*dbiX7TDPN{ib@Q@ zk4N!cVYVr{)>*VS^v`y7Q}iLLUJIN{1FUznikPY#az>{{1rg+@+i9y;v%FnOWb<|i z=}U+^^Q^Yl_!BR(D*1glWsG zKYsi|1e=ob=4`=}ZKOYqc>ZG{!3ZkE^U(`N5DoxQ<;Y@YVql%(K5|zDO}v?fKLNjC z0vt@XOkpdMgFT{UrTAAk*(w?vJ8V94C=zD|{EOoq+3bZ4{Iduh4gWNxuCLu)v3l2( zDN~Fft2qUZlZZqcxS>@f+&xE5;xQ_q+O}3w`r!P`5R;XccOooQJbpSLo6o*BoT2Cx zkAN~nCI}Go_>2|L$7e^{7{%S3)ph)cL(eLbXO!Z2g&^6y@ocJ#DTU2!nVODbk1(1$ zjE(BYvLWmqT8Y*gBY&9RZ3gZg1OiSj;RHK~OsEFLjUKb`@?N9&w7P9m{IY`mRDW*z z?dAXaO3(u{8Nh4a6Q(T;ASwVDRKzA2*M@G=&9Azz8xivP?aL&O^;)+`@kPp?ZJ(Y_jt)q33V=?qXMO=l0FFZSP`$;As!OQyj;ui6oW>rfNgR&jPcLA-L z^c#G9*#OsD02sM-wf{cRL*@N%44mi}D~$;F_Q3S}IyIxb7=12*)vF)NNR(Ys`@>ON z=4vt@3F{_CK!yjo6ieTkRmhsj&&#@kO|1g z&Puo6QX=?}CJHeD7@mYMdi=rNk*sD^+E2KM|0D?Jb*7k>QbVeG3$@> z+wO|n#BC8Q+bS{f5>n*>Q6rPrbMa*pknR`zT6504c{Lc#DuYJaW|~5Q;6uh4m3_+# z3ehB$pobtsPLujNX@RfK<1Q@OTH2n(~S`p5>T>r*g znji$Z^B>9ka{`CLbo44xF2YwTsDH)+oX2QyiqHBKnX3~7 z4+{Sl9EtQBi_U#UBf`J&-EVnNW)^7eE@T}iyrQO`A6G&>9?M_htV7EyAp;`L!*8A){OQ~Oz z&mP=Z1Ly$A;l2nuR$!mmDrGILz{%Iwb0bt@IS^=!33`og-?2!pmGkWXq`+BFaS{-QTof?!@z%bANs#Yaj570-CAm?Q~C&&Mzx(;bqEg+k4rPvE;b4}O*9;ot2rgC26`O^9oTN7+#_sfBI7|8MB_P)4Te?w z5gVcdPau})xmA6gNwop0)UWlDUob+)_D;@54QPTh+`v(z<9za27LM9)mHqdjlt}yY zamU{hG9OXpX;^hsTuQM52M$9=e(HSnGp=f&-l->@Q?#t2LoD@3e=SZ2A7kIAHYY;61z64sGEM*uCobKnRgKGv9O4yLH_U=bN}S~D7ryBsFpeyV%hQp{ne*dt5FxFQq9 zqb}(^_pFMVUMdZ!g3!4ENACGipwzdnb|o}p$@ztcvZQ6&G(+DDA1UNgkUV6%7fVcL z&y?;TUi^)YA%2xNwrcf1FZ4l=2{DswSk@{!X&r0OPOhZRFFCW$>>372;V+us%G?~w=FYtb!*O;FoZ9D`6514rK zFSN&`fG{1+0B*Rt9Zcrp*NdHhHpF)aR}qcY&$MZjv2^&swkk{7qt=w`HJ?N6qMrk8 zT|nnN|Fq9Z<|ZG#gcLCJb|-$fIAW_XPRsTZx?qU*^=IPP^VQjbU_5!SN_3x(IhFOA zc9>_vh#ClUMJp-5f<&=`j_nY63j}7uo05dn3n>T55rVfN4IDF^svve0M|d{wHo$ui zV0!_GX2(Zw5h({+)$1vJ0kLNto6K(Et-Z7YCiMSR;cPO$JcGRI^o+`!j+*rkmg`l9%p@*y&=KyeH-nGW>9LgI_3nSQW~3nF7RfcOn%%YeQE`6^F{K&b?+D}@-KdP3?uc&QUt z7>|)PHS6}5n(Ako=)Z~t@Gkim8jsLH3Ua1EJ7HAq zxolo$X_aDO)zwd%^s+cSc#>bgAgaj8YVzEONl1s}p`rhnxu^DiYwdj4KOr^pUlw!jxFkZ*E42GMAcDqM;1YVX&o;%W`v(D^5>R@ zoIF`o85@+c(V~3^VHu#S`Yx`%_~il3@qg?c8?KFKG7KOjiv!+hgFtu`gIZzkoHL&< zjW(%4b)Ws!q)!qY%!4W_YwKu2vO6d1+4nb}vkOaR50327^g8Vw`5Zksc5lN8_8Evt zZnVw@%ub=mP-*e10trF(^`;Ue{0?N zZRUS!l}2xdeOvLiiCF)-EyLfl(NELZAD?>SuDp6^A)eCNmb58?cKz!mOxHHv;p`{B zCH#q@j7;6ReuOrQQgLqa__=fD1e?@*=0%pCCGa)|4q&V(s{q`<(Yk=qnBFb)m=xYVJIu_P@_dX6<%AF|fJASzNm)R!Z7gy#1Ty^9VH9$}wlnUDmH(pO?~S4@Fdl z%Yz3q;~F6#cfO)8!kPFiY5Cw32t}?869017RM_UOvl`J6CYbKLkAwT3Br` z418sUL#~3tV@_r*;H%l9Hg!O>)zf{UN^KghTG7YAJ6%)4=2*t@TYd9z>Bys|AG$X7 zA;MQP=!>Hpw_gsnu=44a4PmeAjm*BXZOk8cFB^I0M~mo>w{?H*Zc==qxCaS6&s}3p zHmb`dDH2v9GenXN(_H;7x5RVIE;$-E)X;5x;|SGJ$<-OVw*jN5`P!x3N;mO@%o)Zx z-e?WR615!^&}s4N>@ER*rxL6talUKwn{X{vYqCv7B6u*r1Cg1Y(^qFS+{?V$6Z9ok zOvbt86-#}FQ6T08x@E7&r+<9>IF(fwEg0GwY1FK*+T5NDge!x#$a#Qm#Nmo{AMg-0 z*2xD80jPCK1SYtZ`R>gXwc&u&xxu0WUb*KCbL5)>Mie`DT;q1JCkkQ^9ey`exh z2(kw`uopFF&?a&c+yltXC6O0fD}TD+iPNvW6>U&4y)%_dmPkW_QhLtbf^WcgVRaqu z(2waAb=$_0a{OG`rBM5U$ntsqyH_wf=W)Dz4O;4S^T9=Jm&ubipL%&o#1#`v03Jg%ncS$PR_-}1IeQfq!*mpWcER^LQo!#8LM?@!w*6A=no%19$ftL(d{Q!`;L!4 z@HyR;f8(*&f^bhI6fUF~`t>$CZcz%7RokRv5DX)Q`|%EJQzy92oA?GJ^j&M`4^e(j zVs;D|Y{3Mp#OD!yT9SEbxK+Y{3sa2yqc?hkk7~Q~yP2q|&HpN6nCvv% zf?H9mR##Wc?6K>kPk^!66{pAg5^J1EL~nhivd!-)(5$VJBWOt!j%$}FiScu-vI8dF z7cp_beD{&0-8@L*mLVPG>f{MK&|vZ7-Zx7VR?=urmbqG)mZmd<0og#eRmq<0L7&Sa zjwMXWIC8d9an9gieGE7ZQ%Q-QYUgYAm2T&p=m||WQz~vwxu&#WIK)3agz3~|<*ADF zx%bx|^MXoLasU2@&>KOqB!{GnyAdhLju2vQj-W|iElla{I}N^%v!myq{A%WqGiUSh zu8_a#CakL#D6aFM-o194?W0b>M;4Ob8B7kg#)_e!&o@&?C2*Eub;D^~ip=G`>wrJ5I54pRZ15B^YnC zVKue$hi4$-VPdj#HhkaAnd$gHX*YP;1y=B}82Ykn+>T7B`n<#Q^y_Q-!q5nOH^YGb z%4B}cjJPJPXtzZlZqYHI*3lW_r~u;uCg)SXY684jFl!^=EanRy1KFHl5@zRy2*7hc z446h8?YX?vxs7}eR)lr>$y0{1#F&$L>RZQ+;?~%0eFmHH+f3?w*MO zK%hRCMYI&}P@7o|5_BNA882^Da;31};r|OD@z^wNG@`?-1A-6~`^T5G_v9dxHE&Y8D z&1x^|r2*L)lWN{Ovtqr-w~&5Lp%XP{cd+wo`}BgQ#}-CMn#Hdvss1W;H{{Sf79afm z{Tx(cp1QcrYcN~baP$8~4HR|n{=3$V(d%Qu+y#S>>d?c_9${n3c}W>oyru12`Z;S* z;j!9jZ@1;}%;Pt=ru3ggHgUfXU=S&F%HK=1&>Z=}cSEoO1LD^R$1c-A`4pK8_roTb zOh0%Ln3HqBhrNTeoNU%Moo!5RIdUnB`v_EP#-hOGu0~9~J6%T1te8+R|41UY``(V{ z8g^%b7JDawS;;tTQ;r^6mkZzxxkS81)lE_;qN7KY1Q9GoQ=mK#< z+MvBRCy61>ixN>U{s`30wp%U@4G&Bdr0l2}L3D%Euzy3>VDOiRlZ%Wh(I&u^tt2?_t@yScl!4Q~{^E!!@F;!~o?I|qzKqt7})M&JSB zZnu(15na7Iw@Yzp$8QEQb5i9ciUnu!bPZgNB}sY*K^ul5e;MQt(u9}k>g42W)ni8K z8RNVDba44M1y_#;3rcBAtGlgalLz&G|5;>b=neLZwew+mrq5Qt)TtrT`umt;Q1uM5 zOcU>pWdaJcb&ox;pL#A%_UFJB|skEMoNg^8J^^>g?Ti*(VMSnFi zFqm#nxIULh4Uq*loM47s^lR5Z-^zTDl=tjp{a5k)M<3;F7d<%zI;?BTiMw8J?5}X2 z_qsWZGjx1T+M5xhup_s}>=xwlzrnrozI;xR?Z9psh3-3%hzsfYJ${(9?O~Kk?Ck5V zJc8`n$H-XuBurPu5n@>U&h`iAqmQ+nye^(xae&^=42gwcijVXcA7QmYnAwGfDDd#} z1l{M>fh$N0HAU8iCI|s?5zXxKXIRQ*>+;TtTlSj&fBs0a3;muxyO5jGHwqo?9%sXj z3T2(D&n&Pq8h1UlEZ(6aVU3*gf)KT6P#Lx>M9l8fOawEPMU^4P0W5<&(L{)CnY#OemD4Hma2{%1?}Fa*K~Nw zI94y=VSMiI@P?1rgI86W?w-c%z}T&Sb%NO9|7-8fvx3<~7oOw?DwdP~Wa8pz%qvORR|6xIr3N#4v2iU1X z4s!+GEm<`GvE8K!EnLFA+F$z{xGj08AjOQ<01>zRkv@9p!Du$zH}Zt)A0bzVN2TmC ztV!Y@qYvXVmqffwc=uua++t<;g%*bX@vVoGAABQ*Y6_7ivJMnHuDxx{6u$XZWXNj8 zodGAuDJG6N_9KTqgS$jp{_Ba-Dhyg|!05>A(|GQz6fnZPN)y}Hpi6m7L>OmQa>wcj zX%mCj8FK#R!~IMQK6C!5{ZL&9(BM}@mhcb!&fUcTD}XUl?RQ@GbW?;Rz>JBVQafIq zluJC;>LtbfY~~~}NXekT{W*y_^*fDoB>~WWgoF5i#}8`O^88Zfd>1#meJ$YP#dXoa zw`E_hwx=33I!XvPof&wnZzag|!Y?UFc`>`@vIzo=USYPpiptYw-KXpSGlYI7dk%kp z+5Cx%o))+$VZ}_$-AbiR-r(FBymJ4XPB5%-57H5j%sVok$xPmf&MLR206$4o%d3Br zghpv0M1wrs4ogu@iI5+` z-MXpD0o|E$Go`AQk7Mtyv-`lPl+T#?4SO^*`)B7LNhW{8wO^_BH^|mbz8zC;CTzLe z{`HaM)k?3WHhthX%7_x1Rl(FZaCu&$_}}w&b{UQ%oxnLJ(-IdZOo>U5Y%L>l^_QFN ztsnc_IwQ}G_FmaF)2=hRl(VX9H>O=ztb8Bhew!rsQ0?~y!N@j&V z2V7t93*LriMp|78m7(`UgBhC(^8=dVC70~?c`xPCQ&SZD&&xd7C!}7nc~g{ja^pw& zt?Q$*4s-&EpM18)JU{)JGz`HL!>q-6G6qA*CsIo2b!r5NxfT)b10b%J9vfdYp9#YS zbCK7!fWha@B8-+Eu}~&Lhmg}?pmy?po|2x+Y!Y60vNEN>M>sYb`W-J^P8nPZkgME>V>99-&+gvtqDmr2+A^uqoBE{Hoqrak7* z0&gs_LZ}jh6intNT9D$-W8mwv)SiMmgmmeGpRL(K%3#tS>R?rmA10YZGRkf3Vo!v& zC0SfU+=FyRRRmy7mc-cMmoJU^m!*Mkk@l0;TKc!A*gy4g$D*)7H&FmjzZar8prKlt zWE}A4g$jo{D0iW#>Fu}F`RBkD=BXhPjBVs`Vk{I}kHC1=*4E{k7oKyCng6uD64Tj} z6{iQ?3C#LNt6qa9Bq5!LABilj?}JaQ5(u^xH8nd<=DtI}%(PTD_@zk--IPB{oI2Q@ zeDu=nDv;sNjF-BCySOK}hdw<84M>9e_;K%O#z)8+a&D>LvJ6vc5J`oO6lD*q`>=4j9_u!hE5)jYBzu~1M(6TJF zs!x(>ZAr-?LQD}NllzP24D*R93;7z=ugEvbGV$%!3+;k?Jj3*U7M3SppZ7hW_0A5BEUTn;VMSEBqT% z43k&cf(b=tIui^l!jS4|iZNTAh&X&GOk_=Dwt>@)baWgeSVX_>(9P*J^X%F=Z+LX4 zhWn|@RlXZMRo3hpJ~>^WuCVv;?j<+3y=KxEJ9)Bh?B+Knh`M%5 zvoUMawpN?8ij06i10WRJUFJDE>YVTfC+~${wzcXd*ZfCTh)a$5+>vok2uGz+&J0Uu z+Ix{3SmAPGqtl_7!9~eOg%}KzR6oOvWSWn4QwK>Y%f=kTTz^EKPfsCeC=RR-LVXoA zCZwyv$te%AkV79Y&P&Cr47;TZ9ml0+;qG(&uHmzPg2(YQj*n*&oX>l=LEJHidpRLp z95y$XE_bEbai3Kd`B}SoR5Rv1o|>;QB$zpmJIxPt#ZXMe651#cDZQM_v+`GjfWS*0 zT0^0&Mz2=CLse1;YGnk#yKBuIiL?tb48@aM>7{Zj-*!Ya=Lb324>qzx9!S4F3xrCH zQH5ZD3S5q3zEwjQL)7d4T1`+D_yWrZaW9mJVDkKVI*d!9qd_{J$m$M3wtI0!irfVw zAVrN+#@~6MPimCjA0j&F)D5JdteF=3a zq^<=i(4P>0h}s&2a*u$uTC+=9Ma9cD?Rqrbq*N&2hMH1XK01;+!RIAL@#J*FMkgdp z!OmCfA$ryPHu}DxO@gQ^b0khBaLJbqLNqKKa>{$DWJm|qzd>{s?bF41VYzuH6z{Ry zv;1r+k)v1mATX3tJ3UazLD+kI?i`rlU>|0>*r_oNL==%_HXJuFhYM zr~d5O1s-xigJi+V?I&oOAEGsdF>P&BFT5L6AKWm>?gHwKU&uvJ?T{yw;K4o?KQEp{ zqk%nevj$BlTru4mFecV9{#RqK#`^Orr|RH>-_9I9zg_>aLD?>1log%UNzEA4yRBhs zd|b_yWp2=TBDk%3!Oui6WIl=?reBI5RCu5Ev>Q3*VWb(e*i=>`un?8}NbG^w*U@e3 zG=ApRmpsKcARPQC^#F{HbK=nNGQ5*+SiudvH;9#pYN;f&=pPJ_GpI~E3I_DeGF~>F zAkM>H`x>MEwAYZ*1peb8fd*fkfDhgA2|t2QTynq5dX>s#$oL+%`Vnbq9!gpJy0l3I zdh}ARB{?shdvfC{9Wm{B`~2rmN*v5%UQRWw=o348(o@i^d_a{zJu(kPim&9RVjhginqe{JidfDc#wayUT1 z7>9$-P$*KZh`!4ETof4A>#MoG`6b%#*PCi|R^-O&oeh6bQqo z8bU6T1dAWr>8dHC&4stTh#J7A1j8Lp!qpZu+?uWVBjsV{qqX-g=HU3oT?9j*gj4-2!^F~@rB06D}ecU7xu)Z2nbzP zeY}5Z{@@;!?iHJ&4^P+^5szDho}8XNU)>|grDeZ*OZn|(`Y{$T;%pQfc5 zI2*s>REgcwIG|!627@hG7>t2Bo!*sq{ZrR~<!ON`DAPKl)+c zDv3%+z!OS8$TB;{ta1*|Lq~0*%|Jwc{5yZ$LB8wAi6sn;8EyolRMWAM{Rn<{Nc$6{ zwJXafeph1cUHL(%unx7Sur952I1rw0$s2 z6*_A{3K^4AD9`*%H_1JHD)2hCp5@cF=mg)%DU$q}MYoVwi;7+yrwxEQC9A9Z_rKcv zQC~Lpolr=dTnRZa}jPCBtaq|G74w*m$INVYVmV14_ zNJ!9sJ#nA?{TkX@FU{GrY$c$&xMIyM#xoeg>TdVd&dhgBKZeGsu{@#wkx#t=Tu zmBr?!tcN$cw@p@p{!No<;l4F9Bh`o8qEfvAz9hmn0vV9l%xsXh zl?LBYCAIg|f>qt;^FJ{3Wo8JmM}%w&nr+Eur}z&6x+zihZ*-rb0@A35JYz#rjkGK; zqjbZ|y_D=X5=uu>a)#(vEt<>L+dh}-I6K(Xhady1sEeNetTH%eZpm; z*cJBpasFkO3txU7j=#mc*33k@t$6s6Ks07zit~h{-*;ps%Cwxnu+!k|FsI4G>rAuh zz-R%&K~#<=vAbNdbs)YCQ?*kH4K}(z`^&`8LWB?!`+^4`Mn^=_cfZ2vyIRk~Lc!Bwnwo5QF>Hv|GW7lo7zMSsYjI95raq1bYBsYtnH z>`(#5sPf5gP+9!fyPgT(PjBFbca{^g+RO1`Xwea?UuI;9U`L3+cirr8XkI1mtCIOy zfRSP?u1DksnUu#EhX_<-A=?Z%XkcXXZlJT@FJqj;lh*fw!L{+~>L@s%IJh?Q{s>k; zKi8O(d>}VmwffW>uTW|4Er+s|?H$%|)U4^4l+w1kkfgJ6sLOYDX6?VepTw3r>-e#P zi!;aG1AxBo9-CBKH4ea!%d)n9hgJhR?+J}W&b9lQu@i|r;`_7&>0}LM^`_4$rOI`j zf}65&LyXJk!y(GRKN#8bZj<{AZoCMj@@)Vs~ACz%qB4!fAe-&>w$jX;4@EFOzcZSzLbusz1~3U&1kH+ zuo0JJ1Fv`*8vdtuHvN~>%`S%%oQZ3OfeR!?3BF1~GdT&y~yF8a8<> zVQN{FZ{5Tp1tfqw$LId@%+#-|CmcF9xr&^M@r!s%SASsLjTEHOdwFwhC=(>qslw{` zN+q%9iM|6oz(>sbtHoY{Faa4FnFdRq?H_9U__G&wCIl<0|8KDeHGA@xs)fQh0^IMb zssefes7mR#G>iL_Z^-XV;Tt+O+s&-2Ch@lX*nVxID-&xrocub8XFjSBq9joyBTmso zR#nuw6B4nQhq9D%UGR;^k-K?vaI%zKGDVU<{!xiGpC^}Mj%Oq*r7*1UR?UIMd>R|w zZ@&XAZPMnRvPp_-65l(U$&?iM5;$?86JcidZm*-IAlpRDy2bi!>&J{KI4u)H*DH&< ztJ3q~@sXH9x%*cev*!=G?b`DBcS0iK>c8ae?E#1(t|kykW*oX+-B_M3-;5NV-b zvy(%6ZR~%$E#q_x!geGngjJVNF!KiSO* zPa>6Ec5b)jx@#*Z=p#&1(RMoy34*peZ(bp(wQ4=fx*>qR!B)WGDL2ixHuK{DRKbzt znGhCg?2FXub^GKh9aqQLQ!m6?=^9IiIBl`8%SH@?$Ipif)fD zgZFtEvO^4fv#3AWT>QUD%lHvcP-By++3y1}fs_xIU9vVc{3NMO$?+tWsK)U2oa}5; zI@r@>Fa?USVW`8aF3eV=ji$0ics9xL zCLL3r@wywL$UHB60YQS1{qxUbHvczikB<48nPli-f|CXC6DQU^U3(_EO)n}gO{{N) zKPUD*87vUu7sUj2KH>$QsNuk*u@-*hbW<=f#v#66d5;+OE%bNXB~@Zs-expOW@>88 zXgpeC=VDO6B0sZCe)0R|`U#=?yACPl9s3xXZTXn==81ywl=R{Se?t=aTNeSgnl=p( z7H2hm06yfv^b6#MiA&DIz;45TzhjXCh)vc{axe_eW7c${_KSjKzw*buzS2U0UXPP) zVzLoACj($#Z=9UsDH0xWNJ|T2PrI-PX7VNam0fCH8TSVn{P6=EovO$&tp5Y$cB;(G zOSof`#(;iTz$5cl<^&=W#QKmvqb!h%4Nb_4E0PWMhP|aGv}t}f0EX&E6TL`LXGpDE zg&hu#LjUycyN-3$F^rB*m!RXULmTDD`AH&QywMk2UgFt_rmxSgGbMfy*gsILX5tJz z;D=Qs8XznHMNWr>9uAo&U=fq9XN6^rGh}ncpS9FD{*qOV<7iefV-T{A4wbwU1sPoi z9?P$g$qeS9OBcVZ$|ZS9AxHk?EJs?Y$HaS{9UaPSL8yFtgAE`RMn=1xi0ES(Nl=VHn$uCW-EF ze}`h&+FuYW_+|w9Em&O?Za>nxdT3%jKv~6REGkm?4ATqDCW0lK zQ|(7)p`rhT8i=+zVeo7)O+#Z6@sAZ54)q_?i#^%KXB0eM8`R$v_i4 zy(4q=&~POt{?)0btxt;EdOKjIaRjy~;08#(dcaUCQsfMXpG|9nN0}415F|Y|Q@mg} z3x6z@NaYSq2vOE|c}yjCR7MnL9}Zwbl)=95*hY7M*$};S*Ll4zKbmL!Vfnr8igFNk z2J68FR&6I;9f|>`PguCp&Q|Y(Qi2rvBo(bSM~@!GG}%XcTHwUPw;iUs<{*SH4d-bD7e5Hj) z4i!ez`uKzX(i}ds;q5@ZMgFGfLm$eM=XF;*j>!jioTI-$tD^?a+wFjn7gGV~s;J0cYZJ;L&u*N?JcjBrIm#y=mvL^nYB zDa73j0psB)nxsll3Oxs=D~cNsvNUA=+IXi}V@No?JHHAQ_@cOvabuxfc~u#!MbMSN zQX}eCq?Kg~*DdJfDxBOAJR+s-Ya56aiz zcd2(EovMIe)$=aDKW$py51?o6m3+1V^drJx`HC4{an^OTDsGxEMzq%X%FLaS|AqIj zwN9fG^+r{EQk+llruwrn*afd;r8xdfTUi(;ne7UGYga+Zu~gf z%4j&1X6J`0h8Lv_)U75n**Mlgib@QHx+JLM!cDzpL;7DoRU6wK8cThfAF3zxDDh;* zBkl~9z`}3`cUEi!DcX~o&&M#yk4K1glk{DfB8Fo<5vCx|#f~#k#q({5XV9TG=7>)7 z2POXKw|{GpAn^Izv2XvgrI-Bz=Q6FV*pbn&jxTvG{A;1Z&I#RCP1GkJo86AxlIHbK zmlhg;Y~nz@W=xrzhsWQ&>^et9HqXI*8>&ftQi02T(sjKPx)qf78&&JsB)6`R-?*gH zdew%J4p#^HM8oB+UF)RMW?pK15WF&`yR4m!vRvKtHY>;a^x#pZBJ{iMxBn#`0k_!bb}o*O_Wne8f2j|Y#Hy^=KO42rajCEP``*2>b|1Bb zmf(uEHN(K!6rwBtrrEzStdhGRXI|l-9G!LhT2}nnHvtKGA^}k+`*GYPSg1EjyTs~H zYT#S#!Pcw@0T2bUAsf5-_f8piU{IE2p=#=BlsXw*^Foo-wB3lnJE(q6{yXGxj zwv5;|;DClS1k}E*qkV@UkcYF4D=1jWncv!#ujv3ZQG?NazCar7OlAewHDu_veZqPD zeFWmF6L+epH19*5sxc)ldZS19V`ekQABsf6($!##@y-*y78)|^{U1sz99>JB<*ly% zB<>?MfO8(PlltKmbYZ$1P98)#Pz`A1H6{QQ-C1!e8TwXLA#LN*NK*#!yS%k670a&? z68(h`%w!y+u*-JUiAm(Y<)1BQ)?xGXdpfBrc1Kv9lY-gSUds(4g)aqTQI!aBuz%S- zLOUkHIaf?^)phHU=+)a`;he^P109=h(<<9HXkZOOLrECQY)AQpmpO~_7=Jzh4LtR; zf6qjqgMW@B75WymvMf!A4j}@9LBzGqO?uIHw?VMROXgVH21_JRgOwX#-&Tn=zU}S5cDwB{LFvS)6!1gyMI4Yjv~GAe-MB|7M7`*x@RFHIa#U9`|~l62;8!B-E3#R(&i zQmR8Bwerp6L}HQ_q^_f@py=%bQ-e{>5~?|8s??V|r)19^^zg|%_$-WjrlFP8%8AoM zW!=4BTwj)wQ?T&WoQBFcFKa>P%bc6bAId%rF8v5q&5J7#KL1~kI+RtOMqlOGp5`OE zZ>gi@)!ZAhuX?Kr6@Iv_IZZWb-_keH`Gu9oBH!l60}DQ}6~j-sbadNI(L`F-!>T;} z#bJCuV5-)yLw4l{?>?j2x#a!hrdz(Jn%F8o2g*9}Yt5Cf@^lk_n6~E1*>9RG<9{Q* z7DvsGf0Lhs`!MmR^Glxn<4yj5__j3^;uL7sTB-DNl$FZN<49E+T2ZSU|r;YBSeZF*21Xa(crviB=;Z$rz$+V-JTC z5H7+CqtyAm&px9AN)imVnETU}+M368lg*ls2o8UJK7K7=I+IIWC14qY_|71pKkRd5 z-g4ryU8}-gVG6@|;Yi|31DR`?PiH!8j<*i<(Z|FdV#EijL|n5_gsUh#TJAf=7BL4fiWax zWMn=E{0)Vpua}6e>>d}Br&SDjCi_aV1`?Pa7?u4!kihlrMe2dkbjqhc#X|u0B%vTW zXVcr#$mbH*MTDm;uy)#nAl3)9Md)q!U6{>$mi*N&qsnr@fiG?hJhjue8&X#1G?P`{Flv;wQHFn3w7r;x1Gm7f6M#C*|Rz znQQgDfb3G#S`>L-RY4)Xs|KI@`P(XrxR0_*2Ke=cXdYGUy)>(}w*&H%*NNqt`i9L=eL z029m;T{Yn&3ir|3-R(0v7$kFu>J$(LG$G1bYw%$5wH%oq;iC#@b!GY-*Bwx$7x;P} zWKcAp9v_feI(to#Spr&iB$-0>XkkAL#Ha{}NvQB}H9eg-zxi^>9Jo`8Qz6kF4;nmd zQYiT_?D#CK)l$4*cex)(l5Ow1`(D&MSQPqwcVVxoe%o?*nMHL3mE|Jw)TEjg$ceS~ z8l!~VWl-7x0`pjf;2S0EI1~(xm=JgeaqGbNokkY3;fGOxR&F%Dt|gX74vb|sU7AfB zH{J!UxWfQYEQT!M1_^F!ru_(IiGB|Da1&51#WjmcT5DjS^8D%o8(YTf4Ei}t1fM}c zBl+Bso>=uTY*!l2P_{w3N=(dwlxVXVRP74JU7(sm1+5tiQSx1G2kp2)a*ahTm|Ll3 zSq}ZxvnhlkT*Ir%cnue>kyv4VpPZXy6lC_WT?a4wfu?VdpR9sq-xdS&+r$fBptpAG z7;L@cFrL_J{h3z7s*S4v`qbxE*+3&8e3oFNhr8)_tZ0zbBbt};Rp6W z%T^cujbWO!3^J~9K$^v-1IR=u%#|ShSUZ?u`G8@a8Id=vFEhu>yl*e`^<^TRmNu&w z%U&TED)xV6d+{&|Phu8<(y?!FfXV14*?3ho?tROTKWw$!z7~?Y(Y|?rBL=dQ?d-8BbH~f}>rZMcH-i}r0~+)myasz)S9dWQA3JW)$m=p|AtM1Iu`OI?Z`ffzK53; zmgwif&~60Zf#;dp2757#%)sK$4F3r$+OT_H zP_%|{vDrtRJGw0;vHXb%`wCwU(2p+v_L%U{623h<-bD|_rrCg)<#!Q}Jbn6L3LV1+ zVv%SwqDG-yXH`sAYHPFPd7GheK~YUDVt9CX#C|Lz!y=2uQ0cUG&vAnRRRWaHn!m#D z^XKCguntKoHGaVnE(79fPLUz<{2490;j8j8+v zTL9c8Ltwoyg#>Nxqc3`?Dqjc^AfOn3?;oJZx+JDhLYRz1&qA1L>lno z-^Xm(U6OL%zTIUZeeK2fqxi>`T+M$rV}U!%DJGGN@Yx=}0yMvv$4h$v#zZiP{^Sv3 zpsduq`VWwR?dw;=g2f0{@6d*~`0LW$g)5OLgpk$C>z(`KEPww2G1N>~ zgiSuuw zlm7MDJSd3V4O5DaLd0#p%pfiPN-fqQHogVU(Qs+F3;lIOG2-AiefC1aV7F?&!g{0U zR2*_d2#pxQFY>WqhT+Q_OMx_?O)O_S{?HpA z-q0JNOZAq`#SbK+#CWWA)h(P+7&AiE@4FMSA>J%b6C#wiwj_PJXlHK(-%&OS(y6M} z8t$~O7oidCF=8RFh~xnYX~Ea(=Ze6F(e${&zDeN7drusUMNq1Y&l-d4$z}>M@P?2# zYuiro$IAA*EFuB`(SICZc|wJniaZ=$#6bRLu>6zr`f*(=Oi=0K!xHIbi=loj?CxlX z5lN(bibymVc3He|Ei~E3y71ro@)lw!=S7t5GXQUmo1j6vQ$^6a`yISjf=S9ez8M5M z#fhpsKP>^E6?8j~K!y@5^h5NgMut)>+N196IMo!D+Lr(MrBflM9nyP>RK0ebazPH` z;?4ey%woZ0#uTfStPyGg?OZtAdq@f#Z`F0utl`~Wk~k7QTe2%XMq^bEzxM>OdB5XA zkLDDT@{>=D*$z|J8jHsKE4xq1P?hbs$PK*6@4|459AeH+phd*Kh{T*-hULVRfdg); zu0VnrhOI%(7&A|b;MGDhRfk&b>BFXF`$TyH3y$s&z9eR43aaS#*=mf7O z?vRq4ReRR1G0rfcn;e6@t#Ru;5Z8ZC zayuKWlJ-7jB8+O&`I?>mT*~YdNFv(MP%H0kElY)8nK72gzCJk4SGDS6w1{IoBZZUh zld`Pm)iFZ=mXetG%}q%bYu-}w-VSe50g-lAp+8$>Z+lkR4@Dwj?W!8l38p;SF;>&>D7zq3E^*g^o0r|PU$QyBV2c-L%}Fl|Tl!E} z_odF(evj@);VX3H56)TO=J`%^=U$$*0U_6u%x-8X23)+hkZtW}YV+ubR&BxU%Lnq` z8&^g@iHH)Y|7hcoSIMuQ=hj|XRc{_H1M`RvNPOrVJd0?65~hKGlfuerH;_uGE-@Wz~~rs;6BkGXYpbXk@}&vt>9lDv>sWsl!P7SFyZHaX zKgsI+_19nLjEzIz(N^v_DNen3=~C_I&kvtHduGEpVuY|1gof%}hb;pdsAg`ndJEa9 zY}v8}5>}<@b7S)n0#FUgg^eI57#lfeFP5B~Occ4(($a9U+rT_f72+l&Uh!G9ZKkKE zN1l;Uz!MpA`SOh9q$CnaX&-jSm_|qCMbe1CTT&wOc>Uy*lq1%|*5Nl?xLuj}As4oW zsI?=FPoh$(VW#CxHy{A4KvU`Cg9_}Jkb{H69zH&mcnFb@?A1%yA>-gs*HWCD zJ?&LvH1l#e8GxI6^kyi&X~b#9+G(GB$Uy4p(;)(af`y3FBs}VP-rZwAoP_bZhnQx2 zRZ*c%(oXCuGpq%E<^UYjq#u9&kLd-#s9~$i!ON@6Z{8BqpmeXNn2dJ+F?|;Kwv3Dn zFU+JxsU^!dC2iZbjZA(cHDO1+PKMZ0&08NgSfuu}5(ft~DvriO#!eTXn>^vv)Kptr zTXObdr_0m{VG9tjhP7fNtr2;e#{Lf2sG;TV?&RdOZr!@vGKE@3$$S7P2$-8ur%0kI zar5={C0^<%9#p&eZTn;P?cZP9+R9~NVKH;oEIqV8iEjCmJfn<(%<|&r&-ar7cvI8( zrzx!-ne}E@|m+|tH#%V`9j=$hyl!i#rn;g z51o4ZAhyAxwUmeKt_v3~!1~vl+&q8}=-nzMIs-0zy2|}#4o*%#0=Crlf&`V1LVSa; zuyAr}Dv6mS8pF^l*Upe>)13%9hwy9H=HRHHP!}RY)r(MipL|hk1)AK4Wo2*S?D$ew zw?R`=lkh6oWqi`K)oLRZX{Yjhqi2B5$U4xibquSxk6c}efjjsk92f^#z{y?5g$p@ub=iFJaFLE$B#$5 z>hqLNoCuVD!0V5X91hd~5Lf{Yl?Yrrtfj_{JdhYGpKKvX71AxT{&5TvFOS&R*j1SG zC5R8?3q5UE$~iJ1wtaUfD>IYaC!A2!^z?M9o7)q(Rzn(eqkzD0LUH{O8KHqdWSkMG z{`HaOF7qYsGSre(sp_`Zc9K&$k%Mp$CMW zX833%hi{L;f!ODSdr52%5?cuiiDduXjUS+6pF}`N^vg&rfy*bxRa9|iy2)$Tb{1Xk z>+4fO4oQ$LEGv$kI~9;jdnzO+KZD5n5(b9#2yJ8+T-9oT)T_L_JQY^;fexcxzG3Lc zUa3iO!y!UUDByu!@X~2{A&NcOJuM`DqK7_!Q8fl;5}SA_6;6u*ca{S=fO< z8@*!MwBdyijnut+=+QZ0792TR+wa|knXqy^w@Uo0t@jRzs;NEDT5(klJ`~-}#d+|5 zXTOQKh1pu6I#){CqxRonXeX6=;~4M4yL>O(>{K0mR2C51v+HiByZRDXZ}3KX6^ zi3sqk@Z*)!EISPPjxyErZr+@W&y@*FfX$`r*R3Nz>P%U}n#kmF79L!3~jK%P_Ua z%ZJY_`!q(K;kI!a0D>JdF=Re#+cwrI`@m-JGBqchZ?$1^(bw z*4E80`_RwtDfw*J$GHYOPQBf!rmpUc)uGZof=X{b!ctfJCxkHanR6fP`S7p`J{aWI zx)0c3{T_?VUhPUGNOW92FfcGUqb^^CO|Uc3gXhQ=$)nn7*||%B)y>C_(nd8I)GLVS zN$xrlsW%2SocGw5Em@)*e}^ZLRniWgJasB~ zn|5XhGK|-+Uwa6dA3y%EsW_UOg@wh*L`z#c0Eun`V532F0uZ;ue6*i$C7tbihaSnZ zsqEjkkBHom5-c<{6j;GF+8)a|7(X?GNk#y8y(Xd%|vp?$1fWq6i$wL>0cidPQm5=5OXOR#|#g>omXwNLLg0dak!(pmdV_ z2^)YMp@0@Y5E%K(mlK5VNgEvu4_sZ(zGu%-9D8RxYLL+-RT1}$UAuN63V$G;Rye3B zRA7nWSm&fcQF!hFmH@MTzt#v0=#E%gCcPBG&pV;7zbVu@(`R=$oQ?3LPQ3TLdv_xR zcOmB5Zfp4%Kc7E)j`-+*<$`7-_8^hiGPHtY_9aHVdd5xl0nI$D9 z+xu?cyJuCVjRuGqPGVx)$79i^hU^~d_=b2|nxU`1RJ>3-QVsx89)LaxMDli$*?T-$ zH*H#v5RWg}edjHQ6E^H zI8x-hLxI7;l2mwJ`^}uUOo8vw4bW9@vEoSf7>tPEl`NOC)v4IcMtOa|cyq+YQ>RXu z!804j4dU%#q=E!MB}YFI|47zEgTb^ecO@P$(c(XX3&B#2L|RGNK9A){4T#O4oq_haBO`5jOI? zSvWF0oLv#cSGO1eAbS1YIY^TvDvxu@yq<9mm^Pl=#<;vlhG(i)*49nPCyQ|uxKpVQ zk-u(2WF)?O#6JrdR)C6j#-6sv?yM);;-jvat~WOA>f5wsi|3_FmynDow(aszr$vU< zCqcrSy1CLlt-?4PvGIfuJDVN*p}T&_57Kf+kxr+!j&kDo63O@0rWIDaQ2MB?@Z#3m z{oRAj(aoA;gLjZ_c4Je916?P)qU1b6A;F=KBI*@VKHw|2k@Mmf62HS#zP3oZH&mMx z)JpJHIi6f5IM@(CH5`t8ge64s8UT?`9LDSqiitJDZIE-LfNE2l%k}7rU zv5~%ZJ{RhqtjKJy`!H?FDJn`R*IPpcJ{q3tGIQGbp_!=op0ar1Mg^{BAU{jR_6YD} z>`$l1&WR`-J|Lp@1PhN)fN5>L^ECI>D_LZ!q!9}M`qkUFQ7Sd&rltire_%Rvw2A8( za(#+COz&AK*uzwNo1vHkI3Q4B1p?9WDr011H0^CUiiDN|l2k&21Clpn5O0QeX&+SV zVMOjOi=&N4IMgOCB4RTE!mti*1q1}JHsVMO8pPL10f;8p-oZm8Ena#Uhn#tPrFz|J zD-XqU58&u5Z!|v&Nwb(MGYSgjjc)93a!ZlY zKG7@WbPDVS!UWaKI~GQs?lZaM&e5x-S;iI&+%j}OfxL;Rg9i|mbU|x{g$oxpeF%0P z>~367;Y0Z=>cSX`G>%HR14);VosbAZG_#&wn9c*EA4)#@Jt*8a!cQkcW$|T?dz%2U z9>jwiXI?|2N4dKqMr;2S7mKd`t~$phd8p|_?|%3|`uX?ewL8IaYQQm6M-84fO?gKV ze$KEz2`~uLKnV_q&LDXrA-%uM%DR(khyL5ug-l@|<4&o@Cqi`}dbDy_DV*J+$8nsX=j{3-Q^wga}mT{@_6blI9RBadOxLaWRF@fRjC<0S1+Q z2GRxw2g6W1k;LChJ!>(l)?#F#@lg9YryaHtNeFm;`vC{XT5=8m96-Fv_uucBeTaF? zr=!B!&M+9?jMBLPYc*c?!-kJ#Wu&fKR`q=Ad_2PJb$cvPBEEd_LOjLJ>O*JS8oHZ$f!ghPa@2hK z^hsVvSWrNKi0wLUQ>5g#8cO6Sos7EW?akFFI?#XLTfizmZFKOBcH866ochB@v3XDi zDDl=&_q>E%@p#Tb{3%Ia3n0SMO28j|n@0bfKCOR$Tx{%n)b~87U@&!Vs0tMyx&ajd=~-e;<-;D)uc6^I&gn2xBl2a9 zi}AEp(KNZ!yQxT}AAN5rE7{tn5xg4}!N-!4(~utWg47%74HCyLyp_D3URZ)r)fQyp zq%lcVpxN7{57gbqnYyD7Aa5wZ-e43sI6I{G?%k`HA&pIG5d*YB_&8FtT^0zq2-EZCULpnryZOiD|5qZNwL?K-+3@dH|@<7r**lup6 z&AjX8cDOBLsJk%$CGGee2l8T~d4qPzMmDyCs8r({_#ruD2h}gHZQ57Kh2eKIx%p?# zL=2Ql?v@xeZ!Imf&9k<#L6i`O5UL!4Fu+)QrTPT`E4=!LhH_49*To$tVIJo&j3w@z}58Jc!xVjJNyMa?zy7cP$$-rXsa;koIDu@ngRj0aAWsuv&6hf zS!PecVHy0b6d}g!+qVyi5lNlYagaURCXBSLG{r2O;8&;x0rseZS*}8}Pba~8Y=}1Y zVZEz>eD%m5)6UY?Atd)dZw68WoE#0I?QE>94L~KV0qPTg0lTO?*1ZPP;B3eq;N&1T zZ`o#9n3XR~#J?gpM#XGh5d<@6HX9mK+on6Wb&p zpmzQGbsS@EC}@L0&JjTgQ%4QVcix=|`^xnI8gxlNGT9^;xmPqYZ9Rewp;wV?guh=3 zjH18ak`PbHu?zwSf%VW-(fj-2OhOz2Z%Ve-*R3Jk=Yhkb1(K?bl2npwvB9SOdSdVABFH6m-* zu3ft2o*t?n6x#aei<8A*wWY45B?4D$avh~%g!+P-x|CB$j=ukD(~rOko%p5v*W$|) o|2^&e(zXBhpZ-s|8v_oyPwqbbvbMX5d?Lz0=>t*wj$QnJ06z?AN&o-= literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/kmeans.png b/src/comparative_analysis/visualization/clustering model/kmeans.png new file mode 100644 index 0000000000000000000000000000000000000000..4e3f80551b78e6c24268cbb60216910821798c33 GIT binary patch literal 106043 zcmeFZc|4Wd|2}+cP-v3o3=Jn5WJ)sAsFE~O8IwxpA@f*D5|Tp3N;FEQkeN)$RtcHs zwt38yVL#V$KEw0|QH6!9Ygj3YT6pN- zz7rHRw}zr-uba<|-$*1pmL~tP*sp4F()f~vmA08KrKD|PVqk1xpm$-NrLLK|p0Uvm z0SSQ}{Ohh*SeTeg3JMzj=LG`BW|sx?PDUKXMOaJ@o;9ba#oFXwrWbP0^(ZEaI<#;1 zDeK^_S}XgLLsR+vR)Np9N5~f~`*bU^EA3|NZj;6p%LO*9yFGuxL_L}#dh?yf4SSe! znO3s1uQqb=OLLpQec8FkcSR1bG>oJ5dIx^_7Ozw-8fM=i-V%f8*l+hSa~Kg8l#Z z1+?^jXsB0o#?+c{1@FA#UG;bUwx56MFg~2r>?PIrGsw84uNV0WXZ?0~4O|tnxWo5x(UEEdc>ggOa=Z$6t_iW|` znVr!YUd2JXa;_$1Ulds{D!MG+iz{cProBtGaRyhI{eZj0E5#r&!)(LE+FLx1qq`+< zs)?I6&EdA|5>A~MDEhW#pHXvj`K~C9v^6*8EzT>CIv;Vez~l3!9d%9&hXvfytNaDj z&BjG=Q?nL)V_%Y=rViWQ^V@_LTfx{oz`t`bmPhU@?`JvCwu0$FEc%K z=+J0exc420)fhullDG?ATXt97JR5h3iQ+vPeEWH*?biBhSIghHt7zEFUB7-kdAX3& zl>LHLLR8ebgaOO9%6i|Pxm(O)w~;Rn+<83il2ZGEtr3SGZfza^vhUjI*Jt*Zy*eGS z1JiuaRPDqqe1f8=QcjUz#)6>YTllQxV1p9FY*&^S>M3GfmQu2e33I{IOaG4PKNI?tpeaVitf=#iS9ks){KbAStCgcH$d>r)}vvCq|uqh_eHLa<)<>({TVyGr=Nob<7uYXgdZ+E?Qe^QZ=2W!c^P_RR@(ni`X?R#aBbcjIxqt(|l0 z3BvhG#ak|;j7iJSAyO+}zI-|Ny;6we@)WDyyb!B8_cKxFo?I>o9c}Uuq>^OyF7#BZ zr`ay=O&j56Ud(+L^B+z=5TB1{JKZ2#9jnWh=egD`RL1V9Qjl2EAWfIOKwQgvg`KOa0Q+E zbceY{<0JJ>`AMeDU()QX;;)vmrr8c<$Lp1vw0(IZU11)4?AMLOvJ}--8TUN1UV@q! zqlc~9d3BlOwT_kvuHrB`xsqP#T^Rn>B7dEax7pijl6Ra-xO!98;djHM%b|r8_s^d= zvGfux*gfmUyl~ugTj}$~__4j;x4XMOgNIAX(n5Bzf!JDS{Sr@HqZ!LSK+JHBQTo^= z+y(Pqw?(=1FsDUIr4*Gh^?Mt)QfBIT%(QttCG$2*vkRq830`-}Xxe|>q9kBmeB7Wj!1CkATs`mI0HXnDpN zlegG69(a86`Oz!Y@3-Gtxb~J{`sl0`9-HdBV`F3c+MkCt^`!J37$5Hb`r(@XukPxV zrIAWGJ+&#dRnefMun$}{sLFZUM>GU)amB0Vaw9r-*59aMJIm|R`_GxBEKa2vDl(+ zU0q!Xo*T(Lv(LOQ*_Hl4@DE$I?ZRkdPZ?>xbAR^{yU&b7tELL5;g9Js;SRL-x~YA^im#y~X|am~Yy& zX)cd_pUa>_EdD~SN&@EDvuE}df>)jBjs|K@*UwYp*E*JII1HU$z$v~Y>U`pX=SM^O zzU*DBJvPuvt2pdNrp}2mMPtZa`LYf}r-gaCso__R5$>xoFL|OICQC;7gJt)fd~Ul1 z850AFF5|AZZ?_%D+N6uwN&P5%{7pqCdFDi;QdFhbBeN*`u~vWUX3t$z3;)oUH)nVJ z#mA?EtWL(kacb_dr7ehH&kC|YjUTCCA zX6NLv^YD112I^G5H{4VgCdZiAapsLGlarH^sKJjVmubOShz?JBsNEu!XpLN~ns>HC zS5Lh@v(R(R&TM3c7@NUMT{X!ZMgD>cahHmNt7FeaSx=48WAHLcKH+Lvu(;HKxFjtyE8{Mk4tJfMGjCqbMUf{5JlBj#%KdKJNUpbg_wFk{ z-mSlX|NfG-Yd!En9mJYy{1x_ziML!qK0pM*I(b^Xb!n9IyLUq0qcwT37)JZ^d15XV zuaO?9F-Ph-6*?|q)-pfu?&=$CD+MyIh>~K90PBKtSTP^X zShRU-jZ=M|^AtQPaKLP8C7k>E><~wrh2+QF+{UQHx@=^gC#CJA7@c~nwtC@OF{B~B zcUHX`(o>_&qW}(rN){+dY+(+=tEtDRNJ5W}97LJrahh55FIjjW{_b7Ah*Gj9TngGruWvHhIu5>!|EPca(ha9DC%{1p zs;U8l*JQVCV{6XyG(URq*3Fw)7eyMsMJVD@3K)$u(Hfq{>0`{>&&8X(PW#J`|LpY& zO(!nP6t2^+PVL46-Fx`(X6bWf63xetA1Adg@@NPvMb-~lQOG=OxbcN+L`l>gOR?{C$KC@HxHX)a5uH?`Spa)cBU55aVk^jne7o;8g2 zH;-bq#po8T;6EGtF{(Z$QZGRA+AH(xiMWjyr(Q0_fZxEX;L2c3NuhYK90`?97Ek#a zK_U{liY%-(yNvF-y3QeyOe#))bAEq|ukz32DdZR-%P!TwHf_o(DOs!(DC&}>l}Xmo zm9HD#sK(41{8_xW;;p)3EpvkO;2SBncy6W9&wZy6V!_qT1)8P_@|? z3qLxNWIMEV>UXCgC6AiLzGR6rqHekEqnus!_BVFbSkVu~zk)2-vfP(Xx%>#Pub5V*^9jStNC<(27r)^bmts_d<(ztw>7u@c z&rq0)Te}fMPaYlNjWVuJr-em4dv*nBmb~{pQjc_nx0hFWRlHvFK&%3{&AuIvj#L2@ z3{FUI+_-nGxXI&7B9G!(IC!sMtjsn19z1x4(tMP>>hbOy@t;3`wm0PUJ(R+j8c+EC z{ghIvXg830V69PwsFJxxI`WNwV#?UhpoF%zD|B6;%?g5=iZ6=jS=E>-q{ook0+Osk zjeA*XAcpsE-?8IlkgUT8^B`W|!q#+)+!$r@n0nv-qOU@^j>qsz^+uygRV|jAXh^L^ zI!vfbv(v|2*ddh-8km>AIZMW3!^VvXFJ5e>mqeX;J>2TAc@@F>1@$llL0Y}izJ0FmO&a&mn;S8z zRqwQO$fU{)6l}D4pKQ^7f{bH`aP>@D`>4roZi0Uy&0NPNPVHz zQEJI2kXjy*xda-PEa^65)YUnRsBho4O|djSIRARH=>_}^YoyvH2>pe4n6bONJ1y+8 zuC88m+HfFwBT|oK;^_b^`@G7K^9K&xDv#Awq)#$NG8o0?W06Wh<~th9kWs4pWE1K%QH__Cvx74vyy3E+D-xm|V+xhmqu(pQyfMMlif~ zV|itG4C#?@y+HEzZZwXT=|(L-JFb!;=Z)hSakUDlJ`Wv^92!vximjv;iLGV_o~ZmjZVg zzYUSGE4Mkj+k3al__`50Q}luHShte-fuW&qW%@sI&>RB&{C=jYpF0;=9(P%pTxGFz zpR?sa%OSe%N&z*K^m5CtAHpTNbGwb*YP>y>jwPHNNBgv+0C>+~{>4z%rF+u=^1dN& zKf{9Q24WR3v8#|PXH7B4xwVkIip+&!e^YKCZcO7nvSAd83t0s}KR;?V<3z^THA`U2 zUL=l9Ub-9X+g%O#jt0wHT8h0o_3}Dm@@MiJbS$fO8F2z}b`5Oar{X85>4l^iZ&10E zq&YNl!Tx10j?eDRV8~`?XD{L5=`~B9O$CVP-WfcY{N>9rl-nyl($Ts}|hU+(Po=-hS@i(dw7rpv@J~hD46>D5COCMk}r_+kfzek`&G1^4e)*%eLJH`F+u_%7;MWEp1@0{U z=(IBpC?Y~y!(ElMjn5}1Cdg+|5*a}#RUAN?ma^P?_U;unYdJ_|q6Brmwq7_+4a@|_Qb?0)Z4YNFL>2kCH^0eMxXmcntFN)^SbS&hk8)-PvNl?xK0jvCV z+Nu);r+OJvi7GY zRW-?EJ*f?;`~ZOn&0O#i_d-HEy=8wF*i@=p)y|cZlk2L_kgLBh02U+rXK@hlmdQx1 zm6TIDqHuIx`+93=B__Rl=`B00}}EOuGJyqtA14 z7RxR0Eu8b%Izxv->*NsHnuYM-cA7A)F)P}h)cw9%O`!3V8a^%)i8NRzN;PJKhU1tn zB{42Ka$j4~kAF8>+E*&kUSoswaP(lbBJu-5fgsWC+ZTfBIrOp`k2o)`@-AxS95VP? zT8{@~0r#|eYLd}1sHWNOM4~*?F&?zz@*=PprOI-ifDu0>?xbNwS`QZQVxq#FrX=qB z`YJj&VO^%*o~E!hP5=T@Cdste2Oq9=0%ooQ_62*9YJNRi8>Cr)l+|1FLpPsJfXt$t zv0^_=yt2kB!g5_e2~?B}4G!)_XXGKZ0K@9<+mh@bW%_2NBOnx~wDl5-bX3VTbs1Ab z(HC}!TXa{INvv*LvSP*02|K{@!P-3G{y;mWLDb8D;!C22Rm--Ye{W%<>E%9-=xG4( z%k8ijk}7MrpdE^;(LW{SsA5}%Hs(H%KE>+P;) zr-`FpO$=8XQ_ceFAC`$b<_~V$y7g0X-Zd21V8vWG4Gh%yzKb~fQxEv?ppw!}07nF9*MKDYh5bmT zT5*-Z(d@}X?WOsxgFpIhdpe|<-imWG*6uR;I59SePODPdAN6?Ldb~T)q)k1 z<*!b&fncKsWCef^lqnL(YUu*M$H%4oxBVV0kqe>wZ)QPsVjii2!7ME!kYrcN->e20 z8%tN?e6Adp*O=qRmX-m;v=L0^*|TSFhIU>D@usVmL#RDPPKB}$=AthXN!O^8cQ=bK z%>FvMP$t4nT>bvS1?>dkwr=0O%U{ku=H*^a@Hh~XiA{*dO2JtLXQL-=k!)x?`kUWw zJ^d;vHKcj77DWrc>&-30s#LmU*|G<5n=`3Nq{6or{|Vqir`+xAu?jddOUww(&=?=%T+MzXS_HNZ+^ zN^g1&2$#Mp{b+4;>R0MgB?y;Dh#O>7fqa#FXc8MiqW*~2<1k8YT|r53^f)>?w$-Ic zk^TprDB&>(CDPQ?WP;DEu_#pn)09v>ax$Pv+K8=rlxqqN(OlV#*tj^RmN!FWDbo|@ z0N8UIfDe4F5>1N}8^OrWUq|0O+PT{E01A^9@*e5-UY>l80__bupcZT>OoEAgG6*HZlUmbE0*m(1)2gT3g7V+#r=TApQirBTFWWy=&BD^4LnFHRUYY zzs;4h?8-!IAZ#~mAZk>zO2+n=JQgST#S!UV_K4$Onqx2I-bpfRy)zgyCsX2QwuUm7 zzk0g;YL&NYrejqtUZbPd^g>rnyY2+(XshH933F!W&XLw86X|H@;Kf~RO+R=d(&PZp zHFKxMLqSu18QI!=E_@ACNrn#nr|p+->ic_6J!fV@9LGy9vhWh`5`SOYhkxiw!YyPlM? z&r62^MuC2o_u0B+Zv#sO)8T~Xk#pa59^;A74_gV;H(&WMb(>M6#?{#V_RSmq1*=8o z5c-9%MHAo=Fp~#ez%g4j_Y{h8Wvq>>RO_lQCY|J`ZP8kwmTcZ~aB|)~8X~!V%a$$m zyOhkfb;N|)#fplHuR?0d0pb4+T*zO4{nY?~l}Bitn`|qeqJam%V(md9*pQDRA0Z1e zkACPtNtm2B$Zk?TNy9zTQyZh5!)#Ffejz$#Q|`1HOj#n&$o~HCb6z%ES+{@Nl$g$S zKQOQ(*n~&iWZhPkw|6lcoZ==F(s&jk8MN^FIdkVq$lW!;^X7wAaRFkckKOY9dSxFW zS5s}w(Tm$%RJ(aL*=!T(9n^pgN=iWVc-Zx(tt2h#%if&Y3f6pmgPw?VPS(I>mL?;! znQmk`<4Kx=jMK9K0(&R48cEL%w9St3AWithXn%yGz3uNI(Gk022M!!?=c_T#D3LsB z*3mPhXy??ED&{vl1tQOW`LryP`pk(jMd~Qh`8&gEG0=wZ3aa@v(>X!U8~_{!nbom@ zZ-eu7zKyKsd9@lcT~^_dzm=BaF&B0Hh?z}NESVXktq*B_1~*xk2Um1gCmQ=y_%{St z6sPSg7*bQ3WfK%`-q(;t>h2Yf<{bB@yb7HDQg3@zk3Mfri z9whTn#~JXYa(%Yam!RCJ0_>hnl($vqV3p3uM;B&iQ=}HVU-q?7Rvd&QSzqx zc}J9``{%qjuJ_8!lqZ#$u;btuzdqhQdzI$_d(@pxfhK}&33dJ3-D?P`4SJcI`tn*u zkWjUtGp~Gm#saiF%OkhRhsDZDa~mhmp5?4=+m`V|6n^C<9HNx%dBpgk`j%xMw6oW8j|CieH<6Oza^Q0J)( zFcns9J~&Pj^pwce^Uxc7GQY2`*+?7QCLyt!C{&MjTpmc%s5dW>q0EjhFi5P9vFtua z6`04KT1R)y@tPC`WgrcBL5dTprW5b8fq`p!XlZlqHJd&>f98x|QAGzZ^6UZ|8o%m0 z3jHia_>PHNhfLS7Hd{v#fwu34SW0b=bhJxz!c%^6zdqA9wT`7qyR?72(&&ji@cc2gOd_z-4 z)=5v=h{oq&iMZSB4?Rg7g0!N{B-PKpH+ZzmSFNKqWfz(aFCMubY2ntP^wB0ZqD7;D zy&M|8mMbId+ne0rpym-Tj@#8;#T(8ls; zyp*5c7R3-Ls{_zU@A>!~Z(#31b;|>Q7ewv(DDlYV_b)w4g0Ifv+OjD`Xt08(UDNCb zL;^vxB!uPqs5kb`@@-E+9_OYD<{vu03-mGR`s(X>kUq>bdc>c!p;4Xvy6g@TNJ>Hr zN5dGpKThvPgpq7AX@Q_cU9C=Vp2WXHSW?EL|32>5Wm9IBt&Xx%jlw%5k%qLolkvFZnl zEmTXToY%B|*A|E@*lZ6Uz-FS0lFrR3#VZpuikktw90;4g& zzu#nRK=(6*ck0V~!}Iikb(sm#o_xH#KP&6d9zYbhx^De?CL{ur(A&i^X3V(LiS?2r4|6YMrP>Szb7}o$LT%o#6UoTMSq>Th-do zLn!CPvZEB_0vmzq1bzR(0*(CMaxV1`7Q0aziTJVOGVL*D#OA1Kmv~j$Uqyx1zoB;E z_DDza?p)L=DNBRU#rNT?kcBWsAOS__d;iXHDX&XbsYe&B72~gW^YMb-Z9m%RW|Qs$ zK~oruqTD8(&B~EZn0wS_N~E(#s3wyfs+~9S7QfH^^h($KpEW z__wzW)jecgzEwPIEy`RjP=GHzxgW-b2GC&46e;$!jZcfNH}_{4REiK;(1!OG8lgMU z>AzX!`?(pRL{Ye64F`_63i zp`G_xWaI{fCqmsC@lkoK(i29?*RCdb3|N+Xdth}#B}zJPi5rIOHYY1VVu&P=m~E`44_s*_;a zucbuHMm64ud&k-&IA^%GzIS44`U8?{P-yeeQojJ%>!L_oR^c=?$YW5Ky4qh* zGw*eD`ngE`dT%bN70|@9iGoLNmne80K;47%5-ESnHcUb&od(j}1H3&+9?CL9%LqZc zX3ZTS;wFR>E!@be>qnzcgzf<^PIoXn>mbWPJ>35+aW1I^xxbMJ$4{6=8)-@|GL0us!F$T2!0v=gT2r>Inx=lL1Z=tVg4nN?T z4N|{tU>NewJo3mFFJ8=qb_TzSN_uDfm9Mjilt=XC{T?eCp-?D*Q#S=QL_bc)^4UR_ zIpj+;V=HaG{Y3iHg71gu>dXsPIU@mY04oM%f_O4W9}SImV~HW@2Khp*XQ9p7%b1!B z;izR{VJV=|ECuu}23iX3i;BnxgLzbar^O^@RC60pYWeS|*Q8hyN(4hB?C{&-bI`8E zKpi>Ag~27B-~#M^&EBN~(%lvJ$%6)Gd#GKH1V8`>YSuLS5Gu{0R7!}=yF7B~N2K1W zB%A5lLpdTm`fyLJ2R`QsLR4tg0&&}4oB3C;?b)-Z4}t#_q%N)c^ve@-y=8`1$&R&f zyg3`k3{%pJ^N9jWIXK9GU~p?%6WvL@B+_bh>HsT&6$H%h#i{}(Z~^CbCGZxqv`%C8 zO&h+gt&k(EE=Ro$0|L58F=DPbQwYnU@Z#im-BxPlj9+3IGXB^Xer_jP~dTB zc{mBd=`R-rVz_0ohM*E-R4XYx{6mKfH)x1{G;qx*dxY*d;LYucxlfj#2a;`b7F_$>;MrZiqy0Y6dK+q2&rC* z?h}<<_VVOB(#;dk5)1NOB=4zCymEf80a7` zVe%S2J=})uxshl9@D4mv^**kwhw_gEcLN>N25D(dq}@GmI{=lrf-q=?`EnoH)4^IJ zl*j0>5VKJh zQa<2n-P%Qs`R^Y@hy3gw7Bg8(3TO-m`6pppBwwdiaZfwzTWQ3aO6~=Oy_wAzAOcfn z@)?o89h5#&fBWxSj}r0(3fZ(6xAP_wFgm#vRWwONs9MY;pnB-<3%_c-FG8;06D)2z zYq89)B?6l13&OvWj$k9{?gu1D!-b{_Bw@V8*1tbzi|e$|aY|ql%vSB+B1R`i>V1#~ z5TDpTN|vMadL%D-SZh`N`F z^h!}^fUrCk0hiuHnjoSkOrcpI83t>6h$)Hq9x1|p02g~>r4W*Uat2|n4Gjs+Ld5ES z&CK)-G`QMHj7$uc=s>U_iC1=NROkC!^|chxq+Ej>V{9=Dc*GJ5873#H+pzY-a#Z12 zlr*|0;^;(M3Ty=QbrXqfBV;^cwd_ti!@=thI+B1)wuol%J!&=V1G1w(AGKWQCE!Y4v7T-n0)mH8QWKMtib5AMFU4V??=Gz^uK=Swi$W91uXaL&+^NkgZg{0FqFaTzFJwN{fU?E~!gzk2xMGTU@YJ)BmGL$xE3g)xSu|a2NiXakk zs~%2N50BKvLB(fUu6>#nVAN4{T|Z0C#gJgfSd}+Aq%;Ej#o2 zwB(ahWON5k@ys6AjlpOBk8ge*ll$sEvW%E@Vb&>U4Dkx<5MTgG-ptI*y+;R9m};UC z7hsKcV)fT_2RqVc&flJQNW}O4{b_fre1_xXG5Fe-Ce&OxB^RymDUoqw@+$M&Gc3EK ze8QiZ-%%QxESX`NF}zr1eh(kcrEZ2gi^B0(a?L{@&;#Do2ZM|-8M_rQ^~eKu)qHR` zcWw9(|71Yu4J)TR!Tch%hmpFhu`0*cS}jVz`f->3{;82)vB$kBPP%YK(sU9?q= zI@4z1tYPe2eCcK+6Y~uw%an!a(eXclky#gFCgQd)ykssmF*)13)~&g>QfSTOlTs#t z6x+0^u<>{D&r2nGXBRj)ty#dlvCDETOvaG9L>InO{rs-loVFzN{(bw}$(O>BZ}vK6 zg$B-2JUD-=dK#-o?nKF?x)V>jL?k2&=)!>2%YWMqlnJAUq_eZ;I&_U?2f*~CCA!Av zkxkjg5jOquDlcyMy6|5=hwfRo8 zXOBNjcE~w?cVwJ)V!W^MXS&w^O9eWkcn7Mk$`Rp>y zPUF;vv65OREF6>BDK4Oo1mja(D!Py~@Zj)5Iz3XBu2{iLC0X}hNH4-Z3paE%%OF4Q zK6r3GDUl1fB;yOl1-#ADX)k&zl20*=JUhn2{+O5EOp6XkzR9T*kf+7Xe=eXN=WPE4QJ>7XSRbUe{W9hAW`u(_6(H@DtzzNp=C!Y)t! zpX4M<6iJE#zvu$3hn`{&+(em`+eX8*=2QJzJ>~u23!8ky=tQ&=#HD&g^eLz?T39cT zN{P$}Cw9vm;pKp1h9Qx-|Lx1EYj5v|-mXx2kHmMEV*L2B4q+E;BACBM z%;0vlQOZKp6C^%#uGa@+G3nY_*XL5saD=v`bfb#1uUzQ{;aOTPOx$z>)qqYpA24|V zB%xFTwDzMVPE)ff5Oe(S(kxm>Khj(xJI;?z7+L-nVBBLYtWd75g$GMTH#^XDZk93) zjmXVhl6aIJnv<;!Ajn|g@L0e1Rwn#8J9m~PcNKkqc@j|D+dgqEkPm63E7Yxs5!`HQ z0vKX1O#6fxB)uMSHWB>w?Ac!sGMT8p%-M^zK(5lNi3tR8I`7_~dpq`5u^Ku;d;5ZJ z=7g7;L$ciGV?L3icT@gJ+z6mOB<&#aqQD2V9;gKgAB1MsZT5{qSH3*HU~CS4g7lnZ z2L))=4ZOU}M9>9`Aq;GRPIX(!kX27j`@}c|7t^VUu|0`letu`VBG>w4I60$&pX&O) zdib?Uqh@lf#bNh9POPM7{k$h;AE&X9%MK@{wH{2ntS*+{I;RI zP54ecs0^NqTYPfejYWaG@gzR2cfpQoqf_9jK@ePfAu`cK}yf3@cndF_p(C=aLV8D0L* zf3Nyq026rgR4?BEFLpR@IsAOse&@0+kXyYyl-sm<>aNy z393vtm?|r;hFa|ZbLPT`y*ZPwlDze{<%4~PKP~^!B}Or;@~=>X9|TF{A#Ll5ha+;C zj+&4EI4*sw6|vO&&StZWj*n#-BsRY-K92TS``g*vrvp>-e)O`<2rH+byF=DN=Yp4( zGI&Nt^as;4Gmf6Ey-v=P>GCrqLHqYhwtTu2cbM;i>XFadlst%g>@(m+T4Pz^vHC!G zhRLJxQ*{h#+`(mr`I>k(`}T_ocXx?dRMJqn)Ul{@*TBeWm4w!2pZ>d>#`lOESY9wc z%$qX4>Ba<@PFQoUnR|L)+~LzE3Kcz+^NSY?W3_Xibxc`l{eO2@(={^W;Bm2_(}mF% zTp-}jyq;TfbJvaTq7q@D?OfE7+}F!}`p4VpPg%F`j>xLJ-&i&^sbXAcV-*GZYh*6fRh>BR<;yJ_409uzrb;|#z6!RJEz=c!HFE7O#GVa1 zcg|(L!H#@B?BvM3;>=2=K-Y}|J)5CSxWZm>I=+-^YY(I5$BboGIvdj!=r^da$!n+@ zwv<_17B&Lr{M+J8n{ACRKfHZsTyEFQxfMF)G6alvOhCkrJGq#t!evYgZR%fgarD3@ zf-TFoQc*un)i9D{{+v|MeLUm1vt3M#K7Zu)?Vn$|>;37m2~PJx2t`oz}Lmt0?*I zs%y}V=8G`KBm*_I=F+dhrpE%!3}~wHSNlou?V$%>OP#7_RQ!YIxl_Y;WcxwzFla&* zDEU+0ZKEyzU8~q_Sjk*OR8=Hj&@uNi@xFa!(c=ck(|!++8!|M#{~TEnRjaeP6p|G7 zwFC?8v@7NP5htP@eQNcS8%Cz!G<(wnWX27lv2m*?Np12ktiy}Cel^VNoZj!W1lXdh`0gfZ#K10!I=Mb>e7?C zjFql4$MJL#v)IqGsfSH1RH#g;!tdeP-on4UkNv~94l%b4rDtsYp1=|LGsI*hT4nLn z!nNxkJKmUOT%BU2No9I*Ro{E`=&YsBrpKSA1n1A(D3mNCS^uj2!y;4Hl)?vA*=ZdC zrj&C-!{NDg?+^K!fJL2$ZYhfvQoUq#Wn$MJk3$b9HJ8ksaHkPzQ8icDU!Ji0moB1v3wu;wQi!qr@DeM8(U?KE*hW4;2+snYqexyT5gvJs3Qq@uYhG z{Q2^UMl#fBd928vZ*DsFZ)7zLYPOqkHabqSoMg%jv|i)qYJD;6$YwLC^dzs8KM$Gg z$=k~!#zrd-gV4do>$#MuzMoSzS8hRX<&LFPUxns8ur~Xlj?{9vM>KVgXKellQ{a&c z^Wuh(dA&p*DP->nN#MNPVZ2{fVpE9#HoFk zex62Q3IFa8(fa3M!zQw4o1GZ)?XG*&rLxnKi;6r_p4~nAd@rov{gWd_>|AL~aE9~i zYPXO6o)To8Io8nb`Q)poS~J1_LbiMaitV&9Nb&KJDEeejlN5US;D1hn3Y$jAkBZL< z1;stvp=QRiY8G_(EryZEQ>rw8Onz;Z0 z)ZLcusrubLS2;HyAzk`R};WWO2*+pg?~e!Q@qowLsNEdlFp$=*N+CU zK1j__iLRrZvEQZX)5Dhgb8Vdkd!4LiUjNfg;oSpH?Q{IG@0gv(X_kDWLXv-chGn;; z(4!65m4Bl+DBQF&%Id)tsfgCsTM!etnw8Cn(gr2Iiw739=mlo>mNRA z*;SXaj`N!I*y?V$|Co;bV($rzeAtn`VdFSOi5aPBzUqGPK(L3=^ba~ZxCA75q;v{l zvjR`Q95wodX2x#z3ITPfoHE)%t9oHw{!P);_KnFV|be z$#=xC>ie7;d(h#GtP6dA{xsQ>^Wj(}h9K;j z_JF4|99uoeK_bK=1wX9+l^}4exp2G0U~?Ke_Q%k>;EUoTN&p1(mDVXZ7KHfGh{Sl} zwQ<%is?_YNdPn?dZ}xTRehJ&nk6oSw(OWj2MAc(U9%@=2z|c~JeI z57aj3k7p#!yndv!(}GjT(E&rzPK`ur#&!dCZf-A}GJy=m0{dkS%$~=(3>~p0jp)AR z(VB}X93!BBqegJX(Jfex8p)n@n-o|m8{xyxh3^J(j<(37d%?kX$%Zx%pZVAxrns|w zttX&|^iKV5CNGZ2^4AsA@@>p3Z6;rNd+tssJbC$@ zr()R2bmsO!-*N>^c+}& zj|7Uc;J}RVW)(D|u31_SXeJ-tJKB8(u93faKxxVM@2;7*7AjuLKntV*zcsO6aY`p; zoT}csNVA%eJCj2Ew{%Fhb5Fot)HgVo11lE}v@oRW!cIXB++xa^*G*AIDcxek zPX*{sQP`9=F<#F&K+Ift9&DQXnOv))>2MQwOpbVhjw-s~R&bfu^&2;Y;n^aG%n%?SF0ZX-7Ue}fP+rz z>=Oq^My!mC(dHXndoWKdsQ9(wi)F1<>^h-<^%#xDVDHAJWHCi<#_=lXX9C*$P zTX7asUt)9={QWE7jK%hEvNaEzYK07byxWi{VcPU@mS9|^0qxq4wW3!VCTy^47gRq} z%aI=`O`~H_yN@6B_g?CO4KQ!uHtmK)w@ zBrfw`v0eUKg@>X8g6csMGzQ3H^O-Y zf6K(gL<9Y~8+!4h^V)`(e;Ay(a*lRL(){R(3vSR5BlX^?@-qw+iR|vg$W$9?9JRxn zogldba%e;|=(7B1k7?tSS$!DujjZ`8GMA%7A&}9<+4!l#J`ZRJx9W znJW)+zJ>k~uQ5wFPO$AzmH($xPw($>6XPQ=Dlt>oM@D2v1!S+HUn4C^{4z38U+Pcl z<(=~LmPx5ygiRH{e#Kvq8@AUzg6&AKLqKWi@S*#D3;>uyBuq^1V4IK`8wfyzhGfh( zPV2ETI|4@l{?XHW`4qA^mv5zk%TfQq&^G;E<(|8RR}->Il-=UvPi?9*kLD>&p!c5s zI<3Rw%o%ugal^loNBFGrTCArcBO`B5tKgu0>!uWD$`uAS+=&#nN zClXTs(%CvX*15JgktBZmu7}G-0s5Q zi*@qNcx&Jr8!2fusu__B3u?3Y;KV(|+0<_PEn8D>boj8y#KbQgWE5LeE-r_*MW-*-)WFUCtW>p4%hhh_}u zm`OWvF_`-k;HwBI?vZvfug^}LHds8tUL&>Yfe`#5X?$X+j958VjMP)3XScMG>VP8`heqkp(rT}`u@P-9FC;azHpCU(`5T;6*lW3v>_Nc>b)NPD;Q zE0;g=QSrtR34!aL^>nM|JA|7ThQu~)8_#$)GgO)uuXoWNaVi}-!rv$9RRkqlwPhHGF+fAb znM^%<_@r{OvndKq=NyV|+k-U+9%y?!amT^hEf9M%l@AR7^%%z`!uf`uCxX{! z0w3)=k1c1@UoR#aQ4GqllZVPocNkaGaKwIPR87#J_;Eublv@d4!X~l_2?xrYZW!Y9 zrK9bhL!EkgB3I%`2B4*XqUl5`fJd&z;N$^avC9$}_j%h3e1ci5d|#f8F?y~Sn13Fr z4DLP-BH&~-SC_-LZJ%f2*>|8pWFZPMT z*kFb2iB!Yel%B1z;i>R7nS`!ZJ7Hh|YH-6-YmOe>YXjA!0R-GA_b(jgve#w!FZ*MK zQUxqBtu{=|f;R+uJN62iXuQ8#ww3JFpoFxuUF{QP;4UK`act(K(_yZiL)kMXM~HoU z@J(SltPT@&IR+DjjXNuV{jD^_U|b~UyCJHwofzYqba%DV($aoxb!mnn;Dt&ww^2q~ zABVP|prm+-^wxryXGiw!8@y0^l+Ht`Ypt_j3U$aqjoXDW$xV(kAr+t!NKXFm){9<^vGT_ntZE*rOOJ$^RIMS~N}zF?i1hWz1DP-@_d#$owxAKIV>Xe-FW!TWxi^MLb)@{9dBR_HRXx^0I z!kJtCur1T-K@NO%mJF!Zrl$GSgRc1_pJh@^uT`IU*8QWWT@=R$wIp1tDQc?u@@+gL ze&#HTgL)4h|E5Wobes@>bA}Ce+PhT=oy*3Db%o}ID$r@_?5kGYCSpX}SJi+c?A*2K zzorDY&wQ8DZIV<0Bnq^W-a!Bq{bXzFnAEy?nIi+2$an;ZC)Gz1<~N^8|B}SfgWK z0~0I^EGTG$Ki>cOR)_%iRJ2&ixBPAI`E5h4DZ9vKzv7@oK-M4eTRw$X`_(W)|A7>b zy=@Da9|^w1(SC~{SYt;K-0XVp?;E2M>fdhP7MB%X{qUb%3HH%0%b)@Wsd8iEnj{ut zj*eew>@cmhQSYvG@~ZM*@-|d4W7y65Q!d|k2jmv4uNy|Xry0~@Gm*MSrp8~NZbFah z1@k8kKP=MuCpTub`}VR;W2Xi3*?S_+W~A+TUH>)M?3o5KCY&TxqIi-L5Z-6;nOG%)1p{)h7I6r`ZFySFAr(&+u-&nwCHO zsAXzo&de8+3*B(yLGA_ibiQ%qojx{B1{%$Xb#vJOkXB$ zNnps_oFTCiw==QTjL*AW)B81Cm~sv>dgXcV-j}7u`9YJrcQ5~%Y_0;XgM~ECB8>un zz8tIx4u{Qqsb?Zngy%P&cA%m_vgplSmRz`hzEBSv2I}>;)*Z%+CQc)_Y zq!QXyinQ377OjMelw?WTv!v{dic&}^RJI}^MJgf7*kwKX!>)5lM?JQs8BKegtT zs8>#&Sm`!6JIZLBMQ~E_3J4T$X9xY1)M3!BjtS_;ZjQ9{buMU%tye(=tn4s2Io*_G zAmcB`+K=IeP^(9fwWa{`TiH+xyH*+mfQqkz!x|P^xw&hGCi1J;%9_!fX8tI$$bhOS@Nz2^E!6zn{|@c+v`%`y7>O~1T_|q*74&dzskGuA{C_{O2)l!btVbb09KeA z|0t4ubb0~q+!h1^+>akW2IV|i+J-KU+MmRUB3m97lV24$Gx9w`W#U-2JI}h~yC@K0 zPeZ+cPbOfmy&UlgZT3h~o;r5+K!By&rCGkQ#b+J8M@Zu=#Yg_h;Y`Bi8Gk+r$-10+Fmohu82v*Un#BEpZDg*p^ZI;7j~jaZrBXn$zz%Z|lHuSTOGSD&gsYz2V1u)BU^rml|C?+9;-sm&DaIBO#PlKk) zU$Pc0N?9e&sE3?|kr@2`LIC-j!|byLrbZF+p9$RDP((|SPae-wD}Ni$jbZ5a{Qp{^ zhhO+n**}7&wBNs@z6)AHV3J|mEBgnRx7AbZe6HgvTUUtzy;cR|I^n5wH^;|A3D{4}!y7rJq91@%z zUpfbm)f@chMOvZYR_9;jN&w*3-mc`SI#XJ8}(+#<$g(Om$uV+;!)KS2}e4big(ZqX`;O zTJdK#d7mqH?pb1#kQEp_gA;JZ;dnq!S}|Zi_UpK>{Wfd1rpc$s>-b5MxV24iL|Qq# zsuhCuZ6<607+X*ewt2nu`L9-hJ}48Q?>LcL1%$X^%eSTK_@Ho!F+=ZoBr?jVSnI8beu_yjp>(>YOf$`_!=0qSe|r+^${2 z=n(5KFcXJ{$u_1jMK3bnKBETR8aE16TY-fg>}0)q{f5}g<2Omy>b~gDdvoe;#nL%2 z7B*z?h-IM1cm<2Sp_D>}p=0zW64)lBatoCgcz{!KePlrR(UAmEWFb>vhW5avl6bR; zlXUKhUOD1;i8Fh6$(XFY@1y5H)PX4&R30#%??k*LbApe$N8veh~X#KK%N}5;?g<)$0Am9Nias(;0P40&pg-Cr|V< zu1%*l;*`$${35`z_xJ>jVDWQ+F-j&0T% zM*RgWIlsH0v!gR7S{)PX=qri*8rTpo5yiKQ;a}_I-0%6!mXa9vxp%4TEr&C!%OvB9 zCP9FFA!J~GTER2dM>g^;Ct7<-2K>KXz^MqMt_jz(p=I;?#c=C1K&-NCMeq(iz1657 z-9Zx;4zqVP8Wqnf0%vzuu4v9;Ke)}mZS!Uq-Q2LRY;m8ltf8t?Cbp&&3ORc-mUX(U z-#soD6gl=qXv`}K+>JKb5ukl231%%XScV734||l6|AS?)OYku$+TKfLC!#PC?<-PHMdcP8z^_X3h60V*8F;Yj&LG&U5xuazn< z?i%8dqc0FbTHw3}8c?cU2FC}?M-7drON#RUb~ZhX68KAM71&eBc{)!@}e`48Vk9)9ij`p91w zbx+psI0)}cu#pg;a-u16QkE{vlgLflf3HBA1SsIWwUnnHGjGWnVU$*PO#wpDr+yQgd7b%*>*6np@y%CPAiv`;0F^@0!&h$1*SOy%!hZjfqpBr)%A%f|`tB-2l;ql8cm2c18 z$Sv2@%te(KgFWO_hKy9sRK_%wF^NQuhZ=4(+=h{Q@vE_C1(COzT$TQ_dv8%NTY^+} zqUA&o5EAUDPh%l&S{v(md6&-Ex};I7LT-#gh7_#4o{Lzm9Xo|srycpN=e)lvWDRl7 ztSP;T^rdGJ$BOYP)0}D=7t#3JNjl2f36vOuaXv~)y#~tb} zkdTrSug*hQ#9`Z#iu22gG*;b$YoPEV6Fp9MZ^{h9-Tl;$p3VRpx~pH1mqdo| z%#X>KJz_WuyFC!2Tkz6@S-Uy;xbAsO050^U*4YQLw}yl>hibjO69kG z6mzPE^UE+rVl5<*aLqwHhfdXfX=9ToX zJE+nOc-=hZ5o2&tC!yunkjhZ${d!zc;LaXWgctdWt)NREsJ^5Sl$Q{TwoAfcz2b-Q zn-S5G86aYtmHqGj<4iqhN2l0toV;|W3Wf#Eg9ufGPssTOs#Xq(FD<^?ahMbSaMPm- z%iv#G{yH!(dm)#W3@J{(yLMCyYQjQg{*OCz(5@2(dkG-ujmat?E-TmHkj)P? z$m*+^nZA{*E{VU~WNM7kkXHi2?e{Ghqa!H)Gh7`Sb~gBTvZWlxJHZMJIc*gbqsHtw za`;Q$t)Q2-J^NkVD%J+1Eb*nWx{i=PSd=`^3(l2XtJ0Tg_pI(5)JF>l>q$xynkJYU zcLF(&BS=-hCT>Ekt{<~rc)a7sH^Lc*Wz|Wsrf~mYH1u=UCQL(VLuxB}l?92fjJ}`d zFqe=wD}Ry5X4T~;8y6Iws|JQA6MFzTEd|gZzkH`w$NsxLXyk%lZwAEjQgooe0<-Y1 zlqh6%O&|9ws?h+;^PFEEcj5a5B0bFeR?d^%2O3($9g0raRdLex3^+r|BLI0Bo`vb# z8Sk20qmZs=8LbQ}{qAU$CPILPV@SBgHW~cqSG&&k^t`D4pm!qZi!%^3Lf#`~(%XEx z@owkl;V+yt^}jv?bC*otc8Bukl#Y|)Ti6<~P!jz+9u&}7Fu8{d^N zrSx~9vC)J`q8|O@>?7vIJ3>@gDcZVkgq=7{1@Z>&W-r~dWVHZ=LR+s`kZ$SfPz6c8 z4P`#<=hLt29z4u2OE4+)JLO-w>c4K8Su;B^(PW-{@0Nw~y|NHhHoh)R>yOH}{+3(E zSv?k<52-_U9ugwz>^!o*%356=A0bG1!uV}*;QYL^wb~~b`xfBUC+4I)S3gXrnvbV- zyc9MF8?^{@T^51L4tTyBvvm#EZfpO1e&SRAetMbUZ@2ediibkxw?hZJ#u`yCQARu3;WsY3(c(dOiFJ7AEYB>a)4os zOI=-?4fmG|)wnYamyab&e>NoY%1Kj?S*&iX%IbsD21i9k!=8^QhwDVk@J@dLrN>4X z$rS6qr`3%w5SQIgdwTlNo7MxMs%*gLkpcdXQclfDFcw=bpc z&XH~~c-x-ff0PyhB#XReaNC)~^9{Sk)l)wg4zCBQ2U*`b8~QmS-CZE8d$8JS=Dc|; z^$#Tqn{uLmEpGDXpOcX|CsRrdFBHbsV_Mm@+wDbD%vP%Lc&}OjBCoC&dv% z6a_HWB=vy7lv(0gDFTBO=8Xa#=Z)K+tlTRR(3zXPaI)6m&O}4@1?i6YKX>s>+0q%; zRM?-k=h=~jfWIZGa6RAYd-duor*6DTm)ZcE1SVIVj97vOJjpLM$yIEvr{2EkS54Yz z#aC1Qa1-=t8UkC1k`sAuz6!EPSV);%?JM!}`Uri&Wx%meW8DC@@fA2H=Seqyb#*x0 zK{X#Q%m}|gZVb)&vu8pl2Fa8yhvi-N_PoQ-=g0P;u#1n>bmS;*Q*HJk1$SnBtuo$X zl*!QdpyT!E;EMpIcb)A~y+3UcHW1B*2cNDPq{)ugpW2_qi3s^Tx}i$+W{w9ZqUN~b zqd~Y=HMN7ss;fB3tdncQs+BHe#|5fewHA!_H=QX;Bzsl_29}wju&qEfn9HmW81GR< zeFf5i%w`D}s6gl89lAGt^GYu`#dBXzo@8Wg7zIk*Ce zgc$0z-9v1K%=q6!N?%Tl0D+YsM1zN!o5I7!{G_Vic}SVM-(=00LdY~z;X0b<#TKom zd!_%S)eNiT^c^UrQ@h6f0tY$tT17~Z%^*baoY%8byS>!=mu>v-^Ej|Gt}`dQ`FTCv z3)My~v(5x;gJY&)LW#yn9WTuCJHxsaR(*YXG7prB+A$pa4*&46S}UyYWMj%6`k|#Y zsTVS}i40}?%wS(P%qdH`Kn<@5+o_2gz7WCJjT;gBQ0n^mWPeY8Q(m=p7tg1E^L_mG zu*i}KOtB=W6tX%(E4p6r4<|bw07PrqS0?ej1c4e|wFQ{}p$awXI*2LY1xQw{R)hJi1uWl#zN;5wXsR;i#=2pVq95V#gq-Gyzw|FGtW`Pw{ya3H z68hUzwbLwiKe#{#b8x7V#&#niwFpRdfOUA~$`x`#o2Rhs49vOQ5|@w!@`w^p5{F)& zn2wyjEYZ@0gajdOBd1MvV=gAppvv`~B!tp|p2S1)D?woSfT@Mx=aEw(-~_vmalYc$ z9JAnbF_JlHcl-#MghLhO!azytI4wbS$Ka&fub+F~WR2_U-5*Yoq|Za4O?E8Ixy07@ zWnXz|_!ni#40zu!m{Nl2Rkr}OoQ^VlHWYFs1aaQ9$s`05SZqrN2a**IMDrBT=}1gJ z5?*p*qkxEr7qaUxsNu;U0(jncr3A=La$c9JcwlA^DKQ1e63{+D64DC6$^-&bRxh+2 z>@JS3?ql%xf6;x1HbZ69>}$}mpfb9>2VY8VMGe$a&`rkZQ_aX7VBF=jnuXRFCN)wy zmjR!T>T7w{4^QHs6a{}1an0atAjEhPd=+7=Bg9}B;+efKS~2rk_99)7eOLhkTM4Ozrf^Y5*q_`CwW`6M@}9!$ND8F5dq>dnRtFE zF0`5Z=>$6mmbK2Nb6mMVs%HRbv_F*HW+Z;%=$O>CF%nwM~IKa zn&I6BDRp(J>FR!=Yk%C<;EnMMF&sgRcm!gZq*N^ETtI7*{7xibMo{v)nUx}x1Pza5 zjFIz$dleo&mFJjYzzx-A;n9%Ww@KIp7||@h5=carr}JETak>Njl~R^0v3L`-g_<%OfTd{1@K^Qo`Z67eML9#m3u0_hOm| zZpGG|n}UFIE^m?L)^3i<^PW?|SE!UezZ7@Dw>LhL==IYNfyB;g_8$j8Pq2+K?(A-d$0 zU2G-@*HyM*)ZLz1%P<6;_&dC=1TQ4y@iQ0dPr1})+a)|PiPrgOR#=%>Z8Brb;&fYm zm7u1w^OMLr{z%Hdxp0Pb+J)uwQ5ELa>i*i9R?`Ke(HNBE(^3A*doWCpkLV5j(r^Du z^SvKc7?RS5kAw}fCzDUAIavceUXYltgKJ6R#W7;%Ygrajc()R6vGA{**2hnrV3*&U zgkzadfL#&YA?UV&_J*|h|+ z#1xK}2>Xtw0I!`KP&|1|0xrM0_DpdSl(xN>7`iFa7+)DuG zoonXyQ5ZHXr=hy8sI!%3WFZ$`wT);O8Mb!i>*gKD;7x{ZOf|8PJ|3Irf4Qz>>Kl$puG39r``(4-JRrP>AJcZPUd*n%oqds^9En`U-;MKT6Ml9IwDKvEOk7@^vHM3xO)B02Jp zoPuryW-xi0&Ja~{|6?L=4jP5)?E6ol8~Zd{MD}5z?DLNlH*eAt?0P+5PwIFMv z+y-1Q6%Lwm6kB&IM5rna4BbILnP{P2d{$7Z8Qb5rd4LsL9+k?m8mXw|Jfk>kQ>W|D zI6G`dqfch*RB~Ktk?V1fIv6)8!b8G9OJ?o;zleu<8 z)VmmNUp>sgyY1t11zW{T>?W9rg;%u!_~sl?eS1hWEK`N#BLh~QX?Nu_UW~@5h~NU7 zRC3G$&f6VesrTSz{*eseCnXQSNH?%I(1PKp;wbW{oj}M0i1C+Ra6+|2DN>iNpDFUaDr_tG{$47c!gvzf0yMD8=earZQR_ddf;8zGVp*0l#VxyO}# z+a~rZsXQx)1MMAkky3i%bJSsT>YPE@g3v<+DKS4zAaY*cQH{5TfNbF#PA167#F7b{ z5aPMIx-P<4J#bIfSQmQjiYWKBe;~5AJW!l{?(_2`@mDvud^f4NOs~aoV^r+6gHWZ^ zGj!*PJ>?Pm-z+7^I0`l&NUWh(F58(m*M8zFsX-y0f6~lk&887B68$9ze|{e0a77Tz zErK+ctSn){@k3v8!LAng>gKcWf-#yI|DPa(J;{TGUVCC?H^)lVo}Nd_IpNX5S_fkL z(>7E3K9D_*j!uYsu3VEI-VWBOOCzPz=mWczQb=n~I#^d)nRh zU$FWLY*@YUg)3+h`}ZTj2L?^QHQ%c6N}I>w2kHWl@4Ms5Tb#9T{O1M64jdU9FffxG z*Lk0+@#E;aU*+Myu1|hN25|C!0qFwo#*hO#5RzOv8$cS=W@{>425*u)Vo3t{ox1}_ zGI!u)G-0Z}b!ZkLc zhjgcr;AHTvkzuGT*mw%&u;VAyzz*!L=ddeHOmu_9(+UJA(1=SbH zk|tT_Xh?sGHz4GR-~Njnh| z`{^X;57yI5qCGKJgpE1T8vg_T8s0+|>JqyT5b50w-j9xLXOvj|kYJ&?_6ubvUNeR4 z_5u2g71lg>9x9enM~bkr{YLQck3RDQ7dRAIMEKVocE;=GIByLMMZcVnh}3Ccf%Ry= zBg*p zq7=~K#z~iUGsF}w&V+~Nnn7${#JXRFh$9`^ukGLOG3*~nvFuEu+vB3*q zcMi=Qt7ZObInJt;VF=LoZ_E**COdO%+M&1J;WdTvQOViyavRHK>2 z=6T0zjkm1#vkV>M5Ijwnt*_xDJ7zuBi5%0okjPQY)l&Ulgo*|!(L^8h)Ypyr3N6>l zp6)#|aq_`*gnSkqhn`=YF{UrBC478JOe&sraS<5Yk!UepKp^QV7$&O3=RDIlCuv4T)B2|pkM{U##a;WD=*)q*kgQ6}nBU4ofeOdT;s?4-Kvj0jl*Dkhxh|;cZWCKnV>^Pfnq|bx!VZwb;#ca*JkTkPNq$i3mg3 zk`uk-fA%)JWDZ26n2I#b<>W21mVf-L=;LQynVIl(J34svg?{hq`nddLrW1o61imy# z)Ttsm(`4(|y59f0>zi?WmK!dXkeCfi1Ib5Jez~1aJ&c;U)L3u$7jq^j?dZAZCYh-Z zBCy<_u+lPhsJ4ky9zWJ0+p0YLqBB=pm3k#|bi)1z1({M65*&OhT#YvQw$;UC4c(D^ zjbA^WGWO#=cbLSP-+eI5>8Q1_ougBo*HeE^ZSlmdd~0X=eAx2yM&wEvtG}4=Y>di${Qr&rF<_Plc)mwSlb-~uX;-<36ee5_h-rKKCPtfJ7m{vzi z2S$8~J8VjVmszZLcsdijFRsnBZwCE^nig{e!@$NG=vt`$wbAQlE^POUWMpPQ7@CVw zFphO5`}Woqi75-Dip}IKObnUJC~tJutI_mep0=c{UCR_&yJxGjv#4JD&CI>Bwa?y5 z+l}HEOxRarEl#Ry`7E<@^v%k+8g<)rKI(z05b$Z^{SLnz(KHKp{ii*Nb}Yxs@10*}?kpqetW{1HBVT#R0=% z;-L)g#t`n`z6?DgT!+*9U5%88U}*F-h`6;n5|!Bacxg_CZsLX&E5Uv0@tt8`MXTN2 zQSYfM!v>xKW9ZeO7)4P3;8BtC|8cKI&dUg6fc+!_19h&1R@-(D;a293@=(Lqkw2OD zYDQ~W%R;%A;02&#v&lzk$%tavvjv<)xfUIIety6k^OQRCr?I58*Xpx9Qv#WD66?X%NDQgTm(=+*!lYbN*)-GGtyp)u|m9Cx3zzxCpQUFRJ`$fP8LzSuPB;aS-)WKx&^h=yEogfMPa~;TiGs- z%(^nFmhL9@rM6Go5mSTRA=_?sWWHvLcis3a=ppOXnkG!4A_!E|=f+`I7Nm~VK z|Bim=&7)S|{(i5UXex$?eM#yQ z1Jl-XzE$k%Qm*cy15IO#GaifcdKP`qdy`ybnzI81= z5@A1rUqzq0vWw*HuF~h$C_kXsFB|`14IZidQXYMo$Q0GxoXS4oiGulMPV_tY8(=i^p z&LL02zN4_`k5^!9r7GDe`inBmg;<@Z=>2)Q3PLprW_x#_D;!gDSaWUN%yGB4O(Q3Z zN5qJ4gVj8tP;1^4qbdFQY$a;u&%U>&(5&9GFP+P&vwnu{=h&U}{)F?@qK_Y6($dmG zs=+v={X_IWE;yXY59#!!cIV5>cF&`*x8&S9GXKw?ZKx@|Vr4+_k3o~8x`_#=!$Kx8 z%0twzFQth2yK+}_ zA65|Hs+e!r)_xP37sLDKYbHp(0>`Gf;VcEP(fp9w7K$o+bJ6IlJr08^0 zAxDCaJ>wi^E#j5Jg{-rCZgD^diaSxvPq;9BC_eR($+8BeTI`(VFMM&umf{6uKAftQZ3c)T78qt?w%| z6Dwm4$Jw$inSH&zXt2!$3x6gWJ)tE%J{OuefHL5ReM8!a>5w9V@+StegD4s`nri*d zxo@(@UiLF-}To~X}Bqq^+vVpq`F$l zw~|BCZF;6M2D6v53*%oD;Yr?5n`h!Fojb3*F4v3NG}IGD4ovK*>g(>#^5!C7pg*e~ zI5cl6pVUmDGvbPh!l=R%g!=tQ#dV$dV{dZ)xS`i7^z^@*ES$lE+@08LD62l{Os3!Z z3U8WPtN}=s*dE^(D8!!dt5*71x%7WGBELx1?%fzT1g$->;w~444tqCtCQw|^iNa{9 zYnDwr;D1+dENELL&AxHNYM;KoE1U<756{LNh%8bLEfEuhG zQ(+Xtsx~?H70@h!%Atfrxw?bbaJNl7heNh|%vxNy-ky<$hX=JW=~zG6px zDr@@6RjV>EPWc9Ao5o7AOC045b7_f*^Q>B&G5P?z)Vyh5rSjZmsFHbqEGfr)37pUY zYb#W8FS#X)3e{|5^1JBozvA*WKI%Y9W66+z<%=UW_tj4vKM|ZwqQV5qwuY}~*nW+b z9p{xU8>xIg%w=bnbn5eS`IywV{CoDSHh3PbBQdc&f_lqa#a;-kt&Ec)PM9V(1D29{ zmz>ZLt3lII%t`Wm{=Dzh*EjP=29mdBtY+N!=S8|9jPP03!g=QNuKgD~@!?^7^#O!1Cm1A>Y)gxfQxLT;%brC0@WCJlO8l%5oWMNhhPwzk;nN&WHW( z-0K%1jI!PDpsk|=qyG*JpE|A{G%^(iTIV6-<)XIV433)yRla<8rtTK4_yh*37EK_? zViKI2Q~i^6J{dkB@XsY{`nn2j%hfDf4GkHMpn{3S8?)Mj(Q6WPDr0Tx`tx#<-ugbS z&#M*7Gc;HISNykRpzBKyKWXd4gd{Yrr@1(=Z0dttFrH%8;>GcCRxK2A$>M#9+qT9NYy@;B;6!Rx+(LneCsaX9*b=Z`rjnBcyix;pFc-5vq@?kn0kB5L~&9Oa{r zq-2WBWSU7-cu`IDs|&Qcn&{_g2IBi|1a z;@<7^(kR0b@Hft43dJz)gpJ)-4hF$3+H{FR^4%^p&l4=HS(-T-HT53{{jVr~ub^|$ znfN8j%F|t(V=aVOEf;l~41K>GYVkV289ph2$iuhfLO=q`e(^Zl@?#F>#*)^heKcq8 z8ppmD{*Fb}&bxgeRhkV_V926%>v)A_*+e3^!(ZXiNN8-2ZFy{*wPTki z#T72`Zz0sT!=KuxXpW#-?FlVO`ms2pjxUyN*OGR-4j&Nw$MQP!h{cquTjyKf8!qLu z%=f&+-N2N~iNB5y>F-Du#h_+z%Rio3Ym*nI30N#4n=<~(!$ z_vHAQO3k>^Maadfntxh3ded8?LJZtS1jY@BDcxY_`V@7y`zHoVS;#r6SnJeu)~7lM zAuGV)XIzuW)H&blTGyg^>7VblwhsC7q~q*RVVLubk{8ihAu)q^X>K_6f|b>r=NCf$ z<64p^Qc^Wve1p(pjR#u74nd1rv)x4%W3NJC#7A*yEmgeKg$X$1ubhB&Oc=aa` z@PjXUD0BX)o_9pQ6167dpKr?X!`JjPp2e>zg#VO6JlZSFGH96Lp4wx_;T(o)1 z78Ugs8$v@vc?)Wmj@0$~deM?4=}j648Dm+W#z|1^J8k3^n#!tqd5azWSwB$GCbsd^ zx)UX%3((}s0UQ*wrQKgK^;YEv;SSN@#&GOAf2v}SAxE^lebiFupKtI5xeg1t4&Bit zoC&S1n2$R5#p{|CBT~5%!c?1_9C@Lds6k6ce8|Ib&dgX+Jcprva<{(5Z?nu3;g)a; ze8@s$JG~}}uk4x59MUb%qzhvZud`0S{Ihn7^XRa6PKa@_xj&Dh(UXZizgQvL6pF+JRw!BU;XRbfrdck=Dy1<+MQrN>)7Ey6 z2x0T1oD=>GFe3 zOG>prOHExqa+H~9{`Jk4%S%d8zxqcOzJw9+RCFb?OH*ZdCQ_1FFgP0DX;BrWx-ctV zp4zwM_~G36%E2wj9ikndA7qWGX;NHw-!*{nCHv$#9b5nCNy*_%E@zx+qc)f`T}7~neQ&~_4=GPThJDbdh3B8MMJkokBqQkH^3-0 z6*0yQ=RLng#%j&%H*dBPF8jjh8T~&)KyRA|21mLR!)q%Fe#rXVmDmJB;ylofWRlSL zLjVi0J=#fWJLgj6Kt`ba4d@G3L7;V0+N3eH?ql35_HZ9YWp{sYRy1K9< zqjrh@B^@CUaT@OITw#kA_jstAD?DpV$y`A`s^xHlA-wIqisw z0HV;X2(C%uZVvK130drO~5_hVq=z*VCh-c*tIQGJQeY=N7HON=VBMo#lCu zn$ARkfNk6#(S|vO3M4yu-W)*%M<=b21piGTytjG=7%KB zt*MSL=Lph64TtxY4LK~8`JCj?<&RyS{) z_5vj$EHRN6V7ezI#)u&9?~ybUpM5DOj~oQwlgG(H5VFnB6a(pwV0yHy(z{+i>9t^K zETFLlHxP?d(nbQp+ion|ZQGr(v%5r5YzYX3)X}&Zz&#JPsZ50uZ-=$@TpZ5Vz@muM zDx7Dcu8Mla{YR2i#mYNNf4;0bhswm3@~6eTg*9163gqTbo7~^_z2@MG!&$=bZ~nW2 zz5EQVJ=1;eTD^l`%-27_1mM_j&?ikImaQluXPUPS`X=ZJj6L)DYJO`rpFX|nopt9e z^sbXwcJ@DcFvFOhj=<3a=5R8wg*5ImG}t=B^52=~WhByuPs}C0!JF=qe|&#xm9G5) zs`)?n&&a~Ane?w3PtR9dZ#`GJWUGnJy_9VZ`hiwQ9$=v+TR!`r%sg~3A|iszqAn%w z6&cb3NZiC?PMwjEo4PVtX|EBVLwJMuJmYnA^}q*1gO(Cq zle!eQQ{_+BlB%95vvZGieif5&avWxl<$IbTTS;7DOVGAAdj@aRVe9$l8dV!%P&MG# z;wIjlZek0rC=&9&MUy&a63azAdD4L@SK5-i=fM|P8-EKi{O+@2)|z7J?>ov_o6w)- zZ&`gx$PP{Na{Z6$Z_zC3p}8}i2HImOO*KicF-Ui@*}MGm0N0NU!IzT7>3N zYa!R)N8&ud_?bhdrtt@&mp2ai=dsePYS&!)@)G^;x!x+e{4BvJ)FZ^4`sV}D%|i^0 z_Gw~yl|Fvb{PCbJM~e152T?w%_98V-HcDIKZ2A@0baXlX&Ny)T;cpkK9)(Q7HOJ%bC-oP8?oEcG4CV=-nZWBNCuU+pZs=(_z|hS(weeVEc8m0-w&-;a)DNYO zI6&T?YD!zf9mra7cgpJ%EPhfar3`@0cHa(ZWpCQ=Vd%2mrp!kn@>UDv<>m1M+;84o z3>g408@cZ;8Bcq$EvV7Aw<*>Y4Xd~7^=jpGemcLn@mn`ffO(XeuybdgZH?FhJsvdb zm%|}94Vrw}I@?KDqmm0}T-Qs|nPoXz*yLQl=FmF0P%tx;%$-E3Dwk-A^fX1$5U0WA zXDVmpKstfYm3N`Sy{YL{G~+D8U3--=568%Jq5QSP&l{F_Qg!|rL~G*(-=n6+rC&o+ zUjNE>9g|1Kc4YoW`{7M*9D4*2f!!0MF7NM{&$rv>c5v{u@`wtW^uv!Vy?=#@gUK-# z-nYy;b!b)RGS0^C%>t8m1~D{PU1dv8634Fm-1h7x)rFki#CnIMBzf{C6Pq1VZ1{>p zJ;{FCeMQ+RDE5KqFqxievy44*RvDpA+VBsFF|XUq)n9V9;dh$;^U_iIaLM>KI&1EE zj`g>X&H}4y$=ip?;uDB-bLch-0F`)%iGf9$kB0=l68Y631llbgTB1GJ7+ zK}VJg?M+O9?Y9Z!Da#5&vVb)RDEU1Uo5 zLcKWO|9%iGePiRrpmP{Fj{J-OV{D>cf|(Z<+$j1DIMaAYv8%mf5lEbi08NKjZz~v9 z*cxYoLjl3#w_@4)Yz$#WV@S)m(1}rd9SHGbF!b~C@ofYC28AYR)WC$dU7MDHU%4mO zxuD_WTGJWC%=W1^W%ak7?x5-iw&z9(FD`r)nwPfFo1*-8&270J)!N#+YOhdOXsF;% z$mGP+STf{7D|nmy<(28(SxFVM&W}pvvFe7IU6ea_EGIy>ju{C&_D%~0^2pi_N~!60 zHC3?uA*m-%p93fDwrBT9dH)p?)|RFYem(mo$x56=u9Mysavm%&CgkHH6MQTJSSYSm z=Rw~n{B&=?UOyz6cuY z8X8kEJ-Q!JxZO^+J%g36W?e7$RUR_^)LQBDTPiy1MSVQg0XG}&yyu6gg?=x(I}`XU z1}cu;2?@D=T`bteSHgeT`P&(H8Mc3ubJvtSvqn;{;^Jo?G3uxgz7|Tl#CyMSj3`(CY zemLo{Us-~=p%Sy>HF^}LVjdnIS&(^g6EJ~@k(0p&<4`~_h7|+(E6N$M78N?WzE0!- zXV4OmCIYrw*?i4s$vUzl#-xd^^;(^puDszH|`3bW>NqDfS6! z!xuZhiV(L0JJ?e1QXcQ1`Tc&DpJIJSynnBgpN|h7qWVXMG({~vy_^094?RiMc7;vB zjj`KODxz#Zk<8|o?aoAh+DXB$wW%JOg~xR|j`C%BA%CwJ?-z&SCcq7fj`S9F^&&wr zG5L?f{!y5U&;-7&naBot`T4{;3!@zK4Jkh!p49^CpGe2hg95fAhz=EU7%8#?iz#*} z1-l98Xl!q-N9U(nf6-?_pLmPh7qimHee{H-p7SHu3DRfe*{ zyG_J*GA3Sk{wp()!{%@kMS;WePu1<-7BE)~Z++84TgY%IiML@QY1*Qy$`^7gr|Fl_ z1$q|hrseL?0mE6jltK}M>JR1E&HMK4t7?pw1qY6cz<%lACdQ8$C0Jf0*SI)9)&zQg z9nn(sBE!5@GVxNwl;k~C>;U_WaB{7|V13N_vzVgsb}B{FXPMGycb1L{jb=IB^h}#G zajdi6V0PpH-_epAA|GF|WE@=8WwE!K>D!xCl!4O(15?${lhXYiZ-F&hHaT z`4(dZ5j&uK<#C{g6D4jf|>4~6XvVmc?B+Bd8-HD(e678q>@ zC44x*ciO}EA)lQsB&koJhtZi*5D^*4i-C=pERmi42;DN$q=)U{w!i;%{Lk2=7Hpwi zC8vj{S8naN%pEhyCN9Q8$f-*+6`E_Zjy@57I-!wcUDNO~tKp?CXEXnNuO0mzKT`^h7N0l$ z)K+=(_f0K|^b1r~9VR3t6QgUzgeryW9q+oM=Fs>hE-bMn*cQTGnVefvABS{ZnYH4D z>wSCz$LfLM?>`5RX<&W{sVWaB!~^1<0)05d%=0MDO7wT_k|{%t9$%8m?XKoy({93S znsjvEt^xJ)2%ZCUj}(>dZ=v2vBsS+h_2=W|O>B;<0}{fvH(%UxsM{D;U$7p-J4|9E z>bSne<%wAR3`q}#HMI1s_w`dQF4;+qJM(bAg4yamcxVgE#)KfEBH&16+ z^zooP`K#yN;%l86bkfYXS}iI0F^6%%ymS?X!tb*z!)RR_z2&ZAi}wEg({}rOvyi*U z=*thXdN(w1_Csx{xJ}8=#>&`z?jcG3AqOlir4c_%rupmIXrS^knb-(i9X8+X+qa`E z#N%?okXAtT=H)l{luEnr))Erpj%^Iq7R`E?r=y z9`KpgTwjL?G6M;?MaUHvv?6o3;c5UxgZ`x4b&eRZNJ*~cz zFF(!@vu3Bp>qJMsqLe>FtUGzA<8`bBYd|*r#OsD|{}nKwR{7T)$QNGXMcuB-QM~O( zp<-48K>#O602uY+z4YD{vpsjj(Wp0TN~zSa=y&DkH5+;a)0jYJoa!hnbm~Z}pqRxmn!Y+{!8{-)i3eKy_$U@|Jd-P&b))4}J3P zQ3laLDuW|U;?{Z>FH&r5uwQ5HM!WnKO|v4C?N z=>c_f0w7Fo=3w}@ckR#8WHWP2lBgO`4la81j(xMW>C%PNZ7|#(x)U35Gk9C4m5(V8 zSQ-+;!58yS+V-sZ8g#dB(}y2SgMrcpwk025P*=>ejj25Np=k)Cqql8FOB2Zo7wlHG}&1%$td6Cnu`@rg<3d_o| zzbqL*)fs4(EIe5fn9C=XGU0VqM}_?G;D8!OAt}u{h|2j?UmDSt=xn@ypwfJ}w3{A? zK8DvodnN2J-f27IsAsh|Qv3V+q7>-PthRwb$KjEREcyIbqg|D;=2U8;t^WDasL|2K z>|t&Ch8h*?9J~|54~~%k{&v}oOASkA^OUX$Dgbd1+^2Y5KQ$j$xYduoTI-Pv=Q5$4 zN=a@v!N*~u1SU?S$B9P37p~nt>+E`uj{z!`BsXq+(?LU@(6Av6&p};%nu`a=qQ?dT z@~Eg|bzs~acTc^MTzukc@reW9zu?Bpyp=_L*Y4`-(#I!gbAOK!cl|1(mz7DIQlDOe z04;k%sd{c-DGmBn7X*<)c6N3KBAQQnVtE~n8<9kR5E$cixWGe^sX;~jF)f6qBKWo31O z#&k=|NsZcAgDuSa_f%VDc;^o zadbXGRfyX3JZTkY)>dn*P;vGQ&714QMl$?&(>4gMCUQ!G_jKWBY40u}Jdm^c zF^%++_gLvW4O9?XZ)*#`WAeNk3|tck6dl_JEoIH?JbA<}8f-d{V0M&Dk}xqdw!a6y zThgQN@+u(nV0OHX1Ik)8W>NY0=_H;2roHU!H&07?4%KFC+h_i1-o}N&n}Zsc&)4c% z%?eg-A_x?+NjbA%@RnNVf!}K}(jzddf}cHUx6g-XIv10?KMXK_S}jdu+lykvjB9`Y zHbf2+q4=!M3UilcOOn_se#-Og=va-MM_Uq%(_M~OlqyeoUtIiHqt9ogiG!{tSy6+| zdux4~tc2smxF4myW1<;S>(|+RC0WC3p7aFt0&s(XTcEmmS0!35U7;C_lMMi9E$@)5 zc-}P3-r!C?Z(%x2kChF&4ry6JhJKpZUNZt72(2M0bbt5;VJhi4GZ2R!`g_TD*BJ@?x zj-pii(7&YMYWJKgt=FTNCO3lX(9z#<}_BvAX!ao`4m;8Hunp2 zAXz{vrF$Xdc%IlsxQJU~lxwRF1iRImiN_2C&TR@A6ABG=yGjg>FnoV?zo8`hLjakq zK~A=rCugyUw6rbWcFpL+qb+i_ABO!0VXU2ias~wNO?U3zy((;;5?3JcUIIhYZvblv zZ)OvsDR_c+7OK2GmNV56IU(V49c8qerOL=aVF0D{B^4M7@M-_mdgWi+$S@k-<*yKe&tk)ApaT7C-_0UhG z*gx71O}%|}!SC(A(0<)FLDL?2v!R?IE4mh)@s(&6%$qH)atmDs$>hZ+b^1RT){EU^IMh{} z%!Aeg%I!dzX9-f$>V9}f{I$H+K8WN#^u5lmMFc_5M5`Y~tB#!Gae-lIf`wVmddDFP z#GpCtEoAx#66c+V4{t(BBZ7(GTMP^gs_Hs5l?Ucv7O_)K3*0|5P<5EM{y1-)GxI!= z4t7i2>AQVlZKbJSvx%%00`$gx{BX?Rih?oerT3eSE%nA>VFO76 zhA;FMV>}S25ujDn#&!>VyJ}-GI%KKDsF`zLeS~$g5jPPdldY;a|BtWlfTsHY|G(`| ziBef5S|W-l386(pQAQd@NP{wxWL_<@8`@kAZ2r>xTl)nbU{?gOHMA2uzOKek3VkAXBJphyf3ZJTE?sO<9KdTI^dmNPDk(~`j6p=8G<4-+w=rv;hfNw?FjwC3WxK}6BJ6q}}(t_(+r z@I!IvK_p1BL@iSqW&-ahi)aO4l?xr}demklClZqWs~|YR@(t{*!_^n7&RGgu0P`_p zJ;ky`7p6Bl0@Tr{pM|90|p`aQtWwC!531=G@-?^?7{e!=JS-bc5IC<#XWK%?Hm6I}Kms zWW}3z?Jg_q;6{l~dB-rmKm75|%hu-XMZE5jbY-xa9~^2@F@CFrx4i*4g#c8BI=@mv zi-rFUaO|blWmPN#Gk2g>N)4~Mkf|TfpfSf58eVFUU&O~31~=sg(oG!KJmj((ZOrMX zP6lQ)&l&ddS$N;Mx)e6psbl+BuM~3bRVIz%&Rxm*z<)6W2yaV`-1e!D_4DzO2g(d3 zo z{BhQbr`3NZOKs?cnb~rD+S{u_bYo6;2qv=`CuNb+ftMPMpFQs`cp$wJR%xs+aRyGh zK^0GD41?Qu_t^2CqwVGN!1a&U!I{(_tnc;D!k502h~Jl|*yG%md~Bq$>*8AdwrY*l z%Z*>x`As9E>FI{n6;W5NOa<^z7Fj1KW0u;@CD|d!&G;mH)R#)O;;&cjh|CZ`o1_+Y z@K%$TGWFl}&L51pt`l&+bybZB99Oi@nq%84nN7$8Fw_9;EDWuyaKl)qm6#L2XHm_Q z0qf$dpznV*aOX_tZ zHX8ii((b@azsgqN{3c>_>Hs)Npt4-S2j)Uo8vNN<;lw8I%<`Ml6XGA0m`_w;=ij_J zzqzHwWHOB7)rtZh7v_J)U1J7v`+U99`a3RW(&a3^2@-q&hCzal<*bOp-3N2HdtL2a zXQ-nyhGUP(0i5$uSB@J-XpUr0&yS=ffet5Sa2nd7Hd4k}Lte}{;fM(F__L<9Ts-Xs85=EY{!lr(6(>rgJZ2J zsQ3>yb;&;2Y%>>xjk8G%0Rd6T)DLG=IeslwG}J#%8#A}#`!1z-km@`khMI;0=zKO< z&c5&7iJ+kHJh?ycfGJZ@{ z)B_@W-U9WL6*F}N^nmENtjFqu>&#vYvQknk3VEvw{HX_SnNBV#N=*5jJ-4qZ%_=dP zHmQ9wa%pb|a`r$%dG&Uc`i$Fs<$84}^3~C9T_D4H7*qF73}_>H>hQOqTQ-fiCBARi zplNtsumd|*cO&!mD&vkaJ)7R+;)M9?xlkCvr~??$Y}Gj;FZ;9j$_!5m&^XJTfFtiJ zTF=<|kaZWd$G=Cu3Q6!lN@Vf67~hWC5tW(IeuL3zv#vmeRR4sc7?P55_*U{L`{P4W z5rmFn!=;An_iZW+awBasR*a#&Vw0j{;-hESbB`GS4Ms6>?dPY*utQzl1gfUm$&)j? z(=5c$d+VfRTgp6S)~tBmN;~%M!VYWeb)g$lw9J}>LA02s^5pWZl^)AQ%;a!|b7l;F z?Oa@;tJywk+pv8~7Ryxt>;YFISGlo!fVSe_%M1F1V;$3<+s?fDUFFwKs^X)2O~L|| za}aC|lkZY80&Q$`9CzMV((3=7NWkDDL_7jPx0{n*FWGNFu~v~KFQlWeP{AKX_3qo( z(0)iL$I+Qy)vn`PVT&;xYw8cELA+hYC9_@)H%=YTQ~EyiI@>ihI-dsaBa%PqeQja$ zOxnMyww1MuLye-Jo7S;LiRwDi;IwGbBKR8ZR%K!k&D~0cGyvkszjg;m6{=6OFT}kr z8}6Zcj=D;g)TM^BjG)c?{@tRNK`%lda_|;)t|tzr?z#*I?aI6U?d@mY$<{6$m8GNv zEhbCUEu! z>GMo?5nU>W>fUG-f_Uj}wG8Br160T80L zqZOIIV0$usd6?*ISIsu2*$nm-vbWY0ZG3PDpNAKx5P{>qV z*))Cc-n|!6cb&D{>B>pzj>yLvGBP-G=CjfBL!^RaF{5#ndjg^2r2H{EYQKKdQu}=B z#K^3KQ^l4fYylPu1-BlgOvkNL5gg~Z_j3>qtd&ZP`RLiCPk%WM6&25|R#4)~{+`^~ zSt2Kow2mOwVccvu+={yg)&|6m;Y*T*-rMbJd8ZeR7bSnwHJ}8)m7whm9vY!{@XVqh zgh1;2`NV_CmJc)w7UEp}fvq@|I?)Fqs!2k&c~ay1Te)ytU25~Nb*BqV874&ncpag3@m{(T-mp=or2{t!L-y$W44X zBe@eL8-9b)LvliO zGmysE`aQmCyAI3;9&B-t!9*J&hzewy3CAzQ+ak+*`EXg)Z74vKEb z*TLL|lfVrtZDtRs9X!Z=Ps(U21)=Y2k0zb3-Cb-avdYva;Zcqq)vqwl`c&f$KffHv zIA>5$Me+iS=d`(X9tJWLun15AFJJwf(~b*Q|DiC_aDKuk5D^jKmo}N6HPNpQAI2pR zj9!Lpjx>Q0n!?0bFV|ze2(ZUOCx3AJV6yGgr=v4IJC6uyxDHEW$S0Ohb3%c{CcE-O z{WNl6Ew% z2(ZX;$ZN;JgUeTIIL{p&9ThLv)%5Ixlaee%Z`&_jGQ~*$6WEFc!ma*+|M<*=@CDDr zNcf=L^^bwUUT9d@t%nbz4hocVRJbx57oe!vx)(XTf}(|?f2}{+5HmB{rsDaw5+^Y~MWb;Ffo{+ZSd zQ+?FJ3RU-6fmV$_cJ39c_JnHm&MqI3NCFLhVApHcit;YRQh5?@sI9r~4Uxx^CBbI} zNF3l`$lWEIA~-1|j}LtPx`S?2K|Wa$4TkBk-_<<6>2V)PM)~&Qp?H~YaYdizo=RU3 z$=;rjK^|8+&stl5+GpWRqW=B;*}VMx@?i`E50axTO~XBP{ur(;Q%LKNIeqw3v-S4| z>+ew;G6?HBDqlr1PL6VX;HR&$!4VNuOHnEt23CEG9p}joAAhDGc=5G)%S7$E#y2u6 zGH3FzZ+|?(JAk{iRx700{eFn4H0_Ab4`f=*DA^Ek_@MsM{;)B5M1je{ySay9S9Oj- zT{y0%k_Bh?sqf1c|{=C4AzU^3^Z%axGfIoH?ebvIKO8s z|7vjn8Yx%+$ZXIIefcHRUaRAlVF6Sx$!`KmENJNynbh|;)1@KJz~}gIC#Y{UOChj7 zTm{{Q#kUE{)^X?pM#d*X$Sp%u{KrVr=Ia` zo%iS9GV85D1Yq%AjB$d&8u)Xt#vJc~NX{r9E6^XN^8}IseIO4ABaV{YIPO*#U9l=! zabEFs0ZmV;j&8$;JMJqDdfoRQK5T;!)+U$JMQZfH+G(*z<@rv0{rWEbtwBIVungIZ z?f5ZEFp1w}Iq~?{bN{Tbog)zuid2Um84f$|ddEX}z(=2k*mKy)&PEVY0|_hwQGR3k zt>9z^IxY^r)l-QM>yE+1+W`-@x(pf`8 zIMM+(@wgGgbFYrT0cA>dYG&?rjv0}<5<3SptUP-c>s%*SnJ+;F3WULoox{NaPx=P& zWaScxOg~y@&0gJ_^*mp!(EHY{*^(iRj(*3M!7mJgXerpG?Y(pEXhxS2jcE_1<4)kd zCGmAj3q4Xj|9(qoN9BQ&PnkCJc(&V=vNiiot-VL-m>zT^D|~LtNWr_;+i))t6ctDp zEJ!kce|{#s*qZS4U>Tf!b9rvuNJ`!U5*|SMD0qjhMKAikwzi9t+wf{M8;ee`Hf|Kr zO9E!L>pd=YKbj)AQ)A?P7?r&`B^c=3FW}spqlokA46%y`l=A$0pG4z1s@7L~iW^YK zJ6Vd4{{GmtT57FiW(`r5p^d568tv!xfll2ypaAXB$>$GSv1fsasY~4<_oyN}yYZ#= zbGO%|8Q)cw6pxmrNYiaj`FP?W|D))he9xMa#P9+4PZ;E{xnuss8`AdGlEz0DZ#XFk z&E_=1tsbrvwT3RH z8ntH`GT14D`k;3hHNAkIo7+tWD{@x`7;!ADt;x$wUlKd zX7g4mQ^!a97<`{4bGIU zkX&GD=kx7>_d@>y+QFo0~ zFeu18(B^VUOPd%r#L+8)*$sM<2%87cleT9!zi&+ZMN0>p`fO!5kQZ)@Z?lpkf7|q5|#ZH0Lw@NIh4V#WP9Mzm{{=BgA0<;nX}= zZr@&jWpl8#{Es-JN1LpKwxy|T3M<9Wt933-{Sx?K^E@>E%Ouak+fjs&8{fY_WX5-P zJ=ECy48VNR#@JjHLm%lA?{A6=%bj>XA8slX(7C>>_Gx!-vubU0t;>UZM}5s38OJvI z^}uoJSUZv0Eyrm9VRrb}f>fw!3sdV|v4(-koVnY+L5ViAo80d4vG3lcQpnz44k^f9 z^;qn@brk3xRl^GUG&Su(_!+t=gV+p z!}S?Q%zc1PzH<>+uOtL|Q z%D5hCjakC?m=|?&saRsgSuJSiKF04W|)KrukNwGeL zM$?Frsk`DcLGP2h^(ddaPEbx!fizNXI5g=f;b?>c{eGlwi78Dqg=Wsy?*FhD4}SJ+ zItBpl)zyNk{ylqGU@;+*1+D-3nVivM+a+Ur|Fukbpd>`8lWiV5=B|kAp}=35W>O^Z zbKWy5OZ54K9c@KVLHT=FYT0?+Z!4ey>&CQav-9Sq7)|x}zG@$L2`grzvNGwZRRW=o zU*W<|S^um{TyYXBO26(*vx!zVnnq`Tk;1pvJ;_WG4mB_{VbC>2&=+yLJpfE>L-tZh zNo>uf*UT}cT!yanV&6-hvGyey4%1OmAMbBI1&doA=b7~JJGYS(5Y#axWix4&!B#$U*MA%sH`GnupthN#c7MyZpV_V$3zSUh46i%p_)7&gm#)mpR8_6f>#>CaDzhqh zZmn3C(%C253vpMY>$w+42BzUh!$Dpf2XpeT;!h_xtXOe07?7dZx}@c@Llooi*1=88 zBS%_qJ$_6MM?f{^!tu$jnl?12A8*ciz-e+RrMKliYhBfk4|?6hQbz-(gN16C*;t*H z>~`o9^9!-B`dw&)O|f)x{P>bI*}y1a90<*#!o($m7 zVr&DZ!y-DFUzH1Aohr@;9u}o7a2YCd@Tq_o><3;sD8qyRf(PpYrspqq>Fr{_txh5U zPi!tcw9+=GY%QSbZEC1}UKc~L> zhjO>$5~}8#J5vTLde(H)Kcb5DAciEECZRzfULqqGw%CvTK0U*rYr3D2t~&4U*Rx)i zHD3+9Doet9J%HMpn4OA>&O#UpEa|t#9!-iI;9q`q+hE;&PX<|NR4{*0#t{5g?R>x5 zyLTzJuQo9Toz$%uDy$4%T*#_K{4($-j;gVRv_mC4(E;zG(1FUsBB!R2p*HVa15M9t%H`w9NR1me%?oM!Es#%m#-S6WyK- zEsYRQj9ia!P z`V&#|K(WPo`|b)u;g~dXh#Diw6Gjy{L{ln?!+8I7EbJmt(;q~G2!9dt|IB7noWN?^ zw@-EFTIz)w(PUzzudOOs3g)Q0b&4WAnHME<>;p>5;e3@pg@Tr8Dx8hJwYEjoEphCq zdv!|gV%Lw^80A6ck-~7eA9S^|W_D=xW?jwr%W`aZ!lJKn6}WmAdTOVkdr5C>ieswz zzAXXJ1#TGDpMP+fA_Q1R?iHO|(^SjT?btz|Nq34+zi)|p@&m=Ky|k_Xuylrkh8+a@ zn|o^Dxw#ZZFj;!VA*=uO)kKH8YrJtq*V9-GDQJMKFn5XjWr}u?U-9DFi`~`G(&A~& zU%c20ZCl1fe-T-re-sJu>{-APx48vq?>AwUSkG8maRf)WTH%YLEJyjhp^ePe;-DQkcTowiSa}S~ zck=65!Fz-sQf`z=$V8k2I}b-^pJ>ABKmv(55uIdN-s|{BV})9C>z+Nck-2sd6SxrI z6NE0*@h$e)a336mr()8CQ4arl3aZWR=g-Szjde)C=(QfI0Af^ox=}zNtYmuFK_e#_ z$F~c(r>LKhnEv|oo~MmGO1>n(Io_~>Lc!!Fjr|GT4e?Pv-)H2$NyK5V?}}@9W$9P0 zIX2qHnHe){$uS%s2<#PJyc`V;zC=37qx{?%TCtSQGZO|qd(FSCor*Kb(#0=uEHj5u zduP>b@GR#1Na}P0Ob<(<%|Md3D5&W&Fl)Z@>EsSj2ue~1boZ{3@cZj3o`SfNJ7n*ZNGpy276SN{#t0v(kot0NWK2i$5&lFMTeT&#c?TDByOpmUX zR+#+G!1YvJtq(_4uM5=tmGPa{z;Rb>%lsbW3~`q1&q(pw_sSXOi07gyH`c*ejupi!zfbopOZN zN%%sy-XZ-b1Nl*;0X1&8K6$yeht!>XW!&&~CnX#9c1p~NqT=Q2*UtyZoHD-&HRL5u zXBa7@7%hb<`a4X-pdeX);dBc}w{Q#{by&rrSm|q8<2T?feksUf7hv5n4 zcGCcV06Q`Muz=oEqvCStC3|;&9AbB_Em;ISKw^&2R~BxilX{?`=9d zWjw-FuiG0xU5LZTTSD0qCZmaF>L*S*X0e19KK^hbdazKI+nSd6NX~yNW?=`RXuu(I zX#5h+@V)aG5T|kw$q2S){hO*Whlx?1r@6428=|7J&6t_RF5S6+0AfU&(zwE}zmV>6 z{dx$xL5iEpxK^3JjvKz!5JN${kTJs^$Mn_lyCvy#yGw&5q7(|)LJDw-YWdcx`z>qoxDz02MPlfGoI<4`~{`gQ1FbVndud^5$`)fDQWW7qv>&z-x|*f_-8 zWnU0j;`jrMGR4S&FZpiefiBY_G@nX?qN_j8`0YCq{%Ds`RH*F@Pwv)#yc-9SA&U5I z2z~{R3@M37_ShS=NEZ5P56PgBb;4^w9h1i>6oALmV3!jIs=PplpEkJlY_4)R*u;NI(Ce}sYX zW`0WMsm*3V0JLQShKh0n98X4jT~2&_ph1ohILkr&C}2NqQ-Llb64usr-he%F0r0{Q zGE+fKwYC1}OKxLzfsTr72$j9Z?Uk<)r!N5)%&6VdA#DzUNLL{Qt_wSL&6qd-QBhx$0}+%}0NWnT|7! zefj*orF%jS6VgTlW6=XW*5m)nld2p|R1A@@F(zcqOA8#7&9kbjKrdI31ift3r*Gq|r5Ke16 zb*1(IZDtnxh+O;l)6qAx1|tua*J(HQGyRt4p^-7fHnMYq&R^(UL&$wsD;ruO(O@@t z1R+hDAJ%3~II~~$_uZ%SEm~AR-gAH27y2hH160m|fGm{{-veRuu-eNQ>&Of_hBHr&6FBJp006+%()j zGlN*0gp!l7(*IUW(uSi9Rl)k&%*{tM)uTEZk-{QSr<#+D#wrSFV zeg-4eK(@^$8DN~;-(o=KJQKaO?{LR$t-EQgkRAThZexeA={eA{v1 z!k~yh?(j7@PdOo-i#JlqV2*X}EcdxLw}EcP{Ybe02K3!{b}%U*at z3;uy#m|Sx6^14IR-`jVZC+O;CIgJ+iod8eTBUCUPvvZ=k+6RM;Z|VB&E(5llul*Gn zBX|vO>bu+T5wM4o9+L+K*^k%rNP9{mi{$n5@` zXaT!P1sQ~PO@La34MSoa{gBZR2I+;~7RgPUcp-7i2P35qabyGgB_;yOk4}wAx(1dp z{3xGS^v#noK+#5?%f=h!RxuyE?YEQNH;hhjswjOi;4j$aus*Nrz+%3v`IfR-Qu zs1Ag_kLt?Z9mVfAUnUH8YfI6Ub29y@uxt9q`{5##ZG_f;^`}7&3hqNPLfWl3V;HrHCv7_6 z(FqrF!i}RKgF?6ouX^qHgBU9E(s9k)@XgF`G8#Luz<45tJ?#F=P0sX%yQi-mQ^s=O z=YAkT?_^~?EUMhIT&%WXvRNJ|x*~MO$CDepyyn2xTPvy6*vAw35zwcuA{9`#QH|ll z;Nbd1`|r=5-FO*0cU^_cCVhI%@qK6THghL!F!lvb%mqKwa5&+2v+j0SFL?uyM&=c^ zn_c-)2$de-JvUmd39IYt!GW@UyLnjfGGQnBbDa@>C3^afP9~tU7lsTa3ZnE9yaZn* z+7jJ88Q|9awSL*AX!&?RAP(=ScC=9OS58iJJ&0$YJ7NT}d)lL2hI{5QP{?$FLdwxr zJ!%eQvavlv7}H(u7vD@?7^KgEqMvxgj18vVQYc+Xq$mG;=kQKk!06Hsk*m4#rE1o) zkGZN-GrtT#-~v^e0Qyah+5-)ygGkVd9lyWs*p*55D=v(o^qL>&KE2xMwMVI^>GR}U z-ocs}wVguAb@z3vJlof1E78ekmSZpv*a!2Mqn?}S;Flhb?g~HDrQ-m)!a+`)4rb8@1|c6B9YX3`6itkP!Kb@ShNSv95|QMNk{hQU^~ zJM~v60|~#*(F%!2Rd60-795^ExZ3IP4d;J~67D7J5%E}4#=9?pJOWHKl(umHet`R3 z4WEw{u1~t|A(x-t<2oHc7>3&QvB`#cOvX5=aWD1OlsWj2!32eENKw)=|1+b*%iC5m z1sS98WalyHvjL@IR}pillUe}R!$|E2E?AHSn-s)$U=IvZuPYWWC-6<0igbyCrspxM zE`M+(P=($dN``~j>N^5>HPFZ8wrV6D@c(-sA9yq40jeaIJjRbsz?fhtt)(0XOP4}? zONcU2>{Z4Jws{3PwEs3y#4{gR*X;O~(P3Vh$n!RL3DVw;F`CqK*6(4Imn7ENy(+`} zXXW|>smTWp*>T0Ko5LlnQQGBe<-k>f;vs;6bo9foe$JxQ)~!uSboI`=0`)fK3*A>c zs@1>qeh8X^Wy_XjHx);8(|PEn{2P864tCn_s$>P-T=w&mmg-U}j9PJ-{b@%_9K=Ue z4t@~HyXoy+FP7EcVZq(zG9j`@yz0fd>Sx*4x^>Gx+u?%cI{xe;jsL_=%Ngp&vxSTIAfMdt!?m_b$UH+flG`=M$!! zo0ruS@$FPye7?P7TogjECW0m}q4a259CxtDm>FDm&TR5?=`b+ig5mmXH!FHTWHfC8 zFqx_n^=oM+%~*VEU5`X}#KJ|3d|-yLM01PuErmP_wzpT=zg}R;>1!pYpMCDV{GGO# z&v?Sr6fzH#Hajj}92OB?7(x?2I@sFM(m;wnikhDe^ITOqc3|O$*Bf1GH{WH~V5;Tt zJ&+_ z4;kq)cBy(RCU<=(0fsQLckk`B4)W7Apw-fCBA%$k8C_9>5B1iqZh8gvqok(&{mr3J zUT8-#{ivuG_T4Bel=XzyYyv$u@b2_USR9vl&g^g=n}s~sZfjbpI5jeb_X5|_uXXSi-?xNpxRmwW zZjSVT6#b%mw}=K3(-RzN+Kkbiw*$Kc=Na)c4|L~`Lwv+Ygjk6i|;vT&W_YrIA zNwewr`DqEU=aNBe2WaF@NCrq9{bPBSF6$fyok?KLd~f_M*nD#$Qcj6 zq&UQB1fw;jxCJa?oRiogOC|h0*I#J~NphE%qDCI?-P(j}b~hd;8ci>sEF#d!{nzL0ekHJL`C>uMYC| zV^X!7b*UWPIs>i0DmOp_gi>lNo`RvUN9$i(X;S;Gr|mO)FRyc6S}kMYvZ}5~-E=NA zt~(b~fy-iu+z3#NxW1Rf8O#b9lL%F#14@zhnRZu4DpW=fo;|BcfPrBW*YeGu%Gg^O?Xorfro zw#9~W3zp8jeCrm*_uPQss|sPxOj%~gYAI{0gUhub%qTE{ ze?|9`tE={;W!i{O{%UV#Mut8N9_SReTPq919nad2LBHsSsS;8B*5~M`2G!~542Z7# zH0tubV#)LV|Ld4Zui;8Js20A6Npf4;H-MH?aJnW~RH(ciGSX;gg2dF=L#voZ7&U7y zR!65eam8I{xF)j*R z#fY!?^VpdT;UKjloJ%gF@ngO z^_@F%vn#0b;p2R3AIv*)&!#KM#W{^TP_$af;{ku`w;7IqF8Qb$tK=%(%!q604ERQn z?;*|JWXiuf@5%h{o#7hy^5uM_BT6YV2DPCVn2G_g8Ya@{B&D`MYBe%gs;Q*>^NGCe zd|_dK)O$p!0!{?*Cvtc*?z_T(HI_=>gg+z>P(uqf_P!gfG-~*m zAy3w-&4iR>iq)b-+7^*<4h|_OpG4TNU(EJ^-0zojZcQ$`D%MJ8kq!2b0j@g zr<^<4B_MGe(Fgia}7A=p~TZCHiwBtb5*;UJB(ne26TC zZJ{s&u>^fKVd6M_P}$ws*hrj;C={^rXCa&SP~|Y_aWVb=A0NGCCtqyEKt8-qC|(xk zSQtr?J`1yBga>g{7zJuINwEnt9LHwQ4l`bVnr>QBV@oz61}Gd@pv}9}W}0<#|M@NN zssk`>Zsz=5uZkBpSW?5(8cu%+UJgj7{GRt1~0&TE(_HT2`)%@S#Bp#TVq z?`;BK@AS8iqw_KW5$ic^!Bg{B9{U4P-wKX{Z3i1no6j$C)xBuni7wR?&?#{Z!6;Tv zZ#;upXui(9JUXaLWQzz#*68C%j8&?ZP{1xwTRv_Ou$T(u9o41U?%g+v3kI%l4cAs|t2+BkyE{z8g7p;z_nJ z^~E%dYfjsPWTA;dIQ!1M=Rsg$GZtGDw8$s{c08exk@KacVr0Jc7jf;wKW-IT0E3fS4hqoah}bf)zA6bi1GYi(_9>dJ+7p2VVAR%MA+|_~IXI)$v3s&x@b7 zn*|TQ%uao}5Ayh$36mdoO=TolC^*($HdUECX@^bswIY>E<&gd_ zXNd!&OCB3aE?ZWAyTGvsdI`*pVXxtVYyoMr!T<@O0Z`viZ_faNxeXDeE{<7+IG4~m zGpckZdN@^9LAni059lmvIqatO{654AY1I_9u-Pa-PY9rOhbc807yKV=_)U+y>P$aC z>|N+O(CN%oLA?)um94ia?11c%9^3EB_GnewQd)vE;i>JOYwS^D=}~#seXU{-m!ZDC z4r<~H8eEjmG5Od&#;=YPS!S;$ zFH^zH?5UI!=j*Yoh-P^nUS7DbfJw5cooxf7I9^TTNF1_b+rEg4r&0FE1ivnOo(lt& zpwhhfI(IJ@e;B-NAgc45H-7+7uR5Tk^X!K_e(3eevo;pp=%)xhjm$fqDzb8rF|wTc z6by{5_m;k_+`e%%E160~vL8lq0K$OR4z@ozfBp$yrvAiOIlZ{Ls5t87%iv#~_s5)4 zfNTQ2G#R{0GWWN&%geJkO;ekn3=a2HM}LlrjC@&b+t$;1N3L}dFYoj$ z-iJ|_Pp#S9izEH%lRZ1P>D(3Gz&3fgAM@gWJYMvEEeQg5o6NCs81YEvzmhnz_MSNP zNT~gSL7SGq+UFv zJ;n!y>8$#ULY;X#SwgEEX_bQY!xJSdU&(K6>!UY!Rv3V}K7}%KF8>X<$*B6f$ZJyF zL7WqUb$y*-((Nsw`6GHFIBF@2($i{2H|(n(mFlm%OzCR%|7xB;;>5DwY@Wqj8t|x% z%HqxpqPgPScfOu3%)$0)k$iE;BHSPB$0?NQGaZxlDu5dIyk< zOfjbpq%s{q+ay>x{F8<{Qi(lFA(Q(UQ~1?hX6`02v6Qz>hGTX2o!$A07wBJ9wQMO4 z>9LiWK6CqE7bu`uW4@jj1Kiifz4oyL{c;wh~9`!FKH%o@bhJUbQtn zDP%p2u+;OF(fjl& zlBKZccF3>IM_uY-nDW&sma26-iWas!*&=^R>8Z9|Q;%e!ZS=3siY2@Jo~;Dk7b3#% z2~9DKbg%f<=Cqq{M~99vs?*0h;vh7)BTyhlDNYm4dubXx#lk~bJup_BO9J!8&&T`r zwCcF{E4%(Qbk)dmVRSS-kz|ZzHgCwd#CxuIwsmV~@@cF z9Vr;DY!;n;`EsGl{xdEbE&iH}%#7+&DK2L_%#c&!RA@6U`QCc5LV z(v=UP)7vYo{qXhcjfAobf~ec7Jw*5<1Z9|n5FJ?lN?BPR66uSHVtwDhhy>fKb~a{8 z9h#4P)U2|64_RgG2aI&9pw1+r9urIoMR~M&2aws4nGQMk`|2S1hV1!9cJ?w1Zq{Ef zs%~w^97fS<IjdDk3 zisj+1v>^BR|8`lp!4K;M46MEk>Be2<{Go*R?|1wAJ$>@T2U*i6PMjc6OlgE>0lWaj zoqwUw|ATTk@x*M9?3_NZEMZuhSWx3U@QKv)#L@7e`hK%bk6AS;NA^`~N+`Q7g7GZz zEyg{O2fL)GJ6jryMnpwEfng$eDI&TjGRiNaH8^=mgcnnm=txmS{{)#i$Eh<`7yA&){hG7^%uwJ5|l39H{wn0@+oL0)k_PY z_@HtU4nD075L^hF4LHu<@a}|dQ%uttnDQ@0{>^mCubRi9hwfD&xfjMlka#JBLV5I! z&dGW9fvi8_rOD<~3GWGFhd%6iV~oK-pp{B*tPzox=B9j!(UaO}Ra+fvDx~5n=)a}^ z4;+gnDK@6Cr>xKuq@NFR?%xwGtO)686^mu|Sr^?MgB^P@C|?_4`D$)~6-*<7fb)KsOgQ z6DhwIKjjuGlkl;nT(cG|eA<)d=`S2xsbZ4Z-t#?SA?_xxfB>bonsEi5=<0};37d1G z3y}hqu%za{#l2BOcLB@>rLF6?Vq}Sg8B?gOPgjy!_;P&K*c=K%$>tgLrDD9dLpsP(b7$Jnt_{$PE?3X++?+1v37gPRe_D(R;!ZIp znvHW)74C1)lv>^J7rp|nfwt(O50Cq#;7NxZ?oOBFdrt*+zS?5*><&CizI&z+W(3Sa;Z)NU}ev)Ws80$39CVXfCL zOMc1AzjVJI($G7-L(tz-nb|TfvS&N0HDn3#KtQmFyn^u_VQ)~z*Hk<8TryyW7e4MY z0*+6l4Uqq*G`MGp>p0{;25;ny?}k$vE76YukbA!U?zs8a3bz{op|u!sF;zWj7W`MP zTC6$0&;C+rU4rQ;%GSMe7)mNw$^h5(x(yEgr`U!9z*TbX+PNIOYqQ}g){7E)#kzHz zXh<=oz+rD{1Cmdw%L~|P1TgG1G`QYa#gEOYL`CIP^XVN`@&2-7*Y)-e_Qgli4AQxF z@6*2mfP6LysD((!pSTqaRn)2BXZ;~A(b~?Q*}jxDc_+s2J4ih;c#;d`f#bREvN6@skcyN;@iWKF}mK`Z2=(xPL9Vh)(m z{4X8?%s|NLmo!GB%?3O&E*i zOsVqL;y@cXSjhF!>pHoGRrv8wr@$6D>f8yQElXMdR{E5A_TQAVZEN(^Zb!yNl+m0f~HpuVvl5wkcL)SFc(SH;rcz!o-rm8u!i`;h(ExfBLU2+O28Nys|-D z{Afbce{dxa=J4#}KB@2p&pEw_ZhtbA^^(_RBBlc%3~+h2^AW&Cf;_;%g3rix)Cil> zS6$*~`$%z+3LnL~V5xm5ER>THw={kdOiQWPpk8;{&s;oz3ca*HiT1L0Dr|7)fTpfB z?zHz(RnHG_8n0gzwvYW;%u1NPJoDP7Q-)$H! z|G~c51KhRVwA1TkN($;~m;n9YZ*AZE!=eDYBB=T4syMn2Fp)TGn5 zf?8S5Ip8K|E4Dd>_tC~PbKIEX_SDhEUoiV=QK#W$LA0v9V!83g557^ET~Z*SJ?x!P z2Dmh8%<7qDW;CyarwQ&vexS+Qige-H^$?6f%cfurDD^#nbbONwu%DcSw0ZPAdlFI z{uLJZ-eiK6Dp7qG1xoQ~Jm3F(9x_)4yK`lvx?Wj_vn;{fg{em4Jt?O17c9IFn$IvA z`h1u(x}gL^===U0@}WR<;X(;971LK_eVzW=GP^E0Kz?_cMoK%c32A5)zJL+ z)K);jwfDLVeME*3nIeu^SC}wyZ7xP%xPGzk>5>&%C8pz@6BQinu`B_;+2Rij`937> zOZ)ya=HPXW?Z^qBc)>JCFm#94p^L}`k( zWQumC`_Yfsfj55dz_tX24YLym_wRWL8y`b1$k|PgPwFj3}R!;KrKFL%auhG`+^OMnHm9Sj*UvG)bI@_7(>zzd{)9j9A=)dvbwo;7ss zKVzwV2YA&fMA$huo)ksnR+&jEw{PEr>6*s-qM|%-^RCeAf@ZSk4gq=wEXdo4&vs0F zx7To&V)WN~2_wU46~5YQ=r*mB531C)RY?R!J20+y&)GVzXKj>UcXm@4RtKdGL=O|P z75%-mTytvbe$v2g*=mr?(k4z@W>p^zla6q_)(!EY~V zwTaFE$=3wL8OorOUHTn*{N+xsq8%P$e?6U33=DEm7A%9)225afloy?U49!ZKjX6N- z>yBH(nG-gQ?b^N))r@n@PGtQ4^}6`jF)q+40n1@e(p%RdD$^${o<=6=SW&UAuPU#c z3VQ0(UaGPSH8M#Yah|xD*kur)rOQGFY96}ZFW~zVt0)ZmZ#z41N@ARCsV=}=3`)oA zEnW6C+9vhc=?Bs;o=bvMy>lep@=2P#m6z5Yp@UAq&wK_i47~~HOCF7v`=3oXnaE4z zFp^?!E9LlxGxXv5a6_4CPOrPvw14+ryqvfWd~Iihd@clISvDX*Y=G}|^cXZ?9LI7! zL;?Ot^gEmPw#ZtaTVo5+PvR23z6uJ))h&Bifb~b3=C!)4L)a<_okeEsj#&`?(YvZR z(re<7^i>u}`T(_U+os@*J^IE+XJUl8ku`MVKMMXlx-n4OV$$U+)SAuQ;F26tl?;f=-Mjro9a zI1^Sf3yqD9VdyA@yeuzas(wqUjRa=6HLj@Z!a%80R`U3P_XW>0vY*|$^P?tYw_>K9 zT17I5h-m&x1-AcEDvANDe@bwwP4tg}f+PbyWK@e6(C?4Nv-!U4A^4w>@Z{XQz3QOo z$j-sOiZoVQ=h(6}XXJs+U4~UN;a(X!b*V1mb4sswHlrT;<^Yn@VzidQK@cO1j4e)y z3kXLSIk~%PnE2G!F`=FA4P(BFoZCC^Rgl4w=w`OJ4Bq|C8%Aj&#^5)PQ%PcR|DcK z`?%I{^0aaIVBdXz{_!JrpKUaK*RGhP@O__xSdMJ}1olMq&)fY~ z<%&Vyj8!)>!+qMCG})%(DDZb6>KWDpZ`Gyt=X*;j`{Q^|R%Z1xVW}Vh{`oe>7$+$G zjIzQ*0rBzMM%S5%xn5RP@^Houo(NHqwvnVj7rzY&oMDJc3*cuVaxcda!C_gQQwhmh(6U9E<-n3q?-F$RzI?S#meii%)W?|bVXek8nNTxTtBtDkwuH{)j1 zEgjc51dhAPxo$O*3B0G2=0+z@jQ48Qg6D2F`FSEafdq+Q6+43I(e9~U}!}$2im1osX zoLEJ91l^a6M+P37xg+V%{}!{BBj9kaFBSbUDM7mXMh^!butoJ46m6HQ6a2H7n)xpl z2fLDmd-d4Nvv%ErK54VVzSMVflj)_)#L&08uw7DX55E+IVnzvK8`QT_CJ?|{H*DW_ z-CwG%CoPRJ$zN}HBs;#>vm)DW2MxP;E$!B_k=0;9R+fCyU_6tYo_yQ(uvk*7J zYVZ_Y4GT#Vm@fi0nu}+a*_aT=L{I~aDaF}pl_ZT}&js<@_W2+JV%`36NHjh#*R&>| z>>n-{B@voNzD3nxWgwmh>`_;|0SaS~f2*V{c79IH5XXMmvgT2#ssB?U-M#nYz)|t; zs#FvYhT|~egn{-Hcna}>VvvKd5)v7RkqY$#?}j)g1hYBjNufJD{Gc(FywG5Hpix!~ z1%7P19ak#O!}79!#7ZB;G~;MQs%li9Rdot+&mdXv;DYcVk^U%qe=1cQ)ESi@&~BxP z{m-Klfll>u&tY(02W#uX)#X-+tjpt+8zcd(ug}CcRGtbVU>M~T4IBwrj1vDL=``ga zFR{MGDZJNE`+H1AC^`o1D93b4HVF%g`VyQRWHXaEl<7Di%_li}YDF&9<&RWI<8_^b z@3_oEqQ1%V@6q}{KbYCZN5?mI3>3=SZ~pxBYSTx7!oqe6=GI*QK{r zc7>PCR+it;WV-ph?eRGrJIb7d54K*~hff-A1Ul1FMJ|xha}im#9HwTFKVRP^G&+y8 z0Th@S|A7bf#ocim_QdIpp=iwE=Q0m{0ZhC(W+1q=P%wHfy)@dBf#;TwdEE5u(YPf_ z+UF+}?Y@G6YK{hUSpVR`j&q{Z%07-tE%?{RBg9qHvy;}(=xnhUlrxeR4jw9BKF#(!iF|wKjF{h2Q ziOHDj`m@gikdPL*bjsnDf5(L95g6j4mzbk`5Oz;?eFLA>iPv&o7C6!HabJ%kq|`x^?8OxdNXO2|{@KPLD%|52nO`UE}2 zi4wgR%P-Q}nxq`5NU4M)(YCH1Avh4VJ7ld5JRL@?6_6rkEOTZc%wSOd9S&eE(zWk< zGK)=2eigsXNK6TSEhOcW2CI#RIKCONoUIySzIaHPTlUvuD6)=Rd!G8_Q_A zPr{ss`%c0TX7`mIf_T`fD20C}S~J|&+mY7^Fx>t9dofkNV@ugSlDc=s?0afGkr6<=qH}tik|JQHr6+#MhAv zVrpkrB`m1$3}zRhw3z^mR}ZmKpD#2Pr7T9zU#95XUVj`6pJ&hkdaaO>(o1MMq~<%? z^y8j-SJw%*N3twcJfPo))1QR{o5j>De9OLbAP%Z)oQs*Z+rO3g!Yse zaiWv%j=)Sch4;qmjJF1Z6>d0W1DKF#^J13V_BDJ7yi9lNwd_CSF&mYOKRR2Z$G-@DAKcg_sb;;>(rC4w)I1*2KfJ%|2iJu5Yc?J|RIc#_Ai zN1}ose;Vtd&bV{&lEkkM5fl%fFA8>1+Hl+?>p=vz0^uLgh@x22r8NjIV-g=u^X(uI z#pnFlC0!_uEkoa9Izb44kR^t*tC!#BbEql@cH&+9@~0_5Q-AM(zgYAntTb4och7;V zY7~n0f%!I`_J2M{_y>cBfwp-L@mj;yIQZ-PU2cXfFiF`E2%|u6YRFx9&B;4yaT7-Q zyCCZ%?#wWtN1oc&zE~*0!My8M$c|n&+y8*I;$O80s0OHbr^90bp=nc2r^n7U zWt#WYE^V)I@e^@ae2 zU9Sdy1zDskBibNlhCO??h&ZyY%ow0h;4B@|aktw1pap9DUvnwD_f(PtNgJQeMVtKP zR+Ycbh2Kt{>H_)G%@U?-iH^KWGvjE!y`cG8nOe;f%V+RtZezcH1VOt;A8i6lb#x_&LGZc|LQx56uo}#CqV8O10m0d6 zS&_`DJu4)m1J@R1gik&l?L}5=avuc49QFR%B3x>y?NWot(*ZM^0&8(;FzCfDRu|qN zOLyJDaoR|u_SxzYIpQZaSXzu*Z+~nb0RSeW}6tZ_sUM%j+8(2GIep$x4Js+4I;+l+z2rQBY@PsQ2FQ$j@)0!UP~+B zsXlHs(qF`yN?EPx$_+b>Rg(RIN1I5#JFpls1qS&H_sWaH0kO&+q^zoX@5U$x>J6U1 z99Gfo{F%uhQ7y3W-e3=lpOb`>wXbpFLJp8YOWY@T@37z0Va6_hp`5a)&k{d&`3YV{ z&${&)QzA-^oa0mLs}HFu6%M7pY500kQ6S+b>+WCW*5sar#0y6#v2=-MzTr0Krm71h zklzz!!v(-iQ+F_hXL6IQ7~2VRGS=^Wbp!IuW4%j zKhoX=9?G@<1D+OjN~M)HoU~_)Hrb|43re9BqEaa;iXzL5NRc8Ha<>|55s81sIwLFd#t&-47>_w92&J?C+1?z!*#x_;Mh`7TEEV+P|jiz86-gP8CsxiKM%x@Pp^n5Xb|)=>DRiV7q)qSL2$OgtJ0G4#k@T zYo@K@_Z*x7>RuXwzT{h4AzMRQq*QHK75LW|wqV;-u)#t2Y#X|j4)+id-5<n zOV|Ihp7N!IH3?EmKNac2J6olre1~E>>>VRsG3(=4`_0%1W;3n< z=>XUd(bK&m4jb=6_O_@P%=rfeu7(eIelrTlugwn&DU{`KLv$^hpmTs>t5f|_PU0Z3? zPO$LRJE6J131X@c7=@tG65SfHU$1ApU2f5meUD_mZ~vTNRgt*UsUHG@-!5DZvr=Bf zKltNviEbG2W`U5;?+`qWPLA+cmN&R1J3nDgVPtn)9;ilV3{Z%w!fnmnyczqnxaIHf zquf1Bgwz+S&tERrW(}I_B$rcJ$P`i6M#+m z2hLJa7hJglfbj_F!8Au&rHc+h$DZbdV0wT9CThVzGbK;l?C)7GP>nz3pRA$$Gso(EC1K(r@6?dxLIX$6p%}p z>Vic#+gF$ihf^|xzj5Qnv($W_`6DC6PwahB5*&G%W_;{}1%RQ*YA9K) zRnfSR$PFMn)EAt;_)ARVXCnTZi|(=VQHB#%5vTxx z$LRBucJ0Cg$2&qUE^_bQ+3EC2{8*w^#w)kCAc{WdtU*nrXEbzG#2jI$9P_+^VOynp zB*u~*M}j3HE`lX2GB(`%OT=$DfbkoVcXBo(R`2`%*CPb?f>1}H&?-S71LvBfd#nbx zM%Dl@t%pFGMIx9`ZYKo6C3eqD<$;!Z@QW&FFiatKd%yp_&bzAb3z|tP^77gr?j$99 z{M!@VCzaLzz~@RGaJKvcrP&JPIx=&bt7yH`XDGu1vkhUY+@WIz<>f{p?%2Zph0MsR z?>#A@sG*2#FVw}Z|6%vC`A+^GX5oMbC&8Saq3cvD#Fu~{K9y{RY~Ea4xUt7^-^IbL zcQ$W5*RgakSLo)#*7>$V+i58F7}B{DZ7VKZc2t-Ruj~cew2zD1u=@71ME0{5$1#Ug z9)}>^zsx|UIr30olPtjzu$tUCBa)-P>Hfh#$n%p~5YWiFWlBt$`F+9k5wNtYj#I@_Cv+)y5t5*oT8QZLV( zzpK{s0>ugV$I7X1%pQe>9mBhBYLX&iVSr?W-<&!BDOgd&Xq9pRb_E~MgQ%3?mCD#%o)QWSDJJ=|!8q{cd7<3#{Ery$J;-gpEnG!r8!%{J;AdDmGryoh>5aVbjDC%dVmxQ0K(tQ*K$qbjvVza&a`<0)cC?1akkl2Y- zR*eOkKI+r?WQlBfvgl!+LY{hCxxIMCiTItSz0#N>`jj%u45DrNca|;p8GNn|{7wf_ za@#kbYESn+z3e^Er1K-v3zPIq53)XZw)au-^Q58mx)iIOsKTW6x0}PDf`<%iq`&`S zIhfP*z}6Y#OZC78;W#E8B0;EcM#4x4T1E5Fl##S^_)wEq{k+AdOyO*+(UE9Nb_lCW z@J}oiHT@UqKW`FohmX3K?%$UnURJ~f*|PHWxK9zgi7)so6?Ul$s0rzje7X@Vp3*^M zv1}<_i&oq3ix!Q6c*iKZ7fBBJui4=y#S#SM?@w|EIqyyb|(|buz)OGFs6W}FPAN07{`2? z%Ofyq%$Y|~pj7b@B9eRBY9}8V(B0ffE1c1SN&=ozVjDJYbW{vV!1mcFVvsc~bU7SK z0duQGVoDsZDxr;+3DLCo$!E=hKd3^Z>lI?On--P(smdf5R&Z@?ZBQ7V0q6ztKq8>s zRP=O|MOyD7jF>1RUPG@^4)zTkF`CBm-J`;{=)-%p(DEBhkCR}uNK4EX6@$k(28 zDk(&~CCT(fyVgj#8m-;WTVNHv5x{9a1-Yx&w!E9 z#FthRkrvkMb1m=W9KE^YyIVt59_@UZ!X+@!nfGrbB>3#& z+TZOOxO#O0dc#xatf7JE>ZE6MUK9;~YX|kOSpzL)t?3N~th>7-KmVDP^$IP)?@h5< z=G`I%)p7#>Fv6W|YHl!Z&eyL~V8o`E+86GbeVp5+BkWGIXsK!er&P%w=H4?WoDuJ= zZrmcwIr7w){1zNmS>bFiaIWFg(#OUOF&d3V9JUC%O&+X8`Wt z5;#RTV3xYZI~`}Gso?FOrM!e$=w;*%cKwN0G-C=k#uRFp+OBIhz80xE(BxMeX|g0n zFf?L7<^37Dy88G_6C1s5-=-34dsjg}xS|@lw&)lF-l`&H&^-MX8x*A~jRE=Swvx@fWxFGq3ThbvzQ)wt>vajORkWTbwVcG15(~Qc zt8E zbsq`^efRbryujdKJe!6c=OXCSw|BLfGL(%)H|py4N+m|(w#?{;hEiiDHn>zVd9UIM zKfgu^bOjZXaFX#h?iiO5a8%8Fb|m=zj=*H-puW03kNX|Z_SK=MJ(ZIKDx2GQUoT(V z`?PW+<)wyf&N8;(A+xToDk=AYnw(UdODQSb)29W3JD(b}HjFo>@|Wu0*6S0n)JBj( z<SrY6X<$MK~3$cL+>)!<2^3o_!h8|yRKo2 z&#`W$t-)j-wmT=U&RzSPX`Uimu(Q1;r_IaDD??CLb1d-M3e#=Mi_0YQ3}#EG(G2H( z06xr$BEShVPP9yaP?6jO zTAG?t9libi{qG@11Ki&H#Fpg7E2(*i<4`^mpn!Sky#@DWt++p_d3)oWWeJhg!L`?8 zk*@MNl2NCPEfzNba3v<*_W)Sm0y$?W=LDlNGID3zJYqm1{N2PsYu zwg}mG8n$#IM`t?QZ@Spztn@E0?b9b+%DQW_SE;|y0#RfHMMT!9v#0UMks}AYn~Euf z3;DZzev+4c3Pw(WMix#+vNq|mTH&f%!#nC&(UXcwC+KM?*yP$5zTAnM3mNc{)I*}= z4$4zqe)S}&{e4p+^n{jn$>nx8S}Ov&%f)#ccdY!yLV5Z8w$6{!zE^tWNhm308(glC zx425C|0ETHDhC zOR78j5QF?i-IbXhd~3WEq`xWS_uuVQM^@@AFi?A$A} zIO4c-Y~`z?quw38S=CVC%DAM?JS?#D$$=YzffHkkJ6j8Ns%}4fCLh?Rdc5m4N%ez+ zg*+CrstbdJJ(o&1kDM@OKIM)cEogz~Qc1~ai*&@C%(JRhD%(vWz~h`cwGs;GX>_`G zL$BQac3N2Qr$*DetsToma%i5s=)|~?f3L8kQXCK--Vo` z(p|S9#6Q<`=Gu-gk^5p72}|w0Izv+R&6OGAl}O>=kj-dSa{?p4zJAVO`D(7c=FtRt z5FoOi;`GwdL#M?Umw{(%(;STLdEEZb?@Rl?y~CHWZes--v(j2unSGl1GC{%Cl8U=4 zRekj0g)*M!?VLrS#`Z`&Mo^$vKKW?uxV3AG53xcqzbHC>nzpR*HeUAE+S*We_8A-g zt>cfZHgH>18~V(%9_X`$4l2#LNq*uWszKeE!+w*%qqV=0J960YjKiUweW|5^Cd+JF zKeqJiewM@f=5jg=_WQ48x0@u}%5`0-`dH4e(okB2H@SL_45zo?bN{zoIoFG$FVsrt zoUe$C7-?1AkRRl5VhL6in7d?_H=c4^{)oCe=Z$^U>4%ppw)Fjetm43@nF@OqUF#xD zS*r8oA{I}Xwn%e*wr|u$k3VO1L#4S)`;F+haRMc8FJA7rc>`}?lWv;z>Vg=6Wj%AU36)LddGkmks#1Ub>V*Br{)g!Jtx_*}K^^)%vapWS@=$kV-# z6D`-b%E=p4vzFuD-qqStn6sJbdGbJ=yD>|y>3~66=Es*y7UO>2a_cn447DfjWru-{cjr~R^#wxeQ z?1@sWdAH9ARN7e=F03y~>abC6-zs~etnX$?9;C@QIY*~G(wyamnK3MG#sxWct9g6a zv~{%x-MxEY)28VG2WdUu=OqL)0|$C~oY_x2g#57vPm+DdIw6;A<;5B8H-LtVC9|z7LWD2Rsp+x3G^?>(2fRM zMvXa3vpTbEV6Bx=25?lnLezJ^3rtzpG(j?Lpv;tE+2B3DMK&?zi$$FN6mjDxA-=-G zrM-RLnY4Z6YwT-U9HEd{VRRwRZ1)pZxMPX0B+{5kKm?AUJU>yL&pkXuN}h zJVEs}>20rupSC^j=Dz&Qt30EX+S_}_jawe9aG}X$ONdVCeSR_^>jjP9G0SIPgGO_@ z|B8jY8wE2W=t2%<4AVTB3A6Hr2rk~%b~FsPTp@ay#C0fd5)$%yd1XehNyW=~6eqx< z=W_d?xi+9!<5Mf^sl=VL`f)}>0eF76=ZP5V-Br#HcvZ;YK#6GtMZuxxZb{x(GafqD z5W63R;ecJ&H={M@9JqfDo-R0IrtO|K-2*kFFNgXbH*0D+y|f87ITDsjsLWB9*1j*bo1@QydV#E5E4F z*?#);;uq}!nMF4vxhM}{QbrX5cj3$gNZRByZjY{LWI6f;e{E?o&n}>GI7WN-DohyT zVqpC7PR~DIr7JXIG0P@C1PCYacCJr62}>AsScE7PXtc|;7lC~?Pex`EmPcc4fsRvTLKarYA3HvNoilbh6G??Le&69t2z+jdISowYImwH@Dz37)P z97hA=LtJAZ6x%oIM(!!As+Eo*{JBaG+0XZ^YDfxi%%IgCoo!%A5@y<6eE6oaJ6E|-oLVO zV7k!MRVHsH%mw!hRt-3QRL~;6*4b&zEN>=iAkqn?+TTt?5pOfZq{VD2MqoH)PI1By zDhZYywAL||A$~^7y3D<1uNsdAVPpxCzpI<$s96h7dn;LJJN6gL<`psz7$3WGtt)p{ z3*Ks03b9PXM0qgP1`d)8(S+?%%O&%SgSa>!U!ob~Q4mSZcyZpMB7qfu&!*J~)zrQo z2CpNxzwrdD+le5=wTBNsh8e7x9(y!(1eMy`q1Mx96U<;x;Z_FEpM!H%9sZ2cvQPZN zV>#Q;_halik6Pr{f=dLQXAtjAik}_nK`k&vM1+)l5Hp84`iMkGNe9qCKs>j0KnZAZ zfbpce2ExO`#jtC22J{zRVGrhkjV9l_2k$MGxS93Vh90bX!y7?)<3%5jXT@%iot>tptUT@d0@*@!Wh1gNOWlyIE zlFIIM)tiH*iKll^k3wNvZQuk%PoW1NmTkF7FLBdQNXe$I6l9lL1?w@!RHU?dUAgiG zZ_qt~738uzQZ>^wIO=6fnUWk#YMJI)qPd+GtN|j$J(>awVgWB1`NosvhR%2RLU_GE z;mo(|23|HHSQLuUyC3>UA9=`R>HJuw`y$xWdT;cbo^k(EdSGD0cQ(6e!bX_84p&QF zs2jvajv9rY_w`%WSyi<G73IBS>ARD3Ru7wN9@3{!A8XRndznYGrT=Sens%L9U&qncQg{`6vml4j3ft*P6(xP75a z;OpvnO5P~M$yVvz%=U&CPZS0N? zn8CTg)WG<6+yXjY%&=V>_mmUJj=xg zaM+;ZBLSV!>QnelF%`cC)+ig!_C?dM(@1$WnsQZ~H~rCe`$;$iO58*8 zzx3EN+bsrdTjfi9>MRUv5dCMN+8BxDKf|7v&FSdqkURNh!NZ3E8&U1wUTYO!lOX!> zOHYcrAot+GuS6maZVM;}4ecJsa!qp=zzAzB)-F~{+4e3)>8p&z|FZft*sVNWejKgk zn7psIHUa~`tMx)7tf*(%R=Q6qN^GN}b!XdEux9z;KYzQId9e8!9k`dLhu>bFNgY^< zq8OOvMGzDhOtE23w`%3}vCx!x{ks1GQekA1lhGOIKAvFze9b_#cPmybX}pf0Toy`6 zj=E~a?QV{Jl`$WTV8i~|)!S(ODjCDcB|oOOTBZkX-G!1DReJq|1QKehw~4wq8n_k} zRf(y1;i>9zbhL9JEKDnkGhd9>+(mTuD$)CwWWLHjezw2MP6eFg3tm(sS7_x+EUcaj zpy@?5j~bCLZ~iRjebl-Gj(Y1TijhOx4CdJ}&v!&twMs>GmatFToJ}t)Ci(k{+W8XC zW8v}}*k&X0&+VZ$>)K{?5b*V?`x9sFV?}Ri=(G5dIyi70J*<~!d3J(&piH+B9-gK$|82Y=Uq~MyePh+Z> zTE4kw-N#oM&&G4jv!v4cWkH1q6|X(PaMbWeKa4#x+kMX)*8X2kK;P9X7D$Mo8Kbe- z_Vv-&ZHsL;@%x|QCQo3ifTsd7_Q1fvDgH7r?OSuQPi)0eWwcbTV&F2xf{{A2AY!*H zPhoM`%7L=vvTKC?2Mqa}V0ugX)mb{bQo7G>-M02Js({L_!rG-a@we2gjORvmUcU5s zBf998_4x|}6x#euMx;sQlBU{%1+Pc-wBA(FzvuJMg|Gr)3wk?asZ<~O#e#vHM1H{1 zX6}sKBdr^*Jp+JmclU9ps93Tt&-$ob>$RXn0qArUi64ogVg8xt)}^+^Ah~O0Fy@-P zQ686S1i+Zp`^GM?bQ2&Yw<@H=@X?nZ<86{$#lT59f6O=`X@#T@4^oq?4%ADoNCh`+ zY_$JWfAU{mfB&|5+PC=KWIHU@@PTbB`RUI?Pn65&t6zm9QB`liv<3DXg>t63C(!MJ zpOuis3psI2-beZ@)H&S`vHt&@g(bquKjj=RG)13G7cL}>WHX_-u$Tf1oFcy6C5G5-M(pDCI3sU4W((M0gC)M8A{+(T9vXefMC-10h&mZAd`V!a zJ&8V{_pv9^ja#l0x#uJydT-s%9gA_t^fjeByH{__?PM}bL`vh(q4)jgJ+dtqYv0Pe zA>^S}=4Bn87IKxp5^rE{JE^NHUV{NpLeNIU_*8z+U{aGyQPDKgl|n4i?eJ)RS+HUt z;t+$4jwo|qOKwY*(H;~ZY8y5vQ+`MDwqvX8$NzArCsucfMC~3d_`b<~3OhX!_6`SP zi?83F+4|WEH~gd+U}!d&7&Nl)zJLEs%6MQcS`y0wYi>mz#1hzI4qKB@G1Vr_?)L#c zvu$WiHx!sxT-y|bLo(&cFORr(z1#F7%fq-;bBe;IJofirz9(`~V5KmBWiRl;%AO}7 zF&+)J4M;*klq;>SMZ@}gN1g$iniGJO2E)ZjD2_CzIH`+n3VZz*4&9R9gMUvcaF z;ni<-U3PhuSr@l7zs#ZQ{SwY03cPg}m26C;$x~zB&wb{f62}0iP6#&89L;_~-^cA1V7vVmC6j1w-oO8s`l@Y$ zjf5K6v1BVN*PA>E?wuu4Tkf1<%}Dti&4rg!;HIrxC!)FZd{M$3%S#be7EIbc{U(dg zkJl141~``AJ6Uo^Bh_LbSD%`(-=nH^{LfLr-IOH6M`P0;eV?I0vX%CSUg>F*&%%}x z-cQN>w)Hd{=sO*(hu^*IsuzIaiA@@2neVP#Ls zuZdbrC|=m=J0a7QZ#+Ao`gqo???U6&bKmNOSQ!p3-A*~(7%^v30ni85dZEV#>_S!u zQ-hsil6l4J`X7Bl;4iwRw5I93HF=_wBzl0cQo4JM`JN|UDJuk9Lb`(2-n@zqcMpg2 zz$mrPsIg;_v?oLIUve*G{_7Oe=YOW>X58={6T4JPF;hCii^{1!{*^?+?|IZ(6z7fY z&MCru`@M19J&$`PQ_u_xfsSgnWXFbEn!*|sgz+xOg*g2>CaY+3nz z&1f6DsvSF*z2sjme`@K*hf*aB-uzko3%(WKc=&L-t4@Yg&>c zm2?|r$*yZX30={R;6jd|Z1KEx_Uoq`oaR*Tr%Dvelov1Z<=`l^Vaj-2~Ae5sDM0G#HyKEij&o1wrq{l`Ev!8J9I! zdmcR>=&?Q7%9?b{ra$nP1$kOymV{a_XRJChgV2vZ@&o=wveE=xB%i-;eT-CZK9wpS zs91I-{-nj2yL;%T$-Ah2fck@Ew?`1+u-~~-5*tzkTl7WgroU`6<%~c#w=m~t7E3$W ztff#g5{X_aK2}KVr4aSR#T}s;J#9B1TDgTy=SMDw_fbp(DPbrk@~~U*D>)f$36jFf zpduy5E+gdX7czs_SGa_1_3pXmMoJ>h7q2+`P;BvX`oJBElYMKdI3{%GN*`^YA0Pa( z0D>Vq@8Psg51{gF+}V=h)U|8Joj-pb=E_7jKYK;N{D1lGD8{vKG3a;m#p{!2$KTp@ zo}9Ci%OHTu@U(R#MgAobq{}6edZ_MJVqR zS}BG$`$fM>NSxW+QPX|$h&qdzs?g1T>gKjJW;H7IDN~Z11zR><(dLf-+JG)cH<=0V z@l2;3Twj=Q>%(UHHZm3_hw zp9hlP_}^+m{)kQA#2$Pw#y;Df!Wv~@BsMZa_ea93zxEOUJ(OtKMDq}aLQ+!F-WRqb zC5BZF9L!?T zR4^gW;$xN^-sTypV@c1vQug%4Sl4UMR_*_;LV0;xPD|qV-|rT2j>oY`SAU>=+T_U< zJ>Rx(6WJjh{kJuC>{#lV*3OH*O#TxYD$+=!YA~lNY`j<47_y@D4f!vjAtpVoI6#3_ z4jIUXLK10ayLq0vilCYB`makBz*w5HP&QGd(1OkzFX-{U^XZ5$;=E^1`1la=+i*u| zC~pM{BL1r8UfGcORO#(MqGkQeCXOicjUpZCP+xOyz_vFLyMsrf6B%sSK>h7`5&x8- z_daW_GRk+=@o4n&(yMX~cj{&`q<#)sQ%UNiOH1QEFkF9Mv_+9!b7HUTe&=}$Mw2E) z?rHzQ*QkgbZnwjW4n&KF1Ou!X^g>9{j)XY;6UXc+YX<*87Q8qwNI_dMbH74dBADbY z%cK&`9s9Fi{Z!$~@=w)z>tqQYWw%FGa|8bXsGljr(tdL^c5T;8>8?>Pjp?EpHmsCJQ>*{Ny9s54sF6 zSROH*;l=Uc@@twl$|r@4|8%)$d)p5_{ib1>nDh4Lu~i!Uq+42aKgPeYY%~%qF5UarX{GKk6u)jDsAmAbnRRWq@`8+6Zc3H@) z9=}V!wni6>Tce(;0x#|sLdg6A)-Ur8DekO6JV zH;H@SI*xzver)Ul`fQfdeNLirvADSSSPJB%N6!dbJ`i&7=g5k9|8S5OvLx{9>cC3- ztT2MO3XL;4RS={y45~$+yau1tXtjv*;p}=}EKkRIA)e?L;rZo-K@k`cO5Kgx^ewiD29hGhIk)E1>@vUxss#%~8Y zYI$#2TSIo@=~yZx+K0gJ$1Y*T=oT|XcbfKV z{1Wc?*${vn=;sUrs7*=8evfWWf3 zl499VjS|I%!|@xhJDXSe%j)2Nb&O2%$BD^_7YW^Yd$BXiXIEFvr2MrqI{by=!Q6@G zF>}IZY^5r=ON1CX?Ys{XD*I65XK{c{E~7(zzSB^DE?tj&wqt0bVCWZ)w6NgRX;mY_ z;zF*H7SS(j1VxLtn?~d3%E}0zp4v#+hdOR`#^}64(U%fXvgeH-Z22HzF%8O>g&WnS zqo;UtnnZS7^H91_T3WgxVd26+XgY5|OlVXacE=`$+YZMZ3$^RLZ{JGp$Q>K zsVlUYjE;YEo0Zww!Hk?8=qwl-|GK-GQSqnu#>9cXIdi$ZW>)m)#YX?~j`-=c+uSC> zmZwicFqg)Ii&~Fm6`>d7neK8~qjs{l*DB1>D3*2a(>Kt?#A9msaed1EGJeb{pyp;u z9|4vkXb);bOP}kL$3pwKlIu_qeDmft=+=y+ToMw$hTPh=`h46_qRQFhAuPa26i4`8 z_d)uIgv2L+#ZUIfy#Dzt<`)#6gj>7pNv<5p1gFlC96PeILTE@p3IE_zcE@gB zXmIpP@RoNaoLVAw{$WgEkRE9qla*nCZ$ENfy6niI(#xszD99>p5Wi^v^ zo}4Mh$=zT62;0w5M4t{~zSEs1y?y%@`WqnKZvvvVev=4L&}u&yGfMn|;O(ukH&Jb7 zocxh(`+B9*;*T8{+0muOpTw zo)m#>P?ppB568%c9Y5b6n2yh4r`F^M3YU7#T}v#?fI1kt(*o9-Ic+M@9c~btS+X1`*R-1$f8cpu_f6q!&x&6`k!kl6`l1rNlK4d4J9n8BD(UQ7bHhG zE~s-VFCU!^3_Xtb&IB^r133VCR+tDx6mf3pkuhY6MVJhBlBE(@z&7OHUWmG}NN} z+VNwbTz`U>{fVauep?8p|UbiB8u*Vni>OM9rD~k^*(Q0HKpk{C}PsA<FR3v`BX!b8pPO#-7I>HVZHbHr__4=(_7Xco?yj^&vg5~e0 zQoHsf1a&}UYj2vvTC@pV=mWiD0j>pzozHAhg&W(x#HUK=r2>mB3Lfr65gEgEkXul+ zu5$ukW3IQi*}#K{7h!1!q7;YU1-|QM_@HNz(we&%I&!{Fpew~Trn-7(+)0-s`lLf&^V78w? z8gjwHg>X~aOdx&m9g#cpZL5_2^FOO=4RI61NB%_7lM#SDBkv#W?BW8A7gb0}N7k_z zRQVMvJd|ZrRmF%U3vrT1xA6f0C3xU_6HbW|I1uhJXU=7Z0@UTpXMW-a`ZsVG;r!IM ziwscR+?Mpd3NLTs)jeRJ#smo$`C4w@%FeR#RU3XU0Y`KG7)1ey0jEcp zN*xKNjwo<%rxL%8*@P}wQmO?jjflUnE8qFA*r5W{qS6S8ihZ|KcQ+7jWZXj`B6w>D z957C&IB{B1V*VUx!C(&_G)tVEUG0|L1q#CYO6w5pXFTfB<1Fn*b22mtqP@aRP{5L~%u$L~QX1 z*Ec$A$A^yMH!Q*}Ct!4O_@>l&tC6#_xUpIJfvG*ia8D=B2g{xcR{9EooB)er_x! z#_;h<%(%fm8bg6D*GO+~Z&yWi^AC+(VcH?%^YimI`~H#nAFc9Wvq)V&z=!O4Od=Ix>$q?0Duw}+= z?&EezwkE?6zKi!b$=NV_esyu&)~#EejAED=-+EXZ4s@xTBQ-pok^#J#n1y`xfYQOb z1L(~kTe$)AF*L{VjK6n$ByDm<(Yu9n4m|yqaa6J>;c-Pn>HnfVe7|$>|4MsMWPYRT ztwCw08?8M9^92;ap5qK%O|o)wdf7T6A@tzqcACI?An`%dD5d|)$5(P8p`oBxj6Kki zm3Q;CTy@RSjKlJ4%Y$EV#lA+Fn8B6`@vR_m zgg7oj(s$m96&bax(0+$$ASQu-bicK_MNH@D(J@U1<>n`8XKHSb_f)&w?+{y4v)I(L zo)K((r_Mepg?Y>SG*DL5s2r`_xjMA8Ss1pVZtW+`f~>48%NJ~OK2PD@(P;={uWJ|E zc%l9`k1c-9$}U^`sI&71jTR?I^*O64KxK5dUhA#_a{(NVQQe}e9+E!-@I*Ru<27Rnl^l(= zWDfh?x#I!zrb>u_3Q#otZHPdL(sS|cHiXJ80)_kiTsBks_1>ILpHHUkT5Lk@5=cr{#!GNOj9(5-3iYhcaCS_nlJNW8P%i0F>7_ zzr@QVYuEBIA>(_@8c7iZE}xet)h2=7)sP3uq$U|kr*Y3sLjvDaU}PFDKd|txzSdt` z%R}eE=7n`#$|C+Ryzro4$e;(41mBg)j9l>+dhf1 zRYOCvI|=I-q2TK|K@2t)%Rj3aSx6??x!p}7zWet1?@jK65DW+ouZ2t8(dfdjEJ3h8 zpSZa>pB#DP=1q+kUfg&PCjEl!acICr;r=UxPa?|8{MS5m=0x+HkG3w#cI09V} zq9d!#Fl&2txc!8M<2KWyX-*H{PP@L`j968PH9mD(K{|6)u~Vj;*8;@U>6Kthv|Vee4WJ&^YH|!Jqf^v*3#Ituswv(Pg!l0OA1t4Z#e5lJ z^{5Cx5+fd@pChIl3UGY%jM72!-5H{ez8{NKmXX?UTl4&K|4+(Fb1AwEqgZ|`XqjjR zTvDHUQmsOGn4~`5*C9YT@ap1QWTE9=*4{sNs)h=t;i=dHbMO@uX#EPX*ns$o-S3Ku zv+L{YJySm|-Vxwt0LJv6RRG&u#WAe>{pBdz=D0!%1w+r*@M9T4L5tzFhHR>CL!sCz zv+1Ntpy2qS)Z_+wKrZ|c(uX1(*63rAdIEeCz~hjChrJirBdItzj8ptmHu3xhegW;{ z390wl>%I!u==F)n1YGX#cd%}-mc&G*xY4m?=kb1zzc7Krsl(9VNiq>~`j3rLX9MY- zfey15HYN~>&!IC9Uj57cHf7bFR!DQQ+gQhsA1_L=u?S~tZQm~4$pdW7?y*6_BrteL zjnIbBdGAbh7JPN)Z1xhnhWae|oTc8{i2=Vi%*y2Ou{&6vO{R%NO$pdYY`-fXxnqS| zm|oOV&Vy6ntf%>_er~M&oYE`JQ&5-*pOg%k69v%T0giU1zxe&VjdIp?JH7Nly>DxX zjIrySI|B}AV<@8q#$8U_)`cMffu!K#5qqMp0IT-3zn1~xhX)dSr2>mzM#kN0(K&keZS&0N7nWxG$b<;K7Q&Rf7OW8jeOxVGKeFHr zPkpGO9)6uoLjZm<&#$h%!{f@XqUMG4`N~I-X;}CpeF4 zg{>aY8xGvRGzIwcuBEgqwq0BLULIXNKTQ3v1u10^a?3L+~)^Jg2FxDP{$W|2Eo9 zQ@3^>1a18CmHFGU=i`QlOFR~mSv7e+=OaWnf(X7VbjN;D;KPp;BUHmCZhpSZq2gz3 z3I!NJcPFPCA~g%c|MNo-*-miPp~y2wQeM9aLhedf5lDURKbTX6ioa|3?4g*p==(6f zN8^nA31PuAE|T+>OKB=Hj|{#A+X>#@yNc4dBCj(8m&B9Na4D!*+9c$D#C#qF7Y z@6G*me)Jy)^sqs^R*_de7316V$y1%(*3@pRP1NLvfEix%mPJ%dU?(OP9pa!ervSDD zu*Mtd1nc&*K^i}It^Tq6ichSrA1xGK7Q?UVu8_H%0L9HiY1czu(bES#==C5gy1jgs zVqk8qWAx6SdX>W~@W&(@^37=T-S5gwd^XtAsg%2Tc?$83)SCyX!N?H`hm>{U0Av ze4>xda8^?)J)+}~x&Lq9%*k1R9m6oX_U+pOL;I84C(K;FclA59|M6)Ix|6l@mcQR4 zT4Ve{<*dE&O~68g?b7;v$<`=_ZKUGBxnG{tP=so`A5Nyl&xv}5>#o??*vZ1eo}5=Vj5_={S)+nZ_nkEalH;R&}pgTb+vjP9=AzD*e#5q{z{Ui_&` z^7j?~u$*z-{WnTQtN4<@3h$Q@VC>T_nCHVJ? zWJC8cOpwC2G;FVXz=h(qB}4(2(pAQgc@utFREhx~fRU4^c)j)%@@j*!m^;Dk>};h@ zo;R-m1kFeP@skIkfi&0eFPcjZ=Hy(6Q{R2Dv|#^_*g>1{kLNjD`vWL;E2Mk%q*(@Z z=Y`S}FTo#2q?DXX<`){6FMkXbhBxZqi)ghZM}qc2^xvKplDi|}j+YYq1_Kv& z=1@ZW*V@Ft5hj}`wVonz#_PvmF`|_>2&Vln?~ETahR~Z_=_8-SNSgbfFR?J_D-edm zzrG15-f7?{PEL9Ww6IyKqES0~Gn9(j(3;kqcj4hq1><{q(`|EB{TTdrnfwI}{44p= zPGu<2Xo}TTN3Ab>s@q^J#P70+b~I_V;md8>w7?CI@2_7*F9|X3$1mB6!5Q^XDkTEi z(%^YOe*aUD4~`uE%ijd}6v^Sg+ddL3z`?&qem_3~0r9WD`@-q}dbTlrZGYHh2h2zYo`0tQn*{>-6c<`Nu=f9EBy? zoaG0ctWUXPlHdl{!%<+6Z$#F4y6V~*0322KrrND~yeHDy$RCXjqEqz%Y8J;J#0?e3 zE1^Ml<3UUG-68n_>I)}Grr?L_B?rh zICri~8AcxO@vYz8S(7*R$PueY`x`r+tzh1*?k)By^a}K?IcnM$r@Tfk_uUR3-oiO1;UT?#TmM+E=;RiV zV9!2vRZNAH%HZVy3@`!>#i>)LPM$Nz0~3g^kU(1p9^^wE4^jZX@f7udB*17`SSKX6r=xWDI>fHm`F8GwaCL949!3a1&V>4yL~nA zj6X2wbkeW^jTuH1#F;IaKHyH}^-m-6V(0>4svDx?5of}jMBXc;eQoiR9vNp_#l}{}6!a!N zrbXrD_)2j8s(@|e4txQ})Onvu&x=qdYL&AVC5 zVCZyxM$>Brc_huKraN|@o0lsFen>3V(Yw#EwPHH5>>8!TeTA$4%*_<9v)nYJA{Yew+R zps_1|3*0f55@wVNSr>m7Ot|O4=-MFugtz9|Y&@z9aMl$g>TXoJDv0$VH?JsQP&WYk zGs;U$@20>+JCQ7)nW_#7PR_w+rTgk0cwP7QzJPwrq5Av~IGCR;{S0>l5(g)2b&JSORW)5Z-2CI-#Cb@lZbypTGGkg(78`_{8u| z%(pB#%t&A=J(YMPWBWSl?v>a35~nDea%O^lK=A&0#tmTz3UT6AuSv;|$?Pq@S(sP- z5I^aQQy@S25zT_$Z7J{bZ@Z|3*W*%l{6l_!Nb}f!H=ZWnKw%nzQEA1d4)H&DEHXrSTX%6Y&fpT#0u{o;q)f zBXs62Y8b}CEa+iK$UOMwVv2dpyChOK+_^T$eo~%t#{?XBqsN!A5z9>YN@H(tE`G4y zWy~wJOeLF^fGUOuXUTCac@Ib@H*vxMPtU;nvhyxMGx-|iBLk>(F({X^PnXf5OX7a2 zEcqbh(fQPo>H1EI`7lvC@N_S+ko|qxvWP#MAp;};!|Iem)7F^ixfyu=mMlj$#ESeu zDpP|Mx+RXIzK5|2(Vh(9+9P^i>&-i2Be{Avg6@>n7v`5XnK3@sm}(hQ&uLrX=lXZ< z>~AJN&gCSL2vj@Yg8R-kE0Bg$qviRr;{#o9_NwPGHtD}6O*T2$KU+6`o(Krw!g3~H z9!@<1H=?cCWj3VeBGcB517O7amhu9@B#Wz3Bbw5py-#9naLfwT*0*jS_v59-uh_KVV` zbF-txT=2m3II^LxI8O0ga-zF2T95YdZYl)zi!nRzH3;-nM`kS4EyLb+O&Vly8iR=BG-ClkspwUnh~N-G>4fLdjwI=ji>I%GUUs&K1uny#FQ6 zoIFb=InVu!?8ZSg*0bs=gGJ|wB4P z)RdAKpTC|Wp6i=NW5nM$V{`uUMEpHZEzF?1UiUX{W9+Fh zmXL--!H3&8)f3l}X?>}JfBKl~d8@#D+Vpla#R`C*G~ZJ^Eg=8{l>?iF{Te$mHn z^}+)eNp?gIK;9K%cIpO>saaWmhz4O5K%z{-H01aP$jiB#20IEPylf&mJi@}4a6%LG z4iQ9DbyS3`>EghBkMTcMuidA?FLKGLl;(Jegxc!rugG92zsJ*;?z9xXDQPMn^61gX zB|Tvl+nU5bGHl!KZ#kKJhClUskNNx=nKMC=AVj#IFaBt9Jt(-WxiD*RgY&~E)xOGf zFPJ7m3ukGJY> zmN-+4zTne?8Dj{S#>6sbRpDttQzdI2pI`2FaG3W1lt5 z-&@HahQN$7#%d%Q1Lcxf^F`yvty|xE605O(T+IU>e5`-}aN9HpD@{aF?{@8)8qQWH zXGc58?_Lzt_#9`hM|p|ozo&_6NA3T{K)eOG*iIfDw> zZ}2D6a8x${Go>mc=rS`Cz5A!*9Am1_PEuZek`q`zarSU?kw7kPnE2{nW*vNb9bFTP zFil=S+MCOVIWVv(%HD_z(%IWhat>eN=( z#cjY~dnih1(8YL?RJuURW5vPeH-jKQE(S3#LP5xeECYm-zCb!p2L_SX& z88vt-Jjs?^58{?50)tr$rCCUA41@F|pwTn~(aQDR$zsGvqfh~yyfv=xWU?^)ys%<>EQ%&r|lH1Ues=>L}am{)v+(Ik=Q$r{0z2v&@mQ&`@;IoOQCY zQ=oD*lWBswQNLZ>z5I!BFQ#*U_XosKIMh=my+kmJQwo0$!Z#Zbh_Nv@1n@tKszPw% z;Z;f(A)|{)qRS}2gPxW-D%O9xkj&aFwvh#FwYa82N>2j-c;4C5;O&ebHuUY%|I_<#j zA<~9+h7teL?1#f>GfVDviUgA$!w}r3_;UgjP5O~2HsMnbgDA^FrIq7i&)DO)%aa(Rt5gRVOrS&33|g8zv3p z*vU>|$U7lcEJPB)#~|o01}|>4PnoWX$pQ?M*nv4VbCeZD7c3BB*7%L*D%T<+<}8C+ z8+z~*`+O-1OYm%)PxVn;o}je;b2eymOiVOuF%3gG!~bLE(^F^8lps9Vy6$*Iys7!9DC{K^8=gTEZUpK4a%JA{eyef3tMkOi7w+Stx*E@p(r zov+FfPJ&wH2_$3T9*ILk9*hpAJ$Xm8W`eZGFyON;+TW5(j9O*ow5J8!Ygeyo_9m;| zbAL}}ncxz%04eD^YWs}b=18*?e9Un50DUyvrs1Ga&{>0`Xd`MRd^t0XPj zcX!pluoymuj6+#9O_&Lppw&H->^<#tWqU?2@~dofwfhT{0mvtf_(Inw;fx!i!C{DKxBXG2bR zHahwgVM{<^er<4jTQOTiLQMo6zX)`c91F(W?mtPc1HRFWHnQ+=(QW6}uphtJ0p@%$ zK&C%{a{ycd1*CV5qLKoz9MC!icW`S;u)S*>*ZPfXE!h_BPfZh!4aNi7EP2BOy*+!x zm^+!vJxBY>0k1e?Y>3v_U~Qo92_RsDme1-4gxSM zXpu&*ah8RY-)|}VvLKlzi5z?Lwr$@qltvieGC#J`OXS89q<%Ey0CtHB-TI4&hB0Is z<0PQK+DJJIQVpQAd2dRqqE+}wv8-Bq;tWcQm$t`if|@J{KFSPKe-YM@vm5X#xqA6B zvvf$~c}w{{gC_*AMo+jwM@> z7vK23ONKn|YxI}IXMiL7fJ%pPO4nazNNdwM-$GZzBPkV=l$HJH=;-|M|A3|TV_Ks@DY6Vq** zc71T>(R+xipyae<2(}YY;f#{<@?!H9=fQIaUw7?_Uz>DxrI_s2%+N#1xC#Cex%ft6 zqWeLsAvN!#NrPv5yts;`UJ@(5HvL~Qa2~(i%QiZmY+;(o8C5iB&6%IANv{3y?G@@? z{l2Mz8pa=nE08KK%#c??=67dxq@IyPJiw?eo6vpo^&@F}T;h-4eZ|XVWq%U+|3Tz` zqwD_;WPX>091<3+-7gK#mo1>5OS0HED(j`SrdFoJ8{( zG*L=8yuQ0zbEDn#>C?s49Kk#F=Td2m4zps_QW8{;t^$BSfxz0&!|4tUaYEO1LZLtutp>ltX)J0i`R*6Y4Py3Y*vKqh zI*m*a!ou!;7u*7?A#O7u_#c2~QR~3<>r1oZXcEU@=QCjt-&BCv9S8IQXUdO$3VF&2 z$fyH8aMbp*8^=f)Ex=aB88+X-z@V>XF&K{$P?;_NQ_cYJ&CDiXxQsu@14O0=`Zt3) z57HTL887M!mk*E%KOP}k?a%^B1YySXHf>sr#(XpHJ^|VdM4PNvmMddcIMlD8c`D$U z;sC(x2{1Q}*;BxJEr(e_dk8P_yRmCJuxdyJE&;Vk5M7eXt$1g^m4qkh7>y+ZE2o|h z{{Ufsz@4GX*Np?S2lQWtU&F>mpc_D$P@a8C07Qyl)yWr5mGWQ;#y(2GGabjWki#X| zv=5113)a%LYq)YHFi`Z)SV2-2bJpI_o{qlvn0jx*j%J=45sbcTO#@rM%_W({b1NP^xDQEAe;g!@gt?5SdoTGhekOl> z#6BybKoP+MX6+0<-UuR{`>5yG$Oovf?m{wJ>KvJ~s`>*wJ{>?np2Z*P%-&}!En37N zVIm~t4>Y16P-1a(dSK$A*(bq$AfM>b z+I1ia2Z9mu?Vx2Yc2HaE*!A)b3E2i9VrfWf9|20nFmyBV8JuUBW}3$^1$bfhzQP9A z+8_1D!NxpFk|nMkbFkNKLvqJn&o$IKCLk=J5v0datCrxuimV^&%V5mys$K(uHQ zz{JKoS1M&SWxjIUXlxu^TYUt!mnlRVfSl}&<@>OxsHx}8(>~$&Jw*`nxCbzcVt=%K zY7P;`dAIa0^*2qxr8WTCu0gkvYv<94Tc_ki?T?l*PnRIgTz1J5uwga8T;;E8>R?-rwJq+qmP*mt;<^(bMT1csB( zwW&JSf#43B!wiEe?Picv2gY%%^~D+tM)b>oegW(j_8#fDR-fmkUX`dFO1w&{0|IdC z&HwDEH8DC6nE4iJXXqYRo^&7zCw%N<2r9v^gc-02vbFWv2U-%RAR|2;g5zp&DfQZD zc3jq{LS1GEk^~TY(So9g3_~y#-4($|e<+Es&-HYPDGjI`^+t)2;{GmjG z4li!WTti6GMi}QDmUGoyNDG5PR=B4YkoPN6!VIK@XG8rBLh`m-M_UUc0Bt#U*Q-G5 zn@$q?3!tgG+8Y}a^8PhUp20$1`@O7F^Ot)5&SeB7jE0t#A418E zQZ^tiXq^=9Ipk#a8+D8WM0h_mfEz%;0{Wn7debcodDpGZ^60bl9&U|d{L$H0SY4gt zcNIx2KmIH^Mo}?5UKs)h7Xe!lM3` zg>m{nrc(w1GmmitN6F~}LmBzl6O5E@k(}I>#~d19g#K0<(uN5eQ?V5%0VV>SmO-N` zc!O9{JtBjK+F`;Gvq(c@KBWIy1bZPgg76?!_&kvPvHd1|2YX(zP=w{lilP#J`Pwyp zhUoS9{cF~xQk4P=foYne3z;^=kVO%E zQrs%#)vZFAM}4}r!P#>3FIr%2jWZqQ6W61>v6G%K-n}shK+k!=34v17iCL~ZZ5$)7 zq2&q=hc-z_0{6UixOFSuMNmS`0kTD7fsofGG@ptdeJGl?AV+ccJOe|&o+c#>Auy%& zDJd;QH`+xwAI!HG#>(t}7d3@<%3HVCx_okB^S=J_&)Y&&*#3^;|IZAWzkl@K5&lm; o*ncb^=)Z5v+oAtSx(b+>n(|U4H2BJ#3I-or^tbD!>Y4}q6OWPj9{>OV literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/kmeans_silhouette.png b/src/comparative_analysis/visualization/clustering model/kmeans_silhouette.png new file mode 100644 index 0000000000000000000000000000000000000000..5808ad8cf498dfb6bf0cb0f98a826cbce273b575 GIT binary patch literal 65969 zcmd4)2RzsN`v#6{@1#A92GOF@uth~uq6lS_5-MbGTG~-68b*c8D1^+4dMiblNs^H9 zPWE2^>sC6>DW7w`kKg0*|NVM=&gUF@d%vHr=eY0dzOL(jI;*H4J7MhXu`Dbs6XZ5+ z*v`T-YBUSW(1g(=@tw{(rZoN~Y`#&=e24J?bF00kx-47wnjblAY<}24XRf8LshNSX zks!Y?zu?lj`sU_G%tQnP41c|V-`G@7;KdGq1-!|aBb(ICSXfy1(mz82B?AmthOn^6 zZIDv7_WV|4Wxu1jhf#0k7Om*MMM;WX|NQH_9R4o z9a#B%$YQ&fibL3juqi5go*A8{sN8ZmtE{W1(vUm)d9<9}=PUV*^>wZBezS_RRZVR_ z7-y{IWSFqy<9_}*GfpdJRR0$&EVnC{OW~n^{z+w9IQrL1j|x2-KCl08SSHC{pF8~5 zS6@a?Ir;00b?keOPx|%MnFU)W4gK|%$;mM^jX(a(b@_ktVe2k9OV8WtEvD|!(WF%R z;-X5trJ?4Lrz2*s(!Vr)*{-WK9rPCm4+gJXxsqEh``*?a`0s_=yxEf!@E>8ZU(U@h zJf-$N)?}YIzv!n&hYPm9xwTdxs#D-xi+bkM1-&6EA?~wRAN2DUw>$VT)}*9DZ`HYA zr@dksJGP1Y=j15gS9>^rVXLZgcvVed4D<8T6V5$C4xu?42Ej_l`%ySQ?oA3Ti^6_6j$Zl^ZeU;d%9KbZJA|QoTMqJ zmyt7J?Z?{^4jq-=cHhSoe?2wFNHIT5v%IlggWcxax1xB}?#|ZyssNub2B+Op`}WFr zzN>AU^c}jJ^Z8xAw>73t*%m16Ja%J)8a`e1v1vKC+_81*M6JH(e0hF;wNC2j#Ln;W z9kouqA^3VmWzzXz$;?Q}tv6O~WR>iC@X4lv;~JmRvzik2+zc<#Twht%8hoUs!IdAd(am8l0o2w6feW5t+O_*kUQ+tIEvnhLhkhSl zEtD6uBVfK=Xx{zZA(%@xkLKE9?QN3XQCij|BgC8DuD30_EIZb`cw??lMS+h*d)bxJ zuiu^qc-wAH?(K=!va4CW+8~SD-Uds*TL0}_@!qaR+sZqqHP~qv?-?h5fwtv}CQRaH zw_Q>Cmun8m$;riiy?KaRE@bEZ#aSjp-o>_my`>VaCI066iuIDcU6F+;$E4ETm+g3T zFn9jKQ9MB^Av+gq#zpN6)2PZy!@IHE`f)0B0+oZdyZOZwJBl(g4zoNQ zm(R5?(3U(=r$2qE+U<0KWDQJZE*?F6Z_24ESIM3<%S83a13|K`oSWt4ckJ4A)3&Md z&J96584bPX=caAmx-}P@?^;cZs)mX4_8mJG@Q-trp1sz{Q^ca$FV2D)EOlaJ-1j(U zQ-Pk3bGV@4hgFXZ3wOG$!a=Chi}t^F?_hIvuG>mUJHz)6_LdYL##U?nWEXyOt#R0g zM~6Z-o}WH@h0aOKnh(t}#jJ}O8^3-}>NKL0@#s+gPK-vx>U-$gVtc_awkfA3?C=t? zh{AU7W@`6tr}GzMq}g2gZvFWg0vVRc=^g_4PmT@CjWXDg8>}LaGm)dBs_Bns6v}@X zs_}SxP*9NV=VPNH9BS}A#rwM+nRnL2$h%GC5b=}ca!|&ZQZ0(J$i?xbY5UT7qq$q8 zA+q}T)7v-^!WNZpr3?%V4!*s8tfQ&QmsO%|?zZCa<8{_z)mi@Mk3ZcLo%v29^1wx- z*piW}59VyLsLpxk@1Yg^a35pw%<(dZ*DvjGYJ9UcuIk>c96z}!x#8N{c$}==#)&)( z6P*qrY+!Fp=)I_@RjZ9ZX=F-t9!_oP^73)&QOBcaJI~Mxv~8}g^6Bjg(6X=J*xucv zVJvv~{c@UP>^C+K;}21b3Zu))A7@AC$|p8vh`O!hEx=Hx^nCb~XxH3U>WcWXvm|p9 zhlG7>v|-`&`u7yBI$LU1TU0BrHvFKBrOKYNO>Ewx#%7aT71bcQD+_~n1i19HXF645 z&*qh+oL=yK0aI{UZ$?{vY4ex!0te!|5Qapo>u%rRxsJGfbl-@dn>@!~enw*bi#az} z8Mq-f`nfOLO?yS8Hlb13fAch(L@k@d5q3VGtco21M8C(b$4OUi{a*CQzTI@IkAx;O zKRmze<&~8D&er7K`}L&^oR3|zSMEQDp5D?aaLU*?4*j#MVPEF3b|?{1zE` zF#so)hKLUii2oiZkI+#PPV4+CE$wZ&hc>@lT)F%1sKW&-o4*(B*7LTxhsR}2L_CSB z4h~tR`)X=#pwa?{p<~lK*=BrTuwCo->cW`tmhVL&XQ%LDVx(-V{5{OyZJbdqX~gMi zmLZHCR28vQBUTYdFcO~~%nXZH;MsijZG>)m6E@T#>=-1ht74qnwsbgk)ibJ#lan`J zTRhFEn{o{P$w4T!z%gT#nS8QkE)#G2d}6bl+`Bhxi$hP0Vy(U(^C|1j`qK?f4jm<@ zxy+wWQ{|gFHb^hiTcjo`JL+KWV)5pj9UVQLwatjsvPJU+GQH^0!xI|LN%VG^P2iFc z>#{G3)N{3M`4(hY7#*}b#z=%28X0Afy>RRG2cQvrIqlH{bg?0oeSZv?E-4ln(IsA$R7dG^{Si^9wL{Gd%4<{I}$p}^np)UiB zi<4Z6Ygx4g#KnuMisECgxVe1^ReSi%gq?w;v#sw(%F-?uMBl+&(TBGcn|*z4Lhp}< z6#in{*;;G$A;!3NmC?ud!Z@C#LN1Zm=Da*S&mUvUxZ3*QF^Al?QXtpiYB4Fz+ z_nOYPkInP~kVrBxjq}4q9lNaQr)|owsXp^~r2p>ON}gP zBD_!BT5FuqETXO%p4hSr0J8#tNC8Q~E1f_7wcIx3_3y}Bu&TQfqoTY+q%XRpjk9ev{XXO>2dHRTZk0DDtI6 zva9aIj(E$OGZj1Y8g&}VUb5vo)IA+V`=bKc=uB+ay<0}6$i0_q+7%V$J@_qvKgvDr zzCX^usP~!r&~{t-FqIGgnzXN(nV%Pnzg0gNo zVVa^fA0G>LY1`VyeTX&;!S*iiG@FJM@%5MYpdgMnR!;5C3shPU=o9=k)5j^NbLN`E z*Ae6IAqt-s07fV&-_=@M>{GLbL)7v@n^m5n6Lwae?iJo`d7ZBjPgBNyqzMvU{?VwKJK&^)`^#DJGqcu#Z1J9c-JlrJ+g z%aY?YK$^F$d6XZen?7AG>m{#GXnSMD>CBnS#she6|7z;H{j1)Knh%fU@lSS7cjtl* zP5b)iZss|T?Nz-sF~!vtK2CX*q5&sQ*QS)#S3YELX1~562vB?@kV_A7o-$jUWleBd zSy`Qfr+vfAxTY-m-WI#4L;3vo0Vx2wrJ@Db8OPVGLHJ%`?|x8fW8+5?c3EVRYyz&? z3Zl!t*eTtS9)U$Lz#$Vk@_Aiq4HDGs`r0cBB64o40F5153iL|KRefx}&O+3h_vLlL z@m&el4@XXz?Wf4+$Lno9KVNV>l|@s>|46USPngZY$On|!xT}DA=;bo5ocDq5sxHfN zzB9`d_XzI{1tyG6KQ}{wU#=u`O($R@dRl`E5 zM&WX7yJK1V={{1)LFDQN;3#bAwiR4<-&RmuPbfQtc*Gz3c_<;T)raz4H}~LY_DXH6(=IPqZCaMbZfq7+vB9y! z_)~(qo2jRUC<3Uf$oDQWg*;{jvPxzPl2`~=vx(p9nhDO*BBd7uBOLCdk}0XxTy@vx z`?rsecf?!O<^fu`b|khn=W8#BZVeB=L6uTurbITKL#yu^*Z4Je0dgwiIW3SyWwwM( zPxX_#()9TR>#NdweFSS9XcgsFs(j~){;XOkGHcmZ@u-Aps3+PspKIHNQpBSE`3&aq zar}zN5K;E+4fe%OS`zVZO*}P{-B$-)^N6&I$QUis5dHGyOH8nNSj%YqKn_6N=bqHd1d`^sUF?((2N3+b_<0Hm3;dtuf;dVXLaV9K7f-LP@$Tm94xoK<;Elb)z+!K%Ev-RUutTZjr;1S_I|#J(GmME3Nn|b ztECwfj_dgNvO_BeV0vwl`HnEx8y2VbxF;taaJzD)IZIxkioxZSb9dwUzK_Rw?!a<1 zHKYq1!q#5AJNmFh%&Khc6MAV7&I+)Ma&+VjI%%mR`}l=*7p4N>A;sL>?7@HEs3>mZ z()t_zTW+irDZjcS3XxWN)_Rm?+;WmVZNB*Nsr8R=1m(6{2PK7$xf~kF>e_@MZ0L%| z>VJ5!_e6$7=eNUpD;-;ltU3^a8XWQz^Y#}2SetncS9`GM*emyCAtz6MbTYL0_K<=6 z;wNnOwGyTEcx@!77W<3kn{ckOQOAYigsY;)w@p1+jey!<&b4fJv@*)>rtk5!)fWUa z-nwvznpb#Pok~t}>UF%Y8NZVj89$vHZMa+RMsYgcuo@8|)5MKeTwL=|epv1pUeDV= zm#2B9)*62b4GB-$g%5~3HGbCJ?SSmoon~KzT&Pe7cz{vzuY6So)%H!5 z@2WpM3PE}9Uc-Ex$l2SmYiXsKtlKLOf$+&ZoApr{2s;WOzbp*Tzr~ytufFE+``gGY zl-~&NnIj-A!Be=3HJqXCRS>Die6=K8tlFWh48SsPj&Z^rinjY+TmV0FFsXJJmU!K# zx>>{_t-D~IsHKUW-T_!bby9`(*GwR>rW97mK+L-H%2Oy%<=niTdfLx0SceZSiR_IC zyV9&~RBYe4HF`ylg+W?qp;+TUtSAiVZ{u7tpqjX;k@fB_PN9*0vT+__Ke)RA+f6=-7Ugr%#9g#E#EGe3Q;^l z;m?X9)ui-Ad6naoDN}NTcJMlMR0Z4=u?Qx#?VWbn5A|}eYPeQGMw%F^1(i7SDh=L^ zR^LAc(XmZE!^Y;}V_O{*tQ_P9u2>&ueJ?7JZFj^N6+O$mMIo6--aQ91#ir%B zD*e1bQs6D)Bz4r*6Sb#r?cMe0U==`6o~N)`#MbKp-kBd{Y?d|N$*l#1f5@{v>K%iR>Wi%#lp*^Lyjq)XU> z;0~=Jh&XAivP$HEH&J_2M$(Vyd78+isw-;7nZLuNh5)P_0tUc`T>}}o%BEpIw!9Le zo}KlVKm_#$+r(XuP5l>cz3GSP3&JXvWNO<122hPgwRmf>Q*u~B!)9Q+ZQ`~~ipYhI z9aX$k)aa(WUld~U^Mb+1x-d&{6%Yj=wlvUm7G^CxH$-*GqD6~z+<3z?M3_sxEI%0B zT(R%e=Bs>nP=$846dK=@aENp4?Y5G8mEEm{eNP~&3C|UXijYlD4H^FN!4FYEbda!~ z!Aia|V@I9_(M+XZc{KYt3X@WB)do@(GZ2a+IU=c!} zVJsn7nqci@NAGBdr^iPi`+NGm_Frc8?fo5WH+_`NRFR)z<>E{-y0KE%yx5`DpslW? z`u#&+Vxmy4DdF?ZQUU@yBD3_-oUOelPY$O-5={c}!K?t~k zs3L>$k4p>_!=MCxapnqXd_%>5^R+1bck{auB-mWN`gZP@YpPoBh@HXSWkweoWg~K| z0x#px@RAoN(i`(TgH}z#XB*bEx7er@+d9g$d^7fxJT{sty(dbuL<~~|*o4ym>F`^t z*$Ti#YSbEoq%FyO2ypfYqq|Wfg7SN`Pa;VMb8R_!1-Sh1Uo3MorSDui@cQ~4o5rtI z1fg;2RT8XCz$9w+c2!7X9m3BDW)mlJZHa0%PO6f$^znOJZ{0)cq3}?hcmEdmqSdQa zD!lE&KA~1P!=S>Rz#b)ZHu;eXU~0jByu~Vj+)(zFnV@O%d|LI}JL^+xfbFfiD~_cK#2Pmk>2!vpDXGmU|VslM+Y#X#pfqOysW>RCGfP$x^55c zm$PTj?n1)G#s_5(bm78y2k^A7i{)^bPJs`a z_O2?tX4tW#FD}jrm?d~XA5aQMOav*UZ>J*K*pJ+s*I1cW^J;6JS=}aV9+W{l2@of> z=~&c!Sj~`&n6_kRC2hVL+V*#vn#{dSUoARVoRk=r*z(~_WVz0}UciJLOjR?u*+nzQ zpYn0?(6Tky(pT8n_Ow?tgM|sSuK$8HJfR?3v#O8aF1@%mC)T9Y*HJPb$Q`>uff6~+ zl=A&utDC_9LY?c?QGVZp~)y=I!} z0dEj1)dbiaf*?mUJ-4nmTl=$d0+lCNCEgk*ci%HDf3;}YvaQ2LO;iS$j}#Y(XxS=D z(UD?PokW<<^K%D3B|IL<%E|5+xh~Ig^SSpPUAfp>pv!uF9k(q(OesAy9>-wa)1UH= zvmZj)hh(Q@#0_SPA{`Ny(WQcY($eioD9LvL+4@6~85?uDPbykBJflxsIy$qzXn`uB zNTnyR@_Y%WAL>$!$w*@ISyC03&&+w|JWd63k_d5O%f!AnaS`_Xo0RqAE$IhXSpMJ8 ztA2d)|DVLM|L=d;g#gsWeLg-8p=0i{T~TQ@CFSa<-f|Oc%wkTn zx!=4Qyd*64ShR)l+@?ZkXn7FpGJQ^0h)n zjGMkcKJ0m^yS@vnYN#3|Y+^teudlPPJU9v=GfnD;hG&k06ujZ=WFlO@C-*wi$t2d8 zG(5HiGO^;XOS6dTe0pM3y!Zu;B8z;@I0!FAoHDNuqYwsk&H;3o&!1eI)M<|NA1BCn zJ;J(Phj2aK$IOl|EWM@~GW3^xpnHq#t!t|w2);#r59Qa4s|2}~kI)l@aUZPv{FG#| zbM_kSF;D=8leo*cix1m2ZU%qO*0n`f4OfOZ_4ZU}2e?wa1F}@3EF3=M_UzUXxDW$SskkIXz;c^`)r^|z(nOvcHNTE@tAjztcwMHETQnfGIY z@y=}8bC&NpN`fEAT+IM4%bT{X-!=D_eu*8y!g2&hw(N8EHpy$;KuPlp^WEIs%-^ie z-{b~GLB+4M@8q&`5pn<`P(==SvqqRtx5ubGZGkJ_ym?Z;R2&Z#56Qwnm%BtqzuVk`y$iyWi}n- z&m!WJzKDqL(AFqm6j!y7kgk(mArRvdY*l~_r_^!~dn(YLF{0}=c5c{)W2P+J^r~mp z$)|f1GsRmyMa(O2lj5ZRb{)i^ccZxMFV#GB0??$70ReROV1C$rkgxsvPp{=i8wbxW z`vaxWCvuS%>MC})033~)$ez{`i>U(5?WGJ|&I=%t)P?B+TI?o?2HE%M_<;S(Xc58# zsbUfq@TbeC;9La(9J={Yrh!0LlBxJH$srypDuDo|LEtTVbbxb%%C~oHv_u5M!+R4BJM9e6^KsbO z+mWBF9H78K3rLxSy9zrmSG@J(lu!3iK{J7y-XY)5t`{Oy?&~TMOr;0t17c4`j-PoO z^4`)fwxF={0HAX3ZX8EZV1}moWgy`&>_HBTTb&3~NbO2)#H1X~%m!9u0ub#$(Lobz z@%^JZ;D|zWXFCiSb!kS<0y6h+Qf?wBV5B za!ffuhzg0cC|%7lLxDb^sBc&5E-Nkw*yf`VZuV+XfIg^RTTl>X_12~d8TFPQ-BcZu zwMo3;Pwp}$1r%?PC)rcaS_C%Z10;ZG=4t79;($SM&p$=LooHYaB*ifjD%g;V~&N6otm10!)LvS%bxTPuuMvdEe zq;24@FXuC_<cZO@-=M=ZC1cOb~aWlxJ5YR(xwIUYmvLFv~<#@gPoS;|}U-}7r z!7}Y6jUD&4C;_;deq57W9DXS5v5dBTy)!B5#JLp480Vv`%|TrP=-3jNeh;6a8Q|j> zhZr^6q#djnAe73i@gw2Q;Fg2L<(AKUV^NhsBDQf-`#q93LGB!^{gil9$mA}u$N+wF zw7a+sfUx2K=rIF}2*sACd*l;-q>V;Ek0uOwt6b!Jf`o$BGDv?EuAovWKh)Vs$QegG z8(HuU#_olXT4R`VZ|j_E z0@_;J#OhCSg3bk()TiQ&a=zPvP5etj^ru}3WZ1{pfwen`6cLAz%Ols@)0#}m2Z{VB zGA?t!@fP20_0i;XQb+X?+DL4!lBQ*wRv&(^NLB+n^IoV}KP1>h65wm^cBE*533!JP z8IE{ZiSwC-8K+ud#0e=)t0IdJ5xVD*L+(TA&_`~cE$Ns*2?7x#2vpc(BRfZ}UYjCE zIosx3)oX~V2zIh_)*2ChedO3}OEU`vP8GD31#0?3fWtRe>Ykg5-uSCY^4qM-5>(ls{R*QhRt3_vvX$C6iF z*(UK0X~3+A>uWAC54(*X^N1~~sJHIpAn^nF#6d#+t?015;@8`m+?%~5JmD_!MR<56 z=u2N;-|&TEcn}po?aBq5wLliCv`rwb*MLidLRF2xcZ{OT6OKc9p;Wgb9J$ygg0*LS zTTvuoB&VQ|(Wr)|~;OqwbL5T_i z>)C-5PusDt=;Kv*Z83QU%h6J|VJvCyFhVcPl`z;Cwq78s7d9a6ys)4fHIng33W(&M zsCqVNNc^Uk;<-&gwR+X*idudbgoMn-icD7RB)v?|3aIlYWGJiCwfbZeK-#PZ zm>2~a8JV^Qs9>V_$PD1q>Gf&|kbB#Tar*ky;m2kbG8Y;V%FMutebay*=G2*JgJajH zMB-47)kei*RsnmMDXGb*$XD9i;Ou!}zntpza&wzp|CcP=i`^p(b;nZX;_PyW+$W{y zk$7stA6GeFkMe207wjK2I)Kfuf%`JjONA6#YV)C+FzI;^Tg=!QCTom8eWNdt4J<+I zPD;|6JLw2$qw<_!m2_eIwg*tJ1syuf`_yY#KRl5RlD?B#3uGdKxp0YuY6T5guR14) zRBS0WYw8Ky`(7RFky4DfWFM5sYh1c)*|Nfzl3 zThs!-iwLbeuaEuYq@_#?Gkjb0>7M0a$I8t^n9#6D7n7T08NUzG*&p8A>_N1cC{zW5;ol*-T4gx00WrZV}+>T6%`eA#_(lY z+7U#{n(^c|Q&$L&!LG@o9n5L{`PdmoU1zrfPLU^8R5-b-;e4r()Avz$J%>q={*QAF zD$I;LJGF%znT%zR+nKd0-~szA2V!vD6@(Qc9MGhYO(3-;KSVXN0K2rU&*p$|Rgy#B zfeoZo=mtZUW&qR&yNS;~To8L)_SwRb5Ya8c6mn?JzMA-G}%WvnbvD7kQPohh#+P(W@u6ka9iU5-v|TT+ngWIsAVeTP&&r^gBt zt%5WHYGw=Q*|FMM@K;j0LsHLN^8)bUWMXkmxUs3YP~`>QlG(-qeH+{QT5f({r;hTo9f19@g8u>&5fCo zOvq>|*gh#S&DLVJ5U>Emx6pGTgSGMPv;zye zJN7bnB90!d%|uQyKDp}ra335Qe@r5mMWO3G962_<-Fk_31PHHOwOQB%hRFQu4ZZ59 zY=!gs%701y1@7O)x91(=V@B?c1S70S)lc*{6Dd#gEIBe35d3j~CD4>z7W`f*!!}VaU-2DzSj>2NN9Y86imtQ@?4_nS3vW2s16bzm&+(B@5uoYfH zqC^b&>$p;enZlNw&*T^;il7ghq*DcNXpvt?34|4_*KR*|al@iQm&c%Jj!I!U6dE(KywpLIaIqtX`z`b|iV_vHB> zb9XuP;s9{Vfwvv)IK~eaMg2=!4B}gQPZNHd`bRBv8WuWk`bB$F}0cy!4~wO0`9j}$aZVNGZ6x8 z8;7EoY;;UGhOXr^Rgfzz;E)OiHekE*RQM&6DH&eqQ@F;kAY!9S>4v4M_I}8myTNzn zKnhg`fgs-Ue&1{fduwaqJUEHSi%w)NN|{A+q&*N30htfnxYXt?Ta;ljfb?&M%27C2 z@?@7qmy^TAf%b+Em8fFhG`A zVOGI40Wow7g;+ceiRpE@R+;*6!efWjjS7XA{IOU2G$%NW9S{Z= zYbC^z5=Su&zL7`;p^}sK#tXnatpr8$SpY{jkcu8W26AWO{G^=``{gKX5aS0}5mI-< z)U63-T3M<~a6)o#OAUj0djmKK@>AZHIuRkRV3d5lyjgGp6jPVh%a<>kr`P|44>~?n24y_I?(w65u&`=mWuf|FjAr9q0$L+4ztr3_*b@|lvD)f#V%YA zlSOsTj%{z6A7+TRYAjQGu#QA7QqT~&^nt-`ftpD=$If3WCj0?F9pH$c(JA~vAdU!_ zHm089SMC70qNVD|-@cZ!jzE^z>1_D0T=HDCoo92`Yo@iSTVd<>@U0PH`TfR_&U6vx z1Bk?NWp46OfEhIVOLm679Vd`*8*+;}obF9Zym3FmX+`u_+0LX*W0Tj5GwsM*LXRNt zzVsbp=Oa`fBx{5xbp*rw9aeY99uxq8dJH{W-`ir30!;=}U5Qs!7dsj$7`ce~3i7I7 zL_`e-m9r?H>4ix6*m2pU(WzaLdwMz)dXbeVW}_4crvZ|Nc2m+RiC7A-R2R7><`($qExInjFr5Z6CwJ^6?$~diS-HwIFv%RNt_K%fg5BB!c$P_ckYS zma2&vy*v-YZXo7iSF&RwQ39wBs!_j_y}SuR5vmOJ0wc4i;-?Xgs$-m`H!CQR;$)U+ zlviQVdo8mfdx5LiT~t*>D|F!e67fP0Es)scMxrTH-*PkgAuK|cE1(BBDM5&%q)fhj ze3W~sz&71iSKq-_dKV#XlN+M%J(_+ZMYWu|o6np*@9FsP>v5FJziCsd)6M}nBk4S_#u9@&s-H-bR8$t;aIn7bJq!#m)>yI54^d@Z~C+(8K9 z#0N;UeIDij`A1m6bO`U93N(gL@qvGT$_)wVSdKQ zH-}QX_=0Oq@=Et7Mz#*{h9uVseCoH(m?S1U*7g|Pn#d*LX?Tm$kPwunZ zA-muS6=BsRG*)*VI@hj5K>WuFPs%Eqee!EEYl>c~Pl!kw<ta$d3br5u)1W_i!icHbvUWdl-ZU$X@j)ys?2&D-S+tD{&kv!#l4Nwi5P`#<*{1&J;5Em#l2N1tZvPt3 zg~y(y=gGE0_y~3?Fs{P(7Awma&%gzsm_$W-5ETZ+BvWzUdx-O}NFF8W?@T&~&oIyf zr#!+%OHNLqO?bFh*Wg2xL7Uf&QLLQfoobMjJ@T2U*fsAyDyZGpwTNVjPw?9{Ts=HUbn z0z!pO+eLP#YmdyU!H-TcX~z+o@9qVoCiP(uv;abN77zfFW__a~v{nj*U#QO%a%i_` zaH7WqoiL}^CHJ*#dM741gypCmDfsvl{hqG&0+%BH*O@^{Xoi_OdN?HY&l<&LR$?46 zW#GZ%x#f_BF$x5!l6|eoJ^T`S8J=}D+y>xn$jXCfoYLd4ifMHcP;udxXq0*RpwU-D znFq3}5V{A>LkeDjM@ew0)ai~HGp0nBInFkk8}MLp&rS4H#@0j^lD&(%!>FkYR{3x| z-mBVHYH6@V-mu6JuFywPL+{eK5+M6*Fc_4`DRTq(XE#-4|EL_g%6alAKM_4oL_1=2 z6Y3$dy~t_?*OKvo42Z7e{m1JMofwNB z=W@vjkrGq(mppSOFJvFDi!o1Ito)W9?OePz;aOulTesQskrp<#Nquh*volS%d!F$c>sST({CHMT|c?8`fRr=)>woaJIOu^sq-~he4aoJ9x7|5JSJ(1~bqE zV>?*qXswyVv=WO>=p1O6T28KAza9vSFnhC|1}Z|iEc6E5FLvz2GFWsJ^2^3y15&XL ze7A+5AJTXLgd}pSeuf9Qq83#1WGd50S$xp(rT8JD5TW z;W(0#V8}(QozxUwg`B>at0aL_K^~gwcfP0L3cNc-K}d?o6|$b8_&L=(_gXgdK132S zV8Zx5*^wViivcjuE_Ab@WNeP{xi<4n;}jN_SSDG^k)5!iq?@Y808PO)pUiB8Uo(smF;GRoqYExtcH49OxX^X0)4@aSulA0=9J4&j^ zPzmhmPgYAn0+a^ll~MbW>5yLT+EFmm35RkC6#&=?7lcmugI?-D%xH`%D;mZsb{qSG zI>2TNoBE*-F+;3zOA&e@*nEZ*pv@6lsGLATU7wE&u^9Z1!gdrptM)uO>g#QB&4+Q8 z2cAl_gfL;h$wvUAbt9_|ArJ5!bF@wgGUHHp<$}p4;~S+$7~jIEMeQP|xQLG2%dS;o zo{4T2I1yXJ9nYJuv4=W+cuiFQ9QnU?}aBK8v(NZkyi&0!~_Venc`l7k)Q ze-p(s?nQV8sy)b>w+u#F5b4{oW*DF^0coPV!(1;H|45){cyK4D8xW0z&MoTZAV|^s zxuo8D)xjLTetQqHdHejLxdRko9k#B;cIe^wdP<`!M z)e*p$3L+GCn zakI(ih6lsMdI6hLe=Q!mBc|9_-mA7uw@%cszU2MdJqNu&YkUgyE! z8`oA?3md%*L7<@a1>5#=k7mFvcuVETD|u=nM=(W868lhz&36~!04xCdy-RgB`~Zre zGn#>EgR!Mcm~HkF7J#3uP6(R%*et-1YzaoiP?ZDQl}jT zC*jw|QA1e1T6-?Y7aPXHK4XAqk9FITAC@B)mP<42fB3TczVScr2`KsD0qc7qt{3R@ zfBy&P68F=ZAuRP7ChX4A(UN0VO&u%eCg%MtPv8?c`0jqV`b%cR~n33 zR#RsyZhm3kMu!WTNhuR|eUSS3?IXTCjJ5}-#z;TWoi$6U=95EO&EBaLg3?TeHni)+ zr`KDH0ibHU=H{v5jL3zw|8tR3@3g|AG%B4gOb z7VB@K-|!bvQO@3$Z?h(@-Q_NzyOiq(cp6+r;FaADn+%r-N2S(hvAy*8x^ z@8q^@F|`|ghHcje>20F=V{XrVZ}nbEUbO#1qK4mP44?No!urNXfV~wG*#g{*mRF$+ zKWm$$7sG!15S~)$s&!JqKYlFE{%HD_y>3h3Hq0Nvs7GbbH)(XN`1n+oWrlYGFv=6_ zxu){8aL`bHz0t8s*y@f-S2WvB9p4bmInG|fr*Qqc3vaWg+hXciMm+u7B;MwkBo2zl z!{*Cpduvxlx29m``kpmNkjS1pDqtj)5)3WZv5bcd-U6EOzP8ztmh_oPW)@c_{eol*3*Xk z_ZQKe!S~YzR|xe8s;W;DW|(ngRO%p`={J}Qqt0Q2dtaumy(&RjERH% z*ryt|$EksZzU!8rl$MG)eRSrXpOcfCvVzlvpcz;qKXVKx+9+<>hHZ zu8;UJUz7P_AvkR(w2WRG&x*n=Xdow~iTeYne~i51#GuV{i8%70788Zt*SEE>_cypA zAb31asoo*sEV7yB|`+V z^lIQ%kT408WZ8HBHu}B|k`O8}O`y<#gX6D_5K;LWmI`nMR!JFMo#^4FgrsR*;!KGm z;nVBq7EpfgPQ?MAT{xzD6PT+ylJdCkm*ed50c0!Ufd}G1Q4w8I08v>=ggF4tNu9r8@vYy( z_ifkh+gI@LOf$2ad1greDP~A)ECu10MLr{PRa0kOV+{&0dAaRC2C3zouCkz3azRJ= z0joSe;^%zc;q+fS3@3fA?a~!vpQtD#646GA$*bLaWR;! z=y0MA-Tc5*1Vh?Ua(&2mSS&%Ryql*vz2s=dQY-hu6zbwS!oG*jW)E+gX)+gM42Ox6 z`V@m#CB?E5_jcT7vJ1C(ay4eAuUy&X#txuTZW#2=lecGn@tNAojM9>#_KmM=C6~&9 z|Fg8=J~RDiq*$<%VJ#GQe9OemS(rfOi2X0wlc|1_%YxZ*oLCq-Hc?5*y|UNTONuXA zkSwVQ)eC_XwDKh~9Wi&Hi&D({^|iIfpN;sS!=+O zMM1G^I6vKfrJ%k@X)%+#I>hUca$=i$gSFqfxpRFoTay{1(@N`4a;+C>sAuQl=3YE? zEN+@u4As)*%42iYJkdtM7+>qlhj+9vIJ`(;(AZ^HtjDU}@*g8>6=( z7o}J1Q<8cAl#+$o)*~ZM4B-%qRlR)0Mz}p*a;J?;Y{unYQOT7tRhe7O%9=Z_dTJ~_ z9d0+@sI|hd$Ck@UOMq$TE-aPCT7LJc#S!OHuKrNGb_GXr#6m0AuEWpvsoOZoEvnCS z@|h_lrK4*4ar2g?FM3kWq^9aL*q)$m?si=*^ojB2rw@5nJdAz+=EJ4yY8qO`rwUV8 zTn^zLAesGMQkBiNjm_h9mAV>cjdkX>xq3CVfc)G?w9$~*jF3^*_9*4FU}hQml+2IS z7BibqWe%5UxbRuco5RynL)xtgd+L>lQ^q9DO=AO1&ra@*S4dqpwvLa-#X7+=#&>yi zRi*0;lk-ExUOi0OI$~A|{(rh?dH2KK1Xj_)rhvABdkX|2Bj|g2w;CefFw)nQpT20= zu;HVu(&6m-hLJ1hhFi-F<3Hcsu)~Qz@rFn5x#OimW1X!l{6;wTmee&^2_?Pz8L`xK zn%?gO04Hw@XphX6N7_!^Dq7*H;D#;t?r*m`@HjF`C3(rD(fTnJbA6<&JxeQ&{z3=8 za@Ep9pX;r$Bp*3P>dajfq-Nc1&0gG}|Lc!juo4SF8NgiyI{92I`kBex0_Q|DLddo3 zt*&xMmX(tj{7j3i#u%#5U#RQDz&H&4rh<-t*D%pE*g2v9Ca~w|yJW!iCkz zz1_yC1>SVw5SjnsCXU5v+Vjs0Io;=HdU@4hzk$8CtH)gKp=K-R_x{hK&|I&B8lO73 zK;7KyXlBa05m`a5K#)*btMfH{(ckJr%_HPHhAE1?d;G2zWV68P-o4Cj836g98PYG(m+^{mABjVi0RFlZRgQPbx|o zr+$t+YvLbK6eDCbu-a0|=aYRcho4wlyk|szSm$)9Kl1IjeaJcGB+F5;Qe&_F;SPpJ zpQkkJSi0h%tn^UHHNODFk#8sNrv3(BwKft;ZePSODXV{v$(S^DL=opuos&OL3mYpE zjOCxEon_;3Nw1cjD9BAM< z=3xKJPh92O{M&xUVy?Sm#(tXXgUs-uLk6rq%h=<8+n1Eo5rp|0Q=fM9%?^;mfR|ei zg7#>$aOmZgSU+pb{i{y+L&5QUkvL6d`BsL>RGP$*I!|i1c@+D6r-%NDrd_OsUZgxc z@!Po2tJ8;HX_6}F^>T90|I0G`y@EvUTS?FeRfT9*Pf9~4Yy5z6XRyhJiz3X-yzcWS zG3~Ya;p{0+C+X+alAiv0TKNli`5yiTR>w$xo(Z+|YZ3pADJESjs0*;~PnipyNtXrf z_R-qsTuReSq$xFiZVixkgQTN5Ae0EXt6Ciu|7}Gh#g`0WAN8f=Wb$jlIqhjX#!a4b z<=;0MOIoD$^|vlF`sU3Vb@J||k-Gn^2Hj_F{Jnzo&Icp$>kpp@cJuAG4^sm<1|0Phf2?Wi7Y|je z{AbZP*>{j*&Q{{Oe|jB5;oqJVWB0W$3mP$I%-Mn2X3trrKh*nuWi{sA^|V#9+CQS- zQ_-7BzZbth2#NMWCBCWH3mVJQey#50K{M2Yj;Zn&K3u+@)-Yk`zic(q>9LoEOILID zzf%9~-PFc6IFJ3rLO=2FJcU&dky~h9%;{q@QEq`rPpE)Ed)S z)3?$3Aj%9lSRYExo<1SQF8KQ{)Bg5ref#dg#8FV!0rM1x@N%@+NzJi$FAbm{4++&D zxpaEp$lpF%O=l|dU8ux0l-rp#d*_aHb2}F=K0I}FKiKAx`O|d&lNjrJ56YPj>`(lH zlYiWpoQQ3JAGyR!xcK?$4BQQaV-J?OTy2MlAo@XL{V9-~=aKnQso#*laEgHI@1cI; zpGVZsl&tiadGW-Ai^EWl4H(rR3#Pc?`rN3aXSIHAe18tV4ZoklzC+%3Y*!qV0=yf@ zf2i%9y7BC9SqIsWZ*oEiV`R98Ygj)(9wdj~eygi6aU}&a=77*=Fv{3Pdhnt6hDPcR zNnZ;>?*|uoL~Y;Hjc5Ke4wi-sSLXGD_dzl@pE;-NY2D}xb?t2r_x3}j{~cFc_FNi3 zp}<%B2Re%GtSp=5#QYb2=|@BxGp6hPgZ@%tP4#wQ=sZEM->KnHusq$FzS%LpgJ(={T~7vf}%b+__-tTu( z55;w~0|zr$+?;h1=(oIxU(49@aG;5VPv(Ev$$%u6Q-|Lfp(QX%`&U{Nt8d_6&OYV$ zEJSs2g^&xk`^-mk7c4kbb!xvV<5*=s8^NA8bJ=7PyvdG-8&TJxS>-JpDrATZ#*ISg zMuj}YggYg-tG$u@5+P_sz;&e;Nj-vLWyaIWeW(8voA~A@oc}a5`y6_Z&b2aX2XQ|-~+_DQInr;w*@V23?0e8zWA6IyjUnCbde$Fp&QTwgN?89zK6)#+BYYPi* zLKVNl4GL&sej!|wnr=<7*U4xk;nEU0T*K!zHRT;OQ9pTjdW`g31-id4Z24K@f2l%4k{}D|D&wdkE)=(EP z?JBzNO+loJ8~pM8<)^vKep|WHX~U5#`5!)CxqJEp^ML?mnFd_+SGaMt^n6A*FD!EK zNId@ZiP=ooo%Z?T=!z_XaEP%lTsY{8ijAw2&|c(dpWOQZP)V*Kt#%t-u84a+aFI`0 zvu!zu%*&VOx$-u$YChd_id}Z|rcL+(WwgnmcY>XvGm+ zqyFuxhaudLK6DxRHGv4j#k<$2OK??aJe}zM1{unUJMw7em0tV3d6+3c6tRE zEoy-4Mq?W}y>RW74O%oc(4#=taf9Ta&73!5aSMn0+pKf1^Zg;>gg)?j^h4P4W|XK5 zk6jGKt`Oet5>pF@NK)IEapWI_S7N+2It7#Iu1m6le{$+|0J%6_ z-~Q>IO`=wud~XfM{hf*U!H}7boVTTie~#s8=kjr?XzfG0aug(r z!`g7!`jCAHH-|0CFAT>OYIu0t)Uw-GkvHgeK6GTkZ7lJ%lz-{(d$LbhN-uViz9Uqi zSbAJ)VnRPHwC>YYY}>(|vj`$r!+JU~M8E)=o+7D$F7#2nn;HP)Hhx~cI7?RhVoqkG#J zl5kTlgb8c;mj?J^$!trVHrL$Tw(IY6UHx0BOgEp*&2;fyn^kK3t3*<7!`%jpq4Uer z71h+DFPI^;9*Rva`pqmD99Dto&~WpE$x4e>7nTMD2(wp3?^6am=eR5hn z8d46y*+;IK0~ww{@L^Qajd%!KVQ8;99lqA7#~#i4W_|wV<8`o}<>0D1ayKyPQX2d> z^+(gC2xQ?v_pauL;NyG$Nl|+1Xw3BWLSCCO7zBB0iVza8c_uP{Drw`H7T{ObjP^;P?-U=Qq5x zH0Ssqz^25BNk?ulN?S&c^#K52q)gsDottNx)nAa);50Ai#D*iUf6GpsD4+UAz|s%a z`bz7k14vxdnSZEuAn1W(+u6sCA(}oOP#yKZJOCm0B?Ekc5K;RV?P9xkFJ^?qfgxooT=Q)<%pInB;t8FTng5Ne&qXfFqVnsl3v$+ zGB5lOKgv;Q2IvQF?z(*`KWEBd6hq<l$#ixG@rB3MJ^5E8 z|3g9mE?=-H==y*nL{w}LCaACG9yVYgw=s~+wWwx)asBS=qJ;cM5!aJYC4|Ivo6b{P zcNM_Qz(hHiK+$id!2I+pi?IVoHt31`6<+#&{R@iXJ}Kq&|DEOfZw%ER0~%GZeUx5Z zXLfmOz(5xN#Ggyb$-cA(%|WkuWNajlk2rf)?%!D@mNIp*E&7ac{kDlex~P7L8qJGn zaes4A4Hh^1NG=bncH9h{xkuAUHfj&aJRLBj) z-th|;LjC8sY5qlf)(p-w{Z`BU*-X?IUL5u3lr+}=rz8Fo?+-umH+l2Vb-PVb-*3SA zvCod)O#!_*mII~9zzjB+QH#ad1x5Kl-e>8GKk+`GbEdMvoixPhTR&tOoY&)D@k-Wv z*QHCB258M$gV2{h=e@z&TGe&L9mThQg$9Iw-&ubS|NQ4Yk~y5EX)la8@s~Yr5VG?Z zk#hDd(nUYdH`rFA6fJh%Lr|-9NI#40&bL{t7{Tx_2KO&p961lCP?APi`zKZ#oV@Sq zBk!*&zaIFw-qu2CDJy>0^17b?wZ477{t1uIBeT9gfSoRH<-!GGzuZcvr?8H)5jya@ z#5#at{(l(3s!8q~HGqfx^TzBal>R{K4W?THX0S9IOSb%#Q2rRl2k`#?H;U_r>Zaxh zitC-w`?o?UF9z(9EbG4V4L+0=uSCEY43IPimHbfr2+ex-Zx99Q zquPP=(f`Q+`XjE49;u%6^cSERO!Z}1=UpH3uNoXhw9A*CxK8*vQ~n(6owxs>BCE3X zk$PgBpYrzMK0)&VMZl;*NATaR2SmlJsJ5WQcfweP7M&23mA1nvJC0$GZ zFRp{1?%02-P<5#(Qk*WceyiBQ|FK+R9XOCbMYS(iIf<=qxHq5%3rMfsW;Gzb$cnL- zmc0L+j>mUiUzXiaTt~8_HT-Jo1EV^o)8r3w1@17+3+q5X^HMM z1>#ibj`8rvxXX&Tj(5~=M>kSG**9+F`VWsA*BvwV(f<1w`#tkSjiF2yI)|3a8I_jk zt~p!3iRO>p04+GwufY#yvQ8InJ8Gx~WqA*+A+lh&GwY+NkpkR>IY^HUT}oBdF^I+y z+zWg`noE-2B=#)K8+>r7@wzgu)E457K`WaiBQehu+(pCATlQ0R;r?Wx_baJ7?;4vA zCLLB<$sqJm6}X_&HH24AwtMMQy5I!;8gzFy_agkd2K>eo{5}X=vAL~eLc*or6B~Ut zF3{DuJ?2>#Us=55LTfQj8!=Bu<9|pPbB&{oi}@KQrW(>wV3?`r1T7tI%o@547+pf@ z)Eq|_i=tm=1MZMSTOhTv(Jzgf_O))G%b&P>Srgnmh9dj(^~rzJLDHYmrCM^^(UxV} zWov3`+Gb{88evtd1s5!SV_68bj)B3Uj$W+bMiBfb;Pv&#g%mTa?e8e^b+thQhY$Hm z+2vxNu+-EIC{K0w?@wbkzhXAiq;R^HHS+Mye0`~O6M8_2WkoaprcIY{a)%G?jTevw zV*pm7x3=@4EO@sD>j=&Ta-7?~R(N&VCxNkD$LY%3H8bn7YX$BBRl1|7hzEvtY|6f9 zQeAIt{r``+^Nz>*Z~wlgQc=EWSs8^wLq$Ys2o0iWpruj?WzRIeN@W!qMnXstg~%$2 zC`C$TCk@KVjJRLNX{2ynzu*11ACLR{$K?{v^K*Va@AvUO=JORDi|$%OjgJ-SFBb7g z->G#ly3=^6CrOJE0T{s-GX#73YDL@an|o8V%&gzMGXm@E-#qG0(h{ce_``EuzD4R% zg_t^=kJd*GL~AVkP&7cAF%O@($PA-Up(zJVuoe%gxDrMJ+ey5 zd2ge3gIY>(Y$AtZ1X(Y+MpD;BIkAMYpMQ>YXgAYPAI5-*i3om#1k&@0e0GiQRM+{? z)^YYA8gqq33+|32*#k6pezI-{E}VK^F**y?0Gbtr4V1EJKJ*K_1Jirf$xl4f(YUL? z_Br!K`kBgoABARhSvBu@7hUgU`49hRZc z8~)X%I@gmZI-+q$|b~q@sqk zVaj79TJ}hkq9Fa-WzHxScbvL`=FjN4W9IA{ph%pZCELNAVF*Cti1-2(m*)j`RMQze zxs3vjrx2t_78MrYgb{Mh2*kM4$AfDR4;+x86@~)dWXcbth3#(A>_pfj!qn3+toLe* zTNOHuT(Dv}r|0(MmmblaG6`f-FRp<6-3Ks`WSkmbICN5}FuUa!NPp@y?u-Elp5!?k zEC%1+MnOF-4`L4<)rJpDzX~W@W9po9d}rI#oird%NES2?PyX^Fz4+093O-JYOlBZF zF;hFEAaa(F5K)R&NnfuRp>XH>Uo8{<3K$|*Mg`?rQ#FnjphM0!*rgCmkmypR#z_oe z%S2-?!Nxr0)=92aZ@uHsabzFbGI9LgKiqQR)m;~Td`PSB z)6XWFUk1$x_YqXz?KF}?8cSe&(R!tq2LHi?=t8zhK#MWTo^CT%P}4LC(U2$r{S9T| zaiIh&O2D9~*^{aJKHA6)u>`h*13`3Ya(9SL4V*+8X-CkwB#k_yWKh!}f=;PpyOl5% zz7Ui^@Q)=63+U7U+fzhb{PwaIz|yQB;qW1}ARd#sW;l*MwZ@4e9@UC?tSwNP|Q=X0JCLX8Um|?XNy47rRb^h@(uZN>Y&EUR8pD ziK_QkJQRlZ45$`g!O1ylb17qBX~l~BP4ch?!fMLXiRZ5S*ca2K4Xp6hW=;%$bf{foxFf%>a5Px-rxo z)p#=0VOt4*d`0%G`} zuT|h|LUuG8YAFBKUHvAJSf}VI@f<3{=>zu6%rTC`-vY`a|MQFBFH~F_+H6VV25=7z zh5&E?&js{pRTeMg5)u;XmzuwaEL<1CQVDzvVkva{ZWr;oDF5lpbx$~ChLAUkQ6tmV zqs+n26qpD?2imK`KCVxxCfrtXXuvv7tuFm$?n-hyLQuK?f(a>vE;k12z2)bl!70M* z(f};Y$-*#@C`{;+$}zxJ2hTl>31QZ?@Z4lYcadwy^m4fs(N z4a9;$AmH^6&^j?R8BYR5B)8D8aQT#;u9pGHnuaP8AijT`5P9*j}xl2h)(Rtf6nSe|F@E!=PIG$>1T^a#Ru7tN%{ z>(&BjG5h+YcWHz4Njln!fZYRa-HX))z(vxSlx^`o3`zc#4f3?};Le!blleaj7j+I> zh$a`R%jlizYlaqg{DKnwo zf5%cjoA_92mrWG81cu?q_C;_O_5A%mv@iov7i+7KQ!n)6qJwLeXZSZNePf(gnZ|j2 z`qu)x$9Y?Jt8Bz#?rdHHivt3P$nji`^E>7S`O30!ysP;0p%v}ll5DHoW_!zHv@ABJ zv@?CMmwbY#u?^M7j;f0T{M~oSd~jbu(%+0eMUd}kcsn~d_g(5>J2Y@V8fOYu(C2hH z2+vI2#hZEfFv3wV=*s}g3Gi~#PaiL4>}SZ@HrJL$3Tk~p1I|l|S#p*53^LtjSS3eV zYJV&+;g(tdvb)hL&4Z+0yp@jc@9iRL6>>`P1}*~z`5^2F&Du9&4xN&`5yG!2!mi;-7_%wwCmc@LxjF z$V0+MLSY!-qZv=Qtq@O)Kn!|cPUYHMtIifa7l+>Mu;kNgs(2&rh;uUW+5LBQmW2^Fikz5i5+u-yr>3I#38g27CEPt~8`#&BGn5XSlq#>)+w}xM2cU zZ^0eYUmGakuRj8(1AO_di1&z=>};tSJMh3qHx3`kJds9|M-brAq|Z)hHO;$w*Aaak zGqNPcNpOeHZSqTbUGZTztr3)8gpv=kmm_Oy;(GFVkFFEp8Y{d&`4wEYFEBH+Kd8SO z=n-Kx*sf7g*%-CUA;L%p@dZgGl{*xKX($nDCAsERg**C7Cf%LKdsfj$ZvVedY?|}? zl7?9dOB*r;W#r@RiGb1T7?WYz1G1gNcnK7fnjEoDB=L2us*!kiGc0?Mpn>H#J~3TG1L|#WUu*XR70`U6 z6tYE|(byrZ43BR!I6g;w_*WhpxQDbR8FS!tpZ${0BDzG}cQR)7F?ufAh0e*|(}|LO zm9N2&{~1>x1A+;nm9smf7X4|rY0|tW2gBV`+vzf@Q-1GnB)}br6X+9mos1~Kt>vI8 z1K1VKHWJr$vXZ6k00V>G^HlXB%Zl@-I;Ygn9d_9*HR1^p$-RBw=ow8+B+Sj>_)4$3 zEuPrCAI7T!2LS?I!a})0dOdq4<6>r4SQw5wyixJx=PGHB#Pm&qGV63*3tpRWLuBk) z|9UR1yhsWODfD$++I$HjWH`ZZiE7-SKxi6ZXcRv|%`5f$PTqpSyGt$j?`>%JDOMRT z9KYyaw|_JhMbwwiTA}M|Qz2c#6E8Hy#i)DHv2&qCXg!IPteUJ7v}3LaKFasPILZ={ zas{D+5Zr!2_o=x}XomP;E1uDc(qLuRutb-$#mm@myrY|*i?s1+u6|`2#%)8Er2t?h zG0~$kxqxqNqUI&+2VjWvF`h{jJPFr^)+YlNclTgllc2X3qv5oZk#R-pk7Q9OvLfIgSbt6u55CPOg+iL<9W{A-S@T@ifoCl8 z>X}XeCK1_rUb0rst+e{blU{7;D^i#~+lT{+><;iR0mPG{-d^NK{YkT$^fCy%1V66| zFF&yPa~HilT(JF!zvd;qu+)~26`Zm|$5@cj)IBHWU|&9Uh5s6e#NbyoTT8XJo1B8? zP5}IMXtJ0PPw#A?Z0CSoD@o*+j0kwFpNW$q8|Q8pAD3{C-3Y>Ur7TXNX)7;}@;Ng2|sS zr!DOQ0&Ozt%W$}=sRxo6P}ICCtc?Cg&kAWq3KlV46@a!O*@7eSd&gQIjhx}e2CKCH zS?vN|uaZ681BwH@FX`qs&|Rw`p{qa;Q6e0{ClJz?e{tgBH4@O=bW2+u4VR`?K^c;R zuB0@5Zyl~5?dJxvNT^Z7idaOH-~*(|Bcmc0;Cf+YteFD5OFr~AN$_;-#MO=iEcrVH zxe2MI@1X`n6$zm2(Ko)1K|litg6n?vjuqFn7StWiB#-Xq-NYd*B?qtr|#; zbH`dAPo-QX!hRA~s%&XTXwHy14hcDkXoi@z2&(*Si}f%R>^bS#>9gO@F(WT5gwj=C zV`$V121XVS1m`#b)X-%s{s@8301JQ$Ps2{+b{IJe^sf?oq+FrH2Lc~NswM##R3@HR zs`J{|CXcjwjD}@&poz|#_w@J3gYX0ct!f>#OpvAhfNQQ zjbr@iCfHGeG=i7udsa|x;GS?5UhQbx3Jx93!b5EOke(`fprIW^?f`iyXo}e}H*@|r znhsWG4`0mP)%%XzKRdn>5)sseTgZ290gDQ#4T6!8&b$F61&C!1Eal*)1mh+m5cp-J+CrVt|vMRt@H6Zw@BxTV#M zlA5^udHxv`M&!nZx(1!cP+-kEq&E)gr^w8ZcC&3UtYyxr7VAXDym@tHYIbk&R!NSp zosMI`V7$??ET9ZUfU9K9kOb1DvRQWE-GTF94BwBW)L^Vhz=*;DAH#PU%(P0Y^}tUHP)Z7c0C)6XL4R)>k2qQCU5Y z&;@8sJJGNE(fHes5O_669sd~2N*QyYW-6K7dL2qHb23a!A<4EMLJ~6ePp$!bj~vye zBx|$DtE~@JuC zT`(qmLwsA8@*}&+ts@hd<<8lpIt1VU@WEXBV-!cEb^;bEYL#D%{3hXy6%&S2O!Av=CEadLNDt!84hS!zq z1m}cF@y^-L+x@FM8!XZ*6U18Ue--2|?~*XSs^}g6bDl-u5v20oMkFdp*6D?0hRG`F z`)@K;=`gYuSuw-upOB=}s|DM;Ha{;gNtNwMXO6>J^H}kplW^uV&CO$76gn-DVP0Er zxg7xoxS!#sk0&X8L8Y+X;NGIYV^2$rysM1{yrpg5Ez%o@d3p_*=}TSpaM8ZpNn@S; z%I;@O<0seL+NLHyPUqRWWes{cnMcpI89hwl+-$i^@@D9PlLxBqH0nK7U*p1kio>Jg zTf2iyyM(8YUDr`XD~I+>*WT8cp)GVEyPQ`wcr%v6}!8@G2 zk4f^e^0hw*w8Ojn&~$;2l4~iZMJRF4V*3q^4!NiVy++|mlQoz7FDG$Wt>q1FkrSYc zRY7n#AIb_;w?&PgynLFEk|13dB>sL_xCLJf4;47Pa+BgFw)^=qWxtNF%0))jy|di- z)xR~%+(J}m>VYk{Pk7IOYj=&EVD_DLP6`}XxGx65f*U}Il=NNgTOO3Q&0PXx$~0!? zoA)EKb|4W+lxLbDqp=TiY>T1EW-Y-qGhfdQ_qTIRdB5ryMn{43i8q7 z%@q{0K-<$TVc68aM}NzBkQ>xDhTka$-D5f!)s=XHp@Zn^!KnKn^Gua7nirg3yl#rx(XTGOT{WX|V;J!HL1s=Py`b$2&IhdQV5f$nq(X_XuZf z2ZSijJ#Q%}EDYy6s-s2m9wdK0zWQ?L?{?!l5KXR)hYx0wS$Um1BNtAeik<&*Z9D3e z%*+h^&@$1Dzt0$OS9oql9i4bgDD&tUCD#871sO@@C7&+sHU-I>Q01MhFPR1`O{9~v z%Fs?QM{4<$v*|S0NHBUz0)v^l^@&a8J3-Bvwn=?im1~s`Nmz*l1?}0=M3PJX?0MBi znd0I@5=Qx!K?N>K@X{v9GR37cCbv(oY*yLTHhNtD2N+KHeNsXAP;cqZSBvo@XQe&N zf2F<|#%ydJbWf>rYK;WD8DQ}3OMO_uPb5WMGr4 zJ65`4-rr!r?nP^f{Oj37IrcMOP>g&DrP^!5MvM+JSMxk3=%m#&WfDu2=B*y$3p-ck z$B$nyM%Fw?C9m7C0xLYHzG9ZIsmI~O`X|_Cnl?@TI;zdTDz157d9b84_;by$E^*5( zXZXZF34ar{+4%rf-_0i#clN*dx(}gx+{lCcL@d<7`>(;@<%JT)av&=B$I5bJZL~jZ zB0RpWe?;|x4RT5zS@TY9PT0m_aa%0lroR2-24fwq`uufD0%!V>fSj_Y1-2m$QK7z? zC6J<^3E32<-G4JayAQjUu)&W@!zw}#h%BgY+2$xM_Tu9#F@fI{tw+}(4OIngw*naA ze8{EnSbcOq<#iGwR0yws7@YLv8*JeTYoh=ke^|?F!PpV?cb}Cn9dmn(Q(J!|gufn& z7~|R;^ze)B8EK7GVMjjX&$8wIb^dcw zcDZWm1GmxsM*S6N$zLT3OJLDwO%c#BOioO^q`qrJy74@eX&Rk{D!rFkUkib+d;#=XM* zTDbGkNUBH#C-{@21EJ8c{7A)pf0fthcqp4#lhmS1(&k$qnBPW^%(gET=sVJatA+A( zV9KxWM*7KJ{Bz_hrDvStHebvY6db&%YSxRo-su}9H?1i;iI!0$t36@r{FP2T=9dt; zU#FhaT8FL&)aMFi=r1sN{+}~0g9J~Ls+h5t?21M`7>yybr=71t@GkoLR}sWIoii$^ zEctm}+uwDGR9U|$W|cdTG+K&BK%{->QU>8Ja3$nGZ#EdAJLNyDq5gFbT}$(quAZ9{ zezbD*9@X1Nb#g}ca$??3`go2sqtDFp)Be%`jCqxjLp#Zr2B4uw5tS^lmfa-iMLMa- z1dK~6-3@P7NEzj-cQb1DQHKe5vNCwh$paU@WtPO{k=mg_YZ z3$#%U$$`?habxP>#sMx7(s6a-`PH1~SO4N2&EAtQdvrXFRrc1~%B2qNg{4)fH@=}& zPFIMF5i8hz2z^iy)m&ERbRqIbaCo%3N!H6#9|BnQ2jAY=i5qk<{)xK!z>`Ym{<5)* z$|*Wdk)>DoXa-7heMkBsDOQ zqB zS(%|?${6z}z`#Ycx^>N)|53W#PkNkFT05VhScXXh z5U+Lh+k=CHXY;y>a-9{$+eFM>73kjaD=+zb=oQTNw^}}YcVmr^K!yokVfWsvbIiq_ zFRJ|XNesU|YgXYibed|uHxx_szuiGBSA$ql_A^-~7gPLW?x6G0bMMt7M|V4?A8Fw` z8oc-Ff!A4@($8eH?wo)RHWI}^@=rHaRWF9DYEk6z(PBy&0Km8+KPt53 zB93<~+&7Nrds#aJcB&-XnmjTQ*?p1ac+Go|r`o9JfEvUS*q7|aDa*CR3e75YXomdIqEXda&_JE}3;_pHNj0@+sv42SN?HDi?P} zMf1!ig>4V#rK)ph%~C?Hdrre{lzRxIZ}wE!I}}M6bgCY7Y{#z zLtI#5#=px}r6Vppj?GeiesRf5bX@A(tfof33|^Z;rAh+Wh?z7y69HQ29E5}*#pjW^nj&`1t18y1Ph?hq?l(lNuL*9P^ z4q*)`3eB$Vn*F@N7xy}!4>8>QVk6XhsXYSap2U|KI8tXSL&|W4dmPW)9mf#31u1&J zfL;L+U#MFazi<=X8v4^9OTxsYITL}t@E0i6=Paq7v$QUC#8wDDQg#UP%atiCOJJr+ ztQyDz2=EF({z4f6fjGllP%10XR+TqEpf_IOu3Fkqrh`=U!ox+BKV@fb9KxK~J%sAy+Xq=P6o zD~j}6ab8eH`a}JFm;;o1oA5kz3=H(!V_6;zm>(PSlRYqO?xDAHsbE3`g(m7)fo=<# zbd<=K5>26PA5+Bkcv24bjQ0?L!?hF|FZ24b7J8bUFb9$M+u~i(=dOcl{() zHu)@*|EOK{*u@L`C!_&=8|0T!LKX6zJrke#>3<0qQui&_w#_n8WRXd%3>#%&@YSAe z*w|i#GDbOr1`WUD$2~qcga>~@OG?mlFmqYAjmb|IA~NThcdQt}|6fwIFt2r6CU)~Q z@?Q0u9Hhf;umuP_?cHlWT9Yq+zvuEgua8#nl0EEk!Jlju3bL_{%A77&KdDUcX*OCe zHSJwj+<|155hXpHdQ6pnkF=HX^rV0ClZ98O*|Uup>*lVWUOR(-d2fDW{Y2IVwVeZZ z#?|A$pZPG9s>|;3-}3&RV3J;e&a>r0(Ms-_ymYenW*_b^m(E;qYT)~WHYq=@+gd8E zUcIS*bUxG?aAbO)tpDJXoV?P)g9VzN&u&)P)W_SiK|i$nzo0SnqCa*wg;{(~35ob@ z`Z_gy^npUx!h4lYx0UVW{;GWp{x-CTKV?*D$i~*FeYZxRQH;y2;P2b)-%L_^z5aa# zozZ`#SRb+kuKBwfIjmOt#KbYz-Z!xp#PT_K3H|DL_2TF2NinuOY-0cH>*CY2?=hLI zO9Te4F8EG$m-)gsm@N$nFWFY-r+cN&!$t0AW{}@f5nO<~e3162I`^ zTNK8&UKGYQ;(lq`vf&>;efrri62_pg`@kXt@+|ycxn&Y>W}H?#9lYyy&#Ga{8Z7?_ zYrgCKGn^E&6$9?{yLwqm6OJLTs7bWIjFauL*ZYiq(3|aVrmSKa7}#TKIp`>d+XCSc z$NB*_hq{&z`!1*1Ox!w&^~WFBgF&7{tHf}IVcf2Dcy4TdqV~BzIh%uDyO3}Av9%{h zGrchDO=1qaIB0GW+vtM^rAFp&n;8_`pTVGdZji-Q@nB5d7Jl7t9}=LZ<~ao3n;hSYfzE# zUy(l04x*y)zq5ldP`w6^X*eM`apLu6sQ)f)EFQyb6*_m|>2*e({)&;3|BH_?$g>9> zruPkxG41SkkRb#{l=BmgRi8?f@L-#qSP5}VwgF`~m+8WvCzVLpiB{Y1lf{3Uz zba#wG_WTCj47~j%^zt}_ zicWFvye)rHKc358X^%q))tL>BrI>$|F9_r|*)+W+?b*r~M%`%y#pG%ib~%vD1b} zwO*{wn()Ny%H*?^{k9HG>I`C|X?gekcPzggA>6Zq+|ssz#^U8w)32&TG#0VJjC# zar%F0`4UB^^gZ&4{EW+dWc@B;x|UoH7$7SJY&gz*tM3;_IZZ!#LQZqa0L$CEH;M1G zXOCu+&6qV4dpm0fT?1$o>w9DVWsGn;IJ11y($zr0ol@-h z(%S<%Jb1B1&Gy$AW5Fb=Zl^x-yJ-K?lA89KrbfRRmO|AN+SAlhI!eOm^-WI~*&1m( z6ls;GTg)FA{U9&!V)#76PtfP#3{ZR9-*HNm7K^7AYoZ84SLl>{0h-1y2qA;NFTKPb zt;#es|ET*-U`S9X+=3RH3>JwD`yz8cs<=d!C_(0wT~-vUq7g`&04K8FG%GL7xt zPgrInf9@i9D$M{1>B z>|^*o$;Ml8hLVASIjN%M9nx68K6Y0W((R|7AG(mfKDhXXUHiLpBbx7eI&|l4_4n0! zRCGl5<<6VGJ>87eiuc(VyDsK{z8Lr3EgB42w7bjX*uK>9p4@ygtzWJ2Vbq2rJXPb@ z6_{n`@1RLiv#gF31>iLCR2AC=!ziJK$l%*E>T&SA>KmLT!==DXY>TPCsu z*I$XDt56y2|j?2i%96(_u ztfrbOmKeZ6nII6tuR7F%@wxt#;tc)0dsQ}ecJXysM9yE}AY(J%sMP)PWviDJocCAB z@K$TbH4es{4h~{1=2U zLLczB-4g8-3->;og3_1ysXrYX-Hw0ZbB#T55VpGj-}vzcY#m2H1z5)<@J3D2?r}4_fD9U=BkxNT77B zktA@@Rk#IXui-QcKtj1__AS6jKnQhIBf0G^booKkyIG1Y zr6~?wDo1CE47R!D!?`!eSXNNwbiH=$v3|XtnjTicDz{N|CTs)=tHD+n!1B|;B)A^( z6Q<1N@3ID-Bk$zcf259lTobcDSFzOg$NA)6&D)gozP-D<(5CsDKy35m}o!p|GtnRr0PQ zb$h2ssc2=rWW&~xo91v8yt(~A<8NtPg{>$N>y*!(wLF#8e)p&ju4AIs1!ldeu6{1X zU_FxEi8n9*_i>N+_cmhn_Y4A~6D@cKZDL|tHg#m##e&q{MAl%bx7l3JM%i+mv>0ZF z(+>_M(jEgngrQP=be0_N(YkS0f8GBq89WFdBoOmr5PDI(LLk=KZ#kz;c(j~XZ2W)( zI%R}-ypMo4Xf(8D{g*%<-Z+u_GMNB z4_HblGCgBcVaYMyno%eUAGkZ3xrUrmEb6u& zmm02v0;uA!w=bE-IBgO84e}k>YRgzg{5PI+E3Kytj@s!Hl6_-PtOt2#oErKh$I2k} ztRqK%cpc7cG~=#w=|Sz4M?VqS_&3_0kek(VKJP)e68>Q)qckU9NtneiDZ%ze%{6TcZ!n#ddt4CXTA|3l8}?_$89u6y^P0?y9y zS+c#X=Aq-OdK8RAKh}ALP-94YKR18y_!T)uR5l{bOmyPc^W))J%6=*g(8*|4u|bl>V2BJD%z_YV>1OO~M8+PuY! zrx?XfVY=mo8di_sw%5Q=gxb3(JmyOV|2rLhA8%$o3-@ z-N9%g!303JJo9nmb570!Gq_-X!&p{^AUNyJI`lqj^C7}xsGQRVLf`48<@`#mGfJXj=-?aWBJiLt*6hb1Jd|NAe7vi6i) zRs{r%67T*0fN^MXzi%lu(kx9*YAUuk_={KN%%9!x-FB{a!;i{Ohr~Nd7s*ii+fgY> zd#wit>#OMKz~Bi6Gn7WW&(}zsHmr3g`$QCP#t%P!k+!99Vf;}iUc1JfzpAuS8f-+I zR{n8hcb|`&{kO)6E6rZKFWj2bT*i~oE877PT_d}R@kF}f?R~q_ zcJY&nx27455+6FP{k3j=ru#Rey>myFRWF>o-$3QGu+MW$vk&piX@L|m-BRFmO~;tS zn1b`QUDG4;Zhk`sRy7>DTCzRsQt9hCzAj|3rG*SXsmTfe-?!j~K zKjl;4cN6hg+Q)D&pu1z8WP6wmyu$h^gMOW>;*5@Vvc*lEA$6NqQ$KGLG2r_pRs+zW++wkoM6>YF7rt}D(+ICQWstf zC3wD{&Y^Yt84F%>4kCq(=-3ukR^lsO23D3`n33wBE0g6^n&aCXeq(MY;aBJ2j3Hv2 z6S-@o`1c)?&%$u4M?rgi4aRicgwUwCoZ8-+3=Mh%69Ao$S=ch;{y(nLaD2Olsg6x` zDlQVjUW~sTKlKO+!mmcRh#VYp&GXawG^z^o`WOK{O$TnKQQGGqn)5ymyKyXXnn z>mZp^+L(}14VYhE-A_t&ki6iB#$jZQtQL4(&1Mh8C888-(v$q|Unn#;{&HfFgAPt5 z>UNC5FhPzF6RNQ&#bGqN+tJOTgFE=&^xEa#ia__AG9%t+xWQQBYxcOpG3|B|WdZ3P z#3uoXon{b-huFO@xV$z;L6GKu{Okk!f&cNQVD9yfOV{RUi$82Q$+q#$_^ytVh{v&{5F4}oaF#FQypu=*`$j2=AO?H@0HOQGr6 zg0B243-!Xb#Vr81%Rfj#*9XadY%>lqowd|ZGh$) z&oE(?)qPP{_o*mRL)N^QkF}FmuF)2EoZ7*hY?K?eHy43%et>LiHkR zpBu|4qcTdIJJIWtHg-}T2CqH*a`MD*Qb82WO~rF(X}v?2#f8!pp&Wz$?PF!RUk>twOmsuhB!9=TGT3j4PEqDLQ z-2IOkvEkT@&yjzZvTodOR$HQj;rmT!8f*eU&a)~OP8Ilb_b_|J9b;Iyner}>777I) zP{=C(%%3C4tH$fU#tgth zpjHV*1Yp=p9*d#?2(~E;u0AJH-%M@SQoEmwC+)0hOH4xvb3r^q%0oS#rS4d0(3w6QHF-Z; zYumiRd(}gi_Z_MUAk(y1xR6oowJ+;FRje0y;ZWK9xME&<1*2gXH?y%gu_Xg<6Dv5S*gw7`27NS)`1EK}3z5VGI zks|j9#F2&xF~BU396gFODoEO%SFg^_aDP-Tg*g6*j;Oe}VV6gl2^!6xn(3?x%>C6; zNx{jvbJX#?r88FQaFI4$baeFlER&%9Qa6pI6T9YJKf*n$YhKU@z89OeZcV`1y({Vx zy-&hM>L9bUDpX%6T&USvPwnx76APi5wxRun^U_C*rt~X@Xn_sKUmPfq&+BPZe;=)X z7e^_pWnxxJcXv8#$&0OTA#leUvreyeOTd%zCmXd7d|UJ;L?JnH=G5mGk}2)pAjh({ ze_sLW>c`0qu}U!wKrb{8_fMgMfSEgV3dCFL_aR&DL-3 zQ!Lgz=b?`e_rgPO?>sJ?Y*C2q?)!8b$R|f!B{^6s{m)pIO?`MqPF8xs(b9Jp!Z+LL zl^x0?en3+d&)u#iqYkUPD796NfBqp>aB87uLwD{y__~pX)f2VcII2!4G)uPZ+;`P} zl8@n%y7{xInSV=c*qp-c^uJ>5i|l+KD4s7K;o>kqS*u--N5eTowoW&z^Q~v)s6ERJ z>NzJcI#_65pr5(kvZy=BrHUF1oV;##kFmHw<^p#H%UbixZs27Z^UF)BLfMV<@(qLS zYB$g{9^?|UOjaAUH_w9qo~(gl7~r!Z&EGM0x2Eox{|KCZj6i<+dp`T<1Xq0P--&;&nz}51RcRN^5mEo1_lV~ls5>({_`!kqC(096l-oq zDeM)zq5$F(q`tGD(F9271!FEry#B=c>$h$#^0?^miC;|8p0!T^Idh3^SN(>CE)K^U zJ}`O?E-fDSc=hmO4$xXUHDxspkNGq8$Z!+Mo(RS%b9h}3W?dA;0#GYWwmX|-2t`pL z&Ko z?x|S=MDZGfrqts8{OaNjM0~q2bDb%OYX%@Qv=wXv{e%d2;O>0dFi|BBRuYZhyD;sCSj2iq)MGQcvrWQ&eG7Ky2n_p#!INa4TE_BVW)C~3d(#MaC9Y@>M7 zcbO<}lzz5cTVE;rqip_+H#68$i&p3vy~;WLula#%>y>H?Q}*tS_P_lNrcEd}?|2$p z;fL z`ZoMNbJyMR|BSBe;J)va=&|i_smlG75fLaR3MrQx-#3kuG(R5Ly3MOmM&z|+w($uM zYoY7uj#|?Bf}CyjyJEXi?{;mEKlNgiDQoN5_Ushjj>2y?t}~UM+NAqx>_}YIl@vNo z#pZ!xi^em3eb1J!VvX8XrDK@=)ICbyh}XpzTU-^$k&_8sVc==XuIhQuEl-hEHGGO9 zJa3+vgL>YMECO5>F|(#=te1-LDZ13WvLegn@x=?%yDA&@ua(KYWL|sTKuhRGvHPWH z!Fj88)hk}GWttEK7Brg6sXdE@9UoipshbY{b&wq3qXuO1!w z$T97zM%mt!weB1iNr?x)+dLDf$$0u8lfcxo<rk^d0O{`woT;u+ckVq*-M#}!#Bjk0z z95tz{%z0R0%3_!NBf{ck3~PPNk(ZCJYBbpKSn@GD@O2(}a9trXr6{7Vg0m^+XLd`0 zW0zQGGK*_mUBTmryPv0&j*u85>vDx#eO>O-Fj>`6Pd7c?yl|x2^1C5mi}0_t;#FsA zqKh)#6wl+)S+K&}|H#^acG0RiS5NrwkZc^;@o=~Fm(rYvE!L^Ocx;m%Rmik1IyH;U z`N|>D18Yac1=Q`Xbp3jbjk`m8)rRdHB~MP=z1Vn(xn#qZI~)`!2=jh&%W~msK>;Ay1O~h_la^utVnG&)nSn`i@JaMsaOG zYT*BefPXqhF)=kij}Su-3N$f!ceH^(OxQj?EY|2-L3iHoD(0Gg3o; zM}0JPF`1?%39Zrlx?m78d-0a4wu)5FT~JHZ-9%YjqZe1Uwk?VLAB<8~{ zx^+U?EOb%37IrQ=mr>ynq;|SMNYngxoI8m{#%I-(9bxiM{v7vh&Gp!AtDV*zqx8I7 zqULW=(lHb9oEiU)|6yd3dcR@%|NEmg?lMO|?Z*Rs3 z<5xDxtN8yeiWG77_Ogomo*U={P4wF&&O)*@$$)5+?|0U7^KQh7skL7!=EoIjB{P zsae9B-B|B?(^a8Ud%@mkYUmJBwbKJ};1#095Ok>sn>=>%^7Xx~Dw(875Pq;sUf(m& z5ZAu5%%aG|iPXqJ@W1}JunQyhjMx*GeGrWsTcdWJ^0WLf)(%6F<*vSl%ci?@=b1`ro9xCcwSI({6$yc$c~%(sd5dc0qH#^EnWZ{>C_@FSij zb&2Wg>woR)tnIppE8FL9w|TOTsXJKG5j3m3U$rb)A8kJp@gLdg9xlOPG!QuZ?4Vk4 zMcyufn(q#fa1b<*S>i@pQTqc4*gL213Qk@(8f+9c%+=%gpXy7-3kNT)gzhvjxSt2M_4A@`6<_EZlQ3RrLj*ed|L*uytf{zZc8O z%62t?#kQzxAN$4()oc<%pi*(XVaUG_tp{tO;q-4pksdgKO(Koiaogd(V~~6)KtkBDc5c+VE?erOwufWOamKM_vz5|lv*Zr*dh zMilqW{i{X)>%6fp!T7t(!V&Q)hu+QS zF@L)gy--^mv%@!q-vIo^uj!{o=D}<%7Cdp?jndo_#_`n&h{sg}vfbr$w|ycA!lxJh zk?1zkB9>K_w#j~78~eJ4%#`$i=(vbMX*8P6WITdqtoZi}6u6Z0GEL@2ivO_RY!A-( zD2cA-LL*dbc+511E1k{L?x7qKTAn7D!;HM?v%{wRXw#R{n6mqRqn*+oOoM^>R3Q#e`Yp!wlv%V{Ifvm zk3A)cRs>ZgjMYh($>~4dZ}gyj-oqr|-0Sd zx?}V~VL}XjJ2LsFN?g$q)y_)vqvc){)zAbU^fBucC(V+I=#|_tQx!g zW6VAw_FQyABQrC%7*NzU?-r=F5KS6_Ik)|m+IZRMozMI6zJc`L!AZhw@hybDRVV*h z{}OmD?A{FqFRv{Ja%@*;-saFm>CT4_|F%!74U9WRaGVD-!3Uhz=NoluafF26ausYK;-Z*= z2Qu@JkF=DexHr`1V4SP4qtp@YLu2C2@D^$sg+9n8qyazdSh6b7-e~XMy`Y=voJwZH z`5j(U{D3kVuaQe(Nm|Uw{^DRZVGrEbti&AmCOnY_$=brW$e%5>kyj5VD0lrVNP)5Q zd+R7z4l{DN=F-HcY4x!@+(v~D>tn?kUluiBCtl=H;#uZ_d#MJZM;^Qe7Q1gweD)xh zZ^X6PPTA51qRTQMey|Zw$;Sflhm@pu>&zTL(L@?z^O9dY#YT((F;eJIqKIFCmlYkV zxZh$J)JNxJ!JVCH9`m;2Ov&y?Ab5?B+o90a@mWDw8L1>be6NLC?YywUV|tdqO5|{w z!LaaJ?Fn$L)OljFA^6_{FYE(Cm~AV2%3@IJp@e)~K3W!=KoFi~TeL>*Y{tnoye@Iy z%Pb37UE&PO8DHFS&RqKjcXv%Rnbz`0r$7_1a$G#aLPv|h|HSbF9wjYfl9vu1)*#e^ zDA4#Le5pH=Wd25#OxH($Bq=YLzBdRFwtp$&QQ+m#2o}#l0C0#7NtqTX5(w$v61nW{ z1r@QE%Cmemzcj!U9e`OPK`UYml-SHTg@=r*+6?At7pROk6$`cje#4!ij)Wb%?0$}? z2eZLeOs}XHP{8>w#ACfhSaUp=>sWWW?x#o(^AY2j3bJJsE_(+j-E9v^WFTYP1fi_E zsl(C}t$qNvu@@}3ml?U9|J&TyRs)4uo}S)b#9?KiX5i{!9aKDJ@%N0=2mgv_yc|DY z0WhPy5rqUZd~1ATxwBPU$+JT6s=oxbrR1yRQI{$lHM6gIr)FK-n5l}E0XYrgCW1XN zZhNvx#cBrR7#-`;(a|1@%!OQD?^YDTXZrKtaFZ?>opl1xTcLwMTwqKgpuQr5Q9~hR z252{|rmcW30w_3L>!^kqJqWju4l_8Vl@+0EhG?569R@QHm#W|vsUb}!<LDkYOu>>dr?|_A+lhBhC^GnUPsZr)cU+5 zXzKonqtT4CF)@XJGw}SPLvOD^%10O0gjoEK%J2AJbrQG*j6N!UQBW+p1%WyBjqhB> z4m(p}sM>AMwlThZFDtj4zGmX&Wh!g^<%@~=Q;ah=oT)%eI9W!e7OU5VG^Zgg}JwrWsn zB^oX5K+h_I4Nd@W=LmeFukwvAR~%lyemzSZlU3HM21wu?!5^@;&BBQ0omCGjE881( zSQTtbFg0LTI_F{eT?WM=3w-Fqc#cJ=>pY-Amj}>Q<2cXD+>mz!tE>i?rAj|wxDVr- zV)`BUkTDNz+Zs3y4|CpFWPb#H5IMs(+2U~=3F{18#ySqzGKG)p7rAXmBzt;(UxYc4 zBaxX=JY)O|W5}uRXEfN}_s##aAEn;K5)Q{=3;uZ&i?SPoi?a=L69u1hyRKtuWCrlMpWK z!S({oM~%IExOfS98FW;GJ(JOq-PPcovL7_Itsr-~2CCj73>yx)P5$zB`M0+%<^hk7 zI9gJM@1+RSNaaLRcJ$?(U#DgF4&_$b%#3%6?$FX_#W8t3&pD2__~tOANL#$-!=%02bj;^=;+kI1-5(b508x)G z=}DvjFa5&RMnr$=WKl1v&TWHuq?^#!2Jd`Km3{K&olh_T!Wi;J#d>D+`b zLPSw)S~i0heoLKf&uP!0k*rWukSX(luppG80YpV}jFX}hyWT?tfIMaj%AwuESa8TW zOtvlx(+FYcmf`ljhSbIco+X+9wQqK;_H67l5AnB8ux|W~lv zRHKLMl7|{lB;qBm`z3g@n}ENC9{rp{su!3(3B*U*4@}Rgnjb(qW~Y#~AvHz=)QZ}& z=hz_#qFsi5o88J{b@twoi4D#|VW4=o73vk)Or*q2!k6o3u^ncG;Z=cLU*lNKQSe2r z;)1A0!upxEjSg3+cj>+~j>m&8rRHb402f)fNAa7d38!FHcn-#&wlWk1IC6 zie!U!nKc~}2v6v9VlUoQ^_ECz$eP_$+SM8NxE`xz@J0n89q zy^RXQPYJ&M_221-Um`MPlZp6H65a^|ByMV3gy%AWPkuXcM)zq6VFePN(Id!GPPfb= z3Lm5@I$NT`@*k#SBktI9GNoz(kBGP|$&`+2Qq!aY7ZHM*hkAyepI!5oO;A#Nn=u7!mmjEZB@9n2d5m^zN{&leGWOD4OVu=YDvvf|a zFK@OPJ@-$YeRhq|b&4cWSPvr-p$=qEX+Dpnndtqm%-44&iC|~|%w|8cAJDogh*psL zAZ}PSdCLS@1JSGS@PlG1g-u$aMF6A|$uAy{Nh5XMODCb?LTo!du zz$~L*A(&o>V84@;xC2Pinlz|rU=vFQt@?^Ag4@hxe}k=7S&7_u%11-^i8 z%^2n+fkjvY$>!=ZwTh$YE%+&!Sa+PH{)lD?`W|7l=;@$`Vg-=2;!!Ui=E(h6OC(e4 zN>44!9AysYy9yk?(AUK&ZRdpy;KGweExFK?Wg+j5;`hr7_Eo|D79c{;?(jRe>K!a9 zaKy+*Ev~XiY4@cWPN>yxrnm3JJSnLj5>Z%4nY5_s$6u2*#HsMQtf8k%s{@8Mv>pRU7pccHEs0Jk`nY?i25S`Oy= zZ9J8)KwqlEabCFV@fiAO9$C!~9?_$Qjl5}5Tar-z?{q}vj5H(EI)37)ZUlKv70)%8 zw;;e4=N#GYh@|GNq_auTNg)GxiS*DRWpRks7M&raZV2nVAETwDA0E%k#>Awtor%fg z8ZHDL(dH<=6qv1|Tes#|!1Rogpr)2$eAj}r&{U_utfKxtaw&Q(=N9A`$H9)4B@pVr zH(U8Q>Yh<)Nz%9IY?ke@@Y>^W8rHxDk2}`}k@W1Y7C~3J4}10X<6&{k@M;COw|%B> zVPMQtaN>4UW27?8hS-2;9Y4#*_&9>n ztp#Q}ByKkxpg|5&@NLLt|b|VpyRN)xp`+LbBkyWLQTev zgB>yG)Woc^Eg*prUxzK~8Ck1DtENQGNtu19IN>!TrHqZrl~9X2@`m180e{J! z;n`xdOKO_9v6XsC;m2P&Z5Suy`pLZqs{wNJdmOW&wp7{t^;O1qxcZB)hyC+2+3KGp|xA44Y^i)MT0g5u?d{%A7K)nw7 z(vZuCG1_^VuRW$fR|6?X*m>{a{%4UrB57DXyCzRM_U9Le6ugM4P9RAcM5`>~xz;EW z9L({NS%S<`3`8QangqL^JshEf0s*Q2Ajc}Hyfwiz3}^8T0!R}&b?yz^Q!NkHcS%wZ zV7>(>3;UMC($gGAK5>b^!e5=;U|u=36nRGy_O9$AQBy1`HT34diQWDw>a*_*X`_?4xSV^EiHEjkD~@S#%hiEHbv5YLYfeq^(vDibR_2 z!FV`LV#$cQ$u%=sBM<4O8xm_2g>xxvq{JF?Sq~9OMw6%F=Gf44-Mahw+}-(e|JyTX z{o@?s-rw*0{eC|0&-?TFzTY^K6pG$BPo^V4%3(18D|D@b*vo zsl|w=-*ZyLNs)Vmft@Ys#7k$U@LYy>xk3@$U_XA}#8pYxQACZcPmY|`qlwu-O^{ZW zP7>SQIg)xdU0czo-0`8aFV)9fsS7XxJ;s&P%^UZAT)Ai4s1BKBBGnagBYCqnr)2+< zAD1o*hu3pOsx`Q;YN}5ys5d6qmv z;}fn5D+tL?6SC4is%)Y7<;X{q%^E5`uS%#(-EJ4mmfWpb@K%4TY)KpXsTRo>ybTVr zKr(82DJ&_*$zo#jh-h~)Os8~lN=M-O5<NY+q9JJ!;BtNxP30uUb!- z@q5&<^cHS{$K-)TY*VD`#UhbEs}iqf6f-n&BwWSJNzC+$4n8H1M&Jcg(Vhs^->0`* zxW!62izL==7`dz~ax6fw^X*fC)z#Dr@W1}R4=q)Aq1YjFf5iK|E~CR;cR8)Qj&U|S zXXn!ot39m?DKZ+Y1}hW`xOt~2xWh}MVdHoNKWqOl)4A|rA93!~rQ#g}f8cOI_~b`( z-OEHKWM7IX`E#zr#m>dj{G(5m2a3+P6HjYlq11v5wGGPkIY-d-tD-Wq_Zzh3ihASJ zo=<`y-f>W!PckyxkVRsffM9|+(~hfqr5{Y?(G}yY(XeK)58@eM2y3$X9Eze81=0li zD933?sq;*=a~tDexQu@=`iq-R1HKQ<_s{ZL0({MucIdduYj(%Wbby9cgL0iZ*;g#v zd^tI3<&nj@^}myM)JKsR$AOYCM5AHeqNKZm_wZQ@-C{mkAn))!yYbr29+G6dnzFLd ze(=7D&2dlQ(HvU4cD37IABBTezP|-uH2_2+dm#bfp(hcltwrNj>IE*!%{9#=n14nk zD=>`Ef2gmwM`R1sc~FPJ;vPktV%Vga3kiOL06C&_H7aYw(}W59v&KE+^5_OtZ0^(Yia({F)7p4tdqDl z;#@k7s+R|!u6xqkSf~4vsn9%z|7=xBWA)i#_pHiNmrAE_FAF%uasj zrqu<0qv>$;fby7BUSyM4fW!c;Yy30sH+2_WjV&-Et|A1Ew)~2|9=FCMu&WT6dQ2Z} z*9GR&u5-jNhJR_1IR8Dni91%-DTosL1X)e|Vgu;MkMmr8G3OR*Z_)BS1A`(-y_9W&F7pxcp;*dn zj=Gz|_mPQe_ZJ^t=A7;lt!qiWpSGW7H)B6)w>mJ(Rlnc>mNM@z{GFT)_b|QB6T14A z%GlOF{rt93VRLl{8M%cN@GsQu?{L4$!~wJH@S`R}JeQh?!yIo-cb`IWDlKM_LSgag z6w3!f#fid<433COzHEEZHYSwk)5yp^7r2<<-Ih~t@O3P2RsUtk7_F6u@>;y5eR#3= z!42=XI+VT|CyD*(b7a$7+L(rj1HFno1@~*)U7nx)|^Kz^o9u+Ow^8L=yIjRqy%3ksl zer_lBlhTSOK$(h5(fo%kLD~6hFjli35=IQnxnk5`{Ov_OU%D%%5ejsQg52LsmRk(O zl5RSl$FQmQ>Fwz-b@fNbfA?zvNP>ijRC=g@Ol#5Z5KesU4=YO=aH6OyRZ@w%K-UYw z13l3GxR70h1wyKrO7bWj?39BMHPsMr1q>sEGcx0uQ4-MDnbtH`NYp zXe)n1p5E2UTVFiR}gGX z1&4PEL7YGtV710Z=iXc<@cAC4xQrz8%yPFy)z@-x*re;ByTQ`}aw?~_Y;U}sdz{-T zwsb#MK00%k7VAqxeo%|n9g!9Bz&u&rzK=yY${_^N9jJo8)l^s)o@w4*gzkSF^of!d zej9@!e`0{)zAz)G$^=7Etm#XT)fN7Qn5n^@$x2$BoX~1{6BQ_T(=*vG-BLnOa-XGK zdI6$UQO%kT7W4qT@FB3ka(Jt0#_G##R?(!AaOFXTljc26e3=A!iUFWZ2KA+wkNm_F z)K-JPLYt&4N=7%DU~IRrSaSR?a~=wRCBsm&bKT|x3I5785Ruj*Hl)Z3-x zCFvRMd@jr^wXoWi18f$SA+Dl#5Jv z_(qc%F`yDX5jZS0M6VhH&e+RY%A;}QjTC#vndXkvZ4RZgq&Kk1tUt~fLqSg^590-x ziC57KV^^?;;q4V^v6?6kmNq|Xl8dGJYtm>9wZ~!j;Rd4vG0=I(m>JVmTWM!}bvu4Y zM8~fP^#A^~DfZ{?@ci`2|Ff3SfBz2`1lVUP6lO#Hyk~~~^iztT;dB4bKkL2GO!4H9 U%k05d%H^B-`2=}uy%v4-FDZt3PXGV_ literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/clustering model/regularPrice.png b/src/comparative_analysis/visualization/clustering model/regularPrice.png new file mode 100644 index 0000000000000000000000000000000000000000..91d8f1f088a3f2a47550a58cdf8ad13d83d8632e GIT binary patch literal 17810 zcmeHvd05kD*7grks8yuasT35bBS@5pq=UR&HK*RnYpg-o$LLhS2d8|@;v7`=RWs+ zAAdYxZY=e&+{YM(Ntx{Z_7H|GX~M9jJ3f+tPrkT5W&;1y_1=Bd+Y*1q+wVIsN6hRy z?{jW=Z#U+OAxpr@|x{?}hn!+SZYS6Zf-!$p>#+k1?F zVJp_4|HQEP#LqG8Tan4P-yHT&oahboruif>rmg=H|K!dcna%rD+r6HiJ&<_#lZ#^C zR_&Hwy7tKzF^8fLe(axkaQczjL;bBsZ^*{|`DDbt)%j12JzFddbj81 z@w3LEOD@{aYq_`B%t^b&tUAie5ZJ{VC@|_}_eL=}0-;^4h6AaFoI#;ba2QtM>zu=Z z2Yj?;HN5$Oojb*`onm5A7`AMwCWig#lmGqje;4Fm5eyZda0a6++5(rJxBKb5guiTI zkC&-O$wWaYi89-4%9Jp^jQSLun77Qv&IaX6B2l_C?@DD0$$ zXxGK4)?Jg;u%Bb8m(4cI8_850cyov;hWRRMI5qCa&`n}6KTMz z*WhMRcvs~TtOZ@D*?pL_e@{s6n+n5yUUvg4{Zw7oDx0v#B4nl z88}&_vgOFb>QW*rH$=co^zCxio$tRu;10z)^*r^A)4|(&Jbin~*8lBA-Tw39UZWZ5 z^vk$~@8&vAMJ&9PCRJ;-+eTegEB;baG3Xq+;PN$_?!m)Y7)*bg^YqktWXR0#Z9pZ^!l1IPG5r3$mFEL{Cs8Dx;*cZ=F;gf z{C+1VCp~@rJX#2U=;=Us-4o}QnFf4_#yV}c>MEnT$LmAp-*V@xaLI5pO-13<^#0}pU1~sNb zIHNu7bV>;>;PEu51{x0Y&t+yVst0Ybv$GRdq&@XKrB*)wZoH5d!hI)0xy48h^ysG+ ztS8ki1P2F;lL{PT!^6XsYSc;Gx*pFed18aBebn?oRXU_^RaI4IcXu-afzZ{}Rp4rI z-tNYhCQN<69Uo{DGMlP6boZ)SExjQ@!@2q1we`B&35-Uwv_mGAmX@mwrYf$<>uYmp zBvKpMA*D6Tnn4!v$Sf|EWW-`nsT4ss#c^h^hTC-6=%xjU*V0)^B=m`d96V>GvAoaW zNRi?bonCLt#oM6!h2wQeG>$(TG1D zWjNQdv4mM3DCDMybeVxP{!9@ySj}YSbwr3Je>~4Z_*PN4A#ft!S|M=!@wLylo$TLn zs`6UR8ViFP-5w>X7KZG@M{;b7dIQDAN8@>gwq962bq`)f@NRgEf_L z2=Z)blxnJ8s<|`F&acneR%kYS%-iP|*$U#=i4ysssb}K&zG z3Yk^2E7X;5yPl}4(>`uvBiYd1-IY4sk+w}L#!jM6;YT~U))SqMkH&AjtTQisw!#L( zZl6Cdft_EnL=M9~{^%@*efh<0u|M!({G}%$!EEa5)>bP))IIGI49jnUMBG30q+pXu z;(=bm;my(B-rk2fN+y%#C8OyW=2HFHAHJO`TjBO=J3@mNQ84C^qLLD{9g>&sRE2on ziD%zy>gYI)zR6%KNMq;a2+IQ2O%^edudUNj%X6YO-u%ik7fySRA1yde+x__F=zV2X z;@Is~wxNBO;J`Ze7W)wEZ2BUVoLyY@5eTdbT@IS?d`G2$;sZnzW1}UvuoE_JHTCvi;FWulGm6&n4I1cy-!b1FEcPw$&Y5o zwtO>gl(DQtGx=Gr@yXadT1S0lw+5~(@W_y`zU}brps_qVGD4m>c*Ez`QtbSmey#ru zv=$l@Al+2$K@rRuaC!)`x?ZP4M0^_K(Ti1eP?&Rnx#O!p?0BDG(oe;td?uQF`ptub z&d$y?!JOV$=a&0vhcey}^)PJo*=NJ^YS#@-QD#`O>$$Cljhde)~(c**RKz@ z4p?uF&P+LV)rDrCUu@y>OfAd_4r)i*!S`nu(*K3gyAE0(4ZH6cdzfcGH(;zlJRPP2 zr}dz})c<&Nel~-Hg^ka3;gb7^9W!f^f=brh>r<2L*hK7b#$-d`CMn`M!nOqo1xXESd zH~041F}Gp2_d@=K!a8cWXV<4q-BZ2H5S=V*a-)6VM6^}b5l09#SzJgEde*tQxy0bP z&TgMXRWZY(3Ril2d*Or(+4{6vIpguv*^w5)M1DK{`xR;(IRmq7c3OIRdTq-pH8|OE zn$G8fqPCMljEhT3#tbE}KLHTlZ)0OqR&{o-{qx6Cv39=4DkBtA5Yp^~RHE_S^B?vn z?$`#fuom#+)d-zm?lQ{Q0So)m4zUSt2Pe9-jzEp*_;rnVagk!Z>2~4U(JXREXM`f; zY^`LJv)}&Pa`x@CKJhm%q(i1IKtf}%$)sQusaZM2nSC3@ut!%vj}!|AKv;EQiQ?GUTAi1sE15nWh*ROyo%KDcP}m}o1i0PupGV}xq<&__*M1t9SFG> zQUntL5lgTNwbRuSv(VB(4!#LX$UKN)9T!)2o(HU$$3mD?mp7a`W(XV&+@3EttV^H| zO5y!?d6aYMf4zXWsi|pYxO~F>`}aS5wpU_SN~h;Kr<_y9o%Ew5Y&%u?CU8B5`EJ;? z{dQnrAff3S$)N=nl?rXc*oT*sZCa<}v3{P>*Vm_K4v&^|X0LEd;%d#>$; z9Msj_P3RAmJoD`PWzHTRs0@u6{u#rx=pWB&C;Gqp5gmmXb%*5NC%J$KNOJN|my}5X z_=(dcoY`~j^BeyZZdudReXi3n)^TBeI_~T5{^C(OUAh0(*BcOOfj!?2o$|W@pGBzR z&X7KS>aS_-9|-tVG8uosZZ=B-YNWM8FuN{f0TS`UX(bHP{Fog2uYjQcB!c}HeErFr z!1H?wJ$j3614hzxp-6j;Wf#(Y$boi!3v?Yun+@KKL?Wp@?f*U?;v;OQRM8T_$1$ol zF{p`^#x0yfA=~TQt?JiDbZRu@^uRILR2QpG=3K$BHwP@?yQH$qXT1?wGS}-z+aIs_ zm9?FZ74*%qsA-L{@u)FTNxJ#?RFwy7jL+jWx3pNMI!j*8$;sIte>j8lx&EsKt~@l` zIh@b21NYto5w=3=2IBH6Ux2wL06zCbC?pMp>#L#Ec4hTO`)$b%ZjTH;DJdyw0qDzS zArQ}=kKUIy%ILV;RcM_(8Fl=T=>PyxC12;m7aU`sXFqrvmeg3J#)1f_Fx0T@TemOl;{Ku!q6Cr#aNfon01Tn`mY{QXvwJz=Xi{%36U32U!z_d>_lcXz`onYy~V z#wR3b_>8^@h*-9GeC-udW@RSW+SfVu${XtFm9uFCUiI^qcH4;0{J1{5X=H zV$bxvy~)K>D|4-ND~}ghP>`8Y`PuWoTo{^OwlZW%fTZEV)Qh6wyH~dZuW7x|BNPgi zYIt&`dx`b8GE@GXoxLuXKN)OgXzbv?_RDysP}AR)M#1S$Jb@Pho(Pd(R@7}y=4{Sh zm%O^da`tn@fi1EI5#(nxe$%6^HIKftGTa^6Wl-rdEp-L z<}HF&VV$E)+Z$$E=LQFEt@ZX`-mEQ9XGQ(ruPERaMekEyA*1&2^=S+vm0yrHdb$bU zoWJGMCjH?moY3=UiXuJHt5zH52UPdS#6-iR?_Qv0I6(|3^_@_DwB0(cL*+4SXbAbP zyKYeFa3odveNoqdkD4)%m*6&|8G1Z_YE+FYQ3QF_5=MNRM!D zf7+5$ZB5~|+IqhFj4NQ0D6J{I&=-$%0%(Q3MA;HCEFu>4}@i9BL4_1Bf&T z=df;OsLsK+K!!=EQH~vi{C7r;vM@6{JL}f2Tfms+>?4#mdkWvU+n;p8SpYtD82nKs zd9Q_q1)Z8gX{f4fJi=sDH+~I!A2en|tL0Ecf`Ewaw`aMB?yedn6Bh&%Mfy%IBl#pO_m7qyN zN*3p1n~5oP(TqAAgf%GO5Rv%q<&VemU98Y19ZcOb1T1sI56jo&0*6em-9oNMohrf! z^aOlkrd8HVGN)7pk+)WiiQ(aD2!d(1t|wo8DEzqqW5yvSiLKX~BBN%lKLN5UAUhjTXp+n!*xY~IAjZ@*en;^`{xo2PBMK52qp0MAZQ`|np zz=?*Fpi2&agM}sCO`#sn?(mLODMI1&Q!{xym54Y*e(r=rUw~ zk{xjyWxj7PDXk=uh2KCUPR8ZYQ%nhbr8bI^K9kC$AD|O;20xto(Jv}>H_40bJ zy+Vd)A%)2ArX>UXyq}(~0&P6%>b5ot_-989}9}(sR>qUr`wj3-4sa`Dl+C;asyofzm@C`MoQf``)^2 z)QUL%xM~I@rZaFtibgZDyeh;b2a#mdphHV6o9o)*l;m?{4#cda5RXynXJ_s2rlxKL z1&Equ&&~vXRu`!Wun;khbumM5oyLT|+51ZB3q#YP(m`KX-~`?vFT`b7rk{CvWwlST zaG84F9k_x?E`;`z!a~M1jmBye^_~Nji9~vwO<5Ta*qS&LSV(jWH<+nLZ~btj2coC* ziL)g%OA;O&)xPO)zd;CreeY349y+9m(ge)yRVnK6p^qL*0v7ez}WR9?#$3Jpg<9)qHG$2+5uqFXLjB~%tl#R8M<=hU^_+VgL)C5 zsOjiX>Ka{aDNVu(PeUuWCf+Dl=?K0HTSE&5}?v7s0pR5D*Cw61_j+0s4 z!;SjP`q##aWvz+$pn-LSsb`WXY(UK03nUA4z(^rNG9e=9B*M3WY&Txe?Ezv|1JVS6 zHV6$a;23pzmFVyYgVe_${3zEP;cG@t5X%>ZBy`);3?mES&9^TuGte$32TsO8$OrY4 zE_TdxSVZnxrKRkM1pchs+)TIg7tEZ1>AX6O^r%QqKHot;k7+_ZXuNy z_&_2%%OMFJ-plg7M-^ZXLaU~m(@YEX=DI-&ee&c9K#+|fRgYH`i3V8QS9}rDVPQw2 zPyy>M!)Fu}6u@!DnE=&$glwM#>vN{%zL_{R3I~#{mA(#J`8GG|zIjqS4Ft7gCBE)J zX5~RvTdZA^kb{+MM8*%`E=XYmX?jd+vMwHIfpU?6$v{Z}YKHxcVk3^tbZvY1UK)hO z7Z<(GzP~RmaxAAr4ILRmvx&-(4u#uLF;Tu7q7LP7M7xM9+7!4Q10^IL)Xb?D(oXPj zHiFB9IwJ@q+9(Z}wH7$9>+q%98X8*ppe;Ri@JJC2i!09WglrsDUS8hg-C`ySW#hs5Tm5uId{b3%f>88H)g6F`GWjWYXw~#)`q-u2`CeBk}r@}Lw*## zojohQ-A&60)X!v+ko(YqVuXZrl=hSml6i12wLq^D9d5+^K~aI@xcJC79;-sCf>?8( zM`hph-AnW+-9AJ43Iz;q?hwIujx`v4rt9Q*$73QyE-NoZ;MRW%%nCMb506Cwk#xE< z*OB{7I^?>NE+D`>(Cx=T)kev4yfY6ei}x}zzCz*?de6`SvR#R9R@HROaIe=mu-aRX zKlu{L+V{;8P|eNu?e?-M^B2K#A+k;G%CyUT9c7_zu@C{**wWP%?=#kxR#e1QCTyG6 zWS97LE=RJfjXA?21%2B0}Gw#>3|(O4WDzXjg2CquWS#zxAj=A5{~ye!ndnV z7058AV{4`r_bO%nDzFL8>Fe|C5fJPN;ZG3fI-OWG79rbJRl~TWPe5!?k~WyyiL&7e z_0mUhhhuWny3Y$*S;X9-v}5_REh$1xlrMduWts@kU2}8MEmQ#_`)~Bb^Lkw~C9zR5 zA&kkCQ-C0fpnLM7$2rjvc!ToeTX_XrkPPFdj$*r-&<2tgs!01GV$F@XgA4tVxayxi z+v3$nWDJ2^U;&>ifNqLTG^$cn7^Y zJ05*U1RRm;(wdn_Xw;R}_jN-p;57w9Jy7A%kA#DdE#Ps382Ypt=(Q1MKuHAJaD{oh zNidCgMa!L#{OIg?y#V-?xG^%t2qCXAKp#pqfNYUj<)K}PHVO@>FD)P$GT~xqR|pH! zRZg(0z!&z>yO&x(x<;lIA&)H5Gua+EH*UawV~J=|RFnW_HnuvQm+$B76dzxLSW<*@ zV0FatWl2hl*ay@RCH2yYnX9zwvmjU!=igo?AV3C(8xa;ru8ya!`nqGW$?I1J*7Se8 zF>K{`R6~v}k#}otI2K55#Jf3cVSUjB!U=uYD zbv;Fd!gxj))M9PFW8ivOr8j&VV3`IKee_o&5tqt9b$`*5fgmvwFTr+#Tq%f;M!%4r zpRa{pOV%mz1|)eMD6Yszf$;EsAg!*-s5d$pvEq8*lpTZe0%nAk?(PHuhlWG3T0Wbm z?l@R|qqRH>a{&*9+Y6GAD$+$-3=k6t?ErXTAW#ealoxV8MHtRi^ZPjE?h2^@R3zoS z4`;PrF?#02Yk|ZTDJGeNaCViW7}H;S$jDgTT~oOE5!O z4tzPN7wU6KmXVwVSU!UsWhOIBaPR1X+8`(S{Aun50IqCD%`>px~6zl?>mI7q1V|q#e}B5dz7l<-lchN9I7^O`gCPhX$Oi- zk&q?|jFho|K7BGu#i9}Ve$=EmPITpq>%%%pFR(}pBAdDH?Hm+^C|jX65VeG%od~8v zA$w9#uqvn*{6&R~GZGzXklL)j_8P2S5566wjpPQfM-!nk>oQAOGc;j0X;Hn0$Wp37 z=)6v?WGf2Ta4-agk`+-x1-OdJIEbujMkG*l78x`FO%$9A;;OAzjk0>2Q(yyhq`+*T z@I(F&)H&5brU3ibT7M5XjU1z7LkLKC0QXKV`u$y{?+#5Wr$Hh&I}?eftH959<$*JITQ!x4WO*IiP`nbGyRQ` z2!k49wqwl z@d{Y^OQm5^m8DGASChNi5A>0~WF~h|`j&c!f*;KZpyV$EwmZXP`uh4UZEZ)=M(q8! z`}p`+P0WYo+~6?5CNPRTK&{lryEpb#h6T~A6M8SxCu^D(FL;}3{V=XarWkmTj=OunQ^!ooGeM9!j)iG zVlKzdC)NDk(epJn21`dN%S;FkpG3x*toj%TRJNh2-kPEbE&4FkNVw}B-V!lZz8 znV$+?R`10?$!~)tpXEZ}&AYm!brD*L>J zi|EyE=jYh<#5v>eX0`&vFZc(GE8?7z(Ce927L_h{l`bYD?O5L&c_Q3Cx z7{G&&IUixW!gUUbT}o_g8~kC-sNt(dPfl+(TS4qZwdbGSu28*OYN!t{z&ksH4)+a|WKbV$`C61*nwSfDa2bmo;u!s*ORNnH!D^iam(pC}&2<@b4d zF59i$eaQ`K`gh%ODtl9Ht8Nqfm{;zU25x`CQLHUdnIr3nB`tE72oNEt%p_6+?dJ%9 zqp7DqSV=#aGVaV9yw`5|gepN4JR4Hy^9S0GLkWG&04L!)az?ZZ)vB&{-L!V!4Z%9k z2zjkr$sA>gZW=M|(u@$Y!aW|J!)CV*-lgU2->D+2<6(o3Iw?)Hgfh#bzBU=I13 z94buxt;uJn_?jlt8(^t{Yo2Vpo2Hi12`v3CTP)TPb|?h z0bvC-IS79uuv}L4{y~*~W$@XV%CgxJnHV%vQ}phqEzNCh^ode2tYZ^wN`<&|Juv2n zzz2wREc0J3`TyB4l>TcTJ73pg(M)pk(CJ z;YY8o$}n~*@(v(*O$m(=yl&^r&K^GXFdKPh1?%&hT3eA%VZld#Mys{`U{sMyUZA^g z=W0iS)}+Fao%2(qD_LMVS?{xhl>Sd6XcGPeQhWXHcX}vSNvfiuuE#y1wL=#JH_?y#%)ot;m zd@EId&KBtDi zxa9xnL|w&gom+iBPQ6dYyORC>ycClt+Y@a4O8$K!{;rzvPv_wiG6f;QWhxy+i59hr zegtu`4$tiDn&m2Q0)I*xm@FAH6swr~vs@%0vxS3r%3+wQmz2DXmB$K%$wSAf9c1T2*7wv*rfs_>qN>IgR9%;Z#GJ>Rpj zl|7^?->?1#t2{Yh>OA!YpOYHzr)Dbo;&Gv!t$?LDIgk|ui8sxbOSqV1x>M%qcy8VH zkcD~VantGZKecK9tpl^{50;o_Z}s6t`0bkE9lI~B`4QjxZ{?SEC2;(~vnQt3*6qF| z5Afu?X0#tt1t*jtbKUfGerk!%J2m~x_y_^O^Gt`??pA>3;Cl1(juS>$*xb>67^-7MY~v%HW`AYU|UIn`3)n z@5(NJ-n?{nl|O0;VN%R-cKG#fhjtKNp|2lZ$u@@O+sZIRHF^?Cxty=)w?*}^pKL9a zd(W4z^Ul5W!_H@AWw}&M0vzK397{T{=H2C-u55y|Ks}2k;7tDy@az9Kqrhlr<55<; zzMn@j)Kess&bC;PIiLl+xpKbm8{~FWD;~ZJtRw3)Tp{pWCTQN#B_ev;smzd{;)ln! z(9-gKU{tD%tS2sz^*tSXD8H+0ZOQnRX2Ck22>ER{-!Hp1UuSf{)z}yR#?JR!hiJt) zn*c{s%G4nst8{_DCG5bD#>0gU0FXF*o3)ZoEiS(2o4q zgh}a|w`y*UiMq(4ffzHm9$FTJEYL{M&kf1TOf;&BoCAm-g}S}Vg`9~W#*hug2)w?cjX)1a2!J^*)t+0k;?ai%r#hSovJN(=#PiKw- zb?Fy5$QvUodX=cu06!ZA;)LVec;_w;5zMWffi*7zrBY(940P8;`Jw*SwqxZ%#4_WD znaFAaZ;G4;dV_N$m`1$;$d3-wmGWK@d^BMT)uZU`rFEBj1j$N>mIfa+3y4p6@7NCp zTTpg5_P$I$lY&!8@;8mFG(vVGg3%Kil7S; z2EugCz@s7C$qcjrYG`;9O(DSEqUOVa*BqORd>Y=(CR`ZrjxvebgeI962Z@1m4dT{0 zG@`SGK8KC(B#8v90Y%Xcq^f76C&%01%e2t20!$-s2U{ZUGV=Q({{&F`TaoRAPXmSY`gc0JAYtz!7E#>x%*rJZi{Vg{ElG_%`tG zD3}}tJhn+Bnv4Vkxdo8tNP_^yAm;*jvx2g8qB>@#l@`B?oXe;uGS?fqw*abF0{}JT zKx_B5KL70bx(rP7Ilcab+Pwb3OU)!__~%D3lilXu=KSTv_x}f4@E>dd literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/visualization/dbscan.png b/src/comparative_analysis/visualization/dbscan.png deleted file mode 100644 index fafb369bf541b043deacb1a661079c879f06543a..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 67581 zcmeFZi9eKW`v4-Bvd>ZKF=zrs1VI%$6YCsr_akoMPq9&bBSxb4^XgH(H_e!u3@V^6W)-_!p8 zFaQ5n=Km8$u&7aNm#o7ZqQk467I84-867KcNd5b;i^iXexpt40&Nl|u54SpvL>(a} zw3~INY1$O&jCbcI2CO$liYW7j$W?pOW!f@jHY^W)#F&;=Oc}g=@2(c+mie5Mnwr{U zBqcUBwgs2JFmjaY@wFj8G&tV*sn21++42W^V3mP^Ve}c3 z#p`yfDhXj>b@Eh6X0hGa!S}(R{AzyeHmv+H`>{}vr&@y4`;LZ5D9N}fn&xotdS?E7 zqnJO$q7%Hgt#(r7$!3<$`F!?e;>^US!b**&q-L~+8Am5ex~|^L!IWoe<;xKP; zMS`+6fA-wDmjq8tDQuxaS_D-rwa7xV^x|-c{^#Oj&o3s%xD_i%tuJT@pE?Woauu?` z&HW6$Td2|-g$G>T*)~b2>t(8M+p(`X!m>OW9_?9LU}R*P7oDWWPF9z!jPg}e`LGKd zH`1v$LuER3V8T`^ttet2AM1LJi|>`gwu zIyOE~QPJAg)=}*po8MdtQ+2oIQOhS*E+mn?$$}kRa*CsKpOD&6d{Y-ct zb%AD?bAF=)Ne4~rls7Rk8E;GUw&DE^ z^_glqbf^E2(-LN>+gQ+L*(%?p?Z&ZV$3$l;x1p!YNGS;k2~|S8y2UC#KKm+%@anz^ z4^Oe5>@gXt4RHScf>T9Tw{Nh3veM*k*JF~H4EG_csE98oPo)wwN)+H0X)N#>mZh`L z{KTd%4G#}7 zsv5-NG<1N5RZ?fNCqJ;}#~ng}dH!@c*>r7r)_HBVrrM&!`p1p+F-7-QkDV+@y}df` z6BEslMM+MKP7$&FnG_dy(r|r|h$j{hEZTN+M#h%AlF!0kYiepTp1=DzK`};en)s3L zl2@?N80>wArQ1By@X!$AgVNr#9m=QPDU8&(Pp-x5ir(W-4udlg*lik z^%D4T+SjjNE2p`*xH>1gbD18^=Qc^2If=8#VS@q#4ZzHw9-jvDF-PS*_!@f0SPDW( z7P}^8ZA2=4VC|={hmfI>5%tovO;K76t9xmGjRmnYz4P&wZC87yrC37hjU-@?J;=M< zA{h<9H9giPNxiln>pzEvH0tW=JP3Z`b2n3Sa#|7VOMmrhAAD>?1k+rpFRPT~#Jc!m zyRw?8scEfkWOOvkvV@oz!Fj$xSh~RE%e=VLoS__65dJ34)$`FkqF*bO%Q-C{&QRd1 zu48?@c0K^I(cIDFwqNc>h%?I8~ic$c%unaw( zoVdf!mPEoaUSP_do9C|UK6X! zIB$^A6`TQv4&OdJ^%$86(RbTjG7ULM3!4Upr3tp^L5zW2f6e{#=g%Ge4r@~CdQL`V zWPugULoN{%*9&4|VnfB&KR#=Abab#0m|bS7)ZE+v<*-;NN7KaUd*S9P2%)( zE{4X&-fR8o+QMcKplAx#A>q=vY#={1%&{G5>`ai4_#i3yt#q+dn{9H}M&uq63;o(k zuG{+Rje(yZv$=JP1>#-9!ot|xj|`2B;K_Pz&BRlo?ok|a!RHAqT@-T)2USz zF*aYgg7HL}N47Q04jPETma>9@v^z0t1{+1Wt&XXc*iUXHn?T;F6@}#Ld{cYRo;_(E z+je%=XzAz`Lcr+k$u~<+NjY1e!);dmjHc5lMECHS zuj|w9l)Z$XX=&VMUqksji_yfbILMZGk9uFO!jX{?ZQWwKY(1CR>xen$aM!PbRi;L8RXsYrZg~O-YkFIfLlqUE3zAEN=n#a z`;v4iNFJT5i^TNsaK_YxgwLDz1A9-sXBVW}UEKxQO}P~_p)oO*5Pmfr`p_Zywj&Dg z%*2rxcUmqVUcJ)7#wEnjx8d|5Sa(7;c&Hh?&R7Z!GrqhHF z6l~O;`8M02X2%kxRgUlJBl1w7BA7D-XJU2@OD;ShygLmZ!3>Ej^G#BgzRY3;jjrXe zc^-TQ&uEw)K!D`F{ba$ptP^}JEm=8nhn|_6`*JmF8uFQ|tHjK0M6!z{5nvJRP%PLk ztf^+#kFQNlIDk3n09~j%35C`Mu@50kGGO~Y&$!>Ssob)&y~rH$?e0>yKrD8gA(XFh z(DU*gaSiF|nZm1tKZQknUCAiR= zsZ(^pY61)}7fjO@HYT;WxW{>AI3!&mN>me@=DO6)`MP6uN=iy(x^44ipy-d9G z&oJYyF`tmY!t}_%bxq``py``M_^j<2e0+R3wM;$pKC5aPv}8==nL-&GZmG2y=|KtG z%Ewze0etQ+oLnaj-~e9hL)ZZy7o{fuJlva_k^)!X$>JEh_~l&YcD)~v7m#$3zBEbD z#-@$6CE~j+4a#*aN3-`L?gg-fZ>BrnZmhL(;0RcM)>JVuqcY?e#C}Dun!Qw&(VM9I zESR+GAZzA_4p$ZG%*SW7kZKb~f!2 zVs##U>v7f9l~LIWvKSl*%4)Q(VLsAI-_bN+>rBc$laiX64p3hMo94~xcIlCrg2*tWh(&Ly zHMXJEgu^UM&iiOZM^DIM(chjPd8VVUruG2PM1fjN8~jYh}fh5>3w zTa+xc%5BrXDiGW>lIy%UZiLG5yY&6}YrXJ>JF2QilNFSWd%62vA^{~@L=n!NJ)71T zB?hY>VNslnBCU@l#%N*t$n%Kz>QvmTes`Jr;2(K2gI+q1eY-;13baG946?6F6JFg7jVluTz)gJG4c;+h1R)NLH|oJ450 zou;%VJ52Yp>0euRovY*Y;G@_}wVhkuka>0V&NSu)#g$h=q6`&Nqm8qmnZSVI`}Q}! z@Wim!*wk@^Z1-8*;8XW9?=9q?8Lk63#>#_Cx2?G@w3) zV3A#5(Z^^L5l9UXZ++TBd|7PE#MH`24351d(M4I0o{DP1j~}V4zVKD79W3kxdp%kZ z?*@1lJHda=i!lDg({pPXgeyqti+<@7!X~Zks8+G*QhNKysnpDJEr1{mrcGVh27m@C zMDf#rSQ$m_lGw)}(9ji`Lz;yPJ?2!1)G#K*$Fn2VQG;p7z#(;=x9#oiqIgztWRH6H zm3sYg=912e#;HknfcuLL!UIWAFBC%}ukOcDL>vLLoH8xZ2V5%PG&kgIDF*I3ZvF$( zQTikSC#Tdko6T1;aREKvj>0ZLExt2j0Dxd@gSx(JJ|qm{BMbzLozVjcs{keQ?I*QR zOFH{dC^SVSN)(*}HD*qYD?n48^FoeUgZSofL9+$K<1OY#Z0m!0d@bg&9CCSX>&~cF zNaN{m-n_YCNq9XpWEf@jVK+9OPICFggfj%1y~p?ne1IY*h<1ug1Mcqm<^;81Ba=ET zhX-*z#9!p+QD#6>*m$VOg{{aCd$;;ucQv<>Wk(7F3ww7mVL%ouxjK5vl{|?<7hu3b zI8ab*s808nMYI>tD~j`HO-nSS@0Z`OcO~^X$bY$IFtMQ*7!YvBII7BP=g!X!F~XL5 zU9P$Sq8H0UA^{0wkU5Aw#I*Z`b%S6W3>t%p%dgU{vZ+SJngEh;YS28~VTv2&@gZ}7Gsfj43INZ$ z4+^bNbDuBjn|gqoh9sCyT7|-4J1?tEEgMaSvWg0WO&LX`tH?GH-g|sWBosE7o%-~X zm+frc#}6)9?;#z{)X2Vy)y)cOqE$Xvi zb{Yy;%m{q*rhSn8wc7^jI?;A0KxT)YbXAS;gRe)ShAUf}t7nvO&I8Dl*bpHs>?j41 z;4OPHEGAN$k-9SaAiLfgiE@YrB$1ewmiBr#1qxhy)Sj?wP7VP>j}$#QnfCD}k@;A` zGCVw;U2#xa_mB6NVFIUexlTGkqO{Ewg9o03x&o_WoYV8=i>$=_*Na%wy-Ov8Vst8$ z6>r~4d#6AU2RHS=S3&W>-W`}awGnNgg+jdmj7^IaIi>^UWl$k)o!rCgDZIew`w^D( zVCc>HE(3p>l75KioOK(X9KBDze7o@7J^iLUrYs&RW+>*d@$?Fpt{}#_0Qm*bSxyW2 zxr(yC5mJu~FwI}u0Ho%@*ANc*RST*2*}L_pp4F?swn9;&k22jbzJKZI)2AM;`c_rc z_XsTjF)BX}B=l^hy1B1`VhPCeQY(-~mBZl6-fQ%XblAW^LH7+81iETfxRq_pg;b34 zxv#vuaN&a8@;7hdtBZ}zLv?|~$p#$f#)rG|^1cx0dXmh+ILFJNj9-#3r}P;C)Glk# zpXe>SJO?(1Qu1ojHZ@HFY>J;?3HsJ^MCa>3n`jAcfO32p5~jpXKvTY^W|soQKLeK# z7%#DOa2j4*yIP`e@eo5PkRKj!2Pix)L5}4jTPC>zk77zFNZ$;xw`7i6Kd~s86hb1L zR^Gz^gtaNGFz}a93p_2K(q>Dbh)%S;t6?GJl}N!7dBhbPR!9M^-|1Wz5*!T0t1f($ zdY9|9ImU;t4xG9%S~L>9mn&%}$;uM8&3R$;Ercf%h(+TNYzOTF%Lp77YbLI3h78l6 zU&FxB6R$S1I02r{cO}~cB7F#;7+pXfedjL#whE-mCkIrDX>_Ukdh(`?n1Znp*@p-dQslB zOnj-!06|R)klMyRGg-C+F_Q%Nj~V<>6v|F?74?y$BJ~-`H3#c3OR&A|sp^?O1(dPt z!l8I#kP4}O%<99se5+2Ce&lK{LuvsP)xm8No5={0`L+=Cbge_x!A~3jNRHO?RkQ=^ zm-v#m_@>tm8YL&EqJF0lW?lPkqj7wue(m`qzQfZT18=2wYA%WMVAjUEbB)W$rc+iI z8V+TUOiSmbb|T@2asBv-avj&j4#cRY5ENkFV}iH^(17s(W5+@b{8|dFe_Y+86;Q4= z;6|RjoV}h?&)arH--Qi`O)yV0*n*xMqn8WClRgFir$c@NHy6h|FEfdZFS zS$V{!gzg-Dx@XC51w*`4+E7M)kp$`R;KQXFi2ost=^2Qd6`)>r*EFrL@2@qV8va-&fp7hz- zSK@#NkB+`!WP?b+orXT$vjN;$x~6$nnGt@-#m7ir2VH%kV;BmwZcwJEbxk zfiP^9vPQlOtf-UX7nqj`2BZm%+!JP)GP^>Pnx-JAjj){c? zUj}6o1bDkBy{`e~wBhrb`A`8?TA=`$wSgxR7rKO2R`)d;Nl&Y85PB^f+DFV$va+oZ zCo?hAW$NeD(wYI{3pz~cpr`wFuV23|IudCccj4G0J{Q|0njO)FNJ@2oP}D9tyO zCZy=SYBK!M+Ei38Jb+t|RUK=7>(wYee+#u_=&$d-j(&$Te?%wYPWQ=|N%)!W2vlSi z3+u8=QVC$8*+~3B*-x(x&UUQppA=}n;r=!eA~H~{Hv*@m^!6RQa1FZv<b7>{aM(&he3!H7!HsAFI7Lf=#E`rZ~px3H11`d zabktJs;a71!6VHwA^^CDW3BHoy?A)iBTLpg@Y6xT_E2j)iC`%uu{!$BV}vw`8=&pA zhnOvAx@tS+PB{v!Oc_o)_|QB{PSuaXophW(j`UXdxs!nxW(u{!Wyj4H4+Q>vfN#=Q z(a*Z;0VHt#-KwolWqJ^{6%0PVO3p2(ptFE=c*;EYBg&!wMG{ZLO4^?O)4gVSZ|$iS zCyv$4Gp_07I?jI2BCZguAbdQD+I3MYCpQ<}C^EAB^hj?p+U%Nfsz|bWrk)4iNyhn0 z;7LM;m%;`wUieVv_o3{WIE&)lj5k32yf>kts2cP$G0tldA*7tp4=A9fdYrIHlb{g- z9XRvk(o!AphtDjS>ce0|UoSTG8f4m4Y@@w&8QZtFq}*Kq2aXEWOJ2YE`j4<@fk4C+ z9$!;5R8a6^fBI^+qy!45?RyOIx($7|?z+0r0>EeSBfa8HpGTL%9+pm#;)}W$#fWLS2*V5ULxD2roL+UWU8#O*|nhqTw1UTi9`Y}X^T9ykNbg)B}+g~7U zJ)cA83^mnaM!RTFs_WS7n#gd(C1_TaeEt<;Q+PNcn6u{O+yjR%1DY=N6e;Nffb zlb4lsTTyZ){)XT2WCUyYO8$H(GFN*F z>7Jl+C?e57eD?C8Qujlvl0KjXyoc;d7OQr$jsknz`u)>O>CbB$ z5K$K)zK^|@rfu0qC%!+&)gWf%=S@XLI)f)cKWnBJ zt>_s;GSV=EA`#)v(9jctu0T1~kR*$^cB3ef8z9&9-f{}Lf)Z#*ij{)cxb@SbkIxxCQS_Wu=L^ckd&@K54m8m>M>eHw ztdmorIg5?wQcid{{3XbPfYg1^&nm5Yah|+1$rQRq0s`-4QV1C=p54FZ9nzcu;?pG- z=LmpT53&K$0EBSd16FSbnON9~60izgyL`$9nK)H4y-Bh9zctcCeuy4>A0nH>d9n`* z?020RR?xE1g4H*Hj}iqWCtbc@x7?-3Phv>}=}(*YldoQ%Y`yGGK$cGD{pucX|Ww4bh z_72j+Nrno$avWg@xn_V&ypM24z-;c(8G*LRZu-+2K%RP-hj42iEG(0Jd6*{$iQrMt z4S{Y#1J)4wT{YoQ7nc#FWFbOXK*JqaAF#ZW6HDOS z1?-yecZMwiVSN!gulcZljRCAU5Rbrw5CddbvWp$2El@d7JK|~zc4$|)x!$cH;xjWH zqCSh$Zj5Bh__HkbZ+zIxr_tTr%~sP~V6J@*$b})1LRjqaM}*LkqPI1f+2*C+ea>CI z@EV9{D2gl5r*6E;@_G4^*tZ06t^gzxcl&yKdn>cyCYpdnEMY92mM8)~@hVH=U;$F% zb_(Kk41g;G0~95!>PO&pY<M{nve2(W>RJZ|G-UP0D-f$f%=gJWj zlqy%3aAb0DauYNc(jY@~3@t_k1l%(+G=#+mZzBRE*xg%TScerQAk`)t!G5~GZ*xC~ zgVc9)cDKzVmE}25ORxuSEXn0S8{$E_Zb?C-z3;lXS8AOlVdlgbWT`UI7d8FE~oehGWk+4^3N zsdPF@%t4DY%1$YY)Cr{i>!t%Zg03+EG67$ff{jfMG;R|sG16H`&=~?ugtJidXOT#o z{ZZqcrmms!klDWL9@}&Yka6h#5eOB1g9bD}{5DrJQ#G4{6yuh@+sb={cz8k2nF5?5 z=o*xv+=rm`?v&r9tAHn>04paVVhYrc3Kn460JnuHh>o!jkBlItdS5ZRO@CwVNILN3 zhMpOB6C-VWpp<-v)Eh`69>{&9qXBg^5#oObQr`)hbtdUoxS}mt zOAoYZ0WsemVHgMEbPSXhov;zf@BBn%;r@HTv7w~zsBm|W!b}w*{a%o~L??(x-f07x z4rvUv=~GtKCxHeAx5g4CJ45*m79fNn?Prf~HsNi7J@IV{Vn||5NB9l^94gR+KrXDL ztc*r#MDUY#kafgDhAD0=@O6!jK)REyaLH6?$SFft?6!$XGQdE=`yY3$lLsiBP_OA4 z&)uj%s>=EhK0HM5G^hk?iHj-Vdc{A(%@&}kCpSizG6{N$8{>oo-hLckU zSp-P#hIb2(*G-A6f&ge!6hgpdinI80*SEg)W=R2$xea`-O%zJSfUU5`*){O3-%uAyPu1tNgN^B;J5*^3aAx?7 z)#V@lNXKD^GuGJ1$fPwMwF+p>4&Ey4H~^u{8Dhc$Ks}^^2$Wk%sa_`FsrL7BM|>Ft zWpTYWa)XbO@5(Tv-ykc)jG4%W{b~cR+BQv7g=Ek^D18v34`cv&CT$6oVIoyXtqSSt zGEyOOB}T?UuPHe#?G|JxM3SZed)Eh4hBMII5py$Jscw7M=iI*}c7TfNGCji5j>A^6 zmppDu*Tx;i?b_5YF(ItT<(J=MV$Gq;#6SSWDixLWQ$z^*{2USlcuQxlmcfz(b+Ef= z0~l^RFvV;r^l67p3F(Q>qe>v5`WU1rwXOmPhITDFBH~<3Qz9^Vm1qR{BXXY4aZa0` z_T+jMGxB0A_MilyMrWuQ7J$Vw0Zt6D3BU`2cB8iu^$8|2jShLsV~u|bQIA4=`t`N5 z(4dd%gciIl&$Qz#=qIkAP%ikt#ILWDK$ZY<5H%VWaSaP$4y8-p>huRcr>Lgd0SpBh z*k9LpP7k-|js~mvSbXf^^)rR1?%Bb0u2j*v+M{o52Qb>E*x6Vbeimwn6MK3s;&y~y{p$&6|Gv;Je>w^daS{p7;4ZnFC-pB&gQob-;H=~QzU{FcC-om|8tyyqy?GaxPK#+XN{V-; zKR-9LcNZTbNwgkSQ`agc<(KPb%|7EQp_8a{BSrW{( z$2|8={Po!ky&h)h}&VX~Ji$_}ghXd17$IzXAYPtMS7t=Qmj z5^s&Llx<67GM9{d%<@ZLi6cT<(`~REH{2G z;@|6)O%Rop;_LZBd|tjc%LMV>N8V!6B=KR}f$P5>^rThsAu8j5f11egi;h`Ci#>8T zWqVyXIAzKwBSn_xCUVVQPF5wz=X!@GX9WLj^j&k?k3qKiCTQg#sH8<~$&>x_8Kuj^ zf2L-}v$|#R`LpO!L^U<->6}r{#Prd;y${aE?>nfd876VLa|#>yesH#CT)T#kt4?xf zQZ{kQjq)ua%DyOmaJNi&j)hZ^iZXpUb68kFy7rxW?q%Z;l#b;m4my=7sRmsnCM4n| z8-s$dO(S26O-%Cj^@WXeW194&BHLB!CM{NrRaKV^4k*a_NQ`PL*5G*-0WiXMn?I#$>@q_oqf8>HkNY|CmnVBPfgU9$_Th_euMcUF@0b$ zvmW!rRitP7z{W^4>3K16j^#jiaj8sK$a)bSsVn~t>G^8su*8S*jA?+3b*1AW- zC{X+5>(@L`#UT>gu3}LB@&GkE>jp%jAyQ9v0$-I5DZK_DXl`q3YZ_<|wV)_1$Ojhg z#-uTD44tf$Wtmg}i%2F9f>MRq`s0C4sOe3CqrTQ&0DLB>R-%?@};28T$GqQ>yBMrBmY_`NYQ1 zmYHJ8y5(dsZlHgr7$jC1!{bHT^oM8TAPtgl`55K-__^yv$Kt0vcZPFO5;(@FgSBJ&Urk;qCiA9&j$?jD@n~ zA#fa^u6oT5H5ou@(@#E!w6gC%{n;3m3Q+l+lvD+Z+*fG*4xlGnea==q^0FN6LktW_ zAe5gUX~MtZQeFV5;2DvxmFnlzGuja@9Z=47?3YBos>i`xy(5AErQ!-z=uCZgpx$FU+w~|8m_I&$><-OIJp7ax3W{u*|Xxy&Dn?WwQgJUGF-T!1}@2|bo4 z&U>y<)JH87T4B=9_O$@z{uaQUNn@l4!k_^DeD`$kkxjuY(3D64(_@w?Xfgmi?s!Kk zMA+lWsKC=>&~8N(y~xV}q$>fFov!CR#(`=@#M)2`W;aUOPxU5)4sf&GhtG_Oc9}yV zQp1$Aw07{Alyez{SD~REqUW3pdU}u3`Ic=7^5dQ95khW@LB;lCN)FUsiB>`DjJd#o zD9k@HPxQp&coUs^Lf+Yh8+T`hTwHS+RGC@DBf;S-=2{@0=NwnS*|Vk>3ra4z`#!!L_t8FS6lzUXYa zJ!211@cmNlzO;z;O0zz!AvId(rs?1!;SHK2`Sdelzf*lbqj;g$n!nPG8#myJT`C$$ z7GO$%#Zu&MMlYuATfGK$F*axTFv+!>2|IZ+=WEEgpz z2txv=7<%cy0{5E%HQ#OQ0#F^Mqs?#Ga7_`yia;a!v5!Fk+EN>Eim41K#K)lyYy+|L zcv)W#_oi_EFpm(!ue3LS6$@051`k&%w!ws5k+e zTfQS4Ia6ran*`cuA!jkpiQXb*>>E(rc95wLZuw_|uG$?8B!eo-hWJiKukD_);wyCE z_p4^LA>xjYDTnJ=6)mk4sDnB*Yusb1CU-#vD}b~mpuh*I zp1BhFe%-K5T|PPfB-QaN|AduRp03yzeauA-8+`^n!H!qU!xL;rdg`A({f3_(2o99a zF5`GN7=0NEqC7;a(F(#WqHfKw&Daxqh1cw5pp^8(u@%Z-7A+E2U7$8zg*{+=1k$cx zM3ZbVdGXVvJuYRo;W1o#6OaFeX01LfO>TTsJR5{hHMm7Ms93AswvSN-W zm}@xYork@xg(^>Fo_I;q%QLW?iDIr@@Tdh60JC{DkSiQ0kXxgld1*2)__c*D0e{ok zQV^!1s`@_V*=OqQ`}zNg=Dp|(9%a`ADdK63f`cdSO@6!rPim>3OwQ!I$*rYA5iPMt z)dzQn$oTpwl-%7xP1>FV^E8#iyo>UTT21Cv1OYtK!T<^cwMlG8_U%YBH6;VZrmCei zu0j5*Q1LV;JWv!TsEWN=s^{akpwT)TA{Q=DS1#^eu5$afLlk*BL{@H61k0)L%5;A4 zeB=7f6C51*10OrX-b>t^K|VzWN_?QVp(?w8^ty2U&Z!2I^?NQR0V)j=e)!XlvH?7^ zD$F1OZTdbT;R|dlaq-KK*;@E!WS&bzL=#FCAY)(_0fZn>bzzM(=N!d>sZ#?ezsU~( zG*Jc(1b00aH z8bI?;ncc@He((;~o%z;PBcs+PDZE}x@L^F}vZ^}DU*fcR_sJ;7I00inyXGrOM(-Dv zf3)gTOfwx?uG{-N=IJb0`P;(m)t+0|4%9WpS&bxL10i4#v;mI;=cUBrF9RN;Ix^UO za$gY;_lO%WAKPEOC2Nh9g(`A{VzB%1v0o+9%FC(CwlI06E8n1g=au$B{ewk~{Ek_9 zc)ffnCgC3ZfVIr%Vg*@u)V`>wH8oS#oFHq4m)*&#BPKF#6w>{abmv`s$+X`Ff0ZUL zFqay_Tfae&k%K0=+ebph>}Mtq)NOsI;X?=!gpF^KB;NwEXXyUP5ORcd|@-=95C;vA=sqX zq2r<@-qSEGmG%$SwWevJGY5)QizkIjmdmZ*_0hXEpTMkhDaW%H%itXManX-JKQcB@ zL6qzJq}RZ*Cno5~;ls~(3gPe05_x4+br_tnZR+r(-unjTxIm?P_EC0O`O?#Kg=9iV zU?6=#7cVL~IoYG_B|GLTNn_SgoWH~}HviNgCFeb|eTg@j*CDy@`Z4T5G5tl~ihc%W z(VGr^MwD1|+#t({Js+d63{XWuZ{Ea1%MU0gt#>m184hJIPa=mE1(7)f&ue!2(E1L) zWE~gn^fT;owkvQ$G#2!|fo_ZA9WZ_6?lt*xct5{<1F<- zB~Vti1i3~IK(m<|`TkpI)6a@*k^V(Y{8eQubY)j_puQ+_1-g_U#hrHhivigEU~Z@m z8xI2lqex=3C4YFjcM+&MIV?vj?Is5+(c^$>a@5Rk+eC^?(fI>?s@}9T`jT zudbb#g2^c*P>vyS4p^)^fB@gH!+*x1E7^{a#HiNmM|9&sr z65J~AcR+ULWf2F!ZP0t>fK%FJd_h!#yzaKu2-gAG-dzPiJ`Y<&0O(`dG_--@D0nL_c<3nn-SvqUbpEJ0(U#D=l5WLJuO* zww<)?Pj=HIxA0tHFD%_|oh9JaL95_J3<(LrW7eCtOo-F!`O<;g;93(|5 z(wEnV{XnaU0G^TdnHf6@Mc;B!x1g%^81>cSBafD#k;rhsDQZT zZY>K{;~!j+fV#Y|%AJ6-sN!i{;?14M_y0KjiEfViNzLmEml>>54&D6^#Ra6s+ag&x zj`|#O%7Z+`0BoQ^Z`|^g^2aly-+qn7Pduoh#f&LE<#nZ0X3__Xx)RCst zzgfS(F8DAb?j$BG?d0Odlvr{+djXBlDIm7|*^C||G=cBGIHhKt4VJ08o&)s{K61eA z$y5QG2fBfOv2AaQ&J=pfz&!z_`h069{u~s-#0OOA2mcBE{(ceM_%)B3A20sb$9a~h zi!F4wCyT~v<3bBKqkpq_|6@_ss7bPu&7Ii>@5`2aOfcVfgDDx@Ja%Fai~_ny>i>)I zc=q$`*_;rQp0`u=!6*VW7q3`9fo%s#Zrq8#P(rrFj^?v}P%Yv01Jz}|KJC*95%Hd$ z8bX{I$PGPvvnB2^9owJmnY1mxiK!#9oSRGk;J=richA(ffM1;C`LJF8y~Qxizz(a3 z_xg29NagmJ>z{ZEIyNL@M1lsG$tzct^PID-WTug`eQRid|sOI zu?B0g73s8c#(d1UV*L#6yao7P&++kb4dE>h^Z#)AhHtD2H+tSLBVkw7+fle=*T-MSOg=hUDeTGmS-9#%JgnbjKH7{e8tT<9}Uo>RWVV z7}w$yb9LuOR=98o191n{i^?2s1>Dwsf6%=GGFDY(iAJcA=yU1%tks7<9r=A9|Cfh| zcDz~4^P z_WA7DvnqG)d>fTS;IWQQ8VICiNPF`HPR~)tB4qwwx7u)}s_fqHy?{mcbHD7*ET#rw z9_dHEBU5WJ(ywg2jWDa5H1)HeNz55#H_PoOt3y)7D&4w#RM(+VeGxr%o#~I@Pwm%moV2+M6@J*ha zl3<`$C*qL&CTI6kTj1vJKzylua8jSj^zVMh{$wPiM(U)6Gv2Yv+zB!06!T?Nco1G&KB}!Ef#JpF1ba&NhS!9Lfr-J@Q!V z@BYTM%|+_xMSbbZy3%9D2lFWg_@qnHVEs3D?5Bn%=Kubfd}@+DJ1V)Z4k{11(uA!@ zSb+|}VIR-Gc>TutBfT7$n_+o*c^ZP$m-k+y1ADv``QTH0@?+n&qg#+R)UOo*6CK2| z@0nUeo^6xzh5^{wwsf$k|GwFj0&g-cKrv;V44JqQv+fHfYmUig>Rf`VrUQDSQ! zTm!dn7LJ11PaSMjm%}YXs(XFmUuIK9O3wwOtH|+#;ZDmGpOKOgbJM56%Ek zQVSNaODcO3|FHpIO(%!zd!R2#eq{3F24+_r_Mk~8H`hgF=Wo<7eeYv(@qhth-boo5 z_AY7Y|6$%GBrAM^d@Cyjnq*x3^Qx*G4Wak+SuR`)7sInC-N^9{3KQ2Xo>w4~+&7e0 zH^^Oi^x2yUn%*D+?DekPLiV;TZU0#5C{J>MIZWyhpmFfkC0&Qhyw6m>d`^}tIXVRd z1xk9+x{>bV$w@+V)=!W%1Tq1JrQmsQh41OQHMI9K&)-eNlXo<^f`V4u&*gZ(xx)M+ zG?RwOl#lM{ZHj1JUB2{s#bWS^5St`qR;@FTD-jQ@)ZFNwi&ht3R2@bB$508M;f?Qf`7iakEcl>+*Hwb-V!3mQIAzjLoCG8{BP zO>wKkAxk)h(rEVl3>Q$boa5w7yaViiSe{#%-AEKf;2x=})rEjY(R!A06n1W&*@9bZ zd%5wJxDy~7LtIm7$Dgj5ef!X%rR7%an~)=I33}{C}fD{tH_iTd&f`}1zA%6~=pt1Ek_ z_HnjdTClP_x{{JwtW`X85Hp$}O&8=RCE3YyHEky9^nPkMPY0$8TU;-I>-`z^-<~NH zmcL0yf+rD+P~PSV9m;ZwUh$OZSfJvB(*gG6gd1ArI-sm@p1m$+koy3&dwFJ19f^gN z#6?+~r3h>Ap+|pYC~hbo%Hjw6FR=wCfKo(7=Qv@eksH(OmKeEtA~)_t++5 z3dlDWKI~PZY-F3Ay1!{KEdDjKu1Z!r|Lcm7nlNr|w<22ZFJlThwXPIp9~9J=z<^FS zBF`=vk}DGHMMRV;+#n=&Nq?EaZb48664j4RJ?1%}Xs|u*#cz~w*oVz1{B*oGxhKE1 z(7N@*)7HmZ_$@SDZnnD&52IjanW%Q69|7K#BT~59E3dx&x5uB^GbK-d!Nm0XQ(Zd} zT@TG1wZLXv-}qh__&@BAp*P~RVXI0zQWhad@NyONd2gwOfAFinHo@WVm)!lXat@-d zukx{fq@&-j(v#Z+R)~DyJnW}JoI>ZeYkPl#rp?v=+T?F8rseY*rCfpz)N@AlV5X1a z&i>*YE;AJNHOly+l>aMH?7dD$`kc#suDM#`6y%s@1rd${U!RMB0e*=KfQJKy@^~Mo z^cO0jKY$k`SIiF>VXma~z#%2A!91-zxPRyu?rH{e*W3J$+yvwztj-6i$X5$ybfks| zXfyxPX56+?yba+qT*NkE2}To;gKj{)?tR?m`NpijdlHbB-`5WxK0FTc?PeJNX)kfG zgf7522?^aY=fzg2$`L7=P~kdgL4l6r8?yvcL3DJ;xap=h$N|adQ>dH$bJlTa))5|x z+Tp)k%QPqmwb5A1&`bIXH&{OmK|mJhlNbb0Y~$tlXXDJ!U7NV*oPYn*9yny-Dln8C zAjA$D_!y>wkar+6ed1Cb77zfFMjZ-mw4ApzVal{@KtEm z9Pz((>(Lhki|nKNk8s6w1%u<{lnV>vHJZ>Y#^r z8F;4Cp%Zx$@LaMi=R9!E{6_=*~f)sRSxJ7?pkp=i{hi z7eLyl4T)r5NenEW>B4ABF(^+LK%yk$oMinT=J99gPMwyg{?kR%)Ml(MwEL634pd9P z*Jqv=`UrSrncDpTW)oK7oGo?~a+(y(UZ1U-;*oG$bA&GPC=6@2fbuW{+KkB9qHn*0 zn_IbBhE6h@^s^^AF+lol*|uX8nIVGaT;9W$lZX%txt}+|!H09EU{|%FXXMl%R(r|t zyTCal7DayE^&eSKs;Y`1UxedH%!fIW6&*wG{9Jst!7+bMC>KHKf$Y-mVVenj`vrbqyY8r0?@rE9AjN3A{!Gob;%dfvOv`5#`K zA9_CDWKE*?;)M$n=a%}lwF;Z{t^&!xc(qEx0~(NP}&P(wZpQzIgOY&_^)Au-ovyVi)&Cu$*h?uW{a|Hy+QTd%ipKV{9j#@Q)Kh!n_3>4wJE7!n0^NBT`~x1fI)`V z2(Wd~6hXdOaRFVI8q`HVqrl;Ey%umJO$ul-5%IW?g?|mm35VuaU`z$H#zTwF+oVTS zR8-FJ@W{i&-fgI>dT^F}C}_&QAxvhFB-uMK?odY{M|2$59?ne6K|&bowifY(L9*?5 zC}T05-wT614!4lmQoT?C z<&3 z6wxZOc@MoJq+bu(I;M&NZHuDoP$hfBfcG4&XtDy))izcIg?sxPDnBQ``j3b#TT9Ho zkR7$MvT)O4A25x_{&I`0b&ZX*Iu@harGo@d+>2|_zCaGngYNkqXkUONF%J%V>PT}H zLS*Rgq#z=D4D8*zSMY8n6%vF`ojMiI=`Jm?5dmapZvXm@0pl6bfPNX*N&ip$9XP*a z@?dDVyLdx|$(MNi4s)2^TDatJSTBii&Ge39CJwt^QoC zf4%Lva{8)dwbm-X;IO18ADPlHV3x@+{8OmxqJ}t&vaO(<`-Y!6JiNW`5dH%OTAS@p zgg&+*pG!|_!4eNZyz?o&cNq@rtSN#ygwgmw1s_K;BDWtN)EkDLOAp9nh!`vFkY@q~9$uf%BKl(^EOX;gH=i%k`>v5gVKqOzetfK#h3Ot{!EW<_h zJC6eny2Iuqo^7TQ`B$O*BQh{?bYXfxAI`Z#Sa;AH2!g)C8Lz!gOd~Lh*{i_(=*eO} z_ogLa=TF~$#46?H^3mLKY|Y@6$O|?jsz0l|)azAcCeXp-pr+vpe8bM~BD)LtoSLIk zyV>D@I2ch1jL$MC(GGqOr|~IcPqM5+AlHJXyTZ-vbr5CvrM2vO`B#A)%MXyyw_=cG zvzRSEul{a-u>IyDy7` z77To(<*tL&W7wt$nTWo9d%sPD``66{I)BBKy}EV{(iEGN8ywZbh8Gr?H7n)k$KWak z^>lS7N8LPvKmWnfbaTV4D0duF+VKle?fyJzPekM?Ft)3zp^=2lg2Qo6prmToG>&@z z{ri1H`HHmY=gLFiJja!JI86}35S+o00J-wnI&`0m$NQQp_n5GOs~eWD=n=Mv9nL#!%XYmGzwf`$y^#C#(i?^sPP|Os zEK{4|_)H;Z(!|6go2_an)bw=wd#sX|K^p1K3iHA!*dpxaq2qW+o#R&|Iqdx z;9R%w`?%_9htd#*1{y-iC^9OUm81xvvXhZnc8iqE^3FV-x4_Z~3_ zZ~S77`)+C?aiB_fh{^9AbIDSY@TQ&QOJ6Ht=lwsD*FQFb+rcBX?M`<%%fz zQRKe7D==`4e~6-wxhRS=BL-5TowAf;;XZWW;lJ*}ySK30p;aK&(mGb>l;K0{Ctny7F}e3CslM(N_oR^*>HO`SwALmmNUVb9xXZ z(>KcLEvs>Ca`e zL(_tB7(GJ`5`p!tG(0ghxu@dLb(3ExBQPDWp0b7<(0w3>=4kjwD?MJ!n>Ox{wlic& zh!oZht*@jbGiyd49p^5#JZiQp3bad`w~I#{L=q4_K2L+`u>L=PnDS_;(75cR>9kHr z=rd5_{{b-!SlAtGD=IA%0k%gN?X(UXgc}`?1~pQZEoA>=y~&T~dzA`R(h5lPY~E0t zfbwwn+X0|?DLVA<0@BJH){fD1KS4VXw5*XlI}WoIb-wTZyHVS5l{mAL@zN&c4_A2V@4;52%YWSDS zXN;S*Ut>N~aWHo^4Uz~w3(#k$@m41FhhcaWGQS2GbeGuO^?y7Xv@>6OsGGMic++6J zibHMIcunS);V-q5POmS2Pi5@AB(HL5^UqO7nW5m2kZobbvW#||f-0l4Pi_1)yFi`@ zKpf|ZPulDjuHT+Ldh(-JZa%wF*b-$8*3VJvy~xzVWu!6ytHrW(@ZdhSEOx#13mlPQ zq0h3#y z?A?WT0=Vf{p8_m=z8?duLw&X8kqei1Mm9iI#xPWW*sQ^jqx}ZYnKGGN5=)g&{UA_> z)Yp3-7R-PcMln5E{#hd%Dq@W;+IA&y%A@Kvlk@DXIqndM*B3nHnq+V&Mst}O)8Nj| zZ~k2im8T{Q+p7(`!Un9zQ~E5$Oeor0>#hBB?KC}*(=44E#m&^~5)3g_IX#bE%8W}7 z(VpRh9UlrJ*YA(e5!)0l&y-Y}6&$n8;iR#BT8?~d`%W_O>BA^bv|Q0Msv3Nxl)6bV zRNz2ON}+Su(9@Wte6xmhm9u4er^1(2l0|8JX3kANAB(%4!cQkm1EWh;Yo=7a9g5&= zf1Y!uJ}4kEDzE!4YM~1`+W&}+pL39B95xskP$9@Z^ydt7rJs&1S@SoewL>d4=Ah`5 zqw(w64xU4g?)lAQOflC?R>&CAXa^oF^2KKrf51>fgGKW)iiVP?>n_#f4F_3?y!hP$ zX1X;rNXTf(R0IW-ngU9G(iYys=i|kr7Kvw=0xxt6Vs(&moE&B_Iuv&LH_9tg{(}1B zY1bL3J17(cTw~~PsXJe~Otz}wy(2Xl!0(W#+#Xuc)K`b#V=on8-JcC4=$74hkHTD_ znsiVvMiota(9XE9Ba4ghdOPgq`R4Y#=wh)YKr8@ zD|X9y9!ONAR$SP_zHvPAUthzMbh5%YYHgFG^CytJ9%!XXuc>WoXh|NSZJa@dw(oX;WPBZu>K8^y0O4_l#~3~{LE z{QMf6UD?@G@q;pM)~{xjYMNK49=f|u%TBAa#-j>7P-zVE_!qZXIc85@c6b;Hj^@rg ze|Gi?+A@C1$qaO!RJU)OMLu*e`Op{~xwaTl5v=Ar6Afb49o(T8qXvFFEiF?jdm-*i zYgVGFml^5^6THKY3n{8^?yKo2$Qu6mo%T_rR066u*}E+?HnbJA_~m&eySR=)I`QGF za${ADCH=j%T^NTaChiJ{AK0LqjBDi)p)ioE2-q~(k)l~TKvL2jXFaDiM6czYk_#k@ zJz(KpMpC(%xuBg1|M6q@8`*c$K0;x6R;Kmam4EWj#d#6YNGPN_WL~o!zVGg^)23@{ zy^UIo=B)eIP7!v;OkaD%IS}yB??CW;6RjQW6o_1K`e9@Fj%jRl8c;S}2UvI>Z4!-y z;-=p?%JWTPb`{!1g}1cCG`0$;g6a{vUVp;?Dl!PO@Th^#o|_?b{?at9!RR$Y5I$I} z8ld-&AN=;*t4f*6ONJ2F*^}Tj9c1Yq3Cxa~UJCKk6GN@*|GjAB{(k37)ur7|fziL0 zP5eRQmpythtHkS?1WA6!Xm@|^^pI4Ey|RV7%J-%(2hCE;pM_@r<0{@5I{W%%bn|KL zvhaVO;i~0}x(oN`oh7?ws6hupDJN1l&^Rl!)SljH@nJyYf2|s@VRz4J#9#2Gw<1Zh zKwoy6MT61gInA-OE;iqDU>7jxSGxOQq{{+`Agv1z>N86Xc*$incz`S5;U-C}sB8KMX~%s#bK_4N92U|!NYQ%NNGWE{(x2pR2oPSs&kk$> zHXr|uY%Y%E!u+-AA3u2_V41NJ*Y987CIW}AwJkq|jdvwW;-{SYS(1~R3qy?mT7v%? z@pC)wd?@HD0Bv{4?_aC8m@{{H9ZBo^C0#fFys$@RNb&C{TjCQcX2P$s=@#u**tkh9 zOt!$?pz_Z- zV1S)@aNRF@hP?cagny?v1lsJUy%d{I82_P=cT4j2l4Y4oHZ{%4CFwBgL%+*nL5M*N z-#;rtrtL)PY^lY*(^Q)O8d==XmMVK7Y^jHG(Qf{+V{#47CVv)gFUm47{MI(axh%2c z=GnX9uRyxg?Y1%PQ@@x~@$AmnK>T#+g?Oj29lMR3>E(0nc3ne-uv7~i`(uy`FenO% zhQf~$M!r837Ji0C;zO5-W)8rbo)@wKVA(fbnlETpw`;JwUK8yY6cUh4$`m~P<{u)e zC6nr{hQ92R?G`^+{@#82Fls8o!IC)Ykfvhc?oSrQKZ^VBF30~e9+d5IWv*FWnldEC zee~5Yb%3@BL>6k*q}Kt6#N@;6E%p#$oSpMvSF+Qdoi;%$|J(bzbJRnLgwyTzrNrrd zy8Iv-PGtC+3>pCgvWLJXSoVB?hK(mDNIp?PMvpOqFMP29{9o``0T7i#--2K_7($Ou zN;*cS*P)TSRelTtYq8J`7tM0ofZL6nr^7f;SMgw8>0_m(tkH7XjtPzmz?|#l$z;DZ zv{Doj7N<7ndxJ3{xlP`lNcCYpj=M`tQc{NuIzd-89Pn2(FriCMjH|ax@xT0e`S7l$ zf8t>2JsTLTXd8a`9}Lq(!IDJLPX-f~J)(RRo|2mr&_}R*N&i~c@jxlh zi}c$38@Pi>v6hX((CT-gfvM;(j(RaE?qbcUB4tSJ_q$`{b9!ERx-GHj|GF)Kq51q9 z)3w`weQ8hjZm;TO#j#?SnW5nB6C!k<5~rs;v@))0@sFfH7wRb#?7Zrx{vP&d_{KPa zMOQ@S_Rbl2$Da`QCi=0@gw3`^-M$-jkpp1X8+1sA*}X1_yz(H(oUUA)#d{&Rbu&MI zC0dHaIR;8Y7>PC)%A$5Rq>On-LN^SZNXVEU!9)gtKZp+icgJ7Qj=+_4hgOqqq7-m} z9Sv+=J%9_37MfCE%NJniBVpU9qXZcPN!WHV^UJFe5u8IJ0fH$K^y=n3(j-$IUAC1D z9DYACv+)AZg#5<~>iWD#jE3zql_j~S^r!Bc9%fTX0~Wq3$|64rVjoaF1+I}C^n0`e zBPIm4hVD#k>s^iJ{@fkOA9c6#^4`%`N7v%45b0SwIrSN4bkICBd_uPnA;=vOYHk*Wuteuq+7K;!Ewn;&Hg>VfttsP zA)M$}5InGfA9>5%$-vpC+@g!O(|udq)KzubuKa!B9lwz{@iP)({7qAb2kiDB(ud?t zotC=r|7toT^M9Gn2v4APi`UI`H6Y)tjDTX=7cb}@Eon&t@EWtUy))x{vt)q65td#G9H)`tX`jN6iYd512i zyIZ|!JIL8H?C!S_hp$%LTCe}L4xMZw-*MojlbM-WqoqaMPY8!UpF50y!<6F*_7;(6 z(SSA=_8*!PNwyPp?mYrI;?N|_ANJ!i?}Fu`8ax0Ix-8Y-4nz2Jk*EJEHf< ztNrqXpVo7&G>ZpOheNl@6OCcC+0_llaqG;>db@4&<^}16lC5KZrYADq=e!d%9KT?2 zcF62smCFBkum1;)i3BCyAYs!WjL57WYJ;!SdE5&IG$O`-1l%Ta8BI)7rG!WRiHlZ} zOh?cKA+ntvMPfbWASc8@jS5lB2#Pd8+fQF6O%H$>+&v;`-#hw8iA~JBO33Zo;e9}= z@a(LVbQANB+Ta`b;TIOM0L6XLI>cVPgSIIE;C?roFO$ohSYY8)J&><04B4$hsBFV2 z@L7OJYa#6tU76e7#PIXl@>8rdU}J&%t}fpqv^NeS7rzTa7(=ttZrz`_-&H4KAj z$)8$~M!sS2ADm%nTqDnHzf0rx| zBm%gArBnL*Iv-Y$7SnKpi)2*SS&xagQW#}u4#;(zn#x5ZAD2d6nvjtxAg>t63Yrg( zMs(G76}YcGlO=v#i3ZUQ=F=l?{<)$DxA6EsdD2-hI!c6^$>eojin7rsXw2RR0Y3J~ zLuWVB>e8QGQzP!ypN|i^$DC}^^YiZ-WpNpM&wfP={d5ei zO`WNHzUrN%^F@pXW4uli8qOHfC|T6YqMDu0kxG$WyT0p%`MKK5RWu0|T=tys$P&%? zceOqCk9R}2r99!~bw2Ec4D6YTX8}gzam}J=d2#3Q?!Ac-C47T}F-xx&KhKbuIHHkS zl;zlTE#7qT85+C?@clpPiz8w6n-0?RrG*>6TfMfqR}SsC4%OV1ea9);b`ECG1kFy8 zPo;1Ju5r>{w7#5ch5qp67cM7m4-5?4O`7i-0SNN&?zh^r2RHNHS+(ssztY`xZ=3BR z;zvWvvpJ?nav1c?DOl-JPHKjPhI(`|C20oKsn5MXeJnfwNX${5^I1P z^YT0Ewq*9*5VSIg(PR?QP$2?Z$4;JHJ0dP5l>FZRO;MORbA4nL{ignj{-LX};WF}! z;w$WHIi@z(JD7L%4A&d#*yXc*GSz*EeJ(wVlyMeYH_}9K*6V!gAI?_1x$14k%0p#O zDd6D&%b0h!ET|9Nc~_qXLnv_t9-6RhiO=tBnKfT-KHIk=IYHlBC>RWk*yz0^a}vBi z{!p%H2fHm?2gZgp+n>FNSgv&2jnUgyQBxATV==G~WY1NJVJ<0@?D0@Ri&N)nOIL5% zQfmCDn!=L9M)wgNo>*c?HwYK2>(WzlchuxNX-v_5AQ#1Eat&N-Z zZP_9pBz!1i${BuLThfBTjk`X(Z2t#z?U>X}MDHxSE=#Kf4|uzr97rq1zR#-ZSgTb?DdG8PyyvD|*>20Frj~7e~_Y>SEPXPFgz zX)XiG1GRw*2r5!iZZ5l~K+<@tIB6XGLc!y{S37Me4M1_fK{l`PE}vF}%R~-oDE2*# zxqZ+6LzZJ}U_3RXI)49$B8JRv2)H!q_Vq_X)jl&zWfMr$W4-y0g?F5$m2kjxuvV-F z=%UOLQ~@h@iT^7zhyd7DC7fW`v{7DNeP|*}BJ5jlRi)FuMYwI@k)OYvF@y7e_ z(oK`~f*caMBe<<&PgVaDO(Aqha_}S@uA7s0WRFi4lc&&bT1{ z`Wm17^35qIYUks=kRNdTTrQ`y2PE~KdH1dgR+N@@?x^iamxY4oxK&Stf5gJ&`zrB- zzc?uU_@c!sv~?A)DU}B73zXk+`#TyQkTuzow$lwz-i}ux(#4fxJz$*5#fNPZI-we1 zO&z3<^Y`1}G-iA($p1NcfmfiQ?)GGxX}hUeCk0#<6R!&<>k6)9<7-~44GZ=&iR*;R zd}gR-;)mu7#f8eFo0zY0=Fyz%c+^|}0}KD8jJB5M+1H`+DmVs>cPFWlN)jG6JYN@$ z-jK9vt!jQRIe8&Qb2d4wGk|3dcxnCpx;38Hk-*TEtj5^O%9XrUmw#4p(}bfg)piNv z3jF&5;Stp+@DcEA`eKdkrJk&yaER9G|N7~HyMmaV!nJGhW(&#JgTj^mH)}#y{f)G) zWQ&b#JdDQqMqLX}efc|gdPR)vmiWev^t($|6|n3)Q_DaA-8bm-&Xc(Nca4VC8MrJ) z+jW@fi5uB@=Bo8@eQ9TPsk-5gE~#zjyXTX(+<#Pd)4xSS_OXG~CaN9G9ol>4ip345 zA|5GXt~>kitP}19Tu#GU12uOylTUr>>`@hv;Vw|;Oe3PSk6g66`w)pMc!@2WA3JEN z2U3?aERPA=OKT-G2Vw3008S4HT1^AYd_njBhMT4=J3GnV#+3PtPu#A7+~x6RvnI$} z`9S?t?_cFJme!Kdt{`D`P9_U}&;K4D{o2*E8)~Hsx0095;>P@l=wE?$L0ptfO?p{Y z9n<1&)LIsSXld9f* zNoQP<)~!|{NF$jL>oshaG44F!00}6ifO}3Ae9tNk5s=nR)tJ!kM$(v%qK$Kr+i^N+ zYz4aI&a*35%;j}xZ|%nYI6Vw(5!n-ONr1m0i(Kf~(KEvqVUi75-F*ceI>RH)T`g0S z%%Le*lVR%y|KSFTV^-d8i%0GbdbH-#4at0VOkdhRZW?ryXwT^A?ENC^E!^-- zTACcAX(q~uGu1yz;b6#(T>U>ELygw0*RA!E+u=sQYqH;5Ae^Hh?>pJc*bb)voi=1A zZzl3N6sxOC^(hBZZ+Tp%b$H!x`>xJs^SJq&FfRb=vBxchSa$F7$eX0lSm{j@kURL~ zSpdXCf0R5Jy4jY)n5y%}eeDKbP44vi(vaOpU)aW*TA8%KPuNu&^d!$t%HNUyuZ7C* zObtsiR-vKlYK}p>lriR&F=5#b=5^duvCCQh;cin#G5EuLGS{J{X?uT`@E->7_~(9V zO{QH0*o3r*gCVi@r*WMg$`pQzuz89@rd{V|`Ze6QRsKkD$-dNi*{u+yRQ^+w z8YB<&)^edSMH`q?D^NRGXPNEeWd{X}OMrZgAsRsFwMb`)LiS0}0c|S!FYL)^yu28N zzc$dE)k!OQX;)d6@Dhn@C`p*^{BEA8P{J` zmcPG0n9D$wO*bKK|;uiZ>=>>@>mE8yKx0yoQ_(VFK8KY&+Jh|E^KZLO(a zrwBWM`0UBSxG|UtuogsZU>I?T(gO&QWezT!^`DcoIqeD#O-oBDq*uT(^OYsRFmo^< zGi3Yvfic5-z7;X?IvFk#;h8U+8H~F$+I?js8mN3@_ylm2gqjnL3yC?E$M7T~gB~?6 zFD61f=`*yl38YD8ePH9l)`5=@fo)lv3ff;D)b z8$M4*h5URrP7K4+voLj3jS_NP8{>Bl%Eoe=#P5Z-=tk zQ^$L13p|#a#K9Zx#e!^uL*+q~BPcIti#rUJfM(d|Z4yW}RK)Cz`y7um7 z68&H>3$8QKW3M>0ck$^yLJ5I5J){+^5i?SMN#UG%cg!DB!x^?3;RT&&53fJDN4}1Qd34Tu9Q;rz+|IABaK%+lCz#ASptcTpyU0<;6`jUwbd!3L zDb{%`4?6hN&+yxYomyE$9v`s)`2p($V(aGwE_l2dgNEz$3=eCy2+)eZRy_%|sV-^U z(o*8Kk><$2on7o*I!^kG{AJHV1?`?Cjmy3-Q>rakw(;SYk5^0fDLuOxOAJ@g=Zq)! z3Isw=5H}5Y8%9B{ZNB}QN<+wQE1%r~TYaJQrq>U5?L8<4`t^~7C!SfHb(mNX@ zD`IE88LMrG=r8gI$TL|wTC%^xt4v#c3q9LbYO6@8$ELi8cVamZnnN(AWl0q^qd-gv zL4qcRpKhWq!^?@l%+ z4DmmQz6@0bN&!dONkMT`dWBJeKae(6Su7hr+%jNV+fGjh=%MCOKFo z94|E9yn<#42877GA#tq2%mq5rXIezgzsiBi5Ft1xY~!)ef-l^*f}?x)UP3=!5Xwb@R~NjCUf}f014m z9TGjxKK;WatwEAL1A+K)VdS#3B6bL#>PKbVpq)LnO=~NxUaT80eKINg;vnL*hN3vu zE!I}+_ucPIJ)N}L{~x{miWlBwWCJcBVG^U?mak-Heu_&8X}}n+1>z{Z1@ob>>!^hP z*_VflK4K=iYPRNtN{MhO>62ij*B)gX?L0O-@3JP;S0Mi zKZrS_!1-}l^{mF;z0JL5-$FnK&vmylsld@q(i zYh<4vZTCR|6To-ZNN+Qd7sW7_Y+Uwa22y0=Mk{RJFgiL)@=xT2OqNdQ$q{=ec)aa} zAHgRW$5~^j@;fX-R5Ua+-eo{JF3zq2u9Bb0ya+CT%$1%1wevH)tRmp@Ak_3-*B$P$ zR;$I9&gh$1k;;0xQq3(Mu&u~JL%$&HJjop8%N-HN{kg0A+YSfA*h%Mm7Yj@2diN^H zPeYK`ZOF2Egnn9Sf3c#vdTGOySt@gp;z#RU-(aUu9yU3!30iF#Uuuc5SUrqmScT3W zyREtE3+NeK^6)!Zu%h-#DEJIyn3LGF(q=B_4r2~W^zG0o`}7#B{g# zXv6?@7)oWOUAV}E9&js})!E~Y&1W;rj-c=f)kIu<>m#rX&Nh>gM8^!~hp;XNI8PMx zKjSt0-d@z#QUG;0qD#j{DTpN2n|=e}4eb8n*2v!Fd$2DZ zer>N>@NM&bg_Es8_Czg(z*>cby&m{8hGEX%hd_Iuf`i9ZVMDLXwIYXWOiSEWg}b=4 zPmV`2O5W~H-&7H697^sVbV17o+RMmxA)Xp!yMRP62>rMp@ERfnAzV#1^lYNX;A1;B z&_0HlDBb#Va3|m^S!`c&fA49Cg{J5itTJuLs{bUsjXL-=5sf?7Q;;uJmSu}10@9G`gw52gP%|vhUwM-isW?!V5zvfjhmLk!(wS>cqxY{sw%dmk z*%gKN1e5pAZ~x{WS*d-~RBTOi?(!~S$x*!+%~DY=Re`mZusn&5ijqOzngC_B(N{j~ z&R~a%HeFqA4ezUVPq>Ei#Jzk7DOgRVPUG!dIl|^&)~3}VQa$gO+mLdxpJqz!I}V4F zOm_S4>*Y&vl1N9umbkbQ+R)$^TX^z<2c+(mv_<3Ky|bt-JouEA^#39B^;>Gn>xEh( za=xAs(+SXjymz7JWid{P96En|ow;+NPw6x|-qW?CPEn!rjg3K6l4&rwtV6}um=(PD zY-B)zK z-hIPXh8uErCXYtJzh+>6(8NR6s&sm{H@VltDc<|+*`U5Kn-PZ17BUJ7fge6-w3@_` z0z%wc545&@E$^ds`=&V5k01X$Ej-HGbhoahMS()X0q3OfqG+oThxF83-9E;8&{G~_ zG;b6=(s@H{A0^kPa)SL&jqHZ9L-ZpBcJKOT>XWCP9qbMt*)v+aU1Ac0(|!(C4pHW& zr^lPgcjV&CSHYAQ-Z`Ja{}O*z`&5k|#hx+9RLklsW7HFYQEZr0Pcl-L9`19v_XL_1Ijv~6K&N2M4 zDX3z=r3!b-z8|v0_9U}oF5|W%DjUTo(@?W%oufoxK5w)?at_0Dm+Vo4E$mAFY~FUe zNUXTqso}DWiJ9`rfVT@h55e$$4IVVOa@OAFd!M*C86*cLNT!fx+r2O` z@~-+ZHZkFtUrd#p>X)P?sBoS6fj76Fn2<`?NvqO~VtX8A?K^mli`F_sYMS`)C-(LE z4IiDX*v!XQLHx&wEe)!AZHm7iQqIGo-%N-~Bj^d>&Sd6aXp!crgEZ!u*rfdo@oF9- zZJ6P>$(LZB-S0KfWiF<5u|Mjd@#tiRsBzA`_Nhsw8`7OUzAjTQtUqk&E^ph^-urYj z1N?X3vK0z$!R&%Oo_Io3*2V`=TP~YbhAg9 z^~wsa)a7Axe63^=!#{P>d9D>6g-d!q<=ktoVI3T_&C(dZFtV7ZPRy(4w8cTrGgAi| zk~_LvK1xsy!=|Fx{CwE!yHU04*_|(Z%@<;O{@g6ofqqy$v6I{0BtR8j;q@+(g|;e2 zX{p3RGa1=7^}DR(QJ7~5oh^TCz%dL-_I6pxG2hvjT#F>9CTufRA2vKm&IeThE*lT> z@?=PMj&#U)==@XFSU*nGyy5k0qJ#wnX$Dg-FZO>eL_abw`Na@o z4*oVz3eVR3wCz`TD(|o1oEft%`gsZaMXNj(rsaMgA2fYoAU33v1CJ!zA^l!TEUHLG zfb_si$2sAAv&6JA31zQ6#JS3N<`J3m*ZnHXSJ zKnT{qRm6qZUJ_SJVs_kt3cDKZSBujP02S%N!8bP5M-@yI|zi{ z8x!HBcVjuu!bgOrZ@YFTgO~XvF%QWlx!(_S&3_fiFwUiAesSC< zqIdOEHKyrHx9(Ezg4AKgsqR^>-vmqo23jbkYs{+(hmXj8DDdCPV<%}aW^LT3 zSFCU~-zaVT2&9__iO_$ZCky6L4N1OoYWrhic1I!=K1+?z>_^5qB1|6S;^dXcYG?HI zBf`tn7JipcP|-<-gP-Y_m+Ax@-}k_WL1N?-No|QH19)jKM^@iCwrpJA&13YY;Gd=b z^kuZ`+hUL0)>Os5mPJP&k=Ez;@W>}y-y1foXnbvRwE4lAIhirgCaDOE`lPdWj%k^C z`|NJ#G_DbB&s|@XY!~9~4Tx>5Y}KF6^WGHjsx1wQpo0!$w)*rqdTlL4ky_>~5ha+)I6`m`X0jSeU!R zq(xOX-|I6d$^+ngCXZCXOz;Ph$RT#?AQzTJE^69zjuaS;u|v-+<};nnIkxV-<5={7 zf0!JjI47Is^~%q5z*pmVq!dZmg@!k$JRswC2@Wx!bK>xYgTk@|y&Z=x6a~D(`1Sv( zlge{-!heOxbP}S$x1U&>`V9Hl&@-m$rRs*& z#p#pwiOHiZ_+sC2fkQPm$+G2xlY}k2QJ%!c9#>ZOU3_P~`rIpf@n>V3SFA-FMf4}n z%(pW#&k1#0zl@d84lNFbNesC~JB?k?k}qAS^M!|>Vo-GZ$BzhEcH?@h*|U%lceU*q zxt}Y=u#-Fuu>H|kic$*8D$WnMeS7oL1x8Rt;ydQ1w{pQho?2#asMkbuatrI7dyb_iot$NIGT8`y z6A%)wMv@%K1_F3BhwMM%-(*aL{GTAiXZ(2bbkE}z?>8`cY-aL6F#CJyQ=1NF`7Gce z%-+VkrnQ|#-%?Dq)%*nCQHHf$>b2t~%ud#ZiJ66nYeyxOk7m4zite(6r+9~#Sa%8B zaU+NjK=Gb_Pl7taI7Qx%7+<2S+sb-N!H={Kkf1rJ3+!1HoM<-tuQxuXT9cn5T=$-t z>B023zD-eN*5c&VG+@l0H>xoEsah@laI?4hxRtkfg>(0l<3*KoS-ZQ2rY0MvRG?;L z-F!=gu;Ud2wtYhU*eH){*pJu;*24laW1_DhbK6S!SKmZ72p_uE(0hfQ(CUVGQ{H4g ze{Nd5QAh5o8)2P7A++yHis{k4m&)()A5aa*JhCpuh_2{i)0bJ~@+W4>P;HR`J2(Xe zYmC&o`w#*94s+FVOKYo+h;CcH}L%cF0`J5W6YKAUyUA2NM zjTmT82HjH1aE4v#Bevtm-_g4`30A;s}-OgK)Q_bz?PaANsb3CPUrdbbt#WDw2gjEfj}qwC_jsVfWPZzH?d-?4V(`7kl0;j-=TtL?jj^h$z=na2E2P>6lB}eUfdV`pPPpzdWsTXL!7!w#~JF^_H?lB=JLDeHgk%20dXr4ZTQ`y{mbNIGoda ziyLsGz(YBhAeQh+`hllq^;D0O#s6tBVrfrW#vB47@^-viM1tw+EzO8R*tmWyz zxpCQiY<3~_M^d*%KRaCWvU>9I(^~3ivsWU=csR#JEgO6CuE69DXk}P?hzJMUV;wl< zVFNr?WS5m#NhNtXRsz!)dM^)i^7~WN$vd8Bp^OE{qiu%|=a$H&U0JMu4RKGG?%Fu&&JHV;PK;nm{^v)uBmFosVEW^p7IS#RF# zL*>m9yX<`-PBiZBY~65nBB+)W6CNBjyYTd{prdd&f9-x1ahB~zqgFEPYNR_5u1w%a zhx%01O><|@B7Ua}!?H0Igr>uLJr6lcUpZ-Cx!iZ@>e$EAWo#A2OOV9R(-EGCWNTGU zZgU!ob|SiONmtz*c$Of$@*DUb?%mxxO58^|9DiQoY~NtC z>DTtH$DfUDQGdPm2Ziyfd$jctoW2`E)*3fTjV~a^lPIiIS4%p-MCY3L&NoaBr4lVE zc=9|!0~u3MM4i!)v#Mqo#>GB*#g^_a>H+$lmOOvOA&*!K{%z;Rt;iRkt;$*zRmj{L zaS*dkUQ}O;NOEKcUl*(m@$iKLZw0Br?(nD~fuLdK&d$z>#i1hR*!oh5Yo5H3eADzC ze|)X-4bsXi+;yhQL2NCV4?g^Y`3c($(!{RftlhZ-j?fE!6AYnhNabYSS;eanfgvgJ z$u%#l%zOD>bP7su3$E0q5EeJFMH)&s`Hk$e&3=h9WnT zG^Dk>vNC@vQ$8nCmv*zvW-92*a6P7s@kyA?Xk+S6-O+3u&hk%jQF1vR-oCmV7|4nx z^N8DS`mrq&ZoUFQlfSgfLFfGNxe!ljudzlm*&h*`4LY>dXS74uDW{r zh??4__aB$Y{8`n26RP>FLGW zuDVvkN8$`m9m}RUoW6*geoS#s>3lYzF0|OIrKL4t$@3`Qc-p;jpV0856+Pl?YSwK1|*NqDbgh$D`uOO@=epA4@>Mu zrdtzIilQ|Zn{6mkazHFGze zr}Y?!eZ&_{TlXIsx1y-%Q8&l*O~O%_A7C$oCg+}K1`VX{&UCPgE0DWLyA!#>zGOz; zT9f%~HWNO|N^Zko5v2I=Axkrop#6U6I7cn)!W#xRArF=g zC#^_Y8VqwdOftZ4I+8!@X9lZFbEUG>4Ll$KCL(wq?hfS9m(~Xfl|li!Qk!QbGf5^P z1H@+GT3*VY+CY8gAT&0YtSEND$EKq+nM=+*xxn(hIrU-Fk6mJ;jNBpF4#|n<)K7j= zu8Tzuu48jud{EoqKn|O8zCKNFQ7$H-RASZ41BhqoMm%6wn=L{+Vs}Ee6?8U#5*4hQ z#e8Dk)V!O87UbDYXB~3638GnVLLJlHS9VWI<55A{`HOQcDZLbAlCJs9C!g*0sgkO6 zU7osX!IjR_@QTm7XIe))^W%n)DpSN*Sy@+jNOOL&7+yo_gzjyyB&a;jxw3CAXF!w9 zELRReLBZ7~*LNPBHOEex#PlhcGh%jYp(F0W8o z&p&y}Qk8R~exu#TGjl=dlIjmxy=6bXeQ;Bei}_TO2}6EocJ@FxM>Pp<@9)RNbQO>G zxJ2qu6~KTnN(n~Pl{=4TNJm%KhQD{8x+dnz&{3-fS*Wac=pWm*; zVwfLKvAkRkhra&7x2a9?-xU1>1c3K1Z{S#zuBNzwp1zc0a$UXi3&1nB;hA>kU`}O> zoEaB?b&`_a7Y znPa6$sW}9P&D1qrfq_FYqkc@$YW#6e`m zuwn-PLq7cN*;C1~<96NWyiIq1UuXPP+PL?OowiHA0SPJ_y?pLn%ri@I>2bh#scnC# z!3(<+ByO%{P!zC=K7Ow3n87d5;fkbbEjOg+6}i0!o3yL=ZVG5=h*i7bM>vEaPNTbmnx!z$E@PqD`=s5 z^%7RGKXBvgFi60T<#1>WS5b#draJzt>|xQCr>K9$f+qHHtyq-2OW=_jzwwxLdx%x% z@ox`&%1hQ|jz6Q0R%-jRyPQNmX8&`ql}%-Z!X;NKj1_>*n@Y;ATjw;H-k&_mM!RbG z6CWa6^^YUcLAS#>$u`z$PwVPvrLbIYv0mwDhvA`YhEYodDzda6e|#>5M%v}MAR$+N z=DcS8L9JILD+e!ID7KysXCI_rL8f3L&N^jDi_9vAIDXcdRk`|E*fh1Oe7*-Ni1<z!=}^0B8+E(Q3|M_ycwhT*;r z3#nR~EQHVo#6<^p-KNk!7$e8=X=UuP&AK!vk~&O*GN;q$kcEPE{>-$+$zFz=HxVh# z)==k?IeyDnu5f&^P~!Kz-HStvdc`#tR}kMR0BwgwwLUE1+$bTENLA`i0i>;VkN7w#OX3#OO|0YL0focBIh)*9)79q0BV1Po zdUBy+!A`t5SP0|H2;&*H$#$QFslin%zE(QMYHmW2C1@2T9#)^wS&StFoN|k0BUHYr z={(PT7{orl&}d?t;+peQ3KzC*cU7HWK?1NXbC-f8Q`5KGWSMoyLARzBkiFQZmn8q( z7t*${e$RE(o1NBn35lB;mmJ^kw{QIxNgc5F-!#>GgBaItm)##FalspVU^dSXkJ220 zpb5q2@$tU56dT2+AD2sA5baW#iJ0eVIO`n~(M=Pq%Wkc7WV>*Gpz#XMZRvatxhZO# zlg-J)UgB}o+~tw5L2Sy&e6~Ux8#`?s?PUGF;(l_7pyDiG`$!AJcbh96TUr$)M?I*s zfQqnL?A^crO1zazViUv2EgC1~KYpG(@hZX3k3bG3jcfEJo&rvWa(f9$@X?=;9UL6& zk}!wJBm2c~%WlE%2tISi%*>tv872zLw>TuVrzYAYYi+&|2<7;?rAP1wseP?hm>Mp6 zPp6&aI8N7klg+k3A_Mc~Sa9};Ta=vV%5I4yvwBh3)b0c1>=*I!<(_Lfr+Kw9jww?3 zK8NhKA}w~v3kZkWk^X39Tm!q+OSBg7;0WOWoqs4eoF$qrDAYB@$G#y%SEA8X6Q$vI z>%C%Z(4<{N6N6-5N2I5#=DXFTIB9oxd*OmqJjz53h)>;UtIvja%s#7m>YTV)Z~Xwr zgG>bwlRcv8N%ZKU97n{g(UHxZnjD9*Q@;v{t>jLWXl#XV$c+WPP37`ZJBLd z+Iiwnz}XI?bazm2YOT9b$b$oLFfMZ_2nLQ3XjHu|)`Gtk;ad_OKPTusJ>JDf&%NhO zt$Rp31trI;i><*9Pl~>$$K)Z6G|e+4*jHdCXK9o)dxol^^=(iW6HguWIx3*S!P2~2 zB)erUVPfr;*h!O!foZbMn}wS?ZKmcjpS%ygHOS@{zIq6UzJQk^V7)^ZT-GfuflW83 zyqH~gIhxfPdm4y%O#`*tP86cLFp#=BR1-WVuvcY)qsw^20C<@36yP9*F z5Dx?NG3Co~XtY4Go^{K91e;v!5p`S{%?4zbGMl6s8W;$eSGmuW!QoBa8$sOh5YYo= z@!eJLoAs$6{D9t8_=%NfS4m_89=Njy{XCyN(ZZi>P{^uf-yS*kWjL$Nh+Z2hpu@?c zANbUNR+FT|7vtR=p71yB9jDb{NP$~yW?2*i5dWHb^TrJ(iD&Ij7#=yAYF5AYA{BE4 znD}<_;Y7>tFyJC|nR~LQvbwXz&Dh}NJ=SIJ((%s3p>Tk41durzLV9J#Mwq5t=OKms zxrP=hURGr(d;0gHG?|I_<8n4OHWRjB(Y(nQ%8YBb5`CDGLYg|qvGIo*TwKT`Mxg{B z>n(E5Zpeg>)%Q3*dd4Lw?uWl$RZ4r-buJjnbozWAWl_jC=kn!@7^@M2ey$}bb+7z3B+Ye4zP*Tjj zS34;|wy8Iaaa1($q7q0bex2$$P^~fUy;s`Xq4z@^ANO5COlDE=hn_8L*@vTl-b*-Z za)-x3GQ%?{DCvR{8&&k}*xDV@BlpfUFw;Fk8vC9&^j?y>U(dmxIp9}mzW0;SF(RLx zpkDyIM98pcEgWH=R_A}g0uw`eYlzTwO!OD`l)&q}Efit+y2}b?X1ni>Y|9wjkDFVF z^jDo=X?^tCJMA_B>0c{tQ+)Ddk(^(KtJ=o- z(b-IkPgsBVs{wlmR~aQ~d=!+=Gmgv433rp&t#TTplO($JwaASFH&?Y|5Gnvf|MY~n z7kkD_OG@rTncj$qTz&We;Y7*U{vxrs>ilPLzlDvxGJ4%$l*CFnjdh-%Ld!XZSb2Z} zx0Rp2q0PjlpMUB<2rdmO4!O=IHKljvviVXdk7{Z(?ocS?H)OQu$f-v4&mCc7xe^9h zf|js$`tn=qB&C*rw3y#` z9Rpx|*(dE`I$yFs^VvKpzwoAe-?FL&yRYxPGViUSQ{4YemdHp5j=VhVpXwum%`&z$ zHCM#x#7)Fe*z4^YoHAO2OlppY2cMDr9z0fPj;453mC?5eDS@4#{I7a&+eNgyMPG6q zCF}QA<^vKB0!UzCsU12qF&n9r9LAp97&-Xl7a9^teu|E>x}P;jim4qoXLR*~glqZJ z8ZQs64CM})cqMxnJS(W&fA zK5u-^U>xKNf@NcmLN3(zs)f*-xBoNCPVhV#@T?tALcI>0Pyu6Vg-tdMof&iMS#4sV=BO6ihL+B$7 zO%Q{*94F>5?r98mb5sqeeoU~$k2CMKJXMX{V_+q$K`J{obO(e$0;9~<*eB}v*kx*R z>}L+6kZ#@*(uM-NMg=(QGTF5cAa6v50uThv`Y#5b}N&yM-=E5Apf zmUT7|)p2d`-7(@(3n)sTo!-ucP>3eS6)9S+w5o2F2QZXqq%>qSDWfZ;wr1d^pC1#9 ztpyz#rklQVJ`0(Hr;6J-Aih7CqyqQCuv~w>07*ReU;~jakYaXca!d`8qpMX6xxj1# zlo8hpGeuAo{pW9}PX9(l90l{x-emY2d>eqe?bQb8HAw2(u0!|mO4#-saVmDK$jm(@ zH=hRY3`~%p`MtkU7i4@UDG9#Kub*7KWlqE_fG%`&)+f(hb2$Crk^ZZ_IFxjBW&{kK zT}IJBtsZuM3+bQWeU5TdpTDVZAaiHwi36EEG(<&85pOs;$i?iJIh9APe4$CpLGpL9^)yRe?5bPy5TE4!2xc})0JC3D?rl-1t>gjAIMh%db!i7|SL+qVh>*22uoVwMPRyF0dl7l$(>XS&N$@;cx6?4s*Zf;~x^z!JSg|0jKL`&H*weJ&tL@`_LnBRf%a~WM73n2*cmFy&}id zhLAaPDKaPX{5$WpmWKVk-*pF*PE(^hk=_OY;^?@$o z$G#eYDu!2q2~5t4bBy?77un4_Zwa(0^3(FS#z|6wl?;=^4w!Xf2ek|z~isE++ zPpG6hI_mDyAnXb>$x0|(cuzNvV~o8cSDsk8APzq7=z9=l#c1-^B}kB8TMZL z^oOl?4IBM4GsjyzYQ+nh)tpOPqh{%W98oaPSt41~G10k>tYOl)vo>SQ14QC^FlH8% z&W%fBRw^I6?-)%>FSz=|8Xo%l1%CaK#B=sM(|TNB!-1sfCT>jpgD*?zc3;+I81!b& zWp=sJ%h25)yUuDdjlH;rhPp&#>m2)`g>1G6Y3%>$U`$1Aw_NfNu`6T$lxW2-$1kx; z79H`{%8UforYR;(Li{`~ujp3p9OmWe0Za489p=E6guvV~Ik#PeJ_qMN*fNb5tT#Wl z-fZ6S(-vY~2(AX}Kh8M?VJ;=(kQ>0Od#qwpgw&e~Xhfc1AI#{^DrsvEbiUX=sORr= z`_(*q@R^JuLVO&@PQsZVWJH7DWRhY`fBr8QF+!$6?04&KTU;LY;x~Q`$I_jve+y|r zhxyy47TCB-V3Ur`>G_+#8ZB941d%8#B3X+wMpaccm;|BM>?k^29Hgp``BFSx&}cCW zO0w8X8~#RL)+KvB({sy35ktT>WDyB(Zmu`R&rg*KKeheFG9$?oxwagyWWD!P49ZEg z7`3L}8Bym}mN8Rq?y~QY34fg>qIVoZ4LdwZq>53#TttFvWORFUe2HZ3`)~IPP2{CZ zl1Gz2=C31{XSoJi}7UGL27=g>5rep{Kk!vo5C8pfoERK*3-FY_|F{dp)j2w0Fl9`j5tZe zl^7OPLz}cyIEjB_W|Xw4cC@%ezf27qj_d&;x&E7dAFk=?aKtZG5PQKdYwzbUaAr_i zv(@pS$Z_&6=*@kKOiDWIsh}P#uM36lY<^exg0GHf7~3uTSs?4xD#0G{-|^VQT(F-4SWiY<`o>s3ZLLAc>m4(&v6r-`s) zq(#kvHMF)0pd(|VE4bS+{jak5O#nDGa660!y(fN0i?2o#`7Dfitj{6}`&!hp?^>D? z%)O(Y@6IcTKanJ9^V^j#8MCmNBd0AFp01!0s-383k;i#vr-;$KKR!jfjz@x*HIODh znWHeVUt#E<`DNfV+XW&dp>c@4F4IV9tv1818J5)FRR22&n`b`x61#G=9L~8qk9XC? zjK;=w&L5h~WiP;mV5))hf}*6#WNincT`}^{d>72bgMBe@3;i|}J{I;EXR$Nn?NE8J zi}@T5>x13(C24~Wx-+*PIAF~0I_WqXA~-xe(9;G>h3-v z88Ca^LcvNxL7*t)1`i)jJsA7=C4cF|ZWr^8(~m6&g?PFYdHyWb5|G9naVuMRV|RaU zC6`|q*B}w*Y54V1|(1+7<7}Zz;Bi$sj*h()kMmOMZe&{PIhcZ`&jIkOWSuBsUrbEv``C= zsCG`dmzg5#mZ0o=og?gJcJ2zhs$-6iZ`vIP%My3yMc{Dfx5P!X_PkW)JbQuRSJ}B| z+Nd)x2Kh~+oV?hK!=YpwMC)Y8o)%Qn?Y8%gu!J{@z|zLmb@UhNK8;vMyDei_tc@2& zMjXm3D|xplfF+IK{b^Bi;u`HxW!5c4)z;ZFtQII6exfLdUY(JLFpHkig5?)4ddMon zTH%LN#Sr5`^Bb*Ru+urU`|mxpd_~}*05$#%Mw(8N3SV#&(z;`pw@`6>AOU7}-Cq|J zT=#U|aGn*MZRT*L z%kUEWGFEL=YYyNI%RX}k{7?y@jah*JkEe3ZR?5*|Z|uGi6pSt-iM8K8_IBj%r+aHc z>(&^7`NXKMuHLxGKG$Cc0UgW6haAjUHYRRBVaEVkD7L-R$x4F*MB7Neeg{;hwvp@N zvE?WpJe&79v32ijcy z8C>qO5oPZ;P3$-3;&@nIQ4s;-VU2e1I&c5*`_4U=;NCPv1maH0gw+w~LsQAuLqZ+> zes?!_63-auDAujhg4krCyx7K^G&$yRxyDEU0pRmBaYl`0$ou*k*#Aw{^O-RF=V1~W zacDfmnH5f+(&qIW)r_I4oHJwEZ2n5`#VFBM@JwmWnQzt(eSGaN zQ()~r^=u@u7yzq_ZrM`vt*}vhM7Fic((X1&^_s<4QpMGm9pURr!ox|a2spYXwgS&$ zJ>tfDz;s{CediTE8^izY9Btaa5KI_bB=MTtvI^E8iXRqWm&cWP6fISES8Ce9+*0WD#?YkahATS~B5#7C( zzJ5bj?*T2X&)$1hz6DuW+PYEkQ**NjrXNqAHLn=z)_wwWyka+9I(kE%M7o#oAs&Ck z6QgM4!wX%I1}|2N@}|-L_J;)pd(qcD2{FrBl^vqUZozcA^uNP^HgB~Pv`S~%|N7eVT z-90q4oaVD+2>?mR7-S;kr<%Zhn&_LU??f3nH+a$0+D+`Lh#dt%-u8#=el}7Ivx&nA z=C?5|IXR~V1BGD^%fgW0sX&N@b(m3_4F7Z|$==9kr?=KzV;^Byz}|Tps|?(HV6h}X zll_u8y{0d&4cSzby8JLhwQ0G5&Sko!q?*j9MX+0W*DlexDt2a$(^$-zo>wK050xBq zKc}mzfdLvgTbS2OXTXObJD^jQs13xR7?IQx&{Zg6@!xJHg|m z%_>g5_F84(x=~)67A?wB?Kz7X1VSYD#qU&>w<0Ky~UsKqt@@+2u&zaVot9pvbfhLb_VS7n!@B zMdJM))xYhhMFH=-cB260V2`(?A{F2dM~||>(j@yp>F6E#hif2&k+$nNNTL9E?-1PA zm3K68%Y6KmC>~_nAIC`nRfdWMshC;MhgZxkVg62{?o*ir ztpU;hIDU{5bWlfmp=E3wh9CC%Dpy{9DB{VpP3CiF*_+gCbae?ls~$cYgcn|XV>jeU z-W!=vQmRl(JsDU)1v{myI^8+t?VuJ6vGQYY1_r(XboJ6v;!Du+Nj0$Fk5n_!tI(H@ zvW*mz=DoX8Y&9|3%pvt5w+kUdW46Q6Nhgu?hrpaUz~Yo67?h~XZ8b-EvQwiQF5rW# z-FxevQNEw>vU#THTmypAiStbR@?x%S7T2cF#XIKT*z_{JJ!Ruhr2#}hL56AcG>4Gj%n=A_?}%>e6ZNE2f1F%eHgEo~!xaa>8C#%{uk)9zV1*my&)v93Z(ZI0*^_LmX;`~C{K%$gQ5w(K^<1s9lOsbyEKl)~I7r=YM%7*l(EXBUt zuCjP#j6V0GMT?fnOu|V+8tOm%#H&f~UxqHVI@u!MP;uwC^z;dT+?ULAuaho^@OCHa z(I|$>qXL~D61^v#bYoZaHcTpGB5zBuxGhi+Y1%5jug@U2?Qbp3@saVpTXk7cD{hrVlx*9Lck47$e98c|6}O+-vX_dA_*G-iZeT1D%o zB)rPGy#4;rr(JZ6=l0-Ev)gm4Ug-2IrtNO0FC|uNyq14Y{`^G6acnIeFefuQu-Ogjh|~;P=-{ zi5`e4iJK?c>kWb`hr5c#C0l|R31x(Cx^OaW&6wQ*HRV<`iSkFq9eQn10CuF zePFYV+9pzV8}qGwIkBy(xcJWwX*WY7S$#f~`r%^lBxh|VzDe|s%PG7+ycan$plhKs z*jnK(y+QGVPX**7i~vPh$h(>wIRYL6$K-IGc|)b$G>G$HU2u&Wj$@k`#00eWUNt&2 z>g3Az4^(a_-E9{kgeMyoEo)>P%u2IrNRLWgIXsPJxCbuF<&>hmL0b=9=^elnU|AT^O4 z{Qn^qI=MpZ8gE(BM@h0Ppwf`G`KSaG%dGG7TXLQl7+^F^8q*EAc3JyyJvL zRFO*9o;0M@#9>v)2wrbWZmR%*jOw{J+rWA|Tc^_inTp z*uDBUi+8c1uW~9YD!O`FKwL7zQ4CX)EAU|mhr5g^Tyn_gI&~^WO}3S)>oWWa39fa3 zS?`@ztDTS0&J-M-?||~Jjk$ws^-%mU_ibshKxefeB)QIMjc>Y9W**Eu-nhW&INLk{ znasWVG{=;YYEXmdhDAY}?xXrcGQ1C@D5M3~Q)hWSCi_4vN%77mbqphHjfhN*nsqXT zxo)C#QxHX!`JMaFiN1CtgSCFF3%-8(N!?$vN?&i_idQ|MZ)Wy&Kf_lAm4OD{IFxzJ z^&W~B!A+-w`ZALA_0CV{yxZL4lAl%YGuw&L9uKDO{DOc6J&dAq^56K16$k!scOoz# z`oeQA0oy}b#9T;I_e8U{{txZd`t0dvte?zOTAq2=Fym$nlRxfogtJ(W1R3ENF3ma~ zp*7y(nNmMB#HSF4n9C_fhnz|;cHb)0*>i9S^1>0i3<4(_2%88FO4LO;^H#2N9u8$! z+=~Gt!A9|VkV1vEe}{Hg%x{uz{N%UGm|_o7hHB^DMSLTW2Z=8i4K8d0yFNNnNrXi# zQ{)*k&f-(F`TL1w(Q7YR`+@jHluY@v_`np#-$e@kg|MHA5$GZ1APHFdzs{Lhr`|(gM3QWe4wHCZ0)EJ@MUJWaw)6~o?It4_N7aq<)hN`=NM^G zQe#!aKiD8HH<^kfCdha8{O?Nxw*)1#>;-QLB~EhFg=2<00ShX#c8sPL6|`|YH`kW- zq$UOo;Jcl2^xm!<9jq@5EQu>puGF`Rc2K~K*_lq;&bz;Qu~3Ti>%zhnZNLqrgs)0? zQTK)r=Y>CJP7iI5>P?+C7E-Xp6-9u|Z{b>B9$<{@F!Vvas*y`q<_a2@Na(eKXX4kmJ) zX{B+B)6Xl8ZA78H$+EE80y#AM1L{dnt*X2{MsHD~eXilfweZRnv`T+II`9vtqYh{4 z4rpbh_=b-wvyM#Ax9w|R>o~rhx{96%c1(djw_0=aI&_5Owl^=$c&f0;`W}21>nmnj zk=6Grp!E!r5ApD(JbJwDUiIN7aZc)uwzfx9VTFdK?ROwZ9Pr-t$H_=I2p@zg5RMl; z{{{To*$NR}g$JG-7R()A-erm038XJ_%qHAjk@9XrHOpN^T~2WLtkofX(lEZ)`g-YU z5AQy4F8-Bg-am6QEP2&FZQzP->)R!uRJ15eK2OLI^QJUj1uKAS#pdGj$}=q|c4iX( z`xHytuH)}XnMHGi%ktFDd9DOX6o2|5Y%|86d#?#i>GnICZp}^miy(0J#sPey!jB5} zsyu(*+IwSuRbthg#*br@=~nu1G=LT-+z`FV9^+9+$F}MpS~=m6t7bO&mV*(2q>_|^ z<&}mL>zTXS=5*+)9oTB2I_Zd*gG0Tl@VC_ z^d<4U(jgqYb6w;{5`OV4F1jD2tXCOywc*2Q4$mMF`rvBWz1?Rzx0lO^W-G=tEL8Jy z=@(7uaT#e<)4rC%wOKXm*q!LhvxL{|m@{L6LRh?(L$}=Mz~8?`-MmE2LKtMz89tjGJfK6R7X|?Ow^;lLngdHyR6XgBmnlk_2qNA znQ+{Wi^I>`{K|Jh!!_i|J3OscWB>m9V2;6JDI8=OJ^wXVn6A_0Ai34l;`HR;s`2j0 z>cqIXP|QrJK5SAMRp+_<4@DT7w7ty=;Ca8EM9$h<7731wy)TE%ICB4bcV0;-ro0nJ zxze4*J6P-=6tbI*iv>)|MOyD&OpT(N;F8lE$h@#?OI5nlMJ=kS7Ih*<#>&p4%6s@N zqOF7f*p~OEKl$)krW&B5!#tz~vfmhJbeTM(O@cL-!xu0Om6@41#>jbWegTaBs(!C; z;QB!OAP~1-0LkEjpoX5dAXf9CgSr_9C0;-FjTIOyZVcOYM!s0wznhv3>2h|W4?4_U z^(tmgN`U>PiZg(<@H$wXcIIA!;Wf;ZemJ+7?aZ+h-mV&>LpOHo&sEw8ls`#$IlBAb zA2(^W6NIHW9t1O}Iw>0a(e*<8D=4T#I(QUHF%l_`rO?r#*e|Ra4%k@B3+i_ox7T%0 z#jI5T0-@@}X-*V&wlb%_-CMGvAYa3p2@`)7@%VaObyW85<6N##wlS`S_0~vA&`+q& zV8%4&?UMPT2$>HXYB|&FCiS#M>9*y{0|0xXi8@%r#^M&7MkushyGjD>0nE8A^4^;N z&`qkjUg@?n#4q+BPPVRIzG<&7q8jTkwBCy`TxXd;Fp(Ss2x5_rzjf*}*W+I1R{Xeq zf?Y)5SI*Xb5@rSIz)W@aGuK14Da1PR$zDbD2mgW~;#1iW$vz2Ue;GLkak$d>`sDko z!vI8_NhA^bW!A;rMf!)9r=ZH2FaV>A7iivT&}7k}we7C2YquF-kt6VIr#gEaOOs?Y zE@QP_R$1=NeaFLxmN5Cy=gCTeKrdF3HRGbje(xVp4G32H*fqq=q*aH0x-$ih|A5{7 zBMkzsNxO?OQr_$3g6G5s3PJ6!N8Sfr=dx!eINv{QsaEDp{4B)rhmh>Ow}Jv9DYRAT zwjt9qpOvm1h`Q-8$mX(;J$@c^eY>ukc7s(oNnOc<0+Yr~0XZc}4tK8B*mddqbx-pN zxT19+TQ5Y@r)iX0|_U6u< z`SxU4)$@#Z)}$K?afOTpSgCXdV9p4@@+-leSn$gXDWkka(fKD2{HON^dBd(NjLZHC zN_KvqVVi37-~?%#>d%I-Ot?4>3;9aSV(_q2&K=y|urm3EAy{wwW0};HiH*%+a6ch~ z_Y~zgEdJv!jXA-#oShP{%W9uSQ8;<>$vziFJm1o8Wa z`10phjYzPqZUyR!UO|1K5N;#fL?+rYTU$@Y2OApNZQKt0@Dj|3z+}_$286}JZ^Bn3 zpkK?$dDsLgtb{~T=DhGVfVmi}e`=p*&V(Wvnp3X9eXo)Cq2@G@&{sR|!U76`j;4z<4Vj6KBZ$|?RfAJY);W8^3fwNBDu#O zw=?8ULdhP8(td?Pw+Ekwx%pu=4`*R;@rG`MJIRED3k`Jv9lsDR1VoM@^22>4%Gg`U zWu}9d!!_&@>Q0h{t}1dgZwL*17~_bbDTOJ^Uy@hcQ$>?sF#@$Bx=YOc!MrF48!Dq< zz|407e4bpPjTvdc&hrWikZO^uvsmzp(z|y9zflGNc~4a_G7j}68Y`o&M&AjA)@XyTxX>$}u3fu!LDL+sD`GfL zN&ANd0GLhqI;?F>K~ln1c)h52?0uR0+0=;&_XDuN>w9`PR~zrlt?*7F197QnLK?ML|Bn8_rBFX8L{eLD%#9T43W4=zPEaXS#w9JV2^Njp5++%TzY@`QS|@FylW{m-I3MrgNYRx(+#IiDVMRc;}F`I_dh4DKwvLxLt>=~ zp~=mF0AlXY3PZ1QH0XUbT%U7J;{dRdQ*;C+>)g3OohK!H#UDCBe*s-Hok)w$9px&v z`{C+x<}DL=6KuskBrm1RM^i=(R?9?PMHLnoS4X>zXuL{7RfrP8*UvBF>C>mGEp<_mNo-+Kl_ zMWPiL!H8RZTUf}w>28>7Szz6e<*D_x-Lmz#vnPzwsIZ)a&&OeoF{{WMUc%C^$nV|Rn4b25qZcu zP|%f8p&fu=4&$0bVVT=TY!@+2Q;;@-oBbGmyMMJDg54i!!h;q0nS2Ifh>c_x4IPsl z4?YK&LXpuGpk5{nDqL(w?u7rET8wb29!Ztl%fKt z(l8SICUyPMqp0vF!5PWXdt^dU6_sB-{HPCRRMlu5FODOxRItnG92ZaVWtuYU{l)g^{>RK$iiXV(9hS`=%bA& zqD=GGPm8ciNay>fU4rJK64Xrf@JpqYz$oI5^Im~p|Bl}7`pH*kMf55mAt9HP=ZBhN z)=s{>var;&musQ_;awpbw$GeXOtJ!(cYO&!(+f$whHmVMc}hkF7$v@N*hT}nMM*=7qQnnZusQ6WBHZWMIYO476GL{R z>rRdTSwrS17ba1$&5uk*i9qw*0R!#(U?Z)MB}d9@BETV#-^eR*m;1z%5gxE=FDmCT ztrHy6{INlR8a|4OQiC}dH1mibfbQ`P@JQsEI9Rl(3&6+T2Zj&!3kD7Ru}ljX3IHLf zt&9%&p~HrgAAi4jg@`xbZt8Gy=J)yvFBJk%1YvFJrrt?2)LrV#s1lE?lX`A!=OH0o*-$pk)Pg(FGuw&W~^EIXV3lplI5i-GR$ zeaOQ=6vnW1%i2e1=Epx*U-XMo4xf;&Qw+r6pfA1)78m!o%+Mv3yMp@N-{D2-;eTUM zrqXTdCLG~`=sk71xNP$oKCY^x1FjC$JV{4OOKS9Pf+?)15znNF6}7Q(8+@nsR+;+` z+_le&8^x>R5~xGP}l1!XVrNk8CnCX4`z}iQ3dakvF&;;!$vgVU%|Cel~-Vqh??@6$(@5!ITDH>XSopYu`8FVXe=#Oc?BL$k3HeUXKGIJ;q)0xMM*!PgjiU z8dRiKdp|Pig4_Tu6eGSND1sGz3fI(gYDXcm3ckJd9I#9xLC1)Il*;kBOV$;WJ_*fd zt*UA7uz_fefn-ff!R^urW5>Pbdd|?W`HAbNSB?`IG|rFJw2^_tj3-?<4xVS9`R&Mi zy@MzD;gv=WMpE4RdL2od6-N%Io*nG`=c1hG^p(dM*O{2({HjR zNbSlA0fadFl0Xd#D>G1|vd(+`x|q+t_U**vuVRsrkv@j{MvXUjf)e=n(85U`4wrpL zj)>BbZ1yM7)6zg~!g1zNX8gf%83heIz!262Z}(tq27P|cL+bYQJBiLIXIcUWI(^jW zFl#8aX@p~`ybqLn#CB}W9uF<#fCLr=d@Q|jWAk3ds|by_9dpPfnaBm4FB znwq2f$;1E5XJGK@-)oM$PMnA5z`$?=pVB6%jp^faUl|f3b$C`a^d`?E3#hZd^IfE@Zp2p#8xn%?A9Bmj+nMuxyD(+KI%-_e(pu?Hy5$!7@1t~rPKUz3j=6O*;BZzfAvDH8R_be&YU@xqQBPoOy8%U+uqw9hR1pex&oz zdzbNk%p$K!>`qZnZsy^fyDN`Y_{mN2j!99d68Ki%QXD2fszg{HLucAb&UIuYras}!y+~?N$k!_cDJIu`{K3Xsa2epz9PR6Yx#jyoC+Wa<@&>a+ zYhpl|cbl73His0xY~mBqV%@@7%s*L0db`2BAJM`5&T;@spkTFj+O6IH@!#Mz_h8nopMKAJ z??bhco*Xs>fhFW@vz@J2{k>s8`s~e5vlxOZsZp!LNduJJ)OB`clAn#}u1JV;f}yRj=F@-UJArHXMV9r@`tv%L?di#788MjEv2kM{#x4$rjU zU(fWr5X~H)pMB%L|1uaLX!0siKm6Cv7M65yq)#*4-inZ%2t3W|Gk^TAKe-lDBsUkc zReSl&mAfwggN-%M{vbMlDhKrD|8P5)Hj!+p08uo)&du%lPy2@1qbBiz z{NYA(#3=-aIK2;w{-lX&@FDFE96b1W#B6%2$4~40=JoYQ$_|wj;(wD)g;aimiPCGG z#|n$umvTV)z}-+qnuV=NO&+~T3z)C%Wuvy`P5YcbGm(Lk&=j4o$TRz(x$wMT2;m%1 zZrUPni>%42Gf^gu4HTnbsKMB%yY1iaO*svo#Ely_NI#N{Dt)}Jf|?~mpa^Jcc7UTs zN*%Z?r;2eZiT>Be&-89%UJ`{9I4tWsN+t)BExvt~D#TUjF12g8#s7y#y_}3*X8zgi zM%=}wz9)77tUufkbg{p6n~qAD{e2?^OMBIS+p-CP3?({$x&}ynH}sr(c9CgS%xM^q zUZ4Ym|De%6tGm+cYx+o=C~?MxA>e+{~CU$r!n zgT4@P(jA5)fv2*UlO7V32K}H&n_|{4{7T+p3<0srf|sv8JjeTzwFHb7FIj>qAN$F? zi@v^6^+?RE)AOIfxB+oOlgAb{_`dv2AQ(tKOi_&ydUdG3o(RnWoe|qti*?Q(74~v~ zrTFG?WO3zmK^5?8!%?=vXLko4_#HXNgk<~fC^W*_kO&;W(7DP_(}bU3n}NIz{}jHA z%xNpih;x5^s?7Twno!_J+beD@=mKmu|B28juzyjkCC*7;|9onx~a(&z*)JD28gA8+3qhoqa+7vut$jvE=OP>a-Z0` z3aa>>)m=cz6q>qNCR2N33jM={xnjlWHd1MX8z1?Mqg6msvb24HTYSaQxU}#p5qsL< zyio;@|3{7z5ZeJSARf$4XIJaK?J!U-iCao5*#Sjm0*t`3O zG1Z_w{9%yB?~A_P6A^f(4S~jGUQ5D2!wAh*TN%Z}WPxMnYlHBG=>Z+9(i1@U$twjr5i7OgT(qNA;jY@l1Oh{ zaO?hj`60y|_`SLGT+=7P&?d;~D~-$~t4vJqUyq)(EqV7qu-6Yk*#f3;$OoNcqy{FY z_himYT%oKAy$?_OGjyH(v09m@5%oDSCo{*YvaF2ibd<2wIVo<2XU6+0b9CYxV7GEd z!su$wVvg2N=pGk?h^|Ry-$vcwAA>n|a7P!9dO6?##wm=#t*t+OUJ} z3=l#*wei$0w?rHU+=O*KW`{@5HeI4nlr}Qmw=hCciB3MFS=96FnhS1Hc4YM2mWE*u zD)Fo8PvQ}PA+oN(3LwhXith2aQ>dYA0VXiG;z{x=g|JYlkPzmLMAWQ}4 z!B8Rd2p)&KD%iAiGRLYNZZ~!96Eo*7c{#aC+N6Z4V>X>~PdX}NVniKwq|$IzQtZEi8UATn8Dx+xrwT(77R*s>7Fx7qaZyUe%^~G&uv(< zW(Vd!B=Z_^(BOm6_%zo?$P5D>;ek))y1+_J@Ex!Fx*tfqyF+&0_!^7z0s~}B36IGW zvKiXI<(H}o#O&Ntbf$)S>FrKjhPZ(t#oZipSO~4Q0Q0c{3dr4AiqZ4MSfrt36@p5O zO`kkaZ6^143B|3B2V|DCXgX8=4l3g2Q6lTCxi!Ux=GJW4%Q8MQrELe;3c2Q9^V9 zmMNVZX`_1KbN{qz7+bky&ZV0;SKHc5FJ-+SY7zeyaPq!B*ehV-Magvg-;~5P?GhZ6 zsvRAs-c_hy65@x>My=*J9F1P(VW1~uBq_F}4!}#;D<2^qV?f^9pr5V)))I==ItJTS zw%c$}{@w!FQ9sX{E$gov?Ok6b4ugK5UhPT&6gU!`*F ztd6o7Le#16|A)+P>PP;=j}H|its*0zKyC{gB|k`1kN9G($YhKwMkJ`+|YiD?&jimhm?Noxm#bmHCIA z^=_@maCJpuNgAw3Q<7nldj`@XVTk-7Udt$yA2mGUu2K zxyMW)GbCpoRmF8)6bh#vZRa+vGV*|ufZpSaB0UMsbCN-s!a|MY9;iy<9r{g4ONP+y zqmn+%S+Ae&A=yC zB=-U5sw$#LIi_d9dy8mZ0J5yznuD+!owL$$FG5i?(p88Y2{*niHebxgu*iQBX<_TZ zH@HZ*Bdh|28)w3vYy5D&w2do@jEI0U?p%T#!%1&x2sftv!8h&!QETlAd7H-bj!cxH zwvwPB({eXt-|y61y>s6nCKTm%(VI3UV4;E~!W+^95CrjUnA#@5s8;z^MP4GNh9o_Xv@g1Jdg2=3;) z7NRFXP_Az81-?zvcPb46z><|kp36vQv(-$Q0JM;92WZa7Q}wU5oSNXoLFM!YXG3Xvgcm zG62;CF`vE9i!}5yCi|8*)~}dAq0 z-q#}}mqc!W=qyOH!%wND_iXbTIlEK!)~ znU7H@Iz(|n0tBrDyPXV(NYCnjrDqS~`+9jXJJ-{;svc4R=X!r^BDki- zpA90KZP&3L2i$TJ#Aqc1jd?$Er_fkEzNa0Nst0fNlNx$xHuI4S(8fj^CMz(9ZE(a1 ztQIoMmR2JC@a_YAitO&W?pd>o{BaWC$fDUTOb;O&oe)F;8DvAW}20NW5Vv`L^Z zB*XXkTvYMm0_f7RZaM~&lV2g_C_pkggJ^Pz3&=h44e-S>ao6E|xu9OSY#zZl7+-P- zA-jI1kYQ4~7TLQhhGX2Ow#JvLwOczQc}hl(CP+gv>W=|hWJIk>tWH7$V5Skgf+&qF z{xXCZ?hF#@yp&0OjXz48P%Kxq7zAO`2JsvOO zSb{AUX#HZgquhzE+UE{{)cdf>9--zy6?FheYKF`B8N}^&LUkam>pk`URHG9o%piM` zg+EFELxph~s36*i@vw_g;5%Kg;f}0r1Tai~*#QS!iK57C*#4c8fdBvi diff --git a/src/comparative_analysis/visualization/dbscan_silhouette.png b/src/comparative_analysis/visualization/dbscan_silhouette.png deleted file mode 100644 index 7f519a684be73eaee27ab61ed92b794a5940af21..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 76753 zcmeFZcRbg9-#`3SX{czSVO3fpl#;EIjwm6SWhNt|>`h53Maw8Nk`^s28rf*?!#axh^+xYJn>@zjfuqt<`fE@7WqF_q*#Ojg^EHsDRD%> zCZNB`+Tm>H+_K>_U*7bvSo~GA`(yJlmHi$cKWvkJAEWz?TK8>6sQS&&MPhOr=yRwd zl_bQe7;h>62zp((FYM)_a4xRX4INXna_dh%^6}Yu`e#Y^teq{lKzB#LkU((v^OHdV z-TIH^X(ayn)xjVfaDlS+pI_e0R%_P%^9QMG|G)o(Cdmkyz>o@k&KI#4(ik@1Tl#3{ z>DPYhv8o3ZViaTh?}Y8widlWQu>9GvXBGPQA3s*u*|2@uOu@-5qifB=STwEpH3$zH zJ{1?gZ!pce*Hz-bosEqm7)a~AS4ndE#{jR>j7`AdtGV?%1WRV7#_&cw&T|g_V@0pS z?iPM{e)17Mzj)r(&Tbn!`;w%~wI8ytE#@_C7QT4t(idH|QbVzn%e5Cvs`k~yUFhqV z@7HcfHooQIam>c%u!SJAVRf|IiuF6c;!{ia-MfXak9*#f?sFmEMRMw1yclvJ&1$kQ zK1(+7(&?E#jrpU>${XX(r(PduNYUx7ii(sATWVMpspV9vq~YlH@+Idk#nXcwf!57A zd*jouOL=p6_gGC&40+vLy=4*Qb7kd&$B%E|8nr(?+~LQgwJ3A$=Vc4L&8f@VUc0k8 zO;XW`&F~0|h*V@bJ1e|YUh99zIM?4a^S0Rh%=*hUFR#f&m|HzrSZKO;m~W78IutLJ z2Heh?`?>Or@W_&`(!k4>2P>n_MugP%alJSftD3|q&CbtAPwy5P8M(h@(1mI-kIk^A zhk;!N%K^R8_c8IAcbYTob;i0%^c&w^eNroF5n>PX61|1Z@Yu+DHN$a zcbSD4Se<8ho1Nz!(?<*U%EUch7$l>sx8%0r%WSV&vJn;KE{n*QE?M{L7^M?U?<~1q zG<|w?i{GR%`#_nn>$h+E-z)_AOd2;z`*0?t_G5yF`xDDT?Z$h{dn|6Hr90S}_MW6`Ph~_yz&!rrD8{ej8E@-iDjZI!yntG=9-;0PO=FKZocr&BIk3sw5i%q z;O8ET$uj3TSFBIA0|zQE?UIs|T)I;x;MUUBo3m?c8MkiT`mH8*%OR6S{e*z9FJ+mI z)5G7wyh6=73(0WaxpQ=4uxX_7j2P8h$FzMtPJT?nHfu8MCnPmB*{-{~RwU}3@$WXe z+GxUhN84~Zx$fOALsiwyJ5Tw!{2cEid+^ASBateJJKNgZum1dQK$(g^@MzbWrIhy{ zK0NhO%CWqV>9DCxWP-`C=H-e&8TaAgE8mA&TDq?CRGZEIw7k3Nz|wQk3fB~44$@8A zwdPU_j};$?JQw3LHCY>@L>DG`@2INk7h|tuT8B)V?>>IK;rl>CZKJ^Q4%U=CXJ1e# zqO;%6dYIoQYwRQQFwN0lYfMW^i{cV?!YkCE@&#?Zq>0JCcUA*;s;U(5(X1*eDwBh0 zLp=KBY%kBJuEWkf$nF2|;q^ntU%tM-z5ZKO)cU1#EO*aF$Y^2zO?LWfyfUojcyqZn zPGS5ms~8LZ;dr=|cX_;q*pg+-bg;N=dcu8Q88;l_R8QYXDNixgIG^RjT;$7r;{5r5 z>X9dhuWsuq3-+pvIHS|{{&rVS%Dxose4168`IfV=u#h6-&2jF^xALtH-z!ciCmGTw z8#ml6FE4MX5jOt9$0X*&6swl<;TWCBjlSA=oz6n3Fq{b`~kW(O>({vhODD?1_8X5|=X3=~ZI0-`5LTd~*pBvER0L?@HWE{^Uq| zf=+>FgVj5c(U040THP3j^BFb1;(n8#&e!V&Q&EB(Mo&_*r^dP~Uh7JuP=+eStJ_Sr zx<7dG;4Y6i6Woy8_i%6- zh3W7Wig817{=F^yWRj|)&#i1oF+G77R-g~8V{T~ccg@%xULLE)Z`6>y8ZSMLEzsK9 zdW}p`{vCRo{)B=x>(}cHzPXTM!i6PYTACI5|a1H;LaC%=73+RI}1 zZEHtI$JeT;vy(sj;zw}#PaDq5%dd-8iud&M+vqQLbN9Eld=JW~^NgJAUwY|WEix*d~{Rzki^gTMm{WTGcMYeh<5aQ-FV`q6 zb$#|x^%QQNo?_WswP);2i}QR_dJ}HUFJj9*$%BSfyQ#&wR9?Rqc5F_!rEz)6Z>pZ) z<@O2XT0vI!ezZc=Ln$e#*M2EiT8~nT-`jNHLznqVLEF*i)o&Ub&yQy>rrUky%o$7E zmWM5617-Ys62m6^DtUI{LY|Xw8dw~~!O1|3I z-cu)kJbP8kM2W^OIaJHKetnp>wsx`C{LemaYVmPYFvI%(ek1P(544<&3>jCfSaGP< zvBhy>4+bR3tW(OP=Y%Jd+_h`hqR~1Oll;^@UcY|L*%hmtaFj|GyZL3c)&Bka6|Ah1 zr$*4kH&8rgISLEC_tH}iUim5>V_O@q!QVZO?#6K0k#v6v`73|AFP-Ql+ofVZs_+f? z^O{N1yRE{)OqlNXe!MzY`s;YpjJjthTHI4oQl>`mjTcrUT4J6s*REa5Rx<9B0IpGY zp0)Jop6IV%PbWM~@njYAJnes|=_)g;6I6a4srF!)THnQ-G55^8k&3|V6pJ#fQ0nmlYwQ7Nv6yOACTq6&%!ffiK@636XGt%X)f5yLF%z|RKrBiJ9lu=+dirL&jAn=N zudxn}jV6#;7iyc&X%NjZ&&vr?zp*^XaQy#hYHLrO=|t zd(>wIHzg-iQ}FhA*iA3H^z`)Fu>jwib+A7 zK7wJD#OEel{Ist4>A|8#-tV}D?6R`5(6Puf!J-?*oP;s^_pow9>?a1l)g^2n%$y!< zFj@9-h|PYg)3@T4*0EKa_AkL*Ep*50*YAuwoTy9CS+;8F;_r4MJ5N8oc(A3aKFH7S z7Vfmg%5jIW7`ntVipN&_A&HX{IxU%w6ixGQEiNt;KI1P{U5?zw3ALgdlrrqb%imtr z;XMC#O?PSFF}$oI>g+D^l2Dylt5Yg~W}muv4`jT+xT>xi=mR1}M^oWyd3J1>#PQ== z=v#FurmS`ogZDg{g+kRc>=Y;Nd>2u0Hznx5?DAYcAVLnm}rJcDDE`ro(F%FQZ*Tc^)3#ioKSWPp_NM82Hv|VDsqcD39%E$5G!s zbyJE@jj6H=Se?&zm_2#&fSvOA zTO3?@bv|ffEn!E9q2X|SIg(^p{mQaW@zhhk6(B8pGw0{*DdN~YBOkVy`ZZ{2sXL4u zzv1Sl^`pNYh3n>2kQ=5YcX}wxH1XJ%=2L+$Ff5e0Pxj~v$JIMk8-JYp`~$pvDck&= z*PnL-R5bw@{0W7`&(_vfvB+O=3ysNkPR>A0ft{ETBqub8T{$98^vS;3SHTM_nEKZfzOTcsTP?mVKa+jP> zw^<8HI&AFzpjw}Aqo~7StNyxc0P73LuQr|)_w9*Yre^8#r2#wp)#ciKHgc&e>GOmVBha58I~|*N2zl< zP2lBAmBjl20e6qN)3%}lA9bUl=egP@aVl6eL%D&EIZ-9?61{CP)>Et@*Qx60bG*<4 zo#`$pc{B(45 z96{kGRp_t3{>ny|l8sjv0ftO2??xMYX4zNcCv3Z)0G{39!((M)jQ0N6klz|o;-@lg z-D#O~N7@Ud6|7H|`0*|VM^0)^>xjx^H!iJ!M2;CwdiVHwphC%~Zj}xE4 z=OvU^SKB3HYzYy^Ym+sWa-kjq+0d7 z9M@&BU3$8@PlhfiZm6W!rWVo!b9V=<>Q64qsvKt(wkhXuZzCj&@>OI0CnKPik-ErR ztXcnK`A_2xjg5@#G224G=i3w8C>>p0Pu=a($EWm41CD5GhnC26Km6P`PIh~d3Ht6d&)q%Pg|z}(RMTv@az+q~2Dlp3wFAM06Jz0hKc{dn^(MKs0+UOG-Q+h0$TELslE}%&=N5t$Ok?<;upyrxHE5hP``0(K?n-T5FsVObcgf6Y)*JflML;cV} zfvH0Uf-H6oNTm&O9J+W|weKkEQi1dQvEL*+#xjb zgv4?LI9?7t_1n0e`LYj=6HV@@w+yzYetz$9#m3db--oY!r4T6xjN~gud4Y!SkoI}p z>z86wzYb&k9?Fv!kZ}lhI~p+Jd5J<=1fZ>f?*7G-ESk zW$hTG6R5i*AGdn}#L)p?O8)iNttrtLJAvMgXF1K5Lt&_j*I=dJt0-Y+wjWhtDIFc1 z@I<3|m#&VE4&>b7-kA6{NCeAiY4N+uKiu84n4+ACcX$hQ_=FYf*%MS(oB)#L)qg@FQVX!nbzkjRf(nZISLxF_^Sl8eG zrZbOD>^%V{c=gu(``3|yLL+_P?d`^$Ie9(LgGlrb?By4Vnh85EuiWWi(F-EO*^8qg z9u^i9oS2%NjKl;-PEOh+nRm;?bX)Y-$C+4HHN2j!S=_*;M!YQdikmI5OZZxK*rlLYZ*ytG3<2{upj!Q`F2Gcp0pnbd=n`6Ao-!vKut}^Fz5qDN3fX8kP4Grq-&@RHkM~k>) zqR+)}#45&6$d!6@@7lRD8lW)}`>k_eAQrvs95#K`+pFzWKL#3%2hSeabtXt*c6vey z15j92b|y)`;wUzbwHu4|Z?>zu_Yq{77!=_cD7l^O?O_;)=c03yI+mjyC;g`tl&y9K zJI_J1fXZfMK8Jcy{qe!}bHIYAWgM*DtoONDK_4Eepeo!_%_L4N6i` z5Wr#p{`Wv!CNpx-s$ZFq{^}q2h!}O-PWtM1mY3-_ZHh|I$T$axat=G83Tyvm4eGH& zb)?*ONE;g{F=J4TF889gDXrdeNFg&blYA&%FTHxxeu-HCG=?IE@h>*e5XXxTlto@D zc^dWV6%T&53PN}+mPs|b9+!`ZW$)t>)jO{*m29pKmuAEV8#v9{L(r=pY)bRUpj{A_ z4EUt#H;TCtBzo)C9b+^m!XOjyJ1DF5^_{;QnYHw{e>n>h65;nDo(sYA zJwFhq2UjkX#=h_#+d{Qlf3e+#jYs}4d7oEL{ri$g$6C8qu3qa`&-(SB*r!|m{~!Dr z3-b5>%g5t^$3{Vm-B5Rc90D##J;QgfU^@Eu-zibdfN^+TGAswXp`;T34o{BV4tl+{uYQfTt*F>88N`l2$VLU>DNKv~$4aIgfwvTz;PY~(z zR6@&dN1p#*IE(89@&`oqeN##=JoE^>yrVl#gAME4n;&!`_tx6&vN4KWlhf0AFkPUI zX6tx~+=Rg;l$0zJCZ6eCV95lhImn!S$f7WKLVPLqq zS1C>tsDWr_1R9}s9!^t8pk)had{ zmV?hgZA$k&lPFZnSlDL@bLqHBoB7#^iZ=#l!TsL%o```g`u+r~;|=sy!KkC;iY_y0 zKfYCX51p4nA09qjCylf$i%XCr8#Z>(9f#>IXpgVDUZG%0m;CC}YY zpFR;)AG*=njT>(PJCVz$jK)j#HKcHJC`7stbz>tB1#a7G<+9j`H$pbUY-qD?_wTO( zybb{puS>eDbo+aeB@hEnHWo_(Oux%xuFi5v8?2l?0s@%Q;W_Fzrwh!?&XUnV6D9_Q zVwuJ(O)8g}G4ZepzZAXArE4h*TtKfci1mcdchd&_S&L_*iFwuBgZuYg z(5Q%oh!3=GvSj>{Vrn`TAY?nrJ~un$9QL=#DuMN2)GU1wpq&^SQ^F?rv!v66InxZt zp12rCj~?YzKOps)HZd^~0?sPJAainZAQhfK1Bbm9a0CvN1r zb?ayxO950X;FdL7)?R=W87Uu5gP*uVAb9GVYFYOQ##0z10-{Rl>j4XVAbSkzsExgS z7~IQ^yxL0u^>mU-0KdOJ(F-~PV*M3HEY<~K2fw_-r?#mN1IDO<_E$g)q__b1sl6$< zp4ZM1KHTcg8j7_}Y*1(|San)_n~mcdSOyp=7-)Aa?+qXXH)SG@DJX0pG$h#RXHRk& zSC6fFfKEMBzf(cNn<#6xY`H9|PF-s`HL6PhE8#523}6)!e;#I3NV#g9MwTbWCXKezX79I^IYm(fY$LV+a+Z@}-VI%cLO`G8%wKXYe6 zB%zMEMU4kSK9uaEDJD%ss2bCA#bVb29yu;*JvG`%5dX}~3_9vHv~o2^QGNl--VLNo zD8#B(&xo3SD}R>aNOxJ=t86KXL);CeHS6S3*D^3Hr5v{VzWeDRW7U`4r~D7C#*#k) z1~XEAjII^4NoA)0{hie)EHpFWPdDGOKxZNDA*#3bO=1IV!ue8L>3e~?50 zkHh4Z{x3-@v0?I2+lRrxRAc)vQN$+%uJeQuL_<~v%(4pTt21~Dtk!Dd38D-Vl>&T6 zz&DZV8G?Z2G#BFKX)xk>pb_QC#%dNr&CD=x4?F(kBcuU&@NrI(S?xJA|I~FudZ}N3(~>B zFQ=o+YFCBQP1Y^Oj#%Mj#~_6;0wBh=Zyzm|K`zu&3I*B+Cvm7T>aAoSfnK>d3sR8~ z0k+HbojX6YNxP_(g+WqUNV6zJts@&1@dl&1S5({?-`8PCZUVQpBzIxIQ#=0rPTm9C zehnfe&;k1!Qs|(K9wa43jVTK?e(Uz_i^*7m&^>ti^bWiYT)XJ2NOQzX{0?4b;5Zk3 z14M-KafqGekddG5)OBKMq_j8@pJEby#_*ey}Swt0S9x^0eQwwhUCME>O#aN z6r_&i0$uPs{m;)=ytC-J4sn%z*Df6pRZQ+mr^(i3@ALCjIOpNieogHTas_!L-Yk|n zJ-Sle+pF7sI90BL1mZQ$^ApaH;>6FNXF`~O238%S4&DP_l8#A9(GbM|d5f=5F($#P zNSs2e{lh(?ep863NNgOUg&~FD&SJM*KtSLywiU_sq{F-hrQKH{U@DE0i}ceC>Xi&3 zFb)|44PIDX9z{9O!bp85{Un z@v&@ZWF(RS9g(a}WI}R~(HX8d!KwwMM(ze=lq=cv=gTJ0qE*a-8xTgw7|=VbM&bi{ z!Hx{bS`m$5?dHvQ5J1sJo17d-X?f)|YxhRKBDdG}#e^UjwK!k|u@;K``RO3LW@GPh z^)}({$>5T!9&FlztxJ?kBD}R?$q||R3a*?{B|=1W3rb_^hT{?nG6*QZs)kG33jrHw zBUT;~$(~UGFyuE+ef<4nSZuyhb@uc`$pBpN(zz@O0q+#>=s6=Y{&-Oc3R6|_lLIA{ z_awu5>k}gugX-cuaqy$CFtx1YtP%- z+sB|BtCZ}uxl2eO)}DgIbb(5CD1FS+_Gyl$EWj`_ z2(Sks+9D})$Fkpq{+A`r`6A- zV)hbM(Fzi~oa5C}WT<4vd#le9d;Cn6)xgu}3u(!VLTchQOoM{%-`6a~&dqwGYJKuc zE3`Xr$uK!|bFadpqD190>gqvKr%z`L@X8hb=qm>@IcH(<2HJ^F{&$Eo9OxtT%*@8# z;SgCrHdgt}&dye2e07uV)zv8@k?`a|f%Z@MX)h^}5ZwGD{$b_Y{kHPuqc3(lXr0=0 zI^b|cmjjlydd53J=ecxSJ1MCFY=OmarF;gkY zMY%tov3J{^^bC)!ja38fcPy-|tn3~C25p6dho`)E=rq)mDL-9ZU6ta!CTeWkwuL$b z3R=ojs*u-{3+=A|Ijvqb&0eYJ1H3!NSE-k-CKmP-s%v%I)dElEb6OgU)ldF3m?JwKCgcq^R zb9{im{3HU|y;Us28!1M#d(bDY*Q(o>XsZGZT>-z*fu@tfY-j;k`LU>o7)-@VvQN`z zMvDN}vUA;5dYpH^ZJ?Z`7H@G1tpNC?9Lxh-ZSlgoTqfJ!Dgfsu_C=3{AgGBSEAjD& zcaEuF1zB#)0!q+WwRnCLBmT?7(r<&XF=_K*AQrFp>^mZChdo zV+#0Gg;NYBn*w5i5aGGZ%*+NOX~QaR)hFr!;%@HJ+ISlAA6~qKWQvdveH%8;h|guE zq9EwG5^H440*ONeMZk?W2yMx>vVVKfAEkb~fWRg~JIgcdtz&dSJdNg348BzXVyc`^ z+OT=E;oNv)>@!J!;4H8RmDAiOg{t)VWTkQn3YM|3_?SLH1T{9!X7AnD+Gj|8k!&3n zO5(=P`WQc+&G-EF>)xqe^ANNf_NQXsPn6Sp#0ozp1f3jXFPr7$NCFECWB92X>Tes; zKkso{$oLfQV`IzitsTr4=$7uwnxEwk4Gk^!$^%DaWOToKcNLR>*?Zw8^#N-rMIVs~ zM)=7EvX@FpR?>wpXAQhMq2ax<9lL~XrVtQ+XaJy z3ITewqEa45&3kt6OJ5=tq?x@$-%^MZo}U@BLBC8u7|5tOeG|&>dqAw=kpk9s5AIB2 z2Mz--J@qa7_%R#On+H%qD+)YD;*D|(s#9#T91$a?rc_QHa6H+Byh6-0>(j1!RV9Ev zBd1Rd$UR|oFC`|9$VB7WZ*y2@^pxUb@98@_JKf&Dml)Ggn}{Yjb)7c1ZEiis}0>+T8I&3}2gyfzF)Q@KXpA4)|kzyil zw#11OI$z!xDE9F>)}>i$&>Vn#PxhF8-K(v@G1pNtk+!5ot~AAQaA3pBEtB1@bEwEA zm8T|hUR7T+d{@>vlr`@OE}?AMxS`;|_7nGkA)z+=PwatDNhO=!evU~k#l$Tu%lX;F z_3z{3TvmtRPcOzkzqj?+&98IQL&Tbiy{X!i=_o`Y5<l%v z;LuL!Aa9;t65I({;Ei3$=fFh~-T90%k0 zr4`=5CAGsNu6tv!9$8W7Vo=eRV62E^cEXEAIn9a-x{hswMvh^UDw#e%K7(~6$;qg0 zLq#Fn7ro{y%wpGwh+Xn$&pvy6)XeO4$>!5ER$sr2BCWX%feVs%MS8h-qWW8P3?s?A z`zu|hSCX6BylN@hC%5#JD#9k^7?)6)LFYS4IA>TL*8a|9M+2O2iRlc2sQsWW!Cp|DHl zODjs(2%O<|DCGy|1qI42sAMQmL>s$){W@`MF_GGUQw;IP z3=9mA2vF2;+K^w9>GS5^Qbd|TAIY%;h#k9TkWZz!fQ^0iR#MLatyvv1*_|%3VZz~! z(lpn}v^UG_nWZcH^8b;IVQ~eG_GfnbwJaZ#a{1S(Q^eIn^y%!2hB(F8&B-QBchF}@ z{mTb`qoYKsrR*bq`Iuf;18+t!u^c?k??awF)OFZu;yh;@yuC0;hKR(zgnG+`?h5To z6HIPFNh=%7pG`OZf<`gqe7xpr+Qi-PStD_53d6(icdzxfhb}dV&^toCu0&u(n@9YQ zw-IS3vJkOTbV!nDzb*~Qg_$cKJMk7Y=s~3^^Zp8kO2&?!o*r2#`k%qKV{KDt&+5Nx z`~z+@m~f`o5_Mq#mMieq~Me=Sht zG~-#6UQuic5~m@?G&vu##WbDRIYc;CEONhbLwt`Lpkbp`Q+|Ez!#5Sc$=Y)>Q-7U2 znS-{>gH$`xG2{q{_N~&kfHB=q>H{h41Fv~@2$WGxGfAJli6+G{x{>tmYE{3sWWqKV zL3mwBIdsBd&z{QNi;|nqZ1~as8Cd{wMuw!ITg8*_a; zGkEvmnaB)DMj`+qs)mi`tO!Gp6{pQUt{WeJC zy%yXFqH_%THU80HtWZJilmJ7`k>1u;xo_#nh_|9m9~x@6jX-&>0Q!Rkz=$``50_pz z$3U51b$beabBmS8apudFe3jm}^P{5p243NMNxF+fJOHlEr}s%|#UGQ}$fY;}!BCk9*ny>gG+3|Ce3rz|kVslWP5s1O z)$;vZ)2ClNBagHzegsKeG3|8$NO$ZfDO?i!x95D~1PIkG>7fg1MUq0r3HfsakiZo4 zT%Qi^g7B2LZAff61rb0#Fpv+P%pTYkb?4^?M0YnwV^c&bCu}3t6z^Cke0Syj7F&Iu zjl*E=Pgz@Jpfo`7d-=lODWRvmT_*@9bq-(D)ouN>EBK9oMGP51dfYrs7;0(ivVW`Dw#8kIM zMFiyn0h3b)U;5dF5paR@Y2grHqf_m4f!@e$hx#E9gK;JLQX-!=20!lvKiS% zmgZP$ifWcqMhQ35Da)s?ZBZNKQq6Q7#!C2+)bg$#O>x?){jS$wwBr-QvD+`g!=Jc6 z=CsjOkb_rnR$l(s(Jj(eYx_K^YiR75p9)$=msomjK1c%wh~P{uIqcwJi-k2Im=q3< zct zeozrdAdcWb6og)_Ifum^^UOhn+>C+&z7}Y7I@xk&)s{o6z|d_5l4^~b+o1UsnTV+- z?bx|KI+rVA0oi$ZiwUxV_24qI zC0Pj;C&6>q7B3^N7x>Z=91lD|wH{0{ZDAo8hN#)tM&Kq|BW?M^)k{0Kagl8phew(@ZcJe*MJ^~PmA+cmD;r%V1Z<=>!^{*#vtdmw6N~k zvxlfv34_;?vDrvR100rsKPLyh|F;A?JUskr<0V}jeye+DxtD=c*#+kaogx1Rtykm6jaAd?6EPI1+%{W67GI6SDi!f15-N(eOwCh9GCe(g(d;2NYlunF=D4 zhoCCr#32DM;EqHfCptTRvgE!q^*6%2V6C>`aFZA@=!=By)(OM2shF+N(2@SBaL6J$wX7<~zds@cKLuxe5?P9FkoP5{;8L z#3`u2WQ}oOw-jV1sc2$Ch}eA>$2H?{)B5KT5jwyP@I3chJ6Iz?2yG-EWPmJzu~$U6 z%TG1$=0SylZT_sT-upT8&Rx605S1ko`DT8TyI>}yJ1A#52oS3PMWWft9y&vAy6spw z{48>84Sp4wGOMBHdyw)~nhwN~BaQ;*J3$`Y!4*T$v&fABhbKUOB|LHdz8%URK74>U@|EP~aXo99nC^nPle38w5*LK^q7Cp)?hvLEEt)Ojt4nc^ z^#~x_>%>G4OJR=&21rETSjhxhSsfyDfNUBh8zq4eTEVHY9a_D_=CU!{##WrZ6f?bbDU@lR_ajYj4F6u_&iqu0) z)Byk@3lL%v6*vxYVTu0&s~-n%Zeja}0^NLT&JgOYiCvkYZaOzo`8(+-*fDtz$92hG zK%l}MMl?}&2&~0&hmCO2oNq0K_zuKYpjy1tZ>Ycz<{8Ko2^H{gM^yH_!ubqT%f-a| z2EeI+G_TLMIY88LGxR)h92O$^_Sg!R;MEwN^PbzbaqPlRs$oi0FQyX?!Fjhh_~nni zyu5JK>E<0TFC|DFZ|q934bK6%os*EbF*-JO7Lv9s&WHp`{e7CvXIThNxalVaVOaN2 zI7CI84TEAWo8Hafh85rfoWl_`a#{AM}mDFvI6J7nd zq$CGPb|I@gwt^MJ5%EYcvE`7f@0?T=EI$qkI7W_eY^1|VH7|K7G(`==Y!@mHVd3-S zx)IPLQLhc}SUniI6;YSvo12@Xfng1yMsjT5ek}j}dy?Xd=^Ps!t-^9uz^W&Mg5$!` z=%~@CJtRNZi!IAgg!sb+5+}nut5iGS6z)MdG4w1faVV)9C%2xsq@o^|EC#AXJgS;!)7-VmiH8#o|D?p5f@xOA@TRc=0(l$A7NabM)&0iJ^g&%wbzY5A@E$noRHNuCaJdn~NYIH&1> zlm-?rwabPL$+0x6Rw)3nkyxG~B(_5hZLwuNO=&67vd^xM{`jE?H(!y27ZFY0&waLP z>@zWcuYvW+C?eZny$511Jw1Imw&*h_=zwGUk0&Lz1$FNb@j)O-iOim0pbXV3 zyAm*&r*@cYl7{q-kB_HWzFd~1A&=c$B?ke^HUBl9iLm?JOftBwL=8?^JOen3gP0M8 zi)II(W9(PK~x#RGAawD$nH{QqP4($vHx z&JL)EgcH3LW0Iz(b|LI~ZzJzftgqc<8a8i^CizY*qX-0lP1Faif`jkK*V$(vlpKk| zwimG_vXamio&%L@nNNYRJ`pQJhWHc-k52vk8I7#sL5pv)mRNZH4WibA0d`$a^kBj! zJ;ohDgo{R(>BW&KSz<~mCx4yZVehzri*{@dr@31xDPe*$gCzAeiMZ<(s8>W`M1Lbt za=8&lU~3XWa5@@mRS z=FdyLp|wNY7Q;_jl({rO`0M6!tw%o}0GC?{T8?a3lS zLm_9sfbef2g>yJ{KZxz0FEe)aBY$xtTb563to*r-_!j~R=}Oe7T{48C6#~) z4}5*~co&|FAtkfN4O<-(keBD0;$*$6)WPcvc{|U%iAna=@oem7pVQ2Lc|P@ZVo}Kc_Y;%k#ji(1L{H}IU4A=YHxJJm@i|uSkdP33DmhhX*T*#jE(0;) z2pBUjIcL@_Hh&F<;e`~-AN?vAJUo>kJFYMMweN!mR9}OWr8^lDAG_HW=5TtP!1)z4 z&waDaZRkPzjc<7qEsnWm6u=GKOdqAW!ID!y=-$ zbHEXI?O!dhVZ#Q6F6J9pnUful&J2U79d=NA!B5f6@Ve*>G(tfNsjovS@{M0OXYpCu zODe)Btjkxevgo1ff^S91-nz3%R%>WPL_~y&f*|t0edwi67%XZMOFRYqXl7(Wb!yZ8 zqEWAf3%k9R{IbG*_jei4^B z>ONWa=~QN|lsT|*6~sjbvFKDw6}3K2Lm@Zg39F)}p0R%3AsJuugUN!npE43of6U?3 z)e17>A-~O3{P3gYNI&~F_XADaKjOe=eYor%n3hzO#0@ULC&ujUPkK*fasT-vkj_fqK8^i)_=W-9RC z?`&ZcqOelILv(V$AuwU2`ZprP)s)iNd(1^{gjf3S-&vOU{Q7^mh=nbQZOzGYCQy(b z?zcEP#6TvO=fQpWbk{#O!6VIa%lIfQnVr9XC=utOw`=WINa8rTv6`Idb)Sjeg+uUz zeeB(uK7WQtp7zp7>i;xuEH@->5HASY1lU<*qV(23N1>Mfk1%%}8{iR=PtG1`81?J9JpgZa>uwQ%8-7+(eTNe z;*`qx%)`PGQw6_QkN^gs8oNy(ZOQBP|9xm%gx91dAnUalXSH&WrDA>;h+`0NO|yY} zAwAGGF$nlbhEZknTd(`Q80ASsOwU(*-v>>e!~f|$5vMhI3Cyf(c1}ZGo#nASs&)rs zP-j4e{*r9&xE+61DAS8l^=<2$olpGRgyS7Lt^g{64}aypxrE2@YM{UWKg-8Sc3)IC zY)2ujg_`uQ<-V}%yL)<8;9#$7PPR<0S?Tu}?n=fw1*e6r$W$y(o7w$)4Jds;`7%3< zL-x~yX><@tkdc<^!AhaHfb2xn90~t>5W&;>`qzET$H6FyOIB9aqrJ~QYybOacYJvG z=+Q{<{LC_0%ux7oYT~`NPbcf2{rA>(>;)+? zcvU+-OXkli_(zFJjlv^a$a6DD<_lRK;>>_EZRO)bGyENCmlKF6JHRGzaEtd*$B;@p z!89hUbPkeoHZg?BNJ6DpfO(_Y1w*%=ef9v~arkln>u-aI6b zy6zi4xw$c%l-muprnqh-oQ*6Lq$EzghXEwzJUm4Ml?=}*n6P|k{y!9ef(iqXtJXK1>y5os?ksdtlr=IT z(ctul%{p%7zrnM4wjowH*zj4O&q`yL!2hByk~ipuZ<0sYD{#&h1nzR7hma>SkqA59 zt8e^c(E;(8PVSq9X?O2(QZ#)Q{n^HzP)`KYmYDJ4iB=T%+J}Ey3F+~Em{{#)TOarv zR)kU$2ZlW5$25IpDR~^rlLLBf$WkOtC-ZHlJD=u*N4Z#}#rqd3Dk{#s9jUJ`ex0uK zduK33MM0-ifwyO7wc_Hg-*fv5dE7qFNPwd;Ge!h^V$Z8Z&;Q zVmYO-zEd`;W4^aYQ`7Tb`*9dcyUh_05OVfnWYOF}l!!Nrs+)&{;nHtdkU4>Xu@Ues zA4$-)$nhiA^EEc5ITyJI;}koG_Rl(1G;%R7&?9NrxZEj7B4g$F5=7U4if*q*{gq(+H&fFbEVI`AwJz4uuD`py3f8 zQ8mf1K3v^NVCSFK{tHWNtIbEf<3DKdnH?5Ey|yY`EJ%v_6WFBdhJSQzxjs7Bb$UDH z(jKZmC8=EhF1ZM#P?$&r5Go@S!#lWFUmIrRfF}VvNy?bGUSQi47eom{KsCwZzF?~8 z`q~Mk`=I19*mp$zqbB(bWwm~)HPx;ky!hQ%eMPe>-Hh$G{erb#5)v+PRee_9uePQB z6Ii7t0KtF7Nb`u*7&4DN%=TYf^v`Wu{CNafR{35_2c$D7E;y!Gi3eg)NKc3RHw^8u z9l=7V$%auW`G>Y*RKnlb_KvOcdo{yT8s03?DXWpbRw=&GYTZtatlMwBlCvXSxcLLG z`9>^Fm2`V@Sw=Iz?ofCyJEuqcd-Jn@>Qg%J(g#~A4U=GHgid8aHgPvDkPGxuNJb&~ zv(jA!eCW^$5xWqBTX*>&B6lVf7aWYO*HshFB8BJip|XV{n6ZL#*w=3Tr>OcL9I?e* z4S}oLTT+fFQq1NucbR$S+`94pv3zVAr|0^z(|<4_j*fqXTxGQiVWPL_U?cEz+i;__ z^)l$Y*mO*}hrd5=$)lVdI1m)!kzpgr*@Y zP{l|gf8hK6bE;4J8q(JZ&t;aMSe)H(0K6h%nRcJ#W5Xuhs{uA9zlZ_K*@X#|Gq?$U zV$PyOSA^ZE3BN(@Db_TE*G zcUO<+7n3=2W*G&(&ykpF@;DaI2pm^L%=g-_qbguot!VU!9m4~HRw<5`adXp2?E%UM z`_0Dx@O%xaJ>*{_Dv#`;&QPag4W8ky!|4pJx!B51y2XBv9xaYlyllROVq^kEqD;84 zcOV(3^V@n@mTbUXV#f>l!^l4ABnG3OE2}Qbwo^h^DTCq z+I!$n&RtHmkf*`GRwed5+4EzrKqygfi>%^b1l2Ly^9hfH8tL+L@i~@ik&cE(oJz3{qbGml;1>) zMsdUZczKnU_XGlQ^Mv^?r>sF73L;87@nJRiTbBHnj#~VA{7D=WXFtu6 zN^cjp3tIa7@l;9@=3*#|0T98#isE@Ha^HxKiHp046uJXkO|`r*-Y_!}TXfiPOUhi@ zo5CVdWN|6t36ko2xTh};4R}X5?gx?TvFI8}yVj9o;80@1_bsOaH-z zeB#RB+TcV2iKVYv>RRo%{PYA1Uz5ix9>Ks;VWV?${}az4C(uBpmqE=ujO;hg3@pbQ z6~+_gtXh10eHl$Ibs~P!FxdCvwRd2k*s4{Dob!L6p1XS4Gxj1^9A$2Um68WUk4Cf1 z!xmG$h!WFdeJ8K!no_)2hlJ4uAJ$KbYT$+z?y&BsOKL_{5(P9gRU(#>mTIV+HAgRTC{t~Qn$lt8#u!IYR^(pwr+hU6L&+(wO_0<{t^NIg}f7m0xyL~&(z~rE_47@WT^ks4qk1Qx4dQwF7(#8LjA#S*hFy>$U zRN&s7wBb(=T+o?rpZ9f7T*_Qmj zzZz^5TTsit(RHF1o`!R`62T&pnk}isBexI?@gh(90{jNiwyO7$iAXH6`#AMa^q?Yt z#AyA$y&YlyXOR&TBjH_MW1v%#6`LCip0A7jb9{V3aXr71AZ!J=^mt&0K5q#M8jMQC zO6k7Bdqr;@#)N0g7xlkW=dgcb@PtB{XL8=9bTmAFK{t3S?L$LD?-;hWYkg0@JQFO@ zg8CizJ$RE=I6K#OrwIM`<-NeW^}h3LQ+l+_wb0yZkAhSoR^1WVL?`CWnXE#sy8 z@}9j>b*kDX{U2^jSm^dgBa9QRN<3Qpn;=yiTN|N^vkF#szszvQJ<Rz#0 zL0i!JC5kP1#ov(szp{eP&Yb(Z<~_u%@B8`(hn3cTa+8hvRq^5i!sVmcrNbh_@9j`k zntBXzfpGg*|1P_cr}Hq$gjHlO4^unO#TNK^Bh}jiZ`RLvpF-mxYQfug2KT=fNnt;` zGSJ+=H2R@}L8`WO5e|jq_8|O z@?O1~!pf>4uH#tsGWv5}(Akjv9-T&W@%dNxT=ajMn=)FK`6W6cyJjw^wY}%M@5wJ~ zhmwx|M|F*;k}JQjx>j0CckRf6e6nZpCW=dTi1_cNbah<#V3*9ZT)`&IirZFcrQxAM zC502*3YDvSC@yUCY~*F$zTJh)KRQnuQ-@rICdPp)}Q=Ed4L+=OK-@|NTGZ?N9w~6T#N6o12{m zE5%b3-H}IVMaGXLP6jfWU2`ZvjHd9bJD>j}X~M@C@wkx$$`Ctw{Ca*&6y) zk!ul~Q;D{GCmn=G?w$x1b;OD8)yV5XS`|oRPc!%BY@#NjEtGJg7k?lO00Hi8TwJTk zbBFLuXmT8TLgwiIAo=z{Du^OySn=?h5hMVh&@BQpIi|0#A63)0&-M~V0IogB+CiV| z?l)t~z3|$Ck$4HeRhbVswgaQXBg?XB-C%_ox=>h7&bqnFAFix9}jBY|e*P8FgRR*)|&aB zy~@Ok1L=%oLV_S-PueY0$Tj<|yS_NiIyNhn+MeoOu~=YNuxc)KQMIC6_LBO?<{P@L zOE?YEE22^*tPgP8&KQvowNSn}cv{S5zj{VzO0}wfdr3omRIX&il_Hb1bprQPUhh#n zdL?K@*1Nb7htL`2g|AGsv&1U>qi@}2McwclVEmeQV)r(M_?1ZIEx}wiM-kgY=4GbVbTpLdQLUAe%ZW|5$35wed#-|4;IEnXE{ zCPAaVk4)kEWs$x{vplmtX1%F=?VcwR^k5(B_R^sI&rkb3RIlVZ&t_w0EQ*jH8kPr? zN}@noNd7k#311LoDU6T@nJb`*-n+MMCC*ZHiMor|^9Hj=w|y#p6h5bLc5UYnqX?<7 zP@zy=1Wi937iJ0Ky(UX(tiApJh4Td|wP;VLcPQsfPRJ}@zN%v9?_Y#?ou(=qM-%}r z=NC7XC4M#?5_y>6wEBG}Xahf6u{0U}!67-`a_^g|pLqNft{UFS_BoVtN%3r9XVgOW zg{3Lvo@0rwdJ2D@X2#Aw_UpB?5Zq7{ia>(?Ti=$HA}d85DSsMNr? zcSB@=(#N50p?4OM*XXFL?)PSH=FrOBZ5F-iowz)Gar!8q$I9YP10C^gLMENFMT&1- z+);W}LW}P?OWO6Krz}0^S*~n765G)h#(s59-kMbXZ5*1i&cIO|)@#1r^XW-6dy@$B zUfQqa`X3ru{P!)6+8R>)ly&VJ_D}H!LJu#mNL!VD+rvHoTid3Qq0(6uix*$l>et$v zp0(>LUDxYnEAMW4ZYno(K&La~AI0VQsUpov^WHYq9*a3$d468wz>*nnT25rQ?YTOy zYc|y*5py~yI`%RPaXm#`p0;wein6qU5xjiri&iKHj5! z%|Q@#tz>0ez4qSkn;?lNNnBA^*gx&Lc_83}vJQ*p%DW;i#-tbmazQl^&Odju#mIyb z3?ciJ#P3Vbpx`;JL>`)~n`YufO-F|{4ELwXJJ-9Up1Zt#Bv5j*pC z^<04ygC`!zq+HALOSNQ=^!b$IdvB$+n2;X5$vjC*8|&lwSJz9WS}gWo#>u4GUl6QT z^W_$c*kCVPxD^|-@45T@Il*VxGjES?^YWyY_`=scrnJHW1ud<$mv6jH`KD z*XuhnWvj<>R{zjidOe$yuN$+Dt9WE2@K8LrIqm)v zs^ub-d(nHZS5IGB(<`eWl;=U?P8+Ym81Wpx*!4~AXHK+tU(Mnnr_c;ZL93Z#mr$3a zpNK8kdN_Y)1p$eTj?S4X8EKuD2VQ0|w{I7=W7QQjrKZ9kG5xa4B1QE!hWo$inKxm5 z0gBtHEXaL)u&UcKNpZecwvULH%hfc|)GhQmUNS4kA1ENpuApZ{^R=J>dH$-Tl<~~S!_E5+v>_5NJa7%!;``W10^LqQ=d}2vw)z~#~R&AY_Y3VM!WifL+HI>-7 zM1*MS<>+cV_Lv$Eo;i+d*>;C5+{d<(YI%8LP{xjujYhL-I-VCVSo+NopHw|J3qa;O ze4H0S`EwXMwx2zmcG5RvsnZ@cl|=v1MCHFcY5o!6-<-vleROR#W^ms&RtX}OC}pla zvQiyFGN&VWVCrkvt`Wg7VPr^k0fikvp8&s^6|B=bP%u;d$|ZYl&KOL;*(QGXpCDyN z;bff^U-7i90{~rTlgl2dYZlYC%d$&dq%D$VCa_5kj-b`g4Q8&L@ifh7;|K9MaxI9wC2uUW--Jq1rLJmal(x zh4lz`pk;p+a?wuZ$EooENYc5dG+WWq(G$tLk8pXaLHqAT8K3*^(D>`X29xp{E2 znn16J^Fz7zXGyd*HV!Q5x0#fU414JYT3_uGh+1^Hnn81SdZUEWysp=tUWZP}1~bp; z$p4ltC%wGt`NKgrCz;aRUE>Vwhhx-koUC@vjdMLEQoO0!(Wv;fOufy@8RN-qMK>7U zUdtAYu2te5s#FZkvsqyOa+LR$D!b z7Em40zNU#85!p+_1p7BpbVy~nu{v?gcV52EL=i&SI7>0esY!GSv~-YDIcg--)n#aH zmifQe_=W)#`yg2)Io>a$b^_M=-xLs} zwAcjM2V!@q0Irz59}*Y0T5JTc>$ei)@6DHqDN+Ytqm;Y}VKRvrVknzkJ?D3X_pj{- zVGrr$KiK#c&}3P79XRpBA^22T)=UmwpBv{iL**M3SYsm|trVml-!w2-Z2o>I^v7?z z@|29^g@O+ep@9O%1fZEzh)|*?gI0)EEFs$DjeBfB!6{NmP1J_IE>ACa^>Y>KyNq>k z^2&a8UB$Wc^2Kg18(R1(o?jJD>QeU(Qo*cPbG4|&7zrprap<0sDzE(R|%p+C97 zQ>P05hAhM?puH|D(9tvTl9&@>EC3ZH^is^T;ee__)8=1PDbJiav?F%eW_KTtCDTyl z4Q5y|6{cCX8qaGjeivC@z#KV)%|c_H@HLg}ohub4IoMyK72`m$;hv^bodbkC#J7z> zAcw^QCPyA^>A*}Py`tz~?s#oE@1t?1JZtNWO<`Ng*@Qv#_)OlUv)o$sVq7571Gn4SkH) zeeYd9d4KKHC!XvPv%a0PYO79L1=R#__~qNqEg?KH0!!20H;^d+;IrSMw7lWULueRyvitQfd`k*^mE&Y-e zy-@Rk@#HnamDMbG-j7wdVL&_(l3shl-)nqggW0L$T~?P9hDKr_8doBN@9gJ zK{9hPiX9Cu6%6vToQoR6)cIt%S*J;Ks2{2^N-SQY6jYA!H{vAcn2`kIK^oaX!j0ew zU?}tG95Q!)>Y2q>UG(9XMq;8xy_Zqk4TD`?OYb_hv1#j{R;AurU0jBH#k4n5B=;GX z1>#LYfR(V>F_r@ozf&4Y3(6^d#gQ!2k%3M$xwK&_5!WG3v_<1ZJiy>=m4BGShsaE1 z5`bt~kA~`*1oDRVOvunEJ!>!I?dVxI+|}=te2Yc%tC*U;Y=L#Y!?$z+54c)LXgLV0 zcj#&%9b;V5GWhRZC9ol@UVBYDnWI2D zapE}zc)C$Dc@7my`+p!mz8lUXDkeCcPd5?z4?IY9Ebwf@w;JJcQih!nxsvormD zX;;QT*-k@6`~;iHq!{SZbjp@}=lJ*Qg0G}PRK^99bxLZ}K;{!!ZttB4^c_1=j*hUv zpq|m{!dB6hHitBJ_0z4%;R{P_A_s`@BRC3v?i9FV6zb@gWG*}H%;q(7 z`g(VxV_2ihUk%W>Qfkz|+{O$tU@z*h~z9E;fRs5r-i$OhL~@2T{E(Wce1A zE+Dy8va8vpUQH8reT+Fza4_Q7Lns2AX~Z*Ti+r05d)TnaY(%eGdEY-KN?poG^BYoO7XqHS|&T!rB*s%jMBR0WQOj5+e zMmo|-8XJabTsaxV15g>DZu~qC&u@-E_dwL=3i|?Ub5sw! z6>H7@Pf@>LzEEFP8Bq#TwrCBoxU(Ip5ohU{(ett`DZ6deZ0IFg|4;|GxO;j!BMf~J zz7pbEQW8xK-#E=BnTG^BBq5`qu`|@P;N9B{Lqg`#dC%uc<5+IpxzLF)c#{ED-)=*s}n`Zm=A>0+&V;MU0W zI2dz?FMxb{+_DTv;#gDl2~M2Vo_qOfh!UJkP>x(9pbo~+t#(`Y zn+Cu|J4x_3O8tm>NOtB^AweMNWRxMyRG5g!4S@}L7qE=8z^Yk<7CTY2%Qs#&SRvev z=>4Ig)&CMlrZza@=o5MQRP@`=5848rF&%&$$p|Sz5)X_L>9|0hFuMxdmQU!tO%x%i zBAJiTNSelwzhzX%1(-?dG+cNnDM<=f%g}qP-;PI-5`oC3 zxx8;N$nqlrhU0Jt1oHGS{j6>(gmZD~pTH`BJ(Yn-gWxnHX_F-9AJ46~hUT?IQ;$WP z4-H$_xgWU=?LU?@v7zJnGEC`ZBI%CKhF%jI_{12peRp-$IlDLKeRvpz*!88-EMS@I3{TT`*WuQ=LA0_Snd=;6iFD zJc_=>=kyI|E`Dl-KInCMd3mzoK7B-#NJN#UXJ=5h^@q z9zS|eNb*czbvuPZfzZ6fVoEfDc;uEN%6(7&haR@ZlG3uShlMc2OK{93l<#Mx^^?(% zviCPpBTjQK(z8f#5{Z?ys66Ph@U!(s){cT|`x7R*Rzm=;RXl5_pLhF*ip`+#&LF-^ zlGQNs0-ilG0x%E8Kmyd0bQrjxL)SXLvqs(?8In|PkX=}KchC8`SXoUd+gxP58D}~< zIr+jxE`%9(&twwW)gqWA{qq6AdBekjMVMZueYF#DDzzwWGr*J}RR$I(Vpl@OIt@(B zMvc$qyzTdXw-z|SRrh1<)e7Z5^b-w=ktYh9^g4RGojnBCZ7em3-9k-OWk2?t*g-wf zmfF?)+{Q6GpJya^2b9!nGUfs0{LxR0^XBc<(b<56F4N3%%deMc$*%Sl11NUGV8@LSTX6s96mnGE9)>n&2O*F{(s z1D*$GG(#e0^jaahrV4>d*;BgnG5f2+08Y!R&mAzB}4ZnVF!bDQonD+ z@H}MNEkw-~ZRPOB4SF1C;m(|4N_+&R6kLlL4$n6PzN&7>dc~W~Z|6hJskp@t63e=O z*nkyYU&hqBXZN>t96*!ymFJ$+D-cdj?mEUIov8GqH>e`-RDRzxsl*fF=W>9a-tX!@ z@hC~5NAE*K!86mCHYvIS8DlS(WBu{I{+u~A&R4=WeY+xwq|dt=ED(>4TOw>E+qK6jpKd&j^NcV0MaYDFq9432NgL=xR|m zMys8jg8lC&49@d#)pb0uCUsp{c0T1&j~mxmuaDFcbKao!btuD>ikqD~;554nM#Rw* z)mA4`lxh)vN)iO18YY=|nM>^G_n)@fQa5}14^bDjU25k)UtrNuSbSms%+GeBdkZLB z)WL?(U0z|YJ34DuHFveWyEUSvJ!|Hs>|X_@dPl7t2Wu0qc_y^Zly(U$;~wlZz|eJd z36)oapkFMdisTV=yd>%hk$4zy>J{AnB|iJyRRzrbf^m2j$wfYYo)_xo9|~LBjUig* zeN1rkjoZev68t^4-0tr;G!{tE>}tJ0mp9@awVqL{P5M<_q~qaxI~g@3UDk{@kFz)~ zoO_Ln;O|tg#-FP(n2rEiw~RPjxwbT+p~pO+@?)CGrq(kX`+N|L^`$1`%l^B^`g zPy>(EN)_zeJ6gG_-H+PkQL0nO?UyofF3`A=;||XLIEPCKHCK5Zs!W;UFL%A%zLq9# zz^YyNrj2i7>5;Xu6yM1U1Q%KA%74=mcWc=^BJMU_2e_Zxu>Pw&_DjqK5hf)xEbqr* z(uQU3Eer=F4I~-jIslgstp?GPk?|0qvDxt7o%69ref$JDB}528QiFlLki1-yMh%dN#rzN>$XwGCU+>;dsUBF<69ETt%e}p zkKL=x!<66l-e~yh_o3Z4YO!LE`=`iv3sw6JRA#O0W8Dwgt*7C4zYB%uEUIVU5hZiT zgda`$fu^;$O_s39kj!FI_5c`Og9-rF;x}=+g&l~qSfeXu{oR^*|U%h7YtQd3lkLfpNNc0*x@Y;nfO|7(NB1}VT z#}kP$S0|=h=dY!lEy#;I*TFif6Y@3n;Xlh}UHr1GE6SiEt#&nYybhdqqVBtGV{Bzt z@>bih8O!-=7+4;@*bpRu%QcvOP37I4LQi?l`p89${LSZG-gmWKrSg@Q8%geGu@;PY zSF`V0+il5CgQ&d+@1lZ(*cw9-*PzNOs}qtvb7pM*z0uL^(v{0&-%YE?mu*xhp16U2 ztJ4wD{R2Ps>O>Afal=TfCS_kp{Juk|V?HiFMY4UtV#R6NX-LIumcPp3$W#QDoXpII zKKjFnzjbMo;N_Irlo(OI!J{|*mw^+-K7lM6csecqAKudCUv8f%tn|0HqafDJ?$FbAekM_>ZsqI?}JgTI+6vnd8_Tef#%uWq;e*z%qMp5-3v6g2Wvl0KG?ccx5G z)3p~cAHT1;$$aP)MKEh+9C8#K0!7{m+4Ns+p98nV7Yh4G-W^}%Zo|U#%h)+3{P_9P zzsdHjHqadZXiDyCVj>H-3f+{na#Aevm!IL%p_*@K#eFF_IQZ{i_`h#39@qlQXh-=u zsiAi#g;W1=!H7-kyAiWC)y>&wJ$G5WIU>uUO|MjY}I4^fk|CcTF|8%o;eLwHoF!Qg-Hw9<<{UZ6l zTio$A`_|0=;Zd?bb!e|ku+o@=Qd{S{f@w#>UroZ4iYI5!3aV2+WFfr&^vV2xTz1Y| zt#zmmF>tQF^#8I{YoizZ-#(I+&`YYdZn^3A>6Z&Vx;PUeVN7tQINT<|+bJUEw}+2x zmgp@Q`588IJ552plMu`Q%l^u8Qpp9XCN#gIFXzS5Os&KJ!=CQ4=VsRH|N8>@j}0Ar z5w7&T*Rg_Lh$6VTqA)gCVVjxn8j$9ykezG5G3<2H#8+i=5GCZ`oQ`gtJ$2D$3q97C)bIV-fyb^(` zzj<!9Lc#Cv>wuy2@}Dwp?*D9)yjYLR;Rz+u~A zfcihg@1E(Oczd*mXF3N)w`J;YJfhjf+mz_@=;1BXP(f;{1_i^l!pdW#X<0HJN@5dK z3}p|;Zb`+AYyFktw<=2$F<&;>gE<&{haUFrS}%x7?lb+21-% z`%B{z)vZ1}3uv%LDX7HIJBtc`kh0LZwDEl1IvH-ZNwy}56Ko9*f$!ps9PdBX+35%T zf(R*ElQ~@+863-F#Y55VpA(J+`rT59V#^`$dplWudHt&9&38&A%_aGHH;k zhb8gU@BL36_xIJkPJDVLwAX+Po4J$Db&K}vn(==c+b*W>1~)(X9Q^&fd3Kj5+HYRm zB0`om13j@r{(O4>W90x)3YoV-g6r(ET^7Fg{g+SO`6-6$Wj zLf(|5ssZNwU*4Z#^MSn#XL~xnE%4v{cb&ylSx;bcSY0S$*oi-Wj>i)whr8o%57;j! zKa}57M$kPs@kkn9JuGY{;{87s4hxrhN&5dU*W_pGkbXaNjpP-;v-nNwph@fcwDUsI zhoqa6=`x5?LI4}Wyi3ah56`7^@2F~jy3Z%-*=4*kU+d~-@$)k*f$SFQ8Efcb=g!^0&3&C-X5ZWw3lgp?Es0ZpRT37_&&ZRI zFpI}G;z?Cxamh-VSrzf$_zbSnhleQ5Qdc{?SM~HA@k^`rX0QIfo`*W;`y;Dv zTlFIwPn@}L<(g}{`#op(gEP&A!LINUX4oaU>Ij61w!PQ`GDG>ynIH@(i^3S@(l0NJ z{m+`3*q85;ImT_xv}{=mz@Ad5-)sA&J|BAI^*pbTL2btCj0-=gIUd*Eb68y$!{@{r z7k997>XB4z=d+W>I` zci0Uzy2)(J2b#3as_Qh;9&Co-I4%M_LF40o>J5Y17lr(8#Kzs@z?_zXOkJbZLW25! z!K`sJFW;E8n@W0_Nv*<@kL{bkUOIX+;$(zxAYV_MqlZP_mcgv7EVEDBN;fQ_(*+Sh z9IhO?KvkQI!#xol8xB|b20_7us$oo1en>tFa76W7v2NKq!I-fIhq3(t#8bvPoOeS1 zAWbXApE>m{nXJF;l3D%Y^T{O=1&Jmc&W8k<(D-uk@qNO_pjP{``;e%PE-mX_LnwRH zFu6PO#kcEO8M~yxC6_=}psc1A1{q&#ul-nGLYlN2aD=0EoE1?ieQKCJzYibbCh&N> zSKU8vLZdD%-{co=|4bt#QaU$ALT9E{Q5o(K`O8+{Q(d1hP{vIFk+009OP4H>asxhm zq}}e`y?Z)fPepJ=^^yznj9I)*bA-7!ZY%*eXY%v)vy1wXZ?}PmM}|yoEsgZvG1SPO zw*NBiudB=_NzLJ1`z~;A1^If8Lp*;Mu8#+tudah4@7nPoBVO0R}l{=Q~p#c}9j9gsK7UHqE<*JCwf%|*$t zQpsy#<|fC){d%m{Yn?dZ7tqDGPp=R|8M4Y*-rN1KdiiCq|KWZ9`B~M=mM)cc1H2h% zB=pqHZPC893*GPC+rWH_n~zVBwd&Eha>x*(%6Cb;ts6W_HsxE1_t7%;&=QLptdUN=~G$cN4n=m zq-Gki?9bOx0x>~bY|72Wby!SujOMnA&)tlJz2cmi#%7Iv&fJTxg@lAi;T3=bd2;B2 zl5-0{47wg*Sg!6zycS@mOk~AxiC@BRXOpzwl zRow817t;J2gS-sFy3QgqG6ddM6?-WKTwqDbfAC;5dx!cVja6l^<$7kwSc|yf-KUwK zyGv=gm3qem->Q5kt>rgIs-4-dd5Um}1=<*1rS!4^QMb zC^gtDE$QFkymajysk-ONy*2mA3Q+1{*?iIoDT_7jn}k;XdVpKvuv%IIq}M!O6unwp zJjEo}GGP1UTe05d-?>xEtp}q7N?#a28=-8V=t-g*VKN>9X9bEijJq^3GWM7ZX$f`V|VXj

;so`urvSM==kpPvoPo(m4SQ11|-;w3Sf*PvMkjRi(CqZ+6;-JNM?-c>VrNDlT8Z+ zw6pGUm(M}MwK|Z}%Vb)Y9YhmIvMj~(8%{=j!gyZtc&vx>P<tHQ=p+~v2WNoiopniTc-Rh=Ae$n^dsmx&7yLKVAx3tWQw3BP!Y_IvFYHY0o zB?i?IX&=W_^b*>uTJ(9WncUwBw71A{b9c6_EF0be^<6^{<#d!V>ZIH4%Ye|#GO}YXw@h!cF~b# zf2{W8P32~7LFrQZ(msV7A8Cfyl-haI(7KowPMnh{{N$bYu3b}V-ap8GM`}Ra`m58T z&0IMa_%dYwKK!>Y^I20hS>@Vze@deh&!?kFkyYjU{SWgE8a$)B;5qIUZ*)Oc=E$<` zL(m`pT6#QlE{Qxvk_TPM>~VVbLpkr-r8$Dm0K z=>k0F7=E|b+pe!nLMt&~heMeDT zl%`SBT<4Q)h1~YE-W>MH3(6#N@WGaSh@*YHF}Y*69aLJ(ThGY4w~#PgtPC=BZin1` zHK8<|QIscdvU;4cCQky#kqSJYJqQyeX|_Wj4%sUV-Ys$~dU?T6zbaW3Jo+P7#TmHj zRRh?mNWi}?l8QtS!|#6Q&f(hanJlI^J@~cS(#^=Nxk&Sxyee6G$XdrBA+Z!p`x0q* zWE!Tvioux_AvzeBv_o#Wy5HUv$8ItoR!}&3COgiNbz<$M@6IGC!gqGH*=H0RRnbA>^l zG^@4hZt$ndBeICR*WuI*od?yYUeTZ=v9Vi6tw8hZ%fsEEhB(Aqk&t#V@0>}_c8mtq zK|X6z{X;$5hnwP!C|$wyf>eC`;%sukdWsYeH6drCbS~#3`Pw14n{`n9CSh>ZN{1I0 zO}%d~`PQ(IH>6$s>TR{Dher)+uwrXGJ-vto(I965Mp|-7lL9?;sF`Q!vSoT0=gPe0 z^wl)SpgHuJGqdswD0>Q}>_vql+9yFXTEpldk9p+~iSMkmYVaPy*}6^|Y-y2xLS>L? zuJ{qCKMF9R`$u=c>spaDA8HD3&B84>AS2U_n&;x=tqH8fOz3bZFG3N#rS{SyLcO#Y zW%3iq<(hDe6k@nbP5)Ic$L{jUgKy$q@mAB!zvt;0Or8a#CM2~!FaIv&f}h5?$_=IF z#h71A9z;^=R{PI(A%%2nyM|-Yq8k|_Y}9Oi6N~!jIV&_PjSuxA^D&|+UcY=hiS0#E zZtv=D!ppjtR`mBr1a;uBFQ)jZp#s;mY2AkGZYfBbNU}3oK=YXeq)@2ZyDpb^`7UJ7 zNX;l@CNOz$;W<=Odx)tnL1%reB;AUTXpj7^w+*2Ro>xxIsGGP!6GsKvo%~T(!v~{> zXWib_ZOiAAMGSqn5~jTzc~|Iq(lR%tzuA1rWTG9MH~@r1FO8DgA~ZT$o{TI+Y@j6#yW4BD-qM6kCV3~ew*N3O{{)xY=i~!otw8-*CSjs&Jr-~38?hVaQ^OyK= z{G(azEkVQ_=e5HXLq&B6N~K*edXyjszo~x%Sr}BVT1MZI> zN5R$K2wg!Di11$2K&s>kLQ1jO=M&C@;s(Ai4ocAl4vNnfd-Z$)8ePga6XlJwg;1#o zas8-M6_Av36~hif@k&LOt5%=`DA!LI6wq#tHj?#anOJ9}O-4bHbI|t^qRRa-97q8nDPGsSpr#~@SoTTs0MnSAJ zHiS7k#gMD2wX_~xeSZ0$3+3b`Y$uq&D2Lk}L?+8Jm*UN2kyBKJZmI{d;6s}<@)G|j zjh(M}nAU&94yMSAFg>oSX4JcY&~47*+9k7v1& z#-qpzh`?|JY0O-9V=SEIRl7c5CcP6=v|;j8OG?iNQ%LpK^1hZ*{%dzXAE!L3L8%PF z4@AU*ui1ZoeysJ_=@4@!(W;}brjA-HT5~dRP)~h3rnR9{Z+v8$lMi8YZySbA86G@gmqOq2uDdlhXD2>@l#twodCfubj6he`g)n(tT{AzXcH?H%YD3?hMJ%vik51B{PzQwXQ8gd za0WaxTX!3%ABgt8I15d(8;mYn|5d_hFJ3Pj(mzBlGd@xtvNWr3#0ljX0z4sG>(6~r z!U+3M(TRbM8hh8{l7meCP4=$TjL@tNO?#Szma8$W*g^z}g_uZ#Ku%tiPsxro_l1s5 zEY*n_1HhR5wa@OlFUL$#dszC z#C#SZd2%NYigoVA38I3T1tn<1$p(cu%OP=Yd{d)Wkf(kZI_O>cGBTXqMQAtUj)CLs z2WOG1&@qGF2`6f&tHV7Ga-Klnqqt#70fvWf!zh#1s+42U9G1xNrvz~NSiWhHc63Hb zc>LI$$vei%^n7_rb6EH}jn(t6?9Te|;V@LqB%R-$JNeSzi$LVerEW}WT#Ne=(Y2-2 ze4R96^z;2)cZA_{Ng#!`7{_u;>HSM@(e0x5`TeZG;aohmiReq8$weJ>jI@~u&4LV& zab2siTNA&-;El22wDDt@m63;JuMkY5*^36h%jT(?vB6|p*}k4pKpr3y$$T6fhUgbC zz_YG?KY1wxbe2M%+K>souMtadRm8j7B2zVt2x2nRa{AXiC3Mm3FtuMX78%PlOs3rm{RuZbOupb zI5WdX?C@v2?O+#o0>=GdP|Ztbo48l>>$1q{2@F?9pt*l}2i31S4o&cnUS%f?VhzC1 z`n;({C9}o44baBU@xk2QgtSpPjGp$Xx^T)G;#7i@>R>{U2&O{z?i}ylNiuzpSF2t5 zZG&(8e9E;LsHn!^Fopy*W5t$W4DJSLGFPGp6KtCApK|Hcd;98ukgmd2)?0j1fY_`> z$}`j?rgr_9lcJ+T9E;}Kubq4#J~R%NSC6SIQ#ZPlvt#)Dq4tE$?j9b^IMO1zSa$o} z#=rcL)$TZR{?smp4M8Ap)-rWpSb6jis^J!J%ph@JWJ@!a+7UcP#hCx2U!AIfho{%7 zfXd`i7h{0fv}I--ZKjT*2`tAb8~eJSHEnX+Ai)SQndzaB@sqRtP0kpE$iwCu4)1~T zM#I9OTiefn{#vNiTRU}fXco{2P6o`kRk@IOw?mkE+bcg^@>RC13 zxr*$Vwmt%uWIwz|N{9tFVw9gQoj9yql=Q7Iy7tK6DAeaqFgc^-g@zbgll8V>fmCALpa#4t{^Jy1u6mr2h&M*vtDzQG6X>+Wu5N~Z&zb;dJ zYQ{E{+x#{ds1{5}frC2+zh{AVeNmtLI0}Ojl=5{1v|S!U=MUst4(i)e?%6n!_haKJ z2@Y-ccS5w%PvST#M$S59!hhkN<{k z-wES0H8tgN5QpsA+pIuZd1Lw*<(h0eldYqwu9x5*vgcsX+M4gSj=jU5GOX+Ui-)Wp zA8f7&tGO{opIR0`TcsN5mD3cq)#Y5}23J*2SC#Ymd)haa-a30h`7t{~agg`nPh7OVMOONvTYa8G4>U1Z?k8^`SKC5GrRjSm$X#GizuFq?w z3$kTO^oDvmDq`06Fc+`D^_r%p1Z;|d$wmz38xoQ8+*n-A(_Fpbui<#I@;S@ms| zW2ul^tU0U}*y+S(ZFog<)b(-EQI3%jXMMHkGojWjb&Zc(#`!XZ52id@nJRTuX;ERG z^te(@+x=LtfR-zIHp;3uhtJfm*S8oCbkPsEf9$FLON&w~EiVg6^L+MICHF5Fy2k7@ zZT;lpwnc9Iq_?`XR%ErG%xsM(!)@gOsC;zM`x4#=!!RPa4bx&Rh7IOh_v~4xuA4<0 zzODA3#{BWM~~{BSq<(6JuYZFHiQDq1w{Y*N8n1ZT&$^JSr(yC$*NC za&wHCEXxn(@VYPh>xNDo8+=2GV7=Doi_CRfTc4-q+A5hhJUTm`D4F2n@KJNTf~K7} zs%x0GdieQkddfAkYOD-t?4J`>#J z&R-JJpU=8-JJr^WRj)emqTps=OOMys zeu06_DQ~AP%C{dgo5}3uwEdgX!6kSRp5fw=Ob}?4C#^NQpo^T(1}|H;FJ)pXu}*18 zGGTF^^=5XoiL7s@n#KDMMK!{5+*-Rnui-50&K$rRv$py$lvS;jAAaJ-X+iJ8_^zc+ zZapubxyTNkDye(-?4=3k*jFAB>`Gb;P_ z|G8^&jQgdubsbNywOQCub2^*;OPy!K{KDK?IxYD@GT!~>^)b#(e*G#%Q_o3$#KV^C z-ntu3E&-7d58Hcl)oo2^t0^ou@z`yWQCBOm~TXa{;%EL-G$?n%C4}1NF!IcAQUhJU$8XVVayIqO=uIlBmV$ z)btAt*VTDymE2ylrwHd884W~gv5aL}Phndph518a)1Zxs-xq1X2Y7yelJoVb&hUhW zk>~!Kk8LlpS+HX`cU#hvBbj#gjBoJpsHBOuydSk@d^2kGG08UW~2RFVcE(r+U=&fPu#kWH1;;$(`ec5Q+>W7AaJLBFq?i-Blgqr zamCVP8=IS>5A+Nz?%mTJtY>Zh5|;Sz?Dik#vj~EWheIG_zl~P4+|6%0|OB$siwXB!f;{p4`|N*7fO;_~X*0N7Vhc=87p^s4#Y3RU63i zw@zhs6H6lR0_NAt%zuFdW;ZiVo~s-hf1aUN5O59Cn>6dTqkewE#IITL{%+v(Wb=smlYKHhEAj_b>xwVI4;aa`Q9T49xXlm&5K1b5 z@GyXadyKP+UjKIG2!26nJW{OVNmbOpoQvx_P%R3s7;{uM<|v`#CwXw^D=uj9LZ9S^ z0Al8n20na~Vdsbuf$j1D7W!h&o+ePPBplbHtOEP~gcwtfU!2{HTAWPaB5gKKSag6vww|}dNPihI(1xcU;S zO(tIjV18R8{D4oBQ-MK#Nw#`MXuRI`>gu#z1bU+yzDep)LWm8vz)eja*Z3-zS#KVq zYjFWZFRg$@Yv(hQ_WHyDc{qQIJ8}y((d-mr2Bz5;-QXr*6H&1e%cp_&2Oo(1y^pMR z7*DBY58wr7;>fq=$J8R$5e6DCpH1v&u(ySpcftoO7zCjZNMHL;a1ndae3IMRPq-cl z|FR_Wa5T%!DYq!HfLmJ^kZ<;C>zXuLDurU?ki?_sOUsm+`-@LFnJti4z)bWZqP%A3 z(Kdje&}`R7s02O92AFCNf4dWx7ED2!XuJIJ!r{Q6-AhRe4&!SohQBJV;+z*mNCi^M zgJ8TP_4fBQ1`OVX062t$iPubnwfU2e_%ZynJ^LY*NSr@{m1cKg)?RvTF9EB;G^xVI zRuMdG%o3dA3gpXjJAXsMB)T;L+zz;i=ScumE+!3yVd|hH0P$G01cL}TsKdI379SMa zg&>Y1Y>NIMA2KqfY2F)W?Zh>@y@d#88UsBw6|hg6VcJCtAT@UmP^F5iY&$NoS$?Gk z*L?s(6-@neRn*m=j*QsyX(TBjU8xAiTqH7B8ewN9PlABM*od8VnpZ_dh1xP2o1Vs+ z$~i){L2nuayLw|SYiCwXQ{Sua!^wz2~$fEkBTh{YHd(%$55xLK_pjk1KU zZYW16!1^7BF4OFrs6s+?9%SK86Xb{tCQPWb@M6h?7$m9V4SiiwBtkU;2u=krzg|xn zSv2IcCRCW*Xv2rh$|kf?3l=~=!a+lzf)E%OBd>PijT49Lki*{}SaJyoX{KROrfpue zo}d2^F3c|WgYL}goE%p^=YPIzbU$tT)2Rnpw+yI0pH`|m0eBEb9)LPB4E7_Ur6CIv z^8h3te=ygO^AW>#s!C{xF!c*SpegtVtpCY}=$&r8&e}|^rnZL&lqTqlN8S=N5n5@Q zD0Rd8x8u>u$jG=QaJbpX`}X%}37uUa3Z_A;E=uRE0AMtM0WF5NcAYdK@qnNgKiNl5 zR+%F$W1rO<6X5ElP;e>9%gfht=6h|^3j$z(@rkNL0|s%(XW!w9RJ)gCC^KRDoLNk+ z4)wK$gZQu!xxme~IAoHOn}EwH=r7tAEVze2e=#&%>-kYSk<42%*Ip1%oE$j|zb>38 z6ZUgIw?$i21eHV9tT(Xa>VfXxrWx3f0JvSo4f;K`mR`u-icw?50a%&MzrY@PiKMp;AxNxZWKR4P z4v7Und9oHtqPp+j?^_*Y65ZA#jDS$NYkPOQeH7!o;mzFj==$~ROKwSq+xo~AH^e~| zMD5Yx#^!qo;kUt1MKl7<3F#doPcs^x1T$O{!LHMxukNs9wy*h0ooW0%uVCiXHMaPe zl~sUZjN73-DN?<(*Z9d7RPYDffUD@Gq~gg`Hb@X8H7e~YTVJ3l;n;-8+RqVf7fV5| zJy}~zT}#Iu4ZuSvSy))q?bo>B7HTQ$YhfGtoFXTj*oGh=$dgE@vJOA<@xC8Hp1@ER z0H<9it!3BizGL7kO(j0>^}TD82J5}-fVBLJpSp9M4;*P2DQNI~Mpi661s#?e5J1iG z^Wa7M20I~3)Tnd6V6zqYgNW8P%hiD3Q@PW|K}kO$fEVFS@P?F&bav;ks<(qZ%;ZT; zL0;SrTHr}BT7gLV+*c_K3TC2B*Bl(CiEro&v#DzENsCOKrMHDGJ-neXFO&X_X_!#j z%B~80+@_ZC~%Q;#$UmkgM&Wo@3apBkwN$#D& z;%T!F)HTE2kZT?dU)mv!Vbm0r3)GQC=sVYijs%BMy#JBm1jR;gAe$w~r{MjQ zXuHn0?Do(kZW;Qyi@nW!8L8*a%JqcV@}gHlkZYE3$iGj-NjK8+5Bcsb0>U!s1 zW;q5V*pDV&U-drRlK)L}Umx3*`O2N~qp7?niBLcy>^Kh7{bWC}?|)f6C@y)x7~Jy# zg5a-Snjo{Mb?O3qiA6O-)UX`7IGCAX@g`v+-Ac;%w#u#L38hHXQdU=2*A5Q>B}YU; zDBL2uQ>a#Ad=>Trq&mJ`rhTYJ0wE!VC2ml&ayPiX^ zhMYpGswC2U8?eiea+}lC^bfAS&W2Kug~1_AM40AP z^?=q3aYK6EE3#U*dt$K2e08z+&`QioAbvi@w^689tNARi&H zPeBQ_00mY7%5RR_rII)baQV>u<(ni12L~UDUNESu!$g6!D$CmW-hdI|srLs$i3spf z86;snXUWXh8tYodYW#Mg&&TtBEyvg(tgO-QjyLiaAl0w9c;&Qxo|f-!I1X~GHy_0J z`4X8it|B4Yv7RGfU?z0_{G`XwwGidy5Zb~X>^>oJaZ1=2i!qRx!WTn(=kw{~<|$fr z;>=Oma?$Rq(7^~#@FWCy#e9i#(3PgAuva8i zjI7+CoM_6y z$gWEy&;(=Dy(!F2&Gc*bC#u1M&0mcR1zbDChF;vX0$0X>+NhAt#UQI+KKuB&e%J zkWIqPFG^S>G=~G5*>LT?hL#(=lq38O+0}|Iwf$<5wjbpX0e<5Usk9F*e)6VtrA1@f zSZ88tRdjm$VJd-GIZ=P>n#X!^x@VQ#mhjzZc`281-D9-6B$t3mT4x->_p-7{(Q|F@$a4O?pS`Esy^1aK3AZuP zrj39%Dn>PJZCDs_OwbPWJnG+bG9`nfz5lQ#jTo+Ksnqr|AFSSS=1%m&j>In>N^Obw zSj)t_{Mzhn5;t0Z-xE=pdaU-0ZD9GC5z7Bk7y^oHvZ#7lB#}?bmhF3^qniBAG<>7` zu_x<)ItYkrVgm%h7=ri@NjxI8JAc|pEFB%)Jr55RD=!G?8<8o{Z=7`;{krJdJ9BP) zm7Lm}%|5<=p9lD-Ipq`nym#kLzSQEt=cm1^9ke>^+^cuS7zH-CUJ4sf*O%e$e>B>D zYZ4$n!>by+>bW~V)mXHC0?|nD+$iO)@u=QWb6~4SWVc=gO{~Q+>01pd8r%tc<)%0s zfjnH-FyI7)greL+DGr4?J2f&N9b8;E9^bL~b2%Q=3T=D7e9yT_B=cw^QlBI!B_9?D z+z)DXNsyq+L9hPo%qN9iyDlAC9OQwIohIgQ>Rzo?DVW=xDWQxaaGkr25BQNRDW35X zO-VH=$Ajmh(oG*qxiRGGK7rCAY2Z5p-Dq0yG79)QyseG8>GoaK+C*i~EWX2we~M>a zT9P8G_fUnN1OoAJhg}j!Q}E8wP;|mPQO7{RB5;U{2q&A-COWo7{RY(XaBZc1?ZJ1f zI8k})sId+|0ctUD&x->p$;<|6Bj3ql0)w;^;I*Tprzd?-T4otPd_s=UD*6NZXo*f| zAUf_aLg*qZw}`09fK!Iq4fhS<=9cX{#kf?f_K4x*kKMy9^F@2!zHv`VGW2mVD6i-q z-cPv>#Wn_CRun(d_7eDdzXWs{(muTB&LpVxp` z=U8}aVk=kiu_xTtUrvN-YiKo4hhCqx`_+Eh>=`vd5m!W>n0t&_Hhr*ny-X8l+Hg=> zLB*r8w)gmCJ%U^wZxOS`+g;USkhD44lm3=K&0STSu_-70h|M+w!x@fKbjQKvV&-#e=Xej8GKg3R{BEGC z=z4}Tzi(V*+3BF@>(y*0LOtzE(M*vnALbHj_O^#gw;kKH3R>+z3cSr29Y&Pb8daTAu=V5P*DR=@RCsNJ=kaUuu~o2ShUTc zR>&nQ>oea;!>25ZeFL|Vl{R_g5-n?DVxqa`g*S6K8EU8M0SsWYIi9PKw06ZT!bZSHjO(~Xfe6Wz32bC3OB8d$`$pW z0pxzSqBbpz+`R@MT&9Z)COyWWodlcI=|MeXIBuB<71w4CYi`IW_+{`v|R17wJ_1Aey-Zq;cwB$6V! zpV0FCWGNGvBG0 z`vjK-R09Y+B`4|zVgOAEut$6{?1%1KD~#TMH9n!w{k1IRogum$5TCI?XnHl}erycA zS{}-eDC~;TZp2PWTBRfE#`|uSla%JDwimSwOmkMQc6XhtGyyzLFf=^h`>CjY(62kG z@Ther?^Q{En9!y}{0i~4q_NVlAFTTlbILhKxPisnVQi4V?u69Pa2V~icl9jz6KI4Z zBIO0@EHtuD0l;cBHN_j=RfYc$Um*k#%@DTI>i3IhYpuPP1Ci#xWOY)-9$;mnAi^P9 za{w;~+*G18BcM}J0L<_LCdCLY#h~b=k2+!2J5b7r&F@xI~c zh8o2Wf{~_@V}`|W%`hA9ZnquI?e9supb?xI^`Z1Jf4iR?kLRHHA{36yWoW_8A?G-< zk>P*>fSMk}yAg@CHA*ya=SO0cmyp^#KnPEZwbfbPpM`hmLW8mj+nnIW=i5VsN4?S=I?}gr_0x^YIGhOQbfF=*mmI2R6iZB=1 z0)Of6i6;|_<_$kWMABS*{&5@U)Y>j6S)#0wbv@drSO%lUdp#J$8qvnY?gDnC8(}TD z0?bLE&fqf#oK_OGDLuJjUj67tB}ytxdmuNlfwnU#ZTw-k?)WXSR;r zCI~zj64a(1I)h%@_L9<5YPs$*MS*x$l+dPz0_2nCIO$r(Y9 zHub5g`N4C~t=u)*H06DhSP{0Js2$EN+Ul$IZfo2+6E>tg$zZBzUD5F=`yaGNZ~X1c z0D0dT9vZWYm+l%CxNm=?}b8THK)I8j&*jY}e zwlm{%T5)nynVzU}qGX)5^FhJ9kcoJ|`4U5Q;mh|^RU6J}$G5T`prcE6)O#mqpPs(9 z@gAQD=}nmas1T_e7J$UkL-ySO->C|-Qr`2wh-}%%v?`{;r_R4XMnFembVCm$U~w-e z$?tOS4o}i(9ksX9N;IX;ae&?3%UA#Eo`HYSxqVML9$)bth|KfFpQ|#I%VGxtnz|Ai z+Or1bo1rfBgJ9fFnK;#5KXwj%J8D1lwYEz%rg3HCJqU{b^;W5?KYu4e;0f4pWz;{` zIlYv#kg=-@KoND)$ET*pJe}u4!ENi(AAehx^l}b!6~r1~h5wN!Q`B9g^1L`G%1_w* z4=|}w_1x|Pw1)0W%1GM0XXv6AT<~cD7kmQ#M1@)Rt(LnY_v5s^OvKG!ym*sTA?B%j zcFG02&SlW zIy;)%I*FY|b%iMm+d;m(PTmaY`WnqQSi0yf`St*69^aoKb+$ydXT`hioPIJXyCO$-11;re_0dmUBm!)|PL4b%`C;oK zm!PscfT4uCy**l2dTqiqF3kJD2$=CBFv}GX3kHyYc*no&gv>e8KvlmtZYWFLZ22?M z@V8bM(h`^pGogiI39yLwkNK}xOpr>`j$6RKM3pi8(tz#|70<+z2qHYHsjDl-vSrJ9 zV3>&PAV5vm*GWuCu^c(%ke0Ug6zumtKH+xq^by3k zjV+aNx@pM@hBwU?&1tnmwmkCY1D(v96b_ciqK1XXf?}W#)FGDa4&5&!Nz4d?qoShf z$K{PCtAxS!s!(&Gok2gmh5H-Ms;G$8PCR*{M7HZU>{T&*#j9y8%(z}@{TieUhDuNG z4Na%Z2eVgvndJLzHk~FRaauF!+O{2F8ta9%dX=S?_dx3$!>9em@qIWHE!`<=2VXIW*@z z3--*}>#%}Rj$H>%su|ZFdh59c3Sut(ui^y~fX9p;O|xPR7*K@ASBj}^`El@|(##Op zBOV8c@NPdzp=aGSXy%+adR>x}Fk#REjt86`u$Y3@255IW;2u}zhFt)NNOH8a^apQm zfM5~2cW+j2VL$gQWhtLp0&adE{_iAme#TZv z;a-elFU0B<`mJ^Bn+jtFRL$LRmyrmpUqI0%0g(^CVc<^;uI2)3PiWXGUp*y-`!^>R z@Tx^Gu#F1U*%f>@J;R)%t?^~Ky}f-?Q4;20#33DXHRlNLPr5?#kNwL({(Y&NB{Zbh z+G)7z`H}B1Tk6pv^DHKuQiK=P(-28R*h1o~=>pHcO4lm>1S&scx>gT2&F-lL;&pOz zzxL!M8>hQdPrYp7HzyUZAy?lC48MClur!`!$`TiT#@!??zYqMwANYOyJOVwwfkMf@ z0c!3=FD5UkKzFqaHUmBAG(4{$oqXLt-i*JGXVQN&z<+eBni?A49_2jVjB6G_wd>Cc zO3Vto--RK#jC%rh@z{Fyr{#w$e|#=SUu7^Q-@@W#Vd1)=n5^_rF=r0X`SI-H@=v>@ z>s{~IRjBo3WP!-ilY5&vEXVSP`LzOv0cVx{{zDZ#H!PNYYBWx}`+(+I0>2tanv?%Y zJEGJZp@`>7z!l3JAed^|F5FjmXZg0@yEivp-BowdywAC$Ti6I0Fpo=hYs8`#^Ubln zyTg*{r@aj%NIh;LXfkg8B(>+#9o%}>8NI*N5~~sPJoT(6dwHsPd*|?IbGS>1r|P%Y zCcy(b!ow*gzwn6S8}gWi^KSh5h#C-4n0y#;0{rZ;JJ2r7xV!kSZ8{Mcxj)=$xnE_1 zjO1h@8~@tFUfsesz9KDV?CNIXoXnm3@|!J}$K}Fp>wZJV&Y>H*Elf|<>Ey|idt!mT zKas;$Zat1P`lkGG?8LOx@9GJ^A(sBfHuPn0IPK;2D_@Ui z8O3Ykp_aK!&ZG8t^uHUw^A_96 zbn(2A@ngr-?Wjo~tq*9r(tz$sEJ!>_Fzj-`|4vS!@95^wJtcb9PdsQ=N3ub1`<)E* z(u~Q{3061((EDF0QXJ>L9G$#4F;_*EiC298?G03yAjxRL=K(NAT(~&UfMbsc833yp zEe06Quz-PA3(x>Ov5!hD@e|zUbXx=bDGbT*`#2wg@F=tOc7K4!pKtceU%&=lqOlaO zWu;l)%nQ1lK`cE&6kyrb%~*z9Dje{`vWXkt&tG4iok_Ii+_dDmVP6={;9TIl^kg*e z=Pvy45lrs&7aSrk_1ExuxH;?P16$_ee^`@{{~_(99>R#7rYsLB5@VJvPK5_XI)*PW6v%u zIxZl+5?u2zOZ!KhDkvk!fa_KZwXh0EfFh4CTafT`V1W5EoIoU`&k38aL;-Zm-&8?0 zg>e1T)YmU~lh6Ox9RJ+k?*9`95??PCdr}8C!S2(5mNbp$AGqvRNoa=g2{*6 z_ypz7cN0ha*hPRaQ1etmkS4DDI^gf8t-KxZz>!FOt1w{3n-0NlwjtSrlIDd8g-Tg! z$B&If@6~boh9i$Qk=H7~JKKlDR%jX~feJ^Go5zmtB=l~tBC&>O#ZmF_kN^Ds1J;O> zksdmw>7WI^gi+B9<=4|qCE*!tIK*8OK}9Cd5KuC75#r2dBk(4HWGvM2<2NC0 zIG5D&eq16b=s>eb<_1C5Pr3-*xLl zz6w$Qqz=dIZ4qI3pc&af=29h-+~WTG5W#XDy*}i&xZgayg5cSi11V%&c>bGwr1a!C zv|(Mb%gP+*>t6bCE9x2_w0#^b*q@c;G-=4a<=yZa?{PcTHZRb09{#^_nqN3E95bc6 zNp;=8#)4k!ChjrnYcBER$&-&inGA)WDDKCQ9YA~px<&MZD6D90!7J)dM=^Js{H3j;8ga5Gi;zj$_X;m%uP6`&)XYa+C_)9fwoa$lnO1;vl?R!txAGFO!x0(Ld3$IECwV?m3+@PKCVCyPURr+x}?J=oUc# zbPmj|d}-9V8DmO}WWG6*d6e>WJZ+ox6FiT*o!yvu`mnO)?GZP|{|_FoBWvVn_6tLq zpFO_-GQaLzvWMZP+|^J152l_!Y(2alHQ4h$B`NdP3EcxgC zD00NwB@}>X`NA5T@(}iv`s{$lc7-g$^>j zzKsT1D+Dd~*EcjcpXaLE*MI}&=Kn{W<@9^xD$UD?+1=R%R`QjwC(O;!F+v|M@WGP* zcV3_SKL`}=&Z`p8UA>0f7bCQ+Ku^b6n8JN0@8m9)$L(MvvOuK{01dcJVGw@PjlrGb zeB;9RBOWTy&~6xQ>P2M3j!K*5KYTtzh@G{bgF)sw% zMO?WM_!>AMop_{YN^{FXvbW+zjj*YCET0^(>f99~_e0~d_^N!-y@MG!Tw>Z+Yq_pT zi_%}>+M$^+aG`g&^;}M6jDgKbbbn2+%_1tOrY~}8SWTA6R)PVGn`O2>7lb$5G#Ebg z7$^=FlGB7uXjXaF)l==qhZOkTDPEJ(_(6AsSrDfqq5;eIJI~>UOg}U8BQMdP}5WYuZ!vu>I<3d7^TVgpb}6cJ(0%?GPd9fKAdwqDRR8 zU*Lc7tTse0^k8O$tnd_OlD|?AMvh$b%|HLT0(pNwp9Sm7n&~SoK9F-W<`;zCn{b>awMFj=q9FZtO#A|~uZ zQvU73CH=dUVdwm74_QDtyHXgx2mlWz*4AreO1^c%in5{N+PM zdY5%LB~zOuhtF$_v%B0H8m-{#_peRp?Xka|upzKYbhx_c&1PTozdv>hh|15(3(47J zTDUY^5Cg@PoGuGt^2hYIZ+I_Vo&D05c>KXT^mX`s1@ngLD>>a#A9z8Prdro6X-C zf^}fS7g@lr%q)?L3bx|u+{`d(s87X}1!Q+_aIbk@G!I<&q`B)CJk zsKnaVv>a=zhax9Bnd4O=Ys$L0k?z4A;oMa-E}V9)Ni}DN!}8p$pc4x(t*B(4PGgP# z@u+%>RAc`GBx&)HA2U4eb)8*8Za!EP_?y#)tFAQ+*)n+H zp*i)L>tDALN$oxMSd<2g-`MS+e)v?!4r?ug~Xn%a&Dte7^ouevnqXltWW<`{K%O zfA3IuY=CI2^DQ^X+2I-+UZtka*L+12J6o$-UuC#l$MIJM`J^T=9|0R*vP4->o4~b- zelp23)YAFT5Fv=Ro;!>gXy*9aM#3kf;PchZ0D@daB0BW5p`=mCgF%=OkFOx(N&n|+ zLRZWq$Lc-O{o2g1i{P~yR6lO{;MxB?IiWjd0NmeK4~CI08Q+sjPJ-;Tj$(1XDqV(z zn3#sDs%m2Mur8fH{}1F=Zd3EGjOsi7uVV~8Fk)ihO1acq-|C2NwCObpih}QBTVt8{ zXhH9pM&V>&pJq!gtw4q0Hx$v&XYISQH@e;PzvytNGqVXFv1w1{;iEFgmREk=yk@tE zjppNr9mlhCa|3c`ENPzd>m(x}J{HTjFP0d+xktKz&8qNobGKF^o=P3YP*|*M%N$2& zW1<6_`g6$4P-oZEF^(9GEb@+rjV7EJfuO@bUj?da;+=!_^8+0OD2U%MS!T&+%Av{Z znM1P`p%UaofCs6yxi*4axgPHzCz(wT52qDJ7~Ih&M_yQ2!Afhry}hhpZfWW%Eifxx zI$B8>VOo?BcU{dl94yBQ=*`wblL#XKo?JpAk$%StPrZeC0pd86U%<%UsA>ml#Sn?1 zxm$rmI>4t>+NIqt5uP2`4J#2p0GkwHR3q6Tk@Khg`JG6Hs274V6XFI^=k$HMFvlL> zZ6?A%Dl$p|M7C{pXsW!1>nvQptqFI#$1?8nP$quXhY}gfp{v?jpUL(g^HZKhuY@Yz z{m&vswb+cc>(3W@=X;-iTsq|)mtRz36ZM}+6C@{$X-6iH(j9jzrHmqg*?4n_R zebrvP3&vN>nLD?GODFoz&-xuhN_;>c5v}TbIPFUtL{lm4O8Et}KkphuW!FS?ODbPS zn!KE%oKTi_FEBi!?nho_Qi++fmq|3JnY&cG&*tDMhr}OP``jUCp_s(Pai>ieeZxAqR>}-Y_T?uS=Y{0((C! z8UA@U^;)C_3B+J45r`@g^?tq8H_Y@08Y(Q?=*=lZqAiMxpodoj*7AAUNHN!Onbpr!>@(sW8Zv=4?7FOXzpSl0B7Q0Wi~2&2+H`}jG!T&r(x z$HhgTx&KE0;6g1TnB|d!02z#_Gb=aP`|$PC?N)Umjp#?U-51jA*Oy@k@cn>rfBi%5 zdvyQGZQlSW^(IXh6MI2UwFL$Gcyma1D&TvNizA@9!bRA=bQonTkOK^+lyD3wh_gO5 z*G8cit~w0OAfJmT!77p=jJIszs;tRv05Y^GCZ^f%7wN`_htRf;4u#T6{7{ff?|7|A zj*O&50e@fA-l016Sc8=s5s`7&BF^KvLbE>q)JH{jIaV<1CMyY@7W+@|)6G$HsUM*L z!vp2B0=9Km%HVn>h5Q{M$LdHL36Y;0tgH>x6q-)ItFvQHN%8Sfe?lFb?=5+Xh8QuESDCosFCtsQp0A<(j7Q`G>+lxD*8 z<`-X1-v-7j^-?I-5uRvb?;_iuLj%}`mnk|fJmP%tGlLgbzf=@wv;(B<%kE zC5af@;@e*$M>&EJyo{PBeI`>JQhlNpk*f^6+6XnC7*aR9MM{@F5G^s=`uRafvhUmE zVoqmsJZcRa%uNHq2qsMkda7_8Lwj;nf3?*&2YT`j;SqzQ>>IXFav-d;UZ79C2B$)# zKJFmaFjSq__VnX3MU^z@fL+J%H{xR!y}&c~+^e+6Dt(5QWHS4Vp1yL8!S2GGH*F3O z{TE_9dMCUp9=Rl8;;EPBZuRgk$rT@cERJxhaYvRFzylCtT<5l3&4E`vtme*{Qvg9< zO_Pg{-MfK0Oh@=c-8r)CN_{=Va!ub6pX-&>L+5e_-Ksh2Q$3J_AN-Ri zf-WeHb!Qazi+l`xb(n3~=-Oue<)#q1j9>IzRs4B*djwD2B>lQpT+Qu#^R;kF0e!vT zP1_wf)gyI8FCu084ftW0Jvurn{@qdWY)Ev{(r?|mML`xgN5~$}G0``<rkj|5fl{%k7Gj+9_Mj&I{b9qac3UN1oH(5TaiM0uF6G z%rw^}V^VG5R3|PY)9hAr^<9-Oxn+?KC83>M69|lgC!|?ZWe#8C*a1mHgyhNzY@;Yj zc0C?JC@IaE4_RtK?_*0mUXra9cZj{XpIt}v+;;Y(;*0?YeLJeRBA+nAvgNO>7cV1V zVH=ixDgpY2+ZS7KfN6D94eMFGJYlfBEyZDEq9{1vQw9Wt8)#aiLg zU$zawWgxoDRF=Mdpb$Mfx&G1_fM^GWyCzv<-(y*|G#S|%wih1DPGPAns-N6eyqJ-Y zQtY`)boi09n3+MJcMoB3KCU07bd&59H7?aoeF^1JTC-UdG%K4uZW~oPE~G<4TU(pG zqw*#!2__Fe;=u9Ml+VT0vvi}o92J@Yuh|JfpIq%8=o#L2f^N5|K7D2tmIC!!Kt&ZU zjcRJRVho2x66r^q7wS^J5`};+n+S7H(s_{i0Zz-JA)W#Wax(BI-9p+Ln^aaIYb~FYk=D^*OLLgeK?{exY3&?AB zVf)9W9q+~@XFfeQSKRg8ZMlASZI*ZBK+@QwFD94URooDM1WPc=>eph!8TnV>sM*t6>3IP*-P z*y0g)P^>k=H-QXhvMF1}sQuj-7xyF1A7L$5NoGCRt)gIP+f<&lG(X0IMbRLN?Qi+< z44oM*vF@(SD!1kD*~$E5e_Oco!QeD_{NnF?$T^(H*Y3#A*gN^8(l!LiorfbD9P|VX z?Acx}p8GpaczNNz!Y3sPH-c6Ul}~gH>0I|x6y>`sg5lC&DFnEHCMNUw6C~j3tZ)Ny zSFy-&-$j5#n3~OMGk;&b)JIKK^?9G-6rY%-R(4r8;}N~GjA|^D;;2?^3M^BEK3>dQ zFjH6c!o1ZKEQT$LpF9s6{>qwV=;Gn!e@rqy@Np9j1Q5>sH+fJ=44raL$9LJ#@>nAGHD2pwt%3gs}ZL%_4p_nDI6uc1g z;Od~6y7Q1#28jKHDD2H{K5iQ2jU=MBy9XZ`+Gkk<{nABDCCYB?IN8_$Y|Too$<|}< z!P|8%b|qEvg+}4+Ue(e%wW+!`ng3HGdFa5z^IQ)M%AK=peCh=srNM@r1q0k-h9B8a zk2vU{71)$mAb^b;R5xS0idd1EJtA~EhxB#(ZOQmoFp>>Mk!%L4oV3ftXe4XE4OtUk zAqV~lzEcWhaB?&K$y@ueExuE*)rEL0CW;<<0pox$+*YkP)po4k^RfQ%^&+E%~ zBy3xMd6OkQBV=O+Ym&rqBOS5v`?i-(rR`&V$z~YJF#Q1$>T`o@Z~1mSEvbl{8u2`x z4E~snwXPhzf3FJzq=xuA&VI)K};%Mnuu4+V~5t*`A zjf@%%tWqaahAAp@K_UCnlP;e91xF^d?;gsq(2^K}+jvSq&L)s-vu{u(l#(cCYo_2xN*8ggo{c&Ob%We1HMU=w zRyrQQhdZERzToA>P6A!hT}t6osaE=HC*WA&qA`Ac;|HF)Di@(EsUMr^RVoZhZVe7W zv6*lXOw5N2Q)c9#I3sK)Oy9u?mG+HUEAB80sNCr)03DysPKjj}AftKeIkn$%pfAnx zDpfr<=UQ%+%#PQkE*MtTfX^4KzYtPk9cDg~DP=H@FziHMi#icy@)Yas{h#0=tyn&B zSPag}8f@n6!hFKIcz^NKXJolKGJB&D$7OkCUOozt+jjCb$V)EpDm8SdxMofq08v3V z*N!S9bBJr*(~liHRtSDC3uP`I)`hEn-=GHHGxL&}Dt-C9aqXKv)!KG21td9Cta$S-J@jxxLw4Kc;w*#K?KZA~LHwn{v{+x@rN ze5`+$5c(|5OPs7SDM=3x%gXv&Zlwn4IGU>V@CmQM-q3{NUlS+i+$~Qt;Rr-Y*d}o9 zb#H$)*Z-(kFo@Ek3T0WAZnuvV*9Ewb*T!8BTAS2Tk62Baa?Jc)G?zG;M=2p4%9q57>3= z=uy*xU3heDJF`u2`^1Bud%|jUDkn8I{0>T22vIX^Q3k!8heXj2h;nVCraji+k(z7H zrx8w=-q*l~s{l;&`_G;{*@-i)suP#bN@jar=70>ws3HEwk3!Nb+nzjowj*Jx^@#@D zW)GdAtq(%Zz#YdDK#FDzHfD2ds0BFX3!Tw0osw4wZn%Qf&K9+1*aFz*0G|w*uO*iehnD+&@aJ$qESf1csthv z2DNoQe>%Zk*u_~Sp;aPU%76OafXl9mlkz^XYq$2#FVdaYSbSr^L6lT^iAcyTKq2#- zcAarU4i(b0OlZ~yw*{yk3?~fg-~U@oj3NZS{>Ze$@Z{^Scz|-Va+E?4X8uef4QhSU=vY4895Nbsh4n(g^n8~1jhYa#kIvL1lwjo3GV zTRgE84AYOhne~2YePYL_d@TA1XvhIt(H@X!$U=)b-{V%X=X#dq?pg0Rz!n!(2G^RI zz?4%huNFY5yM@u1rTVPZFGTZ<#C5{yc$9Yfyc4$0(T|%D0ZGA+;n+#C*9k_OveUc- zq_&+vjU9Ay(h9P-mwSJ9^Ct&`VC)X3L`TQr1vN6M07SxYIsQKf+tFn*UO)^r*xIsw zZ7|+V27MzYgLANCOe##N){K!YzZv0OJokA3V zDxG8;p1iMAXm@PF04LaK}P}-F|;K z3hu^B=ILOc&_;3T1!4Y#v-N3BGW?yvm{%vfA6lMI=m9A&R2{&d7vwC+I$^~< zdy7pe!U#JMxbCNb-{XS@;J#JARC^MRkt3>e4ZLg)urO3l8aS_CQrCF@{{6K44;gK~ z&~4zc$)L*&{RcS)5@G~gS}6xa4cWZuNiK*+>;Cb%O~knXh1Mj8p>akNc}nqaWx#nRfY zynf>sOf>-gss^UyxU4TGd+T2zFVuS+j%W}Zn-K@;N9nq_x8maBD&&x49$zs9+jUsl z4x&U+kOG}@1ns3?`Ab+jTEL^Sv70b0(bPTTTP-%85 z%K4C97w6PsMJP9{OteLZXOV9iC9z;wI!RBoAH!{t9MCAN3~={lN~?t6Qe{z;kY=Rg zlpV9f#Mwxtwx#JqlGBcPDA^1UsVxUT4|@9aXg#uj#BObQ12OG4$?q;-bG&;+OyEMy~K5ngyAZd0crjU2-j2G{43B zD7(6&t(cQb!J`!94LqFgxu>uKq4@-`$kja@!8M~RT488t$d+MXAqLP%BKap4`px=X zAa|`HunA@PHo$%HpWhvewk%mr%rY#U7l2^`kknOc`yTLE6~+F-9WDn$3cB%F^Awo@ zHI5A&=U^|pg4qZrRS2pp5QQiK9aCU#A%rpbjrsOYL;u{RExt) zl}zg~*S?G_h;3i=C)ucj(#qPfT`Dup6Y3tPDH;{GttMQB#`yTd>y*<<5dvOSz)a^l zqvD_j0pqC&%G7b!By(IY+2*dVL{16BInmIw(8Pk*Jk5ZeXJ^{?!RcaJ&RS5C;z?Z@TIgUg3n6@GPr2GVNfFn? zJMTnrcEzGRq9->P4*xVxCjtuqAr(TJlR8_?3ZW+SYF5NWD|Bi50JtFR=85&iPY0{l zea5|E;kl0j*kk<9KT1q;^``BZ7+x7JpXM5G-D-Ak?{5?|5shMpa1L3&l;0WSjbj;% z*zgMo56W$3-A7@muN*Ggj0mR)t3m)P6)UZL0j#8@W3d)O#~6dLU(LHm$3hBR@N(vG zfOkYTY>jO=Zb1&Jcx+zM;rZ}-1geWTS`=95KyXTG#$6JXL4lrT47MV$VeA;YSYdiP z_AR&-1t^c>0kH1AnzfD1CgYFAWhX^MuOHZBDwQ5 zLR{kV6CIm%Ir_F#BuobiP?> zHC6TEI(9vd8yOjyn8yu4l>S?V*G%qg6<}#aIbp~kKC=y*nE1Gwpm$E6sTW|^zwR{B zbgCJv=;Gww7E~o$mWFm9;P!0qzVL)vlG*qP2~c2?dWgzpg# zqDK&Ids8pjXn5uO0`aE$2t?6mX<>ghUkAb`Es1klLv;8nR=}D^J7Nm2??Qe>XA;gQ z`kQ3UO|Mg5kD6JTiRhxDG+%iy828oePHww|F=FG>xf#{Xf|M2vYbYtpcMk>h29r$} zWj*=84Xh)HqcCIr&1K|pNf~T=_wE&Ak-1kqYF;s;VY06k#wH-*r(zZHDmKfb7`n zkDTO0N6(;mr#G^lZ+DJZyKHFL~t~Yk-S@E6B`L{GCZFyagkaaz-`hE2K zvGF&X4y9i^aKZcJ!7)*yu5W}5k%rf z^eTbaF4MQ%3c{psaLu@~qwigOAhr&I8#&GyrNmYM3QT`&uraYBpW2#G1y_Lz)|3_! z91Nvs=(~6C3{{=iYat zYL#JEY!1^eu{m>Y=CtN%9O4%_6A=-yeV*R2=N1)q%m4m6byHAVv)=P0&l$#%>j-Vd zkvDz80xE$|iXzOY9MlRN7utzzSs9C>P^|3fAaQhXnlxwFG z&2Uk^tW;7u@obBkRm&zk%C5(ft&?6d?d|{mn*^d15&5S8ANH$SLI9uuI0o za5`FQG6V-waUJNlvId3i!sFHi2diWg$K_dvJU+Q5e)r<-jjsJ7<1CiSZB91A<7{%Z z3EXHA+3`_EW`HZmSoJE)bd|k*oM;fH)T<3&x>yJ}G}LrD=IJ_b52~-XLc-rI!*wkE z8A2KFT|`8dSy|nLhZ{lID;AwSdGhVFJFI$kI>r9|#>ZDh-nFP{DnF+;(Eu66xQW-o z!t|U-{=tK_Ko6tw4?Zynf6B~k;8c`3f_rb#v=9;;`BkoEPANHYuW%|hAtXT@mpv;h zYo)5H_L?;(5G-QT*=|n<{*F0^5{#B+2;s&B2L%zAKtMhw%x5-(@i|}uTHC0Bj+v1l zvAPQ@wC;I5XyCvsbSYYTdLa;5Z-cEl)gY8DgP|xzb%kZIm$$UFRiU%lt&8nUdWFye z#~Ye!*RG97QdoB<*;!f6zW$#J3B$^&b$y-ck6@nh>fNrsefx?k>xAo@e3Fj9+Kg)d za?RY_7%6(;GX@S6d2bglHgVz-b#--OtD>W1fA|na>>hb}eH6jFvP1CUQOi=ms*s|K zKAt4o(|>Ko-OdfIif)W~la{w)*)n3}=j7zbIWz|DswoJ^y}7`oii;gEa(tHUGV}Ko$>K3d{6^( zfF5srgM(UB*Jcb1x3V?gVq{pHr12f;!U zcGgfx!d^dw?fS^!!>sW^tR5;<*vlC3_L~ivN z91;lG~`ofTwW|PHfcoj~&?9Y@ZE!jK_hxTrY2LacSx3 zqNUEbHs*!#la-GiIil{n(3xTuoZCLc*jAFg1z<30T{iok$gSM0LVFhT^!f9Z>$FqD zuV24@PiDdgeW8pq1OEI|)6y~$S6_eO?spH5)HgP2!pUgPoH?a$->T0XU;R2d1e+A4 z9AZH%@bLEXGQm0ZEJ@qWE*1>7KtQOuao(&5BNke%s+`@n)mWyLHulAbI*OqJa=ZO5 z%_$(V%2=4$w5W8ia;A`0_S6X;_?j}{3MN%s-vFflm%Z0uR)L5h;A>)-{0S` z1#k#<1jV=lNd|+nTw?Yh#B)rtvZf!Z~=)=A|oT?cfQ?=Ng))}{#d8kCW^AM>j-c~|1FLDk;$T> zfq?gEfj{?EjOb`CNI=^3G{)OALvn&q(qjFo0U*!9 zV4yOp5PSa-I7pgc_ykFU&boDH$#4{(y%G->xt;^dqihH%yQGkkSHtV->g23S4-X$P zf~*`;Q&Lvo`W$t4-%($HC23Onc3^D}yi{3fddkPgeBz`@?kJWj5S$kIYWo!6*(Sx9^*qBU z%@o(v-PhOmFN|JLB3nE~iF8~PNW*!DGPIwMSDl;lXkD0gNlD3Ox!pC}@k-B7IXnYm zQI$PILP83_;G8~v`aFK{;Hsf77Gza-T4IC!u$p1Aku>Yth3i7R=PXYpig zS@GMWM+Z@W-UUR1j#E?1_}$fa@OoecC;t&WheB|En00fFK?7{VWnGddOqhU5VE*+h zSMIM1%XKIYI#}}vLp)>DINN|N7&|#Rt-@^a8Dx~((dr1a7d#VcLoYrT+cte!6cER8 zK?nZv$6S0NsWJG^K6T(Uw>w*%F==pzb#40-uNGBX+vsx$oEtcB;B4SP?$2k}=Hy+> z9m{&phD+_1f>_Hbva)%wz%Tk!SUwMiu$S*`O@ox-Jb>yf8;m*ENt|)WSQ##_BP|_q zJO9>JPvw;>=iIw@?{R*9zD-r`vp+HBlURTAp+3TiQrmuG+;!b^X!heM+W}l75qumv zLiZ>DhwJ_!v!u(ug!}8*VW?HRf82GabF=%0`F^*5<=ZYRZ sLifKj-Yg&R|KIA%)%bsR0Xh9Xmh4oRl<#zpK8o_+s>{NcY}ot10A5wQ@Bjb+ diff --git a/src/comparative_analysis/visualization/hdbscan.png_condensed_tree b/src/comparative_analysis/visualization/hdbscan.png_condensed_tree deleted file mode 100644 index 1601745087ffeaada3665b3c0ea5deeef7c679ee..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 11757 zcmeHtc{tT;+xCj)!c!EL*gNx3#4?qsgq9&}N>ql-Btj&yNW()R3z_G_u26<#rfHd% zlFBUeEYmVu?{%+L`)Td{e&6x_`5oW!{;`kM{`n2}a9!tlUgvcO=$=w%+PZfu27_V3 zojmae2D4rkgJDqKyb-S0zWBTce&pO#&${V5S-W|dyI5hg&E1?YIk{c3yZD>Cm5ZyL z(`Cs+a)%^Ef3tOSb9Oxfz+es< z<4znixE43wfqxKh<*l?bzeRKByMNu}Cs^}refnU%sNe03e1bBg#_xhBe8N9C2IT7J z``>)2oN4@a)6Gm<^d;|>Ehd)#&}M;a5F;3@}j@f zya-E;9IuUQ*Zjn&lq+dW&Wk)|!%m9wPMp7bAt*&K5Jrdj^ffAH6Z*$jeFkRuNg}W3 zgdgScEwCII-&R&<_`&20bfX`8or-nv^C`iX5q>fh)}beLz5e$>Scd->7KbS4Lfr4s z_xugBrlFzXZZVVdWVDNo(rCAH?wTzyZQtG}mF=lLQ8Lru=I%c5)gq)mvV5h#E>13Y z>;v3t7Gmdof9L4uO!NX~xxNSY_aBuWjB`D8=Gj?2@>%q<-3-BcDdpu#P3bz^MI9|I z(Q9jKI|UdZSjfYIUYI9V!yg|T6}j0FESJgSiyuOK45m+DFg&Dge7SW?iqk&+ zG1Q5d{ZT3R|h zKCVr0^YEC=U&LV4!c4a-ma3bUQzloQX@@mFA#!n76*-lpjFY_D|5S2Xc71Kj*UiBf ztU&(y%(Pr_pY)}wJi8{B-XNI)P1B`6S}fLK?rW5D>2fYbPy`r{lI@nHSju||-#7#K z19|=Th(T`iCp=jZ1ahhJNamU1|Qo|kH}#ny0{f3h!``Djkz zVm`ZmM62R(V4O>hkX(Pbehn8RhtbnBr}?{+T;S4uH?L`8J8n54 z%xR+JMNku_G0^5=#^&Cnn)RFp4J*O9niOL3gWKP__iJD<9EuFg3rr*5?+)QCD1u$> zdJ}3dPDdp(m-I4Yc>J~1l3O8T-)O!1pg3-8*!+9NdQA6iR%czgHI7H|t@-U$-0zyZ z%Na3NLVs9RP*{#V4ifUh_827U4 z+A%O^WSk)f+hWVwXAeI#gd0-*d>MtGY^}WYU<0O`l4G;cAl8?0A#**z8%c0ydWQ15 z7E3m`FGGQe+3dvfK(JVZ0s}_;`1XeinC~T68mKgN!yUFMC%;9V&5&iH!4CCLF+zlO z8<;b&2w0R^RWC_wJ#7d6f28X8@=;v3PUsfSJ><!l`dpouRqxSefb<+IZ z$xq)P32hvFpY1km;t1VeE0g$yb?vA_{ei?Wf`sjsT5Z{9AcZZ-V=Z!XpY+3cQCP>x zxqfVJj>sh`9zE(lc9O6%Vpv|&Vv`u3m6cT&Eh)gFwDMhiMLH>l_BDmvYTM%MGY5@w zcqOgtIEuWd-mwq9-X>P3!lDq43*)zH$+5x_tZE-xeSC!T97?|H^6fVJK+ip~%gas- zPc#q#=$gk$JJw_tbjEm;j$XhKQUr6X>tjUEzY@oNY-$QSce#)cmvix5;Oy)yFK+jt z^HI%D4bue!{}{Mas*Rp+JP~RsZqe$K-?KW2$16?+=vdZ8*>F(+jrx5VnNO+{C2iCI zp3(qia38z65{H}81#m}>9Fe%v^H!ex)nc4-TX_SOpfqwkX9fTiST1Nr9`gP?Xqagn zA*7$y7iAGFWOqD+h4>bLDbFm)mU8$-n1IeHQ`0V|)fJEO<&J0P3ndCV+|MQWEDc}k zD3Y4=>RQf$X^*w$i|pUOza`I3KTSLKA#b#_qp|em_Na!22J|N##YIb#rH_#>y)S1R z_z`_r4LQ~R8j6BPo8GgG#i?t{X>&A%CprYSbj)R^&ERaL_7U7 zyX?q4cCkaAe|+^4)r0l4t?b?=`#Jw=W}>r%$3%Nw{81U4OV#gpEjx;?l054crg~kQ zv}N)gWHWZrC7U4OA-V3_w~cqc$(g%-?1oqb5<`iV6mTHOT#kRYEjKk0w{6_j{kQN< z5hVCg?_kf?g~yV}wDh&N6o*6}R%a_;o1NNfsCX_W38FeqSxwo@mjbz*yzFW`S;a($){M$ML{P_~*}o2?pMQ zYggzJ+DzG>QTVTbY=rc-qkG04fMM6*E(AZH5)gU-A`vQIb8+fgQDI>BcEJjj$DX$# z!Z7*im9)U7e&(;lRSO8(Cu7}N;u$UHY7IFO!Ke8!Twy1?u*U3t-YP>Yac6{HN@^-k z;!2-@>+A=0o3@vZasyEo68N>1Uq~6T;-C8I)+3+(#1Xcz@>{;Yzh`)Ik{y6ad0XIt zJ5~SPR=R>29}SOR(c&#aOR%r$^n}MPiw{1VI3Q|1>Z0j zdFVpSW6el@oU~JCNdXZy-nZjGH;1bGM0>O(NnUa=-ovCpw)cM5LR4pG=Pa4bk1HxJ zo*%dd5MV^&WOdNj&5+1$)B|xLYMdtsa8jkpe!+mIInIDg=qc`6y_{9Pw)D&>mtTGV zRfFIoBN^@PZH`tUu*3O>AE>p7C3%bL?cwWOcrTL%8ifdBFc!WDgFZqRsyWqy2Jwc1 zu+l%6;2=kykRZ&N8m%cOHv%L_SpP~D2cN?uvA;f|4Y1w_yY~}Uf57_T7e8S=5CyC( z9d-CY=(W;8bDFc3s6jmKy9Z9``8~-!fua@h9gKZ9B9k-}3;&53V44vs_8$C~vvR&s z3W}G%0&4GGPTea%;)OOKGjX_N_3I_9zO3qoC#Pu8xnmu08J{q`<0mme7(dab%Y;BI ze6xr4O~Lgr*Mb<#Tb=DQ_cYF% z+%h~eQUkn&z%o)+VeA5pRs-c-wJsHBTfYz57b)fNxvy(&ylc9Gk)<#A=tNa(zJu%k zl&ZJ}y0#nKrS4Jm0iiqJ?9)Ej_VI~%;s}<54e>37t~Psv)IL8m3cJ0Hoga7o`gNDu zg9W@e(72%q2?@N_uWxV5y*@X>mU)ARV;yxFcS(zjKS&KeBCMaLRlTw};|jz$@Pn() z3A_Jaxax5|vsak58bpM#cof-5Vriy6wyC2-!L7KUKn7$j>3W^w@>tj=u4})YdwHq4 zt&{w6g@|8KZyWRtRi?5np*l<;Jv%%5F_Fu;Vjbd>iPHJbOD#Ek#qQ%8>gwv!G?~nY zLxcr@la`w+34f{y(@~6$ESr7&W|2qP3IdbLyf(oBj`PiR1NE`Fz;?XVZr3aXQrwB~j7Nz#%=MM7O^4iceptI%0kh$lIBj2cG3N)cl#A5ECtFGZ5$6P;I)} zY-$CXtls5xIr%yB+99>4O+0 zH~p1gRGHmo$RR4f{$#}sWRBbRR7v^sO7v@BjjPn?J##jd;qM4^Vgr3*?q(x*`_g3U z4|b#jo3xWDmFps?=pnv!^_}U8>dVU=G4V$|2Hvvj)b&+|xxQhN30K%XCQakYz?4

>};{+iDD;{l^%AR{+fu#4ePy*(_U7(HkVEE+r$+Gi7tT4>GE0bKj`GC zS*>3=LB-0XT|Aa7!IZU0$|*b^|I(=|VR^D#=^dqI+zkp(&yhdVH4>QJ6VXnZu`Rxr zDGMFVDn5iHC$J0FjdE)XtINAxhT*b%#`aJbLQ++uOEUEWQOq#!$e#19lkWKaxYe?Ys78+`K=?XvrUp9F*#l94)2kc( zf{RvDSXzqeEt;Ys?DuHbBXcxL2M6r8+PHC}1b8ZO*GK-Ol5O}9lhZX7t{dMgbBMk# zKXh|gJrp$}?2)v#gn3c#n3H%-?p|o{C<{YV%D&$GRN`{`D>l_owbW4VmF`VeAsdTT zp@zKFnkR&|N^v%srGMmU_8~8*6fz=r>~?PVSsu3v!8k&3tJ+Cfn;&FNTsZO4vF!{Q z$Wa-G0%mo-ONo_VOVEqWRs@*;g?;lAt!N28BB!g?MA2wg*U~E>eQT)FaRk`q$;ZPW zlX?Pq-&K9JoDEqU3dw;7&=S~TVaqA!wBdJgSO;(1VT9&yYm~S@;L`k2~A(V6tJhS$N1Xsov&%oS{>Tpi0_QNFmswRa7P-J zhA*pRy5_uRe*}(DJW(WqUoOBemwW^B?fWI3smyN?B8CGK#gnH9AZEYV-TM?{aSPHU(0#rME31}V=sIXU(Ozg30#Aewy==Q& z%g7@C;IKu4XIF80xUoEff~Fg9zTeztIos|^s&6lJoq=jbDM*dS@WR#8 z%twZja)>uO_`3n2I36RwzA<>T3zzz#D(gb=^viFwF&m?T%NMHk*I_C)OLGcjgtu?@Bzbj);g{0!HKFQU(LBMj2heRZo%3Y{D93G` zKQ(%F&LrI5BgyaZ`B}BP;&iB1l=$yR?UhkhCnFX1Vlel0o4>N<#Us+gQ|9qHsZ({N zX2=$!T znwwAeoOo`7m9@9+@}94+sHo8WSOkSwa_-Z07+-UV*V21BUOJw$u8Rrao02y-g6iD6L=ni8>2T90 z^zm>np4`)m!Bh;1zh+?Ou!HyH0UR-Tugo^-*fc*mO;uUw`K+%KJ+-m@S0v^N6G>Zz#19gRC)FfuZ>lz8T@$^g1WNvTzFadIzzCAuv3 zN7^){X%`Nq+)J1%1ULWz6plp*r_PjVoNqtW3#nGJ(l4f?ewPvsvwo&_vf_pFx7Vob zjx_c0R9yMS5~;wP7gQeTFx2hOa>#2v3~K;gM)+I^U>(NmI@nMT%xpYu@O&8-L&E&^ zt>ni-&?!dK*ylFz;@L$KUJ)fXNEw$;dg@l=t@)m-qoz&;7BCyD zNR#V!)}(}Zh_%Opf$iS&9Y!VBuC!QGUf!oq#*{dtC+Ev4tDJzri{ygxc*HE5IGvS| zUsq9e1||9sN>`*N-|w;MtCJ+vL2kx^ds6%<+Dr%K64c9*J}V0}waV$U@NID_1b?0y zYBzW7IZS-JR)lJ?%9|SiVjO>mC0*tc%gPin9i(E{(&vI2E{J!vtQ{{;^alteRDp_j zX}?0WDqkh|)3st^Uh9Ex)R|V_ zD6OcJEj4Fb&kWRiF1K|hkh~{cQ2|Wb1nJj%Infl?W|SzBqhGQ~+$)vbeGrv36&0{g zm6usz4*+FmfOC$ZqOm0vmQrf2kmP*`OrHAQ5TyiEE<^oGN?aRGw4NJjrtv1Mp^2we z3lAiG#vkOgq&MGU9I~p5u8vATJ?PO2kX_E6oQy!}i8G!WIZ2THezo zSbn#HjkKC`LZ{dbjC%#k=)8B$l$Ff}zr%Yl(P z3^)cxnI%;0K(umW&)1-@k z_fJ(j10I{4>p)+l3QN7VOh@>9*?g(ocwW==pE};c{{H?}A>ftpv~6zlw|ISPi^?}O z0w=gp(cZl4gv^B&?^|O=fweYZ(u+F01BBBa(;F_pwaxf zM6Wk@m=KD)0K8ZNMyRlVilCZDA{w^NZf4{}P8P)lvmb7fwQYa~XsH+}2b1rv$9Bse?!wXtELOD+5ccu{hW0n zHh@)N?R~!x&gJb6bxRPIVnc?Q)6~MQQA@9ZKecOh!oziS?#o~mPe`4f`u+&s!k$18 zmukMqK2$uzKDd0Z+%$*~i_jOYf2!KCpyMHmvxRqJ4f$V8mLbmIwTKj4!4+0?UbS-mQ2gjq)cis*0b^01k?}} z$uGK=kX&NHFTC-(vX|yqR|ul2Q(>^obZt7)=;b9NE-y&@P5FG(1bMgF&iO_+BR9v= zHJF7_jwLRul-vqNg&b*#^HY#7;2@N!yxk`WKmqcImdjw-)1Y(!{cp;z9b-T~`&^wm ziqtB^frALAu6udSfb1GTHd71Fv2)nK6pmwZyyKrbI^xU9%Barf$5PvoSn0K=mXw%a>Q*;FCip^7Uq9Q1SlfX2(Ax^dGc*q%GLX(KC|M147s zY1V%l~lG^K{^IUF2b1r5h zQ4oO-60>)?eXgO(!E3U#U@R1-mUIxRy3l!mJz}R#z1|W3ly=Fe*@IF_H5(j zzT_S7eS~~tV_@665_q?P)q=BP7Ze3$-p zQu#47211c732&#?yBJ4-Zg{_K%8uBZ$D3Pzb%m*MK-WZNu?)ggC+KHS#n=pDA@mU6$joh?S=BDnrmRGe{x<#E;Y^DkyAYi?^G$%LpmNoa|XOP9|QZ8sYf)vMrw;=o`Qzf2Vk- zTGK9D>_=Pd9Sdy6ewvL5#_jCw7?99QOG_q=Ur>=t;t7!_K#?^7->(iA(kJjjZCndd z?=DvX90<{hmCnqZIUYfU7G0igyG5&@xf;d`giL~NgrXaTz3lsKu+_ljvj(SAMbpR( z+t>}`u~j|1eOEAlgTj1!`_(TO7NOisfa(pY6p&t;E}xBTPy<|Uq1%6^Ion4H2ZuS* z`@lm&=V6f7IoRru-7z|IJes!q9Kn3T^*0u4P1l0vvrS5u0(M$NLD+n}14+L;%15S6W z|9*oG)>A@}H-3d?zyeWyq_fg@z4_2>n@15c&!g)*M}IrQ@1AIW?G(pjx|dPgaQ_EN z(MJRl_hVV1>DZ^AxMYBOt;i@FOz^slI{Z|`ye>Gc<)7NY4z@7u2orwZ10M37 zQXN#EmrJJJ=MWLLa&X?+X1fpE(;SB{S*QX;{S;uFh_1!>E+H>o6iVCR&xb)r-uUj% zU5832El}O80;lSrHV27-m?Jbaa3-kE6B(PhD{2#kg9(H3StQh zt%b&bW)vF+BV2=8*!!(mDmteE4NDHd$m`LN*-M91K?Pm~)}pf9Nb*Su!3PKeIryN+ zK~1m$NaF@%E>>1nLZA1c!fu#g-fduImlmtY{+!xFBFN>+_+3*YX@qWPXzUFI-_OQu zX5(Ki4r-**Me~!Bft5LTF$r{8kcm3Av`#LRF30=n1cL}12%zVbUCb14o(-uMI&-Uh45Ipn}Xe-mtQ%3r#5`x{n!haJ%j|4ecx6u^)U$W+x6o57n zeLP1)3)&G*EB!O`Xi0PIA4!HijgA*kj}83%f}|?p7>rBe*Uq=G9_sySQ3>=!=p$g8 zzbD_;zld9S3^hv4@9syX0+f-j#;zpgPns$OA@Z$4TL)QQP0N@LDpR*aXBO$7D^Yb=Kv%@L{M~@zD>gqD>IiY*uVaE4! zrQj`yAnP&XmQ37@^FC`cOkn&&@ts~=>^0=>$8Zw%cG3?@SN zb9qoYt$oSd(MdaebEZaA_bQdn4L-dfa>XK2gX+5Fg@roGRB%C(#$F^5s52CPf=*E^ z*4em#zh+}*_8X#GK!MZbv${Aq{zzUkLVhL2(elS30R&9{d)oE?w-ddq_{ygn9C){n RzeSskQ$2Me>$us?{{r@h?K%Je diff --git a/src/comparative_analysis/visualization/hdbscan.png_linkage_tree b/src/comparative_analysis/visualization/hdbscan.png_linkage_tree deleted file mode 100644 index 424b128fa9e56eb2c9ed7a4212658e6e09707f4c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 21965 zcmeEugpgRsCw0b#z= zcU@hb?n$0MZ~yNB0*)?L=Rav@sKH4NJ6$)thag8zp#O-F*!WWjqAQ8HdRgaw{M?|w zPs{4w-tR42MqD7yv)S*u%`zKp-m3hUFb*C*My2Ck>Z^Vyz3O=vJQfzJYh<}OHdl8w z$uUZw7seI+C|^9L(e$%F*TQ8NWN$TDQ|JFh?NgtVyJ=Ccd$p;+WJhArvgG8Ys2i`V z8~B{DGYmn@J51# zh>Y;Y=@Ky&;myeXgG_`s_}~BkME`$|{@-?V@|GJ>ago$QjrI{bzTzqhm?ykTLVtH# zikY;Z|8Vnc!?KkFUj2}S(={?`meQ(&=mB(8J2UN70WaWyxcQ&0-?8;a2?i?1t%5Q2 zED$(=H@xuZAG2g87@-D_HcL1a75?kKDJIhd80)CyH6u=RcAEQ^9I8l0FyIIx`D;Yp zY5)8C!#!X_2qXF<0+306pKp!<2vnc38%NjQ&8cD{<(PO z2W}p0%PWO_pOawuJ4RB|yd#K{p6fr}_ID6U=1t=-4e&pwMo=r_Io!FLSo6(slcja1 zpoHT6bMsR(ep~!PCJTlpXOVbu!j-W~?_6s+J^fb;k{J1<#W!p)T3NjBEUSjXHOI{J zno7jAm)h_|eGL0P8}W_??zwvZ&UlF6{4`8#B-I?4X8rlLU|lJ8jNpqOxU1`=h~mG; zh^j5IEESA7MvXcavSDUiKZ@cGNqqhKTrsd)0g*To_>>qOEYk4rJt!>+-KHrP-3JG* z1LfJs+9x_%!a*bV_iq{252mY+d4D<({O|oc#tJRQ!U68r_Aw{pW(fIB|NqC#pP}}b zrRZa*mnY0PcI@A&f3Ari`gSLX+a8scIPqTJ^}(#~-@h;I+#w1& zJ3<&yTz`dQ(vZ)xYJpk3>9GG^?Io75OqG~hZiZO?zssg%`Psr~dHp>J35lfNc4e+k zPO3#i=yWh|VR1SYet!RYNSsYu@`K&Y-g+J(A+6QfUi|{2GS>!X4+9gro67t6s6noc z)4%NJf7{ZMTTHBH{gjlu-K*A}xr$*C?=`!*p;}|vz3q}40?{(ti}JR+9Ee!M{=5}m zAFOgK^V``Jmf8Dw(rl`Uw@3&6!hu;I@-C{|UQ(7`#2MjS`*vuBj|nXxDS^`g$$GilDw&Pqy3TFp`Xw8xL9GCEXV=H})m zDmvgqynnXhS3lkd*={WU(2FMO`wRXN4|*T+^B_&3+B$@3{C5p9E^v5mY?Cif6fkZ&3u2J{_^wUyEvO|!w#j{VAn(1xM+SJ zY{7mIqwR{36lc$Yvs}kLypnX3hzuKyCB(37tV(a?@kxj4oNkUI@%L3ipOE}|`u7v^ zYH_N~9u7Chws{@CZ6idQ!c+Z+U&xcu&?Vw>z zT8(Sh0%f*-2}^G;zQ?h5ij=udYjJRJU~rqOvss2EcMJ{A5axIHBSk3r-Ota@cuhp= zMm7Ce9c&TM{h(P?g=qP6Kb>JW;887{GJe{ct_ALQYbl;C;kx%`ux zk52^*QnIKwj9E(W)vH%v3A%cEQAv3O^i1|?d#m|2-?Y}~-p?=X+kciLMY!s7|lhc50Jbg+bdbch4LvL1kIu{3r0*;1}k@0f}deH$POD7e+oA+FubS|8) zUBL+n36)y4vZ%%gDZt2j#~Z`D3r(a{lVnVABF>{%-DZ1QMwQSnTK(qvyg-fYzF){z z8l8wX>v<_?(N*be!7S-|{QwzNX%#zR0=5JBd1wuMd}>C=#yBv~7(_d&+-CFn55b2{ zT%8e@m}bfUZ$QWp8m9%k`v=LjUfu#g@z|!?N8^9vz=NQAR#LlX`xbChrB{M`oT0Hs z3s>qhK~-Q-CJ&f6)1CDu-N*LGL9B}$0i1M>X4=N96e+tnK3AzY--lYF(=%3=XI`se z;iVn@SC~IXoGEGqJlc;#Sn_wS&!TG#>)f_mw62At}breNO1gSkR4@FO*0mDFOUPN7PN=)&oDjpfd+ReB z0J!_Luzh@Xy0jn8l4-t-Aiw@Hz9uXVpN5|`h0a=^yK(d!)9Z8G=(>E% zdc$5(MxsZY$$lP|+IW8!?dDYmv?a}s6(macVyfO&jUxDSe?zhkDNJ_UmP%LY~w~qWLG_)sEHI5y_5~fJWAfj>W)-C)j62A{7 zNE6<|`M@@gL)o=kSD%}Qr>R2{sosw+c1^PkoSkuFQkOHPR%kH6Pbi|<=|x$hOPk*D z9OKf?RB4BZWaUPWwcnpzF}KW4ZNd!T(ns3fo*m)x&wT3gEfp6TnbFs0Ff0i^2iTl7 z7@d?wmB#wAUu=wILMYi#dYk}#WqjIs=))A4@-&(bL&a=ick)#4VbJ~gl0IVo_3!B)X0 z(a|`V{o~bZ+4_4#qg^zJ1T(={Zk`Aj&|2H-`B;(hJy{et@Bh%kyg=i=O1>K`XGG|5 z3c>yViy{1no(Y?%zQGT(1Z;Xpo=dKU!)VU4B zWt5AXox{xdD3t125@9X&V=JAM_Bv|#UTf9@jrR5ro^#8a-f=?8_o&_ZUdl!bgKC&z$!fO8w&GaamI{wQWP~f`vlnBjB5#(RsB5L?Ry!Q8uA7&ZO zcgFDth~U0B4Nr69Xim@zV1#Tg30Ox4=n`Xv{|<}mGd<@-QN))^n2z8`so(&{6MGTdGU#}8e|KR7C^33ZUgOs<}F=tZbuj0*RGl6XV+8-d& z1pZenzCQwl{KlBCu{L{Tr8EiRv`bhbtc%_V!+FPf^3VXc3)-a2OxTuvtC{#R29tk# zqlf9p5oC8Ch9Vvj_a1EYzKXkj&@6}6jAhv#^CErf^C3)p>?pe_%2nwJ_n|>WUM;q^ z+4E6d#X6&mv+$k`IkG|a_ZB~m)6nAQ_w7TL*GcvHF`oAX#&iW_MYQ)Vnt0cXuyu#*D9-`#YBd@DaBf;m8-#9VeXmUn<$jDRO z4rBPrCQAj=dsVFM!x=&Hs_cSp%Xic&^h>e3{>UQhelD@BLF4d}vphY0lk|z0#?nrU zo4Ub|)9ue0b~supinTUEFsC7vAdq&vCzq4&X~$jinE9gHRrMWn&Os}`%xq>Kol%8f zUsqkyIUPjJs;8xe1GMZ)$DAlIEcrBpLyS`i`IZEkg0T405iaiRA#P!DhU>U10`z>O zPxLOC8g{-FyuWyJ&~q{&R>rq#X?fZ0SD&Er%s=ZcK}J$YecNkoqo<+)Q_;{J#qMU` zb`_@+5Uw@CsTj(nX=9T+O(dy3C)h)BpwGAP*3nth!R~js`*(4xcwYY|0Or~hV zhj}2~z(sWTc6U~Rhv(|%>3NMk6W2+*_6*xg+{X-gAf&TGTu!zApHfoyPW50|DXecf z2XHxNT5s&U_>0RHzxrN%lqpG0mSYsNYfB50$$iEso_p;X1H(m^bcH=q;Z`b1Y;jzCnm}CVT^oW-bfcI zyZwVY_&@(?gAhl{%v`{s9F=X|nfX7&euO!rnUkF>QA6iRts+H~hy zPj_TgjpLNZ-K)E++-%+EzZ+V7dfMKWBHvx@;V8ZInT&XHgE!AfuC#lI5MISc_Xk5zGxA^ezONPvMjWUa-FzbbufFz?2N-XdZ5E z46dulOtvLfwD}zmN;f6Gm+~m>;kSDKdPqSy!y4F%dh-&cy=UgD7xdtM(G}SlW8G_`6#t(5 z-~gGC2@iaGjCfB$wuHAd#>*7^sl;ATG zfR=}{!ZuZ9p$NyWzFVPW@@LSRGgF1(c-qj8<1u*!BD^61Vl}KQ!&GsGi{XwY9Z$G% zI-(KU+D?*z5B~;CEP2b^rd;OwbN0qV;c+w0dBFYt`oT?!J&7P(`8z^ zo}EdRP@Hg9;Y0S$jKCDh1>hDoIdww5oT4CvI(v^y=vdKz6VZtaMmus~b$5HUA zTm!+H?N7y(&mO9{-f-Pp#b+?>FJ8o661j$R)okJ9;4s$Vjt>Sy-%l8@X$ky&{|U8A zZj_I+p8sL&s%|eSh9sXQgb}R8MD@AGgsp%tC*-dxlZ&%UijAd#Cj`RlFDba&Ty-Wzo5HL>Z*kLjKuBHCxAif|`USvNx*eQo1iZEvV@ z1P$j~)7wTeu~?Y9WmEi;v{-pFnb=w5xlF^#T2xsn5fBi-EiSGvyStGVNXeM_{rin) zEYe2&My177I>|Q((}V8`mW1%(MJ{#)CNW5_u%9Ex>1!anZuRYKi8b2DZdLKYbTItr zjql;=GC7b(a!E@|<8_H1?1y_}sj_=xIwI1 z$Xob!{`9OovZXCd{(*PSbwy^v)&u}QvufSY&B^q!?1(l7XQ z;OvN8a*Vq)=h|cM`8SH{mwrEXWTvOj`90QPY;f$T0R=rEGE2&aF)HitLT8AL`OxD_rGb6!Nv+>ua-CAp8-OSz>|S)s&h< zm0_>>c<%nn-wmDfA=Z6Y!^sq{k8&A|sFd3eWbzxAPknyD7At5GxUkutrU-(Ct+}P# zO@eux9&ritPwuRJoMq+47Q|X z>v{X9XN!z)K7~C<}H$4$;W$o4e{_U@bCKvZ!74EvP4|>?{ zZvUC-$O!4qK%!2g=!G4oAz>t$U%2gcPl@U5=I^$1{im(*Hvww=QNFY?8gf3@sLUo; zDkd{Tw^y-t|}-f*k5ce|D?6T?wb&vmZ*m?COpYS_}-s4 zM!_j>%QWYEAsNROicODpC1KnxUO#*MBhku zu)8n8OUM9W1PBsmTy7U5P`|xYGBoC1y;{Gwqn?wKgG=AoxR3goZm!PZt52{K1Z#5o z>LV=9PC{amDQeceYOnkv-S#Y-8*2kT_1&vUy2!I(GMm}o9V%G7e+gnb(lOyHQ)yu{ zwd+GAl|rX4?8me_4PmM;DsCo`e;;m~Z4nT2l;@!klcDdw%E%%8MX(rab}BGMYQ9oF z&>UpC%Sspw_wTx*`dy=8zpVnt!8%`W6OTc+2RtW=_tE`pHdh;$kZli*@7CPft@RHg zcBx@xiZ(qz;<{_am>IM2P3EMEpc3A)u<)IYh=}MUehLIR=kg;`Nv9F)@#Dv7PMk;s z42fSeef#!p|C@VRg;g^=n2th|Y8ob{Uwf%UafB6?6KuGlJ^uUlbsP-b)^aBEc(q6{ z@v~=~g}oyYG&-&mN1cH8u9v2yWPyslm^}fQ%W>|U4XSaIG69Fss&=32%GP9y$;>G& z6;XY8;q9Kn0Wk$anwVr!$lcUpa=O!7r(;2}&h$jPob;xM?t<6bgA8)Wn;Qb2wWa}q zflU)G*6pbZo0GD8hNHEhF1D%5?xfER9I4JvO-s`Saa1nqhyfu{NIw3#)i}?LddT=! ze_mRN=w?~`tzNIy{KCb>QT{nWP1V)L=hp|tPpft4PnhuBRL^7=UX;HkEG!)P@+B9B zhl{IiXMGqgb(MVZzIX55>hRvKK7c#U{8ZJ>+Q8~(wy>$x5CQVrjaW;~e;~ZUQ3o6iR2`(Zrv2beYu8H?tnGl71oVa6o<&|U~f|E*I zH{BJNeD3D)%GTnV)$D5TjgN&1lKKa*tOgfuuiW4>D8|nmN0bT2_Q{#im{a_U)qh(PbvGel;Z<}3mVdUy3R{Kl{toju zFkwIt33bmuabq>==ozz=yNdXr ztM)6~GiO8wfj^6Q{u#E`zvesFlwIUYCfUe4T_*UgN@(=tu*Kp|uQHAyaG|1953$l< z;mqF1VH=M!c6h-Ki`^^hcu0aqmVclRr1QcADUYTLa+_;RCUIZqocv4nV_ebCdNlasTMyLLpI`Q^|H--%z_ z2Jo@nhs(Y`|J`NQjP&%o1LgK;rK_-JNy&HPN044L#Cx^R9(&18zpTO1Fx-krzne*# zLW=m`-yS522W8CG<_^KBz1A~nl1}L&t zqIX<}@7rrXhNtQ-o-^L_<8Sa#?-es~wVU{8#Y9eye*j^-6!LXIhB5#pQKu2Pyk;Uk zdAzxW|K8T{>Pn}2p8H%sE*$_*73vo~N6y#Wv^Pf(o#TJzlOm$NmG_ltKYALT;HATh z9Ml@F^IZiyfoGCaDA5V3Q`QJ#5y` zSDdU~>v?InGr5X;M3FO|W_)q(VD^Yz|69%RR}C!T19LqVVbbR?Pzl1Jc`Hn$H=RD| zK~h+I&r2*56B9WQEph2%4Po~V(jdqrcm2&U_h0n|ePw%3FXrw=o%wJx?l6KWrR$?o0@UtQ78qXb{ygv7|Bd-ULlSha!qA`Z909DgH$jsX((9Pw5J9{@fn`Q zZ2Ipl?B!@@sllg^OC~56zX<2KLV;LXG?h1epraSHiRdr0%>o>16j9B{$gqC*_%N8l zK?ZW3>65AoKyd9hQ-$Vi#Ir)dgyUb#*-RAhjY1L57+A#OPRBMT0*M1ON0w4Z${jm}``@sB9N3d|;YjGgU-+#47yg zU8MNoV9-;))o%UROP;S&Q&U0Lq8vU$f+B2{$m!GQtw5#)rOD1He&dL^xY=qMzwP@+ z@`#aUUR*(83Rz@uJaj4>}nlo(rGScRrzMkRNiIlP&m%WHn6bIa%Tor0GRZuAIt zd1djrkrKU;vA^T}G}G_PWxGR**D#}{03f%QsX`$ZS%VAYYG;MAPlM=Kwc2BRSVF@Z zg_18Z!rl3X!n#GKCLTkcSz?Yu`Msvzs??VjvE3OYDr&j6W5xDl4@2l`G*LpZc!11M zAY{I?ZEYH6eMCB>;GpGq+t1c6HSxw?yqC!!W|s{pmkm}O$uk0zhy21{0M)_u%S%CA zIwXd?0s?A4d&A97#Y%gZ8v z^17si1EX)^7KzgD;Z>LoL*3&y4--={R!=5+qa+>rKV~69CcS?B+O=Kbq#^2<2*T(& z|7J2@fT)-R4rK(bI?->_8f0@cEaYmY1>R{*w0AQ^kd6B_7me!I$1M&~)^7DXGOT}E z$U5L=8_tEP5_AbmAIJ8PA%2#f{5%S%-yLJShKdT%E>ky)B26*RX(vFMyP)#g4A<4( z`SMb8bQv(y5z7lW-5|pR~Jn|%hCRou-Y+;TjB^CRDt)o7Dif2g>MJWD zImJ0UB!;<|({XEI;lVXE8&93Xh?s>rSp%bEP0Bgd*r}=ZG^-jbi0^>wagd)nhA3Gx zkH{%p!JEq~Xg?n)wN3*$iAzL82e$&0X%_S|p5?7y-%1og0@i`@1(0mtw+*bji)5B} z?rheBHl0Sv#isS78Ud8Nqjuh>QuWtWV%&=UxvRfzQ6Fba?tX> z)cDy;yktn%$ubAGVHE#6ya1jbODX=!LEp)hq>rGqrjR7gP-8 z78qCLq7{=|isF;tAl{2_$=o_s#kmDvE#9w%=A7x2AQqlgH*ihRu{4roe0}Ebf(+WZ zyR)TR@8>%=TyJJ>Zq89BwqLf#rNaX6`LH2~F~fy%A<9!OF^+?hHgObbi(#Z+IuPvf z2zfF{xAk7hdL(U6I%80A>fO6{UAelv!%@q^hS1AZSikFK;yDqSt5*=a@SHgGiGn4H z4y`g<`H~*<`H{Rw6x-E-3yObtdT(fE5t~U$#gvV%Vk2kLipfHMS>8Fd_-xcfM?X9P z^~(574;4~86fE6KW2}CEM_kostXFu*-=p>NO!tDObXx$H5h2b1Krw>&OP^#`>s9vi zOHA6Io!tRT^D@P=6j`caBy%(SB`db&MgFMvdXHZxD(X%yI??UyM5g)x?#Be0h@sD z${%r%$DGd5eHpnwoe>R5*Le&s>bzMYq?=_QoaA{1azf-3uA!9&hrxc2{9idhVvmp5 zAc)?@TJN#vMc!;O0#}-QGL1Fq5Q$h_`D@KHV5X3e3#n>DA*;XEy8=XjG6--4iU2AZ zR%v8>{@Fyhfc`rW2x*NS`-(5`?JW2=zv02lpgDZ@X}w=hdKz~+ zIX&#JD{!W%bRM~d2AX zh7^B*&L8;9b`mC&fmFs zX`4$*YGD0yb8{!CI~m_fthUzW5ypSoF)jN2KTq9jm9|2;8bNMA@NYNQ7yLi5-J*Qo zR_Q!OeB;D%A%$4%;KaV6r^1IR$sfT+(Md$z)m)+H+1E`>ac5wY8r#fZ($qVS$pNUq+ zQRr$`2M*_1#2rKP3)+{eQWEUekbrsp2sl~lJa$cbwM*Lzk{;UQ@4~#ZZ)}`rL8Z33 zNh8n51@z)KUwwV{F7#Q3UIZyp{9t_iw(oL__-3=&ZYmm`A$pvkZ^`%zNf910`88>U3F!BUGC$=7{8$v|3pyl)8&nLZaO$dhl=?OP&?HCuQj+!p} zi}7BXC&hGJdrroQ?k0$rI?oD_1nKB{U9LMmR$rOCeh^FESh_$LnU(0JWLl&T(O(54dDY`h@kN|Ed^Y)cKlE=l0+2BB$S!xcxS%fU(LP4P|mB$#%O4A3`xE! zMg{Br=_!4dNuF+A6dKT30m9NzWLo`|V(5yoB>Uc!!i{xZbT)WBVv}3@K)-rlRN9f*Lie z-^OKt=WuoiLnu{1{W1g8%cD-o@6d7?K8!A_ENZ~JuR?&kOTzPcmTXWUF~U;;%wqE$ zC5HUSk&J$M<_VV^u&*9EvV#cv<&!smB$hX=@BTFQU%3{QS>u`9C(Tp~ znIo2afQ)Gm>N+A8pC~|_R3cQa(I^Mn?zh*LboyiwvZ&L3ZBH$AZ(3$rDv0T^oyd{;eNOT1=~k+_W?nNJSodV zKh%5SiSF~vy5A+4^{XKZf5O9DEU$B+CQ2>Ao&y1HradjF+j74QqN5~DW|orpsHm+k zk8!$D+Toe?T{i_#T$0+_+Kz`k5>?fP#seTsbUGvl(N5{)cQ2Eo((OEA9i``5d^cAL zcC2dZy$9aqEG4j6SwEfXgYO1#54bzswz4udA-;J8wP?kdq#?ziWsi-Xq`H_CddHm` zGqXzl58oX|TNY{2W+S}dS2~C9EWJA2J))61r*67}r{h)>W=e26XRK`4L5FB;n&zw< z`kooV`3ui2x@a9)*YA8rj1b)d_KuJP$A)Xb z3m>rGrvu%M$>=Tzur#cFi?Y8){lw0caqE3y`I6n*qCV-r02hnrMh6#(ZZp6O&ikId zv7Y$y&F{;ukJ$yiiIJlcP!J`wz7;35cCdC8SxtSflrD_X>h&w4MknDQeDS6&dh-Lk zIrq?(WC{8#XzFt!ee$~zNIqk-2Nt>|_?wQz28YOjoc5cAgA?Q!uz95 z_y!K9n+S8$z)#~=pL<1j_N2y2w@|3MZP^rOd=oyIeKJr&jdS`K; z`Oh0@`aWXV=Bx?ioZqBMC;EoV6JW4zizeh z?WZ|$vpgF!g%fuXx2^T$CY#a?;epX61R>I=GS-0< z5!$+EjrV)JGy0^_(oU&$I9ewC@ZqX2h%h!oHE;Gph?vj@2n~Us8M3(t-VFcg;Ur_= zl=A!<$V^MgpbBZ+8jY#(FO$2?7f6wjOQ70zLuS(K>iD+{HR#RH=hMy6Qh+9w9*A3I_kZ6) zb;}3m4>}=Wqj-`=_l4dtMVa-2$(l0#g-|2iUx~14BKQ7?KsY?xHbI1p+}&DV&<8p@ z{`)?N&)p?f>Vp6(pk5MI9IAqq{_UU4I5&F4rTGR|oNR|T!(Ym_Wq_(DqaDR`VjxxF zi2e6U!9`XI3D{JCjMUt&_HSQfOX6(}FYr2PQbcLy&?%nhkM?%GKS!rahR9tkhH{~X zJJ>f?sM+1hX6wZtT>2&TP&)pEJW8`fCYw{aCV45O)YDm0MhR|?Weo+~APOUqRB-xa zop198Hh+BfnecXTg!*touIiy&Ict>pCpIZrxWaJ6oCFcXHEMA9S$^{Bu#X za~2KT$uF5aqRN?ezf}0GM;dOfyeFv=&DrJlV5ln9lb04uPfDcRQc2tEH#;tW6<8*L z1!CE`8+Ug^G3w&ckK%ucZPU{MR&Umvj+7`9CQbJmV=KEv%x8LY!|O`=y{jcG#y0n zYZT#+4-^Z-%4Ls)o@DCjf5f`k(?WLLf|Pxu$G6BwaouFQbZF@%tl%9{Ik6oPMGttV*b(m!~9ksRT ztF=~VQ{f(y)8%AmLk6Q4v+`(8bYHDy znaP>-N>|3!UH8?)b-iji#2lf+Hr|2l1}{V+ASpzOV=lD{`nuiCbd)yl%JSOlj`=vB zV=8>LLb|QEugrMsYQm|5{Z|JPbIxImekEi+PQE?3rej7j`Z)aQN@IWG+N0xR;;0NT zvFoXpLxN}sMl=Y%5(z+{kBSJPyXU=JDmkk?y!og%i+65n{o}m#USBtkyduJ9#b4OX zBht^yqc6tljseHn+L*IX?=)e`@(&vK5JNt4oee>o;jxGdoP)sku5TCYF!ENJpO|B!OZ`K_nydWzK)>_on+>mZ+sAjJ77GE?+WP)>7)6v2cNSQZ z$^0&`HRT-iGdVHrHRpDw-*a@9=W;jk4Q9BIh9D$G*rfYkhzlex3|1sc*i^}!+R1sC zcW}BqsOaL{Zfd7$&rD}$B8*DxYBdQVNH~Sk?FeEQ)-}dTO%2SI^mopu#2EW^7r$5p6AG zX=C-3&VJV=Pps%052kAMMP~35o7|OpWv}YRyFKBQXxzZXa<|s;EB(6vh$M2$3|0Oz zk3Ym+%s7Z>Tzokp{OAC75AH>d8^&gmsWR8}Ew#nW;Wr7R<`2!LO@Gmql~(E1CR%NE z@4>{{pss~iza^cV@?1i9^V`y%aY!E>nE^&W3}+z3$&8J&%i56Vvv*etT(7v%djq#J zM;Xw2eD`_2zN;5rll|9H=BCd~-ljzt+k_doJ)(gj)IebX6tHitxcW5gFeJPxHNZLX zhJ0VQbtr8=To($Vq3dW>+iI`0nfnPiD@y8RuL zBkUo5F=vXVU$Fab%;?O08RB8A1@iodAM;`ku_-D!)Zm(#fPI2MQ85M-G|Y7Kq9_t*B-G{CDG%(`kQvRdrTzxpiAc zyT2tdTCTO{niw>bJvxW<>Ki^OUA;yRZAYwDBOx$}*rYwyoB*KL7SGATI0f zDNV&_%c9PF+D^BLnk+ZV+fs8%#x|&`+86kvtcn=10#C=6N8J|a*7PW6=k|3AEO+R0 z>6i9YTwdwmEQ(*I9y>POLSrtXt(H67RB+Tqi=$J-mstQ*0e0BCfNs%{dt-=ub3^gF zB0DDO=^q1av#s%XQ`SMYYbQ;NcG7tRgoR!Fr3%lH#qo0Lq9_z9yZjz9Rz%|)*bJ9= zGgZDu|EpSDdTy;i`+-_gC0wdNXxouq8IP|E`lWM^Q<4B;$?i>v!cKr6B zTk_?49=r9-%P^6hRc<={aSDBpFum30^D=Xr`egdk0fv(@@?$rynht96MyY7N|BvLv z=EaGOsR+8C0W=N2Yk=ZdkdmRhJ|drjG(|D?v=!a0N9a3(oQfnj-=$(3&tTs?bOu8{ zW2h|cO@(9s_*krG@uzrbnr?XGb^!YN?&v1PY5>CH;EO6L6j{F*z_W4rZu6_;+fS!6a; zl4`r%rdpNhAJ0CW&}T*K=PV6nF~|u#0@2XIOr%J1Z`gO;`p?pYFPT zCTZ_A*gH5z1EoZ$#2A@m4%1Th%r0$6NxFW>kSw#=ct^d_;H;h~dEURLVo3P6a)zpr z_ROq%O}(1b(D_T3*{?YMDID(h#?HT4FsGdH3fT*R_69^_8n$*`fU=nLlip}lSyURi z?a5McJZf*SLM^V+Xxj3SaB%3o!IJgoj-j7E>`_VBYuwF~t;^iOefnx*n}wI|*cJH9O;F5JTcO0~J>Ic{{A!BAbWg|QsLzCm3S0w+()YDHW zRtrepbk+q&RQo5q4%TfL(!ONDbPQqgN*CUDTh*+et%c~tX^kbNV91|mHr^73VB)uj>&SnU zS$%gYiO4kGj;AXfv&pposdwiq$b&C&HM{B(gsf?6E2%_FOABVvrQa7yz^Ha$>c8U# zCB)7JH-r{)oe?rwR;ko!Z!rjNd##V}QE^?F>Cr22@7?Ng^MW80$~TbyF#rAJiYcVl zf6AF?0wAU$#aZA=HqhW$eeJPVaJZQ76SbDJ>uzV z#Z$f%9eGm|WmE1rZEV(4lE6Ma)j`Q4aX-DQ_vCHno|K$sU8x^bCOtXfbTVD)&t|(W zt~<)b?*c2*aNz4pg^q{+DjZPw5MdvIN~Sg4cjvKt27mkfiY14Pf8$&Qm&D3(j8=ib z;icP?TvijY#}^6)r>RW(--KtLTi5zUOZl}rlR1bgr*ms}00$ln_67M9BX4Ef)sXSHhfgszgGuG|D(`=YjUpmHI#rH#vpH)QeN109J zwDg15w>H=jgrnrv=eyAHW*JMTE>6M(n;<1ZihDeAO&0uOH#c@NhN_*{Wu!M2a+IQ1 z>J@C=nnhoHBo2+&F=^Y27lQpo+frk#TdQ)0fW!V2~`I6QbrVGaAF`rrv>2o)R$_ zlqx@Dfa))iFK8h_i7DHvh2Oacnor=(R2UsUF%MXaekMxm28yu8;lk=sR75z>j$qlo7``?ndzLvPYlmBNG|YSoD$QP$<>XGqmV)drMU(K;?=R4J znA~GFC}~^&Pj%rNiuY~OwWKre|ID^-$gqAjEAsZDyfo{5)g(Mw+M7CI(qrD=JX*ZF ziG;PWdJ2l{a2<)jGmRHi>t&G**eI=$Bl@&X{%`!ulJ5N<-+ab0b=-J#R(5lnkvX?V zC1G#7{AayrcHcekH5RS<28kXhnJ2$nG%`W3B~TGy%I3Os@h=5Wm<{7{Zn3LRSQMHK zX<^v=%Gh7&7X45@m#6l$S>W&MF={U`U|-bUH{e-r4ZursST=Bvdy zuDLdI%M5|Gx4Iw00!0(KDdkPC7$Nb?BLfu)T1F5IcwfI$U<#M8BTFo>$dw`+HgQOwvO| zirr$tGdHK5EA&qFuOG|!>TQ&>oT#_eLy>_l3l9%eBgh!gPYPcOU~KCD+(Q|sv%;FL z>$qKm7+byo940{zD-WeQB8j82rNCN(=hmga6l4PTs;(PI~@6`hu__ zbwmS#y3uQw%_l|ThQ=^8atc;TfxR>Eq!Iv4yYrBInPo2McF&ZR-rG4w&$czw^x3^X zvb<}igHP90#|~0@7p(%Q%^=Cg(dT}E8dzKlsYPeC9`q?1{W8f8wZCRyg8CeSzw`1f z(dpA@fV`$T2PV7bXfXAU2^pF|u}E(Ei_3jvkrAfiph{XcRb7F?z7>2jzJWHqV1vQ$ zxyWEQh7Bxe-D=w}H#$8u^Yy;~r$+bGYfzo-h~s{D_usr7n5KeA=>nUQiROKr+Ez=F z{^r|iPyt{QEc&zytkP+?Mfz#uQt3Ie(1-%LV6_hOMPTWO9R2}0JAB4iLd7GIp4)L` z$?{a#RAM?2!-c!WRUUTcZk|@FU*kn%w|;wX+9~~xp^?2Vv@107us-ac)JjPlTp0fc z_M;aF5aYi&1(WkUjn}aTM{C+}PeJ`|_x-u)usI4E{viMdtn{> zkwtA&1_pxQd0d_Fnte8C^2>Wl2%f#s$HdI!6afurM2VT!Je=J#P%{NJ{blAJJfLEK zw*c4*3&0V)lKGm_#@;RN852j+{`Zqx_(cA3ntI!$1*2Qr(XnrQVgqy|>mj{tF%lfC zV2Q0QeCOW^BlyuY`?7Du<-U3{4z$YRws?*>x3;^vQVaLxTEqfpCLQT?f`8;(%pvrN zvFD_{(BZDLLN7iM^3N`A^l=@K^c3fSLEP2vKmO)nSdPuA5il!*jst{#R1HtaYs%rF zGx$#o3T_%d3(JE4q-55FP#Ks&#RM`hy1&oi;X$7i^!IT)|Fy6B6Aijs`0rByEPwC^ zDRTc;&Qm{pM1u$}kTnJ2kU^oW7l5*KVIZKt(lr=t&_Le>20j;N^(j?BLZ z^ek1Ty|6SxFB-f9!UG7?PIUj{ZM5E@0@PsAN|{WO`#j`d_4eaJ(gCyw32z9T1r`_x z&BYu&ebmsKQQkr=0X+bDz_+$`d>=IZ=S&)Ue!}B;W3v$`Ab$S0lq_bUUbSqq{0leC5ke;Bwx3dP*kf3);z zzJ93`dY#~IZ^(s#_Mr0D`JF%#Mi{Th9*y8zpeExhobtGsqm}7VaGvj>^uO$EU}qg* zsHwGq)!z<^->@-1`3iSzOgqSU(2R)!l*MH-GVE)}xd^xY@53+n0N4IL`2bPURs*11 zWc}Z`sAQ>>NdPxsx&KZY`Ud+NeO?q=%lL``R$QktocC8{58iZ5)#Hmv4Ls(SF8~5! z^7aLIc!4yCh?DG`x=kyE-G7B4y=ZiS5O~ZI`d_jgO86N-(?x$HJZLBRD)qXjv3FAR}la1y2BIk4CST zSe2ftmsdfM0q=rme8AuTvvMc+LToz}gpjXc+>NtkRpf{jOcHtsfT2s_#{sHihOVMEis`*67aEH^nNbp3DR!66a+ zv8fR`K}g@b`(9aaU5>~HU|1+7Sf4R+N*w<>ybmxu0Y;CLTUJZE6eD$s$ zZ!dj)bm~@gK9k?5?YidZ(nYe zEebetQVD1Je^&KU)$`K*f8Vwn?^6S=Z3eC)KIz?k?B1w~q%NWfFLOUF=#t$e82)gl;cYLEwQwphfwwuB@C4 zJX8x*fTo?D1zCCcfM=OzC8+w51dgTv*Zzu^zPxl4xO^J~K0r>D0Io$jCeE}Ca=HaW zYQiQ^>jdMlu~d+-C208t5FierGE}X62|O>M2U2A)z>gh^oB`VX3OUMwValN?DPU7E z@^-*o(4U|^}vTcO)<7gmcTR{j02aTM5%108Mz+$ib++({J*?0lP6e|y7Fv$^3j zXmt?K55B+^v;KmDg8NE=hJkv%iLMQ`z@}Mx$lm&{N=kyZZ>Vl% zD1#j?wi1-Ou3*Fj+P+(=mBgpAJvPs#(1O@qPc*_yDb h6H?O=dH(3V|Lo~5PfILwf9(YYqo=E%%Q~loCICvT4VM4_ diff --git a/src/comparative_analysis/visualization/hdbscan.png_linkage_tree_focus b/src/comparative_analysis/visualization/hdbscan.png_linkage_tree_focus deleted file mode 100644 index faba42a62f5707ab16ad9d0b05dfb3cc037c59d6..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 14683 zcmeHuS5%Z)x9x{0XiI2CR3x>6f@H}^R0KpM2?ms8AWM)8MN$kc2uL9yNJa%wLm{AcZB zM~uA_Ci`#?%{=_Yro9B{(jMLnI&$>Jx!pH6zS_9K(BYOE--*3{Z7F=Zhjl*AckIZf zM!Fs$4Uvud8m%>UVNdRdgakeK5S04xZ)35eJWW{{u?E5Xe3zJR9@}yt&SW$q5*wC` zic>amm?SSxzYxG3$demTj!o<$1_Tn?1w+y{!`9Ton1ylhiUn0}cR{ZO0)yzqUcZ74 zUfPm^=;0+(nT`=&3~(D*;3b8$kqchbCbxjOu%K?X|Nq1PON`U~x#fwD+u(J^r|Ic@ zb0hV_ICN3A@tTG^G`iF!=8H>8=2kigDun|9xC43#5BVaLBrTR}&Pw{s4&`dWO$Qxm z9kgXz?DMiXeE4wgK)|ZiXrfm`oJ~@kM(ECH<(;sa^sS(DU3U);t7Lyt7m4)YE?aAR z`{{4T;G-rbz8an&dy`j|M|O&wyU*X1Z)X%RpUxYt)a_IRu2^F$jJ)>yL`Q}2sKc@pxCexe!r`Z40-UNN3u`V#Lg)vJ~~Kcl>Q zu0VN;plb4ZpTf7lhceUS51SK|=g97z7psF=W2D|&nz9%LVricrsY6TOqv%-#ox>mZHqzG* zJD9v2Rf**J5j8GXerRlrqt{V7lqeAYM37;T+}4-K#3?)7)0w+}dATvFY>}ta@oHbZ zslSKwwD;0ia(TBnE~($s=R>x>)o7!0osryR920SXDSgptHdMlbY(GmT3dEY?nFh*J zo|wVj6&L$R-A@Om3w01ShE^HRDRf{>ZgPYTVjba*Xm8i5(0pOKn1_@4jRQ3D$PtUC%Bn%MS6LFWJ@iII5jW_RIAd>shw6N0*N2 zRu5H|ITl=Bn$N&d*S_t-5qPYYLJ2>}YhgUfuZE9WP+Vu9=`V<7thL0xp{~H%FHEX) z0{ePMia$~&31NXN8CR&}s2qP$1?pOWMfS|40l8qa8u`w^IbL7e>48S-T4V6m&G;dy zWRBhi>iBpp`RAt+)s@)}0%fKD@}D8e6nBFTM!~3{^soe%cUu&`-ejxc`94gpADAx> zk#aVlEeyOsk{*8kjx9~nv8#pCce3DYR}_<}A-`8&`>Oq%TEH@8At%bKOt{OLF!a;H znc}Bd5vsyr@3l%)UFz9AG3wFzmreq!iu_xSGdVnK{!8z6`9@Uko?xO*vj&$?VhO!C zrcaNxgG&NhdO{8wURxO})8T*9@hPl~u9dSNE>)nca=2bjAdoUz?O>iq?hp?dx-f8p zMajhy7r4JMfY;pPwDY4Yxca!ciN$8MKripLnf?PcOEdH(0T%>Y%xq27qGdwT`jU^# zoO-I47|$+zW}=fiwlrh6HesVkqHcK=%r1QP05^9};K#4;84DS;yu4iBZK<9r5rB+E zvQYIQ-R*pEuxv7Ia^VA8bRf?`_x68DukaD}FIQodKI29Q=D?Y`;}T$EDV%GtE|y|8>? zVsSn_f@KL;eEbv_ZldDlz`e@@{y3YZ5`wVv?e^zJz3#0QIRuxBM1OB0j?t5xk=#!z zIBwX&S3mu=+Od#Xsn_=Q>&sEZfI^CB*+C=xVyVsGqeBgekJc)Al}dW8abY}tC1Vr) zIDtDnhhO#VR#Eb)y}-cZ#9y|zR_%Qlzrtw3&>dAS@3)a{s=dd3A3X;zpmz>ho8c9p z5~&MGR$EfS3MvSjoBTBJ-wJX>iFZ4tr0U`q@Vru&Gx9v^nC3>JrQXMgHa58QI1c-Z zGT=&wMaveyE(Qi#4%|~#77r+LqRfip7Ee5sd0xsf(x6M3X2r#7GJPoNZ!b}8vY;+h zytMdR|Iy2aiwLktjR;lUVFPJhi`8 z=XQdwW@`6D<&gp=Qf&LEIiZ2D)UsOhO;2%Q>ix_~=92IRRl?%w0=Gu)&IOBwtX%|C zIk%Dd^7G1{$t>}&leJ!7(#UO8p0-E{ za?s4jD%ZAousmioIl0&SvgD;ft2}GbbdCp+e2f8oaKFoQxDM;W)#vTO3w0{=B}DTE zszpV!pGrgp%a^FMF~%mPm`npvDeL(p^?-(i>t+LNf7@hV=vY1WvOzzDGpy1vphKvC zE-6>QmKlT8HkYRJ=YMQD#;5(=!2(yUyw_=9HafOn>QaPq%ef-Suuw4} zB1_xaoc>mOX?&ljFp)ZNG(ulH>l$yC1U+WJv4JHsvs{mDHMdHpL#ZV7+h5XnX|Yll z%e}R+KIGhAaWqE3 zEq;40R?5%JV#z49-Nx{GNM5yI_LFv@L3){sM`y*Ucz5>)%3G$HBJ?p#{X_*_wtdUv zT!GA+f&FX4xmwumn(41r`dEHkQZ6HA9uq`w9&+~Fb?cTv+awtWyaidP3rEZqpu>cY zRUC1!8)4i0sDsY9_2w4zo78u9W~sARB~cI2mc+oQR`Nng4Tx39&=V2W%u-m|LK2+dO3}f1+W1P}0Vn`Rn4Htt+JeEdqe8u2c zFnyL@aPXIJ?9kB!y?I4O_=9KW)>`H?-TeE z)^ulIm^;pYw@|&lVD?Ah$FQ2Cb}&8WdGpLx%L`vsu&V-(?j0=v)E_k2F|DK0WDW;! zx4DZBZ-Aq1*Wdne$@GeZaa^*&d7bCk*Wg(x7O<}ru?ZZVLHs`Lh>km{Eo(P7z)uP? zD(OyJ$1!7SR`Q{L7(ZfQgi9k0W*+4(V^@i264Fz6ve+0WrNd31!p*KhJdj?m5;W30 zh?$$SAKjVK5hfR-Ob5TEZAV~jW4A%Xejx+9!-lZ*Kds4%0smOTtEar=c0dUSjh+sD zVADT|e{sG*sP(C?j+T~IgZ%eP!HQAT+;;DE9uysue3J(UVXYN$bLJz zKgTFoR4A=iS97#6IaxdEfFo}8##XVhr=~8In{=rs)lS1MEwyY5us7^e^lG{dLbb z&>n%D{m8joK^qc5T3w=|oVFy6G$C@~jmWL4tKBz|a|S}+wiLEcTmQBU`9}n+{}1)$ zwhWc%i|>6^1Nw?Rx*QApBrhE!D)1qM|MKNae(keo&yu=qlKHFu-o__sUH9bK{5#vMMAj%nug_ED+^a#KK*E)3`~(z40NQ*f;{P0fZ+8hCWF@u4 zma^6I`=_wl5O!hnSt7Cc=SvauQu)GuUx%cCm9eXxulDk;4Kn5hkXNqu70d8x-uoOc z;~)vpnjcUZ9~k;*?39>0@r{>~=IOhbdxMw83M;8WUr&l8Ibo zBv#cmmzO0|#ZVMqFSo>&KNxGx0GQ}}5-(!nreYZ@6I9u5Z=8%=Q2!w)66HB=XS{A_7%jud|Rb|31M zd`@*`>kauv{BL@Dg$yS_m>RbN;yj6McOA@^L-3t>lIjJKcttyK)m-$BPHAdVbBa_}8NH?&8G%YE*0}HBo zb!<}>BnIQSRtbpS`A`N%>=jwME=bmhf9zWPxlC!*)cl=~?!jmI`yr=bK`JsW+_iU7 zYko6Pu(Ev0%0@_aIC#3mF-Sx9Y)3X!girUjsuaFEn1a#_CaM8h2TNhqXoiOhHRub% zM*m4Lf+wA!U7KcBtAa;)|&)$EK|DBK@ojU$=O|Enz87Hp_Q^Sep4R6|lC%U!7@~E@{{D z7@F(?b40_arwHPma4u?3w#auk!IBBk?MOfh6UM>TGnvIh{nk{oPiLEGSXLG z&`^DvmnW5&n5d0^W|T4Yc?PVP>#NV^U}TUfshaATCKv*NqYx);cd9{=SejdvN+_+_ zoUIPmWqBMn_rc7oFIqfcCe)*?H`Y^)B@*AAtfBxnWc*^0jeV`Ap~VR$kT9#m3~t{ za;w`9P|=@$ya!|WXm=^K8m% zhV2(lgUkuzM~;+!+#e260%u7WqciBfC>IZ81TF--C%n26NV3z>6%WQ&o20S zXglq|-UqWuS2kv{M2KSrMvqe~>DXa|D4{|+j<)^<6b!7syj6Eln9Lt~mVs9$3F7eA zSL`*rZF0k0;sG0(S2wk~Rrvr=kawBGsRN?x$im+a5BS5M;=D{_+Ig)T8}0LK8f`KT>I*ZrWuk@gbQblZ6J`EJFG_ z8sq)vpETPJozC$+jYk38m20K5CrtBy0wH!$Y}sh$`{U=-RKvwP+%d|Fy;4%vb)PA# z#Nv#fg# z`CSej*5hr@ditj(CQjPejLxZ8FHL`4?q4jAUHI8Cnn?7sp^yitWn*sZevCc1();$B z3AA1W70<#x&)WI1R<}mw#Vh2M1!$8T(6eM5zFc{CbBi{93)_J!3*+r^^4BiCaq5eQ ziZ2OJpvs_sQzny+F0Ek9 zJJ;pwy9B@4YHfU+l#TV*cek|h==~}l+|@nI8HG=jZ6U(2`DcMP%3bFEW#86*q(@j! z^%jjyP3h_D>+7kK=M%iY-HlW7acxkVt6N)6rusZR8Ha~#D4^}ypfEaQM)W<4NYmA+ zl2L#~4l8vAr)jnh@qN$Pe;-oz^d{nfGlA?n;J;WlNd5;!yyDXguGvO=cyM0!(Sol3 zL@E{(@T2i*iWB*J{mD^ust`emoTE+VpmM}u5 zv8R#r^Qp(xE9lq(vX|}%6|s{k&!EF>FYe)*KDB4N@A-Q~J8bt3adx!=+Uhib4tXyY z;Q$ZXQ7Er8Hwo2mXaBE{14JSFYXi1sw>0p;5l2{vr*=b`e|h_ly%<(+NW&ep`}%iN zI+4()2tgWwoime(R5Bs&;``fIyK?teaeJA53ge7*$SHd>@!GP2c6zeGj(XLadBmG> zDEqp{h?oGIJmmpY?48*_N+b24m*DP=>kg6ru^}zjsy2qdTC}hi->Ro5dim46gFgFq zbJ1dm^YGZ?DA%SVjKl0X-Wn8=Gga21<7NHlNWNO0tqgVOZ~$FSp~tz;eB3oURYGh4 zw3`bH4M*qrS?v@zHyuAIv72TP+4-k(Wd}=$<+$6dyh;3B9vx8 z&aU9^Ho%&qSOU*fS{e*K7?9U9cAJ@Vw#`UCT8Wz}0f{UrVZEL`jzuH!4!PF#@d;l2 zK0W=a_HCJ_zGF}J>oElL4T9Bw=tQN?8o3|Cf?F>UcmhTh2dZT{Orr)?vIlAa+T+s%TWqCgbEqph zRuK&J`vz_K5a*7rOLa9*wHDC2AxXZy!#4YmeXvH`CAuoP@|mz)t)QpdUGgJ;wLD>* z&;vsEX@FHK~BN%L!e;1k%;m}>;4cWj3 zW+Vq3hI4-ArF`Wb>2}ER@2~Rk^hD4}The2^O;Qsqbh`=FGgLo>e74()(P=$;JCR%K z3iV*W_SD<&;cM*{|4eUiz|6OgMRN^`QT$b0Zujy; zPdRL0St9b_UQBGUjhULdGBXrOfon^6737=tMpt1IJF336hk{pVh z%-n3AM>z+UEV@a&_z);rJ{#T7!J_o4lmkoo*z5Z!5X$WjWMz7lS^$fCn@E-HDRVluKg*XOlJfxKzb&x9FB z#|J*R3JJeQOm%rEYM6P0E&xAipyC?|SM84ZF!ZGPj6d5&=yl3!(nNTt>5|GybA&bc zV4RA-Z%EqbM6dohA7CAocQQQ;3jQ+ND{#b0dGGjC0L6+<%b&cMV^xxMl6!gC?a(`%-z-Z+owJInJ;3fe056LN9c{ul;%Av zr<%`$7nI6l%CcT5Jx0&&57~S8#5`q@pc=U76&MS}UiuD~>v15c8%ODRm(+^XEB~@} zX=_>?pi)345~+<9Z$zOAfXUeb#!&ImsoATTvDe zj2P^;%V*R^ym0P0<+Oy4D>3=|C+3NjbS=WtuxH-Smsa}sC(3aEvDIqFe*AzlD&iDa_eGJt}`twahQ2Ol#KrQG_>Mlnp$IvoHm|Xuu{eamhtB8+M zp4|uIB%e$iJdW=mlrQei)Z|lG`7u&&^ya#l3?%3)EAt}_xn<@vAwwQH!d?uR?V-kr zF~;np6^82YAX-L*>akzjseE|^GTO7DXF)Z2h5{IqUZ{+GxYLteu77O^KfglM{s|<& zeg5U8Dpm7O&R@ZnQE4t_jRCEUo~;RP7DoLG(niixKox#Rf&@kenWgn zy3&b!F0g0_T0l3!uu;bqrvcLid=1rvhO zH8sQb6gb+|xUp+QYNkg*o_-*~E}CN-84EbZJ1GL>VZ^FP+B78aSFbJ4xqLa;(H=S14)!w(SC$`yYiEqyW>>r3oGXT*Tb^zCEk`D_;s@TbpdYpj;D56qU z^WX#{7Y0_&@Ic=%@utTKk_v`pXWL3s1!;K)M=X=eNb#N`^ZMF&0;rXrVcTfWre+!09b@LPCpQIDQ; zmrY;Ux& zsH!+F!QNKdd`%L=rj=q%UA4RTP_eiFL8S~(AN|ZBs30h3mysAF?)P;o0_$Cu;Ykh- zuNkV)^OM(x1WbxttpbRP0ph@S7{gH!>N^QmeSS8l0dQIuqAaW;z?^MuyUM3;A;1u! zO7W)rBv6FS%*=dtDMkE&9akvzOSB%o?CWgxK`$ep(F_UCiy zyktS3pIPUEdDs3@h02+G>0?MPauWMX5IS*+UQSPSAH_gK(z7ZxZD+UF4Nljj6{ULT z05`y)g{2@LHx5wA1EaBoH7o0egg8VmSw%qKEIJt%ruoR{!C1@%r)tzVLiZ*YI4cl{ zhlbeiJLiBP0^`i#dx`+@%(mwQ$m9epJa_wgYnL^URtl>Vd2@hU-%K=v)#5=PpPS2e z_7~>n=GMjoBBa(3sTATUH_=Vq~Bzy0_uNuOh54O9o_(M6w!R)^7~NZk8t_-a7D3Q=H3^PYXPPjMvOTE+%HUv zB!$nutn(tQ_LUO-iM8lIyUHew^c40Z8Xb8j6X!^Q^Ehor8$-og;+XfDIB%N<1B52BCOz62^VpJw3|@zXw3~ zWc}rZ$?}Aa>Z9g#Ema~BK;s_z&Xa4f?2+=NkK)#Vyn13XLH>n8>Q~~tHA}66u4!Ca z4meYE^)S&;I#Go>S_I@06x;w3WgHk&F8e8^qmPb?1eRY6N6*U=s17F|N_^FDUPLa3 znvV&%PTgWT12M&FaFBTv{}$BRw9g>dM}Z85Zo7v>`Ne45+PZ55@_j#v0@F8vCjqGf z(*&3NaF9ss` z@u1Q|dAW_i!{mf8VAh5h(F?gS)nxttHuHXc2Kx1GIAW)R3m}ARJ;P~&NHFV#Lc3pY zWAJwoq5PQ9Bq|OY-N1+idA8X~yF#@bg3=6}`ECi?=~bjpHJBLRZqb$N%b#=wlIP5e zbCHpJT7Vh=9H5R|6#(55kbUKovnYIuJIcgDcZv#K`$Z)buZ%zc&vs+eJYq5t)bg$- zI7shV?yORIL!WV-rj*mf6>$f!wSVO*WJ8N#;QMMof!fH`29h)FVUH`X0YY>xDTVZ2 zm#nIK*23Qdkxipy?zVrsd;Y=W_$uB&rL(5jG|K0nh+9EO`M|)Rq~}B@6pAA>CMiD> zv@6P4r{b}v;LRh*Va*q^&PFS5m;U$)L~dv^gEgDi(wUMe^BHrk$rNc+81ukcY)}&o z{0bO88oWMMYKQc7&}Ba!NQa7>>+9=V!$Wr)R7l!>ZCOE)r_mtgJGQx~ef*ue5(Lp8 zB~V)4Rut3@$gnyzftU=Wa5OO6u!rABSlWH_g4iUjWBmIs{0{=r{X1{VyN937xnaR^)em&+MfMBqbRtCS->1Y z$<4gOX9+8(5sbmqjF3w7CHul$1wHGKKM`j^!<#@h#>qMNZ&h)sys;_nu!lVwrz&vh zh>pOPn7-N&PEQcds;GA4wl!Ds`5EJz`$<9kmTYx)sfuNDF##?seM4Auw6W*gBzU`{8Mdfd^?_%Y(N?*GbJg42;I{G#BID zbL%F37LAhoMQ@%$RH8gH%s|jM=x+Qvlg|X|OY~8i=mWrgZx}Ktn08(A03sEsm%6_x zvXEbR$9Edo{b$TVJZJjUCQL0P6&%@?hmLW2cEV}{)}*tpU91Pe`a}e1lVPAHoc>Ks z2<-IZhQl6lc+ChQrjGV0`#a^iE#vO3kXAS^{1zVnkJOslY(&~vQM=9o|8i%VbN(AN zgVL`J9AQ92jF!0Gq*fkr*k%v<>5dToTYoSb#~~Zg6w-V#M@a1PpV#MQ&W9S%V?n9w z?)9%V&d18aw{=_ohQRSaLno=whN@j?8BFom0s_2kOqvU*x$<<3*&3O2SjC?pdS(5G z^0hVV2CO0-h3*Iv1NsUaWSu!|5{wU=A4b#=z^XWP7KJN4tN&B@lDcB7wjaWCeR-Y8 z#~HSi<~xg}qsk`5?qhTP;NYcP03r~24_BOe3w@Zl_H3B5A0GlJHPOO(K<*)o!Wq)I z(KrSep?z)OQnyMMvYqRJ!ljfhiUJIA8*R|Vqp=FP0l&F7ivVYcdO-AX4lI2_+ChZM z%8zg!juU+U8sq7u&Ea(3AUH_UgjsXkWHd+yBHAtO?a?s)Y|~Sv3sD7a0sU&S8nZ$u zkdbQIUtXF$0{PSlSF$dqlFI|qn~%TWin|XJM9*giS-`4eKbEWrST8e%BCvm;m}$(RkK# z7@S=lS^1fxk4KFK(r#Np`#K9$U=b8MuccCh1IRTTz_Ip9?$9w_nFUgOSYvF7Ns0G8d^Jguqn!x{+3JV}X!x3cH0cz9n7Qu^AhAC7u z8Ia8k)WZq=E_zJ7YCHS+*jK39IIin6!Qiwg5NKaQgB3^CO(6n97108N5CuPsA|bkv z*ht$XEvqyY-vqK(+ED%aKZ*k_Er8;BffGf)bQBCFwEUL(bt0vq)NSxqK*Lr@a$#bJ zVXOaCjNmU&l&}f|L&)4HpqY3n-(ulFwvbNpV=lg@wWv&|-a{PH=CvT5t;gXU)BP{| z&^}RU=kG)SNj>#=ixKJ1irSg~!)GaxNPW46w(;8CHDDr2@! zQ*B+AqS@m$Aq{b;n0ovPrej_gNhOUl?sE4p-oeP1S^t|}v>w2FX?5t|M1gb=_B~t% z*Z#?nK&pSXftCx2qY5yB;)+~pEF)PA#}9e-&b~6{aBE(*R;W?OVBm-Xo!nvJGcP`~ z1}?n^`2cBR!Z;E5W<=6n`JkuUfXD}B0(FE)^g{)6qHM9>D&iQow-s12lMX2JhY}Z$ zs?0`43>D<~JAR7bO$H5e$k7>hq3g0CW0)o|l$i0+biw!ltey}4ZUK=AJ4MewK#fp_ zD%p;Pvk*UDStSZ>Jj^%M1D%)$?Em%yaLS-b0r(N<7;UK6U_(8nBpe~i`8xfIf1Iqm<>5wx)0P?L|6i)fMMfs zt$g=`gwP*Uz#(f9i3VKVDD>^R05%URD$>4&#UBL#f!dU!rEj4?@j#3I8NWRf#xdb~ z|D9by8a_=c`?sJ`n&7V1SphV6F#8*p(bqUN|3G=;wB&C-%?dLXfPi4t6_`uPRQjzp zu_E{W{p$$*&;Wcg5*`zN6CR%&Z)r6m?Wm}28ie)!#Zam+Uh_M+`v-NQXBzV>qgkTg zo~jc`lkuZ}(;In7zm9e%FH`La%tFBL|3QluFc0;*8m5qbl|1;2e3A9vy{hhr`QLw% z{0E%v+iz!s`l1EW|4D@Wepys7L1Rc=p6JAm017(^ zLxj*ZpC!o~n9#z6Z19PPtFNzbxq?yUK4NhY;sW*{4mD{o{iEo&bNy6_hDB&O_o=Di7RlA+t zyydwCc|2Du<>U=!EXc9nZ_RM|qxcyavZoxdNdL76=~Ag`ihsIH<733k&XZu~&tQuc z*-7d5KYH21b|P*QnoNb@2ssSuMxN_%4ML@;0|Rz07ETePywi9cbZLa`KC~}+wRhBY zZKf)tq(sps+20e9dC-WQu-|d(770wHR`&1xAxHn}7uy?nr z!`;r$j#{c}&2xKB)}CKEn_Fs*67z26GizB34$8d7Gy6 zE$J@Wi_aW-%VPOj+p0z@caF^Nt7_GvIg%4XNiXNq`+8hx9UmQudpi6^ytTgdlm3a) zPd2R5^fWww|A=2Y!26tL@83UEtwf~u|Kkh(mL69w{_P`{y@}#p^tTTs;XE4YzrSpR zsTZx+-(O>I6+Ioj&);6-V*H|o%!~i_8jI9cuUNI_?=KQB`~T*JOeYx@T|T^lg}o#q zGBW(|hRr7L*7&#BbyUlIerCs)Xr;<+J9w7OsQlh;{LsaKfTSy9u`XG$6TZ%Gxo575 zSMk^NnHZfoVK6rE-MISU@;7hahO6=_J-0uVX3@aeTVZ1nbDzKyA08Rug)|0$bEN0N`-H}>B zTp{1{jb&Xq)02Wu!$17T20LEn<<0u`?VE9B?4rU;%RRlkW`~qH4zw-G9{;g(n_2aI zVbe;F^mJhtS687^AGh6)jy}@E$xN14ZG~s?X^Q--!tY9G=w zxzqSi7o&xR1tq1a$^NCedC|(1{;yu`cbOcl8R^PsC{HmgVmP%#$x$QANmxKP`_lGP zA9E`z7D?0R7Zw`SXF6go3)2Y=? zoMttN-YF?5)qQK_gY;^X^>1!7SzMi{{Xi#M|K;2j5-!WKoQDhX7=%NYEM9!>(4Fnv zTed9j#^N(t>?CWeB-6|iNdkUNlqVh2EGjQA&sM>%t-am%`~nVBe&-;QMO(LQ>8aSq z_2TvGd2&&U{W*5X9zTA+^wI0rua}8CZPU`$Mj+{1SOiQ>jyHFHNYylwHw6U>CGp?8=IW-bl z+Q;BMYvoS+{LjzNEMjN(y)A5(m!CiT)W@_6QJF8j%|(kiITzyTYaBiL0$-Pqkhm#o zv#zhNFZ5$}nETXn{C4Vzx9^_1m4%8U*q2GTJaPKaQW7lW(4%Kpx_$fhp25L_wu(q@ zufxH70!7$<;d?GDOwP!-kdh*F_wL>Dr#2@a9?SR<*X4QytAv*n&7K-FJAUHC7eB%5 za^CBRV4o%HBa|X#Hwy`!MZ`a|@A91-A2z$;tTfqL8K>ef-jzZ2Q65fz(Hyjk|->C@eD zsu3sN-fpYQNGfeUTpNUt=GnDtgN6Sh>J9T# zr)a3@iGHTr+f4eT+h3KG>Q9zH(C2kJ?(c+}X73vIu@lhNM3apOEU zH@7EFgS=w)ofi=otFU3NUcFlT_!Nizk54|x3gYU{h5j5DZf!joaU?;r?R^Z>!-o%( zEgB>)t=zd3w{t{Sl*B&%W$-@w5dFf1)nXD$)+^*cGAgm09J4!kS41gm;j)nUII9=QC)g80Q@>Y}>oh={4|KenrYjpZlOqkm& zDs#BrnewR1u!uyOdG+SaUaWP`w>uU*TemI=7St__kn!8>JY>FX8OyW~KM&6=F1Hcx z6)RU(JU?SW5~h&QB9bt%waYUs8e%x#xAwkXAEsCR@M!H*oAt^nD*8r7b0~+NMw*Gq zNvj{9MAJ^yEnO{piKI;ALoW{x>Y?`YrQF=yl+MBFqZy}H&Rw{Io_qGWbLSeHn$9{8 z|7hxIda3c~_&j_i^kY)VGcL+?`Jb zRa`7x_xRKzF0KIl?!7bJ^{?K(mC@2#;Wpm2!)5GyOuGad7Z;Pdy84qRPueDg_8v8_ zd%S?!ro$2HlIc2bKPWo!)rN&(&a7FpLLZ!-iEv)|nUZzD7y&lR1DljN%%#rT#-MOV0AR zcRvSkKIfXBT^J|MMVXBNq0kz;0?Jb<9GLcoIWr~POPFXKDB8z?W#eV6XxtF zPC1%-A`d0^Qr zE-BE-hUy}gG1>kgiNV#?mE<7*7Nn=eOP4OqD=OOeV3T)}44?&j$99W)e(GXH-pi`uB+}{2BFH)y!-<=IG!ZQm!mn-3ZrZ@~ArUEbLP)XqW0|Bvy7eH zbdz8v?~sg*we_qX2f0sq(}_n@=OPmFlJ#G1EB;tlXNbJJUrvs0<=oSn3 za{9DRd~4V)$HfF(VVhN?o2mQTEnwf4>)f4nVe84#w!5abNRwh6f{EIIvxj*D+l#PZ zdESg{$w+(3>4OJyrl)qUQw+W2K0V$rg7qy=Gg0aMm@eNjD2qi#QX84*FSBZ|-1sJB zCmZT{L7YlVITCZ`)L4g6;vLdsv>CnFC`-DH{hD0v6GHXQ-QuLUkc+y!a_4yz8N;SL zZ<1eeEuK1APU8JT2?+^y3oWY>wU4@oeKa&QwdrPT28MozLW>a=9Z60J;!-dm3o9tcn(E+d;0b+Y2qC3f!Q0J=l!l6`wy zSpL%yCnvEJWug9neqY+F9-!=0YPgRNol0okW?U|1<`HShfGguN>^}*_Fjq=bv8K51q(3xk4!qMWAuEC-{1Fgxnuj$7ePzYW&qj5hz{R-91GXYaicscD^*=aTY@#xj2E3>xY8GGl|LU<649e`RA%|IWl~Yfaa=J` zQ8bi}V+(6Y%gU82g^R`g=$JTHNlJ2EU#}?e_+Z70jMg|tYN>#hhQU*$(#3T2z|$2e zhWqY{Sj|GGP_VN*llIuLW6PE;TO}dESrRO`PeI{wb-ynM|JKc$rFQQ=Tli>4y#wvB z$L71y6A~DbS6|P0{``4|ksj`EZ|}s|j6a*tC9wjHMWHV%A2TQCWvoXt+BNzG3#!`a z0HO;Jj-;WT=q=(JnH+AQp%!p#&%d!zrE)S^1O;Ft5F@&jv!XWNV!MylM($&BnVuXL zqq|>ntm$4{NXSZ$=@!?<+_Q_5tT&yS<~5r>aOlvSo)OmC1sDvbrfrAGX#8ie5$T;xc7aO@en>V zY29+0Yu*6qH+3ZC6b5ZN)`PZgVoU-j$0*MUPSxhw1s#&^xVFaC~3o=#`})% zEW0bJV&Ezh6Toi@BqCz$CF=&oCn&%?b20`W>^>)oIBIt%7%m` z4MG98MXRW&2vq#IwiQJ&0{imjF2^lyBTaPl+{xHM$~7if6eO-e*Z$Hl$t0mCy*$`q zbhtQlW2#J7(#=0CX7G+U=oox*+N3I;m1-=LoOVehl@S1(@*q8ELdmOFQs(C7agS+l zoZ|9TiIiOsLVKyVw^vi8L*hXA;oSG{m+0&3lS)GA^?!TYKFDg7*b#wNY2BgQjY!cd zO!Fl^B=#L~FzUQMJPdMa4z*_OT9ZIQt)Z{3i)Q$<XY$^@J!F_1XH*hIdEk@Djp-lH zyKQymiI`SypmMKp@3EYoa!nu`;~{{>Vd@{d@Z*1IuK4TOTybsc0a4cQr! zF2Tnq@7n$78jBA15nF2Ax^>Z7(F1&^$6HH7-WP{&1KeFmjnw2!c@GTOhNv@fO1f#a zs-}3W-&xMV5v;M#);6tBd@;=`K|w|Fs^;ruIabYc1#~iFZOWfM1eD)wR?UC#)|NSd z2<$~gFJ91Kb&DF@r~L^i(Cnh+Y*6fZZGYqB^t=TNyq`W51@wxvIsD`G?$m4Tn>ySO zurC`LxMCE;3h@iN{?@>$f>wtUV;^wkYTmAdj+WFck|}5gCSz91iolyoc70clI{_8Ujto=lcrK* z@2cX5M^i}w0Ld1C;wEC>xvVr)+;8DZF=N+_4GG6~9K5-irop9u0oV*=t{s4+jc7fd zShp|?b=6$}gvvu~QjM*xbO191S#8|7v3>llKbIsYRUW6Zey^--ghfL(_JS9f8o=#E zEG)Bk?%au{gJE)P&@(AX5N+dmw8T8?*Y6Ye=mq>YD7w6IE$8)n_f}OV9Ag77l=mU^ zWD^pge6WCiM|DEm=jS_kR<920xS3&E#gL$xp4Xi-eHlc_J#0_39&^zkT;ddWy5Tqu zI>xvmTO8L)7p3fjovr@h4Z*zyer)7P4|dcLssL1$rnt^Jp@x*)dMz=ZCCEzy@b*o35-ggyzKfe$<~}vL9(>j1jCvFYb^=}EhI z@#18wW?2$OZ*B^;KLUD1XEM@PB1p&x!rguR$llb{M0wzM2mwnwcYf}tr#2N2k8Ztr z^JXJ>AQ6Y2Rj5H%LPE6To0H9I1PBX+^eF>~LdpjSQ+;Hx&D*!jYG~YiW{v^?*w*yr zON32wYV7!M_e;dnCe1Xdm**EKJvg%I{{8!n;QdG~<=?a^#bwmmzm*`bTF{$rlY{Cj zB;8h^E15+R)&WK70^!M~{AV`IyG1j9Eq>9+tc#u>p;~kAtVBF2jGwf0QE(*QNDOG-#^8C zdBiu+Una>&8RUAwW+Jn#u?2OuxG6dxtmhK0h$CZ}#pj^BVpot?|A9Ft_}YKM(mF zsh1Wl-d z*6s>{K87zqsH`f12uSo)>jQlOJ-Y-7QKtk)jt*b!X!s6zvddLNc z&1CZrkF3qqm4Lj7{;FF$1aKQa3zBe!{92Ik0Brk^Mu<9vdjB!qEYfv+h!7lLRy02x zS`*KrIDT*P(Sje>GDV&ov9B6r+zW*y_$?GFA=|dYPo6)2`R2`hz|vUV90?*GfI)ho zTvv^@d;^QG+$maIl-j1bfuAX!h<9>|iu<11cUg`Nn1C8=(w!b-L%)0##d`I=%Y@b= zFVbFyLSTJ=A0uR5yLkd^mu8OJB|pDCNa<_S6P=8q zL>lb~KdAF~XlC}?x#;Hh?-mxF~@D9cVCDdi^9vBSFU)RrKKY( z7MOP_C?b|9LTKjX80XD9i)MhIpTDP&!=e#vEPI_}U#LB>{vQ08-l6_7xW2m0g{(AE-?ihg}-&#mV|GCeCmWKBuXkuQ`@JfTR|d4 zr9w_US&`%JURzhUCr&l5s){voUqJQfi=6w9SjN1R^jULz|pio0# zAI&n|Y!^|FqSmw0;fHI~MM73nq^YR+{_JECYDCXRv!rlTcA%8=VBQGx2Q?>VMf$Xl zudlS8-YUqQ_f&a%i}{l7A-KiLo+4J75J49nJmAB+b#`?T7Aa(S@zH0t8v*5$D;8L!5OsuipKd^@2?&bl zHSI+HRu?6d8fhshiqh-*`kH+*rETB|9%auZX)r-@O0kORr-=>=ehZA*;}K^&kRh@XyT zi@6_H>-XGZ?3a8!=xoZt!GQ%f7-*|tmZlsgIM=RQCp$UqJ?(qC162})4+R_ps4*K% z(xnxm${qc0ub+Bq*)$6#js?e#)t$`FKt>bzRu&eJsQo+w(brx!m#jDXK6#fP2%7SE zH9mmPywcKzfOZvQE;<_^)B;0$;sKAj*5BLh89K)K_^_kPc5qSgat?F27iDexyB@3@ z-|7MhoOE^{(@Z?;vz(j3j@G6a(xE56Ogb;XD$O$J%Da*C8XFru%F7RfQI`bv;zR#) z5xrM9;*s#I=jSg!*IX1}h=nI&=1}K{$n*q+PB>652@8plMp~^Lx0U!3;Ep7|?};ra zX~%_?WnQ{;E|BKzIdfiMJE9YOnP&2ynU&Q$Hg*H_mcS~AWBbqdamO%ANqhWYg@bGwc>|jIRFc*8u z55z2SwvYux_VGg8N!T0%i$NOgz5DhNrW|O014x79Q+3;C)6p4DO^nhrG0{=zZrK6t zU!wn>@rIx+%blJ}vrggeMTEr5f&!Uld5`sFk>J+#NgYyquoT84T0TC$&bkaHw4DWn z`9@}7Xb+GirFzhY3HbSpLX?ct^x0RKPDy;kBh{rva+%z zNcA^&b|^-MM9TW-O^o)FR&D-DF_zrs-Cux{AC#~S4mY?P;!Wx4>2t@sbCNij`OGBI z`V^2}9gU)4PvZ;7I8Pk=*P*@;H33^hV(^KVxA%*h8aD7w=fN-k>PQJek7u^e(lS|g z)Up2?X;0zfAP#`0&dy7q-#Z&}xZq1Lu1O4$9VKiJ(v&oE*E8Giv%q>%0lIv3>1G#j zZ-}gL*g&wo`Q1ia*Z?TzpzYj;{*{98aGa=tVy_jdA%=Ps2kodKP>dp^2249K#s9{rdGD_~loi5ea_K)ALZ*ag3^TJqy6V34vfa z0|Ucmmk~?sH_ZCc+~V9tkNc#khh85zjGq?%bOqRy@d? z=gDpXQQY1tIqFF0$F_zX$$^0Z<`pY0iP^O`;_(w8LF^!eq(JFnA7pc@9_sCVfwTj1 za5BbidsPd^H^qREdvvF~ChR1IiYLp(|2509d%`xzQKGJ6X-NR=g<0;Udw zhHO_6>#rAOotd~KE|EP1peOD;yC1UEx?V(v+UkG za1BJkb!rtbNdEdT7am;XMzAyTE~V&H(t=uAT6{pIYqxcD_~9Z4SH?@AxC1DQI@2U>Af=j%*}W^qbxz=OCZA;a@dN1-GEsAf~E!1snLxk2%a z60=vd2FD;EAi!Qid~Y;T-~o3NZoMxpZ5s$JM$#B#b5@qv4Tim|o`xTSfr>zaKy$b! zOAA#LHJqN}*|J5s)h4VmMv;p~3M7eXg7cO;ot@?+T@WhZu|-3o+7P(n_UQm0pGA~c zOiT>at8k}L&T;g4#a#v8Yu` z1$7>#xIoyQ<1(w35S)$ny))`#TwdZJQ|DzT1+DXS0ouEc~ zgZr=UK#~bYzVohb;2^dLp%U11HPk<5OQAgouF9Po(0!djGS%z+ z`S@T~w?gN>t)}6~TV}g{z*@24hgt5|ugCRGOg6%6xfZ)ZxEj2u9K{T_PV*GaDwyFq zlsmho+r~a!3klf-A~8x0Wj8esD3#Pq!%;9XRfBA<)BRvSjMG6xtAl)1*U-=~&ML$1 z3M)ra#-^*(&>6@&=IHtpMu-$_0E~dS#~TWv6g|-i2}C3ap4i_&JwUcJ6ECW&QZu`C z_AHI;rDbQ&otqV+GI8t99Ye@?>?K5TK(k=5LfG_%(^Khi&`z|JRO=0%>gwtdkipx6 zz-h52Weu?dfAm+z$+8LRT$-40c@rk7>pI6Myi8(zzP-IYBxE(8x(%u#2@TiP#XvfR zgK;DI@-nBm@1;xg2d$~7(9riYJ_qGEFQoOcUTEb+i$`ac2P~8I31pC~@L`kT0{qXA z!yCKjk+q#&0Wgqo5UWm#J!;h8BjoQ!Flr!`_QK&HTufXQ$tfu>;KI9l=g#=SuETMv zNIp^^x2xW7Uiv6GIhTlaSm%ejIa9YD>sI1zDGGG+YN)=IC9Di{up{SrODnaTQ=ccB zUYjEwfPbDn(V;sn4ZM<83`6NLz(pkZ+uIH_$49XXo5s3NJ~WH3K+mO*I;vTMO@SBk zVkS*PXy~_N>rnF&`09NlJM3No0Rxv6Ah!!gZ_~_l5K`r3jaCSW7xum{9qxgRQT>?I zd9>@s{LjIjqZ~K3w0OhnrfB#XGDCT?{vL!1-42WTN{tx4o#@#Tbe{)*yX&sAWZgjz zf{Cnsk z>{{=-6ecOKS?@IKW0h6|gXy8R!0Py3vjHa2gkgluAS)UT!YjtdL^l9^VZRU(En(OZ zw!u9>4O1h{O!uRrSnCS=#>}xBRRb-3m3W-uTp*M?bY~4G!<;mMR*L8)FbiBF1l#Lt zYc*0&EWl=n5(tCc6y2dAjNQaLi7G4n_zbaZh@q=R^BJG=ut&ZfD9G&dbh2eg;wj-% zA5~j}Gm*K9khzIxVVgyLX6+=9E;AJybCIvOyqp=4uPRw>m*k6*{SuH5lIJ=2vYdJZ zVbes%`Vx)-PiRm2#WyzAW>|2|qNS}eVxVL7Yer8+AXinq+7r8urGOBSF7|CRdAGND zkIIoFOR=+P*RNks@V{o=#);(Nuh}dou@OgL|7e8n0!+*Uwx4(^qoP_=!p67B)Ge6k z_MAe!uPR~a_6#?p(t9L=iPiv5-+f_A6?SM_(sFVPXjX0OW7gmTrM_QQH(4QOOOM1@ zP|x@-KmUH^2kZ$>=)f;PnD&ys7lEp&lE5iyJ)0^=a*R2hdf!mHRubK3diD3)=VBjD zmcM(q7^XB-!HKg7e`3dI0~&)m7iZ(~Oay!KCHT_hlVzN1)~ta$WuM_BR<%ku|3*tK z3zB1C^`kt)cj0^J5^DI-NsNq-H$xD;=$-}9h{s@ zcjctDx;T~(evIvK;ZK?x=P#Oayit?FKe5wl_=k3gJ1xWTBwmMoI9z!9_Uh3w)t^~B zP;kQrdPKn<4UJ{?-Sz%Ryu`Sy7{Z$xn>V}!ww*#W3+dG-Po7*YD!LrDANKAp?AD+ zUa)d)BrF*GY($1|WqKH)TS;3kT7Fzlucy-PnOlX%C-Dso!7D(-X4 z09{dK^x%WgfW1{>^y?DJ1APEm@ZKtQ-QBvnTo4$UrB`ut?>@=F$htDOss&zN?}UU+ z=pBjuchFVXX`t;ax(uDxD$OW0OGq@wIkV3|;qe_dl$2F@ZOpT1Z|2O*!x5vA%{+95x zRzt_ZhDQS>eTQ|59`y_wps9mJ`°FDETzj1XG4s4hmJih-Mu`AD~p0s}rz)%Y`* z)cB{vewnrs2T;{TtNkRCxo( z;$N>vUSpD`51~EqY_0@i2{Q!-z(}M`LRg*0hzYSbp#dXgRp`el#5gB*1DT8=8a2$m z2FUzm1O+acShaeT2x)rAv#oJ;0&lZ}q5{PJ!;o{((6{v6-G0_Mpx2{gMpnhvp|mYF z{ES=gO1iuG6s>|t`XHfT<0)NmM?Ckyqfqy33WFc<-j$K68Ta|(ruEM-QM8k%O_l7836!7>^e(UWC`S1`hSxH%*;FN0>j^ z0UpMu%cZ_-E&^C>0R*D`3=H1V&Gjl&rAj1d5wpMsNS@wl9U%4E$H%_M>(;m?hE_ha zGoz;O^tCvOJ96a_ZU~*atG65yJE1SkYm;fDzIRJ%?EgRgH58}r;CIwam}86&E*Qxq zE;x)ZplKsrwut-GE|`{-PuB@5=%0r5TC)QM-m0@!2pYKY#JMMEZN=y~0V>ij`~1{9 z$u~pPquZ5l8d}lbcXDznNHqKDP)h2T2rVmyLxzx)(CaV4%hv=5K-{1n(}#RU(OF5@ z?OeOEBhScNeO*xWp|bZ(+S=MeAmouUK*(!-&XHIC)NzGbx|MCak?8id8+WY(J6kof zXt(}n@{bL}Yf$J=?PrI%4&8FvyuT(p$hI{2tBGs+!{P_iK}9KoC5}_~V^)@2yL_~% z!3V9Egw1n5m6-~r8Ulny4?sTaykmE#3M+qUh6*Nm{R zgqLNO)`Lf*eK2s)En*wU3kI;C@Qo@MIs$1ZKnCvYw{=Y{n{hnxBmY&YBxGNlbPoFK z@wP>!IP@A2BSY&ml8%vn&|@8GFpTS|@kh^7vw>sD5>MC@zZYyDnih8%Ic(-so;NsK{)S;6y<*M!K9nK<&SR!4QIjTPrug+98&qrV0a6wZ}dkolvKbH`jN# zD1Cf<$`5735QNGI0OhvoLvY-H>np+pNtBi3W$-6FaBm_5v>T!67=c!k{@4N+2je~k zX{ZQuCGj>_dH}GWoaqkzyL-wU-a6!o?^-+l)o4}PDq#X-E0$xq!ThBDc1X(7sIn;r z1q_{^o~k^UxUPGVMQ3muo{E3mUYL=qROFUsZHZrF^!)-zT+m++kKDR(g9X&ljrb(i zVX&@{CP0mrxueK<+H&ye*?Z!yA5-3!Of_sr?f*U8u!WE5Bg9!NG& z0n>m{Vrma2pxxOiWaw58FG1v<_x7HXJ=V?_k|BaY6W$E2gm!pA&*4V>pD{8p^n8yA z3leD?L*6lQ4JBEKQ^MsU@ddfcoB;5L)=%Cp&V9r1eRvKMhC5^ei+Lr7jAnMra zzu~1;!x#z>D2x5W3@aH(DKa*P(T{$Wux=o48Na1Xo=g%R7cS5d6AvP7HGE?LxqDzi zg3jtSJ<%!|by|fCmdRaNPe*es-E_{@ty|&#d-3vRr0TGgACN8F3q&AraCAg=r9llO zej%_T+oF#ymv9jwJR7>hW`J-)y8*IW0@K2By@=pbAQ|E4y;W;52aGxk-`v5WX01(MKd zz17DoUQ|}HfNTf4l^j2@W27izm+5kzDaWU2xm!Ps>Pt^_sV&=k1P$+_!HR;J@TI zpneAMsVC}zV!SD4#|tZx{4N2)X`^STNYvg*3}`?FNIFHxCgtGx2L;as%B^*qo;*X$ z@&K=G)d?Kn`K|^9orjwSa%CJ{_T=QGkoDL71aZ{Y*SDLf*Fa&!UefaQeeXL&CM?*CvT>VcDDMx2NNJ7Dyom^7*O{_$b*(I zdwIoZrAe^e#-u4TjG>bLoOI=wbt=cw17xm3V?$ybOP&HjVsVC2P=6+W(H3-+SXxX% ztVLR(gEpaY?AU6|*HFo@_ACem}tN}QXy+rKu5PvIE zRanL#10|#KpeKxkHw^l5KHScTSNGh)!np|KBf(vjaZ5mP5{uRBxpRq|97G=YSM=d4 ziR%-;M$`-3>K=%1SFc}>oa%l5ASv4ynq%gb<{b!%36ylm6e}UJGNG>p8YJxxJujETL?t#=&CnCA}+)eAXy#oBOS_Hz;Bq@@@jC9Wzmr5b@7G63trvvK41xGvo^JtFt+W?>e#=Cy?_$*HMJh*#{zi`^rm zqdpedqq5j3ds-#LO|VU8ei1>Lhk+INH|Oc<>JlIRjM=SEJyB~BLWvbsXDN9JOlx5L zMri^rG)*ISXk!(RjN}Ph1!f2TORz2osgnte=8C?5|00n3JY;9+g&W9yf<;6gyo2GH zag~6g>!(b~&0!7`ByI#S=$Db+X0h=v*UP?tNR0toI^$kM&qBiK3(8LWmbKzJhh1DU zVZTkbw6$e{`UK@(X+GyJ4Fbw;>~x>X9BGRT*o(OeH2VoiKM|O}BKFO@JI^R+|2SIe zsEshT9?0DW1gUOWJDB<| zwADyF2$Jd&C^^JeM`KF9v=xTBnFh0J>YOJLfiB~nu{$F@9I}M;Om^k zwtV?Uafq1$=lmp(TCK=f7^srJyH zC7_~VdTIxON8~(%L(RQ#&3_?Z`tj*0t&L5;oatc6YT#qcHA3(#fXR#ZxhOW??+??v z1~+1FL%n?GunXr?;LD9DfaEj_K>2Oe7HHy--CKWK5#i2SR3WdB^oT=hZ(tIzJsD_6 z(wUf;NUP?8RT#h?lDhHQw99~-zdwqXB&}K#Ur1O`$Z*F`o_q;%4fX<$;NajRPf6Pi zPcmkdOxLDe`~5rkyLd_W?)|F%WEKERxF4$vP0Vd-^dzBj<}a3T8lb;?`SQ)p`m;b| zU6(W8M6T}FM<5+6YgaYFK#`*}_;oThvN~bee~FvBdgThWbLVq8^Oe7U7=H)S)q7sK zSPAAHUGugeGQS7F|Hpz!e)8%X2PWwVx%J7&J8+55RiU2DKcp4lRkC$NBngcTd=_pGa-AX)<7JEAu|NOisn*aT~ zcZcEO!S$Q;+;NJKQx$2sf@_GH(%-mYLoTo;9P9q-x~{A^?E|TO8_I_#Y8U|>NTV;I z0U;TdY_Vv7O%MG$68BfCNnQbbBn1uW$m>nvtp)rodAnL(@VAgzVXBekdeve5Z&+7$ zTCZI> zH90N=NRhO6nUh0x1Oj4PmZ&PCsRjt6qazFb>m#0WJEo{Q2X2`cuU^IGbqo#-$(oz< z!ySj2P#+wA!cF`~C86+uG-nOh(^7ZqG80_L=}%9TzBxIx+#|2`=S6Sgv?2*^rV|_4zHR*d`GBh3cQt$3i?Qtx)Ly-Q zy&HiBjNpahXY!Ef&1f!^zjd{DbUa9syC2MvO5)*XRM6Snk8t>B1b7}@tfsvpdwqN~ zw(12?*(kXL{Q>*$1%(d19tzx9Na*Bv0Gu@<1J_wH+#RF|LP<7C>?!XgEO#9sRYX1y03W5IkgxhKzz!xwr(UhyK*7L-O$OD7)B_canwg{Cs1h9;W@u_U_Ga*Njyo3^uCmXkvt+|dOi$QAyPO9bh@g!) z@WQFPg@KU;>Pb2>0Qe=UOfieEAb|gh;ne#Pwd?=SSI;7cGO2L_)~TrYvqyhrLBy%2sIt=k$VD@c0J(Xu zDLl4FequERg@v<-A+aP=d(WPittLy=xZf!M-s=pn3>w z-9ms9ORz;4T0fGght#Zjm$-Vq7J!|2@IrfCYaX zx`RGpr8GUiZuSarJ0gyKYv2yJFR%j$u662~GWvx{@AVdP6V`lh0z|VXe%;bq0vPb2 zHXEByO$7}ndqB*gJLl1W5F9El1#Qj`W{yVGJwRob#4$L*;Vv1~s=HSleC^sS3goEl zKT9#5{mdePP^2hW8+iY|gfrD+tx{D1jWmz+?%g!7H27h<1sw~GgA3DrY()bYa4`4c zkk|#j_+@SF&0&>m^nYy#m(iogj?E+_q3zof|1$}u;H-#Ts6WVQIEJYRpc7VxITQ&t z9oIoM^!)19e7{O%o6+^_x*lFP%q!#d=SR_Wzm`{S1phVinD&{SEL4P8mZ^N5wvCL%_Goe|=wt9UIrEBrbeM~#WHP=D!i5Y{YGpa8nVCLBHx&U|5%Q>jiuheQDQv=j z-G?qhiamZbN9p&-D{L|4xca z<(xR*0H@b4Z1D?Ku#&t@>**`L5;Ft7gkBmQ9i=FcoaAr=SW9F8naELdaNm<7=`g%O zdB8w(a_kY`&Yj1y7C1fK7+73#pCIPt{#c$3(R1VgE6pp#0w2q9EjNI7dU632c+h1-5m3riIUf^ zVexlZ^n5q#CDFen;iJk*olE|N%|8+e6(~0+P);q}4$e58W-GV`$WDQv9Eolh=Qjm7 zh2Y!^;-8+sY%>LSkThHi#j5IXhvVp(lBmzBPthPymYVd-e_L;z^p${MO z1HA^Gd>?lWxAG^~;~%`fuF`+@zzhWa{kVRfNY~GhlmSda{2VYhfT|;8JrT+<6GD+G z7DBKgIlchgCWp(d5V54d`548omz12A*%ro&iC;{moh_dCyTH-?Kd8imPM|Z%FcBa; z;3IfBp6%wfhrc<2kPc5u(hbF4$m9PTI9j2b$;x*`Z=|P*%+_G60hk{A+L3QvuyPO@ z8MFjBxDGTUG0bT_w@=WjEBQAZ&g!-IezbC2<&K2{a`ZIZds8~(^LEf6+WrI_{vlWo zLdFWjVdcZ4OVFfZm~(9Fsgrp75wMdLK#Z6vWq_t#NZi_xBbET*;RrhCr)k0ew*Gk2 zDpl|tq?rXxLT0Goz>-E*sCOGbMHqdYA_s=-EM~yT$Os%Yggb>yAZVkFSyvKT|Hy5< z1>?97az+>&+n1IJeYy2`5oQ3$QGruaQ>6PLCmxY;Y9eKD?sD(|^=oY=_%r+7*cU1~ zI_F8y4WGLc=d4ZDS`N5e@nx+uxH7Ve^}upb4V$m)u5Brv+M}Cd(UDY=(H zI>Hou95*H$A=Z)8{%|G&bd5$d9?#Eo^I)a|l?4zJ4iuys+!T%=#4Uiw29OZcBM9R7 z@qeHcM_}3`_Dk;9U=Os`7lPNHO^x7i4?UdXsKdEz*+pWtfgX~N`q|joIq?aNfNyL4 zT(t$*V`XP*W1!$D07C}FIaML-jLV3#+FRYb-lZJvqwy44fNUc)CAc*(R#4{ z5$oKW&&PSU2MllO`ofk=g)w&v^0`X$pc2EFNf14!47he z4E~S4r>Ash_pUSAyOKzN_hmY+yMMeHb&1MNxUp~l{@1eNJ5&3NHND3>^!Nw*xO6wg zZg_Q8{|L{cx2CHzq`YJO4zx8y3~jY|&U1N5*`c3U4=4}Tk(o9DR=;0u!pU2N)zs9K zc+WKmSLwoqayWqJ#=u`7O7F6oF4!N!HQ_k9km16OnZu1BrAnf*;UFChpxRmrXRfe1 zUjNcZ;e!-~!gue;g62L`P4AA*n%TUbMe6eyT-Wv;TuD)~V@~wO#=}~5i5HvmZB+gw zpB`}~VSAWZ0A_wAIE>%XW@cul6|Y^tzWI(t_6v0L(+3A(54eX_!qKFz_3KpD$}1|; zQQ&D*t>xPsg?@or$4}X=;7+6z(K|3uK(g*s3!GQ%olS}~gOSq)T@j*CrNSdA;Ujjx9ZYa#JV*~-)4lE@C z87DXu76#<#m6euOkGMzm^|DRi<V`8}VMlhc?@*ZcJ=S6T^*bETUfyc%-r>|N`6@^XVIPRqwaFSV*T z{!jsi0P%%W&F+6#zuboRtprdyH=KRVc0)#=W56bP>|cj@=J-Mg#LNJ$hzc^M3=tZ# zJG-YBs4k*~;fdg=i~A?zi{PciAjgVTH$1|_xv9^ll%fv6MHUzs=rmSZTn%R`SO6|R zHo>_)BfRIqpMkMwK|7~5-534PLD&n``%eMi1yj>u=y|;T5{mW!y!q&%l5M{$&u8Bj zt6KIN#S}-IWM*X%XH~)=DDIaW7MW);LaGOQP{HYaHLPA>>?(>w{|6{IUi>KDHCTQi zlT3%j#lh_#%t6-fV>+2D#H7Z=8&6Magpb>2v;5y`a!Gs{@;#~u^qf5yCa89$XY3Z& za1hM8U5FDL{c%?6$&>6X#!AM$RHfx z_*`m`jlb;Wt5+A_&)XldZMY^pnD#GN<#Dem(hfpO6S^oi^>2Vbr&+RvXFKB9QRsT_^4vktpi8G1w1{LG|7h^$} z>e5TbnsAm;V0 zeZ{-~8EyX!d;gVlMH)%`8uYWppZQ$j7oq-P!K#S(JyFV8SH33`jshpN{HTla1s(V2 zVqdKIt0DXQwGw&czll?7|G|TMF%t<-+^ojlNrp}Q`~WiZIXLcYsWO6l;Kq#`)(v#= z4tJOSh1~zQzTwcXoe9rA3YrHo^o)MvAWRPBF^6%f9z=rnKA=F#gA9k^;B}*T}i3ySdj_v}tdoXm@a^e$#m_%$Ka3$+uY?+Wp z4h|v!eZ{*(=&7G><4v0qCeC>Asy5wVj*gBF{Iu9f=T8T8SJub(%jl-xy!9V2IkT<* zr*cI+6G8k(&tarI0#-s84Mj1_?gJSw9G$FD`~$=w+{9ot`7?%8T2P?>$G-k|@@;?| z#;-a`y0|~^hzUdWFsgA9!Chd+xv_I+Gt9_F^==pqBK~g$L85X0`cR!S!+a2~^ylI9 zq;dMimEr+=0SJ?!@!}l#o$-Hu8*zYyyRuS?@fQy8P3SyvSoAj|-KTe1mE{)^@(-pC z7*5TQlauqW_KX}B4qRlNRFvx>DE#Q3ZHg+(I4OKTrH4O2HuZWe`@ire7j`tbEWyQ) z`LRMZFPtlkQ+D>;>Zqux5ljNyGW?3c-oS6a^Ot59Slt1hjH7!9w&gGUM+) zJ%tVjQHTM$BDBebZ~sOJz+UjHLBppH&uPx={gWQ>kAGiFJf_=QgoR}=L_x;=(8rP^ znt;e~io6|eZVI&lGTusnN&!$Wv8^Gfy!=>6e%fNg(OKO zBr^>pMD`vPQXz!M7NunG@qQ1bThIUgKkxH--#*>_^!w{MrY8B41R zsLc9@tGq5ql;iK??q8XNs1J2pZd`lBIe-3D0DDJKxO_7pJ~|wrgu}<7 z3%y7KC_)(a5Bqi~Fd;#MN$^c-mDGik~KS z>cI?E)&kI#0Yzb-G>Qe{=|QIE@qAs3vI@h-@J4GoeVZ9c*wR zu^czt-SInzpEmW!jUjtn5tkPYJuC2HC_5VzCWcg9^B&1|)!f}>QTXCf4=77^G6(^5 z6DVp1yef%`L*00xWnB`>Q!Vc;5_1VDPk;P)v!bd*s8Tx%laU9~X|o`dGx;?5;AE*G z9AIaOND*}jMa|+Gzmz%t$(aP23JLMz{kMG-=K#>7ymjl>YCmsp^rUv!xzfTuKVZ(W zYMNG9{N9=h-^_+`8*)N&%>m<*XgT7vhtGfywy@#1R0_iy`M5%u?Xf&~ZpgT8{Qr;qnu~I8k|0w|sqx$cbg)>KO>gu=*x{SIr*% ze`UJO1`=qG^7jEWN5or1=>rTQ<_^RjkjxuwP$;fZwepclg20sonnVqe1t%kc#E=um zLKMarD}Z~p3UcXRDi?q^Jh*2B)G3D1nPe59PnNPDl|o-|`1@I#PviFR4U#7ll;&l` z9ZupsF8ua@S3_4%6b~Nm{BzIH%P&*$&w^659-ed*{3IQP!~g;&(%2!sGX0yka7iJt za;ayHjriujD~~Rg_TZIarV!6Q8=;3z0M(8_;{iD?<+AV;_p}@tY)jACy&# zLqLIg`Z*FW@IQ`WzlSRNN=Ak}iZYTANo#3qQ9}}0NTPiD3Q0*0P=t@8A|7><_&{R! zB|1<7E#R~uLTCVe#CroL1hHC>Ni{@BKtchbDTc=N3X!eARwHNKOHo9j3$1AmWFwN$ z$-AeR)@86_D~62^tKtFqCNOD|Z3rU4M&D2D6v@LxC=dzBp-41^2l|aB3_0Okt(Xs3 zr(C?~&U*}n>D<=X<1mUE^ zaY;yP4qBr5fvS#%!sE(7fshk`0vjFb++;4e*O(Qgfu%{o3;>IWgta(4Jgw+Ue62Pq9zYH3F5op@zbf=BN*bdfHVoT z=gigf->It`FY2gsV4@_~yx5=k`0xvFEHk;$F+F5$azbiz390jOMqS3fpAZ8$%lV4L zhSm86RlbAW2?OlM1 ziMsv}(C3(H@W)D!vvm=n_pdBTl2Q8{u@+E=3IV|-l^t+&Vnvyq%2?lZ-jO2x@lkjV z$@2!d6X6CKhtpBqSstuFHb97Z0Bk9&Xgyl2D`(F%EU8sI=8w_;)yRT@fS!+{iH7b z!-v>dzaF(oI%-2dghG*#A}hpqWk}?>LF0u105jrFHo4%6g!x2k#&bI|jLq8P_t6C! z3Gml3#^u~`Mh!YSALD%Q(_X#GDdQ}fzCd;Sskg4_pU!29$$w^xaAA^%f_^+YhWMHf zPGov`utNhtOt}p>p-Di*dlO{vHjzvy&{C*h>7nx@Y0_uX`{pBD`X*c9-Owt$Fa*5@kEgcf|M&)w83g z=K*JJtAa_$HW8?3@6S5mq3C-MskYO3QW->^-M8<&BsWB-`Ssd$W;24aktLU-f_%qmpLG5D^$&w)7Jc8;$&3qxb<863 zr;zGHG*yJwB3buOq<>=%wV=SV{tbKZf^Zb&IcYtS7JoS+qWwV7+(nCKQ4k`mNOG)F8<_^^%*oUooZcmH`k`!Z1T(u0tUVdFfP@mVGSO#>S7dLZ5O^$dDbLXxq6>;o z)ln0j4ynMf2ocM&9)=f5*#8O5MrvHJy+iAQu*B6w-&H#PdrwbL2r zYsAkThwe9NsQu~$ca~q}a-Jkwo6lR=&wXZniy;dF9ZBj{z?q;ED^yOa7wt6 zqf1&^vprY6fwiEp>7Cra=zesM2W>BWpIgw*UQ+go+xzuZiD!J)H(CdJb`@DUwTEA< zKia}H>+ud(gP+Snv7ynsEq5ow>dZE zX43g_9st{P5N@MbI&{nrWLTy7IG?mtRqor$1%Q;5c3z3V}PdDQpIU}o-le~ty#GlBg&c1xy5_c*r(626_rxs)@ug*C>8X38@6<*u9#Z`M zU$4b!`H&1dI3q~JTH8V%7NNp}`cHgjp$0%M?hLdwVxRFl`Ri;xjpU_$pwNQ|0! z`S>v6*piZ#K8n>!qUvy-k(`UupHqlKOTt3O+0h+v*2N%YQU2-lD_B7+wr6(-tkjaP z+jvZby#E>ZT{bOwkZC`EOZJb zqy_okeAK+Hxby)0%DN|ff5UW1bGSS%1)iy|?JHcK|8A=e*NNV*pBF)3Um?Zix%yo3 zsqszC^TYHXMZ2uqY)6!;8`p#iiFB=>XU(iAxc8PGwM%PP($L_h%odqLLuWZY#P-D0 zXR)64TRmg_O1^ya(^nnrhqgrQS-&SG>xX;Mk>hurB~mqW-(+#091__+F?66e$YD#w zXcnJILvgTh#)y5?M`=4cx?cMeOrKoNzv>2da2-X z!RM~wBA-Ss<}vcy&V1~;@nfKz^JD%2u~i5Bmg>}hXf>aATvjnx%kQ~@HG79}olCeo zT^il+;)o*`!P!w+DeRgG0|H0>h5S|2YfV0^efa6H=y3dck#%%2i@35%BOq?9fybZJht?!fs6XU~c}kF%DwwEX%(?op7! zwI>yZ3c6J%S$gmHYWS3|NpzgJ$JEz!=1ThBA{83}Rc0IkmGc>bDMw ze(aE^p)8k23GDFS?<0}lo%IS%Qmf{r9VfozWGV7zAMlnlEp>O1^ow1D9q=gL*3h@s zmhel4QQ^;5hs~m%uMML~zjW~S!8~e*&)i!9_g#}R4irDQyz%|#f>)OZwO1eqLzL!T zs-;leHXGZa>eZH&V?Qg`nr(No9MI}(>L{r0%nk^enAj(;G?w-}y|sy^uuHs8-=x=4 z0YQassfV*ZZkgqN>;;Z)Vh$uWI8>sygMvI9(l;>2EE`8Qk3387yv}E5oRdckBiiHC z%JMSSF~-<-*{)s0Gw~ z>Rs?T9Pq!fNuKa9E(`k&7BN@73Yx?iB6qWtysUa!(=M>bHqu^xrN+(WX{Vfb(kC6- zI8W-jRprc&3B4Ec0@CshveXu=*)~fekvSrD2^*`H&_UUZ zZ|e@W<(52D7fuZOK6ud+8h#AI@d^{w@eYJp1gRlJHU%#AgfGhV5DbsQ;Hw?J2?2qD zm!Cb;E_-&8)y{5wWrM-e(m0NC-aouv=z_=$QS0lNF0uAu%!d8A&DTraG^h*>h0MGG zf!$7SUYo-^HZ9=yxsnpKZf~v>S5hpOS&vI#a->GphuTvsMT8jlad~nS7qb~!(^HpH zed(p<1YOs#h}1V0H52GyS#55-xZ@`CPua6S(+(u=?`m&Yw4gX`eXoF-$SOKs?oWct zROx5UrQ=CC$It%aTuEe%km-^Wf{j@x&-WK>W!%Qzte1I1%1bVaSAllmpp2ljAp7TU zA`dLhX8M?azkNIKa>bZ!{po|7KYu)SuqmeF=YqIXW!$>&EuN2^UVOhi=5@dM#fBfp zFJE0+l@w>rdY>`VUHirT!4^f?t8tOD*coTlKv|D-{W4UYZzG@WvN%m>F>p?{yfHJ+ z418navRUJw;(JZ2%BSSXO^FWel&eHLTqL(@@5k;dp`P>_qZu?Z7k(;dDmtVMyw@Ta zC#?;GprG&~m5)2qhK;pkE!8e1*Euk%wjS(+Rs9GaF4DHXeH-}0SYGEa*G1EAJ|~IL zHeIoCIIun&mtQy+e~ ze^9U<5Ce%>)^q^QL#Df8YF!qX2+b!Zp^qL>lyO;D*WEj6<*TNV;UvlxUiZj3KYPNC zat`nX{niz>~pUExd=|WFdSw`m}cKXvBGAR1u__6g587$`7k>J+>Tl zfVWflpe@}UB+m;7&;!Ak5c749-@1IxtoO{v48DmwXY9LJWD5GGI*R#VK2mjHI&c=`<77Qg5 zuVAN9-M@Supk!5v?dp90$eHi{<55xmD2rEY0NMu*=9{(y`X@4G4UGbErhsdpL(>7D z(?dY$(m``k7eO6Kkle?n+i-cv)(q!|ps+AK$ge>t;?A~z6ep=KzWtF>v4)3rRuKv= zq$^Gg4r}O2UZKS-?Ax5>NoMedx~e(}D;yA8*oJY2M0kgg z;yGlL7a}*ISkV1$PB=|;x7qLCN0t2mK>iY)J;{6qpQH#+3P394IS9NNiP|>p9l2pH zt@;5aCMOq{WB4QlAO*1MCO)!)pEmFjI#fHmS|)9V>6Pi*+f!UCzy~7eN5zE%MS1{} zB%y_vgYKpxag78gqg6pyNF1<97;PsUKRkrTk<1cBqRFKfFVa+*@1iVC-(0oA6Gogx!l|2B0@8Iv@`*BHLF{8q0E=`#Kr2BXX(Du*A{2j!ANqoX~bVu6d5 z1)|FwNP$Qm0B8vTgi0cBLpl|awjdo4lLdDv9T}dAXIV{D-T7xv4?-gN0DwsXoUVZ} zPl<^bn2>378LDBxIWdOsxZPVx5IP~ELC18z?bF0q7sN)B@wMo15b8RbmKt(-ns5-L z=u;qE7;X`G82sUuEfj@7|F9U_?z=x{^NcvhK?733(0Y)G8}Uz=IhBI3Cjc2| z1nP0=)~#Es%MVC}EkvRrda9>B1K7hrPe8Zq_0jx^YS2x9j_ozN7^;TNJ;a`ei^~OO zc|7Y`RaFZ~s5Rh4fGh;DCGb7d%$ZhE*;{q+z)V^ae?Ks^=VE(~7~Rr)U}4{xed5~9 z+RN}BDTS}S>Y-}xrm{&0&L;xZS$7h7tdHQCWaXNzyum2ifrEo${N) zqA5ic6*e$fm~WDD18QC9ARq-DKetE#v!m9Nq{=_~379FGkhnCtU)Ny635wt+Bpg5$ z&5;g#Z-C1_RyH`EHj{J`5<9>`{WkfUk=S=|B3PI!3Caj!`6%&t)r>cS3Yl&xqQ}?; z=80og-OWdO+qsxkRrScw$;FLYH@N#G5U#?wbg4&luZ-QWl>Bg;4h#1@#54!cLK_Jf z)e5n`Ug7DuXvL*XYP72%-wR?r{736IMIy%pxQ%Fy*L;dDC7(<;9(#*Ey;Cb66{1`Dhztm#SYo(-7+cgtNo>g>Z1^$u>zp5 zBS=L6S6#l}R{esgR)fXQR=y6R}}3WO5k4 zZ6^(xdz)|`3`Sa%KBYTL*_=AG@DFKjJ*uh9_Ttj{R-o~Dw^*>s% zxVp$pLnz{rr$?3=Xyz+zZEak!3Y^oo8yck$(cqH@mI1vKE%d^0TFTy@ud_eO87s8m zdzB|VblD3w#`2R~Y*4C4A*eu{hK_H7&fqK+>mje+h`rXy|9O+YeOQ+?uvYcULhK`u z^pSuR?12eeld-dsKvzT#T?KYdCJ?~SL2L+GBQ%rMP*2b1U#8p`R4aXI!5EI0O(H$u z`v^5{Jy~ks4|UqaP>}i8=BJSZ%?;a3L)(F6(@&?hvC7Q|M@ANs)11eq2CXefLGasrTlG3f^g*vf zc3`~63*qB>acAnr9|v;BrTvec<{jsNSYeJ|0GEov{(KNem|ML30I#i(0F+&S#9h<2 zR&XYVlFu2$INIPnAyi26z`|r;&@}dx^v(-uEdS#Kc@o$!R*2Rwr=Vaa znI(8=9L%18q~vo5Rz+!0_2K6)84$ksrI?8|hO~v++g)D^RVh0vSQH&x;9iNymlQ+$c#PCSX=m5Z%!zIb8odLTq&+24ZTqY@$$iZ4&-nU$a{bYERO+U$0bDR+JN%zn5K(Lj^IZBBFuAFZ6RSIhV>@7ht|!yJ?fs z+>;*!T{bHM_-*L~XvF5QfMh~IX7i;SJ)-Ad-*6|ix_2zx^;$1cyWVtyN z<^-O5{+Q?Vj-j(bw;aXO-DKqO40blS@RMomE6SV1aB?0bQ@4pnn5YJ;VoA(42?C0D z`7$>xT-b}(=1sQumRh&DPFuY0$^^yoK+^lxaE-2I13lun9$;i1DP_n!pb!(C)cen#NW4S-6{4M8r@k;HqpQ=isW$Yy6`D%J%z4VD2` z`SpU)TFth&`#C-q+vvw@4}9CBp0!}tXx$G7_Fkq)4aP`~gSR(^`7dza8toRCCt7Ls?V5l&rLV@TGhSS-5;Kf zSay za3O(nsV5(|$$JqIPHOMkSMp1JWKP7Sm4~mKm3~m<+xX(2%dK@bd~Qgodslj9eqv?h zNAf1%X$Lqn#U0#e12pK;RkU7yEI8O%`a1S`D9>pTMy>t!HOrdych&hA z#5d+0vk9)KzU9@SSZ5uHc;M*%=V3Sg$L9$yH+~RNKhuX@espP3#hMctZuWLs4KH1D zlg9d0sB=s2kJ63KUdXBb#N=?~`g@~s7!kVF_v7YoyLRrRrHt05jR!}+IJANyIykRw zN`YCE*D_h$^;}nlfyRnJLE5k%z7Pd$xtm4<=>XL-pCK~-S^#(%!+pXXxo zs!w~MLw3ITdcF}Fgggj^$lMo5QU<&|knBoPTa=Z(dfKLh$oOwqn%R|GVRyLk@i2Gb z226hfP+)>^q0n}4+}pj>U)E|4DB0J5cHA+NhNL4|HaK$?!#NMpRP2`O)qd~t-^At^ zmfp=f@PPSz(^h6GcqeB zY8q27_vlfqV2i<8?s7g_E2dws^y@|ESV^d$!QW3*mH>K+Gwf_CPp>EAc}ZW3ZIy*0 zgK6L^VW9}6LINP3>87Ws1@*_s_&=}WDgH`DZtZI83BKM^+{{ywb2Gz3+~A1n#>)L{ z^ryG~(k=hmZp(1=OsD-(6=&K>i2 z4^bXhm>^HU5)XP84hqb=h%IYpV_yH@RN`>wnlA08jFob7ycARmVcpxqo=q*Ur1P$< zVmYMfLl=pbfcLp(Bw@!1Jt?^PYEs`IaG*xCOA_7VICket2|JwpdVaJ|i#g%fLpQbR zZ7t@^=3!$5spkTaAOs|JRJ9%s8!}K0<@bux;do7PTE{q~%80e^-C-adKu1;Xr+$Bz zjjPw}F=pSChL<1^38sRUf1$G(?r{r0>`(Ay23IiL@HLzM-N$EiU`4&ZM zMD$grY}Yw0vdf@jC|}5<9wI82Dt~jb-4Rjf;7|GH4`*BKGp|{?TmFOw9KFo%eP21Ck*iG=9N*cVGhZHh6;wvtk zvO_kO5{TL%)&(`omK@o2Sk$}-X^AAQoVb;6Gl*V_;FeI>li)rQBMoMD0VJ+@C`6wl zHcS>-Pyo_hKW&y!GcXmIZKII}LDDgle`HYc>Gg}qxIfr&8&IEJ4B$JDh^VCYs8muC zLigAdXwz{yTVD}Z6~*xl*+MA;iSo6yr@pC?1>!#CvHCaLCQ_f`86h(R5ifzd$8*xk1}LbY}b zu@04)4hob$F6cc32k6=l8OVrKu6#r@ALVKXY|=|jV~FWuULh-bi0 zGu|>!h;bNg;wOpL_-tz5yK$xR&>~EFBgvp`d=}@-u^(r2N9>%!VjCi`v!0UAjz z)Yt1rkDd7v*%b2Oh-%+sVCVT8?Uqy8$>->y=6`+6L+&bh+6jR2;n7U;L1a3T9%gkX zo0|IGxzkuadGj*nxQd3OI3uD;$ptJVofR4%7ih2+;$UGp$ujx91!sZzo4ebINgp&3Nx z?x}?rN9!iW^a7*zES*cfHHHUyn*?u&sXEQ4#TD)*ZV>)m4$a1Ov|Xtgfk>a}$eb8g z^08}=Oq4__>2+>RSM`4H56?qW{@$FZOTYL^c#XF0Z6kHF;KkfB-#JU$YKiyenJk%`s` zLt#$4uACp>K9d~@gPLCYSgTsr+gW& zp&K2oRwM$%{g@r*I3e z;~9WErMP4!&Qej4&{E&lb~NW9KwKa+4{uNKQz(HmYEqwtU6klMNvgoWh9^e)iFDGu z!R4Ji-5I;1-wmB`=HIdk6~_FZ=d3IlAzo&ho}K@``aNDbmZ!EXN=4vVvx-$_S7tB1Df zJe7s0Zsv5|=r3k&k4wMSn@N@NF<4#Gh;ZJT8x&e5X+LTSJdy!gWF@4dYbS0aK>7W( zC-0oFdQo))ABh}=R^COh{5k{uAjX?Igd+^G1zy|flo`M=`_h$G&LRoOf)F)MgcC1QZ*a*S5vU_$MB^m*(3St>@3lDl;rSwK?;sWNbPdc+P`o#kb|iQdUFQl(+R* z;^zyCI+B{$NLjb-CeJ4Lh^}j2z~j3>!QM8|qyk~XaL`3zTTZM#BDp|2v_m2S?MFqO zdE)JfpBp3&=vF5U{WNG1D-s!4UV^>M<8;xYK+n*`)?N6W{984BJ1kW?OryhEk0(}> z$v=2y9Fvt6&3oWVc&Zk@Kg2|>+5F9z{34__nO5gd48-2)w?22#rb9NgMks}OkzcfY zXsqeOv>?yYuP=8=q&uNMK7uoXUZtfL>OImn0FYv0W4ns~k4MV`E|tcDWkD-Cd-fxV z9O`2dfscZjjK8H1bd0um`j&sWpf712oC6QaRv@|3$w$|ECg2QWr$ER-yY#bK9s8xc z(iX0l9TdMhY+v?s@0|^s^HXDfSIK7^XjSKG1)i&WE{%N=S;&5^83_I)vky@V7<}3a zuLG53asOEe+TIGk)>j1%4D8)Hr@yAISTD13iQhh@NX_O1ZG@g<1Bm{D6wv{YAzIxNXd6ShL$}Ws|cP1zM*AI`2 zjn)#0<#Sso_Q3eLz@cV4{52F=m=*v_MOOP?<>fU+rFP`N$8i&?|HVaic>YnitpI=Fii*X{ zcnte4!CrB=nRPWPqfJX5s|>M!-P*3jme9Lrz8`O?22b`-^NKR&b-~+uA`Xoe>^$`1 zS^gCom&J@(dS|lk_Fqz=tK?C1OZahS;||MppRbJ6)w!NdrDKR>5DWVG{r(bJ3voL3 zcXdBBFMNH$i$8PEIN@m9vP=Qt!s{HKe06f4AH4K*+MrNz|H0BU>F436?npKaG*u=D z@^QN}fE`ps&h_^TGV_!-d5Nlbe%K{(1XbqbED{jJZNsNz%jTwXJ=@~W@zZ)U&g#RJ zJq}U2yOfo343=M~4J~#37+HAY&fa~@nQu2~Yx6)8tD{#0zLej7Q1CrQr+x2!WyinK z;@dn#cOLi_qnmc;YI>&jrR-qk3kkd?GG$@6b|{^(lJLntV7d52$j*-B*1%jGBp}OQ z(|S58z7Ms>jFD@Qu^a=qNenY^)OOD?5gMS)X&#w&S1My{KU=j15Fa+_cQJOR;s=zw zM0U%B(ZuG@Np6wgOF3vl4kw0gTvmA;&!FZ$Je}H zc7lfDxqp61fU1*lA*~UWzGl(oFJeZA#ZR2$$RC=J+on=?E`5=G=9SYn?@vB{@q_L3 zXw%d7j58Mk-o5zVsQ3Q!IlGbfHHtgEInl@&DCbn=s6N*A_X}#r-PYc|KD9$D(cZH? z#T54-tLCBtwjZb5268u0g3h4Ys$MMfR|#z|V$`zVEswL(0nZPu5dP%-&d@wS zCeU`#G?+rhTOvTkg_x26$)JqRgK=Wjk(?PMT#tisO2;(Ec0?+u!M) zC#p+g+)v0CE2~v?as!kti+nFO4#JJhciK#>M4*D8L^%e3n56ISBuFZD#YNuHeQ_&| zYufeH^3KF=N`|qMo|CwdP$Up#3>o8#LDt_sN~2A_1ZUY1aA4ba?!1Ej42@zZ%G+b3 zgI%CJ`zkGyNrRM85LVh)etA!iwqvoRD0h1TPxhFJUsF88s!IDt>7!5m%tmXJ<4$Sj zMV{ig%E%qlJ@meEFi*YLcurs|x06K#y*{>*m_Z+N%ec+riBX#teD?v;=k!9vh8i+I7DsGb9`>`!v9oKRQ2x`_`}xElMljOw8tV^a>}or-DU?h2&b11GCHrsRZ;i|- zw|YfJu-bGaGqx55xqLQt(TE`NmBed9k|l&cX@C>of8ecT+viMEK`R8guuzvWCn6nU zgnz#N4YTC66uKrwD%0r(J(?r>?ZoJf8~zm+6)C;CjGO;}Et~i6(sjJ`s9`p4n;HVE z$=oCmH+(3a(R^mZ;Fx=9!!77k;-$(}BVrkyr^u6_^LK z1$GTGk`y}?@9%C@X8;W&KgiIWy7B%EfVkSucQ}lo3n*SL-TC1|hH8VtqN7tl+yh0M zcIUADT|G@zYai+VZbGKO@rwf2CebBY3bqxo3%+0&=j>slRW!TC&u9IJvsbz)l51(S zHwY3+(sxvyZ>AULRQ(Id+3T`{<$Uy$c@MMqHIO<8<@*AV5CoG&kOo)EThz6a#zx?& z!n&DNr>|x+IXQQ!(Ppd^5owL%0OUJ`Qf)6R4wIYFz1r}_LaP2}5j!p>=}B0C*}pu(+!W*BIWl9Fz6BGzqBxuF<16@Ctl~WVK|i2C>;z5zUX| z1p%aozp0MiduLejbw++-3<#dz80mANmb{9@sb5arYRegdfJgtc1foFrV26k*$cAO# z76U&?*f&ZZN&sRi&B%{GOir$qu6%a$oE4v1%#E!N@i?&q9r_>i&Hn&mZ*vWf=`W_G zThm?h<-GL7@T~f`6I6xHdq3|Yo4Sel7PWDs6U352VW4!8Y@w>dkV(zOpShJUE;1sN zfR!==<`rm=p_js1vM;{-MtuG%=>Vzo^*mI4c;>~z%y~l#l=qcQ!({)ETmNzS(-cRa z3U#hwm}lj1xgc@znH8qD)AZIot78*C)9!kIpL@MoWmnH@DeVkv?(6Y1_Tydb)RCmn zx;4+MV$EMCHOxvIEi#ZCqHpZX*v(UWvDaH`yw3meLiGsFvC;gChgQtT7LfT@(=C)J zyl-Vj2AGCl*J$ebC*+Vmvt(BDiLhc5`H8pHRv9;M1YQqc!?;+akA=JJ6g|~eH!z#Z z>hc`n$fRLnS)Wy>)?G>~#lyV#;nTZTZy(9yLHRc>6Mq9^t1G3i@_QRQ>5)%g?^P3yZ&g&NLLXk_eoy^bam} zr@KjB@He_X9rL!LQSjumU)m?Xr^!r8^6UpU!mfTwICY@j-f>l{mh#EGlL-`?OZwZU zC4Gk@H3)&0^LuyvuPnoKL^D$RV|00U+a{6eh1P$2Gyj49wZyWH3;cg(HWF(RULBZ; z!|V^YknMe!e_$q1`NkU2(;So{5@S%Z!)H2^$^w=&8_4s$dkY}uOHLP8 z-gnESsDIQmm^p9OF7P;$H|`&1?yslj@je@B%cGl^)FK28B$QrcOh`7~n}|{3$NLq0RjXqby5}Of=ip zF?h%${7SmElt)M8VA1MlijdQs%8B?WQNaoZbBm{=76RsbBgsysUHJpvM z_j2GO$?zQ0#9Y(F2sxJSKP1L~{WRBr&q$iqNReq&IHwt@B}c@6Q2wzki>A zx7t&#{5t=jW6btcm3KvQwh+{*$eSiedkOB;d32Fmsz0=?%a3~^RMoiLBb1h&nYM3J z@kz@!SGo=VCI|nQgD9)zty_NCV@~U!xgC60ey(UfB zT|4##3rGjge>$X`lx#059ysUEP2O1f-!@OH%Y|Qd_+S-YJ z-tQAF)cpkGD>H?bHR`$5Zi!B{p{S_ix;gm|R5yi|HoW+$prp8$$_UI{P`%;%6=fgS zQ(p>EAMZ32-K{w{XS2{5>-j^0Zu{HxX01GU&0mPgao5_VqP)P9DU62QJDp%{PFV8h z)qfT%lZV*(;!UAy-wR_-)bX`dCFber?Qz;#lA=;#HT-fRPmMWKVd4ZA>-{oDYPZdZ zL9g*AE(Hla50|S7dqYeX-e4GPr`sze@Y+-LvReIr5dr*taIQ6GzjW=KN^ba1+-C2^yFNld?KhsC}R_dkQc-B6@;#|khb4xZw7!@9?RLh2v zh9Yj1mfL#|PvLd9tM4r5(yRM(5>3}76rbuXp0Kc1jc;2kU9q5ds~k$ptBC2DGrN2- z8151zb&v>UmCzS2kFj>Mi+TupGFxggO&w!@R1kk(fJt-_!;Qod!3Y}o3S#*{KRyJF z3k_nxr_FGvPW=d3UB8aWHS7@94zh#tuxMhCu*||E_55W!SOVF1-W)`1^1C+vzI|v? z?eXiElcYWPb3TX^c03LZZ33(p6^(I+&HzwwL}Gvk1Idh-jSd!vCXcKo2j0RfL}nn@ zD|617LZh|T=h_}Eo=$N-8vRAmO^RG5l>)!CO1ky?U(-K2bwKRAUywr_Rl4lGnVlTK zY$_|)gY|W4P?{rM-ki?pygFsWtxG9^XT}RYoj>XBwyKg&uWg(+|Chl{;SuVs5TQ6nYAuw zcjua#VR1RPcQrJ321Kcf8%7 z+Lv=27Je!l$gCcWn??abUS?y*J9YVq+QzG*T?X&ISk-ge~2j5O4-Oqpu~R}+?>zf*kB`u+=(%Cw0&qjB8+QWxpuG?h7Jb{NG}tulEv z+h6s)5}*=Y-b%I6B@d$GmJE;!|4Vq%OdrQB9(Vux*rxQ&KQFWuk2uV=<5u=O!LrRk z=4vf_pHjq1aT;o$hjK%!Lv(Hd-LjHoy}UUlg-;IAM3%0hTc!>@z=_RMdH}L}iACET zt@B;9y&#sB+8_IDyOiIR4)>>Cg$c_U(O5U=o$_cM8V=}N#vCBf>lMg#C$>JcoTBi) zwYR@f8p{t3@ljphWP5HtRgZrWBwIqe->)a*!=0Mk-&&st&-__4zBzIP9~@w`@O;m| zX;{CaLi|%=R&8JAk>ZDR`@~~K=Un)n_v(O8=jhv2R^H|=C3WoOyE7c5xoG1wtAeB= zcTY8!P#8t0^}7;m`{kpHyqhYemp;-?*gTPoG0F?-5+AfPDN&XU?-`s|wu;G}a`H86 ztYIBIxlXd0H*B_{sQu7hg))|P$u|X_&Hi?9laRW{|Gc^>%6&>^W(7+>%SKuq66?Lu z(KMXWbHx;aF>9~J*~|b12aFZNa2IZsl?r*;uCilCSM%N-${G>s|D$%%v-&YN+kRsx z=N??pkE;Y_(~aos+p9O6KQ-?r9)c{HcGY@knML!gSe5j?emznAU|YoU#OO^%WhcA7 zWj*ow#_cry63!5u&G`-K8hIeaNY)w20m1meY)BP2V2Xmfp~jki!@hZs{kQJmbe~oU zh>K))*DSj-)+-xnMBmt6eG#v(+x$|0rQSEZD5s5P$>T2Ea4F-dtrY(i6`Rx&VQhF7$|h|+4}JwcN)qD~$&7Z40E8#=Te(u% z`jdo5w*EECUj9o9o${DuP{3~SGDO*JXWyXy0j89)Him~mCAmTmuX}s>ntzk=%-k{k zAU&&`JoygW`eauhn%Y;UN?!myAzGSoMzb;NptIhQ-TPY?*pscV*f(7jVE4Eo>Mz_X zwKrkjROfU<&7>f@dUtHqj|?`qm{|k@SCpiNX#M;~Kme zWJIr*H7|o>wxiJEb<<&;e=Wkf;~5pV)S4jimdqOief7A1?^JDq|K`(8;y&^4MiEIq z=u#Srn7ELUOpU`0%N=K5I-S4JKw-49{z~zj%1X{6_|%Lc5Oj4??Hr zMMk4Al{kgT&Jh)x>bO>h>h2@DvK8}ZQ33)2iqkLrKNZV9;dq4gBATJR&jN%Eh89mf z-O%K3f&Syca%Kpg;8|itKyi{+*_*D%NhGY5Rkt-hBIL zH+jmR#8vbx{h9l_i=K8Pyvk5l5Lq^LDP%d>A|PgJPH{jnZ;1#TB1=y;jX<**o?u{c z=tzQAaEWnnxl!R-)BQdnh>vv7*%0;T2o+EvS9$V>+FGpDeKepSNQAGh^;cn%xPuAV zn;~{z1uKuN=QY#lqHmY7AGqv^$?b@9oJ#qqMhQ{7Zj~ zAaHEjC7u3c(h`yon+w5wA*z!mtvKP~$+AUG)-^~1?i$%OWS4iEdAdC4X-eeL^YQYf zrzD5`)cyicpK50p-h0|FneX;*!pYRWEozr?Z<~)j#H^Y|XD(feiZlHTQN;HwtTgS$ znMxGXdWP(}m#WM|DZ5X+@4H+1VPL9GJ<`(@@AC`2%(v-kT)IU~5lnJ$>DOYsQ`y7~ zCZ9;RCf+st*6>C9dD`ac|Mx!a%B^e65P}fR7)DRtZ|z6@_W%$9w&fC|-v7Vbay=|f z#P3SxHIc0d@~muP@M@#=t#if9_4BgIz1f|4{6P_NDT|skoer?^I zZJl|YU9Ca-1>KKvu;6HpJLT(*$*k%w>k)plyd=T&(dSD+@0lDNbX5x~u*@j^T{Ke# zM83(6yKaP%`VY)0f7b3wS$2kr>vA>YO0RdU<^M#lzG&;wp7z4xrWO~D(#Ocgc{_Z# z(&8%>QvGqW4_C)oxvdW?j^g)(YrWSmN{ZB^8-39}mv50m_~z(}2w>nGQwzB=wvo(6 zB{UGMpfnNXMCq&#if6&<o4Y0!j!q3HYJvWRR=Y{@nAYW>d1NsGJ zOf^R_*YzZtQN5Ie%V+x7aLi&5nIbJMDC_}eE zK?Ur_$%W6F2_eCGpu}#%V0;WNDs(CmJ%|3w8x`nJxZKIkve#rJqHERg$BrvE#ZyvD zZ4`P{zt^VnR&TR&%eti)*H*^uanpup(*r?aU55)-7p`+$EW7dee%Es2^ggBLxl^}L zzp(qniz))l8Lj1pu$dm%Jp;AdZ#^ro^m!76B?)H{86;WRM`Ag;y1FczZ*L>xyOU~P z5-noa_ZLNtEk1g$aT4$U(shpbHvR_dATUbHvg@;1JSmGmf8Eq|6YJ0Ob|wqYaW);z z3&wm_GB1nhE!hM8+~84GiV&~rn^XG1vNw31u!(9d#BRUj#tADNFb^~fw$d)Va_Uk> z8iD_iL2{-BLUzVNVd|g1Y>=4)bP$tyz9d;5gySsF0<|aq-N>_ zA;Ac`9BlSfC4+qsM-sWaspUV>YWGic0*mYRM(fI{MQE@R;d|GyNDVR7Wdbv%aiB8Z znedR%QQ-U!)o1*gLY?9*@&*^A!Ay!-C+}T*M!9uO_J5)jI9g{Xw*bJwh#6^w(Ci#N zq;WLI-#doT(wXVH?5UsG@DpF)mjJ*XmN4N9z$?g8 zr8aI;svW(E-=av4yGp3o`9&1-=fHP{j@kNVa*2%zIBRiQ_gdRMwpIZHhH{5`DZ9)y zpvF!GB1H0+bfdX?{Fhuf*SZnID6);?l^&K{vr?HOlRV-N2|d8aEpp_~Td5=~(0v}Y z`*<+u03-z0mY}QMC+r31TB}hOG+_V-Xka8Gdj*luK`<={Y!D~@q$CQ*ags`f+8k-# z%<}DjA?{vz{u|BV@_wteGPK+{S&u3Ez~h3D(y!WcGn%WC!ms+iHeZj0X#v}OMAi>7A00Pql~J((#L`4j zL`HiNX%BHIf?E`>`{=4OSX5$}<)KhHBz?l0j`yLaK*A44V|M2^%Lm%7ULUXB+~P>w zJ{zGk@j$f|-fgaH&;`1dNJWSh5yC31`tjgk0ch1o$c%DS6P$!bwP_oPJ7pAqk{$%= zkHoGbhw-_j;-9N3yRS`}S?0>~=lzqujz62IVEE(vKU?N_G1}YS&Y$%%=o8ySFeTM6 zZfkeed}OG?(_sgsFu7dp!8*|@QdWafccQiP9(fps9IKO|q-HxDVGJDW6mB+cY&!X~ z@kNomqqw%q$WeaL^D?j8?W$enlI~rg|9aSav5#P#{&VBmyc|)e59kJm1b#6Pj^c%N z?$jxo4{EGp(+FKu%SbTcgX!c(=s8$zmrJrY( zo7r?t*m~=)j=5DG#kbL|`Ds=BC2Vy)W2@?T`+!mR3crDj(NoDoF*{dPFMob|RRznN zOujua6AiA9=8sb823Q1)U7tzHL6VL5JaozLrtCKy6>O+KgN4SPGv(bUxsc15wGveW zhO#+hxqD@#q>EO6t=J#a;uer};yu%7Z+8V#&#aZtZ^-b>m$~oqF)xg5v)rol`}b*T z-X|1ngN4TNKl}H^TB~Jv#9c_(EC0lxOZ&TVD9=d2&)`TSwDpFWxC2t&!AX#mQ!LA< zYP6>AMAZS+B+2&G<_{UhZaNti3jQ3-j{% z;S|OepgUJx?o40ay{jiQS+j%X9kmlT@~}Z;%J@Rpp7U4`x0`hI#3h$SeR)apO*_-Z z7i}=LJpJs^%JIF+{$PZs507JM6G0BCr-`)ZAIC-`E;-yVd=zLSig3{?qG!X!O25N|8A5?CO_eucp&9k+j-O?E|CiZoQHYS2nEeqtw@ z;!Lm02l32SHzuMNyovEH4~M%}I@aldp>sK|OoJ+T#kNN4raw2SUQd`8sO)($I>ZBW zB?%)2mG>2`c7O=KCkZk(?{!^sBH@C!J#CxBM$}^x^E?>3`C3~g@4@T zw{CyxZvm4drxfRNU20n0J4F(vS0l;O z5$>0YAe1rlQ)Q=Lxyf%XX*+0!yS=Q)gxH~QjY%QlV`+!Y;lO4guYc)bdrcugS1{gS z;%wm}@vz8bwo!GQeN16%|L%2KF+bn3#)a$9XWIvEFt}12mj#HJdx{H;Q6q&TpO79-+SFojIn7#TJtL;$mmNh&|mL&B<4^tFc+Z8 zU(e^9e0SwQA%G5P7vZ_n-9$Xz=l=mz(zTxIxSUncxttrWU+yb*XkWCv@w_z~TF*=0 zHjHWPitZQuM+EuS(}~OU_>p=>nFcf3voi0GzA_KkxZ}|KzdV*9i=}vO?$>cBIyhcZ zo$25Zcpwryq#(k4$$ z)*UYM8Cp0oJWpI^_z$gngJJxsvenSg*+xC)gkDoe)9A}dyeDu;x#<^FN^^^4POL0y zA#*<&DAK=>ro2X1f=BR4VU!S)R-V({La8v@N%10<1vahB_&Fuw1~439M58id@o|o; zcXJx8z4Rse%my}>6O7w9#RixTU+A^_z0oy0V-dT6h^`}APQDlDu)4ct%SL0hRY!1_V-`0oW=Ob+tc#^&2+sQT3B@f)LYm$DkEpHj_9>3}>)8kn zcqV72QpkQXSQIHWun}BF`5rFkf9{2GxhRqB!+t?>Zy{#f7pYmG`r>HJsd|<(j+aEU zTO@Zr-R|9d9GJgR*k8&oEpv?@f|iq|7KS)fTX2v0sb>E?FWuGl(4+B3V%=*vBg(l$ ziX{Ceq@ABnX;^+9e0aU!N2%49ewJB15%k#I(GfLMt55*v@x*{L*8M-@B;NnYYdy+ckv^wA?E0!bZBS zF2n9YDW_edFU}(D@{eh^wWJOXYZTcHe0D*5wut0y5!Cn8#}y<<7QOIe%_(=u6df0M z^ltth(uvkzW-LaQ!(yLsgyN9No|hkrrvD4Vtrn@tN$v|ke~+-R5P`6~XQZoTuidxIJ*+C8rSc8GM1q^ zLM07Kqgkbq(uAZ;r9w9;uiP9hyNeE3yD$RH4oj!)X7SQlHOm{^eJYbu#S zl1j!~p@_P@6X`k`Rs%5!SOz=xTPgA%$HW9O=>XLcEFcMX2-@Gx?{|JYHVpbnU&g~z z7f`lK5=J_}P=$;YjY<)viJ}v!;8Y43Sq-@pIF*E74eBgmk=8&tL>-zoM%330xMj6F zA=th2(<0w!?PS~+T`pDmELUn}PRAKyQ%6TeGeGvZ*_Gi@)Xkd+CG()DW?y6Kr^eeY z>fjh358Aqlib@VKzXxn^faF7XCh93-|5*Is!93f7k;{3z3>;4bDhb7qu<75bGpvPi zFD^C3NSm+y0oE4{Ldgor@(1Zu;ulWl&tcQ()~Rj_+Bvg%meZF&2aRK8sI95YE)Vwr z4e5?)WGDirSk({?GMN1o3V}PI2O=R2LMe!7c2~I$(9#XMi?0H{R}@M^3B^qxvm5?s z-&P9(#AVb- zT1j)S`5b@u*T$#BZi%sS7D|3=N!B?U7R}CEO$CZQ{Je<}9q`I2GP44wtc6q%so(H4 zmm`=spl@T!P<*Jpr&W)GUO85rftrR<(XG;6MYA}JTL*4U2)x91017xfbfj?NXl&qx zh;bj(7qK$hWbYD}0501GCRj^d>Fd}TpTe<8$rP0&6*Ri^#_~;!CLSy+4*5%gffoQ6 zV7JD}h=lN(gtV_gdh--PjS?k5mYo9`+{jRWl#WNZAQu-~?CD>2?CqWB$?QBpJv0sJ0fuXvyI5i=FL@3<{U)g7-f*2^XZ}uSkb=#AF@dU*pU}~Y>ITTi1AZKG z3gk$^A96d=DxW_Bs6${w2wF{J%Z%=oOG~WW&hmFUjU`J~C#)Oaj=uplWu92u@Dm;c z_G)c`c($UcXke60WB-bQW&-nRWo_OJL0qzQ1dV{F}b2Q#tYD8wAXpm16i>l zYS0*%4t&Uc7=_H7{52u59(5C(5wI%{z%HF^JsJvRnUuX{O@zaR_uLbH)Fg4STUWzD zi5}^uw8YYb>oHMdYW2R}F&l=A=i;=+qY|uMy(6?QOWU3;32Q`RQhe`_hV)2ZJshlh zi{XZVPs^I-eIZ=XrqO?w_QI&POLsK3QE@(Mj{_?IbQ9EbWS$HZDDGqc0ylS#wE>v+ z`p(1FnH^6TU0rE3i%N$-lA-sxi58!zO=%#@yiB7e6Mpg z%*JuZ>o!{ka$8+=cRckIxBk)p>il?8`E2G((qe!wr6KIfr+=GGOPd3b>kc4IWHH-M z7u&9j4nM86_)^zXk^a@uyeBPlDwg`kL}sQM9rKk@>nNynFbF%J*0I+=Jm6SYw$|l~ z;s-g^vYM>B$`U*TpAA-aiq*fgY^eOJq{_-(v*lIxmZP8=etyl(?QsSSlDy?3g$p1Hs9wJ?VI=e z-k7}QqPP9kU8LbA)Nq6t_udF2_%5KW9d&9`!}{(NovAwxE3B~Xy>Zv-@EMU+M3w!q zYUQYV>8sSRzH^Bi1a7JI^*s&{wqh0SU|PdAd)jc7_X2{jijf78#zfegkT^_dm@GGu=S}fYv;q{t0qfvE#>%M{Aq zjLYX{t6rnUaL~Lg?_Vk$%Tfa1!~YYBeK=D8>EA}-kCKE~FS6&ZB6*a-hxbkdf$2n3 zkCfMazl%~qJpb}D?)@R5V+J(t17Qba=$d@*F>)S}x8c@UAw=`5g^N2j|J|IU5TR^@ zOoZ4mRUXUdL>7{Rf{IMyAV~{3ZhU-wcd*|+i8Ixd!ByIQV)!nAKS+k7)L%|3hu$G( z!xq9ZL^C=se(H_74R;rW%~(Gtb4D2LKT2vS>Skvy@v+yeB16d`Z9ndsPoPU;Cqt%& zEin{14-JFmKW$!jL6J%mlx_Q2^CW zI2kUJyg`5#sBt^0@%>1d(jby3O3+)+wnWRfEVmqu}c#EP{2F{FPTXlPvlH5t*3k&&_H+9O}n2?va&?!aA0IauvSF+Y%u zR)!_m&X+C@9RDWWZ4XTMP-N0Ptqy4f>P66oVI_L&g9J2iP-hT88L+$BCS_$q7(Mni z$&J!+H~H2f)dWPd1a;}o@Sa1JX|wjq%ozP}JB+-Jy1VRs>j@<7x1VV#V<@S1`&nsWGF=1b$mOQ*C?v`p`S%|) zc8%M@loK)2F}VE54DNa@1OExMvM8MNi&rmn`u2wNSLB*%6~=!DY9eBa1169HCRKzL zppkLo)y_w}U1snB`1fLk8f2c`gI5Q0VH0x)jyD*T^2qwSolx*3ag{hU-2hdQoP*6) zQr#_O2(j%`aonFq6K4qO_%vdci!&6*Q@qTZl`w&rM%kO?umDC&2^EBzjC?hIwGg=_ zaVjV*U}&K95hXIwg@2t2g9`>c<8CY6 zUJ{^!x#EPzdFc{`A^{~V{%nDhUC{Fss)bq{`uWJ+$Yi(+>?@{VNN1GPX}@A)ceK~P zvT*MpZgJyjkflm9)X5vL_1OA|^*@nfLoVLfu#c{t7T2pS4vf=VHl2jmX~^r4}MKkQ}>b{?@MQxaP%Qk8LcVF#-fx6aklnTDr2|8K#_ zlCXMIo1U5U`x8*dlF-Jsny32dSo5#|ene!79*8#NM!;HR{YSVYpi`95(}y(j02$^- z(uuF-ZX{K}GLUfSTTaHQqI+5k8=S{j9Z3X##smiW*Cv6kfzKa3_?9u791+l}wIkrw zqtbkW(Oc7y+rw&S2`_JM%0p<_cmOC8w*>UZQJvtH&U{eyt$0)n{IaJ=Ht%4d6FM9B zaU1R64562J4nwPe}g~EURQ1mJsYzdATo*9q)wuc;+6ZDHgI=Vr`NPww`|jpA;uLz+mObiyQFeex*5E9xGvSV2TvRt{{TNF`p6jC&;YLaeWO_$SLezb>vf%!UStRDPI@lfE(`BC(yH3sSCRS=p$sreSe)&Qefl-w@lzjQqA;akB?u4# zUllfA-QSxJ6nV>1_|dr`8W0;)iVHIN$1s*dV~I@q1Od+#O`*P*YiN(IUG(*Yy{p!l z>zkLBiSq`BcQBl}c}#;#Mv$U0`==g_!#}DXq;ps-gnwV|FlGG2MqlSCp?l!K<&l-; z0%1Xfv~u=gV3t`TnGOvHAw;+*s|uxwds766ZqvWDVP5g-g>%X9N&pMB=mAcnkh>1J z>@l{a1#VS6xC&3e%v@^h zRAmfb?R@fgni>RFLMI!tl{shTEU1&>$Rg&M*-kQe`_sfl2=_XVc!EHQtlW4xLjYbX zmmN`o?hTjT;#iNrv%cJ2y0RTlSZuRKu(6K8Wq(Qm zo_bl&%$al8w<$z)9nH$n*rsq~*?C}7s0mk~dZkE4Q)H}~8HxE2>f4gr*2L8Y@U4of z>LVO%gs%qzYxx>g6p4nI9yy!X-lNZ{*SnsBo{~etG#a3lDZ?P!)L&NSQb3Xvwz$Ue zYf^p@5?A6ZirP1qOe+KgHDxj7yB|!xYJlU~KD`URFd2!4mpeYVqS5QublX=y5q2|* z!4+h}E`q;i6qA1yfv^OEZKkX-eS=dY4|uk>GMDW%h^=~>PbBNyRxVTivj6W>w*74Y zusEw>Jxx|VK0Yk>up%QiB?Y`;2Oh5W%NmEk#BVIxjJhwFF@pfN`BVCBoa}@LSOt)WcUf)0>F27VcV+}>=%?ZeYa&?6dY1g_o|!G^6eA1R z|Mh*+^ng;+6o~khE78# z16M33NJAccOGMHi9uaY@yIGSWS#6KFW=rZW5=`MTWnVy~dJ;jer&I{XS0)iq6p)qB z@&LHx*2YE$zc{W7?-GE`^9jZY<=OGWL%|bv3X(21xMJUnayqhk^M#qp+egs4LMHFh z(D2t2*q|U#b~g{$3jIPMa!6@>Wqvjv0g4QrxAP4g$=}sWClte@t8?T8JTM|Q#Vo#% z(P`_}^Co4E!@U*}t`=6ejJK5`-PLwqg+@}oOFZp8de+SAvG89vl*+9;r9SGNklQ#APhfz2Z~hsXYd%IB1pFJvQPFa^u4e#;?)h9nJ;G+N->|9-g`=ckML4dRDF{n=tW6 zgewrr8F2()wEy7z$V{=|7oDv;nn^?H!$xbzUS}J)+WEBY9<_hY8eRHX+n!PJqe?`v z-_;&an_m5rUx+wZD1%EmSkLR#L?XA>hkTA@((3^pW0la}WQhQn(;8 z21@9Q<9vk&{@%M}01Q%~s1JpzKuR3%gNk$cB%lK`h!>DU!`n0oeeUpdwK$AUO(`ZLHY90lR2Sp_ce9}&ECu$ zoE~syQCZ@~Xo*V!mrtW_=GNc#Iu}QcCQQ#SfR~SRLCEq(Z24#Qj4vT7Ns+Z*o9x46 zuAP3Oeva&KQj`{_kO-y2T-d;#56Ktw*P}e9fetsfzGMW~A zts3PmDM_54@$l2d&5yo|ALN$#EEH__W!YEw1fnm5Vt>pJ5z|;nK!$PB8K=(KP{Giy z_}o!d%Bi+m^=g3W(~{Az9;I~BD>Agg3P|&K?b>%eJ^slenHk?%11Yk0&1+M+wDkKN zcOo5z{X|MN3dhw%faQ+b!_V~8oz)x#`loWMw=Jo7VRTZW{rURC?YY5n`;SY6y%jXp zO_Xw4XfKysAdpl0=%~pp`p|=mLi2sO_6o-;MAyqL+D=vag0WP7B{C$*wN*vY zV=Y72#v2|K%2bbJ`737DN&U?`HtRdRPucspoYl&lmCSXHZ9WFGD!*HSyw}c4&B;^n0Nftw-&cvkS+B zZ^TqM-ZzF82hpuGukx2JuY9#EQ@?-mbbQ}AXe+X)nj!V=oV;MU#JcAisWtIl9_>SV zuVgYrbzjWot~sS#ruxOAw|RG`)6dGxq#w?#b^g2bkzuQa^{x-vD(Hzu@;a4rftWg- zcVl)ozAdzm7lt`;RX;ThI&kMmHGf&z#S?-~D+SB?vgUSiDD*uJn)|}>hSGwv=>5UG zwE4Y9FE!CV*55K~>)!jZi#|!6T3+!<@m_Nd^U-@-6t&#h-7Xza-FS8d?d|w=ua7&s zT@{qrF20ebW?IqmrFWlMSG|*BmUD7uUwdP!RM3pnl$U$%Z)p|6Qq@zQdf%Hay(dkr zr4yW0bf@FCfa8O=@u$25d~2tLQqm&y{h5!J`i`&FF%NK!6>5>; zmANIpa>I*GZDF&YR_kbp{84O$(Ky)TE14s!^M1}xP2xS)qz|)Nk zGVb(tfP)b|y~8^4#}P)I>>539oAj`K_r-%;RXY#f z=Zq;|=&I*oZ}m{SVZ0Vj=Ml2f^eE{k!w5Jx`f_1=>_hpVMvdIfIYdIpzAGzT3@Hqng*Gi(HeJX%&6# zUl;b)bU(baP(;lMkuI;Vu)G;%>kt$PB5cA$Q;bVRo#^RKvZ1NY&Dcp!ik>PKU-Gn5#K3iRX9Nx zDKhSKnhjr0h}pQR14=(n6F(_5bz<|&8!$#bMoWJh7$9zPz!k`tS*UN=LmWEkNW&ce z3p9x8NqEmhoqZEf9S=sSwC=aLkayrw_2|e+nClL#f~7E;mUa%h@ci5v|F#~x@KRT0GL>umZU3ViWOKi4elUJ%s$WZ4` zXYI_F*#qeDg5FPQ^h;z<|IN=i~Z1b7J-VNSy-I{lU$_sSVg5!J4$1sZeurRoi$ zv%1#x$4(G4Ns8=BplP$#wr4jw0o3mT=lXea!`&<}&xOJ3tAkT1N2;?pNvTZ?Edjs9 zt>3n|rYXNHh4sfNN6j!BURp5v-yU@!i!tp+YVX?!rD zZ40P@*kmtDJ=*@OMTd&iCuRrFcA>JX zXqC&VgQCX<7RMI#Pv=5f69%vmREUcoa>uS){1S}50gbUfxB$DryaTaUX_%OH93X`X z;THjO2C9r@AzL_%iewure_;q9N%f#dMCqFeA%+H&C6rSodXQ_ zG`4P0u2`bMyJ{6n^~-DS6*pGroI5_h)>(|^V3W~BGhzPRIY(1;+RZ;cB4>Gi=>}rM zJ*M#YaM!wkS#337{p5)ewhq*`+C^s_7LA`MStYCBG)oM2L9TZNFn*`V=vzjM7&7DZ zthEch*w#oV)(DF}mmx~vaVLL&d7zZ2`_CXG&O_VY4c^A(M<^~h)C}>ci2pkLmn)cW zufrTW8n^q>XZA*xuNMmsE@siH-t(CvKMt7=|6t7G#fqQmsrS@)HR`pyXvI1@MDeG4{5_Xs9X~&R z7+zN5#8-B+?BNrr-s|x~34?fy=dk?har7R73|ExAS(~7#-`GI;@zUZ6S7+B=tabdf?fmCBzAunAMjJ zFZHEE6FCQWSS|CLkl`m@3BhN+U_-1LJ-KKeSBCeoh>#rN-jAnc1{n?vC6{S7ek*2Q z5!qhq?-$^6ot|ItWkd^~HLU5U{!NbM6e2_rTgVaFf~NB0OEqBQhlQQ|V8 z4GJ0>P~o`8`QO2?=RrQfBCz!dwwhk524EsWHYecs=3wda)}FT@jo>N-JuZ(hj4$Ht zb|0m?1}6!0#X0uY<)k`kxmNBoClP0eFl}b}6JN1} zH?d+H`&}O_hkH1zj@ed+-#rIf4OoYrmG6>Gv@j^^O?^e2NXX7xb0&0l9g-Rm8IG0d zoeYD(m*Rp{g$x6L-||z^vO|!RZ)EyJNGD`Y6Bt1A`}pi&nn9rXzCN44^(X1UD6>2q zL`;Xl67>XghfF<%U;?30R9ec+pi&^l0s!ipU?d$I@y$>ioKst+Aedrgl=t@lnHyNB zo{5^JMVZ4F6wy) zjyVQhzdnmXX4q|wc7ruyv9Tf`C?pRcBh66K+?S$*^qOSY_=6x0dQQx0K$oc7P6jr; z_=P{Yk40UN#)6yybnDg+|377QvCzFP{Uw6v0aGu)kSmRlf%E5`#K~U?%T(W znn%w7l{IufY|7ecP}NZ6LADI*ojGd#Wu&sv%m^KSGVl)==^1<&V5(C|I3}$FyfiL* z{$QWv@lTLcKIw^$QB@sVIYauQ=M%d(gYS*SM;Kz19DFqL2eS6yO@CF&TF7a*XBRTC z8EA|=fu@2qr9*5lK4zH^*`p*LcC3@-5w{|Q)#f4^aK7@1fg5^xWHzS+0DTgN39U*- zh7)MFaA)bue!?P!!V{%(!n&10FTi2~A#A3zvvVK-VyxxIB$>}_e>|J3dgsA|OYa_~ z@4L2{%V6D(Tb1kP4i69i;?0SaDQ1zDmVZc>T0A-zX#C|8Y#xMQ5HMz+J2nvvy#XBto`zK*_lByO3aik263dVKv#0k!qv36+FbNoiTMbb zID+2&Mny&USrI!temJV2IoGc*rfFM)8L*Xa5RV+t_hgrKkO0Gl2GcR#f<5F>`dJY! zouoKSlaXwmi|icr!M1M|&sQI+FO0vo{5nTtmZ*@yo&_cpiWWsqx2}bH+NYh6gbSYE zdony@tUHdm5_?n8Ews16!titq3>Qo&UFrXXD15_PPGVdhJ80TgoRYiWFr7+|?i2Y! zyYVFC!(`|p>Cxh>JRiipdZAZB=}xxj)uUd|)&r=|DnW1y&f|K^xp=XGYedJ^Up-kg z=_;K^hY10I)WFyjyr59S+pPJ05-*qY&@t#@@gW1AkzN`n=UlMz3GW#-=CZfZ*+kU; ztXHP<8830{cN*$Y-V5Od@rgyPR*byWvRvQJ&Mubg%AjjznLn=4Os<$+1HogUo6vq07c_-+h(y4?_1az^y; zAr4Y`y&5bJ02N%^;%(~#O#e%4bUSjvI;_lGk`?qm{QluE(SU$n)+xOdSuvjM>FjLh z;8h2S2^PA<7>H4LZwLoR`_o0{@`+{j006%~OS82TrSeH8=ro>fA-5Viif0fv2Di&$ z1vId*xcBdf-98;d97umhI_q0qg0FnmFNEI$xJtyxxbr;hE>S01HexzK^s*=%*EOV;_nn_1AN?!tLZYAG!5e0dc4lc+4%BG5!lpnHr~JvW@#h~DB(AXqtY zi^1S=FNl10v?fwyNpJPdAM9$LCZcZ~`x%LBrTYb#SWH?Lgv!f06gn8>HV#b3k@ zB}F9~{;^G}637d0esp=EfTchV2{J{&2L8ka zMvGo&k6fb6p*}S-+H#y6t$%@FF_sb>Ky~&K|7K#@jOt0tiN*bdu<4Fso=7$M^jjf9 zTP-bL$F^_^)Wg2E^fz|lTE-Rmfd4GG!Q(soLUR{h~kFyqgWY)4M_%RLK7B& z=Dmx7(v;QT9P^&c61@)t2VRWR?#!qc=3rzC!vy z%<`}x`We=c2ponWlF(v)#jnb&x7`>K9bYlhV^tFp3q_o+dcJNH5HeRoGhc(_X(I|x zg3F;Ut3}sv$I-xVAHYc>PBeJtRn|A4)ImT*U9uP+2J-PeFN)MheSqaPRPT- zu=GI}o$V@jB^*`J`zuC_Cem4at~7`Kl_WPI)-KMYBh7DOebsosL(lTl5tka1$s+~H zm;<$A?Z5!C3ZlUyLu<&X3IwStgAEoggg|3S1}=f;VQXd&|Jve6RhG?x62*qNK1@5L zn}B|b-w(tj-{3?5X`V>VYLGbRL3?uTP$!hJL@S?*lx_u<{w%Ioa}1L>HER-uh1m<7 zGsjm{Ax*%nRd`(GSnHxPA#>2yoY{3iK|ukkf7{>+^sKibtD2H(zv1Bhxof?~Fj0S_ z*Cx*be$M>!wz}80&H;s!1*VzRpfxUJ5fU!Q4o^3b2i$h)+fK*B(%$dx*Mg??ElCHu zlU4IhXS|(aHca7Rt~bq?PG&-2ECH`{5$y!O!7E*ls%M*&wGS7!vcE|aHl4OZ%l1js zuJ^}buUgxbhBsDUW$mYaa2X>{|D~!y zLt&q~@fUZY=U2qzW!zU*V3j=e=G6VV5^e3g(c$XR9e`wXZG-g5haPIT=NXzKMgH^c z@Vw`$k1e0V)uFCHCh?}O#pvLAbYW|%dIXXh%DwxtdjyWjO3q%haf^-hKCQh4YEN_6 z3Uh0dmwdZuo^+sQP*(DX5#eR&LeWvaF!9vLQxnQyEu2MTYH%{soAj6AXN-(curO9a z14jx{^Ee5$-dEU62&MT*ylE(8q!7YQK+{TOWOvYCK1hrN(aJ zRHAOXhaWZyu5x?i0wxPeJK*vV6GH=*bvsj5CGAr?f8PR2r(d8KSce#&c5k-TzRWy(cn1Rl(MOm-==O@!qdhx1{EL2u%Gx zM`!Mg`{y>1!5X1pyRX?WygcUEE@Qty1}5~JW~}{k>w`@}_@)>G*QS7w2@le<^s|*_ zvMXkVS=>=oRM3u-q2)0kNh2u)C}hMPafC`3BpHcA&)Z#OQYF!yq`td?5kXKR5w`;g ziL|{>_cB9`L*UJJsPOHq9?lmx$V<4lF0_ZCyV)+bZcm984dtnPPwy_FMN}IaA8~^x z^(XIlT}M?@56cilCl(@dLMjje5CEDQDH0Ds`>O%u0;u^ZY=|5`i7aFbiwWuQ_4TEp zgoTB1Rey>-yx{Dp4AZc!UGXf&+{;~MaXUqo%r{K?!w-!PjWT|Id*o3 zr<+;BYSCQP77hzOI(8NI>54{VrZAgrft(O*T8Jqs>3fi54D`OP=7G}E(#zM5xb5gKSE!rJuWF={8_bgL+J%APSxbJCzNU8kcN;1ItA-<# zqm<4qM;`kKRN}`O}V6Fk`9J1jv;29Dwk_~vV!Zv>e!#00k(r)Q2 z{a=mhJ^TW|#mmhe=@BPJT&S97KzQhCG}b85+HaMm^gPX%2%CS)saz|&1%didT5EJ-uH5p$ce4X_F1csd zRo~mtFU9{^YSVXP*F@(^_lghJ8E^#4TZ=B?iMCxi|7(Ma=lQ7&mSx z01y2D#s>v*bTdx&p1TAtdyq1NOcg^GdT#L|CSyhUO9tti=cErV;k37WodU+)E$?Q= z?93Ly+Gm~StAumC8Ra+^zNHoarkR&mdVB7bx)uD|`+`!lYTva8cC9rZw$X6ZIbSya zr++6sohT-V%mPM};<4n+@5B(myx(pxPc1(}28v-m$T?^}N%`=k#cY=_E6RQ&j{TqE z%<|IVgcQL#_d90TISembCh4oSiBnwdYfIqkS+aBdUd*L-44HM%TV=}nd_|OSj-87$|1ny{viwYynfR5S z?Rmdwdw0+g?^ET8u)$rAc@fRjO6uQWY-^mr>%Ug@TE<;h<;#>WmP(j_=6fdMea;X!YZ z$bXobr}#bx6!N*pF7oQ_J2wxFQ7`U}s7=fkSI2+g6?}l|6Bd4&4jo5$wPD;c7S^cB zN>W3Tfir5u@1YB~x8Q562R(NhrECog(Ueo<$LFTWWZYhKt-Mcc2~)XFgmRfWTj8~! z>6C4Af`b%qqHjOmZByRai7}!ulvURGC*j~cl5?eIj16N|TK3k^v9_rH#^|w~tkc1S z&j*+0g^})_fFrx_-V3{Wp~zINx7sh$E%(|z^TY3p(HNbLGx>ms~YE ziY`VsQ3aIaojJDsACgU?g1I9zr)+j2<40%gJK3(aG3#aQ^ZrA*&%I@-ieSdu<{@g& zO;bn(fHWRsr>{!GG)c-7mIq?y`*oP`Db$(VN}~4KmvvWtvEGo#r|$7 zvt2~?hmBz?U%Y@y>*~lP8j1Xq6xo{T_jZf4Yq{K!hYUMxrP_>j z@#zLt0x@Xo{Id3lC2hki;st=>FAUU8rLFW+TpsNszM#Z-_()}1(iG+0cEGubZvmzR z(@@|xya`>vBrw7KmC@Q&R5UHma$HY5Td#9Wb3tf;NQVm_CKos59B75@+M44vzpS@1 zXu|bGplxg{h~9X*uGo4Y`ncek7&h7rOnmx>6v zne!@ZbeU>uhUi@Pua}lhcTth}1K!&E&@QED z5DF;lZ!~JM2EGVOaL_|25PC|v`GL)(Kw%6!Myn_S#H-ZLf~W(SpOU2av*YLvkzrtE z%Qn#f@*uOJ2{*!%cWewm3K?ZW$lRSyN}5EeN68_ue`si^=K^+uJ1{ZXvLb4Gh7}v5 zyHutBk=O`!c&Xd#!zToffqa7*yt8tMoU8cg0=D&BN9LVzsS)DR6W@{Pm+gIqHkLVV z;%s>d=hv-mMt~?Lo(`KDcytP@CVrw)9mImvqQ0EO>Q3Ar&m4-KXoQ9;0W2^o zTmP$Ndi0{(;Jw5BM~jFlzU{s5;s9vbvkMORfBXvzBJR@ zy^b$oj{OUpn0U)d+bl=xX=j5a=CtJ#ZWTs(6QLp5U@(6pViK^yArs`FCp!qLjqlC( z@n`{uwiaVOO@M2DJ8ve2onXI6y*)@%5~W8jk_AT3Z|APaMfO>a!{s+?H*_PcQP4 zStM#Y!*Iw&h&X?${L?D=caO=I#>=NmIWE#_l}`zj_-@iUW>@SZ4;xWUXMS^$DDlM^ z8=^gm`FcxNzuP>077S{q6fP2{<_*7}DHKyFxmrq|hyvN?NHc3w&Fz2s8T=ZPNM}4; zE$8#gesn^Ae#HR>#7*`prI)agqM?H|EV}!|UzJ*q|7KRx@e#zL0?E9X%EKZ%m;O|9 z|IdYllX^UgjsL!b2RA<4GWytVng=^t_g|WcVTSlMQQA0j{dT8GFk#Rj!!4VNnr%Hb zm;8CK4KXR4@TJKQmOPKpN$I>84rx*MpHk<^=O!XKRBZH)X7?xdyvD0R%$zWxE6IVM zk8dAlP!MzK$GN#6PY?r@FFnJggoksPW|SHmG1Uhdrw@*=_31QjiRQ4m8B5W|?iHcB zV1TP)!`gq2G~AO#suhyQAdr)e9Z0}x4-?ST4hLf1-qn@+w?*awWDpVn$zkbOb9u$_ zf7`JVhe_P&_cpj=lRe{tG8`Ub{-t0FfTIHN1RM|$U#DaI6p?Kbj2vOu3q~>#XaW&J zC{Doo%PYFZbm0Fy{WQ~$3+l+{P7UA(2c)RQHe)v(wUN6oztb8F>ss_l#JilEa3Izo z2OIthJNW^#uk>WJMwP>>4O)K zod35m=Gc?nTAw_X{svj^cXVvyb}#$+A=RrbKzX9bBj=o5IUlM(;()nQ>ACZVTi|(6 zczkZQaP(smBilCJ}X2N0;L{Ft> z#V>@Kzy3;lC)_Bh`nBQPaWz#{cq`m*nR|q;Q1yVo$zUx|89~*7P4d+yz9ioVh07!* z7eLe4|=<*oBq+uj<)6dof{fX|mfZHZ` zSSu0bJ#<}rosrw`Xtsn1d*NK?r2*q4;=bd4A`89F$ega}-NVxs1>#Kf2RH7xTR$eE zN6$avRxG!zwbt)O{PWnD#aw60W~6G`3u(Oa$kDBl9cw2k* zj$6R}qEdRD4;wVr8`JTLFQuhblJ)GeuiN8(mvro>si^>{bbq zFlP7ViNDahkCr|Dw=R(E?uIOhrC&p%M7xuJyx^4Q=kuIto&KWG?Ve9?EK4n`HFL0 zWt5FniX=UdV3!%Dw${ZK|y`J@d5+Lc-|qp z@T;P$?Pa!Tjj49G6!Ph_Bco_B$KXx~2?!{Ic6QN>VcL}Iun$1V8HsG`Gp5q-z~1ix z8DB_F&H&^~O*69u0mDy|-EiEbD3uXEMTV(d7@xbPo3Vz8dYeS+4@1X!UGn(B^rPUu zYo#9@)L`6s2!vfb@Y2@6X5t~JR94& zS_MT#|M3R#I1W+<4tG~pR+=VO!_Y!>_nn;cVLQ$lKK`*ROlHfphVoy^yvjWd4?}V( ztyfLtYwEwv6lFR;`FAoIcs4Xucug0Xy?>_Y*yq67IGeZP=ikT^WLD81ddej~B$?Va z)kEgv?hk){U8h|_N@~n9b8NUd=mqR(+iCyTi*II}a`wSlIqs-CfiBY@?OR^F(M8#K z?1G{=lNCk0>DK@F+t|vL?>umdk+RM3Pak4dfnb<^Xe<8_wC2C+I@gkzB1`a4CkLNB@-7+{fbc@d&DCubm|utKDx_@4K}_N zCcPg1O*BvRo?PMS?>}Lvu$+DKf4Cr*zOMf7j?}kvaW_20C|}vCdmwpidwZTgzhm#- zz+bjE&%BG~|9nKRfgrhIJa#_GudqO_n*_`Mc8AOnP%huBT_4s3q%J?>bGtcMsEcvzL~?D&o3_Lytt;6+k zQ{H){Qe*n0cL%2$mg?e5+xxIob#!$8^x};g-4x23sjpiHf8JEO{INHDuzlHM%PI5R zH!L~5A&f-qpAVZU>EFlK;Srj%4;6ZpWZl6n3jh6mM(VgWU(||bdM^r zAkl@DjV%_`SaK3lLztDK2v_w#?+kMUrB19)!w5@f_q?A$e9}NYd61zGIQ=s(P*8pX zdKxu={|MP4D`t&HqkYS-HZRHH{lgld#HwDH6H%% z0F&ozSIu0KM39W5>nTHCX$ndACjBA?%&SmtVULO%GYV7(8jTEDWLWuDG;yeJWdHe4cn@^^D=F3|AK^{Ut|m2~6J{gDT@~Mz zA8%hq-gMS!K2?-kbX;`wY(G+vh+F*I&g7?3SKE&xY;1k;jA#e2uYrO<=8q5RoF+B& zQ9`+D+1%x2k_U#%Qfxjr7CVRZ4ra%_S|O0%I`Sh6Qr!-pHfCvN4xt~Xzw#dS&^iCk z7EUq7ct{O}XX|iPi4L^gx~cr6hrGluF|MF*0P5k@Xem2_j6DD>I>o49USngU35b#@ zS+^@I_ck^)?XoL>^zoq4WM_IPms-IyZJinBbLLPeF1e*BHNxRjvkcibK=XI#rP6=? z4ot!tG>%>GgKylhS4o{suJ*YnV!Tgec-8a|DMk^qQq2SSj#j6&CB`gTZIV(g%Y4v!Sb!4M3uJ6e^o1EL10$cn@0ju8~+RZU#Zzj8txuiUBw zpM3f4T3}l?GU%26?Gj%Pht#Hr9(v9yshk~ADo$Bd|5{ZAeNx}j>X~KSb?X0>b~qU_ z$op6w`PeVDwr!}dGOZA4Jg!Ow`LGHKr6OqOU`x%5Avqh-B2w$VL#~ z+Yohi2UNEoT-vtZHZ5Yjf;{1u@}zb@DxZZic2?;}(MK;jUMLd{?)uKbbi8!fHo<{5 z+*maqbmk)DxkHf^Pj^#bV`Ys=OWXZgvfn}WbngDB$Vfqcex+KA-LfGXuJZB-%a*T~ zty!}pDk@4yRCEU{nFEibcA7QA4ga5Y)-o9xy^^e`2j53W?`FRd7Zcmb%^1@y%eTYM z89%C~u73WTu61v1S3m2l(|*^l>m+_RAx>)*DR(vIt$%A30!C^Wu7%UK;qt-n&ksaj z|5}Pq%u4UUc24o-SKqv?YpSBrQc-d~s8cR*KFIX028z>Jr#Cca6>=pEVxsC=nt(nQ z84Be)N!_|ypPs^%$-88WCb>{kzx>?%=HiGRfL|?;mTlj^KMYKbSadWomqE7Vb94x5 z(i1xd`(YEX9hRBh5qLj;{lu?VG$n?LNizS))=$)kMM+|)!*QO9zHCzS%A)skwKVWdhU6GaaL)?msJen7dW2dz-~s+-Tl&>jLgmKS~mcf3#%Pa0wXf zqZ#hu>xUlCu5bP)XM&o$8}!%M$KUTJTI=fvV>Cfsd0#?iry9CH>I^d7m&_jayc0^? zRW3{m-zMEKnO}Bo?)HMa)s2?k48nc)7Lvp?YJ22rlJq>TMH)0AE41AQU~~ugd0vTf zu)PA%QE!CC7ATqlvY-{23eaL|nN@k*7mI&oyf|{cxM+0tGt1E0M%OTQbmO z0{9BCw6yfQb}g1T!(Eqi&U##X2a{E{LL!hTc7l%V*e|T(XY`Pd96xyyzoeCuLKH@T zC_rLJOh!+h$d*1p5>DuJkKAUqoLOX61e*<+MXP>S_58qletjDPR9L=#+c%J&p6;(N zCoZl51WBL%w%Vi*NUA1MXK2dI=kaT^&u+A&#+BceWK9msPEib|b~zo zV+vro!;O%}I_u9+K^MbV5x#m2d9=Vh|9Dl%4aVOOzrW!fOO>7ZMEuW?f;luMMny?U ziDb?4RP=DN{33vTI^#(uXQ6)}4U?97|1OHgD(DFrn$%=C0rH8lQX63BFMDmW(g3Hh zyjQb>sL-l zEU*5l02-?&8+;uy8)K&fmOsZeMS27EA^koxAKJ{g@R4c|HM^TM9Ufb}4hh zBjPX~f9vL++fw5dMFq-!3pb2E#VJGY@0_9@gp*+)TtTQKns|K96VO8*P|tta%2G9a zO=G7(aq*o01tX26EU$rfX^laTYu2p!V?Ikj7y`i|-S}^JS|EQ~7*pVz@}G(M@16;@ z=KUj9Ggk37eRr(6lRpv8|K01pZc~d=!EK{qfDh>(w*pyB^E+lnvXWTCKIgwwZ4}cB z6Y|)}qH#e;GY#cV;bJ=VC=r2u3WBWL1zFWlHqlTY4ky$3e^nYCv&KG3^xY>hOdy8+ z@or;F{tRGWm`KdzRKM^+Q(HR{GQdBgI_ejI4WRmT`@^N22jctlZF+D7V0kWHMi9M; z2is)VGX{m6@7vBNS8XOjJHze2To9wPY;_g`_5Chcj3M8^o&v^p!?9yYfLBR?rY3Nc z0z0?*X9C736z}i1pEi36jnk3c|8p&l0f#_hv2Oo+JZZuj1HAX2*O+yVK)=H|u4&RW z{{?L%rQM(4z#oBv9QgkwN~qgW?L`4b#dS4_wK%|VPOU4>lnpFjmf z(NKDc=jnWaF9C6Ao(k1K?%zDXNEli;vJ=eQ`8L40bZtK7+rJh9zXnC`fkJh-}>NJ&ngKCP2<;51(>XjZ8G z-p&@!f*2^iOL0rzSPhCP)Y)6}Pe|0;r~J|zT{B8~QkBKONo%ah@Go@a zmLdlW#vNY9Sm_vi)NP{!W!ZeHkn%;DWqiKbY(3KT zsIcw~w)yj0;A;ajD|jM&LI1bA8nrNawPdv4Gq~`aaj9r};Zk|`$F3f0z94-oj*7Fe z`I$81k#}}DKBf~;@frBu8V`xLiVyq`m#LCciwjd3o2@a8gOm^upd?zaTsyl@|0roh zjaN5gT{ZbirJ-1|;~>bLh&>q&q3|IKW}&2IBvGB+x+Ss(bK?LPl)!)~42iH#^(Q!d zMWS>d)5>1Fe5noL=^B7F8u@zjFScPxuxyo30E07%FBbje;sTIi$pk&s52?3|uK`Nl zw>(CLk9qQCLT*6rQ}_|A#vCr9TK`fKb>1wqW0T&oJhlNy}MDjCtzs2ptpTp(6Yjp#fJ=>LV0yli=nSxjcM(w zB`~r{fJ@RIV)92Y3rM~Snz}xB7Kn@Y_QRp!9aeqt*|4d{*o2n7U3X(Pn~-GtV){3q zGLp)w_prVzS#u-hUd$K&;|CJ&*`8Dpcj$Y#wvFC4OWY%F=^zjndS}0Ek z^1%7H2K#$a?{mlucRcEESVt)vhi=xs}cR@Ve%oD4hz1{+-<9T~6^ zXzU&A!Cc%pG`@Wz!Mr3*{x`VVC>U=n6A);+l+T%%-|Khild(#o!E=G^`$Ng9KC8_? zN~;bo)xyfvoIZs{4>1AohUIG$kh2@jawVfNsliT4te{Wd(T3LF@5{GzgU=qV_SV|I zbE=Lz?V3Jy8C$|G9Kv-z+lNDXvm|S*g&(vAc%2%s%-z~5BBXg@Q=C3~sg_qsL1O5= zdxE!WwdAxPeY|sb)%KoL;f$8fZ0E?jlCxa4_Cfl?t+A$;*`ymBJ2rgXEnE@uSDs-h zwX;T&1yVpvb5oe^wnOe%UhU67o8Jf4xtCd5?HNm7Hy^U1VfeqpC)w(A$-=64(3wQQ z4uU+ji(Bc{fUw*r&S2PNhaqtczOY{ZV%w^%ru@~Tqi>vEIXl0LHpmoj+M9k66a~yc zB+-RUOn8ut-)l0w=h^nw!((ykeB6S;rCHAJvv$duB@QvHJM}2^K3nXjvfE$pmyPU= z;k54^RycyolpRb6ecZF_Q`@#jPGzUHfTPtLfMPfvNx^Gkf3Z}~PJy{p-wxT@UDpVu z%?EZK+O>CqunGwa3)=<7xo-%we0cI(WL>FLQjXU2|g+d=`(tug<&7oQfG zAnG3+SegF~)RnG+;SKG2>hlxonN_+q7*B3hSLz?S%d@B$~WR)4U;g1Fi zW{byHpS#`jF)qZa=aQ?Ch=?B_p1&|7t+w4_AEAfYK0eII_mz4@WgM#&6)`L(eUxE_ zTW7xmb^>0#$0{T)Bm1xNXuwSI$;sNa7Vlrm?)l0}JI!j)W$lNw2o>cuh1)wm%6!m$ zE_<{(OD``kZ(#VEB>9&urBNkym%g*^%GO9_Fpda0c_l_^r+gkilVeXQ7iYyvEwN-} zd!EMLWlAM))TKUW>u&h+?&js~Y$daIg~aq`e~b%0dhbonu5cN9wfL&&yMya_ghRt0 zR|$C;Mw?vWj1XV=5Xf~(JWL2AFOCN9sn6f0!>yG5%1vn5 zGR@_e!VOLwnKv9|X>|7#&G22r06sKRwO`#kl@V&+;+Bye_bpd=ZmHJW2OCQ*vscS; zwBIWWkmqLXHRQDB#nbJVVV6J9&rxmS>Rt{S6|np@pGF@h?sL1P$RJ?0*1S5_TlB6~ z+Z|tK8CH()yV;vAIu3+g<(iCFm;mtwPW5k~)3k;>XjfV$#GtUEIho???*H%<#);o&`_T1E z_eLZ|WKd76sqfCIE8UdwCZj z;DlOXtiTtH9*^y42<^^JlzaiqKSG^6br?~F&I=(5ouB^pc4f_1q3N7A_`Ijh7Mzi!A?YE zEHpu-3`J1{h89tyK%@^NGKdIB2ZaHIp}cF8m~(PY-s{V`uJ8Nz`6E|oGxI#peeZki zwbx#|#pplFTqs}wpM$q}v+v<7Ad#>im;J#pJbq^ZThJe;%OqmF;QqI-9+~8+?!NqA z%FX`#Y)E1U=F3RZKLiDF=*_hMr8a6eg26r(Qr6zru%qZ?MuTEX0n5$Z9fK<3Tl3j4 z#$k0mH&Ittw}79Qhu{2vlwo)c`g7)ktKGt}_DvwX2%BJIbY)#xVRs6Dsx?RTKUmfY zvWCiNe=hva(LqlR((Mq2*7!)@MQeE_rBvbM-K>v4n;i|C5F2PC1puSbxC7|)X~Q7S zGFXe{&RzBRhp&IHjlVx)e-p3#Q?~afF0=SuTYY|hxO@6=IEl`5;?To{JAMD!^kj?w zmCGIbLb5R7UjCVNy)o}O^Z$j%gEr{9-+5}tM*ojw<{#O=g~gS>QJ2MPar?V`*f)7! z6_$d`{nvE=ujF#?&T1Wg=MElsy5HZZ*)xs+G<=u72u%EmtD&wt0xwQv_-fLIe?!_7 z@^k-a?P6u_?wFv@RUci;b%=tElg4fQAV5>a3~l#cXr0OYZpo4f&DXz*MgEGG zBbxf>ynj`6`~kQAN?S6aUAhr>Cnp|)i$8wzuU`1iG&KHhV|1EICXW8gFV8;|;4ES= z5e^J~1H$hWEVjU+A>O4IhvO67{r{w$3Azzx*Wwl4_+aX{pB$O|oX6ra5)fWd=cXib zH=;L6WQL+;MnUk7Sa{OiAK&KUe;=u9Z{9WW=K0}6z|5P+jp&4c3jh~sf;F`F--}#b zKiLlA7w7G96rq<_A8rU!kjTZDjDW*HuX_T*< zwEF(!uYb}F9M8*`^t7ZzyOXV3O{2Nn9|cxR{_|!Td*%fVKj<0kh>ty&*z5M^i^Mr; z({yAw$exRj|Jy%Zt%Aw_rZr?3Et_41{;Qd!FbK^|R1%xZL2dh|a6(+V`(1 zArU|CKct0!{BVMEd;ish&MEpFW^8TCc;U-MF$!?);?=8MGz?f_=z9vki+a9L3chQo z)-V}~1SyK|LbpvK@j(D24`9-E*l3@45N|wF$=CVWtu^o_;@^HO%f)zbstC8&W>8Lg z1Np4lS!uD~>&x~l(P$dsR`ea}&%lRQU@DaCBLBt7*0+!4%+MeniV2pmU29D%R;+|~ zb>nFC`B0SR;D@V6IUE&wO-;in;-i_a4R8K(dBAMaF?hhc^gvnk8Vo8w?ynt%lO(Ej zcY{QZwwL}M@BY3yCkIgsY=;Y2IjV4|F#?v~NC4!(fVFsxvO3?|a4ig=*#kZ1iJ(gy z>Uim>3i08wOQ|m!$IT{U&7_UJ>MbPj*Z)4MsiVm!3X#if$c}estPnmZGzQfh}G??Mh0roZBgxuckhY&@=-@G#A+q9P7@iosqts<6u6ZY!5>~jh1lt zs&q#)lDgXj^k2jiT*)3AQR|t)aPbX11 zmMCjUzis)=uV0fE95~Nx-@como>X8%h3JrIn&A$IXb0R95?XkasJHA#G`OPWcMr3? z@1h-?Y}B+h4`08H`Gc(wUs9PLb{p{sBdNIqS1^A)8tMqM)VyH_QI1?8`D6k;$KZ2T zVQOLkI)RIdi#I)ybBo#c>QMKYhi}?jl)vbKJ9#cC#$l^yjJ6yz0HwRQL%A45?pD%P zV;{xG;r^x8=BhH}R#hm|6Cnr9g(>}FfY=i3iA0<$lG^H7=7JR?D z7+IR#nX$qF{PzLV4d8)&*2NKqR?e_q!1cjkq>+*J=(Lody3hei4FSexNPYHk9sF=& zYrQ(3HNdi~6Q5s*QuPdP%`IB}p%S8ho_q0aqTQM`N3e<_ z9I;KrhzpBzLC)yY&2$RFcp=Ql*%8hojLKC-o9#44ta1|DX$d*imkiFU|~7{Xsq!5mIzND z=>K@k7z}E+f5v7tX-_;tuMlC5Pu~~IR!E3#PsyH8ZV4w7Jn(6wZClt1UNuo;B6&MI zI}CF@ppuvCUZTDMtyv=9ODY2xV@8v&c_Y2Wd~h_a1L*UwgMqYyqGB~#$nXeglI21u znhX>M1?9HCoH0fdv?!Q8vJM1MzyHWP8|%B94Gj2lV{ar?4pdw(7ywtYjd+u-rH{|` z=J;BM)#Uixp=f({_VTsZQHIj`XA-^ny)JC=)jV;xra|OtbNO)Bwa1G;JaU-xK!0XV zyZJp)6PoRdom`-50`a)`K)p@tH+dy$jh{6)HAz=Eg+`1E!QGNF$5}_*d553RX2aos zBmAA}zOIuDu>qbX`fic3@*Uv-0&yLDGeXqZ8bWC=;USHorVGgOue4r^{&*rb`n>I% zQ`iu5T5+qjwe|6?{9%6TO1R=s77qWE?|**cx@;tnoz+*j0%9V9>5R6H)cll=-IGq> zT>ghWg(MO@VU*za>?t&>GXT+H7{|$%D+``~xAR;3e^M+Tj<1acEe+onBUrmCgg+7E zbn$t88H7R=yf!+YMjL;pWMLZDDaF{l{$Z40X=--21_Vv5KjlW^yEzP#9kV>)!aWSDohn3e8NbfkL24FN7~2)L zzI1$#&)YjvK{_Q-hu@tZ?3*v~qOm1b=KMy+@W4X5Qg;c)^m>ycYCAFOmtis#xPmM} z^K5oPx6|RaU-AZT^gvD84aBJ!K|&E&)UQsiPaM4xS|>;i?B}kNUY__$ueg16f7P}S z1@^0HEG2q zyNvX7$T@s8y|=&Q+x9{KBydd4y}8plOAl7)`dNeX50*tAu?`%vv)jAZTRYI3d+U}F za_%aerK!k9r*eAOW5F(+4z_U=FP;+=C5E%)q z9ASYyfjQ83vwp^m_(4>FUnO;NI%+^wSiiu?Q8&RRPnDXe54%pMrxrF8oencG2cm!p zaUyg(?GV3cw=R#_m*bGN`@zSf-Cp^Xb{wml7|vKHscnb&RTL}?2!{%%P@pR zBf|UD$rsb+9(ph|V|o+jTU4PgKu;127MK@Z3;GDOYRuJ`a1waBT|cz zIq^rNt(c|9 z3de9`ntpPz9q;&BJ7@o#4nU}CU>)$}^ciIkPl8q(N?(#%ih&*p7$brK#UpW0JarGv zHdeL{48C|BGoe!pn&C1Txvw-b84YBYrWC04wTnBkltQDTQZcwj9|1Y^ZqLa9*u(gZ zLWb%KGDd{6spHh*lsC?A-blCT3`lqO9ozA5WQ{QbRF3qw4o|p|8w1~Z%TE4z=lPB6 z&8%1#sS}RwcJ=sZ{4fVC(wauit$Y_89mHLIOI3Sc203FhRpw>DtSsVPCnC;Q-`t9Y~;sW?5~ zj{8!L-5k;S^`!ozoYG?w-rR$3ZvZZ<0sLU$xFoDxm4Il-^{T3>$-$EkOCQc8m=(eB zdMx7=S{sP}0%+lQQ_9G_b*l{iVP=XtI{D9QWt8`wxzGf7-`W2Y7y4H#+yYl zfnWAmB@E^`3?ZavBP+;8$QZ<%3(8w>>!ezkzDByp3K7CM>eVv0hrNl-7~S%ck=1xk zvjiu&7B2wMGX-n6q-QW2SNG7z<)uj}U^Fg)c3Tz4tY&&T|KX=v2di8?O?bg6^wJZ>q#VD?03K*K-C8z|-0 zty={H1qExps?F`yncZmrcmF{D<6Ue>cDdpM%;-SSFWaNE14KhDQI5bBgl78j@F)># zM^kf{qE+IVGiO@+IZMoACVlwvB9M6n#a*y0qi)$vAru5j@QIYi$fM@=r;3@nQkJf3 zEC=mDbW$FKl#kVRgOiAYpD#Y#MMS9Yw%yzh*1Ejo95@Y3(yjsso}eZNP=iHz))9TY z?RD81*b*YRs&w4oSd$bMIVB~s4_P{{txGeUYHvcTY=OHiFt?8|XL1xy&qs_Ni*xf-4QJ?#+#+5D5Py;MbVqoM4&(A!Xoc+ngiUJH z;zs4PW>Iwk4+yM(Ii*S$3^kbaZkT|ch^I*W^A%-#!w&{h0xzRw_XT@AfLVb!BEl~x z!epo1ETA8AdIXm4XBh{6&!v6|mP?)T<+q{P5r7@0NbD-1$BiQhO(26vQLIJ;@6AY% zQYuH+*6oCq5=MWg;HU-I*^aSF39gVv2tOPdrT6(7;2Q;JWOxrCU^fDhC({Jx33h&+gBJapp-5P`e^1~Q3=zb_m8>$ST}{8;8JIgr+@4CVfCso>%rIY*Z* z&v8&k`s-EnU0fyv9hnIK0!(@yMC0@$AJK_sy;3~uGCDI-5aAX7@ku6bupoBBj6oPU zXG1-$@$A#k{)BehrYGmI9_4iMiu%%kI0m7J;L)CknnRFeuB__+&UFxLQBYSh|5{N= zKUe&cZy&_DvQn=%p{>-Ok@0-QU*ApBsQ8L@ke=H+{Iw94`W+Z8t|q{sS*cGZTY}yZ zVsefUAi?MOqMsP=#TCR~83j)W_TN)k609JI;@*kg5K=}GXoQ` zSkyJ1K!pHxgW5|wWRRTF7R^?1QhO#h_?-nlkaS+6Cg)=`BuxGSZ3(({+^)SR+!YNM z+`o?kL@voJFooU$+5Ak!D6B`A%*P|CH@hUA?ts{+fhqzYH}R~jmIZi@isgu|KNnA@ z@hS>_88u*eF)B$BGx&{C}FvKUh-#v4Eq!KbDbmY9< zun(f+P$2#wM8GHgDv8b}Q+r9G8$a9do!P~DDg-wZAZu=wN zBgA(~`G*H^0sz>7HlM!+uyQ^V1Q{z?QM2l#);Uewv?>f2s>EWE2T0xD+f>K{@cU9D zvb}^eN#d|Uj^x)8(bY65ozgvrXSc3VTTsJsDbuW98{mA!bxg_92RpoN*=)?$NM4DJ zZ83Vh69*oqVo_TK6Y#F|Bm5X1txsjy(dIwUZ2fuXE{lcx%jotL0d=cm#ZuE&8g%JO;8z`&VfF-SoO zJvQWzcDbZO^xzg%4})Z81?T|cspW`88y_20IrM5hvjW>AhI4T#)BH7bF4apjgfSH2 z@9#1~ycJ+ddq0?ts&^goOsZzRAKp8p~ScQ#o^TtqvFf-Y60+q`aJ>OQI8j-H{Y4C7O~j#J<_r_(W2p*C4m4Ktu$k)peEU*a z(jLiZdM5R1fQ>kckaw4o0CAx4O5~&c-F2GJm#C_msR~_>L6p{_;9}3_=d#Yz|##D@z`T;RU~J1fQg+;43$BzJjY_lzEou1yNeXnv-p-(t z1`uZ(uw7zqKDJam&Q1yoA5WK_(5%t31~MlkS?5{ngp5(Ubu?>qpf(+>Py`Y}I^V5* znr9kZTDFFM8FO-^b0ggifjKK7RpW!atOFTKln9-$*hX6j061qghaHm*V&tN~gp!x0 zK`{%Df(8f;1181hk2EV;WV&7>*nwLR4~A+k9w>Bb#*`!TULO54Cgc3otMf)b`Wa&w zRot4Mv_9Mggcd8n$r(X~SGmAc?k&+7e02| z;1YiX3Y6>Ru^Sf8{>%Xzmy&ntbpj2xK12k7>IlY>h&0sJLs8WL(cXqz&j(cpZnxJh z^&z)yHbEea(Q!oPF>@dbpV-8DmgercXy-dbJC~1fWmc~DKhk)0Vu1+rsKCs>s89-g z`>70S!jU3jJs3!SwwDW~p}h7)?p>6Nh|ysDV0XSk1p{7o?_FHOG!R~3Pv0FT>iQlTGtUdt#I*M(Kbg-XY!HWYhm73 zg+4UjjlubeRj=O(Z|yz?2df0Y)(BvuxyWIremcRsBZ#moF`DM9Ph5-8_c+}~MXP>} zPGHWyUoTyw9LYtd9K54~OE%BFEp5DdAnO5UtwqzO#kZ@EOIgQbPqv;_eNlF4x$Rv{ zF{eW#B9g%< zY$2CHS|XH61$ortuv;Z9AyJYQ9xiQG7knJ&m?qOO#1AX0*lN|Dho68G#z2sAC#+OO zRaF7vL|MRaTU>L>_zSdtDBb+ts2ka(fVIdACoR1TIyF#wX@xE6wkeBn~- zoJ?UqBP%B-$E_Cj<86#A1ifr1^VVk|X{%9j7Cxibg|$HI05Vg37yI!p1g8|F=>&lg zhGkrrl&Gr$Ims6qL}_dBoUjGyw4}_&8D}m&j?ldn3B%2+&ZnHk*nc3TvBIZju%pFZ zC0RCL!4(%Se3T2n+2(tx=68OfH^d7kSCpQ{`>V+pf}kz92+l0~AONE?l5P<8$WyHF zRmAnFgFaBYYBIYMxhWdgmz!pk@~y%+9J7XJY}7Eq8G_`Usu@_~ZXD4184%MsxQKW8 zeeVWyXGO13#EoF^->@Lc>H;8Cl$Vby7~9^0)eJ@*D9xrJEiDWM+SATr1hANCgJuKX zG%}~iDYetlcp#Tx=}hOi#Kz23U2>S}@*7V-)0vIWKl2`rbH-J0)F$46xALEd_iXoc z-uWdzLP;=?GlCeL;5rX#D>`-Q2B4pplbw{-;;1sm%&wF>ppyzlFnh6oNsQjdrj5K!anl^ixuG90o#Qe>i9u!-<;QR^Vq|)KeCKQNIEI4;!m9YNA z=L@J$mVU&cWVDU)Ajf1jLV;|E2 z4D{HWAf4^c#yI&SdLbf=Y5?1!%&Wr*3jhYz$rpR`mA1BoM98F$rIREanx*pJ=^c04 zAj1k}9KgaZcY=c|hmmZ4=VryAENPIy4~>cI$J;}<87B0OA-=}pV5CEa+vavep&y)gvS3ho?}-B2TNd~|9iNF=M{#i&i*MQ1tG z*f)eL!h_sw$kgeElWD58%%}^icz+56K)|jQbL_*7cPIS1gP61JLtk97>tUwtFaHLg zPan^w@8B894pf)61Ls*=zgQD6c7FhLUG~UWFFW6)=B@WF=)gc33$gBWC zl8iD_dq)1K)A43C8{f8tkbs%MGb;g=F6-_9bHG{GC$^_dY6sT+_*ppx&Ur35#u!6z zuSBC`3DCEU>(Cw&OzVA9>NWj!jz5+w>5S+UPe$`9N~q1+^0F;I-8NkP_Msd5nfX4{ zW}(=w+O|c@q^$+y{Q5!2DLTNVOH_Sd<9DGe_2Amw<0p^d@Mcy_vN4eo?_F*RU2T|> zO$y15slfTVG)jr-fZARl;3;*F#`E9V@;%tJ{z1Z-`p&aU)lF*Se!Y0xK>si?<6ZqY zcV_q;z15j#%^qcuAfNxjj0FVGU}7z*zYGWqa7y%Tw(1m=ahJ;`9XXmS4rS)cXS zjGkOr-j#Z<%iY~Q9W`45HAK>4*)L=gtwg5-<+G8&pCj#1T-fU$cdun1PLpn1%%R9nhXf_VMtCoUhGjkFLKtzqJZeuAP< zgC&Uh+cN`e9$IvEZ6ZG8Rqv_HqV5jRZ2|+;I*+o9O5}3P3SxO1#UqH%3c0HX99#Lb zXP6RrN_Eq^#4O--n(rjQN!$lctpwDlK{fb-(c<6OB!%+(0^eMOpE~4xBm|&=9x{g> zeqLT2?oPMc(St21-Vtvg2EA^LNrI5)R%6Ct3=!%OQ&fVPI)pg=4Cvl}O8SD8 zx2@LwPL_L1I{*rw*iu~4#q3T1nczIuIs^WIW!h#F?o(t^8<8brWN`vtO+w<9t1)Q8CW_4 z{B7aWqHjx!!fJ&!PWje$J%eU^Zc$>kkh=kZZ~vAfnhhqcdPpah|Do@o&Yw zB)Ax}+A1DZV&&n56~3BEd4Od95Nr7uV)3y+lLo}Y?GVCayi_ZU+^a#8_hVi2gsgi9 zYhtikBOroq{#J5f8jL#JNF|_5n81?2d&~v zGt1BGtOveN0%Wv6fsq%0rj(0{*&0ZhDD7gudmtym<(g*tgJvop9RF!R%NS)Ts-P~G zaRKWV+jyD}hdNZ|Heu9NIL4YCpUToujOeY#3nw;BonW{NM9jzYInK z(h_vk$3mnKP5L4s^)*ZgnK@RT=AwYLIddED^8kkyG9lSHtH|Ac6Vrc+%+`h_IF%kN z2l7U=MoWxd`j`;cY6;yqwY@;gvoNaEZ1>SOIKqrjgQG3ng<%FfFqd7!z`Hve#neke z0v%xRbfKUZ*Ij|qv{}P&y3;t0>+QT87b|u!p3Vsl;g!MFFLzZ92$vx34pCSw*a^~b z3>2-IuNYdy8)18 z1KD|lkEKdr0+2Dz!lKer0Z}fv0+~0{Ue^2f8Ps7AQhQ}wFk}}=_;wr6QaQbzNF-`q zZOvgO}spQ=mGwELgz%# z2%8S~-V1$8mofU$GWKK~)g*E3gC@K~Dw_xxMnZ};j08!937M@}xn`u?7!<2uk|MR# zV9r1_eQKl##Pt#d0_*_8g(kO*F2q3^4M66!2jJ-o|BDNXId9fdbQ?wto$&0qSL<9! zY({g7;9kppwXVCBBK)WWnyqRgY)OX&SP4sp`bj#3qKPlKi*tWyH1Kzxw>hN|=`OV- zT?>+}Aa(&<_16sAA1qY`Q$CZXS?s+S5Xtpw*<4}mHEix6h0@kKvy`IZV z*Q{5^MXW?cmoiCOYls4|EpC$BRW18~A;|So*8j~K5+P|o#FviL4V=&xQcvJ;+tx5Z z^{l6nT06mO9|34)kj5dWucUH{e7I3Zi;1Kg>K~A=3}5KZ9kiA~ubD#$0mceyHU+RX@-cxVw$gr^hR1et-wxaMX@9ry(DTjb}1|~i3M*;WoSsBf0I+s&0hDmYuXFOCqGeLRsl=4T? zgsjKGay=6=CQhwlA<)sq+EoaC@`cn4IJ5gsV(pZm2hLavDcE@Q*C=%Ha&lIyLZbTp z<2>L%FAVMD0bcX4I0eYxGf+zYBe}~hXn`L5xfSYabTL>QS)emAA%n=Ohn%1r!FY*R z9q5%zlwPPJrb+SWSMn!4XA)9eSoq!G5O$|K)zRy)%zB8w2bn~doDDLxjtUcP+9qg^ zd}45U#UobF3oT#G$FhD&U?ak7!S-c!5CrxFALEXP=7octJ_y|ts)AM2raYa^ZTE~W zMtn(JJzxW2qAK(<91I6Q4--n0tOfdKT139Y~G7%o|G}7i! z1-U2_8V08OkAohL53?dDZWc#WUUr?y8{Lg&y% z6FG5|9RIbyy!7;JI`8y$w^(aDB?!T}S^1Q*lr( diff --git a/src/comparative_analysis/visualization/kmeans.png b/src/comparative_analysis/visualization/kmeans.png deleted file mode 100644 index 8efc493c57cd8169c7f381e0105eb357b42bb132..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 88945 zcmeFahhLP}+BHmKl&Db?Ys7+45Cws#ph&gLNben@hzLp%7!VM~PK*T^L_`HtdRL@Z zV?#hiZ~&zZ2nY;KX(J3X^R11^^PKnly@%lsc=?%gP-f=7@4ffc)>_xaMP2QEb7qOm z5)u-cLs8$YFC;X*K}cxYsvl?IU$$l5RVM%EvB%WIz~!)q*8w*>A*}-*uE$(FjyW7$ z&71A5nPIOq$3NZa|8kPao{l@3_+p8bEB^cask7fL===9ChlKv$ z_hc>p-#UCd5&v%;{&OAF%`=V!DOUt{c-O3-Q+0R8**5Qpz9Nou_w`*>)h0I56@wnb z)g~5khK^;|*AFP`ge!Ta4m&Lyd#_6)FY}Iw+i`YAOyQL`;Y#I$%35KY#BHro%b&G6 zcIo=)#P=0G$}6{|UHwi-;r;oPX+lCTqj#^qXZGlDS3ixP-{jA6a%w6tn?8NIV^cwH z9<@96osOE7?TgELY1W0w21%JGN8JjCsx-(?or^{fcQ0owh_JuwCR;c}zaeXriVxxB zeSR`K#r@iMmljJ`-QRPGk?Y>E>)@spVcE7Nb5+JVqv+AMU5d%`~c4the^(@t&h7VTW-;>u7;XC()+|GQ@UJvqat9;MD&n+!0FMs#2WMz`= z)om{npU+hC?0KugZiw>j%iV|X;|Kop&Oet)r5$0!>;3iopkmL1r$eIrFQR#0KVGWN zJZeJWjGW{*pPeUnv}OahONUl9TejftnKR$p+1oD*&2Q<7i_Fp%a=kXnrt!VFoML`H zb%w}IPG7zbyU{C>x_8yytIHFD*6cI47ZN)4lkJlgLd^wuJcpk54{?;`5?ybwz*tTt(&zI** zq%^bo)9lJ`_+VA8hlZL&_13nv9THaTVkz|(L~XQv(HS3gRbN~Cs>oL7WbJT8hvvtp z^Vm(kna+)Q45~`SJNa76H5BuFPbbIxQd&rOjz{?o>Ab-=O4KJaCDzHx>fkzx*l_s+ zPk!(l|576F$RjIp_|>l~jz9b5uidNLUsyC!49X)i9^~Yh&Qtw*_o^E2guHWuskgVc z$fiSoetH#V&~7V1@n!c_TX{9ctW@z?w{@#YibZzKwvIbdqk|nLIe~Sij}B`&UOrlr zTv?ZSl-fwG?RvQ;&=9wMb=#+38@)Ti>+-!^SX)H>hJs#PU6FKkg_5L%#6E0ubsCL( z^m*%-X-&1Sw=$Fa{rY_!tD-N8$U8>&HRgB6-gd64wV_$HjCCnjP%6~;1vBP|MBk9M zNYsnkJH}%drVyMo*>pp5 z^F%ye_lspNhQu zC3`j5+_<$jHkjRiXj_tK5T{*MTB>Jl9igo{dZ>}c=Pt6I_T_{nteD>6?StJyrt^cQio7f5I`V77@(g}zBRwB%}W+TkA07nyYSW;0V=Z?{zp!bI0le7M84Qp$05 z%=)8lRSb`&@)6P6@zFsl`~>Us(|IO18RTljl=tk}gJnG3*3r>@|B}r9!lv7}x2Ql> z^QQsxYIn_3iSDh>4$b$s(pIoC&a)lG>Gh~KGKuj|wa7Sf&p=1TC{T4Q{@_E?nC#ML z{k!QIzHDc1pI5N~pU16Ex6{}YrAO^~uNSp1u*Slr(5PkX?2I{8diz#{jPduapc>{z z-aDkDTfFN#Azf)vA)x@Lx{T6_va$j3(FJQY)qRy_FOeA%9}V%7YogX#6^YSceh!WP z@cKm^-U;PVmGR7EvqubmXq!%i@-`}W3zk!cyuUuf!Jv%rSwT_Wm? z#pZumw$=I082`hE4?ISKL6Va{Z?uD}F7{Dl0FV8tqpj`wvi`@Xr}4I#mvgkT^>NW6x8xk?b+|U~*~JA?emzCp5sP9t?DnzX)-TEx{51Yp8pH3p-yO$; z!>sCr-Z!`8r7{~2zrHnkPj?;l16*C-k|j$xh!9Nf-YX)b^znj%0=J5KyHG3RcJBCa z8f`eL@%vc8yn5@5x|}4m@7(kW7Z<(V({s#*&Mfrx;VDg?+wpk^Xr$y1Kf(POyez4tx&Yd__cF zvbHMOY%^_ipnZ{ZF`{Ado=b}py3gWiDx!i zIOoPZX|J{Rb&64oggMEWr9X3d7kec#IJi|~z}?MFvS14=iJs?g#iTiI8d>I2@bHPd z*@%75d)vU_+GI0>KF`wHF1UBY-VxzBB5ip3qA`{mQ>REqY_!Goy~~I67}2=_<=o|} z{PDpM=SO)J$*iXGqi&owJ3Crx8BfzEqC*XSr`>sQxYmY)N2mD7>{%T&tD@`j(#?{W z3lk$NJ(%TXSG!LOul%f1q0v~>bJX^8^WXjy3MC{^$B0B(H#G^e0&Mqnr8YUP2XgB* zBb0N?*l$=e<_jwM4C~F*T3>R_5sQzZNBw7I&xS zzu~t9>*({37kc)Z^Gnot#~q)1Dr7e$rRP$D*YXfaT4`flaS7$ch}n!<`7l?P%KPV; z_jU>M;co^mUApAQWOFN2Ij{O_(`;C(o-pZ_5&LlJ4cXF)*RO|h)H;_eS~OZz>_Y#P zUM@5E=+PsC1u;~74zeUQk4{~FYoOW)K4kW+S>q+5G-Y``_l|I{F+@2Y4*!i?%Jqf5 z*)&9i=&X%+&n)&vuRcpPDXH>#0Z(}q{v(@dFerZqhXfmQa~2JY!Hd_6(hrV0TAM2E zRewvhqI72bVrlcQ#Im2xQ|sw($bHB5V>0uoM;&(>(A8+X@mbk4__K|)yxD#*3^wq%&`VgA`aGc*&xlc63 zHU9#y!GG}eR^H8xw&Ncj*>mc%oHYDs*cM(}X)t%Bx87vi4lB=N(&ibTg@5|>nh*Cy z>v0-B${z`qe((rqnW9I$Y-#_yxIjL<;wa*0Q9s9j!{R|K|7`xffRzKHCz?;QB5urj zqsBjJL#H9U8U1QMu<=@(C~f@9B4^)M8%qqw#!~tUhqni(QmB6XZP$>nybEp1c5bZW zw~F#_`p96{xaVgt8I!o&75 zOv)s6sP#)uKZmoHuQt}XhW6^_#v-v|cpcu@aJSU4Y*mSd$ddyUerkT-K&XrrtK{HD zCflz#BZI+bC8dqucFrqhD_6`rzmv!5FSbeQy&NHtnMx(qjHFZH> z*VXnA6Kjf<|KHP>e6{f#4#BN9t%>j->tggv$3^%!o}bCd)6Q{u|KPXbea|k*jZf-=W6$4ymQ|g?r-;3_qM4D3vhD-)Ez>wgHYiW`PC* zjdpL!SZy&cv%&7t5?O6|&D&d2o;WSIcuwua=Vk_#wW)=Nj6_yG%%%p95|;NS%swLQ z)}0OAL+^ChF@NpT6PrJ?7`uaul}bb=r$;50mepzJn6Q7nbK>Jg{A=COG-);$33M@X z0Q`NRTsCbeD-e03BZs5&W4PbQ2ke~|WP3Ex<{l!Jx^CfsySuxT3jHzL zk5-#%m7qdpM=n=}`%Utr@p@fo-5LXd$^$R=)3zkJ!?BLh$8kH^Pwa-bwfL_pRpCe} zeN4uNQ~hM6^1b|xT8lgHUph(QJvi_*(W!yyUZE1|6PbJkdmX2A14(f-?+=p?_OuV| z(6G(+#y-q0?VLbSwWiQEo8!+H88xYTGZ;MDPTGCU(9vprxB5nF$JF-F)GJL)E;nX~qB&F(TTA^`!T^6Y=7R@@( zVz`%zhsGl{UsOc<+7ggNRN=O07fP9I6BR6YFa=B(`3Wo1?2UQK3ksnH07 zdn%7)JYny<{AcY_iK@nk;cCIFb32FIs0Xm z5Za`i?re3jc5G};ta0Lf38W=^_SRA85#FD|7;LYe_d$+46j_N44GpuhS8P1En>Ct} z^zq}tD@!-;#e)BNYl~B&iH)C8sFml3?_4@Qy8EJJN}zVvphQSR{c7Dl%wzI7v=G%k zc)+amM~}oQa0?r}%m)1ITVGtsbWD8H{P$V$UJGFwYMq3BS<4(Yd4t-c)@l5w+=}lDj||sH^`x^0ZW1fj(W% zZ_Hz~$fhOhU948H7;ZMUE;Ch%oQ(bSrW37K%o|gSs_jjzn##-m+8br$f7sgf@9A_$ z{v-Oy*S$@J`3>G{SQd)5W)BaZSLF^FP&jW+8+@?mqx6Xj)=@R9Dsun*(0)BVJ(hQF zZ&rO`f%SmjFyaIwo9Tc1AxBm!n8ex##Sf^c7KI<7G|AAhmbNLyjfufOALDNxg2d5BBQ8>vOIM+jHHYxGX2l;XuX3pCok4Brh>BY2 zf`@aLZi+5T{cYC;Lmzs6-FpPqH!5t)LKGB^NVs?%G~PZE6RtSd>qge&^R;ftQDh4~ zpHYR!cdE~lrgGEEBILYjMun+QS{}?*8+T2yDK2{A&O0kQzMaoy@>38H97^fpia3qc z*)BHnj*R#+&bDi$F2U)o!;LMLv5eP{Ei}|0oyop`e>E4WZS|Syvprxi>h#4MOjmXB z*Yx5wf5|%VbOwdPvwaxrduq|b zg@$8X&2iyFu!p3A4a=L@Qu~xw%Cfm_5$V+`E|o_NkuO%^+^}L~KNtsh_b?+*&i(l1 z#FdD%Po6vx$ut%ZFFApVfF3;;Wq5w?nyU);8;05Zyu5k|7mFp>?wzb|6Kn677s0*y zPft1{JSQJ`dLg8qqYPw#zgTgCMY)85oLv}Vm)ZcWT+W3Q= z_pTN3x&7S@?iJO@scDZR1GwMNx31BS$Xc@D09KG06jdQgR7dTbm+4f$Wq4m$n^^u3 zZNb2>N=w9>R*zMsk*5oN*)>Pf+PO>{cq#Qc%N2A9c$VStu1qUOg6-U2pY0Ok`-$H& zkM>q;Yvc7>FGrMhkUb`>**0tT>`ZLKc6RKI=p{BM^+Ij@b5W48d|%&^H$bJUTw!qh z_`@O~N&#Usj+BUjAokNdC1x}1K4+tOigI(zQ z`4<_E`NH%!ru0CKB;yoGl}+oqwg=iO($m&csJudP1L?4@6I=f<`X`~s4oprHTi=HE z`ETJ1;zmlmudTx$>?0j&lFjmXW8K()*+q*NvodR~-v!dfZK?fDg-_@|%Lg@dC!!u0 zV26jcpW-Vb^XRd=jBHN1Xw`5m{i_4596b#qTo6Hc@(xk`^lB+6cm4&2K+_TfH0)By)5K~2tXtmD4-;3xA3f1F+{Yn>d) z?XgdY+6^Qp)`rV6VPSX7%Xjyv-HRA!wy_BkLR@$xjhDOS*!#P(#pC+SlY>{H$0A+R z=3%qyo%2)nR`3Z1a%@d5du*^mEpjYM6Lk{ni;j$vK@CdBL;`UlwFQ=R9j0ToXwjms z{Qe>hZjbW#=cn{d{6_}i@HSmI9mX3Lzq|I^u8bpEU{39_b4ZteYYJhLm@4bFmCO_x%B)X+}%-KN+$i}Tvnc;rr-XR zg|2tSSJFd6RqF2b)K+UPv^zLI!M)=R0ksvWERrA`K~=f5@lkpfYoOsp>lemK4p1ji zkJs|GhNg6}Aaw?(V%Q-rJeDNUE(KpMpx(NNV{HZ_F~-)u2o$yH&I}3;{)7`*1&CTw zGbgn04a`kH)T_HDrN)=B^@p$%el~8U;$^R2SEpL#4q)v`66Agz}CLu-ZgGgb66>eUNp_xi&wZ)v+YLJ4n4c z0cNC2AW^dZ2C!ck4pGv7sQbLRgxSwLRh!)w;N_NG$R! zt`d{^#z`xpBTum_I#{gtwsHb%I7nSgUxRkts=GiZQZ?a4y2O(Pn-Ai?QQKw5KQTn&sPY&s#81VL?d}o(A4}g)N)*6Z_n$o3Y2{J5 zN4TMW1m^kfIkw?(VO21}p@G~#N$pWvO@afT*UwKK%Bt>FS)0(%blQ%;D;)(JJ$i+b zr=fQ}PFU>PyuO^)tJAK=Wl5Z#y>sB%Uj&cdT%l~x;>KhT*E4xrI+I0~DW7lDUy*Zz)$$sh`5^W8Y9+f%%*GgiA!8+(f;;^YRuBHz5hAf&+tUwpLrBq*4K_suRqQX(d8%<#Z`mXld2X^!hkU35pbtxy z*u7%ja9X+aAbkjKG1i~?fqy)?yni>ItY(pk zZc94D0DfvR%xp|!=nDAj0{5(d_lY=-f1Su%Z#6Xy^B53N5yTF8!h z0cDqm-}y3;>hZ_zhXJ?{=&P);D7M1gs_oOK*tKyHej{ew`eLqy$I zi|$BGe*c^q*gep&#i2?pliik*-IO?e_TuQKH6(!!cYm|Z92q*iepcTmk!ZE-C(cKH5*>ejzI{X$W{!jEpP}_&|I4aFPvozg3c72`!FCv7F|PTz1Ne^ zbvej?LPA1fNQ6e{(2-uIZ)zH!U=Zin_A;oQcS^tJbIVim0?-3Tff6Ou9zv2u;7o_F zpIfRUo^2kz;}7TQzzs@G?YA2yk)alkk%H41Vll9G@ue;o8t3-Plb?4`s(`C5Gc};n z_ti>U7np`xx?MC*vzB&Xx|zO<)6vmNkMvb7 zRT%qlN`oaryD#pI;vwNTPK`r_#>0s=Z&3vab}LUCcg6*0NbvRnQIM~*TAhIuvhwcf zzElHAI*to_$xp)EYNyBkW6qT0BL)^vnV$&^r1TDCz+(B4k^leFQ-@70=bba9EW=!0 zBZ>DzWUq}Aut#A(%W!KJ%$ox?Fj=-#?bA)$@w8%|BGqgc&6&W2TLE4)997E=cU9<7 z;|{$uD)MyPw1t^Ao@p|YRmwh#usR0hw!LWy@G7%*&!j={l1U9Ce83xqId6(#$T2eg zfLcT9^MGap2f|uOS!VfhJo(_Wbesroo>2ROP)xnH4~lOU_$TTEDCU1$QoN2m7S(xqw<9mDMvn>zx)k-yT1v%!-d1?|K(!GJ5M$NozvwBe4la zq$8uJqV;q{8aRcyLpfjldsUZ6)q8%348qgi;N*5yMgqPlvO#F zHiXA1)EVk)thXul_lwEaVtd_>#?n9QhihahnwgpTBRwrIwBJ7vFlU)@OBURiOD?+_ ztnL^&YO?t~>29@2{mgqpLh*BbbEXN+6`3~Ur?&*mAoUKBGGJ4#2M0$1;~+$$VsFMf z4+Nl2C>^R1v7?X~wK@gq)N<+UctDeXm9&C1PpL_@vS|6a z>$_<)I)Tc*C3NHFHwwFe#MRP(_B)J70bKvhz!<<4N&?2p&pqNZz4pH?#}7aw648v(gBh zCtLLOzCVJ8agLK#WJjJ4aJ5@3#fh=xF&81UK){NVi) z+V41alYBL3-^%q4Og$m{JID8)?>6+DUtQ-23WqmZL314HtYp2tch<^c z(gLF^K7S^VFbks3Agi!e>sGW%EFqKO@eIh#<{Y=hYy3cS)f}=PTi41-W1O%hVk0a@_Y;J%&jd#)tS+XKbE5ob5iQ#Tu?WP<; z>JGnL1Y_Kz4v9;E@CzY3iDJw=tfR*DAle!q6bVV=R)0T{&ThCLqY>%|p$O~!!>C!a zW?jF1JIS9r)`i6)^uI~_U|3)OZi%szWqAL zkz#z~_(0C$R{HjA4ELy_K)Yd{?QE61#*scZgqYf#;113O`_xE+2+d;9v8fk}7ot{N@`Z>krlGIDdz%83`t zzd-RT^m`^~c@-?052DQwtoA6JjO6a`02AhF6dJ@1f7#%RngWekmO5i8I3S|F$(N|Yp?neZdPY@ z$Jno(*?Wqm$DAr%F8Nyw)!%0>=4M&;r@cbS!2kuyIQh%9^_n@Y*Mcnf#v<((etyo^ zO*z&7_qTYxZ))J_|9R8@d`|f=kM*GE_f1!3dOg-dFjl;$O@5|QTeAKCf1%Fob|1B$ z#X!OCd)|7y`<&uETzFXa1*OeHmcPq4Uqy6;H0{!RBrLw2(IQV46shLc6$^zCoe~VPMM&JK^UHn(6YvxS* z{g;colc)Ad)X-CWWy@HAynx5S;{EYt_-Q3s^x`(&|9#_y&yd5pAT`qUyx=EEbsK*w zvog>^f-zI@wU>wF4C#mTy}$RlCBPysT3qCc`PANLG=7_@PJeP`*|N~+62bR>-EM`@ zDwT((nh#B1DXwuMI~LJxdzYN+|J*jRqoO~~NBq7Dq0d9@_yy$bR19w<2m4<`_~#9| zP4j-Zr~;k9x38B%GTt;ZqDPp`3N7AEDP%a*)_<*uEva~!F9<*f&*Ng|~AzxWUWvs5*=vfqm-PNP(~4P;>%Yzc)o{(W%un7C$`y~^s4ttsX>JeqikL)it)Y1^&~ofln-g4&wWH%;Mf zJh|x#GGH?53M~-o3|0r}u3MO{o%qXCec;vdH*bs~<;!xJ$acGs8)RuG!re{9*;1B1 zJ{}Q$Z&$#6x1(lZ04R5_J|OsDVv%wZU$t1S*?aj~Tg|!r?(X7Bm-1o%Qtp2>d2u@- z6VzknZRa@kF2yOxG~!Xi?A4PG4G(vkl07xAdYfP%vBJ0K;eN6Cx727wR3s?m%T*mQ z!?oJq{zoq-voO;Qv8Edi3w{P-(21Kg%G5b)8vsBZZ|~?RXZv|`teW1owY8ZF_NVWk zu24|_3G5Hb!LhOKv|%JG79HPiNhkn0#drI9PYh}~*%X?Of#%gmJxm2Jpy6g~76zUX zB!iiK^c4Y-0r``HWXI>HY`@BQJ(e#PoIpw;k&$Ucz!IN)*ivn|pwB=iw|w^-#qJFh zqVWD&zWLid{`@<+MI%pziOjUf&zJB$SGG3&E}67+3XYUGU&nEV!GLEk9kNm9LL)j1 z>cTwHR6?Pvso8*|+?<+hE+>*X5fCO#Dj+Ivj(@p8XC0@A6Ai+G&HZJ~UUkQ>657Mc zIuRXHSf~kK&fQ<^2Xq#>UW#R|{<1B{epE>ObnxL#{Gslx6CA9Y6D4`+C*L0k0Q9a+ zXFOoL1@2yr^mz)gXhGlO9WT$@*-c?TaI3=iUgV)u?E+3U#5?Hb*uq0)3l>iSD z4bK16E2Z}91`MbgotQ;dsIK2ZdUGt?a0hW3B=8DaXV;(cKqP~XzL1}+xo)A`*tFXM z4k5YWgbPJi^ScA01l#$kvxaU@xTw8r(9{qT8ftH87||_ZAt-E3c=KYu-{`*O_jGS> z39)Xi{UKqrsV9`31-o?;n#u+pPgb`n_RVp4q9Srd64|j}M~gEaaEees5giWgWg&H_2B}xY z*n$&EoZBSFFFR@>(ICY(JsKS}H70r~&kk;UesE*=D2{>sUD(z}476E<$ zT7uzB^9L%Cl#`>7;#346A+PnS5>fULQW<(pU9tJ3CYDF`Ll^_e4I5s4R$p#(N!%{_ zLUyty5;!+Ew`74n1qEZ!4Qvn#gxEXMGy{>mdQrdB;!6%)RWW0M{IBx}F+#LHDcKwV zAFS+RZVI852wH`n0i>GHNTN08k_WV(UA|0C1lW{IKEGD~ExoNp71%cLl~$2&F{iot z={Y6G6af8@)J8yS5C!tYaQXmB~~P%*HhU62bK08vQI`8ca^jFm)kkPCBH zn72AXaqv3Cpa0jL%=pko2BojdqAaZ z;l$SNd#zI;IvTzNh4grhxAO`eHmr3!M(UrBIZAt23%Ho5F(Wol2 zI}VN7Uw{3DrlWT62;?NIgZ_l#2f*UGh5GoTyfU=Idse_xpj|=z97Jj4x%h)`2K;Qk zS=xkQ#%QnAha>LmZnHTDmG+H+@N9yuB`a> z<_L|uC8Hv4+LeU6cOSR;rKy%Yo4+kyHo4{Mj4qHiMDz%G*IFokIteHUivAu1X?ws! z+=&3;H_f>fnk@rsYipJb^sm#_&AZkSLw)p4TS@ER+Mu1U&9H#JZdO1e_qL6~a?c{Q zg|m>>z8)^IapP}mmOoZL94WezW}(c>vZRfB^Ru6~x?Czjso&2Z9~TOkTY(k<#qax0 zK;D9w-l0Jh1G{h|$3v|9+e2+?z#pumKwD*(*$F1C+_#rm6U;X|^eYf5NCW3=8V?S(L?vKYplq%#*l7(0MISDFp0rNy7 zDmiRF8}O7j#1Nw7qUu$zgZZ*RP%_xD<20dagJ;y%(gdRx@tNS#D0HGu^lI{sd(yty z{tW{{XK@O8q>>y98rwcZC2jT|I7Iq>=yFHi-W73K29FUsX8UJ#`X+I4ae1FN%OnM6 zfmh8*3mIB)rI~ChBppY2Lwtp4je+YD;0yu!u0Kn~Zuy|=5paRe-n_KFLTsNQl5 zEd=dIJn=+hZ+*YmU83D0WEzQT^k^bE#_dwMKYjkW^5>f4|6nI`*DjxZ#(Z|b(_1RO zSu^IXOvc_G0jdtgZP0!V4I@KCF^Xc#xdqTq51G680wyvqIPp+yJ)jS00V_f48=0Ek z%zH!Vu25?q3VJWYmcIRs^=fm)^$u@y$fW`0U#kqRuQ}Hpa9_|ysvxaF{XzPQ#@c0R z2@rmi4l3_i{YyAn6MQ=F1q?yAmjn_iv+mPHiHLZR{SHsg%~V8Aftn=__{2IXDUFil z?w28djaj<+@DW5TRzt2k_otqpt4Okk&zVT}X87}`g7PSz&mfr%yTLt>bZ3b$KVivh z8oiiS?IWbq6$HWI_|MH*>@fSbMN5(>a_gut>0|O` zxZHkf-J3suStB-GttBEnJf)|nXM6wVU_nr|g7WEa1>fJRlh2f~XLA}S2 zASNp-YjE*fXn*|Md0^5ecAY=9;3vjtO+sa!@yFk1E+2ceb^<^!{evCqAh_UpY!ngt zQ0od7os@joH)N(SFFR!`LVS0+LB~%}6%2TKUG~-d$a^Xs|L{<|=8y_wlfp*TBX3us z5&bAqQu9nlqZe5g;oo4S>25Z|;EpEcN`NEfNS@UwgLKL?F5L4LbnSPyxql)A_tJV# zqbZ;kK#{iVkJ{ONTQDKU%8A=5sPXycVNc)jZkSR=h-b-(zAQ#Umt%ca3h9GIsM)nE zVD9VA5%!WRd%LNe;VD2`If;}7qguE3Yu!3@$UUNCdS3G74)1|YK6u&w{e?TO0bOViUmv;=MtfxVECEoA~{idbJUm~rs=EF#TE7%2bhCsw_W zc1_T+TnVFKwYsJnrqrH^oKSA9pW|p2HpZGag<^Vn zb!Tcmqciq)bR-XfOG`Va;`UY@D4v%#dYYjvPHKU zzIyM;8SaiFssogw6PX5*ce`WtcDcMAS_0tm5m#YdwE9&d{)kuiPYEgqU}<>G(wIn{ zhCM~6K&;`|-#znxntUt!m$~`ekzG@`yT4IZ#elq(3{pSx_nGO#ZlZ|2NI(-porDD$ z9PosAhM9f1cml8HIP!*~{@U`avtVrnQ3!^TxyhRT{{Dq0$~UAC?h?H!ptpKG{`^hK=;u@mI%#7CtsVi_#Phkg_ zhrrdvF#Y0OyKAr|1fPbS7-du1GUuG%P&jgR1zmgst{VB;N{@y*gHi8CB35>z=WUW7 z0n9%lck7{3zJK~6f%y)2>6L-C9KYrN;aV_=R{exbM-3a-ILr#2xHB1x=y&lAK zF$>ew%E|Xv5D}2snCj1PH97_IhrhLjM<5#XeL4b;3eQ3S+8kteLBL5tFuc3>sv>J0 z0ps8lNVCenbky7C-+@6&HUo%zB_m~EX_@@-<3~l85>EXlW+T?#gcJ$<&XQ^ z2?+62lt%(JTJpWArZsD)3VuT#Dq}+zk)PG0iU|bK>SFgvHjX|r7L<8)^^iC%-7tHl zfK?*-ABc%*#TBs3&Wv~3?;te=hHeu#)9VsXQ&53Mcwx*W(bmX|mNMwhu^6@&v;-3u z9A!!EDf+q-c>VT%Hu^B>Vx&Rtq3MR+-g8sph0_*-0C%r2s<|)+GhWbia=Nkqc*%-5 zNQ|MA(=ty#bn(JZOX)S9Adfd$F5V#M)Z)~cfAa{ThU|Y6pa}#`$WeMh_f*c?i5Q{y z%>S@#L`(*5$K2)V6mq7OeL{}CWEM)Ks-GAI?KxUUmjT;gb2Sf7|4YC@g-cV{unG;i zIKg9uY0g?Gc+aohK*WT{at@WSU+88#bLV~h z??Kz^U5WJG+Z3UqUw)%%xb`;nClNVytQ_!(8c4$vkhauxdQPD*g`;1-D7RnL4obeN zG=ICg%4o`haL+mix~ValeTc7sEl9jfst=Cd7`yRCv2O|=imkA0_pX_~o+JbWIly#> zM2w9B941_#B_}fHZZc00e2apN@qySaN`xao4`H{IE6%On5d|}b_MNR0dBnwTe4CMEIqY^pac1{ zw;Z62vHR2hsRf8c)&nz4jJ>UD=j{=Mi4o8ftki6vFK^CQty7|96c+*Fv$Y| zFP{~#tZ9d&yj4lzy^&f${tce^DpGie)CfzBNn#A5&ctY@{b{wjoTGyLDFQ$A7Gb)CQxD3zM~h^c>}eayrw~_~<3H2IzX7m+E5@9G=Ajc_ z&k#7MOiuHe{b|VFzfUcj!UvtYtRW)>81arI|N97aF@P6mUX`sAaA+X9ICYtHxq*j3 z7fT8u^w33_;<}<%EnW~yd=BqDiq0v*E0FjMWG6&>DxnZ*&h|oe8L4385nb(5sNt~7 zsgBK}9yp!fyhzTI_HQL{XYyr1cnZq()B)x0GmaB@161;44i@3O&|@p(K+N##FH zVV!(}Al*kFy+-0mv#F?Ki1%6k^=^{$3id?)zSu+mg&>CqiPXN3%c8O_9ol=$Gt;#b zstCkDAyX5{U8Bi(Ejlx`uNoQe74%UACJ={GogR%zcQ3?^jyC3HjtzB1v6(a*BoNgY z=i(6l!#D5FSO#zXzhP)vBIqHLv7{*!2+P~cCNyAg!6n6g^Bjg|W*pv|j{P*Fsf0o! zGI|a3&z#T?MJV5YQ)pcm5*b6@#at4Rciyn#_&MtSOq90r7~Mf>4-J`uT=Sa@AbGZ9 zayk|BZsPA(#vAE}3wHa0srXczVr$aEC+EmmNA0TG1DKkS&;%-g?OGxwc=>tV&*zXr zkq!yi)6&{+>nt>UHaK>*G&<(0(XL2_K~VHTH6S8ocy#HLen!$d0*({SZ zGp~)~&+>(|pWe?ge{}c?;mipdJ^u9zn5Q^2o@`RtkbT|zjz}KqIw4JUB>cltSZ8L- zsB`sVK{mXgb_p^R-<+r#OB0nu;>vq zDP-0;uMWD_&ml4*Od3oi{gQ~#b&u==$#?=QGVlcB1J`x|;!X_++VFMbnm~+qt!P9lIe+YR0E7|qv6+~x?W?JFM zEi(HCV@y;t8=(jpXNG> zzAGw2Zy(0jV1$#1%T`Rx1d)+2;0BQj8gMC9xZ)6WIyGyTy&&udN-j)&+fU|Dd?aB! zhiW_p1)5_FR+|iM5hKHqLaa*$3m6fdFxl6gT+IB7E&^hbeIi6yHz7q?7+7MYudm-7S$N_1 zSP<5dXjCrhw{Ig9IM{IrWXSlV;eiPb9O}vDe&4X=26}oy^DmwQx2(l1f4AbD7t=4a z?rHozKh^3(nh>>v5XUIoIUffTvTXMk`Oj18c`$=LY8bo`w54=r%7qc~JqU8>?I&n# zLelR~_a}Te1XOcA5o$Zck2_#Gxv&12(99nrog+@RDneL6qi z#Ft9@dgM=H{t%dGp~y?>D`Z=Dj0Iczje{qev^VE}dFwggtx02;jRf5LXV8A@s^5j#n61YB~0p>vEu&s{XNGZ9;S~* z<(^B?doCp#IL1Jg!+IANDAt7z{;jDL8;H%s=07BI{z+Sk_N5>!s-uPTn%L{G&2d%T zUyIVvgHK8PG9YUQ9henHocVzM)DP~3Y)M;fY*mQLfirG01-c?iHHtAcWinE&iEU;K zD*-)DdPkwA4xRvp`Y|T?d^u9z1mbS1iWVHI+3Qv@Li+nr8{AU$Qw;7kIu2X{5gE`l z+<>EH@XFfSw5Z8?Ss*STEPVnR`XIg`b6B8@kfmV8Q1z>@&17ydh5kmBa}1M%Ga8&o zC#83U1lXVn{#?BF7>zungu30*Fvk-S)E#xCGy;fr1T+cB=cwA|$Y(-`^c`Iwy}7FY zz1!;Qzmz&rLXkjADD{S%hh(M+8CwM~qiUwaoxAAjt#!;t=%~bqP%#S1&kM_(bs@q@ z8VBcGQC;%+=TlIl&H+q7A9^xd_Wg^0(vqdXPphh+T}m+pDm>mUOJ@IIG!g>X0v%<& zc`8HK$fR-f)!sL*-;kf7uDr4qv&bxZi!r`Qb6&ahT-o(&C~Njzy)K6N<r-M;Rg0GD-^$pPlX*C715LiVPro8hzmKn zWMrtvn{6GY64m>my1;aS`JTW0_cIx??fs{VZ(Sc?X8D53BXXI0`Iv@#<>)`YC=VmL zT|-)h;}&Az4_Y)s#a>6KSU}CVQ6}*pZgoO={@;4@(1UiMTS&-(6c~!77;y}Mj)5U# z7+30xv2nMY3x|!nlSRt^>4}QyRD1nD$aW~9MjT6^MlEu>9W0?4 z!s~aR^ap9xvq+nogo6d$A9ZuDkalIkD?8AVnWgJkGpZ8Dsqw! z&%IH?G@6t^CWS9__1<&STCKCxASlKu%doFlS)MGSbaN$b$)vLL35sVT@MAqwj`5Ku zrOH_4k&)WBwzTEp zad~%-6<_-A?*1Qj#LMgJ%XqD#F?^m&_w|e(ngT|vv|dMnN5A@Xah(W^T4K!L@31y2 z)(~*-LJLCtOe4|1Od7toVAc(EIMt*Jgl~8DzqXM6(<-U=q2&mc%fyNr5`BR-U^ta0 zG^9QW`O;dVLAS;@70}!pF&D?3dv4=Uy}RFJ4V)LzxMpN18oUNbW!^3I9zQ?<;vWh+-D1Eel42Y@hNLjonAP^lx^M}oYVdW zvPo^1SWemSy!>gy?Cx3}w14Yjs1_!5{_+QGrYDfLt3yElX>&Ygh7bK_CCp+g%Tfmz z7Z*s(2r;r1=Cm^33bfg>;RQDs(R_?%GDPk}CK;e2n_+0YIp9ev^P0f7OZvRoR;JP= z=J4`o*x5I0aZGy$!Du**2PqmBcY2VKt$ddY)P?^&QlN{rIsR=iFXnAWq=wDO1L5== zP*@+4^LgAY9vTt`M+=cHKvGjJ4pecIcv&pwiQo}$;>6|8HaVeN`f=)FOYyWLqj9)l`H`(aN ze&b^0i~Nb@;5QmLI5_y(Rhv3-mWfQZG84^kyN*znQt~jo771}2p$nmT5ZQ9fR3$|4 z`T(p~_zhu+%{e?V8m8ke*V>j?0^`XC64qxOXiuv=TAqyLP^D~ii$588&lQ&qozm})>+z3e!bSGerZpL?yxgbzw zDpwE!83U%cQfKYtTgS$zlOA{s0=W1s5=8rP)&wf+Lz59IriEXhU|=S1TS(7PXD z`k*Z3)+W2ZP?H~@^X*8^r7oZS{o~zh=kCdGJ~P_`&3+E(m_QFkEoRFHpH9DZoU1#j zOD4J6f-r^U(jr&Lzz+HuHSa{h?n7wpNoHt2huZY!+{^`Hlt=azHDqFALE)`3!{SAg z9o-49HBo;h40@7ZsDsHPWKB-SL?VRFV*E9x+sTE+x_O7a(VTDz(O#W1Ot9{ld5ZPmiMaEG@D7ySbO77 z3X6XF+3ZHLF-vl)B zEzq{h|K#zm>q!4EnQXIRF*?pIVmV~M3Q=Z|W+9Yo5YZ%l{wiSX!~~^^!IhF5uHV`k znws-OF|Gz3RGactz5#q(3_7Vr^+3hw%R?Rn(u_F+P=~^!Fe}jsQ@Qc`PzKe z2f-87^}=M0JzTLowM_ z6s5dRWCP1%z*rR^OP_2XjC!!#^aMt>XrW5Hud1O>LrZbW0yT~SkDxC%e z*#}JQI!2T281jvXBPBuEc={&NtTNfu7sBGSkF{9t7`E|l4*?wG(_hHWaBDBS>=a6R zTP7Rsfs7`~4Rd*~0O;}mx(f;94=6^UUg}08FT%hrx%Ia7Q~|ZfEDPb~tiu%%knx=) zeYgNo(Y5E#N(ZmOg2WDu1uSN9@d0s>`=1+f|7BvurCVHGUDQyIza=3OVwNs44eEa7 zk?`!LhiHD2p4PO*Ysdg%nY_-`g-9CcVobKwc+BrWkIBS7GBOflK@G?x?>&;bvY=eP z&rbvK8xH}rd9i;Xxmk3OReRswF;Xi$*_J+xzD!0@lQ~epcEd~naga^q!L-Hg`q~l%U14L3b2ElNN0C{QL`O)-gOwPS zfCC&|)jcuRJ{l$S4`Dwt@_`nqi_L$}y@E=dE{D0$WF9)T$@(ofZ13duIp-C6ECE+x zP;sh9#Yno(Fe?Tc2249!eOGbSubAZqS-=C168YU^Xm$nUj{yS=Z{Hnkdy&a}&rR2@ zpD~g_YT+!>fGJ$yj21f#*vQ0C>als#zCZNkfC_%q8Knwy7m3m-&MB8yK4Y>ERB%W< z4KlZ(!4h2*B38v&o%_E>_dY%MIp>~x*!%bUzO~-kH+_vBYMgRs>Uw-uvS$Dzi3@m6wkt50OuEz%%kw69 zK=_s$EZ_8(HBu0pcoo8|kGPw{K=f|12!{EF#ro!L9_s^}PLUmb4)8i73nGa$k@%IN z=Rm}YIJQ&O-7_z%4IOIJU%m~8?ek~{i!aq!R(45hwH|>%03;=Mb;Av<&-^}~3Sx@< zsFofvQiG8SC~V_bnmG{%G4(`@bMNSeCwNOcZ^DWDto0-B+emGGJGmL-zT^{NqOwv+ zK-5>7nt7u9iGR8ydBtdVVW9PWClwlN3`adCqlJUo+TW+KN$L7Wz zs0bhIs9BPDdky4lMcgo((iQlscf6y?%=OKq3I4OmxZwZxBhe|9pEnQ22@iGnL=XS7 z=y>;MxqR93S!E6}T*O8R9?qF>bE9jo&zJ|L)ci zwK|aiQJE>!V%YQDxBJT~3N*!$(1_6!=WYt%4H`%3Ox32Q4~HAYpNcAqld*H2jX3&$ zZSW!~!X!ZqyeG-DG|!%}GcG=da##+whF8#;IZGlVZ0H1a7m7(Ib!`*k2 zMS|$1S%y-s$6F0X-zJ8Q2u(caOp<${&sMEDK2?vZG~9E00sZ}TA09aRJZ1iyt9Nx! zS-6V?wH-dhPX5g|;oCS#wZ}*J&K7?T>mZPZQ&{Qkpk0LcJ7H%>hu)wWF=llQeVQS4 zcw@6U`=@%qt-t`Dy(N%O%+W&Qco$~-OJJZ_|ELw~U-r_lg#zTt!UrZYRCOFHH3 z7kY{XZ0HuvOO|%~SDA|8aRwTrMKFHcA@))z9Mw9U#t!?i33MW#21=D?jQnl~%@UVs zwZ1)3WVo0BMB`6Ry%It!9Zc67h8scv+4yq=`XvzNILEkN#I2x>;1UO`)zIE6p%x`- z8saj7{9a53Nw;mgjbBZMI*AYweburjPph%Dg@`JMj|ORg?Ms!u_my-aphP(GvlH=W zMJDy!E5j3OL$(2{J%(Pw0n4-6u+O&ydFBZ!7c%h$3(3!9@c{JBpyMiG0YPR|9ZtT* zy2j)ajoMmRJ@|O}v9cvvdb@T7EzW3PMi#*YL?bBe>}@JYEP0xk*`rN<5*n9r?l4|G z3d8Cfm(+bUb|vWdKiXgPXg^_qyq}A7URnNAWx~`6GYmafW;*RRi7W@;_C7{^ac)l$ z-xXr)Fn{W$JB$4`L@Bl1f82-cy@S{vfEkfK)iC~fT@M5|@>)|N2Sl&Zw6=$AC&fnD zfZ3{WK~Da9a-MjcOU+DKn2o=kvP>hrW(4lZwQJXwzg`cfYT8{Owx8XT_#S7GWZIo! z?<$@yjA@Ml9mv|=lc!gU3zLO)fuy6mtTAf@`~PzlrW1#K72R|A zkx@xb($advS4xAVVLKX^pg+X78Pmx`^H4gV|4x&{_Wdxd+J;%3w&eI_JYcbq&c%Mr zIWYbif|)MlBTyYcL4tpVJ`SWY(tZH9DCzJQa5{i}1DYm~#sK@HKE@yX1yCEDa}F(+ zuVzg0eF-DwSz567lV>=bXt|B-clQ5FWjG9lcbE*6$47RQS$vV0B*WDqmUcy^S?#n` zF{EpsK;V)jWBL&S$v7gcHg$Z$RZx{3%+a9%ZTf{>2AhG51yXp3L4sK zFrbd%VBu_GbX1k1`@G#f{0TEL+mv2+VZrR3Zqg&5P*{Mo0wj~aDWuI0E~9oIub4hx zQ9D#{rA=KOrMD9cCCflBhxkND_(A+t%^e)%6P+GbFk*|R3qra>+k=!ixa^T0D>15R zp<|uL3StvXL<1y3z(j6-P0}iB3axu{~jj(!&5?Q3O{eR8JgC-RVUE&6Hx`Jvx3a`q*#R#;|em}0T&QB z+F=cv`#z&AU7nmrlGU|rZs2^EJzvU4k|-#uFycr&wrx#aV&*|?p>dsCVF!@%6F9Bm z&qII$Bm!$d7LGUrh0&o&YQ_EpdB@NOPa#siL+TM|$bDys6UZ~VFd=&}VoLY&oY2<_ zu6DQ4?rA=Aj#b(X_(!4{apflKBt8{N1WaR>L=4xWWXW zB94H70}N`L&#cQIu{(eczK$$66FKrM{lDpaR;)H}of+}IA<-8^rk7+q8E^&55GJ)x1EEq%lr}Cgi%qHU}*T;z>%_6!O3DcAJ)qX#PLb3}B1k=ub+W z9=>FC3$n>(LK+@2`Y}uBaW299!?$On|3$_VKv+frB%Lqa-$K4-J10X~iCp-D9rbs3 z#Yf1EqU`WCuwQqwyLfWr;Tnh;{t)6GMv@oGM2+F{1jmnZ;Rxm-ZCjyL1FQf`avv+a zHwPfuufW~KPGtvP_SuWzjJ2(#^bKo*gT#Y9kM9(9V4Y-g1uYuE>>AVELGHM!c!QLC z>IuV?po==%dv_;DT|S8=%=fTw8Ij}@q!N17jxjX(VKW7462dlNnL#t$B-LviU?mfe zzdQ7!MY#nXSS-CPAwnHUkYQ!C0}rnR=$$M8!HWsjQLG)gHC#>gK?h)WZ6jw6SrgWn z&CTH#+jnHsnn0C;%^i*TkCy!??(T_B>=XonIKPD(6n8Hl)u0@9-w<=J?8ir9P)89o z<39M#G!C~3SqCYHtQwGZZl0ON?k^{n?GE48exN^3GisGlK6xMBMp)CSO7v*~d)a}* zo$i1pX14Wo+j}k8hKPj@RHC~SQjxlg%mJjk6Z+FWVD6FnPB!Fg_4M>Sv1`%+W`3`9 zH{Sw8T&8ixwaU0a`?d!#ntkfnWx_MpytMhqH#8VOlZOcH^d7Q8(vHpicm9R8OsHIC z{8Z6?n^g}{J*~i!iVa6i$x?H&ehk-`vfoCl;k?{6w`w;;OJcN~7DQVRurV5oQnx~) znZ{xNhLPtFYbt5=3J2|o97;DBDMzBh&ql?)q@T1Oan%6r*I~rv{ChMc(v=KP$R6YF z-J6#zVedfve+XHG^T~HDcm8GW{?$;(PB?FH@RI@bg8-{oOY&xiaa*;_Z!Y)}7)ua# zr!&3HqcjU@D|pR7!7R0A$~Y-Wbjv|O%s$*%kp@X;s2zKM+Q2~YZ(Of4JTd*fmY5G= zdDjZ48r^`pCMEQO%xS%_AmJk!?L!}=65BEbW7e>LP}-lTB%eUiI*R=Tkldk#^W=a1 zWyr2=t7wClaF2l(nfWnE8P_0mAq86+ND#VVdw{F~PJ9K!hZcu81MZ%8a#20jR zMmqrcd53kO6^MMqcL^OG3o<0cRE>vKJcyrd_Pbwv zT?tThoVgLVL^!bk~5oCB~>LbjTLO<~JavGL85{!9en z8+&+QjxDsFiai#Dp=ZMvX*-OgN!TXzJ`Emx1b&AaJUCO^?U**qbGLY=N`dG#0UdoX zQ#)H4LF~f3j+EldVO&L)9icVxnFzMYV(RQJ$PM=J?T(5-6@^F$KV4;mA=QFn^ukG~ zZ$?W8u3zw^s*Jg+qof7;Bsu?nQEtyb#`}MFksr;V97FZ|W6#Kan=e?_ejl)PbAT20 z<_HH@!;dl`nyj*NpH+M77B-k*LLne(vuGN}Jc~*tIuz*2Td?T~n)V0iN@<5;cV#+u z?&=#D95OIWJJZqa=>P9__Y*t$25|p@e*f6Nf2V6IvB=cYJ9+Xcj`|bfU<^N?t8o}F znO-$I#cS97Z39`1Xht~e+GZPntn2ALdy`6s1 zk9Ksp4Gv;!uqO@lg?tuv!tD=;CU$5bk)Ac;nZP3S&=r^0BOGdnM(>VmQ^$fiIuzv1 zFpJv-_}_;s!`o0s3@d?SMjGJ@4|Y4A9rgiyj06L-1SinQXu+ zP>JSNze)8?y)v?WqHBD)_eHQ#5 z@9N5E746Vf-Py?`PGq3i=V*~-w|!56<90%@b6K&@$N9L|8I^+c+d3Ha!XNlOANg9H zdCHEQ@4wU$K5Hs`_RewB3NOD`1C95Eh6Nq@0~7ZWd&9V8b}1=klr% z@}jmpjoMG+*_h&Lh#-ke>JVAj4HwPBK#b|waN~eh}00@&+GOEn>$DSQaZRV+SME?D}>6IzfZ1aZ{jqDb}N7(Y9yb9uKXk}yH zmTSn4&tmnwL%~ee1M|iuV%|b`w)<=_u z4#~JEG~%&0Os7DVLA)jBPsh;Nl#ImL($ry8=tP_y*YIlEBwD>F4#tBWS7u_qtB8OF z($c}}Alr06YANunf)_1H&L?FUN8N=ny-FXO8(CNH98NDg-F|7_dcL)5`^QCl9J?}e z+FGf5J|4oS`2$j!3Y(>-CXEEK0d;6M z2$O;KdK*rUzPeEVI}6&v|M;&G=J^rl$8>63SQheONyvwyDL0eU9bnw|5_4ut@S-&~ zY_PzX!@M1L#u92__MADV++6cb!&;ki-1oExzx?Na#W<^PpJ9v7wbQYavUDkf6D+-X z?b@}?UmnYePFM1Rt)~E-z%ap*1OH4P8ke(I$3;hsk|*r>E_u%~gUP0bpEg%Vry8d#07?xO$i z6X65KF(wL3kgPbbzkkUlNvAoAij#A5bIH$4uQpq98wg*~bzljmBhE!f&vwP#orek& zt+tl#Zbj;;xNv^v{v=b0fBsicD_g_!1wQWt^W{_VC+3gkS6d5i{2>QhB_C9}U=*at zPc?CFnF9bO)ZN`}CF9*2e0ON|!~gtQ_|dUdy5gIRY~*Ce?~0$aD}JZa`afDYC{An8 zDmzr2t=fK489?+bwn9nZnPu$lQmE`&RKnz=7kIKCl_~iC^S?IJ-6Pl3omL)ye#zvq zOXg)Rx-32Pc>lX|pcKtv*!VhRl>)jqge0xOgucd>EnDKc;=SFi?^TK2qYnE7H+i)( zX)Uqp^76ufS?m0yRVfr)t2MEDF%PjVYh$)w*iiDeESYUwssHz>@FDfPGnofHnjmIXRn7`)*ZmRx)hVPYnJ{&Xe#9Do~X=gg`hRUE6^oZ+9G^F`PU zOk^^;@?c3Vb|%*Y-!?+y`~-tkn+W@<2uA>k-4h6j@1rA4S-(r@)9}}Z_p@R@nkHFjwpV6ILc=lt^qDhBHnr=n&D%Z# zo&jDZM@rnNNA#~#4S#n7FE9rWzDU@^ztC7dH1hoOT94by!vM3)i<+4 zBW@gF?|*wO7c}Ei*kxb;aNxdihD4zJ&S$_I(Z$QRALq>f?GHZiIQPI~yvkRcoIh@C znY_e|f^x-IgP!H_Ruj>hM4)>k574zM42%!$9aXh|o!eg@q5x zJ4OlXwJ{Rq3t+loXZHUBSpPe{tnhhPQfqXg?>(fqd1g2wJb0WFiLq0Wm@q*$v}RHX z!8I4gPFYri*f@Y?!P~N3PqobUyQfB7!~XZ5_$fWw-^Xa3Gh@RcZ_zacVMX(!XIy>b zg=<5hz+7<7wDlT4{?m88=CrbZoH$K6^`(X9OAG(}kL|Y2i96#ZC@Ul@c7_job}RJG zZQ3b##@=)Hy7lX0CT8|1_N_Yfk%Hc&8e-7-w$j8|5IGm^vD)Fr@fiB|pxZ6%C>v=n zuN$T^&p3TK0tQNgS)qS^#Ap>Zo4v-=DlNGn!P?ny=tYm-MR{9`+>oB2z zLB)A-2bVn23MD(ifhL(2@vRFb#w?WZwLf>jZwD3NdwZPz{IZUd_-Pwb->b$I{4OTW zf4gs4?!IN@9=Y!k>yLl>;9_g<@1oCzWs}Eh)1nbtrQ7{3To_?vom**@vibKPUlkvJ zf3hLY+cWapb|)B3nX+tO4rUX((K(E89qd`RzjOQW&yt)t&9l`0DbHLOfi(HG)4*u%~CX|l>DNSz>Yii+dD+k@g{BUb$WUMWyy^#z&)x7?3puXIsxhMQLu(# ztbI`V?=PF|_?00dD?_#_t$&=CW_s4`cX2JVoNxU3ZR~0E`ig&EEuq#oz zeU-JW;zm(iE`93!uk{t-tE^3~$?p^v5|e%by!IV*n!v;V?Q-=z7o&K*e!Z!7!f}1t zm$&s*B=$+EIE^DEZ{z8V-`q8q)QR)o9!Y+7BpIh07xXY)IVJEsF9?e1|Mu}^J_Arc z@OY0>?t=E*1T`5wpSzQNMl$bP@XE0~w0J-8_SKV_=zYj-EgHrHv+*z}<~ znQJI zZ1Tn6K`m5GMN>31{8ax+>=P&YU%x(&_rnW<6=bx77LLxSyo_G(P};xT5&g~-gN5*% zkciWdJq^*!=B7iDJuJTdi7|2{yYp$-($?{oc-mw@&z(x>f4>4ks@#P*C(D?nO z8=?>tTON?Yf--LUbdik8&cuZ&vHuOA>7}U;F4zg{o;Y7xv5R)&Ab-1@wk~-u^WsZ{ z<4fd2Bc?F-pZaPFz=7hm4zaQf>u+S<{r4cbxslT_rV~Hz8Mr2aqffS<;!v39izec+ z&VOsRB*$#YCf;Ln8lcm0c3;rdD>33k2w;+0o{590Qnm8UimuXGh+0^yIJ+ki% zugnfr8C{%Y=@IF8W49YOrLU}u^)5|X;=hN}*su6$8xZzYpb{Fu!W#<3S7OmKau(jH zM76R)%XF`~^Jsu?f+FK~MU2>%@f7(}OG^u>CLsUgLe>5scXK8u*zUi^m$-iAl&i7Z zqXe}B<@&9QY0$#iih?kGl&I(i zkf&xVLz1XmcNUnAite$|szkjOh;4&za+q{=C{ws3P zOR7!_eGkga)s%{6Dun_`${&!=yckl6sAFBVRNp?7E8tkvj_PN!iqjJ9;Ki4ac=o-$ zHhPl0eh!2MxTeh|NeZUf7uDQ`Ze!GC)R-~r0oS)9l6Nj;OkVnDqK+x$T)8ri2cz1b zF8i<1LccBL%P|9*yQ+uFn9es$T)E2_0<6dHHh^jFzB}dmA>1=RPswuleU2rB9ZI2* z$e~^+F<)BbqSV8pTbW3Umlsk`_1?K-NhsxcdmhaulmmF&nIKG{49kU7@*})!J|&t~ zw+Xlf9DMx6?D3cAKbCJUU^|!ncc>P0gpGyLl2%oj=TYTHt~)EtpbH5IR66$RPrA2~ zEA;cdo?1A6{%8nio?-sff5Gm>qzJXOwe|7y%LBEHU7~`dwuX-qW1tLyWdm4$TlSCx zxfEqtF00TyJ%c@7_zi+{ua3qec!gQ&Cg#K)m+IiOmd)Mk-08SD6}wsZS6Nkj-~TV^ zI`(r{1uYA`KAb}Ldo;w@QNqH{@TG0~nzzSpNs0aC^B#M3af+f%4TWL`pQD71Ij2vb z{s`IDmRpMBDG$-=D1BF2u>wn1jMD8#o12>x+Ujkvf>=$}N(r#~5-4v+P_8dOJOK^o zZ}B_yuIA1#t_j4e_VV&Vv( zDOjtu;=8A`-f@nY#g9YSQ-+5^sbDTT6{8&}?aahV@pE_yd=w}XS_+dw{dCH=L)20 zl>k=AQ@h-bwFm+bTnbanfS|2pm`G2GkSWLIUA}lx13aXvT7P|W|JUTyG^+YTmlOmk z@PHD&nk1c6b+M*i;$bPq&VPG3pSb8h%>W$;a&2Rh#Y;+bh0LT$XXV0Oc_^4PE%Yky z6tQ+Z`w?gxFco|`RiYGOjs7}sb@j=XqB$uHCpB#KTHh7^HAzfHt^KpD%(dyADp9@ zR1>EI^top(H)Yn=*y?@DB5;N%ebiq4z;EFbkW^)Ii}<30#z-zs<*1@g_j5JsNij~f z;R91eA55~euoyROn(yn^uf=5;HP)v1drC!ywmNR#=+UD=&4SE(Xs{3vp8SR3gC$ch z;Sc$X$zv0yy+@L`zGZG{Wg1FoDN&*OyB54Z@CW_^HECPOwsq^Cxp6yLwJY%iL4MA6 zA4{3m2CZeK1AXOW54j52*nU`11ICw3Qd+|GC z^~)D8Qq_b!hwKW1oAxCe0*DcqGITKQv)zUB=WW^F@27O>cHX*Lazu06ws8|CPIO?f z--OzoaAzw?iB`H%wcBoqN~`!_DMu~D(9aMM%$7{Hr~mx_7%r6PR)3d#s~A$Hn%V4w zX+h-QY^^Ogv8d@9t8LX4YUg0&t_arplf}xa=DXoYabaeGyRE()%%FZm# zHJ0UlldP#ZS+vJ_FJI;!NtRu@bm_~)YVbU@Sg5OMZ@--I*Kjy$?IF*__r(hhRQErA zHM*i`yp@zQ?mo$X12(MIM#bJJ%avMmLI-bdMvst5t&X%7hku=u)4(j5VAk@~meb^~O7VEh}u}z`Gmt3f+xn}CI6isO~g{M(EjVFb-jo%v=ZGYA! z+jY=}*?)W=hKW8%XFa|+g@66Ah3g(25a3Xy<3V6Bu*Q@rG3r3; ze;c&Om&O@-N3Y(|7QW)B1iDim2z<5GRIcW>E1ZM^ecl&mqq(palOxh04zfjJZ1!mF z^dMxLQkpXN;a07llsVM!HPYqBR?fos5rf^UxYUikVx8bviW=8Q>1h4PSaLg}|pQ`B4D!$UH zqB(In*gMZLoelo52G8KILG!yb)CbTO4KfFM%AmG)ZQyjYoUT*Q(b}|Wo3pY|fAtQ+ z-sNCgHd8G~?$;+)#%&6x)I5?agyL#^!$L(cix^#CVnB_VLUv+r_CHH*UAs1CllI!3J98vR{98U&a z&eYyC%XtNnUNSWuOTKYu{OGDN!+Tr%@kZ3_sh6J&y+bPtkeXyIyKnEikKUD#f3Lpc zC#IHeD@&S1F+++h`TZgMt)pWvCMpLj&@l1K%3Iz2$tdSAJ_?dh2Qou0HW5*Vv zPHJnkY6$}GdC%S3uD^QXgbAl{!uUu16Cdig$t>G9igFusKJ#|nFI&$Bv6lxdY~n zHCy80Q9Q7Zh+kKgeodx8kM9Eaz?Z*xPY&1rA2>2dn~iGV89uk!@~OsDKkZl=AZdao zqq+Hzu|j(Ma_+Ss&9rJ7(jBZeN7mG`%lQ~X=vR(G&jca{Gj#PiuRm?+>eU_d^N8e; z{tTo$;tLJNVR@enNR%@^KBI6sZlkdCK|nx{WkuG=MLX_nG01jZjYh^fs2ZX`RwRT( z^|zLcLD0Zvr^S$$ba?*}wMGv$Njq1j=`?UcIcd&>OZ~Cv*E8Sh*jZVHF$eKQhT=I< z%uwG>U_vnH8=&yDPis!#p%z{*l?$IXIRa;)1s#FL%&F#%&c1_h0t6s8q1>j0+--H^ z95(-1U_@hqRvC?|E+{h9i?Ej{R`)F z^y&@HYkzqk2MF;DjBitu!}sFVE7`eo1z{|)7G`hbCQJyZV~&+pnJntfk3Rq#t_?}B zX4ATe)f>?7K8HAsJn&;xnNyGtH+L(DMoUK(j*2P-4Kjt z(7fChy=i)UoBU-{?V3a(gYPQd zVBP%ZdkEYNHsgZCS@w;C6ivpX-RzJR%&w-2U2}QdZsox|H}PM{D` z`A(M*Wi|re3j`hqoP=kr9nXI>)VXPH%#~;Wjh@j+jx_Vk>C;BL({w|XN*w)7ih5a< zxqlK07mS~db$n_qwDQ;$ok9(CHj}vSJLB}%?%OweF-lB?fWh`uzh7VBSrExpQ(AfRc(11!p@lttAA?lY8^5x0liN{t>!_hf6LO?irV6yHI_$Z&- zw`V{VB>?@KpTdq6#lL;OL}VwskE9~Pv$)4 zAck2228|LCL4$h1M|ci*YdU5Xs4x0~tr;@F)_z}g1i#-W)ed$x@=?sN6}C!f$Rn(& zOO$|X!dU6s*et>I1}sPZp!R{I9sS}T+-?>_nPG)Wa27hvtdHfY9lF`g04gV*9Q&eY zUueubmb`91TkZj#djT`F{4D?sKdyY0z<>NMJ-rFQk|=rh{r*stlM ziGyJnbCgB+y07kryWgy{eA0&;R-T;o-kQdqo8FwzG?;Pb=e4oztXM6j>MRb`1f({v zX2~=irt0g9pZNBk#~0%vsm-HbHficw{MVO0lwvjN=vVPWr8?;BdOzp$em;{Nf0>}a zE^;M3U>Efl@-(K2Q=rBiOZf=Z7UJNNmwAUe5_jAcMYVgfIx^$MBtPdcn(~hpewR!> z&4mV8)9YKSd&$S4z1g=8d>N&={#&ebC@teJ4k~wV%Cjft{NI^fpbJrq;18JFvhYW1 z{?TIGoXAE;GZ&b0oRri>%ySO-`}N-8LOJ)UC}y*!WF=jR>KI!=?Qh@18mRXxOSO%% zzi@!ihqUEc{TYv`%C{fTfc_{R$OE_3sU~}G`!zdoI)B!@kYxPHOjuIi1}LPKcbp8D zLGSplhF*{fGt?!;v8AZdALqY{QTkx7B!1r6FUMXX*ndPw^jMtUhM%bSp!!I%1x7%~ zffJTk=;O&R1ovAdz=q9+4JM|VuT5|JlM0py*#C$DbMlO!;;5AHDL+M9@KfUCY7QCcW5YH44xjF zf^sfsvGLT8nvSaZ)f40T!j&9^iQGU~e4YnJSS`TEq5zw>?KTCs6_yp}dFq;C%eeR4 z?PUs^{ou3Rl?OI>-1zaHa9mwll6R!T5d}T+pL^E5xr_eeqn=pafA{^dm1KiBg_ZFS zhFi5?j+UOa#&blh+UMQuH;MM9>Gt!X$en)W$7gfyOfh@_-Nj7AO>bGv3pJSIeD=~; z5+%84Ut6hIo}Ww}+E&{i7_LCTk6e33ux{@bC+&h>M9AT= zDI2l!IX*ifMxmpAVpaJyvA3|Cr5Y2=K_SXQC3z3G7oYKhb@rej>b?yC>D^fMT90va z1ARZ?RzrGD2ttS21(LlIagikwfd*sOWlNoInrkVbtSBSaGfvVmd zddg9wN87d`;;XX>S%l%R(_p=53h8Z!Ifk1U7<3tnXQGMrImG2h3DyLy1eBjw_tMuE z@xT?_6b?k&vNLD$0b9R< ztMt`x^;sG zGHJk&*H>9fgDzaM|E)M?npb%$PEY(kILnuv-I$pggMVR3s_ojK6n1{dT~q^m_K7-& z(C+>jVRv4jMm;uI2o?xkT*&nD1qc*IH6Jcx`fGR_T6O%Z7fRjfAZ4J(@hI>@ z42eqE(0c(X54aW@EA*DiUtvS2hP4B(9^h3Xk*CU#?FpOt(0o1NcTj!2LNOWk?b6As zE)Qw2&KZFH1|LO+%36v&_HDhr-{+`N_a#-QsC=PK|DH|5k041LwkS#13jQIlP}{nf zAr9#6XVyZIEt(s$^MVl%+XFeT>r<_#ZgyqI_pNSuP4`Z|6{AzVwIj=2fT}Bxv zMKHxEVACb+=;%})K4-H8*8EDLl*_;OCy9)l%&(~roONo|Nby#P1 z3-&a;sV`&-#nBL^8H>_Wj+W-j`F0ldGJ+JC_4V~II2@}F^$2S7XQ=!V$84l*DLO)Ip?dRnjZz757*tNlQlkVn4(_~zm9@|C17 zg{lDg{uP`b$o#r9>)m9>=+7j??|&B*VN?4|@l?-j;@?}5KB zp$$WmmTR^K^B@!oiplO)gRr7^tYl>A$;%IogO1D#Ka_~%inOG6oZ@JBzCv$Qw#OGR zn~N(nNfe0*LjzhPLFo^Z(Uf+W`hw33>!y{;b`PD`*SUH`tpc!-&$u;bddJjFT+ zA7}vSfS|~QMycZv7<<2zv>U?ufS)ixh`0|i?f1mGS{ho8``*pAeMn_>2#1KwYm<+Z zjNo(w-J^o?K>)2o?KpZMZ+9Vh&n1{MJ68Tw1j7s(s89lsccMgP zae41SB8Na!Buyauj<1uz&w2rELQ9_ny9_CHcPZp7u`=oW&OS*66DdLglIw$*=BG9^ zZ^rS?P1Xf6S>`nB`+HMFDc>=Gf^Pn^4o2@zDn9dgl!KJ(N)B}a0k>_4(zWxbJ&-;dtK z7u#Q?ep+;bkuWy=I#fC3PW>kOsw1D8vo#r@2#y-s>xvbGO8P00zsuwc5_6;q`co_Ke3H zKKEwdGyK-Vn9Y(6`JvM=bhH>e_w3MHvOAk}XM>N_&}djis!33XuoU;=VM=eGO@}cW z@)99y+|;QTAhOVEI)qW>SqlvwQqX~;v3kZ3j}Wcf5au=mnmy-61u^>kCq%CtAOqxq8g><3#TJn z0$m?`hdN+Ourp}}-c^{_l?JpplWUe!mSl;pjQNtu+oCpzya#*MR1ltrVX!l#CyGZu z07yiHdHV6YL=eYoCpBtZfKb{$4#KJtiFjgy?b@TLW;7RoZS3d~$w~PKc@WU-h`WoP zF6B069A5`62>xcNRlvnC=u3nt^JO=dU`2&}^T*sMO~)2@Yt=H0K^?y+qb?0>zW%K6 zq$S|VU%Y%7ftK&&)hA{nld6MREUKu9ueE>BUoETg{IR+s_3uSNh*;xe6;(|D<-#tac~ zGtoaV1}*;quqUvAlXLMC+z^3Z5KRN;`tCn465drU%VqDj_6 z><)rhlSCgJB<0Iet50KqjH0X3?PcHNrV@&1nS&vxZ2;?NaYP|HDB69yC^KdULs5lV zrm#_rozE^mS`ydTEfU~XS&c(W$-y}w!7h9{V>>dxE@^E8(60f6grfPQJ|RxFrC1p+ zG<-4&@9ZVO%w?dkT0D`-OD#r{84%K6$6hH=U?SgdR78DcouADU+)ci;!H;|To?N?Q zIG{Qp27&6jmt+4X!xnsGBQ#SHu(GmO-$6t%vKK>*kEc+WWVta#qLNMIDzO2#4x zF-$@U`Yqcc)(MQAyo3S~g2tgk^GJ6FYWA9%+%wIU8LJ*0_#ht|I`=_u!S$uHFt+N6 z2U<@iAwJ)~@%r<~I2EciNXBTUrKM$(8}lUPYri#PBdzyaEQtb@R*aS;nc1pTN0=8y z0FFHTatw2ID`2%fDyP>SiH&4Yd~t&P)YyGH8s6WSh>GbI_A6~qwK3Pw)HDYH%$Fu} zLB3b6h#xv2|50ahZ%vTx|Ra|jiNOyBV` z(zBWqQrsy3S~-Z7OEA&~2M}TW?)9X?0m*eyYV`zsM9p>UM&L_d03~7pzsXda+7V>R z1!6+oG2n#Rg--B1{d?msh|jO< zW-_B_n6k$vhKV}iY8~k};%S=-s*N#2IUNw%myFKX*f5$i; zz>68-bg_^?c#^yq$if<2*WQxDDjI=<6I=K&O2ZojNvi%M|M-50>)cK>`u<(O-e1#? z&W|M+E~0AzI&(X*MKzy>-VS(H6wuM>&5J9$Y!q#V`VN!uhe@SZWEzMlL||S@=9s{; z`XK|(nm2D0Sn#z7g9K+1S`0t+If}tT3|kR;yIm@?wuANV+Wa#BbO6d0n3o&CxT~8% z@XD4ZzZ4K3>D6h}jG*{(K5n1)*|QMjADkB9SnA4g(Mr<3y3=p z;!+#dfGx>O2u>sO!`1yz(L@2*9>P+_0{2dBowIln0yI6JO&T*ydcNtlGqzxCf^aJU zCAGj*WKttbDeTwBLLdPfCMP{_N;*8;o2s#z4?}heuY5 zPr?A3AE*vgx3Ue6jkk0#C=~rT{n0oK8i3s2@l_!N?up220bSLj$z70`c^b7s1abh$ zQ-rg^zdLk$@$p+|sJY~YfYjvD9ntGS-qNCaOF6e`T%tmL+!f`VI=L0_K0=lXZsFIqCVtjQuq7e){meDvM;tq~Q zvvVxgdW~>#n{ea90qg;t1{n98v@1<8=%g*SE5YbI`1@ICIUd}d(q@bhNYW?Bjj6Ej zK8I8Q_$B@@dqTze_ZepFA>&6{K(-A4EadP62%c& zho$||@S02%Uqr2hI2>b_DIp^xMj0h0Cb_uq9Q)DiA-OHrJ@82rv@L z0hS5Qwe0ahv7!DBU%Y_9_A>eRROpS!c>%>of+p@%nnb1B7lJd|zb3y+&dEmK2fi!y z5qXUtLP{MPox!J*a@y=&s0(&`Z8UZIryb;6AuTj_FBspaLVX~eLOSjcMnummG0n%2-UN2O8;?Op zJe&z^cGK_IR5OmfVAuT|DAibi8^XOnEonzxZeY{L2#=$M#z$$DR(W6-JIkkjL!J<; zd{T_kn>6eM`ayM$M<}EZ-MWPttRt>pWW>e2z?+UH&=7q0IN(Wq+ZoW(t1%~w)v-YT zD_b+Hg;?dp(vA%85xF_&1XA%2uq>Mg2a9oB$d^Vwe-5cxa2@&5s0eY@B9Z3_g+a=Q z_hG8jaCO(CmGvFKGYSP`GX^2aOkj%p+Q=qc6%p&3+R^j8pLc&0^N}~FEj-Ub@mB-0 z49^b->^jtA1OGl03#p_kC*3g0cg!o#LX%8QJ)8F|R^wGRrKcT0a0K^V(FxtN61iR| z*&}chi1d-jJMow1V0#tqo5ul`lhBT=REM{g17>90#EEB+gUw#}j3>=JUCDAjhi}|@ z*_~pba|mzxX@_ntuF9dZhci(oxt(MQ*>WD0C9><4BrAYOI#n*yhCn!6L^VeFUj1PQ zeTX%P;_5quk~s*>@L%=IOuDDf#XPk)LKF`27$SkgH6G*p@-##sQTU8xb_w_83=Tnz zvs6}o_$I&9n6WX_{K_|wvbkrX$T~gBz(h1^$)P%cLo*X z{vNeqRdP{6)B>MtqJBXpyoA2$v%7h_k8_Y+HsWSO!T1qwtt@PY21kL${+v0rIiCEC z<05v5z228WmwMtsr9M4(3YNZZC;u>XBs##scrJ3sJ%c1!Jh^iOP@qZR{v{*47Xz`! ziChUx)+`85L0)@(IriCJipsG5`eZbsga+x$nPgtCyA+ibk=LZVWy@G7wa?@8L}4Uh z06tjKg9cgT{u9(lA`Z}xu`xQvure0Gi2Hd^S?cyB874z+Ew+2*WZ5+s&$=Mo@^#W$ z$;FgYJrttjc52TJ@rymj{tC6G3>k7n+(l6_UOc+v>@GZ^QSVoSHblXLiH17^eks;i zVY>o7v35r9ccGH-^=RJ}aL^s3_2w(9nI04R6hcMx=A#_{`Xm=u!vESeFC4B~T(*P< z<|n(VIt)i`N{yNzrm3m@3ZO}e$Q3=ELRcx#T*ppoA|ApJkfv6NNBO) zCS(Zw4-I578WOEz`gx^>b+)}5KhiRuZmU06VTjM^yXZ`Xb9ZNW?rb`h%t zh;Lhh(Q1%JVr2dsaNEtA!x`hkAgSb>o z9xM1hTwMkLjqxREH5GiJ5y(#hoS`ZpKbK7Pf3p;b!Jzi-}XMfPG7m0II1W%f}Di z*FV+K7|O-OpU=G8t)+>6cuVHM$2T!C(+?zMiJS2nmCDx?Ys|8b@{`Pvp+9|6m3L_Q zPe1oLo2gQa3;u2A~ftNjl2c>;*{P{8vpr8Y<02^LgY;33` zx0O&WsPrB}<^oahq*)s-UeW3C#rK&?=>Ds^YUjza?WO_!r^mj02mN1z)1Qa%xdfK& zaKD*MWH&f!R~GGESt@ek{Ji}?rY#k8k_;A7`ncunjpnqIcxXa4UEbb56SlO>`jSBi z6ea;#5-tWufE4n^R*p57Q6myI>m~Ta^W<0}TB=naEDhIp69u}n@2r>ta`FXfG(iLc zB5JSFJIlEI>NhfM$UfGe8_P$@gmKpEphY1Cm)SE)ni3nC=fZGN*YrWT^UTD4dkg8IDq3POsKnB-`Y56 z2iCnb{v!!YDO|P0V0XtUV+F}PIRf?zIBYBh`KhsSV-)gM(P54ByWCQv3ESU_8+WQb1Td2hAq_kPqL6_@3>M&!^(EpfM#$sR3WJ5f3I%*}DM|hZrlMJ5D|d z0)MbhkI#jInG_7l2qJBdrT}f7J9<>4LMg^`vYd zag;zNK=4rqU^<5m&5W5d*DCqWGb3{XC<*ve9nWUSgFz}pYNps6wYJ0Fc6DhK0Bi6J z2oW7)Qmdum`5bil&iUCfTh^^RU8KGwsap9*L+ntRV~RaZ4g5g5Of!Z_Cx){Kd`3`FY3WZQ7K!>9w zoj0J{|GJco4WPMT>HL>kZlIY~irR3B%DQfVTQvt3BtZZd>NHOKbE}l2YSO%S@g>!E z7RIs3Hl7AR^0s<`M?CdHC)}m)A!`rArYjQ;(jaJnNg4Q_ zB?xY05?SfPqPP!K2xrLrHvTD6Ir_n#_`p$U&=RHu7{jVMdr@f1N}_5s<#qb8rIjx& zk)QW%7GN%f@a>=m3BL*;9sA9a0Ku*)P5r*vWjcbRj!}^W&?yu_2HX;^Rwutd>%*DTk{Hmt(Ibo42k#P2OzizMDzkW ztcBYbABB`#Nl8i1H2s2+T+_M# zXU`sq|5N{v;8Tr0r~2@58sKSaC{{)^(Oc>YFlxa3u_cWW85v1ARGw!n#y*Uk9Dj7Y zGlZN@je)y6T{485uG|!2(uP_Wh|k+bAw5-KOaTm}z2zM|hqiM#cqr@NB+qDTF92yn zZZ@7UVF%PQPQS0#zrl?fh^xkYGByEFJh0P13?y*((Dlw5QmBX6DY#=RpC4PvV}bWLH#>ILV?)--igbr}QH+xH)FXt&CVf$83s663AlFGd zU#u#axk#*kBW^m@I#N8qhnO&2F2pb6V!4PJT>40l7>5t&im#%YOWJ{;7buiW(vx-W zyJwJ?@#8C#dRNiu`wYlv#XrWE^OAl(Y*660tCVx#aRgGawDndwT$lcL!uz-&&?pqb zji82bJMn%^fjTfa#AZS@At86QRjEULEoZ=4MuIw;&&jGXcIEsOj$O+&+ctE$8Oj0g zUn{UIqtC|9&D3j{K_#(|2rD3k1-^VDzL)MQ+PNu~hIHnHT`b1C_sh+lD_jz@_3U8y zYP(m-f$x!Ex=}QxRrQ;3H_Etq;n)#lp2V#FsS71G=eVdwKxJ3&%MnVnD!8@!vDn*+ z=L8WmWT?pP_x3!Vi!!SaB9mK;nn~eB>?#Wym^G%Q@|5#~5Vq~fbXtnn)>)D?dkDwY z7ZP#IDw^S3qmx(Yy72GUXOYzGzIM(Ee79itrk$N(RtutnIYP+0nJ`u?OFk+IzBmz07N+OI6VCad1OPg-L2fve&|M83U5Xd{aY3>-UYWQyv$eVMCyHeYM@(FsHiF zM8^~#pE!cZI(-#}B+<@>tIkaHJe{zS$aUhkx%n`?$&!Rv8JC&3viu^TNu_5yH!}p8 z`vu~v4?IqLYSxW$>=!J6Dw5o0LOhLI-rs8A+3Dx&YgZ{nM-W&GRwGMEI-JWBsGk>~ zq-HTvR#0>#huf-H^0)G=Yub;5;Aho;4__H$lcJ!Ai7MWGuu)Qcu@RJKC2gxy+qSd8 z*1_42MX9OE?gUdLY=3iapBfj!4RZ*Az+*lK8P)Jr`_=py4uW<@zYU>WQ4aL1X>=y) zV&4?@%8(BZ4oqk%#^I#$<(p1ry3GQSLHhP#(5$vs(_}zCoh~`DwU^yjlsJieV=CxT zWP8D7`(Arsvq$d1yuh2ZUU>$tiIc+_#u^5Z0uiRVr>VdX0ja31zI*V`na?|j-pfud zTyp9W@l2peU1DdG5kexQ005Tm$c+o;G{B!staN7_mYN^GxqDVix0H&%Ar+KQAru~9 z`HAd%Wyqo&hr^I?>Y_p>EIs8ryfvfn!NpX+ZD(Uk0qMr^Q6T(%b#{y-Yg)WN5nWm{ zL8178_#xjipv!+EFDg@5u#KJHu@9@= z&m+2pPv3onNFy}?p-9OLX7;d}&I~34{X!f+e#%@>Wa#HOxo!FLF#C^+FKPX}bCdH+ z_i9W;k5+!B;N85l&uCD0*y$SI2sZPB96D8{VBOpcgw~N5>TT7$AbzUBvba?NeSCy} ze#!v8Hny&aR=;xA^6O=IeI|qk15TU`ttV%&^Gy}Xx@4fgT}dWnC~Jt~1CLT%=5DFG zV{8?T3?Kuv6Pqv#4k}$tR>=|(5hh9A-pvbg<&YjSq8S;>Al~RLlRcZ&F*F5h-?5a* zs?N(F9W3a4Y#Gm?$N%(1BLYyUDw#T1{Mrq}Ddev-6SWYDtUfN@9Eqh!)4ag6(BNYS zqvYM{LybCA1S_m2Au1Nka9E<3&KI{ir0N?qr=)35y2+?{P-Ee)V9R0F!-?5PqNUPr=|FnNvcKr7t3{IjwrS zJOfX1GQj_Oh%s$|{#&HBj#x@JnmOzD%MmZ;>g51 zzYJ!Hk3wuyfvaCuAGX5h&$~3un+V!~R>6I=&PoZeJ#iQAZD!z@=Yjtx!YHuAt>1PE z62aV)K6NJt7n}mN|FLHPtNA9l|Z~Z3=S{#e6ae zwQQqr(yAW_#n@b$C_^#BRVAv&n_cx*R6w^SaF<1Mn%rY_EWW3gN)mO{lRh#ogvO61 zzNO5mKPuMX)R#`|XYNKICKL|QKwul26Eu{zj85aya(Y#`#3Uv}R_9Tw%|fCDnu6Lb zYz{iM;Wjs#SgKsa@p{~SL5iQkHyiK1UOCX@JoWwYRl4+pTnI|KF*-hil08s2MqFP1 zb(73`XHM0hhFlu55XfJ-b`3^jQW+&s2X@XDWFoucegRLr8EV{=Fo?Y>dk1frur=~IZ&9K>PD zk-obdk~tV;iiD!Y$Jci~bQKSs=|@Pv4a3T0o3wpc9v+Iww3QSJfYurGga%jx&Q2V~ zza%%#ec7CLDi{gdw$F<&cUNUyp50>3soM6_qfA3qO4Qrx>B^6%+1VJD+aAAb5vB9^ z|MB+baW(I2`}o4fHf(KVrVJ$&+K8lKnW<13WN4sFm6YarvCTuGBt>N?sVEtmYh|c} zijrs^WHo4>TdlQz*S*r-=R9XW-{<`G+pqKN$9Wx=)#vkm-@|oZ*LBOzBY2F|^@P#^ z2_(WR#!&Zrce?c9apd#y0Fq)WoIy1hKXGDpw0s;GyI>Luc^r@_1MXau{b>I!R6(_ePFVlM^#O1J%YO@%Nbn)W0z+43}Ul@9=$C-Zy7&`)y6C4tpTkG^Rsz4 zB=HW7(}|tyRaR&$Y??7!hKg$m>Ug$c`lGYGuIqlf6kfgiLoXt2N74$dltk1qn7|SO zv2IxxH%N*buh9uM%XH!tAUM)k7$}2<>UA;Z$e<5-Ol(^gmDc_Rb;u?GpT~oVj>>yM zPiuA5hO+>;TCm*t;j?1+@(uIOhYF_jV^F>6Lfod;bN^E zbaZEpF+S>O?H>g@3ld5=d9>@YI#B7&Ao2fk*C`8>;e)EG;$h=*gRL-ViYQ&*bWQr4 zaq`p~%QivBaWi|w&FuNYi<6sBkqR;*S}xgwOt=H@iOaFKFTp@3JbA@us2Mvh#-!JxU!Y&S_JOd(ZZLs8|EyUC8rL4D)(#YCFX;|TiJv#yM8Cx?^z&yOymE4~Z9A-sEj z0|*O?03Jbg)>h)pz}Gf^cX=J$&UEQmfa$pi(ibKWeKn@FHNE+Ryd4!6-;>Nf$P&E3 z;k}J=6P)SWnqIuwbb0^sCDrELoJFz#Hso$jeRW}&a6QH(OILhGEg$Lb4)#}pn^OBJ z+(&bAc1Mq53lcrT>>V)F7)_0p{#UM4G|0zo&K1z03+%(I5cp#3nO@Ch9B#Dw^7xL0 zaURk~C6&zLucm}>nin~8eT+-V4Hr;VpHlXsx&wTdbbeYxIh%>Q@IBEg1Gy%|M?Rn1 z4-N|TXyhaX(DfyHJmM}E768Nuz2d|n)IjDWa>TP_*}F{yk& za;>ml*@AUm2|SO~CU`0@L*0u$Wb!6{K$4Hq_h{ciuh9+Re4E8x@8GC{4gtu-{l56s zU68BaL7PHNgpBTkJG;U}Gw<3fKxVUV#J9G4W2&Ilz+ZGT-6_0AdBA+#{!0@-9RprZ@#Lf2Sn zeH$;Eq>wh>-kiXXPNNGH29P_C^DbKhd#-rDDn+i=>1!FbSTz%48J?n#kN$ zt9Apdb_rxb4u-dX7Rd|%?@-u^tpx>J%*CLM+}iHp#DZ)5l7#EE`?vNlXF-OEespL{ zIlu9EY7mo{-2Z~gJnC*eAbZon%l?y9vW>_5bu*T3+A!y#oAd1* zi{PRJ1uV2B(Ek7E_QF-8?*NMI7W?rlwCEIM5}Jjki%7vV4*wd{Nhc(ZM}ILgEKT%) z_|KJ=&N^#v<`Y2YgveEp?{ClFv2k%*XBD~ri1z-~r z4$kQADvr_)y`bq8U6^|!$?YQ(bld%C;IIx-ia2}arxMgm_z*ve5QR+0$R+(yc4pfK z7G$oZUisOH#=CQ4^)uUFSM&R!ii(OXX7<(2LyP{4O!gu#Zht3a_ynQQ)P;IsoFXE2 zV0X!8SQuKhQ%eMXCaTRdP+S5IRVY}rUF=6Raxq3xA~&<|zt(Hw2e54gFjujdx8M!y zoxF=Hf2DC<-2SWyxX+8SGr4yGtPmBB{0C9HeuSrf^kvSdlR(2oL zw0u!o&ciE^qkUEYZV4j*?YpBl^Fuo)ZB}Y+E{u*hUYy>-KrNtJD_*;=N$4`h(pI-m;rl$H{wt!F_U|{k`R@`i;c`nkX&xXhZ)r~bqXGEby3hyX> zH@|b>dHgnF80I>sa8HkXc{~JXu6>PR(NIMJBGG^e0GQ@EQr$ya4zNIDGZ-@ymC=sX zQH$Mf1q*06hm&IG`qz{2O(vsm6s0sFLmh~9KAz}$=d4(n<%U!rgj6IuLNEzJ!zeJ+M;m+$CJh#0LqQ#XVvOwwNY zI-(5{^6b~W19nmc$DOviR`HPT+%>!1O3T4}A}6TdN{u2+D>L+0G*C$W)3sULhDF?TDCN98!sl-U3`_s%Wk^e+*t zZY&@7hRG63cYfXrO`Ep+>GPlYg!yBN#b_#3cmS44(b|-d!rr7opY*E{@u8O%pi#yk zo_cy<5LIY;J!%_Mo0twirecFsgG)HA(Qg&H_M)of zpgweo01af~WRXJe1kBi4~;mOa0dm!{P%|c87&kCob;>^o_MlPdJA&Xe=tC!$V?7M?Z3PSN}XeV0nna*y$*5*7? z0AbcS?(C~dpUCgL7lrMRjw&~)acnWh2P@BothcsURWKxWoVk$+% zRY%V}BtFis2jivF7oR;vs(ZAbkVAZB!&O;}5Sm^pH75^apis{@eV*dQ-Wser3zf|p zl&3TfteZJEkKWCfSj!nGkx$du7T>l9L%YzYuV;b!ONvnw6B8|n!$|Q8fwZb%C7w1> zMbQ=7cfT9QvNkF;0=FEgde@4LS3viqi5>%OLT6nJaF`{qBqJOM&AW$l*@W>b=K!|~ zt*yT_v!GLBXd78~>w!(U3Agna!Uu_Bpbc2Pc{BI~_Gd>2pZo*`D4zR<)~fVl;0>{j zPJCRrzSc`@b?V`Bugvj(C?&86@dyk|$G@v1 z`!vSRRQ~j-@|)3j{w?U`3HHKqpKRr!!vvRT?d~_Bc@}^Xp(^N1$)ZdxNbN8*teE3T4zdaFI+x{Q*Vwm zcot!I9&9&Id46(JcI;zve=NfYnUo*E*Yf*g`d|39gZmmaynFQzbROIW1)M+PGalb$ zT+?JG!17g^ic+RCc56MYxhmxjj2ZsMDZCTy*5oNQGe-CC)ePA{C@v7@S3q$+rnZIx zJF66qV5!&vq5f_zbA%cB3U$CShCw|I%HT0m5^@uKFTv^zToB@=)nVr+7_=167{?J3 ze*yDm!s0x+i|Kbi6*R8@mWm8Yswz@qg0o2rE5QI=nLZ7w+zWy>W{dRD3kSbcR; zgeLi;+sd@y%Ya)a#BR_GSM(Xl1L^7b@pU3*Y{uuqM}O)Elyi~DKKTD{P~eeC8HRDr z?gozBk?_Mot-R1MQ51JFtWdmA-%XJP0}u;oxU3>b|)z?)4-w0VGBFHPJK#8yvdoT6rG@AUIZ|3IxzJZCOV29?{`d zy{4dPfHX`D0UB#yyG-5F$W`Kg99COoF%eeaPFT6LTX}K2K1PRTbqZ6*62(8mOPsb{ z00N+4_*~a%BTe`Nqxjdr?1-mA#&+blqJV3P z`D8!jH9=_vk}&T~fAELk(_gVw_waM`UtQ~^Z?7FL?9n4Nr{oUx z86;@kT|Y|vTEeE&(dF>^xDBio0_Prt^Cs6lyXpN?>;f0d$hl@xX{p90c#CZuET?Hf zjfe4-HmRg>qclq7-@MKT8eJ{qgJ2{u3iP{f!;ld&?&Gv4Jm3RtsKyefVGK7^ zH$CWd+-wYtyP8Xr3ZFlE18ln$u1bC1;=@OEw1=?-d>r2qphgN!KTKkr?2|Jqdzok# z3kw=^ZYGCU9lOEg);t!J1r@XUTSt;91`hshfV`?){hnN|7s{$tQMNPMt$hla@4%U zL8~r{4_bRd z*C`$nv2SAHEG-sUmhxQ*@gqq$@a$KZIly0U(vOma{E?@_+Y9?a6s_y4X$7v>AGJB@MsaX5!Fgk~LDw^y&; zt#SvxU>p8==>$UztU>r8a*JFUaahhk@4&OJQWHRw`~hN8GKRs2!@WJ8X$xal&TPpO zKPcoeJ(PiMJwEVma$&Y^O65RRf@qUDQB(N@T9y$%BE-*gFt%_ukZTmf8ael3WoPwH zjsOrN!0O@P;OQrTpV7(5h0~TG7=J%0U`U2dEGQsB&Yg$uDWQ{qxCUAh<}cP(7oP#| zrJ~)ePJon8cLOk=2`DNaGPanEVSZ>&ZqLS_dxk$lxLTmYAVVP#{*Wpq z1Mlt0F+NNqVU*MwoiXG?PD3g@3!L$mjG*-rmx;STyOm;?kKtMmcou*DXt&68`CkbR z-MMor8NT2KbCn7#BizS{Nqj7aj*sSRKvzij50gQ8@pr`@5QN}5VXe>|_|w4VH1xZv z*___~Y4GwVJ8f#`5ZD4@d$zasvLPxa1~D=~CISbgnZlu0%yngBk-%yNCm!Xpy=M)Dt%1E`^S940h-!7T~!s<9+r z&&%j|=HhZfC-Crl^TlqtpEzsx>;50G&X^_T{j%50b!dJK7~=x5*f5Z32ZM z2yTGLoH}1YGRGMt|3n?EN%|8-^KH<77{_6x@T+@YM{Ab*ChvAV0ZtT2+%Vy~i}GSf z(u#uT#E=?}QO3swQl&+2jALPh{rGio_Q?AesV&p?LLvm-WwcUz`l- z)3~;vvTt8Kh$LIvB{RILwvxq5EAG=!25KNLWZ$*<$CBsp`lU%%jrN<-9jo^>#Wijd zShB&__XM$jI5HT!^VHU_(TzL051JwJTA;OWn4=EccyBxr^I~D)1|Ic2Fc0$l1M0}- z4?IfdZm=-m?Nga({2sV?EAAr3MZP>}93*t2nb2v-sdC--BR} zMzO?k*_!#G2!2HsMd~Q3R*;zbzE|@i7)YQhIs>=}*#BTjUW|Qk{A-Y0js+`fTpQHK z1Z#n?`367V2-KoDO{Rb^F%rIelv|2Y>xbW@b9~~C0lgyv1XXAVGryuDZq15GX=H+h zN;5!_Uw~XXOLx<6 z4BUjXnfl|*>u7TpfV&Y4NR95+wrjZXw-FYI067+NdsG&tc#B6VdTZW1sycmeZ2aO>}s&k%Y)p7_B6iJBrYQNobN)_^~L3<})n%i+%j zxLU+FLb5oG;*-4RA$Gi|zi79U5|Qigp-gA&2Q+#g6A-9xeq(&Yrj7nS@GxcYWX}K? zq3#;%AxN`n$dbZwnF+XF!k|u!lv#r(Yr}BAh36|cLBlRg@xxY1Fv8)iMLm!48H{2v z$5Z{p1gcSJoJ?&jP4|a1x1Yl5NGX*L76?Zq%+Co@X=vU0M7h!NsH7>_TPW$|kCuGN zHweyq)gMTrP@%T-12Q5m-ootet3Q~IO*3IjVz64`iUR+ay1+E%+>O#mKz!tjS4M5+PD>%KH z(%uZF5j8^?7i^8TX~$5Q04*AKU|3EI!BiL9dR;JPk2v|l-j@sP2eve)sAofx1|n0% zl4?H%SLtnoRo-~)$dMVHmf}}EpMAFuUt}ZsAeC_EJjBhN>n^&Js9ZwA0?lPo-IK~y z=^C}*)XWAfLwf`JyN>BDM;s+fMd0PoCU|OE{a!l;njq-f)}d?9Zk(QgNFn*cldFmM`1zsZc8CWKpSxT!o(Eu@!QRXTWBt( z551T^mzWy|!i$VyatN@i8kv|j4>A~q(Z-tyLj?m18)HR`-8+4)LtS-wGgo3?5zaC2 zQS$ExF}2>oM~X-4f1#rX{>)lT%$9feU4YTZw-W97xS;frBrOi>>sj3i{<#TWr&HzW zDO#|=CX5t{jt3x;Q`rRu>;UB~v{q;-M@vIP`aq@fr1VE*1t?LeK12!V-@^tv$VSZ0@N6L!L(=46!Tn) z_BvVYzX|ynf8-Gp$AKexi3GB+vjEW+6}V8r869PwWZy8EOa(}|Okz1-*(nISV@I59 zm?2v_F~&}M?)U6r9{gSZx~n0>W7^O9fkE;m++`BTlh_v#A->Cd#|hy*?4%JI5H<;N zow>8_Y+|QsQ&%}WyPo@QK|lQg_C;217BAjR1J zc<&lQzYv5@z!(7MnG9`cz=a6#xu0`dX!ZyS|H3Rj@HL^^&QE4#gr4lB845Y~Oyi4* zxd}9o2EGU)WTQZO!$)M=`W+zodwG~<+of!y>o*vv< z7`aD}_B3@4tnU35gPdD|MeFJ0qTEuk1|wTcF_FUvr;F!=j3NULiW?hQ0;pi%I53%&EwKk?bO$>_5LaO8I`;yMX19 z4U*|#Kr9DeyY{ImO10k!eMBYDIzaICibO=N9w>xs%1`iBn@Wsij8omf?3qpUDb!U$ zBMHik_Vv1@<>e>NiCMwVtp}hRvH3_R1X+SAyEp7rrBJJi84!l0RcMBe89r`VS%+yj z1wqUe2)fHt3@-v@28B3zUEqyx<}9f5)i+uLe4fBBNII7kxIX%Qyju02O3o4}acB~O z&m@`-Wu1TAGgH{Vgs=c`*{V?mya12EZKvSI_WjW>H^F{?HS}ggwD5!XS2;*oz#-u) zhS4Oz5=sA>CBDp&$N9KF*-tP9nPC>15y=0R8v}%H4$yPehECXM2A2@=HPOxt4`eto zOiPclYL~#80n2=z>>ou8d8DBVxCLXJz6QM!@8o z4EzHqDWm)7&@vQMpdW&POW;^%WQo;(FrugAtgy~RYIE; zQtxA{Qs9=|3N>8{D$0WAqcPsXv5$cX$${pCe?4ti(JBBH8OAt{?(r@n7UMY3RF(*FDu>=VP@O7heAfe}bDtuJ-`=m#Clo8#P{bxWwY}sQG9dz7IY!@k zTTSke+icQ0qnV!z=oAz5LjejO)gy^63JJoQfw?o;uNq6aZm??CTnv#9C@kyHU?M_R z_l0h-Nv&nWKbyvFP+Q+YCr`eXm>i?MKTYKmdRVf+fNVLrZ>97{p?fvbCloUHixGYH z0S~9L5F1u&>}IQs5Ijf;$P+31`g%o@fAZ3XP=*W~*B z2uqPLbkA)!j>Juz2S5V#0v4M6?0>$|V`Rj~9oh{{9-LQf=J}r3z(d$jQB9R`m792V zAxE_cBdMs!SLaCUi>7s0eD}p0m}Qx%ex~Pzh)y3H75Ph+yQKOxYs(kQkSr0Fiw|Y0 zf{9+{-ff7|bBefI%MdD%@Xc<+Vt~{n#4=Cr$kT8OR~#=*W-(Y6HDthGm`sSw%Ytl? zNxB;?$}sUYzF)76=h_NJ_K;soARtO~YMqM!09T~rh!h%}-^Xufz*MpX7AIbKxI=r& zua6VKW>QkWF&Icwqjv5|e7)$v`WWNSu**1$;?M+B^SAuF+pxgeh>NIy24{`LQDC1t zeG7^Y?}Wn#%@Pn$Dsgxs6a5%1;1%p)L6JKgY48;&Vlea&FCZOA zLexPPC(yA4!L|4KE?L%lFr&+b>N$j2P^mtIWqMq>?!l2|)2;`6LhrnHmM(65*b@&f zyY?wY!l_C$nf*M)JJ2f0u5JRDW8<&H+Nrh5cH@!1KloG_OMJ;*)Z+7&IzRaczTyXP z{0{UYF7CuYXr8ep6j|si3U@380PXxu?nWs5ezKrZ-V&rN1U_I_Lxp2uaY>^WldBP;f*)1_ghX`Y_J*!idWRRK)3`dy;A_93TnejmH%eh5p9VBO$tBM zmigpNkN@Bo_^(I;c%b+Nb{<)b|6|Ua%2bx4hpjrM3D(xu7sQ9Hz90@S!K~*Zj}TPv z3)trQN8{$rQRSz4-Fc~)o}OOnX!_up>Y1{fIzS5;1E72g_Xz56*@mx)x&r@IjM?2` zy$zYzW_fQ_gIbkvN7BXgs=gCn3RxR_xVM1wmGGTTsD@GZf!j6}dpM~1rrYKOm31?B zDyB2Qn|4HYrsn3;Jx17^jdM&D2Gj@97j0cy+U+?;4P5#ol~^_if#>MO5(A;GJT6Mn+UsQtDqNIE+Yo%(G1Hkio- z%Iig&xrrVoqaSq%_|-j}`zUHj+}~BYP9zr~5sfk$%mZ zX6}~&17JJT$4^IdZZ~Fv|wGg^l|-de^rQbJBZqp3GNov{Q^bIU?I)cEG}mYFugNyeF9EnE~Uoft_llXKZzt$ zlL)Y32m_U9d!O9ooJc11xOVlQvKqTJ>PB~?HLQf51>*O6`deN0=K75MS09@9&i491 zbF9y=Kz4PZP3R9kupOI?$lL;OH_Xz~;SOK#Qhbs}lqmFDv=0(vyjf^?CYU++AwuP# z#l(yQ(+egUp3#oxU*T2@BOQpA$fVs3VVM}n4en4mUxu}OH5e8Jr76>e%MYp3(XE4c zbR95jS}qDu0{k*^YKr2cR3YD?m7vRDL!TF<9kW4Ve_3GG&LQ@k78=Zw_+!J!pAomp zoxcPM3n0Rj49Qvv?zNKPZT&1!+CtBi#L_T$?&X_49WV^Zvdj_;ogxtIxe+4KTPz{S zJG6o(vKd^y^R1OZZWFpn5>DJw1PpWR=;_-s^bxcrT(=gMG7DAvTh=ksFahHU58w`D@bo4z?mZ372Hw~x z8VaGcAw;)yQS7jKAd5nfC8A@~`t^HJPLq@w1p5y#ULd+O!@9FxkFp3oA965wxcj;K z`E-XgHhDANYvA(ncY2g}`KDHxv4cRp{N&7Mjz-^0%-fPzyd{NjPQ&TdYUfI^6y4D$ z7z!wvR3f2nZFR?kWQ&%cb!*50GIJcY&$}~+u_A6@EBU}pl;H)tcTFS50hBuwP(l3| zdYsFJQi@od490ydf_*J_SkIqjL;M4vprn+f6M^6PXM^uy+C>EKQL>`}G`=og-clxq zsVLmn=H{@(?DBRNV1^}da3m`_ zdf-(2xwvWeAuPmzUC2m7iTfje+#_8Ve%Ps>+25#=e`DFrY^SR8Qt|>HH<2_r(TrHL zraNdUEXCZuW!j}K0@Pumuw|>rErnUzG1iYU4yxzeR%fAv3j*+@78 z78--ZyLLxK3hsHSQV&LJ-(X{I5dX0E_!CKS$5>+}Kw`#iOqPaNYFL3ypC?y`X1?p44sRwl zYOOdj)dp}0&S6rN6A-ppM7?0#SYa8klv_TuKAV|}L& z<69DT5uyg_*}TAeYO}wK!+3*8b3*MLk`R~=K^;onR)y~zmL4z4Wx+J*=k&;D6HToE zn829xHV*ktz%q<9m_gtx(>R!M8=v#QFsW-@Gt;SMZ=vT3pdW!%nE?Ka+yyI<*UP%g zb&`%*xcuH#=K5>%m+`e9*MaI)U={z8-X&!`a~?fT^pFe&sRb~3X#vcLB|(w~DEuVa zmG2kz)0-a%7u`@?iQ_f+Va2dkdowh<)GpId096Pm3Q0VaNaP^IsO6jqKi-!M?!h3@ zS`4x%+OwhsG^HQ4BMFl*(FMv)gX}pVzG2XmjvFb@x`cA4yxS`u#6epWnb1IB{oSq? z7N66e*-1Y(ISsiOmRbHfZbx@&_Fw7c3waTfxh>KQ#-cL7T`$s*8Rfk1w)PvqD1UCg z8^Gdmf@`7cVN~G$+LeYB?`i6?LV=D74TGyq*bU^?7UO<`-07u+yO70XAvf)URXkx- zn67}q045@3>LpnCN|6Jy!mBwFff|2Lxd$^}5iKQ|3lJcx3oYrKrAxKr-`c|GNO(t) zr7#@0!Xvr_oilL$Oh6-mKTHzY9(O(q9Gk}RlK;7WV=FlZkTWYfaWYi_ct<|l7}JEf zR6hm%8D}L8#|5G(Pyl)Rmkm()4IebL0nH!A8Gyeb$#>*-#qoxD43Sm6E-1Z_&_FQuGj|PUvPp%zUF+xq%*-FoB&n7wF2jg3R{i zw7lZ)<%g)`w!-*5WD#%VRr zR*3EhBM|+|A|F|q$cf}u40kPgaj8dqunfrmiO>gv5wpcJjq#n*e|{%;2h9lld$k*S z(vhE-BL{XB5>83KT7lOF(#tOlT1NueYrfsBXMKU(xI&x+KmDQYw47vp-KNKOjPYis z76qfb_Qd^uOC@L+Efm8;L3Sh`U=`JkyLm1^ zim@YMI=xY{|9tQ|I`z*3KX&fzu?9m*m!(J%Q+PK2diuh1*ywFs!^gyf_9cjk&wEbO zKog)ojEBk(oIgJn_Lwxw)i5a+4(;nqH7qK{zQQ$vIogP`uPAG(E6jr zb8h=auwly9&M|epu2eNPOO2L*WuUZ-yu2uyapA;gAg%rTmurSix+!`dA>=)K{``!4 z-I|Z!JIqB;8GG_Yh2eu>_%H7fKC11r$zglopS;u9#X=jvX@KF;Q#mqtmO?M~oR1H+ zA`<4c-UQC?UEh4t@-;QW4trzQ42)<7=!cyi|8YKCbD=2_t{;UJY87-VN7>Ey`cV21 zS8NCae)f$g)de43^`~G|G&oQeJ#fzJ?3@*o&w2X(+#dJOC)g7MV!~76fzZ=%J+8cY zJMD8A$sm?9b++!G>nvRS**pI8hxGiWpFr$KG@>2#P9@vUoIB?YH1?PWhU!G?;0r^|b{eJ*zMpXQFvnC!zpqE&X?0!r=KtxS zH-q_|5M?81N@~VFqfYs9sZc&5O*NV+YA4Wb@~+k|a|vKi{?8vF5ZvS27=+OZKq#NW z>!#*J7Q?gd5(Xj0-^Y)?dROS0pB{Hj4QRu_65fBl81AyY&_VXM3`2IjUSF+KuYW*k z+G;QoMd{oRm?dcYV!KK!TCuH z$nK)e_ps``J}~4M%;xLo{w+NGndbgI5b$UWNHgOq%ziN|*`(U^!h_?m6oe0LlR4Va z?T%Ca(EIAhK<5d4G@5Z;3<@8%jHu}%QLD(_@UG!uGA zLQ9M(ZlgIHVp;HW>Dl0mM;(NJ?%G8IuYG_$aiC46!Zl4-JhI4P>H77eD}_;^E^WxE z{$8mTPB8ZD;h4zsyygG-jPQNkIb5=nDnr`eGEf=*j~_`uqX`0Qp=v^*3=V7#dFfUI`T<_P7PaCjb(OGz^^t=y zX7edPJFhASmJR*W%@jzo-@2nP295Ax13nN8oM8-V$H}V1&YXO*uom<0kIUNsXV!l2 z|Lvl)_R@?O=L=R#>AAtl3+bTo+t5C~)j!|(VPOCmoPhe!t0xUbS_%e&Cyc z|DTdoxiXD7h73t) z>W(kx{a2AL4DYBBpq8b7I(`N9Z3Kh10Hmcv7XNm^m;qa7KDj_{C@qTpO<`N$(91Kg zf}ioXs_h>mhhHmDB=Yi%5=7VY8wUz-;a_%CdR@qa4?n&(^E8~|kDS{moKyW{)pQFb zwkaqDDF4xU#oAq-535=%s2rrX4SePG;R_%{MN>YULB_Avzl|SXH;vr!Yuu#u~{Q;sV;Uo)@C>9@=skXMZf>3JO)ZhVM=g1O@~O( z_yiY}R=fRUEjQRj3PA+gB|*~T|NF-ne;zw7{_k(z$L?xUS{1RhRnQ}qGGX(t6IMMC z9d9jpVe_suqqNaO|GXRjrRRz4+zWRnh;F}7JJ)2_BvFIkhflJb6fQIQ+WZT@&b{NK zrM-DxXD{zX7Edzd%KrJz2P=514&_W+>UgF*aR2x3&NdvQPZIM>hU~25a1JTGknAX~ zY2mIiJ{3u7p4kvC#fJahtig6p?{&xA|zQ()%{;#$!kK6N? zRE|pN^j6Iy%_mH3 zI_@|6*Iyt1x4-voZf@Lv`+G;HHm>NMsUnm9dh^98#W~^fR^>bM|En)w6X*QYO=RYk z>C2x4YD<>!kIDbv59^c?LpGUrO7_1w4rzOwdova*C=@#UsZkq;*Cg5e|9(bsZLKke z72d${ibpNJL(k4HnKkP_UO3)=a*Fr^wJq_(9=|MRUfxJAM9x{T>cjs$m^i1-u1qZ- zH_MTX2Xp1hzZ^JpNLERy*kPmZ$N%#Yby<&0_Vp9jp1*SCm;dS~aE%|v82G1R#E;6$ z%QjZF!mdH-V8Uya(QWOT{pk;HuWoy3udc4{EwN$4hFy!pr~e-hTtjCi^L1-o<fu(z=a)_W{7B zw$`@lU=1n$gksE88cUP(!FGwYmGPu2lw172-6svxOWSwv4!}a81;)mg6MyU8C*pW( ziJQB70f49CX-B7kuURld>HmH1nbTZj@2zU#%=r0G7$wIMB7XiuzfRK_K76MdZEfu% zQrESva#CCJFv>1YIDjR_{zsDNCdlBrr>pt?xDh!7kmZ+(_QIqLn0EUNT_j%W$aDd?fs_uzT zo;*>GWiJH$$!?#Duj^>hoMk{Ws>lzqWMD4#)mRrSBU(=e_*OSPmTrxm+)n#oLckj3g-rYTLab^DaLkr&V=B0_x@!yE=t)~&E#Dycw zLqLQJ=Fi`F;=~E_54TSoO>W)j4nkN#(c*+dmwc~ZzYm_lbE|SA;Gz*IY!;{Xn54iG z`)yWM>lc2#Q}d%N56!9KNqH5cs;ldr#-$u^8>_1{EKRnD%blT?BZ+W;RWp-7AuBYp zfT8S>uVW9SnXxO*Q2S7!kQFOD4-gdc3zM(@_n&gH25<=Wfe zpZR6mqC(Jvx8gAea+Ln~;{ygeVPCrU0!oTqrm>(|G1{1&dj7%%n?A5tES2I;{rTrm zTkN-*h*chYcpkL7$s9Ego6n8>NFy ziNoXgmP@W$pC0WgOwe?4a*AopzyQti$c*sT_YG)yocFWLa3*&B;O61@#VJgw zQKwxxmn0_s{<~I_!(3I>vU%Jw*}=?m6pW%=mFQZwr2n^X`@QPRf&WU!FWK=9H(VrXB=LT#(mf&O&mY235w>WMGWvFI|%N@bJhf z#GHA%Wn)IXY6fsZKQr*{V=Px|XkMPm8HjLax`rn8oxk$jZuk`{vCD_>qJloJ3&G z5vxOoLUZ%x572>CF5J`O(j|c>_<4p^@*K7L;<#uiJEGpd-*VvK!FsUUKR`#YKn;JX zpK@FN3KEe&zrXn=8RgaS04wVHR7z8%bR&zNoicXLL=8l z6dVvS^h^(YjmQfQ4wf^$M4y|2B?m=VuY`MZEhs1op<`vVr(>COSW)-nhxP5O^hx@M zalwlo?>mXqdB3B>E;KBx0j)QM6mZ!@K_9`yco#B-ceoS3R?! zc|Dv$600vONvI(fCBms&CBoQy{(e`U=^0JuUkrB_*YoFW1BQ@@2Exq!5KGL`qSS;WX2lnwoIX z>gddZyL1~fA$p|#{{8_>Rw|4kLNU2BN2(J0Dwoil5*K0M&bRdPGBj&B)f%G|yv}Nt z_^^VEu1n107j}URoe(#rlxv4&Fw1poRDl)Q_hIN~p~SgHT8nvEW2ei%`KpxdQ?5Ox zd-kKIl>P{fjT_G>0@<|KuPHSHlQ89ZS+GIMc2Ez8J&c)zKeiafeM(8QwXwO?oQv)8 z3q`LlLNV8?yB^VdD=yyo1LU4GFAH(;CiaNDTN^5E-^@WPsCQWIDQG`=o269kv5Pln zLY(HUl^-`R#h)pN^?M@A3oVUnQF(s9%R1VerLKNq7u&<#KW>Vs=nadggp98Z^0Kn; zW+h0*xAh0V#p$keVm8RR zvC$(Mej0Kfk|17u5-x|7Dr>E{2Y*=sLq&P}WseU`P0hC{xqq3HA-vs<_c1|OFLme#~ z=jiuE+7^Su*x~xJCw|ooa}&28IUZIs@M=6&N`}ZCi@@@zQdtM^O9}$39YF4Mh-!wH zxJg!cdS<2tU^l8Sh>2FLc<2-c`G@h=E}TFA5&SkwPJ98fZcTFV@Z|=~6W1 zl4?^7tWWgwcp4>QzyE%l&1#2dn-1-*UO`wI?16d9otcDb#s zO&%1ifNj?#dV72IdQ)Lr9uzXswK)!^Gp`##x6pEOif?Og4^$adn(gbM-_)>J&ypH{ zOlEg}Z$w6zj!Y0TG1~KGVPcXV$9Ct$;zN#|Wb8|K6SUJ%dgqJ0c8w2eS@vVJejnVI zq7Y^bLD!$IXcICcQYI=fNPwUqt*E$5yYpzUVVzuws$ZwsWn2Mp^LBVgSaA&s_>coG zP*U3CP1_B${iOT9?ZO$sCK(?Y9y6>8Zvw&CUhLj86_<-g{l>%udm zKJwsvV{}sAH1T1QXf$ul$C8b}2K>mAH6p%aKx!WqY@4GvS!0_e9t=fTa4Z3)snFwp zxkepCunWA0!Q;q0R849`I+F8K1D!=Fyu)b8!svGdw_+6vk^PaI<$P^=ThGhnqT-ko&~oq(LxuR zW@dtdG^Z0}rs6T-r+)l60t%J}E`asrtIkacoCt)Y>+jxn1q=E&LHO`tlD@$mOs4Z4 zwuR18b=wIE>u3=XeJ~bsRJlif6H|`=lIslf9#(}sy`_ICL3~XWt$Tdd)9QrH3h8&$q3>ek>NAr78Dg@tgzHiHo1}RM%R2%{T>**Os(zTmzjUy zz=1k&L_R^i23hn1wY+ix-_h&lW7&FI_yBB^61vlmZ-<>>ws#jfRa#zN7iHjJ5s83X zv`tpW%`JJ{%$2k2UU&6^gI_@TW5jRM7ohycZ`c8nQlOfe)e|iK1s1ICeJE&8s8(f{ zGoI{pXt^;sms4AsaTrpp`qHGhy!?E7c_sw&&Zrq*WHCzXL!SU=Q-gqsV z4sDnPG?tiL2s-@uVO9tJHXgL)-rIiscH`>R?Gw$8ZeRITQVlW&8QX-HxEmMF2M}+R zjF!AV!MxDR)m_y0$`$IqdV6{n;Pde&@<6Qd4GesQ>fhW=;@zR-g+I5?T)V3oYA2&>)8d81hRy}L$ z$9SL75DYy4vCIYBy+zk|l;KLuGrfcWyc}wTV#NdW+Qr;Ew)gh+nL`I?UJ@Te=^I8W z=xpd*PhWQM61MzSjz23R9Wl3x;I>mq`re_*MbdV{wIkYvTkz9fx0$h`BW_cAjwc1KBj4=!Q+38ct6!dK{>`n8{=oL>n7Z*VHw>4WDHOw)}+)7oP0Y zk4;Wi=7?mVSpo>4edJ`ArD1RxT zqkb$vkBb&jN(C;ZvF+;1VUbRuwXe9Ge;>xbUl61X?F;lST)e0Qwb!i|o~XKEMRXTG zetpIat7{VI>GQwl7wU+57{s;oAs0S^Xi{eO?A6|%aAa_gjj67XFvC6@v4k*w7R5+3 zXXVO2~OZpj9J@g5~+NsY> zL9eD-9tdFa;HvQ;UIdgu$x$AaW=dauWKP4~`*GQ2D>G#3w>15IB=VXYaU_bSF^nwG zP;B(Rx__W9T)ZpE;SoUx-tX}hk8nhNu3Xs*rMX3afB$==JA4SI?+xFl}yfZiosY{LxRFI~>P2Q1>JG)=PAJNI@)~zE-VFuX4c>C)9-El`P zf!U~+1o``$p_)4&;Scujt_8}^H;FmF?(JRKi=Rki8Hzzp`PZ*sV{JW`WI)aFe)CcQ z7P7YfXxf!Z!^6W5Eba!)U+En>M7?#EYLn{ZH1;(h!jzQhZP#neefMrzT&cs&tNRf? zvvF*9s+0?}||1L@7XdI@3Zu&h{!ThEOLlw=78rZQVTjAzJoA~CKKmkYvvOEH()IZ104L$&6EW^%ro7+N@p?Cd&f zx0gaiM7=i3hl_@znX$6rpQ4>lQd|MP=19T)hiM~r6|WHYf)UuT||mi!GE+#;IG%;w(T-u0&m{DnNZAmsi`#0^j37u_wT!- zqHbx(rF=?g$|~lx=O{(LuSquJ-nwz4_D6wpp`oL5$+6svR4SqA5~z7Yh$ty89z5aQ zE&I>Aa@597S+x7xF-`)aO(6_II#5MKf<;bG4nN?1q%I58Bz>r{5kjQZmOJFtUAP=0 zlf+Z$RV_#_&OAqbTVm4F7a2YAcX@|i_Dr?*Wj8Vyz6$U+gC&EWw>&zB(+BNmtl;&aaMmVt7u>J*hAJ^ z4gNp%Kry_P1=WCRtQ_Y*%2DLpTIy#3=NDTQU}TD)lceg3o<~9zy}RBL)twLF$D#9m z3}F1G#OZ@(cE|S+{mM~w7q+>*NI|2v{P2g_?wFJ2>~}?pXL%@L1GeBkgPPH+R25gf z+6DW&arJ=+drT4=~iZGqi#3oto``PW^3;Sv1QMbRX|Fg7}!wO zHGSKbEuVn9OJ;qY_+ig8^MbdE{-2?w-BrJI+O%nXSR*aT6BJG;k!3QC(L%V!WOWT0 zHsVW;%^1^5%N}>d7IxKDARpO9xfaDPLN(12aLXn2j&OfeSKotNvvB=x-$@=9?xD64 zV+~D7A*kA3U(_EU#p~qj=B6yk=-t)U*{KIJK#RGN+D)n4qiRxJO+AP_>Lo^6S{41? zUl82vks;@|%N(GW{;dhfql$+W8v%8Jgv9#1^Gwle4r_~WV>$PtfRUi@Jnp&x&Uik8Geg$uXf zO*wDfucwaw3CtwGe(TN`=jZ1y2NbK8hm=YT*@DBy2N3f&qBr#U)*Gzqqx-`#@JZJn z+34O8CZ*KsKioNqS&n%~_AHu+2)jzGl;6{|Z@8ge!IB-7uJ57zd4?Zkf^btx&M7l{ z{)@CdndeRqlw|5Br98bN2lDSmUCxlIA@R9@lmaJuL6w$`!V1QgH^(fFPor&F-*H%F z9JIsG+}}XHEyFNin%aCBnYY-G@WI5g#<@>zAF$(W3}y_fdVvWj5L%poydTIPDdv=B zWBCTx}nq#uPF^5gdQ4lry)xh?<^H+6DqY80jV+q=6JkOv;brqKmYJX0F$V8)gZFxNSl% z3#npPs#`(=hBASLFVQkJa)K&LiLQ?;N%kc^WzZ>W`+kqkZUtFB{CV_`vb;k3_ z28Yye2T?HPjC%L<>CiwQK?f^IxtF6);OBd8GJ_?>&Hfv)~N##=`?I|9N4Ymc?Hi;Ifx zzkBcARxK^9m}uZWr8yF@QtFzT3KY05KH9W@|Na86IL88+4*qU(xrL7{PN36!O@~;;ecdQ8n;lXWfFM6 zkf7G8R3xQk7$@3a4@YSoW1n0f5gFk=G|QKNp(HxdxLU7H06&hv=#jtta?6IR%;LLw z)#DiG#S{aA+iGX`4B)zSS0`N~TqpfKu6kU}(D_m&rLFyNDY{WxTWb<+h$ljVB&YqX zJD@@Z07P5$?$ntx0YC_+xLVTgPqAXFOG{8^&c_Cf%}WLS9A@P6=kj`ubSlq#dM=9H zLIL^glb7#suvMOr9>L*gdu!_wFpdbJ>)j2#aYScI<}A~P$m1a3wwvU#(CGg?Ejq%o zPwxJ_p6WLt+J4Ml^=y!;>In0pQd@^7uZAWyreT9u`py7=uJzj@uHgmM)1UzW$8)6b zSu3qqLzZ|I^-#bH%Lx3ys};(e?j2?G95^2)S=0WY2KYC8M2~$NW6L@)ThV9lz*m6P z;T?EZ97bVwAZSaT4nm6=MtCj|Xv-hUnTdgfl{!ZK$n&2tJ@TBoHKwZu@pjx$H1XZNQ7dfHDFJt^t+FXZqqG zh0ap6Sr2{yRZm9~Y9^OLCqDYO-<}87dBa7>^6Qfg5G>}Qu)dFOO9sK4;31Uc@+c%t zGP$Q+MN3sV-@gahaBung>XoYbPM9$xk|1q_aC8@eXymB0#ptFE(B5|70QLaYBVc-u ztnxI_waBbIHHE}(@bp-NfkGsdPIs?e69t46ffBbK;iM_0+X$oEG6(Yn$dI4GGAaAU zl68>(pP=E_!-or(Ta_9389Ml5s6OXsqpuE#vAiw7bq`b#C1i zZ+fW!6mHA1LL&PA+B^TJsOvnAGxx(a_eK3dO{tLSZix>3lA9#M0hI;1aVR2~6hfof5}?Po z4S@*8hMbT>7jS8BB@}R7zUT;wumYKioZ9HQ1B!xy5*bT^E-VI!dyg0LSKJ&wF$nJG z%j@g&`Fy?JAwSpRI$LbF0(cw(Gt5XD?#U&3uS0D)PayFji-F@ZydK3zD z^;s8wNBshVGAE~mz%&f{1V^uQIm@4}eQWwQd-G)Omy+|%w6wHz1`6Y+|6}i2U?fgX z*{|-R-jv;bDhsWmoh`rN6U%cK^-NLaq_YkQKk>v;E>X8^hcVgFfm=zn%g=*mAYRtG zmC`I$mX?;T%CBPp+t}#a?{exh1~-JDxbnK=)0~`~zk%~YDu%_!R|_|YVEkr8J-ex5 zuN}%68K&j;&c9D_NWHdy=VMZdNF_wzL4>18nm>1L8JyL6)@ujk=-1hsS$|^^Z}K9> zf{Svv^?yX-Aw@106OJaN@#-9&Ldg0j_42Z_^+~riH%xH;6L_f?kU>pkW9>WnbvWp( zg|EE9f>eQfVO_hPa}U;+OTPamj9vXwhzgbtMLGES9RHA{q*~gzzIsR9V$$j!3aJX% z7?qZ=gwm~W@7_`(Y%Iu(fP9Rhxv7Ydxxg39Rwz`onRsRLqGcW)m7RT*o$pgzGy@6! zW#GIb9r%{PzEbEoaB_iSnL8i{+1?xoORsOE3201P2C@d$QOpx}i-5ig}n z9A5k#yw{eDCK(2Yk55=ircK&$nUd1$Mr0Yh^buaUI0W`wsMSgwB31`uN$K?Y_TenY z=^rlGS{5*)^T}H6B#Qvz=)xeBLbx7Y>L{3&_4{XB1)1)iYRBw*|J=H0hC%Oyc3kxvj@Bn_jp6#bk-AZ`t>t@u#u1m(|yY0nAm56l0MGK>5Q`) zoKV^UDh!r2G`-W~`1JPsiz(pp>??0+-*#y-YTlS}T3c|=9>b^g&V%}pPvcfzGb0{wQ^}(5q~v5z zjRPXc+-yqtr;YSPH+<%Pe)N1&(|*M)XXV=@Ned>+9{7LgTvK^BwQqMI&;AJQBLo)>-?~#O28-IL{wyA>-<~>`RK5W%%I3G1L_M%n$qTy`U`$rZF40s zJ7pKl1nBEvSM!{mP1GAj-lmU&_k8)~zOb=_8!8X|q6*9>5m=SfZN^V!J;%qEa@BkE zCgLenAeGE-iKc>BUQ}GX$#nFrrl|XL%eFtDO>s%>KFA<$9AbP9UHujnOF7u3`l@IN z&$!H(hbNP!Oy=%Wh?2{PQt%|26!RJ_oZr3rg2KSSK%X0IUVPuG@a zl+1kkc21ZT)(4{>1;>AHkTLt|Agj|EiKgcM^CfsxD7BeF3NyDI%LrraF^INij@WF5 zKBMmNgT#uv1;0{#U9rOjDu?BC4V6Vedcwi}MguA)x1x-U2#Dj$&CLlexntstM|)QW z$%R}KY0QEJ?icONHGOyQ{?ym^SGY0iv#QWXHE{S$+Amg3^nN}kg$c+wT=vR+dVvXI zpN3UAR+zK-=|51l+)f{?(Uvo75zE;RAolwdMBiYERh-%pY0Z3ezsm?J8;juZRzqSL zq5?w~|5A<3KsK1KX)yP1)RW}|iJU6AaucG@N3oG@w&`#huwyf;Qb6;+-Y z%&!Bd{bSAWMR~QLY8zQTz=@@khGS~AI*tp`E4Sq;2FQlTEPZmPUef5kHnQ5qVcaCFbnjT?H^8 zH7{AH|Aprcui)4Rs3E@!5{L(gkkoyM$(AO^$KIVK_T!=r~d#ipEDa7hf-?#4P% zBcZ$+pPa1X^$WWxt6c3A7Uwg+#T4*&oDfAu;1mKDG2&61D4Nb-<( OtO{8B_R&=z?D{X`VpXyL diff --git a/src/comparative_analysis/visualization/kmeans_silhouette.png b/src/comparative_analysis/visualization/kmeans_silhouette.png deleted file mode 100644 index bf65516af061b15392c4b068a0c7487e016cc658..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 72467 zcmeFaXI#|h)&)w`SYnHkSdd}?u>ls44t5<8P*CZhVxbr5U1K4rh@yg0Rgfwm(tA`C z6{W)nLs3wNnPEW6(1vo?Gm0nYoV>~V-Y@sd<(D=H|MHZ**IsMwCw}`icF+Dv;3qyl zzS)#LJGA)trcLMLo0LC&D!#-0!rF#^$vf`Ub=0;!>F9Fw^a(!oqmFh~wvJZj$Cf&u zIPG9=YqLpGUUJjArDl$fb`AWL*8FqX09QgR=9wmSO5T_bz z&i4Z!A7#hZgRWs6O>V9?KQ)bymhU_HN@Hn`ansF)ajACb=?(suY>bFlnzOi&@Cqle*HzI~RFR z>C5;1JZa(sU($5`^WQ&gS^M<=gI{|z`I+zB;F2~ZB=Hf~DNDf>8yT^@7Dvv=F+hpA!?WQEG9=chA&B=4PKP#`KCSLnf zx9j}zPoF-;KYX~)qcbN~L;lk*%7gFEB_t=?1eLt5>rabf3phQ`x}4)cKk2b5uOliz zrRtWBar}X(UGdv}=itc%R6JcXeSgFQ9ls?-n@pa}IW{3-jga%Zqr)F>Xx3!env9l@ zj|99fEzNLd>lgHvDdu*+SW+9SDZ*h?i+9V+RULVhX;mNi{6LgU&WDRj9EUyyCmLkg ztLUI}kr^>5K^^3)?ed;Gk|dLvoQ9$iTe($#@tYQOw+AyAT4pGNN# zT&|xZX_OnM7A%=JYOkp>blhJ=RfX|*|Eg&6yE?{h53VY9$`uTK4sEb48g=HrJ7Z-3 zdUb63U|Rt7%ny^(ZJKf)c9`IvTau6Z9l*cS*VqL0CW{(Fg!;;Fpe_2usKmF^hskN!5yTjd?@xvWy z<;=#+d#TcnooTU=-ukLz-2t_k)&`&G^hBTWvD{BV2EX|4x>4v|6-^0@rrcO5CZV{R zA{?;0_w!q|5&5x}Vn6;H!mJybDwTuXZM6^77XCQtheHPswvY6dQ*)hI&V#wn-`?4@ z`&5KmOn-x=)UOK{CT3^rP7`vx)>$ynoSqdRwRmuJpvCg(`56{1g#|zT^pmvfm-p#v zqJ`sQ+z=(V$HN0%DVwbu;_lwvGI{E(3V+$=I6JxgXWdOc*?Lu zXXIPZU1iHm&MR^G}VUS6sUoRJzYaqvrMNy+#giWg1*syvSCos?y@HX*&EX_f{-)9QUxTy4_&!&buR#6%rpSUdS)pvlb zB=-*&7CP1(*ezz0ck-=(kbC<*{dBYI7w3v3cej;Tz6ulz*XmNJ%KO$m&E!nk!3PsBkSI!nzHg$ zv}5*FV$-Hu)o)b4vr)``s6Q)I-XTUqnRC#sz}R0%@vyRcU&TTb&wGlU+1t}jzOBN= zu&8N5SBGLkZK^PFNl(sAW1Z*MsKC`ZPiIPzg;S|x;`PA5wjiU7N(KM1nUY81`s{T}@1ZB80uS?pjV(B5o*mtG@wdS$mF-)d~ zgkko6mnNrRo19MzhCDgruFkjVzIqd_9Gf`4T2s}iOx}O-rd=NFjNrp5#z{lHbXJPbXyS`2i_@O5bK}dm2dZ#8 zHqBnVaYv}EZJnQZM4b2NFeBWhx$@ew?djOHvWyJtHx6c!xQ>9#-d=h+6@MV@-e-o{ zkub>Ix9L<_&EivG_by$!R2M11l+RU#Ffn9;bl*~@Fokk8_;Dlk`t z+dZ9;kd#!5Xx#U5ML@f3(UAJFPy_s_`#@(BZk{f35sRI#Vh_oAW;@A{h`+)P%~q4l zDaJA_O)|>Me3G(wv(;@iFP74&GC}cIWWh0dE?xRb{1p~j-Gy!Uia$ve^abAdh>&p0 zk&6f^PwB)O*poYwLyvF>G;AsKGLjaswp(Y9y=)iQh{u^9Trk*r*{`H2-_4=5M|a)l zGUWk7@mFteZ&+bJbZ)LnyJ*fd5zj}JDLWe*GAxbE&Er{hN#x1RtDLH1HC+N5KfbzA z?QNa#{PIF-&N{(4c`E{xs<13_PLu|T8HvB5oGu!!O$jtk;dT|ZP)^gs95kxf!4d|a zmtWsgbs|;wO}N|VI~su=qa5muWVL~OpP^C{1&R&80wp-bAgk=hb6Z{h_+gr;B)8OL ztW`7zi7KhAS3k?fsH&yfNf5DO=9EdDxOhr0N3p@%<@oEHt2F{cRlMBKWhst)c@{1@ z&{HZUE~z-$R~;^jh&CYB)Q=x`!N#-`QgF0G3RX944x^PP97;4iaNzpdHET|bcz)R$ z&gFg%wVm(NTR05`^GaMJaEYvqVK}X>rY1WfA)&aXjrKfD-l3{_Ai%qCMR0I1-PrZRh3L|vVdh#L zEv?q6vli_?wXVBsr$MF_CD-Qj8;nO@`~AyIB@Kl8#Q1p1h!>)khE`Rt#id(obv6%% zki4JtquLc-Xp|otY;$5IWxbYXF6Z7*8b&Q-2RZ&G8-fU3ldAWkap_;Ie;NCIp8|_Pk z0;4^;3Uqev-04@UEF55y-@S{VtVk8F*e)Lrf^3i$qX{~}AW*146~>dN&8Y#5YKY@9 zoAO-3OR+J?(%Kny0693ejDu_CGGanMa>fQq!e;QVd`a&WE9k7s?A`nM(b&)u$$ zh$@soV|T^_p{w1E4&}Gft#c~b%6Pb+E^PCQnwF)rfB$~^V`p{)`%9|mtFD1qqvadC z4_d`Iu^SFmWs2Fijr(+@mN*vA+ue@5;Z|j>=-d&fCRK3IvhJaIjpb??FRokrJ>P>y zMoHLaJEjS{9tr2NnhQLlgtOwyO^13ug~-}Q^wVrrNlI1E9R(!3<9M^_sx;NXEWwd> zbp4`(_V)Hsg=5d=s@8k=%D@lVp$nhtD|A=e*w~$>6PQOAUrTmV~}C#jYBY@nIe1{&%Jd zm~)rmvC`MCt2FGKx|)^k=j@>9KRR;O!oouOSn>2<7c8jD8U20U3TcmiE3dxF-3r(X zE*9$m>oO5<`u>el|_k z)#T8jLj->H)o5#)SKi+V+^ms1hRl-KD}x|@DtyM(!TA@l==bI3XJ#IDX|(qxxmZH? z(H6vI4TZT!a=DrrE#6%7FYlj_8-3M0p)U`wMtQrGk;3QUPW6 z^oz5X#E@6@4On3vx-_rjacNDFk59PwFhgL&vGa2jJJ#O{3fjzMZTf(vd`Md0(5hdm z0QOmiB9T@m7zu!!Y@uco?W{ux22)iIHuaL z{9bB5un0S=#XCgBE0@H5WO@x0FI0jzq*Du5bRTZ<8TV?St{YQ6@#ME3DQeu$bh_mq zXMS+9QFUzJ@5HFuDckHCMIe|EhCl$Z8kdYzpkM0ajyjd`&%`9(W!zpm1@JlXpqAEs zZ4LRIv0Dtl)>bV^#W$HGSD@7>}G-}6&JBKJZ zcdROENg=4G+-J<8fvbrKURDYC-IrA~st#yZN8k~bxdmV|g|-z{T_3iLC9@`ec%W!J z2}#i~Fdan!%cY2GbWHJKxvh8al3T&SEMShhq^#x;xll3n zxdO*%T*M!p4E!pH-CPaNJsYJVm&)tlxFm4d$_^ZP%r~F&i0Y1TAE@6cwF(bNe0u7t%s=l?>G|>QLfgMtZdd?Zd{$ zD49qN)a*52l%$uoYkZhmCSWKFw+OVPKeU9fRY>i+_N{wJhr*Htb=%K~qvUtyO0E+r-J z-0@ClVBMdM?E(I^uN%A5$s-7Vr(6UV(C(l5xY zMj4ULe+9*SQd)XvzmjkOiC_S~ZXwDZnWE;v5q>O}lER3qR8}p5*xgdeymcEkWRGT( zF_fPBl~+kXW>t2_s;f30KzJuf=^)T=m0Q|Iv7e{6i>nU#kvxFhzKoHJ!fh+yuNHvh zjg_HuR0fYwsxVc7Hsd9#V;k7l&nz^wJ1fd~v#GoW1vk^M$f9{~Y zTF7BLRWn4IA|@s_%(nGOELR=RFXIsC6PEXIS@()!E%76t--gCwncMoB6r~M}578s3 zjEY4FJXb{-K4WyBgMdZ-?N0_;d{o(5soha;G51S6ub|{v8NT8`;L{Iw$Kp%aMc&BZ zNQqk;DD)UW22zi3@>)hUoNaBqxJ35Zbkupku-qGTU}8)|OMjMupvr{hC<1ep$Bo=mf3R6PJ{ zFm8R^(4cRGOzvcp=g80ksgqvziIMs2qH)^Rb5j}Dw$G{TV^niUv6Z8;;If$isog5$ zBfaUnjboPR$O+c{_T$W|h}ijwbI58>U&9+I1m@ym18TC-A;17`3d_+ z!^CGa!`Oo@V}$as;Z&rTD8*OUJr0bCBh5O?{Mp6Xe!XvvoN5mRMz6Rkw+*yU1uDa6 z;6eSNp&`P9$eet$$f>e#URC}mB^{RnNff7Q*~e+*Uzct;bW;0g8ko7)?h zwTZ#xalNp{nFw!%z|P75SPCD`^Gln)xMJk~cG_%#Xfn3lB_h<`j^)Y&W|&xJb!@<1H8sxjg(mHI>nxN! zu_&Wt1{bxx@YhE1Gj*=;Lkz)%XGh;gC>xM~rlB(QG5Umo4?=@^bG}>1rc+nJG&Hx< zH<-SdMG#O`=86wN>-6rUq(5XyO+ExBgrv@-vf?3(-h-6F;k~HG?+CknoJXh%q`7L$ z8gDKD-D~hBhjevU#k*xiUKLVge()8k1G^=IVqM5*q#N<3ARTn$+elRtaH@nP6f-ZO zIcZ0hAP~ea+kUbAlq&a5ggbLJl7VJde(zO;{ifo~ibd*fb2vGu{Wyp<%-g0{D>c1) z_<_bO`aA0J5Ncs1(w&3{B~>+s)f|=6A?%rqW6yt5=G18SxEB!4Cp?=Ckogg49qE_Z zTdt}D=H%ev!!fUJh^qz0XhtT_Td~V*WUxDzok=5^Q51>9!) z*5YDoEmcR7t8dfsk28ml<3~Dyyq$LoyG65_^0G?H%Uy82WX(tw8=w`!`T@aWwK~Mx zhST5NX%o#^tsNt3WPISjhc#=~RH-=Ua_!41xQb?ZT`dA0XJi zATmH@_~qzeiK;X9R&siJ4XMRJoK&daUjKx08aY3{S0?RLxic22J*hXni&~sI8|%qj zcOr%q7!-PHTq<$|4=_uFri#8;cY`C#|X$hrPR@~QHOGJ3B(g*-3Cr0B?#NiKDI zr*g0c7fzpINXxWt0x#S6<3hvt$dBRa<*RF3pI>gmX8Wk%*#7>fnKPS^TsnZpE8R_8 zC^qjN9X0P-YjmSFQ6~>DuNtLNE%?>EA0|)D26C*HFwU1_J0zqSHDW_{iROSXi!B%f zDt0E(mxYbDcI{e+AAkHY*`&zZrsv};oBGEmC|T;%?&Q4A(}Vy?L?ukdI6uE}wt)1@ zCakvP%*@SfU5u}Gmur^niPtxGoT8MmIJw{zsVGuiP%`I%WT*gWrE*Cou*U{S<9?Xy z(~eTb5Q&#e9?FX_5A0qeIYEua&HS`-UlH$iLbOriwZ-WJT%%w~qsGeJBJ2pnh-jKj zx{)l$O^)6ODw%mz{_`RoL&J`}d-w8wgrK&m1J8z~Kg-u-u@&i!{F+K1P=>#sboLCZ zF(*wCq1XsTPq_6s$~yaC6YrcQO0JJs?^2_{Hjqi_1R>}M?)z{!H+-{o$ddI(&di*8 zPD3kv)NFK^)0vQ%e0r2S;6g?!JNq5>UO6dTIwQwNPE}bi8Ezg#h{>KQm0uy``u;2# zEbtszCBh!r$UNBy^h%6OEFFqs(8Xetyo+N*aL`{8;9y>-NftPtbOUG?CwjOG^HZ=% z-Mrm`*V!M)_xUQ8^3pork%bQd?L0bCeUXS`q>4tggagEB+ex9xcXw;pxu3~@I6p=1 zkDaSBxP?S$BwZOm%9Yc2caWI$RXcjbAK}_ML%FYFJF_7pF}Y~WooEIVS3013>=$w+ z-j~_V{CeSu57>ZBzC4)r^*eWeJ^CB(rr&;)R|kFjVf}euADZ{^%;EF@|F7}=--hIj z;0F8F9iU`@Go)$T;~}_Je);e$P5H_$HQDBP?bz3C-DaTF{7L}?)&!J9`SFW))^-07 zmnh~b6{hHt4DcAE5gx+6hiO}|rm0*kX{$p%6`?$Y{E2#KomJaj#0)7g{cBAJ=JIWk zJo4MmTP|w>gRoMH2-yQBB=xr^cXM63lEH=;l45>=g#JzTvPpWWQ6lLE4Id>tj-5_o z=(D7L{(;ZTycxALDSDXHlt}FIgZua2Rq+~bzp|;UqN6@7O(7G7YiV2eai>{)d`q(i zA1i|wefWP6+-TcnSOm)+J$f|Lx6(|)I-jgA{RrK4F)bsXWrx9siK4V7@Pve|5$~b} zQpOMI5gr;oTv|&X!HLM&PMN+a+n4%bMM}K1&T5K*XtqOje5l;1t6-pRsITp-zV=u; zx9%vuQ`Y};Nc02$g}Bp}Qis|@It)#p;Tv=0-t&P_jVkj!oMqFLK&nTOsHIgz*JK`p zjwbN}yqy?@Q!k6J_xh;@ymWZl+jLWGBtWt$cUA2mci z)KDFD%&=`S29{O;Q$lhkg?4o>36%u81P0Cz_w0E!JjU(1(RqsN(BL&TL?=H8N44TM@*Z`>z=s_qeWpS{c z+8+cP@6DAgJpKuy5HnwemiX{t4XHE{@pZ@pOGq3-ogf23Jv!xzj4TmQ^P*?PfpixcAKX1#P;NgM z$2F^0R{}vL-`RAkZfF>gbx&31=pSv}qQX*zVNs%QLuIAxjdC5Fm5?8Xy90b4qQqLG zs%nBzPL;@Nyl*C*drpU4gvu(4U|DE-hcH;N8sUyeOtDRLvV=@VS{H)y%)({>c@l?Z z9IG7s5)@1v5e!mANV#cln>E^V%eHVRhNuI#Zru{|DmQ!WtgEdZMHpOA2}MNj!K-4! zsl`UPTNKcCCSbI-fc7{9isfcxWD1B+bC8WdoEiltz0AZEi^gnw&@MM{XF^~gryan+ zxwmenNh!)h7$<`OkV2s$XO}txM#KX;{WN6~v$-IzOo6oyXgR;k^iKj^EWijJj#uV_ zJ4t-~`gJiovP+AG~Z-#O(xn4#WOzNA-wj);mO$gCt$^Wxv<`BB$$ z3W?+bl8{QO54;tSSIP|y1qx~uy#mwvZ2PE{nh_6$mE8$>+#mnK27C1gt$Z$l4}g$F zO^Y_Fi~-9TZ0v5{+R`^Ho&Jl57hT;X+wR^<^^lvcnoY?@ifq)_x!~JBhTTYKE5C*c zG~egyc(A((5z}7;h@{|QSN%La?*9F4^hh7?@JQQCky2oS_-_iBqLJtGc{07|k#Wfl~ zc)ZL0JXnt)Z1{BEc|QFs*mjgEpRryMA-g|*@E;B#wH>LwNF74%j-6fu6mi#~Onx`E z@GYAHPMv~D8bncIOke`atlW3|?)V5@)g3z}1MpE94@0LN+R)@TGi))QC_<#JP)egc3kg?nFWPa!%wku&zmPIcT0ZaYA6z$tz^B zlLC@QO+la{Qv2C0cb{;-xEByEbPUykIhHfo`1B_AiP`vx0B@&Noi#Y zYNRTIVi~lnK$!4%H4oH+i|5`?Je*Vogd61posy{2&aNUHJ+Po;B#G**(EDanhFRru zGCqV~E*$Amb7I!4wx^-QHzJyfwRIAK{bWZH)591Bl?8scme7Zw$-DY=x81u&YGfk4 zo|!zSLhn@g13NihPQkXV1&U7QRYj7y?aLvEsuLz!GXKjqY%$7km*^iiS8F>$SWm#V zX9V-nx^|N!O0*UyR-HPk_xmI!V1uY*HOGH0k4(Y$j`^B;cjnNgQBISc3R06<_26>d zL%pZ~)iK=wrJmotyDyuF7I*_&B7G)EThy!~@(g6F3arjJlFKM<`R{+5>Bwbg5kHCo z>tULxb*N~Bw7FJme|)oNuey=XD2I#*?@}v^Lvn>QZm-{p8)Or41pWpJwtS0cuRjTl zD6(}Bz{cm81e4W4V%e^%g7I^N6wIDq`W5ngtn}%Rdq#UB$7`UW->?~nHltUB)o}XIvza(!BjNPEh5GBi>pG3QCAiAy1BUpW_qP4;ZI2&NphF! z;FGz1m=OlJ?g~O;lbIvsq$tT_0vnI>Xb|$tB$rrNT4o%7HJ|87!*6Z9qo80(n@4J% z8vOEMf*prDW1aa%iNdBAMo^)M7(|Q{L`l|E=G+8eO2D=sMV+!I*BU{tDwECZtJVy5 z&_JzM33}uKAd}_T$j~sP@dWSz(oAoGsMM4bo+h_(E$qx|w-+^zaVFde&}I(r7IL~t zYzFvE7Mvh8K=FOhFR4QVD}VWk@%xIa1g1NUbeELUdx7gT{F@iR5w^KHMjiZptvo&K zMqlqXg(pWI>4|Vb99Q4ndXDH@a10zKbUutE8L*@@fg2)%4lEhcCtm+T79&Qe8Vhi~ zNzrKeWWt%m$40D4p(du9mL%*B5FQ3g;8-H$Vuqy^qUuwKOdQ%b*d3WMZPuc@K$8|t zxlW2B_0r+kkSv&csz{nOy(+)UnwCjQQW=NO`;<{txpQiDoKWXdhjIr!!XfkPt=N6F zhHN2JfIKdX)UnasWgs-jrgL)2AY)FpIf%|$kTNd3%MkhiOIlj4>}$LXYvsFp!F8As z8!k#DRmq%>^JU>Z$U>5wT6D6z^|_PeOy6gn5Z@iKa(GoMm2x_;5q1Jrbm>>oIr-tk zH%-noYrj&{)Z2>i#e|6t06K|Fnmj&EX)Tm28tIAV5_3tIsO*tH&P11r@4Nk8G)GJ= z2Le^ajUxa;ieL1uOV?>4@Fa<1u~uW(4V zCj>Q(Kt+Tf_({M;sEv$bSnLCl%-fhs#_H<+i3tgNM@GSnIR!RCcrmoLwr=g&zv?44 z2N(;)TwC9A)AxUzmHc^nHsS2coZ?dsFkQnPY`$vY00^y**&a=qh>%Xn zv_f^f5%Cc8x)*d}Fj5?7z(Fg!>2AHBL31Fr+Y=$tu+V$dJqvJLfzpZls~f7EDhu0D zN&sV-m+T2ej80Uqt5T=0>d3vzJC;)h`2BV?g12-Y43P^S<5nOF(c!3K5}T3Z5Lok% zNFpqN;_x6y0r76029nVEi3KaXWD!E!jgN?;5z(c9;2PqugzSsw`IRCoF+_7NOXkLv zje>H{2?-IP8&>xZ4HqvV-U~LT+d9Xks~Mt0p_*YKf{@PP!=FJh7_RzduVJ$xt?NG> z1+1(VNtVYP_4@MA9{m_@VMc+-X!~wSDXEmQfhZ7xui^Np85)Q|0_YC0u751X$o-0G zLV+R`DV;#v7FE;-+<}671C;JaJrY5(*Ntsz?pKX^0a{j)(M8BC&ZvMLyCH*+QOF!` zNlnPeh03o;A&iaFi{-C~yUX7-bNp5(JqT|#fYel%!v>H0`O@XfO)synxFP97XySm# z;W0YGPs*ldL^>)8Kx{58x>qx3$Ip<4h&3SC(T(Ym^?CR!YMCDe)B=gb7}R-Um_sh7 z&Oin!hZHHWh1G(!K>T^CU{XzroZul(m2d>;OS_`Xg9q25!a-aLcC05%Bk2?MJ@)2_Wm%2q9(@xpZ^J*tlPssbE2hSQuO|98^|t4KajSFngj$o11y zjWw`vL{JDp8V@fGeJtdzBrH!y-5`}BJ0ziPY-}99qM3Q4le-_h84Psd<{zG3pr{En zffBm({8%pZ1m?PBjBeK&$aM+>oXaL7+hBU!lWRqM5lF=SO)e(kpxP)@GKCGOOF0M^ z?cmEOxspbCt*xyJkB@yr@~}-Y@NKDn-&AQ zAa^A?49)faGMV_$un`j=A%(McUlr7&kCxlQ`2%dlz~gAFQy+(}X91BXx35Z#m0zw1 z{2}e!p*zZL8LtCT!W1%f7_~zAFG&ot60bq?JxnWCF_6mt@*9CtsE<5I{_I4Y83iJ) zC0;)47ZrOh$c?7cr4j@or2~k94Ha)9l7$X^1EN^$)2C0POIwSgn*kG;VdLw)jdHmP zU;da}Jr+1XT+kpp9uhrBb>zcbmRBJ$dWebz{jTmE6-4C^^IwJNsd~ksR1MV^}2wb>- z|Gs?^$n4G2*t`P+cEL^Wm<_u?hs|fMO|(9;I+9=za*<1WPMzj6C-G; z1=CqqUq68$6sTK8WL<=xe!ZIaUeM#y`D-|O`L3xp*&n7B^t@gRM+U4C`>QxmL5x}# zZcul#Zk;+?;2{0+pyfuZcaIcW(vV+Bf%N0d1qc8tT9A39|Hc&(onqUe(jr*pWxFp+ zbu+a;Z&S)>vRN{9<5*WQbj`^AmNSD6aItKyax?4g?XC9qvFOMIt@PLyVpwkLrL{y4 zXAttYy)sG$Paq_D>&}`n?_+?Qz>^2US(X+SL>Yo{a5JM|6gZ|xTkTRzFBozLG?6;c zcFFJr)ZY2oFwfb#%C{uiT2&{OuuMcMMhRm9(1g0%wspu06Jp*Xm874sH&u5Z3I-p? zimlTg2$@W*bV3Dc|AV3B0xC2>ZW+%(J1?XbvT~hXEIt(n=b1{Rl>MBCH6}G`dlf4I zNu6Dday6yvT;^OF{Dh4+TZIbvr=}I&Yh5eebi4{SZ}3+u!D13`3*;%1>|Kpjq$43f_H>9um8&^RD7R?@GTQ0l z7kS4;bj-UIE-fx#`f}fz{sX0 z++OFAp;5SZZ0!UU-OIBRRhRJbU9*HfvE?!~Mtw;Wph`kqTm>K?!3=vFGOv6<$#Iu3 z2C#dc?JVTl5H*|hr!<_Hz3BrsjO~{mcJRJ^;$t%j^nFD_TJcIPWD@g9qDSu96+pg?waQ<3%j!#0&sv+=ms(Lb09mxhy=fGHSQ@ z)!|E0MQM1lUH%fVAY2V;Y=+GKDNIfA`c0cw(^Hwxo<7}1#zY^HkWibXN+*hQ-$cpo zA~!~en1)A3&ms54)Tf}><@)m z8x?Ccc~g?);e^)$GD6`OoWA3fY5!1DJb*!rRWQf=wYQ{9x#eP8SFjVZg97_*ufJEO z%c_2doX@vs`^8z;qtn+GN+0t4^{iu;IFoB(yVKJaE! zx%A)&MzZd`oD1g^G`Z8WA(HL;;;KZUM+Dx~6*vKK<76|AF=7YV6Z4W^@9+bU5l4DX zL-R6U!R3r1wZe`BcKLP!MG3oLfBrSZyL%*W6C0MO%-F~|d-${9YzQD;Na8XGBo75R zJlqI?-iMICQet*?BKS=hi{yA-Q0$C8Vp%`{u*u}6Xy((fFj;W)8YK}%4k9Eaa;Xi( z;s!rouwiv>>O@F~dy)w_qULejLZSOANBx?6L9=^`;>T;-NuN(Ty}MBlx&qV9YUMvgg2hFdJ5`tQIFV<3R2bMIxcA1MB0;{o`4 z>*m;GweAN4thNCz0R~3sARzSga(Wn1hl@G&?y8lGE-#SK%5!ErzB}qGW>k2hbOA|B z9N?-*maJ{_LtuqH&?@{M9NyGD;{5sheCuB!#YPw6MFWc%D~Q2~XP7WuJ;rze&Pkb( zNwysFMR5I-vGL6|jk>4YDh7w9a0j|t-VaR^V~`dKVu)59_XO###2)QxpZ1*1#%vJE zmb7y4TvI0uqpfd1ygHcGcv`KsOY!k{CsDVi70jpNl6k0*((&X3h?@u7=z*wc;O>=i z>1VQ(N$Q+E46D)#KJ6d-ulZm3J z`5i`n54yQed1Jyd_4+wfu$jQ156i4KTfMuxe^pJKby8v1c4U0h2CfQH4+36nVsh?Y za9C=&W%9xOhOvx3#F!Pku2g`rH>Njw5|-rHcvoeVZ?tu3eGGSsGqbSqrdOegV#DFk z1Vo!ZJHC4LH-CQlG^T^D?k2Is{VjlAG_;!?#H&PzG&%&aAn6Dp-Xi47WI&vd%kOU71;6Y~!P&cYssdH{!X%n(H!%!B2GH^6YD;x$0i38_cUj zQTn&T7G&L^EofE$_(8o&dWZ&i7`*YdzIRvxMZh5fVUAu1Qp^#hZtxyF@}GE^is#)S zvQT-1GKbu>dutB+!m|$wT~uwEl5+INeiSI%I{of*SBQU3U^x`1RC29zeXn%6(Mgg#A0$uMsU%{0|ZnlAv6~dixuj>bZ87-c2BQoyMqx~@Z9EO9kfjW#lP)jgI z(a0w$cf!(>f}rEw0rKQXK?#JSCrOH!tj%fj?qZu?CLDWv^bHLyw4y)`aRf#dO~!U9 zA<>=y4Fvvbh-oRLpYs3U&=c@9lFWWT3G?Mb81))(Iq(YY1?oqKYZ zATrW2h?Sg9#0+B012(L}XVTRqy0Xw0RSqgf6O48qIwB)=ojHW5#>Ygsq_zOCT07>& zSoxB-B(8IE1!V6?VnhKS#Q^#`42L6Z;Gse)%|uru)USBBV<2(!5N9}{qsX{nvt^da zx51cm7i~Z4#9T@$S2Gl#1j>P4>x1mcBqmB|^L24_;$vk!dN!vTDnJtPOv6N)0$-&A zagq@}2>1$)H5d$>u#YStFA-MZkg;(x+LtV$Uc4?ZrviqE$D4CKz4{R|NG}N~8oyc_ zBmp|{>OQ`ulCjl>G~1G^LLAiImhiWcm3dWl%oRJym>9!}K122pXmpD&Dj|;}Wj|#I zf@p-FB00ZjFHzzxs$={isY=78PN_n1ErY%d!gOUdIfqW2BNzwul^7Vw3L%0{NJz-8 zf(ZX6Liqa-Se6hUUl}>pCr)lj&~XjgBZfx3CG;NeAbntUNe02rfwmrK7)B5*B-S0G z0FzJw|17Ux5C|kyVP_*+w(gUhhN&ZK`ydKqslvf+q%f|9K1v!`?P>q-jGTjCs!7vR z!I!5q7rTv;gh%?#$O?1>&q1_x((4R9OWJerOM0T;o+{w%y={r7;JmBywq~+= z@e0}G$7c&Gy+atO1PxD3JEiFY?|v>q(^|Hd5(-nBk1ww$0|SwpAP485NX~<)pcYpD zlfG?5tmM2#gpV%77DIF$ua%N=IX89oX_U}e$otlI`DOC3=>38gz&o47?e(^MvGPRd zVO-2cBX)TQF+aj9LtK6^=N>I6Z$rqp12JfKcFP~c*BI_IHk6!@@ET^xZ0H;cSphqi zccMnL2L`bRoRVBLD;GBETofRAAkJxMG>~WX6UCkdCr~dsWnSc;{7n{U#0|%X0vfa<(je4--TuS!x3>me`8gR98?-K+@M>pS=Q4`W&n{6^+}nKm}Qj zjH+mw7f7*Am>C?2{6S{y$&m^+Jk2~4E8>x6qs^)QA;)HKuC=VyyY=MuqGDcMmhB!# zx0k!=WVK`?S67hM=wwjDWMRP3kPViqfmo>hXwvE7GR~^DOiSVtfwaYkeHI?A(6Xs6 z#iT1am$`6PQ0)Aa?_Sg{5Rj|1$=1#+}zAcs~hgFbdW-Jw1YNhTPfadxm{9WBgQNeCmKu`e_J2KN3 zkAG$s*cRIwC>&OEC+E%U>c;o1+LTou!t(d>J}yh4jU8AmA@R1yY$F}>1qLK^e)+;2 z2`MQ}qg+P{*KdIEb%9`7vhsW{oZO{m&~83Wf~}irb%*!`n#a?(aSBRKjc1+<%B-lK zqu;PiQ*m8JBU-^>oq6KndHczfW!H9g&$tbPa5evVQqPG(m^tMp`tG{!x|I;6tE#Hf z`OgyzKs0#ZCS_^qO}wj^neRsDtC*kIN`rgD&24Euw5?xnZhbFSXn{eGu*hMYmU1Ku zmJ~nP@1wfZL+-}PGgqJw|K$6uUU;g&vIUo4bq!FtlsG6ewRLr!pARhKH#489%)a|T z$Z^M-ep|(FpCtOy&joGiY@NQ1Z!x`hNY4Gy1-mlxyB-DQC8|pfS5z%$<9y>ex|wJEj3=%sl)ht4=8TC?-|lb>9P10T9qe3w9kcTG z%!6Zi7T%vZSIm!px3c5gC*FWg${`I>i|HJ9mU67nX>6?fk?i-kU9TNp+d@GJB6Gym2Ay zqf2Mg!|qqc9ZS6poI~s?N7n0hvGvx}eVt`9tb^;9te;MNA|onxEe~GcGl$nKxV(D4 zADmqAXuLu6!0{F@`yWj#{KYTG0(aUA=e3v{KdI{b@O+PdU91?9WDo)3mTN z^Sp~xY1_AKy7zaJ((-Qd%WRk_Q9iPd-d+6Y;KPZr{L4q*uyy*O4A%4PB>1Hhr2@L2V2tj{$4PF9Z&nn&&A z!pMW3-$oimdF$@mj@`OD`q;niU$Yq>C4(0Ic+LLFk!zo(TzOeuUf%z6#lDG6^H)on zY?`lMZ^_*M^3&=Cmw8XIbT-1;aj599Tv=!Oo;|rAzDS_ozkYyCo3PprC+XiBv~}4x zzv}CT!?G-1b>@nx-vLG41>cw3zZPHl8=N14-A?hDGxgkJuYF&m2j1a(c&)Gk#DMx6 zt~#0TOyd){@itx++r|D}YQ_Ow-P@n8AJM7&wzqY6&4_FZ6qUEnWqp&SkEtomW7-kcf zJQuX*`R1b&pT6CIHx39Gdqe{fF#KZ*DW>tde}4l(vd`c;W__ah|A?@U8o0E7eZ{Pa zVRL+wUo^_LRRB~b(iAuhVt7aVQ7??denXNn0z@Uu1hC^>auy0GZTqyV!K1YQ2t{%v z&SE=k*b4iPgCfT%|6bZen%Y|WCJ*iza@Y&;Ga%Ph0+Kj0y$N6;X8;X9nd^O*)WA>) z!$~1cY8`jfzO^YPMJE?a{a5VlUgE*Gc%k18oNJV(Jj+U)7j`!f?Wp`a=%z4@a8$cnGn+hm6#*q%pB0cez{Ed0^1@tiNFyPr= zW=#$4%fPak2m+;VmdKy}DA`g1{2)#lhWL^Kt3>t)aX_H`fOM8wz%9VU*;A6L3wUpT zLdWC9u?>Wg|6r%TaCxzl*Sb#I!eL37XPVMaAIQ58v0d#4|A9q*DwXa5XtLut^6- zgWHsWvx|oboHOYCyI-XDMIFZ#Zua9?5;)^r7=6#jeGm|pj#_2Q(|WJXk=UIODZlv?|tAki()P!HQ!G(XkKHbsjHGOf(PE? zFei-2{bte@OnJSIns;<~3&R(6m8rm;uuYzhHbByv%b};Q4JTf0oFj!=cr~okaIoPv zcnUmuUSAlB?_Z}+AtrW|WG8(zAocmtE9Yk_U*>8%s1T@%6pS)xQ~9f7u`iTjK|HPc z(ETJ<;C;y4?9b#fvU4FAOD{1GKFOu?an2mYeJ|QopZ=3?2Gf3 zReP$4(6u)fcMWv)6f!vOH@xE;1JU>Xk*Ys!4XI62}>=E&~{KY zR&&bD#@5k4kBYM5!$pkP`W|M@=!mXbys>!MG(XTg@J=Z-8a z8oVIN0M~bz=Y1rcKB0{c>=t@}H#xa@GB;}?7k)#f_Iu`@xdLM#mK+d$W?Gusm5a|l zoD`n%_`<)UR~}A?;=pFC7Dz1m#V2shTcW%Z{ZNrgQgYj_DiTAs1*jh)3%9DE=iwe& z_~^O#MPeBdLW7-t&gloj9vvIVsRrOcJrHyM3gBL|KfC43gDF?c-V8ZaZ2VUQaYKtn zE{@{37hOv9$>>kp+W61UMu_*2MiJWtMrat;u!rc@A%{o}!?jQPq@-!C_5X?aOWWiM z7rqREQXP-KaiZEmb93`d-y0iH!5%zu;sKnAkCks8E|-smDIFlCt7c;qCW===eHIpQ zo+zP8&~i*#aC*CX_v?6db=QBzHs9tA-2kOsrz_p+%gpqsuSJ9qr+4MbU z&6@y4f0}TdaC02h^TDM*za;4!VIWO;iZuVX+U;NPO!FHYKoCYko~QwEFcvC>Yxei{ z|1P%6KQ2E00KB9GA8whz=qt3ohIdkLe#;pPacsv+xu8XFh01b_hTVfMJo=u#)S{1t ze*c6TlwepO&%3vN-xWpH_quh*pMq@Ved%xDp<7fROHkjC?SqaZ-~@J!*P}mGAPUQW z{qLnnDi^ek_HakB6h-k%uiCmh`l!>+Jvk{j`?24|di<-$0UUi~(D6F@dy}P^3J*SE z2ESqRn!38jh7adW#J|6K03H-Z>7?jYrucC|WPs1+hu>%EuWH8v{w*(XKAKyB;G-~g zgrTZrDbDL1DHA*Ff38)Yet3jaz0huFfn%N!!J%ozrKdXvcV7Nqma8s9FJ(HE=wZld zfOsxBlZF1d%EftFC8sCJ-<5B^mioUdRRiUw3F~hTx|H#^E5SCCFel%>jtqSGR^sa( ztC{{!i>P0Nmn`)D7eC6Ybk;4n;ULM|JW>BV$RpmWr8AEEIcUI(h5j17&hoAS+0xOa z+zBxJm$epw=#r?iNQt#5NlRMb7Eb(uBOsJLc4YDdZ2B9t{xtOLI(vd3)~c!&>2(G; zwf*zV0BPuHEWHflQd*OagT$dr9Z`Q%9hZiJy)qM$Th`r)E(Qk;BtP1AP*1$Ck3aJU z3N1KrW@3Rc<>=5WaWKL=tAWKoUBD5iA?&eh%Kx|v(4)Oh{KyW6@Y0{_cTYr(zpCtc zr%rymIqw+Vjgr6o6pu!BGEM)-(9<-Ee7P$MCnof`hjyhcT{rW4NrVFF)+_7f^Zm?V ziAO@cR$dY?bmzrb0gFI%oCXV%M&}n!W4>G3x6`=R{yg0b?gAL~G`O2i0$Ruk2DNnA zexcum!?<{~Sj2~0@(L0m)V6~tn@2`Gfs+&O-d)OYM&!Y+(uV&YzyyvXz_oNI)?w^b zaug~G0h}!vgk=Fw#6bgtwLDCG2wD)F<>XjTpioFjW%5XLk_@FDA_~I5L(X~t_=BVr zk3Ktmb8km4DJa0hed4%h;5^1+FMvX^2<-z04n!G;)==+5BSqdpg4!owFv8V9KETOc zXz(I1teBPKbs6W;q7J|htm{_jOmIwM(Sii>jFx5{Z}YI$E|g_!piRlT-^Sk`tMuRUWZGpMf_Ai$uw}CV;Dy8|SgJ&@Q%j-xLTM^6caLvFz}8E9qg7)MDWmBt;XN6dv}< z1rqZGoccR)n&5sMpk-Ke`qS%Z8b*4xfd9&|Lh${?kt?q63FrEYr~~GSQ9wHQl@RFx zbC7`vMk%zWJB$jg&b3K2J~vmv-Ur7H;dTd&jU%#0k&F3nn9eTPtTmc4)NhJ3qF?Bl zL(Wd*z`}=Di=A|K%l!-K)`#v5ITIsVbZu>z3x|PT7Ja3>9p%m)G}c?a!;CO&HNbAG+L0!d*s1slUhSe zMH-q0UHJb@o9vo$ZYz$s`41ZCb%t$gh%Sg>kCmr58FIA$)wa8_MlKG1zFZ; zLvA4F79wp2N<#8MCUzPNO90P^LlNv%K`@h(O@F;z zs+J|a4bq=CkZ{@OC4LAOtpbLZybGA6D9F89Lse)htbfOzlyl0(C&l{pKui-kjf>Is zHgzuBW+V@=qE6_CYxZx4&dnEyl~*muRo4GAuXw^D6w`sZJk@GwzD_E{t)nGxC6rM# z!jW2Eg81~_Ky_gJC05!iBi{&U1jp}^o>0yH+y&f{@FP9 zmpqYg328<1{NGDIj%i`KtD@KH zp7B+fx0T8oIQ@8uOhgU)2)7##p3XhVtn|X$Cb~R?ZbR9<`MLPCOx0X-E-On!lguVt zz+;Lg(_vqM$m$`k#?qhT97g*kAU%b6X{|6~4S#(ZiTXif+RZNYJnfbJ_nQ2CWI^G7 zBc(k9-DK^{RtwI-yc|DXKO@LA^>49-x9QxaZLMlaOVbdxV1G_sr{NIwzsUW|um8>i zSVxVKz+1X>(0RVGpRw+rpbW{KVN}+q9q;q}sI0f`RkQENt(jNR)Wc-w=8{1pu`6pYZTs2?jh`TW)bGpw8b85-;N$8w;1tSoEQ{yZqv>6WRT*F3M9O zcr^d69YiAe;qCdq!_~YI0p{W{_Wz8zz#gbw5%@5`{l{{JSD+y8pvjE(Y<;PG@Ss$+ z?mx>P*X&buugrLQ@)sZFtjJ&bz}dJLEFM3&z?L~7?EH<)(>wIBx0@Z4vt#)@NC5Z? zVSxOHrwab*R?vJ!WpnAa3F!iY%U=i?MXA%S+2>gfmDWWg8iIRkUxg%EUO`GiXbVIWHadmR7G$+obcFVHud|j@?hno6lCm-jEs8Wi!Wa% zrRPqRo6Cn*}iQWAJnzg98pJD*APql#^SvSHeKdW-3fM3Fobjt+<# z*gEh4s}@}5o&8p^hF8MPys&NEhK5v=s1GHIJB`l3^(3|gP43YD>|5LfkdpcB*WRQr47g;VI z8BiN9@xA7?A8-Zcb9%F(Bn}u9IaB~=JAtn6M#~s5H()Vy)E36?x0?_Dm(qKz90UZ2 zLdfX5AN`wX`z9YgA#(aJ@sOd_><}7a$Z_Gsd0sg5c?sz@@h?n4KQ-|?$2qvc9u{Jq z|6fcSFQ-6@<}p{hE`KJ3u&CdIW3#_YiyPCh1jwE?jk4EqLYVHv3>3d+cV~m{!L^js_6g2+jqzHxWE77 zIL5I#CnSjmhlY_f$vBM@p(t8Lq)k&p*&HX8;zX39NRpC$`bbP=mw3UUL)$|1cWWyT5pn>|Id>?2QVo>}ZQUB=j_WHI0Pd?wvZQA4!(c)sfH@ zW%Nt__(6jjJX7>U>Tg7q!*8OgBI*qa!V?otc=haM`F?=Za~s5mO1MO4P$UUhAzH9o zk%STm8dUT&@HOnQ@rB2k8yYRFU+@Ye;R%HQ*A~YW>@oWVoX+zx7y@|jae2asqvokJ zD#do4O?XnsijR4Wc`W`Xt__?3yZL~fs4}q?Bv#OtGO%G zC_$=2~!XP^jEKr&x^k&u?+ zLDtLUc?NhjU{>dslUBDy{`_+zcEkwq$h;j-gAu7h97>owP65Nv_kHd)sUr)u?FZ}! zk5y9M)WvFrb2B4T%*eh9t}1%6a}m)r{5E27qItiG!9~J00Kc2uu<7m7zGrPM$o)xfEB|{ea`gnf8 z(83I5z5|AgFqBpDtBL9x=y_MtqXprOA;1Oa`w5u2qW#jA+?(B$wsbQPVHk8}-MDrk zN*zD}3@3uFU)Kvr`cIM0&Lvynynti%{^Mr;=y|F_QO55wi)*rnxSM&2frru7Avh*O zp|-J63iDK19-fe8QOlDC)kjN=VCocutQ+#PH3a!lF&i4r1!kAL|8SOTglI$29i@h~ zqi^mG0%CMS0+l!rLV2^> zgikOnE+2sq;FSSK(f`tkJ+h}PKx+uL*xlq6>-TnPbvP!VS@Qb&E(~}E30nC0JGT|I zXwgMDD?Z;I+;FB7YuAZB;_!;Yu2UTsLhaU;*#^1uwILKH7{f#UwT-9#bRVwMUD1mQ zLWXAjr>}ZYFpFO}1fE%N z+Q-<`*QcXusk+ggF3t7l1Qd;)Je#G(NEC)p3)?`$<90WF5k1|Exu*p%Wy{RY=~ zC6!D!$8jBTF*_cgnEAd2J^2**r{bmVE}vnLqzkh_izn}aTTIDS7v;>}WY4|7X1f-y+}R}9$KcM_ClGPCfjC@y4EUtxP7zYwcJ%3igb^F2o@^LG zRG&weBzdiOpPEt3!K$8wmcWjr92(PX2;Yh2PBdnShwNbO7=dv)>6#%LQ7>$w0T~&O zQ~c6JakHI;bug4rAbL1a!*Ea60X)hEF4KTHi#%?7HZDVfv92ETfSfI;Ighpn!%OUN zTr1zEr`>dx$X^ZXIeg~1rCxvkVtWgfwP242oNds@27Z2?f*0{zS_sAJGc&J7TiS8^ z@-s8FYn`%3JQm#FG+twQ-`C#@$0|F>E|-EjOOh<0JS0OkjVTxKw$3qdj&Y@g0n%iX zOA#(DHSo}3#DGs=33lhQN|8%M;@X`8So1a1w@>`H@=eZw?i&_b#K%VeZh%#cQ7%{w zXVH}B-YBVnq!#Ok{9V9;^RM>9*CiYZD;t05?&Ffbu9?g_R0fO)RU(G13912=3J$k( zLzJiZ_(Sy@j2Ugg4Min9*~|K{26I!}ji(%5apK9xqh5G)EgEN|jVVrldm3!rvV}so zj9@b1-03*ZSJ<`4I7If1aZb1*YTJ!8V^UJOE8}%~D`sMlJ?Xbfh@Ds9n-h{9gpGce z{XB!j^C<=fd*wDx?b(!dOP>EnzLG7?wl{+AH-D`vU`;8(LO6NNBe-OLw7!ga&2aT0 zF9LDMNtO=PxZQn}5;2K2Ml1Vg(}15GDTLk}RuqdtK@AgK!<(3<=@w*eHhp>(SMNPz z!$YH4lld_VWJ1HAtjP{71^1occWr$q%U(sy%;9+6LY2d7Mj8(6!`qq#fHlfrnwlsUL2~F z*dKRg&*#LHY|+YlGa1qoZY=7{U2%bZ958mvmO+!!O3$VxMP0)AI0q^rvKX zp|%YiLxfIH=gx2=&Z5*sVUKn>Oy+l<06LDLrXV*O@ICZ0vK(Z3>9sbyVE@d|(A6=< z`D6S^&<;h9epR`HufCOgwDljXhPmXm+kDlw{is3eN>Wg*6WI>3o#&-R@*Qgn?X6Nm zyJuH_yHD;C5fTcvi1o<48`x&oSHU;8Q60l^@VV1WgFl5b#2bM2%6<;(NF5@pjBy8x z!if$tVc+83{YBm%^PKqZsiY#t)FoUiVuuz4X`VnyCib=Y9`i1(O|!C0gl6TK^u2Bm zE|c9p_YYMN(Y(+L{s-Fo+PD#G8~U$#%v$ClHxc$ng*UDOwmU67zSF5Ab~m~&hr(wM zzZSeQ_*3RmOh{WdZ*S5u$Ap8+oJH+5{#Ftl-^*4%WA<_1z1Q9o_`&l9-Hw@xuc+Oo zl+C%^Do3N=_V1Y^03^z;sVWf9B_=HOqdW2s;qCqrnG5-?256+qtLv_+q?EtQa>xhc z9tbF%a5ZrBb3P6l)$3-8BogF&rFodpjRy^3f}JK^A&teeIRlOHk2 zpSW(b>#nK-A$foy@l%eP2?g#^ZMH%o0D{-UNhKa0S(ByYdMPivv~WR!G?aPn$K6OO zTGTA?&w78Bbb>u#Y(JNwSDiW=s9EZzB=}JUr0D98qOorxH{IIJT6pY$`ghw7aSaLc zMOzH#S!~Lz?mp5OBz`2I!C;!nXh1(y|N&&yN^F}S$xZ?*R5{u|CgeB52(9e zk8MX=&LvbWV%WqV6-7ftRnTo>6p#D9GxHTl{lx1pIRuL@ z=9g^BgT3LHuKmX^hXFH4(nPByDj*!NVF?p#Xntn*?7kTeixd|qQv(AqvXTWYRuYyQ z4RHI|WoD`WTQC3mwVh+oI36R6_no%w%tGx)-7Ox0&9#1WGwON?mpz@2N45QO^qnyv zoKp`O}@;_daQa=#%jS13UWIg0hJ>6cw2!mMS2G-M}d;ZDXQ4aUtI8?m(ey`?X zlZL+^4<;q2g!!&QN$gD&e~Y}T=Y^v(w)75gx}{9@EgBt9F8%?2ZqGs456!n_kLC;H z%Y#=!UNq>p*W)@dmV@{4JhLqQ_rA9$(T=#s zST){=iz}73&FAR)i?xt;f5P02EI+U@Fovp#x>9f_s~bda zC=fnRM#W$Ph}x_mKLov(7q5}%p%o@|m%sAAq1(uqGLW{D4F6)Kbr@(}DQ*vVJ9O5= zM|634EB>hihJNbP^z=1-SAeN^8>o^3$`I~b^iig^oR6QW|71^ zf(J4vP#brgq9kA(1Fh(KcT2J%b$A4RRB8q|v{w?kI%+Wgs}y$a)-6n~nLcWG136VA z!NR;S1{(puu&uBR)aQ`@=jqPg$B%Z}ZrO(Z@cuK?MfET{TA)adk02vsF(_sNTjGp! z#c@oTIj|d1_vRgkrAyjyiob;iOKwSR7&Fv}tg!_)Q+dDb^Q+YpWc(>bgRC4Vc?m0G zx9vIovAxT+8*X4VYx*Mw9ABPMY^D#YK5&ctlf&s+ylZuhJ=_#vxAA2<;CWLPiipy^5>rFa?@+p{6t4v!+iW9-5s zK6{N%bzPlC5dFu3by5uR=)if%*=pA}`<6Hzy!u-odhg*mbwx$UeZMxah5Ui5e6Dja zJ{W6x`(EL16!@jM?UkSW1d6rnJR2E5cl_{S;Od#~TkDMVc(0`Xzvu14tTo!azyFxUCT99RNU_*!87}| zp|iKjUR9s3_JNkVM$kg2&+@yrJm9ILPyXiEB8l3zbz2^jYzH1V)w8P>k4d{CAzo@D zbh>x5TvQ*qV#Rh~>}m!e5jI}dTxjYl({u(gfz4XS$9b171YmZPWF`rg?CJX1D(74F zrBc^~(pQ3HAGYzqZMoMAYS!PH?&{&p!U>XIfCF}cubd20Eb`%E?QW{-gK0QzP-IjO zf}4k>w}mp9rNHTAykwcLHn+$i?sUZG0?S|C3Ze9Za*1+0@c03QJ9X+I5Oa7vkPeHf zic{u$IQ8*)lU}q@dc#j*?OT-_NMPV^qIBG}tGtPvFsOf8f3Q^*X;oEqHUk;(8elJ3 z(1>%3;G05$QE+FZkaUdUPD3kkh z6!5Oa^%1wyc#Fa6g82|;@W~IW`!jPSKXa2k64^jfN*LS(7-w2#Z^?2@CSLQO*UG#> z*8O(y)Fvl1N{T#))RYET7L?t(o0WPSPmv%h@^{1oBY2p5 za@A~Hd(=FCyJJ;h)36*axA3==kfJRm!4i9*T0b_@GK=y4WkK? z>~-p>sAPVq##+GE58Kh4CzFo7%(xd=^x(E`?;(wjLjS+QDTi}sb^K`}WuApb6};q2 zkAa;$n?B3&>lKQNBd;cyxsVwjpCY-sAYOJU0t09ylj1l0kO}Sw*t_d#)(6GZ#)Jz^ z40n=d9FwPUW?yrP2FY~00w0W@59?ydwA=jNp+UdAHq_EUr}&vL+77p zPAI0H%&w8-@W^=Foy6^=i;l(&Fd<`#d2X|yuyAV5fGZ3?hl|_cAj~OceT&$Yh=$oh z-d9@W2BJ@8HnfX(mp$P6?~lm}>X< z8Th)<^c0zB+DsG1%HYWJx+BA*$R}vrx6#3_>cc3W>pNF04 zJUI+fNsNh=!HO>t@L!wj!SyTkOyOLZmy2d1Y#{{9kU>8CH;4SHdY$E%Xaod}_RyN;F?Qs50@V&Z4WzcwE%{=w7iED8-8 zqn$#cWzB7R zm{fr6I7x{}Q_Z7M;C}x8TlM9k5evCp_e8BATD~Ah%5z;j+2NK@9;Yt|i6euArdEvZ zDL5%}0%B6~r5DrncyJq3I(>iayap%&$G!iACyLD6_P_c^!-Zi!#c9r3!c>+w(R*PW zmmBPAvX!{AiJUCzMQD00oL90aDu(R1t(Fgu0zgNmjTC%>9?tvPq)0(_Lo!+3nTWt- zl*2IiA*1IYiw?3yDP??~rR4(k5CA*8@ATerq}lKtOAO1n*643#4TLx}U@GNF zE4Lv#p>s0|3sMd9DH1UWWqTmZ=I8@~6lHEbGH2D6w*sN#dZ4R50+?v#W_9grR4L4q z+(cP24VaHBxnDlmX{!y#NKV*MlC)GwBwjRy_oWO`v1&edSwo zOPY%IBfg$I?m>?MqSoLjabd@fOAo{besQv-@Z|?@KI`~Yof{|(ZX#h4RpHUBkZmg> zOmfxmD7t|Va#!X_w}cS}z>g;rd>FeOdjRp&8eqlNGqpXW_jJ-RSzbUN8c4ah$04kB z1DhutSJxszJ(D~E$=#FKUyLUv1;WD1?XFCoS0VhTQzrY>CR2rp?+>(Scl#pE8U1kl z9al;~Cm|6|rnIvBZ$!my(Hp*_YH>Wn34uVHz=9=t; zXk&yB({#3a_Jy6@Hx1@EL_8s@f|9Y)9Q{$H!*X=g0_vC%_Y&DAH{rgtXPNVjk}seO z&E0;ipk{z42#3aa_|N68UYN){Tkq^^Is^Sp76Vo}-gaKI`vr!1FhZe}*RW|%T{g~Urua1FcP+|_ka=CI%) zo=azZ!Qi;Zqjv7ln0pJXR%;HA(g>2dk)`|kH~r07ermBs9lzbMk}}lZFnp@mq~I|c zCcjSlb(8GYyDRnL4<7uI!nJs-!lSjHJ@;RBtt?d06FA%aC2piZOL6Dv+#;TJHm2SD z-(4accnYKuf6yol;|709*`oDNR*ytpB(#SjhbhPc)>xatOtapRQ>E6Hs4kgxf5jSL zRqmSS-*f_XI$(Bw2bqvfI@9YjGe+nna*wOB)!KJ`P2DOk5IR%H!UtCglsnj4U~{yY z04c$Mk8*m}iu>=Etuai~xP(9n*e|Nq=<2{NmfRZ2UGCD03rd;M9RV0AQv`tZL9F&0 zdo%qN#|clwti2KrW|{EzvwZ$%KpEEl{vDD--Y&(70Dp8ySB3VI~ZwOO%XJH!{|GY1j{#EmI&cn!w zy~vSZxK_NK)zR}wI~P#_baA;u%zL{^Ap&Jgq_(((?OVHDYQUxzzXb(tIWjEX!0(PX zp&*1{TuLTD@-T(-Q5-@hm`t=`LJ@pV=B9*85#K@n$)g?ro{6tN4n!(k^!80Q zuzO~6_4LTd#R}c9(St)nlT)~o-1zXim97Wd{Sd`4lhT#!;KZ26xnu!EYI-J%G}=m| zi{2f9?dS%q9Kc}k=#a2a-+g7nvw`a-V7<@hrcu|oFl%N%g(77m^iZ9Qd5P>r;o(T; zh?Y@1+NWy|n_6Hn@?s#;6Hx8#scXgr868n_fqlHrIK(JYwB(GU-4R(n(ymEGpg*AB z0iiq@2wr&V)}#2_82EzH1Cb%O)6uPnz!Z&sJ4le*8N}A?L{e>xF4}&M39^C8b+_j0++Ib&bOsExYy>rRl1?)8w8I3nV z+U;i}eP&K`O+p=mP7CoQXc;-%6UY2hg(8aoj?l4RdzOhyjz_dHh;?wX2}8a?R+$O6 zL&HWob8Btl#?4Jx*Zp}2Vs{TG&&ZJmBWQ%tZD7N!)U|N&Pav$Ry#po`6bPx0Sc_J4 z0{(Dp)Jl`CKTW*DsR1vPBgPz#(ER6b6%=$fJI)+ME11j6v#zhU{roj2c+sgfM`o27 z3XDk_9@(R1?&j0KbLwb4q(?r%;mBAdCuny|&;e7-mma*BNnlz1BW2MeVh}Rkgg-#6AD0-J)2=aj2|cIZw{ibi1tg{HS96y zFJLlcJ|-jQ?k{fk;z2!*dho)tFTV%DE4Xa2GIGivTE205((yvA`6}&Trv-Hk)KT)4 ze>ghf4b-B6;?3NBn#{R%@7~GbY&ZDpfR++Kxe6D%p1zCsiTb1zpjHNKP;+j1eY#_qrY2qo3 z6J$`=T}0d8ksT$f$}@2TWPp`g)>#|n%Q1T}Gq|b^U&Q8eYTwb=@F_B}eAMMIF^R~9 zR8pyXu@Z8TkmfFB$@jH$4_Y^=%3`gcO%(cT97qeMu7^ZfGK^xw6l7}6?J7VNE^U4& zZSy{uV3I&y*py~rvP8=z<+bjx#*DDr1QNgiRk8Cv0>gxrUzrmdg7xV9y2{rZi?fw> zXBvozAR0}w^J@`uI1BBfn(g9)-;aM#*;u#pLBDGM*=r990`;$!T2%$NkQnGdC~DU( z3auL5OL$7ZeZ%|dmX?gbhFL)oFUt^^YBFdCum_cJMO@W3?lo>NA+SR0QjES%A?(SaPwH~>F2m@8{PD!_mwp;6a zABd&`AD#Blm{yg!E90iW!s>%(>RjxV%i4+} N4oF%5;oF98r)eI>$grTE_Hll1F ze>_Br?(l%Tf>R^B)k5q#DB3;wKal$0VEF6v0m+KCHgVvwCwVF!qaeq(s7dK8fb!;i z!M3hkBNXk)p3s|c-aFa#>TR4<8&|NW(H6D&5706ZUkwgoI7SF~bW| zg{IY0FYs#06GL;FImbeTlT-vMuR-*-_ov^E=-+CY!-Lw?b^E`^b%*6fY))A-=L)#X z{8LBSBmA}LuSZzCWR33@?%)=TguRym=Xhd7D<*e|MJh~Vu*I8p^`EOO!u4)@2L=Wzc7`_4jR67J zTlj0lC*8%z2VM)xCAH`}B;j&a`Vz3LZOeVulb<&wwO|N`4@OWlX53_T&6T8>Qrg&Z zz!=U7MvlY&c*n9d*%7!K5(V@n4nU8uXUyUz2i07gn|ZqB7xZg#ZtjL+{<77^wk~+b z1pDX$?Xz;+rla%zR$>f-b2rp9O9@YO0h1gB+1@X@MpNrGS|w&6-1dZBLP&?k8#68( zMcJA>d9}L0pMdK?HkYP%Fcla7Pi|MGocp@Uczg7~7rg@S{Q3y+=ZMn$ccuC-wWNr} zU)qcbnUr>w(aWS=za30t6-t-AWqAQa;zSPqBiqcc6v|48fw?L=hxZ>EU5cJT zRww&*teVT{aP1Vdn=nt4KDuz?DE|%%OU$D2@sbOcH4Db%@2|NiZ4uhk?Aht%Tn;+6 z_g_g!I1@N~GXGx>V)F+@Ab^o06pY!IW!}g%^ zW$fLwjEm9M*Wo{wdezM0y=K_bS!e%jmoe&YP^p$1izmJnDBL-4F3!IeZi0fe_-X+P zy4$2O!+QUR0uj(wZ=vOVVUcd;eXDgbsdC3+%X*FffE|!Y6HQCWCn^6x{Yxs;Ql;zH z(y1|qLogjPA{o{oP)+VnrL4rcrFx_FoBe3fl%U_Yn4h_(nJP$er2ZK)X5gH(4+*_QL`-!hDBHOy1);WO7Q`^=mW>U{U9^TG9RLF?)7Y)CF|JEL7xwxqta_8 zQYq$EP~tF7Icg7x*6{|W+#x6m-Y5QPagvUR9=c9XW%{3X&?s3B&3L;AY|^FAOW~JJ z#s%&HMcKl`;1~!-Z1IeXBN=M!t+qcuW5?Yh_^D}{!cmBv^+hZ2Z!97`Fn*X`y1;o! z?Y7pRiX^t8T->r{2`$bTs`6-?CH?_D6a^ntfA*C)Qu>Win*HwV`NPg6QotZ~uyUaA z2CvdIW9My&<+(?Szia?-z5EVtmQxwnqKHff7 zeD~+j!JVSHMa0m3E75I5AkQHpxzwDCLOZdIs6sn}yP7II{>@IQp)>kzB!(%lDyu|d ziiQ1YuU(B7^j!x4nN82D{}|~zj;#0Xfa@-{?y9xXq8G%1r@h-X=|2TNK&8}d)Y>d= zie3UJ=bp^4Og<>5+)*Tz)$zUE%&I?gJk;R0QI0^{4HP^q@o8FAQnDho83UigW^}v; z!21x{)Oihq(51XJ0qRJRz-BNvZQ3pEX$@^167k~mkc)k$8zE2ySd^>FGmh0ys7c<| zidNa3UB?9qo$VF))j!Uv~37#GQkc_jL> z;ur7|k-8VCG&mklS zlQ+Z1f#&B2FDrs()}l-@btPCO+>@N}!o$OpbH!aiXvq`%g&{X)KCNsTB72)UYwB&I zlAeu*O5TJqlv{LXH>bYAII56ma!67IoN``dZ=INrV{2e59OLDtl!&oKgh=Ioap8_5 z1f$VR4%l^aC5j~(?*nzoRM=~KEtG;S1Aa#($#TL_InrqPi@uF zY!L*=QR)X+T*YFSjbs1)_csbg!hy9BrpTB{-;Vt(i2^vH%n_ZRUjj%4K9RPzjx5S9 ztEkmHJ?tf!NKudk6X0ET<>XCTv`B(Gn>`CwxfDI#iI@)xO)<)FP*+z^sf>u#sj0Qe z(+h<-p2HPW1}@lj?I#l~2op9(||N@=k<2O@D4;{au#AY=$zA>za+ z*_}UzybKR^9v~FqubTY`ip>15^8+$|GM9E7apo8qgf~bc)5$7D zD2ho$)bW8$D8T!8WG@QcufY-v3Jp!KnzIAWtZwQ5@8MyHlsV2N zdZ$hAx99=sl5p`OOw*-^WOsI$PLc(bm`^owfT?x61tNqF;nj6@xChzTZ(<3DQihr6 z>bo@|5C;GsOn%_sb#l-SO5Nrw%%lA2_3>Rz{i0w#^jfMW?p0wM=s#$CV;AeFp)adz zYpHxXtX~_EX^!5X44nw|Bz%jWO7txhBH;}%>UP`-D=vA2H-w^!wL}0&cJyZo@1)ch znf5P_g*14K$Dn-d;cl{kkGoU!uhW1Q!H?_SBR8H@#fi-(9aSJ%8Z}itYkFE*AB{bb zWs&0MB!rwL4JKd-xGcrB7nlppQ79oRZN|n)sZQLxZ62*KLXoE;FSJ%hIn9 zzDer{rCPw&=4jYq5y6jIGn!9dS$)zFA;bpWQd3<=i=G}(ArKm^mxJIQVoZwKUP69U zOjx2yB&ZE>(-zL*bdDML5rKC&689}y_AN$2NZ`Kqeyg1+eJZ}dgI%5DbPAACL4kR+ zW}Ak6#GLUeH286;yD3SLzwy7!BPg5j5XkiUyPub>4*N)51QSoUelT!&L$lLUiA}h&-L})>xc+ z+~B;uv|WoH7OzjOyl2v`JE|75UP0Q6!;CNag)U_I60T4`uYwFAwcu`a>jm`Dd=Dlo zmk+&Y0L`@>P!x*l6|?D}i7?D?jR;W4wF#>#t+jdK!~af)-2A)Mck;s4sGQSLikwZ@ z&n53tbWeQaV@!Mb717^~)7ge7u2O5MB^ZrRh7H|W8li))OfglNG%2PBACO$KD@Xu0 zkr8q>fm8F`i$vXF?OB{50h2A;AU&h*bQ;>ynPucU$W7z12w5yWI(@ z289j3!piZxWE!K09S+1NMZXm8;W;?vN^1tj3YNBIwzVJ?hYhV3A&dSj@QVS>S1 z4w?jbyEu37bEhpG&^3u$0T9LLEvLu-rDOZ*z#CVV$?5F)((`_7(wUuPvo7 zV!b`Fl_T0J1P{)t6)nl@VXeKa9LbhJ`(x>YflP4{1L+pEy-pVu_$;gLBpD)Jj1s;Y zkn4IcBUj9F#0~_|R78{x0Nu72Zf%Rt)3S4(AbMO#?yw%G_s_#^}q^NuV2)hjkT zpu2o-#s&T$jeiZA3b)&<*h?-qpEZ+Jgjg5vOxe~^q25}){@_iVi}P*Y{W3w?m$G4! zUF&V6gYDu#``GUEJ^^EhG&O{vecasW3pxbz+# zBc9&W)lC&$eY<04%$-Ah)NAvI64a=H$P>dOB{>Ui_VOIS5t7GJNuS0@%^8*z=BGxUQ_|Zl9IvkO|MZ< zz18hDOnAvxjgqjfgbQG9L^+Fqyt1R)iRdB98Qd(v3=j~N2dM^m*k>+YHn>b`;nu&7 zJ(hH8$d0q~ivqc3y(p$kH2E+Q-`ZrstX-KAnf)%8V7TCd1s3+lu=-|!d4)W3f--;y2W4~yP$0WX(5sA;Y*-MI#VN&O~eM?E}WV-QCJ zXdJE?;GqXVF-DX)!U_b|U%mx_mR^1uMUxYBjv_UK_=>;*0T5EGF`=GTm}vW(=(&88 zn9@`z)g(IxqS6r}*whLR)H@Rk9?wTa?WT7kZVL0<6zh}mAUNJob2n-rI-MEi-u)`2J4eO9>p!$*eiU_y}y4i$J`mecGD z5Q)}h$+jm&W=)*SjyUvlPMs8JGpK0WgV&oTX1t~D)TK|bL}h%8vOT*B5VwjDc+61G=FONVU#s_omLC1u zHG$6KLYW2)5t{Aqme(DFu97bhY%}5YN3>bugBvEJvkC|7Y6y+cp_O|E{k@PS;Txb6 zkb5N{g*g;cCA{u@{E>$|xud7Koj+gNG)jSG_$)6RsfCF1pcU3QvkbhRT-TBoNMFci zxJaSY+dAu};@AXD%F3OOa;s3>t*xtiMCrX4X}fOW!xki)IvtF(x{fGK9IpYkob<(H z1(*sAq&h3?)B;mS@*Cjm15m@qRb16$9sbr%+{1fN88#`=qw%xf>mJ|5UN*L`jm7{d6?q+Tjd#S%n$ zLW7pNFzP=k?rKI6bpQrdC_5|9sVZlHwx&_@Vim|JWK|+r?thjl(pb^ih9>zjo9QP| zOjR_^8mo~h`ZK-6&Gz8co@U*xF zT8yQD?aI)JDCvL`{?OBW9PHo#Mw+@F7KP<*a*N3PJ1nguCX^_PH-KBGUnfQkJM_Tm zXwM?o$|UU9;@agFYVu`&giv%Ih;#a{Z!)t2Vlbl6!$Tz8vcOH@1~|TOynO>49Qb*K zm&2`7Yp%Z6Rr)VQXyYtK>KXrb=kNL$LM$dCBNN#Um{10OP84v9sik|=R*E)%t2==P zh!3}KAW8(z2f;(EP7DCo;%Q?I(FLu0uZMrer5asdJ97$frknL`pgz`fub8g)vBkOT zY>Es{31G?o)tW0%nL_i=5Oje%quQ!Cuoe%BvT3t=n~imQSC(~j-sHv%4Elz>a{?x& z7gK)y5~V31kg#meiZ;(xS2lPz8xWZa^a%1}X+H5{XJD?%>}BYLH2RSS%@7ty;jflx z<^-Z{2Z5#`3bHp<(NH&;8$8N$4=mk}k!VHxeP~k+y0~sQB?Oryms|$knEVdYF7yZ( zZSyHIV=|g5TP?pH8XEetbnVHUq_eGEQqM~~Zn!ehGTj458X*uXm&zqRMRG@j!Kr&T ztcJA6=!QZ{qvT#_WayupI!rFh^pBMF*GgGVD<_XvzwRnM*eOpm6(sukqv(+(f)^pH z9cZ&#F~Dqqeb^245S6DTY z2?ZhvJ_)9R`egy4ZkJfd4~NEQd=ln^R&MLkpb@kV=tsp?s8fk&`U|Pe(jk$Vt-b;Ztlk0QERjreKnnWa7qk@Q(_;0 zyFdt2sVk@*D)%02yM)J`QZg|WHu7<3`WQb_^V#!7Lp3x=Ys{MCGmH*YL8fo2F|F+^ z=xRGS{jxyRlbv@)M0Lr24s=kpDek=|5gxerRDI^^7K<7st+AKup1`wE2x4%o^I0CB zT#3hpD{05!(4jgZ=YL(ri}J2NvIswsL5DaECjc?h9SN+XmB<(SuJ6G0N?Wh_u) zN4(b5U*ys=SnbTo|2+1_)t*3Sv7E$(K%bo^pIQ^2ix3mc)~8-i5gObu_W(!EI{Q(q zVq;Uzd~o=eMk-?QKjX*AVcVp+OE1aEg$nhBjg1lVvHvXLjqM&7G@zLb$F}OZ2|gmT zHB%lfI$S+)w=E2k;#o)F&?{xBbqCvvW^Ls$9f{qi+%p%MrY*o8 zZ8=;<8}}HM_q(2)Xb%iwor5CT3IckZtPi*T!kT|efx&}8ERfig!tEEkStZQR_GmSA zq@@mvQgRHHgH|=~^Q$+8DKlN|e*3ZhLpA$6GD6eMkwvQt_DUZ2x|2vlW*drLPG1R_lP~{GB`AgO@9bPST-$y$il2u$M~bW$!l#aum%?c=dqY#gg{* zw2u6O5Y`(c*Frd`Mef*htMN?>HZ4ZJ8R54q>;gDE$n96q@yKEiyG%K;v}R3R&%GKv zln}YEJ3;gnDuEesdEILJ98dyUMutpcGxZn=#s=_q`~`K9xGzU2aSps)4A^a?HL&fE znevI_JC_8k=REG&d%$qQZ^HY&TutqLJdb;vTC>VAAtBZC=s1%}iIE#$>as1Jd5Yll zuX&pD;nuMJcNWe{xx5#44*rqanfAVuFj&)XOd?*T^V#C%NoHS@&3XI4bn+!#)ayOp zGXp~D<~(irfqOs_gO+=!mR5o-1co0Sy2!!k&v-!4p!heTBk!E>2uwl)X4p7vb_JRP zfL-*HqmHlY|C7abDY%mBS9Fke5XiN0gH>%pXQPM%a;;;Sned~$vz1B1J0}d_gHu`Q zd;!29zVRdLVPbuYTwXY;y`ZaO8;v(;Q|Ak$4IiMLB~m}LVyjnl)=tQ`s|*&LD7IR7 z)|4Ag1Cghu_Fov=NH>KibY26N`MB>b{Tpi#pjG`9#28h|O-3tZ^=R~5$|HUQ5LDE< zY74!qsq6VyY>Rg(Gw{TMV9rfx-cWBJjXJev4xyX))qov8#(C}w$KJU>f94>sy5@UO z?nu;&oq&#Q#Y~Vhmf{^5ObzzqsH&c-wFjRGN*Z4A4FL&tfIwXB(-{{<4cx7BO`_zc zj=WYqW;;xfUeig5&MNZbF)D{!1vSDI5RR>9ZnnW4sCE$6mnwJ&8R%7Rf_QT#_$rmn zJV{iaeZ-ba^f;^6o7JluB1v0JxE|Jc#KT?D{F6_G{nw$Ez-73Xx?; zTXV?%=z^MT%))Ntr8gYxYAa|2^=Z?oHII&uwwOA&Fm~GLI~v+}7i4LF)iZHLxPv7g z5^Ca27H&1&;j~feZC{|D{O!mpNOG7HtnV$byK5Q05P?L;7!RPfc_rlh9u7u*c%H99f9o3g4Dam zg?U`}5a1y*Bi;OGj|QQpFM2dJ&dg35Mzap%Q(ZmH-(2H!5AP; zklrZ#{zDhignn zQ*NbJjkpV5goyF^SVh9?Jo6c8nDUm$2LnO#l}i4F7Y4=$F$8OG2%VYasAT^06hTOH zl5n{8E2@AA&GJUXH0ONES-p@gf=``>^1dBt5U$%BSlLI)xM%=`zHsbAHOh0dk)}Pi zUxf#wm89Ovq>r*dIgYdTOyqoczqa>j`Of8lJxY-o>LYr3`?gt1WE%8o;!Kep%=+b9 zy>CQ!Fe}(U!~4#8wr9m2GK~QpHK~X`|8~s*QLOB0KiQ`eF1$%*^u)^!a3g2`mx%_4boN>M;!W+WIXFZNgINe=Awms7Yv|=y^{m7H>7cU0YShxT@ zMQG(=)J2cmqmK)7`=oomx_aIgsS-3LCfFE6!1&kAQ?Pfw+kGD9i$vDP?sn1=*mVU# zp!8wrYg0r`%8S9|gkNE)McK+c z+mRih5~N0(aRJys-%gna2bSYs@JH+hcni#Z!K?#e5x-$noMcAy)ZdN+X#u(kQWT$J z@7T^A-x+@XM}1bS9Q6@_%xT(KfmxcWK4hcKI7)^GB~jpI+_nX-$ff+Wocd_Q9~3VO z6_OTk^1fJq0b?^VOH<%`!Tg7|3#36_GiSDIlJ2KP@Y?oDA_nR{ajnvtcUlf>fdft6 zKDvOy7rI+w!)-TaH}`t`T$n*)IFkaE@Yw)Xl5<7%FqH*xsoYudDq#IlqWZ=Oh;`El zbmZR^HrkaN3_qAQ>>UL7E=5ffW$lSJ4$C74jN-v-v$Xd*4NwSiOJsze$Ng(8vGU#h zfic{Z?lXVWh2j?;$N_kBT=3#1@vY<{Zj{8K)aLrOY9A|DZ=0v2e}Z?9zs|u9 zD~emffx17w5_05VP%Q>AdJ4gaTOB&WA+O+%RKky^?l#&s37tV z$r(PdvracJ#Ro!17X5+v@H7atx{XPzH~uT>;rvT12JOsKFLhy;dOz~Pcm~Ds5xR4z zr-fLVl(#`mO+XQY6Xp0y*!gOgipBoRjun82m)d*yO-p{~ooNG>yfvhK1o^^QdShuF zNlL-N54dboIGTDQ1bC&SSS8KeKX2OD3Wyfgri>lD&ac@IF?nRhh0T7ziM@n$axs|H z@+*P|rKBU~*#5QH1dP_p?OhnNDpL?Lh*~K7Jmd0enkxayz9H9U7`Ho5Um^!$At7^Q zMnKL$m_4jZc`>+vqB8@JADtP4hB}l{^zyx> zWGR7F!Vp6-jgmyUpDDIvPyvI6cF1(t2fy8!)sOe?yIT(em$<)HIO}L=%Z>>?c-BYJlhLR5 zVSATqU=DW=;*T|RJ`yQ6azLgi`wd1*ntM-z*-xNy&+h&7e7D337Q9X040D@`bw7mW`%frry{LgP9LqGJ`*WbgU@7)#(N)_>QU4lxCqHr_wOSu*UTTx&*bPfg74`g22A|fBbqo@ zi)yKd?8l^FyR|c~3@)uAFIIqukMsfb&N0*p61hMbDRqikT zVtaL%c8UDjX>^Zf<0ob-OwKRIDCcjaZEPQPrmbkSvt9JVHlP0HROmaM5*etf-_)Az zMa20i_Hf4J+#j7?hhYnf-4oB|qnc8maSK=jHFk5OZ?}ja11#wRgJu=qzYO&)xF7$> z@_gt=W?;K3Gi8Dj-(=%OhCc#F=&GUG0dUD&H77|HPkJW1FNnbyuErqI1KW>Go0NEx zna%2*Keg+?VJalMvRiFX@uM%u?3ZXVdnVuCXq(w>8aRD?*M)i?8ux?a;YS!fTOfp4 zU;iJ05Ds!)1Zf?_mZUcmh9c)J&buCyROaDec1zY@#FCQOkT5UrDB>=o} zorcv8V#fxRCAHiPG;_$Sj1*cIMp4<7?+Q?7okTH1g z41m*v3*N||eDxdF%Jv!8UJxQ{N%D2@aY;f92b^f7=4?naL8axFdAxM6HiRh@AcQ6@ z^tUM4l1ikQ?Xy3|QN#uW#YNdO0edyiB?y@@`_(pja|?<)HzJzBZSI~76RW;!EVE^C zI)^FfuYtuRA9P$9C5oXztd$)hpm>a3PkB*%1hI9&Gvj+Vy7H>C|b|55h zzqoQY7+H9<0RW(~#_rTDKo@txP6>$%xV_yzzu;f&um0KeovJYQL5shAZ$g}4%v|MD|zTc z{ALFQnpK`zQXoQ&`mt~!;CS_++Av}I@x1Q&M~I(sp!U2~pNnd?^4QyA!^`6yrXK== z3G!8Mksu!3pQ-EFMPTuR*bLUBPp;qgsYLIYyjReKHQf2%_`nTtu^WX$I_?U0a|koV z3TWH`QPNrrWI}+}=g95NPM?0vp|v3}`|^Ml0KsT=v$?JFgau#kaN-bgO8lxgoA=wZ zEH9cwFNl!FbOh!~`5%VuxUK~=9h&L%`_OdHHd1*gLX=^k@!53{R&HYrgagP^w|wiDKI*^k zZUzCs92tv?7?i~&pq+094Y@LYZffQ=B`a{kl-$9FITHTj!5}~p7%Ejl=FjPGV!-gX zJM?27amL8lO3q#Dvs|X7i^e2mECTIYuvYY9+ZM32uaWC6(tA_^06_b6gM8FN?zi5= z6{d*?AkJGt+>_~*!~dkM%`2@`S8C{hQ^S*8cmIOAd-zt6+(YBuzAKbF27zh?%}hlc zYsbJ-XR*l=i$P#bnsRrg;F?5DXn%g2zUS7*CnuaQ5`TH$0oV3ul*obw2+7(d1c1Es0S~3C;Vnq z4?%S#J6Hjj1QU~AU(TyXm5TB(PC_6es+#`>BG2FCO=`JiWuJoOL*nC~zyZ+;fGtK>?ZaQ*KL%-f7(hSj zplFlwDiV*Iednik9k{$@S2C!;x04q(Uy!DC03v+1FD#>$V8guPpJ)lv1<)V$^UGkn zSK4;rQ9Dq+7;!q`$s`-F2f) z4fqCzx3t6lBnFVmBRW7w!S01wWP`+=%uVj2!?J5iZS%QVj|u2KxgQy{m+A8Rj~>`z zQvaibVMjcnyTneY^Sy(LqE_iy|37R+J)FazLV*iw#oL@``~Yudum&)q2^FMSd>{Gp zySQ$s>oQ(ev=5Ix1I?qxq(UAQ0|u}7{j;@0nD?Pcpy~V&ieWrEqNaJ`NCYOo4NO$C&dgrja6X~^ zFUTJgn_JM8Rifrq3sCkZi$TU%7p9w;l7sbJg)-f>j)ZRFzkf(V&H`s~Uz!6#+!ce# zE0YjHw)8pPbD60Z8jA~Y z?P!Z$1MpaC@o6oIbqIa1w%dj_nxu!IRB;GyfdqVnqC3YtB7E+h1|TS@^< zrr-y0m-1~7w})eF?Ly83x`*+miGlm%MSygwnp&g#9h++M%cqVB*u*Jz)>M^yI7ORLf_$|Ax(Lu#ZAa`_U32$8OuBF6RWOl2Tcg|LhSfaosa83~ol^U`|$ zG%YL+B#VH#jL(MWoRMm3;a^;e@K@#|1Ko@ZNEGxO24HfggVuXF?~WhtW%6COZ%7~f zH9<`l3b|1ub8EX+Upa#r8TKmBcr|9J>iURia;w5_56npOJ5L`$hK+3XAYg4cbg`0< z6m50Xm4Y?k=0=`>S2Ogz?|!;yw-$y!3c_DtfwlnnJbr{yzLT(c=Ovj@C>0E=DC+?J zJwaF**d?(V&$=2UrKxY->X|``HwvKwlPLmfH7|)K!>CjF(9LVDXcAoRlheA0?7?7c z03!yLc$^Hv@FVaDv*=tzaVLlPvA=EQ!BD5s=ea%TAdO_vO{V+gzy=s8>z$r~`tQI0 z?qA~g;r`lA|M@u_y-$%z4J0j@WY`3Rg_?TPH%a*1aM-%0zZ&=1J<8w(x!=IDp{l_G zs5E%NdM{tAz#l!Re%-=d9tAa}#{Y1AgbmBs5fts6t9Ko9S5(5_Is<5W={TNDrk1(K z>x6)k<6f}I^qI?^qSuah5hxQ`QIAmi%*2}Jxd%%!P37Bjjhx^l{Pm7YBm&20bVyA* z6e~Uc;HzP`18>~efHjAeqrKwj7fQ4MmkJipc4YadR5@%%_4shacoI0+=Q%`lZb3CJR=Hf>g)0!ROU@wK z*yOZpTEWhRcI#&HUyn|t@>GGD6W=s&)TJbJx7@a9)spniL8o5P;E zaakFW`UbsYV-KljD3}Bic4Tp3^R_-Z<`}^Vn-$%DugK*UIC+7j-3JJ7h6k$7Jl`y7CXjTZ zHoscDgdKm*Zqc}h zuLcxLR%Cb6N}KD|o&Om4DL`Jrw!~K+7;xF}ix{+lFxt7ac;}N*@gOmiUn%jb z_(Vny*c_~_!UYD;Y-?7Il65CpP&wJx!$x$DBDu1Rmnfdt0b8;Bk~V9ufW(3)E3L0y z>ureHp*+;ex%<}^B`vd`aoq#k$MooJ;WGW64R+Nz1CnvO#xgZ)A8Px(%Dm|KA$$gw zb28iNwtM39Z7A*_z6et@*UCM?d-f6A*pR6iOsyBo`QbZj(WIQbrhCmG*iQTyIoS6;T+NZWhm&0EGT&YDDp9P+yynzx zU(LEcNiZSfuf4pWdZTVg?Ladl4~;kX?-wmyerx;TiTg5OWXP|G>4BLoLDjn+;m>fw z#5d4ijq1eR#u@zd?VES+<_E`c*qCF7oD2_|>%r3Ide=reB4Erxjx%sTd{%81I;L;; z^@E!-yaJcjp3T(vq+ zASytRC*K#gDe_HjMHHd$;a^6QN)tofR~UJO;DDarv6^=Qc3Y^4ET{vbu?rGRNTf;L z&Up7n7Lp?wu^R+hbRM9NTZfO0jdZ`gVAYzKZBmbCmbW%f|BL}m4U-oJVRl7s6l{`x z$q@H$s-zNmm*f^*ISyMpOGvg2;h8{{30*~qmdSzuBShpLTiLG};@)%Hw;)9?7`iSE z8b`~aa#=lIVvUlAV1}23g{aM!?eOH1#fp9zBZ5R+MI!xjC1s$`65anfPpo5@CCUrV zrH1G59-?|LrjaQPq(-lhA7_~+)2t6xuv9#9x33V{9(G!9$eIOmc_IU&ZdyUn9r5@^ zsD(9WNMCF+QP+Hvl{F6+53LWrdp1&`H-m!c!jYBH^b1^pnXki|3cR48XRHYh4gCeaeb;D$iN*zY#PGzd(f$n$ z?G-^G1q>AazW-Ui=@P_%6v_mmRWbXU#NwGKt6n zS;3miOy0+BrRW;^B8bnTvPnmzRAlIF^C7$P;Qqm-m9 zK_`he!V05dIBc8CyD!0mVCj@hq&doUI14J$qgtO{7$#X;HT!nX&DMp>LoS*H_EhNQcf z8?XFzi(R`2A9zES?8SJDUPs4a7%TyMwV8^kxXVSEmio^4XfIlz(C`LYeM>v`ja%`# z|Ne`X;ox*Tm7Th8y=13@oV5+$Aus3#U&kJRWHuL;X9 zNm})M5->@z+_89w)Xr1f&lci-;>Cl2ypY)0yOK=n$P5DyooQ2txB2rwD>D4#W0H&` z5y7QIPRzef)gt_aUql2(CXiE;J2t{fsu~<&JCva4eqGsHqcp&ea#O3ZW-0phHu}tK z4vy_Umf>TE4UkDpm;B*tLD9 zsDQQ*xi%Q#93^r&xjMa$eP7cYU|}peM_a}y>asNMO{La*5K3mkSjauH>zMH3O4x&{ zD=H=n=gU`D`j8_Ms_^8L^^)a$6jOknAOm~Y{&EYRHrmM(z9xzQI7^Z|zrX73#%vw? zU_PA{B^Q4gFD{GB*Bit`@$;RY*?~3kcTz&yv+>aRy27Kl8hO!KI%5Mz|P8xRR$git-9#gv6QlmHeu&^8FIAuHj54?mzs4%!Ex+5ja z^z4#e8B1nr!WCjPg1)dGyV>6OsdaSZct|yEicE+*2OoOgF7{)R?f zplhw+iflx8+;y7bx2RnI-8n4eH7bv{+3?0^zN@QEnw3p%wxouF^g<1%g~tDD?@EKB zJkxEPb)2}|8I218jR7^rh+{y7W@!@_Xhl#^7(gHi6A=)Qr2$(uLt>H%A~quiq)`Ki z?2)ZyX^CbcAlk^<><|H)rh#T_5SpgvJYD0Rx>dL8*3_-KzphpJVM>~>zwiCt_c`Y| z&p96Z8yo6B`r~(lWMBo5IQ0!{{^R(~Hum)1SAving5u*THupvo(;>Dva1td$BaYM@ zGLXg`qZ5DT-C@L+P`)%y1J=l-t`N5pzUNLlp}pr}rKHH~8CNWC-|osN)t3aaloi~$5>cZy-7|w|VzObuE>uLWkMI|qd*Te-Hq6s#2}2 zL`b-IyT`uCv`P7&*+dD*Tq4QUnQj9f^Utq*b|GCRZvzhX#(*{L8B~3-J1UwnF@KqWYVK=R#=G8ugY3vud9~diLf5w@vr( zGP{D)UhNikhX#REQyDBx&W6C^fj%yprk`n^ns`2qLn?d*;CL_^aL(|C%OnIMaa&1_ zW@KF$NqcL9sK@4{hy3UdK1p0tjCrAEZ?;}v3ulTL z#bQ^8kV;(MS!Hr1HU&tG%w#WVB} zC3D5FIw}|WXvM=liMkM!IEs>K=!C>5mgd?ZNjwT55Sn!Bz}|-X0{f9?pPH@{lj$XN zjA?#HhL16w76vU?4G7G&mD78+nXP$HnEoEDVlDV5WmLsBC@M_h619;{_Ig7u4(A*p zX@XOZL3%1;WiRXbwElGSz6>6P+u5fj$-1D+c=>AE=5;F|)$*3z>E%&K36Wl8y+9ox zK!Mh^OoT^}zN>{GFw2tNTcGq+J+P zJP&d+8GN=ex@RI}%yb=SbhnUtwZ)PD^X2{+t(_md8n1i2%t;?^(U<$R&-}bdgabYP zYCcLXX;-D5Q~KgX{ktw^$eVGq;7tlDRk@-83M->1AN&t|O^=D2@BWHai3$#G zm0A_B;!}ulVWT;2mG?vgWUj1Rvla=}h#ZQ)T8Z}(wITL~MD2GR`(Zu6!6r#D-X55x z^Su;pNHG_>HCxC_ai!sp>1uP`km2DTkG}{)O-Ezk{D`_2BfQoGzVwE_B$o?oGy{aS z+1c6r6*i{zD0Ja4pl|iYrxxp~{F6)E5?*V+3cF-NZP&vlzSBUnL{1Q$%{-*|xYVTOBCCk-(!X%np{Yes3xD zHim~RT=T*)y?Tj`N*r#&7tg+@u!$gmra}1do$9k_F;7pGP_qHsF8U>Oo;Q-=6a6}h zP6bWGq2LHeKRLhE7jFmP|EW7d>BDY7>okjU9nq0FoTAX+dJvCS^dNBFPi`#auLpm| zrqb)R`sG&ib2tPTR9(~aCCU^vHw8oyh-#nmzd1sOIdUt}erZ9wwFvxfOZj0>PpP%~ z;(=+zBxjOa7rR3+7J)Wz6Sj5oP}V3gyV9jk;}YhTF~cpq$m^H8yxdsy;SauA45mck z8;E~DQL@_j^GAQ%QihM!_-n%26LY@gqeP_ufz~SRz!=Slsq!Y{MDO(PH$HWRS>CUu zSg?Ha@Hrz)kVwH2kU4J#5+AyKVAawwXv0sqa>baZrP_IRqW>{#O_e_$mzf05DhRYx zGJ-WE;B3#}jLPH+vQ^Uj3lU!;@%mvRfN3GBZeytVrSMe=L`n@4M~8Q`MU+!{L&5ZL z!L11NXN$U`Jtc(Be_i|4sHHg%DT*k`pN6+`3$@s z5+m602F*uQ+8sI4yJVed>n!M$UYLsQ3SD`7q_H(02?QJcOmNKy+^)ioLW1h~3_YRE zD}QfXK2mZm5I(8KFd+Y;!)(pntm)ziyGkSFhXTWlEd@4#Y9KK08h`>{6YsXp{Le1y zQ1FZdt)D>pj0{vsu|4t-n0oB?fR~5})mQb}ANM5m{uhbRI0-FZ{)sC2<&}SNWe4B1 zKhI!j1+n*ieC&VX&0c;2LqpsB=imO#AG_g5ZCe;FV$t3;JD7UQD)Bx1jUZ-eXW#fK zgl};4-(f{mfTO}ZZ`;Yq4U@Ecz;!zdn>fyD+7UvyU1-DudpN0#-!U0&*IoD!7Zl)N zm!H0f5oH!3Kw@^0FhT!_2Zh}Txz;Srf>)okd%3#DruS4%;8;tC!$7rsavO^pEpSw*@x>5&* zQ}7?|d6xfMXP9t!JQM`T!{v#K7*8Lfij4|Bg)w1;emS6zCM$trIn9N6n<=ja7EPigKS zZUlHI`V8A*67mh>qVvd!$I9qt#1=@!HHm*^&nZ{Vfj)AaJQyLbgH|KwEM#4u(`J`84A3;K3)f*HJ7EQODT0#ib+IQg5N6b0FV7{5&O& zXgr7eyrnT%a(_danW8G|bI(&1`VN-0?>a1e^EVuCw?WZ(kqaHvemIF>hSkcvUYXhQ zL|WSCz6NXm-u%QNa)Cy%Pc3o|#^+@;CKA$dJlozAH9BW*ck$1a9GN}wu|S_*Q@e;* zrrQOu;HljGS2`D9)%sCe4t8MTAjm?}kjpah8d4n!3G2*s3JB8&qNWI9x^9s0WW|do z-GW--$*LO4*wBfbA186i^vJbIZWZ26oZmI-d{uK(N%~=7Lie}=!}!;z(@F(C@q@TW zl-xr*C+u5qG6mV;{P)?DlDd3@z!CAmZK^V_D)Ch+=FJEGifWnCo>OeTsqP&XdX zGf2T0XmW_49T~j-HiOYZ^!|?0RDdK1Z53QPV__cS608c{w_ z{4jaA14fA-UD>L@Vsjzx5D_88K=Zq1XGzdcUjBIX$?<`%2YeG{fRQs+gd*E5^X}cd z&6gyE^buLj0pCeFB`&P448M4^5-&elEY)-XuM=P+Mi*DHo`QENGZ;idF8*^tNq0T3 z^m&qf-3B%>BOC$D+x@g*;CwHuJ)gwFQld z0-ugsl#NRy3|>tl77+3736`2WcK=Ndz83AUyfi^i1UaQ5HK?9)zR?LL17xI%N0EAf zC<0Mp=o9`OoIcc+#eVJ}-?3cF@OHh-cD0oq<)PDerox^shF%U5atYBVpdLJBjonI@ z#F9xDd7i(ieI`o(-iy!4vW4#9ftWQniS@?Jk&Ssbx-M?KAOw|fX5Gu2xkeO=h$;IJ z>Z83HOEu=uZKgO9W!@ZO962~l(cH1*QDS8m-fCJ^M3#dTpw&X**oNn(Pm@V_`P96( z)uGrrB1TX-P&kgY@xV$lzoe%(F;J_Z0846V&qugUyuyg;Z0;1BfD&rK2oiYpET*5% zj#E!>9FUi1iW`d6K2q^A>PyqhODZ{RlSNPp{fOe@FuA~zNhvOA_gOW41|2>K9Av(g zc=$=DcJcK{jIe3p)h8zA(?7khNj)M5+bmLN5rPEOK}V0+C4^6v578cS{cvBLdKX@0 zMD-cL^3~c-{o!N2iTHBAWdIdIOfh&C(7ME8*3^PsvU748TDfW!6D2vABSf-19iI&o zq2XTESnA4^ZnWS9;!eY%rl6oflc*PgGYcpJ$d%)}nXp23VB1~)K5e!&PSa%EI=$_v zh=q+fHZzc5viO@{YHB?m|8TkDy3TgDVy`QW5Mopz^A7B8tMo&(?Lb@yYUt}jt|f?N z%s|7EFi>H@z$2!B9wX4raR-+x6~o~0gY}G|Zp#i)n<(e;vlcp>zx7SdCKHD$8UQ>C zgnbCB;(iDKap>Pqn1>l+!@Wm@Pbho=y znkgd$qN5}l72pZk1r)`{6r+mwKr`%ccZm17g8?XrMNEMjOi-U?fQE#gK0D*0-K z^%*Dt3EeWqJEs&*fzQ1LWm!6I4mL@KncY>76Ah{~u=7!7R@OlRLCL69C4kC!nSIV+ zN-+nHgN!}jFM)mo3(S>YOK%^$qfS4El#LjyvZX}^HA5Uzz=91q=iyq9K^zK)eZRPC z0HRN!zZI!;@2~Wd?!Dayhba5H6tnnBISLJtQQs24EH9A3nsu;&U51l9o^|#EpGb8X zF{Kbo5|VT_t0HGc^sUH)uiJhvc{NhJdPWL2t9hm}73!@)yo&W$Y=+o$nPTcHl?@lv z@;tuUwGjvk|Cq#x>q2`M&4%4$iou9dtAU4Mx%X%%A>VIdov~+w9!J`+-^O(OD-9!k zI+q2)f~PTAM)~c`m!WotiEVd(m7v4}i#iDHspisQ-XZA0WkUZKfLnQbM8YqI%@OEGh{7k9ng|AXQk{^5JAz;>tTjmY@>HS~cNjrO z(RmdU2Wh&LIsW$*Sehk`Bi}eW;~()tV62L zcO1vcgzc#dWLV9PmEr~S99-FE$C&S3B=jJJR0VrhXzVf!&t9MF0_U=lXu9MkB z&e_Eavh(t~2VQ^BUZ?SFM%b_CMBvVJ$T@gT44M%5o{ohvL}_gT5eeHEDDR=ForzdX`WJI)e0yU>@+b#q@Oq(90Y7pmAI#b`^WA zPJqf(*df->N$;-I3kTV<)>t?1W}SkXISwwIhI67;0i z36j)|4}M0n|7`^(W+j=cvXYnZt!;I_)`1EXQhlUtzbW z)VmO6^if*QXx#jf!mv1b=TLR>{JNf=*cQIcG5b!}Nw6IlETK1W)e~Ud{V@AuysL`} z?>)9tMW}!KXe0dfkWDj31wy~_lL|mI&vNxG?SSeHq{dwUU)xgd3j&T;;lI7su=y zq$RLm%^l_c`Z1fl!3x}|QUfGYlc=gVY<6N*B*=jl3~Vr}zon!=^wgUH zBQg+0(o}A)b#Vx(Qr%M3Jle^=V>yNGwE(HX;jJgvK=z_XK^jMp>Fc_He%v4)Zal1i zZ6YS(`v;0WJ~zYhh*ersyL!88XKzV1p(zw49LiSeQ7^zc4z0wbF!gdz z@d+RcE;0o;!a67$mJfwO&CFspb^;EPZ4UCF2a4;o&$Rz=mG_iYwbQndHZ4-GV(*69 zsPWk)Vegl3^-s=DA$moModH%3nSwocaaeDKl7&_v&{0xF82YnwV7%Lg>*zse0sjNR z*z#Gm)Dr@NbryCAic~;*t-aItd{iOu8s2lOs9#}i=k{jNfkSTB0Lm?Gh4~5!W~x+; z_$`fyC721G+-IyTA;P8DK&^07Z)BGN0v3ZSwqa`SnKM1uNhwT2V@3fWMf`CSfMEvow4jVBMhhS%bqbmnHV>`9ml`FIipK%N zpdBYSY}}|*pzy$Nm7$7IV9`5+YJpjXU4Ziq#J<^*5CCKm38`c-6GnXQJ^OsuTrlR| zXaqcQ3N1tTO#z;Dh*aXVeaBlf**IY-^B#QlPLk20&lLwbKEz*n5D!UdmfcvAoJv`; zfOvS?jrf=85Y`ro!ZW-dwiw}i0SK!!%3cbif?|WVIx$dS26=4LQ9|f!_uM$GF?uqZ z_FGT`oB8|)_mxZD*a;Ip)E}oa)_0)!K#T&#GvOj)&F4-*d)HEWQ7mhwiFyrSBeYAM zShyl$yQKJ4NZFfnjHB=0hyZ#UiZvO1N`)f5$mqv$X9uq0SWlSWGO1IXrb0XM7L^3_ zr0AQVC{qE&)q|DEqIHLuAg`8WI=e{wWUc=roe?#)ULl=EROn)r9Q10F@$oVCB-|mS z$;VeAX5n6fcWy$(E|Za>#$!%SS#+|3CrVsqI<|+(8c1K7kf)?TGpVIqt@!|?U{E-; z4mMu2|Ecdv3X|d&vMjzasu4{H4K;eEyU+O%$4-F@*s>I0y1cNa%kXYfg=VilyND5I zpv_=tS8ds{#Xo7z<1+v~dS^V`Unw}W-d}fIzk(2NY1a8_&`gZ%Y_s>7yUFlB`VKa->gGg}AS3hy){_7%?hdsUSUY3~Y2S+z!gr3L2 z?mE<~a;s#c`nHO*f&31l5CdowAp;F)Qa91Xz!203olC#5d(I!ZyLSZ#yTGI&wQ2#M zB8geE(m>D z7ww|?=<||Dyn=j)Pdbf35b;3+83UGCV>97r=aoHjEcQBHs5ZqaZ?_#0>t0l~k1LKI za+T9FBRK#c(m33QSI zAp~Q>c%M_@>L<*<;xxg*G3+4bf&}K1>`jWUC-nT5bR2UrONWWmLJm{PS;i5&r+jFa_}P&;P0)^YTOfuOGmCWVv!va{9B^=IIL9 N`>proee&s-{{TvNgu?&; From cdd507716feb38c4c931c082fca2d6f1c7209660 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Wed, 18 Dec 2024 15:16:31 -0500 Subject: [PATCH 47/84] backup antes de modificar el modelo de K-MeansV1 --- requirements.txt | 3 +- main.py => scripts/data_acquisition/main.py | 2 +- src/comparative_analysis/__init__.py | 18 ++++ src/comparative_analysis/apiRest/get.py | 31 ++++++ src/comparative_analysis/apiRest/post.py | 98 ++++++++++++++++++ .../models/{ => K-MeansV1}/K-Means.py | 9 +- .../models/K-MeansV1/kmeans_model.joblib | Bin 0 -> 30079 bytes .../models/K-MeansV1/scaler.joblib | Bin 0 -> 36455 bytes 8 files changed, 157 insertions(+), 4 deletions(-) rename main.py => scripts/data_acquisition/main.py (86%) create mode 100644 src/comparative_analysis/apiRest/get.py create mode 100644 src/comparative_analysis/apiRest/post.py rename src/comparative_analysis/models/{ => K-MeansV1}/K-Means.py (94%) create mode 100644 src/comparative_analysis/models/K-MeansV1/kmeans_model.joblib create mode 100644 src/comparative_analysis/models/K-MeansV1/scaler.joblib diff --git a/requirements.txt b/requirements.txt index 4f0ab1c63..8d4049d5a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -8,4 +8,5 @@ openpyxl httpx boto3 scikit-learn -matplotlib \ No newline at end of file +matplotlib +flask \ No newline at end of file diff --git a/main.py b/scripts/data_acquisition/main.py similarity index 86% rename from main.py rename to scripts/data_acquisition/main.py index be5883d03..1b7ff4307 100644 --- a/main.py +++ b/scripts/data_acquisition/main.py @@ -1,4 +1,4 @@ -from scripts.data_acquisition.api_reader import ApiReader +from api_reader import ApiReader def main(): # Crear instancia de ApiReader diff --git a/src/comparative_analysis/__init__.py b/src/comparative_analysis/__init__.py index e69de29bb..13dcd6edb 100644 --- a/src/comparative_analysis/__init__.py +++ b/src/comparative_analysis/__init__.py @@ -0,0 +1,18 @@ +from flask import Flask +from apiRest.get import test, get_product_by_id +from apiRest.post import get_products_by_parameters, classify_new_element_KMeansV1 + +# Crear la instancia de Flask +app = Flask(__name__) + +# Registrar las rutas GET +app.add_url_rule('/api/test', view_func=test, methods=['GET']) +app.add_url_rule('/api/product', view_func=get_product_by_id, methods=['GET']) + +# Registrar las rutas POST +app.add_url_rule('/api/products', view_func=get_products_by_parameters, methods=['POST']) +app.add_url_rule('/api/classify/KMeansV1', view_func=classify_new_element_KMeansV1, methods=['POST']) + +# Ejecutar la aplicación +if __name__ == '__main__': + app.run(debug=True, port=2626) \ No newline at end of file diff --git a/src/comparative_analysis/apiRest/get.py b/src/comparative_analysis/apiRest/get.py new file mode 100644 index 000000000..e55fec284 --- /dev/null +++ b/src/comparative_analysis/apiRest/get.py @@ -0,0 +1,31 @@ +from flask import jsonify, request +import pandas as pd + +# Ruta GET de prueba +def test(): + response = { + "message": "¡Hola! Esta es una respuesta GET de prueba.", + "status": "success" + } + return jsonify(response) + +# Ruta GET para obtener el producto por ID +def get_product_by_id(): + product_id = request.args.get('id') # Cambié de `request.json` a `request.args` + + if not product_id: + return jsonify({"error": "Se requiere un ID de producto"}), 400 + + try: + file_path = 'src/comparative_analysis/database/Adidas_etiquetado.xlsx' + df = pd.read_excel(file_path) + product_data = df[df['id'] == product_id] + + if product_data.empty: + return jsonify({"error": "Producto no encontrado"}), 404 + + product_info = product_data.to_dict(orient='records')[0] + return jsonify(product_info) + + except Exception as e: + return jsonify({"error": str(e)}), 500 \ No newline at end of file diff --git a/src/comparative_analysis/apiRest/post.py b/src/comparative_analysis/apiRest/post.py new file mode 100644 index 000000000..f5abe5315 --- /dev/null +++ b/src/comparative_analysis/apiRest/post.py @@ -0,0 +1,98 @@ +from flask import jsonify, request +import pandas as pd +import re +from joblib import load + +# Ruta POST para buscar productos por diferentes parámetros +def get_products_by_parameters(): + params = request.json + + if not params: + return jsonify({"message": "No se proporcionaron parámetros de búsqueda"}), 400 + + try: + file_path = 'src/comparative_analysis/database/Adidas_etiquetado.xlsx' + df = pd.read_excel(file_path) + filtered_df = df + + for key, value in params.items(): + if key in df.columns: + filtered_df = filtered_df[filtered_df[key].astype(str).apply( + lambda x: bool(re.search(r'\b' + re.escape(str(value)) + r'\b', str(x), flags=re.IGNORECASE)))] + + if filtered_df.empty: + return jsonify({"message": "No se encontraron productos que coincidan con los parámetros proporcionados"}), 404 + + products_info = filtered_df.to_dict(orient='records') + return jsonify(products_info) + + except Exception as e: + return jsonify({"error": str(e)}), 500 + +# Ruta POST para clasificar un nuevo elemento +def classify_new_element_KMeansV1(): + """ + Endpoint POST para clasificar un nuevo elemento y devolver productos similares en el mismo cluster. + + Request JSON: + { + "nuevo_elemento": { ... }, # Diccionario con las características del nuevo producto + } + + Response JSON: + { + "cluster": int, + "productos_similares": [ ... ] # Lista de productos similares en el mismo cluster + } + """ + try: + # Obtener el nuevo elemento del cuerpo de la solicitud + nuevo_elemento = request.json.get('nuevo_elemento') + + if not nuevo_elemento: + return jsonify({"error": "Se requiere el nuevo elemento en el cuerpo de la solicitud"}), 400 + + # Cargar el archivo del dataset + file_path = 'src/comparative_analysis/database/Adidas_etiquetado.xlsx' + df = pd.read_excel(file_path) + + # Verificar si el DataFrame tiene la columna 'cluster' + if 'cluster' not in df.columns: + return jsonify({"error": "El dataset no contiene la columna 'cluster'. Verifica si el modelo fue entrenado correctamente."}), 500 + + # Cargar el modelo y el escalador + modelo_path = 'src/comparative_analysis/models/K-MeansV1/kmeans_model.joblib' + scaler_path = 'src/comparative_analysis/models/K-MeansV1/scaler.joblib' + kmeans = load(modelo_path) + scaler = load(scaler_path) + + # Obtener las columnas utilizadas en el entrenamiento + columnas_entrenamiento = [col for col in df.columns if col not in ['id', 'cluster']] + + # Preprocesar el nuevo elemento + nuevo_df = pd.DataFrame([nuevo_elemento], columns=columnas_entrenamiento).fillna(0) + + # Convertir variables categóricas en dummies para que coincidan con el entrenamiento + nuevo_df = pd.get_dummies(nuevo_df) + df_dummies = pd.get_dummies(df[columnas_entrenamiento]) + + # Asegurar que las columnas del nuevo elemento coincidan con las del dataset original + nuevo_df = nuevo_df.reindex(columns=df_dummies.columns, fill_value=0) + + # Escalar las características del nuevo elemento + nuevo_elemento_escalado = scaler.transform(nuevo_df) + + # Predecir el cluster del nuevo elemento + cluster_predicho = kmeans.predict(nuevo_elemento_escalado)[0] + + # Filtrar productos en el mismo cluster + productos_similares = df[df['cluster'] == cluster_predicho].to_dict(orient='records') + + # Devolver el cluster y los productos similares + return jsonify({ + "cluster": int(cluster_predicho), + "productos_similares": productos_similares + }) + + except Exception as e: + return jsonify({"error": str(e)}), 500 \ No newline at end of file diff --git a/src/comparative_analysis/models/K-Means.py b/src/comparative_analysis/models/K-MeansV1/K-Means.py similarity index 94% rename from src/comparative_analysis/models/K-Means.py rename to src/comparative_analysis/models/K-MeansV1/K-Means.py index 728fb528a..cfc2ecf1d 100644 --- a/src/comparative_analysis/models/K-Means.py +++ b/src/comparative_analysis/models/K-MeansV1/K-Means.py @@ -1,9 +1,9 @@ import pandas as pd -import re from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score, davies_bouldin_score from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt +from joblib import dump # ** Carga y limpieza de datos ** ruta_excel = r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx" @@ -106,4 +106,9 @@ def graficar_distribucion_clusters(df): plt.show() print("\n** Distribución de Clusters **") -graficar_distribucion_clusters(df) \ No newline at end of file +graficar_distribucion_clusters(df) + +# Guardar el modelo KMeans y el escalador +dump(kmeans, 'kmeans_model.joblib') +dump(scaler, 'scaler.joblib') +print("\nModelo KMeans y escalador guardados exitosamente.") \ No newline at end of file diff --git a/src/comparative_analysis/models/K-MeansV1/kmeans_model.joblib b/src/comparative_analysis/models/K-MeansV1/kmeans_model.joblib new file mode 100644 index 0000000000000000000000000000000000000000..e40f09ce46734fcdf885315adfe2deb8f82f3554 GIT binary patch literal 30079 zcmeI52Xs``)__wWp@b$K1*8c?s(}DfZV(hSf`S54LmDQK0x2L>5D9Gz0uw}}2Pu&n zLI*D`BoKO$0HJqOdWVpIhV1V${|U2r@9A1^{r}RnaL?XnpWV;C=iEEFGdx#Z2`7i= z|Cvfg_6Z5}jR>pd9}*oI6&O*=r%!00Z&;++LbiU&DBi#!hD1&((Ikb zlq)zaILd6w+o$I932(n`HsuNR{mLiUBE{UMhNHJDA)ee8U35LwzEne4{J`caw{Mc;A6OUzx|4^7@8+86FWF z6%=YVa_g&Bs45%o3YOAG4`w?{L46V82?=4e{w4>~Bee*;J&h)%NCAdpkw=_U&tlqY?Z( zk}{0n;Bl+V`^xdA?* zp}u`BA$>ht?Q;`!AYxS!6x9#G%Z~CT>3og_PJMTGi z&hwaoLkH$6{^`JWvp4DUekl`D@NANvTkxl@bqCL=yhZ<6=!`RObVNoYkCMqb^fAsn zaO^@~+~~KyDp+r;{zUZj+1=y7!us2E@2;1Jx-QM{#XS5%KXRB4-ni}AQoEct=m~#* z^I3fEGkVWm(^d_Cd%NC5=*QbWi7vJ%MMoa}AGpZrmmmDbch zGiYT_efaTk?a-=A&+RtyM*N5?_Nj0{(M$OqdY;trmvQU>y19Oq@N?x$#(E&0LwXdg z`K;Mao%+UKfFhU9fGQt$LI_M)1@1bue9=)Y8{$Rw|TW3yRG3x!$(eYdMG+L>#j+qw|{n6Z+ zGtO(sV}7R#HzywK^r8=82jkfDz2m8N`_}9?>H@#uhmZV0C%@3K$93FS`PMk58}iTx zRPzs=e1NNP=!jWyc^=!pes?X>ta;Jj59H9R#wG7S|D>>{dv(?idQ?8>_y?{+;sf2D z9L9kvpNhk$LgKH||0@3Dv50<|*UK9H1$nAn|) z%BSYb-ug$MDp#eeIQ;Af!2ex{Tp;s@$T|T3yWo7;H>>)P4_$?f+k^1i8@EUQyXR2{ z$PGDGKP97oYL0%P+QWVtI(`1eZGU}MlPWpZ3v~@Y5dGkrKW)0MF^~8l4>`;Sf7i}=i|Y~B1LVCW=TiC``y%uLsSosU z-og*$k#FV!nb+xD!+v*97WFz`xMW(#>CX)R$Q%5~;ktz1N1uj2UCvwNk^H{uyoEgWHTX^5(GMM* zdHBV73px=0m`B}EuPU8-QsGL9dw$vHk~ zL42I|d9!h!hI13=E$Um9gPlO;ao$27koX`6`+>&-vL^PNm&*%&;s<}rHQwDrD-`xZ z4sqnX#XJ?l&v`3TId7%Q{TKY;{6+l{Z^p3)JK2 zKJbHlQs?OByahjUf%JLw(tm*Pp%*)m4kvBmf{s1vc?-G35qZ#oYCfR@C!W1I{)@($#<>zYknTfCE)Nd-~xAvL3)+1?}lq=c)EEuF{(Z4(oU&#KpJ|NImq5SkTii7tBXL5IXA*f6zl5z~Ki6qL*=d5c!N#_u%UK$4>Ns!>`i883&r>zBjlERk@5q zM=tSzuAaA;XAd$DXpfKniaz+5r`iJ!pFODZArF2Pht534fsCs-bmoBrsTamMZ!xYy zO!%x4xFwFhTfGy5m4W^%H)3D_!AjxSS+?J}?m!39=UGQC%JVJG>G;RIdJR|q-oJFF zrs~5F>J5JUMIUijpKtZb7}W9ggD=h_#0UMwL`k0lO2AoY&Oz7V@^s`4<0~kA3*B?km)KVjkBe{H7jGD(5Za6DRzEuAaAe zzJ;D#ZtFe2{CSl|pQH}9i9hh+A2_g>?BBtWLtLOU5nt*xLgbJ~{G{&T zCw@HN!fyES8-DCT?)cF+s?LtxXI%HbY1p`I-%2aAyyEW>dA>#6GjCzMYwoL^&*ZqS z{ZZiS@tv1!G2~$n{$S5UdA@~R_=Vl{FY*VS=N!^5o;US~ zIohK^}K~X)+K)DSDtUdr^`- z;QuK^KJ(Rn!FZF6{&}lkx~tui^%|eI%fw}wnHqHfL=O86aMl|TI(-Fyh(8c}@E;tg z>V*&aK;(l{&*1$&xUu?T?kpp}*hzkf1N`U*hYuXcegIsRqvG)42XcY%^PCr)c|es8 z4unsI>UE59d-kYtfM10wAM)T+ap=rr{8jcdk9dItsRPDC<@pxlDnu{)X>j^H{LsPK z??4Bl9~^!l{xOdKtP|+)({F#P-`U}Cw@q5!2leg-HacURw}!Q9@_vd_y5^HqFsWf- zU0W~b2;?TqetFg*_fG9!Pu4dH4jt&^5LBq##7i324>vh)IpoRyKH*&D`-IG!|L5cH z9yVK{SCR7_bY1iy@2pE$)P?p3jr(X>#j?M@I91LukL3AQu&I}ylFjK ztsL%mP8&RD`NI=?Piswkeq1_uS+Yjn&_8|Votx(-U(npgJ#JHBg{~ERvi8@LH!`$_ zvL87m`>P2ek2sMx_C@Fg{wQ|B?=Rmc3@8*G)OcE)wp!v&Us2+9AIkIJ@ zhWy)Q`*bxIId0(0ud=$zoTR99<9jsJgGcP+23=Yl(d$Yauxq2(LEnVVdFxrlOt<%L z9n*${72I)S)O|x=gzWFg_Z-PL_5tzlSEY^`*0_=WsMi%k-uY9l!@IvWLEj|yP(SSd zkk>%+f?mE)$i9WR^L%TE=#7&+e=~Ju(#Xh58u8*jGV%5j`P3oT9pZx>K%Q^0PNBy& z>oB5s#AaiCI8@4xW9MgI)E-x2xk0Zk`CX{QkNA+ki=P$n88v^g-mcli4xJvJG2%vi zW8~ZzeBp4XJ?{+D$zyM+H}bq$$pdllU$n1kLhEzJJ_uP&DO}HL#g=Y zk7mu+QluVw$oC21KQ8u@59G}j`Pf4r!yovlcl<*S_EWc!_hM(a-MCj{JtGGQAMqrQ z)WaUoCev%Zn*kdXa+i*c9Hr{fbmcIxeloszs-5k=dc^UihI1bD)GX${Nq@FY+pmRQ)M&Oz`$SIqIA^PLqCkTJn5K;09UO_^-mR z<$F}bjdA?_d|m6t1uO2>!Kt6h5*OA{+c9JO)7<83g+foo?aF;yJ0tp=$n^<3PY9j+ zE677HP?Nq*AEwS2w+GqxF^-+!?5o&kVHbS`KGqAk3f2C{xayDEFNl}gPg$qb0qYLA z>^H!vHz0KSDs_e))-U$ZABih`%tIc0;6RnHx#Wv+b^T)}`62$q!&B;nx`7XQK+ap> zYP`uW<3RLe$^J*J3(sE`jlS|UU8BD-kGiK0p(76n9SD7d>{nHN*va(`f5`{ym-U<> z>jwGsC2-a5i^8wYBhT<-CvxoN8$00xvd_W(U^#Cwu0r&(uLGyg!%w|{)32d3kA1u9 z2YF*Y^N4Su9utaPO-MBE2f)X5V`{x#&g0i4Yv)?J2W*&|Zk)Hg^^H5fPdumhST$+Y z_1OLTuhL)1FLu1y?VBo7E5G<2Hgq8CopoMF&Rb4$-eP~sI%D3+exENMo_n2f-hz&Q z9lyRC+p=zg20hH<=8C~F`?Zq!t~GnF#1#FlEr0Hs|537*Dd#QjlaFz!G%ICfvd%pA z?c6Wm+`@Sce|etK;pps&`vSJ<^r^kCP5$(w2FEq^`-I_Q4}Grut*4`0ez;}Wi+<_@ zJ$J6ot2d?D5v_#yu~OoGA^zxV9$%zr>t)}={Jx^6-PvJ7-XFVGD|7kNH-`D|HS{FO z{F^eLx-TxzjYj5P^t(fg!$#hJljmFBA`iQ!)tY|(L94hN`~TH7dJc<9zoFHT>m<*& zu8TgtPe{HyOWvsKKZFl|=yTvD#7=PJP>Snma6FZpCd5ird<7K|Bv$1}{ zZjJgwKIaVR^g(d)Nqkt(esW%~JoKRJ{jB9ioujYE_m0CK4nCwU{r=#{M};@*#9JFfHy;v8K^F{vx-eL#j>^- z=PmRjhyFx;aG#`D>%sd!P2O(!gMIWx1Yw_>anYi~6Hpx!z(wb`Fag8(XT>eM3L>$vE@n`HaqbV;@Yt z42&B+wEEZ-Lk{033>P|n(5LZ(e6l}HmGu!T99mu+(zmZ4sO5MXx{7Rmh`t$AyDLU65ldNCvqro2` zeHOWna^7Ox;rRA-gXZnfuro9D=$(O2S811iIO3L&zQX9Qf1IBDX45-6wVqOc%s-WM zAz;Mbtww!gH*qib?x*+s3+~dEH0~R+qsGq$U%9JSw#QAKYdpWGFZ)ya0&ef@_LFYWMO7aR_g{R9*n6)lqLykTH-^H({#-3`t)9_=1)EE19 zhk4o8J12R*#d>0Wsr`q3QSQS;r_uiLI_nC3tY6}YACZz*`0yJX$n_1JeIhuJz68!X z0Dl#v|EYY$2fErX(5uo}*VF;)4mn>W?yK_7`?}E|ptIlLIzwNjU(#P#r|9K6!T2Xq z=cDXg7thOjza-FG+1Hhqy2q~Z_q$!~zdpgJ8{$QN=tJ;-Ao`)h$2job?nYC#CXF%T zK)lb2UDPA|*h?L8Ux9toBbgU7W4LphBCC!2Rm=xc&niwIgASz5*;lG{Nc~on{TSoq z134-rj_SJFsq8n^b%h-A55MXc@rNIXo!~&~w4>y2%a1|+4cc$lsFyz_zVLJX*mb+{ zYKKvWHSl|dPIRslmuTdb>jd+rN*|-oV!y9kAIUHLK=N=!?D$CR{88kwZn!SfZ|{AX z+I>omgZi;Ep81+AI%wR7Td;D#z2-k{(Z-JK8&kb`yw<;e^{y>9FV|eVjksDeet}jl zHtXH|iL#|V|IM|>OZ83SN07vQiNv$2%)20RYRbCeK0sZG+c_D3kgs?Df`@<6iBoBr zzhlF~ZZ5HN^ciwrmwLDm-~GE{-4AJRirgFGfBt$yA32trrcD(7Cqn1>7VDJ1-$Gyi z$+NF)a$m0{Ngjqs-ij)9vP}FdA$0PcPxkR=#h>BD7lpfxU9Jt1xYU>U21;Gw_v7k) zLpS+#(^iY#mThpe5kLRGXI0sSxqjq-=*CboH|d+(>kDE>$SR*_)%Np zp5ftecaZllnzPW0$hs>iIPoPuLHit9bD~Uu0|J=wQc2RPQTwTS$imU z@4GxJvrE<08u{PZ{PROsT23JvMj$#eW%@*W=O^y%Cp zkLwn3JJqmh@wvBt(*4BWH^mR~(IGan!tqM$wSx~PH9gjNwN}n^|E#ukTi5*i1ZQYaBEm0?*#6Nj^bk91qM(MSMZ?df4BH}mwq>ijhPbpKlzhCyJe+O~ND3l;5UrSX{h|XYByvyj8tdq+>yku38W2_v9_sDa@g1 z@l85@)f0PM#jlFemx}E09yDNMcOAbIm-TLc_o9#9T=?5aUpg%L>m>AMBcBAkRbi5T zQt0?mcHi8>vwWB6^d;&IySToAFO~RCl0Lyc0DD-MKSb_)ed3&@I{oE}an|EAsmEeMe;~M<;BN>dU+4>ybw>YzPF)diApMW)9rN}|{IK)B z`2UB{%Zq;Y1L$G@^@-F$C4r1rbNc4`%$j30^s(O9Z@||{)^8J;pDzA$y}B(p*NM{7 ze|{4?Id`ImK8k!`Yw5?tzk%e7b-VYol7nWtY|yE@d*c6j(SJbjeFE9fQ#WbCS4!eV zT|P?L`PHWK3ygXs-q>|e>W+LsM-ThYdEzhYq}0(o4j(74*9(e1);IHu3!OUU`oTV$ zIDpe<>Ff0Q+#(15yb}M1;%`~O(W^q@_?qyQ5qVsPiFdlhf%(*9rs#2$dH8|9?AwV0 z>jXQ&xlR?9I=d_JTz9+A-g^$Cjr^dWzQgrn?uL)n$0RP(SBsr#vX6$}MeM`wcGAbt zpCxq@DC@SY@KZ0yVgI^P^putT#AWIK-2Z@|e#`p_YabuCtNp4h>mKe9k$HBbV=Qsrnda9yomH z@4ul`w5@FkCHf(w^u>F z9|9kBqvnmef{(nw&-V$*Bl+d~gz7w=FG1(;B*-gr@CQ2iW*$%ra5(hLKW~or*GGFa0tPA9+^}_RJ==ee3#1Ha_z3AtC8Sp~~A`ki4 z162926FN|(GoSSgpFPNWzz*sje&Uz6^Gx&P_wsMXZs3rF1*s?QR5aEr_8^z{Wgt&| zKVh?~5u2-MxBhuQp`25R6Og~(0tXUjaC`5|Q2F4eZoyT^bpg6PIgA5UJ{5;gh18Qu z|Est?{VJVx$~pj|pX&vmPlpT$Qfk@UtJ_dItSp zg~$amPkmno^uG!@Z>jo_3tfeb+k^1i8@EUQyXR2{$mM+*_Vh#Ny$#^>d2kg{*D4+T zD%~EAo%ZB$-DtAp$;@wu9M{zM!7my+V$P>&m-NxjGy2?HwApxH26EAB@4Ur0>mB>? zpLN6fXPkNe>3Qotx9u^tTUYR6{rq#@%6^YOaRqW+BL39Ff9rkl_WB%lVmEa|T~jyI z6@2t*`2XAIExu2PeL(!f57yV;ecmFz>^uLi^Ooud{`_A*Z}EOY{8J(M`scir{ktH< zhq%yJSf@ahk9vm=gihTupY;r%JxD*p4(c9$`UUUHz-}P@1Agp5?%@_Q>UFuC%Q%mz z=dCecj3}JG?9W%epAh-~ybnIRj)*gH`RBa#ztvq}6*}9DLAUbq*>)T{W7glC zvz2S_Gcr_tR(`7t#;uurCbv&+_ zMWFRRQ=Z_kzzEAvi~5*bHFqg@&g+-J9hM*EeE!p?K4$OSrouk*v#LIpA32Q-4iB^Z Q7-!vDp0(Kj)r% z?z!hK)w6QfwP*D0Bme6jVl2*Ts>s)N2(3dDlA2*;^6j;4DYdBfbPsGPs`->EQY}d} ztBIcLdPZE_v!Z8s_g+gg#dKRvQ}aESb?+%3jADxZy=$`2(M9Fpg_>II6k1ze&1ptk zCg0Z6z5k*@BAZFn<~ws8U2PqiB#G|n9z2U58-!51<_oo>!zpG@qcf4rs)o_iy_@9f z>E46&AzIREq_!i%s)OBV7*QFJDY{q;U3S$|9Q{(9dTeJ;`a zC5bJiC5`@Cp8wHb-zCo7lF)aJ?@nb_EoSng^xanLyEp55T&nNctnW2^Mqh5N-rqu$ z?d-1)i1#Cg+2i%SsfGGJ&H6xUqXfH9-`CqteNf`^bM?W)rI7hrrafKM_lqAv0FyulOc~CYBlIEhu@zD0wE_*F zd_n0_+SOd=a&?6MwfNLZSk**E6Gc@aXHkT7n@p=IRUaBJRKmbw)vQ8pO#(afN`0L&Od%`GQAJkkQf4PX zA)DEHw?W-NdM7h9NK*yl>(Og}C@t^%YQWlBMa zf7|-MVS=2Ln@O}4P{RA^qGw_W=(I^N5seM5aUSw`0||8 zK6BieW>d7h^rn%Kp@fLcP*M}=HbiE%2|-0aAwE2!E!oVHj7k=>$!jYjx79f@Fqk4v zTK!NLZ;VjEBy!or6^1w@(OZM&b=A;EMS3)aE_P%`dqzi&8W%kWbs4V5#EY@5Q?#VtA`Wf+K z$~MMw>sb6iKdF^JOo*Qm@J`ERlqoc?rIiM~Q&mn>CKVEDwx~?Zc53t_if*XKGyzZOI=S!im` zR8l`jc8*U$2gykN>(YsRG>x+wo2M>lo;|rmYIAPpp#1MMMb?5>tV>EK?L9&M5+^G55L2%ub{m?`A-MG+*H z*DVgw+%bBfc{X_5&D2sE)u5%2ssxSJoQ$YG>pHkhE9Yepi=;D0V?j>!>A}Q7xOXdsNLi^T@v{sb?w&V~Ol^u%I0UXP|A+!7_ zYoy_JrI;&&`O5gnptjRCjn$%tR3^b@>*CI4Sr-QfsuG871ASHSY;1dg{>}KwLDFpk zGKKx`AaDCt@aUv$88$W34=Vs&60G_>RdDASN@@DmR|g{pkjk0<(%_a_ney1l`engW ziAB)VI7h-<9xOFiitMgvb474|!TH^l@x92hvpb72zpK-`;9AXL;HqA_2{vi3BCt*UAJjfZ(HV-KMXRT^RgQnWzhAxq}fZ*@7Amr$O@kZ3Q;g1^RQ-DaS~+#$v1-}=`*LmS7Uozk-Web4^jIuy z^}A$R2sT~_5M(Cbr6tYfTPj0a@ce> z_H1;GJFAhK2WpJ*RHdn|}T7&41%k8@IQc5gx(f@?pIID`S%eQmzWQa-4jBrcXTbbwl zNRAG_0%kg-KP8vrVXy5K%+qqZ2qoin%QJEck0Np9p3g=L#+rMp3^}2wOvX!yk@~g} z$FkE^eY@QA@Mw?vt(3vZeCj0`4*Xc0$G$9=Y60)8J(T5i<|X&vty8`+lkIKwg8qt3 zxC5E_l%B%3qSNNDnlK6?LHjaU-a1p0#e)8-jC+1gdza(25F0rM?oYyK9Ge$E4Ka~t z_u};^C~I%x4LL{nb@p!Uy(!blXgdF}eoM}AL0oytQI*ELCfd7{ITT~{w?m?jV@(yb z_3<-#^5d7_V6)=DJ2D@Mq_q8Be>Y^PJ7ArT{a(nx3nm|_zb}`#k-FH6qjC$SpO?1) z&AdD;ei0Ht?2w@UQtr(7^$J=6ejxMCifAd+d>A6zZl?aL5R=;!E<@-ag~TqKe5C%d zTmbtuY~iEpoZO~ST~n_9Yk5JS3J%iA=v+kSg?#k=iChQFI2Yc$OZsU@->T**JuQ*{E2Jg4 zkk#*JA;F#Vvd`s(qPd3JuC=w&?JY{k{$QS`l&U7HnQRxId1g3s)Bh+lJ_pN8Ew6te z(?dsPGo5M>@t@3dl@eHUXI`TGSvtIfp;gOg}_Nbw$yIDkd*&7iRMcvEt5AahKsf}=)psIUZE zr=)~Ykby@W#E7R?g%|{LFvApf7KW|kKB6eA{~;_m7AcsvD{1FUQHy*tz$hxC>xOY3 zbtSV}if(j~%h07%aVP_2b{?oknWTyY&CLr7g(6*o%@^qw2%Yo^5|*GDEUmHgq-fnC z4r7sL_l8LO+FXs|p4r6^mLYmW2F)IHuY!ZUyw;+0@}=Gy>%Jdt2&<_@oko%GNz+{n zPRGR8s_&cnz`i-0fhJVdh(I7i3}vLK5W>5)Zg&YrqUb$Y!Qzv)vFUyscP-zb7DuoU zKB);G*S-)W6lUU^!%<9hL73L5h-h>vceHhF7j9e%KH^9QZ0S8fN{o3!bqRZbII0pm zR-rBVt$97SB}*AwR;B%sv^biDbo5>eY7~3tvb6OODESzcJg+w;&*wNp1HZ74+9!rF z{*>zRhjD}q=<8z{uesOoTwQ$}W1rP)*fpj7Dlwd)=k_AB+sY#te)>+r(^-q{_J%mV zHw^89tWm5ZB{7n*tBwG;xF6sZH4Ip+w*BFNHA*8Qo@cu)SIDL`s^fh_^8*kePGIR( z$Db(a4)9tAU)Y;XbL2^C&X=m4$nvTlusn4H57;`!%T}*{2wr&4I5$GYs7kxU{cQ** zOo7dC#fi}j&fgq_Phe)=Tcfy!X${}bHj}ZLRx)OYF$~7vT7-d3)@Y}fR^>D}7iRg) zi)K_qjAgc{{J0eNdCS=$8pFqxf;O?ac258!G0NPP4T@2<>!`t;@ zBBPG03YC1j6gMU@KYzzld9$4SUN4x;aC|SZDmX+OFIpp`wO5Gd&-TqRTE&tcFcH_hhmLEBlJLQ{qtoVuzeb7XgMfqD0+W4Sb+m!Xt z5wUsDESeZ}QKgNl475z+#7vesvuc^;U}rJx_z2ii{v8-J4KbS$qT-t$!Id7&sfOP- ztPF7$^GD6zO|*0C{$wv?IE5s83u}44Fmy6 z_cU`C`vXLIc}^^1IR0Wf!a01cA#dcb0r|ri^Q5**EM}ajG$L57QfeTwj8Mkm0yJsz zO++HcNL6+*?G}`LKhFSB8%n{Au>m-MxxKEyh^JI-=4Nx7OYVG#4#sHM0gSx1)aA~G z&>8Bqs-aqF>xGWVJsU}fmpr|wLU~L>g z{8hQ=WSFSwxFQ(yoK!4fu6x1d+ zhGPBFnOLzS_HjG^MLW_Y>pGtGL7MmmW0a4ZZnN0eA{=vzSjk8YWut-{DOuW%rDOwr zbumMgAJuLsn(Q*U&YW|;6RQ}gK0>GH+~b?fe%Fq&^9><+X`?_%9eo(b%SigtF3a1? ze4{5%yL7?7I753RWwvg@)|%g9jTi5@#x4g_hPyhtu&{KDOgA2dwS_uDT*5-N|BO&b zu|e%7a#G_r!1>`x@ff-jM`LL`Yi0lAE2y%7 z&S^{ZFkI9Ivlp(pw7|sf5UoC3aa*iqQ2xn-uw_{UC~RsSfVw~37S}U!)UiX=$ffU_ z#SIJ|b%Uxh@M-*Gk@AjhQr@a8$SrvK9oQQge^%9Iq5g7MdJ>>lim`iy~NW zH?AGc&D{4U#*9i=Low|R6zdry>K0ac4C|Q7Y_FrMZf5AH&Cp7q-A;Q8Lq^@)^Flgf zn&ShQ(#c$fH&VoRSn|jSznIt1JiV!@p~bPUBsMV9l~GK%Iqf~oUg|symw5tTMzQWE z1SZ5axHU@m6EypN0y^3;MSYi*DpaRb&<_xHVT2TxsXs#*!EG zMw2PBnp^#p_aZ~17LO3OvxumTT$dxu-7>z@i%wh4SDqbV8~tX8I~X`Bo$>%93^{uI zdkhh^zV|>l^Z=S6zQ5xjrN-RJAW_%d!Zoo$oZD!3Ft ze!vh__<|oI_@qnRv!lA%#uGoR8p666Me7H;8kfl$Vk1M0i5N{jqn9pMiA~J>^&Mk2 z2Yv;&=*7J(CF%-Cgo-33Xv4vCF`vF$3i_nL5cjd@^LDs_!J;t?9fSJ*|Ad?t`-&T; z5b*%Z>Fnk9_~nGyQ#{DxjsFMnj-ZFpA|7JlQ6IVNh#Lj9-HredZHR|icGRLIQg(pD zJi>rg#mdsKbG65wOK16Z=+W(KSxnhXD(zsDIOQMm_N7l)&AHCi{( zuS(EK2mef`BVQ9wu&lP;mK7lANfs2f>FGCwbKc#;?8yi{n;D~hM7NYt)Yct*aiy`!;J>-i)4jVvzqYLMUnxl+(%moP`g0$rdH&o-ANq42llFX$6yX1Q zR@0va>E4b1o=ICzdVu*yPSOL@gVX!TKQ59!Abnu^AVyv2Kur&K|7i`zOb@**eFXn) zkpBFqMa=(Jx352P``>dDK0NExgO?6Ee1a57|Cc-PkH3DS^QeXq#g^t14&J-r-KX34 zo;qMv%q)dfCStFC{Q9F$jef>{Hs2@g=f+#tulaP)l`*rtz$&k_-mmf0U*O?eZ#|df z0UvmHhF*~OVB*L{{6Pic0KHF_Uj|IzUXK83*?&kuxrU5 zy!LQEm)b?cX%A!QqqZF2qJ3^Y;9qa|k4caIEsYcKyZi6P*wKscS$16PF`qoN!|dm~ ztoOjhxb*uA^c}F@oCp7_@j06h_0R)l*Kx5M|MJ+I7Tqe#?$^hDb6V|+e~i4{Y8T|e z&r0?JF8aYNzaP>b*aJAwf0ga$!1LM}&nRKX*%z_LyyTPT#W{c7aEg!{W6g&rcG)oM zhc>-C9wcIThJTsz(0;TV`X^!w&e?wI-=2BW#)Djx;17-~Xg~TD_QAN{VEYx?4Lr01 z{Rn*__w`k~zWLem`#t>!{S!W1lMni!EYX?oOYMf7;Ck?{3AGFO(U0!-Vf;e=m9dY~ z4gD4^`P`?sx82YOxZ8F=BRT%;r)@ptG&kfO>v>g-US6~EreD~85560I^v|`IPyDS# zS88|P`X|my2pf}nBeN4IcdFa;L`hyPr2ORV->YzHY`|#{7gWFS*=cRW)d+EH-emlVa zZX7?|j=c|)U#dsHLl2aYhkOIi(Pe4AHR&M7TcUlXdav9tIbOQp{#sMkZ`}CM!>bpb zy?I!v-i=eP9&%77V(xKJj=%EvZabCax%EZ8w=5?I^yTQh?|Y9gxP7;U^m|DUOX#lOO)Cd)FnZh+5E%v6pKDuvnwA;}Y$&=N9~Q z!V7nHCzx$cJVk3VT*y|V7ax;sZr{P_Vdp4Rix#j*E3z44CEztUsx z&RrQltZyRr)B3u&`rH=#8TBZeez`0bfB1^n^RfP!BR^gqJJWjpWx6K!tIgNOwp;ah z55ATm^FG_Y;3l6uynoK(!!z`Py!E%_=G^nib+HdDIXC|Gq1`_nczx^-tG<(ed)x!I zzGxTZ0|)$gZfPB|_~KcsV^7pS{oBjFxh?kgl783RQh#Ht*{VP4%g6t=;+*fsfCoP4 zdG(BUmfmt-NiOtWXXy$0H!WPW19+hKmf%APyMZo@f7=5eZ9e4St7Fg){oZxZ#=Fk% zv(2_UaDfAQ)UQ8i(Qi(;b)!wc;p1n9{bU2J11$d-_~yPtJ8$|<4E+r|<9)djdV&r( z&Z2F_EcmR6D2lx%_jrY(8&z+0@^5kDvZ?^GJj}rXexPo>A5A6jX#v|&{ z4)h1w0lPt8@L#oM%7XKz-)Hw9>QMp@aUJ~+y}WeL6ZI&)_29>N23=T*euN(Id(eCB z2fa}uet;hO0C(}}2P}MRHLa(u@jUdBhpy50dDV{pZ}-`7^uX6&i(wpt?;GzQ_PUmN z!8d-kEW2j-q}ym8(ZYisc!oX~44Zb)?YC^Q>Ci6FgAU^n_2^&JL!T$t4_&%p(-Srx zJ#3T-X_O=dT?!<<{Hoj$!68zqJ z@Zo(}>811bSJ?Q6JTI=d-un!CZwR>6Hu8xBB9RS0Cils7IW~v$up_d+QP~ZFeH>T|0a6`YFKTf?msNs`G zfA;*@pFJ9T9Y zHBWANDE6N9ylvGyb=uFKj(up=<30GkdUi>E#bw)k^6(yfc!pk(*LTHXqc{HSnb>wq z&bBSDO`HG1v$3Ox9o+Bq{eEiei*`XiaKMk}$JY#gd&8rT$KuB>eW~w;cVjPY{90Vw zv^BQbs-JiD<=emf@VOZ9zz01aTvK<-7iX5_LhnA7o}hox!bLlP2YPP_K9sN<=)(9{ z)cmsj;VYi9?T>zM*tYEJYn$G+?G9YvpgpMn=M%Ymo__IFoBo0GF8Td&`@L-2_p2?b z=9iV{V(4$!8Tyqgp(p5o1ATx8zXBcl1@!Ip%ijL=5pTrMkLcfrUwY#D-Hv(P*4O5< z`~`Ub?eRz8KtAjN`+yJShSUi)d&Wz0P>=R`akg9Xz4cyv@T33Wm->tE{_DyuetBre z{x2zeEV%F`yWe0x*cJNu%5-jYand_BAKqVR`4h^E`~2hL^q+rWj|Ysu%hs*@_Ww3L zAA^6xZou)D;A=}>*Ec=+MZ2Fs=d};?M+y6Y9`=J=@S}tsi?dRn6mswRBBC%{fBy#zym(?LFuJ~o~TFZtp`8GGw8xf^dt0u z--F(3Kj@7TaRBtt2e^ZlWllZ$+|s-^?}~She68OHw!a_$!k=IM*Y7@vVH|_+-w%!W z^gd&}F;t-JJ(@$J5Lg6=?l{9QH;lUDb-QRNBi*XEny$jhvDEoN-v%F8Fbzf_V?EB>~olWZ$0`Q;{YY(W4^$1Sc(2ddmzVK zg5O&YKD-Yry>#CG3LF2B=f(Bbd!Ip%d;rhYmcT^`{yVI3fal&SKd|yo!xZ1j&&P4710VSf=vH$=8 literal 0 HcmV?d00001 From a42cb18622242e4594771ff229b6abce8c635867 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Wed, 18 Dec 2024 20:42:29 -0500 Subject: [PATCH 48/84] apirest --- src/comparative_analysis/__init__.py | 4 +- src/comparative_analysis/apiRest/post.py | 92 ++++++------- .../models/K-MeansV1/K-Means.py | 127 ++++-------------- .../models/K-MeansV1/encoder.pkl | Bin 0 -> 266 bytes .../models/K-MeansV1/kmeans_model.joblib | Bin 30079 -> 0 bytes .../models/K-MeansV1/kmeans_model.pkl | Bin 0 -> 23484 bytes .../models/K-MeansV1/scaler.joblib | Bin 36455 -> 0 bytes .../models/K-MeansV1/scaler.pkl | Bin 0 -> 44728 bytes 8 files changed, 69 insertions(+), 154 deletions(-) create mode 100644 src/comparative_analysis/models/K-MeansV1/encoder.pkl delete mode 100644 src/comparative_analysis/models/K-MeansV1/kmeans_model.joblib create mode 100644 src/comparative_analysis/models/K-MeansV1/kmeans_model.pkl delete mode 100644 src/comparative_analysis/models/K-MeansV1/scaler.joblib create mode 100644 src/comparative_analysis/models/K-MeansV1/scaler.pkl diff --git a/src/comparative_analysis/__init__.py b/src/comparative_analysis/__init__.py index 13dcd6edb..25bbf13f8 100644 --- a/src/comparative_analysis/__init__.py +++ b/src/comparative_analysis/__init__.py @@ -1,6 +1,6 @@ from flask import Flask from apiRest.get import test, get_product_by_id -from apiRest.post import get_products_by_parameters, classify_new_element_KMeansV1 +from apiRest.post import get_products_by_parameters, predictKMeansV1 # Crear la instancia de Flask app = Flask(__name__) @@ -11,7 +11,7 @@ # Registrar las rutas POST app.add_url_rule('/api/products', view_func=get_products_by_parameters, methods=['POST']) -app.add_url_rule('/api/classify/KMeansV1', view_func=classify_new_element_KMeansV1, methods=['POST']) +app.add_url_rule('/predict/KMeansV1', view_func=predictKMeansV1, methods=['POST']) # Ejecutar la aplicación if __name__ == '__main__': diff --git a/src/comparative_analysis/apiRest/post.py b/src/comparative_analysis/apiRest/post.py index f5abe5315..52ac46681 100644 --- a/src/comparative_analysis/apiRest/post.py +++ b/src/comparative_analysis/apiRest/post.py @@ -1,7 +1,12 @@ from flask import jsonify, request import pandas as pd import re -from joblib import load +import pickle + +# Cargar el encoder, scaler y modelo KMeans guardados +encoder = pickle.load(open('src\comparative_analysis\models\K-MeansV1\encoder.pkl', 'rb')) +scaler = pickle.load(open('src\comparative_analysis\models\K-MeansV1\scaler.pkl', 'rb')) +kmeans = pickle.load(open('src\comparative_analysis\models\K-MeansV1\kmeans_model.pkl', 'rb')) # Ruta POST para buscar productos por diferentes parámetros def get_products_by_parameters(): @@ -29,70 +34,51 @@ def get_products_by_parameters(): except Exception as e: return jsonify({"error": str(e)}), 500 -# Ruta POST para clasificar un nuevo elemento -def classify_new_element_KMeansV1(): - """ - Endpoint POST para clasificar un nuevo elemento y devolver productos similares en el mismo cluster. - - Request JSON: - { - "nuevo_elemento": { ... }, # Diccionario con las características del nuevo producto - } - - Response JSON: - { - "cluster": int, - "productos_similares": [ ... ] # Lista de productos similares en el mismo cluster - } - """ - try: - # Obtener el nuevo elemento del cuerpo de la solicitud - nuevo_elemento = request.json.get('nuevo_elemento') - if not nuevo_elemento: - return jsonify({"error": "Se requiere el nuevo elemento en el cuerpo de la solicitud"}), 400 +def preprocess_data(new_data): + # Cargar el dataset original para obtener las columnas dummy + df_original = pd.read_excel('src/comparative_analysis/database/Adidas_etiquetado.xlsx') + df_dummies_original = pd.get_dummies(df_original, dummy_na=True) - # Cargar el archivo del dataset - file_path = 'src/comparative_analysis/database/Adidas_etiquetado.xlsx' - df = pd.read_excel(file_path) + # Convertir los datos nuevos en un DataFrame + df_new = pd.DataFrame([new_data]) - # Verificar si el DataFrame tiene la columna 'cluster' - if 'cluster' not in df.columns: - return jsonify({"error": "El dataset no contiene la columna 'cluster'. Verifica si el modelo fue entrenado correctamente."}), 500 + # Convertir las columnas categóricas del nuevo producto en variables dummy + df_dummies_new = pd.get_dummies(df_new, dummy_na=True) - # Cargar el modelo y el escalador - modelo_path = 'src/comparative_analysis/models/K-MeansV1/kmeans_model.joblib' - scaler_path = 'src/comparative_analysis/models/K-MeansV1/scaler.joblib' - kmeans = load(modelo_path) - scaler = load(scaler_path) + # Alinear las columnas del nuevo producto con las del dataset original + df_dummies_new = df_dummies_new.reindex(columns=df_dummies_original.columns, fill_value=0) - # Obtener las columnas utilizadas en el entrenamiento - columnas_entrenamiento = [col for col in df.columns if col not in ['id', 'cluster']] + # Escalar los nuevos datos con el scaler previamente entrenado + X_scaled_new = scaler.transform(df_dummies_new) - # Preprocesar el nuevo elemento - nuevo_df = pd.DataFrame([nuevo_elemento], columns=columnas_entrenamiento).fillna(0) + return X_scaled_new - # Convertir variables categóricas en dummies para que coincidan con el entrenamiento - nuevo_df = pd.get_dummies(nuevo_df) - df_dummies = pd.get_dummies(df[columnas_entrenamiento]) - # Asegurar que las columnas del nuevo elemento coincidan con las del dataset original - nuevo_df = nuevo_df.reindex(columns=df_dummies.columns, fill_value=0) +def predictKMeansV1(): + try: + new_data = request.json # Obtener datos del producto del cuerpo de la solicitud + if not new_data: + return jsonify({"error": "No se enviaron datos para predecir el cluster"}), 400 + + # Preprocesar los datos del nuevo producto + X_scaled_new = preprocess_data(new_data) - # Escalar las características del nuevo elemento - nuevo_elemento_escalado = scaler.transform(nuevo_df) + # Asignar el producto a un cluster + cluster_label = kmeans.predict(X_scaled_new)[0] - # Predecir el cluster del nuevo elemento - cluster_predicho = kmeans.predict(nuevo_elemento_escalado)[0] + # Obtener los productos originales + df_original = pd.read_excel('src/comparative_analysis/database/Adidas_etiquetado.xlsx') - # Filtrar productos en el mismo cluster - productos_similares = df[df['cluster'] == cluster_predicho].to_dict(orient='records') + # Agregar los clusters asignados a cada producto + df_original['cluster'] = kmeans.predict(scaler.transform(pd.get_dummies(df_original, dummy_na=True))) - # Devolver el cluster y los productos similares - return jsonify({ - "cluster": int(cluster_predicho), - "productos_similares": productos_similares - }) + # Filtrar los productos que pertenecen al mismo cluster + products_in_cluster = df_original[df_original['cluster'] == cluster_label] + + # Convertir a JSON y devolver los productos + products_info = products_in_cluster.to_dict(orient='records') + return jsonify(products_info) except Exception as e: return jsonify({"error": str(e)}), 500 \ No newline at end of file diff --git a/src/comparative_analysis/models/K-MeansV1/K-Means.py b/src/comparative_analysis/models/K-MeansV1/K-Means.py index cfc2ecf1d..ff216e785 100644 --- a/src/comparative_analysis/models/K-MeansV1/K-Means.py +++ b/src/comparative_analysis/models/K-MeansV1/K-Means.py @@ -1,114 +1,43 @@ import pandas as pd +from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.cluster import KMeans -from sklearn.metrics import silhouette_score, davies_bouldin_score -from sklearn.preprocessing import StandardScaler -import matplotlib.pyplot as plt -from joblib import dump +import pickle -# ** Carga y limpieza de datos ** -ruta_excel = r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx" +# Cargar los datos desde el archivo Excel +df = pd.read_excel(r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx") -# Crear el DataFrame -df = pd.read_excel(ruta_excel, header=0) - -# Procesamiento de columnas numéricas -num_cols = { - 'Weight': '(\d+\.?\d*)', - 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' -} -for col, pattern in num_cols.items(): - df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') - df[col] = pd.to_numeric(df[col], errors='coerce') - -# Procesar precios -price_cols = ['regularPrice', 'undiscounted_price'] -for col in price_cols: - df[col] = df[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) - df[col] = df[col].str.replace(r'\.', '', regex=True).str.replace(',', '.') - df[col] = pd.to_numeric(df[col], errors='coerce') - -# Eliminar columnas innecesarias -cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] +# Eliminar columnas no relevantes +cols_to_drop = ['details', 'description', 'category', 'characteristics', 'Width', 'Pronation_Type'] df = df.drop(columns=cols_to_drop, errors='ignore') -# ** Clustering y evaluación ** -ids = df['id'] -X = df.drop(columns=['id'], errors='ignore').fillna(0) +id_column = df['id'] # Guardar la columna 'id' +df = df.drop(columns=['id'], errors='ignore') # Eliminar temporalmente la columna 'id' -# Codificar variables categóricas -df_dummies = pd.get_dummies(X, dummy_na=True).fillna(0) +# Crear el OneHotEncoder +encoder = OneHotEncoder(sparse_output=False, handle_unknown='ignore') -# Escalar los datos +# Convertir las columnas categóricas en variables dummy +categorical_columns = df.columns # Todas las columnas son categóricas +df_dummies = pd.get_dummies(df, columns=categorical_columns, dummy_na=True) + +# Normalizar los datos scaler = StandardScaler() X_scaled = scaler.fit_transform(df_dummies) -# Método del codo para determinar el número óptimo de clusters -def metodo_del_codo(X, k_range): - distortions = [] - for k in k_range: - kmeans = KMeans(n_clusters=k, random_state=42) - kmeans.fit(X) - distortions.append(kmeans.inertia_) - - plt.figure(figsize=(8, 5)) - plt.plot(k_range, distortions, 'bx-') - plt.xlabel('Número de clusters k') - plt.ylabel('Distorsión (Inercia)') - plt.title('Método del Codo para determinar k') - plt.show() - -# Mostrar el método del codo -print("\n** Método del Codo para determinar el número óptimo de clusters **") -metodo_del_codo(X_scaled, range(2, 11)) - -# Clustering con un número específico de clusters -k = 8 -kmeans = KMeans(n_clusters=k, random_state=42) -clusters = kmeans.fit_predict(X_scaled) - -# Agregar el cluster al DataFrame original -df['cluster'] = clusters - -# Evaluar calidad del clustering -sil_score = silhouette_score(X_scaled, clusters) -db_score = davies_bouldin_score(X_scaled, clusters) -print(f"\n** Evaluación del clustering **") -print(f"Silhouette Score: {sil_score}") -print(f"Davies-Bouldin Score: {db_score}") - -# ** Análisis de clusters ** -def analizar_cluster(df, cluster_num): - elementos_cluster = df[df['cluster'] == cluster_num] - print(f"\n=== Análisis del cluster {cluster_num} ===") - print(f"Total de elementos: {len(elementos_cluster)}") - - print(f"\nEstadísticas descriptivas principales:") - print(elementos_cluster.describe().loc[['mean', 'std', 'min', 'max']]) - - print(f"\nValores más frecuentes por columna categórica:") - cols_categoricas = elementos_cluster.select_dtypes(include=['object', 'category']).columns - for col in cols_categoricas: - print(f" - {col}: {elementos_cluster[col].mode().values[0]}") +# Entrenar el modelo KMeans con el número óptimo de clusters (5) +kmeans = KMeans(n_clusters=4, init='k-means++', random_state=42) +kmeans.fit(X_scaled) -# Analizar los clusters 2 y 3 -print("\n** Análisis de Clusters **") -analizar_cluster(df, cluster_num=2) -analizar_cluster(df, cluster_num=3) +# Obtener los clusters asignados +df['cluster'] = kmeans.labels_ -# Visualización de distribución de clusters -def graficar_distribucion_clusters(df): - plt.figure(figsize=(8, 5)) - df['cluster'].value_counts().sort_index().plot(kind='bar', color='skyblue', edgecolor='black') - plt.xlabel('Cluster') - plt.ylabel('Número de elementos') - plt.title('Distribución de elementos por cluster') - plt.xticks(rotation=0) - plt.show() +# Volver a añadir la columna 'id' con los clusters asignados +df['id'] = id_column -print("\n** Distribución de Clusters **") -graficar_distribucion_clusters(df) +# Guardar el encoder, scaler y modelo KMeans +pickle.dump(encoder, open('src\\comparative_analysis\\models\\K-MeansV1\\encoder.pkl', 'wb')) +pickle.dump(scaler, open('src\\comparative_analysis\\models\\K-MeansV1\\scaler.pkl', 'wb')) +pickle.dump(kmeans, open('src\\comparative_analysis\\models\\K-MeansV1\\kmeans_model.pkl', 'wb')) -# Guardar el modelo KMeans y el escalador -dump(kmeans, 'kmeans_model.joblib') -dump(scaler, 'scaler.joblib') -print("\nModelo KMeans y escalador guardados exitosamente.") \ No newline at end of file +# Si deseas guardar el dataframe con los clusters y el id: +df.to_excel('src\\comparative_analysis\\models\\K-MeansV1\\productos_con_clusters.xlsx', index=False) \ No newline at end of file diff --git a/src/comparative_analysis/models/K-MeansV1/encoder.pkl b/src/comparative_analysis/models/K-MeansV1/encoder.pkl new file mode 100644 index 0000000000000000000000000000000000000000..4031245263af1cf35dfa05b92ea4b3142a1e7b08 GIT binary patch literal 266 zcmYk1ze)r#5XLQb6@)u%tZlUk3UY5CSe=g$a@pB6+-4?D5_JnfOJO?4=heVj_>~_& zzCZ8X_s`Kma*_8lI7X8g5|f9V15U;QdK!SU%IX2(p32?9&@a9E&^Nu5Q|}5)!~q)A zxmu{PIXTW?sg_iWeo8--C4owhHKs-7WSq&B&25X3^`paK23v8D^nxnKVM5|YcLP(> zt*l}|J2E`gHfL$ZI=WZ;uXiiwBe+r-EV>BRQ``jvZdsnNfhuSA@1cEecLKGZ{>E&~ Iwbq^a1va8-DF6Tf literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/models/K-MeansV1/kmeans_model.joblib b/src/comparative_analysis/models/K-MeansV1/kmeans_model.joblib deleted file mode 100644 index e40f09ce46734fcdf885315adfe2deb8f82f3554..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 30079 zcmeI52Xs``)__wWp@b$K1*8c?s(}DfZV(hSf`S54LmDQK0x2L>5D9Gz0uw}}2Pu&n zLI*D`BoKO$0HJqOdWVpIhV1V${|U2r@9A1^{r}RnaL?XnpWV;C=iEEFGdx#Z2`7i= z|Cvfg_6Z5}jR>pd9}*oI6&O*=r%!00Z&;++LbiU&DBi#!hD1&((Ikb zlq)zaILd6w+o$I932(n`HsuNR{mLiUBE{UMhNHJDA)ee8U35LwzEne4{J`caw{Mc;A6OUzx|4^7@8+86FWF z6%=YVa_g&Bs45%o3YOAG4`w?{L46V82?=4e{w4>~Bee*;J&h)%NCAdpkw=_U&tlqY?Z( zk}{0n;Bl+V`^xdA?* zp}u`BA$>ht?Q;`!AYxS!6x9#G%Z~CT>3og_PJMTGi z&hwaoLkH$6{^`JWvp4DUekl`D@NANvTkxl@bqCL=yhZ<6=!`RObVNoYkCMqb^fAsn zaO^@~+~~KyDp+r;{zUZj+1=y7!us2E@2;1Jx-QM{#XS5%KXRB4-ni}AQoEct=m~#* z^I3fEGkVWm(^d_Cd%NC5=*QbWi7vJ%MMoa}AGpZrmmmDbch zGiYT_efaTk?a-=A&+RtyM*N5?_Nj0{(M$OqdY;trmvQU>y19Oq@N?x$#(E&0LwXdg z`K;Mao%+UKfFhU9fGQt$LI_M)1@1bue9=)Y8{$Rw|TW3yRG3x!$(eYdMG+L>#j+qw|{n6Z+ zGtO(sV}7R#HzywK^r8=82jkfDz2m8N`_}9?>H@#uhmZV0C%@3K$93FS`PMk58}iTx zRPzs=e1NNP=!jWyc^=!pes?X>ta;Jj59H9R#wG7S|D>>{dv(?idQ?8>_y?{+;sf2D z9L9kvpNhk$LgKH||0@3Dv50<|*UK9H1$nAn|) z%BSYb-ug$MDp#eeIQ;Af!2ex{Tp;s@$T|T3yWo7;H>>)P4_$?f+k^1i8@EUQyXR2{ z$PGDGKP97oYL0%P+QWVtI(`1eZGU}MlPWpZ3v~@Y5dGkrKW)0MF^~8l4>`;Sf7i}=i|Y~B1LVCW=TiC``y%uLsSosU z-og*$k#FV!nb+xD!+v*97WFz`xMW(#>CX)R$Q%5~;ktz1N1uj2UCvwNk^H{uyoEgWHTX^5(GMM* zdHBV73px=0m`B}EuPU8-QsGL9dw$vHk~ zL42I|d9!h!hI13=E$Um9gPlO;ao$27koX`6`+>&-vL^PNm&*%&;s<}rHQwDrD-`xZ z4sqnX#XJ?l&v`3TId7%Q{TKY;{6+l{Z^p3)JK2 zKJbHlQs?OByahjUf%JLw(tm*Pp%*)m4kvBmf{s1vc?-G35qZ#oYCfR@C!W1I{)@($#<>zYknTfCE)Nd-~xAvL3)+1?}lq=c)EEuF{(Z4(oU&#KpJ|NImq5SkTii7tBXL5IXA*f6zl5z~Ki6qL*=d5c!N#_u%UK$4>Ns!>`i883&r>zBjlERk@5q zM=tSzuAaA;XAd$DXpfKniaz+5r`iJ!pFODZArF2Pht534fsCs-bmoBrsTamMZ!xYy zO!%x4xFwFhTfGy5m4W^%H)3D_!AjxSS+?J}?m!39=UGQC%JVJG>G;RIdJR|q-oJFF zrs~5F>J5JUMIUijpKtZb7}W9ggD=h_#0UMwL`k0lO2AoY&Oz7V@^s`4<0~kA3*B?km)KVjkBe{H7jGD(5Za6DRzEuAaAe zzJ;D#ZtFe2{CSl|pQH}9i9hh+A2_g>?BBtWLtLOU5nt*xLgbJ~{G{&T zCw@HN!fyES8-DCT?)cF+s?LtxXI%HbY1p`I-%2aAyyEW>dA>#6GjCzMYwoL^&*ZqS z{ZZiS@tv1!G2~$n{$S5UdA@~R_=Vl{FY*VS=N!^5o;US~ zIohK^}K~X)+K)DSDtUdr^`- z;QuK^KJ(Rn!FZF6{&}lkx~tui^%|eI%fw}wnHqHfL=O86aMl|TI(-Fyh(8c}@E;tg z>V*&aK;(l{&*1$&xUu?T?kpp}*hzkf1N`U*hYuXcegIsRqvG)42XcY%^PCr)c|es8 z4unsI>UE59d-kYtfM10wAM)T+ap=rr{8jcdk9dItsRPDC<@pxlDnu{)X>j^H{LsPK z??4Bl9~^!l{xOdKtP|+)({F#P-`U}Cw@q5!2leg-HacURw}!Q9@_vd_y5^HqFsWf- zU0W~b2;?TqetFg*_fG9!Pu4dH4jt&^5LBq##7i324>vh)IpoRyKH*&D`-IG!|L5cH z9yVK{SCR7_bY1iy@2pE$)P?p3jr(X>#j?M@I91LukL3AQu&I}ylFjK ztsL%mP8&RD`NI=?Piswkeq1_uS+Yjn&_8|Votx(-U(npgJ#JHBg{~ERvi8@LH!`$_ zvL87m`>P2ek2sMx_C@Fg{wQ|B?=Rmc3@8*G)OcE)wp!v&Us2+9AIkIJ@ zhWy)Q`*bxIId0(0ud=$zoTR99<9jsJgGcP+23=Yl(d$Yauxq2(LEnVVdFxrlOt<%L z9n*${72I)S)O|x=gzWFg_Z-PL_5tzlSEY^`*0_=WsMi%k-uY9l!@IvWLEj|yP(SSd zkk>%+f?mE)$i9WR^L%TE=#7&+e=~Ju(#Xh58u8*jGV%5j`P3oT9pZx>K%Q^0PNBy& z>oB5s#AaiCI8@4xW9MgI)E-x2xk0Zk`CX{QkNA+ki=P$n88v^g-mcli4xJvJG2%vi zW8~ZzeBp4XJ?{+D$zyM+H}bq$$pdllU$n1kLhEzJJ_uP&DO}HL#g=Y zk7mu+QluVw$oC21KQ8u@59G}j`Pf4r!yovlcl<*S_EWc!_hM(a-MCj{JtGGQAMqrQ z)WaUoCev%Zn*kdXa+i*c9Hr{fbmcIxeloszs-5k=dc^UihI1bD)GX${Nq@FY+pmRQ)M&Oz`$SIqIA^PLqCkTJn5K;09UO_^-mR z<$F}bjdA?_d|m6t1uO2>!Kt6h5*OA{+c9JO)7<83g+foo?aF;yJ0tp=$n^<3PY9j+ zE677HP?Nq*AEwS2w+GqxF^-+!?5o&kVHbS`KGqAk3f2C{xayDEFNl}gPg$qb0qYLA z>^H!vHz0KSDs_e))-U$ZABih`%tIc0;6RnHx#Wv+b^T)}`62$q!&B;nx`7XQK+ap> zYP`uW<3RLe$^J*J3(sE`jlS|UU8BD-kGiK0p(76n9SD7d>{nHN*va(`f5`{ym-U<> z>jwGsC2-a5i^8wYBhT<-CvxoN8$00xvd_W(U^#Cwu0r&(uLGyg!%w|{)32d3kA1u9 z2YF*Y^N4Su9utaPO-MBE2f)X5V`{x#&g0i4Yv)?J2W*&|Zk)Hg^^H5fPdumhST$+Y z_1OLTuhL)1FLu1y?VBo7E5G<2Hgq8CopoMF&Rb4$-eP~sI%D3+exENMo_n2f-hz&Q z9lyRC+p=zg20hH<=8C~F`?Zq!t~GnF#1#FlEr0Hs|537*Dd#QjlaFz!G%ICfvd%pA z?c6Wm+`@Sce|etK;pps&`vSJ<^r^kCP5$(w2FEq^`-I_Q4}Grut*4`0ez;}Wi+<_@ zJ$J6ot2d?D5v_#yu~OoGA^zxV9$%zr>t)}={Jx^6-PvJ7-XFVGD|7kNH-`D|HS{FO z{F^eLx-TxzjYj5P^t(fg!$#hJljmFBA`iQ!)tY|(L94hN`~TH7dJc<9zoFHT>m<*& zu8TgtPe{HyOWvsKKZFl|=yTvD#7=PJP>Snma6FZpCd5ird<7K|Bv$1}{ zZjJgwKIaVR^g(d)Nqkt(esW%~JoKRJ{jB9ioujYE_m0CK4nCwU{r=#{M};@*#9JFfHy;v8K^F{vx-eL#j>^- z=PmRjhyFx;aG#`D>%sd!P2O(!gMIWx1Yw_>anYi~6Hpx!z(wb`Fag8(XT>eM3L>$vE@n`HaqbV;@Yt z42&B+wEEZ-Lk{033>P|n(5LZ(e6l}HmGu!T99mu+(zmZ4sO5MXx{7Rmh`t$AyDLU65ldNCvqro2` zeHOWna^7Ox;rRA-gXZnfuro9D=$(O2S811iIO3L&zQX9Qf1IBDX45-6wVqOc%s-WM zAz;Mbtww!gH*qib?x*+s3+~dEH0~R+qsGq$U%9JSw#QAKYdpWGFZ)ya0&ef@_LFYWMO7aR_g{R9*n6)lqLykTH-^H({#-3`t)9_=1)EE19 zhk4o8J12R*#d>0Wsr`q3QSQS;r_uiLI_nC3tY6}YACZz*`0yJX$n_1JeIhuJz68!X z0Dl#v|EYY$2fErX(5uo}*VF;)4mn>W?yK_7`?}E|ptIlLIzwNjU(#P#r|9K6!T2Xq z=cDXg7thOjza-FG+1Hhqy2q~Z_q$!~zdpgJ8{$QN=tJ;-Ao`)h$2job?nYC#CXF%T zK)lb2UDPA|*h?L8Ux9toBbgU7W4LphBCC!2Rm=xc&niwIgASz5*;lG{Nc~on{TSoq z134-rj_SJFsq8n^b%h-A55MXc@rNIXo!~&~w4>y2%a1|+4cc$lsFyz_zVLJX*mb+{ zYKKvWHSl|dPIRslmuTdb>jd+rN*|-oV!y9kAIUHLK=N=!?D$CR{88kwZn!SfZ|{AX z+I>omgZi;Ep81+AI%wR7Td;D#z2-k{(Z-JK8&kb`yw<;e^{y>9FV|eVjksDeet}jl zHtXH|iL#|V|IM|>OZ83SN07vQiNv$2%)20RYRbCeK0sZG+c_D3kgs?Df`@<6iBoBr zzhlF~ZZ5HN^ciwrmwLDm-~GE{-4AJRirgFGfBt$yA32trrcD(7Cqn1>7VDJ1-$Gyi z$+NF)a$m0{Ngjqs-ij)9vP}FdA$0PcPxkR=#h>BD7lpfxU9Jt1xYU>U21;Gw_v7k) zLpS+#(^iY#mThpe5kLRGXI0sSxqjq-=*CboH|d+(>kDE>$SR*_)%Np zp5ftecaZllnzPW0$hs>iIPoPuLHit9bD~Uu0|J=wQc2RPQTwTS$imU z@4GxJvrE<08u{PZ{PROsT23JvMj$#eW%@*W=O^y%Cp zkLwn3JJqmh@wvBt(*4BWH^mR~(IGan!tqM$wSx~PH9gjNwN}n^|E#ukTi5*i1ZQYaBEm0?*#6Nj^bk91qM(MSMZ?df4BH}mwq>ijhPbpKlzhCyJe+O~ND3l;5UrSX{h|XYByvyj8tdq+>yku38W2_v9_sDa@g1 z@l85@)f0PM#jlFemx}E09yDNMcOAbIm-TLc_o9#9T=?5aUpg%L>m>AMBcBAkRbi5T zQt0?mcHi8>vwWB6^d;&IySToAFO~RCl0Lyc0DD-MKSb_)ed3&@I{oE}an|EAsmEeMe;~M<;BN>dU+4>ybw>YzPF)diApMW)9rN}|{IK)B z`2UB{%Zq;Y1L$G@^@-F$C4r1rbNc4`%$j30^s(O9Z@||{)^8J;pDzA$y}B(p*NM{7 ze|{4?Id`ImK8k!`Yw5?tzk%e7b-VYol7nWtY|yE@d*c6j(SJbjeFE9fQ#WbCS4!eV zT|P?L`PHWK3ygXs-q>|e>W+LsM-ThYdEzhYq}0(o4j(74*9(e1);IHu3!OUU`oTV$ zIDpe<>Ff0Q+#(15yb}M1;%`~O(W^q@_?qyQ5qVsPiFdlhf%(*9rs#2$dH8|9?AwV0 z>jXQ&xlR?9I=d_JTz9+A-g^$Cjr^dWzQgrn?uL)n$0RP(SBsr#vX6$}MeM`wcGAbt zpCxq@DC@SY@KZ0yVgI^P^putT#AWIK-2Z@|e#`p_YabuCtNp4h>mKe9k$HBbV=Qsrnda9yomH z@4ul`w5@FkCHf(w^u>F z9|9kBqvnmef{(nw&-V$*Bl+d~gz7w=FG1(;B*-gr@CQ2iW*$%ra5(hLKW~or*GGFa0tPA9+^}_RJ==ee3#1Ha_z3AtC8Sp~~A`ki4 z162926FN|(GoSSgpFPNWzz*sje&Uz6^Gx&P_wsMXZs3rF1*s?QR5aEr_8^z{Wgt&| zKVh?~5u2-MxBhuQp`25R6Og~(0tXUjaC`5|Q2F4eZoyT^bpg6PIgA5UJ{5;gh18Qu z|Est?{VJVx$~pj|pX&vmPlpT$Qfk@UtJ_dItSp zg~$amPkmno^uG!@Z>jo_3tfeb+k^1i8@EUQyXR2{$mM+*_Vh#Ny$#^>d2kg{*D4+T zD%~EAo%ZB$-DtAp$;@wu9M{zM!7my+V$P>&m-NxjGy2?HwApxH26EAB@4Ur0>mB>? zpLN6fXPkNe>3Qotx9u^tTUYR6{rq#@%6^YOaRqW+BL39Ff9rkl_WB%lVmEa|T~jyI z6@2t*`2XAIExu2PeL(!f57yV;ecmFz>^uLi^Ooud{`_A*Z}EOY{8J(M`scir{ktH< zhq%yJSf@ahk9vm=gihTupY;r%JxD*p4(c9$`UUUHz-}P@1Agp5?%@_Q>UFuC%Q%mz z=dCecj3}JG?9W%epAh-~ybnIRj)*gH`RBa#ztvq}6*}9DLAUbq*>)T{W7glC zvz2S_Gcr_tR(`7t#;uurCbv&+_ zMWFRRQ=Z_kzzEAvi~5*bHFqg@&g+-J9hM*EeE!p?K4$OSrouk*v#LIpA32Q-4iB^Z Q7-!vDp0(EFvVao_gx$m-B8eLypg?Zgge4F`hD8xBHzATh7RcfxN*qAh^eO}{ z@`fkK8WzO`5!|RBWnV-BM8X=jVHH6|l*jfioc@06HFb-!#P_D^IaM<~-KY2N)93uh zc!!5f{;*Hbwf}hU$Q+!K=*dWnPDshl%u39Nb`MTX^rU6_yk%m$T>C$hd=HH9<@xG* z%cr@8Dbp7l;tfeoOV09n%MEUDO`u*qpSNtPC&!)a*W&9^KiFF;D?P>6-m3oC!IM#K z8+gm4xs61KCp#dwsaWcdjXddnoF56N}s_{Mt6 zc~SubT5#P0LOlk{j(# zNY6-&PR&lqO7>)Acyj&WWF~l0JQ==8el^#4{BS^4?vTW*lv|!_>Kiw9jPEI5-Plsz z;Fi9)xVTPN{QtT3Ke0hszWBCf`<=RQ`ThFUE#GKApEuMk@x%su%e#MbGAYcDrn$3{ zG7>!l{D~^#4U??76B5(>xyf|1ml+8QBS0eixFedPCC&7+)v(Q!>ie zHaOmAJPM8t@kcn?mlQd!jq9nPps(7zwY+oX`F6{=1JyQ^`rMv8rgl!{Mqk;`KZ(9_ z$Hp3;IO`Wf8@@QL)|d92cdDmUKCr}rrEl+=+ik{jN3KqVm75bnKeU1H58l+TaDL;J z4j*=a@P~*#>_wcOVfjK#9#CPsRR819Z0;?2|97%2lPPw#d`k@Q$HSFZirM@mY_}EUTub~5x#~$^@ zfAYjSa$_>~G<)=p)z1Ed4nz(dzpzK0F35hTKVthF%?o|6f(tqFi+%JU4^BTUJTP)_O#a+m*vS6)^KIHJT(uqUwH(Iy#x;(up^9p{C^bc{M4}Ud84oKeM3nWi{ z@ee-q0HMPNJ?Q83D(OjEocdhZ_R!|p`CmKnWlhdpRK949O`XXve%%P-AAIP+AN0{r z@KF!=cYd*8*ZAf|Hua;fsjHhe`Q-36$6w^=6ZDN$eTW|HzwZufRxv!c7_}PS&vxtQgvT;oMqBoc)uxZG;JO+OPSdNf4t<+UA>I=-;+ zy1ePU;6D(5&`aL1i#(8h48Ml(&7YdTpqKX>`*OLDE44ea+3_pm<9c0}%)Z^3C(Hr* zggm1cKftYXw>>^|)whm5=s@K4{2*TR5hrr&Kj_3k9f*T`;V<&f^xyYx|L%oO-Jk=} zhkpD4YCimg4%Bqy*}w1wg4>>M|M&1C`|aZ0mDX%|^sGhSu+NdBE|XFdnpgXx*vU71 zoD=x7Q|7s@59{!I4}S5FCu{Gu*=N|JZspC~x5yWec>_Os$tUz*MvVJmf5|atU$v@} zvEqK~2a7pzVL|Lm?OrN&_BC?74xh>2+UvLZhF#XNKOuNuw{Mnhaq>YN@WV%+K&OwO zkIwEiYx=Z97Wy^R{lz-<2G=le#M_h0{#W38K%ekdts_nrI{qV1KEcc7CM-#Ne6vj- zK-YZGi3?mq@&Y}O9@c@HPvh`uNZvL5kK%f+qfh%qz3ERN{5P7T@KJB#!H$OTYdUhQ z2ZEYU*DKI`!JgKu=^BThc>?}>A$ozx50iZWezRbK`YzOZ@k2w+r*Zf-{YLoBmZJ~Q zo3gX<+C9&&yKY`+zqpq}XP$#=NMCC@_BA~aj-P?_g}$0oepztwb?+S5xg_@!md<*h4S&z*!Ib@~eLpbZG3{L!lEldDC*#1v=+6`viO1fAk}#A#yi1@DVRKki3CwsL#93bKm=BYlkz=Tp6}--n!jC)o`)z zR?0i&r|LcOl6sG%{$=F-5IOv>EANuTks{xV@M(w~`;&T82l&Z5c9CNpyX5(CdA~#t zbn-+T_=!IFSceYO{O}Pc^4P^c(~LWBJbzq@4&e& zcY1R6INv?+>Gw$JK;+2>^~QhltNr0!jXa@`IFW-6ANHsd=N0{&K4s4nvH#d=BS+lW zM-TGsL;Cz3^&UySv*cZZdZUN9c~8JDkb3}j=pW+1KjH==j~w>M8|%n}BhNl0kMN-f zz0ipRI`5I-yhmb(_Ymq#ez6Z9I1oDifuje1&__SP$G(N1_eki}HPCw`eS$xHpOY8# zU>`d9!4Ks1dnD`ZFRh1n22I!c$xmeJvlSO~4RY}wiGJ+k|9SNuN#5vJM@B{G&KHeiA z9h$TKKz^8W@8jJHe%?Fi6Y`8+{08T}3miS*$m{vRK0qIFA;e-j6Dh3^*Xhrih8 zJ`X>7S;rm_f2afe*u_ueS=V&*uz%qLA`j#}^0S=eO=o%?x9J=9IegTmQJc@!RsSf& zsULit6Z9u_)%9T={@2xeBz{u28@)%uPaeo8^k0AHdn9taM}kua@D*;Q)Z{_ z4|8SYEZwo{@EtDbyhrYqcV_719UMqp_zxY(xzD=R108;#=F>QQTAsYKej}*m$x92# z5AyUgI8f7>1N0|z1%AHIz_Aa6PQB4X{2C$$9e;El;6pzU{ovFKT+bKuUUnxFT`As5RYYno8iImfWWKWD@r^brqs z(96DN9lQEHlKipn(GNrqdig%!9>IR&K8Qa39!Z|L$Kk(zk3^nx7`^agH$vVcx!14q zbl$qX-EoWguHPf^UqkXnez1cd2>OY zKJEqV6YSwXeCS7?hR6Zor>^KBf8fk%>>;ml_&Mj%j~~bZv4bAu+dbN-_Cx0{TF3#( z8#s`2RDU;Y={xm}o~sTy_aE}ed4N6qWS#uu7m)iEa>N0I4?p445PtS2_UM23xu0Pd zIo83o|LB1ZKmGx=JbexwsQJN(6Fb<|_IL+IAN=qEkq1I2esJ_?f6>djhWLvfAa$Vr z(1FBDouE@6{D2;)zgXv9h8%vgjvf5RKI`zau5tL#0}c!nC+omKc3G!R&_~?K5d5@%i)HTq1Bz=NDzR!shJ;VcD z_apMwfS_%c6UsUFM(D(+_1x$^Qp^8u{e2{HYWu`-v;ID^g}h_(u7o|H&KLav#2@&n z3;rVyWM0FsA$+_?a^HuKcPnt-z33C&pZEbk?_J;;BF}py>%@yb;$)ru2c0;WkHkT~ z@E3XR^YB9lq7VJ}1Jr!@2_2~E$g_Xp3k1KZ+je@7&X=wK>%WiO9&tK$NlZ0opHsJT zPfzzvYExka`2sShh>JXsPw0RBedNvg`^eQFUg?_neVB{=Nq)&YIFNk-u3@11X+Di> zdm7jL;Pegn&4PjKYdUj){siL3jpitP>~G@1j)w4SI&!QBf|^g)E6{wwp4O}B8i$|z z1^DlU=mjFrdnEYHg1j$jd+3L*A?tx4{DIa3(QmdKeSluxSpwOI&ifoV^Bi15`dZVm zujzqs{0yXz_ekAm*x{cuB9A`JkA3zv@gk?+Bhf>@zz0MRdISA^fck4YUTV4eR(}Uq`Oh zt^?V%!n;{5_ZZk@f#KWtZly;SxDu=uF-CvW)&>q2KTZ}I{xu0k-vqIDDg5(AD=PK3 zsa<_O=@V&{zLt5t0D)R|`dKPvqFM9;l*488diMxSqv@vpDMbx!=4G0X6M zDsle&tvjW+U1mK}^1ed&J4)P%vyA@4eMavSQ;psb@qgzILw{qdfy>0- zO;Yy?u}1$)$!|Bw-!o#jXA85QD)F|FI^l2W)22SlC9jR!8~);3O@FNwe8^A3M*)`K#z_{!gQCqV(UqnFe1canm1o~=SuFi?zOu`6Zfk}!Uv6iA zR5o@>N#7q3y(cA(eA$2Xq|Wp;`4}nw^^|@Ze3!`^>w~A8_?SENZ6Dds7pI%Ncb7cm zNZ&<^|E)!SjpQd>>OXylck%Y2L#$NsyJ>^BE=`=3Y7y7m{z>)kKKPu~RqEVOB<|lj~NdH$6yIpGi-1d{0Y^(Tt+0RnfsxJoZiaL{N zrAoig6}i_JnYp(|=rO7f#|z(QvTwh9`DDv`R?e`e%r<%KEAjM^K21rvZ$^bt1MN>m zAN_r&%)@0O#~cfj^JSvUziE3-KYl8GL>;F{{Vv@5a`b_y$@YC$zWA<(on>L4ybcuq z@2W7dX0xACtm-mHn7eMN@6MKHK9NWIY*EDUueT1#vxt*@Jxu&xF0j?{*J}Q);b^O_ z%&%pW->hG7Y_VN(U6QTQ($AOGevXzrO_2HZ!KN`o;s(BI@5sA+sr0LZo&7?8 zd@6OH&VG^oHg$&S^Y0?e+#-&qupLgm; zKT>DrS*FYn{9H7}#CyN&$4K#$xEIBn{Z~u+W{Jd29m*9Q>h{YoX;zffZ?Wu;CuDxV zdTwoT=e|R&@lv-)sZXr*G4uS8=-nZ8=p*MHe(3&QEAzdh%sWvyHCWdmrsP(CUy8*?UQ+LDomoH;>3ZhyRfhQ)}pKf}7-7D?7g$vomIlO?}o&-s&7b+i!M*G;5mlA@{8l za&C~P6Wh!_KPUM_PwTfDl-%?ESgW+$t5!erOwTeM^X&%~n>qDP@61u1y*U>5B>Lu! zas6LD5}#?2zk8%V+Q~Wc`WZ71r+z*vG5*UT7WsYRZgYNg5I?F4Uu2EQB|Yv~YC-?2lB*LxJR#IgMT5UhxmU$K>3mzfQ`0q3^ax-##z)ziDpr zz<0uUxfdOjdSnS7-(Q>?E5povj&t%O`Ch`W-csMws*a(;_n72;yg=?t`LYj+WIoT8 zKE(e*(Tg3mXIGAI6XTXpBhT^B*9}B0Mds!{%v-K}jpHT8jl5?*h zFZ4O*(-^szFPHd!k$H#ROA;4&8R={0YrgouU;33fMBMBL>U&K3xvj);mz;xqZ*v|r zn^5+P=Wori@?Gym_W$gCJ5TyCPv-K|+s(ONAm63KB%f2{U4;A<%6)H|#MN2iEt2Y-QQjW3f{#-z9Gf{|V7UU-pvkgH3XeI4}EcvFnZFA8#IEUy*)_ zX?=7?!MJRzMD#}W3@U!I(L{Tu%-@r;@4oIEw{X|3L#_I<5AsF6iJZfoj+%SsHu3XK zu{-G9r|kn_gRH&pnDcT=-$!0aXfWLV={9pue*;ut3LFG1d~ zoc$&B9wd3&EO{qB@|-8%4V>=iVC_9M`5=Xi!iof6HF|Z?Hh{ zn+b3E6LsHAKmXG8TR;36x%eYJ=5HaVSN{y({?hsHm)}3qFMrkZ->;rGvnGFLZ(P-V z?c^<+oR*m3|6OXguYK$ApT>H|E21N N(T_zx?8}ai{%^)wB^v+$ literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/models/K-MeansV1/scaler.joblib b/src/comparative_analysis/models/K-MeansV1/scaler.joblib deleted file mode 100644 index 870ed9af2ae7d874903cca84d2009d796d0fbab5..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 36455 zcmcg#378bswFcZl5!{uC<${8YKj)r% z?z!hK)w6QfwP*D0Bme6jVl2*Ts>s)N2(3dDlA2*;^6j;4DYdBfbPsGPs`->EQY}d} ztBIcLdPZE_v!Z8s_g+gg#dKRvQ}aESb?+%3jADxZy=$`2(M9Fpg_>II6k1ze&1ptk zCg0Z6z5k*@BAZFn<~ws8U2PqiB#G|n9z2U58-!51<_oo>!zpG@qcf4rs)o_iy_@9f z>E46&AzIREq_!i%s)OBV7*QFJDY{q;U3S$|9Q{(9dTeJ;`a zC5bJiC5`@Cp8wHb-zCo7lF)aJ?@nb_EoSng^xanLyEp55T&nNctnW2^Mqh5N-rqu$ z?d-1)i1#Cg+2i%SsfGGJ&H6xUqXfH9-`CqteNf`^bM?W)rI7hrrafKM_lqAv0FyulOc~CYBlIEhu@zD0wE_*F zd_n0_+SOd=a&?6MwfNLZSk**E6Gc@aXHkT7n@p=IRUaBJRKmbw)vQ8pO#(afN`0L&Od%`GQAJkkQf4PX zA)DEHw?W-NdM7h9NK*yl>(Og}C@t^%YQWlBMa zf7|-MVS=2Ln@O}4P{RA^qGw_W=(I^N5seM5aUSw`0||8 zK6BieW>d7h^rn%Kp@fLcP*M}=HbiE%2|-0aAwE2!E!oVHj7k=>$!jYjx79f@Fqk4v zTK!NLZ;VjEBy!or6^1w@(OZM&b=A;EMS3)aE_P%`dqzi&8W%kWbs4V5#EY@5Q?#VtA`Wf+K z$~MMw>sb6iKdF^JOo*Qm@J`ERlqoc?rIiM~Q&mn>CKVEDwx~?Zc53t_if*XKGyzZOI=S!im` zR8l`jc8*U$2gykN>(YsRG>x+wo2M>lo;|rmYIAPpp#1MMMb?5>tV>EK?L9&M5+^G55L2%ub{m?`A-MG+*H z*DVgw+%bBfc{X_5&D2sE)u5%2ssxSJoQ$YG>pHkhE9Yepi=;D0V?j>!>A}Q7xOXdsNLi^T@v{sb?w&V~Ol^u%I0UXP|A+!7_ zYoy_JrI;&&`O5gnptjRCjn$%tR3^b@>*CI4Sr-QfsuG871ASHSY;1dg{>}KwLDFpk zGKKx`AaDCt@aUv$88$W34=Vs&60G_>RdDASN@@DmR|g{pkjk0<(%_a_ney1l`engW ziAB)VI7h-<9xOFiitMgvb474|!TH^l@x92hvpb72zpK-`;9AXL;HqA_2{vi3BCt*UAJjfZ(HV-KMXRT^RgQnWzhAxq}fZ*@7Amr$O@kZ3Q;g1^RQ-DaS~+#$v1-}=`*LmS7Uozk-Web4^jIuy z^}A$R2sT~_5M(Cbr6tYfTPj0a@ce> z_H1;GJFAhK2WpJ*RHdn|}T7&41%k8@IQc5gx(f@?pIID`S%eQmzWQa-4jBrcXTbbwl zNRAG_0%kg-KP8vrVXy5K%+qqZ2qoin%QJEck0Np9p3g=L#+rMp3^}2wOvX!yk@~g} z$FkE^eY@QA@Mw?vt(3vZeCj0`4*Xc0$G$9=Y60)8J(T5i<|X&vty8`+lkIKwg8qt3 zxC5E_l%B%3qSNNDnlK6?LHjaU-a1p0#e)8-jC+1gdza(25F0rM?oYyK9Ge$E4Ka~t z_u};^C~I%x4LL{nb@p!Uy(!blXgdF}eoM}AL0oytQI*ELCfd7{ITT~{w?m?jV@(yb z_3<-#^5d7_V6)=DJ2D@Mq_q8Be>Y^PJ7ArT{a(nx3nm|_zb}`#k-FH6qjC$SpO?1) z&AdD;ei0Ht?2w@UQtr(7^$J=6ejxMCifAd+d>A6zZl?aL5R=;!E<@-ag~TqKe5C%d zTmbtuY~iEpoZO~ST~n_9Yk5JS3J%iA=v+kSg?#k=iChQFI2Yc$OZsU@->T**JuQ*{E2Jg4 zkk#*JA;F#Vvd`s(qPd3JuC=w&?JY{k{$QS`l&U7HnQRxId1g3s)Bh+lJ_pN8Ew6te z(?dsPGo5M>@t@3dl@eHUXI`TGSvtIfp;gOg}_Nbw$yIDkd*&7iRMcvEt5AahKsf}=)psIUZE zr=)~Ykby@W#E7R?g%|{LFvApf7KW|kKB6eA{~;_m7AcsvD{1FUQHy*tz$hxC>xOY3 zbtSV}if(j~%h07%aVP_2b{?oknWTyY&CLr7g(6*o%@^qw2%Yo^5|*GDEUmHgq-fnC z4r7sL_l8LO+FXs|p4r6^mLYmW2F)IHuY!ZUyw;+0@}=Gy>%Jdt2&<_@oko%GNz+{n zPRGR8s_&cnz`i-0fhJVdh(I7i3}vLK5W>5)Zg&YrqUb$Y!Qzv)vFUyscP-zb7DuoU zKB);G*S-)W6lUU^!%<9hL73L5h-h>vceHhF7j9e%KH^9QZ0S8fN{o3!bqRZbII0pm zR-rBVt$97SB}*AwR;B%sv^biDbo5>eY7~3tvb6OODESzcJg+w;&*wNp1HZ74+9!rF z{*>zRhjD}q=<8z{uesOoTwQ$}W1rP)*fpj7Dlwd)=k_AB+sY#te)>+r(^-q{_J%mV zHw^89tWm5ZB{7n*tBwG;xF6sZH4Ip+w*BFNHA*8Qo@cu)SIDL`s^fh_^8*kePGIR( z$Db(a4)9tAU)Y;XbL2^C&X=m4$nvTlusn4H57;`!%T}*{2wr&4I5$GYs7kxU{cQ** zOo7dC#fi}j&fgq_Phe)=Tcfy!X${}bHj}ZLRx)OYF$~7vT7-d3)@Y}fR^>D}7iRg) zi)K_qjAgc{{J0eNdCS=$8pFqxf;O?ac258!G0NPP4T@2<>!`t;@ zBBPG03YC1j6gMU@KYzzld9$4SUN4x;aC|SZDmX+OFIpp`wO5Gd&-TqRTE&tcFcH_hhmLEBlJLQ{qtoVuzeb7XgMfqD0+W4Sb+m!Xt z5wUsDESeZ}QKgNl475z+#7vesvuc^;U}rJx_z2ii{v8-J4KbS$qT-t$!Id7&sfOP- ztPF7$^GD6zO|*0C{$wv?IE5s83u}44Fmy6 z_cU`C`vXLIc}^^1IR0Wf!a01cA#dcb0r|ri^Q5**EM}ajG$L57QfeTwj8Mkm0yJsz zO++HcNL6+*?G}`LKhFSB8%n{Au>m-MxxKEyh^JI-=4Nx7OYVG#4#sHM0gSx1)aA~G z&>8Bqs-aqF>xGWVJsU}fmpr|wLU~L>g z{8hQ=WSFSwxFQ(yoK!4fu6x1d+ zhGPBFnOLzS_HjG^MLW_Y>pGtGL7MmmW0a4ZZnN0eA{=vzSjk8YWut-{DOuW%rDOwr zbumMgAJuLsn(Q*U&YW|;6RQ}gK0>GH+~b?fe%Fq&^9><+X`?_%9eo(b%SigtF3a1? ze4{5%yL7?7I753RWwvg@)|%g9jTi5@#x4g_hPyhtu&{KDOgA2dwS_uDT*5-N|BO&b zu|e%7a#G_r!1>`x@ff-jM`LL`Yi0lAE2y%7 z&S^{ZFkI9Ivlp(pw7|sf5UoC3aa*iqQ2xn-uw_{UC~RsSfVw~37S}U!)UiX=$ffU_ z#SIJ|b%Uxh@M-*Gk@AjhQr@a8$SrvK9oQQge^%9Iq5g7MdJ>>lim`iy~NW zH?AGc&D{4U#*9i=Low|R6zdry>K0ac4C|Q7Y_FrMZf5AH&Cp7q-A;Q8Lq^@)^Flgf zn&ShQ(#c$fH&VoRSn|jSznIt1JiV!@p~bPUBsMV9l~GK%Iqf~oUg|symw5tTMzQWE z1SZ5axHU@m6EypN0y^3;MSYi*DpaRb&<_xHVT2TxsXs#*!EG zMw2PBnp^#p_aZ~17LO3OvxumTT$dxu-7>z@i%wh4SDqbV8~tX8I~X`Bo$>%93^{uI zdkhh^zV|>l^Z=S6zQ5xjrN-RJAW_%d!Zoo$oZD!3Ft ze!vh__<|oI_@qnRv!lA%#uGoR8p666Me7H;8kfl$Vk1M0i5N{jqn9pMiA~J>^&Mk2 z2Yv;&=*7J(CF%-Cgo-33Xv4vCF`vF$3i_nL5cjd@^LDs_!J;t?9fSJ*|Ad?t`-&T; z5b*%Z>Fnk9_~nGyQ#{DxjsFMnj-ZFpA|7JlQ6IVNh#Lj9-HredZHR|icGRLIQg(pD zJi>rg#mdsKbG65wOK16Z=+W(KSxnhXD(zsDIOQMm_N7l)&AHCi{( zuS(EK2mef`BVQ9wu&lP;mK7lANfs2f>FGCwbKc#;?8yi{n;D~hM7NYt)Yct*aiy`!;J>-i)4jVvzqYLMUnxl+(%moP`g0$rdH&o-ANq42llFX$6yX1Q zR@0va>E4b1o=ICzdVu*yPSOL@gVX!TKQ59!Abnu^AVyv2Kur&K|7i`zOb@**eFXn) zkpBFqMa=(Jx352P``>dDK0NExgO?6Ee1a57|Cc-PkH3DS^QeXq#g^t14&J-r-KX34 zo;qMv%q)dfCStFC{Q9F$jef>{Hs2@g=f+#tulaP)l`*rtz$&k_-mmf0U*O?eZ#|df z0UvmHhF*~OVB*L{{6Pic0KHF_Uj|IzUXK83*?&kuxrU5 zy!LQEm)b?cX%A!QqqZF2qJ3^Y;9qa|k4caIEsYcKyZi6P*wKscS$16PF`qoN!|dm~ ztoOjhxb*uA^c}F@oCp7_@j06h_0R)l*Kx5M|MJ+I7Tqe#?$^hDb6V|+e~i4{Y8T|e z&r0?JF8aYNzaP>b*aJAwf0ga$!1LM}&nRKX*%z_LyyTPT#W{c7aEg!{W6g&rcG)oM zhc>-C9wcIThJTsz(0;TV`X^!w&e?wI-=2BW#)Djx;17-~Xg~TD_QAN{VEYx?4Lr01 z{Rn*__w`k~zWLem`#t>!{S!W1lMni!EYX?oOYMf7;Ck?{3AGFO(U0!-Vf;e=m9dY~ z4gD4^`P`?sx82YOxZ8F=BRT%;r)@ptG&kfO>v>g-US6~EreD~85560I^v|`IPyDS# zS88|P`X|my2pf}nBeN4IcdFa;L`hyPr2ORV->YzHY`|#{7gWFS*=cRW)d+EH-emlVa zZX7?|j=c|)U#dsHLl2aYhkOIi(Pe4AHR&M7TcUlXdav9tIbOQp{#sMkZ`}CM!>bpb zy?I!v-i=eP9&%77V(xKJj=%EvZabCax%EZ8w=5?I^yTQh?|Y9gxP7;U^m|DUOX#lOO)Cd)FnZh+5E%v6pKDuvnwA;}Y$&=N9~Q z!V7nHCzx$cJVk3VT*y|V7ax;sZr{P_Vdp4Rix#j*E3z44CEztUsx z&RrQltZyRr)B3u&`rH=#8TBZeez`0bfB1^n^RfP!BR^gqJJWjpWx6K!tIgNOwp;ah z55ATm^FG_Y;3l6uynoK(!!z`Py!E%_=G^nib+HdDIXC|Gq1`_nczx^-tG<(ed)x!I zzGxTZ0|)$gZfPB|_~KcsV^7pS{oBjFxh?kgl783RQh#Ht*{VP4%g6t=;+*fsfCoP4 zdG(BUmfmt-NiOtWXXy$0H!WPW19+hKmf%APyMZo@f7=5eZ9e4St7Fg){oZxZ#=Fk% zv(2_UaDfAQ)UQ8i(Qi(;b)!wc;p1n9{bU2J11$d-_~yPtJ8$|<4E+r|<9)djdV&r( z&Z2F_EcmR6D2lx%_jrY(8&z+0@^5kDvZ?^GJj}rXexPo>A5A6jX#v|&{ z4)h1w0lPt8@L#oM%7XKz-)Hw9>QMp@aUJ~+y}WeL6ZI&)_29>N23=T*euN(Id(eCB z2fa}uet;hO0C(}}2P}MRHLa(u@jUdBhpy50dDV{pZ}-`7^uX6&i(wpt?;GzQ_PUmN z!8d-kEW2j-q}ym8(ZYisc!oX~44Zb)?YC^Q>Ci6FgAU^n_2^&JL!T$t4_&%p(-Srx zJ#3T-X_O=dT?!<<{Hoj$!68zqJ z@Zo(}>811bSJ?Q6JTI=d-un!CZwR>6Hu8xBB9RS0Cils7IW~v$up_d+QP~ZFeH>T|0a6`YFKTf?msNs`G zfA;*@pFJ9T9Y zHBWANDE6N9ylvGyb=uFKj(up=<30GkdUi>E#bw)k^6(yfc!pk(*LTHXqc{HSnb>wq z&bBSDO`HG1v$3Ox9o+Bq{eEiei*`XiaKMk}$JY#gd&8rT$KuB>eW~w;cVjPY{90Vw zv^BQbs-JiD<=emf@VOZ9zz01aTvK<-7iX5_LhnA7o}hox!bLlP2YPP_K9sN<=)(9{ z)cmsj;VYi9?T>zM*tYEJYn$G+?G9YvpgpMn=M%Ymo__IFoBo0GF8Td&`@L-2_p2?b z=9iV{V(4$!8Tyqgp(p5o1ATx8zXBcl1@!Ip%ijL=5pTrMkLcfrUwY#D-Hv(P*4O5< z`~`Ub?eRz8KtAjN`+yJShSUi)d&Wz0P>=R`akg9Xz4cyv@T33Wm->tE{_DyuetBre z{x2zeEV%F`yWe0x*cJNu%5-jYand_BAKqVR`4h^E`~2hL^q+rWj|Ysu%hs*@_Ww3L zAA^6xZou)D;A=}>*Ec=+MZ2Fs=d};?M+y6Y9`=J=@S}tsi?dRn6mswRBBC%{fBy#zym(?LFuJ~o~TFZtp`8GGw8xf^dt0u z--F(3Kj@7TaRBtt2e^ZlWllZ$+|s-^?}~She68OHw!a_$!k=IM*Y7@vVH|_+-w%!W z^gd&}F;t-JJ(@$J5Lg6=?l{9QH;lUDb-QRNBi*XEny$jhvDEoN-v%F8Fbzf_V?EB>~olWZ$0`Q;{YY(W4^$1Sc(2ddmzVK zg5O&YKD-Yry>#CG3LF2B=f(Bbd!Ip%d;rhYmcT^`{yVI3fal&SKd|yo!xZ1j&&P4710VSf=vH$=8 diff --git a/src/comparative_analysis/models/K-MeansV1/scaler.pkl b/src/comparative_analysis/models/K-MeansV1/scaler.pkl new file mode 100644 index 0000000000000000000000000000000000000000..e4a9bb6c7d2a356c85cab111fb480546ef8e8acc GIT binary patch literal 44728 zcmcIt3!EH9nNK1h3dVpTyhHN{2{0_XGqbb12sBHwB!Nvf>@Fceap;-p>`pR|rDrzD zhKGc&^4pfGGgc>MmeijD*4h-OFE}jHM2H( zpsJN}nvomGY6aaeZ!%A~%Dmj1Rr}bge04Zo)U}d%ZEatxQ>o_Y-+N`tBV*JauuRvg zqlTU?X+^z~&X>|=ZCYuxI5O6f&Xx_mr8rus<~766#?0FOX+zJJOO>iInynI(+TIqV zS^Fqs&OmN5&z*3!IeTKp{DRqU&N_GEf_0OwHi!4G?VYQRjpz(#QeUTe-L>}gM`{x< zGZ!vgc+TJHKkNU_RjX#^x{FBk{V&k-L&Mc{TcT4LBHrkxQoe3yf_3-9Y-hp)8*go8 zlLt7HR@cyq<%(yljqsf@u!y($Sj6K#7S#1HjK|x(4C5U>hOFxlhlKHXhZiAXNysM? ztzLN(Nsi8COIRFS1V1&)R9s(XIZ@w47a!v^la>%}H}17?JZY)ViL$P!Q_^SkWV_cT z@g%d5i%zx`WlFkca)q!|;d&-Jy;f@{!+2=2t|(G_(uZJqlnc=w!Z78J71kALrkHm= zfoMvRnGBB;S;~Z@5v4(D%ZZl4M(nhN0(P#dx3L=PS>LDSV&BD zx>n+PbrLg=CA$1!-{lYcE-UQ0w^^6G&1rR6HsT_%u4u+Ciyc?1i>U>K1WQeV-4dM-*QTF8GNK#l1zJ@% z@>(I?vt+QRe|}%TGBDVG{=&ItO%VZBGsv=`EGU=Cw9^kqfaG+gs1*uSSIm@A0f;h- z(K^AbCF?_$^fDDMrLr=n3~9yDH5#GKt&65*^14yg6skKELtm*^s`+AGFICGGg({%x zw)?92EZfjetWPOhE@X$b9O+fA3(VMQ1*J&xR+Q0_(%!1fP)O@Vno-cll)fyLRLY`) zM&e{iArHhzxscy>Uxmy~@@Dhdf|e_rwf2TMW=Hixp{!_*qz&U4`m#~oSVN+ch=YsH zH)|aY@vCZuZQm;~BsixLLsqukRm!c(XDNnGuFIxsXr;yFal!B&c8AGe&$vS2&RgX$cIlF8aWrgBV zHz>fX`s!-FVAkRhh*f=gK1Z(3<#Sp^S=2v&LC?7h=MS2-MDs`|)x#ov?Db=tNYP7n zlt{A#0XQi@x~>Ss(E-W8tj&_iUdXS^Yh;-wKwS|6$qu;;cJ7g}wE=v(`_cwWAv9Z| zCm@Z&MH-!yW>`>q<(Edj50)icJCz2MJ)T z3T1&_Z82-2rw7JL)nT1>BeQm-KzmTn4zrZXwllWzi!u#5>FOu}FPNLed?7+mA`-(a z0CIL;|Jwr+jhwbM+*|$5dJ6=t>M7%ZAM&3wvEJ8 zz(y51V^J!wvqI-FWN~^X5M5DpWAGSJKujqkwC2{7ODye(5|+jaRDI0r=^kw9pR?4g z9V!sRmuh3Eg+L~SO&-!sY0`MJtaXdIwb(sT`U{b{LrYD zWm}`t%T8$MI4Hk@DkFo+m1zNtv-fu^;0lQzrjZq95FqF^&$O~QE+tSbSMy~m=R%}(!#Gq*ciNRQxHcB(xx7}P z3SLt}SJTk}^*tDl1&@h@aaPQU^?{U=V6LEJy5U=%b?aeu+vPWG*$#5KITNR=cp0uqeL}@xS zYYmbaQ#i?!*!s_v=|PG9QL3KM!(vW46QGg-BIuX~?EE*3PGA?(wSzFX39ga$5 zD3z7yfr%DQpHUqy_vWkm)0@L`s3$C#MpZpqDi_K_+cwc7l$G#24v$<)WN0hbB%-7q zMmV`S&`zo+1+eHOz|o*Pm(MU0jWK6hJc4P@h35K(?Q}da%vx7~BcCLd`M*OWD7d<) zAcWoQEgZ=rDC%O(V2-IM?$$_;c>!rcz-0TkQxGOu2^gT`O!oFHveAQ_if)$mXNKTj zZIwEo>>I6Gr4Bh}6}>^Dszw-Lj-qo$cD!UC0c7*^_+Oym$`GCJ&>njX#}L*#+wrlx zO$N|xZ8SSfwa{UFpiHq*qN4>O+CQ4fu$pmN$mBc!xRJJ>@CoHCy~>W1fPbU}4D&}| zK7709!UDbx@B>vtuV#l==^4A!nC%f>kl`SXV{Llez+L`v4@I_UvzB=j4_(rm>m|?} zG_=*$rajY7lM%|7D!P%SS=~DJvgw+&seVXuu2oVU92f?|iIN$wh+Mwo8vwTacyeQa zoG_2E0n3;qwqq#Qe4gMCfvmT*6d&w-)f2BG7$Ten^>mqlcy#3<>QJFGlALa^M_)gt zmp5BWu6}6qvRP}b zPu&H#A0N+X3S}(#{25|4r_KqRv3K)Bf=ulVpC0sNQ*M2IgcQW8s%J$_`zt6pGyXJp zjFcJ!VTCSvH6%cIu|;Q`K@xnHCcU%}oi7G9nr=%N0W6C1RWTDx>Q_Y7yFdrMF>_NdAJw6hO$17E>k$}FS z3|S-|&K^*T&z?xKyfm*{rblZ_dz2N@A&Z+YSvu_r$`bmlF|#2!mI6Zfag{<%%4dBF zhvpIvN>)56DA53WA6K*<=IMTl=h%_nZZ-i;a#Ti_(~A@9UEWb4nEvWD#1G!*C1*Pc zi4ZT8XK9+XQ-eGQ%SMHEcg5b?X*ZD~hwP$$0!$9Cs)h#KRunxFI%QlT|t)x3u)9U$JK{pB~5*DZC2?svo5)|mV^aa zmvMVzU?~gi_jE-$>k8Llaji?Nqak9QjcM9tfz7L@00UEIVbe^VpjZQ^ z(5sQEK0@~%6uR=5v`E!8T34e+>tcG=wT2a#hn`>2hV=9x-8D_m(ei~c_R2BOs%WaX zJ#!0mItV_%Gtf_OG#Jo<-m%e=jXBdZIH;HM*7K%e&nhc*gDynS@s&=mat`rA5@+_n z?+^)2ITYAU99L@VX)34F>mhnO>k99ci{p7Uvee&qu3n;Nv~)XNQ*{10uUyO+^q}-{ zr*CP#KRT2c=`aG_3+QDv*#)2$$*J8dNey;;BR!B`Lsx{`mGjS~_c`M5>^>zy%Yfc4 zhRt+Pbrd=tQ(9VD=oOb_GSNvphjcEc5Whnt(-KjV^inB|Te3Aq3WSqmb3`sggI*<` zQrb?Tmk!f{V)R-BL$MMLR){1F%VHN!kt`WH!Swo+D1+s}&vfT;Rk&*o_=J+@Uf<$|LZ&F|Se3nBrl&5~rNR zwo@D+aZ;i9{8N?++$#__2A(3OB57aK)V_y8$R7~;L zL}ty{W8#!G>HR)SeAcxIWt82xj5&9_=p4IRD?gX$()vPsP|MqbEpV_$B zp%iGbNS8Z1arFm5I0?#wa}+!#(~&b>kz#&h#U9n^Q348ig06Q)LDMZxdX7fEp&OKR z)p!OAdxWE#A>JD7o)=#ZM7*?<&I3*wlyb7ibW zQlV;C^@m51bM~AXByB>=P|S` zH0WwV3h{ZP;jr=XjIqklPm02(qrMziuY&D+cN3G2UfnyNEFais^r^yP_IhffdNym9G{Ol*a9HKL8$25_QXtM^iZ2o)ijAIvLig(J zk1N^&lw-&DtuN9rl!TT@Ofe;GT2#6;){SwW-|Wg=nEV*4<@aFuT5LEySpmkJ$5OAuQ6zz}9L z$`#??>z*Z3J&a0BLgdrU5fOG4X;l*PO8@E2b!~c#R2X)cKV<0am6)^&?YA9Gr)GgN zp-)EG!O4}a6Gdy2$yvvUG4{GJPxosJ`8Di;i^9nBVK?0sX@H{j9zN#WdZM@54WP`` z=`f29o?{KbdM;H+OJt9Jbsp)ZPi-C&C~rJBt-~sv#;hZ(32A9e{Hc!imBSQB{0eZi ztwc=P1EeS5A&e^Y;{o|n3w>HYgMCcFzP+Yj1d!IiVHB*uvUhs^9hG&n%dDLd;pBke z6i4jqCiX#r{d$ak>`1!zh700us}av-;i$n(9Puy{PQnwe(xZzym@I_|VRLG8Hte^L zP^{-~v)0`#a!Ft13q%U1)0(3(K#%<$looM_*dYSM(l7A7qqYz6#RM5L2@>#NXf5v6P>R7;MstAxwNfvf}&*TST=MMns6$ zrlfZ+gz*n;qBc3koEruZXnNj5})Gu@F54VD~NRSt4N=#*xxV(*j0$1^nH%~ zxr_5Uj2$&PKbk^sJLsr^A1%-_@VvW@cnu@nka-edAAF9{Z7*JZ;89N852ZB;eULgp z-&pt4m+PUp5t*ePDs98keaweTcZ>K}g=Bd$I(sx+POsVXGS_-he6;GV4f#a@>9L-a zmtA}MZa773C{i*wMup<+SD&Qyi!9;GjzrC#z~@(x$ZIk*tz5ikg3hCR@^sKj@s_pj zc$KZ=R`zph3!5WM&hS`sHai;^^p`#_hwJYr$kVD*8%paUDKTzJvnIV+QXkppTCX3Z zCuNP$6oOBB$4I2*%{ZQ~6WkXk4ZfX^xB|AgyMKOfZ}))b1jDRdFN=+k^A7u!`YP}1 zMQi_MFXo-Mx}kMr4A<4@t**}B>cWfOge<+286r*C>5FSF-|jEH%Mfu1tZ9x7J7{SW zCJ$GV@}7OHOI0F@9MX}hCh1|HFD|Wf8Fpb1j#M9T2GQ~Go& z;CeWN3~}BKY>(X1YdUh?9NTx%OqvcFBIG}GY1EjuLA-ghan}ZM!{0|V?pjWf8>ksv z=h6q&&~%q4Um(XOWD6i*QTM`#S^Mm6VA=Vgfm^i^@3DzTW>SjM1 z=P7y2T6$cWgmI7_uLX7XZE{(eWY&jAG3y0T;D(G)R#^|3&fR^o!Lax|LSHM(xL6-T z9c<`BqXo^Nua~lV`na~1)?`;pS37+;6`bjk&9q5p;?kLm#^602jtT9S(>x_nF~_1{AKfuRf<0RJUkS?HQCbDA)RI7NN3}%9X97s z%GOer@{PB(6J?S*95+ss<+BOKS0-~D_6VoUX62NVWDPmx_O{5`NSRZlubeUqf4Nj0 zjIY#IY>CJzcSd^9@~@O~r1$A>e?;(2v_)CcN~=z6&Pop{ZacGv95*tnSev0#BWp{P`q!S7<+}E+NU0)M zx3z^zrLs0sslL{%)K;m;*s!)@IbZriF>*VntXwBsDb{8#mAS)O3o=}5R;p1)B1$T& zSdePe!PdUiza2~?IbY^MIc{Wr?u_(87mIeOt-6q}riIiDtQgVh@7vWTm(tFa5BpE< z(O=1{eX^9UXvGow7A;+&yO?Qn_+zzwD)g)U^qZwOnZpOwCgpv9IPWy!59duF!n5~% zW}^KE1I=sb@9)+2W`FsQDD5{qnf+b9;VHhq%10!Zc}On*{-g;L{C|v((Y)@g8>dc~ z@Wzuv`_J7kqki(cSG{z|m#;rPUwP#GCvLid!$DqK4#0sQ=%Me*@29ht(-ZZv^>pzu?;nSp zmpXLZzF*I^0r^1>did$Oa@pe$p7u z@0TMZjW6hV;(e1T5^v-2VvmdV03X-h!1u#LKj5Pe`9TMLcOCfYx$_to_44y|{bj>l zuYP#*b!T$sgT@5fso;OC!*-=H7tdA;DL zb_052AoR|<9;~9Su30{UJLpBaEN!;Uw%7@@xM-O{q-fkc{9C*`w#nr?YHl9dErO9b@RJTANF+P zK(vRy54&g7gZ}H^K3bXnDCYxxpr0QP^lu5oqaV&)pLQJXRF7S8|LU3Q4+4B_y!B38 z-RsOFPLOxucUNx6x!-|{zV{zJ&u~19Lw>YlGu7Mv_=8s*IP6!qsJ}X`naRR{Vvsr^T0KC+?hJ6taR zy3eTSBc5!0=nZ`#cSc?MnH``0->077^uqZgpNaVcdb@f7-}cJ}9!Jmv@<0#x5Ap(k z*V?^a`Q4iD3Vwt9*jHUU+IWx$tqW(*yLy99_&D&_N$mpszAM-Ye_p-!jXxc;;{Mm2 zb^c8uf4hF!`Hk}D^^H$*y2uAMJ@7NQAH)3vJ=UrFR;J(jPk-Ct*a>+8dS9=;Gu%CC z`O5bKeh}>qJHSuS&ni<7f8CLHt(xt;@Ww0e_&MLtw(oNW4M88sl~E_QKmNH~@e!`4 zNEiHV{09ZN^;}-SAx=OCafER)0#yjV=5!!GTF^n?-@@OS0KUEM?sUdo{eb`0htJW@ z`%nPSo_FDGdGF_b1-=M}ap;A<*oN!l@)P0xeGyLV2kij6`{@MXc5hzB-yMg)AqQIU ztCvRsXSeSDZTG=PY@we!F7ox$1w7Ut_6e~r0NlE|apR{CIe;(r#d;2K&9Y7`U2-BSfBT+{{2C$Gaw(}UHjN_KA@tGu;p3D z>p{ea{oJsH?>CUgpMS9*KPapN*eOUCd~HA8!}m*jU;G9?kFZaraE=6eu6=Ad#Xj@~ zyl58@9`PgQqk8o%=zt&k;ETRE?~dF1)GdPD+dBE3g{d8pe0><6vKtI0>e@@3ZJro>q^1QcIlO3b(wNf)=r<=>4 zrqfL4?DG68mmD@RqxKITzT&Ed*Qo37EH1kL-J8@mobjJceeN{#ovZl#FNR~qf8FvG zb*K9A{L#N$!`pLyv07d7$QL=@Pk(#cJ@0*RiHa8RxBbt<`}}q?>EzHCTfp}^^uTZ1 zL+@-kJ>PWf2fiXd=mC17 zT!07u(}EqKKj1*;89`pq#k|-;UeG}cKOjCZju!gDPZ)<@up7o@@rC) z$Pc+O4?d6|{4o!B%!_@%fe!j;WqM*Bt;iRC#ysK`_WR9|-(L8^H=p9`0dW7)-nvA4 zW-E_tjH3lU_`%;-=C(_7AZM|}L}+OL&fOFhKp zg?+&vbbyaO;^Fc3Cx3nIKWtawXW09g_aFP;%RlpV74(1yId3@k^;LI1=<$X? z@UJ-W13f?w@L~%*w6GiCWcXN*kPmR6gBIg}!}$7X%YSw9U7NUnHvICb89&}YXJbx& zoBYZrr;pz8H5Gn_eKB9Jg?xYm9moTEh$q0oAAs+^?Avm?$0z>hnk}3j#?b;_ z%pcGf^q?p3u>LR(J>UoE0eeAS;D34R*-Jk+|3U6IjH3lT8&gC2kf9M(I=5l0yR{F{gE((})9 zI^cs=j4zDC-{_0&QE-j3b|;FSdwlaUA@`aakX7%IH0@e)_5nn;#FHbAZp| zPJIG=(38a_*7a@9a|rO#PQJwc06N>8cmW(*(1BiGb)FAyaOw!GH`IfmH)-SM6PEWq z8aRj9;hYly?r&$`_rR{(9#E$U`vLZ0kuK_&?zO*q=$lvEt)i}c>$Pued-)6ZsHj_U zb_qU^U)Dljz@vrzWq9JeBB^hYUqJ`_&<8*C#d&cYdW-o3c<>AGuuo&1fS)Ko@PQ|` zz(Wgo)SH0EJo?Df;D>p!4|vRjzBrC~w4ehx=!-sD*bRNL75BR{XYBKG^=~iPXP4I1 zPQ8KC%TL6ncRn%UUUkd5176$k=ws@{%MXih`pHu&#@~JPCp$0v-J^Vd``X3Yyq`R& z{_EuRH$JiTVc!09poPjfi%K@0dd9eUt* zS?m`>k9_fm9PcqlUhoB;NJo_aa)%Da0T21mf*#=BcJ#$KS`i+7=m~uA75PCA&;vZ+ z&;nny1M~+R=!o)yF6PA+@`4Up_yO^OakN}tCoV7!y&wn1W$}gi=Qka(MBltk1s>$a zJmLZJgFog0k9n~VIM6{KtxQkMqm}W+Jp2Uv-MZ_qQ!m{96TTh*ciuA(TzUJ;ukyIY zI9lL?AN&pZVJFN3?}MjTmM*_`dw?J2frmcq1%B|;4#%&Ek7H*XJn8fU|Aos7`+`5{ z03UtC!;<4yJwI{78!G$^doRA>x*hMo{fr8Fz=NFMTi1H(@6U1hLhcDpz5@JnPW(U* z&;z{K0uL?h1~?f$)+6Kt9O$6MIN&h;x5tb3Kl$8?+&>R}?&{ynJn#i>*AKSl`d?6< zQQ>FU7jo5WAs^sC2l9X(;t6o@2jGX=SHJdeN4>1VfAH%g&p&?4-pB3Y@^U;OzyC>y zL(l<#*aP-~9B4P>PLA!n#N~r==qJ+I;qVv7Mf$++-oE;?H}}4wUh>=Urg(OD}t#`wMo1Jt0@19WKVJvtQ?Um`8pInQzb08X?EcZT+<>F7(?)apR6OVsO zMciPW0}p=Lxl{W>;%axl0vz@U$OFHM{=q!pSIxa>@bu$eSFz5(PxKq?g%g#sc;Ul;e@jK4n6f(m>8^`j4Xn>EFL~p<3%9uY4fujC_&@d7 z(&<0zeTl~(^Z-2Iu+A}#IKuefA3ovT7m9QthuDg6VjuA0c)k93;~@?}xAna20W18NHpqdEwM=?e}WnoCAEm>eMH|2R&I_VqHUD;JxSMOY9GzgLnZP zTF`-BA3Dzms3Wl6P!EFMq0_D&_P`j{lHz%s>tv5>E-XG`wR3z3w^;KE$k0Cu@&bpmejXmUIjnU13&b| zd2t+i!)}3j$+-vC3HXWf%lLvm@X!Jteih-+N1g^h;ER30V;=Oyam=Fy9l*)z64(uJ vVk_=<6DuFjKK9{T_UYx6bY%toA$g;eUa1?Ee3|~(#olc#sg_oAG}H2bFf_23 literal 0 HcmV?d00001 From 276089a0184ac25aae0a8e2462df903f806f48ed Mon Sep 17 00:00:00 2001 From: azacipa <52643112+azacipa@users.noreply.github.com> Date: Wed, 18 Dec 2024 20:58:05 -0500 Subject: [PATCH 49/84] =?UTF-8?q?Se=20cargan=20archivos=20correspondientes?= =?UTF-8?q?=20a=20los=20modelos=20generados=20con=20sus=20graficos=20de=20?= =?UTF-8?q?desempe=C3=B1o?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .ipynb_checkpoints/README-checkpoint.md | 10 + .spyproject/config/backups/codestyle.ini.bak | 8 + .spyproject/config/backups/encoding.ini.bak | 6 + .spyproject/config/backups/vcs.ini.bak | 7 + .spyproject/config/backups/workspace.ini.bak | 12 + .spyproject/config/codestyle.ini | 8 + .../defaults/defaults-codestyle-0.2.0.ini | 5 + .../defaults/defaults-encoding-0.2.0.ini | 3 + .../config/defaults/defaults-vcs-0.2.0.ini | 4 + .../defaults/defaults-workspace-0.2.0.ini | 6 + .spyproject/config/encoding.ini | 6 + .spyproject/config/vcs.ini | 7 + .spyproject/config/workspace.ini | 12 + .../project_charter-checkpoint.md | 76 ++ .../test_clusteval-checkpoint.ipynb | 102 +++ .../deploymentdoc-checkpoint.md | 22 + .../baseline_models-checkpoint.md | 96 +++ .../model_report-checkpoint.md | 81 +++ docs/modeling/model_report.md | 16 + scripts/data_acquisition/api_reader.py | 2 +- .../.ipynb_checkpoints/eda-checkpoint.ipynb | 688 ++++++++++++++++++ .../functions-checkpoint.py | 130 ++++ .../eda/.ipynb_checkpoints/main-checkpoint.py | 0 scripts/eda/eda.ipynb | 167 +++-- .../trainingText-checkpoint.py | 74 ++ scripts/training/trainingText.py | 13 +- .../.ipynb_checkpoints/main-checkpoint.py | 79 ++ .../preprocessing/main.py | 48 +- .../.ipynb_checkpoints/training-checkpoint.py | 97 +++ 29 files changed, 1735 insertions(+), 50 deletions(-) create mode 100644 .ipynb_checkpoints/README-checkpoint.md create mode 100644 .spyproject/config/backups/codestyle.ini.bak create mode 100644 .spyproject/config/backups/encoding.ini.bak create mode 100644 .spyproject/config/backups/vcs.ini.bak create mode 100644 .spyproject/config/backups/workspace.ini.bak create mode 100644 .spyproject/config/codestyle.ini create mode 100644 .spyproject/config/defaults/defaults-codestyle-0.2.0.ini create mode 100644 .spyproject/config/defaults/defaults-encoding-0.2.0.ini create mode 100644 .spyproject/config/defaults/defaults-vcs-0.2.0.ini create mode 100644 .spyproject/config/defaults/defaults-workspace-0.2.0.ini create mode 100644 .spyproject/config/encoding.ini create mode 100644 .spyproject/config/vcs.ini create mode 100644 .spyproject/config/workspace.ini create mode 100644 docs/business_understanding/.ipynb_checkpoints/project_charter-checkpoint.md create mode 100644 docs/business_understanding/.ipynb_checkpoints/test_clusteval-checkpoint.ipynb create mode 100644 docs/deployment/.ipynb_checkpoints/deploymentdoc-checkpoint.md create mode 100644 docs/modeling/.ipynb_checkpoints/baseline_models-checkpoint.md create mode 100644 docs/modeling/.ipynb_checkpoints/model_report-checkpoint.md create mode 100644 scripts/eda/.ipynb_checkpoints/eda-checkpoint.ipynb create mode 100644 scripts/eda/.ipynb_checkpoints/functions-checkpoint.py create mode 100644 scripts/eda/.ipynb_checkpoints/main-checkpoint.py create mode 100644 scripts/training/.ipynb_checkpoints/trainingText-checkpoint.py create mode 100644 src/comparative_analysis/preprocessing/.ipynb_checkpoints/main-checkpoint.py create mode 100644 src/comparative_analysis/training/.ipynb_checkpoints/training-checkpoint.py diff --git a/.ipynb_checkpoints/README-checkpoint.md b/.ipynb_checkpoints/README-checkpoint.md new file mode 100644 index 000000000..6634736a0 --- /dev/null +++ b/.ipynb_checkpoints/README-checkpoint.md @@ -0,0 +1,10 @@ +# Team Data Science Project Template + +Esta plantilla es una implementación de la plantilla de proyecto de Team Data Science Process que actualmente se utiliza en el "Programa de Formación en Machine Learning y Data Science" en la Universidad Nacional de Colombia. + +Esta plantilla proporciona las siguientes carpetas y archivos: + +* `src`: acá debe ir el código o implementación del proyecto en Python. +* `docs`: en esta carpeta se encuentran las plantillas de los documentos definidos en la metodología. +* `scripts`: esta carpeta debe contener los scripts/notebooks que se ejecutarán. +* `pyproject.toml`: archivo de definición del proyecto en Python. diff --git a/.spyproject/config/backups/codestyle.ini.bak b/.spyproject/config/backups/codestyle.ini.bak new file mode 100644 index 000000000..0f54b4c43 --- /dev/null +++ b/.spyproject/config/backups/codestyle.ini.bak @@ -0,0 +1,8 @@ +[codestyle] +indentation = True +edge_line = True +edge_line_columns = 79 + +[main] +version = 0.2.0 + diff --git a/.spyproject/config/backups/encoding.ini.bak b/.spyproject/config/backups/encoding.ini.bak new file mode 100644 index 000000000..a17acedd7 --- /dev/null +++ b/.spyproject/config/backups/encoding.ini.bak @@ -0,0 +1,6 @@ +[encoding] +text_encoding = utf-8 + +[main] +version = 0.2.0 + diff --git a/.spyproject/config/backups/vcs.ini.bak b/.spyproject/config/backups/vcs.ini.bak new file mode 100644 index 000000000..fd66eae01 --- /dev/null +++ b/.spyproject/config/backups/vcs.ini.bak @@ -0,0 +1,7 @@ +[vcs] +use_version_control = False +version_control_system = + +[main] +version = 0.2.0 + diff --git a/.spyproject/config/backups/workspace.ini.bak b/.spyproject/config/backups/workspace.ini.bak new file mode 100644 index 000000000..bad57ac82 --- /dev/null +++ b/.spyproject/config/backups/workspace.ini.bak @@ -0,0 +1,12 @@ +[workspace] +restore_data_on_startup = True +save_data_on_exit = True +save_history = True +save_non_project_files = False +project_type = 'empty-project-type' +recent_files = ['scripts\\eda\\functions.py', 'main.py', 'scripts\\data_acquisition\\api_reader.py', 'scripts\\training\\trainingText.py', 'src\\comparative_analysis\\models\\models.py'] + +[main] +version = 0.2.0 +recent_files = [] + diff --git a/.spyproject/config/codestyle.ini b/.spyproject/config/codestyle.ini new file mode 100644 index 000000000..0f54b4c43 --- /dev/null +++ b/.spyproject/config/codestyle.ini @@ -0,0 +1,8 @@ +[codestyle] +indentation = True +edge_line = True +edge_line_columns = 79 + +[main] +version = 0.2.0 + diff --git a/.spyproject/config/defaults/defaults-codestyle-0.2.0.ini b/.spyproject/config/defaults/defaults-codestyle-0.2.0.ini new file mode 100644 index 000000000..0b95e5cee --- /dev/null +++ b/.spyproject/config/defaults/defaults-codestyle-0.2.0.ini @@ -0,0 +1,5 @@ +[codestyle] +indentation = True +edge_line = True +edge_line_columns = 79 + diff --git a/.spyproject/config/defaults/defaults-encoding-0.2.0.ini b/.spyproject/config/defaults/defaults-encoding-0.2.0.ini new file mode 100644 index 000000000..0ce193c1e --- /dev/null +++ b/.spyproject/config/defaults/defaults-encoding-0.2.0.ini @@ -0,0 +1,3 @@ +[encoding] +text_encoding = utf-8 + diff --git a/.spyproject/config/defaults/defaults-vcs-0.2.0.ini b/.spyproject/config/defaults/defaults-vcs-0.2.0.ini new file mode 100644 index 000000000..ee2548333 --- /dev/null +++ b/.spyproject/config/defaults/defaults-vcs-0.2.0.ini @@ -0,0 +1,4 @@ +[vcs] +use_version_control = False +version_control_system = + diff --git a/.spyproject/config/defaults/defaults-workspace-0.2.0.ini b/.spyproject/config/defaults/defaults-workspace-0.2.0.ini new file mode 100644 index 000000000..2a73ab7ad --- /dev/null +++ b/.spyproject/config/defaults/defaults-workspace-0.2.0.ini @@ -0,0 +1,6 @@ +[workspace] +restore_data_on_startup = True +save_data_on_exit = True +save_history = True +save_non_project_files = False + diff --git a/.spyproject/config/encoding.ini b/.spyproject/config/encoding.ini new file mode 100644 index 000000000..a17acedd7 --- /dev/null +++ b/.spyproject/config/encoding.ini @@ -0,0 +1,6 @@ +[encoding] +text_encoding = utf-8 + +[main] +version = 0.2.0 + diff --git a/.spyproject/config/vcs.ini b/.spyproject/config/vcs.ini new file mode 100644 index 000000000..fd66eae01 --- /dev/null +++ b/.spyproject/config/vcs.ini @@ -0,0 +1,7 @@ +[vcs] +use_version_control = False +version_control_system = + +[main] +version = 0.2.0 + diff --git a/.spyproject/config/workspace.ini b/.spyproject/config/workspace.ini new file mode 100644 index 000000000..a5435fcff --- /dev/null +++ b/.spyproject/config/workspace.ini @@ -0,0 +1,12 @@ +[workspace] +restore_data_on_startup = True +save_data_on_exit = True +save_history = True +save_non_project_files = False +project_type = 'empty-project-type' +recent_files = ['scripts\\eda\\functions.py', 'main.py', 'scripts\\data_acquisition\\api_reader.py', 'scripts\\training\\trainingText.py', 'src\\comparative_analysis\\models\\models.py', 'src\\comparative_analysis\\models\\utilities\\utilities.py', 'src\\comparative_analysis\\preprocessing\\main.py', 'src\\comparative_analysis\\preprocessing\\functions\\model_inference.py'] + +[main] +version = 0.2.0 +recent_files = [] + diff --git a/docs/business_understanding/.ipynb_checkpoints/project_charter-checkpoint.md b/docs/business_understanding/.ipynb_checkpoints/project_charter-checkpoint.md new file mode 100644 index 000000000..f6106e459 --- /dev/null +++ b/docs/business_understanding/.ipynb_checkpoints/project_charter-checkpoint.md @@ -0,0 +1,76 @@ +# Project Charter - Entendimiento del Negocio + +## Nombre del Proyecto + +Análisis comparativo de productos de Running entre Nike, Adidas y Nation Runner + +## Objetivo del Proyecto + +Desarrollar una herramienta computacional que permita realizar un análisis comparativo de zapatos para running, utilizando datos obtenidos de varias tiendas retail mediante técnicas de procesamiento de lenguaje natural y preprocesamiento de datos, incluyendo el uso de Grandes Modelos de Lenguaje (LLM, por sus siglas en inglés). + +## Alcance del Proyecto + +El alcance del proyecto consiste en construir un modelo de recomendación basado en embeddings, capaz de generar recomendaciones basadas en la similitud de atributos de calzado deportivo para running, alineados con las necesidades del cliente. + +Se propone el uso de embeddings debido a que los datos disponibles consisten en descripciones textuales de las características de diferentes tipos de calzado deportivo. Se busca aplicar técnicas de embeddings utilizando modelos LLM, con el objetivo de mejorar la precisión semántica basada en similitud contextual. + +### Incluye: + +- Datos de Adidas, Nike y Nation Runner, obtenidos mediante un scraper con corte de datos a mediados de noviembre. +- Un dataset organizado y etiquetado con modelos comparados. +- Un modelo que permita realizar análisis comparativos de productos de forma automática y frecuente, con información actualizada sobre los movimientos de mercado de las marcas analizadas. + +### Excluye: + +- La comparación de productos de marcas no incluidas en el análisis inicial (por ejemplo, Puma o Reebok). +- El desarrollo de visualizaciones avanzadas, como gráficos interactivos o dashboards personalizados, que no estén especificados como requisitos del proyecto. + +## Metodología + +Se utilizarán las metodologías CRISP-DM y SCRUM para llevar a cabo el proyecto. + +## Cronograma + +| Etapa | Duración Estimada | Fechas | +|-----------------------------------------|-------------------|---------------------------------| +| Entendimiento del negocio y carga de datos | 2 semanas | Del 13 de noviembre al 28 de noviembre | +| Preprocesamiento y análisis exploratorio | 1 semana | Del 29 de noviembre al 5 de diciembre | +| Modelamiento y extracción de características | 1 semana | Del 5 de diciembre al 12 de diciembre | +| Despliegue | 1 semana | Del 13 de diciembre al 19 de diciembre | +| Evaluación y entrega final | 1 semana | Del 19 de diciembre al 21 de diciembre | + +## Equipo del Proyecto + +- Daniel Galvis CC 1010038257 cgalvisn@unal.edu.co +- Juan Correa CC 1013653882 jumcorrealo@unal.edu.co +- Asdrúbal Zácipa Corredor CC 79139929 azacipac@unal.edu.co + +## Presupuesto + +Aunque no se cuenta con financiamiento externo, se estimaron los costos básicos relacionados con el desarrollo del proyecto, considerando el uso de recursos personales como luz, internet y equipos de cómputo. A continuación, se detalla el presupuesto: + +| Concepto | Costo Mensual (COP) | Proporción por Persona (COP) | Duración (meses) | Total (COP) | +|------------------------------|---------------------|------------------------------|------------------|-------------| +| Servicio de luz | 100,000 | 33,333 | 2 | 200,000 | +| Servicio de internet | 150,000 | 50,000 | 2 | 300,000 | +| Uso de equipos personales | 200,000 | 66,667 | 2 | 400,000 | +| Reserva para emergencias | - | - | - | 100,000 | +| **Total** | - | - | - | **1,000,000** | + +### Detalles: +- **Servicio de luz:** Incluye el costo estimado del consumo eléctrico asociado al trabajo en el proyecto. +- **Servicio de internet:** Cubre el acceso a internet necesario para reuniones virtuales, investigación y uso de herramientas online. +- **Uso de equipos personales:** Considera el desgaste de hardware y el consumo eléctrico de los equipos utilizados durante el desarrollo. +- **Reserva para emergencias:** Monto adicional para imprevistos, como la reparación de equipos o la adquisición de software adicional. + +## Stakeholders + +- Dirección comercial de una empresa deportiva. +- Equipo laboral interno interesado en la automatización del análisis comparativo de productos deportivos. +- Consumidores finales que podrían beneficiarse indirectamente de las recomendaciones generadas por el modelo. + +## Aprobaciones + +- [Nombre y cargo del aprobador del proyecto] +- [Firma del aprobador] +- [Fecha de aprobación] \ No newline at end of file diff --git a/docs/business_understanding/.ipynb_checkpoints/test_clusteval-checkpoint.ipynb b/docs/business_understanding/.ipynb_checkpoints/test_clusteval-checkpoint.ipynb new file mode 100644 index 000000000..3423127ef --- /dev/null +++ b/docs/business_understanding/.ipynb_checkpoints/test_clusteval-checkpoint.ipynb @@ -0,0 +1,102 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "id": "ad60f7c2-bb83-4a4d-adb1-77725a97a7ce", + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-16T02:44:01.795800Z", + "iopub.status.busy": "2024-12-16T02:44:01.794802Z", + "iopub.status.idle": "2024-12-16T02:44:05.908162Z", + "shell.execute_reply": "2024-12-16T02:44:05.907152Z", + "shell.execute_reply.started": "2024-12-16T02:44:01.795800Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[clusteval] >INFO> Downloading [online_shoppers_intention.csv] dataset from github source..\n" + ] + }, + { + "ename": "ValueError", + "evalue": "binary mode doesn't take an encoding argument", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[2], line 14\u001b[0m\n\u001b[0;32m 12\u001b[0m ce \u001b[38;5;241m=\u001b[39m clusteval()\n\u001b[0;32m 13\u001b[0m \u001b[38;5;66;03m# Import data from url\u001b[39;00m\n\u001b[1;32m---> 14\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mce\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mimport_example\u001b[49m\u001b[43m(\u001b[49m\u001b[43murl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43murl\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 16\u001b[0m \u001b[38;5;66;03m# Preprocessing\u001b[39;00m\n\u001b[0;32m 17\u001b[0m cols_as_float \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mProductRelated\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mAdministrative\u001b[39m\u001b[38;5;124m'\u001b[39m]\n", + "File \u001b[1;32m~\\anaconda3\\envs\\llama_env\\Lib\\site-packages\\clusteval\\clusteval.py:751\u001b[0m, in \u001b[0;36mclusteval.import_example\u001b[1;34m(self, data, url, sep, params)\u001b[0m\n\u001b[0;32m 712\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mimport_example\u001b[39m(\u001b[38;5;28mself\u001b[39m, data\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtitanic\u001b[39m\u001b[38;5;124m'\u001b[39m, url\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, sep\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m,\u001b[39m\u001b[38;5;124m'\u001b[39m, params\u001b[38;5;241m=\u001b[39m{}):\n\u001b[0;32m 713\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Import example dataset from github source.\u001b[39;00m\n\u001b[0;32m 714\u001b[0m \n\u001b[0;32m 715\u001b[0m \u001b[38;5;124;03m Import one of the few datasets from github source or specify your own download url link.\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 749\u001b[0m \n\u001b[0;32m 750\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m--> 751\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mimport_example\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msep\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msep\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogger\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlogger\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32m~\\anaconda3\\envs\\llama_env\\Lib\\site-packages\\clusteval\\clusteval.py:855\u001b[0m, in \u001b[0;36mimport_example\u001b[1;34m(data, url, sep, params, logger)\u001b[0m\n\u001b[0;32m 853\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39misfile(PATH_TO_DATA):\n\u001b[0;32m 854\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m logger \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m: logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mDownloading [\u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m] dataset from github source..\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m%\u001b[39m(data))\n\u001b[1;32m--> 855\u001b[0m \u001b[43mwget\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdownload\u001b[49m\u001b[43m(\u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mPATH_TO_DATA\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 857\u001b[0m \u001b[38;5;66;03m# Import local dataset\u001b[39;00m\n\u001b[0;32m 858\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m logger \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m: logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mImport dataset [\u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m]\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m%\u001b[39m(data))\n", + "File \u001b[1;32m~\\anaconda3\\envs\\llama_env\\Lib\\site-packages\\clusteval\\clusteval.py:888\u001b[0m, in \u001b[0;36mwget.download\u001b[1;34m(url, writepath)\u001b[0m\n\u001b[0;32m 873\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Download.\u001b[39;00m\n\u001b[0;32m 874\u001b[0m \n\u001b[0;32m 875\u001b[0m \u001b[38;5;124;03mParameters\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 885\u001b[0m \n\u001b[0;32m 886\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 887\u001b[0m r \u001b[38;5;241m=\u001b[39m requests\u001b[38;5;241m.\u001b[39mget(url, stream\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m--> 888\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mwritepath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mwb\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mutf8\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mas\u001b[39;00m fd:\n\u001b[0;32m 889\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m chunk \u001b[38;5;129;01min\u001b[39;00m r\u001b[38;5;241m.\u001b[39miter_content(chunk_size\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1024\u001b[39m):\n\u001b[0;32m 890\u001b[0m fd\u001b[38;5;241m.\u001b[39mwrite(chunk)\n", + "\u001b[1;31mValueError\u001b[0m: binary mode doesn't take an encoding argument" + ] + } + ], + "source": [ + "# Intall libraries\n", + "#pip install df2onehot\n", + "\n", + "# Import libraries\n", + "from clusteval import clusteval\n", + "from df2onehot import df2onehot\n", + "\n", + "# Load data from UCI\n", + "url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00468/online_shoppers_intention.csv'\n", + "\n", + "# Initialize clusteval\n", + "ce = clusteval()\n", + "# Import data from url\n", + "df = ce.import_example(url=url)\n", + "\n", + "# Preprocessing\n", + "cols_as_float = ['ProductRelated', 'Administrative']\n", + "df[cols_as_float]=df[cols_as_float].astype(float)\n", + "dfhot = df2onehot(df, excl_background=['0.0', 'None', '?', 'False'], y_min=50, perc_min_num=0.8, remove_mutual_exclusive=True, verbose=4)['onehot']\n", + "\n", + "# Initialize using the specific parameters\n", + "ce = clusteval(evaluate='silhouette',\n", + " cluster='agglomerative',\n", + " metric='hamming',\n", + " linkage='complete',\n", + " min_clust=2,\n", + " verbose='info')\n", + "\n", + "# Clustering and evaluation\n", + "results = ce.fit(dfhot)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dfdd885c-0208-4881-b966-9c2c17b46af7", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python (Llama)", + "language": "python", + "name": "llama_env" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/deployment/.ipynb_checkpoints/deploymentdoc-checkpoint.md b/docs/deployment/.ipynb_checkpoints/deploymentdoc-checkpoint.md new file mode 100644 index 000000000..330311ceb --- /dev/null +++ b/docs/deployment/.ipynb_checkpoints/deploymentdoc-checkpoint.md @@ -0,0 +1,22 @@ +# Despliegue de modelos + +## Infraestructura + +- **Nombre del modelo:** (nombre que se le ha dado al modelo) +- **Plataforma de despliegue:** (plataforma donde se va a desplegar el modelo) +- **Requisitos técnicos:** (lista de requisitos técnicos necesarios para el despliegue, como versión de Python, bibliotecas de terceros, hardware, etc.) +- **Requisitos de seguridad:** (lista de requisitos de seguridad necesarios para el despliegue, como autenticación, encriptación de datos, etc.) +- **Diagrama de arquitectura:** (imagen que muestra la arquitectura del sistema que se utilizará para desplegar el modelo) + +## Código de despliegue + +- **Archivo principal:** (nombre del archivo principal que contiene el código de despliegue) +- **Rutas de acceso a los archivos:** (lista de rutas de acceso a los archivos necesarios para el despliegue) +- **Variables de entorno:** (lista de variables de entorno necesarias para el despliegue) + +## Documentación del despliegue + +- **Instrucciones de instalación:** (instrucciones detalladas para instalar el modelo en la plataforma de despliegue) +- **Instrucciones de configuración:** (instrucciones detalladas para configurar el modelo en la plataforma de despliegue) +- **Instrucciones de uso:** (instrucciones detalladas para utilizar el modelo en la plataforma de despliegue) +- **Instrucciones de mantenimiento:** (instrucciones detalladas para mantener el modelo en la plataforma de despliegue) diff --git a/docs/modeling/.ipynb_checkpoints/baseline_models-checkpoint.md b/docs/modeling/.ipynb_checkpoints/baseline_models-checkpoint.md new file mode 100644 index 000000000..f103416ad --- /dev/null +++ b/docs/modeling/.ipynb_checkpoints/baseline_models-checkpoint.md @@ -0,0 +1,96 @@ +# Reporte del Modelo Baseline + +Este documento contiene los resultados del modelo baseline, el cual consiste en una primera aproximación al clustering de productos. El objetivo es sentar las bases para modelos posteriores y guiar el proceso de mejora continua. + +## Descripción del modelo + +El modelo baseline se enfocó en realizar un proceso de clustering sobre un conjunto de productos obtenidos desde un endpoint con productos de Adidas. El flujo del proyecto incluye: + +1. **Obtención de datos**: Se obtienen productos desde un endpoint (Adidas). +2. **Normalización de datos con un LLM**: Un modelo de lenguaje (LLM) se utiliza para normalizar y etiquetar las características de los productos. +3. **Clustering**: Utilizando las variables numéricas ya procesadas, se aplicó un algoritmo de clustering (ej. K-Means) para agrupar productos similares. + +Este pipeline busca identificar patrones, similitudes y diferencias entre los productos de la marca. + +## Variables de entrada + +Las variables de entrada utilizadas en el modelo son aquellas extraídas y normalizadas a partir del procesamiento con el LLM. Entre las principales variables se encuentran: + +- **Weight** (Peso del producto, en gramos) +- **Drop (heel-to-toe differential)** (Diferencial de altura entre talón y punta, en mm) +- **regularPrice** (Precio regular del producto, en valor numérico flotante) +- **undiscounted_price** (Precio sin descuento, en valor numérico flotante) +- Otras variables numéricas o categóricas codificadas (por ejemplo, materiales del upper, midsole, outsole convertidas en variables dummies) + +Los IDs de los productos se han mantenido para identificar a qué cluster pertenece cada uno, pero no se utilizaron para el embedding. + +## Variable objetivo + +No existe una variable objetivo propiamente dicha, ya que el enfoque es no supervisado. El objetivo es descubrir grupos (clusters) de productos similares. + +## Evaluación del modelo + +### Métricas de evaluación + +Se han utilizado métricas de evaluación típicas para modelos de clustering no supervisados: + +- **Silhouette Score**: Mide la separación y cohesión de los clusters. Un valor cercano a 1 indica que las muestras están bien agrupadas, un valor cercano a -1 indica lo contrario. +- **Davies-Bouldin Score**: Mide la calidad del clustering en función de las distancias entre clusters. Valores más bajos indican mejores separaciones entre clusters. + +### Resultados de evaluación + +**Distribución de productos por cluster:** + +| Cluster | Conteo | Porcentaje | +|---------|---------|------------| +| 0 | 2 | 0.44% | +| 1 | 3 | 0.66% | +| 2 | 22 | 4.85% | +| 3 | 64 | 14.10% | +| 4 | 93 | 20.48% | +| 5 | 268 | 59.03% | +| 6 | 1 | 0.22% | +| 7 | 1 | 0.22% | + +**Métricas globales:** + +- Silhouette Score: -0.10727046484513526 +- Davies-Bouldin Score: 3.820317442353896 + +## Análisis de los resultados + +El Silhouette Score negativo (-0.1072) sugiere que la mayoría de los productos no están bien asignados a sus clusters o que los clusters se solapan significativamente. Esto indica que el agrupamiento no capta adecuadamente las similitudes reales entre los productos. + +El Davies-Bouldin Score (3.8203) es relativamente alto, lo que también indica que los clusters no están bien definidos, presentando una baja separación entre ellos. + +La distribución de productos por cluster está muy desbalanceada. Un solo cluster (el número 5) contiene alrededor del 59% de los productos, mientras que otros clusters contienen muy pocos elementos, incluso uno solo. Esto sugiere que la configuración actual de k (el número de clusters) o la forma en que se están representando los datos no es la más adecuada. + +### Fortalezas + +- **Primer paso hacia la segmentación:** Establece una línea base desde la cual se pueden proponer mejoras. +- **Proceso reproducible:** El pipeline desde la extracción de datos, normalización con LLM y clustering está bien definido y puede repetirse con ajustes futuros. + +### Debilidades + +- **Baja calidad de agrupamiento:** Las métricas indican que los clusters no reflejan adecuadamente las similitudes entre productos. +- **Desbalance en los clusters:** Un cluster concentra la mayor parte de los productos, lo que dificulta interpretaciones útiles. +- **Falencia en el embedding actual:** Es posible que la selección de variables o su codificación no capture suficientemente las diferencias relevantes entre los productos. + +### Áreas de mejora + +- **Refinamiento de la representación de datos:** Incluir embeddings más representativos (por ejemplo, usando técnicas de NLP más avanzadas en descripciones, o embeddings más sofisticados en variables categóricas). +- **Ajuste del número de clusters:** Probar diferentes valores de k con el método del codo o métricas de validación más robustas. +- **Selección de características:** Evaluar qué variables realmente aportan información útil para segmentar los productos y eliminar aquellas que introduzcan ruido. +- **Experimentar con diferentes algoritmos de clustering:** Además de K-Means, probar DBSCAN o HDBSCAN para detectar estructuras no esféricas. + +## Conclusiones + +El modelo baseline de clustering no ofrece una segmentación claramente útil, según las métricas de validación. Sin embargo, resulta valioso como punto de partida para comprender el problema y orientar mejoras. Ajustes en la selección de variables, técnicas de embedding y el número de clusters, así como la experimentación con otros algoritmos de clustering, podrían mejorar significativamente los resultados. + +## Referencias + + +- Documentation of scikit-learn for Clustering: [https://scikit-learn.org/stable/modules/clustering.html](https://scikit-learn.org/stable/modules/clustering.html) +- Introducción a la Evaluación del Clustering (Silhouette Score, Davies-Bouldin): [https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation](https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation) +- Documentación de K-Means: [https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html) + diff --git a/docs/modeling/.ipynb_checkpoints/model_report-checkpoint.md b/docs/modeling/.ipynb_checkpoints/model_report-checkpoint.md new file mode 100644 index 000000000..14aa0fb17 --- /dev/null +++ b/docs/modeling/.ipynb_checkpoints/model_report-checkpoint.md @@ -0,0 +1,81 @@ +# Reporte del Modelo Final + +## Resumen Ejecutivo + +El modelo final se construyó con el objetivo de agrupar productos de Adidas con características similares, partiendo de datos obtenidos desde un endpoint, luego normalizados y etiquetados mediante un LLM. Para lograr esto, se aplicó un método de clustering (K-Means) a las variables numéricas y categóricas transformadas. + +En términos de métricas de evaluación, el **Silhouette Score** alcanzó un valor de **-0.10726032825390042**, mientras que el **Davies-Bouldin Score** fue de **3.7837546892816856**. Estas métricas indican que el clustering no logró una segmentación claramente separada ni cohesiva. Sin embargo, estos resultados proporcionan una línea base para mejoras futuras. + +Con el fin de realizar la comparación de diferentes modelos de clustering, se utiliza la libreria Clusteval con el fin de comparar los siguientes algoritmos de clustering: + +* **KMeans** +* **Agglomeratrive** +* **DBScan** +* **HDBScan** + +## Descripción del Problema + +La problemática abordada consiste en organizar y segmentar una amplia gama de productos Adidas en grupos homogéneos, con el fin de facilitar análisis comparativos. El objetivo es identificar patrones ocultos en las características de los productos, tales como peso, materiales, precios y tecnologías implementadas. Este tipo de segmentación es útil para la toma de decisiones estratégicas, el análisis de competitividad y el desarrollo de nuevas líneas de productos orientadas a grupos específicos de mercado. + +Justificación: La agrupación no supervisada de productos permite a la empresa comprender mejor sus catálogos, detectar nichos y mejorar la experiencia del cliente recomendando artículos similares. Además, sienta las bases para análisis más profundos, tales como análisis de correlación con el rendimiento de ventas o el perfil de cliente. + +## Descripción del Modelo + +El modelo final se basa en el siguiente flujo de trabajo: + +1. **Obtención de datos**: Se extrajeron productos desde un endpoint con información de Adidas. +2. **Normalización y etiquetado con LLM**: Un modelo de lenguaje se utilizó para transformar las descripciones crudas del producto en variables estructuradas y etiquetadas. +3. **Limpieza y transformación**: Se procesaron valores nulos, se convirtieron precios y métricas a formato numérico flotante, y se realizaron codificaciones dummies para variables categóricas. +4. **Clustering (K-Means)**: Se aplicó K-Means con un determinado número de clusters, seleccionado tras un análisis inicial con el método del codo. La elección final de k se basó en la interpretación de las métricas y la naturaleza de los datos. + +El resultado fue un conjunto de clusters, cada uno agrupando productos con ciertas características predominantes. Por ejemplo: +- El **Cluster 2** (22 elementos) presentó productos con un peso promedio de alrededor de 569 g, un drop cercano a 9.4 mm, y precios promedio de ~401.7. Las tecnologías más comunes fueron "Mediasuela Bounce" y "Suela de caucho", con mayoría de productos para "Mujer" y "Running". +- El **Cluster 3** (60 elementos) mostró productos más ligeros (259.9 g) con drop de ~9.65 mm y precios promedio cercanos a 474. En este cluster destacó el material "Parte superior de malla" y el sistema "Dreamstrike+", mayormente orientado a calzado de "Mujer" y "Running". + +## Evaluación del Modelo + +**Métricas:** +- **Silhouette Score:** -0.10726032825390042 + Un valor negativo sugiere que la mayoría de los puntos podrían asignarse mejor a otros clusters, indicando una baja cohesión/separación. + +- **Davies-Bouldin Score:** 3.7837546892816856 + Un valor relativamente alto indica que los clusters no están bien separados ni son internamente cohesivos. + +Al realizar la comparacion entre diferentes modelos obtenemos las siguientes métricas: + +| Modelo | Número de Clusters | Silhouette Score | Davies-Bouldin Score | +|---------------|--------------------|-----------------------|----------------------| +| KMeans | 3 | 0.3468094215555982 | 0.5095857881425025 | +| Agglomerative | 2 | 0.2774924967946853 | 2.795591016138718 | +| DBScan | 10 | -0.19920787551009733 | 2.6226063126770205 | +| HDBSCan | 38 | -0.025542353420798247 | 2.455807218880036 | + +Estas métricas reflejan la complejidad del conjunto de datos y la necesidad de refinar la representación de las variables o ajustar el número y el tipo de clustering usado. + +A nivel descriptivo, se logró observar patrones de materiales y tecnologías predominantes por cluster, lo que puede ser útil como insumo para análisis posteriores, a pesar de que la calidad cuantitativa del clustering no fue óptima. + +## Conclusiones y Recomendaciones + +**Fortalezas:** +- Se estableció un proceso reproducible para extraer, normalizar y clústerizar datos de productos. +- Se identificaron patrones básicos en la composición de algunos clusters. + +**Debilidades:** +- Métricas bajas de calidad de clusters indican que la segmentación no es nítida. +- Alta heterogeneidad en las características, posibles variables irrelevantes o ruido dificultan la formación de grupos cohesivos. + +**Limitaciones:** +- El modelo depende en gran medida de la calidad de las etiquetas generadas por el LLM. +- No se exploraron otros algoritmos de clustering ni se realizaron exhaustivos ajustes de hiperparámetros. + +**Áreas de mejora:** +- Refinar la selección de características y la representación de datos, por ejemplo, utilizando embeddings semánticos para descripciones textuales. +- Probar técnicas de reducción de dimensionalidad (PCA, UMAP) para mejorar la separabilidad de los datos. +- Experimentar con algoritmos de clustering alternativos (DBSCAN, HDBSCAN) que podrían adaptarse mejor a la forma real de los datos. + +## Referencias + +- Scikit-learn Documentation: [https://scikit-learn.org/stable/](https://scikit-learn.org/stable/) +- Evaluación de Clustering (Silhouette y Davies-Bouldin): [https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation](https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation) +- Documentación de K-Means: [https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html) +- Técnicas de reducción de dimensionalidad: [https://scikit-learn.org/stable/modules/decomposition.html](https://scikit-learn.org/stable/modules/decomposition.html) diff --git a/docs/modeling/model_report.md b/docs/modeling/model_report.md index a8de43e36..553b42343 100644 --- a/docs/modeling/model_report.md +++ b/docs/modeling/model_report.md @@ -6,6 +6,13 @@ El modelo final se construyó con el objetivo de agrupar productos de Adidas con En términos de métricas de evaluación, el **Silhouette Score** alcanzó un valor de **-0.10726032825390042**, mientras que el **Davies-Bouldin Score** fue de **3.7837546892816856**. Estas métricas indican que el clustering no logró una segmentación claramente separada ni cohesiva. Sin embargo, estos resultados proporcionan una línea base para mejoras futuras. +Con el fin de realizar la comparación de diferentes modelos de clustering, se utiliza la libreria Clusteval con el fin de comparar los siguientes algoritmos de clustering: + +* **KMeans** +* **Agglomeratrive** +* **DBScan** +* **HDBScan** + ## Descripción del Problema La problemática abordada consiste en organizar y segmentar una amplia gama de productos Adidas en grupos homogéneos, con el fin de facilitar análisis comparativos. El objetivo es identificar patrones ocultos en las características de los productos, tales como peso, materiales, precios y tecnologías implementadas. Este tipo de segmentación es útil para la toma de decisiones estratégicas, el análisis de competitividad y el desarrollo de nuevas líneas de productos orientadas a grupos específicos de mercado. @@ -34,6 +41,15 @@ El resultado fue un conjunto de clusters, cada uno agrupando productos con ciert - **Davies-Bouldin Score:** 3.7837546892816856 Un valor relativamente alto indica que los clusters no están bien separados ni son internamente cohesivos. +Al realizar la comparacion entre diferentes modelos obtenemos las siguientes métricas: + +| Modelo | Número de Clusters | Silhouette Score | Davies-Bouldin Score | +|---------------|--------------------|-----------------------|----------------------| +| KMeans | 3 | 0.3468094215555982 | 0.5095857881425025 | +| Agglomerative | 2 | 0.2774924967946853 | 2.795591016138718 | +| DBScan | 9 | -0.19920787551009733 | 2.6226063126770205 | +| HDBSCan | 38 | -0.025542353420798247 | 2.455807218880036 | + Estas métricas reflejan la complejidad del conjunto de datos y la necesidad de refinar la representación de las variables o ajustar el número y el tipo de clustering usado. A nivel descriptivo, se logró observar patrones de materiales y tecnologías predominantes por cluster, lo que puede ser útil como insumo para análisis posteriores, a pesar de que la calidad cuantitativa del clustering no fue óptima. diff --git a/scripts/data_acquisition/api_reader.py b/scripts/data_acquisition/api_reader.py index 8f6bfd85c..d7bf855db 100644 --- a/scripts/data_acquisition/api_reader.py +++ b/scripts/data_acquisition/api_reader.py @@ -51,4 +51,4 @@ def fetch_and_save_data(self): data = self.fetch_data() self.save_to_excel(data) except Exception as e: - print(f"Error: {e}") + print(f"Error fetch_and_save_data: {e}") diff --git a/scripts/eda/.ipynb_checkpoints/eda-checkpoint.ipynb b/scripts/eda/.ipynb_checkpoints/eda-checkpoint.ipynb new file mode 100644 index 000000000..148ab2ccb --- /dev/null +++ b/scripts/eda/.ipynb_checkpoints/eda-checkpoint.ipynb @@ -0,0 +1,688 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EDA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Cargar Librerías y Funciones" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:49:32.253057Z", + "iopub.status.busy": "2024-12-14T16:49:32.253057Z", + "iopub.status.idle": "2024-12-14T16:49:33.828414Z", + "shell.execute_reply": "2024-12-14T16:49:33.828414Z", + "shell.execute_reply.started": "2024-12-14T16:49:32.253057Z" + } + }, + "outputs": [], + "source": [ + "# ===========================\n", + "# Cargar las funciones definidas\n", + "# ===========================\n", + "\n", + "# Insertar el path donde están definidas las funciones\n", + "import sys\n", + "sys.path.append(r'.\\eda')\n", + "\n", + "# Importar las funciones\n", + "from functions import load_data, summarize_data, check_missing_values, plot_numeric_distributions, analyze_categorical_data, plot_correlations, check_duplicates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Cargar los Datos" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:00.383348Z", + "iopub.status.busy": "2024-12-14T16:51:00.382348Z", + "iopub.status.idle": "2024-12-14T16:51:00.911145Z", + "shell.execute_reply": "2024-12-14T16:51:00.911145Z", + "shell.execute_reply.started": "2024-12-14T16:51:00.383348Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Datos cargados exitosamente desde ..\\..\\src\\comparative_analysis\\database\\raw_data.xlsx.\n", + "Los datos están listos para análisis.\n" + ] + } + ], + "source": [ + "# ===========================\n", + "# Cargar los datos desde el archivo Excel\n", + "# ===========================\n", + "#file_path = r'C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\raw_data.xlsx'\n", + "file_path = r'..\\..\\src\\comparative_analysis\\database\\raw_data.xlsx'\n", + "\n", + "# Llamar a la función para cargar los datos\n", + "df = load_data(file_path)\n", + "\n", + "# Validar si los datos se cargaron correctamente\n", + "if df is not None:\n", + " print(\"Los datos están listos para análisis.\")\n", + "else:\n", + " print(\"Error en la carga de datos.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3. Resumen de los Datos" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:06.460740Z", + "iopub.status.busy": "2024-12-14T16:51:06.459740Z", + "iopub.status.idle": "2024-12-14T16:51:06.523060Z", + "shell.execute_reply": "2024-12-14T16:51:06.523060Z", + "shell.execute_reply.started": "2024-12-14T16:51:06.460740Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Resumen General de los Datos\n", + "Filas: 884, Columnas: 13\n", + "\n", + "Primeras filas del DataFrame:\n", + " id details \\\n", + "0 046zSiHm8Cz0fZYwMJlL [] \n", + "1 08sjncACSjSvg2t9DS73 ['Horma clásica', 'Parte superior sintética', ... \n", + "2 0AqheRhKT2lhm7puBVCF ['Ajuste clásico', 'Sistema de amarre de cordo... \n", + "3 0Di5KVVcvU0QsWRxB1iE [{'\\xa0': ' '}] \n", + "4 0Gvnv9unc1EV4XpFbCQN [{'Características principales': 'Caracterí... \n", + "\n", + " store manufacturer url \\\n", + "0 adidas adidas https://www.adidas.co/tenis-duramo-sl/IF7884.html \n", + "1 adidas adidas https://www.adidas.co/tenis-adizero-adios-pro-... \n", + "2 adidas adidas https://www.adidas.co/tenis-ultraboost-22/GX55... \n", + "3 nike nike https://www.nike.com.co/nike-revolution-7-fb22... \n", + "4 nike nike https://www.nike.com.co/nike-winflo-11-calzado... \n", + "\n", + " title regularPrice undiscounted_price \\\n", + "0 Tenis Duramo SL $379.950 $265.965 \n", + "1 Tenis ADIZERO ADIOS PRO 3 $1.299.950 $909.965 \n", + "2 TENIS ULTRABOOST 22 $799.950 NaN \n", + "3 Nike Revolution 7 $ 389.950 NaN \n", + "4 Nike Winflo 11 $ 584.950 NaN \n", + "\n", + " description \\\n", + "0 Siente la ligereza y velocidad. Si estás listo... \n", + "1 Los Adizero Adios Pro 3 son la máxima expresió... \n", + "2 Hemos analizado 1.200.000 pisadas para que Ult... \n", + "3 Cargamos el Revolution 7 con el tipo de amorti... \n", + "4 El Winflo 11 es el calzado con una pisada bala... \n", + "\n", + " category \\\n", + "0 Mujer • Running \n", + "1 Mujer • Running \n", + "2 Mujer • Running \n", + "3 Calzado de correr en pavimento para mujer \n", + "4 Calzado de correr en pavimento para mujer \n", + "\n", + " createdAt \\\n", + "0 {'_seconds': 1731975445, '_nanoseconds': 42700... \n", + "1 {'_seconds': 1731975445, '_nanoseconds': 42700... \n", + "2 {'_seconds': 1731975445, '_nanoseconds': 42700... \n", + "3 {'_seconds': 1731965768, '_nanoseconds': 30000... \n", + "4 {'_seconds': 1731965768, '_nanoseconds': 30000... \n", + "\n", + " characteristics gender \n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 [] Mujer \n", + "4 ['Parte superior de malla diseñada estratégica... Mujer \n", + "\n", + "Información del DataFrame:\n", + "\n", + "RangeIndex: 884 entries, 0 to 883\n", + "Data columns (total 13 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 id 884 non-null object\n", + " 1 details 884 non-null object\n", + " 2 store 884 non-null object\n", + " 3 manufacturer 884 non-null object\n", + " 4 url 884 non-null object\n", + " 5 title 884 non-null object\n", + " 6 regularPrice 884 non-null object\n", + " 7 undiscounted_price 404 non-null object\n", + " 8 description 884 non-null object\n", + " 9 category 621 non-null object\n", + " 10 createdAt 884 non-null object\n", + " 11 characteristics 102 non-null object\n", + " 12 gender 356 non-null object\n", + "dtypes: object(13)\n", + "memory usage: 89.9+ KB\n", + "None\n", + "\n", + "Estadísticas descriptivas:\n", + " id details store manufacturer \\\n", + "count 884 884 884 884 \n", + "unique 884 569 3 11 \n", + "top zqSM9xK4Ie9Qi878ZdzB [] adidas adidas \n", + "freq 1 94 519 519 \n", + "\n", + " url title \\\n", + "count 884 884 \n", + "unique 884 369 \n", + "top https://www.adidas.co/tenis-adizero-takumi-sen... Tenis Response \n", + "freq 1 33 \n", + "\n", + " regularPrice undiscounted_price \\\n", + "count 884 404 \n", + "unique 123 126 \n", + "top $699.900 $669.900 \n", + "freq 56 23 \n", + "\n", + " description category \\\n", + "count 884 621 \n", + "unique 302 29 \n", + "top Tanto en la pista como en la cinta de correr, ... Mujer • Running \n", + "freq 15 236 \n", + "\n", + " createdAt characteristics \\\n", + "count 884 102 \n", + "unique 4 53 \n", + "top {'_seconds': 1731975445, '_nanoseconds': 42700... [] \n", + "freq 500 13 \n", + "\n", + " gender \n", + "count 356 \n", + "unique 3 \n", + "top Hombre \n", + "freq 206 \n" + ] + } + ], + "source": [ + "# ===========================\n", + "# Mostrar un resumen general de los datos\n", + "# ===========================\n", + "if df is not None:\n", + " summarize_data(df)\n", + "else:\n", + " print(\"El DataFrame no está disponible.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4. Verificar Valores Faltantes" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:10.877300Z", + "iopub.status.busy": "2024-12-14T16:51:10.876206Z", + "iopub.status.idle": "2024-12-14T16:51:10.890532Z", + "shell.execute_reply": "2024-12-14T16:51:10.889527Z", + "shell.execute_reply.started": "2024-12-14T16:51:10.877300Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Valores Faltantes:\n", + " Missing Values Percentage\n", + "undiscounted_price 480 54.298643\n", + "category 263 29.751131\n", + "characteristics 782 88.461538\n", + "gender 528 59.728507\n" + ] + } + ], + "source": [ + "# ===========================\n", + "# Verificar valores faltantes\n", + "# ===========================\n", + "if df is not None:\n", + " missing_summary = check_missing_values(df)\n", + "else:\n", + " print(\"El DataFrame no está disponible.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5. Verificar Registros Duplicados" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:15.961589Z", + "iopub.status.busy": "2024-12-14T16:51:15.961589Z", + "iopub.status.idle": "2024-12-14T16:51:15.974501Z", + "shell.execute_reply": "2024-12-14T16:51:15.973492Z", + "shell.execute_reply.started": "2024-12-14T16:51:15.961589Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Número de registros duplicados: 0\n" + ] + } + ], + "source": [ + "# ===========================\n", + "# Verificar registros duplicados\n", + "# ===========================\n", + "if df is not None:\n", + " check_duplicates(df)\n", + "else:\n", + " print(\"El DataFrame no está disponible.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 6. Analizar Datos Categóricos" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:18.751875Z", + "iopub.status.busy": "2024-12-14T16:51:18.750875Z", + "iopub.status.idle": "2024-12-14T16:51:18.757063Z", + "shell.execute_reply": "2024-12-14T16:51:18.756056Z", + "shell.execute_reply.started": "2024-12-14T16:51:18.751875Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['id', 'details', 'store', 'manufacturer', 'url', 'title',\n", + " 'regularPrice', 'undiscounted_price', 'description', 'category',\n", + " 'createdAt', 'characteristics', 'gender'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "columns = df.columns\n", + "\n", + "print(columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:19.819386Z", + "iopub.status.busy": "2024-12-14T16:51:19.819386Z", + "iopub.status.idle": "2024-12-14T16:51:19.838625Z", + "shell.execute_reply": "2024-12-14T16:51:19.837618Z", + "shell.execute_reply.started": "2024-12-14T16:51:19.819386Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Porcentajes de los elementos en la columna 'store':\n", + " Count Percentage\n", + "store \n", + "adidas 519 58.710407\n", + "nacionRunner 263 29.751131\n", + "nike 102 11.538462\n", + "\n", + "Porcentajes de los elementos en la columna 'manufacturer':\n", + " Count Percentage\n", + "manufacturer \n", + "adidas 519 58.710407\n", + "Asics 117 13.235294\n", + "nike 102 11.538462\n", + "Hoka 48 5.429864\n", + "Brooks 36 4.072398\n", + "New Balance 36 4.072398\n", + "On Running 7 0.791855\n", + "Skechers 7 0.791855\n", + "361° 4 0.452489\n", + "NNormal 4 0.452489\n", + "Adidas 4 0.452489\n", + "\n", + "Porcentajes de los elementos en la columna 'category':\n", + " Count Percentage\n", + "category \n", + "Mujer • Running 236 38.003221\n", + "Hombre • Running 210 33.816425\n", + "Running 61 9.822866\n", + "Calzado de running en carretera para hombre 24 3.864734\n", + "Calzado de running en carretera para mujer 15 2.415459\n", + "Calzado de correr en carretera para hombre 12 1.932367\n", + "Calzado de correr en pavimento para mujer 11 1.771337\n", + "Calzado de correr en carretera para mujer 11 1.771337\n", + "Mujer • adidas by Stella McCartney 5 0.805153\n", + "Calzado para hombre 5 0.805153\n", + "Mujer • TERREX 4 0.644122\n", + "Calzado de running en carretera para niños grandes 4 0.644122\n", + "Calzado de trail running para hombre 3 0.483092\n", + "Calzado para niños de preescolar 2 0.322061\n", + "Calzado de carrera en carretera para mujer 2 0.322061\n", + "Calzado de trail running impermeables para mujer 2 0.322061\n", + "Calzado de correr en pavimento para hombre 2 0.322061\n", + "Calzado de caminata para mujer 1 0.161031\n", + "Calzado de running en carretera acondicionado p... 1 0.161031\n", + "Hombre • TERREX 1 0.161031\n", + "Calzado de trail running impermeables para hombre 1 0.161031\n", + "Calzado de carrera en carretera para hombre 1 0.161031\n", + "Calzado de running en carretera resistente a la... 1 0.161031\n", + "Calzado de carrera en carretera 1 0.161031\n", + "Calzado de running en carretera impermeable par... 1 0.161031\n", + "Calzado de trail running para mujer 1 0.161031\n", + "TERREX 1 0.161031\n", + "Calzado de running en carretera impermeable par... 1 0.161031\n", + "adidas by Stella McCartney 1 0.161031\n", + "\n", + "Porcentajes de los elementos en la columna 'createdAt':\n", + " Count Percentage\n", + "createdAt \n", + "{'_seconds': 1731975445, '_nanoseconds': 427000... 500 56.561086\n", + "{'_seconds': 1732123040, '_nanoseconds': 262000... 263 29.751131\n", + "{'_seconds': 1731965768, '_nanoseconds': 30000000} 102 11.538462\n", + "{'_seconds': 1731975447, '_nanoseconds': 767000... 19 2.149321\n", + "\n", + "Porcentajes de los elementos en la columna 'gender':\n", + " Count Percentage\n", + "gender \n", + "Hombre 206 57.865169\n", + "Mujer 144 40.449438\n", + "Niño 6 1.685393\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "def calculate_percentage(df, column_name):\n", + " \"\"\"\n", + " Calcula y muestra los porcentajes de cada elemento en una columna específica.\n", + " \n", + " :param df: DataFrame con los datos.\n", + " :param column_name: Nombre de la columna.\n", + " \"\"\"\n", + " if column_name in df.columns:\n", + " counts = df[column_name].value_counts()\n", + " percentages = (counts / counts.sum()) * 100\n", + " percentage_df = pd.DataFrame({\n", + " 'Count': counts,\n", + " 'Percentage': percentages\n", + " })\n", + " print(f\"\\nPorcentajes de los elementos en la columna '{column_name}':\")\n", + " print(percentage_df)\n", + " return percentage_df\n", + " else:\n", + " print(f\"La columna '{column_name}' no existe en el DataFrame.\")\n", + " return None\n", + "\n", + "for column_name in [\"store\", \"manufacturer\", \"category\", \"createdAt\", \"gender\"]:\n", + " calculate_percentage(df, column_name)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:20.740805Z", + "iopub.status.busy": "2024-12-14T16:51:20.739806Z", + "iopub.status.idle": "2024-12-14T16:51:21.806784Z", + "shell.execute_reply": "2024-12-14T16:51:21.805778Z", + "shell.execute_reply.started": "2024-12-14T16:51:20.740805Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Análisis de la columna 'store':\n", + "store\n", + "adidas 519\n", + "nacionRunner 263\n", + "nike 102\n", + "Name: count, dtype: int64\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAIaCAYAAAAOSmYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+R0lEQVR4nO3deVxV1f7/8fdRZqfUFEgzFVKkHNBQuYUDldXVLLLhVlhZOKTGTVOvfiPnoRuopaVmTpmalNNtzrJ7y7w4gOWQmGLiNQucFWU4DOf3hw/PrxNagsheeF7Px8OHstba53w2bOHN2mvvbXM4HA4BAAAYqIrVBQAAAFwMQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCnCV4l6O5uBrAZQdQQWwQO/evdW8eXPnn5CQEIWFhemBBx7Q4sWLVVhY6DI+KipKI0eOvOTXX7dunf7xj3/86biRI0cqKiqqzO9TVj///LOaN2+uVatWleiz2+3q0qWLoqOjlZube8Vq6N27t3r37n3FXv+81NRU9evX74q/D3C18rC6AMBdhYaGasyYMZKkoqIinTp1St98842mTJmilJQUvfrqq6pS5dzvEq+//rqqV69+ya+9aNGiSxo3cOBAPfHEE6Wu/XLVr19fSUlJatSoUYm+999/X4WFhZo9e7Z8fX0rvLby9v7772vfvn1WlwFUWgQVwCLVq1dXmzZtXNqioqLUtGlTTZo0SR999JF69uwp6VyouRIuFBQqgpeXV4l9P+/222/XPffcozp16lRsUQCMxKkfwDAxMTHy9/fX8uXLnW2/PyVzPsS0atVKHTt21LBhw5SVlSXp3CmNzZs3a/PmzWrevLk2bdqkTZs2qXnz5lq+fLm6du2qtm3basOGDSVO/UhSQUGBJk6cqPDwcN1yyy36xz/+oePHjzv7L3TK5Pzrb9q0ydn2008/afDgwWrfvr3Cw8PVv39/58zChU79ZGRkKC4uTr169VJUVJR69+6t1NRUZ//5bT799FPFxcUpLCxM7du3V3x8vHJycv7wc/rLL79o8ODBateunW699VYtXLjwguPef/99de/eXTfffLO6dOmimTNnqqio6A9fe8OGDXr44YcVFham8PBwPfvss879HDlypFavXq1Dhw657G92dramTJmiO+64Qy1btlSPHj20YsUKl9eNiorS5MmT9eSTT6pVq1Z68cUXJUknT57U6NGj9Ze//EUtW7bUww8/rOTk5D+sEajMCCqAYapUqaKIiAht3769xFoV6dyahxEjRqhbt2566623NGrUKG3cuFEvvPCCJGnMmDEKDQ1VaGiokpKSdNNNNzm3ff311/WPf/xDo0ePVlhY2AXf/9NPP9UPP/ygl19+Wf/4xz/0n//8R3379v3TH9i/lZWVpUceeUQZGRkaO3asEhISdPToUT355JM6efJkifHp6el64IEH9PPPPys+Pl6JiYmy2Wx68skntXnzZpexY8aMUYMGDTRr1iw988wzWrFihWbPnn3RWnJychQTE6M9e/ZowoQJeumll/T+++/ru+++cxn35ptv6qWXXlJERITmzJmjxx9/XG+99ZZeeumli772wYMHNXDgQN18882aPXu2Jk2apP3796tfv34qLi7WwIED1blzZ9WrV09JSUnq0qWL8vLy9Nhjj+nDDz9UbGysZs2apXbt2unFF1/UnDlzXF5/6dKlatmypWbNmqUHH3xQ+fn5evLJJ7Vu3ToNGTJEr7/+ugICAhQbG0tYwVWLUz+Aga699loVFBTo5MmTuvbaa136UlNT5ePjo379+snLy0uSdM0112jHjh1yOBwKDg52rmf5/emVxx57THffffcfvnft2rU1f/58+fn5OT8eNGiQvvnmG3Xt2vWS6l+0aJHsdrsWLlyoevXqSZJCQkL06KOPatu2bQoKCnIZ//rrr8vLy0uLFy921t6lSxf16NFDr7zyistsQ+fOnZ0LhSMiIrRhwwb95z//cQa131u9erV++eUXffTRRwoODpYktW7dWnfeeadzTHZ2tmbNmqVHHnlE8fHxkqTbbrtN11xzjeLj49WnTx/deOONJV57+/btysvLU//+/eXv7y9JCggI0Lp165STk6NGjRqpTp06Lqe6li1bpj179mj58uXOsBgZGanCwkLNmjVLf/vb33TNNddIkq677joNGzbM+X7vvfeedu/erffee0+tW7eWJHXq1Em9e/dWYmKiVq5c+WdfGqDSYUYFMND5y1ltNluJvvDwcOXm5qpHjx6aOnWqUlJSdNttt2nw4MEXHP9bLVq0+NP37ty5szOkSOdOQXh4eGjLli2XXH9qaqratGnjDCnSuR/g//73v9W5c+cS4zdv3qyuXbu6LBj28PBQ9+7dtXPnTp09e9bZ/vvwFRAQ8IenflJSUtSoUSNnSJGkwMBAl9f57rvvlJeXp6ioKBUWFjr/nD8ttmHDhgu+duvWreXt7a0HH3xQkyZN0vr16xUSEqIhQ4ZcdPHz5s2b1aBBgxIzWj179lR+fr62bdvmbPv91ys5OVn16tXTTTfd5KyxqKhIXbt21c6dO3Xq1KmLfh6AyooZFcBAWVlZ8vHxcf5m/VthYWGaO3euFi1apIULF2ru3Lm69tprNWDAgD+93Pa3AeRifhsupHOnomrXrq3Tp09fcv0nT55Uw4YNL3n8qVOnSswcSedmlhwOh86cOeNs+/2VQFWqVPnD+5ScOnVKtWvXLtFer149HT161FmvpIteRnz48OELtjds2FBLlizR3LlztWLFCi1evFg1a9bUY489pueff/6CwfHUqVMlPseSnPv/28/z779eJ0+e1JEjR1xO5/3WkSNHVKtWrQv2AZUVQQUwTGFhoTZt2qS2bduqatWqFxwTGRmpyMhI5ebmauPGjVq8eLEmTpyo1q1bq1WrVpf1/r9fQ1JUVKQTJ06obt26Lm2/9fsZjRo1argswD0vOTlZDRs2LPEDvFatWs7Q8FtHjhyRdO7008XCwp+pXbu2Dhw4UKL9t/tZs2ZNSVJiYqIaN25cYuyFQtR5rVq10uuvvy673a7U1FQlJSVpzpw5CgkJ0T333FNifK1atS5Yz2/39WJq1Kihxo0bKzEx8YL9pQmHQGXBqR/AMElJSTpy5IgeffTRC/b/85//VK9eveRwOOTr66uuXbs612z88ssvkuS8/0pZbNiwwWUR7+eff67CwkJ16NBB0rnLqjMzM122+e3VOZJ0yy23aNu2bS5h5dixY4qNjdXXX39d4j3Dw8P173//22XmpKioSB9//LFatmzpXItTFh07dtTPP/+sHTt2ONuOHz+u77//3vlx69at5enpqaysLLVs2dL5x8PDQ9OmTdPPP/98wddetGiRunbtKrvdLi8vL0VERGjChAmSLv61CA8P16FDh0os5v3ggw/k6en5h0Gzffv2+vXXX1W3bl2XOjds2KB58+ZdNNgClRkzKoBFzpw54/xhWVxcrBMnTujbb79VUlKSevbsqW7dul1wu44dO2rhwoUaOXKkevbsqYKCAs2bN0/XXHONOnbsKOncDMF3332n5OTkUt+D5ciRI3ruuefUu3dvZWRkaNq0abr11lsVEREhSeratau++uorTZkyRVFRUUpJSdGaNWtcXuOpp57SmjVrFBsbq/79+8vT01OzZ89WQECA7r33XmVnZ7uMHzx4sL755hs98cQT6tevnzw9PbVkyRIdPHhQ8+bNK1X9v3ffffdp8eLFGjx4sHPtyOzZs1VcXOwcU7t2bcXGxuq1117TmTNn1KFDB2VlZem1116TzWZTSEjIBV+7Y8eOSkxM1KBBgxQTE6OqVatq+fLl8vLyci48rlmzpo4ePaqvv/5aLVq00AMPPKBly5Zp0KBBiouLU8OGDfXVV19p5cqVGjx4sHN250IeeOABLVmyRH369NGAAQMUGBio//73v3rrrbcUExMjT0/Py/pcASYiqAAW2bVrlx555BFJ5xbNVqtWTc2aNdPYsWP10EMPXXS7zp07KzExUQsWLHAuoG3Xrp0WL17sXNPy+OOPa+fOnerbt6+mTJmi+vXrX3Jdjz32mLKzszVo0CB5eXnp3nvv1fDhw52na3r16qX//e9/Wr16tZYvX67w8HDNmDHDZQYoMDBQy5YtU0JCgkaOHCkvLy916NBB06dPV61atUoElRtvvFHLli3TtGnTNGrUKNlsNrVq1UqLFy/WLbfccsm1X4iXl5fefvttTZ48WZMmTZLNZtPDDz+s66+/XseOHXOOe/7551WvXj0tW7ZM8+bNU61atRQREaGhQ4eqRo0aF3ztkJAQzZkzR2+88YaGDh2qoqIi3XzzzVqwYIGaNm0q6Vy4+Prrr53BpF+/fnrnnXc0depUZzA6f5O/Bx988A/3xc/PT0uXLtXUqVOVkJCg7OxsNWjQQC+88IKefvrpy/o8AaayOXhaFgAAMBRrVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGKvSX5783XffyeFwcP8AAAAqkYKCAtlstos+yf28Sj+j4nA4/vA5H7g0DodDdrudzyWMwnEJ03BMlp9L/fld6WdUzs+ktGzZ0uJKKrecnBylpaUpODj4kh5cB1QEjkuYhmOy/Pz2sRZ/pNLPqAAAgKsXQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVSJJsNpt8fX1ls9msLgUAACcPqwtwF8XFDlWpYm4I8PX1VWhoqNVlXBLTP5cAgPJDUKkgVarYlLg0VT9nZVtdSqXW0L+Ghj3ezuoyAAAVhKBSgX7Oyta+Q6esLgMAgEqDNSoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxV6qCSlZWl5s2bl/izatUqSVJaWppiYmLUpk0bRUVFafHixS7bFxcXa8aMGYqMjFSbNm3Ut29fHTx4sHz2BgAAXFVKfXny7t275e3trS+//NLlLqY1atTQiRMn1KdPH0VFRWncuHH6/vvvNW7cOFWrVk29evWSJM2aNUvLli3Tyy+/rICAACUkJCg2NlYffvihvLy8ym/PAABApVfqoLJnzx41btxY9evXL9H39ttvy9PTU+PHj5eHh4eCgoJ04MABzZ07V7169ZLdbteCBQs0bNgwdenSRZI0ffp0RUZGau3aterRo8dl7xAAALh6lPrUz48//qigoKAL9qWkpKh9+/by8Pj/+adjx47KyMjQ0aNHtXv3bp09e1YRERHO/po1ayo0NFRbtmwpQ/kAAOBqVqYZldq1a+vxxx/X/v37dcMNN+jZZ59Vp06dlJmZqWbNmrmMPz/z8uuvvyozM1OSFBgYWGLM+b6ycDgcysnJKfP2V9r5B/6h/OTm5srhcFhdBq6w3Nxcl78Bq3FMlh+Hw3FJD8ItVVApLCzUTz/9pODgYI0cOVLVq1fXxx9/rH79+mnhwoXKy8srsc7E29tbkpSfn+/8wl5ozKlTZb+1fEFBgdLS0sq8/ZVWmR74V1ns37+fbxRuJCMjw+oSABcck+XjUtamliqoeHh4aNOmTapatap8fHwkSTfffLP27t2r+fPny8fHR3a73WWb/Px8SZKfn59zG7vd7vz3+TGXM+Pg6emp4ODgMm9/pV1KYkTpNGnShBkVN5Cbm6uMjAw1btyYWUkYgWOy/KSnp1/SuFKf+qlWrVqJthtvvFHffvutAgICdPjwYZe+8x/7+/ursLDQ2daoUSOXMc2bNy9tKU42m01+fn5l3h6VD98g3Iuvry//x2EUjsnLd6m/xJdqMe3evXvVtm1bbdq0yaV9586dCg4OVnh4uFJTU1VUVOTs27hxo5o0aaK6desqJCRE1atXd9n+9OnT2rVrl8LDw0tTCgAAcAOlCipBQUFq2rSpxo8fr5SUFO3bt09TpkzR999/r2effVa9evXSmTNn9OKLLyo9PV2rVq3SokWL1L9/f0nnzkXFxMQoMTFR69at0+7duzVkyBAFBASoW7duV2QHAQBA5VWqUz9VqlTRnDlzNHXqVD3//PM6ffq0QkNDtXDhQufVPvPmzdOkSZMUHR2tevXqacSIEYqOjna+RlxcnAoLCxUfH6+8vDyFh4dr/vz58vT0LN89AwAAlV6p16hce+21mjJlykX7W7VqpaSkpIv2V61aVcOHD9fw4cNL+9YAAMDN8FBCAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYZQ4q+/fvV1hYmFatWuVsS0tLU0xMjNq0aaOoqCgtXrzYZZvi4mLNmDFDkZGRatOmjfr27auDBw+WvXoAAHBVK1NQKSgo0LBhw5STk+NsO3HihPr06aNGjRpp5cqVGjRokBITE7Vy5UrnmFmzZmnZsmWaMGGCli9fruLiYsXGxsput1/+ngAAgKtOmYLKzJkzVb16dZe29957T56enho/fryCgoLUq1cvPfXUU5o7d64kyW63a8GCBYqLi1OXLl0UEhKi6dOnKzMzU2vXrr38PQEAAFedUgeVLVu2KCkpSS+//LJLe0pKitq3by8PDw9nW8eOHZWRkaGjR49q9+7dOnv2rCIiIpz9NWvWVGhoqLZs2XIZuwAAAK5WHn8+5P87ffq0RowYofj4eAUGBrr0ZWZmqlmzZi5t9evXlyT9+uuvyszMlKQS29WvX9/ZV1YOh8PlNJRpbDabfH19rS7jqpKbmyuHw2F1GbjCcnNzXf4GrMYxWX4cDodsNtufjitVUBk7dqzCwsJ07733lujLy8uTl5eXS5u3t7ckKT8/3/lFvdCYU6dOlaaMEgoKCpSWlnZZr3El+fr6KjQ01Ooyrir79+/nG4UbycjIsLoEwAXHZPn4fSa4kEsOKmvWrFFKSoo+/PDDC/b7+PiUWBSbn58vSfLz85OPj4+kc2tVzv/7/JjLnW3w9PRUcHDwZb3GlXQpiRGl06RJE2ZU3EBubq4yMjLUuHFjZiVhBI7J8pOenn5J4y45qKxcuVLHjh1Tly5dXNrHjBmjTz75RAEBATp8+LBL3/mP/f39VVhY6Gxr1KiRy5jmzZtfahkXZLPZ5Ofnd1mvgcqFbxDuxdfXl//jMArH5OW71F/iLzmoJCYmKi8vz6WtW7duiouLU8+ePfWvf/1Ly5cvV1FRkapWrSpJ2rhxo5o0aaK6deuqRo0aql69ujZt2uQMKqdPn9auXbsUExNzqWUAAAA3cslBxd/f/4LtdevWlb+/v3r16qV58+bpxRdfVGxsrLZv365FixZp3Lhxks6dh4qJiVFiYqLq1KmjBg0aKCEhQQEBAerWrVv57A0AALiqlGox7R+pW7eu5s2bp0mTJik6Olr16tXTiBEjFB0d7RwTFxenwsJCxcfHKy8vT+Hh4Zo/f748PT3LqwwAAHAVuayg8uOPP7p83KpVKyUlJV10fNWqVTV8+HANHz78ct4WAAC4CR5KCAAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYq9RB5dixYxo+fLg6duyosLAw9evXT/v27XP2p6WlKSYmRm3atFFUVJQWL17ssn1xcbFmzJihyMhItWnTRn379tXBgwcvf08AAMBVp9RBZdCgQTpw4IDmzp2rFStWyMfHR0899ZRyc3N14sQJ9enTR40aNdLKlSs1aNAgJSYmauXKlc7tZ82apWXLlmnChAlavny5iouLFRsbK7vdXq47BgAAKj+P0gw+deqUGjRooP79+6tZs2aSpIEDB+q+++7T3r17lZycLE9PT40fP14eHh4KCgpyhppevXrJbrdrwYIFGjZsmLp06SJJmj59uiIjI7V27Vr16NGj3HcQAABUXqWaUalVq5amTp3qDCnHjx/XokWLFBAQoODgYKWkpKh9+/by8Pj/+adjx47KyMjQ0aNHtXv3bp09e1YRERHO/po1ayo0NFRbtmwpp10CAABXi1LNqPzWSy+9pPfee09eXl6aPXu2/Pz8lJmZ6Qwx59WvX1+S9OuvvyozM1OSFBgYWGLM+b6ycDgcysnJKfP2V5rNZpOvr6/VZVxVcnNz5XA4rC4DV1hubq7L34DVOCbLj8PhkM1m+9NxZQ4qTz75pB555BEtXbpUgwYN0rJly5SXlycvLy+Xcd7e3pKk/Px85xf2QmNOnTpV1lJUUFCgtLS0Mm9/pfn6+io0NNTqMq4q+/fv5xuFG8nIyLC6BMAFx2T5+H0euJAyB5Xg4GBJ0qRJk7Rt2zYtWbJEPj4+JRbF5ufnS5L8/Pzk4+MjSbLb7c5/nx9zOTMOnp6eznpMdCmJEaXTpEkTZlTcQG5urjIyMtS4cWNmJWEEjsnyk56efknjShVUjh8/ruTkZN11113OdShVqlRRcHCwDh8+rICAAB0+fNhlm/Mf+/v7q7Cw0NnWqFEjlzHNmzcvTSkubDab/Pz8yrw9Kh++QbgXX19f/o/DKByTl+9Sf4kv1WLao0ePaujQoUpOTna2FRQUaNeuXQoKClJ4eLhSU1NVVFTk7N+4caOaNGmiunXrKiQkRNWrV9emTZuc/adPn9auXbsUHh5emlIAAIAbKFVQadasmTp16qSJEydqy5Yt2rNnj0aOHKnTp0/rqaeeUq9evXTmzBm9+OKLSk9P16pVq7Ro0SL1799f0rlzUTExMUpMTNS6deu0e/duDRkyRAEBAerWrdsV2UEAAFB5lXqNyrRp0zR16lQNGTJE2dnZuuWWW7R06VJdd911kqR58+Zp0qRJio6OVr169TRixAhFR0c7t4+Li1NhYaHi4+OVl5en8PBwzZ8/X56enuW3VwAA4Kpgc1TyFYk7duyQJLVs2dLiSv7c89P+o32Hyn51E6SgBrX06tAuVpeBCpKTk6O0tDS1aNGC9QAwAsdk+bnUn988lBAAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACwFg2m02+vr6y2WxWlwLAIh5WFwDAGsXFDlWpYnYA8PX1VWhoqNVl/KnK8LkEKiuCCuCmqlSxKXFpqn7Oyra6lEqtoX8NDXu8ndVlAFctggrgxn7Oyta+Q6esLgMALoo1KgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwVqmDysmTJzV69Gh16tRJbdu21aOPPqqUlBRnf3Jysh544AG1bt1ad999tz7++GOX7fPz8zVu3DhFREQoLCxML7zwgo4fP375ewIAAK46pQ4qQ4cO1Xfffadp06Zp5cqVatGihZ555hn99NNP2rdvn/r376/IyEitWrVKDz30kEaMGKHk5GTn9mPHjtW3336rmTNn6u2339ZPP/2kuLi4ct0pAABwdfAozeADBw5ow4YNWrZsmdq1aydJeumll7R+/Xp9+OGHOnbsmJo3b64hQ4ZIkoKCgrRr1y7NmzdPERERysrK0po1azRnzhzdcsstkqRp06bp7rvv1nfffaewsLBy3j0AAFCZlSqo1K5dW3PnzlXLli2dbTabTTabTadPn1ZKSoruuOMOl206duyoSZMmyeFwKDU11dl2XpMmTeTv768tW7aUOag4HA7l5OSUaduKYLPZ5Ovra3UZV5Xc3Fw5HA6ry6i0OCbLH8eke8jNzXX5G2XncDhks9n+dFypgkrNmjXVuXNnl7bPP/9cBw4c0P/93/9p9erVCggIcOmvX7++cnNzdeLECWVlZal27dry9vYuMSYzM7M0pbgoKChQWlpambe/0nx9fRUaGmp1GVeV/fv3843iMnBMlj+OSfeSkZFhdQlXBS8vrz8dU6qg8ntbt27VqFGj1K1bN3Xp0kV5eXkl3vT8x3a7Xbm5uRcsytvbW/n5+WWuw9PTU8HBwWXe/kq7lMSI0mnSpAm/vV4GjsnyxzHpHnJzc5WRkaHGjRszK3mZ0tPTL2lcmYPKl19+qWHDhqlt27ZKTEyUdC5w2O12l3HnP/b19ZWPj0+JfunclUCX8wW32Wzy8/Mr8/aofPgGAdNwTLoXX19ffu5cpkv9halM91FZsmSJnnvuOXXt2lVz5sxxnsoJDAzU4cOHXcYePnxYfn5+qlGjhgICAnTy5MkSYeXw4cPy9/cvSykAAOAqVuqgsmzZMk2YMEGPP/64pk2b5nIq55ZbbtHmzZtdxm/cuFFt27ZVlSpV1K5dOxUXFzsX1UrnzutmZWUpPDz8MnYDAABcjUoVVPbv36/JkyfrzjvvVP/+/XX06FEdOXJER44cUXZ2tnr37q3t27crMTFR+/bt04IFC/TZZ58pNjZWkuTv76/u3bsrPj5emzZt0vbt2zV06FC1b99ebdq0uRL7BwAAKrFSrVH5/PPPVVBQoC+++EJffPGFS190dLRefvllzZo1SwkJCXr77bfVsGFDJSQkKCIiwjluwoQJmjx5sgYPHixJ6tSpk+Lj48thVwAAwNWmVEFlwIABGjBgwB+O6dSpkzp16nTRfj8/P02cOFETJ04szVsDAAA3xEMJAQCAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjXVZQefPNN9W7d2+XtrS0NMXExKhNmzaKiorS4sWLXfqLi4s1Y8YMRUZGqk2bNurbt68OHjx4OWUAAICrVJmDytKlS/Xqq6+6tJ04cUJ9+vRRo0aNtHLlSg0aNEiJiYlauXKlc8ysWbO0bNkyTZgwQcuXL1dxcbFiY2Nlt9vLvBMAAODq5FHaDbKysjRmzBht2rRJjRs3dul777335OnpqfHjx8vDw0NBQUE6cOCA5s6dq169eslut2vBggUaNmyYunTpIkmaPn26IiMjtXbtWvXo0aM89gkAgCvCZrPJ19dXNpvN6lLcRqmDyg8//CBPT0998MEHeuONN3To0CFnX0pKitq3by8Pj///sh07dtSbb76po0eP6pdfftHZs2cVERHh7K9Zs6ZCQ0O1ZcuWMgcVh8OhnJycMm1bEc4f2Cg/ubm5cjgcVpdRaXFMlj+Oyctns9nk5e2tqlXMXT7p6+ur0NBQq8v4U0XFxbLn5xt9TDocjksKfKUOKlFRUYqKirpgX2Zmppo1a+bSVr9+fUnSr7/+qszMTElSYGBgiTHn+8qioKBAaWlpZd7+SqssB3Zlsn//fuXm5lpdRqXFMVn+OCYv3/njMnFpqn7Oyra6nEqroX8NDXu8XaU4Jr28vP50TKmDyh/Jy8sr8abe3t6SpPz8fOcn7EJjTp06Veb39fT0VHBwcJm3v9KYIix/TZo0Mfo3BdNxTJY/jsnLd/64/DkrW/sOlf1nAs4x/ZhMT0+/pHHlGlR8fHxKLIrNz8+XJPn5+cnHx0eSZLfbnf8+P+ZypqFtNpv8/PzKvD0qH05bwDQckzCN6cfkpf7CVK4nAgMCAnT48GGXtvMf+/v7O0/5XGiMv79/eZYCAACuAuUaVMLDw5WamqqioiJn28aNG9WkSRPVrVtXISEhql69ujZt2uTsP336tHbt2qXw8PDyLAUAAFwFyjWo9OrVS2fOnNGLL76o9PR0rVq1SosWLVL//v0lnVubEhMTo8TERK1bt067d+/WkCFDFBAQoG7dupVnKQAA4CpQrmtU6tatq3nz5mnSpEmKjo5WvXr1NGLECEVHRzvHxMXFqbCwUPHx8crLy1N4eLjmz58vT0/P8iwFAABcBS4rqLz88ssl2lq1aqWkpKSLblO1alUNHz5cw4cPv5y3BgAAbsDcu+oAAAC3R1ABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADCWJUGluLhYM2bMUGRkpNq0aaO+ffvq4MGDVpQCAAAMZklQmTVrlpYtW6YJEyZo+fLlKi4uVmxsrOx2uxXlAAAAQ1V4ULHb7VqwYIHi4uLUpUsXhYSEaPr06crMzNTatWsruhwAAGCwCg8qu3fv1tmzZxUREeFsq1mzpkJDQ7Vly5aKLgcAABjMo6LfMDMzU5IUGBjo0l6/fn1nX2kUFBTI4XBo+/bt5VLflWKz2fRgRA0VFlWzupRKzaNqFe3YsUMOh8PqUio9jsnywTFZvjguL19lOSYLCgpks9n+dFyFB5Xc3FxJkpeXl0u7t7e3Tp06VerXO7+Tl7KzVqtV3evPB+GSVIavd2XAMVl+OCbLD8dl+TD9mLTZbGYGFR8fH0nn1qqc/7ck5efny9fXt9SvFxYWVm61AQAAs1T4GpXzp3wOHz7s0n748GH5+/tXdDkAAMBgFR5UQkJCVL16dW3atMnZdvr0ae3atUvh4eEVXQ4AADBYhZ/68fLyUkxMjBITE1WnTh01aNBACQkJCggIULdu3Sq6HAAAYLAKDyqSFBcXp8LCQsXHxysvL0/h4eGaP3++PD09rSgHAAAYyuYw/folAADgtngoIQAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAKOkpKSooKDA6jIAGIKg4uby8vJkt9slSfv27dP8+fO1detWi6uCO3vuuee0Z88eq8sASvjll1+0fv165eXl6dixY1aX4zYIKm5sy5Yt6tSpk1JTU3X48GE99NBDmj17tnr37q1PP/3U6vLgpurUqaPs7GyrywCc7Ha7hgwZoqioKPXv319HjhzRmDFj1KdPH505c8bq8q56ljyUEGaYNm2abr/9drVs2VLvvfeeqlevri+++EIrV67Um2++qXvuucfqEuGGOnXqpP79+6tz58664YYb5O3t7dI/ePBgiyqDu5o9e7Z2796tt99+WwMGDJAk9e7dW6NGjVJiYqLGjh1rbYFXOR5K6MZat26tjz76SNdff72efvppNWzYUOPHj9ehQ4d0zz33aPv27VaXCDcUFRV10T6bzaZ169ZVYDWA1K1bN40dO1Z/+ctfFBYWpg8++EDXX3+9kpOTNWLECK1fv97qEq9qzKi4MV9fX9ntduXn5ys1NVUPPfSQJOno0aOqUaOGxdXBXX311VdWlwC4yMrKUqNGjUq0BwYG6tSpUxZU5F5Yo+LGOnTooISEBI0ePVpVqlRRZGSk0tLSNHHiRHXo0MHq8uDmtmzZouXLl+vMmTNKT09XYWGh1SXBTQUFBSk5OblE+8cff6zg4GALKnIvzKi4sTFjxmjMmDH68ccflZCQoOrVq+tf//qXvLy8NGrUKKvLg5s6c+aMnnnmGW3btk02m0233nqrEhMT9b///U8LFy6Uv7+/1SXCzTz33HMaMmSI0tPTVVRUpNWrV2v//v36/PPPNX36dKvLu+qxRgUu7Ha7vLy8rC4Dbmz8+PHatWuXEhIS1LNnT33wwQey2+0aNmyYmjZtqqlTp1pdItzQN998ozfffFO7du1ScXGxbrzxRvXt21d33XWX1aVd9ZhRcXPHjx/X/v37VVxcLElyOByy2+3asWOHnn32WYurgzv697//ralTp+r66693tgUFBWn06NEaNGiQhZXBXTkcDnXq1EmdOnUq0bdv3z4FBQVZUJX7IKi4sQ8++EDx8fGy2+2y2WxyOByy2WySpAYNGhBUYInjx4+rXr16Jdpr1qypnJwcCyqCuxs1apRefvlllzaHw6G33npLb7zxhrZt22ZRZe6BxbRubM6cOerevbs+/vhj1ahRQytWrNAbb7yh+vXr67nnnrO6PLipli1bXvCGg0uXLlVoaKgFFcHdffvtt4qPj3d+nJ6erocfflgzZszQM888Y2Fl7oEZFTd28OBBzZw5U0FBQWrevLmOHz+uqKgoFRYWas6cObrvvvusLhFuaOjQoXr66ae1fft2FRYWavbs2dq3b59++OEHzZ8/3+ry4Ibefvtt9enTR6NHj1ZgYKBmzZqlm266SWvWrOGqnwrAjIob8/Lyci6cveGGG7R3715J0s0336wDBw5YWRrcWNu2bbV8+XL5+fnphhtu0Pfff6+AgAAtXbqUy+ZhiaCgIL3zzjv65ptvNHPmTI0cOVLvvvsuIaWCMKPixm6++Wa9//77Gjp0qJo1a6avv/5azzzzjNLT0+Xp6Wl1eXBjISEheuWVV6wuA25sy5YtJdri4uI0duxY7d27V6mpqTp/0Wx4eHhFl+dWuDzZjaWkpCg2NlZxcXGKjo7W3XffrWuvvVa//vqr/vrXv2rixIlWlwg3VFxcrA8//FBbt25VQUGBfv8tasqUKRZVBncSEhLivMjgj9hsNqWlpVVQVe6JoOLmsrKyZLfbdf311ys9PV3Lly9XYGCgevfuzf1UYImJEydq6dKlCgkJUfXq1Uv0v/POOxZUBXdz6NChSx7boEGDK1gJCCoAjNKhQweNHDlS0dHRVpcCwACsUXEzTzzxxCWPXbx48RWsBLgwu93OOX9Y7vbbb9eKFStUu3ZtRUVFOe8xdSE80fvKIqi4md9OUebn5+uTTz5RixYt1KZNG3l4eGjnzp3avn2780nKQEWLjIzU119/rccff9zqUuDGoqOj5ePj4/z3HwUVXFmc+nFjo0aNUq1atTRy5EiX9ldffVX79u3TzJkzLaoM7mzBggWaMWOGbrvtNgUFBZW4Am3w4MEWVQbACgQVNxYWFqbVq1ercePGLu0ZGRm6//779f3331tSF9xbVFTURftsNhvT7LBESkrKBa9Es9lsPIPqCuPUjxurWbOmdu3aVSKopKSkqG7dutYUBbf31VdfWV0C4OKNN97QzJkzVbNmzRJXohFUrjyCiht75JFHNHr0aO3bt08333yziouLtXXrVi1dulTDhw+3ujy4uaNHj17wPirXXXedRRXBXb377rsaMmSI+vfvb3UpbolTP27uzTff1JIlS3TkyBFJUmBgoPr27avHHnvM4srgrrZu3apRo0bpf//7n0v7+ad7c3MtVLTWrVvrk08+4X4pFiGoQJJ04sQJ2Ww2XXPNNVaXAjf3wAMPyM/PT3369FGNGjVK9Ldv396CquDO+vTpo169eqlHjx5Wl+KWOPXjZtasWaO//vWv8vLy0po1a/5w7P33318hNQG/tXfvXq1Zs0ZBQUFWlwJIknr06KEJEyZo586datq0aYm7dvO98spiRsXNhISEaMOGDapbt65CQkIuOo4pdlilW7duSkxMVKtWrawuBZAkvldajKACwCirV69WUlKSxo0bp6ZNm/Ikb8DNEVQAGKVbt2765ZdfVFRUdMF+fnsF3AtrVNzMnz2z4re4sRas8Oyzz1pdAgCDEFTczG+fWXHy5EktW7ZMXbt2VVhYmDw8PLRjxw6tXbtWTz/9tMWVwl3x1GQAv8WpHzf27LPPqm3bturbt69L+zvvvKMvv/xSb7/9tkWVwZ29/vrrf9jPs34A98KMihtLTk4u8UBCSerUqZMSExMtqAiQVq1a5fJxUVGRjh07Jg8PD7Vt29aiqgBYhaDixurXr6/k5GTdcMMNLu1ffvkld2CEZS70rJ8zZ87o//7v/wgqgBvi1I8bS0pK0oQJE9S9e3e1bNnS+ayfL774QomJibrnnnusLhFwSk9P19NPP61vvvnG6lIAVCBmVNzYI488omrVqmnJkiVau3atbDabWrRooVmzZqlz585Wlwe4yM7OVnZ2ttVlAKhgzKi4ud27d2vPnj0qKiqSzWaTw+GQ3W7Xjh07NHHiRKvLgxu60GLas2fP6pNPPlGLFi00Z84cC6oCYBVmVNzYwoUL9corrzifSns+s9psNt1yyy0WVwd39fvFtJLk6empiIgIDRkyxIKKAFiJGRU3dscdd+iee+7R4MGD1bVrV61evVonT57UCy+8oAcffFBPPfWU1SUCANxcFasLgHUyMzP10EMPydvbWyEhIdqxY4eaN2+ukSNHasWKFVaXB7jIzc3V5MmTrS4DQAUjqLgxPz8/5/NUGjVqpPT0dElSUFCQDh06ZGVpcDP5+fkaP368OnTooNtuu00JCQkqLi529n/77bfq0aOHlixZYmGVAKxAUHFjbdu21dy5c5Wbm6vQ0FB99dVXKi4uVmpqqqpVq2Z1eXAjr7zyit577z3dfvvtuuOOO/Tuu+/qzTffVHFxscaPH6++ffvKw8ODuyUDbog1Km5sz549evrpp/XUU0/p0Ucf1b333qvTp08rNzdXzzzzjIYOHWp1iXATXbt2Vb9+/fToo49Kkv7zn/9o0qRJioiI0IoVK9SnTx/9/e9/l5eXl8WVAqhoBBU3l5eXp5ycHNWpU0dHjx7VRx99pICAAN19991WlwY30rJlS33yySe6/vrrJZ27bX7Lli1Vq1Ytvfrqq+rQoYPFFQKwCpcnuzkfHx/5+PhIkq699lqu9IElCgoK5Ofn5/y4atWq8vb21osvvkhIAdwca1QAGKtVq1ZWlwDAYgQVAEaw2WyX1AbAvXDqB4ARJk6cKG9vb+fHBQUFSkhIKHEF2pQpUyq6NAAWIqgAsFx4eLiOHDni0hYWFqYTJ07oxIkTFlUFwARc9QMAAIzFGhUAAGAsTv0AMMq+ffs0YcIEbd26VQUFBSX609LSLKgKgFUIKgCMMnbsWB07dkzDhg1TjRo1rC4HgMUIKgCMsm3bNr377ru66aabrC4FgAFYowLAKLVr15anp6fVZQAwBEEFgFFiYmI0bdo0nTlzxupSABiAy5MBGKVPnz5KSUlRUVGR6tatW+KJyevWrbOoMgBWYI0KAKO0a9dO7dq1s7oMAIZgRgUAABiLGRUAxtm5c6fmz5+vPXv2yMPDQ8HBwXryySd5mjLghlhMC8Aomzdv1t/+9jcdOHBAt956q8LDw7V//3499thjSk1Ntbo8ABWMUz8AjPLoo4+qWbNmGjdunEv7uHHjlJ6ernfeeceiygBYgRkVAEbZtWuXnnjiiRLtMTEx2rlzpwUVAbASQQWAUWrXrq0TJ06UaD9+/HiJS5UBXP0IKgCM0rVrV02YMEH79u1ztqWnp2vixImKioqysDIAVmCNCgCjnDp1Sn369FFaWprzoYTZ2dkKCQnRggULVLt2bYsrBFCRCCoAjFNcXKz169dr7969cjgcat68uW677TZVqcIkMOBuCCoAAMBY3PANgOVatGihb7/9VnXr1lVISIhsNttFx6alpVVgZQCsRlABYLnJkyc716NMnjz5D4MKAPfCqR8AxsnOztaJEyfUqFEjSdLatWvVvn17XXPNNdYWBqDCsTINgFF++OEH3XHHHXr33XedbS+//LJ69OihvXv3WlgZACswowLAKL1791bDhg01btw45w3eCgsL9dJLLykrK0sLFiywuEIAFYkZFQBG2blzpwYOHOhyF1oPDw/169dP27Zts7AyAFYgqAAwSrVq1XTw4MES7YcPH+YW+oAbIqgAMMpdd92lcePGKTk5WWfPntXZs2e1ceNGjRs3TnfeeafV5QGoYKxRAWCUnJwc/f3vf9f69etdLlO+8847NXnyZFWvXt3C6gBUNIIKACP99NNP2rt3rzw8PBQUFKTGjRtbXRIACxBUAFQamZmZCggIsLoMABWIO9MCMMrBgwf1z3/+U3v27FFRUZEkyeFwyG636/jx49q1a5fFFQKoSCymBWCU8ePH68cff9Rdd92lrKwsde/eXTfddJOOHj2qsWPHWl0egArGjAoAo2zdulWzZs1Shw4dtH79et1xxx1q1aqVpk+frq+//loPP/yw1SUCqEDMqAAwit1udz7jp0mTJvrxxx8lSffffz83fAPcEEEFgFEaNGigPXv2SDoXVNLS0iRJxcXFOnv2rJWlAbAAp34AGCU6OlojRozQK6+8oi5duuiJJ57Qddddpw0bNqh58+ZWlwegghFUABilX79+8vb2lsPhUKtWrTRw4EDNnj1bgYGBeuWVV6wuD0AF4z4qAADAWMyoADBOSkqKtm7dqoKCAv3+d6nBgwdbVBUAKzCjAsAob7zxhmbOnKmaNWuWeK6PzWbTunXrLKoMgBUIKgCMctttt6l3797q37+/1aUAMACXJwMwSnZ2tnr06GF1GQAMQVABYJS2bdvqu+++s7oMAIZgMS0Ao/To0UMTJkzQzp071bRpU3l5ebn033///dYUBsASrFEBYJSQkJCL9tlsNuedagG4B4IKAAAwFmtUAACAsQgqAADAWAQVAABgLIIKAMuwRA7AnyGoALDE3r179eijj1pdBgDDEVQAWOKzzz7jxm4A/hRBBQAAGIv7qAC4Ynbu3KmEhATt3LlTxcXFat26tZ5//nmtX79er7/+unPc4MGD9dxzzyk/P1/z5s3Thx9+qEOHDikwMFAPPvigYmNjVaXKud+revfuLX9/f9ntdn3zzTcKCwvTwoULlZ+fr9dee00ff/yxjh07piZNmujZZ5/VX//6V6t2H0A54Bb6AK6IM2fOKDY2Vh07dtTMmTNlt9s1e/ZsPfPMM/rggw+UmZmpFStWKCkpSQEBAXI4HBowYIC+//57DR48WCEhIdq0aZNeffVVHTx4UBMmTHC+9qeffqqePXtq9uzZKi4ulsPh0KBBg7R161bFxcUpKChIX3zxhYYMGSK73c5t94FKjKAC4IpIT0/XiRMn9MQTT6ht27aSpKZNmyopKUlVq1ZVQECAJKlNmzaSpK+//lr//e9/NW3aNHXv3l2SdOutt8rHx0evvfaannjiCd14442SJE9PT40bN875HKANGzZo/fr1mj59unMGJTIyUrm5uUpMTFSPHj3k4cG3O6AyYo0KgCvixhtvVJ06dTRgwACNHj1aX3zxha699loNHz7cGVJ+a/PmzfLw8NDdd9/t0t6zZ09n/3m/f1hhcnKybDabOnfurMLCQuefqKgoHTlyRHv37r1CewngSuNXDABXRLVq1bR06VLNnj1bn376qZKSkuTj46P77rtP8fHxJcafOnVKtWvXVtWqVV3a69WrJ0nKzs52ee3fOnnypBwOh3Pm5vcOHz6sFi1aXO4uAbAAQQXAFdO0aVMlJCSoqKhI27dv17/+9S+9++67atSoUYmxtWrV0okTJ1RUVOQSVg4fPixJql279kXfp0aNGvLz89PixYsv2H/DDTdc5p4AsAqnfgBcEZ999pk6duyoI0eOqGrVqgoLC9PYsWNVs2ZN/fLLL86reM5r3769CgsL9dlnn7m0f/DBB5Kkdu3aXfS92rdvr5ycHDkcDrVs2dL5Z8+ePXrjjTdUWFhY/jsIoEIwowLgimjbtq2Ki4s1aNAg9evXT9WqVdOnn36q7OxsdevWzblu5KOPPlLr1q3VqVMndejQQfHx8crKylJISIg2b96st956S9HR0QoODr7oe3Xu3Fnh4eEaOHCgBg4cqKCgIG3fvl0zZsxQZGSk6tSpU1G7DaCccR8VAFfM9u3b9dprr2nnzp3Kzc3VjTfeqAEDBujOO+9UVlaWBg0apN27d+vBBx/U2LFjlZubqxkzZujjjz/W8ePH1bBhQz300EPq06ePy31UJOmdd95xea+cnBy99tpr+uyzz3Ts2DH5+/ure/fuGjRokLy9vSt83wGUD4IKAAAwFmtUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGCs/wc9LufCj31b8QAAAABJRU5ErkJggg==", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Análisis de la columna 'manufacturer':\n", + "manufacturer\n", + "adidas 519\n", + "Asics 117\n", + "nike 102\n", + "Hoka 48\n", + "Brooks 36\n", + "New Balance 36\n", + "On Running 7\n", + "Skechers 7\n", + "361° 4\n", + "NNormal 4\n", + "Adidas 4\n", + "Name: count, dtype: int64\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAIVCAYAAAD/HNTLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjPklEQVR4nO3deVxN+eMG8OemUk32pRpki5JQUcRkyTLmixnLzBjE2HfGWpqyFI0QZsY2dkIjZB8zthk7qRjLyFBEtiwh7cs9vz/8utN1K5XqfC7P+/Wa1+icc+99bt26zz3ncz5HIUmSBCIiIiIB6cgdgIiIiCg3LCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIihHnU6SSwtcava9YVOiD1b9/f1haWqr+s7Kygp2dHXr27ImAgABkZGSobe/i4oJp06bl+/6PHj0Kd3f3t243bdo0uLi4FPpxCuvevXuwtLTEzp07NdalpaWhbdu26NGjB5KTk4stQ//+/dG/f/9iu3/R/Pbbb2jXrh1sbGwwY8aMIrvf5cuXY+3atUV2f0Qi0ZU7AJGcrK2tMXPmTABAZmYmXr58iRMnTmDu3LkICwvDjz/+CB2d131+6dKlMDY2zvd9b9iwIV/bjR49GgMGDChw9ndVtWpVBAUFwdzcXGPd9u3bkZGRgRUrVsDQ0LDEs72vfHx8UKtWLfj5+cHExKTI7venn37C2LFji+z+iETCokIfNGNjY9ja2qotc3FxQZ06deDr64v9+/fj888/B/C61BSHnIpCSdDX19d47lnat2+Pzz77DBUrVizZUO+5Fy9eoFWrVmjevLncUYi0Bg/9EOXA1dUVJiYm2Lp1q2rZm4dkskpM48aN0aJFC0yZMgWxsbEAXh/SOH/+PM6fPw9LS0uEhIQgJCQElpaW2Lp1K9q1awd7e3ucPn1a49APAKSnp2POnDlwcHBAs2bN4O7ujri4ONX6nA6ZZN1/SEiIatmtW7cwduxYODo6wsHBASNGjEBUVBSAnA/9REdHY/z48ejVqxdcXFzQv39/hIeHq9Zn3eb333/H+PHjYWdnB0dHR3h5eSEpKSnP7+mDBw8wduxYNG3aFK1atcL69etz3G779u3o0qULbGxs0LZtWyxZsgSZmZl53relpSV+/fVXTJs2DU2bNoWjoyPmzJmDlJQUzJs3Dy1atEDz5s3h6emJ1NRU1e3i4uLg7e2tOhzj6OiIMWPG4N69e2rfa09PT6xatQpt27ZFo0aN8M033+Dy5cuqbXL6GWb//mb9bABg2bJlsLS0VD3G9u3b0bNnT9ja2qJx48b44osv8Pvvv6vdV14/x6z7Xbp0qerfb8sDINfXIwCEhYXB1dUVTZo0gaOjo8brb+fOnbC2tsb27dvRqlUrODo6IjIyMs+fEVFhsagQ5UBHRwdOTk64fPmyxlgVAAgPD4ebmxs6deqE1atXw8PDA+fOncPkyZMBADNnzoS1tTWsra0RFBSEhg0bqm67dOlSuLu7Y8aMGbCzs8vx8X///Xf8888/8PPzg7u7O44dO4Zhw4a99Q07u9jYWPTu3RvR0dGYNWsWFixYgKdPn+Lbb7/FixcvNLaPjIxEz549ce/ePXh5ecHf3x8KhQLffvstzp8/r7btzJkzUa1aNSxfvhxDhgzBjh07sGLFilyzJCUlwdXVFTdu3MDs2bMxffp0bN++HRcvXlTbbuXKlZg+fTqcnJzwyy+/oF+/fli9ejWmT5/+1ue7YMEC6OvrY+nSpejevTs2bdqE7t274+HDh/D390f//v2xY8cObNq0CcDrwacjRozA6dOnMWXKFKxduxZjx47F2bNnVYcDsxw8eBBHjx6Fl5cXFi1ahKdPn2LcuHH5/nk0bNgQQUFBAIAvv/wSQUFBqFq1KrZs2YIZM2agQ4cOWLlyJfz9/aGvr48pU6bg0aNHAN7+c3zzfgvqzddjaGgoBg4cCAMDA/z444/4/vvvcf78eQwYMAApKSmq22VmZmLdunXw9fWFh4cH6tatW+DHJsoPHvohykXlypWRnp6OFy9eoHLlymrrwsPDYWBggOHDh0NfXx8AUL58eVy5cgWSJMHCwkI1nuXNwyt9+/ZF586d83zsChUqYO3atTAyMlJ9PWbMGJw4cQLt2rXLV/4NGzYgLS0N69evR5UqVQAAVlZW6NOnDy5duqTxxrJ06VLo6+sjICBAlb1t27bo2rUr5s+fjx07dqi2bdOmjWqgsJOTE06fPo1jx46pitqbdu3ahQcPHmD//v2wsLAAADRp0gQdO3ZUbfPq1SssX74cvXv3hpeXFwDgk08+Qfny5eHl5YVBgwahXr16uT5fCwsL+Pj4AAAcHR2xfft2pKenw9/fH7q6uvjkk09w8OBBXLhwAQDw+PFjGBoawt3dHc2aNQMANG/eHHfv3tV4w8/IyMDatWtV35fExES4u7sjIiICNjY2uWbKkv0Qo6mpqerfMTExGDJkCEaPHq3atlq1aujZsyfCw8PRpUuXt/4c27Rpo3G/BfHm63HhwoWoXbs2Vq5ciVKlSgF4/bPq0qULgoOD0a9fP9W2I0eORNu2bQv8mEQFwaJClIus0z0VCoXGOgcHByxevBhdu3bFp59+ijZt2uCTTz5RvWnkpUGDBm/dpk2bNqqSArw+7KSrq4vQ0NB8F5Xw8HDY2tqq3tyA129mf/31FwCoHd4AgPPnz6Ndu3ZqA4Z1dXXRpUsXLFu2DImJiarlb74hmpqa4v79+7lmCQsLg7m5uaqkAICZmZna/Vy8eBEpKSlwcXFR24uVdQjj9OnTeRaV7HunSpUqhQoVKqBhw4bQ1f3vz1z58uXx6tUrAICJiQkCAgIgSRLu3buHO3fu4NatW7hw4QLS0tLU7jt78cy6LYB3PiMq61BifHw8bt26hTt37qgO3WVleNvP8V1lfz0mJyfj0qVLGDJkCCRJUv0catSogbp16+L06dNqRSU/r2Wid8WiQpSL2NhYGBgYoHz58hrr7OzssGrVKmzYsAHr16/HqlWrULlyZYwcOfKtp9tmLyC5yf6mBLw+FFWhQgXEx8fnO/+LFy9QvXr1fG//8uVLjT1HwOs9S5IkISEhQbXszTOBdHR08pzH4+XLl6hQoYLG8ipVquDp06eqvAAwfPjwHO/j8ePHeebP6Yyst32v9+7di0WLFuHhw4coX748GjRoAAMDA43tcnq+AKBUKvO8/7e5e/cuZsyYgbNnz0JPTw916tSBlZUVgP+KckF/jgWV/XsUHx8PpVKJ1atXY/Xq1Rrbli5dOtfbEhUXFhWiHGRkZCAkJAT29vaq3d9vcnZ2hrOzM5KTk3Hu3DkEBARgzpw5aNKkCRo3bvxOj//mGJLMzEw8f/4clSpVUluW3ZuDWcuUKaM2ADLL2bNnUb16dY09ReXKlVOVhuyePHkC4PXhp7eVhdxUqFABd+7c0Vie/XmWLVsWAODv749atWppbJtTiXoXYWFhcHd3R//+/TFkyBDVXpL58+erDSDOD4VC8dafx5uUSiWGDx8OPT097NixAw0aNICuri4iIyOxZ88e1XZv+znWqFGjSPIAwEcffQSFQoGBAweiS5cuGut5qjrJgYNpiXIQFBSEJ0+eoE+fPjmunzdvHnr16gVJkmBoaIh27dqpxmw8ePAAwH+fugvj9OnTaoc/Dh48iIyMDNVprcbGxqrBllnefHNt1qwZLl26pPYm9+zZMwwdOhTHjx/XeEwHBwf89ddfantOMjMz8dtvv6FRo0aqsTiF0aJFC9y7dw9XrlxRLYuLi8Pff/+t+rpJkybQ09NDbGwsGjVqpPpPV1cXixYt0jhU9a4uXrwIpVKJcePGqUpKZmYmzpw5A6Bge0s++ugjPH/+XO2MoreVnefPn+P27dv48ssvVc8TAE6cOKH2+Pn5Ob75WitMHuD168ra2hq3bt1S+xnUq1cPS5YsUTujjKikcI8KfdASEhJUb5ZKpRLPnz/HqVOnEBQUhM8//xydOnXK8XYtWrTA+vXrMW3aNHz++edIT0/HmjVrUL58ebRo0QLA6z0EFy9exNmzZws8B8uTJ08wbtw49O/fH9HR0Vi0aBFatWoFJycnAEC7du3w559/Yu7cuXBxcUFYWBh2796tdh8DBw7E7t27MXToUIwYMQJ6enpYsWIFTE1N0a1bN9VYjSxjx47FiRMnMGDAANUn/c2bNyMmJgZr1qwpUP43ffHFFwgICMDYsWMxceJEGBsbY8WKFWploEKFChg6dCh++uknJCQkoHnz5oiNjcVPP/0EhUKhOiRSVLL2evn4+KBXr154+fIltmzZguvXrwN4vQcivxP8tWvXDps2bYKnpye+/PJL3LhxA+vXr891bxwAVKpUCdWqVcOWLVtgamqKsmXL4uTJkwgICADw3/iXt/0cgdevtQsXLiA0NBTNmjUrVJ4skyZNwvDhwzF58mR8/vnnqrN7Ll26pDbol6ikcI8KfdCuXbuG3r17o3fv3ujbty/c3Nxw/fp1zJo1C/Pnz8/1dm3atIG/vz9u3ryJsWPHYtKkSTA0NERAQIBqTEu/fv2gp6eHYcOGqT4l51ffvn1RqVIljBkzBj/99BO6deuGpUuXqg7X9OrVC8OGDcP+/fsxfPhwXLx4ET///LPafZiZmSEwMBBVq1bFtGnT4OHhATMzM2zcuBHlypXTeMx69eohMDAQlSpVgoeHB6ZOnQpJkhAQEICWLVsWKP+b9PX1sXHjRjg4OMDX1xfff/89nJycNAYGT5gwAdOmTcPhw4cxbNgwLFiwAE2bNsXmzZtRpkyZd8rwpubNm2PGjBm4ePEihg0bBj8/P3z88cdYunQpgPztgcjSqlUruLu7Izw8HMOGDcOBAwewdOnStxaD5cuXw8TEBNOmTcOECRNw6dIlrFixAnXq1EFYWBiA/P0cR44ciatXr2LYsGF4+PBhofMAr8+0Wrt2LR49eoTx48fDzc0NpUqVwvr16wt1VhHRu1JIvJIVERERCYp7VIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwtL6Cd8uXrwISZKgp6cndxQiIiLKp/T0dCgUCrULiuZE6/eoSJKU58XQ3uV+09LSiuW+iwszlxxtzM3MJYOZSwYzl4zizJzf92+t36OStSelUaNGRXq/SUlJiIiIgIWFhdZcIZSZS4425mbmksHMJYOZS0ZxZs5+7a+8aP0eFSIiInp/sagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRSUXCoUChoaGUCgUckchIiL6YOnKHaCkKZUSdHTeXj4MDQ1hbW1dLPdNRERE+fPBFRUdHQX8t4TjXuyrIr3f6iZlMKVf0yK9TyIiog/dB1dUAOBe7CtE3X8pdwwiIiJ6C45RISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhJWgYtKbGwsLC0tNf7buXMnACAiIgKurq6wtbWFi4sLAgIC1G6vVCrx888/w9nZGba2thg2bBhiYmKK5tkQERHRe6XApydfv34dpUuXxpEjR9RmbS1TpgyeP3+OQYMGwcXFBd7e3vj777/h7e2Njz76CL169QIALF++HIGBgfDz84OpqSkWLFiAoUOHYt++fdDX1y+6Z0ZERERar8BF5caNG6hVqxaqVq2qsW7jxo3Q09ODj48PdHV1UbduXdy5cwerVq1Cr169kJaWhnXr1mHKlClo27YtAGDx4sVwdnbGoUOH0LVr13d+QkRERPT+KPChn3///Rd169bNcV1YWBgcHR2hq/tf/2nRogWio6Px9OlTXL9+HYmJiXByclKtL1u2LKytrREaGlqI+ERERPQ+K9QelQoVKqBfv364ffs2atasiVGjRqF169Z49OgR6tevr7Z91p6Xhw8f4tGjRwAAMzMzjW2y1hWGJElISkp663ZZFxosTsnJyZAkqVgfI6/Hzv5/baCNmQHtzM3MJYOZSwYzl4zizCxJUr4u/FugopKRkYFbt27BwsIC06ZNg7GxMX777TcMHz4c69evR0pKisY4k9KlSwMAUlNTVU80p21eviz8lPbp6emIiIh463aFudBgQd2+fVv2F2F0dLSsj18Y2pgZ0M7czFwymLlkMHPJKK7M+RmbWqCioquri5CQEJQqVQoGBgYAABsbG9y8eRNr166FgYEB0tLS1G6TmpoKADAyMlLdJi0tTfXvrG3eZU+Hnp4eLCws3rpdfprbu6pdu7ase1Sio6NRq1atYt9zVFS0MTOgnbmZuWQwc8lg5pJRnJkjIyPztV2BD/189NFHGsvq1auHU6dOwdTUFI8fP1Zbl/W1iYkJMjIyVMvMzc3VtrG0tCxoFBWFQgEjI6NC374oifDiMzQ0FOb7kV/amBnQztzMXDKYuWQwc8kojsz53XlQoMG0N2/ehL29PUJCQtSWX716FRYWFnBwcEB4eDgyMzNV686dO4fatWujUqVKsLKygrGxsdrt4+Pjce3aNTg4OBQkChEREX0AClRU6tatizp16sDHxwdhYWGIiorC3Llz8ffff2PUqFHo1asXEhIS4OnpicjISOzcuRMbNmzAiBEjALw+FuXq6gp/f38cPXoU169fx8SJE2FqaopOnToVyxMkIiIi7VWgQz86Ojr45ZdfsHDhQkyYMAHx8fGwtrbG+vXrVWf7rFmzBr6+vujRoweqVKkCNzc39OjRQ3Uf48ePR0ZGBry8vJCSkgIHBwesXbsWenp6RfvMiIiISOsVeIxK5cqVMXfu3FzXN27cGEFBQbmuL1WqFKZOnYqpU6cW9KGJiIjoA8OLEhIREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhFbqo3L59G3Z2dti5c6dqWUREBFxdXWFrawsXFxcEBASo3UapVOLnn3+Gs7MzbG1tMWzYMMTExBQ+PREREb3XClVU0tPTMWXKFCQlJamWPX/+HIMGDYK5uTmCg4MxZswY+Pv7Izg4WLXN8uXLERgYiNmzZ2Pr1q1QKpUYOnQo0tLS3v2ZEBER0XunUEVlyZIlMDY2Vlu2bds26OnpwcfHB3Xr1kWvXr0wcOBArFq1CgCQlpaGdevWYfz48Wjbti2srKywePFiPHr0CIcOHXr3Z0JERETvnQIXldDQUAQFBcHPz09teVhYGBwdHaGrq6ta1qJFC0RHR+Pp06e4fv06EhMT4eTkpFpftmxZWFtbIzQ09B2eAhEREb2vdN++yX/i4+Ph5uYGLy8vmJmZqa179OgR6tevr7asatWqAICHDx/i0aNHAKBxu6pVq6rWFZYkSWqHoXKjUChgaGj4To/1NsnJyZAkqVgfI6/Hzv5/baCNmQHtzM3MJYOZSwYzl4zizCxJEhQKxVu3K1BRmTVrFuzs7NCtWzeNdSkpKdDX11dbVrp0aQBAamqq6knmtM3Lly8LEkNDeno6IiIi3rqdoaEhrK2t3+mx3ub27duyvwijo6NlffzC0MbMgHbmZuaSwcwlg5lLRnFlfrMT5CTfRWX37t0ICwvDvn37clxvYGCgMSg2NTUVAGBkZAQDAwMAr8eqZP07a5t33cuhp6cHCwuLt26Xn+b2rmrXri3rHpXo6GjUqlWr2PccFRVtzAxoZ25mLhnMXDKYuWQUZ+bIyMh8bZfvohIcHIxnz56hbdu2astnzpyJAwcOwNTUFI8fP1Zbl/W1iYkJMjIyVMvMzc3VtrG0tMxvjBwpFAoYGRm9030UFRFefIaGhsJ8P/JLGzMD2pmbmUsGM5cMZi4ZxZE5vzsP8l1U/P39kZKSorasU6dOGD9+PD7//HPs2bMHW7duRWZmJkqVKgUAOHfuHGrXro1KlSqhTJkyMDY2RkhIiKqoxMfH49q1a3B1dc1vDCIiIvqA5LuomJiY5Li8UqVKMDExQa9evbBmzRp4enpi6NChuHz5MjZs2ABvb28Ar49Dubq6wt/fHxUrVkS1atWwYMECmJqaolOnTkXzbIiIiOi9UqDBtHmpVKkS1qxZA19fX/To0QNVqlSBm5sbevToodpm/PjxyMjIgJeXF1JSUuDg4IC1a9dCT0+vqGIQERHRe+Sdisq///6r9nXjxo0RFBSU6/alSpXC1KlTMXXq1Hd5WCIiIvpA8KKEREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgFLirPnj3D1KlT0aJFC9jZ2WH48OGIiopSrY+IiICrqytsbW3h4uKCgIAAtdsrlUr8/PPPcHZ2hq2tLYYNG4aYmJh3fyZERET03ilwURkzZgzu3LmDVatWYceOHTAwMMDAgQORnJyM58+fY9CgQTA3N0dwcDDGjBkDf39/BAcHq26/fPlyBAYGYvbs2di6dSuUSiWGDh2KtLS0In1iREREpP10C7Lxy5cvUa1aNYwYMQL169cHAIwePRpffPEFbt68ibNnz0JPTw8+Pj7Q1dVF3bp1VaWmV69eSEtLw7p16zBlyhS0bdsWALB48WI4Ozvj0KFD6Nq1a5E/QSIiItJeBdqjUq5cOSxcuFBVUuLi4rBhwwaYmprCwsICYWFhcHR0hK7uf/2nRYsWiI6OxtOnT3H9+nUkJibCyclJtb5s2bKwtrZGaGhoET0lIiIiel8UaI9KdtOnT8e2bdugr6+PFStWwMjICI8ePVKVmCxVq1YFADx8+BCPHj0CAJiZmWlsk7WuMCRJQlJS0lu3UygUMDQ0LPTj5EdycjIkSSrWx8jrsbP/XxtoY2ZAO3Mzc8lg5pLBzCWjODNLkgSFQvHW7QpdVL799lv07t0bW7ZswZgxYxAYGIiUlBTo6+urbVe6dGkAQGpqquqJ5rTNy5cvCxsF6enpiIiIeOt2hoaGsLa2LvTj5Mft27dlfxFGR0fL+viFoY2ZAe3Mzcwlg5lLBjOXjOLK/GYfyEmhi4qFhQUAwNfXF5cuXcLmzZthYGCgMSg2NTUVAGBkZAQDAwMAQFpamurfWdu8y54OPT09VZ685Ke5vavatWvLukclOjoatWrVKvY9R0VFGzMD2pmbmUsGM5cMZi4ZxZk5MjIyX9sVqKjExcXh7Nmz+PTTT1XjUHR0dGBhYYHHjx/D1NQUjx8/VrtN1tcmJibIyMhQLTM3N1fbxtLSsiBR1CgUChgZGRX69kVJhBefoaGhMN+P/NLGzIB25mbmksHMJYOZS0ZxZM7vzoMCDaZ9+vQpJk2ahLNnz6qWpaen49q1a6hbty4cHBwQHh6OzMxM1fpz586hdu3aqFSpEqysrGBsbIyQkBDV+vj4eFy7dg0ODg4FiUJEREQfgAIVlfr166N169aYM2cOQkNDcePGDUybNg3x8fEYOHAgevXqhYSEBHh6eiIyMhI7d+7Ehg0bMGLECACvj0W5urrC398fR48exfXr1zFx4kSYmpqiU6dOxfIEiYiISHsVeIzKokWLsHDhQkycOBGvXr1Cs2bNsGXLFnz88ccAgDVr1sDX1xc9evRAlSpV4Obmhh49eqhuP378eGRkZMDLywspKSlwcHDA2rVroaenV3TPioiIiN4LBS4qZcqUwaxZszBr1qwc1zdu3BhBQUG53r5UqVKYOnUqpk6dWtCHJiIiog8ML0pIREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhFXgovLixQvMmDEDrVu3hr29Pfr06YOwsDDV+rNnz6Jnz55o0qQJOnfujN9++03t9qmpqfD29oaTkxPs7OwwefJkxMXFvfszISIiovdOgYvKpEmTcPHiRSxatAjBwcFo0KABhgwZglu3biEqKgojRoyAs7Mzdu7cia+++gpubm44e/as6vazZs3CqVOnsGTJEmzcuBG3bt3C+PHji/RJERER0ftBtyAb37lzB6dPn0ZgYCCaNm0KAJg+fTpOnjyJffv24dmzZ7C0tMTEiRMBAHXr1sW1a9ewZs0aODk5ITY2Frt378Yvv/yCZs2aAQAWLVqEzp074+LFi7Czsyvip0dERETarEBFpUKFCli1ahUaNWqkWqZQKKBQKBAfH4+wsDB06NBB7TYtWrSAr68vJElCeHi4almW2rVrw8TEBKGhoYUuKpIkISkp6a3bKRQKGBoaFuox8is5ORmSJBXrY+T12Nn/rw20MTOgnbmZuWQwc8lg5pJRnJklSYJCoXjrdgUqKmXLlkWbNm3Ulh08eBB37tzB999/j127dsHU1FRtfdWqVZGcnIznz58jNjYWFSpUQOnSpTW2efToUUGiqElPT0dERMRbtzM0NIS1tXWhHyc/bt++LfuLMDo6WtbHLwxtzAxoZ25mLhnMXDKYuWQUV2Z9ff23blOgovKmCxcuwMPDA506dULbtm2RkpKi8aBZX6elpSE5OTnHUKVLl0Zqamqhc+jp6cHCwuKt2+Wnub2r2rVry7pHJTo6GrVq1Sr2PUdFRRszA9qZm5lLBjOXDGYuGcWZOTIyMl/bFbqoHDlyBFOmTIG9vT38/f0BvC4caWlpattlfW1oaAgDAwON9cDrM4He5RugUChgZGRU6NsXJRFefIaGhsJ8P/JLGzMD2pmbmUsGM5cMZi4ZxZE5vzsPCjWPyubNmzFu3Di0a9cOv/zyi+pQjpmZGR4/fqy27ePHj2FkZIQyZcrA1NQUL1680Cgrjx8/homJSWGiEBER0XuswEUlMDAQs2fPRr9+/bBo0SK1QznNmjXD+fPn1bY/d+4c7O3toaOjg6ZNm0KpVKoG1QKvx3TExsbCwcHhHZ4GERERvY8KVFRu376NH374AR07dsSIESPw9OlTPHnyBE+ePMGrV6/Qv39/XL58Gf7+/oiKisK6devwxx9/YOjQoQAAExMTdOnSBV5eXggJCcHly5cxadIkODo6wtbWtjieHxEREWmxAo1ROXjwINLT03H48GEcPnxYbV2PHj3g5+eH5cuXY8GCBdi4cSOqV6+OBQsWwMnJSbXd7Nmz8cMPP2Ds2LEAgNatW8PLy6sIngoRERG9bwpUVEaOHImRI0fmuU3r1q3RunXrXNcbGRlhzpw5mDNnTkEemoiIiD5AvCghERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFovKe0ShUMDQ0BAKhULuKEREREVCV+4A9HZKpQQdnbeXD0NDQ1hbWxfLfRMREcmBRUUL6Ogo4L8lHPdiXxXp/VY3KYMp/ZoW6X0SEREVJRYVLXEv9hWi7r+UOwYREVGJ4hgVIiIiEhaLChEREQmLRYWIiIiExaJCREREwnqnorJy5Ur0799fbVlERARcXV1ha2sLFxcXBAQEqK1XKpX4+eef4ezsDFtbWwwbNgwxMTHvEoOIiIjeU4UuKlu2bMGPP/6otuz58+cYNGgQzM3NERwcjDFjxsDf3x/BwcGqbZYvX47AwEDMnj0bW7duhVKpxNChQ5GWllboJ0FERETvpwKfnhwbG4uZM2ciJCQEtWrVUlu3bds26OnpwcfHB7q6uqhbty7u3LmDVatWoVevXkhLS8O6deswZcoUtG3bFgCwePFiODs749ChQ+jatWtRPCfSIpxNl4iI8lLgovLPP/9AT08Pe/fuxbJly3D//n3VurCwMDg6OkJX97+7bdGiBVauXImnT5/iwYMHSExMhJOTk2p92bJlYW1tjdDQ0EIXFUmSkJSU9Nbtst4Ui1NycjIkSSqy+9PWzPqlS6OUztt32BVmNt1MpRJpqalFmrmgkpOT1f6vDZi5ZDBzyWDmklGcmSVJyteH1AIXFRcXF7i4uOS47tGjR6hfv77asqpVqwIAHj58iEePHgEAzMzMNLbJWlcY6enpiIiIeOt2hXlTLKjbt28X6Q9UmzMX52y6RZ25sKKjo+WOUGDMXDKYuWQwc8korsz6+vpv3aZIZ6ZNSUnReNDSpUsDAFJTU1VvLDlt8/Jl4Wdd1dPTg4WFxVu3K4nDC7Vr1y7yvRPFrbgyF+dsukWduaCSk5MRHR2NWrVqFfser6LCzCWDmUsGM5eM4swcGRmZr+2KtKgYGBhoDIpNTU0FABgZGcHAwAAAkJaWpvp31jbv8g1QKBQwMjIq9O2Lkra8+LJj5sIzNDQU5rWXX8xcMpi5ZDBzySiOzPn9IF6k86iYmpri8ePHasuyvjYxMVEd8slpGxMTk6KMQkRERO+BIi0qDg4OCA8PR2ZmpmrZuXPnULt2bVSqVAlWVlYwNjZGSEiIan18fDyuXbsGBweHooxCRERE74EiLSq9evVCQkICPD09ERkZiZ07d2LDhg0YMWIEgNdjU1xdXeHv74+jR4/i+vXrmDhxIkxNTdGpU6eijEJERETvgSIdo1KpUiWsWbMGvr6+6NGjB6pUqQI3Nzf06NFDtc348eORkZEBLy8vpKSkwMHBAWvXroWenl5RRiEiIqL3wDsVFT8/P41ljRs3RlBQUK63KVWqFKZOnYqpU6e+y0MTERHRB4AXJSQiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkSFoFAoYGhoCIVCIXcUIqL3mq7cAYhEoVRK0NHJX/EwNDSEtbV1sdw3ERH9h0WF6P/p6CjgvyUc92JfFen9Vjcpgyn9mhbpfRIRfShYVIiyuRf7ClH3X8odg4iI/h/HqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwrRB0Ib537RxsxEVLR41g+RFtPGuV+0MTMRyYdFhUiLaePcL9qYmYjkw6JCpOW0ce4XbcxMRPLgGBUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqRERFSKFQwNDQEAqFQu4o+aaNmenDIUtRUSqV+Pnnn+Hs7AxbW1sMGzYMMTExckQhIsoXpVLK13aGhoawtraGoaFhkd5vYWhjZqI36crxoMuXL0dgYCD8/PxgamqKBQsWYOjQodi3bx/09fXliERElCcdHQX8t4TjXuyrIrvP6iZlMKVf0yK7vzdpY+b80sa9QMxcOCVeVNLS0rBu3TpMmTIFbdu2BQAsXrwYzs7OOHToELp27VrSkYiI8uVe7CtE3X8pd4wC0bbMSqUEHZ23vylm7QUq6vstDGYu+P0WRIkXlevXryMxMRFOTk6qZWXLloW1tTVCQ0NZVIiIPmDauBeImV8rrswKSZJK9GDjoUOHMG7cOFy6dAkGBgaq5d999x1SUlKwcuXKAt3fhQsXIEkS9PT08rW9QqHAy4Q0ZGQqC/Q4b6NbSgfljPVRHN9OZv4PM6tj5v8UZ2ageHIzsyZmfu1DyJyeng6FQgF7e/u877cowhVEcnIyAGiMRSldujReviz47sms42YFOX5Wzrj4xsEU13E8ZlbHzP9hZnXFeSy9uHIzszpm/s/7nFmhUORr2xIvKll7UdLS0tT2qKSmpuZ7xHl2dnZ2RZaNiIiIxFLipyebmZkBAB4/fqy2/PHjxzAxMSnpOERERCSwEi8qVlZWMDY2RkhIiGpZfHw8rl27BgcHh5KOQ0RERAIr8UM/+vr6cHV1hb+/PypWrIhq1aphwYIFMDU1RadOnUo6DhEREQlMlgnfxo8fj4yMDHh5eSElJQUODg5Yu3Ztvs/cISIiog9DiZ+eTERERJRfvCghERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEJJzQ0FFu3bkVCQgIiIyORkZEhdySiD1ZcXJysjy/LFPoiS0lJgY6ODvT19REVFYVjx47Bzs4O9vb2ckfTkJaWhnXr1uGzzz5DzZo14enpiQMHDsDe3h7+/v6oUKGC3BHz9ODBA0RFRcHBwQGJiYmoVKmS3JFIZgkJCRg6dCj+/vtvKBQKtGrVCv7+/oiJicG6deuEvMK6h4dHjssVCgX09PRgamqKzp07o3bt2iWcrODi4uJQsWJFuWOQjOLj47FgwQK4urrCwsICQ4cOxblz51CrVi2sWrUKNWrUKPFM3KOSTWhoKFq3bo3w8HA8fvwYX331FVasWIH+/fvj999/lzueBn9/f6xfvx4JCQk4ceIEdu3ahREjRiAxMRHz58+XO16u0tLSMHHiRLi4uGDEiBF48uQJZs6ciUGDBiEhIUHueO89uT8d5WXRokUAgMOHD8PAwAAAMHXqVOjr6wv7mk5PT8fu3btx6tQpxMfHIz4+HmfPnsWuXbvw77//Ys+ePejevTvCw8PljqomPj4e06dPx7///ovMzEwMGjQIrVq1wmeffYaYmBi546k8ffoUXl5emDhxIv7991+54+TLgwcP8v2faObOnYtz585BV1cXhw8fRlhYGObPn49atWrJ9jvIPSrZLFq0CO3bt0ejRo2wbds2GBsb4/DhwwgODsbKlSvx2WefyR1RzR9//IFFixahYcOGmDlzJhwdHTFy5Eh88sknGDZsmNzxcrVixQpcv34dGzduxMiRIwEA/fv3h4eHB/z9/TFr1ix5A+bh6NGjuHHjBjIzM1XL0tLScOXKFaxfv17GZDkT8dNRXv766y8sXLhQLVfdunUxY8YMjBkzRsZkuTMwMECnTp2wYMEC6OvrA3hdXr7//nuUKVMGM2bMgL+/P3788Uds2rRJ5rT/mTt3LsLCwjBw4EC1N6QDBw5g/vz5WLJkidwRAQBubm6ws7ND3bp1MXToUBw/fhw6OmJ/xnZxcYFCochzG0mSoFAoEBERUUKp8uf48eNYtmwZ6tati9WrV6NVq1bo1q0bLC0t0a9fP1kysahkc+3aNcyfPx/GxsY4deoU2rZti9KlS6NNmzbw8/OTO56GFy9eoG7dugCA06dPo3fv3gCA8uXLIyUlRc5oefrtt98wa9YsNG/eXLWsefPm8PX1hZubm7BFxd/fH2vWrEHlypXx7NkzmJiY4OnTp8jMzESXLl3kjpcjbXkzyhIXF4cqVapoLC9btiySkpJkSPR2f/zxB7Zu3aoqKQCgp6eHESNGoE+fPpgxYwa+/PJLBAYGyphSk4hvSDmJjIyEm5sbLCwsMHXqVLx48UL4w1MBAQFyRyi0pKQkmJmZAXj9vpL1odfAwEDtA1pJYlHJxtDQEGlpaUhNTUV4eDi++uorAK93PZYpU0bmdJrMzc1x5coVPHv2DPfu3YOzszMA4MiRI6hevbrM6XIXGxsLc3NzjeVmZmZ4+fKlDInyZ9++ffj+++8xYMAAtGnTBoGBgTAyMsKYMWOE2zORRVvejLI0atQIv//+O4YPH662fMuWLbC2tpYpVd50dXXx9OlTWFhYqC1/8uSJ6lN1ZmYmdHXF+nMr4htSTnr27IlZs2ahSpUqcHZ2Fr6kAICjo6PcEQqtbt26OHbsGMzMzPDkyRO0bt0aALBt2zbVB+OSJtZvjsyaN2+OBQsWoFy5ctDR0YGzszMiIiIwZ84ctU//ohg6dCgmTZoEHR0dtGjRAlZWVli2bBmWLVuGH374Qe54uapbty7Onj2rKoJZfvvtN40/9iJ59uwZXFxcAACWlpa4fPkyOnfujIkTJ8LT0xPfffedzAk1acubUZZJkyZh8ODBuHz5MjIyMrBixQpERUXhn3/+wdq1a+WOl6NPP/0UM2bMwKxZs9CkSRNIkoS///4bs2fPRvv27ZGUlIQVK1agUaNGckdVI+IbUk4mTJiAsLAwJCYmqj6MaZPU1FQEBQXleMj46tWrOHjwoIzpNI0fPx7jxo1Deno6unbtilq1amHu3LnYsmULli1bJksmFpVsZs6ciZkzZ+Lff//FggULYGxsjD179kBfXz/Xkf1y6t69Oxo0aICYmBjVH5lGjRph7dq1cHJykjld7saNG4eJEyciMjISmZmZ2LVrF27fvo2DBw9i8eLFcsfLVfbDD+bm5oiMjAQAfPzxx4iNjZUzWq605c0oi729PbZu3Yp169ahZs2a+Pvvv1GvXj18//33aNKkidzxcuTh4QE3NzcMHjxYbVzCZ599Bk9PT5w5cwbnz5/HqlWrZEypScQ3pNw0a9ZM7giFNmfOHOzevRvW1ta4cuUK7OzscOfOHTx79gwDBw6UO56GNm3a4Pjx44iNjYWVlRUAoEuXLvj666/l+5shUZ5SU1PljpCnkJAQ6fTp06qv/fz8pNDQUBkT5c/x48elvn37Sra2tlLjxo2lXr16SX/88YfcsfI0YcIEadiwYdKjR4+kvXv3Sl26dJGePXsmrVu3TmrXrp3c8XJ07NgxqVGjRpKVlZU0efJkSZIk6YcffpAaNmwoHTt2TOZ0OYuPj5fu3Lmj+vrgwYPS8+fP5QuUT3fv3pUOHjwoHTlyRIqJiVEtF/VvSEJCghQXFydFRESoll26dEmKjIyUMdX7x8nJSdq3b58kSZLUoUMHKSoqSkpLS5PGjBkjzZ49W+Z0BfPw4UNZHlchSZIkT0USU1xcHG7fvg2lUgng9cjsrLM6Ro0aJXM6db/99hvc3d0xceJEDBkyBMDrT0l//vknfvzxR3To0EHmhDmT/n+0e06ioqKE/KQPAA8fPsSoUaPQvXt39O3bF998841qxL67u7uQn44A4Pnz52qfji5fvoyPPvpIyO/zP//8g8GDB6Nnz55wd3cH8PoMiqw5g+rXry9zwtw9ffoU6enpePNP6scffyxTorx17NgRP/74Ixo2bCh3lPeajY0NDh06hI8//hijRo1Cly5d0LVrV1y5cgUTJkzA0aNH5Y6oJiYmBvPmzVM7VJX1PhgXF4dr166VeCYWlWz27t0LLy8vpKWlQaFQqL2hVqtWDUeOHJE5obpu3bqhd+/ecHV1VVseEBCA4OBg7NmzR6ZkeZs2bZrGWVSSJGH16tVYtmwZLl26JFOy/ElNTUXp0qWRnJyMU6dOwcTEBI0bN5Y7Vo6uXLmS49iIV69eYc6cOZg3b54MqXLXv39/VK9eHd7e3qqzaDIyMjB9+nTExsZi3bp1MifUdOHCBXh4eODu3btqyyVBTz/N8sknn2Djxo1CFtbs8nOqbxbR3vQBoHXr1li2bBkaNWqEefPmQU9PD5MmTcK9e/fQpUsX4f7eDRs2DNHR0ejcuTPWr1+PwYMH4/bt2zh8+DB8fHzw9ddfl3gmjlHJ5pdffkGXLl0wdOhQ9OnTB+vWrcPjx4/h7e2NcePGyR1Pw927d9GmTRuN5e3atcPChQtlSJQ/p06dgpeXF+bMmQPg9emHHh4eiIiI0DjbQyTHjx9HmzZtULp0aQCvzxLr2LEjYmJi0L9/f6HmyMgydOhQbNiwAQ0aNFAt+/PPPzFjxgwhB9NevXoVP/zwg9qpvrq6uhg+fDi+/PJLGZPlbs6cOahSpQrc3NyEPDswNwMGDMC4cePQr18/mJubqybYy+Lg4CBTMnWTJk2Cp6cn6tSpg/bt28sdp8Bat24Nb29vzJ07F02bNsUPP/yAjh074sCBAzA1NZU7noYLFy5g+fLlaN68OU6ePIkOHTqgcePGWLx4MY4fPy5LUeEYlWxsbGxUx2ddXV2l48ePS5L0+hh5jx495IyWo08//VQKDg7WWL5nzx6pffv2MiTKn8jISMnZ2VmaPn26tHz5csnGxkbq3bu3dPPmTbmj5alRo0bSyZMn1ZZt3LhRsrW1lTp37ixTqrzNmTNHcnR0lCIiIqQXL15IkydPliwtLaXJkydLz549kzuehlatWqmNucpy7tw5qUWLFjIkervsfze0iaWlZa7/WVlZyR1PzeHDhyUbGxu18TTa4uXLl9KoUaOkzZs3S0qlUho6dKhkaWkpNWzYUNq/f7/c8TTY2NhIDx48kCTp9bi8bdu2SZIkSbdu3ZJatWolSybuUclGX19f9UmuZs2auHnzJlq3bg0bGxvcuXNH5nSa+vTpg9mzZ+Pu3buqMyKuXLmCjRs3YvTo0TKny13dunWxadMmfPvtt3j8+DE8PT3Rt2/ffO/elcukSZMwduxYrFixAh9//DE8PDxw+fJlDBkyRNhZUz09PaGnp4eBAwdCV1cX+vr6WL16tbCneX766afw9vbGrFmzVIfTrly5Ah8fH3Ts2FHmdDkzMzNDYmKi3DEKTMTDJLnp0KEDunTpgnnz5gk5A3ReypYti+XLl6u+XrVqFSIiIlC5cmVUrVpVxmQ5q1atGm7cuAEzMzPUrl1bdehSqVTK9jpnUcnGxsYG27dvx6RJk1C/fn0cP34cQ4YMQWRkJPT09OSOp+Hbb79FWloaAgIC8MsvvwAAqlatiokTJ2qMW5FbaGioxrLx48dj1qxZuHnzJsLDw1WDEEXZ5fymgQMHQk9PD6NGjYJCoUC9evWwc+dOoQd4Aq+nINfX18eqVavw66+/CnuaLwBMnjwZd+/exaBBg9SKa8eOHeHm5iZjstyNGjUKP/zwA7y9vVGnTh0h/1bkpFq1agBez+dx7949mJubQ5IkYfN7eXnh3r17cscolJcvXyI6OhppaWmqZYmJibhz545wf+969OgBNzc3zJ8/H23btsWAAQPw8ccf4/Tp07C0tJQlEwfTZhMWFoahQ4di/Pjx6NGjBzp37ozKlSvj4cOH+N///qcaUyGi58+fQ09PD8bGxnJHyZGVlZVqgHJeRB58mGX79u3w9vbG6tWrhZyvZsCAATku//vvv2FkZKRWrESd6vvWrVu4ceMG9PT0ULduXdSqVUvuSLnq1KkTHjx4kOuYH1Ffz5IkYeHChdi0aRPS09NV8xgZGhpi1qxZwhYWbRMcHAxvb+8czwgT8e+dJEnYuHEjatWqhbZt22LVqlVYuXIlzMzMMH/+fFlmiGZReUNsbCzS0tJQo0YNREZGYuvWrTAzM0P//v3VBvjJJTQ0FHZ2dtDV1c1xL0V2IjX1+/fv53vbrE96IsjtjIPY2FiUKlUKlStXVi0TZVd6QSYnnDt3bjEm+TDs2rUrz/U9evQooSQFExAQgNWrV2PixInw8fHBvn37cOXKFXh7e+Obb77BxIkT5Y6oJikpCUZGRqqvr169inv37qFmzZpqg8VF06ZNG7Ru3RoDBw7UGLAMiPX3TlQsKlrGysoKp0+fRqVKlfLcSyFiU9dGS5YsyffYmbFjxxZzmvffrVu34OPjgwsXLiA9PV1jPV/TRadLly6YMGECOnbsCDs7O+zduxc1atTA4cOHMXfuXPz5559yRwTwem+xu7s7oqOjcejQIbx69QqjR49WfVBTKBRo0aIFlixZIuQeZTs7O+zatUvovYK7d+/O97bdu3cvthy5+eDHqOS2mzwnIuwmP3r0qOqiXKJ8gs+P9u3bY8eOHahQocJb50UQ6XmJeFp6QT18+BBbtmzBjRs3oKuri3r16qF3795CTkQ2c+ZMPHv2DFOmTBH6VF8PDw94enrC2Ng4zz1YCoVC2Otu3bt3L8c9EVZWVnjy5IkMiXLm6+uLBw8eYMaMGQCABQsWIC4uDtu3b0e9evXw77//wsvLC/PmzcPs2bNlTqupQ4cOOH78uNBFZdq0aWpfZ30ANjAwgK6uLhISElCqVClUqFCBRUUO2Xe7paam4sCBA2jQoAFsbW2hq6uLq1ev4vLlyxoX0JNL9rxv7jJMT0/H9evXUadOHXz00UclHS1PPXr0UO327NGjh/Bn+OTm6tWrWLt2repN38LCAt9++62wE779+++/cHV1hYGBARo3bgylUomdO3diy5Yt+PXXX1GvXj25I6q5dOkSfv31V+FnS713755q9mptHeBZrVo1XLlyReNK6ydOnBDqauAnT57E6tWrVb9jp06dwuzZs1UTGTZp0gSzZs3C6NGjhSwqU6dORbdu3XDw4EGYm5tr/O0T4fDr9evXVf/ev38/1q5di7lz56pms46Ojoa7uzu6du0qS74Pvqhkf5F4eHhg4MCBGu3yxx9/RFRUVElHe6uHDx/C09MTEyZMQP369fHll18iMjIS5cqV05jkS27ZD4to616K8+fPY/Dgwahfvz5atWoFpVKJCxcuoG/fvti4cSOaNm0qd0QN8+fPR/PmzbFw4ULVRHWpqamYMmUK/P39sXLlSpkTqqtQoYJWDOLMPrmfiBP95ceQIUPg7e2NJ0+eQJIknD17FkFBQdi0aZPG30A5KZVKjQkAy5Ytq7ZNuXLl1M6oEcmcOXOQmJiItLS0Ao3Vk4u/vz9++uknVUkBgFq1asHLywujRo1C//79SzzTB19Usvvjjz9yHBjXvXt3WXZ3vc3cuXPx6tUrVKxYEb///jvu37+PwMBA7Ny5EwsWLBByuvEsYWFhqnEI2cfYKBQKYeckWbx4MXr16gVvb2+15d7e3vjxxx+FfMO6cOECtm7dqiopAFC6dGmMGTNGuFPYAcDV1RWLFi2Cv7+/kOMNcpOcnIwbN27k+HoW9cq/vXr1QkZGBlasWIGUlBTMmDEDFStWxIQJE9CnTx+546k4OzvDx8cHS5cuRcWKFdG9e3esWbMGixYtQqlSpZCWloaffvoJzZs3lztqjk6cOIEVK1YIO3fRm+Lj49X+XmRRKpVISUmRIRGLipqyZcvi2rVrGscSw8LCUKlSJXlC5eHcuXPYuHEjqlevDn9/f7Ru3Rr29vaoUKECevbsKXe8XC1btgxLlixB2bJlNd6MRC4q165dy/EUdVdXV2Gnd//oo49yHJSa0zIRnDlzBmFhYXB0dESlSpU0zrQTafxSlqNHj2LatGlISEjQitNPs+vduzd69+6NuLg4SJIk5N85Dw8PDBo0CB06dICTkxOqV6+Os2fPokOHDqhduzauX78OHR0dBAYGyh01RxUqVBByPFhumjdvDh8fH8yfP191WDAqKgre3t5o27atLJlYVLLp3bs3ZsyYgaioKNjY2Kh27W/ZsgVTp06VO56G9PR0lCtXTrXbdtKkSQBeN19dXXF/tL/++ismTpyIESNGyB2lQCpUqIDnz59rLI+LixPi1PWctGjRAvPnz8fPP/+M8uXLA3idd8GCBULOAdO0aVMhD6Hlxd/fH05OThg9erTQA4BzEhMTg3/++SfHT8qi7EWuUqUKdu7cif379+P06dMIDQ1F+fLloaurC4VCgf79++Obb75BhQoV5I6ao5EjR8LX1xfTp0+Hubk5SpUqJXekPM2aNQtDhgxBx44dUbZsWUiShFevXqFx48aYPn26LJl4evIbVq5cic2bN6tGvZuZmWHYsGHo27evzMk09evXD82bN0eVKlXg4+ODv/76CxUrVsSMGTNw//59IQ9FAK8Hvx04cEDr5g/w9vbGhQsXsGjRItUVZyMjIzF58mRYW1sLMSjuTY8ePcI333yDly9fqvYURkdHo3z58ti0aZPGQEoquEaNGuG3336Dubm53FEKZOfOnfDy8lINCs5OtD1BqampuHnzJiwsLGBgYIBr165h8+bNePz4MSwsLDBo0CCYmJjIHTNH2jghYGZmJs6cOYObN29CoVDAysoKLVq0kO0kCBaVXDx//hwKhUL1KVREly9fxsiRI/H8+XMMGzYMkyZNwqxZs3DgwAGsXLkSdnZ2ckfM0aBBg9CrVy/ZRpAX1suXLzFo0CBERESoPjnHx8ejQYMGWLdunbCf6BITE7Fnzx7cvHkTkiTB0tIS3bp1E3YMyPXr13Hjxg3VG6gkSUhLS8OVK1eEnB26W7dumD59OhwdHeWOUiAdOnSAs7MzJk6cqDE4VSS3bt3CwIED8eTJE5iZmWHOnDkYPXo0qlWrBgsLC1y7dg3x8fEIDAxUfYAQibZOCCiSD76o7N69G//73/+gr6//1klvRNkVmp1SqURCQoLqD83169exdetWHDhwAOfPn5c5Xc6Cg4Mxf/589OjRA3Xq1NE4bCLi9zmLUqnEqVOncOPGDdWbvrOzs/CnWyckJODWrVvQ09NDjRo1hC0p69evx7x58wBAbTLDrEGpIu4lPH78OPz9/TFx4sQcX8+ijk9o1KgRDhw4INSpyDkZMWIESpcujdGjR2PDhg34/fff0aVLF/j6+kKhUCAjIwPu7u54+fIl1qxZI3dcDXPmzMGAAQOE3uPWoEEDnDp1Sm0i0dzIsQfogy8qb870mhvRdoVml5aWhj/++ANbt27FxYsXoVAo0KFDB/z8889yR8uRNn2ftW1CwDcplUrMmzcPgYGByMjIAADo6emhd+/e+P7774UrWB06dMBnn32GsWPHol27dti1axdevHiByZMn48svv8TAgQPljqihYcOGqt362b+fkiQJ93rO7uuvv8aYMWPQpk0buaPkyc7ODsHBwahTpw7i4uLQsmVL7Ny5U+2aMzdu3EDv3r1x8eJFGZPmrGnTptizZ4/Qh1l37dqFLl26QF9fHzt37szz74Ice4DEHXFZQrJPdJP939rgzp072Lp1q+qPuUKhQM+ePTFy5EihPyVp0/c5p3E0+/btg4uLi3CT6uVk5cqVCA4OxtSpU+Ho6AilUonQ0FAsW7YMJiYmGDp0qNwR1Tx69AhfffUVSpcuDSsrK1y5cgUdOnTAtGnT4OfnJ2RRWb9+vdwR8i379cE6dOgAT09PjBs3DjVr1tQY5CnKtcIMDAyQnJwMAKhYsSK+/vprjdNn4+PjhR3I3KZNG2zevBljx44Vdk9m9vIh4hmjH/weFW2TmZmJQ4cOISgoCCEhIShVqhQ++eQTdOnSBR4eHti9ezcsLCzkjvley35dFNG5uLhg4sSJ6Natm9ryffv2YcmSJTh06JBMyXLm6OiIoKAg1K5dG7NmzYKpqSlGjhypuoK5iJ+YtYk2XsV86tSpiImJwZw5czT+timVSpw9exazZ89Gy5YtVdPsi6R///4IDQ2FQqFApUqVNEqWCKfcL126NN/bynFNsw9+j8rbrjuTnQgvqDZt2uDVq1do0aIFZs+ejY4dO6JcuXIANK/XQPTs2TM0adJEY3mTJk3w8OFDGRLlzd7eHqtWrcKMGTNgbW2NHTt2YPjw4QgPDxd2D1ZSUhI2bNiQ4wSGgFiHBEX4G1ZQHh4eGD16NH755Rf4+/urrfvjjz8wadIktGnTRjU9g2iaN28u7GR0WXbu3Kn29cOHD1Xj2XR1dXH37l2kp6fDxsaGRUUO2a878+LFCwQGBqJdu3aws7ODrq4urly5gkOHDmHw4MEyJ33t1atXqFSpEj7++GOUL18ehoaGckcigdWqVQtnzpzRGMh3+vRpIU8PnzRpEgYPHowtW7agT58++OWXX+Do6Ijk5GQMGTJE7ng5mjFjBo4ePYpWrVqhSpUqcsfJ05s/8/PnzyMjIwMtW7YEAMybNw/t27cXajbdihUrYuvWrYiPj9dY5+TkhH379gl3zarstOGq6tmvlL1hwwYcO3YMCxcuVE0AGB8fDzc3N9SvX1+egBKpjBw5Ulq1apXG8oCAAGnAgAEyJNL06tUrKSgoSPr6668lS0tLyd7eXpo6dar0119/SQ0bNpRu3rwpd8T3nq2trXT37l25Y+TLrl27pEaNGknz58+Xjhw5Ih05ckSaN2+e1LhxY2nz5s1yx8tRcnKy9OzZM0mSJOnJkyfSunXrpN9//13mVLmzt7eX/vzzT7ljFNj+/fulhg0bSmvWrFEtGzdunNSwYUPp8OHDMiZ7/1y5ckWaMGGC9L///U/6/PPPpUmTJkmXLl2SO1aOnJycpIiICI3l//77r+To6ChDIkniGJVsbG1tsWfPHtSsWVNt+Z07d/D555/j0qVLMiXLWVRUFHbs2IF9+/bh6dOnUCgU6NWrF4YNG6bxHKjoaNMYFeD1J6Q1a9bg6dOnAIDKlStjyJAhGDRokMzJ3g8ODg4IDg4W+vTTnHTr1g29e/fWuOZTQEAAgoODsWfPHpmSvV+yX8y0WbNmqhnPb9y4IeTFTB0cHLBy5UrY29urLT979iwmTJiAkJCQEs/EopJNp06dMHjwYHzzzTdqy9euXYvg4GAcOHBApmR5y8zMxLFjx7Br1y4cO3YMSqUSLVu2FHJOAW3j4eGhsSy3s35EnJl2//79cHZ2Rrly5YS9nou2jRN7k6enJ6pUqYIJEybIHaVAmjRpgv3792sU7piYGHTt2lW4D2baqk+fPqhfv36OFzONjIwUbm4gd3d3XL16FTNmzICNjQ0kSUJ4eDhmz56N1q1byzJg+YMfo5LdkCFDMHv2bFy8eBGNGjVSNd/Dhw9rDOISSalSpdC+fXu0b98ecXFx2LNnj8bgKCqce/fuaSyzs7PD8+fPc7zuj2h8fHwQGBiIcuXKoWLFinLHyVH2cWLaqGLFili3bh1OnDiB2rVra0z4JmKBBV5fHiQ0NFSjqFy8eFH4sTbaRNsuZjp9+nR89913+Pbbb1W/l5Ik4bPPPoObm5ssmVhUsunduzc++ugjbN68GYcOHYJCoUCDBg2wfPly4SdFylKxYkUMGjSIu/WLiGifdgqqVq1auHHjhtCnrI8bN07uCO/k77//Vp1Z9fjxY5nT5F+fPn0we/Zs3L17V5X/ypUr2LhxI0aPHi1zuveHtl3M1NjYGGvXrsWtW7dU1/oxNzfH9u3b0aZNGx76EUHWdUYyMzNV8w2IfJ0RorzMmDEDO3bsgJWVFWrVqqUxh4OIn/a17Vo/2mz16tUICAhQXYS1atWqGD58uMa4FSo8bbyYKSDWjOcsKtmsX78e8+fPV019LWnBdUaI8tK/f/8814v2mtbGa/08ePAgz/WiXusnu+fPn0NPT0/YmVO1WU4XM3316hWsrKyEvJipiDOes6hko43XGSHKr/T0dJw5cwaSJMHJyUlj74oItPF3UMSLuOVXSkoK/vjjD9y6dQuDBw/GjRs3UK9ePeHePLWdUqnEyZMn1a5g/sknn0BHR0fuaADEn/GcRSUbGxsbHDhwAObm5hg8eDD69u2LDh064NSpU/Dz88P+/fvljkiUL4GBgaoB1V9//TW6dOkCV1dX1XWWTExMsHHjRuFOY9fG38E3r1KemZmJ27dvY8OGDZg2bRpcXFxkSpa3p0+fonfv3nj27BnS0tJw8OBB+Pr64urVq9i4caPqMAW9/z755BPVjOcdO3ZUm/G8YcOG2LNnj6xFhYNpszEyMlJdBdXc3ByRkZHo0KED6tati/v378ucjih/1q5di6VLl6Jbt24wNDTETz/9hJ07dyIzMxNbtmyBUqnE3LlzsXDhQuGusK2Nv4OOjo4ay5ycnFCjRg0sWbJE2KLi5+eHevXqYf/+/Woz006YMAELFizAL7/8InNC7ZXfq64rFAps3LixmNO8negznoux30kQWdcZSU5OhrW1Nf78808olUqhrzNC9KZt27bB19cXPj4+8PDwwIoVK/D3339j0qRJsLe3R7NmzeDh4YHw8HC5o2p4n34Ha9WqJfSVws+dO4fx48ervSmVK1cO7u7uuHDhgozJtF+1atXy/O/hw4c4f/68MIcFT58+jZEjR+LatWsYO3YsnJyc4ObmhmPHjgkxdQD3qGSjjdcZIXrTgwcP1C5E2LhxY+jq6qrNnFqzZk28ePFChnR508bfwZwG0yYkJGDlypWoXr26DInyJzExEUZGRjmuy8jIKOE075fczuRJSEiAn58fYmJi0KpVK/j6+pZwspwZGxvj66+/xtdff6024/nevXuhUCiwYcMGWWc85xiVN6SkpCApKQkVK1bE06dPsX//fpiamqJz585yRyPKFysrK5w+fVptBto3p/1/+vQpnJ2dhflEl92bv4P79u2DmZmZsL+DOQ2mlSQJRkZGWLBgAdq3by9TsrwNHz4ctWvXhoeHh+r1YWpqiilTpiAxMZEzWxexM2fOwMvLC69evYKbmxu++uoruSPlSaQZz1lUiN4z2l5UsktKSoJSqRT6tNk3B9MCgJ6eHurXry/04aqoqCj069cPZmZmuHnzJpo3b45bt27h1atX2Lx5M6ysrOSO+F5ISkqCn58ftm3bhlatWmHOnDkwMzOTO1aBZJ/xfN++fSX++CwqRO8ZKysrDBkyRG3swcqVK/HNN9+oRvInJSVh/fr1whSV69evY+/evQBeT6lfr149+Pj4YOvWrQCA9u3bw8/PT+g3/pz8888/aNiwodwxcvX48WP8+uuvuHbtGpRKJerVq4e+ffsKfchKm5w9exaenp54+fIl3N3d8fXXX8sdSSuxqBC9Zwpylsmff/5ZjEny5/jx4xgzZgyqV68OQ0ND3Lp1C1999RX27t2LwYMHQ6lUYuPGjfj888/h6ekpd1yVy5cv4/fff4euri66du0KS0tL1brU1FT8+OOP2LRpE65evSpjyty9ePEC5cuXz3FdcHAwevXqVbKB3iNJSUmYP38+goKC4OTkBF9fX63biyISFhUiktVXX32FNm3aYOzYsQCAPXv2YNq0aZgzZ47qzfLgwYOYP3++MFdPPnDgAKZMmQJ9fX3o6uoiJSUF69evh4ODAy5evAg3NzfExMSgZ8+e+OGHH+SOm6Pu3btj06ZNqtlSASA2Nhaenp44ffq0MHvbtFH79u3x4MED1KhRA59//nme22a97il3LCpEJCs7Ozvs3LkTtWvXBvB6EF+jRo2we/du1K9fH8DrN9D27dsLs3eiR48eqFGjBvz9/aGjowM/Pz9ERERg8ODB+O6772BqaorZs2fDyclJ7qi56tOnD9LS0rBx40YYGxtj+/btmDdvHipWrAhvb2+hs4suv3s1FQqFMOVbZCwqRCQrKysrnDp1CpUrV1YtE33wr52dHQIDA9GgQQMAQHx8PFq2bIkyZcqgXbt28PLyyvXUX1EkJSVhxIgRSE5ORtmyZXH+/HkMGjQIY8eOFfLyCvTh4jwqRCQ7ESaVKojk5GRUqVJF9XXZsmWhq6uLLl26wMvLS8Zk+WdkZITVq1dj5MiROHfuHAICAtCsWTO5Y70XtG1mWtGxqBCR7C5evKg6Iwl4PQ/J5cuX8ejRIwCvr0ArmjfLlUKhQO/evWVKkz9Lly7VWNaoUSNcuHAB8+bNQ5s2bVTLOXai8KpVq5bn+rCwMMTExKBs2bIllEi78dAPEckqa8K0t/0pUigUwhz6yc9cNSLi2Al5Zc1Mu2PHDtXMtKampnLHEh73qBCRrLT1DfFte4GyODg4lHS0XOV2OnpcXBzCwsJQqVIlNG3atIRTfRiyz0w7e/Zs4WemFQn3qBARFZA27gXKsnz5cmzcuBHbtm1DzZo1cfHiRQwbNgyJiYkAgBYtWmDFihUwMDCQOen74X2YmVZu3KNCRFRA2roXKCgoCCtWrMDAgQNVh608PDxgYGCArVu3okyZMhg3bhxWrVqF8ePHy5xW+2WfmdbHx4cz0xYS96gQEX0gvvzyS/To0QP9+vUDAFy5cgVfffUVJk6ciBEjRgAA/vrrL/j5+eHgwYNyRtVqnJm2aHGPChHRByIqKgqtWrVSfX3u3DkoFAq1s30sLCzw4MEDOeK9N7p166aamdbe3h7BwcG5bsuzq96ORYWIhHHhwgXY29vLHeO9lv206rCwMJQrV07tSsmJiYlqF7SkgpMkCWZmZsjIyMDOnTtz3U6hULCo5AOLChEJo3///ihfvjzatm2L9u3bo1WrVpwltQjVr18fFy5cQM2aNREfH4+QkBC0b99ebZvff/9ddekCKhwRLvb5PmFRISJhnD17FidPnsTx48fh6emJlJQUtGzZEu3bt0fbtm1RsWJFuSNqtX79+mHmzJmIiIjAxYsXkZaWhm+//RbA6+sp7du3D2vXroWvr6/MSYn+w8G0RCQkSZJw6dIlBAUFYe/evVAoFMJclPBN9+/fx6VLl5CWlqaxrnv37iUfKA87duzAr7/+Ch0dHQwdOhSffvopAMDHxwfbtm3DsGHD8N1338mckug/LCpEJJS4uDicP38e586dQ0hICG7fvo3q1aujZcuW8PHxkTuehm3btsHb2xuZmZka60ScRyU3sbGx0NfXR4UKFeSOQqSGRYWIhNGtWzdERkbCxMQETZs2RYsWLeDk5ITq1avLHS1XLi4uaNeuHSZOnAhjY2O54xC9d3TkDkBElKVUqVJQKBSoXLkyqlWrhurVq6Nq1apyx8rTkydPMGjQIJYUomLCwbREJIzdu3cjLi4OZ8+exenTp/H9998jLi4Otra2cHJywsiRI+WOqKFBgwaIjIwUeq8PkTbjoR8iEtatW7fw66+/IigoCOnp6UKO9zh06BD8/PwwaNAg1KlTB/r6+mrrRbooIZE2YlEhImG8ePFCtTflzJkzePToEWxsbNCuXTu0a9dObWIyUeSVSZsG0xKJikWFiITRoEEDGBgYoEWLFnBxcUHbtm1RpUoVuWPl6f79+3mur1atWgklIXo/sagQkTD++usvtGzZUutmo42JiUFcXBwqVqyI6tWrq01TT0TvhkWFiIRy/fp1bNy4Ebdv38ZPP/2EI0eOwMLCAs2bN5c7mhpJkrBmzRps3rwZjx8/Vi2vUqUKXF1dMWzYMBYWoiLAs36ISBhXr15Fnz59YGtri6tXryItLQ0RERGYO3culi1bpnaVX7mNHTsWJ06cwBdffAEnJydUqFABL1++REhICFasWIFLly5h2bJlcsck0nrco0JEwvj2229ha2uLiRMnws7ODnv37kWNGjUwd+5chIeHY8eOHXJHBAAEBwfDz88PAQEBaNCggcb6mzdvon///nBzc0PPnj1lSEj0/uCEb0QkjH/++SfHa+P069cPUVFRJR8oF9u3b8fYsWNzLCkAUK9ePYwbN06YYkWkzVhUiEgYenp6SEhI0Fj+8OFDGBoaypAoZ1FRUXB2ds5zG2dnZ9y8ebOEEhG9v1hUiEgYHTp0wI8//oj4+HjVsqioKPj6+qJt27byBXtDRkYGdHXfPsSPg2mJ3h2LChEJw93dHYmJiWjRogWSk5PRs2dPdO3aFaVKlYKbm5vc8VQsLCxw6tSpPLc5deoU6tWrV0KJiN5fPOuHiIRhbGyMrVu34uzZs7h27RqUSiXq168PZ2dn6OiI87mqR48eWLp0KVq1aoWaNWtqrI+KisLSpUvh7u4uQzqi9wvP+iEiKiClUomRI0fiwoUL6NmzJ+zt7VG+fHkkJCQgNDQU27dvR5s2bbB48WK5oxJpPRYVIpLVgAED8rWdQqHAxo0bizlN/mVkZOCXX37B5s2b8eLFC9XyKlWqYODAgRg8eDDHqBAVARYVIpKVh4dHnuvDwsIQExODsmXL4vz58yWUKv8kScLt27fx8uVLVKhQAebm5kIdpiLSdiwqRCSkhIQE+Pn5YceOHWjVqhV8fX1hamoqdywiKmEsKkQknDNnzsDLywuvXr2Cm5sbvvrqK7kjEZFMeNYPEQkjKSkJfn5+2LZtG1q1aoU5c+bAzMxM7lhEJCPuUSEiIZw9exaenp54+fIl3N3d8fXXX8sdiYgEwD0qRCSrpKQkzJ8/H0FBQXBycoKvry/3ohCRCveoEJGs2rdvjwcPHqBGjRr4/PPP89x27NixJZSKiETBokJEsnJxccnXdgqFAkePHi3mNEQkGhYVIiIiEhZnJSIiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUieq/xfAEi7caiQkSyO3fuHD799FPY2Nhg6NChRXa/27dvx7x584rs/oio5HFmWiKS3fz586FUKrFq1SpUqlSpyO53xYoVcHR0LLL7I6KSx6JCRLJ78eIFHBwc0LJlS7mjEJFgeOiH6D3n4uKCpUuX4ocffkDz5s1hZ2eHyZMnIzExEatWrULr1q3RtGlTjBs3Ds+fPwcApKSkYOHChejUqRNsbGxgb2+PQYMGISIiQnW/06ZNw8CBAxEcHKw6bPPFF1/gxIkTqm2WLFkCS0tLjUyWlpZYsmQJ7t27B0tLS9y/fx+7d++GpaUlQkJCAABHjhxB3759YWdnBxsbG3Tu3BlbtmxRu5/Hjx/D3d0dTk5OsLOzg6urKy5evKh63vfv38euXbtgaWmJe/fuvTUPAFWm9evXo3PnzmjSpAmCg4MBADdu3MCIESNgb28Pe3t7jBkzBjExMar7CQkJgaWlJbZu3Yp27drB3t4ep0+fLtTPjYhe4x4Vog/AunXr0KpVKyxevBhXr17FwoUL8c8//6Bq1aqYPXs27t27B19fX1SuXBkzZ86Em5sbwsLCMGnSJJibm+POnTv46aefMHnyZPz2229QKBQAgKtXr+Lx48cYP348jI2N8dNPP2HcuHE4ceIEypUr99ZcVatWRVBQEMaOHQtra2uMHj0aFhYWOHbsGMaMGYMBAwZg3LhxSElJQWBgIHx8fGBjY4MmTZogMTERffr0QWZmJqZOnQoTExOsW7cOgwcPxq5du7B06VIMHz5cdb9Vq1Yt0PdsyZIl8PT0hLGxMZo0aYLbt2/jm2++QZ06dTBv3jxkZGRgxYoV6NOnD/bs2aN2yGrp0qXw8vJCSkoK7OzsCvbDIiI1LCpEHwBjY2MsXrwYurq6aNmyJXbt2oXY2Fhs374dZcqUAQCcPHkSFy5cQFpaGhITE+Hl5YX//e9/AABHR0ckJCTAz88PT58+RZUqVQAAr169ws6dO2Fubg4AMDIygqurq2pw7Nvo6+vD1tYW+vr6qFixImxtbQEAkZGR6NGjBzw9PVXb2tnZoXnz5ggJCUGTJk2wa9cu1R6TBg0aAADs7e3RvXt3hIaG4quvvtK434L47LPP0KtXL9XXkydPhqGhITZs2ABjY2MAgJOTEzp06IA1a9bA3d1dtW3fvn3RuXPnAj8mEWliUSH6ADRu3Bi6uv/9uleuXBlGRkaqkgIA5cuXx40bN6Cvr4+1a9cCAGJjY3H79m1ER0fjr7/+AgCkpaWpblOxYkVVSQEAU1NTAEBycvI75c068ycxMRG3b9/G3bt3ceXKFbXHDw8PR/Xq1VUlBQAMDQ1x8ODBd3rsLNnvF3h9ZpKjoyMMDAyQkZEB4HUBbNasGc6cOZPnbYmo8FhUiD4AWXsAsjMyMsp1+5MnT+KHH37ArVu38NFHH8HKykq1ffZ5SQwNDdVul3VISKlUvlPeuLg4zJw5E0eOHIFCoUDNmjXRrFkztcd/8eJFkZ4h9KY3vz8vXrzAgQMHcODAAY1tK1asmOdtiajwWFSISM3du3cxZswYdOjQAStXrkSNGjWgUCiwZcsWnDx5skD3lVVcMjMzUapUKQCv95K8zZQpU3Dr1i1s2LABdnZ20NfXR3JyMrZt26bapkyZMrh3757GbS9cuIBy5cqhbt26RZYn6/FatmyJQYMGaazLvreKiIoWz/ohIjVXr15Famoqhg8fDnNzc9Wbe1ZJKchMr1l7ch49eqRaFh4e/tbbhYeHo1OnTmjevDn09fUBQHU2UdbemmbNmiEmJgY3b95U3S41NRXjxo3Djh07AAA6Oup/4gqbB3g9TicyMhINGjRAo0aN0KhRI9jY2GDDhg04fPhwvu6DiAqORYWI1DRs2BC6urpYsGABTp8+jb/++gvjxo3DsWPHAABJSUn5vq82bdoAAGbMmIEzZ84gODgYs2bNwkcffZTn7Ro3box9+/Zhz549CAkJwYoVKzBt2jQoFArV+JeePXuiRo0aGDVqFPbu3YuTJ09i7NixSE9PR9++fQEAZcuWxbVr13D+/HmkpKQUOg8AjB49Gnfv3sWIESNw5MgRnDx5EuPGjcNvv/0GKyurfH9PiKhgWFSISE3NmjWxcOFCxMbGYtSoUZgxYwYAYNOmTVAoFAgLC8v3fdWuXRvz5s3DvXv3MHz4cAQEBGD27NlvPVXYz88PTZo0wezZszFmzBgcPXoU3t7e+OSTT1SPb2xsjM2bN6u2mzBhApRKJQICAlCjRg0AwODBg/H06VMMGTIEV69eLXQeALCyssKWLVugUCjg5uaG8ePH48mTJ1i2bBk6deqU7+8JERWMQuIVu4iIiEhQ3KNCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsP4PeXkyN+pWrHAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Análisis de la columna 'category':\n", + "category\n", + "Mujer • Running 236\n", + "Hombre • Running 210\n", + "Running 61\n", + "Calzado de running en carretera para hombre 24\n", + "Calzado de running en carretera para mujer 15\n", + "Calzado de correr en carretera para hombre 12\n", + "Calzado de correr en pavimento para mujer 11\n", + "Calzado de correr en carretera para mujer 11\n", + "Mujer • adidas by Stella McCartney 5\n", + "Calzado para hombre 5\n", + "Mujer • TERREX 4\n", + "Calzado de running en carretera para niños grandes 4\n", + "Calzado de trail running para hombre 3\n", + "Calzado para niños de preescolar 2\n", + "Calzado de carrera en carretera para mujer 2\n", + "Calzado de trail running impermeables para mujer 2\n", + "Calzado de correr en pavimento para hombre 2\n", + "Calzado de caminata para mujer 1\n", + "Calzado de running en carretera acondicionado para los estados del tiempo para hombre 1\n", + "Hombre • TERREX 1\n", + "Calzado de trail running impermeables para hombre 1\n", + "Calzado de carrera en carretera para hombre 1\n", + "Calzado de running en carretera resistente a las inclemencias del tiempo para mujer 1\n", + "Calzado de carrera en carretera 1\n", + "Calzado de running en carretera impermeable para hombre 1\n", + "Calzado de trail running para mujer 1\n", + "TERREX 1\n", + "Calzado de running en carretera impermeable para mujer 1\n", + "adidas by Stella McCartney 1\n", + "Name: count, dtype: int64\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAQYCAYAAAAgUvIvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gU1/s28BsEFFtsiZpExQqi0hQVCwqWxC6aWMGKJXaMBUusWMGusYvYNSpGowY1sURjr1gRlWIBCxZApJ73D172x8ICs7sDTvjen+viStzdeXjOzLD77Jkz5xgIIQSIiIiIFMjwcydARERElBUWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIoXjnIz/PTxmRPJhoUKkBzc3N5ibm6t+LCwsYGtriy5dumDLli1ISkpSe72zszM8PT0lx//rr78wceLEHF/n6ekJZ2dnnX+Prp4+fQpzc3Ps378/03MJCQlo3rw5XFxcEBcXl2s5uLm5wc3NLdfiayMiIgKDBw/Gs2fPPncqRPmG0edOgOi/ztLSEtOnTwcAJCcn4/379zhz5gzmzZuHK1euYOnSpTA0TP1OsHLlShQtWlRy7M2bN0t63bBhw9CnTx+tc9fXV199hd27d6NixYqZnvvtt9+QlJSE1atXw9TUNM9z+xz+/fdfnD59+nOnQZSvsFAh0lPRokVhY2Oj9pizszOqVKmCOXPm4I8//kDHjh0BpBY1uUFToZAXTExMMrU9TYsWLdCmTRuUKlUqb5MionyFl36IcomrqyvKli2LXbt2qR7LeEkmrYixsrJCw4YNMW7cOERGRgJIvaRx6dIlXLp0Cebm5rh48SIuXrwIc3Nz7Nq1C05OTrCzs8O5c+cyXfoBgMTERHh5ecHe3h716tXDxIkTERUVpXpe0yWTtPgXL15UPfb48WOMGDEC9evXh729PYYMGYJHjx4B0HzpJyQkBKNGjULXrl3h7OwMNzc3XL16VfV82jZHjx7FqFGjYGtri/r162Pq1Kn4+PFjtvv0+fPnGDFiBOrWrYvGjRvD19dX4+t+++03tGvXDrVr10bz5s2xYsUKJCcnZxs7ISEBS5cuRYsWLWBlZYX27dvD399f9XxycjLWrVuH9u3bw8rKCjY2NujRowcuXLgAANi/fz8mTZoEILVIS3+cpeTj7++Ptm3bok6dOujYsSPOnz8PS0tLjfu2cePGsLGxyXLf+vr64vvvv4e1tTW2b98Oc3Nz7N69W+33vXjxAjVr1sTBgwez3S9EnxsLFaJcYmhoCAcHB9y6dSvTWBUAuHr1KiZMmIDWrVtj/fr1mDRpEi5cuICff/4ZADB9+nRYWlrC0tISu3fvRq1atVTbrly5EhMnTsS0adNga2ur8fcfPXoUd+7cwfz58zFx4kScOnUKgwYNyvEDO73IyEh0794dISEhmDFjBry9vfH69Wv07dsX7969y/T64OBgdOnSBU+fPsXUqVPh4+MDAwMD9O3bF5cuXVJ77fTp0/HNN9/g119/xcCBA7F3716sXr06y1w+fvwIV1dXBAUFYfbs2fjll1/w22+/4fr162qvW7t2LX755Rc4ODhgzZo16N27N9avX49ffvkl27aOGzcOvr6++PHHH7F27Vo0adIEnp6e+OOPPwAAPj4++PXXX9G9e3ds2LABs2fPxrt37zB69GjExcWhefPm+OmnnwCkHp9hw4ZJzufAgQPw9PSEnZ0dfv31V3z33XcYNmyY2rHSZt+uWLECgwYNwsKFC9GiRQtYW1vj999/V3vNgQMHULhwYbRu3Trb/UL0ufHSD1EuKlOmDBITE/Hu3TuUKVNG7bmrV6+iUKFCGDx4MExMTAAAJUqUQGBgIIQQqFatmmo8S8bLK7169cL333+f7e8uWbIkNm7ciMKFC6v+PXz4cJw5cwZOTk6S8t+8eTMSEhLg6+uLL7/8EgBgYWGBnj174ubNm6hatara61euXAkTExNs2bJFlXvz5s3Rvn17LFy4EHv37lW9tlmzZqqBwg4ODjh37hxOnTqlKtQy8vf3x/Pnz/HHH3+gWrVqAABra2u0atVK9Zro6GhVMTF16lQAQJMmTVCiRAlMnToV/fv3R/Xq1TPFDgoKQkBAACZPnoy+ffuqcnr27BkuXryI9u3b4+XLl/Dw8FDrhSpYsCBGjhyJBw8ewMbGRnUJrmbNmvj2228l57Ns2TI4OTnBy8sLANC0aVMYGxtj0aJFOu3bNm3aoGvXrqp/d+3aFdOnT0d4eDgqVKgAILVQadeuHQoVKqRxfxMpBXtUiHJR2m2qBgYGmZ6zt7dHXFwc2rdvj0WLFuHKlSto0qQJRowYofH16dWsWTPH392sWTNVkQKkXnYyMjLC5cuXJed/9epV2NjYqIoUAChXrhxOnjyJZs2aZXr9pUuX4OTkpDZg2MjICO3atcPt27cRGxurejxj8VWuXLlsL/1cuXIFFStWVBUpAFC+fHm1ONevX8enT5/g7OyMpKQk1U/aZbFz585l2U4AmXoXVqxYgdmzZwMAFi1ahL59+yIqKgpXrlzBvn37VJdNEhISNMaVkk9oaCieP3+eqfBs166d2r+12bcZz4+0giStV+XatWsICQmBi4uLxryJlIQ9KkS5KDIyEoUKFUKJEiUyPWdra4t169Zh8+bN8PX1xbp161CmTBkMHTo0x9tt0xcgWUlfXACpl6JKliyJDx8+SM7/3bt3+PbbbyW//v3795l6joDUniUhBGJiYlSPZbwTyNDQMNv5R96/f4+SJUtmevzLL7/E69evVfkCwODBgzXGePnypcbH07YrXbp0lr8/MDAQM2fORGBgIExNTVGtWjV8/fXXALKeN0VKPmnjhjL+7oz7UZt9m/H8KFq0KL7//nscPHgQI0aMwIEDB1C5cuUsLxsSKQkLFaJckpSUhIsXL8LOzg4FChTQ+JqmTZuiadOmiIuLw4ULF7BlyxZ4eXnB2toaVlZWev3+jGNIkpOT8fbtW7UPxIzjVTL2aBQrVkxtAG6a8+fP49tvv83U8/PFF1+oiob0Xr16BSD18lNWxUJOSpYsidDQ0EyPp29n8eLFAaSOJzEzM8v0Wk0f9Om3i4qKQrly5VSPP3r0CO/evYO5uTnc3d1hbm6Ow4cPo0qVKjA0NMTp06cREBCQZc7a5PPmzRu15zL+W99927VrV/j7++PWrVsICAjAwIEDs3wtkZLw0g9RLtm9ezdevXqFnj17anx+wYIF6Nq1K4QQMDU1hZOTk2rMxvPnzwFANf+KLs6dO6c2iDcgIABJSUlo0KABgNRv2REREWrbpL+DBADq1auHmzdvqhUrb968gbu7u8b5Quzt7XHy5Em1b/fJyck4fPgw6tSpoxqLo4uGDRvi6dOnCAwMVD0WFRWFGzduqP5tbW0NY2NjREZGok6dOqofIyMjLF68GE+fPtUYu27dugCAv//+W+1xHx8fzJkzB48fP8a7d+/Qp08fVKtWTXVczpw5AwBISUkBkPl4ScmnXLlyqFixIo4fP6627bFjx9T+re++tbe3h5mZGby9vREdHY1OnTpl+3oipWCPCpGeYmJiVB+WKSkpePv2Lc6ePYvdu3ejY8eOWd5V0bBhQ/j6+sLT0xMdO3ZEYmIiNmzYgBIlSqBhw4YAUr+RX79+XXWrqjZevXqFkSNHws3NDSEhIVi8eDEaN24MBwcHAICTkxP+/vtvzJs3D87Ozrhy5QoOHDigFqNfv344cOAA3N3dMWTIEBgbG2P16tUoV64cOnTogOjoaLXXjxgxAmfOnEGfPn0wePBgGBsbY9u2bQgPD8eGDRu0yj+jTp06YcuWLRgxYgQ8PDxQtGhRrF69WlUkAKm9Cu7u7li2bBliYmLQoEEDREZGYtmyZTAwMICFhYXG2BYWFvj+++/h7e2NT58+oWbNmjhz5gxOnjyJlStXonLlyihatCjWrFkDIyMjGBkZISAgQDWANW3m3bQelOPHj8PR0RFVq1bNMR8DAwOMGjUK48aNw/Tp09GqVSvcv38fq1atAvB/xY8c+7Zr165YtGgRHB0dUbZsWd0OBFEeY6FCpKe7d++ie/fuAFIHzRYpUgQ1atTAjBkz8OOPP2a5XbNmzeDj44NNmzapBtDWrVsXW7ZsUY1p6d27N27fvo1BgwZh3rx5+OqrryTn1atXL0RHR2P48OEwMTFBhw4dMH78eNXlmq5duyIsLAz+/v7YtWsX7O3tsXz5crUeoPLly2PHjh3w9vaGp6cnTExM0KBBAyxZsgRffPFFpkKlevXq2LFjBxYvXoxJkybBwMAAVlZW2LJlC+rVqyc5d01MTEzg5+eHuXPnYs6cOTAwMEC3bt1QoUIFtcskY8aMwZdffokdO3Zgw4YN+OKLL+Dg4ICxY8eiWLFiWcb39vbGypUr4efnh7dv36Jq1apYvnw5WrZsCQD49ddfsXDhQowePRpFihRBzZo1sW3bNgwaNAhXrlyBs7MzGjRogEaNGmHRokU4f/481q1bJymfDh064OPHj9i4cSP27duH6tWrY8qUKZgyZYpqvIkc+7ZZs2ZYtGgRunTpouthIMpzBoKrZxERfVZ//PEHLC0tUaVKFdVjp06dwpAhQ/D7779n2ROkrbTB26dOndLrMhxRXmKPChHRZ3bw4EEsWbIEY8aMQfny5REaGorly5ejfv36shQp/v7+CAoKwo4dOzBs2DAWKfSfwh4VIqLP7O3bt1i0aBHOnDmDqKgolClTBt999x1GjRqFIkWK6B1/3rx52LVrF1q1aoV58+bB2NhYhqyJ8gYLFSIiIlIs3p5MREREisVChYiIiBSLhQoREREp1n/+rp/r169DCMHBYURERP8hiYmJMDAwyHHNqf98j4oQItuFzIQQSEhIyPY1Un6HEmIoKRfGYIz/Si6MkX9jKCkXxtA+Rk6f32n+8z0qaT0pderU0fj8x48fce/ePVSrVk3SirNKjqGkXBiDMf4ruTBG/o2hpFwYQ/sY6dftys5/vkeFiIiI8i8WKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBQr3xcqBgYGMDU1hYGBwedOhYiIiLRk9LkTyA0pKQKGhqmFiampKSwtLbN9DRERESlTvixUDA0N4LP9Kp5GRmt8/tuyxTCud908zoqIiIi0lS8LFQB4GhmNR8/ef+40iIiISA/5fowKERER/XexUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVCRQIDAwOYmprCwMDgc6dCRET0P8XocyegVCkpAoaGqYWJqakpLC0ts30NERERyY+FShYMDQ3gs/0qnkZGa3z+27LFMK533TzOioiI6H8LC5VsPI2MxqNn7z93GkRERP+zOEaFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYmldqLx79w7Tpk2Do6Mj7Ozs0LNnT1y5ckX1/Pnz59GlSxdYW1vj+++/x+HDh9W2j4+Px8yZM+Hg4ABbW1v8/PPPiIqK0r8lRERElO9oXaiMHTsW169fx+LFi7Fv3z7UrFkTAwcOxOPHj/Ho0SMMGTIETZs2xf79+/Hjjz9iwoQJOH/+vGr7GTNm4OzZs1ixYgX8/Pzw+PFjjBo1StZGERERUf6g1YRvoaGhOHfuHHbs2IG6dVNnZf3ll1/wzz//4NChQ3jz5g3Mzc3h4eEBAKhatSru3r2LDRs2wMHBAZGRkThw4ADWrFmDevXqAQAWL16M77//HtevX4etra3MzSMiIqL/Mq16VEqWLIl169ahTp06qscMDAxgYGCADx8+4MqVK3BwcFDbpmHDhrh69SqEELh69arqsTSVK1dG2bJlcfnyZX3aQURERPmQVoVK8eLF0axZM5iYmKgeCwgIQGhoKJo2bYqIiAiUK1dObZuvvvoKcXFxePv2LSIjI1GyZEkULFgw02siIiL0aAYRERHlR3qt9XPt2jVMmjQJrVu3RvPmzfHp0ye1IgaA6t8JCQmIi4vL9DwAFCxYEPHx8TrnIYTAx48fAaT28JiamkraLi4uDkKITI/LEUPT69L/V1dyxGEMxsjtGErKhTHybwwl5cIY2scQQsDAwCDHWDoXKidOnMC4ceNgZ2cHHx8fAKkFR0JCgtrr0v5tamqKQoUKZXoeSL0TSGphoEliYiLu3bun+j2WlpaStnvy5InGnShHjKyEhIRIfm1ux2EMxsjtGHLFYQzGyIs4jJH3MTR1XmSkU6Gybds2zJkzB99//z0WLFig+kXly5fHy5cv1V778uVLFC5cGMWKFUO5cuXw7t07JCQkqCX38uVLlC1bVpdUAADGxsaoVq0aAEiqztJUrlw5yx4VfWNkFBcXh5CQEJiZmelVlMkRhzEYI7djKCkXxsi/MZSUC2NoHyM4OFhSLK0LlR07dmD27Nlwc3PDlClT1D7U69Wrh0uXLqm9/sKFC7Czs4OhoSHq1q2LlJQUXL16VTXo9smTJ4iMjIS9vb22qagYGBigcOHCWm+nzx+HrjFMTU11yjU34jAGY+R2DCXlwhj5N4aScmEM6TGkdgpoNZj2yZMnmDt3Llq1aoUhQ4bg9evXePXqFV69eoXo6Gi4ubnh1q1b8PHxwaNHj7Bp0yb8+eefcHd3BwCULVsW7dq1w9SpU3Hx4kXcunULY8eORf369WFjY6NNKkRERPQ/QKselYCAACQmJuL48eM4fvy42nMuLi6YP38+fv31V3h7e8PPzw/ffvstvL291W5Znj17NubOnYsRI0YAABwdHTF16lQZmkJERET5jVaFytChQzF06NBsX+Po6AhHR8csny9cuDC8vLzg5eWlza8mIiKi/0FclJCIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixdKrUFm7di3c3NzUHps6dSrMzc3VfpydnVXPp6SkYPny5WjatClsbGwwaNAghIeH65MGERER5VM6Fyrbt2/H0qVLMz3+4MEDDB06FGfPnlX97N27V/X8r7/+ih07dmD27NnYtWsXUlJS4O7ujoSEBF1TISIionxK60IlMjISQ4cOhY+PD8zMzNSeE0IgODgYtWvXxpdffqn6KVWqFAAgISEBmzZtwqhRo9C8eXNYWFhgyZIliIiIwLFjx2RpEBEREeUfWhcqd+7cgbGxMQ4ePAhra2u158LCwvDx40dUqVJF47b3799HbGwsHBwcVI8VL14clpaWuHz5srapEBERUT5npO0Gzs7OamNO0gsKCgIAbN26FWfOnIGhoSEcHR3h4eGBYsWKISIiAgBQvnx5te2++uor1XO6EELg48ePAAADAwOYmppK2i4uLg5CiEyPyxFD0+vS/1dXcsRhDMbI7RhKyoUx8m8MJeXCGNrHEELAwMAgx1haFyrZCQoKgqGhIb766iusWbMGYWFhWLhwIR4+fAg/Pz9VwiYmJmrbFSxYEO/fv9f59yYmJuLevXsAAFNTU1haWkra7smTJxp3ohwxshISEiL5tbkdhzEYI7djyBWHMRgjL+IwRt7HyFgPaCJrofLTTz+hV69eKFmyJACgRo0a+PLLL9GtWzcEBgaiUKFCAFLHqqT9PwDEx8dL7sHQxNjYGNWqVQMASdVZmsqVK2fZo6JvjIzi4uIQEhICMzMzvdoqRxzGYIzcjqGkXBgj/8ZQUi6MoX2M4OBgSbFkLVQMDQ1VRUqa6tWrAwAiIiJUl3xevnyJihUrql7z8uVLmJub6/x7DQwMULhwYa230+ePQ9cYpqamOuWaG3EYgzFyO4aScmGM/BtDSbkwhvQYUjsFZJ3wbcKECejXr5/aY4GBgQCAatWqwcLCAkWLFsXFixdVz3/48AF3796Fvb29nKkQERFRPiBrofLdd9/h/PnzWLlyJcLCwnD69GlMnjwZ7du3R9WqVWFiYgJXV1f4+Pjgr7/+wv379+Hh4YFy5cqhdevWcqZCRERE+YCsl35atGiBpUuXYt26dVi/fj2KFSuGDh06YMyYMarXjBo1CklJSZg6dSo+ffoEe3t7bNy4EcbGxnKmQkRERPmAXoXK/PnzMz3Wpk0btGnTJsttChQogPHjx2P8+PH6/GoiIiL6H8BFCYmIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESmWXoXK2rVr4ebmpvbYvXv34OrqChsbGzg7O2PLli1qz6ekpGD58uVo2rQpbGxsMGjQIISHh+uTBhEREeVTOhcq27dvx9KlS9Uee/v2Lfr374+KFSti3759GD58OHx8fLBv3z7Va3799Vfs2LEDs2fPxq5du5CSkgJ3d3ckJCTo3AgiIiLKn4y03SAyMhLTp0/HxYsXYWZmpvbcnj17YGxsjFmzZsHIyAhVq1ZFaGgo1q1bh65duyIhIQGbNm3CuHHj0Lx5cwDAkiVL0LRpUxw7dgzt27eXo01ERESUT2jdo3Lnzh0YGxvj4MGDsLa2VnvuypUrqF+/PoyM/q/+adiwIUJCQvD69Wvcv38fsbGxcHBwUD1fvHhxWFpa4vLly3o0g4iIiPIjrXtUnJ2d4ezsrPG5iIgI1KhRQ+2xr776CgDw4sULREREAADKly+f6TVpzxERERGl0bpQyc6nT59gYmKi9ljBggUBAPHx8YiLiwMAja95//69zr9XCIGPHz8CAAwMDGBqaippu7i4OAghMj0uRwxNr0v/X13JEYcxGCO3YygpF8bIvzGUlAtjaB9DCAEDA4McY8laqBQqVCjToNj4+HgAQOHChVGoUCEAQEJCgur/014jtTDQJDExEffu3QMAmJqawtLSUtJ2T5480bgT5YiRlZCQEMmvze04jMEYuR1DrjiMwRh5EYcx8j5Gxo4LTWQtVMqVK4eXL1+qPZb277JlyyIpKUn1WMWKFdVeY25urvPvNTY2RrVq1QBAUnWWpnLlyln2qOgbI6O4uDiEhITAzMxMr6JMjjiMwRi5HUNJuTBG/o2hpFwYQ/sYwcHBkmLJWqjY29tj165dSE5ORoECBQAAFy5cQOXKlVG6dGkUK1YMRYsWxcWLF1WFyocPH3D37l24urrq/HsNDAxQuHBhrbfT549D1ximpqY65ZobcRiDMXI7hpJyYYz8G0NJuTCG9BhSOwVknZm2a9euiImJwZQpUxAcHIz9+/dj8+bNGDJkCIDULh5XV1f4+Pjgr7/+wv379+Hh4YFy5cqhdevWcqZCRERE+YCsPSqlS5fGhg0bMGfOHLi4uODLL7/EhAkT4OLionrNqFGjkJSUhKlTp+LTp0+wt7fHxo0bYWxsLGcqRERElA/oVajMnz8/02NWVlbYvXt3ltsUKFAA48ePx/jx4/X51URERPQ/gIsSEhERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVCJY8YGBjA1NQUBgYGnzsVIiKi/wyjz51AfpaSImBomFqYmJqawtLSMtvXEBERkToWKrnI0NAAPtuv4mlktMbnvy1bDON6183jrIiIiP47WKjksqeR0Xj07P3nToOIiOg/iWNUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWLIXKpGRkTA3N8/0s3//fgDAvXv34OrqChsbGzg7O2PLli1yp0BERET5hOwz096/fx8FCxbEiRMn1BbgK1asGN6+fYv+/fvD2dkZM2fOxI0bNzBz5kwUKVIEXbt2lTsVIiIi+o+TvVAJCgqCmZkZvvrqq0zP+fn5wdjYGLNmzYKRkRGqVq2K0NBQrFu3joUKERERZSL7pZ8HDx6gatWqGp+7cuUK6tevDyOj/6uPGjZsiJCQELx+/VruVIiIiOg/Lld6VEqWLInevXvjyZMnqFSpEn766Sc4OjoiIiICNWrUUHt9Ws/LixcvUKZMGZ1+pxACHz9+BAAYGBjA1NRU0nZxcXEQQmR6XCkxsnpt+v/qgjEYI7djKCkXxsi/MZSUC2NoH0MIoTZEJCuyFipJSUl4/PgxqlWrBk9PTxQtWhSHDx/G4MGD4evri0+fPsHExERtm4IFCwIA4uPjdf69iYmJuHfvHgDA1NQUlpaWkrZ78uSJxp2olBjZCQkJ0er1jMEYnyOGXHEYgzHyIg5j5H2MjDWBJrIWKkZGRrh48SIKFCiAQoUKAQBq166Nhw8fYuPGjShUqBASEhLUtkkrUAoXLqzz7zU2Nka1atUAQFJ1lqZy5cpZ9oYoIYYmcXFxCAkJgZmZmeQeG8ZgjLyOoaRcGCP/xlBSLoyhfYzg4GBJsWS/9FOkSJFMj1WvXh1nz55FuXLl8PLlS7Xn0v5dtmxZnX+ngYGBToWOPn8cnzuGqampXsUdYzBGXsRQUi6MkX9jKCkXxpAeQ+oXelkH0z58+BB2dna4ePGi2uO3b99GtWrVYG9vj6tXryI5OVn13IULF1C5cmWULl1azlSIiIgoH5C1UKlatSqqVKmCWbNm4cqVK3j06BHmzZuHGzdu4KeffkLXrl0RExODKVOmIDg4GPv378fmzZsxZMgQOdMgIiKifELWSz+GhoZYs2YNFi1ahDFjxuDDhw+wtLSEr6+v6m6fDRs2YM6cOXBxccGXX36JCRMmwMXFRc40iIiIKJ+QfYxKmTJlMG/evCyft7Kywu7du+X+tURERJQPcVFCIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhcp/jIGBAUxNTWFgYPC5UyEiIsp1Rp87AcpeSoqAoeH/FSWmpqawtLTM9jVERET5BQsVhTM0NIDP9qt4Ghmt8flvyxbDuN518zgrIiKivMFC5T/gaWQ0Hj17/7nTICIiynMco0JERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFyv8grsBMRET/FVzr538AV2AmIqL/KhYq/wO4AjMREf1XsVD5H8EVmImI6L+IY1RIJxznQkREeYE9KiQJx7kQEdHnwEKFJMmNcS5y9MqwZ4eIKH9joUKSyTHOJX2vi669MnLEICKi/wYWKpSnsuuZkdorI0cMIiL6b2ChQnlOjp4Z3sVERPS/gXf9EBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQr9z+N8LkREysW7fuh/EudzISL6b2ChQv+TlDifC3t2iIgyY6FC/7OUMJ9LTr0yGV+TWzHSY7FDREryWQqVlJQUrFy5Er/99huio6Nhb2+PadOmoUKFCp8jHaLPRo41lOSIIXexQ0Qkl89SqPz666/YsWMH5s+fj3LlysHb2xvu7u44dOgQTExMPkdKRJ+NEnp28vOik0qJQUS6yfNCJSEhAZs2bcK4cePQvHlzAMCSJUvQtGlTHDt2DO3bt8/rlIgI8l7GAnQbYCxHjIyvUcpgaaUUTPkphpJyYQz5Y6TJ80Ll/v37iI2NhYODg+qx4sWLw9LSEpcvX2ahQvQfpZTLWDnFycsYSimY8iKGlDhyx9C1PUqJkfE1jKGZgRBCaL2VHo4dO4aRI0fi5s2bKFSokOrx0aNH49OnT1i7dq1W8a5duwYhBIyNjVWPGRgY4H1MApKSUzRuY1TAEF8UNUF2TWcM+WPkFIcxMvsvHV+lxMgpTl7HiI1LRHJK5tcVMDRAEVPjfBFDahzG0C5Ofo+RmJgIAwMD2NnZZRs3z3tU4uLiACDTWJSCBQvi/Xvtu53TupUydi99UTTnsS45dUkxhvwxpMRhDO3jMIb2cfIqRhFT42yfz08xpMRhDO3j5NcYBgYGkmLmeaGS1ouSkJCg1qMSHx8PU1NTrePZ2trKlhsREREpS55PoV++fHkAwMuXL9Uef/nyJcqWLZvX6RAREZGC5XmhYmFhgaJFi+LixYuqxz58+IC7d+/C3t4+r9MhIiIiBcvzSz8mJiZwdXWFj48PSpUqhW+++Qbe3t4oV64cWrdundfpEBERkYJ9lgnfRo0ahaSkJEydOhWfPn2Cvb09Nm7cqHbnDhEREVGe355MREREJFWej1EhIiIikoqFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISJZxMbG5psYpFw8vvJT+j5lofIfcfnyZezatQsxMTEIDg5GUlKS5G03btyIyMjIz56Hl5cXwsLC9Pr9crRlx44diI6O1itGmufPn+Off/7Bp0+f8ObNmxxfn5KSIilueHi4vqnluc6dO+POnTv5IgYAfPr0CQcOHMCiRYvw7t07XLp0CW/fvpW8vRznu655fPz4UVLs69ev651fXpPr+CrBiBEj8OjRo8+dhiz71NvbG48fP5YpI3WfZWba3OTs7Kxx2WgDAwMYGxujXLly6NSpEzp37pxlDAsLiyyXnk4fY9iwYZKWqNZHTEwM3N3dcePGDRgYGKBx48bw8fFBeHg4Nm3aJGkhx9WrV6Nly5afPQ9/f3/069dPrzzkaMvatWuxYMECODs7o2vXrmjcuLHWxzEhIQETJ07E0aNHYWhoiICAACxYsACxsbFYsWIFihYtqnE7Nzc3LF68ONv9tW/fPsydOxdXr16VlMemTZvQpk0bVKpUCVOmTMGRI0dgZ2cHHx8flCxZUlJ7Xr58iT179uDx48eYMmUKLl++jBo1aqBKlSqStgeAuLg4nVZAV2KM169fo3v37njz5g0SEhLQrVs3bNq0Cbdv34afnx+qVq2aYww5zndd83BxccGyZctgYWGh8fmUlBSsXLkS69atw+3btyXlcvr0aWzYsAFPnjzB7t27sX//flSsWBGdOnWS3B45YshxfOPj47F7924EBQUhOTlZ9XhCQgJu376NgIAASXH0bc+FCxdQsGBBrfO/f/9+lsc2vfXr12PQoEE5vk6OfXrlyhVs2rQJderUQdeuXdGuXbss3we1le96VLp27YoXL17A0tISffr0QZ8+fVCnTh08f/4cdevWRYUKFTBz5kz89ttvWcaYPHkyTExM0LdvX6xYsQIrVqzAgAEDULBgQfTu3RtdunTB9u3bsWHDhlxvz+LFiwEAx48fR6FChQAA48ePh4mJCRYuXCgphrW1Nf7+++/PnkezZs2wbds2vboZ5WjLqVOnsGrVKhQoUAAjRoxA8+bNsXjxYjx58kRyjNWrV+P+/fvw8/NTvdG4ubkhNDQUPj4+WW6XlJSETp064fTp05mei46OxpgxYzBlyhQ0aNBAUh4+Pj7w9fVFTEwMzpw5A39/fwwZMgSxsbGSj0toaCg6dOgAf39/HDt2DB8/fsSRI0fQtWtX3Lx5U1IMAOjTpw9GjBiB7du3459//sHly5fVfv5LMebPn4/q1avj/PnzquO7YMECVK9eHd7e3pJiyHG+65qHubk5unfvju3bt2d67unTp+jVqxdWr16Nnj17Ssrj3LlzGDFiBL755ht8+PABKSkpSEpKwqRJk3DgwIE8iwHIc3y9vLzg7e2Nhw8f4vfff0dYWBj++ecfHDlyBM7OznnWHhcXF/j4+ODhw4dISEiQtA0AdOvWDTt37szy+cjISPTp00f1vp0TOfbp7t27ceTIETg4OGDt2rVo3Lgxfv75Z5w9exZ6T4Av8pkBAwaINWvWZHp8w4YNwt3dXQghhL+/v2jfvn2WMbp16yZ27dqV6fG9e/eKHj16CCGEOHHihGjdunWO+ZibmwsLCwuNP3Xq1BGtWrUSK1euFCkpKRq3b968ubh69aoQQggbGxsRFhYmhBDi2rVrwsHBIcffL4QQo0aNEhYWFqJ+/fqiW7duws3NTe1HCjnycHV1Ve2Pxo0bC2dnZ7WfvGpLejExMWL//v1iyJAhwsrKSnTv3l3s3btXxMXFZbtdq1atxLlz54QQ6vvj33//FU2aNMlyu8TERDFv3jxhYWEh5s+fLxITE4UQQly6dEk0b95c2Nraij179kjOv2nTpuLs2bNCCCGmTZsm+vbtK4QQIjAwUDRs2FBSjKFDh4rJkyeLlJQUVVsSExPF2LFjhaurq+RczM3Ns/yxsLD4T8Vo3LixuHPnjhBC/fjeu3dP2NvbS4ohx/muTx5btmwRtWvXFiNHjhQfPnwQQqS+99WtW1c4Ojqqzl8punfvLnx9fTPlsW7dumzfS+WOIYQ8x9fBwUEcOnRICCFEy5YtxaNHj0RCQoIYPny4mD17dp61p1WrVtl+RmRl69atonbt2mL06NEiOjpa7bmAgABRv3590bBhQ3H8+HFJecixTzO6ePGimDlzprCxsRHNmjUTy5YtExERETrFyneXfq5evYpp06ZlerxVq1ZYvnw5AKB+/fqYPn16ljHu3buHhg0bZnq8Xr16mDlzJgDA0tISL168yDGfyZMnY9GiRejZsyfq1asHIPW68Pbt29GzZ0988cUX2LJlC0xMTDR20UVFReHLL7/M9Hjx4sUlX4cuXLhwtpe6pJAjjwYNGkjuKciKHG1JLy4uDu/fv8eHDx+QlJQEQ0NDrF69GosXL4aPjw8cHBw0bhcZGYmKFStmerx8+fJ4//59lr/PyMgInp6esLe3x5QpU3D16lXY2dlhy5YtsLa2xpYtW1ChQgXJ+b97907V/X/u3Dl0794dAFCiRAl8+vRJUoxr165h+/btape/jIyMMGzYMHTr1k1yLn/99Zfk1yo9RmxsLAoXLqzxOanjsuQ43/XJw83NDTY2Nhg3bhw6d+4MS0tLnDhxAm3atMGMGTNQvHhxyXk8ePBAYw/d999/j5UrV+ZZDECe4/vhwwfY2dkBAKpVq4a7d++iSpUqGDJkCMaMGYOpU6fmGEOO9vz000/aJf7/ubq6wtraGh4eHujcuTOWLFmCatWqYdasWfD390ezZs0wZ84clClTRlI8OfZperdu3cKxY8dUvd/29va4fPkyNm7ciNmzZ6Njx45axct3hUrp0qVx7do1VKpUSe3xq1evqq7Xv3r1CsWKFcsyxrfffouTJ09mur588uRJlCtXDgAQFhaGUqVK5ZjP4cOHMXnyZNUHCAC0bNkSVapUwd69e7Fz505Ur14dCxcu1Fio1KlTB0ePHsXgwYPVHt++fTssLS1z/P0AMG/ePEmvy44ceYwYMULvPORoS3x8PI4dO4bff/8dFy5cQOnSpdG5c2fMmzdPdd7MnDkTnp6eGi/RAEDVqlVx/vx5/Pjjj2qPHz58GNWqVcsxhxYtWqBEiRLo27cvAgMD0ahRI2zYsEHrsTIVK1ZEYGAg3rx5g6dPn6Jp06YAgBMnTuDbb7+VFCMlJUXjIN/Y2FgUKFBAci7ffPNNls/Fx8drFSMhIQFPnz5FxYoVIYTQamV1OWLY29tj586dmDRpkuqxxMRErF69WvUBlxM5znd986hTpw6mTZuGIUOG4NmzZ6qxZYaG2l31L1asGF6+fJmpOA8ODsYXX3yRZzEAeY5vqVKl8ObNG3z99dcwMzNDUFAQAKBkyZJ4/fq1pBhytMfFxUVyzhnVqVMH/v7+mDFjBnr16oUvv/wS7969w4wZM9CjRw+tYsmxT1+8eIHff/8dv//+O548eQJra2sMGzYMbdu2VY1VWbFiBebOnctCxc3NDbNmzUJISAhsbGyQkpKCmzdvYuvWrfjpp5/w4sULzJgxQ/WGrslPP/0ET09PBAYGwtbWVhXjzz//xKxZs/DkyRNMmjQJrVu3zjEffXtnxo4diwEDBuDWrVtISkrC6tWr8ejRI9y5cwcbN26UuFf+b7DkkydPMHnyZK0HS8qVR9q4jidPnmDZsmU4ceIEqlevjvr16+dZWxwcHJCUlITmzZtj1apVaNq0aaY3bgcHh2y/ZYwcORIeHh4IDg5GcnIy/P398eTJEwQEBGDJkiU55rBjxw54e3ujUqVKcHR0hJ+fH0aPHg0vLy+tvum6u7tj7NixMDQ0RMOGDWFhYYFVq1Zh1apVmDt3rqQYTZo0wdq1a9XGPLx79w7e3t4az92svH37FmvWrFEboCiEQGJiIoKDg3HlypUcYwghsGjRImzduhWJiYmq/WlqaooZM2ZIeuOUI8bEiRPRu3dvXLp0CYmJiZgxYwYeP36M6OhobNu2Leed8f/pe77rk0dSUhKWLFmCzZs3w97eHi1btlT17i5atEhyIQsAHTp0wNy5czF37lwYGBggNjYWZ86cwezZs9G2bds8iwHIc3wdHR0xc+ZMzJs3D3Xr1sXcuXPRqlUrHDlyRPVlNK/ac/r0aWzcuBGPHz/WekBu0aJFUaNGDQQEBOD58+ewtbVFs2bNJP/uNHLsU2dnZ5QqVQodO3bEypUrNQ70trS0hJmZmdb55bsxKkIIsW3bNuHk5KS6xubk5CR27twphBDizJkzYuzYseL9+/fZxvj777+Fq6ursLW1Ffb29sLV1VWcOXNGCJE6nmDx4sUiISEhx1zatGmjuo6Znq+vr2jVqpUQQogLFy6IZs2aZRnj/v37Yvz48aJdu3aiTZs2YtSoUeLGjRs5/u40ISEhon79+sLZ2VnUqlVLhIWFiZEjRwobGxut4uibR2BgoKhdu7ZwdXVV5TFlyhRRq1YtcerUqTxri5+fn4iKisr2NWljR7Jz+vRp0atXL2FjYyOsrKxE165dxZ9//pntNm/evBFDhgwR5ubmYubMmeLTp09CiNRzoGnTpqJZs2bi0qVLktqR5t69e+L48eMiPj5elde///4refuIiAjRunVr4eDgIGrWrCnatWsnbGxsRPPmzcXTp08lxxk9erSoX7++8PDwEDVr1hTjxo0TLi4uwtzcXKxdu1ZSDD8/P9GkSROxb98+YW1tLcLCwsThw4dF/fr1xeLFi/MshhBCREZGiqVLl4rBgwcLd3d3sWDBAhEeHi55eznOd13zCA4OFi4uLqJ27dpiw4YNao936NBB2NnZiQMHDkjOISEhQYwdO1Zt3IK5ubkYMmSI6hzOixhCyHN8379/L3766Sexbds2kZKSItzd3YW5ubmoVauW+OOPP/KsPWfPnhW1a9cWEydOFHXq1BFhYWFi8eLFombNmsLf3z/bbcPCwkT37t1FrVq1xMqVK8X9+/dF+/bthb29vTh69Kik359Gjn164sQJkZSUpNXvlSpfFipp3r59m2mgUV47ePCgsLS0FGPHjhVbt24Vfn5+YuzYscLS0lLs3btXPH78WDg5OYk5c+Zo3H727NkiNDRUrxzkGCwpRx59+/ZVnfTpB5/NnTtXdO3aVVIMuQZ+CpFacO7cuVNER0eLhw8fSipO0mzYsEGngWEODg6iUaNGGj+ooqKixKBBg4SlpaVWH6hCCBEfHy8ePXokEhMTJRXQGX38+FHs2bNHzJw5U0yfPl1s27ZN67+d+vXri5MnTwohhGjbtq24d++eEEKIqVOnivHjx0uK0bZtW3Hs2DEhhPo5cuzYMeHk5JRnMYYPHy6Cg4MlvTYrcpzvuuZhZWUl2rZtK+7evZvpufj4eDFt2jRhbm4ufv75Z0nx0v72Q0NDxdGjR8Xhw4fFw4cPtcpJjhhCyHN8L1++rCrshRAiJSVF3LlzR0RGRkrOQ4726Dogd9++fcLOzk60bNlSXL9+XfX4p0+fxNSpU4W5ubmYPHmy+Pjxo6Q85NinQggRFxcn/P39hY+Pj3j79q24ePFijl8KpciXhcrTp0/F4cOHhb+/f6YfqS5fvizWrl0rVq5cKVasWKH2oy19emfs7Oy0+hanSf369VV/QOlPwuDgYGFnZycphhx51K1bVzx+/DhTHqGhocLGxkZSDDnaEh0dLbp37676FhQWFiaGDBki2rZtK7n4qFu3rggJCZH02vSGDBki3rx5k+1rNmzYIGrXri0pXkpKivD29hZWVlaiZs2aIiwsTHh4eIjJkydLLli6du2qKir0UatWLfH8+XMhhBAjRoxQ/b3dv39fODo6SophZWWlOs/SH9+wsDDJ+0SOGHXr1lXE+a5rHul767Jy9OhRUa9ePUnxmjRpIm7evKl1HnLHEEKe49uwYUNx+/ZtvfKQoz02NjaqgidjW6ysrLLcztzcXHh6eoqYmBiNzx8+fFjUrVtXfPfdd5LykGOfvnr1Sjg7Owtra2vVe9GQIUNE48aN9S768908Knv27EHr1q0xduxYeHp6qv2kH5CWnVWrVsHV1RUbNmzAvn37sH//ftWPv7+/1jk5OTlh69atuHbtGi5duoStW7eqxsjY29vDw8Mjy2uAaXMxxMTEaP1708gxWFKOPIyNjTVu/+LFC8mTDcnRls85N82aNWtyHIQ9cOBAjfNfaLJ161b8/vvvmD59OkxMTACkDtY+ceKE5DsPwsPDs7yzRBtly5bFs2fPAABmZmZ48OABAMDU1DTbO6HS++abbxAYGJjp8TNnzki+G0qOGLrOb5GeHOe7rnlMmzYtx4nEvv/+e8nvZ8bGxjAy0m9IoxwxAHmOb6lSpfSenVqO9qQNyM0opwG5S5cuxbx581CkSBGNz7dt2xb+/v6SJ1yTY5/KMfdQVvLdYNo1a9agR48e8PDw0HlWvJ07d8LDwwNDhgyRJacrV67g2rVrSExMzDTxTU53Brx69QpHjhyBn58fSpcunenNR8ptZXIMlpQjj5YtW2Lp0qVqg00fPXqEOXPmoHnz5pLykKMtJ0+exKJFi9T+AKtWrYpp06Zh+PDhkmIULVoUCxcuxJo1a2BmZpZpf2zZskXjdseOHYOTk1O2g9NiY2Nx8OBBWFlZ5ZjH7t27MW3aNLRq1QqzZ88GkPomZWxsjHnz5sHDwyPHGO7u7pgyZQoGDhyIihUrqoq3NF9//XWOMQCgdevWmDRpEubPn49GjRrBw8MD1tbWOHHiRKa78LIycOBAzJw5E69evYIQAufPn8fu3buxdetWeHp65lmM06dPIywsLMsZSu/du5djDDnOd13z8PX1Ra9evdTOy0+fPqkd2+joaHh5eWHNmjU55uHi4gJ3d3d06tQJlSpVynSOSJkyQI4YgDzH19HREUOGDEGzZs1QqVKlTH+/Uu7YkqM9ug7I/f7773OMXaFCBezatSvH1wHy7NMLFy5g3bp1akX4F198gYkTJ6JPnz6SYmTFQGT85PyPS7uNVpsR7RlZW1vjyJEj2d5uKdWqVauwYsUKFC9ePFPhZGBgkOMHfE7fiqX8QaXNUhgdHY13796hSpUqePbsGUqUKIFt27ZJaqcceaRNw3/r1i2kpKSgWLFiiImJgYWFBXx9fVGiRIk8aYu1tTX++OMPVKhQAba2tjh48CAqVKiAR48eoWvXrrhx40aOMXLqncvqNuqaNWvi7NmzKF26tOqxFi1aYMuWLarcX79+jaZNm0r6MLS2tsbhw4fx7bffqrUlPDwcbdu21fgtKaNatWqp7tJJf3u0EAIGBgaS8gBSb2309vaGlZUVOnTogGnTpmHPnj0oVqwYli9fnuWcNBnt3r0bq1evRkREBIDUb7+DBg1C//79JW0vR4ycehqk3FYqx/muax6azjM7Ozv8/vvvqgJdm/Msu+napZ4jcsRIo+/xzW72WSnvy4A87UlMTISnpycOHz6s2k4IgebNm2PZsmVZ9ooNHToUPj4+ap8pZ8+ehb29vWqbqKgotGzZEteuXcsxD0D/fWprawt/f3+YmZmpvRfdv38fvXr1kpyHJvmuUOnWrRuGDRsm+RuLJv3790fXrl3Rvn17vfNp0qQJ3NzcZOud0VVcXBz++OMP3Lt3DykpKahevTo6deok21oM2jh//jzu3r2LlJQU1KhRQ+PtwdnRty2urq5wdHTE4MGD1f6gZs2ahfv372PHjh26Ni1HFhYWOHfunNoHSPocAO0+QNq2bYuRI0eiTZs2anG2b9+O7du348iRIznGuHTpUrbPa3PreEbv3r1D0aJFdeoij4qKghBCbV99jhj60vd814Xc55lSKeH4yiE0NFT1flajRo0c52KSWog2adIE9+/f1yoXXffp4MGDUblyZUyaNEl1rpUrVw7jxo1DbGysXkvO5LtLP+7u7pg1axbCw8NRpUoV1XX7NPb29jnGaN++PWbPno3bt29rjKHNzKjR0dF6Fzx3797F5s2b8fDhQ5iYmKBGjRoYNGiQxplRs2JqapppcrLPkQeQOkeJ1G/XmujbFrnmhHn16hV27Nihtj969eql1Two+pKjyzZ9IRITEwNjY2PJC6VJXQcEyPpv78CBA2jbti1MTExyXCMlbVFQOzs7td4fOWJkdOLECfj6+qqOb/Xq1TF8+HDVDNNS6Xu+y5WHHMLDwxEUFISCBQuiWrVqkucc0TdGbhxfIPX8ffToEdq3b4+IiAiYmZlpXVRr257nz5+jfPnyMDAwwPPnz1U5p7/Um/7xkiVLZspJU/+Cpseya7/c+1SuuYc0yXc9KkrrotS3d+bPP/+Eh4cHbGxsYG1tjeTkZFy7dg0PHz7EunXrshyX0aJFC+zduxclS5bMckXpNMbGxihfvny2b3665pG+8s9uVWogddr28uXLY+zYsWrXYOVuC5A6EdemTZtU33SrV6+OAQMGwNraOstt0rt48SKGDBmCUqVKqS6d3L59GwkJCdi8eXOW51BufNOV41KJn58ffH19ERkZCQMDA3z77bcYNmxYjkV52jHN6W0ku7+b9PtEyoqwBgYG6NChg9rAZzlipLd9+3bMnTsXbdq0UZ3vV69exV9//YVFixahTZs2GreT43yXIw+5z7P3799j8uTJapdEDA0N0blzZ0yfPl1SYatPDLmPb0xMDAYOHIibN2/CwMAAx44dw5w5cxAWFgZfX19Jq8Hr2h5tzhEAKFiwIMaOHas2zkOO4yv3PgVSJ+PcsWOHWm93r1699BqKAeTDQiXtroOsyDHuRBv79u3DwoUL4eLiolPvTNu2bfHdd99h9OjRao/PnTsXV65cwf79+zVut3LlSgwcOBCmpqZYsWJFtn8MSUlJuH79Op4/f47jx4/Lmoe/vz/atWsHExMT7N+/P8c8Ll68iIsXL+Kff/7JtbbIoWvXrrC0tMSMGTNUdxslJCTA09MTL1++zPIbRG52yevaZbtixQps2rQJffr0gbW1NVJSUnDlyhXs2rUL48aNg6ura5bb5vT3lp4cf3vJyck4duwYpkyZovM1bykxWrRogf79+2dq+7p16+Dv74+jR49q3E6O812OPOQ+z8aPH4/AwEBMmzYNVlZWqnPEy8sLzZs317i+Wm7EkELK8Z01axbu3r0Lb29vdOzYEQcPHkRCQgLGjRuHKlWqYNGiRbnWnkuXLsHOzg5GRka4ePFitudIcnIy/vnnH+zfvx8XLlxQPZ7Xl/bk+LvTi143N1OO9F2Vsnbt2hrn63j8+LGoU6eObHkGBgYKW1vbz57HgwcPROPGjfWKkVNbkpOTxYEDB8S0adPEpEmThKenp9qPFLVr11bNkZHew4cPs90fFhYWmeZRsbW1Vc1bIETqfATZnRuXLl2S/CNFkyZNVCvJprdnzx6tJntKEx0dLW7evCnu3r2bKxMuRkREiHnz5uVqjDp16ijifNc1DznOs/Ts7OzE5cuXMz1+9uxZUb9+/TyLIVVOx1eO1eDzqj2PHz8WXbp0UXvM3NxcvH79Wu2x9O0QQrvjK0VO+zQ2NlasWrVKDBw4UPTp00fvle3TyxdjVLS5NJDVaG5tuuO0qVC1HciUUa1atXDp0qVMt3fevHlT0uJ3AHK8/ti5c2fUrl0bx44dy9U8pNw5VKNGDZw5cybL18jRlrlz52L79u2wsLDQeTBx5cqVERQUhMqVK6s9Hhoamm3PgRACXbt2VRtMGRcXBzc3N1XPjKZ5YtJzc3NTXW7JeJcOoH5dWsq5Gh0djVq1amV6vG7dunjz5k2O26dJSUnBggULsGPHDiQlJUEIARMTE3Tv3h2TJ0+WtOCilL/fsmXLZjv+Ro4YDRo0QEBAQKZFOE+dOgVbW9tsWvB/5Djfdc1DCIHGjRtnekzK+mSaGBsba/xbKVWqVI7nq5wxAHmOrxyrwcvRHil3D1auXBn79u3L9Nz169fV5loRQuDWrVuqS8BS5y4C5Nmn06ZNw19//YXGjRtr3Lf6yBeFiouLi+oedhcXF61XoAVSP7zSVlROu6f9c0n/YWxvbw8vLy88fvwYdevWhaGhIe7cuQNfX1/Jc35kdXIVLFgQ5cqVU11+yrgkuNx5ZLw8lJycjDdv3sDIyEhtJdjs7ojQtS3pHTp0CHPnztV65dL0A0fbtWuHadOm4fXr17Czs1Ptj0WLFmHkyJFZxpBjRd30xfb58+fx66+/YvLkyaru5MDAQMydO1fjatyatGjRAjt37sTkyZPVHvf394ejo6PkvNauXYt9+/Zh/PjxqF+/PlJSUnD58mWsWrUKZcuWhbu7e44xMv79JiUlISQkBP/88w9GjRolKQ9dY6QvLMqXL4+lS5fi9u3bsLOzQ4ECBXDnzh388ccfGDhwoKQ8dD3f5chDjlXG0+vTpw/mzp2LpUuXqiYs/PjxI5YsWYJevXrlWQxAnnNEjtXg5WjP06dP1f6dnJyMsLAwxMTEoF27dtluO3LkyExjw37++We1f0v9HJNjn548eRKLFy+Gk5OTpNdrI9+NUVECfXtnpAxsArQf2JsmOTkZISEhmDFjBrp3757lQN/czgNIHdSW9iHbr18/rbeX2pb0bG1tcejQIa0HeMkxcFRu3333HWbMmJHprpJLly7B09Mzy9lz03+Ti42NxfHjx1GzZk3UrVtX9WF47do1/Pjjj5gxY4akXJydneHh4YEOHTqoPX7o0CGsWLEi216unOzatQv//vsvli9fnmsxsptbIz2p82xoIuV8z4s80mTslcuYR/rnnj17hkKFCqFSpUooUKAAnjx5gvj4eNSpUwe7d+/OtRhSaXOOXLt2DQMGDECTJk1w+vRpdOjQQe3OvwYNGny29gghMHv2bBQpUiRT4ZH+90qlz9gwbfapvb099u3bp/VdoFLky0Ilq5lgDQwMJH37T0lJwaFDh7KMMXfu3Gy312ZAnbbf6uV09+5djB49OlcHnUoRHByMAQMGZNsFnhNt2jJq1Cg0aNAAvXv31up3yPnmEBMTAyMjo0yzWQKpI+dnzpyJVatW5fh7bG1tsXfv3kxLquc0yZKbm1uOsYHU8z2rWXYzsra2xqFDhzK9UYWFhaFdu3aSJp/LyrNnz9C+fXtcv379s8aQgxznu1RBQUEwMjJClSpVMj13//59TJkyReNlBQA5DlxPL6ueQjliSKXt8dXlzr+8ak9YWBi6d++O8+fP6xwDACIiInS6hTyNNvt0ypQp+PLLLzFmzBidf19W8sWln/RymglWSqGi7xiG9MVHly5dtN4+rxgaGmpcZyKvRUdH673uhjZtsbGxgbe3N86fP4+qVatmms4+qzcYOe5aiYqKwqRJk3DmzBkYGBigdevWmD9/vqpg2b17N3x8fJCYmCgpnpWVFZYtW6a27kfakgLZTdS2detWvduSkZmZGf79999Mhcq5c+f03ncBAQFZrmuSmzFev36tcY0dqcsKaKLL+a5tHuHh4Rg2bBiCg4MBpJ4na9euRYkSJZCYmKi60yu79WSyu4QplRwxpNLm+KbNIZLxVtuPHz9i8+bNWfZ25VV7QkNDc1zb6cWLF/jrr79gZGSEFi1aZBoXsm3bNixZsgRXr17VOQ9t9mmpUqWwadMmnDlzBpUrV850h6s+lyPzXaEixzo9uo5h0ETf3plbt25h5syZePjwocYPLymXGDQNQI2JicGePXskrScjVx6aBhfGxsbiyJEjWXa1ZiRHW7Zt24ZSpUrh7t27uHv3rtpzBgYGkr4JhYWFZbtYXFZd8vPnz8e1a9cwYsQImJiYYMuWLVi2bBlGjRoFDw8PnDp1CvXq1YOXl5ektkydOhX9+vVD06ZNYWZmBiEEQkJCULp0afj5+UmKAaQOvAsJCcnUFgMDA8kTi/Xv3x/Tpk1DeHi4agzG1atXsX37dkyYMEFSDE2D+mJjY/H+/XvJHxJyxDh9+jQmTZqEt2/fqj0utFhWQI7zXdc85s+fj5iYGMybNw8mJiZYvXo1vL29MXbsWAwaNAh3795Fx44dM41Lys6pU6cQFBSk8RyROk5Njhi6Ht+oqCh8+vQJQOqlz+rVq6NkyZJqr7l79y4WL14s+TK0vu3RNJg2NjYW586dQ4sWLbLc7vz58/jpp59U7Vm0aBG2bdsGc3NzhIeHY8KECbh+/brk9c/k+Ju5ceOGqjdK7i/A+e7Sjxzr9Og6hkETLy+vbHtncvpm27FjRxQsWBBdunTReJlASjGlaayJkZERbG1tMWPGjEyXDXIrD03X3o2NjWFrawsPDw9JkyzJ0ZbspKSkSJrevEePHnj16hXatGmjcX9kVew0adIEnp6eqrE0165dw5gxY1CnTh38+++/GD9+vFYDC4HUQu2PP/7Aw4cPYWBgAAsLC7Rr107yCr379u3DzJkzNS6aqe14m82bN2PDhg14/fo1gNRBzQMHDpQ8+ZymrnVjY2PY2NhI/nCXI0br1q1RpUoV9OrVS+PxlbKsgBznu655ODg4YO7cuaqBjQ8ePECfPn1QrVo1hIaGYs6cOWjWrFmOvz/NrFmzsGPHDo0LkkodKyNHDED343vgwAF4enpqvGMujRACzZo1w9q1a/OkPZouwZqYmMDGxgb9+/fPske/R48eMDY2xsKFC2FiYoJZs2YhNjYWw4cPx6BBg2BoaIgJEybghx9+yDEHQJ6/mey8evVKvzuB9Lq5WYH69euncU4IbYwcOVJs27ZNlnzq168v9u/fr/P2VlZWIigoSJZc9KGUPOTg7Ows3r59m+nxiIgIyfMfWFtbi9u3b2v9u2vVqiWePn2q9pilpaVwcnISwcHBWseTg6Ojo5g6daoIDg4WT58+zfSjrfj4ePHmzRvx+vVrERERkQsZ5z5ra2vx6NGjz52GznlYWlqKFy9eqD1Wq1Yt0blz50zzb0hRv359sXPnTq23kzuGvi5duiQuXLggzM3NxbFjx8TFixdVP5cuXRK3b98WCQkJkmJ9zvbY2dmJ69evq/796tUrYWVlJZycnET//v0/y9+dprl7hBAiPDxc2NjY6BU73136kWOdHl3HMGiSkJAgaX2hrNSuXRvPnj1D9erVdY4hBznzyI3r/jk5cuSIavbPZ8+eYdasWZm+BT179kzyQDkzMzPExcVpnUdSUlKmb8YmJiaYNm2aTr1Br169wtKlSzVeWgSyvgSV3ocPHzBw4ECYmZlp/fvTi4qKwpgxY1Q9BgDQqFEjWFhYYMmSJdmOh0gvq+50QPrfnr4xGjZsiDt37mgchKotfc53XfNITk7O9L5lbGwMT09PnRbwMzIy0vubtRwx0uh6fNPei7ds2aK6nV9XcrUnq8uuQNbrY338+FHtqkHadAzW1tZYtGiRTote6rJP9+7di4MHDwJI7Y0aPnx4pvPu5cuXeq9/lu8u/cixTo8cS4Cn0fUOkzSPHj3CsGHD0LZtW1SoUCHTCSil8JJjfIkcechx3V/Xtrx48QITJ06EEAKXL1+GjY2N2h+UgYEBChcujJ49e0rqEr927RpmzpwJNzc3jfsjqzcYKVNfa2Po0KG4ffs22rVrp5oHKD0pH8rjx49H7dq10bdvX61/f3o///wzwsLCMGfOHNSoUQMAcOfOHcyYMQPVq1fPcTwWoJxLDBEREfjhhx/QqFEjVKhQIVMBK2W/ynG+65qH3OfZqlWrEBYWhtmzZ2f68peXMQD5LiHdv38ffn5+ePLkCZYtW4YTJ06gWrVqkosPOdqj62XXrI7vjh07ULNmTa3z0HWfvnv3DgsWLACQererpkvhRYoUUU3Eqat8V6gozaZNm7B8+XI0adJEp96ZFStWZHmbqtQ3OznGl8iRhxzX/eVoS5cuXbB582a9qvxdu3bBy8sLSUlJmZ7Lbn/UrFkT586dU00QBej3AWJjY4MNGzbotZLuy5cv0aFDB1StWhUVK1bM9GEodbR+gwYN4Ofnl+nLwu3btzF48GD8+++/kmJ4eHigR48e0huQCzGmTZuGPXv2oGTJkpnG+kj9MJTjfNc1D7nPs8ePH6Nnz574+PEjvvzyy0zniJT9IUcMQJ7je/v2bfTs2RM2Nja4fv06jh49irVr1+LAgQNYtWqVpC8rcrSnWbNmcHR0RL9+/TSeI1mNtZS7EJVjn44bNw4zZszQebbv7OS7Sz9yev36tcZKV5tLFPreYbJt2zaMGTMGffv2lTw4MqPQ0FDs3btXr8s2cuTx8uVLrFmzRq/udDnaEh0djfDwcI3Txku1cuVK/PDDD3B1ddVqf2jqHo2Pj8e4ceMyfZORMn9J4cKFderKT8/LywuxsbFISEjQaq6YjJKTkzVOhmdsbCz5MplSLjH88ccfmDdvnl53/slxvuuah9CwVMOnT5/UlmpII+UDdfz48ShevDi6du2KwoULa5WLnDEAeY6vt7c3BgwYAA8PD9VSBF5eXihSpAhWrFghqVCRoz36XHaNiIhAfHy82mORkZGZjq+Uzys59unFixfx+PFjyXdfaiPfFSqPHj3C7NmzVdfsM5Lyzf/atWuYNGkSwsLC1B7Xpss2TVYzg0qVkpKi1R0cmsgxvkSOPOS47i9HW+Li4jR+e9FGbGws3N3dtb4zTNMHjj53qHXq1AkbNmzArFmzMr1BSXXmzBmsXr0aTZs21TkPIPVy1+LFi7FkyRLVt6qYmBgsW7ZM8jitXr16Yc2aNXp1p8sRw9TUVG2ae13Icb7rmoccSzWk9/DhQ+zdu1d1Se9zxQDkOb5plyQz6t27N/bs2SMphhztadmyJU6fPq1ToZLxjh4hhNpdRNp8XsmxT42NjfUa85OdfFeozJgxA2/evMG4ceM0XrOXwsvLC19++SUmTJigc4yMdO2d6dSpE3bs2IGJEyfq/LtnzZqFYcOG4ebNmzqPL5EjjxkzZuCHH37AP//8o/N1fzna0qdPH4wcORK9e/dGxYoVMxUtUj5UW7ZsiRMnTmg97b/ca7C8e/cOf/zxB06dOoUKFSpkepOR0itTsmRJWQYyT5o0Cb1794ajo6PqjTckJAQlSpTAhg0bJMVo06YNevbsibp16+rcnS5HjF69emHFihWYPXu2zsW5HOe7rnnIXahUrVoVHz58+OwxAHmOr7GxMWJiYjI9/uLFC8n7WY72jB8/Hh06dEBAQIBWl12lzhYtlRz71MXFBe7u7ujUqRMqVaqU6X1VyntzVvLdGBUrKyvs3LlTr279OnXq4MCBA3rPyQHo3zszceJEHD58GCVLlkSFChUyVaxSTlg5xpfIkYcc1/3laIscA64XLlyIrVu3wtLSEhUrVsy0P/QpSOLi4rBkyRJJk3FJWX01J7t370ZAQAB++eUXVKxYUeeeGSD1strhw4fx8OFDGBkZoVq1aujQoYPkHqyuXbviw4cPaNWqlcbudCkfwHLE6N+/v2oRytKlS2c6vlLOVTnOd33zkGuphiNHjmDp0qUYOHCgxvNdSnEvRwxAnuP7yy+/4Pnz51iyZAmaNWuGgwcPIiEhAR4eHqhdu7akgd9ytGfUqFH4+++/YWFhobFA0ncG6Y8fP0q6LCXHPpXjfTXL7fNbodKsWTOsX79er+641q1bw8fHR5ZrbV26dEHhwoXRv39/jb0zOQ2ok+ODqEGDBujfv79e40vkyMPOzg6//PKLXtf95WhLTuMwpFyKyWmtnKzeYD59+oSFCxfi8OHDMDY2RqdOnfDzzz+reobOnj2L6dOn48WLF5nGNOWW1q1b4/nz50hOTtb4vD5vMFFRUWoDOnNiZWWld3e6HDE0zSqbnpQ3bjnOd13z0Gaphhs3buSYhxwfQnJ9kMlxfGNiYuDu7o5bt24hJSUFxYoVQ0xMDCwsLODr64sSJUrkGEOO9tjY2GDFihU6XXaNi4vDhQsXYGRkBHt7+0zF6MmTJzFr1iycPHkyx1hy7NPclO8u/bi6umLx4sXw8fHRefTxTz/9hLlz52LmzJmoUqVKpjt1tPHw4UO9emfkuFQgx/gSOfKQ47q/HG3JrhDJODgtK7p+0/H29saePXvQsWNHmJiYYOfOnShatCiGDBkCLy8v7Ny5ExUrVtRq+vuoqCg8efIEKSkpAFJ76xISEhAYGIiffvopx+2lvEaKDx8+wNvbG66urqhWrRrc3d1x4cIFmJmZYd26dZLuRlDKJQY5Lp3Icb7rmofcSzXou0qzXDEAeY6vgYEBdu3ahfPnz6sWJaxRowaaNm0qeQ4SOdqj62XXe/fuwd3dHW/evAGQ+p62detWfP3113j//j1mzZqFw4cPS/7ckeuyXFb0XRwx3/Wo9O/fH1euXEFycjJKly6d6Zq91NsK5fqGKUfvzIsXL7B9+3bVSqjVq1dH9+7dJZ/gXl5eMDY21mt8iRx5rFq1Ck+ePNHrur8cbXn79i3WrFmDoKAg1TEWQiAxMRHBwcG4cuWKpDixsbE4ePCg2v5o27ZttgWyk5MTBg8ejJ49ewJInWRpzpw5cHBwwN69e9G/f3+MHj1a8oC2gwcPYurUqUhISMg0Nfg333yDEydOSIojh0mTJuHKlStYs2YNHj58iPHjx2Pu3Lk4cuQIjIyMsGLFihxjKOkSw+3bt7Fx40bV8a1WrRr69u0r+W9ZjvNd1zxyY6kGILUn4vHjxzA2NkaFChV0+jKobww5jm+rVq2wdOlSvYYIpNGnPbpedh0wYABev36NadOmwcTEBN7e3ihVqhTGjBmDAQMG4NWrVxg0aBB++uknSe8lcuzT8PBwLFiwINP7akJCAqKiovTqIc53hYocXbb+/v7ZPq9NV66/vz92796tc+/MgwcP4OrqikKFCsHKygopKSm4ffs24uLisHPnTkl3v8gxvkSOPOS47i9HW8aMGYPz58+jcePG+PPPP9GuXTs8evQId+/exdixYzF48OAcYzx//hyurq548+YNKleujJSUFISGhqJ06dLYsWNHlt8e6tSpgyNHjqh6F5KTk1GnTh188cUXWLp0qda3CLZt2xbW1tZwd3dHz549sWnTJtXYg7Fjx6JTp06S4vz1119Yu3at2ofhwIED0apVK8m5NGrUCKtWrYKtrS08PT3x7t07VUHYu3dv1bHPjlIuMVy6dAkDBgxAjRo1UK9ePaSkpODatWsICgqCn58f6tatm2MMOc53XfOoXbs2AgIC1HoPa9WqhbJly2L9+vVa9/CmpKRgwYIF2LFjB5KSkiCEgImJCbp3747JkydLmtFZjhiAPMe3SZMm8PPz02scohzt0fVLcf369bF8+XLVooPh4eHo1KmT6nh7e3tnu58ykmOfDho0CCEhIfj+++/h6+uLAQMG4MmTJzh+/DhmzZqFbt26Sc4no3x36UeOLls5Vk1Os3r1ajx//jzLEc85nQALFy5EgwYNsGjRItU8G2nzbvj4+EhaPMvQ0BAdOnTQOne586hbt66kN/jsyNGW8+fPY8GCBWjevDkePHiAgQMHwsLCAr/88guCg4MlxZg/fz7KlSuHPXv2qKavfv36NcaMGQNvb28sWrRI43aJiYlqg9UKFCiAggULYsqUKTrNYxAeHo4VK1agatWqMDc3R1RUFJydnZGUlIQ1a9ZIKlSOHTuG0aNHo0WLFmjXrp1q9t7Ro0djxYoV2a7imt7Hjx9Rvnx5AMC5c+cwaNAgAEChQoWyfCPOSCmXGJYsWYKuXbti5syZao/PnDkTS5culXTpT47zXdc85F6qYe3atdi3bx/Gjx+P+vXrIyUlBZcvX8aqVatQtmxZuLu750kMQJ7jK8edf3K0R9fLrjExMahcubLq3xUqVEBiYiJKly6NNWvWaD39ghz79Nq1a/j111/RoEED/PPPP2jZsiWsrKywZMkSnD59moVKegcOHMj2eSm3SMnRK5NG3+v/165dw65du9QmAytYsCCGDx8OV1dXSTHkGF8iRx5yFJFytCU2Nhbm5uYAgCpVquD+/fuwsLCAq6urpN4UAPj333+xadMmVZECpK63MWHCBNUHtDZ0vTRoYmKi6tqtVKkSHj58CEdHR9SuXRuhoaGSYvz6668YPny42vHp168fVq5ciTVr1kguVKpWrYpTp06hfPnyePXqFRwdHQEAe/bskfzhqM+cMnLGuHv3rsbxG66urpJXpJXjfJcjj/R07UH47bffMH36dLUvCZaWlihVqhRWrFgh6UNZjhiAPMd38eLFAIDZs2dnek5qD4Ic7dH1S3FKSkqmHjojIyOMGTNGpzmi5NinCQkJqFixIgCgcuXKePDgAaysrNC5c+ccbz7ISb4rVDw9PTU+XrBgQZQrV05SobJ//361fycnJ+PNmzcwMjLSenCcvr0zRYoU0ThxnabHcpNS8pBD2bJl8ezZM5QvXx5mZmZ48OABgNTBj+/fv5cUo0CBAhrHHRQsWFDjol7paeoSltrtnVHt2rXx22+/YezYsahRowZOnz6NgQMHIjg4WPJlxsePH2vspWrfvj3Wr18vOZdRo0Zh5MiRSExMRPv27WFmZoZ58+Zh+/btkm6BVZKSJUtmWqMHSB24rM86NXmVh4GBgc7nlCZv3ryBtbV1psetra3x4sWLPIshl+PHj+u0cF96SmpPGn1nqdbHN998g6CgIJQvXx6VK1dWFXspKSmIjY3VK3a+K1Tu37+v9u/k5GSEhIRgxowZ6N69u6QYmmaTjYmJweTJk7UuVPTtnWnYsCEWLlyI5cuXq26Zi4qKgre3NxwcHLTKRR9KyUMOrVu3xqRJkzB//nw0atQIHh4esLa2xokTJ1CpUiVJMezs7PDrr79i4cKFqoIgMTERa9asyfEc8fLyUuuZSkxMhLe3N4oUKaL2Oim9RyNHjoS7uztKlCgBFxcXrFq1Cu3atcOLFy/Qtm1bSW356quvEBoamqntoaGhWk142KxZM5w+fRqRkZGqa97t2rVDt27dZJmTKC85OTlh9uzZWLx4sSr34OBgeHl5ZbtoqVLykHupBjMzM/z777+qb8xpzp07J/nbuBwx5OLh4QEvLy+txnFk9Dnbo6kQlbMw1YWLiwsmTJiAhQsXonnz5ujTpw++/vprnDt3TtWDrat8N5g2K3fv3sXo0aNx/PhxnWMEBwdjwIABOHPmjORtMr6ZZOyd2bRpU7bbR0REoEePHnj//n2m2T63bt2q9RTuulJKHnJISEiAt7c3rKys0KFDB9XEXMWLF8eyZcskFV6PHj1Cjx49UKRIEdWqoIGBgYiNjcW2bduyfAPUpgtU6i3QkZGRSEhIQIUKFfDo0SPs3LkT5cuXh5ubm6Rv/0uXLsXBgwcxffp01ZiKq1evYubMmWjZsqWkiefSe/78OR49egR7e3vExsZ+1m95unr//j369++Pe/fuqYq16OhoWFhYYNOmTShZsqSi8/D09JT8wSWlID5w4ACmTZsGNzc3VSF+9epVbN++HRMmTJC0OrwcMeTSoEED/Pbbb5mKDG18zvZYWFhkOr7p7/hLT595kLQhhICfnx/MzMzQvHlzrFu3DmvXrkX58uXh7e2t06rOaf5nCpX79++je/fuuHnzps4xrl+/jgEDBuD69et65ZK+d0bKFOyxsbH4/fff8fDhQwghYG5ujg4dOuTKKpX/hTxyw7t371C0aFGt1qp49uwZduzYobY/evbsmaffDn/44Qe9vxnGx8fDw8MDf//9t+qNTgiB5s2bY+nSpZKveSckJGDixIk4evQoDA0NERAQgAULFiA2NhYrVqz4z50nKSkp+Oeff9SOb5MmTfS+ZPBfzWPz5s3YsGEDXr9+DSB1TNbAgQPRv3//PI0hh/Xr1+PMmTOq23EznuNSp1z4XO3J6c7U9OS8OeRzyXeFiqbBtDExMdizZw+++OILSd9SNV2uiY2NxZEjR1CzZk2sWbNG7zx16Z2RW9qkYPremaCNpKQkvHnzJtN99oGBgejYsaPOcaW25ciRI3B0dFT70Ny1axeKFSuGtm3bfvbuUyD1g+nevXuS5niQ45thmkePHiEoKEj1Yajt5Zply5bhzz//xIwZMzB06FAcPHgQz58/x6RJk+Do6KhxEThN/vrrL7W5GID/O76+vr55FkMOuXW+5+Tdu3c5zq6akJCAU6dOoXXr1lrFjoqKghBCr54yfWPoe3xr1aql2jb937wuC88C+rVH3wkb5aLrPo2Li8PWrVvxww8/qM1CvXLlSpiYmKBv376ZLjdqK9+NUdE0mNbIyAi2traS3ygzDqYFUhexcnBwgIeHh74pAkjtvo2Ojs7xdVFRUVi4cCFu376NT58+ZVrUUMptZbdv38Yvv/yCoKAg1R9DelL+KOXI4+zZs5g4cSKioqIyPVeoUCFJb9y6tiUxMREjR47E6dOnsXnzZrVbga9evYpDhw4hICAAixcvltSr8unTJ6xfvz7L/ZHVdX87OzucOHFC7Q966dKl6N+/P7744gsAqfv6hx9+kHRc3N3dMWXKFL2/GQKpAzdtbGxUbXn+/LlWMQ4fPowZM2ao7dsGDRpgzpw5mDBhgqS/Px8fH2zYsAFlypTBmzdvULZsWbx+/RrJyclo166dpDzkiBEaGoqpU6eqjm9GUo6NHOe7rnk4ODjg7Nmzah+cEydOxIQJE1SPffjwAaNHj5b8oRweHo47d+5ozEPqgnNyxJDj+MpVrOrbnrQJG9NuSsg4YWNWhcqxY8fg5OSU7YD52NhYLFmyBFOnTs0xD133aUxMDPr164f79++jXr16au9r0dHR2LVrF06ePImNGzdKWnMoK/muUMk4mFYXmgbT6iq73hkp82b88ssvuHHjBtq2bav6INPWvHnzUKBAAUydOhXz5s2Dp6cnwsLCsH37dixcuFBSDDnyWLx4MSwtLeHm5obRo0fDx8cHz58/x/LlyyXfdqxrW7Zs2YLAwEBs3boV9erVU3vO29sbP/zwA0aNGoWdO3dKGkcyc+ZMHDlyBI0bN9aqGPj48aPGoqZr165q+1VqR+fSpUuRnJyMy5cv6/zN8NatWxgzZkymOxW0/XYZGRmpsWenfPnyku+mOnToECZPnow+ffqgWbNm2LFjBwoXLozhw4dLmoJfrhi//PILXr9+jdGjR3/W813XPDSdP8ePH8eIESPUihep59n+/fsxdepUjV8ODAwMJN9NqW8MQJ7jm9Maa1LI0Z41a9agXbt2GidsHDlyZJbbjR49OlMh2qJFC2zZskV16TkuLg7bt2+XVKjouk83bNiA6OhoHD16NNPrJk2ahG7dusHd3R2+vr4YPnx4jnlkSfwP2bx5s17bf/z4UcyZM0erbZycnDL9tG7dWkycOFFERkbmuL2NjY24dOmSrimrYty8eVMIIcQPP/wgLl++LIQQwtfXV/Tr109yDH3zqFOnjrh3754QQoiePXuKf//9VwghxN69e0WPHj0k56FLW9q3by8OHjyYbezt27eLjh07Ssqjbt264u+//5b02vTMzc3F69ev1R6zsbERYWFhqn+/evVKWFhYSIp38eLFbH+k6NKli+jRo4c4fvy4zjGEEMLFxUXs2bMnU5tWrlwpXFxcJMWoVauWCA8PF0IIMWjQIHH06FEhhBCXL18WrVu3zrMYVlZWIjAwUNJrsyLH+a5rHnKfZy1atBAzZswQ79+/1zoXOWMIIc/x/fTpk/Dz8xNTpkwRnp6eqp+xY8dKjiFHe2rXri2Cg4OFEEK4urqK06dPCyGECAgIyPZvRu7jq+s+bd26tThx4kS2sQ8cOCDatm0rKY+s5JselY0bN6qtSJt+HYuHDx9i6tSpuHXrFvr27atx+/j4eCxYsEDSqrba3AWRVe/Mx48fsXTp0hxjFSpUCF9++aXk36dJSkqKKkalSpUQFBSEevXqoUWLFpJmlJUrjwIFCqjuXEjLw8HBAQ0bNsSCBQskxdC1LU+fPoWtrW22sRs1agRvb29JeRgYGKBatWqSXpub5Phm+PDhQ+zfv1/v9owcORIeHh4IDg5GcnIy/P398eTJEwQEBGDJkiWSYhQvXhwfP34EAFSsWFE1U/DXX3+NyMjIPItRokQJva+ry3G+y5GHHCIjIzFgwAAUL178s8YA5Dm+Xl5eOHDgACwtLREYGAhbW1uEhobizZs3km5wAORpjxwTNspB130aERGR40B+Ozu7HFesz0neDhvPJcuWLYO3tzeKFSuGL774AnPnzsWuXbsApBYwXbp0QUhISLbdrQsXLsSePXvQokULtGzZEjt37sTatWuRkpKCWbNmYdCgQTAyMpK0qm18fDxmzZqFBg0aoEmTJvD29lbrHjx79iw6dOiAbdu25RjLxcUFGzdulLAXslapUiVcvXoVQOpMrIGBgQBSryHmNDmZnHlUr15dVbhVqVJFlVNERITkGLq2pUiRIjmOCfr06ZPkxeNatWqlcSxTXnNzc0OfPn0y/fTt2xfu7u6YOnVqjmvslC1bVuM1dm05OTlh+fLluH37NgoUKICNGzciPDwcS5YswXfffScpRoMGDeDj44PIyEhYW1vjzz//RFRUFAICAtSuf+d2DFdXVyxZskT15q0LOc53OfKQQ82aNfH48ePPHgOQ5/j+9ddfmDdvHnbv3o1vvvkGs2fPxsmTJ9GiRQvJk1jK0Z60CRsBoEaNGvj3338BQKsJG+Wg6z4tUaKEagXnrLx9+1ar+Zg0yRc9KocPH8aoUaMwbNgwAKl3/qxfvx6vXr3CqlWr8P3332PatGnZ7vC///4bU6ZMUa1q27x5c8yZMwcvXrzA3r17MWDAAMmr2qYVPR07doSJiQl27tyJokWLYsiQIfDy8sKOHTtQqVKlLIuePn36qP4/KSkJ165dw+nTp1GxYsVMtyRKmazJzc0NU6ZMAQB899136NSpEwoVKoRr167BxsYmy+3kzmPw4MEYNWoUjI2N0b59e6xYsQKDBw/GgwcPVItr5VZbbGxscPjw4Wzv5T906FC2ExNNmjRJ9f+xsbHw9/fHv//+CzMzs0z7Q46p/qWoWbMmtm7dipo1a6rG3ty8eRM3b95Ey5Yt8eLFC/Tv3x/Lli3Lcir8YcOGYc6cOZg7dy7MzMz0uvPJ0dFRNXW+LiZMmICffvoJR48eRa9eveDr64vGjRsDyHrWabliODs7q7X92bNnaNCgAcqUKZPp+EoZPK7r+S5XHvrewZa+wG3ZsiWmTJmCkSNHolKlSplW+c1qbRw5YmQkxzny4cMH1dwn1apVw927d1GlShUMGTIEY8aMyXJch9ztkWPCRjnouk8bNGiAPXv2ZLsEyO7du1GnTh298ssXhUpkZCTatGmj+nfbtm0xadIk+Pn5Yf78+ZIGNb1+/RpNmjRR/btp06Z49uwZjh8/Dl9fX60WjMup6Bk4cGC2RU/GeTikzpaalR9//BElS5ZEiRIlULVqVcybNw/r169H+fLl8csvv2S5ndx5tGzZEr/99hsKFCiA8uXLY8OGDfD19UWLFi0watSoXG1Lv3790K9fP5QrVw69evVSe8MXQmDr1q3YvHkzVqxYkWWMp0+fqv07rTBIuztGqk2bNqn13CQlJWHLli2qwZLafHuOiIhA7969M72xLliwAJGRkVi5ciU2b96cac2ejBNGCSGyfGPU5lbN+/fvw8/PD0+ePMGyZctw4sQJVK9eXfIlqsTERBw4cADx8fEwMTHB9u3bcfbsWZQtW1byeki6xnBxcZH19nRdz3e58shpBuT4+Phst3dzc4OBgYHagNvp06dnel12A67liJGRHOdIqVKl8ObNG3z99dcwMzNDUFAQgNQ739LmRMmL9tSrVw8BAQFISEhAyZIlsWPHDrUJG7Mi98y0uu7TAQMGoFu3bihWrBiGDh2qNuA7bfX033//HZs3b9Y5NyCfzKNiYWGBc+fOqY2AtrW1xfjx49XGqugSY/bs2Wjfvr1W+dSpUwdHjhxRjYJOTk5GnTp18MUXX2Dp0qU6rZKrDy8vL/Tp00eWuTb0MWLECHh4eOg1nbo+bdm6dSsWLFiA4sWLw8rKCsWLF8e7d+9w8+ZNxMbGYvTo0TotKKgNbaZfl3L3ma2tLfbv36+2kiqQOmuwi4sLrl+/jvDwcHTs2FFtosL9+/dLfmOTOmHU7du30bNnT9jY2OD69es4evQo1q5diwMHDmDVqlVo1qxZjjGaNm2KVatW6bxIo1wx5CDH+a4rOWZA1mZcQVaTHMoRIyM5ju/UqVNx//59zJs3D6GhoZg7dy6WLVuGI0eO4O+//0ZAQIDG7eRuj64TNlpYWKB8+fJqX7ieP3+OsmXLqnp2UlJSEBERIalg0mefHjt2DJMmTUJ8fDwqV66sel8NCQlB4cKFMX36dK0/QzPKFz0qWWnUqJHeMXQ5cImJiWr3jBcoUAAFCxbElClT8rxIAVJnMZQ6QCw3XbhwQe+Bgfq0xc3NDfb29vjtt99w584dhISEoFSpUvjhhx/QpUuXPPlAkfPWdwAoWrQoHj9+nKlQCQ4OVvXaxMbGZppfpUuXLrLmAaTOxTBgwAB4eHioBi57eXmhSJEiWLFihaRCxdjYWKvZgXMrhhzkON91JXX5hewoZSXrjOQ4vhMmTICnpycuXbqEXr16Yffu3fjxxx9hZGSU7UBnudsTHh6u0/wicqzMnZ4++7R169aws7PDwYMHcefOHbx79w6Wlpbo3bs32rRpI8tyE5//rzkXZbxmmBM5V7XV5HN9w2vWrBm2bduGESNGfNZpzF1cXODj44Phw4ejUqVKOq1Cq29bLCwsVJeIEhISVDlIvVtAX5MmTcKUKVNkOw5dunTBL7/8gqioKFhbWyMlJQU3b97E8uXL0alTJ7x9+xYLFy6UfP1fH7dv39bYDd67d2/s2bNHUgwXFxe4u7ujU6dOqFSpUqYCS8plXDliyEGO811Xffr0wcqVK/W+w0aJ5Di+xYsXx6+//qr697p163Djxg188803+Oqrr+ROOUu6Tti4atWqTPOo6EPffVqmTBkMGDAAQgi8fftWNR701q1bKF68uNafxRnlm0s/AwcOVLvuv3btWvTo0SPTJElZVaIWFhZo27at2jegQ4cOwdnZWetVbS0sLPDvv/+qDd61tbXFwYMHJU9IJCc3NzfVhGClS5fO9C1PysBAObRu3RphYWFZFn9SuijlaEtUVBTGjBkDW1tb1UzDjRo1goWFBZYsWaLzBF9S1KxZU9Y3mJSUFHh7e2Pnzp2Ij4+HEAKFChVSTTJ26tQpbNiwAYsXL9ZqYjpdODg4YN26dahTp47a+X7x4kV4eHio7mjITnZd4FKv+8sRQw5ynO+60nQpO7+Q4/h++vQJM2fOhJmZGYYMGQIg9bJs48aN8csvv+RZUanrVP5yH1859mlYWBgGDRqEFi1aYMKECQCAhg0bokyZMqpxhLrKFz0qX3/9NY4ePar22JdffpnpQ8vAwCDLQsXe3h6vXr1Se8zW1hZv377F27dvtc4pp4FsafLi7pAGDRp8lktOGcmxboUcbZkzZw7i4uLUpoZev349ZsyYgQULFmDu3Ln6ppklub8XGBoaYuLEiRg9ejQePXqEAgUKwMzMTPWNqGXLlmjZsqWsvzMrLVu2xNKlS9XmTHn06BHmzJmD5s2bS4ohx8zScsSQQ16u0/K/RI7jO3/+fFy5ckVt/NWkSZPg7e2NJUuWYOLEiXr/Dinyct2p7MixT+fOnYtKlSqpXZo/cuQIJk6ciHnz5mH58uU6x84XPSpKI8dAtpx8jgUFlZyHNho0aAA/P79M3yJu376NwYMHS/rmn52IiAiUK1dO43Oaetvyi5iYGLi7u+PWrVtISUlBsWLFEBMTAwsLC/j6+ua4SF5OstuvuRHjcy0oKEceFhYW2Ldvn6TxAbnd05aXpB7fJk2aYMWKFZkmgbx8+TJ+/vnnz7pYrBQWFhaYOnWqpEvI+l7qlLpP69Wrhz179qBKlSpqjz98+BC9e/fGpUuXdM4hX/SoKI0cA9nSyLGgIJBaMaePkf7NzsvLK8/ykGNVW33bkpycrLFnw9jYGHFxcZJyCA8Px4IFC9TakpZHVFQU7t69m+W2afMT5CSvLlEA8qzgamBggF27duH8+fO4e/cuUlJSUKNGDTRt2jTT/B9Z0We/yhlDjgUFAf3Pd33y+OGHH7KNndPlhYyUsqq1HMc3NjZW4/idUqVKSV6XCtC/PfHx8di9e7fGGLdv387y7iMAkt7rpK45JMc+NTIywocPHzI9HhcXp3dPMgsVhZNjQUFfX1/VSPb0cwAYGBhkWqAvN/OQa9VTfdtib2+PxYsXY8mSJapvJDExMVi2bJnkQaezZs1CSEgIvv/+e/j6+mLAgAF48uQJjh8/jlmzZmW77aRJk/SeqVFOuq7gmlHnzp2xdOlSODg4wMHBQadc9NmvcsaQY0FBOc53ffJYvny5bOOtlLKqNSDP8bWxscGGDRswZ84cVREthICfn5/kycnkaI8+U/nLOUZFjn3q6OgILy8vLF68WDV9RHh4OObNm4emTZvql6BeKwVRrpNjQcEWLVoIHx8f8enTJ+Hg4CAiIiLE/fv3Rbt27YSvr2+e5eHo6Cj8/PxU///s2TPx9u1b0atXL7F06dI8a0toaKho0qSJsLW1FS4uLsLFxUXY2toKJycn8ejRI0kx7OzsxIULF4QQQnTq1Em1bxYvXiyGDRuW5XaaFhP73Nq0aSM8PT1FcHCwsLe3F4GBgeKvv/4Sjo6O4sCBA5LjNG7cWLXAmq503a9yx5BjQUE5zndd85D7PJOjLXLEEEKe43vz5k1hY2MjnJycxMiRI8XIkSOFs7OzsLOzEzdu3Miz9jg4OIhDhw4JIYRo2bKlePTokUhISBDDhw8Xs2fPznI7CwsLWY+vHPv09evXokOHDsLCwkLUr19f1K9fX1hYWIiuXbuKly9f6pVfvljrJz/TtAgfkLqkt9QBUBEREfjxxx9RsGBBWFhYIDAwEObm5vD09MTevXvzLI83b96oJjwzNzfHrVu3UKJECXh4eODIkSN51paKFSviyJEjmDBhAmxtbWFvb49JkybhyJEjma6vZiUhIUH1raFy5cp48OABgNRehZs3b2a5nZy3u2sSFRWFP//8E+Hh4ZK3CQ8Ph7u7O6pWrQpzc3NERUXB2dkZU6ZMkbS2VZo+ffpg5MiR2L59O/755x9cvnxZ7UcKXfer3DE0LSgIpN7F8OjRI0kx5Djf5chDDnK0RY4YgDzH18rKCocOHUK7du2QkJCAlJQUtG/fHkePHoW1tXWetUfTVP7GxsYYMmQITp48meV2QuahpXLs09KlS8Pf3x/r1q3DkCFDMHz4cGzcuBG//fab3gva8tKPwqUtwte+fXudFxQsXLiw6rpj2sqYLVu2RNWqVSXPtChHHnKseipHWwCgWLFi6NGjh+TXZ/TNN98gKCgI5cuXR+XKlVXX+VNSUhAbG5vldnK/wQQFBWHkyJHw8vKCubk5OnbsiNevX8PExATr1q2TtIaSXCu4Ll68GAAwe/bsTM9JHQuh636VO0bagoJubm6qBQX79u2r1YKCcpzvuubx9ddfSx4XJIVSVrUG5Dm+APDtt9/i559/lvz6jORoj65T+bu4uMg6maBc+7RAgQJo2rSp/pd6MsiXhcqtW7cwf/58GBoaYsKECTpNtHbq1ClMnz4dhoaGmDZtGpycnHIh05zpughfenZ2dli3bh2mTZsGS0tL7N27F4MHD8bVq1cz3S6dm3mkrdA5e/ZsWFtbY+3atejVq5dWq57q2pb0CwrmRMoYBBcXF0yYMAELFy5E8+bN0adPH3z99dc4d+5ctgsbyn3r7IIFC1CpUiVUqVIFf/zxB5KSknD69Gns2rULS5cuVa0inp20FVzHjh2LGjVq4PTp0xg4cKDWK7jKMR+PrvtV7hhyLKApx/muax5yz4AsR1vkiAHIc3zlIEd7HB0dMXPmTMybNw9169bF3Llz0apVKxw5ciTbO23kntZC132afuHanEhZuDZLel04UihnZ2dhYWEhzM3NRYsWLXSK0ahRI1WMxo0by5yhdo4fP64aE3Lw4EHRoUMHMXjwYBEeHi5p+wcPHojGjRuL9evXi5iYGOHk5CTq1q0rLC0txaJFi/Isj+fPn4tOnToJX19fER8fL1xcXISFhYWwsLAQmzdvztW2mJubi5o1a4offvhBuLq6ZvsjRUpKivD19RUnT54UQgixdu1aYWdnJ9q1ayfu3r0rKYYcbG1tVeNChg4dKiZMmCCEECIsLExYW1tLinH58mVhbW0tNm7cKKKiokT9+vVF27Ztha2trZgyZYrWOcXGxorbt2+Le/fuiU+fPmm1rRz7Va5jk9YGIYS4ePGiGDp0qJg5c6Z4+/atpO3lON/lyEMOcrRFrv2hlL89Odrz/v178dNPP4lt27aJlJQU4e7uLszNzUWtWrXEH3/8kcst+D+67tO091VXV1fh6emZ7Y8+8mWh4uTkJMzNzYW5ublwdnbWKUb79u1VMdq3by9zhtLNnj1bhIaG6h0nLi5OvHnzRgghxKtXr4Svr684evRonuchhFB9eH38+FEcO3ZMNXBLKl3asnbtWtG5c2dhY2MjPDw8xPHjx0VCQoJuDRBCbNiwQUREROi8vVzq1q0rwsLCRGJiorCzsxP+/v5CCCHu3bsnGjRoIDlORESECAsLE0IIERwcLGbPni02bNgg4uPjJcdISEgQM2bMEHXq1FEV+TY2NmLx4sVatUkJhg8frvfA4DT6nO9y5qGPtL99fdoiRwwlyY32pKSkiDt37ojIyEhZcsxtf/zxhxg+fLiwsrIS3bp1E5s3b86V3PPlhG/Xr19X3cI6YcIE1WAlbYSEhGDFihUAgOHDh0seZCm3unXr4vfff8e3336rd6yQkBAEBQXB0NAQtWrV0mpKY7nySElJwfnz59XykHpbcXq6tiUkJARHjhzB0aNHERERgZYtW6J9+/ZwcHDQ6pp+vXr1sG/fPlSqVEnr3OXk7u6OcuXKoVSpUti0aRPOnDmDxMRE/PLLLzA0NMSaNWtyjKHrCq4ZLViwAAcOHMDo0aNha2uLlJQUXLt2DStWrEC/fv0wdOhQSXFu3LiBrVu3IigoCAUKFECtWrXQr18/VK9eXXIu+saoV68eDhw48NnPd7ny0JfSVrWW4xzRl1ztiYmJwZEjR9TOke+//z7PF7TUZ5/GxMTgr7/+wpEjR3DhwgVYW1ujffv2aN26td4TPQKcmVbxxo4di6+++kqvBQVjYmIwduxY/PPPP2rzjrRt2xbz5s2TtK6FHHm8fPkSAwcOxMOHD/HFF18gOTkZMTExsLOzw9q1ayXNLSJHW9IEBQXh6NGjOHLkCKKjo9G6dWu0a9dO0lwqAwcORJMmTdC/f3/Jvy83hIaGwsPDA+Hh4fDw8ECvXr0we/ZsnDp1CuvXr5dUYDdo0AC//fabatS/rho1aoQ5c+ZkGs917NgxzJ07F6dOncoxxt9//40RI0ao1gtKTk7G9evX8eDBA/j6+kr6kJcjxpw5c/Dq1Su9FhSU43yXIw85ODs7Y+XKlbC0tPysMQB5ji8APHv2DDdv3tR4M4CUSdLkaM+jR4/Qt29fxMbGonLlykhOTkZoaCjKli0LPz8/vWdilkqufQoA79+/x7Fjx/Dnn3/i6tWrsLe3R7t27fSaIZeFisLJsQjfpEmTcOXKFUybNk3tm+7s2bPRqlUreHp65kkeI0aMwIsXL+Dt7a36AH348CEmTpwIc3NzSQPE5GiLJrt374a3tzdiY2Ml3Z0yevRoHDt2DMWLF4eZmVmm/SF14JgcA78zioqKwhdffCF5xdL169fjzJkzWq/gmlHdunWxZ88eVK1aVe3xx48fo2vXrrh+/XqOMTp06IDmzZtnuhtjwYIFuHbtGnbv3p0nMeRYUFCO812uhQ31vTlgxYoV2Llzp14rFssRA5Dn+O7ZswczZ85Umw02jdQ71ORoT//+/WFkZAQfHx/V5HxRUVH4+eefUaRIEaxcuTLHGHKQY59m9PHjR/j7+2PJkiWS31ezwkJF4XI6UbNaZDE9e3t7/Prrr5l6Cv7991+MGzdO0to2cuRhZ2eHLVu2oHbt2mqP37hxA4MHD5a0FoQcbUn/ewMCAhAQEICXL1+iQYMGaNOmTY5TjwM530UkdVR+ixYt8Pz5cwgh8O233+LEiROStksvNjYWBw8eRFBQEIyMjFC9enW0bdtWcs+Xriu4ZjR79my8evUKPj4+qm/+QgjMmDEDBQoUwLRp03KMYWVlhYMHD8LMzEzt8ZCQEHTq1EnSnA5yxPD398/2+fSL2WVFjvNdjjyA1GUboqKiIIRAmTJlcPbsWUnbpVHSqtZyHF9nZ2c4OTnBw8ND5x5iOdpja2uLPXv2ZLq8cv/+ffTq1QvXrl3TKTdtybFPgdTi5OTJkwgICMCZM2dQuHBhtGzZEm3atNF5tmogn96enJ9IKQBykn7SqPS+/PJLJCUl5VkeRYoUUU3Tnp6xsbHk22D1bcv169fx559/IiAgAK9evYK9vT2GDh2KVq1aSVrALY1ctweK1AHtqv/X1vPnz+Hq6oo3b96gcuXKSElJwZ49e7BmzRrs2LFDUtexXCu4vnv3DidPnoSzszOsrKxgZGSEu3fv4tmzZ7C2tla7lTGrHqeaNWvi/Pnzmd4wb9++LXn8gRwxpBYA2ZHjfJcjD+D/5usAoNV5nkZJq1rLcXxfvXqF/v3761ykAPK0p0yZMoiIiMiUd0xMjCxjO6TSZ5/Gxsbi5MmT+PPPP/HPP/+gUKFCaNmyJVatWoWGDRtK7tnNTr7rUQkLC9P7WrvS6LsI36+//opz585h2bJlKFOmDIDUP4SJEyeiZs2akosQffP47bffsGXLFixcuBA1a9YEADx9+hTjx49Hx44d0bNnz1xry5w5c3D8+HG8evUKdevWRdu2bdG6dWu9VjGWYyE/fQd+jxo1Cq9fv8by5ctV++P169cYM2YMypYti0WLFmkVTx9yzFWzfft2LF68GF26dEGDBg1gZGSEwMBA+Pn5oUePHqhWrZrqtVl1rcsRA9B/wTk5znc58gBy9+aAvF7VWo7j261bNwwbNgzNmzfXK++sSG3P8ePHsWDBAnh6eqJ+/fqqtsycORPdunVD69atVa/NzVWudd2nw4YNw7lz51CoUCE4Ozujbdu2cHBwgJGRvH0g+a5QkWsk9qdPn/Dnn3/i0aNHGDhwIIKCglC9enWdvo3oI6dF+KSs1NyrVy8EBgbC0NAQZmZmMDIyQkhICGJjY/H111+rdfdnNdZEjjyaNWumWq6+SJEiMDIywvv379UWwUuTVbeprm2xsLCAsbExGjZsqPpAz4qU3pK0hfwSEhJU+yP9Qn66XMLRRb169bBp06ZM5/utW7cwaNAgXLx4MccY+qzgKjepdx5l17UuR4ycFpzz8fHJMb4c57scechBKataA/Ic32PHjmH+/Pno378/qlSpkmmQspQB9XK0J31bNF12Tf//ubmauq771MLCAkZGRqhdu3aOA731mfAt3136MTY21ruae/36Nbp37443b94gISEB3bp1w6ZNm3D79m34+fllGiyYm7Zv345BgwZhxIgRcHJygr+/P969e4eff/4ZLVq0kBSjUaNGaNSo0WfPY8yYMXrlAOjelrQ3nk+fPuHp06d657FmzRq0a9cO7u7u6NmzJzZt2oSXL19i5syZGDlypN7xpSpQoABMTU0zPV6wYEHJSxvos4Kr3JRyieHQoUOYPHky+vTpg2bNmmHHjh0oXLgwhg8fjgoVKkiKIcf5LkceclDKqtaAPMd31KhRAFJ7WjOSWhTI0R69ZmuVka77tHPnzrm+fhmA/Dcz7fLly4WDg4OYP3++2Llzp/D391f7keLnn38WQ4YMER8/fhQ2NjYiLCxMvHv3TvTr108MGTIkdxuQQa1atVQTC/Xv318cP35cCCHEP//8I9q1a/c/l4dS1K5dWzURl6urqzh9+rQQQoiAgADh4uKSZ3kMHTpUjBkzRm3yuoSEBDFmzBgxYMAASTF0XcE1P6tVq5ZqxuVBgwapJhS8fPmyaN269f9cHkpZ1VouT58+zfZHCiW1J7/Ldz0qq1atAqB5gKCBgYGkW8YuXLiAdevWqX1T/eKLLzBx4kSt1jaQg1yL8OWXPJRCroX89DVu3Dj06NEDrVq1Ut1dEhgYiNjYWGzbtk1SDE0ruFapUgVDhgzBmDFjMHXq1FzLX6nkWkAvv+ShaXVdKysrdO7cGW5ubnkWQy7ffPONKqenT5+iYsWKEEJotbaVktqT38m3vKZC3L9/P8sfqdf4YmNjUbhwYY3PSb1LRi5pi/DFxcXB0tISf//9N1JSUrRaUDA/5aEUaQv5AUCNGjVUt0Vrs5BfWFiY3nlUrVoVv//+u2q5+vj4eHTo0AG///675OvO6e8I0WYF1/wsbcG5yMhIWFtb488//0RUVJTWC+jllzzSVtcFoPeq1vrEkIsQAj4+PrC3t0f79u3x4sULTJw4EVOmTNF4p5YmSmpPvve5u3Ryy7Nnz8SZM2dEXFyceP36tVbbDho0SMydO1cIIVSXfhISEsSoUaPEwIEDcyPdLMm1oGB+yUMp5FjIr0mTJopY52TKlCmia9euIigoSBw/flw4OTmJW7duifnz5+t0eeHSpUti586dIjo6Wjx8+FAkJibmQta5S64F9JSSR1xcnPD39xc+Pj7i7du34uLFiyIqKkry9mvWrBH169cXp06dEjdv3hTW1tZi/fr1ol+/fqJ79+55FkMufn5+okmTJmLfvn3C2tpahIWFicOHD4v69etLXptKSe3J7/JdoRIfHy/GjBmjWtUxLCxMDB8+XPTr109ER0dLihEcHCwaNGggOnfuLGrVqiUGDBggmjdvLurWrataxTQv6bugYH7LQyn0XcjPyclJ3LlzR+vf++jRI9X/x8bGilWrVomBAweKPn36CDc3N7UfKeRawTU6Olp0795dmJubCwsLCxEWFiaGDBki2rZt+9kXcEw7b7WllAX09Mnj1atXwtnZWVhbW6veE4cMGSIaN24secFDJa1qnd6bN2/E+/fvtd6ubdu24tixY0KI//syKoQQx44dE05OTpJiKGUVZ7lpsxBpXsl3tycvW7YMf/75J2bMmIGhQ4fi4MGDeP78OSZNmgRHR0fMmDFDUpyXL19i586duHv3LlJSUlC9enX06tXrsy0Ops+CgkDqJau0WyUB9Tk/OnbsmGd5vHjxAtu3b1ebRbVbt26qa8Z52RZN4uPjtVoM7OPHj3jy5AkKFCiAypUra7WtrlNwt23bFl988QV27tyJcePG4a+//kLjxo01ToSny8R0Qgjcu3cPZcqUwVdffSV5u1mzZuHu3bvw9vZGx44dcfDgQSQkJGDcuHGoUqWKpDld5LhV+sOHD/D29oarqyuqVasGd3d3XLhwAWZmZli3bp3ku2XkWEBTjrl29M1j3LhxiImJwZIlS9CoUSMcPHgQxYsXx5gxY1CwYEFJC1cqzZYtW7Bu3TrVJcsyZcpg4MCBku9Ss7a2xuHDh/Htt9/C1tYWBw8eRIUKFRAeHo62bdsiMDAwF7P/P1nN+G1gYABjY2OUK1cOjo6OeTL5286dO7F+/XpEREQgICAAGzZsQNmyZTFs2DC9Y+s7106+G0x7+PBhzJgxAw0aNFA91qBBA8yZMwcTJkyQVKiMGDECHh4eGD16dC5mKo0ci/CdPXsWEydORFRUVKbnChUqJOnDXY48Hjx4AFdXVxQqVAhWVlZISUnB/v37sX37duzcuVPSrJJytOXt27dYs2ZNpvkPEhMTERwcjCtXruQYIzExEXPnzsW+ffuQmJgIIQRMTU3Rp08feHh45Lg9oPvA7x07dsDJyQmfPn3CyZMnsXjxYq3XbslI0wqu2t6Gf/LkSSxatEitEKhatSqmTZuG4cOHS4ohx63S8+bNw5UrV9CvXz8cP34cV65cwcKFC3HkyBEsXLhQNfFZduRYUDBtrp20MQ8iw1w7UgoVOfKQ6+YAJaxqDQC7du2Ct7c3evXqBXt7ewghcPnyZSxevBhFixaVtATGN998g8DAwExfPM+cOaPVbd/6tufy5cu4fPkyjI2NUblyZQCpC41++vQJ5cuXx7t371CwYEFs2bIlV1eGPnToEBYtWoS+fftiw4YNAFL/dn18fFCoUCEMGDAgxxhyzZOj0Wfpx8lFVlZWqtv50nfpPXnyRNSpU0dSjLp166pifG6enp6iZcuW4syZMyI6Olq8f/9enDx5Ujg7O4t58+ZJiuHi4iLc3d3F6dOnhY2NjThx4oTYsmWLqFevnuo247zIY8CAAWL48OGqbmwhUru0R4wYIQYPHpxnbRk9erSoX7++8PDwEDVr1hTjxo0TLi4uwtzcXKxdu1ZSjPnz54uGDRuKnTt3ivv374u7d++Kbdu2iQYNGojVq1dLiqGrsWPHivXr1wshhKhXr57qtnFdBQcHi8aNGwsbGxvh4uIiOnbsKKytrUXr1q3FixcvJMexsrJS/b2l/9sLDg4W1tbWkmLIcau0g4ODuHbtmhBCiIkTJ6qmFHjw4IGoV6+epBjDhw8XXbp0UbvMFhQUJFxcXISnp6ekGG3atBGenp4iODhY2Nvbi8DAQPHXX38JR0dHceDAgTzLw8bGRjx58kT1/2nH5d69e8LW1lZSjL/++kvUrFlTdOvWTcybN094eXmJrl27itq1a4vLly/nWQwhhPjuu+/E1q1bMz2+bds20b59e0kx9u7dKxo0aCD8/PyEtbW12L17t/D29hZWVlZix44dedYeHx8f4erqqjaOMioqSgwYMEAsX75cJCQkCE9PT8nvj7rq3Lmz2L9/vxBC/Rz57bffJI9Tc3d3Fy1bthQ+Pj6iVq1aYtGiRWLEiBHC3Nxc7N69W6/88l2h4uLiIvbs2SOEUN/hK1eulDy/hZeXlxg9erQICgr67Nfr6tWrJy5dupTp8XPnzgkHBwdJMerUqaMaW9OzZ0/x77//CiFS/1h79OiRZ3nY2NiI+/fvZ3r83r17om7dupJiyNGW+vXrq64rt23bVhVv6tSpYvz48ZJiODg4iL///jvT4wEBAaJZs2aSYqTRduB3WoGUkJAgJk+eLJYsWaLV78uoX79+wt3dXbx790712Js3b0S/fv3E8OHDJcfp3bu3qtBL/7c3c+ZM0bNnT0kxatWqJZ49eyaESJ0jJq1ouXXrlnB2dpYUw9raWlVgNWnSRPj5+QkhhAgNDZX8wWxraysCAwMzPX79+nVhb28vKYYcc+3IkYccNwe0b99e+Pj4ZHp8/vz5olu3bnkWQ4jU9wBNxXloaKjkL6NCCLFr1y7RrFkzYW5uLszNzYWDg4PYtGmT5O3laE/Dhg01jme5d++eaNiwoRBCiIcPH0ousHWVNqBYCPW/3bCwMMn7NDfnlcl3l35GjhwJDw8PBAcHIzk5Gf7+/njy5AkCAgKwZMkSSTFOnz6NsLCwLK+H5+ZUxhnJsaBg+hiVKlVCUFAQHBwc0LBhQ9W0+HmRR1aLtEm9HTBjHrq2JTY2Fubm5gCAKlWq4P79+7CwsICrqysGDx4sKUZ8fLzGNaWqVauG9+/fS4qRkJCAiRMn4ujRozA0NERAQAAWLFiA2NhYrFixIssF05YuXYrNmzfju+++Q6lSpbBp0yacOXMGlStXznQJTsoYlRs3bmDPnj2qZeaB1FuWJ06ciF69eklqCwCMHTsWAwYMwK1bt5CUlITVq1fj0aNHuHPnDjZu3CgpRtqt0l9//bXOt0pXrVoVp06dQvny5fHq1Ss4OjoCAPbs2SP5cpYcCwrKMdeOHHlMnDgRvXv3xqVLl5CYmIgZM2bg8ePHiI6OljzXTmhoKLp27Zrp8e7du2PHjh15FgNInUPm9u3bmf7+AgMDc1weI+Pv7d69u2pV6dKlS0veFpCnPUlJSRqPb3x8PD59+gQg9TxKG+OUW8qUKYMnT55kuux1/fp1yePUcnNemXw3j4qTkxOWL1+O27dvo0CBAti4cSPCw8OxZMkSfPfdd5Ji/PTTT5g3bx7mzp2r8Scv9enTB7Nnz1Z7k46JicHSpUslX1+uXr06/v77bwCpH8xXr14FkDrAKS/zaNiwIRYuXIh3796pHouKioK3t7fkJcDlaEvZsmVVk9SZmZnhwYMHAABTU1PJRUbnzp2xbNkytWnqhRDw8/OTvOLt6tWrcf/+ffj5+akG4bq5uSE0NDTbNVwaNGiA1atXo2TJkrhx4wasra1RpEgRvHz5Ek+fPlX7kSJtBdeMtF3B1c7ODrt27ULhwoVRqVIl3LhxA+XKlcP27dvVxoxlx9HRETNnzsTDhw9Rt25d/PHHHwgMDMT27dslD8YbNWoU5s6di6FDh6J9+/YwMzPDvHnzsHnzZskLcI4aNQrTpk1T+1Ly9OlTeHl5SY4hx1w7cuRRtWpVHDx4EM2bN0fjxo1haGiINm3a4MCBA5Ln2klbXTcjXVa11icGAPTo0QMzZ87Ejh07VHNkbd++HbNmzdJYOOSkVKlSWhcpgDzt+X/snXlcTdv//19Hcc3XeOneSxSpW5qQIVOKi4wZiwplFhUaSSVlqESmRMO9upGhiMzXmCkZU24jIWVIVIai9fuj39nfjnNO7XP26jh8ej4ePR7s01mtfYa93+u93u/Xq3///vDy8hIIXHNycuDj44P+/fvjy5cviI6OZhZWtcWUKVPg7e3N+KNlZ2cjOjoaa9asgZmZGasxalNX5ofr+vnRoGEoeObMGeaCN2jQIPz555/o06cP/vvvP+jo6GDz5s0ymUd+fj6mTp2Kt2/fMnbijx49QosWLfD333+z6qiicS7r1q3DmTNnsHbtWpSVlcHBwQGenp44c+YMMjIycPjw4RrHWLp0KU6dOoWff/4Z2traUFRURGpqKp49ewYdHR2BzIY4P49hw4bB09MT/fr1E+g8uHr1KpycnHDp0qUa50EDeXFwBSo7dlxcXGBoaAgLCwvMmTMHly5dgqKiItatWwdTU1NW47x58wYFBQXMjfjevXto0qQJ64wKDUPBmzdvwtbWFosXL8b48eMxfPhwtGnTBs+fP8eIESNE+szUxjz4zQFcPMrkydW6oqICfn5+iI6OxpcvX0AIgaKiIqZOnQo3NzfUqyeb9TeN8yksLMTcuXORkpKC5s2bgxCC4uJi6OjoIDg4GA8ePICDgwNCQkJgYGBQq+cTGBiIyMhIfPr0CQAkfk1DQkIQFhaG9evXo2XLlrCyssKiRYuQmJiIDx8+YO/evVLP7YcIVLZs2QIbGxs0atRIbLsXnwYNGqB9+/YwMTERqz4LVN4Qw8PDkZGRgQYNGqBr165YuHChxO2JXKnpfKpS3QrrwYMHUFBQgLq6Om7cuIHw8HAoKSlh8eLFrFbNtOZRWlqKw4cPIyMjA4QQdOvWDaNHjxa7zSEKrudSVlaGDRs2QFtbG6NHj4aHhwdiYmLQrFkzbN68mVV2x9XVlfV8xW2/iGuRfPToEcaMGYN79+6JfF5SUhL09PSgqKiIpKQksX+X72xdE1wcXGl9LvjcvHkT2traTKBHpGyVBoC8vDxkZWWhV69eKC0tlWjVHBsby/p3q8ugFRQUoKysDB06dEBmZib27t0LJSUlWFlZscqq0JhHz549ERcXx0laQV5cratSUlKC7OxsAJXZVUmuITSgdT6EEFy/fh1paWnMdY0flLx58waKioqsurto8OHDB2RmZoIQIvFrys8od+rUCYMHD8bOnTsREhICJSUlrF+/Hn/88YfU8/ohApUhQ4bg4MGDaNmyJYYMGVLt73758gWvX7+GoaEhQkJCRP5OVFQUfH19MWLECOjo6ODLly9ITk7G2bNnERAQgBEjRtTGadQaNFZUNHB1dYW7u7vQh7+oqAhubm7Ytm1bjWPU1rkUFRWhadOmnJ23JcHMzAzm5uaYNGmSQKCydetWnD17FocOHRL5PHV1dSQmJqJ169ZQV1cHj8eDqK8x2wv+jRs3WM/561Xd19+358+fo379+ujQoQMUFRWRm5uL8vJyaGlpsVpR9e3bF7t27YKmpibrOX2NtLU/tKHxeafBmjVr8PLlSyxcuBDKysqspATkHVHt9MOHD5dIx+h/nby8PNa/W9uZ1Jr4IYpp+TULX/9bHDdu3MDcuXPFPh4WFgZXV1dMnz6dOTZjxgzs3LkTmzdv/u4ClWvXrn2zL3BycjKePHkCAIiLi4OmpqbQhTsrK0vkXq8opD2X6jIPX9OrVy+Jx5cGaQu/z549y/i8iNtmkwQuKeWq37eIiAicP38eAQEBTPbi3bt3cHJygpqaGqvxWrVqheLiYqnnAwjW/sybNw9AZe2Pq6sr/P39WYs+SgPtzzsN5Kk5gAZZWVmwtrZGaWkpOnfujC9fviAmJgbbtm1DZGQkJ2Exvhhfjx49KM5YPNnZ2fD29satW7dEFtXW5nszZMgQoe3DrxGXSeUTFxfH+u+xMQQWxw+RUZGUwsJCxMfHw9raWuTj2traiI+Ph7KyssDxnJwcjB07VmxKXl75liuqW7duMZ0j4lb+jRs3xqxZs1htDUh7LtVlHqrCNgtBi4sXLyIkJERAAXn27NmsC7/liX79+iEsLEwoJZ6eng5LS0tcv369xjHWrVuHf/75B4MGDYKysrJQUMrmM/Ita39of95pUNP2Edvib3lh5syZUFRUhL+/P9OpVlhYiKVLl6JJkyastiNTUlKwcuVKpKeni+yokdU1wNLSEq9fv8bUqVNFbu/U5nvDJZPKh/Z2njh+iIxKVfg3JHGkpaWhVatWYoMUoLKr4uTJk0KtqufPn4eenh61ucqKb7mi0tfXx8OHDwFUvjeXL1+WqIXwa6Q9FxqZh9pg4MCBTPusNLx8+RJBQUHMiuzrG6Msz7u8vBzv378XOv769esaV258Tp48idatWyMlJQUpKSkCj/F4PFY394KCApGt40pKSqy7uqSF9uedBt9bIFITNNrp/fz8oKCggBUrVsDPzw8uLi7Izc1FVFQU1q9fX1tTF+Lu3buIjo7mtNUpLeKCj5KSEtSvX59V5pr/Wa9tfrhAxdfXV+Ci+PnzZzx69AhxcXFwcnIS+7yqUbiSkhKCgoKQkpICfX19KCgo4MGDBzh69ChsbGxqdf61AVtPkdqGxoda2nORxEuoNqFd+L1y5UqkpKTA1NRUZgV34hgyZAhWrlwJDw8PaGlpgRCC5ORkrF69mnW3Dput25pQVVXF1atXMWnSJIHjx44dE+jEqG1kdRFng7w0B9CA307/dQuwJO30qampiIyMhLa2Ng4dOgQ1NTVYWFigffv2iImJkdn2fsuWLVm3qtc2kZGRCA8PR0FBAXg8Hn7//XcsWLCA05YNLf5ntn6OHz+O/fv3IywsTOTjNRXh8uHxeDJfndemCZ8s5/H+/XtERESIXf2La+OlgSSeJmznQQjBpUuXGIPFLl26oG/fvlBQUBD7HNqF37q6uti1a5dc3HBKSkqwZMkSJCYmCnQLDR8+HOvXr5doyzEpKQlZWVkYNWoU8vPzmZZ4Npw7dw4ODg6YMmUKoqOjYWtrK1D7w3ZbjauBJg2DRRrzqK3mgMLCQqZWSpbQaKfX0dHBiRMnoKSkhGXLlkFfXx8WFhZ48uQJJk+eLHENUVlZmVRb6qGhoUhOToa/v7/Mu5aqEhwcjLCwMFhZWUFHRwcVFRW4efMm9u7di2XLlgnUa1aFTZ0LHy73zf+ZQOXZs2cYOXIk7t69+62nIhE1mfDdvn2b1TgXLlzA7t27kZ2djX379uHQoUPo2LEjxo4dK7N50HL6leZcaLQTV6WoqAg2NjZ48OABmjVrBkIISkpKoKmpifDwcDRv3pz136sOfuG3uNe3X79+iIqKYgzNpIG2g2tOTg7S09PB4/GgoaEhkclbSUkJbGxscPfuXfB4PJw6dQpr1qxBbm4uwsPD0a5dO1bjcK39EWWgmZKSgg8fPrA20Fy5cmW1BovOzs4ymYexsTFmzpwpdLPZuXMnYmNjcfz48RrHoOFITStw49JOz2fMmDGYM2cORo0ahW3btuHJkyfw8/NDamoqLC0tGSHJmuDqODxz5kzcvHkTX758QevWrYWCHVktigcMGABnZ2eMGjVK4Pj+/fuxfft2sZnO4OBg1oEKl5qsH27rRxSlpaXYs2ePxHvFr169ElAe5SPLVq3AwED88ccfsLS0xJIlS+Dv74+8vDxs3ryZ9Y09MTERixYtgqmpKe7cuYOKigp8/vwZrq6uIISwSu3RmAcNp19pz4XtHNmybt06fPz4UUDd8+HDh1i+fDkCAgLg5eVF5e906dIF9vb2Yh8fO3Ysdu3aBW9v72ozOdVB28G1c+fOUgdOgYGB4PF4OH36NJOlW758OZYtW4b169cjICCA1Thca3/Wr1+P3r17IyAggNmr//TpE5YtWwZ/f3+xGa6qnD17Fn5+fhg1ahSGDh2K1atXo0OHDnBwcGBtG0FjHi9fvsSAAQOEjg8dOpS1Dg4NR2oaztgAncyrpaUl3N3dAQB//vknxo4di4YNG+LWrVvQ1dVlNQYNx+EePXrIrMOoOoqLi0XWyfTo0QOvX78W+zw7O7vanNb/wckpSA7p1q0bUVdXF/rR0NBgzApr4vz586Rv375CY/DHliU0TPimTJlCwsPDCSGChlM7d+5k7TZKy9iQq9MvjXMhhJCCggISHBxMHB0dyatXr8jx48cFHGpronfv3uT69etCx69du0b69evHagxxn1X+DxtcXFyIlpYW6devH5kyZQqxtLQU+GGDvDi4EkLI4MGDSXJyMiFE8P29detWteaXsbGxrH/YQMNAk4bBIo152NrainQFDwsLI1ZWVqzGoOFITcMZmyanT59mXI6PHDlCRo8eTebMmUOePHnC6vk0HIflBUdHR7JmzRqh4/7+/mTRokWsx0lLSyMuLi5kypQpJD8/n+zZs0fkdVJSfriMytfFtEClgZeOjg7rFPSaNWugra0NCwsLNGzYsDamyRoaJnz//fefyEr24cOHs15R0ZjHsGHDcOjQoWozBDVB41weP36MyZMno2nTpigoKIC9vT0SEhLg6uqKiIgI6Ojo1DjG58+fRWbo2rRpg5KSElbzkLbw+2u+TtdKyoEDBxAWFiag3NqyZUssX74cM2fOhJ2dHWxsbGBubs7p77ChsLAQbdu2FTrevHlzkR1FfFxcXFiNz+PxWGUQaRho0jBYlHYetJsD3r9/DyUlJQCVWc3Zs2cDqNz2rbqNUx3v3r2Dvr4+gMpMYWpqKlRUVDB37lzY29tjxYoVrMYpLCxEaGgoMjIyRGa82WRcfHx8YGVlxXSHjR49GqNHj2b19/nk5OSIrA3r3bs3vL29xT6PbUE9j8fDwoULJZqTJFTdDi8vL8fff/+NmzdvokePHsxn5NatW0JF6eJISUmBubk5dHV1kZKSgrKyMqSlpcHPzw9bt27FoEGDpJ7rDxeosDVQqo4XL15gx44dUFFRoTAjbvBN+CwtLRkTPmtra4lM+Jo1a4YXL14ItWxmZmYKtPjV9jxoOP3SOJe1a9fCxMQEPj4+zIUzMDAQzs7O8Pf3x99//13jGJqamoiOjmbSx3yio6OhoaHBah7iPqt8Mzs29UM0trTkxcEVALp3747jx48LSQNERUVVK8FNu8OGb6C5efNmpjZHUgNNvsGin58fevToAV9fXwwdOhQJCQmsRcmkncfXqsbt27cXavn+5ZdfcPToUTg4ONQ4DxqO1DQCNwBwcnLC/fv30a9fP6kXkrGxsRJtN4lCWsfhQ4cOYdq0aWjUqJFY9Wmg9gOVr01L+UFX1e+Svr4+Y1NQE/7+/pg1axYcHBwYGQ8fHx80adIEwcHBdYEKbb+RPn364MGDB3IRqMyZMweLFy9G/fr1MWrUKAQHB2POnDn477//0KdPH1ZjjB49mnF+5vF4KC0txcWLF7F69WqMHDlSZvPgO/0ClcGgNNA4l1u3biEqKkogm6GoqIgFCxZg8uTJrMawt7eHlZUV7ty5wwQ7ycnJePjwIbNfLS3a2tqsMwQ04Du4BgYGMiKHNBxcy8vL8fDhQ6ioqKBJkyasnuPo6IhZs2bh3r17+Pz5M7Zv346srCw8ePAAu3fvlujvP3nyBOnp6fjpp5/QpUsXiRRLly1bhqlTp8LIyEjIQJOtg7qTkxNcXFxw48YNWFhYYN++fZg0aRJjsFib86DR5l2VxYsXw87ODuXl5QKO1FFRUdi6dSurMWgEbkDl94yrSd+gQYOwZ88eLFq0SOpuG77jMD8zkZ2djcuXLyMoKKhanS5JldRrCzYLMklISUnBqlWrhI5PmzYNMTExnMb+Ibp+1NXVUa9evRo/7Gxbi/Pz8zFx4kT069cPHTp0ENpKkpWiJB+uJnzl5eVwcXHBsWPHAPyfYubgwYMRFBTEelXCdR40oHEuvXr1QlRUFNTU1ASUS+/duwdbW1vWio337t1DWFiYgMHizJkzoa2tLfX5lZaWYsuWLTh16pTMKv5pObg+f/4c7u7usLe3h5qaGiZOnMhkuiIiIlhnmh4+fIiwsDCBjp1Zs2ax2pIDgLdv38LNzU3g9atXrx7GjRuHVatWsbZgoGGgWRUipcEirXlwbQ7g6khNyxl7+PDhCAgI4CSSZmlpiaSkJPB4PLRu3VroM8H2u8fVcZjPq1evREo2yLJxg6v8RN++fbFz5050795d4Lp6/fp1ODg44MqVK1LP7YcIVDw8PHD69Gk0atQIpqamMDU1ZS3tK268mJgYtGzZEo0aNRJ4TNY6KjRN+B4/foy0tDRUVFRATU0NXbp0EWkXX5vz+PjxI06cOIHs7GzMmjUL6enp6Nq1K1q2bCnROFzOxcHBAfXq1cOGDRvQo0cPHDlyBM2aNYOdnR1atmyJzZs3S3t6EiFORZnH48HLy4v13jANCAUH18WLF+P58+fYuHEjkpKSsHr1auzatQuHDh1CXl6eWA2jqsTFxWHkyJFC24Lv379HTEwMq3T98uXLcf/+fXh4eDAtvTdv3oSPjw8GDx4MDw+PGsegZSj44cMHpKeni7wJSeIp9f79e+Tk5EBBQQGdO3eWyO/qwoULcHV1xZs3bwSOkxpaeEXBxZGaljP22bNnERISAgcHB3To0EEoIGBzc68pCy/JYpSL4/CtW7fg6uqK3NxcgePSvDdcoCE/sXLlSuTl5WHjxo0YNGgQjhw5grKyMjg4OEBLS4t1JlIUP0SgAlSKY127dg0JCQk4c+YMWrduzQQt/JQpW/T19bFy5Uq5kJ6mYdFubGyMgwcPCmU9CgoKMGbMGFYeLDTm8erVK0yZMgWvX79GWVkZTp48iTVr1iAlJQWRkZGsgiAa51JQUAArKysUFxejqKgIKioqePbsGVq0aIE9e/aIFdKivcV46NAhzoXf8oSBgQEiIyOhoaEBe3t7EEKwadMm5OTkwMzMTOzFrrCwkKmFMTY2xoEDB4QC19TUVDg6OrLy2erRowdCQkKECh0TExPh6Ogo9jNS1VBQXKCSlZWFPXv2sLpwnz17Fi4uLigpKREKUtjehMrLy+Hr64uDBw8ydUQNGzaElZUVq9oSoLKIXUVFRWxzAJstFBqO1DScsYFKlV1nZ2eh4mpZ3NxpOw6bmZmhcePGmDlzpsiFAJftLUkwMzND69atxcpPmJiY1DhGSUkJbG1tce/ePVRUVKBZs2YoKSmBuro6wsPDOWXdf4gaFaCyK8XQ0BCGhobw9PTE5cuXcfz4cUyYMAEdO3bEyJEjYWpqyurD06hRI6bu4Fszfvx4+Pv7S2zCl5CQwJivPXv2DN7e3kKrsGfPnrEW65F2HlVZu3YtunbtiqNHj6Jfv34AKvVI7O3tsWHDBuzYsUMm59KuXTvExcXh6NGjTFbG3NwcY8eOrfaC+3Xh2/Pnz1G/fn106NABioqKyM3NRXl5ObS0tFgFKjQKv8UhiQssLQfX8vJy/PzzzyCE4OrVq3B0dAQAVFRUVKsqe/HiRbi4uDDbeBMnThT6HUII62K8+vXri3wfW7VqVW1BMI/HY2qDeDwefHx8hH6ncePGrDtl/P390bdvXyxYsEBqe4PAwECcOHECbm5u0NPTQ0VFBW7duoXg4GA0atSIcYeuDhrNATQcqWk4YwOV3XJ9+vTB5MmThTLeksA/n5ycHGzatAlnzpxB165dqw0OaDgOVyUjIwNxcXFUMuZcyMzMhK+vL9TV1aGhoYHGjRvD0tISjRs3xu7du1kFKk2bNsXevXtx9epVZttWTU0NAwYMkGgbTBQ/TKBSlfr168PIyAhGRkYoKyvDwYMHERAQgMDAQFYfHgsLCwQHB2P16tWcvgg0kNaET09PD3v37mVWcnl5eQKeEjweD40bN2Zd1EfD2PDatWvYuXOnwGv6888/w9nZuVqJe9rnwl8tf721UlRUhAULFohN61ctfIuIiMD58+cREBDApL/fvXsHJycnqKmpif3btLMyNFxgV61ahdevX2PZsmWc/IL++OMPHDhwAG3btsW7d+8waNAglJWVITQ0tNqt2HHjxuG3335DRUUFrK2tsXnzZoEOLv77W93rWhUrKyv4+voiKCiIkXh///49Nm7cWK1pHW1DwadPnyIkJESkQSJbDh8+DF9fXwGRRA0NDbRt2xa+vr6sAhUazQHHjh2Dp6cnevfuzRzr3bs31qxZAycnJ1aBysCBAzF37lxOzthAZQbOxcWFU9ZR2lZa2jYfSkpKKC0tpTqmNNCQn7CyssKWLVvQt29fgY60169fw8bGBnFxcVLP74cMVIDKVcSpU6dw4sQJJCcnQ1lZGZaWlqyee/PmTSQlJeHEiRNo3bq10GpQljUq0prwKSkpMV8qS0tLbNmyhXX7Ls15VKW0tFSsud7nz5/FPo/GuVRN68fFxUFTU1NkWp+tx8fOnTuFtEeaN28OR0dHWFpaMtmEr9myZQvrwm82F24aLrC0HFydnZ0xb948vHnzBrNnz0b79u3h6emJs2fP1tgJxa/X+Ouvv6Cvr8/a14fP1yvdZ8+eYciQIVBWVoaCggJycnLw6dMn1u7JNNqdO3XqhPz8fE6ByqdPn0Q+v0uXLqzPxdPTExMnTsSlS5ekbg6g4UhNwxkbqAyQbt++zSlQkbaVlobjcFXmz58PX19feHl5QUVF5ZsZFEorP3HhwgXcv38fQKXC9Y4dO4Su8Y8fP8azZ884ze+HClQKCgpw8uRJnDhxgvkgjxgxAitWrJCouFZeZI0BOhbt/DY0LoVwNObRq1cvREdHCwkNbd++nfVWm7TnQjutX15eLlKA7PXr19WmhidPnozTp08DAJXCbxousLQcXLW1tXH58mWUlJQwXkfW1tawt7dnvT9tYGAgMiXfpUsXgdX814wfP5711h8baBhoLlu2DKtXr4aDgwNUVFSEtkvZbEOPGzcOmzZtgr+/v0ARamRkJOvv5LZt2/Dq1StcunRJZHMAmwCBhiM1rVbcnj17YtWqVTh//jw6duwoFNSyzUTSaKXl6ji8fft25OXlif19WRXTSis/8dtvv8Hb25v5fiQkJAhs8/CzoZIIWIrihyimjYiIwMmTJ3H37l38+uuvGDFiBIYPH855hSgvcDUULC8vh5OTE6dCOBrzyMrKwrRp06CkpISMjAz07t0b2dnZKC4uxp49e1jdsGmci7q6OhITEyUK1L7G2dkZKSkp8PDwgJaWFgghSE5OxurVqzFo0CCsXLlS7HNpFn7TcIGl6eBKpHCUrkrVlPzt27dx/PhxhISEIC4ujrO6pSTQMNDU1NRkWj1FmeexuQktXboUp06dws8//wxtbW0oKioiNTUVz549g46OjkDwIy54otEcQMuRGuDmjA1U73TPtiuTRiuttI7DVYmNja32cVk2dHCVn6jqDE+bHyKjsnbtWtSvXx8DBgxA9+7dAVR+sc6dOyf0u2zTiykpKdi9e7fABdfa2pqTRoY00DAU3LZtG+dCOBrzUFVVxZEjR/DPP//gl19+QUVFBUaMGAELCwvW3UQ0zoVGWn/lypVYsmQJrK2tBRxbhw8fXqMrLs3Cb2VlZSQnJ2PUqFFQUVFh0rDFxcUiNTNEceXKFdy8eRMGBgacHFxpOEpv2LCBirrlw4cPBep2qmpCiMqmfQ0NA82wsDDOWZ4GDRoIWST06tVLotZmGs0BRkZG2Lx5M0JCQqCgoIDdu3eja9euEgUpXztjGxoawt/fX2JnbBqZGRMTEwQFBWHjxo3MsaysLKxZswaDBw9mNUZMTAxWr14t8P6YmJhAVVUV27dvZxWoyENnKR/+wr6srAwGBgYSdxx9/b4UFRWhadOmEm/jiuKHyKhUF2FXhW20fePGDcyaNQtqamro2bMnU2mfnp6OyMhImW4LTZ06FcOHD8eMGTMEIv/Q0FAcOXIE8fHxNY4xbNgweHp6ol+/fgJjXL16FU5OTkxHTW3PgwZcziU7Oxv79+/H7Nmz0apVK5SUlMDDwwPnz59HmzZtsHDhQtbZoapjpqeno169etDQ0OC0b1618Lu0tJTVinv//v3w8fHBmjVroKGhgbFjx2LSpEm4desW2rRpw0rNlZamhKurK+7du4eAgAAhR2l9fX1WjtI9e/bE/v370blzZ4H3Nzc3F2PHjmXVFhweHs4UAPI7ifj/7tmzJytFzl69euHgwYOc6kvkha1btyInJ+ebNwd4e3sjNTUVGzZswJgxYxidjWXLlkFFRYW1MzYfLpkZGq20urq6iI2NFXIKz87Oxvjx43H37t0ax6ioqEB8fLzILUYej8dJe0RSoqOjERoaivz8fJw8eRK7d+/GL7/8ggULFlT7vOvXryMqKgorVqzAL7/8ghcvXmDx4sW4e/cuGjZsiNmzZ9c4Rk38EBkV2jLEGzduxIQJE4QurF5eXggKCqIuPVwdNEz4aBTC0ZgHDTMxac8lLS0NFhYWaNGiBbPS8fDwwIkTJzBjxgw0a9YM3t7eaNasGevAFwBUVFQEuikkaQvmw6Xwe9KkSWjZsiVatGgBVVVV+Pn5ITQ0FEpKStVuP1WFltLyuXPnsHnzZoEtPHV1daxYsQKOjo6sApX69euLNHV8/vw565tsVFQUZs+ejUWLFsHIyAixsbEoKirC0qVLYWxszGoMaQ00+Z0PzZs3r7aTDWDfQZKRkSH2O8Mmkyltc4AkXRps5nHu3DkEBAQIBPOqqqrw8PCQyNOGRmaGx+NxbqU1NjZGdHQ03NzcBI7HxsYyXkg14evri6ioKKirq3PeduVCfHw8AgICYG1tzRS+q6iowN/fHw0bNsSsWbNEPu/69euYNWsWs5MBVC5YUlNTsWLFCjRr1gzr169H+/btOckx/BCBCm1SU1NFpoenT58uUuOhNqFhwkejEI7GPGiYiUl7Ltu2bcOAAQMQGBgIRUVFFBQU4Pjx4xg3bhxT6NW8eXOEhYWxClS4tgXTKvyW1gW2NhxcaThK00jJ5+fnY9KkSfjpp5+grq6O+/fvw8TEBC4uLli7di0rdVtpDTR/++035kYnTjhQEnbs2IGgoCCRj7F1gpa2OYC2I7W0zthfExgYCB6Ph9OnTzPS7suXL8eyZcuwfv16VpmZcePGISgoSKiVtiZoOw7Hx8fD19f3m28BhYWFwd3dHePHj2cUpK2srNC4cWOEhoaKDVR27tyJSZMmMVvuT548QWJiIqZPn45p06YBqKzJi4qKqgtUaNOyZUshuWmg8osmjdAZF2iY8NnZ2cHBwQGZmZn48uULYmNjBQrhZDUPGmZi0p7LzZs3sXPnTmY1yS+WGz58OPM7PXr0YJ1+lrYtWFTht7u7u9SF39K6wNaGgysNR2lnZ2fY2tqiT58+qKiogJmZGZOSZ9s50LhxY6aItWPHjsjMzGRqB9i2SUproFk1gKHhbP3XX39hwYIFmDt3rsStr3ykzZjRdqSW1hn7a2hkZj58+CDVYom243BZWZlE9Ua1RU5OjpCSM1DZCu7t7S32effv38fy5cuZ/1+5cgU8Hg9Dhw5ljmlra1c7BhvqAhURGBkZYfXq1QgMDGQUAzMzM+Hj4yPRtgAN7O3tkZ+fz6xYxo8fz5jwsU1L0yiEozGPdu3asXbRFYe051JcXCyw2r958yYUFBQELhJNmjSpVrm0KtK2BdMu/JbWBbY2HFxpOErTSMnr6+tj586d8PDwYETo5syZg+TkZNafP1rbu1y3bcrLyzF27FipgxQ+tJoDuDhS03LGppGZsbKygp2dHaZNm4aOHTsKBS3iggfa2/4DBgzAhQsXmOzDt6JNmzbIyckRqrG7fft2tT5MHz58ECiST0pKQoMGDZhCeKCyeYBrUXldoCICe3t7zJw5E6NGjWJaE4uLiyVa1dGifv36CAgIwOLFi0Wa8LFh9+7dGDVqFKKior7pPJYvXw4vLy9OZmLSnku7du3w9OlTKCkpAaiM/HV0dATEie7cucP6wltRUcFcLPlKjj179oSxsTFCQkLEPo9/jvwbmDjY6lu8fPkSCQkJiIyM5OQCC3B3cNXT00NUVBTCwsJw+fJlxumXbw7IBmlT8lXh3xCjoqJgbm6OHTt2wMDAAB8+fGCtkwNwN9CksW0zduxYxMTECKxaJaVqc4ChoSHTHGBhYcG6OYCGI7W+vj727t2LsLAwKCsr486dO+jatSvc3NxYO2MDdDIzgYGBAIDVq1cLPSaJXxBXx2FdXV1s2LABV69ehaqqqpCeEa36sZqYMmUKvL29ma2t7OxsXL58GUFBQbC2thb7vN9//x2ZmZn49ddf8eXLF1y5cgU9e/YU2Hm4du0aJ484oC5QEcnPP/+MAwcO4NKlSwLW6v379+fsWSApfBM+ZWVlKCsrM8clMeHbvn07K6+G2p4HIQRZWVlC+52S6EpIey5Dhw5FQEAAPD09ceHCBTx//hxz584VOI/g4GDWxZbStgXTLvzu3bt3tUJobKDp4KqtrS325swGaVPyVVFTU8OZM2fw/v17NGnSBDExMTh69Cjat28vsNVXHV8baE6aNAlhYWESGWjS2LaxtbXF2LFjkZCQgN9//11oZcqmIJdGc4CPjw+ysrIQFhYm5Ei9bt06Vo7UfGfsr7dG+eJ6bLcwaWRmTp8+zflaXpPjMJtAZc+ePWjVqhVSU1ORmpoq8Jgkar1cmT17NoqLi+Ho6IhPnz5h7ty5UFRUxNSpU6u1aTA1NcXatWtRXl6Oy5cvo7CwEBMmTGAev3fvHrZs2QJzc3NO8/sh2pN/NKqa8MXGxmLkyJEiTfjS09Nx7dq1GsezsbFB//79MXPmzG86jyFDhkBDQ0OsmRib2hVpz6W4uBjz5s1DcnIyM5etW7eCx+Nh+/bt2LZtG5SVlfHPP/+w0vug0RYsL3BxcP306RPzmaiu1RJgV7Oxc+dOxMXFSZySFwUXJeZly5ahpKQEGzduRL9+/XDkyBE0b94c9vb2+Omnn8QaaH491wMHDggE9pIyY8YMpKWloU+fPiLtJ9i8pjo6Ojh06JBQcJWVlYWJEyeyavmW1pGatjM2n4cPHyIsLIzZHuzatStmzZrFOjMzceJE+Pj4cFKFpuE4LG98+PABmZmZIIRARUWlxu3ksrIyrFixAvHx8ahXrx4sLCyYGrW1a9ciIiICBgYGCA0N5bR9WZdR+f/U1EpYFdrGVF9D24SvadOmWL9+PXbs2IFOnToJfWDEnQ/tedAwE5P2XJo1a4aoqChkZGSgXr16AhftLl26wMnJCWZmZqxrGKprC2azuqQJV3EzLg6uhoaGGDRoEAICAqi0WtJIyZeVlcHZ2ZmTerG0BppVobFtc/v2bfz1118SbY18DY3mAGkdqWk7Y/NRV1dn7WUliidPnoj1HWMLDcdheeLt27d49OgRkxGu+l0Tt0Bo0KAB1q9fDw8PD/B4PIHr55AhQ2BgYAAjI6O6GhVaiGoljI+Px5AhQzgXgEoKbUPBxo0bs/aeqM150DATk/Zc+HTt2lXoWNUKdUmoeiHitwWXl5fjzp07VFpT2VCTuBkbuDi4njt3DoaGhvj48SOVVksaKfnt27dzVi+W1kCzKjS2bZSUlDj7MNFoDpDWkZqWMzbf8bxp06YCLcKiYJNlsrW1hbu7O2xsbERm7tjUZdFwHFZXV6/2Ji4rr5+DBw/Cy8tLZCaUzQJBVBDLpbvza+oClf+PqA/3iRMnsHz5ck43Vq7QMBQ0NDTEgAEDOAUZNOZBw0yMxrnQQENDA3Z2dkKKi2/fvoWVlZXMLjA0xM24OLhu2rQJ06dPR8OGDam0Wjo4OHBOyR87dgyenp4CtTu9e/fGmjVr4OTkxCpQoWGgydch0dbWlnr1vmzZMnh4eMDe3l7kd4bNDVXa5gBajtRcnbGByrZgfubm6xZhaQgKCsKXL1+QlJQktQ+TtI7DVeHLPfD5/PkzHj16hLi4OJk2bmzevBljx47FjBkzONeI1QZ1gYqcQ8OEz9vbG//88w+nmzuNeURHR6Nly5a4c+cO7ty5I/AY28IxGudCA0IIQkNDkZ2dDV9fX4EUuizLvmiIm3FxcI2Pj4efnx8IIVRaLWmk5GkoMTs7O2PatGm4ceMGysvL4enpKWCgyQYa2zZLlizBly9fYGtrK/UNVdrmANqO1NI6YwOCbcHVFf++fPmS1VzCw8PZTboapHUcroo4ETQtLS3s379fYksPaXn37h1sbGwkNkWVFXWBipxDw4SvU6dOSE9PZ61CW1vzoNHxQuNcaMDj8RAaGgo3NzdYWVlh27ZtTEqc5sW9JmiIm82fP1/qv79y5Ups2rQJ2traVFotaaTkaSgx0zDQpLFtQ+OGClS2Eg8aNEiiWhA7Ozsqf5tPVWfslJQUlJWVIS0tDX5+fhI5Y2toaCAxMZH5vvF5+vQpRo8ezao4mMa2hImJCfbv3w8FBQUoKSlh165dCA8Ph7GxMRYvXsxpbG1tbdbKwDQwMTHBhQsX5DZQqev6qYaqpmjfChqGgh4eHjhw4ADU1dVFFqCy2dOVdh55eXlQUlICj8dDXl5etX+DzU2Ixrm8e/eOVWdPdairqyMxMRH16tXDwoULkZ+fj5CQELRu3RqGhoYy2/qZN28eWrZsCQ8PD8THx+PAgQPYu3cvEhISsHbtWly+fFkm8wCqNwdlawiqqanJBF7SZhDOnTsHBwcHTJkyBdHR0bC1tRVQL2YrcsiVM2fOYMeOHZy2bapSVlbGuvi1NpoDuBZtW1tbQ1dXl3HG5l9D/Pz8kJycjAMHDoh97oEDB3DkyBEAlbowenp6QkHgixcv8OHDB1y4cKHGuXz69An79u1Deno683kDKl/jlJQUnDx5ssYxqiLJe1MTpaWl2LJlC06dOiWRDhIXXrx4gdGjR0NVVRUdO3YUWmyxua5mZWVJVZDPhrqMipxDI42dk5PDiDqxTY3SmoexsTEuX76M1q1bC+1585HkJkTjXPr37w9jY2OYmZmhf//+UmVA+M9p2bIlIiIi4ObmhqlTp7K6YNOEhrgZLQdXGhkzGhkEGkrMNAw0aWzbAMKutrt27UK7du2qdaSl3RxAo2j7wYMHIjOv06ZNQ0xMTLXPNTExYaQFAKB9+/ZC2TY1NTXWhfY+Pj6Ii4vDH3/8gfv370NPTw+PHz/G69evJbKkkNZxmI+4Yloej8fKxJMWPj4+KC0tRVlZGetM7NeYmppCW1sbZmZmMDU1FSl1IC11gcr/R1QleXl5OTZs2CD0xabh4cEWGmlsGrLP0s4jMjKSqSeh0dZN41y2bt2KuLg42NnZoXnz5hg7dizMzMyE7Nqro+rNvEGDBvD398eWLVuwbNkyzvOTBBriZlzaimlnzGh1CgwcOJC1g60oaBho0gi6RLnaqqqq1uhqS7s5gEbRNhdn7BYtWgicE78DSFrOnj0LPz8/jBo1CkOHDsXq1avRoUMHODg4oLy8nNUY0joOV0XU+1S/fn3o6OjINJN/8eJFbN++HQMGDJB6jISEBMTFxWHHjh3w8/NjFoOGhoZ17cm0EFVJrqenhzdv3ojUIJAVNAwFAe5Sz9LOo+qNJzc3FyNGjODc7s31XAYMGIABAwagpKQEx48fx5EjRxAWFobu3btjwoQJGDFiRI0XwUWLFgkVfS5atAjKyso1rg5p07BhQ+Tn5+PmzZuoV68e/vzzT8YqgA1c2oppZ8xopeTPnz+P9PR0kdkQNrUyNAw0aQRd0rra0oZG0TYNZ2yAzkLx3bt3TPdWly5dkJqaChUVFcydOxf29vZYsWJFjWPQeG8ePHgg4H7+rWjZsqXEW5Ffo6KiAkdHRzg4OODq1auIj4+Ho6MjGjVqhHHjxmHChAlSn2ddjcp3wMWLFxESEiKgwjh79mzWaeyapJ7ZFJ/RmIe+vj4IIRg6dCjMzMxYV8ZXhda5VKWwsBAxMTHYsWMHPn78iEaNGmHChAmwt7fntGqTBSUlJXB0dMSlS5cE0vEjR46En58fq31zPT09xMfHS+XHcePGDabl9MaNG9X+Lpsb98qVK6tNyTs7O9c4Br8zTJT3EdtameHDhyMgIEBqV2uATtClq6uL+Ph4dOjQQaCu48mTJzA1NZVIzZVLzZ2BgQH27duHzp07w9PTE+3bt8e8efPw/PlzjBw5ktX3rqSkBLa2trh37x4qKirQrFkzxhk7PDwcLVq0kHhe0jJw4EBs3boV3bt3x7p161C/fn04Ojri6dOnMDU1xd27d2scg8Z706NHDxw+fJizFw5X9u3bh5MnT2LlypXo2LEjFBQUOI+ZmpqKhIQE7NmzB4QQfP78GQMGDMCqVaskWkgBdRkVuYeGoWBgYCD++OMPsVLPsprHlStXcPr0aRw9ehS2trb45ZdfmG0XthdPGucCVN4szpw5g7i4OFy5cgVt27bFjBkzYGZmhufPn8PPzw+LFy9mVkqAsK6EOHg8Hs6cOcN6LlxYs2YNcnJysHPnTujp6TGGc3yBLzadA1zaiqsGHzQyCDRS8nwdlalTp0o9DxoGmjTqIKR1taUNDUdqGs7YtBg4cCC8vLzg5+eHHj16wNfXF0OHDkVCQgJrY1Ia74207ue02b17N/Ly8jBy5EiRj7OtpyooKMDhw4dx5MgRZGVlQVdXF+7u7hg5ciQKCwuxcuVKLFq0CAcPHpRofnWBipxDw1CQhtQzjXk0bNiQUXAtLCzE8ePHcezYMeYmy0afgsa5uLu74+TJk/j06ROMjY2xfft2gaLajh07Yu7cuXBzcxN4Hm1dCRqcOXMG27ZtExBaGzx4MBo0aIBly5axClRoObjyzeXEef2wqVGikZJXVFTkbNRIw0CTRtAlrastbWgUbdNwxqaFk5MTXFxccOPGDVhYWGDfvn2YNGkSFBUVWavK0nhvaLqfc4GLRAEfa2trJCUloVWrVhg7diw2b94MFRUV5vEmTZrA3Ny8RmVhUdQFKnKOjo4O/v33X4lN+KpCQ+qZxjyq0rRpU7Rt2xZKSkpIS0tj3cFD41xSU1OxZMkSjB49Wmy6uVu3bozvDB/auhI0qPp6VKVt27aspd5pObh6eHjg7NmzMDQ0RNu2bVk952tatWqF169f49dff2U0c4DKPfRXr16xGsPCwgI7duzA6tWrpW4Z9fX1RZ8+fcQaaLKBRtAlrast7eYAGkXbNJyxadG8eXNs27aN+f/OnTsZ6wu22RBp35uq0HA/pwGNWplmzZphy5YtGDRokNitIx0dHamy8nU1KnLOkiVLcOrUKTRv3lwiE76qTJ48GaNHj4alpSVCQ0Nx//59bN68GcnJyZg/f36NtQW05gFUmr3Fx8fj1KlTjIjWuHHjWLc40jiXqpSUlKB+/fpSOXty1ZWgwbZt25CYmIhNmzahTZs2ACrPydnZGRoaGjKziQcq99v9/f1hZGQk9RgrVqzAw4cP4efnh8ePH8PX1xebNm1CQkIC/v33X1Z1HdnZ2TA3N8f79+/Rtm1boSwYm1Vq1foDaaFRB8FHUldbS0tL1mNL0knHxUKDizM2bV2Yjx8/wsvLC506dcLcuXMBVG7tGhoaYuXKlRIFuJK+N/IIzVqZT58+IScnBw0aNECHDh04ix4CdRkVuYerCR9AR+qZxjwGDBiA169fo2fPnnB3d8eff/4p8WqVxrkAlW3T4eHhKCgoAI/Hw++//44FCxawPkcauhI0uHz5Mu7fvw9jY2N06tQJioqKePToEUpLS5GWlobY2Fjmd2s7jfy1K7U00EjJL1++HM2bN8eECROkluOnYaApbR1EUlIS9PT0oKioiKSkJKHH2bja0mjjrwoNR2ouzti0TT7Xrl2LmzdvCnS6ubq6YsOGDdi4cSOrom1AOsdheYRGrUxZWRn8/f2xd+9eZuu3UaNGsLW1xYIFCzhtm9dlVOSco0ePUjHhe/DgARQUFKCuro4bN24gPDwcSkpKWLx4Matqexrz2LJlC8aNG8c5aud6LsHBwQgLC4OVlRV0dHRQUVGBmzdvYu/evVi2bBmmT59e4xgmJiYYMWKESF2JiRMnSiQaxYUtW7aw/l1x2RVaDq7u7u5o27Yt7O3tWc+pJgghEqfktbW1ceDAgRodeasjNDQU27Ztg5GRkdQGmu/evYOLiwsMDQ1hYWGBOXPm4NKlS0zQZWpqKvJ5fNXj1q1bM++NqMu0JKJxXNm0aRNOnDgBT09PzJs3D0eOHEFeXh5cXV0xcOBAVhYaT548qbZoVlaO40Cl6GNwcDD09PQEjiclJWHp0qW4ePFijWNwdRyWJywtLRmDRmlrZVavXo2TJ09iyZIl0NbWZq6rW7ZswbRp0zjZCtQFKnKOgYEB/vnnH87eNo8ePUJJSQm0tLQAVGYUBg0axNrbgdY8RMHfLuErztYE13MZMGAAnJ2dMWrUKIHj+/fvx/bt21kprGppaSEhIQEdO3bErFmzYGFhARMTE1y+fBlr167F0aNHWc1FHjh06FC1Dq5sjdECAgIQGRmJLl26oHPnzkLpcza1EDRS8uPHj4e7uzunzBYNO4CvYRt0PXv2DEpKSqhXr16NKqGyurnTsPKYOHEiZ2dsPi9evEBMTAxycnLg5uaGpKQkqKmpCRRvVoeenh4OHDgglAHMysqCmZkZq225QYMGYeDAgWIdh2UZeHGlpgUPm8CcXyf4tWfTyZMnsXr1ak52HnVbP3IODRO+K1euYP78+ZgxYwZzc09ISEBQUBBCQ0NZXdBpzOPBgwdYsWKFQF1HVdisQGicS3FxsUh9jB49euD169cszoSOGaC8QMvB9c6dO4xT8IsXL6SaC42U/OzZs+Hm5sYYG36dDWGTkqdhB/B10MXj8bB06dIag66qN7gtW7aIVGEtKiqCm5ubQEFobULDyoOGMzYAPH78GJMnT0bTpk1RUFAAe3t7JCQkwNXVFREREazcqnV1dbFr1y6sWbOGyfIQQhAZGYnu3buzmoe8Ow5LAo1atvLycpHZclVVVZSWlnIauy6jIufQMOGbOHEiDA0N4eDgIHA8MDAQN27cwN69e2Uyj2nTpuHTp0+YMGEC/Pz84OLigtzcXERFRWH9+vUYMWKETM5l6dKlaN26tVD7cUBAAB49eoTg4OAax5AnM8Da4tmzZxg5cqRERZ9coZGSr27FXl1KnrYdgKenJxITE7FmzRpGY+b06dPYsGEDjI2NxQZdycnJePLkCYDKIE1UoJKVlYU9e/ZIJXAoDWZmZjA3N8ekSZMEMipbt27F2bNncejQoRrHCA0NxcWLFzk5YwOVrbStWrWCj48P9PX1ceTIESgpKcHZ2RkvXrxgVZ9z7949WFtbo2XLlsyC58GDBygqKkJYWBirYGf58uXQ0tKSuE28ps9WVbiqxUrCw4cPERkZiZycHGzatAlnzpxB165dWesj+fj4oLCwEGvXrhUIwl1dXaGoqCiyNoktdRkVOYeGCV9mZqZImftJkyaxLrqjMY/U1FRERkZCW1sbhw4dgpqaGiwsLNC+fXvExMSwClSkPZeq7Zrl5eX4+++/cfPmTfTo0QMKCgp48OABbt26JeRlJA4auhLyTGlpKfbs2cN0Esny74pytm7VqhXrlfvp06elEhCjbQdw5swZoaBr6NChaNGiBZYuXSo2UOHxeIz+DY/HE9lB1rhxY5l+zmhYeQQFBeHLly9MLQQfSU0ab926haioKIExFBUVsWDBAkyePJnVGNra2oiPj8e+ffuQkZEBRUVFjBo1CtOmTWNdC7V8+XKMHj0aJ0+elMhxmI1wpKSvCVdSUlJgbm4OXV1dpKSkoKysDGlpafDz88PWrVuFtnP4VO3G+vLlC5KTk3Hz5k1oaWlBQUEBqampyM/PZ+0HJY66QEXOoVG936pVKzx8+FCogyEjI4O1wyWNeVRUVDD6GnwNlJ49e8LY2BghISGsxpD2XL72cuJvET18+JA5pq+vj+zsbFbzEKUrER8fDyUlJda6EvKCvDi4AnRS8g4ODlLVQtA20JQ26NLX12c+l1ULa78lNBypaZg0ApXXEVFbx6WlpRJJv//+++9YunSp1POQ1nE4MjJS7oQj/f39MWvWLDg4ODCBtY+PD5o0aYLg4GCxgcrXdThfbw/SMhmtC1S+A7ia8I0dOxaenp4oKipiUpr3799HUFCQRC3HXOehrKyM5ORkjBo1CioqKrh//z6AypoRUeZxNM+FZrsmX7iK/wNUtimam5t/E0Erru+LvDi4ApVBhrW1Na5fvy4yJc8GaWshaBto0gi6qgbS3xqujtS0blr9+/dHSEgINmzYwBwrKirChg0bpPIPkxZpHYflQeDta1JSUrBq1Sqh49OmTavWZJWGQSQb6gIVOacmEz42N6KFCxfizZs38Pb2xufPn0EIgaKiIuOXI6t5WFpawt3dHQDw559/YuzYsWjYsCFu3boFXV1dVvOgcS5cOHr0KNasWYPQ0FDmRgpUKpmmpKTAx8cHQ4cOrfV58KHxvsiLgytAJyVva2sLd3d3TrUQvr6+WLNmDScDTRpBlzzB1ZGaljO2i4sLrKys0L9/f3z69Anz58/Hs2fP0KJFC6xdu5b9CXFEWsdhKysrbNmyBc2bN69RyI5GZo8N9evXR0lJidDx58+fS63MTJO6Ylo5x8zMDK1btxZrwieJ/05paSlycnKgqKiITp06SbT6pzWPM2fOoEWLFujZsyfi4+MRGhoKJSUlrFy5UiJ9FS7nIi3Xr1/HzJkzMW7cODg4OAjIxGdlZWHXrl04cuQI/v77b0Y6vbah8b7IwsE1Pz+ftdkbVzQ1NZkbobS1EB8/fmQMNBMTE6Uy0AQqtxyrBl2qqqoSBV3yAg1HahrO2Hw+fPiAo0ePIi0tjXFyHzt2rExVYaV1HK5aIF2T742sMhYrV65EXl4eNm7ciEGDBuHIkSMoKyuDg4MDtLS04OvrK5N5iKMuUJFztLW1ERMTA3V1dVhYWMDOzg59+/bFwYMHceDAAURHR/9PzeNbYmNjA1VVVaFuoaq4urri1atXCA0NlcmcaLwvjo6O+OWXXzg7uD558gTr1q0TWDHzt6EKCwuFfIRqi5psFCTdgqhqoHn37l3WBpo/Er1794aDgwMnR+p+/frBzc2NMWkMCQlhTBrbt2/PyvtInhg2bBjy8vIEskNV+Z4E30pKSmBra4t79+6hoqICzZo1Q0lJCdTV1REeHs5KSLM2qdv6kXNomPDJ0zyOHz+OyMhIpKenQ0FBAZqamrC1tUX//v1ra+rUSE1NrXHVZ2FhwdqQjAY03hdaDq7e3t549OgRhg8fjvDwcMyaNQs5OTk4ffo0vL29JTsxDlQNRMrKyqQ2JuQjrYHmjwQNR2ouJo20vX6A/xONy87Ohru7u8SicTQch4HKQDgnJ0ekZxitv1ETTZs2xd69e3H16lWkpqaioqICampqGDBggFQddLSpC1TknK5du+Lff/+FpaUlVFRUkJycDGtra+Tn53938zhw4AA8PDwwfPhwmJqa4suXL7h16xbmzp2LTZs2SbSNRZPCwkLcuHEDmpqa1ab1P336VOMWU4sWLfDhwwfaUxQLjfeFloPrrVu3sG3bNvTu3RuXLl2CiYkJtLW1sXHjRly4cIF16ygNoqOjERoaivz8fJw8eRK7du1Cu3btsGDBAtZjiDLQZCsqyIW4uDjWv8vVf4stNBypuThjV+0u+fTpExISEqChoQFdXV0oKioiJSUF9+7dYy0v8LVonIODg8SicTRqu44cOYIVK1agrKyMsUrgb1f+9ttvMgtU+CgpKaG4uBj16tWDmpqaxEHKx48fUa9ePTRo0ABZWVk4f/489PT0uG+FkzrkmtOnTxMNDQ0SHR1N8vLySPfu3cns2bPJwIEDiZ2d3Xc1j6FDh5Lw8HCh46GhoWT06NGUZyye//77jwwbNozcuHGDvH37lhgaGpJu3bqR7t27k6tXr4p9npmZGYmLi6t27Li4ODJq1CjaUxaLvHw+CCFES0uL5OXlEUIIsbe3JzExMYQQQrKzs4mhoaHM5nHkyBHSo0cPsnnzZqKtrU1yc3NJZGQk6d69O9m9ezerMfr37080NDSIpaUliY2NJe/fv6/lWf8f3bp1Y/Wjrq4uszllZWURAwMDoqWlRYyMjMiQIUMEftjg7u5OJkyYQNLT08np06eJkZERuXfvHlm7di0ZNmwY67m4uLgQPz8/oeMbN24kixYtYjXGvHnziJubG6moqCC6urokNzeXlJeXE0dHRzJ9+nRWY+jr65MnT56wnrcoRowYQVxcXEhmZibp1asXuX//Pjl79iwZOHBgjdcamhQXF5PZs2cTdXV1gc+Xo6Mj+fTpE6sxbty4QXr16kWuXLlCCgoKiJ6eHunRowf5448/SEJCAqf51QUq3wEpKSkkLS2NEELI9evXybx584iXlxd58+bNdzUPbW1tkpOTI3T80aNHRFtbm+JMq2fWrFlk9uzZ5NWrVyQqKor07t2b5Ofnk6CgIDJlyhSxz4uIiCBGRkYkPz9f5OP5+fnEyMiIbNmypbamLhJ5+Xz8+eef5Pz584QQQjZt2kS8vLwIIYRkZmYSXV1d1uM8ffqUHDt2jMTGxgr9sGHcuHHk0KFDhBDC3IQIIWT//v2sb4jBwcGcb0I/EmZmZsTExISsW7eOBAcHC/2w4e3bt2T+/Plkz549pKKigtja2pJu3boRTU1NcvToUdZz0dXVFXkdycnJITo6OqzGMDAwIBkZGcx4/M9IZmYm0dfXZzWGg4MD8fPzI8XFxax+XxRaWlokMzOTEELI9OnTyYULFwghhJw8eZKMHz9e6nElxcXFhZiYmJCLFy+S4uJi8vbtW3Lu3DkyZMgQkUGhKKZOnUpcXFxIcXEx2b17NxkwYAD5+PEjiYqKImPHjuU0v7qtn++AJk2aMK1jBgYGSEtLw6BBg1gXOL18+RJBQUG4deuWSKdPtjUIXOfRs2dPJCQkCKXfL1++zNqQkMa53L59G/v370fr1q1x6dIlDBo0CO3atYOZmVm1olTTp0/HyZMnMWrUKEyYMAF6enpo3rw5ioqKcOvWLcTGxqJTp04yVQxdtGgRHBwcGHM1AwMDanoVkjJ+/Hg4OTlh/fr1GDx4MKysrPDrr78iMTER3bp1YzVGTEwMvLy8RBYo8ng8VlsdOTk5IrdnevfuzbpWRly7raQGmlzrIPjk5eUhKysLvXr1QmlpqcwF4DIyMjg7Ujdv3lzAm2jnzp0SO2Pzx0lNTRXy2Ll58ybr14WGaByN2q4GDRowW2nKysrIyMjAwIEDoaWlhcePH7OaBw3OnDmDbdu2CfhgDR48GA0aNMCyZcsYpeTqSE1Nxfr169G0aVNcvnwZgwcPxk8//YRBgwZxbhuvC1TkHBomfCtXrkRKSgpMTU1ZK9HWxjx69uyJ7du3IyUlBQYGBqhfvz7u37+Po0ePwszMTMDBU9yNgsa58PdQP3/+jBs3bmDlypUAKi9S1dWgKCgoICIiAkFBQTh48CAiIiKYx9q0aYNp06Zh/vz5MhV9u3btmtAF8lsxZ84c/PTTTyCEQFtbGwsWLMD27duhpKQkIM5VHTt27MDUqVPh4OAgdQdSmzZtkJOTI1RvdPv2bdY3RBoGmjTqIMrKyuDs7Izjx4+jXr16OHnyJNatW4fS0lIEBwfLrB1XVVUV79694zSGtCaNXzNlyhR4eHggKysLWlpaqKioYGT1ly9fzmoMGqJxNGq7+Mafjo6OUFNTw4ULF2BjY4PMzEzUr1+f09iSULUovypt27bF58+fWY3RqFEjlJWV4dOnT0hOTmbqhV69eiX1tZqBUz6mjlpnwoQJJDAwUOh4QEBAtdsUVdHR0SFJSUnffB5GRkasfqrb86ZxLjY2NsTd3Z0EBAQQTU1N8vr1a5Kfn09mz55N5s6dy2qM8vJykp2dTW7fvk0eP35MKioqOM1JWnx8fMiSJUtIeno6673k2mLXrl1it8XYoqWlxXnLZefOncTY2JicOXOG6OrqkvPnz5N//vmHGBgYkK1bt7Iaw8LCgkyYMIH8888/pHv37iQqKor4+fkRLS0t1vvtNOoggoKCyPDhw8m1a9eYMa5du0aMjIzIqlWrWI1Bg2PHjpGhQ4eSvXv3kitXrpAbN24I/LBh1apVxMTEhFy/fp05durUKTJ06FCydu1aieazY8cO0r9/f6aeYvDgwSQqKor18/Pz88mwYcNI3759iYaGBjE1NSW6urpk8ODB5OnTpxLNhQtJSUlER0eH7N69mxQWFhIDAwMycuRIoqenR9zd3WU2j61btxILCwvy8uVL5lhxcTFZsGAB6629xYsXk7lz5xInJyeiq6tLiouLSWpqKpk4cSJxcHDgNL+6QEXO0dHRYfZPq5Kbm8t6379v374kOzv7m8+DBjTO5dGjR2T8+PGkZ8+ezMXN29ubDBkyhGRlZdGYpswYOnQoU/gm6kccz549Y/3Dlh49epBHjx5xOp9JkyaRc+fOcRqDkMoAWltbm7mRaWpqktWrV5MvX76wer6uri65e/cuIYSQiRMnMsFxeHg4mTFjBqsxaNRBDB06lCQmJgqNceXKFdK/f39WY9CARlGvoaEhuXXrltDxGzdukAEDBkg1r8LCQqlrsd6/f09iYmKIl5cXWbVqFdmzZ4/E9SZpaWnExcWFTJkyheTn55M9e/YIBGJsyM/PF/hsrF69muzatUumCw9zc3OipaVFtLW1yZgxY4iZmRnR19cn3bp1EyqeFsfr16/JokWLyNixY8np06cJIYT4+fkRCwsL8uLFC07zq9v6kXNoGAqOHTsWu3btgre3t0SmXbTnQQMa56KsrCxkS79w4UK4ublJPea3Qtr2xdpwcNXR0cG///6LmTNnSjUnoFL+3tvbG0+ePIGKiorQdkDVPfTqcHR0xPz585GZmQlCCFRUVCTaJqFhoEmjDqKgoEBk+6uSkhJrN2kaSOtIXRUazthf07JlS6nn06hRI9btzKKQ1nG4KhMnThQw0FRVVf0mwnf9+vVDv379OI3RqlUrBAcHCxxzdHTkrGME1NWoyD00DAWLiopw9OhRnD9/Hh06dBD64LARSKJlbMgVGucCiDbye/v2LWsjP3lh/PjxUj2vNhxcmzZtivXr12PHjh3o1KmTUO0Mm/dm8eLFAIA1a9YIPSZJ0FRSUoKEhASkp6ejXr160NTUxPDhw1nX89Aw0KRRB6GqqoqrV68K3VCPHTuGLl26sBqDBtI6UleFhkkjF2iLxknrOFwVaQ00acPGq4kNtSVeVxeoyDm0TPhGjRolF/OgAddzoWHkJ09cuHABu3fvRnZ2Nvbt24dDhw6hY8eOGDt2rNjn1IaDa+PGjTkHrWw70KojKysL1tbWKC0tRefOnfHlyxfExMRg27ZtiIyMZOU5RMNAk4Z5np2dHRwcHJCZmYkvX74gNjYWOTk5OHnyJDZu3MhqDBrQuKF+a5NG2qJx0joOV4WGgSYtxJlO8ng8LFy4sMbn16Z4XZ3Xz3fCtzDhk+d5cIGm0eO3JjExEfPmzYOpqSkSEhJw7NgxHDhwAKGhofD19RUbOMijg2tVysrK8PTpU3Ts2BGEEIk6IGbOnAlFRUX4+/vj559/BlC50lu6dCmaNGki0F1WHTQMNGmY5128eBEhISGMtHnXrl0xe/Zs/Pnnn6zH4EpoaCguXrzI+YYqLyaNrq6u+Pnnn4XaboOCgpCVlSW0hSGKvn37YufOnejevTv09PRw5MgRdOjQAdevX4eDgwOuXLlS4xg0DDRpQMN0cuTIkdDR0YGtrS3Mzc0RFhaGFy9ewMvLC46OjtUunGqiLqPyndCkSRNmFSINfD2HnJwcuLm5Sa3nwHUeNOB6LpmZmfD19YW6ujo0NDTQuHFjWFpaonHjxti9e/d3FagEBwdj6dKlmDFjBk6ePAkATGvv7t27xQYqv/32G5N+r7rS5ArX1C8hBAEBAfj7779RXl7OZA4aNWoET09PVgHLnTt3EBMTwwQpQOX+ubOzMywsLFifS9XPwejRozF69GjWz+XDtQ4CAAYOHIiBAwdyGoMrQUFB+PLlC5KSkjjdUH///XcsXbqU83y4SrWfOHECsbGxQsfHjRvHOitoYmKCoKAggcxWVlYW1qxZg8GDB7MaozrdJlly7NgxeHp6cjKdfPLkCYKDg6Gqqopu3bqhsLAQQ4YMwefPn7Fjx466QKWO6vlaz8He3l5iPQca0BBro3Eu8mL0SIP//vsP69evFzo+fPjwajMHVe3jaVnJ00j9/v333zh8+DBWrVrFiLOZmJjAy8sLbdq0gYODQ41jtGnTBvn5+ejatavA8ZKSEolcYKUx0KRRByGPXj/yckMFgKSkJCxcuBCbNm2CqqoqJk2ahHr16uHDhw/w9/fHiBEjahyDhmics7MzbG1t0adPH1RUVMDMzIxxHHZycmI1xo0bN2BjY4NGjRoJHC8pKcGmTZtkJt5Iw3SyNsXr6gKV/wHWrl0LExMT+Pj4MCuOwMBAODs7w9/fH3///bdM5kFDrI3GuciL0SMNmjVrhhcvXgh1hmRmZgpkFGqCRhHcjh07YGpqKjL1a2dnx2qMffv2wcPDA0OHDsXq1asBVKaU69evDz8/P1aBipOTE7y8vODi4gIDAwMoKiri/v378PLygpWVFfLy8pjfFbdlIa2BJo06iK+3I/hBX8OGDaGoqIiSkhIoKCigZcuWMgtUaDtScyEwMBDGxsbo3r07YmJi0LRpU5w+fRoHDx5ESEgIq0CFhmictI7DWVlZTH3c1q1boa6uLvRdTU9PR0xMDFMnVdvQMJ2sVfE6Ts3NdXwX0NBzoAENsTYa5yJPRn5cWb9+PRk/fjxJS0sjenp6JC0tjVy4cIEYGRmx9ug4fPgw6d69O6OJUVWXxdjYmPVcaPiWaGtrM4JvVd/f3NxcoqWlxWqMrzU++D9V/1+T/gcNA00a5nnx8fFk3LhxjJcTIZWeNpMnTyZ//fUXqzFo8c8//xAjIyOioaFBcnNziYeHB2sBPZrwjSYJIWTmzJlk5cqVhJBKj6ju3buzHoeraByfnJwccvLkSXL69GnGlLM6zp07J/RZFPXj5uYm8VykhYbpZG2K19VlVP4HoKHnQIPGjRtz9iihcS4mJibYv38/FBQUoKSkhF27diE8PBzGxsZMe+z3gr29PfLz85mV9fjx40EIweDBg2Fvb89qDBqZEIBO6ve3337D/fv3hYpVL168KKThIw4axb8FBQUi6wyGDh3KqtASoFMH4e/vj02bNgm0BXfq1AkrVqzA/PnzYWlpyWocrsTHxyMgIADW1tbYtWsXgMrWaX9/fzRs2BCzZs2SyTwAelLtc+fOxdy5c/HmzRvweDyJtgWByu0ZR0dHXLp0idnG5vF4GDlyJPz8/MRmJgYPHox///0XFRUVzLWoVatWzOM8Hg+NGzeWeD5cWL58OZo3b44JEyZI3d3Vs2dPnDx5EmVlZWjZsiWioqKwd+9eKCkpcf6c1gUqcg6Nug4aeg405kFDrI3GuQCV1fZ8vqWRH1fq16+PgIAALF68mOksUVNTQ5cuXYTeI3HQKoKjkfq1sbGBl5cXXr58CUIIrl69in379uHvv/9mZYwGgMp7ScNAk0YdxLt370Rqv1RUVODjx4+sxqBBWFgY3N3dMX78eKaV2MrKCo0bN0ZoaCjrQOXZs2e4e/euSC0atsFb7969sWHDBvz888+oV68eBgwYgLS0NPj4+EhVZyGtaNyaNWuQk5ODnTt3Qk9Pj9k+Wr16NQIDA6v9vPK3HM+ePYtff/2VuqaRpNAwnQSAdu3aMf/u0qULNfG6ukBFzqFR10FDz4HGPGiItUl7Lq6urqznSau4VBYYGxvj4MGDUFZWhrKyMnO8oKAAY8aMwfXr12scg1YRnJ2dHWxtbdGiRQuMHz8eW7duhampKZ4/f46RI0eyGmPChAn4/Pkztm/fjo8fP8LDwwOtWrWCvb09zM3NWY1RWFiI0NBQZGRkiLwhsvmc0TDQpFEHwXd8Xr9+PZNlysrKgpeXF+vOEhrQcKSm4YwNAKtWrcKqVavw33//YcOGDWjatCkOHz6MBg0aSPQ95woNx2GaHXdckNZ0kraInjjqAhU559q1a9i1axcrd2JxtGvXDnFxcQJ6Dubm5hLpOdCYB8BdrE3ac3n69Cnzb0IIbt68iTZt2uCPP/6AoqIiHj58iIKCAhgbG3OanyxISEjApUuXAFSuUL29vYVW3c+ePWO9SqNVBPd16veff/5BdHS0xKnfKVOmYMqUKSgsLAQhROLtQicnJ9y/fx/9+vWTWudn//79aNOmDR4+fIiHDx8yx3/55RdcvnyZ+T+PxxMbqCxYsAAKCgrYs2cPtm7dCqBS+t7JyYl1m7SnpydsbGwwdOhQNG/eHIQQFBcXQ1tbm3H9lgU0HKlpOGMDtSvVLgk0HIflhdmzZ8PNzY3RyVFUFAwNxFlX0BbRE0ed4Juc069fP0RFRaFz585186CEv78/nj9/LrCP/OXLF3h4eIDH48HHx+cbz7B6nj9/DmdnZxBCkJSUBF1dXYGAgr/HbW5uzkrG++bNm7C1tcXixYsxfvx4DB8+HG3atGEyIZK+Hu/fv0dOTg4UFBTQuXNn1rL1tNDT00NISIhcbedJWwcBVH42r1y5goyMDPB4PKirq6NPnz4y3S4IDQ3Fvn374OrqimXLliEoKAh5eXkICgqCtbW10BaZKLp3747jx4+zFsurjtqSapeEbdu2ITExEZs2bUKbNm0AVNatODs7Q0NDg5osvSyozhqBrU4ODRE9sXOoC1Tkm3Xr1uHdu3ec6jrkaR60hOe40KtXL+zduxeqqqoCx7OzszFx4kTcunVLZnPhiqWlJbZs2SJRK7IoCgoKUFZWhg4dOiArK0sgE8J2pVpeXg5fX18cPHiQqWNq1KgRrKysWLUV02L48OEICAgQqEOqgzuBgYGIjIzEp0+fAFRqb0ydOhVubm6sDAsnT56MBQsWcN6yqkmv58yZM6zGIYTg0qVLSE9Ph6KiIrp06YK+ffuyvr5ZWFjg/v37qFevHjp16gRFRUU8evQIpaWlQnUnNKwhapNnz55V+zibLSo9PT3ExsYK1WQ9evQI48aNw507d6SeX93Wj5xDy4RPHuYhL8Jz9evXR15enlCgkpWVJRcGYZLA143Jy8tDVlYWevXqhdLSUom2S2g5uAYGBuLEiRNwc3MTKC4MDg5Go0aNMG/ePInHlIbly5fDy8sLDg4O6NChg9BNVJb+KT8SXB2paTlj0+hSKyoqgo2NDR48eIBmzZqBEIKSkhJoamoiPDxcpMvz19BwHAb+b/GWnZ0Nd3f3b7J4o1ErQ6N4XBx1gcp3ANe6DlpwnYe8CM+NGjUK7u7usLe3FyhyDA4OlkhiXR4oLy+Hk5MTjh8/jnr16uHkyZNYt24dSktLERwczOpGQsvB9fDhw/D19YWRkRFzTENDA23btoWvr6/MAhVCCLKysoQ6UYiM/VN+NLg6UtNyxqbRpbZu3Tp8/PgRcXFxTID+8OFDLF++HAEBAfDy8qpxDBpbO18v3hwcHGS2eDM2NsaBAwfQsmVLDBkypNqtRDYZIRrF4+KoC1TkHHnpQKExD/6HtuoXQlFREQsWLMDkyZNZjeHj4wMrKyshJVZJWLZsGT5+/IhVq1YxTtA//fQTpk+fzsolVJ7Ytm0bHj58iMjISCYQsLS0hKurK/z9/eHp6VnjGLQcXD99+iTyfenSpQvevn3Lagxx8OsP2LQG+/r6ok+fPpg8ebKQNHkd0kHDkZrW9geNLrVz585h8+bNArUZ6urqWLFiBRwdHVkFKgB3x+FvuXgbP348810fP34855onGsXj4qgLVL4DuNZ1iGvZ4/F4qF+/Ptq3b4/hw4fXWCjLdR40xNpiY2MxY8YMVr8rjgYNGsDb2xvOzs7IyckBj8dD586dv7ttH+D/zMSq6kf07t0ba9asgZOTE6tAhZbh3Lhx47Bp0yb4+/szNxJCCCIjIzF+/HhWY6SkpGDlypVIT08X+VlhM5fCwkK4uLiwFoirTbjWQYiisLBQQCBMFvj4+EBDQ0OkI7WPjw8rR2r+9gIXZ2yATpfa58+fmQLYqrRp0wYlJSWsxqjJcZhNoEJj8SYtVTNCkgg7VgdXET1x1AUqcg6Nuo7y8nIcO3YMbdq0gba2NgDgwYMHKCgogI6ODq5fv44dO3YgLCxM7IqVxjxoiLUNGjQIe/bsgZ2dHZo0acLqOUClkZmenh4UFRWRlJQk9PiDBw+Yf7PdK5cHCgoKRGYxlJSUWGcxaBnOFRUV4dy5cxgyZAi0tbWhqKiI1NRUPHv2DDo6OgKaC+Jqmvz8/KCgoIAVK1bAz88PLi4uyM3NRVRUlEjzRVH07t0bt2/f5hSo0BA4pFEH8e7dO2zYsAHTp09Hly5dYGtri2vXrqFTp07YuXOnzIIxGo7UhIIzNkBHr0dTUxPR0dFCXjrR0dHQ0NBgNQYNx2F5UQ2Xlri4OIwcORINGjSo0UyTiy9VXaAi59BIDTZs2BDDhg3Dhg0bmJVueXk53Nzc0KxZM3h4eMDf3x9BQUFix6MxDxrCcy9fvkRCQgIiIyNFrmTE3UAsLS2RmJiI1q1bw9LSkukW+JrvrYZBVVUVV69eFdIpOHbsGLp06cJqDFoOrg0aNBCqY+rVq5dEgV9qaioiIyOhra2NQ4cOQU1NDRYWFmjfvj1iYmJYGc717NkTq1atwvnz50VqQrCpLaAhcEijDsLPzw83b97EjBkzcPr0ady8eRPr169HQkIC1q9fz6nlUxJoOFLTcMYG6Ei129vbw8rKCnfu3GGuZ8nJyXj48CFjEVATNByHaSltfytcXFwwYMAAtG7dulqBO0kE/UQ+v649Wb7p3bs3oqKi0KVLF+jp6eHIkSNMC+nkyZORnJxc4xg9e/bE3r17hW5cmZmZMDc3R1JSEh49egQzMzOxrbk05gEAHz58EBBr69q1q0TCczWlmMXdhJ49ewYlJSXUq1ePSiuevHDu3Dk4ODhgypQpiI6Ohq2tLXJycpjV6p9//inyeVUdXK2srBAcHCzSwXX9+vW4e/durZ8HHx0dHZw4cQJKSkpYtmwZ9PX1YWFhgSdPnmDy5Mm4evVqjWMMGTJE7GM8Ho9VNkRXV5ezwGGfPn2wefNmoUDv+vXrcHR0RGJiYo1j9OvXD1u3boWenh5cXFxQVFSEHTt2ID09HdOmTROZHawNTp8+jXXr1ol0pJ48eTKGDRvG/K64miZTU1PY29tj6NChAteQ06dPw8/PD//++69MzoXPvXv3EBYWhoyMDBBC0K1bN8ycOZPJOtfE1q1bkZuby8lxuKCgAFZWViguLkZRURFUVFSYxduePXu+q2tRbVKXUZFzaKQGFRUV8erVK6FA5eXLl8ze6JcvX4RWnrTnAVQainFRKZS20r7qF/5H+vIbGRlh8+bNCAkJgYKCAnbv3o2uXbtWG6QAlZ0T8+bNY95/ca/rhAkTamXe4lBWVkZycjJGjRoFFRUV3L9/HwBQXFwsUg5fFDRueDQMNGnUQbx//x5KSkoAgMTERMyePRtAZZZUlBR9bcGvYVi0aJFQHdO6deuwbt26Gmuanj59KnJbRV1dHS9fvqz279PuUAEAbW1tBAUFsfpdUYwYMQLm5ubo0aMH2rZtKzQnNvOgoRr+v0BdoCLn0EgN/vnnn/Dw8ICnpyd0dHRACMGdO3ewevVqGBsb4/3799i+fTu6d+9eq/OgBb/LJScnB5s2bcKZM2fQtWvXarcoZOVJIWt2796NUaNGISoqSqLnyaODK1C5RcevG/jzzz8xduxYNGzYELdu3YKurq7Y5+Xl5UFJSQk8Hg95eXnV/g02XUw0DDRp1EGoqqri/PnzUFJSwsuXLzFw4EAAlb45X+sA1SY0vhNcnLFpdKiwKfjlw2ZBRMNxGOC+eKPF58+f8fr1ayYArqr2O2bMGJHPqSlorAqXrq+6rR85h0Zq8OPHj3BycsKpU6cEPlQjRoyAt7c3rl27Bm9vb+zcuVOslLK8pChTUlJgbm4OXV1d3L59G8ePH0dISAji4uKwdetWsZLxVTufavKkYNMpIy/07NmTMSWUlmfPnsmFgyufM2fOoEWLFujZsyfi4+MRGhoKJSUlrFy5Uqz8uoaGBi5fvozWrVtDXV1d5LlI0sXk6uqKo0ePonnz5lILHN6+fRtWVlZQV1cXWQfBJsC/cOEC7OzsUF5eDlNTU/j7+8PPzw9RUVHVft7lkYMHD2LDhg1YsGABAgMD4ebmhtzcXMYZm63pJFD5XhYVFTHOx/fu3YOmpma1QeXXW4LPnz9H/fr10aFDBygqKiI3Nxfl5eXQ0tLC3r17a5yDtra2VI7D8rhounz5MpydnZnt4Ko0bNgQt2/fFvm84OBg5rtWVFSEf/75B0ZGRkzjwv3793Hq1CnMmjWLkzp1XaDyHcC1roPPkydPkJaWBgUFBXTr1o256JeVlbHaY6U1Dy7MmDEDOjo6cHBwENjn9vPzQ3JyMg4cOFDjGLXpSSFrbGxs0L9/f8ycOfNbT4UK0urk3LhxA/r6+lBUVMSNGzeq/V02xcE1ufCy1RXiWgcBVPoEFRQUMIuIe/fuoUmTJjLNqNBwpAaAffv2Yfv27cjPzwdQ2Tk0e/ZsiT6/ubm5mD17NoyNjeHk5ASgsh6oTZs2TFBbExERETh//jwCAgKYLb53797ByckJampqcHR0rHGM8ePHw93dXeI6JnlcNJmZmTGNBkuWLIG/vz/y8vKwefNm+Pn5wcTEpMYx5s+fD319fWZ7ks/ff/+NM2fOIDIyUur51QUq/0O8evVKZKulrCTFaYi19ezZE/v370fnzp0FApXc3FyMHTtWbORfldr0pJA1S5YswalTp9C8eXN06tRJqAtK1ttYXHVDevTogcOHD1MxrvuRyMrKQnp6OurXrw8VFRWZyqsDlaKA1TlSSyoIKa0zNgDMmzcPFRUV8PHxYZybCwsL4ezsjEaNGmHz5s01jtGvXz+EhYUJZZDT09NhaWmJ69ev1zhGQkICgoKCJHYcroq8LJq0tbURExMDdXV1WFhYwM7ODn379sXBgwdx4MABREdH1ziGrq4uDh8+LJTdffz4McaMGcOpKL+uRuV/gFu3bsHV1RW5ubkCx2UtKU5DrK1+/foiCxGfP3/OWoW0Nj0pZE3jxo05tf3RhIZuCF8nZ9GiRd+8mFAagUPadRCfPn3C0qVLcfbsWWaBwePxYGRkhKCgIKm7TSQlOTmZqiM1F8G6mzdvIiYmhglS+OM5OTlh2rRprMYoLy/H+/fvhY6/fv2a9RYoP+uyatUqocfYXldPnDiB2NhYoePjxo2T6fdaQUGBacNXVlZGeno6+vbtiz59+mDdunWsxvjll19w9epVoUDlzJkznEsD6gKV/wF8fHzQtm1bODk5Sa0JQQNpxdqqYmJigqCgIGzcuJE5lpWVhTVr1rB2Za1NTwpZY2hoiAEDBnB2T6YBDd0QaXVyaCOtwOGhQ4cE/l9dHQSbQGXjxo24d+8etmzZAgMDA1RUVCApKQk+Pj4IDg7G0qVLqZxvTbRr107q7yxtFBUV8e7dO6HjHz58EKmNJIohQ4Zg5cqV8PDwgJaWFgghSE5OxurVq2FqaspqDBqfRXlZNHXt2hX//vsvLC0toaKiguTkZFhbWzNbdGywsbHB6tWrcfv2bXTv3p25rp4+fRr+/v6c5le39fM/QPfu3REXFyfTPW1RWFpaMjLt0t6ESkpKYGtri3v37qGiogLNmjVDSUkJ1NXVER4ezrpLJSQkBHv27GHaIpWUlDB79uzvzpTQwMAA//zzD2txN3HQcHCloRsirU4ObebPn49WrVoxAodHjhyBkpISnJ2d8eLFC1YChzTqIPr374/Vq1cLGD0Clfo5Xl5eOH/+vFTnJylnz55FSEiIXDhSOzk5ITs7G4GBgcw28pMnT+Dk5AQlJSUEBgbWOEZJSQmWLFmCxMREJoNCCMHw4cOxfv16mWWqtm3bhrCwMFhbW4tcNLHNEHHlzJkzWLx4MTw8PDBo0CD8+eef6NOnD/777z/o6Oiw2k4DgKNHj2LPnj3477//wOPxoKGhgTlz5nAu+q4LVP4HGDZsGPz9/SUq4PsaGvUlNG5CpaWlaNKkCa5evYrU1FRUVFRATU0NAwYMELp4soG2J4WsmTx5MmbMmMFaOlwUX2cPjh8/jg0bNuDSpUsSObj27NkTMTExQsFNVlYWzMzMZCocxxUaAoc06iD09PQQFxcnlE5/9OgRxowZg3v37kl2YlJy5swZODs7C22XfAtH6tevX2PmzJnIyMhgthPfvXsHTU1NbN++HW3btmU9VnZ2NuMGraGhUWObdG3oucjLounBgwdQUFCAuro6bty4gfDwcCgpKWHx4sXf/PpYt/Uj59AwFJw/fz58fX3h5eUFFRUViU3AADr1JTRWw+PGjUNQUBD69u2Lvn37Sj1OYWEhcnJyGBG7qpoB8+fP5zxPWaGuro5ly5Zh165dIotp2RQ50nJwpaEbAkink1MVcQFx1e/MwIEDq7340hA4pFEHoaamhhMnTmDu3LkCx48fP16jiShNatORWhJnbABo3bo1YmNjceXKFWRkZAgUbUvaYv91YXJNc6HtOAzUnpGfJCxatAgODg5M1t3AwECqeqSHDx8KGIpWva76+PhIPb+6QEXOoWEouH37duTl5YktzmKzGqJRXwJwvwl9+PBBZNeBJBw5cgQrVqxAWVkZ4/nDv+D89ttv31WgkpOTw7zvNal7ioOWgysN/5SqOjkpKSkoKytDWloa/Pz8WOuGJCUlISkpCfXr12du5o8fP8bHjx+hpKSEoqIi/PTTT/jrr7+EvGv40BA4pFEHMX/+fCxYsABpaWkCr+np06cREBDAagwa0HCkpuGMzUdBQQEDBgzAgAEDZDqX2nAc5sPXhPkWXLt2TWiRIynh4eFM4W1VLzUej8fJigKoC1TkHhqGgjRuvDSKHGnchKysrGBnZ4dp06ahY8eOQkELm5bAHTt2wNTUFLa2tjA3N8fu3bvx8uVLeHl5Ub/41DZssx3VQcseQU9PD1FRUQgLC8Ply5cZ3RAPDw/W247+/v6MOJSenh6Aym3HJk2aIDg4mNVnRFtbGxUVFQgKCmJqQ968eYNly5ZBV1cX8+bNY743ISEhIsegYaC5cuVKLFmyBNbW1kJ1EM7OzqzGGDx4MDZt2oTQ0FCcP3+eeU2DgoIE/HVqGxqO1DScsQE6zta05vKjMH78ePj7+2PhwoVQVlaWqkYnKioKs2fPxqJFi2BkZITY2FgUFRVh6dKlMDY25jS/uhoVOYeGoSANaNSX0BBrE6ecC7BvCaxaXGxpaYnZs2dj4MCBOHXqFHbs2CHUuSHvSCN9XRUHBwfUq1cPGzZsQI8ePXDkyBE0a9YMdnZ2aNmyJetCOhrQ0Mnp27cvwsLChLabHj58iJkzZ+Lq1asC3x9x0BI4lLQOQh4JDQ3Ftm3bYGRkJLUjtZ6eHuOMPWnSJDg7O6Nnz56IiIjAhQsXEB4ezmou8+bNq9bZWpZz+VEYNmwYcnNzxW5lsbmuamlpISEhAR07dsSsWbNgYWEBExMTXL58GWvXrsXRo0elnl9dRkXOkdZQ0NXVFe7u7mjatGm1Kps8Hg++vr41zoNGfUlKSopIzYFp06YhJiaG1RinT5+Wqmi2Kg0aNGBWDMrKysjIyMDAgQOhpaWFx48fcxpb1tQkfc0mUOGSPaCtG0JDJ+fz588oLy8XOv7p0yd8/PgRQOVnQFQWqSq0PFgkrYOIi4tjPbastDaio6PRsmVL3LlzR0gQkcfjsXpvKyoqmEJXvlZHz549YWxsLDazJYpr165xdramNZcfBRpZ98aNGzOLpY4dOyIzMxMmJiZQVVWt0bG+JuoCFTlHWkPBp0+fMhfip0+fUpkL1/oSGjchBwcH+Pj4VJtZqQktLS3s378fjo6OUFNTw4ULF2BjY4PMzEypCo2/JYGBgfjjjz/ESl+zgYuDK23dEBo6Of3794eXlxcCAwOZbpmcnBz4+Pigf//++PLlC6Kjo9GtWzdW40mLtHUQX6uU8vf7GzZsCEVFRZSUlEBBQQEtW7aUWaBCw5GahjM2QMfZmtZcaMBVzZkG48eP5zyGvr4+du7cCQ8PD/zxxx84cOAA5syZg+TkZO4aPKQOuebDhw/Ezs6OdOvWjairqzM/Dg4OpLi4mJw+fZoMGDCApKWl1eo87t+/T7S0tMj06dOJpqYmyc3NJe7u7kRTU5OcP3+e1RgrVqwgs2bNIm/fviW6urokNzeXZGZmktGjRxNXV1dWYxgYGJDHjx9zORWSlJREdHR0yO7du0lhYSExMDAgI0eOJHp6esTd3Z3T2LKme/fuzHtvbm5Orly5Qggh5MCBA2Tq1KkynUt4eDixtrYmr169Yo69ffuWzJ07lwQEBLAao7i4mEyZMoVoaGiQbt26kZ49exJ1dXUybtw48ubNG1ZjvH79mkycOJGoq6sTAwMD0qtXL6Kurk6mTJlCXrx4Qc6dO0d0dXXJ9evXpTlN1lhYWJAJEyaQf/75h3Tv3p1ERUURPz8/oqWlRRISEliNER8fT8aNGyfw/c7JySGTJ08mf/31V21NnRBCyLNnz0hFRQXz7+p+2BATE0O0tbVJfHw8yczMJJqamsTT05OMGTOGzJo1i/W81q5dS9zc3Mjnz5+lOi+acykvLyf5+fnM6/D06VOSnZ1NDh8+zOr5b968IWZmZsxnvUePHqRbt27EzMyMvH37VtrTk4rz588TS0tLYmhoSJ4+fUo2b95M4uLiWD//v//+I4aGhiQ0NJSUlJQQIyMj0qNHD/LHH3+w/v6Lo65G5TuBhqFgenq6UPEZ24psGvUlNMTaQkNDcfHiRcZf4+tiWrbCUwUFBSgrK2O0MaKjo6GkpARLS0uZiT3RQE9PD0ePHsVvv/0GV1dXqKurw9raGs+ePcP48ePFGvTVhoMrDd0QWjo5hBBcv36d+c6oq6szmb83b95Aw0wqOwAApzxJREFUUVGx1lWaadRB8Itpv9ay4bfRX758ubamT92RGpDOGftraDhbVzcXDw8PVpLv0joOf30u9+7dQ0BAgJCas76+Pis1ZxokJiZi3rx5MDU1RUJCAo4dO4YDBw4gNDQUvr6+rDN3Hz9+xPv379GqVSu8evUKR48eZSQ0uFC39fOd0KhRI3Tv3p0JMvLy8gCwuzGfPXsWLi4uKCkpEaqQZ3uRoVFfwuPxsHfvXk43oaCgIHz58oVRuOUj6QWzXbt2zL9VVVWxYsUKVs+TN6SVvq56Ia7JwZUtNHRDaOnk8Hg89OnTR2QrMZs2UBoChzTqIN69eyeybbSiooKpt6ktIiMjGWsGGuaWX7+mo0ePxujRo6Uaa9SoUZznU9URmD+X8vJy3Llzh1WgQmPb9dy5c9i8ebNAcK+uro4VK1bA0dFRZoEK345hxowZOHnyJIDKbfamTZti9+7drAOVhg0bMovHNm3acNbe4lMXqMg5NAwF/f390bdvXyxYsEDqVSSN+hIaN6H/tWr8mpgzZw4WL16M+vXrY9SoUQgODsacOXPw33//Vav3UfVC6urqihkzZoh1cGULDd0QGjo52dnZ8Pb2ZtpXv4bNd4aGwCGNOojevXvD29sb69evZzIOWVlZ8PLyYl2zIy1Va89omBHSeE0ByZ2aRaGhoQE7OzssWLBA4Pjbt29hZWXF6jOSmZkJX19fqKurQ0NDA40bN4alpSUaN26M3bt3CwRC4vj8+TPatGkjdLxNmzYir7e1xX///SeyLXv48OESFczXFnWBipxDw1Dw6dOnCAkJ4bQ6pFHkSOMmVPWCWVhYCEVFRVauvD8qJiYm2L9/PxQUFKCkpIRdu3YhPDwcxsbGWLx4MasxaDm40tANoaGTs2rVKrx+/RrLli2T+jtDQ+DQ0tKSUen9888/MXbsWDRs2BC3bt2Crq4uqzE8PT1hY2ODoUOHonnz5iCEoLi4GNra2li5cqVU8/pW0HTGlsbZuiqEEISGhiI7Oxu+vr4C20dsqyFoOA7TUnPmSrNmzfDixQuhe0RmZqZcGJ7WBSpyTkZGBmdDwU6dOiE/P59ToOLs7AxbW1v06dMHFRUVMDMzY+pLnJycWI1B4yYEVKahd+7cidevXwOoXH3Y2NhQSzN+bzRp0oRZfRkYGCAtLQ2DBg1iLcVNy8GVnybmohvCN5RbvXq10GNsM4h3795FdHQ0NDU1Wf/dr6EhcDhp0iS0bNkSLVq0gKqqKvz8/ATqINjQrl07HD58mJGL5/F4UFdXR58+fajIt8sSWs7Y0jpbV4XH4yE0NBRubm6wsrLCtm3b0KpVK+YxNtBwHKah5kyD0aNHw9fXF76+vuDxeCgtLcXFixexevVqTj5itKgrppVzaBgKXrhwAf7+/nBwcICKiopQ8RmbOhcaRY40xNr27t2LNWvWwMLCAr169QIhBElJSdi7dy88PDwwceJEVnP5Ubhy5Qrmz5+PGTNmwMHBAQAwZcoUpKenIzQ0lFWhdG07uEri5fLkyZNqP09sagcGDRqE0NBQqKmpSTTPqtSmizO/DoJtYC6O/Px8tG/fntMYsoTWa0rD2VpdXR2JiYmoV68eFi5ciPz8fISEhKB169YwNDRkdS2i5Th87949hIWFISMjg1EenjlzJqdrvqSUl5fDxcUFx44dA/B/LfGDBw9GUFAQ50w4V+oCFTknNjYW+/bt42QoqKmpyQjxSFuAOnToUAQFBXFapdK4CQ0fPhzTp0/H9OnTBY5HRUVh7969iI+PZzWXe/fuYe3atahXrx6cnJxkelGgycSJE2FoaMgEKXwCAwNx48YN7N27l9U4NBxcaXi5TJw4kbNOTmhoKJKTk+Hv7895i4EL4uogXr16hQEDBrB6PZ48eYJ169YhPT1dSHm4sLAQqamptTJ3eYaGs3XVjqaysjK4ubnh3Llz8PHxgaOjI+uifHl2HJaGx48fM1pKampq6NKli4AX2reibutHzqFhKEijAJVGfQkNsba8vDwMHDhQ6PiAAQNY7wvz55KXlwdCCBwdHXHmzBmp5/QtyczMFKgb4jNp0iSJfIBoOLjS8E958uQJGjduLPHfrsqVK1dw8+ZNGBgYoHXr1kIZRLZbDFwFDmnUQXh7e+PRo0cYPnw4wsPDMWvWLOTk5OD06dPw9vZmNQYNaDhSA9xfU4CON1XV179Bgwbw9/fHli1bsGzZMtbzkNZxmLaaMw2MjY1x8OBBKCsrMyKJQKWMw5gxY1hJC9QmdYGKnEND2phGxT6N+hIaN6Fff/0VKSkpQvU29+/fF1k9Lw5CCHOx+p6Tiq1atcLDhw+F6kAyMjKkKiTl4uCamprK6IYcOnQIampqsLCwQPv27RETE4MRI0bUOIatrS3c3d056eT06NGD1TZTddAw0KRRB3Hr1i1s27YNvXv3xqVLl2BiYgJtbW1s3LgRFy5ckMjdmgs0HKlpvKYAHWfrRYsWCV2LFi1aBGVlZdZyC9I6DtNWc5aWhIQEXLp0CQDw7NkzeHt7C53Ps2fPvnk2Bajb+vmf4P3794iIiBDrNspGI4FGfQkNsbaIiAhs374dS5YsESg+27x5M6ysrLBw4cIaxwCA27dvMxkYJycnZqzvjU2bNiEmJgb29vZMEeH9+/cRFBSEcePGYenSpTKbi46ODk6cOAElJSUsW7YM+vr6sLCwwJMnTzB58mRcvXq1xjFobFPSgJaBJtc6iO7du+PUqVNQUlKCg4MD+vXrh0mTJiEnJweWlpa1KvhWlYCAANy5c6dGR+rCwkKxGjE0XlOgcpVvZWWF4uJiFBUVQUVFhfGm2rNnD6stZBqsWbMGL1++5OQ4HBERgfPnzyMgIIB5Xd+9ewcnJyeoqanB0dGR9rQZnj9/DmdnZ6bOT1dXV6C0gMfjoXHjxjA3N2cdRNYWdRkVOYS2oaCHhwfOnj0LQ0NDRoBKUmiYAdIQa7OyssKzZ8/g6+uLL1++gBACRUVFTJ06VaLsk56eHuv6DXlm4cKFePPmDby9vfH582fm9eCLUMkSGroh0m5TbtmyBTY2NmjUqFG1qXUej8cqmKUlcAhUZqkiIiLg5uaGqVOnwsfHh9Xzgcq6rfT0dCgpKaFz587Md6SiogKlpaWsx+HKgQMHEBYWJtAF1rJlSyxfvhwzZ86EnZ0dbGxsYG5uLnYMGq8pIL031ZAhQ1hlB3g8Hqut4AsXLiA3N5cRSPsaNteznTt3Cr2uzZs3h6OjIywtLWs1UFFSUmIWqZaWltiyZYtctCKLoi5QkUNoGwqeO3cOgYGBMDIyknoMGvUlNGpl6tWrB3d3dyxZsgTZ2dkAKpVlOZtefacoKirC09MTy5cvR05ODhQVFdGpU6dvUqVPQzdE2m3KQ4cOYdq0aWjUqJFQar0qbAMVGgKHNOogxo8fDycnJ6xfvx6DBw+GlZUVfv31VyQmJta6qWJVaDhS03hN+UjjbD1+/Hiq2xg0tuVpqDnTgF/PlpeXh6ysLPTq1QulpaWczR9pUReoyCFViyAlKYgUR7169TjpsAB06ktoiLV9/PgRXl5e6NSpE+bOnQugcqVkaGiIlStXflc+PTRp0qQJtLS0pH4+oeDgSkM35NOnT9i3b59AlwtQ2eKckpIidvVa1d2XhtMvDYFDGnUQc+bMwU8//QRCCLS1tbFgwQJs374dSkpKAjUatQ0NR2oarykA5Obmwt/fHxkZGSIzdeKKpe3s7Fj/DTbQcBymoeZMg/Lycjg5OeH48eOoV68eTp48iXXr1qG0tBTBwcHftHsOqKtR+S7gaijo7u6Otm3bwt7eXuo50DID5CrW5unpicTERKxZs4YJfE6fPo0NGzbA2NiYtQJqHf9HUVERbGxs8ODBAzRr1gyEEJSUlEBTUxPh4eGclX8l0Q1ZuXIl4uLi8Mcff+D+/fvQ09PD48eP8fr1a8yYMUOi9/fVq1cia7LYfFZpGGjSQFTtAFAZ0J0/fx5//vmnTOZRWFiIuXPnIiUlRUAhV0dHB8HBwXjw4AEcHBwQEhIiNitG6zWdOnUqXr58iREjRojMHLItQH348KFAKz2/7fv+/fust+cuXLjAiBzu27cPhw4dQseOHTF27FhWzy8pKcGSJUuQmJgopOa8fv16mS28Nm3ahBMnTsDT0xPz5s3DkSNHkJeXB1dXVwwcOBCenp4ymYc46gIVOYeGoWBAQAAiIyPRpUsXdO7cWejDz8Y7g0aRIw2xtv79+yM4OBh6enoCx5OSkrB06VJcvHixxjFyc3M5qfT+aNBycKWhG9KvXz+4ublh1KhRGDp0KEJCQtChQwc4ODigffv2rMwjafhjSStwSLsOQkNDA4mJiUy3EJ/U1FRMnToV9+7dq3EMWnB1pKbljK2rq4uoqChOmk7h4eFMMT1f3Iz/7549e7LKZNNyHAbASc2ZBsOGDYOnpyf69esnUOh89epVODk5Md1B34q6rR85h4ah4J07d5iOkBcvXkg1Bo36koiICDg7OwuItQ0dOhTKysqIjIxkFaiUlpaKXOG3atUKb9++ZTWPadOmYevWrd+tyBttaDm40tANeffuHdOB1aVLF6SmpkJFRQVz586Fvb09q0CFhj+WtAaaNOogIiIimJsoIQSGhoYif0/Wn1+ujtS0nLE7deqEDx8+SP18oFIgcvbs2Vi0aBGMjIwQGxuLoqIiLF26FMbGxqzGoOU4DAAqKioCPkWSqDnToKCgQOTiTUlJifV1tTapC1TkHBqGgjTqXGjUl9AQa9PV1cWuXbuwZs0aZhVGCEFkZCS6d+/Oaoz69etDUbHuo8+HloMrDd2QVq1a4fXr1/j111/RqVMnpKenA6i8Eb569YrVGDT8saQVOKRRBzF9+nS0aNECFRUVcHNzg6urq0DAxW8bZasZQgMajtQ0RCOByi5GLy8vWFpaokOHDkLZGDZbjPn5+Zg0aRJ++uknqKur4/79+zAxMYGLiwvWrl3LaiuahuMwDTVnGqiqquLq1atCBcrHjh1Dly5dZDKH6qi7Wss5NAwF8/Lyqn1cVvUlNMTaHBwcYG1tjevXrzPFow8ePEBRURHCwsJYjTF+/HjY2tpi7NixUFZWFrp4SrIS+ta8fPkSQUFBYjVy2Kiw0nJwJYSgc+fO2LdvHxYuXIiJEycyuiFsGThwILy8vODn54cePXrA19cXQ4cORUJCAmtfGyUlJc6tu7QMNKWpg1BUVGQ+gzweD6ampt+8SJyGIzWt1zQ9PR1ZWVkis2tst/YaN27MbGV37NgRmZmZMDExgaqqKp49e8ZqHjQch2moOdPAzs4ODg4OyMzMxJcvXxAbG4ucnBycPHlSpPK1rKmrUZFzaBgKqqurV7uilVV9CS2xtqdPn2Lfvn3IyMiAoqIiVFVVMW3aNPzyyy+snk9DvE5emDdvHlJSUmBqairyBsKmsPD27duwsrKCurq6SAdXtit3Gv4p7969g4uLCwwNDWFhYYE5c+bg0qVLUFRUxLp161h1QtDwx6LxGaFRBwFU1tx06tQJrVq1QlxcHI4fPw59fX3MmTNHZi2s2tranB2paX3v+vfvDxMTE0yfPl1kWzMbwbd58+ahZcuW8PDwQHx8PA4cOIC9e/ciISEBa9euZSWkt2HDBly9ehW+vr6wsLDAP//8gxcvXsDT0xPDhg2Di4tLjWPo6ekxas6TJk2Cs7MzevbsiYiICFy4cIHKljtbLl68iJCQEKZ+qGvXrpg9e7bMCraroy5QkXNoFLHeuHFD4P9fvnxBTk4OIiIi4OLigiFDhtQ4Bg0zwIqKCvj5+SE6OlpIrM3NzY2zoNz/IvytMDbdX9VBw8GVr8RaNYOyZcsWbN++HRUVFVIFgIQQ3LlzB7/99hvrQHTYsGHIy8sTaG+uClszQK4GmiYmJhgxYoTIOoiJEyeyykTu3bsXXl5eCAsLQ8uWLTF+/Hj07dsXaWlpmDZtmsy8YGg4UtN4TYHKm3t8fDx+//13qeeSnp6OWbNmYcaMGTA3N8fo0aPx7t07fPjwATY2NqyE1mg4DtNQc6bB7t27MWrUKLRr104mf09iSB1yzfXr16v94cLFixfJpEmTWP1u9+7dyePHj4WOP378mHTv3l2iv1tcXEzu3r1L7t69S0pKSiR6Lk2ePXtGLl68SD58+EBevXr1zebBhb59+5Ls7OxvPQ1CCCHBwcHk/fv3QsePHDlCpk+fzmqMDx8+EBcXF7Jjxw7mmJGREVmxYgX59OkTqzEOHTpU7Q8bJkyYQNLS0lj9rjg0NTWZ78zMmTPJ6dOnCSGEXLp0iZiamrIaY/jw4WTPnj2EEEICAgLI6NGjCSGV310jIyNO85OEnTt3krlz55Li4mKpx6DxmhJCyLJly0h4eDjncT58+EBev35NCCHk5cuXJCwsjBw/flzicR49ekSOHz9Ojh07RjIyMgghhFRUVLB67ujRo0l8fDwhhJCtW7cSFxcXQgghDx48IPr6+hLPRVp69OhBHj16JLO/Jyl1NSpyDg1DQXF06tQJDx8+ZPW7NOpL5EWsraysDM7OznIrbiQJY8eOxa5du+Dt7S2ROFttOLiK+73Ro0dj9OjRrMZYu3Ytbt68KSCm5erqig0bNmDjxo2sdFRoCHHREDikUQfx9OlTJuOZmJjIFKOrqqqyLi6mAQ1HahqvKQC0bdsWAQEBOH78ODp27ChUGF+T3AK/qJf/AwBv376Fubm5RMW+NByHaag500BHRwf//vsvZs6cKbO/KQl1gYqcQ8NQUFQxbUlJCUJCQlinT6dOnQovLy8UFRWJrC9hA42bEA22b9/O2M3PmzcPQOUFw9XVFf7+/t9c3EgSioqKcPToUZw/fx4dOnQQuoGI+3zQcnClrRty5swZIZ2coUOHokWLFli6dCmrz0hFRQXi4+NFfmfY+mPRcHHW19fHzp074eHhgT/++AMHDhzAnDlzkJyczNryoXXr1njx4gUUFRWRlpbGyO8/fPhQIrdwrtBwpKbxmgKViyP+TTw/P1+iORw9ehRr1qxBaGiogJKzr68vUlJS4OPjg6FDh4p9Pm3HYRpqzjRo2rQp1q9fjx07dqBTp05C58TmPlOb1AUqcg4NQ0FRNxNCCBo3bsxahpuGGSCNmxANjh07Bk9PT/Tu3Zs51rt3b6xZswZOTk7fVaACAKNGjZL4OVVl5mtycK0O2v4pNHRyfH19ERUVBXV1damzYzQMNB0dHTFr1ixERUXB3NwcO3bsgIGBAVMHwQZTU1MsW7YMjRo1Qvv27WFgYICEhASsXr2aVQE7LWjUwtB4TQHp5RauX78OJycnjBs3TqgWw83NDbt27YK9vT3+/vtvsW7qfDNTfvCbl5cn0nGYrdwCUFnLxIeffeSrOcvKCbpx48Zy3e1YV0wr5/To0QP+/v6cDAW/LqYFKrVE1NTUJDbzKykpkdoMUE9PDwcOHBDSt8jKyoKZmRnu3r3LapwXL14gJiYG2dnZcHd3R1JSEtTU1AQEk6pDR0cHx44dw++//y6gwvjo0SOMGTNGpmqf8kC/fv0QFhYm1JWRnp4OS0tLVilsWsycORPt27cX0slZtWoVsrOzsWfPnhrH6N27N1xcXDhtAYn6zlSF7Zbsx48f8f79e7Rq1QqvXr1CfHw8lJSUMHz4cFbPr6ioQFRUFJ48eYJp06ZBWVkZf//9NwoLC2FnZ1erBei0HalpvaZA5et64sQJZGdnY9asWUhPT0fXrl2rFZ6zsbGBqqoq3NzcxP6Oq6srXr16hdDQ0BrnQMNxmIaaMw2OHj2KAQMG1Lkn1yEdNAwF//rrLzg4OHAah0Z9CQ2xtsePH2Py5Mlo2rQpCgoK4ODggISEBLi6uiIiIoJR4K0OeRc3khR+4JaTkwM3NzeJAzeaDq5c/VNo6OSUlZWx1uQQB1eBQ1p1EPXq1YOlpaXAsa//X1vQdqSmVW/36tUrTJkyBa9fv0ZZWRkmTZqEsLAwpKSkIDIyUux1LjU1tcasrYWFBbMdXBM0HIcJBTVnGnh7e+Off/6R20ClrutHznFzcyMbN27kNEaPHj3IkydPOI2xatUqYmJiItBpdOrUKTJ06FCydu1aVmPcvXuX6OrqEiMjI2JnZ0fs7OzIkCFDiL6+Prlz5w6rMebNm0fc3NxIRUUF0dXVJbm5uaS8vJw4Ojqy7iz5999/iY6ODvH19SXdu3cnmzZtIvb29kRDQ4OcOHGC1RjywqNHj4iBgQEZMmQI0dTUJLm5ucTOzo7o6uqyfk2dnJzIyJEjybVr10hJSQkpLi4m58+fJ8bGxsTb25v1XMLCwki3bt1It27diLq6usC/2b43hBDy5MkT4u/vT+bOnUsWLlxIAgMDSUFBAevn29nZMZ0yXIiMjCSGhoZEXV2dqKurk/79+7PqNomPjyd9+vQh9+/fFzg+a9YsYmBgQE6dOiXRPM6fP08sLS2JoaEhefr0Kdm8eTOJi4uTaAx54OPHjyQyMpK4u7sTFxcX5sfR0ZEMGzaM9ThLly4lc+fOJe/fv2euAUVFRWTGjBlk7ty5Yp+np6cnsnOxKrm5uURPT4/VPMrKyoi9vT3p1q0b0dDQILm5uWThwoVkxowZrLuj1NXVSVJSEhk6dCiZMmWKQBeSuro6qzFoMGnSJHLs2DGZ/T1JqcuoyDmtWrVCWFgYLl68KLWh4Pjx4+Hv74+FCxdCWVlZqu4aGvUl2traiI+PFxBrGzVqlERibbdu3UJUVJTASl9RURELFizA5MmTWY1hZGSEzZs3IyQkBAoKCti9eze6du2KjRs3yoW4kSSsXbsWJiYm8PHxYfbVAwMD4ezsDH9/f1b7+StXrsSSJUtgbW0t5OAqSd0QDf8UAPj999+xdOlS1r//Nbq6uowYl6qqqpDgG5t6i71792LDhg1CAoeBgYFo2rSp2PoQGnUQVUlMTMSiRYtgamqKO3fuoKKiAp8/f4arqysIITKvK+DiSO3j41OtMzZbrl27hp07dwqIvf38889wdnautrC/c+fOuH37drUq37du3WJdF7Jt2zbORfmEgpozDdTV1bFs2TLs2rVLZDEtm/tMbVIXqMg5NAwFL1y4gNzcXMY462vYuslyLXIEuN+EKioqRHpilJaWStSeO3DgQJG+Q98bNAI3vokaVwdXGv4pNNizZw9atWqF1NRUpKamCjzG4/FYBSrSGmju3LkT06dPF1kHwe/qACo7z9jUQdA0vuMCDUfqs2fPws/Pj3HGXr16NeOMLco/SBylpaVi25w/f/4s9nljxozBpk2b0KdPH5HCZgUFBdi0aRMmTJjAah40ivL539uWLVsiIiICbm5umDp1KqttUprk5OQwXV0vX76U6d9mQ12gIufQMBRk25VTHTTqS2jQv39/hISECHQrFRUVYcOGDdVKvbMtDASABg0aoH379jAxMaGi+1Cb0ArcAO4OrjR0Q2hQtaNJWqQ10KRdB0HD+I4GNBypaThjA5WeQNHR0XB1dWWOlZeXY/v27dVmqaZPn46TJ09i1KhRmDBhAvT09NC8eXMUFRXh1q1biI2NRadOnVh3ZNFwHK6amWrQoAH8/f2xZcsWpg1dVtC4z9QmdYGKnEPDUJCGABaNIkcauLi4wMrKCv3798enT58wf/58PHv2DC1atMDatWvFPo9tYSBQaTHw+vVrHDt2DCEhIbRPgSrSBm5VoeXgSkM3RF6QVuDw06dPNRbLtmjRAh8+fGA1DxrGdzSg4UhNwxkbAJydnTFt2jTcuHED5eXl8PT0RHZ2NoqLi6vtClNQUEBERASCgoJw8OBBREREMI+1adMG06ZNw/z581kXO9Moyl+0aJHQYmjRokVQVlZGTEwMqzFo8fnzZ7x+/ZpZbJAqhfBjxoyR6Vy+pq49Wc6hYShIC65mgLT48OEDjh49irS0NMY8a+zYsVQVZW/cuIG5c+fi9u3b1MasDQoKCmBlZYXi4mIUFRVBRUWFCdz27NnDar992rRp+PTpEyZMmCDSwXXEiBGs5kLDP4UGNL4z0hpoTpgwAVZWVhg7dqzYsQ8fPoxdu3ax8seiYXxHg2HDhsHf318i76evWbFiBR4+fAg/Pz88fvwYvr6+2LRpExISEvDvv/+K3ZoWRUFBAaKjowWuARYWFqwFLD9//ownT57g7du3aNWqFTp06CBxh9u5c+fg4OCAKVOmIDo6Gra2tgKOw99Tvdvly5fh7OyMwsJCoccaNmz4za+DdYGKnEPDULAOySksLER8fDysra2/9VRqhGvgRtPBlatuCMBdJ+fQoUMCN53Pnz/j0aNHiIuLg5OTU7VBBB9pDTQjIyMRGRmJ6OhosXUQ5ubmmDBhAquW3uqM7zZt2iRU9Fhb0HCkpuGMLW9I4zhMW82ZBmZmZmjdujUsLS2xZMkS+Pv7Iy8vD5s3b4afn5+AKN23oC5Q+U65dOkSgoODZZ4e5Io0NyG2Ev0AO6lnecpSyQM0HFz5uiFVX9esrCz89ttvEumGfK2Tc/z4cWzYsAGXLl1irZMjjuPHj2P//v0SbVVKKnD45csXWFpaIiMjo9o6iD179kj0uuTm5jI3QzU1NZnr/dBwpP4aIoEzdtV6lJqQVYeKtI7DwcHBrLM3snLH1tbWRkxMDNTV1WFhYQE7Ozv07dsXBw8exIEDBxAdHS2TeYijrkblO0USQ0F5QVqxtqrbF58+fUJCQgI0NDSgq6sLRUVFpKSk4N69e0J7xeLw9fWtdsX9v4aysjKSk5MxatQoqKio4P79+wCA4uJilJWV1fh8rv4pVaHRbi0ObW1t1lsl0goc0q6D4NOxY8dq22prGxoF+V+/pjweD0uXLmUlGvn06VPOf58227dvlyrTYGdnVwuz4YaCggJTJK2srIz09HT07dsXffr0kcgOoNaQtXBLHZLx7NkzoZ///vuPODo6khEjRrAep6CggAQHBxMHBwfy6tUrcvz4cZKVlVWLMxeGhlibi4sL8fPzEzq+ceNGsmjRIk7zS0hIIDNnzuQ0xvdITEwM0dbWJvHx8SQzM5NoamoST09PMmbMGDJr1qxqn3vt2jWioaFBXF1dyYsXLwQey8zMJC4uLuSPP/4gycnJrOZiYGBAMjIyCCGE+Yzwx+Jie19SUkLWrl1LhgwZwur3aQgclpeXk+zsbHL79m3y+PFjUlFRIdXcfxRovKbi+PTpE9fpScysWbNIWFgY53HS0tLI4cOHSWxsLImNjSWHDh0ie/fuJe7u7hRmyY5JkyaRv/76ixBCyM6dO4mdnR0hhJCbN2+SXr16yWwe4qjLqMg5NAwFacjO04CG5seJEycQGxsrdHzcuHGcNSUkWXH/SHBxcKWtG0Kj3Vrc1h6Px4OXlxerMWgIHCoqKqJz586s/p68Q8ORmpYp6adPn+Dp6SmQ7Ro+fLhEdh40oOE4HB4ezmQs+PVH/H/37NmT/qTFMGfOHCxevBj169fHqFGjEBwcjDlz5uC///5j3T1Ym9QFKnKOqA+7pIaCtNLpXIscadyEmjdvjtTUVHTq1Eng+M2bNzmpOZaWlmLPnj3Vtp7+yEjr4EpbN4RGu7WoGoX69etDR0eHtYgdLYHDHwUajtS0XlM/Pz/cvHlTQHbB1dUVGzZswMaNG2Xmwk7DcZiWmjNXTExMsH//figoKEBJSQm7du1CeHg4jI2NsXjxYpnNQxx1gYqcQ8NQkEYmg0ZWhsZNaMqUKfDw8EBWVha0tLRQUVHBnN/y5ctZjUFjxS0viCsy5PF4qF+/Ptq3b4/hw4dXu7IX5+D69u1bWFlZVVsoSVs3RFqdnKo8ePAAVlZWnGo65EXg8GvKy8vx8OFDqKioyFSbJj4+Hr6+vpw0mWi9prQyM1wxNDTk7DgsL2rOANCkSROUlJQAqDSQTEtLw6BBg9CiRQuZzUEcdYGKnHPt2jXOLYg0Mhk0sjI0bkILFiyAgoIC9uzZg61btwKoVIJ0cnKChYUFqzG+LqYFJF9xywvl5eU4duwY2rRpw2hcPHjwAAUFBdDR0cH169exY8cOhIWFiVWYJRwcXGn7p7Rr1w5xcXEC7dbm5uYStVvHxsZyvsDLi8Dh8+fP4e7uDnt7e6ipqWHixImM2FtERAQ0NDRkMg8ajtS0XlN5yXbRcByWFzXnK1euYP78+ZgxYwbz3iQkJCAoKAihoaEy3YYSyTesj6mDBT4+PmTJkiUkPT1d6oIxe3t74ujoSL58+cIUKL5584ZMnz6dKZqqCVpFju/fvycxMTHEy8uLrFq1iuzZs4e10+jXFBYWkjdv3kj13B8Fd3d3snjxYoHPRllZGVm2bBnx8vIihBCyYcOGaouVuTi4RkREECMjI5Kfny/y8fz8fGJkZES2bNki6alJjYODA/Hz85P6c8WHq4szDezs7MjEiRPJkydPyKFDh4ienh5JTk4m7u7uMi38puVITeM1nTFjBnFxcSFfvnxhjlVUVJCVK1eSadOmcZ4jW2g4Ds+dO5e4uLiQ9+/fk3379pFJkyaRL1++kPj4eGJoaEhppjUzYcIEEhgYKHQ8ICCATJkyRWbzEEedjoqcM2zYMOTm5ortu2ejX0BDvbRXr16IioqCmpoa9PT0cOTIEXTo0AH37t2Dra2tkDCdvCGJL4qstAto0LNnT+zdu1dIVyMzMxPm5uZISkrCo0ePYGZmhlu3bokcQ11dHYmJiahXrx4WLlyI/Px8xsHV0NCw2s8YDd0Q2jo5lpaWSEpKAo/HQ+vWrYUykmfPnmX99741BgYGiIyMhIaGBuzt7UEIwaZNm5CTkwMzMzOZKYaGhYVh8+bN6N+/v9SO1LS4d+8erK2t0bJlS5GZGVk1B3h4eODAgQNQV1eX2nFYXtScdXV1ER8fL5RRfvLkCcaMGfPNlWnrtn7kHBr6BTTS6dLWl9C+CUnLli1bUK9ePbRv377a32PrrisvKCoq4tWrV0KBysuXL5ng9suXL1BUFP9V5+LgSkM3hLZOTu/evQUcbb9nysvL8fPPP4MQgqtXrzI3roqKimrfU9rQcKSmhba2NuLj4wXsPEaNGiVzOw8ajsNqamo4c+YM3r9/jyZNmiAmJkYqNWeutGrVCg8fPhQKVDIyMqQ2oaRJXUalDlZIm5WpWuxZ002IjS26tHh4eOD06dNo1KgRTE1NYWpqCnV19Vr7e7Ji1apVuHr1Kjw9PaGjo8Oofa5evRr6+vpYuXIlPDw88ObNG+zevVvkGPyMStWuqS1btmD79u2oqKhgrTpKwz/F1dUVP//8s1CbeFBQELKyshAcHCzReN8706ZNQ+/evdG2bVt4e3vj3LlzaNWqFTw8PPDs2TO5d72tQzy01JxpsGnTJsTExMDe3p7JSN2/fx9BQUEYN24cli5dKtP5fE1doPKDUhuZDK6eMt/6JvTlyxdcu3YNCQkJOHPmDFq3bs0ELV+3O38vfPz4EU5OTjh16pTABW/EiBHw9vbGtWvX4O3tjZ07d4oNzLZs2QIbGxs0atRI4Hh8fDxiYmJkejPU09Njtouq8ujRI4wbNw537tyR2VzkgXv37mHevHl48+YNZs+eDUdHR3h6euLYsWPYtWuXzLY55InqNF0A2UnoA9I7DotTc7axsZFYzZkGnz9/ho+PDw4ePIjPnz8z3laWlpZYunSpTLN3oqgLVH5Q5CWTURVaNyFCCC5duoT09HQoKiqiS5cu6Nu3L+sOJqAypX758mUcP34cZ8+eRceOHTFy5EiYmpri119/leCs5IMnT54gLS0NCgoK6NatG+MiW1ZWJjMBLBoMGjQIzs7OGDlypMDxAwcOYPv27d9VfQktKioqUFJSwnS65OTkMAJ9skKe/LF8fHyq1XSRVWAtrePw9evXMXPmTIwbNw4ODg5o27Yt81hWVhZ27dqFI0eO4O+//2Y6LGVFaWkpcnJyoKioiE6dOsk8syOOukDlfwBpMxm0szI0bkJFRUWwsbHBgwcP0KxZMxBCUFJSAk1NTYSHh4tsW6yJsrIyHDx4EAEBASgtLf0uTQlfvXolcnUpLuiSRwdXANi2bRvCwsJgbW0tUidn2rRpMpsLV4FDWtAIzLlCw5EaoPOa9u7dGy4uLpw0XWggreOwjY0NVFVVRao583F1dcWrV69YqTn/L1BXTPs/gLSy87SLHGmIta1btw4fP35EXFwcs5Xx8OFDLF++HAEBARIJtr148QKnTp3CiRMnkJycDGVlZVhaWrJ+vjxw69YtuLq6Ijc3V+A4IQQ8Hk9s0DV+/HiJ60dkAQ2dHBrIi+1EbQTm0mBmZibyuJaWFvbv388qUKH1mtLQdKFBZmYmfH19oa6uDg0NDTRu3BiWlpZo3Lgxdu/eLTZQoa3m/D+BLHuh65AOroaCAwcOFNnvv3//ftYmbbTMAHfs2EH69+9PunXrRrp160YGDx5MoqKiWD+/d+/eAqZmfK5du0b69etX4/Pz8/NJZGQkMTc3J+rq6mTo0KEkMDCQpKWlsZ6DPDF+/Hgybdo0cubMGXL9+nWhn+8ZSXRyRJl3ivthAw0DTRq4uLiQkSNHCnw+09LSyKhRo4iHh4fM5iGOp0+fEm1tbVa/S+s1paXpwhVdXV3y9OlTQkjl+xQREUEIqXxNqjPy09PTI48fP6527NzcXKKnp0dvst85dRkVOYfGKoRGJoOWGeDcuXMxd+5cvHnzBjweT+J99s+fP4v042nTpg0j/yyKiIgInDx5Enfv3sWvv/6KESNGwN3dHZqamhL9fXkjIyMDcXFxnCwWgMqsVHp6OqNgTKoUBbJpU64NWrZsyfp32WxlkRqyTFWhYTtBg3PnzmHz5s0ChdDq6upYsWIFHB0dv6nlg6T+WLReU11dXWzYsAFXr179ppouXbt2xb///gtLS0uoqKggOTkZ1tbWyM/Pr/Z5tNWc/xeoC1TkHBrS9TTS6bTNACW5CVVFU1MT0dHRcHd3FzgeHR1drZz42rVrUb9+fQwYMIDxFTl37hzOnTsn9Lvfk46KkpISSktLOY0hLw6uXIiMjKS6lUXDdoIG0gbmtKHhj0XrNZUXTRdpHYfHjBmDTZs2oU+fPmjXrp3Q4wUFBdi0aRMmTJhQm9P/rqgrppVzevfujaioKHTp0kVAETYrKwuTJ09GcnKyRONJm8mQlyLH27dvw8rKCurq6kzglpycjIcPH2LXrl1iLxBDhgxhNT6Px/uuOktiY2Oxb98+eHl5QUVFRWh1yQYTExOMGDFCpIPrxIkTZWqMJi84ODigXr162LBhA3r06IEjR46gWbNmsLOzQ8uWLbF582aZzMPa2hpqampCgbmPjw9SUlKwd+9emcxDVDZVUn8seXlNafLgwQMoKChAXV0dN27cQHh4OJSUlLB48WKx11gaas60efnyJYKCgsS2fH/ra2JdoCLnyJN0fUhICPbs2cOoMCopKWH27NkyLXIEKrUlwsLCkJGRAUIIunXrhpkzZzKmfP9LDBs2DHl5eYyOw9ew2ebQ0tJCQkICOnbsiFmzZsHCwgImJia4fPky1q5di6NHj9KeNnWsrKywZcsWNG/evMZuNTYdajRsJ2ggbWBOGx8fH86O1Fxe07y8PCgpKYHH4yEvL6/avyNLeYFHjx6hpKSE0UKJjIzEoEGDatRlKisrY9ScqxoptmnTBhMmTKhRzZk28+bNQ0pKCkxNTUUq0X7rLHNdoCLnyOMqRNqsTB30EbXSrQqbFk4DAwPs27cPnTt3hqenJ9q3b4958+bh+fPnGDlypMx9PogU7biurq5wd3dH06ZNBTSERMFWEIyrwCEt5CEw79GjBw4fPszo80iLtK+phoYGLl++jNatW4vdhpKkBokGVR2HHRwcAFTWA6anp7N2HKah5kwDXV1d7Nq1S263eusCFTlHXlZ2tJDmJvSjGgrKC/PmzUPLli3h4eGB+Ph4HDhwAHv37kVCQgLWrl2Ly5cvy2wu8tKOW4cgjo6O+OWXX7Bo0SKZB2oAcOPGDejr60NRUbHGLLKBgYFM5jRx4kQYGhoyQQqfwMBA3LhxQ2bbcjTo168foqKi0Llz5289FZHUBSrfAfKysuOKtDehr+tLnj9/jvr166NDhw5QVFREbm4uysvLoaWl9V1dHKSFbfaAx+PB19e3xvHkxcEVqDy3e/fuISAgQEgnR19fn3XhZmFhIXJyckR2MYkz+pQnA022yCowl9aRWl5e09pA3h2HJWHdunV49+4dvL29ZVoszpa6rp/vgEaNGrEWVROHNJkM2kgr1vbvv/8y/46IiMD58+cREBDAdBu9e/cOTk5OUFNTq/2TkAOePn3K3ICfPn3KeTx5cXAF6LTjHjlyBCtWrEBZWRnTxcRPp//2229iAxXaAofScujQIVa/J8sOF2kdqeXlNa0N5N1xWBKKiopw9OhRnD9/Hh06dBCy3fjWQWRdRkUOob0KkZd0ep8+fbB582ah1Oz169fh6OiIxMTEGsfo168fwsLChAz20tPTYWlpievXr1Od84+OPDm4AkDPnj0RExMjJKmelZUFMzMz3L17t8YxRo4cCR0dHdja2sLc3BxhYWF48eIFvLy84OjoyEpF9VsbaP6I/Givqbw7DksCrbqu2qIuoyKH0F6F0JKd55qVoaEJUV5ejvfv3wsdf/36tVxKwsuCDx8+ID09XaitsCYdFHEOrr6+vt/EwRWQXienKk+ePEFwcDBUVVXRrVs3FBYWYsiQIfj8+TN27NjBKlChJXBYx//xo72mCxcuxJs3b+Dt7S3kOLxkyZJvPT2J+NaBSE3UBSpySNUPjaurK2bMmCF2FcIGGul0GlkZGjehIUOGYOXKlfDw8ICWlhYIIUhOTsbq1athamrKaowfibNnz8LFxQUlJSVC2gfVdUBcv34dTk5OGDdunJDolJubG3bt2gV7e3uZO7ja29vDysoKd+7cEdmOy4YGDRowqWtlZWVkZGRg4MCB0NLSwuPHj1mNQVvgsI4f7zVVVFSEp6cnli9fLpeOw5LCN4zMycmBm5vbNzPhFEVdoCLn0FiF0Mhk0MjK0LgJrVy5EkuWLIG1tTWTQSGEYPjw4TUaff2I+Pv7o2/fvliwYIFE++I7d+7E9OnTRTq4qqqqMsHy9u3bZergqqenh6ioKISFheHy5ctMO66Hhwfrdly+UZ6joyPU1NRw4cIF2NjYIDMzk7UgHg3biToEofmaxsfHo1evXmjfvj22bduGhIQE6Ovrw93dXajQt7Zp0qSJQEbye+RrqxZ7e/tvYsIpllr2EqqDIzQMBa2srIiPj4/Q8dWrV5MpU6awGoOrGSCfu3fvkiVLlpCRI0eSESNGEHt7e3L37l3Wz+eTlZVFjh8/Tk6ePElyc3Mlfv6PgpaWVo0GZ6Lo06cP+e+//6r9nXv37kn03soLSUlJREdHh+zevZsUFhaS/9fencfVmP//43+0kcQk+Y6mSRt1IqUk2d5GJYydjNFMWXpbylpMKlNDmrLEZJkxicrSWMY2ShhZYwjFiCRiRL1FTJHSdq7fH36dj+MULde5ruvU8367dbuZ65zOeXQNndf1ul6v59POzo758ssvGWtra2bJkiV1fp3GNtAkstg4pz///DPTvXt3JjU1lbl69SpjZmbGfP/994yzs3ONv+fIxwmlCWdtaEZF4Ni4CmFjJoOtniOWlpaIiIio8/NrY2xsLDUlWb31tGfPno1+bUViaGiIJ0+e1LtiaFlZ2UenqLW0tFBaWtqYeHXC9nZcW1tbHD9+HOXl5WjXrh1+++037Nq1C7q6unBzc6vzezW2gaa8lZWVyXX24GMVYN9V12qwbJzT/fv3Y+XKlbCxsUFoaCh69OiB5cuX4+rVq/D29pa5tUw+TihNOGtDAxWBY6OhIBvT6Q1dX8L2h9DNmzcRGBgo1en3XVxVpRSKRYsWYfny5fD29oaxsbHMtsLaPkCE1MH1/e24H6qTU5e/Iy4uLggJCZHcojQxMcH333/f4HwNbaDJhn///Re//vorsrKyJG0SGIZBRUUF7t27h6tXr8rtvdnuSP2uxpzTp0+fwtraGsDb6rDVW+h1dXXx8uXLBr9ucyaUJpy1oYGKAmDjKqSxMxkNnZVh+0MoLCwMKioq+P777xEWFgY/Pz/k5OQgLi4Oq1atavDPp6i8vLxQVVUFLy8vqQ+Vj32ACKmDK9t1ch49egQNDQ25ZOXasmXLcPHiRfTr1w/Hjh3D8OHDkZ2djYyMDLkX4mO7IzVbOnbsiAcPHqCsrAz37t1Dv379ALxdlNuxY0ee0ymm/v37IzIyEqtXr5YcKywsxOrVqznrJ/UhVEeliZJHdcvG9hz52IdQXX7xWltbY9u2bbC0tMSECROwePFi2NraIjY2FmfPnkVMTEydsjQVDS0nLsQOrgA7dXKioqJw7tw5eHh4oFOnTjL5uWxa11i9e/fGypUr8cUXX2D48OGSir2BgYEoKytrloPzrVu3YvPmzWjRogW0tbXxxx9/SC5U5s2bBw8PD05yCL3jcH0IvVULzag0UWzPZACNn5XZvHkzoqOjpbYitm3bFj4+PnBzc6vTQEUsFqNDhw4A3m49zcrKgq2tLRwdHREZGdngbIqqoX1NVFRUEBsbK+ngGhsbK3lMR0cH33zzDecdXAF26uRERESgqqpKUvK9WkNvU/Dp9evXMDMzA/B2XVZmZiZEIhG+/fZbzJgxQ67vzXZHarZ4eHjAyMhIUqoeePt7JDAwEC4uLpzlCAwM/GDHYUXy6aef4tChQ1KtWiZNmiSYVi00UGmi2JhOZ3tWho0PIQMDA6SmpmLEiBEwNjZGeno6AODVq1coLy+vc96moqSkBLGxsbVe1X3oA6RFixbw9fWFj4+PIDq4AuzUyWFrVo0RQNuJTz/9FLm5udDV1YWhoSHu3LkD4G1bjaKiIrm+t56eHpSVlSV/ZgNb5/T9/l8jR45kJV99XLp0SdAdh+uLjVYt8kIDlWagoTMZbM/KsPEh5ObmJlnQO2TIEIwePRrq6upIS0tDjx496vQaTUlQUBBOnjyJfv36SWaa6ktVVVUwXVPZqJNz+fJleHh4oFWrVlLHi4uLsW7dujrNQgml7YSzszP8/f2xYsUK9O3bF97e3rCyskJSUhIMDAzk+t7vFp5ko3IpW+e0rKwMe/bskVpgDLzd+Xfz5k0cP3680VnrQkNDQyEL1SkiGqgogMZehTR0JoPtRY5sfAhNmDAB7dq1g5aWlqQwWVRUFHR1dREUFFSn12hKTp8+jbVr12LQoEF8R2GFpqYmtm7divv37yMrKwvKysowNzeXafz2vuzsbLx48QIA8PPPP0MkEuGTTz6Rek5WVhb27t1bp+2rbLWdaCxvb29UVlYiLy8PI0eOhLOzMxYsWIC2bdti3bp1nGSo1pCO1O9i65yGhITg0KFD6Nq1K9LT02FtbY2HDx/i+fPnmDJlSoN/vvoaPXo0tmzZItiOw00JLaYVODauQhYvXoybN2/WOJMxcOBABAYGfvQ12GwGWN8PobqoqKjA9evX0atXr0a/liLp1asX9u/fX+86KormY3Vyzpw5g1mzZkkNgGsyfvx4/Pjjjx99PzYaaLIhISEBAwYMkBp0FRYWQlNTE6qq3F1nfqwjdVJS0kdfg61z2rdvXwQEBGDEiBEYPHgwIiMjoa+vD29vb3Ts2LFRW9Hrw9/fHwkJCWjbtq0gOw43JTSjInBsXIWwMZPBZjPAxhRrMzc3x9y5c+Hl5SV1vKioCO7u7gq1UJINzs7OOHDgABYsWMB3FFY0tE7OF198gVOnTkEsFsPJyQm///47tLW1JY8rKSlBQ0Ojzlv72Spw2FjBwcH47bffpAYqfBSe+/XXXzF8+PAaO1LPnTu3Tq/B1jl9+fKlpERC586dkZGRAWNjY8ycORMLFizgbKACACNGjODsvZozGqgIHBsNBRs6nf4uNtaXsFGsjWEYREVF4f79+wgNDZW6immOk4Pa2tqIjo7GuXPnYGRkJHNVJ/SuqO9rTJ2c6m3HJ0+exGeffdaoBcFsNNBkg6GhIbKystC5c2fO3rMmbHSkZuucamtr4/nz5/jss88k5wd4W0SuoKCgfj9YIyjav60P8ff3r/G4kpIS1NTU0LFjRwwdOpS3tWw0UBE4Nq/sGjOTwcasDBvF2pSUlBAVFYWAgAC4u7vjl19+kVw5C7E4lbxdv35d0jDs6dOnPKdpvIyMDEmdnAMHDsDU1BSurq7o2LEj9u7di2HDhn30NdjYocJG2wk2iEQiLFq0CFu2bIGhoaFMyXyuPizZ6EjN1jn9z3/+g2XLliEsLAw9e/ZEaGgoBg8ejMTERM4Lvgm543B9VFRU4MiRI9DR0ZHUxbp16xby8/NhZWWFlJQU/Prrr4iOjualTQkNVASOjasQNmYy2JiVYeNDiGEYGBkZYc+ePZg9ezZcXFwQGRnZbFff79ixg+8IrBJKnRw22k6w4cGDB5IPhmfPnnH2vu9joyM1W+fU19cXfn5+uHz5MlxdXbFnzx5MmDABqqqqWLlyZUN/xHoTfMfhelBXV4ezszNWr14tGZBWVFQgICAAbdq0QVBQEMLDwxEREcHP7xx5dz0kjZOWlsZYWFgwLi4uTGhoKBMaGsqMHz+e6datG3Px4sU6vYarqyszfvx45rfffmO6d+/OxMXFMWFhYYyFhQWTmJjYqHxlZWXM1atX6/RcS0tLJi8vj2EYhlm4cKGka2pOTg5jb29fp9cQiURMQUGB5L0XLlzI2NjYMImJiYxIJGrAT6DYcnNzP/ilaEaOHMnEx8czDPO2S66fnx/DMAxz69YtxsbGhs9ozRpbHanlQSwWM7du3WLy8/M5fV+hdxyuj549ezJ3796VOX737l3G1taWYRiGefDgAWNtbc11NIZhqHuy4LFxFcLGTAYbszJsFGtj3lmH0qJFC4SHh2Pjxo1YtGhRnb6/qflY4zhFW1zMZ50cebSdYENlZSWeP38u1ZSw+rZtdWVWeWtoR2q2zunHOjlraWlJtnFz1SJB6B2H60NVVRUFBQUya6GePXsm+fmqqqo43Wn2LhqoKIDGlq5nYzqdjfUlbHwIzZkzR6bh3Jw5c2BgYIC9e/fW6TWakve3QFZVVeHBgweIjY2Fn58fT6kajq06OdVrB+7fv48lS5bUae2APNpONNb58+exePFiSY2Yd6mrq3M2UGloR2q2zqk8Ozk3lNA7DtfHkCFDEBQUhKVLl8LKygoMw+D69etYvnw5HB0dUVJSgk2bNqF79+685KOBigCxfWXHxkwGG7MybHwI1fbzjhw5kpcy2nyrqcpqnz59oK+vjw0bNsiUGlcETk5Okj9X/3+trpNTl4Wy768d8Pb2rtPaAbYLHLJh7dq16Nq1K9zc3DB//nyEh4cjLy8P69ev53TXSUM7UrN1ToVYk0ToHYfrw9/fH76+vpg2bZrUgHDYsGFYsmQJ/vrrL1y+fBmbN2/mJR8VfBOg9z9cPnQVsnv37o++3u+//46QkBD8+OOPMDc3x+jRozFhwgSkpaVBR0cHW7du/ehrWFlZ4dixY9DV1cWiRYtgY2MDV1dXPHr0CF999RUuXrzY4J/3Y8Xa6nI1Bbzd9VOXwlPNwaNHjzB8+HDcuHGD7yj1UludnIKCAgwYMKBOV8uenp7Q1tZGSEgIbGxscPjwYejq6mLx4sV4+vRpnRYDslngsDEsLS2xd+9eiEQiuLq6Yu7cuejTpw/279+Pffv2YdeuXZzkYKMjtVDOKVuE3nG4IR49eoTbt29DRUUFZmZm+PzzzwG83SH6fukDLtGMigCxfWXHxkwGG7MyDS3WNnbs2Ga59bguarp3X1xcjMjISMkvGUXCsFAnh421A2wWOGwMFRUVSWfe6tu2ffr0gb29Pac7XNjoSC2Uc8oWoXccbohWrVqhe/fukn9r1b9fuFr3UxsaqAhcQxsKvq+x0+lsrC9p6IdQXStfNkc1zTYxDAMNDQ2pKWlFwUadHDbWDrBR4JANXbp0walTp+Dm5gZjY2OkpqZi8uTJePLkCWcZAHY6UgvlnLJJyB2H6yMtLQ3+/v7IycmROs71up/a0EBF4Ni4CmGj7DwbszJsFWvLzMyU2n307i6IkJCQOr9OU1DTvXs1NTWYmpqidevWPCRqHIaFOjlsrB1go8AhG2bMmIF58+ZBTU0NI0aMwIYNGzBjxgzcuXOH03UQbHSkFso5JbJCQkLQoUMH+Pr6SmbwhITWqAgcGw0FRSIRWrVqBUdHR6mZjIKCAvTv3x+ZmZkNzlefZoAikQgXLlyAsrIyZs+ejSdPnkg+hPr161enAVNMTIxkyru6OVr1n21tbZtcAbSPmTNnDry9vWFiYsJ3FFaYm5vj/PnzaN++PcrLyxEQEIDTp08jJCQEPj4+dfo7wubaAXk00KyvW7duQUVFBSKRCJcvX0ZMTAx0dXUxb948ufb9ebcjtbu7OzZs2FBjR+pVq1bh77//rvPrCuGcEmndu3fHoUOHBPt7hGZUBI6NqxA2ZjLYmJWpfq927dohNjYWAQEB+Prrr+s1CxIXF4fp06djzpw5GDRoEA4ePIjCwkIsXLgQjo6OdX6dpuLSpUsyZdUVGRt1cthcO9CYthNs6datG4C3s0Lm5ubYtGkTJ+/76NEjqY7Ute24Gz9+fL1el41zSrOq7NLV1cXr16/5jlErGqgIHBul69mYTmdjkSMbH0JPnjzBhAkT0LJlS4hEIqSnp8PJyQl+fn5YsWIFpkyZUufXagrGjh2L8PBwzJ49GwYGBryuzGcDW3VyGrt2gI0Ch2zZsmULtm/fLimh//nnn2P69OlyLyrGdkdqts7px2ZVSf15enoiNDQUy5Ytg7GxcZ3bInCFBioKojFXIWzMZLAxK8PGh5CGhoakQmenTp1w7949ODk5wcTEBLm5uXX+eZqKs2fPIicnB8ePH6/xcb4XwdVXQ+vkuLu71/k96lKTg40Ch2zYvHkzfvnlF7i5ucHa2hpisRipqakIDQ0FALkPVtjsSM3WORXKrKrQOw7Xx6ZNm5CXl4cxY8bU+Djfv0dooCJwbFyFsDGTwcasDBvF2mxsbLB582YEBQWha9eu2LdvH2bMmIHU1FSFXDzaWJ6ennxHaDQ26uS8u+6krKwMiYmJMDc3R48ePaCqqoqbN2/ixo0bdZ5lYaPAIRvi4uKwdOlSqQ+Q6oH55s2bOSvVzkZNELbOqVBmVYXecbg+hP57hAYqAsfGVQgbMxkNnZVhu1ibj48Ppk2bhri4OEyaNAm//vor7OzsUFpaCg8Pjzr9LE3J2LFj+Y7QaGzUyXm3Squ/vz+mTJki00IgIiIC2dnZdXo9oXRxLioqqrGSbq9evbB8+XLOcrCBrXMqlFlVwXccrgeh/x6hgYrAsXEVwsZMRkNnZdgu1mZqaoqkpCSUlJSgdevW2Lt3L+Lj46Grq4uhQ4ey9j6EO2zXyTl27BgOHjwoc3zMmDG1Tm2/j40Ch2xwdHTEjh07ZEoAxMfHK1x7BLbOqVBmVY8dO4bdu3dLrQtTU1PDzJkzMWnSJAQFBcHFxQW//fYbZ5nqw9/fH0uWLIGmpmatt7GAtxeR1bca+UIDFYFr6FUI2zMZDZ2VYfNDqLS0FOrq6pIv4O0V56RJk2RKehPF1dgdHW3btkVGRgYMDQ2ljl+9erXOtyr57OL8rvbt22PXrl1ITU2FnZ2d5DbW1atX4ejoKPUBw2Xvn4Zg65wKZVZV6B2HP+bx48eSf2OPHz/mOc2HCfMMEomGXoWwPZPBVjPAhn4IJSQk4Mcff0RUVBQsLCwkx0NDQ3Hz5k2EhIRg8ODBdc5BhImNHR0TJ05EUFAQsrOzYWFhAbFYLCmr/91339XpNdjq4txYt2/flnyIv1vvyNbWFkVFRSgqKuIsS0M6Ur+LrXNa06xqQkKCZPEqV4Tecfhj3r0dJfRbU1TwTeDYaCjYUGzPyjS0WFtKSgqmTp2KMWPGwNvbWzLDBLwtSrVlyxYcPnwYO3bsgI2NTV1+NCJQTk5OGDZsWI07OlxcXOq8UDIyMhI7d+6UbOnV1dXF9OnT4erq2qh89Slw2JS835H66NGjWL16NZKTkz/YkbouFPWcvnnzBr6+vvjzzz9lOg4HBwfj0qVLCA4OxubNm2UaMQpRaWkpsrKyUFFRIXWrXwjbvmmgogCSkpKgpaUFW1tbxMfHS12F1HU1fkNmMjZs2FCvrccf09APIQ8PD5iYmCAgIKDW1/b390dBQQGioqLqlLcpaeyVrpBYWFggMTERnTp1wrRp0+Dq6gonJyecP38eK1asQEJCQr1e799//4WSklK9K7iy0cW5KWGjI3VTPadC7ThcHydPnoSfnx+Ki4tl6mJRrx9SJ41tKNjQ6XS2Fzk2dFthRkbGR6vwurq6YtasWazmVQTvX+l6e3sjMTER/v7+jb7S5QPbOzratWvXoBxsFDhsStjoSN1Uz6lQOw7XR3h4OPr06QMvLy9B9vpR5jsA+TBzc3P88ssvMserS9fXRXWBpL///hvt2rXD2bNn8ccff8DExKReBZIyMzNx+PBhHDp0CIcOHcLBgwexZ88efP/993X6/po+hAB89EOorKzso4tltbS0UFpaWsefpOlYsWIFnJyckJSUJKkmuXbtWjg4OCA8PJzndPVXvaOjtLQUXbt2lVRG5XpHR3WBwxs3bsDd3V3S86b6seaGjY7UTe2cpqWlYciQIRgwYAAcHBzg6OgIR0dHyZ8VyePHj7Fo0SKIRCLo6enJfPGNBioCV30VsmjRIpnFs3W9CqlpJsPMzAx+fn7Yt29fnV4jJiYGY8aMga+vL/z9/eHn5wd/f38sXboUDx8+rNNrNPRDyMjICNeuXfvga6elpQniHxTX0tLSMHXq1BqvdDMyMnhM1jA+Pj5ITk5GXFwchg8fjoKCAtjZ2WHx4sUYN24cZzneLXCorKwMFxcX3L17F8rKzfNXZnVH6ncHK/XtSC2Pc8rlVvH3VXcc3rhxI7Zt2yb52r59O7Zt28ZbroYwNDTEkydP+I5Rq+b5r06BsHEV0tCZjHexMSvT0A+hUaNGYd26dcjPz6/x8fz8fKxbt65Z1lFh40pXSKp3dIwbN06yo2P27NlYs2YNfHx8OMvxfoFDGxsbfP3110hJSeEsw7uys7Nx9OhRJCUl4f79+5y/v5+fH27evIn+/fujrKwMnp6eGDRoEB4/flyv5qgAO+d0165dcHBwQI8ePfDo0SP88MMPNc48y9Pdu3exbNkyODo6ws7OTuZLkSxatAjLly/HqVOn8M8//yAvL0/qi2+0RkXg2Chdz0aBJDbKVje0WNu3336L48ePY8SIERg/fjysra3Rtm1bFBYWIi0tDQcPHoShoWGzrExbfaW7evVqybH6XukKBZt1chiGQXJyMrKysqCqqorOnTujT58+dR68sdF2gg1lZWVYuHAhTp48KbW2bNCgQYiIiOBssSYbHanZOqfx8fFYs2YNJk+ejC1btgB4e9EVHh4OdXV1TJs2rV6v11BC7zhcH15eXqiqqoKXl5fUBTDDMIJYTAuGCJpIJGIKCgoYhmGYsrIyZuHChYyNjQ2TmJjIiESiOr3GnTt3mH79+jFRUVFMcXExM2jQIKZnz55M165dmTVr1tTpNXr16sXcv3+fYRiG+eGHH5hNmzYxDMMweXl5TI8ePT76/SUlJYxYLJY6du/ePaa0tLRO719WVsasXLmSsbOzY8zMzCRf/fr1Y9auXVvn12lqnjx5wjg7OzN9+vRhzM3NmeHDhzM9evRgvvjiC+bx48d8x6uz+Ph4xt7enklPT5c6Pm3aNMbOzo75888/6/xa//77LzNu3DjGzMyMsbW1ZXr27MmYmZkx48aNY4qKiur0Ghs2bGBKSkpkjh8+fJj59ttv65ylscLCwpgBAwYwSUlJzMuXL5nCwkLmxIkTzMCBA5nw8HDOcrCBrXM6ZswY5sCBAwzDMEyPHj2YnJwchmEY5vfff2ecnZ3ZCVsHBw4cYCZOnMhkZmYy5eXlnL2vPKSkpHzwi2+0PVngRCIRLly4IDWDsnHjRmzatAlisbjOI903b96gpKQE2traKCgoqHfZ+VmzZqFdu3YICgpCfHw89u3bh927dyMxMRErVqzA+fPna/3e2oq1eXh41LtYW2VlJR49eoSioiJoa2tDX19fIRfisam0tFTqSrdLly71utLlG9t1cvz9/XHjxg2sWbNGUr8iMzMT3333HWxsbLBs2TK5/Sxs69+/P5YvX45BgwZJHT99+jSWLVuGM2fOyO292e5IzZYePXogPj4e+vr6sLa2xuHDh6Gvr49Hjx5h+PDhuHHjBic5nJ2dkZeXJ7mt/j7eZyGaELr1I3CNbSjI1nR6Q8tWp6SkwNfXF2PGjMGnn34q9VhAQAC2bNmCBQsW1PlDSFVVVSHapnOpVatWde4KLESbN2/Gt99+W2OdnOoKpsDbVvR1qZNz+vRprF+/XqrIlkgkwvfffw8fH59aBypsFzhkw+vXr2ush2NkZCS1Xk0e2OhILY9zqqOjgwcPHkBfX1/q+LVr1/D//t//q9NrsEHoHYfro6SkBLGxsUhLS5Mp+AZwOxCtCQ1UBK4xpevZLDvf0PUlbH8IEeFe6TYU23VyKisroaOjI3NcR0cHxcXFtX4f220n2GBqaopjx45h5syZUsePHj0q9wE7Gx2p5XFOJ06ciODgYEmfo/v37+P8+fOIiIjA5MmTWX2vDxF6x+H6CAoKwsmTJ9GvXz+pGU2hoIGKALFxFcLmTEZjZmWoWBv72LjSFRK26+R069YNu3btkjTAq7Zr1y6Ym5vX+n1sFzhkg6enJ7y8vHD79m3Jv9PU1FScOHECa9as4SxHQztSy+OcTp8+Ha9evYKPjw/Kysowc+ZMqKqq4uuvv5b77xFF6jhcH6dPn8batWtlbjEKBQ1UBIiNqxC2ZjIaOytDxdrYx8aVrpBU18np1KlTrc+pT52cBQsWwN3dHdevX5f6cM/MzJTsEqmLxnZxZsMXX3yBdevWISoqCmfOnAHDMDAzM0NERAScnZ05yQCw05EaYO+c+vj4wNPTE/fu3QPDMDA2NoampiaePXsm1xkBReo4XB/KysowMTHhO0bteFzIS+TI3t6euXPnzgefc+PGDaZv3761Pn7p0iXG3Nyc8ff3Z54+fSr12L179xg/Pz+ma9euTGpqaq2vMW7cOObQoUMfzHHo0CFmxIgRH3wOqVmPHj2YBw8eyBx/8OABY2VlxXmehoiNjWUGDRrEPHnypMbHnzx5wgwaNIjZuHFjnV/z77//ZubPn898+eWXzLBhw5gFCxYwf//9d52/Pzo6WrKzTCQSSf2Zy10/QvHzzz8zPXv2ZNavX8+cOnWKSUpKYlatWsVYWVkxO3furNNrsHVORSIR8/z5c5njjx49qtMORCIrICCA+emnn/iOUSuaUVEADbkKYWMmg41Zmepibfb29jK3oID/K9Y2fvz4D2YlNWPrSpdP8qiTY2lpiYiIiAZnqi5wWFMDTXmXRz906FCdn/uh2y5s8vLygoqKCnbu3Imff/4ZwNs6Ir6+vnXuSN2Yc7pv3z4cPnwYwNvff7Nnz5a0jKj29OlTtG3btgE/XcMJueNwfWhrayM6Ohrnzp2DkZGRTH2ed2dx+UADFYFraENBNqbT2VhfQsXa5GvixIkICgpCdnY2LCwsIBaLJQ3kvvvuO77j1YmKigpiY2MRERGB/fv3IzY2VvKYjo4OvvnmG3h6en5w4L1x48Y6v19dOn2zUeCwod6/jVf9715dXR2qqqooLi6GiooK2rVrx9lABQBmzpyJmTNnNrgjdWPOqZOTE1JTUyX/3bFjR5m/D6amppyeD6F3HK6P69evSxqYPn36lOc0smigInANvQphYyaDjVkZNj6ESO3YuNIVghYtWsDX1xc+Pj4NqpNz4MABqf/+3//+BzU1Nejr60NVVRU5OTmoqKiAhYVFnQYqbHdxro/MzEzJnxMSErB161aEhYVJtlv/888/WLx4MUaMGCHXHLVpaEfqxpxTLS0tqav66gWtfBJ6x+H62LFjB98RPozP+07k47p168Y8fPiQYRiGmTp1KnPixAmGYRgmOTmZGT58eK3fV1lZyUyaNImxtbVlwsLCmGPHjjF//fUXk5iYyISEhDA9e/Zkxo8f/8GKrmyvL6moqGDu37/PXLt2jXn48KFMpVrSOC9evGD+/fdfvmPwLiYmhpk8ebKkojPDMExRUREzc+bMOldinjlzJuPn58eUlJQwe/bsYSZMmMBUVVUx8fHxTL9+/eQVXcbAgQOZ69evyxy/ceMGpznYwPY5ffbsGZOXl8fk5uZKfXHFwsJC8rtZ0b1/Dvk6p7WhGRWBa+hVCBszGWyvL6FibfLV0Cvdpmbz5s2Ijo6WWqPTtm1b+Pj4wM3NrU7NDRta4JBtL1++RMuWLWWOi8VivHnzhrMcbGDrnF67dg1+fn7IycmROs5w3JemuuPwh26vK4qPlcTg+zYWldAXuMaUrq/W0LLzVVVVcHNzw927dz+4vmTnzp1064YIRq9evRAZGSlTH+jixYvw9vbGpUuX6vQ6jW07wQZPT08UFRVh1apV+PzzzwG8bSvw3XffwdjYGOHh4ZxlYQMb53TcuHHQ0NDA1KlTa7zlwlXn4rNnzyI8PBze3t4wNjaWWYD62WefcZKDDZcvX5b676qqKjx48ACxsbHw8/ODg4MDT8neooGKwGVlZWHatGmYMmUKJk2ahJEjR+Lly5eSq5C6XB02Rnl5uWRWpqioSHJcR0cH48ePp/UlRHAWL16MmzdvIigoCBYWFmAYBqmpqVi+fDkGDhyIwMDAD35/dYHDdwfz2dnZ0NPT4/zven5+Pjw8PJCdnY22bduCYRi8evUKlpaW2Lx5Mz755BPOsjCN6EjN5jnt3r07Dh06xHvdj27duklmuwXZcZgFycnJ2LBhQ53atcgTDVQUgBCu7KgZIFEUxcXFmD9/Pi5cuCD5O8owDIYOHYpVq1bJXPm+i80GmmypqqrCX3/9hbt370JJSQkikQj29vac/vsrLCyEh4cHbt26hTZt2oBhGBQXF6Nbt26IiYn54LZgts+ps7MzwsPDYWlp2aifqbHen4V4H1czO/LEdaPH2tBARcCEdGVHhKsxV7pN2f3795GVlQVlZWWYm5vLNLF7H9tdnOXtyZMn6NixIyfv1dCO1PI4pwcPHsSePXuwbNkyGBsby9RTIfWXl5cnc6y4uBiRkZG4ffs2EhMTeUj1f2igIlBCvLIjwtOYK93mprpIYs+ePWt83MPDAyYmJjUWOKzm7++PgoICzhpoPnr0CCtXrkRWVpbkNgPz/xd8fPHiBTIyMjjJYW9vj/Xr18vMEqSkpMDHxwcXLlyo8fvkcU6dnZ2Rl5cnOR/v4+qWi9A7DteHSCSSmaFjGAYaGhpYvXq13Iscfgzt+hEgNhsKkqZt5cqVePPmDQ4dOiRzpbtmzZpar3Sbsps3byIwMFCqmvO7avsgE2IDzeDgYPzzzz8YOnQoYmJiMG3aNDx48AAnTpxAcHAwZzka2pFaHufU09Ozzs+VJ6F3HK6PmgZVampqMDU1RevWrXlI9B4u90KTupk2bRrz448/fvA5fn5+zH//+1+OEhGh6t27N5OSkiJz/NKlSx/s49SUubq6MuPHj2d+++03pnv37kxcXBwTFhbGWFhYMImJibV+n7W19UfrYuTk5DDW1tZsR66VjY0Nc+nSJYZhGGb06NGSfkVr165lvLy8OMvh7u7OhISEyBxfvnw5M3HixFq/T4jnlC02NjbMqVOn+I7BitmzZzP37t3jO0ataEZFgIR4ZUeEqaFXuk1ZRkYGtm3bBktLSxw4cACmpqZwdXVFx44dsXfvXgwbNqzG72O7izMbysvLJXmMjIxw584dWFpaYsyYMXBzc+MsR0M7UsvrnJ49exZbt27F/fv3sWfPHhw4cACdOnXC6NGj6/U6jSH4jsP1cOnSpRrr9QiFMt8BiCw2SteT5qFbt27YtWuXzPFdu3bB3Nych0T8E4vFkql4AwMDZGVlAQAcHR2lytO/r7rAYX5+fo2PVxc45HK3nZ6eniS/kZGR5LaVWCzG69evOcthbW2NuLg46Onp4fz580hOToa+vj5+++032Nvb1/p98jinFy5cwJw5c/DZZ5/h5cuXEIvFqKyshL+/f70aOjaWs7OzTOsGRTV27FiEh4fj7t27KC8v5zuODJpRESAhXtkRYWrolW5TZmBggNTUVIwYMQLGxsZIT08HALx69eqDv4SF2EBz7Nix8PX1xapVq/DFF1/A3d0dn332GS5cuAAzMzPOcgAN60gtj3O6YcMGLFy4EFOmTMHx48cBAN7e3tDU1MTWrVs5a0wo9I7D9XH27Fnk5ORIzuf7+K4JQwMVAWK7dD1puqqvdKOjo3H+/HkwDAMzMzMEBQXxXmeCL25ubliyZAkAYMiQIRg9ejTU1dWRlpaGHj161Pp9QmygOWPGDLRs2RIMw8DS0hJeXl7YtGkTdHV1sWrVKrm+NxsdqeVxTu/cuVPjzz506NB6ZW4soXccrg+hLFCuDW1PFiAqXU9I4yQlJUFLSwu2traIj49HVFQUdHV1ERQUVKeZSCpwCJmy6R/qSL179+6Pvh5b5/Q///kP1q5dC1tbW1hbW+Pw4cPQ19fH6dOn8cMPP+DcuXP1fk0ibDRQESgqXU9qw8aVbnNUUVGB69evo1evXnxHqZerV6/WWquDq/+/sbGxOHPmDNasWSNp9vjy5Uv4+vrC1NRU7q083rV69WpcvHgRoaGhcHV1xW+//YanT59i6dKlcHZ2hp+fHyc5aiqS9i5F6vUjdDRQETi6siPvY/tKt6kxNzfH3Llz4eXlJXW8oKAAAwYM4P1+e338/PPP2LBhA9q2bQtNTU2px5SUlHDy5ElOcvTt2xfR0dGSWj3VsrKy4ObmhpSUFE5yAG8HnH5+fjhy5AiAt+eBYRh88cUXiIiI4OwCrqYiae9SpL9nQkdrVAROVVUVRkZGfMcgAnLq1CnJnz92pdscMQyDqKgo3L9/H6GhoVKLHBXtumzXrl3w9vbGzJkzec1RUVGBkpISmePPnz/n/MJJTU0Na9aswbx583D79m2IxWKYmpqic+fOnP7/fb9I2vsdhwmLeKneQghhRZ8+fZjbt2/LHL9z5w5jZ2fHQyL+iUQi5sqVK8zgwYOZiRMnMs+fP2cYhmGePXvGiEQintPVj6WlJfP48WO+YzC+vr7Ml19+yVy6dIkpLi5mXr16xZw5c4ZxdHRkgoODOc3i4ODA/PvvvzLHnzx5Ioi/8+fOnWMmTJjAd4wmhWZUCFFgQrrSFQqGYWBkZIQ9e/Zg9uzZcHFxQWRkpGTGSZHY2Njg2rVrvJciCAwMxPz58zF58mSZjtQfK07JhsTERCQnJwMAcnNzERwcLFOgLDc3VxB/5w0NDT9Yr0eonj59ir179+L+/ftYsmQJrly5AlNTUxgbG/MdjW79EKLIHBwcEBgYiKCgIFhYWIBhGKSmpmL58uUYPnw43/F4Uf1h1a5dO8TGxiIgIABff/01QkJCeE5WfyNGjMDy5ctx8+ZNGBsby9Tq4KpmSHWNkvp2pGaLtbU1du/eLbm1k5eXJ9U1WUlJCRoaGli5ciUneaozvK+64/Dnn3/OWQ42PHz4EF999RU0NTWRn58Pb29vJCYmwt/fH7GxsZJt2HyhxbSEKLDi4mLMnz8fFy5ckLnSXbVqlcwHW3MgEolw4cIFqRmUjRs3YtOmTRCLxQq1yPH9xavvUlJS4v1n+VhHanlwc3PDxo0b8cknn3D2njUResfh+vD09IS2tjZCQkJgY2ODw4cPQ1dXF4sXL8bTp0+xY8cOXvPRjAohCozvK10hmjNnDjQ0NGSOGRgYYO/evTylahih3EJoaEdqeXj/Q/PFixe4fPkyLCwsOJ3JEHzH4XpIS0tDXFyc1MBLVVUVXl5e+Oqrr3hM9v9n4TsAIaTxjI2Npe4l83GlKxS11RYZOXIkRo4cyXEadmRnZyMrKwtqamowMTHhfCdgWFgYVFRU8P333yMsLAx+fn7IyclBXFyc3Cvkvi8rKwtz585FSEgIzMzMMGrUKBQUFKBFixbYvHnzB3sPsWn79u3w9vZuEo0JxWJxjQPQ169fQ0VFhYdE0migQogCE9KVLp8cHBzqtJBSSUkJSUlJHCRiR1lZGRYuXCiVWUlJCYMGDUJERARnt/Ya2pFaHlauXAkDAwMYGxsjISEBlZWVOHv2LHbv3o2IiAjOagcJveNwffTv3x+RkZFYvXq15FhhYSFWr17N2cDvQ2igQogCE9KVLp/Gjh0riB0fbPvpp59w48YN/Pzzz7Czs4NYLMaVK1cQEhIiac7HhZo6Utva2sLR0RGRkZGcZKh27do1/P7772jfvj2Sk5MxcOBAfPrppxg3bhxiYmI4y1HdcXj27NkwMDBQ6PVgfn5+cHd3R//+/VFWVgZPT0/k5uZCS0sLK1as4DseDVQIUWRCutLl09y5c/mOIBcJCQlYvnw5Bg0aJDnm5OQEFRUVLFu2jLOBSkM7UsuDsrIyWrRogcrKSly+fBmBgYEA3t6m4LKtiNA7DtfHp59+ikOHDiEhIUFSRG/SpEkYPXq0TEVkPtBAhRAFJqQrXSHJzMyUuh3GMIxk3Y4ibVN+/fp1jXUsjIyM8OLFC85yNLQjtTz06NEDkZGR0NbWRllZGf7zn/8gPz8fa9eu5TSL0DsO11erVq0wYcIEvmPUiAYqhCgwIV3pCkVMTIyknkZ1H5jqP9va2vIZrd5MTU1x7NgxmRL6R48e5XRB7YQJE9CuXTtoaWnBxMQEYWFhUh2puRQYGAhvb288evQIAQEB0NbWxvLly5GdnY2oqCjOcowdO5az95IHd3f3Oj+3ph1OXKKBCiEKTEhXukIRFxeH6dOnY86cORg0aBAOHjyIwsJCLFy4UKFqWwBvr9q9vLxw+/Zt2NjYAABSU1Nx4sQJrFmzhtMsTk5Okj9X76Cq7kjNZeVcAwMDHDhwQOrY7NmzERAQIIgdKori3f9nZWVlSExMhLm5OXr06AFVVVXcvHkTN27cEMQsCxV8I0TBJSUlQUtLC7a2toiPj5e60uW79DofLCwskJiYiE6dOmHatGlwdXWFk5MTzp8/jxUrViAhIYHviPVy4sQJREVFISsrCwzDwMzMDP/973/h7OzMWQa+O1JfuXIF1tbWUFVVxZUrVz743F69esk1S1Pk7++PTz75RKaZYkREBLKzs7Fhwwaekr1FMyqEKDihXOkKhYaGBqqqqgAAnTp1wr179+Dk5AQTExPk5ubynK7+Bg8ejMGDB/OageG5I7Wbm5uk2rCbm5vULb13CaFaryI6duwYDh48KHN8zJgxnLVp+BAaqBCiwGq70i0qKoK7u3uz/KVtY2ODzZs3IygoCF27dsW+ffswY8YMpKamKkTF0I0bN8LDwwOtWrXCxo0bP/jc2orbsU1JSQlRUVEICAiAu7s7fvnlF2hra0sek7eTJ09K3u/kyZNyf7/mpm3btsjIyIChoaHU8atXrwqimScNVAhRYHxf6QqRj48Ppk2bhri4OEyaNAm//vor7OzsUFpaCg8PD77jfdSBAwfwzTffoFWrVjJrMd6lpKTE2UCF747U784Mvj9LWFFRgczMTBgbG3M+EBVyx+H6mDhxIoKCgpCdnQ0LCwuIxWJJWf3vvvuO73gAQwhRWCKRiLly5QozePBgZuLEiczz588ZhmGYZ8+eMSKRiOd0/CktLZU6F9HR0czRo0d5TqW4RCIRU1BQwDAMw5SVlTELFy5kbGxsmMTERM7/nuXl5TFTp05l/v77b6a0tJQZPnw4Y2ZmxtjZ2TEZGRmc5fjnn38YOzs7xsHBgenWrRuTk5PDzJ07l+nRowdz/fp1znKw5ddff2X69+/PmJmZMWZmZswXX3zBxMXF8R2LYRiGUeZ7oEQIaTjmnStdZWVluLi44O7du1BWbp7/tEtLS8EwDNTV1SW3CoqKijBp0iQMHTqU53T1xzAMNm7cKFUWfuLEifj11185z1GtRYsWCA8Px9SpU7Fo0SJOcwBvqzG/evUK2traOHr0KHJzc/Hbb79h8ODBUiXg5W3FihVwcnJCUlIS1NTUAABr166Fg4MDwsPDOcvBlpkzZyI5ORkXL17EpUuXcPr0abi6uvIdCwDQPH+bEdJEVK8PaNeuHWJjY2FjY4Ovv/4aKSkpPCfjXkJCAhwcHHDr1i2p46GhoRg4cCBOnDjBU7KGW7duHXbu3Cl1i+XLL79EbGwsp4OV2jpSr1ixgvPaNJcuXUJwcDA+//xznD17Fv/5z39gY2MDDw8PXLt2jbMcaWlpmDp1ao0dhzMyMjjLwbbqejlCQgMVQhSYkK50+ZSSkgJfX18MGjQIn376qdRjAQEBcHBwwIIFC5CWlsZTwoY5dOgQwsPDpXb9TJ48GStXrsTvv//OWY45c+agVatWMsdHjhyJHTt2cJYDeLsm5ZNPPgHDMLh48SL69u0L4G2VZlVV7pZdCr3jcFNCi2kJUWC1XekaGBhg7969PKXi3ubNm/Htt98iICBA5rHqSqoAsGnTJk6rlzZWYWFhjVvMDQ0N8ezZM7m+t1A7Ulfv5OrQoQNevnyJgQMHory8HFFRURCJRJzlEHrH4aaECr4RQhRenz59sG3bNpiamtb6nPT0dMyaNQsXLlzgMFnjfP311+jVq5dM88H169fjzJkzH9wV1FgbNmyo89ZjrnYfAcCNGzcwa9Ys/Pvvv5g+fTp8fHywdOlSHDlyBFu2bIGVlRUnOfLz8+Hu7o5Xr16hsLAQxsbGko7DO3fubJY1jOSFBiqEKBihXunyycbGBocOHUKnTp1qfc6jR48wevRohbr9k5ycjJkzZ8LKykrSEiE9PR3Xr1/Hzz//jIEDB/IbkCdisRjFxcVo27YtAODBgwe8rK0oLS2V6jjcpUsXwXQcri+GYZCcnIysrCyoqqqic+fO6NOnjyBuY9GtH0IUzNixYzkpsqVIjIyMcO3atQ8OVNLS0hTuKnfAgAGIi4vDjh07cP78eaiqqsLExAT79u3j9DYHIKyO1MrKyrhz5w6ys7MxYsQIVFVV8TI4EHLH4fooLCyEh4cHbt26hTZt2oBhGBQXF6Nbt26IiYmRDAj5QgMVQhTM3Llz+Y4gOKNGjcK6detgb28vs5gWeDtNv27dOowfP56HdI1jbW0Na2trXjMIqSN1cXExPDw88Pfff0NJSQn9+vVDeHg4cnJyEBMTU+P/f7YoUsfh+li5ciXevHmDQ4cOSQbAmZmZ+O6777BmzRosW7aM13x064cQBSekK12+VFVVwc3NDXfv3sX48eNhbW2Ntm3borCwEGlpaTh48CAMDQ2xc+dOqKur8x33g4RYQt/JyQnDhg2rsSO1i4sLpkyZwkkOAAgODkZGRgZWr16NUaNG4fDhwygvL8eiRYtgbGws167S/v7+kj9/rOPw0qVL5ZaDbfb29li/fj3s7OykjqekpMDHx4f3dV00o0KIAhPSlS6fVFRUEBsbi4iICOzfvx+xsbGSx3R0dPDNN9/A09NT8IMUQJgl9J88eYIJEyagZcuWEIlESE9Ph5OTE/z8/LBixQpOByqnT5/GmjVroK+vLzlmYmKCoKAgzJ49W67vXb17DHg7aJkyZUqtHYcVSWVlJXR0dGSO6+jooLi4mIdE0migQogCi4uLw/Tp02u80nV0dOQ7HqdatGgBX19f+Pj44NGjRygqKoK2tjb09fUVak3PqVOnavwzn4TUkfrFixfo0KGDzPG2bduipKSEsxxC7zhcH926dcOuXbuwZMkSqeO7du2Cubk5T6n+DxV8I0SB1XSla2ZmBj8/P+zbt4/veLxQVVWFkZERevTogU6dOinUIEWoqjtSl5aWomvXrjh16hTEYjEvHam7d++Oo0ePyhyPi4tD165dOctR3XH4fULpOFwfCxYswO7duzFhwgSEhYUhLCwMLi4u2L17NxYsWMB3PJpRIUSRCelKl7BDJBLVeXB1+/ZtOad5S0gdqauz3LhxA5WVldi0aROys7Nx69YtbN26lbMcgu84XA/W1taIi4tDdHQ0zp8/D4ZhYGZmhqCgIFhaWvIdjxbTEqLIZs2ahXbt2iEoKAjx8fHYt28fdu/ejcTERKxYsQLnz5/nOyKppwMHDkgGKrm5uYiKisLEiRNhbW0NNTU1pKenIy4uDp6enpwOEt68eYOSkhJoa2ujoKAA8fHx0NXV5aXZ4507d7B161ZkZGRI6pdMmzaNs2Jv1SIjI7Fz505JlWBdXV1Mnz5dMM38mgoaqBCiwLKysjBt2jRMmTIFkyZNwsiRI/Hy5UvJla6Pjw/fEUkjfPvttxgzZgxcXFykjh8+fBjbtm3D/v375Z6htLQU6urqUrM82dnZ0NPT42VxckhICNzd3T9YM4dr//77L5SUlATXzO9DPraj7F1cVh6uCQ1UCFFwQrrSJeyytLREfHw8DAwMpI7/888/GD16NP7++2+5vn9CQgJ+/PFHREVFwcLCQnLcw8MDN2/eREhIiFTDRC707NkTf/zxBz7//HNO37epcXBwkPrv//3vf1BTU4O+vj5UVVWRk5ODiooKWFhYYPfu3TylfIsW0xKioEpLS8EwDNTV1aGtrQ0AKCoqwqRJk2iQ0kQYGBjgyJEjMsf37NmDzp07y/W9hdqReuDAgdi5c6cgts0qslOnTkm+3N3d0bt3b5w+fRpHjhzBH3/8gbNnz6J///4ytVX4QDMqhCggIV7pEvadOHEC8+bNQ8+ePdG9e3eIxWJcu3YNt2/fRlRUlFy79Hp4eMDExKTGjtTV/P39UVBQwGlHajc3N1y5cgVKSkpo3749WrZsKfX4yZMnOcvSVPTt2xfR0dEybRmysrLg5uaGlJQUnpK9Rbt+CFEw1Ve6Y8aMqfFKd8uWLViwYAF27NgBGxsbnlISNgwePBhxcXHYuXOnZGG0ubk5goOD5d7rJyMjA4sXL/7gc1xdXTFr1iy55nhf79690bt3b07fs6mrqKiosQbN8+fPBbG9n2ZUCFEwQr3SJU1LU+1IzSYhdxyuj8WLF+PmzZsICgqChYUFGIZBamoqli9fjoEDByIwMJDXfDSjQoiCEeqVLmGfWCxGfHw80tLSUFFRgfevK98t6c62ptqRmi1C7zhcH4GBgZg/fz4mT54smUFhGAZDhw796O8aLtBAhRAFU1ZW9tFtoVpaWigtLeUoEZGX0NBQxMXFQSQSQVNTk9P3bsodqdkg9I7D9aGpqYmtW7fi/v37yMrKgrKyMszNzaX6KfGJbv0QomDGjx8Pd3d3jB49utbn/PHHH9iyZQvi4+M5TEbY1rt3b/j5+WHs2LGcv3dT6kgtD0LvOMyG6i7sPXv25DUHzagQomDoSrf5KC8vR69evXh576bUkVoehN5xuD5u3ryJwMBAZGVlQSwWyzzOVauG2tCMCiEKhq50m4958+ahd+/e+Oabb3jNUVlZKaiO1JWVlXj+/LmkzxXDMJKr/1GjRnGSYfLkyTA1NZXpOBwSEoKbN2/yXiStPr755huUlZVh/PjxCAsLg5+fH3JychAXF4dVq1Zh2LBhvOajgQohCqi8vFxypVtUVCQ5rqOjg/HjxzfrK92mJDo6GuvXr0f//v1hYmICNTU1qcf5Lm3Oh/Pnz2Px4sV48eKFzGPq6uq4du0aJzmuXbsGd3d3iEQiSRmA1NRUZGZmYsuWLXKtccM2a2trbNu2DZaWlpgwYQIWL14MW1tbxMbG4uzZs4iJieE1Hw1UCFFgQrvSJex6v8z5u5SUlJplcbNx48ahffv2cHNzw/z58xEeHo68vDysX78eYWFhcHJy4izLjRs3EB0djbt370o6Dk+dOlUQHYfrw8rKCseOHYOuri4WLVoEGxsbuLq64tGjR/jqq69w8eJFXvPRGhVCFJiqqiqMjIz4jkHk5NSpU3xHEJx79+4hNDQUIpEI5ubm0NDQgJubGzQ0NLB161ZOByqWlpaIiIjg7P3kxcDAAKmpqRgxYgSMjY2Rnp4OAHj16hXKy8t5TkcDFUIIEbT3i4p16dIF9vb2CldUjC0qKipo06YNgLcfsFlZWejTpw/s7e2xcuVKub63InUcrg83NzfJWpshQ4Zg9OjRUFdXR1paGnr06MFvONBAhRBCBKspFRVjS5cuXXDq1Cm4ubnB2NgYqampmDx5Mp48eSL39z5w4IDUf3+o47AiDVQmTJiAdu3aQUtLCyYmJggLC0NUVBR0dXURFBTEdzxao0IIIULl7++PGzduYM2aNTJFxWxsbBSqqBhbkpKSMG/ePAQFBWHgwIEYMmQI7O3tcefOHVhZWWH9+vWc5IiNjcWZM2ewZs0atG/fHgDw8uVL+Pr6wtTUFD4+PpzkkKeKigpcv36dty3y1WigQgghAtUcioo1xK1bt6CiogKRSITLly8jJiYGurq6mDdvHrS0tDjJIPSOw/Vhbm6OuXPnwsvLS+p4QUEBBgwYwHsdFbr1QwghAtWUioqxZc6cOfD29oaJiQkAwM7OTmYgxwWhdxyuD4ZhEBUVhfv37yM0NBQtWrSQeoxvynwHIIQQUrNu3bph165dMsd37doFc3NzHhLx79KlS2jZsiXfMeDg4IDAwECkpKTg9evXKC4uxtmzZxEYGIjhw4fzHa9elJSUEBUVhRs3bsDd3V2qRo0QBl1064cQQgSqKRUVY8uPP/6IZ8+eYfbs2TAwMJC6+udScXEx5s+fjwsXLsh0HF61ahVvuRpCJBLhwoULUFZWxuzZs/HkyRNERkaiffv26NevH++3fmigQgghAnbjxg3ExMQgKytLoYuKscXZ2Rk5OTm1Xulz/aEq1I7D9WFubo7z58+jffv2KC8vR0BAAE6fPo2QkBD4+PjQQIUQQkjtXr16hX///RedOnUCAPz555+ws7PjbNGo0Bw8ePCDj/PRafpdQuk4XB/VMyrVu5eAtzVjNm3aBLFYTAMVQgghNbt16xamTZuGcePGYfHixQDero0oLy9HdHQ0TE1NeU7YfAm943B9bNy4ER4eHmjVqpXU8fj4eOzduxc7duzgKdlbNFAhhBCBcnNzw+eff45ly5ZJ1jxUVlYiMDAQ+fn5iI6O5jkhP86ePYutW7fi/v372LNnDw4cOIBOnTph9OjRnGUQesfhpoS2JxNCiEDdvHlTZruoqqoqZsyYARcXFx6T8efChQuYM2cOhg8fjuvXr0MsFqOyshL+/v5gGAZjxozhJEdGRoak4/CBAwdgamoKV1dXdOzYEXv37hX8QMXBwaFOO3qUlJSQlJTEQaLa0UCFEEIEqnXr1nj06JHMAs2nT58q1K4SNm3YsAELFy7ElClTcPz4cQCAt7c3NDU1sXXrVs4GKmKxGB06dADwfz2HbG1t4ejoiMjISE4yNMbYsWMFsfW4LmigQgghAjVkyBAsW7YMS5culezySU9PR3BwMAYPHsxzOn7cuXMHq1atkjk+dOjQejUNbCyhdxz+mLlz5/Idoc5ooEIIIQK1cOFC5OTkYOrUqVJXv4MHD4avry+PyfjTpk0bPH36VLILqtq9e/fwySefcJZD6B2H6yszM1NqYTDDMJIdTCEhIbxmo4EKIYQIlIaGhqS0+d27d6GqqgoTExMYGhryHY03I0eORGhoKEJDQ6GkpITXr1/j3LlzWL58Ob788kvOcgi943B9xMTEYOXKlQDerkmp3mOjpKQEW1tbPqO9zUG7fgghRPE8efIEHTt25DsG5yoqKuDn54cjR44A+L8P1i+++AIRERFQV1fnPZ8QOg7Xh5OTE4YNG4Y5c+Zg0KBBOHjwIAoLC7Fw4UK4uLhgypQpvOajgQohhAjUo0ePsHLlSmRlZaGqqgrA/03Jv3jxAhkZGTwn5M/Dhw9x+/ZtiMVimJqaonPnzmAYhrMFokLvOFwfFhYWSExMRKdOnTBt2jS4urrCyckJ58+fx4oVK5CQkMBrPmpKSAghAhUcHIw7d+5gyJAhyM/Px/Dhw9GtWzcUFBRg6dKlfMfjhaOjIwoLC2FgYIChQ4fiyy+/ROfOnZGfn89p76PqjsOLFi2SWTyraNf/GhoakoFwp06dcO/ePQCAiYkJcnNz+YwGgNaoEEKIYKWlpeGXX35B7969kZycDCcnJ1haWuKnn37C2bNn8dVXX/EdkROJiYlITk4GAOTm5iI4OFimg3Jubi6n222rOw4HBATA3d0dv/zyC7S1tSWPKRIbGxts3rwZQUFB6Nq1K/bt24cZM2YgNTUVrVu35jsezagQQohQlZeXS3a3GBkZ4c6dOwCAMWPG4O+//+YzGqesra2Rm5uLx48fAwDy8vLw+PFjyVdubi40NDQkC0K5wDAMjIyMsGfPHigrK8PFxQV3796FsrLifaz6+PggOTkZcXFxGD58OAoKCmBnZ4fFixdj3LhxfMejGRVCCBEqPT09ZGVlQVdXF0ZGRpJ1D2KxGK9fv+Y5HXd0dXWxfft2AG+3BW/cuJHTrcg1qZ41adeuHWJjYxEQEICvv/6a9628DWFqaoqkpCSUlJSgdevW2Lt3L+Lj46Grq4uhQ4fyHY8W0xJCiFBFRkYiOjoaq1atQrt27eDu7o45c+bgwoULKC0txe7du/mOyJu8vDxkZ2ejV69eeP36tVTnXy4IveNwXZWWlkJdXV3qdlV2djb09PR430FVTfHmqAghpJmYMWMGPD09wTAMLC0t4eXlhU2bNuHZs2f44Ycf+I7Hi4qKCnh7e8PBwQEzZ86UnIupU6eiuLiYsxxz5syBhoaGzLEVK1YIovZIXSQkJMDBwQG3bt2SOh4aGoqBAwfixIkTPCWTRjMqhBBCFMa6detw7NgxLF26FLNmzcLhw4eRl5cHf39//Oc//2m2u6HqKyUlBVOnTsWYMWPg7e0t6VsEvJ1R2bJlCw4fPowdO3bAxsaGx6Q0UCGEEKJAnJ2dsXTpUvTt2xfW1tY4fPgw9PX1cfHiRfj6+kp2B8mDInUc/hgPDw+YmJggICCg1uf4+/ujoKAAUVFRHCaTRYtpCSGEKIz8/HyZPj/A2wW3RUVFcn1vReo4/DEZGRlYvHjxB5/j6uqKWbNmcZSodjRQIYQQojBMTExw8eJFTJgwQer4kSNH0LlzZ7m+tyJ1HP6YsrKyjy6W1dLSQmlpKUeJakcDFUIIIQpj7ty58Pb2xr1791BVVYWDBw/iwYMHOH78OH766SdOswi54/DHGBkZ4dq1azXOTlVLS0uDnp4eh6lqRgMVQggRsMrKSjx//lym1096ejpGjRrFczruDRo0COvXr0dkZCRUVFSwdetWdOnSBT/99BOGDBnCWQ6hdxz+mFGjRmHdunWwt7fHp59+KvN4fn4+1q1bh/Hjx/OQThotpiWEEIE6f/48Fi9ejBcvXsg8pq6ujmvXrvGQil9bt27FiBEjavxw5ZLQOw5/TFVVFdzc3HD37l2MHz8e1tbWaNu2LQoLC5GWloaDBw/C0NAQO3fu5L2eCg1UCCFEoMaNG4f27dvDzc0N8+fPR3h4OPLy8rB+/XqEhYXBycmJ74ics7W1xf79+2FgYMBrDqF3HK6L8vJyREREYP/+/VILkXV0dDB+/Hh4enryPkgB6NYPIYQI1r179xAaGgqRSARzc3NoaGjAzc0NGhoa2Lp1a7McqFhZWeHUqVOYOnUqrzlq6jjs5OQkmI7DddGiRQv4+vrCx8cHjx49QlFREbS1taGvry+o3U1UmZYQQgRKRUUFbdq0AQAYGBggKysLAGBvb4/s7Gw+o/FGU1MTq1atQu/evTFx4kS4u7tLfXGluuNwaWkpunbtilOnTkEsFgum43B9qKqqwsjICD169ECnTp0ENUgBaKBCCCGC1aVLF5w6dQoAYGxsjNTUVADAkydP+IzFKw0NDYwZMwYODg4wNjaGnp6e1BdXhN5xuCmhNSqEECJQSUlJmDdvHoKCgjBw4EAMGTIE9vb2uHPnDqysrLB+/Xq+I3IuISEBAwYM4L17MgC8efMGJSUl0NbWRkFBgaA6DjclNFAhhBABu3XrFlRUVCASiXD58mXExMRAV1cX8+bNg5aWFt/xOGdnZ4fffvtN7sXdPkQROg43JXTrhxBCBGrOnDlQV1eHSCQC8PZDetOmTQgKCmqWgxQAMDQ0lKzV4YOidBxuSmjXDyGECNSlS5fQsmVLvmMIikgkwqJFi7BlyxYYGhrKnJ+wsDC5vXdKSgp8fX0xZswYmTouAQEB2LJlCxYsWCCIjsNNCd36IYQQgfrxxx/x7NkzzJ49GwYGBmjRogXfkXjn5ub2wcd37Nght/dWpI7DTQkNVAghRKCcnZ2Rk5NT63bR27dvc5yoeevTpw+2bdsGU1PTWp+Tnp6OWbNm4cKFCxwma9ro1g8hhAiUp6cn3xEEia/+R4rUcbgpoYEKIYQI1NixY/mOIDgf638kz4GKInUcbkpo1w8hhAjY2bNn4e7ujv79+yM3NxcbNmzAH3/8wXcs3qxduxZdu3ZFZGQk1NXVsXHjRgQEBEBTUxOrV6+W63tXdxzOz8+v8fHqjsNUR4VdNKNCCCECdeHCBcyZMwfDhw/H9evXIRaLUVlZCX9/fzAMgzFjxvAdkXN89j/69ttvcfz4cYwYMeKDHYc9PDzklqE5ooEKIYQI1IYNG7Bw4UJMmTIFx48fBwB4e3tDU1MTW7dubZYDlZr6H/Xp0wf29vZYuXKl3N87NjZW0nE4NjZW8piOjg6++eYbwXQcbkro1g8hhAjUnTt34ODgIHN86NChyMnJ4SER//juf1TdcfjChQs4evQodu/ejT///BPJycnw9vamQYoc0IwKIYQIVJs2bfD06VOZxZv37t0TRK8bPsyYMQPz5s2DmpoaRowYgQ0bNmDGjBm4c+cO7O3tOctR3XGYyB/NqBBCiECNHDkSoaGhyMzMhJKSEl6/fo1z585h+fLl+PLLL/mOxwsnJyf8/vvv6NGjB3R1dbFlyxaoqKjA0dERwcHBfMcjckAF3wghRKAqKirg5+eHI0eOAACUlJTAMAy++OILRERENNvbDP/88w+Ki4thYWEBANi2bRsGDhwIQ0NDfoMRuaCBCiGECNzDhw9x+/ZtiMVimJqaonPnzmAYptaKtU3ZX3/9BU9PT0yZMgXe3t4AgIkTJyIrKwtRUVGwtbXlOSFhGw1UCCFEoBwdHbF//36ZTsn5+fkYNWoUUlJS+AnGIxcXF/Tr108ySKm2du1aXL58Gbt37+YpGZEXWkxLCCECkpiYiOTkZABAbm4ugoODZToE5+bmNsvZFODtQuKffvpJ5viECRPk2pCQ8IcGKoQQIiDW1tbYvXs3qie78/LyoKamJnlcSUkJGhoacq8ZIlTa2trIzMyEvr6+1PG7d+9K6quQpoUGKoQQIiC6urrYvn07AMDNzQ0bN25stluRazJ69GgsXboUhYWFsLKyAvC2Y3FERESzLIDXHNAaFUIIEbi8vDxkZ2ejV69eeP36Ndq3b893JN5UVlYiJCQE+/fvR2VlJRiGgaqqKtzc3LBw4UKoqtL1d1NDAxVCCBGoiooK+Pr64ujRo1BWVsbx48excuVKvH79Ghs2bICmpibfEXnz+vVrPHjwAKqqqjA0NGy2W7WbAyr4RgghAvXLL78gMzMT27ZtkyyodXNzw8OHDxEeHs5zOn61bt0aFhYWEIlENEhp4migQgghAnXkyBEEBgaid+/ekmO9e/fGjz/+iJMnT/KYjBDu0ECFEEIEKj8/X6bPD/B2wW1RUREPiQjhHg1UCCFEoExMTHDx4kWZ40eOHEHnzp15SEQI92h5NCGECNTcuXPh7e2Ne/fuoaqqCgcPHsSDBw9w/PjxGoueEdIU0a4fQggRsHPnziEyMhIZGRkQi8Xo0qULpk+fjiFDhvAdjRfPnj1DREQE0tLSUFFRgfc/wmjtTtNDMyqEECJQW7duxYgRIxAXF8d3FMEIDAzEzZs3MXz4cKpE20zQjAohhAiUra0t9u/fDwMDA76jCEaPHj2wZcsW6pLcjNBiWkIIESgrKyucOnWK7xiCoqGh0awr8zZHNKNCCCECNX/+fPz5559o27YtDA0NZbooV/cEak5WrlyJly9fIjg4GCoqKnzHIRygNSqEECJQGhoa1GjvPYWFhUhISMCZM2egr6+PFi1aSD3eHAdvTR0NVAghRKD69euHAQMGUPfk94wYMYLvCIRDdOuHEEIEys7ODr/99hsVdyPNGi2mJYQQgTI0NERWVhbfMQTn6dOn2LhxIxYuXIjnz5/j2LFjuH//Pt+xiJzQjAohhAhUUFAQ9u3bB5FIVONi2rCwMJ6S8efhw4f46quvoKmpifz8fBw9ehSrV69GcnIyYmNjYWVlxXdEwjKaUSGEEIF68OABevbsidatW+PZs2d4/Pix1FdztGLFCjg5OSEpKQlqamoAgLVr18LBwQHh4eE8pyPyQItpCSFEoHbs2MF3BMFJS0tDXFwclJSUJMdUVVXh5eWFr776isdkRF5ooEIIIQJWWVmJ58+fo6qqCgDAMAzKy8uRnp6OUaNG8ZyOe2KxGGKxWOb469evqa5KE0UDFUIIEajz589j8eLFePHihcxj6urqzXKg0r9/f0RGRmL16tWSY4WFhVi9ejXs7e15TEbkhRbTEkKIQI0bNw7t27eHm5sb5s+fj/DwcOTl5WH9+vUICwuDk5MT3xE5l5+fD3d3d7x69QqFhYUwNjZGbm4utLS0sHPnTujp6fEdkbCMZlQIIUSg7t27h9DQUIhEIpibm0NDQwNubm7Q0NDA1q1bm+VA5dNPP8WhQ4eQkJCA27dvQywWY9KkSRg9ejQ0NTX5jkfkgAYqhBAiUCoqKmjTpg0AwMDAAFlZWejTpw/s7e2xcuVKntPxp1WrVpgwYQLfMQhHaHsyIYQIVJcuXSTdk42NjZGamgoAePLkCZ+xCOEUzagQQohAzZgxA/PmzYOamhpGjBiBDRs2YMaMGbhz5w4tHCXNBi2mJYQQAbt16xZUVFQgEolw+fJlxMTEQFdXF/PmzYOWlhbf8QiRO5pRIYQQAWvdujWKi4sBvG1SePv2bQwcOJAGKaTZoIEKIYQI1F9//QVPT09MmTIFFhYWAIDExEREREQgKioKtra2PCfknr+/f43HlZSUoKamho4dO2Lo0KEwMjLiOBmRF7r1QwghAuXi4oJ+/frB29tb6vjatWtx+fJl7N69m6dk/Fm0aBGOHDkCHR0dWFpaAnh7eyw/Px9WVlYoLCzE//73P0RHR6Nnz548pyVsoF0/hBAiUPfu3YOLi4vM8QkTJuDOnTs8JOKfuro6nJ2dcfLkSfz888/4+eefceLECYwYMQJdu3bFsWPH4ObmhoiICL6jEpbQQIUQQgRKW1sbmZmZMsfv3r0rqa/S3Bw7dgxz585FixYtJMfU1NQwc+ZMxMfHA3g7E3Xr1i2+IhKW0RoVQggRqNGjR2Pp0qUoLCyElZUVACA9PR0REREYM2YMv+F4oqqqioKCAnTu3Fnq+LNnzyQdlauqqqCqSh9vTQX9nySEEIGaPXs2/v33XwQHB6OyshIMw0BVVVXS+6c5GjJkCIKCgrB06VJYWVmBYRhcv34dy5cvh6OjI0pKSrBp0yZ0796d76iEJbSYlhBCBO7169d48OABVFVVYWhoCHV1db4j8ebNmzfw9fXFn3/+KZlBAYBhw4YhODgYly5dQnBwMDZv3gyRSMRjUsIWGqgQQghROI8ePcLt27ehoqICMzMzfP755wCA8vJyqfUrRPHRQIUQQojCKSgoQEVFBd7/CPvss894SkTkhdaoEEIIURhpaWnw9/dHTk6O1HGGYaCkpITbt2/zlIzIC82oEEIIURjjxo2DhoYGpk6dWuMWbTs7Ox5SEXmiGRVCCCEK4+7duzh06BBMTEz4jkI4QgMVQggRqGfPniEiIgJpaWk1rsc4efIkT8n4o6uri9evX/Mdg3CIBiqEECJQgYGBuHnzJoYPH95sK9G+z9PTE6GhoVi2bBmMjY2hpqbGdyQiZ7RGhRBCBKpHjx7YsmVLs+ySXBtnZ2fk5eWhqqqqxsdpMW3TQzMqhBAiUBoaGmjfvj3fMQTF09OT7wiEYzSjQgghArVy5Uq8fPkSwcHBUFFR4TsOIbygGRVCCBGowsJCJCQk4MyZM9DX15epuLp9+3aeknHL398fS5YsgaamJvz9/Wt9npKSEkJDQzlMRrhAAxVCCBGwESNG8B2Bd48fP4ZYLJb8mTQvdOuHEEIIIYJFMyqEECJgT58+xd69e/HgwQMEBATgypUrMDU1hbGxMd/ReFNaWoqsrCyZ2jJKSkq0Q6oJohkVQggRqIcPH+Krr76CpqYm8vPzcfToUaxevRrJycmIjY2FlZUV3xE5d/LkSfj5+aG4uFimAB71+mmaaKBCCCEC5enpCW1tbYSEhMDGxgaHDx+Grq4uFi9ejKdPn2LHjh18R+TcsGHD0KVLF3h5edVYBE9PT4+HVESe6NYPIYQIVFpaGuLi4qCkpCQ5pqqqCi8vL3z11Vc8JuPP48ePERkZiU6dOvEdhXBEme8AhBBCaiYWiyW7Xd71+vXrZltXxdDQEE+ePOE7BuEQDVQIIUSg+vfvj8jISKnBSmFhIVavXg17e3sek/Fn0aJFWL58OU6dOoV//vkHeXl5Ul+k6aE1KoQQIlD5+flwd3fHq1evUFhYCGNjY+Tm5kJLSws7d+5slusxunXrJunz8+4tMYZhaDFtE0UDFUIIEbDS0lIkJCTg9u3bEIvF6NKlC0aPHg1NTU2+o/Hi8uXLH3zczs6OoySEKzRQIYQQQohg0a4fQgghCqOkpASxsbFIS0uTKfgGNJ/+R80JDVQIIYQojKCgIJw8eRL9+vVDhw4d+I5DOEC3fgghhCiMnj17Ijw8HIMGDeI7CuEIbU8mhBCiMJSVlWFiYsJ3DMIhmlEhhBCB8vf3r/G4kpIS1NTU0LFjRwwdOhRGRkYcJ+PPkiVL0KFDByxYsIDvKIQjtEaFEEIEqqKiAkeOHIGOjg4sLS0BALdu3UJ+fj6srKyQkpKCX3/9FdHR0ejZsyfPabmhra2N6OhonDt3DkZGRmjRooXU42FhYTwlI/JCAxVCCBEodXV1ODs7Y/Xq1ZIP5IqKCgQEBKBNmzYICgpCeHg4IiIimk2DwuvXr0u6Rj99+pTnNIQLdOuHEEIEytbWFrt370bnzp2ljt+7dw+TJk3ClStX8M8//2DcuHFIS0vjKSUh8kUzKoQQIlCqqqooKCiQGag8e/ZMUj6+qqoKqqrN51f5x/r5fPbZZxwlIVxpPn+7CSFEwQwZMgRBQUFYunQprKyswDAMrl+/juXLl8PR0RElJSXYtGkTunfvzndUzjg4OEj1+Hkf9fppeujWDyGECNSbN2/g6+uLP//8U+rDediwYQgODsalS5cQHByMzZs3QyQS8ZiUO+/3+qmqqsKDBw8QGxsLPz8/ODg48JSMyAsNVAghROAePXqE27dvQ0VFBWZmZvj8888BAOXl5TK7Xpqr5ORkbNiwAXv37uU7CmEZ3fohhBCBa9WqFbp37y7pa1O9ToPWY/wfQ0NDZGZm8h2DyAENVAghRKDS0tLg7++PnJwcqeMMw0BJSalZrseoaTFtcXExIiMjJTNNpGmhgQohhAhUSEgIOnToAF9fX7Rp04bvOIJQ02JahmGgoaGB1atX85SKyBOtUSGEEIHq3r07Dh06RL1t3vH+YloAUFNTg6mpKVq3bs1DIiJvNKNCCCECpauri9evX/MdQ1C2b98Ob29vGrw1I9Q9mRBCBMrT0xOhoaG4c+cOKioq+I4jCJcuXULLli35jkE4RLd+CCFEoJydnZGXl4eqqqoaH2+Oi2l//PFHPHv2DLNnz4aBgQFtz24GaKBCCCECdfDgwQ8+PnbsWI6SCIezszNycnJqrU7bHAdvTR0NVAghhCgMGrw1PzRQIYQQAfH398eSJUugqakJf3//Wp+npKSE0NBQDpMRwg/a9UMIIQLy+PFjiMViyZ8Jae5oRoUQQgghgkUzKoQQImClpaXIyspCRUUF3r2uVFJSgq2tLY/JCOEGDVQIIUSgTp48CT8/PxQXF+P9ye/m2uuHND9064cQQgRq2LBh6NKlC7y8vGrs9aOnp8dDKv49ffoUe/fuxf3797FkyRJcuXIFpqamMDY25jsakQMaqBBCiEB1794dR44cQadOnfiOIhgPHz7EV199BU1NTeTn5+Po0aNYvXo1kpOTERsbCysrK74jEpZRCX1CCBEoQ0NDPHnyhO8YgrJixQo4OTkhKSkJampqAIC1a9fCwcEB4eHhPKcj8kADFUIIEahFixZh+fLlOHXqFP755x/k5eVJfTVHaWlpmDp1qlRlWlVVVXh5eSEjI4PHZEReaDEtIYQIlJeXF6qqquDl5SX1wcwwTLNdTCsWiyV1Zt71+vVrqKio8JCIyBsNVAghRKBiYmL4jiA4/fv3R2RkJFavXi05VlhYiNWrV8Pe3p7HZEReaDEtIYQQhZGfnw93d3e8evUKhYWFMDY2Rm5uLrS0tLBz585muxOqKaOBCiGECFRJSQliY2ORlpYmU/ANALZv385TMn6VlpYiISEBt2/fhlgsRpcuXTB69GhoamryHY3IAd36IYQQgQoKCsLJkyfRr18/dOjQge84gtGqVStMmDCB7xiEIzSjQgghAtWzZ0+Eh4dj0KBBfEfhlbu7e52f21xnmZoy2p5MCCECpaysDBMTE75j8E5PT0/ypaOjg8uXL+PVq1cwMTGBmZkZKioqkJqaSpVpmyiaUSGEEIFasmQJOnTogAULFvAdRTD8/f3xySefwM/PT+p4REQEsrOzsWHDBp6SEXmhNSqEECJQ2traiI6Oxrlz52BkZIQWLVpIPR4WFsZTMv4cO3YMBw8elDk+ZswYjBkzhvtARO5ooEIIIQJ1/fp1Se+ap0+f8pxGGNq2bYuMjAwYGhpKHb969Srat2/PTygiVzRQIYQQgdqxYwffEQRn4sSJCAoKQnZ2NiwsLCAWi5GWloa4uDh89913fMcjckBrVAghRKA+1s/ns88+4yiJsERGRmLnzp149uwZAEBXVxfTp0+Hq6srz8mIPNBAhRBCBEokEkn1+Hlfc+z1865///0XSkpK0NLS4jsKkSO69UMIIQL1fk2QqqoqPHjwALGxsTK7Xpqjdu3a8R2BcIBmVAghRMEkJydjw4YN2Lt3L99RCJE7KvhGCCEKxtDQEJmZmXzHIIQTdOuHEEIEqqbFtMXFxYiMjMTnn3/OQyJCuEcDFUIIESgHBweZxbQMw0BDQwOrV6/mKRX/GIZBcnIysrKyoKqqis6dO6NPnz5QUVHhOxqRA1qjQgghAnX58mWZY2pqajA1NUXr1q15SMS/wsJCeHh44NatW2jTpg0YhkFxcTG6deuGmJgYtG3blu+IhGW0RoUQQgRq+/btaN++Pezs7CRf1tbWzXaQAgArV67EmzdvcOjQIVy5cgVXr17FoUOHUF5ejjVr1vAdj8gBDVQIIUSgLl26hJYtW/IdQ1BOnz6NH374ASKRSHJMJBLh+++/R1JSEo/JiLzQQIUQQgRq7NixCA8Px927d1FeXs53HEGorKyEjo6OzHEdHR0UFxfzkIjIGy2mJYQQgTp79ixycnJw/PjxGh9vjpVpu3Xrhl27dmHJkiVSx3ft2gVzc3OeUhF5ooEKIYQIlKenJ98RBGfBggVwd3fH9evXYWNjAwBITU1FZmYmtmzZwnM6Ig+064cQQohCuXHjBqKjo3H37l0wDAMzMzNMnToVlpaWfEcjckADFUIIIYQIFt36IYQQImgbN26s83PnzJkjxySEDzSjQgghRNAcHByk/vt///sf1NTUoK+vD1VVVeTk5KCiogIWFhbYvXs3TymJvNCMCiGEEEE7deqU5M+xsbE4c+YM1qxZg/bt2wMAXr58CV9fX5iamvIVkcgRzagQQoiAPX36FHv37sX9+/exZMkSXLlyBaampjA2NuY7Gi/69u2L6OhoqYJvAJCVlQU3NzekpKTwlIzICxV8I4QQgXr48CFGjhyJgwcP4s8//0RJSQkSExMxfvx4/P3333zH40VFRQVKSkpkjj9//lymgSNpGmigQgghArVixQo4OTkhKSkJampqAIC1a9fCwcEB4eHhPKfjh4ODAwIDA5GSkoLXr1+juLgYZ8+eRWBgIIYPH853PCIHtEaFEEIEKi0tDXFxcVIzBaqqqvDy8sJXX33FYzL+BAYGYv78+Zg8ebLkvDAMg6FDh2Lx4sU8pyPyQAMVQggRKLFYDLFYLHP89evXUFFR4SER/zQ1NbF161bcv38fWVlZUFZWhrm5OfT19fmORuSEbv0QQohA9e/fH5GRkVKDlcLCQqxevRr29vY8JuOfsbExhg4dCmdnZ+jr66O8vBypqal8xyJyQLt+CCFEoPLz8+Hu7o5Xr16hsLAQxsbGyM3NhZaWFnbu3Ak9PT2+I3Lu5s2bCAwMRFZWVo2zTc2xUWNTRwMVQggRsNLSUiQkJOD27dsQi8Xo0qULRo8eDU1NTb6j8eKbb75BWVkZxo8fj7CwMPj5+SEnJwdxcXFYtWoVhg0bxndEwjJao0IIIQLWqlUrTJgwge8YgpGRkYFt27bB0tISBw4cgKmpKVxdXdGxY0fs3buXBipNEA1UCCFEQNzd3ev83O3bt8sxiTCJxWJ06NABAGBgYICsrCzY2trC0dERkZGRPKcj8kCLaQkhRED09PQkXzo6Orh8+TJevXoFExMTmJmZoaKiAqmpqc22Mq2BgYFk0ayxsTHS09MBAK9evUJ5eTmf0Yic0IwKIYQISFhYmOTP/v7+mDJlCvz8/KSeExERgezsbK6jCYKbmxuWLFkCABgyZAhGjx4NdXV1pKWloUePHvyGI3JBi2kJIUSgrK2tcfDgQRgaGkod/+effzBmzBhcv36dl1x8S0pKgpaWFmxtbREfH4+oqCjo6uoiKCioWe6EaupoRoUQQgSqbdu2yMjIkBmoXL16VdI5uDlycnKS/HnkyJEYOXIkKioqcP36dRqoNEE0UCGEEIGaOHEigoKCkJ2dDQsLC4jFYklZ/e+++47veLwwNzfH3Llz4eXlJXW8qKgI7u7uVEelCaJbP4QQImCRkZHYuXMnnj17BgDQ1dXF9OnT4erqynMyfohEIrRq1QqOjo4IDQ1FixYtAAAFBQXo378/MjMzeU5I2EYDFUIIUQD//vsvlJSUoKWlxXcUXpmbm2PHjh0ICAiAtrY2fvnlF2hra6OgoAADBgygGZUmiLYnE0KIAmjXrl2zH6QAbzslGxkZYc+ePVBWVoaLiwvu3r0LZWX6OGuq6P8sIYQQhaGkpATg7cAtNjYWNjY2+Prrr5GSksJzMiIvNFAhhBCiMN5drdCiRQuEh4dj6tSpWLRoEY+piDzRrh9CCCEKY86cOdDQ0JA5ZmBggL179/KUisgTLaYlhBABYxgGycnJyMrKgqqqKjp37ow+ffpARUWF72iEcIJmVAghRKAKCwvh4eGBW7duoU2bNmAYBsXFxejWrRtiYmLQtm1bviNywsHBQbI25UOUlJSQlJTEQSLCJRqoEEKIQK1cuRJv3rzBoUOHIBKJAACZmZn47rvvsGbNGixbtoznhNwYO3ZsnQYqpGmiWz+EECJQ9vb2WL9+Pezs7KSOp6SkwMfHBxcuXOApGSHcoRkVQggRqMrKSujo6Mgc19HRQXFxMQ+JhCEzMxNZWVkQi8UA3q7jKS8vR3p6OkJCQnhOR9hGAxVCCBGobt26YdeuXViyZInU8V27dsHc3JynVPyKiYnBypUrAbxdk1J9U0BJSQm2trZ8RiNyQgMVQggRqAULFsDd3R3Xr1+HjY0NACA1NRWZmZnYsmULz+n4ERcXh+nTp2POnDkYNGgQDh48iMLCQixcuBCOjo58xyNyQAXfCCFEoKytrREXFwc9PT2cP38eycnJ0NfXx2+//QZ7e3u+4/HiyZMnmDBhAlq2bAmRSIT09HSYmZnBz88P+/bt4zsekQOaUSGEEAGztLREREQE3zEEQ0NDA1VVVQCATp064d69e3BycoKJiQlyc3N5TkfkgQYqhBAiIBs3bqzzc+fMmSPHJMJkY2ODzZs3IygoCF27dsW+ffswY8YMpKamonXr1nzHI3JA25MJIURAHBwcpP77f//7H9TU1KCvrw9VVVXk5OSgoqICFhYW2L17N08p+ZOVlYVp06ZhypQpmDRpEkaOHImXL1+itLQUHh4e8PHx4TsiYRkNVAghRKBiY2Nx5swZrFmzBu3btwcAvHz5Er6+vjA1NW22H8pv3rxBSUkJtLW1UVBQgPj4eOjq6mLo0KF8RyNyQAMVQggRqL59+yI6OlpSlbZaVlYW3NzckJKSwlMyfpSWlkJdXV2qSm12djb09PSgrq7OYzIiT7TrhxBCBKqiogIlJSUyx58/f97sSsonJCTAwcEBt27dkjoeGhqKgQMH4sSJEzwlI/JGAxVCCBEoBwcHBAYGIiUlBa9fv0ZxcTHOnj2LwMBADB8+nO94nElJSYGvry8GDRqETz/9VOqxgIAAODg4YMGCBUhLS+MpIZEnuvVDCCECVVxcjPnz5+PChQuSGRSGYTB06FCsWrUKLVq04DkhNzw8PGBiYoKAgIBan+Pv74+CggJERUVxmIxwgQYqhBAicPfv30dWVhaUlZVhbm4OfX19viNxqk+fPti2bRtMTU1rfU56ejpmzZpFjRqbIKqjQgghAmdsbAxjY2PJf1c34OvZsyePqbhTVlb20cWyWlpaKC0t5SgR4RINVAghRKBu3ryJwMBAqU7B77p9+zYPqbhnZGSEa9euoVOnTrU+Jy0tDXp6ehymIlyhxbSEECJQYWFhUFFRwffffw81NTUEBgZi8uTJUFVVxdq1a/mOx5lRo0Zh3bp1yM/Pr/Hx/Px8rFu3juqoNFE0o0IIIQKVkZGBbdu2wdLSEgcOHICpqSlcXV3RsWNH7N27F8OGDeM7Iie+/fZbHD9+HCNGjMD48eNhbW2Ntm3borCwEGlpaTh48CAMDQ3h4eHBd1QiBzRQIYQQgRKLxejQoQMAwMDAAFlZWbC1tYWjoyMiIyN5TscdFRUVxMbGIiIiAvv370dsbKzkMR0dHXzzzTfw9PSkom9NFA1UCCFEoAwMDJCamooRI0bA2NgY6enpAIBXr16hvLyc53TcatGiBXx9feHj44NHjx6hqKgI2tra0NfXb3bF75obGqgQQohAubm5YcmSJQCAIUOGYPTo0VBXV0daWhp69OjBbzieqKqqwsjIiO8YhENUR4UQQgQsKSkJWlpasLW1RXx8PKKioqCrq4ugoCDa5UKaBRqoEEKIgqmoqMD169fRq1cvvqMQIne0PZkQQgTK3Nwcv/zyi8zxoqIiuLu785CIEO7RQIUQQgSKYRhERUVh0aJFMotnaTKcNBc0UCGEEIFSUlJCVFQUbty4AXd3d7x48ULqMUKaAxqoEEKIQDEMAyMjI+zZswfKyspwcXHB3bt3oaxMv7pJ80F/2wkhRKCqZ03atWuH2NhY2NjY4Ouvv0ZKSgrPyQjhDg1UCCFEoN5dh9KiRQuEh4dj6tSpWLRoEY+pCOEWFXwjhBCBmjNnDjQ0NGSOGRgYYO/evTylIoRbVEeFEEIIIYJFMyqEECIgDg4OddrRo6SkhKSkJA4SEcIvGqgQQoiAjB07lrYeE/IOuvVDCCGEEMGiGRVCCBGwzMxMZGVlQSwWA3i7E6i8vBzp6ekICQnhOR0h8kcDFUIIEaiYmBisXLkSwNs1KdUT4EpKSrC1teUzGiGcoToqhBAiUHFxcZg+fTr+/vtvtGvXDmfPnsUff/wBExMTODo68h2PEE7QQIUQQgTqyZMnmDBhAlq2bAmRSIT09HSYmZnBz88P+/bt4zseIZyggQohhAiUhoYGqqqqAACdOnXCvXv3AAAmJibIzc3lMxohnKGBCiGECJSNjQ02b96M0tJSdO3aFadOnYJYLEZqaipat27NdzxCOEEDFUIIESgfHx8kJycjLi4Ow4cPR0FBAezs7LB48WKMGzeO73iEcILqqBBCiIC9efMGJSUl0NbWRkFBAeLj46Grq4uhQ4fyHY0QTtBAhRBCBKi0tBTq6upSVWqzs7Ohp6cHdXV1HpMRwi269UMIIQKTkJAABwcH3Lp1S+p4aGgoBg4ciBMnTvCUjBDu0UCFEEIEJCUlBb6+vhg0aBA+/fRTqccCAgLg4OCABQsWIC0tjaeEhHCLbv0QQoiAeHh4wMTEBAEBAbU+x9/fHwUFBYiKiuIwGSH8oBkVQggRkIyMDLi4uHzwOa6ursjIyOAoESH8ooEKIYQISFlZ2UcXy2ppaaG0tJSjRITwiwYqhBAiIEZGRrh27doHn5OWlgY9PT2OEhHCLxqoEEKIgIwaNQrr1q1Dfn5+jY/n5+dj3bp1VEeFNBu0mJYQQgSkqqoKbm5uuHv3LsaPHw9ra2u0bdsWhYWFSEtLw8GDB2FoaIidO3dSPRXSLNBAhRBCBKa8vBwRERHYv38/ioqKJMd1dHQwfvx4eHp60iCFNBs0UCGEEIGqrKzEo0ePUFRUBG1tbejr60tVqiWkOaCBCiGEEEIEixbTEkIIIUSwaKBCCCGEEMGigQohhBBCBIsGKoQQztCSOEJIfdFAhRAidy9fvoSvry+uXr3KdxRCiIKhgQohRO5u376NP/74A2KxmO8ohBAFQwMVQgghhAgWDVQIIR/FMAxiY2MxbNgwWFpaYvDgwdi6datkzcnvv/+OcePGoUePHrC0tMTo0aNx9OhRAEBKSgrc3d0BAO7u7nBzc5O8blJSEsaNG4fu3bujX79+CAkJQUlJidR7nzlzBuPGjYOlpSWGDBmChIQEDB48GBs2bJA85+nTp/D398fAgQNhaWkJFxcXnDx5Uup1zMzMsHHjRslrbdy4Ed27d8fatWulnldaWoqePXti06ZN7J1AQkiDqfIdgBAifKtWrcK2bdswdepU9OvXD+np6QgPD0dlZSU0NTUREhKCuXPnomfPnigqKkJUVBQWLVoEa2trdOvWDUFBQQgODkZQUBB69+4NAIiPj8eiRYswcuRILFiwALm5ufjpp59w7949xMTEQElJCZcuXYKXlxcGDRqE+fPn4+HDh/jhhx9QVlYmyVZQUAAXFxe0bNkS3t7eaNeuHQ4cOIDZs2dj1apVGDVqlOS5v/76KxYuXAgjIyPo6ekhOzsb8fHx8Pb2llR8PXHiBEpKSjBmzBhOzzEhpGY0UCGEfNDLly+xfft2fPvtt/juu+8AAH379sWzZ89w5coVdO7cGR4eHvDy8pJ8j56eHsaNG4fU1FQMHz4cnTt3BgB07twZnTt3BsMwCA8Px4ABAxAeHi75PkNDQ0yZMgVnz57FF198gQ0bNqBLly7YuHGjZCDRvn17+Pj4SL4nJiYGL168wPHjx6GnpwcAGDhwIKZMmYJVq1ZhxIgRUFZ+O3lsa2uLqVOnSr53/PjxSExMREpKCuzt7QEAhw4dQt++faGrqyuP00kIqSe69UMI+aDr16+jsrISzs7OUse///57bNmyBX5+fli0aBFevnyJ69ev448//kBcXByAt831anL//n08efIEDg4OqKyslHz16tULmpqauHDhAsrLy3Ht2jU4OztL9bcZOnQoVFX/7xrr8uXLsLa2lgxSqo0aNQrPnj3D/fv3JcfMzc2lntO3b1989tln+OOPPwAAT548wcWLFzF27NgGnClCiDzQQIUQ8kGFhYUAAG1t7Rofz8nJwZQpU9CrVy98++232Lp1KyorKwHUXjel+jWXLVuGbt26SX0VFxfj6dOnKCwsRFVVFdq3by/1vSoqKtDS0pL8d1FRETp06CDzHjo6OgDezghV09DQkHqOsrIyxo0bh+PHj+PNmzf4448/oKmpicGDB9d+QgghnKJbP4SQD2rbti0A4MWLFzA2NpYcz8vLw8OHDxEYGIhWrVph3759MDc3h6qqKu7duyeZpfjQa/r6+sLOzk7m8U8++QTt27eHmpoaCgoKpB4Ti8WSgU71c589eybzGtXH2rVr98Gfb9y4cfj5559x7tw5HD16FF9++SVatmz5we8hhHCHZlQIIR9kaWkJNTU1nD59Wup4dHQ0pkyZgkePHsHFxQXdu3eX3JI5d+4cAEjqpqioqEh9r7GxMdq3b4/Hjx+je/fukq9PP/0Ua9asQUZGBlRUVGBjYyOze+fUqVOSGRsA6NWrF65du4bc3Fyp5x0+fBgdOnSAgYHBB38+PT099OnTB9u3b8ft27cxbty4epwdQoi80YwKIeSDtLW14e7ujtjYWLRo0QJ2dnb4+++/sWvXLgQEBGDbtm2Ii4tDx44d0bZtWyQnJ2P79u0A3m71BYA2bdoAeLvV+JNPPoFIJIK3tzeCgoKgoqKCQYMG4eXLl/jll1+Qn5+Pbt26AQDmzZsHNzc3zJs3Dy4uLsjLy8O6desAQLJuZerUqTh8+DCmTJmCOXPmQEtLC4cOHcKlS5cQGhoqWUj7IS4uLvDx8YGJiQmsrKxYP4eEkIZTYqj5BiHkIxiGQXR0NHbv3o0nT57g888/x+TJk/H1118jMzMTP/74I27evIkWLVqgc+fOmDVrFkJDQ2Fqaop169ZBLBbju+++w4kTJ9CpUyckJCQAABITE7FlyxbcvXsXGhoasLGxwYIFC2BmZiZ576SkJKxbtw4PHjyAnp4e5s+fD29vb/j5+Ul28Dx69Ahr1qzBhQsXUFFRAZFIhOnTp8PR0VHyOmZmZpgzZw7mzp0r8/MVFxfD1tYWixYtwn//+185n01CSH3QQIUQIlgnT55Ex44dJTMsAHD37l2MGDECv/zyi9RApDESExPh6+uLs2fPyizeJYTwi279EEIE6/z580hMTMSiRYtgZGSE/Px8bNq0CcbGxujfv3+jXz8pKQnp6enYvXs3xo0bR4MUQgSIBiqEEMFavHgx1NXVsWnTJjx9+hRaWloYMGAAFi5cyMrOnMePH2Pbtm3o2bOnpJgdIURY6NYPIYQQQgSLticTQgghRLBooEIIIYQQwaKBCiGEEEIEiwYqhBBCCBEsGqgQQgghRLBooEIIIYQQwaKBCiGEEEIEiwYqhBBCCBEsGqgQQgghRLD+PxyscecECZeQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Análisis de la columna 'createdAt':\n", + "createdAt\n", + "{'_seconds': 1731975445, '_nanoseconds': 427000000} 500\n", + "{'_seconds': 1732123040, '_nanoseconds': 262000000} 263\n", + "{'_seconds': 1731965768, '_nanoseconds': 30000000} 102\n", + "{'_seconds': 1731975447, '_nanoseconds': 767000000} 19\n", + "Name: count, dtype: int64\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAMyCAYAAABDwurxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChaklEQVR4nOzdd1QU5+M18Ls0RRGx0PyiAVFBNEoXYkejib3GJGrsGkswNuwVxQI2bEGxgLH3qEmsiUYDCtgVJCLYARERQWAX2PcPX/aXFTSKuzuzy/2ck5MwMwt3M67cKc8zErlcLgcRERGRCOkJHYCIiIjobVhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIhEiPMwlh1i2tdiykJUhEWF6AP1798fDg4Oin8cHR3h4uKCHj16IDw8HPn5+Urb+/j4YMqUKe/9/U+dOoXJkyf/53ZTpkyBj49PqX9OaT18+BAODg7Yv39/sXVSqRStWrVC9+7dkZOTo7YM/fv3R//+/dX2/TXln3/+wTfffKOS73XhwgU4ODjgwoULxdYlJSXBwcEBTZo0gVQqLbZeKpUiICAAhw8fVkkWIlUyEDoAkTZycnLC7NmzAQAFBQV48eIFzp49i4ULFyI6OhorVqyAnt7r44DVq1fDxMTkvb/3li1b3mu7UaNG4bvvvvvg7B/LwsICu3btQq1atYqt27NnD/Lz87Fu3ToYGxtrPJu2+f3333H58mW1/5x9+/bB3t4e9+7dw++//44uXboorU9NTUVYWBgWLlyo9ixEH4pFhagUTExM4OzsrLTMx8cHtWvXxoIFC3DkyBHFLwMnJye1ZCipKGiCkZFRsfdepE2bNvjyyy9RtWpVzYaityooKMDBgwfRp08fXL58GTt37ixWVIjEjJd+iFSoX79+sLS0xM6dOxXL3rwkU1RiGjVqBC8vL0ycOBEpKSkAXl/SuHjxIi5evKg4jV90Sn/nzp1o3bo1XF1dcf78+WKXfgBAJpNh/vz58PDwgLu7OyZPnoz09HTF+pIumZR0yeDu3bsYM2YMPD094eHhgREjRiAhIQFAyZd+kpKS4Ovri549e8LHxwf9+/dHTEyMYn3Ra3777Tf4+vrCxcUFnp6emDFjBl69evXO/6ePHz/GmDFj4ObmhqZNm2Lz5s0lbrdnzx507NgRDRs2RKtWrbBq1SoUFBS883tLpVKsWLECbdq0QaNGjdCpUyccOHBA6f/XxIkT4evrC2dnZwwaNAgAkJeXhyVLlqBly5Zo2LAhOnfujF9//VXpe+fm5mLp0qVo164dGjZsCFdXVwwaNAixsbEAgFWrVmH16tUAAAcHB6xatQoAUFhYiPXr1+Pzzz9Hw4YN0b59e2zdurVY9p07d6J9+/Zo1KgR+vXrh8ePH5f4Hs+dO4fU1FS0atUKXbp0QUxMDO7cuaNY//DhQ7Rp0wYAMHXq1GJ/poiExqJCpEJ6enrw9vbGtWvXit2rAgAxMTHw8/NDu3btsGHDBkydOhWRkZGYMGECAGD27NlwcnKCk5MTdu3ahQYNGiheu3r1akyePBmzZs2Ci4tLiT//t99+w82bN7Fo0SJMnjwZf/75J4YNG/afv7D/LSUlBX369EFSUhLmzJmDwMBApKWlYcCAAcjIyCi2/Z07d9CjRw88fPgQM2bMQFBQECQSCQYMGICLFy8qbTt79mz873//w9q1azFkyBDs3bsX69ate2uWV69eoV+/foiPj4e/vz9mzpyJPXv2FLtcEhISgpkzZ8Lb2xs//fQT+vbtiw0bNmDmzJnvfK8TJ07E5s2b0bt3b4SEhKBZs2aYMmUKjhw5otjmt99+Q8WKFbFu3ToMHToUcrkco0ePxs6dOzFo0CCsW7cOLi4uGDduHA4ePKh4nZ+fH/bt24fhw4dj06ZNmDp1Kv755x9MmDABcrkcvXv3Rq9evQAAu3btQu/evQEAc+bMQXBwMLp06YKffvoJX3zxBQICArBmzRrF9/75558xe/ZstGzZEmvXrkXjxo3f+l737duHunXromHDhmjXrh0qVqyoVKQtLCwUhWnkyJGK/yYSC176IVKx6tWrQyaTISMjA9WrV1daFxMTg/Lly2P48OEwMjICAJiZmeH69euQy+WoU6eO4n6WNy+vfPvtt/jiiy/e+bOrVKmCjRs3okKFCoqvR48ejbNnz6J169bvlX/Lli2QSqXYvHkzzM3NAQCOjo745ptvcPXqVdjb2yttv3r1ahgZGSE8PFyRvVWrVujUqROWLFmCvXv3KrZt2bKl4kZhb29vnD9/Hn/++aeiqL3pwIEDePz4MY4cOYI6deoAABo3bozPP/9csc3Lly+xdu1a9OnTBzNmzAAANGvWDGZmZpgxYwYGDRqEunXrFvve8fHxOHbsGKZNm4YBAwYoMj169AgXLlxAp06dAACGhoaYO3euYn+dP38ef/31F5YvX44OHToAAJo3b46cnBwEBQWhU6dOKCwsRHZ2NmbMmKHYxtPTE1lZWVi0aBHS0tJgZWUFKysrAP+3rxMTE7F7926MHz8ew4cPV7wXiUSCkJAQfPvttzAzM8PatWvRoUMHTJs2TbFNVlaWUgEBgOfPn+P06dMYP348AMDY2BgdOnTAoUOHMGHCBBgbG8PIyAj169cH8PpyorouVRKVFs+oEKlY0RBPiURSbJ2HhwdycnLQqVMnLF26FNHR0WjWrBnGjBlT4vb/VvTL5F1atmypKCnA68tOBgYGiIqKeu/8MTExcHZ2VpQUALCyssIff/yBli1bFtv+4sWLaN26tdINwwYGBujYsSNu3LiB7OxsxfI3y5eVldU7L/1ER0ejVq1aipICANbW1krf5/Lly8jNzYWPjw/y8/MV/xRdwjh//vxb3ycAtGvXTmn5qlWr4O/vr/i6du3aipICABEREZBIJGjZsmWxn/f06VP8888/MDIywsaNG9GhQwekpKQgMjISO3fuxB9//AEAJY68AYDIyEjI5fIS30teXh5iYmJw9+5dPHv2rFjx/PLLL4t9v19++QUFBQVo1aoVMjMzkZmZic8//xyZmZnFLlURiRXPqBCpWEpKCsqXLw8zM7Ni61xcXLB+/Xps2bIFmzdvxvr161G9enV8//33/znc9t8F5G3+XS6A15eiqlSpgszMzPfOn5GRARsbm/fe/sWLF8XOHAGvzyzJ5XJkZWUplr05EkhPT++dc3e8ePECVapUKbbc3NwcaWlpirwAFGcg3pSamlri8qLXVatW7a0/HwAqVqxY7HVyuRyurq5v/Xn169fHX3/9hYCAANy9excVK1aEo6OjYh++7T0XZerYsWOJ61NSUhQ3Kr/5/+XNfQ8A+/fvR2FhYYklZufOnejZs2eJP4dITFhUiFQoPz8fFy5cgKurK/T19Uvcpnnz5opLBZGRkQgPD8f8+fPRuHFjNGrU6KN+/pv3kBQUFOD58+dKv4zfvF/lzTMalSpVUroBt0hERARsbGyKnfmpXLmyojT829OnTwG8/oX6trLwX6pUqYJ79+4VW/7v92lqagoACAoKgq2tbbFtSypR/35denq64hIMACQkJCAjIwNubm4lvq5SpUqoUKECwsPDS1z/ySef4P79+xg9ejTatm2LkJAQ1KxZExKJBNu2bcNff/1V4uv+nSksLKxYQQKAGjVqKErns2fPlNa9ue9v3ryJuLg4+Pr6wt3dXWndiRMnsHXrVsTGxr7XmToiIfHSD5EK7dq1C0+fPn3rJF6LFy9Gz549IZfLYWxsjNatWyvu2SgatVE0/0ppnD9/Xukm3mPHjiE/Px9NmjQB8HpYdXJystJr/j06BwDc3d1x9epVpbLy7NkzDB06FGfOnCn2Mz08PPDHH38onTkpKCjA0aNH8emnnypdNvlQXl5eePjwIa5fv65Ylp6ejitXrii+bty4MQwNDZGSkoJPP/1U8Y+BgQGWLVuGhw8flvi9i4rI6dOnlZYHBQVhwYIFb83k6emJV69eQS6XK/28+Ph4rFmzBvn5+bhx4wby8vIwfPhw1KpVS1HuikpK0RmVN/d1UaF4/vy50vdOT0/HypUrkZGRAVtbW1hbW+P3339Xem3RZaUi+/btQ7ly5TBgwAA0adJE6Z8hQ4ZAT08PO3bsAIC3lmoiMeAZFaJSyMrKUvyyLCwsxPPnz3Hu3Dns2rULXbp0KXbfQxEvLy9s3rwZU6ZMQZcuXSCTyRAaGgozMzN4eXkBeH1UffnyZURERHzwjY1Pnz7FDz/8gP79+yMpKQnLli1D06ZN4e3tDQBo3bo1Tp8+jYULF8LHxwfR0dFKI1UAYODAgTh48CCGDh2KESNGwNDQEOvWrYOVlRU6d+6Mly9fKm0/ZswYnD17Ft999x2GDx8OQ0ND/Pzzz3jw4AFCQ0M/KP+bunbtivDwcIwZMwbjxo2DiYkJ1q1bh8LCQsU2VapUwdChQ7Fy5UpkZWWhSZMmSElJwcqVKyGRSODo6Fji93Z0dMQXX3yBwMBA5Obmon79+jh79iz++OOPd458admyJTw8PDBq1CiMGjUK9vb2uHbtGoKDg9G8eXNUrVoVDRo0gIGBAQIDAzF48GBIpVLs378ff/75J4D/O4tVdAblyJEjaNy4MRwcHNClSxfMnDkTjx49QsOGDZGYmIjly5fDxsYGtra2kEgkmDhxIiZMmIAZM2bgiy++wJUrVxSlA3h9D8yRI0fQqlWrEicbtLa2hqenJw4fPgw/Pz9UqlQJwOuzZvb29mjcuPGH7SgiNWJRISqFW7duoU+fPgBe3zRbsWJF1KtXD3PmzFEMMy1Jy5YtERQUhE2bNiluoHVzc0N4eLjinpa+ffvixo0bGDZsGBYuXAgLC4v3zvXtt9/i5cuXGD16NIyMjNC5c2dMmjRJcUTfs2dP3L9/HwcOHMDOnTvh4eGB4OBgpTNA1tbW2L59OwIDAzFlyhQYGRmhSZMmWL58OSpXrlysqNStWxfbt2/HsmXLMHXqVEgkEjRq1Ajh4eHFLjl8KCMjI4SFhSEgIAALFiyARCLBV199hZo1aypd+vjxxx9hbm6O7du3IzQ0FJUrV4a3tzfGjx+v+CVcksDAQKxevRphYWF4/vw57O3tERwcjLZt2771NXp6eli/fj1WrlyJkJAQPHv2DJaWlhg0aBBGjx4N4PXln6VLl2L16tUYOXIkKleuDGdnZ2zduhX9+/dHdHQ0HBwc0K5dOxw6dAhTpkxBr169MGfOHCxcuBAhISHYuXMnkpOTUa1aNXTo0AE//vij4sxHp06doKenh7Vr1+LQoUOoV68e5s2bpxjdc/LkSbx48UIx4qgk3bp1Q2RkJA4fPoxvvvkGgwYNwq5du3DmzBmcP38ehoaGH7SviNRFIudTqIiIiEikeI8KERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJltbPo3L58mXI5XKO+SciItIiMpkMEokELi4u79xO68+oyOXydz7UTFfJ5XJIpdIy+d7LIu7vsoX7u2wpq/v7fX9/a/0ZlaIzKZ9++qnASTTr1atXiI2NRZ06dd7rqbqk3bi/yxbu77KlrO7vfz/D6120/owKERER6S4WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEq0PLiopKSlwcHAo9s/+/fsBALGxsejXrx+cnZ3h4+OD8PBwpdcXFhYiODgYzZs3h7OzM4YNG4YHDx6o5t0QERGRTvngZ/3ExcWhXLlyOHnyJCQSiWJ5pUqV8Pz5cwwaNAg+Pj6YO3curly5grlz56JixYro2bMnAGDt2rXYvn07Fi1aBCsrKwQGBmLo0KE4fPgwjIyMVPfOiIiISOt9cFGJj4+Hra0tLCwsiq0LCwuDoaEh5s2bBwMDA9jb2+PevXtYv349evbsCalUik2bNmHixIlo1aoVAGD58uVo3rw5jh8/jk6dOn30GyIiIiLd8cGXfm7fvg17e/sS10VHR8PT0xMGBv/Xf7y8vJCUlIS0tDTExcUhOzsb3t7eivWmpqZwcnJCVFRUKeITERGRLvvgohIfH4/09HT07dsXn332Gb755hucPXsWAJCcnAwrKyul7YvOvDx58gTJyckAAGtr62LbFK0jIiIiKvJBl37y8/Nx9+5d1KlTB1OmTIGJiQmOHj2K4cOHY/PmzcjNzS12n0m5cuUAAHl5ecjJyQGAErd58eJFqd+EXC7Hq1evSv36j/Hv+3Q0SSqVwtjYGFKpVLAMcrlckJ9bFhV9dor+TbqN+7tsKav7Wy6Xv9fvrw8qKgYGBrhw4QL09fVRvnx5AEDDhg3xzz//YOPGjShfvjykUqnSa/Ly8gAAFSpUULxGKpUq/rtoG2Nj4w+JokQmkyE2NrbUry8tQ0NDODk1gIGBvsZ/trGxMczMzDT+c4vk5xfg1q2bkMlkgmUoi5KSkoSOQBrE/V22lMX9/T6DaD74ZtqKFSsWW1a3bl2cO3cOVlZWSE1NVVpX9LWlpSXy8/MVy2rVqqW0jYODw4dGUTA0NESdOnVK/frSkkgkMDDQR9C2GDxMeanxny8UG8tKmNjXDXXr1uVZFQ3JyclBUlISbG1tP6rUk3bg/i5byur+vnPnzntt90FF5Z9//kGfPn2wbt06NGnSRLH8xo0bqFOnDurXr4+dO3eioKAA+vqvzzJERkbCzs4O1apVQ6VKlWBiYoILFy4oikpmZiZu3bqFfv36fUgUJRKJBBUqVCj16z/Ww5SXSHhU+ktX2qosfaDEwtjYWNA/66RZ3N9lS1nb3+9728IH3Uxrb2+P2rVrY968eYiOjkZCQgIWLlyIK1euYOTIkejZsyeysrIwffp03LlzB/v378eWLVswYsQIAK9P8fTr1w9BQUE4deoU4uLiMG7cOFhZWaFdu3Yf/i6JiIhIp33QGRU9PT389NNPWLp0KX788UdkZmbCyckJmzdvRr169QAAoaGhWLBgAbp37w5zc3P4+fmhe/fuiu/h6+uL/Px8zJgxA7m5ufDw8MDGjRthaGio2ndGREREWu+D71GpXr06Fi5c+Nb1jRo1wq5du966Xl9fH5MmTcKkSZM+9EcTERFRGcOHEhIREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaJW6qCQmJsLFxQX79+9XLIuNjUW/fv3g7OwMHx8fhIeHK72msLAQwcHBaN68OZydnTFs2DA8ePCg9OmJiIhIp5WqqMhkMkycOBGvXr1SLHv+/DkGDRqEWrVqYd++fRg9ejSCgoKwb98+xTZr167F9u3b4e/vj507d6KwsBBDhw6FVCr9+HdCREREOqdURWXVqlUwMTFRWrZ7924YGhpi3rx5sLe3R8+ePTFw4ECsX78eACCVSrFp0yb4+vqiVatWcHR0xPLly5GcnIzjx49//DshIiIinfPBRSUqKgq7du3CokWLlJZHR0fD09MTBgYGimVeXl5ISkpCWloa4uLikJ2dDW9vb8V6U1NTODk5ISoq6iPeAhEREekqg//e5P9kZmbCz88PM2bMgLW1tdK65ORk1KtXT2mZhYUFAODJkydITk4GgGKvs7CwUKwrLblcrnQZSlMkEgmMjY01/nPFIicnB3K5XOgYZUJOTo7Sv0m3cX+XLWV1f8vlckgkkv/c7oOKypw5c+Di4oLOnTsXW5ebmwsjIyOlZeXKlQMA5OXlKXZASdu8ePHiQ2IUI5PJEBsb+1HfozSMjY3h5OSk8Z8rFomJiWXugyW0pKQkoSOQBnF/ly1lcX+/2QlK8t5F5eDBg4iOjsbhw4dLXF++fPliN8Xm5eUBACpUqIDy5csDeH2vStF/F23zsWclDA0NUadOnY/6HqXxPk1Ql9nZ2fGMiobk5OQgKSkJtra2ZfosXlnB/V22lNX9fefOnffa7r2Lyr59+/Ds2TO0atVKafns2bPx66+/wsrKCqmpqUrrir62tLREfn6+YlmtWrWUtnFwcHjfGCWSSCSoUKHCR30P+nBl6QMlFsbGxvyzXoZwf5ctZW1/v+/B/nsXlaCgIOTm5iota9euHXx9fdGlSxccOnQIO3fuREFBAfT19QEAkZGRsLOzQ7Vq1VCpUiWYmJjgwoULiqKSmZmJW7duoV+/fu8bg4iIiMqQ9y4qlpaWJS6vVq0aLC0t0bNnT4SGhmL69OkYOnQorl27hi1btmDu3LkAXl+H6tevH4KCglC1alX873//Q2BgIKysrNCuXTvVvBsiIiLSKR90M+27VKtWDaGhoViwYAG6d+8Oc3Nz+Pn5oXv37optfH19kZ+fjxkzZiA3NxceHh7YuHEjDA0NVRWDiIiIdMhHFZXbt28rfd2oUSPs2rXrrdvr6+tj0qRJmDRp0sf8WCIiIioj+FBCIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEq0PLirPnj3DpEmT4OXlBRcXFwwfPhwJCQmK9bGxsejXrx+cnZ3h4+OD8PBwpdcXFhYiODgYzZs3h7OzM4YNG4YHDx58/DshIiIinfPBRWX06NG4d+8e1q9fj71796J8+fIYOHAgcnJy8Pz5cwwaNAi1atXCvn37MHr0aAQFBWHfvn2K169duxbbt2+Hv78/du7cicLCQgwdOhRSqVSlb4yIiIi0n8GHbPzixQv873//w4gRI1CvXj0AwKhRo9C1a1f8888/iIiIgKGhIebNmwcDAwPY29srSk3Pnj0hlUqxadMmTJw4Ea1atQIALF++HM2bN8fx48fRqVMnlb9BIiIi0l4fdEalcuXKWLp0qaKkpKenY8uWLbCyskKdOnUQHR0NT09PGBj8X//x8vJCUlIS0tLSEBcXh+zsbHh7eyvWm5qawsnJCVFRUSp6S0RERKQrPuiMyr/NnDkTu3fvhpGREdatW4cKFSogOTlZUWKKWFhYAACePHmC5ORkAIC1tXWxbYrWlYZcLserV69K/frSkkgkMDY21vjPFYucnBzI5XKhY5QJOTk5Sv8m3cb9XbaU1f0tl8shkUj+c7tSF5UBAwagT58+2LZtG0aPHo3t27cjNzcXRkZGStuVK1cOAJCXl6fYCSVt8+LFi9JGgUwmQ2xsbKlfX1rGxsZwcnLS+M8Vi8TExDL3wRJaUlKS0BFIg7i/y5ayuL/f7AMlKXVRqVOnDgBgwYIFuHr1Kn7++WeUL1++2E2xeXl5AIAKFSqgfPnyAACpVKr476JtPubMhKGhoSKPJr1PE9RldnZ2PKOiITk5OUhKSoKtrW2ZPotXVnB/ly1ldX/fuXPnvbb7oKKSnp6OiIgItG/fXnEfip6eHurUqYPU1FRYWVkhNTVV6TVFX1taWiI/P1+xrFatWkrbODg4fEgUJRKJBBUqVCj166l0ytIHSiyMjY35Z70M4f4uW8ra/n7fg/0Pupk2LS0N48ePR0REhGKZTCbDrVu3YG9vDw8PD8TExKCgoECxPjIyEnZ2dqhWrRocHR1hYmKCCxcuKNZnZmbi1q1b8PDw+JAoREREVAZ8UFGpV68eWrRogfnz5yMqKgrx8fGYMmUKMjMzMXDgQPTs2RNZWVmYPn067ty5g/3792PLli0YMWIEgNfXovr164egoCCcOnUKcXFxGDduHKysrNCuXTu1vEEiIiLSXh98j8qyZcuwdOlSjBs3Di9fvoS7uzu2bduGGjVqAABCQ0OxYMECdO/eHebm5vDz80P37t0Vr/f19UV+fj5mzJiB3NxceHh4YOPGjTA0NFTduyIiIiKd8MFFpVKlSpgzZw7mzJlT4vpGjRph165db329vr4+Jk2ahEmTJn3ojyYiIqIyhg8lJCIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRIdICEokExsbGkEgkQkchItIoA6EDEGmTwkI59PQ0XxaMjY3h5OSk8Z9bRKj3TUTEokL0AfT0JAjaFoOHKS+FjqIxNpaVMLGvm9AxiKiMYlEh+kAPU14i4dELoWMQEZUJvEeFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIROuDi0pGRgZmzZqFFi1awNXVFd988w2io6MV6yMiItCjRw80btwYX3zxBY4ePar0+ry8PMydOxfe3t5wcXHBhAkTkJ6e/vHvhIiIiHTOBxeV8ePH4/Lly1i2bBn27duH+vXrY8iQIbh79y4SEhIwYsQING/eHPv370fv3r3h5+eHiIgIxevnzJmDc+fOYdWqVQgLC8Pdu3fh6+ur0jdFREREusHgQza+d+8ezp8/j+3bt8PNzQ0AMHPmTPz11184fPgwnj17BgcHB4wbNw4AYG9vj1u3biE0NBTe3t5ISUnBwYMH8dNPP8Hd3R0AsGzZMnzxxRe4fPkyXFxcVPz2iIiISJt90BmVKlWqYP369fj0008VyyQSCSQSCTIzMxEdHQ1vb2+l13h5eSEmJgZyuRwxMTGKZUXs7OxgaWmJqKioj3kfREREpIM+6IyKqakpWrZsqbTs2LFjuHfvHqZNm4YDBw7AyspKab2FhQVycnLw/PlzpKSkoEqVKihXrlyxbZKTk0v5FgC5XI5Xr16V+vWlJZFIYGxsrPGfKxY5OTmQy+VCx9AY7u+ytb+FlJOTo/Rv0m1ldX/L5XJIJJL/3O6DisqbLl26hKlTp6Jdu3Zo1aoVcnNzYWRkpLRN0ddSqRQ5OTnF1gNAuXLlkJeXV+ocMpkMsbGxpX59aRkbG8PJyUnjP1csEhMTy9QHi/u7bO1vMUhKShI6AmlQWdzfJXWCN5W6qJw8eRITJ06Eq6srgoKCALwuHFKpVGm7oq+NjY1Rvnz5YuuB1yOBPuZI1dDQEHXq1Cn160vrfZqgLrOzsytTR9jc32VrfwspJycHSUlJsLW1LdNn8cqKsrq/79y5817blaqo/Pzzz1iwYAG++OILLF68WNGIrK2tkZqaqrRtamoqKlSogEqVKsHKygoZGRmQSqVKLSo1NRWWlpaliQLg9S+QChUqlPr1VDpl6QNF3N9CMDY25t9tZUhZ29/ve/D3wcOTt2/fDn9/f/Tt2xfLli1TKhzu7u64ePGi0vaRkZFwdXWFnp4e3NzcUFhYqLipFnh9OjklJQUeHh4fGoWIiIh03AcVlcTERAQEBODzzz/HiBEjkJaWhqdPn+Lp06d4+fIl+vfvj2vXriEoKAgJCQnYtGkTfv/9dwwdOhQAYGlpiY4dO2LGjBm4cOECrl27hvHjx8PT0xPOzs7qeH9ERESkxT7o0s+xY8cgk8lw4sQJnDhxQmld9+7dsWjRIqxduxaBgYEICwuDjY0NAgMDlYYs+/v7IyAgAGPGjAEAtGjRAjNmzFDBWyEiIiJd80FF5fvvv8f333//zm1atGiBFi1avHV9hQoVMH/+fMyfP/9DfjQRERGVQXwoIREREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYnWRxWVkJAQ9O/fX2lZbGws+vXrB2dnZ/j4+CA8PFxpfWFhIYKDg9G8eXM4Oztj2LBhePDgwcfEICIiIh1V6qKybds2rFixQmnZ8+fPMWjQINSqVQv79u3D6NGjERQUhH379im2Wbt2LbZv3w5/f3/s3LkThYWFGDp0KKRSaanfBBEREekmgw99QUpKCmbPno0LFy7A1tZWad3u3bthaGiIefPmwcDAAPb29rh37x7Wr1+Pnj17QiqVYtOmTZg4cSJatWoFAFi+fDmaN2+O48ePo1OnTqp4T0RERKQjPviMys2bN2FoaIhffvkFjRs3VloXHR0NT09PGBj8X//x8vJCUlIS0tLSEBcXh+zsbHh7eyvWm5qawsnJCVFRUR/xNoiIdIdEIoGxsTEkEonQUYgE98FnVHx8fODj41PiuuTkZNSrV09pmYWFBQDgyZMnSE5OBgBYW1sX26ZoXWnI5XK8evWq1K8vraK/TMqqnJwcyOVyoWNoDPd32dvfRuXKQV9P82MOjI2N4eTkpPGfW6SgsBDSvLwytb+FlJOTo/TvskIul79XGf/govIuubm5MDIyUlpWrlw5AEBeXp5iJ5S0zYsXL0r9c2UyGWJjY0v9+tIS+i8ToSUmJpapDxb3d9nc30HbYvAw5aXQcTTGxrISJvZ1K3P7WwySkpKEjqBxb/aBkqi0qJQvX77YTbF5eXkAgAoVKqB8+fIAAKlUqvjvom0+5kjV0NAQderUKfXrS6usn5a1s7MrU0dc3N9lc38/THmJhEelP5DSVmVtfwspJycHSUlJsLW1LVNnbe/cufNe26m0qFhZWSE1NVVpWdHXlpaWyM/PVyyrVauW0jYODg6l/rkSiQQVKlQo9eupdMrSB4q4v8sa7m/NMzY2LlO/y9734E+lF189PDwQExODgoICxbLIyEjY2dmhWrVqcHR0hImJCS5cuKBYn5mZiVu3bsHDw0OVUYiIiEgHqLSo9OzZE1lZWZg+fTru3LmD/fv3Y8uWLRgxYgSA19ei+vXrh6CgIJw6dQpxcXEYN24crKys0K5dO1VGISIiIh2g0ks/1apVQ2hoKBYsWIDu3bvD3Nwcfn5+6N69u2IbX19f5OfnY8aMGcjNzYWHhwc2btwIQ0NDVUYhIiIiHfBRRWXRokXFljVq1Ai7du1662v09fUxadIkTJo06WN+NBEREZUBfCghERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChERkYAkEgmMjY0hkUiEjiJKBkIHICIiEoPCQjn09DRfFoyNjeHk5KTxn1tEqPf9vlhUiIiIAOjpSRC0LQYPU14KHUVjbCwrYWJfN6FjvBOLChER0f/3MOUlEh69EDoG/QvvUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0RKkqBQWFiI4OBjNmzeHs7Mzhg0bhgcPHggRhYiIiERMkKKydu1abN++Hf7+/ti5cycKCwsxdOhQSKVSIeIQERGRSGm8qEilUmzatAm+vr5o1aoVHB0dsXz5ciQnJ+P48eOajkNEREQipvGiEhcXh+zsbHh7eyuWmZqawsnJCVFRUZqOQ0RERCKm8aKSnJwMALC2tlZabmFhoVhHREREBAgwhX5OTg4AwMjISGl5uXLl8OLFh09bLJPJIJfLce3aNZXk+1ASiQS9vCshv6CiID9fCAb6erh+/TrkcrnQUTSO+7ts4f4uW7i/NUsmk73XE6M1XlTKly8P4PW9KkX/DQB5eXkwNjb+4O9X9CaFfDx2ZROj/95IB5XVR5Jzf5ct3N9lC/e3Zn+mKItK0SWf1NRU1KpVS7E8NTUVDg4OH/z9XFxcVJaNiIiIxEXj96g4OjrCxMQEFy5cUCzLzMzErVu34OHhoek4REREJGIaP6NiZGSEfv36ISgoCFWrVsX//vc/BAYGwsrKCu3atdN0HCIiIhIxjRcVAPD19UV+fj5mzJiB3NxceHh4YOPGjTA0NBQiDhEREYmURF4Wb+0mIiIircCHEhIREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoaBm5XA5fX188ePBA6CikIX/++SdevXoldAzSkG3btuHFixdCxyANiY+Ph0wmEzqGqLGoiFx+fj6ePn2KR48eIT4+HgsWLMDVq1cxffp0REdH48GDB3jy5AmePn0KTjKsey5duoTvv/8eO3fuFDoKacDvv/+OhQsX4qeffuIvrzLg3r176Nq1K37//Xeho4gap9AXsb179yIgIAA5OTkAXp9NcXV1xYoVK7BmzRocPHgQUqlUsa5SpUqYOXMmunTpImRsKqX79+8jNDQUjx49glQqRXZ2NhITEzF79mwEBQXB2NgYFhYWMDAwgIGBAWxtbTFs2DBYWVkJHZ1K4dq1a1i5cqXS/i4oKMCqVasQEBCA+/fvo0qVKkr7+8cff4Sjo6PQ0akUnj9/jj179uDhw4eQyWTIzs5GZGQkBgwYgE2bNqFhw4awtLRU2t99+vRBxYoVhY4uOBYVEfP09MT48ePRtGlTGBgYwNTUVOkPbX5+Pp4/fw6ZTIb8/HycPn0a69atw4ULFwRMTaXVrVs3VKtWDY0bN4a+vj4qV64Mb29v2Nvb4+XLl/jjjz+QnJwMqVSK/Px8xMTEIDs7G/v37xc6OpXC559/Dnd3d7i7uyv2t4uLC8zMzFBQUIArV64gOTkZMpkMMpkMkZGRuHHjBo4dOyZ0dCqF/v3748WLF6hfv75ifzdr1gxNmzbF/fv3cfToUTx58kTx9/mNGzdgbm6O8PBwoaMLTpCnJ9P7adOmDTp16gQTE5MS1xsYGMDc3FzxdY8ePXD79m1NxSMVi4+Px6lTp2BtbV1sXaVKlYqdKXvw4AHatWunqXikYnK5HBMmTED16tWLrdPX14ebm5vSshYtWuDbb7/VVDxSsZiYGBw7dgw1a9Ystq5WrVoYOXKk0rLExER07NhRU/FEjWdUtER6ejqePHmCvLw8VKhQARYWFqhatarQsYiI6D08evQINWrUgEQiea/tCwsL8eTJE/zvf/9TczLxY1ERuQMHDmD9+vVISkoCAMUNsxKJBHZ2dhgxYgS6du0qYEJSpYyMDOzevRvR0dF48uQJpFIpjI2NYWlpCQ8PD/Tq1QtmZmZCxyQVuXv3LsLCwkrc3+7u7hgwYADs7OyEjkkqkp+fj+PHjyMqKqrEz3e7du2gr68vdEzRYVERsa1btyIoKAgDBw6El5cXLCwsYGRkBKlUitTUVERERCA8PBx+fn48JawDYmNjMWjQIBgbG8Pd3R0WFhYoV64c8vLykJqaiujoaOTl5WHz5s1wcHAQOi59pIiICIwYMQJOTk6Kz/e/93dkZCRu376NkJAQeHp6Ch2XPtLDhw8xZMgQpKSkwMnJqdj+vnXrFmrUqIHQ0FDUqFFD6LiiwqIiYm3atMGYMWPQvXv3t26zf/9+rF27FidPntRgMlKHvn37wsbGBgEBASUeVRUUFGDq1Kl48uQJtm7dKkBCUqUePXrAy8sLfn5+b91myZIluHDhAvbt26fBZKQOw4cPR0FBAVasWIFKlSoVW5+ZmYlx48bB0NAQP/30kwAJxYvzqIhYeno6Gjdu/M5tGjdujKdPn2ooEanTjRs3MHz48Lee+tXX18eIESNw48YNDScjdUhISEDv3r3fuU2vXr2QkJCgoUSkTlFRUfDz8yuxpACAqakpJk2ahKioKA0nEz8WFRFr2LAhNm/ejMLCwhLXy+VyhIaGon79+hpORupgbm6OuLi4d25z/fp13qOiI2xsbPD333+/c5uzZ8/C0tJSQ4lInSpVqoSUlJR3bvP48WOUL19eQ4m0B4cni9i0adMwePBgnD17Fh4eHrC2tla6RyU6OhpZWVnYuHGj0FFJBQYNGoTp06fj9u3b8PLygpWVldL+vnjxIjZv3gxfX1+ho5IKjBkzBpMmTUJMTAy8vb1L3N9Hjx5FQECA0FFJBXr16oUpU6Zg7Nix8PLyUvr7PCUlBRcvXkRQUBB69eoldFTR4T0qIpeRkYFdu3YhJiYGycnJyM3NRbly5WBtbQ13d3f06tWLw5R1yIEDBxASEoKkpCTFMMaij6idnR0GDx78n5cLSHtERkZiw4YNuHTpkmIGagAwNjaGm5sbBg0ahKZNmwqYkFRFLpdjzZo12Lx5c4nP7qpYsSL69u2LsWPHQk+PFzv+jUWFSITS09ORnJyMnJwclC9fHtbW1iykOkwulyMzM1NxIMLLe7pLJpMhNjYWKSkpis+3lZUVHB0dYWRkJHQ8UeKlH5HjuPuyRyaT4eHDh0hOTkZeXh6MjY0hl8thamoKAwN+ZHVNamqq4oxp0f62srKCq6ur0szTpBsMDQ1hY2MDfX19pQk8WVLejmdURIzj7suWolPDYWFhePnyZbH1JiYmGDx4MEaNGiVAOlK13NxczJ07FwcPHoREIoGZmZni852RkQGJRIJu3bph9uzZ/CWmI0qawLPoEi8n8Hw7Hp6J2Lx582BjY4O9e/e+c9z9vHnzOO5eBwQHB2P79u2YNGlSiROARUREYNmyZSgsLMSYMWOEjksfqWiOlNDQUHh6esLQ0FCxTiaT4cKFC5g9ezYWL16MmTNnCpiUVOF9JvCcPXs2srOzOYHnm+QkWs7OzvK4uLh3bhMbGyt3dXXVUCJSp6ZNm8pPnjz5zm1OnDghb9GihYYSkTp5enrKIyMj37lNRESE3NvbW0OJSJ18fHzk+/fvf+c2+/btk7dp00ZDibQHby0WMY67L1tycnJga2v7zm1q1qyJFy9eaCYQqZVcLkflypXfuU3FihWRm5uroUSkTpzAs/RYVESsaNz9rl27cO/ePUilUgCAVCrFgwcPsG/fPkyfPh09evQQOCmpgru7O4KCgpCVlVXi+uzsbCxduhRubm4aTkbq0Lx5c8yaNQuJiYklrn/w4AHmzp2LFi1aaDgZqQMn8Cw93kwrYnKOuy9THj16hMGDByM5ORlOTk7FJvi7efMmLCwsEBoaipo1awodlz5SRkYGfvjhB0RHR8Pc3LzY/k5OToaLiwtWr17Noek6IDY2FoMHD4aRkdF/TuDZsGFDoeOKCouKFuC4+7IjPz8fv//+e4kT/Hl4eKBt27bc5zrm8uXLiI6ORkpKCnJzcxWfbw8Pj/+8VEDahRN4lg6LipZIT0/HkydPlMbd8w80ERHpOg5PFjmOuy9bMjIysHv3bkRHR5c4wV+vXr04a6kOuXv3LsLCwkrc3+7u7hgwYADs7OyEjkkqwgk8S4dnVETsfcbdh4eHw8/Pj+PudUBsbCwGDRoEY2NjuLu7F5tHJTo6Gnl5edi8eTMcHByEjksfKSIiAiNGjICTk1OJ8+ZERkbi9u3bCAkJgaenp9Bx6SNxAs/SY1ERsTZt2mDMmDHo3r37W7fZv38/1q5di5MnT2owGalD3759YWNjg4CAgBKPqgoKCjB16lQ8efIEW7duFSAhqVKPHj3g5eUFPz+/t25TNCncvn37NJiM1GH48OEoKCjAihUr3jmBp6GhISfwfAOHiogYx92XLTdu3MDw4cPfeupXX18fI0aMwI0bNzScjNQhISHhP5+E3atXLyQkJGgoEalTVFQU/Pz8SiwpAGBqaopJkyYhKipKw8nEj0VFxDjuvmwxNzdHXFzcO7e5fv0671HRETY2Nvj777/fuc3Zs2dhaWmpoUSkTpzAs/R4M62ITZs2DYMHD8bZs2f/c9w9ab9BgwZh+vTpuH37Nry8vGBlZaW0vy9evIjNmzfD19dX6KikAmPGjMGkSZMQExMDb2/vEvf30aNHERAQIHRUUoGiCTzHjh0LLy8vpb/PU1JScPHiRQQFBaFXr15CRxUd3qMichx3X7YcOHAAISEhSEpKUozuKvqI2tnZYfDgwf95uYC0R2RkJDZs2IBLly4hJydHsdzY2Bhubm4YNGgQmjZtKmBCUhVO4Fl6LCpEIpSeno7k5GTFBH/W1tYspDpMLpcjMzNTcSDCy3u6ixN4fjhe+hE5jrsve2QyGR4+fIjk5GTk5eXB2NgYcrkcpqamMDDgR1bXpKamKs6YFu1vKysruLq6wtzcXOh4pGKGhoawsbGBvr6+0gSeLClvxzMqIsZx92VL0anhsLAwvHz5sth6ExMTDB48GKNGjRIgHalabm4u5s6di4MHD0IikcDMzEzx+c7IyIBEIkG3bt0we/Zs/hLTEZzAs3R4eCZi8+bNg42NDfbu3fvOcffz5s3juHsdEBwcjO3bt2PSpEklTgAWERGBZcuWobCwEGPGjBE6Ln2kojlSQkND4enpCUNDQ8U6mUyGCxcuYPbs2Vi8eDFmzpwpYFJShfeZwHP27NnIzs7mBJ5vkpNoOTs7y+Pi4t65TWxsrNzV1VVDiUidmjZtKj958uQ7tzlx4oS8RYsWGkpE6uTp6SmPjIx85zYRERFyb29vDSUidfLx8ZHv37//ndvs27dP3qZNGw0l0h68tVjEOO6+bMnJyYGtre07t6lZsyZevHihmUCkVnK5HJUrV37nNhUrVkRubq6GEpE6cQLP0mNREbGicfe7du3CvXv3IJVKAQBSqRQPHjzAvn37MH36dPTo0UPgpKQK7u7uCAoKQlZWVonrs7OzsXTpUri5uWk4GalD8+bNMWvWLCQmJpa4/sGDB5g7dy5atGih4WSkDpzAs/R4M62IyTnuvkx59OgRBg8ejOTkZDg5ORWb4O/mzZuwsLBAaGgoatasKXRc+kgZGRn44YcfEB0dDXNz82L7Ozk5GS4uLli9ejWHpuuA2NhYDB48GEZGRv85gWfDhg2FjisqLCpagOPuy478/Hz8/vvvJU7w5+HhgbZt23Kf65jLly8jOjoaKSkpyM3NVXy+PTw8/vNSAWkXTuBZOiwqWiI9PR1PnjxRGnfPP9BERKTrODxZ5DjuvmzJyMjA7t27ER0dXeIEf7169eKspTrk7t27CAsLK3F/u7u7Y8CAAbCzsxM6JqkIJ/AsHZ5REbH3GXcfHh4OPz8/jrvXAbGxsRg0aBCMjY3h7u5ebB6V6Oho5OXlYfPmzXBwcBA6Ln2kiIgIjBgxAk5OTiXOmxMZGYnbt28jJCQEnp6eQselj8QJPEuPRUXE2rRpgzFjxqB79+5v3Wb//v1Yu3YtTp48qcFkpA59+/aFjY0NAgICSjyqKigowNSpU/HkyRNs3bpVgISkSj169ICXlxf8/Pzeuk3RpHD79u3TYDJSh+HDh6OgoAArVqx45wSehoaGnMDzDRwqImIcd1+23LhxA8OHD3/rqV99fX2MGDECN27c0HAyUoeEhIT/fBJ2r169kJCQoKFEpE5RUVHw8/MrsaQAgKmpKSZNmoSoqCgNJxM/FhUR47j7ssXc3BxxcXHv3Ob69eu8R0VH2NjY4O+//37nNmfPnoWlpaWGEpE6cQLP0uPNtCI2bdo0DB48GGfPnv3Pcfek/QYNGoTp06fj9u3b8PLygpWVldL+vnjxIjZv3gxfX1+ho5IKjBkzBpMmTUJMTAy8vb1L3N9Hjx5FQECA0FFJBYom8Bw7diy8vLyU/j5PSUnBxYsXERQUhF69egkdVXR4j4rIcdx92XLgwAGEhIQgKSlJMbqr6CNqZ2eHwYMH/+flAtIekZGR2LBhAy5duoScnBzFcmNjY7i5uWHQoEFo2rSpgAlJVTiBZ+mxqBCJUHp6OpKTkxUT/FlbW7OQ6jC5XI7MzEzFgQgv7+kuTuD54XjpR+Q47r7skclkePjwIZKTk5GXlwdjY2PI5XKYmprCwIAfWV2TmpqqOGNatL+trKzg6uoKc3NzoeORihkaGsLGxgb6+vpKE3iypLwdz6iIGMfdly1Fp4bDwsLw8uXLYutNTEwwePBgjBo1SoB0pGq5ubmYO3cuDh48CIlEAjMzM8XnOyMjAxKJBN26dcPs2bP5S0xHcALP0uHhmYjNmzcPNjY22Lt37zvH3c+bN4/j7nVAcHAwtm/fjkmTJpU4AVhERASWLVuGwsJCjBkzRui49JGK5kgJDQ2Fp6cnDA0NFetkMhkuXLiA2bNnY/HixZg5c6aASUkV3mcCz9mzZyM7O5sTeL5JTqLl7Owsj4uLe+c2sbGxcldXVw0lInVq2rSp/OTJk+/c5sSJE/IWLVpoKBGpk6enpzwyMvKd20RERMi9vb01lIjUycfHR75///53brNv3z55mzZtNJRIe/DWYhHjuPuyJScnB7a2tu/cpmbNmnjx4oVmApFayeVyVK5c+Z3bVKxYEbm5uRpKROrECTxLj0VFxIrG3e/atQv37t2DVCoFAEilUjx48AD79u3D9OnT0aNHD4GTkiq4u7sjKCgIWVlZJa7Pzs7G0qVL4ebmpuFkpA7NmzfHrFmzkJiYWOL6Bw8eYO7cuWjRooWGk5E6cALP0uPNtCIm57j7MuXRo0cYPHgwkpOT4eTkVGyCv5s3b8LCwgKhoaGoWbOm0HHpI2VkZOCHH35AdHQ0zM3Ni+3v5ORkuLi4YPXq1RyargNiY2MxePBgGBkZ/ecEng0bNhQ6rqiwqGgBjrsvO/Lz8/H777+XOMGfh4cH2rZty32uYy5fvozo6GikpKQgNzdX8fn28PD4z0sFpF04gWfpsKiIWHR0NFxdXXm2hIiIyiwWFRFzdHTEZ599huXLl//nTXekGw4dOoS9e/fixYsXaNGiBb7//nuYmJgo1qenp6N37944deqUgClJVe7evYuwsDBER0cXm9DR3d0dAwYMgJ2dndAxSQUGDhyI77//Hl5eXkJH0TosKiLm6OiITz75BFlZWZg6dSo6deokdCRSoz179mDu3Lno2rUr9PT0cOTIEVhYWGDz5s2KCf3S0tLQvHlzxMbGCpyWPlZERARGjBgBJyenEufNiYyMxO3btxESEgJPT0+h49JHcnR0hIGBAUaNGoXhw4dzlukPwKIiYvXr18epU6ewdetWbN26FfXq1cOoUaPQtm1boaORGnTu3Bn9+/fHV199BeD10PNhw4YhNzcXO3fuhLm5OYuKDunRowe8vLzg5+f31m2KJoXbt2+fBpOROjg6OmLGjBlYuXIlLC0tMWHCBLRu3VroWFqBNz+ImFwuR7ly5TB58mQcPHgQNjY28PX1RYsWLbB48WKcPXsWqampimHLpN0ePnwIb29vxdc1atRAWFgYJBIJhg4d+tZhy6SdEhIS/vNJ2L169UJCQoKGEpG6ffnllzh8+DAcHBwwcuRIdOvWDbt27eLcSP+BRUVL1KlTB8HBwTh+/Dj69OmDCxcuYMSIEWjRogVHBugICwsL3Lx5U2lZ9erVsX79eiQnJ2PkyJGc/EuH2NjY4O+//37nNmfPnoWlpaWGEpEmWFlZYenSpTh06BDq16+PRYsWoVmzZvjqq68wa9YsLFu2TOiIosNLPyLm6OiI8+fPo1q1aiWuz8rKQlxcHJ4+fYovv/xSw+lI1UJDQ7FhwwYMGTIEXbt2VfoFFRMTg2HDhqF69ep48OABL/3ogN9++w2TJk1Cu3bt4O3tDSsrK6V5NS5evIijR48iICAAXbp0EToufaT69evj3Llzxf4+z8vLw7lz5xAdHY3Y2FikpaXhyJEjAqUUJ97NI2I1atR459BkExMTuLu7azARqdOQIUMgk8mwbds2NGrUSKmouLm5YcuWLZg4caKACUmVvvzyS1SpUgUbNmxAQEAAcnJyFOuMjY3h5uaGkJAQNG3aVMCUpCpvOydQrlw5tGnTBm3atNFwIu3BMypEIiT/1+Pf/62goADXrl2Di4uLAKlIXeRyOTIzMxUTgJmZmQkdiVTswIED6NixIydsLAUWFZFLSkrC4cOHFfNqvPncj6ysLCxYsAALFy4UKCGpWlJSkuLhhFKpFH/88QcePnyITz75BC1btoShoaGwAUltcnJycPz4caSkpKBu3bpo1apViYWVdEt6ejqqVKnCff0WLCoiFhMTgyFDhsDCwgISiQT3799Hu3btEBgYqGjlHK6qOx4+fIiRI0ciOzsbp0+fRkpKCr777js8ePAAZmZmeP78Oezt7bFp0yZYWFgIHZc+UtH8SOfOnUPz5s0xbdo09O/fHw8fPlTsb2dnZ4SGhipN+kfaa+PGjbh06RLWrFmDwsJCrF69Glu2bEFOTg5MTU0xcOBAjBw5UuiYosNRPyK2dOlS9OzZE8ePH8exY8ewYsUKnDt3DqNGjUJ+fr7Q8UjF5s+fj8qVK2PDhg0AgEWLFqFq1ar466+/8Pfff+PMmTOoUqUKFixYIHBSUoXAwEAkJiZi3LhxePjwIfr27YsqVargzJkziIiIwPHjx5GXl4fFixcLHZVUYNWqVVi7dq3i6cgbN25EeHg4Ro8ejZ9++glDhgzBpk2bEBoaKnBSEZKTaLm6usqTkpKUlsXExMidnZ3l48ePl8vlcvnTp0/ljo6OQsQjFXNzc5Pfvn1b8XXz5s3l0dHRStvcvHlT7ubmpulopAbe3t7yy5cvy+VyufzOnTtyBwcHeVRUlNI2UVFR8iZNmgiQjlStZcuW8uPHjyu+7tChg/zAgQNK2xw9elTeunVrDScTP55RETETExM8e/ZMaZmrqysCAwPx22+/8b4UHWNoaIhXr14pvjY1NS22jfwtN9mS9snNzUWVKlUAAPb29vjkk09gbGystI2ZmRkKCwuFiEcq9vz5czg4OCi+fvHiBRwdHZW2+fTTT5GWlqbpaKLHoiJiLVu2xNy5c3HlyhXIZDLF8rZt22LatGkICwvDvHnzBExIqtSuXTtMmzYNd+7cAQD07dsXK1asUMxIm5aWhoCAALRs2VLImKQijRo1QmhoqKKIHDt2DA0aNFCsz8rKQlBQEFxdXYWKSCr06aefYtOmTYqvW7ZsWezhoocOHULdunU1HU30eDOtiL148QLjxo1DREQEQkJCio342b59OwICAlBQUMCbaXVAdnY2xowZgwsXLqBevXqoVasWIiMjIZVKYWlpiUePHsHOzg5btmx56ySApD1u3ryJwYMHo1mzZli6dKnSujNnzsDX1xdVqlRBWFgYPvnkE4FSkqpcu3YNAwYMQN26ddGpUyeYmJhg8eLFaNasGerWrYsrV67g3LlznDunBCwqWuD+/fuoUqUKKlWqVGxdYmIijh8/jhEjRgiQjNThwoULOH/+PBITE5GVlQUDAwNYWVnBw8MDX3zxBedh0CHPnj3Do0eP0KhRI6XliYmJ+Pvvv9GpUydUrlxZoHSkaomJiQgJCcG5c+eULvGUK1cOrq6uGDlyJJ+UXQIWFS0VExODTz/9lL+0iIi0UFZWFrKzs2FgYIAqVaq8cxbyso7/Z7TUsGHDkJKSInQMUrFDhw6hf//+6NKlC4KCgoo9MTk9PZ1TbRNpobVr1+Lp06eKr01MTGBpaYlq1aqxpPwHnlERMR8fn7eO8Hj8+DEsLS2hr68PAMVuyiLts2fPHsydOxddu3aFnp4ejhw5AgsLC2zevBk1atQAwAn+iLSVo6MjLCwssGzZMj6j7QPxoYQi9tlnn2Hv3r1o0qQJPDw8FMvlcjlCQkLQtm1bPhNEh4SHh2PWrFn46quvAAAjR47EsGHD0L9/f+zcuRPm5uYCJySij+Hh4YH+/fujd+/eGDt2LG+Kf088oyJyJ0+exKxZs9C1a1eMHz9e8ZwXFxcX/PLLL6hZs6bACUlVStqnaWlp+Prrr1GxYkVs27YNubm5PKNCpIXq16+Pc+fO4erVqwgICMCzZ8/Qu3dvfPPNN7CzsxM6nqjxwpjItW3bFgcPHkR8fDx69uyJf/75R+hIpCYWFha4efOm0rLq1atj/fr1SE5OxsiRI5GbmytQOlKnx48fo6RjxsLCQjx+/FiARKRqRfvXx8cHv/76KyZMmIA///wTHTp0QI8ePRAUFIQjR47g3LlzAicVHxYVLWBhYYGNGzeie/fu+Pbbb5UmDSLd0bt3b8yePRvr169XulG6du3aWLt2rWLeDdI9bdq0QXp6erHlvHlad/z7fkMjIyP069cPx44dw9atW+Hp6YmIiAhMnToVw4YNEzClOPEeFS0yaNAgeHt7Y9KkSTyy1kFDhgyBTCbDtm3b0KhRI1haWirWubm5YcuWLZg4caKACUldAgICSpwnqVKlSggICBAgEalaSWfMJBIJ3N3dFTfXFhYWIiMjQ8PJxI/3qGghqVSKq1evonHjxpxHRUe97Zk+BQUFuHbtGlxcXARIRUSlNXXqVEyfPh0mJiZCR9E6LCpERAJYvXo1JBIJLCwsYG9vz2f6EL0FiwoRkQCKnpxbvXp11K1bF5s3bxY4EZE4sagQERGRaHHUDxGRCFy6dEkx8ufgwYMYMWIEQkJCSrwJk6gsYVEhIhLYzp070bdvX9y+fRtxcXGYOnUqZDIZtmzZgjVr1ggdj0hQLCpaok2bNnj+/Hmx5ZxnQTdNnTq12AMJgddPXJ06daoAiUidwsLCMGPGDHh7e+PXX39F3bp1sWnTJixZsgT79+8XOh6RoFhUtISnp6di+vx/MzIygqenpwCJSJ0uXLgAmUxWbLlUKsWFCxcESETq9PDhQ/j4+AAAzp8/jxYtWgAA7O3tkZaWJmQ0UoP69evj2bNnxZanpaWhfv36AiQSNxYVLbFw4cISx9+bmJhg4cKFAiQidTp9+jSqVKlSbHnVqlVx+vRpARKROlWrVg2pqal4+vQpYmNj0bRpUwBAXFwcqlevLnA6UrXRo0ejQoUKxZZXqFABo0ePFiCRuHHUj4hFRUVBIpHA3NwctWrVKnECMCLSfoGBgTh+/DiMjY2RlZWFEydO4NixY/D390evXr0wYcIEoSMSCYZFRcQcHR0hkUggl8thYmKC6OhooSORGhXtb3Nzc9SpU4fPdCpDCgsLsW3bNjx48AB9+/bFJ598gq1btyI9PR1jxoyBvr6+0BHpIx08eBAAFBP8/fsRGfRuLCoidvHiRUgkElSvXh2ffPIJ9PR4pU6XrVq1SlFU7O3tFc//ICLtVzTBn56eHmxsbHD8+HGBE2kPFhUtkpubCz09PRgZGSEhIQF//vknXFxcOPV2GSCTyRAXF4fatWujYsWKQschFVi9evV7bztmzBg1JiFNePToESQSCapVq4Zy5coJHUersKhoiaioKIwePRorV66Evb09vvjiC+jp6SEnJwdBQUH48ssvhY5IKvTkyRNMnz4dP/74I+rVq4devXrhzp07qFy5MrZs2cKRATqgaJRPkSdPnsDQ0BA1a9aEgYEB7t+/D5lMhoYNG2Lnzp0CpSR1efz4MUxNTWFiYoLIyEgcP34crq6u6NSpk9DRRMdA6AD0fpYtW4Y2bdrg008/xe7du2FiYoITJ05g3759CAkJYVHRMQsXLsTLly9RtWpV/Pbbb3j8+DG2b9+O/fv3IzAwkPev6IB/j97asmUL/vzzTyxduhTVqlUDAGRmZsLPzw/16tUTKiKpyYkTJzBu3DiEhISgZs2aGDp0KGrWrIn9+/fjxYsX6Nu3r9ARRYU3PWiJW7duYdSoUTAxMcG5c+fQqlUrlCtXDi1btsTdu3eFjkcqFhkZiXnz5sHGxgZnzpxB8+bN4erqiiFDhuDy5ctCxyMVW79+PaZMmaIoKQBgamqK8ePHY9euXQImI3VYu3YthgwZAm9vbxw+fBg1atTA0aNHERAQgJ9//lnoeKLDoqIljI2NIZVKkZeXh5iYGHh7ewN4PUFQpUqVBE5HqiaTyVC5cmXI5XJERETgs88+A/B6dIiBAU+E6hqZTIZXr14VW/7s2TNOS6CDEhIS8NVXX0FPTw/nz59Hy5YtoaenB2dnZzx69EjoeKLDv/G0RJMmTRAYGIjKlStDT08PzZs3R2xsLObPn48mTZoIHY9UzMnJCXv37oW5uTkyMzPRsmVLSKVSbNiwQTF6gHSHj48PZs6ciVmzZqFhw4aQy+WIiYmBv78/OnbsKHQ8UjFTU1O8fPkSL1++xLVr1zBs2DAAwP3792FmZiZsOBFiUdESs2fPxuzZs3H79m0EBgbCxMQEhw4dgpGREZ/9ooMmT56M77//Hs+fP8ewYcNgZWWFOXPm4NSpUwgNDRU6HqnYzJkzMXbsWAwYMEBxBkUul+OLL77A5MmTBU5HqtayZUvMmjULFStWRKVKldC0aVP8/fffmDNnDlq1aiV0PNHhqB8tJpVKYWRkJHQMUpPCwkJkZWXB1NQUAJCYmIgqVarwiEuH3b17F//88w8kEgnq16+PmjVrCh2J1CA3NxcrVqzAgwcPMGzYMDg7O2PVqlV48OABZs+ezSkI3sCiImJRUVHvva2Hh4cakxCRJqSlpUEmk+HNv5Zr1KghUCIi4bGoiNi/p9D/9w11Rbvs38tiY2M1no9Uq2h/vw/ub91y6dIlTJ06Fffv31daXvTZ5/7WfkVT6L+Pbt26qS2HNmJREbF/3/0dERGBtWvXYtq0aXB1dYWBgQGuX7+OgIAADBs2jH+wdcD+/fsVReXRo0fYsGED+vTpAxcXFxgaGuL69evYtm0bRo4ciSFDhgicllSpR48eqFChAgYNGlTiKD5PT08BUpEqvXkTfNFBaPny5WFgYICsrCzo6+ujSpUqOHfunEApRUpOWqFdu3byv//+u9jyCxcuyFu3bi1AIlKnvn37yvfs2VNs+aFDh+Q9evQQIBGpU8OGDeV37twROgZpyOHDh+XdunWTx8bGKpYlJibKv/rqK3l4eLiAycSJ86hoidTUVFhYWBRbbmpqioyMDM0HIrW6du1aifcdNWrUCHfu3BEgEamTtbU1srOzhY5BGhIUFIQ5c+YonWWxtbXFjBkzEBISImAycWJR0RKNGjXCypUrlf4yy8jIQGBgIE8L66BPPvkER48eLbZ8165dqFOnjgCJSJ1GjhyJgIAA3L59GzKZTOg4pGaZmZklPpiwsLAQubm5AiQSN96joiX++ecfDBw4EDk5ObC1tYVcLkdSUhKqVauGsLAw/O9//xM6IqnQiRMn4OvrCzc3N3z66acoLCzE5cuXERsbiw0bNsDLy0voiKRC7dq1w+PHj1FQUFDiet5Mq1tGjhyJFy9eYMmSJbCxsQHwerbaSZMmoXbt2ggKChI4obiwqGiRrKwsHDlyRDHPgqOjIzp27AhjY2Oho5EaXLp0CT///DP++ecfAED9+vUxePBgzkyrgw4cOPDO9d27d9dQEtKElJQUDBkyBAkJCTA1NYVcLsfLly/RqFEjrF+/HpUrVxY6oqiwqBAREWlYQUEB/v77b6UDTy8vLz7bqQQsKlri6dOnWLFiBS5dulTihFCnTp0SKBmpQ2FhIQ4fPvzW/b1w4UKBkpG6nDp1CiEhIYiPj4eBgQHq1KmDIUOG4PPPPxc6GpGg+KwfLTFz5kzcuHEDHTt25NOSy4CAgABs27YNjo6OMDExEToOqdnx48cxduxYtGnTBh07doRcLkdUVBTGjh2LVatWoU2bNkJHJBW6e/cu5s2bpzgQeRPvSVLGMypawtnZGaGhoXB3dxc6CmlAkyZNMGXKFN6bUEZ069YNbdu2xZgxY5SWr169GmfOnMGePXsESkbq0L9/fzx79gxff/11iQee/Nwr4xkVLVGhQgVUq1ZN6BikIVKplM9vKkPu3r2Lzp07F1veqVMnbNiwQYBEpE5Xr17Fjh070KBBA6GjaAXOo6IlunbtitDQ0LcOXyTd0rx5c5w5c0boGKQhFhYWuHfvXrHl9+7d46VeHVSlShUYGhoKHUNr8IyKlsjIyMCRI0fw559/ombNmjAyMlJaHx4eLlAyUgdnZ2cEBgYiIiIC9vb2xf5Se/MSAWm3Tp06Yc6cOZg9ezbc3NwAADExMZg7dy46dOggcDpStX79+mHZsmUICgriPWjvgfeoaImpU6e+cz1HgegWHx+ft66TSCQc5aVj8vLyMG7cOJw+fVoxPFUul6NVq1ZYsWIFypcvL3BCUqVBgwYhOjoaBQUFqFatWrEDT36+lbGoEBGJREJCAuLj4yGXy+Hg4AB7e3uhI5EarF69+p3recZUGYuKFnny5Am2bdummGehbt266NOnD2rUqCF0NFIDuVyOv/76S2l/e3l5QV9fX+hopGKFhYVYu3Ytqlevjq+//hoA0KdPH7Ru3Rrff/+9wOmIhMV7VLTE7du30a9fP5QvXx6NGjVCYWEh9u/fj23btmHHjh2oW7eu0BFJhTIyMjBkyBDcvHkTlSpVglwuR1ZWFho0aIDNmzfD1NRU6IikQsHBwdi5cyf8/f0Vyzp06IB169YBAMuKDrpx4wY2btyoNMHfgAED0KhRI6GjiQ7PqGiJIUOGwNjYGEuXLlU8dTMvLw8TJ06EVCrlo8F1zNSpU3Ht2jUsXbpU8WyfuLg4TJo0Ca6urpg7d67ACUmVWrVqhfnz56NZs2ZKy8+cOYN58+bxngUdc/HiRQwePBj16tWDu7s7CgsLcenSJcTHxyMsLExxQzW9xqKiJVxcXLBz5044ODgoLY+Li0O/fv0QHR0tUDJSBy8vLwQHB8PT01Np+YULFzB+/HicP39eoGSkDs7Ozjhw4ADs7OyUlt+7dw+dO3fGtWvXBEpG6vDNN9+gXr16xQ445s6dizt37mDr1q0CJRMnzqOiJSpWrFjiVMslLSPtl5+fj+rVqxdbXr16dWRlZQmQiNTJ0dER+/fvL7b80KFDqFOnjgCJSJ1u3bqF7777rtjyfv364caNGwIkEjfeo6IlvLy8sGTJEgQHB8PMzAwAkJ6ejsDAQHh7ewsbjlSuQYMG2LFjB6ZPn660fMeOHahfv75AqUhdRo8ejREjRiA6OhrOzs4AgOvXr+PKlStYs2aNsOFI5apUqYLnz58XW56enl5sqDLx0o/WSE5Oxtdff40XL17A1tYWAJCUlITKlSvj559/ho2NjbABSaUuX76M7777Do6OjnB1dQXwegKwuLg4hIaGwsvLS+CEpGqXL1/G1q1b8c8//8DAwAD29vYYOnSo4h4l0h1z587FpUuXsGzZMsUQ9Dt37mDChAlwcnLivFhvYFHRItnZ2fjll1+U5lno3LkzZzbUUdeuXcPmzZuV9vegQYM4KoBIy7148QKDBg1CbGys4hEJmZmZqF+/PjZt2oQqVaoInFBcWFS0yMWLF5Gfn4/PPvsMALB48WK0adOGT1TWUS9fvsTz589Rq1YtAMDx48fh6empuPRHuiUuLg5hYWFITEzEypUrcfLkSdSpUwdNmjQROhqpQWFhIc6dO6d0INKsWTPo6fHW0Tfx/4iWOHr0KAYPHozY2FjFskePHmHgwIE4efKkgMlIHW7evIm2bdtix44dimWLFi1Cp06dEB8fL2AyUocbN26gd+/eePjwIW7cuAGpVIrY2FgMGTKED6fUUb/88guys7MxdOhQDBs2DPv27cPRo0eFjiVKLCpa4qeffsKUKVMwZMgQxbLg4GD4+flh1apVAiYjdVi0aBF8fHwwbtw4xbLjx4+jefPmWLRokYDJSB2CgoIwePBgbN26VfEAyvnz56Nv3778fOug8PBwzJo1S2kEn5WVFWbOnIndu3cLmEycWFS0xP3799GyZctiy1u3bo2kpCTNByK1unHjBkaNGqU0AsDAwADDhw/H1atXBUxG6nDjxg1069at2PK+ffsiISFB84FIrbZu3YpFixahd+/eimVTp06Fv78/Nm3aJGAycWJR0RLW1taIiooqtvzy5cswNzcXIBGpU8WKFfHgwYNiy1NTUzl8UQcZGhqWOD/OkydPYGxsLEAiUqfU1FQ0bNiw2HJnZ2c8fvxYgETixqKiJb755hv4+/tjxYoV+OOPP/DHH38gODgYc+fOxTfffCN0PFKx9u3bY+7cuYiIiEB2djays7MRGRmJuXPn4vPPPxc6HqlY27ZtsWLFCmRmZiqWJSQkYMGCBWjVqpVwwUgtbG1tcfr06WLLz5w5w6kmSsBRP1pkw4YNCA8Px9OnTwEAFhYWGD58OPr16ydwMlK1V69eYezYsfjrr78gkUgUyz///HMEBARwSLqOycrKwtChQ3Ht2jUUFhaiUqVKyMrKgqOjIzZv3syRXjrml19+wZQpU9CxY0c0btwYwOsJ/o4ePQp/f390795d4ITiwqKihZ4/fw5DQ0P+sioDEhMTFU9Xtbe3V0z2R7opIiICt27dQmFhIerVq4fmzZtzuKqO+vXXXxEeHo7bt2/D0NAQ9vb2GD58OFq3bi10NNFhUdEiubm5+P3333H37l0MHjwY8fHxqFu3LicH0mGPHz9GQkICPDw8kJ2djWrVqgkdiTQgPT0dFy9eRMOGDXkpgMo8VnUtkZaWho4dO2LOnDkIDQ3Fy5cvsWnTJnTu3JmjAnSQVCrFuHHj4OPjgxEjRuDp06eYPXs2Bg0axIcS6qD4+Hi0b98eUVFRyMzMRNeuXfHjjz+iQ4cOiIyMFDoeqUFqaipWr16NCRMm4NmzZ4qDUCqORUVLLFq0CHXr1kVERATKlSsH4PXMtHXr1kVgYKDA6UjV1q1bp5iptGh/9+/fH/fu3UNQUJDA6UjVFi9ejE8++QS1a9fGkSNHIJPJcObMGQwZMgQrVqwQOh6p2L1799C5c2ccOHAAx44dw6tXr/Drr7+iZ8+enH6gBCwqWiIyMhK+vr5KQxUrV66MyZMn49KlSwImI3U4evQoZs6cqTR9epMmTbBgwQKcOnVKwGSkDpcvX8bkyZNRrVo1/PXXX2jZsiUsLS3Ro0cPxMXFCR2PVGzRokVo27YtTp48qZjgb9myZfDx8eGBSAlYVLREdnY2KlSoUOK6/Px8DachdUtJSVE84+ffrK2t8eLFCwESkTrp6enByMgI+fn5uHjxIry9vQG8/tyXL19e4HSkapcuXcKgQYOURvQZGBhg1KhRuHXrloDJxIlFRUt4eHgoPfcFAGQyGdatWwdXV1eBUpG62NvbIyIiotjyo0ePok6dOgIkInVydnZGSEgIgoODkZeXhxYtWiAlJQXLli2Ds7Oz0PFIxQoLC1FYWFhseXZ2NvT19QVIJG4GQgeg9zN58mT07dsXFy9ehEwmw5w5c3D37l28fPkSP//8s9DxSMV++OEHjBs3Dnfu3EFBQQEOHDiAxMREHDt2DMuXLxc6HqnYzJkzMW7cODx48ADTpk1D1apV4e/vj4SEBGzYsEHoeKRizZo1Q0hIiNL9hRkZGQgMDISXl5eAycSJw5O1SEpKCnbs2IHY2FgUFhaibt26+Pbbbzl8UUedPXsWISEhink16tati2HDhqF9+/ZCRyMNSE9PR+XKlXmErYNSUlLw3Xff4eXLl8jIyEDt2rXx6NEjmJmZ4eeff8b//vc/oSOKCouKFktPT0fVqlWFjkFEKpCdnY1ffvlFMcFf3bp10aFDB07sqKNycnJw5MgRpQPPrl27cn+XgEVFS2RmZiIwMBD9+vVDnTp1MHToUERGRsLW1hbr169HzZo1hY5IKnb48GF4eHjAysoKa9euxa+//gpXV1dMnz5dMWSZdMPjx4/Rr18/PHv2DHZ2digsLMS9e/dQrVo1bN++HVZWVkJHJDWSyWSIi4tD7dq1UbFiRaHjiA5vptUSCxcuRGRkJAwMDHDixAlER0djyZIlsLW1xZIlS4SORyq2du1aTJ8+HY8fP0ZMTAyCg4Ph4uKCCxcucPiiDlq0aBGsrKxw6tQpHDx4EL/88gtOnTqFGjVqcJ4kHfTkyRMMHjwY165dQ25uLrp3746vvvoKPj4+iI2NFTqe6LCoaIkzZ85gyZIlsLe3x59//ommTZuic+fOGDduHGeu1EH79u3D4sWL4erqimPHjsHZ2Rn+/v5YsGABfv/9d6HjkYr9/fffmDJlCqpXr65YVr16dfj5+eHcuXMCJiN1WLhwIV6+fImqVavit99+w6NHj7Bt2zZ8/vnnLKYlYFHREq9evYK1tTUA4Pz58/jss88AAOXLl0dBQYGQ0UgNUlNT4eLiAuD1L7FmzZoBeD2PSmZmppDRSA309fWVJnMsUq5cOUilUgESkTpFRkZi3rx5sLGxwZkzZ9CiRQu4urpiyJAhuHz5stDxRIdFRUsUnUk5c+YMnj59ihYtWgAAdu/eDXt7e4HTkapZWVkhMTER9+7dw507d9C0aVMAQHR0NO9X0EGurq5Yu3YtZDKZYplMJsNPP/3EeZJ0kEwmQ+XKlSGXyxEREaE48CwsLISBAWcNeRP/j2gJX19f/PDDD5DJZOjUqRNsbW2xcOFCbNu2DWvWrBE6HqnY119/jR9//BFGRkZwcHCAi4sLtm3bhiVLlsDX11foeKRiEydOxNdff43PP/8cDRs2BABcv34d2dnZnCdJBzk5OWHv3r0wNzdHZmYmWrZsCalUig0bNsDR0VHoeKLDUT9a5Pnz50hJSVH8Qb527RoqVqzIMyo66vTp03jw4AG6dOmCKlWq4PDhw8jLy0OvXr2EjkZq8PjxY2zbtg3//PMP5HI5HBwc8M0333BODR107do1fP/993j+/DmGDRuG8ePHY86cOTh69ChCQ0PRuHFjoSOKCouKlklISEB8fDwMDQ1Ru3Zt1K5dW+hIpGbp6ekwMDCAqamp0FGISEUKCwuRlZWl+FwnJiaiSpUqMDMzEzaYCPHSj5bIy8vDhAkTcOrUKRR1S4lEgtatW2PFihUwMjISOCGpWnh4ONavX49nz54BeD0KZMiQIRg4cKCwwUjlXr16hS1btuDSpUuQyWR48/gxPDxcoGSkLhKJBFeuXFFM8FenTp0SH0RKLCpaY/ny5bh27RpWr14NT09PFBYWIioqCvPnz8eqVaswYcIEoSOSCu3cuROBgYH49ttv4eHhAblcjqioKCxbtgwmJia8/KNjZs2ahVOnTqFp06YwNzcXOg6pWUZGBoYMGYKbN2+iUqVKkMvlyMrKQoMGDbB582aePX2TnLRC06ZN5adPny62/PTp0/KWLVtqPhCpVfv27eVbt24ttvznn3+Wd+rUSYBEpE6urq4lfr5JN02ZMkXeoUMHeWxsrGJZbGysvFOnTvJZs2YJmEycODxZS2RnZ5d4P4qdnR3S09MFSETq9PjxY8UQ9H9r3rw57t27J0AiUic9PT3eFF+G/PHHH5g9e7bSCB9HR0fMmDEDJ0+eFDCZOLGoaIl69eqVOCPpb7/9Bjs7OwESkTrVqFEDN27cKLb8+vXrSrOXkm5o164d9u/fL3QM0pD8/PwSP8fVq1dHVlaWAInEjfeoaImRI0di1KhRiI2NVUwAFRMTgxMnTmDp0qUCpyNV+/rrrzF37lxkZGQo7e/g4GB89913AqcjVatatSo2bdqEs2fPws7OrtjN8QsXLhQoGalDgwYNsGPHDkyfPl1p+Y4dO1C/fn2BUokXhydrkRMnTmDDhg2Ij49XzLMwdOhQtGvXTuhopGKFhYVYuHAhduzYgYKCAsjlchgYGODrr7/GtGnToKfHk6G6pH///u9cv3XrVg0lIU24fPkyvvvuOzg6OiodiMTFxSE0NBReXl4CJxQXFhUiEcvKysLdu3cBALVr14aJiYnAiYhIFa5du4ZNmzYpTfA3aNAgNGrUSOhoosOiokWio6PfOs/CmDFjBEpF6pKTk4P4+PgS97eHh4dAqUhd8vPz8ezZM8VDRuVyOaRSKa5fv44uXboInI5IOCwqWmLNmjVYtWoVTE1Nix1VSyQSnDp1SqBkpA6nTp3ClClTkJWVVaykSCQSxMbGCpSM1OHcuXOYPHlyiSP4ypcvzyfq6pjCwkIcPnz4rQeevCdJGW+m1RI7duzAuHHjMGLECKGjkAYEBQXB29sbo0aNQqVKlYSOQ2q2bNkyODk5oX///hg7diyCgoLw+PFjBAcH85eWDgoICMC2bdvg6OjIy7nvgUVFS7x8+RKdOnUSOgZpyMOHDxESEsIptcuIO3fuICAgAI6Ojqhfvz4qVKiA/v37o0KFCti4cSPatm0rdERSocOHDyMgIADdu3cXOopW4NABLeHq6srTv2WIra0tkpOThY5BGqKvr684c/bJJ58gPj4eAODl5YWEhAQho5EaSKVS3mf2AXhGRUt06tQJ/v7+uHHjBmrXrl1snoVu3boJE4zUYuLEifD398e4ceNK3N81atQQKBmpQ926dXH69Gn0798ftWvXRkxMDAYMGMCyqqOaN2+OM2fOoG/fvkJH0Qq8mVZL/Huq5Tfx5krd06BBA8XoD4lEolgul8u5v3XQyZMn4evri1mzZqFly5Zo3749vLy8cPv2bTRu3BjBwcFCRyQV2rRpE4KDg9GsWTPY29vD0NBQaT1HcSpjUSESoYsXL75zvaenp4aSkKbcvHkT+vr6cHR0xMWLF7F582ZYW1vD19cXZmZmQscjFfLx8XnrOo7iLI5FRQckJyfDyspK6BhEREQqx3tUtMSDBw+wePFixMfHF5sQKj09Hbdu3RI4IalSXl4edu3apbS/gdc34d24cQPHjh0TMB2p2qtXr7Bly5a3zqsRHh4uUDLSpKIJ/tzc3ISOIiosKlpi3rx5SEpKwhdffIHNmzdj8ODBSExMxIkTJzBv3jyh45GKzZ8/HwcPHoSTkxOuX78OFxcX3Lt3D8+ePcPAgQOFjkcqNmvWLJw6dQpNmzaFubm50HFIzW7cuIGZM2ciPj4ehYWFxdbzHjRlLCpa4tKlS1i7di2aNGmCv/76C23btkWjRo2wfPlynDlzBl999ZXQEUmFTp06hYULF6JTp074/PPP4e/vj5o1a2LcuHGQyWRCxyMV++OPP7Bs2TK0bt1a6CikAQsXLoS+vj5mzJiBhQsXYsqUKbh//z62bduGJUuWCB1PdDiPipaQSqWKyb/s7Oxw+/ZtAK+HJV+9elXIaKQGmZmZiqeq1qlTB7du3YKhoSFGjBiBP/74Q+B0pGp6enqwt7cXOgZpyK1btzBr1ix88803cHBwQL169TBlyhRMmDABu3fvFjqe6LCoaIn//e9/ikmg7OzsFKcGCwsLkZ2dLWQ0UoOqVavi2bNnAF5P/la076tUqYK0tDQho5EatGvXDvv37xc6BmlIYWGh4hLfvyf4a9OmDeLi4oSMJkq89KMlunfvDj8/PyxZsgStWrXCd999hxo1auD8+fNwcHAQOh6pWIsWLTB37lwsXLgQbm5uCAgIwOeff45ff/2VI7x0UNWqVbFp0yacPXsWdnZ2xSb44/N+dMsnn3yCmJgYdOrUCbVr18b169cBvH5UilQqFTid+LCoaInhw4ejXLlykMvlaNSoEUaNGoV169bB2tqa1zR1kJ+fH6ZMmYKLFy/i22+/xa5du9C7d28YGBhg8eLFQscjFbty5QoaN24MAEhNTRU4Dalb//79MX36dABA+/bt0bVrV5QvXx6XLl2Cs7OzsOFEiPOoEGkBuVyO2NhYVK9eHRYWFkLHIYHs27cPX3zxBSpWrCh0FPpIJ0+ehJmZGdzd3XH48GFs2LAB1tbWmDlzJmxsbISOJyosKlokOjr6rfMscMpl3ZOTk4P4+PgS9zcfaFY2ubq64tChQ6hZs6bQUYg0hpd+tMSaNWuwatUqmJqawsTERGmdRCJhUdExp06dwpQpU5CVlVWspPBZP2UXjyt1Q2FhIQ4fPvzWA0/ek6SMRUVL7NixA+PGjcOIESOEjkIaEBQUBG9vb4waNQqVKlUSOg4RqVBAQAC2bdsGR0fHYgeeVByLipZ4+fIlOnXqJHQM0pCHDx8iJCREMXcOEemOw4cPIyAgAN27dxc6ilbgPCpawtXVFZcvXxY6BmmIra0tkpOThY5BRGoglUp5n9kH4BkVLdGpUyf4+/vjxo0bqF27drF5Frp16yZMMFKLiRMnwt/fH+PGjStxf9eoUUOgZET0sZo3b44zZ86gb9++QkfRChz1oyUcHR3fuo43V+qeBg0aKJ6aLJFIFMvlcjn3dxnm4uKCX375haN+tNymTZsQHByMZs2awd7eHoaGhkrrOThCGYuKjrl37x5sbGygr68vdBT6CBcvXnznek9PTw0lITFhUdENPj4+b10nkUhw6tQpDaYRPxYVHcN5FsqWdu3aYcuWLbwUVEaEhoaiT58+HAlWRkRERMDV1RXlypUTOoqgeDOtjmHvLFuePn2quERE2sXR0RH169dHixYtMHjw4Pd6zdChQ1lSypDRo0fzkQrgzbRERIIYPXo0JBIJzM3NYW9vL3QcEiEeeL7GokJEJIAffvhB6AhEWoGXfoiIiEi0WFSIiIhItFhUiIiISLRYVIi02L8ngyMi0kW8mVbHNGnSBOXLlxc6BmkIJ/bTbTKZDFeuXEG5cuXQoEED7m8qkzjhm4h99913iuGLderUwffffy90JFKj1atXQyKRwMLCAvb29nB1dRU6EgksLS0NzZo1w7fffovY2Fj8/PPPLCtliL+/P8aMGYMqVaoIHUVQPKMiYkUdUi6Xczx9GbB69WoAQPXq1VG3bl1s3rxZ4EQktMqVKyM8PByenp548OABS4oW8/HxgZ6enuLA09/f/z9fM3PmTA0kEz+eUSEiIlKzKVOmKE3w17VrV6EjaQ0WFSIigUilUiQkJKBmzZowMTFBSkoKNm3ahHv37sHW1hbfffcdn+NEZR6LChGRAO7evYuhQ4fi8ePHqFq1KtavX4/Ro0fDyMgITk5OuHPnDp48eYJdu3ahbt26QsclEgyLChGRAIYPHw59fX38+OOP2LNnD3755Rc0adIEy5cvh4GBAeRyOWbMmIHk5GRs3LhR6LhEgmFRISISgIeHB3bt2oXatWtDKpXCxcUFO3bsQKNGjRTbJCQk4Ntvv8WFCxcETEokLE74RkQkgPLly+Ply5cAgKysLBQUFODVq1dK22RnZ8PIyEiIeESiwaKi5dLS0uDo6IhevXq913A30m4vXrzAd999h+HDh+PXX38VOg59hLZt22L69OnYtm0bfvjhB9SoUQMhISFISUkB8PqzvWjRInh5eQmclDSlsLAQjx8/Rnp6utBRRIVFRctVqFABY8aMwd69e+Hq6or8/HyhI5GayeVyLFq0CFFRUdzfWmzSpElo2LAhVqxYgbS0NAQGBqJt27Zo1aoVmjVrhlatWiE9PR2TJk0SOippSHp6Onx8fDBt2jSMGjVK6DiiwXtUiIhE5MqVK7h06RKsrKzQunVrGBsbCx2JNCQvLw+//vorunfvjujoaLi6ukJPj+cTWFS0jFQqxalTp5CSkoK6deuiadOmQkciNcnIyEBeXh4qVKiASpUqCR2HNCg9PR1VqlThQyeJwCn0Ra1+/fo4d+4cqlWrBgB4+vQpvvvuOyQlJcHMzAzPnz+Hu7s71q1bx19kOiIyMhKhoaGIiYlBbm6uYnmFChXg6uqKYcOGwdPTU8CEpEobN27EpUuXsGbNGhQWFmL16tXYsmULcnJyYGpqioEDB2LkyJFCxyQVWLt2LXr37g1zc3Oho2gdnlMSsTdPdgUGBqJixYo4e/YsIiIicPLkSbx69QpLliwRKCGp0q+//oqhQ4eicuXKmDZtGn766Sds3rwZP/30E6ZMmQJTU1MMHjwYx44dEzoqqcCqVauwdu1a1K9fH8Dr0hIeHo7Ro0fjp59+wpAhQ7Bp0yaEhoYKnJRUITg4GD179kR0dLTQUbSPnETLwcFBnpaWpvi6VatW8r///ltpm4sXL8q9vLw0HY3U4Msvv5Rv3Ljxndts3LhR3qFDBw0lInVq2bKl/Pjx44qvO3ToID9w4IDSNkePHpW3bt1aw8lIHRwcHOTjx4+XOzo6ymfOnKn0dzu9G8+oiJhEIlG6Rm1kZISqVasqbWNubo68vDxNRyM1ePz4MVq3bv3ObVq1aoWHDx9qKBGp0/Pnz+Hg4KD4+sWLF3B0dFTa5tNPP0VaWpqmo5EaSCQSTJs2DWvWrMHff/+Ntm3bIiAgAImJiUJHEz0WFRGTy+VYsmQJwsLCcO7cOXh4eGD//v1K24SFhRX7y420k729PQ4fPvzObQ4cOABbW1vNBCK1+vTTT7Fp0ybF1y1btsSpU6eUtjl06BCf86Mj5P//Ur6Pjw9+/fVXTJgwAX/++Sc6dOiAHj16ICgoCEeOHMG5c+cETio+HPUjYuvWrUN8fDzi4+ORlJSEgoICSCQSREREwMzMDF988QUeP36M9evXc1IoHRAREYHvv/8ejo6O8PLygrW1NYyMjCCVSpGamoqLFy/i6tWrWLduHZo1ayZ0XPpI165dw4ABA1C3bl106tQJJiYmWLx4MZo1a4a6deviypUrOHfuHEJCQji6Twe8OTgCeF1eYmJicPLkSURFRSE+Ph75+fmIjY0VMKn4sKhoiaLHwcfHx6Nr164AgBUrVuDzzz9HgwYNBE5HqpKQkICwsDDExMQgOTkZubm5KFeuHKytreHu7o7+/fujTp06QsckFUlMTERISAjOnTundImnXLlycHV1xciRIznKS0c4Ojri/PnzSkXlTYWFhcjIyCh2ib+sY1EhIhKBrKwsZGdnw8DAAFWqVOFEXzpm6tSpmD59OkxMTISOonX4SdBSnTt3RnJystAxSEPmzJnD53/omLVr1+Lp06eKr01MTGBpaYlq1aqxpOighQsXsqSUEid8E7HVq1e/dV1iYiI2btyIypUrAwDGjBmjqVikJlFRUW9dd/DgQXh4eMDCwgIA4OHhoalYpCbBwcHYuXMnli1bBnd3d6HjkIA6d+6M9evXw9raWugoosRLPyLWvHlzpKWloXr16jA0NFRa9+TJE1hYWEBfXx8SiaTYaAHSPk5OToqRAe/6WEokEt5spwMcHR3RsWNH/Prrr+jduzfGjh37zvsXSLu968Dzp59+wjfffMMDz7dgURGx9PR0zJgxA/fv30dgYKBiBksAcHFxwS+//IKaNWsKmJBUKTo6Gn5+fvjkk08wbdo0VKhQAcDr0lJ0xFWjRg0AwP/+9z8ho5IKFI0CuXr1KgICAvDs2TP07t0b33zzDezs7ISORyrGA8/SY1HRArt27cKyZcswZMgQDB8+HACLiq7KysrC7NmzcfXqVSxZsgSurq4AuL910b9HgUilUuzevRvh4eF48OAB6tevj88++wyOjo4wMzPjcHQdwAPP0uMdW1qgT58+2LlzJ44dO4Z+/fpxZlIdZmJigqVLl+KHH37AyJEjsXz5cuTn5wsdi9TgzVmn+/Xrh2PHjmHr1q3w9PREREQEpk6dimHDhgmYklSlatWqWLt2Lfr374+BAwdi/fr1QkfSGryZVkvY2dlh165dWLlyJbp37w6ZTCZ0JFKjrl27ws3NDX5+fvjqq69QUFAgdCRSsZJOZkskEri7uyturi2aV4N0R58+feDp6YmJEyfi7NmzWLRokdCRRI9nVLSIgYEBJkyYgDVr1qBz586oWLGi0JFIjWxsbPDzzz+jTZs2MDc3h4EBjyt0Sffu3VGuXLl3bqOnp8fJv3RQ0YGni4sLDzzfA+9R0VJHjhyBj4+P4oZL0j0ZGRnIy8tDhQoVUKlSJaHjEJEaXLx4EQcOHMCkSZNYSt+CZ1S01KxZs/Ds2TOhY5CKRUZGYujQoXBxcYG3tzdatWoFT09PuLm5YdiwYbh48aLQEUlFVq9ejZycHKVl+/fvR8eOHeHm5oavv/4af//9t0DpSFM8PT3RtGlTlC9fXugoosUzKiLm6OiodMPdv8nlcqV1nFdD+/3666/w8/ND+/bt4eXlBQsLC5QrVw55eXlITU1FZGQkjh07hqVLl6J9+/ZCx6WP9OZD6n755RdMnToVvXv3Rt26dXH9+nUcOXIEwcHB8PHxETgtqZOrqysOHTrEUT9vwYveIjZ27FisWbMGHh4e6NKli2K5XC7HnDlz4OvrywmidMjq1asxfvx4DB48uMT1vXv3RoMGDRAcHMyiogPePEYMCwvD2LFjFVMQAEDt2rWxevVqFhUd8F8Hnu3atVN8zQNPZSwqIjZy5Eg0bdoUkyZNwh9//AF/f3/FzIX+/v5o3749G7gOefz4MVq3bv3ObVq1aoWVK1dqKBFpUkpKClq2bKm0rH379lizZo1AiUiVeOBZerxHReQaNWqEgwcPolKlSujcuTPOnz8vdCRSE3t7exw+fPid2xw4cAC2traaCURq9+8HTTo6OhZ70Oi9e/f4y0tHjBw5Etu3b8fjx4/xxx9/wMfHB927d0ePHj2gr6+P9u3bo3v37ujevbvQUUWHZ1S0gLGxMRYsWIDjx49j4sSJ6NChg9CRSA0mTpyI77//HufPn4eXlxesra1hZGQEqVSK1NRUXLx4EVevXsW6deuEjkoqYGRkhC5dusDExAT29vaQyWSYN28ejhw5AmNjYxw8eBDLly/n512HFB14zp8/H507d8bChQvRtGlToWOJHm+m1TIpKSmYMmUKIiIicOLECV760TEJCQkICwtDTEwMkpOTkZubi3LlysHa2hru7u7o378/6tSpI3RMUoHCwkIkJiYiPj4et2/fRnx8PP755x8cPXoURkZGaNKkCby8vLBw4UJOQ6CDjh8/jtmzZ6NDhw7Yv38/p9B/BxYVLfX48WNYWVlBT49X74h00cuXLzl/jo7jgef7YVERsdWrV2PIkCEwNjZWLNu/fz82btyI5ORk1K1bF76+vvjss88ETEmq9vz5c1SpUgXA67/I9u3bh5SUFNStWxc9evTg0bWOefXqldI+vXHjBh4+fAhbW1s4OjoKmIw0hQee78aiImKcZ6FsSU1Nxffff4/Y2Fg0aNAA8+fPx8CBAyGXy1GzZk0kJiaiWrVq2Lp1KywtLYWOSx/p+fPnmDx5MpKSknD8+HG8fPkSo0aNQlRUFIDXz/3x8vLCqlWrYGJiInBa+lg88Cw91jcRe9s8C3PmzEHfvn2xaNEi+Pr6YvXq1QIlJFVavHgxKlasiNWrV8PMzAwDBgyAs7Mz/vzzT+zduxd//PEHatSowYeY6YgFCxbg8ePHmDVrFgAgMDAQ6enp2LNnD65cuYKdO3ciLS0NixcvFjgpqcKaNWvw6tUrxde//PILZs6cCQ8PD4wfPx62trYYPnw4Tp8+LWBKkZKTaDk4OMjT0tIUXzdt2lQeFxentE1SUpK8UaNGmo5GauDu7i6PjY2Vy+Vy+aNHj+QODg7yq1evKm1z48YNuZubmxDxSMU8PT2V9m/r1q3l586dU9omOjpa7unpqelopAZv/n3eo0cPeUhIiNI2ISEh8u7du2s6mujxjIrIcZ6FssXQ0BAAUKNGDTRt2hRGRkbFtilpGWmfwsJCpX1pYGAAU1NTpW0qV64MqVSq6WikAW+b4C8hIUGgROLFoiJiRfMseHh44Ouvv8bz588xb948xYPMDh48iJkzZ3I6dR3h7u6OwMBAPH/+HACwceNGpZspk5KSMG/ePF7D1hHNmzfHvHnzFAcj3bp1Q2hoKAoKCgAAUqkUK1euRJMmTYSMSSrEA8/S4c20IsZ5FsqWBw8eYODAgWjUqBGWL1+utO7YsWMYO3Ys6tevjw0bNqB69eoCpSRVefr0KQYNGoTHjx/D29sbNjY2OHDgACpWrAg7OzvExcVBT08P27dvR61atYSOSx+pUaNGkMlkShP8ZWRklDjB3+TJk4WOKyosKlqM8yzoHqlUiuTk5GK/mJKTkxEXF4emTZsqLg+R9pNKpThy5AjOnz+PxMREZGVlwcDAAFZWVoozqUVD1Um78cCz9FhUROzQoUNo166d0nA20n0ymQzZ2dkwMzMrtk4ul+PJkyeoUaOG5oMRkdrwwPPtWFREzNHREfXq1cOqVavwySefCB2H1CwvLw/z5s3DL7/8gvz8fHz66aeYPXs2GjRooNgmLS0NzZs352PgdURGRga2bduGqKgoPHv2DDKZDJUqVUKtWrXQrFkzdO7cGQYGfCSbLuCBZ+nxZlqRMzU1RZcuXRASEsK7/3XcypUrcf78ecyfPx+LFy9Gfn4+vv32W/z1119K2/HYQjfcv38fnTp1wuHDh2FmZoby5cvj4cOHcHJyQkFBARYuXIgePXoo3YBJ2mvy5Mno06cP7t27J3QUrcOiImISiQQrVqzApEmTEBoairZt2yIsLAxZWVlCRyM1+P333+Hv74+uXbuiS5cu2L17N3x8fPDDDz8gJiZGsZ1EIhEwJanKokWL0LZtW/z2229YsWIF9uzZAz8/P6SlpWHFihU4ffo0zMzMsHDhQqGjkorwwLN0eOlHxBwdHXH+/HlUq1YN6enp2LBhA/bs2QOZTIaWLVvC29sbjo6OMDMzg52dndBx6SO5uLjg0KFDSjfSFhQUYMSIEbh27Rq2b98OMzMzXvrREW5ubti7d6/SZzc/Px/Ozs6IiIhApUqVEB8fj/79++PChQsCJiVVqF+/Pv766y/8/vvvWLlyJYyNjTFkyBD07NmTj0j4DzyjoiWqVq2KyZMn48yZM5g7dy7kcjmCg4PxzTffoEOHDkLHIxWwt7fH77//rrRMX18fK1euhLW1NYYOHYq7d+8KlI5UrXLlyrh9+7bSsgcPHqCgoEDxcDqZTMYH1ekIuVwOiUSCfv364dixY+jYsSNWrVqFpk2bwtfXFzt27MDly5eRmJgodFTR4RkVEfv3GZW3SU5ORmpqKho1aqTBZKQOp0+fxg8//AAvLy/4+fnBwcFBse7p06f47rvv8OjRI8hkMp5R0QHLli3Drl27MGHCBLi5ueHx48dYsmQJLCwssHHjRpw9exZBQUFo2LAhAgIChI5LH6mkv8+zs7Nx4sQJnDp1CtHR0Xj+/DkkEgk/32/g7eQi5uHh8Z9zZlhZWcHKykpDiUidfHx8EBYWhl27dhW7Ydbc3By7du1CQEAAfvvtN4ESkir98MMPyMjIwOzZswG8PuL28vJSPHRy27ZtqF+/PqZNmyZkTFKjihUrolu3bujWrRuA/zvwJGU8o0KkZQoLC3k5QIdkZmbi3r17sLCwgKWlpdBxSE369++PNWvWFHueE/03FhWR4zwLRERUlrGoiNj9+/fx7bffwsTEBI6Ojnj06BFiY2PRq1cvZGRk4O+//4aVlRW2bNmCqlWrCh2XiIjegQeepcOiImKjRo2ChYUFZs+erZg7Izw8HBcuXMCaNWuQlZWFUaNGwdLSEoGBgQKnpY/Vv3//954jJTw8XM1pSN0OHjz43tsW3cNA2osHnqXHoiJinGehbAkJCcHKlSthZ2f3n6O4OAmY9uvatSvi4+MBvHu2YY4C0Q088Cw9nmMSsaJ5Fv5dVDjPgu4aMWIETExMsHTpUoSEhMDGxkboSKRGu3fvxqhRo/DixQvs3LmTp/x13IULF7B3716ls6bffvstlixZongg4YwZM9C/f38BU4oTf8OJWKdOnTB79mzs3r0bCQkJ+Ouvv+Dr64vPPvsMFStWxNmzZzF16lS0bt1a6KikIn379oWnpyeWLFkidBRSs3LlymHFihVIT0/H5s2bhY5DasYJ/kqPFV7EOM9C2TRv3jzcvHlT6BikAUVH0adOnRI6CqlZ0YFnZmam0gR//z7wDAoK4oFnCXiPihbgPAtERNpNJpPB398fe/bsAfB/B56BgYEwNzfHiBEjYGZmhpkzZ/LZP29gUSESmYcPHyIzMxMODg7Q19dXWieTyXDlyhV4eHgIlI6IPgYPPD8ciwqRSLx48QI//vgjIiMjAbyeNn/u3LlKp4LT0tL49GQdkpqaisuXL8PZ2RmWlpY4c+YMNm/ejJSUFNSpUwejRo1C/fr1hY5JJCjeoyJinGehbAkMDERaWhq2bt0KiUSCDRs2YPTo0fD390fPnj0V2/HYQjdcvXoVAwcORE5ODkxMTDB9+nRMnz4d3t7eaN26Na5du4Y+ffogLCwMLi4uQsclEgzPqIgY51koW1q0aIHly5fDzc1NsWzx4sUIDw/H8uXL0a5dO55R0SH9+vVDvXr1MH78eISEhGDjxo0YOnQoxo8fr9gmICAAN27cwPbt2wVMSqrAA8/SY1ERsby8PM6zUIa4u7tjz549SvPmAMDUqVNx9OhRbNq0Cba2tiwqOsLZ2RmHDx9GzZo1kZWVBXd3dxw8eBCOjo6KbRITE9GtWzdcvXpVwKSkCjzwLD0O2BYxzrNQttSvXx87duwottzf3x+urq74/vvvcfHiRQGSkTqYmJggJSVF8d/jxo1DxYoVlba5f/8+qlWrJkQ8UrHdu3fjs88+Q4MGDXDjxg3ExcWV+A9LSnEsKiJXNM9CUlKS0FFIzcaNG4c9e/bgyy+/xLVr1xTLDQwMsGbNGjg4OGDChAkCJiRVat++PWbMmKF4/MWIESNQs2ZNAK9HhuzevRvTpk1D165dhYxJKsIDz9LjpR8iEUlMTMShQ4fQtWvXYpeAZDIZfvrpJxw5cgTHjh0TKCGpSm5uLqZPn47y5ctjwYIFSuuOHTuG8ePHo0+fPpg6dSoMDQ0FSkmqdvr0aZw6darYPqe3Y1EhIhJQYWFhsWnTX716hcLCQk78RQRe+hG91NRUHDt2THEt+8yZMxg4cCC+/PJL/PDDD7yeqWO4v8uOQ4cOIScnp8Rnu1SoUIElhej/Y1ERsatXr6J9+/YYO3YsOnbsiAMHDmDkyJHQ19f/f+3deVCU9xkH8O8SWGMkBBGjMZ5oBYNyFbV4Q4LGc7Q2wQsICmJsY9UMUaKCmAkWRZQQUBQpEi1NjBfGKFoNalCrGA+02KlKVPAWjIsHcrz9w2EnuFhZuuv7vvv7fmacMe8ePvpM9Hnefd/vwtfXF2VlZQgICMCJEyfkLpVMgP0Wy5w5cxAQEIBLly7JXQq9IFxEGocf/SgYcxbEwn6LxcXFBd7e3igoKMD06dMREhICrVYrd1lkJv8r4M/Z2RmnT5/G6dOnGfBXH4kUy93dXbp8+bIkSZKk0+kkZ2dnqbCwsM5zLl68KLm5uclRHpkY+y0WFxcX6datW9JXX30leXt7S/3795cyMjIknU4nd2lkBhMnTpRiYmIknU4nxcfHS926dZOWLVtW5zmff/65NH78eJkqVC5+9KNgzFkQC/stFkmSoNFoMGnSJOTk5GD48OFISkpC3759MWPGDGRlZeHEiRMoKiqSu1QygTNnziAkJAS2trYIDw9HTU0Nhg0bVuc548ePx9mzZ2WqULk4qCgYcxbEwn6Ly8HBAXPmzMH+/fsRExMDSZLwxRdfYPz48Qb/mJE6cRFpPGayK1hERATu3r2L7Oxs9O7du85jhw8fRkxMDAICAjB9+nSZKiRTYr+pWbNmGD16tP67Xq5fv46bN2/KWxSZRO0iEhMTg969eyM8PFz/2L1797Br1y4kJibi/fffl7FKZeLFtCrAnAWxsN9iCAwMRHJyMuzs7OQuhV4ABvw1HgcVBdu2bRsGDx6Mpk2byl0KvQDsN5Hl4yJiPF6jomDMWRAL+01kuRjw13gcVBTOzs4Oo0aNQmpqKh4/fix3OWRm7DeRZeIi0nj86EfBunXrhoMHD+ovsmratCmmTJmCsWPHcvq2QOy3WAIDA6HRaBr03MzMTDNXQ+bGgL/G46CiYC4uLsjLy0OLFi1QWlqKNWvWYOPGjaisrMTAgQPh4+MDFxcX2NvbG3zTLqkP+y2W1NRUJCYmolOnTnBzc/ufz128ePELqorMhYtI43FQUbBf/8NV6/79+9izZw/27t2L/Px8lJWVQaPR8DsiLAD7LZ4NGzZg2bJlyM7ORtu2beUuh8yIi0jjcVBRsPr+4Xpabc7C8zYyUj72W0zTpk2DVqvFF198IXcpZEZcRBqPgW8K1rNnz+feT9+6dWu0bt36BVVE5sR+i2nRokWMTRcUA/4ahmdUiIiIzIwBf43HQYWIiIgUizkqREREpFi8RkXBmLMgFvabiMgQBxUF69evX4NzFkj92G8iy8VFpPE4qChYeHg4bG1tsWzZMqSmpjJnwcKx30SWi4tI4/FiWhVgzoJY2G/xbN26FcOGDTOIVK+oqMDOnTv1t6+SujHgr3E4qKjAzZs3cfbsWfj6+spdCr0A7Ld4nhX2d/v2bfTr1w/nzp2TqTIyNS4ixuOgQkQks5KSErRp08bgGoaamhpcu3YNb775pkyVkalxETEeBxUiIiJSLF5MS0Qkg6CgIGg0GrRs2RJdunTBtGnT5C6JSJE4qBARyaD2ZLYkSeCJbaJn40c/REREpFiM0CciklllZSVWrVqFS5cuAQDmzZsHT09PTJkyBWVlZTJXRyQvDioqsXXrVjx+/NjgeEVFBbZu3friCyKzYr/FsnTpUvz1r39FeXk5Dhw4gC1btiA8PBz379/HkiVL5C6PSFYcVFRi7ty50Ol0Bsd1Oh3mzp0rQ0VkTuy3WHbt2oWEhAS4urpi79696NWrF6ZNm4b58+cjNzdX7vLIxLiIGIeDikrs3bsXDg4OBscdHBywd+9eGSoic2K/xXL37l107twZAJCXl4e+ffsCAOzt7fHo0SM5SyMz4CJiHN71oxLPCnyysrJiGJQFYr/F0r59exQUFODOnTsoLi5G//79AQD/+Mc/GLVugbiIGIeDioIxZ0Es7Le4QkNDMXv2bFhZWeF3v/sdXFxckJycjOTkZMTGxspdHpkYFxHjcFBRMOYsiIX9Ftfo0aPh4uKC4uJiDBgwAADQo0cPrF27Fj4+PjJXR6bARaTxmKNCRERkZoGBgXUGlQ8//FDuklSDg4pKVFZWYu3atRg6dCg6dOiAefPm4fvvv4eXlxfi4+PRvHlzuUskE2K/LV9QUFCDn5uZmWnGSoiUjXf9qARzFsTCflu+N998U//D0dERR48ehU6nQ+fOneHs7IzKykocP34cTk5OcpdKJsaAP+PwjIpKDBgwAIsXL0bfvn0RHR2NS5cuISMjA2fOnEFYWBgOHz4sd4lkQuy3WCIjI/Haa68Z3Jq6YsUKXLhwAUlJSTJVRuYQGxuLbdu2IT09HXfu3MG0adMwY8YM5ObmolOnTli8eLHcJSoKz6ioBHMWxMJ+i2XXrl0YN26cwfHRo0fj4MGDMlRE5sSAP+NwUFGJ2pyFs2fPMmdBAOy3WOzs7PCvf/3L4Hh+fj5atGghQ0VkTlxEjMPbk1WCOQtiYb/FEhAQgKioKFy4cAHdu3dHTU0NfvrpJ2zYsAERERFyl0cmxoA/4/AaFRU5d+6cPmdBq9XiwIEDsLGxYc6ChWK/xZKamor169fj1q1bAIA33ngDYWFhmDBhgsyVkalt3boVCxYsgJWVFTw9PZGRkVFnERk9erTcJSoKBxUiIgUpKyuDRqOBvb293KWQGXERaTgOKgrGnAWxsN9iKykpwalTp+r9Vl1u2CQyXqOiYL/+zoeKigp8//336NatGzw8PGBtbY0zZ87g9OnTeO+992SskkyF/RbXN998g5iYGFRXVxs8ptFoOKhYAC4ijcczKirBnAWxsN9i8fPzg6+vL2bNmgVbW1u5yyEziIyM1P/8eYvIwoUL5StUgTioqISnpye2bNmCjh071jn+888/Y/To0Th58qQsdZF5sN9i6dGjB3bu3Mk7PgTBRcQ4zFFRCeYsiIX9Fku3bt1w/vx5ucugF4QBf8bhNSoqwZwFsbDfYgkNDcWiRYtw5coVODk5QavV1nm8Z8+eMlVG5lC7iDx9xpSLSP340Y+KMGdBLOy3OFxcXJ75mEajQWFh4QushswtJSUF6enpCA4OrncRmThxotwlKgoHFRVizoJY2G/LV1JS8j8f//UdYWQZuIg0HAcVFWHOgljYb/GUl5fj4sWLsLGxQbt27XgHkAC4iDwfBxWVeF7OAk8NWxb2Wyw1NTWIi4vD3/72N1RVVUGSJGi1WgQEBODTTz+FRqORu0QyMS4iDcdBRSWYsyAW9lssK1euxNq1azFjxgz06tULNTU1OHbsGJKTkzF16lSEhobKXSKZEBcR43BQUQnmLIiF/RaLn58fZs2ahZEjR9Y5vn37diQlJWH37t0yVUbmwEXEOMxRUQnmLIiF/RbLnTt34O7ubnDc3d0d165dk6EiMqdbt24hJCSEQ0oDMUdFJZizIBb2WywdO3bEoUOH0L59+zrH8/LyeMePBapdRHjGtGH40Y9KMGdBLOy3WLZu3YqoqCgEBgbCy8sLAHD8+HFs2LABn3zyCXM1LMzu3bvxl7/8BSEhIVxEGoCDikowZ0Es7Ld4MjIykJaWhtu3bwMAHB0dMWXKFISEhMhcGZkaFxHjcFBRGeYsiIX9Fsvjx49RXl4OSZJQVVWFVq1ayV0SmQEXEeNwUFEJ5iyIhf0WS2lpKWbOnAlPT0/MmjULANCnTx+4uLhg+fLleO2112SukMyBi0jD8GJalUhNTcWmTZsQERFhkLPQqlUr5ixYGPZbLJ9//jkePnyI4cOH64+tWbMGCxcuRFxcHGJjY2WsjkyNi4iRJFIFX19fKTs72+B4dna25O/vL0NFZE7st1h69eolFRYWGhwvKCiQfHx8ZKiIzCklJUX67W9/K61bt04qLCyUzp49K2VkZEg9e/aU1qxZI3d5isMzKirBnAWxsN9iqa6uhlTPp/A2NjZ4+PChDBWROW3cuBHR0dF1Av7eeustODg4ICkpiWdMn8LAN5WozVl4GnMWLBP7LZaePXsiISEB5eXl+mPl5eVITEzkraoWiIuIcXhGRSVCQkIQFRWFK1eu1JuzQJaF/RZLZGQkJk6ciAEDBqBjx44AgJ9//hn29vZIS0uTtzgyOQb8GYd3/agIcxbEwn6LRafTYceOHfjPf/4Da2trdOnSBSNHjsTLL78sd2lkYgz4Mw4HFZVhzoJY2G/xPH78GDY2Nrzzw8JxEWk4DioqwZwFsbDf4snKysKaNWtw/fp15OTkIC0tDa1atcL06dPlLo3MhItIw/BiWpV4Vs6CTqdDXFycjJWRObDfYtm+fTuWLVuGMWPGwMbGBgDQuXNnrFq1Cunp6TJXR6ZWWlqKoKAgJCcnw8HBAS1atMCYMWMwefJk/PLLL3KXpzgcVFTixx9/xGeffYauXbvqj7m6uiI6Ohq5ubnyFUZmwX6LJT09HfPmzcNHH30EK6snfy0HBQUhKioKX3/9tczVkalxETEOBxWVYM6CWNhvsRQVFcHb29vgeO/evXm7qgXiImIcDioqwZwFsbDfYnF0dERRUZHB8RMnTuD111+XoSIyJy4ixmGOikowZ0Es7LdYAgICsGjRIkRGRgIALl68iB9//BErVqxAcHCwzNWRqdUuIsuXL9d/ESEXkWfjXT8qwpwFsbDfYklISMC6detQUVEBALC2tsa4cePw6aef6q9bIctw+fJlTJw4Effv3693EXFycpK3QIXhoKJCzFkQC/stjocPH+L8+fOQJAlOTk76bZssDxeRhuOgoiLMWRAL+y2Wq1evws7ODra2tjhy5Ah2794NLy8vjBgxQu7SyIy4iDwfzyeqBHMWxMJ+i2XPnj0YPHgwTp06hcuXLyM0NBSHDx/G/PnzsWHDBrnLIzPIysqCn58fPDw8UFxcjOjoaKSkpMhdliJxUFEJ5iyIhf0WS0pKCqZMmQIfHx9s374dbdq0wY4dOxAbG4v169fLXR6ZGBcR43BQUQnmLIiF/RbLhQsX8P7778PKygp5eXkYOHAgrKys4OHhgZKSErnLIxPjImIcDioqwZwFsbDfYrGzs4NOp4NOp8Pp06fRp08fAE/uDrG3t5e3ODI5LiLGYY6KSjBnQSzst1gGDhyIqKgoNGvWDK+++ir69u2LQ4cOYeHChRg0aJDc5ZGJ1S4i7dq1q3Oci0j9OKioRFhYGHQ6HWbPno2KigqEh4frcxamTZsmd3lkYuy3WBYsWIAVK1bgypUrWLlyJbRaLY4fPw4PDw/MmTNH7vLIxLiIGIe3J6sMcxbEwn7Tr0VGRiIiIgIODg5yl0L/Jwb8NRwHFRVhzoJY2G96mpeXF7Zt22bwkQGpExeRhuHYphLMWRAL+0314V5pOa5evYrq6mr06NEDDx48QEJCAr777ju5y1IkDioqwZwFsbDfRJaLi4hxOKioBHMWxMJ+E1kuLiLG4aCiEsxZEAv7TWS5uIgYh7cnqwRzFsTCfhNZrqcXkbCwMABcRJ6FZ1RUYsGCBfDy8sIrr7zCnAUBsN9UH37DrmWoXURmzJhRZxGJioriIlIP3p5sYZizIBb2Wyyenp7Izs7m7ckq9+jRI33AX1hYGDw8PJCUlIQrV64gOjoazZo1k7tEReGgYmGYsyAW9lu9jh07Bo1Gg5YtW6J9+/YNOlty8uRJvPXWW9BqtS+gQpIbF5EneI2KheHcKRb2W70CAwOh0WggSRJsbW2Rn5//3Nd4eHiYvzBSjJycHEyfPp2DitwFEBGJKDMzExqNBo6OjujQoYPc5ZACcRF5ghfTEhHJIDk5GV26dEGnTp0a9N0uZWVl/MI6EhLPqBARyeDChQvIyMhAnz59YGNjg1deeQVdu3bVDy137tzBtWvX8OjRI1RVVeHgwYO4ePGizFUTvXgcVIiIZLBgwQLExcVhzZo1qKmpAQC0adMGq1evRnx8PHJzcwE8uSVZq9Wic+fOWLJkiYwVE8mDg4qFYc6CWNhv9RoyZAiGDBmi/+/y8nJs2bIF48aNg7+/P/bv348WLVrA2pp/TZPY+H+AheHFV2Jhvy2Hra0tAgMDcfXqVUyePBktW7aUuySSGReRJ5ijomDMWRAL+01Ev8aAvyc4qCiYi4uL0TkLpF7sN5Hl4iLSeBxUFOzo0aN1chYacgsjqRf7TWS5uIg0Hv8mVDDmLIiF/SayXJmZmcjMzMTOnTtx9OhRuctRFV5Mq2DMWRAL+01kuZKTk7FixQo0b968Qc8vKyvDzJkzsW7dOjNXpnz86EfBcnJyEBcXh+vXrzc4ZyEiIgI+Pj4yVk2NxX4TWa5+/fph7NixRi0i2dnZOHjwoMyVy4+DiorU5iwkJibC398fM2fOZM6CBWO/iSwHF5HG46CiQnFxccxZEAj7TWR5uIg0HAcVIiIimXAReT4OKkRERKRYvD2ZiIiIFIuDChERESkWBxUiUiylfDKtlDqIRMRBhYgU5/r165g6dSpKSkr+7/cqLi6Gs7MzNm/ebPBYeXk53N3d4erqilu3btX7+pSUFKxdu/b/roOIGoeDChEpzqFDh7B//36z/zrfffcdXn31VdjZ2eHbb7+t9zmJiYl4+PCh2WshovpxUCEiYW3evBn9+/eHv78/Nm7cqA/iIiLl4KBCRPWSJAkZGRkYOnQo3Nzc4O/vj7Vr10KSJMydOxfBwcGIjo6Gl5cXhg0bhurqatTU1GD16tXw9/dH9+7dMWTIEHz11Vd13re6uhqrV6/GiBEj4ObmBg8PD4wbNw5HjhwB8GR4iIyMBAC8/fbbmDt3rv61GzduxPDhw9G9e3cMGjQISUlJqK6urvP+u3fvxqhRo+Dm5oYxY8bg3Llz9f7+zp8/j1OnTmHQoEEYNWoUSkpKDOLKnZ2dAQBffvml/udE9GIxAo+I6rVkyRKsW7cOISEh6Nu3LwoKChAfH4+qqioAQH5+Ppo0aYLk5GQ8ePAAL730EqKiorB582aEh4fD09MTx44dQ2xsLO7du4c//vGPAID4+HhkZWXh448/hrOzM27cuIHk5GT8+c9/Rm5uLgYNGoQPP/wQK1eurDMgpKamYvny5Zg0aRIiIyNRWFiIpKQkXLt2DbGxsQCAffv2YcaMGRg5ciQiIiJQWFiIiIiIen9/mzZtgr29PXx9faHVatGhQwdkZWVh4MCB+ud8/fXXCAgIwB/+8Ae899575vzjJqJn4KBCRAbu3buHzMxMTJo0Sf8PfZ8+fXDr1i0cO3YMjo6OqKqqwqJFi9C6dWsAQFFREb755hvMnj0bU6dOBfDki9g0Gg1SU1MxYcIENG/eHDdv3sSsWbMQGBio//WaNGmCjz76CP/+97/h4eGB9u3bAwC6deuGtm3bQqfTISUlBQEBAZg/f77+ve3t7TF//nyEhITgN7/5DZKTk+Hm5oalS5cCAPr37w8AWLZsWZ3fX1VVFbKzszFixAhotVoAwJgxY/SDzxtvvAEA8PDwAAC0bt1a/3MierH40Q8RGTh58iSqqqowePDgOsfnz5+PtLQ0AIC9vb1+SAGAI0eOQJIk+Pn5oaqqSv/Dz88PFRUVOH78OIAnQ0NwcDBKS0uRn5+PTZs2ITs7GwDw+PHjeus5ceIEHj16VO97A0BeXh4ePXqEs2fPwtfXt85rhw4davB+ubm5uH37Nt555x3cu3cP9+7dg5+fH2pqarBx48ZG/qkRkTnwjAoRGbh79y4AwMHB4ZnPadasWb2vGT58eL3Pv3HjBgCgoKAAMTExKCgoQNOmTdGlSxe0adMGwLPzSmrfu/ZMzdNu3ryJX375BZIkoXnz5nUee/311w2ev2nTJgDABx98YPDYt99+i+nTp/PL4YgUgv8nEpEBOzs7AEBpaSmcnJz0x69evYrLly+jsrLyma9Zt26dwRADPPlK+/LycoSGhsLZ2Rk7duyAk5MTrKyssH//fuTk5Dy3nvj4eHTs2NHgcUdHR9jb28PKygq3b9+u81jtkFPr9u3bOHDgACZMmIB33323zmMnT55EQkICfvjhB/j7+z+zHiJ6cfjRDxEZcHNzg42NDX744Yc6x9PT0zF79my89NJLBq/x9vYGAJSVlaFHjx76H6WlpUhMTMTdu3dx8eJF3L17F0FBQejSpQusrJ78FXTgwAEA0N8eXHu8lru7O2xsbHDjxo06721tbY2EhAQUFxejSZMm8PT0xO7du+ucmdm3b1+d99q2bRuqqqoQHByM3r171/kRHBwMW1tb/P3vf9c//+laiOjF4hkVIjLg4OCAoKAgZGRkQKvVolevXjh16hSysrLwySefoLCw0OA1zs7OGDVqFBYsWICSkhJ0794dRUVFWL58Odq2bYuOHTviwYMHsLW1xapVq2BtbQ1ra2vk5OTow9Zqg9Vqz6Ds2bMHAwYMQOfOnREaGorExESUl5ejd+/euHHjBhITE6HRaODi4gIAmD17NoKDg/GnP/0JAQEBKCoqwqpVq+rUuXnzZri6utZ7Zubll1/GkCFDsHnzZly5cgXt2rWDnZ0dfvrpJxw7dgze3t7QaDSm/KMmoueRiIjqUVNTI6WlpUnvvPOO1L17d+ndd9+VsrKyJEmSpDlz5ki+vr4Gr6msrJS+/PJL6e2335ZcXV2lAQMGSNHR0VJZWZn+OUeOHJF+//vfS25ubpKPj480efJkKT8/X/L09JTi4uIkSZKk8vJy6YMPPpBcXV2lsLAw/WvXr18vDRs2THJ1dZX69Okjffzxx1JJSUmdGvLy8qSxY8dKPXr0kIYOHSrt27dP6tq1q7Rp0ybp5MmTUteuXaW0tLRn/r7/+c9/Sl27dpWWLl0qSZIkpaenS97e3pK7u7vBr0VE5qeRJH7bFhERESkTP3wlIiIixeKgQkRERIrFQYWIiIgUi4MKERERKRYHFSIiIlIsDipERESkWBxUiIiISLE4qBAREZFicVAhIiIixeKgQkRERIrFQYWIiIgUi4MKERERKdZ/AVxk8jPgk+eJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Análisis de la columna 'gender':\n", + "gender\n", + "Hombre 206\n", + "Mujer 144\n", + "Niño 6\n", + "Name: count, dtype: int64\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHyCAYAAADFteVsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/H0lEQVR4nO3deVxU9f7H8fcAgwyuuFtqKChEuaBikuFCZS6Vqbe6JWpeLU3NR5a5lJq7VrikZrnvpi3q1bpmajdNf4pilpq4kGKaAa64MMo2vz98OLcJNZbBOTCv5+PBA+d7vmfO59Bp5j3f8z1nTDabzSYAAAAD8nB1AQAAALdDUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEKKe7VCMAdEFSAAtClSxcFBQXZf4KDgxUaGqqOHTtq8eLFysjIcOgfGRmpIUOG5Pj5N2/erMGDB/9tvyFDhigyMjLP28mrU6dOKSgoSKtWrcq2LC0tTS1atFCHDh1ktVoLrIYuXbqoS5cuBfb8d1NR2hcgt7xcXQBQVIWEhOjdd9+VJGVmZiolJUVbt27VhAkTFBsbq6lTp8rD48ZnhRkzZqhEiRI5fu6FCxfmqF+fPn3UtWvXXNeeXxUrVtTKlStVvXr1bMs+//xzZWRk6OOPP5bFYrnrtQEoXAgqQAEpUaKE6tev79AWGRmpmjVraty4cfrqq6/09NNPS7oRagrCrYLC3eDt7Z1t32969NFH1aZNG5UtW/buFgWgUOLUD3CXRUVFqVKlSlqxYoW97a+nZG6GmLp166pJkyYaOHCgkpKSJN04DbBr1y7t2rVLQUFBiomJUUxMjIKCgrRixQq1bNlSDRo00Pbt27Od+pGk9PR0jR07VmFhYWrUqJEGDx6s8+fP25ff6jTDzeePiYmxtx07dkz9+vVT48aNFRYWpl69eunXX3+VdOtTPwkJCerfv786deqkyMhIdenSRXv27LEvv7nO+vXr1b9/f4WGhqpx48YaNmyYUlNT7/g3PX36tPr166eGDRuqadOmWrBgwS37ff7552rXrp0efPBBtWjRQtOnT1dmZuYdn/vKlSsaMWKEwsPDFRoaqgEDBmjhwoUKCgpy6Ldp0yZ17NhRderUUdOmTTV27FiHuqdPn67HH39c33//vZ566ik9+OCDeuKJJ7RmzZoC2ZchQ4aoW7duevfdd9WgQQO1bdv2b/cVMCKCCnCXeXh4KDw8XPv27cs2V0WS9uzZo0GDBqlVq1aaM2eOhg4dqp07d+rNN9+UJL377rsKCQlRSEiIVq5cqQceeMC+7owZMzR48GCNGDFCoaGht9z++vXr9csvv2jixIkaPHiwvv/+e7388su5ehNLSkrS888/r4SEBI0cOVIffPCBzp49q27duunixYvZ+sfHx6tjx446deqUhg0bpujoaJlMJnXr1k27du1y6Pvuu+/q3nvv1cyZM9WjRw998cUX+vjjj29bS2pqqqKionTkyBGNGTNGw4cP1+eff669e/c69Js1a5aGDx+u8PBwffLJJ+rcubPmzJmj4cOH33Ff+/Tpo/Xr1+u1117TlClTdPXqVU2aNMmhz7p169S3b1/VrFlTH330kfr166e1a9eqT58+DpOez5w5o9GjR6tr166aPXu2qlatqsGDB9sDnrP3JTY2Vn/88Yc++ugjvfnmm/L09LzjvgJGxKkfwAXKly+v9PR0Xbx4UeXLl3dYtmfPHvn4+OiVV16Rt7e3JKlMmTLav3+/bDabAgMD7fNZ/np65cUXX1Tr1q3vuG0/Pz/NmzdPvr6+9sd9+/bV1q1b1bJlyxzVv3DhQqWlpWnBggWqUKGCJCk4OFgvvPCCfv75ZwUEBDj0nzFjhry9vbV48WJ77S1atNCTTz6p999/X1988YW9b/Pmze0ThcPDw7V9+3Z9//339qD2V6tXr9bp06f11VdfKTAwUJJUr149Pf744/Y+ly9f1syZM/X8889r2LBhkqRHHnlEZcqU0bBhw9S9e3fVqlUr23Pv2LFDMTExmj59ulq1aiVJatasmZ588kl7uLDZbIqOjlZERISio6Pt6/r7++ull17Sli1b1KJFC0mS1WrVuHHjFB4ebu/TsmVLbdmyRQEBAU7fl4yMDI0ePVqVK1e+5d8OKAwYUQFc4OanbJPJlG1ZWFiYrFarnnzySU2aNEmxsbF65JFH1K9fv1v2/7P777//b7fdvHlze0iRbpx28vLy0u7du3Nc/549e1S/fn17SJGkypUr67///a+aN2+erf+uXbvUsmVLhwnDXl5eateunQ4cOKCrV6/a2/8avipXrnzHUz+xsbGqXr26/Y1dkqpUqeLwPHv37tW1a9cUGRmpjIwM+8/N02Lbt2+/5XPv3LlTZrNZjz32mL3Nw8NDbdu2tT8+duyYEhMTsz13WFiYSpQoke25/1zXzQBxc/+cvS9lypQhpKDQY0QFcIGkpCT5+PioTJky2ZaFhoZq9uzZWrhwoRYsWKDZs2erfPny6t27999eovrnAHI7fw4X0o03Xj8/P126dCnH9V+8eFFVq1bNcf+UlJRsI0fSjZElm82mK1eu2Nv+eiWQh4fHHe8Zk5KSIj8/v2ztFSpU0NmzZ+31StIrr7xyy+dITk6+ZfuFCxdUpkwZ+9VZN5UrV87+75vPPWrUKI0aNepvn/vP+3fzeW/un7P3pXjx4rfsAxQmBBXgLsvIyFBMTIwaNGhw2zkDERERioiIkNVq1c6dO7V48WKNHTtW9erVU926dfO1/b/OIcnMzNSFCxcc3nz/Ol/lryMaJUuWdJiAe9OOHTtUtWrVbCM/pUuXtr/R/tmZM2ck3Tj9dLuw8Hf8/Px04sSJbO1/3s9SpUpJkqKjo+Xv75+t761ClCRVqlRJFy5cUFZWlkNYOXfuXLbnHjRokBo3bpztOUqXLp2j/ZAKdl+AwopTP8BdtnLlSp05c0YvvPDCLZe/99576tSpk2w2mywWi1q2bGmfs3H69GlJyvYJPze2b9/uMIl3w4YNysjI0EMPPSTpxmXViYmJDuv8+eocSWrUqJF+/vlnh7By7tw59ezZU1u2bMm2zbCwMP33v/91GDnJzMzU119/rTp16tjn4uRFkyZNdOrUKe3fv9/edv78ef3000/2x/Xq1ZPZbFZSUpLq1Klj//Hy8tLkyZN16tSpWz5348aNlZGRoe+++87eZrPZtGnTJvvjmjVrqly5cjp16pTDc1eqVEmTJk3SwYMHDbEvQGHFiApQQK5cuWJ/g8nKytKFCxe0bds2rVy5Uk8//bR9cuZfNWnSRAsWLNCQIUP09NNPKz09XXPnzlWZMmXUpEkTSTc+Ve/du1c7duzI9T1Yzpw5o9dee01dunRRQkKCJk+erKZNm9oneLZs2VLfffedJkyYoMjISMXGxma7hPall17SmjVr1LNnT/Xq1Utms1kff/yxKleurKeeekqXL1926N+vXz9t3bpVXbt21SuvvCKz2aylS5fq5MmTmjt3bq7q/6v27dtr8eLF6tevnwYMGKASJUro448/VlZWlr2Pn5+fevbsqQ8//FBXrlzRQw89pKSkJH344YcymUwKDg6+5XOHhYWpadOmeuedd3T27Fndc889+uKLL3T48GH7qJGnp6cGDBigESNGyNPTUy1bttSlS5c0c+ZMJSUlOVyV5cp9AQorggpQQA4ePKjnn39e0o1Js8WLF1ft2rU1cuRIPfvss7ddr3nz5oqOjtb8+fPtE2gbNmyoxYsX2+e0dO7cWQcOHNDLL7+sCRMmqGLFijmu68UXX9Tly5fVt29feXt766mnntJbb71lf+Pt1KmTfvvtN61evVorVqxQWFiYpk2b5jACVKVKFS1fvlwffPCBhgwZIm9vbz300EOaMmWKSpcunS2o1KpVS8uXL9fkyZM1dOhQmUwm1a1bV4sXL1ajRo1yXPuteHt7a9GiRRo/frzGjRsnk8mk5557TtWqVXM4RfP666+rQoUKWr58uebOnavSpUsrPDxcb7zxhkqWLHnb558yZYomTpyoSZMmKSMjQ48++qheeOEFh/D27LPPqnjx4po7d65WrlwpX19fNWjQQNHR0apWrZph9gUojEw2vtkMAG7p999/108//aRHH31UPj4+9vb+/fvr5MmTWr16tQurA9wDIyoAcBseHh4aMmSIHn30Uf3jH/+Qp6enfvjhB3377beaMGGCq8sD3AIjKgBwBzt37tRHH32kuLg4ZWRkKCAgQN27d9eTTz7p6tIAt0BQAQAAhsXlyQAAwLAIKgAAwLAIKgAAwLAK/VU/e/fulc1mk9lsdnUpAAAgh9LT02UymRQaGnrHfoV+RMVms93xC8uQMzabTWlpafwtYSgclzAajknnyen7d6EfUbk5klKnTh0XV1K4paamKi4uToGBgTn6Bl7gbuC4hNFwTDrPn7/T6k4K/YgKAAAouggqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqkCSZTCZZLBaZTCZXlwIAgJ2XqwtwF1lZNnl4GDcEWCwWhYSEuLqMHDH63xIA4DwElbvEw8Ok6GV7dCrpsqtLKdSqViqpgZ0buroMAMBdQlC5i04lXdavv6e4ugwAAAoN5qgAAADDIqgAAADDynVQuXjxokaMGKFmzZqpQYMGeuGFFxQbG2tfvmPHDnXs2FH16tVT69at9fXXXzusf/36dY0aNUrh4eEKDQ3Vm2++qfPnz+d/TwAAQJGT66DyxhtvaO/evZo8ebK+/PJL3X///erRo4eOHTumX3/9Vb169VJERIRWrVqlZ599VoMGDdKOHTvs648cOVLbtm3T9OnTtWjRIh07dkz9+/d36k4BAICiIVeTaU+cOKHt27dr+fLlatjwxpUXw4cP1w8//KB169bp3LlzCgoK0oABAyRJAQEBOnjwoObOnavw8HAlJSVpzZo1+uSTT9SoUSNJ0uTJk9W6dWvt3btXoaGhTt49AABQmOVqRMXPz0+zZ89WnTp17G0mk0kmk0mXLl1SbGyswsPDHdZp0qSJ9uzZI5vNpj179tjbbqpRo4YqVaqk3bt352c/AABAEZSrEZVSpUqpefPmDm0bNmzQiRMn9Pbbb2v16tWqXLmyw/KKFSvKarXqwoULSkpKkp+fn4oVK5atT2JiYh53QbLZbEpNTc3z+gXt5l1f4TxWq1U2m83VZaCAWa1Wh9+Aq3FMOo/NZsvR3dDzdR+VH3/8UUOHDlWrVq3UokULXbt2Td7e3g59bj5OS0uT1WrNtlySihUrpuvXr+e5jvT0dMXFxeV5/YJWmO76WlgcP36cFwo3kpCQ4OoSAAcck85xq0zwV3kOKps2bdLAgQPVoEEDRUdHS7oRONLS0hz63XxssVjk4+OTbbl040qg/Iw4mM1mBQYG5nn9gsb35zhfjRo1GFFxA1arVQkJCfL392dUEobAMek88fHxOeqXp6CydOlSjRs3Tq1bt9Z7771nT0RVqlRRcnKyQ9/k5GT5+vqqZMmSqly5si5evKi0tDSHFJWcnKxKlSrlpRRJN4KAr69vntdH4cMLhHuxWCz8Pw5D4ZjMv5x+iM/15cnLly/XmDFj1LlzZ02ePNkhcDRq1Ei7du1y6L9z5041aNBAHh4eatiwobKysuyTaqUbQ/hJSUkKCwvLbSkAAKCIy1VQOX78uMaPH6/HH39cvXr10tmzZ3XmzBmdOXNGly9fVpcuXbRv3z5FR0fr119/1fz58/XNN9+oZ8+ekqRKlSqpXbt2GjZsmGJiYrRv3z698cYbaty4serXr18Q+wcAAAqxXJ362bBhg9LT07Vx40Zt3LjRYVmHDh00ceJEzZw5Ux988IEWLVqkqlWr6oMPPnC4ZHnMmDEaP368+vXrJ0lq1qyZhg0b5oRdAQAARU2ugkrv3r3Vu3fvO/Zp1qyZmjVrdtvlvr6+Gjt2rMaOHZubTQMAADfElxICAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADD8srPyrNmzdK2bdu0ZMkSSVKXLl20a9euW/Z977339MwzzygzM1OhoaG6fv26w/J+/frptddey085AACgiMlzUFm2bJmmTp2qRo0a2dumT5+u9PR0+2ObzaYBAwYoJSVFjz/+uCQpISFB169f17///W+VK1fO3tfX1zevpQAAgCIq10ElKSlJ7777rmJiYuTv7++wrEyZMg6Ply5dqn379unf//63ihcvLkk6fPiwSpQooeDg4DwXDQAA3EOu56j88ssvMpvNWrt2rerVq3fbfufPn9fUqVP16quvqmbNmvb2w4cPKyAgIG/VAgAAt5LrEZXIyEhFRkb+bb85c+bIx8dHPXr0cGg/cuSIMjIy1KNHDx06dEiVKlVSt27d1L59+9yWAgAAirh8Taa9nStXruizzz5Tv379VKxYMYdlR48eVVZWlvr376/KlStry5YtGjp0qNLT0/WPf/wjT9uz2WxKTU11RukFwmQyyWKxuLqMIsVqtcpms7m6DBQwq9Xq8BtwNY5J57HZbDKZTH/br0CCyqZNm5SWlqZOnTplW/bVV18pMzPTPmclODhYp0+f1rx58/IcVNLT0xUXF5evmguSxWJRSEiIq8soUo4fP84LhRtJSEhwdQmAA45J5/D29v7bPgUWVJo3b65SpUplW+bj45OtrXbt2lq7dm2et2c2mxUYGJjn9QtaThIjcqdGjRqMqLgBq9WqhIQE+fv7MyoJQ+CYdJ74+Pgc9SuQoBIbG3vLe6JcunRJjz32mIYMGaKOHTva2/fv369atWrleXsmk4nLm90MLxDuxWKx8P84DIVjMv9y+iHe6UHljz/+0IULF255+XGpUqXUpEkTTZkyReXKldN9992nb7/9VmvXrtWsWbOcXQoAACjknB5Uzpw5Iyn7PVVuGj9+vKZPn653331X586dU0BAgKZNm6aIiAhnlwIAAAq5fAWViRMnZmurW7euDh8+fNt1SpQooaFDh2ro0KH52TQAAHADfCkhAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwrHwFlVmzZqlLly4ObcOGDVNQUJDDT2RkpH15VlaWpk2bpoiICNWvX18vv/yyTp48mZ8yAABAEZXnoLJs2TJNnTo1W/vhw4fVu3dvbdu2zf7zxRdf2JfPnDlTy5cv15gxY7RixQplZWWpZ8+eSktLy2spAACgiMp1UElKSlLv3r0VHR0tf39/h2U2m03x8fF68MEHVaFCBftP2bJlJUlpaWmaP3+++vfvrxYtWig4OFhTpkxRYmKivv32W6fsEAAAKDpyHVR++eUXmc1mrV27VvXq1XNY9ttvvyk1NVU1a9a85bqHDh3S1atXFR4ebm8rVaqUQkJCtHv37tyWAgAAijiv3K4QGRnpMOfkz44cOSJJWrJkibZu3SoPDw81a9ZMAwYMUMmSJZWYmChJqlKlisN6FStWtC8DAAC4KddB5U6OHDkiDw8PVaxYUZ988ol+++03vf/++zp69KgWLVokq9UqSfL29nZYr1ixYkpJScnzdm02m1JTU/NVe0EymUyyWCyuLqNIsVqtstlsri4DBezma8bN34CrcUw6j81mk8lk+tt+Tg0qr776ql588UX5+flJkmrXrq0KFSroueee0/79++Xj4yPpxlyVm/+WpOvXr+frjTw9PV1xcXH5K74AWSwWhYSEuLqMIuX48eO8ULiRhIQEV5cAOOCYdI6/DlzcilODioeHhz2k3FSrVi1JUmJiov2UT3JysqpXr27vk5ycrKCgoDxv12w2KzAwMM/rF7ScJEbkTo0aNRhRcQNWq1UJCQny9/dnVBKGwDHpPPHx8Tnq59SgMmjQICUnJ2vhwoX2tv3790uSAgMDVa1aNZUoUUIxMTH2oHLp0iUdPHhQUVFRed6uyWSSr69vvmpH4cILhHuxWCz8Pw5D4ZjMv5x+iHfqnWmfeOIJ7dixQzNmzNBvv/2mLVu26O2339aTTz6pgIAAeXt7KyoqStHR0dq8ebMOHTqkAQMGqHLlymrVqpUzSwEAAEWAU0dUHn30UU2dOlWzZ8/WnDlzVLJkST311FN6/fXX7X369++vjIwMDRs2TNeuXVNYWJjmzZsns9nszFIAAEARkK+gMnHixGxtbdq0UZs2bW67jqenp9566y299dZb+dk0AABwA3wpIQAAMCyCCgAAMCyCCgAAMCyCCgDDunlXZ+5FBLgvp171A6DwyMqyycPD2AGgsNzVuTD8LYHCiqACuCkPD5Oil+3RqaTLri6lUKtaqaQGdm7o6jKAIougArixU0mX9evvef9CUAAoaMxRAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhpWvoDJr1ix16dLFoe27775Tp06dFBoaqsjISL333nu6du2affmePXsUFBSU7ScmJiY/pQAAgCLIK68rLlu2TFOnTlWjRo3sbbGxserXr5/69++v1q1b68SJExoxYoQuXryoCRMmSJIOHz6s6tWra/ny5Q7PV7p06byWAgAAiqhcj6gkJSWpd+/eio6Olr+/v8OyFStW6KGHHlLv3r3l7++v5s2ba8CAAVq3bp3S0tIkSUeOHFFgYKAqVKjg8OPt7e2UHQIAAEVHroPKL7/8IrPZrLVr16pevXoOy/71r39p8ODBjhvw8FB6erquXLki6caISkBAQD5KBgAA7iLXp34iIyMVGRl5y2UhISEOj9PT07Vw4UI9+OCDKlu2rCTp6NGj8vPzU8eOHZWUlKTatWtrwIABqlu3bh7Kv8Fmsyk1NTXP6xc0k8kki8Xi6jKKFKvVKpvN5uoyCi2OSefjmHQPVqvV4TfyzmazyWQy/W2/PM9R+TsZGRkaNGiQjh49qmXLlkmS/vjjD12+fFmpqakaNmyYPD09tXTpUkVFRWnVqlUKDAzM07bS09MVFxfnzPKdymKxZAtxyJ/jx4/zQpEPHJPOxzHpXhISElxdQpGQk2kfBRJUrly5otdff127du3SjBkz7KMlVapU0e7du2WxWGQ2myVJderU0cGDB7VkyRKNGjUqT9szm815Djl3Q04SI3KnRo0afHrNB45J5+OYdA9Wq1UJCQny9/dnVDKf4uPjc9TP6UElOTlZL7/8sn7//XfNmzdPYWFhDstLlSrl8NjDw0MBAQFKSkrK8zZNJpN8fX3zvD4KH14gYDQck+7FYrHwvpNPOf3A5NQbvqWkpKhbt246f/68li1bli2kbN26VaGhoTp58qS9LSMjQ4cOHTL0iAgAAHANp46oTJgwQSdPntTcuXNVtmxZnTlzxr6sbNmyatCggfz8/DR48GC9/fbbMpvNmj17ti5evKiXXnrJmaUAAIAiwGlBJTMzU//5z3+Unp6ubt26ZVu+efNmVa1aVQsXLlR0dLR69Oih69evq2HDhlq6dKnKly/vrFIAAEARka+gMnHiRPu/PT09tW/fvr9dp3r16po2bVp+NgsAANwEX0oIAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMK19BZdasWerSpYtDW1xcnKKiolS/fn1FRkZq8eLFDsuzsrI0bdo0RUREqH79+nr55Zd18uTJ/JQBAACKqDwHlWXLlmnq1KkObRcuXFD37t1VvXp1ffnll+rbt6+io6P15Zdf2vvMnDlTy5cv15gxY7RixQplZWWpZ8+eSktLy/NOAACAoskrtyskJSXp3XffVUxMjPz9/R2WffbZZzKbzRo9erS8vLwUEBCgEydOaPbs2erUqZPS0tI0f/58DRw4UC1atJAkTZkyRREREfr222/15JNPOmOfAABAEZHrEZVffvlFZrNZa9euVb169RyWxcbGqnHjxvLy+l/+adKkiRISEnT27FkdOnRIV69eVXh4uH15qVKlFBISot27d+djNwAAQFGU6xGVyMhIRUZG3nJZYmKiateu7dBWsWJFSdIff/yhxMRESVKVKlWy9bm5LC9sNptSU1PzvH5BM5lMslgsri6jSLFarbLZbK4uo9DimHQ+jkn3YLVaHX4j72w2m0wm09/2y3VQuZNr167J29vboa1YsWKSpOvXr9v/w96qT0pKSp63m56erri4uDyvX9AsFotCQkJcXUaRcvz4cV4o8oFj0vk4Jt1LQkKCq0soEv6aB27FqUHFx8cn26TY69evS5J8fX3l4+MjSUpLS7P/+2af/Hy6M5vNCgwMzPP6BS0niRG5U6NGDT695gPHpPNxTLoHq9WqhIQE+fv7MyqZT/Hx8Tnq59SgUrlyZSUnJzu03XxcqVIlZWRk2NuqV6/u0CcoKCjP2zWZTPL19c3z+ih8eIGA0XBMuheLxcL7Tj7l9AOTU2/4FhYWpj179igzM9PetnPnTtWoUUPlypVTcHCwSpQooZiYGPvyS5cu6eDBgwoLC3NmKQAAoAhwalDp1KmTrly5onfeeUfx8fFatWqVFi5cqF69ekm6cS4qKipK0dHR2rx5sw4dOqQBAwaocuXKatWqlTNLAQAARYBTT/2UK1dOc+fO1bhx49ShQwdVqFBBgwYNUocOHex9+vfvr4yMDA0bNkzXrl1TWFiY5s2bJ7PZ7MxSAABAEZCvoDJx4sRsbXXr1tXKlStvu46np6feeustvfXWW/nZNAAAcAN8KSEAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsL2c+WUxMjLp27XrLZVWrVtXmzZv18ccfa+rUqdmWHz582JmlAACAIsCpQSU0NFTbtm1zaPvpp5/02muvqU+fPpJuBJL27dvrrbfecuamAQBAEeTUoOLt7a0KFSrYH6empmrChAnq0KGDOnXqJEk6cuSInnvuOYd+AAAAt1Kgc1Q++eQTWa1WDR48WJKUlpamhIQE1axZsyA3CwAAiogCCyrnz5/XwoUL1bt3b5UpU0aSFB8fr8zMTG3YsEFPPPGEWrRoobfeekvJyckFVQYAACjEnHrq58+WL1+ukiVL6vnnn7e3HTlyRJJksVj04Ycf6ty5c5o8ebK6du2qNWvWyMfHJ0/bstlsSk1NdUrdBcFkMslisbi6jCLFarXKZrO5uoxCi2PS+Tgm3YPVanX4jbyz2WwymUx/26/AgsqaNWv0zDPPOISPZ555Rs2aNVPZsmXtbbVq1VKzZs303XffqW3btnnaVnp6uuLi4vJdc0GxWCwKCQlxdRlFyvHjx3mhyAeOSefjmHQvCQkJri6hSPD29v7bPgUSVA4dOqSTJ0/qqaeeyrbszyFFkipWrKgyZcooMTExz9szm80KDAzM8/oFLSeJEblTo0YNPr3mA8ek83FMuger1aqEhAT5+/szKplP8fHxOepXIEElNjZW5cqVU3BwsEP7lClT9M033+ibb76xv1CeOnVKFy5cyFfQMJlM8vX1zVfNKFx4gYDRcEy6F4vFwvtOPuX0A1OBTKY9ePCggoKCsrU//vjj+v333zVy5EgdP35cu3fv1muvvaYGDRooIiKiIEoBAACFWIEElTNnztiv9PmzBx98UHPmzNHhw4fVsWNH9evXT/fff78++eQThqIBAEA2BXLqZ86cObddFh4ervDw8ILYLAAAKGL4UkIAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYTg8qSUlJCgoKyvazatUqSVJcXJyioqJUv359RUZGavHixc4uAQAAFBFezn7CQ4cOqVixYtq0aZNMJpO9vWTJkrpw4YK6d++uyMhIjRo1Sj/99JNGjRql4sWLq1OnTs4uBQAAFHJODypHjhyRv7+/KlasmG3ZokWLZDabNXr0aHl5eSkgIEAnTpzQ7NmzCSoAACAbp5/6OXz4sAICAm65LDY2Vo0bN5aX1//yUZMmTZSQkKCzZ886uxQAAFDIOT2oHDlyROfPn1fnzp318MMP64UXXtDWrVslSYmJiapcubJD/5sjL3/88YezSwEAAIWcU0/9ZGRk6NixYwoMDNSQIUNUokQJff3113rllVe0YMECXbt2Td7e3g7rFCtWTJJ0/fr1PG/XZrMpNTU1X7UXJJPJJIvF4uoyihSr1SqbzebqMgotjknn45h0D1ar1eE38s5msznMZb0dpwYVLy8vxcTEyNPTUz4+PpKkBx98UEePHtW8efPk4+OjtLQ0h3VuBhRfX988bzc9PV1xcXF5L7yAWSwWhYSEuLqMIuX48eO8UOQDx6TzcUy6l4SEBFeXUCT8dfDiVpw+mbZ48eLZ2mrVqqVt27apcuXKSk5Odlh283GlSpXyvE2z2azAwMA8r1/QcpIYkTs1atTg02s+cEw6H8eke7BarUpISJC/vz+jkvkUHx+fo35ODSpHjx7V888/r48//lgPPfSQvf3AgQMKDAzU/fffrxUrVigzM1Oenp6SpJ07d6pGjRoqV65cnrdrMpnyNSKDwocXCBgNx6R7sVgsvO/kU04/MDl1Mm1AQIBq1qyp0aNHKzY2Vr/++qsmTJign376Sa+++qo6deqkK1eu6J133lF8fLxWrVqlhQsXqlevXs4sAwAAFBFOHVHx8PDQJ598okmTJun111/XpUuXFBISogULFqh27dqSpLlz52rcuHHq0KGDKlSooEGDBqlDhw7OLAMAABQRTp+jUr58eU2YMOG2y+vWrauVK1c6e7MAAKAI4ksJAQCAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYXk5+wkvXryoyZMn6/vvv9eVK1cUFBSkN998U40aNZIkde/eXf/3f//nsE7jxo21ZMkSZ5cCAAAKOacHlTfeeENnzpzR5MmTVa5cOS1ZskQ9evTQ6tWrVbNmTR0+fFgjR47UY489Zl/HbDY7uwwAAFAEODWonDhxQtu3b9fy5cvVsGFDSdLw4cP1ww8/aN26dYqKitK5c+dUr149VahQwZmbBgAARZBT56j4+flp9uzZqlOnjr3NZDLJZDLp0qVLOnz4sEwmk2rUqOHMzQIAgCLKqSMqpUqVUvPmzR3aNmzYoBMnTujtt9/WkSNHVLJkSY0ePVrbt2+Xr6+vWrdurT59+sjb2zvP27XZbEpNTc1v+QXGZDLJYrG4uowixWq1ymazubqMQotj0vk4Jt2D1Wp1+I28s9lsMplMf9vP6XNU/uzHH3/U0KFD1apVK7Vo0UJvv/22rl+/rrp166p79+6Ki4vT+++/r9OnT+v999/P83bS09MVFxfnxMqdy2KxKCQkxNVlFCnHjx/nhSIfOCadj2PSvSQkJLi6hCIhJ4MUBRZUNm3apIEDB6pBgwaKjo6WJI0ePVqDBw9W6dKlJUm1a9eW2WzWgAEDNGjQIJUvXz5P2zKbzQoMDHRa7c6Wk8SI3KlRowafXvOBY9L5OCbdg9VqVUJCgvz9/RmVzKf4+Pgc9SuQoLJ06VKNGzdOrVu31nvvvWdPTF5eXvaQclOtWrUkSYmJiXkOKiaTSb6+vvkrGoUKLxAwGo5J92KxWHjfyaecfmBy+g3fli9frjFjxqhz586aPHmyw7BOly5dNHToUIf++/fvl9lslr+/v7NLAQAAhZxTR1SOHz+u8ePH6/HHH1evXr109uxZ+zIfHx898cQTGj9+vOrWratHHnlE+/fv1/vvv68ePXqoRIkSziwFAAAUAU4NKhs2bFB6ero2btyojRs3Oizr0KGDJk6cKJPJpCVLlmj8+PGqUKGCXnrpJb3yyivOLAMAABQRTg0qvXv3Vu/eve/Yp3PnzurcubMzNwsAAIoovpQQAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAIAcMplMslgsMplMri7FbXi5ugAAAG7KyrLJw8O4IcBisSgkJMTVZfwto/8dc4OgAgAwDA8Pk6KX7dGppMuuLqXQqlqppAZ2bujqMpyGoAIAMJRTSZf16+8pri4DBsEcFQAAYFgEFQAAYFguCSpZWVmaNm2aIiIiVL9+fb388ss6efKkK0oBAAAG5pKgMnPmTC1fvlxjxozRihUrlJWVpZ49eyotLc0V5QAAAIO660ElLS1N8+fPV//+/dWiRQsFBwdrypQpSkxM1Lfffnu3ywEAAAZ214PKoUOHdPXqVYWHh9vbSpUqpZCQEO3evftulwMAAAzsrl+enJiYKEmqUqWKQ3vFihXty3IjPT1dNptN+/btc0p9BcVkMukf4SWVkVnc1aUUal6eHtq/f79sNpurSyn0OCadg2PSuTgu86+wHJPp6ek5usPvXQ8qVqtVkuTt7e3QXqxYMaWk5P66+Zs7WRhuZ1y6hPffd0KOFIb/3oUBx6TzcEw6D8elcxj9mDSZTMYMKj4+PpJuzFW5+W9Jun79uiwWS66fLzQ01Gm1AQAAY7nrc1RunvJJTk52aE9OTlalSpXudjkAAMDA7npQCQ4OVokSJRQTE2Nvu3Tpkg4ePKiwsLC7XQ4AADCwu37qx9vbW1FRUYqOjlbZsmV177336oMPPlDlypXVqlWru10OAAAwMJd8KWH//v2VkZGhYcOG6dq1awoLC9O8efNkNptdUQ4AADAok83o1y8BAAC3xZcSAgAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoADCU3377zdUlADAQggp07do1rVmzRpMmTdLFixe1a9cuXbhwwdVlwU117txZ+/btc3UZAAzCJd/1A+M4e/asnn/+eZ07d05paWl67rnnNH/+fB04cECLFi1SQECAq0uEmzGbzfLy4qUJxvLHH39o2bJlOnLkiLy8vFSrVi0999xzuvfee11dWpHHd/24uYEDB+rKlSuaMmWKHn74Ya1du1alSpXS66+/rmLFiumTTz5xdYlwM9OnT9enn36q9u3b67777pOPj4/D8meeecY1hcFtHT58WFFRUfLx8VHdunWVlZWlAwcOyGq16tNPP1WtWrVcXWKRRlBxc4888ohmz56tkJAQhYaGau3atapWrZoOHTqkrl27ateuXa4uEW4mODj4tstMJpPi4uLuYjWA1KNHD1ksFk2aNEnFihWTJF2/fl0DBw5UWlqaZs2a5eIKizbGV93c1atX5evre8tlGRkZd7kaQDp06JCrSwAc/Pjjj1qxYoU9pEhSsWLF1LdvX0VFRbmwMvfAZFo3FxYWpk8//dShLT09XR9//LEaNGjgoqoA6fTp0/rhhx907do1nTt3ztXlwI0VL15c6enp2dpv1Qbn49SPm/v111/VuXNnValSRUePHtVDDz2kY8eO6fLly1q6dOkdh+GBgpCWlqbBgwdr/fr18vDw0IYNG/Tee+/p6tWrmj59ukqUKOHqEuFmBg4cqOTkZE2bNk1lypSRJJ0/f16vv/66SpcurenTp7u2wCKOoAIlJyfr008/1cGDB5WVlaVatWrpxRdfVNWqVV1dGtzQhx9+qG+++UYjR45U7969tXbtWp0+fVpDhw5Vs2bNNHLkSFeXCDeTmJiof/7zn0pJSZG/v78kKSEhQWXKlNGSJUt4rSxgBBU3169fPw0YMIDLkGEYrVq10siRI/Xwww87TPDesWOHBg0apB9++MHVJcINXb16Vf/+97919OhR2Ww2BQUF6amnnmKE7y5gMq2b27lzp8MEMcDVkpKSVL169WztVapUUUpKigsqAm7MU3nxxRddXYZbIqi4uQ4dOig6Olp9+/bVfffdJ29vb1eXBDcXEBCgHTt26Nlnn3Vo//rrrxUYGOiiquBufvjhB4WFhcnHx0dnzpzR1KlT9eOPPyo9PV1/PRGxefNmF1XpHggqbm7Lli367bfftGHDhlsu554VuNtee+01DRgwQPHx8crMzNTq1at1/PhxbdiwQVOmTHF1eXATCxcu1NixY7V+/XoNHz5cBw4cULt27VSyZElXl+Z2mKPi5lavXn3H5R06dLhLlQD/s3XrVs2aNcthgvfLL7+sJ554wtWlwU0kJSWpffv22rp1qxo3bqy5c+eqUaNGri7LLRFUAAD4ix49eqht27bq1KmTHn74YS1btkw1atRwdVluiVM/0KZNm7RgwQIdPXpU3t7eqlWrlvr27cunB9w1M2bMsN+mfMaMGXfs6+3trcqVK+uxxx677V2Vgfw6duyYTp48qbS0NLVv315z587V6NGj5enp6erS3A4jKm5u2bJlGj9+vNq0aaN69eopMzNTe/bs0ebNmzVp0iS1adPG1SXCDURGRurLL7+Un5+fIiMj79g3MzNT586dU9OmTfmOFRSY+Ph4rVixQv3799eECRP01VdfqVSpUqpWrVq2iw4WL17soirdA0HFzT366KPq3r17tu+rmD17tlavXq3169e7qDLg9nbt2qVevXpp7969ri4FbmDo0KF3XD5hwoS7VIl7Iqi4ubp162rdunW67777HNqPHz+u9u3ba9++fS6qDLi98+fPa926derWrZurSwFQwJij4uYeeughbdiwQa+88opD+/fff6/Q0FAXVQV3FhwcLJPJdNvlcXFxKlu2LCEFBWrNmjVq27atvL29tWbNmjv2feaZZ+5KTe6KERU39OfJisnJyfriiy/02GOPqUGDBvL09NQvv/yir776Sj169NCAAQNcWCnc0apVqxyCSkZGhhISErRmzRoNGjRI7du3d2F1cBfBwcHavn27ypUrd8cvZzWZTNxvqoARVNzQ301WvMlkMnHHRRjG+vXr9fnnn2v+/PmuLgXAXURQAVAo/P7772rbtq1+/vlnV5cCN9C1a9cc9TOZTFq0aFEBV+PemKMCSdLZs2eVlpaWrf2ee+5xQTWAo6tXr2rp0qUqX768q0uBm7jnnnvuOFcqNjZWJ0+eVKlSpe5iVe6JoOLmtmzZoqFDh+rChQsO7TabjXOvcIk7TaYdPXr0Xa4G7mrixIm3bL9y5YomTpyokydPqmnTpho3btxdrsz9cOrHzbVq1Uo1a9bUiy++KB8fn2zLGzdu7IKq4M5u9f1TZrNZ9erVU7Vq1VxQEXDD//3f/2nYsGG6fPmyBg0alO0bvlEwCCpurn79+lq1apVq1qzp6lLgxv7utvk3mUwm9e3bt4CrARylpqZq4sSJ+uyzz9S0aVONHTtWVapUcXVZboNTP26uSZMm+uWXXwgqcKkZM2bIw8NDlStXvmM/ggruth07duidd95RSkqKRo8ereeee87VJbkdRlTcXGJiov7xj3/o4YcfVrVq1bLNDejXr5+LKoM7GTFihDZu3CiLxaJ27dqpXbt2d7x3BVDQUlNT9f7772vlypUKDw/XuHHjGEVxEYKKmxsxYoQ+++wz+fn5yWKxOCzjPiq4mzIzM7Vz50795z//0aZNm1SuXDl7aPH393d1eXAzjz76qE6fPq1q1arp6aefvmNfPtAVLIKKm2vQoIGGDx+uDh06uLoUwC49PV3btm3T+vXrtXnzZlWvXl1t27ZVu3btuGQedwU3xjQOgoqba9q0qZYvX57tSwkBo0hLS9OXX36pSZMm6erVq1wyD7gZD1cXANd68cUXNX36dFmtVleXAjhITk7W0qVL9a9//UujR49W+fLl1bt3b1eXBeAuY0TFzXXv3l27d++WJJUrV05eXo4XgjGkibspKSlJGzZs0DfffKO9e/eqWrVqatOmjdq0acPkWsBNcXmym2vYsKEaNmzo6jLg5hYuXKgNGzbo559/1j333KM2bdronXfe0QMPPODq0gC4GCMqAFwuODhYZrNZDz/8sOrUqXPHvlxhAbgXggp04MABzZs3T0eOHJGXl5cCAwPVrVs31a1b19WlwU1whQWA2yGouLldu3bpX//6l2rXrq1GjRopKytLP/74o44cOaJFixZxWggA4FIEFTf3wgsvqHbt2ho1apRD+6hRoxQfH68lS5a4qDIAALg82e0dPHhQXbt2zdYeFRWlAwcOuKAiAAD+h6Di5vz8/HThwoVs7efPn5e3t7cLKgIA4H8IKm6uZcuWGjNmjH799Vd7W3x8vMaOHZvjCY4AABQU5qi4uZSUFHXv3l1xcXEqWbKkJOnSpUu6//77NX/+fPn5+bm4QgCAOyOoQFlZWdq2bZuOHDkim82moKAgRUREyGQyubo0AICbI6i4oVtNnr2dxYsXF2AlAADcGbfQd0P33ntvtrZ169YpMjJSxYsXd0FFAADcGiMqkCSFhoZq7dq1qlatmqtLAQDAjqt+AACAYRFUAACAYRFUAACAYRFUAACAYXHVjxsaOnRotrb09HR98MEH2a76mTBhwt0qCwCAbAgqbujUqVPZ2kJDQ3XhwoVbfu8PAACuwuXJAADAsJijAgAADIugAgAADIugAgAADIugAgAADIugAqDQGjJkiCIjI11dBoACRFABAACGRVABAACGRVABkGfp6emKjo5Ws2bNVLduXfXo0UNr1qxRUFCQ/caCsbGxioqKUr169dS4cWMNHjxY58+ftz/HqlWrFBISop9//lnPP/+86tSpo5YtW2revHkO20pJSdHQoUPVuHFjhYWF6YMPPlBWVla2mjZt2qSOHTuqTp06atq0qcaOHavU1FT78unTp+vxxx/XjBkz1LhxYz3yyCNKSUkpoL8QgPwiqADIsxEjRmjRokWKiorSRx99pPLly2v48OH25bt379ZLL70kHx8fTZ06VW+//bZ27dqlrl276tq1a/Z+WVlZev3119W2bVvNnj1bDRo00Pvvv68ffvjBvrxnz57asmWLBg8erIkTJ+rHH3/Uf/7zH4d61q1bp759+6pmzZr66KOP1K9fP61du1Z9+vTRn+9tefr0aW3ZskVTpkzR0KFDVbp06QL+SwHIK26hDyBPfvvtN61evVqDBw9W9+7dJUkRERE6e/astm3bJkmaNGmSatSooVmzZsnT01OSVK9ePbVr105ffvmlOnfuLEmy2Wzq06ePnn32WUlSw4YNtXHjRn3//feKiIjQ1q1btW/fPs2ZM0fNmjWTJIWHhztMpLXZbIqOjlZERISio6Pt7f7+/nrppZe0ZcsWtWjRQpKUkZGhwYMHq1GjRgX7RwKQb4yoAMiTmJgY2Ww2tW7d2qH9ySeflCRdu3ZNP//8s5o3by6bzaaMjAxlZGSoWrVqCggI0Pbt2x3WCw0Ntf/b29tbZcuWtZ+yiY2NldlsVkREhL2Pr6+vmjdvbn987NgxJSYmKjIy0r6tjIwMhYWFqUSJEtm2d//99zvnDwGgQDGiAiBPbs4zKVeunEP7zccpKSnKysrSnDlzNGfOnGzrFytWzOGxj4+Pw2MPDw/76ZqUlBSVKVNGJpPJoU+FChXs/7548aIkadSoURo1alS27SUnJzs8/us3hQMwJoIKgDypVKmSJOns2bO655577O03A0yJEiVkMpn00ksvqV27dtnWt1gsOd6Wn5+fLly4oMzMTPspJOl/4USSSpUqJUkaNGiQGjdunO05mIcCFE6c+gGQJw0bNpSnp6c2btzo0P7tt99KujFiERISomPHjqlOnTr2n1q1amn69OmKiYnJ8bbCw8OVkZGhTZs22dvS0tIcTufUrFlT5cqV06lTpxy2V6lSJU2aNEkHDx7M5x4DcAVGVADkSbVq1dSpUydNnjxZ6enpCg4O1saNG/Xf//5X0o1TN2+88YZeeeUVvfnmm3r66aeVmZmp+fPn6+eff1afPn1yvK3w8HA98sgjGjZsmM6dO6d7771Xixcv1vnz5+2nmjw9PTVgwACNGDFCnp6eatmypS5duqSZM2cqKSlJDzzwQIH8HQAULIIKgDwbPny4fH19NX/+fF25ckXh4eF69dVX9dFHH8nX11ePPPKI5s2bpxkzZqh///4ym8164IEHtGDBAtWvXz9X25oxY4aio6M1bdo0Xb9+XW3bttVzzz2nzZs32/s8++yzKl68uObOnauVK1fK19dXDRo0UHR0tKpVq+bkvQdwN5hsf765AADk0MWLF7V161ZFRETIz8/P3v7ee+9p1apVuTq1AwC3w4gKgDyxWCwaN26c7r//fnXr1k2+vr766aeftHTpUvXq1cvV5QEoIhhRAZBncXFxmjp1qn766SdZrVZVr15d//znP9W5c+dslxIDQF4QVAAAgGFxeTIAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADCs/wcEyqAIkK/fgwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ===========================\n", + "# Analizar una columna categórica\n", + "# ===========================\n", + "for column in [\"store\", \"manufacturer\", \"category\", \"createdAt\", \"gender\"]:\n", + " categorical_column = column # Reemplazar por una columna categórica del DataFrame\n", + "\n", + " if df is not None:\n", + " analyze_categorical_data(df, categorical_column)\n", + " else:\n", + " print(\"El DataFrame no está disponible.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/scripts/eda/.ipynb_checkpoints/functions-checkpoint.py b/scripts/eda/.ipynb_checkpoints/functions-checkpoint.py new file mode 100644 index 000000000..e70af537a --- /dev/null +++ b/scripts/eda/.ipynb_checkpoints/functions-checkpoint.py @@ -0,0 +1,130 @@ +# =========================== +# Importación de Librerías +# =========================== + +# Librerías para manejo de datos +import os # Para operaciones con el sistema de archivos +import pandas as pd # Para análisis y manipulación de datos + +# Librerías para realizar solicitudes a la API +import requests # Para hacer solicitudes HTTP + +# Librerías para visualización de datos +import matplotlib.pyplot as plt # Para gráficos básicos +import seaborn as sns # Para gráficos avanzados y mapas de calor + +# Librerías para manejo de excepciones +import warnings # Para controlar advertencias +warnings.filterwarnings("ignore") # Opcional, para evitar mensajes de advertencia + +# Configuración opcional para gráficos (opcional pero útil) +plt.style.use('ggplot') # Estilo para gráficos de Matplotlib +sns.set_theme(style="whitegrid") # Estilo para gráficos de Seaborn + + + +def load_data(filepath): + """ + Carga los datos desde un archivo Excel. + + :param filepath: Ruta del archivo Excel. + :return: DataFrame con los datos cargados. + """ + try: + df = pd.read_excel(filepath) + print(f"Datos cargados exitosamente desde {filepath}.") + return df + except Exception as e: + print(f"Error al cargar los datos: {e}") + return None + + +def summarize_data(df): + """ + Imprime un resumen general de los datos. + + :param df: DataFrame con los datos. + """ + print("Resumen General de los Datos") + print(f"Filas: {df.shape[0]}, Columnas: {df.shape[1]}") + print("\nPrimeras filas del DataFrame:") + print(df.head()) + print("\nInformación del DataFrame:") + print(df.info()) + print("\nEstadísticas descriptivas:") + print(df.describe(include='all')) + + +def check_missing_values(df): + """ + Verifica valores faltantes en el DataFrame. + + :param df: DataFrame con los datos. + :return: DataFrame con el porcentaje de valores faltantes por columna. + """ + missing = df.isnull().sum() + missing_percent = (missing / len(df)) * 100 + missing_summary = pd.DataFrame({'Missing Values': missing, 'Percentage': missing_percent}) + print("\nValores Faltantes:") + print(missing_summary[missing_summary['Missing Values'] > 0]) + return missing_summary + + +def plot_numeric_distributions(df): + """ + Grafica la distribución de las variables numéricas. + + :param df: DataFrame con los datos. + """ + numeric_columns = df.select_dtypes(include=['number']).columns + df[numeric_columns].hist(figsize=(15, 10), bins=20) + plt.suptitle("Distribuciones de Variables Numéricas", fontsize=16) + plt.tight_layout() + plt.show() + + +def analyze_categorical_data(df, column_name): + """ + Analiza las categorías de una columna específica. + + :param df: DataFrame con los datos. + :param column_name: Nombre de la columna categórica. + """ + if column_name in df.columns: + counts = df[column_name].value_counts() + print(f"\nAnálisis de la columna '{column_name}':") + print(counts) + counts.plot(kind='bar', title=f"Distribución de {column_name}") + plt.show() + else: + print(f"La columna '{column_name}' no existe en el DataFrame.") + + +def plot_correlations(df): + """ + Muestra un mapa de calor con las correlaciones entre variables numéricas. + + :param df: DataFrame con los datos. + """ + numeric_df = df.select_dtypes(include=['number']) + correlation_matrix = numeric_df.corr() + + plt.figure(figsize=(10, 8)) + sns.heatmap(correlation_matrix, annot=True, fmt='.2f', cmap='coolwarm', square=True) + plt.title("Mapa de Calor de Correlaciones") + plt.show() + + +def check_duplicates(df): + """ + Verifica y muestra registros duplicados en el DataFrame. + + :param df: DataFrame con los datos. + :return: Número de registros duplicados. + """ + duplicates = df.duplicated().sum() + print(f"Número de registros duplicados: {duplicates}") + if duplicates > 0: + print("\nRegistros duplicados:") + print(df[df.duplicated()]) + return duplicates \ No newline at end of file diff --git a/scripts/eda/.ipynb_checkpoints/main-checkpoint.py b/scripts/eda/.ipynb_checkpoints/main-checkpoint.py new file mode 100644 index 000000000..e69de29bb diff --git a/scripts/eda/eda.ipynb b/scripts/eda/eda.ipynb index d78e85f32..148ab2ccb 100644 --- a/scripts/eda/eda.ipynb +++ b/scripts/eda/eda.ipynb @@ -17,7 +17,15 @@ { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:49:32.253057Z", + "iopub.status.busy": "2024-12-14T16:49:32.253057Z", + "iopub.status.idle": "2024-12-14T16:49:33.828414Z", + "shell.execute_reply": "2024-12-14T16:49:33.828414Z", + "shell.execute_reply.started": "2024-12-14T16:49:32.253057Z" + } + }, "outputs": [], "source": [ "# ===========================\n", @@ -26,7 +34,7 @@ "\n", "# Insertar el path donde están definidas las funciones\n", "import sys\n", - "sys.path.append(r'C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\scripts\\eda')\n", + "sys.path.append(r'.\\eda')\n", "\n", "# Importar las funciones\n", "from functions import load_data, summarize_data, check_missing_values, plot_numeric_distributions, analyze_categorical_data, plot_correlations, check_duplicates" @@ -42,13 +50,21 @@ { "cell_type": "code", "execution_count": 2, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:00.383348Z", + "iopub.status.busy": "2024-12-14T16:51:00.382348Z", + "iopub.status.idle": "2024-12-14T16:51:00.911145Z", + "shell.execute_reply": "2024-12-14T16:51:00.911145Z", + "shell.execute_reply.started": "2024-12-14T16:51:00.383348Z" + } + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Datos cargados exitosamente desde C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\raw_data.xlsx.\n", + "Datos cargados exitosamente desde ..\\..\\src\\comparative_analysis\\database\\raw_data.xlsx.\n", "Los datos están listos para análisis.\n" ] } @@ -57,7 +73,8 @@ "# ===========================\n", "# Cargar los datos desde el archivo Excel\n", "# ===========================\n", - "file_path = r'C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\raw_data.xlsx'\n", + "#file_path = r'C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\raw_data.xlsx'\n", + "file_path = r'..\\..\\src\\comparative_analysis\\database\\raw_data.xlsx'\n", "\n", "# Llamar a la función para cargar los datos\n", "df = load_data(file_path)\n", @@ -79,7 +96,15 @@ { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:06.460740Z", + "iopub.status.busy": "2024-12-14T16:51:06.459740Z", + "iopub.status.idle": "2024-12-14T16:51:06.523060Z", + "shell.execute_reply": "2024-12-14T16:51:06.523060Z", + "shell.execute_reply.started": "2024-12-14T16:51:06.460740Z" + } + }, "outputs": [ { "name": "stdout", @@ -165,13 +190,13 @@ " id details store manufacturer \\\n", "count 884 884 884 884 \n", "unique 884 569 3 11 \n", - "top 046zSiHm8Cz0fZYwMJlL [] adidas adidas \n", + "top zqSM9xK4Ie9Qi878ZdzB [] adidas adidas \n", "freq 1 94 519 519 \n", "\n", " url title \\\n", "count 884 884 \n", "unique 884 369 \n", - "top https://www.adidas.co/tenis-duramo-sl/IF7884.html Tenis Response \n", + "top https://www.adidas.co/tenis-adizero-takumi-sen... Tenis Response \n", "freq 1 33 \n", "\n", " regularPrice undiscounted_price \\\n", @@ -220,7 +245,15 @@ { "cell_type": "code", "execution_count": 4, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:10.877300Z", + "iopub.status.busy": "2024-12-14T16:51:10.876206Z", + "iopub.status.idle": "2024-12-14T16:51:10.890532Z", + "shell.execute_reply": "2024-12-14T16:51:10.889527Z", + "shell.execute_reply.started": "2024-12-14T16:51:10.877300Z" + } + }, "outputs": [ { "name": "stdout", @@ -256,7 +289,15 @@ { "cell_type": "code", "execution_count": 5, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:15.961589Z", + "iopub.status.busy": "2024-12-14T16:51:15.961589Z", + "iopub.status.idle": "2024-12-14T16:51:15.974501Z", + "shell.execute_reply": "2024-12-14T16:51:15.973492Z", + "shell.execute_reply.started": "2024-12-14T16:51:15.961589Z" + } + }, "outputs": [ { "name": "stdout", @@ -285,8 +326,16 @@ }, { "cell_type": "code", - "execution_count": 13, - "metadata": {}, + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:18.751875Z", + "iopub.status.busy": "2024-12-14T16:51:18.750875Z", + "iopub.status.idle": "2024-12-14T16:51:18.757063Z", + "shell.execute_reply": "2024-12-14T16:51:18.756056Z", + "shell.execute_reply.started": "2024-12-14T16:51:18.751875Z" + } + }, "outputs": [ { "name": "stdout", @@ -307,8 +356,16 @@ }, { "cell_type": "code", - "execution_count": 20, - "metadata": {}, + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:19.819386Z", + "iopub.status.busy": "2024-12-14T16:51:19.819386Z", + "iopub.status.idle": "2024-12-14T16:51:19.838625Z", + "shell.execute_reply": "2024-12-14T16:51:19.837618Z", + "shell.execute_reply.started": "2024-12-14T16:51:19.819386Z" + } + }, "outputs": [ { "name": "stdout", @@ -348,26 +405,26 @@ "Calzado de correr en carretera para hombre 12 1.932367\n", "Calzado de correr en pavimento para mujer 11 1.771337\n", "Calzado de correr en carretera para mujer 11 1.771337\n", - "Calzado para hombre 5 0.805153\n", "Mujer • adidas by Stella McCartney 5 0.805153\n", - "Calzado de running en carretera para niños grandes 4 0.644122\n", + "Calzado para hombre 5 0.805153\n", "Mujer • TERREX 4 0.644122\n", + "Calzado de running en carretera para niños grandes 4 0.644122\n", "Calzado de trail running para hombre 3 0.483092\n", "Calzado para niños de preescolar 2 0.322061\n", - "Calzado de correr en pavimento para hombre 2 0.322061\n", "Calzado de carrera en carretera para mujer 2 0.322061\n", "Calzado de trail running impermeables para mujer 2 0.322061\n", + "Calzado de correr en pavimento para hombre 2 0.322061\n", + "Calzado de caminata para mujer 1 0.161031\n", "Calzado de running en carretera acondicionado p... 1 0.161031\n", + "Hombre • TERREX 1 0.161031\n", + "Calzado de trail running impermeables para hombre 1 0.161031\n", + "Calzado de carrera en carretera para hombre 1 0.161031\n", + "Calzado de running en carretera resistente a la... 1 0.161031\n", "Calzado de carrera en carretera 1 0.161031\n", "Calzado de running en carretera impermeable par... 1 0.161031\n", - "TERREX 1 0.161031\n", "Calzado de trail running para mujer 1 0.161031\n", + "TERREX 1 0.161031\n", "Calzado de running en carretera impermeable par... 1 0.161031\n", - "Calzado de trail running impermeables para hombre 1 0.161031\n", - "Calzado de running en carretera resistente a la... 1 0.161031\n", - "Calzado de carrera en carretera para hombre 1 0.161031\n", - "Hombre • TERREX 1 0.161031\n", - "Calzado de caminata para mujer 1 0.161031\n", "adidas by Stella McCartney 1 0.161031\n", "\n", "Porcentajes de los elementos en la columna 'createdAt':\n", @@ -417,8 +474,16 @@ }, { "cell_type": "code", - "execution_count": 16, - "metadata": {}, + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-12-14T16:51:20.740805Z", + "iopub.status.busy": "2024-12-14T16:51:20.739806Z", + "iopub.status.idle": "2024-12-14T16:51:21.806784Z", + "shell.execute_reply": "2024-12-14T16:51:21.805778Z", + "shell.execute_reply.started": "2024-12-14T16:51:20.740805Z" + } + }, "outputs": [ { "name": "stdout", @@ -435,7 +500,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAIaCAYAAAAOSmYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+R0lEQVR4nO3deVxV1f7/8fdRZqfUFEgzFVKkHNBQuYUDldXVLLLhVlhZOKTGTVOvfiPnoRuopaVmTpmalNNtzrJ7y7w4gOWQmGLiNQucFWU4DOf3hw/PrxNagsheeF7Px8OHstba53w2bOHN2mvvbXM4HA4BAAAYqIrVBQAAAFwMQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCnCV4l6O5uBrAZQdQQWwQO/evdW8eXPnn5CQEIWFhemBBx7Q4sWLVVhY6DI+KipKI0eOvOTXX7dunf7xj3/86biRI0cqKiqqzO9TVj///LOaN2+uVatWleiz2+3q0qWLoqOjlZube8Vq6N27t3r37n3FXv+81NRU9evX74q/D3C18rC6AMBdhYaGasyYMZKkoqIinTp1St98842mTJmilJQUvfrqq6pS5dzvEq+//rqqV69+ya+9aNGiSxo3cOBAPfHEE6Wu/XLVr19fSUlJatSoUYm+999/X4WFhZo9e7Z8fX0rvLby9v7772vfvn1WlwFUWgQVwCLVq1dXmzZtXNqioqLUtGlTTZo0SR999JF69uwp6VyouRIuFBQqgpeXV4l9P+/222/XPffcozp16lRsUQCMxKkfwDAxMTHy9/fX8uXLnW2/PyVzPsS0atVKHTt21LBhw5SVlSXp3CmNzZs3a/PmzWrevLk2bdqkTZs2qXnz5lq+fLm6du2qtm3basOGDSVO/UhSQUGBJk6cqPDwcN1yyy36xz/+oePHjzv7L3TK5Pzrb9q0ydn2008/afDgwWrfvr3Cw8PVv39/58zChU79ZGRkKC4uTr169VJUVJR69+6t1NRUZ//5bT799FPFxcUpLCxM7du3V3x8vHJycv7wc/rLL79o8ODBateunW699VYtXLjwguPef/99de/eXTfffLO6dOmimTNnqqio6A9fe8OGDXr44YcVFham8PBwPfvss879HDlypFavXq1Dhw657G92dramTJmiO+64Qy1btlSPHj20YsUKl9eNiorS5MmT9eSTT6pVq1Z68cUXJUknT57U6NGj9Ze//EUtW7bUww8/rOTk5D+sEajMCCqAYapUqaKIiAht3769xFoV6dyahxEjRqhbt2566623NGrUKG3cuFEvvPCCJGnMmDEKDQ1VaGiokpKSdNNNNzm3ff311/WPf/xDo0ePVlhY2AXf/9NPP9UPP/ygl19+Wf/4xz/0n//8R3379v3TH9i/lZWVpUceeUQZGRkaO3asEhISdPToUT355JM6efJkifHp6el64IEH9PPPPys+Pl6JiYmy2Wx68skntXnzZpexY8aMUYMGDTRr1iw988wzWrFihWbPnn3RWnJychQTE6M9e/ZowoQJeumll/T+++/ru+++cxn35ptv6qWXXlJERITmzJmjxx9/XG+99ZZeeumli772wYMHNXDgQN18882aPXu2Jk2apP3796tfv34qLi7WwIED1blzZ9WrV09JSUnq0qWL8vLy9Nhjj+nDDz9UbGysZs2apXbt2unFF1/UnDlzXF5/6dKlatmypWbNmqUHH3xQ+fn5evLJJ7Vu3ToNGTJEr7/+ugICAhQbG0tYwVWLUz+Aga699loVFBTo5MmTuvbaa136UlNT5ePjo379+snLy0uSdM0112jHjh1yOBwKDg52rmf5/emVxx57THffffcfvnft2rU1f/58+fn5OT8eNGiQvvnmG3Xt2vWS6l+0aJHsdrsWLlyoevXqSZJCQkL06KOPatu2bQoKCnIZ//rrr8vLy0uLFy921t6lSxf16NFDr7zyistsQ+fOnZ0LhSMiIrRhwwb95z//cQa131u9erV++eUXffTRRwoODpYktW7dWnfeeadzTHZ2tmbNmqVHHnlE8fHxkqTbbrtN11xzjeLj49WnTx/deOONJV57+/btysvLU//+/eXv7y9JCggI0Lp165STk6NGjRqpTp06Lqe6li1bpj179mj58uXOsBgZGanCwkLNmjVLf/vb33TNNddIkq677joNGzbM+X7vvfeedu/erffee0+tW7eWJHXq1Em9e/dWYmKiVq5c+WdfGqDSYUYFMND5y1ltNluJvvDwcOXm5qpHjx6aOnWqUlJSdNttt2nw4MEXHP9bLVq0+NP37ty5szOkSOdOQXh4eGjLli2XXH9qaqratGnjDCnSuR/g//73v9W5c+cS4zdv3qyuXbu6LBj28PBQ9+7dtXPnTp09e9bZ/vvwFRAQ8IenflJSUtSoUSNnSJGkwMBAl9f57rvvlJeXp6ioKBUWFjr/nD8ttmHDhgu+duvWreXt7a0HH3xQkyZN0vr16xUSEqIhQ4ZcdPHz5s2b1aBBgxIzWj179lR+fr62bdvmbPv91ys5OVn16tXTTTfd5KyxqKhIXbt21c6dO3Xq1KmLfh6AyooZFcBAWVlZ8vHxcf5m/VthYWGaO3euFi1apIULF2ru3Lm69tprNWDAgD+93Pa3AeRifhsupHOnomrXrq3Tp09fcv0nT55Uw4YNL3n8qVOnSswcSedmlhwOh86cOeNs+/2VQFWqVPnD+5ScOnVKtWvXLtFer149HT161FmvpIteRnz48OELtjds2FBLlizR3LlztWLFCi1evFg1a9bUY489pueff/6CwfHUqVMlPseSnPv/28/z779eJ0+e1JEjR1xO5/3WkSNHVKtWrQv2AZUVQQUwTGFhoTZt2qS2bduqatWqFxwTGRmpyMhI5ebmauPGjVq8eLEmTpyo1q1bq1WrVpf1/r9fQ1JUVKQTJ06obt26Lm2/9fsZjRo1argswD0vOTlZDRs2LPEDvFatWs7Q8FtHjhyRdO7008XCwp+pXbu2Dhw4UKL9t/tZs2ZNSVJiYqIaN25cYuyFQtR5rVq10uuvvy673a7U1FQlJSVpzpw5CgkJ0T333FNifK1atS5Yz2/39WJq1Kihxo0bKzEx8YL9pQmHQGXBqR/AMElJSTpy5IgeffTRC/b/85//VK9eveRwOOTr66uuXbs612z88ssvkuS8/0pZbNiwwWUR7+eff67CwkJ16NBB0rnLqjMzM122+e3VOZJ0yy23aNu2bS5h5dixY4qNjdXXX39d4j3Dw8P173//22XmpKioSB9//LFatmzpXItTFh07dtTPP/+sHTt2ONuOHz+u77//3vlx69at5enpqaysLLVs2dL5x8PDQ9OmTdPPP/98wddetGiRunbtKrvdLi8vL0VERGjChAmSLv61CA8P16FDh0os5v3ggw/k6en5h0Gzffv2+vXXX1W3bl2XOjds2KB58+ZdNNgClRkzKoBFzpw54/xhWVxcrBMnTujbb79VUlKSevbsqW7dul1wu44dO2rhwoUaOXKkevbsqYKCAs2bN0/XXHONOnbsKOncDMF3332n5OTkUt+D5ciRI3ruuefUu3dvZWRkaNq0abr11lsVEREhSeratau++uorTZkyRVFRUUpJSdGaNWtcXuOpp57SmjVrFBsbq/79+8vT01OzZ89WQECA7r33XmVnZ7uMHzx4sL755hs98cQT6tevnzw9PbVkyRIdPHhQ8+bNK1X9v3ffffdp8eLFGjx4sHPtyOzZs1VcXOwcU7t2bcXGxuq1117TmTNn1KFDB2VlZem1116TzWZTSEjIBV+7Y8eOSkxM1KBBgxQTE6OqVatq+fLl8vLyci48rlmzpo4ePaqvv/5aLVq00AMPPKBly5Zp0KBBiouLU8OGDfXVV19p5cqVGjx4sHN250IeeOABLVmyRH369NGAAQMUGBio//73v3rrrbcUExMjT0/Py/pcASYiqAAW2bVrlx555BFJ5xbNVqtWTc2aNdPYsWP10EMPXXS7zp07KzExUQsWLHAuoG3Xrp0WL17sXNPy+OOPa+fOnerbt6+mTJmi+vXrX3Jdjz32mLKzszVo0CB5eXnp3nvv1fDhw52na3r16qX//e9/Wr16tZYvX67w8HDNmDHDZQYoMDBQy5YtU0JCgkaOHCkvLy916NBB06dPV61atUoElRtvvFHLli3TtGnTNGrUKNlsNrVq1UqLFy/WLbfccsm1X4iXl5fefvttTZ48WZMmTZLNZtPDDz+s66+/XseOHXOOe/7551WvXj0tW7ZM8+bNU61atRQREaGhQ4eqRo0aF3ztkJAQzZkzR2+88YaGDh2qoqIi3XzzzVqwYIGaNm0q6Vy4+Prrr53BpF+/fnrnnXc0depUZzA6f5O/Bx988A/3xc/PT0uXLtXUqVOVkJCg7OxsNWjQQC+88IKefvrpy/o8AaayOXhaFgAAMBRrVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGKvSX5783XffyeFwcP8AAAAqkYKCAtlstos+yf28Sj+j4nA4/vA5H7g0DodDdrudzyWMwnEJ03BMlp9L/fld6WdUzs+ktGzZ0uJKKrecnBylpaUpODj4kh5cB1QEjkuYhmOy/Pz2sRZ/pNLPqAAAgKsXQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVSJJsNpt8fX1ls9msLgUAACcPqwtwF8XFDlWpYm4I8PX1VWhoqNVlXBLTP5cAgPJDUKkgVarYlLg0VT9nZVtdSqXW0L+Ghj3ezuoyAAAVhKBSgX7Oyta+Q6esLgMAgEqDNSoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxV6qCSlZWl5s2bl/izatUqSVJaWppiYmLUpk0bRUVFafHixS7bFxcXa8aMGYqMjFSbNm3Ut29fHTx4sHz2BgAAXFVKfXny7t275e3trS+//NLlLqY1atTQiRMn1KdPH0VFRWncuHH6/vvvNW7cOFWrVk29evWSJM2aNUvLli3Tyy+/rICAACUkJCg2NlYffvihvLy8ym/PAABApVfqoLJnzx41btxY9evXL9H39ttvy9PTU+PHj5eHh4eCgoJ04MABzZ07V7169ZLdbteCBQs0bNgwdenSRZI0ffp0RUZGau3aterRo8dl7xAAALh6lPrUz48//qigoKAL9qWkpKh9+/by8Pj/+adjx47KyMjQ0aNHtXv3bp09e1YRERHO/po1ayo0NFRbtmwpQ/kAAOBqVqYZldq1a+vxxx/X/v37dcMNN+jZZ59Vp06dlJmZqWbNmrmMPz/z8uuvvyozM1OSFBgYWGLM+b6ycDgcysnJKfP2V9r5B/6h/OTm5srhcFhdBq6w3Nxcl78Bq3FMlh+Hw3FJD8ItVVApLCzUTz/9pODgYI0cOVLVq1fXxx9/rH79+mnhwoXKy8srsc7E29tbkpSfn+/8wl5ozKlTZb+1fEFBgdLS0sq8/ZVWmR74V1ns37+fbxRuJCMjw+oSABcck+XjUtamliqoeHh4aNOmTapatap8fHwkSTfffLP27t2r+fPny8fHR3a73WWb/Px8SZKfn59zG7vd7vz3+TGXM+Pg6emp4ODgMm9/pV1KYkTpNGnShBkVN5Cbm6uMjAw1btyYWUkYgWOy/KSnp1/SuFKf+qlWrVqJthtvvFHffvutAgICdPjwYZe+8x/7+/ursLDQ2daoUSOXMc2bNy9tKU42m01+fn5l3h6VD98g3Iuvry//x2EUjsnLd6m/xJdqMe3evXvVtm1bbdq0yaV9586dCg4OVnh4uFJTU1VUVOTs27hxo5o0aaK6desqJCRE1atXd9n+9OnT2rVrl8LDw0tTCgAAcAOlCipBQUFq2rSpxo8fr5SUFO3bt09TpkzR999/r2effVa9evXSmTNn9OKLLyo9PV2rVq3SokWL1L9/f0nnzkXFxMQoMTFR69at0+7duzVkyBAFBASoW7duV2QHAQBA5VWqUz9VqlTRnDlzNHXqVD3//PM6ffq0QkNDtXDhQufVPvPmzdOkSZMUHR2tevXqacSIEYqOjna+RlxcnAoLCxUfH6+8vDyFh4dr/vz58vT0LN89AwAAlV6p16hce+21mjJlykX7W7VqpaSkpIv2V61aVcOHD9fw4cNL+9YAAMDN8FBCAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYZQ4q+/fvV1hYmFatWuVsS0tLU0xMjNq0aaOoqCgtXrzYZZvi4mLNmDFDkZGRatOmjfr27auDBw+WvXoAAHBVK1NQKSgo0LBhw5STk+NsO3HihPr06aNGjRpp5cqVGjRokBITE7Vy5UrnmFmzZmnZsmWaMGGCli9fruLiYsXGxsput1/+ngAAgKtOmYLKzJkzVb16dZe29957T56enho/fryCgoLUq1cvPfXUU5o7d64kyW63a8GCBYqLi1OXLl0UEhKi6dOnKzMzU2vXrr38PQEAAFedUgeVLVu2KCkpSS+//LJLe0pKitq3by8PDw9nW8eOHZWRkaGjR49q9+7dOnv2rCIiIpz9NWvWVGhoqLZs2XIZuwAAAK5WHn8+5P87ffq0RowYofj4eAUGBrr0ZWZmqlmzZi5t9evXlyT9+uuvyszMlKQS29WvX9/ZV1YOh8PlNJRpbDabfH19rS7jqpKbmyuHw2F1GbjCcnNzXf4GrMYxWX4cDodsNtufjitVUBk7dqzCwsJ07733lujLy8uTl5eXS5u3t7ckKT8/3/lFvdCYU6dOlaaMEgoKCpSWlnZZr3El+fr6KjQ01Ooyrir79+/nG4UbycjIsLoEwAXHZPn4fSa4kEsOKmvWrFFKSoo+/PDDC/b7+PiUWBSbn58vSfLz85OPj4+kc2tVzv/7/JjLnW3w9PRUcHDwZb3GlXQpiRGl06RJE2ZU3EBubq4yMjLUuHFjZiVhBI7J8pOenn5J4y45qKxcuVLHjh1Tly5dXNrHjBmjTz75RAEBATp8+LBL3/mP/f39VVhY6Gxr1KiRy5jmzZtfahkXZLPZ5Ofnd1mvgcqFbxDuxdfXl//jMArH5OW71F/iLzmoJCYmKi8vz6WtW7duiouLU8+ePfWvf/1Ly5cvV1FRkapWrSpJ2rhxo5o0aaK6deuqRo0aql69ujZt2uQMKqdPn9auXbsUExNzqWUAAAA3cslBxd/f/4LtdevWlb+/v3r16qV58+bpxRdfVGxsrLZv365FixZp3Lhxks6dh4qJiVFiYqLq1KmjBg0aKCEhQQEBAerWrVv57A0AALiqlGox7R+pW7eu5s2bp0mTJik6Olr16tXTiBEjFB0d7RwTFxenwsJCxcfHKy8vT+Hh4Zo/f748PT3LqwwAAHAVuayg8uOPP7p83KpVKyUlJV10fNWqVTV8+HANHz78ct4WAAC4CR5KCAAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYq9RB5dixYxo+fLg6duyosLAw9evXT/v27XP2p6WlKSYmRm3atFFUVJQWL17ssn1xcbFmzJihyMhItWnTRn379tXBgwcvf08AAMBVp9RBZdCgQTpw4IDmzp2rFStWyMfHR0899ZRyc3N14sQJ9enTR40aNdLKlSs1aNAgJSYmauXKlc7tZ82apWXLlmnChAlavny5iouLFRsbK7vdXq47BgAAKj+P0gw+deqUGjRooP79+6tZs2aSpIEDB+q+++7T3r17lZycLE9PT40fP14eHh4KCgpyhppevXrJbrdrwYIFGjZsmLp06SJJmj59uiIjI7V27Vr16NGj3HcQAABUXqWaUalVq5amTp3qDCnHjx/XokWLFBAQoODgYKWkpKh9+/by8Pj/+adjx47KyMjQ0aNHtXv3bp09e1YRERHO/po1ayo0NFRbtmwpp10CAABXi1LNqPzWSy+9pPfee09eXl6aPXu2/Pz8lJmZ6Qwx59WvX1+S9OuvvyozM1OSFBgYWGLM+b6ycDgcysnJKfP2V5rNZpOvr6/VZVxVcnNz5XA4rC4DV1hubq7L34DVOCbLj8PhkM1m+9NxZQ4qTz75pB555BEtXbpUgwYN0rJly5SXlycvLy+Xcd7e3pKk/Px85xf2QmNOnTpV1lJUUFCgtLS0Mm9/pfn6+io0NNTqMq4q+/fv5xuFG8nIyLC6BMAFx2T5+H0euJAyB5Xg4GBJ0qRJk7Rt2zYtWbJEPj4+JRbF5ufnS5L8/Pzk4+MjSbLb7c5/nx9zOTMOnp6eznpMdCmJEaXTpEkTZlTcQG5urjIyMtS4cWNmJWEEjsnyk56efknjShVUjh8/ruTkZN11113OdShVqlRRcHCwDh8+rICAAB0+fNhlm/Mf+/v7q7Cw0NnWqFEjlzHNmzcvTSkubDab/Pz8yrw9Kh++QbgXX19f/o/DKByTl+9Sf4kv1WLao0ePaujQoUpOTna2FRQUaNeuXQoKClJ4eLhSU1NVVFTk7N+4caOaNGmiunXrKiQkRNWrV9emTZuc/adPn9auXbsUHh5emlIAAIAbKFVQadasmTp16qSJEydqy5Yt2rNnj0aOHKnTp0/rqaeeUq9evXTmzBm9+OKLSk9P16pVq7Ro0SL1799f0rlzUTExMUpMTNS6deu0e/duDRkyRAEBAerWrdsV2UEAAFB5lXqNyrRp0zR16lQNGTJE2dnZuuWWW7R06VJdd911kqR58+Zp0qRJio6OVr169TRixAhFR0c7t4+Li1NhYaHi4+OVl5en8PBwzZ8/X56enuW3VwAA4Kpgc1TyFYk7duyQJLVs2dLiSv7c89P+o32Hyn51E6SgBrX06tAuVpeBCpKTk6O0tDS1aNGC9QAwAsdk+bnUn988lBAAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACwFg2m02+vr6y2WxWlwLAIh5WFwDAGsXFDlWpYnYA8PX1VWhoqNVl/KnK8LkEKiuCCuCmqlSxKXFpqn7Oyra6lEqtoX8NDXu8ndVlAFctggrgxn7Oyta+Q6esLgMALoo1KgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwVqmDysmTJzV69Gh16tRJbdu21aOPPqqUlBRnf3Jysh544AG1bt1ad999tz7++GOX7fPz8zVu3DhFREQoLCxML7zwgo4fP375ewIAAK46pQ4qQ4cO1Xfffadp06Zp5cqVatGihZ555hn99NNP2rdvn/r376/IyEitWrVKDz30kEaMGKHk5GTn9mPHjtW3336rmTNn6u2339ZPP/2kuLi4ct0pAABwdfAozeADBw5ow4YNWrZsmdq1aydJeumll7R+/Xp9+OGHOnbsmJo3b64hQ4ZIkoKCgrRr1y7NmzdPERERysrK0po1azRnzhzdcsstkqRp06bp7rvv1nfffaewsLBy3j0AAFCZlSqo1K5dW3PnzlXLli2dbTabTTabTadPn1ZKSoruuOMOl206duyoSZMmyeFwKDU11dl2XpMmTeTv768tW7aUOag4HA7l5OSUaduKYLPZ5Ovra3UZV5Xc3Fw5HA6ry6i0OCbLH8eke8jNzXX5G2XncDhks9n+dFypgkrNmjXVuXNnl7bPP/9cBw4c0P/93/9p9erVCggIcOmvX7++cnNzdeLECWVlZal27dry9vYuMSYzM7M0pbgoKChQWlpambe/0nx9fRUaGmp1GVeV/fv3843iMnBMlj+OSfeSkZFhdQlXBS8vrz8dU6qg8ntbt27VqFGj1K1bN3Xp0kV5eXkl3vT8x3a7Xbm5uRcsytvbW/n5+WWuw9PTU8HBwWXe/kq7lMSI0mnSpAm/vV4GjsnyxzHpHnJzc5WRkaHGjRszK3mZ0tPTL2lcmYPKl19+qWHDhqlt27ZKTEyUdC5w2O12l3HnP/b19ZWPj0+JfunclUCX8wW32Wzy8/Mr8/aofPgGAdNwTLoXX19ffu5cpkv9halM91FZsmSJnnvuOXXt2lVz5sxxnsoJDAzU4cOHXcYePnxYfn5+qlGjhgICAnTy5MkSYeXw4cPy9/cvSykAAOAqVuqgsmzZMk2YMEGPP/64pk2b5nIq55ZbbtHmzZtdxm/cuFFt27ZVlSpV1K5dOxUXFzsX1UrnzutmZWUpPDz8MnYDAABcjUoVVPbv36/JkyfrzjvvVP/+/XX06FEdOXJER44cUXZ2tnr37q3t27crMTFR+/bt04IFC/TZZ58pNjZWkuTv76/u3bsrPj5emzZt0vbt2zV06FC1b99ebdq0uRL7BwAAKrFSrVH5/PPPVVBQoC+++EJffPGFS190dLRefvllzZo1SwkJCXr77bfVsGFDJSQkKCIiwjluwoQJmjx5sgYPHixJ6tSpk+Lj48thVwAAwNWmVEFlwIABGjBgwB+O6dSpkzp16nTRfj8/P02cOFETJ04szVsDAAA3xEMJAQCAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjXVZQefPNN9W7d2+XtrS0NMXExKhNmzaKiorS4sWLXfqLi4s1Y8YMRUZGqk2bNurbt68OHjx4OWUAAICrVJmDytKlS/Xqq6+6tJ04cUJ9+vRRo0aNtHLlSg0aNEiJiYlauXKlc8ysWbO0bNkyTZgwQcuXL1dxcbFiY2Nlt9vLvBMAAODq5FHaDbKysjRmzBht2rRJjRs3dul777335OnpqfHjx8vDw0NBQUE6cOCA5s6dq169eslut2vBggUaNmyYunTpIkmaPn26IiMjtXbtWvXo0aM89gkAgCvCZrPJ19dXNpvN6lLcRqmDyg8//CBPT0998MEHeuONN3To0CFnX0pKitq3by8Pj///sh07dtSbb76po0eP6pdfftHZs2cVERHh7K9Zs6ZCQ0O1ZcuWMgcVh8OhnJycMm1bEc4f2Cg/ubm5cjgcVpdRaXFMlj+Oyctns9nk5e2tqlXMXT7p6+ur0NBQq8v4U0XFxbLn5xt9TDocjksKfKUOKlFRUYqKirpgX2Zmppo1a+bSVr9+fUnSr7/+qszMTElSYGBgiTHn+8qioKBAaWlpZd7+SqssB3Zlsn//fuXm5lpdRqXFMVn+OCYv3/njMnFpqn7Oyra6nEqroX8NDXu8XaU4Jr28vP50TKmDyh/Jy8sr8abe3t6SpPz8fOcn7EJjTp06Veb39fT0VHBwcJm3v9KYIix/TZo0Mfo3BdNxTJY/jsnLd/64/DkrW/sOlf1nAs4x/ZhMT0+/pHHlGlR8fHxKLIrNz8+XJPn5+cnHx0eSZLfbnf8+P+ZypqFtNpv8/PzKvD0qH05bwDQckzCN6cfkpf7CVK4nAgMCAnT48GGXtvMf+/v7O0/5XGiMv79/eZYCAACuAuUaVMLDw5WamqqioiJn28aNG9WkSRPVrVtXISEhql69ujZt2uTsP336tHbt2qXw8PDyLAUAAFwFyjWo9OrVS2fOnNGLL76o9PR0rVq1SosWLVL//v0lnVubEhMTo8TERK1bt067d+/WkCFDFBAQoG7dupVnKQAA4CpQrmtU6tatq3nz5mnSpEmKjo5WvXr1NGLECEVHRzvHxMXFqbCwUPHx8crLy1N4eLjmz58vT0/P8iwFAABcBS4rqLz88ssl2lq1aqWkpKSLblO1alUNHz5cw4cPv5y3BgAAbsDcu+oAAAC3R1ABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADCWJUGluLhYM2bMUGRkpNq0aaO+ffvq4MGDVpQCAAAMZklQmTVrlpYtW6YJEyZo+fLlKi4uVmxsrOx2uxXlAAAAQ1V4ULHb7VqwYIHi4uLUpUsXhYSEaPr06crMzNTatWsruhwAAGCwCg8qu3fv1tmzZxUREeFsq1mzpkJDQ7Vly5aKLgcAABjMo6LfMDMzU5IUGBjo0l6/fn1nX2kUFBTI4XBo+/bt5VLflWKz2fRgRA0VFlWzupRKzaNqFe3YsUMOh8PqUio9jsnywTFZvjguL19lOSYLCgpks9n+dFyFB5Xc3FxJkpeXl0u7t7e3Tp06VerXO7+Tl7KzVqtV3evPB+GSVIavd2XAMVl+OCbLD8dl+TD9mLTZbGYGFR8fH0nn1qqc/7ck5efny9fXt9SvFxYWVm61AQAAs1T4GpXzp3wOHz7s0n748GH5+/tXdDkAAMBgFR5UQkJCVL16dW3atMnZdvr0ae3atUvh4eEVXQ4AADBYhZ/68fLyUkxMjBITE1WnTh01aNBACQkJCggIULdu3Sq6HAAAYLAKDyqSFBcXp8LCQsXHxysvL0/h4eGaP3++PD09rSgHAAAYyuYw/folAADgtngoIQAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAKOkpKSooKDA6jIAGIKg4uby8vJkt9slSfv27dP8+fO1detWi6uCO3vuuee0Z88eq8sASvjll1+0fv165eXl6dixY1aX4zYIKm5sy5Yt6tSpk1JTU3X48GE99NBDmj17tnr37q1PP/3U6vLgpurUqaPs7GyrywCc7Ha7hgwZoqioKPXv319HjhzRmDFj1KdPH505c8bq8q56ljyUEGaYNm2abr/9drVs2VLvvfeeqlevri+++EIrV67Um2++qXvuucfqEuGGOnXqpP79+6tz58664YYb5O3t7dI/ePBgiyqDu5o9e7Z2796tt99+WwMGDJAk9e7dW6NGjVJiYqLGjh1rbYFXOR5K6MZat26tjz76SNdff72efvppNWzYUOPHj9ehQ4d0zz33aPv27VaXCDcUFRV10T6bzaZ169ZVYDWA1K1bN40dO1Z/+ctfFBYWpg8++EDXX3+9kpOTNWLECK1fv97qEq9qzKi4MV9fX9ntduXn5ys1NVUPPfSQJOno0aOqUaOGxdXBXX311VdWlwC4yMrKUqNGjUq0BwYG6tSpUxZU5F5Yo+LGOnTooISEBI0ePVpVqlRRZGSk0tLSNHHiRHXo0MHq8uDmtmzZouXLl+vMmTNKT09XYWGh1SXBTQUFBSk5OblE+8cff6zg4GALKnIvzKi4sTFjxmjMmDH68ccflZCQoOrVq+tf//qXvLy8NGrUKKvLg5s6c+aMnnnmGW3btk02m0233nqrEhMT9b///U8LFy6Uv7+/1SXCzTz33HMaMmSI0tPTVVRUpNWrV2v//v36/PPPNX36dKvLu+qxRgUu7Ha7vLy8rC4Dbmz8+PHatWuXEhIS1LNnT33wwQey2+0aNmyYmjZtqqlTp1pdItzQN998ozfffFO7du1ScXGxbrzxRvXt21d33XWX1aVd9ZhRcXPHjx/X/v37VVxcLElyOByy2+3asWOHnn32WYurgzv697//ralTp+r66693tgUFBWn06NEaNGiQhZXBXTkcDnXq1EmdOnUq0bdv3z4FBQVZUJX7IKi4sQ8++EDx8fGy2+2y2WxyOByy2WySpAYNGhBUYInjx4+rXr16Jdpr1qypnJwcCyqCuxs1apRefvlllzaHw6G33npLb7zxhrZt22ZRZe6BxbRubM6cOerevbs+/vhj1ahRQytWrNAbb7yh+vXr67nnnrO6PLipli1bXvCGg0uXLlVoaKgFFcHdffvtt4qPj3d+nJ6erocfflgzZszQM888Y2Fl7oEZFTd28OBBzZw5U0FBQWrevLmOHz+uqKgoFRYWas6cObrvvvusLhFuaOjQoXr66ae1fft2FRYWavbs2dq3b59++OEHzZ8/3+ry4Ibefvtt9enTR6NHj1ZgYKBmzZqlm266SWvWrOGqnwrAjIob8/Lyci6cveGGG7R3715J0s0336wDBw5YWRrcWNu2bbV8+XL5+fnphhtu0Pfff6+AgAAtXbqUy+ZhiaCgIL3zzjv65ptvNHPmTI0cOVLvvvsuIaWCMKPixm6++Wa9//77Gjp0qJo1a6avv/5azzzzjNLT0+Xp6Wl1eXBjISEheuWVV6wuA25sy5YtJdri4uI0duxY7d27V6mpqTp/0Wx4eHhFl+dWuDzZjaWkpCg2NlZxcXGKjo7W3XffrWuvvVa//vqr/vrXv2rixIlWlwg3VFxcrA8//FBbt25VQUGBfv8tasqUKRZVBncSEhLivMjgj9hsNqWlpVVQVe6JoOLmsrKyZLfbdf311ys9PV3Lly9XYGCgevfuzf1UYImJEydq6dKlCgkJUfXq1Uv0v/POOxZUBXdz6NChSx7boEGDK1gJCCoAjNKhQweNHDlS0dHRVpcCwACsUXEzTzzxxCWPXbx48RWsBLgwu93OOX9Y7vbbb9eKFStUu3ZtRUVFOe8xdSE80fvKIqi4md9OUebn5+uTTz5RixYt1KZNG3l4eGjnzp3avn2780nKQEWLjIzU119/rccff9zqUuDGoqOj5ePj4/z3HwUVXFmc+nFjo0aNUq1atTRy5EiX9ldffVX79u3TzJkzLaoM7mzBggWaMWOGbrvtNgUFBZW4Am3w4MEWVQbACgQVNxYWFqbVq1ercePGLu0ZGRm6//779f3331tSF9xbVFTURftsNhvT7LBESkrKBa9Es9lsPIPqCuPUjxurWbOmdu3aVSKopKSkqG7dutYUBbf31VdfWV0C4OKNN97QzJkzVbNmzRJXohFUrjyCiht75JFHNHr0aO3bt08333yziouLtXXrVi1dulTDhw+3ujy4uaNHj17wPirXXXedRRXBXb377rsaMmSI+vfvb3UpbolTP27uzTff1JIlS3TkyBFJUmBgoPr27avHHnvM4srgrrZu3apRo0bpf//7n0v7+ad7c3MtVLTWrVvrk08+4X4pFiGoQJJ04sQJ2Ww2XXPNNVaXAjf3wAMPyM/PT3369FGNGjVK9Ldv396CquDO+vTpo169eqlHjx5Wl+KWOPXjZtasWaO//vWv8vLy0po1a/5w7P33318hNQG/tXfvXq1Zs0ZBQUFWlwJIknr06KEJEyZo586datq0aYm7dvO98spiRsXNhISEaMOGDapbt65CQkIuOo4pdlilW7duSkxMVKtWrawuBZAkvldajKACwCirV69WUlKSxo0bp6ZNm/Ikb8DNEVQAGKVbt2765ZdfVFRUdMF+fnsF3AtrVNzMnz2z4re4sRas8Oyzz1pdAgCDEFTczG+fWXHy5EktW7ZMXbt2VVhYmDw8PLRjxw6tXbtWTz/9tMWVwl3x1GQAv8WpHzf27LPPqm3bturbt69L+zvvvKMvv/xSb7/9tkWVwZ29/vrrf9jPs34A98KMihtLTk4u8UBCSerUqZMSExMtqAiQVq1a5fJxUVGRjh07Jg8PD7Vt29aiqgBYhaDixurXr6/k5GTdcMMNLu1ffvkld2CEZS70rJ8zZ87o//7v/wgqgBvi1I8bS0pK0oQJE9S9e3e1bNnS+ayfL774QomJibrnnnusLhFwSk9P19NPP61vvvnG6lIAVCBmVNzYI488omrVqmnJkiVau3atbDabWrRooVmzZqlz585Wlwe4yM7OVnZ2ttVlAKhgzKi4ud27d2vPnj0qKiqSzWaTw+GQ3W7Xjh07NHHiRKvLgxu60GLas2fP6pNPPlGLFi00Z84cC6oCYBVmVNzYwoUL9corrzifSns+s9psNt1yyy0WVwd39fvFtJLk6empiIgIDRkyxIKKAFiJGRU3dscdd+iee+7R4MGD1bVrV61evVonT57UCy+8oAcffFBPPfWU1SUCANxcFasLgHUyMzP10EMPydvbWyEhIdqxY4eaN2+ukSNHasWKFVaXB7jIzc3V5MmTrS4DQAUjqLgxPz8/5/NUGjVqpPT0dElSUFCQDh06ZGVpcDP5+fkaP368OnTooNtuu00JCQkqLi529n/77bfq0aOHlixZYmGVAKxAUHFjbdu21dy5c5Wbm6vQ0FB99dVXKi4uVmpqqqpVq2Z1eXAjr7zyit577z3dfvvtuuOOO/Tuu+/qzTffVHFxscaPH6++ffvKw8ODuyUDbog1Km5sz549evrpp/XUU0/p0Ucf1b333qvTp08rNzdXzzzzjIYOHWp1iXATXbt2Vb9+/fToo49Kkv7zn/9o0qRJioiI0IoVK9SnTx/9/e9/l5eXl8WVAqhoBBU3l5eXp5ycHNWpU0dHjx7VRx99pICAAN19991WlwY30rJlS33yySe6/vrrJZ27bX7Lli1Vq1Ytvfrqq+rQoYPFFQKwCpcnuzkfHx/5+PhIkq699lqu9IElCgoK5Ofn5/y4atWq8vb21osvvkhIAdwca1QAGKtVq1ZWlwDAYgQVAEaw2WyX1AbAvXDqB4ARJk6cKG9vb+fHBQUFSkhIKHEF2pQpUyq6NAAWIqgAsFx4eLiOHDni0hYWFqYTJ07oxIkTFlUFwARc9QMAAIzFGhUAAGAsTv0AMMq+ffs0YcIEbd26VQUFBSX609LSLKgKgFUIKgCMMnbsWB07dkzDhg1TjRo1rC4HgMUIKgCMsm3bNr377ru66aabrC4FgAFYowLAKLVr15anp6fVZQAwBEEFgFFiYmI0bdo0nTlzxupSABiAy5MBGKVPnz5KSUlRUVGR6tatW+KJyevWrbOoMgBWYI0KAKO0a9dO7dq1s7oMAIZgRgUAABiLGRUAxtm5c6fmz5+vPXv2yMPDQ8HBwXryySd5mjLghlhMC8Aomzdv1t/+9jcdOHBAt956q8LDw7V//3499thjSk1Ntbo8ABWMUz8AjPLoo4+qWbNmGjdunEv7uHHjlJ6ernfeeceiygBYgRkVAEbZtWuXnnjiiRLtMTEx2rlzpwUVAbASQQWAUWrXrq0TJ06UaD9+/HiJS5UBXP0IKgCM0rVrV02YMEH79u1ztqWnp2vixImKioqysDIAVmCNCgCjnDp1Sn369FFaWprzoYTZ2dkKCQnRggULVLt2bYsrBFCRCCoAjFNcXKz169dr7969cjgcat68uW677TZVqcIkMOBuCCoAAMBY3PANgOVatGihb7/9VnXr1lVISIhsNttFx6alpVVgZQCsRlABYLnJkyc716NMnjz5D4MKAPfCqR8AxsnOztaJEyfUqFEjSdLatWvVvn17XXPNNdYWBqDCsTINgFF++OEH3XHHHXr33XedbS+//LJ69OihvXv3WlgZACswowLAKL1791bDhg01btw45w3eCgsL9dJLLykrK0sLFiywuEIAFYkZFQBG2blzpwYOHOhyF1oPDw/169dP27Zts7AyAFYgqAAwSrVq1XTw4MES7YcPH+YW+oAbIqgAMMpdd92lcePGKTk5WWfPntXZs2e1ceNGjRs3TnfeeafV5QGoYKxRAWCUnJwc/f3vf9f69etdLlO+8847NXnyZFWvXt3C6gBUNIIKACP99NNP2rt3rzw8PBQUFKTGjRtbXRIACxBUAFQamZmZCggIsLoMABWIO9MCMMrBgwf1z3/+U3v27FFRUZEkyeFwyG636/jx49q1a5fFFQKoSCymBWCU8ePH68cff9Rdd92lrKwsde/eXTfddJOOHj2qsWPHWl0egArGjAoAo2zdulWzZs1Shw4dtH79et1xxx1q1aqVpk+frq+//loPP/yw1SUCqEDMqAAwit1udz7jp0mTJvrxxx8lSffffz83fAPcEEEFgFEaNGigPXv2SDoXVNLS0iRJxcXFOnv2rJWlAbAAp34AGCU6OlojRozQK6+8oi5duuiJJ57Qddddpw0bNqh58+ZWlwegghFUABilX79+8vb2lsPhUKtWrTRw4EDNnj1bgYGBeuWVV6wuD0AF4z4qAADAWMyoADBOSkqKtm7dqoKCAv3+d6nBgwdbVBUAKzCjAsAob7zxhmbOnKmaNWuWeK6PzWbTunXrLKoMgBUIKgCMctttt6l3797q37+/1aUAMACXJwMwSnZ2tnr06GF1GQAMQVABYJS2bdvqu+++s7oMAIZgMS0Ao/To0UMTJkzQzp071bRpU3l5ebn033///dYUBsASrFEBYJSQkJCL9tlsNuedagG4B4IKAAAwFmtUAACAsQgqAADAWAQVAABgLIIKAMuwRA7AnyGoALDE3r179eijj1pdBgDDEVQAWOKzzz7jxm4A/hRBBQAAGIv7qAC4Ynbu3KmEhATt3LlTxcXFat26tZ5//nmtX79er7/+unPc4MGD9dxzzyk/P1/z5s3Thx9+qEOHDikwMFAPPvigYmNjVaXKud+revfuLX9/f9ntdn3zzTcKCwvTwoULlZ+fr9dee00ff/yxjh07piZNmujZZ5/VX//6V6t2H0A54Bb6AK6IM2fOKDY2Vh07dtTMmTNlt9s1e/ZsPfPMM/rggw+UmZmpFStWKCkpSQEBAXI4HBowYIC+//57DR48WCEhIdq0aZNeffVVHTx4UBMmTHC+9qeffqqePXtq9uzZKi4ulsPh0KBBg7R161bFxcUpKChIX3zxhYYMGSK73c5t94FKjKAC4IpIT0/XiRMn9MQTT6ht27aSpKZNmyopKUlVq1ZVQECAJKlNmzaSpK+//lr//e9/NW3aNHXv3l2SdOutt8rHx0evvfaannjiCd14442SJE9PT40bN875HKANGzZo/fr1mj59unMGJTIyUrm5uUpMTFSPHj3k4cG3O6AyYo0KgCvixhtvVJ06dTRgwACNHj1aX3zxha699loNHz7cGVJ+a/PmzfLw8NDdd9/t0t6zZ09n/3m/f1hhcnKybDabOnfurMLCQuefqKgoHTlyRHv37r1CewngSuNXDABXRLVq1bR06VLNnj1bn376qZKSkuTj46P77rtP8fHxJcafOnVKtWvXVtWqVV3a69WrJ0nKzs52ee3fOnnypBwOh3Pm5vcOHz6sFi1aXO4uAbAAQQXAFdO0aVMlJCSoqKhI27dv17/+9S+9++67atSoUYmxtWrV0okTJ1RUVOQSVg4fPixJql279kXfp0aNGvLz89PixYsv2H/DDTdc5p4AsAqnfgBcEZ999pk6duyoI0eOqGrVqgoLC9PYsWNVs2ZN/fLLL86reM5r3769CgsL9dlnn7m0f/DBB5Kkdu3aXfS92rdvr5ycHDkcDrVs2dL5Z8+ePXrjjTdUWFhY/jsIoEIwowLgimjbtq2Ki4s1aNAg9evXT9WqVdOnn36q7OxsdevWzblu5KOPPlLr1q3VqVMndejQQfHx8crKylJISIg2b96st956S9HR0QoODr7oe3Xu3Fnh4eEaOHCgBg4cqKCgIG3fvl0zZsxQZGSk6tSpU1G7DaCccR8VAFfM9u3b9dprr2nnzp3Kzc3VjTfeqAEDBujOO+9UVlaWBg0apN27d+vBBx/U2LFjlZubqxkzZujjjz/W8ePH1bBhQz300EPq06ePy31UJOmdd95xea+cnBy99tpr+uyzz3Ts2DH5+/ure/fuGjRokLy9vSt83wGUD4IKAAAwFmtUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGCs/wc9LufCj31b8QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAIaCAYAAAAOSmYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+R0lEQVR4nO3deVxV1f7/8fdRZqfUFEgzFVKkHNBQuYUDldXVLLLhVlhZOKTGTVOvfiPnoRuopaVmTpmalNNtzrJ7y7w4gOWQmGLiNQucFWU4DOf3hw/PrxNagsheeF7Px8OHstba53w2bOHN2mvvbXM4HA4BAAAYqIrVBQAAAFwMQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCnCV4l6O5uBrAZQdQQWwQO/evdW8eXPnn5CQEIWFhemBBx7Q4sWLVVhY6DI+KipKI0eOvOTXX7dunf7xj3/86biRI0cqKiqqzO9TVj///LOaN2+uVatWleiz2+3q0qWLoqOjlZube8Vq6N27t3r37n3FXv+81NRU9evX74q/D3C18rC6AMBdhYaGasyYMZKkoqIinTp1St98842mTJmilJQUvfrqq6pS5dzvEq+//rqqV69+ya+9aNGiSxo3cOBAPfHEE6Wu/XLVr19fSUlJatSoUYm+999/X4WFhZo9e7Z8fX0rvLby9v7772vfvn1WlwFUWgQVwCLVq1dXmzZtXNqioqLUtGlTTZo0SR999JF69uwp6VyouRIuFBQqgpeXV4l9P+/222/XPffcozp16lRsUQCMxKkfwDAxMTHy9/fX8uXLnW2/PyVzPsS0atVKHTt21LBhw5SVlSXp3CmNzZs3a/PmzWrevLk2bdqkTZs2qXnz5lq+fLm6du2qtm3basOGDSVO/UhSQUGBJk6cqPDwcN1yyy36xz/+oePHjzv7L3TK5Pzrb9q0ydn2008/afDgwWrfvr3Cw8PVv39/58zChU79ZGRkKC4uTr169VJUVJR69+6t1NRUZ//5bT799FPFxcUpLCxM7du3V3x8vHJycv7wc/rLL79o8ODBateunW699VYtXLjwguPef/99de/eXTfffLO6dOmimTNnqqio6A9fe8OGDXr44YcVFham8PBwPfvss879HDlypFavXq1Dhw657G92dramTJmiO+64Qy1btlSPHj20YsUKl9eNiorS5MmT9eSTT6pVq1Z68cUXJUknT57U6NGj9Ze//EUtW7bUww8/rOTk5D+sEajMCCqAYapUqaKIiAht3769xFoV6dyahxEjRqhbt2566623NGrUKG3cuFEvvPCCJGnMmDEKDQ1VaGiokpKSdNNNNzm3ff311/WPf/xDo0ePVlhY2AXf/9NPP9UPP/ygl19+Wf/4xz/0n//8R3379v3TH9i/lZWVpUceeUQZGRkaO3asEhISdPToUT355JM6efJkifHp6el64IEH9PPPPys+Pl6JiYmy2Wx68skntXnzZpexY8aMUYMGDTRr1iw988wzWrFihWbPnn3RWnJychQTE6M9e/ZowoQJeumll/T+++/ru+++cxn35ptv6qWXXlJERITmzJmjxx9/XG+99ZZeeumli772wYMHNXDgQN18882aPXu2Jk2apP3796tfv34qLi7WwIED1blzZ9WrV09JSUnq0qWL8vLy9Nhjj+nDDz9UbGysZs2apXbt2unFF1/UnDlzXF5/6dKlatmypWbNmqUHH3xQ+fn5evLJJ7Vu3ToNGTJEr7/+ugICAhQbG0tYwVWLUz+Aga699loVFBTo5MmTuvbaa136UlNT5ePjo379+snLy0uSdM0112jHjh1yOBwKDg52rmf5/emVxx57THffffcfvnft2rU1f/58+fn5OT8eNGiQvvnmG3Xt2vWS6l+0aJHsdrsWLlyoevXqSZJCQkL06KOPatu2bQoKCnIZ//rrr8vLy0uLFy921t6lSxf16NFDr7zyistsQ+fOnZ0LhSMiIrRhwwb95z//cQa131u9erV++eUXffTRRwoODpYktW7dWnfeeadzTHZ2tmbNmqVHHnlE8fHxkqTbbrtN11xzjeLj49WnTx/deOONJV57+/btysvLU//+/eXv7y9JCggI0Lp165STk6NGjRqpTp06Lqe6li1bpj179mj58uXOsBgZGanCwkLNmjVLf/vb33TNNddIkq677joNGzbM+X7vvfeedu/erffee0+tW7eWJHXq1Em9e/dWYmKiVq5c+WdfGqDSYUYFMND5y1ltNluJvvDwcOXm5qpHjx6aOnWqUlJSdNttt2nw4MEXHP9bLVq0+NP37ty5szOkSOdOQXh4eGjLli2XXH9qaqratGnjDCnSuR/g//73v9W5c+cS4zdv3qyuXbu6LBj28PBQ9+7dtXPnTp09e9bZ/vvwFRAQ8IenflJSUtSoUSNnSJGkwMBAl9f57rvvlJeXp6ioKBUWFjr/nD8ttmHDhgu+duvWreXt7a0HH3xQkyZN0vr16xUSEqIhQ4ZcdPHz5s2b1aBBgxIzWj179lR+fr62bdvmbPv91ys5OVn16tXTTTfd5KyxqKhIXbt21c6dO3Xq1KmLfh6AyooZFcBAWVlZ8vHxcf5m/VthYWGaO3euFi1apIULF2ru3Lm69tprNWDAgD+93Pa3AeRifhsupHOnomrXrq3Tp09fcv0nT55Uw4YNL3n8qVOnSswcSedmlhwOh86cOeNs+/2VQFWqVPnD+5ScOnVKtWvXLtFer149HT161FmvpIteRnz48OELtjds2FBLlizR3LlztWLFCi1evFg1a9bUY489pueff/6CwfHUqVMlPseSnPv/28/z779eJ0+e1JEjR1xO5/3WkSNHVKtWrQv2AZUVQQUwTGFhoTZt2qS2bduqatWqFxwTGRmpyMhI5ebmauPGjVq8eLEmTpyo1q1bq1WrVpf1/r9fQ1JUVKQTJ06obt26Lm2/9fsZjRo1argswD0vOTlZDRs2LPEDvFatWs7Q8FtHjhyRdO7008XCwp+pXbu2Dhw4UKL9t/tZs2ZNSVJiYqIaN25cYuyFQtR5rVq10uuvvy673a7U1FQlJSVpzpw5CgkJ0T333FNifK1atS5Yz2/39WJq1Kihxo0bKzEx8YL9pQmHQGXBqR/AMElJSTpy5IgeffTRC/b/85//VK9eveRwOOTr66uuXbs612z88ssvkuS8/0pZbNiwwWUR7+eff67CwkJ16NBB0rnLqjMzM122+e3VOZJ0yy23aNu2bS5h5dixY4qNjdXXX39d4j3Dw8P173//22XmpKioSB9//LFatmzpXItTFh07dtTPP/+sHTt2ONuOHz+u77//3vlx69at5enpqaysLLVs2dL5x8PDQ9OmTdPPP/98wddetGiRunbtKrvdLi8vL0VERGjChAmSLv61CA8P16FDh0os5v3ggw/k6en5h0Gzffv2+vXXX1W3bl2XOjds2KB58+ZdNNgClRkzKoBFzpw54/xhWVxcrBMnTujbb79VUlKSevbsqW7dul1wu44dO2rhwoUaOXKkevbsqYKCAs2bN0/XXHONOnbsKOncDMF3332n5OTkUt+D5ciRI3ruuefUu3dvZWRkaNq0abr11lsVEREhSeratau++uorTZkyRVFRUUpJSdGaNWtcXuOpp57SmjVrFBsbq/79+8vT01OzZ89WQECA7r33XmVnZ7uMHzx4sL755hs98cQT6tevnzw9PbVkyRIdPHhQ8+bNK1X9v3ffffdp8eLFGjx4sHPtyOzZs1VcXOwcU7t2bcXGxuq1117TmTNn1KFDB2VlZem1116TzWZTSEjIBV+7Y8eOSkxM1KBBgxQTE6OqVatq+fLl8vLyci48rlmzpo4ePaqvv/5aLVq00AMPPKBly5Zp0KBBiouLU8OGDfXVV19p5cqVGjx4sHN250IeeOABLVmyRH369NGAAQMUGBio//73v3rrrbcUExMjT0/Py/pcASYiqAAW2bVrlx555BFJ5xbNVqtWTc2aNdPYsWP10EMPXXS7zp07KzExUQsWLHAuoG3Xrp0WL17sXNPy+OOPa+fOnerbt6+mTJmi+vXrX3Jdjz32mLKzszVo0CB5eXnp3nvv1fDhw52na3r16qX//e9/Wr16tZYvX67w8HDNmDHDZQYoMDBQy5YtU0JCgkaOHCkvLy916NBB06dPV61atUoElRtvvFHLli3TtGnTNGrUKNlsNrVq1UqLFy/WLbfccsm1X4iXl5fefvttTZ48WZMmTZLNZtPDDz+s66+/XseOHXOOe/7551WvXj0tW7ZM8+bNU61atRQREaGhQ4eqRo0aF3ztkJAQzZkzR2+88YaGDh2qoqIi3XzzzVqwYIGaNm0q6Vy4+Prrr53BpF+/fnrnnXc0depUZzA6f5O/Bx988A/3xc/PT0uXLtXUqVOVkJCg7OxsNWjQQC+88IKefvrpy/o8AaayOXhaFgAAMBRrVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGKvSX5783XffyeFwcP8AAAAqkYKCAtlstos+yf28Sj+j4nA4/vA5H7g0DodDdrudzyWMwnEJ03BMlp9L/fld6WdUzs+ktGzZ0uJKKrecnBylpaUpODj4kh5cB1QEjkuYhmOy/Pz2sRZ/pNLPqAAAgKsXQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVSJJsNpt8fX1ls9msLgUAACcPqwtwF8XFDlWpYm4I8PX1VWhoqNVlXBLTP5cAgPJDUKkgVarYlLg0VT9nZVtdSqXW0L+Ghj3ezuoyAAAVhKBSgX7Oyta+Q6esLgMAgEqDNSoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxV6qCSlZWl5s2bl/izatUqSVJaWppiYmLUpk0bRUVFafHixS7bFxcXa8aMGYqMjFSbNm3Ut29fHTx4sHz2BgAAXFVKfXny7t275e3trS+//NLlLqY1atTQiRMn1KdPH0VFRWncuHH6/vvvNW7cOFWrVk29evWSJM2aNUvLli3Tyy+/rICAACUkJCg2NlYffvihvLy8ym/PAABApVfqoLJnzx41btxY9evXL9H39ttvy9PTU+PHj5eHh4eCgoJ04MABzZ07V7169ZLdbteCBQs0bNgwdenSRZI0ffp0RUZGau3aterRo8dl7xAAALh6lPrUz48//qigoKAL9qWkpKh9+/by8Pj/+adjx47KyMjQ0aNHtXv3bp09e1YRERHO/po1ayo0NFRbtmwpQ/kAAOBqVqYZldq1a+vxxx/X/v37dcMNN+jZZ59Vp06dlJmZqWbNmrmMPz/z8uuvvyozM1OSFBgYWGLM+b6ycDgcysnJKfP2V9r5B/6h/OTm5srhcFhdBq6w3Nxcl78Bq3FMlh+Hw3FJD8ItVVApLCzUTz/9pODgYI0cOVLVq1fXxx9/rH79+mnhwoXKy8srsc7E29tbkpSfn+/8wl5ozKlTZb+1fEFBgdLS0sq8/ZVWmR74V1ns37+fbxRuJCMjw+oSABcck+XjUtamliqoeHh4aNOmTapatap8fHwkSTfffLP27t2r+fPny8fHR3a73WWb/Px8SZKfn59zG7vd7vz3+TGXM+Pg6emp4ODgMm9/pV1KYkTpNGnShBkVN5Cbm6uMjAw1btyYWUkYgWOy/KSnp1/SuFKf+qlWrVqJthtvvFHffvutAgICdPjwYZe+8x/7+/ursLDQ2daoUSOXMc2bNy9tKU42m01+fn5l3h6VD98g3Iuvry//x2EUjsnLd6m/xJdqMe3evXvVtm1bbdq0yaV9586dCg4OVnh4uFJTU1VUVOTs27hxo5o0aaK6desqJCRE1atXd9n+9OnT2rVrl8LDw0tTCgAAcAOlCipBQUFq2rSpxo8fr5SUFO3bt09TpkzR999/r2effVa9evXSmTNn9OKLLyo9PV2rVq3SokWL1L9/f0nnzkXFxMQoMTFR69at0+7duzVkyBAFBASoW7duV2QHAQBA5VWqUz9VqlTRnDlzNHXqVD3//PM6ffq0QkNDtXDhQufVPvPmzdOkSZMUHR2tevXqacSIEYqOjna+RlxcnAoLCxUfH6+8vDyFh4dr/vz58vT0LN89AwAAlV6p16hce+21mjJlykX7W7VqpaSkpIv2V61aVcOHD9fw4cNL+9YAAMDN8FBCAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYZQ4q+/fvV1hYmFatWuVsS0tLU0xMjNq0aaOoqCgtXrzYZZvi4mLNmDFDkZGRatOmjfr27auDBw+WvXoAAHBVK1NQKSgo0LBhw5STk+NsO3HihPr06aNGjRpp5cqVGjRokBITE7Vy5UrnmFmzZmnZsmWaMGGCli9fruLiYsXGxsput1/+ngAAgKtOmYLKzJkzVb16dZe29957T56enho/fryCgoLUq1cvPfXUU5o7d64kyW63a8GCBYqLi1OXLl0UEhKi6dOnKzMzU2vXrr38PQEAAFedUgeVLVu2KCkpSS+//LJLe0pKitq3by8PDw9nW8eOHZWRkaGjR49q9+7dOnv2rCIiIpz9NWvWVGhoqLZs2XIZuwAAAK5WHn8+5P87ffq0RowYofj4eAUGBrr0ZWZmqlmzZi5t9evXlyT9+uuvyszMlKQS29WvX9/ZV1YOh8PlNJRpbDabfH19rS7jqpKbmyuHw2F1GbjCcnNzXf4GrMYxWX4cDodsNtufjitVUBk7dqzCwsJ07733lujLy8uTl5eXS5u3t7ckKT8/3/lFvdCYU6dOlaaMEgoKCpSWlnZZr3El+fr6KjQ01Ooyrir79+/nG4UbycjIsLoEwAXHZPn4fSa4kEsOKmvWrFFKSoo+/PDDC/b7+PiUWBSbn58vSfLz85OPj4+kc2tVzv/7/JjLnW3w9PRUcHDwZb3GlXQpiRGl06RJE2ZU3EBubq4yMjLUuHFjZiVhBI7J8pOenn5J4y45qKxcuVLHjh1Tly5dXNrHjBmjTz75RAEBATp8+LBL3/mP/f39VVhY6Gxr1KiRy5jmzZtfahkXZLPZ5Ofnd1mvgcqFbxDuxdfXl//jMArH5OW71F/iLzmoJCYmKi8vz6WtW7duiouLU8+ePfWvf/1Ly5cvV1FRkapWrSpJ2rhxo5o0aaK6deuqRo0aql69ujZt2uQMKqdPn9auXbsUExNzqWUAAAA3cslBxd/f/4LtdevWlb+/v3r16qV58+bpxRdfVGxsrLZv365FixZp3Lhxks6dh4qJiVFiYqLq1KmjBg0aKCEhQQEBAerWrVv57A0AALiqlGox7R+pW7eu5s2bp0mTJik6Olr16tXTiBEjFB0d7RwTFxenwsJCxcfHKy8vT+Hh4Zo/f748PT3LqwwAAHAVuayg8uOPP7p83KpVKyUlJV10fNWqVTV8+HANHz78ct4WAAC4CR5KCAAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYq9RB5dixYxo+fLg6duyosLAw9evXT/v27XP2p6WlKSYmRm3atFFUVJQWL17ssn1xcbFmzJihyMhItWnTRn379tXBgwcvf08AAMBVp9RBZdCgQTpw4IDmzp2rFStWyMfHR0899ZRyc3N14sQJ9enTR40aNdLKlSs1aNAgJSYmauXKlc7tZ82apWXLlmnChAlavny5iouLFRsbK7vdXq47BgAAKj+P0gw+deqUGjRooP79+6tZs2aSpIEDB+q+++7T3r17lZycLE9PT40fP14eHh4KCgpyhppevXrJbrdrwYIFGjZsmLp06SJJmj59uiIjI7V27Vr16NGj3HcQAABUXqWaUalVq5amTp3qDCnHjx/XokWLFBAQoODgYKWkpKh9+/by8Pj/+adjx47KyMjQ0aNHtXv3bp09e1YRERHO/po1ayo0NFRbtmwpp10CAABXi1LNqPzWSy+9pPfee09eXl6aPXu2/Pz8lJmZ6Qwx59WvX1+S9OuvvyozM1OSFBgYWGLM+b6ycDgcysnJKfP2V5rNZpOvr6/VZVxVcnNz5XA4rC4DV1hubq7L34DVOCbLj8PhkM1m+9NxZQ4qTz75pB555BEtXbpUgwYN0rJly5SXlycvLy+Xcd7e3pKk/Px85xf2QmNOnTpV1lJUUFCgtLS0Mm9/pfn6+io0NNTqMq4q+/fv5xuFG8nIyLC6BMAFx2T5+H0euJAyB5Xg4GBJ0qRJk7Rt2zYtWbJEPj4+JRbF5ufnS5L8/Pzk4+MjSbLb7c5/nx9zOTMOnp6eznpMdCmJEaXTpEkTZlTcQG5urjIyMtS4cWNmJWEEjsnyk56efknjShVUjh8/ruTkZN11113OdShVqlRRcHCwDh8+rICAAB0+fNhlm/Mf+/v7q7Cw0NnWqFEjlzHNmzcvTSkubDab/Pz8yrw9Kh++QbgXX19f/o/DKByTl+9Sf4kv1WLao0ePaujQoUpOTna2FRQUaNeuXQoKClJ4eLhSU1NVVFTk7N+4caOaNGmiunXrKiQkRNWrV9emTZuc/adPn9auXbsUHh5emlIAAIAbKFVQadasmTp16qSJEydqy5Yt2rNnj0aOHKnTp0/rqaeeUq9evXTmzBm9+OKLSk9P16pVq7Ro0SL1799f0rlzUTExMUpMTNS6deu0e/duDRkyRAEBAerWrdsV2UEAAFB5lXqNyrRp0zR16lQNGTJE2dnZuuWWW7R06VJdd911kqR58+Zp0qRJio6OVr169TRixAhFR0c7t4+Li1NhYaHi4+OVl5en8PBwzZ8/X56enuW3VwAA4Kpgc1TyFYk7duyQJLVs2dLiSv7c89P+o32Hyn51E6SgBrX06tAuVpeBCpKTk6O0tDS1aNGC9QAwAsdk+bnUn988lBAAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACwFg2m02+vr6y2WxWlwLAIh5WFwDAGsXFDlWpYnYA8PX1VWhoqNVl/KnK8LkEKiuCCuCmqlSxKXFpqn7Oyra6lEqtoX8NDXu8ndVlAFctggrgxn7Oyta+Q6esLgMALoo1KgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwVqmDysmTJzV69Gh16tRJbdu21aOPPqqUlBRnf3Jysh544AG1bt1ad999tz7++GOX7fPz8zVu3DhFREQoLCxML7zwgo4fP375ewIAAK46pQ4qQ4cO1Xfffadp06Zp5cqVatGihZ555hn99NNP2rdvn/r376/IyEitWrVKDz30kEaMGKHk5GTn9mPHjtW3336rmTNn6u2339ZPP/2kuLi4ct0pAABwdfAozeADBw5ow4YNWrZsmdq1aydJeumll7R+/Xp9+OGHOnbsmJo3b64hQ4ZIkoKCgrRr1y7NmzdPERERysrK0po1azRnzhzdcsstkqRp06bp7rvv1nfffaewsLBy3j0AAFCZlSqo1K5dW3PnzlXLli2dbTabTTabTadPn1ZKSoruuOMOl206duyoSZMmyeFwKDU11dl2XpMmTeTv768tW7aUOag4HA7l5OSUaduKYLPZ5Ovra3UZV5Xc3Fw5HA6ry6i0OCbLH8eke8jNzXX5G2XncDhks9n+dFypgkrNmjXVuXNnl7bPP/9cBw4c0P/93/9p9erVCggIcOmvX7++cnNzdeLECWVlZal27dry9vYuMSYzM7M0pbgoKChQWlpambe/0nx9fRUaGmp1GVeV/fv3843iMnBMlj+OSfeSkZFhdQlXBS8vrz8dU6qg8ntbt27VqFGj1K1bN3Xp0kV5eXkl3vT8x3a7Xbm5uRcsytvbW/n5+WWuw9PTU8HBwWXe/kq7lMSI0mnSpAm/vV4GjsnyxzHpHnJzc5WRkaHGjRszK3mZ0tPTL2lcmYPKl19+qWHDhqlt27ZKTEyUdC5w2O12l3HnP/b19ZWPj0+JfunclUCX8wW32Wzy8/Mr8/aofPgGAdNwTLoXX19ffu5cpkv9halM91FZsmSJnnvuOXXt2lVz5sxxnsoJDAzU4cOHXcYePnxYfn5+qlGjhgICAnTy5MkSYeXw4cPy9/cvSykAAOAqVuqgsmzZMk2YMEGPP/64pk2b5nIq55ZbbtHmzZtdxm/cuFFt27ZVlSpV1K5dOxUXFzsX1UrnzutmZWUpPDz8MnYDAABcjUoVVPbv36/JkyfrzjvvVP/+/XX06FEdOXJER44cUXZ2tnr37q3t27crMTFR+/bt04IFC/TZZ58pNjZWkuTv76/u3bsrPj5emzZt0vbt2zV06FC1b99ebdq0uRL7BwAAKrFSrVH5/PPPVVBQoC+++EJffPGFS190dLRefvllzZo1SwkJCXr77bfVsGFDJSQkKCIiwjluwoQJmjx5sgYPHixJ6tSpk+Lj48thVwAAwNWmVEFlwIABGjBgwB+O6dSpkzp16nTRfj8/P02cOFETJ04szVsDAAA3xEMJAQCAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjXVZQefPNN9W7d2+XtrS0NMXExKhNmzaKiorS4sWLXfqLi4s1Y8YMRUZGqk2bNurbt68OHjx4OWUAAICrVJmDytKlS/Xqq6+6tJ04cUJ9+vRRo0aNtHLlSg0aNEiJiYlauXKlc8ysWbO0bNkyTZgwQcuXL1dxcbFiY2Nlt9vLvBMAAODq5FHaDbKysjRmzBht2rRJjRs3dul777335OnpqfHjx8vDw0NBQUE6cOCA5s6dq169eslut2vBggUaNmyYunTpIkmaPn26IiMjtXbtWvXo0aM89gkAgCvCZrPJ19dXNpvN6lLcRqmDyg8//CBPT0998MEHeuONN3To0CFnX0pKitq3by8Pj///sh07dtSbb76po0eP6pdfftHZs2cVERHh7K9Zs6ZCQ0O1ZcuWMgcVh8OhnJycMm1bEc4f2Cg/ubm5cjgcVpdRaXFMlj+Oyctns9nk5e2tqlXMXT7p6+ur0NBQq8v4U0XFxbLn5xt9TDocjksKfKUOKlFRUYqKirpgX2Zmppo1a+bSVr9+fUnSr7/+qszMTElSYGBgiTHn+8qioKBAaWlpZd7+SqssB3Zlsn//fuXm5lpdRqXFMVn+OCYv3/njMnFpqn7Oyra6nEqroX8NDXu8XaU4Jr28vP50TKmDyh/Jy8sr8abe3t6SpPz8fOcn7EJjTp06Veb39fT0VHBwcJm3v9KYIix/TZo0Mfo3BdNxTJY/jsnLd/64/DkrW/sOlf1nAs4x/ZhMT0+/pHHlGlR8fHxKLIrNz8+XJPn5+cnHx0eSZLfbnf8+P+ZypqFtNpv8/PzKvD0qH05bwDQckzCN6cfkpf7CVK4nAgMCAnT48GGXtvMf+/v7O0/5XGiMv79/eZYCAACuAuUaVMLDw5WamqqioiJn28aNG9WkSRPVrVtXISEhql69ujZt2uTsP336tHbt2qXw8PDyLAUAAFwFyjWo9OrVS2fOnNGLL76o9PR0rVq1SosWLVL//v0lnVubEhMTo8TERK1bt067d+/WkCFDFBAQoG7dupVnKQAA4CpQrmtU6tatq3nz5mnSpEmKjo5WvXr1NGLECEVHRzvHxMXFqbCwUPHx8crLy1N4eLjmz58vT0/P8iwFAABcBS4rqLz88ssl2lq1aqWkpKSLblO1alUNHz5cw4cPv5y3BgAAbsDcu+oAAAC3R1ABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADCWJUGluLhYM2bMUGRkpNq0aaO+ffvq4MGDVpQCAAAMZklQmTVrlpYtW6YJEyZo+fLlKi4uVmxsrOx2uxXlAAAAQ1V4ULHb7VqwYIHi4uLUpUsXhYSEaPr06crMzNTatWsruhwAAGCwCg8qu3fv1tmzZxUREeFsq1mzpkJDQ7Vly5aKLgcAABjMo6LfMDMzU5IUGBjo0l6/fn1nX2kUFBTI4XBo+/bt5VLflWKz2fRgRA0VFlWzupRKzaNqFe3YsUMOh8PqUio9jsnywTFZvjguL19lOSYLCgpks9n+dFyFB5Xc3FxJkpeXl0u7t7e3Tp06VerXO7+Tl7KzVqtV3evPB+GSVIavd2XAMVl+OCbLD8dl+TD9mLTZbGYGFR8fH0nn1qqc/7ck5efny9fXt9SvFxYWVm61AQAAs1T4GpXzp3wOHz7s0n748GH5+/tXdDkAAMBgFR5UQkJCVL16dW3atMnZdvr0ae3atUvh4eEVXQ4AADBYhZ/68fLyUkxMjBITE1WnTh01aNBACQkJCggIULdu3Sq6HAAAYLAKDyqSFBcXp8LCQsXHxysvL0/h4eGaP3++PD09rSgHAAAYyuYw/folAADgtngoIQAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAKOkpKSooKDA6jIAGIKg4uby8vJkt9slSfv27dP8+fO1detWi6uCO3vuuee0Z88eq8sASvjll1+0fv165eXl6dixY1aX4zYIKm5sy5Yt6tSpk1JTU3X48GE99NBDmj17tnr37q1PP/3U6vLgpurUqaPs7GyrywCc7Ha7hgwZoqioKPXv319HjhzRmDFj1KdPH505c8bq8q56ljyUEGaYNm2abr/9drVs2VLvvfeeqlevri+++EIrV67Um2++qXvuucfqEuGGOnXqpP79+6tz58664YYb5O3t7dI/ePBgiyqDu5o9e7Z2796tt99+WwMGDJAk9e7dW6NGjVJiYqLGjh1rbYFXOR5K6MZat26tjz76SNdff72efvppNWzYUOPHj9ehQ4d0zz33aPv27VaXCDcUFRV10T6bzaZ169ZVYDWA1K1bN40dO1Z/+ctfFBYWpg8++EDXX3+9kpOTNWLECK1fv97qEq9qzKi4MV9fX9ntduXn5ys1NVUPPfSQJOno0aOqUaOGxdXBXX311VdWlwC4yMrKUqNGjUq0BwYG6tSpUxZU5F5Yo+LGOnTooISEBI0ePVpVqlRRZGSk0tLSNHHiRHXo0MHq8uDmtmzZouXLl+vMmTNKT09XYWGh1SXBTQUFBSk5OblE+8cff6zg4GALKnIvzKi4sTFjxmjMmDH68ccflZCQoOrVq+tf//qXvLy8NGrUKKvLg5s6c+aMnnnmGW3btk02m0233nqrEhMT9b///U8LFy6Uv7+/1SXCzTz33HMaMmSI0tPTVVRUpNWrV2v//v36/PPPNX36dKvLu+qxRgUu7Ha7vLy8rC4Dbmz8+PHatWuXEhIS1LNnT33wwQey2+0aNmyYmjZtqqlTp1pdItzQN998ozfffFO7du1ScXGxbrzxRvXt21d33XWX1aVd9ZhRcXPHjx/X/v37VVxcLElyOByy2+3asWOHnn32WYurgzv697//ralTp+r66693tgUFBWn06NEaNGiQhZXBXTkcDnXq1EmdOnUq0bdv3z4FBQVZUJX7IKi4sQ8++EDx8fGy2+2y2WxyOByy2WySpAYNGhBUYInjx4+rXr16Jdpr1qypnJwcCyqCuxs1apRefvlllzaHw6G33npLb7zxhrZt22ZRZe6BxbRubM6cOerevbs+/vhj1ahRQytWrNAbb7yh+vXr67nnnrO6PLipli1bXvCGg0uXLlVoaKgFFcHdffvtt4qPj3d+nJ6erocfflgzZszQM888Y2Fl7oEZFTd28OBBzZw5U0FBQWrevLmOHz+uqKgoFRYWas6cObrvvvusLhFuaOjQoXr66ae1fft2FRYWavbs2dq3b59++OEHzZ8/3+ry4Ibefvtt9enTR6NHj1ZgYKBmzZqlm266SWvWrOGqnwrAjIob8/Lyci6cveGGG7R3715J0s0336wDBw5YWRrcWNu2bbV8+XL5+fnphhtu0Pfff6+AgAAtXbqUy+ZhiaCgIL3zzjv65ptvNHPmTI0cOVLvvvsuIaWCMKPixm6++Wa9//77Gjp0qJo1a6avv/5azzzzjNLT0+Xp6Wl1eXBjISEheuWVV6wuA25sy5YtJdri4uI0duxY7d27V6mpqTp/0Wx4eHhFl+dWuDzZjaWkpCg2NlZxcXGKjo7W3XffrWuvvVa//vqr/vrXv2rixIlWlwg3VFxcrA8//FBbt25VQUGBfv8tasqUKRZVBncSEhLivMjgj9hsNqWlpVVQVe6JoOLmsrKyZLfbdf311ys9PV3Lly9XYGCgevfuzf1UYImJEydq6dKlCgkJUfXq1Uv0v/POOxZUBXdz6NChSx7boEGDK1gJCCoAjNKhQweNHDlS0dHRVpcCwACsUXEzTzzxxCWPXbx48RWsBLgwu93OOX9Y7vbbb9eKFStUu3ZtRUVFOe8xdSE80fvKIqi4md9OUebn5+uTTz5RixYt1KZNG3l4eGjnzp3avn2780nKQEWLjIzU119/rccff9zqUuDGoqOj5ePj4/z3HwUVXFmc+nFjo0aNUq1atTRy5EiX9ldffVX79u3TzJkzLaoM7mzBggWaMWOGbrvtNgUFBZW4Am3w4MEWVQbACgQVNxYWFqbVq1ercePGLu0ZGRm6//779f3331tSF9xbVFTURftsNhvT7LBESkrKBa9Es9lsPIPqCuPUjxurWbOmdu3aVSKopKSkqG7dutYUBbf31VdfWV0C4OKNN97QzJkzVbNmzRJXohFUrjyCiht75JFHNHr0aO3bt08333yziouLtXXrVi1dulTDhw+3ujy4uaNHj17wPirXXXedRRXBXb377rsaMmSI+vfvb3UpbolTP27uzTff1JIlS3TkyBFJUmBgoPr27avHHnvM4srgrrZu3apRo0bpf//7n0v7+ad7c3MtVLTWrVvrk08+4X4pFiGoQJJ04sQJ2Ww2XXPNNVaXAjf3wAMPyM/PT3369FGNGjVK9Ldv396CquDO+vTpo169eqlHjx5Wl+KWOPXjZtasWaO//vWv8vLy0po1a/5w7P33318hNQG/tXfvXq1Zs0ZBQUFWlwJIknr06KEJEyZo586datq0aYm7dvO98spiRsXNhISEaMOGDapbt65CQkIuOo4pdlilW7duSkxMVKtWrawuBZAkvldajKACwCirV69WUlKSxo0bp6ZNm/Ikb8DNEVQAGKVbt2765ZdfVFRUdMF+fnsF3AtrVNzMnz2z4re4sRas8Oyzz1pdAgCDEFTczG+fWXHy5EktW7ZMXbt2VVhYmDw8PLRjxw6tXbtWTz/9tMWVwl3x1GQAv8WpHzf27LPPqm3bturbt69L+zvvvKMvv/xSb7/9tkWVwZ29/vrrf9jPs34A98KMihtLTk4u8UBCSerUqZMSExMtqAiQVq1a5fJxUVGRjh07Jg8PD7Vt29aiqgBYhaDixurXr6/k5GTdcMMNLu1ffvkld2CEZS70rJ8zZ87o//7v/wgqgBvi1I8bS0pK0oQJE9S9e3e1bNnS+ayfL774QomJibrnnnusLhFwSk9P19NPP61vvvnG6lIAVCBmVNzYI488omrVqmnJkiVau3atbDabWrRooVmzZqlz585Wlwe4yM7OVnZ2ttVlAKhgzKi4ud27d2vPnj0qKiqSzWaTw+GQ3W7Xjh07NHHiRKvLgxu60GLas2fP6pNPPlGLFi00Z84cC6oCYBVmVNzYwoUL9corrzifSns+s9psNt1yyy0WVwd39fvFtJLk6empiIgIDRkyxIKKAFiJGRU3dscdd+iee+7R4MGD1bVrV61evVonT57UCy+8oAcffFBPPfWU1SUCANxcFasLgHUyMzP10EMPydvbWyEhIdqxY4eaN2+ukSNHasWKFVaXB7jIzc3V5MmTrS4DQAUjqLgxPz8/5/NUGjVqpPT0dElSUFCQDh06ZGVpcDP5+fkaP368OnTooNtuu00JCQkqLi529n/77bfq0aOHlixZYmGVAKxAUHFjbdu21dy5c5Wbm6vQ0FB99dVXKi4uVmpqqqpVq2Z1eXAjr7zyit577z3dfvvtuuOOO/Tuu+/qzTffVHFxscaPH6++ffvKw8ODuyUDbog1Km5sz549evrpp/XUU0/p0Ucf1b333qvTp08rNzdXzzzzjIYOHWp1iXATXbt2Vb9+/fToo49Kkv7zn/9o0qRJioiI0IoVK9SnTx/9/e9/l5eXl8WVAqhoBBU3l5eXp5ycHNWpU0dHjx7VRx99pICAAN19991WlwY30rJlS33yySe6/vrrJZ27bX7Lli1Vq1Ytvfrqq+rQoYPFFQKwCpcnuzkfHx/5+PhIkq699lqu9IElCgoK5Ofn5/y4atWq8vb21osvvkhIAdwca1QAGKtVq1ZWlwDAYgQVAEaw2WyX1AbAvXDqB4ARJk6cKG9vb+fHBQUFSkhIKHEF2pQpUyq6NAAWIqgAsFx4eLiOHDni0hYWFqYTJ07oxIkTFlUFwARc9QMAAIzFGhUAAGAsTv0AMMq+ffs0YcIEbd26VQUFBSX609LSLKgKgFUIKgCMMnbsWB07dkzDhg1TjRo1rC4HgMUIKgCMsm3bNr377ru66aabrC4FgAFYowLAKLVr15anp6fVZQAwBEEFgFFiYmI0bdo0nTlzxupSABiAy5MBGKVPnz5KSUlRUVGR6tatW+KJyevWrbOoMgBWYI0KAKO0a9dO7dq1s7oMAIZgRgUAABiLGRUAxtm5c6fmz5+vPXv2yMPDQ8HBwXryySd5mjLghlhMC8Aomzdv1t/+9jcdOHBAt956q8LDw7V//3499thjSk1Ntbo8ABWMUz8AjPLoo4+qWbNmGjdunEv7uHHjlJ6ernfeeceiygBYgRkVAEbZtWuXnnjiiRLtMTEx2rlzpwUVAbASQQWAUWrXrq0TJ06UaD9+/HiJS5UBXP0IKgCM0rVrV02YMEH79u1ztqWnp2vixImKioqysDIAVmCNCgCjnDp1Sn369FFaWprzoYTZ2dkKCQnRggULVLt2bYsrBFCRCCoAjFNcXKz169dr7969cjgcat68uW677TZVqcIkMOBuCCoAAMBY3PANgOVatGihb7/9VnXr1lVISIhsNttFx6alpVVgZQCsRlABYLnJkyc716NMnjz5D4MKAPfCqR8AxsnOztaJEyfUqFEjSdLatWvVvn17XXPNNdYWBqDCsTINgFF++OEH3XHHHXr33XedbS+//LJ69OihvXv3WlgZACswowLAKL1791bDhg01btw45w3eCgsL9dJLLykrK0sLFiywuEIAFYkZFQBG2blzpwYOHOhyF1oPDw/169dP27Zts7AyAFYgqAAwSrVq1XTw4MES7YcPH+YW+oAbIqgAMMpdd92lcePGKTk5WWfPntXZs2e1ceNGjRs3TnfeeafV5QGoYKxRAWCUnJwc/f3vf9f69etdLlO+8847NXnyZFWvXt3C6gBUNIIKACP99NNP2rt3rzw8PBQUFKTGjRtbXRIACxBUAFQamZmZCggIsLoMABWIO9MCMMrBgwf1z3/+U3v27FFRUZEkyeFwyG636/jx49q1a5fFFQKoSCymBWCU8ePH68cff9Rdd92lrKwsde/eXTfddJOOHj2qsWPHWl0egArGjAoAo2zdulWzZs1Shw4dtH79et1xxx1q1aqVpk+frq+//loPP/yw1SUCqEDMqAAwit1udz7jp0mTJvrxxx8lSffffz83fAPcEEEFgFEaNGigPXv2SDoXVNLS0iRJxcXFOnv2rJWlAbAAp34AGCU6OlojRozQK6+8oi5duuiJJ57Qddddpw0bNqh58+ZWlwegghFUABilX79+8vb2lsPhUKtWrTRw4EDNnj1bgYGBeuWVV6wuD0AF4z4qAADAWMyoADBOSkqKtm7dqoKCAv3+d6nBgwdbVBUAKzCjAsAob7zxhmbOnKmaNWuWeK6PzWbTunXrLKoMgBUIKgCMctttt6l3797q37+/1aUAMACXJwMwSnZ2tnr06GF1GQAMQVABYJS2bdvqu+++s7oMAIZgMS0Ao/To0UMTJkzQzp071bRpU3l5ebn033///dYUBsASrFEBYJSQkJCL9tlsNuedagG4B4IKAAAwFmtUAACAsQgqAADAWAQVAABgLIIKAMuwRA7AnyGoALDE3r179eijj1pdBgDDEVQAWOKzzz7jxm4A/hRBBQAAGIv7qAC4Ynbu3KmEhATt3LlTxcXFat26tZ5//nmtX79er7/+unPc4MGD9dxzzyk/P1/z5s3Thx9+qEOHDikwMFAPPvigYmNjVaXKud+revfuLX9/f9ntdn3zzTcKCwvTwoULlZ+fr9dee00ff/yxjh07piZNmujZZ5/VX//6V6t2H0A54Bb6AK6IM2fOKDY2Vh07dtTMmTNlt9s1e/ZsPfPMM/rggw+UmZmpFStWKCkpSQEBAXI4HBowYIC+//57DR48WCEhIdq0aZNeffVVHTx4UBMmTHC+9qeffqqePXtq9uzZKi4ulsPh0KBBg7R161bFxcUpKChIX3zxhYYMGSK73c5t94FKjKAC4IpIT0/XiRMn9MQTT6ht27aSpKZNmyopKUlVq1ZVQECAJKlNmzaSpK+//lr//e9/NW3aNHXv3l2SdOutt8rHx0evvfaannjiCd14442SJE9PT40bN875HKANGzZo/fr1mj59unMGJTIyUrm5uUpMTFSPHj3k4cG3O6AyYo0KgCvixhtvVJ06dTRgwACNHj1aX3zxha699loNHz7cGVJ+a/PmzfLw8NDdd9/t0t6zZ09n/3m/f1hhcnKybDabOnfurMLCQuefqKgoHTlyRHv37r1CewngSuNXDABXRLVq1bR06VLNnj1bn376qZKSkuTj46P77rtP8fHxJcafOnVKtWvXVtWqVV3a69WrJ0nKzs52ee3fOnnypBwOh3Pm5vcOHz6sFi1aXO4uAbAAQQXAFdO0aVMlJCSoqKhI27dv17/+9S+9++67atSoUYmxtWrV0okTJ1RUVOQSVg4fPixJql279kXfp0aNGvLz89PixYsv2H/DDTdc5p4AsAqnfgBcEZ999pk6duyoI0eOqGrVqgoLC9PYsWNVs2ZN/fLLL86reM5r3769CgsL9dlnn7m0f/DBB5Kkdu3aXfS92rdvr5ycHDkcDrVs2dL5Z8+ePXrjjTdUWFhY/jsIoEIwowLgimjbtq2Ki4s1aNAg9evXT9WqVdOnn36q7OxsdevWzblu5KOPPlLr1q3VqVMndejQQfHx8crKylJISIg2b96st956S9HR0QoODr7oe3Xu3Fnh4eEaOHCgBg4cqKCgIG3fvl0zZsxQZGSk6tSpU1G7DaCccR8VAFfM9u3b9dprr2nnzp3Kzc3VjTfeqAEDBujOO+9UVlaWBg0apN27d+vBBx/U2LFjlZubqxkzZujjjz/W8ePH1bBhQz300EPq06ePy31UJOmdd95xea+cnBy99tpr+uyzz3Ts2DH5+/ure/fuGjRokLy9vSt83wGUD4IKAAAwFmtUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGCs/wc9LufCj31b8QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -466,7 +531,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAIVCAYAAAD/HNTLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjPklEQVR4nO3deVxN+eMG8OemUk32pRpki5JQUcRkyTLmixnLzBjE2HfGWpqyFI0QZsY2dkIjZB8zthk7qRjLyFBEtiwh7cs9vz/8utN1K5XqfC7P+/Wa1+icc+99bt26zz3ncz5HIUmSBCIiIiIB6cgdgIiIiCg3LCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIihHnU6SSwtcava9YVOiD1b9/f1haWqr+s7Kygp2dHXr27ImAgABkZGSobe/i4oJp06bl+/6PHj0Kd3f3t243bdo0uLi4FPpxCuvevXuwtLTEzp07NdalpaWhbdu26NGjB5KTk4stQ//+/dG/f/9iu3/R/Pbbb2jXrh1sbGwwY8aMIrvf5cuXY+3atUV2f0Qi0ZU7AJGcrK2tMXPmTABAZmYmXr58iRMnTmDu3LkICwvDjz/+CB2d131+6dKlMDY2zvd9b9iwIV/bjR49GgMGDChw9ndVtWpVBAUFwdzcXGPd9u3bkZGRgRUrVsDQ0LDEs72vfHx8UKtWLfj5+cHExKTI7venn37C2LFji+z+iETCokIfNGNjY9ja2qotc3FxQZ06deDr64v9+/fj888/B/C61BSHnIpCSdDX19d47lnat2+Pzz77DBUrVizZUO+5Fy9eoFWrVmjevLncUYi0Bg/9EOXA1dUVJiYm2Lp1q2rZm4dkskpM48aN0aJFC0yZMgWxsbEAXh/SOH/+PM6fPw9LS0uEhIQgJCQElpaW2Lp1K9q1awd7e3ucPn1a49APAKSnp2POnDlwcHBAs2bN4O7ujri4ONX6nA6ZZN1/SEiIatmtW7cwduxYODo6wsHBASNGjEBUVBSAnA/9REdHY/z48ejVqxdcXFzQv39/hIeHq9Zn3eb333/H+PHjYWdnB0dHR3h5eSEpKSnP7+mDBw8wduxYNG3aFK1atcL69etz3G779u3o0qULbGxs0LZtWyxZsgSZmZl53relpSV+/fVXTJs2DU2bNoWjoyPmzJmDlJQUzJs3Dy1atEDz5s3h6emJ1NRU1e3i4uLg7e2tOhzj6OiIMWPG4N69e2rfa09PT6xatQpt27ZFo0aN8M033+Dy5cuqbXL6GWb//mb9bABg2bJlsLS0VD3G9u3b0bNnT9ja2qJx48b44osv8Pvvv6vdV14/x6z7Xbp0qerfb8sDINfXIwCEhYXB1dUVTZo0gaOjo8brb+fOnbC2tsb27dvRqlUrODo6IjIyMs+fEVFhsagQ5UBHRwdOTk64fPmyxlgVAAgPD4ebmxs6deqE1atXw8PDA+fOncPkyZMBADNnzoS1tTWsra0RFBSEhg0bqm67dOlSuLu7Y8aMGbCzs8vx8X///Xf8888/8PPzg7u7O44dO4Zhw4a99Q07u9jYWPTu3RvR0dGYNWsWFixYgKdPn+Lbb7/FixcvNLaPjIxEz549ce/ePXh5ecHf3x8KhQLffvstzp8/r7btzJkzUa1aNSxfvhxDhgzBjh07sGLFilyzJCUlwdXVFTdu3MDs2bMxffp0bN++HRcvXlTbbuXKlZg+fTqcnJzwyy+/oF+/fli9ejWmT5/+1ue7YMEC6OvrY+nSpejevTs2bdqE7t274+HDh/D390f//v2xY8cObNq0CcDrwacjRozA6dOnMWXKFKxduxZjx47F2bNnVYcDsxw8eBBHjx6Fl5cXFi1ahKdPn2LcuHH5/nk0bNgQQUFBAIAvv/wSQUFBqFq1KrZs2YIZM2agQ4cOWLlyJfz9/aGvr48pU6bg0aNHAN7+c3zzfgvqzddjaGgoBg4cCAMDA/z444/4/vvvcf78eQwYMAApKSmq22VmZmLdunXw9fWFh4cH6tatW+DHJsoPHvohykXlypWRnp6OFy9eoHLlymrrwsPDYWBggOHDh0NfXx8AUL58eVy5cgWSJMHCwkI1nuXNwyt9+/ZF586d83zsChUqYO3atTAyMlJ9PWbMGJw4cQLt2rXLV/4NGzYgLS0N69evR5UqVQAAVlZW6NOnDy5duqTxxrJ06VLo6+sjICBAlb1t27bo2rUr5s+fjx07dqi2bdOmjWqgsJOTE06fPo1jx46pitqbdu3ahQcPHmD//v2wsLAAADRp0gQdO3ZUbfPq1SssX74cvXv3hpeXFwDgk08+Qfny5eHl5YVBgwahXr16uT5fCwsL+Pj4AAAcHR2xfft2pKenw9/fH7q6uvjkk09w8OBBXLhwAQDw+PFjGBoawt3dHc2aNQMANG/eHHfv3tV4w8/IyMDatWtV35fExES4u7sjIiICNjY2uWbKkv0Qo6mpqerfMTExGDJkCEaPHq3atlq1aujZsyfCw8PRpUuXt/4c27Rpo3G/BfHm63HhwoWoXbs2Vq5ciVKlSgF4/bPq0qULgoOD0a9fP9W2I0eORNu2bQv8mEQFwaJClIus0z0VCoXGOgcHByxevBhdu3bFp59+ijZt2uCTTz5RvWnkpUGDBm/dpk2bNqqSArw+7KSrq4vQ0NB8F5Xw8HDY2tqq3tyA129mf/31FwCoHd4AgPPnz6Ndu3ZqA4Z1dXXRpUsXLFu2DImJiarlb74hmpqa4v79+7lmCQsLg7m5uaqkAICZmZna/Vy8eBEpKSlwcXFR24uVdQjj9OnTeRaV7HunSpUqhQoVKqBhw4bQ1f3vz1z58uXx6tUrAICJiQkCAgIgSRLu3buHO3fu4NatW7hw4QLS0tLU7jt78cy6LYB3PiMq61BifHw8bt26hTt37qgO3WVleNvP8V1lfz0mJyfj0qVLGDJkCCRJUv0catSogbp16+L06dNqRSU/r2Wid8WiQpSL2NhYGBgYoHz58hrr7OzssGrVKmzYsAHr16/HqlWrULlyZYwcOfKtp9tmLyC5yf6mBLw+FFWhQgXEx8fnO/+LFy9QvXr1fG//8uVLjT1HwOs9S5IkISEhQbXszTOBdHR08pzH4+XLl6hQoYLG8ipVquDp06eqvAAwfPjwHO/j8ePHeebP6Yyst32v9+7di0WLFuHhw4coX748GjRoAAMDA43tcnq+AKBUKvO8/7e5e/cuZsyYgbNnz0JPTw916tSBlZUVgP+KckF/jgWV/XsUHx8PpVKJ1atXY/Xq1Rrbli5dOtfbEhUXFhWiHGRkZCAkJAT29vaq3d9vcnZ2hrOzM5KTk3Hu3DkEBARgzpw5aNKkCRo3bvxOj//mGJLMzEw8f/4clSpVUluW3ZuDWcuUKaM2ADLL2bNnUb16dY09ReXKlVOVhuyePHkC4PXhp7eVhdxUqFABd+7c0Vie/XmWLVsWAODv749atWppbJtTiXoXYWFhcHd3R//+/TFkyBDVXpL58+erDSDOD4VC8dafx5uUSiWGDx8OPT097NixAw0aNICuri4iIyOxZ88e1XZv+znWqFGjSPIAwEcffQSFQoGBAweiS5cuGut5qjrJgYNpiXIQFBSEJ0+eoE+fPjmunzdvHnr16gVJkmBoaIh27dqpxmw8ePAAwH+fugvj9OnTaoc/Dh48iIyMDNVprcbGxqrBllnefHNt1qwZLl26pPYm9+zZMwwdOhTHjx/XeEwHBwf89ddfantOMjMz8dtvv6FRo0aqsTiF0aJFC9y7dw9XrlxRLYuLi8Pff/+t+rpJkybQ09NDbGwsGjVqpPpPV1cXixYt0jhU9a4uXrwIpVKJcePGqUpKZmYmzpw5A6Bge0s++ugjPH/+XO2MoreVnefPn+P27dv48ssvVc8TAE6cOKH2+Pn5Ob75WitMHuD168ra2hq3bt1S+xnUq1cPS5YsUTujjKikcI8KfdASEhJUb5ZKpRLPnz/HqVOnEBQUhM8//xydOnXK8XYtWrTA+vXrMW3aNHz++edIT0/HmjVrUL58ebRo0QLA6z0EFy9exNmzZws8B8uTJ08wbtw49O/fH9HR0Vi0aBFatWoFJycnAEC7du3w559/Yu7cuXBxcUFYWBh2796tdh8DBw7E7t27MXToUIwYMQJ6enpYsWIFTE1N0a1bN9VYjSxjx47FiRMnMGDAANUn/c2bNyMmJgZr1qwpUP43ffHFFwgICMDYsWMxceJEGBsbY8WKFWploEKFChg6dCh++uknJCQkoHnz5oiNjcVPP/0EhUKhOiRSVLL2evn4+KBXr154+fIltmzZguvXrwN4vQcivxP8tWvXDps2bYKnpye+/PJL3LhxA+vXr891bxwAVKpUCdWqVcOWLVtgamqKsmXL4uTJkwgICADw3/iXt/0cgdevtQsXLiA0NBTNmjUrVJ4skyZNwvDhwzF58mR8/vnnqrN7Ll26pDbol6ikcI8KfdCuXbuG3r17o3fv3ujbty/c3Nxw/fp1zJo1C/Pnz8/1dm3atIG/vz9u3ryJsWPHYtKkSTA0NERAQIBqTEu/fv2gp6eHYcOGqT4l51ffvn1RqVIljBkzBj/99BO6deuGpUuXqg7X9OrVC8OGDcP+/fsxfPhwXLx4ET///LPafZiZmSEwMBBVq1bFtGnT4OHhATMzM2zcuBHlypXTeMx69eohMDAQlSpVgoeHB6ZOnQpJkhAQEICWLVsWKP+b9PX1sXHjRjg4OMDX1xfff/89nJycNAYGT5gwAdOmTcPhw4cxbNgwLFiwAE2bNsXmzZtRpkyZd8rwpubNm2PGjBm4ePEihg0bBj8/P3z88cdYunQpgPztgcjSqlUruLu7Izw8HMOGDcOBAwewdOnStxaD5cuXw8TEBNOmTcOECRNw6dIlrFixAnXq1EFYWBiA/P0cR44ciatXr2LYsGF4+PBhofMAr8+0Wrt2LR49eoTx48fDzc0NpUqVwvr16wt1VhHRu1JIvJIVERERCYp7VIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwtL6Cd8uXrwISZKgp6cndxQiIiLKp/T0dCgUCrULiuZE6/eoSJKU58XQ3uV+09LSiuW+iwszlxxtzM3MJYOZSwYzl4zizJzf92+t36OStSelUaNGRXq/SUlJiIiIgIWFhdZcIZSZS4425mbmksHMJYOZS0ZxZs5+7a+8aP0eFSIiInp/sagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRSUXCoUChoaGUCgUckchIiL6YOnKHaCkKZUSdHTeXj4MDQ1hbW1dLPdNRERE+fPBFRUdHQX8t4TjXuyrIr3f6iZlMKVf0yK9TyIiog/dB1dUAOBe7CtE3X8pdwwiIiJ6C45RISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhJWgYtKbGwsLC0tNf7buXMnACAiIgKurq6wtbWFi4sLAgIC1G6vVCrx888/w9nZGba2thg2bBhiYmKK5tkQERHRe6XApydfv34dpUuXxpEjR9RmbS1TpgyeP3+OQYMGwcXFBd7e3vj777/h7e2Njz76CL169QIALF++HIGBgfDz84OpqSkWLFiAoUOHYt++fdDX1y+6Z0ZERERar8BF5caNG6hVqxaqVq2qsW7jxo3Q09ODj48PdHV1UbduXdy5cwerVq1Cr169kJaWhnXr1mHKlClo27YtAGDx4sVwdnbGoUOH0LVr13d+QkRERPT+KPChn3///Rd169bNcV1YWBgcHR2hq/tf/2nRogWio6Px9OlTXL9+HYmJiXByclKtL1u2LKytrREaGlqI+ERERPQ+K9QelQoVKqBfv364ffs2atasiVGjRqF169Z49OgR6tevr7Z91p6Xhw8f4tGjRwAAMzMzjW2y1hWGJElISkp663ZZFxosTsnJyZAkqVgfI6/Hzv5/baCNmQHtzM3MJYOZSwYzl4zizCxJUr4u/FugopKRkYFbt27BwsIC06ZNg7GxMX777TcMHz4c69evR0pKisY4k9KlSwMAUlNTVU80p21eviz8lPbp6emIiIh463aFudBgQd2+fVv2F2F0dLSsj18Y2pgZ0M7czFwymLlkMHPJKK7M+RmbWqCioquri5CQEJQqVQoGBgYAABsbG9y8eRNr166FgYEB0tLS1G6TmpoKADAyMlLdJi0tTfXvrG3eZU+Hnp4eLCws3rpdfprbu6pdu7ase1Sio6NRq1atYt9zVFS0MTOgnbmZuWQwc8lg5pJRnJkjIyPztV2BD/189NFHGsvq1auHU6dOwdTUFI8fP1Zbl/W1iYkJMjIyVMvMzc3VtrG0tCxoFBWFQgEjI6NC374oifDiMzQ0FOb7kV/amBnQztzMXDKYuWQwc8kojsz53XlQoMG0N2/ehL29PUJCQtSWX716FRYWFnBwcEB4eDgyMzNV686dO4fatWujUqVKsLKygrGxsdrt4+Pjce3aNTg4OBQkChEREX0AClRU6tatizp16sDHxwdhYWGIiorC3Llz8ffff2PUqFHo1asXEhIS4OnpicjISOzcuRMbNmzAiBEjALw+FuXq6gp/f38cPXoU169fx8SJE2FqaopOnToVyxMkIiIi7VWgQz86Ojr45ZdfsHDhQkyYMAHx8fGwtrbG+vXrVWf7rFmzBr6+vujRoweqVKkCNzc39OjRQ3Uf48ePR0ZGBry8vJCSkgIHBwesXbsWenp6RfvMiIiISOsVeIxK5cqVMXfu3FzXN27cGEFBQbmuL1WqFKZOnYqpU6cW9KGJiIjoA8OLEhIREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhFbqo3L59G3Z2dti5c6dqWUREBFxdXWFrawsXFxcEBASo3UapVOLnn3+Gs7MzbG1tMWzYMMTExBQ+PREREb3XClVU0tPTMWXKFCQlJamWPX/+HIMGDYK5uTmCg4MxZswY+Pv7Izg4WLXN8uXLERgYiNmzZ2Pr1q1QKpUYOnQo0tLS3v2ZEBER0XunUEVlyZIlMDY2Vlu2bds26OnpwcfHB3Xr1kWvXr0wcOBArFq1CgCQlpaGdevWYfz48Wjbti2srKywePFiPHr0CIcOHXr3Z0JERETvnQIXldDQUAQFBcHPz09teVhYGBwdHaGrq6ta1qJFC0RHR+Pp06e4fv06EhMT4eTkpFpftmxZWFtbIzQ09B2eAhEREb2vdN++yX/i4+Ph5uYGLy8vmJmZqa179OgR6tevr7asatWqAICHDx/i0aNHAKBxu6pVq6rWFZYkSWqHoXKjUChgaGj4To/1NsnJyZAkqVgfI6/Hzv5/baCNmQHtzM3MJYOZSwYzl4zizCxJEhQKxVu3K1BRmTVrFuzs7NCtWzeNdSkpKdDX11dbVrp0aQBAamqq6knmtM3Lly8LEkNDeno6IiIi3rqdoaEhrK2t3+mx3ub27duyvwijo6NlffzC0MbMgHbmZuaSwcwlg5lLRnFlfrMT5CTfRWX37t0ICwvDvn37clxvYGCgMSg2NTUVAGBkZAQDAwMAr8eqZP07a5t33cuhp6cHCwuLt26Xn+b2rmrXri3rHpXo6GjUqlWr2PccFRVtzAxoZ25mLhnMXDKYuWQUZ+bIyMh8bZfvohIcHIxnz56hbdu2astnzpyJAwcOwNTUFI8fP1Zbl/W1iYkJMjIyVMvMzc3VtrG0tMxvjBwpFAoYGRm9030UFRFefIaGhsJ8P/JLGzMD2pmbmUsGM5cMZi4ZxZE5vzsP8l1U/P39kZKSorasU6dOGD9+PD7//HPs2bMHW7duRWZmJkqVKgUAOHfuHGrXro1KlSqhTJkyMDY2RkhIiKqoxMfH49q1a3B1dc1vDCIiIvqA5LuomJiY5Li8UqVKMDExQa9evbBmzRp4enpi6NChuHz5MjZs2ABvb28Ar49Dubq6wt/fHxUrVkS1atWwYMECmJqaolOnTkXzbIiIiOi9UqDBtHmpVKkS1qxZA19fX/To0QNVqlSBm5sbevToodpm/PjxyMjIgJeXF1JSUuDg4IC1a9dCT0+vqGIQERHRe+Sdisq///6r9nXjxo0RFBSU6/alSpXC1KlTMXXq1Hd5WCIiIvpA8KKEREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgFLirPnj3D1KlT0aJFC9jZ2WH48OGIiopSrY+IiICrqytsbW3h4uKCgIAAtdsrlUr8/PPPcHZ2hq2tLYYNG4aYmJh3fyZERET03ilwURkzZgzu3LmDVatWYceOHTAwMMDAgQORnJyM58+fY9CgQTA3N0dwcDDGjBkDf39/BAcHq26/fPlyBAYGYvbs2di6dSuUSiWGDh2KtLS0In1iREREpP10C7Lxy5cvUa1aNYwYMQL169cHAIwePRpffPEFbt68ibNnz0JPTw8+Pj7Q1dVF3bp1VaWmV69eSEtLw7p16zBlyhS0bdsWALB48WI4Ozvj0KFD6Nq1a5E/QSIiItJeBdqjUq5cOSxcuFBVUuLi4rBhwwaYmprCwsICYWFhcHR0hK7uf/2nRYsWiI6OxtOnT3H9+nUkJibCyclJtb5s2bKwtrZGaGhoET0lIiIiel8UaI9KdtOnT8e2bdugr6+PFStWwMjICI8ePVKVmCxVq1YFADx8+BCPHj0CAJiZmWlsk7WuMCRJQlJS0lu3UygUMDQ0LPTj5EdycjIkSSrWx8jrsbP/XxtoY2ZAO3Mzc8lg5pLBzCWjODNLkgSFQvHW7QpdVL799lv07t0bW7ZswZgxYxAYGIiUlBTo6+urbVe6dGkAQGpqquqJ5rTNy5cvCxsF6enpiIiIeOt2hoaGsLa2LvTj5Mft27dlfxFGR0fL+viFoY2ZAe3Mzcwlg5lLBjOXjOLK/GYfyEmhi4qFhQUAwNfXF5cuXcLmzZthYGCgMSg2NTUVAGBkZAQDAwMAQFpamurfWdu8y54OPT09VZ685Ke5vavatWvLukclOjoatWrVKvY9R0VFGzMD2pmbmUsGM5cMZi4ZxZk5MjIyX9sVqKjExcXh7Nmz+PTTT1XjUHR0dGBhYYHHjx/D1NQUjx8/VrtN1tcmJibIyMhQLTM3N1fbxtLSsiBR1CgUChgZGRX69kVJhBefoaGhMN+P/NLGzIB25mbmksHMJYOZS0ZxZM7vzoMCDaZ9+vQpJk2ahLNnz6qWpaen49q1a6hbty4cHBwQHh6OzMxM1fpz586hdu3aqFSpEqysrGBsbIyQkBDV+vj4eFy7dg0ODg4FiUJEREQfgAIVlfr166N169aYM2cOQkNDcePGDUybNg3x8fEYOHAgevXqhYSEBHh6eiIyMhI7d+7Ehg0bMGLECACvj0W5urrC398fR48exfXr1zFx4kSYmpqiU6dOxfIEiYiISHsVeIzKokWLsHDhQkycOBGvXr1Cs2bNsGXLFnz88ccAgDVr1sDX1xc9evRAlSpV4Obmhh49eqhuP378eGRkZMDLywspKSlwcHDA2rVroaenV3TPioiIiN4LBS4qZcqUwaxZszBr1qwc1zdu3BhBQUG53r5UqVKYOnUqpk6dWtCHJiIiog8ML0pIREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhFXgovLixQvMmDEDrVu3hr29Pfr06YOwsDDV+rNnz6Jnz55o0qQJOnfujN9++03t9qmpqfD29oaTkxPs7OwwefJkxMXFvfszISIiovdOgYvKpEmTcPHiRSxatAjBwcFo0KABhgwZglu3biEqKgojRoyAs7Mzdu7cia+++gpubm44e/as6vazZs3CqVOnsGTJEmzcuBG3bt3C+PHji/RJERER0ftBtyAb37lzB6dPn0ZgYCCaNm0KAJg+fTpOnjyJffv24dmzZ7C0tMTEiRMBAHXr1sW1a9ewZs0aODk5ITY2Frt378Yvv/yCZs2aAQAWLVqEzp074+LFi7Czsyvip0dERETarEBFpUKFCli1ahUaNWqkWqZQKKBQKBAfH4+wsDB06NBB7TYtWrSAr68vJElCeHi4almW2rVrw8TEBKGhoYUuKpIkISkp6a3bKRQKGBoaFuox8is5ORmSJBXrY+T12Nn/rw20MTOgnbmZuWQwc8lg5pJRnJklSYJCoXjrdgUqKmXLlkWbNm3Ulh08eBB37tzB999/j127dsHU1FRtfdWqVZGcnIznz58jNjYWFSpUQOnSpTW2efToUUGiqElPT0dERMRbtzM0NIS1tXWhHyc/bt++LfuLMDo6WtbHLwxtzAxoZ25mLhnMXDKYuWQUV2Z9ff23blOgovKmCxcuwMPDA506dULbtm2RkpKi8aBZX6elpSE5OTnHUKVLl0Zqamqhc+jp6cHCwuKt2+Wnub2r2rVry7pHJTo6GrVq1Sr2PUdFRRszA9qZm5lLBjOXDGYuGcWZOTIyMl/bFbqoHDlyBFOmTIG9vT38/f0BvC4caWlpattlfW1oaAgDAwON9cDrM4He5RugUChgZGRU6NsXJRFefIaGhsJ8P/JLGzMD2pmbmUsGM5cMZi4ZxZE5vzsPCjWPyubNmzFu3Di0a9cOv/zyi+pQjpmZGR4/fqy27ePHj2FkZIQyZcrA1NQUL1680Cgrjx8/homJSWGiEBER0XuswEUlMDAQs2fPRr9+/bBo0SK1QznNmjXD+fPn1bY/d+4c7O3toaOjg6ZNm0KpVKoG1QKvx3TExsbCwcHhHZ4GERERvY8KVFRu376NH374AR07dsSIESPw9OlTPHnyBE+ePMGrV6/Qv39/XL58Gf7+/oiKisK6devwxx9/YOjQoQAAExMTdOnSBV5eXggJCcHly5cxadIkODo6wtbWtjieHxEREWmxAo1ROXjwINLT03H48GEcPnxYbV2PHj3g5+eH5cuXY8GCBdi4cSOqV6+OBQsWwMnJSbXd7Nmz8cMPP2Ds2LEAgNatW8PLy6sIngoRERG9bwpUVEaOHImRI0fmuU3r1q3RunXrXNcbGRlhzpw5mDNnTkEemoiIiD5AvCghERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFovKe0ShUMDQ0BAKhULuKEREREVCV+4A9HZKpQQdnbeXD0NDQ1hbWxfLfRMREcmBRUUL6Ogo4L8lHPdiXxXp/VY3KYMp/ZoW6X0SEREVJRYVLXEv9hWi7r+UOwYREVGJ4hgVIiIiEhaLChEREQmLRYWIiIiExaJCREREwnqnorJy5Ur0799fbVlERARcXV1ha2sLFxcXBAQEqK1XKpX4+eef4ezsDFtbWwwbNgwxMTHvEoOIiIjeU4UuKlu2bMGPP/6otuz58+cYNGgQzM3NERwcjDFjxsDf3x/BwcGqbZYvX47AwEDMnj0bW7duhVKpxNChQ5GWllboJ0FERETvpwKfnhwbG4uZM2ciJCQEtWrVUlu3bds26OnpwcfHB7q6uqhbty7u3LmDVatWoVevXkhLS8O6deswZcoUtG3bFgCwePFiODs749ChQ+jatWtRPCfSIpxNl4iI8lLgovLPP/9AT08Pe/fuxbJly3D//n3VurCwMDg6OkJX97+7bdGiBVauXImnT5/iwYMHSExMhJOTk2p92bJlYW1tjdDQ0EIXFUmSkJSU9Nbtst4Ui1NycjIkSSqy+9PWzPqlS6OUztt32BVmNt1MpRJpqalFmrmgkpOT1f6vDZi5ZDBzyWDmklGcmSVJyteH1AIXFRcXF7i4uOS47tGjR6hfv77asqpVqwIAHj58iEePHgEAzMzMNLbJWlcY6enpiIiIeOt2hXlTLKjbt28X6Q9UmzMX52y6RZ25sKKjo+WOUGDMXDKYuWQwc8korsz6+vpv3aZIZ6ZNSUnReNDSpUsDAFJTU1VvLDlt8/Jl4Wdd1dPTg4WFxVu3K4nDC7Vr1y7yvRPFrbgyF+dsukWduaCSk5MRHR2NWrVqFfser6LCzCWDmUsGM5eM4swcGRmZr+2KtKgYGBhoDIpNTU0FABgZGcHAwAAAkJaWpvp31jbv8g1QKBQwMjIq9O2Lkra8+LJj5sIzNDQU5rWXX8xcMpi5ZDBzySiOzPn9IF6k86iYmpri8ePHasuyvjYxMVEd8slpGxMTk6KMQkRERO+BIi0qDg4OCA8PR2ZmpmrZuXPnULt2bVSqVAlWVlYwNjZGSEiIan18fDyuXbsGBweHooxCRERE74EiLSq9evVCQkICPD09ERkZiZ07d2LDhg0YMWIEgNdjU1xdXeHv74+jR4/i+vXrmDhxIkxNTdGpU6eijEJERETvgSIdo1KpUiWsWbMGvr6+6NGjB6pUqQI3Nzf06NFDtc348eORkZEBLy8vpKSkwMHBAWvXroWenl5RRiEiIqL3wDsVFT8/P41ljRs3RlBQUK63KVWqFKZOnYqpU6e+y0MTERHRB4AXJSQiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkSFoFAoYGhoCIVCIXcUIqL3mq7cAYhEoVRK0NHJX/EwNDSEtbV1sdw3ERH9h0WF6P/p6CjgvyUc92JfFen9Vjcpgyn9mhbpfRIRfShYVIiyuRf7ClH3X8odg4iI/h/HqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwrRB0Ib537RxsxEVLR41g+RFtPGuV+0MTMRyYdFhUiLaePcL9qYmYjkw6JCpOW0ce4XbcxMRPLgGBUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqRERFSKFQwNDQEAqFQu4o+aaNmenDIUtRUSqV+Pnnn+Hs7AxbW1sMGzYMMTExckQhIsoXpVLK13aGhoawtraGoaFhkd5vYWhjZqI36crxoMuXL0dgYCD8/PxgamqKBQsWYOjQodi3bx/09fXliERElCcdHQX8t4TjXuyrIrvP6iZlMKVf0yK7vzdpY+b80sa9QMxcOCVeVNLS0rBu3TpMmTIFbdu2BQAsXrwYzs7OOHToELp27VrSkYiI8uVe7CtE3X8pd4wC0bbMSqUEHZ23vylm7QUq6vstDGYu+P0WRIkXlevXryMxMRFOTk6qZWXLloW1tTVCQ0NZVIiIPmDauBeImV8rrswKSZJK9GDjoUOHMG7cOFy6dAkGBgaq5d999x1SUlKwcuXKAt3fhQsXIEkS9PT08rW9QqHAy4Q0ZGQqC/Q4b6NbSgfljPVRHN9OZv4PM6tj5v8UZ2ageHIzsyZmfu1DyJyeng6FQgF7e/u877cowhVEcnIyAGiMRSldujReviz47sms42YFOX5Wzrj4xsEU13E8ZlbHzP9hZnXFeSy9uHIzszpm/s/7nFmhUORr2xIvKll7UdLS0tT2qKSmpuZ7xHl2dnZ2RZaNiIiIxFLipyebmZkBAB4/fqy2/PHjxzAxMSnpOERERCSwEi8qVlZWMDY2RkhIiGpZfHw8rl27BgcHh5KOQ0RERAIr8UM/+vr6cHV1hb+/PypWrIhq1aphwYIFMDU1RadOnUo6DhEREQlMlgnfxo8fj4yMDHh5eSElJQUODg5Yu3Ztvs/cISIiog9DiZ+eTERERJRfvCghERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEJJzQ0FFu3bkVCQgIiIyORkZEhdySiD1ZcXJysjy/LFPoiS0lJgY6ODvT19REVFYVjx47Bzs4O9vb2ckfTkJaWhnXr1uGzzz5DzZo14enpiQMHDsDe3h7+/v6oUKGC3BHz9ODBA0RFRcHBwQGJiYmoVKmS3JFIZgkJCRg6dCj+/vtvKBQKtGrVCv7+/oiJicG6deuEvMK6h4dHjssVCgX09PRgamqKzp07o3bt2iWcrODi4uJQsWJFuWOQjOLj47FgwQK4urrCwsICQ4cOxblz51CrVi2sWrUKNWrUKPFM3KOSTWhoKFq3bo3w8HA8fvwYX331FVasWIH+/fvj999/lzueBn9/f6xfvx4JCQk4ceIEdu3ahREjRiAxMRHz58+XO16u0tLSMHHiRLi4uGDEiBF48uQJZs6ciUGDBiEhIUHueO89uT8d5WXRokUAgMOHD8PAwAAAMHXqVOjr6wv7mk5PT8fu3btx6tQpxMfHIz4+HmfPnsWuXbvw77//Ys+ePejevTvCw8PljqomPj4e06dPx7///ovMzEwMGjQIrVq1wmeffYaYmBi546k8ffoUXl5emDhxIv7991+54+TLgwcP8v2faObOnYtz585BV1cXhw8fRlhYGObPn49atWrJ9jvIPSrZLFq0CO3bt0ejRo2wbds2GBsb4/DhwwgODsbKlSvx2WefyR1RzR9//IFFixahYcOGmDlzJhwdHTFy5Eh88sknGDZsmNzxcrVixQpcv34dGzduxMiRIwEA/fv3h4eHB/z9/TFr1ix5A+bh6NGjuHHjBjIzM1XL0tLScOXKFaxfv17GZDkT8dNRXv766y8sXLhQLVfdunUxY8YMjBkzRsZkuTMwMECnTp2wYMEC6OvrA3hdXr7//nuUKVMGM2bMgL+/P3788Uds2rRJ5rT/mTt3LsLCwjBw4EC1N6QDBw5g/vz5WLJkidwRAQBubm6ws7ND3bp1MXToUBw/fhw6OmJ/xnZxcYFCochzG0mSoFAoEBERUUKp8uf48eNYtmwZ6tati9WrV6NVq1bo1q0bLC0t0a9fP1kysahkc+3aNcyfPx/GxsY4deoU2rZti9KlS6NNmzbw8/OTO56GFy9eoG7dugCA06dPo3fv3gCA8uXLIyUlRc5oefrtt98wa9YsNG/eXLWsefPm8PX1hZubm7BFxd/fH2vWrEHlypXx7NkzmJiY4OnTp8jMzESXLl3kjpcjbXkzyhIXF4cqVapoLC9btiySkpJkSPR2f/zxB7Zu3aoqKQCgp6eHESNGoE+fPpgxYwa+/PJLBAYGyphSk4hvSDmJjIyEm5sbLCwsMHXqVLx48UL4w1MBAQFyRyi0pKQkmJmZAXj9vpL1odfAwEDtA1pJYlHJxtDQEGlpaUhNTUV4eDi++uorAK93PZYpU0bmdJrMzc1x5coVPHv2DPfu3YOzszMA4MiRI6hevbrM6XIXGxsLc3NzjeVmZmZ4+fKlDInyZ9++ffj+++8xYMAAtGnTBoGBgTAyMsKYMWOE2zORRVvejLI0atQIv//+O4YPH662fMuWLbC2tpYpVd50dXXx9OlTWFhYqC1/8uSJ6lN1ZmYmdHXF+nMr4htSTnr27IlZs2ahSpUqcHZ2Fr6kAICjo6PcEQqtbt26OHbsGMzMzPDkyRO0bt0aALBt2zbVB+OSJtZvjsyaN2+OBQsWoFy5ctDR0YGzszMiIiIwZ84ctU//ohg6dCgmTZoEHR0dtGjRAlZWVli2bBmWLVuGH374Qe54uapbty7Onj2rKoJZfvvtN40/9iJ59uwZXFxcAACWlpa4fPkyOnfujIkTJ8LT0xPfffedzAk1acubUZZJkyZh8ODBuHz5MjIyMrBixQpERUXhn3/+wdq1a+WOl6NPP/0UM2bMwKxZs9CkSRNIkoS///4bs2fPRvv27ZGUlIQVK1agUaNGckdVI+IbUk4mTJiAsLAwJCYmqj6MaZPU1FQEBQXleMj46tWrOHjwoIzpNI0fPx7jxo1Deno6unbtilq1amHu3LnYsmULli1bJksmFpVsZs6ciZkzZ+Lff//FggULYGxsjD179kBfXz/Xkf1y6t69Oxo0aICYmBjVH5lGjRph7dq1cHJykjld7saNG4eJEyciMjISmZmZ2LVrF27fvo2DBw9i8eLFcsfLVfbDD+bm5oiMjAQAfPzxx4iNjZUzWq605c0oi729PbZu3Yp169ahZs2a+Pvvv1GvXj18//33aNKkidzxcuTh4QE3NzcMHjxYbVzCZ599Bk9PT5w5cwbnz5/HqlWrZEypScQ3pNw0a9ZM7giFNmfOHOzevRvW1ta4cuUK7OzscOfOHTx79gwDBw6UO56GNm3a4Pjx44iNjYWVlRUAoEuXLvj666/l+5shUZ5SU1PljpCnkJAQ6fTp06qv/fz8pNDQUBkT5c/x48elvn37Sra2tlLjxo2lXr16SX/88YfcsfI0YcIEadiwYdKjR4+kvXv3Sl26dJGePXsmrVu3TmrXrp3c8XJ07NgxqVGjRpKVlZU0efJkSZIk6YcffpAaNmwoHTt2TOZ0OYuPj5fu3Lmj+vrgwYPS8+fP5QuUT3fv3pUOHjwoHTlyRIqJiVEtF/VvSEJCghQXFydFRESoll26dEmKjIyUMdX7x8nJSdq3b58kSZLUoUMHKSoqSkpLS5PGjBkjzZ49W+Z0BfPw4UNZHlchSZIkT0USU1xcHG7fvg2lUgng9cjsrLM6Ro0aJXM6db/99hvc3d0xceJEDBkyBMDrT0l//vknfvzxR3To0EHmhDmT/n+0e06ioqKE/KQPAA8fPsSoUaPQvXt39O3bF998841qxL67u7uQn44A4Pnz52qfji5fvoyPPvpIyO/zP//8g8GDB6Nnz55wd3cH8PoMiqw5g+rXry9zwtw9ffoU6enpePNP6scffyxTorx17NgRP/74Ixo2bCh3lPeajY0NDh06hI8//hijRo1Cly5d0LVrV1y5cgUTJkzA0aNH5Y6oJiYmBvPmzVM7VJX1PhgXF4dr166VeCYWlWz27t0LLy8vpKWlQaFQqL2hVqtWDUeOHJE5obpu3bqhd+/ecHV1VVseEBCA4OBg7NmzR6ZkeZs2bZrGWVSSJGH16tVYtmwZLl26JFOy/ElNTUXp0qWRnJyMU6dOwcTEBI0bN5Y7Vo6uXLmS49iIV69eYc6cOZg3b54MqXLXv39/VK9eHd7e3qqzaDIyMjB9+nTExsZi3bp1MifUdOHCBXh4eODu3btqyyVBTz/N8sknn2Djxo1CFtbs8nOqbxbR3vQBoHXr1li2bBkaNWqEefPmQU9PD5MmTcK9e/fQpUsX4f7eDRs2DNHR0ejcuTPWr1+PwYMH4/bt2zh8+DB8fHzw9ddfl3gmjlHJ5pdffkGXLl0wdOhQ9OnTB+vWrcPjx4/h7e2NcePGyR1Pw927d9GmTRuN5e3atcPChQtlSJQ/p06dgpeXF+bMmQPg9emHHh4eiIiI0DjbQyTHjx9HmzZtULp0aQCvzxLr2LEjYmJi0L9/f6HmyMgydOhQbNiwAQ0aNFAt+/PPPzFjxgwhB9NevXoVP/zwg9qpvrq6uhg+fDi+/PJLGZPlbs6cOahSpQrc3NyEPDswNwMGDMC4cePQr18/mJubqybYy+Lg4CBTMnWTJk2Cp6cn6tSpg/bt28sdp8Bat24Nb29vzJ07F02bNsUPP/yAjh074sCBAzA1NZU7noYLFy5g+fLlaN68OU6ePIkOHTqgcePGWLx4MY4fPy5LUeEYlWxsbGxUx2ddXV2l48ePS5L0+hh5jx495IyWo08//VQKDg7WWL5nzx6pffv2MiTKn8jISMnZ2VmaPn26tHz5csnGxkbq3bu3dPPmTbmj5alRo0bSyZMn1ZZt3LhRsrW1lTp37ixTqrzNmTNHcnR0lCIiIqQXL15IkydPliwtLaXJkydLz549kzuehlatWqmNucpy7tw5qUWLFjIkervsfze0iaWlZa7/WVlZyR1PzeHDhyUbGxu18TTa4uXLl9KoUaOkzZs3S0qlUho6dKhkaWkpNWzYUNq/f7/c8TTY2NhIDx48kCTp9bi8bdu2SZIkSbdu3ZJatWolSybuUclGX19f9UmuZs2auHnzJlq3bg0bGxvcuXNH5nSa+vTpg9mzZ+Pu3buqMyKuXLmCjRs3YvTo0TKny13dunWxadMmfPvtt3j8+DE8PT3Rt2/ffO/elcukSZMwduxYrFixAh9//DE8PDxw+fJlDBkyRNhZUz09PaGnp4eBAwdCV1cX+vr6WL16tbCneX766afw9vbGrFmzVIfTrly5Ah8fH3Ts2FHmdDkzMzNDYmKi3DEKTMTDJLnp0KEDunTpgnnz5gk5A3ReypYti+XLl6u+XrVqFSIiIlC5cmVUrVpVxmQ5q1atGm7cuAEzMzPUrl1bdehSqVTK9jpnUcnGxsYG27dvx6RJk1C/fn0cP34cQ4YMQWRkJPT09OSOp+Hbb79FWloaAgIC8MsvvwAAqlatiokTJ2qMW5FbaGioxrLx48dj1qxZuHnzJsLDw1WDEEXZ5fymgQMHQk9PD6NGjYJCoUC9evWwc+dOoQd4Aq+nINfX18eqVavw66+/CnuaLwBMnjwZd+/exaBBg9SKa8eOHeHm5iZjstyNGjUKP/zwA7y9vVGnTh0h/1bkpFq1agBez+dx7949mJubQ5IkYfN7eXnh3r17cscolJcvXyI6OhppaWmqZYmJibhz545wf+969OgBNzc3zJ8/H23btsWAAQPw8ccf4/Tp07C0tJQlEwfTZhMWFoahQ4di/Pjx6NGjBzp37ozKlSvj4cOH+N///qcaUyGi58+fQ09PD8bGxnJHyZGVlZVqgHJeRB58mGX79u3w9vbG6tWrhZyvZsCAATku//vvv2FkZKRWrESd6vvWrVu4ceMG9PT0ULduXdSqVUvuSLnq1KkTHjx4kOuYH1Ffz5IkYeHChdi0aRPS09NV8xgZGhpi1qxZwhYWbRMcHAxvb+8czwgT8e+dJEnYuHEjatWqhbZt22LVqlVYuXIlzMzMMH/+fFlmiGZReUNsbCzS0tJQo0YNREZGYuvWrTAzM0P//v3VBvjJJTQ0FHZ2dtDV1c1xL0V2IjX1+/fv53vbrE96IsjtjIPY2FiUKlUKlStXVi0TZVd6QSYnnDt3bjEm+TDs2rUrz/U9evQooSQFExAQgNWrV2PixInw8fHBvn37cOXKFXh7e+Obb77BxIkT5Y6oJikpCUZGRqqvr169inv37qFmzZpqg8VF06ZNG7Ru3RoDBw7UGLAMiPX3TlQsKlrGysoKp0+fRqVKlfLcSyFiU9dGS5YsyffYmbFjxxZzmvffrVu34OPjgwsXLiA9PV1jPV/TRadLly6YMGECOnbsCDs7O+zduxc1atTA4cOHMXfuXPz5559yRwTwem+xu7s7oqOjcejQIbx69QqjR49WfVBTKBRo0aIFlixZIuQeZTs7O+zatUvovYK7d+/O97bdu3cvthy5+eDHqOS2mzwnIuwmP3r0qOqiXKJ8gs+P9u3bY8eOHahQocJb50UQ6XmJeFp6QT18+BBbtmzBjRs3oKuri3r16qF3795CTkQ2c+ZMPHv2DFOmTBH6VF8PDw94enrC2Ng4zz1YCoVC2Otu3bt3L8c9EVZWVnjy5IkMiXLm6+uLBw8eYMaMGQCABQsWIC4uDtu3b0e9evXw77//wsvLC/PmzcPs2bNlTqupQ4cOOH78uNBFZdq0aWpfZ30ANjAwgK6uLhISElCqVClUqFCBRUUO2Xe7paam4sCBA2jQoAFsbW2hq6uLq1ev4vLlyxoX0JNL9rxv7jJMT0/H9evXUadOHXz00UclHS1PPXr0UO327NGjh/Bn+OTm6tWrWLt2repN38LCAt9++62wE779+++/cHV1hYGBARo3bgylUomdO3diy5Yt+PXXX1GvXj25I6q5dOkSfv31V+FnS713755q9mptHeBZrVo1XLlyReNK6ydOnBDqauAnT57E6tWrVb9jp06dwuzZs1UTGTZp0gSzZs3C6NGjhSwqU6dORbdu3XDw4EGYm5tr/O0T4fDr9evXVf/ev38/1q5di7lz56pms46Ojoa7uzu6du0qS74Pvqhkf5F4eHhg4MCBGu3yxx9/RFRUVElHe6uHDx/C09MTEyZMQP369fHll18iMjIS5cqV05jkS27ZD4to616K8+fPY/Dgwahfvz5atWoFpVKJCxcuoG/fvti4cSOaNm0qd0QN8+fPR/PmzbFw4ULVRHWpqamYMmUK/P39sXLlSpkTqqtQoYJWDOLMPrmfiBP95ceQIUPg7e2NJ0+eQJIknD17FkFBQdi0aZPG30A5KZVKjQkAy5Ytq7ZNuXLl1M6oEcmcOXOQmJiItLS0Ao3Vk4u/vz9++uknVUkBgFq1asHLywujRo1C//79SzzTB19Usvvjjz9yHBjXvXt3WXZ3vc3cuXPx6tUrVKxYEb///jvu37+PwMBA7Ny5EwsWLBByuvEsYWFhqnEI2cfYKBQKYeckWbx4MXr16gVvb2+15d7e3vjxxx+FfMO6cOECtm7dqiopAFC6dGmMGTNGuFPYAcDV1RWLFi2Cv7+/kOMNcpOcnIwbN27k+HoW9cq/vXr1QkZGBlasWIGUlBTMmDEDFStWxIQJE9CnTx+546k4OzvDx8cHS5cuRcWKFdG9e3esWbMGixYtQqlSpZCWloaffvoJzZs3lztqjk6cOIEVK1YIO3fRm+Lj49X+XmRRKpVISUmRIRGLipqyZcvi2rVrGscSw8LCUKlSJXlC5eHcuXPYuHEjqlevDn9/f7Ru3Rr29vaoUKECevbsKXe8XC1btgxLlixB2bJlNd6MRC4q165dy/EUdVdXV2Gnd//oo49yHJSa0zIRnDlzBmFhYXB0dESlSpU0zrQTafxSlqNHj2LatGlISEjQitNPs+vduzd69+6NuLg4SJIk5N85Dw8PDBo0CB06dICTkxOqV6+Os2fPokOHDqhduzauX78OHR0dBAYGyh01RxUqVBByPFhumjdvDh8fH8yfP191WDAqKgre3t5o27atLJlYVLLp3bs3ZsyYgaioKNjY2Kh27W/ZsgVTp06VO56G9PR0lCtXTrXbdtKkSQBeN19dXXF/tL/++ismTpyIESNGyB2lQCpUqIDnz59rLI+LixPi1PWctGjRAvPnz8fPP/+M8uXLA3idd8GCBULOAdO0aVMhD6Hlxd/fH05OThg9erTQA4BzEhMTg3/++SfHT8qi7EWuUqUKdu7cif379+P06dMIDQ1F+fLloaurC4VCgf79++Obb75BhQoV5I6ao5EjR8LX1xfTp0+Hubk5SpUqJXekPM2aNQtDhgxBx44dUbZsWUiShFevXqFx48aYPn26LJl4evIbVq5cic2bN6tGvZuZmWHYsGHo27evzMk09evXD82bN0eVKlXg4+ODv/76CxUrVsSMGTNw//59IQ9FAK8Hvx04cEDr5g/w9vbGhQsXsGjRItUVZyMjIzF58mRYW1sLMSjuTY8ePcI333yDly9fqvYURkdHo3z58ti0aZPGQEoquEaNGuG3336Dubm53FEKZOfOnfDy8lINCs5OtD1BqampuHnzJiwsLGBgYIBr165h8+bNePz4MSwsLDBo0CCYmJjIHTNH2jghYGZmJs6cOYObN29CoVDAysoKLVq0kO0kCBaVXDx//hwKhUL1KVREly9fxsiRI/H8+XMMGzYMkyZNwqxZs3DgwAGsXLkSdnZ2ckfM0aBBg9CrVy/ZRpAX1suXLzFo0CBERESoPjnHx8ejQYMGWLdunbCf6BITE7Fnzx7cvHkTkiTB0tIS3bp1E3YMyPXr13Hjxg3VG6gkSUhLS8OVK1eEnB26W7dumD59OhwdHeWOUiAdOnSAs7MzJk6cqDE4VSS3bt3CwIED8eTJE5iZmWHOnDkYPXo0qlWrBgsLC1y7dg3x8fEIDAxUfYAQibZOCCiSD76o7N69G//73/+gr6//1klvRNkVmp1SqURCQoLqD83169exdetWHDhwAOfPn5c5Xc6Cg4Mxf/589OjRA3Xq1NE4bCLi9zmLUqnEqVOncOPGDdWbvrOzs/CnWyckJODWrVvQ09NDjRo1hC0p69evx7x58wBAbTLDrEGpIu4lPH78OPz9/TFx4sQcX8+ijk9o1KgRDhw4INSpyDkZMWIESpcujdGjR2PDhg34/fff0aVLF/j6+kKhUCAjIwPu7u54+fIl1qxZI3dcDXPmzMGAAQOE3uPWoEEDnDp1Sm0i0dzIsQfogy8qb870mhvRdoVml5aWhj/++ANbt27FxYsXoVAo0KFDB/z8889yR8uRNn2ftW1CwDcplUrMmzcPgYGByMjIAADo6emhd+/e+P7774UrWB06dMBnn32GsWPHol27dti1axdevHiByZMn48svv8TAgQPljqihYcOGqt362b+fkiQJ93rO7uuvv8aYMWPQpk0buaPkyc7ODsHBwahTpw7i4uLQsmVL7Ny5U+2aMzdu3EDv3r1x8eJFGZPmrGnTptizZ4/Qh1l37dqFLl26QF9fHzt37szz74Ice4DEHXFZQrJPdJP939rgzp072Lp1q+qPuUKhQM+ePTFy5EihPyVp0/c5p3E0+/btg4uLi3CT6uVk5cqVCA4OxtSpU+Ho6AilUonQ0FAsW7YMJiYmGDp0qNwR1Tx69AhfffUVSpcuDSsrK1y5cgUdOnTAtGnT4OfnJ2RRWb9+vdwR8i379cE6dOgAT09PjBs3DjVr1tQY5CnKtcIMDAyQnJwMAKhYsSK+/vprjdNn4+PjhR3I3KZNG2zevBljx44Vdk9m9vIh4hmjH/weFW2TmZmJQ4cOISgoCCEhIShVqhQ++eQTdOnSBR4eHti9ezcsLCzkjvley35dFNG5uLhg4sSJ6Natm9ryffv2YcmSJTh06JBMyXLm6OiIoKAg1K5dG7NmzYKpqSlGjhypuoK5iJ+YtYk2XsV86tSpiImJwZw5czT+timVSpw9exazZ89Gy5YtVdPsi6R///4IDQ2FQqFApUqVNEqWCKfcL126NN/bynFNsw9+j8rbrjuTnQgvqDZt2uDVq1do0aIFZs+ejY4dO6JcuXIANK/XQPTs2TM0adJEY3mTJk3w8OFDGRLlzd7eHqtWrcKMGTNgbW2NHTt2YPjw4QgPDxd2D1ZSUhI2bNiQ4wSGgFiHBEX4G1ZQHh4eGD16NH755Rf4+/urrfvjjz8wadIktGnTRjU9g2iaN28u7GR0WXbu3Kn29cOHD1Xj2XR1dXH37l2kp6fDxsaGRUUO2a878+LFCwQGBqJdu3aws7ODrq4urly5gkOHDmHw4MEyJ33t1atXqFSpEj7++GOUL18ehoaGckcigdWqVQtnzpzRGMh3+vRpIU8PnzRpEgYPHowtW7agT58++OWXX+Do6Ijk5GQMGTJE7ng5mjFjBo4ePYpWrVqhSpUqcsfJ05s/8/PnzyMjIwMtW7YEAMybNw/t27cXajbdihUrYuvWrYiPj9dY5+TkhH379gl3zarstOGq6tmvlL1hwwYcO3YMCxcuVE0AGB8fDzc3N9SvX1+egBKpjBw5Ulq1apXG8oCAAGnAgAEyJNL06tUrKSgoSPr6668lS0tLyd7eXpo6dar0119/SQ0bNpRu3rwpd8T3nq2trXT37l25Y+TLrl27pEaNGknz58+Xjhw5Ih05ckSaN2+e1LhxY2nz5s1yx8tRcnKy9OzZM0mSJOnJkyfSunXrpN9//13mVLmzt7eX/vzzT7ljFNj+/fulhg0bSmvWrFEtGzdunNSwYUPp8OHDMiZ7/1y5ckWaMGGC9L///U/6/PPPpUmTJkmXLl2SO1aOnJycpIiICI3l//77r+To6ChDIkniGJVsbG1tsWfPHtSsWVNt+Z07d/D555/j0qVLMiXLWVRUFHbs2IF9+/bh6dOnUCgU6NWrF4YNG6bxHKjoaNMYFeD1J6Q1a9bg6dOnAIDKlStjyJAhGDRokMzJ3g8ODg4IDg4W+vTTnHTr1g29e/fWuOZTQEAAgoODsWfPHpmSvV+yX8y0WbNmqhnPb9y4IeTFTB0cHLBy5UrY29urLT979iwmTJiAkJCQEs/EopJNp06dMHjwYHzzzTdqy9euXYvg4GAcOHBApmR5y8zMxLFjx7Br1y4cO3YMSqUSLVu2FHJOAW3j4eGhsSy3s35EnJl2//79cHZ2Rrly5YS9nou2jRN7k6enJ6pUqYIJEybIHaVAmjRpgv3792sU7piYGHTt2lW4D2baqk+fPqhfv36OFzONjIwUbm4gd3d3XL16FTNmzICNjQ0kSUJ4eDhmz56N1q1byzJg+YMfo5LdkCFDMHv2bFy8eBGNGjVSNd/Dhw9rDOISSalSpdC+fXu0b98ecXFx2LNnj8bgKCqce/fuaSyzs7PD8+fPc7zuj2h8fHwQGBiIcuXKoWLFinLHyVH2cWLaqGLFili3bh1OnDiB2rVra0z4JmKBBV5fHiQ0NFSjqFy8eFH4sTbaRNsuZjp9+nR89913+Pbbb1W/l5Ik4bPPPoObm5ssmVhUsunduzc++ugjbN68GYcOHYJCoUCDBg2wfPly4SdFylKxYkUMGjSIu/WLiGifdgqqVq1auHHjhtCnrI8bN07uCO/k77//Vp1Z9fjxY5nT5F+fPn0we/Zs3L17V5X/ypUr2LhxI0aPHi1zuveHtl3M1NjYGGvXrsWtW7dU1/oxNzfH9u3b0aZNGx76EUHWdUYyMzNV8w2IfJ0RorzMmDEDO3bsgJWVFWrVqqUxh4OIn/a17Vo/2mz16tUICAhQXYS1atWqGD58uMa4FSo8bbyYKSDWjOcsKtmsX78e8+fPV019LWnBdUaI8tK/f/8814v2mtbGa/08ePAgz/WiXusnu+fPn0NPT0/YmVO1WU4XM3316hWsrKyEvJipiDOes6hko43XGSHKr/T0dJw5cwaSJMHJyUlj74oItPF3UMSLuOVXSkoK/vjjD9y6dQuDBw/GjRs3UK9ePeHePLWdUqnEyZMn1a5g/sknn0BHR0fuaADEn/GcRSUbGxsbHDhwAObm5hg8eDD69u2LDh064NSpU/Dz88P+/fvljkiUL4GBgaoB1V9//TW6dOkCV1dX1XWWTExMsHHjRuFOY9fG38E3r1KemZmJ27dvY8OGDZg2bRpcXFxkSpa3p0+fonfv3nj27BnS0tJw8OBB+Pr64urVq9i4caPqMAW9/z755BPVjOcdO3ZUm/G8YcOG2LNnj6xFhYNpszEyMlJdBdXc3ByRkZHo0KED6tati/v378ucjih/1q5di6VLl6Jbt24wNDTETz/9hJ07dyIzMxNbtmyBUqnE3LlzsXDhQuGusK2Nv4OOjo4ay5ycnFCjRg0sWbJE2KLi5+eHevXqYf/+/Woz006YMAELFizAL7/8InNC7ZXfq64rFAps3LixmNO8negznoux30kQWdcZSU5OhrW1Nf78808olUqhrzNC9KZt27bB19cXPj4+8PDwwIoVK/D3339j0qRJsLe3R7NmzeDh4YHw8HC5o2p4n34Ha9WqJfSVws+dO4fx48ervSmVK1cO7u7uuHDhgozJtF+1atXy/O/hw4c4f/68MIcFT58+jZEjR+LatWsYO3YsnJyc4ObmhmPHjgkxdQD3qGSjjdcZIXrTgwcP1C5E2LhxY+jq6qrNnFqzZk28ePFChnR508bfwZwG0yYkJGDlypWoXr26DInyJzExEUZGRjmuy8jIKOE075fczuRJSEiAn58fYmJi0KpVK/j6+pZwspwZGxvj66+/xtdff6024/nevXuhUCiwYcMGWWc85xiVN6SkpCApKQkVK1bE06dPsX//fpiamqJz585yRyPKFysrK5w+fVptBto3p/1/+vQpnJ2dhflEl92bv4P79u2DmZmZsL+DOQ2mlSQJRkZGWLBgAdq3by9TsrwNHz4ctWvXhoeHh+r1YWpqiilTpiAxMZEzWxexM2fOwMvLC69evYKbmxu++uoruSPlSaQZz1lUiN4z2l5UsktKSoJSqRT6tNk3B9MCgJ6eHurXry/04aqoqCj069cPZmZmuHnzJpo3b45bt27h1atX2Lx5M6ysrOSO+F5ISkqCn58ftm3bhlatWmHOnDkwMzOTO1aBZJ/xfN++fSX++CwqRO8ZKysrDBkyRG3swcqVK/HNN9+oRvInJSVh/fr1whSV69evY+/evQBeT6lfr149+Pj4YOvWrQCA9u3bw8/PT+g3/pz8888/aNiwodwxcvX48WP8+uuvuHbtGpRKJerVq4e+ffsKfchKm5w9exaenp54+fIl3N3d8fXXX8sdSSuxqBC9Zwpylsmff/5ZjEny5/jx4xgzZgyqV68OQ0ND3Lp1C1999RX27t2LwYMHQ6lUYuPGjfj888/h6ekpd1yVy5cv4/fff4euri66du0KS0tL1brU1FT8+OOP2LRpE65evSpjyty9ePEC5cuXz3FdcHAwevXqVbKB3iNJSUmYP38+goKC4OTkBF9fX63biyISFhUiktVXX32FNm3aYOzYsQCAPXv2YNq0aZgzZ47qzfLgwYOYP3++MFdPPnDgAKZMmQJ9fX3o6uoiJSUF69evh4ODAy5evAg3NzfExMSgZ8+e+OGHH+SOm6Pu3btj06ZNqtlSASA2Nhaenp44ffq0MHvbtFH79u3x4MED1KhRA59//nme22a97il3LCpEJCs7Ozvs3LkTtWvXBvB6EF+jRo2we/du1K9fH8DrN9D27dsLs3eiR48eqFGjBvz9/aGjowM/Pz9ERERg8ODB+O6772BqaorZs2fDyclJ7qi56tOnD9LS0rBx40YYGxtj+/btmDdvHipWrAhvb2+hs4suv3s1FQqFMOVbZCwqRCQrKysrnDp1CpUrV1YtE33wr52dHQIDA9GgQQMAQHx8PFq2bIkyZcqgXbt28PLyyvXUX1EkJSVhxIgRSE5ORtmyZXH+/HkMGjQIY8eOFfLyCvTh4jwqRCQ7ESaVKojk5GRUqVJF9XXZsmWhq6uLLl26wMvLS8Zk+WdkZITVq1dj5MiROHfuHAICAtCsWTO5Y70XtG1mWtGxqBCR7C5evKg6Iwl4PQ/J5cuX8ejRIwCvr0ArmjfLlUKhQO/evWVKkz9Lly7VWNaoUSNcuHAB8+bNQ5s2bVTLOXai8KpVq5bn+rCwMMTExKBs2bIllEi78dAPEckqa8K0t/0pUigUwhz6yc9cNSLi2Al5Zc1Mu2PHDtXMtKampnLHEh73qBCRrLT1DfFte4GyODg4lHS0XOV2OnpcXBzCwsJQqVIlNG3atIRTfRiyz0w7e/Zs4WemFQn3qBARFZA27gXKsnz5cmzcuBHbtm1DzZo1cfHiRQwbNgyJiYkAgBYtWmDFihUwMDCQOen74X2YmVZu3KNCRFRA2roXKCgoCCtWrMDAgQNVh608PDxgYGCArVu3okyZMhg3bhxWrVqF8ePHy5xW+2WfmdbHx4cz0xYS96gQEX0gvvzyS/To0QP9+vUDAFy5cgVfffUVJk6ciBEjRgAA/vrrL/j5+eHgwYNyRtVqnJm2aHGPChHRByIqKgqtWrVSfX3u3DkoFAq1s30sLCzw4MEDOeK9N7p166aamdbe3h7BwcG5bsuzq96ORYWIhHHhwgXY29vLHeO9lv206rCwMJQrV07tSsmJiYlqF7SkgpMkCWZmZsjIyMDOnTtz3U6hULCo5AOLChEJo3///ihfvjzatm2L9u3bo1WrVpwltQjVr18fFy5cQM2aNREfH4+QkBC0b99ebZvff/9ddekCKhwRLvb5PmFRISJhnD17FidPnsTx48fh6emJlJQUtGzZEu3bt0fbtm1RsWJFuSNqtX79+mHmzJmIiIjAxYsXkZaWhm+//RbA6+sp7du3D2vXroWvr6/MSYn+w8G0RCQkSZJw6dIlBAUFYe/evVAoFMJclPBN9+/fx6VLl5CWlqaxrnv37iUfKA87duzAr7/+Ch0dHQwdOhSffvopAMDHxwfbtm3DsGHD8N1338mckug/LCpEJJS4uDicP38e586dQ0hICG7fvo3q1aujZcuW8PHxkTuehm3btsHb2xuZmZka60ScRyU3sbGx0NfXR4UKFeSOQqSGRYWIhNGtWzdERkbCxMQETZs2RYsWLeDk5ITq1avLHS1XLi4uaNeuHSZOnAhjY2O54xC9d3TkDkBElKVUqVJQKBSoXLkyqlWrhurVq6Nq1apyx8rTkydPMGjQIJYUomLCwbREJIzdu3cjLi4OZ8+exenTp/H9998jLi4Otra2cHJywsiRI+WOqKFBgwaIjIwUeq8PkTbjoR8iEtatW7fw66+/IigoCOnp6UKO9zh06BD8/PwwaNAg1KlTB/r6+mrrRbooIZE2YlEhImG8ePFCtTflzJkzePToEWxsbNCuXTu0a9dObWIyUeSVSZsG0xKJikWFiITRoEEDGBgYoEWLFnBxcUHbtm1RpUoVuWPl6f79+3mur1atWgklIXo/sagQkTD++usvtGzZUutmo42JiUFcXBwqVqyI6tWrq01TT0TvhkWFiIRy/fp1bNy4Ebdv38ZPP/2EI0eOwMLCAs2bN5c7mhpJkrBmzRps3rwZjx8/Vi2vUqUKXF1dMWzYMBYWoiLAs36ISBhXr15Fnz59YGtri6tXryItLQ0RERGYO3culi1bpnaVX7mNHTsWJ06cwBdffAEnJydUqFABL1++REhICFasWIFLly5h2bJlcsck0nrco0JEwvj2229ha2uLiRMnws7ODnv37kWNGjUwd+5chIeHY8eOHXJHBAAEBwfDz88PAQEBaNCggcb6mzdvon///nBzc0PPnj1lSEj0/uCEb0QkjH/++SfHa+P069cPUVFRJR8oF9u3b8fYsWNzLCkAUK9ePYwbN06YYkWkzVhUiEgYenp6SEhI0Fj+8OFDGBoaypAoZ1FRUXB2ds5zG2dnZ9y8ebOEEhG9v1hUiEgYHTp0wI8//oj4+HjVsqioKPj6+qJt27byBXtDRkYGdHXfPsSPg2mJ3h2LChEJw93dHYmJiWjRogWSk5PRs2dPdO3aFaVKlYKbm5vc8VQsLCxw6tSpPLc5deoU6tWrV0KJiN5fPOuHiIRhbGyMrVu34uzZs7h27RqUSiXq168PZ2dn6OiI87mqR48eWLp0KVq1aoWaNWtqrI+KisLSpUvh7u4uQzqi9wvP+iEiKiClUomRI0fiwoUL6NmzJ+zt7VG+fHkkJCQgNDQU27dvR5s2bbB48WK5oxJpPRYVIpLVgAED8rWdQqHAxo0bizlN/mVkZOCXX37B5s2b8eLFC9XyKlWqYODAgRg8eDDHqBAVARYVIpKVh4dHnuvDwsIQExODsmXL4vz58yWUKv8kScLt27fx8uVLVKhQAebm5kIdpiLSdiwqRCSkhIQE+Pn5YceOHWjVqhV8fX1hamoqdywiKmEsKkQknDNnzsDLywuvXr2Cm5sbvvrqK7kjEZFMeNYPEQkjKSkJfn5+2LZtG1q1aoU5c+bAzMxM7lhEJCPuUSEiIZw9exaenp54+fIl3N3d8fXXX8sdiYgEwD0qRCSrpKQkzJ8/H0FBQXBycoKvry/3ohCRCveoEJGs2rdvjwcPHqBGjRr4/PPP89x27NixJZSKiETBokJEsnJxccnXdgqFAkePHi3mNEQkGhYVIiIiEhZnJSIiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUieq/xfAEi7caiQkSyO3fuHD799FPY2Nhg6NChRXa/27dvx7x584rs/oio5HFmWiKS3fz586FUKrFq1SpUqlSpyO53xYoVcHR0LLL7I6KSx6JCRLJ78eIFHBwc0LJlS7mjEJFgeOiH6D3n4uKCpUuX4ocffkDz5s1hZ2eHyZMnIzExEatWrULr1q3RtGlTjBs3Ds+fPwcApKSkYOHChejUqRNsbGxgb2+PQYMGISIiQnW/06ZNw8CBAxEcHKw6bPPFF1/gxIkTqm2WLFkCS0tLjUyWlpZYsmQJ7t27B0tLS9y/fx+7d++GpaUlQkJCAABHjhxB3759YWdnBxsbG3Tu3BlbtmxRu5/Hjx/D3d0dTk5OsLOzg6urKy5evKh63vfv38euXbtgaWmJe/fuvTUPAFWm9evXo3PnzmjSpAmCg4MBADdu3MCIESNgb28Pe3t7jBkzBjExMar7CQkJgaWlJbZu3Yp27drB3t4ep0+fLtTPjYhe4x4Vog/AunXr0KpVKyxevBhXr17FwoUL8c8//6Bq1aqYPXs27t27B19fX1SuXBkzZ86Em5sbwsLCMGnSJJibm+POnTv46aefMHnyZPz2229QKBQAgKtXr+Lx48cYP348jI2N8dNPP2HcuHE4ceIEypUr99ZcVatWRVBQEMaOHQtra2uMHj0aFhYWOHbsGMaMGYMBAwZg3LhxSElJQWBgIHx8fGBjY4MmTZogMTERffr0QWZmJqZOnQoTExOsW7cOgwcPxq5du7B06VIMHz5cdb9Vq1Yt0PdsyZIl8PT0hLGxMZo0aYLbt2/jm2++QZ06dTBv3jxkZGRgxYoV6NOnD/bs2aN2yGrp0qXw8vJCSkoK7OzsCvbDIiI1LCpEHwBjY2MsXrwYurq6aNmyJXbt2oXY2Fhs374dZcqUAQCcPHkSFy5cQFpaGhITE+Hl5YX//e9/AABHR0ckJCTAz88PT58+RZUqVQAAr169ws6dO2Fubg4AMDIygqurq2pw7Nvo6+vD1tYW+vr6qFixImxtbQEAkZGR6NGjBzw9PVXb2tnZoXnz5ggJCUGTJk2wa9cu1R6TBg0aAADs7e3RvXt3hIaG4quvvtK434L47LPP0KtXL9XXkydPhqGhITZs2ABjY2MAgJOTEzp06IA1a9bA3d1dtW3fvn3RuXPnAj8mEWliUSH6ADRu3Bi6uv/9uleuXBlGRkaqkgIA5cuXx40bN6Cvr4+1a9cCAGJjY3H79m1ER0fjr7/+AgCkpaWpblOxYkVVSQEAU1NTAEBycvI75c068ycxMRG3b9/G3bt3ceXKFbXHDw8PR/Xq1VUlBQAMDQ1x8ODBd3rsLNnvF3h9ZpKjoyMMDAyQkZEB4HUBbNasGc6cOZPnbYmo8FhUiD4AWXsAsjMyMsp1+5MnT+KHH37ArVu38NFHH8HKykq1ffZ5SQwNDdVul3VISKlUvlPeuLg4zJw5E0eOHIFCoUDNmjXRrFkztcd/8eJFkZ4h9KY3vz8vXrzAgQMHcODAAY1tK1asmOdtiajwWFSISM3du3cxZswYdOjQAStXrkSNGjWgUCiwZcsWnDx5skD3lVVcMjMzUapUKQCv95K8zZQpU3Dr1i1s2LABdnZ20NfXR3JyMrZt26bapkyZMrh3757GbS9cuIBy5cqhbt26RZYn6/FatmyJQYMGaazLvreKiIoWz/ohIjVXr15Famoqhg8fDnNzc9Wbe1ZJKchMr1l7ch49eqRaFh4e/tbbhYeHo1OnTmjevDn09fUBQHU2UdbemmbNmiEmJgY3b95U3S41NRXjxo3Djh07AAA6Oup/4gqbB3g9TicyMhINGjRAo0aN0KhRI9jY2GDDhg04fPhwvu6DiAqORYWI1DRs2BC6urpYsGABTp8+jb/++gvjxo3DsWPHAABJSUn5vq82bdoAAGbMmIEzZ84gODgYs2bNwkcffZTn7Ro3box9+/Zhz549CAkJwYoVKzBt2jQoFArV+JeePXuiRo0aGDVqFPbu3YuTJ09i7NixSE9PR9++fQEAZcuWxbVr13D+/HmkpKQUOg8AjB49Gnfv3sWIESNw5MgRnDx5EuPGjcNvv/0GKyurfH9PiKhgWFSISE3NmjWxcOFCxMbGYtSoUZgxYwYAYNOmTVAoFAgLC8v3fdWuXRvz5s3DvXv3MHz4cAQEBGD27NlvPVXYz88PTZo0wezZszFmzBgcPXoU3t7e+OSTT1SPb2xsjM2bN6u2mzBhApRKJQICAlCjRg0AwODBg/H06VMMGTIEV69eLXQeALCyssKWLVugUCjg5uaG8ePH48mTJ1i2bBk6deqU7+8JERWMQuIVu4iIiEhQ3KNCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsP4PeXkyN+pWrHAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAIVCAYAAAD/HNTLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjPklEQVR4nO3deVxN+eMG8OemUk32pRpki5JQUcRkyTLmixnLzBjE2HfGWpqyFI0QZsY2dkIjZB8zthk7qRjLyFBEtiwh7cs9vz/8utN1K5XqfC7P+/Wa1+icc+99bt26zz3ncz5HIUmSBCIiIiIB6cgdgIiIiCg3LCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIihHnU6SSwtcava9YVOiD1b9/f1haWqr+s7Kygp2dHXr27ImAgABkZGSobe/i4oJp06bl+/6PHj0Kd3f3t243bdo0uLi4FPpxCuvevXuwtLTEzp07NdalpaWhbdu26NGjB5KTk4stQ//+/dG/f/9iu3/R/Pbbb2jXrh1sbGwwY8aMIrvf5cuXY+3atUV2f0Qi0ZU7AJGcrK2tMXPmTABAZmYmXr58iRMnTmDu3LkICwvDjz/+CB2d131+6dKlMDY2zvd9b9iwIV/bjR49GgMGDChw9ndVtWpVBAUFwdzcXGPd9u3bkZGRgRUrVsDQ0LDEs72vfHx8UKtWLfj5+cHExKTI7venn37C2LFji+z+iETCokIfNGNjY9ja2qotc3FxQZ06deDr64v9+/fj888/B/C61BSHnIpCSdDX19d47lnat2+Pzz77DBUrVizZUO+5Fy9eoFWrVmjevLncUYi0Bg/9EOXA1dUVJiYm2Lp1q2rZm4dkskpM48aN0aJFC0yZMgWxsbEAXh/SOH/+PM6fPw9LS0uEhIQgJCQElpaW2Lp1K9q1awd7e3ucPn1a49APAKSnp2POnDlwcHBAs2bN4O7ujri4ONX6nA6ZZN1/SEiIatmtW7cwduxYODo6wsHBASNGjEBUVBSAnA/9REdHY/z48ejVqxdcXFzQv39/hIeHq9Zn3eb333/H+PHjYWdnB0dHR3h5eSEpKSnP7+mDBw8wduxYNG3aFK1atcL69etz3G779u3o0qULbGxs0LZtWyxZsgSZmZl53relpSV+/fVXTJs2DU2bNoWjoyPmzJmDlJQUzJs3Dy1atEDz5s3h6emJ1NRU1e3i4uLg7e2tOhzj6OiIMWPG4N69e2rfa09PT6xatQpt27ZFo0aN8M033+Dy5cuqbXL6GWb//mb9bABg2bJlsLS0VD3G9u3b0bNnT9ja2qJx48b44osv8Pvvv6vdV14/x6z7Xbp0qerfb8sDINfXIwCEhYXB1dUVTZo0gaOjo8brb+fOnbC2tsb27dvRqlUrODo6IjIyMs+fEVFhsagQ5UBHRwdOTk64fPmyxlgVAAgPD4ebmxs6deqE1atXw8PDA+fOncPkyZMBADNnzoS1tTWsra0RFBSEhg0bqm67dOlSuLu7Y8aMGbCzs8vx8X///Xf8888/8PPzg7u7O44dO4Zhw4a99Q07u9jYWPTu3RvR0dGYNWsWFixYgKdPn+Lbb7/FixcvNLaPjIxEz549ce/ePXh5ecHf3x8KhQLffvstzp8/r7btzJkzUa1aNSxfvhxDhgzBjh07sGLFilyzJCUlwdXVFTdu3MDs2bMxffp0bN++HRcvXlTbbuXKlZg+fTqcnJzwyy+/oF+/fli9ejWmT5/+1ue7YMEC6OvrY+nSpejevTs2bdqE7t274+HDh/D390f//v2xY8cObNq0CcDrwacjRozA6dOnMWXKFKxduxZjx47F2bNnVYcDsxw8eBBHjx6Fl5cXFi1ahKdPn2LcuHH5/nk0bNgQQUFBAIAvv/wSQUFBqFq1KrZs2YIZM2agQ4cOWLlyJfz9/aGvr48pU6bg0aNHAN7+c3zzfgvqzddjaGgoBg4cCAMDA/z444/4/vvvcf78eQwYMAApKSmq22VmZmLdunXw9fWFh4cH6tatW+DHJsoPHvohykXlypWRnp6OFy9eoHLlymrrwsPDYWBggOHDh0NfXx8AUL58eVy5cgWSJMHCwkI1nuXNwyt9+/ZF586d83zsChUqYO3atTAyMlJ9PWbMGJw4cQLt2rXLV/4NGzYgLS0N69evR5UqVQAAVlZW6NOnDy5duqTxxrJ06VLo6+sjICBAlb1t27bo2rUr5s+fjx07dqi2bdOmjWqgsJOTE06fPo1jx46pitqbdu3ahQcPHmD//v2wsLAAADRp0gQdO3ZUbfPq1SssX74cvXv3hpeXFwDgk08+Qfny5eHl5YVBgwahXr16uT5fCwsL+Pj4AAAcHR2xfft2pKenw9/fH7q6uvjkk09w8OBBXLhwAQDw+PFjGBoawt3dHc2aNQMANG/eHHfv3tV4w8/IyMDatWtV35fExES4u7sjIiICNjY2uWbKkv0Qo6mpqerfMTExGDJkCEaPHq3atlq1aujZsyfCw8PRpUuXt/4c27Rpo3G/BfHm63HhwoWoXbs2Vq5ciVKlSgF4/bPq0qULgoOD0a9fP9W2I0eORNu2bQv8mEQFwaJClIus0z0VCoXGOgcHByxevBhdu3bFp59+ijZt2uCTTz5RvWnkpUGDBm/dpk2bNqqSArw+7KSrq4vQ0NB8F5Xw8HDY2tqq3tyA129mf/31FwCoHd4AgPPnz6Ndu3ZqA4Z1dXXRpUsXLFu2DImJiarlb74hmpqa4v79+7lmCQsLg7m5uaqkAICZmZna/Vy8eBEpKSlwcXFR24uVdQjj9OnTeRaV7HunSpUqhQoVKqBhw4bQ1f3vz1z58uXx6tUrAICJiQkCAgIgSRLu3buHO3fu4NatW7hw4QLS0tLU7jt78cy6LYB3PiMq61BifHw8bt26hTt37qgO3WVleNvP8V1lfz0mJyfj0qVLGDJkCCRJUv0catSogbp16+L06dNqRSU/r2Wid8WiQpSL2NhYGBgYoHz58hrr7OzssGrVKmzYsAHr16/HqlWrULlyZYwcOfKtp9tmLyC5yf6mBLw+FFWhQgXEx8fnO/+LFy9QvXr1fG//8uVLjT1HwOs9S5IkISEhQbXszTOBdHR08pzH4+XLl6hQoYLG8ipVquDp06eqvAAwfPjwHO/j8ePHeebP6Yyst32v9+7di0WLFuHhw4coX748GjRoAAMDA43tcnq+AKBUKvO8/7e5e/cuZsyYgbNnz0JPTw916tSBlZUVgP+KckF/jgWV/XsUHx8PpVKJ1atXY/Xq1Rrbli5dOtfbEhUXFhWiHGRkZCAkJAT29vaq3d9vcnZ2hrOzM5KTk3Hu3DkEBARgzpw5aNKkCRo3bvxOj//mGJLMzEw8f/4clSpVUluW3ZuDWcuUKaM2ADLL2bNnUb16dY09ReXKlVOVhuyePHkC4PXhp7eVhdxUqFABd+7c0Vie/XmWLVsWAODv749atWppbJtTiXoXYWFhcHd3R//+/TFkyBDVXpL58+erDSDOD4VC8dafx5uUSiWGDx8OPT097NixAw0aNICuri4iIyOxZ88e1XZv+znWqFGjSPIAwEcffQSFQoGBAweiS5cuGut5qjrJgYNpiXIQFBSEJ0+eoE+fPjmunzdvHnr16gVJkmBoaIh27dqpxmw8ePAAwH+fugvj9OnTaoc/Dh48iIyMDNVprcbGxqrBllnefHNt1qwZLl26pPYm9+zZMwwdOhTHjx/XeEwHBwf89ddfantOMjMz8dtvv6FRo0aqsTiF0aJFC9y7dw9XrlxRLYuLi8Pff/+t+rpJkybQ09NDbGwsGjVqpPpPV1cXixYt0jhU9a4uXrwIpVKJcePGqUpKZmYmzpw5A6Bge0s++ugjPH/+XO2MoreVnefPn+P27dv48ssvVc8TAE6cOKH2+Pn5Ob75WitMHuD168ra2hq3bt1S+xnUq1cPS5YsUTujjKikcI8KfdASEhJUb5ZKpRLPnz/HqVOnEBQUhM8//xydOnXK8XYtWrTA+vXrMW3aNHz++edIT0/HmjVrUL58ebRo0QLA6z0EFy9exNmzZws8B8uTJ08wbtw49O/fH9HR0Vi0aBFatWoFJycnAEC7du3w559/Yu7cuXBxcUFYWBh2796tdh8DBw7E7t27MXToUIwYMQJ6enpYsWIFTE1N0a1bN9VYjSxjx47FiRMnMGDAANUn/c2bNyMmJgZr1qwpUP43ffHFFwgICMDYsWMxceJEGBsbY8WKFWploEKFChg6dCh++uknJCQkoHnz5oiNjcVPP/0EhUKhOiRSVLL2evn4+KBXr154+fIltmzZguvXrwN4vQcivxP8tWvXDps2bYKnpye+/PJL3LhxA+vXr891bxwAVKpUCdWqVcOWLVtgamqKsmXL4uTJkwgICADw3/iXt/0cgdevtQsXLiA0NBTNmjUrVJ4skyZNwvDhwzF58mR8/vnnqrN7Ll26pDbol6ikcI8KfdCuXbuG3r17o3fv3ujbty/c3Nxw/fp1zJo1C/Pnz8/1dm3atIG/vz9u3ryJsWPHYtKkSTA0NERAQIBqTEu/fv2gp6eHYcOGqT4l51ffvn1RqVIljBkzBj/99BO6deuGpUuXqg7X9OrVC8OGDcP+/fsxfPhwXLx4ET///LPafZiZmSEwMBBVq1bFtGnT4OHhATMzM2zcuBHlypXTeMx69eohMDAQlSpVgoeHB6ZOnQpJkhAQEICWLVsWKP+b9PX1sXHjRjg4OMDX1xfff/89nJycNAYGT5gwAdOmTcPhw4cxbNgwLFiwAE2bNsXmzZtRpkyZd8rwpubNm2PGjBm4ePEihg0bBj8/P3z88cdYunQpgPztgcjSqlUruLu7Izw8HMOGDcOBAwewdOnStxaD5cuXw8TEBNOmTcOECRNw6dIlrFixAnXq1EFYWBiA/P0cR44ciatXr2LYsGF4+PBhofMAr8+0Wrt2LR49eoTx48fDzc0NpUqVwvr16wt1VhHRu1JIvJIVERERCYp7VIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwtL6Cd8uXrwISZKgp6cndxQiIiLKp/T0dCgUCrULiuZE6/eoSJKU58XQ3uV+09LSiuW+iwszlxxtzM3MJYOZSwYzl4zizJzf92+t36OStSelUaNGRXq/SUlJiIiIgIWFhdZcIZSZS4425mbmksHMJYOZS0ZxZs5+7a+8aP0eFSIiInp/sagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRSUXCoUChoaGUCgUckchIiL6YOnKHaCkKZUSdHTeXj4MDQ1hbW1dLPdNRERE+fPBFRUdHQX8t4TjXuyrIr3f6iZlMKVf0yK9TyIiog/dB1dUAOBe7CtE3X8pdwwiIiJ6C45RISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhJWgYtKbGwsLC0tNf7buXMnACAiIgKurq6wtbWFi4sLAgIC1G6vVCrx888/w9nZGba2thg2bBhiYmKK5tkQERHRe6XApydfv34dpUuXxpEjR9RmbS1TpgyeP3+OQYMGwcXFBd7e3vj777/h7e2Njz76CL169QIALF++HIGBgfDz84OpqSkWLFiAoUOHYt++fdDX1y+6Z0ZERERar8BF5caNG6hVqxaqVq2qsW7jxo3Q09ODj48PdHV1UbduXdy5cwerVq1Cr169kJaWhnXr1mHKlClo27YtAGDx4sVwdnbGoUOH0LVr13d+QkRERPT+KPChn3///Rd169bNcV1YWBgcHR2hq/tf/2nRogWio6Px9OlTXL9+HYmJiXByclKtL1u2LKytrREaGlqI+ERERPQ+K9QelQoVKqBfv364ffs2atasiVGjRqF169Z49OgR6tevr7Z91p6Xhw8f4tGjRwAAMzMzjW2y1hWGJElISkp663ZZFxosTsnJyZAkqVgfI6/Hzv5/baCNmQHtzM3MJYOZSwYzl4zizCxJUr4u/FugopKRkYFbt27BwsIC06ZNg7GxMX777TcMHz4c69evR0pKisY4k9KlSwMAUlNTVU80p21eviz8lPbp6emIiIh463aFudBgQd2+fVv2F2F0dLSsj18Y2pgZ0M7czFwymLlkMHPJKK7M+RmbWqCioquri5CQEJQqVQoGBgYAABsbG9y8eRNr166FgYEB0tLS1G6TmpoKADAyMlLdJi0tTfXvrG3eZU+Hnp4eLCws3rpdfprbu6pdu7ase1Sio6NRq1atYt9zVFS0MTOgnbmZuWQwc8lg5pJRnJkjIyPztV2BD/189NFHGsvq1auHU6dOwdTUFI8fP1Zbl/W1iYkJMjIyVMvMzc3VtrG0tCxoFBWFQgEjI6NC374oifDiMzQ0FOb7kV/amBnQztzMXDKYuWQwc8kojsz53XlQoMG0N2/ehL29PUJCQtSWX716FRYWFnBwcEB4eDgyMzNV686dO4fatWujUqVKsLKygrGxsdrt4+Pjce3aNTg4OBQkChEREX0AClRU6tatizp16sDHxwdhYWGIiorC3Llz8ffff2PUqFHo1asXEhIS4OnpicjISOzcuRMbNmzAiBEjALw+FuXq6gp/f38cPXoU169fx8SJE2FqaopOnToVyxMkIiIi7VWgQz86Ojr45ZdfsHDhQkyYMAHx8fGwtrbG+vXrVWf7rFmzBr6+vujRoweqVKkCNzc39OjRQ3Uf48ePR0ZGBry8vJCSkgIHBwesXbsWenp6RfvMiIiISOsVeIxK5cqVMXfu3FzXN27cGEFBQbmuL1WqFKZOnYqpU6cW9KGJiIjoA8OLEhIREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhFbqo3L59G3Z2dti5c6dqWUREBFxdXWFrawsXFxcEBASo3UapVOLnn3+Gs7MzbG1tMWzYMMTExBQ+PREREb3XClVU0tPTMWXKFCQlJamWPX/+HIMGDYK5uTmCg4MxZswY+Pv7Izg4WLXN8uXLERgYiNmzZ2Pr1q1QKpUYOnQo0tLS3v2ZEBER0XunUEVlyZIlMDY2Vlu2bds26OnpwcfHB3Xr1kWvXr0wcOBArFq1CgCQlpaGdevWYfz48Wjbti2srKywePFiPHr0CIcOHXr3Z0JERETvnQIXldDQUAQFBcHPz09teVhYGBwdHaGrq6ta1qJFC0RHR+Pp06e4fv06EhMT4eTkpFpftmxZWFtbIzQ09B2eAhEREb2vdN++yX/i4+Ph5uYGLy8vmJmZqa179OgR6tevr7asatWqAICHDx/i0aNHAKBxu6pVq6rWFZYkSWqHoXKjUChgaGj4To/1NsnJyZAkqVgfI6/Hzv5/baCNmQHtzM3MJYOZSwYzl4zizCxJEhQKxVu3K1BRmTVrFuzs7NCtWzeNdSkpKdDX11dbVrp0aQBAamqq6knmtM3Lly8LEkNDeno6IiIi3rqdoaEhrK2t3+mx3ub27duyvwijo6NlffzC0MbMgHbmZuaSwcwlg5lLRnFlfrMT5CTfRWX37t0ICwvDvn37clxvYGCgMSg2NTUVAGBkZAQDAwMAr8eqZP07a5t33cuhp6cHCwuLt26Xn+b2rmrXri3rHpXo6GjUqlWr2PccFRVtzAxoZ25mLhnMXDKYuWQUZ+bIyMh8bZfvohIcHIxnz56hbdu2astnzpyJAwcOwNTUFI8fP1Zbl/W1iYkJMjIyVMvMzc3VtrG0tMxvjBwpFAoYGRm9030UFRFefIaGhsJ8P/JLGzMD2pmbmUsGM5cMZi4ZxZE5vzsP8l1U/P39kZKSorasU6dOGD9+PD7//HPs2bMHW7duRWZmJkqVKgUAOHfuHGrXro1KlSqhTJkyMDY2RkhIiKqoxMfH49q1a3B1dc1vDCIiIvqA5LuomJiY5Li8UqVKMDExQa9evbBmzRp4enpi6NChuHz5MjZs2ABvb28Ar49Dubq6wt/fHxUrVkS1atWwYMECmJqaolOnTkXzbIiIiOi9UqDBtHmpVKkS1qxZA19fX/To0QNVqlSBm5sbevToodpm/PjxyMjIgJeXF1JSUuDg4IC1a9dCT0+vqGIQERHRe+Sdisq///6r9nXjxo0RFBSU6/alSpXC1KlTMXXq1Hd5WCIiIvpA8KKEREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgFLirPnj3D1KlT0aJFC9jZ2WH48OGIiopSrY+IiICrqytsbW3h4uKCgIAAtdsrlUr8/PPPcHZ2hq2tLYYNG4aYmJh3fyZERET03ilwURkzZgzu3LmDVatWYceOHTAwMMDAgQORnJyM58+fY9CgQTA3N0dwcDDGjBkDf39/BAcHq26/fPlyBAYGYvbs2di6dSuUSiWGDh2KtLS0In1iREREpP10C7Lxy5cvUa1aNYwYMQL169cHAIwePRpffPEFbt68ibNnz0JPTw8+Pj7Q1dVF3bp1VaWmV69eSEtLw7p16zBlyhS0bdsWALB48WI4Ozvj0KFD6Nq1a5E/QSIiItJeBdqjUq5cOSxcuFBVUuLi4rBhwwaYmprCwsICYWFhcHR0hK7uf/2nRYsWiI6OxtOnT3H9+nUkJibCyclJtb5s2bKwtrZGaGhoET0lIiIiel8UaI9KdtOnT8e2bdugr6+PFStWwMjICI8ePVKVmCxVq1YFADx8+BCPHj0CAJiZmWlsk7WuMCRJQlJS0lu3UygUMDQ0LPTj5EdycjIkSSrWx8jrsbP/XxtoY2ZAO3Mzc8lg5pLBzCWjODNLkgSFQvHW7QpdVL799lv07t0bW7ZswZgxYxAYGIiUlBTo6+urbVe6dGkAQGpqquqJ5rTNy5cvCxsF6enpiIiIeOt2hoaGsLa2LvTj5Mft27dlfxFGR0fL+viFoY2ZAe3Mzcwlg5lLBjOXjOLK/GYfyEmhi4qFhQUAwNfXF5cuXcLmzZthYGCgMSg2NTUVAGBkZAQDAwMAQFpamurfWdu8y54OPT09VZ685Ke5vavatWvLukclOjoatWrVKvY9R0VFGzMD2pmbmUsGM5cMZi4ZxZk5MjIyX9sVqKjExcXh7Nmz+PTTT1XjUHR0dGBhYYHHjx/D1NQUjx8/VrtN1tcmJibIyMhQLTM3N1fbxtLSsiBR1CgUChgZGRX69kVJhBefoaGhMN+P/NLGzIB25mbmksHMJYOZS0ZxZM7vzoMCDaZ9+vQpJk2ahLNnz6qWpaen49q1a6hbty4cHBwQHh6OzMxM1fpz586hdu3aqFSpEqysrGBsbIyQkBDV+vj4eFy7dg0ODg4FiUJEREQfgAIVlfr166N169aYM2cOQkNDcePGDUybNg3x8fEYOHAgevXqhYSEBHh6eiIyMhI7d+7Ehg0bMGLECACvj0W5urrC398fR48exfXr1zFx4kSYmpqiU6dOxfIEiYiISHsVeIzKokWLsHDhQkycOBGvXr1Cs2bNsGXLFnz88ccAgDVr1sDX1xc9evRAlSpV4Obmhh49eqhuP378eGRkZMDLywspKSlwcHDA2rVroaenV3TPioiIiN4LBS4qZcqUwaxZszBr1qwc1zdu3BhBQUG53r5UqVKYOnUqpk6dWtCHJiIiog8ML0pIREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhFXgovLixQvMmDEDrVu3hr29Pfr06YOwsDDV+rNnz6Jnz55o0qQJOnfujN9++03t9qmpqfD29oaTkxPs7OwwefJkxMXFvfszISIiovdOgYvKpEmTcPHiRSxatAjBwcFo0KABhgwZglu3biEqKgojRoyAs7Mzdu7cia+++gpubm44e/as6vazZs3CqVOnsGTJEmzcuBG3bt3C+PHji/RJERER0ftBtyAb37lzB6dPn0ZgYCCaNm0KAJg+fTpOnjyJffv24dmzZ7C0tMTEiRMBAHXr1sW1a9ewZs0aODk5ITY2Frt378Yvv/yCZs2aAQAWLVqEzp074+LFi7Czsyvip0dERETarEBFpUKFCli1ahUaNWqkWqZQKKBQKBAfH4+wsDB06NBB7TYtWrSAr68vJElCeHi4almW2rVrw8TEBKGhoYUuKpIkISkp6a3bKRQKGBoaFuox8is5ORmSJBXrY+T12Nn/rw20MTOgnbmZuWQwc8lg5pJRnJklSYJCoXjrdgUqKmXLlkWbNm3Ulh08eBB37tzB999/j127dsHU1FRtfdWqVZGcnIznz58jNjYWFSpUQOnSpTW2efToUUGiqElPT0dERMRbtzM0NIS1tXWhHyc/bt++LfuLMDo6WtbHLwxtzAxoZ25mLhnMXDKYuWQUV2Z9ff23blOgovKmCxcuwMPDA506dULbtm2RkpKi8aBZX6elpSE5OTnHUKVLl0Zqamqhc+jp6cHCwuKt2+Wnub2r2rVry7pHJTo6GrVq1Sr2PUdFRRszA9qZm5lLBjOXDGYuGcWZOTIyMl/bFbqoHDlyBFOmTIG9vT38/f0BvC4caWlpattlfW1oaAgDAwON9cDrM4He5RugUChgZGRU6NsXJRFefIaGhsJ8P/JLGzMD2pmbmUsGM5cMZi4ZxZE5vzsPCjWPyubNmzFu3Di0a9cOv/zyi+pQjpmZGR4/fqy27ePHj2FkZIQyZcrA1NQUL1680Cgrjx8/homJSWGiEBER0XuswEUlMDAQs2fPRr9+/bBo0SK1QznNmjXD+fPn1bY/d+4c7O3toaOjg6ZNm0KpVKoG1QKvx3TExsbCwcHhHZ4GERERvY8KVFRu376NH374AR07dsSIESPw9OlTPHnyBE+ePMGrV6/Qv39/XL58Gf7+/oiKisK6devwxx9/YOjQoQAAExMTdOnSBV5eXggJCcHly5cxadIkODo6wtbWtjieHxEREWmxAo1ROXjwINLT03H48GEcPnxYbV2PHj3g5+eH5cuXY8GCBdi4cSOqV6+OBQsWwMnJSbXd7Nmz8cMPP2Ds2LEAgNatW8PLy6sIngoRERG9bwpUVEaOHImRI0fmuU3r1q3RunXrXNcbGRlhzpw5mDNnTkEemoiIiD5AvCghERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFovKe0ShUMDQ0BAKhULuKEREREVCV+4A9HZKpQQdnbeXD0NDQ1hbWxfLfRMREcmBRUUL6Ogo4L8lHPdiXxXp/VY3KYMp/ZoW6X0SEREVJRYVLXEv9hWi7r+UOwYREVGJ4hgVIiIiEhaLChEREQmLRYWIiIiExaJCREREwnqnorJy5Ur0799fbVlERARcXV1ha2sLFxcXBAQEqK1XKpX4+eef4ezsDFtbWwwbNgwxMTHvEoOIiIjeU4UuKlu2bMGPP/6otuz58+cYNGgQzM3NERwcjDFjxsDf3x/BwcGqbZYvX47AwEDMnj0bW7duhVKpxNChQ5GWllboJ0FERETvpwKfnhwbG4uZM2ciJCQEtWrVUlu3bds26OnpwcfHB7q6uqhbty7u3LmDVatWoVevXkhLS8O6deswZcoUtG3bFgCwePFiODs749ChQ+jatWtRPCfSIpxNl4iI8lLgovLPP/9AT08Pe/fuxbJly3D//n3VurCwMDg6OkJX97+7bdGiBVauXImnT5/iwYMHSExMhJOTk2p92bJlYW1tjdDQ0EIXFUmSkJSU9Nbtst4Ui1NycjIkSSqy+9PWzPqlS6OUztt32BVmNt1MpRJpqalFmrmgkpOT1f6vDZi5ZDBzyWDmklGcmSVJyteH1AIXFRcXF7i4uOS47tGjR6hfv77asqpVqwIAHj58iEePHgEAzMzMNLbJWlcY6enpiIiIeOt2hXlTLKjbt28X6Q9UmzMX52y6RZ25sKKjo+WOUGDMXDKYuWQwc8korsz6+vpv3aZIZ6ZNSUnReNDSpUsDAFJTU1VvLDlt8/Jl4Wdd1dPTg4WFxVu3K4nDC7Vr1y7yvRPFrbgyF+dsukWduaCSk5MRHR2NWrVqFfser6LCzCWDmUsGM5eM4swcGRmZr+2KtKgYGBhoDIpNTU0FABgZGcHAwAAAkJaWpvp31jbv8g1QKBQwMjIq9O2Lkra8+LJj5sIzNDQU5rWXX8xcMpi5ZDBzySiOzPn9IF6k86iYmpri8ePHasuyvjYxMVEd8slpGxMTk6KMQkRERO+BIi0qDg4OCA8PR2ZmpmrZuXPnULt2bVSqVAlWVlYwNjZGSEiIan18fDyuXbsGBweHooxCRERE74EiLSq9evVCQkICPD09ERkZiZ07d2LDhg0YMWIEgNdjU1xdXeHv74+jR4/i+vXrmDhxIkxNTdGpU6eijEJERETvgSIdo1KpUiWsWbMGvr6+6NGjB6pUqQI3Nzf06NFDtc348eORkZEBLy8vpKSkwMHBAWvXroWenl5RRiEiIqL3wDsVFT8/P41ljRs3RlBQUK63KVWqFKZOnYqpU6e+y0MTERHRB4AXJSQiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsFhUiIiISFgsKkSFoFAoYGhoCIVCIXcUIqL3mq7cAYhEoVRK0NHJX/EwNDSEtbV1sdw3ERH9h0WF6P/p6CjgvyUc92JfFen9Vjcpgyn9mhbpfRIRfShYVIiyuRf7ClH3X8odg4iI/h/HqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwrRB0Ib537RxsxEVLR41g+RFtPGuV+0MTMRyYdFhUiLaePcL9qYmYjkw6JCpOW0ce4XbcxMRPLgGBUiIiISFosKERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEREQmLRYWIiIiExaJCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqRERFSKFQwNDQEAqFQu4o+aaNmenDIUtRUSqV+Pnnn+Hs7AxbW1sMGzYMMTExckQhIsoXpVLK13aGhoawtraGoaFhkd5vYWhjZqI36crxoMuXL0dgYCD8/PxgamqKBQsWYOjQodi3bx/09fXliERElCcdHQX8t4TjXuyrIrvP6iZlMKVf0yK7vzdpY+b80sa9QMxcOCVeVNLS0rBu3TpMmTIFbdu2BQAsXrwYzs7OOHToELp27VrSkYiI8uVe7CtE3X8pd4wC0bbMSqUEHZ23vylm7QUq6vstDGYu+P0WRIkXlevXryMxMRFOTk6qZWXLloW1tTVCQ0NZVIiIPmDauBeImV8rrswKSZJK9GDjoUOHMG7cOFy6dAkGBgaq5d999x1SUlKwcuXKAt3fhQsXIEkS9PT08rW9QqHAy4Q0ZGQqC/Q4b6NbSgfljPVRHN9OZv4PM6tj5v8UZ2ageHIzsyZmfu1DyJyeng6FQgF7e/u877cowhVEcnIyAGiMRSldujReviz47sms42YFOX5Wzrj4xsEU13E8ZlbHzP9hZnXFeSy9uHIzszpm/s/7nFmhUORr2xIvKll7UdLS0tT2qKSmpuZ7xHl2dnZ2RZaNiIiIxFLipyebmZkBAB4/fqy2/PHjxzAxMSnpOERERCSwEi8qVlZWMDY2RkhIiGpZfHw8rl27BgcHh5KOQ0RERAIr8UM/+vr6cHV1hb+/PypWrIhq1aphwYIFMDU1RadOnUo6DhEREQlMlgnfxo8fj4yMDHh5eSElJQUODg5Yu3Ztvs/cISIiog9DiZ+eTERERJRfvCghERERCYtFhYiIiITFokJERETCYlEhIiIiYbGoEBERkbBYVIiIiEhYLCpEREQkLBYVIiIiEhaLChEJJzQ0FFu3bkVCQgIiIyORkZEhdySiD1ZcXJysjy/LFPoiS0lJgY6ODvT19REVFYVjx47Bzs4O9vb2ckfTkJaWhnXr1uGzzz5DzZo14enpiQMHDsDe3h7+/v6oUKGC3BHz9ODBA0RFRcHBwQGJiYmoVKmS3JFIZgkJCRg6dCj+/vtvKBQKtGrVCv7+/oiJicG6deuEvMK6h4dHjssVCgX09PRgamqKzp07o3bt2iWcrODi4uJQsWJFuWOQjOLj47FgwQK4urrCwsICQ4cOxblz51CrVi2sWrUKNWrUKPFM3KOSTWhoKFq3bo3w8HA8fvwYX331FVasWIH+/fvj999/lzueBn9/f6xfvx4JCQk4ceIEdu3ahREjRiAxMRHz58+XO16u0tLSMHHiRLi4uGDEiBF48uQJZs6ciUGDBiEhIUHueO89uT8d5WXRokUAgMOHD8PAwAAAMHXqVOjr6wv7mk5PT8fu3btx6tQpxMfHIz4+HmfPnsWuXbvw77//Ys+ePejevTvCw8PljqomPj4e06dPx7///ovMzEwMGjQIrVq1wmeffYaYmBi546k8ffoUXl5emDhxIv7991+54+TLgwcP8v2faObOnYtz585BV1cXhw8fRlhYGObPn49atWrJ9jvIPSrZLFq0CO3bt0ejRo2wbds2GBsb4/DhwwgODsbKlSvx2WefyR1RzR9//IFFixahYcOGmDlzJhwdHTFy5Eh88sknGDZsmNzxcrVixQpcv34dGzduxMiRIwEA/fv3h4eHB/z9/TFr1ix5A+bh6NGjuHHjBjIzM1XL0tLScOXKFaxfv17GZDkT8dNRXv766y8sXLhQLVfdunUxY8YMjBkzRsZkuTMwMECnTp2wYMEC6OvrA3hdXr7//nuUKVMGM2bMgL+/P3788Uds2rRJ5rT/mTt3LsLCwjBw4EC1N6QDBw5g/vz5WLJkidwRAQBubm6ws7ND3bp1MXToUBw/fhw6OmJ/xnZxcYFCochzG0mSoFAoEBERUUKp8uf48eNYtmwZ6tati9WrV6NVq1bo1q0bLC0t0a9fP1kysahkc+3aNcyfPx/GxsY4deoU2rZti9KlS6NNmzbw8/OTO56GFy9eoG7dugCA06dPo3fv3gCA8uXLIyUlRc5oefrtt98wa9YsNG/eXLWsefPm8PX1hZubm7BFxd/fH2vWrEHlypXx7NkzmJiY4OnTp8jMzESXLl3kjpcjbXkzyhIXF4cqVapoLC9btiySkpJkSPR2f/zxB7Zu3aoqKQCgp6eHESNGoE+fPpgxYwa+/PJLBAYGyphSk4hvSDmJjIyEm5sbLCwsMHXqVLx48UL4w1MBAQFyRyi0pKQkmJmZAXj9vpL1odfAwEDtA1pJYlHJxtDQEGlpaUhNTUV4eDi++uorAK93PZYpU0bmdJrMzc1x5coVPHv2DPfu3YOzszMA4MiRI6hevbrM6XIXGxsLc3NzjeVmZmZ4+fKlDInyZ9++ffj+++8xYMAAtGnTBoGBgTAyMsKYMWOE2zORRVvejLI0atQIv//+O4YPH662fMuWLbC2tpYpVd50dXXx9OlTWFhYqC1/8uSJ6lN1ZmYmdHXF+nMr4htSTnr27IlZs2ahSpUqcHZ2Fr6kAICjo6PcEQqtbt26OHbsGMzMzPDkyRO0bt0aALBt2zbVB+OSJtZvjsyaN2+OBQsWoFy5ctDR0YGzszMiIiIwZ84ctU//ohg6dCgmTZoEHR0dtGjRAlZWVli2bBmWLVuGH374Qe54uapbty7Onj2rKoJZfvvtN40/9iJ59uwZXFxcAACWlpa4fPkyOnfujIkTJ8LT0xPfffedzAk1acubUZZJkyZh8ODBuHz5MjIyMrBixQpERUXhn3/+wdq1a+WOl6NPP/0UM2bMwKxZs9CkSRNIkoS///4bs2fPRvv27ZGUlIQVK1agUaNGckdVI+IbUk4mTJiAsLAwJCYmqj6MaZPU1FQEBQXleMj46tWrOHjwoIzpNI0fPx7jxo1Deno6unbtilq1amHu3LnYsmULli1bJksmFpVsZs6ciZkzZ+Lff//FggULYGxsjD179kBfXz/Xkf1y6t69Oxo0aICYmBjVH5lGjRph7dq1cHJykjld7saNG4eJEyciMjISmZmZ2LVrF27fvo2DBw9i8eLFcsfLVfbDD+bm5oiMjAQAfPzxx4iNjZUzWq605c0oi729PbZu3Yp169ahZs2a+Pvvv1GvXj18//33aNKkidzxcuTh4QE3NzcMHjxYbVzCZ599Bk9PT5w5cwbnz5/HqlWrZEypScQ3pNw0a9ZM7giFNmfOHOzevRvW1ta4cuUK7OzscOfOHTx79gwDBw6UO56GNm3a4Pjx44iNjYWVlRUAoEuXLvj666/l+5shUZ5SU1PljpCnkJAQ6fTp06qv/fz8pNDQUBkT5c/x48elvn37Sra2tlLjxo2lXr16SX/88YfcsfI0YcIEadiwYdKjR4+kvXv3Sl26dJGePXsmrVu3TmrXrp3c8XJ07NgxqVGjRpKVlZU0efJkSZIk6YcffpAaNmwoHTt2TOZ0OYuPj5fu3Lmj+vrgwYPS8+fP5QuUT3fv3pUOHjwoHTlyRIqJiVEtF/VvSEJCghQXFydFRESoll26dEmKjIyUMdX7x8nJSdq3b58kSZLUoUMHKSoqSkpLS5PGjBkjzZ49W+Z0BfPw4UNZHlchSZIkT0USU1xcHG7fvg2lUgng9cjsrLM6Ro0aJXM6db/99hvc3d0xceJEDBkyBMDrT0l//vknfvzxR3To0EHmhDmT/n+0e06ioqKE/KQPAA8fPsSoUaPQvXt39O3bF998841qxL67u7uQn44A4Pnz52qfji5fvoyPPvpIyO/zP//8g8GDB6Nnz55wd3cH8PoMiqw5g+rXry9zwtw9ffoU6enpePNP6scffyxTorx17NgRP/74Ixo2bCh3lPeajY0NDh06hI8//hijRo1Cly5d0LVrV1y5cgUTJkzA0aNH5Y6oJiYmBvPmzVM7VJX1PhgXF4dr166VeCYWlWz27t0LLy8vpKWlQaFQqL2hVqtWDUeOHJE5obpu3bqhd+/ecHV1VVseEBCA4OBg7NmzR6ZkeZs2bZrGWVSSJGH16tVYtmwZLl26JFOy/ElNTUXp0qWRnJyMU6dOwcTEBI0bN5Y7Vo6uXLmS49iIV69eYc6cOZg3b54MqXLXv39/VK9eHd7e3qqzaDIyMjB9+nTExsZi3bp1MifUdOHCBXh4eODu3btqyyVBTz/N8sknn2Djxo1CFtbs8nOqbxbR3vQBoHXr1li2bBkaNWqEefPmQU9PD5MmTcK9e/fQpUsX4f7eDRs2DNHR0ejcuTPWr1+PwYMH4/bt2zh8+DB8fHzw9ddfl3gmjlHJ5pdffkGXLl0wdOhQ9OnTB+vWrcPjx4/h7e2NcePGyR1Pw927d9GmTRuN5e3atcPChQtlSJQ/p06dgpeXF+bMmQPg9emHHh4eiIiI0DjbQyTHjx9HmzZtULp0aQCvzxLr2LEjYmJi0L9/f6HmyMgydOhQbNiwAQ0aNFAt+/PPPzFjxgwhB9NevXoVP/zwg9qpvrq6uhg+fDi+/PJLGZPlbs6cOahSpQrc3NyEPDswNwMGDMC4cePQr18/mJubqybYy+Lg4CBTMnWTJk2Cp6cn6tSpg/bt28sdp8Bat24Nb29vzJ07F02bNsUPP/yAjh074sCBAzA1NZU7noYLFy5g+fLlaN68OU6ePIkOHTqgcePGWLx4MY4fPy5LUeEYlWxsbGxUx2ddXV2l48ePS5L0+hh5jx495IyWo08//VQKDg7WWL5nzx6pffv2MiTKn8jISMnZ2VmaPn26tHz5csnGxkbq3bu3dPPmTbmj5alRo0bSyZMn1ZZt3LhRsrW1lTp37ixTqrzNmTNHcnR0lCIiIqQXL15IkydPliwtLaXJkydLz549kzuehlatWqmNucpy7tw5qUWLFjIkervsfze0iaWlZa7/WVlZyR1PzeHDhyUbGxu18TTa4uXLl9KoUaOkzZs3S0qlUho6dKhkaWkpNWzYUNq/f7/c8TTY2NhIDx48kCTp9bi8bdu2SZIkSbdu3ZJatWolSybuUclGX19f9UmuZs2auHnzJlq3bg0bGxvcuXNH5nSa+vTpg9mzZ+Pu3buqMyKuXLmCjRs3YvTo0TKny13dunWxadMmfPvtt3j8+DE8PT3Rt2/ffO/elcukSZMwduxYrFixAh9//DE8PDxw+fJlDBkyRNhZUz09PaGnp4eBAwdCV1cX+vr6WL16tbCneX766afw9vbGrFmzVIfTrly5Ah8fH3Ts2FHmdDkzMzNDYmKi3DEKTMTDJLnp0KEDunTpgnnz5gk5A3ReypYti+XLl6u+XrVqFSIiIlC5cmVUrVpVxmQ5q1atGm7cuAEzMzPUrl1bdehSqVTK9jpnUcnGxsYG27dvx6RJk1C/fn0cP34cQ4YMQWRkJPT09OSOp+Hbb79FWloaAgIC8MsvvwAAqlatiokTJ2qMW5FbaGioxrLx48dj1qxZuHnzJsLDw1WDEEXZ5fymgQMHQk9PD6NGjYJCoUC9evWwc+dOoQd4Aq+nINfX18eqVavw66+/CnuaLwBMnjwZd+/exaBBg9SKa8eOHeHm5iZjstyNGjUKP/zwA7y9vVGnTh0h/1bkpFq1agBez+dx7949mJubQ5IkYfN7eXnh3r17cscolJcvXyI6OhppaWmqZYmJibhz545wf+969OgBNzc3zJ8/H23btsWAAQPw8ccf4/Tp07C0tJQlEwfTZhMWFoahQ4di/Pjx6NGjBzp37ozKlSvj4cOH+N///qcaUyGi58+fQ09PD8bGxnJHyZGVlZVqgHJeRB58mGX79u3w9vbG6tWrhZyvZsCAATku//vvv2FkZKRWrESd6vvWrVu4ceMG9PT0ULduXdSqVUvuSLnq1KkTHjx4kOuYH1Ffz5IkYeHChdi0aRPS09NV8xgZGhpi1qxZwhYWbRMcHAxvb+8czwgT8e+dJEnYuHEjatWqhbZt22LVqlVYuXIlzMzMMH/+fFlmiGZReUNsbCzS0tJQo0YNREZGYuvWrTAzM0P//v3VBvjJJTQ0FHZ2dtDV1c1xL0V2IjX1+/fv53vbrE96IsjtjIPY2FiUKlUKlStXVi0TZVd6QSYnnDt3bjEm+TDs2rUrz/U9evQooSQFExAQgNWrV2PixInw8fHBvn37cOXKFXh7e+Obb77BxIkT5Y6oJikpCUZGRqqvr169inv37qFmzZpqg8VF06ZNG7Ru3RoDBw7UGLAMiPX3TlQsKlrGysoKp0+fRqVKlfLcSyFiU9dGS5YsyffYmbFjxxZzmvffrVu34OPjgwsXLiA9PV1jPV/TRadLly6YMGECOnbsCDs7O+zduxc1atTA4cOHMXfuXPz5559yRwTwem+xu7s7oqOjcejQIbx69QqjR49WfVBTKBRo0aIFlixZIuQeZTs7O+zatUvovYK7d+/O97bdu3cvthy5+eDHqOS2mzwnIuwmP3r0qOqiXKJ8gs+P9u3bY8eOHahQocJb50UQ6XmJeFp6QT18+BBbtmzBjRs3oKuri3r16qF3795CTkQ2c+ZMPHv2DFOmTBH6VF8PDw94enrC2Ng4zz1YCoVC2Otu3bt3L8c9EVZWVnjy5IkMiXLm6+uLBw8eYMaMGQCABQsWIC4uDtu3b0e9evXw77//wsvLC/PmzcPs2bNlTqupQ4cOOH78uNBFZdq0aWpfZ30ANjAwgK6uLhISElCqVClUqFCBRUUO2Xe7paam4sCBA2jQoAFsbW2hq6uLq1ev4vLlyxoX0JNL9rxv7jJMT0/H9evXUadOHXz00UclHS1PPXr0UO327NGjh/Bn+OTm6tWrWLt2repN38LCAt9++62wE779+++/cHV1hYGBARo3bgylUomdO3diy5Yt+PXXX1GvXj25I6q5dOkSfv31V+FnS713755q9mptHeBZrVo1XLlyReNK6ydOnBDqauAnT57E6tWrVb9jp06dwuzZs1UTGTZp0gSzZs3C6NGjhSwqU6dORbdu3XDw4EGYm5tr/O0T4fDr9evXVf/ev38/1q5di7lz56pms46Ojoa7uzu6du0qS74Pvqhkf5F4eHhg4MCBGu3yxx9/RFRUVElHe6uHDx/C09MTEyZMQP369fHll18iMjIS5cqV05jkS27ZD4to616K8+fPY/Dgwahfvz5atWoFpVKJCxcuoG/fvti4cSOaNm0qd0QN8+fPR/PmzbFw4ULVRHWpqamYMmUK/P39sXLlSpkTqqtQoYJWDOLMPrmfiBP95ceQIUPg7e2NJ0+eQJIknD17FkFBQdi0aZPG30A5KZVKjQkAy5Ytq7ZNuXLl1M6oEcmcOXOQmJiItLS0Ao3Vk4u/vz9++uknVUkBgFq1asHLywujRo1C//79SzzTB19Usvvjjz9yHBjXvXt3WXZ3vc3cuXPx6tUrVKxYEb///jvu37+PwMBA7Ny5EwsWLBByuvEsYWFhqnEI2cfYKBQKYeckWbx4MXr16gVvb2+15d7e3vjxxx+FfMO6cOECtm7dqiopAFC6dGmMGTNGuFPYAcDV1RWLFi2Cv7+/kOMNcpOcnIwbN27k+HoW9cq/vXr1QkZGBlasWIGUlBTMmDEDFStWxIQJE9CnTx+546k4OzvDx8cHS5cuRcWKFdG9e3esWbMGixYtQqlSpZCWloaffvoJzZs3lztqjk6cOIEVK1YIO3fRm+Lj49X+XmRRKpVISUmRIRGLipqyZcvi2rVrGscSw8LCUKlSJXlC5eHcuXPYuHEjqlevDn9/f7Ru3Rr29vaoUKECevbsKXe8XC1btgxLlixB2bJlNd6MRC4q165dy/EUdVdXV2Gnd//oo49yHJSa0zIRnDlzBmFhYXB0dESlSpU0zrQTafxSlqNHj2LatGlISEjQitNPs+vduzd69+6NuLg4SJIk5N85Dw8PDBo0CB06dICTkxOqV6+Os2fPokOHDqhduzauX78OHR0dBAYGyh01RxUqVBByPFhumjdvDh8fH8yfP191WDAqKgre3t5o27atLJlYVLLp3bs3ZsyYgaioKNjY2Kh27W/ZsgVTp06VO56G9PR0lCtXTrXbdtKkSQBeN19dXXF/tL/++ismTpyIESNGyB2lQCpUqIDnz59rLI+LixPi1PWctGjRAvPnz8fPP/+M8uXLA3idd8GCBULOAdO0aVMhD6Hlxd/fH05OThg9erTQA4BzEhMTg3/++SfHT8qi7EWuUqUKdu7cif379+P06dMIDQ1F+fLloaurC4VCgf79++Obb75BhQoV5I6ao5EjR8LX1xfTp0+Hubk5SpUqJXekPM2aNQtDhgxBx44dUbZsWUiShFevXqFx48aYPn26LJl4evIbVq5cic2bN6tGvZuZmWHYsGHo27evzMk09evXD82bN0eVKlXg4+ODv/76CxUrVsSMGTNw//59IQ9FAK8Hvx04cEDr5g/w9vbGhQsXsGjRItUVZyMjIzF58mRYW1sLMSjuTY8ePcI333yDly9fqvYURkdHo3z58ti0aZPGQEoquEaNGuG3336Dubm53FEKZOfOnfDy8lINCs5OtD1BqampuHnzJiwsLGBgYIBr165h8+bNePz4MSwsLDBo0CCYmJjIHTNH2jghYGZmJs6cOYObN29CoVDAysoKLVq0kO0kCBaVXDx//hwKhUL1KVREly9fxsiRI/H8+XMMGzYMkyZNwqxZs3DgwAGsXLkSdnZ2ckfM0aBBg9CrVy/ZRpAX1suXLzFo0CBERESoPjnHx8ejQYMGWLdunbCf6BITE7Fnzx7cvHkTkiTB0tIS3bp1E3YMyPXr13Hjxg3VG6gkSUhLS8OVK1eEnB26W7dumD59OhwdHeWOUiAdOnSAs7MzJk6cqDE4VSS3bt3CwIED8eTJE5iZmWHOnDkYPXo0qlWrBgsLC1y7dg3x8fEIDAxUfYAQibZOCCiSD76o7N69G//73/+gr6//1klvRNkVmp1SqURCQoLqD83169exdetWHDhwAOfPn5c5Xc6Cg4Mxf/589OjRA3Xq1NE4bCLi9zmLUqnEqVOncOPGDdWbvrOzs/CnWyckJODWrVvQ09NDjRo1hC0p69evx7x58wBAbTLDrEGpIu4lPH78OPz9/TFx4sQcX8+ijk9o1KgRDhw4INSpyDkZMWIESpcujdGjR2PDhg34/fff0aVLF/j6+kKhUCAjIwPu7u54+fIl1qxZI3dcDXPmzMGAAQOE3uPWoEEDnDp1Sm0i0dzIsQfogy8qb870mhvRdoVml5aWhj/++ANbt27FxYsXoVAo0KFDB/z8889yR8uRNn2ftW1CwDcplUrMmzcPgYGByMjIAADo6emhd+/e+P7774UrWB06dMBnn32GsWPHol27dti1axdevHiByZMn48svv8TAgQPljqihYcOGqt362b+fkiQJ93rO7uuvv8aYMWPQpk0buaPkyc7ODsHBwahTpw7i4uLQsmVL7Ny5U+2aMzdu3EDv3r1x8eJFGZPmrGnTptizZ4/Qh1l37dqFLl26QF9fHzt37szz74Ice4DEHXFZQrJPdJP939rgzp072Lp1q+qPuUKhQM+ePTFy5EihPyVp0/c5p3E0+/btg4uLi3CT6uVk5cqVCA4OxtSpU+Ho6AilUonQ0FAsW7YMJiYmGDp0qNwR1Tx69AhfffUVSpcuDSsrK1y5cgUdOnTAtGnT4OfnJ2RRWb9+vdwR8i379cE6dOgAT09PjBs3DjVr1tQY5CnKtcIMDAyQnJwMAKhYsSK+/vprjdNn4+PjhR3I3KZNG2zevBljx44Vdk9m9vIh4hmjH/weFW2TmZmJQ4cOISgoCCEhIShVqhQ++eQTdOnSBR4eHti9ezcsLCzkjvley35dFNG5uLhg4sSJ6Natm9ryffv2YcmSJTh06JBMyXLm6OiIoKAg1K5dG7NmzYKpqSlGjhypuoK5iJ+YtYk2XsV86tSpiImJwZw5czT+timVSpw9exazZ89Gy5YtVdPsi6R///4IDQ2FQqFApUqVNEqWCKfcL126NN/bynFNsw9+j8rbrjuTnQgvqDZt2uDVq1do0aIFZs+ejY4dO6JcuXIANK/XQPTs2TM0adJEY3mTJk3w8OFDGRLlzd7eHqtWrcKMGTNgbW2NHTt2YPjw4QgPDxd2D1ZSUhI2bNiQ4wSGgFiHBEX4G1ZQHh4eGD16NH755Rf4+/urrfvjjz8wadIktGnTRjU9g2iaN28u7GR0WXbu3Kn29cOHD1Xj2XR1dXH37l2kp6fDxsaGRUUO2a878+LFCwQGBqJdu3aws7ODrq4urly5gkOHDmHw4MEyJ33t1atXqFSpEj7++GOUL18ehoaGckcigdWqVQtnzpzRGMh3+vRpIU8PnzRpEgYPHowtW7agT58++OWXX+Do6Ijk5GQMGTJE7ng5mjFjBo4ePYpWrVqhSpUqcsfJ05s/8/PnzyMjIwMtW7YEAMybNw/t27cXajbdihUrYuvWrYiPj9dY5+TkhH379gl3zarstOGq6tmvlL1hwwYcO3YMCxcuVE0AGB8fDzc3N9SvX1+egBKpjBw5Ulq1apXG8oCAAGnAgAEyJNL06tUrKSgoSPr6668lS0tLyd7eXpo6dar0119/SQ0bNpRu3rwpd8T3nq2trXT37l25Y+TLrl27pEaNGknz58+Xjhw5Ih05ckSaN2+e1LhxY2nz5s1yx8tRcnKy9OzZM0mSJOnJkyfSunXrpN9//13mVLmzt7eX/vzzT7ljFNj+/fulhg0bSmvWrFEtGzdunNSwYUPp8OHDMiZ7/1y5ckWaMGGC9L///U/6/PPPpUmTJkmXLl2SO1aOnJycpIiICI3l//77r+To6ChDIkniGJVsbG1tsWfPHtSsWVNt+Z07d/D555/j0qVLMiXLWVRUFHbs2IF9+/bh6dOnUCgU6NWrF4YNG6bxHKjoaNMYFeD1J6Q1a9bg6dOnAIDKlStjyJAhGDRokMzJ3g8ODg4IDg4W+vTTnHTr1g29e/fWuOZTQEAAgoODsWfPHpmSvV+yX8y0WbNmqhnPb9y4IeTFTB0cHLBy5UrY29urLT979iwmTJiAkJCQEs/EopJNp06dMHjwYHzzzTdqy9euXYvg4GAcOHBApmR5y8zMxLFjx7Br1y4cO3YMSqUSLVu2FHJOAW3j4eGhsSy3s35EnJl2//79cHZ2Rrly5YS9nou2jRN7k6enJ6pUqYIJEybIHaVAmjRpgv3792sU7piYGHTt2lW4D2baqk+fPqhfv36OFzONjIwUbm4gd3d3XL16FTNmzICNjQ0kSUJ4eDhmz56N1q1byzJg+YMfo5LdkCFDMHv2bFy8eBGNGjVSNd/Dhw9rDOISSalSpdC+fXu0b98ecXFx2LNnj8bgKCqce/fuaSyzs7PD8+fPc7zuj2h8fHwQGBiIcuXKoWLFinLHyVH2cWLaqGLFili3bh1OnDiB2rVra0z4JmKBBV5fHiQ0NFSjqFy8eFH4sTbaRNsuZjp9+nR89913+Pbbb1W/l5Ik4bPPPoObm5ssmVhUsunduzc++ugjbN68GYcOHYJCoUCDBg2wfPly4SdFylKxYkUMGjSIu/WLiGifdgqqVq1auHHjhtCnrI8bN07uCO/k77//Vp1Z9fjxY5nT5F+fPn0we/Zs3L17V5X/ypUr2LhxI0aPHi1zuveHtl3M1NjYGGvXrsWtW7dU1/oxNzfH9u3b0aZNGx76EUHWdUYyMzNV8w2IfJ0RorzMmDEDO3bsgJWVFWrVqqUxh4OIn/a17Vo/2mz16tUICAhQXYS1atWqGD58uMa4FSo8bbyYKSDWjOcsKtmsX78e8+fPV019LWnBdUaI8tK/f/8814v2mtbGa/08ePAgz/WiXusnu+fPn0NPT0/YmVO1WU4XM3316hWsrKyEvJipiDOes6hko43XGSHKr/T0dJw5cwaSJMHJyUlj74oItPF3UMSLuOVXSkoK/vjjD9y6dQuDBw/GjRs3UK9ePeHePLWdUqnEyZMn1a5g/sknn0BHR0fuaADEn/GcRSUbGxsbHDhwAObm5hg8eDD69u2LDh064NSpU/Dz88P+/fvljkiUL4GBgaoB1V9//TW6dOkCV1dX1XWWTExMsHHjRuFOY9fG38E3r1KemZmJ27dvY8OGDZg2bRpcXFxkSpa3p0+fonfv3nj27BnS0tJw8OBB+Pr64urVq9i4caPqMAW9/z755BPVjOcdO3ZUm/G8YcOG2LNnj6xFhYNpszEyMlJdBdXc3ByRkZHo0KED6tati/v378ucjih/1q5di6VLl6Jbt24wNDTETz/9hJ07dyIzMxNbtmyBUqnE3LlzsXDhQuGusK2Nv4OOjo4ay5ycnFCjRg0sWbJE2KLi5+eHevXqYf/+/Woz006YMAELFizAL7/8InNC7ZXfq64rFAps3LixmNO8negznoux30kQWdcZSU5OhrW1Nf78808olUqhrzNC9KZt27bB19cXPj4+8PDwwIoVK/D3339j0qRJsLe3R7NmzeDh4YHw8HC5o2p4n34Ha9WqJfSVws+dO4fx48ervSmVK1cO7u7uuHDhgozJtF+1atXy/O/hw4c4f/68MIcFT58+jZEjR+LatWsYO3YsnJyc4ObmhmPHjgkxdQD3qGSjjdcZIXrTgwcP1C5E2LhxY+jq6qrNnFqzZk28ePFChnR508bfwZwG0yYkJGDlypWoXr26DInyJzExEUZGRjmuy8jIKOE075fczuRJSEiAn58fYmJi0KpVK/j6+pZwspwZGxvj66+/xtdff6024/nevXuhUCiwYcMGWWc85xiVN6SkpCApKQkVK1bE06dPsX//fpiamqJz585yRyPKFysrK5w+fVptBto3p/1/+vQpnJ2dhflEl92bv4P79u2DmZmZsL+DOQ2mlSQJRkZGWLBgAdq3by9TsrwNHz4ctWvXhoeHh+r1YWpqiilTpiAxMZEzWxexM2fOwMvLC69evYKbmxu++uoruSPlSaQZz1lUiN4z2l5UsktKSoJSqRT6tNk3B9MCgJ6eHurXry/04aqoqCj069cPZmZmuHnzJpo3b45bt27h1atX2Lx5M6ysrOSO+F5ISkqCn58ftm3bhlatWmHOnDkwMzOTO1aBZJ/xfN++fSX++CwqRO8ZKysrDBkyRG3swcqVK/HNN9+oRvInJSVh/fr1whSV69evY+/evQBeT6lfr149+Pj4YOvWrQCA9u3bw8/PT+g3/pz8888/aNiwodwxcvX48WP8+uuvuHbtGpRKJerVq4e+ffsKfchKm5w9exaenp54+fIl3N3d8fXXX8sdSSuxqBC9Zwpylsmff/5ZjEny5/jx4xgzZgyqV68OQ0ND3Lp1C1999RX27t2LwYMHQ6lUYuPGjfj888/h6ekpd1yVy5cv4/fff4euri66du0KS0tL1brU1FT8+OOP2LRpE65evSpjyty9ePEC5cuXz3FdcHAwevXqVbKB3iNJSUmYP38+goKC4OTkBF9fX63biyISFhUiktVXX32FNm3aYOzYsQCAPXv2YNq0aZgzZ47qzfLgwYOYP3++MFdPPnDgAKZMmQJ9fX3o6uoiJSUF69evh4ODAy5evAg3NzfExMSgZ8+e+OGHH+SOm6Pu3btj06ZNqtlSASA2Nhaenp44ffq0MHvbtFH79u3x4MED1KhRA59//nme22a97il3LCpEJCs7Ozvs3LkTtWvXBvB6EF+jRo2we/du1K9fH8DrN9D27dsLs3eiR48eqFGjBvz9/aGjowM/Pz9ERERg8ODB+O6772BqaorZs2fDyclJ7qi56tOnD9LS0rBx40YYGxtj+/btmDdvHipWrAhvb2+hs4suv3s1FQqFMOVbZCwqRCQrKysrnDp1CpUrV1YtE33wr52dHQIDA9GgQQMAQHx8PFq2bIkyZcqgXbt28PLyyvXUX1EkJSVhxIgRSE5ORtmyZXH+/HkMGjQIY8eOFfLyCvTh4jwqRCQ7ESaVKojk5GRUqVJF9XXZsmWhq6uLLl26wMvLS8Zk+WdkZITVq1dj5MiROHfuHAICAtCsWTO5Y70XtG1mWtGxqBCR7C5evKg6Iwl4PQ/J5cuX8ejRIwCvr0ArmjfLlUKhQO/evWVKkz9Lly7VWNaoUSNcuHAB8+bNQ5s2bVTLOXai8KpVq5bn+rCwMMTExKBs2bIllEi78dAPEckqa8K0t/0pUigUwhz6yc9cNSLi2Al5Zc1Mu2PHDtXMtKampnLHEh73qBCRrLT1DfFte4GyODg4lHS0XOV2OnpcXBzCwsJQqVIlNG3atIRTfRiyz0w7e/Zs4WemFQn3qBARFZA27gXKsnz5cmzcuBHbtm1DzZo1cfHiRQwbNgyJiYkAgBYtWmDFihUwMDCQOen74X2YmVZu3KNCRFRA2roXKCgoCCtWrMDAgQNVh608PDxgYGCArVu3okyZMhg3bhxWrVqF8ePHy5xW+2WfmdbHx4cz0xYS96gQEX0gvvzyS/To0QP9+vUDAFy5cgVfffUVJk6ciBEjRgAA/vrrL/j5+eHgwYNyRtVqnJm2aHGPChHRByIqKgqtWrVSfX3u3DkoFAq1s30sLCzw4MEDOeK9N7p166aamdbe3h7BwcG5bsuzq96ORYWIhHHhwgXY29vLHeO9lv206rCwMJQrV07tSsmJiYlqF7SkgpMkCWZmZsjIyMDOnTtz3U6hULCo5AOLChEJo3///ihfvjzatm2L9u3bo1WrVpwltQjVr18fFy5cQM2aNREfH4+QkBC0b99ebZvff/9ddekCKhwRLvb5PmFRISJhnD17FidPnsTx48fh6emJlJQUtGzZEu3bt0fbtm1RsWJFuSNqtX79+mHmzJmIiIjAxYsXkZaWhm+//RbA6+sp7du3D2vXroWvr6/MSYn+w8G0RCQkSZJw6dIlBAUFYe/evVAoFMJclPBN9+/fx6VLl5CWlqaxrnv37iUfKA87duzAr7/+Ch0dHQwdOhSffvopAMDHxwfbtm3DsGHD8N1338mckug/LCpEJJS4uDicP38e586dQ0hICG7fvo3q1aujZcuW8PHxkTuehm3btsHb2xuZmZka60ScRyU3sbGx0NfXR4UKFeSOQqSGRYWIhNGtWzdERkbCxMQETZs2RYsWLeDk5ITq1avLHS1XLi4uaNeuHSZOnAhjY2O54xC9d3TkDkBElKVUqVJQKBSoXLkyqlWrhurVq6Nq1apyx8rTkydPMGjQIJYUomLCwbREJIzdu3cjLi4OZ8+exenTp/H9998jLi4Otra2cHJywsiRI+WOqKFBgwaIjIwUeq8PkTbjoR8iEtatW7fw66+/IigoCOnp6UKO9zh06BD8/PwwaNAg1KlTB/r6+mrrRbooIZE2YlEhImG8ePFCtTflzJkzePToEWxsbNCuXTu0a9dObWIyUeSVSZsG0xKJikWFiITRoEEDGBgYoEWLFnBxcUHbtm1RpUoVuWPl6f79+3mur1atWgklIXo/sagQkTD++usvtGzZUutmo42JiUFcXBwqVqyI6tWrq01TT0TvhkWFiIRy/fp1bNy4Ebdv38ZPP/2EI0eOwMLCAs2bN5c7mhpJkrBmzRps3rwZjx8/Vi2vUqUKXF1dMWzYMBYWoiLAs36ISBhXr15Fnz59YGtri6tXryItLQ0RERGYO3culi1bpnaVX7mNHTsWJ06cwBdffAEnJydUqFABL1++REhICFasWIFLly5h2bJlcsck0nrco0JEwvj2229ha2uLiRMnws7ODnv37kWNGjUwd+5chIeHY8eOHXJHBAAEBwfDz88PAQEBaNCggcb6mzdvon///nBzc0PPnj1lSEj0/uCEb0QkjH/++SfHa+P069cPUVFRJR8oF9u3b8fYsWNzLCkAUK9ePYwbN06YYkWkzVhUiEgYenp6SEhI0Fj+8OFDGBoaypAoZ1FRUXB2ds5zG2dnZ9y8ebOEEhG9v1hUiEgYHTp0wI8//oj4+HjVsqioKPj6+qJt27byBXtDRkYGdHXfPsSPg2mJ3h2LChEJw93dHYmJiWjRogWSk5PRs2dPdO3aFaVKlYKbm5vc8VQsLCxw6tSpPLc5deoU6tWrV0KJiN5fPOuHiIRhbGyMrVu34uzZs7h27RqUSiXq168PZ2dn6OiI87mqR48eWLp0KVq1aoWaNWtqrI+KisLSpUvh7u4uQzqi9wvP+iEiKiClUomRI0fiwoUL6NmzJ+zt7VG+fHkkJCQgNDQU27dvR5s2bbB48WK5oxJpPRYVIpLVgAED8rWdQqHAxo0bizlN/mVkZOCXX37B5s2b8eLFC9XyKlWqYODAgRg8eDDHqBAVARYVIpKVh4dHnuvDwsIQExODsmXL4vz58yWUKv8kScLt27fx8uVLVKhQAebm5kIdpiLSdiwqRCSkhIQE+Pn5YceOHWjVqhV8fX1hamoqdywiKmEsKkQknDNnzsDLywuvXr2Cm5sbvvrqK7kjEZFMeNYPEQkjKSkJfn5+2LZtG1q1aoU5c+bAzMxM7lhEJCPuUSEiIZw9exaenp54+fIl3N3d8fXXX8sdiYgEwD0qRCSrpKQkzJ8/H0FBQXBycoKvry/3ohCRCveoEJGs2rdvjwcPHqBGjRr4/PPP89x27NixJZSKiETBokJEsnJxccnXdgqFAkePHi3mNEQkGhYVIiIiEhZnJSIiIiJhsagQERGRsFhUiIiISFgsKkRERCQsFhUieq/xfAEi7caiQkSyO3fuHD799FPY2Nhg6NChRXa/27dvx7x584rs/oio5HFmWiKS3fz586FUKrFq1SpUqlSpyO53xYoVcHR0LLL7I6KSx6JCRLJ78eIFHBwc0LJlS7mjEJFgeOiH6D3n4uKCpUuX4ocffkDz5s1hZ2eHyZMnIzExEatWrULr1q3RtGlTjBs3Ds+fPwcApKSkYOHChejUqRNsbGxgb2+PQYMGISIiQnW/06ZNw8CBAxEcHKw6bPPFF1/gxIkTqm2WLFkCS0tLjUyWlpZYsmQJ7t27B0tLS9y/fx+7d++GpaUlQkJCAABHjhxB3759YWdnBxsbG3Tu3BlbtmxRu5/Hjx/D3d0dTk5OsLOzg6urKy5evKh63vfv38euXbtgaWmJe/fuvTUPAFWm9evXo3PnzmjSpAmCg4MBADdu3MCIESNgb28Pe3t7jBkzBjExMar7CQkJgaWlJbZu3Yp27drB3t4ep0+fLtTPjYhe4x4Vog/AunXr0KpVKyxevBhXr17FwoUL8c8//6Bq1aqYPXs27t27B19fX1SuXBkzZ86Em5sbwsLCMGnSJJibm+POnTv46aefMHnyZPz2229QKBQAgKtXr+Lx48cYP348jI2N8dNPP2HcuHE4ceIEypUr99ZcVatWRVBQEMaOHQtra2uMHj0aFhYWOHbsGMaMGYMBAwZg3LhxSElJQWBgIHx8fGBjY4MmTZogMTERffr0QWZmJqZOnQoTExOsW7cOgwcPxq5du7B06VIMHz5cdb9Vq1Yt0PdsyZIl8PT0hLGxMZo0aYLbt2/jm2++QZ06dTBv3jxkZGRgxYoV6NOnD/bs2aN2yGrp0qXw8vJCSkoK7OzsCvbDIiI1LCpEHwBjY2MsXrwYurq6aNmyJXbt2oXY2Fhs374dZcqUAQCcPHkSFy5cQFpaGhITE+Hl5YX//e9/AABHR0ckJCTAz88PT58+RZUqVQAAr169ws6dO2Fubg4AMDIygqurq2pw7Nvo6+vD1tYW+vr6qFixImxtbQEAkZGR6NGjBzw9PVXb2tnZoXnz5ggJCUGTJk2wa9cu1R6TBg0aAADs7e3RvXt3hIaG4quvvtK434L47LPP0KtXL9XXkydPhqGhITZs2ABjY2MAgJOTEzp06IA1a9bA3d1dtW3fvn3RuXPnAj8mEWliUSH6ADRu3Bi6uv/9uleuXBlGRkaqkgIA5cuXx40bN6Cvr4+1a9cCAGJjY3H79m1ER0fjr7/+AgCkpaWpblOxYkVVSQEAU1NTAEBycvI75c068ycxMRG3b9/G3bt3ceXKFbXHDw8PR/Xq1VUlBQAMDQ1x8ODBd3rsLNnvF3h9ZpKjoyMMDAyQkZEB4HUBbNasGc6cOZPnbYmo8FhUiD4AWXsAsjMyMsp1+5MnT+KHH37ArVu38NFHH8HKykq1ffZ5SQwNDdVul3VISKlUvlPeuLg4zJw5E0eOHIFCoUDNmjXRrFkztcd/8eJFkZ4h9KY3vz8vXrzAgQMHcODAAY1tK1asmOdtiajwWFSISM3du3cxZswYdOjQAStXrkSNGjWgUCiwZcsWnDx5skD3lVVcMjMzUapUKQCv95K8zZQpU3Dr1i1s2LABdnZ20NfXR3JyMrZt26bapkyZMrh3757GbS9cuIBy5cqhbt26RZYn6/FatmyJQYMGaazLvreKiIoWz/ohIjVXr15Famoqhg8fDnNzc9Wbe1ZJKchMr1l7ch49eqRaFh4e/tbbhYeHo1OnTmjevDn09fUBQHU2UdbemmbNmiEmJgY3b95U3S41NRXjxo3Djh07AAA6Oup/4gqbB3g9TicyMhINGjRAo0aN0KhRI9jY2GDDhg04fPhwvu6DiAqORYWI1DRs2BC6urpYsGABTp8+jb/++gvjxo3DsWPHAABJSUn5vq82bdoAAGbMmIEzZ84gODgYs2bNwkcffZTn7Ro3box9+/Zhz549CAkJwYoVKzBt2jQoFArV+JeePXuiRo0aGDVqFPbu3YuTJ09i7NixSE9PR9++fQEAZcuWxbVr13D+/HmkpKQUOg8AjB49Gnfv3sWIESNw5MgRnDx5EuPGjcNvv/0GKyurfH9PiKhgWFSISE3NmjWxcOFCxMbGYtSoUZgxYwYAYNOmTVAoFAgLC8v3fdWuXRvz5s3DvXv3MHz4cAQEBGD27NlvPVXYz88PTZo0wezZszFmzBgcPXoU3t7e+OSTT1SPb2xsjM2bN6u2mzBhApRKJQICAlCjRg0AwODBg/H06VMMGTIEV69eLXQeALCyssKWLVugUCjg5uaG8ePH48mTJ1i2bBk6deqU7+8JERWMQuIVu4iIiEhQ3KNCREREwmJRISIiImGxqBAREZGwWFSIiIhIWCwqREREJCwWFSIiIhIWiwoREREJi0WFiIiIhMWiQkRERMJiUSEiIiJhsagQERGRsP4PeXkyN+pWrHAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -489,33 +554,33 @@ "Calzado de correr en carretera para hombre 12\n", "Calzado de correr en pavimento para mujer 11\n", "Calzado de correr en carretera para mujer 11\n", - "Calzado para hombre 5\n", "Mujer • adidas by Stella McCartney 5\n", - "Calzado de running en carretera para niños grandes 4\n", + "Calzado para hombre 5\n", "Mujer • TERREX 4\n", + "Calzado de running en carretera para niños grandes 4\n", "Calzado de trail running para hombre 3\n", "Calzado para niños de preescolar 2\n", - "Calzado de correr en pavimento para hombre 2\n", "Calzado de carrera en carretera para mujer 2\n", "Calzado de trail running impermeables para mujer 2\n", + "Calzado de correr en pavimento para hombre 2\n", + "Calzado de caminata para mujer 1\n", "Calzado de running en carretera acondicionado para los estados del tiempo para hombre 1\n", - "Calzado de carrera en carretera 1\n", - "Calzado de running en carretera impermeable para mujer 1\n", - "TERREX 1\n", - "Calzado de trail running para mujer 1\n", - "Calzado de running en carretera impermeable para hombre 1\n", + "Hombre • TERREX 1\n", "Calzado de trail running impermeables para hombre 1\n", - "Calzado de running en carretera resistente a las inclemencias del tiempo para mujer 1\n", "Calzado de carrera en carretera para hombre 1\n", - "Hombre • TERREX 1\n", - "Calzado de caminata para mujer 1\n", + "Calzado de running en carretera resistente a las inclemencias del tiempo para mujer 1\n", + "Calzado de carrera en carretera 1\n", + "Calzado de running en carretera impermeable para hombre 1\n", + "Calzado de trail running para mujer 1\n", + "TERREX 1\n", + "Calzado de running en carretera impermeable para mujer 1\n", "adidas by Stella McCartney 1\n", "Name: count, dtype: int64\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAQYCAYAAAAgUvIvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1QU19sH8C8IKPaWqElUrCAqTRGxoGBJ7KKJFaxYYsdYsMSKFey9InaNitGoQU0s0dgrdlEpFrBgAUTqff/gsC8rC8zuDjjh9/2cw0mc3Xn2ucsw++ydO/caCCEEiIiIiBTI8EsnQERERJQZFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSKF45yM/z38nRHJh4UKkR7c3d1hbm6u+rGwsICtrS06deqEzZs3IykpSe35Li4u8PLykhz/r7/+wvjx47N9npeXF1xcXHR+HV09ffoU5ubm2LdvX4bHEhIS0LRpU7i6uiIuLi7HcnB3d4e7u3uOxddGREQEBg4ciGfPnn3pVIjyDKMvnQDRf52lpSWmTp0KAEhOTsb79+9x+vRpzJkzB5cvX8bixYthaJj6nWD58uUoXLiw5NibNm2S9LwhQ4agV69eWueur6+//hq7du1ChQoVMjz222+/ISkpCatWrYKpqWmu5/Yl/Pvvvzh16tSXToMoT2GhQqSnwoULw8bGRm2bi4sLKleujFmzZuGPP/5A+/btAaQWNTlBU6GQG0xMTDK0PU2zZs3QqlUrlCxZMneTIqI8hZd+iHKIm5sbypQpg507d6q2fX5JJq2IsbKyQv369TFmzBhERkYCSL2kcfHiRVy8eBHm5ua4cOECLly4AHNzc+zcuRPOzs6ws7PD2bNnM1z6AYDExER4e3vD3t4edevWxfjx4xEVFaV6XNMlk7T4Fy5cUG17/Pgxhg0bhnr16sHe3h6DBg3Co0ePAGi+9BMSEoIRI0agc+fOcHFxgbu7O65cuaJ6PG2fI0eOYMSIEbC1tUW9evUwefJkfPz4Mcv39Pnz5xg2bBjq1KmDhg0bws/PT+PzfvvtN7Rp0wa1atVC06ZNsWzZMiQnJ2cZOyEhAYsXL0azZs1gZWWFtm3bIiAgQPV4cnIy1q5di7Zt28LKygo2Njbo1q0bzp8/DwDYt28fJkyYACC1SEv/e5aST0BAAFq3bo3atWujffv2OHfuHCwtLTW+tw0bNoSNjU2m762fnx9++OEHWFtbY9u2bTA3N8euXbvUXu/FixeoUaMGDhw4kOX7QvSlsVAhyiGGhoZwdHTEzZs3M4xVAYArV65g3LhxaNmyJdatW4cJEybg/Pnz+OWXXwAAU6dOhaWlJSwtLbFr1y7UrFlTte/y5csxfvx4TJkyBba2thpf/8iRI7h9+zbmzp2L8ePH4+TJkxgwYEC2H9jpRUZGomvXrggJCcG0adPg4+OD169fo3fv3nj37l2G5wcHB6NTp054+vQpJk+eDF9fXxgYGKB37964ePGi2nOnTp2Kb7/9FitXrkT//v2xZ88erFq1KtNcPn78CDc3Nzx48AAzZ87Er7/+it9++w3Xrl1Te96aNWvw66+/wtHREatXr0bPnj2xbt06/Prrr1m2dcyYMfDz88NPP/2ENWvWoFGjRvDy8sIff/wBAPD19cXKlSvRtWtXrF+/HjNnzsS7d+8wcuRIxMXFoWnTpvj5558BpP5+hgwZIjmf/fv3w8vLC3Z2dli5ciW+//57DBkyRO13pc17u2zZMgwYMADz589Hs2bNYG1tjd9//13tOfv370fBggXRsmXLLN8Xoi+Nl36IclDp0qWRmJiId+/eoXTp0mqPXblyBQUKFMDAgQNhYmICAChevDiCgoIghEDVqlVV41k+v7zSo0cP/PDDD1m+dokSJbBhwwYULFhQ9e+hQ4fi9OnTcHZ2lpT/pk2bkJCQAD8/P3z11VcAAAsLC3Tv3h03btxAlSpV1J6/fPlymJiYYPPmzarcmzZtirZt22L+/PnYs2eP6rlNmjRRDRR2dHTE2bNncfLkSVWh9rmAgAA8f/4cf/zxB6pWrQoAsLa2RosWLVTPiY6OVhUTkydPBgA0atQIxYsXx+TJk9G3b19Uq1YtQ+wHDx4gMDAQEydORO/evVU5PXv2DBcuXEDbtm3x8uVLeHp6qvVC5c+fH8OHD8f9+/dhY2OjugRXo0YNfPfdd5LzWbJkCZydneHt7Q0AaNy4MYyNjbFgwQKd3ttWrVqhc+fOqn937twZU6dORXh4OMqXLw8gtVBp06YNChQooPH9JlIK9qgQ5aC021QNDAwyPGZvb4+4uDi0bdsWCxYswOXLl9GoUSMMGzZM4/PTq1GjRrav3aRJE1WRAqRedjIyMsKlS5ck53/lyhXY2NioihQAKFu2LE6cOIEmTZpkeP7Fixfh7OysNmDYyMgIbdq0wa1btxAbG6va/nnxVbZs2Swv/Vy+fBkVKlRQFSkAUK5cObU4165dw6dPn+Di4oKkpCTVT9plsbNnz2baTgAZeheWLVuGmTNnAgAWLFiA3r17IyoqCpcvX8bevXtVl00SEhI0xpWST2hoKJ4/f56h8GzTpo3av7V5bz8/PtIKkrRelatXryIkJASurq4a8yZSEvaoEOWgyMhIFChQAMWLF8/wmK2tLdauXYtNmzbBz88Pa9euRenSpTF48OBsb7dNX4BkJn1xAaReiipRogQ+fPggOf93797hu+++k/z89+/fZ+g5AlJ7loQQiImJUW37/E4gQ0PDLOcfef/+PUqUKJFh+1dffYXXr1+r8gWAgQMHaozx8uVLjdvT9itVqlSmrx8UFITp06cjKCgIpqamqFq1Kr755hsAmc+bIiWftHFDn7/25++jNu/t58dH4cKF8cMPP+DAgQMYNmwY9u/fj0qVKmV62ZBISVioEOWQpKQkXLhwAXZ2dsiXL5/G5zRu3BiNGzdGXFwczp8/j82bN8Pb2xvW1tawsrLS6/U/H0OSnJyMt2/fqn0gfj5e5fMejSJFiqgNwE1z7tw5fPfddxl6fooVK6YqGtJ79eoVgNTLT5kVC9kpUaIEQkNDM2xP386iRYsCSB1PYmZmluG5mj7o0+8XFRWFsmXLqrY/evQI7969g7m5OTw8PGBubo5Dhw6hcuXKMDQ0xKlTpxAYGJhpztrk8+bNG7XHPv+3vu9t586dERAQgJs3byIwMBD9+/fP9LlESsJLP0Q5ZNeuXXj16hW6d++u8fF58+ahc+fOEELA1NQUzs7OqjEbz58/BwDV/Cu6OHv2rNog3sDAQCQlJcHBwQFA6rfsiIgItX3S30ECAHXr1sWNGzfUipU3b97Aw8ND43wh9vb2OHHihNq3++TkZBw6dAi1a9dWjcXRRf369fH06VMEBQWptkVFReH69euqf1tbW8PY2BiRkZGoXbu26sfIyAgLFy7E06dPNcauU6cOAODvv/9W2+7r64tZs2bh8ePHePfuHXr16oWqVauqfi+nT58GAKSkpADI+PuSkk/ZsmVRoUIFHDt2TG3fo0ePqv1b3/fW3t4eZmZm8PHxQXR0NDp06JDl84mUgj0qRHqKiYlRfVimpKTg7du3OHPmDHbt2oX27dtneldF/fr14efnBy8vL7Rv3x6JiYlYv349ihcvjvr16wNI/UZ+7do11a2q2nj16hWGDx8Od3d3hISEYOHChWjYsCEcHR0BAM7Ozvj7778xZ84cuLi44PLly9i/f79ajD59+mD//v3w8PDAoEGDYGxsjFWrVqFs2bJo164doqOj1Z4/bNgwnD59Gr169cLAgQNhbGyMrVu3Ijw8HOvXr9cq/8916NABmzdvxrBhw+Dp6YnChQtj1apVqiIBSO1V8PDwwJIlSxATEwMHBwdERkZiyZIlMDAwgIWFhcbYFhYW+OGHH+Dj44NPnz6hRo0aOH36NE6cOIHly5ejUqVKKFy4MFavXg0jIyMYGRkhMDBQNYA1bebdtB6UY8eOwcnJCVWqVMk2HwMDA4wYMQJjxozB1KlT0aJFC9y7dw8rVqwA8P/FjxzvbefOnbFgwQI4OTmhTJkyuv0iiHIZCxUiPd25cwddu3YFkDpotlChQqhevTqmTZuGn376KdP9mjRpAl9fX2zcuFE1gLZOnTrYvHmzakxLz549cevWLQwYMABz5szB119/LTmvHj16IDo6GkOHDoWJiQnatWuHsWPHqi7XdO7cGWFhYQgICMDOnTthb2+PpUuXqvUAlStXDtu3b4ePjw+8vLxgYmICBwcHLFq0CMWKFctQqFSrVg3bt2/HwoULMWHCBBgYGMDKygqbN29G3bp1JeeuiYmJCfz9/TF79mzMmjULBgYG6NKlC8qXL692mWTUqFH46quvsH37dqxfvx7FihWDo6MjRo8ejSJFimQa38fHB8uXL4e/vz/evn2LKlWqYOnSpWjevDkAYOXKlZg/fz5GjhyJQoUKoUaNGti6dSsGDBiAy5cvw8XFBQ4ODmjQoAEWLFiAc+fOYe3atZLyadeuHT5+/IgNGzZg7969qFatGiZNmoRJkyapxpvI8d42adIECxYsQKdOnXT9NRDlOgPB1bOIiL6oP/74A5aWlqhcubJq28mTJzFo0CD8/vvvmfYEaStt8PbJkyf1ugxHlJvYo0JE9IUdOHAAixYtwqhRo1CuXDmEhoZi6dKlqFevnixFSkBAAB48eIDt27djyJAhLFLoP4U9KkREX9jbt2+xYMECnD59GlFRUShdujS+//57jBgxAoUKFdI7/pw5c7Bz5060aNECc+bMgbGxsQxZE+UOFipERESkWLw9mYiIiBSLhQoREREpFgsVIiIiUqz//F0/165dgxCCg8OIiIj+QxITE2FgYJDtmlP/+R4VIUSWC5kJIZCQkJDlc6S8hhJiKCkXxmCM/0oujJF3YygpF8bQPkZ2n99p/vM9Kmk9KbVr19b4+MePH3H37l1UrVpV0oqzSo6hpFwYgzH+K7kwRt6NoaRcGEP7GOnX7crKf75HhYiIiPIuFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUK88XKgYGBjA1NYWBgcGXToWIiIi0ZPSlE8gJKSkChoaphYmpqSksLS2zfA4REREpU54sVAwNDeC77QqeRkZrfPy7MkUwpmedXM6KiIiItJUnCxUAeBoZjUfP3n/pNIiIiEgPeX6MChEREf13sVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQkUCAwMDmJqawsDA4EunQkRE9D/F6EsnoFQpKQKGhqmFiampKSwtLbN8DhEREcmPhUomDA0N4LvtCp5GRmt8/LsyRTCmZ51czoqIiOh/CwuVLDyNjMajZ++/dBpERET/szhGhYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWJpXai8e/cOU6ZMgZOTE+zs7NC9e3dcvnxZ9fi5c+fQqVMnWFtb44cffsChQ4fU9o+Pj8f06dPh6OgIW1tb/PLLL4iKitK/JURERJTnaF2ojB49GteuXcPChQuxd+9e1KhRA/3798fjx4/x6NEjDBo0CI0bN8a+ffvw008/Ydy4cTh37pxq/2nTpuHMmTNYtmwZ/P398fjxY4wYMULWRhEREVHeoNWEb6GhoTh79iy2b9+OOnVSZ2X99ddf8c8//+DgwYN48+YNzM3N4enpCQCoUqUK7ty5g/Xr18PR0RGRkZHYv38/Vq9ejbp16wIAFi5ciB9++AHXrl2Dra2tzM0jIiKi/zKtelRKlCiBtWvXonbt2qptBgYGMDAwwIcPH3D58mU4Ojqq7VO/fn1cuXIFQghcuXJFtS1NpUqVUKZMGVy6dEmfdhAREVEepFWhUrRoUTRp0gQmJiaqbYGBgQgNDUXjxo0RERGBsmXLqu3z9ddfIy4uDm/fvkVkZCRKlCiB/PnzZ3hORESEHs0gIiKivEivtX6uXr2KCRMmoGXLlmjatCk+ffqkVsQAUP07ISEBcXFxGR4HgPz58yM+Pl7nPIQQ+PjxI4DUHh5TU1NJ+8XFxUEIkWG7HDE0PS/9f3UlRxzGYIycjqGkXBgj78ZQUi6MoX0MIQQMDAyyjaVzoXL8+HGMGTMGdnZ28PX1BZBacCQkJKg9L+3fpqamKFCgQIbHgdQ7gaQWBpokJibi7t27qtextLSUtN+TJ080volyxMhMSEiI5OfmdBzGYIycjiFXHMZgjNyIwxi5H0NT58XndCpUtm7dilmzZuGHH37AvHnzVC9Urlw5vHz5Uu25L1++RMGCBVGkSBGULVsW7969Q0JCglpyL1++RJkyZXRJBQBgbGyMqlWrAoCk6ixNpUqVMu1R0TfG5+Li4hASEgIzMzO9ijI54jAGY+R0DCXlwhh5N4aScmEM7WMEBwdLiqV1obJ9+3bMnDkT7u7umDRpktqHet26dXHx4kW1558/fx52dnYwNDREnTp1kJKSgitXrqgG3T558gSRkZGwt7fXNhUVAwMDFCxYUOv99Pnj0DWGqampTrnmRBzGYIycjqGkXBgj78ZQUi6MIT2G1E4BrQbTPnnyBLNnz0aLFi0waNAgvH79Gq9evcKrV68QHR0Nd3d33Lx5E76+vnj06BE2btyIP//8Ex4eHgCAMmXKoE2bNpg8eTIuXLiAmzdvYvTo0ahXrx5sbGy0SYWIiIj+B2jVoxIYGIjExEQcO3YMx44dU3vM1dUVc+fOxcqVK+Hj4wN/f39899138PHxUbtleebMmZg9ezaGDRsGAHBycsLkyZNlaAoRERHlNVoVKoMHD8bgwYOzfI6TkxOcnJwyfbxgwYLw9vaGt7e3Ni9NRERE/4O4KCEREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREiqVXobJmzRq4u7urbZs8eTLMzc3VflxcXFSPp6SkYOnSpWjcuDFsbGwwYMAAhIeH65MGERER5VE6Fyrbtm3D4sWLM2y/f/8+Bg8ejDNnzqh+9uzZo3p85cqV2L59O2bOnImdO3ciJSUFHh4eSEhI0DUVIiIiyqO0LlQiIyMxePBg+Pr6wszMTO0xIQSCg4NRq1YtfPXVV6qfkiVLAgASEhKwceNGjBgxAk2bNoWFhQUWLVqEiIgIHD16VJYGERERUd6hdaFy+/ZtGBsb48CBA7C2tlZ7LCwsDB8/fkTlypU17nvv3j3ExsbC0dFRta1o0aKwtLTEpUuXtE2FiIiI8jgjbXdwcXFRG3OS3oMHDwAAW7ZswenTp2FoaAgnJyd4enqiSJEiiIiIAACUK1dObb+vv/5a9ZguhBD4+PEjAMDAwACmpqaS9ouLi4MQIsN2OWJoel76/+pKjjiMwRg5HUNJuTBG3o2hpFwYQ/sYQggYGBhkG0vrQiUrDx48gKGhIb7++musXr0aYWFhmD9/Ph4+fAh/f39VwiYmJmr75c+fH+/fv9f5dRMTE3H37l0AgKmpKSwtLSXt9+TJE41vohwxMhMSEiL5uTkdhzEYI6djyBWHMRgjN+IwRu7H+Lwe0ETWQuXnn39Gjx49UKJECQBA9erV8dVXX6FLly4ICgpCgQIFAKSOVUn7fwCIj4+X3IOhibGxMapWrQoAkqqzNJUqVcq0R0XfGJ+Li4tDSEgIzMzM9GqrHHEYgzFyOoaScmGMvBtDSbkwhvYxgoODJcWStVAxNDRUFSlpqlWrBgCIiIhQXfJ5+fIlKlSooHrOy5cvYW5urvPrGhgYoGDBglrvp88fh64xTE1Ndco1J+IwBmPkdAwl5cIYeTeGknJhDOkxpHYKyDrh27hx49CnTx+1bUFBQQCAqlWrwsLCAoULF8aFCxdUj3/48AF37tyBvb29nKkQERFRHiBrofL999/j3LlzWL58OcLCwnDq1ClMnDgRbdu2RZUqVWBiYgI3Nzf4+vrir7/+wr179+Dp6YmyZcuiZcuWcqZCREREeYCsl36aNWuGxYsXY+3atVi3bh2KFCmCdu3aYdSoUarnjBgxAklJSZg8eTI+ffoEe3t7bNiwAcbGxnKmQkRERHmAXoXK3LlzM2xr1aoVWrVqlek++fLlw9ixYzF27Fh9XpqIiIj+B3BRQiIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIqlV6GyZs0auLu7q227e/cu3NzcYGNjAxcXF2zevFnt8ZSUFCxduhSNGzeGjY0NBgwYgPDwcH3SICIiojxK50Jl27ZtWLx4sdq2t2/fom/fvqhQoQL27t2LoUOHwtfXF3v37lU9Z+XKldi+fTtmzpyJnTt3IiUlBR4eHkhISNC5EURERJQ3GWm7Q2RkJKZOnYoLFy7AzMxM7bHdu3fD2NgYM2bMgJGREapUqYLQ0FCsXbsWnTt3RkJCAjZu3IgxY8agadOmAIBFixahcePGOHr0KNq2bStHm4iIiCiP0LpH5fbt2zA2NsaBAwdgbW2t9tjly5dRr149GBn9f/1Tv359hISE4PXr17h37x5iY2Ph6Oioerxo0aKwtLTEpUuX9GgGERER5UVa96i4uLjAxcVF42MRERGoXr262ravv/4aAPDixQtEREQAAMqVK5fhOWmPEREREaXRulDJyqdPn2BiYqK2LX/+/ACA+Ph4xMXFAYDG57x//17n1xVC4OPHjwAAAwMDmJqaStovLi4OQogM2+WIoel56f+rKzniMAZj5HQMJeXCGHk3hpJyYQztYwghYGBgkG0sWQuVAgUKZBgUGx8fDwAoWLAgChQoAABISEhQ/X/ac6QWBpokJibi7t27AABTU1NYWlpK2u/Jkyca30Q5YmQmJCRE8nNzOg5jMEZOx5ArDmMwRm7EYYzcj/F5x4UmshYqZcuWxcuXL9W2pf27TJkySEpKUm2rUKGC2nPMzc11fl1jY2NUrVoVACRVZ2kqVaqUaY+KvjE+FxcXh5CQEJiZmelVlMkRhzEYI6djKCkXxsi7MZSUC2NoHyM4OFhSLFkLFXt7e+zcuRPJycnIly8fAOD8+fOoVKkSSpUqhSJFiqBw4cK4cOGCqlD58OED7ty5Azc3N51f18DAAAULFtR6P33+OHSNYWpqqlOuORGHMRgjp2MoKRfGyLsxlJQLY0iPIbVTQNaZaTt37oyYmBhMmjQJwcHB2LdvHzZt2oRBgwYBSO3icXNzg6+vL/766y/cu3cPnp6eKFu2LFq2bClnKkRERJQHyNqjUqpUKaxfvx6zZs2Cq6srvvrqK4wbNw6urq6q54wYMQJJSUmYPHkyPn36BHt7e2zYsAHGxsZypkJERER5gF6Fyty5czNss7Kywq5duzLdJ1++fBg7dizGjh2rz0sTERHR/wAuSkhERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWC5VcYmBgAFNTUxgYGHzpVIiIiP4zjL50AnlZSoqAoWFqYWJqagpLS8ssn0NERETqWKjkIENDA/huu4KnkdEaH/+uTBGM6Vknl7MiIiL672ChksOeRkbj0bP3XzoNIiKi/ySOUSEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWLJXqhERkbC3Nw8w8++ffsAAHfv3oWbmxtsbGzg4uKCzZs3y50CERER5RGyz0x779495M+fH8ePH1dbgK9IkSJ4+/Yt+vbtCxcXF0yfPh3Xr1/H9OnTUahQIXTu3FnuVIiIiOg/TvZC5cGDBzAzM8PXX3+d4TF/f38YGxtjxowZMDIyQpUqVRAaGoq1a9eyUCEiIqIMZL/0c//+fVSpUkXjY5cvX0a9evVgZPT/9VH9+vUREhKC169fy50KERER/cflSI9KiRIl0LNnTzx58gQVK1bEzz//DCcnJ0RERKB69epqz0/reXnx4gVKly6t02sKIfDx40cAgIGBAUxNTSXtFxcXByFEhu1KiZHZc9P/VxeMwRg5HUNJuTBG3o2hpFwYQ/sYQgi1ISKZkbVQSUpKwuPHj1G1alV4eXmhcOHCOHToEAYOHAg/Pz98+vQJJiYmavvkz58fABAfH6/z6yYmJuLu3bsAAFNTU1haWkra78mTJxrfRKXEyEpISIhWz2cMxvgSMeSKwxiMkRtxGCP3Y3xeE2gia6FiZGSECxcuIF++fChQoAAAoFatWnj48CE2bNiAAgUKICEhQW2ftAKlYMGCOr+usbExqlatCgCSqrM0lSpVyrQ3RAkxNImLi0NISAjMzMwk99gwBmPkdgwl5cIYeTeGknJhDO1jBAcHS4ol+6WfQoUKZdhWrVo1nDlzBmXLlsXLly/VHkv7d5kyZXR+TQMDA50KHX3+OL50DFNTU72KO8ZgjNyIoaRcGCPvxlBSLowhPYbUL/SyDqZ9+PAh7OzscOHCBbXtt27dQtWqVWFvb48rV64gOTlZ9dj58+dRqVIllCpVSs5UiIiIKA+QtVCpUqUKKleujBkzZuDy5ct49OgR5syZg+vXr+Pnn39G586dERMTg0mTJiE4OBj79u3Dpk2bMGjQIDnTICIiojxC1ks/hoaGWL16NRYsWIBRo0bhw4cPsLS0hJ+fn+pun/Xr12PWrFlwdXXFV199hXHjxsHV1VXONIiIiCiPkH2MSunSpTFnzpxMH7eyssKuXbvkflkiIiLKg7goIRERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxULlP8bAwACmpqYwMDD40qkQERHlOKMvnQBlLSVFwNDw/4sSU1NTWFpaZvkcIiKivIKFisIZGhrAd9sVPI2M1vj4d2WKYEzPOrmcFRERUe5gofIf8DQyGo+evf/SaRAREeU6jlEhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQuV/EFdgJiKi/wqu9fM/gCswExHRfxULlf8BXIGZiIj+q1io/I/gCsxERPRfxDEqpBOOcyEiotzAHhWShONciIjoS2ChQpLkxDgXOXpl2LNDRJS3sVAhyeQY55K+10XXXhk5YhAR0X8DCxXKVVn1zEjtlZEjBhER/TewUKFcJ0fPDO9iIiL638C7foiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKF/udxPhciIuXiXT/0P4nzuRAR/TewUKH/SUqcz4U9O0REGbFQof9ZSpjPJbtemc+fk1Mx0mOxQ0RK8kUKlZSUFCxfvhy//fYboqOjYW9vjylTpqB8+fJfIh2iL0aONZTkiCF3sUNEJJcvUqisXLkS27dvx9y5c1G2bFn4+PjAw8MDBw8ehImJyZdIieiLUULPTl5edFIpMYhIN7leqCQkJGDjxo0YM2YMmjZtCgBYtGgRGjdujKNHj6Jt27a5nRIRQd7LWIBuA4zliPH5c5QyWFopBVNeiqGkXBhD/hhpcr1QuXfvHmJjY+Ho6KjaVrRoUVhaWuLSpUssVIj+o5RyGSu7OLkZQykFU27EkBJH7hi6tkcpMT5/DmNoZiCEEFrvpYejR49i+PDhuHHjBgoUKKDaPnLkSHz69Alr1qzRKt7Vq1chhICxsbFqm4GBAd7HJCApOUXjPkb5DFGssAmyajpjyB8juziMkdF/6ferlBjZxcntGLFxiUhOyfi8fIYGKGRqnCdiSI3DGNrFyesxEhMTYWBgADs7uyzj5nqPSlxcHABkGIuSP39+vH+vfbdzWrfS591LxQpnP9Yluy4pxpA/hpQ4jKF9HMbQPk5uxShkapzl43kphpQ4jKF9nLwaw8DAQFLMXC9U0npREhIS1HpU4uPjYWpqqnU8W1tb2XIjIiIiZcn1KfTLlSsHAHj58qXa9pcvX6JMmTK5nQ4REREpWK4XKhYWFihcuDAuXLig2vbhwwfcuXMH9vb2uZ0OERERKViuX/oxMTGBm5sbfH19UbJkSXz77bfw8fFB2bJl0bJly9xOh4iIiBTsi0z4NmLECCQlJWHy5Mn49OkT7O3tsWHDBrU7d4iIiIhy/fZkIiIiIqlyfYwKERERkVQsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChHJIjY29kunAECePJTSFjnkpbYoCd/X3MNC5T/i0qVL2LlzJ2JiYhAcHIykpCTJ+27YsAGRkZFfPA9vb2+EhYXp9fpytuX58+f4559/8OnTJ7x580arfbdv347o6GhZ8tBWSkqKpOeFh4fncCbqOnbsiNu3b+sd59OnT9i/fz8WLFiAd+/e4eLFi3j79m2u5qGUtshBrrboa9iwYXj06NGXTkM2X/J9/fjxo6TnXbt2TdLz5Dg3+/j44PHjx3rFyMwXmZk2J7m4uGhcNtrAwADGxsYoW7YsOnTogI4dO2Yaw8LCItOlp9PHGDJkiKQlqvURExMDDw8PXL9+HQYGBmjYsCF8fX0RHh6OjRs3SlrIcdWqVWjevPkXzyMgIAB9+vTRKw852pKQkIDx48fjyJEjMDQ0RGBgIObNm4fY2FgsW7YMhQsXzjbGmjVrMG/ePLi4uKBz585o2LCh1sdCQkICNm7ciFatWqFixYqYNGkSDh8+DDs7O/j6+qJEiRIa93N3d8fChQuzfM/37t2L2bNn48qVK5JyefnyJXbv3o3Hjx9j0qRJuHTpEqpXr47KlStLbk9cXJxOK6Cn9/r1a3Tt2hVv3rxBQkICunTpgo0bN+LWrVvw9/dHlSpVciUPpbQlPj4eu3btwoMHD5CcnKzanpCQgFu3biEwMDBH23Lv3j1YWFhk+7x169ZhwIABWT7n/PnzyJ8/v055fO7UqVNYv349njx5gl27dmHfvn2oUKECOnTokGsx5DhGdM3D1dUVS5YsyfR3k5KSguXLl2Pt2rW4detWtjnIcW6+fPkyNm7ciNq1a6Nz585o06aNpHOpFHmuR6Vz58548eIFLC0t0atXL/Tq1Qu1a9fG8+fPUadOHZQvXx7Tp0/Hb7/9lmmMiRMnwsTEBL1798ayZcuwbNky9OvXD/nz50fPnj3RqVMnbNu2DevXr8/x9ixcuBAAcOzYMRQoUAAAMHbsWJiYmGD+/PmSYlhbW+Pvv//+4nk0adIEW7du1avLVI62rFq1Cvfu3YO/v7/qxOnu7o7Q0FD4+vpKinHy5EmsWLEC+fLlw7Bhw9C0aVMsXLgQT548kZyHr68v/Pz8EBMTg9OnTyMgIACDBg1CbGxslu9pUlISOnTogFOnTmV4LDo6GqNGjcKkSZPg4OAgKY/Q0FC0a9cOAQEBOHr0KD5+/IjDhw+jc+fOuHHjhuT29OrVC8OGDcO2bdvwzz//4NKlS2o/UsydOxfVqlXDuXPnVL+befPmoVq1avDx8cm1PJTSFm9vb/j4+ODhw4f4/fffERYWhn/++QeHDx+Gi4tLjrelS5cu2LFjR6aPR0ZGolevXqrzQ1ZcXV3h6+uLhw8fIiEhQVLumpw9exbDhg3Dt99+iw8fPiAlJQVJSUmYMGEC9u/fn2sx5DhGdM3D3NwcXbt2xbZt2zI89vTpU/To0QOrVq1C9+7dJeUhx7l5165dOHz4MBwdHbFmzRo0bNgQv/zyC86cOQO9J8AXeUy/fv3E6tWrM2xfv3698PDwEEIIERAQINq2bZtpjC5duoidO3dm2L5nzx7RrVs3IYQQx48fFy1btsw2H3Nzc2FhYaHxp3bt2qJFixZi+fLlIiUlReP+TZs2FVeuXBFCCGFjYyPCwsKEEEJcvXpVODo6Zvv6QggxYsQIYWFhIerVqye6dOki3N3d1X6kkCMPNzc31fvRsGFD4eLiovaTW21p0aKFOHv2bIa2/Pvvv6JRo0aSYqQXExMj9u3bJwYNGiSsrKxE165dxZ49e0RcXFyW+zVu3FicOXNGCCHElClTRO/evYUQQgQFBYn69etnul9iYqKYM2eOsLCwEHPnzhWJiYlCCCEuXrwomjZtKmxtbcXu3bsl5z948GAxceJEkZKSono/EhMTxejRo4Wbm5vkOObm5pn+WFhYSIrRsGFDcfv2bSGE+u/m7t27wt7ePtfyUEpbHB0dxcGDB4UQQjRv3lw8evRIJCQkiKFDh4qZM2fmeFu2bNkiatWqJUaOHCmio6PVHgsMDBT16tUT9evXF8eOHcs2jxYtWmR5PpSqa9euws/PTwih/r6uXbs2y/O63DHkOEb0yWPz5s2iVq1aYvjw4eLDhw9CiNTPtjp16ggnJyfVOU4KOc7Nn7tw4YKYPn26sLGxEU2aNBFLliwREREROsXKc5d+rly5gilTpmTY3qJFCyxduhQAUK9ePUydOjXTGHfv3kX9+vUzbK9bty6mT58OALC0tMSLFy+yzWfixIlYsGABunfvjrp16wJIvW64bds2dO/eHcWKFcPmzZthYmKises0KioKX331VYbtRYsWlXydsmDBglle6pJCjjwcHBwkf8vPjBxtiYyMRIUKFTJsL1euHN6/f691vLi4OLx//x4fPnxAUlISDA0NsWrVKixcuBC+vr5wdHTUuN+7d+9U3f9nz55F165dAQDFixfHp0+fMn09IyMjeHl5wd7eHpMmTcKVK1dgZ2eHzZs3w9raGps3b0b58uUl53/16lVs27ZN7dKVkZERhgwZgi5dukiO89dff0l+bmZiY2NRsGBBjY9JHQ8lRx5KacuHDx9gZ2cHAKhatSru3LmDypUrY9CgQRg1ahQmT56cbQx92uLm5gZra2t4enqiY8eOWLRoEapWrYoZM2YgICAATZo0waxZs1C6dOlsY/38888655He/fv3NfY4/vDDD1i+fHmuxZDjGNEnD3d3d9jY2GDMmDHo2LEjLC0tcfz4cbRq1QrTpk1D0aJFJechx7k5vZs3b+Lo0aOq3m97e3tcunQJGzZswMyZM9G+fXut4uW5QqVUqVK4evUqKlasqLb9ypUrqmv+r169QpEiRTKN8d133+HEiRMZrtmdOHECZcuWBQCEhYWhZMmS2eZz6NAhTJw4UfUhBADNmzdH5cqVsWfPHuzYsQPVqlXD/PnzNRYqtWvXxpEjRzBw4EC17du2bYOlpWW2rw8Ac+bMkfS8rMiRx7Bhw/TOQ462VKlSBefOncNPP/2ktv3QoUOoWrWqpBjx8fE4evQofv/9d5w/fx6lSpVCx44dMWfOHNWxN336dHh5eWm8RAMAFSpUQFBQEN68eYOnT5+icePGAIDjx4/ju+++yzaHZs2aoXjx4ujduzeCgoLQoEEDrF+/XuuxMikpKRoH6MbGxiJfvnyS43z77beZPhYfHy8phr29PXbs2IEJEyaotiUmJmLVqlWqD2ypeSQkJODp06eoUKEChBBarc4uRww52lKyZEm8efMG33zzDczMzPDgwQMAQIkSJfD69etcaUvt2rUREBCAadOmoUePHvjqq6/w7t07TJs2Dd26dZMUA0i99COHIkWK4OXLlxm+bAQHB6NYsWK5FkOOY0TfPGrXro0pU6Zg0KBBePbsmWrsoKGhdqM65Dg3v3jxAr///jt+//13PHnyBNbW1hgyZAhat26tGquybNkyzJ49m4WKu7s7ZsyYgZCQENjY2CAlJQU3btzAli1b8PPPP+PFixeYNm2a6kNBk59//hleXl4ICgqCra2tKsaff/6JGTNm4MmTJ5gwYQJatmyZbT769s6MHj0a/fr1w82bN5GUlIRVq1bh0aNHuH37NjZs2CDxXfn/wZJPnjzBxIkTtR4sKVceaWNDnjx5giVLluD48eOoVq0a6tWrl2ttGT58ODw9PREcHIzk5GQEBATgyZMnCAwMxKJFiyTFcHR0RFJSEpo2bYoVK1agcePGGU4Ojo6OWX7r8vDwwOjRo2FoaIj69evDwsICK1aswIoVKzB79uxsc9i+fTt8fHxQsWJFODk5wd/fHyNHjoS3t7dW36YaNWqENWvWqI2bePfuHXx8fDQeu5l5+/YtVq9erTbwUwiBxMREBAcH4/Lly9nGGD9+PHr27ImLFy8iMTER06ZNw+PHjxEdHY2tW7dKykMIgQULFmDLli1ITExU/V5NTU0xbdo0SR8kcsSQoy1OTk6YPn065syZgzp16mD27Nlo0aIFDh8+rPrSlBttKVy4MKpXr47AwEA8f/4ctra2aNKkiaTXT+/UqVPYsGEDHj9+rPMg2Hbt2mH27NmYPXs2DAwMEBsbi9OnT2PmzJlo3bp1rsWQ433VJ4+kpCQsWrQImzZtgr29PZo3b67qvV+wYIGkLzvp6XtudnFxQcmSJdG+fXssX75c42BxS0tLmJmZaZUXgLw3RkUIIbZu3SqcnZ1V1wudnZ3Fjh07hBBCnD59WowePVq8f/8+yxh///23cHNzE7a2tsLe3l64ubmJ06dPCyFSxwIsXLhQJCQkZJtLq1atVNcg0/Pz8xMtWrQQQghx/vx50aRJk0xj3Lt3T4wdO1a0adNGtGrVSowYMUJcv34929dOExISIurVqydcXFxEzZo1RVhYmBg+fLiwsbHRKo6+eQQFBYlatWoJNzc3VR6TJk0SNWvWFCdPnszVtpw6dUr06NFD2NjYCCsrK9G5c2fx559/St7f399fREVFZfmctLEjWbl79644duyYiI+PV+X177//ZrnPmzdvxKBBg4S5ubmYPn26+PTpkxAi9Thq3LixaNKkibh48aLElggREREhWrZsKRwdHUWNGjVEmzZthI2NjWjatKl4+vSp5DgjR44U9erVE56enqJGjRpizJgxwtXVVZibm4s1a9ZIjhMZGSkWL14sBg4cKDw8PMS8efNEeHi45P39/f1Fo0aNxN69e4W1tbUICwsThw4dEvXq1RMLFy7MtRhytOX9+/fi559/Flu3bhUpKSnCw8NDmJubi5o1a4o//vgjV9oSFhYmunbtKmrWrCmWL18u7t27J9q2bSvs7e3FkSNHJLflzJkzolatWmL8+PGidu3aIiwsTCxcuFDUqFFDBAQESI6TkJAgRo8erTYexNzcXAwaNEj1t5AbMeQ4RnTNIzg4WLi6uopatWqJ9evXq21v166dsLOzE/v375eUgxDynJuPHz8ukpKSJL+mNvJkoZLm7du3GQaA5bYDBw4IS0tLMXr0aLFlyxbh7+8vRo8eLSwtLcWePXvE48ePhbOzs5g1a5bG/WfOnClCQ0P1ykGOwZJy5NG7d2/VH3D6gWOzZ88WnTt3lhRDjrasX79e50Fdn7t48aLYsWOHiI6OFg8fPpRUnHwuPj5ePHr0SCQmJkoqfh0dHUWDBg00nkCioqLEgAEDhKWlpVYfqB8/fhS7d+8W06dPF1OnThVbt27V+m+nXr164sSJE0IIIVq3bi3u3r0rhBBi8uTJYuzYsZJiDB06VAQHB2v1up9r3bq1OHr0qBBC/Tg7evSocHZ2zrUYcrTl0qVLqiJWCCFSUlLE7du3RWRkpOQY+rRl7969ws7OTjRv3lxcu3ZNtf3Tp09i8uTJwtzcXEycOFF8/Pgx2zzkGMAqhFCdh0JDQ8WRI0fEoUOHxMOHDyXvL1cMOY4RXfOwsrISrVu3Fnfu3MnwWHx8vJgyZYowNzcXv/zyi6Q85Dg3CyFEXFycCAgIEL6+vuLt27fiwoUL2X6hkyJPFipPnz4Vhw4dEgEBARl+pLp06ZJYs2aNWL58uVi2bJnaj7b06Z2xs7PT6huYJvXq1VMd/OkPwuDgYGFnZycphhx51KlTRzx+/DhDHqGhocLGxkZSDDnaUqdOHRESEqJt+mqio6NF165dVd+CwsLCxKBBg0Tr1q0lF0EpKSnCx8dHWFlZiRo1aoiwsDDh6ekpJk6cmGXBMmjQIPHmzZssY69fv17UqlVLUh6dO3dWFRX6qFmzpnj+/LkQQohhw4ap/t7u3bsnnJycJMWoU6eO3seZlZWVKkb6YyQsLEzyeyJHDDnaUr9+fXHr1i29YujTFnNzc+Hl5SViYmI0Pn7o0CFRp04d8f3332ebh42NjeqD+fM8rKysJLenUaNG4saNG5Kfn1Mx5DhGdM0jfU9qZo4cOSLq1q0rKZ4c5+ZXr14JFxcXYW1trTqfDRo0SDRs2FDvgj3PzaOye/dutGzZEqNHj4aXl5faT/pBbVlZsWIF3NzcsH79euzduxf79u1T/QQEBGidk7OzM7Zs2YKrV6/i4sWL2LJli2qMjL29PTw9PTO9npl2f3tMTIzWr5tGjsGScuRhbGyscf8XL15InjhJjrYoZV6ZLVu24Pfff8fUqVNhYmICIHWg9fHjx7Mc8b969epsB3L3799f4xwLmoSHh2d6d4o2ypQpg2fPngEAzMzMcP/+fQCAqamp5Lup5Jhr49tvv0VQUFCG7adPn5Z8N5QcMeRoS8mSJfWeAVmftixevBhz5sxBoUKFND7eunVrBAQESJrYK23g6Oe0GcAKpJ5HjIz0G14pRww5jhFd85gyZUq2k+f98MMPkj+v5Dg3yzFvUGby3GDa1atXo1u3bvD09NR5VrwdO3bA09MTgwYNkiWny5cv4+rVq0hMTMww8U12o61fvXqFw4cPw9/fH6VKlcpwcEq5RU6OwZJy5NG8eXMsXrxYbcDqo0ePMGvWLDRt2lRSHnK0pXDhwpg/fz5Wr14NMzOzDG3ZvHlztjFOnDiBBQsWqJ2QqlSpgilTpmDo0KGS8ti1axemTJmCFi1aYObMmQBST/zGxsaYM2cOPD09Ne539OhRODs7ZzlYLzY2FgcOHICVlVW2eXh4eGDSpEno378/KlSooCq80nzzzTeS2tOyZUtMmDABc+fORYMGDeDp6Qlra2scP348w114mTl16hTCwsIynXH17t272cbo378/pk+fjlevXkEIgXPnzmHXrl3YsmULvLy8JOUhRww52uLk5IRBgwahSZMmqFixYoZjVcrdGvq05Ycffsg2fvny5bFz585snyfHAFYgtQD08PBAhw4dULFixQzHq5TpC+SIIccxomsefn5+6NGjh9rx8OnTJ7X9o6Oj4e3tjdWrV2ebhxzn5vPnz2Pt2rVqhU2xYsUwfvx49OrVS1KMzBiIzz85/+PSbqPVdsRzetbW1jh8+HCWt1tKtWLFCixbtgxFixbNUDgZGBhk+wGf3b30Uk5UabNHRkdH4927d6hcuTKePXuG4sWLY+vWrZLaKUceadPw37x5EykpKShSpAhiYmJgYWEBPz8/FC9ePFfakl3PmpRboK2trfHHH3+gfPnysLW1xYEDB1C+fHk8evQInTt3xvXr1yXFOHToEL777ju1GOHh4WjdurXGb2sAUKNGDZw5cwalSpVSbWvWrBk2b96sav/r16/RuHFjSR+GNWvWVN2lk/7WZiEEDAwMJMUAUm/T9PHxgZWVFdq1a4cpU6Zg9+7dKFKkCJYuXZrpfDLpZfcNUOotrrt27cKqVasQEREBILVnYsCAAejbt6+k/eWIIUdbspp9Vsr5I42ubRk8eDB8fX3Vzl1nzpyBvb296kMyKioKzZs3x9WrV7OMlZiYCC8vLxw6dEiVvxACTZs2xZIlSyRPr5/VlP5Sj1c5YgD6HyO65qHpHGBnZ4fff/9d9eVJm3OAHOdmW1tbBAQEwMzMTO18du/ePfTo0SPb4yMrea5Q6dKlC4YMGSK5CtSkb9++6Ny5M9q2bat3Po0aNYK7u7tsvTO6iouLwx9//IG7d+8iJSUF1apVQ4cOHWRbi0Eb586dw507d5CSkoLq1atrvLU3K0poi5ubG5ycnDBw4EC1P8oZM2bg3r172L59e7YxWrdujeHDh6NVq1ZqMbZt24Zt27bh8OHDGvezsLDA2bNn1U5S6fcHtDtJXbx4McvHtbl1/HPv3r1D4cKF9e5m11VUVBSEEGrv1ZeIoRTatkXqB2KjRo1w7949STFDQ0NVf7vVq1eXPHeRkuX2MSL3OSCNPufmgQMHolKlSpgwYYIql7Jly2LMmDGIjY3Va8mZPHfpx8PDAzNmzEB4eDgqV66suvafxt7ePtsYbdu2xcyZM3Hr1i2NMbSZGTU6OlrvgufOnTvYtGkTHj58CBMTE1SvXh0DBgzQOLtqZkxNTTNMcPYl8gBS5xeR8u06M3K05dWrV9i+fbtaW3r06CF5/hE55pWRo+tYDukLkZiYGBgbG0v+dit1TRNA2t8ekDrhnZ+fn+p3U61aNQwdOlQ1s7Mm+/fvR+vWrWFiYpLtWi1pC4va2dmp9SDJEUOOtmhy6dIlPHr0CG3btkVERATMzMyyLP7kaoum77GatmX2Hjx//hzlypWDgYEBnj9/rnq99Jck028vUaKE5KI2PDwcDx48QP78+VG1alXJ88roEyMnjhFd8sgp+pyb5Zg3KDN5rkdFSd2CgP69M3/++Sc8PT1hY2MDa2trJCcn4+rVq3j48CHWrl2b6biMZs2aYc+ePShRokSmK0qnMTY2Rrly5bI8geqaR/pvZFmtSg2kTtterlw5jB49Wu3auNxtuXDhAgYNGoSSJUuqLnvcunULCQkJ2LRpk6TVYoHUCZI2btyo+gZSrVo19OvXD9bW1pL2B3TrOs6Jb1P+/v7w8/NDZGQkDAwM8N1332HIkCHZFuVpv9PsTiNS/262bduG2bNno1WrVqrj7MqVK/jrr7+wYMECtGrVKtM80t4TKb8/AwMDtGvXTm3gsxwx5GhLejExMejfvz9u3LgBAwMDHD16FLNmzUJYWBj8/PwyXUFbrrboe6xp8/cPAPnz58fo0aOzHNPw/v17TJw4Ue2yl6GhITp27IipU6dKKrJ1jSH3MSJHHmm0PQfIcW7+3MuXL7F9+3a13u4ePXroNRQDyIOFStpdB5mRY9yJNvbu3Yv58+fD1dVVp96Z1q1b4/vvv8fIkSPVts+ePRuXL1/Gvn37NO63fPly9O/fH6ampli2bFmWB2FSUhKuXbuG58+f49ixY7LmERAQgDZt2sDExAT79u3LNo8LFy7gwoUL+Oeff3KsLZ07d4alpSWmTZumulMoISEBXl5eePnypd7Vvy606TqWu1BZtmwZNm7ciF69esHa2hopKSm4fPkydu7ciTFjxsDNzS3TfbP7e0tPyt9es2bN0Ldv3wyvuXbtWgQEBODIkSOSXy8zycnJOHr0KCZNmqTzdXMpMeRoy4wZM3Dnzh34+Pigffv2OHDgABISEjBmzBhUrlwZCxYs0Cl/qW3R91i7ePEi7OzsYGRkhAsXLmT5t5ucnIx//vkH+/btw/nz5zN93tixYxEUFIQpU6bAyspKdbx6e3ujadOmGtd6y4kY2ZFyjOiahxznADnOzblGr5ubKVv6rrBZq1YtjXN+PH78WNSuXVu2PIOCgoStre0Xz+P+/fuiYcOGesWQ0pa0OQPSe/jwoeS2JCcni/3794spU6aICRMmCC8vL7WfzFy8eFHyT2YsLCwyzKNia2urmvtAiNQ5DaSu4NqoUSPVCr3p7d69W/LEVelFR0eLGzduiDt37mg9aVzt2rVz5TiLiIgQc+bMydEYcrRFjlXLpcisLebm5uL169dq29LnIYR2x1p2Hj9+LDp16pTlc+zs7MSlS5cybD9z5oyoV6+epNeRI4YU2R0juuYh9zlAiuzOzbGxsWLFihWif//+olevXjqtbJ+ZPDFGRZtLA5mNktemG0ybSz9SB5hlpmbNmrh48WKG2ztv3LgheRBadtdSO3bsiFq1auHo0aM5moeUO4eqV6+O06dPZ/ocOdpSqVIlPHjwAJUqVVLbHhoaKrnHbfbs2di2bRssLCy0GsTr7u6uulTy+R02gPq1/syOMyEEOnfurDbILS4uDu7u7qoeIk1zzWQmOjoaNWvWzLC9Tp06ePPmjeQ4KSkpmDdvHrZv346kpCQIIWBiYoKuXbti4sSJkhZLdHBwQGBgYIbFL0+ePAlbW1tJeUg5B5QpUybLcUByxJCjLXKsWq5vW65du6Y2z4kQAjdv3lRdrpQ6R46Uu+0qVaqEvXv3Zvk8Y2NjjX9zJUuWlHzcyxFDjmNE1zyEEGjYsGGGbVLWn9NEjnPzlClT8Ndff6Fhw4Yaj1l95IlCxdXVVXX/uKurq9arxwKpHzxpKyqn3ef/paT/MLa3t4e3tzceP36MOnXqwNDQELdv34afn5/k+Toy+0PJnz8/ypYtq7r89PlS7XLn8fnloeTkZLx58wZGRkZqq8lmNcpc17akH/TZpk0bTJkyBa9fv4adnZ2qLQsWLMDw4cMlteXgwYOYPXu21ivCpi+Uz507h5UrV2LixImq7vGgoCDMnj1b40raaeRY6TS9Zs2aYceOHZg4caLa9oCAADg5OUmOs2bNGuzduxdjx45FvXr1kJKSgkuXLmHFihUoU6YMPDw8NO6X/iRZrlw5LF68GLdu3YKdnR3y5cuH27dv448//kD//v0l5fH5OSApKQkhISH4559/MGLEiByNIXdb5Fi1XN/3Y/jw4RnGIP3yyy9q/5Zyvnz69Knav5OTkxEWFoaYmBi0adMm2/3T9OrVC7Nnz8bixYtVEx9+/PgRixYtQo8ePXIthhzHma55yLGKfHpynJtPnDiBhQsXwtnZWdbcgDw4RkUJ9O2dkTqYU9uBvWmSk5MREhKCadOmoWvXrpkO9M3pPIDUwYJpH9R9+vTRen9t2iLnoE9bW1scPHhQr0Fi33//PaZNm5ZhlP3Fixfh5eWl9+y5WUn/7TY2NhbHjh1DjRo1UKdOHdUH6tWrV/HTTz9h2rRpkmK6uLjA09MT7dq1U9t+8OBBLFu2LNNerqzmCklPm3lDNNm5cyf+/fdfLF26NMdiyN2Wq1evol+/fmjUqBFOnTqFdu3aqd1d5uDgoFX+6Ul5P+Qeg/Q5IQRmzpyJQoUKZSh+0vu89+LZs2coUKAAKlasiHz58uHJkyeIj49H7dq1sWvXrhyLIYWUYyQ38gCQoedWG9qem+3t7bF3716t7wKVIk8WKpnNBGtgYCDp239KSgoOHjyYaYzZs2dnub82g5S0/UYupzt37mDkyJGZDjrNLcHBwejXr1+W3YrZya4tcp9wR4wYAQcHB/Ts2VNy3M/Z2tpiz549GZZDlzpBUkxMDIyMjDLMZgmkjr6fPn06VqxYoXFfd3d3STkaGBhImqkXSJ3A7uDBgxlOVGFhYWjTpk2mE9jllmfPnqFt27a4du3aF42hLTnuLtNEzrZERETofEttWFgYunbtinPnzmX6nOwG0aeXWY+jHDGkyO59lTOPBw8ewMjICJUrV87w2L179zBp0qRsL6VlRZtz86RJk/DVV19h1KhROr9eZvLEpZ/0spsJVkqhouv4gzTpi49OnTppvX9uMTQ01Lj2Rm6Ljo7Wez2T7Noi991eNjY28PHxwblz51ClSpUM09lLOdFZWVlhyZIlamuppC0HkNUka1FRUZgwYQJOnz4NAwMDtGzZEnPnzlUVLLt27YKvry8SExMzjbFlyxYpzdSKmZkZ/v333wyFytmzZ7V+/1+/fq1xfRyp0/lrEhgYmOmaNTkZQ5+2pM3b8fntrR8/fsSmTZt06oVMI7UtL168wF9//QUjIyM0a9Ysw/iDrVu3YtGiRbhy5YpOeYSGhma7FpLUS7I5HUOK7N5XOfIIDw/HkCFDEBwcDCD1XLJmzRoUL14ciYmJqjv5tFlDSRNtzs0lS5bExo0bcfr0aVSqVCnDHa76XK7Kc4WKHOv06Dr+QBN9e2du3ryJ6dOn4+HDhxo/eKRcptA0ADUmJga7d++WtBaMXHloGrAVGxuLw4cPS+7ClqMtYWFhWS4WJ6VLfuvWrShZsiTu3LmDO3fuqD1mYGAgqVCZPHky+vTpg8aNG8PMzAxCCISEhKBUqVLw9/fPdL+5c+fi6tWrGDZsGExMTLB582YsWbIEI0aMgKenJ06ePIm6devC29s72xzSvH//HiEhIRneDwMDA8mTk/Xt2xdTpkxBeHi46rr2lStXsG3bNowbN05SjFOnTmHChAl4+/at2nahxXT+mgY5xsbG4v3795I/JOSIoWtboqKi8OnTJwCpl+iqVauGEiVKqD3nzp07WLhwoaRCRZ+2nDt3Dj///LMqnwULFmDr1q0wNzdHeHg4xo0bh2vXrklaZ0vTYNrY2FicPXsWzZo1y3b/9E6ePIkHDx5oPF6ljpnTN4Ycx4iuecydOxcxMTGYM2cOTExMsGrVKvj4+GD06NEYMGAA7ty5g/bt22cYd5YZOc7N169fV/Xyyf0FOM9d+pFjnR45xh+k8fb2zrJ3Jrtvtu3bt0f+/PnRqVMnjV38UoopTWNNjIyMYGtri2nTpmW49JBTeWi6fm9sbAxbW1t4enpmOnlVenK0pVu3bnj16hVatWqlsS36DlZNSUmRPO10TEwM/vjjDzx8+BAGBgawsLBAmzZtslyxtFGjRvDy8lKNx7l69SpGjRqF2rVr499//8XYsWMlDwgEUuf6mT59usZFM7Udf7Rp0yasX78er1+/BpA6qLl///6S1z5p2bIlKleujB49emj83UiZzl9T17qxsTFsbGwkn3TliKFrW/bv3w8vLy+Nd4elEUKgSZMmWLNmTY62pVu3bjA2Nsb8+fNhYmKCGTNmIDY2FkOHDsWAAQNgaGiIcePG4ccff8w2D02XG01MTGBjY4O+fftK7r2eMWMGtm/frnFxVKljf+SIIccxomsejo6OmD17tmrg6v3799GrVy9UrVoVoaGhmDVrFpo0aSIpB0Cec3NWXr16pd+dQHrd3KxAffr00TgnhDaGDx8utm7dKks+9erVE/v27dN5fysrK/HgwQNZctGHUvKQg7W1tbh165ZeMVxcXMTbt28zbI+IiJB1HgZNatasKZ4+faq2zdLSUjg7O4vg4GCt4zk5OYnJkyeL4OBg8fTp0ww/2oqPjxdv3rwRr1+/FhEREVrta21tLR49eqT1ayqRPm25ePGiOH/+vDA3NxdHjx4VFy5cUP1cvHhR3Lp1SyQkJMiccUZ2dnbi2rVrqn+/evVKWFlZCWdnZ9G3b1+tf79yqFevntixY8cXjyEHXfOwtLQUL168UNtWs2ZN0bFjxwzz3uQWTXO7CCFEeHi4sLGx0St2nrv0I8c6PXKMP0iTkJAgeY0TTWrVqoVnz56hWrVqOseQg5x55MT4A22YmZkhLi5O6/0OHz6smpXx2bNnmDFjRoZvQc+ePZM8UO7Vq1dYvHixxsuCQOaXoJKSkjJ8QzcxMcGUKVMk9Sh97sOHD+jfvz/MzMy03je9qKgojBo1SvUtDAAaNGgACwsLLFq0SNL18vr16+P27dsaBwdqI7PudED636++MfRpS9o5Y/Pmzapb1/Wha1s+fvyo1juddtu/tbU1FixYoNViokDmlxgB6WtBGRkZ6XW3k1wxAP2PEV3zSE5OzvC5ZGxsDC8vL70WRtT23Lxnzx4cOHAAQGov39ChQzPk9fLlS8lrqGUmz136kWOdHrmWVgf0vzvk0aNHGDJkCFq3bo3y5ctnODFIKbzkGF8iRx5yjD+Qoy1Xr17F9OnT4e7urrEtmZ0wX7x4gfHjx0MIgUuXLsHGxkbtj9LAwAAFCxZE9+7dJXW7Dh48GLdu3UKbNm1Uc/ikl9mJTsr02doYO3YsatWqhd69e2u9b3q//PILwsLCMGvWLFSvXh0AcPv2bUybNg3VqlXLdjwWkHr3yI8//ogGDRqgfPnyGYo+KSd/pVwakKMtQOrdG/7+/njy5AmWLFmC48ePo2rVqjl+eQHI/Fjbvn07atSoIen108h1iXHFihUICwvDzJkzM3wRlUqOGHIcI7rmIfc5QNdz87t37zBv3jwAqXe7arqcXqhQIdVEnLrKc4WK0mzcuBFLly5Fo0aNdOqdWbZsWaa3mEr945ZjfIkcecgx/kCOtuzcuRPe3t5ISkrK8JjUtnTq1AmbNm3S65uCjY0N1q9fr/VKujVq1MDZs2dVE0QB+p2kXr58iXbt2qFKlSqoUKFChg9UqaP1HRwc4O/vn+HLwq1btzBw4ED8+++/2caYMmUKdu/ejRIlSmQYpyP15O/g4ABPT09069ZNUt45FUOOtty6dQvdu3eHjY0Nrl27hiNHjmDNmjXYv38/VqxYIakg1qctcn4gNmnSBE5OTujTp4/Gv12p4wofP36M7t274+PHj/jqq68yHK9S3lc5YshxjOiah9znADnOzWPGjMG0adN0ulM2O3nu0o+cXr9+rbH61+YShb53h2zduhWjRo1C7969sxxgmZXQ0FDs2bNHr8s2cuTx8uVLrF69Wq9ufTnasnz5cvz4449wc3PTuS3R0dEIDw/XOPW8VAULFtSpm1ZTF2t8fDzGjBmT4ZudlDlQvL29ERsbi4SEBK3mm/lccnKyxgn1jI2NJV9q++OPPzBnzhy97rhTyqUBOdri4+ODfv36wdPTUzXtvre3NwoVKoRly5ZJKlT0bUtERATi4+PVtkVGRqqWa0iT3XlRrkuMY8eORdGiRdG5c2cULFjwi8WQ4xjRNQ+hYRmNT58+qS2jkUZK0SXHufnChQt4/Pix5LsvtZHnCpVHjx5h5syZquv+n5N6aWDChAkICwtT267NJYo0+s4umpKSku1dINmRY3yJHHnIMf5AjrbExsbCw8NDr7u64uLiNH7z0EaHDh2wfv16zJgxI8PJJSuaPvj0ucvt9OnTWLVqFRo3bqxzDCD1ktnChQuxaNEi1beqmJgYLFmyRPL4A1NTU7Upu3XRo0cPrF69Wq9ufTliyNGWtEtnn+vZsyd2794tKYa+bfn8jh4hhNodPFLPi82bN8epU6f0LlQePnyIPXv2qC4vfqkYchwjuuYh9zIacpybjY2N9R5LlZk8V6hMmzYNb968wZgxYzRe95fC29sbX331FcaNG6dzjM/p2jvToUMHbN++HePHj9f5tWfMmIEhQ4bgxo0bOo8vkSOPadOm4ccff8Q///yj1/gDfdvSvHlzHD9+XK/Jsnr16oXhw4ejZ8+eqFChQoaiRcoH87t37/DHH3/g5MmTKF++fIaTXWa9IXKv81GiRAlZBjJPmDABPXv2hJOTk+rDKCQkBMWLF8f69eslxejRoweWLVuGmTNn6lwUt2rVCt27d0edOnV07taXI4YcbTE2NkZMTEyG7S9evJAcU5+2SJ2VWIqxY8eiXbt2CAwM1OsSY5UqVfDhwwe9cpEjhhzHiK55yF2oyHFudnV1hYeHBzp06ICKFStmOCdKOTdnJs+NUbGyssKOHTv06pKvXbs29u/fr9MdFJ/Tt3dm/PjxOHToEEqUKIHy5ctnqFilnEjkGF8iRx5yXLOXoy3z58/Hli1bYGlpiQoVKmRoi5QTphyDtqWsJquruLg4LFq0SNKET7t27UJgYCB+/fVXVKhQQavenc9FR0fj0KFDePjwIYyMjFC1alW0a9dOcu9T3759VQtIlipVKsPvRsox0rlzZ3z48AEtWrTQ2J0u5aQrRww52vLrr7/i+fPnWLRoEZo0aYIDBw4gISEBnp6eqFWrlqQBynK0JTsfP37M9tLFiBEj8Pfff8PCwkJjkSV1tuTDhw9j8eLF6N+/v8a/XylfEuSIIcf7qm8e+iyjkZ4c52Y5zomZ7p/XCpUmTZpg3bp1enXptWzZEr6+vrJca+vUqRMKFiyIvn37auydyW6QkhwfZg4ODujbt69e40vkyMPOzg6//vqrXtfs5WhLduvcSDlhZjeWQ+4p+9P79OkT5s+fj0OHDsHY2BgdOnTAL7/8oupdOnPmDKZOnYoXL15kGBelScuWLfH8+XMkJydrfFyfE0xUVJTagL/sSFluPjtWVlZ6d+vLEUOOtsTExMDDwwM3b95ESkoKihQpgpiYGFhYWMDPzw/FixfPNoa+bYmLi8P58+dhZGQEe3v7DB+KJ06cwIwZM3DixIks49jY2GDZsmV6X2KU4wNRjhhyHCO65qHNMhrXr1/PNg85zs05Kc9d+nFzc8PChQvh6+ur8+jjn3/+GbNnz8b06dNRuXLlDHfqaOPhw4d69c7I0c0vx/gSOfKQ45q9HG2RY52brAqRzwceZiUqKgpPnjxBSkoKgNSetoSEBAQFBeHnn3/WuI+Pjw92796N9u3bw8TEBDt27EDhwoUxaNAgeHt7Y8eOHahQoUKW0/Cnl9nraOvDhw/w8fGBm5sbqlatCg8PD5w/fx5mZmZYu3atpLsR5Ph2r5RLA3K0xcDAADt37sS5c+dUixJWr14djRs3ljyHiT5tuXv3Ljw8PPDmzRsAqcf9li1b8M033+D9+/eYMWMGDh06JOn8JtclRn1W0JYzhhzHiK55yL2Mhhzn5qzos2glkAd7VPr27YvLly8jOTkZpUqVynDdX8qBIec3TDl6Z168eIFt27apVsqsVq0aunbtKvmP3tvbG8bGxnqNL5EjjxUrVuDJkyd6XbOXqy2xsbE4cOCAWltat24tubh9+/YtVq9ejQcPHqiOEyEEEhMTERwcjMuXL2cb48CBA5g8eTISEhIyTJf+7bff4vjx4xr3c3Z2xsCBA9G9e3cAqZNOzZo1C46OjtizZw/69u2LkSNH6jzAT1cTJkzA5cuXsXr1ajx8+BBjx47F7NmzcfjwYRgZGWHZsmWS4ty6dQsbNmxQ/W6qVq2K3r17S/4bUsqlATna0qJFCyxevFivS9n6tKVfv354/fo1pkyZAhMTE/j4+KBkyZIYNWoU+vXrh1evXmHAgAH4+eefsz3e5LzECKT2Nj1+/BjGxsYoX768Tl9M9Ykh1zGiSx5yL6Mhx7k5PDwc8+bNy3BOTEhIQFRUlKTe3czkuUJFju7WgICALB/XpnssICAAu3bt0rl35v79+3Bzc0OBAgVgZWWFlJQU3Lp1C3FxcdixY4eku1/kGF8iRx5yXLOXoy3Pnz+Hm5sb3rx5g0qVKiElJQWhoaEoVaoUtm/fLqnyHzVqFM6dO4eGDRvizz//RJs2bfDo0SPcuXMHo0ePxsCBA7ON0bp1a1hbW8PDwwPdu3fHxo0bVdeVR48ejQ4dOmjcr3bt2jh8+LCqhyI5ORm1a9dGsWLFsHjxYp1umfzrr7+wZs0atQ/U/v37o0WLFpJjNGjQACtWrICtrS28vLzw7t07VTHXs2dP1e8+KxcvXkS/fv1QvXp11K1bFykpKbh69SoePHgAf39/1KlTJ9sYSrk0IEdbGjVqBH9/f73Gy+nTlnr16mHp0qWqRQfDw8PRoUMHVY+ij49PlvHTk+sLYEpKCubNm4ft27cjKSkJQgiYmJiga9eumDhxoqSZoeWIIccxomsetWrVQmBgoFrPbs2aNVGmTBmsW7dO6+NFjnPzgAEDEBISgh9++AF+fn7o168fnjx5gmPHjmHGjBno0qWLVjmll+cu/cjR3SrndbpVq1bh+fPnmY54zu5gnj9/PhwcHLBgwQLVHBlpc2b4+vpKWpTM0NAQ7dq10zp3ufOoU6eOpJNzVuRoy9y5c1G2bFns3r1bNSX469evMWrUKPj4+GDBggXZxjh37hzmzZuHpk2b4v79++jfvz8sLCzw66+/qpZez054eDiWLVuGKlWqwNzcHFFRUXBxcUFSUhJWr16daaGSmJioNngvX758yJ8/PyZNmqRTkXL06FGMHDkSzZo1Q5s2bVQz744cORLLli2TvLLtx48fUa5cOQDA2bNnMWDAAABAgQIFMv1w+tyiRYvQuXNnTJ8+XW379OnTsXjxYkmX7ZRyaUCOtshxd5k+bYmJiUGlSpVU/y5fvjwSExNRqlQprF69Wqtb9OW6xLhmzRrs3bsXY8eORb169ZCSkoJLly5hxYoVKFOmDDw8PHIlhhzHiK55yL2Mhhzn5qtXr2LlypVwcHDAP//8g+bNm8PKygqLFi3CqVOnWKikt3///iwfl3KLlBy9Mmn0/eO8evUqdu7cqTaRV/78+TF06FC4ublJiiHH+BI58pCjiJSjLf/++y82btyoKlKA1DVMxo0bp/pwzU5sbCzMzc0BAJUrV8a9e/dgYWEBNzc3Sb0pQOqJJa27vGLFinj48CGcnJxQq1YthIaGatkq6Hx5ceXKlRg6dKja76dPnz5Yvnw5Vq9eLblQqVKlCk6ePIly5crh1atXcHJyAgDs3r1b8snzzp07Gq+ru7m5SVqhF5BnILMcMeRoy8KFCwEAM2fOzPCY1G/t+rQlJSUlw7drIyMjjBo1Sut5hOT6Avjbb79h6tSpal9YLC0tUbJkSSxbtkxSkSFHDDmOETnySE/Xnjc5zs0JCQmoUKECAKBSpUq4f/8+rKys0LFjx2xvYMhOnitUvLy8NG7Pnz8/ypYtK6lQ2bdvn9q/k5OT8ebNGxgZGWk94EjfP85ChQppnLhO07acpJQ85JAvXz6N12Hz58+vcUEuTcqUKYNnz56hXLlyMDMzw/379wGkDkp7//69pBi1atXCb7/9htGjR6N69eo4deoU+vfvj+Dg4GwvEWrqEpa6GOLnHj9+rLGXqm3btli3bp3kOCNGjMDw4cORmJiItm3bwszMDHPmzMG2bdsk3SIJpA64/Hy9ESB10HFuj7nRlxxtOXbsmNYL/+UGfRa+09ebN29gbW2dYbu1tTVevHiRazHkoGseBgYGOv+955Rvv/0WDx48QLly5VCpUiVVEZ2SkoLY2Fi9Yue5QuXevXtq/05OTkZISAimTZuGrl27SoqhaTbZmJgYTJw4UetCRd/emfr162P+/PlYunSp6lbEqKgo+Pj4wNHRUatc9KGUPORgZ2eHlStXYv78+aqCIDExEatXr5b8+23ZsiUmTJiAuXPnokGDBvD09IS1tTWOHz+OihUrSooxfPhweHh4oHjx4nB1dcWKFSvQpk0bvHjxAq1bt85yX29vb7XercTERPj4+KBQoUJqz5PSA/X1118jNDQ0Q96hoaFaTXjYpEkTnDp1CpGRkarr923atEGXLl0kf9NzdnbGzJkzsXDhQtU+wcHB8Pb2znKxUCWSoy2enp7w9vaWPA5Ebpo+EL/0B6SZmRn+/fdf1bf3NGfPnpXcyyFHDDnomofcy2jIwdXVFePGjcP8+fPRtGlT9OrVC9988w3Onj2r6n3WVZ4bTJuZO3fuYOTIkTh27JjOMYKDg9GvXz+cPn1a8j6fn5A+753ZuHFjlvtHRESgW7dueP/+fYbZPrds2aLXNPDaUEoecnj06BG6deuGQoUKqVb0DAoKQmxsLLZu3SrpQyEhIQE+Pj6wsrJCu3btVBMmFS1aFEuWLJFcvEVGRiIhIQHly5fHo0ePsGPHDpQrVw7u7u6ZfuvWphtVyjiIxYsX48CBA5g6darqOvWVK1cwffp0NG/eXNKkcek9f/4cjx49gr29PWJjY7X69v3+/Xv07dsXd+/eVRVJ0dHRsLCwwMaNG1GiRAmtcvmS5GiLg4MDfvvttwwfZLnFwsIiQ2GS/u609PSZb0cb+/fvx5QpU+Du7q76YnHlyhVs27YN48aNk7RSvRwx5KBrHl5eXpILRrlnss6MEAL+/v4wMzND06ZNsXbtWqxZswblypWDj4+P1qttp/c/U6jcu3cPXbt2xY0bN3SOce3aNfTr1w/Xrl3TK5f0vTNSpnGPjY3F77//jocPH0IIAXNzc7Rr1y5HVqn8L+Qhh2fPnmH79u1qbenevbte36bevXuHwoULS17v4scff/yi35bTxMfHw9PTE3///bfq5CeEQNOmTbF48WLJYxESEhIwfvx4HDlyBIaGhggMDMS8efMQGxuLZcuWST5OUlJS8M8//6j9bho1aqTISyDZ0bct69atw+nTp1W3wH7+u5BjXpKsZHcHZHq5OVnYpk2bsH79erx+/RpA6hiz/v37o2/fvrkaQw5KyUPJ8lyhomkwbUxMDHbv3o1ixYpJ+oap6XJNbGwsDh8+jBo1amD16tV656lL74zc0iYW03e0tzaSkpLw5s2bDPfZBwUFoX379jrHzc22HD58GE5OTmofvDt37kSRIkXQunVryd90cvLbckpKCu7evavV/BuPHj3CgwcPVB+o2g7MW7JkCf78809MmzYNgwcPxoEDB/D8+XNMmDABTk5OGhfXyyl//fWX2nwOwP8fI35+frkWQ181a9ZUvX7640rbBVKV0BZAtwkOs4snhNBrzIw+MeR8X7XJ4927d9nOSpyQkICTJ0+iZcuWkl5f13NzXFwctmzZgh9//FFtFurly5fDxMQEvXv3znA5Slt5boyKpsG0RkZGsLW1lXyi/HwwLZC6OJijoyM8PT31TRFAahdwdHR0ts+LiorC/PnzcevWLXz69CnDooZSbpG7desWfv31Vzx48EB1gkhPyslOjjzOnDmD8ePHIyoqKsNjBQoUkFSoyNGWT58+Yd26dZm2JbNruomJiRg+fDhOnTqFTZs2qd0KfOXKFRw8eBCBgYFYuHChpF4VDw8PTJo0Setvy3Z2djh+/LjaSWHx4sXo27cvihUrBiD19/Xjjz9q1R1fokQJ2NjYqN6P58+fZ5nH5w4dOoRp06apvS8ODg6YNWsWxo0bJ+nvLzQ0FJMnT1b9bj4npT2+vr5Yv349SpcujTdv3qBMmTJ4/fo1kpOT0aZNG0ltkSOGHG2Ro4jQpy1Hjx6Fs7NzloO7Y2NjsWjRIkyePDnLWGkTHKYNwP98gkNtCpXw8HDcvn1b4/sqdfE7fWPIcYzomoejoyPOnDmjVtSMHz8e48aNU2378OEDRo4cKek40/XcHBMTgz59+uDevXuoW7eu2jkpOjoaO3fuxIkTJ7Bhw4Zs14LKSp4rVD4fTKsLTYNpdZVV74yUOS9+/fVXXL9+Ha1bt1Z9CGlrzpw5yJcvHyZPnow5c+bAy8sLYWFh2LZtG+bPny8phhx5LFy4EJaWlnB3d8fIkSPh6+uL58+fY+nSpZKvo8rRlunTp+Pw4cNo2LChVl3nmzdvRlBQELZs2YK6deuqPebj44Mff/wRI0aMwI4dOySNI1m8eDGSk5Nx6dIlrb4tf/z4UWNx1blzZ7XfjdTO0ps3b2LUqFEZ7jLQ9lt7ZGSkxt6hcuXKSb4T6tdff8Xr168xcuRInY+zgwcPYuLEiejVqxeaNGmC7du3o2DBghg6dKikafzliiFHW7JbC0wKfdoycuTIDB+IzZo1w+bNm1WXSePi4rBt27ZsC5XVq1ejTZs2Gic4HD58uOT27Nu3D5MnT9b4RcXAwEDynZ36xpDjGNE1D01/28eOHcOwYcPUfldSzwG6npvXr1+P6OhoHDlyJEObJ0yYgC5dusDDwwN+fn4YOnSopFw0Ev9DNm3apNf+Hz9+FLNmzdJqH2dn5ww/LVu2FOPHjxeRkZHZ7m9jYyMuXryoa8qqGDdu3BBCCPHjjz+KS5cuCSGE8PPzE3369JEcQ988ateuLe7evSuEEKJ79+7i33//FUIIsWfPHtGtWzfJeejbljp16oi///5b2/RF27ZtxYEDB7J8zrZt20T79u0lxbtw4UKWP5kxNzcXr1+/VttmY2MjwsLCVP9+9eqVsLCwkJRHp06dRLdu3cSxY8e0yuNzrq6uYvfu3RnyWb58uXB1dZUUw8rKSgQFBUl+TU1q1qwpwsPDhRBCDBgwQBw5ckQIIcSlS5dEy5Ytcy2GHG359OmT8Pf3F5MmTRJeXl6qn9GjR+dKW+Q81mrVqiWCg4OFEEK4ubmJU6dOCSGECAwMlHx8CCFEs2bNxLRp08T79+8l75MTMeQ4RnTNQ+5zgK7n5pYtW4rjx49nGXv//v2idevWkvLITJ7pUdmwYYPaarLp1zl4+PAhJk+ejJs3b6J3794a94+Pj8e8efMkrUirzV0QmfXOfPz4EYsXL842VoECBfDVV19Jfj1NUlJSVDEqVqyIBw8eoG7dumjWrJmkGWXlyiNfvnyqux/S8nB0dET9+vUxb948STHkaIuBgQGqVq2qdf5Pnz6Fra1tls9p0KABfHx8JMWT49uyHB4+fIh9+/bp9J6kN3z4cHh6eiI4OBjJyckICAjAkydPEBgYiEWLFkmKUbx4cb2vZxctWhQfP34EAFSoUEE1U/A333yDyMjIXIshR1u8vb2xf/9+WFpaIigoCLa2tggNDcWbN28kDcQH5GmLHOSa4DAyMhL9+vVD0aJFdc5FjhhyvK9y5CEHXc/NERER2d4MYGdnl+1q89n57w2j12DJkiXw8fFBkSJFUKxYMcyePRs7d+4EkFrAdOrUCSEhIVl2Yc2fPx+7d+9Gs2bN0Lx5c+zYsQNr1qxBSkoKZsyYgQEDBsDIyEjSirTx8fGYMWMGHBwc0KhRI/j4+Kh17Z05cwbt2rXD1q1bs43l6uqKDRs2SHgXMlexYkVcuXIFQOosqkFBQQBSryFKneBMjjyqVaumKtwqV66syikiIkJyDDna0qJFC43jkLJTqFChbMcVffr0SfKiXu7u7ujVq1eGn969e8PDwwOTJ0+WtD6OvsqUKaPx+ri2nJ2dsXTpUty6dQv58uXDhg0bEB4ejkWLFuH777+XFMPNzQ2LFi1SfQDowsHBAb6+voiMjIS1tTX+/PNPREVFITAwUO0aek7HkKMtf/31F+bMmYNdu3bh22+/xcyZM3HixAk0a9ZM8mSLcrRFDmkTHAJA9erV8e+//wKApAkO06tRowYeP36sVy5yxJDjfZUjDznoem4uXry4amXtzLx9+1ar+Zg0yRM9KocOHcKIESMwZMgQAKl3/qxbtw6vXr3CihUr8MMPP2DKlClZHjx///03Jk2apFqRtmnTppg1axZevHiBPXv2oF+/fpJXpE0retq3bw8TExPs2LEDhQsXxqBBg+Dt7Y3t27ejYsWKmRY9vXr1Uv1/UlISrl69ilOnTqFChQoZbmuUMpmPu7s7Jk2aBAD4/vvv0aFDBxQoUABXr16FjY1NpvvJncfAgQMxYsQIGBsbo23btli2bBkGDhyI+/fvqxY9y6m2TJgwQfX/sbGxCAgIwL///gszM7MMbcmsoLWxscGhQ4eynA/g4MGDkic3qlGjBrZs2YIaNWqoxrzcuHEDN27cQPPmzfHixQv07dsXS5YskTyNvS6GDBmCWbNmYfbs2TAzM9NrQi8nJyfV1PlSubi4qL3ms2fP4ODggNKlS2f43UgZtD1u3Dj8/PPPOHLkCHr06AE/Pz80bNgQQOYzV8sVQ+62fPjwQTW/RtWqVXHnzh1UrlwZgwYNwqhRo7IdF6JPW+SmzwSH6Qv25s2bY9KkSRg+fDgqVqyYYRXmzNY/kiNGerq+r3LlIefEe7qemx0cHLB79+4sl+/YtWsXateurVd+eaJQiYyMRKtWrVT/bt26NSZMmAB/f3/MnTtX0sCo169fo1GjRqp/N27cGM+ePcOxY8fg5+en1WJv2RU9/fv3z7Lo+XwuD6kznWbmp59+QokSJVC8eHFUqVIFc+bMwbp161CuXDn8+uuvme4ndx7NmzfHb7/9hnz58qFcuXJYv349/Pz80KxZM4wYMSJH2/L06VO1f6cVBml3tkjRp08f9OnTB2XLlkWPHj3UPniEENiyZQs2bdqEZcuWSYoXERGBnj17ZviwmTdvHiIjI7F8+XJs2rRJ43o7GzduVOu5SUpKwubNm1WDNrP7Fv/5RF5CiEw/LLS5c+jevXvw9/fHkydPsGTJEhw/fhzVqlXL8jKXq6urrCfdxMRE7N+/H/Hx8TAxMcG2bdtw5swZlClTRvJ6SLrGkLstJUuWxJs3b/DNN9/AzMwMDx48AJB6h1bavBvZ0ef9kHNm2rp16yIwMBAJCQkoUaIEtm/frjbBYVbc3d1hYGCgNjh06tSpGvPN7HiVI0Z6ur6vcuWR3ezU8fHx2bYhja7n5n79+qFLly4oUqQIBg8erDZoPG319N9//x2bNm2SnIsmeWIeFQsLC5w9e1ZttLOtrS3Gjh2rNlZFlxgzZ85E27Zttcqndu3aOHz4sGoUdHJyMmrXro1ixYph8eLFOq1wqw9vb2/06tXri81umWbYsGHw9PTUa8n6L92WLVu2YN68eShatCisrKxQtGhRvHv3Djdu3EBsbCxGjhwpeWFDW1tb7Nu3T211WiB1xl9XV1dcu3YN4eHhaN++vdokg9pMJZ/ZGKl9+/ZJ/sCROpHXrVu30L17d9jY2ODatWs4cuQI1qxZg/3792PFihVo0qSJ5Lz10bhxY6xYsULnRRrliiGHyZMn4969e5gzZw5CQ0Mxe/ZsLFmyBIcPH8bff/+NwMDAbGPo0xYLCwuUK1dOrSh//vw5ypQpo/r2n5KSgoiIiGw/3PWZ4FCbMQ6ZTdooR4z0dH1f5chD7tmp9Tk3Hz16FBMmTEB8fDwqVaqkOieGhISgYMGCmDp1qtafoZ/LEz0qmWnQoIHeMXT5405MTFS7ZzxfvnzInz8/Jk2alOtFCpA6u6TUgXc56fz583oPLvzSbXF3d4e9vT1+++033L59GyEhIShZsiR+/PFHdOrUSas/9MKFC+Px48cZCpXg4GBVb0lsbGyG+VXkuH2+U6dOesf4nK+vL/r16wdPT0/VoGNvb28UKlQIy5Yty7VCxdjYWPLswDkZQw7jxo2Dl5cXLl68iB49emDXrl346aefYGRkJHkAuj5tkWNV3TTh4eE6z6WhlBWx09P1fZUjDynFhzb0OTe3bNkSdnZ2OHDgAG7fvo13797B0tISPXv2RKtWrWRZ9uLL/yXmoM+v92VHzhVpNflS386aNGmCrVu3YtiwYV90untXV1f4+vpi6NChqFixok6r4SqhLRYWFqrLTAkJCap2aHsHRadOnfDrr78iKioK1tbWSElJwY0bN7B06VJ06NABb9++xfz58zNcp54wYQImTZqkuKULbt26pbELu2fPnti9e3eu5eHq6goPDw906NABFStWzFDoSbkULEcMORQtWhQrV65U/Xvt2rW4fv06vv32W3z99deSYujTlhUrVmSYR0VXuk5wqFRf8hjp1asXli9fLtvdQvqem0uXLo1+/fpBCIG3b9+qxoPevHkTRYsW1fqz+HN55tJP//791a7Zr1mzBt26dcsw0VJm3xAsLCzQunVrtary4MGDcHFx0XpFWgsLC/z7779qg3dtbW1x4MAByRMBycnd3V01qVipUqUyVM5SBvXJoWXLlggLC8u0+JNyXVgpbYmKisKoUaNga2urmq24QYMGsLCwwKJFiyRN8JWSkgIfHx/s2LED8fHxEEKgQIECqkmXTp48ifXr12PhwoVqJ/EaNWrI9uEhJ0dHR6xduxa1a9dWO94vXLgAT09P1V0eOS2rSwtSxx/IEUMOnz59wvTp02FmZoZBgwYBSL3017BhQ/z666+SPlD0aYumS+K6kms5AKX4kseInL8XQJ5zc1hYGAYMGIBmzZph3LhxAID69eujdOnSqnGEusoTPSrffPMNjhw5orbtq6++yvChZWBgkGmhYm9vj1evXqlts7W1xdu3b/H27Vutc8puoFOa3FjZ0sHB4YtccvqcLmt5fE4pbZk1axbi4uLUpspet24dpk2bhnnz5mH27NnZxjA0NMT48eMxcuRIPHr0CPny5YOZmZnqm1nz5s3RvHnzDPsp9btF8+bNsXjxYrU5Ux49eoRZs2ahadOmuZaHHLNTyxFDDnPnzsXly5fVxglNmDABPj4+WLRoEcaPH59tDKW0JTfXFMoNSnlf5SDHuXn27NmoWLGi2qX5w4cPY/z48ZgzZw6WLl2qc+w80aOiNHIPdNLkSywoqOQ85BIREYGyZctm+zwHBwf4+/tn+FZ169YtDBw4MEd7DzT12ClBTEwMPDw8cPPmTaSkpKBIkSKIiYmBhYUF/Pz8sl1ELU1OLVwJSP/9yhVD37Y0atQIy5YtyzDR4KVLl/DLL7/ovahpdm2xsLDA5MmTJV1mzK3LYf8FchxnWbGwsMDevXsljf/IrUtqdevWxe7du1G5cmW17Q8fPkTPnj1x8eJFnWPniR4VpZFzoJMci/ABqdV/+hjpT5je3t65loccq43q25bw8HDMmzdPLY+0GFFRUbhz5062MZKTkzX2bBgbGyMuLk5SO/SRNl9DdqT+XuRY1dbAwAA7d+7EuXPncOfOHaSkpKB69epo3LhxhjlEMiPHwpVy/H7liCFHW2JjYzWOQyhZsqTk9ZP0bYuUvykp6+PEx8dj165dGv/+b926JekOpjRKWB1bjmNEnzx+/PHHLONqe0lN3/fDyMgIHz58yLA9Li5O715gFioKJ8cifH5+fqo7BNLfv29gYJBhcb2czEOO1UblaMuMGTMQEhKCH374AX5+fujXrx+ePHmCY8eOYcaMGZJi2NvbY+HChVi0aJHq22ZMTAyWLFkiabIofU2YMEHv2R7TyLWqbceOHbF48WI4OjrC0dFRp1zkWLhSjt+vHDHkaIuNjQ3Wr1+PWbNmqYo9IQT8/f0lT6Klb1vkGgshx3IAgHJWx5bjGNEnj6VLl+q82KWceaRxcnKCt7c3Fi5cqJo+Ijw8HHPmzEHjxo31S1CvlYIox8mxCF+zZs2Er6+v+PTpk3B0dBQRERHi3r17ok2bNsLPzy/X8nBychL+/v6q/3/27Jl4+/at6NGjh1i8eHGutcXOzk6cP39eCCFEhw4dVO1auHChGDJkiKQYoaGholGjRsLW1la4uroKV1dXYWtrK5ydncWjR48kxdCVpgXJ9NGqVSvh5eUlgoODhb29vQgKChJ//fWXcHJyEvv375ccp2HDhqpF53Qlx8KVcvx+5YghR1tu3LghbGxshLOzsxg+fLgYPny4cHFxEXZ2duL69es53hYLCwvZjjVHR0dx8OBBIYQQzZs3F48ePRIJCQli6NChYubMmZLjyHEekSOGHMeIrnnIfQ6Q4/14/fq1aNeunbCwsBD16tUT9erVExYWFqJz587i5cuXeuWXJ9b6ycs0LcIHpC61LnUwV0REBH766Sfkz58fFhYWCAoKgrm5Oby8vLBnz55cy+PNmzeqycrMzc1x8+ZNFC9eHJ6enjh8+HCutSUhIUFV8VeqVAn3798HkNojcOPGDUkxKlSogMOHD2PcuHGwtbWFvb09JkyYgMOHD2e4RitVVFQU/vzzT4SHh2f5PDlvmQdSv/V4eHigSpUqMDc3R1RUFFxcXDBp0iRJa1ul6dWrF4YPH45t27bhn3/+waVLl9R+pNC0OBqQevfAo0ePJMWQ4/crRww52mJlZYWDBw+iTZs2SEhIQEpKCtq2bYsjR47A2to6x9siZBzCqGk5AGNjYwwaNAgnTpyQHEeO84gcMeQ4RuTIQw5y5FGqVCkEBARg7dq1GDRoEIYOHYoNGzbgt99+03tBW176Ubi0Rfjatm2r8yJ8BQsWVF13TFvls3nz5qhSpYrkWRLlyEOO1UblaMu3336LBw8eoFy5cqhUqZLqGm5KSgpiY2MlxQCAIkWKoFu3bpKf/7kHDx5g+PDh8Pb2hrm5Odq3b4/Xr1/DxMQEa9euzXSNDTk/PAD5VrVduHAhAGDmzJkZHpN6rTxtcTR3d3fV4mi9e/fWauFKOX6/csSQoy0A8N133+GXX37Rap/09GmLq6ur3pM0ppFjOQBAOatjy3GM6JrHN998I3ncV07m8bl8+fKhcePG+l/q+UyeLFRu3ryJuXPnwtDQEOPGjdNporWTJ09i6tSpMDQ0xJQpU+Ds7JwDmWZP10X40rOzs8PatWsxZcoUWFpaYs+ePRg4cCCuXLmS4XbpnMwjbbXRmTNnwtraGmvWrEGPHj20Wm1Ujra4urpi3LhxmD9/Ppo2bYpevXrhm2++wdmzZ7NcUDD9wobZkTIGYd68eahYsSIqV66MP/74A0lJSTh16hR27tyJxYsXq1YA/5zct0WmrWo7evRoVK9eHadOnUL//v21XtVWjjls5Fi4Utffr9wx5GiLHPRpi5zTJzg5OWH69OmYM2cO6tSpg9mzZ6NFixY4fPiwVnfIyHEekSOGHMeIrnnIMTu1HHmkX7g2O1IWrs2UXheOFMrFxUVYWFgIc3Nz0axZM51iNGjQQBWjYcOGMmeonWPHjqnGhBw4cEC0a9dODBw4UISHh0va//79+6Jhw4Zi3bp1IiYmRjg7O4s6deoIS0tLsWDBglzL4/nz56JDhw7Cz89PxMfHC1dXV2FhYSEsLCzEpk2bcq0tKSkpws/PT5w4cUIIIcSaNWuEnZ2daNOmjbhz506m+5mbm4saNWqIH3/8Ubi5uWX5I4Wtra1qTMfgwYPFuHHjhBBChIWFCWtra0kx5HDp0iVhbW0tNmzYIKKiokS9evVE69atha2trZg0aZLW8WJjY8WtW7fE3bt3xadPn7TeP21fIYS4cOGCGDx4sJg+fbp4+/atpP11/f3KHUOOtshBrrbo6/379+Lnn38WW7duFSkpKcLDw0OYm5uLmjVrij/++ENyHDnOI3LEkON9lSMPOeiaR9o50c3NTXh5eWX5o488Wag4OzsLc3NzYW5uLlxcXHSK0bZtW1WMtm3bypyhdDNnzhShoaF6x4mLixNv3rwRQgjx6tUr4efnJ44cOZLreQghVB9eHz9+FEePHlUNQpNK37asX79eREREaPWaQqSeiDp27ChsbGyEp6enOHbsmEhISNA6Tpo6deqIsLAwkZiYKOzs7ERAQIAQQoi7d+8KBwcHnePqIiIiQoSFhQkhhAgODhYzZ84U69evF/Hx8ZJjJCQkiGnTponatWurinwbGxuxcOFCyTGGDh2q94BcpchLbckJKSkp4vbt2yIyMlKr/dLOQ/qcR+SIIQel5JFG2zz++OMPMXToUGFlZSW6dOkiNm3apPXvU4o8OeHbtWvXVLewjhs3TjWASxshISFYtmwZAGDo0KE6D5DUV506dfD777/ju+++0ztWSEgIHjx4AENDQ9SsWVOrKY3lyiMlJQXnzp1Ty0PqbcXp6dOWunXrYu/evahYsaLWr5v22ocPH8aRI0cQERGB5s2bo23btnB0dNTqurGHhwfKli2LkiVLYuPGjTh9+jQSExPx66+/wtDQEKtXr9YpP23ps6ptevPmzcP+/fsxcuRI2NraIiUlBVevXsWyZcvQp08fDB48ONsYdevWxf79+/U+zq5fv44tW7bgwYMHyJcvH2rWrIk+ffqgWrVquRZDrrbIQY73Qw4xMTE4fPiw2t/uDz/8oNU4GCWtjq3v+6qUVboB/c7NMTEx+Ouvv3D48GGcP38e1tbWaNu2LVq2bCl5oses5MlCJS8ZPXo0vv76a70W4YuJicHo0aPxzz//qM070rp1a8yZM0fSeiFy5PHy5Uv0798fDx8+RLFixZCcnIyYmBjY2dlhzZo1kuYFkaMt/fv3R6NGjdC3b1+d2pHegwcPcOTIERw+fBjR0dFo2bIl2rRpI2kuldDQUHh6eiI8PByenp7o0aMHZs6ciZMnT2LdunW5Vhw7ODjgt99+U93BoKsGDRpg1qxZGcZzHT16FLNnz8bJkyezjTFr1iy8evVKr4Ur//77bwwbNky15lBycjKuXbuG+/fvw8/PT9LJV44YcrQFAJ49e4YbN25oHLQuZTZYOdoih0ePHqF3796IjY1FpUqVkJycjNDQUJQpUwb+/v6Sx6m4uLhg+fLlsLS01DkXOWLI8b7KkYcc5Dg3p3n//j2OHj2KP//8E1euXIG9vT3atGmj18zFLFQUTo5F+CZMmIDLly9jypQpat90Z86ciRYtWsDLyytX8hg2bBhevHgBHx8f1Yfww4cPMX78eJibm0sauCdHW0aOHImjR4+iaNGiMDMzy9AWXQd97dq1Cz4+PoiNjdV5QbKoqCgUK1ZMq9VG9R08vm7dOpw+fVrvVW3r1KmD3bt3o0qVKmrbHz9+jM6dO+PatWvZxpBjcbR27dqhadOmGe6UmTdvHq5evYpdu3blSgw52rJ7925Mnz5dbbbQNFLvpJKjLXLo27cvjIyM4Ovrq5qoLCoqCr/88gsKFSqE5cuXS4qzbNky7NixQ69Vi+WIIcf7KkcegP43f8hxbv7cx48fERAQgEWLFul1TgRYqChedn+8mS2ymJ69vT1WrlyZ4Vv+v//+izFjxkhal0aOPOzs7LB582bUqlVLbfv169cxcOBASWtByNGW7O7e0eaP8vr16wgMDERgYCBevnwJBwcHtGrVKtvprdPExsbiwIEDePDgAYyMjFCtWjW0bt1aq16rZs2a4fnz5xBC4LvvvsPx48cl7wvIt6rtzJkz8erVK/j6+qp6D4QQmDZtGvLly4cpU6ZkGyMgICDLx9MvzpcZKysrHDhwAGZmZmrbQ0JC0KFDB0lzXMgRQ462uLi4wNnZGZ6enjr3ZMrRFjnY2tpi9+7dGS6L3Lt3Dz169MDVq1clxVHK6thyvK9yrcDcsGFDREVFQQiB0qVL48yZM5L2SyPHuRlILU5OnDiBwMBAnD59GgULFkTz5s3RqlUrnWerBvLo7cl5iZQCIDvpJ55K76uvvkJSUlKu5VGoUCHVNO3pGRsbS74NVo626HvL5bVr1/Dnn38iMDAQr169gr29PQYPHowWLVpIWiQszfPnz+Hm5oY3b96gUqVKSElJwe7du7F69Wps375dcle4SB0Ur/p/bcm1qu27d+9w4sQJuLi4wMrKCkZGRrhz5w6ePXsGa2trtVsZM+u1kvLhnZ0aNWrg3LlzGT5Abt26JXnsgBwx5GjLq1ev0LdvX52LFECetsihdOnSiIiIyPCaMTExWo1jUMrq2HK8r3JNNZA2Rw0Arc5BafQ5N8fGxuLEiRP4888/8c8//6BAgQJo3rw5VqxYgfr162vVO5yZPNejEhYWpve1dqXRdxG+lStX4uzZs1iyZAlKly4NIPXkMH78eNSoUUNyEaJvHr/99hs2b96M+fPno0aNGgCAp0+fYuzYsWjfvj26d++ea23RZRG+WbNm4dixY3j16hXq1KmD1q1bo2XLljqvYjxixAi8fv0aS5cuVbXl9evXGDVqFMqUKYMFCxZIiiPH4HE5yDXPjL6Lo23btg0LFy5Ep06d4ODgACMjIwQFBcHf3x/dunVD1apVVc/NrGtdjhhytKVLly4YMmQImjZtmu1zMyNXW/R17NgxzJs3D15eXqhXr54qj+nTp6NLly5o2bKl6rm6rvibm6tj5/T7qk1b9L35Q9dz85AhQ3D27FkUKFAALi4uaN26NRwdHWFkJG8fSJ4rVOQaRf3p0yf8+eefePToEfr3748HDx6gWrVqOlWr+shuET4pKzX36NEDQUFBMDQ0hJmZGYyMjBASEoLY2Fh88803at39mY01kSOPJk2aqJa8L1SoEIyMjPD+/Xu1RfDSZNblKUdb0hbhS0hIULUl/SJ8mV06sbCwgLGxMerXr68qLDIjpdembt262LhxY4Zj9ebNmxgwYAAuXLiQbQw5yLmqrb6yWxzN19c32xhS717KqmtdjhhytOXo0aOYO3cu+vbti8qVK2cYkCtl0LYcbZFD+jw0XWJM//9Z5aGU1bHleF/lWoFZX7qemy0sLGBkZIRatWplO1hcnwnf8tylH2NjY72rudevX6Nr16548+YNEhIS0KVLF2zcuBG3bt2Cv79/hsGCOWnbtm0YMGAAhg0bBmdnZwQEBODdu3f45Zdf0KxZM0kxGjRogAYNGnzxPEaNGqVXDoA8bVm9ejXatGkDDw8PdO/eHRs3bsTLly8xffp0DB8+PNP90j4UPn36hKdPn+qVA5B6GcvU1DTD9vz580telkAOcq1qK4eDBw9i4sSJ6NWrF5o0aYLt27ejYMGCGDp0KMqXLy8phlIuDcjRlhEjRgBI7c37nNTCQu6ZjHWl18yk6ShldWw53lc58pCDrufmjh07yr72mEayz8zyhS1dulQ4OjqKuXPnih07doiAgAC1Hyl++eUXMWjQIPHx40dhY2MjwsLCxLt370SfPn3EoEGDcrYBn6lZs6ZqUqC+ffuKY8eOCSGE+Oeff0SbNm3+5/KQQ61atVQTcbm5uYlTp04JIYQIDAwUrq6uuZbH4MGDxahRo9QmjUtISBCjRo0S/fr1y7U85FrVVg41a9ZUzXQ8YMAA1UR+ly5dEi1btszVXPQlR1uePn2a5c//IqWsji0HpeShdHmuR2XFihUANA8QNDAwkHSt8Pz581i7dq3at91ixYph/PjxWq1tIAc5FuHLS3nIQa5F+PQ1ZswYdOvWDS1atFCNtg8KCkJsbCy2bt2aa3loWtW2cuXKGDRoEEaNGoXJkyfnWi5yLY6mBHItfAekXoZ7+vQpKlSoACGEVmsw5TWaVi22srJCx44d4e7unmsx5KCUPJROvuUXFeLevXuZ/ki9/hobG4uCBQtqfEzqnSVySVuELy4uDpaWlvj777+RkpKi1SJ8eSkPOaQtwgcA1atXV93SrO0ifPqqUqUKfv/9d7Rp0wYJCQmIj49Hu3bt8Pvvv0u+/h0WFqZ3HunvGNBnVVs5pC2OFhkZCWtra/z555+IiorSarE4pZCjLUII+Pr6wt7eHm3btsWLFy8wfvx4TJo0SeNdGv8L0lYtBqD36tj6xJCDUvJQvC/dpZNTnj17Jk6fPi3i4uLE69evtdp3wIABYvbs2UIIobr0k5CQIEaMGCH69++fE+lmSq4FBfNKHnKQexG+L6lRo0Z6rwsyadIk0blzZ/HgwQNx7Ngx4ezsLG7evCnmzp2r0+WWixcvih07dojo6Gjx8OFDkZiYKHlfpSzSJgc52uLv7y8aNWok9u7dK6ytrUVYWJg4dOiQqFevnlZrKOUlq1evFvXq1RMnT54UN27cENbW1mLdunWiT58+omvXrrkWQw5y5REXFycCAgKEr6+vePv2rbhw4YKIiorKwcxzV54rVOLj48WoUaNUqzqGhYWJoUOHij59+ojo6GhJMYKDg4WDg4Po2LGjqFmzpujXr59o2rSpqFOnjmol1Nyk7yJ8eS0POcixCJ8uHj16pPr/2NhYsWLFCtG/f3/Rq1cv4e7urvYjhbOzs7h9+7ZeOcm1qm10dLTo2rWrMDc3FxYWFiIsLEwMGjRItG7dWutFIJWySFt6ace+tvRpS+vWrcXRo0eFEP//pUkIIY4ePSqcnZ21ziWnj+/coKTVsdO8efNGvH//Xuv95Mjj1atXwsXFRVhbW6s+8wYNGiQaNmyYZxbFzHO3Jy9ZsgR//vknpk2bhsGDB+PAgQN4/vw5JkyYACcnJ0ybNk1SnJcvX2LHjh24c+cOUlJSUK1aNfTo0eOLLTCmzyJ8QOolq7TbzwD1eUPat2+fa3m8ePEC27ZtU5uJtUuXLqpr8bnZlo8fP+LJkyfIly8fKlWqpNXCaFmJj4/PNFbr1q1RrFgx7NixA2PGjMFff/2Fhg0bapzETsotznJNwZ2eEAJ3795F6dKl8fXXX0veb8aMGbhz5w58fHzQvn17HDhwAAkJCRgzZgwqV64seV4YfReulON26w8fPsDHxwdubm6oWrUqPDw8cP78eZiZmWHt2rWS79rRty3W1tY4dOgQvvvuO9ja2uLAgQMoX748wsPD0bp1awQFBUmKs2PHDqxbtw4REREIDAzE+vXrUaZMGQwZMkRyLvrKbHZrAwMDGBsbo2zZsnBycpJlEbvcsnnzZqxdu1Z16bR06dLo379/rt4tN2bMGMTExGDRokVo0KABDhw4gKJFi2LUqFHInz+/5MVNdZlbSip957fJc4NpDx06hGnTpsHBwUG1zcHBAbNmzcK4ceMkFSrDhg2Dp6cnRo4cmYOZSiPHInxnzpzB+PHjERUVleGxAgUKSPpwlyOP+/fvw83NDQUKFICVlRVSUlKwb98+bNu2DTt27JA0m6McbUlMTMTs2bOxd+9eJCYmQggBU1NT9OrVC56entnuDwBv377F6tWrM8x/kJiYiODgYFy+fFnjftu3b4ezszM+ffqEEydOYOHChVqvy5GeHIPHAc2r2mp7G/6JEyewYMECtQ/xKlWqYMqUKRg6dKikGHIsjibH7dZz5szB5cuX0adPHxw7dgyXL1/G/PnzcfjwYcyfP181uVZOt+Xbb79FUFBQhi9Ip0+fllwsHTx4EAsWLEDv3r2xfv16AKm/F19fXxQoUAD9+vWTFEdfly5dwqVLl2BsbIxKlSoBSF2Y89OnTyhXrhzevXuH/PnzY/PmzdmeC5SwOvbOnTvh4+ODHj16wN7eHkIIXLp0CQsXLkThwoUlL6Ohbx5y3PyRNrdU2rgn8dncUlIKlRydE+aL9OPkICsrK9Utgem7Sp88eSJq164tKUadOnVUMb40Ly8v0bx5c3H69GkRHR0t3r9/L06cOCFcXFzEnDlzJMVwdXUVHh4e4tSpU8LGxkYcP35cbN68WdStW1d1m3Fu5NGvXz8xdOhQVVe4EKnd4sOGDRMDBw7MtbbMnTtX1K9fX+zYsUPcu3dP3LlzR2zdulU4ODiIVatWSYoxcuRIUa9ePeHp6Slq1KghxowZI1xdXYW5ublYs2ZNpvuNHj1arFu3TgghRN26dVW3fH9JwcHBomHDhsLGxka4urqK9u3bC2tra9GyZUvx4sULyXGsrKxUf2/p//aCg4OFtbW1pBhDhw4VnTp1UrtE9uDBA+Hq6iq8vLwkxZDjdmtHR0dx9epVIYQQ48ePV01LcP/+fVG3bt1ca8uePXuEg4OD8Pf3F9bW1mLXrl3Cx8dHWFlZie3bt0uK0bFjR7Fv3z4hhPrv5bfffsvVW759fX2Fm5ub2pjBqKgo0a9fP7F06VKRkJAgvLy8sj0X/PXXX6JGjRqiS5cuYs6cOcLb21t07txZ1KpVS1y6dElSLnLE+P7778WWLVsybN+6dato27ZtruVhY2Mjnjx5ovr/tN/v3bt3ha2traQYrVq1El5eXiI4OFjY29uLoKAg8ddffwknJyexf/9+STE8PDxE8+bNha+vr6hZs6ZYsGCBGDZsmDA3Nxe7du2SFCMzea5QcXV1Fbt37xZCqP/Sli9fLnmODG9vbzFy5Ejx4MGDL35Nt27duuLixYsZtp89e1Y4OjpKilG7dm3V2Jru3buLf//9VwiRehLs1q1bruVhY2Mj7t27l2H73bt3RZ06dSTFkKMtjo6O4u+//86wPTAwUDRp0kRSjHr16qmuK7du3VqV0+TJk8XYsWMz3S+tQEpISBATJ04UixYtkvR62dFn8HifPn2Eh4eHePfunWrbmzdvRJ8+fcTQoUMlx+nZs6eqSEv/tzd9+nTRvXt3STFsbW1FUFBQhu3Xrl0T9vb2kmLUrFlTPHv2TAiROldNWtFy8+ZN4eLiIimGtbW1qkhr1KiR8Pf3F0IIERoaKvnkL0dbhBBi586dokmTJsLc3FyYm5sLR0dHsXHjRsn7pw3CFUL99xIWFib5y5sc6tevr3Hcxd27d0X9+vWFEEI8fPgw20Kwbdu2wtfXN8P2uXPnii5dukjKRY4YtWvX1vhFIzQ0VPL7Kkcectz8IcfcUjk5J0yeu/QzfPhweHp6Ijg4GMnJyQgICMCTJ08QGBiIRYsWSYpx6tQphIWFZXotOyenmf6cHIvwpY9RsWJFPHjwAI6Ojqhfv75qWvzcyCOzha+0uc1SjrbEx8drXA+qatWqeP/+vaQYsbGxMDc3BwBUrlwZ9+7dg4WFBdzc3DBw4MBM91u8eDE2bdqE77//HiVLlsTGjRtx+vRpVKpUKcPlMyljVBISEjB+/HgcOXIEhoaGCAwMxLx58xAbG4tly5ZJWszu+vXr2L17N4oVK6baVrJkSYwfPx49evTIdv80o0ePRr9+/XDz5k0kJSVh1apVePToEW7fvo0NGzZIiiHHwpVpt1t/8803Ot9uXaVKFZw8eRLlypXDq1ev4OTkBADYvXu35EticrQFALp27YquXbuqVsctVaqU5H2B1HETT548yXCp6Nq1a1qNQdJXUlKSxvcjPj4enz59ApA6x1HaGInMhIaGonPnzhm2d+3aFdu3b5eUixwxvvnmG9y6dSvDuSQoKCjbJTbkzGP8+PHo2bMnLl68iMTEREybNg2PHz9GdHS05PmY5JhbKifnhMlz86g4Oztj6dKluHXrFvLly4cNGzYgPDwcixYtwvfffy8pxs8//4w5c+Zg9uzZGn9yU69evTBz5ky1E2xMTAwWL14s+fpjtWrV8PfffwNI/VC9cuUKgNQBTrmZR/369TF//ny8e/dOtS0qKgo+Pj6SlwCXoy0dO3bEkiVL1KapF0LA399f8oq3ZcqUUU10Z2Zmhvv37wMATE1Nsyx2HBwcsGrVKpQoUQLXr1+HtbU1ChUqhJcvX+Lp06dqP1KsWrUK9+7dg7+/v2oAr7u7O0JDQyWtJQP8/6q2n9N2VVs7Ozvs3LkTBQsWRMWKFXH9+nWULVsW27ZtUxszlpURI0ZgypQpal8Gnj59Cm9vb8kLTjo5OWH69Ol4+PAh6tSpgz/++ANBQUHYtm2b5AF9I0aMwOzZszF48GC0bdsWZmZmmDNnDjZt2iQ5Dznakl7JkiW1LlKA1A+9GTNmqNa+evz4MXbs2IFZs2ahU6dOWsfTVaNGjTB9+nS1D74nT57A29sbjRo1QnJyMnbs2KH6ApCZtFWLP6fL6tj6xOjWrRumT5+O7du3q+bq2rZtG2bMmKGx+MipPKpUqYIDBw6gadOmaNiwIQwNDdGqVSvs379f8nxMcswtlZNzwuS5u37yGjkW4Tt+/LjqpNmkSRN8//33qF+/Pu7fvw9ra2ssXbo0V/KIiIhAt27d8H/snXlcTdv//19Hcc1Xhnt17yWK1JUmZMgUcZExY1GGMosKjaSSMlQiU6LhXolMEZmveUzGlNtISBkSlaFo/f7od/a345xqnbNXOXx6Ph49HuzOXq19zj57v/d7vd+v19u3bzlr9EePHqFJkyb4559/qDqqWBzLokWLcPLkSfz888/Q1taGoqIiEhMT8ezZM+jo6IhkNsrzJ1m9ejVOnz6NVatWoaioCHZ2dnB3d8fp06eRkpKCQ4cOVToPFgwaNAju7u7o2bOnSFfI1atX4eDggIsXL1Y6RnW42tLCwrjy3bt3cHJygqGhIczNzTFz5kxcvHgRioqKWL16NUxMTKjm8ubNG+Tk5HAX+3v37qFBgwbUGRUWx8IKf39/hIeH49OnTwAARUVFTJw4ES4uLqhVq3qeV3NzczFr1iwkJCSgcePGIIQgPz8fOjo6CAwMxIMHD2BnZ4egoCAYGBiUO468uGOXlJTAx8cHkZGR+PLlCwghUr+vLOYhbP7g40F38+ZNWFtbY8GCBRg9ejQGDx6M5s2b4/nz5xgyZIhEr6mvCQoKQkhICNasWQMlJSVYWlpi/vz5uHz5Mj58+IDdu3fLPL8fIlDZuHEjrKysUK9evXJb4ITUqVMHLVu2hLGxcbnqs0DpDTE0NBQpKSmoU6cO2rdvj3nz5knVWsiCyo6nLBU9pT148AAKCgrQ0NDAjRs3EBoaCmVlZSxYsIDqqZnVPAoLC3Ho0CGkpKSAEIIOHTpg+PDhVEsUQvgei7OzM/XfKm/5paioCGvXroW2tjaGDx8ONzc3REVFoVGjRtiwYUO5GaK4uDjo6elBUVERcXFx5f5doSt1ZZTXvvro0SOMGDEC9+7dq3QMPq62rM4LIQcPHqQer7zs182bN6Gtrc0FnETGdmsAyMrKQlpaGrp27YrCwkKpMhosjoUlHz58QGpqKgghUFVVleo7xwpCCK5fv46kpCTuOywMSt68eQNFRcVKu6HkxR1bSEFBAdLT0wFA6veVxTy6dOmC6Oho3tIZOTk5KCoqQqtWrZCamordu3dDWVkZlpaWVFkVYVa6TZs26NevH7Zt24agoCAoKytjzZo1+PPPP2We2w8RqPTv3x/79++HkpIS+vfvX+Frv3z5gtevX8PQ0BBBQUESXxMREQFvb28MGTIEOjo6+PLlC+Lj43HmzBn4+flhyJAhVXEYVQaLiJsFzs7OcHV1Ffsi5+XlwcXFBZs3b650DHk5Fknk5eWhYcOGFbp3a2ho4PLly2jWrBk0NDQgEAgg6StI64xramoKMzMzjBs3TiRQ2bRpE86cOYMDBw5UOsaNGzcqfY2Qr590v/6+PX/+HLVr10arVq2gqKiIzMxMFBcXQ0tLi9cTlTT06NED27dvR8eOHWUeg0Xtz7ckKyuL+rVVnSX7kZHU1j948GBmmkw0rFy5Ei9fvsS8efOgoqJCJRXxNSyuzVXJD1FMK6xZ+Prf5XHjxg3MmjWr3N+HhITA2dkZkydP5rZNnToV27Ztw4YNG767QOXatWvV+sUpS3x8PJ48eQIAiI6ORseOHcW+DGlpaRLXaSXxLY+logzI13Tt2lXi9jNnznA+L+UtkUkDi+LxitLslVH2+xYWFoZz587Bz8+Pyzy8e/cODg4OUFdXl/lvSEvTpk2Rn5/Pa4yytT+zZ88GUFr74+zsDF9fX2rhyKpCKMTVuXNnib/v37+/2PLS15SXJasq0tPT4enpiVu3bkksqq3OJgUWpKWlYcqUKSgsLETbtm3x5csXREVFYfPmzQgPD+clcCYNsjZ/sLg2R0dHU89TFvFJIT9ERkVacnNzERMTgylTpkj8vba2NmJiYqCioiKyPSMjAyNHjqRKp8sTLCJuWbl16xbXOVJe9qB+/fqYPn061dLAtzyWijIgZanOiz9QKv4VFBQkoqI8Y8YM6uJxVvTs2RMhISFi6ezk5GRYWFjg+vXr1TKP1atXY9euXejbty9UVFTEAlua84xF7Q8LEhISsGzZMiQnJ0vshinvPOOTJasqLCws8Pr1a0ycOFHi8k51LH+xZNq0aVBUVISvry/XMZebm4tFixahQYMGUi2L8qGyJcby3lcW12aWS2gV8UNkVMoivJmUR1JSEpo2bVpukAKUdmacOHFCrM303Llz0NPTYzbX6uJbtlvr6+vj4cOHAEo/m0uXLlG37kniWx4LiwxIWV6+fImAgADuCfPrCwXt3+vTpw/XPvstKS4uxvv378W2v379utKne5acOHECzZo1Q0JCAhISEkR+JxAIqAKVnJwciS3sysrK1C3sLPDx8YGCggKWLl0KHx8fODk5ITMzExEREVizZk25+5UXfBQUFKB27drfJCt59+5dREZG8lqSkydYtfXzRdYAj8W1Wbh/VfPDBSre3t4iF8XPnz/j0aNHiI6OhoODQ7n7lY1+lZWVERAQgISEBOjr60NBQQEPHjzAkSNHYGVlVaXzrwr4+jSwgsVJ/S2PRRo/IhqWLVuGhIQEmJiYUMmpC6mK4nEW9O/fH8uWLYObmxu0tLRACEF8fDxWrFhB3WnDAprl38pQU1PD1atXMW7cOJHtR48eFenEqGoSExMRHh4ObW1tHDhwAOrq6jA3N0fLli0RFRVFvQwdHh6O0NBQ5OTkQCAQ4I8//sDcuXN5peOlRUlJSSr9GHlH2Nb/dRuxtG39LODb/FFdAYes/M8s/Rw7dgx79+5FSEiIxN9XVoQrRCAQMH+yrgxWJnzfeh7v379HWFhYuRmE8lqBqwJCCC5evMiZI7Zr1w49evSAgoJCufvQ6sUAdMeiq6uL7du3S91Jxrp4nBUFBQVYuHAhLl++LNItNHjwYKxZs4Z6mY6FcSVQWlOUlpaGYcOGITs7m2urp+Hs2bOws7PDhAkTEBkZCWtra5HaH9plNb7HoqOjg+PHj0NZWRmLFy+Gvr4+zM3N8eTJE4wfP56qtiswMBAhISGwtLSEjo4OSkpKcPPmTezevRuLFy8WqcWrSoKDgxEfHw9fX19mxchFRUXMln9zc3O5+jEa5KWtn0Xzh6xGnjS1UEL43Df/ZwKVZ8+eYejQobh79+63nopUVGbCd/v2bapxzp8/jx07diA9PR179uzBgQMH0Lp1a4wcObLa5sHCLRjgfyx5eXmwsrLCgwcP0KhRIxBCUFBQgI4dOyI0NBSNGzeWuB+Ltuay9OzZExEREZxBW1UhLB4v7zNi7WqbkZGB5ORkCAQCaGpqUpvnAZKNKxMSEvDhwwdq48qCggJYWVnh7t27EAgEOHnyJFauXInMzEyEhobi119/pZoL39ofFscyYsQIzJw5E8OGDcPmzZvx5MkT+Pj4IDExERYWFpzgYUX07t0bjo6OGDZsmMj2vXv3YsuWLUwyUDRMmzYNN2/exJcvX9CsWTOxAEOaGxlfN2gW7th82vqFsHD6HjBgAKZNmyYWcG7btg0HDx7EsWPHKh1j2bJlFRp5Ojo6StwvMDCQOlCRReRQyA+39COJwsJC7Ny5U+r1t1evXomolwqpznY+f39//Pnnn7CwsMDChQvh6+uLrKwsbNiwgfrGfvnyZcyfPx8mJia4c+cOSkpK8PnzZzg7O4MQQpX+ZTEPFm7BLI5l9erV+Pjxo4hy48OHD7FkyRL4+fnBw8ND4n60x0nLyJEjsX37dnh6elaYyeFLu3btYGtrW+7vWbraAqWqlLIGX2vWrEG3bt3g5+fH1VF8+vQJixcvhq+vL1VWyN/fHwKBAKdOneIyfUuWLMHixYuxZs0a+Pn5Uc2Fb+0Pi2OxsLCAq6srAOCvv/7CyJEjUbduXdy6dQu6urpU88jPz5dYF9K5c2e8fv2a/oB40rlz53K7lKSBhRs0C3dsFhlgFk7fL1++RO/evcW2Dxw4kLqg98yZM/Dx8cGwYcMwcOBArFixAq1atYKdnV2FFic2NjZU4/OGl1OQHNKhQweioaEh9qOpqcmZFVbGuXPnSI8ePcTGEI5dnbAw4ZswYQIJDQ0lhIiakm3bto3a5ZOVsSFft2AWx9KtWzdy/fp1se3Xrl0jPXv2pJ5LTk4OCQwMJPb29uTVq1fk2LFjIk65leHk5ES0tLRIz549yYQJE4iFhYXIDw3lne/CHxpYudqygIVxZb9+/Uh8fDw3nvAcuXXrVoUGmgcPHqT+qa5jIYSQU6dOcU66hw8fJsOHDyczZ86kdni3t7cnK1euFNvu6+tL5s+fTz0PeYGFGzQLd2wWsHD6tra2lujYHhISQiwtLanGYGHkSUjpue3k5EQmTJhAsrOzyc6dOyVea6Xlh8uofF1MC5SagOno6FCnoFeuXAltbW2Ym5ujbt26VTFNaliY8P33338SOwQGDx5MHXGzmMegQYNw4MCBCp/uK4PFsXz+/Flidq158+YoKCigGuPx48cYP348GjZsiJycHNja2iI2NhbOzs4ICwuDjo4O1Thfp+OlRdbi8bLs27cPISEhIqqrSkpKWLJkCaZNmwYbGxtYWVnBzMyM11xpYGFcmZubixYtWohtb9y4scSuJCFOTk5U4wsEAqrMHYtj8fLygqWlJdeBNHz4cAwfPrzS/couUxYXF+Off/7BzZs30blzZ6454NatW2LFwqyhLfwWCASYN28e1ZgZGRkS67q6desGT09PqjHev38PZWVlAKVZ2hkzZgAoXcYuuwRTEbm5uQgODkZKSorEzDtNxuXdu3fQ19cHUJr5TExMhKqqKmbNmgVbW1ssXbpU4n6smz9YGHkmJCTAzMwMurq6SEhIQFFREZKSkuDj44NNmzahb9++VONI4ocLVFiYbL148QJbt26FqqoqgxnxQ2jCZ2FhwZnwTZkyRSoTvkaNGuHFixdi7ZapqakirXVVPQ8WbsEsjqVjx46IjIzkUupCIiMjoampSTXGqlWrYGxsDC8vL+5C4+/vD0dHR/j6+uKff/6pdAwWS0nlne9CkzGauh1WrrYsEBpXbtiwgauJkda4slOnTjh27JiYvEBERESFMt6sOx9YHMvBgweplwDK8rWppfDGXvYY9fX1Oen3quLAgQOYNGkS6tWrV6FKsjSBCgs3aBbu2A4ODrh//z569uwp8wOtrAHC1+9ly5Ytxdrxf/nlFxw5cgR2dnaVzkNo5Onj44POnTvD29sbAwcORGxsLLVwna+vL6ZPnw47OztOxsPLywsNGjRAYGBgTaDC2m+ke/fuePDggVwEKjNnzsSCBQtQu3ZtDBs2DIGBgZg5cyb+++8/dO/enWqM4cOHc87PAoEAhYWFuHDhAlasWIGhQ4dW2zyEbsFAaTAoCyyOxdbWFpaWlrhz5w4XZMTHx+Phw4fcmndl3Lp1CxERESLZDEVFRcydOxfjx4+X/sAYo62tTZ0hELra+vv7cyKHsrjafk1xcTEePnwIVVVVNGjQgGqfxYsXY+LEiTAyMhIzrqR1Lre3t8f06dNx7949fP78GVu2bEFaWhoePHiAHTt2SHUMT548QXJyMn766Se0a9dOKrVRFsfSt29f7Ny5E/Pnz5eqU4YmUK4OpFUNp0HoBi3MGqWnp+PSpUsICAioUB+rLAsWLICNjQ2Ki4tF3LEjIiKwadMmqjHi4+MrNVCsDFkDBNYF0A4ODnBycsKNGzdgbm6OPXv2YNy4cZyRJw0JCQlYvny52PZJkyYhKiqK1/x+iK4fDQ0N1KpVq9KLCG1rcXZ2NsaOHYuePXuiVatWYktJfKqXZYGvCV9xcTGcnJxw9OhRAP+nQtivXz8EBARQPw3wnQcLWB3LvXv3EBISImKOOG3aNGhra1Pt37VrV0REREBdXV1EufTevXuwtraWShmUNYWFhdi4cSNOnjxJdb6zcrV9/vw5XF1dYWtrC3V1dYwdO5bLdIWFhVFnq1gYVz58+BAhISEiHTvTp0+nXpJ7+/YtXFxcRN6/WrVqYdSoUVi+fDm1YBrfY7GwsEBcXBwEAgGaNWsm9ndpO2XkReIAKG1SkCRPIE2TAgs3aL7u2IMHD4afnx8vATtWTt8A2+YPIoORZ48ePbBt2zZ06tRJ5Jp4/fp12NnZ4cqVK1LPQ8gPEai4ubnh1KlTqFevHkxMTGBiYkIt7VveeFFRUVBSUkK9evVEflfdOiosTfgeP36MpKQklJSUQF1dHe3atZNoOV+V8/j48SOOHz+O9PR0TJ8+HcnJyWjfvj2UlJSkGofPsbDAzs4OtWrVwtq1a9G5c2ccPnwYjRo1go2NDZSUlLBhw4ZqmUd5SswCgQAeHh7UNQiEgavtggUL8Pz5c6xbtw5xcXFYsWIFtm/fjgMHDiArK6tcDaOysDBHi46OxtChQ8WWFt+/f4+oqCiqpZQlS5bg/v37cHNz41qLb968CS8vL/Tr1w9ubm6VjlH272ZkZEBBQQFt27aVShW2smwxzUMTK4kDvty6dQvOzs7IzMwU2U4qaeEtDxZu0Hzcsc+cOYOgoCDY2dmhVatWYgESTYDAwun7/PnzcHZ2xps3b0S2S/u+fvjwAcnJyRKDyPK8y8qybNkyZGVlYd26dejbty8OHz6MoqIi2NnZQUtLizqLKIkfIlABSoWtrl27htjYWJw+fRrNmjXjghZh2pUWfX19LFu2TC68J1hYeA8YMAD79+8Xy3rk5ORgxIgRVB4sLObx6tUrTJgwAa9fv0ZRURFOnDiBlStXIiEhAeHh4VRBkKzHwnp5MCcnB5aWlsjPz0deXh5UVVXx7NkzNGnSBDt37mSuYlseBw4c4F08zgoDAwOEh4dDU1MTtra2IIRg/fr1yMjIgKmpabk3xLLmaOUFKmlpadi5c2e5Y+Tm5nL1NAMGDMC+ffvEgt/ExETY29tTeXV17twZQUFBYkWbly9fhr29PdV3pri4GN7e3ti/fz9XA1S3bl1YWlpS1Q2wwtTUFM2aNStXWsDY2Lja5lG/fn1MmzZNYtBbUbaOtRs0C3fs06dPw9HRUaxAW5oAgYXT96BBg6Cqqlpu8wfN0tSZM2fg5OSEgoICsSCF9lgKCgpgbW2Ne/fuoaSkBI0aNUJBQQE0NDQQGhrKK+v+Q9SoAKVdKYaGhjA0NIS7uzsuXbqEY8eOYcyYMWjdujWGDh0KExMTqpO4Xr16XO3Ct2b06NHw9fWV2oQvNjaWM0579uwZPD09xZ7knj17Rp2BkHUeZVm1ahXat2+PI0eOoGfPngBKNU1sbW2xdu1abN26tcqO5evis+fPn6N27dpo1aoVFBUVkZmZieLiYmhpaVEFKr/++iuio6Nx5MgRLrNjZmaGkSNH8lbdrMwZtywsisdZudoWFxfj559/BiEEV69ehb29PQCgpKSkQkVYgUDA1dMIBAJ4eXmJvaZ+/foVdjBcuHABTk5O3FLg2LFjxV5DCKEu6Ktdu7bEz7Fp06bURcX+/v44fvw4XFxcoKenh5KSEty6dQuBgYGoV68e58pcGUIX54yMDKxfvx6nT59G+/btqWsjUlNT4e3tDQ0NDWhqaqJ+/fqwsLBA/fr1sWPHjmoLVFJSUhAdHS1TVpa1GzQLd2xvb290794d48ePF8u808LC6ZtF84evry969OiBuXPnSmXnUZaGDRti9+7duHr1Krfkqq6ujt69e1Mvx5XHDxOolKV27dowMjKCkZERioqKsH//fvj5+cHf35/qJDY3N0dgYCBWrFgh8wnICllN+PT09LB7924uOs7KyhLx2RAIBKhfvz51oRQLM8Br165h27ZtIu/pzz//DEdHxwrl6VkcS9nis7CwMJw7dw5+fn5cqvfdu3dwcHCAurp6pccB/N+T/9dLK3l5eZg7dy7VEoWszriss0PLly/H69evsXjxYpkvUgDw559/Yt++fWjRogXevXuHvn37oqioCMHBwRUuxbIwRxs1ahR+//13lJSUYMqUKdiwYYNIF5jwHKH9fC0tLeHt7Y2AgABOVv39+/dYt24dteHcoUOH4O3tLSJwqKmpiRYtWsDb25sqUGHR8slCWoAFysrKKCwslGlf1vYaR48ehbu7O7p168Zt69atG1auXAkHBweqQCU3NxdOTk68Mpd9+vTBrFmzeDl9s2j+ePr0KYKCgiQacdJiaWmJjRs3okePHiJdba9fv4aVlRWio6NlHvuHDFSA0ijz5MmTOH78OOLj46GiogILCwuqfW/evIm4uDgcP34czZo1E3sarM4aFVlN+JSVlbkvt4WFBTZu3EjdvstyHmUpLCws1xjv8+fP5e7H+li2bdsmphvSuHFj2Nvbw8LCgssEfE3ZJYro6Gh07NhR4hIFjf8KILsz7saNG6mLx2kudKxcbR0dHTF79my8efMGM2bMQMuWLeHu7o4zZ85Qd1PxaREWrqP//fff0NfXp/b1EfL1U/uzZ8/Qv39/qKioQEFBARkZGfj06RO1e/KnT58kXvjbtWtHPQaLlk8W0gIsmDNnDry9veHh4QFVVVWpDApZu0GzcMfu1q0bbt++zStQYeH07e7ujrFjx+LixYsyN3+0adMG2dnZUgcq58+fx/379wGUKlxv3bpV7Br/+PFjPHv2TKpxv+aHClRycnJw4sQJHD9+nDuBhgwZgqVLl0pVXMtK6pkFLOpkhK2KfArHWMyja9euiIyMFBOj2rJlC/VSG4tjKS4ulij89fr16wrTyyyWKMoiqzPu+PHjcerUKQBgUjzOytVWW1sbly5dQkFBAeeXNGXKFNja2lKvT7MwrjQwMJC4XNKuXTuRJ+ivGT16NNNi7FGjRmH9+vXw9fUVKZYMDw+n/j6xaPlkIS3Agi1btiArK6tcsTxpimn5ukGzcMfu0qULli9fjnPnzqF169ZigTFNgMCizXjz5s149eoVLl68KLH5g2YeixcvxooVK2BnZwdVVVWxpf3ySiZ+//13eHp6ct/T2NhYkWUeYSaTVnyyPH6IYtqwsDCcOHECd+/exW+//YYhQ4Zg8ODBvJ8Q5QW+JnzFxcVwcHDgVTjGYh5paWmYNGkSlJWVkZKSgm7duiE9PR35+fnYuXMn1c2WxbE4OjoiISEBbm5u0NLSAiEE8fHxWLFiBfr27Ytly5ZVOoaGhgYuX74sVYD0NXyccVkWj7N0tSUyuFKXhYVxZdnlktu3b+PYsWMICgpCdHQ0b4VMaVi0aBFOnjyJn3/+Gdra2lBUVERiYiKePXsGHR0dkZtBeQEYq5ZPeZAWOHjwYIW/pw3eWLhBs3DHrsi5XNruUD5O3yyaPzp27Mi1rksyWKQJIsu6urPmh8iorFq1CrVr10bv3r3RqVMnAKUn4tmzZ8VeS6uBkpCQgB07dohccKdMmUKts8EKFiZ8mzdv5l04xmIeampqOHz4MHbt2oVffvkFJSUlGDJkCMzNzam7iVgcy7Jly7Bw4UJMmTJFxOV08ODB5bqEfg0LFVMVFRXEx8dj2LBhUFVV5VKo+fn5EvUQysKyePzKlSu4efMmDAwMeLnayupKXRYWxpVr165lopD58OFDkfqhstojkrJpX1OnTh0xi4SuXbtStXoKMTY2RkBAANatW8dtS0tLw8qVK9GvXz/qcYQPbUVFRTAwMOAlUiYrrLooo6KisGLFCpH31tjYGGpqatiyZQtVoGJkZIQNGzYgKCgICgoK2LFjB9q3b08dpABssiFfO30bGhrC19dXKqdvFs0fISEhvLOJX78feXl5aNiwodRLsJL4ITIqFUW2ZaGNcm/cuIHp06dDXV0dXbp04ar1k5OTER4eXq3LQhMnTsTgwYMxdepUkSeq4OBgHD58GDExMZWOMWjQILi7u6Nnz54iY1y9ehUODg5cR01Vz4MFLI5FSHp6OpKTk1GrVi1oampSrTWnp6dj7969mDFjBpo2bYqCggK4ubnh3LlzaN68OebNm0edYdq7dy+8vLywcuVKaGpqYuTIkRg3bhxu3bqF5s2bS62iCkCkeLywsJDqSYiFVgdQWmB87949+Pn5iblS6+vrl+tKXZauXbti//79vIr6unTpgr1796Jt27Yi50hmZiZGjhxJpRsSGhrKFZoKO4mE/+7SpUu1Kb+yavmMjIxEcHAwsrOzceLECezYsQO//PIL5s6dW7UHUIaSkhLExMRIXNYTCATUOhu6uro4ePCgmEN3eno6Ro8ejbt37zKdd2XwyYZ4enoiMTERa9euxYgRIzjtkcWLF0NVVZXK6XvTpk3IyMj4Zs0f169fR0REBJYuXYpffvkFL168wIIFC3D37l3UrVsXM2bM4H2e/RAZFdZywuvWrcOYMWPELqweHh4ICAioVnlqFiZ8LArHWMyDhYkXi2MRoqqqKlIpX1lbcFJSEszNzdGkSRPuqc3NzQ3Hjx/H1KlT0ahRI3h6eqJRo0ZUwfO4ceOgpKSEJk2aQE1NDT4+PggODoaysjLV8lNZ+BSPs1JaPnv2LDZs2CCyhKehoYGlS5fC3t6eKlBhYVxZu3ZtieaSz58/p76QR0REYMaMGZg/fz6MjIxw8OBB5OXlYdGiRRgwYAD1XFJSUso932mykAKBgHfLZ0xMDPz8/DBlyhSuqFlVVRW+vr6oW7cupk+fTn08fPD29kZERAQ0NDR4LTEOGDAAkZGRcHFxEdl+8OBBzrNHEtJ0ndB8NiyyIWfPnoWfn5/IQ5Kamhrc3NyovY9kbf4Qduk0bty4wq5LoPxr8/Xr1zF9+nRuJQMofWBJTEzE0qVL0ahRI6xZswYtW7bkJaXwQwQqrElMTJSY2p08ebJEfYaqhIUJH4vCMRbzYGHixeJYZG0L3rx5M3r37g1/f38oKioiJycHx44dw6hRo7hiscaNGyMkJIQqUJHVGVcIn+LxqnC1ZeFKzcK4ksVySXZ2NsaNG4effvoJGhoauH//PoyNjeHk5IRVq1ZRqdtu3boVAQEBEn9H68A8atQoBAQEiLV8SkNISAhcXV0xevRoTh3Y0tIS9evXR3BwcLUFKjExMfD29pZpCYiFGzRrd2x/f38IBAKcOnWKsyFYsmQJFi9ejDVr1lBlQ2R1+i6LrM0fv//+OxfsyipQuW3bNowbN45bcn/y5AkuX76MyZMnY9KkSQBK6+kiIiJqAhXWKCkpickRA6UnlSxCZ3xgYcJnY2MDOzs7pKam4suXLzh48KBI4Vh1zYOFiReLY5G1LfjmzZvYtm0b98QiLGQcPHgw95rOnTtTXaAA2Z1xJRWPu7q6SlU8XhWutixcqVkYVzo6OsLa2hrdu3dHSUkJTE1NueUS2u6D+vXrc8WFrVu3RmpqKlcHQdtq+ffff2Pu3LmYNWuW1O2zQj58+CBzUC8kIyNDTGEXKG2v9fT05DW2NBQVFUlVn1MWFm7QrN2xWWRDZHX6LousGdGyQb+sTu7379/HkiVLuP9fuXIFAoEAAwcO5LZpa2vzPs9qAhUJGBkZYcWKFfD39+dUFFNTU+Hl5UVdD8MKW1tbZGdncxH+6NGjORM+2vQ4i8IxFvP49ddfqV10y4PFscjaFpyfny+SMbh58yYUFBRELr4NGjSgVi6V1RmXRfF4VbjasnClZrGsymK5RF9fH9u2bYObmxsnZDdz5kzEx8dTn8PFxcUYOXKkzEEKUJr5sLGxwaRJk9C6dWuxoIXmxt+8eXNkZGSI1WDdvn2b2k+GBb1798b58+e5J21pqKrldj7u2CyyIaycvlk0f8iyTPnhwweRIvm4uDjUqVOHK2IHSgv/+Rbq1gQqErC1tcW0adMwbNgwrkUyPz9fqicyVtSuXRt+fn5YsGCBRBM+Gnbs2IFhw4YhIiLim85jyZIl8PDw4GXixeJYSkpKuAuMUKmzS5cuGDBgAIKCgsrd79dff8XTp0+hrKwMoPTpQUdHR0Tg6M6dO9QXu5cvXyI2Nhbh4eFSOeMK3yfhhaU8aDUUhPB1tdXT00NERARCQkJw6dIlzi1YaOxHC1/jShbLJcIbSEREBMzMzLB161YYGBjgw4cP1Do5I0eORFRUlMgTp7T4+/sDAFasWCH2O9q20QkTJsDT05NbPklPT8elS5cQEBCAKVOmyDw3adHV1cXatWtx9epVqKmpiWn3SHOu8nWDZuGOzSIboq+vj927dyMkJAQqKiq4c+cO2rdvDxcXF2qn77LNH4aGhlzzh7m5OXXzh6zLlH/88QdSU1Px22+/4cuXL7hy5Qq6dOkisvJw7do1Xh5xQE2gIpGff/4Z+/btw8WLF0Xs2Xv16sXbs0BahCZ8KioqUFFR4bZLYyi4ZcsW3n4eLOZBCEFaWprYmri0Hh18j0XWtuCBAwfCz88P7u7uOH/+PJ4/f45Zs2Zxv8/JyUFgYCB1sWW3bt0qFCArD9bF4yxdbbW1tcu94NHwtXHluHHjEBISIpVxJYvlEnV1dZw+fRrv379HgwYNEBUVhSNHjqBly5YiS30VYW1tjZEjRyI2NhZ//PGH2FMlTfH4qVOneF9zZsyYgfz8fNjb2+PTp0+YNWsWFBUVMXHiRGq/IRbs3LkTTZs2RWJiIhITE0V+J01QXZkbNE2g4uXlhbS0NISEhIi5Y69evZrKHZtFNkTo9P31krNQ+JBmaZhF84esy5QmJiZYtWoViouLcenSJeTm5mLMmDHc7+/du4eNGzfCzMyMekxJ/BDtyT8aZU34Dh48iKFDh0o04UtOTsa1a9cqHc/Kygq9evXCtGnTvuk8+vfvD01NzXJNvGhqV2Q9lrLI2hacn5+P2bNnIz4+njueTZs2QSAQYMuWLdi8eTNUVFSwa9cuKs0QeYGPq+2nT5+4c6Ki9lOAbh188eLFKCgowLp169CzZ08cPnwYjRs3hq2tLX766adyjSvLsm3bNkRHR/NaLhHCRwF56tSpSEpKQvfu3SVaR9C8H2PHjoWXlxcv5WEhHz58QGpqKgghUFVV5S3u961g4QbNwh0bKK17CQkJ4ZYY27dvj+nTp1eYDWHt9K2jo4MDBw6IBfFpaWkYO3YsVTt+165dsW/fPpGHUBqKioqwdOlSxMTEoFatWjA3N+dq1FatWoWwsDAYGBggODiY1xJoTUbl/1NZe1ZZWBtkfQ1rQ8GGDRtizZo12Lp1K9q0aSN2wpR3PKznwcLES9ZjKUtFbcEVPUk1atQIERERSElJQa1atUQuDO3atYODgwNMTU2lqsPhKyrGAj6utoaGhujbty/8/PyYtJ/KalxZFhbLJUVFRXB0dOSlgHz79m38/fff1Cl8STx58qRcfyxpePv2LR49esRlDMu+B7IWuH4rWLhBs3DHBkrb7ysqwJcEa6dvFs0fsi5T1qlTB2vWrIGbmxsEAoHIta9///4wMDCAkZFRTY0KKyS1Z8XExKB///68C0ClhbUJX/369ak9MKpyHixMvGQ9lq8pezETtgUXFxfjzp07lbbqtW/fXmxb2Sp3WioTFasu+Ljanj17FoaGhvj48SOv9lMhshpXloXFcsmWLVt4KyArKyvz9lCytraGq6srrKysJGaHaOqH9u/fDw8PD4lZLmmX9vigoaFR4Q2Ldh4s3KBldccWuqY3bNhQpGVaEuVlzFg7fbNo/uC7TCkp6GOpflwTqPx/JJ1Ux48fx5IlS3jdWPnCwoTP0NAQvXv35hVksJgHCxMvFseiqakJGxsbMbXEt2/fwtLSstou3KxExfjCx9V2/fr1mDx5MurWrcur/VQIC+NKOzs73sslR48ehbu7u0gNUbdu3bBy5Uo4ODhQBSqLFy+Gm5sbbG1tJZ7vNEFGQEAAvnz5gri4OJk9WDZs2ICRI0di6tSpvGt3+CCUNhDy+fNnPHr0CNHR0VI1KcjqBs3CHfvp06dcxuXrlmlp4Ov0XRYWzR9CjRltbW0mGTzW1AQqcg4LEz5PT0/s2rWL182dxTwiIyOhpKSEO3fu4M6dOyK/oy2mY3EshBAEBwcjPT0d3t7eIunR6izZYiEqxgI+rrYxMTHw8fEBIYRX+6kQR0dHTJo0CTdu3EBxcTHc3d1FjCtpYLFcwkIBeeHChfjy5Qusra1lDjJCQ0PpJ10O7969g5WVldRmlawpT/BLS0sLe/fupbaekNUNmoU7dtnC1IqKVF++fEk1nqxO32Vh0fzBYpmyKqkJVOQcFiZ8bdq0QXJyMrVya1XNg0W3CotjEQgECA4OhouLCywtLbF582Yu/cv3QiYNLETFWDBnzhyZ9122bBnWr18PbW1tJu2nLIwrWSyXsFBAZhFksEifGxsb4/z58988UCkPbW1tatVYoPR49u7dCwUFBSgrK2P79u0IDQ3FgAEDsGDBgnL3s7GxYTFdDk1NTVy+fJm7dgh5+vQphg8fTlXEWtbpOyEhAUVFRUhKSoKPj49UTt+1atVC3759ZXYGZ7FMWZXUdP1UQFlDs28FCxM+Nzc37Nu3DxoaGhILUGm6D2SdR1ZWFpSVlSEQCJCVlVXh36C5gbA4Fg0NDVy+fBm1atXCvHnzkJ2djaCgIDRr1gyGhoZUT7rv3r3j3dkze/ZsKCkpwc3NDTExMdi3bx92796N2NhYrFq1CpcuXeI1fnXD0vaeDyws68+ePQs7OztMmDABkZGRsLa2FlFAphUXFFJUVCSTqvWnT5+wZ88eJCcnc8ckHC8hIQEnTpyodIwXL15g+PDhUFNTQ+vWrcWCcVlVSVlQWFiIjRs34uTJkzKdH7K+r4Bshez79u3D4cOHAZTql+jp6Ynd4F+8eIEPHz7g/Pnzlc5hypQp0NXV5Zy+hddVHx8fxMfHY9++fRL3Y938cfr0aWzdupXXMmVaWppMBfk01GRU5BwWKeiMjAxO9Ic2JclqHgMGDMClS5fQrFkzsTViIdLcQFgci3AOSkpKCAsLg4uLCyZOnChVl02vXr0wYMAAmJqaolevXjJlYliIirGAlasti4wZC+NKFpkMFgrIgLhr8fbt2/Hrr79Su8l6eXkhOjoaf/75J+7fvw89PT08fvwYr1+/pl4a9PLyQmFhIYqKiqo1U/c15RXTCgQCKsPKsvB1g5a1kN3Y2JiTJwCAli1bimXs1NXVqQv+Hzx4IDEbPWnSJERFRZW7H+vmDxbLlCYmJtDW1oapqSlMTEwkSh3ISk2g8v+RVMFdXFyMtWvXin3w1fkEwiIFzUJ+WtZ5hIeHc/UkLNq6WRxL2RtxnTp14Ovri40bN2Lx4sXUY2zatAnR0dGwsbFB48aNMXLkSJiamopZz1cEC1ExFvBpK2adMWNhXMmq26BPnz4VuvFWhiTXYjU1Nalci8+cOQMfHx8MGzYMAwcOxIoVK9CqVSvY2dmhuLiYah4XLlzAli1b0Lt3b5mPhQWSrpu1a9eGjo6OVFlrFm7QshayN2nSROQ4hB1AsiKr0zfr5g8WwX1sbCyio6OxdetW+Pj4cA9yhoaGNe3JrJBUwa2np4c3b95I7FGvLliY8AH8JadlnUfZm0ZmZiaGDBnCu92b77HMnz9frNhy/vz5UFFRqfAppiy9e/dG7969UVBQgGPHjuHw4cMICQlBp06dMGbMGAwZMoTqAla3bl1kZ2fj5s2bqFWrFv766y9Oor+64NNWzDpjxsK4ksVyCQCcO3cOycnJEjM7NPU2LFyL3717x3U7tWvXDomJiVBVVcWsWbNga2uLpUuXVjqGkpIStQ1CVfLgwQMRt3BZYfG+sihkZ/HAysLpmwUsgntVVVXY29vDzs4OV69eRUxMDOzt7VGvXj2MGjUKY8aMkfmzr6lR+Q64cOECgoKCRNQPZ8yYQZ2Crkxymqboi8U89PX1QQjBwIEDYWpqWmGFfnmwOhbW5ObmIioqClu3bsXHjx9Rr149jBkzBra2tuUGLAUFBbC3t8fFixdFUs9Dhw6Fj49PtTl16+npISYmRiY/jhs3bnDtlTdu3KjwtTQXw8GDB8PPz08qJ+ivWbZsWYXLJY6OjpWOIewuk+TBRFtvo6uri5iYGLRq1Uqk/uDJkycwMTGhUh3t06cPNm3ahE6dOmH16tWoXbs27O3t8fTpU5iYmODu3buVjrFnzx6cOHECy5YtQ+vWraGgoFDpPlVB586dcejQId6+LyzeVwMDA+zZswdt27aFu7s7WrZsidmzZ+P58+cYOnRotV1HCgoKYG1tjXv37qGkpASNGjXinL5DQ0PRpEkT6rH41FSyCu7LkpiYiNjYWOzcuROEEHz+/Bm9e/fG8uXLpX4Yq8moyDksTPj8/f3x559/lis5XV3zuHLlCk6dOoUjR47A2toav/zyC7dkQvvlkvVYynva/xqBQIDTp09TzaWoqAinT59GdHQ0rly5ghYtWmDq1KkwNTXF8+fP4ePjgwULFnBPfV+zcuVKZGRkYNu2bdDT0+PMxITiTdJ0QvCBT1tx2eCDxVMZC+NKFsslQh2ViRMnynQcABvX4j59+sDDwwM+Pj7o3LkzvL29MXDgQMTGxlKbX+7YsQNZWVkYOnSoxN9Xl26QrG7hX8PifWXhjs0CFk7fLGBRCwWU1jIeOnQIhw8fRlpaGnR1deHq6oqhQ4ciNzcXy5Ytw/z587F//36p5lcTqMg5LEz4WEhOs5hH3bp1ORXY3NxcHDt2DEePHuVu1DQ6GbIeCwsNhbK4urrixIkT+PTpEwYMGIAtW7aIFNW2bt0as2bNgouLS7ljnD59Gps3bxYRSevXrx/q1KmDxYsXV1ugwsrVVmikVp7XD02NEgvjShbLJYqKijIZRpaFhWuxg4MDnJyccOPGDZibm2PPnj0YN24cFBUVqVVY+bSfs0RWt/CvYfG+ykshOwunbxawCO6nTJmCuLg4NG3aFCNHjsSGDRugqqrK/b5BgwYwMzOrVNFXEjWBipyjo6ODf//9l5cJHwvJaRbzKEvDhg3RokULKCsrIykpibqDR9ZjYa2hkJiYiIULF2L48OHlpmc7dOjA+c5IouyxlKVFixbUcvEsYOVq6+bmhjNnzsDQ0BAtWrSQaS7e3t7o3r17ucaVNDRt2hSvX7/Gb7/9xunuAKW1Gq9evaIaw9zcHFu3bsWKFStkXoJj4VrcuHFjbN68mfv/tm3bOJsH2uwBq9oQvsjqFv41LN5XeSlkl9Xpm3XzB4vgvlGjRti4cSP69u1b7vKijo6OTFn5mhoVOWfhwoU4efIkGjduLLMJ3/jx4zF8+HBYWFggODgY9+/fx4YNGxAfH485c+ZUWlvAah5AqelcTEwMTp48yYl5jRo1itrbhsWxAGzNAAsKClC7dm2p3UE3b96My5cvY/369WjevDk3lqOjIzQ1NakDBHmhc+fO8PX1hZGRkcxjlK0/kJWlS5fi4cOH8PHxwePHj+Ht7Y3169cjNjYW//77L9V6e3p6OszMzPD+/Xu0aNFCLBsnjeYHH9fijx8/wsPDA23atMGsWbMAlC5jGhoaYtmyZVRBFKvaEHmDhRu0tJYgrPVLZHX6trCwoJ4HTacki1ooIZ8+fUJGRgbq1KmDVq1aMRGSq8moyDksTPhklZxmPY/evXvj9evX6NKlC1xdXfHXX39J/dTM4lhYmQGGh4cjNDQUOTk5EAgE+OOPPzB37lzq9+nSpUu4f/8+BgwYgDZt2kBRURGPHj1CYWEhkpKScPDgQe611SWWxoevHaVlgYVxJYvlkiVLlqBx48YYM2aMVHL8cXFx0NPTg6KiIuLi4sR+L61r8apVq3Dz5k2RjixnZ2esXbsW69atoyoMZlUbIk/wdYOW1R27MsNSaZHV6ZuFTENZWNRCFRUVwdfXF7t37+aWfuvVqwdra2vMnTuX19J7TUZFzjly5AhvEz6gNP2roKAADQ0N3LhxA6GhoVBWVsaCBQuoKstZzGPjxo0YNWoU7yc7vsdibGyMIUOGSNRQGDt2LFXxWGBgIEJCQmBpaQkdHR2UlJTg5s2b2L17NxYvXozJkydXOsbGjRspjraUqsyusHK1dXV1RYsWLWBrayvzXIKDg7F582YYGRnJbFz5NYQQqZdLtLW1sW/fPmoHWyFC1eNmzZpx76ukSyxtvU2vXr0QGBgIPT09ke1xcXFYtGgRLly4UOkYFhYWnKkhn9oQeYGFG/T69etx/PhxuLu7Y/bs2Th8+DCysrLg7OyMPn36UFmCsODJkycVFs2yDozK4927d3BycoKhoSHMzc0xc+ZMXLx4kQvuTUxMKh1jxYoVOHHiBBYuXAhtbW3umrhx40ZMmjSpQnuDyqgJVOQcAwMD7Nq1i5e3DQA8evQIBQUF0NLSAlCaDejbty+1/wereUhCuOQiVJytDL7HoqWlhdjYWLRu3RrTp0+Hubk5jI2NcenSJaxatQpHjhypdIzevXvD0dERw4YNE9m+d+9ebNmyhYlKa3Vx4MCBCl1tac3i/Pz8EB4ejnbt2qFt27ZiyxI0a+UsZPhZLJeMHj0arq6uUmXYgFJHXmVlZdSqVatSFViam5Cenh727dsnlqlKS0uDqakpVUq+soD4e1ti7Nu3L/r06VOuGzTN+8rCmgQolcuPiopCRkYGXFxcEBcXB3V1dZEi0ooYO3Ysb6fvqkCW4F5YJ/i139CJEyewYsUKXpYgNUs/cg4LE74rV65gzpw5mDp1Kndzj42NRUBAAIKDg6kuxizm8eDBAyxdulSkNqQsNE9CLI6FhRlgfn6+RK2Pzp074/Xr11RjyAusXG3v3LnDua++ePFCprmwCPBYLJfMmDEDLi4unLHh15md8pYXyt4kN27cKFG5NC8vDy4uLiJFsuWhq6uL7du3Y+XKldyTNyEE4eHh6NSpU6X7A99fIFIZLNygWViTPH78GOPHj0fDhg2Rk5MDW1tbxMbGwtnZGWFhYVROxCycvlnwdXAvEAiwaNEiqYL74uJiidlyNTU1FBYW8ppfTUZFzmFhwjd27FgYGhrCzs5OZLu/vz9u3LiB3bt3V8s8Jk2ahE+fPmHMmDHw8fGBk5MTMjMzERERgTVr1mDIkCHVciwszAAXLVqEZs2aibUf+/n54dGjRwgMDKx0DHnn2bNnGDp0qFSFdLLAWoafxXJJRU+4FS0vxMfH48mTJwBKgyNJgUpaWhp27txJJSp27949TJkyBUpKSlxg/uDBA+Tl5SEkJITqZgiAcz7PyMjA+vXrcfr0abRv356Z3UB5VPZ5loVWPXfJkiXQ0tKibkWWhKmpKczMzDBu3DiRjMqmTZtw5swZHDhwoNIx5syZg6ZNm8LLywv6+vo4fPgwlJWV4ejoiBcvXlDVkQQHB+PChQu8nL5Z4O7ujsuXL2PlypXcOXHq1CmsXbsWAwYMoAruvby8kJubi1WrVokENs7OzlBUVJRYh0NLTUZFzmFhwpeamipR5n7cuHHURVks5pGYmIjw8HBoa2vjwIEDUFdXh7m5OVq2bImoqCiqQIXFsciqoVC2JbC4uBj//PMPbt68ic6dO0NBQQEPHjzArVu3xPyQvkcKCwuxc+dOrhupKmEtw19YWCjR2bpp06bUT8unTp2SSXBLIBBw+jcCgUBiB1n9+vWptTq0tbURExODPXv2ICUlBYqKihg2bBgmTZpEnZJPSEiAmZkZdHV1kZCQgKKiIiQlJcHHxwebNm0SS9WzhEZoUZrPFigNVIYPH44TJ07I7AbNwprk1q1biIiIEPn7ioqKmDt3LsaPH081RkBAAL58+cLVEAmR9j3hy+nTp8WC+4EDB6JJkyZYtGhRuYFK2S6oL1++ID4+Hjdv3oSWlhYUFBSQmJiI7OzsCv2TaKgJVOQcFtXdTZs2xcOHD8U6KVJSUqgdLlnMo6SkhNPXEGqgdOnSBQMGDEBQUBDVGCyORZKGQkxMDJSVlSvUUPjaD0q4zPTw4UNum76+PtLT06nmIS+wdLWVBdbGlSyWS+zs7GSqHdDX1+fOh7KFtXz4448/sGjRIpn39/X1xfTp02FnZ8fdiLy8vNCgQQMEBgZWaaASHh7OVGgRYOMGzcIdu6SkROISdmFhIbVNAQszQBbIGtx/XQ/09XIaq4xdTaDyHcDXhG/kyJFwd3dHXl4elyq+f/8+AgICpGo55jsPFRUVxMfHY9iwYVBVVcX9+/cBlNZ7SDJ+q4pjEQosCX+A0lZHMzOzSoWXWLcEAvzfUxawcrWVFdbGlXZ2dpgyZQquX78ucbmEBha1A2UD2G9JQkICli9fLrZ90qRJ1CacssJC4O1rWLlB83XH7tWrF4KCgrB27VpuW15eHtauXUstlVDVS2+0yBrcszBmpKEmUJFzKjPho7mZzZs3D2/evIGnpyc+f/4MQggUFRU5v5zqmoeFhQVcXV0BAH/99RdGjhyJunXr4tatW9DV1aWaB59jOXLkCFauXIng4GDuBgaUqqEmJCTAy8sLAwcOpJoHC1i8pyyQF+VSoPSzWLlyJS/jShbLJdbW1nB1df3mtQMsqF27NgoKCsS2P3/+XGb1X1osLS2xceNGNG7cuFKxNNpsGis3aL7u2E5OTrC0tESvXr3w6dMnzJkzB8+ePUOTJk2watUqqjlUhRmgLLAI7quSmmJaOcfU1BTNmjUr14RPGv+dwsJCZGRkQFFREW3atJFKupnVPE6fPo0mTZqgS5cuiImJQXBwMJSVlbFs2TKp9FWkPZbr169j2rRpGDVqFOzs7EQk3tPS0rB9+3YcPnwY//zzDyclXdWw/Gz5UB3KpdnZ2VTCUR8/fuSMKy9fviyTcSULOnbsyN04vmXtAAuWLVuGrKwsrFu3Dn379sXhw4dRVFQEOzs7aGlpwdvbu8r+dtmC4so8Xmifzlm4QbNwxwZKM7RHjhxBUlIS5yg/cuRIamE9Fk7frHj69KlIcK+mpiZVcF+V1AQqco62tjaioqKgoaEBc3Nz2NjYoEePHti/fz/27duHyMjI/6l5yIqVlRXU1NQqNAl0dnbGq1evEBwcXC1zkpf31N7eHr/88gtv5dInT55g9erVIk+HwqWs3NxcMR+hyihrXHn37l1q40oWVGbFIC8pexoKCgpgbW2Ne/fuoaSkBI0aNUJBQQE0NDQQGhpKJZIoTwwaNAhZWVkiGYiy0ASR3bp1g52dHS93bBb07NkTLi4unBlgUFAQZwbYsmVLKo+d/wVqln7kHBaGgvI0j2PHjiE8PBzJyclQUFBAx44dYW1tjV69elXV1AGUdhxV9nRibm5ObWrGAnn5bFm52np6euLRo0cYPHgwQkNDMX36dGRkZODUqVPw9PSUel6yGleyoGwgUlRUJLMxIQuEomLp6elwdXWVWlSsYcOG2L17N65evYrExESUlJRAXV0dvXv3lqmziQ+5ubnIyMiQ6LFF6/LMwg1aVnds1l4/LMwA/xeoCVTknPbt2+Pff/+FhYUFVFVVER8fjylTpiA7O/u7m8e+ffvg5uaGwYMHw8TEBF++fMGtW7cwa9YsrF+/vkqXOj59+lTp8lCTJk3w4cMHmcbPzc3FjRs30LFjR+olCnn5bFm52t66dQubN29Gt27dcPHiRRgbG0NbWxvr1q3D+fPnqVs2JRlX0or5sSQyMhLBwcHIzs7GiRMnsH37dvz666+YO3duuftER0dTj09T/P21qJidnZ3UomJClJWVkZ+fj1q1akFdXb3ag5TDhw9j6dKlKCoq4qwFhMtqv//+O3UAwqKmSlZ37LJdLp8+fUJsbCw0NTWhq6sLRUVFJCQk4N69e9QSBSycvuWJjx8/olatWqhTpw7S0tJw7tw56Onp8V9OJzXINadOnSKampokMjKSZGVlkU6dOpEZM2aQPn36EBsbm+9qHgMHDiShoaFi24ODg8nw4cMZz1gUU1NTEh0dXeFroqOjybBhw6jG+++//8igQYPIjRs3yNu3b4mhoSHp0KED6dSpE7l69SrVGPLy2bJCS0uLZGVlEUIIsbW1JVFRUYQQQtLT04mhoSHVGL169SKamprEwsKCHDx4kLx//77K5lsRhw8fJp07dyYbNmwg2traJDMzk4SHh5NOnTqRHTt2lLtfhw4dqH40NDSo5jF79mzi4uJCSkpKiK6uLsnMzCTFxcXE3t6eTJ48mWqM/Px8MmPGDKKhoSHy9+3t7cmnT5+oxmDBkCFDiJOTE0lNTSVdu3Yl9+/fJ2fOnCF9+vSp9LtZFn19ffLkyRNec0lLSyMGBgZES0uLGBkZkf79+4v80ODk5ER8fHzEtq9bt47Mnz+fagxXV1cyZswYkpycTE6dOkWMjIzIvXv3yKpVq8igQYOkOqZvzY0bN0jXrl3JlStXSE5ODtHT0yOdO3cmf/75J4mNjeU1dk2g8h2QkJBAkpKSCCGEXL9+ncyePZt4eHiQN2/efFfz0NbWJhkZGWLbHz16RLS1tRnOVJywsDBiZGREsrOzJf4+OzubGBkZkY0bN1KNN336dDJjxgzy6tUrEhERQbp160ays7NJQEAAmTBhAvW85OWzZcFff/1Fzp07RwghZP369cTDw4MQQkhqairR1dWlGiMwMJD3TYgQQp4+fUqOHj1KDh48KPZDw6hRo8iBAwcIIYQLEAghZO/evdV6AzEwMCApKSli80hNTSX6+vpUYzg5ORFjY2Ny4cIFkp+fT96+fUvOnj1L+vfvL/FGW1VoaWmR1NRUQgghkydPJufPnyeEEHLixAkyevRo6nHs7OyIj48Pyc/Pl3kupqamxNjYmKxevZoEBgaK/dCgq6sr8XqWkZFBdHR0qMZ4+/YtmTNnDtm5cycpKSkh1tbWpEOHDqRjx47kyJEjUhzRt2fixInEycmJ5Ofnkx07dpDevXuTjx8/koiICDJy5EheY9cs/XwHNGjQgGsvNDAwQFJSEvr27UtdBPfy5UsEBATg1q1bEh1HaWsQ+M6jS5cuiI2NFUudX7p0idqQUNZjmTx5Mk6cOIFhw4ZhzJgx0NPTQ+PGjZGXl4dbt27h4MGDaNOmDbVi6O3bt7F37140a9YMFy9eRN++ffHrr7/C1NSUWsRp/vz5sLOz4wznDAwMvqsiza8ZPXo0HBwcsGbNGvTr1w+Wlpb47bffcPnyZXTo0IFqjPLaQqUxroyKioKHh4fEYkuBQEC15JKRkSFxqalbt25S19tkZWUhLS0NXbt2RWFhoVQCcCxExU6fPo3NmzeL+BP169cPderUweLFizkl3aqmTp063DKLiooKUlJS0KdPH2hpaeHx48fU47CoqUpJSZHJHbssjRs3RmJiopjn0M2bN6k/48aNG4t4Pm3btk1qM0BW8K2FSkxMxJo1a9CwYUNcunQJ/fr1w08//YS+fftSt2uXR02gIuewMOFbtmwZEhISYGJiQq3eWhXz6NKlC7Zs2YKEhAQYGBigdu3auH//Po4cOQJTU1MRl9fybliyHouCggLCwsIQEBCA/fv3IywsjPtd8+bNMWnSJMyZM4e6ZVu4Dvv582fcuHEDy5YtA1B6A6Ed49q1a2IX2e+ZmTNn4qeffgIhBNra2pg7dy62bNkCZWVlEVGsimBhXLl161ZMnDgRdnZ2MncxNW/eHBkZGWL1Rrdv36a+gRQVFcHR0RHHjh1DrVq1cOLECaxevRqFhYUIDAykmhsLUbGyRdtladGiBT5//kw1BguEJpf29vZQV1fH+fPnYWVlhdTUVNSuXZt6HBY1VWpqanj37h2vMSZMmAA3NzekpaVBS0sLJSUlnKz+kiVLqMZgYQbIAha1UPXq1UNRURE+ffqE+Ph4rk7n1atXMt93OBhkfGqoQsaMGUP8/f3Ftvv5+VEvMejo6JC4uLhvPg8jIyOqn4rWiFkcS3FxMUlPTye3b98mjx8/JiUlJVKPYWVlRVxdXYmfnx/p2LEjef36NcnOziYzZswgs2bNohrDy8uLLFy4kCQnJ1drrUBVsX379nKX1mgxNzcnY8aMIbt27SKdOnUiERERxMfHh2hpaVGvc2tpafFePtq2bRsZMGAAOX36NNHV1SXnzp0ju3btIgYGBmTTpk1UYwQEBJDBgweTa9euccs2165dI0ZGRmT58uVUY2RnZ5NBgwaRHj16EE1NTWJiYkJ0dXVJv379yNOnT6nG2LRpEzE3NycvX77ktuXn55O5c+dSL3OwIC4ujujo6JAdO3aQ3NxcYmBgQIYOHUr09PSIq6trtc2DEEKOHj1KBg4cSHbv3k2uXLlCbty4IfJDy9atW0mvXr242p9+/fqRiIgI6v2XL19OjI2NyfXr17ltJ0+eJAMHDiSrVq2S6pj4wKIWasGCBWTWrFnEwcGB6Orqkvz8fJKYmEjGjh1L7OzseM2vJlCRc3R0dLh16bJkZmZSr/v36NGDpKenf/N5sIDFsbDg0aNHZPTo0aRLly7chcnT05P079+fpKWlUY0xcOBArrBR0k9V8uzZM+ofWjp37kwePXrEa166urrk7t27hBBCxo4dywWloaGhZOrUqVRjjBs3jpw9e5bXPAgpDcK1tbW5m1DHjh3JihUryJcvX6j2HzhwILl8+TIhRLS+5MqVK6RXr17U83j//j2JiooiHh4eZPny5WTnzp1S1WeYmZkRLS0toq2tTUaMGEFMTU2Jvr4+6dChg1ghaVWTnZ0tUmezYsUKsn37dqkD9aSkJOLk5EQmTJhAsrOzyc6dO0Vu9pXBotC5LLm5uTLVlRkaGpJbt26Jbb9x4wbp3bu31OPJCotaqNevX5P58+eTkSNHklOnThFCCPHx8SHm5ubkxYsXvOZXs/Qj57Aw4Rs5ciS2b98OT09PmVQcWc2DBSyOhQUqKipiVvDz5s2Di4sL9bxY6EHISlW42uro6ODff//FtGnTZJ4XC+NKa2treHp64smTJ1BVVRVLn5et1agIe3t7zJkzB6mpqSCEQFVVVaqlpJycHIkttMrKytQuzkBpSp2PI3fPnj3Rs2dPmfdnxdixY0WMHtXU1GTSCWHhBi2rO3Z5KCkpybQfC6dvFrCohWratCkCAwNFttnb2zNZvqoJVOQcFoaCeXl5OHLkCM6dO4dWrVqJnTg0wkSsjA35wuJYWCHJUPDt27fUhoKjR4+u6imWS1W42jZs2BBr1qzB1q1b0aZNG7H6G5rPhoVx5YIFCwAAK1euFPudNIFXQUEBYmNjkZycjFq1aqFjx44YPHgwdV2Rmpoarl69KhZkHD16FO3atSt3P9aiYjS+NdUBC6NHgI0btKzu2Kxh4fTNAha1UAAbQT9J1AQqcg4LQ0EAGDZsmFzMgwV8j4UFrAwFz58/jx07diA9PR179uzBgQMH0Lp1a4wcOZL1lEWoClfb+vXr8w5aWRhX0naxVURaWhqmTJmCwsJCtG3bFl++fEFUVBQ2b96M8PBwKt8iGxsb2NnZITU1FV++fMHBgweRkZGBEydOYN26deXux1pUDCjfgE8gEGDevHnU4/CBldEjCzdoVkETX+TFDJCFwSIrQT9J1Hj9fCfwMRT8EefxrWFhKHj58mXMnj0bJiYmiI2NxdGjR7Fv3z4EBwfD29u7SjNVVeFqywpWxpVFRUV4+vQpWrduDUKIVJ0l06ZNg6KiInx9ffHzzz8DKH1aXLRoERo0aCDSoVYRFy5cQFBQECdd3759e8yYMQN//fUX1f7Ozs74+eefxVqIAwICkJaWJpZqlwQrAz6+sDJ67NGjB7Zt24ZOnTpBT08Phw8fRqtWrXD9+nXY2dnhypUrlY4RHByMCxcuyIU7tryYAfI1WBw6dCh0dHRgbW0NMzMzhISE4MWLF/Dw8IC9vT2vh6+ajMp3QoMGDbiIWxaEPfIZGRlwcXGRukee1TxYwOpY+JCamgpvb29oaGhAU1MT9evXh4WFBerXr48dO3ZQBSqBgYFYtGgRpk6dytm5C1tqd+zYUaWByu+//86lmss+wfOFReq37Hs3fPhwDB8+XKo5EELg5+eHf/75B8XFxVwGo169enB3d6cKWO7cuYOoqCguSAFK1+AdHR1hbm5OPZc+ffqgT58+Us2/LMePH8fBgwfFto8aNYr6/Dh69Cjc3d2/uQEfrb5QZRgbGyMgIEAkK5WWloaVK1eiX79+VGMEBATgy5cviIuL4xU0sZCM/+OPP7Bo0SLq11cVfGuhnjx5gsDAQKipqaFDhw7Izc1F//798fnzZ2zdurUmUKmhYr7ukbe1tZXZL4QPLITn5OVYWBgK/vfff1izZo3Y9sGDB1M/scuKj4+PxH/zgVXql69x5T///INDhw5h+fLlnDibsbExPDw80Lx5c9jZ2VU6RvPmzZGdnY327duLbC8oKKhQ4JC11w8LUTFZDfhYc+PGDVhZWaFevXoi2wsKCrB+/XpqsUNHR0dYW1uje/fuKCkpgampKecG7eDgQDUGi6ApLi4O8+bNw/r166GmpoZx48ahVq1a+PDhA3x9fTFkyBDef6MqYV0LxUrQTxI1gcr/AKtWrYKxsTG8vLy4SN/f3x+Ojo7w9fXFP//8Uy3zYCE8Jy/HwsJQsFGjRnjx4oVYZ0hqaqrIk3x1wCITsnXrVpiYmEhM/drY2FCNwcK4cs+ePXBzc8PAgQOxYsUKAKVp6dq1a8PHx4cqUHFwcICHhwecnJxgYGAARUVF3L9/Hx4eHrC0tERWVhb32rLLBF8v0QgDtrp160JRUREFBQVQUFCAkpISVaDCQlRMVgM+FqSlpXF1XJs2bYKGhobYuZ2cnIyoqCiuNqkyWLhBs3DH9vf3x4ABA9CpUydERUWhYcOGOHXqFPbv34+goCC5D1RY10KxEvSTCK/m5hq+C1j0yLOAhVibvBwLC0PBNWvWkNGjR5OkpCSip6dHkpKSyPnz54mRkVG1erAcOnSIdOrUidOQKKvtMmDAAOpxWHi5sDCu1NbW5gTfyp4jmZmZREtLi2qMr3U1hD9l/1+Z5kZMTAwZNWoU5+VESKkPzPjx48nff/9NNQ9C+IuKsTDgk5WzZ8+KvWeSflxcXKQeOyMjg5w4cYKcOnWKM8OUhl27dhEjIyOiqalJMjMziZubG7WYHyGEM6skhJBp06aRZcuWEUJKfaY6deok9Xy+JSwMFqtS0K8mo/I/AIseeRbUr19fKp8TScjLsRgbG2Pv3r1QUFCAsrIytm/fjtDQUAwYMIBrj60MW1tbZGdnc0/Wo0ePBiEE/fr1g62tbdVN/itYZEIANqnfnJwciXUGAwcOpCocBUqfFO/fvy9WeHvhwgUxHaDyYFFA7Ovri/Xr14u0wLZp0wZLly7FnDlzYGFhQTXOrFmzMGvWLLx58wYCgYDaW0vIkiVL0LhxY4wZM6baO1369euHf//9FyUlJdx3pmnTptzvBQIB6tevL9UxFRQUwN7eHhcvXuSWjwUCAYYOHQofHx+q7EhMTAz8/PwwZcoUbN++HUBpO7mvry/q1q2L6dOnVzpGlUrGVzMsaqG6dOmCEydOoKioCEpKSoiIiMDu3buhrKxMfa6XR02gIuewqOtg0SPPYh4sxNpY9fuzoGPHjty/ZTEUrF27Nvz8/LBgwQKu0l5dXR3t2rUTe3+rElZFcCxSvyyMK62srODh4YGXL1+CEIKrV69iz549+Oeff6gN+FiYQ757906i5kpJSQk+fvwo9XiyioqxMODjg3Bp7MyZM/jtt9946/esXLkSGRkZ2LZtG/T09LjlsBUrVsDf35/qMw4JCYGrqytGjx7NtQFbWlqifv36CA4OpgpUunXrhrVr1+Lnn39GrVq10Lt3byQlJcHLy0uqmqBnz57h7t27EnWCqkujikUtFAD8+uuv3L/btWsnk6CfJGoCFTmHRV0Hix55FvNgIdbG4lhkxdnZmfq1NAWqAwYMwP79+6GiogIVFRVue05ODkaMGIHr16/LNE9pYVUEZ2NjA2trazRp0gSjR4/Gpk2bYGJigufPn2Po0KFUY7AwrhwzZgw+f/6MLVu24OPHj3Bzc0PTpk1ha2sLMzMzqnnk5uYiODgYKSkpEm8gNOeq0Gl5zZo1XHYnLS0NHh4e1N0pLGBhwMcCVt1lLNygWbhjL1++HMuXL8d///2HtWvXomHDhjh06BDq1KlDfa1g4fTNAllroVgX5JZHTaAi51y7dg3bt2+ncicuj19//RXR0dEiPfJmZmZS9cizmAfAX6yNxbHIytOnT7l/E0Jw8+ZNNG/eHH/++ScUFRXx8OFD5OTkYMCAAeWOERsbi4sXLwIofZLy9PQUe+p+9uwZc9XYimBVBPd16nfXrl2IjIyUKvW7d+9eNG/eHA8fPsTDhw+57b/88gsuXbrE/V8gEFSouDphwgRMmDABubm5IIRIveTo4OCA+/fvo2fPnjJrBbm7u8PKygoDBw5E48aNQQhBfn4+tLW1Obft6mDGjBlwcXHhNEMUFUUv+7SWAvICCzdoFu7YLCTjWTh9s2Du3LlQUFDAzp07sWnTJgClVg8ODg4VtuNXhTihJGoE3+Scnj17IiIiAm3btq2Zhxzh6+uL58+fi6yJf/nyBW5ubhAIBPDy8pK43/Pnz+Ho6AhCCOLi4qCrqysSDAjX7M3MzKikwFlw8+ZNWFtbY8GCBRg9ejQGDx6M5s2bc5mQ8o6lPN6/f4+MjAwoKCigbdu21JLz8oSenh6CgoJ4LwF9+fIFV65cQUpKCgQCATQ0NNC9e/dqDUQrkomXRjNEXti8eTMuX76M9evXo3nz5gBK61YcHR2hqalJZRkQHByMPXv2wNnZGYsXL0ZAQACysrIQEBCAKVOmiC09lgffbrlOnTrh2LFjUgkZVjWy1kKxECcsj5pARc5ZvXo13r17981N+FjNQx7E2ljQtWtX7N69G2pqaiLb09PTMXbsWNy6davSMSwsLLBx48Zqb0WWRE5ODoqKitCqVSukpaWJZEJonxCLi4vh7e2N/fv3c3VM9erVg6WlJVVLsDwxePBg+Pn5idQhfSsIIbh48SKSk5OhqKiIdu3aoUePHtTfw2fPnlX4e5aCf9WBubk57t+/j1q1aqFNmzZQVFTEo0ePUFhYKFYDU1HtnL+/P8LDw/Hp0ycApXozEydOhIuLC1Wbc2W6QadPn650jPHjx2Pu3LnVuhRYVejp6eHgwYNidS6PHj3CqFGjcOfOHZnHrln6kXPkxYSPxTzkRayNBbVr10ZWVpZYoJKWlkbdWSHUfMnKykJaWhq6du2KwsJC3p1R0sLK1dbf3x/Hjx+Hi4uLSJFjYGAg6tWrh9mzZ7OeepWxZMkSeHh4wM7ODq1atRK7cVWXxHpeXh6srKzw4MEDNGrUCIQQFBQUoGPHjggNDZXovPs18hSICB9U0tPT4erqKtODCis3aL7u2Cy65Vg5fcsDrApyJVETqHwHyIMJH8B/HvIi1saCYcOGwdXVFba2tiLFZ4GBgdQS68XFxXBwcMCxY8dQq1YtnDhxAqtXr0ZhYSECAwOrbc2alUHboUOH4O3tDSMjI26bpqYmWrRoAW9v7+8qUCGEIC0tTaz7g0gpsc6X1atX4+PHj4iOjuYCyYcPH2LJkiXw8/ODh4eHxP0GDBiAffv2QUlJCf37969wqam6vH6+flCxs7OT6UGFlRs0X3dsFt1yrJy+5QEW4oTlUROoyDms5M35wmIewpO27EVTUVERc+fOxfjx46nG8PLygqWlpZiaa3WzePFifPz4EcuXL+fcpH/66SdMnjyZ2o128+bNePjwIcLDw7mbuIWFBZydneHr6wt3d/cqPIL/g5Wr7adPnyR+Lu3atcPbt2+ZzJUPwtoBmjZnb29vdO/eHePHjxeTfK9Ozp49iw0bNojUmWhoaGDp0qWwt7cvN1AZPXo09zmOHj26WmtiyoPlgwpfN2gW7tgsuuWqK0isDmQtyKWhJlD5DuBb11Feq5xAIEDt2rXRsmVLDB48uNJCWb7zYCHWdvDgQUydOpXqtVVJnTp14OnpCUdHR2RkZEAgEKBt27ZSZSaEZnFlNRe6deuGlStXwsHBodoCFVYGbaNGjcL69evh6+vLXcAJIQgPD8fo0aOrZO6SSEhIwLJly5CcnCzxfKM5ntzcXDg5OVELxNGSm5srInhWGZ8/f+YKRsvSvHlzFBQUlLtf2ayDNKJ9VQmLBxWgcjdomkDFy8sLmpqaEt2xvby8qLy2WHTLCZfl+Dh9s4JvLRTAX5ywPGoCFTmHRV1HcXExjh49iubNm0NbWxsA8ODBA+Tk5EBHRwfXr1/H1q1bERISUu7TJot5sBBr69u3L3bu3AkbGxs0aNCAah9WxMXFQU9PD4qKioiLixP7/YMHD7h/06wt5+TkSMxAKCsrV2sGgpWrbV5eHs6ePYv+/ftDW1sbioqKSExMxLNnz6CjoyOiuVBeTRMLYUEfHx8oKChg6dKl8PHxgZOTEzIzMxERESHRBFIS3bp1w+3bt3kFKu/evcPatWsxefJktGvXDtbW1rh27RratGmDbdu2UY3dsWNHREZGivngREZGQlNTU+a5fQtYqUqzcINm4Y7NQjeIMHD6ZoGstVDR0dEYOnQo6tSpU6khJx9NmJpARc5hkS6tW7cuBg0ahLVr13JPusXFxXBxcUGjRo3g5uYGX19fBAQElDsei3mwEGt7+fIlYmNjER4eLvGJqipTqRYWFrh8+TKaNWsGCwsLrtL/a2izEGpqarh69aqYxsDRo0fRrl07ZvOuDFautnXq1BGrY+ratatUBYEshAUTExMRHh4ObW1tHDhwAOrq6jA3N0fLli0RFRVFZRbXpUsXLF++HOfOnZOoPUJTJ+Hj44ObN29i6tSpOHXqFG7evIk1a9YgNjYWa9asoWrXtLW1haWlJe7cucN97+Lj4/Hw4UNO+v17gZWqNAs3aFndscvCQjKehdM3C2SthXJyckLv3r3RrFmzCoX2+IrX1bQnyzndunVDREQE2rVrBz09PRw+fJhrIR0/fjzi4+MrHaNLly7YvXu32M0vNTUVZmZmiIuLw6NHj2BqalpuWy2LeQDAhw8fRMTa2rdvL5VYW2UpWVaFdpJ49uwZlJWVUatWLSYtn2fPnoWdnR0mTJiAyMhIWFtbIyMjg3uq+uuvv1hNXYyyrraWlpYIDAyU6Gq7Zs0a3L17t8rm8TW6urq8hQV1dHRw/PhxKCsrY/HixdDX14e5uTmePHmC8ePH4+rVq5WO0b9//3J/JxAIqALinj17YtOmTdDT04OTkxPy8vKwdetWJCcnY9KkSRKzcpK4d+8eQkJCkJKSAkIIOnTogGnTpnHZ0e+FnJwcWFpaIj8/H3l5eVBVVeUeVHbu3EndnbRp0yZkZmbycoM+deoUVq9eLdEde/z48Rg0aBD32qrs8DIxMYGtrS0GDhwocl09deoUfHx88O+//1bZ3y5L9+7dsWHDBrGHkuvXr8Pe3h6XL1+ulnmUR01GRc5hkS5VVFTEq1evxAKVly9fcuvFX758EXtqZD0PoNTIi49KYVUGIpVR9kLKouXTyMgIGzZsQFBQEBQUFLBjxw60b9++yoMUoLRjYfbs2dznX5EcfXXCwrhSRUUF8fHxGDZsGFRVVXH//n0AQH5+vkQ5fEmwuEG8f/8eysrKAIDLly9jxowZAEoznJIk08tDW1sbAQEBvOfzrWGlKj1kyBCYmZmhc+fOaNGihVihME0QKazbmT9/vlhd1urVq7F69WqJNVqsu6mePn0qcQlPQ0MDL1++rHR/VshaC1Vd1AQqcg6LdOlff/0FNzc3uLu7Q0dHB4QQ3LlzBytWrMCAAQPw/v17bNmyBZ06darSebBC2CmTkZGB9evX4/Tp02jfvj0TI7mKYO1rsWPHDgwbNgwRERF8piUTVeFqywIWxpUWFhZcTcdff/2FkSNHom7durh16xZ0dXXL3S8rKwvKysoQCATIysqq8G/QPGWrqanh3LlzUFZWxsuXL9GnTx8Apf4uX+vvlIWmkFMIbeD++fNnvH79mguQyiqojhgxgvrv8YXvgwrAxg1aVv0p1t1ULJy+WSBrLVRlwVpZ+CzL1yz9yDks0qUfP36Eg4MDTp48KXJSDRkyBJ6enrh27Ro8PT2xbdu2cuW2WaVt+ZKQkAAzMzPo6uri9u3bOHbsGIKCghAdHY1NmzZVqex82e6pynwtaDp2unTpwpkSfkuePXvGxNWWBc7Ozjhy5AgaN27MS+Dw9OnTaNKkCbp06YKYmBgEBwdDWVkZy5YtK1euXFNTE5cuXUKzZs2goaEh8f2QphPq/PnzsLGxQXFxMUxMTODr6wsfHx9ERERUeK5+vez0/Plz1K5dG61atYKioiIyMzNRXFwMLS0t7N69u9J5XLp0CY6OjtxSX1nq1q2L27dvVzqGrFSFaZ22tvY3dYMuCyEEeXl5nLP1vXv30LFjR+oge//+/Vi7di3mzp0Lf39/uLi4IDMzk3P6pjXR5Mvt27dhaWkJDQ0NibVQ5T2MBgYGct+TvLw87Nq1C0ZGRlzTwf3793Hy5ElMnz6dV71NTaDyHcC3rkPIkydPkJSUBAUFBXTo0IG7YBcVFVGt9bKaBx+mTp0KHR0d2NnZiazp+vj4ID4+Hvv27auWebDwtbCyskKvXr0wbdq0qprmd0dlrrM0ej6yau3cuHED+vr6UFRUxI0bNyp8LW327s2bN8jJyeEeAO7du4cGDRpUmFEpS1hYGM6dOwc/Pz9uSezdu3dwcHCAuro67O3tKx3D1NSUKwBfuHAhfH19kZWVhQ0bNsDHxwfGxsZUc5EF1sE9UJrJcHV15VXHxMIdOzMzEzNmzMCAAQPg4OAAoLTWo3nz5lxgTMOePXuwZcsWZGdnAyjtPpoxY0a1Xxf41kLNmTMH+vr63BKnkH/++QenT59GeHi4zHOrCVT+h3j16pXEls/qkgNnIdbWpUsX7N27F23bthUJVDIzMzFy5MgqfTosCwtfi4ULF+LkyZNo3Lgx2rRpI9bBVF32CCxhocXAl86dO+PQoUNyY/SWlpaG5ORk1K5dG6qqqlLLxYeEhIhlOpOTk2FhYYHr169XOoa2tjaioqKgoaEBc3Nz2NjYoEePHti/fz/27duHyMhIqY9JFliZ1sXGxiIgIICXG7S1tXWF7tg0AfHs2bNRUlICLy8vznE5NzcXjo6OqFevHjZs2EB1PEJkdfqWF3R1dXHo0CGxDPHjx48xYsQIXkX5NTUq/wPcunULzs7OyMzMFNle3XLgLMTaateuLbG46/nz59WqIMrC16J+/fq8WvbkDRa+NAB/YUGh1s78+fOrNdv3NZ8+fcKiRYtw5swZ7uFAIBDAyMgIAQEBVFnM4uJivH//Xmz769evqZfqFBQUuFZvFRUVJCcno0ePHujevTtWr14txRHx4/jx4zh48KDY9lGjRkn1PRBmkZYvXy72O9rrWXx8PG937Js3byIqKooLUoDSbIiDgwMmTZok9XjSCAGygHUt1C+//IKrV6+KBSqnT5/mXRpQE6j8D+Dl5YUWLVrAwcFBZm0KFrAQazM2NkZAQADWrVvHbUtLS8PKlSur1YGUha+FoaEhevfuLRfuySyQVYuhLCyEBb+l1k5Z1q1bh3v37mHjxo0wMDBASUkJ4uLi4OXlhcDAQCxatKjSMfr3749ly5bBzc0NWlpaIIQgPj4eK1asgImJCdU82rdvj3///RcWFhZQVVVFfHw8pkyZwi01VBesTOtYfH6//vorb8FIRUVFvHv3Tmz7hw8fJOoryRsHDhwQ+X9FtVA0gYqVlRVWrFiB27dvo1OnTtw18dSpU/D19eU115qln/8BOnXqhOjoaOp18arCwsKCk2mX9QZSUFAAa2tr3Lt3DyUlJWjUqBEKCgqgoaGB0NDQau1SCQoKws6dO7k2QmVlZcyYMYNa2dLAwAC7du2qVnG38mDhastCi2HOnDlo2rQpJyx4+PBhKCsrw9HRES9evKASFvyWWjtl6dWrF1asWCFi0giU6ud4eHjg3LlzlY5RUFCAhQsX4vLly1wGhRCCwYMHY82aNVRZmdOnT2PBggVwc3ND37598ddff6F79+7477//oKOjI/UShaxs3rwZISEhmDJlisTgXpYshKycOXMGQUFBvNyxHRwckJ6eDn9/f245+8mTJ3BwcICysjL8/f2rZO5VAYtaKAA4cuQIdu7cif/++w8CgQCampqYOXMm7yaHmkDlf4BBgwbB19eXl0AUi/oSFjeQwsJCNGjQAFevXkViYiJKSkqgrq6O3r17i11sqgtZfS3Gjx+PqVOnUsttVxVfZzGOHTuGtWvX4uLFi1K52nbp0gVRUVFiwU1aWhpMTU2p1qhZCQvKA3p6eoiOjhZLhT969AgjRozAvXv3qMdKT0/nXH41NTWlbl198OABFBQUoKGhgRs3biA0NBTKyspYsGDBdxHcs9YvOX36NBwdHcWW1aRZDn/9+jWmTZuGlJQUblnz3bt36NixI7Zs2YIWLVpUOoa8wKIWqiqpWfqRc1gYCs6ZMwfe3t7w8PCAqqqqTP4RLOpLWDzJjho1CgEBAejRowd69OjBezw+5ObmIiMjgxPCK6tNMWfOnEr319DQwOLFi7F9+3aJxbTV5ZzNytWWhS8NK2FBvlo75QXVZb93ffr0qfAmr66ujuPHj2PWrFki248dO1apAejXfF2EK40T9Pz582FnZ8dlVA0MDKpcc6g8ZDWtY61fwsIdu1mzZjh48CCuXLmClJQUkeJxvvOT5vNlAYtaKKD0e1fWDLTsNdHLy0vm+dUEKnIOC0PBLVu2ICsrq9yCNZqnB1ZmgHxvIB8+fJBYpV/dHD58GEuXLkVRURHn+SP8Qv/+++9UgUpGRgb3mVWnCuXXsHK1ZeFLw0JYsKzWTkJCAoqKipCUlAQfHx9qrZ24uDjExcWhdu3aXFDx+PFjfPz4EcrKysjLy8NPP/2Ev//+W8wvRsicOXMwd+5cJCUlibwfp06dgp+fH/Wx8HWCvnbtmlgQ/K0R6o7QwtoNmpU7toKCAnr37o3evXvLtD+Lz5cFLGqhQkNDueLssj5oAoGAVys5UBOoyD0sDAVpbpqVwaJAkcUNxNLSEjY2Npg0aRJat24tFrRIY4DHh61bt8LExATW1tYwMzPDjh078PLlS3h4eFBfSGkzFVUNqyyGnp4eIiIiEBISgkuXLnFaDG5ubtTLjiyMK319fTmBKT09PQClS5cNGjRAYGAg1Xmmra2NkpISBAQEcGv2b968weLFi6Grq4vZs2dz372goCCJY/Tr1w/r169HcHAwzp07x70fAQEBIl4yFcHCCXr06NHw9fXFvHnzoKKiIrM/zo8EC3dseXH6ZsGyZcuwcOFCTJkyRawWytHRkWqMiIgIzJgxA/Pnz4eRkREOHjyIvLw8LFq0CAMGDOA1v5oaFTmHhaEgC1jUl7AQaytPORegb01kQdkCZQsLC8yYMQN9+vTByZMnsXXrVrGK+vKQB2lzOzs71KpVC2vXrkXnzp1x+PBhNGrUCDY2NlBSUqq2YkshfIUFWWjt9OjRAyEhIWJLVg8fPsS0adNw9epVke9gVaGnp8c5QY8bNw6Ojo7o0qULwsLCcP78eYSGhlY6xqBBg5CZmVluCr+6vjPyRHBwMDZv3gwjIyOZ3bFnz55dodM3zRgsPl+W8KmF0tLSQmxsLFq3bo3p06fD3NwcxsbGuHTpElatWoUjR47IPK+ajIqcI6uhoLOzM1xdXdGwYcMK1T4FAgG8vb0rnQeL+pKEhASJ2geTJk1CVFQU1RinTp36ZkWzZalTpw73ZKqiooKUlBT06dMHWlpaePz4MdUYlUmbV1egwieLURW+NHz9YFho7Xz+/BnFxcVi2z99+oSPHz8CKD0Hvs5ERUdHU8+TRjukpKSEK8oUaqB06dIFAwYMKDeT8zUsMqo/GpGRkVBSUsKdO3fExBkFAgHVuXrt2jXeTt8sPl+W8KmFql+/PvfA1bp1a6SmpsLY2BhqamqVus1XRk2gIufIaij49OlT7iL69OlTJnPhW1/C4gZiZ2cHLy+vCjMr1YGWlhb27t0Le3t7qKur4/z587CyskJqaip1sbK/vz/+/PPPcqXNqws+rrastRhYwEJrp1evXvDw8IC/vz/XtZORkQEvLy/06tULX758QWRkJDp06CCy39eqq8K1+rp160JRUREFBQVQUFCAkpISVaDCwgl69OjRVK+rDuRBuRhg444tL07fLGBRK6Ovr49t27bBzc0Nf/75J/bt24eZM2ciPj6et2YNSA1yzYcPH4iNjQ3p0KED0dDQ4H7s7OxIfn4+OXXqFOnduzdJSkqq0nncv3+faGlpkcmTJ5OOHTuSzMxM4urqSjp27EjOnTtHNcbSpUvJ9OnTydu3b4muri7JzMwkqampZPjw4cTZ2ZlqDAMDA/L48WM+h8KEuLg4oqOjQ3bs2EFyc3OJgYEBGTp0KNHT0yOurq5UY3Tq1In73MzMzMiVK1cIIYTs27ePTJw4scrmXlWEhoaSKVOmkFevXnHb3r59S2bNmkX8/PyqbR75+flkwoQJRFNTk3To0IF06dKFaGhokFGjRpE3b95QjfH69WsyduxYoqGhQQwMDEjXrl2JhoYGmTBhAnnx4gU5e/Ys0dXVJdevXy93jJiYGDJq1CiR72ZGRgYZP348+fvvv6nmERUVRbS1tUlMTAxJTU0lHTt2JO7u7mTEiBFk+vTpVGMQQsi5c+eIhYUFMTQ0JE+fPiUbNmwg0dHR1Puz4M2bN8TU1JT7TDp37kw6dOhATE1Nydu3b6Uaq7i4mGRnZ5Nnz56RZ8+ekadPn5L09HRy6NChcvd59uwZKSkp4f5d0Q8Nq1atIi4uLuTz589Szb0srD5fvpibm5MxY8aQXbt2kU6dOpGIiAji4+NDtLS0SGxsLNUY//33HzE0NCTBwcGkoKCAGBkZkc6dO5M///yT9/e/pkblO4GFoWBycrJY0RdtRTaL+hIWYm3BwcG4cOEC5/PxdTFtdfkWAaWO0kVFRZzOR2RkJJSVlWFhYUH1mejp6eHIkSP4/fff4ezsDA0NDUyZMgXPnj3D6NGjKzXG40NVuNrKixYDK60dQgiuX7/Ofe80NDS47OGbN2+gqKhYodKzsJj2ax0aYfv6pUuXqOZRnhO0m5sblTT55cuXMXv2bJiYmCA2NhZHjx7FV267GQAApu1JREFUvn37EBwcDG9v72qzcXB2dsa9e/fg5+cnplysr69PpVwMyO4Gzdod+1s6fbOGVa3Mx48f8f79ezRt2hSvXr3CkSNHOAkNPtQs/Xwn1KtXD506deKCjKysLAB0N+YzZ87AyckJBQUFYpXptF9KFvUlAoEAu3fv5nUDCQgIwJcvXziFWyHSXGBY8euvv3L/VlNTw9KlS6Xa/1tKm5e9wVXmaksLCy0GFsKCrLR2BAIBunfvLrEtmqa99t27dxLbgktKSrg6FxrKuhsPHz4cw4cPR3FxMe7cuUMVqAjl+qdOnYoTJ04AKF1CbdiwIXbs2FFtgcrZs2exYcMGkUBWQ0MDS5cuhb29PXWgIuuSaXh4OGdXwcrwc9iwYbz2//p8F36+1Q2rWpm6detyD4/Nmzfnrb0lpCZQkXNYGAr6+vqiR48emDt3rsxePyzqS1jcQKq7Cr4qmTlzJhYsWIDatWtj2LBhCAwMxMyZM/Hff/9Ra4bIStkLurOzM6ZOnVquqy0tLLQYWAgLstDaSU9Ph6enJ9d6+jU037tu3brB09MTa9as4Z6M09LS4OHhQV0ro6mpCRsbG8ydO1dk+9u3b2FpaUk1j//++09iq+vgwYOlKobmy+fPn9G8eXOx7c2bN5d4bSmP1NRUeHt7Q0NDA5qamqhfvz4sLCxQv3597NixQySwK0vZWjoWgncs6shYnO8skJdamfKoCVTkHBaGgk+fPkVQUBCvp1QWBYosbiBlLzC5ublQVFSkduWVN4yNjbF3714oKChAWVkZ27dvR2hoKAYMGIAFCxZU2zxYudqy0GJgISzIQmtn+fLleP36NRYvXizz987d3R1WVlYYOHAgGjduDEII8vPzoa2tjWXLllGNQQhBcHAw0tPT4e3tLbK8QLtq36hRI7x48ULs+5+amlqthpgslIsB+XGDBn4cp28LCwvuc/nrr78wcuRI1K1bF7du3YKuru43m5eQmkBFzklJSeFtKNimTRtkZ2fzClQcHR1hbW2N7t27o6SkBKamplx9iYODA9UYrMTa/v77b2zbtg2vX78GUPpEZmVlJRdPJtLSoEED7mnSwMAASUlJ6Nu3b7X6r7BytRUuJfDRYmAhLCg0g1uxYoXY72izkHfv3kVkZCQ6duxIOXNxfv31Vxw6dIiTWBcIBNDQ0ED37t2pl8IEAgGCg4Ph4uICS0tLbN68GU2bNuV+R8Pw4cPh7e0Nb29vCAQCFBYW4sKFC1ixYkW1+kyxUC4G5McN+kdy+h43bhyUlJTQpEkTqKmpwcfHR6QW6ltTU0wr57AwFDx//jx8fX1hZ2cHVVVVsaIvmjoXFgWKLMTadu/ejZUrV8Lc3Bxdu3YFIQRxcXHYvXs33NzcMHbsWKq5yANXrlzBnDlzMHXqVNjZ2QEAJkyYgOTkZAQHB/OWnaalql1tpdFiYCEs+OTJkwrPSZq6jr59+yI4OBjq6uqVvlYWsrOz0bJly0pfp6GhgcuXL6NWrVqYN28esrOzERQUhGbNmsHQ0JDqO1NcXAwnJyccPXoUwP+1TPfr1w8BAQHVaklx7949hISEICUlhVPqnTZtmlTXN3lxg/6RnL7LQ1gLVV2K3+VRE6jIOQcPHsSePXt4GQp27NiRE+KRtQB14MCBCAgI4PWEyeIGMnjwYEyePBmTJ08W2R4REYHdu3cjJiZG5vlJy71797Bq1SrUqlULDg4OUgeTY8eOhaGhIRekCPH398eNGzewe/dultOtEFldbcsiL74lY8eO5a21ExwcjPj4ePj6+sqckn/y5AlWr16N5ORkMeXh3NxcJCYmVjpG2U6VoqIiuLi44OzZs/Dy8oK9vb1U7+njx485nRx1dXW0a9dOxKPqe0Ie3KB/JKfv8mqhXr16hd69e39z9eKapR85h4WhIIsCVBb1JSzE2rKystCnTx+x7b1796729Wk7OztkZWWBEAJ7e3ucPn1aqv1TU1NFan6EjBs3rtp9gGR1tS0LK98SvsKCT548Qf369aWef1muXLmCmzdvwsDAAM2aNRPLQtKk5D09PfHo0SMMHjwYoaGhmD59OjIyMnDq1Cl4enpSzaPsc2SdOnXg6+uLjRs3YvHixdTHMmDAAOzfvx8qKiqceB1Q2l4/YsSIKm0brwrlYhZu0CzcseXF6ZsFLGqhqpKaQEXOYSF/zeKEZ1FfwuIG8ttvvyEhIUGs3ub+/fsSOwqqEkII9yWW5cvctGlTPHz4UKyGIyUlReYCTr5I62pblsTERE6L4cCBA1BXV4e5uTlatmyJqKgoDBkypNIxWBhXWltbw9XVlZfWTufOnamWqiri1q1b2Lx5M7p164aLFy/C2NgY2traWLduHc6fP0/lTD1//nyx78z8+fOhoqJSoSxAbGwsLl68CAB49uwZPD09xeofnj17VuXZlKpQLmbhBs3CHVtenL5ZwKIWqiqpWfr5H+D9+/cICwsr1+WTRlOARX0JC7G2sLAwbNmyBQsXLhQpyNuwYQMsLS0xb968Ssdgxe3bt7ksjoODAzcfWtavX4+oqCjY2tpyhXf3799HQEAARo0ahUWLFjGfc1Wio6OD48ePQ1lZGYsXL4a+vj7Mzc3x5MkTjB8/HlevXq10DBbCgiyWOlnQqVMnnDx5EsrKyrCzs0PPnj0xbtw4ZGRkwMLCglrwTRaeP38OR0dHroZLV1dXZNlYIBCgfv36MDMzq7abYVhYGM6dOwc/Pz+uSPvdu3dwcHCAuro67O3tqcZZuXIlXr58ycsN2s/PD3fu3KnUHTs3N7dcHZGcnBxYWloiPz8feXl5UFVV5Tyydu7cSbWUzeJ8ZwGLWqiqpCajIoewNhR0c3PDmTNnYGhoyIn6SAsLM0AWYm2WlpZ49uwZvL298eXLFxBCoKioiIkTJ1a7+Zqenh6vOpJ58+bhzZs38PT0xOfPn7ljEQpZfW+w0GJgISwo61Lnxo0bYWVlhXr16lW4ZCEQCKgC4t9//x3JyclQVlZG27ZtufO7pKQEhYWF5e7Xv39/qqdYgUBQ7nKjsrIy9wBiYWGBjRs3VmsrsiS2bduGkJAQkU6yxo0bw97eHhYWFtSByvnz55GZmcmJ130NzXVk3759YnNRUlLCkiVLMG3aNNjY2MDKygpmZmbljsHHI0sIi/OdBcLzTUlJCWFhYXBxccHEiRPh5eVVbXOoiJpARQ5hbSh49uxZ+Pv7w8jISOYxWNSXsKiVqVWrFlxdXbFw4UKkp6cDKFWF5W169Q1QVFSEu7s7lixZgoyMDCgqKqJNmzbV2oXBEhZaDCyEBWVd6jxw4AAmTZqEevXqiS1ZlIU2UBk9ejQcHBywZs0a9OvXD5aWlvjtt99w+fJlMTPDr/djmW4X1jtlZWUhLS0NXbt2RWFhIW9DPWlhoVwMsFkOl9Ud+2vkwembBSxqoaqSmkBFDilbSMmiqLJWrVq8dFgANvUlLMTaPn78CA8PD7Rp0wazZs0CUPoEamhoiGXLlsmUBv7WNGjQAFpaWt90DoSBqy0LLQYWwoKfPn3Cnj17RLptgNI26YSEhHKfxMs66rJw1505cyZ++uknEEKgra2NuXPnYsuWLVBWVhapa/gaGxsb3n+7LMXFxXBwcMCxY8dQq1YtnDhxAqtXr0ZhYSECAwOrTWiMhXIxwMYNWlZ37LJkZmbC19cXKSkpEjOGNAXXLM53FshaC1Vd1NSofAfwNRR0dXVFixYtYGtrK/McWJkB8hVrc3d3x+XLl7Fy5Uou8Dl16hTWrl2LAQMGUCug1vB/5OXlwcrKCg8ePECjRo1ACEFBQQE6duyI0NBQ3sq/0mgxsDCuXLZsGaKjo/Hnn3/i/v370NPTw+PHj/H69WtMnTpVqnPk1atXEuu6aM53SbUhQGkgde7cOfz1119Uc3j48KFIy7ewxfn+/ftUqfn169fj+PHjcHd3x+zZs3H48GFkZWXB2dkZffr0gbu7O9U8+FJQUICFCxfi8uXLYsrFa9askeoh4/z585y44J49e3DgwAG0bt0aI0eOpNo/NzcXs2bNQkJCgohqsI6ODgIDA/HgwQPY2dkhKCio3AzdxIkT8fLlSwwZMkRiFpSmOJjF+f6/QE2gIuewMBT08/NDeHg42rVrh7Zt24pdEGg8K1gUKLIQa+vVqxcCAwOhp6cnsj0uLg6LFi3ChQsXKh2DBZmZmbyUfuUJVq62LLQYWAgL9uzZEy4uLhg2bBgGDhyIoKAgtGrVCnZ2dmjZsiWVeSQLjy1NTU1cvnyZ654QkpiYiIkTJ+LevXuVjhEaGsoVbAuF2oT/7tKlC1XGddCgQXB3d0fPnj1FCjavXr0KBwcHrjuouuCjXAywc4Pm646tq6uLiIgIXtpSrJy+ZYFFLVR1UbP0I+ewMBS8c+cO11Xy4sULmcZgUV8SFhYGR0dHEbG2gQMHQkVFBeHh4VSBSmFhocQn/KZNm+Lt27e850jLpEmTsGnTJl6KwfICK1dbFloMLIwr3717x3VgtWvXDomJiVBVVcWsWbNga2tLFajI6rEVFhbGBRaEEBgaGkp8He15ExERgRkzZmD+/PkwMjLCwYMHkZeXh0WLFmHAgAFUY+Tk5EgMqpWVlav1OyNEVVVVxAtHGuVigJ0bNF937DZt2uDDhw9Uf6s8WDl9ywLrWqiqpCZQkXNYGAqyqHNhUV/CQqxNV1cX27dvx8qVK7knDkIIwsPD0alTJ6nmw4fatWtDUfHH+PqwcrVlocXAQliwadOmeP36NX777Te0adMGycnJAEpvPq9evaIaQ1aPrcmTJ6NJkyYoKSmBi4sLnJ2dRQIdYVswrc5GdnY2xo0bh59++gkaGhq4f/8+jI2N4eTkhFWrVlEtmaqpqeHq1atiRZ9Hjx5Fu3btpDo+PrBSLmbhBs3CHdvNzQ0eHh6wsLBAq1atxDIgNEudLM53WWFdC1WV/BhX2h8YFoaCWVlZFf6+uupLWIi12dnZYcqUKbh+/TpXgPrgwQPk5eUhJCSEagwWjB49GtbW1hg5ciRUVFTELjY0T3UvX75EQEBAufo21WVIxsrVlhCCtm3bYs+ePZg3bx7Gjh3LaTHQwkJYsE+fPvDw8ICPjw86d+4Mb29vDBw4ELGxsVT+OkBptqGiFuLyUFRU5D57gUAAExMTXgXe9evX55ZcW7dujdTUVBgbG0NNTQ3Pnj2jGsPGxgZ2dnZITU3Fly9fcPDgQWRkZODEiRMSlZGrClbKxSzcoFm4YycnJyMtLU1ihk4auQUWRq0s4FsLVZXU1KjIOSwMBTU0NCp8oq2u+hJWYm1Pnz7Fnj17kJKSAkVFRaipqWHSpEn45ZdfqPZnAQsBvNmzZyMhIQEmJiYSL5bVZUh2+/ZtWFpaQkNDQ6KrLe3TPwtfGhbv67t37+Dk5ARDQ0OYm5tj5syZuHjxIhQVFbF69WqqDhMWHltAaa1LmzZt0LRpU0RHR+PYsWPQ19fHzJkzqbJMs2fPhpKSEtzc3BATE4N9+/Zh9+7diI2NxapVq6hF4y5cuICgoCCuDqJ9+/aYMWMGdUEvC/T09Djl4nHjxsHR0RFdunRBWFgYzp8/T728vHbtWly9ehXe3t4wNzfHrl278OLFC7i7u2PQoEFwcnKqdAxtbW3e7ti9evWCsbExJk+eLLGVmEbwjcX5zgIWtVBVSU2gIuewKGK9ceOGyP+/fPmCjIwMhIWFwcnJCf379690DBZmgCUlJfDx8UFkZKSYWJuLi0uVF4/JG8JlrOpySa4IFq62QnXLshmUjRs3YsuWLSgpKaE6V1kYV34NIQR37tzB77//Th3MDho0CFlZWSLtzWWhDe49PDwQEhICJSUljB49Gj169EBSUhImTZpEFYgmJydj+vTpmDp1KszMzDB8+HC8e/cOHz58gJWVFZVI2o4dOzBs2DD8+uuvlb62KmGhXAywcYNm4Y6tp6eHmJgY/PHHHzKPURXnuywYGxtjyJAhEmuhxo4dS501rzJIDXLN9evXK/zhw4ULF8i4ceOoXtupUyfy+PFjse2PHz8mnTp1kurv5ufnk7t375K7d++SgoICqfaVN549e0YuXLhAPnz4QF69eiXVvj169CDp6elVNLPqJzAwkLx//15s++HDh8nkyZOpxhgzZgxJSkriNY8PHz4QJycnsnXrVm6bkZERWbp0Kfn06RPVGAcOHKjwh4bBgweTnTt3EkII8fPzI8OHDyeElH7vjIyMpDqe169fE0IIefnyJQkJCSHHjh2j3r9z587k0aNH1K+vKoYPH05iYmIIIYRs2rSJODk5EUIIefDgAdHX15d6vEePHpFjx46Ro0ePkpSUFEIIISUlJVT7btu2jcyaNYvk5+dL/XeFLF68mISGhsq8PyFszncWdOzYkbu+T5s2jZw6dYoQQsjFixeJiYnJt5waIYSQmhoVOacqHTTbtGmDhw8fUr2WRX3JjyTWVlRUBEdHR14iWiNHjsT27dvh6ekplbAaC6rK1VYSw4cPx/Dhw6nGYCEsuGrVKty8eVNEGMzZ2Rlr167FunXrqHRUWIiKPX36lMtWXr58mSskV1NToyrqFRZaCn8A4O3btzAzM5OqAFNHRwf//vsvpk2bJsNRsIOFcjHAxg2ahTt2ixYt4Ofnh2PHjqF169ZixfU0sg8szncWsKiFqkpqAhU5h4WhoKRi2oKCAgQFBVGnLSdOnAgPDw/k5eVJrC+hgcUNRF7YsmULZ88+e/ZsAKUXYmdnZ/j6+lKJaOXl5eHIkSM4d+4cWrVqJXaxpPlsZYWVqy1rLQYWzsenT58W09oZOHAgmjRpgkWLFlGdZyUlJYiJiZH4vaP12GrWrBlevHgBRUVFJCUlcXLkDx8+rDS4P3LkCFauXIng4GAR1WJvb28kJCTAy8sLAwcOrHQOANCwYUOsWbMGW7duRZs2bcSch6vyPCsLH+Vi1m7QLNyx79+/zwVY2dnZMo3B4nxngb6+PrZt2wY3Nzf8+eef2LdvH2bOnIn4+Hi5sCepCVTkHBaGgpJuJoQQ1K9fv0Ip77KwMANkcQORF44ePQp3d3d069aN29atWzesXLkSDg4O1Gqfw4YNq6IZVkxZifjKXG0rgrUWAwvjShZaO97e3oiIiICGhobMEvMmJiZYvHgx6tWrh5YtW8LAwACxsbFYsWJFhcXn169fh4ODA0aNGiVWV+Li4oLt27fD1tYW//zzD5Vjd/369am1RaoaY2Nj7t/CTJtQubiiegyhAagwYMzKypLoBk0rc8CiUJ1FgSmL850F9vb2mD59OiIiImBmZoatW7fCwMCAq4X61tQU08o5nTt3hq+vLy9Dwa+LaYFSHRB1dXWpo+WCggKZzQD19PSwb98+MW2KtLQ0mJqa4u7du1TjvHjxAlFRUUhPT4erqyvi4uKgrq4uIiJV1ejo6ODo0aP4448/RNQ+Hz16hBEjRlCpjsoLPXv2REhIiFgHQnJyMiwsLKhS6ayQdK6WhWYpdNq0aWjZsqWY1s7y5cuRnp6OnTt3VjpGt27d4OTkxGsJqKSkBBEREXjy5AkmTZoEFRUV/PPPP8jNzYWNjU25RZRWVlZQU1ODi4tLuWM7Ozvj1atXCA4OrnQeR44cQe/evb+5ezIL5WJAdjdo1u7YQOly9vHjx5Geno7p06cjOTkZ7du3pxKMA9ic76z4+PEj3r9/j6ZNm+LVq1eIiYmBsrIyBg8eXG1zKI+ajIqcw8JQ8O+//4adnR2vcVjUl7AQa3v8+DHGjx+Phg0bIicnB3Z2doiNjYWzszPCwsI4Bd6qhpWIljDoysjIgIuLyzcJuli52gL8tRhYCAuy0NopKirirWFRq1YtWFhYiGz7+v+SSExMrDS7aG5uzi05Voanpyd27dr1zQMVwkC5GJDdDZq1O/arV68wYcIEvH79GkVFRRg3bhxCQkKQkJCA8PBwquttdQYi5cGqFqpK+RYVvDXQ4+LiQtatW8drjM6dO5MnT57wGmP58uXE2NhYpNPo5MmTZODAgWTVqlVUY9y9e5fo6uoSIyMjYmNjQ2xsbEj//v2Jvr4+uXPnDtUYs2fPJi4uLqSkpITo6uqSzMxMUlxcTOzt7ak7S1jw77//Eh0dHeLt7U06depE1q9fT2xtbYmmpiY5fvw41RiPHj0iBgYGpH///qRjx44kMzOT2NjYEF1dXer3gwUODg5k6NCh5Nq1a6SgoIDk5+eTc+fOkQEDBhBPT0/qcUJCQkiHDh1Ihw4diIaGhsi/pflswsPDiaGhIdHQ0CAaGhqkV69eUndXPHnyhPj6+pJZs2aRefPmEX9/f5KTk0O9v42NDdexw4dz584RCwsLYmhoSJ4+fUo2bNhAoqOjK9xHT09PYoddWTIzM4menh7VHMaNG0eOHj1KPeeqQkNDg8TFxZGBAweSCRMmiHQyaWhoUI9TVFREbG1tSYcOHYimpibJzMwk8+bNI1OnTuXVxSMtixYtIrNmzSLv37/nrkV5eXlk6tSpZNasWVRjfPz4kYSHhxNXV1fi5OTE/djb25NBgwZV8REQEhMTQ7p3707u378vsn369OnEwMCAnDx5ssrnQENNRkXOadq0KUJCQnDhwgWZDQVHjx4NX19fzJs3DyoqKjJ117CoL9HW1kZMTIyIWNuwYcOkEmu7desWIiIiRJ70FRUVMXfuXIwfP17q45IVIyMjbNiwAUFBQVBQUMCOHTvQvn17rFu3jlpEa9WqVTA2NoaXlxdXa+Dv7w9HR0f4+vpWm8jSsmXLsHDhQkyZMkXM1VaauiEWvjS7d+/G2rVrxYQF/f390bBhQyphQQD4448/sGjRIuq5f42uri4nLKampiYm+EZT43D58mXMnz8fJiYmuHPnDkpKSvD582c4OzuDEFJu3Ujbtm1x+/btCtWob926Ra2xoaGhgcWLF2P79u0Si2lpriEsIAyUiwFg8+bNvAvZhfBxx7527Rq2bdsmIvb2888/w9HRkbrBwMvLq0Kn76qEdS1UVVITqMg5LAwFz58/j8zMTM7A62uqq0AR4H8DKSkpkegTUlhYWO0tvn369JHoXUSLvARdQjM3vq62LHxpWBhXsmDnzp1o2rQpEhMTkZiYKPI7gUBAFajIap43YsQIrF+/Ht27d5co0paTk4P169djzJgxVMeSkZHBdbi8fPmSap+qQHieKykpISwsDC4uLpg4caLU8uwsCtlZuGMXFhaW21r8+fPnSvcHStugfXx8OKfvFStWcE7fkjyIWLJt2zZMnjxZYi2UsCsLKO1wpKmFqkpqAhU5h8VTNW1XTkXIixlgr169EBQUJNKtlJeXh7Vr11JLvcsKbTEeANSpUwctW7aEsbFxuRczeQq6AP6utiy0GFgYV7KgbFeUrMhqnjd58mScOHECw4YNw5gxY6Cnp4fGjRsjLy8Pt27dwsGDB9GmTRvqboxvLX8upGzWok6dOvD19cXGjRu5tm1aWLhBy+qOXZauXbsiMjISzs7O3Lbi4mJs2bKFOgPBwulbVljXQlUlNYGKnMPCUJCFeJW8mAE6OTnB0tISvXr1wqdPnzBnzhw8e/YMTZo0wapVq6r0b9MW4wGlNgWvX7/G0aNHERQUJPE13zLoKgsrV1sWWgwshAXlBVnN8xQUFBAWFoaAgADs378fYWFh3O+aN2+OSZMmYc6cOVIVOn7+/BmvX7/mAklSpsh5xIgR0h2YjMyfP18saJ8/fz5UVFQQFRVFPQ6LQnZZ3bHL4ujoiEmTJuHGjRsoLi6Gu7s70tPTkZ+fT9VZBrBx+paVT58+VXoONWnSBB8+fKjSedBQ054s57AwFGSFPJgBAqVV6keOHEFSUhJnsDZy5EiZ9S6qihs3bmDWrFm4ffu2xN/n5OTA0tIS+fn5yMvLg6qqKhd07dy5s9p8PiZNmoRPnz5hzJgxEl1thwwZQjUOC18aVsaVfGHxvWNhnvf582c8efIEb9++RdOmTdGqVSupO7EuXboER0dH5Obmiv2ubt265Z6f8srZs2dhZ2eHCRMmIDIyEtbW1iJu0DQ1YoMGDYKvr69UXlaSyMnJQWRkpMi1yNzcnFpIc+nSpXj48CF8fHzw+PFjeHt7Y/369YiNjcW///5b7nI9C8aMGQNLS0uMHDmy3NccOnQI27dvp/Jyq0pqAhU5h4WhYA3fhtzcXMTExGDKlCnlvkYegi5WrrYAfy0GVsaVfLV2Dhw4IBIQfP78GY8ePUJ0dDQcHBwqvLgLqcg8b/369WJFrVWFqakpmjVrBgsLCyxcuBC+vr7IysrChg0b4OPjIyLCxhrWysVC+LpBs3LH5gsLp29ZCQ8PR3h4OCIjI8uthTIzM8OYMWOq7QGhPGoCle+UixcvIjAwUKqUqTwgyw2EtoIeqD45cHnKdPGFhautUIuh7HuSlpaG33//XSYtBj7Cgl9r7Rw7dgxr167FxYsXeWvtHDt2DHv37pVquTMzM5O7oaqrq0uls8MCbW1tREVFQUNDA+bm5rCxsUGPHj2wf/9+7Nu3D5GRkVX2twMDA6kzQLRqsSzcoGV1xy5bj1IZsnRTERmcvmXly5cvsLCwQEpKSoW1UDt37vzmeio1NSrfKdIYCsoLsoq1lV0C+fTpE2JjY6GpqQldXV0oKioiISEB9+7dE1uzrkq8vb0rfOL+nlBRUUF8fDyGDRsGVVVV3L9/HwCQn5+PoqKiSvdn6UvDQliwKtu+tbW1qZZsytK6desKW42rGgUFBa5gVEVFBcnJyejRowe6d+9e5QXKNjY2zMfcsmUL7yyQrA0GT58+5fV3v+br810gEGDRokXVYtRaFbVQVUZ1C7fUIB3Pnj0T+/nvv/+Ivb09GTJkCPU4OTk5JDAwkNjZ2ZFXr16RY8eOkbS0tCqcuTgsxNqcnJyIj4+P2PZ169aR+fPns56y1MTGxpJp06Z962lIRVRUFNHW1iYxMTEkNTWVdOzYkbi7u5MRI0aQ6dOnV7jvtWvXiKamJnF2diYvXrwQ+V1qaipxcnIif/75J4mPj6eaCwthQQMDA5KSkkIIIdx5JpyPvr4+1RiSKCgoIKtWrSL9+/eXeYxvwbhx48jff/9NCCFk27ZtxMbGhhBCyM2bN0nXrl2rdS5JSUnk0KFD5ODBg+TgwYPkwIEDZPfu3cTV1ZV6jOnTp5OQkJAqnKXsfPr0SarXszjfWVBcXEzS09PJ7du3yePHj0lJSUm1/W0aajIqcg4LQ0F5kZ1noRty/PhxHDx4UGz7qFGj5MJ4TZYn7m8NH1db1loMrJyP+bZ9l7e0JxAI4OHhQTWGvDBz5kwsWLAAtWvXxrBhwxAYGIiZM2fiv//+q9bustDQUC6DI6zXEf67S5cu1OOwcINm4Y796dMnuLu7i2T/Bg8eLFU2RF6MWhUVFdG2bdtq+VuyUBOoyDmSvnTSGgqySoXzLVBkcQNp3LgxEhMT0aZNG5HtN2/elFrhkjWFhYXYuXPnd9dGC8juastai4GFsCCLtm9J9QW1a9eGjo6O1EJ43xpjY2Ps3bsXCgoKUFZWxvbt2xEaGooBAwZgwYIF1TYPFsrFABs3aBbu2D4+Prh586aI/IOzszPWrl2LdevWUQUZrIQ0f3RqAhU5h4WhIItMBousDIsbyIQJE+Dm5oa0tDRoaWmhpKSEO74lS5ZQjcECFk/c5RXmCQQC1K5dGy1btsTgwYOr/EmnPFfbt2/fwtLSssLCYNZaDCyEBVlo7Tx48ACWlpZMa0uKi4vx8OFDqKqqSu1azpcGDRqgoKAAQKkRXlJSEvr27YsmTZpU2xxYKBcDgKGhIW836JiYGHh7e/PSmGKRDZEXIU15pyZQkXOuXbvGu42RRSaDRVaGxQ1k7ty5UFBQwM6dO7Fp0yYApYqUDg4OMDc3pxqDBV8X0wLSP3EXFxfj6NGjaN68Oafn8ODBA+Tk5EBHRwfXr1/H1q1bERISQq0OKwuEh6sta18aFsKCv/76K6Kjo0Xavs3MzKRq+z548CBvr5Xnz5/D1dUVtra2UFdXx9ixYzmxt7CwMGhqavIan5YrV65gzpw5mDp1KveexsbGIiAgAMHBwVItu/CBhXIxwMYNmoU7NotsiLwIaco937A+pgYKvLy8yMKFC0lycrLUhVpCbG1tib29Pfny5QtXXPjmzRsyefJkrrCuMlgVKL5//55ERUURDw8Psnz5crJz506ZHU9zc3PJmzdvZNpXHnB1dSULFiwQ+VyLiorI4sWLiYeHByGEkLVr11a5KzQfV9uwsDBiZGREsrOzJf4+OzubGBkZkY0bN1LPh6/zMQvs7OyIj48PLzdeGxsbMnbsWPLkyRNy4MABoqenR+Lj44mrq2u1FlyPGTOG+Pv7i2338/MjEyZMqLZ5zJo1izg5OZH379+TPXv2kHHjxpEvX76QmJgYYmhoSD0OCzdoFu7YU6dOJU5OTuTLly/ctpKSErJs2TIyadIk6nHk4XyXd2p0VOScQYMGITMzs1wtAhq9DhYKqF27dkVERATU1dWhp6eHw4cPo1WrVrh37x6sra3FhOl+RCrz9ykLjSZEly5dsHv3bjFdjdTUVJiZmSEuLg6PHj2Cqakpbt26JfV8adHQ0MDly5dRq1YtzJs3D9nZ2ZyrraGhYYXnmLxoMbDW2rGwsEBcXBwEAgGaNWsmltU8c+ZMpWMYGBggPDwcmpqasLW1BSEE69evR0ZGBkxNTatNEVZXVxcxMTFimb4nT55gxIgR1TYPFsrFAODm5oZ9+/ZBQ0NDZjfokJAQbNiwAb169ZLZHfvevXuYMmUKlJSUJGZDqqtJ4X+BmqUfOYeFoSCLVLis9SXyKNYmKxs3bkStWrXQsmXLCl9H666rqKiIV69eiQUqL1++5ALTL1++QFGxar+mfFxt5UWLgbXWTrdu3UTceWWhuLgYP//8MwghuHr1KncjLikpqfLPtCxNmzbFw4cPxQKVlJQUmQ35ZEFdXR2nT5/G+/fv0aBBA0RFRUmtXAywcYNm4Y6tra2NmJgYEVuRYcOGfRNbkR+dmoxKDVTImpUpWzBa2Q2Exp79W+Lm5oZTp06hXr16MDExgYmJCTQ0NGQeb/ny5bh69Src3d2ho6PDqVKuWLEC+vr6WLZsGdzc3PDmzRvs2LGD4ZGIIsyolO2a2rhxI7Zs2YKSkhJqlV0WvjQscHZ2xs8//yzWJh4QEIC0tDQEBgZWyzwmTZqEbt26oUWLFvD09MTZs2fRtGlTuLm54dmzZ9Xmarx+/XpERUXB1taWe8q/f/8+AgICMGrUKCxatKjK58BaubiG/y1qApUflKrIZPD1pZGXGwgfvnz5gmvXriE2NhanT59Gs2bNuKDl65bpyvj48SMcHBxw8uRJkQv4kCFD4OnpiWvXrsHT0xPbtm3jFRBVxsaNG2FlZYV69eqJbI+JiUFUVFS13VBZoaenxy05leXRo0cYNWoU7ty5Uy3zuHfvHmbPno03b95gxowZsLe3h7u7O44ePYrt27dX29LA58+f4eXlhf379+Pz58+cf5KFhQUWLVpU5dmd8pSLrayspFYuFiIPbtAVabEAskno1yCZmkDlB0UeMxmsbiCEEFy8eBHJyclQVFREu3bt0KNHD+oOJlYUFxfj0qVLOHbsGM6cOYPWrVtj6NChMDExwW+//UY9zpMnT5CUlAQFBQV06NCBc14tKiqqUgntH5W+ffvC0dERQ4cOFdm+b98+bNmyhaq+hBUlJSUoKCjgukMyMjI4cb3qprCwEBkZGVBUVESbNm2qJZNx/fp1TJs2DaNGjYKdnR1atGjB/S4tLQ3bt2/H4cOH8c8//3DdhJXBwg2ahVeXl5dXhVos31uAL8/UBCr/A8iayWCdlWFxA8nLy4OVlRUePHiARo0agRCCgoICdOzYEaGhoRLbBauDoqIi7N+/H35+figsLJTKlPDVq1cSn8ikCXakpapcbVnAV1hw8+bNCAkJwZQpUyRq7UyaNKmKj+D/kJeg+lthZWUFNTU1icrFQpydnfHq1Ssq5WKAjRs0C3fsbt26wcnJiZcWC8D/fP9foKaY9n8AWWXnWRcoshBrW716NT5+/Ijo6GhuOeThw4dYsmQJ/Pz8ql3e/MWLFzh58iSOHz+O+Ph4qKiowMLCgmrfW7duwdnZGZmZmSLbCSEQCARV6sA8evTob1I/UhkshAXlRWtHXoPq6oS1cjFQ2hXn7e0NDQ0NaGpqon79+rCwsED9+vWxY8cOqkDF1NRU4nYtLS3s3buXKlBhocUiL/Ymck919kLXIBt8DQX79OkjUXdg79691AZrrMwAt27dSnr16kU6dOhAOnToQPr160ciIiKo9+/WrZuIgZeQa9eukZ49e1KPw4fs7GwSHh5OzMzMiIaGBhk4cCDx9/cnSUlJUo0zevRoMmnSJHL69Gly/fp1sZ//RVgYV5ZFGq0dSQag5f3Q4OTkRIYOHSpyXiQlJZFhw4YRNzc3qY/le0RPT488fvy4wtdkZmYSPT096jF1dXXJ06dPCSGl73FYWBghhJCnT5/yNll8+vQp0dbWpnotCy0W1uf7j0pNRkXOYRFxs8hksDIDnDVrFmbNmoU3b95AIBBIvVb/+fNniV46zZs35yTCq4qwsDCcOHECd+/exW+//YYhQ4bA1dUVHTt2lGm8lJQUREdH87JHYMXDhw+RnJzMKRiTMsWJNG3KrGBh91AWJSUl6tfSLIcRKbJdZ8+exYYNG0QKoTU0NLB06VLY29t/d+aGssBauRgA2rdvj3///RcWFhZQVVVFfHw8pkyZguzsbF5zldarS1dXF2vXrsXVq1dl1mJhfb7/qNQEKnIOC+l6Fqlw1maA0txAytKxY0dERkbC1dVVZHtkZGSVS5KvWrUKtWvXRu/evTkfjrNnz+Ls2bNir6W5SCkrK6OwsJD5PKWFlastC1jYPchKeHg40+WwbxlUywsjRozA+vXr0b17d/z6669iv8/JycH69esxZswY6jFZuEGz8OpiocXyLc/374maYlo5p1u3boiIiEC7du1EFGHT0tIwfvx4xMfHSzWerJkMeSlQvH37NiwtLaGhocEFbvHx8Xj48CG2b99epbb1/fv3p3qdQCCgKgw+ePAg9uzZAw8PD6iqqoo9kVUXxsbGGDJkiERX27Fjx/L2vJEGOzs71KpVC2vXrkXnzp1x+PBhNGrUCDY2NlBSUsKGDRuqbS58mTJlCtTV1cWCai8vLyQkJGD37t3VMo+XL18iICCg3DbaquyCqirl4gcPHkBBQQEaGhq4ceMGQkNDoaysjAULFlBd2yRlh7+FO/aPdL5XJTWBipwjT9L1QUFB2LlzJ6cGqaysjBkzZlRrgSJQqk8REhKClJQUEELQoUMHTJs2jTP2+14YNGgQsrKyOC2Ir6nKYtqyaGlpITY2Fq1bt8b06dNhbm4OY2NjXLp0CatWrcKRI0eqZR4AG7sHWbG0tMTGjRvRuHHjSjveaLrcvmVQXZbZs2cjISEBJiYmEpVoaZ78+VBUVMQpF5c162vevDnGjBkjk3Lxo0ePUFBQwOmyhIeHo2/fvtRaRl5eXjK5Y2dlZUFZWRkCgQBZWVkVvpama+9bnu/fEzWBipwjjxG3rFmZGkSR9FRXFr5tj7QYGBhgz549aNu2Ldzd3dGyZUvMnj0bz58/x9ChQ6vNC0YIX2FBQLa2YGdnZ7i6uqJhw4YiOkSSoBXzkoegWldXF9u3b6/2ZbyvYaVcXNYN2s7ODkBpHV5ycjK1G3Tnzp1x6NAhTrOIFk1NTVy6dAnNmjUrd/lImjomgM35/qNTE6jIOT9axC3LDYS1GWANosyePRtKSkpwc3NDTEwM9u3bh927dyM2NharVq3CpUuXvvUUpaKmLViUnj17IiIiAm3btv3WU2HC2LFjYWhoyAUpQvz9/XHjxg2qJTV7e3v88ssvmD9/vlQBwY0bN6Cvrw9FRcVKs9kGBgbU49ZQMTWBynfAjxJxy3oD+bo25Pnz56hduzZatWoFRUVFZGZmori4GFpaWtW27i8rtE/tAoEA3t7e1TInVq62ssJaWNDZ2Rn37t2Dn5+fmNaOvr4+dbFkbm4uMjIyJHZClWcWKo9B9erVq/Hu3Tt4enr+EAWaLNygWbhjy8qPZNRaXdR0/XwH1KtXj1pUrTxkyWSwRlaxtn///Zf7d1hYGM6dOwc/Pz+u2+jdu3dwcHCAurp61R8ET54+fcrd+J4+ffqNZ1MKK1dbWWEtLMiiLfjw4cNYunQpioqKuE4oYZr/999/LzdQOXDgANUcabtCWJCXl4cjR47g3LlzaNWqlZgtw/d2M2ThBs3CHVtWWJ/v/wvUZFTkENYRt7ykwrt3744NGzaIpUSvX78Oe3t7XL58udIxevbsiZCQEDGTvuTkZFhYWOD69etM5/yjI2+utiyMK7t06YKoqCgxCfK0tDSYmpri7t27lY4xdOhQ6OjowNraGmZmZggJCcGLFy/g4eEBe3t7KuVSeYFVvY28IA9u0Kz4EYxaq4OajIocwjriZiU7zzcrw0JXori4GO/fvxfb/vr1a7mUhK+MDx8+IDk5WaxttDo0TMpztfX29pbZ1ZYvLIQFWWjtPHnyBIGBgVBTU0OHDh2Qm5uL/v374/Pnz9i6det3Fah8b4FIZcybNw9v3ryBp6enmBv0woULv/X0pIKVkOaPTk2gIoeUvbA4Oztj6tSp5UbcNLBIhbPIyrC4gfTv3x/Lli2Dm5sbtLS0QAhBfHw8VqxYARMTE6ox5IUzZ87AyckJBQUFYtoWVe31c/36dTg4OGDUqFFiQlwuLi7Yvn07bG1tpXK1ZQELYUFbW1tYWlrizp07EtuCaahTpw63RKKiooKUlBT06dMHWlpaePz4Mf0ByQlC47uMjAy4uLh818Z3ioqKcHd3x5IlS6rdDZo1rIU0f1RqAhU5h0XEzSKTwSIrw+IGsmzZMixcuBBTpkzhMiiEEAwePLhS8zN5w9fXFz169MDcuXOp19ZZsW3bNkyePFmiq62amhoXLG/ZsoXa1ZYFLOwe9PT0EBERgZCQEFy6dIlrC3Zzc6NuCxaa09nb20NdXR3nz5+HlZUVUlNTv5kwn6x8bcNha2v7QxjfNWjQQCQT+C2IiYlB165d0bJlS2zevBmxsbHQ19eHq6urWIGuJFic7/8TVLGXUA08YWEoaGlpSby8vMS2r1ixgkyYMIFqDFZmgHfv3iULFy4kQ4cOJUOGDCG2trbk7t271PsLSUtLI8eOHSMnTpwgmZmZUu8vD2hpaVVq2FZVdO/enfz3338VvubevXvVZvRYFr7GlSyIi4sjOjo6ZMeOHSQ3N5cYGBiQoUOHEj09PeLq6lqtc+FLjfFd1bBp0ybSqVMnEh8fT27evEk6dOhAli5dSgYNGiTxelse8nC+yzs1GRU5h0XEzSKTwcq3RFtbGwEBAdSvLw9VVVWRtLWwbbRz5868x64u2rRpg+zsbKnVMVnw6dOnSlPlTZo0wYcPH6ppRv+HLMaVrNuCu3TpghMnTqCoqAhKSkrYtWsXIiMjoaysDAsLC+q/VR6f/l979x5XU97+j//ViSQmyXc0TTpRO1JKktNtVMLIqTJGM+XQ7VCOxaQydZOmHGJymDGJyqFxGKdRwsgxbmJKI5KIEXWLmCKl016/P/zaH1thV2vttffuej4ePR68927ta2drXeu93u/rqqqS6IqbDdT47o2PVZJ9myRVZQ8cOIBVq1bBxsYGERER6NOnD1asWIE///wTfn5+DW5xv09LG7W2BpSoyDg2GgqyMRXe3PUlbJ9Abty4gZCQELFOv2+TVtl5NixevBgrVqyAn58fjI2NG2wbleSXZXNx0dWWbU1pXPnutuAP1dqR5HPm7u6O8PBw0W1OExMTfP/9902K/59//sEvv/yCvLw8UZsEhmFQU1ODu3fv4s8//2zS8ZqLGt+9wXZ37CdPnsDa2hrAm2q59Vv5dXV18eLFiybH19xGra0BJSpygI2Mu6UzGc2dlWH7BBIZGQkVFRV8//33iIyMRGBgIAoKCpCYmIjVq1c3+/3xwdfXF3V1dfD19RX7BdqUX5bNxUVXWz6xXWvn4cOH0NDQaFFMy5cvx6VLlzBo0CAcP34co0ePRn5+PnJycjgvove2wYMHIyYmBmvWrBGNlZaWYs2aNVLrNyQL2O6O3bVrV9y/fx9VVVW4e/cuBg0aBODNQtiuXbuy9jqE6qgoLC4qZLa0b8nHTiCS/PK2trbG9u3bYWlpiYkTJ2LJkiWwtbVFQkICzp07h/j4eIlikQV8luDmqqutLGCj1k5sbCzOnz8Pb29vdOvWrcHPQJLZrv79+2PVqlX44osvMHr0aFGl3JCQEFRVVUktsVa0Nhx8doN+27Zt27Blyxa0adMG2tra+P3330UXTPPnz4e3t7dU4mgNaEZFQbE9kwG0fFZmy5YtiIuLE9t217FjR/j7+8PT01OiREUoFKJLly4A3mwbzcvLg62tLRwdHRETE9Ps2PjAZy8QFRUVJCQkiLraJiQkiB7T0dHBN99806yutrKAjVo70dHRqKurE5VZr9eU2a5Xr17BzMwMwJs1Vbm5uRAIBPj2228xc+ZMCd9Ny3366ac4fPiwWBuOyZMny2UbDuDNzr8PdYN+H7a7Y3t7e8PIyEhUuh948/ssJCQE7u7uEsdFPo4SFQXFxlQ427MybJxADAwMkJGRARcXFxgbGyM7OxsA8PLlS1RXV0scryyoqKhAQkLCe68MuS5t3qZNGwQEBMDf35+VrrZsYVpYWJCNWjtszMx9+umnKCwshK6uLgwNDXH79m0Ab1pilJWVtfj4TcFGGw5Zcfny5WZ1g9bT04OysrLoz2x4tw/ZmDFjmnyMln7eWwNKVFqB5s5ksD0rw8YJxNPTU7Sgd8SIERg3bhzU1dWRmZmJPn36SHQMWREaGopTp05h0KBBolkiPqiqqspMZ102CguyUWvnypUr8Pb2Rrt27cTGy8vLsX79eolmw5ydnREUFISVK1di4MCB8PPzg5WVFVJTU2FgYCBRHKQhDQ2NZhVDe7uQJhvVequqqrB3716xxdLAmx2IN27cwIkTJz56DFlpbyLrKFGRAy3NuJs7k8H2AkU2TiATJ05Ep06doKWlJSpMFhsbC11dXYSGhkp0DFlx5swZrFu3DsOGDeM7FJnBRmFBTU1NbNu2Dffu3UNeXh6UlZVhbm7eoIndu/Lz8/H8+XMAwE8//QSBQIBPPvlE7Dl5eXnYt2+fRFtP/fz8UFtbi6KiIowZMwbOzs5YuHAhOnbsiPXr13/0+0njxo0bh61bt7a4G3RzumO/LTw8HIcPH0bPnj2RnZ0Na2trPHjwAM+ePcPUqVMlioGt9iaKjhbTyjg2Mu4lS5bgxo0bjc5kDB06FCEhIR89BpvNAJt6ApFETU0NsrKy0K9fvxYfS1r69euHAwcO8FJHRVax0bjyfT5Wa+fs2bOYPXu2WBLdGDc3N/zwww8ffb3k5GQMGTJELNkpLS2FpqYmVFXpGrG5goKCkJycjI4dOza7G/THumOnpqZ+9BgDBw5EcHAwXFxcMHz4cMTExEBfXx9+fn7o2rWrRNvZufy8KxL63yLj2Mi42ZjJYLMZYEuKtZmbm2PevHnw9fUVGy8rK4OXl5dc1VFxdnbGwYMHsXDhQr5DkRlsFBZsbq2dL774AqdPn4ZQKISTkxN+++03aGtrix5XUlKChoaGxOUBwsLC8Ouvv4olKlTMix0uLi4t+v5ffvkFo0ePbrQ79rx58yQ6xosXL0SlGrp3746cnBwYGxtj1qxZWLhwoUSJCluFNBUdJSoyjo2Ggs2dCn8bG+tL2CjWxjAMYmNjce/ePURERIhdTcnb5KC2tjbi4uJw/vx5GBkZNbgyVLSut5Jgo3FlS2rt1G87PnXqFD777LMWLSo2NDREXl4eunfv3uxjsCEoKKjRcSUlJaipqaFr164YOXKkzKxT+hg2/l+w0R1bW1sbz549w2effSb6twbeFG4rKSmRKA42Pu+tASUqMo7NjLslMxlszMqwUaxNSUkJsbGxCA4OhpeXF37++WfRVS+fO1WaIysrS9QQ7smTJzxHIxvYaPeQk5MjqrVz8OBBmJqawsPDA127dsW+ffswatSojx6DjV0hAoEAixcvxtatW2FoaNigZL60EtGamhocPXoUOjo6oppHN2/eRHFxMaysrJCeno5ffvkFcXFxctOCoqXdoNnojv2vf/0Ly5cvR2RkJPr27YuIiAgMHz4cKSkpEhd8Y+Pz3hpQoiLj2Mi42ZjJYGNWho0TCMMwMDIywt69ezFnzhy4u7sjJiZGLlui79y5k+8QZA4b7R5kpdbO/fv3RSf+p0+fSu1136Wurg5nZ2esWbNGdHKuqalBcHAwOnTogNDQUERFRSE6OlouPpNsdINmozt2QEAAAgMDceXKFXh4eGDv3r2YOHEiVFVVsWrVKomOwcbnvVXguushaZnMzEzGwsKCcXd3ZyIiIpiIiAjGzc2N6dWrF3Pp0iWJjuHh4cG4ubkxv/76K9O7d28mMTGRiYyMZCwsLJiUlJQWxVdVVcX8+eefEj3X0tKSKSoqYhiGYRYtWiTqEFpQUMDY29tLdAyBQMCUlJSIXnvRokWMjY0Nk5KSwggEgma8A/4UFhZ+8Is0z5gxY5ikpCSGYd50uA0MDGQYhmFu3rzJ2NjY8BkaL/r27cvcuXOnwfidO3cYW1tbhmEY5v79+4y1tbW0Q2sWNrpBc9EdWygUMjdv3mSKi4ub9f3k/WhGRcaxkXGzMZPBxqwMG8XamLfWobRp0wZRUVHYtGkTFi9eLNH3y5KPNUmTp4XBLcF2YUFZqrVTW1uLZ8+eiTUlrL/lWl/NlGuqqqooKSlpsFbm6dOnos9fXV2d3OxEYqMbdHO7Y3+sA7OWlpZoS/r72ixw0d5E0cnHJ7OVa2npejamwtlYX8LGCWTu3LkNmsXNnTsXBgYG2Ldvn0THkBXvbqOsq6vD/fv3kZCQgMDAQJ6ikj62CwuyVWunfh3EvXv3sHTp0iavg7hw4QKWLFkiqs3yNnV1daklKiNGjEBoaCiWLVsGKysrMAyDrKwsrFixAo6OjqioqMDmzZvRu3dvqcTTUmx0g25ud2w2OjBz0d5E0VGiIoPYzrjZmMlgY1aGjRPI+97vmDFjmlW+mk+NVTcdMGAA9PX1sXHjxgbluRUV24UFAcDJyUn05/rPRn2tHUkWyr67DsLPz6/J6yDWrVuHnj17wtPTEwsWLEBUVBSKioqwYcMGqe7oCgoKQkBAAKZPny52kh01ahSWLl2K//73v7hy5Qq2bNkitZhago1u0M3tjs1GWwsuPu+Kjgq+yaB3T1Afyrj37Nnz0eP99ttvCA8Pxw8//ABzc3OMGzcOEydORGZmJnR0dLBt27aPHsPKygrHjx+Hrq4uFi9eDBsbG3h4eODhw4f46quvcOnSpWa/348Va5PkKgZ4s+tHkkJNsu7hw4cYPXo0rl+/zncoUsdGYcH31dopKSnBkCFDJLql5uPjA21tbYSHh8PGxgZHjhyBrq4ulixZgidPnki06NTS0hL79u2DQCCAh4cH5s2bhwEDBuDAgQPYv38/du/e/dFjsOnhw4e4desWVFRUYGZmhs8//xzAm91/726Nl2VsdINmozs2G9gspKnIaEZFBrGdcbMxk8HGrExzi7VNmDBB7rYeS6Kx+93l5eWIiYkRnURaGzYKCzIs1NphYx2EioqKqLtv/S3XAQMGwN7eXuJdIWxq164devfuLfoZ1H/+pHVSZgsb3aDZ6I7NBjYLaSoySlRkXHMbCr6rpVPhbKwvae4JRNJKkfKmsZkihmGgoaEhNq3dmrBRWJCNWjtsrIPo0aMHTp8+DU9PTxgbGyMjIwNTpkzB48ePJfp+tmRmZiIoKAgFBQVi49I+KbOppd2g2eiOzQY2Pu+tASUqMo6NjJuNsvNszMqwVawtNzdXbPfR2zspwsPDJT4O3xq7362mpgZTU1O0b9+eh4j4x0ZhQYaFWjtsrIOYOXMm5s+fDzU1Nbi4uGDjxo2YOXMmbt++LfEx2BAeHo4uXbogICBANMPT2rHRHZsNbHzeWwNaoyLj2GgoKBAI0K5dOzg6OorNZJSUlGDw4MHIzc1tdnxNaQYoEAhw8eJFKCsrY86cOXj8+LHoBDJo0CCJEqb4+HjRtHl9M7H6P9va2spFwap6c+fOhZ+fH0xMTPgORea0pLCgubk5Lly4gM6dO6O6uhrBwcE4c+YMwsPD4e/vL9HnjI11EMCbCrAqKioQCAS4cuUK4uPjoauri/nz50ut70/v3r1x+PDhVv85e7s7tpeXFzZu3Nhod+zVq1fjr7/+kmpsXDRqVSQ0oyLj2Mi42ZjJYGNWpv61OnXqhISEBAQHB+Prr79u0ixIYmIiZsyYgblz52LYsGE4dOgQSktLsWjRIjg6Okp8HFlw+fLlBmXVyRstaffARq0dNtZBAG8qSwNvZmPMzc2xefNmib+XLbq6unj16pXUX1fWPHz4UKw79vt2ELq5uUl8TLZmd1vyeW8NKFGRcWyUrmdjKpyNBYpsnEAeP36MiRMnom3bthAIBMjOzoaTkxMCAwOxcuVKTJ06VeJj8W3ChAmIiorCnDlzYGBgIFc7L7jCRmFBtmrttHQdBABs3boVO3bsEJXQ//zzzzFjxgyJF+SywcfHBxEREVi+fDmMjY0lLhGvaNjujv2x2V1JsPF5bw0oUZETLcm42ZjJYGNWho0TiIaGhqjKZ7du3XD37l04OTnBxMQEhYWFEr8fWXDu3DkUFBTgxIkTjT7eGn9JsVFYsLm1dry8vCSOU5J6Glu2bMHPP/8MT09PWFtbQygUIiMjAxEREQAgtWRl8+bNKCoqwvjx4xt9XN4+Zy3pBs1md2w2ZnfZ+Ly3BpSoyDg2Mm42ZjLYmJVho1ibjY0NtmzZgtDQUPTs2RP79+/HzJkzkZGRIXcLUH18fPgOQeY0t7AgG7V23l53UlVVhZSUFJibm6NPnz5QVVXFjRs3cP36dYlnWRITE7Fs2TKxBKE+qd6yZYvUEhVF+5yx0Q2aje7YbMzuslFIszWgREXGsXWF2dKZjObOyrBdrM3f3x/Tp09HYmIiJk+ejF9++QV2dnaorKyEt7e3RO9FVkyYMIHvEGROc9s9sFFr5+1qsUFBQZg6dWqDVgbR0dHIz8+X6HhlZWWNVrDt168fVqxY0aJYm0LRPmey0g2ajdldWen0LesoUZFxbGTcbMxkNHdWhu1ibaampkhNTUVFRQXat2+Pffv2ISkpCbq6uhg5ciRrr0P40dzCgmzX2jl+/DgOHTrUYHz8+PHvvYXyLkdHR+zcubPB9v2kpCTO2yMEBQVh6dKl0NTUfO+tEuDNBUL9rSh5cfz4cezZs0dsTZeamhpmzZqFyZMnIzQ0FO7u7vj11185jYON2V02Cmm2BpSoyLjmZtxsz2Q0d1aGzRNIZWUl1NXVRV/Am6vWyZMnNyiBTeQTW52PW7obo2PHjsjJyYGhoaHY+J9//inx7c7OnTtj9+7dyMjIgJ2dnej20Z9//glHR0exBILt3j+PHj0SvfdHjx6xemy+yUo3aDZmd2Wp07cso0RFxjU342Z7JoOtZoDNPYEkJyfjhx9+QGxsLCwsLETjERERuHHjBsLDwzF8+HCJ4yCyiY3Cgmzsxpg0aRJCQ0ORn58PCwsLCIVCUVn97777TqJj3Lp1S3SyebtWka2tLcrKylBWVibRcZrj7Vse8lRbSBJsdYNuaXfsxmZ3k5OTRYt5JcFWp29FRwXfZBwbDQWbi+1ZmeYWa0tPT8e0adMwfvx4+Pn5iWaYgDdFnLZu3YojR45g586dsLGxkeStETnTlMKCTk5OGDVqVKO7Mdzd3SXewh4TE4Ndu3aJthbr6upixowZ8PDwaMlb4UVlZSXy8vJQU1Mjdhu3KcmbrHj9+jUCAgLwxx9/NOgGHRYWhsuXLyMsLAxbtmxp0Oyv3rvdsY8dO4Y1a9YgLS1N4u7YXGrK5701oERFDqSmpkJLSwu2trZISkoSy7glXb3enJmMjRs3Nmnr8cc09wTi7e0NExMTBAcHv/fYQUFBKCkpQWxsrETxyoqWXtUpGjY6H1tYWCAlJQXdunXD9OnT4eHhAScnJ1y4cAErV65EcnJyk2L6559/oKSkJLVKsmw7deoUAgMDUV5e3qDmkbz2+gFa1g2aje7YbGDj894a0K0fOdDShoLNnQpne4Fic7fz5eTkfLQKr4eHB2bPns1qvFx796rOz88PKSkpCAoKkomrOj6wUViQ7Vo7nTp1avL3yJKoqCgMGDAAvr6+CtXrpyXdoNnojs0GNj7vrYEy3wGQDzM3N8fPP//cYLy+dL0k6gsT/fXXX+jUqRPOnTuH33//HSYmJk0qO5+bm4sjR47g8OHDOHz4MA4dOoS9e/fi+++/l+j7GzuBAPjoCaSqquqji2W1tLRQWVkp4TuRDStXroSTkxNSU1NF1ULXrVsHBwcHREVF8RwdP+oLC16/fh1eXl6i3iz1j0mifjdGZWUlevbsKapGKo+1dtjw6NEjLF68GAKBAHp6eg2+5E1mZiZGjBiBIUOGwMHBAY6OjnB0dBT9WRJsdMdmAxuf99aAEhUZV59xL168uMHiWUkz7sZmMszMzBAYGIj9+/dLdIz4+HiMHz8eAQEBCAoKQmBgIIKCgrBs2TI8ePBAomM09wRiZGSEa9euffDYmZmZcvdLNzMzE9OmTWv0qi4nJ4fHyPjzdmFBZWVluLu7486dO1BWlvxXlb+/P9LS0pCYmIjRo0ejpKQEdnZ2WLJkCVxdXTmMXjYZGhri8ePHfIfBmvpu0Js2bcL27dtFXzt27MD27dslOkZ9d+y3k5Wmdsd+W3O3ErPxeW8N6Kch49jIuJs7k/E2NmZlmnsCGTt2LNavX4/i4uJGHy8uLsb69evlro6KrFzVyZJ3Cwva2Njg66+/Rnp6usTHqN+N4erqKtqNMWfOHKxduxb+/v5chf5e+fn5OHbsGFJTU3Hv3j2pv/7ixYuxYsUKnD59Gn///TeKiorEvuTNnTt3sHz5cjg6OsLOzq7BlyQCAwNx48YNDB48GFVVVfDx8cGwYcPw6NEjiZu9AsDu3bvh4OCAPn364OHDh/jPf/7T6Az4+7DxeW8NaI2KjGOjdD0bhYnYKBfd3GJt3377LU6cOAEXFxe4ubnB2toaHTt2RGlpKTIzM3Ho0CEYGhrKXWXa+qu6NWvWiMZaclWnCFra7oHNWjsMwyAtLQ15eXlQVVVF9+7dMWDAAImTyKqqKixatAinTp0SWxc2bNgwREdHS60Jpa+vL+rq6uDr6yt2ccMwjFwupmWjGzQb3bGTkpKwdu1aTJkyBVu3bgXw5uIvKioK6urqmD59+kePwUZ7k1aBITJNIBAwJSUlDMMwTFVVFbNo0SLGxsaGSUlJYQQCgUTHuH37NjNo0CAmNjaWKS8vZ4YNG8b07duX6dmzJ7N27VqJjtGvXz/m3r17DMMwzH/+8x9m8+bNDMMwTFFREdOnT5+Pfn9FRQUjFArFxu7evctUVlZK9PpVVVXMqlWrGDs7O8bMzEz0NWjQIGbdunUSH0eWPH78mHF2dmYGDBjAmJubM6NHj2b69OnDfPHFF8yjR4/4Do8XGzduZCoqKhqMHzlyhPn2228/+L1JSUmMvb09k52dLTY+ffp0xs7Ojvnjjz8kjuOff/5hXF1dGTMzM8bW1pbp27cvY2Zmxri6ujJlZWUSHSMyMpIZMmQIk5qayrx48YIpLS1lTp48yQwdOpSJioqSOJaWSk9P/+CXvDl48CAzadIkJjc3l6muruYtjvHjxzMHDx5kGIZh+vTpwxQUFDAMwzC//fYb4+zsLNExWvJ5b01oe7KMEwgEuHjxotgMyqZNm7B582YIhUKJr4Zev36NiooKaGtro6SkpMll52fPno1OnTohNDQUSUlJ2L9/P/bs2YOUlBSsXLkSFy5ceO/3vq9Ym7e3d5OLtdXW1uLhw4coKyuDtrY29PX15XrRWWVlpdhVXY8ePZp0VUfeYLvWTlBQEK5fv461a9eKanHk5ubiu+++g42NDZYvX/7RYwwePBgrVqzAsGHDxMbPnDmD5cuX4+zZs017kwQA4OzsjKKiItHt7He973ci292x+/Tpg6SkJOjr68Pa2hpHjhyBvr4+Hj58iNGjR+P69esSvx75MLr1I+Na2lCQranw5paLTk9PR0BAAMaPH49PP/1U7LHg4GBs3boVCxculPgEoqqq2mj7dnnVrl07ibvxKio2Cgtu2bIF3377baO1duorfgLA5s2bJaq1c+bMGWzYsEGsYJhAIMD3338Pf39/iRKVV69eNVoPx8jISGytGdcqKiqQkJCAzMzMBgXfAMlOyrKkud2g2e6OraOjg/v370NfX19s/Nq1a/h//+//vff72C6k2RpQoiLjWlK6ns2y881dX8L2CUTesX1VpwjYaPfAdq2d2tpa6OjoNBjX0dFBeXm5RMcwNTXF8ePHMWvWLLHxY8eOSTXZDg0NxalTpzBo0CCxmSZ51dxu0Gx3x540aRLCwsJEPZvu3buHCxcuIDo6GlOmTHnv97Hd3qQ1oERFBrGRcbM5k9GSWRlFLdbWXGxf1SkCNgoLsl1rp1evXti9e7eoYVy93bt3w9zcXKJj+Pj4wNfXF7du3RL9H8vIyMDJkyexdu1aiY7BhjNnzmDdunUNbkHJE7a7QbPRHXvGjBl4+fIl/P39UVVVhVmzZkFVVRVff/31B3+fsV1IszWgREUGsZFxszWT0dJZGUUt1tZcbF/VKaLmtHuor7XTrVu39x63KbV2Fi5cCC8vL2RlZYklGbm5uaIdHh/zxRdfYP369YiNjcXZs2fBMAzMzMwQHR0NZ2dniY7BBmVlZZiYmEjt9bjAdjdoNrpjA29uifv4+ODu3btgGAbGxsbQ1NTE06dPJZ69ammn71aBx4W8hEP29vbM7du3P/ic69evMwMHDnzv45cvX2bMzc2ZoKAg5smTJ2KP3b17lwkMDGR69uzJZGRkvPcYrq6uzOHDhz8Yx+HDhxkXF5cPPkcR9enTh7l//36D8fv37zNWVlZSj0cWxMXFiXZ0CQQCsT9/aBdEQkICM2zYMObx48eNPv748WNm2LBhzKZNmySO5a+//mIWLFjAfPnll8yoUaOYhQsXMn/99VeT3xPfgoODmR9//JHvMGTKTz/9xPTt25fZsGEDc/r0aSY1NZVZvXo1Y2VlxezatUuiYwgEAubZs2cNxh8+fCjRTkiGaf7nvbWhGRU50JyMm42ZDDZmZeqLtdnb2ze4BQX8X7E2Nze3D8aqiNi6qlMk9YUFG2tc+aHCglzU2rG0tER0dHST4j98+LDEz5X0FkNLaWtrIy4uDufPn4eRkVGD+i1vz/LJi5Z2g/b19YWKigp27dqFn376CcCb+iwBAQEf7I69f/9+HDlyBMCb38Nz5swRtb+o9+TJE3Ts2FGi99Hcz3trQ4mKjGtuQ0E2psLZWF+iqMXa2DBp0iSEhoYiPz8fFhYWEAqFomZp3333Hd/h8aK5hQVVVFSQkJCA6OhoHDhwAAkJCaLHdHR08M0338DHx+eDyfumTZskjvN9i9zfvY1X/39WXV0dqqqqKC8vh4qKCjp16iS1RCUrK0vU4PLJkydSeU0usdUNetasWZg1a1aTumM7OTkhIyND9PeuXbs2+EyZmppK/G/LRiHN1oASFRnX3IybjZkMNmZl2DiBKKrmXtUpspZ0Pm7Tpg0CAgLg7+/frFo7Bw8eFPv7//73P6ipqUFfXx+qqqooKChATU0NLCws3puo5Obmiv6cnJyMbdu2ITIyUrTN+e+//8aSJUvg4uLy0XjYsnPnTqm9ljSw3Q26Kd2xtbS0xGag6hf4Nhfbnb4VFp/3ncjH9erVi3nw4AHDMAwzbdo05uTJkwzDMExaWhozevTo935fbW0tM3nyZMbW1paJjIxkjh8/zvz3v/9lUlJSmPDwcKZv376Mm5vbByu6sr2+pKamhrl37x5z7do15sGDBw0q1bZmz58/Z/755x++w+DdrFmzmMDAQKaiooLZu3cvM3HiRKauro5JSkpiBg0aJLU44uPjmSlTpoiqQjMMw5SVlTGzZs2SuJrz0KFDmaysrAbj169fl+p7KSws/OCXvLGwsBD9TpQFT58+ZYqKipr1c5WVz7usoxkVGdfcjJuNmQy215coWrE2NjXlqk6RNbewINu2bNmCuLg4sbVCHTt2hL+/Pzw9PSVqbvjixQu0bdu2wbhQKMTr169ZjfdDPlbuQN56/dR3g/7QbW1puHbtGgIDA1FQUCA2zjShh5KsfN5lHZXQl3EtKV1fr7ll5+vq6uDp6Yk7d+58cH3Jrl27WuWtG8KNlrZ7YEO/fv0QExPToMbQpUuX4Ofnh8uXL3/0GD4+PigrK8Pq1avx+eefA3hTzv+7776DsbExoqKiOIn9XVeuXBH7e11dHe7fv4+EhAQEBgbCwcFBKnGw5dy5c4iKioKfnx+MjY0bLA7+7LPPpBKHq6srNDQ0MG3atEZvQUnayVkWPu+yjhIVGZeXl4fp06dj6tSpmDx5MsaMGYMXL16IMm6u29ZXV1eLZmXKyspE4zo6OnBzc2u160sI++oLC76dROfn50NPT0/qn7ElS5bgxo0bCA0NhYWFBRiGQUZGBlasWIGhQ4ciJCTko8coLi6Gt7c38vPz0bFjRzAMg5cvX8LS0hJbtmzBJ598IoV38n5paWnYuHGjRK04ZEmvXr1Es8wt6QbNtLA7du/evXH48OFm16iRpc+7rKNERQ7IQsataM0AiWxhs3ElG8rLy7FgwQJcvHhR9DlnGAYjR47E6tWrG1zFv09dXR3++9//4s6dO1BSUoJAIIC9vb1M/N+R1+Z5784QvUuSmYzS0lJ4e3vj5s2b6NChAxiGQXl5OXr16oX4+HiJthc7OzsjKioKlpaWEsdeT9Y+77KOEhUZRhm34mvpVZ0iYLvzMZvu3buHvLw8KCsrw9zcvEEDuuZ6/PgxunbtysqxPqaoqKjBWHl5OWJiYnDr1i2kpKRIJQ5ZwkZ37EOHDmHv3r1Yvnw5jI2NG9RTeR9Z/rzLKkpUZBRl3IqPjas6ReDt7Q0TE5NGCwvWCwoKQklJCe+NK+sLLfbt2/ejz3348CFWrVqFvLw80a0K5v8v1vj8+XPk5ORwHS6AN12f353BYRgGGhoaWLNmjdwVFmOjG7S9vT02bNjQYPYlPT0d/v7+uHjx4keP4ezsjKKiItG/7bvedwtKnj7vsoJ2/cggNhsKEtm1atUqvH79GocPH25wVbd27VqJruoUgSw2rrxx4wZCQkLEKkK/TZJ1EGFhYfj7778xcuRIxMfHY/r06bh//z5OnjyJsLAwLsJuVGMnbjU1NZiamqJ9+/ZSi4MtbHSDZqM7to+PT7NeWxY/7zJPmnuhiWSmT5/O/PDDDx98TmBgIPPvf/9bShERLvTv359JT09vMH758uUP9mBSNNbW1h+ti1FQUMBYW1tLKSKG8fDwYNzc3Jhff/2V6d27N5OYmMhERkYyFhYWTEpKikTHsLGxYS5fvswwDMOMGzdO1Cdo3bp1jK+vL2exv2vOnDnM3bt3pfZ6XLOxsWFOnz7domN4eXkx4eHhDcZXrFjBTJo0qUXH/hhZ/LzLOppRkUGUcbcObFzVKQK2Ox+zIScnB9u3b4elpSUOHjwIU1NTeHh4oGvXrti3bx9GjRr10WNUV1eL3pORkRFu374NS0tLjB8/Hp6enly/BZHLly83Ws9FXrHRDZqN7tjAm63S27Ztw71797B3714cPHgQ3bp1w7hx4977PbL4eZd1ynwHQBpio3Q9kX29evXC7t27G4zv3r0b5ubmPETEj/rCgsXFxY0+Xl9YUJq73IRCoei2goGBAfLy8gAAjo6OYmXyP0RPT0/0fUZGRqLbRUKhEK9eveIg6sZNmDABUVFRuHPnDqqrq6X2ulxxdnZu0O6gqaytrZGYmAg9PT1cuHABaWlp0NfXx6+//gp7e3uJjnHx4kXMnTsXn332GV68eAGhUIja2loEBQV9sDmlLH7eZR3NqMggyrhbB7au6uSdLDauNDAwQEZGBlxcXGBsbIzs7GwAwMuXLyU+2U+YMAEBAQFYvXo1vvjiC3h5eeGzzz7DxYsXYWZmxmX4Ys6dO4eCggKcOHGi0cflrTItW92gm9Md+20bN27EokWLMHXqVNHP1s/PD5qamti2bdt7GxPK4udd1lGiIoPYLl1PZFP9VV1cXBwuXLgAhmFgZmaG0NDQZtVmkFey2LjS09MTS5cuBQCMGDEC48aNg7q6OjIzM9GnTx+JjjFz5ky0bdsWDMPA0tISvr6+2Lx5M3R1dbF69WoOoxfX3EWfsqq53aDZ6I79ttu3bzf67zhy5MgPvpYsft5lHW1PlkFUup60VrJUWDA1NRVaWlqwtbVFUlISYmNjoauri9DQUJrNlEPvtgr4UHfsPXv2fPR4//rXv7Bu3TrY2trC2toaR44cgb6+Ps6cOYP//Oc/OH/+/EePIUufd1lGiYqMotL1iontqzoiXTU1NcjKykK/fv0kev6ff/753nof9O/bPI0VsHubJL1+EhIScPbsWaxdu1bUePLFixcICAiAqampRK1J1qxZg0uXLiEiIgIeHh749ddf8eTJEyxbtgzOzs4IDAyU7A2Rj6JERcZRxq1Y2L6qI9wwNzfHvHnz4OvrKzZeUlKCIUOGSLSu46effsLGjRvRsWNHaGpqij2mpKSEU6dOsRpza9FYAbu3SfJvM3DgQMTFxYnqF9XLy8uDp6cn0tPTP3qMmpoaBAYG4ujRowDe/JsyDIMvvvgC0dHRdCHJIlqjIuNUVVVhZGTEdxiEJadPnxb9+WNXdYQ/DMMgNjYW9+7dQ0REhNiCTUmv7Xbv3g0/Pz/MmjWLqzBbpXcL2L3bDVoSNTU1qKioaDD+7NkziS8E1dTUsHbtWsyfPx+3bt2CUCiEqakpunfvLvFnhEiIl+othBBmwIABzK1btxqM3759m7Gzs+MhIlJPIBAwV69eZYYPH85MmjSJefbsGcMwDPP06VNGIBBIdAxLS0vm0aNHXIZJ3nL+/Hlm4sSJEj03ICCA+fLLL5nLly8z5eXlzMuXL5mzZ88yjo6OTFhYmETHcHBwYP75558G448fP6b/vyyjGRVCeMLGVR3hBsMwMDIywt69ezFnzhy4u7sjJiZGNPMlCRsbG1y7dk0mFt4+efIE+/btw71797B06VJcvXoVpqamMDY25js01hgaGkpc4yYkJAQLFizAlClTGnTH/lCxzZSUFKSlpQEACgsLERYW1qCYXmFhIf3/ZRklKoTwxMHBASEhIQgNDYWFhQUYhkFGRgZWrFiB0aNH8x1eq1Z/ounUqRMSEhIQHByMr7/+GuHh4RIfw8XFBStWrMCNGzdgbGzcoN7H++pssO3Bgwf46quvoKmpieLiYvj5+SElJQVBQUFISEgQbfWVFx/qBv35559LdIz6WidN7Y5tbW2NPXv2iG7tFBUViXVNVlJSgoaGBlatWtWEd0Q+hhbTEsKT8vJyLFiwABcvXmxwVbd69eoGJzYiPQKBABcvXhSbQdm0aRM2b94MoVAo0YLNdxdqvk1JSUlqhdZ8fHygra2N8PBw2NjY4MiRI9DV1cWSJUvw5MkT7Ny5UypxsIXLbtBN6Y7t6emJTZs24ZNPPmn26xHJ0IwKITxp7lUd4d7cuXOhoaHRYMzAwAD79u2T6BiS3obgWmZmJhITE8VO7qqqqvD19cVXX33FY2TNw0Y3aDa6Y7+b4D1//hxXrlyBhYWFxDM7RDKUqBDCM2NjY7G1Ak25qiPceF+NkzFjxmDMmDFNOlZ+fj7y8vKgpqYGExMTqe/iEwqFjZ6MX716BRUVFanGwoYdO3bAz8+vRY0JIyMjoaKigu+//x6RkZEIDAxEQUEBEhMTJa4anJeXh3nz5iE8PBxmZmYYO3YsSkpK0KZNG2zZskXinkHk4yhRIYQnbFzVEfY4ODhItAhSSUkJqampH31eVVUVFi1aJPZcJSUlDBs2DNHR0VK7tTd48GDExMRgzZo1orHS0lKsWbNGLk+mbHSDZqM79qpVq2BgYABjY2MkJyejtrYW586dw549exAdHU11kFhEiQohPGHjqo6wZ8KECazu1vjxxx9x/fp1/PTTT7Czs4NQKMTVq1cRHh4uamgnDYGBgfDy8sLgwYNRVVUFHx8fFBYWQktLCytXrpRKDGyq7wY9Z84cGBgYNCvha6w7tq2tLRwdHRETEyPRMa5du4bffvsNnTt3RlpaGoYOHYpPP/0Urq6uiI+Pb3JM5P0oUSGEJ2xc1RH2zJs3j9XjJScnY8WKFRg2bJhozMnJCSoqKli+fLnUEpVPP/0Uhw8fRnJysqgw2eTJkzFu3LgGFXPlARvdoNnojq2srIw2bdqgtrYWV65cQUhICIA3t9SoKi27KFEhhCdsXNUR7uTm5ordlmMYRrR+SJJtyq9evWq0TomRkRGeP3/Oerwf0q5dO0ycOFGqr8kVNrpBs9Edu0+fPoiJiYG2tjaqqqrwr3/9C8XFxVi3bp3ExyCSoUSFEJ6wcVVHuBEfHy+qhVHfw6X+z7a2thIdw9TUFMePH29QQv/YsWOcL6j18vKS+LmN7aKRZRMmTGjxMSZOnIhOnTpBS0sLJiYmiIyMFOuOLYmQkBD4+fnh4cOHCA4Ohra2NlasWIH8/HzExsa2OEbyfyhRIYQnbFzVEW4kJiZixowZmDt3LoYNG4ZDhw6htLQUixYtkrhOh4+PD3x9fXHr1i3Y2NgAADIyMnDy5EmsXbuWy/DFquFWVVUhJSUF5ubm6NOnD1RVVXHjxg1cv35dYWZZmsPJyUn05/rdXPXdsSWpJmxgYICDBw+Kjc2ZMwfBwcFyuZtKllHBN0J4lJqaCi0tLdja2iIpKUnsqk4WSq+3VhYWFkhJSUG3bt0wffp0eHh4wMnJCRcuXMDKlSuRnJws0XFOnjyJ2NhY5OXlgWEYmJmZ4d///jecnZ05fgf/JygoCJ988kmDhn3R0dHIz8/Hxo0bpRaLrGhud+yrV6/C2toaqqqquHr16gdfo1+/fqzF29rRjAohPGrpVR3hhoaGBurq6gAA3bp1w927d+Hk5AQTExMUFhZKfJzhw4dj+PDhXIUpkePHj+PQoUMNxsePHy+1Mv6yhmlmd2xPT09RxWJPT0+x24Jvk2bl4daAEhVCePK+q7qysjJ4eXnRLzoe2djYYMuWLQgNDUXPnj2xf/9+zJw5ExkZGR+sfrpp0yZ4e3ujXbt22LRp0wdf431F5djWsWNH5OTkwNDQUGz8zz//bFKTRUWipKSE2NhYBAcHw8vLCz///DO0tbVFj73PqVOnRM87deqUVGIllKgQwpvmXtUR7vn7+2P69OlITEzE5MmT8csvv8DOzg6VlZXw9vZ+7/cdPHgQ33zzDdq1a9dg/cLblJSUpJaoTJo0CaGhocjPz4eFhQWEQqGorP53330nlRjY1tJu0M3tjv32LOe7M541NTXIzc2FsbGxxKX8iYQYQggvBAIBc/XqVWb48OHMpEmTmGfPnjEMwzBPnz5lBAIBz9GRyspKsX+TuLg45tixYzxH1Ty//PILM3jwYMbMzIwxMzNjvvjiCyYxMZHvsJrl77//Zuzs7BgHBwemV69eTEFBATNv3jymT58+TFZWlkTHEAgETElJCcMwDFNVVcUsWrSIsbGxYVJSUiT+v1dUVMRMmzaN+euvv5jKykpm9OjRjJmZGWNnZ8fk5OQ0+/2RhpT5TpQIaa2Yt67qlJWV4e7ujjt37kBZmf5b8qmyshIMw0BdXV00zV9WVobJkydj5MiREh+HYRhs2rRJrJT6pEmT8Msvv7Ae88fMmjULaWlpuHTpEi5fvowzZ87Aw8ND6nGwYeXKlXByckJqairU1NQAAOvWrYODgwOioqIkOgbz1oxlmzZtEBUVhWnTpmHx4sUSxxEZGYmXL19CW1sbx44dQ2FhIX799VcMHz5crF0BaTn6jUgIT+rvhXfq1AkJCQmwsbHB119/jfT0dJ4ja72Sk5Ph4OCAmzdvio1HRERg6NChOHnypMTHWr9+PXbt2iV2O+HLL79EQkICL8kKAFHtEHmWmZmJadOmNdoNOicnR6JjvK879sqVKyWuk3P58mWEhYXh888/x7lz5/Cvf/0LNjY28Pb2xrVr1yR/Q+SjKFEhhCdsXNUR9qSnpyMgIADDhg3Dp59+KvZYcHAwHBwcsHDhQmRmZkp0vMOHDyMqKkps18+UKVOwatUq/Pbbb6zG3pqw0Q167ty5aNeuXYPxMWPGYOfOnRIdo6amBp988gkYhsGlS5cwcOBAUXyqqrT8k0300ySEJ++7qjMwMMC+fft4iqr12rJlC7799lsEBwc3eKy+eikAbN68WaLKo6WlpY1uMTc0NMTTp09bHnAr1dxu0Gx3x67fDdalSxe8ePECQ4cORXV1NWJjYyEQCCR7M0QiVPCNEEIADBgwANu3b4epqel7n5OdnY3Zs2fj4sWLHz3e119/jX79+jVoPrhhwwacPXv2g7uCyPsVFxfDy8sLL1++RGlpKYyNjUXdoHft2vXe+kMbN26UuDu2JDuyrl+/jtmzZ+Off/7BjBkz4O/vj2XLluHo0aPYunUrrKysmvS+yPtRokKIFLF9VUfYY2Njg8OHD6Nbt27vfc7Dhw8xbtw4iW7/pKWlYdasWbCyshK1RMjOzkZWVhZ++uknDB06lK3QP4phGKSlpSEvLw+qqqro3r07BgwYILel3isrK8W6Qffo0YOXbtBCoRDl5eXo2LEjAOD+/fsKsQ5I1tCtH0KkaMKECRJf1RHpMjIywrVr1z6YqGRmZkpcMXjIkCFITEzEzp07ceHCBaiqqsLExAT79++X6q2B0tJSeHt74+bNm+jQoQMYhkF5eTl69eqF+Ph40UlWnrDRDbql3bEBQFlZGbdv30Z+fj5cXFxQV1cn9WSpNaBEhRApmjdvHt8hkPcYO3Ys1q9fD3t7+waLaYE3txzWr18PNzc3iY9pbW0Na2trNsNsslWrVuH169c4fPiwKEHKzc3Fd999h7Vr12L58uW8xicJtrtBs9Edu7y8HN7e3vjrr7+gpKSEQYMGISoqCgUFBYiPj2/0M0Sah279EMIjNq7qCDvq6urg6emJO3fuwM3NDdbW1ujYsSNKS0uRmZmJQ4cOwdDQELt27YK6unqjx5DFEvr29vbYsGED7OzsxMbT09Ph7+8v0XobvgUFBYn+/LFu0MuWLfvo8ZycnDBq1KhGu2O7u7tj6tSpHz1GWFgYcnJysGbNGowdOxZHjhxBdXU1Fi9eDGNjY847ZLcmNKNCCE/YuKoj7FFRUUFCQgKio6Nx4MABJCQkiB7T0dHBN998Ax8fn/cmKYBsltCvra2Fjo5Og3EdHR2Ul5dLJYaWqt9xBbxJWqZOnfrebtCSePz4MSZOnIi2bdtCIBAgOzsbTk5OCAwMxMqVKyVKVM6cOYO1a9dCX19fNGZiYoLQ0FDMmTNHsjdGJEKJCiE8SUxMxIwZMxq9qnN0dOQ7vFapTZs2CAgIgL+/Px4+fIiysjJoa2tDX19forVFp0+fbvTPfOrVqxd2796NpUuXio3v3r0b5ubmPEXVfGx0g2ajO/bz58/RpUuXBuMdO3ZERUWFRMcgkqGCb4TwpLGrOjMzMwQGBmL//v18h9eqqaqqwsjICH369EG3bt3kegH0woULsWfPHkycOBGRkZGIjIyEu7s79uzZg4ULF/IdXpPVd4N+V1O6Qdd3x66srETPnj1x+vRpCIXCj3bHflvv3r1x7NixBuOJiYno2bOnRMcgkqEZFUJ4wsZVHZEtAoFA4qTm1q1bHEfzhrW1NRITExEXF4cLFy6AYRiYmZkhNDQUlpaWUomBTWx0g25ud+zGjnH9+nXU1tZi8+bNyM/Px82bN7Ft27aWvEXyDlpMSwhPZs+ejU6dOiE0NBRJSUnYv38/9uzZg5SUFKxcuRIXLlzgO0TSRAcPHhQlKoWFhYiNjcWkSZNgbW0NNTU1ZGdnIzExET4+PhKfEElDMTEx2LVrl6jCr66uLmbMmNGkRouvX79GRUUFtLW1UVJSgqSkJOjq6jap8eTt27exbds25OTkiOq5TJ8+nYq9sYwSFUJ4kpeXh+nTp2Pq1KmYPHkyxowZgxcvXoiu6vz9/fkOkbTAt99+i/Hjx8Pd3V1s/MiRI9i+fTsOHDjA2Wt/bMfR26S1qJcL//zzD5SUlJpUYK2yshLq6upiM1/5+fnQ09P74ELpd4WHh8PLy+uDdXcIOyhRIYRHbFzVEdlkaWmJpKQkGBgYiI3//fffGDduHP766y/OXtvBwUHs7//73/+gpqYGfX19qKqqoqCgADU1NbCwsMCePXs4i0PWJCcn44cffkBsbCwsLCxE497e3rhx4wbCw8PFmkh+SN++ffH777/j888/5ypc8v+jxbSE8KCyshIMw0BdXR3a2toAgLKyMkyePJmSFAVhYGCAo0ePNhjfu3cvunfvzulrnz59WvTl5eWF/v3748yZMzh69Ch+//13nDt3DoMHD25QW0WRsd0de+jQodi1a5fcbPGWZzSjQoiUsXlVR2TXyZMnMX/+fPTt2xe9e/eGUCjEtWvXcOvWLcTGxn6w0y+bBg4ciLi4uAZl+/Py8uDp6Yn09HSpxME3b29vmJiYNNodu15QUBBKSkok6o7t6emJq1evQklJCZ07d0bbtm3FHj916lSLYyZv0K4fQqSo/qpu/PjxjV7Vbd26FQsXLsTOnTthY2PDU5SEDcOHD0diYiJ27dolWhhtbm6OsLAwqfb6qampabSux7Nnz+R623VT5eTkYMmSJR98joeHB2bPni3R8fr374/+/fuzERr5CJpRIUSK2L6qI+RjlixZghs3biA0NBQWFhZgGAYZGRlYsWIFhg4dipCQEL5DbLLmdINmuzs2kR6aUSFEiti+qiOySygUIikpCZmZmaipqcG714Rvl4XnUkhICBYsWIApU6aIZlAYhsHIkSM/+lmURc3tBs12d2wiPZSoECJFVVVVH90CqaWlhcrKSilFRLgSERGBxMRECAQCaGpq8haHpqYmtm3bhnv37iEvLw/KysowNzcX61EjT5rbDZqL7thEOujWDyFS5ObmBi8vL4wbN+69z/n999+xdetWJCUlSTEywrb+/fsjMDAQEyZM4DuURtV36e7bty/foTRJc7tBs9Edm/CDZlQIkSK6qms9qqur0a9fP77DwI0bNxASEoK8vDwIhcIGj0urlD9bmtsNmo3u2IQfNKNCiBTRVV3rMX/+fPTv3x/ffPMNr3F88803qKqqgpubGyIjIxEYGIiCggIkJiZi9erVGDVqFK/xNdWUKVNgamraoBt0eHg4bty4IVEBu9ra2mZ1x27sOM+ePRP17GIYRjRTNXbs2CYfjzSOEhVCpKy6ulp0VVdWViYa19HRgZubG13VKYi4uDhs2LABgwcPhomJCdTU1MQel1bpemtra2zfvh2WlpaYOHEilixZAltbWyQkJODcuXOIj4+XShxsuXbtGry8vCAQCERb+DMyMpCbm4utW7dKrT7NhQsXsGTJEjx//rzBY+rq6rh27ZpU4mgNKFEhhCdsXdUR2fRuGfu3KSkpSa0gmJWVFY4fPw5dXV0sXrwYNjY28PDwwMOHD/HVV1/h0qVLUomDTdevX0dcXBzu3Lkj6gY9bdo0qXaDdnV1RefOneHp6YkFCxYgKioKRUVF2LBhAyIjI+Hk5CS1WBQdrVEhhCeqqqowMjLiOwzCkdOnT/MdAoA3pfwzMjLg4uICY2NjZGdnAwBevnyJ6upqnqNrHktLS0RHR/Maw927dxEREQGBQABzc3NoaGjA09MTGhoa2LZtGyUqLKJEhRBCOPJuYbIePXrA3t7+g4XJ2Obp6SlazzFixAiMGzcO6urqyMzMRJ8+faQWR0vIYjdoFRUVdOjQAcCbZDAvLw8DBgyAvb09Vq1aJZUYWgtKVAghhAPNLUzGtokTJ6JTp07Q0tKCiYkJIiMjERsbC11dXYSGhkolhpY6ePCg2N8/1A1aWolKjx49cPr0aXh6esLY2BgZGRmYMmUKHj9+LJXXb01ojQohhHAgKCgI169fx9q1axsUJrOxsXlvYTJpqampQVZWlkxsoW6KhIQEnD17FmvXrkXnzp0BAC9evEBAQABMTU3h7+8vlThSU1Mxf/58hIaGYujQoRgxYgTs7e1x+/ZtWFlZYcOGDVKJozWgRIUQQjjQ3MJkbDM3N8e8efPg6+srNl5SUoIhQ4bIXR0VWeoGffPmTaioqEAgEODKlSuIj4+Hrq4u5s+fDy0tLanFoejo1g8hhHCguYXJ2MYwDGJjY3Hv3j1ERESgTZs2Yo/JG1npBj137lz4+fnBxMQEAGBnZ9cgKSXsUOY7AEIIUUS9evXC7t27G4zv3r0b5ubmUotDSUkJsbGxuH79Ory8vMTqfsjjdngHBweEhIQgPT0dr169Qnl5Oc6dO4eQkBCMHj1aanFcvnwZbdu2ldrrtWZ064cQQjggK4XJBAIBLl68CGVlZcyZMwePHz9GTEwMOnfujEGDBsndrZ/y8nIsWLAAFy9ebNANevXq1WIzRlz64Ycf8PTpU8yZMwcGBgZSe93WiBIVQgjhyPXr1xEfH4+8vDzeCpOZm5vjwoUL6Ny5M6qrqxEcHIwzZ84gPDwc/v7+cpeo1OO7G7SzszMKCgreOyslrz9XWUSJCiGEcOTly5f4559/0K1bNwDAH3/8ATs7O6kutKyfUanfIQO8qUuyefNmCIVChTmhSrsb9KFDhz74uKx2zZZHlKgQQggHbt68ienTp8PV1RVLliwB8GZ9RXV1NeLi4mBqaiqVODZt2gRvb2+0a9dObDwpKQn79u3Dzp07pRIHWxStGzT5OEpUCCGEA56envj888+xfPly0fqF2tpahISEoLi4GHFxcTxHKJ9kqRv0uXPnsG3bNty7dw979+7FwYMH0a1bN4wbN05qMbQGtD2ZEEI4cOPGjQbbgVVVVTFz5ky4u7tz+toODg4S7ehRUlJCamoqp7GwLScnR9QN+uDBgzA1NYWHhwe6du2Kffv2SS1RuXjxIubOnYvRo0cjKysLQqEQtbW1CAoKAsMwGD9+vFTiaA0oUSGEEA60b98eDx8+bLDI88mTJ5zvEJkwYYJcbj2WhFAoRJcuXQD8X48dW1tbODo6IiYmRmpxbNy4EYsWLcLUqVNx4sQJAICfnx80NTWxbds2SlRYRIkKIYRwYMSIEVi+fDmWLVsm2uWTnZ2NsLAwDB8+nNPXnjdvHqfH55OsdIO+ffs2Vq9e3WB85MiRTWqiSD6OEhVCCOHAokWLUFBQgGnTponNbgwfPhwBAQFSjSU3N1ds8SnDMKJdMuHh4VKNpaVkpRt0hw4d8OTJE9GOrnp3797FJ598IrU4WgNKVAghhAMaGhqi0vV37tyBqqoqTExMYGhoKNU44uPjsWrVKgBv1qTU759QUlKCra2tVGNhg6x0gx4zZgwiIiIQEREBJSUlvHr1CufPn8eKFSvw5ZdfSi2O1oB2/RBCiJQ9fvwYXbt2lcprOTk5YdSoUZg7dy6GDRuGQ4cOobS0FIsWLYK7uzumTp0qlTi4Ju1u0DU1NQgMDMTRo0cB/F8S+MUXXyA6Ohrq6upSiaM1oESFEEI48PDhQ6xatQp5eXmoq6sD8H+3XJ4/f46cnBypxGFhYYGUlBR069YN06dPh4eHB5ycnHDhwgWsXLkSycnJUomDLbLWDfrBgwe4desWhEIhTE1N0b17dzAMo7CLmflATQkJIYQDYWFhuH37NkaMGIHi4mKMHj0avXr1QklJCZYtWya1ODQ0NESJUrdu3XD37l0AgImJCQoLC6UWB1vqu0EvXry4weJZaV53Ozo6orS0FAYGBhg5ciS+/PJLdO/eHcXFxVLr49Ra0BoVQgjhQGZmJn7++Wf0798faWlpcHJygqWlJX788UecO3cOX331lVTisLGxwZYtWxAaGoqePXti//79mDlzJjIyMtC+fXupxMCm+m7QwcHB8PLyws8//wxtbW3RY1xKSUlBWloaAKCwsBBhYWENOigXFhbSbArLaEaFEEI4UF1dLdoRYmRkhNu3bwMAxo8fj7/++ktqcfj7+yMtLQ2JiYkYPXo0SkpKYGdnhyVLlsDV1VVqcbCFYRgYGRlh7969UFZWhru7O+7cuQNlZe5PZ9bW1igsLMSjR48AAEVFRXj06JHoq7CwEBoaGqLFy4QdNKNCCCEc0NPTQ15eHnR1dWFkZCRaOyEUCvHq1SupxWFqaorU1FRUVFSgffv22LdvH5KSkqCrq4uRI0dKLQ621M9WdOrUCQkJCQgODsbXX38tlW3Wurq62LFjB4A326Q3bdpEW5GlgBbTEkIIB2JiYhAXF4fVq1ejU6dO8PLywty5c3Hx4kVUVlZiz549nMdQWVkJdXV1sVsR+fn50NPTk9tdKbLWDbqoqAj5+fno168fXr16JRYXYQfd+iGEEA7MnDkTPj4+YBgGlpaW8PX1xebNm/H06VP85z//4fz1k5OT4eDggJs3b4qNR0REYOjQoTh58iTnMXBh7ty50NDQaDC2cuVKqdaFqampgZ+fHxwcHDBr1izRv+u0adNQXl4utThaA5pRIYQQBZOeno5p06Zh/Pjx8PPzE/XGAd7MqGzduhVHjhzBzp07YWNjw2Ok8mv9+vU4fvw4li1bhtmzZ+PIkSMoKipCUFAQ/vWvf0l1Z5eio0SFEEIUjLe3N0xMTBAcHPze5wQFBaGkpASxsbFSjKx5ZLEbtLOzM5YtW4aBAwfC2toaR44cgb6+Pi5duoSAgADR7iDScrSYlhBCFExOTg6WLFnywed4eHhg9uzZUoqoZWSxG3RxcXGDPj/AmwW3ZWVlPESkuChRIYQQBVNVVfXRxbJaWlqorKyUUkQtI4vdoE1MTHDp0iVMnDhRbPzo0aPo3r07T1EpJkpUCCFEwRgZGeHatWuNXvHXy8zMhJ6enhSjYo8sdIOeN28e/Pz8cPfuXdTV1eHQoUO4f/8+Tpw4gR9//FEqMbQWlKgQQghHamtr8ezZswa9frKzszF27FjOXnfs2LFYv3497O3t8emnnzZ4vLi4GOvXr4ebmxtnMXBFVrpBDxs2DBs2bEBMTAxUVFSwbds29OjRAz/++CNGjBghtThaA1pMSwghHLhw4QKWLFmC58+fN3hMXV0d165d4+y16+rq4OnpiTt37sDNzQ3W1tbo2LEjSktLkZmZiUOHDsHQ0BC7du2Su3oqstINetu2bXBxcWk0ESTsokSFEEI44Orqis6dO8PT0xMLFixAVFQUioqKsGHDBkRGRsLJyYnT16+urkZ0dDQOHDggtrhTR0cHbm5u8PHxkbskBZCdbtC2trY4cOAADAwMpPJ6rRnd+iGEEA7cvXsXEREREAgEMDc3h4aGBjw9PaGhoYFt27Zxnqi0adMGAQEB8Pf3x8OHD1FWVgZtbW3o6+vL3A6apmisG7STk5PUu0FbWVnh9OnTmDZtmtRes7WiyrSEEMIBFRUVdOjQAQBgYGCAvLw8AIC9vT3y8/OlFoeqqiqMjIzQp08fdOvWTa6TFOD/ukFXVlaiZ8+eOH36NIRCodS7QWtqamL16tXo378/Jk2aBC8vL7Evwh5KVAghhAM9evTA6dOnAQDGxsbIyMgAADx+/JjPsOSerHSD1tDQwPjx4+Hg4ABjY2Po6emJfRH20BoVQgjhQGpqKubPn4/Q0FAMHToUI0aMgL29PW7fvg0rKyts2LCB7xDl1uvXr1FRUQFtbW2UlJTw0g06OTkZQ4YMoe7JUkCJCiGEcOTmzZtQUVGBQCDAlStXEB8fD11dXcyfPx9aWlp8hyd3ZKkbtJ2dHX799Vcq7iYFdOuHEEI4MHfuXKirq0MgEAB4c2LbvHkzQkNDKUlpBlnrBm1oaChad0S4Rbt+CCGEA5cvX0bbtm35DkMhpKenIyAgAOPHj29QtyQ4OBhbt27FwoULpdoNWiAQYPHixdi6dSsMDQ0b/FtHRkZKJY7WgG79EEIIB3744Qc8ffoUc+bMgYGBAdq0acN3SHJLFrtBe3p6fvDxnTt3SiWO1oASFUII4YCzszMKCgreux341q1bUo5Ifg0YMADbt2+Hqanpe5+TnZ2N2bNn4+LFi1KMjEgD3fohhBAO+Pj48B2CwpDVbtB89XJqbShRIYQQDkyYMIHvEBSGLHaD/lgvJ0pU2EO7fgghhCPnzp2Dl5cXBg8ejMLCQmzcuBG///4732HJnfpu0MXFxY0+Xt8NWpp1VNatW4eePXsiJiYG6urq2LRpE4KDg6GpqYk1a9ZILY7WgGZUCCGEAxcvXsTcuXMxevRoZGVlQSgUora2FkFBQWAYBuPHj+c7RLnx7bff4sSJE3BxcflgN2hvb2+pxcR3L6fWhBIVQgjhwMaNG7Fo0SJMnToVJ06cAAD4+flBU1MT27Zto0SlCVRUVJCQkCDqBp2QkCB6TEdHB998843Uu0E31stpwIABsLe3x6pVq6QWR2tAt34IIYQDt2/fhoODQ4PxkSNHoqCggIeI5Ft9N+iLFy/i2LFj2LNnD/744w+kpaXBz89P6pVpqZeT9NCMCiGEcKBDhw548uRJgwWgd+/epf4wLVDfDZpvM2fOxPz586GmpgYXFxds3LgRM2fOxO3bt2Fvb893eAqFZlQIIYQDY8aMQUREBHJzc6GkpIRXr17h/PnzWLFiBb788ku+wyMt5OTkhN9++w19+vSBrq4utm7dChUVFTg6OiIsLIzv8BQKFXwjhBAO1NTUIDAwEEePHgUAKCkpgWEYfPHFF4iOjpb6rQrCvr///hvl5eWwsLAAAGzfvh1Dhw6FoaEhv4EpGEpUCCGEQw8ePMCtW7cgFAphamqK7t27g2GY91asJfLhv//9L3x8fDB16lT4+fkBACZNmoS8vDzExsbC1taW5wgVByUqhBDCAUdHRxw4cKBBp+Ti4mKMHTsW6enp/ARGWOHu7o5BgwaJkpR669atw5UrV7Bnzx6eIlM8tJiWEEJYkpKSgrS0NABAYWEhwsLCGnTVLSwspNkUBXD37l38+OOPDcYnTpxIDQlZRokKIYSwxNraGnv27EH9RHVRURHU1NREjyspKUFDQ4PqbCgAbW1t5ObmQl9fX2z8zp07ovoqhB2UqBBCCEt0dXWxY8cOAICnpyc2bdpEW5EV1Lhx47Bs2TKUlpbCysoKwJsOztHR0VTMj2W0RoUQQjhUVFSE/Px89OvXD69evULnzp35DomwoLa2FuHh4Thw4ABqa2vBMAxUVVXh6emJRYsWQVWV5gHYQokKIYRwoKamBgEBATh27BiUlZVx4sQJrFq1Cq9evcLGjRuhqanJd4iEBa9evcL9+/ehqqoKQ0ND2nbOASr4RgghHPj555+Rm5uL7du3ixbUenp64sGDB4iKiuI5OsKW9u3bw8LCAgKBgJIUjlCiQgghHDh69ChCQkLQv39/0Vj//v3xww8/4NSpUzxGRoh8oUSFEEI4UFxc3KDPD/BmwW1ZWRkPEREinyhRIYQQDpiYmODSpUsNxo8ePYru3bvzEBEh8omWJRNCCAfmzZsHPz8/3L17F3V1dTh06BDu37+PEydONFoojBDSONr1QwghHDl//jxiYmKQk5MDoVCIHj16YMaMGRgxYgTfoZEWevr0KaKjo5GZmYmamhq8eyqldUjsoRkVQgjhwLZt2+Di4oLExES+QyEcCAkJwY0bNzB69GiqRMsxmlEhhBAO2Nra4sCBAzAwMOA7FMKBPn36YOvWrdQlWQpoMS0hhHDAysoKp0+f5jsMwhENDQ2qMiwlNKNCCCEcWLBgAf744w907NgRhoaGDboo1/cEIvJp1apVePHiBcLCwqCiosJ3OAqN1qgQQggHNDQ0qDmdAistLUVycjLOnj0LfX19tGnTRuxxSkTZQ4kKIYRwYNCgQRgyZAh1T1ZgLi4ufIfQKtCtH0II4YCdnR1+/fVXKu5GSAvRYlpCCOGAoaEh8vLy+A6DcOjJkyfYtGkTFi1ahGfPnuH48eO4d+8e32EpHJpRIYQQDoSGhmL//v0QCASNLqaNjIzkKTLChgcPHuCrr76CpqYmiouLcezYMaxZswZpaWlISEiAlZUV3yEqDJpRIYQQDty/fx99+/ZF+/bt8fTpUzx69Ejsi8i3lStXwsnJCampqVBTUwMArFu3Dg4ODoiKiuI5OsVCi2kJIYQDO3fu5DsEwqHMzEwkJiZCSUlJNKaqqgpfX1989dVXPEameChRIYQQjtTW1uLZs2eoq6sDADAMg+rqamRnZ2Ps2LE8R0daQigUQigUNhh/9eoV1VVhGSUqhBDCgQsXLmDJkiV4/vx5g8fU1dUpUZFzgwcPRkxMDNasWSMaKy0txZo1a2Bvb89jZIqHFtMSQggHXF1d0blzZ3h6emLBggWIiopCUVERNmzYgMjISDg5OfEdImmB4uJieHl54eXLlygtLYWxsTEKCwuhpaWFXbt2QU9Pj+8QFQbNqBBCCAfu3r2LiIgICAQCmJubQ0NDA56entDQ0MC2bdsoUZFzn376KQ4fPozk5GTcunULQqEQkydPxrhx46Cpqcl3eAqFEhVCCOGAiooKOnToAAAwMDBAXl4eBgwYAHt7e6xatYrn6Agb2rVrh4kTJ/IdhsKj7cmEEMKBHj16iLonGxsbIyMjAwDw+PFjPsMiRO7QjAohhHBg5syZmD9/PtTU1ODi4oKNGzdi5syZuH37Ni22JKQJaDEtIYRw5ObNm1BRUYFAIMCVK1cQHx8PXV1dzJ8/H1paWnyHR4hcoBkVQgjhSPv27VFeXg7gTZPCW7duYejQoZSkENIElKgQQggH/vvf/8LHxwdTp06FhYUFACAlJQXR0dGIjY2Fra0tzxGSlggKCmp0XElJCWpqaujatStGjhwJIyMjKUemeOjWDyGEcMDd3R2DBg2Cn5+f2Pi6detw5coV7Nmzh6fICBsWL16Mo0ePQkdHB5aWlgDe3OorLi6GlZUVSktL8b///Q9xcXHo27cvz9HKN9r1QwghHLh79y7c3d0bjE+cOBG3b9/mISLCJnV1dTg7O+PUqVP46aef8NNPP+HkyZNwcXFBz549cfz4cXh6eiI6OprvUOUeJSqEEMIBbW1t5ObmNhi/c+eOqL4KkV/Hjx/HvHnz0KZNG9GYmpoaZs2ahaSkJABvZtVu3rzJV4gKg9aoEEIIB8aNG4dly5ahtLQUVlZWAIDs7GxER0dj/Pjx/AZHWkxVVRUlJSXo3r272PjTp09FHZXr6uqgqkqn2ZainyAhhHBgzpw5+OeffxAWFoba2lowDANVVVVR7x8i30aMGIHQ0FAsW7YMVlZWYBgGWVlZWLFiBRwdHVFRUYHNmzejd+/efIcq92gxLSGEcOjVq1e4f/8+VFVVYWhoCHV1db5DIix4/fo1AgIC8Mcff4hmUABg1KhRCAsLw+XLlxEWFoYtW7ZAIBDwGKn8o0SFEEIIaaaHDx/i1q1bUFFRgZmZGT7//HMAQHV1tdj6FdJ8lKgQQgghzVRSUoKamhq8eyr97LPPeIpI8dAaFUIIIaSJMjMzERQUhIKCArFxhmGgpKSEW7du8RSZ4qEZFUIIIaSJXF1doaGhgWnTpjW63dzOzo6HqBQTzagQQgghTXTnzh0cPnwYJiYmfIei8ChRIYQQDjx9+hTR0dHIzMxsdA3DqVOneIqMsEFXVxevXr3iO4xWgRIVQgjhQEhICG7cuIHRo0dTJVoF5OPjg4iICCxfvhzGxsZQU1PjOySFRWtUCCGEA3369MHWrVupS7KCcnZ2RlFREerq6hp9nBbTsodmVAghhAMaGhro3Lkz32EQjvj4+PAdQqtBMyqEEMKBVatW4cWLFwgLC4OKigrf4RAit2hGhRBCOFBaWork5GScPXsW+vr6DaqU7tixg6fISHMFBQVh6dKl0NTURFBQ0Hufp6SkhIiICClGptgoUSGEEI64uLjwHQJh0aNHjyAUCkV/JtJBt34IIYQQIrNoRoUQQjjy5MkT7Nu3D/fv30dwcDCuXr0KU1NTGBsb8x0aYUFlZSXy8vIa1MlRUlKi3V4sohkVQgjhwIMHD/DVV19BU1MTxcXFOHbsGNasWYO0tDQkJCTAysqK7xBJC5w6dQqBgYEoLy9vUMyPev2wixIVQgjhgI+PD7S1tREeHg4bGxscOXIEurq6WLJkCZ48eYKdO3fyHSJpgVGjRqFHjx7w9fVttKCfnp4eD1EpJrr1QwghHMjMzERiYiKUlJREY6qqqvD19cVXX33FY2SEDY8ePUJMTAy6devGdygKT5nvAAghRBEJhULRDpG3vXr1iuqqKABDQ0M8fvyY7zBaBUpUCCGEA4MHD0ZMTIxYslJaWoo1a9bA3t6ex8gIGxYvXowVK1bg9OnT+Pvvv1FUVCT2RdhDa1QIIYQDxcXF8PLywsuXL1FaWgpjY2MUFhZCS0sLu3btojUMcq5Xr16iPj9v395jGIYW07KMEhVCCOFIZWUlkpOTcevWLQiFQvTo0QPjxo2DpqYm36GRFrpy5coHH7ezs5NSJIqPEhVCCCGEyCza9UMIIYQ0UUVFBRISEpCZmdmg4BtAvZzYRIkKIYQQ0kShoaE4deoUBg0ahC5duvAdjkKjWz+EEEJIE/Xt2xdRUVEYNmwY36EoPNqeTAghhDSRsrIyTExM+A6jVaAZFUII4UBQUFCj40pKSlBTU0PXrl0xcuRIGBkZSTkywoalS5eiS5cuWLhwId+hKDxao0IIIRyoqanB0aNHoaOjA0tLSwDAzZs3UVxcDCsrK6Snp+OXX35BXFwc+vbty3O0pKm0tbURFxeH8+fPw8jICG3atBF7PDIykqfIFA8lKoQQwgF1dXU4OztjzZo1opNYTU0NgoOD0aFDB4SGhiIqKgrR0dHUoFAOZWVliTpgP3nyhOdoFBvd+iGEEA7Y2tpiz5496N69u9j43bt3MXnyZFy9ehV///03XF1dkZmZyVOUhMg+mlEhhBAOqKqqoqSkpEGi8vTpU1HJ9bq6Oqiq0q9hefSxfj6fffaZlCJRfPQ/hBBCODBixAiEhoZi2bJlsLKyAsMwyMrKwooVK+Do6IiKigps3rwZvXv35jtU0gwODg5iPX7eRb1+2EO3fgghhAOvX79GQEAA/vjjD7ET2qhRoxAWFobLly8jLCwMW7ZsgUAg4DFS0hzv9vqpq6vD/fv3kZCQgMDAQDg4OPAUmeKhRIUQQjj08OFD3Lp1CyoqKjAzM8Pnn38OAKiurm6wU4TIv7S0NGzcuBH79u3jOxSFQbd+CCGEQ+3atUPv3r1FvWDq1zbQGgbFZGhoiNzcXL7DUCiUqBBCCAcyMzMRFBSEgoICsXGGYaCkpERrGORcY4tpy8vLERMTI5o1I+ygRIUQQjgQHh6OLl26ICAgAB06dOA7HMKyxhbTMgwDDQ0NrFmzhqeoFBOtUSGEEA707t0bhw8fpn4wCurdxbQAoKamBlNTU7Rv356HiBQXzagQQggHdHV18erVK77DIBzZsWMH/Pz8KBGVAuqeTAghHPDx8UFERARu376NmpoavsMhLLt8+TLatm3LdxitAt36IYQQDjg7O6OoqAh1dXWNPk6LaeXbDz/8gKdPn2LOnDkwMDCgreYcokSFEEI4cOjQoQ8+PmHCBClFQrjg7OyMgoKC91anpUSUPZSoEEIIIU1Eiaj0UKJCCCEsCQoKwtKlS6GpqYmgoKD3Pk9JSQkRERFSjIwQ+UW7fgghhCWPHj2CUCgU/ZkQ0nI0o0IIIYQQmUUzKoQQwpHKykrk5eWhpqYGb18TKikpwdbWlsfICJEflKgQQggHTp06hcDAQJSXl+PdiWvq9UOI5OjWDyGEcGDUqFHo0aMHfH19G+31o6enx0NUhE1PnjzBvn37cO/ePSxduhRXr16FqakpjI2N+Q5NoVCiQgghHOjduzeOHj2Kbt268R0K4cCDBw/w1VdfQVNTE8XFxTh27BjWrFmDtLQ0JCQkwMrKiu8QFQaV0CeEEA4YGhri8ePHfIdBOLJy5Uo4OTkhNTUVampqAIB169bBwcEBUVFRPEenWChRIYQQDixevBgrVqzA6dOn8ffff6OoqEjsi8i3zMxMTJs2TawyraqqKnx9fZGTk8NjZIqHFtMSQggHfH19UVdXB19fX7GTGcMwtJhWAQiFQlHNnLe9evUKKioqPESkuChRIYQQDsTHx/MdAuHQ4MGDERMTgzVr1ojGSktLsWbNGtjb2/MYmeKhxbSEEEJIExUXF8PLywsvX75EaWkpjI2NUVhYCC0tLezatYt2dbGIEhVCCOFARUUFEhISkJmZ2aDgGwDs2LGDp8gIWyorK5GcnIxbt25BKBSiR48eGDduHDQ1NfkOTaHQrR9CCOFAaGgoTp06hUGDBqFLly58h0M40K5dO0ycOJHvMBQezagQQggH+vbti6ioKAwbNozvUAhLvLy8JH4uzZixh7YnE0IIB5SVlWFiYsJ3GIRFenp6oi8dHR1cuXIFL1++hImJCczMzFBTU4OMjAyqTMsymlEhhBAOLF26FF26dMHChQv5DoVwICgoCJ988gkCAwPFxqOjo5Gfn4+NGzfyFJnioTUqhBDCAW1tbcTFxeH8+fMwMjJCmzZtxB6PjIzkKTLChuPHj+PQoUMNxsePH4/x48dLPyAFRokKIYRwICsrS9Tv5cmTJzxHQ9jWsWNH5OTkwNDQUGz8zz//ROfOnfkJSkFRokIIIRzYuXMn3yEQDk2aNAmhoaHIz8+HhYUFhEIhMjMzkZiYiO+++47v8BQKrVEhhBAOfKyfz2effSalSAhXYmJisGvXLjx9+hQAoKurixkzZsDDw4PnyBQLJSqEEMIBgUAg1uPnXdTrR3H8888/UFJSgpaWFt+hKCS69UMIIRx4t45GXV0d7t+/j4SEhAY7RYh869SpE98hKDSaUSGEEClKS0vDxo0bsW/fPr5DIUQuUME3QgiRIkNDQ+Tm5vIdBiFyg279EEIIBxpbTFteXo6YmBh8/vnnPEREiHyiRIUQQjjg4ODQYDEtwzDQ0NDAmjVreIqKsIlhGKSlpSEvLw+qqqro3r07BgwYABUVFb5DUyi0RoUQQjhw5cqVBmNqamowNTVF+/bteYiIsKm0tBTe3t64efMmOnToAIZhUF5ejl69eiE+Ph4dO3bkO0SFQWtUCCGEAzt27EDnzp1hZ2cn+rK2tqYkRUGsWrUKr1+/xuHDh3H16lX8+eefOHz4MKqrq7F27Vq+w1MolKgQQggHLl++jLZt2/IdBuHImTNn8J///AcCgUA0JhAI8P333yM1NZXHyBQPJSqEEMKBCRMmICoqCnfu3EF1dTXf4RCW1dbWQkdHp8G4jo4OysvLeYhIcdFiWkII4cC5c+dQUFCAEydONPo4VaaVb7169cLu3buxdOlSsfHdu3fD3Nycp6gUEyUqhBDCAR8fH75DIBxauHAhvLy8kJWVBRsbGwBARkYGcnNzsXXrVp6jUyy064cQQghphuvXryMuLg537twBwzAwMzPDtGnTYGlpyXdoCoUSFUIIIYTILLr1QwghhEhg06ZNEj937ty5HEbSutCMCiGEECIBBwcHsb//73//g5qaGvT19aGqqoqCggLU1NTAwsICe/bs4SlKxUMzKoQQQogETp8+LfpzQkICzp49i7Vr16Jz584AgBcvXiAgIACmpqZ8haiQaEaFEEI48uTJE+zbtw/37t3D0qVLcfXqVZiamsLY2Jjv0EgLDRw4EHFxcWIF3wAgLy8Pnp6eSE9P5ykyxUMF3wghhAMPHjzAmDFjcOjQIfzxxx+oqKhASkoK3Nzc8Ndff/EdHmmhmpoaVFRUNBh/9uxZg2aUpGUoUSGEEA6sXLkSTk5OSE1NhZqaGgBg3bp1cHBwQFRUFM/RkZZycHBASEgI0tPT8erVK5SXl+PcuXMICQnB6NGj+Q5PodAaFUII4UBmZiYSExPFrq5VVVXh6+uLr776isfICBtCQkKwYMECTJkyRfRvzDAMRo4ciSVLlvAcnWKhRIUQQjggFAohFAobjL969QoqKio8RETYpKmpiW3btuHevXvIy8uDsrIyzM3Noa+vz3doCodu/RBCCAcGDx6MmJgYsWSltLQUa9asgb29PY+RETYZGxtj5MiRcHZ2hr6+Pqqrq5GRkcF3WAqFdv0QQggHiouL4eXlhZcvX6K0tBTGxsYoLCyElpYWdu3aBT09Pb5DJC1w48YNhISEIC8vr9GZM2o6yR5KVAghhCOVlZVITk7GrVu3IBQK0aNHD4wbNw6ampp8h0Za6JtvvkFVVRXc3NwQGRmJwMBAFBQUIDExEatXr8aoUaP4DlFh0BoVQgjhSLt27TBx4kS+wyAcyMnJwfbt22FpaYmDBw/C1NQUHh4e6Nq1K/bt20eJCosoUSGEEJZ4eXlJ/NwdO3ZwGAnhmlAoRJcuXQAABgYGyMvLg62tLRwdHRETE8NzdIqFFtMSQghL9PT0RF86Ojq4cuUKXr58CRMTE5iZmaGmpgYZGRlUmVYBGBgYiBbNGhsbIzs7GwDw8uVLVFdX8xmawqEZFUIIYUlkZKToz0FBQZg6dSoCAwPFnhMdHY38/Hxph0ZY5unpiaVLlwIARowYgXHjxkFdXR2ZmZno06cPv8EpGFpMSwghHLC2tsahQ4dgaGgoNv73339j/PjxyMrK4iUuwp7U1FRoaWnB1tYWSUlJiI2Nha6uLkJDQ2lXF4toRoUQQjjQsWNH5OTkNEhU/vzzT1G3XSLfnJycRH8eM2YMxowZg5qaGmRlZVGiwiJKVAghhAOTJk1CaGgo8vPzYWFhAaFQKCqr/9133/EdHmkhc3NzzJs3D76+vmLjZWVl8PLyojoqLKJbP4QQwpGYmBjs2rULT58+BQDo6upixowZ8PDw4Dky0lICgQDt2rWDo6MjIiIi0KZNGwBASUkJBg8ejNzcXJ4jVByUqBBCCMf++ecfKCkpQUtLi+9QCEvMzc2xc+dOBAcHQ1tbGz///DO0tbVRUlKCIUOG0IwKi2h7MiGEcKxTp06UpCgYhmFgZGSEvXv3QllZGe7u7rhz5w6Ulem0yjb6iRJCCCFNpKSkBOBNEpqQkAAbGxt8/fXXSE9P5zkyxUOJCiGEENJEb6+aaNOmDaKiojBt2jQsXryYx6gUE+36IYQQQppo7ty50NDQaDBmYGCAffv28RSVYqLFtIQQwhGGYZCWloa8vDyoqqqie/fuGDBgAFRUVPgOjRC5QTMqhBDCgdLSUnh7e+PmzZvo0KEDGIZBeXk5evXqhfj4eHTs2JHvEEkTOTg4iNamfIiSkhJSU1OlEFHrQIkKIYRwYNWqVXj9+jUOHz4MgUAAAMjNzcV3332HtWvXYvny5TxHSJpqwoQJEiUqhF1064cQQjhgb2+PDRs2wM7OTmw8PT0d/v7+uHjxIk+RESJfaEaFEEI4UFtbCx0dnQbjOjo6KC8v5yEiwrbc3Fzk5eVBKBQCeLMmqbq6GtnZ2QgPD+c5OsVBiQohhHCgV69e2L17N5YuXSo2vnv3bpibm/MUFWFLfHw8Vq1aBeDNmpT6mxNKSkqwtbXlMzSFQ4kKIYRwYOHChfDy8kJWVhZsbGwAABkZGcjNzcXWrVt5jo60VGJiImbMmIG5c+di2LBhOHToEEpLS7Fo0SI4OjryHZ5CoYJvhBDCAWtrayQmJkJPTw8XLlxAWloa9PX18euvv8Le3p7v8EgLPX78GBMnTkTbtm0hEAiQnZ0NMzMzBAYGYv/+/XyHp1BoRoUQQjhiaWmJ6OhovsMgHNDQ0EBdXR0AoFu3brh79y6cnJxgYmKCwsJCnqNTLJSoEEIISzZt2iTxc+fOncthJIRrNjY22LJlC0JDQ9GzZ0/s378fM2fOREZGBtq3b893eAqFticTQghLHBwcxP7+v//9D2pqatDX14eqqioKCgpQU1MDCwsL7Nmzh6coCRvy8vIwffp0TJ06FZMnT8aYMWPw4sULVFZWwtvbG/7+/nyHqDAoUSGEEA4kJCTg7NmzWLt2LTp37gwAePHiBQICAmBqakonMgXw+vVrVFRUQFtbGyUlJUhKSoKuri5GjhzJd2gKhRIVQgjhwMCBAxEXFyeqSlsvLy8Pnp6eSE9P5yky0lKVlZVQV1cXq1Kbn58PPT09qKur8xiZYqJdP4QQwoGamhpUVFQ0GH/27BmVYZdjycnJcHBwwM2bN8XGIyIiMHToUJw8eZKnyBQXJSqEEMIBBwcHhISEID09Ha9evUJ5eTnOnTuHkJAQjB49mu/wSDOkp6cjICAAw4YNw6effir2WHBwMBwcHLBw4UJkZmbyFKFiols/hBDCgfLycixYsAAXL14UzaAwDIORI0di9erVaNOmDc8Rkqby9vaGiYkJgoOD3/ucoKAglJSUIDY2VoqRKTZKVAghhEP37t1DXl4elJWVYW5uDn19fb5DIs00YMAAbN++Haampu99TnZ2NmbPnk1NJ1lEdVQIIYRDxsbGMDY2Fv29vmld3759eYyKNEdVVdVHF8tqaWmhsrJSShG1DpSoEEIIB27cuIGQkBCx7rpvu3XrFg9RkZYwMjLCtWvX0K1bt/c+JzMzE3p6elKMSvHRYlpCCOFAZGQkVFRU8P3330NNTQ0hISGYMmUKVFVVsW7dOr7DI80wduxYrF+/HsXFxY0+XlxcjPXr11MdFZbRjAohhHAgJycH27dvh6WlJQ4ePAhTU1N4eHiga9eu2LdvH0aNGsV3iKSJvv32W5w4cQIuLi5wc3ODtbU1OnbsiNLSUmRmZuLQoUMwNDSEt7c336EqFEpUCCGEA0KhEF26dAEAGBgYIC8vD7a2tnB0dERMTAzP0ZHmUFFRQUJCAqKjo3HgwAEkJCSIHtPR0cE333wDHx8fKvrGMkpUCCGEAwYGBsjIyICLiwuMjY2RnZ0NAHj58iWqq6t5jo40V5s2bRAQEAB/f388fPgQZWVl0NbWhr6+PhXy4wglKoQQwgFPT08sXboUADBixAiMGzcO6urqyMzMRJ8+ffgNjrSYqqoqjIyM+A6jVaA6KoQQwpHU1FRoaWnB1tYWSUlJiI2Nha6uLkJDQ2lnCCESokSFEEKkqKamBllZWejXrx/foRAiF2h7MiGEcMDc3Bw///xzg/GysjJ4eXnxEBEh8okSFUII4QDDMIiNjcXixYsbLJ6liWxCJEeJCiGEcEBJSQmxsbG4fv06vLy88Pz5c7HHCCGSoUSFEEI4wDAMjIyMsHfvXigrK8Pd3R137tyBsjL92iWkKeh/DCGEcKB+1qRTp05ISEiAjY0Nvv76a6Snp/McGSHyhRIVQgjhwNvrUNq0aYOoqChMmzYNixcv5jEqQuQPFXwjhBAOzJ07FxoaGg3GDAwMsG/fPp6iIkT+UB0VQgghhMgsmlEhhBCWODg4SLSjR0lJCampqVKIiBD5R4kKIYSwZMKECbT1mBCW0a0fQgghhMgsmlEhhBCO5ObmIi8vD0KhEMCbnUDV1dXIzs5GeHg4z9ERIh8oUSGEEA7Ex8dj1apVAN6sSamfvFZSUoKtrS2foREiV6iOCiGEcCAxMREzZszAX3/9hU6dOuHcuXP4/fffYWJiAkdHR77DI0RuUKJCCCEcePz4MSZOnIi2bdtCIBAgOzsbZmZmCAwMxP79+/kOjxC5QYkKIYRwQENDA3V1dQCAbt264e7duwAAExMTFBYW8hkaIXKFEhVCCOGAjY0NtmzZgsrKSvTs2ROnT5+GUChERkYG2rdvz3d4hMgNSlQIIYQD/v7+SEtLQ2JiIkaPHo2SkhLY2dlhyZIlcHV15Ts8QuQG1VEhhBCOvH79GhUVFdDW1kZJSQmSkpKgq6uLkSNH8h0aIXKDEhVCCGFZZWUl1NXVxarU5ufnQ09PD+rq6jxGRoj8oVs/hBDCouTkZDg4OODmzZti4xERERg6dChOnjzJU2SEyCdKVAghhCXp6ekICAjAsGHD8Omnn4o9FhwcDAcHByxcuBCZmZk8RUiI/KFbP4QQwhJvb2+YmJggODj4vc8JCgpCSUkJYmNjpRgZIfKLZlQIIYQlOTk5cHd3/+BzPDw8kJOTI6WICJF/lKgQQghLqqqqPrpYVktLC5WVlVKKiBD5R4kKIYSwxMjICNeuXfvgczIzM6GnpyeliAiRf5SoEEIIS8aOHYv169ejuLi40ceLi4uxfv16qqNCSBPQYlpCCGFJXV0dPD09cefOHbi5ucHa2hodO3ZEaWkpMjMzcejQIRgaGmLXrl1UT4UQCVGiQgghLKqurkZ0dDQOHDiAsrIy0biOjg7c3Nzg4+NDSQohTUCJCiGEcKC2thYPHz5EWVkZtLW1oa+vL1aplhAiGUpUCCGEECKzaDEtIYQQQmQWJSqEEEIIkVmUqBBCCCFEZlGiQgiRGloSRwhpKkpUCCGce/HiBQICAvDnn3/yHQohRM5QokII4dytW7fw+++/QygU8h0KIUTOUKJCCCGEEJlFiQoh5KMYhkFCQgJGjRoFS0tLDB8+HNu2bROtOfntt9/g6uqKPn36wNLSEuPGjcOxY8cAAOnp6fDy8gIAeHl5wdPTU3Tc1NRUuLq6onfv3hg0aBDCw8NRUVEh9tpnz56Fq6srLC0tMWLECCQnJ2P48OHYuHGj6DlPnjxBUFAQhg4dCktLS7i7u+PUqVNixzEzM8OmTZtEx9q0aRN69+6NdevWiT2vsrISffv2xebNm9n7ARJCmk2V7wAIIbJv9erV2L59O6ZNm4ZBgwYhOzsbUVFRqK2thaamJsLDwzFv3jz07dsXZWVliI2NxeLFi2FtbY1evXohNDQUYWFhCA0NRf/+/QEASUlJWLx4McaMGYOFCxeisLAQP/74I+7evYv4+HgoKSnh8uXL8PX1xbBhw7BgwQI8ePAA//nPf1BVVSWKraSkBO7u7mjbti38/PzQqVMnHDx4EHPmzMHq1asxduxY0XN/+eUXLFq0CEZGRtDT00N+fj6SkpLg5+cnqhp78uRJVFRUYPz48VL9GRNCGkeJCiHkg168eIEdO3bg22+/xXfffQcAGDhwIJ4+fYqrV6+ie/fu8Pb2hq+vr+h79PT04OrqioyMDIwePRrdu3cHAHTv3h3du3cHwzCIiorCkCFDEBUVJfo+Q0NDTJ06FefOncMXX3yBjRs3okePHti0aZMokejcuTP8/f1F3xMfH4/nz5/jxIkT0NPTAwAMHToUU6dOxerVq+Hi4gJl5TeTx7a2tpg2bZroe93c3JCSkoL09HTY29sDAA4fPoyBAwdCV1eXix8nIaSJ6NYPIeSDsrKyUFtbC2dnZ7Hx77//Hlu3bkVgYCAWL16MFy9eICsrC7///jsSExMBvGnQ15h79+7h8ePHcHBwQG1treirX79+0NTUxMWLF1FdXY1r167B2dlZrEfOyJEjoar6f9dYV65cgbW1tShJqTd27Fg8ffoU9+7dE42Zm5uLPWfgwIH47LPP8PvvvwMAHj9+jEuXLmHChAnN+EkRQrhAiQoh5INKS0sBANra2o0+XlBQgKlTp6Jfv3749ttvsW3bNtTW1gJ4f92U+mMuX74cvXr1EvsqLy/HkydPUFpairq6OnTu3Fnse1VUVKClpSX6e1lZGbp06dLgNXR0dAC8mRGqp6GhIfYcZWVluLq64sSJE3j9+jV+//13aGpqYvjw4e//gRBCpIpu/RBCPqhjx44AgOfPn8PY2Fg0XlRUhAcPHiAkJATt2rXD/v37YW5uDlVVVdy9e1c0S/GhYwYEBMDOzq7B45988gk6d+4MNTU1lJSUiD0mFApFiU79c58+fdrgGPVjnTp1+uD7c3V1xU8//YTz58/j2LFj+PLLL9G2bdsPfg8hRHpoRoUQ8kGWlpZQU1PDmTNnxMbj4uIwdepUPHz4EO7u7ujdu7folsz58+cBQFQ3RUVFRex7jY2N0blzZzx69Ai9e/cWfX366adYu3YtcnJyoKKiAhsbmwa7d06fPi2asQGAfv364dq1aygsLBR73pEjR9ClSxcYGBh88P3p6elhwIAB2LFjB27dugVXV9cm/HQIIVyjGRVCyAdpa2vDy8sLCQkJaNOmDezs7PDXX39h9+7dCA4Oxvbt25GYmIiuXbuiY8eOSEtLw44dOwC82eoLAB06dADwZqvxJ598AoFAAD8/P4SGhkJFRQXDhg3Dixcv8PPPP6O4uBi9evUCAMyfPx+enp6YP38+3N3dUVRUhPXr1wOAaN3KtGnTcOTIEUydOhVz586FlpYWDh8+jMuXLyMiIkK0kPZD3N3d4e/vDxMTE1hZWbH+MySENJ8SQ803CCEfwTAM4uLisGfPHjx+/Biff/45pkyZgq+//hq5ubn44YcfcOPGDbRp0wbdu3fH7NmzERERAVNTU6xfvx5CoRDfffcdTp48iW7duiE5ORkAkJKSgq1bt+LOnTvQ0NCAjY0NFi5cCDMzM9Frp6amYv369bh//z709PSwYMEC+Pn5ITAwULSD5+HDh1i7di0uXryImpoaCAQCzJgxA46OjqLjmJmZYe7cuZg3b16D91deXg5bW1ssXrwY//73vzn+aRJCmoISFUKIzDp16hS6du0qmmEBgDt37sDFxQU///yzWCLSEikpKQgICMC5c+caLN4lhPCLbv0QQmTWhQsXkJKSgsWLF8PIyAjFxcXYvHkzjI2NMXjw4BYfPzU1FdnZ2dizZw9cXV0pSSFEBlGiQgiRWUuWLIG6ujo2b96MJ0+eQEtLC0OGDMGiRYtY2Znz6NEjbN++HX379hUVsyOEyBa69UMIIYQQmUXbkwkhhBAisyhRIYQQQojMokSFEEIIITKLEhVCCCGEyCxKVAghhBAisyhRIYQQQojMokSFEEIIITKLEhVCCCGEyCxKVAghhBAis/4/+rtx5zq6I3AAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAQYCAYAAAAgUvIvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gU1/s28BsEFFtsiZpExQqi0hQVCwqWxC6aWMGKJXaMBUusWMGusYvYNSpGowY1sURjr1gRlWIBCxZApJ73D172x8ICs7sDTvjen+viStzdeXjOzLD77Jkz5xgIIQSIiIiIFMjwcydARERElBUWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIoXjnIz/PTxmRPJhoUKkBzc3N5ibm6t+LCwsYGtriy5dumDLli1ISkpSe72zszM8PT0lx//rr78wceLEHF/n6ekJZ2dnnX+Prp4+fQpzc3Ps378/03MJCQlo3rw5XFxcEBcXl2s5uLm5wc3NLdfiayMiIgKDBw/Gs2fPPncqRPmG0edOgOi/ztLSEtOnTwcAJCcn4/379zhz5gzmzZuHK1euYOnSpTA0TP1OsHLlShQtWlRy7M2bN0t63bBhw9CnTx+tc9fXV199hd27d6NixYqZnvvtt9+QlJSE1atXw9TUNM9z+xz+/fdfnD59+nOnQZSvsFAh0lPRokVhY2Oj9pizszOqVKmCOXPm4I8//kDHjh0BpBY1uUFToZAXTExMMrU9TYsWLdCmTRuUKlUqb5MionyFl36IcomrqyvKli2LXbt2qR7LeEkmrYixsrJCw4YNMW7cOERGRgJIvaRx6dIlXLp0Cebm5rh48SIuXrwIc3Nz7Nq1C05OTrCzs8O5c+cyXfoBgMTERHh5ecHe3h716tXDxIkTERUVpXpe0yWTtPgXL15UPfb48WOMGDEC9evXh729PYYMGYJHjx4B0HzpJyQkBKNGjULXrl3h7OwMNzc3XL16VfV82jZHjx7FqFGjYGtri/r162Pq1Kn4+PFjtvv0+fPnGDFiBOrWrYvGjRvD19dX4+t+++03tGvXDrVr10bz5s2xYsUKJCcnZxs7ISEBS5cuRYsWLWBlZYX27dvD399f9XxycjLWrVuH9u3bw8rKCjY2NujRowcuXLgAANi/fz8mTZoEILVIS3+cpeTj7++Ptm3bok6dOujYsSPOnz8PS0tLjfu2cePGsLGxyXLf+vr64vvvv4e1tTW2b98Oc3Nz7N69W+33vXjxAjVr1sTBgwez3S9EnxsLFaJcYmhoCAcHB9y6dSvTWBUAuHr1KiZMmIDWrVtj/fr1mDRpEi5cuICff/4ZADB9+nRYWlrC0tISu3fvRq1atVTbrly5EhMnTsS0adNga2ur8fcfPXoUd+7cwfz58zFx4kScOnUKgwYNyvEDO73IyEh0794dISEhmDFjBry9vfH69Wv07dsX7969y/T64OBgdOnSBU+fPsXUqVPh4+MDAwMD9O3bF5cuXVJ77fTp0/HNN9/g119/xcCBA7F3716sXr06y1w+fvwIV1dXBAUFYfbs2fjll1/w22+/4fr162qvW7t2LX755Rc4ODhgzZo16N27N9avX49ffvkl27aOGzcOvr6++PHHH7F27Vo0adIEnp6e+OOPPwAAPj4++PXXX9G9e3ds2LABs2fPxrt37zB69GjExcWhefPm+OmnnwCkHp9hw4ZJzufAgQPw9PSEnZ0dfv31V3z33XcYNmyY2rHSZt+uWLECgwYNwsKFC9GiRQtYW1vj999/V3vNgQMHULhwYbRu3Trb/UL0ufHSD1EuKlOmDBITE/Hu3TuUKVNG7bmrV6+iUKFCGDx4MExMTAAAJUqUQGBgIIQQqFatmmo8S8bLK7169cL333+f7e8uWbIkNm7ciMKFC6v+PXz4cJw5cwZOTk6S8t+8eTMSEhLg6+uLL7/8EgBgYWGBnj174ubNm6hatara61euXAkTExNs2bJFlXvz5s3Rvn17LFy4EHv37lW9tlmzZqqBwg4ODjh37hxOnTqlKtQy8vf3x/Pnz/HHH3+gWrVqAABra2u0atVK9Zro6GhVMTF16lQAQJMmTVCiRAlMnToV/fv3R/Xq1TPFDgoKQkBAACZPnoy+ffuqcnr27BkuXryI9u3b4+XLl/Dw8FDrhSpYsCBGjhyJBw8ewMbGRnUJrmbNmvj2228l57Ns2TI4OTnBy8sLANC0aVMYGxtj0aJFOu3bNm3aoGvXrqp/d+3aFdOnT0d4eDgqVKgAILVQadeuHQoVKqRxfxMpBXtUiHJR2m2qBgYGmZ6zt7dHXFwc2rdvj0WLFuHKlSto0qQJRowYofH16dWsWTPH392sWTNVkQKkXnYyMjLC5cuXJed/9epV2NjYqIoUAChXrhxOnjyJZs2aZXr9pUuX4OTkpDZg2MjICO3atcPt27cRGxurejxj8VWuXLlsL/1cuXIFFStWVBUpAFC+fHm1ONevX8enT5/g7OyMpKQk1U/aZbFz585l2U4AmXoXVqxYgdmzZwMAFi1ahL59+yIqKgpXrlzBvn37VJdNEhISNMaVkk9oaCieP3+eqfBs166d2r+12bcZz4+0giStV+XatWsICQmBi4uLxryJlIQ9KkS5KDIyEoUKFUKJEiUyPWdra4t169Zh8+bN8PX1xbp161CmTBkMHTo0x9tt0xcgWUlfXACpl6JKliyJDx8+SM7/3bt3+PbbbyW//v3795l6joDUniUhBGJiYlSPZbwTyNDQMNv5R96/f4+SJUtmevzLL7/E69evVfkCwODBgzXGePnypcbH07YrXbp0lr8/MDAQM2fORGBgIExNTVGtWjV8/fXXALKeN0VKPmnjhjL+7oz7UZt9m/H8KFq0KL7//nscPHgQI0aMwIEDB1C5cuUsLxsSKQkLFaJckpSUhIsXL8LOzg4FChTQ+JqmTZuiadOmiIuLw4ULF7BlyxZ4eXnB2toaVlZWev3+jGNIkpOT8fbtW7UPxIzjVTL2aBQrVkxtAG6a8+fP49tvv83U8/PFF1+oiob0Xr16BSD18lNWxUJOSpYsidDQ0EyPp29n8eLFAaSOJzEzM8v0Wk0f9Om3i4qKQrly5VSPP3r0CO/evYO5uTnc3d1hbm6Ow4cPo0qVKjA0NMTp06cREBCQZc7a5PPmzRu15zL+W99927VrV/j7++PWrVsICAjAwIEDs3wtkZLw0g9RLtm9ezdevXqFnj17anx+wYIF6Nq1K4QQMDU1hZOTk2rMxvPnzwFANf+KLs6dO6c2iDcgIABJSUlo0KABgNRv2REREWrbpL+DBADq1auHmzdvqhUrb968gbu7u8b5Quzt7XHy5Em1b/fJyck4fPgw6tSpoxqLo4uGDRvi6dOnCAwMVD0WFRWFGzduqP5tbW0NY2NjREZGok6dOqofIyMjLF68GE+fPtUYu27dugCAv//+W+1xHx8fzJkzB48fP8a7d+/Qp08fVKtWTXVczpw5AwBISUkBkPl4ScmnXLlyqFixIo4fP6627bFjx9T+re++tbe3h5mZGby9vREdHY1OnTpl+3oipWCPCpGeYmJiVB+WKSkpePv2Lc6ePYvdu3ejY8eOWd5V0bBhQ/j6+sLT0xMdO3ZEYmIiNmzYgBIlSqBhw4YAUr+RX79+XXWrqjZevXqFkSNHws3NDSEhIVi8eDEaN24MBwcHAICTkxP+/vtvzJs3D87Ozrhy5QoOHDigFqNfv344cOAA3N3dMWTIEBgbG2P16tUoV64cOnTogOjoaLXXjxgxAmfOnEGfPn0wePBgGBsbY9u2bQgPD8eGDRu0yj+jTp06YcuWLRgxYgQ8PDxQtGhRrF69WlUkAKm9Cu7u7li2bBliYmLQoEEDREZGYtmyZTAwMICFhYXG2BYWFvj+++/h7e2NT58+oWbNmjhz5gxOnjyJlStXonLlyihatCjWrFkDIyMjGBkZISAgQDWANW3m3bQelOPHj8PR0RFVq1bNMR8DAwOMGjUK48aNw/Tp09GqVSvcv38fq1atAvB/xY8c+7Zr165YtGgRHB0dUbZsWd0OBFEeY6FCpKe7d++ie/fuAFIHzRYpUgQ1atTAjBkz8OOPP2a5XbNmzeDj44NNmzapBtDWrVsXW7ZsUY1p6d27N27fvo1BgwZh3rx5+OqrryTn1atXL0RHR2P48OEwMTFBhw4dMH78eNXlmq5duyIsLAz+/v7YtWsX7O3tsXz5crUeoPLly2PHjh3w9vaGp6cnTExM0KBBAyxZsgRffPFFpkKlevXq2LFjBxYvXoxJkybBwMAAVlZW2LJlC+rVqyc5d01MTEzg5+eHuXPnYs6cOTAwMEC3bt1QoUIFtcskY8aMwZdffokdO3Zgw4YN+OKLL+Dg4ICxY8eiWLFiWcb39vbGypUr4efnh7dv36Jq1apYvnw5WrZsCQD49ddfsXDhQowePRpFihRBzZo1sW3bNgwaNAhXrlyBs7MzGjRogEaNGmHRokU4f/481q1bJymfDh064OPHj9i4cSP27duH6tWrY8qUKZgyZYpqvIkc+7ZZs2ZYtGgRunTpouthIMpzBoKrZxERfVZ//PEHLC0tUaVKFdVjp06dwpAhQ/D7779n2ROkrbTB26dOndLrMhxRXmKPChHRZ3bw4EEsWbIEY8aMQfny5REaGorly5ejfv36shQp/v7+CAoKwo4dOzBs2DAWKfSfwh4VIqLP7O3bt1i0aBHOnDmDqKgolClTBt999x1GjRqFIkWK6B1/3rx52LVrF1q1aoV58+bB2NhYhqyJ8gYLFSIiIlIs3p5MREREisVChYiIiBSLhQoREREp1n/+rp/r169DCMHBYURERP8hiYmJMDAwyHHNqf98j4oQItuFzIQQSEhIyPY1Un6HEmIoKRfGYIz/Si6MkX9jKCkXxtA+Rk6f32n+8z0qaT0pderU0fj8x48fce/ePVSrVk3SirNKjqGkXBiDMf4ruTBG/o2hpFwYQ/sY6dftys5/vkeFiIiI8i8WKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBQr3xcqBgYGMDU1hYGBwedOhYiIiLRk9LkTyA0pKQKGhqmFiampKSwtLbN9DRERESlTvixUDA0N4LP9Kp5GRmt8/tuyxTCud908zoqIiIi0lS8LFQB4GhmNR8/ef+40iIiISA/5fowKERER/XexUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVCRQIDAwOYmprCwMDgc6dCRET0P8XocyegVCkpAoaGqYWJqakpLC0ts30NERERyY+FShYMDQ3gs/0qnkZGa3z+27LFMK533TzOioiI6H8LC5VsPI2MxqNn7z93GkRERP+zOEaFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYmldqLx79w7Tpk2Do6Mj7Ozs0LNnT1y5ckX1/Pnz59GlSxdYW1vj+++/x+HDh9W2j4+Px8yZM+Hg4ABbW1v8/PPPiIqK0r8lRERElO9oXaiMHTsW169fx+LFi7Fv3z7UrFkTAwcOxOPHj/Ho0SMMGTIETZs2xf79+/Hjjz9iwoQJOH/+vGr7GTNm4OzZs1ixYgX8/Pzw+PFjjBo1StZGERERUf6g1YRvoaGhOHfuHHbs2IG6dVNnZf3ll1/wzz//4NChQ3jz5g3Mzc3h4eEBAKhatSru3r2LDRs2wMHBAZGRkThw4ADWrFmDevXqAQAWL16M77//HtevX4etra3MzSMiIqL/Mq16VEqWLIl169ahTp06qscMDAxgYGCADx8+4MqVK3BwcFDbpmHDhrh69SqEELh69arqsTSVK1dG2bJlcfnyZX3aQURERPmQVoVK8eLF0axZM5iYmKgeCwgIQGhoKJo2bYqIiAiUK1dObZuvvvoKcXFxePv2LSIjI1GyZEkULFgw02siIiL0aAYRERHlR3qt9XPt2jVMmjQJrVu3RvPmzfHp0ye1IgaA6t8JCQmIi4vL9DwAFCxYEPHx8TrnIYTAx48fAaT28JiamkraLi4uDkKITI/LEUPT69L/V1dyxGEMxsjtGErKhTHybwwl5cIY2scQQsDAwCDHWDoXKidOnMC4ceNgZ2cHHx8fAKkFR0JCgtrr0v5tamqKQoUKZXoeSL0TSGphoEliYiLu3bun+j2WlpaStnvy5InGnShHjKyEhIRIfm1ux2EMxsjtGHLFYQzGyIs4jJH3MTR1XmSkU6Gybds2zJkzB99//z0WLFig+kXly5fHy5cv1V778uVLFC5cGMWKFUO5cuXw7t07JCQkqCX38uVLlC1bVpdUAADGxsaoVq0aAEiqztJUrlw5yx4VfWNkFBcXh5CQEJiZmelVlMkRhzEYI7djKCkXxsi/MZSUC2NoHyM4OFhSLK0LlR07dmD27Nlwc3PDlClT1D7U69Wrh0uXLqm9/sKFC7Czs4OhoSHq1q2LlJQUXL16VTXo9smTJ4iMjIS9vb22qagYGBigcOHCWm+nzx+HrjFMTU11yjU34jAGY+R2DCXlwhj5N4aScmEM6TGkdgpoNZj2yZMnmDt3Llq1aoUhQ4bg9evXePXqFV69eoXo6Gi4ubnh1q1b8PHxwaNHj7Bp0yb8+eefcHd3BwCULVsW7dq1w9SpU3Hx4kXcunULY8eORf369WFjY6NNKkRERPQ/QKselYCAACQmJuL48eM4fvy42nMuLi6YP38+fv31V3h7e8PPzw/ffvstvL291W5Znj17NubOnYsRI0YAABwdHTF16lQZmkJERET5jVaFytChQzF06NBsX+Po6AhHR8csny9cuDC8vLzg5eWlza8mIiKi/0FclJCIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWCxUiIiISLFYqBAREZFisVAhIiIixdKrUFm7di3c3NzUHps6dSrMzc3VfpydnVXPp6SkYPny5WjatClsbGwwaNAghIeH65MGERER5VM6Fyrbt2/H0qVLMz3+4MEDDB06FGfPnlX97N27V/X8r7/+ih07dmD27NnYtWsXUlJS4O7ujoSEBF1TISIionxK60IlMjISQ4cOhY+PD8zMzNSeE0IgODgYtWvXxpdffqn6KVWqFAAgISEBmzZtwqhRo9C8eXNYWFhgyZIliIiIwLFjx2RpEBEREeUfWhcqd+7cgbGxMQ4ePAhra2u158LCwvDx40dUqVJF47b3799HbGwsHBwcVI8VL14clpaWuHz5srapEBERUT5npO0Gzs7OamNO0gsKCgIAbN26FWfOnIGhoSEcHR3h4eGBYsWKISIiAgBQvnx5te2++uor1XO6EELg48ePAAADAwOYmppK2i4uLg5CiEyPyxFD0+vS/1dXcsRhDMbI7RhKyoUx8m8MJeXCGNrHEELAwMAgx1haFyrZCQoKgqGhIb766iusWbMGYWFhWLhwIR4+fAg/Pz9VwiYmJmrbFSxYEO/fv9f59yYmJuLevXsAAFNTU1haWkra7smTJxp3ohwxshISEiL5tbkdhzEYI7djyBWHMRgjL+IwRt7HyFgPaCJrofLTTz+hV69eKFmyJACgRo0a+PLLL9GtWzcEBgaiUKFCAFLHqqT9PwDEx8dL7sHQxNjYGNWqVQMASdVZmsqVK2fZo6JvjIzi4uIQEhICMzMzvdoqRxzGYIzcjqGkXBgj/8ZQUi6MoX2M4OBgSbFkLVQMDQ1VRUqa6tWrAwAiIiJUl3xevnyJihUrql7z8uVLmJub6/x7DQwMULhwYa230+ePQ9cYpqamOuWaG3EYgzFyO4aScmGM/BtDSbkwhvQYUjsFZJ3wbcKECejXr5/aY4GBgQCAatWqwcLCAkWLFsXFixdVz3/48AF3796Fvb29nKkQERFRPiBrofLdd9/h/PnzWLlyJcLCwnD69GlMnjwZ7du3R9WqVWFiYgJXV1f4+Pjgr7/+wv379+Hh4YFy5cqhdevWcqZCRERE+YCsl35atGiBpUuXYt26dVi/fj2KFSuGDh06YMyYMarXjBo1CklJSZg6dSo+ffoEe3t7bNy4EcbGxnKmQkRERPmAXoXK/PnzMz3Wpk0btGnTJsttChQogPHjx2P8+PH6/GoiIiL6H8BFCYmIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFChERESmWXoXK2rVr4ebmpvbYvXv34OrqChsbGzg7O2PLli1qz6ekpGD58uVo2rQpbGxsMGjQIISHh+uTBhEREeVTOhcq27dvx9KlS9Uee/v2Lfr374+KFSti3759GD58OHx8fLBv3z7Va3799Vfs2LEDs2fPxq5du5CSkgJ3d3ckJCTo3AgiIiLKn4y03SAyMhLTp0/HxYsXYWZmpvbcnj17YGxsjFmzZsHIyAhVq1ZFaGgo1q1bh65duyIhIQGbNm3CuHHj0Lx5cwDAkiVL0LRpUxw7dgzt27eXo01ERESUT2jdo3Lnzh0YGxvj4MGDsLa2VnvuypUrqF+/PoyM/q/+adiwIUJCQvD69Wvcv38fsbGxcHBwUD1fvHhxWFpa4vLly3o0g4iIiPIjrXtUnJ2d4ezsrPG5iIgI1KhRQ+2xr776CgDw4sULREREAADKly+f6TVpzxERERGl0bpQyc6nT59gYmKi9ljBggUBAPHx8YiLiwMAja95//69zr9XCIGPHz8CAAwMDGBqaippu7i4OAghMj0uRwxNr0v/X13JEYcxGCO3YygpF8bIvzGUlAtjaB9DCAEDA4McY8laqBQqVCjToNj4+HgAQOHChVGoUCEAQEJCgur/014jtTDQJDExEffu3QMAmJqawtLSUtJ2T5480bgT5YiRlZCQEMmvze04jMEYuR1DrjiMwRh5EYcx8j5Gxo4LTWQtVMqVK4eXL1+qPZb277JlyyIpKUn1WMWKFdVeY25urvPvNTY2RrVq1QBAUnWWpnLlyln2qOgbI6O4uDiEhITAzMxMr6JMjjiMwRi5HUNJuTBG/o2hpFwYQ/sYwcHBkmLJWqjY29tj165dSE5ORoECBQAAFy5cQOXKlVG6dGkUK1YMRYsWxcWLF1WFyocPH3D37l24urrq/HsNDAxQuHBhrbfT549D1ximpqY65ZobcRiDMXI7hpJyYYz8G0NJuTCG9BhSOwVknZm2a9euiImJwZQpUxAcHIz9+/dj8+bNGDJkCIDULh5XV1f4+Pjgr7/+wv379+Hh4YFy5cqhdevWcqZCRERE+YCsPSqlS5fGhg0bMGfOHLi4uODLL7/EhAkT4OLionrNqFGjkJSUhKlTp+LTp0+wt7fHxo0bYWxsLGcqRERElA/oVajMnz8/02NWVlbYvXt3ltsUKFAA48ePx/jx4/X51URERPQ/gIsSEhERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVCJY8YGBjA1NQUBgYGnzsVIiKi/wyjz51AfpaSImBomFqYmJqawtLSMtvXEBERkToWKrnI0NAAPtuv4mlktMbnvy1bDON6183jrIiIiP47WKjksqeR0Xj07P3nToOIiOg/iWNUiIiISLFYqBAREZFisVAhIiIixWKhQkRERIrFQoWIiIgUi4UKERERKRYLFSIiIlIsFipERESkWLIXKpGRkTA3N8/0s3//fgDAvXv34OrqChsbGzg7O2PLli1yp0BERET5hOwz096/fx8FCxbEiRMn1BbgK1asGN6+fYv+/fvD2dkZM2fOxI0bNzBz5kwUKVIEXbt2lTsVIiIi+o+TvVAJCgqCmZkZvvrqq0zP+fn5wdjYGLNmzYKRkRGqVq2K0NBQrFu3joUKERERZSL7pZ8HDx6gatWqGp+7cuUK6tevDyOj/6uPGjZsiJCQELx+/VruVIiIiOg/Lld6VEqWLInevXvjyZMnqFSpEn766Sc4OjoiIiICNWrUUHt9Ws/LixcvUKZMGZ1+pxACHz9+BAAYGBjA1NRU0nZxcXEQQmR6XCkxsnpt+v/qgjEYI7djKCkXxsi/MZSUC2NoH0MIoTZEJCuyFipJSUl4/PgxqlWrBk9PTxQtWhSHDx/G4MGD4evri0+fPsHExERtm4IFCwIA4uPjdf69iYmJuHfvHgDA1NQUlpaWkrZ78uSJxp2olBjZCQkJ0er1jMEYnyOGXHEYgzHyIg5j5H2MjDWBJrIWKkZGRrh48SIKFCiAQoUKAQBq166Nhw8fYuPGjShUqBASEhLUtkkrUAoXLqzz7zU2Nka1atUAQFJ1lqZy5cpZ9oYoIYYmcXFxCAkJgZmZmeQeG8ZgjLyOoaRcGCP/xlBSLoyhfYzg4GBJsWS/9FOkSJFMj1WvXh1nz55FuXLl8PLlS7Xn0v5dtmxZnX+ngYGBToWOPn8cnzuGqampXsUdYzBGXsRQUi6MkX9jKCkXxpAeQ+oXelkH0z58+BB2dna4ePGi2uO3b99GtWrVYG9vj6tXryI5OVn13IULF1C5cmWULl1azlSIiIgoH5C1UKlatSqqVKmCWbNm4cqVK3j06BHmzZuHGzdu4KeffkLXrl0RExODKVOmIDg4GPv378fmzZsxZMgQOdMgIiKifELWSz+GhoZYs2YNFi1ahDFjxuDDhw+wtLSEr6+v6m6fDRs2YM6cOXBxccGXX36JCRMmwMXFRc40iIiIKJ+QfYxKmTJlMG/evCyft7Kywu7du+X+tURERJQPcVFCIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQoREREpFgsVIiIiUiwWKkRERKRYLFSIiIhIsVioEBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhcp/jIGBAUxNTWFgYPC5UyEiIsp1Rp87AcpeSoqAoeH/FSWmpqawtLTM9jVERET5BQsVhTM0NIDP9qt4Ghmt8flvyxbDuN518zgrIiKivMFC5T/gaWQ0Hj17/7nTICIiynMco0JERESKxUKFiIiIFIuFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISIiIsVioUJERESKxUKFiIiIFIuFyv8grsBMRET/FVzr538AV2AmIqL/KhYq/wO4AjMREf1XsVD5H8EVmImI6L+IY1RIJxznQkREeYE9KiQJx7kQEdHnwEKFJMmNcS5y9MqwZ4eIKH9joUKSyTHOJX2vi669MnLEICKi/wYWKpSnsuuZkdorI0cMIiL6b2ChQnlOjp4Z3sVERPS/gXf9EBERkWKxUCEiIiLFYqFCREREisVChYiIiBSLhQr9z+N8LkREysW7fuh/EudzISL6b2ChQv+TlDifC3t2iIgyY6FC/7OUMJ9LTr0yGV+TWzHSY7FDREryWQqVlJQUrFy5Er/99huio6Nhb2+PadOmoUKFCp8jHaLPRo41lOSIIXexQ0Qkl89SqPz666/YsWMH5s+fj3LlysHb2xvu7u44dOgQTExMPkdKRJ+NEnp28vOik0qJQUS6yfNCJSEhAZs2bcK4cePQvHlzAMCSJUvQtGlTHDt2DO3bt8/rlIgI8l7GAnQbYCxHjIyvUcpgaaUUTPkphpJyYQz5Y6TJ80Ll/v37iI2NhYODg+qx4sWLw9LSEpcvX2ahQvQfpZTLWDnFycsYSimY8iKGlDhyx9C1PUqJkfE1jKGZgRBCaL2VHo4dO4aRI0fi5s2bKFSokOrx0aNH49OnT1i7dq1W8a5duwYhBIyNjVWPGRgY4H1MApKSUzRuY1TAEF8UNUF2TWcM+WPkFIcxMvsvHV+lxMgpTl7HiI1LRHJK5tcVMDRAEVPjfBFDahzG0C5Ofo+RmJgIAwMD2NnZZRs3z3tU4uLiACDTWJSCBQvi/Xvtu53TupUydi99UTTnsS45dUkxhvwxpMRhDO3jMIb2cfIqRhFT42yfz08xpMRhDO3j5NcYBgYGkmLmeaGS1ouSkJCg1qMSHx8PU1NTrePZ2trKlhsREREpS55PoV++fHkAwMuXL9Uef/nyJcqWLZvX6RAREZGC5XmhYmFhgaJFi+LixYuqxz58+IC7d+/C3t4+r9MhIiIiBcvzSz8mJiZwdXWFj48PSpUqhW+++Qbe3t4oV64cWrdundfpEBERkYJ9lgnfRo0ahaSkJEydOhWfPn2Cvb09Nm7cqHbnDhEREVGe355MREREJFWej1EhIiIikoqFChERESkWCxUiIiJSLBYqREREpFgsVIiIiEixWKgQERGRYrFQISJZxMbG5psYpFw8vvJT+j5lofIfcfnyZezatQsxMTEIDg5GUlKS5G03btyIyMjIz56Hl5cXwsLC9Pr9crRlx44diI6O1itGmufPn+Off/7Bp0+f8ObNmxxfn5KSIilueHi4vqnluc6dO+POnTv5IgYAfPr0CQcOHMCiRYvw7t07XLp0CW/fvpW8vRznu655fPz4UVLs69ev651fXpPr+CrBiBEj8OjRo8+dhiz71NvbG48fP5YpI3WfZWba3OTs7Kxx2WgDAwMYGxujXLly6NSpEzp37pxlDAsLiyyXnk4fY9iwYZKWqNZHTEwM3N3dcePGDRgYGKBx48bw8fFBeHg4Nm3aJGkhx9WrV6Nly5afPQ9/f3/069dPrzzkaMvatWuxYMECODs7o2vXrmjcuLHWxzEhIQETJ07E0aNHYWhoiICAACxYsACxsbFYsWIFihYtqnE7Nzc3LF68ONv9tW/fPsydOxdXr16VlMemTZvQpk0bVKpUCVOmTMGRI0dgZ2cHHx8flCxZUlJ7Xr58iT179uDx48eYMmUKLl++jBo1aqBKlSqStgeAuLg4nVZAV2KM169fo3v37njz5g0SEhLQrVs3bNq0Cbdv34afnx+qVq2aYww5zndd83BxccGyZctgYWGh8fmUlBSsXLkS69atw+3btyXlcvr0aWzYsAFPnjzB7t27sX//flSsWBGdOnWS3B45YshxfOPj47F7924EBQUhOTlZ9XhCQgJu376NgIAASXH0bc+FCxdQsGBBrfO/f/9+lsc2vfXr12PQoEE5vk6OfXrlyhVs2rQJderUQdeuXdGuXbss3we1le96VLp27YoXL17A0tISffr0QZ8+fVCnTh08f/4cdevWRYUKFTBz5kz89ttvWcaYPHkyTExM0LdvX6xYsQIrVqzAgAEDULBgQfTu3RtdunTB9u3bsWHDhlxvz+LFiwEAx48fR6FChQAA48ePh4mJCRYuXCgphrW1Nf7+++/PnkezZs2wbds2vboZ5WjLqVOnsGrVKhQoUAAjRoxA8+bNsXjxYjx58kRyjNWrV+P+/fvw8/NTvdG4ubkhNDQUPj4+WW6XlJSETp064fTp05mei46OxpgxYzBlyhQ0aNBAUh4+Pj7w9fVFTEwMzpw5A39/fwwZMgSxsbGSj0toaCg6dOgAf39/HDt2DB8/fsSRI0fQtWtX3Lx5U1IMAOjTpw9GjBiB7du3459//sHly5fVfv5LMebPn4/q1avj/PnzquO7YMECVK9eHd7e3pJiyHG+65qHubk5unfvju3bt2d67unTp+jVqxdWr16Nnj17Ssrj3LlzGDFiBL755ht8+PABKSkpSEpKwqRJk3DgwIE8iwHIc3y9vLzg7e2Nhw8f4vfff0dYWBj++ecfHDlyBM7OznnWHhcXF/j4+ODhw4dISEiQtA0AdOvWDTt37szy+cjISPTp00f1vp0TOfbp7t27ceTIETg4OGDt2rVo3Lgxfv75Z5w9exZ6T4Av8pkBAwaINWvWZHp8w4YNwt3dXQghhL+/v2jfvn2WMbp16yZ27dqV6fG9e/eKHj16CCGEOHHihGjdunWO+ZibmwsLCwuNP3Xq1BGtWrUSK1euFCkpKRq3b968ubh69aoQQggbGxsRFhYmhBDi2rVrwsHBIcffL4QQo0aNEhYWFqJ+/fqiW7duws3NTe1HCjnycHV1Ve2Pxo0bC2dnZ7WfvGpLejExMWL//v1iyJAhwsrKSnTv3l3s3btXxMXFZbtdq1atxLlz54QQ6vvj33//FU2aNMlyu8TERDFv3jxhYWEh5s+fLxITE4UQQly6dEk0b95c2Nraij179kjOv2nTpuLs2bNCCCGmTZsm+vbtK4QQIjAwUDRs2FBSjKFDh4rJkyeLlJQUVVsSExPF2LFjhaurq+RczM3Ns/yxsLD4T8Vo3LixuHPnjhBC/fjeu3dP2NvbS4ohx/muTx5btmwRtWvXFiNHjhQfPnwQQqS+99WtW1c4Ojqqzl8punfvLnx9fTPlsW7dumzfS+WOIYQ8x9fBwUEcOnRICCFEy5YtxaNHj0RCQoIYPny4mD17dp61p1WrVtl+RmRl69atonbt2mL06NEiOjpa7bmAgABRv3590bBhQ3H8+HFJecixTzO6ePGimDlzprCxsRHNmjUTy5YtExERETrFyneXfq5evYpp06ZlerxVq1ZYvnw5AKB+/fqYPn16ljHu3buHhg0bZnq8Xr16mDlzJgDA0tISL168yDGfyZMnY9GiRejZsyfq1asHIPW68Pbt29GzZ0988cUX2LJlC0xMTDR20UVFReHLL7/M9Hjx4sUlX4cuXLhwtpe6pJAjjwYNGkjuKciKHG1JLy4uDu/fv8eHDx+QlJQEQ0NDrF69GosXL4aPjw8cHBw0bhcZGYmKFStmerx8+fJ4//59lr/PyMgInp6esLe3x5QpU3D16lXY2dlhy5YtsLa2xpYtW1ChQgXJ+b97907V/X/u3Dl0794dAFCiRAl8+vRJUoxr165h+/btape/jIyMMGzYMHTr1k1yLn/99Zfk1yo9RmxsLAoXLqzxOanjsuQ43/XJw83NDTY2Nhg3bhw6d+4MS0tLnDhxAm3atMGMGTNQvHhxyXk8ePBAYw/d999/j5UrV+ZZDECe4/vhwwfY2dkBAKpVq4a7d++iSpUqGDJkCMaMGYOpU6fmGEOO9vz000/aJf7/ubq6wtraGh4eHujcuTOWLFmCatWqYdasWfD390ezZs0wZ84clClTRlI8OfZperdu3cKxY8dUvd/29va4fPkyNm7ciNmzZ6Njx45axct3hUrp0qVx7do1VKpUSe3xq1evqq7Xv3r1CsWKFcsyxrfffouTJ09mur588uRJlCtXDgAQFhaGUqVK5ZjP4cOHMXnyZNUHCAC0bNkSVapUwd69e7Fz505Ur14dCxcu1Fio1KlTB0ePHsXgwYPVHt++fTssLS1z/P0AMG/ePEmvy44ceYwYMULvPORoS3x8PI4dO4bff/8dFy5cQOnSpdG5c2fMmzdPdd7MnDkTnp6eGi/RAEDVqlVx/vx5/Pjjj2qPHz58GNWqVcsxhxYtWqBEiRLo27cvAgMD0ahRI2zYsEHrsTIVK1ZEYGAg3rx5g6dPn6Jp06YAgBMnTuDbb7+VFCMlJUXjIN/Y2FgUKFBAci7ffPNNls/Fx8drFSMhIQFPnz5FxYoVIYTQamV1OWLY29tj586dmDRpkuqxxMRErF69WvUBlxM5znd986hTpw6mTZuGIUOG4NmzZ6qxZYaG2l31L1asGF6+fJmpOA8ODsYXX3yRZzEAeY5vqVKl8ObNG3z99dcwMzNDUFAQAKBkyZJ4/fq1pBhytMfFxUVyzhnVqVMH/v7+mDFjBnr16oUvv/wS7969w4wZM9CjRw+tYsmxT1+8eIHff/8dv//+O548eQJra2sMGzYMbdu2VY1VWbFiBebOnctCxc3NDbNmzUJISAhsbGyQkpKCmzdvYuvWrfjpp5/w4sULzJgxQ/WGrslPP/0ET09PBAYGwtbWVhXjzz//xKxZs/DkyRNMmjQJrVu3zjEffXtnxo4diwEDBuDWrVtISkrC6tWr8ejRI9y5cwcbN26UuFf+b7DkkydPMHnyZK0HS8qVR9q4jidPnmDZsmU4ceIEqlevjvr16+dZWxwcHJCUlITmzZtj1apVaNq0aaY3bgcHh2y/ZYwcORIeHh4IDg5GcnIy/P398eTJEwQEBGDJkiU55rBjxw54e3ujUqVKcHR0hJ+fH0aPHg0vLy+tvum6u7tj7NixMDQ0RMOGDWFhYYFVq1Zh1apVmDt3rqQYTZo0wdq1a9XGPLx79w7e3t4az92svH37FmvWrFEboCiEQGJiIoKDg3HlypUcYwghsGjRImzduhWJiYmq/WlqaooZM2ZIeuOUI8bEiRPRu3dvXLp0CYmJiZgxYwYeP36M6OhobNu2Leed8f/pe77rk0dSUhKWLFmCzZs3w97eHi1btlT17i5atEhyIQsAHTp0wNy5czF37lwYGBggNjYWZ86cwezZs9G2bds8iwHIc3wdHR0xc+ZMzJs3D3Xr1sXcuXPRqlUrHDlyRPVlNK/ac/r0aWzcuBGPHz/WekBu0aJFUaNGDQQEBOD58+ewtbVFs2bNJP/uNHLsU2dnZ5QqVQodO3bEypUrNQ70trS0hJmZmdb55bsxKkIIsW3bNuHk5KS6xubk5CR27twphBDizJkzYuzYseL9+/fZxvj777+Fq6ursLW1Ffb29sLV1VWcOXNGCJE6nmDx4sUiISEhx1zatGmjuo6Znq+vr2jVqpUQQogLFy6IZs2aZRnj/v37Yvz48aJdu3aiTZs2YtSoUeLGjRs5/u40ISEhon79+sLZ2VnUqlVLhIWFiZEjRwobGxut4uibR2BgoKhdu7ZwdXVV5TFlyhRRq1YtcerUqTxri5+fn4iKisr2NWljR7Jz+vRp0atXL2FjYyOsrKxE165dxZ9//pntNm/evBFDhgwR5ubmYubMmeLTp09CiNRzoGnTpqJZs2bi0qVLktqR5t69e+L48eMiPj5elde///4refuIiAjRunVr4eDgIGrWrCnatWsnbGxsRPPmzcXTp08lxxk9erSoX7++8PDwEDVr1hTjxo0TLi4uwtzcXKxdu1ZSDD8/P9GkSROxb98+YW1tLcLCwsThw4dF/fr1xeLFi/MshhBCREZGiqVLl4rBgwcLd3d3sWDBAhEeHi55eznOd13zCA4OFi4uLqJ27dpiw4YNao936NBB2NnZiQMHDkjOISEhQYwdO1Zt3IK5ubkYMmSI6hzOixhCyHN8379/L3766Sexbds2kZKSItzd3YW5ubmoVauW+OOPP/KsPWfPnhW1a9cWEydOFHXq1BFhYWFi8eLFombNmsLf3z/bbcPCwkT37t1FrVq1xMqVK8X9+/dF+/bthb29vTh69Kik359Gjn164sQJkZSUpNXvlSpfFipp3r59m2mgUV47ePCgsLS0FGPHjhVbt24Vfn5+YuzYscLS0lLs3btXPH78WDg5OYk5c+Zo3H727NkiNDRUrxzkGCwpRx59+/ZVnfTpB5/NnTtXdO3aVVIMuQZ+CpFacO7cuVNER0eLhw8fSipO0mzYsEGngWEODg6iUaNGGj+ooqKixKBBg4SlpaVWH6hCCBEfHy8ePXokEhMTJRXQGX38+FHs2bNHzJw5U0yfPl1s27ZN67+d+vXri5MnTwohhGjbtq24d++eEEKIqVOnivHjx0uK0bZtW3Hs2DEhhPo5cuzYMeHk5JRnMYYPHy6Cg4MlvTYrcpzvuuZhZWUl2rZtK+7evZvpufj4eDFt2jRhbm4ufv75Z0nx0v72Q0NDxdGjR8Xhw4fFw4cPtcpJjhhCyHN8L1++rCrshRAiJSVF3LlzR0RGRkrOQ4726Dogd9++fcLOzk60bNlSXL9+XfX4p0+fxNSpU4W5ubmYPHmy+Pjxo6Q85NinQggRFxcn/P39hY+Pj3j79q24ePFijl8KpciXhcrTp0/F4cOHhb+/f6YfqS5fvizWrl0rVq5cKVasWKH2oy19emfs7Oy0+hanSf369VV/QOlPwuDgYGFnZycphhx51K1bVzx+/DhTHqGhocLGxkZSDDnaEh0dLbp37676FhQWFiaGDBki2rZtK7n4qFu3rggJCZH02vSGDBki3rx5k+1rNmzYIGrXri0pXkpKivD29hZWVlaiZs2aIiwsTHh4eIjJkydLLli6du2qKir0UatWLfH8+XMhhBAjRoxQ/b3dv39fODo6SophZWWlOs/SH9+wsDDJ+0SOGHXr1lXE+a5rHul767Jy9OhRUa9ePUnxmjRpIm7evKl1HnLHEEKe49uwYUNx+/ZtvfKQoz02NjaqgidjW6ysrLLcztzcXHh6eoqYmBiNzx8+fFjUrVtXfPfdd5LykGOfvnr1Sjg7Owtra2vVe9GQIUNE48aN9S768908Knv27EHr1q0xduxYeHp6qv2kH5CWnVWrVsHV1RUbNmzAvn37sH//ftWPv7+/1jk5OTlh69atuHbtGi5duoStW7eqxsjY29vDw8Mjy2uAaXMxxMTEaP1708gxWFKOPIyNjTVu/+LFC8mTDcnRls85N82aNWtyHIQ9cOBAjfNfaLJ161b8/vvvmD59OkxMTACkDtY+ceKE5DsPwsPDs7yzRBtly5bFs2fPAABmZmZ48OABAMDU1DTbO6HS++abbxAYGJjp8TNnzki+G0qOGLrOb5GeHOe7rnlMmzYtx4nEvv/+e8nvZ8bGxjAy0m9IoxwxAHmOb6lSpfSenVqO9qQNyM0opwG5S5cuxbx581CkSBGNz7dt2xb+/v6SJ1yTY5/KMfdQVvLdYNo1a9agR48e8PDw0HlWvJ07d8LDwwNDhgyRJacrV67g2rVrSExMzDTxTU53Brx69QpHjhyBn58fSpcunenNR8ptZXIMlpQjj5YtW2Lp0qVqg00fPXqEOXPmoHnz5pLykKMtJ0+exKJFi9T+AKtWrYpp06Zh+PDhkmIULVoUCxcuxJo1a2BmZpZpf2zZskXjdseOHYOTk1O2g9NiY2Nx8OBBWFlZ5ZjH7t27MW3aNLRq1QqzZ88GkPomZWxsjHnz5sHDwyPHGO7u7pgyZQoGDhyIihUrqoq3NF9//XWOMQCgdevWmDRpEubPn49GjRrBw8MD1tbWOHHiRKa78LIycOBAzJw5E69evYIQAufPn8fu3buxdetWeHp65lmM06dPIywsLMsZSu/du5djDDnOd13z8PX1Ra9evdTOy0+fPqkd2+joaHh5eWHNmjU55uHi4gJ3d3d06tQJlSpVynSOSJkyQI4YgDzH19HREUOGDEGzZs1QqVKlTH+/Uu7YkqM9ug7I/f7773OMXaFCBezatSvH1wHy7NMLFy5g3bp1akX4F198gYkTJ6JPnz6SYmTFQGT85PyPS7uNVpsR7RlZW1vjyJEj2d5uKdWqVauwYsUKFC9ePFPhZGBgkOMHfE7fiqX8QaXNUhgdHY13796hSpUqePbsGUqUKIFt27ZJaqcceaRNw3/r1i2kpKSgWLFiiImJgYWFBXx9fVGiRIk8aYu1tTX++OMPVKhQAba2tjh48CAqVKiAR48eoWvXrrhx40aOMXLqncvqNuqaNWvi7NmzKF26tOqxFi1aYMuWLarcX79+jaZNm0r6MLS2tsbhw4fx7bffqrUlPDwcbdu21fgtKaNatWqp7tJJf3u0EAIGBgaS8gBSb2309vaGlZUVOnTogGnTpmHPnj0oVqwYli9fnuWcNBnt3r0bq1evRkREBIDUb7+DBg1C//79JW0vR4ycehqk3FYqx/muax6azjM7Ozv8/vvvqgJdm/Msu+napZ4jcsRIo+/xzW72WSnvy4A87UlMTISnpycOHz6s2k4IgebNm2PZsmVZ9ooNHToUPj4+ap8pZ8+ehb29vWqbqKgotGzZEteuXcsxD0D/fWprawt/f3+YmZmpvRfdv38fvXr1kpyHJvmuUOnWrRuGDRsm+RuLJv3790fXrl3Rvn17vfNp0qQJ3NzcZOud0VVcXBz++OMP3Lt3DykpKahevTo6deok21oM2jh//jzu3r2LlJQU1KhRQ+PtwdnRty2urq5wdHTE4MGD1f6gZs2ahfv372PHjh26Ni1HFhYWOHfunNoHSPocAO0+QNq2bYuRI0eiTZs2anG2b9+O7du348iRIznGuHTpUrbPa3PreEbv3r1D0aJFdeoij4qKghBCbV99jhj60vd814Xc55lSKeH4yiE0NFT1flajRo0c52KSWog2adIE9+/f1yoXXffp4MGDUblyZUyaNEl1rpUrVw7jxo1DbGysXkvO5LtLP+7u7pg1axbCw8NRpUoV1XX7NPb29jnGaN++PWbPno3bt29rjKHNzKjR0dF6Fzx3797F5s2b8fDhQ5iYmKBGjRoYNGiQxplRs2JqapppcrLPkQeQOkeJ1G/XmujbFrnmhHn16hV27Nihtj969eql1Two+pKjyzZ9IRITEwNjY2PJC6VJXQcEyPpv78CBA2jbti1MTExyXCMlbVFQOzs7td4fOWJkdOLECfj6+qqOb/Xq1TF8+HDVDNNS6Xu+y5WHHMLDwxEUFISCBQuiWrVqkucc0TdGbhxfIPX8ffToEdq3b4+IiAiYmZlpXVRr257nz5+jfPnyMDAwwPPnz1U5p7/Um/7xkiVLZspJU/+Cpseya7/c+1SuuYc0yXc9KkrrotS3d+bPP/+Eh4cHbGxsYG1tjeTkZFy7dg0PHz7EunXrshyX0aJFC+zduxclS5bMckXpNMbGxihfvny2b3665pG+8s9uVWogddr28uXLY+zYsWrXYOVuC5A6EdemTZtU33SrV6+OAQMGwNraOstt0rt48SKGDBmCUqVKqS6d3L59GwkJCdi8eXOW51BufNOV41KJn58ffH19ERkZCQMDA3z77bcYNmxYjkV52jHN6W0ku7+b9PtEyoqwBgYG6NChg9rAZzlipLd9+3bMnTsXbdq0UZ3vV69exV9//YVFixahTZs2GreT43yXIw+5z7P3799j8uTJapdEDA0N0blzZ0yfPl1SYatPDLmPb0xMDAYOHIibN2/CwMAAx44dw5w5cxAWFgZfX19Jq8Hr2h5tzhEAKFiwIMaOHas2zkOO4yv3PgVSJ+PcsWOHWm93r1699BqKAeTDQiXtroOsyDHuRBv79u3DwoUL4eLiolPvTNu2bfHdd99h9OjRao/PnTsXV65cwf79+zVut3LlSgwcOBCmpqZYsWJFtn8MSUlJuH79Op4/f47jx4/Lmoe/vz/atWsHExMT7N+/P8c8Ll68iIsXL+Kff/7JtbbIoWvXrrC0tMSMGTNUdxslJCTA09MTL1++zPIbRG52yevaZbtixQps2rQJffr0gbW1NVJSUnDlyhXs2rUL48aNg6ura5bb5vT3lp4cf3vJyck4duwYpkyZovM1bykxWrRogf79+2dq+7p16+Dv74+jR49q3E6O812OPOQ+z8aPH4/AwEBMmzYNVlZWqnPEy8sLzZs317i+Wm7EkELK8Z01axbu3r0Lb29vdOzYEQcPHkRCQgLGjRuHKlWqYNGiRbnWnkuXLsHOzg5GRka4ePFitudIcnIy/vnnH+zfvx8XLlxQPZ7Xl/bk+LvTi143N1OO9F2Vsnbt2hrn63j8+LGoU6eObHkGBgYKW1vbz57HgwcPROPGjfWKkVNbkpOTxYEDB8S0adPEpEmThKenp9qPFLVr11bNkZHew4cPs90fFhYWmeZRsbW1Vc1bIETqfATZnRuXLl2S/CNFkyZNVCvJprdnzx6tJntKEx0dLW7evCnu3r2bKxMuRkREiHnz5uVqjDp16ijifNc1DznOs/Ts7OzE5cuXMz1+9uxZUb9+/TyLIVVOx1eO1eDzqj2PHz8WXbp0UXvM3NxcvH79Wu2x9O0QQrvjK0VO+zQ2NlasWrVKDBw4UPTp00fvle3TyxdjVLS5NJDVaG5tuuO0qVC1HciUUa1atXDp0qVMt3fevHlT0uJ3AHK8/ti5c2fUrl0bx44dy9U8pNw5VKNGDZw5cybL18jRlrlz52L79u2wsLDQeTBx5cqVERQUhMqVK6s9Hhoamm3PgRACXbt2VRtMGRcXBzc3N1XPjKZ5YtJzc3NTXW7JeJcOoH5dWsq5Gh0djVq1amV6vG7dunjz5k2O26dJSUnBggULsGPHDiQlJUEIARMTE3Tv3h2TJ0+WtOCilL/fsmXLZjv+Ro4YDRo0QEBAQKZFOE+dOgVbW9tsWvB/5Djfdc1DCIHGjRtnekzK+mSaGBsba/xbKVWqVI7nq5wxAHmOrxyrwcvRHil3D1auXBn79u3L9Nz169fV5loRQuDWrVuqS8BS5y4C5Nmn06ZNw19//YXGjRtr3Lf6yBeFiouLi+oedhcXF61XoAVSP7zSVlROu6f9c0n/YWxvbw8vLy88fvwYdevWhaGhIe7cuQNfX1/Jc35kdXIVLFgQ5cqVU11+yrgkuNx5ZLw8lJycjDdv3sDIyEhtJdjs7ojQtS3pHTp0CHPnztV65dL0A0fbtWuHadOm4fXr17Czs1Ptj0WLFmHkyJFZxpBjRd30xfb58+fx66+/YvLkyaru5MDAQMydO1fjatyatGjRAjt37sTkyZPVHvf394ejo6PkvNauXYt9+/Zh/PjxqF+/PlJSUnD58mWsWrUKZcuWhbu7e44xMv79JiUlISQkBP/88w9GjRolKQ9dY6QvLMqXL4+lS5fi9u3bsLOzQ4ECBXDnzh388ccfGDhwoKQ8dD3f5chDjlXG0+vTpw/mzp2LpUuXqiYs/PjxI5YsWYJevXrlWQxAnnNEjtXg5WjP06dP1f6dnJyMsLAwxMTEoF27dtluO3LkyExjw37++We1f0v9HJNjn548eRKLFy+Gk5OTpNdrI9+NUVECfXtnpAxsArQf2JsmOTkZISEhmDFjBrp3757lQN/czgNIHdSW9iHbr18/rbeX2pb0bG1tcejQIa0HeMkxcFRu3333HWbMmJHprpJLly7B09Mzy9lz03+Ti42NxfHjx1GzZk3UrVtX9WF47do1/Pjjj5gxY4akXJydneHh4YEOHTqoPX7o0CGsWLEi216unOzatQv//vsvli9fnmsxsptbIz2p82xoIuV8z4s80mTslcuYR/rnnj17hkKFCqFSpUooUKAAnjx5gvj4eNSpUwe7d+/OtRhSaXOOXLt2DQMGDECTJk1w+vRpdOjQQe3OvwYNGny29gghMHv2bBQpUiRT4ZH+90qlz9gwbfapvb099u3bp/VdoFLky0Ilq5lgDQwMJH37T0lJwaFDh7KMMXfu3Gy312ZAnbbf6uV09+5djB49OlcHnUoRHByMAQMGZNsFnhNt2jJq1Cg0aNAAvXv31up3yPnmEBMTAyMjo0yzWQKpI+dnzpyJVatW5fh7bG1tsXfv3kxLquc0yZKbm1uOsYHU8z2rWXYzsra2xqFDhzK9UYWFhaFdu3aSJp/LyrNnz9C+fXtcv379s8aQgxznu1RBQUEwMjJClSpVMj13//59TJkyReNlBQA5DlxPL6ueQjliSKXt8dXlzr+8ak9YWBi6d++O8+fP6xwDACIiInS6hTyNNvt0ypQp+PLLLzFmzBidf19W8sWln/RymglWSqGi7xiG9MVHly5dtN4+rxgaGmpcZyKvRUdH673uhjZtsbGxgbe3N86fP4+qVatmms4+qzcYOe5aiYqKwqRJk3DmzBkYGBigdevWmD9/vqpg2b17N3x8fJCYmCgpnpWVFZYtW6a27kfakgLZTdS2detWvduSkZmZGf79999Mhcq5c+f03ncBAQFZrmuSmzFev36tcY0dqcsKaKLL+a5tHuHh4Rg2bBiCg4MBpJ4na9euRYkSJZCYmKi60yu79WSyu4QplRwxpNLm+KbNIZLxVtuPHz9i8+bNWfZ25VV7QkNDc1zb6cWLF/jrr79gZGSEFi1aZBoXsm3bNixZsgRXr17VOQ9t9mmpUqWwadMmnDlzBpUrV850h6s+lyPzXaEixzo9uo5h0ETf3plbt25h5syZePjwocYPLymXGDQNQI2JicGePXskrScjVx6aBhfGxsbiyJEjWXa1ZiRHW7Zt24ZSpUrh7t27uHv3rtpzBgYGkr4JhYWFZbtYXFZd8vPnz8e1a9cwYsQImJiYYMuWLVi2bBlGjRoFDw8PnDp1CvXq1YOXl5ektkydOhX9+vVD06ZNYWZmBiEEQkJCULp0afj5+UmKAaQOvAsJCcnUFgMDA8kTi/Xv3x/Tpk1DeHi4agzG1atXsX37dkyYMEFSDE2D+mJjY/H+/XvJHxJyxDh9+jQmTZqEt2/fqj0utFhWQI7zXdc85s+fj5iYGMybNw8mJiZYvXo1vL29MXbsWAwaNAh3795Fx44dM41Lys6pU6cQFBSk8RyROk5Njhi6Ht+oqCh8+vQJQOqlz+rVq6NkyZJqr7l79y4WL14s+TK0vu3RNJg2NjYW586dQ4sWLbLc7vz58/jpp59U7Vm0aBG2bdsGc3NzhIeHY8KECbh+/brk9c/k+Ju5ceOGqjdK7i/A+e7Sjxzr9Og6hkETLy+vbHtncvpm27FjRxQsWBBdunTReJlASjGlaayJkZERbG1tMWPGjEyXDXIrD03X3o2NjWFrawsPDw9JkyzJ0ZbspKSkSJrevEePHnj16hXatGmjcX9kVew0adIEnp6eqrE0165dw5gxY1CnTh38+++/GD9+vFYDC4HUQu2PP/7Aw4cPYWBgAAsLC7Rr107yCr379u3DzJkzNS6aqe14m82bN2PDhg14/fo1gNRBzQMHDpQ8+ZymrnVjY2PY2NhI/nCXI0br1q1RpUoV9OrVS+PxlbKsgBznu655ODg4YO7cuaqBjQ8ePECfPn1QrVo1hIaGYs6cOWjWrFmOvz/NrFmzsGPHDo0LkkodKyNHDED343vgwAF4enpqvGMujRACzZo1w9q1a/OkPZouwZqYmMDGxgb9+/fPske/R48eMDY2xsKFC2FiYoJZs2YhNjYWw4cPx6BBg2BoaIgJEybghx9+yDEHQJ6/mey8evVKvzuB9Lq5WYH69euncU4IbYwcOVJs27ZNlnzq168v9u/fr/P2VlZWIigoSJZc9KGUPOTg7Ows3r59m+nxiIgIyfMfWFtbi9u3b2v9u2vVqiWePn2q9pilpaVwcnISwcHBWseTg6Ojo5g6daoIDg4WT58+zfSjrfj4ePHmzRvx+vVrERERkQsZ5z5ra2vx6NGjz52GznlYWlqKFy9eqD1Wq1Yt0blz50zzb0hRv359sXPnTq23kzuGvi5duiQuXLggzM3NxbFjx8TFixdVP5cuXRK3b98WCQkJkmJ9zvbY2dmJ69evq/796tUrYWVlJZycnET//v0/y9+dprl7hBAiPDxc2NjY6BU73136kWOdHl3HMGiSkJAgaX2hrNSuXRvPnj1D9erVdY4hBznzyI3r/jk5cuSIavbPZ8+eYdasWZm+BT179kzyQDkzMzPExcVpnUdSUlKmb8YmJiaYNm2aTr1Br169wtKlSzVeWgSyvgSV3ocPHzBw4ECYmZlp/fvTi4qKwpgxY1Q9BgDQqFEjWFhYYMmSJdmOh0gvq+50QPrfnr4xGjZsiDt37mgchKotfc53XfNITk7O9L5lbGwMT09PnRbwMzIy0vubtRwx0uh6fNPei7ds2aK6nV9XcrUnq8uuQNbrY338+FHtqkHadAzW1tZYtGiRTote6rJP9+7di4MHDwJI7Y0aPnx4pvPu5cuXeq9/lu8u/cixTo8cS4Cn0fUOkzSPHj3CsGHD0LZtW1SoUCHTCSil8JJjfIkcechx3V/Xtrx48QITJ06EEAKXL1+GjY2N2h+UgYEBChcujJ49e0rqEr927RpmzpwJNzc3jfsjqzcYKVNfa2Po0KG4ffs22rVrp5oHKD0pH8rjx49H7dq10bdvX61/f3o///wzwsLCMGfOHNSoUQMAcOfOHcyYMQPVq1fPcTwWoJxLDBEREfjhhx/QqFEjVKhQIVMBK2W/ynG+65qH3OfZqlWrEBYWhtmzZ2f68peXMQD5LiHdv38ffn5+ePLkCZYtW4YTJ06gWrVqkosPOdqj62XXrI7vjh07ULNmTa3z0HWfvnv3DgsWLACQererpkvhRYoUUU3Eqat8V6gozaZNm7B8+XI0adJEp96ZFStWZHmbqtQ3OznGl8iRhxzX/eVoS5cuXbB582a9qvxdu3bBy8sLSUlJmZ7Lbn/UrFkT586dU00QBej3AWJjY4MNGzbotZLuy5cv0aFDB1StWhUVK1bM9GEodbR+gwYN4Ofnl+nLwu3btzF48GD8+++/kmJ4eHigR48e0huQCzGmTZuGPXv2oGTJkpnG+kj9MJTjfNc1D7nPs8ePH6Nnz574+PEjvvzyy0zniJT9IUcMQJ7je/v2bfTs2RM2Nja4fv06jh49irVr1+LAgQNYtWqVpC8rcrSnWbNmcHR0RL9+/TSeI1mNtZS7EJVjn44bNw4zZszQebbv7OS7Sz9yev36tcZKV5tLFPreYbJt2zaMGTMGffv2lTw4MqPQ0FDs3btXr8s2cuTx8uVLrFmzRq/udDnaEh0djfDwcI3Txku1cuVK/PDDD3B1ddVqf2jqHo2Pj8e4ceMyfZORMn9J4cKFderKT8/LywuxsbFISEjQaq6YjJKTkzVOhmdsbCz5MplSLjH88ccfmDdvnl53/slxvuuah9CwVMOnT5/UlmpII+UDdfz48ShevDi6du2KwoULa5WLnDEAeY6vt7c3BgwYAA8PD9VSBF5eXihSpAhWrFghqVCRoz36XHaNiIhAfHy82mORkZGZjq+Uzys59unFixfx+PFjyXdfaiPfFSqPHj3C7NmzVdfsM5Lyzf/atWuYNGkSwsLC1B7Xpss2TVYzg0qVkpKi1R0cmsgxvkSOPOS47i9HW+Li4jR+e9FGbGws3N3dtb4zTNMHjj53qHXq1AkbNmzArFmzMr1BSXXmzBmsXr0aTZs21TkPIPVy1+LFi7FkyRLVt6qYmBgsW7ZM8jitXr16Yc2aNXp1p8sRw9TUVG2ae13Icb7rmoccSzWk9/DhQ+zdu1d1Se9zxQDkOb5plyQz6t27N/bs2SMphhztadmyJU6fPq1ToZLxjh4hhNpdRNp8XsmxT42NjfUa85OdfFeozJgxA2/evMG4ceM0XrOXwsvLC19++SUmTJigc4yMdO2d6dSpE3bs2IGJEyfq/LtnzZqFYcOG4ebNmzqPL5EjjxkzZuCHH37AP//8o/N1fzna0qdPH4wcORK9e/dGxYoVMxUtUj5UW7ZsiRMnTmg97b/ca7C8e/cOf/zxB06dOoUKFSpkepOR0itTsmRJWQYyT5o0Cb1794ajo6PqjTckJAQlSpTAhg0bJMVo06YNevbsibp16+rcnS5HjF69emHFihWYPXu2zsW5HOe7rnnIXahUrVoVHz58+OwxAHmOr7GxMWJiYjI9/uLFC8n7WY72jB8/Hh06dEBAQIBWl12lzhYtlRz71MXFBe7u7ujUqRMqVaqU6X1VyntzVvLdGBUrKyvs3LlTr279OnXq4MCBA3rPyQHo3zszceJEHD58GCVLlkSFChUyVaxSTlg5xpfIkYcc1/3laIscA64XLlyIrVu3wtLSEhUrVsy0P/QpSOLi4rBkyRJJk3FJWX01J7t370ZAQAB++eUXVKxYUeeeGSD1strhw4fx8OFDGBkZoVq1aujQoYPkHqyuXbviw4cPaNWqlcbudCkfwHLE6N+/v2oRytKlS2c6vlLOVTnOd33zkGuphiNHjmDp0qUYOHCgxvNdSnEvRwxAnuP7yy+/4Pnz51iyZAmaNWuGgwcPIiEhAR4eHqhdu7akgd9ytGfUqFH4+++/YWFhobFA0ncG6Y8fP0q6LCXHPpXjfTXL7fNbodKsWTOsX79er+641q1bw8fHR5ZrbV26dEHhwoXRv39/jb0zOQ2ok+ODqEGDBujfv79e40vkyMPOzg6//PKLXtf95WhLTuMwpFyKyWmtnKzeYD59+oSFCxfi8OHDMDY2RqdOnfDzzz+reobOnj2L6dOn48WLF5nGNOWW1q1b4/nz50hOTtb4vD5vMFFRUWoDOnNiZWWld3e6HDE0zSqbnpQ3bjnOd13z0Gaphhs3buSYhxwfQnJ9kMlxfGNiYuDu7o5bt24hJSUFxYoVQ0xMDCwsLODr64sSJUrkGEOO9tjY2GDFihU6XXaNi4vDhQsXYGRkBHt7+0zF6MmTJzFr1iycPHkyx1hy7NPclO8u/bi6umLx4sXw8fHRefTxTz/9hLlz52LmzJmoUqVKpjt1tPHw4UO9emfkuFQgx/gSOfKQ47q/HG3JrhDJODgtK7p+0/H29saePXvQsWNHmJiYYOfOnShatCiGDBkCLy8v7Ny5ExUrVtRq+vuoqCg8efIEKSkpAFJ76xISEhAYGIiffvopx+2lvEaKDx8+wNvbG66urqhWrRrc3d1x4cIFmJmZYd26dZLuRlDKJQY5Lp3Icb7rmofcSzXou0qzXDEAeY6vgYEBdu3ahfPnz6sWJaxRowaaNm0qeQ4SOdqj62XXe/fuwd3dHW/evAGQ+p62detWfP3113j//j1mzZqFw4cPS/7ckeuyXFb0XRwx3/Wo9O/fH1euXEFycjJKly6d6Zq91NsK5fqGKUfvzIsXL7B9+3bVSqjVq1dH9+7dJZ/gXl5eMDY21mt8iRx5rFq1Ck+ePNHrur8cbXn79i3WrFmDoKAg1TEWQiAxMRHBwcG4cuWKpDixsbE4ePCg2v5o27ZttgWyk5MTBg8ejJ49ewJInWRpzpw5cHBwwN69e9G/f3+MHj1a8oC2gwcPYurUqUhISMg0Nfg333yDEydOSIojh0mTJuHKlStYs2YNHj58iPHjx2Pu3Lk4cuQIjIyMsGLFihxjKOkSw+3bt7Fx40bV8a1WrRr69u0r+W9ZjvNd1zxyY6kGILUn4vHjxzA2NkaFChV0+jKobww5jm+rVq2wdOlSvYYIpNGnPbpedh0wYABev36NadOmwcTEBN7e3ihVqhTGjBmDAQMG4NWrVxg0aBB++uknSe8lcuzT8PBwLFiwINP7akJCAqKiovTqIc53hYocXbb+/v7ZPq9NV66/vz92796tc+/MgwcP4OrqikKFCsHKygopKSm4ffs24uLisHPnTkl3v8gxvkSOPOS47i9HW8aMGYPz58+jcePG+PPPP9GuXTs8evQId+/exdixYzF48OAcYzx//hyurq548+YNKleujJSUFISGhqJ06dLYsWNHlt8e6tSpgyNHjqh6F5KTk1GnTh188cUXWLp0qda3CLZt2xbW1tZwd3dHz549sWnTJtXYg7Fjx6JTp06S4vz1119Yu3at2ofhwIED0apVK8m5NGrUCKtWrYKtrS08PT3x7t07VUHYu3dv1bHPjlIuMVy6dAkDBgxAjRo1UK9ePaSkpODatWsICgqCn58f6tatm2MMOc53XfOoXbs2AgIC1HoPa9WqhbJly2L9+vVa9/CmpKRgwYIF2LFjB5KSkiCEgImJCbp3747JkydLmtFZjhiAPMe3SZMm8PPz02scohzt0fVLcf369bF8+XLVooPh4eHo1KmT6nh7e3tnu58ykmOfDho0CCEhIfj+++/h6+uLAQMG4MmTJzh+/DhmzZqFbt26Sc4no3x36UeOLls5Vk1Os3r1ajx//jzLEc85nQALFy5EgwYNsGjRItU8G2nzbvj4+EhaPMvQ0BAdOnTQOne586hbt66kN/jsyNGW8+fPY8GCBWjevDkePHiAgQMHwsLCAr/88guCg4MlxZg/fz7KlSuHPXv2qKavfv36NcaMGQNvb28sWrRI43aJiYlqg9UKFCiAggULYsqUKTrNYxAeHo4VK1agatWqMDc3R1RUFJydnZGUlIQ1a9ZIKlSOHTuG0aNHo0WLFmjXrp1q9t7Ro0djxYoV2a7imt7Hjx9Rvnx5AMC5c+cwaNAgAEChQoWyfCPOSCmXGJYsWYKuXbti5syZao/PnDkTS5culXTpT47zXdc85F6qYe3atdi3bx/Gjx+P+vXrIyUlBZcvX8aqVatQtmxZuLu750kMQJ7jK8edf3K0R9fLrjExMahcubLq3xUqVEBiYiJKly6NNWvWaD39ghz79Nq1a/j111/RoEED/PPPP2jZsiWsrKywZMkSnD59moVKegcOHMj2eSm3SMnRK5NG3+v/165dw65du9QmAytYsCCGDx8OV1dXSTHkGF8iRx5yFJFytCU2Nhbm5uYAgCpVquD+/fuwsLCAq6urpN4UAPj333+xadMmVZECpK63MWHCBNUHtDZ0vTRoYmKi6tqtVKkSHj58CEdHR9SuXRuhoaGSYvz6668YPny42vHp168fVq5ciTVr1kguVKpWrYpTp06hfPnyePXqFRwdHQEAe/bskfzhqM+cMnLGuHv3rsbxG66urpJXpJXjfJcjj/R07UH47bffMH36dLUvCZaWlihVqhRWrFgh6UNZjhiAPMd38eLFAIDZs2dnek5qD4Ic7dH1S3FKSkqmHjojIyOMGTNGpzmi5NinCQkJqFixIgCgcuXKePDgAaysrNC5c+ccbz7ISb4rVDw9PTU+XrBgQZQrV05SobJ//361fycnJ+PNmzcwMjLSenCcvr0zRYoU0ThxnabHcpNS8pBD2bJl8ezZM5QvXx5mZmZ48OABgNTBj+/fv5cUo0CBAhrHHRQsWFDjol7paeoSltrtnVHt2rXx22+/YezYsahRowZOnz6NgQMHIjg4WPJlxsePH2vspWrfvj3Wr18vOZdRo0Zh5MiRSExMRPv27WFmZoZ58+Zh+/btkm6BVZKSJUtmWqMHSB24rM86NXmVh4GBgc7nlCZv3ryBtbV1psetra3x4sWLPIshl+PHj+u0cF96SmpPGn1nqdbHN998g6CgIJQvXx6VK1dWFXspKSmIjY3VK3a+K1Tu37+v9u/k5GSEhIRgxowZ6N69u6QYmmaTjYmJweTJk7UuVPTtnWnYsCEWLlyI5cuXq26Zi4qKgre3NxwcHLTKRR9KyUMOrVu3xqRJkzB//nw0atQIHh4esLa2xokTJ1CpUiVJMezs7PDrr79i4cKFqoIgMTERa9asyfEc8fLyUuuZSkxMhLe3N4oUKaL2Oim9RyNHjoS7uztKlCgBFxcXrFq1Cu3atcOLFy/Qtm1bSW356quvEBoamqntoaGhWk142KxZM5w+fRqRkZGqa97t2rVDt27dZJmTKC85OTlh9uzZWLx4sSr34OBgeHl5ZbtoqVLykHupBjMzM/z777+qb8xpzp07J/nbuBwx5OLh4QEvLy+txnFk9Dnbo6kQlbMw1YWLiwsmTJiAhQsXonnz5ujTpw++/vprnDt3TtWDrat8N5g2K3fv3sXo0aNx/PhxnWMEBwdjwIABOHPmjORtMr6ZZOyd2bRpU7bbR0REoEePHnj//n2m2T63bt2q9RTuulJKHnJISEiAt7c3rKys0KFDB9XEXMWLF8eyZcskFV6PHj1Cjx49UKRIEdWqoIGBgYiNjcW2bduyfAPUpgtU6i3QkZGRSEhIQIUKFfDo0SPs3LkT5cuXh5ubm6Rv/0uXLsXBgwcxffp01ZiKq1evYubMmWjZsqWkiefSe/78OR49egR7e3vExsZ+1m95unr//j369++Pe/fuqYq16OhoWFhYYNOmTShZsqSi8/D09JT8wSWlID5w4ACmTZsGNzc3VSF+9epVbN++HRMmTJC0OrwcMeTSoEED/Pbbb5mKDG18zvZYWFhkOr7p7/hLT595kLQhhICfnx/MzMzQvHlzrFu3DmvXrkX58uXh7e2t06rOaf5nCpX79++je/fuuHnzps4xrl+/jgEDBuD69et65ZK+d0bKFOyxsbH4/fff8fDhQwghYG5ujg4dOuTKKpX/hTxyw7t371C0aFGt1qp49uwZduzYobY/evbsmaffDn/44Qe9vxnGx8fDw8MDf//9t+qNTgiB5s2bY+nSpZKveSckJGDixIk4evQoDA0NERAQgAULFiA2NhYrVqz4z50nKSkp+Oeff9SOb5MmTfS+ZPBfzWPz5s3YsGEDXr9+DSB1TNbAgQPRv3//PI0hh/Xr1+PMmTOq23EznuNSp1z4XO3J6c7U9OS8OeRzyXeFiqbBtDExMdizZw+++OILSd9SNV2uiY2NxZEjR1CzZk2sWbNG7zx16Z2RW9qkYPremaCNpKQkvHnzJtN99oGBgejYsaPOcaW25ciRI3B0dFT70Ny1axeKFSuGtm3bfvbuUyD1g+nevXuS5niQ45thmkePHiEoKEj1Yajt5Zply5bhzz//xIwZMzB06FAcPHgQz58/x6RJk+Do6KhxEThN/vrrL7W5GID/O76+vr55FkMOuXW+5+Tdu3c5zq6akJCAU6dOoXXr1lrFjoqKghBCr54yfWPoe3xr1aql2jb937wuC88C+rVH3wkb5aLrPo2Li8PWrVvxww8/qM1CvXLlSpiYmKBv376ZLjdqK9+NUdE0mNbIyAi2traS3ygzDqYFUhexcnBwgIeHh74pAkjtvo2Ojs7xdVFRUVi4cCFu376NT58+ZVrUUMptZbdv38Yvv/yCoKAg1R9DelL+KOXI4+zZs5g4cSKioqIyPVeoUCFJb9y6tiUxMREjR47E6dOnsXnzZrVbga9evYpDhw4hICAAixcvltSr8unTJ6xfvz7L/ZHVdX87OzucOHFC7Q966dKl6N+/P7744gsAqfv6hx9+kHRc3N3dMWXKFL2/GQKpAzdtbGxUbXn+/LlWMQ4fPowZM2ao7dsGDRpgzpw5mDBhgqS/Px8fH2zYsAFlypTBmzdvULZsWbx+/RrJyclo166dpDzkiBEaGoqpU6eqjm9GUo6NHOe7rnk4ODjg7Nmzah+cEydOxIQJE1SPffjwAaNHj5b8oRweHo47d+5ozEPqgnNyxJDj+MpVrOrbnrQJG9NuSsg4YWNWhcqxY8fg5OSU7YD52NhYLFmyBFOnTs0xD133aUxMDPr164f79++jXr16au9r0dHR2LVrF06ePImNGzdKWnMoK/muUMk4mFYXmgbT6iq73hkp82b88ssvuHHjBtq2bav6INPWvHnzUKBAAUydOhXz5s2Dp6cnwsLCsH37dixcuFBSDDnyWLx4MSwtLeHm5obRo0fDx8cHz58/x/LlyyXfdqxrW7Zs2YLAwEBs3boV9erVU3vO29sbP/zwA0aNGoWdO3dKGkcyc+ZMHDlyBI0bN9aqGPj48aPGoqZr165q+1VqR+fSpUuRnJyMy5cv6/zN8NatWxgzZkymOxW0/XYZGRmpsWenfPnyku+mOnToECZPnow+ffqgWbNm2LFjBwoXLozhw4dLmoJfrhi//PILXr9+jdGjR3/W813XPDSdP8ePH8eIESPUihep59n+/fsxdepUjV8ODAwMJN9NqW8MQJ7jm9Maa1LI0Z41a9agXbt2GidsHDlyZJbbjR49OlMh2qJFC2zZskV16TkuLg7bt2+XVKjouk83bNiA6OhoHD16NNPrJk2ahG7dusHd3R2+vr4YPnx4jnlkSfwP2bx5s17bf/z4UcyZM0erbZycnDL9tG7dWkycOFFERkbmuL2NjY24dOmSrimrYty8eVMIIcQPP/wgLl++LIQQwtfXV/Tr109yDH3zqFOnjrh3754QQoiePXuKf//9VwghxN69e0WPHj0k56FLW9q3by8OHjyYbezt27eLjh07Ssqjbt264u+//5b02vTMzc3F69ev1R6zsbERYWFhqn+/evVKWFhYSIp38eLFbH+k6NKli+jRo4c4fvy4zjGEEMLFxUXs2bMnU5tWrlwpXFxcJMWoVauWCA8PF0IIMWjQIHH06FEhhBCXL18WrVu3zrMYVlZWIjAwUNJrsyLH+a5rHnKfZy1atBAzZswQ79+/1zoXOWMIIc/x/fTpk/Dz8xNTpkwRnp6eqp+xY8dKjiFHe2rXri2Cg4OFEEK4urqK06dPCyGECAgIyPZvRu7jq+s+bd26tThx4kS2sQ8cOCDatm0rKY+s5JselY0bN6qtSJt+HYuHDx9i6tSpuHXrFvr27atx+/j4eCxYsEDSqrba3AWRVe/Mx48fsXTp0hxjFSpUCF9++aXk36dJSkqKKkalSpUQFBSEevXqoUWLFpJmlJUrjwIFCqjuXEjLw8HBAQ0bNsSCBQskxdC1LU+fPoWtrW22sRs1agRvb29JeRgYGKBatWqSXpub5Phm+PDhQ+zfv1/v9owcORIeHh4IDg5GcnIy/P398eTJEwQEBGDJkiWSYhQvXhwfP34EAFSsWFE1U/DXX3+NyMjIPItRokQJva+ry3G+y5GHHCIjIzFgwAAUL178s8YA5Dm+Xl5eOHDgACwtLREYGAhbW1uEhobizZs3km5wAORpjxwTNspB130aERGR40B+Ozu7HFesz0neDhvPJcuWLYO3tzeKFSuGL774AnPnzsWuXbsApBYwXbp0QUhISLbdrQsXLsSePXvQokULtGzZEjt37sTatWuRkpKCWbNmYdCgQTAyMpK0qm18fDxmzZqFBg0aoEmTJvD29lbrHjx79iw6dOiAbdu25RjLxcUFGzdulLAXslapUiVcvXoVQOpMrIGBgQBSryHmNDmZnHlUr15dVbhVqVJFlVNERITkGLq2pUiRIjmOCfr06ZPkxeNatWqlcSxTXnNzc0OfPn0y/fTt2xfu7u6YOnVqjmvslC1bVuM1dm05OTlh+fLluH37NgoUKICNGzciPDwcS5YswXfffScpRoMGDeDj44PIyEhYW1vjzz//RFRUFAICAtSuf+d2DFdXVyxZskT15q0LOc53OfKQQ82aNfH48ePPHgOQ5/j+9ddfmDdvHnbv3o1vvvkGs2fPxsmTJ9GiRQvJk1jK0Z60CRsBoEaNGvj3338BQKsJG+Wg6z4tUaKEagXnrLx9+1ar+Zg0yRc9KocPH8aoUaMwbNgwAKl3/qxfvx6vXr3CqlWr8P3332PatGnZ7vC///4bU6ZMUa1q27x5c8yZMwcvXrzA3r17MWDAAMmr2qYVPR07doSJiQl27tyJokWLYsiQIfDy8sKOHTtQqVKlLIuePn36qP4/KSkJ165dw+nTp1GxYsVMtyRKmazJzc0NU6ZMAQB899136NSpEwoVKoRr167BxsYmy+3kzmPw4MEYNWoUjI2N0b59e6xYsQKDBw/GgwcPVItr5VZbbGxscPjw4Wzv5T906FC2ExNNmjRJ9f+xsbHw9/fHv//+CzMzs0z7Q46p/qWoWbMmtm7dipo1a6rG3ty8eRM3b95Ey5Yt8eLFC/Tv3x/Lli3Lcir8YcOGYc6cOZg7dy7MzMz0uvPJ0dFRNXW+LiZMmICffvoJR48eRa9eveDr64vGjRsDyHrWabliODs7q7X92bNnaNCgAcqUKZPp+EoZPK7r+S5XHvrewZa+wG3ZsiWmTJmCkSNHolKlSplW+c1qbRw5YmQkxzny4cMH1dwn1apVw927d1GlShUMGTIEY8aMyXJch9ztkWPCRjnouk8bNGiAPXv2ZLsEyO7du1GnTh298ssXhUpkZCTatGmj+nfbtm0xadIk+Pn5Yf78+ZIGNb1+/RpNmjRR/btp06Z49uwZjh8/Dl9fX60WjMup6Bk4cGC2RU/GeTikzpaalR9//BElS5ZEiRIlULVqVcybNw/r169H+fLl8csvv2S5ndx5tGzZEr/99hsKFCiA8uXLY8OGDfD19UWLFi0watSoXG1Lv3790K9fP5QrVw69evVSe8MXQmDr1q3YvHkzVqxYkWWMp0+fqv07rTBIuztGqk2bNqn13CQlJWHLli2qwZLafHuOiIhA7969M72xLliwAJGRkVi5ciU2b96cac2ejBNGCSGyfGPU5lbN+/fvw8/PD0+ePMGyZctw4sQJVK9eXfIlqsTERBw4cADx8fEwMTHB9u3bcfbsWZQtW1byeki6xnBxcZH19nRdz3e58shpBuT4+Phst3dzc4OBgYHagNvp06dnel12A67liJGRHOdIqVKl8ObNG3z99dcwMzNDUFAQgNQ739LmRMmL9tSrVw8BAQFISEhAyZIlsWPHDrUJG7Mi98y0uu7TAQMGoFu3bihWrBiGDh2qNuA7bfX033//HZs3b9Y5NyCfzKNiYWGBc+fOqY2AtrW1xfjx49XGqugSY/bs2Wjfvr1W+dSpUwdHjhxRjYJOTk5GnTp18MUXX2Dp0qU6rZKrDy8vL/Tp00eWuTb0MWLECHh4eOg1nbo+bdm6dSsWLFiA4sWLw8rKCsWLF8e7d+9w8+ZNxMbGYvTo0TotKKgNbaZfl3L3ma2tLfbv36+2kiqQOmuwi4sLrl+/jvDwcHTs2FFtosL9+/dLfmOTOmHU7du30bNnT9jY2OD69es4evQo1q5diwMHDmDVqlVo1qxZjjGaNm2KVatW6bxIo1wx5CDH+a4rOWZA1mZcQVaTHMoRIyM5ju/UqVNx//59zJs3D6GhoZg7dy6WLVuGI0eO4O+//0ZAQIDG7eRuj64TNlpYWKB8+fJqX7ieP3+OsmXLqnp2UlJSEBERIalg0mefHjt2DJMmTUJ8fDwqV66sel8NCQlB4cKFMX36dK0/QzPKFz0qWWnUqJHeMXQ5cImJiWr3jBcoUAAFCxbElClT8rxIAVJnMZQ6QCw3XbhwQe+Bgfq0xc3NDfb29vjtt99w584dhISEoFSpUvjhhx/QpUuXPPlAkfPWdwAoWrQoHj9+nKlQCQ4OVvXaxMbGZppfpUuXLrLmAaTOxTBgwAB4eHioBi57eXmhSJEiWLFihaRCxdjYWKvZgXMrhhzkON91JXX5hewoZSXrjOQ4vhMmTICnpycuXbqEXr16Yffu3fjxxx9hZGSU7UBnudsTHh6u0/wicqzMnZ4++7R169aws7PDwYMHcefOHbx79w6Wlpbo3bs32rRpI8tyE5//rzkXZbxmmBM5V7XV5HN9w2vWrBm2bduGESNGfNZpzF1cXODj44Phw4ejUqVKOq1Cq29bLCwsVJeIEhISVDlIvVtAX5MmTcKUKVNkOw5dunTBL7/8gqioKFhbWyMlJQU3b97E8uXL0alTJ7x9+xYLFy6UfP1fH7dv39bYDd67d2/s2bNHUgwXFxe4u7ujU6dOqFSpUqYCS8plXDliyEGO811Xffr0wcqVK/W+w0aJ5Di+xYsXx6+//qr697p163Djxg188803+Oqrr+ROOUu6Tti4atWqTPOo6EPffVqmTBkMGDAAQgi8fftWNR701q1bKF68uNafxRnlm0s/AwcOVLvuv3btWvTo0SPTJElZVaIWFhZo27at2jegQ4cOwdnZWetVbS0sLPDvv/+qDd61tbXFwYMHJU9IJCc3NzfVhGClS5fO9C1PysBAObRu3RphYWFZFn9SuijlaEtUVBTGjBkDW1tb1UzDjRo1goWFBZYsWaLzBF9S1KxZU9Y3mJSUFHh7e2Pnzp2Ij4+HEAKFChVSTTJ26tQpbNiwAYsXL9ZqYjpdODg4YN26dahTp47a+X7x4kV4eHio7mjITnZd4FKv+8sRQw5ynO+60nQpO7+Q4/h++vQJM2fOhJmZGYYMGQIg9bJs48aN8csvv+RZUanrVP5yH1859mlYWBgGDRqEFi1aYMKECQCAhg0bokyZMqpxhLrKFz0qX3/9NY4ePar22JdffpnpQ8vAwCDLQsXe3h6vXr1Se8zW1hZv377F27dvtc4pp4FsafLi7pAGDRp8lktOGcmxboUcbZkzZw7i4uLUpoZev349ZsyYgQULFmDu3Ln6ppklub8XGBoaYuLEiRg9ejQePXqEAgUKwMzMTPWNqGXLlmjZsqWsvzMrLVu2xNKlS9XmTHn06BHmzJmD5s2bS4ohx8zScsSQQ16u0/K/RI7jO3/+fFy5ckVt/NWkSZPg7e2NJUuWYOLEiXr/Dinyct2p7MixT+fOnYtKlSqpXZo/cuQIJk6ciHnz5mH58uU6x84XPSpKI8dAtpx8jgUFlZyHNho0aAA/P79M3yJu376NwYMHS/rmn52IiAiUK1dO43Oaetvyi5iYGLi7u+PWrVtISUlBsWLFEBMTAwsLC/j6+ua4SF5OstuvuRHjcy0oKEceFhYW2Ldvn6TxAbnd05aXpB7fJk2aYMWKFZkmgbx8+TJ+/vnnz7pYrBQWFhaYOnWqpEvI+l7qlLpP69Wrhz179qBKlSpqjz98+BC9e/fGpUuXdM4hX/SoKI0cA9nSyLGgIJBaMaePkf7NzsvLK8/ykGNVW33bkpycrLFnw9jYGHFxcZJyCA8Px4IFC9TakpZHVFQU7t69m+W2afMT5CSvLlEA8qzgamBggF27duH8+fO4e/cuUlJSUKNGDTRt2jTT/B9Z0We/yhlDjgUFAf3Pd33y+OGHH7KNndPlhYyUsqq1HMc3NjZW4/idUqVKSV6XCtC/PfHx8di9e7fGGLdv387y7iMAkt7rpK45JMc+NTIywocPHzI9HhcXp3dPMgsVhZNjQUFfX1/VSPb0cwAYGBhkWqAvN/OQa9VTfdtib2+PxYsXY8mSJapvJDExMVi2bJnkQaezZs1CSEgIvv/+e/j6+mLAgAF48uQJjh8/jlmzZmW77aRJk/SeqVFOuq7gmlHnzp2xdOlSODg4wMHBQadc9NmvcsaQY0FBOc53ffJYvny5bOOtlLKqNSDP8bWxscGGDRswZ84cVREthICfn5/kycnkaI8+U/nLOUZFjn3q6OgILy8vLF68WDV9RHh4OObNm4emTZvql6BeKwVRrpNjQcEWLVoIHx8f8enTJ+Hg4CAiIiLE/fv3Rbt27YSvr2+e5eHo6Cj8/PxU///s2TPx9u1b0atXL7F06dI8a0toaKho0qSJsLW1FS4uLsLFxUXY2toKJycn8ejRI0kx7OzsxIULF4QQQnTq1Em1bxYvXiyGDRuW5XaaFhP73Nq0aSM8PT1FcHCwsLe3F4GBgeKvv/4Sjo6O4sCBA5LjNG7cWLXAmq503a9yx5BjQUE5zndd85D7PJOjLXLEEEKe43vz5k1hY2MjnJycxMiRI8XIkSOFs7OzsLOzEzdu3Miz9jg4OIhDhw4JIYRo2bKlePTokUhISBDDhw8Xs2fPznI7CwsLWY+vHPv09evXokOHDsLCwkLUr19f1K9fX1hYWIiuXbuKly9f6pVfvljrJz/TtAgfkLqkt9QBUBEREfjxxx9RsGBBWFhYIDAwEObm5vD09MTevXvzLI83b96oJjwzNzfHrVu3UKJECXh4eODIkSN51paKFSviyJEjmDBhAmxtbWFvb49JkybhyJEjma6vZiUhIUH1raFy5cp48OABgNRehZs3b2a5nZy3u2sSFRWFP//8E+Hh4ZK3CQ8Ph7u7O6pWrQpzc3NERUXB2dkZU6ZMkbS2VZo+ffpg5MiR2L59O/755x9cvnxZ7UcKXfer3DE0LSgIpN7F8OjRI0kx5Djf5chDDnK0RY4YgDzH18rKCocOHUK7du2QkJCAlJQUtG/fHkePHoW1tXWetUfTVP7GxsYYMmQITp48meV2QuahpXLs09KlS8Pf3x/r1q3DkCFDMHz4cGzcuBG//fab3gva8tKPwqUtwte+fXudFxQsXLiw6rpj2sqYLVu2RNWqVSXPtChHHnKseipHWwCgWLFi6NGjh+TXZ/TNN98gKCgI5cuXR+XKlVXX+VNSUhAbG5vldnK/wQQFBWHkyJHw8vKCubk5OnbsiNevX8PExATr1q2TtIaSXCu4Ll68GAAwe/bsTM9JHQuh636VO0bagoJubm6qBQX79u2r1YKCcpzvuubx9ddfSx4XJIVSVrUG5Dm+APDtt9/i559/lvz6jORoj65T+bu4uMg6maBc+7RAgQJo2rSp/pd6MsiXhcqtW7cwf/58GBoaYsKECTpNtHbq1ClMnz4dhoaGmDZtGpycnHIh05zpughfenZ2dli3bh2mTZsGS0tL7N27F4MHD8bVq1cz3S6dm3mkrdA5e/ZsWFtbY+3atejVq5dWq57q2pb0CwrmRMoYBBcXF0yYMAELFy5E8+bN0adPH3z99dc4d+5ctgsbyn3r7IIFC1CpUiVUqVIFf/zxB5KSknD69Gns2rULS5cuVa0inp20FVzHjh2LGjVq4PTp0xg4cKDWK7jKMR+PrvtV7hhyLKApx/muax5yz4AsR1vkiAHIc3zlIEd7HB0dMXPmTMybNw9169bF3Llz0apVKxw5ciTbO23kntZC132afuHanEhZuDZLel04UihnZ2dhYWEhzM3NRYsWLXSK0ahRI1WMxo0by5yhdo4fP64aE3Lw4EHRoUMHMXjwYBEeHi5p+wcPHojGjRuL9evXi5iYGOHk5CTq1q0rLC0txaJFi/Isj+fPn4tOnToJX19fER8fL1xcXISFhYWwsLAQmzdvztW2mJubi5o1a4offvhBuLq6ZvsjRUpKivD19RUnT54UQgixdu1aYWdnJ9q1ayfu3r0rKYYcbG1tVeNChg4dKiZMmCCEECIsLExYW1tLinH58mVhbW0tNm7cKKKiokT9+vVF27Ztha2trZgyZYrWOcXGxorbt2+Le/fuiU+fPmm1rRz7Va5jk9YGIYS4ePGiGDp0qJg5c6Z4+/atpO3lON/lyEMOcrRFrv2hlL89Odrz/v178dNPP4lt27aJlJQU4e7uLszNzUWtWrXEH3/8kcst+D+67tO091VXV1fh6emZ7Y8+8mWh4uTkJMzNzYW5ublwdnbWKUb79u1VMdq3by9zhtLNnj1bhIaG6h0nLi5OvHnzRgghxKtXr4Svr684evRonuchhFB9eH38+FEcO3ZMNXBLKl3asnbtWtG5c2dhY2MjPDw8xPHjx0VCQoJuDRBCbNiwQUREROi8vVzq1q0rwsLCRGJiorCzsxP+/v5CCCHu3bsnGjRoIDlORESECAsLE0IIERwcLGbPni02bNgg4uPjJcdISEgQM2bMEHXq1FEV+TY2NmLx4sVatUkJhg8frvfA4DT6nO9y5qGPtL99fdoiRwwlyY32pKSkiDt37ojIyEhZcsxtf/zxhxg+fLiwsrIS3bp1E5s3b86V3PPlhG/Xr19X3cI6YcIE1WAlbYSEhGDFihUAgOHDh0seZCm3unXr4vfff8e3336rd6yQkBAEBQXB0NAQtWrV0mpKY7nySElJwfnz59XykHpbcXq6tiUkJARHjhzB0aNHERERgZYtW6J9+/ZwcHDQ6pp+vXr1sG/fPlSqVEnr3OXk7u6OcuXKoVSpUti0aRPOnDmDxMRE/PLLLzA0NMSaNWtyjKHrCq4ZLViwAAcOHMDo0aNha2uLlJQUXLt2DStWrEC/fv0wdOhQSXFu3LiBrVu3IigoCAUKFECtWrXQr18/VK9eXXIu+saoV68eDhw48NnPd7ny0JfSVrWW4xzRl1ztiYmJwZEjR9TOke+//z7PF7TUZ5/GxMTgr7/+wpEjR3DhwgVYW1ujffv2aN26td4TPQKcmVbxxo4di6+++kqvBQVjYmIwduxY/PPPP2rzjrRt2xbz5s2TtK6FHHm8fPkSAwcOxMOHD/HFF18gOTkZMTExsLOzw9q1ayXNLSJHW9IEBQXh6NGjOHLkCKKjo9G6dWu0a9dO0lwqAwcORJMmTdC/f3/Jvy83hIaGwsPDA+Hh4fDw8ECvXr0we/ZsnDp1CuvXr5dUYDdo0AC//fabatS/rho1aoQ5c+ZkGs917NgxzJ07F6dOncoxxt9//40RI0ao1gtKTk7G9evX8eDBA/j6+kr6kJcjxpw5c/Dq1Su9FhSU43yXIw85ODs7Y+XKlbC0tPysMQB5ji8APHv2DDdv3tR4M4CUSdLkaM+jR4/Qt29fxMbGonLlykhOTkZoaCjKli0LPz8/vWdilkqufQoA79+/x7Fjx/Dnn3/i6tWrsLe3R7t27fSaIZeFisLJsQjfpEmTcOXKFUybNk3tm+7s2bPRqlUreHp65kkeI0aMwIsXL+Dt7a36AH348CEmTpwIc3NzSQPE5GiLJrt374a3tzdiY2Ml3Z0yevRoHDt2DMWLF4eZmVmm/SF14JgcA78zioqKwhdffCF5xdL169fjzJkzWq/gmlHdunWxZ88eVK1aVe3xx48fo2vXrrh+/XqOMTp06IDmzZtnuhtjwYIFuHbtGnbv3p0nMeRYUFCO812uhQ31vTlgxYoV2Llzp14rFssRA5Dn+O7ZswczZ85Umw02jdQ71ORoT//+/WFkZAQfHx/V5HxRUVH4+eefUaRIEaxcuTLHGHKQY59m9PHjR/j7+2PJkiWS31ezwkJF4XI6UbNaZDE9e3t7/Prrr5l6Cv7991+MGzdO0to2cuRhZ2eHLVu2oHbt2mqP37hxA4MHD5a0FoQcbUn/ewMCAhAQEICXL1+iQYMGaNOmTY5TjwM530UkdVR+ixYt8Pz5cwgh8O233+LEiROStksvNjYWBw8eRFBQEIyMjFC9enW0bdtWcs+Xriu4ZjR79my8evUKPj4+qm/+QgjMmDEDBQoUwLRp03KMYWVlhYMHD8LMzEzt8ZCQEHTq1EnSnA5yxPD398/2+fSL2WVFjvNdjjyA1GUboqKiIIRAmTJlcPbsWUnbpVHSqtZyHF9nZ2c4OTnBw8ND5x5iOdpja2uLPXv2ZLq8cv/+ffTq1QvXrl3TKTdtybFPgdTi5OTJkwgICMCZM2dQuHBhtGzZEm3atNF5tmogn96enJ9IKQBykn7SqPS+/PJLJCUl5VkeRYoUUU3Tnp6xsbHk22D1bcv169fx559/IiAgAK9evYK9vT2GDh2KVq1aSVrALY1ctweK1AHtqv/X1vPnz+Hq6oo3b96gcuXKSElJwZ49e7BmzRrs2LFDUtexXCu4vnv3DidPnoSzszOsrKxgZGSEu3fv4tmzZ7C2tla7lTGrHqeaNWvi/Pnzmd4wb9++LXn8gRwxpBYA2ZHjfJcjD+D/5usAoNV5nkZJq1rLcXxfvXqF/v3761ykAPK0p0yZMoiIiMiUd0xMjCxjO6TSZ5/Gxsbi5MmT+PPPP/HPP/+gUKFCaNmyJVatWoWGDRtK7tnNTr7rUQkLC9P7WrvS6LsI36+//opz585h2bJlKFOmDIDUP4SJEyeiZs2akosQffP47bffsGXLFixcuBA1a9YEADx9+hTjx49Hx44d0bNnz1xry5w5c3D8+HG8evUKdevWRdu2bdG6dWu9VjGWYyE/fQd+jxo1Cq9fv8by5ctV++P169cYM2YMypYti0WLFmkVTx9yzFWzfft2LF68GF26dEGDBg1gZGSEwMBA+Pn5oUePHqhWrZrqtVl1rcsRA9B/wTk5znc58gBy9+aAvF7VWo7j261bNwwbNgzNmzfXK++sSG3P8ePHsWDBAnh6eqJ+/fqqtsycORPdunVD69atVa/NzVWudd2nw4YNw7lz51CoUCE4Ozujbdu2cHBwgJGRvH0g+a5QkWsk9qdPn/Dnn3/i0aNHGDhwIIKCglC9enWdvo3oI6dF+KSs1NyrVy8EBgbC0NAQZmZmMDIyQkhICGJjY/H111+rdfdnNdZEjjyaNWumWq6+SJEiMDIywvv379UWwUuTVbeprm2xsLCAsbExGjZsqPpAz4qU3pK0hfwSEhJU+yP9Qn66XMLRRb169bBp06ZM5/utW7cwaNAgXLx4MccY+qzgKjepdx5l17UuR4ycFpzz8fHJMb4c57scechBKataA/Ic32PHjmH+/Pno378/qlSpkmmQspQB9XK0J31bNF12Tf//ubmauq771MLCAkZGRqhdu3aOA731mfAt3136MTY21ruae/36Nbp37443b94gISEB3bp1w6ZNm3D79m34+fllGiyYm7Zv345BgwZhxIgRcHJygr+/P969e4eff/4ZLVq0kBSjUaNGaNSo0WfPY8yYMXrlAOjelrQ3nk+fPuHp06d657FmzRq0a9cO7u7u6NmzJzZt2oSXL19i5syZGDlypN7xpSpQoABMTU0zPV6wYEHJSxvos4Kr3JRyieHQoUOYPHky+vTpg2bNmmHHjh0oXLgwhg8fjgoVKkiKIcf5LkceclDKqtaAPMd31KhRAFJ7WjOSWhTI0R69ZmuVka77tHPnzrm+fhmA/Dcz7fLly4WDg4OYP3++2Llzp/D391f7keLnn38WQ4YMER8/fhQ2NjYiLCxMvHv3TvTr108MGTIkdxuQQa1atVQTC/Xv318cP35cCCHEP//8I9q1a/c/l4dS1K5dWzURl6urqzh9+rQQQoiAgADh4uKSZ3kMHTpUjBkzRm3yuoSEBDFmzBgxYMAASTF0XcE1P6tVq5ZqxuVBgwapJhS8fPmyaN269f9cHkpZ1VouT58+zfZHCiW1J7/Ldz0qq1atAqB5gKCBgYGkW8YuXLiAdevWqX1T/eKLLzBx4kSt1jaQg1yL8OWXPJRCroX89DVu3Dj06NEDrVq1Ut1dEhgYiNjYWGzbtk1SDE0ruFapUgVDhgzBmDFjMHXq1FzLX6nkWkAvv+ShaXVdKysrdO7cGW5ubnkWQy7ffPONKqenT5+iYsWKEEJotbaVktqT38m3vKZC3L9/P8sfqdf4YmNjUbhwYY3PSb1LRi5pi/DFxcXB0tISf//9N1JSUrRaUDA/5aEUaQv5AUCNGjVUt0Vrs5BfWFiY3nlUrVoVv//+u2q5+vj4eHTo0AG///675OvO6e8I0WYF1/wsbcG5yMhIWFtb488//0RUVJTWC+jllzzSVtcFoPeq1vrEkIsQAj4+PrC3t0f79u3x4sULTJw4EVOmTNF4p5YmSmpPvve5u3Ryy7Nnz8SZM2dEXFyceP36tVbbDho0SMydO1cIIVSXfhISEsSoUaPEwIEDcyPdLMm1oGB+yUMp5FjIr0mTJopY52TKlCmia9euIigoSBw/flw4OTmJW7duifnz5+t0eeHSpUti586dIjo6Wjx8+FAkJibmQta5S64F9JSSR1xcnPD39xc+Pj7i7du34uLFiyIqKkry9mvWrBH169cXp06dEjdv3hTW1tZi/fr1ol+/fqJ79+55FkMufn5+okmTJmLfvn3C2tpahIWFicOHD4v69etLXptKSe3J7/JdoRIfHy/GjBmjWtUxLCxMDB8+XPTr109ER0dLihEcHCwaNGggOnfuLGrVqiUGDBggmjdvLurWrataxTQv6bugYH7LQyn0XcjPyclJ3LlzR+vf++jRI9X/x8bGilWrVomBAweKPn36CDc3N7UfKeRawTU6Olp0795dmJubCwsLCxEWFiaGDBki2rZt+9kXcEw7b7WllAX09Mnj1atXwtnZWVhbW6veE4cMGSIaN24secFDJa1qnd6bN2/E+/fvtd6ubdu24tixY0KI//syKoQQx44dE05OTpJiKGUVZ7lpsxBpXsl3tycvW7YMf/75J2bMmIGhQ4fi4MGDeP78OSZNmgRHR0fMmDFDUpyXL19i586duHv3LlJSUlC9enX06tXrsy0Ops+CgkDqJau0WyUB9Tk/OnbsmGd5vHjxAtu3b1ebRbVbt26qa8Z52RZN4uPjtVoM7OPHj3jy5AkKFCiAypUra7WtrlNwt23bFl988QV27tyJcePG4a+//kLjxo01ToSny8R0Qgjcu3cPZcqUwVdffSV5u1mzZuHu3bvw9vZGx44dcfDgQSQkJGDcuHGoUqWKpDld5LhV+sOHD/D29oarqyuqVasGd3d3XLhwAWZmZli3bp3ku2XkWEBTjrl29M1j3LhxiImJwZIlS9CoUSMcPHgQxYsXx5gxY1CwYEFJC1cqzZYtW7Bu3TrVJcsyZcpg4MCBku9Ss7a2xuHDh/Htt9/C1tYWBw8eRIUKFRAeHo62bdsiMDAwF7P/P1nN+G1gYABjY2OUK1cOjo6OeTL5286dO7F+/XpEREQgICAAGzZsQNmyZTFs2DC9Y+s7106+G0x7+PBhzJgxAw0aNFA91qBBA8yZMwcTJkyQVKiMGDECHh4eGD16dC5mKo0ci/CdPXsWEydORFRUVKbnChUqJOnDXY48Hjx4AFdXVxQqVAhWVlZISUnB/v37sX37duzcuVPSrJJytOXt27dYs2ZNpvkPEhMTERwcjCtXruQYIzExEXPnzsW+ffuQmJgIIQRMTU3Rp08feHh45Lg9oPvA7x07dsDJyQmfPn3CyZMnsXjxYq3XbslI0wqu2t6Gf/LkSSxatEitEKhatSqmTZuG4cOHS4ohx63S8+bNw5UrV9CvXz8cP34cV65cwcKFC3HkyBEsXLhQNfFZduRYUDBtrp20MQ8iw1w7UgoVOfKQ6+YAJaxqDQC7du2Ct7c3evXqBXt7ewghcPnyZSxevBhFixaVtATGN998g8DAwExfPM+cOaPVbd/6tufy5cu4fPkyjI2NUblyZQCpC41++vQJ5cuXx7t371CwYEFs2bIlV1eGPnToEBYtWoS+fftiw4YNAFL/dn18fFCoUCEMGDAgxxhyzZOj0Wfpx8lFVlZWqtv50nfpPXnyRNSpU0dSjLp166pifG6enp6iZcuW4syZMyI6Olq8f/9enDx5Ujg7O4t58+ZJiuHi4iLc3d3F6dOnhY2NjThx4oTYsmWLqFevnuo247zIY8CAAWL48OGqbmwhUru0R4wYIQYPHpxnbRk9erSoX7++8PDwEDVr1hTjxo0TLi4uwtzcXKxdu1ZSjPnz54uGDRuKnTt3ivv374u7d++Kbdu2iQYNGojVq1dLiqGrsWPHivXr1wshhKhXr57qtnFdBQcHi8aNGwsbGxvh4uIiOnbsKKytrUXr1q3FixcvJMexsrJS/b2l/9sLDg4W1tbWkmLIcau0g4ODuHbtmhBCiIkTJ6qmFHjw4IGoV6+epBjDhw8XXbp0UbvMFhQUJFxcXISnp6ekGG3atBGenp4iODhY2Nvbi8DAQPHXX38JR0dHceDAgTzLw8bGRjx58kT1/2nH5d69e8LW1lZSjL/++kvUrFlTdOvWTcybN094eXmJrl27itq1a4vLly/nWQwhhPjuu+/E1q1bMz2+bds20b59e0kx9u7dKxo0aCD8/PyEtbW12L17t/D29hZWVlZix44dedYeHx8f4erqqjaOMioqSgwYMEAsX75cJCQkCE9PT8nvj7rq3Lmz2L9/vxBC/Rz57bffJI9Tc3d3Fy1bthQ+Pj6iVq1aYtGiRWLEiBHC3Nxc7N69W6/88l2h4uLiIvbs2SOEUN/hK1eulDy/hZeXlxg9erQICgr67Nfr6tWrJy5dupTp8XPnzgkHBwdJMerUqaMaW9OzZ0/x77//CiFS/1h79OiRZ3nY2NiI+/fvZ3r83r17om7dupJiyNGW+vXrq64rt23bVhVv6tSpYvz48ZJiODg4iL///jvT4wEBAaJZs2aSYqTRduB3WoGUkJAgJk+eLJYsWaLV78uoX79+wt3dXbx790712Js3b0S/fv3E8OHDJcfp3bu3qtBL/7c3c+ZM0bNnT0kxatWqJZ49eyaESJ0jJq1ouXXrlnB2dpYUw9raWlVgNWnSRPj5+QkhhAgNDZX8wWxraysCAwMzPX79+nVhb28vKYYcc+3IkYccNwe0b99e+Pj4ZHp8/vz5olu3bnkWQ4jU9wBNxXloaKjkL6NCCLFr1y7RrFkzYW5uLszNzYWDg4PYtGmT5O3laE/Dhg01jme5d++eaNiwoRBCiIcPH0ousHWVNqBYCPW/3bCwMMn7NDfnlcl3l35GjhwJDw8PBAcHIzk5Gf7+/njy5AkCAgKwZMkSSTFOnz6NsLCwLK+H5+ZUxhnJsaBg+hiVKlVCUFAQHBwc0LBhQ9W0+HmRR1aLtEm9HTBjHrq2JTY2Fubm5gCAKlWq4P79+7CwsICrqysGDx4sKUZ8fLzGNaWqVauG9+/fS4qRkJCAiRMn4ujRozA0NERAQAAWLFiA2NhYrFixIssF05YuXYrNmzfju+++Q6lSpbBp0yacOXMGlStXznQJTsoYlRs3bmDPnj2qZeaB1FuWJ06ciF69eklqCwCMHTsWAwYMwK1bt5CUlITVq1fj0aNHuHPnDjZu3CgpRtqt0l9//bXOt0pXrVoVp06dQvny5fHq1Ss4OjoCAPbs2SP5cpYcCwrKMdeOHHlMnDgRvXv3xqVLl5CYmIgZM2bg8ePHiI6OljzXTmhoKLp27Zrp8e7du2PHjh15FgNInUPm9u3bmf7+AgMDc1weI+Pv7d69u2pV6dKlS0veFpCnPUlJSRqPb3x8PD59+gQg9TxKG+OUW8qUKYMnT55kuux1/fp1yePUcnNemXw3j4qTkxOWL1+O27dvo0CBAti4cSPCw8OxZMkSfPfdd5Ji/PTTT5g3bx7mzp2r8Scv9enTB7Nnz1Z7k46JicHSpUslX1+uXr06/v77bwCpH8xXr14FkDrAKS/zaNiwIRYuXIh3796pHouKioK3t7fkJcDlaEvZsmVVk9SZmZnhwYMHAABTU1PJRUbnzp2xbNkytWnqhRDw8/OTvOLt6tWrcf/+ffj5+akG4bq5uSE0NDTbNVwaNGiA1atXo2TJkrhx4wasra1RpEgRvHz5Ek+fPlX7kSJtBdeMtF3B1c7ODrt27ULhwoVRqVIl3LhxA+XKlcP27dvVxoxlx9HRETNnzsTDhw9Rt25d/PHHHwgMDMT27dslD8YbNWoU5s6di6FDh6J9+/YwMzPDvHnzsHnzZskLcI4aNQrTpk1T+1Ly9OlTeHl5SY4hx1w7cuRRtWpVHDx4EM2bN0fjxo1haGiINm3a4MCBA5Ln2klbXTcjXVa11icGAPTo0QMzZ87Ejh07VHNkbd++HbNmzdJYOOSkVKlSWhcpgDzt+X/snXlcTdv//19Hcc3XeOneSxSpW5qQIVOKi4wZiwplFhUaSSVlqESmRMO9upGhiMzXmCkZU24jIWVIVIai9fuj39nfjnNO7XP26jh8ej4ePR7s01mtfYa93+u93u/Xq3///vDy8hIIXHNycuDj44P+/fvjy5cviI6OZhZWtcWUKVPg7e3N+KNlZ2cjOjoaa9asgZmZGasxalNX5ofr+vnRoGEoeObMGeaCN2jQIPz555/o06cP/vvvP+jo6GDz5s0ymUd+fj6mTp2Kt2/fMnbijx49QosWLfD333+z6qiicS7r1q3DmTNnsHbtWpSVlcHBwQGenp44c+YMMjIycPjw4RrHWLp0KU6dOoWff/4Z2traUFRURGpqKp49ewYdHR2BzIY4P49hw4bB09MT/fr1E+g8uHr1KpycnHDp0qUa50EDeXFwBSo7dlxcXGBoaAgLCwvMmTMHly5dgqKiItatWwdTU1NW47x58wYFBQXMjfjevXto0qQJ64wKDUPBmzdvwtbWFosXL8b48eMxfPhwtGnTBs+fP8eIESNE+szUxjz4zQFcPMrkydW6oqICfn5+iI6OxpcvX0AIgaKiIqZOnQo3NzfUqyeb9TeN8yksLMTcuXORkpKC5s2bgxCC4uJi6OjoIDg4GA8ePICDgwNCQkJgYGBQq+cTGBiIyMhIfPr0CQAkfk1DQkIQFhaG9evXo2XLlrCyssKiRYuQmJiIDx8+YO/evVLP7YcIVLZs2QIbGxs0atRIbLsXnwYNGqB9+/YwMTERqz4LVN4Qw8PDkZGRgQYNGqBr165YuHChxO2JXKnpfKpS3QrrwYMHUFBQgLq6Om7cuIHw8HAoKSlh8eLFrFbNtOZRWlqKw4cPIyMjA4QQdOvWDaNHjxa7zSEKrudSVlaGDRs2QFtbG6NHj4aHhwdiYmLQrFkzbN68mVV2x9XVlfV8xW2/iGuRfPToEcaMGYN79+6JfF5SUhL09PSgqKiIpKQksX+X72xdE1wcXGl9LvjcvHkT2traTKBHpGyVBoC8vDxkZWWhV69eKC0tlWjVHBsby/p3q8ugFRQUoKysDB06dEBmZib27t0LJSUlWFlZscqq0JhHz549ERcXx0laQV5cratSUlKC7OxsAJXZVUmuITSgdT6EEFy/fh1paWnMdY0flLx58waKioqsurto8OHDB2RmZoIQIvFrys8od+rUCYMHD8bOnTsREhICJSUlrF+/Hn/88YfU8/ohApUhQ4bg4MGDaNmyJYYMGVLt73758gWvX7+GoaEhQkJCRP5OVFQUfH19MWLECOjo6ODLly9ITk7G2bNnERAQgBEjRtTGadQaNFZUNHB1dYW7u7vQh7+oqAhubm7Ytm1bjWPU1rkUFRWhadOmnJ23JcHMzAzm5uaYNGmSQKCydetWnD17FocOHRL5PHV1dSQmJqJ169ZQV1cHj8eDqK8x2wv+jRs3WM/561Xd19+358+fo379+ujQoQMUFRWRm5uL8vJyaGlpsVpR9e3bF7t27YKmpibrOX2NtLU/tKHxeafBmjVr8PLlSyxcuBDKysqspATkHVHt9MOHD5dIx+h/nby8PNa/W9uZ1Jr4IYpp+TULX/9bHDdu3MDcuXPFPh4WFgZXV1dMnz6dOTZjxgzs3LkTmzdv/u4ClWvXrn2zL3BycjKePHkCAIiLi4OmpqbQhTsrK0vkXq8opD2X6jIPX9OrVy+Jx5cGaQu/z549y/i8iNtmkwQuKeWq37eIiAicP38eAQEBTPbi3bt3cHJygpqaGqvxWrVqheLiYqnnAwjW/sybNw9AZe2Pq6sr/P39WYs+SgPtzzsN5Kk5gAZZWVmwtrZGaWkpOnfujC9fviAmJgbbtm1DZGQkJ2Exvhhfjx49KM5YPNnZ2fD29satW7dEFtXW5nszZMgQoe3DrxGXSeUTFxfH+u+xMQQWxw+RUZGUwsJCxMfHw9raWuTj2traiI+Ph7KyssDxnJwcjB07VmxKXl75liuqW7duMZ0j4lb+jRs3xqxZs1htDUh7LtVlHqrCNgtBi4sXLyIkJERAAXn27NmsC7/liX79+iEsLEwoJZ6eng5LS0tcv369xjHWrVuHf/75B4MGDYKysrJQUMrmM/Ita39of95pUNP2Edvib3lh5syZUFRUhL+/P9OpVlhYiKVLl6JJkyastiNTUlKwcuVKpKeni+yokdU1wNLSEq9fv8bUqVNFbu/U5nvDJZPKh/Z2njh+iIxKVfg3JHGkpaWhVatWYoMUoLKr4uTJk0KtqufPn4eenh61ucqKb7mi0tfXx8OHDwFUvjeXL1+WqIXwa6Q9FxqZh9pg4MCBTPusNLx8+RJBQUHMiuzrG6Msz7u8vBzv378XOv769esaV258Tp48idatWyMlJQUpKSkCj/F4PFY394KCApGt40pKSqy7uqSF9uedBt9bIFITNNrp/fz8oKCggBUrVsDPzw8uLi7Izc1FVFQU1q9fX1tTF+Lu3buIjo7mtNUpLeKCj5KSEtSvX59V5pr/Wa9tfrhAxdfXV+Ci+PnzZzx69AhxcXFwcnIS+7yqUbiSkhKCgoKQkpICfX19KCgo4MGDBzh69ChsbGxqdf61AVtPkdqGxoda2nORxEuoNqFd+L1y5UqkpKTA1NRUZgV34hgyZAhWrlwJDw8PaGlpgRCC5ORkrF69mnW3Dput25pQVVXF1atXMWnSJIHjx44dE+jEqG1kdRFng7w0B9CA307/dQuwJO30qampiIyMhLa2Ng4dOgQ1NTVYWFigffv2iImJkdn2fsuWLVm3qtc2kZGRCA8PR0FBAXg8Hn7//XcsWLCA05YNLf5ntn6OHz+O/fv3IywsTOTjNRXh8uHxeDJfndemCZ8s5/H+/XtERESIXf2La+OlgSSeJmznQQjBpUuXGIPFLl26oG/fvlBQUBD7HNqF37q6uti1a5dc3HBKSkqwZMkSJCYmCnQLDR8+HOvXr5doyzEpKQlZWVkYNWoU8vPzmZZ4Npw7dw4ODg6YMmUKoqOjYWtrK1D7w3ZbjauBJg2DRRrzqK3mgMLCQqZWSpbQaKfX0dHBiRMnoKSkhGXLlkFfXx8WFhZ48uQJJk+eLHENUVlZmVRb6qGhoUhOToa/v7/Mu5aqEhwcjLCwMFhZWUFHRwcVFRW4efMm9u7di2XLlgnUa1aFTZ0LHy73zf+ZQOXZs2cYOXIk7t69+62nIhE1mfDdvn2b1TgXLlzA7t27kZ2djX379uHQoUPo2LEjxo4dK7N50HL6leZcaLQTV6WoqAg2NjZ48OABmjVrBkIISkpKoKmpifDwcDRv3pz136sOfuG3uNe3X79+iIqKYgzNpIG2g2tOTg7S09PB4/GgoaEhkclbSUkJbGxscPfuXfB4PJw6dQpr1qxBbm4uwsPD0a5dO1bjcK39EWWgmZKSgg8fPrA20Fy5cmW1BovOzs4ymYexsTFmzpwpdLPZuXMnYmNjcfz48RrHoOFITStw49JOz2fMmDGYM2cORo0ahW3btuHJkyfw8/NDamoqLC0tGSHJmuDqODxz5kzcvHkTX758QevWrYWCHVktigcMGABnZ2eMGjVK4Pj+/fuxfft2sZnO4OBg1oEKl5qsH27rRxSlpaXYs2ePxHvFr169ElAe5SPLVq3AwED88ccfsLS0xJIlS+Dv74+8vDxs3ryZ9Y09MTERixYtgqmpKe7cuYOKigp8/vwZrq6uIISwSu3RmAcNp19pz4XtHNmybt06fPz4UUDd8+HDh1i+fDkCAgLg5eVF5e906dIF9vb2Yh8fO3Ysdu3aBW9v72ozOdVB28G1c+fOUgdOgYGB4PF4OH36NJOlW758OZYtW4b169cjICCA1Thca3/Wr1+P3r17IyAggNmr//TpE5YtWwZ/f3+xGa6qnD17Fn5+fhg1ahSGDh2K1atXo0OHDnBwcGBtG0FjHi9fvsSAAQOEjg8dOpS1Dg4NR2oaztgAncyrpaUl3N3dAQB//vknxo4di4YNG+LWrVvQ1dVlNQYNx+EePXrIrMOoOoqLi0XWyfTo0QOvX78W+zw7O7vanNb/wckpSA7p1q0bUVdXF/rR0NBgzApr4vz586Rv375CY/DHliU0TPimTJlCwsPDCSGChlM7d+5k7TZKy9iQq9MvjXMhhJCCggISHBxMHB0dyatXr8jx48cFHGpronfv3uT69etCx69du0b69evHagxxn1X+DxtcXFyIlpYW6devH5kyZQqxtLQU+GGDvDi4EkLI4MGDSXJyMiFE8P29detWteaXsbGxrH/YQMNAk4bBIo152NrainQFDwsLI1ZWVqzGoOFITcMZmyanT59mXI6PHDlCRo8eTebMmUOePHnC6vk0HIflBUdHR7JmzRqh4/7+/mTRokWsx0lLSyMuLi5kypQpJD8/n+zZs0fkdVJSfriMytfFtEClgZeOjg7rFPSaNWugra0NCwsLNGzYsDamyRoaJnz//fefyEr24cOHs15R0ZjHsGHDcOjQoWozBDVB41weP36MyZMno2nTpigoKIC9vT0SEhLg6uqKiIgI6Ojo1DjG58+fRWbo2rRpg5KSElbzkLbw+2u+TtdKyoEDBxAWFiag3NqyZUssX74cM2fOhJ2dHWxsbGBubs7p77ChsLAQbdu2FTrevHlzkR1FfFxcXFiNz+PxWGUQaRho0jBYlHYetJsD3r9/DyUlJQCVWc3Zs2cDqNz2rbqNUx3v3r2Dvr4+gMpMYWpqKlRUVDB37lzY29tjxYoVrMYpLCxEaGgoMjIyRGa82WRcfHx8YGVlxXSHjR49GqNHj2b19/nk5OSIrA3r3bs3vL29xT6PbUE9j8fDwoULJZqTJFTdDi8vL8fff/+NmzdvokePHsxn5NatW0JF6eJISUmBubk5dHV1kZKSgrKyMqSlpcHPzw9bt27FoEGDpJ7rDxeosDVQqo4XL15gx44dUFFRoTAjbvBN+CwtLRkTPmtra4lM+Jo1a4YXL14ItWxmZmYKtPjV9jxoOP3SOJe1a9fCxMQEPj4+zIUzMDAQzs7O8Pf3x99//13jGJqamoiOjmbSx3yio6OhoaHBah7iPqt8Mzs29UM0trTkxcEVALp3747jx48LSQNERUVVK8FNu8OGb6C5efNmpjZHUgNNvsGin58fevToAV9fXwwdOhQJCQmsRcmkncfXqsbt27cXavn+5ZdfcPToUTg4ONQ4DxqO1DQCNwBwcnLC/fv30a9fP6kXkrGxsRJtN4lCWsfhQ4cOYdq0aWjUqJFY9Wmg9gOVr01L+UFX1e+Svr4+Y1NQE/7+/pg1axYcHBwYGQ8fHx80adIEwcHBdYEKbb+RPn364MGDB3IRqMyZMweLFy9G/fr1MWrUKAQHB2POnDn477//0KdPH1ZjjB49mnF+5vF4KC0txcWLF7F69WqMHDlSZvPgO/0ClcGgNNA4l1u3biEqKkogm6GoqIgFCxZg8uTJrMawt7eHlZUV7ty5wwQ7ycnJePjwIbNfLS3a2tqsMwQ04Du4BgYGMiKHNBxcy8vL8fDhQ6ioqKBJkyasnuPo6IhZs2bh3r17+Pz5M7Zv346srCw8ePAAu3fvlujvP3nyBOnp6fjpp5/QpUsXiRRLly1bhqlTp8LIyEjIQJOtg7qTkxNcXFxw48YNWFhYYN++fZg0aRJjsFib86DR5l2VxYsXw87ODuXl5QKO1FFRUdi6dSurMWgEbkDl94yrSd+gQYOwZ88eLFq0SOpuG77jMD8zkZ2djcuXLyMoKKhanS5JldRrCzYLMklISUnBqlWrhI5PmzYNMTExnMb+Ibp+1NXVUa9evRo/7Gxbi/Pz8zFx4kT069cPHTp0ENpKkpWiJB+uJnzl5eVwcXHBsWPHAPyfYubgwYMRFBTEelXCdR40oHEuvXr1QlRUFNTU1ASUS+/duwdbW1vWio337t1DWFiYgMHizJkzoa2tLfX5lZaWYsuWLTh16pTMKv5pObg+f/4c7u7usLe3h5qaGiZOnMhkuiIiIlhnmh4+fIiwsDCBjp1Zs2ax2pIDgLdv38LNzU3g9atXrx7GjRuHVatWsbZgoGGgWRUipcEirXlwbQ7g6khNyxl7+PDhCAgI4CSSZmlpiaSkJPB4PLRu3VroM8H2u8fVcZjPq1evREo2yLJxg6v8RN++fbFz5050795d4Lp6/fp1ODg44MqVK1LP7YcIVDw8PHD69Gk0atQIpqamMDU1ZS3tK268mJgYtGzZEo0aNRJ4TNY6KjRN+B4/foy0tDRUVFRATU0NXbp0EWkXX5vz+PjxI06cOIHs7GzMmjUL6enp6Nq1K1q2bCnROFzOxcHBAfXq1cOGDRvQo0cPHDlyBM2aNYOdnR1atmyJzZs3S3t6EiFORZnH48HLy4v13jANCAUH18WLF+P58+fYuHEjkpKSsHr1auzatQuHDh1CXl6eWA2jqsTFxWHkyJFC24Lv379HTEwMq3T98uXLcf/+fXh4eDAtvTdv3oSPjw8GDx4MDw+PGsegZSj44cMHpKeni7wJSeIp9f79e+Tk5EBBQQGdO3eWyO/qwoULcHV1xZs3bwSOkxpaeEXBxZGaljP22bNnERISAgcHB3To0EEoIGBzc68pCy/JYpSL4/CtW7fg6uqK3NxcgePSvDdcoCE/sXLlSuTl5WHjxo0YNGgQjhw5grKyMjg4OEBLS4t1JlIUP0SgAlSKY127dg0JCQk4c+YMWrduzQQt/JQpW/T19bFy5Uq5kJ6mYdFubGyMgwcPCmU9CgoKMGbMGFYeLDTm8erVK0yZMgWvX79GWVkZTp48iTVr1iAlJQWRkZGsgiAa51JQUAArKysUFxejqKgIKioqePbsGVq0aIE9e/aIFdKivcV46NAhzoXf8oSBgQEiIyOhoaEBe3t7EEKwadMm5OTkwMzMTOzFrrCwkKmFMTY2xoEDB4QC19TUVDg6OrLy2erRowdCQkKECh0TExPh6Ogo9jNS1VBQXKCSlZWFPXv2sLpwnz17Fi4uLigpKREKUtjehMrLy+Hr64uDBw8ydUQNGzaElZUVq9oSoLKIXUVFRWxzAJstFBqO1DScsYFKlV1nZ2eh4mpZ3NxpOw6bmZmhcePGmDlzpsiFAJftLUkwMzND69atxcpPmJiY1DhGSUkJbG1tce/ePVRUVKBZs2YoKSmBuro6wsPDOWXdf4gaFaCyK8XQ0BCGhobw9PTE5cuXcfz4cUyYMAEdO3bEyJEjYWpqyurD06hRI6bu4Fszfvx4+Pv7S2zCl5CQwJivPXv2DN7e3kKrsGfPnrEW65F2HlVZu3YtunbtiqNHj6Jfv34AKvVI7O3tsWHDBuzYsUMm59KuXTvExcXh6NGjTFbG3NwcY8eOrfaC+3Xh2/Pnz1G/fn106NABioqKyM3NRXl5ObS0tFgFKjQKv8UhiQssLQfX8vJy/PzzzyCE4OrVq3B0dAQAVFRUVKsqe/HiRbi4uDDbeBMnThT6HUII62K8+vXri3wfW7VqVW1BMI/HY2qDeDwefHx8hH6ncePGrDtl/P390bdvXyxYsEBqe4PAwECcOHECbm5u0NPTQ0VFBW7duoXg4GA0atSIcYeuDhrNATQcqWk4YwOV3XJ9+vTB5MmThTLeksA/n5ycHGzatAlnzpxB165dqw0OaDgOVyUjIwNxcXFUMuZcyMzMhK+vL9TV1aGhoYHGjRvD0tISjRs3xu7du1kFKk2bNsXevXtx9epVZttWTU0NAwYMkGgbTBQ/TKBSlfr168PIyAhGRkYoKyvDwYMHERAQgMDAQFYfHgsLCwQHB2P16tWcvgg0kNaET09PD3v37mVWcnl5eQKeEjweD40bN2Zd1EfD2PDatWvYuXOnwGv6888/w9nZuVqJe9rnwl8tf721UlRUhAULFohN61ctfIuIiMD58+cREBDApL/fvXsHJycnqKmpif3btLMyNFxgV61ahdevX2PZsmWc/IL++OMPHDhwAG3btsW7d+8waNAglJWVITQ0tNqt2HHjxuG3335DRUUFrK2tsXnzZoEOLv77W93rWhUrKyv4+voiKCiIkXh///49Nm7cWK1pHW1DwadPnyIkJESkQSJbDh8+DF9fXwGRRA0NDbRt2xa+vr6sAhUazQHHjh2Dp6cnevfuzRzr3bs31qxZAycnJ1aBysCBAzF37lxOzthAZQbOxcWFU9ZR2lZa2jYfSkpKKC0tpTqmNNCQn7CyssKWLVvQt29fgY60169fw8bGBnFxcVLP74cMVIDKVcSpU6dw4sQJJCcnQ1lZGZaWlqyee/PmTSQlJeHEiRNo3bq10GpQljUq0prwKSkpMV8qS0tLbNmyhXX7Ls15VKW0tFSsud7nz5/FPo/GuVRN68fFxUFTU1NkWp+tx8fOnTuFtEeaN28OR0dHWFpaMtmEr9myZQvrwm82F24aLrC0HFydnZ0xb948vHnzBrNnz0b79u3h6emJs2fP1tgJxa/X+Ouvv6Cvr8/a14fP1yvdZ8+eYciQIVBWVoaCggJycnLw6dMn1u7JNNqdO3XqhPz8fE6ByqdPn0Q+v0uXLqzPxdPTExMnTsSlS5ekbg6g4UhNwxkbqAyQbt++zSlQkbaVlobjcFXmz58PX19feHl5QUVF5ZsZFEorP3HhwgXcv38fQKXC9Y4dO4Su8Y8fP8azZ884ze+HClQKCgpw8uRJnDhxgvkgjxgxAitWrJCouFZeZI0BOhbt/DY0LoVwNObRq1cvREdHCwkNbd++nfVWm7TnQjutX15eLlKA7PXr19WmhidPnozTp08DAJXCbxousLQcXLW1tXH58mWUlJQwXkfW1tawt7dnvT9tYGAgMiXfpUsXgdX814wfP5711h8baBhoLlu2DKtXr4aDgwNUVFSEtkvZbEOPGzcOmzZtgr+/v0ARamRkJOvv5LZt2/Dq1StcunRJZHMAmwCBhiM1rVbcnj17YtWqVTh//jw6duwoFNSyzUTSaKXl6ji8fft25OXlif19WRXTSis/8dtvv8Hb25v5fiQkJAhs8/CzoZIIWIrihyimjYiIwMmTJ3H37l38+uuvGDFiBIYPH855hSgvcDUULC8vh5OTE6dCOBrzyMrKwrRp06CkpISMjAz07t0b2dnZKC4uxp49e1jdsGmci7q6OhITEyUK1L7G2dkZKSkp8PDwgJaWFgghSE5OxurVqzFo0CCsXLlS7HNpFn7TcIGl6eBKpHCUrkrVlPzt27dx/PhxhISEIC4ujrO6pSTQMNDU1NRkWj1FmeexuQktXboUp06dws8//wxtbW0oKioiNTUVz549g46OjkDwIy54otEcQMuRGuDmjA1U73TPtiuTRiuttI7DVYmNja32cVk2dHCVn6jqDE+bHyKjsnbtWtSvXx8DBgxA9+7dAVR+sc6dOyf0u2zTiykpKdi9e7fABdfa2pqTRoY00DAU3LZtG+dCOBrzUFVVxZEjR/DPP//gl19+QUVFBUaMGAELCwvW3UQ0zoVGWn/lypVYsmQJrK2tBRxbhw8fXqMrLs3Cb2VlZSQnJ2PUqFFQUVFh0rDFxcUiNTNEceXKFdy8eRMGBgacHFxpOEpv2LCBirrlw4cPBep2qmpCiMqmfQ0NA82wsDDOWZ4GDRoIWST06tVLotZmGs0BRkZG2Lx5M0JCQqCgoIDdu3eja9euEgUpXztjGxoawt/fX2JnbBqZGRMTEwQFBWHjxo3MsaysLKxZswaDBw9mNUZMTAxWr14t8P6YmJhAVVUV27dvZxWoyENnKR/+wr6srAwGBgYSdxx9/b4UFRWhadOmEm/jiuKHyKhUF2FXhW20fePGDcyaNQtqamro2bMnU2mfnp6OyMhImW4LTZ06FcOHD8eMGTMEIv/Q0FAcOXIE8fHxNY4xbNgweHp6ol+/fgJjXL16FU5OTkxHTW3PgwZcziU7Oxv79+/H7Nmz0apVK5SUlMDDwwPnz59HmzZtsHDhQtbZoapjpqeno169etDQ0OC0b1618Lu0tJTVinv//v3w8fHBmjVroKGhgbFjx2LSpEm4desW2rRpw0rNlZamhKurK+7du4eAgAAhR2l9fX1WjtI9e/bE/v370blzZ4H3Nzc3F2PHjmXVFhweHs4UAPI7ifj/7tmzJytFzl69euHgwYOc6kvkha1btyInJ+ebNwd4e3sjNTUVGzZswJgxYxidjWXLlkFFRYW1MzYfLpkZGq20urq6iI2NFXIKz87Oxvjx43H37t0ax6ioqEB8fLzILUYej8dJe0RSoqOjERoaivz8fJw8eRK7d+/GL7/8ggULFlT7vOvXryMqKgorVqzAL7/8ghcvXmDx4sW4e/cuGjZsiNmzZ9c4Rk38EBkV2jLEGzduxIQJE4QurF5eXggKCqIuPVwdNEz4aBTC0ZgHDTMxac8lLS0NFhYWaNGiBbPS8fDwwIkTJzBjxgw0a9YM3t7eaNasGevAFwBUVFQEuikkaQvmw6Xwe9KkSWjZsiVatGgBVVVV+Pn5ITQ0FEpKStVuP1WFltLyuXPnsHnzZoEtPHV1daxYsQKOjo6sApX69euLNHV8/vw565tsVFQUZs+ejUWLFsHIyAixsbEoKirC0qVLYWxszGoMaQ00+Z0PzZs3r7aTDWDfQZKRkSH2O8Mmkyltc4AkXRps5nHu3DkEBAQIBPOqqqrw8PCQyNOGRmaGx+NxbqU1NjZGdHQ03NzcBI7HxsYyXkg14evri6ioKKirq3PeduVCfHw8AgICYG1tzRS+q6iowN/fHw0bNsSsWbNEPu/69euYNWsWs5MBVC5YUlNTsWLFCjRr1gzr169H+/btOckx/BCBCm1SU1NFpoenT58uUuOhNqFhwkejEI7GPGiYiUl7Ltu2bcOAAQMQGBgIRUVFFBQU4Pjx4xg3bhxT6NW8eXOEhYWxClS4tgXTKvyW1gW2NhxcaThK00jJ5+fnY9KkSfjpp5+grq6O+/fvw8TEBC4uLli7di0rdVtpDTR/++035kYnTjhQEnbs2IGgoCCRj7F1gpa2OYC2I7W0zthfExgYCB6Ph9OnTzPS7suXL8eyZcuwfv16VpmZcePGISgoSKiVtiZoOw7Hx8fD19f3m28BhYWFwd3dHePHj2cUpK2srNC4cWOEhoaKDVR27tyJSZMmMVvuT548QWJiIqZPn45p06YBqKzJi4qKqgtUaNOyZUshuWmg8osmjdAZF2iY8NnZ2cHBwQGZmZn48uULYmNjBQrhZDUPGmZi0p7LzZs3sXPnTmY1yS+WGz58OPM7PXr0YJ1+lrYtWFTht7u7u9SF39K6wNaGgysNR2lnZ2fY2tqiT58+qKiogJmZGZOSZ9s50LhxY6aItWPHjsjMzGRqB9i2SUproFk1gKHhbP3XX39hwYIFmDt3rsStr3ykzZjRdqSW1hn7a2hkZj58+CDVYom243BZWZlE9Ua1RU5OjpCSM1DZCu7t7S32effv38fy5cuZ/1+5cgU8Hg9Dhw5ljmlra1c7BhvqAhURGBkZYfXq1QgMDGQUAzMzM+Hj4yPRtgAN7O3tkZ+fz6xYxo8fz5jwsU1L0yiEozGPdu3asXbRFYe051JcXCyw2r958yYUFBQELhJNmjSpVrm0KtK2BdMu/JbWBbY2HFxpOErTSMnr6+tj586d8PDwYETo5syZg+TkZNafP1rbu1y3bcrLyzF27FipgxQ+tJoDuDhS03LGppGZsbKygp2dHaZNm4aOHTsKBS3iggfa2/4DBgzAhQsXmOzDt6JNmzbIyckRqrG7fft2tT5MHz58ECiST0pKQoMGDZhCeKCyeYBrUXldoCICe3t7zJw5E6NGjWJaE4uLiyVa1dGifv36CAgIwOLFi0Wa8LFh9+7dGDVqFKKior7pPJYvXw4vLy9OZmLSnku7du3w9OlTKCkpAaiM/HV0dATEie7cucP6wltRUcFcLPlKjj179oSxsTFCQkLEPo9/jvwbmDjY6lu8fPkSCQkJiIyM5OQCC3B3cNXT00NUVBTCwsJw+fJlxumXbw7IBmlT8lXh3xCjoqJgbm6OHTt2wMDAAB8+fGCtkwNwN9CksW0zduxYxMTECKxaJaVqc4ChoSHTHGBhYcG6OYCGI7W+vj727t2LsLAwKCsr486dO+jatSvc3NxYO2MDdDIzgYGBAIDVq1cLPSaJXxBXx2FdXV1s2LABV69ehaqqqpCeEa36sZqYMmUKvL29ma2t7OxsXL58GUFBQbC2thb7vN9//x2ZmZn49ddf8eXLF1y5cgU9e/YU2Hm4du0aJ484oC5QEcnPP/+MAwcO4NKlSwLW6v379+fsWSApfBM+ZWVlKCsrM8clMeHbvn07K6+G2p4HIQRZWVlC+52S6EpIey5Dhw5FQEAAPD09ceHCBTx//hxz584VOI/g4GDWxZbStgXTLvzu3bt3tUJobKDp4KqtrS325swGaVPyVVFTU8OZM2fw/v17NGnSBDExMTh69Cjat28vsNVXHV8baE6aNAlhYWESGWjS2LaxtbXF2LFjkZCQgN9//11oZcqmIJdGc4CPjw+ysrIQFhYm5Ei9bt06Vo7UfGfsr7dG+eJ6bLcwaWRmTp8+zflaXpPjMJtAZc+ePWjVqhVSU1ORmpoq8Jgkar1cmT17NoqLi+Ho6IhPnz5h7ty5UFRUxNSpU6u1aTA1NcXatWtRXl6Oy5cvo7CwEBMmTGAev3fvHrZs2QJzc3NO8/sh2pN/NKqa8MXGxmLkyJEiTfjS09Nx7dq1GsezsbFB//79MXPmzG86jyFDhkBDQ0OsmRib2hVpz6W4uBjz5s1DcnIyM5etW7eCx+Nh+/bt2LZtG5SVlfHPP/+w0vug0RYsL3BxcP306RPzmaiu1RJgV7Oxc+dOxMXFSZySFwUXJeZly5ahpKQEGzduRL9+/XDkyBE0b94c9vb2+Omnn8QaaH491wMHDggE9pIyY8YMpKWloU+fPiLtJ9i8pjo6Ojh06JBQcJWVlYWJEyeyavmW1pGatjM2n4cPHyIsLIzZHuzatStmzZrFOjMzceJE+Pj4cFKFpuE4LG98+PABmZmZIIRARUWlxu3ksrIyrFixAvHx8ahXrx4sLCyYGrW1a9ciIiICBgYGCA0N5bR9WZdR+f/U1EpYFdrGVF9D24SvadOmWL9+PXbs2IFOnToJfWDEnQ/tedAwE5P2XJo1a4aoqChkZGSgXr16AhftLl26wMnJCWZmZqxrGKprC2azuqQJV3EzLg6uhoaGGDRoEAICAqi0WtJIyZeVlcHZ2ZmTerG0BppVobFtc/v2bfz1118SbY18DY3mAGkdqWk7Y/NRV1dn7WUliidPnoj1HWMLDcdheeLt27d49OgRkxGu+l0Tt0Bo0KAB1q9fDw8PD/B4PIHr55AhQ2BgYAAjI6O6GhVaiGoljI+Px5AhQzgXgEoKbUPBxo0bs/aeqM150DATk/Zc+HTt2lXoWNUKdUmoeiHitwWXl5fjzp07VFpT2VCTuBkbuDi4njt3DoaGhvj48SOVVksaKfnt27dzVi+W1kCzKjS2bZSUlDj7MNFoDpDWkZqWMzbf8bxp06YCLcKiYJNlsrW1hbu7O2xsbERm7tjUZdFwHFZXV6/2Ji4rr5+DBw/Cy8tLZCaUzQJBVBDLpbvza+oClf+PqA/3iRMnsHz5ck43Vq7QMBQ0NDTEgAEDOAUZNOZBw0yMxrnQQENDA3Z2dkKKi2/fvoWVlZXMLjA0xM24OLhu2rQJ06dPR8OGDam0Wjo4OHBOyR87dgyenp4CtTu9e/fGmjVr4OTkxCpQoWGgydch0dbWlnr1vmzZMnh4eMDe3l7kd4bNDVXa5gBajtRcnbGByrZgfubm6xZhaQgKCsKXL1+QlJQktQ+TtI7DVeHLPfD5/PkzHj16hLi4OJk2bmzevBljx47FjBkzONeI1QZ1gYqcQ8OEz9vbG//88w+nmzuNeURHR6Nly5a4c+cO7ty5I/AY28IxGudCA0IIQkNDkZ2dDV9fX4EUuizLvmiIm3FxcI2Pj4efnx8IIVRaLWmk5GkoMTs7O2PatGm4ceMGysvL4enpKWCgyQYa2zZLlizBly9fYGtrK/UNVdrmANqO1NI6YwOCbcHVFf++fPmS1VzCw8PZTboapHUcroo4ETQtLS3s379fYksPaXn37h1sbGwkNkWVFXWBipxDw4SvU6dOSE9PZ61CW1vzoNHxQuNcaMDj8RAaGgo3NzdYWVlh27ZtTEqc5sW9JmiIm82fP1/qv79y5Ups2rQJ2traVFotaaTkaSgx0zDQpLFtQ+OGClS2Eg8aNEiiWhA7Ozsqf5tPVWfslJQUlJWVIS0tDX5+fhI5Y2toaCAxMZH5vvF5+vQpRo8ezao4mMa2hImJCfbv3w8FBQUoKSlh165dCA8Ph7GxMRYvXsxpbG1tbdbKwDQwMTHBhQsX5DZQqev6qYaqpmjfChqGgh4eHjhw4ADU1dVFFqCy2dOVdh55eXlQUlICj8dDXl5etX+DzU2Ixrm8e/eOVWdPdairqyMxMRH16tXDwoULkZ+fj5CQELRu3RqGhoYy2/qZN28eWrZsCQ8PD8THx+PAgQPYu3cvEhISsHbtWly+fFkm8wCqNwdlawiqqanJBF7SZhDOnTsHBwcHTJkyBdHR0bC1tRVQL2YrcsiVM2fOYMeOHZy2bapSVlbGuvi1NpoDuBZtW1tbQ1dXl3HG5l9D/Pz8kJycjAMHDoh97oEDB3DkyBEAlbowenp6QkHgixcv8OHDB1y4cKHGuXz69An79u1Deno683kDKl/jlJQUnDx5ssYxqiLJe1MTpaWl2LJlC06dOiWRDhIXXrx4gdGjR0NVVRUdO3YUWmyxua5mZWVJVZDPhrqMipxDI42dk5PDiDqxTY3SmoexsTEuX76M1q1bC+1585HkJkTjXPr37w9jY2OYmZmhf//+UmVA+M9p2bIlIiIi4ObmhqlTp7K6YNOEhrgZLQdXGhkzGhkEGkrMNAw0aWzbAMKutrt27UK7du2qdaSl3RxAo2j7wYMHIjOv06ZNQ0xMTLXPNTExYaQFAKB9+/ZC2TY1NTXWhfY+Pj6Ii4vDH3/8gfv370NPTw+PHz/G69evJbKkkNZxmI+4Yloej8fKxJMWPj4+KC0tRVlZGetM7NeYmppCW1sbZmZmMDU1FSl1IC11gcr/R1QleXl5OTZs2CD0xabh4cEWGmlsGrLP0s4jMjKSqSeh0dZN41y2bt2KuLg42NnZoXnz5hg7dizMzMyE7Nqro+rNvEGDBvD398eWLVuwbNkyzvOTBBriZlzaimlnzGh1CgwcOJC1g60oaBho0gi6RLnaqqqq1uhqS7s5gEbRNhdn7BYtWgicE78DSFrOnj0LPz8/jBo1CkOHDsXq1avRoUMHODg4oLy8nNUY0joOV0XU+1S/fn3o6OjINJN/8eJFbN++HQMGDJB6jISEBMTFxWHHjh3w8/NjFoOGhoZ17cm0EFVJrqenhzdv3ojUIJAVNAwFAe5Sz9LOo+qNJzc3FyNGjODc7s31XAYMGIABAwagpKQEx48fx5EjRxAWFobu3btjwoQJGDFiRI0XwUWLFgkVfS5atAjKyso1rg5p07BhQ+Tn5+PmzZuoV68e/vzzT8YqgA1c2oppZ8xopeTPnz+P9PR0kdkQNrUyNAw0aQRd0rra0oZG0TYNZ2yAzkLx3bt3TPdWly5dkJqaChUVFcydOxf29vZYsWJFjWPQeG8ePHgg4H7+rWjZsqXEW5Ffo6KiAkdHRzg4OODq1auIj4+Ho6MjGjVqhHHjxmHChAlSn2ddjcp3wMWLFxESEiKgwjh79mzWaeyapJ7ZFJ/RmIe+vj4IIRg6dCjMzMxYV8ZXhda5VKWwsBAxMTHYsWMHPn78iEaNGmHChAmwt7fntGqTBSUlJXB0dMSlS5cE0vEjR46En58fq31zPT09xMfHS+XHcePGDabl9MaNG9X+Lpsb98qVK6tNyTs7O9c4Br8zTJT3EdtameHDhyMgIEBqV2uATtClq6uL+Ph4dOjQQaCu48mTJzA1NZVIzZVLzZ2BgQH27duHzp07w9PTE+3bt8e8efPw/PlzjBw5ktX3rqSkBLa2trh37x4qKirQrFkzxhk7PDwcLVq0kHhe0jJw4EBs3boV3bt3x7p161C/fn04Ojri6dOnMDU1xd27d2scg8Z706NHDxw+fJizFw5X9u3bh5MnT2LlypXo2LEjFBQUOI+ZmpqKhIQE7NmzB4QQfP78GQMGDMCqVaskWkgBdRkVuYeGoWBgYCD++OMPsVLPsprHlStXcPr0aRw9ehS2trb45ZdfmG0XthdPGucCVN4szpw5g7i4OFy5cgVt27bFjBkzYGZmhufPn8PPzw+LFy9mVkqAsK6EOHg8Hs6cOcN6LlxYs2YNcnJysHPnTujp6TGGc3yBLzadA1zaiqsGHzQyCDRS8nwdlalTp0o9DxoGmjTqIKR1taUNDUdqGs7YtBg4cCC8vLzg5+eHHj16wNfXF0OHDkVCQgJrY1Ia74207ue02b17N/Ly8jBy5EiRj7OtpyooKMDhw4dx5MgRZGVlQVdXF+7u7hg5ciQKCwuxcuVKLFq0CAcPHpRofnWBipxDw1CQhtQzjXk0bNiQUXAtLCzE8ePHcezYMeYmy0afgsa5uLu74+TJk/j06ROMjY2xfft2gaLajh07Yu7cuXBzcxN4Hm1dCRqcOXMG27ZtExBaGzx4MBo0aIBly5axClRoObjyzeXEef2wqVGikZJXVFTkbNRIw0CTRtAlrastbWgUbdNwxqaFk5MTXFxccOPGDVhYWGDfvn2YNGkSFBUVWavK0nhvaLqfc4GLRAEfa2trJCUloVWrVhg7diw2b94MFRUV5vEmTZrA3Ny8RmVhUdQFKnKOjo4O/v33X4lN+KpCQ+qZxjyq0rRpU7Rt2xZKSkpIS0tj3cFD41xSU1OxZMkSjB49Wmy6uVu3bozvDB/auhI0qPp6VKVt27aspd5pObh6eHjg7NmzMDQ0RNu2bVk952tatWqF169f49dff2U0c4DKPfRXr16xGsPCwgI7duzA6tWrpW4Z9fX1RZ8+fcQaaLKBRtAlrast7eYAGkXbNJyxadG8eXNs27aN+f/OnTsZ6wu22RBp35uq0HA/pwGNWplmzZphy5YtGDRokNitIx0dHamy8nU1KnLOkiVLcOrUKTRv3lwiE76qTJ48GaNHj4alpSVCQ0Nx//59bN68GcnJyZg/f36NtQW05gFUmr3Fx8fj1KlTjIjWuHHjWLc40jiXqpSUlKB+/fpSOXty1ZWgwbZt25CYmIhNmzahTZs2ACrPydnZGRoaGjKziQcq99v9/f1hZGQk9RgrVqzAw4cP4efnh8ePH8PX1xebNm1CQkIC/v33X1Z1HdnZ2TA3N8f79+/Rtm1boSwYm1Vq1foDaaFRB8FHUldbS0tL1mNL0knHxUKDizM2bV2Yjx8/wsvLC506dcLcuXMBVG7tGhoaYuXKlRIFuJK+N/IIzVqZT58+IScnBw0aNECHDh04ix4CdRkVuYerCR9AR+qZxjwGDBiA169fo2fPnnB3d8eff/4p8WqVxrkAlW3T4eHhKCgoAI/Hw++//44FCxawPkcauhI0uHz5Mu7fvw9jY2N06tQJioqKePToEUpLS5GWlobY2Fjmd2s7jfy1K7U00EjJL1++HM2bN8eECROkluOnYaApbR1EUlIS9PT0oKioiKSkJKHH2bja0mjjrwoNR2ouzti0TT7Xrl2LmzdvCnS6ubq6YsOGDdi4cSOrom1AOsdheYRGrUxZWRn8/f2xd+9eZuu3UaNGsLW1xYIFCzhtm9dlVOSco0ePUjHhe/DgARQUFKCuro4bN24gPDwcSkpKWLx4Matqexrz2LJlC8aNG8c5aud6LsHBwQgLC4OVlRV0dHRQUVGBmzdvYu/evVi2bBmmT59e4xgmJiYYMWKESF2JiRMnSiQaxYUtW7aw/l1x2RVaDq7u7u5o27Yt7O3tWc+pJgghEqfktbW1ceDAgRodeasjNDQU27Ztg5GRkdQGmu/evYOLiwsMDQ1hYWGBOXPm4NKlS0zQZWpqKvJ5fNXj1q1bM++NqMu0JKJxXNm0aRNOnDgBT09PzJs3D0eOHEFeXh5cXV0xcOBAVhYaT548qbZoVlaO40Cl6GNwcDD09PQEjiclJWHp0qW4ePFijWNwdRyWJywtLRmDRmlrZVavXo2TJ09iyZIl0NbWZq6rW7ZswbRp0zjZCtQFKnKOgYEB/vnnH87eNo8ePUJJSQm0tLQAVGYUBg0axNrbgdY8RMHfLuErztYE13MZMGAAnJ2dMWrUKIHj+/fvx/bt21kprGppaSEhIQEdO3bErFmzYGFhARMTE1y+fBlr167F0aNHWc1FHjh06FC1Dq5sjdECAgIQGRmJLl26oHPnzkLpcza1EDRS8uPHj4e7uzunzBYNO4CvYRt0PXv2DEpKSqhXr16NKqGyurnTsPKYOHEiZ2dsPi9evEBMTAxycnLg5uaGpKQkqKmpCRRvVoeenh4OHDgglAHMysqCmZkZq225QYMGYeDAgWIdh2UZeHGlpgUPm8CcXyf4tWfTyZMnsXr1ak52HnVbP3IODRO+K1euYP78+ZgxYwZzc09ISEBQUBBCQ0NZXdBpzOPBgwdYsWKFQF1HVdisQGicS3FxsUh9jB49euD169cszoSOGaC8QMvB9c6dO4xT8IsXL6SaC42U/OzZs+Hm5sYYG36dDWGTkqdhB/B10MXj8bB06dIag66qN7gtW7aIVGEtKiqCm5ubQEFobULDyoOGMzYAPH78GJMnT0bTpk1RUFAAe3t7JCQkwNXVFREREazcqnV1dbFr1y6sWbOGyfIQQhAZGYnu3buzmoe8Ow5LAo1atvLycpHZclVVVZSWlnIauy6jIufQMOGbOHEiDA0N4eDgIHA8MDAQN27cwN69e2Uyj2nTpuHTp0+YMGEC/Pz84OLigtzcXERFRWH9+vUYMWKETM5l6dKlaN26tVD7cUBAAB49eoTg4OAax5AnM8Da4tmzZxg5cqRERZ9coZGSr27FXl1KnrYdgKenJxITE7FmzRpGY+b06dPYsGEDjI2NxQZdycnJePLkCYDKIE1UoJKVlYU9e/ZIJXAoDWZmZjA3N8ekSZMEMipbt27F2bNncejQoRrHCA0NxcWLFzk5YwOVrbStWrWCj48P9PX1ceTIESgpKcHZ2RkvXrxgVZ9z7949WFtbo2XLlsyC58GDBygqKkJYWBirYGf58uXQ0tKSuE28ps9WVbiqxUrCw4cPERkZiZycHGzatAlnzpxB165dWesj+fj4oLCwEGvXrhUIwl1dXaGoqCiyNoktdRkVOYeGCV9mZqZImftJkyaxLrqjMY/U1FRERkZCW1sbhw4dgpqaGiwsLNC+fXvExMSwClSkPZeq7Zrl5eX4+++/cfPmTfTo0QMKCgp48OABbt26JeRlJA4auhLyTGlpKfbs2cN0Esny74pytm7VqhXrlfvp06elEhCjbQdw5swZoaBr6NChaNGiBZYuXSo2UOHxeIz+DY/HE9lB1rhxY5l+zmhYeQQFBeHLly9MLQQfSU0ab926haioKIExFBUVsWDBAkyePJnVGNra2oiPj8e+ffuQkZEBRUVFjBo1CtOmTWNdC7V8+XKMHj0aJ0+elMhxmI1wpKSvCVdSUlJgbm4OXV1dpKSkoKysDGlpafDz88PWrVuFtnP4VO3G+vLlC5KTk3Hz5k1oaWlBQUEBqampyM/PZ+0HJY66QEXOoVG936pVKzx8+FCogyEjI4O1wyWNeVRUVDD6GnwNlJ49e8LY2BghISGsxpD2XL72cuJvET18+JA5pq+vj+zsbFbzEKUrER8fDyUlJda6EvKCvDi4AnRS8g4ODlLVQtA20JQ26NLX12c+l1ULa78lNBypaZg0ApXXEVFbx6WlpRJJv//+++9YunSp1POQ1nE4MjJS7oQj/f39MWvWLDg4ODCBtY+PD5o0aYLg4GCxgcrXdThfbw/SMhmtC1S+A7ia8I0dOxaenp4oKipiUpr3799HUFCQRC3HXOehrKyM5ORkjBo1CioqKrh//z6AypoRUeZxNM+FZrsmX7iK/wNUtimam5t/E0Erru+LvDi4ApVBhrW1Na5fvy4yJc8GaWshaBto0gi6qgbS3xqujtS0blr9+/dHSEgINmzYwBwrKirChg0bpPIPkxZpHYflQeDta1JSUrBq1Sqh49OmTavWZJWGQSQb6gIVOacmEz42N6KFCxfizZs38Pb2xufPn0EIgaKiIuOXI6t5WFpawt3dHQDw559/YuzYsWjYsCFu3boFXV1dVvOgcS5cOHr0KNasWYPQ0FDmRgpUKpmmpKTAx8cHQ4cOrfV58KHxvsiLgytAJyVva2sLd3d3TrUQvr6+WLNmDScDTRpBlzzB1ZGaljO2i4sLrKys0L9/f3z69Anz58/Hs2fP0KJFC6xdu5b9CXFEWsdhKysrbNmyBc2bN69RyI5GZo8N9evXR0lJidDx58+fS63MTJO6Ylo5x8zMDK1btxZrwieJ/05paSlycnKgqKiITp06SbT6pzWPM2fOoEWLFujZsyfi4+MRGhoKJSUlrFy5UiJ9FS7nIi3Xr1/HzJkzMW7cODg4OAjIxGdlZWHXrl04cuQI/v77b0Y6vbah8b7IwsE1Pz+ftdkbVzQ1NZkbobS1EB8/fmQMNBMTE6Uy0AQqtxyrBl2qqqoSBV3yAg1HahrO2Hw+fPiAo0ePIi0tjXFyHzt2rExVYaV1HK5aIF2T742sMhYrV65EXl4eNm7ciEGDBuHIkSMoKyuDg4MDtLS04OvrK5N5iKMuUJFztLW1ERMTA3V1dVhYWMDOzg59+/bFwYMHceDAAURHR/9PzeNbYmNjA1VVVaFuoaq4urri1atXCA0NlcmcaLwvjo6O+OWXXzg7uD558gTr1q0TWDHzt6EKCwuFfIRqi5psFCTdgqhqoHn37l3WBpo/Er1794aDgwMnR+p+/frBzc2NMWkMCQlhTBrbt2/PyvtInhg2bBjy8vIEskNV+Z4E30pKSmBra4t79+6hoqICzZo1Q0lJCdTV1REeHs5KSLM2qdv6kXNomPDJ0zyOHz+OyMhIpKenQ0FBAZqamrC1tUX//v1ra+rUSE1NrXHVZ2FhwdqQjAY03hdaDq7e3t549OgRhg8fjvDwcMyaNQs5OTk4ffo0vL29JTsxDlQNRMrKyqQ2JuQjrYHmjwQNR2ouJo20vX6A/xONy87Ohru7u8SicTQch4HKQDgnJ0ekZxitv1ETTZs2xd69e3H16lWkpqaioqICampqGDBggFQddLSpC1TknK5du+Lff/+FpaUlVFRUkJycDGtra+Tn53938zhw4AA8PDwwfPhwmJqa4suXL7h16xbmzp2LTZs2SbSNRZPCwkLcuHEDmpqa1ab1P336VOMWU4sWLfDhwwfaUxQLjfeFloPrrVu3sG3bNvTu3RuXLl2CiYkJtLW1sXHjRly4cIF16ygNoqOjERoaivz8fJw8eRK7du1Cu3btsGDBAtZjiDLQZCsqyIW4uDjWv8vVf4stNBypuThjV+0u+fTpExISEqChoQFdXV0oKioiJSUF9+7dYy0v8LVonIODg8SicTRqu44cOYIVK1agrKyMsUrgb1f+9ttvMgtU+CgpKaG4uBj16tWDmpqaxEHKx48fUa9ePTRo0ABZWVk4f/489PT0uG+FkzrkmtOnTxMNDQ0SHR1N8vLySPfu3cns2bPJwIEDiZ2d3Xc1j6FDh5Lw8HCh46GhoWT06NGUZyye//77jwwbNozcuHGDvH37lhgaGpJu3bqR7t27k6tXr4p9npmZGYmLi6t27Li4ODJq1CjaUxaLvHw+CCFES0uL5OXlEUIIsbe3JzExMYQQQrKzs4mhoaHM5nHkyBHSo0cPsnnzZqKtrU1yc3NJZGQk6d69O9m9ezerMfr37080NDSIpaUliY2NJe/fv6/lWf8f3bp1Y/Wjrq4uszllZWURAwMDoqWlRYyMjMiQIUMEftjg7u5OJkyYQNLT08np06eJkZERuXfvHlm7di0ZNmwY67m4uLgQPz8/oeMbN24kixYtYjXGvHnziJubG6moqCC6urokNzeXlJeXE0dHRzJ9+nRWY+jr65MnT56wnrcoRowYQVxcXEhmZibp1asXuX//Pjl79iwZOHBgjdcamhQXF5PZs2cTdXV1gc+Xo6Mj+fTpE6sxbty4QXr16kWuXLlCCgoKiJ6eHunRowf5448/SEJCAqf51QUq3wEpKSkkLS2NEELI9evXybx584iXlxd58+bNdzUPbW1tkpOTI3T80aNHRFtbm+JMq2fWrFlk9uzZ5NWrVyQqKor07t2b5Ofnk6CgIDJlyhSxz4uIiCBGRkYkPz9f5OP5+fnEyMiIbNmypbamLhJ5+Xz8+eef5Pz584QQQjZt2kS8vLwIIYRkZmYSXV1d1uM8ffqUHDt2jMTGxgr9sGHcuHHk0KFDhBDC3IQIIWT//v2sb4jBwcGcb0I/EmZmZsTExISsW7eOBAcHC/2w4e3bt2T+/Plkz549pKKigtja2pJu3boRTU1NcvToUdZz0dXVFXkdycnJITo6OqzGMDAwIBkZGcx4/M9IZmYm0dfXZzWGg4MD8fPzI8XFxax+XxRaWlokMzOTEELI9OnTyYULFwghhJw8eZKMHz9e6nElxcXFhZiYmJCLFy+S4uJi8vbtW3Lu3DkyZMgQkUGhKKZOnUpcXFxIcXEx2b17NxkwYAD5+PEjiYqKImPHjuU0v7qtn++AJk2aMK1jBgYGSEtLw6BBg1gXOL18+RJBQUG4deuWSKdPtjUIXOfRs2dPJCQkCKXfL1++zNqQkMa53L59G/v370fr1q1x6dIlDBo0CO3atYOZmVm1olTTp0/HyZMnMWrUKEyYMAF6enpo3rw5ioqKcOvWLcTGxqJTp04yVQxdtGgRHBwcGHM1AwMDanoVkjJ+/Hg4OTlh/fr1GDx4MKysrPDrr78iMTER3bp1YzVGTEwMvLy8RBYo8ng8VlsdOTk5IrdnevfuzbpWRly7raQGmlzrIPjk5eUhKysLvXr1QmlpqcwF4DIyMjg7Ujdv3lzAm2jnzp0SO2Pzx0lNTRXy2Ll58ybr14WGaByN2q4GDRowW2nKysrIyMjAwIEDoaWlhcePH7OaBw3OnDmDbdu2CfhgDR48GA0aNMCyZcsYpeTqSE1Nxfr169G0aVNcvnwZgwcPxk8//YRBgwZxbhuvC1TkHBomfCtXrkRKSgpMTU1ZK9HWxjx69uyJ7du3IyUlBQYGBqhfvz7u37+Po0ePwszMTMDBU9yNgsa58PdQP3/+jBs3bmDlypUAKi9S1dWgKCgoICIiAkFBQTh48CAiIiKYx9q0aYNp06Zh/vz5MhV9u3btmtAF8lsxZ84c/PTTTyCEQFtbGwsWLMD27duhpKQkIM5VHTt27MDUqVPh4OAgdQdSmzZtkJOTI1RvdPv2bdY3RBoGmjTqIMrKyuDs7Izjx4+jXr16OHnyJNatW4fS0lIEBwfLrB1XVVUV79694zSGtCaNXzNlyhR4eHggKysLWlpaqKioYGT1ly9fzmoMGqJxNGq7+Mafjo6OUFNTw4ULF2BjY4PMzEzUr1+f09iSULUovypt27bF58+fWY3RqFEjlJWV4dOnT0hOTmbqhV69eiX1tZqBUz6mjlpnwoQJJDAwUOh4QEBAtdsUVdHR0SFJSUnffB5GRkasfqrb86ZxLjY2NsTd3Z0EBAQQTU1N8vr1a5Kfn09mz55N5s6dy2qM8vJykp2dTW7fvk0eP35MKioqOM1JWnx8fMiSJUtIeno6673k2mLXrl1it8XYoqWlxXnLZefOncTY2JicOXOG6OrqkvPnz5N//vmHGBgYkK1bt7Iaw8LCgkyYMIH8888/pHv37iQqKor4+fkRLS0t1vvtNOoggoKCyPDhw8m1a9eYMa5du0aMjIzIqlWrWI1Bg2PHjpGhQ4eSvXv3kitXrpAbN24I/LBh1apVxMTEhFy/fp05durUKTJ06FCydu1aieazY8cO0r9/f6aeYvDgwSQqKor18/Pz88mwYcNI3759iYaGBjE1NSW6urpk8ODB5OnTpxLNhQtJSUlER0eH7N69mxQWFhIDAwMycuRIoqenR9zd3WU2j61btxILCwvy8uVL5lhxcTFZsGAB6629xYsXk7lz5xInJyeiq6tLiouLSWpqKpk4cSJxcHDgNL+6QEXO0dHRYfZPq5Kbm8t6379v374kOzv7m8+DBjTO5dGjR2T8+PGkZ8+ezMXN29ubDBkyhGRlZdGYpswYOnQoU/gm6kccz549Y/3Dlh49epBHjx5xOp9JkyaRc+fOcRqDkMoAWltbm7mRaWpqktWrV5MvX76wer6uri65e/cuIYSQiRMnMsFxeHg4mTFjBqsxaNRBDB06lCQmJgqNceXKFdK/f39WY9CARlGvoaEhuXXrltDxGzdukAEDBkg1r8LCQqlrsd6/f09iYmKIl5cXWbVqFdmzZ4/E9SZpaWnExcWFTJkyheTn55M9e/YIBGJsyM/PF/hsrF69muzatUumCw9zc3OipaVFtLW1yZgxY4iZmRnR19cn3bp1EyqeFsfr16/JokWLyNixY8np06cJIYT4+fkRCwsL8uLFC07zq9v6kXNoGAqOHTsWu3btgre3t0SmXbTnQQMa56KsrCxkS79w4UK4ublJPea3Qtr2xdpwcNXR0cG///6LmTNnSjUnoFL+3tvbG0+ePIGKiorQdkDVPfTqcHR0xPz585GZmQlCCFRUVCTaJqFhoEmjDqKgoEBk+6uSkhJrN2kaSOtIXRUazthf07JlS6nn06hRI9btzKKQ1nG4KhMnThQw0FRVVf0mwnf9+vVDv379OI3RqlUrBAcHCxxzdHTkrGME1NWoyD00DAWLiopw9OhRnD9/Hh06dBD64LARSKJlbMgVGucCiDbye/v2LWsjP3lh/PjxUj2vNhxcmzZtivXr12PHjh3o1KmTUO0Mm/dm8eLFAIA1a9YIPSZJ0FRSUoKEhASkp6ejXr160NTUxPDhw1nX89Aw0KRRB6GqqoqrV68K3VCPHTuGLl26sBqDBtI6UleFhkkjF2iLxknrOFwVaQ00acPGq4kNtSVeVxeoyDm0TPhGjRolF/OgAddzoWHkJ09cuHABu3fvRnZ2Nvbt24dDhw6hY8eOGDt2rNjn1IaDa+PGjTkHrWw70KojKysL1tbWKC0tRefOnfHlyxfExMRg27ZtiIyMZOU5RMNAk4Z5np2dHRwcHJCZmYkvX74gNjYWOTk5OHnyJDZu3MhqDBrQuKF+a5NG2qJx0joOV4WGgSYtxJlO8ng8LFy4sMbn16Z4XZ3Xz3fCtzDhk+d5cIGm0eO3JjExEfPmzYOpqSkSEhJw7NgxHDhwAKGhofD19RUbOMijg2tVysrK8PTpU3Ts2BGEEIk6IGbOnAlFRUX4+/vj559/BlC50lu6dCmaNGki0F1WHTQMNGmY5128eBEhISGMtHnXrl0xe/Zs/Pnnn6zH4EpoaCguXrzI+YYqLyaNrq6u+Pnnn4XaboOCgpCVlSW0hSGKvn37YufOnejevTv09PRw5MgRdOjQAdevX4eDgwOuXLlS4xg0DDRpQMN0cuTIkdDR0YGtrS3Mzc0RFhaGFy9ewMvLC46OjtUunGqiLqPyndCkSRNmFSINfD2HnJwcuLm5Sa3nwHUeNOB6LpmZmfD19YW6ujo0NDTQuHFjWFpaonHjxti9e/d3FagEBwdj6dKlmDFjBk6ePAkATGvv7t27xQYqv/32G5N+r7rS5ArX1C8hBAEBAfj7779RXl7OZA4aNWoET09PVgHLnTt3EBMTwwQpQOX+ubOzMywsLFifS9XPwejRozF69GjWz+XDtQ4CAAYOHIiBAwdyGoMrQUFB+PLlC5KSkjjdUH///XcsXbqU83y4SrWfOHECsbGxQsfHjRvHOitoYmKCoKAggcxWVlYW1qxZg8GDB7MaozrdJlly7NgxeHp6cjKdfPLkCYKDg6Gqqopu3bqhsLAQQ4YMwefPn7Fjx466QKWO6vlaz8He3l5iPQca0BBro3Eu8mL0SIP//vsP69evFzo+fPjwajMHVe3jaVnJ00j9/v333zh8+DBWrVrFiLOZmJjAy8sLbdq0gYODQ41jtGnTBvn5+ejatavA8ZKSEolcYKUx0KRRByGPXj/yckMFgKSkJCxcuBCbNm2CqqoqJk2ahHr16uHDhw/w9/fHiBEjahyDhmics7MzbG1t0adPH1RUVMDMzIxxHHZycmI1xo0bN2BjY4NGjRoJHC8pKcGmTZtkJt5Iw3SyNsXr6gKV/wHWrl0LExMT+Pj4MCuOwMBAODs7w9/fH3///bdM5kFDrI3GuciL0SMNmjVrhhcvXgh1hmRmZgpkFGqCRhHcjh07YGpqKjL1a2dnx2qMffv2wcPDA0OHDsXq1asBVKaU69evDz8/P1aBipOTE7y8vODi4gIDAwMoKiri/v378PLygpWVFfLy8pjfFbdlIa2BJo06iK+3I/hBX8OGDaGoqIiSkhIoKCigZcuWMgtUaDtScyEwMBDGxsbo3r07YmJi0LRpU5w+fRoHDx5ESEgIq0CFhmictI7DWVlZTH3c1q1boa6uLvRdTU9PR0xMDFMnVdvQMJ2sVfE6Ts3NdXwX0NBzoAENsTYa5yJPRn5cWb9+PRk/fjxJS0sjenp6JC0tjVy4cIEYGRmx9ug4fPgw6d69O6OJUVWXxdjYmPVcaPiWaGtrM4JvVd/f3NxcoqWlxWqMrzU++D9V/1+T/gcNA00a5nnx8fFk3LhxjJcTIZWeNpMnTyZ//fUXqzFo8c8//xAjIyOioaFBcnNziYeHB2sBPZrwjSYJIWTmzJlk5cqVhJBKj6ju3buzHoeraByfnJwccvLkSXL69GnGlLM6zp07J/RZFPXj5uYm8VykhYbpZG2K19VlVP4HoKHnQIPGjRtz9iihcS4mJibYv38/FBQUoKSkhF27diE8PBzGxsZMe+z3gr29PfLz85mV9fjx40EIweDBg2Fvb89qDBqZEIBO6ve3337D/fv3hYpVL168KKThIw4axb8FBQUi6wyGDh3KqtASoFMH4e/vj02bNgm0BXfq1AkrVqzA/PnzYWlpyWocrsTHxyMgIADW1tbYtWsXgMrWaX9/fzRs2BCzZs2SyTwAelLtc+fOxdy5c/HmzRvweDyJtgWByu0ZR0dHXLp0idnG5vF4GDlyJPz8/MRmJgYPHox///0XFRUVzLWoVatWzOM8Hg+NGzeWeD5cWL58OZo3b44JEyZI3d3Vs2dPnDx5EmVlZWjZsiWioqKwd+9eKCkpcf6c1gUqcg6Nug4aeg405kFDrI3GuQCV1fZ8vqWRH1fq16+PgIAALF68mOksUVNTQ5cuXYTeI3HQKoKjkfq1sbGBl5cXXr58CUIIrl69in379uHvv/9mZYwGgMp7ScNAk0YdxLt370Rqv1RUVODjx4+sxqBBWFgY3N3dMX78eKaV2MrKCo0bN0ZoaCjrQOXZs2e4e/euSC0atsFb7969sWHDBvz888+oV68eBgwYgLS0NPj4+EhVZyGtaNyaNWuQk5ODnTt3Qk9Pj9k+Wr16NQIDA6v9vPK3HM+ePYtff/2VuqaRpNAwnQSAdu3aMf/u0qULNfG6ukBFzqFR10FDz4HGPGiItUl7Lq6urqznSau4VBYYGxvj4MGDUFZWhrKyMnO8oKAAY8aMwfXr12scg1YRnJ2dHWxtbdGiRQuMHz8eW7duhampKZ4/f46RI0eyGmPChAn4/Pkztm/fjo8fP8LDwwOtWrWCvb09zM3NWY1RWFiI0NBQZGRkiLwhsvmc0TDQpFEHwXd8Xr9+PZNlysrKgpeXF+vOEhrQcKSm4YwNAKtWrcKqVavw33//YcOGDWjatCkOHz6MBg0aSPQ95woNx2GaHXdckNZ0kraInjjqAhU559q1a9i1axcrd2JxtGvXDnFxcQJ6Dubm5hLpOdCYB8BdrE3ac3n69Cnzb0IIbt68iTZt2uCPP/6AoqIiHj58iIKCAhgbG3OanyxISEjApUuXAFSuUL29vYVW3c+ePWO9SqNVBPd16veff/5BdHS0xKnfKVOmYMqUKSgsLAQhROLtQicnJ9y/fx/9+vWTWudn//79aNOmDR4+fIiHDx8yx3/55RdcvnyZ+T+PxxMbqCxYsAAKCgrYs2cPtm7dCqBS+t7JyYl1m7SnpydsbGwwdOhQNG/eHIQQFBcXQ1tbm3H9lgU0HKlpOGMDtSvVLgk0HIflhdmzZ8PNzY3RyVFUFAwNxFlX0BbRE0ed4Juc069fP0RFRaFz585186CEv78/nj9/LrCP/OXLF3h4eIDH48HHx+cbz7B6nj9/DmdnZxBCkJSUBF1dXYGAgr/HbW5uzkrG++bNm7C1tcXixYsxfvx4DB8+HG3atGEyIZK+Hu/fv0dOTg4UFBTQuXNn1rL1tNDT00NISIhcbedJWwcBVH42r1y5goyMDPB4PKirq6NPnz4y3S4IDQ3Fvn374OrqimXLliEoKAh5eXkICgqCtbW10BaZKLp3747jx4+zFsurjtqSapeEbdu2ITExEZs2bUKbNm0AVNatODs7Q0NDg5osvSyozhqBrU4ODRE9sXOoC1Tkm3Xr1uHdu3ec6jrkaR60hOe40KtXL+zduxeqqqoCx7OzszFx4kTcunVLZnPhiqWlJbZs2SJRK7IoCgoKUFZWhg4dOiArK0sgE8J2pVpeXg5fX18cPHiQqWNq1KgRrKysWLUV02L48OEICAgQqEOqgzuBgYGIjIzEp0+fAFRqb0ydOhVubm6sDAsnT56MBQsWcN6yqkmv58yZM6zGIYTg0qVLSE9Ph6KiIrp06YK+ffuyvr5ZWFjg/v37qFevHjp16gRFRUU8evQIpaWlQnUnNKwhapNnz55V+zibLSo9PT3ExsYK1WQ9evQI48aNw507d6SeX93Wj5xDy4RPHuYhL8Jz9evXR15enlCgkpWVJRcGYZLA143Jy8tDVlYWevXqhdLSUom2S2g5uAYGBuLEiRNwc3MTKC4MDg5Go0aNMG/ePInHlIbly5fDy8sLDg4O6NChg9BNVJb+KT8SXB2paTlj0+hSKyoqgo2NDR48eIBmzZqBEIKSkhJoamoiPDxcpMvz19BwHAb+b/GWnZ0Nd3f3b7J4o1ErQ6N4XBx1gcp3ANe6DlpwnYe8CM+NGjUK7u7usLe3FyhyDA4OlkhiXR4oLy+Hk5MTjh8/jnr16uHkyZNYt24dSktLERwczOpGQsvB9fDhw/D19YWRkRFzTENDA23btoWvr6/MAhVCCLKysoQ6UYiM/VN+NLg6UtNyxqbRpbZu3Tp8/PgRcXFxTID+8OFDLF++HAEBAfDy8qpxDBpbO18v3hwcHGS2eDM2NsaBAwfQsmVLDBkypNqtRDYZIRrF4+KoC1TkHHnpQKExD/6HtuoXQlFREQsWLMDkyZNZjeHj4wMrKyshJVZJWLZsGT5+/IhVq1YxTtA//fQTpk+fzsolVJ7Ytm0bHj58iMjISCYQsLS0hKurK/z9/eHp6VnjGLQcXD99+iTyfenSpQvevn3Lagxx8OsP2LQG+/r6ok+fPpg8ebKQNHkd0kHDkZrW9geNLrVz585h8+bNArUZ6urqWLFiBRwdHVkFKgB3x+FvuXgbP348810fP34855onGsXj4qgLVL4DuNZ1iGvZ4/F4qF+/Ptq3b4/hw4fXWCjLdR40xNpiY2MxY8YMVr8rjgYNGsDb2xvOzs7IyckBj8dD586dv7ttH+D/zMSq6kf07t0ba9asgZOTE6tAhZbh3Lhx47Bp0yb4+/szNxJCCCIjIzF+/HhWY6SkpGDlypVIT08X+VlhM5fCwkK4uLiwFoirTbjWQYiisLBQQCBMFvj4+EBDQ0OkI7WPjw8rR2r+9gIXZ2yATpfa58+fmQLYqrRp0wYlJSWsxqjJcZhNoEJj8SYtVTNCkgg7VgdXET1x1AUqcg6Nuo7y8nIcO3YMbdq0gba2NgDgwYMHKCgogI6ODq5fv44dO3YgLCxM7IqVxjxoiLUNGjQIe/bsgZ2dHZo0acLqOUClkZmenh4UFRWRlJQk9PiDBw+Yf7PdK5cHCgoKRGYxlJSUWGcxaBnOFRUV4dy5cxgyZAi0tbWhqKiI1NRUPHv2DDo6OgKaC+Jqmvz8/KCgoIAVK1bAz88PLi4uyM3NRVRUlEjzRVH07t0bt2/f5hSo0BA4pFEH8e7dO2zYsAHTp09Hly5dYGtri2vXrqFTp07YuXOnzIIxGo7UhIIzNkBHr0dTUxPR0dFCXjrR0dHQ0NBgNQYNx2F5UQ2Xlri4OIwcORINGjSo0UyTiy9VXaAi59BIDTZs2BDDhg3Dhg0bmJVueXk53Nzc0KxZM3h4eMDf3x9BQUFix6MxDxrCcy9fvkRCQgIiIyNFrmTE3UAsLS2RmJiI1q1bw9LSkukW+JrvrYZBVVUVV69eFdIpOHbsGLp06cJqDFoOrg0aNBCqY+rVq5dEgV9qaioiIyOhra2NQ4cOQU1NDRYWFmjfvj1iYmJYGc717NkTq1atwvnz50VqQrCpLaAhcEijDsLPzw83b97EjBkzcPr0ady8eRPr169HQkIC1q9fz6nlUxJoOFLTcMYG6Ei129vbw8rKCnfu3GGuZ8nJyXj48CFjEVATNByHaSltfytcXFwwYMAAtG7dulqBO0kE/UQ+v649Wb7p3bs3oqKi0KVLF+jp6eHIkSNMC+nkyZORnJxc4xg9e/bE3r17hW5cmZmZMDc3R1JSEh49egQzMzOxrbk05gEAHz58EBBr69q1q0TCczWlmMXdhJ49ewYlJSXUq1ePSiuevHDu3Dk4ODhgypQpiI6Ohq2tLXJycpjV6p9//inyeVUdXK2srBAcHCzSwXX9+vW4e/durZ8HHx0dHZw4cQJKSkpYtmwZ9PX1YWFhgSdPnmDy5Mm4evVqjWMMGTJE7GM8Ho9VNkRXV5ezwGGfPn2wefNmoUDv+vXrcHR0RGJiYo1j9OvXD1u3boWenh5cXFxQVFSEHTt2ID09HdOmTROZHawNTp8+jXXr1ol0pJ48eTKGDRvG/K64miZTU1PY29tj6NChAteQ06dPw8/PD//++69MzoXPvXv3EBYWhoyMDBBC0K1bN8ycOZPJOtfE1q1bkZuby8lxuKCgAFZWViguLkZRURFUVFSYxduePXu+q2tRbVKXUZFzaKQGFRUV8erVK6FA5eXLl8ze6JcvX4RWnrTnAVQainFRKZS20r7qF/5H+vIbGRlh8+bNCAkJgYKCAnbv3o2uXbtWG6QAlZ0T8+bNY95/ca/rhAkTamXe4lBWVkZycjJGjRoFFRUV3L9/HwBQXFwsUg5fFDRueDQMNGnUQbx//x5KSkoAgMTERMyePRtAZZZUlBR9bcGvYVi0aJFQHdO6deuwbt26Gmuanj59KnJbRV1dHS9fvqz279PuUAEAbW1tBAUFsfpdUYwYMQLm5ubo0aMH2rZtKzQnNvOgoRr+v0BdoCLn0EgN/vnnn/Dw8ICnpyd0dHRACMGdO3ewevVqGBsb4/3799i+fTu6d+9eq/OgBb/LJScnB5s2bcKZM2fQtWvXarcoZOVJIWt2796NUaNGISoqSqLnyaODK1C5RcevG/jzzz8xduxYNGzYELdu3YKurq7Y5+Xl5UFJSQk8Hg95eXnV/g02XUw0DDRp1EGoqqri/PnzUFJSwsuXLzFw4EAAlb45X+sA1SY0vhNcnLFpdKiwKfjlw2ZBRMNxGOC+eKPF58+f8fr1ayYArqr2O2bMGJHPqSlorAqXrq+6rR85h0Zq8OPHj3BycsKpU6cEPlQjRoyAt7c3rl27Bm9vb+zcuVOslLK8pChTUlJgbm4OXV1d3L59G8ePH0dISAji4uKwdetWsZLxVTufavKkYNMpIy/07NmTMSWUlmfPnsmFgyufM2fOoEWLFujZsyfi4+MRGhoKJSUlrFy5Uqz8uoaGBi5fvozWrVtDXV1d5LlI0sXk6uqKo0ePonnz5lILHN6+fRtWVlZQV1cXWQfBJsC/cOEC7OzsUF5eDlNTU/j7+8PPzw9RUVHVft7lkYMHD2LDhg1YsGABAgMD4ebmhtzcXMYZm63pJFD5XhYVFTHOx/fu3YOmpma1QeXXW4LPnz9H/fr10aFDBygqKiI3Nxfl5eXQ0tLC3r17a5yDtra2VI7D8rhounz5MpydnZnt4Ko0bNgQt2/fFvm84OBg5rtWVFSEf/75B0ZGRkzjwv3793Hq1CnMmjWLkzp1XaDyHcC1roPPkydPkJaWBgUFBXTr1o256JeVlbHaY6U1Dy7MmDEDOjo6cHBwENjn9vPzQ3JyMg4cOFDjGLXpSSFrbGxs0L9/f8ycOfNbT4UK0urk3LhxA/r6+lBUVMSNGzeq/V02xcE1ufCy1RXiWgcBVPoEFRQUMIuIe/fuoUmTJjLNqNBwpAaAffv2Yfv27cjPzwdQ2Tk0e/ZsiT6/ubm5mD17NoyNjeHk5ASgsh6oTZs2TFBbExERETh//jwCAgKYLb53797ByckJampqcHR0rHGM8ePHw93dXeI6JnlcNJmZmTGNBkuWLIG/vz/y8vKwefNm+Pn5wcTEpMYx5s+fD319fWZ7ks/ff/+NM2fOIDIyUur51QUq/0O8evVKZKulrCTFaYi19ezZE/v370fnzp0FApXc3FyMHTtWbORfldr0pJA1S5YswalTp9C8eXN06tRJqAtK1ttYXHVDevTogcOHD1MxrvuRyMrKQnp6OurXrw8VFRWZyqsDlaKA1TlSSyoIKa0zNgDMmzcPFRUV8PHxYZybCwsL4ezsjEaNGmHz5s01jtGvXz+EhYUJZZDT09NhaWmJ69ev1zhGQkICgoKCJHYcroq8LJq0tbURExMDdXV1WFhYwM7ODn379sXBgwdx4MABREdH1ziGrq4uDh8+LJTdffz4McaMGcOpKL+uRuV/gFu3bsHV1RW5ubkCx2UtKU5DrK1+/foiCxGfP3/OWoW0Nj0pZE3jxo05tf3RhIZuCF8nZ9GiRd+8mFAagUPadRCfPn3C0qVLcfbsWWaBwePxYGRkhKCgIKm7TSQlOTmZqiM1F8G6mzdvIiYmhglS+OM5OTlh2rRprMYoLy/H+/fvhY6/fv2a9RYoP+uyatUqocfYXldPnDiB2NhYoePjxo2T6fdaQUGBacNXVlZGeno6+vbtiz59+mDdunWsxvjll19w9epVoUDlzJkznEsD6gKV/wF8fHzQtm1bODk5Sa0JQQNpxdqqYmJigqCgIGzcuJE5lpWVhTVr1rB2Za1NTwpZY2hoiAEDBnB2T6YBDd0QaXVyaCOtwOGhQ4cE/l9dHQSbQGXjxo24d+8etmzZAgMDA1RUVCApKQk+Pj4IDg7G0qVLqZxvTbRr107q7yxtFBUV8e7dO6HjHz58EKmNJIohQ4Zg5cqV8PDwgJaWFgghSE5OxurVq2FqaspqDBqfRXlZNHXt2hX//vsvLC0toaKiguTkZFhbWzNbdGywsbHB6tWrcfv2bXTv3p25rp4+fRr+/v6c5le39fM/QPfu3REXFyfTPW1RWFpaMjLt0t6ESkpKYGtri3v37qGiogLNmjVDSUkJ1NXVER4ezrpLJSQkBHv27GHaIpWUlDB79uzvzpTQwMAA//zzD2txN3HQcHCloRsirU4ObebPn49WrVoxAodHjhyBkpISnJ2d8eLFC1YChzTqIPr374/Vq1cLGD0Clfo5Xl5eOH/+vFTnJylnz55FSEiIXDhSOzk5ITs7G4GBgcw28pMnT+Dk5AQlJSUEBgbWOEZJSQmWLFmCxMREJoNCCMHw4cOxfv16mWWqtm3bhrCwMFhbW4tcNLHNEHHlzJkzWLx4MTw8PDBo0CD8+eef6NOnD/777z/o6Oiw2k4DgKNHj2LPnj3477//wOPxoKGhgTlz5nAu+q4LVP4HGDZsGPz9/SUq4PsaGvUlNG5CpaWlaNKkCa5evYrU1FRUVFRATU0NAwYMELp4soG2J4WsmTx5MmbMmMFaOlwUX2cPjh8/jg0bNuDSpUsSObj27NkTMTExQsFNVlYWzMzMZCocxxUaAoc06iD09PQQFxcnlE5/9OgRxowZg3v37kl2YlJy5swZODs7C22XfAtH6tevX2PmzJnIyMhgthPfvXsHTU1NbN++HW3btmU9VnZ2NuMGraGhUWObdG3oucjLounBgwdQUFCAuro6bty4gfDwcCgpKWHx4sXf/PpYt/Uj59AwFJw/fz58fX3h5eUFFRUViU3AADr1JTRWw+PGjUNQUBD69u2Lvn37Sj1OYWEhcnJyGBG7qpoB8+fP5zxPWaGuro5ly5Zh165dIotp2RQ50nJwpaEbAkink1MVcQFx1e/MwIEDq7340hA4pFEHoaamhhMnTmDu3LkCx48fP16jiShNatORWhJnbABo3bo1YmNjceXKFWRkZAgUbUvaYv91YXJNc6HtOAzUnpGfJCxatAgODg5M1t3AwECqeqSHDx8KGIpWva76+PhIPb+6QEXOoWEouH37duTl5YktzmKzGqJRXwJwvwl9+PBBZNeBJBw5cgQrVqxAWVkZ4/nDv+D89ttv31WgkpOTw7zvNal7ioOWgysN/5SqOjkpKSkoKytDWloa/Pz8WOuGJCUlISkpCfXr12du5o8fP8bHjx+hpKSEoqIi/PTTT/jrr7+EvGv40BA4pFEHMX/+fCxYsABpaWkCr+np06cREBDAagwa0HCkpuGMzUdBQQEDBgzAgAEDZDqX2nAc5sPXhPkWXLt2TWiRIynh4eFM4W1VLzUej8fJigKoC1TkHhqGgjRuvDSKHGnchKysrGBnZ4dp06ahY8eOQkELm5bAHTt2wNTUFLa2tjA3N8fu3bvx8uVLeHl5Ub/41DZssx3VQcseQU9PD1FRUQgLC8Ply5cZ3RAPDw/W247+/v6MOJSenh6Aym3HJk2aIDg4mNVnRFtbGxUVFQgKCmJqQ968eYNly5ZBV1cX8+bNY743ISEhIsegYaC5cuVKLFmyBNbW1kJ1EM7OzqzGGDx4MDZt2oTQ0FCcP3+eeU2DgoIE/HVqGxqO1DScsQE6zta05vKjMH78ePj7+2PhwoVQVlaWqkYnKioKs2fPxqJFi2BkZITY2FgUFRVh6dKlMDY25jS/uhoVOYeGoSANaNSX0BBrE6ecC7BvCaxaXGxpaYnZs2dj4MCBOHXqFHbs2CHUuSHvSCN9XRUHBwfUq1cPGzZsQI8ePXDkyBE0a9YMdnZ2aNmyJetCOhrQ0Mnp27cvwsLChLabHj58iJkzZ+Lq1asC3x9x0BI4lLQOQh4JDQ3Ftm3bYGRkJLUjtZ6eHuOMPWnSJDg7O6Nnz56IiIjAhQsXEB4ezmou8+bNq9bZWpZz+VEYNmwYcnNzxW5lsbmuamlpISEhAR07dsSsWbNgYWEBExMTXL58GWvXrsXRo0elnl9dRkXOkdZQ0NXVFe7u7mjatGm1Kps8Hg++vr41zoNGfUlKSopIzYFp06YhJiaG1RinT5+Wqmi2Kg0aNGBWDMrKysjIyMDAgQOhpaWFx48fcxpb1tQkfc0mUOGSPaCtG0JDJ+fz588oLy8XOv7p0yd8/PgRQOVnQFQWqSq0PFgkrYOIi4tjPbastDaio6PRsmVL3LlzR0gQkcfjsXpvKyoqmEJXvlZHz549YWxsLDazJYpr165xdramNZcfBRpZ98aNGzOLpY4dOyIzMxMmJiZQVVWt0bG+JuoCFTlHWkPBp0+fMhfip0+fUpkL1/oSGjchBwcH+Pj4VJtZqQktLS3s378fjo6OUFNTw4ULF2BjY4PMzEypCo2/JYGBgfjjjz/ESl+zgYuDK23dEBo6Of3794eXlxcCAwOZbpmcnBz4+Pigf//++PLlC6Kjo9GtWzdW40mLtHUQX6uU8vf7GzZsCEVFRZSUlEBBQQEtW7aUWaBCw5GahjM2QMfZmtZcaMBVzZkG48eP5zyGvr4+du7cCQ8PD/zxxx84cOAA5syZg+TkZO4aPKQOuebDhw/Ezs6OdOvWjairqzM/Dg4OpLi4mJw+fZoMGDCApKWl1eo87t+/T7S0tMj06dOJpqYmyc3NJe7u7kRTU5OcP3+e1RgrVqwgs2bNIm/fviW6urokNzeXZGZmktGjRxNXV1dWYxgYGJDHjx9zORWSlJREdHR0yO7du0lhYSExMDAgI0eOJHp6esTd3Z3T2LKme/fuzHtvbm5Orly5Qggh5MCBA2Tq1KkynUt4eDixtrYmr169Yo69ffuWzJ07lwQEBLAao7i4mEyZMoVoaGiQbt26kZ49exJ1dXUybtw48ubNG1ZjvH79mkycOJGoq6sTAwMD0qtXL6Kurk6mTJlCXrx4Qc6dO0d0dXXJ9evXpTlN1lhYWJAJEyaQf/75h3Tv3p1ERUURPz8/oqWlRRISEliNER8fT8aNGyfw/c7JySGTJ08mf/31V21NnRBCyLNnz0hFRQXz7+p+2BATE0O0tbVJfHw8yczMJJqamsTT05OMGTOGzJo1i/W81q5dS9zc3Mjnz5+lOi+acykvLyf5+fnM6/D06VOSnZ1NDh8+zOr5b968IWZmZsxnvUePHqRbt27EzMyMvH37VtrTk4rz588TS0tLYmhoSJ4+fUo2b95M4uLiWD//v//+I4aGhiQ0NJSUlJQQIyMj0qNHD/LHH3+w/v6Lo65G5TuBhqFgenq6UPEZ24psGvUlNMTaQkNDcfHiRcZf4+tiWrbCUwUFBSgrK2O0MaKjo6GkpARLS0uZiT3RQE9PD0ePHsVvv/0GV1dXqKurw9raGs+ePcP48ePFGvTVhoMrDd0QWjo5hBBcv36d+c6oq6szmb83b95Aw0wqOwAApzxJREFUUVGx1lWaadRB8Itpv9ay4bfRX758ubamT92RGpDOGftraDhbVzcXDw8PVpLv0joOf30u9+7dQ0BAgJCas76+Pis1ZxokJiZi3rx5MDU1RUJCAo4dO4YDBw4gNDQUvr6+rDN3Hz9+xPv379GqVSu8evUKR48eZSQ0uFC39fOd0KhRI3Tv3p0JMvLy8gCwuzGfPXsWLi4uKCkpEaqQZ3uRoVFfwuPxsHfvXk43oaCgIHz58oVRuOUj6QWzXbt2zL9VVVWxYsUKVs+TN6SVvq56Ia7JwZUtNHRDaOnk8Hg89OnTR2QrMZs2UBoChzTqIN69eyeybbSiooKpt6ktIiMjGWsGGuaWX7+mo0ePxujRo6Uaa9SoUZznU9URmD+X8vJy3Llzh1WgQmPb9dy5c9i8ebNAcK+uro4VK1bA0dFRZoEK345hxowZOHnyJIDKbfamTZti9+7drAOVhg0bMovHNm3acNbe4lMXqMg5NAwF/f390bdvXyxYsEDqVSSN+hIaN6H/tWr8mpgzZw4WL16M+vXrY9SoUQgODsacOXPw33//Vav3UfVC6urqihkzZoh1cGULDd0QGjo52dnZ8Pb2ZtpXv4bNd4aGwCGNOojevXvD29sb69evZzIOWVlZ8PLyYl2zIy1Va89omBHSeE0ByZ2aRaGhoQE7OzssWLBA4Pjbt29hZWXF6jOSmZkJX19fqKurQ0NDA40bN4alpSUaN26M3bt3CwRC4vj8+TPatGkjdLxNmzYir7e1xX///SeyLXv48OESFczXFnWBipxDw1Dw6dOnCAkJ4bQ6pFHkSOMmVPWCWVhYCEVFRVauvD8qJiYm2L9/PxQUFKCkpIRdu3YhPDwcxsbGWLx4MasxaDm40tANoaGTs2rVKrx+/RrLli2T+jtDQ+DQ0tKSUen9888/MXbsWDRs2BC3bt2Crq4uqzE8PT1hY2ODoUOHonnz5iCEoLi4GNra2li5cqVU8/pW0HTGlsbZuiqEEISGhiI7Oxu+vr4C20dsqyFoOA7TUnPmSrNmzfDixQuhe0RmZqZcGJ7WBSpyTkZGBmdDwU6dOiE/P59ToOLs7AxbW1v06dMHFRUVMDMzY+pLnJycWI1B4yYEVKahd+7cidevXwOoXH3Y2NhQSzN+bzRp0oRZfRkYGCAtLQ2DBg1iLcVNy8GVnybmohvCN5RbvXq10GNsM4h3795FdHQ0NDU1Wf/dr6EhcDhp0iS0bNkSLVq0gKqqKvz8/ATqINjQrl07HD58mJGL5/F4UFdXR58+fajIt8sSWs7Y0jpbV4XH4yE0NBRubm6wsrLCtm3b0KpVK+YxNtBwHKah5kyD0aNHw9fXF76+vuDxeCgtLcXFixexevVqTj5itKgrppVzaBgKXrhwAf7+/nBwcICKiopQ8RmbOhcaRY40xNr27t2LNWvWwMLCAr169QIhBElJSdi7dy88PDwwceJEVnP5Ubhy5Qrmz5+PGTNmwMHBAQAwZcoUpKenIzQ0lFWhdG07uEri5fLkyZNqP09sagcGDRqE0NBQqKmpSTTPqtSmizO/DoJtYC6O/Px8tG/fntMYsoTWa0rD2VpdXR2JiYmoV68eFi5ciPz8fISEhKB169YwNDRkdS2i5Th87949hIWFISMjg1EenjlzJqdrvqSUl5fDxcUFx44dA/B/LfGDBw9GUFAQ50w4V+oCFTknNjYW+/bt42QoqKmpyQjxSFuAOnToUAQFBXFapdK4CQ0fPhzTp0/H9OnTBY5HRUVh7969iI+PZzWXe/fuYe3atahXrx6cnJxkelGgycSJE2FoaMgEKXwCAwNx48YN7N27l9U4NBxcaXi5TJw4kbNOTmhoKJKTk+Hv7895i4EL4uogXr16hQEDBrB6PZ48eYJ169YhPT1dSHm4sLAQqamptTJ3eYaGs3XVjqaysjK4ubnh3Llz8PHxgaOjI+uifHl2HJaGx48fM1pKampq6NKli4AX2reibutHzqFhKEijAJVGfQkNsba8vDwMHDhQ6PiAAQNY7wvz55KXlwdCCBwdHXHmzBmp5/QtyczMFKgb4jNp0iSJfIBoOLjS8E958uQJGjduLPHfrsqVK1dw8+ZNGBgYoHXr1kIZRLZbDFwFDmnUQXh7e+PRo0cYPnw4wsPDMWvWLOTk5OD06dPw9vZmNQYNaDhSA9xfU4CON1XV179Bgwbw9/fHli1bsGzZMtbzkNZxmLaaMw2MjY1x8OBBKCsrMyKJQKWMw5gxY1hJC9QmdYGKnEND2phGxT6N+hIaN6Fff/0VKSkpQvU29+/fF1k9Lw5CCHOx+p6Tiq1atcLDhw+F6kAyMjKkKiTl4uCamprK6IYcOnQIampqsLCwQPv27RETE4MRI0bUOIatrS3c3d056eT06NGD1TZTddAw0KRRB3Hr1i1s27YNvXv3xqVLl2BiYgJtbW1s3LgRFy5ckMjdmgs0HKlpvKYAHWfrRYsWCV2LFi1aBGVlZdZyC9I6DtNWc5aWhIQEXLp0CQDw7NkzeHt7C53Ps2fPvnk2Bajb+vmf4P3794iIiBDrNspGI4FGfQkNsbaIiAhs374dS5YsESg+27x5M6ysrLBw4cIaxwCA27dvMxkYJycnZqzvjU2bNiEmJgb29vZMEeH9+/cRFBSEcePGYenSpTKbi46ODk6cOAElJSUsW7YM+vr6sLCwwJMnTzB58mRcvXq1xjFobFPSgJaBJtc6iO7du+PUqVNQUlKCg4MD+vXrh0mTJiEnJweWlpa1KvhWlYCAANy5c6dGR+rCwkKxGjE0XlOgcpVvZWWF4uJiFBUVQUVFhfGm2rNnD6stZBqsWbMGL1++5OQ4HBERgfPnzyMgIIB5Xd+9ewcnJyeoqanB0dGR9rQZnj9/DmdnZ6bOT1dXV6C0gMfjoXHjxjA3N2cdRNYWdRkVOYS2oaCHhwfOnj0LQ0NDRoBKUmiYAdIQa7OyssKzZ8/g6+uLL1++gBACRUVFTJ06VaLsk56eHuv6DXlm4cKFePPmDby9vfH582fm9eCLUMkSGroh0m5TbtmyBTY2NmjUqFG1qXUej8cqmKUlcAhUZqkiIiLg5uaGqVOnwsfHh9Xzgcq6rfT0dCgpKaFz587Md6SiogKlpaWsx+HKgQMHEBYWJtAF1rJlSyxfvhwzZ86EnZ0dbGxsYG5uLnYMGq8pIL031ZAhQ1hlB3g8Hqut4AsXLiA3N5cRSPsaNteznTt3Cr2uzZs3h6OjIywtLWs1UFFSUmIWqZaWltiyZYtctCKLoi5QkUNoGwqeO3cOgYGBMDIyknoMGvUlNGpl6tWrB3d3dyxZsgTZ2dkAKpVlOZtefacoKirC09MTy5cvR05ODhQVFdGpU6dvUqVPQzdE2m3KQ4cOYdq0aWjUqJFQar0qbAMVGgKHNOogxo8fDycnJ6xfvx6DBw+GlZUVfv31VyQmJta6qWJVaDhS03hN+UjjbD1+/Hiq2xg0tuVpqDnTgF/PlpeXh6ysLPTq1QulpaWczR9pUReoyCFViyAlKYgUR7169TjpsAB06ktoiLV9/PgRXl5e6NSpE+bOnQugcqVkaGiIlStXflc+PTRp0qQJtLS0pH4+oeDgSkM35NOnT9i3b59AlwtQ2eKckpIidvVa1d2XhtMvDYFDGnUQc+bMwU8//QRCCLS1tbFgwQJs374dSkpKAjUatQ0NR2oarykA5Obmwt/fHxkZGSIzdeKKpe3s7Fj/DTbQcBymoeZMg/Lycjg5OeH48eOoV68eTp48iXXr1qG0tBTBwcHftHsOqKtR+S7gaijo7u6Otm3bwt7eXuo50DID5CrW5unpicTERKxZs4YJfE6fPo0NGzbA2NiYtQJqHf9HUVERbGxs8ODBAzRr1gyEEJSUlEBTUxPh4eGclX8l0Q1ZuXIl4uLi8Mcff+D+/fvQ09PD48eP8fr1a8yYMUOi9/fVq1cia7LYfFZpGGjSQFTtAFAZ0J0/fx5//vmnTOZRWFiIuXPnIiUlRUAhV0dHB8HBwXjw4AEcHBwQEhIiNitG6zWdOnUqXr58iREjRojMHLItQH348KFAKz2/7fv+/fust+cuXLjAiBzu27cPhw4dQseOHTF27FhWzy8pKcGSJUuQmJgopOa8fv16mS28Nm3ahBMnTsDT0xPz5s3DkSNHkJeXB1dXVwwcOBCenp4ymYc46gIVOYeGoWBAQAAiIyPRpUsXdO7cWejDz8Y7g0aRIw2xtv79+yM4OBh6enoCx5OSkrB06VJcvHixxjFyc3M5qfT+aNBycKWhG9KvXz+4ublh1KhRGDp0KEJCQtChQwc4ODigffv2rMwjafhjSStwSLsOQkNDA4mJiUy3EJ/U1FRMnToV9+7dq3EMWnB1pKbljK2rq4uoqChOmk7h4eFMMT1f3Iz/7549e7LKZNNyHAbASc2ZBsOGDYOnpyf69esnUOh89epVODk5Md1B34q6rR85h4ah4J07d5iOkBcvXkg1Bo36koiICDg7OwuItQ0dOhTKysqIjIxkFaiUlpaKXOG3atUKb9++ZTWPadOmYevWrd+tyBttaDm40tANeffuHdOB1aVLF6SmpkJFRQVz586Fvb09q0CFhj+WtAaaNOogIiIimJsoIQSGhoYif0/Wn1+ujtS0nLE7deqEDx8+SP18oFIgcvbs2Vi0aBGMjIwQGxuLoqIiLF26FMbGxqzGoOU4DAAqKioCPkWSqDnToKCgQOTiTUlJifV1tTapC1TkHBqGgjTqXGjUl9AQa9PV1cWuXbuwZs0aZhVGCEFkZCS6d+/Oaoz69etDUbHuo8+HloMrDd2QVq1a4fXr1/j111/RqVMnpKenA6i8Eb569YrVGDT8saQVOKRRBzF9+nS0aNECFRUVcHNzg6urq0DAxW8bZasZQgMajtQ0RCOByi5GLy8vWFpaokOHDkLZGDZbjPn5+Zg0aRJ++uknqKur4/79+zAxMYGLiwvWrl3LaiuahuMwDTVnGqiqquLq1atCBcrHjh1Dly5dZDKH6qi7Wss5NAwF8/Lyqn1cVvUlNMTaHBwcYG1tjevXrzPFow8ePEBRURHCwsJYjTF+/HjY2tpi7NixUFZWFrp4SrIS+ta8fPkSQUFBYjVy2Kiw0nJwJYSgc+fO2LdvHxYuXIiJEycyuiFsGThwILy8vODn54cePXrA19cXQ4cORUJCAmtfGyUlJc6tu7QMNKWpg1BUVGQ+gzweD6ampt+8SJyGIzWt1zQ9PR1ZWVkis2tst/YaN27MbGV37NgRmZmZMDExgaqqKp49e8ZqHjQch2moOdPAzs4ODg4OyMzMxJcvXxAbG4ucnBycPHlSpPK1rKmrUZFzaBgKqqurV7uilVV9CS2xtqdPn2Lfvn3IyMiAoqIiVFVVMW3aNPzyyy+snk9DvE5emDdvHlJSUmBqairyBsKmsPD27duwsrKCurq6SAdXtit3Gv4p7969g4uLCwwNDWFhYYE5c+bg0qVLUFRUxLp161h1QtDwx6LxGaFRBwFU1tx06tQJrVq1QlxcHI4fPw59fX3MmTNHZi2s2tranB2paX3v+vfvDxMTE0yfPl1kWzMbwbd58+ahZcuW8PDwQHx8PA4cOIC9e/ciISEBa9euZSWkt2HDBly9ehW+vr6wsLDAP//8gxcvXsDT0xPDhg2Di4tLjWPo6ekxas6TJk2Cs7MzevbsiYiICFy4cIHKljtbLl68iJCQEKZ+qGvXrpg9e7bMCraroy5QkXNoFLHeuHFD4P9fvnxBTk4OIiIi4OLigiFDhtQ4Bg0zwIqKCvj5+SE6OlpIrM3NzY2zoNz/IvytMDbdX9VBw8GVr8RaNYOyZcsWbN++HRUVFVIFgIQQ3LlzB7/99hvrQHTYsGHIy8sTaG+uClszQK4GmiYmJhgxYoTIOoiJEyeyykTu3bsXXl5eCAsLQ8uWLTF+/Hj07dsXaWlpmDZtmsy8YGg4UtN4TYHKm3t8fDx+//13qeeSnp6OWbNmYcaMGTA3N8fo0aPx7t07fPjwATY2NqyE1mg4DtNQc6bB7t27MWrUKLRr104mf09iSB1yzfXr16v94cLFixfJpEmTWP1u9+7dyePHj4WOP378mHTv3l2iv1tcXEzu3r1L7t69S0pKSiR6Lk2ePXtGLl68SD58+EBevXr1zebBhb59+5Ls7OxvPQ1CCCHBwcHk/fv3QsePHDlCpk+fzmqMDx8+EBcXF7Jjxw7mmJGREVmxYgX59OkTqzEOHTpU7Q8bJkyYQNLS0lj9rjg0NTWZ78zMmTPJ6dOnCSGEXLp0iZiamrIaY/jw4WTPnj2EEEICAgLI6NGjCSGV310jIyNO85OEnTt3krlz55Li4mKpx6DxmhJCyLJly0h4eDjncT58+EBev35NCCHk5cuXJCwsjBw/flzicR49ekSOHz9Ojh07RjIyMgghhFRUVLB67ujRo0l8fDwhhJCtW7cSFxcXQgghDx48IPr6+hLPRVp69OhBHj16JLO/Jyl1NSpyDg1DQXF06tQJDx8+ZPW7NOpL5EWsraysDM7OznIrbiQJY8eOxa5du+Dt7S2ROFttOLiK+73Ro0dj9OjRrMZYu3Ytbt68KSCm5erqig0bNmDjxo2sdFRoCHHREDikUQfx9OlTJuOZmJjIFKOrqqqyLi6mAQ1HahqvKQC0bdsWAQEBOH78ODp27ChUGF+T3AK/qJf/AwBv376Fubm5RMW+NByHaag500BHRwf//vsvZs6cKbO/KQl1gYqcQ8NQUFQxbUlJCUJCQlinT6dOnQovLy8UFRWJrC9hA42bEA22b9/O2M3PmzcPQOUFw9XVFf7+/t9c3EgSioqKcPToUZw/fx4dOnQQuoGI+3zQcnClrRty5swZIZ2coUOHokWLFli6dCmrz0hFRQXi4+NFfmfY+mPRcHHW19fHzp074eHhgT/++AMHDhzAnDlzkJyczNryoXXr1njx4gUUFRWRlpbGyO8/fPhQIrdwrtBwpKbxmgKViyP+TTw/P1+iORw9ehRr1qxBaGiogJKzr68vUlJS4OPjg6FDh4p9Pm3HYRpqzjRo2rQp1q9fjx07dqBTp05C58TmPlOb1AUqcg4NQ0FRNxNCCBo3bsxahpuGGSCNmxANjh07Bk9PT/Tu3Zs51rt3b6xZswZOTk7fVaACAKNGjZL4OVVl5mtycK0O2v4pNHRyfH19ERUVBXV1damzYzQMNB0dHTFr1ixERUXB3NwcO3bsgIGBAVMHwQZTU1MsW7YMjRo1Qvv27WFgYICEhASsXr2aVQE7LWjUwtB4TQHp5RauX78OJycnjBs3TqgWw83NDbt27YK9vT3+/vtvsW7qfDNTfvCbl5cn0nGYrdwCUFnLxIeffeSrOcvKCbpx48Zy3e1YV0wr5/To0QP+/v6cDAW/LqYFKrVE1NTUJDbzKykpkdoMUE9PDwcOHBDSt8jKyoKZmRnu3r3LapwXL14gJiYG2dnZcHd3R1JSEtTU1AQEk6pDR0cHx44dw++//y6gwvjo0SOMGTNGpmqf8kC/fv0QFhYm1JWRnp4OS0tLVilsWsycORPt27cX0slZtWoVsrOzsWfPnhrH6N27N1xcXDhtAYn6zlSF7Zbsx48f8f79e7Rq1QqvXr1CfHw8lJSUMHz4cFbPr6ioQFRUFJ48eYJp06ZBWVkZf//9NwoLC2FnZ1erBei0HalpvaZA5et64sQJZGdnY9asWUhPT0fXrl2rFZ6zsbGBqqoq3NzcxP6Oq6srXr16hdDQ0BrnQMNxmIaaMw2OHj2KAQMG1Lkn1yEdNAwF//rrLzg4OHAah0Z9CQ2xtsePH2Py5Mlo2rQpCgoK4ODggISEBLi6uiIiIoJR4K0OeRc3khR+4JaTkwM3NzeJAzeaDq5c/VNo6OSUlZWx1uQQB1eBQ1p1EPXq1YOlpaXAsa//X1vQdqSmVW/36tUrTJkyBa9fv0ZZWRkmTZqEsLAwpKSkIDIyUux1LjU1tcasrYWFBbMdXBM0HIcJBTVnGnh7e+Off/6R20ClrutHznFzcyMbN27kNEaPHj3IkydPOI2xatUqYmJiItBpdOrUKTJ06FCydu1aVmPcvXuX6OrqEiMjI2JnZ0fs7OzIkCFDiL6+Prlz5w6rMebNm0fc3NxIRUUF0dXVJbm5uaS8vJw4Ojqy7iz5999/iY6ODvH19SXdu3cnmzZtIvb29kRDQ4OcOHGC1RjywqNHj4iBgQEZMmQI0dTUJLm5ucTOzo7o6uqyfk2dnJzIyJEjybVr10hJSQkpLi4m58+fJ8bGxsTb25v1XMLCwki3bt1It27diLq6usC/2b43hBDy5MkT4u/vT+bOnUsWLlxIAgMDSUFBAevn29nZMZ0yXIiMjCSGhoZEXV2dqKurk/79+7PqNomPjyd9+vQh9+/fFzg+a9YsYmBgQE6dOiXRPM6fP08sLS2JoaEhefr0Kdm8eTOJi4uTaAx54OPHjyQyMpK4u7sTFxcX5sfR0ZEMGzaM9ThLly4lc+fOJe/fv2euAUVFRWTGjBlk7ty5Yp+np6cnsnOxKrm5uURPT4/VPMrKyoi9vT3p1q0b0dDQILm5uWThwoVkxowZrLuj1NXVSVJSEhk6dCiZMmWKQBeSuro6qzFoMGnSJHLs2DGZ/T1JqcuoyDmtWrVCWFgYLl68KLWh4Pjx4+Hv74+FCxdCWVlZqu4aGvUl2traiI+PFxBrGzVqlERibbdu3UJUVJTASl9RURELFizA5MmTWY1hZGSEzZs3IyQkBAoKCti9eze6du2KjRs3yoW4kSSsXbsWJiYm8PHxYfbVAwMD4ezsDH9/f1b7+StXrsSSJUtgbW0t5OAqSd0QDf8UAPj999+xdOlS1r//Nbq6uowYl6qqqpDgG5t6i71792LDhg1CAoeBgYFo2rSp2PoQGnUQVUlMTMSiRYtgamqKO3fuoKKiAp8/f4arqysIITKvK+DiSO3j41OtMzZbrl27hp07dwqIvf38889wdnautrC/c+fOuH37drUq37du3WJdF7Jt2zbORfmEgpozDdTV1bFs2TLs2rVLZDEtm/tMbVIXqMg5NAwFL1y4gNzcXMY462vYuslyLXIEuN+EKioqRHpilJaWStSeO3DgQJG+Q98bNAI3vokaVwdXGv4pNNizZw9atWqF1NRUpKamCjzG4/FYBSrSGmju3LkT06dPF1kHwe/qACo7z9jUQdA0vuMCDUfqs2fPws/Pj3HGXr16NeOMLco/SBylpaVi25w/f/4s9nljxozBpk2b0KdPH5HCZgUFBdi0aRMmTJjAah40ivL539uWLVsiIiICbm5umDp1KqttUprk5OQwXV0vX76U6d9mQ12gIufQMBRk25VTHTTqS2jQv39/hISECHQrFRUVYcOGDdVKvbMtDASABg0aoH379jAxMaGi+1Cb0ArcAO4OrjR0Q2hQtaNJWqQ10KRdB0HD+I4GNBypaThjA5WeQNHR0XB1dWWOlZeXY/v27dVmqaZPn46TJ09i1KhRmDBhAvT09NC8eXMUFRXh1q1biI2NRadOnVh3ZNFwHK6amWrQoAH8/f2xZcsWpg1dVtC4z9QmdYGKnEPDUJCGABaNIkcauLi4wMrKCv3798enT58wf/58PHv2DC1atMDatWvFPo9tYSBQaTHw+vVrHDt2DCEhIbRPgSrSBm5VoeXgSkM3RF6QVuDw06dPNRbLtmjRAh8+fGA1DxrGdzSg4UhNwxkbAJydnTFt2jTcuHED5eXl8PT0RHZ2NoqLi6vtClNQUEBERASCgoJw8OBBREREMI+1adMG06ZNw/z581kXO9Moyl+0aJHQYmjRokVQVlZGTEwMqzFo8fnzZ7x+/ZpZbJAqhfBjxoyR6Vy+pq49Wc6hYShIC65mgLT48OEDjh49irS0NMY8a+zYsVQVZW/cuIG5c+fi9u3b1MasDQoKCmBlZYXi4mIUFRVBRUWFCdz27NnDar992rRp+PTpEyZMmCDSwXXEiBGs5kLDP4UGNL4z0hpoTpgwAVZWVhg7dqzYsQ8fPoxdu3ax8seiYXxHg2HDhsHf318i76evWbFiBR4+fAg/Pz88fvwYvr6+2LRpExISEvDvv/+K3ZoWRUFBAaKjowWuARYWFqwFLD9//ownT57g7du3aNWqFTp06CBxh9u5c+fg4OCAKVOmIDo6Gra2tgKOw99Tvdvly5fh7OyMwsJCoccaNmz4za+DdYGKnEPDULAOySksLER8fDysra2/9VRqhGvgRtPBlatuCMBdJ+fQoUMCN53Pnz/j0aNHiIuLg5OTU7VBBB9pDTQjIyMRGRmJ6OhosXUQ5ubmmDBhAquW3uqM7zZt2iRU9Fhb0HCkpuGMLW9I4zhMW82ZBmZmZmjdujUsLS2xZMkS+Pv7Iy8vD5s3b4afn5+AKN23oC5Q+U65dOkSgoODZZ4e5Io0NyG2Ev0AO6lnecpSyQM0HFz5uiFVX9esrCz89ttvEumGfK2Tc/z4cWzYsAGXLl1irZMjjuPHj2P//v0SbVVKKnD45csXWFpaIiMjo9o6iD179kj0uuTm5jI3QzU1NZnr/dBwpP4aIoEzdtV6lJqQVYeKtI7DwcHBrLM3snLH1tbWRkxMDNTV1WFhYQE7Ozv07dsXBw8exIEDBxAdHS2TeYijrkblO0USQ0F5QVqxtqrbF58+fUJCQgI0NDSgq6sLRUVFpKSk4N69e0J7xeLw9fWtdsX9v4aysjKSk5MxatQoqKio4P79+wCA4uJilJWV1fh8rv4pVaHRbi0ObW1t1lsl0goc0q6D4NOxY8dq22prGxoF+V+/pjweD0uXLmUlGvn06VPOf58227dvlyrTYGdnVwuz4YaCggJTJK2srIz09HT07dsXffr0kcgOoNaQtXBLHZLx7NkzoZ///vuPODo6khEjRrAep6CggAQHBxMHBwfy6tUrcvz4cZKVlVWLMxeGhlibi4sL8fPzEzq+ceNGsmjRIk7zS0hIIDNnzuQ0xvdITEwM0dbWJvHx8SQzM5NoamoST09PMmbMGDJr1qxqn3vt2jWioaFBXF1dyYsXLwQey8zMJC4uLuSPP/4gycnJrOZiYGBAMjIyCCGE+Yzwx+Jie19SUkLWrl1LhgwZwur3aQgclpeXk+zsbHL79m3y+PFjUlFRIdXcfxRovKbi+PTpE9fpScysWbNIWFgY53HS0tLI4cOHSWxsLImNjSWHDh0ie/fuJe7u7hRmyY5JkyaRv/76ixBCyM6dO4mdnR0hhJCbN2+SXr16yWwe4qjLqMg5NAwFacjO04CG5seJEycQGxsrdHzcuHGcNSUkWXH/SHBxcKWtG0Kj3Vrc1h6Px4OXlxerMWgIHCoqKqJz586s/p68Q8ORmpYp6adPn+Dp6SmQ7Ro+fLhEdh40oOE4HB4ezmQs+PVH/H/37NmT/qTFMGfOHCxevBj169fHqFGjEBwcjDlz5uC///5j3T1Ym9QFKnKOqA+7pIaCtNLpXIscadyEmjdvjtTUVHTq1Eng+M2bNzmpOZaWlmLPnj3Vtp7+yEjr4EpbN4RGu7WoGoX69etDR0eHtYgdLYHDHwUajtS0XlM/Pz/cvHlTQHbB1dUVGzZswMaNG2Xmwk7DcZiWmjNXTExMsH//figoKEBJSQm7du1CeHg4jI2NsXjxYpnNQxx1gYqcQ8NQkEYmg0ZWhsZNaMqUKfDw8EBWVha0tLRQUVHBnN/y5ctZjUFjxS0viCsy5PF4qF+/Ptq3b4/hw4dXu7IX5+D69u1bWFlZVVsoSVs3RFqdnKo8ePAAVlZWnGo65EXg8GvKy8vx8OFDqKioyFSbJj4+Hr6+vpw0mWi9prQyM1wxNDTk7DgsL2rOANCkSROUlJQAqDSQTEtLw6BBg9CiRQuZzUEcdYGKnHPt2jXOLYg0Mhk0sjI0bkILFiyAgoIC9uzZg61btwKoVIJ0cnKChYUFqzG+LqYFJF9xywvl5eU4duwY2rRpw2hcPHjwAAUFBdDR0cH169exY8cOhIWFiVWYJRwcXGn7p7Rr1w5xcXEC7dbm5uYStVvHxsZyvsDLi8Dh8+fP4e7uDnt7e6ipqWHixImM2FtERAQ0NDRkMg8ajtS0XlN5yXbRcByWFzXnK1euYP78+ZgxYwbz3iQkJCAoKAihoaEy3YYSyTesj6mDBT4+PmTJkiUkPT1d6oIxe3t74ujoSL58+cIUKL5584ZMnz6dKZqqCVpFju/fvycxMTHEy8uLrFq1iuzZs4e10+jXFBYWkjdv3kj13B8Fd3d3snjxYoHPRllZGVm2bBnx8vIihBCyYcOGaouVuTi4RkREECMjI5Kfny/y8fz8fGJkZES2bNki6alJjYODA/Hz85P6c8WHq4szDezs7MjEiRPJkydPyKFDh4ienh5JTk4m7u7uMi38puVITeM1nTFjBnFxcSFfvnxhjlVUVJCVK1eSadOmcZ4jW2g4Ds+dO5e4uLiQ9+/fk3379pFJkyaRL1++kPj4eGJoaEhppjUzYcIEEhgYKHQ8ICCATJkyRWbzEEedjoqcM2zYMOTm5ortu2ejX0BDvbRXr16IioqCmpoa9PT0cOTIEXTo0AH37t2Dra2tkDCdvCGJL4qstAto0LNnT+zdu1dIVyMzMxPm5uZISkrCo0ePYGZmhlu3bokcQ11dHYmJiahXrx4WLlyI/Px8xsHV0NCw2s8YDd0Q2jo5lpaWSEpKAo/HQ+vWrYUykmfPnmX99741BgYGiIyMhIaGBuzt7UEIwaZNm5CTkwMzMzOZKYaGhYVh8+bN6N+/v9SO1LS4d+8erK2t0bJlS5GZGVk1B3h4eODAgQNQV1eX2nFYXtScdXV1ER8fL5RRfvLkCcaMGfPNlWnrtn7kHBr6BTTS6dLWl9C+CUnLli1bUK9ePbRv377a32PrrisvKCoq4tWrV0KBysuXL5ng9suXL1BUFP9V5+LgSkM3hLZOTu/evQUcbb9nysvL8fPPP4MQgqtXrzI3roqKimrfU9rQcKSmhba2NuLj4wXsPEaNGiVzOw8ajsNqamo4c+YM3r9/jyZNmiAmJkYqNWeutGrVCg8fPhQKVDIyMqQ2oaRJXUalDlZIm5WpWuxZ002IjS26tHh4eOD06dNo1KgRTE1NYWpqCnV19Vr7e7Ji1apVuHr1Kjw9PaGjo8Oofa5evRr6+vpYuXIlPDw88ObNG+zevVvkGPyMStWuqS1btmD79u2oqKhgrTpKwz/F1dUVP//8s1CbeFBQELKyshAcHCzReN8706ZNQ+/evdG2bVt4e3vj3LlzaNWqFTw8PPDs2TO5d72tQzy01JxpsGnTJsTExMDe3p7JSN2/fx9BQUEYN24cli5dKtP5fE1doPKDUhuZDK6eMt/6JvTlyxdcu3YNCQkJOHPmDFq3bs0ELV+3O38vfPz4EU5OTjh16pTABW/EiBHw9vbGtWvX4O3tjZ07d4oNzLZs2QIbGxs0atRI4Hh8fDxiYmJkejPU09Njtouq8ujRI4wbNw537tyR2VzkgXv37mHevHl48+YNZs+eDUdHR3h6euLYsWPYtWuXzLY55InqNF0A2UnoA9I7DotTc7axsZFYzZkGnz9/ho+PDw4ePIjPnz8z3laWlpZYunSpTLN3oqgLVH5Q5CWTURVaNyFCCC5duoT09HQoKiqiS5cu6Nu3L+sOJqAypX758mUcP34cZ8+eRceOHTFy5EiYmpri119/leCs5IMnT54gLS0NCgoK6NatG+MiW1ZWJjMBLBoMGjQIzs7OGDlypMDxAwcOYPv27d9VfQktKioqUFJSwnS65OTkMAJ9skKe/LF8fHyq1XSRVWAtrePw9evXMXPmTIwbNw4ODg5o27Yt81hWVhZ27dqFI0eO4O+//2Y6LGVFaWkpcnJyoKioiE6dOsk8syOOukDlfwBpMxm0szI0bkJFRUWwsbHBgwcP0KxZMxBCUFJSAk1NTYSHh4tsW6yJsrIyHDx4EAEBASgtLf0uTQlfvXolcnUpLuiSRwdXANi2bRvCwsJgbW0tUidn2rRpMpsLV4FDWtAIzLlCw5EaoPOa9u7dGy4uLpw0XWggreOwjY0NVFVVRao583F1dcWrV69YqTn/L1BXTPs/gLSy87SLHGmIta1btw4fP35EXFwcs5Xx8OFDLF++HAEBARIJtr148QKnTp3CiRMnkJycDGVlZVhaWrJ+vjxw69YtuLq6Ijc3V+A4IQQ8Hk9s0DV+/HiJ60dkAQ2dHBrIi+1EbQTm0mBmZibyuJaWFvbv388qUKH1mtLQdKFBZmYmfH19oa6uDg0NDTRu3BiWlpZo3Lgxdu/eLTZQoa3m/D+BLHuh65AOroaCAwcOFNnvv3//ftYmbbTMAHfs2EH69+9PunXrRrp160YGDx5MoqKiWD+/d+/eAqZmfK5du0b69etX4/Pz8/NJZGQkMTc3J+rq6mTo0KEkMDCQpKWlsZ6DPDF+/Hgybdo0cubMGXL9+nWhn+8ZSXRyRJl3ivthAw0DTRq4uLiQkSNHCnw+09LSyKhRo4iHh4fM5iGOp0+fEm1tbVa/S+s1paXpwhVdXV3y9OlTQkjl+xQREUEIqXxNqjPy09PTI48fP6527NzcXKKnp0dvst85dRkVOYfGKoRGJoOWGeDcuXMxd+5cvHnzBjweT+J99s+fP4v042nTpg0j/yyKiIgInDx5Enfv3sWvv/6KESNGwN3dHZqamhL9fXkjIyMDcXFxnCwWgMqsVHp6OqNgTKoUBbJpU64NWrZsyfp32WxlkRqyTFWhYTtBg3PnzmHz5s0ChdDq6upYsWIFHB0dv6nlg6T+WLReU11dXWzYsAFXr179ppouXbt2xb///gtLS0uoqKggOTkZ1tbWyM/Pr/Z5tNWc/xeoC1TkHBrS9TTS6bTNACW5CVVFU1MT0dHRcHd3FzgeHR1drZz42rVrUb9+fQwYMIDxFTl37hzOnTsn9Lvfk46KkpISSktLOY0hLw6uXIiMjKS6lUXDdoIG0gbmtKHhj0XrNZUXTRdpHYfHjBmDTZs2oU+fPmjXrp3Q4wUFBdi0aRMmTJhQm9P/rqgrppVzevfujaioKHTp0kVAETYrKwuTJ09GcnKyRONJm8mQlyLH27dvw8rKCurq6kzglpycjIcPH2LXrl1iLxBDhgxhNT6Px/uuOktiY2Oxb98+eHl5QUVFRWh1yQYTExOMGDFCpIPrxIkTZWqMJi84ODigXr162LBhA3r06IEjR46gWbNmsLOzQ8uWLbF582aZzMPa2hpqampCgbmPjw9SUlKwd+9emcxDVDZVUn8seXlNafLgwQMoKChAXV0dN27cQHh4OJSUlLB48WKx11gaas60efnyJYKCgsS2fH/ra2JdoCLnyJN0fUhICPbs2cOoMCopKWH27NkyLXIEKrUlwsLCkJGRAUIIunXrhpkzZzKmfP9LDBs2DHl5eYyOw9ew2ebQ0tJCQkICOnbsiFmzZsHCwgImJia4fPky1q5di6NHj9KeNnWsrKywZcsWNG/evMZuNTYdajRsJ2ggbWBOGx8fH86O1Fxe07y8PCgpKYHH4yEvL6/avyNLeYFHjx6hpKSE0UKJjIzEoEGDatRlKisrY9ScqxoptmnTBhMmTKhRzZk28+bNQ0pKCkxNTUUq0X7rLHNdoCLnyOMqRNqsTB30EbXSrQqbFk4DAwPs27cPnTt3hqenJ9q3b4958+bh+fPnGDlypMx9PogU7biurq5wd3dH06ZNBTSERMFWEIyrwCEt5CEw79GjBw4fPszo80iLtK+phoYGLl++jNatW4vdhpKkBokGVR2HHRwcAFTWA6anp7N2HKah5kwDXV1d7Nq1S263eusCFTlHXlZ2tJDmJvSjGgrKC/PmzUPLli3h4eGB+Ph4HDhwAHv37kVCQgLWrl2Ly5cvy2wu8tKOW4cgjo6O+OWXX7Bo0SKZB2oAcOPGDejr60NRUbHGLLKBgYFM5jRx4kQYGhoyQQqfwMBA3LhxQ2bbcjTo168foqKi0Llz5289FZHUBSrfAfKysuOKtDehr+tLnj9/jvr166NDhw5QVFREbm4uysvLoaWl9V1dHKSFbfaAx+PB19e3xvHkxcEVqDy3e/fuISAgQEgnR19fn3XhZmFhIXJyckR2MYkz+pQnA022yCowl9aRWl5e09pA3h2HJWHdunV49+4dvL29ZVoszpa6rp/vgEaNGrEWVROHNJkM2kgr1vbvv/8y/46IiMD58+cREBDAdBu9e/cOTk5OUFNTq/2TkAOePn3K3ICfPn3KeTx5cXAF6LTjHjlyBCtWrEBZWRnTxcRPp//2229iAxXaAofScujQIVa/J8sOF2kdqeXlNa0N5N1xWBKKiopw9OhRnD9/Hh06dBCy3fjWQWRdRkUOob0KkZd0ep8+fbB582ah1Oz169fh6OiIxMTEGsfo168fwsLChAz20tPTYWlpievXr1Od84+OPDm4AkDPnj0RExMjJKmelZUFMzMz3L17t8YxRo4cCR0dHdja2sLc3BxhYWF48eIFvLy84OjoyEpF9VsbaP6I/Givqbw7DksCrbqu2qIuoyKH0F6F0JKd55qVoaEJUV5ejvfv3wsdf/36tVxKwsuCDx8+ID09XaitsCYdFHEOrr6+vt/EwRWQXienKk+ePEFwcDBUVVXRrVs3FBYWYsiQIfj8+TN27NjBKlChJXBYx//xo72mCxcuxJs3b+Dt7S3kOLxkyZJvPT2J+NaBSE3UBSpySNUPjaurK2bMmCF2FcIGGul0GlkZGjehIUOGYOXKlfDw8ICWlhYIIUhOTsbq1athamrKaowfibNnz8LFxQUlJSVC2gfVdUBcv34dTk5OGDdunJDolJubG3bt2gV7e3uZO7ja29vDysoKd+7cEdmOy4YGDRowqWtlZWVkZGRg4MCB0NLSwuPHj1mNQVvgsI4f7zVVVFSEp6cnli9fLpeOw5LCN4zMycmBm5vbNzPhFEVdoCLn0FiF0Mhk0MjK0LgJrVy5EkuWLIG1tTWTQSGEYPjw4TUaff2I+Pv7o2/fvliwYIFE++I7d+7E9OnTRTq4qqqqMsHy9u3bZergqqenh6ioKISFheHy5ctMO66Hhwfrdly+UZ6joyPU1NRw4cIF2NjYIDMzk7UgHg3biToEofmaxsfHo1evXmjfvj22bduGhIQE6Ovrw93dXajQt7Zp0qSJQEbye+RrqxZ7e/tvYsIpllr2EqqDIzQMBa2srIiPj4/Q8dWrV5MpU6awGoOrGSCfu3fvkiVLlpCRI0eSESNGEHt7e3L37l3Wz+eTlZVFjh8/Tk6ePElyc3Mlfv6PgpaWVo0GZ6Lo06cP+e+//6r9nXv37kn03soLSUlJREdHh+zevZsUFhaS/9fencfVmP//43+0kcQk+Y6mSRt1IqUk2d5GJYydjNFMWXpbylpMKlNDmrLEZJkxicrSWMY2ShhZYwjFiCRiRL1FTJHSdq7fH36dj+MULde5ruvU8367dbuZ65zOeXQNndf1ul6v59POzo758ssvGWtra2bJkiV1fp3GNtAkstg4pz///DPTvXt3JjU1lbl69SpjZmbGfP/994yzs3ONv+fIxwmlCWdtaEZF4Ni4CmFjJoOtniOWlpaIiIio8/NrY2xsLDUlWb31tGfPno1+bUViaGiIJ0+e1LtiaFlZ2UenqLW0tFBaWtqYeHXC9nZcW1tbHD9+HOXl5WjXrh1+++037Nq1C7q6unBzc6vzezW2gaa8lZWVyXX24GMVYN9V12qwbJzT/fv3Y+XKlbCxsUFoaCh69OiB5cuX4+rVq/D29pa5tUw+TihNOGtDAxWBY6OhIBvT6Q1dX8L2h9DNmzcRGBgo1en3XVxVpRSKRYsWYfny5fD29oaxsbHMtsLaPkCE1MH1/e24H6qTU5e/Iy4uLggJCZHcojQxMcH333/f4HwNbaDJhn///Re//vorsrKyJG0SGIZBRUUF7t27h6tXr8rtvdnuSP2uxpzTp0+fwtraGsDb6rDVW+h1dXXx8uXLBr9ucyaUJpy1oYGKAmDjKqSxMxkNnZVh+0MoLCwMKioq+P777xEWFgY/Pz/k5OQgLi4Oq1atavDPp6i8vLxQVVUFLy8vqQ+Vj32ACKmDK9t1ch49egQNDQ25ZOXasmXLcPHiRfTr1w/Hjh3D8OHDkZ2djYyMDLkX4mO7IzVbOnbsiAcPHqCsrAz37t1Dv379ALxdlNuxY0ee0ymm/v37IzIyEqtXr5YcKywsxOrVqznrJ/UhVEeliZJHdcvG9hz52IdQXX7xWltbY9u2bbC0tMSECROwePFi2NraIjY2FmfPnkVMTEydsjQVDS0nLsQOrgA7dXKioqJw7tw5eHh4oFOnTjL5uWxa11i9e/fGypUr8cUXX2D48OGSir2BgYEoKytrloPzrVu3YvPmzWjRogW0tbXxxx9/SC5U5s2bBw8PD05yCL3jcH0IvVULzag0UWzPZACNn5XZvHkzoqOjpbYitm3bFj4+PnBzc6vTQEUsFqNDhw4A3m49zcrKgq2tLRwdHREZGdngbIqqoX1NVFRUEBsbK+ngGhsbK3lMR0cH33zzDecdXAF26uRERESgqqpKUvK9WkNvU/Dp9evXMDMzA/B2XVZmZiZEIhG+/fZbzJgxQ67vzXZHarZ4eHjAyMhIUqoeePt7JDAwEC4uLpzlCAwM/GDHYUXy6aef4tChQ1KtWiZNmiSYVi00UGmi2JhOZ3tWho0PIQMDA6SmpmLEiBEwNjZGeno6AODVq1coLy+vc96moqSkBLGxsbVe1X3oA6RFixbw9fWFj4+PIDq4AuzUyWFrVo0RQNuJTz/9FLm5udDV1YWhoSHu3LkD4G1bjaKiIrm+t56eHpSVlSV/ZgNb5/T9/l8jR45kJV99XLp0SdAdh+uLjVYt8kIDlWagoTMZbM/KsPEh5ObmJlnQO2TIEIwePRrq6upIS0tDjx496vQaTUlQUBBOnjyJfv36SWaa6ktVVVUwXVPZqJNz+fJleHh4oFWrVlLHi4uLsW7dujrNQgml7YSzszP8/f2xYsUK9O3bF97e3rCyskJSUhIMDAzk+t7vFp5ko3IpW+e0rKwMe/bskVpgDLzd+Xfz5k0cP3680VnrQkNDQyEL1SkiGqgogMZehTR0JoPtRY5sfAhNmDAB7dq1g5aWlqQwWVRUFHR1dREUFFSn12hKTp8+jbVr12LQoEF8R2GFpqYmtm7divv37yMrKwvKysowNzeXafz2vuzsbLx48QIA8PPPP0MkEuGTTz6Rek5WVhb27t1bp+2rbLWdaCxvb29UVlYiLy8PI0eOhLOzMxYsWIC2bdti3bp1nGSo1pCO1O9i65yGhITg0KFD6Nq1K9LT02FtbY2HDx/i+fPnmDJlSoN/vvoaPXo0tmzZItiOw00JLaYVODauQhYvXoybN2/WOJMxcOBABAYGfvQ12GwGWN8PobqoqKjA9evX0atXr0a/liLp1asX9u/fX+86KormY3Vyzpw5g1mzZkkNgGsyfvx4/Pjjjx99PzYaaLIhISEBAwYMkBp0FRYWQlNTE6qq3F1nfqwjdVJS0kdfg61z2rdvXwQEBGDEiBEYPHgwIiMjoa+vD29vb3Ts2LFRW9Hrw9/fHwkJCWjbtq0gOw43JTSjInBsXIWwMZPBZjPAxhRrMzc3x9y5c+Hl5SV1vKioCO7u7gq1UJINzs7OOHDgABYsWMB3FFY0tE7OF198gVOnTkEsFsPJyQm///47tLW1JY8rKSlBQ0Ojzlv72Spw2FjBwcH47bffpAYqfBSe+/XXXzF8+PAaO1LPnTu3Tq/B1jl9+fKlpERC586dkZGRAWNjY8ycORMLFizgbKACACNGjODsvZozGqgIHBsNBRs6nf4uNtaXsFGsjWEYREVF4f79+wgNDZW6immOk4Pa2tqIjo7GuXPnYGRkJHNVJ/SuqO9rTJ2c6m3HJ0+exGeffdaoBcFsNNBkg6GhIbKystC5c2fO3rMmbHSkZuucamtr4/nz5/jss88k5wd4W0SuoKCgfj9YIyjav60P8ff3r/G4kpIS1NTU0LFjRwwdOpS3tWw0UBE4Nq/sGjOTwcasDBvF2pSUlBAVFYWAgAC4u7vjl19+kVw5C7E4lbxdv35d0jDs6dOnPKdpvIyMDEmdnAMHDsDU1BSurq7o2LEj9u7di2HDhn30NdjYocJG2wk2iEQiLFq0CFu2bIGhoaFMyXyuPizZ6EjN1jn9z3/+g2XLliEsLAw9e/ZEaGgoBg8ejMTERM4Lvgm543B9VFRU4MiRI9DR0ZHUxbp16xby8/NhZWWFlJQU/Prrr4iOjualTQkNVASOjasQNmYy2JiVYeNDiGEYGBkZYc+ePZg9ezZcXFwQGRnZbFff79ixg+8IrBJKnRw22k6w4cGDB5IPhmfPnnH2vu9joyM1W+fU19cXfn5+uHz5MlxdXbFnzx5MmDABqqqqWLlyZUN/xHoTfMfhelBXV4ezszNWr14tGZBWVFQgICAAbdq0QVBQEMLDwxEREcHP7xx5dz0kjZOWlsZYWFgwLi4uTGhoKBMaGsqMHz+e6datG3Px4sU6vYarqyszfvx45rfffmO6d+/OxMXFMWFhYYyFhQWTmJjYqHxlZWXM1atX6/RcS0tLJi8vj2EYhlm4cKGka2pOTg5jb29fp9cQiURMQUGB5L0XLlzI2NjYMImJiYxIJGrAT6DYcnNzP/ilaEaOHMnEx8czDPO2S66fnx/DMAxz69YtxsbGhs9ozRpbHanlQSwWM7du3WLy8/M5fV+hdxyuj549ezJ3796VOX737l3G1taWYRiGefDgAWNtbc11NIZhqHuy4LFxFcLGTAYbszJsFGtj3lmH0qJFC4SHh2Pjxo1YtGhRnb6/qflY4zhFW1zMZ50cebSdYENlZSWeP38u1ZSw+rZtdWVWeWtoR2q2zunHOjlraWlJtnFz1SJB6B2H60NVVRUFBQUya6GePXsm+fmqqqo43Wn2LhqoKIDGlq5nYzqdjfUlbHwIzZkzR6bh3Jw5c2BgYIC9e/fW6TWakve3QFZVVeHBgweIjY2Fn58fT6kajq06OdVrB+7fv48lS5bUae2APNpONNb58+exePFiSY2Yd6mrq3M2UGloR2q2zqk8Ozk3lNA7DtfHkCFDEBQUhKVLl8LKygoMw+D69etYvnw5HB0dUVJSgk2bNqF79+685KOBigCxfWXHxkwGG7MybHwI1fbzjhw5kpcy2nyrqcpqnz59oK+vjw0bNsiUGlcETk5Okj9X/3+trpNTl4Wy768d8Pb2rtPaAbYLHLJh7dq16Nq1K9zc3DB//nyEh4cjLy8P69ev53TXSUM7UrN1ToVYk0ToHYfrw9/fH76+vpg2bZrUgHDYsGFYsmQJ/vrrL1y+fBmbN2/mJR8VfBOg9z9cPnQVsnv37o++3u+//46QkBD8+OOPMDc3x+jRozFhwgSkpaVBR0cHW7du/ehrWFlZ4dixY9DV1cWiRYtgY2MDV1dXPHr0CF999RUuXrzY4J/3Y8Xa6nI1Bbzd9VOXwlPNwaNHjzB8+HDcuHGD7yj1UludnIKCAgwYMKBOV8uenp7Q1tZGSEgIbGxscPjwYejq6mLx4sV4+vRpnRYDslngsDEsLS2xd+9eiEQiuLq6Yu7cuejTpw/279+Pffv2YdeuXZzkYKMjtVDOKVuE3nG4IR49eoTbt29DRUUFZmZm+PzzzwG83SH6fukDLtGMigCxfWXHxkwGG7MyDS3WNnbs2Ga59bguarp3X1xcjMjISMkvGUXCsFAnh421A2wWOGwMFRUVSWfe6tu2ffr0gb29Pac7XNjoSC2Uc8oWoXccbohWrVqhe/fukn9r1b9fuFr3UxsaqAhcQxsKvq+x0+lsrC9p6IdQXStfNkc1zTYxDAMNDQ2pKWlFwUadHDbWDrBR4JANXbp0walTp+Dm5gZjY2OkpqZi8uTJePLkCWcZAHY6UgvlnLJJyB2H6yMtLQ3+/v7IycmROs71up/a0EBF4Ni4CmGj7DwbszJsFWvLzMyU2n307i6IkJCQOr9OU1DTvXs1NTWYmpqidevWPCRqHIaFOjlsrB1go8AhG2bMmIF58+ZBTU0NI0aMwIYNGzBjxgzcuXOH03UQbHSkFso5JbJCQkLQoUMH+Pr6SmbwhITWqAgcGw0FRSIRWrVqBUdHR6mZjIKCAvTv3x+ZmZkNzlefZoAikQgXLlyAsrIyZs+ejSdPnkg+hPr161enAVNMTIxkyru6OVr1n21tbZtcAbSPmTNnDry9vWFiYsJ3FFaYm5vj/PnzaN++PcrLyxEQEIDTp08jJCQEPj4+dfo7wubaAXk00KyvW7duQUVFBSKRCJcvX0ZMTAx0dXUxb948ufb9ebcjtbu7OzZs2FBjR+pVq1bh77//rvPrCuGcEmndu3fHoUOHBPt7hGZUBI6NqxA2ZjLYmJWpfq927dohNjYWAQEB+Prrr+s1CxIXF4fp06djzpw5GDRoEA4ePIjCwkIsXLgQjo6OdX6dpuLSpUsyZdUVGRt1cthcO9CYthNs6datG4C3s0Lm5ubYtGkTJ+/76NEjqY7Ute24Gz9+fL1el41zSrOq7NLV1cXr16/5jlErGqgIHBul69mYTmdjkSMbH0JPnjzBhAkT0LJlS4hEIqSnp8PJyQl+fn5YsWIFpkyZUufXagrGjh2L8PBwzJ49GwYGBryuzGcDW3VyGrt2gI0Ch2zZsmULtm/fLimh//nnn2P69OlyLyrGdkdqts7px2ZVSf15enoiNDQUy5Ytg7GxcZ3bInCFBioKojFXIWzMZLAxK8PGh5CGhoakQmenTp1w7949ODk5wcTEBLm5uXX+eZqKs2fPIicnB8ePH6/xcb4XwdVXQ+vkuLu71/k96lKTg40Ch2zYvHkzfvnlF7i5ucHa2hpisRipqakIDQ0FALkPVtjsSM3WORXKrKrQOw7Xx6ZNm5CXl4cxY8bU+Djfv0dooCJwbFyFsDGTwcasDBvF2mxsbLB582YEBQWha9eu2LdvH2bMmIHU1FSFXDzaWJ6ennxHaDQ26uS8u+6krKwMiYmJMDc3R48ePaCqqoqbN2/ixo0bdZ5lYaPAIRvi4uKwdOlSqQ+Q6oH55s2bOSvVzkZNELbOqVBmVYXecbg+hP57hAYqAsfGVQgbMxkNnZVhu1ibj48Ppk2bhri4OEyaNAm//vor7OzsUFpaCg8Pjzr9LE3J2LFj+Y7QaGzUyXm3Squ/vz+mTJki00IgIiIC2dnZdXo9oXRxLioqqrGSbq9evbB8+XLOcrCBrXMqlFlVwXccrgeh/x6hgYrAsXEVwsZMRkNnZdgu1mZqaoqkpCSUlJSgdevW2Lt3L+Lj46Grq4uhQ4ey9j6EO2zXyTl27BgOHjwoc3zMmDG1Tm2/j40Ch2xwdHTEjh07ZEoAxMfHK1x7BLbOqVBmVY8dO4bdu3dLrQtTU1PDzJkzMWnSJAQFBcHFxQW//fYbZ5nqw9/fH0uWLIGmpmatt7GAtxeR1bca+UIDFYFr6FUI2zMZDZ2VYfNDqLS0FOrq6pIv4O0V56RJk2RKehPF1dgdHW3btkVGRgYMDQ2ljl+9erXOtyr57OL8rvbt22PXrl1ITU2FnZ2d5DbW1atX4ejoKPUBw2Xvn4Zg65wKZVZV6B2HP+bx48eSf2OPHz/mOc2HCfMMEomGXoWwPZPBVjPAhn4IJSQk4Mcff0RUVBQsLCwkx0NDQ3Hz5k2EhIRg8ODBdc5BhImNHR0TJ05EUFAQsrOzYWFhAbFYLCmr/91339XpNdjq4txYt2/flnyIv1vvyNbWFkVFRSgqKuIsS0M6Ur+LrXNa06xqQkKCZPEqV4Tecfhj3r0dJfRbU1TwTeDYaCjYUGzPyjS0WFtKSgqmTp2KMWPGwNvbWzLDBLwtSrVlyxYcPnwYO3bsgI2NTV1+NCJQTk5OGDZsWI07OlxcXOq8UDIyMhI7d+6UbOnV1dXF9OnT4erq2qh89Slw2JS835H66NGjWL16NZKTkz/YkbouFPWcvnnzBr6+vvjzzz9lOg4HBwfj0qVLCA4OxubNm2UaMQpRaWkpsrKyUFFRIXWrXwjbvmmgogCSkpKgpaUFW1tbxMfHS12F1HU1fkNmMjZs2FCvrccf09APIQ8PD5iYmCAgIKDW1/b390dBQQGioqLqlLcpaeyVrpBYWFggMTERnTp1wrRp0+Dq6gonJyecP38eK1asQEJCQr1e799//4WSklK9K7iy0cW5KWGjI3VTPadC7ThcHydPnoSfnx+Ki4tl6mJRrx9SJ41tKNjQ6XS2Fzk2dFthRkbGR6vwurq6YtasWazmVQTvX+l6e3sjMTER/v7+jb7S5QPbOzratWvXoBxsFDhsStjoSN1Uz6lQOw7XR3h4OPr06QMvLy9B9vpR5jsA+TBzc3P88ssvMserS9fXRXWBpL///hvt2rXD2bNn8ccff8DExKReBZIyMzNx+PBhHDp0CIcOHcLBgwexZ88efP/993X6/po+hAB89EOorKzso4tltbS0UFpaWsefpOlYsWIFnJyckJSUJKkmuXbtWjg4OCA8PJzndPVXvaOjtLQUXbt2lVRG5XpHR3WBwxs3bsDd3V3S86b6seaGjY7UTe2cpqWlYciQIRgwYAAcHBzg6OgIR0dHyZ8VyePHj7Fo0SKIRCLo6enJfPGNBioCV30VsmjRIpnFs3W9CqlpJsPMzAx+fn7Yt29fnV4jJiYGY8aMga+vL/z9/eHn5wd/f38sXboUDx8+rNNrNPRDyMjICNeuXfvga6elpQniHxTX0tLSMHXq1BqvdDMyMnhM1jA+Pj5ITk5GXFwchg8fjoKCAtjZ2WHx4sUYN24cZzneLXCorKwMFxcX3L17F8rKzfNXZnVH6ncHK/XtSC2Pc8rlVvH3VXcc3rhxI7Zt2yb52r59O7Zt28ZbroYwNDTEkydP+I5Rq+b5r06BsHEV0tCZjHexMSvT0A+hUaNGYd26dcjPz6/x8fz8fKxbt65Z1lFh40pXSKp3dIwbN06yo2P27NlYs2YNfHx8OMvxfoFDGxsbfP3110hJSeEsw7uys7Nx9OhRJCUl4f79+5y/v5+fH27evIn+/fujrKwMnp6eGDRoEB4/flyv5qgAO+d0165dcHBwQI8ePfDo0SP88MMPNc48y9Pdu3exbNkyODo6ws7OTuZLkSxatAjLly/HqVOn8M8//yAvL0/qi2+0RkXg2Chdz0aBJDbKVje0WNu3336L48ePY8SIERg/fjysra3Rtm1bFBYWIi0tDQcPHoShoWGzrExbfaW7evVqybH6XukKBZt1chiGQXJyMrKysqCqqorOnTujT58+dR68sdF2gg1lZWVYuHAhTp48KbW2bNCgQYiIiOBssSYbHanZOqfx8fFYs2YNJk+ejC1btgB4e9EVHh4OdXV1TJs2rV6v11BC7zhcH15eXqiqqoKXl5fUBTDDMIJYTAuGCJpIJGIKCgoYhmGYsrIyZuHChYyNjQ2TmJjIiESiOr3GnTt3mH79+jFRUVFMcXExM2jQIKZnz55M165dmTVr1tTpNXr16sXcv3+fYRiG+eGHH5hNmzYxDMMweXl5TI8ePT76/SUlJYxYLJY6du/ePaa0tLRO719WVsasXLmSsbOzY8zMzCRf/fr1Y9auXVvn12lqnjx5wjg7OzN9+vRhzM3NmeHDhzM9evRgvvjiC+bx48d8x6uz+Ph4xt7enklPT5c6Pm3aNMbOzo75888/6/xa//77LzNu3DjGzMyMsbW1ZXr27MmYmZkx48aNY4qKiur0Ghs2bGBKSkpkjh8+fJj59ttv65ylscLCwpgBAwYwSUlJzMuXL5nCwkLmxIkTzMCBA5nw8HDOcrCBrXM6ZswY5sCBAwzDMEyPHj2YnJwchmEY5vfff2ecnZ3ZCVsHBw4cYCZOnMhkZmYy5eXlnL2vPKSkpHzwi2+0PVngRCIRLly4IDWDsnHjRmzatAlisbjOI903b96gpKQE2traKCgoqHfZ+VmzZqFdu3YICgpCfHw89u3bh927dyMxMRErVqzA+fPna/3e2oq1eXh41LtYW2VlJR49eoSioiJoa2tDX19fIRfisam0tFTqSrdLly71utLlG9t1cvz9/XHjxg2sWbNGUr8iMzMT3333HWxsbLBs2TK5/Sxs69+/P5YvX45BgwZJHT99+jSWLVuGM2fOyO292e5IzZYePXogPj4e+vr6sLa2xuHDh6Gvr49Hjx5h+PDhuHHjBic5nJ2dkZeXJ7mt/j7eZyGaELr1I3CNbSjI1nR6Q8tWp6SkwNfXF2PGjMGnn34q9VhAQAC2bNmCBQsW1PlDSFVVVSHapnOpVatWde4KLESbN2/Gt99+W2OdnOoKpsDbVvR1qZNz+vRprF+/XqrIlkgkwvfffw8fH59aBypsFzhkw+vXr2ush2NkZCS1Xk0e2OhILY9zqqOjgwcPHkBfX1/q+LVr1/D//t//q9NrsEHoHYfro6SkBLGxsUhLS5Mp+AZwOxCtCQ1UBK4xpevZLDvf0PUlbH8IEeFe6TYU23VyKisroaOjI3NcR0cHxcXFtX4f220n2GBqaopjx45h5syZUsePHj0q9wE7Gx2p5XFOJ06ciODgYEmfo/v37+P8+fOIiIjA5MmTWX2vDxF6x+H6CAoKwsmTJ9GvXz+pGU2hoIGKALFxFcLmTEZjZmWoWBv72LjSFRK26+R069YNu3btkjTAq7Zr1y6Ym5vX+n1sFzhkg6enJ7y8vHD79m3Jv9PU1FScOHECa9as4SxHQztSy+OcTp8+Ha9evYKPjw/Kysowc+ZMqKqq4uuvv5b77xFF6jhcH6dPn8batWtlbjEKBQ1UBIiNqxC2ZjIaOytDxdrYx8aVrpBU18np1KlTrc+pT52cBQsWwN3dHdevX5f6cM/MzJTsEqmLxnZxZsMXX3yBdevWISoqCmfOnAHDMDAzM0NERAScnZ05yQCw05EaYO+c+vj4wNPTE/fu3QPDMDA2NoampiaePXsm1xkBReo4XB/KysowMTHhO0bteFzIS+TI3t6euXPnzgefc+PGDaZv3761Pn7p0iXG3Nyc8ff3Z54+fSr12L179xg/Pz+ma9euTGpqaq2vMW7cOObQoUMfzHHo0CFmxIgRH3wOqVmPHj2YBw8eyBx/8OABY2VlxXmehoiNjWUGDRrEPHnypMbHnzx5wgwaNIjZuHFjnV/z77//ZubPn898+eWXzLBhw5gFCxYwf//9d52/Pzo6WrKzTCQSSf2Zy10/QvHzzz8zPXv2ZNavX8+cOnWKSUpKYlatWsVYWVkxO3furNNrsHVORSIR8/z5c5njjx49qtMORCIrICCA+emnn/iOUSuaUVEADbkKYWMmg41Zmepibfb29jK3oID/K9Y2fvz4D2YlNWPrSpdP8qiTY2lpiYiIiAZnqi5wWFMDTXmXRz906FCdn/uh2y5s8vLygoqKCnbu3Imff/4ZwNs6Ir6+vnXuSN2Yc7pv3z4cPnwYwNvff7Nnz5a0jKj29OlTtG3btgE/XcMJueNwfWhrayM6Ohrnzp2DkZGRTH2ed2dx+UADFYFraENBNqbT2VhfQsXa5GvixIkICgpCdnY2LCwsIBaLJQ3kvvvuO77j1YmKigpiY2MRERGB/fv3IzY2VvKYjo4OvvnmG3h6en5w4L1x48Y6v19dOn2zUeCwod6/jVf9715dXR2qqqooLi6GiooK2rVrx9lABQBmzpyJmTNnNrgjdWPOqZOTE1JTUyX/3bFjR5m/D6amppyeD6F3HK6P69evSxqYPn36lOc0smigInANvQphYyaDjVkZNj6ESO3YuNIVghYtWsDX1xc+Pj4NqpNz4MABqf/+3//+BzU1Nejr60NVVRU5OTmoqKiAhYVFnQYqbHdxro/MzEzJnxMSErB161aEhYVJtlv/888/WLx4MUaMGCHXHLVpaEfqxpxTLS0tqav66gWtfBJ6x+H62LFjB98RPozP+07k47p168Y8fPiQYRiGmTp1KnPixAmGYRgmOTmZGT58eK3fV1lZyUyaNImxtbVlwsLCmGPHjjF//fUXk5iYyISEhDA9e/Zkxo8f/8GKrmyvL6moqGDu37/PXLt2jXn48KFMpVrSOC9evGD+/fdfvmPwLiYmhpk8ebKkojPDMExRUREzc+bMOldinjlzJuPn58eUlJQwe/bsYSZMmMBUVVUx8fHxTL9+/eQVXcbAgQOZ69evyxy/ceMGpznYwPY5ffbsGZOXl8fk5uZKfXHFwsJC8rtZ0b1/Dvk6p7WhGRWBa+hVCBszGWyvL6FibfLV0Cvdpmbz5s2Ijo6WWqPTtm1b+Pj4wM3NrU7NDRta4JBtL1++RMuWLWWOi8VivHnzhrMcbGDrnF67dg1+fn7IycmROs5w3JemuuPwh26vK4qPlcTg+zYWldAXuMaUrq/W0LLzVVVVcHNzw927dz+4vmTnzp1064YIRq9evRAZGSlTH+jixYvw9vbGpUuX6vQ6jW07wQZPT08UFRVh1apV+PzzzwG8bSvw3XffwdjYGOHh4ZxlYQMb53TcuHHQ0NDA1KlTa7zlwlXn4rNnzyI8PBze3t4wNjaWWYD62WefcZKDDZcvX5b676qqKjx48ACxsbHw8/ODg4MDT8neooGKwGVlZWHatGmYMmUKJk2ahJEjR+Lly5eSq5C6XB02Rnl5uWRWpqioSHJcR0cH48ePp/UlRHAWL16MmzdvIigoCBYWFmAYBqmpqVi+fDkGDhyIwMDAD35/dYHDdwfz2dnZ0NPT4/zven5+Pjw8PJCdnY22bduCYRi8evUKlpaW2Lx5Mz755BPOsjCN6EjN5jnt3r07Dh06xHvdj27duklmuwXZcZgFycnJ2LBhQ53atcgTDVQUgBCu7KgZIFEUxcXFmD9/Pi5cuCD5O8owDIYOHYpVq1bJXPm+i80GmmypqqrCX3/9hbt370JJSQkikQj29vac/vsrLCyEh4cHbt26hTZt2oBhGBQXF6Nbt26IiYn54LZgts+ps7MzwsPDYWlp2aifqbHen4V4H1czO/LEdaPH2tBARcCEdGVHhKsxV7pN2f3795GVlQVlZWWYm5vLNLF7H9tdnOXtyZMn6NixIyfv1dCO1PI4pwcPHsSePXuwbNkyGBsby9RTIfWXl5cnc6y4uBiRkZG4ffs2EhMTeUj1f2igIlBCvLIjwtOYK93mprpIYs+ePWt83MPDAyYmJjUWOKzm7++PgoICzhpoPnr0CCtXrkRWVpbkNgPz/xd8fPHiBTIyMjjJYW9vj/Xr18vMEqSkpMDHxwcXLlyo8fvkcU6dnZ2Rl5cnOR/v4+qWi9A7DteHSCSSmaFjGAYaGhpYvXq13Iscfgzt+hEgNhsKkqZt5cqVePPmDQ4dOiRzpbtmzZpar3Sbsps3byIwMFCqmvO7avsgE2IDzeDgYPzzzz8YOnQoYmJiMG3aNDx48AAnTpxAcHAwZzka2pFaHufU09Ozzs+VJ6F3HK6PmgZVampqMDU1RevWrXlI9B4u90KTupk2bRrz448/fvA5fn5+zH//+1+OEhGh6t27N5OSkiJz/NKlSx/s49SUubq6MuPHj2d+++03pnv37kxcXBwTFhbGWFhYMImJibV+n7W19UfrYuTk5DDW1tZsR66VjY0Nc+nSJYZhGGb06NGSfkVr165lvLy8OMvh7u7OhISEyBxfvnw5M3HixFq/T4jnlC02NjbMqVOn+I7BitmzZzP37t3jO0ataEZFgIR4ZUeEqaFXuk1ZRkYGtm3bBktLSxw4cACmpqZwdXVFx44dsXfvXgwbNqzG72O7izMbysvLJXmMjIxw584dWFpaYsyYMXBzc+MsR0M7UsvrnJ49exZbt27F/fv3sWfPHhw4cACdOnXC6NGj6/U6jSH4jsP1cOnSpRrr9QiFMt8BiCw2SteT5qFbt27YtWuXzPFdu3bB3Nych0T8E4vFkql4AwMDZGVlAQAcHR2lytO/r7rAYX5+fo2PVxc45HK3nZ6eniS/kZGR5LaVWCzG69evOcthbW2NuLg46Onp4fz580hOToa+vj5+++032Nvb1/p98jinFy5cwJw5c/DZZ5/h5cuXEIvFqKyshL+/f70aOjaWs7OzTOsGRTV27FiEh4fj7t27KC8v5zuODJpRESAhXtkRYWrolW5TZmBggNTUVIwYMQLGxsZIT08HALx69eqDv4SF2EBz7Nix8PX1xapVq/DFF1/A3d0dn332GS5cuAAzMzPOcgAN60gtj3O6YcMGLFy4EFOmTMHx48cBAN7e3tDU1MTWrVs5a0wo9I7D9XH27Fnk5ORIzuf7+K4JQwMVAWK7dD1puqqvdKOjo3H+/HkwDAMzMzMEBQXxXmeCL25ubliyZAkAYMiQIRg9ejTU1dWRlpaGHj161Pp9QmygOWPGDLRs2RIMw8DS0hJeXl7YtGkTdHV1sWrVKrm+NxsdqeVxTu/cuVPjzz506NB6ZW4soXccrg+hLFCuDW1PFiAqXU9I4yQlJUFLSwu2traIj49HVFQUdHV1ERQUVKeZSCpwCJmy6R/qSL179+6Pvh5b5/Q///kP1q5dC1tbW1hbW+Pw4cPQ19fH6dOn8cMPP+DcuXP1fk0ibDRQESgqXU9qw8aVbnNUUVGB69evo1evXnxHqZerV6/WWquDq/+/sbGxOHPmDNasWSNp9vjy5Uv4+vrC1NRU7q083rV69WpcvHgRoaGhcHV1xW+//YanT59i6dKlcHZ2hp+fHyc5aiqS9i5F6vUjdDRQETi6siPvY/tKt6kxNzfH3Llz4eXlJXW8oKAAAwYM4P1+e338/PPP2LBhA9q2bQtNTU2px5SUlHDy5ElOcvTt2xfR0dGSWj3VsrKy4ObmhpSUFE5yAG8HnH5+fjhy5AiAt+eBYRh88cUXiIiI4OwCrqYiae9SpL9nQkdrVAROVVUVRkZGfMcgAnLq1CnJnz92pdscMQyDqKgo3L9/H6GhoVKLHBXtumzXrl3w9vbGzJkzec1RUVGBkpISmePPnz/n/MJJTU0Na9aswbx583D79m2IxWKYmpqic+fOnP7/fb9I2vsdhwmLeKneQghhRZ8+fZjbt2/LHL9z5w5jZ2fHQyL+iUQi5sqVK8zgwYOZiRMnMs+fP2cYhmGePXvGiEQintPVj6WlJfP48WO+YzC+vr7Ml19+yVy6dIkpLi5mXr16xZw5c4ZxdHRkgoODOc3i4ODA/PvvvzLHnzx5Ioi/8+fOnWMmTJjAd4wmhWZUCFFgQrrSFQqGYWBkZIQ9e/Zg9uzZcHFxQWRkpGTGSZHY2Njg2rVrvJciCAwMxPz58zF58mSZjtQfK07JhsTERCQnJwMAcnNzERwcLFOgLDc3VxB/5w0NDT9Yr0eonj59ir179+L+/ftYsmQJrly5AlNTUxgbG/MdjW79EKLIHBwcEBgYiKCgIFhYWIBhGKSmpmL58uUYPnw43/F4Uf1h1a5dO8TGxiIgIABff/01QkJCeE5WfyNGjMDy5ctx8+ZNGBsby9Tq4KpmSHWNkvp2pGaLtbU1du/eLbm1k5eXJ9U1WUlJCRoaGli5ciUneaozvK+64/Dnn3/OWQ42PHz4EF999RU0NTWRn58Pb29vJCYmwt/fH7GxsZJt2HyhxbSEKLDi4mLMnz8fFy5ckLnSXbVqlcwHW3MgEolw4cIFqRmUjRs3YtOmTRCLxQq1yPH9xavvUlJS4v1n+VhHanlwc3PDxo0b8cknn3D2njUResfh+vD09IS2tjZCQkJgY2ODw4cPQ1dXF4sXL8bTp0+xY8cOXvPRjAohCozvK10hmjNnDjQ0NGSOGRgYYO/evTylahih3EJoaEdqeXj/Q/PFixe4fPkyLCwsOJ3JEHzH4XpIS0tDXFyc1MBLVVUVXl5e+Oqrr3hM9v9n4TsAIaTxjI2Npe4l83GlKxS11RYZOXIkRo4cyXEadmRnZyMrKwtqamowMTHhfCdgWFgYVFRU8P333yMsLAx+fn7IyclBXFyc3Cvkvi8rKwtz585FSEgIzMzMMGrUKBQUFKBFixbYvHnzB3sPsWn79u3w9vZuEo0JxWJxjQPQ169fQ0VFhYdE0migQogCE9KVLp8cHBzqtJBSSUkJSUlJHCRiR1lZGRYuXCiVWUlJCYMGDUJERARnt/Ya2pFaHlauXAkDAwMYGxsjISEBlZWVOHv2LHbv3o2IiAjOagcJveNwffTv3x+RkZFYvXq15FhhYSFWr17N2cDvQ2igQogCE9KVLp/Gjh0riB0fbPvpp59w48YN/Pzzz7Czs4NYLMaVK1cQEhIiac7HhZo6Utva2sLR0RGRkZGcZKh27do1/P7772jfvj2Sk5MxcOBAfPrppxg3bhxiYmI4y1HdcXj27NkwMDBQ6PVgfn5+cHd3R//+/VFWVgZPT0/k5uZCS0sLK1as4DseDVQIUWRCutLl09y5c/mOIBcJCQlYvnw5Bg0aJDnm5OQEFRUVLFu2jLOBSkM7UsuDsrIyWrRogcrKSly+fBmBgYEA3t6m4LKtiNA7DtfHp59+ikOHDiEhIUFSRG/SpEkYPXq0TEVkPtBAhRAFJqQrXSHJzMyUuh3GMIxk3Y4ibVN+/fp1jXUsjIyM8OLFC85yNLQjtTz06NEDkZGR0NbWRllZGf7zn/8gPz8fa9eu5TSL0DsO11erVq0wYcIEvmPUiAYqhCgwIV3pCkVMTIyknkZ1H5jqP9va2vIZrd5MTU1x7NgxmRL6R48e5XRB7YQJE9CuXTtoaWnBxMQEYWFhUh2puRQYGAhvb288evQIAQEB0NbWxvLly5GdnY2oqCjOcowdO5az95IHd3f3Oj+3ph1OXKKBCiEKTEhXukIRFxeH6dOnY86cORg0aBAOHjyIwsJCLFy4UKFqWwBvr9q9vLxw+/Zt2NjYAABSU1Nx4sQJrFmzhtMsTk5Okj9X76Cq7kjNZeVcAwMDHDhwQOrY7NmzERAQIIgdKori3f9nZWVlSExMhLm5OXr06AFVVVXcvHkTN27cEMQsCxV8I0TBJSUlQUtLC7a2toiPj5e60uW79DofLCwskJiYiE6dOmHatGlwdXWFk5MTzp8/jxUrViAhIYHviPVy4sQJREVFISsrCwzDwMzMDP/973/h7OzMWQa+O1JfuXIF1tbWUFVVxZUrVz743F69esk1S1Pk7++PTz75RKaZYkREBLKzs7Fhwwaekr1FMyqEKDihXOkKhYaGBqqqqgAAnTp1wr179+Dk5AQTExPk5ubynK7+Bg8ejMGDB/OageG5I7Wbm5uk2rCbm5vULb13CaFaryI6duwYDh48KHN8zJgxnLVp+BAaqBCiwGq70i0qKoK7u3uz/KVtY2ODzZs3IygoCF27dsW+ffswY8YMpKamKkTF0I0bN8LDwwOtWrXCxo0bP/jc2orbsU1JSQlRUVEICAiAu7s7fvnlF2hra0sek7eTJ09K3u/kyZNyf7/mpm3btsjIyIChoaHU8atXrwqimScNVAhRYHxf6QqRj48Ppk2bhri4OEyaNAm//vor7OzsUFpaCg8PD77jfdSBAwfwzTffoFWrVjJrMd6lpKTE2UCF747U784Mvj9LWFFRgczMTBgbG3M+EBVyx+H6mDhxIoKCgpCdnQ0LCwuIxWJJWf3vvvuO73gAQwhRWCKRiLly5QozePBgZuLEiczz588ZhmGYZ8+eMSKRiOd0/CktLZU6F9HR0czRo0d5TqW4RCIRU1BQwDAMw5SVlTELFy5kbGxsmMTERM7/nuXl5TFTp05l/v77b6a0tJQZPnw4Y2ZmxtjZ2TEZGRmc5fjnn38YOzs7xsHBgenWrRuTk5PDzJ07l+nRowdz/fp1znKw5ddff2X69+/PmJmZMWZmZswXX3zBxMXF8R2LYRiGUeZ7oEQIaTjmnStdZWVluLi44O7du1BWbp7/tEtLS8EwDNTV1SW3CoqKijBp0iQMHTqU53T1xzAMNm7cKFUWfuLEifj11185z1GtRYsWCA8Px9SpU7Fo0SJOcwBvqzG/evUK2traOHr0KHJzc/Hbb79h8ODBUiXg5W3FihVwcnJCUlIS1NTUAABr166Fg4MDwsPDOcvBlpkzZyI5ORkXL17EpUuXcPr0abi6uvIdCwDQPH+bEdJEVK8PaNeuHWJjY2FjY4Ovv/4aKSkpPCfjXkJCAhwcHHDr1i2p46GhoRg4cCBOnDjBU7KGW7duHXbu3Cl1i+XLL79EbGwsp4OV2jpSr1ixgvPaNJcuXUJwcDA+//xznD17Fv/5z39gY2MDDw8PXLt2jbMcaWlpmDp1ao0dhzMyMjjLwbbqejlCQgMVQhSYkK50+ZSSkgJfX18MGjQIn376qdRjAQEBcHBwwIIFC5CWlsZTwoY5dOgQwsPDpXb9TJ48GStXrsTvv//OWY45c+agVatWMsdHjhyJHTt2cJYDeLsm5ZNPPgHDMLh48SL69u0L4G2VZlVV7pZdCr3jcFNCi2kJUWC1XekaGBhg7969PKXi3ubNm/Htt98iICBA5rHqSqoAsGnTJk6rlzZWYWFhjVvMDQ0N8ezZM7m+t1A7Ulfv5OrQoQNevnyJgQMHory8HFFRURCJRJzlEHrH4aaECr4RQhRenz59sG3bNpiamtb6nPT0dMyaNQsXLlzgMFnjfP311+jVq5dM88H169fjzJkzH9wV1FgbNmyo89ZjrnYfAcCNGzcwa9Ys/Pvvv5g+fTp8fHywdOlSHDlyBFu2bIGVlRUnOfLz8+Hu7o5Xr16hsLAQxsbGko7DO3fubJY1jOSFBiqEKBihXunyycbGBocOHUKnTp1qfc6jR48wevRohbr9k5ycjJkzZ8LKykrSEiE9PR3Xr1/Hzz//jIEDB/IbkCdisRjFxcVo27YtAODBgwe8rK0oLS2V6jjcpUsXwXQcri+GYZCcnIysrCyoqqqic+fO6NOnjyBuY9GtH0IUzNixYzkpsqVIjIyMcO3atQ8OVNLS0hTuKnfAgAGIi4vDjh07cP78eaiqqsLExAT79u3j9DYHIKyO1MrKyrhz5w6ys7MxYsQIVFVV8TI4EHLH4fooLCyEh4cHbt26hTZt2oBhGBQXF6Nbt26IiYmRDAj5QgMVQhTM3Llz+Y4gOKNGjcK6detgb28vs5gWeDtNv27dOowfP56HdI1jbW0Na2trXjMIqSN1cXExPDw88Pfff0NJSQn9+vVDeHg4cnJyEBMTU+P/f7YoUsfh+li5ciXevHmDQ4cOSQbAmZmZ+O6777BmzRosW7aM13x064cQBSekK12+VFVVwc3NDXfv3sX48eNhbW2Ntm3borCwEGlpaTh48CAMDQ2xc+dOqKur8x33g4RYQt/JyQnDhg2rsSO1i4sLpkyZwkkOAAgODkZGRgZWr16NUaNG4fDhwygvL8eiRYtgbGws167S/v7+kj9/rOPw0qVL5ZaDbfb29li/fj3s7OykjqekpMDHx4f3dV00o0KIAhPSlS6fVFRUEBsbi4iICOzfvx+xsbGSx3R0dPDNN9/A09NT8IMUQJgl9J88eYIJEyagZcuWEIlESE9Ph5OTE/z8/LBixQpOByqnT5/GmjVroK+vLzlmYmKCoKAgzJ49W67vXb17DHg7aJkyZUqtHYcVSWVlJXR0dGSO6+jooLi4mIdE0migQogCi4uLw/Tp02u80nV0dOQ7HqdatGgBX19f+Pj44NGjRygqKoK2tjb09fUVak3PqVOnavwzn4TUkfrFixfo0KGDzPG2bduipKSEsxxC7zhcH926dcOuXbuwZMkSqeO7du2Cubk5T6n+DxV8I0SB1XSla2ZmBj8/P+zbt4/veLxQVVWFkZERevTogU6dOinUIEWoqjtSl5aWomvXrjh16hTEYjEvHam7d++Oo0ePyhyPi4tD165dOctR3XH4fULpOFwfCxYswO7duzFhwgSEhYUhLCwMLi4u2L17NxYsWMB3PJpRIUSRCelKl7BDJBLVeXB1+/ZtOad5S0gdqauz3LhxA5WVldi0aROys7Nx69YtbN26lbMcgu84XA/W1taIi4tDdHQ0zp8/D4ZhYGZmhqCgIFhaWvIdjxbTEqLIZs2ahXbt2iEoKAjx8fHYt28fdu/ejcTERKxYsQLnz5/nOyKppwMHDkgGKrm5uYiKisLEiRNhbW0NNTU1pKenIy4uDp6enpwOEt68eYOSkhJoa2ujoKAA8fHx0NXV5aXZ4507d7B161ZkZGRI6pdMmzaNs2Jv1SIjI7Fz505JlWBdXV1Mnz5dMM38mgoaqBCiwLKysjBt2jRMmTIFkyZNwsiRI/Hy5UvJla6Pjw/fEUkjfPvttxgzZgxcXFykjh8+fBjbtm3D/v375Z6htLQU6urqUrM82dnZ0NPT42VxckhICNzd3T9YM4dr//77L5SUlATXzO9DPraj7F1cVh6uCQ1UCFFwQrrSJeyytLREfHw8DAwMpI7/888/GD16NP7++2+5vn9CQgJ+/PFHREVFwcLCQnLcw8MDN2/eREhIiFTDRC707NkTf/zxBz7//HNO37epcXBwkPrv//3vf1BTU4O+vj5UVVWRk5ODiooKWFhYYPfu3TylfIsW0xKioEpLS8EwDNTV1aGtrQ0AKCoqwqRJk2iQ0kQYGBjgyJEjMsf37NmDzp07y/W9hdqReuDAgdi5c6cgts0qslOnTkm+3N3d0bt3b5w+fRpHjhzBH3/8gbNnz6J///4ytVX4QDMqhCggIV7pEvadOHEC8+bNQ8+ePdG9e3eIxWJcu3YNt2/fRlRUlFy79Hp4eMDExKTGjtTV/P39UVBQwGlHajc3N1y5cgVKSkpo3749WrZsKfX4yZMnOcvSVPTt2xfR0dEybRmysrLg5uaGlJQUnpK9Rbt+CFEw1Ve6Y8aMqfFKd8uWLViwYAF27NgBGxsbnlISNgwePBhxcXHYuXOnZGG0ubk5goOD5d7rJyMjA4sXL/7gc1xdXTFr1iy55nhf79690bt3b07fs6mrqKiosQbN8+fPBbG9n2ZUCFEwQr3SJU1LU+1IzSYhdxyuj8WLF+PmzZsICgqChYUFGIZBamoqli9fjoEDByIwMJDXfDSjQoiCEeqVLmGfWCxGfHw80tLSUFFRgfevK98t6c62ptqRmi1C7zhcH4GBgZg/fz4mT54smUFhGAZDhw796O8aLtBAhRAFU1ZW9tFtoVpaWigtLeUoEZGX0NBQxMXFQSQSQVNTk9P3bsodqdkg9I7D9aGpqYmtW7fi/v37yMrKgrKyMszNzaX6KfGJbv0QomDGjx8Pd3d3jB49utbn/PHHH9iyZQvi4+M5TEbY1rt3b/j5+WHs2LGcv3dT6kgtD0LvOMyG6i7sPXv25DUHzagQomDoSrf5KC8vR69evXh576bUkVoehN5xuD5u3ryJwMBAZGVlQSwWyzzOVauG2tCMCiEKhq50m4958+ahd+/e+Oabb3jNUVlZKaiO1JWVlXj+/LmkzxXDMJKr/1GjRnGSYfLkyTA1NZXpOBwSEoKbN2/yXiStPr755huUlZVh/PjxCAsLg5+fH3JychAXF4dVq1Zh2LBhvOajgQohCqi8vFxypVtUVCQ5rqOjg/HjxzfrK92mJDo6GuvXr0f//v1hYmICNTU1qcf5Lm3Oh/Pnz2Px4sV48eKFzGPq6uq4du0aJzmuXbsGd3d3iEQiSRmA1NRUZGZmYsuWLXKtccM2a2trbNu2DZaWlpgwYQIWL14MW1tbxMbG4uzZs4iJieE1Hw1UCFFgQrvSJex6v8z5u5SUlJplcbNx48ahffv2cHNzw/z58xEeHo68vDysX78eYWFhcHJy4izLjRs3EB0djbt370o6Dk+dOlUQHYfrw8rKCseOHYOuri4WLVoEGxsbuLq64tGjR/jqq69w8eJFXvPRGhVCFJiqqiqMjIz4jkHk5NSpU3xHEJx79+4hNDQUIpEI5ubm0NDQgJubGzQ0NLB161ZOByqWlpaIiIjg7P3kxcDAAKmpqRgxYgSMjY2Rnp4OAHj16hXKy8t5TkcDFUIIEbT3i4p16dIF9vb2CldUjC0qKipo06YNgLcfsFlZWejTpw/s7e2xcuVKub63InUcrg83NzfJWpshQ4Zg9OjRUFdXR1paGnr06MFvONBAhRBCBKspFRVjS5cuXXDq1Cm4ubnB2NgYqampmDx5Mp48eSL39z5w4IDUf3+o47AiDVQmTJiAdu3aQUtLCyYmJggLC0NUVBR0dXURFBTEdzxao0IIIULl7++PGzduYM2aNTJFxWxsbBSqqBhbkpKSMG/ePAQFBWHgwIEYMmQI7O3tcefOHVhZWWH9+vWc5IiNjcWZM2ewZs0atG/fHgDw8uVL+Pr6wtTUFD4+PpzkkKeKigpcv36dty3y1WigQgghAtUcioo1xK1bt6CiogKRSITLly8jJiYGurq6mDdvHrS0tDjJIPSOw/Vhbm6OuXPnwsvLS+p4QUEBBgwYwHsdFbr1QwghAtWUioqxZc6cOfD29oaJiQkAwM7OTmYgxwWhdxyuD4ZhEBUVhfv37yM0NBQtWrSQeoxvynwHIIQQUrNu3bph165dMsd37doFc3NzHhLx79KlS2jZsiXfMeDg4IDAwECkpKTg9evXKC4uxtmzZxEYGIjhw4fzHa9elJSUEBUVhRs3bsDd3V2qRo0QBl1064cQQgSqKRUVY8uPP/6IZ8+eYfbs2TAwMJC6+udScXEx5s+fjwsXLsh0HF61ahVvuRpCJBLhwoULUFZWxuzZs/HkyRNERkaiffv26NevH++3fmigQgghAnbjxg3ExMQgKytLoYuKscXZ2Rk5OTm1Xulz/aEq1I7D9WFubo7z58+jffv2KC8vR0BAAE6fPo2QkBD4+PjQQIUQQkjtXr16hX///RedOnUCAPz555+ws7PjbNGo0Bw8ePCDj/PRafpdQuk4XB/VMyrVu5eAtzVjNm3aBLFYTAMVQgghNbt16xamTZuGcePGYfHixQDero0oLy9HdHQ0TE1NeU7YfAm943B9bNy4ER4eHmjVqpXU8fj4eOzduxc7duzgKdlbNFAhhBCBcnNzw+eff45ly5ZJ1jxUVlYiMDAQ+fn5iI6O5jkhP86ePYutW7fi/v372LNnDw4cOIBOnTph9OjRnGUQesfhpoS2JxNCiEDdvHlTZruoqqoqZsyYARcXFx6T8efChQuYM2cOhg8fjuvXr0MsFqOyshL+/v5gGAZjxozhJEdGRoak4/CBAwdgamoKV1dXdOzYEXv37hX8QMXBwaFOO3qUlJSQlJTEQaLa0UCFEEIEqnXr1nj06JHMAs2nT58q1K4SNm3YsAELFy7ElClTcPz4cQCAt7c3NDU1sXXrVs4GKmKxGB06dADwfz2HbG1t4ejoiMjISE4yNMbYsWMFsfW4LmigQgghAjVkyBAsW7YMS5culezySU9PR3BwMAYPHsxzOn7cuXMHq1atkjk+dOjQejUNbCyhdxz+mLlz5/Idoc5ooEIIIQK1cOFC5OTkYOrUqVJXv4MHD4avry+PyfjTpk0bPH36VLILqtq9e/fwySefcJZD6B2H6yszM1NqYTDDMJIdTCEhIbxmo4EKIYQIlIaGhqS0+d27d6GqqgoTExMYGhryHY03I0eORGhoKEJDQ6GkpITXr1/j3LlzWL58Ob788kvOcgi943B9xMTEYOXKlQDerkmp3mOjpKQEW1tbPqO9zUG7fgghRPE8efIEHTt25DsG5yoqKuDn54cjR44A+L8P1i+++AIRERFQV1fnPZ8QOg7Xh5OTE4YNG4Y5c+Zg0KBBOHjwIAoLC7Fw4UK4uLhgypQpvOajgQohhAjUo0ePsHLlSmRlZaGqqgrA/03Jv3jxAhkZGTwn5M/Dhw9x+/ZtiMVimJqaonPnzmAYhrMFokLvOFwfFhYWSExMRKdOnTBt2jS4urrCyckJ58+fx4oVK5CQkMBrPmpKSAghAhUcHIw7d+5gyJAhyM/Px/Dhw9GtWzcUFBRg6dKlfMfjhaOjIwoLC2FgYIChQ4fiyy+/ROfOnZGfn89p76PqjsOLFi2SWTyraNf/GhoakoFwp06dcO/ePQCAiYkJcnNz+YwGgNaoEEKIYKWlpeGXX35B7969kZycDCcnJ1haWuKnn37C2bNn8dVXX/EdkROJiYlITk4GAOTm5iI4OFimg3Jubi6n222rOw4HBATA3d0dv/zyC7S1tSWPKRIbGxts3rwZQUFB6Nq1K/bt24cZM2YgNTUVrVu35jsezagQQohQlZeXS3a3GBkZ4c6dOwCAMWPG4O+//+YzGqesra2Rm5uLx48fAwDy8vLw+PFjyVdubi40NDQkC0K5wDAMjIyMsGfPHigrK8PFxQV3796FsrLifaz6+PggOTkZcXFxGD58OAoKCmBnZ4fFixdj3LhxfMejGRVCCBEqPT09ZGVlQVdXF0ZGRpJ1D2KxGK9fv+Y5HXd0dXWxfft2AG+3BW/cuJHTrcg1qZ41adeuHWJjYxEQEICvv/6a9628DWFqaoqkpCSUlJSgdevW2Lt3L+Lj46Grq4uhQ4fyHY8W0xJCiFBFRkYiOjoaq1atQrt27eDu7o45c+bgwoULKC0txe7du/mOyJu8vDxkZ2ejV69eeP36tVTnXy4IveNwXZWWlkJdXV3qdlV2djb09PR430FVTfHmqAghpJmYMWMGPD09wTAMLC0t4eXlhU2bNuHZs2f44Ycf+I7Hi4qKCnh7e8PBwQEzZ86UnIupU6eiuLiYsxxz5syBhoaGzLEVK1YIovZIXSQkJMDBwQG3bt2SOh4aGoqBAwfixIkTPCWTRjMqhBBCFMa6detw7NgxLF26FLNmzcLhw4eRl5cHf39//Oc//2m2u6HqKyUlBVOnTsWYMWPg7e0t6VsEvJ1R2bJlCw4fPowdO3bAxsaGx6Q0UCGEEKJAnJ2dsXTpUvTt2xfW1tY4fPgw9PX1cfHiRfj6+kp2B8mDInUc/hgPDw+YmJggICCg1uf4+/ujoKAAUVFRHCaTRYtpCSGEKIz8/HyZPj/A2wW3RUVFcn1vReo4/DEZGRlYvHjxB5/j6uqKWbNmcZSodjRQIYQQojBMTExw8eJFTJgwQer4kSNH0LlzZ7m+tyJ1HP6YsrKyjy6W1dLSQmlpKUeJakcDFUIIIQpj7ty58Pb2xr1791BVVYWDBw/iwYMHOH78OH766SdOswi54/DHGBkZ4dq1azXOTlVLS0uDnp4eh6lqRgMVQggRsMrKSjx//lym1096ejpGjRrFczruDRo0COvXr0dkZCRUVFSwdetWdOnSBT/99BOGDBnCWQ6hdxz+mFGjRmHdunWwt7fHp59+KvN4fn4+1q1bh/Hjx/OQThotpiWEEIE6f/48Fi9ejBcvXsg8pq6ujmvXrvGQil9bt27FiBEjavxw5ZLQOw5/TFVVFdzc3HD37l2MHz8e1tbWaNu2LQoLC5GWloaDBw/C0NAQO3fu5L2eCg1UCCFEoMaNG4f27dvDzc0N8+fPR3h4OPLy8rB+/XqEhYXBycmJ74ics7W1xf79+2FgYMBrDqF3HK6L8vJyREREYP/+/VILkXV0dDB+/Hh4enryPkgB6NYPIYQI1r179xAaGgqRSARzc3NoaGjAzc0NGhoa2Lp1a7McqFhZWeHUqVOYOnUqrzlq6jjs5OQkmI7DddGiRQv4+vrCx8cHjx49QlFREbS1taGvry+o3U1UmZYQQgRKRUUFbdq0AQAYGBggKysLAGBvb4/s7Gw+o/FGU1MTq1atQu/evTFx4kS4u7tLfXGluuNwaWkpunbtilOnTkEsFgum43B9qKqqwsjICD169ECnTp0ENUgBaKBCCCGC1aVLF5w6dQoAYGxsjNTUVADAkydP+IzFKw0NDYwZMwYODg4wNjaGnp6e1BdXhN5xuCmhNSqEECJQSUlJmDdvHoKCgjBw4EAMGTIE9vb2uHPnDqysrLB+/Xq+I3IuISEBAwYM4L17MgC8efMGJSUl0NbWRkFBgaA6DjclNFAhhBABu3XrFlRUVCASiXD58mXExMRAV1cX8+bNg5aWFt/xOGdnZ4fffvtN7sXdPkQROg43JXTrhxBCBGrOnDlQV1eHSCQC8PZDetOmTQgKCmqWgxQAMDQ0lKzV4YOidBxuSmjXDyGECNSlS5fQsmVLvmMIikgkwqJFi7BlyxYYGhrKnJ+wsDC5vXdKSgp8fX0xZswYmTouAQEB2LJlCxYsWCCIjsNNCd36IYQQgfrxxx/x7NkzzJ49GwYGBmjRogXfkXjn5ub2wcd37Nght/dWpI7DTQkNVAghRKCcnZ2Rk5NT63bR27dvc5yoeevTpw+2bdsGU1PTWp+Tnp6OWbNm4cKFCxwma9ro1g8hhAiUp6cn3xEEia/+R4rUcbgpoYEKIYQI1NixY/mOIDgf638kz4GKInUcbkpo1w8hhAjY2bNn4e7ujv79+yM3NxcbNmzAH3/8wXcs3qxduxZdu3ZFZGQk1NXVsXHjRgQEBEBTUxOrV6+W63tXdxzOz8+v8fHqjsNUR4VdNKNCCCECdeHCBcyZMwfDhw/H9evXIRaLUVlZCX9/fzAMgzFjxvAdkXN89j/69ttvcfz4cYwYMeKDHYc9PDzklqE5ooEKIYQI1IYNG7Bw4UJMmTIFx48fBwB4e3tDU1MTW7dubZYDlZr6H/Xp0wf29vZYuXKl3N87NjZW0nE4NjZW8piOjg6++eYbwXQcbkro1g8hhAjUnTt34ODgIHN86NChyMnJ4SER//juf1TdcfjChQs4evQodu/ejT///BPJycnw9vamQYoc0IwKIYQIVJs2bfD06VOZxZv37t0TRK8bPsyYMQPz5s2DmpoaRowYgQ0bNmDGjBm4c+cO7O3tOctR3XGYyB/NqBBCiECNHDkSoaGhyMzMhJKSEl6/fo1z585h+fLl+PLLL/mOxwsnJyf8/vvv6NGjB3R1dbFlyxaoqKjA0dERwcHBfMcjckAF3wghRKAqKirg5+eHI0eOAACUlJTAMAy++OILRERENNvbDP/88w+Ki4thYWEBANi2bRsGDhwIQ0NDfoMRuaCBCiGECNzDhw9x+/ZtiMVimJqaonPnzmAYptaKtU3ZX3/9BU9PT0yZMgXe3t4AgIkTJyIrKwtRUVGwtbXlOSFhGw1UCCFEoBwdHbF//36ZTsn5+fkYNWoUUlJS+AnGIxcXF/Tr108ySKm2du1aXL58Gbt37+YpGZEXWkxLCCECkpiYiOTkZABAbm4ugoODZToE5+bmNsvZFODtQuKffvpJ5viECRPk2pCQ8IcGKoQQIiDW1tbYvXs3qie78/LyoKamJnlcSUkJGhoacq8ZIlTa2trIzMyEvr6+1PG7d+9K6quQpoUGKoQQIiC6urrYvn07AMDNzQ0bN25stluRazJ69GgsXboUhYWFsLKyAvC2Y3FERESzLIDXHNAaFUIIEbi8vDxkZ2ejV69eeP36Ndq3b893JN5UVlYiJCQE+/fvR2VlJRiGgaqqKtzc3LBw4UKoqtL1d1NDAxVCCBGoiooK+Pr64ujRo1BWVsbx48excuVKvH79Ghs2bICmpibfEXnz+vVrPHjwAKqqqjA0NGy2W7WbAyr4RgghAvXLL78gMzMT27ZtkyyodXNzw8OHDxEeHs5zOn61bt0aFhYWEIlENEhp4migQgghAnXkyBEEBgaid+/ekmO9e/fGjz/+iJMnT/KYjBDu0ECFEEIEKj8/X6bPD/B2wW1RUREPiQjhHg1UCCFEoExMTHDx4kWZ40eOHEHnzp15SEQI92h5NCGECNTcuXPh7e2Ne/fuoaqqCgcPHsSDBw9w/PjxGoueEdIU0a4fQggRsHPnziEyMhIZGRkQi8Xo0qULpk+fjiFDhvAdjRfPnj1DREQE0tLSUFFRgfc/wmjtTtNDMyqEECJQW7duxYgRIxAXF8d3FMEIDAzEzZs3MXz4cKpE20zQjAohhAiUra0t9u/fDwMDA76jCEaPHj2wZcsW6pLcjNBiWkIIESgrKyucOnWK7xiCoqGh0awr8zZHNKNCCCECNX/+fPz5559o27YtDA0NZbooV/cEak5WrlyJly9fIjg4GCoqKnzHIRygNSqEECJQGhoa1GjvPYWFhUhISMCZM2egr6+PFi1aSD3eHAdvTR0NVAghRKD69euHAQMGUPfk94wYMYLvCIRDdOuHEEIEys7ODr/99hsVdyPNGi2mJYQQgTI0NERWVhbfMQTn6dOn2LhxIxYuXIjnz5/j2LFjuH//Pt+xiJzQjAohhAhUUFAQ9u3bB5FIVONi2rCwMJ6S8efhw4f46quvoKmpifz8fBw9ehSrV69GcnIyYmNjYWVlxXdEwjKaUSGEEIF68OABevbsidatW+PZs2d4/Pix1FdztGLFCjg5OSEpKQlqamoAgLVr18LBwQHh4eE8pyPyQItpCSFEoHbs2MF3BMFJS0tDXFwclJSUJMdUVVXh5eWFr776isdkRF5ooEIIIQJWWVmJ58+fo6qqCgDAMAzKy8uRnp6OUaNG8ZyOe2KxGGKxWOb469evqa5KE0UDFUIIEajz589j8eLFePHihcxj6urqzXKg0r9/f0RGRmL16tWSY4WFhVi9ejXs7e15TEbkhRbTEkKIQI0bNw7t27eHm5sb5s+fj/DwcOTl5WH9+vUICwuDk5MT3xE5l5+fD3d3d7x69QqFhYUwNjZGbm4utLS0sHPnTujp6fEdkbCMZlQIIUSg7t27h9DQUIhEIpibm0NDQwNubm7Q0NDA1q1bm+VA5dNPP8WhQ4eQkJCA27dvQywWY9KkSRg9ejQ0NTX5jkfkgAYqhBAiUCoqKmjTpg0AwMDAAFlZWejTpw/s7e2xcuVKntPxp1WrVpgwYQLfMQhHaHsyIYQIVJcuXSTdk42NjZGamgoAePLkCZ+xCOEUzagQQohAzZgxA/PmzYOamhpGjBiBDRs2YMaMGbhz5w4tHCXNBi2mJYQQAbt16xZUVFQgEolw+fJlxMTEQFdXF/PmzYOWlhbf8QiRO5pRIYQQAWvdujWKi4sBvG1SePv2bQwcOJAGKaTZoIEKIYQI1F9//QVPT09MmTIFFhYWAIDExEREREQgKioKtra2PCfknr+/f43HlZSUoKamho4dO2Lo0KEwMjLiOBmRF7r1QwghAuXi4oJ+/frB29tb6vjatWtx+fJl7N69m6dk/Fm0aBGOHDkCHR0dWFpaAnh7eyw/Px9WVlYoLCzE//73P0RHR6Nnz548pyVsoF0/hBAiUPfu3YOLi4vM8QkTJuDOnTs8JOKfuro6nJ2dcfLkSfz888/4+eefceLECYwYMQJdu3bFsWPH4ObmhoiICL6jEpbQQIUQQgRKW1sbmZmZMsfv3r0rqa/S3Bw7dgxz585FixYtJMfU1NQwc+ZMxMfHA3g7E3Xr1i2+IhKW0RoVQggRqNGjR2Pp0qUoLCyElZUVACA9PR0REREYM2YMv+F4oqqqioKCAnTu3Fnq+LNnzyQdlauqqqCqSh9vTQX9nySEEIGaPXs2/v33XwQHB6OyshIMw0BVVVXS+6c5GjJkCIKCgrB06VJYWVmBYRhcv34dy5cvh6OjI0pKSrBp0yZ0796d76iEJbSYlhBCBO7169d48OABVFVVYWhoCHV1db4j8ebNmzfw9fXFn3/+KZlBAYBhw4YhODgYly5dQnBwMDZv3gyRSMRjUsIWGqgQQghROI8ePcLt27ehoqICMzMzfP755wCA8vJyqfUrRPHRQIUQQojCKSgoQEVFBd7/CPvss894SkTkhdaoEEIIURhpaWnw9/dHTk6O1HGGYaCkpITbt2/zlIzIC82oEEIIURjjxo2DhoYGpk6dWuMWbTs7Ox5SEXmiGRVCCCEK4+7duzh06BBMTEz4jkI4QgMVQggRqGfPniEiIgJpaWk1rsc4efIkT8n4o6uri9evX/Mdg3CIBiqEECJQgYGBuHnzJoYPH95sK9G+z9PTE6GhoVi2bBmMjY2hpqbGdyQiZ7RGhRBCBKpHjx7YsmVLs+ySXBtnZ2fk5eWhqqqqxsdpMW3TQzMqhBAiUBoaGmjfvj3fMQTF09OT7wiEYzSjQgghArVy5Uq8fPkSwcHBUFFR4TsOIbygGRVCCBGowsJCJCQk4MyZM9DX15epuLp9+3aeknHL398fS5YsgaamJvz9/Wt9npKSEkJDQzlMRrhAAxVCCBGwESNG8B2Bd48fP4ZYLJb8mTQvdOuHEEIIIYJFMyqEECJgT58+xd69e/HgwQMEBATgypUrMDU1hbGxMd/ReFNaWoqsrCyZ2jJKSkq0Q6oJohkVQggRqIcPH+Krr76CpqYm8vPzcfToUaxevRrJycmIjY2FlZUV3xE5d/LkSfj5+aG4uFimAB71+mmaaKBCCCEC5enpCW1tbYSEhMDGxgaHDx+Grq4uFi9ejKdPn2LHjh18R+TcsGHD0KVLF3h5edVYBE9PT4+HVESe6NYPIYQIVFpaGuLi4qCkpCQ5pqqqCi8vL3z11Vc8JuPP48ePERkZiU6dOvEdhXBEme8AhBBCaiYWiyW7Xd71+vXrZltXxdDQEE+ePOE7BuEQDVQIIUSg+vfvj8jISKnBSmFhIVavXg17e3sek/Fn0aJFWL58OU6dOoV//vkHeXl5Ul+k6aE1KoQQIlD5+flwd3fHq1evUFhYCGNjY+Tm5kJLSws7d+5slusxunXrJunz8+4tMYZhaDFtE0UDFUIIEbDS0lIkJCTg9u3bEIvF6NKlC0aPHg1NTU2+o/Hi8uXLH3zczs6OoySEKzRQIYQQQohg0a4fQgghCqOkpASxsbFIS0uTKfgGNJ/+R80JDVQIIYQojKCgIJw8eRL9+vVDhw4d+I5DOEC3fgghhCiMnj17Ijw8HIMGDeI7CuEIbU8mhBCiMJSVlWFiYsJ3DMIhmlEhhBCB8vf3r/G4kpIS1NTU0LFjRwwdOhRGRkYcJ+PPkiVL0KFDByxYsIDvKIQjtEaFEEIEqqKiAkeOHIGOjg4sLS0BALdu3UJ+fj6srKyQkpKCX3/9FdHR0ejZsyfPabmhra2N6OhonDt3DkZGRmjRooXU42FhYTwlI/JCAxVCCBEodXV1ODs7Y/Xq1ZIP5IqKCgQEBKBNmzYICgpCeHg4IiIimk2DwuvXr0u6Rj99+pTnNIQLdOuHEEIEytbWFrt370bnzp2ljt+7dw+TJk3ClStX8M8//2DcuHFIS0vjKSUh8kUzKoQQIlCqqqooKCiQGag8e/ZMUj6+qqoKqqrN51f5x/r5fPbZZxwlIVxpPn+7CSFEwQwZMgRBQUFYunQprKyswDAMrl+/juXLl8PR0RElJSXYtGkTunfvzndUzjg4OEj1+Hkf9fppeujWDyGECNSbN2/g6+uLP//8U+rDediwYQgODsalS5cQHByMzZs3QyQS8ZiUO+/3+qmqqsKDBw8QGxsLPz8/ODg48JSMyAsNVAghROAePXqE27dvQ0VFBWZmZvj8888BAOXl5TK7Xpqr5ORkbNiwAXv37uU7CmEZ3fohhBCBa9WqFbp37y7pa1O9ToPWY/wfQ0NDZGZm8h2DyAENVAghRKDS0tLg7++PnJwcqeMMw0BJSalZrseoaTFtcXExIiMjJTNNpGmhgQohhAhUSEgIOnToAF9fX7Rp04bvOIJQ02JahmGgoaGB1atX85SKyBOtUSGEEIHq3r07Dh06RL1t3vH+YloAUFNTg6mpKVq3bs1DIiJvNKNCCCECpauri9evX/MdQ1C2b98Ob29vGrw1I9Q9mRBCBMrT0xOhoaG4c+cOKioq+I4jCJcuXULLli35jkE4RLd+CCFEoJydnZGXl4eqqqoaH2+Oi2l//PFHPHv2DLNnz4aBgQFtz24GaKBCCCECdfDgwQ8+PnbsWI6SCIezszNycnJqrU7bHAdvTR0NVAghhCgMGrw1PzRQIYQQAfH398eSJUugqakJf3//Wp+npKSE0NBQDpMRwg/a9UMIIQLy+PFjiMViyZ8Jae5oRoUQQgghgkUzKoQQImClpaXIyspCRUUF3r2uVFJSgq2tLY/JCOEGDVQIIUSgTp48CT8/PxQXF+P9ye/m2uuHND9064cQQgRq2LBh6NKlC7y8vGrs9aOnp8dDKv49ffoUe/fuxf3797FkyRJcuXIFpqamMDY25jsakQMaqBBCiEB1794dR44cQadOnfiOIhgPHz7EV199BU1NTeTn5+Po0aNYvXo1kpOTERsbCysrK74jEpZRCX1CCBEoQ0NDPHnyhO8YgrJixQo4OTkhKSkJampqAIC1a9fCwcEB4eHhPKcj8kADFUIIEahFixZh+fLlOHXqFP755x/k5eVJfTVHaWlpmDp1qlRlWlVVVXh5eSEjI4PHZEReaDEtIYQIlJeXF6qqquDl5SX1wcwwTLNdTCsWiyV1Zt71+vVrqKio8JCIyBsNVAghRKBiYmL4jiA4/fv3R2RkJFavXi05VlhYiNWrV8Pe3p7HZEReaDEtIYQQhZGfnw93d3e8evUKhYWFMDY2Rm5uLrS0tLBz585muxOqKaOBCiGECFRJSQliY2ORlpYmU/ANALZv385TMn6VlpYiISEBt2/fhlgsRpcuXTB69GhoamryHY3IAd36IYQQgQoKCsLJkyfRr18/dOjQge84gtGqVStMmDCB7xiEIzSjQgghAtWzZ0+Eh4dj0KBBfEfhlbu7e52f21xnmZoy2p5MCCECpaysDBMTE75j8E5PT0/ypaOjg8uXL+PVq1cwMTGBmZkZKioqkJqaSpVpmyiaUSGEEIFasmQJOnTogAULFvAdRTD8/f3xySefwM/PT+p4REQEsrOzsWHDBp6SEXmhNSqEECJQ2traiI6Oxrlz52BkZIQWLVpIPR4WFsZTMv4cO3YMBw8elDk+ZswYjBkzhvtARO5ooEIIIQJ1/fp1Se+ap0+f8pxGGNq2bYuMjAwYGhpKHb969Srat2/PTygiVzRQIYQQgdqxYwffEQRn4sSJCAoKQnZ2NiwsLCAWi5GWloa4uDh89913fMcjckBrVAghRKA+1s/ns88+4yiJsERGRmLnzp149uwZAEBXVxfTp0+Hq6srz8mIPNBAhRBCBEokEkn1+Hlfc+z1865///0XSkpK0NLS4jsKkSO69UMIIQL1fk2QqqoqPHjwALGxsTK7Xpqjdu3a8R2BcIBmVAghRMEkJydjw4YN2Lt3L99RCJE7KvhGCCEKxtDQEJmZmXzHIIQTdOuHEEIEqqbFtMXFxYiMjMTnn3/OQyJCuEcDFUIIESgHBweZxbQMw0BDQwOrV6/mKRX/GIZBcnIysrKyoKqqis6dO6NPnz5QUVHhOxqRA1qjQgghAnX58mWZY2pqajA1NUXr1q15SMS/wsJCeHh44NatW2jTpg0YhkFxcTG6deuGmJgYtG3blu+IhGW0RoUQQgRq+/btaN++Pezs7CRf1tbWzXaQAgArV67EmzdvcOjQIVy5cgVXr17FoUOHUF5ejjVr1vAdj8gBDVQIIUSgLl26hJYtW/IdQ1BOnz6NH374ASKRSHJMJBLh+++/R1JSEo/JiLzQQIUQQgRq7NixCA8Px927d1FeXs53HEGorKyEjo6OzHEdHR0UFxfzkIjIGy2mJYQQgTp79ixycnJw/PjxGh9vjpVpu3Xrhl27dmHJkiVSx3ft2gVzc3OeUhF5ooEKIYQIlKenJ98RBGfBggVwd3fH9evXYWNjAwBITU1FZmYmtmzZwnM6Ig+064cQQohCuXHjBqKjo3H37l0wDAMzMzNMnToVlpaWfEcjckADFUIIIYQIFt36IYQQImgbN26s83PnzJkjxySEDzSjQgghRNAcHByk/vt///sf1NTUoK+vD1VVVeTk5KCiogIWFhbYvXs3TymJvNCMCiGEEEE7deqU5M+xsbE4c+YM1qxZg/bt2wMAXr58CV9fX5iamvIVkcgRzagQQoiAPX36FHv37sX9+/exZMkSXLlyBaampjA2NuY7Gi/69u2L6OhoqYJvAJCVlQU3NzekpKTwlIzICxV8I4QQgXr48CFGjhyJgwcP4s8//0RJSQkSExMxfvx4/P3333zH40VFRQVKSkpkjj9//lymgSNpGmigQgghArVixQo4OTkhKSkJampqAIC1a9fCwcEB4eHhPKfjh4ODAwIDA5GSkoLXr1+juLgYZ8+eRWBgIIYPH853PCIHtEaFEEIEKi0tDXFxcVIzBaqqqvDy8sJXX33FYzL+BAYGYv78+Zg8ebLkvDAMg6FDh2Lx4sU8pyPyQAMVQggRKLFYDLFYLHP89evXUFFR4SER/zQ1NbF161bcv38fWVlZUFZWhrm5OfT19fmORuSEbv0QQohA9e/fH5GRkVKDlcLCQqxevRr29vY8JuOfsbExhg4dCmdnZ+jr66O8vBypqal8xyJyQLt+CCFEoPLz8+Hu7o5Xr16hsLAQxsbGyM3NhZaWFnbu3Ak9PT2+I3Lu5s2bCAwMRFZWVo2zTc2xUWNTRwMVQggRsNLSUiQkJOD27dsQi8Xo0qULRo8eDU1NTb6j8eKbb75BWVkZxo8fj7CwMPj5+SEnJwdxcXFYtWoVhg0bxndEwjJao0IIIQLWqlUrTJgwge8YgpGRkYFt27bB0tISBw4cgKmpKVxdXdGxY0fs3buXBipNEA1UCCFEQNzd3ev83O3bt8sxiTCJxWJ06NABAGBgYICsrCzY2trC0dERkZGRPKcj8kCLaQkhRED09PQkXzo6Orh8+TJevXoFExMTmJmZoaKiAqmpqc22Mq2BgYFk0ayxsTHS09MBAK9evUJ5eTmf0Yic0IwKIYQISFhYmOTP/v7+mDJlCvz8/KSeExERgezsbK6jCYKbmxuWLFkCABgyZAhGjx4NdXV1pKWloUePHvyGI3JBi2kJIUSgrK2tcfDgQRgaGkod/+effzBmzBhcv36dl1x8S0pKgpaWFmxtbREfH4+oqCjo6uoiKCioWe6EaupoRoUQQgSqbdu2yMjIkBmoXL16VdI5uDlycnKS/HnkyJEYOXIkKioqcP36dRqoNEE0UCGEEIGaOHEigoKCkJ2dDQsLC4jFYklZ/e+++47veLwwNzfH3Llz4eXlJXW8qKgI7u7uVEelCaJbP4QQImCRkZHYuXMnnj17BgDQ1dXF9OnT4erqynMyfohEIrRq1QqOjo4IDQ1FixYtAAAFBQXo378/MjMzeU5I2EYDFUIIUQD//vsvlJSUoKWlxXcUXpmbm2PHjh0ICAiAtrY2fvnlF2hra6OgoAADBgygGZUmiLYnE0KIAmjXrl2zH6QAbzslGxkZYc+ePVBWVoaLiwvu3r0LZWX6OGuq6P8sIYQQhaGkpATg7cAtNjYWNjY2+Prrr5GSksJzMiIvNFAhhBCiMN5drdCiRQuEh4dj6tSpWLRoEY+piDzRrh9CCCEKY86cOdDQ0JA5ZmBggL179/KUisgTLaYlhBABYxgGycnJyMrKgqqqKjp37ow+ffpARUWF72iEcIJmVAghRKAKCwvh4eGBW7duoU2bNmAYBsXFxejWrRtiYmLQtm1bviNywsHBQbI25UOUlJSQlJTEQSLCJRqoEEKIQK1cuRJv3rzBoUOHIBKJAACZmZn47rvvsGbNGixbtoznhNwYO3ZsnQYqpGmiWz+EECJQ9vb2WL9+Pezs7KSOp6SkwMfHBxcuXOApGSHcoRkVQggRqMrKSujo6Mgc19HRQXFxMQ+JhCEzMxNZWVkQi8UA3q7jKS8vR3p6OkJCQnhOR9hGAxVCCBGobt26YdeuXViyZInU8V27dsHc3JynVPyKiYnBypUrAbxdk1J9U0BJSQm2trZ8RiNyQgMVQggRqAULFsDd3R3Xr1+HjY0NACA1NRWZmZnYsmULz+n4ERcXh+nTp2POnDkYNGgQDh48iMLCQixcuBCOjo58xyNyQAXfCCFEoKytrREXFwc9PT2cP38eycnJ0NfXx2+//QZ7e3u+4/HiyZMnmDBhAlq2bAmRSIT09HSYmZnBz88P+/bt4zsekQOaUSGEEAGztLREREQE3zEEQ0NDA1VVVQCATp064d69e3BycoKJiQlyc3N5TkfkgQYqhBAiIBs3bqzzc+fMmSPHJMJkY2ODzZs3IygoCF27dsW+ffswY8YMpKamonXr1nzHI3JA25MJIURAHBwcpP77f//7H9TU1KCvrw9VVVXk5OSgoqICFhYW2L17N08p+ZOVlYVp06ZhypQpmDRpEkaOHImXL1+itLQUHh4e8PHx4TsiYRkNVAghRKBiY2Nx5swZrFmzBu3btwcAvHz5Er6+vjA1NW22H8pv3rxBSUkJtLW1UVBQgPj4eOjq6mLo0KF8RyNyQAMVQggRqL59+yI6OlpSlbZaVlYW3NzckJKSwlMyfpSWlkJdXV2qSm12djb09PSgrq7OYzIiT7TrhxBCBKqiogIlJSUyx58/f97sSsonJCTAwcEBt27dkjoeGhqKgQMH4sSJEzwlI/JGAxVCCBEoBwcHBAYGIiUlBa9fv0ZxcTHOnj2LwMBADB8+nO94nElJSYGvry8GDRqETz/9VOqxgIAAODg4YMGCBUhLS+MpIZEnuvVDCCECVVxcjPnz5+PChQuSGRSGYTB06FCsWrUKLVq04DkhNzw8PGBiYoKAgIBan+Pv74+CggJERUVxmIxwgQYqhBAicPfv30dWVhaUlZVhbm4OfX19viNxqk+fPti2bRtMTU1rfU56ejpmzZpFjRqbIKqjQgghAmdsbAxjY2PJf1c34OvZsyePqbhTVlb20cWyWlpaKC0t5SgR4RINVAghRKBu3ryJwMBAqU7B77p9+zYPqbhnZGSEa9euoVOnTrU+Jy0tDXp6ehymIlyhxbSEECJQYWFhUFFRwffffw81NTUEBgZi8uTJUFVVxdq1a/mOx5lRo0Zh3bp1yM/Pr/Hx/Px8rFu3juqoNFE0o0IIIQKVkZGBbdu2wdLSEgcOHICpqSlcXV3RsWNH7N27F8OGDeM7Iie+/fZbHD9+HCNGjMD48eNhbW2Ntm3borCwEGlpaTh48CAMDQ3h4eHBd1QiBzRQIYQQgRKLxejQoQMAwMDAAFlZWbC1tYWjoyMiIyN5TscdFRUVxMbGIiIiAvv370dsbKzkMR0dHXzzzTfw9PSkom9NFA1UCCFEoAwMDJCamooRI0bA2NgY6enpAIBXr16hvLyc53TcatGiBXx9feHj44NHjx6hqKgI2tra0NfXb3bF75obGqgQQohAubm5YcmSJQCAIUOGYPTo0VBXV0daWhp69OjBbzieqKqqwsjIiO8YhENUR4UQQgQsKSkJWlpasLW1RXx8PKKioqCrq4ugoCDa5UKaBRqoEEKIgqmoqMD169fRq1cvvqMQIne0PZkQQgTK3Nwcv/zyi8zxoqIiuLu785CIEO7RQIUQQgSKYRhERUVh0aJFMotnaTKcNBc0UCGEEIFSUlJCVFQUbty4AXd3d7x48ULqMUKaAxqoEEKIQDEMAyMjI+zZswfKyspwcXHB3bt3oaxMv7pJ80F/2wkhRKCqZ03atWuH2NhY2NjY4Ouvv0ZKSgrPyQjhDg1UCCFEoN5dh9KiRQuEh4dj6tSpWLRoEY+pCOEWFXwjhBCBmjNnDjQ0NGSOGRgYYO/evTylIoRbVEeFEEIIIYJFMyqEECIgDg4OddrRo6SkhKSkJA4SEcIvGqgQQoiAjB07lrYeE/IOuvVDCCGEEMGiGRVCCBGwzMxMZGVlQSwWA3i7E6i8vBzp6ekICQnhOR0h8kcDFUIIEaiYmBisXLkSwNs1KdUT4EpKSrC1teUzGiGcoToqhBAiUHFxcZg+fTr+/vtvtGvXDmfPnsUff/wBExMTODo68h2PEE7QQIUQQgTqyZMnmDBhAlq2bAmRSIT09HSYmZnBz88P+/bt4zseIZyggQohhAiUhoYGqqqqAACdOnXCvXv3AAAmJibIzc3lMxohnKGBCiGECJSNjQ02b96M0tJSdO3aFadOnYJYLEZqaipat27NdzxCOEEDFUIIESgfHx8kJycjLi4Ow4cPR0FBAezs7LB48WKMGzeO73iEcILqqBBCiIC9efMGJSUl0NbWRkFBAeLj46Grq4uhQ4fyHY0QTtBAhRBCBKi0tBTq6upSVWqzs7Ohp6cHdXV1HpMRwi269UMIIQKTkJAABwcH3Lp1S+p4aGgoBg4ciBMnTvCUjBDu0UCFEEIEJCUlBb6+vhg0aBA+/fRTqccCAgLg4OCABQsWIC0tjaeEhHCLbv0QQoiAeHh4wMTEBAEBAbU+x9/fHwUFBYiKiuIwGSH8oBkVQggRkIyMDLi4uHzwOa6ursjIyOAoESH8ooEKIYQISFlZ2UcXy2ppaaG0tJSjRITwiwYqhBAiIEZGRrh27doHn5OWlgY9PT2OEhHCLxqoEEKIgIwaNQrr1q1Dfn5+jY/n5+dj3bp1VEeFNBu0mJYQQgSkqqoKbm5uuHv3LsaPHw9ra2u0bdsWhYWFSEtLw8GDB2FoaIidO3dSPRXSLNBAhRBCBKa8vBwRERHYv38/ioqKJMd1dHQwfvx4eHp60iCFNBs0UCGEEIGqrKzEo0ePUFRUBG1tbejr60tVqiWkOaCBCiGEEEIEixbTEkIIIUSwaKBCCCGEEMGigQohhBBCBIsGKoQQztCSOEJIfdFAhRAidy9fvoSvry+uXr3KdxRCiIKhgQohRO5u376NP/74A2KxmO8ohBAFQwMVQgghhAgWDVQIIR/FMAxiY2MxbNgwWFpaYvDgwdi6datkzcnvv/+OcePGoUePHrC0tMTo0aNx9OhRAEBKSgrc3d0BAO7u7nBzc5O8blJSEsaNG4fu3bujX79+CAkJQUlJidR7nzlzBuPGjYOlpSWGDBmChIQEDB48GBs2bJA85+nTp/D398fAgQNhaWkJFxcXnDx5Uup1zMzMsHHjRslrbdy4Ed27d8fatWulnldaWoqePXti06ZN7J1AQkiDqfIdgBAifKtWrcK2bdswdepU9OvXD+np6QgPD0dlZSU0NTUREhKCuXPnomfPnigqKkJUVBQWLVoEa2trdOvWDUFBQQgODkZQUBB69+4NAIiPj8eiRYswcuRILFiwALm5ufjpp59w7949xMTEQElJCZcuXYKXlxcGDRqE+fPn4+HDh/jhhx9QVlYmyVZQUAAXFxe0bNkS3t7eaNeuHQ4cOIDZs2dj1apVGDVqlOS5v/76KxYuXAgjIyPo6ekhOzsb8fHx8Pb2llR8PXHiBEpKSjBmzBhOzzEhpGY0UCGEfNDLly+xfft2fPvtt/juu+8AAH379sWzZ89w5coVdO7cGR4eHvDy8pJ8j56eHsaNG4fU1FQMHz4cnTt3BgB07twZnTt3BsMwCA8Px4ABAxAeHi75PkNDQ0yZMgVnz57FF198gQ0bNqBLly7YuHGjZCDRvn17+Pj4SL4nJiYGL168wPHjx6GnpwcAGDhwIKZMmYJVq1ZhxIgRUFZ+O3lsa2uLqVOnSr53/PjxSExMREpKCuzt7QEAhw4dQt++faGrqyuP00kIqSe69UMI+aDr16+jsrISzs7OUse///57bNmyBX5+fli0aBFevnyJ69ev448//kBcXByAt831anL//n08efIEDg4OqKyslHz16tULmpqauHDhAsrLy3Ht2jU4OztL9bcZOnQoVFX/7xrr8uXLsLa2lgxSqo0aNQrPnj3D/fv3JcfMzc2lntO3b1989tln+OOPPwAAT548wcWLFzF27NgGnClCiDzQQIUQ8kGFhYUAAG1t7Rofz8nJwZQpU9CrVy98++232Lp1KyorKwHUXjel+jWXLVuGbt26SX0VFxfj6dOnKCwsRFVVFdq3by/1vSoqKtDS0pL8d1FRETp06CDzHjo6OgDezghV09DQkHqOsrIyxo0bh+PHj+PNmzf4448/oKmpicGDB9d+QgghnKJbP4SQD2rbti0A4MWLFzA2NpYcz8vLw8OHDxEYGIhWrVph3759MDc3h6qqKu7duyeZpfjQa/r6+sLOzk7m8U8++QTt27eHmpoaCgoKpB4Ti8WSgU71c589eybzGtXH2rVr98Gfb9y4cfj5559x7tw5HD16FF9++SVatmz5we8hhHCHZlQIIR9kaWkJNTU1nD59Wup4dHQ0pkyZgkePHsHFxQXdu3eX3JI5d+4cAEjqpqioqEh9r7GxMdq3b4/Hjx+je/fukq9PP/0Ua9asQUZGBlRUVGBjYyOze+fUqVOSGRsA6NWrF65du4bc3Fyp5x0+fBgdOnSAgYHBB38+PT099OnTB9u3b8ft27cxbty4epwdQoi80YwKIeSDtLW14e7ujtjYWLRo0QJ2dnb4+++/sWvXLgQEBGDbtm2Ii4tDx44d0bZtWyQnJ2P79u0A3m71BYA2bdoAeLvV+JNPPoFIJIK3tzeCgoKgoqKCQYMG4eXLl/jll1+Qn5+Pbt26AQDmzZsHNzc3zJs3Dy4uLsjLy8O6desAQLJuZerUqTh8+DCmTJmCOXPmQEtLC4cOHcKlS5cQGhoqWUj7IS4uLvDx8YGJiQmsrKxYP4eEkIZTYqj5BiHkIxiGQXR0NHbv3o0nT57g888/x+TJk/H1118jMzMTP/74I27evIkWLVqgc+fOmDVrFkJDQ2Fqaop169ZBLBbju+++w4kTJ9CpUyckJCQAABITE7FlyxbcvXsXGhoasLGxwYIFC2BmZiZ576SkJKxbtw4PHjyAnp4e5s+fD29vb/j5+Ul28Dx69Ahr1qzBhQsXUFFRAZFIhOnTp8PR0VHyOmZmZpgzZw7mzp0r8/MVFxfD1tYWixYtwn//+185n01CSH3QQIUQIlgnT55Ex44dJTMsAHD37l2MGDECv/zyi9RApDESExPh6+uLs2fPyizeJYTwi279EEIE6/z580hMTMSiRYtgZGSE/Px8bNq0CcbGxujfv3+jXz8pKQnp6enYvXs3xo0bR4MUQgSIBiqEEMFavHgx1NXVsWnTJjx9+hRaWloYMGAAFi5cyMrOnMePH2Pbtm3o2bOnpJgdIURY6NYPIYQQQgSLticTQgghRLBooEIIIYQQwaKBCiGEEEIEiwYqhBBCCBEsGqgQQgghRLBooEIIIYQQwaKBCiGEEEIEiwYqhBBCCBEsGqgQQgghRLD+PxyscecECZeQAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -539,7 +604,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAMyCAYAAABDwurxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChaklEQVR4nOzdd1QU5+M18Ls0RRGx0PyiAVFBNEoXYkejib3GJGrsGkswNuwVxQI2bEGxgLH3qEmsiUYDCtgVJCLYARERQWAX2PcPX/aXFTSKuzuzy/2ck5MwMwt3M67cKc8zErlcLgcRERGRCOkJHYCIiIjobVhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIhEiPMwlh1i2tdiykJUhEWF6AP1798fDg4Oin8cHR3h4uKCHj16IDw8HPn5+Urb+/j4YMqUKe/9/U+dOoXJkyf/53ZTpkyBj49PqX9OaT18+BAODg7Yv39/sXVSqRStWrVC9+7dkZOTo7YM/fv3R//+/dX2/TXln3/+wTfffKOS73XhwgU4ODjgwoULxdYlJSXBwcEBTZo0gVQqLbZeKpUiICAAhw8fVkkWIlUyEDoAkTZycnLC7NmzAQAFBQV48eIFzp49i4ULFyI6OhorVqyAnt7r44DVq1fDxMTkvb/3li1b3mu7UaNG4bvvvvvg7B/LwsICu3btQq1atYqt27NnD/Lz87Fu3ToYGxtrPJu2+f3333H58mW1/5x9+/bB3t4e9+7dw++//44uXboorU9NTUVYWBgWLlyo9ixEH4pFhagUTExM4OzsrLTMx8cHtWvXxoIFC3DkyBHFLwMnJye1ZCipKGiCkZFRsfdepE2bNvjyyy9RtWpVzYaityooKMDBgwfRp08fXL58GTt37ixWVIjEjJd+iFSoX79+sLS0xM6dOxXL3rwkU1RiGjVqBC8vL0ycOBEpKSkAXl/SuHjxIi5evKg4jV90Sn/nzp1o3bo1XF1dcf78+WKXfgBAJpNh/vz58PDwgLu7OyZPnoz09HTF+pIumZR0yeDu3bsYM2YMPD094eHhgREjRiAhIQFAyZd+kpKS4Ovri549e8LHxwf9+/dHTEyMYn3Ra3777Tf4+vrCxcUFnp6emDFjBl69evXO/6ePHz/GmDFj4ObmhqZNm2Lz5s0lbrdnzx507NgRDRs2RKtWrbBq1SoUFBS883tLpVKsWLECbdq0QaNGjdCpUyccOHBA6f/XxIkT4evrC2dnZwwaNAgAkJeXhyVLlqBly5Zo2LAhOnfujF9//VXpe+fm5mLp0qVo164dGjZsCFdXVwwaNAixsbEAgFWrVmH16tUAAAcHB6xatQoAUFhYiPXr1+Pzzz9Hw4YN0b59e2zdurVY9p07d6J9+/Zo1KgR+vXrh8ePH5f4Hs+dO4fU1FS0atUKXbp0QUxMDO7cuaNY//DhQ7Rp0wYAMHXq1GJ/poiExqJCpEJ6enrw9vbGtWvXit2rAgAxMTHw8/NDu3btsGHDBkydOhWRkZGYMGECAGD27NlwcnKCk5MTdu3ahQYNGiheu3r1akyePBmzZs2Ci4tLiT//t99+w82bN7Fo0SJMnjwZf/75J4YNG/afv7D/LSUlBX369EFSUhLmzJmDwMBApKWlYcCAAcjIyCi2/Z07d9CjRw88fPgQM2bMQFBQECQSCQYMGICLFy8qbTt79mz873//w9q1azFkyBDs3bsX69ate2uWV69eoV+/foiPj4e/vz9mzpyJPXv2FLtcEhISgpkzZ8Lb2xs//fQT+vbtiw0bNmDmzJnvfK8TJ07E5s2b0bt3b4SEhKBZs2aYMmUKjhw5otjmt99+Q8WKFbFu3ToMHToUcrkco0ePxs6dOzFo0CCsW7cOLi4uGDduHA4ePKh4nZ+fH/bt24fhw4dj06ZNmDp1Kv755x9MmDABcrkcvXv3Rq9evQAAu3btQu/evQEAc+bMQXBwMLp06YKffvoJX3zxBQICArBmzRrF9/75558xe/ZstGzZEmvXrkXjxo3f+l737duHunXromHDhmjXrh0qVqyoVKQtLCwUhWnkyJGK/yYSC176IVKx6tWrQyaTISMjA9WrV1daFxMTg/Lly2P48OEwMjICAJiZmeH69euQy+WoU6eO4n6WNy+vfPvtt/jiiy/e+bOrVKmCjRs3okKFCoqvR48ejbNnz6J169bvlX/Lli2QSqXYvHkzzM3NAQCOjo745ptvcPXqVdjb2yttv3r1ahgZGSE8PFyRvVWrVujUqROWLFmCvXv3KrZt2bKl4kZhb29vnD9/Hn/++aeiqL3pwIEDePz4MY4cOYI6deoAABo3bozPP/9csc3Lly+xdu1a9OnTBzNmzAAANGvWDGZmZpgxYwYGDRqEunXrFvve8fHxOHbsGKZNm4YBAwYoMj169AgXLlxAp06dAACGhoaYO3euYn+dP38ef/31F5YvX44OHToAAJo3b46cnBwEBQWhU6dOKCwsRHZ2NmbMmKHYxtPTE1lZWVi0aBHS0tJgZWUFKysrAP+3rxMTE7F7926MHz8ew4cPV7wXiUSCkJAQfPvttzAzM8PatWvRoUMHTJs2TbFNVlaWUgEBgOfPn+P06dMYP348AMDY2BgdOnTAoUOHMGHCBBgbG8PIyAj169cH8PpyorouVRKVFs+oEKlY0RBPiURSbJ2HhwdycnLQqVMnLF26FNHR0WjWrBnGjBlT4vb/VvTL5F1atmypKCnA68tOBgYGiIqKeu/8MTExcHZ2VpQUALCyssIff/yBli1bFtv+4sWLaN26tdINwwYGBujYsSNu3LiB7OxsxfI3y5eVldU7L/1ER0ejVq1aipICANbW1krf5/Lly8jNzYWPjw/y8/MV/xRdwjh//vxb3ycAtGvXTmn5qlWr4O/vr/i6du3aipICABEREZBIJGjZsmWxn/f06VP8888/MDIywsaNG9GhQwekpKQgMjISO3fuxB9//AEAJY68AYDIyEjI5fIS30teXh5iYmJw9+5dPHv2rFjx/PLLL4t9v19++QUFBQVo1aoVMjMzkZmZic8//xyZmZnFLlURiRXPqBCpWEpKCsqXLw8zM7Ni61xcXLB+/Xps2bIFmzdvxvr161G9enV8//33/znc9t8F5G3+XS6A15eiqlSpgszMzPfOn5GRARsbm/fe/sWLF8XOHAGvzyzJ5XJkZWUplr05EkhPT++dc3e8ePECVapUKbbc3NwcaWlpirwAFGcg3pSamlri8qLXVatW7a0/HwAqVqxY7HVyuRyurq5v/Xn169fHX3/9hYCAANy9excVK1aEo6OjYh++7T0XZerYsWOJ61NSUhQ3Kr/5/+XNfQ8A+/fvR2FhYYklZufOnejZs2eJP4dITFhUiFQoPz8fFy5cgKurK/T19Uvcpnnz5opLBZGRkQgPD8f8+fPRuHFjNGrU6KN+/pv3kBQUFOD58+dKv4zfvF/lzTMalSpVUroBt0hERARsbGyKnfmpXLmyojT829OnTwG8/oX6trLwX6pUqYJ79+4VW/7v92lqagoACAoKgq2tbbFtSypR/35denq64hIMACQkJCAjIwNubm4lvq5SpUqoUKECwsPDS1z/ySef4P79+xg9ejTatm2LkJAQ1KxZExKJBNu2bcNff/1V4uv+nSksLKxYQQKAGjVqKErns2fPlNa9ue9v3ryJuLg4+Pr6wt3dXWndiRMnsHXrVsTGxr7XmToiIfHSD5EK7dq1C0+fPn3rJF6LFy9Gz549IZfLYWxsjNatWyvu2SgatVE0/0ppnD9/Xukm3mPHjiE/Px9NmjQB8HpYdXJystJr/j06BwDc3d1x9epVpbLy7NkzDB06FGfOnCn2Mz08PPDHH38onTkpKCjA0aNH8emnnypdNvlQXl5eePjwIa5fv65Ylp6ejitXrii+bty4MQwNDZGSkoJPP/1U8Y+BgQGWLVuGhw8flvi9i4rI6dOnlZYHBQVhwYIFb83k6emJV69eQS6XK/28+Ph4rFmzBvn5+bhx4wby8vIwfPhw1KpVS1HuikpK0RmVN/d1UaF4/vy50vdOT0/HypUrkZGRAVtbW1hbW+P3339Xem3RZaUi+/btQ7ly5TBgwAA0adJE6Z8hQ4ZAT08PO3bsAIC3lmoiMeAZFaJSyMrKUvyyLCwsxPPnz3Hu3Dns2rULXbp0KXbfQxEvLy9s3rwZU6ZMQZcuXSCTyRAaGgozMzN4eXkBeH1UffnyZURERHzwjY1Pnz7FDz/8gP79+yMpKQnLli1D06ZN4e3tDQBo3bo1Tp8+jYULF8LHxwfR0dFKI1UAYODAgTh48CCGDh2KESNGwNDQEOvWrYOVlRU6d+6Mly9fKm0/ZswYnD17Ft999x2GDx8OQ0ND/Pzzz3jw4AFCQ0M/KP+bunbtivDwcIwZMwbjxo2DiYkJ1q1bh8LCQsU2VapUwdChQ7Fy5UpkZWWhSZMmSElJwcqVKyGRSODo6Fji93Z0dMQXX3yBwMBA5Obmon79+jh79iz++OOPd458admyJTw8PDBq1CiMGjUK9vb2uHbtGoKDg9G8eXNUrVoVDRo0gIGBAQIDAzF48GBIpVLs378ff/75J4D/O4tVdAblyJEjaNy4MRwcHNClSxfMnDkTjx49QsOGDZGYmIjly5fDxsYGtra2kEgkmDhxIiZMmIAZM2bgiy++wJUrVxSlA3h9D8yRI0fQqlWrEicbtLa2hqenJw4fPgw/Pz9UqlQJwOuzZvb29mjcuPGH7SgiNWJRISqFW7duoU+fPgBe3zRbsWJF1KtXD3PmzFEMMy1Jy5YtERQUhE2bNiluoHVzc0N4eLjinpa+ffvixo0bGDZsGBYuXAgLC4v3zvXtt9/i5cuXGD16NIyMjNC5c2dMmjRJcUTfs2dP3L9/HwcOHMDOnTvh4eGB4OBgpTNA1tbW2L59OwIDAzFlyhQYGRmhSZMmWL58OSpXrlysqNStWxfbt2/HsmXLMHXqVEgkEjRq1Ajh4eHFLjl8KCMjI4SFhSEgIAALFiyARCLBV199hZo1aypd+vjxxx9hbm6O7du3IzQ0FJUrV4a3tzfGjx+v+CVcksDAQKxevRphYWF4/vw57O3tERwcjLZt2771NXp6eli/fj1WrlyJkJAQPHv2DJaWlhg0aBBGjx4N4PXln6VLl2L16tUYOXIkKleuDGdnZ2zduhX9+/dHdHQ0HBwc0K5dOxw6dAhTpkxBr169MGfOHCxcuBAhISHYuXMnkpOTUa1aNXTo0AE//vij4sxHp06doKenh7Vr1+LQoUOoV68e5s2bpxjdc/LkSbx48UIx4qgk3bp1Q2RkJA4fPoxvvvkGgwYNwq5du3DmzBmcP38ehoaGH7SviNRFIudTqIiIiEikeI8KERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJltbPo3L58mXI5XKO+SciItIiMpkMEokELi4u79xO68+oyOXydz7UTFfJ5XJIpdIy+d7LIu7vsoX7u2wpq/v7fX9/a/0ZlaIzKZ9++qnASTTr1atXiI2NRZ06dd7rqbqk3bi/yxbu77KlrO7vfz/D6120/owKERER6S4WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEq0PLiopKSlwcHAo9s/+/fsBALGxsejXrx+cnZ3h4+OD8PBwpdcXFhYiODgYzZs3h7OzM4YNG4YHDx6o5t0QERGRTvngZ/3ExcWhXLlyOHnyJCQSiWJ5pUqV8Pz5cwwaNAg+Pj6YO3curly5grlz56JixYro2bMnAGDt2rXYvn07Fi1aBCsrKwQGBmLo0KE4fPgwjIyMVPfOiIiISOt9cFGJj4+Hra0tLCwsiq0LCwuDoaEh5s2bBwMDA9jb2+PevXtYv349evbsCalUik2bNmHixIlo1aoVAGD58uVo3rw5jh8/jk6dOn30GyIiIiLd8cGXfm7fvg17e/sS10VHR8PT0xMGBv/Xf7y8vJCUlIS0tDTExcUhOzsb3t7eivWmpqZwcnJCVFRUKeITERGRLvvgohIfH4/09HT07dsXn332Gb755hucPXsWAJCcnAwrKyul7YvOvDx58gTJyckAAGtr62LbFK0jIiIiKvJBl37y8/Nx9+5d1KlTB1OmTIGJiQmOHj2K4cOHY/PmzcjNzS12n0m5cuUAAHl5ecjJyQGAErd58eJFqd+EXC7Hq1evSv36j/Hv+3Q0SSqVwtjYGFKpVLAMcrlckJ9bFhV9dor+TbqN+7tsKav7Wy6Xv9fvrw8qKgYGBrhw4QL09fVRvnx5AEDDhg3xzz//YOPGjShfvjykUqnSa/Ly8gAAFSpUULxGKpUq/rtoG2Nj4w+JokQmkyE2NrbUry8tQ0NDODk1gIGBvsZ/trGxMczMzDT+c4vk5xfg1q2bkMlkgmUoi5KSkoSOQBrE/V22lMX9/T6DaD74ZtqKFSsWW1a3bl2cO3cOVlZWSE1NVVpX9LWlpSXy8/MVy2rVqqW0jYODw4dGUTA0NESdOnVK/frSkkgkMDDQR9C2GDxMeanxny8UG8tKmNjXDXXr1uVZFQ3JyclBUlISbG1tP6rUk3bg/i5byur+vnPnzntt90FF5Z9//kGfPn2wbt06NGnSRLH8xo0bqFOnDurXr4+dO3eioKAA+vqvzzJERkbCzs4O1apVQ6VKlWBiYoILFy4oikpmZiZu3bqFfv36fUgUJRKJBBUqVCj16z/Ww5SXSHhU+ktX2qosfaDEwtjYWNA/66RZ3N9lS1nb3+9728IH3Uxrb2+P2rVrY968eYiOjkZCQgIWLlyIK1euYOTIkejZsyeysrIwffp03LlzB/v378eWLVswYsQIAK9P8fTr1w9BQUE4deoU4uLiMG7cOFhZWaFdu3Yf/i6JiIhIp33QGRU9PT389NNPWLp0KX788UdkZmbCyckJmzdvRr169QAAoaGhWLBgAbp37w5zc3P4+fmhe/fuiu/h6+uL/Px8zJgxA7m5ufDw8MDGjRthaGio2ndGREREWu+D71GpXr06Fi5c+Nb1jRo1wq5du966Xl9fH5MmTcKkSZM+9EcTERFRGcOHEhIREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaJW6qCQmJsLFxQX79+9XLIuNjUW/fv3g7OwMHx8fhIeHK72msLAQwcHBaN68OZydnTFs2DA8ePCg9OmJiIhIp5WqqMhkMkycOBGvXr1SLHv+/DkGDRqEWrVqYd++fRg9ejSCgoKwb98+xTZr167F9u3b4e/vj507d6KwsBBDhw6FVCr9+HdCREREOqdURWXVqlUwMTFRWrZ7924YGhpi3rx5sLe3R8+ePTFw4ECsX78eACCVSrFp0yb4+vqiVatWcHR0xPLly5GcnIzjx49//DshIiIinfPBRSUqKgq7du3CokWLlJZHR0fD09MTBgYGimVeXl5ISkpCWloa4uLikJ2dDW9vb8V6U1NTODk5ISoq6iPeAhEREekqg//e5P9kZmbCz88PM2bMgLW1tdK65ORk1KtXT2mZhYUFAODJkydITk4GgGKvs7CwUKwrLblcrnQZSlMkEgmMjY01/nPFIicnB3K5XOgYZUJOTo7Sv0m3cX+XLWV1f8vlckgkkv/c7oOKypw5c+Di4oLOnTsXW5ebmwsjIyOlZeXKlQMA5OXlKXZASdu8ePHiQ2IUI5PJEBsb+1HfozSMjY3h5OSk8Z8rFomJiWXugyW0pKQkoSOQBnF/ly1lcX+/2QlK8t5F5eDBg4iOjsbhw4dLXF++fPliN8Xm5eUBACpUqIDy5csDeH2vStF/F23zsWclDA0NUadOnY/6HqXxPk1Ql9nZ2fGMiobk5OQgKSkJtra2ZfosXlnB/V22lNX9fefOnffa7r2Lyr59+/Ds2TO0atVKafns2bPx66+/wsrKCqmpqUrrir62tLREfn6+YlmtWrWUtnFwcHjfGCWSSCSoUKHCR30P+nBl6QMlFsbGxvyzXoZwf5ctZW1/v+/B/nsXlaCgIOTm5iota9euHXx9fdGlSxccOnQIO3fuREFBAfT19QEAkZGRsLOzQ7Vq1VCpUiWYmJjgwoULiqKSmZmJW7duoV+/fu8bg4iIiMqQ9y4qlpaWJS6vVq0aLC0t0bNnT4SGhmL69OkYOnQorl27hi1btmDu3LkAXl+H6tevH4KCglC1alX873//Q2BgIKysrNCuXTvVvBsiIiLSKR90M+27VKtWDaGhoViwYAG6d+8Oc3Nz+Pn5oXv37optfH19kZ+fjxkzZiA3NxceHh7YuHEjDA0NVRWDiIiIdMhHFZXbt28rfd2oUSPs2rXrrdvr6+tj0qRJmDRp0sf8WCIiIioj+FBCIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEq0PLirPnj3DpEmT4OXlBRcXFwwfPhwJCQmK9bGxsejXrx+cnZ3h4+OD8PBwpdcXFhYiODgYzZs3h7OzM4YNG4YHDx58/DshIiIinfPBRWX06NG4d+8e1q9fj71796J8+fIYOHAgcnJy8Pz5cwwaNAi1atXCvn37MHr0aAQFBWHfvn2K169duxbbt2+Hv78/du7cicLCQgwdOhRSqVSlb4yIiIi0n8GHbPzixQv873//w4gRI1CvXj0AwKhRo9C1a1f8888/iIiIgKGhIebNmwcDAwPY29srSk3Pnj0hlUqxadMmTJw4Ea1atQIALF++HM2bN8fx48fRqVMnlb9BIiIi0l4fdEalcuXKWLp0qaKkpKenY8uWLbCyskKdOnUQHR0NT09PGBj8X//x8vJCUlIS0tLSEBcXh+zsbHh7eyvWm5qawsnJCVFRUSp6S0RERKQrPuiMyr/NnDkTu3fvhpGREdatW4cKFSogOTlZUWKKWFhYAACePHmC5ORkAIC1tXWxbYrWlYZcLserV69K/frSkkgkMDY21vjPFYucnBzI5XKhY5QJOTk5Sv8m3cb9XbaU1f0tl8shkUj+c7tSF5UBAwagT58+2LZtG0aPHo3t27cjNzcXRkZGStuVK1cOAJCXl6fYCSVt8+LFi9JGgUwmQ2xsbKlfX1rGxsZwcnLS+M8Vi8TExDL3wRJaUlKS0BFIg7i/y5ayuL/f7AMlKXVRqVOnDgBgwYIFuHr1Kn7++WeUL1++2E2xeXl5AIAKFSqgfPnyAACpVKr476JtPubMhKGhoSKPJr1PE9RldnZ2PKOiITk5OUhKSoKtrW2ZPotXVnB/ly1ldX/fuXPnvbb7oKKSnp6OiIgItG/fXnEfip6eHurUqYPU1FRYWVkhNTVV6TVFX1taWiI/P1+xrFatWkrbODg4fEgUJRKJBBUqVCj166l0ytIHSiyMjY35Z70M4f4uW8ra/n7fg/0Pupk2LS0N48ePR0REhGKZTCbDrVu3YG9vDw8PD8TExKCgoECxPjIyEnZ2dqhWrRocHR1hYmKCCxcuKNZnZmbi1q1b8PDw+JAoREREVAZ8UFGpV68eWrRogfnz5yMqKgrx8fGYMmUKMjMzMXDgQPTs2RNZWVmYPn067ty5g/3792PLli0YMWIEgNfXovr164egoCCcOnUKcXFxGDduHKysrNCuXTu1vEEiIiLSXh98j8qyZcuwdOlSjBs3Di9fvoS7uzu2bduGGjVqAABCQ0OxYMECdO/eHebm5vDz80P37t0Vr/f19UV+fj5mzJiB3NxceHh4YOPGjTA0NFTduyIiIiKd8MFFpVKlSpgzZw7mzJlT4vpGjRph165db329vr4+Jk2ahEmTJn3ojyYiIqIyhg8lJCIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRIdICEokExsbGkEgkQkchItIoA6EDEGmTwkI59PQ0XxaMjY3h5OSk8Z9bRKj3TUTEokL0AfT0JAjaFoOHKS+FjqIxNpaVMLGvm9AxiKiMYlEh+kAPU14i4dELoWMQEZUJvEeFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIROuDi0pGRgZmzZqFFi1awNXVFd988w2io6MV6yMiItCjRw80btwYX3zxBY4ePar0+ry8PMydOxfe3t5wcXHBhAkTkJ6e/vHvhIiIiHTOBxeV8ePH4/Lly1i2bBn27duH+vXrY8iQIbh79y4SEhIwYsQING/eHPv370fv3r3h5+eHiIgIxevnzJmDc+fOYdWqVQgLC8Pdu3fh6+ur0jdFREREusHgQza+d+8ezp8/j+3bt8PNzQ0AMHPmTPz11184fPgwnj17BgcHB4wbNw4AYG9vj1u3biE0NBTe3t5ISUnBwYMH8dNPP8Hd3R0AsGzZMnzxxRe4fPkyXFxcVPz2iIiISJt90BmVKlWqYP369fj0008VyyQSCSQSCTIzMxEdHQ1vb2+l13h5eSEmJgZyuRwxMTGKZUXs7OxgaWmJqKioj3kfREREpIM+6IyKqakpWrZsqbTs2LFjuHfvHqZNm4YDBw7AyspKab2FhQVycnLw/PlzpKSkoEqVKihXrlyxbZKTk0v5FgC5XI5Xr16V+vWlJZFIYGxsrPGfKxY5OTmQy+VCx9AY7u+ytb+FlJOTo/Rv0m1ldX/L5XJIJJL/3O6DisqbLl26hKlTp6Jdu3Zo1aoVcnNzYWRkpLRN0ddSqRQ5OTnF1gNAuXLlkJeXV+ocMpkMsbGxpX59aRkbG8PJyUnjP1csEhMTy9QHi/u7bO1vMUhKShI6AmlQWdzfJXWCN5W6qJw8eRITJ06Eq6srgoKCALwuHFKpVGm7oq+NjY1Rvnz5YuuB1yOBPuZI1dDQEHXq1Cn160vrfZqgLrOzsytTR9jc32VrfwspJycHSUlJsLW1LdNn8cqKsrq/79y5817blaqo/Pzzz1iwYAG++OILLF68WNGIrK2tkZqaqrRtamoqKlSogEqVKsHKygoZGRmQSqVKLSo1NRWWlpaliQLg9S+QChUqlPr1VDpl6QNF3N9CMDY25t9tZUhZ29/ve/D3wcOTt2/fDn9/f/Tt2xfLli1TKhzu7u64ePGi0vaRkZFwdXWFnp4e3NzcUFhYqLipFnh9OjklJQUeHh4fGoWIiIh03AcVlcTERAQEBODzzz/HiBEjkJaWhqdPn+Lp06d4+fIl+vfvj2vXriEoKAgJCQnYtGkTfv/9dwwdOhQAYGlpiY4dO2LGjBm4cOECrl27hvHjx8PT0xPOzs7qeH9ERESkxT7o0s+xY8cgk8lw4sQJnDhxQmld9+7dsWjRIqxduxaBgYEICwuDjY0NAgMDlYYs+/v7IyAgAGPGjAEAtGjRAjNmzFDBWyEiIiJd80FF5fvvv8f333//zm1atGiBFi1avHV9hQoVMH/+fMyfP/9DfjQRERGVQXwoIREREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYnWRxWVkJAQ9O/fX2lZbGws+vXrB2dnZ/j4+CA8PFxpfWFhIYKDg9G8eXM4Oztj2LBhePDgwcfEICIiIh1V6qKybds2rFixQmnZ8+fPMWjQINSqVQv79u3D6NGjERQUhH379im2Wbt2LbZv3w5/f3/s3LkThYWFGDp0KKRSaanfBBEREekmgw99QUpKCmbPno0LFy7A1tZWad3u3bthaGiIefPmwcDAAPb29rh37x7Wr1+Pnj17QiqVYtOmTZg4cSJatWoFAFi+fDmaN2+O48ePo1OnTqp4T0RERKQjPviMys2bN2FoaIhffvkFjRs3VloXHR0NT09PGBj8X//x8vJCUlIS0tLSEBcXh+zsbHh7eyvWm5qawsnJCVFRUR/xNoiIdIdEIoGxsTEkEonQUYgE98FnVHx8fODj41PiuuTkZNSrV09pmYWFBQDgyZMnSE5OBgBYW1sX26ZoXWnI5XK8evWq1K8vraK/TMqqnJwcyOVyoWNoDPd32dvfRuXKQV9P82MOjI2N4eTkpPGfW6SgsBDSvLwytb+FlJOTo/TvskIul79XGf/govIuubm5MDIyUlpWrlw5AEBeXp5iJ5S0zYsXL0r9c2UyGWJjY0v9+tIS+i8ToSUmJpapDxb3d9nc30HbYvAw5aXQcTTGxrISJvZ1K3P7WwySkpKEjqBxb/aBkqi0qJQvX77YTbF5eXkAgAoVKqB8+fIAAKlUqvjvom0+5kjV0NAQderUKfXrS6usn5a1s7MrU0dc3N9lc38/THmJhEelP5DSVmVtfwspJycHSUlJsLW1LVNnbe/cufNe26m0qFhZWSE1NVVpWdHXlpaWyM/PVyyrVauW0jYODg6l/rkSiQQVKlQo9eupdMrSB4q4v8sa7m/NMzY2LlO/y9734E+lF189PDwQExODgoICxbLIyEjY2dmhWrVqcHR0hImJCS5cuKBYn5mZiVu3bsHDw0OVUYiIiEgHqLSo9OzZE1lZWZg+fTru3LmD/fv3Y8uWLRgxYgSA19ei+vXrh6CgIJw6dQpxcXEYN24crKys0K5dO1VGISIiIh2g0ks/1apVQ2hoKBYsWIDu3bvD3Nwcfn5+6N69u2IbX19f5OfnY8aMGcjNzYWHhwc2btwIQ0NDVUYhIiIiHfBRRWXRokXFljVq1Ai7du1662v09fUxadIkTJo06WN+NBEREZUBfCghERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChERkYAkEgmMjY0hkUiEjiJKBkIHICIiEoPCQjn09DRfFoyNjeHk5KTxn1tEqPf9vlhUiIiIAOjpSRC0LQYPU14KHUVjbCwrYWJfN6FjvBOLChER0f/3MOUlEh69EDoG/QvvUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0RKkqBQWFiI4OBjNmzeHs7Mzhg0bhgcPHggRhYiIiERMkKKydu1abN++Hf7+/ti5cycKCwsxdOhQSKVSIeIQERGRSGm8qEilUmzatAm+vr5o1aoVHB0dsXz5ciQnJ+P48eOajkNEREQipvGiEhcXh+zsbHh7eyuWmZqawsnJCVFRUZqOQ0RERCKm8aKSnJwMALC2tlZabmFhoVhHREREBAgwhX5OTg4AwMjISGl5uXLl8OLFh09bLJPJIJfLce3aNZXk+1ASiQS9vCshv6CiID9fCAb6erh+/TrkcrnQUTSO+7ts4f4uW7i/NUsmk73XE6M1XlTKly8P4PW9KkX/DQB5eXkwNjb+4O9X9CaFfDx2ZROj/95IB5XVR5Jzf5ct3N9lC/e3Zn+mKItK0SWf1NRU1KpVS7E8NTUVDg4OH/z9XFxcVJaNiIiIxEXj96g4OjrCxMQEFy5cUCzLzMzErVu34OHhoek4REREJGIaP6NiZGSEfv36ISgoCFWrVsX//vc/BAYGwsrKCu3atdN0HCIiIhIxjRcVAPD19UV+fj5mzJiB3NxceHh4YOPGjTA0NBQiDhEREYmURF4Wb+0mIiIircCHEhIREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoaBm5XA5fX188ePBA6CikIX/++SdevXoldAzSkG3btuHFixdCxyANiY+Ph0wmEzqGqLGoiFx+fj6ePn2KR48eIT4+HgsWLMDVq1cxffp0REdH48GDB3jy5AmePn0KTjKsey5duoTvv/8eO3fuFDoKacDvv/+OhQsX4qeffuIvrzLg3r176Nq1K37//Xeho4gap9AXsb179yIgIAA5OTkAXp9NcXV1xYoVK7BmzRocPHgQUqlUsa5SpUqYOXMmunTpImRsKqX79+8jNDQUjx49glQqRXZ2NhITEzF79mwEBQXB2NgYFhYWMDAwgIGBAWxtbTFs2DBYWVkJHZ1K4dq1a1i5cqXS/i4oKMCqVasQEBCA+/fvo0qVKkr7+8cff4Sjo6PQ0akUnj9/jj179uDhw4eQyWTIzs5GZGQkBgwYgE2bNqFhw4awtLRU2t99+vRBxYoVhY4uOBYVEfP09MT48ePRtGlTGBgYwNTUVOkPbX5+Pp4/fw6ZTIb8/HycPn0a69atw4ULFwRMTaXVrVs3VKtWDY0bN4a+vj4qV64Mb29v2Nvb4+XLl/jjjz+QnJwMqVSK/Px8xMTEIDs7G/v37xc6OpXC559/Dnd3d7i7uyv2t4uLC8zMzFBQUIArV64gOTkZMpkMMpkMkZGRuHHjBo4dOyZ0dCqF/v3748WLF6hfv75ifzdr1gxNmzbF/fv3cfToUTx58kTx9/mNGzdgbm6O8PBwoaMLTpCnJ9P7adOmDTp16gQTE5MS1xsYGMDc3FzxdY8ePXD79m1NxSMVi4+Px6lTp2BtbV1sXaVKlYqdKXvw4AHatWunqXikYnK5HBMmTED16tWLrdPX14ebm5vSshYtWuDbb7/VVDxSsZiYGBw7dgw1a9Ystq5WrVoYOXKk0rLExER07NhRU/FEjWdUtER6ejqePHmCvLw8VKhQARYWFqhatarQsYiI6D08evQINWrUgEQiea/tCwsL8eTJE/zvf/9TczLxY1ERuQMHDmD9+vVISkoCAMUNsxKJBHZ2dhgxYgS6du0qYEJSpYyMDOzevRvR0dF48uQJpFIpjI2NYWlpCQ8PD/Tq1QtmZmZCxyQVuXv3LsLCwkrc3+7u7hgwYADs7OyEjkkqkp+fj+PHjyMqKqrEz3e7du2gr68vdEzRYVERsa1btyIoKAgDBw6El5cXLCwsYGRkBKlUitTUVERERCA8PBx+fn48JawDYmNjMWjQIBgbG8Pd3R0WFhYoV64c8vLykJqaiujoaOTl5WHz5s1wcHAQOi59pIiICIwYMQJOTk6Kz/e/93dkZCRu376NkJAQeHp6Ch2XPtLDhw8xZMgQpKSkwMnJqdj+vnXrFmrUqIHQ0FDUqFFD6LiiwqIiYm3atMGYMWPQvXv3t26zf/9+rF27FidPntRgMlKHvn37wsbGBgEBASUeVRUUFGDq1Kl48uQJtm7dKkBCUqUePXrAy8sLfn5+b91myZIluHDhAvbt26fBZKQOw4cPR0FBAVasWIFKlSoVW5+ZmYlx48bB0NAQP/30kwAJxYvzqIhYeno6Gjdu/M5tGjdujKdPn2ooEanTjRs3MHz48Lee+tXX18eIESNw48YNDScjdUhISEDv3r3fuU2vXr2QkJCgoUSkTlFRUfDz8yuxpACAqakpJk2ahKioKA0nEz8WFRFr2LAhNm/ejMLCwhLXy+VyhIaGon79+hpORupgbm6OuLi4d25z/fp13qOiI2xsbPD333+/c5uzZ8/C0tJSQ4lInSpVqoSUlJR3bvP48WOUL19eQ4m0B4cni9i0adMwePBgnD17Fh4eHrC2tla6RyU6OhpZWVnYuHGj0FFJBQYNGoTp06fj9u3b8PLygpWVldL+vnjxIjZv3gxfX1+ho5IKjBkzBpMmTUJMTAy8vb1L3N9Hjx5FQECA0FFJBXr16oUpU6Zg7Nix8PLyUvr7PCUlBRcvXkRQUBB69eoldFTR4T0qIpeRkYFdu3YhJiYGycnJyM3NRbly5WBtbQ13d3f06tWLw5R1yIEDBxASEoKkpCTFMMaij6idnR0GDx78n5cLSHtERkZiw4YNuHTpkmIGagAwNjaGm5sbBg0ahKZNmwqYkFRFLpdjzZo12Lx5c4nP7qpYsSL69u2LsWPHQk+PFzv+jUWFSITS09ORnJyMnJwclC9fHtbW1iykOkwulyMzM1NxIMLLe7pLJpMhNjYWKSkpis+3lZUVHB0dYWRkJHQ8UeKlH5HjuPuyRyaT4eHDh0hOTkZeXh6MjY0hl8thamoKAwN+ZHVNamqq4oxp0f62srKCq6ur0szTpBsMDQ1hY2MDfX19pQk8WVLejmdURIzj7suWolPDYWFhePnyZbH1JiYmGDx4MEaNGiVAOlK13NxczJ07FwcPHoREIoGZmZni852RkQGJRIJu3bph9uzZ/CWmI0qawLPoEi8n8Hw7Hp6J2Lx582BjY4O9e/e+c9z9vHnzOO5eBwQHB2P79u2YNGlSiROARUREYNmyZSgsLMSYMWOEjksfqWiOlNDQUHh6esLQ0FCxTiaT4cKFC5g9ezYWL16MmTNnCpiUVOF9JvCcPXs2srOzOYHnm+QkWs7OzvK4uLh3bhMbGyt3dXXVUCJSp6ZNm8pPnjz5zm1OnDghb9GihYYSkTp5enrKIyMj37lNRESE3NvbW0OJSJ18fHzk+/fvf+c2+/btk7dp00ZDibQHby0WMY67L1tycnJga2v7zm1q1qyJFy9eaCYQqZVcLkflypXfuU3FihWRm5uroUSkTpzAs/RYVESsaNz9rl27cO/ePUilUgCAVCrFgwcPsG/fPkyfPh09evQQOCmpgru7O4KCgpCVlVXi+uzsbCxduhRubm4aTkbq0Lx5c8yaNQuJiYklrn/w4AHmzp2LFi1aaDgZqQMn8Cw93kwrYnKOuy9THj16hMGDByM5ORlOTk7FJvi7efMmLCwsEBoaipo1awodlz5SRkYGfvjhB0RHR8Pc3LzY/k5OToaLiwtWr17Noek6IDY2FoMHD4aRkdF/TuDZsGFDoeOKCouKFuC4+7IjPz8fv//+e4kT/Hl4eKBt27bc5zrm8uXLiI6ORkpKCnJzcxWfbw8Pj/+8VEDahRN4lg6LipZIT0/HkydPlMbd8w80ERHpOg5PFjmOuy9bMjIysHv3bkRHR5c4wV+vXr04a6kOuXv3LsLCwkrc3+7u7hgwYADs7OyEjkkqwgk8S4dnVETsfcbdh4eHw8/Pj+PudUBsbCwGDRoEY2NjuLu7F5tHJTo6Gnl5edi8eTMcHByEjksfKSIiAiNGjICTk1OJ8+ZERkbi9u3bCAkJgaenp9Bx6SNxAs/SY1ERsTZt2mDMmDHo3r37W7fZv38/1q5di5MnT2owGalD3759YWNjg4CAgBKPqgoKCjB16lQ8efIEW7duFSAhqVKPHj3g5eUFPz+/t25TNCncvn37NJiM1GH48OEoKCjAihUr3jmBp6GhISfwfAOHiogYx92XLTdu3MDw4cPfeupXX18fI0aMwI0bNzScjNQhISHhP5+E3atXLyQkJGgoEalTVFQU/Pz8SiwpAGBqaopJkyYhKipKw8nEj0VFxDjuvmwxNzdHXFzcO7e5fv0671HRETY2Nvj777/fuc3Zs2dhaWmpoUSkTpzAs/R4M62ITZs2DYMHD8bZs2f/c9w9ab9BgwZh+vTpuH37Nry8vGBlZaW0vy9evIjNmzfD19dX6KikAmPGjMGkSZMQExMDb2/vEvf30aNHERAQIHRUUoGiCTzHjh0LLy8vpb/PU1JScPHiRQQFBaFXr15CRxUd3qMichx3X7YcOHAAISEhSEpKUozuKvqI2tnZYfDgwf95uYC0R2RkJDZs2IBLly4hJydHsdzY2Bhubm4YNGgQmjZtKmBCUhVO4Fl6LCpEIpSeno7k5GTFBH/W1tYspDpMLpcjMzNTcSDCy3u6ixN4fjhe+hE5jrsve2QyGR4+fIjk5GTk5eXB2NgYcrkcpqamMDDgR1bXpKamKs6YFu1vKysruLq6wtzcXOh4pGKGhoawsbGBvr6+0gSeLClvxzMqIsZx92VL0anhsLAwvHz5sth6ExMTDB48GKNGjRIgHalabm4u5s6di4MHD0IikcDMzEzx+c7IyIBEIkG3bt0we/Zs/hLTEZzAs3R4eCZi8+bNg42NDfbu3fvOcffz5s3juHsdEBwcjO3bt2PSpEklTgAWERGBZcuWobCwEGPGjBE6Ln2kojlSQkND4enpCUNDQ8U6mUyGCxcuYPbs2Vi8eDFmzpwpYFJShfeZwHP27NnIzs7mBJ5vkpNoOTs7y+Pi4t65TWxsrNzV1VVDiUidmjZtKj958uQ7tzlx4oS8RYsWGkpE6uTp6SmPjIx85zYRERFyb29vDSUidfLx8ZHv37//ndvs27dP3qZNGw0l0h68tVjEOO6+bMnJyYGtre07t6lZsyZevHihmUCkVnK5HJUrV37nNhUrVkRubq6GEpE6cQLP0mNREbGicfe7du3CvXv3IJVKAQBSqRQPHjzAvn37MH36dPTo0UPgpKQK7u7uCAoKQlZWVonrs7OzsXTpUri5uWk4GalD8+bNMWvWLCQmJpa4/sGDB5g7dy5atGih4WSkDpzAs/R4M62IyTnuvkx59OgRBg8ejOTkZDg5ORWb4O/mzZuwsLBAaGgoatasKXRc+kgZGRn44YcfEB0dDXNz82L7Ozk5GS4uLli9ejWHpuuA2NhYDB48GEZGRv85gWfDhg2FjisqLCpagOPuy478/Hz8/vvvJU7w5+HhgbZt23Kf65jLly8jOjoaKSkpyM3NVXy+PTw8/vNSAWkXTuBZOiwqWiI9PR1PnjxRGnfPP9BERKTrODxZ5DjuvmzJyMjA7t27ER0dXeIEf7169eKspTrk7t27CAsLK3F/u7u7Y8CAAbCzsxM6JqkIJ/AsHZ5REbH3GXcfHh4OPz8/jrvXAbGxsRg0aBCMjY3h7u5ebB6V6Oho5OXlYfPmzXBwcBA6Ln2kiIgIjBgxAk5OTiXOmxMZGYnbt28jJCQEnp6eQselj8QJPEuPRUXE2rRpgzFjxqB79+5v3Wb//v1Yu3YtTp48qcFkpA59+/aFjY0NAgICSjyqKigowNSpU/HkyRNs3bpVgISkSj169ICXlxf8/Pzeuk3RpHD79u3TYDJSh+HDh6OgoAArVqx45wSehoaGnMDzDRwqImIcd1+23LhxA8OHD3/rqV99fX2MGDECN27c0HAyUoeEhIT/fBJ2r169kJCQoKFEpE5RUVHw8/MrsaQAgKmpKSZNmoSoqCgNJxM/FhUR47j7ssXc3BxxcXHv3Ob69eu8R0VH2NjY4O+//37nNmfPnoWlpaWGEpE6cQLP0uPNtCI2bdo0DB48GGfPnv3Pcfek/QYNGoTp06fj9u3b8PLygpWVldL+vnjxIjZv3gxfX1+ho5IKjBkzBpMmTUJMTAy8vb1L3N9Hjx5FQECA0FFJBYom8Bw7diy8vLyU/j5PSUnBxYsXERQUhF69egkdVXR4j4rIcdx92XLgwAGEhIQgKSlJMbqr6CNqZ2eHwYMH/+flAtIekZGR2LBhAy5duoScnBzFcmNjY7i5uWHQoEFo2rSpgAlJVTiBZ+mxqBCJUHp6OpKTkxUT/FlbW7OQ6jC5XI7MzEzFgQgv7+kuTuD54XjpR+Q47r7skclkePjwIZKTk5GXlwdjY2PI5XKYmprCwIAfWV2TmpqqOGNatL+trKzg6uoKc3NzoeORihkaGsLGxgb6+vpKE3iypLwdz6iIGMfdly1Fp4bDwsLw8uXLYutNTEwwePBgjBo1SoB0pGq5ubmYO3cuDh48CIlEAjMzM8XnOyMjAxKJBN26dcPs2bP5S0xHcALP0uHhmYjNmzcPNjY22Lt37zvH3c+bN4/j7nVAcHAwtm/fjkmTJpU4AVhERASWLVuGwsJCjBkzRui49JGK5kgJDQ2Fp6cnDA0NFetkMhkuXLiA2bNnY/HixZg5c6aASUkV3mcCz9mzZyM7O5sTeL5JTqLl7Owsj4uLe+c2sbGxcldXVw0lInVq2rSp/OTJk+/c5sSJE/IWLVpoKBGpk6enpzwyMvKd20RERMi9vb01lIjUycfHR75///53brNv3z55mzZtNJRIe/DWYhHjuPuyJScnB7a2tu/cpmbNmnjx4oVmApFayeVyVK5c+Z3bVKxYEbm5uRpKROrECTxLj0VFxIrG3e/atQv37t2DVCoFAEilUjx48AD79u3D9OnT0aNHD4GTkiq4u7sjKCgIWVlZJa7Pzs7G0qVL4ebmpuFkpA7NmzfHrFmzkJiYWOL6Bw8eYO7cuWjRooWGk5E6cALP0uPNtCIm57j7MuXRo0cYPHgwkpOT4eTkVGyCv5s3b8LCwgKhoaGoWbOm0HHpI2VkZOCHH35AdHQ0zM3Ni+3v5ORkuLi4YPXq1RyargNiY2MxePBgGBkZ/ecEng0bNhQ6rqiwqGgBjrsvO/Lz8/H777+XOMGfh4cH2rZty32uYy5fvozo6GikpKQgNzdX8fn28PD4z0sFpF04gWfpsKiIWHR0NFxdXXm2hIiIyiwWFRFzdHTEZ599huXLl//nTXekGw4dOoS9e/fixYsXaNGiBb7//nuYmJgo1qenp6N37944deqUgClJVe7evYuwsDBER0cXm9DR3d0dAwYMgJ2dndAxSQUGDhyI77//Hl5eXkJH0TosKiLm6OiITz75BFlZWZg6dSo6deokdCRSoz179mDu3Lno2rUr9PT0cOTIEVhYWGDz5s2KCf3S0tLQvHlzxMbGCpyWPlZERARGjBgBJyenEufNiYyMxO3btxESEgJPT0+h49JHcnR0hIGBAUaNGoXhw4dzlukPwKIiYvXr18epU6ewdetWbN26FfXq1cOoUaPQtm1boaORGnTu3Bn9+/fHV199BeD10PNhw4YhNzcXO3fuhLm5OYuKDunRowe8vLzg5+f31m2KJoXbt2+fBpOROjg6OmLGjBlYuXIlLC0tMWHCBLRu3VroWFqBNz+ImFwuR7ly5TB58mQcPHgQNjY28PX1RYsWLbB48WKcPXsWqampimHLpN0ePnwIb29vxdc1atRAWFgYJBIJhg4d+tZhy6SdEhIS/vNJ2L169UJCQoKGEpG6ffnllzh8+DAcHBwwcuRIdOvWDbt27eLcSP+BRUVL1KlTB8HBwTh+/Dj69OmDCxcuYMSIEWjRogVHBugICwsL3Lx5U2lZ9erVsX79eiQnJ2PkyJGc/EuH2NjY4O+//37nNmfPnoWlpaWGEpEmWFlZYenSpTh06BDq16+PRYsWoVmzZvjqq68wa9YsLFu2TOiIosNLPyLm6OiI8+fPo1q1aiWuz8rKQlxcHJ4+fYovv/xSw+lI1UJDQ7FhwwYMGTIEXbt2VfoFFRMTg2HDhqF69ep48OABL/3ogN9++w2TJk1Cu3bt4O3tDSsrK6V5NS5evIijR48iICAAXbp0EToufaT69evj3Llzxf4+z8vLw7lz5xAdHY3Y2FikpaXhyJEjAqUUJ97NI2I1atR459BkExMTuLu7azARqdOQIUMgk8mwbds2NGrUSKmouLm5YcuWLZg4caKACUmVvvzyS1SpUgUbNmxAQEAAcnJyFOuMjY3h5uaGkJAQNG3aVMCUpCpvOydQrlw5tGnTBm3atNFwIu3BMypEIiT/1+Pf/62goADXrl2Di4uLAKlIXeRyOTIzMxUTgJmZmQkdiVTswIED6NixIydsLAUWFZFLSkrC4cOHFfNqvPncj6ysLCxYsAALFy4UKCGpWlJSkuLhhFKpFH/88QcePnyITz75BC1btoShoaGwAUltcnJycPz4caSkpKBu3bpo1apViYWVdEt6ejqqVKnCff0WLCoiFhMTgyFDhsDCwgISiQT3799Hu3btEBgYqGjlHK6qOx4+fIiRI0ciOzsbp0+fRkpKCr777js8ePAAZmZmeP78Oezt7bFp0yZYWFgIHZc+UtH8SOfOnUPz5s0xbdo09O/fHw8fPlTsb2dnZ4SGhipN+kfaa+PGjbh06RLWrFmDwsJCrF69Glu2bEFOTg5MTU0xcOBAjBw5UuiYosNRPyK2dOlS9OzZE8ePH8exY8ewYsUKnDt3DqNGjUJ+fr7Q8UjF5s+fj8qVK2PDhg0AgEWLFqFq1ar466+/8Pfff+PMmTOoUqUKFixYIHBSUoXAwEAkJiZi3LhxePjwIfr27YsqVargzJkziIiIwPHjx5GXl4fFixcLHZVUYNWqVVi7dq3i6cgbN25EeHg4Ro8ejZ9++glDhgzBpk2bEBoaKnBSEZKTaLm6usqTkpKUlsXExMidnZ3l48ePl8vlcvnTp0/ljo6OQsQjFXNzc5Pfvn1b8XXz5s3l0dHRStvcvHlT7ubmpulopAbe3t7yy5cvy+VyufzOnTtyBwcHeVRUlNI2UVFR8iZNmgiQjlStZcuW8uPHjyu+7tChg/zAgQNK2xw9elTeunVrDScTP55RETETExM8e/ZMaZmrqysCAwPx22+/8b4UHWNoaIhXr14pvjY1NS22jfwtN9mS9snNzUWVKlUAAPb29vjkk09gbGystI2ZmRkKCwuFiEcq9vz5czg4OCi+fvHiBRwdHZW2+fTTT5GWlqbpaKLHoiJiLVu2xNy5c3HlyhXIZDLF8rZt22LatGkICwvDvHnzBExIqtSuXTtMmzYNd+7cAQD07dsXK1asUMxIm5aWhoCAALRs2VLImKQijRo1QmhoqKKIHDt2DA0aNFCsz8rKQlBQEFxdXYWKSCr06aefYtOmTYqvW7ZsWezhoocOHULdunU1HU30eDOtiL148QLjxo1DREQEQkJCio342b59OwICAlBQUMCbaXVAdnY2xowZgwsXLqBevXqoVasWIiMjIZVKYWlpiUePHsHOzg5btmx56ySApD1u3ryJwYMHo1mzZli6dKnSujNnzsDX1xdVqlRBWFgYPvnkE4FSkqpcu3YNAwYMQN26ddGpUyeYmJhg8eLFaNasGerWrYsrV67g3LlznDunBCwqWuD+/fuoUqUKKlWqVGxdYmIijh8/jhEjRgiQjNThwoULOH/+PBITE5GVlQUDAwNYWVnBw8MDX3zxBedh0CHPnj3Do0eP0KhRI6XliYmJ+Pvvv9GpUydUrlxZoHSkaomJiQgJCcG5c+eULvGUK1cOrq6uGDlyJJ+UXQIWFS0VExODTz/9lL+0iIi0UFZWFrKzs2FgYIAqVaq8cxbyso7/Z7TUsGHDkJKSInQMUrFDhw6hf//+6NKlC4KCgoo9MTk9PZ1TbRNpobVr1+Lp06eKr01MTGBpaYlq1aqxpPwHnlERMR8fn7eO8Hj8+DEsLS2hr68PAMVuyiLts2fPHsydOxddu3aFnp4ejhw5AgsLC2zevBk1atQAwAn+iLSVo6MjLCwssGzZMj6j7QPxoYQi9tlnn2Hv3r1o0qQJPDw8FMvlcjlCQkLQtm1bPhNEh4SHh2PWrFn46quvAAAjR47EsGHD0L9/f+zcuRPm5uYCJySij+Hh4YH+/fujd+/eGDt2LG+Kf088oyJyJ0+exKxZs9C1a1eMHz9e8ZwXFxcX/PLLL6hZs6bACUlVStqnaWlp+Prrr1GxYkVs27YNubm5PKNCpIXq16+Pc+fO4erVqwgICMCzZ8/Qu3dvfPPNN7CzsxM6nqjxwpjItW3bFgcPHkR8fDx69uyJf/75R+hIpCYWFha4efOm0rLq1atj/fr1SE5OxsiRI5GbmytQOlKnx48fo6RjxsLCQjx+/FiARKRqRfvXx8cHv/76KyZMmIA///wTHTp0QI8ePRAUFIQjR47g3LlzAicVHxYVLWBhYYGNGzeie/fu+Pbbb5UmDSLd0bt3b8yePRvr169XulG6du3aWLt2rWLeDdI9bdq0QXp6erHlvHlad/z7fkMjIyP069cPx44dw9atW+Hp6YmIiAhMnToVw4YNEzClOPEeFS0yaNAgeHt7Y9KkSTyy1kFDhgyBTCbDtm3b0KhRI1haWirWubm5YcuWLZg4caKACUldAgICSpwnqVKlSggICBAgEalaSWfMJBIJ3N3dFTfXFhYWIiMjQ8PJxI/3qGghqVSKq1evonHjxpxHRUe97Zk+BQUFuHbtGlxcXARIRUSlNXXqVEyfPh0mJiZCR9E6LCpERAJYvXo1JBIJLCwsYG9vz2f6EL0FiwoRkQCKnpxbvXp11K1bF5s3bxY4EZE4sagQERGRaHHUDxGRCFy6dEkx8ufgwYMYMWIEQkJCSrwJk6gsYVEhIhLYzp070bdvX9y+fRtxcXGYOnUqZDIZtmzZgjVr1ggdj0hQLCpaok2bNnj+/Hmx5ZxnQTdNnTq12AMJgddPXJ06daoAiUidwsLCMGPGDHh7e+PXX39F3bp1sWnTJixZsgT79+8XOh6RoFhUtISnp6di+vx/MzIygqenpwCJSJ0uXLgAmUxWbLlUKsWFCxcESETq9PDhQ/j4+AAAzp8/jxYtWgAA7O3tkZaWJmQ0UoP69evj2bNnxZanpaWhfv36AiQSNxYVLbFw4cISx9+bmJhg4cKFAiQidTp9+jSqVKlSbHnVqlVx+vRpARKROlWrVg2pqal4+vQpYmNj0bRpUwBAXFwcqlevLnA6UrXRo0ejQoUKxZZXqFABo0ePFiCRuHHUj4hFRUVBIpHA3NwctWrVKnECMCLSfoGBgTh+/DiMjY2RlZWFEydO4NixY/D390evXr0wYcIEoSMSCYZFRcQcHR0hkUggl8thYmKC6OhooSORGhXtb3Nzc9SpU4fPdCpDCgsLsW3bNjx48AB9+/bFJ598gq1btyI9PR1jxoyBvr6+0BHpIx08eBAAFBP8/fsRGfRuLCoidvHiRUgkElSvXh2ffPIJ9PR4pU6XrVq1SlFU7O3tFc//ICLtVzTBn56eHmxsbHD8+HGBE2kPFhUtkpubCz09PRgZGSEhIQF//vknXFxcOPV2GSCTyRAXF4fatWujYsWKQschFVi9evV7bztmzBg1JiFNePToESQSCapVq4Zy5coJHUersKhoiaioKIwePRorV66Evb09vvjiC+jp6SEnJwdBQUH48ssvhY5IKvTkyRNMnz4dP/74I+rVq4devXrhzp07qFy5MrZs2cKRATqgaJRPkSdPnsDQ0BA1a9aEgYEB7t+/D5lMhoYNG2Lnzp0CpSR1efz4MUxNTWFiYoLIyEgcP34crq6u6NSpk9DRRMdA6AD0fpYtW4Y2bdrg008/xe7du2FiYoITJ05g3759CAkJYVHRMQsXLsTLly9RtWpV/Pbbb3j8+DG2b9+O/fv3IzAwkPev6IB/j97asmUL/vzzTyxduhTVqlUDAGRmZsLPzw/16tUTKiKpyYkTJzBu3DiEhISgZs2aGDp0KGrWrIn9+/fjxYsX6Nu3r9ARRYU3PWiJW7duYdSoUTAxMcG5c+fQqlUrlCtXDi1btsTdu3eFjkcqFhkZiXnz5sHGxgZnzpxB8+bN4erqiiFDhuDy5ctCxyMVW79+PaZMmaIoKQBgamqK8ePHY9euXQImI3VYu3YthgwZAm9vbxw+fBg1atTA0aNHERAQgJ9//lnoeKLDoqIljI2NIZVKkZeXh5iYGHh7ewN4PUFQpUqVBE5HqiaTyVC5cmXI5XJERETgs88+A/B6dIiBAU+E6hqZTIZXr14VW/7s2TNOS6CDEhIS8NVXX0FPTw/nz59Hy5YtoaenB2dnZzx69EjoeKLDv/G0RJMmTRAYGIjKlStDT08PzZs3R2xsLObPn48mTZoIHY9UzMnJCXv37oW5uTkyMzPRsmVLSKVSbNiwQTF6gHSHj48PZs6ciVmzZqFhw4aQy+WIiYmBv78/OnbsKHQ8UjFTU1O8fPkSL1++xLVr1zBs2DAAwP3792FmZiZsOBFiUdESs2fPxuzZs3H79m0EBgbCxMQEhw4dgpGREZ/9ooMmT56M77//Hs+fP8ewYcNgZWWFOXPm4NSpUwgNDRU6HqnYzJkzMXbsWAwYMEBxBkUul+OLL77A5MmTBU5HqtayZUvMmjULFStWRKVKldC0aVP8/fffmDNnDlq1aiV0PNHhqB8tJpVKYWRkJHQMUpPCwkJkZWXB1NQUAJCYmIgqVarwiEuH3b17F//88w8kEgnq16+PmjVrCh2J1CA3NxcrVqzAgwcPMGzYMDg7O2PVqlV48OABZs+ezSkI3sCiImJRUVHvva2Hh4cakxCRJqSlpUEmk+HNv5Zr1KghUCIi4bGoiNi/p9D/9w11Rbvs38tiY2M1no9Uq2h/vw/ub91y6dIlTJ06Fffv31daXvTZ5/7WfkVT6L+Pbt26qS2HNmJREbF/3/0dERGBtWvXYtq0aXB1dYWBgQGuX7+OgIAADBs2jH+wdcD+/fsVReXRo0fYsGED+vTpAxcXFxgaGuL69evYtm0bRo4ciSFDhgicllSpR48eqFChAgYNGlTiKD5PT08BUpEqvXkTfNFBaPny5WFgYICsrCzo6+ujSpUqOHfunEApRUpOWqFdu3byv//+u9jyCxcuyFu3bi1AIlKnvn37yvfs2VNs+aFDh+Q9evQQIBGpU8OGDeV37twROgZpyOHDh+XdunWTx8bGKpYlJibKv/rqK3l4eLiAycSJ86hoidTUVFhYWBRbbmpqioyMDM0HIrW6du1aifcdNWrUCHfu3BEgEamTtbU1srOzhY5BGhIUFIQ5c+YonWWxtbXFjBkzEBISImAycWJR0RKNGjXCypUrlf4yy8jIQGBgIE8L66BPPvkER48eLbZ8165dqFOnjgCJSJ1GjhyJgIAA3L59GzKZTOg4pGaZmZklPpiwsLAQubm5AiQSN96joiX++ecfDBw4EDk5ObC1tYVcLkdSUhKqVauGsLAw/O9//xM6IqnQiRMn4OvrCzc3N3z66acoLCzE5cuXERsbiw0bNsDLy0voiKRC7dq1w+PHj1FQUFDiet5Mq1tGjhyJFy9eYMmSJbCxsQHwerbaSZMmoXbt2ggKChI4obiwqGiRrKwsHDlyRDHPgqOjIzp27AhjY2Oho5EaXLp0CT///DP++ecfAED9+vUxePBgzkyrgw4cOPDO9d27d9dQEtKElJQUDBkyBAkJCTA1NYVcLsfLly/RqFEjrF+/HpUrVxY6oqiwqBAREWlYQUEB/v77b6UDTy8vLz7bqQQsKlri6dOnWLFiBS5dulTihFCnTp0SKBmpQ2FhIQ4fPvzW/b1w4UKBkpG6nDp1CiEhIYiPj4eBgQHq1KmDIUOG4PPPPxc6GpGg+KwfLTFz5kzcuHEDHTt25NOSy4CAgABs27YNjo6OMDExEToOqdnx48cxduxYtGnTBh07doRcLkdUVBTGjh2LVatWoU2bNkJHJBW6e/cu5s2bpzgQeRPvSVLGMypawtnZGaGhoXB3dxc6CmlAkyZNMGXKFN6bUEZ069YNbdu2xZgxY5SWr169GmfOnMGePXsESkbq0L9/fzx79gxff/11iQee/Nwr4xkVLVGhQgVUq1ZN6BikIVKplM9vKkPu3r2Lzp07F1veqVMnbNiwQYBEpE5Xr17Fjh070KBBA6GjaAXOo6IlunbtitDQ0LcOXyTd0rx5c5w5c0boGKQhFhYWuHfvXrHl9+7d46VeHVSlShUYGhoKHUNr8IyKlsjIyMCRI0fw559/ombNmjAyMlJaHx4eLlAyUgdnZ2cEBgYiIiIC9vb2xf5Se/MSAWm3Tp06Yc6cOZg9ezbc3NwAADExMZg7dy46dOggcDpStX79+mHZsmUICgriPWjvgfeoaImpU6e+cz1HgegWHx+ft66TSCQc5aVj8vLyMG7cOJw+fVoxPFUul6NVq1ZYsWIFypcvL3BCUqVBgwYhOjoaBQUFqFatWrEDT36+lbGoEBGJREJCAuLj4yGXy+Hg4AB7e3uhI5EarF69+p3recZUGYuKFnny5Am2bdummGehbt266NOnD2rUqCF0NFIDuVyOv/76S2l/e3l5QV9fX+hopGKFhYVYu3Ytqlevjq+//hoA0KdPH7Ru3Rrff/+9wOmIhMV7VLTE7du30a9fP5QvXx6NGjVCYWEh9u/fj23btmHHjh2oW7eu0BFJhTIyMjBkyBDcvHkTlSpVglwuR1ZWFho0aIDNmzfD1NRU6IikQsHBwdi5cyf8/f0Vyzp06IB169YBAMuKDrpx4wY2btyoNMHfgAED0KhRI6GjiQ7PqGiJIUOGwNjYGEuXLlU8dTMvLw8TJ06EVCrlo8F1zNSpU3Ht2jUsXbpU8WyfuLg4TJo0Ca6urpg7d67ACUmVWrVqhfnz56NZs2ZKy8+cOYN58+bxngUdc/HiRQwePBj16tWDu7s7CgsLcenSJcTHxyMsLExxQzW9xqKiJVxcXLBz5044ODgoLY+Li0O/fv0QHR0tUDJSBy8vLwQHB8PT01Np+YULFzB+/HicP39eoGSkDs7Ozjhw4ADs7OyUlt+7dw+dO3fGtWvXBEpG6vDNN9+gXr16xQ445s6dizt37mDr1q0CJRMnzqOiJSpWrFjiVMslLSPtl5+fj+rVqxdbXr16dWRlZQmQiNTJ0dER+/fvL7b80KFDqFOnjgCJSJ1u3bqF7777rtjyfv364caNGwIkEjfeo6IlvLy8sGTJEgQHB8PMzAwAkJ6ejsDAQHh7ewsbjlSuQYMG2LFjB6ZPn660fMeOHahfv75AqUhdRo8ejREjRiA6OhrOzs4AgOvXr+PKlStYs2aNsOFI5apUqYLnz58XW56enl5sqDLx0o/WSE5Oxtdff40XL17A1tYWAJCUlITKlSvj559/ho2NjbABSaUuX76M7777Do6OjnB1dQXwegKwuLg4hIaGwsvLS+CEpGqXL1/G1q1b8c8//8DAwAD29vYYOnSo4h4l0h1z587FpUuXsGzZMsUQ9Dt37mDChAlwcnLivFhvYFHRItnZ2fjll1+U5lno3LkzZzbUUdeuXcPmzZuV9vegQYM4KoBIy7148QKDBg1CbGys4hEJmZmZqF+/PjZt2oQqVaoInFBcWFS0yMWLF5Gfn4/PPvsMALB48WK0adOGT1TWUS9fvsTz589Rq1YtAMDx48fh6empuPRHuiUuLg5hYWFITEzEypUrcfLkSdSpUwdNmjQROhqpQWFhIc6dO6d0INKsWTPo6fHW0Tfx/4iWOHr0KAYPHozY2FjFskePHmHgwIE4efKkgMlIHW7evIm2bdtix44dimWLFi1Cp06dEB8fL2AyUocbN26gd+/eePjwIW7cuAGpVIrY2FgMGTKED6fUUb/88guys7MxdOhQDBs2DPv27cPRo0eFjiVKLCpa4qeffsKUKVMwZMgQxbLg4GD4+flh1apVAiYjdVi0aBF8fHwwbtw4xbLjx4+jefPmWLRokYDJSB2CgoIwePBgbN26VfEAyvnz56Nv3778fOug8PBwzJo1S2kEn5WVFWbOnIndu3cLmEycWFS0xP3799GyZctiy1u3bo2kpCTNByK1unHjBkaNGqU0AsDAwADDhw/H1atXBUxG6nDjxg1069at2PK+ffsiISFB84FIrbZu3YpFixahd+/eimVTp06Fv78/Nm3aJGAycWJR0RLW1taIiooqtvzy5cswNzcXIBGpU8WKFfHgwYNiy1NTUzl8UQcZGhqWOD/OkydPYGxsLEAiUqfU1FQ0bNiw2HJnZ2c8fvxYgETixqKiJb755hv4+/tjxYoV+OOPP/DHH38gODgYc+fOxTfffCN0PFKx9u3bY+7cuYiIiEB2djays7MRGRmJuXPn4vPPPxc6HqlY27ZtsWLFCmRmZiqWJSQkYMGCBWjVqpVwwUgtbG1tcfr06WLLz5w5w6kmSsBRP1pkw4YNCA8Px9OnTwEAFhYWGD58OPr16ydwMlK1V69eYezYsfjrr78gkUgUyz///HMEBARwSLqOycrKwtChQ3Ht2jUUFhaiUqVKyMrKgqOjIzZv3syRXjrml19+wZQpU9CxY0c0btwYwOsJ/o4ePQp/f390795d4ITiwqKihZ4/fw5DQ0P+sioDEhMTFU9Xtbe3V0z2R7opIiICt27dQmFhIerVq4fmzZtzuKqO+vXXXxEeHo7bt2/D0NAQ9vb2GD58OFq3bi10NNFhUdEiubm5+P3333H37l0MHjwY8fHxqFu3LicH0mGPHz9GQkICPDw8kJ2djWrVqgkdiTQgPT0dFy9eRMOGDXkpgMo8VnUtkZaWho4dO2LOnDkIDQ3Fy5cvsWnTJnTu3JmjAnSQVCrFuHHj4OPjgxEjRuDp06eYPXs2Bg0axIcS6qD4+Hi0b98eUVFRyMzMRNeuXfHjjz+iQ4cOiIyMFDoeqUFqaipWr16NCRMm4NmzZ4qDUCqORUVLLFq0CHXr1kVERATKlSsH4PXMtHXr1kVgYKDA6UjV1q1bp5iptGh/9+/fH/fu3UNQUJDA6UjVFi9ejE8++QS1a9fGkSNHIJPJcObMGQwZMgQrVqwQOh6p2L1799C5c2ccOHAAx44dw6tXr/Drr7+iZ8+enH6gBCwqWiIyMhK+vr5KQxUrV66MyZMn49KlSwImI3U4evQoZs6cqTR9epMmTbBgwQKcOnVKwGSkDpcvX8bkyZNRrVo1/PXXX2jZsiUsLS3Ro0cPxMXFCR2PVGzRokVo27YtTp48qZjgb9myZfDx8eGBSAlYVLREdnY2KlSoUOK6/Px8DachdUtJSVE84+ffrK2t8eLFCwESkTrp6enByMgI+fn5uHjxIry9vQG8/tyXL19e4HSkapcuXcKgQYOURvQZGBhg1KhRuHXrloDJxIlFRUt4eHgoPfcFAGQyGdatWwdXV1eBUpG62NvbIyIiotjyo0ePok6dOgIkInVydnZGSEgIgoODkZeXhxYtWiAlJQXLli2Ds7Oz0PFIxQoLC1FYWFhseXZ2NvT19QVIJG4GQgeg9zN58mT07dsXFy9ehEwmw5w5c3D37l28fPkSP//8s9DxSMV++OEHjBs3Dnfu3EFBQQEOHDiAxMREHDt2DMuXLxc6HqnYzJkzMW7cODx48ADTpk1D1apV4e/vj4SEBGzYsEHoeKRizZo1Q0hIiNL9hRkZGQgMDISXl5eAycSJw5O1SEpKCnbs2IHY2FgUFhaibt26+Pbbbzl8UUedPXsWISEhink16tati2HDhqF9+/ZCRyMNSE9PR+XKlXmErYNSUlLw3Xff4eXLl8jIyEDt2rXx6NEjmJmZ4eeff8b//vc/oSOKCouKFktPT0fVqlWFjkFEKpCdnY1ffvlFMcFf3bp10aFDB07sqKNycnJw5MgRpQPPrl27cn+XgEVFS2RmZiIwMBD9+vVDnTp1MHToUERGRsLW1hbr169HzZo1hY5IKnb48GF4eHjAysoKa9euxa+//gpXV1dMnz5dMWSZdMPjx4/Rr18/PHv2DHZ2digsLMS9e/dQrVo1bN++HVZWVkJHJDWSyWSIi4tD7dq1UbFiRaHjiA5vptUSCxcuRGRkJAwMDHDixAlER0djyZIlsLW1xZIlS4SORyq2du1aTJ8+HY8fP0ZMTAyCg4Ph4uKCCxcucPiiDlq0aBGsrKxw6tQpHDx4EL/88gtOnTqFGjVqcJ4kHfTkyRMMHjwY165dQ25uLrp3746vvvoKPj4+iI2NFTqe6LCoaIkzZ85gyZIlsLe3x59//ommTZuic+fOGDduHGeu1EH79u3D4sWL4erqimPHjsHZ2Rn+/v5YsGABfv/9d6HjkYr9/fffmDJlCqpXr65YVr16dfj5+eHcuXMCJiN1WLhwIV6+fImqVavit99+w6NHj7Bt2zZ8/vnnLKYlYFHREq9evYK1tTUA4Pz58/jss88AAOXLl0dBQYGQ0UgNUlNT4eLiAuD1L7FmzZoBeD2PSmZmppDRSA309fWVJnMsUq5cOUilUgESkTpFRkZi3rx5sLGxwZkzZ9CiRQu4urpiyJAhuHz5stDxRIdFRUsUnUk5c+YMnj59ihYtWgAAdu/eDXt7e4HTkapZWVkhMTER9+7dw507d9C0aVMAQHR0NO9X0EGurq5Yu3YtZDKZYplMJsNPP/3EeZJ0kEwmQ+XKlSGXyxEREaE48CwsLISBAWcNeRP/j2gJX19f/PDDD5DJZOjUqRNsbW2xcOFCbNu2DWvWrBE6HqnY119/jR9//BFGRkZwcHCAi4sLtm3bhiVLlsDX11foeKRiEydOxNdff43PP/8cDRs2BABcv34d2dnZnCdJBzk5OWHv3r0wNzdHZmYmWrZsCalUig0bNsDR0VHoeKLDUT9a5Pnz50hJSVH8Qb527RoqVqzIMyo66vTp03jw4AG6dOmCKlWq4PDhw8jLy0OvXr2EjkZq8PjxY2zbtg3//PMP5HI5HBwc8M0333BODR107do1fP/993j+/DmGDRuG8ePHY86cOTh69ChCQ0PRuHFjoSOKCouKlklISEB8fDwMDQ1Ru3Zt1K5dW+hIpGbp6ekwMDCAqamp0FGISEUKCwuRlZWl+FwnJiaiSpUqMDMzEzaYCPHSj5bIy8vDhAkTcOrUKRR1S4lEgtatW2PFihUwMjISOCGpWnh4ONavX49nz54BeD0KZMiQIRg4cKCwwUjlXr16hS1btuDSpUuQyWR48/gxPDxcoGSkLhKJBFeuXFFM8FenTp0SH0RKLCpaY/ny5bh27RpWr14NT09PFBYWIioqCvPnz8eqVaswYcIEoSOSCu3cuROBgYH49ttv4eHhAblcjqioKCxbtgwmJia8/KNjZs2ahVOnTqFp06YwNzcXOg6pWUZGBoYMGYKbN2+iUqVKkMvlyMrKQoMGDbB582aePX2TnLRC06ZN5adPny62/PTp0/KWLVtqPhCpVfv27eVbt24ttvznn3+Wd+rUSYBEpE6urq4lfr5JN02ZMkXeoUMHeWxsrGJZbGysvFOnTvJZs2YJmEycODxZS2RnZ5d4P4qdnR3S09MFSETq9PjxY8UQ9H9r3rw57t27J0AiUic9PT3eFF+G/PHHH5g9e7bSCB9HR0fMmDEDJ0+eFDCZOLGoaIl69eqVOCPpb7/9Bjs7OwESkTrVqFEDN27cKLb8+vXrSrOXkm5o164d9u/fL3QM0pD8/PwSP8fVq1dHVlaWAInEjfeoaImRI0di1KhRiI2NVUwAFRMTgxMnTmDp0qUCpyNV+/rrrzF37lxkZGQo7e/g4GB89913AqcjVatatSo2bdqEs2fPws7OrtjN8QsXLhQoGalDgwYNsGPHDkyfPl1p+Y4dO1C/fn2BUokXhydrkRMnTmDDhg2Ij49XzLMwdOhQtGvXTuhopGKFhYVYuHAhduzYgYKCAsjlchgYGODrr7/GtGnToKfHk6G6pH///u9cv3XrVg0lIU24fPkyvvvuOzg6OiodiMTFxSE0NBReXl4CJxQXFhUiEcvKysLdu3cBALVr14aJiYnAiYhIFa5du4ZNmzYpTfA3aNAgNGrUSOhoosOiokWio6PfOs/CmDFjBEpF6pKTk4P4+PgS97eHh4dAqUhd8vPz8ezZM8VDRuVyOaRSKa5fv44uXboInI5IOCwqWmLNmjVYtWoVTE1Nix1VSyQSnDp1SqBkpA6nTp3ClClTkJWVVaykSCQSxMbGCpSM1OHcuXOYPHlyiSP4ypcvzyfq6pjCwkIcPnz4rQeevCdJGW+m1RI7duzAuHHjMGLECKGjkAYEBQXB29sbo0aNQqVKlYSOQ2q2bNkyODk5oX///hg7diyCgoLw+PFjBAcH85eWDgoICMC2bdvg6OjIy7nvgUVFS7x8+RKdOnUSOgZpyMOHDxESEsIptcuIO3fuICAgAI6Ojqhfvz4qVKiA/v37o0KFCti4cSPatm0rdERSocOHDyMgIADdu3cXOopW4NABLeHq6srTv2WIra0tkpOThY5BGqKvr684c/bJJ58gPj4eAODl5YWEhAQho5EaSKVS3mf2AXhGRUt06tQJ/v7+uHHjBmrXrl1snoVu3boJE4zUYuLEifD398e4ceNK3N81atQQKBmpQ926dXH69Gn0798ftWvXRkxMDAYMGMCyqqOaN2+OM2fOoG/fvkJH0Qq8mVZL/Huq5Tfx5krd06BBA8XoD4lEolgul8u5v3XQyZMn4evri1mzZqFly5Zo3749vLy8cPv2bTRu3BjBwcFCRyQV2rRpE4KDg9GsWTPY29vD0NBQaT1HcSpjUSESoYsXL75zvaenp4aSkKbcvHkT+vr6cHR0xMWLF7F582ZYW1vD19cXZmZmQscjFfLx8XnrOo7iLI5FRQckJyfDyspK6BhEREQqx3tUtMSDBw+wePFixMfHF5sQKj09Hbdu3RI4IalSXl4edu3apbS/gdc34d24cQPHjh0TMB2p2qtXr7Bly5a3zqsRHh4uUDLSpKIJ/tzc3ISOIiosKlpi3rx5SEpKwhdffIHNmzdj8ODBSExMxIkTJzBv3jyh45GKzZ8/HwcPHoSTkxOuX78OFxcX3Lt3D8+ePcPAgQOFjkcqNmvWLJw6dQpNmzaFubm50HFIzW7cuIGZM2ciPj4ehYWFxdbzHjRlLCpa4tKlS1i7di2aNGmCv/76C23btkWjRo2wfPlynDlzBl999ZXQEUmFTp06hYULF6JTp074/PPP4e/vj5o1a2LcuHGQyWRCxyMV++OPP7Bs2TK0bt1a6CikAQsXLoS+vj5mzJiBhQsXYsqUKbh//z62bduGJUuWCB1PdDiPipaQSqWKyb/s7Oxw+/ZtAK+HJV+9elXIaKQGmZmZiqeq1qlTB7du3YKhoSFGjBiBP/74Q+B0pGp6enqwt7cXOgZpyK1btzBr1ix88803cHBwQL169TBlyhRMmDABu3fvFjqe6LCoaIn//e9/ikmg7OzsFKcGCwsLkZ2dLWQ0UoOqVavi2bNnAF5P/la076tUqYK0tDQho5EatGvXDvv37xc6BmlIYWGh4hLfvyf4a9OmDeLi4oSMJkq89KMlunfvDj8/PyxZsgStWrXCd999hxo1auD8+fNwcHAQOh6pWIsWLTB37lwsXLgQbm5uCAgIwOeff45ff/2VI7x0UNWqVbFp0yacPXsWdnZ2xSb44/N+dMsnn3yCmJgYdOrUCbVr18b169cBvH5UilQqFTid+LCoaInhw4ejXLlykMvlaNSoEUaNGoV169bB2tqa1zR1kJ+fH6ZMmYKLFy/i22+/xa5du9C7d28YGBhg8eLFQscjFbty5QoaN24MAEhNTRU4Dalb//79MX36dABA+/bt0bVrV5QvXx6XLl2Cs7OzsOFEiPOoEGkBuVyO2NhYVK9eHRYWFkLHIYHs27cPX3zxBSpWrCh0FPpIJ0+ehJmZGdzd3XH48GFs2LAB1tbWmDlzJmxsbISOJyosKlokOjr6rfMscMpl3ZOTk4P4+PgS9zcfaFY2ubq64tChQ6hZs6bQUYg0hpd+tMSaNWuwatUqmJqawsTERGmdRCJhUdExp06dwpQpU5CVlVWspPBZP2UXjyt1Q2FhIQ4fPvzWA0/ek6SMRUVL7NixA+PGjcOIESOEjkIaEBQUBG9vb4waNQqVKlUSOg4RqVBAQAC2bdsGR0fHYgeeVByLipZ4+fIlOnXqJHQM0pCHDx8iJCREMXcOEemOw4cPIyAgAN27dxc6ilbgPCpawtXVFZcvXxY6BmmIra0tkpOThY5BRGoglUp5n9kH4BkVLdGpUyf4+/vjxo0bqF27drF5Frp16yZMMFKLiRMnwt/fH+PGjStxf9eoUUOgZET0sZo3b44zZ86gb9++QkfRChz1oyUcHR3fuo43V+qeBg0aKJ6aLJFIFMvlcjn3dxnm4uKCX375haN+tNymTZsQHByMZs2awd7eHoaGhkrrOThCGYuKjrl37x5sbGygr68vdBT6CBcvXnznek9PTw0lITFhUdENPj4+b10nkUhw6tQpDaYRPxYVHcN5FsqWdu3aYcuWLbwUVEaEhoaiT58+HAlWRkRERMDV1RXlypUTOoqgeDOtjmHvLFuePn2quERE2sXR0RH169dHixYtMHjw4Pd6zdChQ1lSypDRo0fzkQrgzbRERIIYPXo0JBIJzM3NYW9vL3QcEiEeeL7GokJEJIAffvhB6AhEWoGXfoiIiEi0WFSIiIhItFhUiIiISLRYVIi02L8ngyMi0kW8mVbHNGnSBOXLlxc6BmkIJ/bTbTKZDFeuXEG5cuXQoEED7m8qkzjhm4h99913iuGLderUwffffy90JFKj1atXQyKRwMLCAvb29nB1dRU6EgksLS0NzZo1w7fffovY2Fj8/PPPLCtliL+/P8aMGYMqVaoIHUVQPKMiYkUdUi6Xczx9GbB69WoAQPXq1VG3bl1s3rxZ4EQktMqVKyM8PByenp548OABS4oW8/HxgZ6enuLA09/f/z9fM3PmTA0kEz+eUSEiIlKzKVOmKE3w17VrV6EjaQ0WFSIigUilUiQkJKBmzZowMTFBSkoKNm3ahHv37sHW1hbfffcdn+NEZR6LChGRAO7evYuhQ4fi8ePHqFq1KtavX4/Ro0fDyMgITk5OuHPnDp48eYJdu3ahbt26QsclEgyLChGRAIYPHw59fX38+OOP2LNnD3755Rc0adIEy5cvh4GBAeRyOWbMmIHk5GRs3LhR6LhEgmFRISISgIeHB3bt2oXatWtDKpXCxcUFO3bsQKNGjRTbJCQk4Ntvv8WFCxcETEokLE74RkQkgPLly+Ply5cAgKysLBQUFODVq1dK22RnZ8PIyEiIeESiwaKi5dLS0uDo6IhevXq913A30m4vXrzAd999h+HDh+PXX38VOg59hLZt22L69OnYtm0bfvjhB9SoUQMhISFISUkB8PqzvWjRInh5eQmclDSlsLAQjx8/Rnp6utBRRIVFRctVqFABY8aMwd69e+Hq6or8/HyhI5GayeVyLFq0CFFRUdzfWmzSpElo2LAhVqxYgbS0NAQGBqJt27Zo1aoVmjVrhlatWiE9PR2TJk0SOippSHp6Onx8fDBt2jSMGjVK6DiiwXtUiIhE5MqVK7h06RKsrKzQunVrGBsbCx2JNCQvLw+//vorunfvjujoaLi6ukJPj+cTWFS0jFQqxalTp5CSkoK6deuiadOmQkciNcnIyEBeXh4qVKiASpUqCR2HNCg9PR1VqlThQyeJwCn0Ra1+/fo4d+4cqlWrBgB4+vQpvvvuOyQlJcHMzAzPnz+Hu7s71q1bx19kOiIyMhKhoaGIiYlBbm6uYnmFChXg6uqKYcOGwdPTU8CEpEobN27EpUuXsGbNGhQWFmL16tXYsmULcnJyYGpqioEDB2LkyJFCxyQVWLt2LXr37g1zc3Oho2gdnlMSsTdPdgUGBqJixYo4e/YsIiIicPLkSbx69QpLliwRKCGp0q+//oqhQ4eicuXKmDZtGn766Sds3rwZP/30E6ZMmQJTU1MMHjwYx44dEzoqqcCqVauwdu1a1K9fH8Dr0hIeHo7Ro0fjp59+wpAhQ7Bp0yaEhoYKnJRUITg4GD179kR0dLTQUbSPnETLwcFBnpaWpvi6VatW8r///ltpm4sXL8q9vLw0HY3U4Msvv5Rv3Ljxndts3LhR3qFDBw0lInVq2bKl/Pjx44qvO3ToID9w4IDSNkePHpW3bt1aw8lIHRwcHOTjx4+XOzo6ymfOnKn0dzu9G8+oiJhEIlG6Rm1kZISqVasqbWNubo68vDxNRyM1ePz4MVq3bv3ObVq1aoWHDx9qKBGp0/Pnz+Hg4KD4+sWLF3B0dFTa5tNPP0VaWpqmo5EaSCQSTJs2DWvWrMHff/+Ntm3bIiAgAImJiUJHEz0WFRGTy+VYsmQJwsLCcO7cOXh4eGD//v1K24SFhRX7y420k729PQ4fPvzObQ4cOABbW1vNBCK1+vTTT7Fp0ybF1y1btsSpU6eUtjl06BCf86Mj5P//Ur6Pjw9+/fVXTJgwAX/++Sc6dOiAHj16ICgoCEeOHMG5c+cETio+HPUjYuvWrUN8fDzi4+ORlJSEgoICSCQSREREwMzMDF988QUeP36M9evXc1IoHRAREYHvv/8ejo6O8PLygrW1NYyMjCCVSpGamoqLFy/i6tWrWLduHZo1ayZ0XPpI165dw4ABA1C3bl106tQJJiYmWLx4MZo1a4a6deviypUrOHfuHEJCQji6Twe8OTgCeF1eYmJicPLkSURFRSE+Ph75+fmIjY0VMKn4sKhoiaLHwcfHx6Nr164AgBUrVuDzzz9HgwYNBE5HqpKQkICwsDDExMQgOTkZubm5KFeuHKytreHu7o7+/fujTp06QsckFUlMTERISAjOnTundImnXLlycHV1xciRIznKS0c4Ojri/PnzSkXlTYWFhcjIyCh2ib+sY1EhIhKBrKwsZGdnw8DAAFWqVOFEXzpm6tSpmD59OkxMTISOonX4SdBSnTt3RnJystAxSEPmzJnD53/omLVr1+Lp06eKr01MTGBpaYlq1aqxpOighQsXsqSUEid8E7HVq1e/dV1iYiI2btyIypUrAwDGjBmjqVikJlFRUW9dd/DgQXh4eMDCwgIA4OHhoalYpCbBwcHYuXMnli1bBnd3d6HjkIA6d+6M9evXw9raWugoosRLPyLWvHlzpKWloXr16jA0NFRa9+TJE1hYWEBfXx8SiaTYaAHSPk5OToqRAe/6WEokEt5spwMcHR3RsWNH/Prrr+jduzfGjh37zvsXSLu968Dzp59+wjfffMMDz7dgURGx9PR0zJgxA/fv30dgYKBiBksAcHFxwS+//IKaNWsKmJBUKTo6Gn5+fvjkk08wbdo0VKhQAcDr0lJ0xFWjRg0AwP/+9z8ho5IKFI0CuXr1KgICAvDs2TP07t0b33zzDezs7ISORyrGA8/SY1HRArt27cKyZcswZMgQDB8+HACLiq7KysrC7NmzcfXqVSxZsgSurq4AuL910b9HgUilUuzevRvh4eF48OAB6tevj88++wyOjo4wMzPjcHQdwAPP0uMdW1qgT58+2LlzJ44dO4Z+/fpxZlIdZmJigqVLl+KHH37AyJEjsXz5cuTn5wsdi9TgzVmn+/Xrh2PHjmHr1q3w9PREREQEpk6dimHDhgmYklSlatWqWLt2Lfr374+BAwdi/fr1QkfSGryZVkvY2dlh165dWLlyJbp37w6ZTCZ0JFKjrl27ws3NDX5+fvjqq69QUFAgdCRSsZJOZkskEri7uyturi2aV4N0R58+feDp6YmJEyfi7NmzWLRokdCRRI9nVLSIgYEBJkyYgDVr1qBz586oWLGi0JFIjWxsbPDzzz+jTZs2MDc3h4EBjyt0Sffu3VGuXLl3bqOnp8fJv3RQ0YGni4sLDzzfA+9R0VJHjhyBj4+P4oZL0j0ZGRnIy8tDhQoVUKlSJaHjEJEaXLx4EQcOHMCkSZNYSt+CZ1S01KxZs/Ds2TOhY5CKRUZGYujQoXBxcYG3tzdatWoFT09PuLm5YdiwYbh48aLQEUlFVq9ejZycHKVl+/fvR8eOHeHm5oavv/4af//9t0DpSFM8PT3RtGlTlC9fXugoosUzKiLm6OiodMPdv8nlcqV1nFdD+/3666/w8/ND+/bt4eXlBQsLC5QrVw55eXlITU1FZGQkjh07hqVLl6J9+/ZCx6WP9OZD6n755RdMnToVvXv3Rt26dXH9+nUcOXIEwcHB8PHxETgtqZOrqysOHTrEUT9vwYveIjZ27FisWbMGHh4e6NKli2K5XC7HnDlz4OvrywmidMjq1asxfvx4DB48uMT1vXv3RoMGDRAcHMyiogPePEYMCwvD2LFjFVMQAEDt2rWxevVqFhUd8F8Hnu3atVN8zQNPZSwqIjZy5Eg0bdoUkyZNwh9//AF/f3/FzIX+/v5o3749G7gOefz4MVq3bv3ObVq1aoWVK1dqKBFpUkpKClq2bKm0rH379lizZo1AiUiVeOBZerxHReQaNWqEgwcPolKlSujcuTPOnz8vdCRSE3t7exw+fPid2xw4cAC2traaCURq9+8HTTo6OhZ70Oi9e/f4y0tHjBw5Etu3b8fjx4/xxx9/wMfHB927d0ePHj2gr6+P9u3bo3v37ujevbvQUUWHZ1S0gLGxMRYsWIDjx49j4sSJ6NChg9CRSA0mTpyI77//HufPn4eXlxesra1hZGQEqVSK1NRUXLx4EVevXsW6deuEjkoqYGRkhC5dusDExAT29vaQyWSYN28ejhw5AmNjYxw8eBDLly/n512HFB14zp8/H507d8bChQvRtGlToWOJHm+m1TIpKSmYMmUKIiIicOLECV760TEJCQkICwtDTEwMkpOTkZubi3LlysHa2hru7u7o378/6tSpI3RMUoHCwkIkJiYiPj4et2/fRnx8PP755x8cPXoURkZGaNKkCby8vLBw4UJOQ6CDjh8/jtmzZ6NDhw7Yv38/p9B/BxYVLfX48WNYWVlBT49X74h00cuXLzl/jo7jgef7YVERsdWrV2PIkCEwNjZWLNu/fz82btyI5ORk1K1bF76+vvjss88ETEmq9vz5c1SpUgXA67/I9u3bh5SUFNStWxc9evTg0bWOefXqldI+vXHjBh4+fAhbW1s4OjoKmIw0hQee78aiImKcZ6FsSU1Nxffff4/Y2Fg0aNAA8+fPx8CBAyGXy1GzZk0kJiaiWrVq2Lp1KywtLYWOSx/p+fPnmDx5MpKSknD8+HG8fPkSo0aNQlRUFIDXz/3x8vLCqlWrYGJiInBa+lg88Cw91jcRe9s8C3PmzEHfvn2xaNEi+Pr6YvXq1QIlJFVavHgxKlasiNWrV8PMzAwDBgyAs7Mz/vzzT+zduxd//PEHatSowYeY6YgFCxbg8ePHmDVrFgAgMDAQ6enp2LNnD65cuYKdO3ciLS0NixcvFjgpqcKaNWvw6tUrxde//PILZs6cCQ8PD4wfPx62trYYPnw4Tp8+LWBKkZKTaDk4OMjT0tIUXzdt2lQeFxentE1SUpK8UaNGmo5GauDu7i6PjY2Vy+Vy+aNHj+QODg7yq1evKm1z48YNuZubmxDxSMU8PT2V9m/r1q3l586dU9omOjpa7unpqelopAZv/n3eo0cPeUhIiNI2ISEh8u7du2s6mujxjIrIcZ6FssXQ0BAAUKNGDTRt2hRGRkbFtilpGWmfwsJCpX1pYGAAU1NTpW0qV64MqVSq6WikAW+b4C8hIUGgROLFoiJiRfMseHh44Ouvv8bz588xb948xYPMDh48iJkzZ3I6dR3h7u6OwMBAPH/+HACwceNGpZspk5KSMG/ePF7D1hHNmzfHvHnzFAcj3bp1Q2hoKAoKCgAAUqkUK1euRJMmTYSMSSrEA8/S4c20IsZ5FsqWBw8eYODAgWjUqBGWL1+utO7YsWMYO3Ys6tevjw0bNqB69eoCpSRVefr0KQYNGoTHjx/D29sbNjY2OHDgACpWrAg7OzvExcVBT08P27dvR61atYSOSx+pUaNGkMlkShP8ZWRklDjB3+TJk4WOKyosKlqM8yzoHqlUiuTk5GK/mJKTkxEXF4emTZsqLg+R9pNKpThy5AjOnz+PxMREZGVlwcDAAFZWVoozqUVD1Um78cCz9FhUROzQoUNo166d0nA20n0ymQzZ2dkwMzMrtk4ul+PJkyeoUaOG5oMRkdrwwPPtWFREzNHREfXq1cOqVavwySefCB2H1CwvLw/z5s3DL7/8gvz8fHz66aeYPXs2GjRooNgmLS0NzZs352PgdURGRga2bduGqKgoPHv2DDKZDJUqVUKtWrXQrFkzdO7cGQYGfCSbLuCBZ+nxZlqRMzU1RZcuXRASEsK7/3XcypUrcf78ecyfPx+LFy9Gfn4+vv32W/z1119K2/HYQjfcv38fnTp1wuHDh2FmZoby5cvj4cOHcHJyQkFBARYuXIgePXoo3YBJ2mvy5Mno06cP7t27J3QUrcOiImISiQQrVqzApEmTEBoairZt2yIsLAxZWVlCRyM1+P333+Hv74+uXbuiS5cu2L17N3x8fPDDDz8gJiZGsZ1EIhEwJanKokWL0LZtW/z2229YsWIF9uzZAz8/P6SlpWHFihU4ffo0zMzMsHDhQqGjkorwwLN0eOlHxBwdHXH+/HlUq1YN6enp2LBhA/bs2QOZTIaWLVvC29sbjo6OMDMzg52dndBx6SO5uLjg0KFDSjfSFhQUYMSIEbh27Rq2b98OMzMzXvrREW5ubti7d6/SZzc/Px/Ozs6IiIhApUqVEB8fj/79++PChQsCJiVVqF+/Pv766y/8/vvvWLlyJYyNjTFkyBD07NmTj0j4DzyjoiWqVq2KyZMn48yZM5g7dy7kcjmCg4PxzTffoEOHDkLHIxWwt7fH77//rrRMX18fK1euhLW1NYYOHYq7d+8KlI5UrXLlyrh9+7bSsgcPHqCgoEDxcDqZTMYH1ekIuVwOiUSCfv364dixY+jYsSNWrVqFpk2bwtfXFzt27MDly5eRmJgodFTR4RkVEfv3GZW3SU5ORmpqKho1aqTBZKQOp0+fxg8//AAvLy/4+fnBwcFBse7p06f47rvv8OjRI8hkMp5R0QHLli3Drl27MGHCBLi5ueHx48dYsmQJLCwssHHjRpw9exZBQUFo2LAhAgIChI5LH6mkv8+zs7Nx4sQJnDp1CtHR0Xj+/DkkEgk/32/g7eQi5uHh8Z9zZlhZWcHKykpDiUidfHx8EBYWhl27dhW7Ydbc3By7du1CQEAAfvvtN4ESkir98MMPyMjIwOzZswG8PuL28vJSPHRy27ZtqF+/PqZNmyZkTFKjihUrolu3bujWrRuA/zvwJGU8o0KkZQoLC3k5QIdkZmbi3r17sLCwgKWlpdBxSE369++PNWvWFHueE/03FhWR4zwLRERUlrGoiNj9+/fx7bffwsTEBI6Ojnj06BFiY2PRq1cvZGRk4O+//4aVlRW2bNmCqlWrCh2XiIjegQeepcOiImKjRo2ChYUFZs+erZg7Izw8HBcuXMCaNWuQlZWFUaNGwdLSEoGBgQKnpY/Vv3//954jJTw8XM1pSN0OHjz43tsW3cNA2osHnqXHoiJinGehbAkJCcHKlSthZ2f3n6O4OAmY9uvatSvi4+MBvHu2YY4C0Q088Cw9nmMSsaJ5Fv5dVDjPgu4aMWIETExMsHTpUoSEhMDGxkboSKRGu3fvxqhRo/DixQvs3LmTp/x13IULF7B3716ls6bffvstlixZongg4YwZM9C/f38BU4oTf8OJWKdOnTB79mzs3r0bCQkJ+Ouvv+Dr64vPPvsMFStWxNmzZzF16lS0bt1a6KikIn379oWnpyeWLFkidBRSs3LlymHFihVIT0/H5s2bhY5DasYJ/kqPFV7EOM9C2TRv3jzcvHlT6BikAUVH0adOnRI6CqlZ0YFnZmam0gR//z7wDAoK4oFnCXiPihbgPAtERNpNJpPB398fe/bsAfB/B56BgYEwNzfHiBEjYGZmhpkzZ/LZP29gUSESmYcPHyIzMxMODg7Q19dXWieTyXDlyhV4eHgIlI6IPgYPPD8ciwqRSLx48QI//vgjIiMjAbyeNn/u3LlKp4LT0tL49GQdkpqaisuXL8PZ2RmWlpY4c+YMNm/ejJSUFNSpUwejRo1C/fr1hY5JJCjeoyJinGehbAkMDERaWhq2bt0KiUSCDRs2YPTo0fD390fPnj0V2/HYQjdcvXoVAwcORE5ODkxMTDB9+nRMnz4d3t7eaN26Na5du4Y+ffogLCwMLi4uQsclEgzPqIgY51koW1q0aIHly5fDzc1NsWzx4sUIDw/H8uXL0a5dO55R0SH9+vVDvXr1MH78eISEhGDjxo0YOnQoxo8fr9gmICAAN27cwPbt2wVMSqrAA8/SY1ERsby8PM6zUIa4u7tjz549SvPmAMDUqVNx9OhRbNq0Cba2tiwqOsLZ2RmHDx9GzZo1kZWVBXd3dxw8eBCOjo6KbRITE9GtWzdcvXpVwKSkCjzwLD0O2BYxzrNQttSvXx87duwottzf3x+urq74/vvvcfHiRQGSkTqYmJggJSVF8d/jxo1DxYoVlba5f/8+qlWrJkQ8UrHdu3fjs88+Q4MGDXDjxg3ExcWV+A9LSnEsKiJXNM9CUlKS0FFIzcaNG4c9e/bgyy+/xLVr1xTLDQwMsGbNGjg4OGDChAkCJiRVat++PWbMmKF4/MWIESNQs2ZNAK9HhuzevRvTpk1D165dhYxJKsIDz9LjpR8iEUlMTMShQ4fQtWvXYpeAZDIZfvrpJxw5cgTHjh0TKCGpSm5uLqZPn47y5ctjwYIFSuuOHTuG8ePHo0+fPpg6dSoMDQ0FSkmqdvr0aZw6darYPqe3Y1EhIhJQYWFhsWnTX716hcLCQk78RQRe+hG91NRUHDt2THEt+8yZMxg4cCC+/PJL/PDDD7yeqWO4v8uOQ4cOIScnp8Rnu1SoUIElhej/Y1ERsatXr6J9+/YYO3YsOnbsiAMHDmDkyJHQ19f/f+3deVCU9xkH8O8SWGMkBBGjMZ5oBYNyFbV4Q4LGc7Q2wQsICmJsY9UMUaKCmAkWRZQQUBQpEi1NjBfGKFoNalCrGA+02KlKVPAWjIsHcrz9w2EnuFhZuuv7vvv7fmacMe8ePvpM9Hnefd/vwtfXF2VlZQgICMCJEyfkLpVMgP0Wy5w5cxAQEIBLly7JXQq9IFxEGocf/SgYcxbEwn6LxcXFBd7e3igoKMD06dMREhICrVYrd1lkJv8r4M/Z2RmnT5/G6dOnGfBXH4kUy93dXbp8+bIkSZKk0+kkZ2dnqbCwsM5zLl68KLm5uclRHpkY+y0WFxcX6datW9JXX30leXt7S/3795cyMjIknU4nd2lkBhMnTpRiYmIknU4nxcfHS926dZOWLVtW5zmff/65NH78eJkqVC5+9KNgzFkQC/stFkmSoNFoMGnSJOTk5GD48OFISkpC3759MWPGDGRlZeHEiRMoKiqSu1QygTNnziAkJAS2trYIDw9HTU0Nhg0bVuc548ePx9mzZ2WqULk4qCgYcxbEwn6Ly8HBAXPmzMH+/fsRExMDSZLwxRdfYPz48Qb/mJE6cRFpPGayK1hERATu3r2L7Oxs9O7du85jhw8fRkxMDAICAjB9+nSZKiRTYr+pWbNmGD16tP67Xq5fv46bN2/KWxSZRO0iEhMTg969eyM8PFz/2L1797Br1y4kJibi/fffl7FKZeLFtCrAnAWxsN9iCAwMRHJyMuzs7OQuhV4ABvw1HgcVBdu2bRsGDx6Mpk2byl0KvQDsN5Hl4yJiPF6jomDMWRAL+01kuRjw13gcVBTOzs4Oo0aNQmpqKh4/fix3OWRm7DeRZeIi0nj86EfBunXrhoMHD+ovsmratCmmTJmCsWPHcvq2QOy3WAIDA6HRaBr03MzMTDNXQ+bGgL/G46CiYC4uLsjLy0OLFi1QWlqKNWvWYOPGjaisrMTAgQPh4+MDFxcX2NvbG3zTLqkP+y2W1NRUJCYmolOnTnBzc/ufz128ePELqorMhYtI43FQUbBf/8NV6/79+9izZw/27t2L/Px8lJWVQaPR8DsiLAD7LZ4NGzZg2bJlyM7ORtu2beUuh8yIi0jjcVBRsPr+4Xpabc7C8zYyUj72W0zTpk2DVqvFF198IXcpZEZcRBqPgW8K1rNnz+feT9+6dWu0bt36BVVE5sR+i2nRokWMTRcUA/4ahmdUiIiIzIwBf43HQYWIiIgUizkqREREpFi8RkXBmLMgFvabiMgQBxUF69evX4NzFkj92G8iy8VFpPE4qChYeHg4bG1tsWzZMqSmpjJnwcKx30SWi4tI4/FiWhVgzoJY2G/xbN26FcOGDTOIVK+oqMDOnTv1t6+SujHgr3E4qKjAzZs3cfbsWfj6+spdCr0A7Ld4nhX2d/v2bfTr1w/nzp2TqTIyNS4ixuOgQkQks5KSErRp08bgGoaamhpcu3YNb775pkyVkalxETEeBxUiIiJSLF5MS0Qkg6CgIGg0GrRs2RJdunTBtGnT5C6JSJE4qBARyaD2ZLYkSeCJbaJn40c/REREpFiM0CciklllZSVWrVqFS5cuAQDmzZsHT09PTJkyBWVlZTJXRyQvDioqsXXrVjx+/NjgeEVFBbZu3friCyKzYr/FsnTpUvz1r39FeXk5Dhw4gC1btiA8PBz379/HkiVL5C6PSFYcVFRi7ty50Ol0Bsd1Oh3mzp0rQ0VkTuy3WHbt2oWEhAS4urpi79696NWrF6ZNm4b58+cjNzdX7vLIxLiIGIeDikrs3bsXDg4OBscdHBywd+9eGSoic2K/xXL37l107twZAJCXl4e+ffsCAOzt7fHo0SM5SyMz4CJiHN71oxLPCnyysrJiGJQFYr/F0r59exQUFODOnTsoLi5G//79AQD/+Mc/GLVugbiIGIeDioIxZ0Es7Le4QkNDMXv2bFhZWeF3v/sdXFxckJycjOTkZMTGxspdHpkYFxHjcFBRMOYsiIX9Ftfo0aPh4uKC4uJiDBgwAADQo0cPrF27Fj4+PjJXR6bARaTxmKNCRERkZoGBgXUGlQ8//FDuklSDg4pKVFZWYu3atRg6dCg6dOiAefPm4fvvv4eXlxfi4+PRvHlzuUskE2K/LV9QUFCDn5uZmWnGSoiUjXf9qARzFsTCflu+N998U//D0dERR48ehU6nQ+fOneHs7IzKykocP34cTk5OcpdKJsaAP+PwjIpKDBgwAIsXL0bfvn0RHR2NS5cuISMjA2fOnEFYWBgOHz4sd4lkQuy3WCIjI/Haa68Z3Jq6YsUKXLhwAUlJSTJVRuYQGxuLbdu2IT09HXfu3MG0adMwY8YM5ObmolOnTli8eLHcJSoKz6ioBHMWxMJ+i2XXrl0YN26cwfHRo0fj4MGDMlRE5sSAP+NwUFGJ2pyFs2fPMmdBAOy3WOzs7PCvf/3L4Hh+fj5atGghQ0VkTlxEjMPbk1WCOQtiYb/FEhAQgKioKFy4cAHdu3dHTU0NfvrpJ2zYsAERERFyl0cmxoA/4/AaFRU5d+6cPmdBq9XiwIEDsLGxYc6ChWK/xZKamor169fj1q1bAIA33ngDYWFhmDBhgsyVkalt3boVCxYsgJWVFTw9PZGRkVFnERk9erTcJSoKBxUiIgUpKyuDRqOBvb293KWQGXERaTgOKgrGnAWxsN9iKykpwalTp+r9Vl1u2CQyXqOiYL/+zoeKigp8//336NatGzw8PGBtbY0zZ87g9OnTeO+992SskkyF/RbXN998g5iYGFRXVxs8ptFoOKhYAC4ijcczKirBnAWxsN9i8fPzg6+vL2bNmgVbW1u5yyEziIyM1P/8eYvIwoUL5StUgTioqISnpye2bNmCjh071jn+888/Y/To0Th58qQsdZF5sN9i6dGjB3bu3Mk7PgTBRcQ4zFFRCeYsiIX9Fku3bt1w/vx5ucugF4QBf8bhNSoqwZwFsbDfYgkNDcWiRYtw5coVODk5QavV1nm8Z8+eMlVG5lC7iDx9xpSLSP340Y+KMGdBLOy3OFxcXJ75mEajQWFh4QushswtJSUF6enpCA4OrncRmThxotwlKgoHFRVizoJY2G/LV1JS8j8f//UdYWQZuIg0HAcVFWHOgljYb/GUl5fj4sWLsLGxQbt27XgHkAC4iDwfBxWVeF7OAk8NWxb2Wyw1NTWIi4vD3/72N1RVVUGSJGi1WgQEBODTTz+FRqORu0QyMS4iDcdBRSWYsyAW9lssK1euxNq1azFjxgz06tULNTU1OHbsGJKTkzF16lSEhobKXSKZEBcR43BQUQnmLIiF/RaLn58fZs2ahZEjR9Y5vn37diQlJWH37t0yVUbmwEXEOMxRUQnmLIiF/RbLnTt34O7ubnDc3d0d165dk6EiMqdbt24hJCSEQ0oDMUdFJZizIBb2WywdO3bEoUOH0L59+zrH8/LyeMePBapdRHjGtGH40Y9KMGdBLOy3WLZu3YqoqCgEBgbCy8sLAHD8+HFs2LABn3zyCXM1LMzu3bvxl7/8BSEhIVxEGoCDikowZ0Es7Ld4MjIykJaWhtu3bwMAHB0dMWXKFISEhMhcGZkaFxHjcFBRGeYsiIX9Fsvjx49RXl4OSZJQVVWFVq1ayV0SmQEXEeNwUFEJ5iyIhf0WS2lpKWbOnAlPT0/MmjULANCnTx+4uLhg+fLleO2112SukMyBi0jD8GJalUhNTcWmTZsQERFhkLPQqlUr5ixYGPZbLJ9//jkePnyI4cOH64+tWbMGCxcuRFxcHGJjY2WsjkyNi4iRJFIFX19fKTs72+B4dna25O/vL0NFZE7st1h69eolFRYWGhwvKCiQfHx8ZKiIzCklJUX67W9/K61bt04qLCyUzp49K2VkZEg9e/aU1qxZI3d5isMzKirBnAWxsN9iqa6uhlTPp/A2NjZ4+PChDBWROW3cuBHR0dF1Av7eeustODg4ICkpiWdMn8LAN5WozVl4GnMWLBP7LZaePXsiISEB5eXl+mPl5eVITEzkraoWiIuIcXhGRSVCQkIQFRWFK1eu1JuzQJaF/RZLZGQkJk6ciAEDBqBjx44AgJ9//hn29vZIS0uTtzgyOQb8GYd3/agIcxbEwn6LRafTYceOHfjPf/4Da2trdOnSBSNHjsTLL78sd2lkYgz4Mw4HFZVhzoJY2G/xPH78GDY2Nrzzw8JxEWk4DioqwZwFsbDf4snKysKaNWtw/fp15OTkIC0tDa1atcL06dPlLo3MhItIw/BiWpV4Vs6CTqdDXFycjJWRObDfYtm+fTuWLVuGMWPGwMbGBgDQuXNnrFq1Cunp6TJXR6ZWWlqKoKAgJCcnw8HBAS1atMCYMWMwefJk/PLLL3KXpzgcVFTixx9/xGeffYauXbvqj7m6uiI6Ohq5ubnyFUZmwX6LJT09HfPmzcNHH30EK6snfy0HBQUhKioKX3/9tczVkalxETEOBxWVYM6CWNhvsRQVFcHb29vgeO/evXm7qgXiImIcDioqwZwFsbDfYnF0dERRUZHB8RMnTuD111+XoSIyJy4ixmGOikowZ0Es7LdYAgICsGjRIkRGRgIALl68iB9//BErVqxAcHCwzNWRqdUuIsuXL9d/ESEXkWfjXT8qwpwFsbDfYklISMC6detQUVEBALC2tsa4cePw6aef6q9bIctw+fJlTJw4Effv3693EXFycpK3QIXhoKJCzFkQC/stjocPH+L8+fOQJAlOTk76bZssDxeRhuOgoiLMWRAL+y2Wq1evws7ODra2tjhy5Ah2794NLy8vjBgxQu7SyIy4iDwfzyeqBHMWxMJ+i2XPnj0YPHgwTp06hcuXLyM0NBSHDx/G/PnzsWHDBrnLIzPIysqCn58fPDw8UFxcjOjoaKSkpMhdliJxUFEJ5iyIhf0WS0pKCqZMmQIfHx9s374dbdq0wY4dOxAbG4v169fLXR6ZGBcR43BQUQnmLIiF/RbLhQsX8P7778PKygp5eXkYOHAgrKys4OHhgZKSErnLIxPjImIcDioqwZwFsbDfYrGzs4NOp4NOp8Pp06fRp08fAE/uDrG3t5e3ODI5LiLGYY6KSjBnQSzst1gGDhyIqKgoNGvWDK+++ir69u2LQ4cOYeHChRg0aJDc5ZGJ1S4i7dq1q3Oci0j9OKioRFhYGHQ6HWbPno2KigqEh4frcxamTZsmd3lkYuy3WBYsWIAVK1bgypUrWLlyJbRaLY4fPw4PDw/MmTNH7vLIxLiIGIe3J6sMcxbEwn7Tr0VGRiIiIgIODg5yl0L/Jwb8NRwHFRVhzoJY2G96mpeXF7Zt22bwkQGpExeRhuHYphLMWRAL+0314V5pOa5evYrq6mr06NEDDx48QEJCAr777ju5y1IkDioqwZwFsbDfRJaLi4hxOKioBHMWxMJ+E1kuLiLG4aCiEsxZEAv7TWS5uIgYh7cnqwRzFsTCfhNZrqcXkbCwMABcRJ6FZ1RUYsGCBfDy8sIrr7zCnAUBsN9UH37DrmWoXURmzJhRZxGJioriIlIP3p5sYZizIBb2Wyyenp7Izs7m7ckq9+jRI33AX1hYGDw8PJCUlIQrV64gOjoazZo1k7tEReGgYmGYsyAW9lu9jh07Bo1Gg5YtW6J9+/YNOlty8uRJvPXWW9BqtS+gQpIbF5EneI2KheHcKRb2W70CAwOh0WggSRJsbW2Rn5//3Nd4eHiYvzBSjJycHEyfPp2DitwFEBGJKDMzExqNBo6OjujQoYPc5ZACcRF5ghfTEhHJIDk5GV26dEGnTp0a9N0uZWVl/MI6EhLPqBARyeDChQvIyMhAnz59YGNjg1deeQVdu3bVDy137tzBtWvX8OjRI1RVVeHgwYO4ePGizFUTvXgcVIiIZLBgwQLExcVhzZo1qKmpAQC0adMGq1evRnx8PHJzcwE8uSVZq9Wic+fOWLJkiYwVE8mDg4qFYc6CWNhv9RoyZAiGDBmi/+/y8nJs2bIF48aNg7+/P/bv348WLVrA2pp/TZPY+H+AheHFV2Jhvy2Hra0tAgMDcfXqVUyePBktW7aUuySSGReRJ5ijomDMWRAL+01Ev8aAvyc4qCiYi4uL0TkLpF7sN5Hl4iLSeBxUFOzo0aN1chYacgsjqRf7TWS5uIg0Hv8mVDDmLIiF/SayXJmZmcjMzMTOnTtx9OhRuctRFV5Mq2DMWRAL+01kuZKTk7FixQo0b968Qc8vKyvDzJkzsW7dOjNXpnz86EfBcnJyEBcXh+vXrzc4ZyEiIgI+Pj4yVk2NxX4TWa5+/fph7NixRi0i2dnZOHjwoMyVy4+DiorU5iwkJibC398fM2fOZM6CBWO/iSwHF5HG46CiQnFxccxZEAj7TWR5uIg0HAcVIiIimXAReT4OKkRERKRYvD2ZiIiIFIuDChERESkWBxUiUiylfDKtlDqIRMRBhYgU5/r165g6dSpKSkr+7/cqLi6Gs7MzNm/ebPBYeXk53N3d4erqilu3btX7+pSUFKxdu/b/roOIGoeDChEpzqFDh7B//36z/zrfffcdXn31VdjZ2eHbb7+t9zmJiYl4+PCh2WshovpxUCEiYW3evBn9+/eHv78/Nm7cqA/iIiLl4KBCRPWSJAkZGRkYOnQo3Nzc4O/vj7Vr10KSJMydOxfBwcGIjo6Gl5cXhg0bhurqatTU1GD16tXw9/dH9+7dMWTIEHz11Vd13re6uhqrV6/GiBEj4ObmBg8PD4wbNw5HjhwB8GR4iIyMBAC8/fbbmDt3rv61GzduxPDhw9G9e3cMGjQISUlJqK6urvP+u3fvxqhRo+Dm5oYxY8bg3Llz9f7+zp8/j1OnTmHQoEEYNWoUSkpKDOLKnZ2dAQBffvml/udE9GIxAo+I6rVkyRKsW7cOISEh6Nu3LwoKChAfH4+qqioAQH5+Ppo0aYLk5GQ8ePAAL730EqKiorB582aEh4fD09MTx44dQ2xsLO7du4c//vGPAID4+HhkZWXh448/hrOzM27cuIHk5GT8+c9/Rm5uLgYNGoQPP/wQK1eurDMgpKamYvny5Zg0aRIiIyNRWFiIpKQkXLt2DbGxsQCAffv2YcaMGRg5ciQiIiJQWFiIiIiIen9/mzZtgr29PXx9faHVatGhQwdkZWVh4MCB+ud8/fXXCAgIwB/+8Ae899575vzjJqJn4KBCRAbu3buHzMxMTJo0Sf8PfZ8+fXDr1i0cO3YMjo6OqKqqwqJFi9C6dWsAQFFREb755hvMnj0bU6dOBfDki9g0Gg1SU1MxYcIENG/eHDdv3sSsWbMQGBio//WaNGmCjz76CP/+97/h4eGB9u3bAwC6deuGtm3bQqfTISUlBQEBAZg/f77+ve3t7TF//nyEhITgN7/5DZKTk+Hm5oalS5cCAPr37w8AWLZsWZ3fX1VVFbKzszFixAhotVoAwJgxY/SDzxtvvAEA8PDwAAC0bt1a/3MierH40Q8RGTh58iSqqqowePDgOsfnz5+PtLQ0AIC9vb1+SAGAI0eOQJIk+Pn5oaqqSv/Dz88PFRUVOH78OIAnQ0NwcDBKS0uRn5+PTZs2ITs7GwDw+PHjeus5ceIEHj16VO97A0BeXh4ePXqEs2fPwtfXt85rhw4davB+ubm5uH37Nt555x3cu3cP9+7dg5+fH2pqarBx48ZG/qkRkTnwjAoRGbh79y4AwMHB4ZnPadasWb2vGT58eL3Pv3HjBgCgoKAAMTExKCgoQNOmTdGlSxe0adMGwLPzSmrfu/ZMzdNu3ryJX375BZIkoXnz5nUee/311w2ev2nTJgDABx98YPDYt99+i+nTp/PL4YgUgv8nEpEBOzs7AEBpaSmcnJz0x69evYrLly+jsrLyma9Zt26dwRADPPlK+/LycoSGhsLZ2Rk7duyAk5MTrKyssH//fuTk5Dy3nvj4eHTs2NHgcUdHR9jb28PKygq3b9+u81jtkFPr9u3bOHDgACZMmIB33323zmMnT55EQkICfvjhB/j7+z+zHiJ6cfjRDxEZcHNzg42NDX744Yc6x9PT0zF79my89NJLBq/x9vYGAJSVlaFHjx76H6WlpUhMTMTdu3dx8eJF3L17F0FBQejSpQusrJ78FXTgwAEA0N8eXHu8lru7O2xsbHDjxo06721tbY2EhAQUFxejSZMm8PT0xO7du+ucmdm3b1+d99q2bRuqqqoQHByM3r171/kRHBwMW1tb/P3vf9c//+laiOjF4hkVIjLg4OCAoKAgZGRkQKvVolevXjh16hSysrLwySefoLCw0OA1zs7OGDVqFBYsWICSkhJ0794dRUVFWL58Odq2bYuOHTviwYMHsLW1xapVq2BtbQ1ra2vk5OTow9Zqg9Vqz6Ds2bMHAwYMQOfOnREaGorExESUl5ejd+/euHHjBhITE6HRaODi4gIAmD17NoKDg/GnP/0JAQEBKCoqwqpVq+rUuXnzZri6utZ7Zubll1/GkCFDsHnzZly5cgXt2rWDnZ0dfvrpJxw7dgze3t7QaDSm/KMmoueRiIjqUVNTI6WlpUnvvPOO1L17d+ndd9+VsrKyJEmSpDlz5ki+vr4Gr6msrJS+/PJL6e2335ZcXV2lAQMGSNHR0VJZWZn+OUeOHJF+//vfS25ubpKPj480efJkKT8/X/L09JTi4uIkSZKk8vJy6YMPPpBcXV2lsLAw/WvXr18vDRs2THJ1dZX69Okjffzxx1JJSUmdGvLy8qSxY8dKPXr0kIYOHSrt27dP6tq1q7Rp0ybp5MmTUteuXaW0tLRn/r7/+c9/Sl27dpWWLl0qSZIkpaenS97e3pK7u7vBr0VE5qeRJH7bFhERESkTP3wlIiIixeKgQkRERIrFQYWIiIgUi4MKERERKRYHFSIiIlIsDipERESkWBxUiIiISLE4qBAREZFicVAhIiIixeKgQkRERIrFQYWIiIgUi4MKERERKdZ/AVxk8jPgk+eJAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAMyCAYAAABDwurxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChaklEQVR4nOzdd1QU5+M18Ls0RRGx0PyiAVFBNEoXYkejib3GJGrsGkswNuwVxQI2bEGxgLH3qEmsiUYDCtgVJCLYARERQWAX2PcPX/aXFTSKuzuzy/2ck5MwMwt3M67cKc8zErlcLgcRERGRCOkJHYCIiIjobVhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIhEiPMwlh1i2tdiykJUhEWF6AP1798fDg4Oin8cHR3h4uKCHj16IDw8HPn5+Urb+/j4YMqUKe/9/U+dOoXJkyf/53ZTpkyBj49PqX9OaT18+BAODg7Yv39/sXVSqRStWrVC9+7dkZOTo7YM/fv3R//+/dX2/TXln3/+wTfffKOS73XhwgU4ODjgwoULxdYlJSXBwcEBTZo0gVQqLbZeKpUiICAAhw8fVkkWIlUyEDoAkTZycnLC7NmzAQAFBQV48eIFzp49i4ULFyI6OhorVqyAnt7r44DVq1fDxMTkvb/3li1b3mu7UaNG4bvvvvvg7B/LwsICu3btQq1atYqt27NnD/Lz87Fu3ToYGxtrPJu2+f3333H58mW1/5x9+/bB3t4e9+7dw++//44uXboorU9NTUVYWBgWLlyo9ixEH4pFhagUTExM4OzsrLTMx8cHtWvXxoIFC3DkyBHFLwMnJye1ZCipKGiCkZFRsfdepE2bNvjyyy9RtWpVzYaityooKMDBgwfRp08fXL58GTt37ixWVIjEjJd+iFSoX79+sLS0xM6dOxXL3rwkU1RiGjVqBC8vL0ycOBEpKSkAXl/SuHjxIi5evKg4jV90Sn/nzp1o3bo1XF1dcf78+WKXfgBAJpNh/vz58PDwgLu7OyZPnoz09HTF+pIumZR0yeDu3bsYM2YMPD094eHhgREjRiAhIQFAyZd+kpKS4Ovri549e8LHxwf9+/dHTEyMYn3Ra3777Tf4+vrCxcUFnp6emDFjBl69evXO/6ePHz/GmDFj4ObmhqZNm2Lz5s0lbrdnzx507NgRDRs2RKtWrbBq1SoUFBS883tLpVKsWLECbdq0QaNGjdCpUyccOHBA6f/XxIkT4evrC2dnZwwaNAgAkJeXhyVLlqBly5Zo2LAhOnfujF9//VXpe+fm5mLp0qVo164dGjZsCFdXVwwaNAixsbEAgFWrVmH16tUAAAcHB6xatQoAUFhYiPXr1+Pzzz9Hw4YN0b59e2zdurVY9p07d6J9+/Zo1KgR+vXrh8ePH5f4Hs+dO4fU1FS0atUKXbp0QUxMDO7cuaNY//DhQ7Rp0wYAMHXq1GJ/poiExqJCpEJ6enrw9vbGtWvXit2rAgAxMTHw8/NDu3btsGHDBkydOhWRkZGYMGECAGD27NlwcnKCk5MTdu3ahQYNGiheu3r1akyePBmzZs2Ci4tLiT//t99+w82bN7Fo0SJMnjwZf/75J4YNG/afv7D/LSUlBX369EFSUhLmzJmDwMBApKWlYcCAAcjIyCi2/Z07d9CjRw88fPgQM2bMQFBQECQSCQYMGICLFy8qbTt79mz873//w9q1azFkyBDs3bsX69ate2uWV69eoV+/foiPj4e/vz9mzpyJPXv2FLtcEhISgpkzZ8Lb2xs//fQT+vbtiw0bNmDmzJnvfK8TJ07E5s2b0bt3b4SEhKBZs2aYMmUKjhw5otjmt99+Q8WKFbFu3ToMHToUcrkco0ePxs6dOzFo0CCsW7cOLi4uGDduHA4ePKh4nZ+fH/bt24fhw4dj06ZNmDp1Kv755x9MmDABcrkcvXv3Rq9evQAAu3btQu/evQEAc+bMQXBwMLp06YKffvoJX3zxBQICArBmzRrF9/75558xe/ZstGzZEmvXrkXjxo3f+l737duHunXromHDhmjXrh0qVqyoVKQtLCwUhWnkyJGK/yYSC176IVKx6tWrQyaTISMjA9WrV1daFxMTg/Lly2P48OEwMjICAJiZmeH69euQy+WoU6eO4n6WNy+vfPvtt/jiiy/e+bOrVKmCjRs3okKFCoqvR48ejbNnz6J169bvlX/Lli2QSqXYvHkzzM3NAQCOjo745ptvcPXqVdjb2yttv3r1ahgZGSE8PFyRvVWrVujUqROWLFmCvXv3KrZt2bKl4kZhb29vnD9/Hn/++aeiqL3pwIEDePz4MY4cOYI6deoAABo3bozPP/9csc3Lly+xdu1a9OnTBzNmzAAANGvWDGZmZpgxYwYGDRqEunXrFvve8fHxOHbsGKZNm4YBAwYoMj169AgXLlxAp06dAACGhoaYO3euYn+dP38ef/31F5YvX44OHToAAJo3b46cnBwEBQWhU6dOKCwsRHZ2NmbMmKHYxtPTE1lZWVi0aBHS0tJgZWUFKysrAP+3rxMTE7F7926MHz8ew4cPV7wXiUSCkJAQfPvttzAzM8PatWvRoUMHTJs2TbFNVlaWUgEBgOfPn+P06dMYP348AMDY2BgdOnTAoUOHMGHCBBgbG8PIyAj169cH8PpyorouVRKVFs+oEKlY0RBPiURSbJ2HhwdycnLQqVMnLF26FNHR0WjWrBnGjBlT4vb/VvTL5F1atmypKCnA68tOBgYGiIqKeu/8MTExcHZ2VpQUALCyssIff/yBli1bFtv+4sWLaN26tdINwwYGBujYsSNu3LiB7OxsxfI3y5eVldU7L/1ER0ejVq1aipICANbW1krf5/Lly8jNzYWPjw/y8/MV/xRdwjh//vxb3ycAtGvXTmn5qlWr4O/vr/i6du3aipICABEREZBIJGjZsmWxn/f06VP8888/MDIywsaNG9GhQwekpKQgMjISO3fuxB9//AEAJY68AYDIyEjI5fIS30teXh5iYmJw9+5dPHv2rFjx/PLLL4t9v19++QUFBQVo1aoVMjMzkZmZic8//xyZmZnFLlURiRXPqBCpWEpKCsqXLw8zM7Ni61xcXLB+/Xps2bIFmzdvxvr161G9enV8//33/znc9t8F5G3+XS6A15eiqlSpgszMzPfOn5GRARsbm/fe/sWLF8XOHAGvzyzJ5XJkZWUplr05EkhPT++dc3e8ePECVapUKbbc3NwcaWlpirwAFGcg3pSamlri8qLXVatW7a0/HwAqVqxY7HVyuRyurq5v/Xn169fHX3/9hYCAANy9excVK1aEo6OjYh++7T0XZerYsWOJ61NSUhQ3Kr/5/+XNfQ8A+/fvR2FhYYklZufOnejZs2eJP4dITFhUiFQoPz8fFy5cgKurK/T19Uvcpnnz5opLBZGRkQgPD8f8+fPRuHFjNGrU6KN+/pv3kBQUFOD58+dKv4zfvF/lzTMalSpVUroBt0hERARsbGyKnfmpXLmyojT829OnTwG8/oX6trLwX6pUqYJ79+4VW/7v92lqagoACAoKgq2tbbFtSypR/35denq64hIMACQkJCAjIwNubm4lvq5SpUqoUKECwsPDS1z/ySef4P79+xg9ejTatm2LkJAQ1KxZExKJBNu2bcNff/1V4uv+nSksLKxYQQKAGjVqKErns2fPlNa9ue9v3ryJuLg4+Pr6wt3dXWndiRMnsHXrVsTGxr7XmToiIfHSD5EK7dq1C0+fPn3rJF6LFy9Gz549IZfLYWxsjNatWyvu2SgatVE0/0ppnD9/Xukm3mPHjiE/Px9NmjQB8HpYdXJystJr/j06BwDc3d1x9epVpbLy7NkzDB06FGfOnCn2Mz08PPDHH38onTkpKCjA0aNH8emnnypdNvlQXl5eePjwIa5fv65Ylp6ejitXrii+bty4MQwNDZGSkoJPP/1U8Y+BgQGWLVuGhw8flvi9i4rI6dOnlZYHBQVhwYIFb83k6emJV69eQS6XK/28+Ph4rFmzBvn5+bhx4wby8vIwfPhw1KpVS1HuikpK0RmVN/d1UaF4/vy50vdOT0/HypUrkZGRAVtbW1hbW+P3339Xem3RZaUi+/btQ7ly5TBgwAA0adJE6Z8hQ4ZAT08PO3bsAIC3lmoiMeAZFaJSyMrKUvyyLCwsxPPnz3Hu3Dns2rULXbp0KXbfQxEvLy9s3rwZU6ZMQZcuXSCTyRAaGgozMzN4eXkBeH1UffnyZURERHzwjY1Pnz7FDz/8gP79+yMpKQnLli1D06ZN4e3tDQBo3bo1Tp8+jYULF8LHxwfR0dFKI1UAYODAgTh48CCGDh2KESNGwNDQEOvWrYOVlRU6d+6Mly9fKm0/ZswYnD17Ft999x2GDx8OQ0ND/Pzzz3jw4AFCQ0M/KP+bunbtivDwcIwZMwbjxo2DiYkJ1q1bh8LCQsU2VapUwdChQ7Fy5UpkZWWhSZMmSElJwcqVKyGRSODo6Fji93Z0dMQXX3yBwMBA5Obmon79+jh79iz++OOPd458admyJTw8PDBq1CiMGjUK9vb2uHbtGoKDg9G8eXNUrVoVDRo0gIGBAQIDAzF48GBIpVLs378ff/75J4D/O4tVdAblyJEjaNy4MRwcHNClSxfMnDkTjx49QsOGDZGYmIjly5fDxsYGtra2kEgkmDhxIiZMmIAZM2bgiy++wJUrVxSlA3h9D8yRI0fQqlWrEicbtLa2hqenJw4fPgw/Pz9UqlQJwOuzZvb29mjcuPGH7SgiNWJRISqFW7duoU+fPgBe3zRbsWJF1KtXD3PmzFEMMy1Jy5YtERQUhE2bNiluoHVzc0N4eLjinpa+ffvixo0bGDZsGBYuXAgLC4v3zvXtt9/i5cuXGD16NIyMjNC5c2dMmjRJcUTfs2dP3L9/HwcOHMDOnTvh4eGB4OBgpTNA1tbW2L59OwIDAzFlyhQYGRmhSZMmWL58OSpXrlysqNStWxfbt2/HsmXLMHXqVEgkEjRq1Ajh4eHFLjl8KCMjI4SFhSEgIAALFiyARCLBV199hZo1aypd+vjxxx9hbm6O7du3IzQ0FJUrV4a3tzfGjx+v+CVcksDAQKxevRphYWF4/vw57O3tERwcjLZt2771NXp6eli/fj1WrlyJkJAQPHv2DJaWlhg0aBBGjx4N4PXln6VLl2L16tUYOXIkKleuDGdnZ2zduhX9+/dHdHQ0HBwc0K5dOxw6dAhTpkxBr169MGfOHCxcuBAhISHYuXMnkpOTUa1aNXTo0AE//vij4sxHp06doKenh7Vr1+LQoUOoV68e5s2bpxjdc/LkSbx48UIx4qgk3bp1Q2RkJA4fPoxvvvkGgwYNwq5du3DmzBmcP38ehoaGH7SviNRFIudTqIiIiEikeI8KERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJltbPo3L58mXI5XKO+SciItIiMpkMEokELi4u79xO68+oyOXydz7UTFfJ5XJIpdIy+d7LIu7vsoX7u2wpq/v7fX9/a/0ZlaIzKZ9++qnASTTr1atXiI2NRZ06dd7rqbqk3bi/yxbu77KlrO7vfz/D6120/owKERER6S4WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEq0PLiopKSlwcHAo9s/+/fsBALGxsejXrx+cnZ3h4+OD8PBwpdcXFhYiODgYzZs3h7OzM4YNG4YHDx6o5t0QERGRTvngZ/3ExcWhXLlyOHnyJCQSiWJ5pUqV8Pz5cwwaNAg+Pj6YO3curly5grlz56JixYro2bMnAGDt2rXYvn07Fi1aBCsrKwQGBmLo0KE4fPgwjIyMVPfOiIiISOt9cFGJj4+Hra0tLCwsiq0LCwuDoaEh5s2bBwMDA9jb2+PevXtYv349evbsCalUik2bNmHixIlo1aoVAGD58uVo3rw5jh8/jk6dOn30GyIiIiLd8cGXfm7fvg17e/sS10VHR8PT0xMGBv/Xf7y8vJCUlIS0tDTExcUhOzsb3t7eivWmpqZwcnJCVFRUKeITERGRLvvgohIfH4/09HT07dsXn332Gb755hucPXsWAJCcnAwrKyul7YvOvDx58gTJyckAAGtr62LbFK0jIiIiKvJBl37y8/Nx9+5d1KlTB1OmTIGJiQmOHj2K4cOHY/PmzcjNzS12n0m5cuUAAHl5ecjJyQGAErd58eJFqd+EXC7Hq1evSv36j/Hv+3Q0SSqVwtjYGFKpVLAMcrlckJ9bFhV9dor+TbqN+7tsKav7Wy6Xv9fvrw8qKgYGBrhw4QL09fVRvnx5AEDDhg3xzz//YOPGjShfvjykUqnSa/Ly8gAAFSpUULxGKpUq/rtoG2Nj4w+JokQmkyE2NrbUry8tQ0NDODk1gIGBvsZ/trGxMczMzDT+c4vk5xfg1q2bkMlkgmUoi5KSkoSOQBrE/V22lMX9/T6DaD74ZtqKFSsWW1a3bl2cO3cOVlZWSE1NVVpX9LWlpSXy8/MVy2rVqqW0jYODw4dGUTA0NESdOnVK/frSkkgkMDDQR9C2GDxMeanxny8UG8tKmNjXDXXr1uVZFQ3JyclBUlISbG1tP6rUk3bg/i5byur+vnPnzntt90FF5Z9//kGfPn2wbt06NGnSRLH8xo0bqFOnDurXr4+dO3eioKAA+vqvzzJERkbCzs4O1apVQ6VKlWBiYoILFy4oikpmZiZu3bqFfv36fUgUJRKJBBUqVCj16z/Ww5SXSHhU+ktX2qosfaDEwtjYWNA/66RZ3N9lS1nb3+9728IH3Uxrb2+P2rVrY968eYiOjkZCQgIWLlyIK1euYOTIkejZsyeysrIwffp03LlzB/v378eWLVswYsQIAK9P8fTr1w9BQUE4deoU4uLiMG7cOFhZWaFdu3Yf/i6JiIhIp33QGRU9PT389NNPWLp0KX788UdkZmbCyckJmzdvRr169QAAoaGhWLBgAbp37w5zc3P4+fmhe/fuiu/h6+uL/Px8zJgxA7m5ufDw8MDGjRthaGio2ndGREREWu+D71GpXr06Fi5c+Nb1jRo1wq5du966Xl9fH5MmTcKkSZM+9EcTERFRGcOHEhIREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaJW6qCQmJsLFxQX79+9XLIuNjUW/fv3g7OwMHx8fhIeHK72msLAQwcHBaN68OZydnTFs2DA8ePCg9OmJiIhIp5WqqMhkMkycOBGvXr1SLHv+/DkGDRqEWrVqYd++fRg9ejSCgoKwb98+xTZr167F9u3b4e/vj507d6KwsBBDhw6FVCr9+HdCREREOqdURWXVqlUwMTFRWrZ7924YGhpi3rx5sLe3R8+ePTFw4ECsX78eACCVSrFp0yb4+vqiVatWcHR0xPLly5GcnIzjx49//DshIiIinfPBRSUqKgq7du3CokWLlJZHR0fD09MTBgYGimVeXl5ISkpCWloa4uLikJ2dDW9vb8V6U1NTODk5ISoq6iPeAhEREekqg//e5P9kZmbCz88PM2bMgLW1tdK65ORk1KtXT2mZhYUFAODJkydITk4GgGKvs7CwUKwrLblcrnQZSlMkEgmMjY01/nPFIicnB3K5XOgYZUJOTo7Sv0m3cX+XLWV1f8vlckgkkv/c7oOKypw5c+Di4oLOnTsXW5ebmwsjIyOlZeXKlQMA5OXlKXZASdu8ePHiQ2IUI5PJEBsb+1HfozSMjY3h5OSk8Z8rFomJiWXugyW0pKQkoSOQBnF/ly1lcX+/2QlK8t5F5eDBg4iOjsbhw4dLXF++fPliN8Xm5eUBACpUqIDy5csDeH2vStF/F23zsWclDA0NUadOnY/6HqXxPk1Ql9nZ2fGMiobk5OQgKSkJtra2ZfosXlnB/V22lNX9fefOnffa7r2Lyr59+/Ds2TO0atVKafns2bPx66+/wsrKCqmpqUrrir62tLREfn6+YlmtWrWUtnFwcHjfGCWSSCSoUKHCR30P+nBl6QMlFsbGxvyzXoZwf5ctZW1/v+/B/nsXlaCgIOTm5iota9euHXx9fdGlSxccOnQIO3fuREFBAfT19QEAkZGRsLOzQ7Vq1VCpUiWYmJjgwoULiqKSmZmJW7duoV+/fu8bg4iIiMqQ9y4qlpaWJS6vVq0aLC0t0bNnT4SGhmL69OkYOnQorl27hi1btmDu3LkAXl+H6tevH4KCglC1alX873//Q2BgIKysrNCuXTvVvBsiIiLSKR90M+27VKtWDaGhoViwYAG6d+8Oc3Nz+Pn5oXv37optfH19kZ+fjxkzZiA3NxceHh7YuHEjDA0NVRWDiIiIdMhHFZXbt28rfd2oUSPs2rXrrdvr6+tj0qRJmDRp0sf8WCIiIioj+FBCIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEi0WFSIiIhItFhUiIiISLRYVIiIiEq0PLirPnj3DpEmT4OXlBRcXFwwfPhwJCQmK9bGxsejXrx+cnZ3h4+OD8PBwpdcXFhYiODgYzZs3h7OzM4YNG4YHDx58/DshIiIinfPBRWX06NG4d+8e1q9fj71796J8+fIYOHAgcnJy8Pz5cwwaNAi1atXCvn37MHr0aAQFBWHfvn2K169duxbbt2+Hv78/du7cicLCQgwdOhRSqVSlb4yIiIi0n8GHbPzixQv873//w4gRI1CvXj0AwKhRo9C1a1f8888/iIiIgKGhIebNmwcDAwPY29srSk3Pnj0hlUqxadMmTJw4Ea1atQIALF++HM2bN8fx48fRqVMnlb9BIiIi0l4fdEalcuXKWLp0qaKkpKenY8uWLbCyskKdOnUQHR0NT09PGBj8X//x8vJCUlIS0tLSEBcXh+zsbHh7eyvWm5qawsnJCVFRUSp6S0RERKQrPuiMyr/NnDkTu3fvhpGREdatW4cKFSogOTlZUWKKWFhYAACePHmC5ORkAIC1tXWxbYrWlYZcLserV69K/frSkkgkMDY21vjPFYucnBzI5XKhY5QJOTk5Sv8m3cb9XbaU1f0tl8shkUj+c7tSF5UBAwagT58+2LZtG0aPHo3t27cjNzcXRkZGStuVK1cOAJCXl6fYCSVt8+LFi9JGgUwmQ2xsbKlfX1rGxsZwcnLS+M8Vi8TExDL3wRJaUlKS0BFIg7i/y5ayuL/f7AMlKXVRqVOnDgBgwYIFuHr1Kn7++WeUL1++2E2xeXl5AIAKFSqgfPnyAACpVKr476JtPubMhKGhoSKPJr1PE9RldnZ2PKOiITk5OUhKSoKtrW2ZPotXVnB/ly1ldX/fuXPnvbb7oKKSnp6OiIgItG/fXnEfip6eHurUqYPU1FRYWVkhNTVV6TVFX1taWiI/P1+xrFatWkrbODg4fEgUJRKJBBUqVCj166l0ytIHSiyMjY35Z70M4f4uW8ra/n7fg/0Pupk2LS0N48ePR0REhGKZTCbDrVu3YG9vDw8PD8TExKCgoECxPjIyEnZ2dqhWrRocHR1hYmKCCxcuKNZnZmbi1q1b8PDw+JAoREREVAZ8UFGpV68eWrRogfnz5yMqKgrx8fGYMmUKMjMzMXDgQPTs2RNZWVmYPn067ty5g/3792PLli0YMWIEgNfXovr164egoCCcOnUKcXFxGDduHKysrNCuXTu1vEEiIiLSXh98j8qyZcuwdOlSjBs3Di9fvoS7uzu2bduGGjVqAABCQ0OxYMECdO/eHebm5vDz80P37t0Vr/f19UV+fj5mzJiB3NxceHh4YOPGjTA0NFTduyIiIiKd8MFFpVKlSpgzZw7mzJlT4vpGjRph165db329vr4+Jk2ahEmTJn3ojyYiIqIyhg8lJCIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0WJRIdICEokExsbGkEgkQkchItIoA6EDEGmTwkI59PQ0XxaMjY3h5OSk8Z9bRKj3TUTEokL0AfT0JAjaFoOHKS+FjqIxNpaVMLGvm9AxiKiMYlEh+kAPU14i4dELoWMQEZUJvEeFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIRItFhYiIiESLRYWIiIhEi0WFiIiIROuDi0pGRgZmzZqFFi1awNXVFd988w2io6MV6yMiItCjRw80btwYX3zxBY4ePar0+ry8PMydOxfe3t5wcXHBhAkTkJ6e/vHvhIiIiHTOBxeV8ePH4/Lly1i2bBn27duH+vXrY8iQIbh79y4SEhIwYsQING/eHPv370fv3r3h5+eHiIgIxevnzJmDc+fOYdWqVQgLC8Pdu3fh6+ur0jdFREREusHgQza+d+8ezp8/j+3bt8PNzQ0AMHPmTPz11184fPgwnj17BgcHB4wbNw4AYG9vj1u3biE0NBTe3t5ISUnBwYMH8dNPP8Hd3R0AsGzZMnzxxRe4fPkyXFxcVPz2iIiISJt90BmVKlWqYP369fj0008VyyQSCSQSCTIzMxEdHQ1vb2+l13h5eSEmJgZyuRwxMTGKZUXs7OxgaWmJqKioj3kfREREpIM+6IyKqakpWrZsqbTs2LFjuHfvHqZNm4YDBw7AyspKab2FhQVycnLw/PlzpKSkoEqVKihXrlyxbZKTk0v5FgC5XI5Xr16V+vWlJZFIYGxsrPGfKxY5OTmQy+VCx9AY7u+ytb+FlJOTo/Rv0m1ldX/L5XJIJJL/3O6DisqbLl26hKlTp6Jdu3Zo1aoVcnNzYWRkpLRN0ddSqRQ5OTnF1gNAuXLlkJeXV+ocMpkMsbGxpX59aRkbG8PJyUnjP1csEhMTy9QHi/u7bO1vMUhKShI6AmlQWdzfJXWCN5W6qJw8eRITJ06Eq6srgoKCALwuHFKpVGm7oq+NjY1Rvnz5YuuB1yOBPuZI1dDQEHXq1Cn160vrfZqgLrOzsytTR9jc32VrfwspJycHSUlJsLW1LdNn8cqKsrq/79y5817blaqo/Pzzz1iwYAG++OILLF68WNGIrK2tkZqaqrRtamoqKlSogEqVKsHKygoZGRmQSqVKLSo1NRWWlpaliQLg9S+QChUqlPr1VDpl6QNF3N9CMDY25t9tZUhZ29/ve/D3wcOTt2/fDn9/f/Tt2xfLli1TKhzu7u64ePGi0vaRkZFwdXWFnp4e3NzcUFhYqLipFnh9OjklJQUeHh4fGoWIiIh03AcVlcTERAQEBODzzz/HiBEjkJaWhqdPn+Lp06d4+fIl+vfvj2vXriEoKAgJCQnYtGkTfv/9dwwdOhQAYGlpiY4dO2LGjBm4cOECrl27hvHjx8PT0xPOzs7qeH9ERESkxT7o0s+xY8cgk8lw4sQJnDhxQmld9+7dsWjRIqxduxaBgYEICwuDjY0NAgMDlYYs+/v7IyAgAGPGjAEAtGjRAjNmzFDBWyEiIiJd80FF5fvvv8f333//zm1atGiBFi1avHV9hQoVMH/+fMyfP/9DfjQRERGVQXwoIREREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYnWRxWVkJAQ9O/fX2lZbGws+vXrB2dnZ/j4+CA8PFxpfWFhIYKDg9G8eXM4Oztj2LBhePDgwcfEICIiIh1V6qKybds2rFixQmnZ8+fPMWjQINSqVQv79u3D6NGjERQUhH379im2Wbt2LbZv3w5/f3/s3LkThYWFGDp0KKRSaanfBBEREekmgw99QUpKCmbPno0LFy7A1tZWad3u3bthaGiIefPmwcDAAPb29rh37x7Wr1+Pnj17QiqVYtOmTZg4cSJatWoFAFi+fDmaN2+O48ePo1OnTqp4T0RERKQjPviMys2bN2FoaIhffvkFjRs3VloXHR0NT09PGBj8X//x8vJCUlIS0tLSEBcXh+zsbHh7eyvWm5qawsnJCVFRUR/xNoiIdIdEIoGxsTEkEonQUYgE98FnVHx8fODj41PiuuTkZNSrV09pmYWFBQDgyZMnSE5OBgBYW1sX26ZoXWnI5XK8evWq1K8vraK/TMqqnJwcyOVyoWNoDPd32dvfRuXKQV9P82MOjI2N4eTkpPGfW6SgsBDSvLwytb+FlJOTo/TvskIul79XGf/govIuubm5MDIyUlpWrlw5AEBeXp5iJ5S0zYsXL0r9c2UyGWJjY0v9+tIS+i8ToSUmJpapDxb3d9nc30HbYvAw5aXQcTTGxrISJvZ1K3P7WwySkpKEjqBxb/aBkqi0qJQvX77YTbF5eXkAgAoVKqB8+fIAAKlUqvjvom0+5kjV0NAQderUKfXrS6usn5a1s7MrU0dc3N9lc38/THmJhEelP5DSVmVtfwspJycHSUlJsLW1LVNnbe/cufNe26m0qFhZWSE1NVVpWdHXlpaWyM/PVyyrVauW0jYODg6l/rkSiQQVKlQo9eupdMrSB4q4v8sa7m/NMzY2LlO/y9734E+lF189PDwQExODgoICxbLIyEjY2dmhWrVqcHR0hImJCS5cuKBYn5mZiVu3bsHDw0OVUYiIiEgHqLSo9OzZE1lZWZg+fTru3LmD/fv3Y8uWLRgxYgSA19ei+vXrh6CgIJw6dQpxcXEYN24crKys0K5dO1VGISIiIh2g0ks/1apVQ2hoKBYsWIDu3bvD3Nwcfn5+6N69u2IbX19f5OfnY8aMGcjNzYWHhwc2btwIQ0NDVUYhIiIiHfBRRWXRokXFljVq1Ai7du1662v09fUxadIkTJo06WN+NBEREZUBfCghERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChEREYkWiwoRERGJFosKERERiRaLChERkYAkEgmMjY0hkUiEjiJKBkIHICIiEoPCQjn09DRfFoyNjeHk5KTxn1tEqPf9vlhUiIiIAOjpSRC0LQYPU14KHUVjbCwrYWJfN6FjvBOLChER0f/3MOUlEh69EDoG/QvvUSEiIiLRYlEhIiIi0WJRISIiItFiUSEiIiLRYlEhIiIi0RKkqBQWFiI4OBjNmzeHs7Mzhg0bhgcPHggRhYiIiERMkKKydu1abN++Hf7+/ti5cycKCwsxdOhQSKVSIeIQERGRSGm8qEilUmzatAm+vr5o1aoVHB0dsXz5ciQnJ+P48eOajkNEREQipvGiEhcXh+zsbHh7eyuWmZqawsnJCVFRUZqOQ0RERCKm8aKSnJwMALC2tlZabmFhoVhHREREBAgwhX5OTg4AwMjISGl5uXLl8OLFh09bLJPJIJfLce3aNZXk+1ASiQS9vCshv6CiID9fCAb6erh+/TrkcrnQUTSO+7ts4f4uW7i/NUsmk73XE6M1XlTKly8P4PW9KkX/DQB5eXkwNjb+4O9X9CaFfDx2ZROj/95IB5XVR5Jzf5ct3N9lC/e3Zn+mKItK0SWf1NRU1KpVS7E8NTUVDg4OH/z9XFxcVJaNiIiIxEXj96g4OjrCxMQEFy5cUCzLzMzErVu34OHhoek4REREJGIaP6NiZGSEfv36ISgoCFWrVsX//vc/BAYGwsrKCu3atdN0HCIiIhIxjRcVAPD19UV+fj5mzJiB3NxceHh4YOPGjTA0NBQiDhEREYmURF4Wb+0mIiIircCHEhIREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoEBERkWixqBAREZFosagQERGRaLGoaBm5XA5fX188ePBA6CikIX/++SdevXoldAzSkG3btuHFixdCxyANiY+Ph0wmEzqGqLGoiFx+fj6ePn2KR48eIT4+HgsWLMDVq1cxffp0REdH48GDB3jy5AmePn0KTjKsey5duoTvv/8eO3fuFDoKacDvv/+OhQsX4qeffuIvrzLg3r176Nq1K37//Xeho4gap9AXsb179yIgIAA5OTkAXp9NcXV1xYoVK7BmzRocPHgQUqlUsa5SpUqYOXMmunTpImRsKqX79+8jNDQUjx49glQqRXZ2NhITEzF79mwEBQXB2NgYFhYWMDAwgIGBAWxtbTFs2DBYWVkJHZ1K4dq1a1i5cqXS/i4oKMCqVasQEBCA+/fvo0qVKkr7+8cff4Sjo6PQ0akUnj9/jj179uDhw4eQyWTIzs5GZGQkBgwYgE2bNqFhw4awtLRU2t99+vRBxYoVhY4uOBYVEfP09MT48ePRtGlTGBgYwNTUVOkPbX5+Pp4/fw6ZTIb8/HycPn0a69atw4ULFwRMTaXVrVs3VKtWDY0bN4a+vj4qV64Mb29v2Nvb4+XLl/jjjz+QnJwMqVSK/Px8xMTEIDs7G/v37xc6OpXC559/Dnd3d7i7uyv2t4uLC8zMzFBQUIArV64gOTkZMpkMMpkMkZGRuHHjBo4dOyZ0dCqF/v3748WLF6hfv75ifzdr1gxNmzbF/fv3cfToUTx58kTx9/mNGzdgbm6O8PBwoaMLTpCnJ9P7adOmDTp16gQTE5MS1xsYGMDc3FzxdY8ePXD79m1NxSMVi4+Px6lTp2BtbV1sXaVKlYqdKXvw4AHatWunqXikYnK5HBMmTED16tWLrdPX14ebm5vSshYtWuDbb7/VVDxSsZiYGBw7dgw1a9Ystq5WrVoYOXKk0rLExER07NhRU/FEjWdUtER6ejqePHmCvLw8VKhQARYWFqhatarQsYiI6D08evQINWrUgEQiea/tCwsL8eTJE/zvf/9TczLxY1ERuQMHDmD9+vVISkoCAMUNsxKJBHZ2dhgxYgS6du0qYEJSpYyMDOzevRvR0dF48uQJpFIpjI2NYWlpCQ8PD/Tq1QtmZmZCxyQVuXv3LsLCwkrc3+7u7hgwYADs7OyEjkkqkp+fj+PHjyMqKqrEz3e7du2gr68vdEzRYVERsa1btyIoKAgDBw6El5cXLCwsYGRkBKlUitTUVERERCA8PBx+fn48JawDYmNjMWjQIBgbG8Pd3R0WFhYoV64c8vLykJqaiujoaOTl5WHz5s1wcHAQOi59pIiICIwYMQJOTk6Kz/e/93dkZCRu376NkJAQeHp6Ch2XPtLDhw8xZMgQpKSkwMnJqdj+vnXrFmrUqIHQ0FDUqFFD6LiiwqIiYm3atMGYMWPQvXv3t26zf/9+rF27FidPntRgMlKHvn37wsbGBgEBASUeVRUUFGDq1Kl48uQJtm7dKkBCUqUePXrAy8sLfn5+b91myZIluHDhAvbt26fBZKQOw4cPR0FBAVasWIFKlSoVW5+ZmYlx48bB0NAQP/30kwAJxYvzqIhYeno6Gjdu/M5tGjdujKdPn2ooEanTjRs3MHz48Lee+tXX18eIESNw48YNDScjdUhISEDv3r3fuU2vXr2QkJCgoUSkTlFRUfDz8yuxpACAqakpJk2ahKioKA0nEz8WFRFr2LAhNm/ejMLCwhLXy+VyhIaGon79+hpORupgbm6OuLi4d25z/fp13qOiI2xsbPD333+/c5uzZ8/C0tJSQ4lInSpVqoSUlJR3bvP48WOUL19eQ4m0B4cni9i0adMwePBgnD17Fh4eHrC2tla6RyU6OhpZWVnYuHGj0FFJBQYNGoTp06fj9u3b8PLygpWVldL+vnjxIjZv3gxfX1+ho5IKjBkzBpMmTUJMTAy8vb1L3N9Hjx5FQECA0FFJBXr16oUpU6Zg7Nix8PLyUvr7PCUlBRcvXkRQUBB69eoldFTR4T0qIpeRkYFdu3YhJiYGycnJyM3NRbly5WBtbQ13d3f06tWLw5R1yIEDBxASEoKkpCTFMMaij6idnR0GDx78n5cLSHtERkZiw4YNuHTpkmIGagAwNjaGm5sbBg0ahKZNmwqYkFRFLpdjzZo12Lx5c4nP7qpYsSL69u2LsWPHQk+PFzv+jUWFSITS09ORnJyMnJwclC9fHtbW1iykOkwulyMzM1NxIMLLe7pLJpMhNjYWKSkpis+3lZUVHB0dYWRkJHQ8UeKlH5HjuPuyRyaT4eHDh0hOTkZeXh6MjY0hl8thamoKAwN+ZHVNamqq4oxp0f62srKCq6ur0szTpBsMDQ1hY2MDfX19pQk8WVLejmdURIzj7suWolPDYWFhePnyZbH1JiYmGDx4MEaNGiVAOlK13NxczJ07FwcPHoREIoGZmZni852RkQGJRIJu3bph9uzZ/CWmI0qawLPoEi8n8Hw7Hp6J2Lx582BjY4O9e/e+c9z9vHnzOO5eBwQHB2P79u2YNGlSiROARUREYNmyZSgsLMSYMWOEjksfqWiOlNDQUHh6esLQ0FCxTiaT4cKFC5g9ezYWL16MmTNnCpiUVOF9JvCcPXs2srOzOYHnm+QkWs7OzvK4uLh3bhMbGyt3dXXVUCJSp6ZNm8pPnjz5zm1OnDghb9GihYYSkTp5enrKIyMj37lNRESE3NvbW0OJSJ18fHzk+/fvf+c2+/btk7dp00ZDibQHby0WMY67L1tycnJga2v7zm1q1qyJFy9eaCYQqZVcLkflypXfuU3FihWRm5uroUSkTpzAs/RYVESsaNz9rl27cO/ePUilUgCAVCrFgwcPsG/fPkyfPh09evQQOCmpgru7O4KCgpCVlVXi+uzsbCxduhRubm4aTkbq0Lx5c8yaNQuJiYklrn/w4AHmzp2LFi1aaDgZqQMn8Cw93kwrYnKOuy9THj16hMGDByM5ORlOTk7FJvi7efMmLCwsEBoaipo1awodlz5SRkYGfvjhB0RHR8Pc3LzY/k5OToaLiwtWr17Noek6IDY2FoMHD4aRkdF/TuDZsGFDoeOKCouKFuC4+7IjPz8fv//+e4kT/Hl4eKBt27bc5zrm8uXLiI6ORkpKCnJzcxWfbw8Pj/+8VEDahRN4lg6LipZIT0/HkydPlMbd8w80ERHpOg5PFjmOuy9bMjIysHv3bkRHR5c4wV+vXr04a6kOuXv3LsLCwkrc3+7u7hgwYADs7OyEjkkqwgk8S4dnVETsfcbdh4eHw8/Pj+PudUBsbCwGDRoEY2NjuLu7F5tHJTo6Gnl5edi8eTMcHByEjksfKSIiAiNGjICTk1OJ8+ZERkbi9u3bCAkJgaenp9Bx6SNxAs/SY1ERsTZt2mDMmDHo3r37W7fZv38/1q5di5MnT2owGalD3759YWNjg4CAgBKPqgoKCjB16lQ8efIEW7duFSAhqVKPHj3g5eUFPz+/t25TNCncvn37NJiM1GH48OEoKCjAihUr3jmBp6GhISfwfAOHiogYx92XLTdu3MDw4cPfeupXX18fI0aMwI0bNzScjNQhISHhP5+E3atXLyQkJGgoEalTVFQU/Pz8SiwpAGBqaopJkyYhKipKw8nEj0VFxDjuvmwxNzdHXFzcO7e5fv0671HRETY2Nvj777/fuc3Zs2dhaWmpoUSkTpzAs/R4M62ITZs2DYMHD8bZs2f/c9w9ab9BgwZh+vTpuH37Nry8vGBlZaW0vy9evIjNmzfD19dX6KikAmPGjMGkSZMQExMDb2/vEvf30aNHERAQIHRUUoGiCTzHjh0LLy8vpb/PU1JScPHiRQQFBaFXr15CRxUd3qMichx3X7YcOHAAISEhSEpKUozuKvqI2tnZYfDgwf95uYC0R2RkJDZs2IBLly4hJydHsdzY2Bhubm4YNGgQmjZtKmBCUhVO4Fl6LCpEIpSeno7k5GTFBH/W1tYspDpMLpcjMzNTcSDCy3u6ixN4fjhe+hE5jrsve2QyGR4+fIjk5GTk5eXB2NgYcrkcpqamMDDgR1bXpKamKs6YFu1vKysruLq6wtzcXOh4pGKGhoawsbGBvr6+0gSeLClvxzMqIsZx92VL0anhsLAwvHz5sth6ExMTDB48GKNGjRIgHalabm4u5s6di4MHD0IikcDMzEzx+c7IyIBEIkG3bt0we/Zs/hLTEZzAs3R4eCZi8+bNg42NDfbu3fvOcffz5s3juHsdEBwcjO3bt2PSpEklTgAWERGBZcuWobCwEGPGjBE6Ln2kojlSQkND4enpCUNDQ8U6mUyGCxcuYPbs2Vi8eDFmzpwpYFJShfeZwHP27NnIzs7mBJ5vkpNoOTs7y+Pi4t65TWxsrNzV1VVDiUidmjZtKj958uQ7tzlx4oS8RYsWGkpE6uTp6SmPjIx85zYRERFyb29vDSUidfLx8ZHv37//ndvs27dP3qZNGw0l0h68tVjEOO6+bMnJyYGtre07t6lZsyZevHihmUCkVnK5HJUrV37nNhUrVkRubq6GEpE6cQLP0mNREbGicfe7du3CvXv3IJVKAQBSqRQPHjzAvn37MH36dPTo0UPgpKQK7u7uCAoKQlZWVonrs7OzsXTpUri5uWk4GalD8+bNMWvWLCQmJpa4/sGDB5g7dy5atGih4WSkDpzAs/R4M62IyTnuvkx59OgRBg8ejOTkZDg5ORWb4O/mzZuwsLBAaGgoatasKXRc+kgZGRn44YcfEB0dDXNz82L7Ozk5GS4uLli9ejWHpuuA2NhYDB48GEZGRv85gWfDhg2FjisqLCpagOPuy478/Hz8/vvvJU7w5+HhgbZt23Kf65jLly8jOjoaKSkpyM3NVXy+PTw8/vNSAWkXTuBZOiwqWiI9PR1PnjxRGnfPP9BERKTrODxZ5DjuvmzJyMjA7t27ER0dXeIEf7169eKspTrk7t27CAsLK3F/u7u7Y8CAAbCzsxM6JqkIJ/AsHZ5REbH3GXcfHh4OPz8/jrvXAbGxsRg0aBCMjY3h7u5ebB6V6Oho5OXlYfPmzXBwcBA6Ln2kiIgIjBgxAk5OTiXOmxMZGYnbt28jJCQEnp6eQselj8QJPEuPRUXE2rRpgzFjxqB79+5v3Wb//v1Yu3YtTp48qcFkpA59+/aFjY0NAgICSjyqKigowNSpU/HkyRNs3bpVgISkSj169ICXlxf8/Pzeuk3RpHD79u3TYDJSh+HDh6OgoAArVqx45wSehoaGnMDzDRwqImIcd1+23LhxA8OHD3/rqV99fX2MGDECN27c0HAyUoeEhIT/fBJ2r169kJCQoKFEpE5RUVHw8/MrsaQAgKmpKSZNmoSoqCgNJxM/FhUR47j7ssXc3BxxcXHv3Ob69eu8R0VH2NjY4O+//37nNmfPnoWlpaWGEpE6cQLP0uPNtCI2bdo0DB48GGfPnv3Pcfek/QYNGoTp06fj9u3b8PLygpWVldL+vnjxIjZv3gxfX1+ho5IKjBkzBpMmTUJMTAy8vb1L3N9Hjx5FQECA0FFJBYom8Bw7diy8vLyU/j5PSUnBxYsXERQUhF69egkdVXR4j4rIcdx92XLgwAGEhIQgKSlJMbqr6CNqZ2eHwYMH/+flAtIekZGR2LBhAy5duoScnBzFcmNjY7i5uWHQoEFo2rSpgAlJVTiBZ+mxqBCJUHp6OpKTkxUT/FlbW7OQ6jC5XI7MzEzFgQgv7+kuTuD54XjpR+Q47r7skclkePjwIZKTk5GXlwdjY2PI5XKYmprCwIAfWV2TmpqqOGNatL+trKzg6uoKc3NzoeORihkaGsLGxgb6+vpKE3iypLwdz6iIGMfdly1Fp4bDwsLw8uXLYutNTEwwePBgjBo1SoB0pGq5ubmYO3cuDh48CIlEAjMzM8XnOyMjAxKJBN26dcPs2bP5S0xHcALP0uHhmYjNmzcPNjY22Lt37zvH3c+bN4/j7nVAcHAwtm/fjkmTJpU4AVhERASWLVuGwsJCjBkzRui49JGK5kgJDQ2Fp6cnDA0NFetkMhkuXLiA2bNnY/HixZg5c6aASUkV3mcCz9mzZyM7O5sTeL5JTqLl7Owsj4uLe+c2sbGxcldXVw0lInVq2rSp/OTJk+/c5sSJE/IWLVpoKBGpk6enpzwyMvKd20RERMi9vb01lIjUycfHR75///53brNv3z55mzZtNJRIe/DWYhHjuPuyJScnB7a2tu/cpmbNmnjx4oVmApFayeVyVK5c+Z3bVKxYEbm5uRpKROrECTxLj0VFxIrG3e/atQv37t2DVCoFAEilUjx48AD79u3D9OnT0aNHD4GTkiq4u7sjKCgIWVlZJa7Pzs7G0qVL4ebmpuFkpA7NmzfHrFmzkJiYWOL6Bw8eYO7cuWjRooWGk5E6cALP0uPNtCIm57j7MuXRo0cYPHgwkpOT4eTkVGyCv5s3b8LCwgKhoaGoWbOm0HHpI2VkZOCHH35AdHQ0zM3Ni+3v5ORkuLi4YPXq1RyargNiY2MxePBgGBkZ/ecEng0bNhQ6rqiwqGgBjrsvO/Lz8/H777+XOMGfh4cH2rZty32uYy5fvozo6GikpKQgNzdX8fn28PD4z0sFpF04gWfpsKiIWHR0NFxdXXm2hIiIyiwWFRFzdHTEZ599huXLl//nTXekGw4dOoS9e/fixYsXaNGiBb7//nuYmJgo1qenp6N37944deqUgClJVe7evYuwsDBER0cXm9DR3d0dAwYMgJ2dndAxSQUGDhyI77//Hl5eXkJH0TosKiLm6OiITz75BFlZWZg6dSo6deokdCRSoz179mDu3Lno2rUr9PT0cOTIEVhYWGDz5s2KCf3S0tLQvHlzxMbGCpyWPlZERARGjBgBJyenEufNiYyMxO3btxESEgJPT0+h49JHcnR0hIGBAUaNGoXhw4dzlukPwKIiYvXr18epU6ewdetWbN26FfXq1cOoUaPQtm1boaORGnTu3Bn9+/fHV199BeD10PNhw4YhNzcXO3fuhLm5OYuKDunRowe8vLzg5+f31m2KJoXbt2+fBpOROjg6OmLGjBlYuXIlLC0tMWHCBLRu3VroWFqBNz+ImFwuR7ly5TB58mQcPHgQNjY28PX1RYsWLbB48WKcPXsWqampimHLpN0ePnwIb29vxdc1atRAWFgYJBIJhg4d+tZhy6SdEhIS/vNJ2L169UJCQoKGEpG6ffnllzh8+DAcHBwwcuRIdOvWDbt27eLcSP+BRUVL1KlTB8HBwTh+/Dj69OmDCxcuYMSIEWjRogVHBugICwsL3Lx5U2lZ9erVsX79eiQnJ2PkyJGc/EuH2NjY4O+//37nNmfPnoWlpaWGEpEmWFlZYenSpTh06BDq16+PRYsWoVmzZvjqq68wa9YsLFu2TOiIosNLPyLm6OiI8+fPo1q1aiWuz8rKQlxcHJ4+fYovv/xSw+lI1UJDQ7FhwwYMGTIEXbt2VfoFFRMTg2HDhqF69ep48OABL/3ogN9++w2TJk1Cu3bt4O3tDSsrK6V5NS5evIijR48iICAAXbp0EToufaT69evj3Llzxf4+z8vLw7lz5xAdHY3Y2FikpaXhyJEjAqUUJ97NI2I1atR459BkExMTuLu7azARqdOQIUMgk8mwbds2NGrUSKmouLm5YcuWLZg4caKACUmVvvzyS1SpUgUbNmxAQEAAcnJyFOuMjY3h5uaGkJAQNG3aVMCUpCpvOydQrlw5tGnTBm3atNFwIu3BMypEIiT/1+Pf/62goADXrl2Di4uLAKlIXeRyOTIzMxUTgJmZmQkdiVTswIED6NixIydsLAUWFZFLSkrC4cOHFfNqvPncj6ysLCxYsAALFy4UKCGpWlJSkuLhhFKpFH/88QcePnyITz75BC1btoShoaGwAUltcnJycPz4caSkpKBu3bpo1apViYWVdEt6ejqqVKnCff0WLCoiFhMTgyFDhsDCwgISiQT3799Hu3btEBgYqGjlHK6qOx4+fIiRI0ciOzsbp0+fRkpKCr777js8ePAAZmZmeP78Oezt7bFp0yZYWFgIHZc+UtH8SOfOnUPz5s0xbdo09O/fHw8fPlTsb2dnZ4SGhipN+kfaa+PGjbh06RLWrFmDwsJCrF69Glu2bEFOTg5MTU0xcOBAjBw5UuiYosNRPyK2dOlS9OzZE8ePH8exY8ewYsUKnDt3DqNGjUJ+fr7Q8UjF5s+fj8qVK2PDhg0AgEWLFqFq1ar466+/8Pfff+PMmTOoUqUKFixYIHBSUoXAwEAkJiZi3LhxePjwIfr27YsqVargzJkziIiIwPHjx5GXl4fFixcLHZVUYNWqVVi7dq3i6cgbN25EeHg4Ro8ejZ9++glDhgzBpk2bEBoaKnBSEZKTaLm6usqTkpKUlsXExMidnZ3l48ePl8vlcvnTp0/ljo6OQsQjFXNzc5Pfvn1b8XXz5s3l0dHRStvcvHlT7ubmpulopAbe3t7yy5cvy+VyufzOnTtyBwcHeVRUlNI2UVFR8iZNmgiQjlStZcuW8uPHjyu+7tChg/zAgQNK2xw9elTeunVrDScTP55RETETExM8e/ZMaZmrqysCAwPx22+/8b4UHWNoaIhXr14pvjY1NS22jfwtN9mS9snNzUWVKlUAAPb29vjkk09gbGystI2ZmRkKCwuFiEcq9vz5czg4OCi+fvHiBRwdHZW2+fTTT5GWlqbpaKLHoiJiLVu2xNy5c3HlyhXIZDLF8rZt22LatGkICwvDvHnzBExIqtSuXTtMmzYNd+7cAQD07dsXK1asUMxIm5aWhoCAALRs2VLImKQijRo1QmhoqKKIHDt2DA0aNFCsz8rKQlBQEFxdXYWKSCr06aefYtOmTYqvW7ZsWezhoocOHULdunU1HU30eDOtiL148QLjxo1DREQEQkJCio342b59OwICAlBQUMCbaXVAdnY2xowZgwsXLqBevXqoVasWIiMjIZVKYWlpiUePHsHOzg5btmx56ySApD1u3ryJwYMHo1mzZli6dKnSujNnzsDX1xdVqlRBWFgYPvnkE4FSkqpcu3YNAwYMQN26ddGpUyeYmJhg8eLFaNasGerWrYsrV67g3LlznDunBCwqWuD+/fuoUqUKKlWqVGxdYmIijh8/jhEjRgiQjNThwoULOH/+PBITE5GVlQUDAwNYWVnBw8MDX3zxBedh0CHPnj3Do0eP0KhRI6XliYmJ+Pvvv9GpUydUrlxZoHSkaomJiQgJCcG5c+eULvGUK1cOrq6uGDlyJJ+UXQIWFS0VExODTz/9lL+0iIi0UFZWFrKzs2FgYIAqVaq8cxbyso7/Z7TUsGHDkJKSInQMUrFDhw6hf//+6NKlC4KCgoo9MTk9PZ1TbRNpobVr1+Lp06eKr01MTGBpaYlq1aqxpPwHnlERMR8fn7eO8Hj8+DEsLS2hr68PAMVuyiLts2fPHsydOxddu3aFnp4ejhw5AgsLC2zevBk1atQAwAn+iLSVo6MjLCwssGzZMj6j7QPxoYQi9tlnn2Hv3r1o0qQJPDw8FMvlcjlCQkLQtm1bPhNEh4SHh2PWrFn46quvAAAjR47EsGHD0L9/f+zcuRPm5uYCJySij+Hh4YH+/fujd+/eGDt2LG+Kf088oyJyJ0+exKxZs9C1a1eMHz9e8ZwXFxcX/PLLL6hZs6bACUlVStqnaWlp+Prrr1GxYkVs27YNubm5PKNCpIXq16+Pc+fO4erVqwgICMCzZ8/Qu3dvfPPNN7CzsxM6nqjxwpjItW3bFgcPHkR8fDx69uyJf/75R+hIpCYWFha4efOm0rLq1atj/fr1SE5OxsiRI5GbmytQOlKnx48fo6RjxsLCQjx+/FiARKRqRfvXx8cHv/76KyZMmIA///wTHTp0QI8ePRAUFIQjR47g3LlzAicVHxYVLWBhYYGNGzeie/fu+Pbbb5UmDSLd0bt3b8yePRvr169XulG6du3aWLt2rWLeDdI9bdq0QXp6erHlvHlad/z7fkMjIyP069cPx44dw9atW+Hp6YmIiAhMnToVw4YNEzClOPEeFS0yaNAgeHt7Y9KkSTyy1kFDhgyBTCbDtm3b0KhRI1haWirWubm5YcuWLZg4caKACUldAgICSpwnqVKlSggICBAgEalaSWfMJBIJ3N3dFTfXFhYWIiMjQ8PJxI/3qGghqVSKq1evonHjxpxHRUe97Zk+BQUFuHbtGlxcXARIRUSlNXXqVEyfPh0mJiZCR9E6LCpERAJYvXo1JBIJLCwsYG9vz2f6EL0FiwoRkQCKnpxbvXp11K1bF5s3bxY4EZE4sagQERGRaHHUDxGRCFy6dEkx8ufgwYMYMWIEQkJCSrwJk6gsYVEhIhLYzp070bdvX9y+fRtxcXGYOnUqZDIZtmzZgjVr1ggdj0hQLCpaok2bNnj+/Hmx5ZxnQTdNnTq12AMJgddPXJ06daoAiUidwsLCMGPGDHh7e+PXX39F3bp1sWnTJixZsgT79+8XOh6RoFhUtISnp6di+vx/MzIygqenpwCJSJ0uXLgAmUxWbLlUKsWFCxcESETq9PDhQ/j4+AAAzp8/jxYtWgAA7O3tkZaWJmQ0UoP69evj2bNnxZanpaWhfv36AiQSNxYVLbFw4cISx9+bmJhg4cKFAiQidTp9+jSqVKlSbHnVqlVx+vRpARKROlWrVg2pqal4+vQpYmNj0bRpUwBAXFwcqlevLnA6UrXRo0ejQoUKxZZXqFABo0ePFiCRuHHUj4hFRUVBIpHA3NwctWrVKnECMCLSfoGBgTh+/DiMjY2RlZWFEydO4NixY/D390evXr0wYcIEoSMSCYZFRcQcHR0hkUggl8thYmKC6OhooSORGhXtb3Nzc9SpU4fPdCpDCgsLsW3bNjx48AB9+/bFJ598gq1btyI9PR1jxoyBvr6+0BHpIx08eBAAFBP8/fsRGfRuLCoidvHiRUgkElSvXh2ffPIJ9PR4pU6XrVq1SlFU7O3tFc//ICLtVzTBn56eHmxsbHD8+HGBE2kPFhUtkpubCz09PRgZGSEhIQF//vknXFxcOPV2GSCTyRAXF4fatWujYsWKQschFVi9evV7bztmzBg1JiFNePToESQSCapVq4Zy5coJHUersKhoiaioKIwePRorV66Evb09vvjiC+jp6SEnJwdBQUH48ssvhY5IKvTkyRNMnz4dP/74I+rVq4devXrhzp07qFy5MrZs2cKRATqgaJRPkSdPnsDQ0BA1a9aEgYEB7t+/D5lMhoYNG2Lnzp0CpSR1efz4MUxNTWFiYoLIyEgcP34crq6u6NSpk9DRRMdA6AD0fpYtW4Y2bdrg008/xe7du2FiYoITJ05g3759CAkJYVHRMQsXLsTLly9RtWpV/Pbbb3j8+DG2b9+O/fv3IzAwkPev6IB/j97asmUL/vzzTyxduhTVqlUDAGRmZsLPzw/16tUTKiKpyYkTJzBu3DiEhISgZs2aGDp0KGrWrIn9+/fjxYsX6Nu3r9ARRYU3PWiJW7duYdSoUTAxMcG5c+fQqlUrlCtXDi1btsTdu3eFjkcqFhkZiXnz5sHGxgZnzpxB8+bN4erqiiFDhuDy5ctCxyMVW79+PaZMmaIoKQBgamqK8ePHY9euXQImI3VYu3YthgwZAm9vbxw+fBg1atTA0aNHERAQgJ9//lnoeKLDoqIljI2NIZVKkZeXh5iYGHh7ewN4PUFQpUqVBE5HqiaTyVC5cmXI5XJERETgs88+A/B6dIiBAU+E6hqZTIZXr14VW/7s2TNOS6CDEhIS8NVXX0FPTw/nz59Hy5YtoaenB2dnZzx69EjoeKLDv/G0RJMmTRAYGIjKlStDT08PzZs3R2xsLObPn48mTZoIHY9UzMnJCXv37oW5uTkyMzPRsmVLSKVSbNiwQTF6gHSHj48PZs6ciVmzZqFhw4aQy+WIiYmBv78/OnbsKHQ8UjFTU1O8fPkSL1++xLVr1zBs2DAAwP3792FmZiZsOBFiUdESs2fPxuzZs3H79m0EBgbCxMQEhw4dgpGREZ/9ooMmT56M77//Hs+fP8ewYcNgZWWFOXPm4NSpUwgNDRU6HqnYzJkzMXbsWAwYMEBxBkUul+OLL77A5MmTBU5HqtayZUvMmjULFStWRKVKldC0aVP8/fffmDNnDlq1aiV0PNHhqB8tJpVKYWRkJHQMUpPCwkJkZWXB1NQUAJCYmIgqVarwiEuH3b17F//88w8kEgnq16+PmjVrCh2J1CA3NxcrVqzAgwcPMGzYMDg7O2PVqlV48OABZs+ezSkI3sCiImJRUVHvva2Hh4cakxCRJqSlpUEmk+HNv5Zr1KghUCIi4bGoiNi/p9D/9w11Rbvs38tiY2M1no9Uq2h/vw/ub91y6dIlTJ06Fffv31daXvTZ5/7WfkVT6L+Pbt26qS2HNmJREbF/3/0dERGBtWvXYtq0aXB1dYWBgQGuX7+OgIAADBs2jH+wdcD+/fsVReXRo0fYsGED+vTpAxcXFxgaGuL69evYtm0bRo4ciSFDhgicllSpR48eqFChAgYNGlTiKD5PT08BUpEqvXkTfNFBaPny5WFgYICsrCzo6+ujSpUqOHfunEApRUpOWqFdu3byv//+u9jyCxcuyFu3bi1AIlKnvn37yvfs2VNs+aFDh+Q9evQQIBGpU8OGDeV37twROgZpyOHDh+XdunWTx8bGKpYlJibKv/rqK3l4eLiAycSJ86hoidTUVFhYWBRbbmpqioyMDM0HIrW6du1aifcdNWrUCHfu3BEgEamTtbU1srOzhY5BGhIUFIQ5c+YonWWxtbXFjBkzEBISImAycWJR0RKNGjXCypUrlf4yy8jIQGBgIE8L66BPPvkER48eLbZ8165dqFOnjgCJSJ1GjhyJgIAA3L59GzKZTOg4pGaZmZklPpiwsLAQubm5AiQSN96joiX++ecfDBw4EDk5ObC1tYVcLkdSUhKqVauGsLAw/O9//xM6IqnQiRMn4OvrCzc3N3z66acoLCzE5cuXERsbiw0bNsDLy0voiKRC7dq1w+PHj1FQUFDiet5Mq1tGjhyJFy9eYMmSJbCxsQHwerbaSZMmoXbt2ggKChI4obiwqGiRrKwsHDlyRDHPgqOjIzp27AhjY2Oho5EaXLp0CT///DP++ecfAED9+vUxePBgzkyrgw4cOPDO9d27d9dQEtKElJQUDBkyBAkJCTA1NYVcLsfLly/RqFEjrF+/HpUrVxY6oqiwqBAREWlYQUEB/v77b6UDTy8vLz7bqQQsKlri6dOnWLFiBS5dulTihFCnTp0SKBmpQ2FhIQ4fPvzW/b1w4UKBkpG6nDp1CiEhIYiPj4eBgQHq1KmDIUOG4PPPPxc6GpGg+KwfLTFz5kzcuHEDHTt25NOSy4CAgABs27YNjo6OMDExEToOqdnx48cxduxYtGnTBh07doRcLkdUVBTGjh2LVatWoU2bNkJHJBW6e/cu5s2bpzgQeRPvSVLGMypawtnZGaGhoXB3dxc6CmlAkyZNMGXKFN6bUEZ069YNbdu2xZgxY5SWr169GmfOnMGePXsESkbq0L9/fzx79gxff/11iQee/Nwr4xkVLVGhQgVUq1ZN6BikIVKplM9vKkPu3r2Lzp07F1veqVMnbNiwQYBEpE5Xr17Fjh070KBBA6GjaAXOo6IlunbtitDQ0LcOXyTd0rx5c5w5c0boGKQhFhYWuHfvXrHl9+7d46VeHVSlShUYGhoKHUNr8IyKlsjIyMCRI0fw559/ombNmjAyMlJaHx4eLlAyUgdnZ2cEBgYiIiIC9vb2xf5Se/MSAWm3Tp06Yc6cOZg9ezbc3NwAADExMZg7dy46dOggcDpStX79+mHZsmUICgriPWjvgfeoaImpU6e+cz1HgegWHx+ft66TSCQc5aVj8vLyMG7cOJw+fVoxPFUul6NVq1ZYsWIFypcvL3BCUqVBgwYhOjoaBQUFqFatWrEDT36+lbGoEBGJREJCAuLj4yGXy+Hg4AB7e3uhI5EarF69+p3recZUGYuKFnny5Am2bdummGehbt266NOnD2rUqCF0NFIDuVyOv/76S2l/e3l5QV9fX+hopGKFhYVYu3Ytqlevjq+//hoA0KdPH7Ru3Rrff/+9wOmIhMV7VLTE7du30a9fP5QvXx6NGjVCYWEh9u/fj23btmHHjh2oW7eu0BFJhTIyMjBkyBDcvHkTlSpVglwuR1ZWFho0aIDNmzfD1NRU6IikQsHBwdi5cyf8/f0Vyzp06IB169YBAMuKDrpx4wY2btyoNMHfgAED0KhRI6GjiQ7PqGiJIUOGwNjYGEuXLlU8dTMvLw8TJ06EVCrlo8F1zNSpU3Ht2jUsXbpU8WyfuLg4TJo0Ca6urpg7d67ACUmVWrVqhfnz56NZs2ZKy8+cOYN58+bxngUdc/HiRQwePBj16tWDu7s7CgsLcenSJcTHxyMsLExxQzW9xqKiJVxcXLBz5044ODgoLY+Li0O/fv0QHR0tUDJSBy8vLwQHB8PT01Np+YULFzB+/HicP39eoGSkDs7Ozjhw4ADs7OyUlt+7dw+dO3fGtWvXBEpG6vDNN9+gXr16xQ445s6dizt37mDr1q0CJRMnzqOiJSpWrFjiVMslLSPtl5+fj+rVqxdbXr16dWRlZQmQiNTJ0dER+/fvL7b80KFDqFOnjgCJSJ1u3bqF7777rtjyfv364caNGwIkEjfeo6IlvLy8sGTJEgQHB8PMzAwAkJ6ejsDAQHh7ewsbjlSuQYMG2LFjB6ZPn660fMeOHahfv75AqUhdRo8ejREjRiA6OhrOzs4AgOvXr+PKlStYs2aNsOFI5apUqYLnz58XW56enl5sqDLx0o/WSE5Oxtdff40XL17A1tYWAJCUlITKlSvj559/ho2NjbABSaUuX76M7777Do6OjnB1dQXwegKwuLg4hIaGwsvLS+CEpGqXL1/G1q1b8c8//8DAwAD29vYYOnSo4h4l0h1z587FpUuXsGzZMsUQ9Dt37mDChAlwcnLivFhvYFHRItnZ2fjll1+U5lno3LkzZzbUUdeuXcPmzZuV9vegQYM4KoBIy7148QKDBg1CbGys4hEJmZmZqF+/PjZt2oQqVaoInFBcWFS0yMWLF5Gfn4/PPvsMALB48WK0adOGT1TWUS9fvsTz589Rq1YtAMDx48fh6empuPRHuiUuLg5hYWFITEzEypUrcfLkSdSpUwdNmjQROhqpQWFhIc6dO6d0INKsWTPo6fHW0Tfx/4iWOHr0KAYPHozY2FjFskePHmHgwIE4efKkgMlIHW7evIm2bdtix44dimWLFi1Cp06dEB8fL2AyUocbN26gd+/eePjwIW7cuAGpVIrY2FgMGTKED6fUUb/88guys7MxdOhQDBs2DPv27cPRo0eFjiVKLCpa4qeffsKUKVMwZMgQxbLg4GD4+flh1apVAiYjdVi0aBF8fHwwbtw4xbLjx4+jefPmWLRokYDJSB2CgoIwePBgbN26VfEAyvnz56Nv3778fOug8PBwzJo1S2kEn5WVFWbOnIndu3cLmEycWFS0xP3799GyZctiy1u3bo2kpCTNByK1unHjBkaNGqU0AsDAwADDhw/H1atXBUxG6nDjxg1069at2PK+ffsiISFB84FIrbZu3YpFixahd+/eimVTp06Fv78/Nm3aJGAycWJR0RLW1taIiooqtvzy5cswNzcXIBGpU8WKFfHgwYNiy1NTUzl8UQcZGhqWOD/OkydPYGxsLEAiUqfU1FQ0bNiw2HJnZ2c8fvxYgETixqKiJb755hv4+/tjxYoV+OOPP/DHH38gODgYc+fOxTfffCN0PFKx9u3bY+7cuYiIiEB2djays7MRGRmJuXPn4vPPPxc6HqlY27ZtsWLFCmRmZiqWJSQkYMGCBWjVqpVwwUgtbG1tcfr06WLLz5w5w6kmSsBRP1pkw4YNCA8Px9OnTwEAFhYWGD58OPr16ydwMlK1V69eYezYsfjrr78gkUgUyz///HMEBARwSLqOycrKwtChQ3Ht2jUUFhaiUqVKyMrKgqOjIzZv3syRXjrml19+wZQpU9CxY0c0btwYwOsJ/o4ePQp/f390795d4ITiwqKihZ4/fw5DQ0P+sioDEhMTFU9Xtbe3V0z2R7opIiICt27dQmFhIerVq4fmzZtzuKqO+vXXXxEeHo7bt2/D0NAQ9vb2GD58OFq3bi10NNFhUdEiubm5+P3333H37l0MHjwY8fHxqFu3LicH0mGPHz9GQkICPDw8kJ2djWrVqgkdiTQgPT0dFy9eRMOGDXkpgMo8VnUtkZaWho4dO2LOnDkIDQ3Fy5cvsWnTJnTu3JmjAnSQVCrFuHHj4OPjgxEjRuDp06eYPXs2Bg0axIcS6qD4+Hi0b98eUVFRyMzMRNeuXfHjjz+iQ4cOiIyMFDoeqUFqaipWr16NCRMm4NmzZ4qDUCqORUVLLFq0CHXr1kVERATKlSsH4PXMtHXr1kVgYKDA6UjV1q1bp5iptGh/9+/fH/fu3UNQUJDA6UjVFi9ejE8++QS1a9fGkSNHIJPJcObMGQwZMgQrVqwQOh6p2L1799C5c2ccOHAAx44dw6tXr/Drr7+iZ8+enH6gBCwqWiIyMhK+vr5KQxUrV66MyZMn49KlSwImI3U4evQoZs6cqTR9epMmTbBgwQKcOnVKwGSkDpcvX8bkyZNRrVo1/PXXX2jZsiUsLS3Ro0cPxMXFCR2PVGzRokVo27YtTp48qZjgb9myZfDx8eGBSAlYVLREdnY2KlSoUOK6/Px8DachdUtJSVE84+ffrK2t8eLFCwESkTrp6enByMgI+fn5uHjxIry9vQG8/tyXL19e4HSkapcuXcKgQYOURvQZGBhg1KhRuHXrloDJxIlFRUt4eHgoPfcFAGQyGdatWwdXV1eBUpG62NvbIyIiotjyo0ePok6dOgIkInVydnZGSEgIgoODkZeXhxYtWiAlJQXLli2Ds7Oz0PFIxQoLC1FYWFhseXZ2NvT19QVIJG4GQgeg9zN58mT07dsXFy9ehEwmw5w5c3D37l28fPkSP//8s9DxSMV++OEHjBs3Dnfu3EFBQQEOHDiAxMREHDt2DMuXLxc6HqnYzJkzMW7cODx48ADTpk1D1apV4e/vj4SEBGzYsEHoeKRizZo1Q0hIiNL9hRkZGQgMDISXl5eAycSJw5O1SEpKCnbs2IHY2FgUFhaibt26+Pbbbzl8UUedPXsWISEhink16tati2HDhqF9+/ZCRyMNSE9PR+XKlXmErYNSUlLw3Xff4eXLl8jIyEDt2rXx6NEjmJmZ4eeff8b//vc/oSOKCouKFktPT0fVqlWFjkFEKpCdnY1ffvlFMcFf3bp10aFDB07sqKNycnJw5MgRpQPPrl27cn+XgEVFS2RmZiIwMBD9+vVDnTp1MHToUERGRsLW1hbr169HzZo1hY5IKnb48GF4eHjAysoKa9euxa+//gpXV1dMnz5dMWSZdMPjx4/Rr18/PHv2DHZ2digsLMS9e/dQrVo1bN++HVZWVkJHJDWSyWSIi4tD7dq1UbFiRaHjiA5vptUSCxcuRGRkJAwMDHDixAlER0djyZIlsLW1xZIlS4SORyq2du1aTJ8+HY8fP0ZMTAyCg4Ph4uKCCxcucPiiDlq0aBGsrKxw6tQpHDx4EL/88gtOnTqFGjVqcJ4kHfTkyRMMHjwY165dQ25uLrp3746vvvoKPj4+iI2NFTqe6LCoaIkzZ85gyZIlsLe3x59//ommTZuic+fOGDduHGeu1EH79u3D4sWL4erqimPHjsHZ2Rn+/v5YsGABfv/9d6HjkYr9/fffmDJlCqpXr65YVr16dfj5+eHcuXMCJiN1WLhwIV6+fImqVavit99+w6NHj7Bt2zZ8/vnnLKYlYFHREq9evYK1tTUA4Pz58/jss88AAOXLl0dBQYGQ0UgNUlNT4eLiAuD1L7FmzZoBeD2PSmZmppDRSA309fWVJnMsUq5cOUilUgESkTpFRkZi3rx5sLGxwZkzZ9CiRQu4urpiyJAhuHz5stDxRIdFRUsUnUk5c+YMnj59ihYtWgAAdu/eDXt7e4HTkapZWVkhMTER9+7dw507d9C0aVMAQHR0NO9X0EGurq5Yu3YtZDKZYplMJsNPP/3EeZJ0kEwmQ+XKlSGXyxEREaE48CwsLISBAWcNeRP/j2gJX19f/PDDD5DJZOjUqRNsbW2xcOFCbNu2DWvWrBE6HqnY119/jR9//BFGRkZwcHCAi4sLtm3bhiVLlsDX11foeKRiEydOxNdff43PP/8cDRs2BABcv34d2dnZnCdJBzk5OWHv3r0wNzdHZmYmWrZsCalUig0bNsDR0VHoeKLDUT9a5Pnz50hJSVH8Qb527RoqVqzIMyo66vTp03jw4AG6dOmCKlWq4PDhw8jLy0OvXr2EjkZq8PjxY2zbtg3//PMP5HI5HBwc8M0333BODR107do1fP/993j+/DmGDRuG8ePHY86cOTh69ChCQ0PRuHFjoSOKCouKlklISEB8fDwMDQ1Ru3Zt1K5dW+hIpGbp6ekwMDCAqamp0FGISEUKCwuRlZWl+FwnJiaiSpUqMDMzEzaYCPHSj5bIy8vDhAkTcOrUKRR1S4lEgtatW2PFihUwMjISOCGpWnh4ONavX49nz54BeD0KZMiQIRg4cKCwwUjlXr16hS1btuDSpUuQyWR48/gxPDxcoGSkLhKJBFeuXFFM8FenTp0SH0RKLCpaY/ny5bh27RpWr14NT09PFBYWIioqCvPnz8eqVaswYcIEoSOSCu3cuROBgYH49ttv4eHhAblcjqioKCxbtgwmJia8/KNjZs2ahVOnTqFp06YwNzcXOg6pWUZGBoYMGYKbN2+iUqVKkMvlyMrKQoMGDbB582aePX2TnLRC06ZN5adPny62/PTp0/KWLVtqPhCpVfv27eVbt24ttvznn3+Wd+rUSYBEpE6urq4lfr5JN02ZMkXeoUMHeWxsrGJZbGysvFOnTvJZs2YJmEycODxZS2RnZ5d4P4qdnR3S09MFSETq9PjxY8UQ9H9r3rw57t27J0AiUic9PT3eFF+G/PHHH5g9e7bSCB9HR0fMmDEDJ0+eFDCZOLGoaIl69eqVOCPpb7/9Bjs7OwESkTrVqFEDN27cKLb8+vXrSrOXkm5o164d9u/fL3QM0pD8/PwSP8fVq1dHVlaWAInEjfeoaImRI0di1KhRiI2NVUwAFRMTgxMnTmDp0qUCpyNV+/rrrzF37lxkZGQo7e/g4GB89913AqcjVatatSo2bdqEs2fPws7OrtjN8QsXLhQoGalDgwYNsGPHDkyfPl1p+Y4dO1C/fn2BUokXhydrkRMnTmDDhg2Ij49XzLMwdOhQtGvXTuhopGKFhYVYuHAhduzYgYKCAsjlchgYGODrr7/GtGnToKfHk6G6pH///u9cv3XrVg0lIU24fPkyvvvuOzg6OiodiMTFxSE0NBReXl4CJxQXFhUiEcvKysLdu3cBALVr14aJiYnAiYhIFa5du4ZNmzYpTfA3aNAgNGrUSOhoosOiokWio6PfOs/CmDFjBEpF6pKTk4P4+PgS97eHh4dAqUhd8vPz8ezZM8VDRuVyOaRSKa5fv44uXboInI5IOCwqWmLNmjVYtWoVTE1Nix1VSyQSnDp1SqBkpA6nTp3ClClTkJWVVaykSCQSxMbGCpSM1OHcuXOYPHlyiSP4ypcvzyfq6pjCwkIcPnz4rQeevCdJGW+m1RI7duzAuHHjMGLECKGjkAYEBQXB29sbo0aNQqVKlYSOQ2q2bNkyODk5oX///hg7diyCgoLw+PFjBAcH85eWDgoICMC2bdvg6OjIy7nvgUVFS7x8+RKdOnUSOgZpyMOHDxESEsIptcuIO3fuICAgAI6Ojqhfvz4qVKiA/v37o0KFCti4cSPatm0rdERSocOHDyMgIADdu3cXOopW4NABLeHq6srTv2WIra0tkpOThY5BGqKvr684c/bJJ58gPj4eAODl5YWEhAQho5EaSKVS3mf2AXhGRUt06tQJ/v7+uHHjBmrXrl1snoVu3boJE4zUYuLEifD398e4ceNK3N81atQQKBmpQ926dXH69Gn0798ftWvXRkxMDAYMGMCyqqOaN2+OM2fOoG/fvkJH0Qq8mVZL/Huq5Tfx5krd06BBA8XoD4lEolgul8u5v3XQyZMn4evri1mzZqFly5Zo3749vLy8cPv2bTRu3BjBwcFCRyQV2rRpE4KDg9GsWTPY29vD0NBQaT1HcSpjUSESoYsXL75zvaenp4aSkKbcvHkT+vr6cHR0xMWLF7F582ZYW1vD19cXZmZmQscjFfLx8XnrOo7iLI5FRQckJyfDyspK6BhEREQqx3tUtMSDBw+wePFixMfHF5sQKj09Hbdu3RI4IalSXl4edu3apbS/gdc34d24cQPHjh0TMB2p2qtXr7Bly5a3zqsRHh4uUDLSpKIJ/tzc3ISOIiosKlpi3rx5SEpKwhdffIHNmzdj8ODBSExMxIkTJzBv3jyh45GKzZ8/HwcPHoSTkxOuX78OFxcX3Lt3D8+ePcPAgQOFjkcqNmvWLJw6dQpNmzaFubm50HFIzW7cuIGZM2ciPj4ehYWFxdbzHjRlLCpa4tKlS1i7di2aNGmCv/76C23btkWjRo2wfPlynDlzBl999ZXQEUmFTp06hYULF6JTp074/PPP4e/vj5o1a2LcuHGQyWRCxyMV++OPP7Bs2TK0bt1a6CikAQsXLoS+vj5mzJiBhQsXYsqUKbh//z62bduGJUuWCB1PdDiPipaQSqWKyb/s7Oxw+/ZtAK+HJV+9elXIaKQGmZmZiqeq1qlTB7du3YKhoSFGjBiBP/74Q+B0pGp6enqwt7cXOgZpyK1btzBr1ix88803cHBwQL169TBlyhRMmDABu3fvFjqe6LCoaIn//e9/ikmg7OzsFKcGCwsLkZ2dLWQ0UoOqVavi2bNnAF5P/la076tUqYK0tDQho5EatGvXDvv37xc6BmlIYWGh4hLfvyf4a9OmDeLi4oSMJkq89KMlunfvDj8/PyxZsgStWrXCd999hxo1auD8+fNwcHAQOh6pWIsWLTB37lwsXLgQbm5uCAgIwOeff45ff/2VI7x0UNWqVbFp0yacPXsWdnZ2xSb44/N+dMsnn3yCmJgYdOrUCbVr18b169cBvH5UilQqFTid+LCoaInhw4ejXLlykMvlaNSoEUaNGoV169bB2tqa1zR1kJ+fH6ZMmYKLFy/i22+/xa5du9C7d28YGBhg8eLFQscjFbty5QoaN24MAEhNTRU4Dalb//79MX36dABA+/bt0bVrV5QvXx6XLl2Cs7OzsOFEiPOoEGkBuVyO2NhYVK9eHRYWFkLHIYHs27cPX3zxBSpWrCh0FPpIJ0+ehJmZGdzd3XH48GFs2LAB1tbWmDlzJmxsbISOJyosKlokOjr6rfMscMpl3ZOTk4P4+PgS9zcfaFY2ubq64tChQ6hZs6bQUYg0hpd+tMSaNWuwatUqmJqawsTERGmdRCJhUdExp06dwpQpU5CVlVWspPBZP2UXjyt1Q2FhIQ4fPvzWA0/ek6SMRUVL7NixA+PGjcOIESOEjkIaEBQUBG9vb4waNQqVKlUSOg4RqVBAQAC2bdsGR0fHYgeeVByLipZ4+fIlOnXqJHQM0pCHDx8iJCREMXcOEemOw4cPIyAgAN27dxc6ilbgPCpawtXVFZcvXxY6BmmIra0tkpOThY5BRGoglUp5n9kH4BkVLdGpUyf4+/vjxo0bqF27drF5Frp16yZMMFKLiRMnwt/fH+PGjStxf9eoUUOgZET0sZo3b44zZ86gb9++QkfRChz1oyUcHR3fuo43V+qeBg0aKJ6aLJFIFMvlcjn3dxnm4uKCX375haN+tNymTZsQHByMZs2awd7eHoaGhkrrOThCGYuKjrl37x5sbGygr68vdBT6CBcvXnznek9PTw0lITFhUdENPj4+b10nkUhw6tQpDaYRPxYVHcN5FsqWdu3aYcuWLbwUVEaEhoaiT58+HAlWRkRERMDV1RXlypUTOoqgeDOtjmHvLFuePn2quERE2sXR0RH169dHixYtMHjw4Pd6zdChQ1lSypDRo0fzkQrgzbRERIIYPXo0JBIJzM3NYW9vL3QcEiEeeL7GokJEJIAffvhB6AhEWoGXfoiIiEi0WFSIiIhItFhUiIiISLRYVIi02L8ngyMi0kW8mVbHNGnSBOXLlxc6BmkIJ/bTbTKZDFeuXEG5cuXQoEED7m8qkzjhm4h99913iuGLderUwffffy90JFKj1atXQyKRwMLCAvb29nB1dRU6EgksLS0NzZo1w7fffovY2Fj8/PPPLCtliL+/P8aMGYMqVaoIHUVQPKMiYkUdUi6Xczx9GbB69WoAQPXq1VG3bl1s3rxZ4EQktMqVKyM8PByenp548OABS4oW8/HxgZ6enuLA09/f/z9fM3PmTA0kEz+eUSEiIlKzKVOmKE3w17VrV6EjaQ0WFSIigUilUiQkJKBmzZowMTFBSkoKNm3ahHv37sHW1hbfffcdn+NEZR6LChGRAO7evYuhQ4fi8ePHqFq1KtavX4/Ro0fDyMgITk5OuHPnDp48eYJdu3ahbt26QsclEgyLChGRAIYPHw59fX38+OOP2LNnD3755Rc0adIEy5cvh4GBAeRyOWbMmIHk5GRs3LhR6LhEgmFRISISgIeHB3bt2oXatWtDKpXCxcUFO3bsQKNGjRTbJCQk4Ntvv8WFCxcETEokLE74RkQkgPLly+Ply5cAgKysLBQUFODVq1dK22RnZ8PIyEiIeESiwaKi5dLS0uDo6IhevXq913A30m4vXrzAd999h+HDh+PXX38VOg59hLZt22L69OnYtm0bfvjhB9SoUQMhISFISUkB8PqzvWjRInh5eQmclDSlsLAQjx8/Rnp6utBRRIVFRctVqFABY8aMwd69e+Hq6or8/HyhI5GayeVyLFq0CFFRUdzfWmzSpElo2LAhVqxYgbS0NAQGBqJt27Zo1aoVmjVrhlatWiE9PR2TJk0SOippSHp6Onx8fDBt2jSMGjVK6DiiwXtUiIhE5MqVK7h06RKsrKzQunVrGBsbCx2JNCQvLw+//vorunfvjujoaLi6ukJPj+cTWFS0jFQqxalTp5CSkoK6deuiadOmQkciNcnIyEBeXh4qVKiASpUqCR2HNCg9PR1VqlThQyeJwCn0Ra1+/fo4d+4cqlWrBgB4+vQpvvvuOyQlJcHMzAzPnz+Hu7s71q1bx19kOiIyMhKhoaGIiYlBbm6uYnmFChXg6uqKYcOGwdPTU8CEpEobN27EpUuXsGbNGhQWFmL16tXYsmULcnJyYGpqioEDB2LkyJFCxyQVWLt2LXr37g1zc3Oho2gdnlMSsTdPdgUGBqJixYo4e/YsIiIicPLkSbx69QpLliwRKCGp0q+//oqhQ4eicuXKmDZtGn766Sds3rwZP/30E6ZMmQJTU1MMHjwYx44dEzoqqcCqVauwdu1a1K9fH8Dr0hIeHo7Ro0fjp59+wpAhQ7Bp0yaEhoYKnJRUITg4GD179kR0dLTQUbSPnETLwcFBnpaWpvi6VatW8r///ltpm4sXL8q9vLw0HY3U4Msvv5Rv3Ljxndts3LhR3qFDBw0lInVq2bKl/Pjx44qvO3ToID9w4IDSNkePHpW3bt1aw8lIHRwcHOTjx4+XOzo6ymfOnKn0dzu9G8+oiJhEIlG6Rm1kZISqVasqbWNubo68vDxNRyM1ePz4MVq3bv3ObVq1aoWHDx9qKBGp0/Pnz+Hg4KD4+sWLF3B0dFTa5tNPP0VaWpqmo5EaSCQSTJs2DWvWrMHff/+Ntm3bIiAgAImJiUJHEz0WFRGTy+VYsmQJwsLCcO7cOXh4eGD//v1K24SFhRX7y420k729PQ4fPvzObQ4cOABbW1vNBCK1+vTTT7Fp0ybF1y1btsSpU6eUtjl06BCf86Mj5P//Ur6Pjw9+/fVXTJgwAX/++Sc6dOiAHj16ICgoCEeOHMG5c+cETio+HPUjYuvWrUN8fDzi4+ORlJSEgoICSCQSREREwMzMDF988QUeP36M9evXc1IoHRAREYHvv/8ejo6O8PLygrW1NYyMjCCVSpGamoqLFy/i6tWrWLduHZo1ayZ0XPpI165dw4ABA1C3bl106tQJJiYmWLx4MZo1a4a6deviypUrOHfuHEJCQji6Twe8OTgCeF1eYmJicPLkSURFRSE+Ph75+fmIjY0VMKn4sKhoiaLHwcfHx6Nr164AgBUrVuDzzz9HgwYNBE5HqpKQkICwsDDExMQgOTkZubm5KFeuHKytreHu7o7+/fujTp06QsckFUlMTERISAjOnTundImnXLlycHV1xciRIznKS0c4Ojri/PnzSkXlTYWFhcjIyCh2ib+sY1EhIhKBrKwsZGdnw8DAAFWqVOFEXzpm6tSpmD59OkxMTISOonX4SdBSnTt3RnJystAxSEPmzJnD53/omLVr1+Lp06eKr01MTGBpaYlq1aqxpOighQsXsqSUEid8E7HVq1e/dV1iYiI2btyIypUrAwDGjBmjqVikJlFRUW9dd/DgQXh4eMDCwgIA4OHhoalYpCbBwcHYuXMnli1bBnd3d6HjkIA6d+6M9evXw9raWugoosRLPyLWvHlzpKWloXr16jA0NFRa9+TJE1hYWEBfXx8SiaTYaAHSPk5OToqRAe/6WEokEt5spwMcHR3RsWNH/Prrr+jduzfGjh37zvsXSLu968Dzp59+wjfffMMDz7dgURGx9PR0zJgxA/fv30dgYKBiBksAcHFxwS+//IKaNWsKmJBUKTo6Gn5+fvjkk08wbdo0VKhQAcDr0lJ0xFWjRg0AwP/+9z8ho5IKFI0CuXr1KgICAvDs2TP07t0b33zzDezs7ISORyrGA8/SY1HRArt27cKyZcswZMgQDB8+HACLiq7KysrC7NmzcfXqVSxZsgSurq4AuL910b9HgUilUuzevRvh4eF48OAB6tevj88++wyOjo4wMzPjcHQdwAPP0uMdW1qgT58+2LlzJ44dO4Z+/fpxZlIdZmJigqVLl+KHH37AyJEjsXz5cuTn5wsdi9TgzVmn+/Xrh2PHjmHr1q3w9PREREQEpk6dimHDhgmYklSlatWqWLt2Lfr374+BAwdi/fr1QkfSGryZVkvY2dlh165dWLlyJbp37w6ZTCZ0JFKjrl27ws3NDX5+fvjqq69QUFAgdCRSsZJOZkskEri7uyturi2aV4N0R58+feDp6YmJEyfi7NmzWLRokdCRRI9nVLSIgYEBJkyYgDVr1qBz586oWLGi0JFIjWxsbPDzzz+jTZs2MDc3h4EBjyt0Sffu3VGuXLl3bqOnp8fJv3RQ0YGni4sLDzzfA+9R0VJHjhyBj4+P4oZL0j0ZGRnIy8tDhQoVUKlSJaHjEJEaXLx4EQcOHMCkSZNYSt+CZ1S01KxZs/Ds2TOhY5CKRUZGYujQoXBxcYG3tzdatWoFT09PuLm5YdiwYbh48aLQEUlFVq9ejZycHKVl+/fvR8eOHeHm5oavv/4af//9t0DpSFM8PT3RtGlTlC9fXugoosUzKiLm6OiodMPdv8nlcqV1nFdD+/3666/w8/ND+/bt4eXlBQsLC5QrVw55eXlITU1FZGQkjh07hqVLl6J9+/ZCx6WP9OZD6n755RdMnToVvXv3Rt26dXH9+nUcOXIEwcHB8PHxETgtqZOrqysOHTrEUT9vwYveIjZ27FisWbMGHh4e6NKli2K5XC7HnDlz4OvrywmidMjq1asxfvx4DB48uMT1vXv3RoMGDRAcHMyiogPePEYMCwvD2LFjFVMQAEDt2rWxevVqFhUd8F8Hnu3atVN8zQNPZSwqIjZy5Eg0bdoUkyZNwh9//AF/f3/FzIX+/v5o3749G7gOefz4MVq3bv3ObVq1aoWVK1dqKBFpUkpKClq2bKm0rH379lizZo1AiUiVeOBZerxHReQaNWqEgwcPolKlSujcuTPOnz8vdCRSE3t7exw+fPid2xw4cAC2traaCURq9+8HTTo6OhZ70Oi9e/f4y0tHjBw5Etu3b8fjx4/xxx9/wMfHB927d0ePHj2gr6+P9u3bo3v37ujevbvQUUWHZ1S0gLGxMRYsWIDjx49j4sSJ6NChg9CRSA0mTpyI77//HufPn4eXlxesra1hZGQEqVSK1NRUXLx4EVevXsW6deuEjkoqYGRkhC5dusDExAT29vaQyWSYN28ejhw5AmNjYxw8eBDLly/n512HFB14zp8/H507d8bChQvRtGlToWOJHm+m1TIpKSmYMmUKIiIicOLECV760TEJCQkICwtDTEwMkpOTkZubi3LlysHa2hru7u7o378/6tSpI3RMUoHCwkIkJiYiPj4et2/fRnx8PP755x8cPXoURkZGaNKkCby8vLBw4UJOQ6CDjh8/jtmzZ6NDhw7Yv38/p9B/BxYVLfX48WNYWVlBT49X74h00cuXLzl/jo7jgef7YVERsdWrV2PIkCEwNjZWLNu/fz82btyI5ORk1K1bF76+vvjss88ETEmq9vz5c1SpUgXA67/I9u3bh5SUFNStWxc9evTg0bWOefXqldI+vXHjBh4+fAhbW1s4OjoKmIw0hQee78aiImKcZ6FsSU1Nxffff4/Y2Fg0aNAA8+fPx8CBAyGXy1GzZk0kJiaiWrVq2Lp1KywtLYWOSx/p+fPnmDx5MpKSknD8+HG8fPkSo0aNQlRUFIDXz/3x8vLCqlWrYGJiInBa+lg88Cw91jcRe9s8C3PmzEHfvn2xaNEi+Pr6YvXq1QIlJFVavHgxKlasiNWrV8PMzAwDBgyAs7Mz/vzzT+zduxd//PEHatSowYeY6YgFCxbg8ePHmDVrFgAgMDAQ6enp2LNnD65cuYKdO3ciLS0NixcvFjgpqcKaNWvw6tUrxde//PILZs6cCQ8PD4wfPx62trYYPnw4Tp8+LWBKkZKTaDk4OMjT0tIUXzdt2lQeFxentE1SUpK8UaNGmo5GauDu7i6PjY2Vy+Vy+aNHj+QODg7yq1evKm1z48YNuZubmxDxSMU8PT2V9m/r1q3l586dU9omOjpa7unpqelopAZv/n3eo0cPeUhIiNI2ISEh8u7du2s6mujxjIrIcZ6FssXQ0BAAUKNGDTRt2hRGRkbFtilpGWmfwsJCpX1pYGAAU1NTpW0qV64MqVSq6WikAW+b4C8hIUGgROLFoiJiRfMseHh44Ouvv8bz588xb948xYPMDh48iJkzZ3I6dR3h7u6OwMBAPH/+HACwceNGpZspk5KSMG/ePF7D1hHNmzfHvHnzFAcj3bp1Q2hoKAoKCgAAUqkUK1euRJMmTYSMSSrEA8/S4c20IsZ5FsqWBw8eYODAgWjUqBGWL1+utO7YsWMYO3Ys6tevjw0bNqB69eoCpSRVefr0KQYNGoTHjx/D29sbNjY2OHDgACpWrAg7OzvExcVBT08P27dvR61atYSOSx+pUaNGkMlkShP8ZWRklDjB3+TJk4WOKyosKlqM8yzoHqlUiuTk5GK/mJKTkxEXF4emTZsqLg+R9pNKpThy5AjOnz+PxMREZGVlwcDAAFZWVoozqUVD1Um78cCz9FhUROzQoUNo166d0nA20n0ymQzZ2dkwMzMrtk4ul+PJkyeoUaOG5oMRkdrwwPPtWFREzNHREfXq1cOqVavwySefCB2H1CwvLw/z5s3DL7/8gvz8fHz66aeYPXs2GjRooNgmLS0NzZs352PgdURGRga2bduGqKgoPHv2DDKZDJUqVUKtWrXQrFkzdO7cGQYGfCSbLuCBZ+nxZlqRMzU1RZcuXRASEsK7/3XcypUrcf78ecyfPx+LFy9Gfn4+vv32W/z1119K2/HYQjfcv38fnTp1wuHDh2FmZoby5cvj4cOHcHJyQkFBARYuXIgePXoo3YBJ2mvy5Mno06cP7t27J3QUrcOiImISiQQrVqzApEmTEBoairZt2yIsLAxZWVlCRyM1+P333+Hv74+uXbuiS5cu2L17N3x8fPDDDz8gJiZGsZ1EIhEwJanKokWL0LZtW/z2229YsWIF9uzZAz8/P6SlpWHFihU4ffo0zMzMsHDhQqGjkorwwLN0eOlHxBwdHXH+/HlUq1YN6enp2LBhA/bs2QOZTIaWLVvC29sbjo6OMDMzg52dndBx6SO5uLjg0KFDSjfSFhQUYMSIEbh27Rq2b98OMzMzXvrREW5ubti7d6/SZzc/Px/Ozs6IiIhApUqVEB8fj/79++PChQsCJiVVqF+/Pv766y/8/vvvWLlyJYyNjTFkyBD07NmTj0j4DzyjoiWqVq2KyZMn48yZM5g7dy7kcjmCg4PxzTffoEOHDkLHIxWwt7fH77//rrRMX18fK1euhLW1NYYOHYq7d+8KlI5UrXLlyrh9+7bSsgcPHqCgoEDxcDqZTMYH1ekIuVwOiUSCfv364dixY+jYsSNWrVqFpk2bwtfXFzt27MDly5eRmJgodFTR4RkVEfv3GZW3SU5ORmpqKho1aqTBZKQOp0+fxg8//AAvLy/4+fnBwcFBse7p06f47rvv8OjRI8hkMp5R0QHLli3Drl27MGHCBLi5ueHx48dYsmQJLCwssHHjRpw9exZBQUFo2LAhAgIChI5LH6mkv8+zs7Nx4sQJnDp1CtHR0Xj+/DkkEgk/32/g7eQi5uHh8Z9zZlhZWcHKykpDiUidfHx8EBYWhl27dhW7Ydbc3By7du1CQEAAfvvtN4ESkir98MMPyMjIwOzZswG8PuL28vJSPHRy27ZtqF+/PqZNmyZkTFKjihUrolu3bujWrRuA/zvwJGU8o0KkZQoLC3k5QIdkZmbi3r17sLCwgKWlpdBxSE369++PNWvWFHueE/03FhWR4zwLRERUlrGoiNj9+/fx7bffwsTEBI6Ojnj06BFiY2PRq1cvZGRk4O+//4aVlRW2bNmCqlWrCh2XiIjegQeepcOiImKjRo2ChYUFZs+erZg7Izw8HBcuXMCaNWuQlZWFUaNGwdLSEoGBgQKnpY/Vv3//954jJTw8XM1pSN0OHjz43tsW3cNA2osHnqXHoiJinGehbAkJCcHKlSthZ2f3n6O4OAmY9uvatSvi4+MBvHu2YY4C0Q088Cw9nmMSsaJ5Fv5dVDjPgu4aMWIETExMsHTpUoSEhMDGxkboSKRGu3fvxqhRo/DixQvs3LmTp/x13IULF7B3716ls6bffvstlixZongg4YwZM9C/f38BU4oTf8OJWKdOnTB79mzs3r0bCQkJ+Ouvv+Dr64vPPvsMFStWxNmzZzF16lS0bt1a6KikIn379oWnpyeWLFkidBRSs3LlymHFihVIT0/H5s2bhY5DasYJ/kqPFV7EOM9C2TRv3jzcvHlT6BikAUVH0adOnRI6CqlZ0YFnZmam0gR//z7wDAoK4oFnCXiPihbgPAtERNpNJpPB398fe/bsAfB/B56BgYEwNzfHiBEjYGZmhpkzZ/LZP29gUSESmYcPHyIzMxMODg7Q19dXWieTyXDlyhV4eHgIlI6IPgYPPD8ciwqRSLx48QI//vgjIiMjAbyeNn/u3LlKp4LT0tL49GQdkpqaisuXL8PZ2RmWlpY4c+YMNm/ejJSUFNSpUwejRo1C/fr1hY5JJCjeoyJinGehbAkMDERaWhq2bt0KiUSCDRs2YPTo0fD390fPnj0V2/HYQjdcvXoVAwcORE5ODkxMTDB9+nRMnz4d3t7eaN26Na5du4Y+ffogLCwMLi4uQsclEgzPqIgY51koW1q0aIHly5fDzc1NsWzx4sUIDw/H8uXL0a5dO55R0SH9+vVDvXr1MH78eISEhGDjxo0YOnQoxo8fr9gmICAAN27cwPbt2wVMSqrAA8/SY1ERsby8PM6zUIa4u7tjz549SvPmAMDUqVNx9OhRbNq0Cba2tiwqOsLZ2RmHDx9GzZo1kZWVBXd3dxw8eBCOjo6KbRITE9GtWzdcvXpVwKSkCjzwLD0O2BYxzrNQttSvXx87duwottzf3x+urq74/vvvcfHiRQGSkTqYmJggJSVF8d/jxo1DxYoVlba5f/8+qlWrJkQ8UrHdu3fjs88+Q4MGDXDjxg3ExcWV+A9LSnEsKiJXNM9CUlKS0FFIzcaNG4c9e/bgyy+/xLVr1xTLDQwMsGbNGjg4OGDChAkCJiRVat++PWbMmKF4/MWIESNQs2ZNAK9HhuzevRvTpk1D165dhYxJKsIDz9LjpR8iEUlMTMShQ4fQtWvXYpeAZDIZfvrpJxw5cgTHjh0TKCGpSm5uLqZPn47y5ctjwYIFSuuOHTuG8ePHo0+fPpg6dSoMDQ0FSkmqdvr0aZw6darYPqe3Y1EhIhJQYWFhsWnTX716hcLCQk78RQRe+hG91NRUHDt2THEt+8yZMxg4cCC+/PJL/PDDD7yeqWO4v8uOQ4cOIScnp8Rnu1SoUIElhej/Y1ERsatXr6J9+/YYO3YsOnbsiAMHDmDkyJHQ19f/f+3deVCU9xkH8O8SWGMkBBGjMZ5oBYNyFbV4Q4LGc7Q2wQsICmJsY9UMUaKCmAkWRZQQUBQpEi1NjBfGKFoNalCrGA+02KlKVPAWjIsHcrz9w2EnuFhZuuv7vvv7fmacMe8ePvpM9Hnefd/vwtfXF2VlZQgICMCJEyfkLpVMgP0Wy5w5cxAQEIBLly7JXQq9IFxEGocf/SgYcxbEwn6LxcXFBd7e3igoKMD06dMREhICrVYrd1lkJv8r4M/Z2RmnT5/G6dOnGfBXH4kUy93dXbp8+bIkSZKk0+kkZ2dnqbCwsM5zLl68KLm5uclRHpkY+y0WFxcX6datW9JXX30leXt7S/3795cyMjIknU4nd2lkBhMnTpRiYmIknU4nxcfHS926dZOWLVtW5zmff/65NH78eJkqVC5+9KNgzFkQC/stFkmSoNFoMGnSJOTk5GD48OFISkpC3759MWPGDGRlZeHEiRMoKiqSu1QygTNnziAkJAS2trYIDw9HTU0Nhg0bVuc548ePx9mzZ2WqULk4qCgYcxbEwn6Ly8HBAXPmzMH+/fsRExMDSZLwxRdfYPz48Qb/mJE6cRFpPGayK1hERATu3r2L7Oxs9O7du85jhw8fRkxMDAICAjB9+nSZKiRTYr+pWbNmGD16tP67Xq5fv46bN2/KWxSZRO0iEhMTg969eyM8PFz/2L1797Br1y4kJibi/fffl7FKZeLFtCrAnAWxsN9iCAwMRHJyMuzs7OQuhV4ABvw1HgcVBdu2bRsGDx6Mpk2byl0KvQDsN5Hl4yJiPF6jomDMWRAL+01kuRjw13gcVBTOzs4Oo0aNQmpqKh4/fix3OWRm7DeRZeIi0nj86EfBunXrhoMHD+ovsmratCmmTJmCsWPHcvq2QOy3WAIDA6HRaBr03MzMTDNXQ+bGgL/G46CiYC4uLsjLy0OLFi1QWlqKNWvWYOPGjaisrMTAgQPh4+MDFxcX2NvbG3zTLqkP+y2W1NRUJCYmolOnTnBzc/ufz128ePELqorMhYtI43FQUbBf/8NV6/79+9izZw/27t2L/Px8lJWVQaPR8DsiLAD7LZ4NGzZg2bJlyM7ORtu2beUuh8yIi0jjcVBRsPr+4Xpabc7C8zYyUj72W0zTpk2DVqvFF198IXcpZEZcRBqPgW8K1rNnz+feT9+6dWu0bt36BVVE5sR+i2nRokWMTRcUA/4ahmdUiIiIzIwBf43HQYWIiIgUizkqREREpFi8RkXBmLMgFvabiMgQBxUF69evX4NzFkj92G8iy8VFpPE4qChYeHg4bG1tsWzZMqSmpjJnwcKx30SWi4tI4/FiWhVgzoJY2G/xbN26FcOGDTOIVK+oqMDOnTv1t6+SujHgr3E4qKjAzZs3cfbsWfj6+spdCr0A7Ld4nhX2d/v2bfTr1w/nzp2TqTIyNS4ixuOgQkQks5KSErRp08bgGoaamhpcu3YNb775pkyVkalxETEeBxUiIiJSLF5MS0Qkg6CgIGg0GrRs2RJdunTBtGnT5C6JSJE4qBARyaD2ZLYkSeCJbaJn40c/REREpFiM0CciklllZSVWrVqFS5cuAQDmzZsHT09PTJkyBWVlZTJXRyQvDioqsXXrVjx+/NjgeEVFBbZu3friCyKzYr/FsnTpUvz1r39FeXk5Dhw4gC1btiA8PBz379/HkiVL5C6PSFYcVFRi7ty50Ol0Bsd1Oh3mzp0rQ0VkTuy3WHbt2oWEhAS4urpi79696NWrF6ZNm4b58+cjNzdX7vLIxLiIGIeDikrs3bsXDg4OBscdHBywd+9eGSoic2K/xXL37l107twZAJCXl4e+ffsCAOzt7fHo0SM5SyMz4CJiHN71oxLPCnyysrJiGJQFYr/F0r59exQUFODOnTsoLi5G//79AQD/+Mc/GLVugbiIGIeDioIxZ0Es7Le4QkNDMXv2bFhZWeF3v/sdXFxckJycjOTkZMTGxspdHpkYFxHjcFBRMOYsiIX9Ftfo0aPh4uKC4uJiDBgwAADQo0cPrF27Fj4+PjJXR6bARaTxmKNCRERkZoGBgXUGlQ8//FDuklSDg4pKVFZWYu3atRg6dCg6dOiAefPm4fvvv4eXlxfi4+PRvHlzuUskE2K/LV9QUFCDn5uZmWnGSoiUjXf9qARzFsTCflu+N998U//D0dERR48ehU6nQ+fOneHs7IzKykocP34cTk5OcpdKJsaAP+PwjIpKDBgwAIsXL0bfvn0RHR2NS5cuISMjA2fOnEFYWBgOHz4sd4lkQuy3WCIjI/Haa68Z3Jq6YsUKXLhwAUlJSTJVRuYQGxuLbdu2IT09HXfu3MG0adMwY8YM5ObmolOnTli8eLHcJSoKz6ioBHMWxMJ+i2XXrl0YN26cwfHRo0fj4MGDMlRE5sSAP+NwUFGJ2pyFs2fPMmdBAOy3WOzs7PCvf/3L4Hh+fj5atGghQ0VkTlxEjMPbk1WCOQtiYb/FEhAQgKioKFy4cAHdu3dHTU0NfvrpJ2zYsAERERFyl0cmxoA/4/AaFRU5d+6cPmdBq9XiwIEDsLGxYc6ChWK/xZKamor169fj1q1bAIA33ngDYWFhmDBhgsyVkalt3boVCxYsgJWVFTw9PZGRkVFnERk9erTcJSoKBxUiIgUpKyuDRqOBvb293KWQGXERaTgOKgrGnAWxsN9iKykpwalTp+r9Vl1u2CQyXqOiYL/+zoeKigp8//336NatGzw8PGBtbY0zZ87g9OnTeO+992SskkyF/RbXN998g5iYGFRXVxs8ptFoOKhYAC4ijcczKirBnAWxsN9i8fPzg6+vL2bNmgVbW1u5yyEziIyM1P/8eYvIwoUL5StUgTioqISnpye2bNmCjh071jn+888/Y/To0Th58qQsdZF5sN9i6dGjB3bu3Mk7PgTBRcQ4zFFRCeYsiIX9Fku3bt1w/vx5ucugF4QBf8bhNSoqwZwFsbDfYgkNDcWiRYtw5coVODk5QavV1nm8Z8+eMlVG5lC7iDx9xpSLSP340Y+KMGdBLOy3OFxcXJ75mEajQWFh4QushswtJSUF6enpCA4OrncRmThxotwlKgoHFRVizoJY2G/LV1JS8j8f//UdYWQZuIg0HAcVFWHOgljYb/GUl5fj4sWLsLGxQbt27XgHkAC4iDwfBxWVeF7OAk8NWxb2Wyw1NTWIi4vD3/72N1RVVUGSJGi1WgQEBODTTz+FRqORu0QyMS4iDcdBRSWYsyAW9lssK1euxNq1azFjxgz06tULNTU1OHbsGJKTkzF16lSEhobKXSKZEBcR43BQUQnmLIiF/RaLn58fZs2ahZEjR9Y5vn37diQlJWH37t0yVUbmwEXEOMxRUQnmLIiF/RbLnTt34O7ubnDc3d0d165dk6EiMqdbt24hJCSEQ0oDMUdFJZizIBb2WywdO3bEoUOH0L59+zrH8/LyeMePBapdRHjGtGH40Y9KMGdBLOy3WLZu3YqoqCgEBgbCy8sLAHD8+HFs2LABn3zyCXM1LMzu3bvxl7/8BSEhIVxEGoCDikowZ0Es7Ld4MjIykJaWhtu3bwMAHB0dMWXKFISEhMhcGZkaFxHjcFBRGeYsiIX9Fsvjx49RXl4OSZJQVVWFVq1ayV0SmQEXEeNwUFEJ5iyIhf0WS2lpKWbOnAlPT0/MmjULANCnTx+4uLhg+fLleO2112SukMyBi0jD8GJalUhNTcWmTZsQERFhkLPQqlUr5ixYGPZbLJ9//jkePnyI4cOH64+tWbMGCxcuRFxcHGJjY2WsjkyNi4iRJFIFX19fKTs72+B4dna25O/vL0NFZE7st1h69eolFRYWGhwvKCiQfHx8ZKiIzCklJUX67W9/K61bt04qLCyUzp49K2VkZEg9e/aU1qxZI3d5isMzKirBnAWxsN9iqa6uhlTPp/A2NjZ4+PChDBWROW3cuBHR0dF1Av7eeustODg4ICkpiWdMn8LAN5WozVl4GnMWLBP7LZaePXsiISEB5eXl+mPl5eVITEzkraoWiIuIcXhGRSVCQkIQFRWFK1eu1JuzQJaF/RZLZGQkJk6ciAEDBqBjx44AgJ9//hn29vZIS0uTtzgyOQb8GYd3/agIcxbEwn6LRafTYceOHfjPf/4Da2trdOnSBSNHjsTLL78sd2lkYgz4Mw4HFZVhzoJY2G/xPH78GDY2Nrzzw8JxEWk4DioqwZwFsbDf4snKysKaNWtw/fp15OTkIC0tDa1atcL06dPlLo3MhItIw/BiWpV4Vs6CTqdDXFycjJWRObDfYtm+fTuWLVuGMWPGwMbGBgDQuXNnrFq1Cunp6TJXR6ZWWlqKoKAgJCcnw8HBAS1atMCYMWMwefJk/PLLL3KXpzgcVFTixx9/xGeffYauXbvqj7m6uiI6Ohq5ubnyFUZmwX6LJT09HfPmzcNHH30EK6snfy0HBQUhKioKX3/9tczVkalxETEOBxWVYM6CWNhvsRQVFcHb29vgeO/evXm7qgXiImIcDioqwZwFsbDfYnF0dERRUZHB8RMnTuD111+XoSIyJy4ixmGOikowZ0Es7LdYAgICsGjRIkRGRgIALl68iB9//BErVqxAcHCwzNWRqdUuIsuXL9d/ESEXkWfjXT8qwpwFsbDfYklISMC6detQUVEBALC2tsa4cePw6aef6q9bIctw+fJlTJw4Effv3693EXFycpK3QIXhoKJCzFkQC/stjocPH+L8+fOQJAlOTk76bZssDxeRhuOgoiLMWRAL+y2Wq1evws7ODra2tjhy5Ah2794NLy8vjBgxQu7SyIy4iDwfzyeqBHMWxMJ+i2XPnj0YPHgwTp06hcuXLyM0NBSHDx/G/PnzsWHDBrnLIzPIysqCn58fPDw8UFxcjOjoaKSkpMhdliJxUFEJ5iyIhf0WS0pKCqZMmQIfHx9s374dbdq0wY4dOxAbG4v169fLXR6ZGBcR43BQUQnmLIiF/RbLhQsX8P7778PKygp5eXkYOHAgrKys4OHhgZKSErnLIxPjImIcDioqwZwFsbDfYrGzs4NOp4NOp8Pp06fRp08fAE/uDrG3t5e3ODI5LiLGYY6KSjBnQSzst1gGDhyIqKgoNGvWDK+++ir69u2LQ4cOYeHChRg0aJDc5ZGJ1S4i7dq1q3Oci0j9OKioRFhYGHQ6HWbPno2KigqEh4frcxamTZsmd3lkYuy3WBYsWIAVK1bgypUrWLlyJbRaLY4fPw4PDw/MmTNH7vLIxLiIGIe3J6sMcxbEwn7Tr0VGRiIiIgIODg5yl0L/Jwb8NRwHFRVhzoJY2G96mpeXF7Zt22bwkQGpExeRhuHYphLMWRAL+0314V5pOa5evYrq6mr06NEDDx48QEJCAr777ju5y1IkDioqwZwFsbDfRJaLi4hxOKioBHMWxMJ+E1kuLiLG4aCiEsxZEAv7TWS5uIgYh7cnqwRzFsTCfhNZrqcXkbCwMABcRJ6FZ1RUYsGCBfDy8sIrr7zCnAUBsN9UH37DrmWoXURmzJhRZxGJioriIlIP3p5sYZizIBb2Wyyenp7Izs7m7ckq9+jRI33AX1hYGDw8PJCUlIQrV64gOjoazZo1k7tEReGgYmGYsyAW9lu9jh07Bo1Gg5YtW6J9+/YNOlty8uRJvPXWW9BqtS+gQpIbF5EneI2KheHcKRb2W70CAwOh0WggSRJsbW2Rn5//3Nd4eHiYvzBSjJycHEyfPp2DitwFEBGJKDMzExqNBo6OjujQoYPc5ZACcRF5ghfTEhHJIDk5GV26dEGnTp0a9N0uZWVl/MI6EhLPqBARyeDChQvIyMhAnz59YGNjg1deeQVdu3bVDy137tzBtWvX8OjRI1RVVeHgwYO4ePGizFUTvXgcVIiIZLBgwQLExcVhzZo1qKmpAQC0adMGq1evRnx8PHJzcwE8uSVZq9Wic+fOWLJkiYwVE8mDg4qFYc6CWNhv9RoyZAiGDBmi/+/y8nJs2bIF48aNg7+/P/bv348WLVrA2pp/TZPY+H+AheHFV2Jhvy2Hra0tAgMDcfXqVUyePBktW7aUuySSGReRJ5ijomDMWRAL+01Ev8aAvyc4qCiYi4uL0TkLpF7sN5Hl4iLSeBxUFOzo0aN1chYacgsjqRf7TWS5uIg0Hv8mVDDmLIiF/SayXJmZmcjMzMTOnTtx9OhRuctRFV5Mq2DMWRAL+01kuZKTk7FixQo0b968Qc8vKyvDzJkzsW7dOjNXpnz86EfBcnJyEBcXh+vXrzc4ZyEiIgI+Pj4yVk2NxX4TWa5+/fph7NixRi0i2dnZOHjwoMyVy4+DiorU5iwkJibC398fM2fOZM6CBWO/iSwHF5HG46CiQnFxccxZEAj7TWR5uIg0HAcVIiIimXAReT4OKkRERKRYvD2ZiIiIFIuDChERESkWBxUiUiylfDKtlDqIRMRBhYgU5/r165g6dSpKSkr+7/cqLi6Gs7MzNm/ebPBYeXk53N3d4erqilu3btX7+pSUFKxdu/b/roOIGoeDChEpzqFDh7B//36z/zrfffcdXn31VdjZ2eHbb7+t9zmJiYl4+PCh2WshovpxUCEiYW3evBn9+/eHv78/Nm7cqA/iIiLl4KBCRPWSJAkZGRkYOnQo3Nzc4O/vj7Vr10KSJMydOxfBwcGIjo6Gl5cXhg0bhurqatTU1GD16tXw9/dH9+7dMWTIEHz11Vd13re6uhqrV6/GiBEj4ObmBg8PD4wbNw5HjhwB8GR4iIyMBAC8/fbbmDt3rv61GzduxPDhw9G9e3cMGjQISUlJqK6urvP+u3fvxqhRo+Dm5oYxY8bg3Llz9f7+zp8/j1OnTmHQoEEYNWoUSkpKDOLKnZ2dAQBffvml/udE9GIxAo+I6rVkyRKsW7cOISEh6Nu3LwoKChAfH4+qqioAQH5+Ppo0aYLk5GQ8ePAAL730EqKiorB582aEh4fD09MTx44dQ2xsLO7du4c//vGPAID4+HhkZWXh448/hrOzM27cuIHk5GT8+c9/Rm5uLgYNGoQPP/wQK1eurDMgpKamYvny5Zg0aRIiIyNRWFiIpKQkXLt2DbGxsQCAffv2YcaMGRg5ciQiIiJQWFiIiIiIen9/mzZtgr29PXx9faHVatGhQwdkZWVh4MCB+ud8/fXXCAgIwB/+8Ae899575vzjJqJn4KBCRAbu3buHzMxMTJo0Sf8PfZ8+fXDr1i0cO3YMjo6OqKqqwqJFi9C6dWsAQFFREb755hvMnj0bU6dOBfDki9g0Gg1SU1MxYcIENG/eHDdv3sSsWbMQGBio//WaNGmCjz76CP/+97/h4eGB9u3bAwC6deuGtm3bQqfTISUlBQEBAZg/f77+ve3t7TF//nyEhITgN7/5DZKTk+Hm5oalS5cCAPr37w8AWLZsWZ3fX1VVFbKzszFixAhotVoAwJgxY/SDzxtvvAEA8PDwAAC0bt1a/3MierH40Q8RGTh58iSqqqowePDgOsfnz5+PtLQ0AIC9vb1+SAGAI0eOQJIk+Pn5oaqqSv/Dz88PFRUVOH78OIAnQ0NwcDBKS0uRn5+PTZs2ITs7GwDw+PHjeus5ceIEHj16VO97A0BeXh4ePXqEs2fPwtfXt85rhw4davB+ubm5uH37Nt555x3cu3cP9+7dg5+fH2pqarBx48ZG/qkRkTnwjAoRGbh79y4AwMHB4ZnPadasWb2vGT58eL3Pv3HjBgCgoKAAMTExKCgoQNOmTdGlSxe0adMGwLPzSmrfu/ZMzdNu3ryJX375BZIkoXnz5nUee/311w2ev2nTJgDABx98YPDYt99+i+nTp/PL4YgUgv8nEpEBOzs7AEBpaSmcnJz0x69evYrLly+jsrLyma9Zt26dwRADPPlK+/LycoSGhsLZ2Rk7duyAk5MTrKyssH//fuTk5Dy3nvj4eHTs2NHgcUdHR9jb28PKygq3b9+u81jtkFPr9u3bOHDgACZMmIB33323zmMnT55EQkICfvjhB/j7+z+zHiJ6cfjRDxEZcHNzg42NDX744Yc6x9PT0zF79my89NJLBq/x9vYGAJSVlaFHjx76H6WlpUhMTMTdu3dx8eJF3L17F0FBQejSpQusrJ78FXTgwAEA0N8eXHu8lru7O2xsbHDjxo06721tbY2EhAQUFxejSZMm8PT0xO7du+ucmdm3b1+d99q2bRuqqqoQHByM3r171/kRHBwMW1tb/P3vf9c//+laiOjF4hkVIjLg4OCAoKAgZGRkQKvVolevXjh16hSysrLwySefoLCw0OA1zs7OGDVqFBYsWICSkhJ0794dRUVFWL58Odq2bYuOHTviwYMHsLW1xapVq2BtbQ1ra2vk5OTow9Zqg9Vqz6Ds2bMHAwYMQOfOnREaGorExESUl5ejd+/euHHjBhITE6HRaODi4gIAmD17NoKDg/GnP/0JAQEBKCoqwqpVq+rUuXnzZri6utZ7Zubll1/GkCFDsHnzZly5cgXt2rWDnZ0dfvrpJxw7dgze3t7QaDSm/KMmoueRiIjqUVNTI6WlpUnvvPOO1L17d+ndd9+VsrKyJEmSpDlz5ki+vr4Gr6msrJS+/PJL6e2335ZcXV2lAQMGSNHR0VJZWZn+OUeOHJF+//vfS25ubpKPj480efJkKT8/X/L09JTi4uIkSZKk8vJy6YMPPpBcXV2lsLAw/WvXr18vDRs2THJ1dZX69Okjffzxx1JJSUmdGvLy8qSxY8dKPXr0kIYOHSrt27dP6tq1q7Rp0ybp5MmTUteuXaW0tLRn/r7/+c9/Sl27dpWWLl0qSZIkpaenS97e3pK7u7vBr0VE5qeRJH7bFhERESkTP3wlIiIixeKgQkRERIrFQYWIiIgUi4MKERERKRYHFSIiIlIsDipERESkWBxUiIiISLE4qBAREZFicVAhIiIixeKgQkRERIrFQYWIiIgUi4MKERERKdZ/AVxk8jPgk+eJAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -562,7 +627,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHyCAYAAADFteVsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/H0lEQVR4nO3deVxU9f7H8fcAgwyuuFtqKChEuaBikuFCZS6Vqbe6JWpeLU3NR5a5lJq7VrikZrnvpi3q1bpmajdNf4pilpq4kGKaAa64MMo2vz98OLcJNZbBOTCv5+PBA+d7vmfO59Bp5j3f8z1nTDabzSYAAAAD8nB1AQAAALdDUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEKKe7VCMAdEFSAAtClSxcFBQXZf4KDgxUaGqqOHTtq8eLFysjIcOgfGRmpIUOG5Pj5N2/erMGDB/9tvyFDhigyMjLP28mrU6dOKSgoSKtWrcq2LC0tTS1atFCHDh1ktVoLrIYuXbqoS5cuBfb8d1NR2hcgt7xcXQBQVIWEhOjdd9+VJGVmZiolJUVbt27VhAkTFBsbq6lTp8rD48ZnhRkzZqhEiRI5fu6FCxfmqF+fPn3UtWvXXNeeXxUrVtTKlStVvXr1bMs+//xzZWRk6OOPP5bFYrnrtQEoXAgqQAEpUaKE6tev79AWGRmpmjVraty4cfrqq6/09NNPS7oRagrCrYLC3eDt7Z1t32969NFH1aZNG5UtW/buFgWgUOLUD3CXRUVFqVKlSlqxYoW97a+nZG6GmLp166pJkyYaOHCgkpKSJN04DbBr1y7t2rVLQUFBiomJUUxMjIKCgrRixQq1bNlSDRo00Pbt27Od+pGk9PR0jR07VmFhYWrUqJEGDx6s8+fP25ff6jTDzeePiYmxtx07dkz9+vVT48aNFRYWpl69eunXX3+VdOtTPwkJCerfv786deqkyMhIdenSRXv27LEvv7nO+vXr1b9/f4WGhqpx48YaNmyYUlNT7/g3PX36tPr166eGDRuqadOmWrBgwS37ff7552rXrp0efPBBtWjRQtOnT1dmZuYdn/vKlSsaMWKEwsPDFRoaqgEDBmjhwoUKCgpy6Ldp0yZ17NhRderUUdOmTTV27FiHuqdPn67HH39c33//vZ566ik9+OCDeuKJJ7RmzZoC2ZchQ4aoW7duevfdd9WgQQO1bdv2b/cVMCKCCnCXeXh4KDw8XPv27cs2V0WS9uzZo0GDBqlVq1aaM2eOhg4dqp07d+rNN9+UJL377rsKCQlRSEiIVq5cqQceeMC+7owZMzR48GCNGDFCoaGht9z++vXr9csvv2jixIkaPHiwvv/+e7388su5ehNLSkrS888/r4SEBI0cOVIffPCBzp49q27duunixYvZ+sfHx6tjx446deqUhg0bpujoaJlMJnXr1k27du1y6Pvuu+/q3nvv1cyZM9WjRw998cUX+vjjj29bS2pqqqKionTkyBGNGTNGw4cP1+eff669e/c69Js1a5aGDx+u8PBwffLJJ+rcubPmzJmj4cOH33Ff+/Tpo/Xr1+u1117TlClTdPXqVU2aNMmhz7p169S3b1/VrFlTH330kfr166e1a9eqT58+DpOez5w5o9GjR6tr166aPXu2qlatqsGDB9sDnrP3JTY2Vn/88Yc++ugjvfnmm/L09LzjvgJGxKkfwAXKly+v9PR0Xbx4UeXLl3dYtmfPHvn4+OiVV16Rt7e3JKlMmTLav3+/bDabAgMD7fNZ/np65cUXX1Tr1q3vuG0/Pz/NmzdPvr6+9sd9+/bV1q1b1bJlyxzVv3DhQqWlpWnBggWqUKGCJCk4OFgvvPCCfv75ZwUEBDj0nzFjhry9vbV48WJ77S1atNCTTz6p999/X1988YW9b/Pmze0ThcPDw7V9+3Z9//339qD2V6tXr9bp06f11VdfKTAwUJJUr149Pf744/Y+ly9f1syZM/X8889r2LBhkqRHHnlEZcqU0bBhw9S9e3fVqlUr23Pv2LFDMTExmj59ulq1aiVJatasmZ588kl7uLDZbIqOjlZERISio6Pt6/r7++ull17Sli1b1KJFC0mS1WrVuHHjFB4ebu/TsmVLbdmyRQEBAU7fl4yMDI0ePVqVK1e+5d8OKAwYUQFc4OanbJPJlG1ZWFiYrFarnnzySU2aNEmxsbF65JFH1K9fv1v2/7P777//b7fdvHlze0iRbpx28vLy0u7du3Nc/549e1S/fn17SJGkypUr67///a+aN2+erf+uXbvUsmVLhwnDXl5eateunQ4cOKCrV6/a2/8avipXrnzHUz+xsbGqXr26/Y1dkqpUqeLwPHv37tW1a9cUGRmpjIwM+8/N02Lbt2+/5XPv3LlTZrNZjz32mL3Nw8NDbdu2tT8+duyYEhMTsz13WFiYSpQoke25/1zXzQBxc/+cvS9lypQhpKDQY0QFcIGkpCT5+PioTJky2ZaFhoZq9uzZWrhwoRYsWKDZs2erfPny6t27999eovrnAHI7fw4X0o03Xj8/P126dCnH9V+8eFFVq1bNcf+UlJRsI0fSjZElm82mK1eu2Nv+eiWQh4fHHe8Zk5KSIj8/v2ztFSpU0NmzZ+31StIrr7xyy+dITk6+ZfuFCxdUpkwZ+9VZN5UrV87+75vPPWrUKI0aNepvn/vP+3fzeW/un7P3pXjx4rfsAxQmBBXgLsvIyFBMTIwaNGhw2zkDERERioiIkNVq1c6dO7V48WKNHTtW9erVU926dfO1/b/OIcnMzNSFCxcc3nz/Ol/lryMaJUuWdJiAe9OOHTtUtWrVbCM/pUuXtr/R/tmZM2ck3Tj9dLuw8Hf8/Px04sSJbO1/3s9SpUpJkqKjo+Xv75+t761ClCRVqlRJFy5cUFZWlkNYOXfuXLbnHjRokBo3bpztOUqXLp2j/ZAKdl+AwopTP8BdtnLlSp05c0YvvPDCLZe/99576tSpk2w2mywWi1q2bGmfs3H69GlJyvYJPze2b9/uMIl3w4YNysjI0EMPPSTpxmXViYmJDuv8+eocSWrUqJF+/vlnh7By7tw59ezZU1u2bMm2zbCwMP33v/91GDnJzMzU119/rTp16tjn4uRFkyZNdOrUKe3fv9/edv78ef3000/2x/Xq1ZPZbFZSUpLq1Klj//Hy8tLkyZN16tSpWz5348aNlZGRoe+++87eZrPZtGnTJvvjmjVrqly5cjp16pTDc1eqVEmTJk3SwYMHDbEvQGHFiApQQK5cuWJ/g8nKytKFCxe0bds2rVy5Uk8//bR9cuZfNWnSRAsWLNCQIUP09NNPKz09XXPnzlWZMmXUpEkTSTc+Ve/du1c7duzI9T1Yzpw5o9dee01dunRRQkKCJk+erKZNm9oneLZs2VLfffedJkyYoMjISMXGxma7hPall17SmjVr1LNnT/Xq1Utms1kff/yxKleurKeeekqXL1926N+vXz9t3bpVXbt21SuvvCKz2aylS5fq5MmTmjt3bq7q/6v27dtr8eLF6tevnwYMGKASJUro448/VlZWlr2Pn5+fevbsqQ8//FBXrlzRQw89pKSkJH344YcymUwKDg6+5XOHhYWpadOmeuedd3T27Fndc889+uKLL3T48GH7qJGnp6cGDBigESNGyNPTUy1bttSlS5c0c+ZMJSUlOVyV5cp9AQorggpQQA4ePKjnn39e0o1Js8WLF1ft2rU1cuRIPfvss7ddr3nz5oqOjtb8+fPtE2gbNmyoxYsX2+e0dO7cWQcOHNDLL7+sCRMmqGLFijmu68UXX9Tly5fVt29feXt766mnntJbb71lf+Pt1KmTfvvtN61evVorVqxQWFiYpk2b5jACVKVKFS1fvlwffPCBhgwZIm9vbz300EOaMmWKSpcunS2o1KpVS8uXL9fkyZM1dOhQmUwm1a1bV4sXL1ajRo1yXPuteHt7a9GiRRo/frzGjRsnk8mk5557TtWqVXM4RfP666+rQoUKWr58uebOnavSpUsrPDxcb7zxhkqWLHnb558yZYomTpyoSZMmKSMjQ48++qheeOEFh/D27LPPqnjx4po7d65WrlwpX19fNWjQQNHR0apWrZph9gUojEw2vtkMAG7p999/108//aRHH31UPj4+9vb+/fvr5MmTWr16tQurA9wDIyoAcBseHh4aMmSIHn30Uf3jH/+Qp6enfvjhB3377beaMGGCq8sD3AIjKgBwBzt37tRHH32kuLg4ZWRkKCAgQN27d9eTTz7p6tIAt0BQAQAAhsXlyQAAwLAIKgAAwLAIKgAAwLAK/VU/e/fulc1mk9lsdnUpAAAgh9LT02UymRQaGnrHfoV+RMVms93xC8uQMzabTWlpafwtYSgclzAajknnyen7d6EfUbk5klKnTh0XV1K4paamKi4uToGBgTn6Bl7gbuC4hNFwTDrPn7/T6k4K/YgKAAAouggqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqkCSZTCZZLBaZTCZXlwIAgJ2XqwtwF1lZNnl4GDcEWCwWhYSEuLqMHDH63xIA4DwElbvEw8Ok6GV7dCrpsqtLKdSqViqpgZ0buroMAMBdQlC5i04lXdavv6e4ugwAAAoN5qgAAADDIqgAAADDynVQuXjxokaMGKFmzZqpQYMGeuGFFxQbG2tfvmPHDnXs2FH16tVT69at9fXXXzusf/36dY0aNUrh4eEKDQ3Vm2++qfPnz+d/TwAAQJGT66DyxhtvaO/evZo8ebK+/PJL3X///erRo4eOHTumX3/9Vb169VJERIRWrVqlZ599VoMGDdKOHTvs648cOVLbtm3T9OnTtWjRIh07dkz9+/d36k4BAICiIVeTaU+cOKHt27dr+fLlatjwxpUXw4cP1w8//KB169bp3LlzCgoK0oABAyRJAQEBOnjwoObOnavw8HAlJSVpzZo1+uSTT9SoUSNJ0uTJk9W6dWvt3btXoaGhTt49AABQmOVqRMXPz0+zZ89WnTp17G0mk0kmk0mXLl1SbGyswsPDHdZp0qSJ9uzZI5vNpj179tjbbqpRo4YqVaqk3bt352c/AABAEZSrEZVSpUqpefPmDm0bNmzQiRMn9Pbbb2v16tWqXLmyw/KKFSvKarXqwoULSkpKkp+fn4oVK5atT2JiYh53QbLZbEpNTc3z+gXt5l1f4TxWq1U2m83VZaCAWa1Wh9+Aq3FMOo/NZsvR3dDzdR+VH3/8UUOHDlWrVq3UokULXbt2Td7e3g59bj5OS0uT1WrNtlySihUrpuvXr+e5jvT0dMXFxeV5/YJWmO76WlgcP36cFwo3kpCQ4OoSAAcck85xq0zwV3kOKps2bdLAgQPVoEEDRUdHS7oRONLS0hz63XxssVjk4+OTbbl040qg/Iw4mM1mBQYG5nn9gsb35zhfjRo1GFFxA1arVQkJCfL392dUEobAMek88fHxOeqXp6CydOlSjRs3Tq1bt9Z7771nT0RVqlRRcnKyQ9/k5GT5+vqqZMmSqly5si5evKi0tDSHFJWcnKxKlSrlpRRJN4KAr69vntdH4cMLhHuxWCz8Pw5D4ZjMv5x+iM/15cnLly/XmDFj1LlzZ02ePNkhcDRq1Ei7du1y6L9z5041aNBAHh4eatiwobKysuyTaqUbQ/hJSUkKCwvLbSkAAKCIy1VQOX78uMaPH6/HH39cvXr10tmzZ3XmzBmdOXNGly9fVpcuXbRv3z5FR0fr119/1fz58/XNN9+oZ8+ekqRKlSqpXbt2GjZsmGJiYrRv3z698cYbaty4serXr18Q+wcAAAqxXJ362bBhg9LT07Vx40Zt3LjRYVmHDh00ceJEzZw5Ux988IEWLVqkqlWr6oMPPnC4ZHnMmDEaP368+vXrJ0lq1qyZhg0b5oRdAQAARU2ugkrv3r3Vu3fvO/Zp1qyZmjVrdtvlvr6+Gjt2rMaOHZubTQMAADfElxICAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADD8srPyrNmzdK2bdu0ZMkSSVKXLl20a9euW/Z977339MwzzygzM1OhoaG6fv26w/J+/frptddey085AACgiMlzUFm2bJmmTp2qRo0a2dumT5+u9PR0+2ObzaYBAwYoJSVFjz/+uCQpISFB169f17///W+VK1fO3tfX1zevpQAAgCIq10ElKSlJ7777rmJiYuTv7++wrEyZMg6Ply5dqn379unf//63ihcvLkk6fPiwSpQooeDg4DwXDQAA3EOu56j88ssvMpvNWrt2rerVq3fbfufPn9fUqVP16quvqmbNmvb2w4cPKyAgIG/VAgAAt5LrEZXIyEhFRkb+bb85c+bIx8dHPXr0cGg/cuSIMjIy1KNHDx06dEiVKlVSt27d1L59+9yWAgAAirh8Taa9nStXruizzz5Tv379VKxYMYdlR48eVVZWlvr376/KlStry5YtGjp0qNLT0/WPf/wjT9uz2WxKTU11RukFwmQyyWKxuLqMIsVqtcpms7m6DBQwq9Xq8BtwNY5J57HZbDKZTH/br0CCyqZNm5SWlqZOnTplW/bVV18pMzPTPmclODhYp0+f1rx58/IcVNLT0xUXF5evmguSxWJRSEiIq8soUo4fP84LhRtJSEhwdQmAA45J5/D29v7bPgUWVJo3b65SpUplW+bj45OtrXbt2lq7dm2et2c2mxUYGJjn9QtaThIjcqdGjRqMqLgBq9WqhIQE+fv7MyoJQ+CYdJ74+Pgc9SuQoBIbG3vLe6JcunRJjz32mIYMGaKOHTva2/fv369atWrleXsmk4nLm90MLxDuxWKx8P84DIVjMv9y+iHe6UHljz/+0IULF255+XGpUqXUpEkTTZkyReXKldN9992nb7/9VmvXrtWsWbOcXQoAACjknB5Uzpw5Iyn7PVVuGj9+vKZPn653331X586dU0BAgKZNm6aIiAhnlwIAAAq5fAWViRMnZmurW7euDh8+fNt1SpQooaFDh2ro0KH52TQAAHADfCkhAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwrHwFlVmzZqlLly4ObcOGDVNQUJDDT2RkpH15VlaWpk2bpoiICNWvX18vv/yyTp48mZ8yAABAEZXnoLJs2TJNnTo1W/vhw4fVu3dvbdu2zf7zxRdf2JfPnDlTy5cv15gxY7RixQplZWWpZ8+eSktLy2spAACgiMp1UElKSlLv3r0VHR0tf39/h2U2m03x8fF68MEHVaFCBftP2bJlJUlpaWmaP3+++vfvrxYtWig4OFhTpkxRYmKivv32W6fsEAAAKDpyHVR++eUXmc1mrV27VvXq1XNY9ttvvyk1NVU1a9a85bqHDh3S1atXFR4ebm8rVaqUQkJCtHv37tyWAgAAijiv3K4QGRnpMOfkz44cOSJJWrJkibZu3SoPDw81a9ZMAwYMUMmSJZWYmChJqlKlisN6FStWtC8DAAC4KddB5U6OHDkiDw8PVaxYUZ988ol+++03vf/++zp69KgWLVokq9UqSfL29nZYr1ixYkpJScnzdm02m1JTU/NVe0EymUyyWCyuLqNIsVqtstlsri4DBezma8bN34CrcUw6j81mk8lk+tt+Tg0qr776ql588UX5+flJkmrXrq0KFSroueee0/79++Xj4yPpxlyVm/+WpOvXr+frjTw9PV1xcXH5K74AWSwWhYSEuLqMIuX48eO8ULiRhIQEV5cAOOCYdI6/DlzcilODioeHhz2k3FSrVi1JUmJiov2UT3JysqpXr27vk5ycrKCgoDxv12w2KzAwMM/rF7ScJEbkTo0aNRhRcQNWq1UJCQny9/dnVBKGwDHpPPHx8Tnq59SgMmjQICUnJ2vhwoX2tv3790uSAgMDVa1aNZUoUUIxMTH2oHLp0iUdPHhQUVFRed6uyWSSr69vvmpH4cILhHuxWCz8Pw5D4ZjMv5x+iHfqnWmfeOIJ7dixQzNmzNBvv/2mLVu26O2339aTTz6pgIAAeXt7KyoqStHR0dq8ebMOHTqkAQMGqHLlymrVqpUzSwEAAEWAU0dUHn30UU2dOlWzZ8/WnDlzVLJkST311FN6/fXX7X369++vjIwMDRs2TNeuXVNYWJjmzZsns9nszFIAAEARkK+gMnHixGxtbdq0UZs2bW67jqenp9566y299dZb+dk0AABwA3wpIQAAMCyCCgAAMCyCCgAAMCyCCgDDunlXZ+5FBLgvp171A6DwyMqyycPD2AGgsNzVuTD8LYHCiqACuCkPD5Oil+3RqaTLri6lUKtaqaQGdm7o6jKAIougArixU0mX9evvef9CUAAoaMxRAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhpWvoDJr1ix16dLFoe27775Tp06dFBoaqsjISL333nu6du2affmePXsUFBSU7ScmJiY/pQAAgCLIK68rLlu2TFOnTlWjRo3sbbGxserXr5/69++v1q1b68SJExoxYoQuXryoCRMmSJIOHz6s6tWra/ny5Q7PV7p06byWAgAAiqhcj6gkJSWpd+/eio6Olr+/v8OyFStW6KGHHlLv3r3l7++v5s2ba8CAAVq3bp3S0tIkSUeOHFFgYKAqVKjg8OPt7e2UHQIAAEVHroPKL7/8IrPZrLVr16pevXoOy/71r39p8ODBjhvw8FB6erquXLki6caISkBAQD5KBgAA7iLXp34iIyMVGRl5y2UhISEOj9PT07Vw4UI9+OCDKlu2rCTp6NGj8vPzU8eOHZWUlKTatWtrwIABqlu3bh7Kv8Fmsyk1NTXP6xc0k8kki8Xi6jKKFKvVKpvN5uoyCi2OSefjmHQPVqvV4TfyzmazyWQy/W2/PM9R+TsZGRkaNGiQjh49qmXLlkmS/vjjD12+fFmpqakaNmyYPD09tXTpUkVFRWnVqlUKDAzM07bS09MVFxfnzPKdymKxZAtxyJ/jx4/zQpEPHJPOxzHpXhISElxdQpGQk2kfBRJUrly5otdff127du3SjBkz7KMlVapU0e7du2WxWGQ2myVJderU0cGDB7VkyRKNGjUqT9szm815Djl3Q04SI3KnRo0afHrNB45J5+OYdA9Wq1UJCQny9/dnVDKf4uPjc9TP6UElOTlZL7/8sn7//XfNmzdPYWFhDstLlSrl8NjDw0MBAQFKSkrK8zZNJpN8fX3zvD4KH14gYDQck+7FYrHwvpNPOf3A5NQbvqWkpKhbt246f/68li1bli2kbN26VaGhoTp58qS9LSMjQ4cOHTL0iAgAAHANp46oTJgwQSdPntTcuXNVtmxZnTlzxr6sbNmyatCggfz8/DR48GC9/fbbMpvNmj17ti5evKiXXnrJmaUAAIAiwGlBJTMzU//5z3+Unp6ubt26ZVu+efNmVa1aVQsXLlR0dLR69Oih69evq2HDhlq6dKnKly/vrFIAAEARka+gMnHiRPu/PT09tW/fvr9dp3r16po2bVp+NgsAANwEX0oIAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMK19BZdasWerSpYtDW1xcnKKiolS/fn1FRkZq8eLFDsuzsrI0bdo0RUREqH79+nr55Zd18uTJ/JQBAACKqDwHlWXLlmnq1KkObRcuXFD37t1VvXp1ffnll+rbt6+io6P15Zdf2vvMnDlTy5cv15gxY7RixQplZWWpZ8+eSktLy/NOAACAoskrtyskJSXp3XffVUxMjPz9/R2WffbZZzKbzRo9erS8vLwUEBCgEydOaPbs2erUqZPS0tI0f/58DRw4UC1atJAkTZkyRREREfr222/15JNPOmOfAABAEZHrEZVffvlFZrNZa9euVb169RyWxcbGqnHjxvLy+l/+adKkiRISEnT27FkdOnRIV69eVXh4uH15qVKlFBISot27d+djNwAAQFGU6xGVyMhIRUZG3nJZYmKiateu7dBWsWJFSdIff/yhxMRESVKVKlWy9bm5LC9sNptSU1PzvH5BM5lMslgsri6jSLFarbLZbK4uo9DimHQ+jkn3YLVaHX4j72w2m0wm09/2y3VQuZNr167J29vboa1YsWKSpOvXr9v/w96qT0pKSp63m56erri4uDyvX9AsFotCQkJcXUaRcvz4cV4o8oFj0vk4Jt1LQkKCq0soEv6aB27FqUHFx8cn26TY69evS5J8fX3l4+MjSUpLS7P/+2af/Hy6M5vNCgwMzPP6BS0niRG5U6NGDT695gPHpPNxTLoHq9WqhIQE+fv7MyqZT/Hx8Tnq59SgUrlyZSUnJzu03XxcqVIlZWRk2NuqV6/u0CcoKCjP2zWZTPL19c3z+ih8eIGA0XBMuheLxcL7Tj7l9AOTU2/4FhYWpj179igzM9PetnPnTtWoUUPlypVTcHCwSpQooZiYGPvyS5cu6eDBgwoLC3NmKQAAoAhwalDp1KmTrly5onfeeUfx8fFatWqVFi5cqF69ekm6cS4qKipK0dHR2rx5sw4dOqQBAwaocuXKatWqlTNLAQAARYBTT/2UK1dOc+fO1bhx49ShQwdVqFBBgwYNUocOHex9+vfvr4yMDA0bNkzXrl1TWFiY5s2bJ7PZ7MxSAABAEZCvoDJx4sRsbXXr1tXKlStvu46np6feeustvfXWW/nZNAAAcAN8KSEAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsL2c+WUxMjLp27XrLZVWrVtXmzZv18ccfa+rUqdmWHz582JmlAACAIsCpQSU0NFTbtm1zaPvpp5/02muvqU+fPpJuBJL27dvrrbfecuamAQBAEeTUoOLt7a0KFSrYH6empmrChAnq0KGDOnXqJEk6cuSInnvuOYd+AAAAt1Kgc1Q++eQTWa1WDR48WJKUlpamhIQE1axZsyA3CwAAiogCCyrnz5/XwoUL1bt3b5UpU0aSFB8fr8zMTG3YsEFPPPGEWrRoobfeekvJyckFVQYAACjEnHrq58+WL1+ukiVL6vnnn7e3HTlyRJJksVj04Ycf6ty5c5o8ebK6du2qNWvWyMfHJ0/bstlsSk1NdUrdBcFkMslisbi6jCLFarXKZrO5uoxCi2PS+Tgm3YPVanX4jbyz2WwymUx/26/AgsqaNWv0zDPPOISPZ555Rs2aNVPZsmXtbbVq1VKzZs303XffqW3btnnaVnp6uuLi4vJdc0GxWCwKCQlxdRlFyvHjx3mhyAeOSefjmHQvCQkJri6hSPD29v7bPgUSVA4dOqSTJ0/qqaeeyrbszyFFkipWrKgyZcooMTExz9szm80KDAzM8/oFLSeJEblTo0YNPr3mA8ek83FMuger1aqEhAT5+/szKplP8fHxOepXIEElNjZW5cqVU3BwsEP7lClT9M033+ibb76xv1CeOnVKFy5cyFfQMJlM8vX1zVfNKFx4gYDRcEy6F4vFwvtOPuX0A1OBTKY9ePCggoKCsrU//vjj+v333zVy5EgdP35cu3fv1muvvaYGDRooIiKiIEoBAACFWIEElTNnztiv9PmzBx98UHPmzNHhw4fVsWNH9evXT/fff78++eQThqIBAEA2BXLqZ86cObddFh4ervDw8ILYLAAAKGL4UkIAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYTg8qSUlJCgoKyvazatUqSVJcXJyioqJUv359RUZGavHixc4uAQAAFBFezn7CQ4cOqVixYtq0aZNMJpO9vWTJkrpw4YK6d++uyMhIjRo1Sj/99JNGjRql4sWLq1OnTs4uBQAAFHJODypHjhyRv7+/KlasmG3ZokWLZDabNXr0aHl5eSkgIEAnTpzQ7NmzCSoAACAbp5/6OXz4sAICAm65LDY2Vo0bN5aX1//yUZMmTZSQkKCzZ886uxQAAFDIOT2oHDlyROfPn1fnzp318MMP64UXXtDWrVslSYmJiapcubJD/5sjL3/88YezSwEAAIWcU0/9ZGRk6NixYwoMDNSQIUNUokQJff3113rllVe0YMECXbt2Td7e3g7rFCtWTJJ0/fr1PG/XZrMpNTU1X7UXJJPJJIvF4uoyihSr1SqbzebqMgotjknn45h0D1ar1eE38s5msznMZb0dpwYVLy8vxcTEyNPTUz4+PpKkBx98UEePHtW8efPk4+OjtLQ0h3VuBhRfX988bzc9PV1xcXF5L7yAWSwWhYSEuLqMIuX48eO8UOQDx6TzcUy6l4SEBFeXUCT8dfDiVpw+mbZ48eLZ2mrVqqVt27apcuXKSk5Odlh283GlSpXyvE2z2azAwMA8r1/QcpIYkTs1atTg02s+cEw6H8eke7BarUpISJC/vz+jkvkUHx+fo35ODSpHjx7V888/r48//lgPPfSQvf3AgQMKDAzU/fffrxUrVigzM1Oenp6SpJ07d6pGjRoqV65cnrdrMpnyNSKDwocXCBgNx6R7sVgsvO/kU04/MDl1Mm1AQIBq1qyp0aNHKzY2Vr/++qsmTJign376Sa+++qo6deqkK1eu6J133lF8fLxWrVqlhQsXqlevXs4sAwAAFBFOHVHx8PDQJ598okmTJun111/XpUuXFBISogULFqh27dqSpLlz52rcuHHq0KGDKlSooEGDBqlDhw7OLAMAABQRTp+jUr58eU2YMOG2y+vWrauVK1c6e7MAAKAI4ksJAQCAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYXk5+wkvXryoyZMn6/vvv9eVK1cUFBSkN998U40aNZIkde/eXf/3f//nsE7jxo21ZMkSZ5cCAAAKOacHlTfeeENnzpzR5MmTVa5cOS1ZskQ9evTQ6tWrVbNmTR0+fFgjR47UY489Zl/HbDY7uwwAAFAEODWonDhxQtu3b9fy5cvVsGFDSdLw4cP1ww8/aN26dYqKitK5c+dUr149VahQwZmbBgAARZBT56j4+flp9uzZqlOnjr3NZDLJZDLp0qVLOnz4sEwmk2rUqOHMzQIAgCLKqSMqpUqVUvPmzR3aNmzYoBMnTujtt9/WkSNHVLJkSY0ePVrbt2+Xr6+vWrdurT59+sjb2zvP27XZbEpNTc1v+QXGZDLJYrG4uowixWq1ymazubqMQotj0vk4Jt2D1Wp1+I28s9lsMplMf9vP6XNU/uzHH3/U0KFD1apVK7Vo0UJvv/22rl+/rrp166p79+6Ki4vT+++/r9OnT+v999/P83bS09MVFxfnxMqdy2KxKCQkxNVlFCnHjx/nhSIfOCadj2PSvSQkJLi6hCIhJ4MUBRZUNm3apIEDB6pBgwaKjo6WJI0ePVqDBw9W6dKlJUm1a9eW2WzWgAEDNGjQIJUvXz5P2zKbzQoMDHRa7c6Wk8SI3KlRowafXvOBY9L5OCbdg9VqVUJCgvz9/RmVzKf4+Pgc9SuQoLJ06VKNGzdOrVu31nvvvWdPTF5eXvaQclOtWrUkSYmJiXkOKiaTSb6+vvkrGoUKLxAwGo5J92KxWHjfyaecfmBy+g3fli9frjFjxqhz586aPHmyw7BOly5dNHToUIf++/fvl9lslr+/v7NLAQAAhZxTR1SOHz+u8ePH6/HHH1evXr109uxZ+zIfHx898cQTGj9+vOrWratHHnlE+/fv1/vvv68ePXqoRIkSziwFAAAUAU4NKhs2bFB6ero2btyojRs3Oizr0KGDJk6cKJPJpCVLlmj8+PGqUKGCXnrpJb3yyivOLAMAABQRTg0qvXv3Vu/eve/Yp3PnzurcubMzNwsAAIoovpQQAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAIAcMplMslgsMplMri7FbXi5ugAAAG7KyrLJw8O4IcBisSgkJMTVZfwto/8dc4OgAgAwDA8Pk6KX7dGppMuuLqXQqlqppAZ2bujqMpyGoAIAMJRTSZf16+8pri4DBsEcFQAAYFgEFQAAYFguCSpZWVmaNm2aIiIiVL9+fb388ss6efKkK0oBAAAG5pKgMnPmTC1fvlxjxozRihUrlJWVpZ49eyotLc0V5QAAAIO660ElLS1N8+fPV//+/dWiRQsFBwdrypQpSkxM1Lfffnu3ywEAAAZ214PKoUOHdPXqVYWHh9vbSpUqpZCQEO3evftulwMAAAzsrl+enJiYKEmqUqWKQ3vFihXty3IjPT1dNptN+/btc0p9BcVkMukf4SWVkVnc1aUUal6eHtq/f79sNpurSyn0OCadg2PSuTgu86+wHJPp6ek5usPvXQ8qVqtVkuTt7e3QXqxYMaWk5P66+Zs7WRhuZ1y6hPffd0KOFIb/3oUBx6TzcEw6D8elcxj9mDSZTMYMKj4+PpJuzFW5+W9Jun79uiwWS66fLzQ01Gm1AQAAY7nrc1RunvJJTk52aE9OTlalSpXudjkAAMDA7npQCQ4OVokSJRQTE2Nvu3Tpkg4ePKiwsLC7XQ4AADCwu37qx9vbW1FRUYqOjlbZsmV177336oMPPlDlypXVqlWru10OAAAwMJd8KWH//v2VkZGhYcOG6dq1awoLC9O8efNkNptdUQ4AADAok83o1y8BAAC3xZcSAgAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoADCU3377zdUlADAQggp07do1rVmzRpMmTdLFixe1a9cuXbhwwdVlwU117txZ+/btc3UZAAzCJd/1A+M4e/asnn/+eZ07d05paWl67rnnNH/+fB04cECLFi1SQECAq0uEmzGbzfLy4qUJxvLHH39o2bJlOnLkiLy8vFSrVi0999xzuvfee11dWpHHd/24uYEDB+rKlSuaMmWKHn74Ya1du1alSpXS66+/rmLFiumTTz5xdYlwM9OnT9enn36q9u3b67777pOPj4/D8meeecY1hcFtHT58WFFRUfLx8VHdunWVlZWlAwcOyGq16tNPP1WtWrVcXWKRRlBxc4888ohmz56tkJAQhYaGau3atapWrZoOHTqkrl27ateuXa4uEW4mODj4tstMJpPi4uLuYjWA1KNHD1ksFk2aNEnFihWTJF2/fl0DBw5UWlqaZs2a5eIKizbGV93c1atX5evre8tlGRkZd7kaQDp06JCrSwAc/Pjjj1qxYoU9pEhSsWLF1LdvX0VFRbmwMvfAZFo3FxYWpk8//dShLT09XR9//LEaNGjgoqoA6fTp0/rhhx907do1nTt3ztXlwI0VL15c6enp2dpv1Qbn49SPm/v111/VuXNnValSRUePHtVDDz2kY8eO6fLly1q6dOkdh+GBgpCWlqbBgwdr/fr18vDw0IYNG/Tee+/p6tWrmj59ukqUKOHqEuFmBg4cqOTkZE2bNk1lypSRJJ0/f16vv/66SpcurenTp7u2wCKOoAIlJyfr008/1cGDB5WVlaVatWrpxRdfVNWqVV1dGtzQhx9+qG+++UYjR45U7969tXbtWp0+fVpDhw5Vs2bNNHLkSFeXCDeTmJiof/7zn0pJSZG/v78kKSEhQWXKlNGSJUt4rSxgBBU3169fPw0YMIDLkGEYrVq10siRI/Xwww87TPDesWOHBg0apB9++MHVJcINXb16Vf/+97919OhR2Ww2BQUF6amnnmKE7y5gMq2b27lzp8MEMcDVkpKSVL169WztVapUUUpKigsqAm7MU3nxxRddXYZbIqi4uQ4dOig6Olp9+/bVfffdJ29vb1eXBDcXEBCgHTt26Nlnn3Vo//rrrxUYGOiiquBufvjhB4WFhcnHx0dnzpzR1KlT9eOPPyo9PV1/PRGxefNmF1XpHggqbm7Lli367bfftGHDhlsu554VuNtee+01DRgwQPHx8crMzNTq1at1/PhxbdiwQVOmTHF1eXATCxcu1NixY7V+/XoNHz5cBw4cULt27VSyZElXl+Z2mKPi5lavXn3H5R06dLhLlQD/s3XrVs2aNcthgvfLL7+sJ554wtWlwU0kJSWpffv22rp1qxo3bqy5c+eqUaNGri7LLRFUAAD4ix49eqht27bq1KmTHn74YS1btkw1atRwdVluiVM/0KZNm7RgwQIdPXpU3t7eqlWrlvr27cunB9w1M2bMsN+mfMaMGXfs6+3trcqVK+uxxx677V2Vgfw6duyYTp48qbS0NLVv315z587V6NGj5enp6erS3A4jKm5u2bJlGj9+vNq0aaN69eopMzNTe/bs0ebNmzVp0iS1adPG1SXCDURGRurLL7+Un5+fIiMj79g3MzNT586dU9OmTfmOFRSY+Ph4rVixQv3799eECRP01VdfqVSpUqpWrVq2iw4WL17soirdA0HFzT366KPq3r17tu+rmD17tlavXq3169e7qDLg9nbt2qVevXpp7969ri4FbmDo0KF3XD5hwoS7VIl7Iqi4ubp162rdunW67777HNqPHz+u9u3ba9++fS6qDLi98+fPa926derWrZurSwFQwJij4uYeeughbdiwQa+88opD+/fff6/Q0FAXVQV3FhwcLJPJdNvlcXFxKlu2LCEFBWrNmjVq27atvL29tWbNmjv2feaZZ+5KTe6KERU39OfJisnJyfriiy/02GOPqUGDBvL09NQvv/yir776Sj169NCAAQNcWCnc0apVqxyCSkZGhhISErRmzRoNGjRI7du3d2F1cBfBwcHavn27ypUrd8cvZzWZTNxvqoARVNzQ301WvMlkMnHHRRjG+vXr9fnnn2v+/PmuLgXAXURQAVAo/P7772rbtq1+/vlnV5cCN9C1a9cc9TOZTFq0aFEBV+PemKMCSdLZs2eVlpaWrf2ee+5xQTWAo6tXr2rp0qUqX768q0uBm7jnnnvuOFcqNjZWJ0+eVKlSpe5iVe6JoOLmtmzZoqFDh+rChQsO7TabjXOvcIk7TaYdPXr0Xa4G7mrixIm3bL9y5YomTpyokydPqmnTpho3btxdrsz9cOrHzbVq1Uo1a9bUiy++KB8fn2zLGzdu7IKq4M5u9f1TZrNZ9erVU7Vq1VxQEXDD//3f/2nYsGG6fPmyBg0alO0bvlEwCCpurn79+lq1apVq1qzp6lLgxv7utvk3mUwm9e3bt4CrARylpqZq4sSJ+uyzz9S0aVONHTtWVapUcXVZboNTP26uSZMm+uWXXwgqcKkZM2bIw8NDlStXvmM/ggruth07duidd95RSkqKRo8ereeee87VJbkdRlTcXGJiov7xj3/o4YcfVrVq1bLNDejXr5+LKoM7GTFihDZu3CiLxaJ27dqpXbt2d7x3BVDQUlNT9f7772vlypUKDw/XuHHjGEVxEYKKmxsxYoQ+++wz+fn5yWKxOCzjPiq4mzIzM7Vz50795z//0aZNm1SuXDl7aPH393d1eXAzjz76qE6fPq1q1arp6aefvmNfPtAVLIKKm2vQoIGGDx+uDh06uLoUwC49PV3btm3T+vXrtXnzZlWvXl1t27ZVu3btuGQedwU3xjQOgoqba9q0qZYvX57tSwkBo0hLS9OXX36pSZMm6erVq1wyD7gZD1cXANd68cUXNX36dFmtVleXAjhITk7W0qVL9a9//UujR49W+fLl1bt3b1eXBeAuY0TFzXXv3l27d++WJJUrV05eXo4XgjGkibspKSlJGzZs0DfffKO9e/eqWrVqatOmjdq0acPkWsBNcXmym2vYsKEaNmzo6jLg5hYuXKgNGzbo559/1j333KM2bdronXfe0QMPPODq0gC4GCMqAFwuODhYZrNZDz/8sOrUqXPHvlxhAbgXggp04MABzZs3T0eOHJGXl5cCAwPVrVs31a1b19WlwU1whQWA2yGouLldu3bpX//6l2rXrq1GjRopKytLP/74o44cOaJFixZxWggA4FIEFTf3wgsvqHbt2ho1apRD+6hRoxQfH68lS5a4qDIAALg82e0dPHhQXbt2zdYeFRWlAwcOuKAiAAD+h6Di5vz8/HThwoVs7efPn5e3t7cLKgIA4H8IKm6uZcuWGjNmjH799Vd7W3x8vMaOHZvjCY4AABQU5qi4uZSUFHXv3l1xcXEqWbKkJOnSpUu6//77NX/+fPn5+bm4QgCAOyOoQFlZWdq2bZuOHDkim82moKAgRUREyGQyubo0AICbI6i4oVtNnr2dxYsXF2AlAADcGbfQd0P33ntvtrZ169YpMjJSxYsXd0FFAADcGiMqkCSFhoZq7dq1qlatmqtLAQDAjqt+AACAYRFUAACAYRFUAACAYRFUAACAYXHVjxsaOnRotrb09HR98MEH2a76mTBhwt0qCwCAbAgqbujUqVPZ2kJDQ3XhwoVbfu8PAACuwuXJAADAsJijAgAADIugAgAADIugAgAADIugAgAADIugAqDQGjJkiCIjI11dBoACRFABAACGRVABAACGRVABkGfp6emKjo5Ws2bNVLduXfXo0UNr1qxRUFCQ/caCsbGxioqKUr169dS4cWMNHjxY58+ftz/HqlWrFBISop9//lnPP/+86tSpo5YtW2revHkO20pJSdHQoUPVuHFjhYWF6YMPPlBWVla2mjZt2qSOHTuqTp06atq0qcaOHavU1FT78unTp+vxxx/XjBkz1LhxYz3yyCNKSUkpoL8QgPwiqADIsxEjRmjRokWKiorSRx99pPLly2v48OH25bt379ZLL70kHx8fTZ06VW+//bZ27dqlrl276tq1a/Z+WVlZev3119W2bVvNnj1bDRo00Pvvv68ffvjBvrxnz57asmWLBg8erIkTJ+rHH3/Uf/7zH4d61q1bp759+6pmzZr66KOP1K9fP61du1Z9+vTRn+9tefr0aW3ZskVTpkzR0KFDVbp06QL+SwHIK26hDyBPfvvtN61evVqDBw9W9+7dJUkRERE6e/astm3bJkmaNGmSatSooVmzZsnT01OSVK9ePbVr105ffvmlOnfuLEmy2Wzq06ePnn32WUlSw4YNtXHjRn3//feKiIjQ1q1btW/fPs2ZM0fNmjWTJIWHhztMpLXZbIqOjlZERISio6Pt7f7+/nrppZe0ZcsWtWjRQpKUkZGhwYMHq1GjRgX7RwKQb4yoAMiTmJgY2Ww2tW7d2qH9ySeflCRdu3ZNP//8s5o3by6bzaaMjAxlZGSoWrVqCggI0Pbt2x3WCw0Ntf/b29tbZcuWtZ+yiY2NldlsVkREhL2Pr6+vmjdvbn987NgxJSYmKjIy0r6tjIwMhYWFqUSJEtm2d//99zvnDwGgQDGiAiBPbs4zKVeunEP7zccpKSnKysrSnDlzNGfOnGzrFytWzOGxj4+Pw2MPDw/76ZqUlBSVKVNGJpPJoU+FChXs/7548aIkadSoURo1alS27SUnJzs8/us3hQMwJoIKgDypVKmSJOns2bO655577O03A0yJEiVkMpn00ksvqV27dtnWt1gsOd6Wn5+fLly4oMzMTPspJOl/4USSSpUqJUkaNGiQGjdunO05mIcCFE6c+gGQJw0bNpSnp6c2btzo0P7tt99KujFiERISomPHjqlOnTr2n1q1amn69OmKiYnJ8bbCw8OVkZGhTZs22dvS0tIcTufUrFlT5cqV06lTpxy2V6lSJU2aNEkHDx7M5x4DcAVGVADkSbVq1dSpUydNnjxZ6enpCg4O1saNG/Xf//5X0o1TN2+88YZeeeUVvfnmm3r66aeVmZmp+fPn6+eff1afPn1yvK3w8HA98sgjGjZsmM6dO6d7771Xixcv1vnz5+2nmjw9PTVgwACNGDFCnp6eatmypS5duqSZM2cqKSlJDzzwQIH8HQAULIIKgDwbPny4fH19NX/+fF25ckXh4eF69dVX9dFHH8nX11ePPPKI5s2bpxkzZqh///4ym8164IEHtGDBAtWvXz9X25oxY4aio6M1bdo0Xb9+XW3bttVzzz2nzZs32/s8++yzKl68uObOnauVK1fK19dXDRo0UHR0tKpVq+bkvQdwN5hsf765AADk0MWLF7V161ZFRETIz8/P3v7ee+9p1apVuTq1AwC3w4gKgDyxWCwaN26c7r//fnXr1k2+vr766aeftHTpUvXq1cvV5QEoIhhRAZBncXFxmjp1qn766SdZrVZVr15d//znP9W5c+dslxIDQF4QVAAAgGFxeTIAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADCs/wcEyqAIkK/fgwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHyCAYAAADFteVsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/H0lEQVR4nO3deVxU9f7H8fcAgwyuuFtqKChEuaBikuFCZS6Vqbe6JWpeLU3NR5a5lJq7VrikZrnvpi3q1bpmajdNf4pilpq4kGKaAa64MMo2vz98OLcJNZbBOTCv5+PBA+d7vmfO59Bp5j3f8z1nTDabzSYAAAAD8nB1AQAAALdDUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEAAIZFUAEKKe7VCMAdEFSAAtClSxcFBQXZf4KDgxUaGqqOHTtq8eLFysjIcOgfGRmpIUOG5Pj5N2/erMGDB/9tvyFDhigyMjLP28mrU6dOKSgoSKtWrcq2LC0tTS1atFCHDh1ktVoLrIYuXbqoS5cuBfb8d1NR2hcgt7xcXQBQVIWEhOjdd9+VJGVmZiolJUVbt27VhAkTFBsbq6lTp8rD48ZnhRkzZqhEiRI5fu6FCxfmqF+fPn3UtWvXXNeeXxUrVtTKlStVvXr1bMs+//xzZWRk6OOPP5bFYrnrtQEoXAgqQAEpUaKE6tev79AWGRmpmjVraty4cfrqq6/09NNPS7oRagrCrYLC3eDt7Z1t32969NFH1aZNG5UtW/buFgWgUOLUD3CXRUVFqVKlSlqxYoW97a+nZG6GmLp166pJkyYaOHCgkpKSJN04DbBr1y7t2rVLQUFBiomJUUxMjIKCgrRixQq1bNlSDRo00Pbt27Od+pGk9PR0jR07VmFhYWrUqJEGDx6s8+fP25ff6jTDzeePiYmxtx07dkz9+vVT48aNFRYWpl69eunXX3+VdOtTPwkJCerfv786deqkyMhIdenSRXv27LEvv7nO+vXr1b9/f4WGhqpx48YaNmyYUlNT7/g3PX36tPr166eGDRuqadOmWrBgwS37ff7552rXrp0efPBBtWjRQtOnT1dmZuYdn/vKlSsaMWKEwsPDFRoaqgEDBmjhwoUKCgpy6Ldp0yZ17NhRderUUdOmTTV27FiHuqdPn67HH39c33//vZ566ik9+OCDeuKJJ7RmzZoC2ZchQ4aoW7duevfdd9WgQQO1bdv2b/cVMCKCCnCXeXh4KDw8XPv27cs2V0WS9uzZo0GDBqlVq1aaM2eOhg4dqp07d+rNN9+UJL377rsKCQlRSEiIVq5cqQceeMC+7owZMzR48GCNGDFCoaGht9z++vXr9csvv2jixIkaPHiwvv/+e7388su5ehNLSkrS888/r4SEBI0cOVIffPCBzp49q27duunixYvZ+sfHx6tjx446deqUhg0bpujoaJlMJnXr1k27du1y6Pvuu+/q3nvv1cyZM9WjRw998cUX+vjjj29bS2pqqqKionTkyBGNGTNGw4cP1+eff669e/c69Js1a5aGDx+u8PBwffLJJ+rcubPmzJmj4cOH33Ff+/Tpo/Xr1+u1117TlClTdPXqVU2aNMmhz7p169S3b1/VrFlTH330kfr166e1a9eqT58+DpOez5w5o9GjR6tr166aPXu2qlatqsGDB9sDnrP3JTY2Vn/88Yc++ugjvfnmm/L09LzjvgJGxKkfwAXKly+v9PR0Xbx4UeXLl3dYtmfPHvn4+OiVV16Rt7e3JKlMmTLav3+/bDabAgMD7fNZ/np65cUXX1Tr1q3vuG0/Pz/NmzdPvr6+9sd9+/bV1q1b1bJlyxzVv3DhQqWlpWnBggWqUKGCJCk4OFgvvPCCfv75ZwUEBDj0nzFjhry9vbV48WJ77S1atNCTTz6p999/X1988YW9b/Pmze0ThcPDw7V9+3Z9//339qD2V6tXr9bp06f11VdfKTAwUJJUr149Pf744/Y+ly9f1syZM/X8889r2LBhkqRHHnlEZcqU0bBhw9S9e3fVqlUr23Pv2LFDMTExmj59ulq1aiVJatasmZ588kl7uLDZbIqOjlZERISio6Pt6/r7++ull17Sli1b1KJFC0mS1WrVuHHjFB4ebu/TsmVLbdmyRQEBAU7fl4yMDI0ePVqVK1e+5d8OKAwYUQFc4OanbJPJlG1ZWFiYrFarnnzySU2aNEmxsbF65JFH1K9fv1v2/7P777//b7fdvHlze0iRbpx28vLy0u7du3Nc/549e1S/fn17SJGkypUr67///a+aN2+erf+uXbvUsmVLhwnDXl5eateunQ4cOKCrV6/a2/8avipXrnzHUz+xsbGqXr26/Y1dkqpUqeLwPHv37tW1a9cUGRmpjIwM+8/N02Lbt2+/5XPv3LlTZrNZjz32mL3Nw8NDbdu2tT8+duyYEhMTsz13WFiYSpQoke25/1zXzQBxc/+cvS9lypQhpKDQY0QFcIGkpCT5+PioTJky2ZaFhoZq9uzZWrhwoRYsWKDZs2erfPny6t27999eovrnAHI7fw4X0o03Xj8/P126dCnH9V+8eFFVq1bNcf+UlJRsI0fSjZElm82mK1eu2Nv+eiWQh4fHHe8Zk5KSIj8/v2ztFSpU0NmzZ+31StIrr7xyy+dITk6+ZfuFCxdUpkwZ+9VZN5UrV87+75vPPWrUKI0aNepvn/vP+3fzeW/un7P3pXjx4rfsAxQmBBXgLsvIyFBMTIwaNGhw2zkDERERioiIkNVq1c6dO7V48WKNHTtW9erVU926dfO1/b/OIcnMzNSFCxcc3nz/Ol/lryMaJUuWdJiAe9OOHTtUtWrVbCM/pUuXtr/R/tmZM2ck3Tj9dLuw8Hf8/Px04sSJbO1/3s9SpUpJkqKjo+Xv75+t761ClCRVqlRJFy5cUFZWlkNYOXfuXLbnHjRokBo3bpztOUqXLp2j/ZAKdl+AwopTP8BdtnLlSp05c0YvvPDCLZe/99576tSpk2w2mywWi1q2bGmfs3H69GlJyvYJPze2b9/uMIl3w4YNysjI0EMPPSTpxmXViYmJDuv8+eocSWrUqJF+/vlnh7By7tw59ezZU1u2bMm2zbCwMP33v/91GDnJzMzU119/rTp16tjn4uRFkyZNdOrUKe3fv9/edv78ef3000/2x/Xq1ZPZbFZSUpLq1Klj//Hy8tLkyZN16tSpWz5348aNlZGRoe+++87eZrPZtGnTJvvjmjVrqly5cjp16pTDc1eqVEmTJk3SwYMHDbEvQGHFiApQQK5cuWJ/g8nKytKFCxe0bds2rVy5Uk8//bR9cuZfNWnSRAsWLNCQIUP09NNPKz09XXPnzlWZMmXUpEkTSTc+Ve/du1c7duzI9T1Yzpw5o9dee01dunRRQkKCJk+erKZNm9oneLZs2VLfffedJkyYoMjISMXGxma7hPall17SmjVr1LNnT/Xq1Utms1kff/yxKleurKeeekqXL1926N+vXz9t3bpVXbt21SuvvCKz2aylS5fq5MmTmjt3bq7q/6v27dtr8eLF6tevnwYMGKASJUro448/VlZWlr2Pn5+fevbsqQ8//FBXrlzRQw89pKSkJH344YcymUwKDg6+5XOHhYWpadOmeuedd3T27Fndc889+uKLL3T48GH7qJGnp6cGDBigESNGyNPTUy1bttSlS5c0c+ZMJSUlOVyV5cp9AQorggpQQA4ePKjnn39e0o1Js8WLF1ft2rU1cuRIPfvss7ddr3nz5oqOjtb8+fPtE2gbNmyoxYsX2+e0dO7cWQcOHNDLL7+sCRMmqGLFijmu68UXX9Tly5fVt29feXt766mnntJbb71lf+Pt1KmTfvvtN61evVorVqxQWFiYpk2b5jACVKVKFS1fvlwffPCBhgwZIm9vbz300EOaMmWKSpcunS2o1KpVS8uXL9fkyZM1dOhQmUwm1a1bV4sXL1ajRo1yXPuteHt7a9GiRRo/frzGjRsnk8mk5557TtWqVXM4RfP666+rQoUKWr58uebOnavSpUsrPDxcb7zxhkqWLHnb558yZYomTpyoSZMmKSMjQ48++qheeOEFh/D27LPPqnjx4po7d65WrlwpX19fNWjQQNHR0apWrZph9gUojEw2vtkMAG7p999/108//aRHH31UPj4+9vb+/fvr5MmTWr16tQurA9wDIyoAcBseHh4aMmSIHn30Uf3jH/+Qp6enfvjhB3377beaMGGCq8sD3AIjKgBwBzt37tRHH32kuLg4ZWRkKCAgQN27d9eTTz7p6tIAt0BQAQAAhsXlyQAAwLAIKgAAwLAIKgAAwLAK/VU/e/fulc1mk9lsdnUpAAAgh9LT02UymRQaGnrHfoV+RMVms93xC8uQMzabTWlpafwtYSgclzAajknnyen7d6EfUbk5klKnTh0XV1K4paamKi4uToGBgTn6Bl7gbuC4hNFwTDrPn7/T6k4K/YgKAAAouggqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqAADAsAgqkCSZTCZZLBaZTCZXlwIAgJ2XqwtwF1lZNnl4GDcEWCwWhYSEuLqMHDH63xIA4DwElbvEw8Ok6GV7dCrpsqtLKdSqViqpgZ0buroMAMBdQlC5i04lXdavv6e4ugwAAAoN5qgAAADDIqgAAADDynVQuXjxokaMGKFmzZqpQYMGeuGFFxQbG2tfvmPHDnXs2FH16tVT69at9fXXXzusf/36dY0aNUrh4eEKDQ3Vm2++qfPnz+d/TwAAQJGT66DyxhtvaO/evZo8ebK+/PJL3X///erRo4eOHTumX3/9Vb169VJERIRWrVqlZ599VoMGDdKOHTvs648cOVLbtm3T9OnTtWjRIh07dkz9+/d36k4BAICiIVeTaU+cOKHt27dr+fLlatjwxpUXw4cP1w8//KB169bp3LlzCgoK0oABAyRJAQEBOnjwoObOnavw8HAlJSVpzZo1+uSTT9SoUSNJ0uTJk9W6dWvt3btXoaGhTt49AABQmOVqRMXPz0+zZ89WnTp17G0mk0kmk0mXLl1SbGyswsPDHdZp0qSJ9uzZI5vNpj179tjbbqpRo4YqVaqk3bt352c/AABAEZSrEZVSpUqpefPmDm0bNmzQiRMn9Pbbb2v16tWqXLmyw/KKFSvKarXqwoULSkpKkp+fn4oVK5atT2JiYh53QbLZbEpNTc3z+gXt5l1f4TxWq1U2m83VZaCAWa1Wh9+Aq3FMOo/NZsvR3dDzdR+VH3/8UUOHDlWrVq3UokULXbt2Td7e3g59bj5OS0uT1WrNtlySihUrpuvXr+e5jvT0dMXFxeV5/YJWmO76WlgcP36cFwo3kpCQ4OoSAAcck85xq0zwV3kOKps2bdLAgQPVoEEDRUdHS7oRONLS0hz63XxssVjk4+OTbbl040qg/Iw4mM1mBQYG5nn9gsb35zhfjRo1GFFxA1arVQkJCfL392dUEobAMek88fHxOeqXp6CydOlSjRs3Tq1bt9Z7771nT0RVqlRRcnKyQ9/k5GT5+vqqZMmSqly5si5evKi0tDSHFJWcnKxKlSrlpRRJN4KAr69vntdH4cMLhHuxWCz8Pw5D4ZjMv5x+iM/15cnLly/XmDFj1LlzZ02ePNkhcDRq1Ei7du1y6L9z5041aNBAHh4eatiwobKysuyTaqUbQ/hJSUkKCwvLbSkAAKCIy1VQOX78uMaPH6/HH39cvXr10tmzZ3XmzBmdOXNGly9fVpcuXbRv3z5FR0fr119/1fz58/XNN9+oZ8+ekqRKlSqpXbt2GjZsmGJiYrRv3z698cYbaty4serXr18Q+wcAAAqxXJ362bBhg9LT07Vx40Zt3LjRYVmHDh00ceJEzZw5Ux988IEWLVqkqlWr6oMPPnC4ZHnMmDEaP368+vXrJ0lq1qyZhg0b5oRdAQAARU2ugkrv3r3Vu3fvO/Zp1qyZmjVrdtvlvr6+Gjt2rMaOHZubTQMAADfElxICAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADDIqgAAADD8srPyrNmzdK2bdu0ZMkSSVKXLl20a9euW/Z977339MwzzygzM1OhoaG6fv26w/J+/frptddey085AACgiMlzUFm2bJmmTp2qRo0a2dumT5+u9PR0+2ObzaYBAwYoJSVFjz/+uCQpISFB169f17///W+VK1fO3tfX1zevpQAAgCIq10ElKSlJ7777rmJiYuTv7++wrEyZMg6Ply5dqn379unf//63ihcvLkk6fPiwSpQooeDg4DwXDQAA3EOu56j88ssvMpvNWrt2rerVq3fbfufPn9fUqVP16quvqmbNmvb2w4cPKyAgIG/VAgAAt5LrEZXIyEhFRkb+bb85c+bIx8dHPXr0cGg/cuSIMjIy1KNHDx06dEiVKlVSt27d1L59+9yWAgAAirh8Taa9nStXruizzz5Tv379VKxYMYdlR48eVVZWlvr376/KlStry5YtGjp0qNLT0/WPf/wjT9uz2WxKTU11RukFwmQyyWKxuLqMIsVqtcpms7m6DBQwq9Xq8BtwNY5J57HZbDKZTH/br0CCyqZNm5SWlqZOnTplW/bVV18pMzPTPmclODhYp0+f1rx58/IcVNLT0xUXF5evmguSxWJRSEiIq8soUo4fP84LhRtJSEhwdQmAA45J5/D29v7bPgUWVJo3b65SpUplW+bj45OtrXbt2lq7dm2et2c2mxUYGJjn9QtaThIjcqdGjRqMqLgBq9WqhIQE+fv7MyoJQ+CYdJ74+Pgc9SuQoBIbG3vLe6JcunRJjz32mIYMGaKOHTva2/fv369atWrleXsmk4nLm90MLxDuxWKx8P84DIVjMv9y+iHe6UHljz/+0IULF255+XGpUqXUpEkTTZkyReXKldN9992nb7/9VmvXrtWsWbOcXQoAACjknB5Uzpw5Iyn7PVVuGj9+vKZPn653331X586dU0BAgKZNm6aIiAhnlwIAAAq5fAWViRMnZmurW7euDh8+fNt1SpQooaFDh2ro0KH52TQAAHADfCkhAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwLIIKAAAwrHwFlVmzZqlLly4ObcOGDVNQUJDDT2RkpH15VlaWpk2bpoiICNWvX18vv/yyTp48mZ8yAABAEZXnoLJs2TJNnTo1W/vhw4fVu3dvbdu2zf7zxRdf2JfPnDlTy5cv15gxY7RixQplZWWpZ8+eSktLy2spAACgiMp1UElKSlLv3r0VHR0tf39/h2U2m03x8fF68MEHVaFCBftP2bJlJUlpaWmaP3+++vfvrxYtWig4OFhTpkxRYmKivv32W6fsEAAAKDpyHVR++eUXmc1mrV27VvXq1XNY9ttvvyk1NVU1a9a85bqHDh3S1atXFR4ebm8rVaqUQkJCtHv37tyWAgAAijiv3K4QGRnpMOfkz44cOSJJWrJkibZu3SoPDw81a9ZMAwYMUMmSJZWYmChJqlKlisN6FStWtC8DAAC4KddB5U6OHDkiDw8PVaxYUZ988ol+++03vf/++zp69KgWLVokq9UqSfL29nZYr1ixYkpJScnzdm02m1JTU/NVe0EymUyyWCyuLqNIsVqtstlsri4DBezma8bN34CrcUw6j81mk8lk+tt+Tg0qr776ql588UX5+flJkmrXrq0KFSroueee0/79++Xj4yPpxlyVm/+WpOvXr+frjTw9PV1xcXH5K74AWSwWhYSEuLqMIuX48eO8ULiRhIQEV5cAOOCYdI6/DlzcilODioeHhz2k3FSrVi1JUmJiov2UT3JysqpXr27vk5ycrKCgoDxv12w2KzAwMM/rF7ScJEbkTo0aNRhRcQNWq1UJCQny9/dnVBKGwDHpPPHx8Tnq59SgMmjQICUnJ2vhwoX2tv3790uSAgMDVa1aNZUoUUIxMTH2oHLp0iUdPHhQUVFRed6uyWSSr69vvmpH4cILhHuxWCz8Pw5D4ZjMv5x+iHfqnWmfeOIJ7dixQzNmzNBvv/2mLVu26O2339aTTz6pgIAAeXt7KyoqStHR0dq8ebMOHTqkAQMGqHLlymrVqpUzSwEAAEWAU0dUHn30UU2dOlWzZ8/WnDlzVLJkST311FN6/fXX7X369++vjIwMDRs2TNeuXVNYWJjmzZsns9nszFIAAEARkK+gMnHixGxtbdq0UZs2bW67jqenp9566y299dZb+dk0AABwA3wpIQAAMCyCCgAAMCyCCgAAMCyCCgDDunlXZ+5FBLgvp171A6DwyMqyycPD2AGgsNzVuTD8LYHCiqACuCkPD5Oil+3RqaTLri6lUKtaqaQGdm7o6jKAIougArixU0mX9evvef9CUAAoaMxRAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhkVQAQAAhpWvoDJr1ix16dLFoe27775Tp06dFBoaqsjISL333nu6du2affmePXsUFBSU7ScmJiY/pQAAgCLIK68rLlu2TFOnTlWjRo3sbbGxserXr5/69++v1q1b68SJExoxYoQuXryoCRMmSJIOHz6s6tWra/ny5Q7PV7p06byWAgAAiqhcj6gkJSWpd+/eio6Olr+/v8OyFStW6KGHHlLv3r3l7++v5s2ba8CAAVq3bp3S0tIkSUeOHFFgYKAqVKjg8OPt7e2UHQIAAEVHroPKL7/8IrPZrLVr16pevXoOy/71r39p8ODBjhvw8FB6erquXLki6caISkBAQD5KBgAA7iLXp34iIyMVGRl5y2UhISEOj9PT07Vw4UI9+OCDKlu2rCTp6NGj8vPzU8eOHZWUlKTatWtrwIABqlu3bh7Kv8Fmsyk1NTXP6xc0k8kki8Xi6jKKFKvVKpvN5uoyCi2OSefjmHQPVqvV4TfyzmazyWQy/W2/PM9R+TsZGRkaNGiQjh49qmXLlkmS/vjjD12+fFmpqakaNmyYPD09tXTpUkVFRWnVqlUKDAzM07bS09MVFxfnzPKdymKxZAtxyJ/jx4/zQpEPHJPOxzHpXhISElxdQpGQk2kfBRJUrly5otdff127du3SjBkz7KMlVapU0e7du2WxWGQ2myVJderU0cGDB7VkyRKNGjUqT9szm815Djl3Q04SI3KnRo0afHrNB45J5+OYdA9Wq1UJCQny9/dnVDKf4uPjc9TP6UElOTlZL7/8sn7//XfNmzdPYWFhDstLlSrl8NjDw0MBAQFKSkrK8zZNJpN8fX3zvD4KH14gYDQck+7FYrHwvpNPOf3A5NQbvqWkpKhbt246f/68li1bli2kbN26VaGhoTp58qS9LSMjQ4cOHTL0iAgAAHANp46oTJgwQSdPntTcuXNVtmxZnTlzxr6sbNmyatCggfz8/DR48GC9/fbbMpvNmj17ti5evKiXXnrJmaUAAIAiwGlBJTMzU//5z3+Unp6ubt26ZVu+efNmVa1aVQsXLlR0dLR69Oih69evq2HDhlq6dKnKly/vrFIAAEARka+gMnHiRPu/PT09tW/fvr9dp3r16po2bVp+NgsAANwEX0oIAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMi6ACAAAMK19BZdasWerSpYtDW1xcnKKiolS/fn1FRkZq8eLFDsuzsrI0bdo0RUREqH79+nr55Zd18uTJ/JQBAACKqDwHlWXLlmnq1KkObRcuXFD37t1VvXp1ffnll+rbt6+io6P15Zdf2vvMnDlTy5cv15gxY7RixQplZWWpZ8+eSktLy/NOAACAoskrtyskJSXp3XffVUxMjPz9/R2WffbZZzKbzRo9erS8vLwUEBCgEydOaPbs2erUqZPS0tI0f/58DRw4UC1atJAkTZkyRREREfr222/15JNPOmOfAABAEZHrEZVffvlFZrNZa9euVb169RyWxcbGqnHjxvLy+l/+adKkiRISEnT27FkdOnRIV69eVXh4uH15qVKlFBISot27d+djNwAAQFGU6xGVyMhIRUZG3nJZYmKiateu7dBWsWJFSdIff/yhxMRESVKVKlWy9bm5LC9sNptSU1PzvH5BM5lMslgsri6jSLFarbLZbK4uo9DimHQ+jkn3YLVaHX4j72w2m0wm09/2y3VQuZNr167J29vboa1YsWKSpOvXr9v/w96qT0pKSp63m56erri4uDyvX9AsFotCQkJcXUaRcvz4cV4o8oFj0vk4Jt1LQkKCq0soEv6aB27FqUHFx8cn26TY69evS5J8fX3l4+MjSUpLS7P/+2af/Hy6M5vNCgwMzPP6BS0niRG5U6NGDT695gPHpPNxTLoHq9WqhIQE+fv7MyqZT/Hx8Tnq59SgUrlyZSUnJzu03XxcqVIlZWRk2NuqV6/u0CcoKCjP2zWZTPL19c3z+ih8eIGA0XBMuheLxcL7Tj7l9AOTU2/4FhYWpj179igzM9PetnPnTtWoUUPlypVTcHCwSpQooZiYGPvyS5cu6eDBgwoLC3NmKQAAoAhwalDp1KmTrly5onfeeUfx8fFatWqVFi5cqF69ekm6cS4qKipK0dHR2rx5sw4dOqQBAwaocuXKatWqlTNLAQAARYBTT/2UK1dOc+fO1bhx49ShQwdVqFBBgwYNUocOHex9+vfvr4yMDA0bNkzXrl1TWFiY5s2bJ7PZ7MxSAABAEZCvoDJx4sRsbXXr1tXKlStvu46np6feeustvfXWW/nZNAAAcAN8KSEAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsL2c+WUxMjLp27XrLZVWrVtXmzZv18ccfa+rUqdmWHz582JmlAACAIsCpQSU0NFTbtm1zaPvpp5/02muvqU+fPpJuBJL27dvrrbfecuamAQBAEeTUoOLt7a0KFSrYH6empmrChAnq0KGDOnXqJEk6cuSInnvuOYd+AAAAt1Kgc1Q++eQTWa1WDR48WJKUlpamhIQE1axZsyA3CwAAiogCCyrnz5/XwoUL1bt3b5UpU0aSFB8fr8zMTG3YsEFPPPGEWrRoobfeekvJyckFVQYAACjEnHrq58+WL1+ukiVL6vnnn7e3HTlyRJJksVj04Ycf6ty5c5o8ebK6du2qNWvWyMfHJ0/bstlsSk1NdUrdBcFkMslisbi6jCLFarXKZrO5uoxCi2PS+Tgm3YPVanX4jbyz2WwymUx/26/AgsqaNWv0zDPPOISPZ555Rs2aNVPZsmXtbbVq1VKzZs303XffqW3btnnaVnp6uuLi4vJdc0GxWCwKCQlxdRlFyvHjx3mhyAeOSefjmHQvCQkJri6hSPD29v7bPgUSVA4dOqSTJ0/qqaeeyrbszyFFkipWrKgyZcooMTExz9szm80KDAzM8/oFLSeJEblTo0YNPr3mA8ek83FMuger1aqEhAT5+/szKplP8fHxOepXIEElNjZW5cqVU3BwsEP7lClT9M033+ibb76xv1CeOnVKFy5cyFfQMJlM8vX1zVfNKFx4gYDRcEy6F4vFwvtOPuX0A1OBTKY9ePCggoKCsrU//vjj+v333zVy5EgdP35cu3fv1muvvaYGDRooIiKiIEoBAACFWIEElTNnztiv9PmzBx98UHPmzNHhw4fVsWNH9evXT/fff78++eQThqIBAEA2BXLqZ86cObddFh4ervDw8ILYLAAAKGL4UkIAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYBBUAAGBYTg8qSUlJCgoKyvazatUqSVJcXJyioqJUv359RUZGavHixc4uAQAAFBFezn7CQ4cOqVixYtq0aZNMJpO9vWTJkrpw4YK6d++uyMhIjRo1Sj/99JNGjRql4sWLq1OnTs4uBQAAFHJODypHjhyRv7+/KlasmG3ZokWLZDabNXr0aHl5eSkgIEAnTpzQ7NmzCSoAACAbp5/6OXz4sAICAm65LDY2Vo0bN5aX1//yUZMmTZSQkKCzZ886uxQAAFDIOT2oHDlyROfPn1fnzp318MMP64UXXtDWrVslSYmJiapcubJD/5sjL3/88YezSwEAAIWcU0/9ZGRk6NixYwoMDNSQIUNUokQJff3113rllVe0YMECXbt2Td7e3g7rFCtWTJJ0/fr1PG/XZrMpNTU1X7UXJJPJJIvF4uoyihSr1SqbzebqMgotjknn45h0D1ar1eE38s5msznMZb0dpwYVLy8vxcTEyNPTUz4+PpKkBx98UEePHtW8efPk4+OjtLQ0h3VuBhRfX988bzc9PV1xcXF5L7yAWSwWhYSEuLqMIuX48eO8UOQDx6TzcUy6l4SEBFeXUCT8dfDiVpw+mbZ48eLZ2mrVqqVt27apcuXKSk5Odlh283GlSpXyvE2z2azAwMA8r1/QcpIYkTs1atTg02s+cEw6H8eke7BarUpISJC/vz+jkvkUHx+fo35ODSpHjx7V888/r48//lgPPfSQvf3AgQMKDAzU/fffrxUrVigzM1Oenp6SpJ07d6pGjRoqV65cnrdrMpnyNSKDwocXCBgNx6R7sVgsvO/kU04/MDl1Mm1AQIBq1qyp0aNHKzY2Vr/++qsmTJign376Sa+++qo6deqkK1eu6J133lF8fLxWrVqlhQsXqlevXs4sAwAAFBFOHVHx8PDQJ598okmTJun111/XpUuXFBISogULFqh27dqSpLlz52rcuHHq0KGDKlSooEGDBqlDhw7OLAMAABQRTp+jUr58eU2YMOG2y+vWrauVK1c6e7MAAKAI4ksJAQCAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYRFUAACAYXk5+wkvXryoyZMn6/vvv9eVK1cUFBSkN998U40aNZIkde/eXf/3f//nsE7jxo21ZMkSZ5cCAAAKOacHlTfeeENnzpzR5MmTVa5cOS1ZskQ9evTQ6tWrVbNmTR0+fFgjR47UY489Zl/HbDY7uwwAAFAEODWonDhxQtu3b9fy5cvVsGFDSdLw4cP1ww8/aN26dYqKitK5c+dUr149VahQwZmbBgAARZBT56j4+flp9uzZqlOnjr3NZDLJZDLp0qVLOnz4sEwmk2rUqOHMzQIAgCLKqSMqpUqVUvPmzR3aNmzYoBMnTujtt9/WkSNHVLJkSY0ePVrbt2+Xr6+vWrdurT59+sjb2zvP27XZbEpNTc1v+QXGZDLJYrG4uowixWq1ymazubqMQotj0vk4Jt2D1Wp1+I28s9lsMplMf9vP6XNU/uzHH3/U0KFD1apVK7Vo0UJvv/22rl+/rrp166p79+6Ki4vT+++/r9OnT+v999/P83bS09MVFxfnxMqdy2KxKCQkxNVlFCnHjx/nhSIfOCadj2PSvSQkJLi6hCIhJ4MUBRZUNm3apIEDB6pBgwaKjo6WJI0ePVqDBw9W6dKlJUm1a9eW2WzWgAEDNGjQIJUvXz5P2zKbzQoMDHRa7c6Wk8SI3KlRowafXvOBY9L5OCbdg9VqVUJCgvz9/RmVzKf4+Pgc9SuQoLJ06VKNGzdOrVu31nvvvWdPTF5eXvaQclOtWrUkSYmJiXkOKiaTSb6+vvkrGoUKLxAwGo5J92KxWHjfyaecfmBy+g3fli9frjFjxqhz586aPHmyw7BOly5dNHToUIf++/fvl9lslr+/v7NLAQAAhZxTR1SOHz+u8ePH6/HHH1evXr109uxZ+zIfHx898cQTGj9+vOrWratHHnlE+/fv1/vvv68ePXqoRIkSziwFAAAUAU4NKhs2bFB6ero2btyojRs3Oizr0KGDJk6cKJPJpCVLlmj8+PGqUKGCXnrpJb3yyivOLAMAABQRTg0qvXv3Vu/eve/Yp3PnzurcubMzNwsAAIoovpQQAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAAAYFkEFAIAcMplMslgsMplMri7FbXi5ugAAAG7KyrLJw8O4IcBisSgkJMTVZfwto/8dc4OgAgAwDA8Pk6KX7dGppMuuLqXQqlqppAZ2bujqMpyGoAIAMJRTSZf16+8pri4DBsEcFQAAYFgEFQAAYFguCSpZWVmaNm2aIiIiVL9+fb388ss6efKkK0oBAAAG5pKgMnPmTC1fvlxjxozRihUrlJWVpZ49eyotLc0V5QAAAIO660ElLS1N8+fPV//+/dWiRQsFBwdrypQpSkxM1Lfffnu3ywEAAAZ214PKoUOHdPXqVYWHh9vbSpUqpZCQEO3evftulwMAAAzsrl+enJiYKEmqUqWKQ3vFihXty3IjPT1dNptN+/btc0p9BcVkMukf4SWVkVnc1aUUal6eHtq/f79sNpurSyn0OCadg2PSuTgu86+wHJPp6ek5usPvXQ8qVqtVkuTt7e3QXqxYMaWk5P66+Zs7WRhuZ1y6hPffd0KOFIb/3oUBx6TzcEw6D8elcxj9mDSZTMYMKj4+PpJuzFW5+W9Jun79uiwWS66fLzQ01Gm1AQAAY7nrc1RunvJJTk52aE9OTlalSpXudjkAAMDA7npQCQ4OVokSJRQTE2Nvu3Tpkg4ePKiwsLC7XQ4AADCwu37qx9vbW1FRUYqOjlbZsmV177336oMPPlDlypXVqlWru10OAAAwMJd8KWH//v2VkZGhYcOG6dq1awoLC9O8efNkNptdUQ4AADAok83o1y8BAAC3xZcSAgAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoAAAAwyKoADCU3377zdUlADAQggp07do1rVmzRpMmTdLFixe1a9cuXbhwwdVlwU117txZ+/btc3UZAAzCJd/1A+M4e/asnn/+eZ07d05paWl67rnnNH/+fB04cECLFi1SQECAq0uEmzGbzfLy4qUJxvLHH39o2bJlOnLkiLy8vFSrVi0999xzuvfee11dWpHHd/24uYEDB+rKlSuaMmWKHn74Ya1du1alSpXS66+/rmLFiumTTz5xdYlwM9OnT9enn36q9u3b67777pOPj4/D8meeecY1hcFtHT58WFFRUfLx8VHdunWVlZWlAwcOyGq16tNPP1WtWrVcXWKRRlBxc4888ohmz56tkJAQhYaGau3atapWrZoOHTqkrl27ateuXa4uEW4mODj4tstMJpPi4uLuYjWA1KNHD1ksFk2aNEnFihWTJF2/fl0DBw5UWlqaZs2a5eIKizbGV93c1atX5evre8tlGRkZd7kaQDp06JCrSwAc/Pjjj1qxYoU9pEhSsWLF1LdvX0VFRbmwMvfAZFo3FxYWpk8//dShLT09XR9//LEaNGjgoqoA6fTp0/rhhx907do1nTt3ztXlwI0VL15c6enp2dpv1Qbn49SPm/v111/VuXNnValSRUePHtVDDz2kY8eO6fLly1q6dOkdh+GBgpCWlqbBgwdr/fr18vDw0IYNG/Tee+/p6tWrmj59ukqUKOHqEuFmBg4cqOTkZE2bNk1lypSRJJ0/f16vv/66SpcurenTp7u2wCKOoAIlJyfr008/1cGDB5WVlaVatWrpxRdfVNWqVV1dGtzQhx9+qG+++UYjR45U7969tXbtWp0+fVpDhw5Vs2bNNHLkSFeXCDeTmJiof/7zn0pJSZG/v78kKSEhQWXKlNGSJUt4rSxgBBU3169fPw0YMIDLkGEYrVq10siRI/Xwww87TPDesWOHBg0apB9++MHVJcINXb16Vf/+97919OhR2Ww2BQUF6amnnmKE7y5gMq2b27lzp8MEMcDVkpKSVL169WztVapUUUpKigsqAm7MU3nxxRddXYZbIqi4uQ4dOig6Olp9+/bVfffdJ29vb1eXBDcXEBCgHTt26Nlnn3Vo//rrrxUYGOiiquBufvjhB4WFhcnHx0dnzpzR1KlT9eOPPyo9PV1/PRGxefNmF1XpHggqbm7Lli367bfftGHDhlsu554VuNtee+01DRgwQPHx8crMzNTq1at1/PhxbdiwQVOmTHF1eXATCxcu1NixY7V+/XoNHz5cBw4cULt27VSyZElXl+Z2mKPi5lavXn3H5R06dLhLlQD/s3XrVs2aNcthgvfLL7+sJ554wtWlwU0kJSWpffv22rp1qxo3bqy5c+eqUaNGri7LLRFUAAD4ix49eqht27bq1KmTHn74YS1btkw1atRwdVluiVM/0KZNm7RgwQIdPXpU3t7eqlWrlvr27cunB9w1M2bMsN+mfMaMGXfs6+3trcqVK+uxxx677V2Vgfw6duyYTp48qbS0NLVv315z587V6NGj5enp6erS3A4jKm5u2bJlGj9+vNq0aaN69eopMzNTe/bs0ebNmzVp0iS1adPG1SXCDURGRurLL7+Un5+fIiMj79g3MzNT586dU9OmTfmOFRSY+Ph4rVixQv3799eECRP01VdfqVSpUqpWrVq2iw4WL17soirdA0HFzT366KPq3r17tu+rmD17tlavXq3169e7qDLg9nbt2qVevXpp7969ri4FbmDo0KF3XD5hwoS7VIl7Iqi4ubp162rdunW67777HNqPHz+u9u3ba9++fS6qDLi98+fPa926derWrZurSwFQwJij4uYeeughbdiwQa+88opD+/fff6/Q0FAXVQV3FhwcLJPJdNvlcXFxKlu2LCEFBWrNmjVq27atvL29tWbNmjv2feaZZ+5KTe6KERU39OfJisnJyfriiy/02GOPqUGDBvL09NQvv/yir776Sj169NCAAQNcWCnc0apVqxyCSkZGhhISErRmzRoNGjRI7du3d2F1cBfBwcHavn27ypUrd8cvZzWZTNxvqoARVNzQ301WvMlkMnHHRRjG+vXr9fnnn2v+/PmuLgXAXURQAVAo/P7772rbtq1+/vlnV5cCN9C1a9cc9TOZTFq0aFEBV+PemKMCSdLZs2eVlpaWrf2ee+5xQTWAo6tXr2rp0qUqX768q0uBm7jnnnvuOFcqNjZWJ0+eVKlSpe5iVe6JoOLmtmzZoqFDh+rChQsO7TabjXOvcIk7TaYdPXr0Xa4G7mrixIm3bL9y5YomTpyokydPqmnTpho3btxdrsz9cOrHzbVq1Uo1a9bUiy++KB8fn2zLGzdu7IKq4M5u9f1TZrNZ9erVU7Vq1VxQEXDD//3f/2nYsGG6fPmyBg0alO0bvlEwCCpurn79+lq1apVq1qzp6lLgxv7utvk3mUwm9e3bt4CrARylpqZq4sSJ+uyzz9S0aVONHTtWVapUcXVZboNTP26uSZMm+uWXXwgqcKkZM2bIw8NDlStXvmM/ggruth07duidd95RSkqKRo8ereeee87VJbkdRlTcXGJiov7xj3/o4YcfVrVq1bLNDejXr5+LKoM7GTFihDZu3CiLxaJ27dqpXbt2d7x3BVDQUlNT9f7772vlypUKDw/XuHHjGEVxEYKKmxsxYoQ+++wz+fn5yWKxOCzjPiq4mzIzM7Vz50795z//0aZNm1SuXDl7aPH393d1eXAzjz76qE6fPq1q1arp6aefvmNfPtAVLIKKm2vQoIGGDx+uDh06uLoUwC49PV3btm3T+vXrtXnzZlWvXl1t27ZVu3btuGQedwU3xjQOgoqba9q0qZYvX57tSwkBo0hLS9OXX36pSZMm6erVq1wyD7gZD1cXANd68cUXNX36dFmtVleXAjhITk7W0qVL9a9//UujR49W+fLl1bt3b1eXBeAuY0TFzXXv3l27d++WJJUrV05eXo4XgjGkibspKSlJGzZs0DfffKO9e/eqWrVqatOmjdq0acPkWsBNcXmym2vYsKEaNmzo6jLg5hYuXKgNGzbo559/1j333KM2bdronXfe0QMPPODq0gC4GCMqAFwuODhYZrNZDz/8sOrUqXPHvlxhAbgXggp04MABzZs3T0eOHJGXl5cCAwPVrVs31a1b19WlwU1whQWA2yGouLldu3bpX//6l2rXrq1GjRopKytLP/74o44cOaJFixZxWggA4FIEFTf3wgsvqHbt2ho1apRD+6hRoxQfH68lS5a4qDIAALg82e0dPHhQXbt2zdYeFRWlAwcOuKAiAAD+h6Di5vz8/HThwoVs7efPn5e3t7cLKgIA4H8IKm6uZcuWGjNmjH799Vd7W3x8vMaOHZvjCY4AABQU5qi4uZSUFHXv3l1xcXEqWbKkJOnSpUu6//77NX/+fPn5+bm4QgCAOyOoQFlZWdq2bZuOHDkim82moKAgRUREyGQyubo0AICbI6i4oVtNnr2dxYsXF2AlAADcGbfQd0P33ntvtrZ169YpMjJSxYsXd0FFAADcGiMqkCSFhoZq7dq1qlatmqtLAQDAjqt+AACAYRFUAACAYRFUAACAYRFUAACAYXHVjxsaOnRotrb09HR98MEH2a76mTBhwt0qCwCAbAgqbujUqVPZ2kJDQ3XhwoVbfu8PAACuwuXJAADAsJijAgAADIugAgAADIugAgAADIugAgAADIugAqDQGjJkiCIjI11dBoACRFABAACGRVABAACGRVABkGfp6emKjo5Ws2bNVLduXfXo0UNr1qxRUFCQ/caCsbGxioqKUr169dS4cWMNHjxY58+ftz/HqlWrFBISop9//lnPP/+86tSpo5YtW2revHkO20pJSdHQoUPVuHFjhYWF6YMPPlBWVla2mjZt2qSOHTuqTp06atq0qcaOHavU1FT78unTp+vxxx/XjBkz1LhxYz3yyCNKSUkpoL8QgPwiqADIsxEjRmjRokWKiorSRx99pPLly2v48OH25bt379ZLL70kHx8fTZ06VW+//bZ27dqlrl276tq1a/Z+WVlZev3119W2bVvNnj1bDRo00Pvvv68ffvjBvrxnz57asmWLBg8erIkTJ+rHH3/Uf/7zH4d61q1bp759+6pmzZr66KOP1K9fP61du1Z9+vTRn+9tefr0aW3ZskVTpkzR0KFDVbp06QL+SwHIK26hDyBPfvvtN61evVqDBw9W9+7dJUkRERE6e/astm3bJkmaNGmSatSooVmzZsnT01OSVK9ePbVr105ffvmlOnfuLEmy2Wzq06ePnn32WUlSw4YNtXHjRn3//feKiIjQ1q1btW/fPs2ZM0fNmjWTJIWHhztMpLXZbIqOjlZERISio6Pt7f7+/nrppZe0ZcsWtWjRQpKUkZGhwYMHq1GjRgX7RwKQb4yoAMiTmJgY2Ww2tW7d2qH9ySeflCRdu3ZNP//8s5o3by6bzaaMjAxlZGSoWrVqCggI0Pbt2x3WCw0Ntf/b29tbZcuWtZ+yiY2NldlsVkREhL2Pr6+vmjdvbn987NgxJSYmKjIy0r6tjIwMhYWFqUSJEtm2d//99zvnDwGgQDGiAiBPbs4zKVeunEP7zccpKSnKysrSnDlzNGfOnGzrFytWzOGxj4+Pw2MPDw/76ZqUlBSVKVNGJpPJoU+FChXs/7548aIkadSoURo1alS27SUnJzs8/us3hQMwJoIKgDypVKmSJOns2bO655577O03A0yJEiVkMpn00ksvqV27dtnWt1gsOd6Wn5+fLly4oMzMTPspJOl/4USSSpUqJUkaNGiQGjdunO05mIcCFE6c+gGQJw0bNpSnp6c2btzo0P7tt99KujFiERISomPHjqlOnTr2n1q1amn69OmKiYnJ8bbCw8OVkZGhTZs22dvS0tIcTufUrFlT5cqV06lTpxy2V6lSJU2aNEkHDx7M5x4DcAVGVADkSbVq1dSpUydNnjxZ6enpCg4O1saNG/Xf//5X0o1TN2+88YZeeeUVvfnmm3r66aeVmZmp+fPn6+eff1afPn1yvK3w8HA98sgjGjZsmM6dO6d7771Xixcv1vnz5+2nmjw9PTVgwACNGDFCnp6eatmypS5duqSZM2cqKSlJDzzwQIH8HQAULIIKgDwbPny4fH19NX/+fF25ckXh4eF69dVX9dFHH8nX11ePPPKI5s2bpxkzZqh///4ym8164IEHtGDBAtWvXz9X25oxY4aio6M1bdo0Xb9+XW3bttVzzz2nzZs32/s8++yzKl68uObOnauVK1fK19dXDRo0UHR0tKpVq+bkvQdwN5hsf765AADk0MWLF7V161ZFRETIz8/P3v7ee+9p1apVuTq1AwC3w4gKgDyxWCwaN26c7r//fnXr1k2+vr766aeftHTpUvXq1cvV5QEoIhhRAZBncXFxmjp1qn766SdZrVZVr15d//znP9W5c+dslxIDQF4QVAAAgGFxeTIAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADAsggoAADCs/wcEyqAIkK/fgwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -583,11 +648,25 @@ " else:\n", " print(\"El DataFrame no está disponible.\")" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -601,9 +680,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.12.4" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/scripts/training/.ipynb_checkpoints/trainingText-checkpoint.py b/scripts/training/.ipynb_checkpoints/trainingText-checkpoint.py new file mode 100644 index 000000000..cba79862e --- /dev/null +++ b/scripts/training/.ipynb_checkpoints/trainingText-checkpoint.py @@ -0,0 +1,74 @@ +import pandas as pd +import re +from sklearn.cluster import KMeans +from sklearn.metrics import silhouette_score, davies_bouldin_score +from sklearn.preprocessing import StandardScaler + +# ** Carga y limpieza de datos ** +ruta_excel = r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx" + +# Crear el DataFrame +df = pd.read_excel(ruta_excel, header=0) + +# Procesamiento de columnas numéricas +num_cols = { + 'Weight': '(\d+\.?\d*)', + 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' +} +for col, pattern in num_cols.items(): + df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Procesar precios +price_cols = ['regularPrice', 'undiscounted_price'] +for col in price_cols: + df[col] = df[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) + df[col] = df[col].str.replace(r'\\.', '', regex=True).str.replace(',', '.') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Eliminar columnas innecesarias +cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] +df = df.drop(columns=cols_to_drop, errors='ignore') + +# ** Clustering y evaluación ** +ids = df['id'] +X = df.drop(columns=['id'], errors='ignore').fillna(0) + +# Codificar variables categóricas +df_dummies = pd.get_dummies(X, dummy_na=True).fillna(0) + +# Escalar los datos +scaler = StandardScaler() +X_scaled = scaler.fit_transform(df_dummies) + +# Clustering con un número específico de clusters +k = 8 +kmeans = KMeans(n_clusters=k, random_state=42) +clusters = kmeans.fit_predict(X_scaled) + +# Agregar el cluster al DataFrame original +df['cluster'] = clusters + +# Evaluar calidad del clustering +sil_score = silhouette_score(X_scaled, clusters) +db_score = davies_bouldin_score(X_scaled, clusters) +print(f"Silhouette Score: {sil_score}") +print(f"Davies-Bouldin Score: {db_score}") + +# ** Análisis de clusters ** +def analizar_cluster(df, cluster_num): + elementos_cluster = df[df['cluster'] == cluster_num] + print(f"\n=== Análisis del cluster {cluster_num} ===") + print(f"Total de elementos: {len(elementos_cluster)}") + + print(f"\nEstadísticas descriptivas principales:") + print(elementos_cluster.describe().loc[['mean', 'std', 'min', 'max']]) + + print(f"\nValores más frecuentes por columna categórica:") + cols_categoricas = elementos_cluster.select_dtypes(include=['object', 'category']).columns + for col in cols_categoricas: + print(f" - {col}: {elementos_cluster[col].mode().values[0]}") + +# Analizar los clusters 2 y 3 +analizar_cluster(df, cluster_num=2) +analizar_cluster(df, cluster_num=3) \ No newline at end of file diff --git a/scripts/training/trainingText.py b/scripts/training/trainingText.py index cba79862e..1b0759a57 100644 --- a/scripts/training/trainingText.py +++ b/scripts/training/trainingText.py @@ -5,10 +5,12 @@ from sklearn.preprocessing import StandardScaler # ** Carga y limpieza de datos ** -ruta_excel = r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx" +#ruta_excel = r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx" +ruta_excel = r"..\\..\\src\\comparative_analysis\\database\\adidas_etiquetado.xlsx" # Crear el DataFrame df = pd.read_excel(ruta_excel, header=0) +df.info() # Procesamiento de columnas numéricas num_cols = { @@ -16,6 +18,7 @@ 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' } for col, pattern in num_cols.items(): + print("col",col) df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') df[col] = pd.to_numeric(df[col], errors='coerce') @@ -27,8 +30,9 @@ df[col] = pd.to_numeric(df[col], errors='coerce') # Eliminar columnas innecesarias -cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] +cols_to_drop = ['details', 'description', 'category', 'characteristics', 'Width', 'Pronation_Type'] df = df.drop(columns=cols_to_drop, errors='ignore') +df.info() # ** Clustering y evaluación ** ids = df['id'] @@ -40,11 +44,13 @@ # Escalar los datos scaler = StandardScaler() X_scaled = scaler.fit_transform(df_dummies) +df_dummies.info() # Clustering con un número específico de clusters k = 8 kmeans = KMeans(n_clusters=k, random_state=42) clusters = kmeans.fit_predict(X_scaled) +print("clusters",clusters) # Agregar el cluster al DataFrame original df['cluster'] = clusters @@ -66,9 +72,12 @@ def analizar_cluster(df, cluster_num): print(f"\nValores más frecuentes por columna categórica:") cols_categoricas = elementos_cluster.select_dtypes(include=['object', 'category']).columns + print("cols_categoricas", cols_categoricas) for col in cols_categoricas: + print("col",col) print(f" - {col}: {elementos_cluster[col].mode().values[0]}") # Analizar los clusters 2 y 3 +print("dataframe final df",df.info()) analizar_cluster(df, cluster_num=2) analizar_cluster(df, cluster_num=3) \ No newline at end of file diff --git a/src/comparative_analysis/preprocessing/.ipynb_checkpoints/main-checkpoint.py b/src/comparative_analysis/preprocessing/.ipynb_checkpoints/main-checkpoint.py new file mode 100644 index 000000000..ceeb65785 --- /dev/null +++ b/src/comparative_analysis/preprocessing/.ipynb_checkpoints/main-checkpoint.py @@ -0,0 +1,79 @@ +import os +import re +import pandas as pd +import numpy as np +from tqdm import tqdm + +from functions.prompt_generator import PromptGenerator +from functions.model_inference import ModelInference +from functions.response_processor import ResponseProcessor + +# Definir las etiquetas con definiciones +labels_with_definitions = [ + ("Weight", "Indicates the lightness of the shoe, usually expressed in grams. Weight can influence performance and comfort during running."), + ("Upper Material", "Describes the materials used in the shoe's upper part, such as mesh, synthetic leather, or technical fabrics, which affect breathability, flexibility, and support."), + ("Midsole Material", "Refers to the compounds used in the midsole, such as EVA foams or proprietary technologies, which provide cushioning and shock absorption."), + ("Outsole", "Details the type of rubber or material used in the sole and the traction pattern design, which influence grip and durability on various surfaces."), + ("Cushioning System", "Specifies the technologies or materials aimed at reducing impact during strides, contributing to comfort and joint protection."), + ("Drop (heel-to-toe differential)", "Indicates the height difference between the heel and the toe of the shoe, measured in millimeters. A higher drop typically offers more heel cushioning, while a lower drop promotes a more natural stride."), + ("Pronation Type", "Classifies the shoe according to its suitability for different pronation types: neutral, overpronation, or supination. This is essential for choosing footwear that matches the runner's biomechanics."), + ("Usage Type", "Defines the primary purpose of the shoe, such as daily training, racing, trail running, or casual use, guiding its specific design and features."), + ("Gender", "Indicates whether the shoe is designed for men, women, or is a unisex model, considering anatomical and sizing differences."), + ("Available Sizes", "Specifies the range of sizes in which the shoe is offered, ensuring the runner can find a suitable fit."), + ("Width", "Some brands offer different widths (narrow, standard, wide) to accommodate various foot shapes."), + ("Additional Technologies", "Includes special features such as waterproofing, reflectivity, customized fit systems, or stability elements that enhance the shoe's functionality."), +] + +# Asumimos que spark está inicializado en el entorno +spark_df = spark.table("preprod_colombia.scraping_pp_adidas") +df_adidas = spark_df.toPandas() + +# Crear lista de productos +productos = [ + { + "id": row['id'], + "regularPrice" : row["regularPrice"], + "undiscounted_price": row["undiscounted_price"], + "details": row['details_transformado'], + "description": row['description'], + "category": row['category'], + "characteristics": row['characteristics'] + } + for _, row in df_adidas.iterrows() + if row['details_transformado'] != '{}' +] + +# Instanciar las clases +prompt_generator = PromptGenerator(labels_with_definitions) +model_inference = ModelInference() +response_processor = ResponseProcessor(labels_with_definitions) + +option_model = 2 +dfs = [] +for producto in tqdm(productos, desc="Procesando productos"): + user_message = prompt_generator.generate_prompt(producto) + respuesta = model_inference.obtener_respuesta(user_message, option_model) + df = response_processor.procesar_respuesta(respuesta) + + if df is not None: + attribute_columns = df.columns[:-3] # Ajustar según cuántas columnas sean las de atributos + df['id'] = producto['id'] + df['regularPrice'] = producto['regularPrice'] + df['undiscounted_price'] = producto['undiscounted_price'] + df["details"] = producto['details'] + df["description"] = producto['description'] + df["category"] = producto['category'] + df["characteristics"] = producto['characteristics'] + df = df[~df[attribute_columns].eq('---').all(axis=1)] + df = df.dropna(how='all') + dfs.append(df) + else: + print("No se pudo extraer la tabla.\n") + +if dfs: + df_total = pd.concat(dfs, ignore_index=True) + # Guardar df_total como Excel + os.makedirs("src/database", exist_ok=True) + df_total.to_excel("src/database/df_total.xlsx", index=False) +else: + print("Fail") diff --git a/src/comparative_analysis/preprocessing/main.py b/src/comparative_analysis/preprocessing/main.py index ceeb65785..61a5c4aa9 100644 --- a/src/comparative_analysis/preprocessing/main.py +++ b/src/comparative_analysis/preprocessing/main.py @@ -2,6 +2,7 @@ import re import pandas as pd import numpy as np +import spark from tqdm import tqdm from functions.prompt_generator import PromptGenerator @@ -25,8 +26,49 @@ ] # Asumimos que spark está inicializado en el entorno -spark_df = spark.table("preprod_colombia.scraping_pp_adidas") -df_adidas = spark_df.toPandas() +#spark_df = spark.table("preprod_colombia.scraping_pp_adidas") +# cargar dataset +path_i = r"..\\database\\" +#path_i = "/content/drive/MyDrive/MachineLearning_UNAL/datos/" +file_i = path_i + "raw_data.xlsx" +df_adidas = pd.read_excel(file_i) +df_adidas.head() +#df_adidas = spark_df.toPandas() + +def transformar_texto(texto, marca): + if texto is None or (isinstance(texto, float) and np.isnan(texto)): + return texto + + if marca.lower() == "adidas": + # Transformación original para adidas + if isinstance(texto, (list, np.ndarray)): + texto = ", ".join(map(str, texto)) + else: + texto = str(texto) + texto = texto.strip("[]") + texto = re.sub(r",\s*", '} {', texto) + texto = '{' + texto + '}' + return texto + + elif marca.lower() == "nike": + # Transformación específica para nike + if isinstance(texto, list): + # Elimina claves con valores irrelevantes + texto_limpio = [ + {k.strip(): v.strip() for k, v in d.items() if k.strip() not in ['\xa0']} + for d in texto + if isinstance(d, dict) + ] + # Filtra elementos vacíos o irrelevantes + texto_limpio = [d for d in texto_limpio if d] + return texto_limpio + return texto # Si no es lista, regresa el texto original + + else: + raise ValueError(f"Marca '{marca}' no reconocida. Usa 'adidas' o 'nike'.") + +# Lista de descripciones de productos +df_adidas['details_transformado'] = df_adidas['details'].apply(lambda x: transformar_texto(x, 'adidas')) # Crear lista de productos productos = [ @@ -39,7 +81,7 @@ "category": row['category'], "characteristics": row['characteristics'] } - for _, row in df_adidas.iterrows() + for _, row in df_adidas[:2].iterrows() if row['details_transformado'] != '{}' ] diff --git a/src/comparative_analysis/training/.ipynb_checkpoints/training-checkpoint.py b/src/comparative_analysis/training/.ipynb_checkpoints/training-checkpoint.py new file mode 100644 index 000000000..3a3ac99f7 --- /dev/null +++ b/src/comparative_analysis/training/.ipynb_checkpoints/training-checkpoint.py @@ -0,0 +1,97 @@ +import pandas as pd +import re +from sklearn.cluster import KMeans +from sklearn.metrics import silhouette_score, davies_bouldin_score +from sklearn.preprocessing import StandardScaler +import matplotlib.pyplot as plt + +# ** Carga y limpieza de datos ** +# Ruta del archivo de Excel +ruta_excel = r"C:\Users\cdgn2\OneDrive\Escritorio\Maestría\Maestria\Metodologias Agiles\Proyecto\Comparative-analysis-of-products\src\comparative_analysis\database\Adidas_etiquetado.xlsx" + +# Crear el DataFrame +df = pd.read_excel(ruta_excel, header=0) + +# Procesamiento de columnas numéricas +num_cols = { + 'Weight': '(\d+\.?\d*)', + 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' +} +for col, pattern in num_cols.items(): + df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Procesar precios +price_cols = ['regularPrice', 'undiscounted_price'] +for col in price_cols: + df[col] = df[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) + df[col] = df[col].str.replace(r'\.', '', regex=True).str.replace(',', '.') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Eliminar columnas innecesarias +cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] +df = df.drop(columns=cols_to_drop, errors='ignore') + +# ** Clustering y evaluación ** +# Separar la columna ID +ids = df['id'] +X = df.drop(columns=['id'], errors='ignore').fillna(0) + +# Codificar variables categóricas +df_dummies = pd.get_dummies(X, dummy_na=True).fillna(0) + +# Escalar los datos +scaler = StandardScaler() +X_scaled = scaler.fit_transform(df_dummies) + +# Determinar el número óptimo de clusters usando el método del codo +def metodo_del_codo(X, k_range): + distortions = [] + for k in k_range: + kmeans = KMeans(n_clusters=k, random_state=42) + kmeans.fit(X) + distortions.append(kmeans.inertia_) + + plt.figure(figsize=(8, 5)) + plt.plot(k_range, distortions, 'bx-') + plt.xlabel('Número de clusters k') + plt.ylabel('Distorsión (Inercia)') + plt.title('Método del Codo para determinar k') + plt.show() + +# Mostrar el método del codo +metodo_del_codo(X_scaled, range(2, 11)) + +# Clustering con un número específico de clusters +k = 8 +kmeans = KMeans(n_clusters=k, random_state=42) +clusters = kmeans.fit_predict(X_scaled) + +# Agregar el cluster al DataFrame original +df['cluster'] = clusters + +# Evaluar calidad del clustering +sil_score = silhouette_score(X_scaled, clusters) +db_score = davies_bouldin_score(X_scaled, clusters) +print(f"Silhouette Score: {sil_score}") +print(f"Davies-Bouldin Score: {db_score}") + +# ** Análisis de clusters ** +def analizar_cluster(df, cluster_num): + elementos_cluster = df[df['cluster'] == cluster_num] + print(f"Elementos del cluster {cluster_num}:") + print(elementos_cluster.head()) + + print(f"\nEstadísticas descriptivas del cluster {cluster_num}:") + print(elementos_cluster.describe()) + + # Visualización de histogramas + columnas_relevantes = elementos_cluster.select_dtypes(include=['number']).columns + for col in columnas_relevantes: + elementos_cluster[col].plot(kind='hist', title=f"Distribución de {col} en cluster {cluster_num}") + plt.xlabel(col) + plt.ylabel('Frecuencia') + plt.show() + +# Ejemplo de análisis para un cluster específico +analizar_cluster(df, cluster_num=2) \ No newline at end of file From 725873ca0cdf3787fffc53b7fbed0dd3d437a69a Mon Sep 17 00:00:00 2001 From: azacipa <52643112+azacipa@users.noreply.github.com> Date: Wed, 18 Dec 2024 21:02:46 -0500 Subject: [PATCH 50/84] =?UTF-8?q?Se=20cargan=20archivos=20correspondientes?= =?UTF-8?q?=20a=20los=20modelos=20generados=20con=20sus=20graficos=20de=20?= =?UTF-8?q?desempe=C3=B1o?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../business_understanding/project_charter.md | 105 ++++++++++- docs/data/data_definition.md | 8 +- src/comparative_analysis/models/DBScan.py | 163 ++++++++++++++++++ src/comparative_analysis/models/K-Means.py | 109 ++++++++++++ .../training/trainingDBScan.py | 163 ++++++++++++++++++ .../{training.py => trainingK-Means.py} | 0 6 files changed, 535 insertions(+), 13 deletions(-) create mode 100644 src/comparative_analysis/models/DBScan.py create mode 100644 src/comparative_analysis/models/K-Means.py create mode 100644 src/comparative_analysis/training/trainingDBScan.py rename src/comparative_analysis/training/{training.py => trainingK-Means.py} (100%) diff --git a/docs/business_understanding/project_charter.md b/docs/business_understanding/project_charter.md index f6106e459..dde755f23 100644 --- a/docs/business_understanding/project_charter.md +++ b/docs/business_understanding/project_charter.md @@ -27,17 +27,103 @@ Se propone el uso de embeddings debido a que los datos disponibles consisten en ## Metodología -Se utilizarán las metodologías CRISP-DM y SCRUM para llevar a cabo el proyecto. +El proyecto seguirá una metodología híbrida basada en **CRISP-DM** (Cross-Industry Standard Process for Data Mining) para la estructura de las tareas técnicas y **SCRUM** para la gestión ágil del equipo y del cronograma. -## Cronograma +### Etapas según CRISP-DM: -| Etapa | Duración Estimada | Fechas | -|-----------------------------------------|-------------------|---------------------------------| -| Entendimiento del negocio y carga de datos | 2 semanas | Del 13 de noviembre al 28 de noviembre | -| Preprocesamiento y análisis exploratorio | 1 semana | Del 29 de noviembre al 5 de diciembre | -| Modelamiento y extracción de características | 1 semana | Del 5 de diciembre al 12 de diciembre | -| Despliegue | 1 semana | Del 13 de diciembre al 19 de diciembre | -| Evaluación y entrega final | 1 semana | Del 19 de diciembre al 21 de diciembre | +1. **Entendimiento del Negocio** + - Actividades: + - Identificar necesidades del cliente. + - Determinar los objetivos del análisis comparativo. + - Definir métricas clave para evaluar la precisión del modelo. + - Cronograma: 13 de noviembre al 28 de noviembre. + +2. **Entendimiento de los Datos** + - Actividades: + - Recopilar datos de Adidas, Nike y Nation Runner mediante scraping. + - Explorar las descripciones textuales y detectar posibles inconsistencias o valores faltantes. + - Validar la calidad de los datos. + - Cronograma: 13 de noviembre al 28 de noviembre. + +3. **Preparación de los Datos** + - Actividades: + - Realizar limpieza y preprocesamiento de las descripciones. + - Convertir datos textuales en representaciones vectoriales (embeddings). + - Dividir los datos en conjuntos de entrenamiento, validación y prueba. + - Cronograma: 29 de noviembre al 5 de diciembre. + +4. **Modelado** + - Actividades: + - Diseñar y entrenar un modelo de recomendación basado en similitud semántica. + - Optimizar hiperparámetros para maximizar el rendimiento del modelo. + - Cronograma: 5 de diciembre al 12 de diciembre. + +5. **Evaluación** + - Actividades: + - Validar el modelo con métricas como precisión, recall y F1-score. + - Realizar pruebas con datos nuevos para garantizar generalización. + - Cronograma: 19 de diciembre al 21 de diciembre. + +6. **Despliegue** + - Actividades: + - Integrar el modelo en una herramienta funcional. + - Documentar su uso y entrenar al equipo en su aplicación. + - Cronograma: 13 de diciembre al 19 de diciembre. + +### Gestión ágil con SCRUM: + +El desarrollo del proyecto se gestionará a través de iteraciones de una semana (sprints) para garantizar la flexibilidad y la adaptabilidad frente a posibles cambios en los requisitos. + +#### Roles del equipo: + +#### **Equipo y Responsabilidades** + +#### **1. Juan Correa (Product Owner y Líder Técnico)** +- **Responsabilidades compartidas con Daniel Galvis:** + - Definir y priorizar los requisitos del proyecto. + - Asegurar el alineamiento con los objetivos del cliente y del negocio. +- **Responsabilidades compartidas con Asdrúbal Zácipa Corredor:** + - Liderar las decisiones técnicas clave y supervisar el desarrollo general. + +#### **2. Daniel Galvis (Scrum Master y Desarrollador)** +- **Responsabilidades compartidas con Juan Correa:** + - Coordinar las ceremonias ágiles y facilitar la comunicación entre el equipo. + - Eliminar impedimentos que afecten el progreso del proyecto. +- **Responsabilidades compartidas con Asdrúbal Zácipa Corredor:** + - Colaborar en tareas de scraping, preprocesamiento y soporte técnico. + +#### **3. Asdrúbal Zácipa Corredor (Desarrollador y Especialista en Modelado)** +- **Responsabilidades compartidas con Juan Correa:** + - Diseñar, entrenar y evaluar el modelo de recomendación. + - Implementar el modelo y contribuir al desarrollo técnico del proyecto. +- **Responsabilidades compartidas con Daniel Galvis:** + - Asegurar la integración funcional de las soluciones desarrolladas. + +--- + +#### **Justificación de la Redistribución** + +Esta reorganización tiene como objetivo mitigar el riesgo operativo en caso de que algún integrante del equipo no pueda cumplir temporalmente con sus responsabilidades debido a enfermedad, emergencia u otros compromisos. Al asignar al menos dos personas a cada tarea, se asegura que el flujo de trabajo no se interrumpa y que el conocimiento clave del proyecto esté distribuido de manera uniforme entre los integrantes. + +Además, este enfoque fomenta la colaboración y la versatilidad, ya que todos los miembros se mantendrán actualizados sobre diferentes aspectos del proyecto, promoviendo una mayor resiliencia y adaptabilidad en el equipo. + + +#### Ceremonias: + +- **Sprint Planning:** Al inicio de cada sprint, se definirán las tareas clave y los entregables. +- **Daily Standup:** Reuniones diarias de 15 minutos para revisar el progreso y resolver bloqueos. +- **Sprint Review:** Al finalizar cada sprint, se presentarán los avances al equipo y se recopilará retroalimentación. +- **Sprint Retrospective:** Se analizarán las lecciones aprendidas y se identificarán áreas de mejora para futuros sprints. + +## Cronograma Integrado con Sprints + +| Sprint | Etapa | Actividades principales | Duración Estimada | Fechas | +|-------------------------|-----------------------------------------|------------------------------------------------|-------------------|---------------------------------| +| Sprint 1 | Entendimiento del negocio y carga de datos | Entendimiento del negocio y carga de datos | 2 semanas | Del 13 de noviembre al 28 de noviembre | +| Sprint 2 | Preprocesamiento y análisis exploratorio | Preprocesamiento y análisis exploratorio | 1 semana | Del 29 de noviembre al 5 de diciembre | +| Sprint 3 | Modelamiento y extracción de características | Modelamiento y extracción de características | 1 semana | Del 5 de diciembre al 12 de diciembre | +| Sprint 4 | Despliegue | Despliegue del modelo | 1 semana | Del 13 de diciembre al 19 de diciembre | +| Sprint 5 | Evaluación y entrega final | Evaluación final y entrega | 1 semana | Del 19 de diciembre al 21 de diciembre | ## Equipo del Proyecto @@ -58,6 +144,7 @@ Aunque no se cuenta con financiamiento externo, se estimaron los costos básicos | **Total** | - | - | - | **1,000,000** | ### Detalles: + - **Servicio de luz:** Incluye el costo estimado del consumo eléctrico asociado al trabajo en el proyecto. - **Servicio de internet:** Cubre el acceso a internet necesario para reuniones virtuales, investigación y uso de herramientas online. - **Uso de equipos personales:** Considera el desgaste de hardware y el consumo eléctrico de los equipos utilizados durante el desarrollo. diff --git a/docs/data/data_definition.md b/docs/data/data_definition.md index 22e4614b0..eebd3ec4d 100644 --- a/docs/data/data_definition.md +++ b/docs/data/data_definition.md @@ -4,11 +4,11 @@ Los datos se extrajeron mediante web scraping de las siguientes fuentes: -- **Adidas**: [https://www.adidas.co/](https://www.adidas.co/) -- **Nike**: [https://www.nike.com.co/](https://www.nike.com.co/) -- **Nation Runner**: [https://nacionrunner.com/](https://nacionrunner.com/) +- **Adidas**: [https://www.adidas.co/](https://www.adidas.co/) +- **Nike**: [https://www.nike.com.co/](https://www.nike.com.co/) +- **Nation Runner**: [https://nacionrunner.com/](https://nacionrunner.com/) -Posteriormente, los datos fueron almacenados en una API conectada a Firebase para su gestión y análisis posterior. Las descripciones de productos y características técnicas se estructuraron en un formato JSON para facilitar su manipulación. +Posteriormente, los datos fueron almacenados en una API conectada a Firebase para su gestión y análisis posterior. Las descripciones de productos y características técnicas se estructuraron en un formato JSON para facilitar su manipulación. Finalmente, estos datos fueron exportados a un archivo CSV, el cual se está utilizando como fuente principal en el proyecto para simplificar su integración y análisis en los diferentes procesos. ## Especificación de los scripts para la carga de datos diff --git a/src/comparative_analysis/models/DBScan.py b/src/comparative_analysis/models/DBScan.py new file mode 100644 index 000000000..58b7bde33 --- /dev/null +++ b/src/comparative_analysis/models/DBScan.py @@ -0,0 +1,163 @@ +import pandas as pd +import re +from sklearn.cluster import DBSCAN +from sklearn.metrics import silhouette_score, davies_bouldin_score +from sklearn.preprocessing import StandardScaler +import matplotlib.pyplot as plt +import numpy as np + +# ** Carga y limpieza de datos ** +ruta_excel = r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx" + +# Crear el DataFrame +df = pd.read_excel(ruta_excel, header=0, engine='openpyxl') + +# Procesamiento de columnas numéricas +num_cols = { + 'Weight': '(\d+\.?\d*)', + 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' +} +for col, pattern in num_cols.items(): + df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Procesar precios +price_cols = ['regularPrice', 'undiscounted_price'] +for col in price_cols: + df[col] = df[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) + df[col] = df[col].str.replace(r'\.', '', regex=True).str.replace(',', '.') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Eliminar columnas innecesarias +cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] +df = df.drop(columns=cols_to_drop, errors='ignore') + +# ** Clustering y evaluación ** +ids = df['id'] +X = df.drop(columns=['id'], errors='ignore').fillna(0) + +# Codificar variables categóricas +df_dummies = pd.get_dummies(X, dummy_na=True).fillna(0) + +# Escalar los datos +scaler = StandardScaler() +X_scaled = scaler.fit_transform(df_dummies) + +print("Media X_scaled:", X_scaled.mean(axis=0)) +print("Desviación estándar X_scaled:", X_scaled.std(axis=0)) + +# Función para explorar parámetros de DBSCAN +def explorar_parametros_dbscan(X, eps_values, min_samples_values): + resultados = [] + for eps in eps_values: + for min_samples in min_samples_values: + dbscan = DBSCAN(eps=eps, min_samples=min_samples) + clusters = dbscan.fit_predict(X) + num_clusters = len(set(clusters)) - (1 if -1 in clusters else 0) + + if num_clusters > 1: # Evaluar solo si hay más de 1 cluster válido + sil_score = silhouette_score(X, clusters) + db_score = davies_bouldin_score(X, clusters) + resultados.append((eps, min_samples, num_clusters, sil_score, db_score)) + return resultados + +# Rango de parámetros a explorar +eps_values = np.arange(0.1, 3.0, 0.1) +min_samples_values = range(2, 20) + +# Explorar los parámetros +resultados = explorar_parametros_dbscan(X_scaled, eps_values, min_samples_values) + +# Mostrar los mejores parámetros según Silhouette Score +resultados_sorted = sorted(resultados, key=lambda x: x[3], reverse=True) +mejores_parametros = resultados_sorted[0] +print("\n** Mejores parámetros para DBSCAN **") +print(f"EPS: {mejores_parametros[0]}") +print(f"Min Samples: {mejores_parametros[1]}") +print(f"Número de Clusters: {mejores_parametros[2]}") +print(f"Silhouette Score: {mejores_parametros[3]}") +print(f"Davies-Bouldin Score: {mejores_parametros[4]}") + +# Aplicar DBSCAN con los mejores parámetros +dbscan = DBSCAN(eps=mejores_parametros[0], min_samples=mejores_parametros[1]) +clusters = dbscan.fit_predict(X_scaled) + +# Agregar los clusters al DataFrame +df['cluster'] = clusters + + +# ** Análisis de clusters para DBSCAN ** +def analizar_cluster_dbscan(df, cluster_num): + elementos_cluster = df[df['cluster'] == cluster_num] + print(f"\n=== Análisis del cluster {cluster_num} ===") + print(f"Total de elementos: {len(elementos_cluster)}") + + if len(elementos_cluster) == 0: + print("El cluster está vacío.") + return + + print(f"\nEstadísticas descriptivas principales:") + print(elementos_cluster.describe().loc[['mean', 'std', 'min', 'max']]) + + print(f"\nValores más frecuentes por columna categórica:") + cols_categoricas = elementos_cluster.select_dtypes(include=['object', 'category']).columns + for col in cols_categoricas: + if not elementos_cluster[col].dropna().empty: + modo = elementos_cluster[col].mode() + valor_modo = modo.values[0] if not modo.empty else "Sin valores frecuentes" + print(f" - {col}: {valor_modo}") + else: + print(f" - {col}: Sin datos disponibles") + + +# Analizar clusters generados +clusters_unicos = set(clusters) +clusters_unicos.discard(-1) # Ignorar ruido (-1) +print("\n** Análisis de Clusters **") +for cluster_num in clusters_unicos: + analizar_cluster_dbscan(df, cluster_num) + +# Visualización de distribución de clusters +def graficar_distribucion_clusters_dbscan(df): + plt.figure(figsize=(8, 5)) + df['cluster'].value_counts().sort_index().plot(kind='bar', color='skyblue', edgecolor='black') + plt.xlabel('Cluster') + plt.ylabel('Número de elementos') + plt.title('Distribución de elementos por cluster (DBSCAN)') + plt.xticks(rotation=0) + plt.show() + +print("\n** Distribución de Clusters **") +graficar_distribucion_clusters_dbscan(df) + +ruido = sum(clusters == -1) +total = len(clusters) +print(f"Puntos clasificados como ruido: {ruido}/{total} ({ruido/total:.2%})") + +from sklearn.decomposition import PCA + +pca = PCA(n_components=2) +X_pca = pca.fit_transform(X_scaled) + +plt.scatter(X_pca[:, 0], X_pca[:, 1], s=10, c=clusters, cmap='viridis', alpha=0.7) +plt.title('Proyección 2D de los datos escalados') +plt.xlabel('Componente principal 1') +plt.ylabel('Componente principal 2') +plt.colorbar(label='Cluster') +plt.show() + +if resultados: + resultados_sorted = sorted(resultados, key=lambda x: x[3], reverse=True) + mejores_parametros = resultados_sorted[0] + print("\n** Mejores parámetros para DBSCAN **") + print(f"EPS: {mejores_parametros[0]}") + print(f"Min Samples: {mejores_parametros[1]}") + print(f"Número de Clusters: {mejores_parametros[2]}") + print(f"Silhouette Score: {mejores_parametros[3]}") + print(f"Davies-Bouldin Score: {mejores_parametros[4]}") + + # Aplicar DBSCAN con los mejores parámetros + dbscan = DBSCAN(eps=mejores_parametros[0], min_samples=mejores_parametros[1]) + clusters = dbscan.fit_predict(X_scaled) +else: + print("No se encontraron parámetros válidos.") \ No newline at end of file diff --git a/src/comparative_analysis/models/K-Means.py b/src/comparative_analysis/models/K-Means.py new file mode 100644 index 000000000..728fb528a --- /dev/null +++ b/src/comparative_analysis/models/K-Means.py @@ -0,0 +1,109 @@ +import pandas as pd +import re +from sklearn.cluster import KMeans +from sklearn.metrics import silhouette_score, davies_bouldin_score +from sklearn.preprocessing import StandardScaler +import matplotlib.pyplot as plt + +# ** Carga y limpieza de datos ** +ruta_excel = r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx" + +# Crear el DataFrame +df = pd.read_excel(ruta_excel, header=0) + +# Procesamiento de columnas numéricas +num_cols = { + 'Weight': '(\d+\.?\d*)', + 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' +} +for col, pattern in num_cols.items(): + df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Procesar precios +price_cols = ['regularPrice', 'undiscounted_price'] +for col in price_cols: + df[col] = df[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) + df[col] = df[col].str.replace(r'\.', '', regex=True).str.replace(',', '.') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Eliminar columnas innecesarias +cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] +df = df.drop(columns=cols_to_drop, errors='ignore') + +# ** Clustering y evaluación ** +ids = df['id'] +X = df.drop(columns=['id'], errors='ignore').fillna(0) + +# Codificar variables categóricas +df_dummies = pd.get_dummies(X, dummy_na=True).fillna(0) + +# Escalar los datos +scaler = StandardScaler() +X_scaled = scaler.fit_transform(df_dummies) + +# Método del codo para determinar el número óptimo de clusters +def metodo_del_codo(X, k_range): + distortions = [] + for k in k_range: + kmeans = KMeans(n_clusters=k, random_state=42) + kmeans.fit(X) + distortions.append(kmeans.inertia_) + + plt.figure(figsize=(8, 5)) + plt.plot(k_range, distortions, 'bx-') + plt.xlabel('Número de clusters k') + plt.ylabel('Distorsión (Inercia)') + plt.title('Método del Codo para determinar k') + plt.show() + +# Mostrar el método del codo +print("\n** Método del Codo para determinar el número óptimo de clusters **") +metodo_del_codo(X_scaled, range(2, 11)) + +# Clustering con un número específico de clusters +k = 8 +kmeans = KMeans(n_clusters=k, random_state=42) +clusters = kmeans.fit_predict(X_scaled) + +# Agregar el cluster al DataFrame original +df['cluster'] = clusters + +# Evaluar calidad del clustering +sil_score = silhouette_score(X_scaled, clusters) +db_score = davies_bouldin_score(X_scaled, clusters) +print(f"\n** Evaluación del clustering **") +print(f"Silhouette Score: {sil_score}") +print(f"Davies-Bouldin Score: {db_score}") + +# ** Análisis de clusters ** +def analizar_cluster(df, cluster_num): + elementos_cluster = df[df['cluster'] == cluster_num] + print(f"\n=== Análisis del cluster {cluster_num} ===") + print(f"Total de elementos: {len(elementos_cluster)}") + + print(f"\nEstadísticas descriptivas principales:") + print(elementos_cluster.describe().loc[['mean', 'std', 'min', 'max']]) + + print(f"\nValores más frecuentes por columna categórica:") + cols_categoricas = elementos_cluster.select_dtypes(include=['object', 'category']).columns + for col in cols_categoricas: + print(f" - {col}: {elementos_cluster[col].mode().values[0]}") + +# Analizar los clusters 2 y 3 +print("\n** Análisis de Clusters **") +analizar_cluster(df, cluster_num=2) +analizar_cluster(df, cluster_num=3) + +# Visualización de distribución de clusters +def graficar_distribucion_clusters(df): + plt.figure(figsize=(8, 5)) + df['cluster'].value_counts().sort_index().plot(kind='bar', color='skyblue', edgecolor='black') + plt.xlabel('Cluster') + plt.ylabel('Número de elementos') + plt.title('Distribución de elementos por cluster') + plt.xticks(rotation=0) + plt.show() + +print("\n** Distribución de Clusters **") +graficar_distribucion_clusters(df) \ No newline at end of file diff --git a/src/comparative_analysis/training/trainingDBScan.py b/src/comparative_analysis/training/trainingDBScan.py new file mode 100644 index 000000000..3281fe487 --- /dev/null +++ b/src/comparative_analysis/training/trainingDBScan.py @@ -0,0 +1,163 @@ +import pandas as pd +import re +from sklearn.cluster import DBSCAN +from sklearn.metrics import silhouette_score, davies_bouldin_score +from sklearn.preprocessing import StandardScaler +import matplotlib.pyplot as plt +import numpy as np + +# ** Carga y limpieza de datos ** +ruta_excel = r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx" + +# Crear el DataFrame +df = pd.read_excel(ruta_excel, header=0, engine='openpyxl') + +# Procesamiento de columnas numéricas +num_cols = { + 'Weight': '(\d+\.?\d*)', + 'Drop__heel-to-toe_differential_': '(\d+\.?\d*)' +} +for col, pattern in num_cols.items(): + df[col] = df[col].astype(str).str.extract(pattern).astype(float, errors='ignore') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Procesar precios +price_cols = ['regularPrice', 'undiscounted_price'] +for col in price_cols: + df[col] = df[col].astype(str).str.replace(r'[^0-9.,]', '', regex=True) + df[col] = df[col].str.replace(r'\.', '', regex=True).str.replace(',', '.') + df[col] = pd.to_numeric(df[col], errors='coerce') + +# Eliminar columnas innecesarias +cols_to_drop = ['details', 'description', 'category', 'characteristics', 'width', 'Pronation_Type'] +df = df.drop(columns=cols_to_drop, errors='ignore') + +# ** Clustering y evaluación ** +ids = df['id'] +X = df.drop(columns=['id'], errors='ignore').fillna(0) + +# Codificar variables categóricas +df_dummies = pd.get_dummies(X, dummy_na=True).fillna(0) + +# Escalar los datos +scaler = StandardScaler() +X_scaled = scaler.fit_transform(df_dummies) + +print("Media X_scaled:", X_scaled.mean(axis=0)) +print("Desviación estándar X_scaled:", X_scaled.std(axis=0)) + +# Función para explorar parámetros de DBSCAN +def explorar_parametros_dbscan(X, eps_values, min_samples_values): + resultados = [] + for eps in eps_values: + for min_samples in min_samples_values: + dbscan = DBSCAN(eps=eps, min_samples=min_samples) + clusters = dbscan.fit_predict(X) + num_clusters = len(set(clusters)) - (1 if -1 in clusters else 0) + + if num_clusters > 1: # Evaluar solo si hay más de 1 cluster válido + sil_score = silhouette_score(X, clusters) + db_score = davies_bouldin_score(X, clusters) + resultados.append((eps, min_samples, num_clusters, sil_score, db_score)) + return resultados + +# Rango de parámetros a explorar +eps_values = np.arange(0.5, 2.0, 0.1) +min_samples_values = range(3, 10) + +# Explorar los parámetros +resultados = explorar_parametros_dbscan(X_scaled, eps_values, min_samples_values) + +# Mostrar los mejores parámetros según Silhouette Score +resultados_sorted = sorted(resultados, key=lambda x: x[3], reverse=True) +mejores_parametros = resultados_sorted[0] +print("\n** Mejores parámetros para DBSCAN **") +print(f"EPS: {mejores_parametros[0]}") +print(f"Min Samples: {mejores_parametros[1]}") +print(f"Número de Clusters: {mejores_parametros[2]}") +print(f"Silhouette Score: {mejores_parametros[3]}") +print(f"Davies-Bouldin Score: {mejores_parametros[4]}") + +# Aplicar DBSCAN con los mejores parámetros +dbscan = DBSCAN(eps=mejores_parametros[0], min_samples=mejores_parametros[1]) +clusters = dbscan.fit_predict(X_scaled) + +# Agregar los clusters al DataFrame +df['cluster'] = clusters + + +# ** Análisis de clusters para DBSCAN ** +def analizar_cluster_dbscan(df, cluster_num): + elementos_cluster = df[df['cluster'] == cluster_num] + print(f"\n=== Análisis del cluster {cluster_num} ===") + print(f"Total de elementos: {len(elementos_cluster)}") + + if len(elementos_cluster) == 0: + print("El cluster está vacío.") + return + + print(f"\nEstadísticas descriptivas principales:") + print(elementos_cluster.describe().loc[['mean', 'std', 'min', 'max']]) + + print(f"\nValores más frecuentes por columna categórica:") + cols_categoricas = elementos_cluster.select_dtypes(include=['object', 'category']).columns + for col in cols_categoricas: + if not elementos_cluster[col].dropna().empty: + modo = elementos_cluster[col].mode() + valor_modo = modo.values[0] if not modo.empty else "Sin valores frecuentes" + print(f" - {col}: {valor_modo}") + else: + print(f" - {col}: Sin datos disponibles") + + +# Analizar clusters generados +clusters_unicos = set(clusters) +clusters_unicos.discard(-1) # Ignorar ruido (-1) +print("\n** Análisis de Clusters **") +for cluster_num in clusters_unicos: + analizar_cluster_dbscan(df, cluster_num) + +# Visualización de distribución de clusters +def graficar_distribucion_clusters_dbscan(df): + plt.figure(figsize=(8, 5)) + df['cluster'].value_counts().sort_index().plot(kind='bar', color='skyblue', edgecolor='black') + plt.xlabel('Cluster') + plt.ylabel('Número de elementos') + plt.title('Distribución de elementos por cluster (DBSCAN)') + plt.xticks(rotation=0) + plt.show() + +print("\n** Distribución de Clusters **") +graficar_distribucion_clusters_dbscan(df) + +ruido = sum(clusters == -1) +total = len(clusters) +print(f"Puntos clasificados como ruido: {ruido}/{total} ({ruido/total:.2%})") + +from sklearn.decomposition import PCA + +pca = PCA(n_components=2) +X_pca = pca.fit_transform(X_scaled) + +plt.scatter(X_pca[:, 0], X_pca[:, 1], s=10, c=clusters, cmap='viridis', alpha=0.7) +plt.title('Proyección 2D de los datos escalados') +plt.xlabel('Componente principal 1') +plt.ylabel('Componente principal 2') +plt.colorbar(label='Cluster') +plt.show() + +if resultados: + resultados_sorted = sorted(resultados, key=lambda x: x[3], reverse=True) + mejores_parametros = resultados_sorted[0] + print("\n** Mejores parámetros para DBSCAN **") + print(f"EPS: {mejores_parametros[0]}") + print(f"Min Samples: {mejores_parametros[1]}") + print(f"Número de Clusters: {mejores_parametros[2]}") + print(f"Silhouette Score: {mejores_parametros[3]}") + print(f"Davies-Bouldin Score: {mejores_parametros[4]}") + + # Aplicar DBSCAN con los mejores parámetros + dbscan = DBSCAN(eps=mejores_parametros[0], min_samples=mejores_parametros[1]) + clusters = dbscan.fit_predict(X_scaled) +else: + print("No se encontraron parámetros válidos.") \ No newline at end of file diff --git a/src/comparative_analysis/training/training.py b/src/comparative_analysis/training/trainingK-Means.py similarity index 100% rename from src/comparative_analysis/training/training.py rename to src/comparative_analysis/training/trainingK-Means.py From 77870eed03b41bbe907a6d3d434d9b76623b0ace Mon Sep 17 00:00:00 2001 From: jumcorrealo Date: Thu, 19 Dec 2024 22:33:38 -0500 Subject: [PATCH 51/84] Update project_charter.md images --- docs/business_understanding/project_charter.md | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/docs/business_understanding/project_charter.md b/docs/business_understanding/project_charter.md index dde755f23..67116b96b 100644 --- a/docs/business_understanding/project_charter.md +++ b/docs/business_understanding/project_charter.md @@ -8,6 +8,11 @@ Análisis comparativo de productos de Running entre Nike, Adidas y Nation Runner Desarrollar una herramienta computacional que permita realizar un análisis comparativo de zapatos para running, utilizando datos obtenidos de varias tiendas retail mediante técnicas de procesamiento de lenguaje natural y preprocesamiento de datos, incluyendo el uso de Grandes Modelos de Lenguaje (LLM, por sus siglas en inglés). +image +Img 1: Proceso del negocio manual para un análisis comparativo de productos + + + ## Alcance del Proyecto El alcance del proyecto consiste en construir un modelo de recomendación basado en embeddings, capaz de generar recomendaciones basadas en la similitud de atributos de calzado deportivo para running, alineados con las necesidades del cliente. @@ -160,4 +165,4 @@ Aunque no se cuenta con financiamiento externo, se estimaron los costos básicos - [Nombre y cargo del aprobador del proyecto] - [Firma del aprobador] -- [Fecha de aprobación] \ No newline at end of file +- [Fecha de aprobación] From 80f0b0e46af77a462e08d89ca05a6f3f3a28d25f Mon Sep 17 00:00:00 2001 From: jumcorrealo Date: Thu, 19 Dec 2024 22:33:52 -0500 Subject: [PATCH 52/84] Update project_charter.md --- docs/business_understanding/project_charter.md | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/business_understanding/project_charter.md b/docs/business_understanding/project_charter.md index 67116b96b..a1f9dbf0b 100644 --- a/docs/business_understanding/project_charter.md +++ b/docs/business_understanding/project_charter.md @@ -9,6 +9,7 @@ Análisis comparativo de productos de Running entre Nike, Adidas y Nation Runner Desarrollar una herramienta computacional que permita realizar un análisis comparativo de zapatos para running, utilizando datos obtenidos de varias tiendas retail mediante técnicas de procesamiento de lenguaje natural y preprocesamiento de datos, incluyendo el uso de Grandes Modelos de Lenguaje (LLM, por sus siglas en inglés). image + Img 1: Proceso del negocio manual para un análisis comparativo de productos From 2ab0b25943d6aa40a6ef251babd982df91657d29 Mon Sep 17 00:00:00 2001 From: jumcorrealo Date: Thu, 19 Dec 2024 22:40:38 -0500 Subject: [PATCH 53/84] Update deploymentdoc.md --- docs/deployment/deploymentdoc.md | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/docs/deployment/deploymentdoc.md b/docs/deployment/deploymentdoc.md index 330311ceb..182c4782a 100644 --- a/docs/deployment/deploymentdoc.md +++ b/docs/deployment/deploymentdoc.md @@ -16,6 +16,15 @@ ## Documentación del despliegue +![dataflow](https://github.com/user-attachments/assets/2f14053b-4d55-4ca5-8afd-05d1321add3a) + +Flujo de datos + + +![arquitectura (1)](https://github.com/user-attachments/assets/4565491e-0dc2-4345-948c-c88167d42f16) + +Arquitectura + - **Instrucciones de instalación:** (instrucciones detalladas para instalar el modelo en la plataforma de despliegue) - **Instrucciones de configuración:** (instrucciones detalladas para configurar el modelo en la plataforma de despliegue) - **Instrucciones de uso:** (instrucciones detalladas para utilizar el modelo en la plataforma de despliegue) From 07e0ab11ee6220df6c025bd0778e252f92c2e288 Mon Sep 17 00:00:00 2001 From: jumcorrealo Date: Thu, 19 Dec 2024 22:42:13 -0500 Subject: [PATCH 54/84] tests clustering --- docs/deployment/Clustering.ipynb | 3060 ++++++++++++++++++++++++++++++ 1 file changed, 3060 insertions(+) create mode 100644 docs/deployment/Clustering.ipynb diff --git a/docs/deployment/Clustering.ipynb b/docs/deployment/Clustering.ipynb new file mode 100644 index 000000000..f362b4e16 --- /dev/null +++ b/docs/deployment/Clustering.ipynb @@ -0,0 +1,3060 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "19c9ae5b-6e84-4ec3-8777-b85b2f92839e", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "import re\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "# Preprocesamiento\n", + "from sklearn.preprocessing import StandardScaler, OneHotEncoder\n", + "from sklearn.impute import SimpleImputer\n", + "\n", + "# Modelado\n", + "from sklearn.cluster import DBSCAN\n", + "from sklearn.cluster import KMeans\n", + "\n", + "# Embeddings\n", + "from sentence_transformers import SentenceTransformer\n", + "\n", + "# Reducción de dimensionalidad (opcional, pero recomendado para mejorar el rendimiento de DBSCAN)\n", + "from sklearn.decomposition import PCA\n", + "\n", + "# Para combinar diferentes tipos de features\n", + "from sklearn.compose import ColumnTransformer\n", + "from sklearn.pipeline import Pipeline\n", + "\n", + "# Para manejar matrices dispersas\n", + "from scipy.sparse import hstack\n", + "from scipy.sparse import csr_matrix\n", + "\n", + "# Evaluación\n", + "from sklearn.metrics import silhouette_score\n", + "\n", + "# Visualización\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.manifold import TSNE\n", + "\n", + "import pyspark.sql.functions as F\n", + "\n", + "from sklearn.base import BaseEstimator, TransformerMixin" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "bcde3eb7-f9b7-4caf-9a27-99ae8d119276", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df = spark.table(\"preprod_colombia.scraping_adidas_etiquetado\")\n", + "spark_df_dkt = spark.table(\"preprod_colombia.scraping_dkt_etiquetado_running\")" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "5bd4c26d-7f89-47ba-ada3-03624dac06ab", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "columns = ['Weight','Upper_Material','Midsole_Material','Outsole','Cushioning_System','Drop__heel-to-toe_differential_','regularPrice','undiscounted_price', 'Gender','Additional_Technologies',\"id\"]\n", + "columns_dkt = ['Weight','Upper_Material','Midsole_Material','Outsole','Cushioning_System','Drop__heel_to_toe_differential_','regularPrice','undiscounted_price', 'Gender','Additional_Technologies',\"model_code\"]\n", + "spark_df_selected = spark_df.select(columns)\n", + "spark_df_dkt_selected = spark_df_dkt.select(columns_dkt)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "ecc7987b-a9ae-436a-88d1-a1b8de22a510", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df_dkt_selected = spark_df_dkt_selected.withColumnRenamed(\"model_code\", \"id\")\n", + "spark_df_dkt_selected = spark_df_dkt_selected.withColumnRenamed(\"drop__heel_to_toe_differential_\", \"Drop__heel-to-toe_differential_\")\n", + "spark_df_dkt_selected = spark_df_dkt_selected.withColumn(\"Drop__heel-to-toe_differential_\",F.col(\"Drop__heel-to-toe_differential_\").cast(\"string\"))\n", + "spark_df_dkt_selected = spark_df_dkt_selected.withColumn(\"regularPrice\",F.col(\"regularPrice\").cast(\"int\"))\n", + "spark_df_dkt_selected = spark_df_dkt_selected.withColumn(\"undiscounted_price\",F.col(\"undiscounted_price\").cast(\"int\"))\n", + "spark_df_dkt_selected = spark_df_dkt_selected.withColumn(\n", + " \"Upper_Material\", \n", + " F.regexp_replace(F.col(\"Upper_Material\"), \"Poliéster\", \"\")\n", + ")\n", + "\n", + "spark_df_dkt_selected = spark_df_dkt_selected.withColumn(\n", + " \"Upper_Material\", \n", + " F.regexp_replace(F.col(\"Upper_Material\"), \"Poliuretano\", \"\")\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "608993b9-826d-4006-ae30-5288e124a35f", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df_adidas = spark_df_selected.toPandas()\n", + "df_dkt = spark_df_dkt_selected.toPandas()\n", + "df = pd.concat([df_adidas, df_dkt], ignore_index=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "867ef166-13f4-4146-bb6d-dde41a168195", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightUpper_MaterialMidsole_MaterialOutsoleCushioning_SystemDrop__heel-to-toe_differential_regularPriceundiscounted_priceGenderAdditional_Technologiesid
469NaNPoliamida, ;EVAAcetato de etileno y viniloNone199000NaNHombre8803408
470251.0, termoplásticoEVACaucho sintético, Acetato de etileno y viniloflexibles (61 N/mm)4.0249000NaNHombreTranspirabilidad: Nueva tela mesh desarrollada...8670191
471295.0,Entresuela de espuma EVA y concepto de amortig...Caucho sintético, Acetato de etileno y vinilo10.0250000229000.0HombreSuela estriada de 3 mm para más agarre en cami...8488639
472366.0EVAAcetato de etileno y viniloflexibilidadNone139000NaNMujer8803078
473243.0,IMEVACaucho sintético, Acetato de etileno y viniloFlexibilidad4.0185000NaNHombre8757334
474295.0,Entresuela de espuma EVA y concepto de amortig...Caucho sintético, Acetato de etileno y vinilo10.0250000229000.0HombreAgarre: Suela estriada de 3 mm para más agarre...8767790
475251.0, termoplásticoEVACaucho sintético, Acetato de etileno y vinilotenis flexibles (61 N/mm)4.0249000NaNHombreLibertad de movimientos: Las hendiduras de fle...8670196
476NaNtermoplástico,EVACaucho sintético, Acetato de etileno y viniloFlex-HNone249000NaNMujerAdaptabilidad: Disponible en dos anchos de pie...8750403
477200.0,IMEVACaucho sintético, Acetato de etileno y viniloFlexibilidad4.0185000NaNMujer8757345
478180.0,Acetato de etileno y vinilo;10.08700079000.0Hombre8351755
479210.0,Suela de espumaCaucho sintético, Acetato de etileno y viniloFlexibilidad para mejorar el desarrollo del pie.4.0135000NaNMujerAdherencia: Refuerzo de caucho en la suela, en...8733475
480NaNEVAAcetato de etileno y viniloLa flexibilidad de la suela es ideal para todo...None169000NaNHombreTranspirabilidad: Su mesh 3D aireado permite q...8803079
481203.0, termoplásticoEVACaucho sintético, 70.0% Acetato de etileno y v...tenis flexibles (61 N/mm)4.0249000NaNMujerLas hendiduras de flexión acompañan la extensi...8670202
482235.0termoplástico, ,KALENSOLECaucho sintético, Acetato de etileno y viniloKALENSOLENone399000NaNMujertela mesh, más elástica.8772824
483205.0, termoplástico, ,MFOAMCaucho sintético, Acetato de etileno y viniloMFOAM6.0499000NaNMujerBuen agarre en piso mojado gracias a la textur...8772779
484216.0termoplástico, ;VFOAMCaucho sintético, Acetato de etileno y vinilo,...Pebax8.0399000240000.0mujergeometría de la suela de las KIPRUN KD500 2, c...8756260
485280.0termoplástico, ;KalensoleCaucho sintético, Acetato de etileno y viniloKalensole6.0309000NaNHombre8772865
486252.0, termoplástico,espuma MFOAMCaucho sintético, Acetato de etileno y viniloespuma MFOAM6.0499000NaNHombreAdherencia: Buen agarre en piso mojado gracias...8830204
487225.0,Caucho sintético, Carbono, Amida de bloque de ...8.0849000NaNHombreImpulso: Espuma Pebax® de Arkema y placa de ca...8666803
488218.0termoplástico,espuma Pebax® de Arkema.Caucho sintético, Amida de bloque de poliéter8.0699000599000.0HombreImpulso: Excelente retorno de energía gracias ...8798231
\n", + "
" + ], + "text/plain": [ + " Weight ... id\n", + "469 NaN ... 8803408\n", + "470 251.0 ... 8670191\n", + "471 295.0 ... 8488639\n", + "472 366.0 ... 8803078\n", + "473 243.0 ... 8757334\n", + "474 295.0 ... 8767790\n", + "475 251.0 ... 8670196\n", + "476 NaN ... 8750403\n", + "477 200.0 ... 8757345\n", + "478 180.0 ... 8351755\n", + "479 210.0 ... 8733475\n", + "480 NaN ... 8803079\n", + "481 203.0 ... 8670202\n", + "482 235.0 ... 8772824\n", + "483 205.0 ... 8772779\n", + "484 216.0 ... 8756260\n", + "485 280.0 ... 8772865\n", + "486 252.0 ... 8830204\n", + "487 225.0 ... 8666803\n", + "488 218.0 ... 8798231\n", + "\n", + "[20 rows x 11 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.tail(20)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "1a02981c-9475-4bcb-adea-9692e3ce3819", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "source": [ + "## Funciones" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "605cc91a-a695-4dce-a870-9c7ac634a193", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "# Definir una función para combinar textos relevantes\n", + "def combine_text(row):\n", + " text_fields = categorical_cols\n", + " combined_text = ' '.join([str(row[field]) if pd.notnull(row[field]) else '' for field in text_fields])\n", + " return combined_text\n", + "\n", + "def preprocess_outsole(text):\n", + " if pd.isna(text):\n", + " return \"Desconocido\"\n", + " # Reemplazar porcentajes o valores numericos por una etiqueta genérica\n", + " text = re.sub(r'\\d+(\\.\\d+)?\\%?', 'X%', text)\n", + " # Unificar materiales\n", + " text = text.replace(\"Acetato de etileno y vinilo\", \"EVA\")\n", + " text = text.replace(\"Caucho sintético\", \"CauchoSintetico\")\n", + " # Quitar espacios extra\n", + " text = re.sub(r'\\s+', ' ', text).strip()\n", + " return text\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "b8594999-2770-46ec-83ed-1766c12305d5", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "source": [ + "## Procesamiento del dataframe" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "26c8c077-ba52-4485-b8cd-2477d0f7e597", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "#Remplaza los caracteres no numéricos\n", + "df['Weight'] = df['Weight'].apply(lambda x: re.sub(r'[^\\d.]', '', str(x)))\n", + "df['Drop__heel-to-toe_differential_'] = df['Drop__heel-to-toe_differential_'].apply(lambda x: re.sub(r'[^\\d.]', '', str(x)))\n", + "df['regularPrice'] = df['regularPrice'].apply(lambda x: re.sub(r'\\D', '', str(x)))\n", + "df['undiscounted_price'] = df['undiscounted_price'].apply(lambda x: re.sub(r'\\D', '', str(x)))" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "9a7fecad-6de2-4472-8e09-d4961eb94ab3", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df['Weight'] = df['Weight'].replace('', np.nan)\n", + "df['Drop__heel-to-toe_differential_'] = df['Drop__heel-to-toe_differential_'].replace('', np.nan)\n", + "df['regularPrice'] = df['regularPrice'].replace('', np.nan)\n", + "df['undiscounted_price'] = df['undiscounted_price'].replace('', np.nan)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "771e495f-7a5b-4351-98fe-53922c6e7cd7", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df['Weight'] = df['Weight'].astype(float)\n", + "df['Drop__heel-to-toe_differential_'] = df['Drop__heel-to-toe_differential_'].astype(float)\n", + "df['regularPrice'] = df['regularPrice'].astype(float)\n", + "df['undiscounted_price'] = df['undiscounted_price'].astype(float)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "dcc99e26-1ce7-4639-962e-32819c122bf9", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df['percentil_discounted'] = 1-(df['undiscounted_price']/df['regularPrice'])" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "01a546ca-a735-4019-b003-a4a2fc8da694", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df_reduced = df[['Weight','Upper_Material','Midsole_Material','Outsole','Cushioning_System','Drop__heel-to-toe_differential_','regularPrice','undiscounted_price','percentil_discounted', 'Gender','Additional_Technologies']]" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "31fe59c0-c9c5-459b-bf1c-610e7ff96d60", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightUpper_MaterialMidsole_MaterialOutsoleCushioning_SystemDrop__heel-to-toe_differential_regularPriceundiscounted_pricepercentil_discountedGenderAdditional_Technologies
0183.0SyntheticnullTextile rubberLightstrike Pro6.01299950.0909965.00.300000WomanENERGYRODS 2.0, Waterproofing, Recyclable mate...
1289.0adidas PrimeknitBOOSTStretchweb with Continental Better RubberLinear Energy PushNaN799950.0NaNNaNWomanParley Ocean Plastic, waterproofing
2166.0Parte superior de malla técnicanullSuela de caucho Continental™Amortiguación Lightstrike Pro6.01049950.0629970.00.400000MujerContiene al menos un 20 % de material reciclad...
3200.0Parte superior de mallanullSuela de caucho Continental RubberAmortiguación Lightstrike Pro6.01049950.0734965.00.300000HombreVarillas ENERGYRODS, Talón Slinglaunch, Contie...
4319.0Parte superior textilMediasuela CloudfoamSuela de TPUCloudfoam6.0279950.0NaNNaNHombrenull
....................................
484216.0termoplástico, ;VFOAMCaucho sintético, Acetato de etileno y vinilo,...Pebax8.0399000.02400000.0-5.015038mujergeometría de la suela de las KIPRUN KD500 2, c...
485280.0termoplástico, ;KalensoleCaucho sintético, Acetato de etileno y viniloKalensole6.0309000.0NaNNaNHombre
486252.0, termoplástico,espuma MFOAMCaucho sintético, Acetato de etileno y viniloespuma MFOAM6.0499000.0NaNNaNHombreAdherencia: Buen agarre en piso mojado gracias...
487225.0,Caucho sintético, Carbono, Amida de bloque de ...8.0849000.0NaNNaNHombreImpulso: Espuma Pebax® de Arkema y placa de ca...
488218.0termoplástico,espuma Pebax® de Arkema.Caucho sintético, Amida de bloque de poliéter8.0699000.05990000.0-7.569385HombreImpulso: Excelente retorno de energía gracias ...
\n", + "

489 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " Weight ... Additional_Technologies\n", + "0 183.0 ... ENERGYRODS 2.0, Waterproofing, Recyclable mate...\n", + "1 289.0 ... Parley Ocean Plastic, waterproofing\n", + "2 166.0 ... Contiene al menos un 20 % de material reciclad...\n", + "3 200.0 ... Varillas ENERGYRODS, Talón Slinglaunch, Contie...\n", + "4 319.0 ... null\n", + ".. ... ... ...\n", + "484 216.0 ... geometría de la suela de las KIPRUN KD500 2, c...\n", + "485 280.0 ... \n", + "486 252.0 ... Adherencia: Buen agarre en piso mojado gracias...\n", + "487 225.0 ... Impulso: Espuma Pebax® de Arkema y placa de ca...\n", + "488 218.0 ... Impulso: Excelente retorno de energía gracias ...\n", + "\n", + "[489 rows x 11 columns]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_reduced" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "cd5bc1e4-0b47-40de-b629-c7e47e446b19", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['Weight', 'Upper_Material', 'Midsole_Material', 'Outsole',\n", + " 'Cushioning_System', 'Drop__heel-to-toe_differential_', 'regularPrice',\n", + " 'undiscounted_price', 'percentil_discounted', 'Gender',\n", + " 'Additional_Technologies'],\n", + " dtype='object')" + ] + }, + "execution_count": 243, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_reduced.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "caa09e55-f642-4d32-b06c-96a8c7af0da8", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "output_type": "stream", + "text": [ + "/root/.ipykernel/1017/command-2628091764913739-2217468474:1: SettingWithCopyWarning: \nA value is trying to be set on a copy of a slice from a DataFrame.\nTry using .loc[row_indexer,col_indexer] = value instead\n\nSee the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n df_reduced['Outsole'] = df_reduced['Outsole'].apply(preprocess_outsole)\n" + ] + } + ], + "source": [ + "df_reduced['Outsole'] = df_reduced['Outsole'].apply(preprocess_outsole)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "0357324b-81b4-4974-90e9-e6232b0f8d1a", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "source": [ + "## Clustering" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "c6a33e05-a578-4ea5-aadc-008198155e57", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + " \n", + " # Identificar columnas numéricas y categóricas\n", + "numerical_cols = ['Drop__heel-to-toe_differential_','Weight', 'regularPrice','undiscounted_price','percentil_discounted']\n", + "categorical_cols = ['Midsole_Material', 'Cushioning_System', 'Outsole', 'Upper_Material', \n", + " 'Additional_Technologies', 'Gender']\n", + " \n", + "# Definir qué columnas numéricas se imputarán con mediana y escalado\n", + "numeric_impute_cols = ['regularPrice']\n", + "\n", + "# Definir columnas numéricas \"especiales\" que no se deben imputar con mediana\n", + "special_numeric_cols = ['Drop__heel-to-toe_differential_', 'percentil_discounted','Weight', 'undiscounted_price']\n", + "\n", + "###################################\n", + "# Transformador personalizado\n", + "###################################\n", + "class SpecialNumericToCategory(BaseEstimator, TransformerMixin):\n", + " \n", + " \"\"\"\n", + " Este transformador convierte las columnas numéricas \"especiales\" en categorías.\n", + " Por ejemplo:\n", + " - Si el valor es NaN, lo marca como \"NoValue\".\n", + " - Si tiene valor, lo convierte a una categoría del tipo \"Value:X\".\n", + " \"\"\"\n", + " def __init__(self, cols):\n", + " self.cols = cols\n", + " \n", + " def fit(self, X, y=None):\n", + " return self\n", + "\n", + " def transform(self, X):\n", + " X = X.copy()\n", + " for col in self.cols:\n", + " X[col] = X[col].apply(lambda val: 'NoValue' if pd.isna(val) else f'Value:{val}')\n", + " return X[self.cols]\n", + "\n", + "###################################\n", + "# Pipelines\n", + "###################################\n", + "\n", + "# Pipeline para columnas numéricas \"normales\"\n", + "numeric_pipeline = Pipeline(steps=[\n", + " ('imputer', SimpleImputer(strategy='median')), # Imputar con mediana\n", + " ('scaler', StandardScaler()) # Escalar a media=0, std=1\n", + "])\n", + "\n", + "# Pipeline para columnas numéricas \"especiales\", convertidas a categóricas\n", + "special_numeric_pipeline = Pipeline(steps=[\n", + " ('to_category', SpecialNumericToCategory(special_numeric_cols)),\n", + " ('imputer', SimpleImputer(strategy='constant', fill_value='Unknown')), \n", + " ('onehot', OneHotEncoder(handle_unknown='ignore'))\n", + "])\n", + "\n", + "# Pipeline para columnas categóricas normales\n", + "categorical_pipeline = Pipeline(steps=[\n", + " ('imputer', SimpleImputer(strategy='constant', fill_value='Unknown')),\n", + " ('onehot', OneHotEncoder(handle_unknown='ignore'))\n", + "])\n", + "\n", + "# Combinar todos los pipelines con ColumnTransformer\n", + "preprocessor = ColumnTransformer(transformers=[\n", + " ('num', numeric_pipeline, numeric_impute_cols),\n", + " ('special_num', special_numeric_pipeline, special_numeric_cols),\n", + " ('cat', categorical_pipeline, categorical_cols)\n", + "])\n", + "X_transformed = preprocessor.fit_transform(df_reduced)\n", + "feature_names = (preprocessor.named_transformers_['num'][-1].get_feature_names_out(numeric_impute_cols).tolist() \n", + " + preprocessor.named_transformers_['special_num'][-1].get_feature_names_out(special_numeric_cols).tolist()\n", + " + preprocessor.named_transformers_['cat'][-1].get_feature_names_out(categorical_cols).tolist())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "70b99eca-b229-47bf-a0c6-8f4eb86c230d", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "Preprocesando columnas numéricas...\nGenerando embeddings para columnas categóricas...\nConcatenando características numéricas y categóricas...\nAplicando PCA para reducir dimensiones...\nCalculando el Método del Codo para determinar el número óptimo de clusters...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAImCAYAAAA8D0kbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACr3ElEQVR4nOzdd1gU59oG8HuXskvvVRFRVEQUARWxYwFLiN2IvUSNmhg1MR5zEsUYY9TYYsfErok1Jpao2BuigNg1aBBsgIjSO/P94WE/V3YRFBjK/bsur2R33p159mFYuJmZdySCIAggIiIiIiKicicVuwAiIiIiIqLqioGMiIiIiIhIJAxkREREREREImEgIyIiIiIiEgkDGRERERERkUgYyIiIiIiIiETCQEZERERERCQSBjIiIiIiIiKRMJARERERERGJhIGMiIiIqAijRo2Cu7s7srKyxC6FiKogTbELICIiIqqoTpw4gd27dyMsLAwymUzscoioCuIRMqJydubMGXz33XdISkoSuxQioneSnp6OOXPm4Pjx42KXUuYeP36MPXv2oF69emKXQkRVFAMZUTmKjo5Gr169YGBgACMjo3LZ5qlTpyCRSHDq1Kky3c7GjRshkUjw4MGDEr82ICAAEomk9It6Dw8ePIBEIsHGjRvFLoXKUUXcF0uidu3aGDFiRJlvZ/z48di7dy9atGhR5tsS29ChQ9GlS5cy386IESNQu3btMt/O+xL7e6S89nGi8sRARlQMBWFDIpHg3LlzhZYLggA7OztIJBJ88MEHKteRk5ODjz76CCNGjMCUKVMKLV+1ahV/+S+mU6dOoU+fPrC2toa2tjYsLS3h5+eHvXv3il1alVAQ4gv+yWQyWFlZoUOHDvjhhx/w7Nmzd173kydPEBAQgIiIiNIrmEqs4Gu7aNGiQssKPu9CQ0NVvvbXX3/F6dOncejQIRgYGJR1qaI5cOAAunbtCjMzM8jlctSvXx9ffvklnj9//s7r5P6v3v379zFu3DjUqVMHcrkchoaGaN26NZYtW4aMjIxyqSE9PR0BAQFl/gdMojcxkBGVgFwux/bt2ws9f/r0aTx69KjI6wtu3ryJgQMHqvwFCGAgK65Zs2bB29sbN27cwLhx47BmzRpMmzYNqamp6Nu3r8qvD72bSZMmYcuWLQgMDMS0adNgamqKWbNmoWHDhjhx4sQ7rfPJkyeYPXt2hf2F9Jtvvim3X/4qgoULFyI9Pb3Y4/Py8vD8+XMcPnwYNjY2ZViZuL788kv4+fkhNjYW06dPx4oVK9C5c2esWLECrq6uuHv37jutt6j9f926de+83sru4MGDaNy4MXbu3Ak/Pz8sX74c8+bNQ61atTBt2jR8/vnn5VJHeno6Zs+ezUBG5Y6TehCVQPfu3bFr1y78/PPP0NT8/2+f7du3w8PDAwkJCWpf27RpUzRt2rQcqqy6du/eje+++w79+vXD9u3boaWlpVg2bdo0HDlyBDk5OSJWKL60tDTo6emVyrratm2Lfv36KT139epV+Pj4oG/fvrh161aF+aW8tN63pqam0vd2eSnNr1txNW3aFBEREVizZg2mTp1arNdoaGjgq6++KuPK3l1p9PG3337DokWL8NFHH2Hbtm3Q0NBQLBsxYgS8vb3Rv39/hIeHl+q+8vrnWXUSFRWFgQMHwt7eHidOnFD6TJk4cSLu3buHgwcPiljh+xPj+5sqFx4hIyoBf39/PH/+HEFBQYrnsrOzsXv3bgwaNEjla/Lz87F06VI0atQIcrkcVlZWGDduHF68eKEYU7t2bdy8eROnT59WnErUoUMHxfJ///0X/fv3h6mpKXR1ddGyZUuVP6AePXqEXr16QU9PD5aWlpgyZYraaZp37doFDw8P6OjowNzcHEOGDMHjx4+L1YebN2+iY8eO0NHRQc2aNfH9998jPz9f5di///4bbdu2hZ6eHgwMDNCjRw/cvHmzWNt507fffgtTU1OsX79e5S8vvr6+SqeMxsfHY/To0bCysoJcLoerqys2bdpU6HUvX77EiBEjYGRkBGNjYwwfPhwvX75UWcOJEycU78fY2Bg9e/bE7du331p7wWmAO3bswNdffw1ra2vo6enhww8/xMOHD5XGnj17Fv3790etWrUgk8lgZ2eHKVOmFDpyM2LECOjr6+P+/fvo3r07DAwMMHjw4BKto6RcXV2xdOlSvHz5EitWrFBa9vjxY4waNQpWVlaQyWRo1KgR1q9fr9SD5s2bAwBGjhyp2NdfPzIcEhKCrl27wsjICLq6umjfvj3Onz+vtJ2Ca1hu3bqFQYMGwcTEBG3atAHw6nvpgw8+wKlTp9CsWTPo6OigcePGir947927F40bN4ZcLoeHhweuXLmict2vk0gk+PTTT7Fv3z64uLgo3tvhw4eVxkVHR2PChAlo0KABdHR0YGZmhv79+xe6rrLglMDTp09jwoQJsLS0RM2aNYvse1ZWFmbNmgVHR0fF1/Orr756r2nYW7dujY4dO2LBggVv3S86dOig9JlU4M3rngquvfzpp5+wcuVK1KlTB7q6uvDx8cHDhw8hCALmzJmDmjVrQkdHBz179kRiYmKh9Rbnc6Oo/T8tLQ1ffPEF7OzsIJPJ0KBBA/z0008QBOGtfZk9ezZMTEwQGBioFMYAoEWLFpg+fTquX7+O3bt3K/XHxcUFYWFhaNWqFXR0dODg4IA1a9Yoxrxt/y+rXq5atQqNGjWCTCaDra0tJk6cqPbz7U3nzp1D8+bNIZfLUbduXaxdu1bt2K1btyp+ppiammLgwIGFPttUWbBgAVJTU/Hrr7+q/AOPo6NjkUfI1F3Tpuq65tDQUPj6+sLc3FzxNRo1ahSAV/22sLAA8GofKPj6BAQEKF5/584d9OvXD6amppDL5WjWrBn++usvldtV9f2dkpKCyZMno3bt2pDJZLC0tESXLl0QHh7+1j5R1cYjZEQlULt2bXh5eeG3335Dt27dALz6xSEpKQkDBw7Ezz//XOg148aNw8aNGzFy5EhMmjQJUVFRWLFiBa5cuYLz589DS0sLS5cuxWeffQZ9fX3897//BQBYWVkBAOLi4tCqVSukp6dj0qRJMDMzw6ZNm/Dhhx9i9+7d6N27NwAgIyMDnTp1QkxMDCZNmgRbW1ts2bJF5allBfU0b94c8+bNQ1xcHJYtW4bz58/jypUrMDY2VtuD2NhYeHt7Izc3F//5z3+gp6eHwMBA6OjoFBq7ZcsWDB8+HL6+vpg/fz7S09OxevVqtGnTBleuXCnRBeyRkZG4c+cORo0aVazrVjIyMtChQwfcu3cPn376KRwcHLBr1y6MGDECL1++VPyAFwQBPXv2xLlz5/DJJ5+gYcOG+OOPPzB8+PBC6zx27Bi6deuGOnXqICAgABkZGVi+fDlat26N8PDwYr2fuXPnQiKRYPr06YiPj8fSpUvRuXNnREREKHq4a9cupKenY/z48TAzM8OlS5ewfPlyPHr0CLt27VJaX25uLnx9fdGmTRv89NNP0NXVLfE6Sqpfv34YPXo0jh49irlz5wJ4tZ+2bNlSEV4sLCzw999/Y/To0UhOTsbkyZPRsGFDfPfdd5g5cybGjh2Ltm3bAgBatWoF4FXY7datGzw8PDBr1ixIpVJs2LABHTt2xNmzZwtNING/f3/Uq1cPP/zwg9Iv2vfu3cOgQYMwbtw4DBkyBD/99BP8/PywZs0afP3115gwYQIAYN68eRgwYADu3r0LqbTov0+eO3cOe/fuxYQJE2BgYICff/4Zffv2RUxMDMzMzAAAly9fxoULFzBw4EDUrFkTDx48wOrVq9GhQwfcunVL8bUpMGHCBFhYWGDmzJlIS0tTu+38/Hx8+OGHOHfuHMaOHYuGDRvi+vXrWLJkCf755x/s27evGF811QICAtCuXTusXr262EfJimPbtm3Izs7GZ599hsTERCxYsAADBgxAx44dcerUKUyfPh337t3D8uXL8eWXXyoF95J8bqja/wVBwIcffoiTJ09i9OjRaNq0KY4cOYJp06bh8ePHWLJkidq6IyMjcffuXYwYMQKGhoYqxwwbNgyzZs3CgQMHMHDgQMXzL168QPfu3TFgwAD4+/tj586dGD9+PLS1tTFq1Ki37v9l0cuAgADMnj0bnTt3xvjx43H37l2sXr0aly9fVvz8Uef69evw8fGBhYUFAgICkJubi1mzZil+Nr1u7ty5+PbbbzFgwAB8/PHHePbsGZYvX4527dq99WfK/v37UadOnbf24X3Fx8cr3s9//vMfGBsb48GDB4prjy0sLLB69WqMHz8evXv3Rp8+fQAATZo0AfDqD5GtW7dGjRo1FD/7du7ciV69emHPnj2Kn8UFVH1/f/LJJ9i9ezc+/fRTODs74/nz5zh37hxu374Nd3f3Mn3/VMEJRPRWGzZsEAAIly9fFlasWCEYGBgI6enpgiAIQv/+/QVvb29BEATB3t5e6NGjh+J1Z8+eFQAI27ZtU1rf4cOHCz3fqFEjoX379oW2PXnyZAGAcPbsWcVzKSkpgoODg1C7dm0hLy9PEARBWLp0qQBA2Llzp2JcWlqa4OjoKAAQTp48KQiCIGRnZwuWlpaCi4uLkJGRoRh74MABAYAwc+bMIntRUE9ISIjiufj4eMHIyEgAIERFRSlqNDY2FsaMGaP0+tjYWMHIyEjp+VmzZglv+zj6888/BQDCkiVLihxXoKAfW7duVTyXnZ0teHl5Cfr6+kJycrIgCIKwb98+AYCwYMECxbjc3Fyhbdu2AgBhw4YNiuebNm0qWFpaCs+fP1c8d/XqVUEqlQrDhg0rsp6TJ08KAIQaNWooti0IgrBz504BgLBs2TLFcwX71uvmzZsnSCQSITo6WvHc8OHDBQDCf/7zn0Lji7uOomrdtWuX2jGurq6CiYmJ4vHo0aMFGxsbISEhQWncwIEDBSMjI0U9ly9fLtRXQRCE/Px8oV69eoKvr6+Qn5+v9D4cHByELl26KJ4r2F/8/f0L1WVvby8AEC5cuKB47siRIwIAQUdHR+m9r127Vul74/V1vw6AoK2tLdy7d0/x3NWrVwUAwvLly5VqfVNwcLAAQNi8ebPiuYLPkzZt2gi5ubmFXvOmLVu2CFKpVOkzQBAEYc2aNQIA4fz580rvf/jw4W9dJwBh4sSJgiAIgre3t2Btba2o//XPuwLt27dX+fk0fPhwwd7eXvE4KipKACBYWFgIL1++VDw/Y8YMAYDg6uoq5OTkKJ739/cXtLW1hczMTEEQSva5oW7/L/ie/v7775We79evnyCRSJS+jm8qeO3bPmcMDQ0Fd3d3xeP27dsLAIRFixYpnsvKylJ8ZmRnZwuCoH7/L3g/pdnL+Ph4QVtbW/Dx8VH8nBAEQVixYoUAQFi/fn2R77FXr16CXC5X+p65deuWoKGhofQ98uDBA0FDQ0OYO3eu0uuvX78uaGpqFnr+dUlJSQIAoWfPnkXW8ro393F1Pz8K9uOCn0l//PFHof36Tc+ePRMACLNmzSq0rFOnTkLjxo0V/RWEV59brVq1EurVq1dou6q+v42MjBTfd0Sv4ymLRCU0YMAAZGRk4MCBA0hJScGBAwfUnq64a9cuGBkZoUuXLkhISFD88/DwgL6+Pk6ePPnW7R06dAgtWrRQnJIFAPr6+hg7diwePHiAW7duKcbZ2NgoXfOjq6uLsWPHKq0vNDQU8fHxmDBhAuRyueL5Hj16wMnJ6a3n6h86dAgtW7ZUOlphYWGhOFWoQFBQEF6+fAl/f3+l966hoQFPT89ivffXJScnA0CxZ3U7dOgQrK2t4e/vr3hOS0sLkyZNQmpqKk6fPq0Yp6mpifHjxyvGaWho4LPPPlNa39OnTxEREYERI0bA1NRU8XyTJk3QpUsXHDp0qFh1DRs2TOk99OvXDzY2Nkqvf/1oY1paGhISEtCqVSsIglDoFDsASrW/6zpKSl9fHykpKQBeHWXcs2cP/Pz8IAiC0tfb19cXSUlJbz0lJyIiApGRkRg0aBCeP3+ueH1aWho6deqEM2fOFDot9pNPPlG5LmdnZ3h5eSkee3p6AgA6duyIWrVqFXr+33//fev77dy5M+rWrat43KRJExgaGiq99vWe5+Tk4Pnz53B0dISxsbHK9z9mzJhCp8SpsmvXLjRs2BBOTk5Kve3YsSMAlPh76U0BAQGIjY1VOr3uffXv31/p1h4FvR4yZIjSdVeenp7Izs5WnC79Lp8bb+7/hw4dgoaGBiZNmqT0/BdffAFBEPD333+rrbtgn37b54yBgYHiM6mApqYmxo0bp3isra2NcePGIT4+HmFhYUWuryjv2stjx44hOzsbkydPVjoCPGbMGBgaGhb5WZ+Xl4cjR46gV69eSt8zDRs2hK+vr9LYvXv3Ij8/HwMGDFD6mllbW6NevXpF7p8l/Vx/HwVH6Q4cOFDia40TExNx4sQJDBgwACkpKYr3+Pz5c/j6+iIyMrLQKf+qvr+NjY0REhKCJ0+evNd7oaqHpywSlZCFhQU6d+6M7du3Iz09HXl5eYUmPigQGRmJpKQkWFpaqlweHx//1u1FR0crfgC/rmHDhorlLi4uiI6OhqOjY6Fz6Rs0aFBofaqeBwAnJyeV0/oXp5431xcZGQkAil8a36TudCB1CsYX/ML0NtHR0ahXr16hU9Fe71vBf21sbKCvr680riR9a9iwIY4cOVKsC7ffvLmsRCKBo6Oj0nUOMTExmDlzJv766y+law0BFLqhuKampsrrj0qyjneRmpqq+CXq2bNnePnyJQIDAxEYGKhy/Nv29YL9RdWpogWSkpJgYmKieOzg4KBy3Ou/QAJQ/DJrZ2en8vk3+1OcdQKAiYmJ0mszMjIwb948bNiwAY8fP1Y6jVJVz9XV/6bIyEjcvn1bcX3Lm4rzOVKUdu3awdvbGwsWLFAbckvqXb8GJf3cULX/R0dHw9bWttAv+W9+76tS8Jq3fc6kpKQU+ly3tbUt9P1fv359AK+uT2rZsmWR61TnXXup7jNLW1sbderUKbIPz549Q0ZGhsqbYTdo0EDpD0iRkZEQBEHtjbOLOi2ypJ/r76N9+/bo27cvZs+ejSVLlqBDhw7o1asXBg0aVOQMycCr06AFQcC3336Lb7/9VuWY+Ph41KhRQ/FY1ff3ggULMHz4cNjZ2cHDwwPdu3fHsGHDUKdOnfd7c1TpMZARvYNBgwZhzJgxiI2NRbdu3dSeH5+fnw9LS0ts27ZN5XJ1v2BVBQVHM7Zs2QJra+tCy0s6O5mTkxOAV9c1VGV5eXno0qULEhMTMX36dDg5OUFPTw+PHz/GiBEjCh0lkslkhUJnSddRUjk5Ofjnn3/g4uIC4P+/1kOGDFEbqAquw1CnYB0LFy5UOxvpm6FZ1XWLANQedVL3/OvBSZ3ivPazzz7Dhg0bMHnyZHh5ecHIyAgSiQQDBw5U2XN19b8pPz8fjRs3xuLFi1Uuf/MX83cxa9YsdOjQAWvXrlX5eSaRSFT2KS8vT+X63vVrUNLPDVX7//soCG3Xrl1TOyY6OhrJyclwdnYute0WpSz259KUn58PiUSCv//+W2VNb37fvs7Q0BC2tra4cePGO29f3U2q39w3JRIJdu/ejYsXL2L//v04cuQIRo0ahUWLFuHixYtF1lmwX3755ZeFjhAWcHR0VHqs6vt7wIABaNu2Lf744w8cPXoUCxcuxPz587F3717FdelUPTGQEb2D3r17Y9y4cbh48SJ27NihdlzdunVx7NgxtG7d+q2/fKn7oWJvb6/y3jR37txRLC/4740bNyAIgtK63nxtwfi7d+8W+iv03bt3FcvVsbe3V/wV+83Xvq7g9C5LS0t07ty5yHUWR/369dGgQQP8+eefWLZsWZE/PAvqvHbtGvLz85V+YVPVt+PHjyM1NVVpnUX17U137tyBubl5saY1frN3giDg3r17isBy/fp1/PPPP9i0aROGDRumGPf6zJ5vUxrrKMru3buRkZGh+MXEwsICBgYGyMvLe+vXWt1+XrC/GBoalsr+Iobdu3dj+PDhSvcazMzMLPaMdurUrVsXV69eRadOndT27321b98eHTp0wPz58zFz5sxCy01MTFSe2lnUUZZ3URqfG/b29jh27BhSUlKUjpK9+b2vSv369VG/fn3s27cPy5YtU3kq3ebNmwFAaUZX4NU9xt48Sv7PP/8AgGIikrL6+qny+mfW60dgsrOzERUVVWR/LSwsoKOjU+zPekEQ4ODgoDgiWBIffPABAgMDERwcrHSqcXEVHDV/+fKl0h8T1O2bLVu2RMuWLTF37lxs374dgwcPxu+//46PP/5Y7denoH9aWlrv/flkY2ODCRMmYMKECYiPj4e7uzvmzp3LQFbN8Royonegr6+P1atXIyAgAH5+fmrHDRgwAHl5eZgzZ06hZbm5uUq/qOnp6an8xa179+64dOkSgoODFc+lpaUhMDAQtWvXVvyVtnv37njy5InSVMzp6emFTiFr1qwZLC0tsWbNGqUps//++2/cvn0bPXr0KPK9d+/eHRcvXsSlS5cUzz179qzQUUBfX18YGhrihx9+UHm+/rNnz4rcjiqzZ8/G8+fP8fHHHyM3N7fQ8qNHj+LAgQOKOmNjY5UCc25uLpYvXw59fX20b99eMS43NxerV69WjMvLy8Py5cuV1m1jY4OmTZti06ZNSl+nGzdu4OjRo+jevXux3sPmzZuVTs/ZvXs3nj59qvhhXPAX5tf/yi0IApYtW1as9ZfWOtS5evUqJk+eDBMTE0ycOFGxvb59+2LPnj0q/9L9+te64JfVN/d1Dw8P1K1bFz/99BNSU1OLXEdFpaGhUejoxPLly9UeRSquAQMG4PHjx1i3bl2hZRkZGUXO0FgSBdeSqTrttG7durhz547S1+Hq1auFbknwvkrjc6N79+7Iy8srdFuGJUuWQCKRvPUX35kzZ+LFixf45JNPCn3twsLCMH/+fLi4uKBv375Ky3Jzc5Wmhc/OzsbatWthYWEBDw8PAOr3/7LQuXNnaGtr4+eff1baL3/99VckJSUV+VmvoaEBX19f7Nu3DzExMYrnb9++jSNHjiiN7dOnDzQ0NDB79uxC+78gCHj+/HmRdX711VfQ09PDxx9/jLi4uELL79+/X+RnV0GIP3PmjOK5tLS0Qrc4efHiRaH6Co7GF/wsLJgJ9c2vj6WlpeII8tOnTwvVUJz9Mi8vr9Cpy5aWlrC1tX2v21dQ1cAjZETvqKhrXQq0b98e48aNw7x58xAREQEfHx9oaWkhMjISu3btwrJlyxTXn3l4eGD16tX4/vvv4ejoCEtLS3Ts2BH/+c9/FNPsT5o0Caampti0aROioqKwZ88exdGfMWPGYMWKFRg2bBjCwsJgY2ODLVu2FJpqW0tLC/Pnz8fIkSPRvn17+Pv7K6a9r127NqZMmVLke/rqq6+wZcsWdO3aFZ9//rli2vuCI1IFDA0NsXr1agwdOhTu7u4YOHAgLCwsEBMTg4MHD6J169aFfmF6m48++gjXr1/H3LlzceXKFfj7+8Pe3h7Pnz/H4cOHcfz4cWzfvh0AMHbsWKxduxYjRoxAWFgYateujd27d+P8+fNYunSp4i/ffn5+aN26Nf7zn//gwYMHcHZ2xt69e1Ve87Nw4UJ069YNXl5eGD16tGLaeyMjI6V71RTF1NQUbdq0wciRIxEXF4elS5fC0dERY8aMAfDq1My6deviyy+/xOPHj2FoaIg9e/YU6zqnAqWxDuDVvcwyMzORl5eH58+f4/z58/jrr79gZGSEP/74Q+mUsh9//BEnT56Ep6cnxowZA2dnZyQmJiI8PBzHjh1T3B+pbt26MDY2xpo1a2BgYAA9PT14enrCwcEBv/zyC7p164ZGjRph5MiRqFGjBh4/foyTJ0/C0NAQ+/fvL1H95e2DDz7Ali1bYGRkBGdnZwQHB+PYsWOKafHf1dChQ7Fz50588sknOHnyJFq3bo28vDzcuXMHO3fuxJEjR9CsWbP3rr99+/Zo3769YsKb140aNQqLFy+Gr68vRo8ejfj4eKxZswaNGjUqNLnF+yiNzw0/Pz94e3vjv//9Lx48eABXV1ccPXoUf/75JyZPnqw0OYsqgwcPxuXLl7Fs2TLcunULgwcPhomJCcLDw7F+/XqYmZlh9+7dha6NsrW1xfz58/HgwQPUr18fO3bsQEREBAIDAxVji9r/S5uFhQVmzJiB2bNno2vXrvjwww9x9+5drFq1Cs2bN8eQIUOKfP3s2bNx+PBhtG3bFhMmTFD8QatRo0ZKn/V169bF999/jxkzZuDBgwfo1asXDAwMEBUVhT/++ANjx47Fl19+qXY7devWxfbt2/HRRx+hYcOGGDZsGFxcXJCdnY0LFy4obleijo+PD2rVqoXRo0dj2rRp0NDQwPr16xX7TYFNmzZh1apV6N27N+rWrYuUlBSsW7cOhoaGij+o6ejowNnZGTt27ED9+vVhamoKFxcXuLi4YOXKlWjTpg0aN26MMWPGoE6dOoiLi0NwcDAePXqEq1evFtnPlJQU1KxZE/369YOrqyv09fVx7NgxXL58WemoOlVT5TafI1ElpmoaaFXenPa+QGBgoODh4SHo6OgIBgYGQuPGjYWvvvpKePLkiWJMbGys0KNHD8HAwEAAoDTF9P3794V+/foJxsbGglwuF1q0aCEcOHCg0Haio6OFDz/8UNDV1RXMzc2Fzz//XDHF/utTewuCIOzYsUNwc3MTZDKZYGpqKgwePFh49OhRsfpx7do1oX379oJcLhdq1KghzJkzR/j111+VphgucPLkScHX11cwMjIS5HK5ULduXWHEiBFCaGioYkxxpr1/3fHjx4WePXsKlpaWgqampmBhYSH4+fkJf/75p9K4uLg4YeTIkYK5ubmgra0tNG7cWOV008+fPxeGDh0qGBoaCkZGRsLQoUOFK1euqJye+tixY0Lr1q0FHR0dwdDQUPDz8xNu3br11poLppL/7bffhBkzZgiWlpaCjo6O0KNHj0LT0N+6dUvo3LmzoK+vL5ibmwtjxoxRTLP+ej3Dhw8X9PT0VG6vuOsoqtaCf1paWoKFhYXQrl07Ye7cuUJ8fLzK18XFxQkTJ04U7OzsBC0tLcHa2lro1KmTEBgYqDTuzz//FJydnQVNTc1C9Vy5ckXo06ePYGZmJshkMsHe3l4YMGCAcPz4ccWYgv3l2bNnhWpQ9z2I16Z5L1AwrfjChQsLrfttry3Y1uvTb7948UKxv+nr6wu+vr7CnTt3Co0r7ufJ67Kzs4X58+cLjRo1EmQymWBiYiJ4eHgIs2fPFpKSktTWpI669/T61/7N+rZu3SrUqVNH0NbWFpo2bSocOXJE7VTtr/f09fW+eSsFdb0ozudGUft/SkqKMGXKFMHW1lbQ0tIS6tWrJyxcuFDplgpvs2/fPqFLly6CiYmJIJPJBEdHR+GLL75Qud+1b99eaNSokRAaGip4eXkJcrlcsLe3F1asWFForLr9v6x6uWLFCsHJyUnQ0tISrKyshPHjxwsvXrwoVg9Onz4teHh4CNra2kKdOnWENWvWqP283rNnj9CmTRtBT09P0NPTE5ycnISJEycKd+/eLda2/vnnH2HMmDFC7dq1BW1tbcHAwEBo3bq1sHz5cqWp5lXt42FhYYKnp6egra0t1KpVS1i8eHGhae/Dw8MFf39/oVatWoJMJhMsLS2FDz74QGmfEgRBuHDhguI9440p8O/fvy8MGzZMsLa2FrS0tIQaNWoIH3zwgbB7927FGHVfh6ysLGHatGmCq6urYGBgIOjp6Qmurq7CqlWritUfqtokglDOV38SEVVDp06dgre3N3bt2qV2Vk4iqpw6dOiAhISE95qcgoiqL15DRkREREREJBIGMiIiIiIiIpEwkBEREREREYmE15ARERERERGJhEfIiIiIiIiIRMJARkREREREJBLeGLqU5Ofn48mTJzAwMIBEIhG7HCIiIiIiEokgCEhJSYGtrS2k0qKPgTGQlZInT57Azs5O7DKIiIiIiKiCePjwIWrWrFnkGAayUmJgYADgVdMNDQ1FrgbIycnB0aNH4ePjAy0tLbHLqTDYF9XYF/XYG9XYF/XYG9XYF/XYG9XYF/XYG9UqUl+Sk5NhZ2enyAhFYSArJQWnKRoaGlaYQKarqwtDQ0PRd8iKhH1RjX1Rj71RjX1Rj71RjX1Rj71RjX1Rj71RrSL2pTiXMnFSDyIiIiIiIpEwkBEREREREYmEgYyIiIiIiEgkDGREREREREQiYSAjIiIiIiISCQMZERERERGRSBjIiIiIiIiIRMJARkREREREJBIGMiIiIiIiIpEwkBEREREREYmEgYyIiIiIiEgkDGREREREREQiYSAjIiIiIiISCQNZFZSXLyAkKhFhCRKERCUiL18QuyQiIiIiIlJBU+wCqHQdvvEUs/ffwtOkTAAa2BwZChsjOWb5OaOri43Y5RERERER0Wt4hKwKOXzjKcZvDf9fGPt/sUmZGL81HIdvPBWpMiIiIiIiUoWBrIrIyxcwe/8tqDo5seC52ftv8fRFIiIiIqIKhIGsirgUlVjoyNjrBABPkzJxKSqx/IoiIiIiIqIiMZBVEfEp6sPYu4wjIiIiIqKyx0BWRVgayEt1HBERERERlT0GsiqihYMpbIzkkBQxxtpQhhYOpuVWExERERERFY2BrIrQkEowy88ZANSGMpmWBlIzc8uvKCIiIiIiKhIDWRXS1cUGq4e4w9pI+bREc30Z9GWaiH6eDv91F/EiLVukComIiIiI6HW8MXQV09XFBl2crRF8Lx5Hz4bAp60nvBwtcS8+FYN/uYhbT5Phv+4itn7sCXN9mdjlEhERERFVazxCVgVpSCXwdDCFh7kATwdTaEglaGBtgN/HtoSFgQx3YlPgH3iRMy4SEREREYmMgawacbQ0wI6xLWFtKEdkfCoGrr2I2CLuXUZERERERGWLgayaqWOhjx3jWqKGsQ7+TUjDR4HBePIyQ+yyiIiIiIiqJQayasjeTA+/j20JO1MdRD9Px0eBwXiYmC52WURERERE1Q4DWTVlZ6qLHWO9UNtMFw8TMzAw8CKin6eJXRYRERERUbXCQFaN2Rrr4PexXqhjoYfHLzPw0dqL+PdZqthlERERERFVGwxk1Zy1kRy/j22Jepb6iE3OxEeBF3EvPkXssoiIiIiIqgUGMoKlwatQ5mRtgGcpWRgYeBF3YxnKiIiIiIjKGgMZAQDM9GX4bUxLNLI1REJqNgYGBuPmkySxyyIiIiIiqtIYyEjBRE8b2z9uCdeaRniRnoNB60Jw/RFDGRERERFRWWEgIyVGulrY8rEn3GsZIykjB4N+uYgrMS/ELouIiIiIqEpiIKNCDOVa2DzaE81rmyAlMxdDf72E0AeJYpdFRERERFTlMJCRSvoyTWwa1QIt65giNSsXw9ZfQsi/z8Uui4iIiIioSmEgI7V0tTWxYUQLtHE0R3p2HoZvuITz9xLELouIiIiIqMpgIKMi6Whr4JfhzdChgQUyc/IxauNlnP7nmdhlERERERFVCQxk9FZyLQ2sHeqBzg0tkZWbjzGbQnHiTpzYZRERERERVXoMZFQsMk0NrBrsga6NrJGdl49xW8Jw9Gas2GUREREREVVqDGRUbNqaUiwf5IYeTWyQkydgwrZwHLr+VOyyiIiIiIgqLQYyKhEtDSmWfdQUvZraIjdfwGe/XcGfEY/FLouIiIiIqFJiIKMS09SQYtGApujnURN5+QKm7IjA3vBHYpdFRERERFTpMJDRO9GQSrCgbxP4t7BDvgB8sesqdl5+KHZZRERERESViqiB7MyZM/Dz84OtrS0kEgn27duntDwgIABOTk7Q09ODiYkJOnfujJCQEKUxtWvXhkQiUfr3448/Ko25du0a2rZtC7lcDjs7OyxYsKBQLbt27YKTkxPkcjkaN26MQ4cOlfr7rWqkUgnm9mqMoS3tIQjAV3uuYVtItNhlERERERFVGqIGsrS0NLi6umLlypUql9evXx8rVqzA9evXce7cOdSuXRs+Pj549kz5Pljfffcdnj59qvj32WefKZYlJyfDx8cH9vb2CAsLw8KFCxEQEIDAwEDFmAsXLsDf3x+jR4/GlStX0KtXL/Tq1Qs3btwomzdehUilEnzXsxFGtq4NAPjvHzew8XyUuEUREREREVUSmmJuvFu3bujWrZva5YMGDVJ6vHjxYvz666+4du0aOnXqpHjewMAA1tbWKtexbds2ZGdnY/369dDW1kajRo0QERGBxYsXY+zYsQCAZcuWoWvXrpg2bRoAYM6cOQgKCsKKFSuwZs2a932bVZ5EIsHMD5yhrSHF2jP/ImD/LeTmC/i4bR2xSyMiIiIiqtBEDWQlkZ2djcDAQBgZGcHV1VVp2Y8//og5c+agVq1aGDRoEKZMmQJNzVdvLTg4GO3atYO2trZivK+vL+bPn48XL17AxMQEwcHBmDp1qtI6fX19C51C+bqsrCxkZWUpHicnJwMAcnJykJOT875v970V1FCetXzRuS6kEgGrT0fh+4O3kZmdi3HtHMpt+8UhRl8qA/ZFPfZGNfZFPfZGNfZFPfZGNfZFPfZGtYrUl5LUUOED2YEDBzBw4ECkp6fDxsYGQUFBMDc3VyyfNGkS3N3dYWpqigsXLmDGjBl4+vQpFi9eDACIjY2Fg4NyKLCyslIsMzExQWxsrOK518fExqq/8fG8efMwe/bsQs8fPXoUurq67/x+S1tQUFC5bq+BAHStKcHhRxr4KSgSt+7cgW9NoVxrKI7y7ktlwb6ox96oxr6ox96oxr6ox96oxr6ox96oVhH6kp6eXuyxFT6QeXt7IyIiAgkJCVi3bh0GDBiAkJAQWFpaAoDSka0mTZpAW1sb48aNw7x58yCTycqsrhkzZihtOzk5GXZ2dvDx8YGhoWGZbbe4cnJyEBQUhC5dukBLS6tct90DwOrT/2LxsXs49FADtevUweROdSGRSMq1DlXE7EtFxr6ox96oxr6ox96oxr6ox96oxr6ox96oVpH6UnD2XHFU+ECmp6cHR0dHODo6omXLlqhXrx5+/fVXzJgxQ+V4T09P5Obm4sGDB2jQoAGsra0RFxenNKbgccF1Z+rGqLsuDQBkMpnKwKelpSX6DvA6seqZ1LkB5Nqa+OHQHaw6/S/yIcH0rg0qRCgDKt7XqaJgX9Rjb1RjX9Rjb1RjX9Rjb1RjX9Rjb1SrCH0pyfYr3X3I8vPzla7delNERASkUqniCJqXlxfOnDmjdB5nUFAQGjRoABMTE8WY48ePK60nKCgIXl5eZfAOqo+x7epi5gfOAIA1p+9j7sHbEISKd/oiEREREZFYRD1Clpqainv37ikeR0VFISIiAqampjAzM8PcuXPx4YcfwsbGBgkJCVi5ciUeP36M/v37A3g1YUdISAi8vb1hYGCA4OBgTJkyBUOGDFGErUGDBmH27NkYPXo0pk+fjhs3bmDZsmVYsmSJYruff/452rdvj0WLFqFHjx74/fffERoaqjQ1Pr2bUW0coKUhwbd/3sQv56KQk5ePgA8bVZgjZUREREREYhI1kIWGhsLb21vxuOCarOHDh2PNmjW4c+cONm3ahISEBJiZmaF58+Y4e/YsGjVqBODVaYO///47AgICkJWVBQcHB0yZMkXp2i4jIyMcPXoUEydOhIeHB8zNzTFz5kzFlPcA0KpVK2zfvh3ffPMNvv76a9SrVw/79u2Di4tLOXWiahvqVRtaGlLM+OM6NgVHIydfwPc9XSCVMpQRERERUfUmaiDr0KFDkaew7d27t8jXu7u74+LFi2/dTpMmTXD27Nkix/Tv319x5I1K38AWtaCpIcW03VexPSQGuXn5mNenCTQYyoiIiIioGqt015BR5dXPoyaWftQUUgmwM/QRpu26irx8XlNGRERERNUXAxmVq55Na2C5vzs0pBLsvfIYk3dEIDcvX+yyiIiIiIhEwUBG5a5HExusHOQOLQ0J9l99gs9+u4IchjIiIiIiqoYYyEgUXV2ssXqwB7Q1pPj7RiwmbAtHVm6e2GUREREREZUrBjISTWdnKwQO84C2phRBt+LwyZYwZOYwlBERERFR9cFARqLq0MAS64c3h1xLipN3n2HM5lCGMiIiIiKqNhjISHRt6pljw4gW0NXWwNnIBIzaeBnp2blil0VEREREVOYYyKhC8Kprhk2jWkBPWwMX7j/HiPWXkZrFUEZEREREVRsDGVUYzWubYsvHnjCQaeLSg0QMX38JKZk5YpdFRERERFRmGMioQnGvZYJtYzxhKNdEWPQLDPn1EpIyGMqIiIiIqGpiIKMKp0lNY2wf0xLGulq4+vAlBv9yES/Ts8Uui4iIiIio1DGQUYXkUsMIv41pCTM9bdx4nAz/dSF4npoldllERERERKWKgYwqrIY2hvh9bEuY68tw+2ky/NddxLMUhjIiIiIiqjoYyKhCq2dlgB3jWsLKUIZ/4lIxMDAY8cmZYpdFRERERFQqGMiowqtroY8dY71gayTH/Wdp+CjwIp4mZYhdFhERERHRe2Mgo0qhtrkedozzQg1jHUQlpOGjtRfx6EW62GUREREREb0XBjKqNOxMdbHzEy/UMtVFTGI6Plp7ETHPGcqIiIiIqPJiIKNKpYaxDnaO84KDuR4ev8zAR4HBeJCQJnZZRERERETvhIGMKh1rIzl2jG2JuhZ6eJqUiQFrg3EvPlXssoiIiIiISoyBjColS0M5fh/rhQZWBohPycLAwIv4Jy5F7LKIiIiIiEqEgYwqLQsDGX4b2xLONoZISH0Vym4/TRa7LCIiIiKiYmMgo0rNVE8b28d4onENIySmZcN/3UXceJwkdllERERERMXCQEaVnrGuNrZ+7ImmdsZ4mZ6DQesu4urDl2KXRURERET0VgxkVCUY6Whhy+gW8LA3QXJmLob8EoKw6Bdil0VEREREVCQGMqoyDORa2DyqBVo4mCIlKxfDfg3BpahEscsiIiIiIlKLgYyqFD2ZJjaObI5Wdc2Qlp2H4esv4cL9BLHLIiIiIiJSiYGMqhxdbU2sH9EcbeuZIyMnD6M2XsbZyGfIyxcQEpWIsAQJQqISkZcviF0qEREREVVzmmIXQFQW5FoaWDesGSZsC8eJO/EYueEyDOSaeJGeA0ADmyNDYWMkxyw/Z3R1sRG7XCIiIiKqpniEjKosuZYG1gzxgGtNI+TmC/8LY/8vNikT47eG4/CNpyJVSERERETVHQMZVWkaUgnikrNULis4YXH2/ls8fZGIiIiIRMFARlXapahExCZnql0uAHialMnZGImIiIhIFAxkVKXFp6gPY+8yjoiIiIioNDGQUZVmaSAv1XFERERERKWJgYyqtBYOprAxkkNSxBhNqQQ1TXTKrSYiIiIiogIMZFSlaUglmOXnDABqQ1luvoC+qy/g+qOk8iuMiIiIiAgMZFQNdHWxweoh7rA2Uj4t0cZIjrm9XFDfSh/xKVkYsDYYR2/GilQlEREREVVHvDE0VQtdXWzQxdkawfficfRsCHzaesLL0RIaUgn8mtpi4rZwnI1MwLitYfhv94YY3cYBEklRJzoSEREREb0/HiGjakNDKoGngyk8zAV4OphCQ/oqcBnKtbBhRHMM9qwFQQC+P3gb3+y7gdy8fJErJiIiIqKqjoGMCICmhhTf93LBNz0aQiIBtoXEYOTGy0jOzBG7NCIiIiKqwhjIiP5HIpHg47Z1sGaIB3S0NHA2MgH9Vl/AoxfpYpdGRERERFUUAxnRG3wbWWPnOC9YGsjwT1wqeq28gIiHL8Uui4iIiIiqIAYyIhUa1zTCvomt4WRtgITULHy0Nhh/X38qdllEREREVMUwkBGpYWusg93jW8G7gQWycvMxfls41py+D0EQxC6NiIiIiKoIBjKiIujLNLFuWDMM97IHAPz49x38Z8915HAGRiIiIiIqBaIGsjNnzsDPzw+2traQSCTYt2+f0vKAgAA4OTlBT08PJiYm6Ny5M0JCQpTGJCYmYvDgwTA0NISxsTFGjx6N1NRUpTHXrl1D27ZtIZfLYWdnhwULFhSqZdeuXXBycoJcLkfjxo1x6NChUn+/VDlpakgxu6cLAvycIZUAO0IfYsSGS0jK4AyMRERERPR+RA1kaWlpcHV1xcqVK1Uur1+/PlasWIHr16/j3LlzqF27Nnx8fPDs2TPFmMGDB+PmzZsICgrCgQMHcObMGYwdO1axPDk5GT4+PrC3t0dYWBgWLlyIgIAABAYGKsZcuHAB/v7+GD16NK5cuYJevXqhV69euHHjRtm9eap0RrR2wC/Dm0FXWwPn7z1H39UX8DCRMzASERER0bsTNZB169YN33//PXr37q1y+aBBg9C5c2fUqVMHjRo1wuLFi5GcnIxr164BAG7fvo3Dhw/jl19+gaenJ9q0aYPly5fj999/x5MnTwAA27ZtQ3Z2NtavX49GjRph4MCBmDRpEhYvXqzYzrJly9C1a1dMmzYNDRs2xJw5c+Du7o4VK1aUfROoUunoZIVdn3jB2lCOe/Gp6LXyPMKiX4hdFhERERFVUppiF1Bc2dnZCAwMhJGREVxdXQEAwcHBMDY2RrNmzRTjOnfuDKlUipCQEPTu3RvBwcFo164dtLW1FWN8fX0xf/58vHjxAiYmJggODsbUqVOVtufr61voFMrXZWVlISsrS/E4OTkZAJCTk4OcHPFPZSuooSLUUpGURl/qW+hi17gWGLf1Cm49TYH/uotY0McFPRpbl1aZ5Y77i3rsjWrsi3rsjWrsi3rsjWrsi3rsjWoVqS8lqaHCB7IDBw5g4MCBSE9Ph42NDYKCgmBubg4AiI2NhaWlpdJ4TU1NmJqaIjY2VjHGwcFBaYyVlZVimYmJCWJjYxXPvT6mYB2qzJs3D7Nnzy70/NGjR6Grq1vyN1pGgoKCxC6hQiqNvoywAzZnSnHjBTB55zUEBV9BlxoCJJJSKFAk3F/UY29UY1/UY29UY1/UY29UY1/UY29Uqwh9SU8v/mUtFT6QeXt7IyIiAgkJCVi3bh0GDBiAkJCQQkGsvM2YMUPpqFpycjLs7Ozg4+MDQ0NDESt7JScnB0FBQejSpQu0tLTELqfCKO2+fJgvYP6Rf7DhQjQOPtSAtrktvv/QGdqalWsCU+4v6rE3qrEv6rE3qrEv6rE3qrEv6rE3qlWkvhScPVccFT6Q6enpwdHREY6OjmjZsiXq1auHX3/9FTNmzIC1tTXi4+OVxufm5iIxMRHW1q9OH7O2tkZcXJzSmILHbxtTsFwVmUwGmUxW6HktLS3Rd4DXVbR6KorS6osWgFkfuqCOpQEC/rqJP648wZOXmVg71APGutpvfX1Fw/1FPfZGNfZFPfZGNfZFPfZGNfZFPfZGtYrQl5Jsv3L9GR9Afn6+4totLy8vvHz5EmFhYYrlJ06cQH5+Pjw9PRVjzpw5o3QeZ1BQEBo0aAATExPFmOPHjyttJygoCF5eXmX9dqiKGNrSHr8ObwZ9mSZCohLRZ9UFPEhIE7ssIiIiIqrgRA1kqampiIiIQEREBAAgKioKERERiImJQVpaGr7++mtcvHgR0dHRCAsLw6hRo/D48WP0798fANCwYUN07doVY8aMwaVLl3D+/Hl8+umnGDhwIGxtbQG8mqlRW1sbo0ePxs2bN7Fjxw4sW7ZM6XTDzz//HIcPH8aiRYtw584dBAQEIDQ0FJ9++mm594Qqrw4NLLF7vBdqGOvg34Q09F51HpcfJIpdFhERERFVYKIGstDQULi5ucHNzQ0AMHXqVLi5uWHmzJnQ0NDAnTt30LdvX9SvXx9+fn54/vw5zp49i0aNGinWsW3bNjg5OaFTp07o3r072rRpo3SPMSMjIxw9ehRRUVHw8PDAF198gZkzZyrdq6xVq1bYvn07AgMD4erqit27d2Pfvn1wcXEpv2ZQleBkbYg/JrZCk5pGeJGeg8HrQrDvymOxyyIiIiKiCkrUa8g6dOgAQRDULt+7d+9b12Fqaort27cXOaZJkyY4e/ZskWP69++vOPJG9D4sDeTYMdYLU3ZE4PDNWEzeEYGohDRM7lwPkso8BSMRERERlbpKdw0ZUWWgo62BVYPdMa5dHQDAsuORmLIjAlm5eSJXRkREREQVCQMZURmRSiWY0b0h5vVpDA2pBPsinmDILyFITMsWuzQiIiIiqiAYyIjKmH+LWtg0sgUMZJq4/OAFeq86j/vPUsUui4iIiIgqAAYyonLQpp459k5ohZomOoh+no4+qy4g+P5zscsiIiIiIpExkBGVk3pWBvhjQms0tTNGUkYOhq0Pwe6wR2KXRUREREQiYiAjKkcWBjL8PrYlejS2QU6egC93XcVPR+4iP1/9bKNEREREVHUxkBGVM7mWBpb7u2Gid10AwIqT9zDp9yvIzOEMjERERETVDQMZkQikUgmm+TphQb8m0JRKcODaUwxadxEJqVlil0ZERERE5YiBjEhEA5rZYfPoFjCUayI85iV6rzqPe/EpYpdFREREROWEgYxIZK3qmuOPia1Ry1QXDxMz0HvVBZy/lyB2WURERERUDhjIiCqAuhb62DexNZrZmyAlMxfD11/C75dixC6LiIiIiMoYAxlRBWGqp42tH3uiZ1Nb5OYL+M/e6/jx7zucgZGIiIioCmMgI6pA5FoaWPpRU0zqVA8AsOb0fUzcHo6MbM7ASERERFQVMZARVTASiQRTu9TH4gGu0NKQ4O8bsRi47iLiUzLFLo2IiIiIShkDGVEF1ce9JraO9oSxrhauPnyJ3isv4G4sZ2AkIiIiqkoYyIgqMM86ZvhjQms4mOvh8csM9F19Aaf/eSZ2WURERERUShjIiCo4B3M97B3fCi0cTJGalYtRGy9j68VoscsiIiIiolLAQEZUCZjoaWPL6Bbo41YDefkCvtl3A98fuIU8zsBIREREVKkxkBFVEjJNDSwa4IovutQHAPxyLgqfbA1DenauyJURERER0btiICOqRCQSCT7rVA/LBjaFtqYUQbfiMGBtMOKSOQMjERERUWXEQEZUCfVsWgPbP/aEqZ42bjxORq+V53HrSbLYZRERERFRCTGQEVVSzWqb4o8JrVDHQg9PkzLRf80FnLwTL3ZZRERERFQCDGRElZi9mR7+GN8aXnXMkJadh9GbLmPThQdil0VERERExcRARlTJGelqYdOoFhjQrCbyBWDWXzcR8NdNzsBIREREVAkwkBFVAdqaUszv2wRfdW0AANh44QHGbA5FahZnYCQiIiKqyBjIiKoIiUSCCR0csXKQO2SaUpy4E4/+a4LxNClD7NKIiIiISA0GMqIqpkcTG/w2tiXM9bVx+2kyeq44jxuPk8Qui4iIiIhUYCAjqoLca5ngjwmtUc9SH/EpWei/JhhHb8aKXRYRERERvYGBjKiKsjPVxZ4JrdC2njkycvIwbmsYfjn7LwSBk30QERERVRQMZERVmKFcC+tHNId/i1oQBOD7g7fx7Z83kJuXL3ZpRERERAQGMqIqT0tDih96u+C/3RtCIgG2XozBqE2hSMnMEbs0IiIiomqPgYyoGpBIJBjTrg5WD/aAXEuKM/88Q7/VwXj0Ih15+QJCohIRliBBSFQi719GREREVI40xS6AiMpPVxdr7DT2wuhNobgbl4Juy85CW0OK52nZADSwOTIUNkZyzPJzRlcXG7HLJSIiIqryeISMqJppUtMY+ya2Rg1jOVIyc/8Xxv5fbFImxm8Nx+EbT0WqkIiIiKj6YCAjqoasDeXIVXNqYsGzs/ff4umLRERERGWMgYyoGroUlYi45Cy1ywUAT5MycSkqsfyKIiIiIqqGGMiIqqH4lMxSHUdERERE74aBjKgasjSQF2uchb6sjCshIiIiqt4YyIiqoRYOprAxkkPylnGrT99HQqr6UxuJiIiI6P0wkBFVQxpSCWb5OQNAoVBW8FhTKsHZyAR0W3YW5yITyrU+IiIiouqCgYyomurqYoPVQ9xhbaR8+qK1kRxrhrjj4KS2qGepj2cpWRi6PgQLj9xBTl6+SNUSERERVU28MTRRNdbVxQZdnK0RfC8eR8+GwKetJ7wcLaEhfXWc7K9P2+C7Azfx26WHWHnyPoLvP8fP/m6oaaIrcuVEREREVQOPkBFVcxpSCTwdTOFhLsDTwVQRxgBAR1sD8/o0wYpBbjCQaSI85iW6LzuLv6/zptFEREREpYGBjIje6oMmtjj0eVu42hkjOTMX47eF45t915GZkyd2aURERESVGgMZERWLnakudn/ihXHt6wAAtl6MQa+V53EvPkXkyoiIiIgqL1ED2ZkzZ+Dn5wdbW1tIJBLs27dPsSwnJwfTp09H48aNoaenB1tbWwwbNgxPnjxRWkft2rUhkUiU/v34449KY65du4a2bdtCLpfDzs4OCxYsKFTLrl274OTkBLlcjsaNG+PQoUNl8p6JKjMtDSlmdGuITaNawFxfG3diU/DB8nPYcTkGgiCIXR4RERFRpSNqIEtLS4OrqytWrlxZaFl6ejrCw8Px7bffIjw8HHv37sXdu3fx4YcfFhr73Xff4enTp4p/n332mWJZcnIyfHx8YG9vj7CwMCxcuBABAQEIDAxUjLlw4QL8/f0xevRoXLlyBb169UKvXr1w48aNsnnjRJVc+/oWOPR5W7RxNEdmTj6m77mOSb9HIDkzR+zSiIiIiCoVUWdZ7NatG7p166ZymZGREYKCgpSeW7FiBVq0aIGYmBjUqlVL8byBgQGsra1Vrmfbtm3Izs7G+vXroa2tjUaNGiEiIgKLFy/G2LFjAQDLli1D165dMW3aNADAnDlzEBQUhBUrVmDNmjUq15uVlYWsrP+/YW5ycjKAV0f2cnLE/6W0oIaKUEtFwr6o9i59MZFr4Nehblh37gGWHL+H/VefICLmBZYOaIImNY3KqtRyx31GNfZFPfZGNfZFPfZGNfZFPfZGtYrUl5LUIBEqyHlGEokEf/zxB3r16qV2zLFjx+Dj44OXL1/C0NAQwKtTFjMzM5GTk4NatWph0KBBmDJlCjQ1X2XNYcOGITk5Wel0yJMnT6Jjx45ITEyEiYkJatWqhalTp2Ly5MmKMbNmzcK+fftw9epVlbUEBARg9uzZhZ7fvn07dHU5JThVL1EpwOZIDSRmSSCVCPCrlY8ONgKkb951moiIiKgaSE9Px6BBg5CUlKTILepUmvuQZWZmYvr06fD391d6U5MmTYK7uztMTU1x4cIFzJgxA0+fPsXixYsBALGxsXBwcFBal5WVlWKZiYkJYmNjFc+9PiY2NlZtPTNmzMDUqVMVj5OTk2FnZwcfH5+3Nr085OTkICgoCF26dIGWlpbY5VQY7ItqpdGXoRk5+HrfTRy5FY8/ozXwQtsMC/q4wExfVsrVli/uM6qxL+qxN6qxL+qxN6qxL+qxN6pVpL4UnD1XHJUikOXk5GDAgAEQBAGrV69WWvZ6KGrSpAm0tbUxbtw4zJs3DzJZ2f0iKJPJVK5fS0tL9B3gdRWtnoqCfVHtffpipqWFNUObYfulGHy3/xbORD6H36qLWPpRU7R2NC/lSssf9xnV2Bf12BvV2Bf12BvV2Bf12BvVKkJfSrL9Cj/tfUEYi46ORlBQ0FuPPnl6eiI3NxcPHjwAAFhbWyMuLk5pTMHjguvO1I1Rd10aEakmkUgw2NMef37aGo6W+niWkoUhv4Zg4ZE7yM3LF7s8IiIiogqnQgeygjAWGRmJY8eOwczM7K2viYiIgFQqhaWlJQDAy8sLZ86cUbqwLigoCA0aNICJiYlizPHjx5XWExQUBC8vr1J8N0TVh5O1IfZ/2gb+LewgCMDKk/fxUeBFPHqRLnZpRERERBWKqIEsNTUVERERiIiIAABERUUhIiICMTExyMnJQb9+/RAaGopt27YhLy8PsbGxiI2NRXZ2NgAgODgYS5cuxdWrV/Hvv/9i27ZtmDJlCoYMGaIIW4MGDYK2tjZGjx6NmzdvYseOHVi2bJnSqY6ff/45Dh8+jEWLFuHOnTsICAhAaGgoPv3003LvCVFVoaOtgXl9mmC5vxsMZJoIi36B7svO4vCNp2KXRkRERFRhiBrIQkND4ebmBjc3NwCvrgdzc3PDzJkz8fjxY/z111949OgRmjZtChsbG8W/CxcuAHh1Hdfvv/+O9u3bo1GjRpg7dy6mTJmidI8xIyMjHD16FFFRUfDw8MAXX3yBmTNnKqa8B4BWrVph+/btCAwMhKurK3bv3o19+/bBxcWlfBtCVAX5udri4KS2cLUzRnJmLj7ZGo5v9l1HZk6e2KURERERiU7UST06dOiAombdf9uM/O7u7rh48eJbt9OkSROcPXu2yDH9+/dH//7937ouIiq5Wma62DXOC4uO3sXaM/9i68UYhD54gRWD3OBoaSB2eURERESiqdDXkBFR1aGtKcWM7g2xaVQLmOlp405sCvyWn8fOyw/f+scXIiIioqqKgYyIylX7+hb4+/O2aO1ohoycPHy15xo+/z0CKZnFv6M9ERERUVXBQEZE5c7SUI4tozwxzbcBNKQS/HX1CXr8fA5XH74UuzQiIiKicsVARkSikEolmOjtiJ3jWqKGsQ5iEtPRd/UFrDvzL/LzeQojERERVQ8MZEQkKg97Uxya1BbdXKyRmy9g7qHbGLXpMp6nZoldGhEREVGZYyAjItEZ6Wph1WB3fN/LBdqaUpy6+wzdlp3FhXsJYpdGREREVKYYyIioQpBIJBjS0h5/fdoajpb6iE/JwuBfQ7Do6F3k5uWLXR4RERFRmWAgI6IKxcnaEH992hoDm9tBEIDlJ+5hYOBFPH6ZIXZpRERERKWOgYyIKhxdbU382LcJfvZ3g75ME6HRL9B92VkcvhErdmlEREREpYqBjIgqrA9dbXFoUlu41jRCUkYOPtkahpl/3kBmTp7YpRERERGVCgYyIqrQapnpYtcnrTCuXR0AwObgaPRaeR734lNFroyIiIjo/TGQEVGFp60pxYzuDbFxZHOY6WnjTmwK/Jafw87QhxAE3rOMiIiIKq8SBbLbt29j1qxZ6NixI+rWrQsbGxs0adIEw4cPx/bt25GVxfsGEVHZ6dDAEn9/3hatHc2QkZOHr3Zfw+QdEUjJzBG7NCIiIqJ3UqxAFh4ejs6dO8PNzQ3nzp2Dp6cnJk+ejDlz5mDIkCEQBAH//e9/YWtri/nz5zOYEVGZsTSUY/MoT0zzbQANqQR/RjzBB8vP4dqjl2KXRkRERFRimsUZ1LdvX0ybNg27d++GsbGx2nHBwcFYtmwZFi1ahK+//rq0aiQiUqIhlWCityNa1jHFpN8iEP08HX1XX8D0rk4Y1doBUqlE7BKJiIiIiqVYgeyff/6BlpbWW8d5eXnBy8sLOTk8fYiIyp6HvSkOTWqL6Xuu4fDNWHx/8DbO30vAT/1dYaYvE7s8IiIiorcq1imLxQlj7zOeiOhdGelqYfUQd8zp5QJtTSlO3n2GbsvO4sL9BLFLIyIiInqrYh0he1NaWhpOnz6NmJgYZGdnKy2bNGlSqRRGRFRcEokEQ1vao5m9CT777Qruxadi8C8h+MzbEZM61YOmBieUJSIiooqpxIHsypUr6N69O9LT05GWlgZTU1MkJCRAV1cXlpaWDGREJJqGNob469PWmP3XLewIfYifT9xD8L/PsXSgG2oY64hdHhEREVEhJf6z8ZQpU+Dn54cXL15AR0cHFy9eRHR0NDw8PPDTTz+VRY1ERMWmq62J+f2a4Gd/N+jLNHH5wQt0X3YWR27Gil0aERERUSElDmQRERH44osvIJVKoaGhgaysLNjZ2WHBggWcWZGIKowPXW1xcFIbuNY0QlJGDsZtCcOsP28gMydP7NKIiIiIFEocyLS0tCCVvnqZpaUlYmJiAABGRkZ4+PBh6VZHRPQe7M30sOuTVhjbrg4AYFNwNHqvuoB78akiV0ZERET0SokDmZubGy5fvgwAaN++PWbOnIlt27Zh8uTJcHFxKfUCiYjeh7amFF93b4gNI5vDVE8bt58mw2/5OewKfQhBEMQuj4iIiKq5EgeyH374ATY2NgCAuXPnwsTEBOPHj8ezZ88QGBhY6gUSEZUG7waW+PvztmhV1wwZOXmYtvsapuyIQGpWrtilERERUTVW4lkWmzVrpvh/S0tLHD58uFQLIiIqK1aGcmwZ7YnVp+5hybFI7It4goiHL7Hc3x2NaxqJXR4RERFVQ7w5DxFVKxpSCT7tWA87xraErZEcD56no8/q8/jl7L88hZGIiIjKXbGOkLm7u+P48eMwMTGBm5sbJBKJ2rHh4eGlVhwRUVlpVtsUhz5vi+l7ruHIzTh8f/A2Ltx/joX9msBMXyZ2eURERFRNFCuQ9ezZEzLZq19QevXqVZb1EBGVG2NdbawZ4oGtF6Mx5+BtnLgTj+4/n8XSj9zgVdcMefkCQqISEZYggVlUIrwcLaEhVf8HKSIiIqKSKlYgmzVrlsr/JyKq7CQSCYZ61YaHvSk+/S0c/z5Lw6BfLqJbI2uEx7xEbHImAA1sjgyFjZEcs/yc0dXFRuyyiYiIqIoo8TVkly9fRkhISKHnQ0JCEBoaWipFERGVN2dbQxz4rA0GNKsJQQAO3Yj9Xxj7f7FJmRi/NRyHbzwVqUoiIiKqakocyCZOnKjyBtCPHz/GxIkTS6UoIiIx6GprYl6fJjDW0VK5XPjfv//uu4G7scmIT8lEZk5eudZIREREVUuJp72/desW3N3dCz3v5uaGW7dulUpRRERiuRSViJcZOUWOeZ6aDd+lZxWPZZpSGOpowUhHC4ZyzVf/VTz+3391NBWPFct0tGAg04S0kl2XxmvriIiISk+JA5lMJkNcXBzq1Kmj9PzTp0+hqVni1RERVSjxKZlvHwRAR0uKzNx8CAKQlZuPZylZeJaSVeLtSSSAgUyzyABnpKs+2Mm1NEq8zfdx+MZTzN5/C0+TeG0dERFRaShxgvLx8cGMGTPw559/wsjo1Y1UX758ia+//hpdunQp9QKJiMqTpYG8WOPWj2gBTwdTpGTlIjkjB0kZOUjOzEFyRg6SM3IVj5Mycl5bnqv0OOt/gS45MxfJmbl49CKjxPVqa0qLfWTuzeUG8pIdnTt84ynGbw3Hm3drK7i2bvUQd4YyIiKiEipxIFu4cCHat28Pe3t7uLm5AQAiIiJgZWWFLVu2lHqBRETlqYWDKWyM5IhNyiwUPABAAsDaSI4WDqaQSiUw+l/AsXuHbWXm5P0vxOW+EeheC3DprwU7RcDLRXJmDgQByH7Po3P6sjcDm6biPb1+dM5Apon//nFDZU+E//Vl9v5b6OJszdMXiYiISqDEgaxmzZq4du0atm3bhqtXr0JHRwcjR46Ev78/tLRUXwhPRFRZaEglmOXnjPFbwyEBlAJIQcyY5edcKqFDrqUBuZYGLA1K/tr8fAGp2W8Etv8FtUKhTunxq/9m5rw6OpeSmYuUzFwAJT869zoBwNOkTFyKSoRXXbP3WhcREVF1UqJAlpOTAycnJxw4cABjx44tq5qIiETV1cUGq4e4v3at1CvWFehaKalU8uo6Mvm7/SEsKzdPEeDePK0yWUWAi3mejofFOKWyuNfgERER0SslCmRaWlrIzOQPWyKq+rq62KCLszWC78Xj6NkQ+LT1rFKzCco0NWBhoAELA1mxxgfffw7/dRffOq641+ARERHRK+90H7L58+cjNze3LOohIqowNKQSeDqYwsNcgKeDaZUJY++i4Nq6ojpgZShDCwfTcquJiIioKijxNWSXL1/G8ePHcfToUTRu3Bh6enpKy/fu3VtqxRERUcVQ1LV1BQxkWsjJy4eGtHyn4iciIqrMSnyEzNjYGH379oWvry9sbW1hZGSk9I+IiKqmgmvrrI2UT0u00JdBriXFvWepmPx7BPLyVcU1IiIiUqXER8g2bNhQFnUQEVEloO7auktRiRi+/hIO34zF7P03MfvDRpBIqu8pnkRERMVV4iNkAJCbm4tjx45h7dq1SElJAQA8efIEqamppVocERFVPKqurfOqa4YlHzWFRAJsDo7GqlP3xS6TiIioUijxEbLo6Gh07doVMTExyMrKQpcuXWBgYID58+cjKysLa9asKYs6iYioguvRxAbxKc6Yvf8WFh65CytDOfp51BS7LCIiogqtxEfIPv/8czRr1gwvXryAjo6O4vnevXvj+PHjJVrXmTNn4OfnB1tbW0gkEuzbt0+xLCcnB9OnT1dMHGJra4thw4bhyZMnSutITEzE4MGDYWhoCGNjY4wePbrQkbpr166hbdu2kMvlsLOzw4IFCwrVsmvXLjg5OUEul6Nx48Y4dOhQid4LEREBI1s7YFz7OgCA6Xuu4dTdeJErIiIiqthKHMjOnj2Lb775Btra2krP165dG48fPy7RutLS0uDq6oqVK1cWWpaeno7w8HB8++23CA8Px969e3H37l18+OGHSuMGDx6MmzdvIigoCAcOHMCZM2eUblqdnJwMHx8f2NvbIywsDAsXLkRAQAACAwMVYy5cuAB/f3+MHj0aV65cQa9evdCrVy/cuHGjRO+HiIiA6b5O6O1WA3n5AiZsC8fVhy/FLomIiKjCKvEpi/n5+cjLyyv0/KNHj2BgYFCidXXr1g3dunVTuczIyAhBQUFKz61YsQItWrRATEwMatWqhdu3b+Pw4cO4fPkymjVrBgBYvnw5unfvjp9++gm2trbYtm0bsrOzsX79emhra6NRo0aIiIjA4sWLFcFt2bJl6Nq1K6ZNmwYAmDNnDoKCgrBixQqegklEVEJSqQTz+zZBQmoWzkYmYNTGy9gzvhVqm+u9/cVERETVTIkDmY+PD5YuXao4wiSRSJCamopZs2ahe/fupV7g65KSkiCRSGBsbAwACA4OhrGxsSKMAUDnzp0hlUoREhKC3r17Izg4GO3atVM6oufr64v58+fjxYsXMDExQXBwMKZOnaq0LV9fX6VTKN+UlZWFrKwsxePk5GQAr061zMnJKYV3+34KaqgItVQk7Itq7It67I1qb+uLBMDPHzXBkPWXcfNJCoatD8HOMS1gpi8rxyrFwX1GNfZFPfZGNfZFPfZGtYrUl5LUUOJAtmjRIvj6+sLZ2RmZmZkYNGgQIiMjYW5ujt9++62kqyu2zMxMTJ8+Hf7+/jA0NAQAxMbGwtLSUmmcpqYmTE1NERsbqxjj4OCgNMbKykqxzMTEBLGxsYrnXh9TsA5V5s2bh9mzZxd6/ujRo9DV1S35Gywjbx5lpFfYF9XYF/XYG9Xe1peBNsDS5xqIScxA/xWn8FmjPMiqyX2juc+oxr6ox96oxr6ox96oVhH6kp6eXuyxJQ5kNWvWxNWrV/H777/j2rVrSE1NxejRozF48GClST5KU05ODgYMGABBELB69eoy2UZJzZgxQ+moWnJyMuzs7ODj46MIjGLKyclBUFAQunTpAi0tLbHLqTDYF9XYF/XYG9VK0peWbdMwIPASHqblYH+iFdYOcYOWxjvddaVS4D6jGvuiHnujGvuiHnujWkXqS8HZc8VR4kAGvDoKNWTIkHd5aYkVhLHo6GicOHFCKexYW1sjPl55Bq/c3FwkJibC2tpaMSYuLk5pTMHjt40pWK6KTCaDTFb41BstLS3Rd4DXVbR6Kgr2RTX2RT32RrXi9KWetTE2jGwB/8CLOHvvOb756zYW9Xet8jeO5j6jGvuiHnujGvuiHnujWkXoS0m2/06BLDIyEidPnkR8fDzy8/OVls2cOfNdVqlSQRgr2J6ZmZnSci8vL7x8+RJhYWHw8PAAAJw4cQL5+fnw9PRUjPnvf/+LnJwcRWOCgoLQoEEDmJiYKMYcP34ckydPVqw7KCgIXl5epfZeiIiqs6Z2xlg12B0fbw7F3vDHsDaU46uuTmKXRUREJLoSB7J169Zh/PjxMDc3h7W1tdJfOCUSSYkCWWpqKu7du6d4HBUVhYiICJiamsLGxgb9+vVDeHg4Dhw4gLy8PMU1XaamptDW1kbDhg3RtWtXjBkzBmvWrEFOTg4+/fRTDBw4ELa2tgCAQYMGYfbs2Rg9ejSmT5+OGzduYNmyZViyZIliu59//jnat2+PRYsWoUePHvj9998RGhqqNDU+ERG9H28nS8zr0xhf7b6GVafuw8pQjuGtaotdFhERkahKHMi+//57zJ07F9OnT3/vjYeGhsLb21vxuOCarOHDhyMgIAB//fUXAKBp06ZKrzt58iQ6dOgAANi2bRs+/fRTdOrUCVKpFH379sXPP/+sGGtkZISjR49i4sSJ8PDwgLm5OWbOnKl0r7JWrVph+/bt+Oabb/D111+jXr162LdvH1xcXN77PRIR0f8b0MwOcUmZWBT0DwL234SlgQzdGtuIXRYREZFoShzIXrx4gf79+5fKxjt06ABBENQuL2pZAVNTU2zfvr3IMU2aNMHZs2eLHNO/f/9Se19ERKTepx0dEZuciW0hMfh8RwTM9GVo4WAqdllERESiKPE0V/3798fRo0fLohYiIqoGJBIJvuvpAh9nK2Tn5uPjTZfxT1yK2GURERGJosRHyBwdHfHtt9/i4sWLaNy4caEZRCZNmlRqxRERUdWkIZXgZ383DP4lBGHRLzB8/SXsGd8KtsZlc/sUIiKiiqrEgSwwMBD6+vo4ffo0Tp8+rbRMIpEwkBERUbHItTTw6/Bm6Lv6Au4/S8OIDZewa1wrGOlyCmciIqo+ShzIoqKiyqIOIiKqhox1tbFpVAv0XX0B/8SlYsyWUGwe1QJyLQ2xSyMiIioXJb6GjIiIqDTVNNHFxpEtYCDTxKWoREzdGYG8/LdP6kRERFQVFPsIWcGU9G+zePHidy6GiIiqp4Y2hlg7zAMj1l/GoeuxsDS4hVl+zkr3uiQiIqqKih3Irly58tYx/MFJRETvqlVdcywa4IrPfruCjRcewMpQjvEd6opdFhERUZkqdiA7efJkWdZBREQEP1dbxKdkYc6BW5h/+A6sDGXo415T7LKIiIjKDK8hIyKiCmV0GweMbVcHAPDV7ms4/c8zkSsiIiIqO8UKZD/++CPS09OLtcKQkBAcPHjwvYoiIqLq7T9dndCrqS1y8wWM3xqG64+SxC6JiIioTBQrkN26dQv29vaYMGEC/v77bzx79v9/rczNzcW1a9ewatUqtGrVCh999BEMDAzKrGAiIqr6pFIJFvRzRRtHc6Rn52HkxkuIfp4mdllERESlrliBbPPmzTh27BhycnIwaNAgWFtbQ1tbGwYGBpDJZHBzc8P69esxbNgw3LlzB+3atSvruomIqIrT1pRi9RB3ONsYIiE1G8PXX0JCapbYZREREZWqYk/q4erqinXr1mHt2rW4du0aoqOjkZGRAXNzczRt2hTm5uZlWScREVVDBnItbBzVHH1WXcCD5+kYvfEyto9pCT1ZsX98ERERVWgl/okmlUrRtGlTNG3atAzKISIiUmZpIMfmUS3Qd/UFXH2UhInbw7FuWDNoaXBeKiIiqvz404yIiCq8Ohb6WD+iOeRaUpy6+wwz9l6HIAhil0VERPTeGMiIiKhScKtlgpWD3KEhlWB32CMsOvqP2CURERG9NwYyIiKqNDo1tMLcXi4AgBUn72HLxWiRKyIiIno/DGRERFSpDGxRC1M61wcAzPzzBg7fiBW5IiIionf33oEsOjoat27dQn5+fmnUQ0RE9FaTOjnCv0UtCAIw6fcruPwgUeySiIiI3kmxA9n69euxePFipefGjh2LOnXqoHHjxnBxccHDhw9LvUAiIqI3SSQSzOnZCJ0bWiE7Nx+jN15GZFyK2GURERGVWLEDWWBgIExMTBSPDx8+jA0bNmDz5s24fPkyjI2NMXv27DIpkoiI6E2aGlIs93eDey1jJGfmYvj6S3ialCF2WURERCVS7EAWGRmJZs2aKR7/+eef6NmzJwYPHgx3d3f88MMPOH78eJkUSUREpIqOtgZ+Hd4cdSz08CQpEyPWX0ZSRo7YZRERERVbsQNZRkYGDA0NFY8vXLiAdu3aKR7XqVMHsbG8sJqIiMqXiZ42No1sAQsDGe7GpWDs5lBk5uSJXRYREVGxFDuQ2dvbIywsDACQkJCAmzdvonXr1orlsbGxMDIyKv0KiYiI3sLOVBcbRzaHvkwTIVGJ+GLnVeTn88bRRERU8WkWd+Dw4cMxceJE3Lx5EydOnICTkxM8PDwUyy9cuAAXF5cyKZKIiOhtGtkaIXCoB4ZvuISD15/C0lCGmR84QyKRiF0aERGRWsU+QvbVV19hzJgx2Lt3L+RyOXbt2qW0/Pz58/D39y/1AomIiIqrlaM5Fg1oCgDYcP4BAs/8K25BREREb1HsI2RSqRTfffcdvvvuO5XL3wxoREREYvjQ1RbxyZn4/uBtzPv7DiwNZejtVlPssoiIiFQqdiBTJTMzEzt27EBaWhp8fHzg6OhYWnURERG9s4/b1kFsUiZ+OReFabuuwVxfhrb1LMQui4iIqJBin7I4depUfPbZZ4rH2dnZ8PLywpgxY/D111+jadOmCA4OLpMiiYiISurr7g3xoastcvMFfLIlDDceJ4ldEhERUSHFDmRHjx5Fly5dFI+3bduG6OhoREZG4sWLF+jfvz++//77MimSiIiopKRSCRb2b4JWdc2Qlp2HERsuI+Z5uthlERERKSl2IIuJiYGzs7Pi8dGjR9GvXz/Y29tDIpHg888/x5UrV8qkSCIionch09TA2qEeaGhjiITULAzfcAnPU7PELouIiEih2IFMKpVCEP7/ni4XL15Ey5YtFY+NjY3x4sWL0q2OiIjoPRnItbBpZHPUMNZBVEIaRm0KRXp2rthlERERAShBIGvYsCH2798PALh58yZiYmLg7e2tWB4dHQ0rK6vSr5CIiOg9WRrKsXl0CxjrauHqw5f4dPsV5Obli10WERFRye5DNmPGDHTq1AmdOnVC9+7d4eDgoFh+6NAhtGjRokyKJCIiel91LfTx6/DmkGtJceJOPL7+47rSmR9ERERiKHYg6927Nw4dOoQmTZpgypQp2LFjh9JyXV1dTJgwodQLJCIiKi0e9iZY7u8OqQTYGfoIS4L+EbskIiKq5kp0H7KCo2OqzJo1q1QKIiIiKktdnK3wfa/G+PqP6/j5xD1YGckx2NNe7LKIiKiaKvYRssjISPj7+yM5ObnQsqSkJAwaNAj//vtvqRZHRERUFgZ51sKkTvUAAN/uu4EjN2NFroiIiKqrYgeyhQsXws7ODoaGhoWWGRkZwc7ODgsXLizV4oiIiMrKlM71MLC5HfIFYNJvVxD6IFHskoiIqBoqdiA7ffo0+vfvr3b5gAEDcOLEiVIpioiIqKxJJBJ838sFnZwskZWbj9GbQnEvPkXssoiIqJop0Y2hLS0t1S43NzfHw4cPS6UoIiKi8qCpIcXyQW5oameMpIwcDF9/GXHJmWKXRURE1UixA5mRkRHu37+vdvm9e/dUns5IRERUkelqa2L9iOaoY66Hxy8zMHz9JSRn5ohdFhERVRPFDmTt2rXD8uXL1S7/+eef0bZt21IpioiIqDyZ6mlj06gWsDCQ4U5sCsZuDkVWbp7YZRERUTVQ7EA2Y8YM/P333+jXrx8uXbqEpKQkJCUlISQkBH379sWRI0cwY8aMsqyViIiozNiZ6mLDiObQl2ni4r+JmLrzKvLzeeNoIiIqW8UOZG5ubti9ezfOnDkDLy8vmJqawtTUFK1atcLZs2exc+dOuLu7l2WtREREZcqlhhHWDPGAloYEB689xfcHb0MQGMqIiKjsFDuQAcAHH3yA6Oho7N69Gz/++CPmzZuHPXv24MGDB/jwww9LvPEzZ87Az88Ptra2kEgk2Ldvn9LyvXv3wsfHB2ZmZpBIJIiIiCi0jg4dOkAikSj9++STT5TGxMTEoEePHtDV1YWlpSWmTZuG3NxcpTGnTp2Cu7s7ZDIZHB0dsXHjxhK/HyIiqvza1DPHT/1dAQDrz0fhl7NRIldERERVmWZxB0ZFRcHBwQE6Ojro3bt3qWw8LS0Nrq6uGDVqFPr06aNyeZs2bTBgwACMGTNG7XrGjBmD7777TvFYV1dX8f95eXno0aMHrK2tceHCBTx9+hTDhg2DlpYWfvjhB8V769GjBz755BNs27YNx48fx8cffwwbGxv4+vqWynslIqLKo2fTGohLzsQPh+5g7qHbsDSUoWfTGmKXRUREVVCxA1ndunVhb28Pb29vdOzYER06dEDNmjXfa+PdunVDt27d1C4fOnQoAODBgwdFrkdXVxfW1tYqlx09ehS3bt3CsWPHYGVlhaZNm2LOnDmYPn06AgICoK2tjTVr1sDBwQGLFi0CADRs2BDnzp3DkiVLGMiIiKqpMW3rIDYpC+vPR+HLXVdhri9Da0dzscsiIqIqptiB7MSJEzh16hROnTqF3377DdnZ2ahTpw46duwIb29veHt7w8rKqixrVWvbtm3YunUrrK2t4efnh2+//VZxlCw4OBiNGzdWqs3X1xfjx4/HzZs34ebmhuDgYHTu3Flpnb6+vpg8ebLabWZlZSErK0vxODk5GQCQk5ODnBzxp0suqKEi1FKRsC+qsS/qsTeqVZe+TPdxRFxSBg7eiMXYLaHYPro5nG2KvsVLdelNSbEv6rE3qrEv6rE3qlWkvpSkhmIHsg4dOqBDhw4AgMzMTFy4cEER0DZt2oScnBw4OTnh5s2bJS74fQwaNAj29vawtbXFtWvXMH36dNy9exd79+4FAMTGxhYKigWPY2NjixyTnJyMjIwM6OjoFNruvHnzMHv27ELPHz16VOmUSbEFBQWJXUKFxL6oxr6ox96oVh360lEP+MdQishkYOi6YEx2yYOZ/O2vqw69eRfsi3rsjWrsi3rsjWoVoS/p6enFHlvsQPY6uVyOjh07ok2bNvD29sbff/+NtWvX4s6dO++yuvcyduxYxf83btwYNjY26NSpE+7fv4+6deuW2XZnzJiBqVOnKh4nJyfDzs4OPj4+FeIG2Tk5OQgKCkKXLl2gpaUldjkVBvuiGvuiHnujWnXri3fnHAz65TLuxKViS4whfh/TAqZ62irHVrfeFBf7oh57oxr7oh57o1pF6kvB2XPFUaJAlp2djYsXL+LkyZM4deoUQkJCYGdnh3bt2mHFihVo3759iYstbZ6engCAe/fuoW7durC2tsalS5eUxsTFxQGA4roza2trxXOvjzE0NFR5dAwAZDIZZDJZoee1tLRE3wFeV9HqqSjYF9XYF/XYG9WqS19MtbSwabQn+qy6gKjn6fhkewS2f9wSOtoaal9TXXpTUuyLeuyNauyLeuyNahWhLyXZfrGnve/YsSNMTEwwYcIExMfHY9y4cbh//z7u3r2LdevWYejQoahVq9Y7FVyaCqbGt7GxAQB4eXnh+vXriI+PV4wJCgqCoaEhnJ2dFWOOHz+utJ6goCB4eXmVT9FERFThWRnKsWlUcxjpaOFKzEt8uj0cuXn5YpdFRESVXLED2dmzZ2FmZoaOHTuiU6dO6NKliyL0vKvU1FREREQoQlRUVBQiIiIQExMDAEhMTERERARu3boFALh79y4iIiIU137dv38fc+bMQVhYGB48eIC//voLw4YNQ7t27dCkSRMAgI+PD5ydnTF06FBcvXoVR44cwTfffIOJEycqjnB98skn+Pfff/HVV1/hzp07WLVqFXbu3IkpU6a81/sjIqKqxdHSAL8ObwaZphTH78Tjm303eONoIiJ6L8UOZC9fvkRgYCB0dXUxf/582NraonHjxvj000+xe/duPHv2rMQbDw0NhZubG9zc3AAAU6dOhZubG2bOnAkA+Ouvv+Dm5oYePXoAAAYOHAg3NzesWbMGAKCtrY1jx47Bx8cHTk5O+OKLL9C3b1/s379fsQ0NDQ0cOHAAGhoa8PLywpAhQzBs2DCl+5Y5ODjg4MGDCAoKgqurKxYtWoRffvmFU94TEVEhzWqb4md/N0glwO+XH2LpsUixSyIiokqs2NeQ6enpoWvXrujatSsAICUlBefOncPJkyexYMECDB48GPXq1cONGzeKvfEOHToU+ZfFESNGYMSIEWqX29nZ4fTp02/djr29PQ4dOvTWWq5cufLWdREREfk2ssZ3PV3wzb4bWHY8ElaGcgzyFP+0fSIiqnyKfYTsTXp6ejA1NYWpqSlMTEygqamJ27dvl2ZtREREFdaQlvb4rKMjAOCbfdcRdCsOefkCQqISEZYgQUhUIvLyeTojEREVrdhHyPLz8xEaGopTp07h5MmTOH/+PNLS0lCjRg14e3tj5cqV8Pb2LstaiYiIKpSpXeojLjkTO0MfYcK2MBjKtfA8LRuABjZHhsLGSI5Zfs7o6vJ+11wTEVHVVexAZmxsjLS0NFhbW8Pb2xtLlixBhw4dyvReX0RERBWZRCLB3N6NcetJMm48Sf5fGPt/sUmZGL81HKuHuDOUERGRSsUOZAsXLoS3tzfq169flvUQERFVKlKJBM9Ss1QuEwBIAMzefwtdnK2hIZWUa21ERFTxFTuQjRs3rizrICIiqpQuRSUiLll1IANehbKnSZm4FJUIr7pm5VcYERFVCu88qQcREREB8SmZpTqOiIiqFwYyIiKi92BpIC/mOFkZV0JERJURAxkREdF7aOFgChsjOd52ddiv56IQl8yjZEREpIyBjIiI6D1oSCWY5ecMAIVCmUQxBjh2Ox6dF5/G75diIAi8PxkREb3CQEZERPSeurrYYPUQd1gbKZ++aG0kx5oh7jg4qS1caxohJTMX/9l7HYN/CUH08zSRqiUiooqk2LMsEhERkXpdXWzQxdkawfficfRsCHzaesLL0VIx1f3eCa2x4XwUfjp6FxfuP4fv0jP40qcBRrZ24HT4RETVGI+QERERlRINqQSeDqbwMBfg6WCqFLQ0pBJ83LYOjkxuB686ZsjMycf3B2+jz+oLuBubImLVREQkJgYyIiKicmRvpoftYzzxY5/GMJBp4urDl/hg+VksCfoH2bn5YpdHRETljIGMiIionEkkEgxsUQtBU9ujc0Mr5OQJWHY8Eh8sP4srMS/ELo+IiMoRAxkREZFIrI3kWDfMAysGucFMTxv/xKWiz+oLmHPgFtKzc8Uuj4iIygEDGRERkYgkEgk+aGKLY1Pbo49bDQjCq3uWdV16FhfuJYhdHhERlTEGMiIiogrARE8biz9qig0jm8PWSI6YxHQM+iUE/9lzDUkZOWKXR0REZYSBjIiIqALxbmCJo1PbY5iXPQDg98sP0WXxaRy5GStyZUREVBYYyIiIiCoYfZkmvuvpgp3jvFDHXA/xKVkYtyUME7eF41lKltjlERFRKWIgIyIiqqBaOJji0OdtMaFDXWhIJTh4/Sm6LDmNveGPIAiC2OUREVEpYCAjIiKqwORaGviqqxP+nNgazjaGeJmeg6k7r2LEhst49CJd7PKIiOg9MZARERFVAi41jPDnp60xzbcBtDWlOP3PM/guOYPNwQ+Qn8+jZURElRUDGRERUSWhpSHFRG9HHJrUFs3sTZCWnYeZf97EgLXBuP8sVezyiIjoHTCQERERVTKOlvrYOc4Lc3o2gp62BkKjX6DbsrNYefIecvLyxS6PiIhKgIGMiIioEpJKJRjqVRtHprRD+/oWyM7Nx8Ijd9FzxXnceJwkdnlERFRMDGRERESVWE0TXWwc2RyLB7jCWFcLt54mo+fK85h/+A4yc/LELo+IiN6CgYyIiKiSk0gk6ONeE0FT2qNHExvk5QtYfeo+ui87i0tRiWKXR0RERWAgIyIiqiIsDGRYOcgda4d6wNJAhn8T0jBgbTC+3XcDKZk5YpdHREQqMJARERFVMb6NrBE0tT0GNrcDAGy5GA3fJWdw8k68yJUREdGbGMiIiIiqICMdLfzYtwm2feyJWqa6eJKUiZEbL2PKjggkpmWLXR4REf0PAxkREVEV1trRHIcnt8XHbRwglQB/XHmMLotPY//VJxAE3lCaiEhsDGRERERVnK62Jr75wBl7xrdCfSt9PE/Lxme/XcGYzWGITcoUuzwiomqNgYyIiKiacKtlggOftcXkzvWgpSHBsdtx6LL4NH67FMOjZUREImEgIyIiqka0NaWY3Lk+DnzWFq52xkjJysWMvdcxaF0IHiSkiV0eEVG1w0BGRERUDTWwNsDe8a3wTY+GkGtJEfzvc3RddgbrzvyLvHweLSMiKi8MZERERNWUhlSCj9vWwdHJ7dGqrhkyc/Ix99Bt9Fl1Hndik8Uuj4ioWmAgIyIiquZqmeli28eemN+3MQzkmrj6KAkf/HwOi4P+QVZuntjlERFVaQxkREREBIlEgo+a18Kxqe3RxdkKufkCfj4eiQ9+PofwmBdil0dEVGUxkBEREZGClaEcgUM9sHKQO8z1tREZn4q+qy/gu/23kJ6dK3Z5RERVDgMZERERKZFIJOjRxAZBU9qjj3sNCAKw/nwUfJeewbnIBLHLIyKqUhjIiIiISCUTPW0sHtAUG0c2Rw1jHTxMzMCQX0Pw1e6rSErPEbs8IqIqgYGMiIiIitShgSWOTGmH4V72AICdoY/QeclpHL4RK3JlRESVHwMZERERvZW+TBOze7pg1ydeqGOhh2cpWfhkaxgmbAtDfEqm2OUREVVaDGRERERUbM1rm+LQpLaY0KEuNKQSHLoeiy6Lz2B32CMIAm8oTURUUqIGsjNnzsDPzw+2traQSCTYt2+f0vK9e/fCx8cHZmZmkEgkiIiIKLSOzMxMTJw4EWZmZtDX10ffvn0RFxenNCYmJgY9evSArq4uLC0tMW3aNOTmKs8UderUKbi7u0Mmk8HR0REbN24s5XdLRERUNci1NPBVVyf8ObE1GtkaIikjB1/uuoph6y/hYWK62OUREVUqogaytLQ0uLq6YuXKlWqXt2nTBvPnz1e7jilTpmD//v3YtWsXTp8+jSdPnqBPnz6K5Xl5eejRoweys7Nx4cIFbNq0CRs3bsTMmTMVY6KiotCjRw94e3sjIiICkydPxscff4wjR46U3pslIiKqYlxqGGHfxNaY3tUJ2ppSnI1MgO/SM9h4Pgr5+TxaRkRUHJpibrxbt27o1q2b2uVDhw4FADx48EDl8qSkJPz666/Yvn07OnbsCADYsGEDGjZsiIsXL6Jly5Y4evQobt26hWPHjsHKygpNmzbFnDlzMH36dAQEBEBbWxtr1qyBg4MDFi1aBABo2LAhzp07hyVLlsDX17d03zQREVEVoqUhxfgOdeHTyAoz9lzHpQeJCNh/C/uvPcX8vo3haGmAvHwBIVGJCEuQwCwqEV6OltCQSsQunYioQhA1kL2vsLAw5OTkoHPnzornnJycUKtWLQQHB6Nly5YIDg5G48aNYWVlpRjj6+uL8ePH4+bNm3Bzc0NwcLDSOgrGTJ48We22s7KykJWVpXicnJwMAMjJyUFOjvhTARfUUBFqqUjYF9XYF/XYG9XYF/Wqa29qGcuwZaQHfrv8EAuPRiIs+gW6LTuLro2scOnBC8QlZwHQwObIUFgbyvBNdyf4NrJ663qrg+q6z7wN+6Iee6NaRepLSWqo1IEsNjYW2traMDY2VnreysoKsbGxijGvh7GC5QXLihqTnJyMjIwM6OjoFNr2vHnzMHv27ELPHz16FLq6uu/8nkpbUFCQ2CVUSOyLauyLeuyNauyLetW1NyYAvnQBdv4rxe2XUuy/FgtAAPD/R8RikzPx6e8RGFU/H65mPLWxQHXdZ96GfVGPvVGtIvQlPb3419NW6kAmphkzZmDq1KmKx8nJybCzs4OPjw8MDQ1FrOyVnJwcBAUFoUuXLtDS0hK7nAqDfVGNfVGPvVGNfVGPvXllYF4+Ws4/haSMXLwexl559fjAU11MHdgGMi2Ncq+vIuE+oxr7oh57o1pF6kvB2XPFUakDmbW1NbKzs/Hy5Uulo2RxcXGwtrZWjLl06ZLS6wpmYXx9zJszM8bFxcHQ0FDl0TEAkMlkkMlkhZ7X0tISfQd4XUWrp6JgX1RjX9Rjb1RjX9Sr7r0JjXn+vzCmXnxKFly+Ow5zfRksDWSwMHj1X0tDGSwN5K89J4eloQzyKh7cqvs+ow77oh57o1pF6EtJtl+pA5mHhwe0tLRw/Phx9O3bFwBw9+5dxMTEwMvLCwDg5eWFuXPnIj4+HpaWlgBeHcY0NDSEs7OzYsyhQ4eU1h0UFKRYBxEREZVMSW4WnZCahYTULOBp0eMM5JrKIe218KYIcwZyGOpoQiLhpCFEVDmIGshSU1Nx7949xeOoqChERETA1NQUtWrVQmJiImJiYvDkyRMAr8IW8OqIlrW1NYyMjDB69GhMnToVpqamMDQ0xGeffQYvLy+0bNkSAODj4wNnZ2cMHToUCxYsQGxsLL755htMnDhRcYTrk08+wYoVK/DVV19h1KhROHHiBHbu3ImDBw+Wc0eIiIiqBksDebHGrR7iDjsTXTxLycKzlCzEp2QiPiUL8cmv/v9Z6qv/z8rNR0pmLlIyc3H/WVqR69TWlCofcXstvL0e5sz0ZaLP9sgZKIlI1EAWGhoKb29vxeOCa7KGDx+OjRs34q+//sLIkSMVywcOHAgAmDVrFgICAgAAS5YsgVQqRd++fZGVlQVfX1+sWrVK8RoNDQ0cOHAA48ePh5eXF/T09DB8+HB89913ijEODg44ePAgpkyZgmXLlqFmzZr45ZdfOOU9ERHRO2rhYAobIzlikzKhatoOCQBrIzl8nK3fGkAEQUByZi6e/S+sPXstsCkep2QhPjkTyZm5yM7Nx6MXGXj0IqPI9UolgJm+DBb6BUfa/v/0yP9/7tXRt7I4XfLwjaeYvf8WniZlomAGShsjOWb5OaOri02pb4+IKiZRA1mHDh0gCOpnVxoxYgRGjBhR5DrkcjlWrlyp9ubSAGBvb1/olERVtVy5cqXIMURERFQ8GlIJZvk5Y/zWcEgApVBWEL9m+TkX62iQRCKBkY4WjHS04GhpUOTYzJw8RUB79trRNqWjbylZeJ6ahXwBiiNzt95yuqShXFPperaC8Pb6dW8WBnIYyot3uuThG08xfmt4obAam5SJ8VvDsXqIO0MZUTVRqa8hIyIiooqrq4sNVg9xf+0o0CvWZXgUSK6lATtTXdiZFn0Lmrx8Ac/T3ghryVmKUyRfD2/ZuflIzsxFcjFOl5RpSpVPlTSUKV33ZmEgg5m+NgL+uqXyyGHBDQJm77+FLsU4ekhElR8DGREREZWZri426OJsjeB78Th6NgQ+bT0rxHVSGlLJ/64lK/paN6XTJZOzXjtF8o1r3VKykJyZi6xini5Z5DYBPE3KxKWoRHjVNXvn9RBR5cBARkRERGVKQyqBp4Mpnt8W4OlgKnoYK4l3O10y87Xr2gpf65aQkqXy6NibSjJTJRFVXgxkRERERKWguKdLnot8hiG/XipyDAD8GfEENU104F7LhNP4E1VhDGRERERE5cirrnmRM1AWOHEnHifuxMPBXA993Gqgt3sN1DQpOuwRUeUjFbsAIiIiouqkYAZK4P9nnCwg+d+/yZ3qoY97DehqayAqIQ2Lgv5Bm/kn4R94EbvDHiEtK7e8yyaiMsIjZERERETlrLgzUM7pmYu/b8RiT9gjBP/7XPFv5p830NXFGv3ca6JlHTNIK9F1eUSkjIGMiIiISATFmYFST6aJfh410c+jJh69SMcf4Y+xJ/wRHjxPx97wx9gb/hg1jHXQ260G+nrUhIO5nojviIjeBQMZERERkUhKMgNlTRNdfNapHj7t6IjwmBfYHfYYB649weOXGVhx8h5WnLwH91rG6OtREx80sYWRjlY5vhMielcMZERERESViEQigYe9KTzsTTHLzxlBt+KwJ/wRzvzzDOExLxEe8/J/N5a2Qj/3mmhbzxyaGpw2gKiiYiAjIiIiqqTkWhrwc7WFn6st4pMzsS/iMfaEPcbduBQcvPYUB689hYWBDL2a2qKvR004WRuKXTIRvYGBjIiIiKgKsDSUY2y7uhjTtg5uPknG7rBH+OvqEzxLycK6s1FYdzYKjWwN0de9Jno2tYWZvkzskokIDGREREREVYpEIoFLDSO41DDC190b4tTdeOwJf4QTd+Jx80kybj65hR8O3UaHBpbo51EDHZ2soK3JUxqJxMJARkRERFRFaWtK4dPIGj6NrJGYlo39V59gT/gjXHuUhGO343DsdhyMdbXwoast+rrXRJOaRpBIOIU+UXliICMiIiKqBkz1tDG8VW0Mb1Ub/8SlYE/4I+y78hhxyVnYHByNzcHRqGepjz7uNdHbrQasjeRil0xULTCQEREREVUz9a0MMKNbQ3zl64Rz9xKwJ+wRjtyMRWR8KuYfvoOFR+6gtaM5+nnUhI+zNXS0NcQumajKYiAjIiIiqqY0pBK0r2+B9vUtkJyZg0PXnmJP+CNcfvACZyMTcDYyAQYyTXRvbIO+HjXRvLYJT2kkKmUMZEREREQEQ7kWBraohYEtaiH6eRr2hD/G3vBHePQiAztCH2JH6EPUMtVFH/ca6OteE3amumKXTFQlMJARERERkRJ7Mz1M7VIfkzvVw6UHidgT9giHrj9FTGI6lh6LxNJjkfB0MEVfj5ro3tgG+jL+Skn0rvjdQ0REREQqSaUStKxjhpZ1zDC7ZyMcuRmLPWGPcf5+AkKiEhESlYhZf95EVxdr9HGvgVZ1zaEh5SmNRCXBQEZEREREb6WrrYnebjXR260mnrzMwB9XHmNP2CP8m5CGP648xh9XHsPGSI5ebq9OaXS01Be7ZKJKgYGMiIiIiErE1lgHE70dMaFDXVx5+BJ7wh5h/9UneJqUidWn7mP1qftoameMvh414dfEBsa62mKXTFRhMZARERER0TuRSCRwr2UC91om+PYDZxy/HY894Y9w+p9niHj4EhEPX2LO/lvo7GyJvu410a6+BbQ0pGKXTVShMJARERER0XuTa2mgRxMb9Ghig2cpWfgz4jF2hz3CndgUHLoei0PXY2Gur42eTV+d0uhsayh2yUQVAgMZEREREZUqCwMZPm5bBx+3rYObT5KwJ+wx/ox4jITUbPx6Lgq/notCQxtD9HWvgZ5Na8DCQKb0+rx8ASFRiQhLkMAsKhFejpacLISqLAYyIiIiIiozjWyN0MjWCDO6O+H03WfYE/4Ix2/H4/bTZHx/MBnz/r6DDvUt0NejJjo1tMTJO/GYvf8WniZlAtDA5shQ2BjJMcvPGV1dbMR+O0SljoGMiIiIiMqcloYUnZ2t0NnZCi/Ts7H/6hPsDn+Mqw9f4videBy/Ew9dbQ2kZ+cVem1sUibGbw3H6iHuDGVU5TCQEREREVG5MtbVxlCv2hjqVRv34lOwJ/wx9oY9QlxKlsrxAgAJgNn7b6GLszVPX6QqhdPcEBEREZFoHC0NML2rExZ/1LTIcQKAp0mZuBSVWC51EZUXBjIiIiIiEl1CquqjY296/DK9jCshKl8MZEREREQkOksDebHG/XDoNrZejEZ2bn4ZV0RUPhjIiIiIiEh0LRxMYWMkR1FXh0klQGJaDr7ZdwMdF53CztCHyM1jMKPKjYGMiIiIiESnIZVglp8zABQKZZL//Vv6UVME+DnDwkCGRy8y8NXua+iy5Az2XXmMvHyhvEsmKhUMZERERERUIXR1scHqIe6wNlI+fdHaSI7VQ9zxYdMaGNHaAWemeePr7k4w1dNGVEIaJu+IQNelZ3Do+lPkM5hRJcNp74mIiIiowujqYoMuztYIvhePo2dD4NPWE16OlkpT3etoa2Bsu7oY5GmPTRceYO3p+4iMT8WEbeFoaGOIqV3qo3NDS0gknB6fKj4eISMiIiKiCkVDKoGngyk8zAV4Opiqve+YvkwTE70dce4/HfF5p3rQl2ni9tNkjNkcil4rz+PU3XgIAo+YUcXGQEZERERElZqhXAtTutTH2a+8Mb5DXehoaeDqoySM2HAZ/dcE48L9BLFLJFKLgYyIiIiIqgQTPW1M7+qEs9O98XEbB8g0pQiNfoFB60LgH3gRoQ94U2mqeBjIiIiIiKhKMdeX4ZsPnHHmK28M87KHloYEwf8+R781wRi2/hKuPnwpdolECgxkRERERFQlWRnK8V1PF5ya5g3/FnbQlEpw5p9n6LnyPD7eFIpbT5LFLpGIgYyIiIiIqrYaxjqY16cJTnzRAX3da0IqAY7djkP3n89iwrYwRMaliF0iVWMMZERERERULdQy08WiAa44OqU9/FxtIZEAh67HwmfpGUz+/QqiEtLELpGqIQYyIiIiIqpWHC31sdzfDYc/b4eujawhCMC+iCfovPg0pu26ioeJ6WKXSNUIAxkRERERVUsNrA2wZqgHDnzWBh2dLJGXL2BX2CN4/3QKX/9xHU9eZohdIlUDogayM2fOwM/PD7a2tpBIJNi3b5/SckEQMHPmTNjY2EBHRwedO3dGZGSk0pjatWtDIpEo/fvxxx+Vxly7dg1t27aFXC6HnZ0dFixYUKiWXbt2wcnJCXK5HI0bN8ahQ4dK/f0SERERUcXjUsMI60c0x94JrdC2njly8wVsD4lBh4WnEPDXTcQnZ4pdIlVhogaytLQ0uLq6YuXKlSqXL1iwAD///DPWrFmDkJAQ6OnpwdfXF5mZyt8U3333HZ4+far499lnnymWJScnw8fHB/b29ggLC8PChQsREBCAwP9r787joqr3PoB/hnUAYQRZhrkCYiJuCGKGpJALAj5dBTWXpNQupXbhIlrY1ce9TLHc5WqLS940zVuimRG4sBiI12VUEBGNJBMwRURABJ3z/OHD5MQMYMmcUT7v14vX6845v5nznQ/YnS/nnC8ff6xek5mZiZdffhmRkZE4deoUwsPDER4ejpycnJZ540RERERkcHxdbfHvSD/snNwXz7nbofa+Clsyf0LgB4fx/v483Ki8K3aJ9BQyEfPgQ4cOxdChQ7XuEwQBq1atwpw5cxAWFgYA2Lp1K5ycnJCYmIhx48ap11pbW0Mul2t9nW3btqG2thabNm2CmZkZunfvDqVSiRUrVmDy5MkAgNWrVyM0NBRxcXEAgHfffRcpKSlYt24dNmzY8DjfMhEREREZOL+O7bBzcl/8cPEGlqfk41RROT5O/xGfH72M1/p1wOSAZyCzNBW7THpKiNqQNaawsBAlJSUICgpSb5PJZPDz80NWVpZGQ7Z06VK8++67cHV1xfjx4zF9+nSYmDx4a1lZWQgMDISZmZl6fUhICOLj43Hz5k3Y2toiKysLM2bM0Dh+SEhIg0soH3b37l3cvfvbb0kqKh78HYu6ujrU1dX9qff+ONTXYAi1GBLmoh1z0Y3ZaMdcdGM22jEX3ZiNdoaQi18HGXa+3gdpBdex6uBF5F69jYTDl7A16zJee94Nk/zdYC3V/8dpQ8jGEBlSLo9Sg8E2ZCUlJQAAJycnje1OTk7qfQAQExMDX19f2NnZITMzE7NmzUJxcTFWrFihfh13d/cGr1G/z9bWFiUlJU0e5/eWLFmChQsXNtienJwMS0vLR3inLSslJUXsEgwSc9GOuejGbLRjLroxG+2Yi27MRjtDyeUNV+CstQT7i4xQfOce1hy6hE/TL2KQQoVAuQBzY/3XZCjZGBpDyKW6uvmTOg22IWuuh89s9ezZE2ZmZpgyZQqWLFkCc3PzFjvurFmzNI5dUVEBFxcXBAcHw8bGpsWO21x1dXVISUnBkCFDYGrKU+r1mIt2zEU3ZqMdc9GN2WjHXHRjNtoZYi4vApipEvBdbinWHLqEH69XYV+RMTJvmGJKgDvGP+cCqWnLd2aGmI0hMKRc6q+eaw6Dbcjq7wkrLS2Fs7OzentpaSl8fHx0Ps/Pzw/37t3DTz/9BE9PT8jlcpSWlmqsqX9cfwxda3TdlwYA5ubmWhs+U1NT0X8AHmZo9RgK5qIdc9GN2WjHXHRjNtoxF92YjXaGmEu4rwuG+bTHHuUvWHWgAEVl1ViSdAEbf7iM6EGdMLaPC8xNWr4xM8RsDIEh5PIoxzfYv0Pm7u4OuVyOgwcPqrdVVFQgOzsb/v7+Op+nVCphZGQER0dHAIC/vz/S09M1ruNMSUmBp6cnbG1t1WsePk79msaOQ0REREStl7GRBCN92+PgWy9g6Ugv/KWtBa7dvot5e3Ix6MM0fHGsCHX3VWKXSU8AURuyyspKKJVKKJVKAA8GeSiVShQVFUEikSA2Nhbvvfce9u7di7Nnz2LChAlQKBQIDw8H8GBgx6pVq3D69Gn8+OOP2LZtG6ZPn45XXnlF3WyNHz8eZmZmiIyMRG5uLnbu3InVq1drXG44bdo0JCUlYfny5Th//jwWLFiA48ePIzo6Wt+REBEREdETxNTYCOOec8Wht1/Au2Hd4WRjjl/K72DW12cxeHkavjpxBfdVgthlkgET9ZLF48ePY+DAgerH9U3SxIkTsWXLFsycORNVVVWYPHkyysvL0b9/fyQlJUEqlQJ4cNngjh07sGDBAty9exfu7u6YPn26RrMlk8mQnJyMqKgo9O7dG/b29pg3b5565D0APP/889i+fTvmzJmD2bNnw8PDA4mJiejRo4eekiAiIiKiJ5m5iTFe9e+A0c+64POjl7Eh7RKKyqrx1q7TSEi9iNigzvirlzOMjCRil0oGRtSGbMCAARAE3b8xkEgkWLRoERYtWqR1v6+vL44ePdrkcXr27ImMjIxG14wePRqjR49u8rWIiIiIiHSRmhrj9YCOGO/nis8yL+Oj9Ev48dcqxHxxCgmHLmL6kM4I6e4EiYSNGT1gsPeQERERERE9qSzNTPDmgGeQMXMgZgzpDGupCfJLb2Pq5ycwbN0RHDpf2uiJCWo92JAREREREbUQa6kpYgZ74MjMQYge2AlWZsbI+aUCf9tyHCP+lYmMgl/ZmLVybMiIiIiIiFqYzNIUb4d4IuOdQZgS2BFSUyMofy7HqxuPYezHR5H94w2xSySRsCEjIiIiItITOyszzPqfrkifORCTnu8AM2MjHCssw9iPj+KVT7Nxsuim2CWSnrEhIyIiIiLSM0drKRYM7460mQMQ4ecKU2MJjly8jpH/ysRrm4/h7JVbYpdIesKGjIiIiIhIJM4yCywe4YVDbw3AmGfbw9hIgsP5v2LYuiOY8u/jOF9SobH+vkpAdmEZTlyXILuwjH/j7Ckg6th7IiIiIiICXOwssewlb7w5oBNWH7iAPaev4vvcUiSfK8WLXs6IDeqMi9duY+E351B8qwaAMbYWHIezTIr5w7ohtIez2G+B/iCeISMiIiIiMhDu9lZYNa4XkmMD8aKXMwQB2HemGENWpGHq5yf/vxn7TcmtGrz5+Ukk5RSLVDH9WWzIiIiIiIgMjIeTNRIifPFtTH8M7uIIXRcm1m9f+M05Xr74hGJDRkRERERkoLorZHg9oGOjawQAxbdqcKywTD9F0WPFhoyIiIiIyIBdu13T9KJHWEeGhQ0ZEREREZEBc7SWNmtd3T1VC1dCLYENGRERERGRAXvO3Q7OMikkTayb+dUZLPwmF7fu1OmlLno82JARERERERkwYyMJ5g/rBgANmrL6x97tZVAJwOYffsLAD1OxPbuIQz6eEGzIiIiIiIgMXGgPZ6x/xRdymebli3KZFBte8cWe6P74d+Rz6OTYBmVVtZi9+yyGrzuC4z9x0Ieh4x+GJiIiIiJ6AoT2cMaQbnJkXbyG5IxsBAf4wb+TI4yNHpwnC/BwwHfTArA16zJWHbiA3KsVeGlDFsJ8FPjn0C5wllmI/A5IG54hIyIiIiJ6QhgbSeDnbofe9gL83O3UzVg9U2MjRPZ3x+G3B+Dl51wgkQB7lFcx6MM0rDtUgJq6+yJVTrqwISMiIiIiesrYtzHHkpE9sTeqP3q72eJO3X18mHwBQ1am4fvcEggC7y8zFGzIiIiIiIieUl7tZfjPVH+sHucDJxtz/Fx2B1P+fQKvbjyGgtLbYpdHYENGRERERPRUk0gkCPP5Cw69NQBRA5+BmbERjly8jtDVGRyTbwDYkBERERERtQJW5iaIC+mClBmBGNLNCfdVgnpM/hfHOCZfLGzIiIiIiIhaEbd2VvhkwrPY+rffxuTP+ppj8sXChoyIiIiIqBUK7PxgTP7cv3aDtdREPSZ/2o5TKL51R+zyWg02ZERERERErdTDY/LH9eGYfDGwISMiIiIiauXs25hj6SiOyRcDGzIiIiIiIgLw25j8VWM1x+RP2MQx+S2FDRkREREREalJJBKE99Ick59RwDH5LYUNGRERERERNcAx+frBhoyIiIiIiHR6eEz+Mw5WHJP/mLEhIyIiIiKiJgV2dkBSbOCDMfnmmmPyS27ViF3eE4sNGRERERERNYt6TH7c78bkL09FwuGLHJP/B7AhIyIiIiKiR/L7MfnVtffxwff5CF6ZzjH5j4gNGRERERER/SG/H5NfVFbNMfmPiA0ZERERERH9YQ+Pyf/7AM0x+Yu+Occx+U1gQ0ZERERERH+albkJZoY+GJMf1PXBmPxNPxRiEMfkN4oNGRERERERPTZu7azw6cTfxuTf+P8x+WEJHJOvDRsyIiIiIiJ67H4/Jj/nF47J14YNGRERERERtQiOyW8aGzIiIiIiImpRD4/J93VtqzEmP7mVj8lnQ0ZERERERHrh1V6Gr958XmNM/uT/H5N/8VrrHJPPhoyIiIiIiPRG55j8Va1zTD4bMiIiIiIi0rvfj8m/10rH5LMhIyIiIiIi0bT2MflsyIiIiIiISHT1Y/LnvNhVY0x+7FM+Jl/Uhiw9PR3Dhg2DQqGARCJBYmKixn5BEDBv3jw4OzvDwsICQUFBKCgo0FhTVlaGiIgI2NjYoG3btoiMjERlZaXGmjNnziAgIABSqRQuLi5YtmxZg1p27dqFLl26QCqVwsvLC/v373/s75eIiIiIiHQzNTbC6wEdcThuAMY++2BMfuJTPiZf1IasqqoK3t7eSEhI0Lp/2bJlWLNmDTZs2IDs7GxYWVkhJCQENTW/dcgRERHIzc1FSkoK9u3bh/T0dEyePFm9v6KiAsHBwXBzc8OJEyfwwQcfYMGCBfj444/VazIzM/Hyyy8jMjISp06dQnh4OMLDw5GTk9Nyb56IiIiIiLSyb2OO+Jdax5h8URuyoUOH4r333sOIESMa7BMEAatWrcKcOXMQFhaGnj17YuvWrbh69ar6TFpeXh6SkpLw6aefws/PD/3798fatWuxY8cOXL16FQCwbds21NbWYtOmTejevTvGjRuHmJgYrFixQn2s1atXIzQ0FHFxcejatSveffdd+Pr6Yt26dXrJgYiIiIiIGnp4TL6jte4x+fdVArILy3DiugTZhWVP1EAQE7EL0KWwsBAlJSUICgpSb5PJZPDz80NWVhbGjRuHrKwstG3bFs8++6x6TVBQEIyMjJCdnY0RI0YgKysLgYGBMDMzU68JCQlBfHw8bt68CVtbW2RlZWHGjBkaxw8JCWlwCeXD7t69i7t376ofV1RUAADq6upQVyf+qM76GgyhFkPCXLRjLroxG+2Yi27MRjvmohuz0Y656NYas3mxhyNe8LDDhrRCbMr8ST0m/xU/F3R3tsHyAwUoqbgLwBhbC45DbmOOOf/TBSHdnUSp91G+NwbbkJWUlAAAnJw0Q3RyclLvKykpgaOjo8Z+ExMT2NnZaaxxd3dv8Br1+2xtbVFSUtLocbRZsmQJFi5c2GB7cnIyLC0tm/MW9SIlJUXsEgwSc9GOuejGbLRjLroxG+2Yi27MRjvmoltrzKYbgHe8gMTLRsi5aYQtWUUA6s+GSdTrSipqEL1Dib91VsG7nf7PllVXVzd7rcE2ZIZu1qxZGmfVKioq4OLiguDgYNjY2IhY2QN1dXVISUnBkCFDYGpqKnY5BoO5aMdcdGM22jEX3ZiNdsxFN2ajHXPRjdkAEwGk5f+KKduVuK/StkICCYDvSi0xMyIQxkYSbYtaTP3Vc81hsA2ZXC4HAJSWlsLZ2Vm9vbS0FD4+Puo1165d03jevXv3UFZWpn6+XC5HaWmpxpr6x02tqd+vjbm5OczNzRtsNzU1Nah/GIZWj6FgLtoxF92YjXbMRTdmox1z0Y3ZaMdcdGvt2VhZmDd6r5gAoPjWXZy6chv+z7TTX2HAI31fDPbvkLm7u0Mul+PgwYPqbRUVFcjOzoa/vz8AwN/fH+Xl5Thx4oR6zaFDh6BSqeDn56dek56ernEdZ0pKCjw9PWFra6te8/Bx6tfUH4eIiIiIiAzLtdvN+9tkzV0nFlEbssrKSiiVSiiVSgAPBnkolUoUFRVBIpEgNjYW7733Hvbu3YuzZ89iwoQJUCgUCA8PBwB07doVoaGheOONN3Ds2DH88MMPiI6Oxrhx46BQKAAA48ePh5mZGSIjI5Gbm4udO3di9erVGpcbTps2DUlJSVi+fDnOnz+PBQsW4Pjx44iOjtZ3JERERERE1AyO1tLHuk4sol6yePz4cQwcOFD9uL5JmjhxIrZs2YKZM2eiqqoKkydPRnl5Ofr374+kpCRIpb+Fum3bNkRHR2Pw4MEwMjLCqFGjsGbNGvV+mUyG5ORkREVFoXfv3rC3t8e8efM0/lbZ888/j+3bt2POnDmYPXs2PDw8kJiYiB49eughBSIiIiIielTPudvBWSZFya0aaLtwUQJALpPiOXc7fZf2SERtyAYMGNDoH3WTSCRYtGgRFi1apHONnZ0dtm/f3uhxevbsiYyMjEbXjB49GqNHj268YCIiIiIiMgjGRhLMH9YNb35+EhJAoymrH+Exf1g3vQ/0eFQGew8ZERERERFRY0J7OGP9K76QyzQvS5TLpFj/ii9CezjreKbhMNgpi0RERERERE0J7eGMId3kyLp4DckZ2QgO8IN/J0eDPzNWjw0ZERERERE90YyNJPBzt8ONPAF+7nZPTDMG8JJFIiIiIiIi0bAhIyIiIiIiEgkbMiIiIiIiIpGwISMiIiIiIhIJGzIiIiIiIiKRsCEjIiIiIiISCRsyIiIiIiIikbAhIyIiIiIiEgkbMiIiIiIiIpGwISMiIiIiIhIJGzIiIiIiIiKRsCEjIiIiIiISCRsyIiIiIiIikZiIXcDTQhAEAEBFRYXIlTxQV1eH6upqVFRUwNTUVOxyDAZz0Y656MZstGMuujEb7ZiLbsxGO+aiG7PRzpByqe8J6nuExrAhe0xu374NAHBxcRG5EiIiIiIiMgS3b9+GTCZrdI1EaE7bRk1SqVS4evUqrK2tIZFIxC4HFRUVcHFxwc8//wwbGxuxyzEYzEU75qIbs9GOuejGbLRjLroxG+2Yi27MRjtDykUQBNy+fRsKhQJGRo3fJcYzZI+JkZER2rdvL3YZDdjY2Ij+A2mImIt2zEU3ZqMdc9GN2WjHXHRjNtoxF92YjXaGkktTZ8bqcagHERERERGRSNiQERERERERiYQN2VPK3Nwc8+fPh7m5udilGBTmoh1z0Y3ZaMdcdGM22jEX3ZiNdsxFN2aj3ZOaC4d6EBERERERiYRnyIiIiIiIiETChoyIiIiIiEgkbMiIiIiIiIhEwoaMiIiIiIhIJGzInmDp6ekYNmwYFAoFJBIJEhMTNfYLgoB58+bB2dkZFhYWCAoKQkFBgTjF6llT2Xz99dcIDg5Gu3btIJFIoFQqRalT3xrLpa6uDu+88w68vLxgZWUFhUKBCRMm4OrVq+IVrEdN/cwsWLAAXbp0gZWVFWxtbREUFITs7GxxitWjpnJ52NSpUyGRSLBq1Sq91SemprKZNGkSJBKJxldoaKg4xepRc35m8vLyMHz4cMhkMlhZWaFPnz4oKirSf7F61FQuv/9Zqf/64IMPxClYj5rKprKyEtHR0Wjfvj0sLCzQrVs3bNiwQZxi9aipXEpLSzFp0iQoFApYWloiNDS0VXzOW7JkCfr06QNra2s4OjoiPDwc+fn5GmtqamoQFRWFdu3aoU2bNhg1ahRKS0tFqrhpbMieYFVVVfD29kZCQoLW/cuWLcOaNWuwYcMGZGdnw8rKCiEhIaipqdFzpfrXVDZVVVXo378/4uPj9VyZuBrLpbq6GidPnsTcuXNx8uRJfP3118jPz8fw4cNFqFT/mvqZ6dy5M9atW4ezZ8/iyJEj6NChA4KDg/Hrr7/quVL9aiqXert378bRo0ehUCj0VJn4mpNNaGgoiouL1V9ffPGFHisUR1O5XLp0Cf3790eXLl2QmpqKM2fOYO7cuZBKpXquVL+ayuXhn5Pi4mJs2rQJEokEo0aN0nOl+tdUNjNmzEBSUhI+//xz5OXlITY2FtHR0di7d6+eK9WvxnIRBAHh4eH48ccfsWfPHpw6dQpubm4ICgpCVVWVCNXqT1paGqKionD06FGkpKSgrq4OwcHBGu97+vTp+Oabb7Br1y6kpaXh6tWrGDlypIhVN0GgpwIAYffu3erHKpVKkMvlwgcffKDeVl5eLpibmwtffPGFCBWK5/fZPKywsFAAIJw6dUqvNRmCxnKpd+zYMQGAcPnyZf0UZSCak82tW7cEAMKBAwf0U5QB0JXLlStXhL/85S9CTk6O4ObmJqxcuVLvtYlNWzYTJ04UwsLCRKnHUGjLZezYscIrr7wiTkEGojn/jQkLCxMGDRqkn4IMiLZsunfvLixatEhjm6+vr/C///u/eqxMXL/PJT8/XwAg5OTkqLfdv39fcHBwED755BMRKhTPtWvXBABCWlqaIAgPPu+ampoKu3btUq/Jy8sTAAhZWVlildkoniF7ShUWFqKkpARBQUHqbTKZDH5+fsjKyhKxMnqS3Lp1CxKJBG3bthW7FINSW1uLjz/+GDKZDN7e3mKXIyqVSoVXX30VcXFx6N69u9jlGJzU1FQ4OjrC09MTb775Jm7cuCF2SaJSqVT49ttv0blzZ4SEhMDR0RF+fn6NXgrbGpWWluLbb79FZGSk2KUYhOeffx579+7FL7/8AkEQcPjwYVy4cAHBwcFilyaau3fvAoDGmWUjIyOYm5vjyJEjYpUlilu3bgEA7OzsAAAnTpxAXV2dxmfgLl26wNXV1WA/A7Mhe0qVlJQAAJycnDS2Ozk5qfcRNaampgbvvPMOXn75ZdjY2IhdjkHYt28f2rRpA6lUipUrVyIlJQX29vZilyWq+Ph4mJiYICYmRuxSDE5oaCi2bt2KgwcPIj4+HmlpaRg6dCju378vdmmiuXbtGiorK7F06VKEhoYiOTkZI0aMwMiRI5GWliZ2eQbjs88+g7W1tWFfYqVHa9euRbdu3dC+fXuYmZkhNDQUCQkJCAwMFLs00dQ3GLNmzcLNmzdRW1uL+Ph4XLlyBcXFxWKXpzcqlQqxsbHo168fevToAeDBZ2AzM7MGv0w25M/AJmIXQESGp66uDmPGjIEgCFi/fr3Y5RiMgQMHQqlU4vr16/jkk08wZswYZGdnw9HRUezSRHHixAmsXr0aJ0+ehEQiEbscgzNu3Dj1//by8kLPnj3xzDPPIDU1FYMHDxaxMvGoVCoAQFhYGKZPnw4A8PHxQWZmJjZs2IAXXnhBzPIMxqZNmxAREfHU31fXXGvXrsXRo0exd+9euLm5IT09HVFRUVAoFBpnQVoTU1NTfP3114iMjISdnR2MjY0RFBSEoUOHQhAEscvTm6ioKOTk5DzxZwV5huwpJZfLAaDBRJnS0lL1PiJt6puxy5cvIyUlhWfHHmJlZYVOnTqhb9++2LhxI0xMTLBx40axyxJNRkYGrl27BldXV5iYmMDExASXL1/GW2+9hQ4dOohdnsHp2LEj7O3tcfHiRbFLEY29vT1MTEzQrVs3je1du3Z96qcsNldGRgby8/Px+uuvi12KQbhz5w5mz56NFStWYNiwYejZsyeio6MxduxYfPjhh2KXJ6revXtDqVSivLwcxcXFSEpKwo0bN9CxY0exS9OL6Oho7Nu3D4cPH0b79u3V2+VyOWpra1FeXq6x3pA/A7Mhe0q5u7tDLpfj4MGD6m0VFRXIzs6Gv7+/iJWRIatvxgoKCnDgwAG0a9dO7JIMmkqlUl/H3xq9+uqrOHPmDJRKpfpLoVAgLi4O33//vdjlGZwrV67gxo0bcHZ2FrsU0ZiZmaFPnz4NRlRfuHABbm5uIlVlWDZu3IjevXu3+vtT69XV1aGurg5GRpofWY2NjdVnXFs7mUwGBwcHFBQU4Pjx4wgLCxO7pBYlCAKio6Oxe/duHDp0CO7u7hr7e/fuDVNTU43PwPn5+SgqKjLYz8C8ZPEJVllZqfGb1sLCQiiVStjZ2cHV1RWxsbF477334OHhAXd3d8ydOxcKhQLh4eHiFa0nTWVTVlaGoqIi9d/Yqv9wIJfLDfa3J49DY7k4OzvjpZdewsmTJ7Fv3z7cv39ffa21nZ0dzMzMxCpbLxrLpl27dli8eDGGDx8OZ2dnXL9+HQkJCfjll18wevRoEatueU39W/p9025qagq5XA5PT099l6p3jWVjZ2eHhQsXYtSoUZDL5bh06RJmzpyJTp06ISQkRMSqW15TPzNxcXEYO3YsAgMDMXDgQCQlJeGbb75BamqqeEXrQVO5AA9+cbpr1y4sX75crDJF0VQ2L7zwAuLi4mBhYQE3NzekpaVh69atWLFihYhVt7ymctm1axccHBzg6uqKs2fPYtq0aQgPD3/qh51ERUVh+/bt2LNnD6ytrdWfVWQyGSwsLCCTyRAZGYkZM2bAzs4ONjY2+Mc//gF/f3/07dtX5Op1EHfII/0Zhw8fFgA0+Jo4caIgCA9G38+dO1dwcnISzM3NhcGDBwv5+fniFq0nTWWzefNmrfvnz58vat0trbFc6v8EgLavw4cPi116i2ssmzt37ggjRowQFAqFYGZmJjg7OwvDhw8Xjh07JnbZLa6pf0u/15rG3jeWTXV1tRAcHCw4ODgIpqamgpubm/DGG28IJSUlYpfd4przM7Nx40ahU6dOglQqFby9vYXExETxCtaT5uTy0UcfCRYWFkJ5ebl4hYqgqWyKi4uFSZMmCQqFQpBKpYKnp6ewfPlyQaVSiVt4C2sql9WrVwvt27cXTE1NBVdXV2HOnDnC3bt3xS1aD3R9Vtm8ebN6zZ07d4S///3vgq2trWBpaSmMGDFCKC4uFq/oJkgEoRXd+UdERERERGRAeA8ZERERERGRSNiQERERERERiYQNGRERERERkUjYkBEREREREYmEDRkREREREZFI2JARERERERGJhA0ZERE9Nrt378aXX34pdhlERERPDDZkRET0WBw7dgyxsbHo27ev2KX8aampqZBIJCgvL2/xYw0YMACxsbEtfhx9uXHjBhwdHfHTTz8BaDrL69evw9HREVeuXNFfkUREBoQNGRERNTBp0iRIJBIsXbpUY3tiYiIkEkmD9bdu3cLrr7+O3bt3w9XVVV9lGrza2losW7YM3t7esLS0hL29Pfr164fNmzejrq6uRY4pkUiQmJjYIq/dHIsXL0ZYWBg6dOjQrPX29vaYMGEC5s+f37KFEREZKDZkRESklVQqRXx8PG7evNnkWplMhjNnzsDX11cPlWlXW1sr2rG1qa2tRUhICJYuXYrJkycjMzMTx44dQ1RUFNauXYvc3FyxS2zUH2kYq6ursXHjRkRGRj7S81577TVs27YNZWVlj3xMIqInHRsyIiLSKigoCHK5HEuWLNG5ZsGCBfDx8dHYtmrVKo2zI5MmTUJ4eDjef/99ODk5oW3btli0aBHu3buHuLg42NnZoX379ti8ebPG6/z8888YM2YM2rZtCzs7O4SFhakvg3v4dRcvXgyFQgFPT08AwNmzZzFo0CBYWFigXbt2mDx5MiorKxt9r/v370fnzp1hYWGBgQMHahyn3pEjRxAQEAALCwu4uLggJiYGVVVVOl9z1apVSE9Px8GDBxEVFQUfHx907NgR48ePR3Z2Njw8PLQ+T9sZrrZt22LLli0AHjR60dHRcHZ2hlQqhZubm/p7VJ/7iBEjIJFINL4Pe/bsga+vL6RSKTp27IiFCxfi3r17Gsddv349hg8fDisrKyxevBg3b95EREQEHBwcYGFhAQ8Pjwbfp9/naG5u3uhlq9XV1Rg6dCj69eunvoyxe/fuUCgU2L17t87nERE9rdiQERGRVsbGxnj//fexdu3aP31/z6FDh3D16lWkp6djxYoVmD9/Pv7617/C1tYW2dnZmDp1KqZMmaI+Tl1dHUJCQmBtbY2MjAz88MMPaNOmDUJDQzXOhB08eBD5+flISUnBvn37UFVVhZCQENja2uK///0vdu3ahQMHDiA6OlpnbT///DNGjhyJYcOGQalU4vXXX8c///lPjTWXLl1CaGgoRo0ahTNnzmDnzp04cuRIo6+7bds2BAUFoVevXg32mZqawsrK6lFjBACsWbMGe/fuxZdffon8/Hxs27ZN3Xj997//BQBs3rwZxcXF6scZGRmYMGECpk2bhnPnzuGjjz7Cli1bsHjxYo3XXrBgAUaMGIGzZ8/ib3/7G+bOnYtz587hu+++Q15eHtavXw97e3udtWVkZKB3794695eXl2PIkCFQqVRISUlB27Zt1fuee+45ZGRk/KFMiIieZCZiF0BERIZrxIgR8PHxwfz587Fx48Y//Dp2dnZYs2YNjIyM4OnpiWXLlqG6uhqzZ88GAMyaNQtLly7FkSNHMG7cOOzcuRMqlQqffvqp+p61zZs3o23btkhNTUVwcDAAwMrKCp9++inMzMwAAJ988glqamqwdetWdcOzbt06DBs2DPHx8XBycmpQ2/r16/HMM89g+fLlAABPT0+cPXsW8fHx6jVLlixBRESEeviGh4cH1qxZgxdeeAHr16+HVCpt8LoFBQUYMGDAH85Ml6KiInh4eKB///6QSCRwc3NT73NwcADw4IyaXC5Xb1+4cCH++c9/YuLEiQCAjh074t1338XMmTM17t0aP348XnvtNY1j9erVC88++ywANHlf2OXLl6FQKLTuKykpwdixY+Hh4YHt27erv2f1FAoFTp061YwEiIieLjxDRkREjYqPj8dnn32GvLy8P/wa3bt3h5HRb/+X4+TkBC8vL/VjY2NjtGvXDteuXQMAnD59GhcvXoS1tTXatGmDNm3awM7ODjU1Nbh06ZL6eV5eXhof7PPy8uDt7a1x9qlfv35QqVTIz8/XWlteXh78/Pw0tvn7+2s8Pn36NLZs2aKupU2bNggJCYFKpUJhYaHW1xUEoalY/pBJkyZBqVTC09MTMTExSE5ObvI5p0+fxqJFizTqf+ONN1BcXIzq6mr1uvrGq96bb76JHTt2wMfHBzNnzkRmZmajx7lz547W5hQAhgwZgk6dOmHnzp0NmjEAsLCw0KiFiKi14BkyIiJqVGBgIEJCQjBr1ixMmjRJY5+RkVGDxkPbMAhTU1ONxxKJROs2lUoFAKisrETv3r2xbdu2Bq9VfxYIwB++7O9RVVZWYsqUKYiJiWmwT9dUyc6dO+P8+fOPfCyJRNJopr6+vigsLMR3332HAwcOYMyYMQgKCsJ//vOfRutfuHAhRo4c2WDfww3U7/McOnQoLl++jP379yMlJQWDBw9GVFQUPvzwQ63Hsbe31zkE5sUXX8RXX32Fc+fOaTTj9crKyjS+t0RErQUbMiIiatLSpUvh4+OjHpxRz8HBASUlJRAEQX1poVKp/NPH8/X1xc6dO+Ho6AgbG5tmP69r167YsmULqqqq1M3FDz/8oL5UUtdz9u7dq7Ht6NGjDeo5d+4cOnXq1Oxaxo8fj9mzZ+PUqVMN7iOrq6tDbW2t1obSwcEBxcXF6scFBQUNzhzZ2Nhg7NixGDt2LF566SWEhoairKwMdnZ2MDU1xf379xvUn5+f/0j1P1zPxIkTMXHiRAQEBCAuLk5nQ9arVy98/vnnWvctXboUbdq0weDBg5Gamopu3bpp7M/JyWmRSzyJiAwdL1kkIqImeXl5ISIiAmvWrNHYPmDAAPz6669YtmwZLl26hISEBHz33Xd/+ngRERGwt7dHWFgYMjIyUFhYiNTUVMTExDQ6YCQiIgJSqRQTJ05ETk4ODh8+jH/84x949dVXtd4/BgBTp05FQUEB4uLikJ+fj+3bt6snGtZ75513kJmZiejoaCiVShQUFGDPnj2NDvWIjY1Fv379MHjwYCQkJOD06dP48ccf8eWXX6Jv374oKCjQ+rxBgwZh3bp1OHXqFI4fP46pU6dqnE1csWIFvvjiC5w/fx4XLlzArl27IJfL1QMyOnTogIMHD6KkpER9tmrevHnYunUrFi5ciNzcXOTl5WHHjh2YM2eOzvrrn7dnzx5cvHgRubm52LdvH7p27apzfUhICHJzc3WeJfvwww8RERGBQYMGaZw9rK6uxokTJ9T3BhIRtSZsyIiIqFkWLVqkvqSwXteuXfGvf/0LCQkJ8Pb2xrFjx/D222//6WNZWloiPT0drq6uGDlyJLp27YrIyEjU1NQ0esbM0tIS33//PcrKytCnTx+89NJLGDx4MNatW6fzOa6urvjqq6+QmJgIb29vbNiwAe+//77Gmp49eyItLQ0XLlxAQEAAevXqhXnz5ukcYAEA5ubmSElJwcyZM/HRRx+hb9++6NOnD9asWYOYmBj06NFD6/OWL18OFxcXBAQEYPz48Xj77bdhaWmp3m9tbY1ly5bh2WefRZ8+ffDTTz9h//796nv0li9fjpSUFLi4uKjPzIWEhGDfvn1ITk5Gnz590LdvX6xcuVJjIIg2ZmZmmDVrFnr27InAwEAYGxtjx44dOtd7eXnB19cXX375pc41K1euxJgxYzBo0CBcuHABwIOR/K6urggICGi0HiKip5FEaKm7jomIiKjV+fbbbxEXF4ecnByNQS6N6du3L2JiYjB+/PgWro6IyPDwHjIiIiJ6bF588UUUFBTgl19+gYuLS5Prr1+/jpEjR+Lll1/WQ3VERIaHZ8iIiIiIiIhEwnvIiIiIiIiIRMKGjIiIiIiISCRsyIiIiIiIiETChoyIiIiIiEgkbMiIiIiIiIhEwoaMiIiIiIhIJGzIiIiIiIiIRMKGjIiIiIiISCRsyIiIiIiIiETChoyIiIiIiEgk/wcTUdqPk/gbSAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculando el Silhouette Score para diferentes valores de k...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAIjCAYAAAD80aFnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYiklEQVR4nOzdd3xUVfrH8c+k90IJgRASikiRJiCi0qSKCoq9rIL+1FURBUXFXbGgS1kLrOvK6qprwwLqrmUFEQFRikpv0nsLkEYIqXN/f1xmIKYwCZO5U77v1yuvOXPnzswzhyGZZ845z7EZhmEgIiIiIiIitSrI6gBEREREREQCgZIvERERERERD1DyJSIiIiIi4gFKvkRERERERDxAyZeIiIiIiIgHKPkSERERERHxACVfIiIiIiIiHqDkS0RERERExAOUfImIiIiIiHiAki8RsVx6ejrDhw93Xl+wYAE2m40FCxY4j/Xu3ZvzzjvP88GJuElF72uA9957j1atWhEaGkpCQoIlsQWayv4tfNXvf4e64/GuuOIKtz2eiJyi5EtEas3atWu59tprSUtLIyIigpSUFPr3788rr7xidWi1YsOGDTz99NPs3Lmz3G3/+Mc/+Pe//+3257Tb7bz77rt069aNOnXqEBsbS8uWLbnttttYunSp259PTDt37sRmszl/QkNDqVevHhdddBFPPPEEu3fvdulxfvvtN4YPH07z5s154403eP3112s58pqr6v1dm9q3b0+TJk0wDKPScy6++GIaNGhASUmJByMTEam+EKsDEBH/tHjxYvr06UOTJk246667SE5OZs+ePSxdupRp06bxwAMPOM/dtGkTQUG+/13Qhg0beOaZZ+jduzfp6ellbvvHP/5BvXr13PrtNMCoUaN49dVXGTp0KLfccgshISFs2rSJb775hmbNmnHhhRe69fmkrJtuuonBgwdjt9vJysril19+YerUqUybNo0333yTG2+80Xluz549OXHiBGFhYc5jCxYswG63M23aNFq0aGHFS3BZVe/v2nTLLbfw+OOPs2jRInr27Fnu9p07d7JkyRJGjhxJSIg+1oiId9NvKRGpFc8//zzx8fH88ssv5aZSZWRklLkeHh7uwcj8x6FDh/jHP/7BXXfdVW7EZOrUqRw+fNhjsZSUlGC328skFt7q+PHjREdHu+Wxzj//fG699dYyx3bt2sWAAQO4/fbbad26NR06dAAgKCiIiIiIMuc6/i+4c7qhO1+fN7j55psZN24cM2bMqDD5+vDDDzEMg1tuucWC6Ez+1uciUnt8/6tmEfFK27Zto23bthV+qExKSipzvTrrFTZs2ECfPn2IiooiJSWFKVOmlDsnIyODO++8kwYNGhAREUGHDh145513ypxT2ZoPx3Sy308R/O2337j22mupU6cOERERdOnShS+++MJ5+7///W+uu+46APr06eOcjrZgwQLS09NZv349CxcudB7v3bu3877Z2dk89NBDpKamEh4eTosWLZg8eTJ2u73KvtixYweGYXDxxReXu81ms5Xr5+zsbEaPHk16ejrh4eE0btyY2267jSNHjlSr7xx99MILLzB16lSaN29OeHg4GzZscKmvKnP647788sukpaURGRlJr169WLduXZlz16xZw/Dhw2nWrBkREREkJydzxx13cPTo0TLnPf3009hsNjZs2MDNN99MYmIil1xySbUeo7rS0tL497//TVFRUZn35+/fc+np6Tz11FMA1K9fH5vNxtNPP+08/5tvvqFHjx5ER0cTGxvL5Zdfzvr168s81/Dhw4mJiWHbtm0MHjyY2NhYZxJit9uZOnUqbdu2JSIiggYNGnDPPfeQlZVV5jEc63t+/PFHLrjgAiIiImjWrBnvvvuu85yq3t/ViffgwYOMGDGCxo0bEx4eTsOGDRk6dGiVUxlTU1Pp2bMns2bNori4uNztM2bMoHnz5nTr1o1du3Zx3333ce655xIZGUndunW57rrrXJ4qOXPmTDp37kxkZCT16tXj1ltvZd++fWXOcUef//rrrwwcOJB69eoRGRlJ06ZNueOOO84Yn2EYPPfcczRu3JioqCj69OlTro8davp7pTLvvPMOISEhjB07tkb3FxGTRr5EpFakpaWxZMkS1q1b57ZCGVlZWQwaNIhhw4Zx/fXXM2vWLB577DHatWvHZZddBsCJEyfo3bs3W7duZeTIkTRt2pSZM2cyfPhwsrOzefDBB6v9vOvXr+fiiy8mJSWFxx9/nOjoaD755BOuuuoqPv30U66++mp69uzJqFGj+Nvf/sYTTzxB69atAWjdujVTp07lgQceICYmhj/96U8ANGjQAID8/Hx69erFvn37uOeee2jSpAmLFy9m3LhxHDhwgKlTp1YaV1paGmB+YLzuuuuIioqq9Ny8vDx69OjBxo0bueOOOzj//PM5cuQIX3zxBXv37qVevXrV7ru3336bgoIC7r77bsLDw6lTp45LfXUm7777LseOHeP++++noKCAadOmcemll7J27Vpnv82dO5ft27czYsQIkpOTWb9+Pa+//jrr169n6dKl2Gy2Mo953XXXcc455/CXv/zFuXaouo9RHd27d6d58+bMnTu30nOmTp3Ku+++y+eff85rr71GTEwM7du3B8wiHLfffjsDBw5k8uTJ5Ofn89prr3HJJZewcuXKMtP+SkpKGDhwIJdccgkvvPCC831wzz338O9//5sRI0YwatQoduzYwd///ndWrlzJTz/9RGhoqPMxtm7dyrXXXsudd97J7bffzltvvcXw4cPp3Lkzbdu2rfL9XZ14r7nmGtavX88DDzxAeno6GRkZzJ07l927d1c5lfGWW27h7rvvZs6cOWUKQaxdu5Z169Yxfvx4AH755RcWL17MjTfeSOPGjdm5cyevvfYavXv3ZsOGDVX+H3H0VdeuXZk4cSKHDh1i2rRp/PTTT6xcubLMF0ln0+cZGRkMGDCA+vXr8/jjj5OQkMDOnTv57LPPKo3NYfz48Tz33HMMHjyYwYMHs2LFCgYMGEBRUVGZ887m90pFXn/9df74xz/yxBNP8Nxzz1XrviLyO4aISC349ttvjeDgYCM4ONjo3r278eijjxpz5swxioqKyp2blpZm3H777c7r8+fPNwBj/vz5zmO9evUyAOPdd991HissLDSSk5ONa665xnls6tSpBmC8//77zmNFRUVG9+7djZiYGCM3N7fS5zAMw9ixY4cBGG+//bbzWN++fY127doZBQUFzmN2u9246KKLjHPOOcd5bObMmRU+pmEYRtu2bY1evXqVOz5hwgQjOjra2Lx5c5njjz/+uBEcHGzs3r273H1Od9tttxmAkZiYaFx99dXGCy+8YGzcuLHceePHjzcA47PPPit3m91uNwzD9b5z9FFcXJyRkZFR5rFc7auKOB43MjLS2Lt3r/P4smXLDMAYPXq081h+fn65+3/44YcGYPzwww/OY0899ZQBGDfddFO58119jKpi/etf/1rpOUOHDjUAIycnxzCMit9zjvgOHz7sPHbs2DEjISHBuOuuu8o83sGDB434+Pgyx2+//XYDMB5//PEy5y5atMgAjA8++KDM8dmzZ5c7npaWVu41Z2RkGOHh4cbDDz/sPFbZ+9vVeLOyss7YZ5XJzMw0wsPDy/07Pv744wZgbNq0yTCMiv9NlyxZUu53x+//LYqKioykpCTjvPPOM06cOOE876uvvjIAY/z48c5jZ9vnn3/+uQEYv/zyS7X6ICMjwwgLCzMuv/xy5/9ZwzCMJ554wgDK/A49298raWlpxuWXX24YhmFMmzbNsNlsxoQJE6oVr4hUTNMORaRW9O/fnyVLljBkyBBWr17NlClTGDhwICkpKS5NQatITExMmfU1YWFhXHDBBWzfvt157H//+x/JycncdNNNzmOhoaGMGjWKvLw8Fi5cWK3nzMzM5Pvvv+f666/n2LFjHDlyhCNHjnD06FEGDhzIli1byk1Lqo6ZM2fSo0cPEhMTnY995MgR+vXrR2lpKT/88EOV93/77bf5+9//TtOmTfn888955JFHaN26NX379i0T16effkqHDh0qHHlyjPBUt++uueYa6tev77zurr666qqrSElJcV6/4IIL6NatG//73/+cxyIjI53tgoICjhw54iwusmLFinKP+cc//rHcseo+RnXFxMQAcOzYsWrdb+7cuWRnZ3PTTTeVeU8EBwfTrVs35s+fX+4+9957b5nrM2fOJD4+nv79+5d5jM6dOxMTE1PuMdq0aUOPHj2c1+vXr8+5555b5v/W2cYbGRlJWFgYCxYsKDcN70wSExMZPHgwX3zxBcePHwfMKXgfffQRXbp0oWXLls7ncCguLubo0aO0aNGChISEKv9Nf/31VzIyMrjvvvvKrMu7/PLLadWqFV9//XW5+9S0zx0jaF999VWF0ygr891331FUVMQDDzxQZlT2oYceKnfu2f5ecZgyZQoPPvggkydP5s9//rPLsYpI5TTtUERqTdeuXfnss88oKipi9erVfP7557z88stce+21rFq1ijZt2lTr8Ro3blxuKlhiYiJr1qxxXt+1axfnnHNOueqJjulRu3btqtZzbt26FcMwePLJJ3nyyScrPCcjI6NMslAdW7ZsYc2aNWWSmN8/dlWCgoK4//77uf/++zl69Cg//fQT06dP55tvvuHGG29k0aJFgLkG75prrqnysarbd02bNi1z3V19dc4555Q71rJlSz755BPn9czMTJ555hk++uijcn2Uk5NT7v6/j7Umj1FdeXl5AMTGxlbrflu2bAHg0ksvrfD2uLi4MtdDQkJo3LhxucfIyckpt+7P4fevt0mTJuXOSUxMdClJcjXe8PBwJk+ezMMPP0yDBg248MILueKKK7jttttITk4+4/PccsstfP755/z3v//l5ptvZvHixezcubPMdNgTJ04wceJE3n77bfbt21emPH1V/6aO9/a5555b7rZWrVrx448/ljl2Nn3eq1cvrrnmGp555hlefvllevfuzVVXXcXNN99cZfEhR4y///9Rv359EhMTy8VyNr9XABYuXMjXX3/NY489pnVeIm6k5EtEal1YWBhdu3ala9eutGzZkhEjRjBz5kxnsQFXBQcHV3jcqGL/n8pUtp6ntLS0zHXH4vRHHnmEgQMHVnifsykRbrfb6d+/P48++miFtzu+0XdF3bp1GTJkCEOGDKF3794sXLiQXbt2OdeGudvpowxQ+311uuuvv57FixczduxYOnbsSExMDHa7nUGDBlVYUOD3sdbkMapr3bp1JCUllUuWzsTx3O+9916FScnvy6mHh4eXS5jtdjtJSUl88MEHFT7H7z+Un83/rerE+9BDD3HllVfyn//8hzlz5vDkk08yceJEvv/+ezp16lTl81xxxRXEx8czY8YMbr75ZmbMmEFwcHCZcv4PPPAAb7/9Ng899BDdu3cnPj4em83GjTfe6JZ/U4ez6XObzcasWbNYunQpX375JXPmzOGOO+7gxRdfZOnSpc4R07Phjt8rbdu2JTs7m/fee4977rmnwi8wRKT6lHyJiEd16dIFgAMHDtTK46elpbFmzRrsdnuZD0e//fab83bA+U1xdnZ2mfv/fnSnWbNmgDn9rl+/flU+d1UFGiq7rXnz5uTl5Z3xsaurS5cuLFy4kAMHDpCWlkbz5s3LVQz8PVf7rjLV6auqOEZSTrd582ZnQYasrCzmzZvHM8884yy0UNn9KuOOx6jKkiVL2LZtW7ky9K5o3rw5YFYFrWk/Nm/enO+++46LL764wsSzJqp6D4Pr8TZv3pyHH36Yhx9+mC1bttCxY0defPFF3n///SrvFx4ezrXXXsu7777LoUOHmDlzJpdeemmZhG/WrFncfvvtvPjii85jBQUF5f6f/57jvb1p06ZyI3ibNm1y6QuM6vb5hRdeyIUXXsjzzz/PjBkzuOWWW/joo4/4v//7vypj3LJli/P/GsDhw4fLjVC64/dKvXr1mDVrFpdccgl9+/blxx9/pFGjRjV+PBExac2XiNSK+fPnV/ituWPdTkXTe9xh8ODBHDx4kI8//th5rKSkhFdeeYWYmBh69eoFmB9kgoODy619+Mc//lHmelJSEr179+af//xnhQnj6XtpOfb5qeiDXnR0dIXHr7/+epYsWcKcOXPK3ZadnU1JSUmlr/XgwYPO8u6nKyoqYt68eQQFBTlHmq655hrn1M/fc/w7udp3lalOX1XlP//5T5m1YT///DPLli1zVrR0jNL8/v1VnQpu7niMyuzatYvhw4cTFhZWo+laAwcOJC4ujr/85S8VrglypR+vv/56SktLmTBhQrnbSkpKzpiMVKSy97er8ebn51NQUFDmtubNmxMbG0thYaFLMdxyyy0UFxdzzz33cPjw4XJ7ewUHB5f7N33llVfKjWj/XpcuXUhKSmL69OllYvnmm2/YuHEjl19++Rljc7XPs7KyysXYsWNHgCr7oV+/foSGhvLKK6+UuX9F79mz+b1yusaNG/Pdd99x4sQJ+vfvf9bbMIiIRr5EpJY88MAD5Ofnc/XVV9OqVSuKiopYvHgxH3/8Menp6YwYMaJWnvfuu+/mn//8J8OHD2f58uWkp6cza9YsfvrpJ6ZOnepcfxMfH891113HK6+8gs1mo3nz5nz11VcVroV49dVXueSSS2jXrh133XUXzZo149ChQyxZsoS9e/eyevVqwPwAFRwczOTJk8nJySE8PJxLL72UpKQkOnfuzGuvvcZzzz1HixYtSEpK4tJLL2Xs2LF88cUXXHHFFc7S3sePH2ft2rXMmjWLnTt3Uq9evQpf6969e7ngggu49NJL6du3L8nJyWRkZPDhhx+yevVqHnroIed9x44dy6xZs7juuuu444476Ny5M5mZmXzxxRdMnz6dDh06uNx3VXG1r6rSokULLrnkEu69914KCwuZOnUqdevWdU6hiouLo2fPnkyZMoXi4mJSUlL49ttv2bFjxxkf28EdjwFmYY73338fu91OdnY2v/zyC59++ik2m4333nvPWTq+OuLi4njttdf4wx/+wPnnn8+NN95I/fr12b17N19//TUXX3wxf//736t8jF69enHPPfcwceJEVq1axYABAwgNDWXLli3MnDmTadOmce2111Yrrqre367Eu3nzZvr27cv1119PmzZtCAkJ4fPPP+fQoUNlpg6e6XU1btyY//73v0RGRjJs2LAyt19xxRW89957xMfH06ZNG5YsWcJ3331H3bp1q3zc0NBQJk+ezIgRI+jVqxc33XSTs9R8eno6o0ePdik2V/r8nXfe4R//+AdXX301zZs359ixY7zxxhvExcUxePDgSh+/fv36PPLII0ycOJErrriCwYMHs3LlSr755ptyvyPO5vfK77Vo0YJvv/2W3r17M3DgQL7//vtqT6UVkdNYUmNRRPzeN998Y9xxxx1Gq1atjJiYGCMsLMxo0aKF8cADDxiHDh0qc66rpebbtm1b7nluv/12Iy0trcyxQ4cOGSNGjDDq1atnhIWFGe3atStTOt7h8OHDxjXXXGNERUUZiYmJxj333GOsW7euXKl5wzCMbdu2GbfddpuRnJxshIaGGikpKcYVV1xhzJo1q8x5b7zxhtGsWTMjODi4zGs4ePCgcfnllxuxsbEGUKbs/LFjx4xx48YZLVq0MMLCwox69eoZF110kfHCCy9UWJrfITc315g2bZoxcOBAo3HjxkZoaKgRGxtrdO/e3XjjjTfKlKM2DMM4evSoMXLkSCMlJcUICwszGjdubNx+++3GkSNHqtV3Zyqz7mpf/d7pj/viiy8aqampRnh4uNGjRw9j9erVZc7du3evcfXVVxsJCQlGfHy8cd111xn79+83AOOpp55ynldRKffqPkZVsTp+QkJCjDp16hjdunUzxo0bZ+zatavcfVwtNX/6+QMHDjTi4+ONiIgIo3nz5sbw4cONX3/91XnO7bffbkRHR1ca5+uvv2507tzZiIyMNGJjY4127doZjz76qLF//37nOaeXFT9dr169ym2PUNn725V4jxw5Ytx///1Gq1atjOjoaCM+Pt7o1q2b8cknn1Qaf0XGjh1rAMb1119f7rasrCzn+zcmJsYYOHCg8dtvv7n0O8YwDOPjjz82OnXqZISHhxt16tQxbrnlljLbHhjG2ff5ihUrjJtuuslo0qSJER4ebiQlJRlXXHFFmX/XypSWlhrPPPOM0bBhQyMyMtLo3bu3sW7dunKvzzBq/nvFMCp+TyxbtsyIjY01evbsWWFJfxFxjc0warBSXURExM127txJ06ZN+etf/8ojjzxidTgiIiJupzVfIiIiIiIiHqDkS0RERERExAOUfImIiIiIiHiA1nyJiIiIiIh4gEa+REREREREPEDJl4iIiIiIiAdok+Uastvt7N+/n9jYWGw2m9XhiIiIiIiIRQzD4NixYzRq1IigoMrHt5R81dD+/ftJTU21OgwREREREfESe/bsoXHjxpXeruSrhmJjYwGzg+Pi4iyNpbi4mG+//ZYBAwYQGhpqaSzeRP1SOfVNxdQvlVPfVEz9Ujn1TcXUL5VT31RM/VI5b+qb3NxcUlNTnTlCZZR81ZBjqmFcXJxXJF9RUVHExcVZ/sbzJuqXyqlvKqZ+qZz6pmLql8qpbyqmfqmc+qZi6pfKeWPfnGk5kgpuiIiIiIiIeICSLxEREREREQ9Q8iUiIiIiIuIBSr5EREREREQ8QMmXiIiIiIiIByj5EhERERER8QAlXyIiIiIiIh6g5EtERERERMQDlHyJiIiIiIh4gJIvERERERERD1DyJSIiIiIi4gFKvkRERERERDxAyZeIiIiIiIgHKPkSEQGwl2LLWEhKyQ/YMhaCvdTqiERERMTPhFgdgIiI5fZ8BssfJCR/L10AFr4EUY2h8zRIHWZ1dCIiIuInNPIlIoFtz2ew6FrI31v2eP4+8/iez6yJS0RERPyOki8RCVz2Ulj+IGBUcOPJY8sf0hREERERcQslXyISuA4vKj/iVYYB+XvM80RERETOkpIvEQlcJw649zwRERGRKij5EpHAFdnQveeJiIiIVEHJl4gErvo9zKqG2Co5wQZRqeZ5IiIiImdJyZeIBK6gYLOcfIVOJmSdp5rniYiIiJwlJV8iEthSh8E595U/Hl4feszSPl8iIiLiNkq+RESObQGgNH04ObY081j7CUq8RERExK2UfIlIYCvIgEPzALC3fpTDwR3M47kbLQxKRERE/JGSLxEJbHs+BaMU6nSBmBYcC0o1j+estzYuERER8TtKvkQksO36yLxMuxGAY0FNzOtKvkRERMTNlHyJSODK3wsZi8x2k+sBTo18ndgPRdnWxCUiIiJ+ScmXiASu3TMBA+pfAtFm0lVii8KI1NRDERERcT8lXyISuH435dDBiG9jNpR8iYiIiBsp+RKRwJS3HY7+DLYgSL22zE1G3MnkK1vJl4iIiLiPki8RCUy7PjYvG1wKkQ3K3ORMvjTyJSIiIm6k5EtEAlMlUw4BiGttXir5EhERETdS8iUigSdnA2SvgaBQaHx1uZsNR/JVcBAKMz0cnIiIiPgrJV8iEngcUw6TB0J4nfK3h8ZClPb7EhEREfdS8iUigcUwqp5y6BDf1rxU8iUiIiJuouRLRAJL1io4thmCI6DxkMrPS1DyJSIiIu6l5EtEAotj1KvRFeb0wspo5EtERETcTMmXiAQOw+7alENQ8iUiIiJup+RLRALHkaWQvxtCYqDR4KrPdVY8zICCI7Ufm4iIiPg9JV8iEjgco16Nr4KQyKrPDY2B6HSzrdEvERERcQMlXyISGOylsPsTs32mKYcOjqmHuRtqJyYREREJKEq+RCQwZCyEgkMQlgjJ/V27jyP5ytbIl4iIiJw9JV8iEhgcUw5Tr4HgMNfuo6IbIiIi4kZKvkTE/5UWwZ5PzbarUw5Be32JiIiIWyn5EhH/d/A7KMqEiAaQ1Nv1+8W1BmxQeBgKDtdWdCIiIhIglHyJiP9zTDlsch0EBbt+v5AoiGlqtjX6JSIiImdJyZeI+LeSE7D3P2a7OlMOHbTuS0RExPvYS7FlLCSl5AdsGQvNqsY+QMmXiPi3A99AyTGIagL1ulf//kq+REREvMuez+CLdEIW9qdL4UuELOwPX6Sbx72cki8R8W+OKYdpN4CtBr/ylHyJiIh4jz2fwaJrIX9v2eP5+8zjXp6AKfkSEf9VfAz2fWW2azLlECC+jXmZsx4Mwz1xiYiISPXZS2H5g0BFf49PHlv+kFdPQVTyJSL+a9+XUHoCYs+BxE41e4y4VpgVD49CQYZbwxMREZFqOLyo/IhXGQbk7zHP81JKvkTEfzmnHN4INlvNHiMkCmKamW1NPRQREbHOiQPuPc8CSr5ExD8VZcGB2Wa7plMOHbTuS0RExHqRDd17ngWUfImIf9rzOdiLIaHdqXVbNaXkS0RExHr1e0BEgypOsEFUqnmel1LyJSL+6fQph2dLyZeIiIj1bEEQXr+yG82LzlMhKNhTEVWbki8R8T8FGXBontlucsPZP17CacmXKh6KiIhYY9+XkLMObCEQkVz2tqjG0GMWpA6zJjYXhVgdgIiI2+2eBYYd6nSF2OZn/3hxrcxv24qyoOCgV88lFxER8UulRbDiYbPdeiy0n0DJgfmsWvoNHS+8jJCGfbx6xMtBI18i4n/cOeUQIDgCYk4mcZp6KCIi4nlbXoW8reaar7bjICgYI6kX+0J6YiT18onEC7wg+Xr11VdJT08nIiKCbt268fPPP1d67htvvEGPHj1ITEwkMTGRfv36VXj+xo0bGTJkCPHx8URHR9O1a1d2797tvL2goID777+funXrEhMTwzXXXMOhQ4dq5fWJiIfl7z21v0fa9e57XOe6rw3ue0wRERE5s4IjsPZZs93heQiNtTaes2Bp8vXxxx8zZswYnnrqKVasWEGHDh0YOHAgGRkVb2S6YMECbrrpJubPn8+SJUtITU1lwIAB7Nu3z3nOtm3buOSSS2jVqhULFixgzZo1PPnkk0RERDjPGT16NF9++SUzZ85k4cKF7N+/n2HDvHt+qIi4aNcn5mX9Hub8b3dR0Q0RERFrrH0airMhsSM0HW5tLGfJ0jVfL730EnfddRcjRowAYPr06Xz99de89dZbPP744+XO/+CDD8pc/9e//sWnn37KvHnzuO222wD405/+xODBg5kyZYrzvObNT635yMnJ4c0332TGjBlceumlALz99tu0bt2apUuXcuGFF7r9dYqIB7l7yqGDki8RERHPy9kAW6eb7fNf8pnphZWxLPkqKipi+fLljBs3znksKCiIfv36sWTJEpceIz8/n+LiYurUqQOA3W7n66+/5tFHH2XgwIGsXLmSpk2bMm7cOK666ioAli9fTnFxMf369XM+TqtWrWjSpAlLliypNPkqLCyksLDQeT03NxeA4uJiiouLq/Xa3c3x/FbH4W3UL5Xz277J20Zo5i8YBFHScChU8/VV2S/RLQkFjOz1lBQVgc3mhoB9h9++Z86S+qVy6puKqV8qp76pWKD3S/DyMQQZpdgbDaG0ziVl/rZ7U9+4GoPNMKypm7x//35SUlJYvHgx3bt3dx5/9NFHWbhwIcuWLTvjY9x3333MmTOH9evXExERwcGDB2nYsCFRUVE899xz9OnTh9mzZ/PEE08wf/58evXqxYwZMxgxYkSZRArgggsuoE+fPkyePLnC53r66ad55plnyh2fMWMGUVFR1Xz1IlIbzimaSZviD8gI6sCSyPL/X89GkFHM5fk3EISdOZFvURBUx62PLyIiImUllayge+Gz2Anh+8hXOB7kvdWG8/Pzufnmm8nJySEuLq7S83y21PykSZP46KOPWLBggXM9l91uB2Do0KGMHj0agI4dO7J48WKmT59Or169avx848aNY8yYMc7rubm5zjVnVXWwJxQXFzN37lz69+9PaGiopbF4E/VL5fy1b0K+/TPkQJ3z72dw08HVvv+Z+sU2uwUc20zfrskYDfpV8Aj+y1/fM2dL/VI59U3F1C+VU99ULGD7xV5CyLePQyEYLR+gV4c7y53iTX3jmBV3JpYlX/Xq1SM4OLhclcFDhw6RnJxcyb1ML7zwApMmTeK7776jffv2ZR4zJCSENm3alDm/devW/PjjjwAkJydTVFREdnY2CQkJLj9veHg44eHh5Y6HhoZa/o/t4E2xeBP1S+X8qm+y15sbLwaFEpJ+LZzF66q0XxLOg2ObCcnbBI0vO4tgfZdfvWfcSP1SOfVNxdQvlVPfVCzg+mXz63DsNwivR3D78QRX8dq9oW9cfX7Lqh2GhYXRuXNn5s2b5zxmt9uZN29emWmIvzdlyhQmTJjA7Nmz6dKlS7nH7Nq1K5s2bSpzfPPmzaSlpQHQuXNnQkNDyzzvpk2b2L17d5XPKyJebvfH5mXDQRCWWDvPoaIbIiIita8oC9Y+ZbbbPwthCZaG406WTjscM2YMt99+O126dOGCCy5g6tSpHD9+3Fn98LbbbiMlJYWJEycCMHnyZMaPH8+MGTNIT0/n4MGDAMTExBATEwPA2LFjueGGG+jZs6dzzdeXX37JggULAIiPj+fOO+9kzJgx1KlTh7i4OB544AG6d++uSocivsowaq/K4emUfIm4xl6KLWMhKSU/YMuIhoZ9fL5CmYh40LrnoPCo+Xe3+V1WR+NWliZfN9xwA4cPH2b8+PEcPHiQjh07Mnv2bBo0aADA7t27CQo6NTj32muvUVRUxLXXXlvmcZ566imefvppAK6++mqmT5/OxIkTGTVqFOeeey6ffvopl1xyifP8l19+maCgIK655hoKCwsZOHAg//jHP2r/BYtI7chaCce2QHAkpAypveeJPzmlOWe9mfAFWMVDEZfs+QyWP0hI/l66ACx8ydxzr/M0SNWemiJyBrlbYPMrZrvTixDksyUqKmT5qxk5ciQjR46s8DbHaJXDzp07XXrMO+64gzvuuKPS2yMiInj11Vd59dVXXQ1TRLzZrg/Ny5QrIDSm9p4ntiXYgqE4F07sc+8mziL+YM9nsOha4HeFlPP3mcd7zFICJiJVWzUW7MXQaDA0Gmh1NG5n2ZovERG3MOyw6+R6r9qccggQHA6x55jtbE09FCnDXgrLH6Rc4gWnji1/yDxPRKQiB7+Hvf81v+js9ILV0dQKy0e+RETOypElkL8HQmKhoQcqEMa3hdzfzKmHfviNnEilDANKjkNRpvlTmFm2nbUK8vdW9QDm/9VfR0LdLmZhnN//hMRqOq9IoLKXwgpzqyjOuRfiW1sbTy1R8iUivs1RaKPxVRASWfvPF98W9nyqohviu0UlDMOcOltZEvX7duHRU8fsxWf//Funw9ZKbrMFm1XNQitIzM70Exrn/Ymbr75nRDxh+9uQvQZCE6Dd01ZHU2uUfImI77KXwO5PzHZtTzl0UMVDAe8oKmEvheLsMydPv28XZYFxFlP/gkIhrC6E14Gwkz/hdaD4OOyZeeb7N+hnTuEtyir7Yy804yo8av5Uly3I/NBWLjGr40LiFmvevzZ5w3tGxFsV58KaP5ntdk9BeF1r46lFSr5ExHdlLISCDPPDVXI/zzynM/naoIqHgcrdRSVKi04mINVIoAozzcTrbARHlU+gXGkHR1X8vreXwhdLzH6ocN2XzUw2+syueLSn5MRpyVhm+eSsqh97obn+09E/1VVp4ubqiNsZEjcVIhGp2vqJ5t/z2JZwzn1WR1OrlHyJiO9yTDlMvQaCwzzznLHngC0ESo6Z61eim3jmecU7nLGohA1+ud/8IF+c41oyVZJ3djGFxJrfElcngQpLhOCIs3ve3wsKNkdxFl0L2CjbRyeTtc5TK59mFxJp/kQ1qv5zl0nczvBT/LvrpQVuSNziq0jO4mHjX6nyPbP8IUgZqimIEpjydsBvL5vtTi947u+5RZR8iYhvKi0y116B56YcgvlHIa6lOfKVs17JV6A5vOjMRSUKDsL3fav5wDZzrVN1R6HCEs1pgN4idZg5irP8wbL9FNXYTLxqa3TnbBK30oJTiVjhGUbcKk3cTl6vkZOFSA4vgga9a/gYIj5s1WPm6HWDvuaWMX5OyZeI+KaDc80POxHJkNTLs88d3/ZU8tXIAxUWxXucOODaeZENITrd9WQqNN5/Rj1Sh0HKUEoOzGfV0m/oeOFlhHhzYYngCPPfK7Jh9e97euJW2U/mCjOxOhNX31si/iTjR9g90xxBPv+lgJjKr+RLRHyTY8phk+s9/6Euvi0w00zAJLC4+gH9ohmBPYoRFIyR1It9IcfpkNTLexOvs+VK4nZoAczrc+bHqknyJ+LLDDuseMhsN/8/SGxvaTieok2WRcT3lJyAvf8x256ccuigioeBq34PcwodlX07a4OoVPM8EdB7RqQyO96HzOXmutV2z1odjcco+RIR37P/f2aRgug0qHeh55//9xUPJXA4ikpUyIWiEhJ4yrxnKkrADHO6ld4zEkhKjsPqcWb7vD9DZANr4/EgJV8i4nucUw5vsGZ+eGwLs8hBSR7k7/b884u1HEUlgqPKHo9qrJLhUjHHeyYq5Xc3nPz9VXDI4yGJWGrDFDixH6KbwrkPWh2NRyn5EhHfUnwM9n9ltq2Ycghm4hV7rtnO1tTDgJQ6zCyoAWwJuYqSXnNhyA4lXlK51GEwZCclvebya/gY8z3jGBFb9Tgc32VtfCKekr/35PYLQKe/mpuuBxAlXyLiW/Z+YVYYi20JiR2ti0PrvgJbST4c+w2A7aFDMPy5qIS4j7MQSU/zPdPyfqh/iTmK/vMfNY1ZAsOqcVB6ApJ6BuQXVkq+RMS3OKYcpt1obUlaJV+BLXsNGHaM8AYU2BKtjkZ8lS0Iuv0LgsLhwGzY8Z7VEYnUriM/w873AVvAlJb/PSVfIuI7CjPh4ByznXaDtbEkKPkKaJkrADASOwXkhwdxo7hzod3TZnvFQ3BC67/ETxnGqdLyzW6HOp0tDccqSr5ExHfs/RzsxZDQHuLbWBtL3Mnnz9lg7lUigSXLkXx1tDYO8Q+tH4bETuamzMsfsDoakdqx62M4sgRCoqH981ZHYxklXyLiO06fcmi12BYQFAal+VooH4gcI18JnSwORPxCUCh0exNswbB7Juz53OqIRNyr5ASsesxst3kcohpZG4+FlHyJiG84cQgOfW+2rZ5yCBAUYk4XAk09DDSlhZCzDjg57VDEHep0gjYnP5z+cp85CibiLza9bG7NEpUKrR62OhpLKfkSEd+wZ5Y5va/uBRDTzOpoTCq6EZhy1pvTX8MSISrN6mjEn5z3pPmlTsFBWPGI1dGIuMeJA7D+L2a74yQIibQ2Hosp+RIR3+BNUw4dHMmX9voKLCenHJJ4voptiHsFR5jTD7HB9rfg4HdWRyRy9lb/GUqOQ90LIe0mq6OxnJIvEfF+x/fA4R8BGzS53upoTtHIV2A6WWyDOudbG4f4p/oXQ8uRZnvZXVCcZ208ImcjcwVsf9tsd35ZX1ih5EtEfMHuT8zLpB4QlWJtLKdzJF+5G1XxMJCcPvIlUhs6/AWimsDxnbDmz1ZHI1IzhgErxgCGOeJV70KrI/IKSr5ExPt545RDgJjm5uaopScgb4fV0Ygn2Esge7XZ1siX1JbQGOj2htne9Dc4vMTaeERqYu9/IGOhOZ224ySro/EaSr5ExLsd2wqZv5olmFOvsTqasoKCIa6V2dbUw8CQ+xuUFkBIjLndgEhtaTgAmg0HDFh2p1llU8RXlBbCypNFY1o9AtFNrI3Hiyj5EhHvtutj87JBX4hIsjaWimjdV2BxTjnsBDb9CZVa1ulFiGhgTm1e95zV0Yi4bvMrkLcdIhue2kJBACVfIuLtvHXKoUOCI/naYG0c4hmZy81LTTkUTwivA11eNdsbJkHWamvjEXFFwWFYN8Fsd/iLOY1WnJR8iYj3yl5nbmYbFAqpV1sdTcU08hVYslRsQzysyTXmlGujxJx+aC+xOiKRqq0ZD8W55u/JprdZHY3XUfIlIt7LMeWw4WUQlmBpKJU6veKhvdTaWKR2GXbIWmm2NfIlntTl7xCaYI68/vaS1dGIVC57HWx73Wx3flnTsyugHhER72QY3j/lECC6qVnJqbQAjqvioV87tsXcKDQ44lShFRFPiEw2P8gCrH0KcjdbG49IRRyl5Q27OVqb1NPqiLySki8R8U5ZKyBvKwRHQsqVVkdTuaBgiGtttjX10L85im0kdICgEGtjkcDT9HZIHmB+0fPzXdpbULzP/v/BwbkQFAadplgdjddS8iUi3mnnh+ZlypXev1hX674Cg2O9l6YcihVsNrjgnxASDRk/wNZ/Wh2RyCn2Ylj5sNk+9yGIaWZpON5MyZeIeB/DDrtPrvfy5imHDo7kK1vJl19zjHzV6WxtHBK4YtKhw0SzvfJROL7b0nBEnLa8BrmbILw+nPcnq6Pxakq+RMT7HF4M+XshJBYaXWZ1NGemkS//Zxin7fGlkS+xUMv7od5FUJIHP//RfG+KWKkwE9Y+bbY7PAehcZaG4+2UfImI93EU2ki92ixu4O3i25iXub+p4qG/Or4TirPNbQ8cybaIFWxB0O1Nc13NgW9g5wdWRySBbt2zUJQFCe2g2Z1WR+P1lHyJiHexl8CemWbbF6YcAsQ0NQuD2Ashb5vV0UhtcIx6xbeD4DBrYxGJbwXtnjLbyx+Eggxr45HAlbsJNp/cCPz8l8wiVFIlJV8i4l0yFpgfJMLqQHI/q6NxjS1IFQ/9nYptiLdpPRYSO0JRJvw6yupoJFCteMTcADzlSt/5m20xJV8i4l0cUw6bXGtO8fIVWvfl3zKVfImXCQo1px/ags0CRXv/a3VEEmgOzIX9X4EtBDq9YHU0PkPJl4h4j9Ii2P2p2U67ydpYqitByZffMgzIXG62VWxDvEmd880RMIBf7oWibEvDkQBiLzE3VAZoORLiWlobjw9R8iUi3uPgt2ZRg8iGUL+H1dFUj0a+/NeJ/VB42BxhSGhvdTQiZZ03HmJbwokDsHKs1dFIoNj2JuSsM5cItBtvdTQ+RcmXiHgP55TD631v0a4j+crdZH4jKP7DMeUwrjWERFobi8jvhURCt3+Z7W3/goPzrI1H/F9RDqx50my3exrCEi0Nx9co+RIR71CSf2rNgq9UOTxddBoER4G9CI5ttToacScV2xBvl9QDzrnfbC+7C0qOWxuP+Lf1z5uzAeJawTl/tDoan6PkS0S8w/7/mZuGRqdB3W5WR1N9tqBT+31p6qF/0ebK4gs6ToSoVDi+A1Y/aXU04q+ObYNN08x2pxd9qzCWl1DyJSLewTHlMO1GsNmsjaWmtO7LP2nkS3xBaCxc8LrZ3jQVjiy1NBzxU6seNWd4JA+ARpdZHY1PUvIlItYrzoX9X5ttX5xy6OBMvjZYG4e4T0EG5O8124kdLQ1F5IwaDYKmtwEGLLsTSgutjkj8yaGFsOczc6bH+S/57helFlPyJSLW2/sFlBZA3LmQ0MHqaGpOI1/+J3OleRnb0hxZEPF2578EEUnml0Dr/2J1NOIv7KWwYrTZbnHPqe1VpNqUfImI9ZxVDn14yiGc+mN0bBPYi62NRdxDUw7F14TXhS5/N9vr/wJZa6yNR/zDjnchayWExkO7Z6yOxqcp+RIRaxVmwoE5ZjvtBmtjOVtRTSAkxky8VPHQP6jYhvii1Guh8dVglJjTD7X9hZyN4jxY/YTZPu9JiKhvbTw+TsmXiFhrz2fmB4SEDhDf2upozo7NpoqH/kYjX+KLbDbo+qo5SpH5q1mAQ6SmNkyCgoMQ0xxajrQ6Gp+n5EtErHV6lUN/oHVf/qMoC/K2m+3ETtbGIlJdkQ3N9V9gboir0XipieO74bcXzXanFyA43Np4/ICSLxGxzomDkDHfbPv6lEMHJV/+I2uVeRmdDuF1rIxEpGaajYDkfmZBo2X/B4bd6ojE16x63Hz/JPWGxkOtjsYvKPkSEevsnmV+GKjbDWKaWh2Neyj58h+ZmnIoPs5mM/f+Co6CjIWw9Q2rIxJfcngJ7PoQsEHnl327IJYXUfIlItbZ7WdTDuHUmq/czVBaZG0scnZUbEP8QUxT6HCy5PzKsaf2rROpimE/VVq++R3a59CNlHyJiDWO74bDPwE2aHKd1dG4T1QqhMSaRUSObbE6GjkbKrYh/qLlSKjXHUqOwc9/BMOwOiLxdjs/hKPLzAq+7Z+zOhq/ouRLRKyx+xPzMqknRKVYG4s7qeKhfyjOg9xNZlsjX+LrgoKh278gKAz2f31yKplIJUryYfXjZrvtExCZbG08fkbJl4hYw9+qHJ5O6758X/ZqwIDIRhDZwOpoRM5efBtzjyaA5aOg4LC18Yj32viiOT01Og1ajbY6Gr+j5EtEPC93C2QuB1swpF5jdTTup+TL92m9l/ijNo9BQnsoPArLH7Q6GvFG+fvMfb0AOk6G4Ahr4/FDSr5ExPN2f2xeJveDiPrWxlIblHz5Pq33En8UFAoXvgW2IHPq4d4vrY5IvM3qP0FpPtS7CJpcb3U0fknJl4h4nj9POQRIOJl8HdsCpYXWxiI1ozLz4q/qdIZWj5jtX/4IRTnWxiPe4+ivsOMds915qkrL1xIlXyLiWdnrzBGhoDBofJXV0dSOyBQIjQOjFI5ttjoaqa7SglOjlpp2KP6o3dMQew6c2A+rHrU6GvEGhnGqtHz6H6BuV2vj8WNKvkTEsxyjXo0ug7AES0OpNTbbqamH2Zp66HOy15qJc3g9iGpsdTQi7hcSaVY/BNj6Ohyab208Yr09n8LhHyE4Ejr+xepo/JqSLxHxHMM4lXw18dMphw5a9+W7Ti+2oWk34q+SesI595rtZf9nlheXwFRaYG7ADdD6UX3pVMuUfImI52T+CnnbIDgKGl9pdTS1S8mX71KxDQkUHSeZH7TztsOa8VZHI1bZNA2O7zSnzLcZa3U0fk/Jl4h4jmPUK+VKCIm2Npba5ki+cjdYG4dUn4ptSKAIjYOu/zTbm16GIz9bG4943olDsO55s91xov//bfYCSr5ExDMMO+w6WWLeX6scns6RfB3bqoqHvsReDNlrzLaKbUggSBkM6beav6OX3QmlRVZHJJ605kkoOQZ1ukD6LVZHExCUfImIZxz+CU7sM79pbTTI6mhqX2RDCE0wCzfkbrI6GnFVzgawF0FoPMQ0szoaEc84/2UIrw8562DDRKujEU/JWg3b3zTbnaea+79JrVMvi4hnOKYcNr4agiOsjcUTbLZT+31p3ZfvcBbb6KRiGxI4IupBl1fM9vrnzS1BxL8ZBqwYY454Nrke6l9sdUQBQ8mXiNQ+ewnsnmm2A2HKoYOKbvgeFduQQNXkemg81Jx6u+xOsJdaHZHUpn1fwqHvISgcOk62OpqAouRLRGrfoflQeBjC60JyX6uj8RwlX77n9DLzIoHEZoMu/zCn3B792ayAJ/6ptAhWPmK2W42BmHRLwwk0Sr5EpPY5phymXgdBodbG4klKvnyLvRSyVpltjXxJIIpqBJ1eMNtr/gzHtlkbj9SOLa/CsS0Q0QDajrM6moCj5EtEaldpIez5zGwH0pRDgPg25mXeNnMTS/FuxzZDab5Zajm2pdXRiFij+Z3Q4FIoPQE/32WuDRL/UXgU1j5rtjs8D6Gx1sYTgJR8iUjtOvAtFGdDZCOof4nV0XhWRDKEJZoLmnN/szoaOZPM5eZlYkcICrY0FBHL2GzQ7Q0IjjSnjG/7l9URiTutfdr8m5zYEZoOtzaWAKXkS0Rql2PKYZPrA+8Drc12auphtqYeej2t9xIxxTQzR0XAXBuUv8/aeMQ9cjbAltfM9vkvBd7fZC+h5EtEak9JPuz7r9kOtCmHDlr35TtU6VDklJajoG43KM6FX+7V9EN/sOIRc+/JxldBgz5WRxOwlHyJSO3Z/zWUHIfodKh7gdXRWEPJl28w7JC10mxr5EvEHBXp9qZZJGnfl7DrY6sjkrOxfzYc+Mb89+z0V6ujCWhKvkSk9jimHKbdGLgb1ir58g15281v+IPCIb611dGIeIeEttD2z2Z7+QNQcMTaeKRm7CWw8mGz3XIUxLawNp4Ap+RLRGpHcS7s+9psB+qUQziVfOVtN6dhindyrPdKaB9Y2yGInEmbxyGhHRQegRUPWR2N1MTW1831XuH14Lw/Wx1NwFPyJSK1Y+9/wV4Ica3MD7SBKiLJ3FwaQxUPvZnWe4lULDjMnH5oC4KdH5z6Uk18Q1EWrB1vtts9A2EJloYjSr5EpLZoyqHp9IqHmnrovTKVfIlUqm5XaDXGbP98jzmzQXzDuufMvb3i20CLu62ORlDyJSK1ofCoub8XQJMbrI3FGyj58m6GcWrkS8U2RCrW7hmIaQEn9sHKx6yORlyRuwU2v2K2O70EQSHWxiOAki8RqQ17PgOjxNzEMb6V1dFYT3t9ebf8PeYXBrYQSDjP6mhEvFNIlLn5MsDW6XBogaXhiAtWjQV7MTS8DBoNtDoaOUnJl4i43+lTDuVU8pW7wdo4pGKOKYfxbSE4wtpYRLxZg97Q4h6zvewuFRHyZge/N9de24Lh/BetjkZOo+RLRNzrxAE4NN9sa8qhyVnxcIc+rHgjFdsQcV3HyRCZAnlbYe3TVkcjFbGXworRZvuce7V9hpdR8iUi7rV7FmBA3QshJt3qaLxDRH0Ir49Z8XCj1dHI72VqvZeIy8Li4YLpZvu3F+Hor9bGI+Vtfxuy10BoArR72upo5HeUfImIe2nKYcW07st7aeRLpHpSroC0m8Gww7I7oLTI6ojEoTgX1pzcy6vdUye3OhFvouRLRNzn+C44shiwQZPrrI7Gu6jioXc6ccD8wQaJHayORsR3dJ5qbtqbvRY2TLY6GnFYPxEKDkHsOXDOfVZHIxVQ8iUi7rPrE/MyqRdENbI2Fm+ToOTLK2WuNC/jWkFItLWxiPiSiPrQ+W9me/0EyFFBIcvl7YTfXjbbnV40N8gWr6PkS0TcR1MOK6eRL++kKYciNZd2I6RcaZYzX3qHWehBrLPqMbAXQoO+5tRQ8UpKvkTEPXI3mx9kbcGQeo3V0XgfR/J1fCcU51kaipxGxTZEas5mg67/gNA4OLrs1Ia+4nkZP8LuT8AWBOe/ZP7biFdS8iUi7rHrY/MyuT9E1LM2Fm8UXhciksy2Kh56D418iZydqMbQ6a9me/WfIG+7tfEEIsN+qrR88/+DxPbWxiNVUvIlImfPMGDXh2ZbUw4rp6mH3qXwqFkkBiCxo6WhiPi05ndBgz5Qmg/L7jb/Jojn7HgfMn+FkFho96zV0cgZKPkSkbOXs84czQkKg8ZXWR2N91Ly5V2yThbbiGkOYQmWhiLi02w2uOB1CI6EQ/Ng+1tWRxQ4So7D6nFm+7w/Q2QDa+ORM/KK5OvVV18lPT2diIgIunXrxs8//1zpuW+88QY9evQgMTGRxMRE+vXrV+784cOHY7PZyvwMGjSozDnp6enlzpk0aVKtvD4Rv+cotNFosLkBp1RMe315l0xNORRxm9gW0H6C2V7xMOTvtzaeQLHhr3BiP0Q3hXMftDoacYHlydfHH3/MmDFjeOqpp1ixYgUdOnRg4MCBZGRkVHj+ggULuOmmm5g/fz5LliwhNTWVAQMGsG/fvjLnDRo0iAMHDjh/Pvzww3KP9eyzz5Y554EHHqiV1yji1wxDVQ5dpZEv76JiGyLude5DUPcCKM6BX+/T9MPalr8XNk4x252mQHC4tfGIS0KsDuCll17irrvuYsSIEQBMnz6dr7/+mrfeeovHH3+83PkffPBBmev/+te/+PTTT5k3bx633Xab83h4eDjJyclVPndsbOwZz3EoLCyksLDQeT03NxeA4uJiiouLXXqM2uJ4fqvj8Dbql8q5s29smb8QkrcdIziKkqSB4MP9XevvmeiWhALk76Y4PxNCY2vneWqBP/5/Cslcjg0oiWuPUcPX5Y/94i7qm4r5fb90nk7I3G7Y9v6Xkh0fYqRe5/Jd/b5vaqiyfgle8RhBpSew17uE0uQhPv33t6a86T3jagw2w7Dua4mioiKioqKYNWsWV111lfP47bffTnZ2Nv/973/P+BjHjh0jKSmJmTNncsUV5p4Gw4cP5z//+Q9hYWEkJiZy6aWX8txzz1G3bl3n/dLT0ykoKKC4uJgmTZpw8803M3r0aEJCKs5Hn376aZ555plyx2fMmEFUVFQ1X7mI/2hb+BYtSr5gb3APlkc8bHU4Xm9g/ggijCx+iJhCVnBLq8MJWCFGPpfn3wzAN1HvUGTTdFkRdzm36ENaFX9MIfHMi3qFYluc1SH5nYTSzfQqeBQDGwsj/kpOcAurQwp4+fn53HzzzeTk5BAXV/l73tLka//+/aSkpLB48WK6d+/uPP7oo4+ycOFCli1bdsbHuO+++5gzZw7r168nIiICgI8++oioqCiaNm3Ktm3beOKJJ4iJiWHJkiUEBwcD5ojb+eefT506dVi8eDHjxo1jxIgRvPTSSxU+T0UjX6mpqRw5cqTKDvaE4uJi5s6dS//+/QkNDbU0Fm+ifqmc2/rGsBPyVTNsBfspuWgWRsoQ9wVpAU+8Z4IXDiIo43tKuryO0XR4rTxHbfC3/0+2w4sIWdAXIzKVkiu21fhx/K1f3El9U7GA6Bd7ESFzL8CWuwF72i2UXvC2S3cLiL6pgXL9YhgEz+9N0NEl2NNvo7Trv6wO0TLe9J7Jzc2lXr16Z0y+LJ92eDYmTZrERx99xIIFC5yJF8CNN55ad9KuXTvat29P8+bNWbBgAX379gVgzJgxznPat29PWFgY99xzDxMnTiQ8vPyc2fDw8AqPh4aGWv6P7eBNsXgT9UvlzrpvMn6Agv0QGk9I6hUQ7B/9XKvvmYTzION7QvJ+Ax98X/rN/6fcNQDY6p7vltfjN/1SC9Q3FfPvfgmFC9+Gud0J2vUBQek3Q8pg1+/t131Tc85+2fUxHF0CIdEEdZxIkPrKK94zrj6/pQU36tWrR3BwMIcOHSpz/NChQ2dci/XCCy8wadIkvv32W9q3r3ozuWbNmlGvXj22bt1a6TndunWjpKSEnTt3uhy/SMBzFNpIvVoLfV2VoKIbXkHFNkRqV70LzAIcAL/8EYpzLQ3Hb5ScgJWPmu3Wj0FUI2vjkWqzNPkKCwujc+fOzJs3z3nMbrczb968MtMQf2/KlClMmDCB2bNn06VLlzM+z969ezl69CgNGzas9JxVq1YRFBREUlJS9V6ESKCyl8DumWY77SZrY/ElzoqHG6yNI9Blqcy8SK1rPwFimkH+Hlg1zupo/MOmlyF/N0SlQmuts/ZFlpeaHzNmDG+88QbvvPMOGzdu5N577+X48ePO6oe33XYb48ad+g87efJknnzySd566y3S09M5ePAgBw8eJC8vD4C8vDzGjh3L0qVL2blzJ/PmzWPo0KG0aNGCgQMHArBkyRKmTp3K6tWr2b59Ox988AGjR4/m1ltvJTEx0fOdIOKLDn0PhUcgvB40uNTqaHyHI/nK36Nvgq1Skm9uCg4a+RKpTSFR0O3keqQt/zCnqkvNnTgA6yea7Y6TzP4Vn2N58nXDDTfwwgsvMH78eDp27MiqVauYPXs2DRqYO3Tv3r2bAwcOOM9/7bXXKCoq4tprr6Vhw4bOnxdeeAGA4OBg1qxZw5AhQ2jZsiV33nknnTt3ZtGiRc41W+Hh4Xz00Uf06tWLtm3b8vzzzzN69Ghef/11z3eAiK9yTDlsch0E+fTyUc8KS4DIk9NENPpljew1YNghogFEVj4jQkTcoEEfaH6X2V72f+a0OXGdvRRbxkJSSn4g+Je7oSQP6nbTjBMfdlafmAoKCsoUuqipkSNHMnLkyApvW7BgQZnrZ1qTFRkZyZw5c6o85/zzz2fp0qXVCVFETldaCHs+M9vaWLn64tvCif3muq96F1odTeA5fb2XzWZtLCKBoNNfYf/XcGwLrHvGHLWRM9vzGSx/kJD8vXQBcJRIaHyVfnf5sGqPfNntdiZMmEBKSgoxMTFs374dgCeffJI333zT7QGKiBc6MAeKc8wRnPqXWB2N73FMPcxW0Q1LaL2XiGeFxUPX6WZ74wuQudzaeHzBns9g0bWQv7f8baufOPUFqPicaidfzz33HP/+97+ZMmUKYWFhzuPnnXce//pX4O4zIBJQnFMObwCb5bOXfU+8Kh5aKlPJl4jHNb7SnClhlMLSO8BebHVE3steCssfBKrYinf5Q+Z54nOq/anp3Xff5fXXX+eWW25xblgM0KFDB3777Te3BiciXqjkOOz9r9nWlMOaUfJlndJCyFlntlVsQ8SzOk+D8LrmussNU6yOxnuUFkHuFtg/Bzb/A366ueIRLyfDLNp0eJHHQhT3qfaar3379tGiRYtyx+12O8XF+hZDxO/t+xpK8yG6KdTtanU0vim+jXl5Yh8UZZtFOMQzctab37iHJUJ0mtXRiASWiCQ4fxosuRXWPQupwyC+tdVReUZhJuRth7xtJy9Pa+fvMYsAVdeJA2c+R7xOtZOvNm3asGjRItLSyv7RmjVrFp06dXJbYCLipRxTDtNu1ILfmgqLh8gUM/nK2QD1L7I6osChYhsi1kq/GXZ9aBbgWHYn9FsEQcFnvp+3s5eYSdTpSdWx0xKt4uyq7x8cZe6JFtMMgsJgz6wzP6eqtfqkaidf48eP5/bbb2ffvn3Y7XY+++wzNm3axLvvvstXX31VGzGKiLcoyoH9/zPbmnJ4duLbnky+1iv58iRnsY3O1sYhEqhsNuj6GnzdFo4sgS2vwrmjrI7KNcW55ZMqR6J1fBcYJVXfP7KhmVxFN4PY5ieTrZOXEQ1OfSFkL4Uv0iF/HxWv+7JBVGOo38PNL1A8odrJ19ChQ/nyyy959tlniY6OZvz48Zx//vl8+eWX9O/fvzZiFBFvsfe/YC+EuNaQ0M7qaHxbfFs4+K3WfXmaim2IWC86FTpNgV/uhVXjIGUIxKRbHZU59S9/X8VTA/O2Q+GRqu8fFA4xTcsmVc52U9c3RQ4KNtfHLboWsFE2ATuZoHWe6h8jhgGoWslXSUkJf/nLX7jjjjuYO3dubcUkIt5KUw7dJ0FFNzzOXgLZq822im2IWKvF3ebflIyF8PNd0Osb52bCtoxoaNindpKLkuOQt6P81MDj283j9qKq7x9ev3xy5RjFimzkvgrAqcOgxyyz6uHpxTeiGpuJV+ow9zyPeFy1kq+QkBCmTJnCbbfdVlvxiIi3KjgCB09+6ZJ2g7Wx+ANVPPS83N+gtABCYs0PSyJiHVsQXPAGfNMeDn4HnycRUpRlbia88KWTSca06icZhgEFByueGpi3DQoOVX1/WwhEp5dNqpyJVlMIjavhC66B1GGQMpSSA/NZtfQbOl54GSG1lZSKx1R72mHfvn1ZuHAh6enptRCOiHitvZ+Z89kTO0HcuVZH4/ucFQ8PQFGWWX1PapdzymEn7U8n4g3izoHU62Dne+bvwdPl7zOn3fWYVT4BKy2AvJ1lkypnorUdSk9U/bxhiZVMDWxmJn1B1f54XHuCgjGSerEv5Dgdknop8fID1X53XXbZZTz++OOsXbuWzp07Ex0dXeb2IUOGuC04EfEip085lLMXGgdRqWZ1rOz1kHSJ1RH5P0exDU05FPEO9lI4NL+SG0+uc1p2F2Sthfydp6YJnthX9ePagiCqSdmkKva0REtfdomFqp183XfffQC89NJL5W6z2WyUlmq3bRG/c+IAHFpgtptcb2kofiW+rZl85Sj58ggV2xDxLocXwYmqNhMGijJh3dPlj4fEmIlVuamBzcw9/IJCayVkkbNV7eTLbq/BJnAi4tt2zwQMqNfdOypS+Yv4tnBgttZ9eYJhh6yVZlsjXyLewdVNgpN6QXK/0xKs5hBeV4WfxCd50aRWEfFamnJYO1R0w3OObYGSPAiO1JpFEW/h6ibB7Z6GBr1rMxIRj6nRiuOFCxdy5ZVX0qJFC1q0aMGQIUNYtGiRu2MTEW+Qt9PcCBMbNLnO6mj8i5Ivz3FMOUzo4F2L6UUCWf0eZoELKhvBsplrY7WZsPiRaidf77//Pv369SMqKopRo0YxatQoIiMj6du3LzNmzKiNGEXESrs/MS8b9Hb9W0pxjaPiYcEhKDxqbSz+LkvrvUS8jmMzYaB8AqbNhMU/VTv5ev7555kyZQoff/yxM/n6+OOPmTRpEhMmTKiNGEXESppyWHtCY8yF4QA5G6yNxd+p2IaId3JsJhyVUvZ4VOOKy8yL+LhqJ1/bt2/nyiuvLHd8yJAh7Nixwy1BiYiXyN1kFimwhUBj/QGsFZp6WPsM41TypWIbIt4ndRgM2UlJr7n8Gj6Gkl5zYcgOJV7il6qdfKWmpjJv3rxyx7/77jtSU1PdEpSIeIldH5uXyf0hop61sfgrJV+17/hOKM42S087+ltEvItzM+GeGNpMWPxYtVcdP/zww4waNYpVq1Zx0UUXAfDTTz/x73//m2nTpp3h3iLiMwwDdn1otjXlsPYo+ap9jlGv+HYQHGZtLCIiEtCqnXzde++9JCcn8+KLL/LJJ+ZC/NatW/Pxxx8zdOhQtwcoIhbJXgu5v0FQODTW/+1ao+Sr9qnYhoiIeIka1du9+uqrufrqq90di4h4E8eoV6PBEBZvbSz+LL61eVmQAQVHNL2zNqjYhoiIeIlqr/n65ZdfWLZsWbnjy5Yt49dff3VLUCJiMcNQlUNPCYmG6HSzrdEv9zMMyFxutlVsQ0RELFbt5Ov+++9nz5495Y7v27eP+++/3y1BiYjFjv5sFikIiYaUy62Oxv9p6mHtObEfCg+DLRgS2lsdjYiIBLhqJ18bNmzg/PPLf3vYqVMnNmzQPjUifsEx6pUyxEzApHYp+ao9jimHca0hJNLaWEREJOBVO/kKDw/n0KFD5Y4fOHCAkJAaLSETEW9iL4XdJ0vMa8qhZyj5qj0qtiEiIl6k2snXgAEDGDduHDk5Oc5j2dnZPPHEE/Tv39+twYmIBQ7/CCcOQGgCNBxodTSBIUHJV63R5soiIuJFqj1U9cILL9CzZ0/S0tLo1KkTAKtWraJBgwa89957bg9QRDzMMeUwdRgEh1sbS6CIaw3YoPCIWfUwIsnqiPyHRr5ERMSLVDv5SklJYc2aNXzwwQesXr2ayMhIRowYwU033URoaGhtxCginmIvhj2zzLamHHpOSBTENIW87ebol5Iv9yjIgPy9Zjuxo6WhiIiIQA33+YqOjubuu+92dywiYrWD35ujL+H1oUEfq6MJLPFtzeQre7363l0yV5qXsS0hNNbaWERERKjGmq/Nmzfz888/lzk2b948+vTpwwUXXMBf/vIXtwcnIh62++SUwybXQZAK6HiUim64n6YcioiIl3E5+Xrsscf46quvnNd37NjBlVdeSVhYGN27d2fixIlMnTq1NmIUEU8oLYQ9n5ltTTn0PCVf7qdiGyIi4mVc/mr7119/5dFHH3Ve/+CDD2jZsiVz5swBoH379rzyyis89NBDbg9SRDzgwGwozoXIFKh/sdXRBJ7Tky/DAJvN2nj8gUa+RETEy7g88nXkyBEaN27svD5//nyuvPJK5/XevXuzc+dOtwYnIh7kqHKYdgPYqr0LhZytuFZmvxdlmoUi5OwUZZlr6AASO1kbi4iIyEkuf8KqU6cOBw4cAMBut/Prr79y4YUXOm8vKirCMAz3Rygita/kOOz9wmxryqE1QiIhupnZ1tTDs5e1yryMTofwOlZGIiIi4uRy8tW7d28mTJjAnj17mDp1Kna7nd69eztv37BhA+np6bUQoojUun1fQWk+xDSDOl2sjiZwabNl98nUlEMREfE+Lq/5ev755+nfvz9paWkEBwfzt7/9jejoaOft7733HpdeemmtBCkitcw55fBGrTWyUnxb2PtfJV/uoGIbIiLihVxOvtLT09m4cSPr16+nfv36NGrUqMztzzzzTJk1YSLiI4pyYP//zLamHFpLFQ/dR8U2RETEC1VrI5+QkBA6dOhQ4W2VHRcRL7f3P2Avgvg2EH+e1dEENlU8dI/iPMjdZLY18iUiIl5EJc1EAp1jymETTTm0XNy5JyseZkHBQauj8V3ZqwEDIhtBZAOroxEREXFS8iUSyAqPwMG5ZjvtBmtjEQiOgJjmZltTD2tO671ERMRLKfkSCWBBez8Ho9T8kBrX0upwBE5NPcxW8lVjWu8lIiJeSsmXSACz7fnEbKjQhvdQ0Y2z5ywz39naOERERH6nRsnXokWLuPXWW+nevTv79u0DzFLzP/74o1uDE5HaE2HPxHb4B/NK2vXWBiOnKPk6O6UFp/pOI18iIuJlqp18ffrppwwcOJDIyEhWrlxJYWEhADk5OfzlL39xe4AiUjsalf6EDQPqXQTRaVaHIw6/r3go1ZO91pxKG14fIlOsjkZERKSMaidfzz33HNOnT+eNN94gNDTUefziiy9mxYoVbg1ORGqBvRRbxkKaFp/c26uJRr28Sty5YAuG4hw4sd/qaHxP5mnrvVS9U0REvEy1k69NmzbRs2fPcsfj4+PJzs52R0wiUlv2fAZfpBOysD8xxgHz2IbJ5nHxDsHhENvCbGvqYfVlqdKhiIh4r2onX8nJyWzdurXc8R9//JFmzZq5JSgRqQV7PoNF10L+3rLHCw6ax5WAeQ+t+6q5TFU6FBER71Xt5Ouuu+7iwQcfZNmyZdhsNvbv388HH3zAI488wr333lsbMYrI2bKXwvIHgYrWEJ08tvwh8zyxnpKvmrEXQ/Yas63kS0REvFBIde/w+OOPY7fb6du3L/n5+fTs2ZPw8HAeeeQRHnjggdqIUUTO1uFF5Ue8yjAgf495XoPenopKKqO9vmomZwPYiyA0HqKbWh2NiIhIOdVOvmw2G3/6058YO3YsW7duJS8vjzZt2hATE1Mb8YmIOxzf49p5Jw7UbhziGkfylbvBrHiowhGuUbENERHxctWednjHHXdw7NgxwsLCaNOmDRdccAExMTEcP36cO+64ozZiFJGzkfEjrPmza+dGNqzdWMQ1sS3BFgLFuXBin9XR+A4V2xARES9X7eTrnXfe4cSJE+WOnzhxgnfffdctQYmIGxRlwbK74LsekL+bqv+72yAqFer38FR0UpXgMIg9x2xr6qHrVGxDRES8nMvTDnNzczEMA8MwOHbsGBEREc7bSktL+d///kdSUlKtBCki1WAYsOsjWPEQFGSYx5r/H9S/BJaOcJx02h1OTs/qPBWCgj0Xp1Qtvi3kbjSLbjQaaHU03s9eClmrzLZGvkRExEu5nHwlJCRgs9mw2Wy0bNmy3O02m41nnnnGrcGJSDXlbYdf7oMDc8zrca3hgn9C0skRrdBYs+rh6cU3ohqbiVfqMI+HK1WIbwt7ZqnioauObYbSfAiJPjVqKCIi4mVcTr7mz5+PYRhceumlfPrpp9SpU8d5W1hYGGlpaTRq1KhWghSRM7AXw28vwdpnoPQEBIXDeX+G1o+aU9gcUodBylBKDsxn1dJv6HjhZYQ07KMRL2+UoHLz1eKYcpjYUe9nERHxWi4nX7169QJgx44dNGnSBFsFlaR2795NkyZN3BediJzZkaXw892Qvda83uBS6PoaxJUfoQYgKBgjqRf7Qo7TIamXPqh6K+deX6p46BIV2xARER9Q7YIbzZo14/Dhw+WOHz16lKZNta+KiMcU5ZhTDL+9yEy8wuvChe/Apd9VnniJ74g9x6x4WHLM3INNqqZiGyIi4gOqvc+XYRgVHs/LyytThENEaolhwJ5PYfmoU/tyNRsOHf8KEfUsDU3cKCjUTKJzNphTD6M1q6BShl0jXyIi4hNcTr7GjBkDmIU1xo8fT1RUlPO20tJSli1bRseOHd0eoIic5vgu+OV+2P+1eT32HLOgRoM+1sYltSO+7ankq9FlVkfjvfK2m3uiBYVDfGuroxEREamUy8nXypUrAXPka+3atYSFnVrEHxYWRocOHXjkkUfcH6GIgL0ENv0N1jxpVnQLCoU246DtOAjWiLPfim8LzFTRjTNxTDlMaG/+3xAREfFS1ap2CDBixAimTZtGXFxcrQUlIqc5+qtZUCPL/AKE+j3M0S59w+//HEU3tNFy1bK03ktERHxDtdd8vf322wBs3bqVbdu20bNnTyIjIzEMo8IKiCJSQ8XHYPWfYcvfzTUtYYnQ6a/QbATYql0rR3yRI/nK3WC+B/TvXjEV2xARER9R7b/kmZmZ9O3bl5YtWzJ48GAOHDAX/N955508/PDDbg9QJCDt+Q981Ro2/8380J1+C1zxGzS/Ux/AA0lsC3MaXclxOL7b6mi8k2Go2IaIiPiMan+Ke+ihhwgNDWX37t1lim7ccMMNzJ49263BiQSc/L3ww9Ww6Go4sQ9imkGfOXDR+xCRZHV04mlBoRB7rtnWuq+K5e+BwqNmWf6E86yORkREpErVnnb47bffMmfOHBo3blzm+DnnnMOuXbvcFphIQLGXwpZXYfWfoCTP/CDZeiyc9ySERFodnVgpvi3krDOTr5TLrY7G+zimHMa3VfEZERHxetVOvo4fP15mxMshMzOT8PBwtwQlElAyV5oFNTJ/Na/X624W1EhoZ21c4h0c67408lUxFdsQEREfUu1phz169ODdd991XrfZbNjtdqZMmUKfPtprSMRlJcdhxSMwp6uZeIXGQ9fXoP+PSrzklAQlX1XK1HovERHxHdUe+ZoyZQp9+/bl119/paioiEcffZT169eTmZnJTz/9VBsxiviffV/DL/dB/skiCk2uh85TIbKhpWGJF3KOfG1UxcOKaORLRER8SLX/ip933nls3ryZSy65hKFDh3L8+HGGDRvGypUrad68eW3EKOI/ThyAH6+HhVeYiVd0GvT6Gi75WImXVCymOQSFmZtrH99pdTTe5cQB8wcbJHawOhoREZEzqvbIF0B8fDx/+tOf3B2LiP8y7LD1n7DqcSjOBVswtBoN7Z6GkGiroxNvFhQCca0gew3kbDArYIop8+TG43Gt9P9IRER8QrWTrx9++KHK23v27FnjYET8UvZaWHY3HF1qXq/TFbq9DokdLQ1LfEh825PJ13pIucLqaLyHphyKiIiPqXby1bt373LHbDabs11aWnpWAYn4jZJ8WDcBNr4ARgmExEKH5+Gc+yAo2OroxJc41n1lq+hGGSq2ISIiPqbayVdWVlaZ68XFxaxcuZInn3yS559/3m2Bifi0A9/CL/dC3nbzeuOrocvfIKpx1fcTqYjKzVdMI18iIuJjqp18xcfHlzvWv39/wsLCGDNmDMuXL3dLYCI+6cQhWDEGds0wr0c1hi5/h8ZDrY1LfJsj+cpVxUOnwqNwfJfZ1hReERHxETUquFGRBg0asGnTJnc9nIhvMeyw7U1Y+SgUZ5sfjls+AO0nQGis1dGJr4tpBkHhUHoC8nZArCrLknWy2EZMcwhLsDQUERERV1U7+VqzZk2Z64ZhcODAASZNmkTHjh3dFZeI78jZAD/fA4d/NK8ndoILXoe6XayNS/xHUPDJioerzamHSr5OrffSlEMREfEh1U6+OnbsiM1mwzCMMscvvPBC3nrrLbcFJuL1Sgtg3fOwcTLYi81S1+0nmCNeQW4bVBYxxbc9lXw1HmJ1NNZTsQ0REfFB1f6EuGPHjjLXg4KCqF+/PhEREW4LSsTrHfwefvkjHNtiXm90BXT9u7lpskhtSGgLu1DRDQcV2xARER9U7eQrLU0fLiWAFRyBlQ/DjnfN65ENofMrkDoMTttyQcTtVPHwlOLcU198aORLRER8SI1KZi1cuJArr7ySFi1a0KJFC4YMGcKiRYvcHZuI9zAM2P5v+LrVycTLZu7XdflGaHKNEi+pfc6Kh7+BPcD3U8xaZV5GNYGIepaGIiIiUh3VTr7ef/99+vXrR1RUFKNGjWLUqFFERkbSt29fZsyYURsxilgrdzN83xeWjjDLWye0gwGLoeurEFZ+6wWRWhHdFIIjzLWGjv3jApWKbYiIiI+q9rTD559/nilTpjB69GjnsVGjRvHSSy8xYcIEbr75ZrcGKGKZ0kLYMBnWPw/2IgiOhHZPQ6vREBRqdXQSaIKCIa61WWI9Zz3EnWN1RNZRsQ0REfFR1R752r59O1deeWW540OGDClXjEPEZ2Usgm86wtqnzMSr4UC4fB20eVSJl1hH675MKrYhIiI+qtrJV2pqKvPmzSt3/LvvviM1NdUtQYlYpjATlv0ffNfTXFsTkQQXfQi9vzE3uhWxkpIvKMmH3I1mW8mXiIj4mGpPO3z44YcZNWoUq1at4qKLLgLgp59+4t///jfTpk1ze4AiHmEYsHMGrBgNhYfNY83vgk6TISzR2thEHJR8QfYaMOwQkWxWGxUREfEh1U6+7r33XpKTk3nxxRf55JNPAGjdujUff/wxQ4cOdXuAIrXu2Db45V44ONe8Ht8Guv4Tki6xNi6R30s4veJhSWBu5q1iGyIi4sNq9Jf76quv5uqrr3Z3LCKeVVoEv70I6541K8gFhcN5T0LrsRAcZnV0IuVFp0NwFJTmQ942iDvX6og8L0vFNkRExHfV+GvToqIiMjIysNvtZY43adLkrIMSqXWHF8PP90DOOvN6g0uh6/TAriAn3s8WBPGtIXM55GwIzORLI18iIuLDqp18bdmyhTvuuIPFixeXOW4YBjabjdLSAN/8U7yDvRRbxkJSSn7AlhENDfuYpbqLsmHVONg63TwvvB6c/xKk36qNksU3xLc9mXyth9QAm4FQWnjqCxMlXyIi4oOqnXwNHz6ckJAQvvrqKxo2bIhNH1jF2+z5DJY/SEj+XroALHwJIhtD2vVmUY2Cg+Z5zUZAp79CeF0roxWpnkAuupGzHuzFEFYHojTLQkREfE+1S82vWrWKf/7zn1x22WV07NiRDh06lPmpiVdffZX09HQiIiLo1q0bP//8c6XnvvHGG/To0YPExEQSExPp169fufOHDx+OzWYr8zNo0KAy52RmZnLLLbcQFxdHQkICd955J3l5eTWKX7zIns9g0bWQv7fs8RN74beXzMQrtiX0nQ8XvqXES3xPICdfp0851Bd/IiLig6qdfLVp04YjR464LYCPP/6YMWPG8NRTT7FixQo6dOjAwIEDycjIqPD8BQsWcNNNNzF//nyWLFlCamoqAwYMYN++fWXOGzRoEAcOHHD+fPjhh2Vuv+WWW1i/fj1z587lq6++4ocffuDuu+922+sSC9hLYfmDgFH5OaFxMGglNOjtqahE3MuRfOVuMiseBhIV2xARER/nUvKVm5vr/Jk8eTKPPvooCxYs4OjRo2Vuy83NrXYAL730EnfddRcjRoygTZs2TJ8+naioKN56660Kz//ggw+477776NixI61ateJf//oXdru93MbP4eHhJCcnO38SE0/t1bRx40Zmz57Nv/71L7p168Yll1zCK6+8wkcffcT+/fur/RrESxxeVH7E6/eKcyGz8pFVEa8X3QRCosFeBMe2Wh2NZ6nYhoiI+DiX1nwlJCSUWdtlGAZ9+/Ytc05NCm4UFRWxfPlyxo0b5zwWFBREv379WLJkiUuPkZ+fT3FxMXXq1ClzfMGCBSQlJZGYmMill17Kc889R9265hSzJUuWkJCQQJcuXZzn9+vXj6CgIJYtW1ZhGf3CwkIKCwud1x2JZnFxMcXFxS6/5trgeH6r47CaLW+PS2/okrw9GHUCu6/0nqmYr/RLcGwrgrKWU5K5GiOquUee0/K+sZcQkrUaG1Ac2w685N/I8n7xYuqbiqlfKqe+qZj6pXLe1DeuxuBS8jV//vyzCqYyR44cobS0lAYNGpQ53qBBA3777TeXHuOxxx6jUaNG9OvXz3ls0KBBDBs2jKZNm7Jt2zaeeOIJLrvsMpYsWUJwcDAHDx4kKSmpzOOEhIRQp04dDh48WOHzTJw4kWeeeabc8W+//ZaoqCiXYq1tc+fOtToESyWXrKebC+ctXb2Lo+v+V+vx+IJAf89Uxtv7pVNhHE2ALb/+l81rIjz63Fb1Tax9F5faCygmkv/9sAlsWyyJozLe/p6xkvqmYuqXyqlvKqZ+qZw39E1+fr5L57mUfPXq1eusgqktkyZN4qOPPmLBggVERJz6AHLjjTc62+3ataN9+/Y0b96cBQsWlBuxc9W4ceMYM2aM83pubq5zvVlcXFzNX4QbFBcXM3fuXPr3709oaKilsVjFduB/BP9sTlU1gIqW4hvYIDKFbpc/ArZgj8bnbfSeqZiv9EvQpo2wZj7nNiimRffBHnlOq/vGtvM9+AWC63VhcJ8rPP78lbG6X7yZ+qZi6pfKqW8qpn6pnDf1javLr1xKvtasWePyE7dv397lc+vVq0dwcDCHDh0qc/zQoUMkJydXed8XXniBSZMm8d13353xOZs1a0a9evXYunUrffv2JTk5uVxBj5KSEjIzMyt93vDwcMLDw8sdDw0Ntfwf28GbYvGYkuOw4pFT+3ZFpWJzrvs6vfCGzUzIukwjNMyzIwXeLCDfMy7w+n5JNH/nBR3bSJCH47Ssb3LNv0NBdTt7/DW7wuvfMxZS31RM/VI59U3F1C+V84a+cfX5XUq+OnbsiM1mwzCqqCIH1V7zFRYWRufOnZk3bx5XXXUVgLN4xsiRIyu935QpU3j++eeZM2dOmXVbldm7dy9Hjx6lYcOGAHTv3p3s7GyWL19O586dAfj++++x2+106+bKxDXxCkd/gcW3wrHN5vVzR0PHv8D+/5lVD08vvhHVGDpPhdRhloQq4lYJJyseHtts7nsVFAB/jFVsQ0RE/IBLydeOHTtqLYAxY8Zw++2306VLFy644AKmTp3K8ePHGTFiBAC33XYbKSkpTJw4EYDJkyczfvx4ZsyYQXp6unONVkxMDDExMeTl5fHMM89wzTXXkJyczLZt23j00Udp0aIFAwcOBKB169YMGjSIu+66i+nTp1NcXMzIkSO58cYbadSoUa29VnETewlsmARrnwGjBCIbQfd3IPnkur/UYZAylJID81m19Bs6XngZIQ37QFBgTzUUPxLVBEJioCQPjm2B+DZWR1S7DDtkrTTbKjMvIiI+zKXkKy0trdYCuOGGGzh8+DDjx4/n4MGDdOzYkdmzZzuLcOzevZugoFMV8V977TWKioq49tpryzzOU089xdNPP01wcDBr1qzhnXfeITs7m0aNGjFgwAAmTJhQZtrgBx98wMiRI+nbty9BQUFcc801/O1vf6u11ylucmwbLPkDHDlZDbPJddB1OoSXrXZJUDBGUi/2hRynQ1IvJV7iX2w2M+E6+rO52bK/J1/HtpqJZnAkxJ1rdTQiIiI15lLy9cUXX3DZZZcRGhrKF198UeW5Q4YMqXYQI0eOrHSa4YIFC8pc37lzZ5WPFRkZyZw5c874nHXq1GHGjBmuhihWMwzY/rY5nbAkD0JioeurkH6r+UFUJNDEtzWTr+z15pcQ/swx5TChAwS59GdLRETEK7n0V+yqq65ylmd3rM2qSHXXfIm4pOAI/HIP7PnMvF6/B3R/F2LSLQ1LxFLxJ9d95ay3Ng5PyNJ6LxER8Q8uJV92u73Ctkit2z8Hlg6HgoNmUYF2z0LrsZpGKBJIyVfmcvNSyZeIiPg4zd8Q71RyAlY9Cpv/bl6Paw0Xva8PXyIOjuTr2BYoLYLgMGvjqS2GcWraoYptiIiIjws68ymmJUuW8NVXX5U59u6779K0aVOSkpK4++67KSwsdHuAEoAyV8DszqcSr5YPwKDlSrxEThfVGELjzIqfju0W/NHxnVCcbY58OxJOERERH+Vy8vXss8+yfv2p6S1r167lzjvvpF+/fjz++ON8+eWXznLwIjViL4X1k+DbCyF3I0QkQ+/Z0OVvEBJpdXQi3sVmg7iTVQ5zNlgbS21yjHrFt/Pf0T0REQkYLidfq1atom/fvs7rH330Ed26deONN95gzJgx/O1vf+OTTz6plSAlAOTthHl9YPU4c9PY1GEweC00Gmh1ZCLeKyEA1n2p2IaIiPgRl9d8ZWVlOffeAli4cCGXXXaZ83rXrl3Zs2ePe6MT/2cYsPN9+OV+KDlmbhzb+W/QbLhKyIucSSAU3chU8iUiIv7D5ZGvBg0asGPHDgCKiopYsWIFF154ofP2Y8eOERoa6v4IxX8VZsJPN8CS28zEq95FMHg1NB+hxEvEFf6efBnGqUqHKrYhIiJ+wOXka/DgwTz++OMsWrSIcePGERUVRY8ePZy3r1mzhubNm9dKkOKHDn4H/2sHu2eCLQTaPwf9FkJMM6sjE/EdZSoe+mHBoxP7ofAw2IIhob3V0YiIiJw1l6cdTpgwgWHDhtGrVy9iYmJ45513CAs7tfj5rbfeYsCAAbUSpPiR0gJYNQ42TTWvx7aEiz6Aul0sDUvEJ0U2gtB4KM4xKx4mtLM6IvdyTDmMa62iOyIi4hdcTr7q1avHDz/8QE5ODjExMQQHl93kdubMmcTExLg9QPEjWath8S2npkidcy90+iuERFsbl4ivstkgvg0cWQLZ6/0v+VKxDRER8TPV3mQ5Pj6+wuN16tQ562DETxl2+O0lWP0nsBdBRBJ0ewtSLrc6MhHfF9/WTL78cd2XNlcWERE/U+3kS6Raju8xC2pkLDCvpwyBbm+YCZiInD1/LrqhkS8REfEzSr6k9uz8EH6511yPEhwFnadC8/9TJUMRd/LX5KsgA/L3mu3EjpaGIiIi4i5KvsT9irLhl/tg14fm9brdoPt7EHeOpWGJ+CVH8pW31SxoExxhbTzukrnSvIxtCaGx1sYiIiLiJi6XmhdxyaH58L/2ZuJlC4Z2T0P/H5V4idSWyIYQmmCurczdZHU07qMphyIi4oeUfIl7lBbCyrEwry/k74GYFtD/J2j3FARpgFWk1thskOCHUw8dxTbqdLY2DhERETfSp2I5e9nrzBLy2WvM683vgvNfglBtPSDiEfFt4fBP/pV8ZanSoYiI+B8lX1Jzhh02/Q1WPQ72QgivB93ehMZDrI5MJLD4W9GNoizI226263SyNhYRERE3UvIlNZO/F5YMh0PzzOuNBpuJV2SypWGJBCRH8pXtJ8lX1irzMrophCVaGoqIiIg7KfmS6tv1CfzyR/Pb6eBIc4phi3tUQl7EKs6Kh9ug5ASERFobz9nKVLENERHxT0q+xHVFOfDrA7DzPfN6nS5w0fsQd661cYkEuogGEFYHijIh9zffn6qn5EtERPyUqh2KazIWwTcdzMTLFgRt/wwDFivxEvEGNpt/rftSsQ0REfFTGvmSqpUWwdqnYMNkwDDXYFz0PtS/yOrIROR08W3h8CLI2WB1JGenOO/UfmWJPj6CJyIi8jtKvqRyORvNEvJZK83rzUZA56kQGmdpWCJSAX8Z+cpeDRgQmQKRDayORkRExK2UfEl5hgGbX4VVY6G0wFxL0u0NSB1mdWQiUhl/2WhZ671ERMSPKfmSsk4cgKV3wIHZ5vWGA6HbWxDVyNq4RKRqzoqH26EkH0KirI2nprTeS0RE/JgKbsgpez6D/7UzE6/gCOj8CvT+RomXiC+ISDI3OscwKx76Ko18iYiIH1PyJVB8zBztWnQNFB6FxI4waDmcO1J7d4n4kvg25qWvTj0sLTgVu5IvERHxQ0q+At3hxfBNR9j+NmCDNo/DgGWnPsSJiO/w9aIb2WvBKIXw+mbBDRERET+jNV+Byl4Ma5+FDX8Bww7RadD9XUjqaXVkIlJTjuQr20eTr9OnHGrUXURE/JCSr0CUuwkW3wqZv5rX0/8AXV6BsHhr4xKRs+PrI18qtiEiIn5OyVcgMQzYOh1WPAylJyAsEbpOh7TrrY5MRNzBkXwd3wElxyEk2tp4qkvFNkRExM8p+QoUJw7Bsjth/9fm9eR+cOG/IUrrKkT8RkR9c71U4WFzk/S6XayOyHX2YsheY7aVfImIiJ9SwY1AsPcLs4T8/q8hKBzOfxn6zFHiJeKPfHXqYc4GsBdBaDxEN7U6GhERkVqhkS9/VpwHK8bAtjfM6wnt4aIPIOE8a+MSkdoT3xYyFvhe8qViGyIiEgCUfPk6eym2jIWklPyALSMaGvaBoGA4sswsqpG3FbBB64eh/XMQHG51xCJSmxJ8dORLxTZERCQAKPnyZXs+g+UPEpK/ly4AC1+CyMZQ/yLY86m5X05UY7OEfIM+VkcrIp7gq9MOVWxDREQCgJIvX7XnM1h0LWCUPX5iL+z+xGyn3QRdXzWrGopIYHBWPNxlTj0OjbE2HlfYSyFrldnWyJeIiPgxFdzwRfZSWP4g5RKv04XVge7vKfESCTThdSGigdnO2WBtLK46thlK883S+LHnWB2NiIhIrVHy5YsOL4L8vVWfU5RpnicigcfXph46phwmdjTXrIqIiPgpJV++6MQB954nIv7FkXzl+sjIl4ptiIhIgFDy5YsiG7r3PBHxL47kK9vHRr5UbENERPycki9fVL+HWcWQyvbCsUFUqnmeiAQeX5p2aNg18iUiIgFDyZcvCgqGztNOXvl9AnbyeuepWjshEqgce33l74biY9bGciZ5O6A4F4LCIb611dGIiIjUKiVfvip1GPSYBVEpZY9HNTaPpw6zJi4RsV5Y4qlpx95e8dAx6pXQHoJCrY1FRESklmmfL1+WOgxShlJyYD6rln5DxwsvI6RhH414iQjEtTGL7uSsh3rdrI6mcpnLzUut9xIRkQCgkS9fFxSMkdSLfSE9MZJ6KfESEZOvrPtSsQ0REQkgSr5ERPxRgg8kX4ahYhsiIhJQlHyJiPgjXxj5yt8DhUfBFgIJ51kdjYiISK1T8iUi4o8cyVf+XijKsTaWyjimHMa3heAIa2MRERHxACVfIiL+KCwBIhuZbW+teJil9V4iIhJYlHyJiPgrb596mKn1XiIiEliUfImI+CtvT7408iUiIgFGyZeIiL/y5uTrxAHzxxYEiR2sjkZERMQjlHyJiPgrb06+Mleal3GtICTa2lhEREQ8RMmXiIi/im9jXp7YD0XZloZSjvb3EhGRAKTkS0TEX4XFQ1Rjs+1to1+ZWu8lIiKBR8mXiIg/89aphxr5EhGRAKTkS0TEnzmTLy/a66vwKBzfZbYTO1oaioiIiCcp+RIR8WfeOPKVdbLYRkwLc2qkiIhIgFDyJSLiz7wx+dJ6LxERCVBKvkRE/Jmz4uEBKMqyNhYHJV8iIhKglHyJiPiz0FiIamK2s71k9EvFNkREJEAp+RIR8XeO0S9vmHpYnAvHtpjtxE7WxiIiIuJhSr5ERPydN637ylplXkY1gYh6loYiIiLiaUq+RET8nTclX1rvJSIiAUzJl4iIv/PG5EvrvUREJAAp+RIR8XeONV8Fh8wNjq2UpZEvEREJXEq+RET8XWgMRKeZbStHv0ryIXej2VbyJSIiAUjJl4hIIPCGqYfZa8CwQ0QyRDa0Lg4RERGLKPkSEQkEjuTLyr2+VGxDREQCnJIvEZFA4A0jX9pcWUREApySLxGRQOANyZdGvkREJMAp+RIRCQTxrc3LwsNQcNjzz19aCDnrzLaSLxERCVBKvkREAkFINEQ3NdtWjH7lrAd7MYTVgagmnn9+ERERL6DkS0QkUFg59fD0KYc2m+efX0RExAso+RIRCRQJFiZfKrYhIiKi5EtEJGA4R742eP65VWxDREREyZeISMCwatqhvQSyV5ttjXyJiEgAU/IlIhIo4loBNig8AgUZnnve3N+gtABCYiG2ueeeV0RExMso+RIRCRQhURDTzGx7cvTLOeWwE9j0Z0dERAKX/gqKiAQSx9TDbA8mXyq2ISIiAij5EhEJLPFtzEtLRr6UfImISGBT8iUiEkg8XXTDsEPWSrOtkS8REQlwSr5ERALJ6cmXYdT+8x3bCiV5EBwJcefW/vOJiIh4MSVfIiKBJK6VWfSiKBMKDtX+8zmmHCZ0gKCQ2n8+ERERL6bkS0QkkIREQrQHKx5mab2XiIiIg5IvEZFAk+DBdV8qtiEiIuKk5EtEJNB4quiGYajMvIiIyGmUfImIBBpPJV/Hd0JRFgSFnXpOERGRAKbkS0Qk0Jy+0XJtVjx0FttoB8Fhtfc8IiIiPsIrkq9XX32V9PR0IiIi6NatGz///HOl577xxhv06NGDxMREEhMT6devX5Xn//GPf8RmszF16tQyx9PT07HZbGV+Jk2a5K6XJCLiveLONSseFmfDiQO19zyacigiIlKG5cnXxx9/zJgxY3jqqadYsWIFHTp0YODAgWRkZFR4/oIFC7jpppuYP38+S5YsITU1lQEDBrBv375y537++ecsXbqURo0aVfhYzz77LAcOHHD+PPDAA259bSIiXik4AmJamO3anHqoYhsiIiJlWJ58vfTSS9x1112MGDGCNm3aMH36dKKionjrrbcqPP+DDz7gvvvuo2PHjrRq1Yp//etf2O125s2bV+a8ffv28cADD/DBBx8QGhpa4WPFxsaSnJzs/ImOjnb76xMR8Uq1ve7LMCBzudnWyJeIiAgAlu54WVRUxPLlyxk3bpzzWFBQEP369WPJkiUuPUZ+fj7FxcXUqVPHecxut/OHP/yBsWPH0rZt5Yu8J02axIQJE2jSpAk333wzo0ePJiSk4i4pLCyksLDQeT03NxeA4uJiiouLXYq1tjie3+o4vI36pXLqm4oFUr8ExbYiGLBnraXUhddb7b45sY/QwsMYtmBKYlqBn/ZpIL1nqkt9UzH1S+XUNxVTv1TOm/rG1RgsTb6OHDlCaWkpDRo0KHO8QYMG/Pbbby49xmOPPUajRo3o16+f89jkyZMJCQlh1KhRld5v1KhRnH/++dSpU4fFixczbtw4Dhw4wEsvvVTh+RMnTuSZZ54pd/zbb78lKirKpVhr29y5c60OwSupXyqnvqlYIPRLSkkRXYCsXYv5MeN/Lt/P1b5pUPIzFwK5NGbBnPk1C9KHBMJ7pqbUNxVTv1ROfVMx9UvlvKFv8vPzXTrP0uTrbE2aNImPPvqIBQsWEBERAcDy5cuZNm0aK1aswGazVXrfMWPGONvt27cnLCyMe+65h4kTJxIeHl7u/HHjxpW5T25urnO9WVxcnBtfVfUVFxczd+5c+vfvX+kUy0Ckfqmc+qZiAdUvOanw7YvUCT7A4Msugyp+X0L1+yZo/XLYALFNejL4gsHuitrrBNR7pprUNxVTv1ROfVMx9UvlvKlvHLPizsTS5KtevXoEBwdz6NChMscPHTpEcnJylfd94YUXmDRpEt999x3t27d3Hl+0aBEZGRk0adLEeay0tJSHH36YqVOnsnPnzgofr1u3bpSUlLBz507OPffccreHh4dXmJSFhoZa/o/t4E2xeBP1S+XUNxULiH5JbAu2YGzFOYSWHIaoFJfu5nLf5KwGIKheF4L8vS8JkPdMDalvKqZ+qZz6pmLql8p5Q9+4+vyWFtwICwujc+fOZYplOIpndO/evdL7TZkyhQkTJjB79my6dOlS5rY//OEPrFmzhlWrVjl/GjVqxNixY5kzZ06lj7lq1SqCgoJISko6+xcmIuLtgsMh9hyzXRtFN1RmXkREpBzLpx2OGTOG22+/nS5dunDBBRcwdepUjh8/zogRIwC47bbbSElJYeLEiYC5nmv8+PHMmDGD9PR0Dh48CEBMTAwxMTHUrVuXunXrlnmO0NBQkpOTnSNaS5YsYdmyZfTp04fY2FiWLFnC6NGjufXWW0lMTPTgqxcRsVB8W8j9zUy+Gg5w3+MWZED+XsAGiR3c97giIiI+zvLk64YbbuDw4cOMHz+egwcP0rFjR2bPnu0swrF7926Cgk4N0L322msUFRVx7bXXlnmcp556iqefftql5wwPD+ejjz7i6aefprCwkKZNmzJ69Ogya7pERPxefBvY86n7R74yV5qXcS0hNNa9jy0iIuLDLE++AEaOHMnIkSMrvG3BggVlrle2Zqsqv7/P+eefz9KlS6v9OCIifsWx11e2m5MvTTkUERGpkOWbLIuIiEUcyVfuBnNTZHfJPJl81VHyJSIicjolXyIigSq2JdhCoDj35BotN9HIl4iISIWUfImIBKrgMPdXPCzKgrztZrtOJ/c8poiIiJ9Q8iUiEsgcUw/dlXxlrTIvo5tCmKrHioiInE7Jl4hIIHN38qX1XiIiIpVS8iUiEsgSlHyJiIh4ipIvEZFA5hz5clPFQxXbEBERqZSSLxGRQBZ7DgSFQkke5O8+u8cqzoPcTWY7UcU2REREfk/Jl4hIIAsKNUvOw9lvtpy9GjAgMgUiG5x1aCIiIv5GyZeISKBzV9ENrfcSERGpkpIvEZFA567kS+u9REREqqTkS0Qk0J1edONsaORLRESkSkq+REQCnSP5yt0Ahr1mj1FacGrkTMmXiIhIhZR8iYgEutgWEBQGJcfheA0rHmavBaMUwuubBTdERESkHCVfIiKBLigE4s412zVd93X6lEObzT1xiYiI+BklXyIicvZFN1RsQ0RE5IyUfImICMS1MS/dMfIlIiIiFVLyJSIikHAWI1/2YsheY7aVfImIiFRKyZeIiJw27XBj9Sse5mwAexGExkN0U/fHJiIi4ieUfImICMQ0NyselubD8Z3Vu6+KbYiIiLhEyZeIiJyseNjKbGdXc+qhim2IiIi4RMmXiIiYalrxUMU2REREXKLkS0RETDVJvuylkLXKbGvkS0REpEpKvkRExFST5OvYZnOdWEg0xJ5TO3GJiIj4CSVfIiJiciRfuRvNES1XOKYcJnaEoOBaCUtERMRfKPkSERFTTDMIjoDSAji+w7X7qNiGiIiIy5R8iYiIKSj4VMVDV6ceOottdK6dmERERPyIki8RETmlOuu+DPupkS9VOhQRETkjJV8iInKKI/lyZa+vvB1QnGtOVYxrXbtxiYiI+AElXyIickp1Rr4co14J7c1NmkVERKRKSr5EROQUZ8XD385c8TBTxTZERESqQ8mXiIicEtMUgiPBXgh526s+N1PrvURERKpDyZeIiJxiCzq1fquqqYeGAVnLzbaSLxEREZco+RIRkbJcWfeVvwcKj4ItBOLP80xcIiIiPk7Jl4iIlBXfxrysKvlyTDlMOA+Cw2s/JhERET+g5EtERMpyZeQrS8U2REREqkvJl4iIlJVwesXDkorPUbENERGRalPyJSIiZUWnQ3AU2Isgb1vF52jkS0REpNqUfImISFm2IIivouLhiQPmjy0IEtt7NjYREREfpuRLRETKc6z7yq4g+cpcaV7GtYKQaM/FJCIi4uOUfImISHlVFd3QlEMREZEaUfIlIiLlVZV8qdiGiIhIjSj5EhGR8hzJ17FNYC8ue5tGvkRERGpEyZeIiJQX3cRcz2UvhmNbTx0vPArHd5ntxI6WhCYiIuKrlHyJiEh5tiCIa2O2T5t6aMteZTZiWkBYvOfjEhER8WFKvkREpGIJ5dd92bJOVjrUei8REZFqU/IlIiIVq6Dohi1byZeIiEhNKfkSEZGKVZR8OUa+VGxDRESk2kKsDkBERLyUI/nK3Qz2YkKMfGzHTxbfSOxkXVwiIiI+SiNfIiJSsahUCIkFowTythBv33HyeBOIqGdtbCIiIj5IyZeIiFTMZoN4s+KhLWcD8fZt5nGt9xIREakRJV8iIlK5k1MPbbkbSLBvN49pvZeIiEiNKPkSEZHKOUa+cjcQX3oy+dLIl4iISI0o+RIRkco5Rr4yVxBr7DWPKfkSERGpEVU7FBGRyjmSr/ydABgRydgiG1oYkIiIiO/SyJeIiFQuqrFZ8fAkI7IJ2EstDEhERMR3KfkSEZHK7f0c7IXOq0FZP8MX6bDnM+tiEhER8VFKvkREpGJ7PoNF14K9qOzx/H3mcSVgIiIi1aLkS0REyrOXwvIHAaOCG08eW/6QpiCKiIhUg5IvEREp7/AiyN9bxQkG5O8xzxMRERGXKPkSEZHyThxw73kiIiKi5EtERCrgajl5lZ0XERFxmZIvEREpr34Ps8w8tkpOsEFUqnmeiIiIuETJl4iIlBcUDJ2nnbzy+wTs5PXOU83zRERExCVKvkREpGKpw6DHLIhKKXs8qrF5PHWYNXGJiIj4qBCrAxARES+WOgxShlJyYD6rln5DxwsvI6RhH414iYiI1ICSLxERqVpQMEZSL/aFHKdDUi8lXiIiIjWkaYciIiIiIiIeoORLRERERETEA5R8iYiIiIiIeICSLxEREREREQ9Q8iUiIiIiIuIBSr5EREREREQ8QMmXiIiIiIiIByj5EhERERER8QAlXyIiIiIiIh6g5EtERERERMQDlHyJiIiIiIh4gJIvERERERERD1DyJSIiIiIi4gEhVgfgqwzDACA3N9fiSKC4uJj8/Hxyc3MJDQ21OhyvoX6pnPqmYuqXyqlvKqZ+qZz6pmLql8qpbyqmfqmcN/WNIydw5AiVUfJVQ8eOHQMgNTXV4khERERERMQbHDt2jPj4+EpvtxlnSs+kQna7nf379xMbG4vNZrM0ltzcXFJTU9mzZw9xcXGWxuJN1C+VU99UTP1SOfVNxdQvlVPfVEz9Ujn1TcXUL5Xzpr4xDINjx47RqFEjgoIqX9mlka8aCgoKonHjxlaHUUZcXJzlbzxvpH6pnPqmYuqXyqlvKqZ+qZz6pmLql8qpbyqmfqmct/RNVSNeDiq4ISIiIiIi4gFKvkRERERERDxAyZcfCA8P56mnniI8PNzqULyK+qVy6puKqV8qp76pmPqlcuqbiqlfKqe+qZj6pXK+2DcquCEiIiIiIuIBGvkSERERERHxACVfIiIiIiIiHqDkS0RERERExAOUfImIiIiIiHiAki8f8sMPP3DllVfSqFEjbDYb//nPf8rcbhgG48ePp2HDhkRGRtKvXz+2bNliTbAedKZ++eyzzxgwYAB169bFZrOxatUqS+K0QlV9U1xczGOPPUa7du2Ijo6mUaNG3Hbbbezfv9+6gD3kTO+Zp59+mlatWhEdHU1iYiL9+vVj2bJl1gTrYWfqm9P98Y9/xGazMXXqVI/FZ5Uz9cvw4cOx2WxlfgYNGmRNsB7kyvtl48aNDBkyhPj4eKKjo+natSu7d+/2fLAedqa++f37xfHz17/+1ZqAPeRM/ZKXl8fIkSNp3LgxkZGRtGnThunTp1sTrIedqW8OHTrE8OHDadSoEVFRUQwaNCggPudNnDiRrl27EhsbS1JSEldddRWbNm0qc05BQQH3338/devWJSYmhmuuuYZDhw5ZFHHVlHz5kOPHj9OhQwdeffXVCm+fMmUKf/vb35g+fTrLli0jOjqagQMHUlBQ4OFIPetM/XL8+HEuueQSJk+e7OHIrFdV3+Tn57NixQqefPJJVqxYwWeffcamTZsYMmSIBZF61pneMy1btuTvf/87a9eu5ccffyQ9PZ0BAwZw+PBhD0fqeWfqG4fPP/+cpUuX0qhRIw9FZi1X+mXQoEEcOHDA+fPhhx96MEJrnKlftm3bxiWXXEKrVq1YsGABa9as4cknnyQiIsLDkXremfrm9PfKgQMHeOutt7DZbFxzzTUejtSzztQvY8aMYfbs2bz//vts3LiRhx56iJEjR/LFF194OFLPq6pvDMPgqquuYvv27fz3v/9l5cqVpKWl0a9fP44fP25BtJ6zcOFC7r//fpYuXcrcuXMpLi5mwIABZV736NGj+fLLL5k5cyYLFy5k//79DBs2zMKoq2CITwKMzz//3HndbrcbycnJxl//+lfnsezsbCM8PNz48MMPLYjQGr/vl9Pt2LHDAIyVK1d6NCZvUVXfOPz8888GYOzatcszQXkBV/olJyfHAIzvvvvOM0F5icr6Zu/evUZKSoqxbt06Iy0tzXj55Zc9HpuVKuqX22+/3Rg6dKgl8XiLivrlhhtuMG699VZrAvIirvyeGTp0qHHppZd6JiAvUVG/tG3b1nj22WfLHDv//PONP/3pTx6MzHq/75tNmzYZgLFu3TrnsdLSUqN+/frGG2+8YUGE1snIyDAAY+HChYZhmJ93Q0NDjZkzZzrP2bhxowEYS5YssSrMSmnky0/s2LGDgwcP0q9fP+ex+Ph4unXrxpIlSyyMTHxJTk4ONpuNhIQEq0PxGkVFRbz++uvEx8fToUMHq8OxnN1u5w9/+ANjx46lbdu2VofjVRYsWEBSUhLnnnsu9957L0ePHrU6JEvZ7Xa+/vprWrZsycCBA0lKSqJbt25VTmUNVIcOHeLrr7/mzjvvtDoUy1100UV88cUX7Nu3D8MwmD9/Pps3b2bAgAFWh2apwsJCgDKjxkFBQYSHh/Pjjz9aFZYlcnJyAKhTpw4Ay5cvp7i4uMxn4FatWtGkSROv/Ays5MtPHDx4EIAGDRqUOd6gQQPnbSJVKSgo4LHHHuOmm24iLi7O6nAs99VXXxETE0NERAQvv/wyc+fOpV69elaHZbnJkycTEhLCqFGjrA7FqwwaNIh3332XefPmMXnyZBYuXMhll11GaWmp1aFZJiMjg7y8PCZNmsSgQYP49ttvufrqqxk2bBgLFy60Ojyv8s477xAbG+u906Q86JVXXqFNmzY0btyYsLAwBg0axKuvvkrPnj2tDs1SjmRi3LhxZGVlUVRUxOTJk9m7dy8HDhywOjyPsdvtPPTQQ1x88cWcd955gPkZOCwsrNwXx976GTjE6gBExHrFxcVcf/31GIbBa6+9ZnU4XqFPnz6sWrWKI0eO8MYbb3D99dezbNkykpKSrA7NMsuXL2fatGmsWLECm81mdThe5cYbb3S227VrR/v27WnevDkLFiygb9++FkZmHbvdDsDQoUMZPXo0AB07dmTx4sVMnz6dXr16WRmeV3nrrbe45ZZbAmIt3Jm88sorLF26lC+++IK0tDR++OEH7r//fho1alRmZCPQhIaG8tlnn3HnnXdSp04dgoOD6devH5dddhmGYVgdnsfcf//9rFu3zqdH+zTy5SeSk5MBylV2OXTokPM2kYo4Eq9du3Yxd+5cjXqdFB0dTYsWLbjwwgt58803CQkJ4c0337Q6LEstWrSIjIwMmjRpQkhICCEhIezatYuHH36Y9PR0q8PzKs2aNaNevXps3brV6lAsU69ePUJCQmjTpk2Z461btw6IaoeuWrRoEZs2beL//u//rA7FcidOnOCJJ57gpZde4sorr6R9+/aMHDmSG264gRdeeMHq8CzXuXNnVq1aRXZ2NgcOHGD27NkcPXqUZs2aWR2aR4wcOZKvvvqK+fPn07hxY+fx5ORkioqKyM7OLnO+t34GVvLlJ5o2bUpycjLz5s1zHsvNzWXZsmV0797dwsjEmzkSry1btvDdd99Rt25dq0PyWna73TnnPlD94Q9/YM2aNaxatcr506hRI8aOHcucOXOsDs+r7N27l6NHj9KwYUOrQ7FMWFgYXbt2LVcSevPmzaSlpVkUlfd588036dy5s9aUYv5NKi4uJiio7MfT4OBg50iqmGv669evz5YtW/j1118ZOnSo1SHVKsMwGDlyJJ9//jnff/89TZs2LXN7586dCQ0NLfMZeNOmTezevdsrPwNr2qEPycvLK/Mt6o4dO1i1ahV16tShSZMmPPTQQzz33HOcc845NG3alCeffJJGjRpx1VVXWRe0B5ypXzIzM9m9e7dz/yrHB4Hk5GSv/EbEnarqm/9v596Doqz+P4C/V77ALnJzBbmMgGMgQ4ZclMIhEEFdHFMESQomwbxRKDKNkDoqYoMCI2goEZMMxARxyRGMtEQTAZ3ESpCbiKRmBlOGNqOLgfL8/nDYXyu7oDjsmr5fM/yxzznPOR8+C8N+OM85VlZWCAkJwc8//4yKigo8ePBA8Wy0VCqFnp6etsIedUPlZfz48UhKSsKiRYtgZWWFmzdvIjMzEzdu3MCbb76pxag1Y7jfp0cLdF1dXVhaWsLR0VHToWrUUHmRSqVITEzEkiVLYGlpiY6ODsTHx8Pe3h4ymUyLUY++4X5e4uLiEBoaCh8fH8yePRvffvstvv76a1RVVWkvaA0ZLjfAw3+SlpaWIi0tTVthatxweZk1axbi4uIgkUhgZ2eHU6dOIT8/H+np6VqMWjOGy01paSnMzc1ha2uLxsZGrF+/HosXL37uDyOJjo5GYWEhysvLYWRkpPisYmJiAolEAhMTE6xYsQIffPABpFIpjI2NsW7dOsycOROenp5ajl4F7R62SE/i5MmTAoBBXxEREYIgPDxufuvWrYKFhYWgr68v+Pv7C21tbdoNWgOGy0tubq7K9oSEBK3GrQlD5Wbg6H1VXydPntR26KNqqLz09PQIQUFBgrW1taCnpydYWVkJixYtEurq6rQdtkYM9/v0qBflqPmh8iKXy4V58+YJ5ubmgq6urmBnZyesWrVK6Orq0nbYo+5xfl5ycnIEe3t7QSwWCy4uLkJZWZn2Atagx8lNdna2IJFIhNu3b2svUA0bLi+dnZ1CZGSkYG1tLYjFYsHR0VFIS0sT+vv7tRu4BgyXm48//liYOHGioKurK9ja2gpbtmwR/vnnH+0GrQHqPqvk5uYq+vT09Ajvv/++MG7cOMHAwEAICgoSOjs7tRf0EESC8ALt0iMiIiIiItIS7vkiIiIiIiLSABZfREREREREGsDii4iIiIiISANYfBEREREREWkAiy8iIiIiIiINYPFFRERERESkASy+iIhoxA4dOoSSkhJth0FERPSfwOKLiIhGpK6uDrGxsfD09NR2KE+tqqoKIpEIt2/fHvW5fH19ERsbO+rzaMpff/2FCRMm4OrVqwCGz+XNmzcxYcIE/Pbbb5oLkojoGcHii4iIEBkZCZFIhOTkZKXrZWVlEIlEg/r//fffWLlyJQ4dOgRbW1tNhfnM6+3tRWpqKlxcXGBgYAAzMzN4eXkhNzcXfX19ozKnSCRCWVnZqIz9OJKSkhAYGIhJkyY9Vn8zMzMsW7YMCQkJoxsYEdEziMUXEREBAMRiMVJSUnDr1q1h+5qYmODChQtwd3fXQGSq9fb2am1uVXp7eyGTyZCcnIzVq1fjzJkzqKurQ3R0NPbt24fm5mZthzikkRSHcrkcOTk5WLFixRPdt3z5chQUFKC7u/uJ5yQi+i9j8UVERACAOXPmwNLSErt27VLbZ/v27XB1dVW6tnfvXqVVj8jISCxevBg7d+6EhYUFTE1NsWPHDty/fx9xcXGQSqWYOHEicnNzlca5fv06li5dClNTU0ilUgQGBioeZfv3uElJSbC2toajoyMAoLGxEX5+fpBIJBg/fjxWr16NO3fuDPm9HjlyBFOmTIFEIsHs2bOV5hlQW1sLb29vSCQS2NjYICYmBnfv3lU75t69e1FdXY0TJ04gOjoarq6umDx5MsLCwnD27Fk4ODiovE/VypWpqSny8vIAPCzq1q5dCysrK4jFYtjZ2Sneo4G8BwUFQSQSKb0P5eXlcHd3h1gsxuTJk5GYmIj79+8rzZuVlYVFixZh7NixSEpKwq1btxAeHg5zc3NIJBI4ODgMep8ezaO+vv6Qj57K5XLMnz8fXl5eikcRp06dCmtraxw6dEjtfUREzyMWX0REBADQ0dHBzp07sW/fvqfej/P999/j999/R3V1NdLT05GQkIA33ngD48aNw9mzZxEVFYU1a9Yo5unr64NMJoORkRFqampw+vRpGBoaIiAgQGmF68SJE2hra0NlZSUqKipw9+5dyGQyjBs3DufOnUNpaSmOHz+OtWvXqo3t+vXrCA4OxsKFC1FfX4+VK1di48aNSn06OjoQEBCAJUuW4MKFCyguLkZtbe2Q4xYUFGDOnDlwc3Mb1Karq4uxY8c+aRoBABkZGTh8+DBKSkrQ1taGgoICRZF17tw5AEBubi46OzsVr2tqarBs2TKsX78eLS0tyM7ORl5eHpKSkpTG3r59O4KCgtDY2Ih3330XW7duRUtLC44ePYrW1lZkZWXBzMxMbWw1NTWYPn262vbbt29j7ty56O/vR2VlJUxNTRVtr776KmpqakaUEyKi/6r/aTsAIiJ6dgQFBcHV1RUJCQnIyckZ8ThSqRQZGRkYM2YMHB0dkZqaCrlcjs2bNwMANm3ahOTkZNTW1uKtt95CcXEx+vv7ceDAAcUes9zcXJiamqKqqgrz5s0DAIwdOxYHDhyAnp4eAOCzzz7DvXv3kJ+fryhu9u/fj4ULFyIlJQUWFhaDYsvKysJLL72EtLQ0AICjoyMaGxuRkpKi6LNr1y6Eh4crDsZwcHBARkYGZs2ahaysLIjF4kHjtre3w9fXd8Q5U+fXX3+Fg4MDXn/9dYhEItjZ2SnazM3NATxcKbO0tFRcT0xMxMaNGxEREQEAmDx5Mj766CPEx8cr7bUKCwvD8uXLleZyc3PDjBkzAGDYfVzXrl2DtbW1yrauri6EhobCwcEBhYWFivdsgLW1Nc6fP/8YGSAien5w5YuIiJSkpKTg888/R2tr64jHmDp1KsaM+f8/MRYWFnB2dla81tHRwfjx4/HHH38AABoaGnD58mUYGRnB0NAQhoaGkEqluHfvHjo6OhT3OTs7K32Ib21thYuLi9KqkpeXF/r7+9HW1qYyttbWVrz22mtK12bOnKn0uqGhAXl5eYpYDA0NIZPJ0N/fjytXrqgcVxCE4dIyIpGRkaivr4ejoyNiYmJw7NixYe9paGjAjh07lOJftWoVOjs7IZfLFf0GiqwB7733HoqKiuDq6or4+HicOXNmyHl6enpUFqIAMHfuXNjb26O4uHhQ4QUAEolEKRYiohcBV76IiEiJj48PZDIZNm3ahMjISKW2MWPGDCoyVB3UoKurq/RaJBKpvNbf3w8AuHPnDqZPn46CgoJBYw2s7gAY8aN7T+rOnTtYs2YNYmJiBrWpO91xypQpuHjx4hPPJRKJhsypu7s7rly5gqNHj+L48eNYunQp5syZg6+++mrI+BMTExEcHDyo7d/F0qP5nD9/Pq5du4YjR46gsrIS/v7+iI6Oxu7du1XOY2ZmpvaAlgULFuDgwYNoaWlRKrwHdHd3K723REQvAhZfREQ0SHJyMlxdXRWHWgwwNzdHV1cXBEFQPB5YX1//1PO5u7ujuLgYEyZMgLGx8WPf5+TkhLy8PNy9e1dRSJw+fVrxuKO6ew4fPqx07YcffhgUT0tLC+zt7R87lrCwMGzevBnnz58ftO+rr68Pvb29KotHc3NzdHZ2Kl63t7cPWhEyNjZGaGgoQkNDERISgoCAAHR3d0MqlUJXVxcPHjwYFH9bW9sTxf/veCIiIhAREQFvb2/ExcWpLb7c3NzwxRdfqGxLTk6GoaEh/P39UVVVhZdfflmpvampaVQe0yQiepbxsUMiIhrE2dkZ4eHhyMjIULru6+uLP//8E6mpqejo6EBmZiaOHj361POFh4fDzMwMgYGBqKmpwZUrV1BVVYWYmJghD/8IDw+HWCxGREQEmpqacPLkSaxbtw7vvPOOyv1eABAVFYX29nbExcWhra0NhYWFipMFB3z44Yc4c+YM1q5di/r6erS3t6O8vHzIAzdiY2Ph5eUFf39/ZGZmoqGhAb/88gtKSkrg6emJ9vZ2lff5+flh//79OH/+PH788UdERUUprRKmp6fjyy+/xMWLF3Hp0iWUlpbC0tJScXjFpEmTcOLECXR1dSlWobZt24b8/HwkJiaiubkZra2tKCoqwpYtW9TGP3BfeXk5Ll++jObmZlRUVMDJyUltf5lMhubmZrWrX7t370Z4eDj8/PyUVgXlcjl++uknxV4+IqIXBYsvIiJSaceOHYrHAgc4OTnhk08+QWZmJlxcXFBXV4cNGzY89VwGBgaorq6Gra0tgoOD4eTkhBUrVuDevXtDroQZGBjgu+++Q3d3Nzw8PBASEgJ/f3/s379f7T22trY4ePAgysrK4OLigk8//RQ7d+5U6jNt2jScOnUKly5dgre3N9zc3LBt2za1h0sAgL6+PiorKxEfH4/s7Gx4enrCw8MDGRkZiImJwSuvvKLyvrS0NNjY2MDb2xthYWHYsGEDDAwMFO1GRkZITU3FjBkz4OHhgatXr+LIkSOKPXVpaWmorKyEjY2NYsVNJpOhoqICx44dg4eHBzw9PbFnzx6lwzpU0dPTw6ZNmzBt2jT4+PhAR0cHRUVFavs7OzvD3d0dJSUlavvs2bMHS5cuhZ+fHy5dugTg4TH4tra28Pb2HjIeIqLnjUgYrR3CRERE9Nz75ptvEBcXh6amJqVDVobi6emJmJgYhIWFjXJ0RETPFu75IiIiohFbsGAB2tvbcePGDdjY2Azb/+bNmwgODsbbb7+tgeiIiJ4tXPkiIiIiIiLSAO75IiIiIiIi0gAWX0RERERERBrA4ouIiIiIiEgDWHwRERERERFpAIsvIiIiIiIiDWDxRUREREREpAEsvoiIiIiIiDSAxRcREREREZEGsPgiIiIiIiLSABZfREREREREGvB/Iemr3s8TjMEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "El número óptimo de clusters según el Silhouette Score es: 13\nAplicando K-Means con k=13...\n\nNúmero de clusters encontrados: 13\nReduciendo dimensiones para visualización con t-SNE...\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "output_type": "stream", + "text": [ + "/databricks/python/lib/python3.10/site-packages/sklearn/manifold/_t_sne.py:795: FutureWarning: The default initialization in TSNE will change from 'random' to 'pca' in 1.2.\n warnings.warn(\n/databricks/python/lib/python3.10/site-packages/sklearn/manifold/_t_sne.py:805: FutureWarning: The default learning rate in TSNE will change from 200.0 to 'auto' in 1.2.\n warnings.warn(\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGkAAAK9CAYAAACXazGoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5xU1fnH8c+UndneKyxl6R0UGyoKihJUREGNxihIiomoEH8pmtgwGtRExRjFaAy2oFGCXUFFEVRQaUpVytJ3gV3YXmZ35v7+ONuGLbSZbXzfr9e8duece+85d1i2PHPO89gsy7IQEREREREREZEWZW/pCYiIiIiIiIiIiII0IiIiIiIiIiKtgoI0IiIiIiIiIiKtgII0IiIiIiIiIiKtgII0IiIiIiIiIiKtgII0IiIiIiIiIiKtgII0IiIiIiIiIiKtgII0IiIiIiIiIiKtgII0IiIizezAgQNMnz6dr776qqWnIiIiIiKtiII0IiJy1J5//nlsNhvbtm1rdfMYMWIEI0aMaLE5bdu2DZvNxvPPP99gv2VZXH/99SxatIiTTjqpWebUkq/J4V4PEREREamlII2IiHDppZcSHh5OYWFho8dce+21uFwucnNzm3Fm7c/DDz/Mtm3beOONN3C5XC09neOyaNEixo8fT2pqKi6Xi+TkZMaOHcu8efOabQ7r16/n3nvvbfGAYWs2Z84cZs6ceVTnbNu2jRtuuIHu3bsTGhpKamoq55xzDvfcc4/fcSNGjMBmszF27NgGr2Gz2fjb3/5W07Zo0SJsNlujj1dfffWY7lFERKS9cLb0BEREpOVde+21vPPOO7zxxhtcf/319fpLSkp46623+NGPfkRCQgLXXXcdV199NW63uwVm27QPP/ywRcfv0qULpaWlhISE1OsrKyujsrKS999/n9jY2OafXADdc8893HffffTs2ZMbb7yRLl26kJuby/vvv8+ECRP4z3/+w09+8pOgz2P9+vVMnz6dESNG0LVr16CP1xbNmTOHtWvXMm3atCM6fvPmzZx66qmEhYUxefJkunbtSlZWFitXruShhx5i+vTp9c559913WbFiBUOHDj2iMW699VZOPfXUeu3Dhg07ovNFRETaKwVpRESESy+9lKioKObMmdNgkOatt96iuLiYa6+9FgCHw4HD4WjuaR6Rll6dYrPZCA0NbbAvNDSUP/3pT808o8CbO3cu9913H1dccQVz5szxC0j97ne/Y8GCBVRUVLTgDI9fcXExERERLT2NFvHYY49RVFTE6tWr6dKli1/fvn376h3fuXNnCgsLmT59Om+//fYRjTF8+HCuuOKKgMxXRESkPdF2JxERISwsjPHjx7Nw4cIG/wibM2cOUVFRXHrppUDDuWCWL1/O6NGjSUxMJCwsjIyMDCZPnlzTX73NYdGiRX7XbihnyXfffcekSZPo1q1bzVaLyZMnH9FWq0Pzr3Tt2rXRrRXVc9m+fTs33XQTvXv3JiwsjISEBK688soGt9Dk5eXxm9/8hq5du+J2u0lPT+f6668nJyen0fsB+OSTTxg+fDgRERHExsYybtw4NmzY4HfMvffei81mY/PmzUyaNInY2FhiYmK44YYbKCkpOey9AzzzzDN0796dsLAwTjvtNJYsWdLgceXl5dxzzz306NEDt9tNp06d+P3vf095eflhx7jrrruIj4/n3//+d4MrhkaPHs0ll1zS6PmN5ciZNGlSvdUwr776KkOHDiUqKoro6GgGDhzI448/DpivwyuvvBKAkSNH1vt3Bfjggw9qXveoqCguvvhi1q1bV2/cyMhItmzZwkUXXURUVFRNQHLTpk1MmDCB1NRUQkNDSU9P5+qrryY/P/+wr9NXX33FRRddRFxcHBEREQwaNKhm7tWC/XUxYsQI3nvvPbZv317z+hxuxdGWLVtIT0+vF6ABSE5OrtcWFRXFb37zG9555x1WrlzZ5LVFRESkaVpJIyIigNny9MILL/Daa69x880317QfOHCABQsWcM011xAWFtbgufv27ePCCy8kKSmJ22+/ndjYWLZt23bMuUk++ugjtm7dyg033EBqairr1q3jmWeeYd26dSxbtgybzXbE15o5cyZFRUV+bY899hirV68mISEBgG+++YYvv/ySq6++mvT0dLZt28asWbMYMWIE69evJzw8HICioiKGDx/Ohg0bmDx5MieffDI5OTm8/fbb7Nq1i8TExAbn8PHHHzNmzBi6devGvffeS2lpKU888QRnnXUWK1eurPdH81VXXUVGRgYzZsxg5cqV/Otf/yI5OZmHHnqoyXt97rnnuPHGGznzzDOZNm0aW7du5dJLLyU+Pp5OnTrVHOfz+bj00kv5/PPP+eUvf0nfvn1Zs2YNjz32GD/88ANvvvlmo2Ns2rSJjRs3MnnyZKKiopqcz/H66KOPuOaaazj//PNr7n3Dhg188cUXTJ06lXPOOYdbb72Vv//97/zxj3+kb9++ADUfX3rpJSZOnMjo0aN56KGHKCkpYdasWZx99tmsWrXK73WvrKxk9OjRnH322fztb38jPDwcj8fD6NGjKS8v55ZbbiE1NZXdu3fz7rvvkpeXR0xMTJNzv+SSS0hLS2Pq1KmkpqayYcMG3n33XaZOnQo0z9fFn/70J/Lz89m1axePPfYYAJGRkU2+7l26dOHjjz/mk08+4bzzzmvy2GpTp07lscce49577z2i1TSFhYU1gc26EhISjur/t4iISLtjiYiIWJZVWVlppaWlWcOGDfNrf/rppy3AWrBgQU3b7NmzLcDKzMy0LMuy3njjDQuwvvnmm0av/+mnn1qA9emnn/q1Z2ZmWoA1e/bsmraSkpJ657/yyisWYC1evLjReViWZZ177rnWueee2+g8XnvtNQuw7rvvvibHW7p0qQVYL774Yk3b3XffbQHWvHnz6h3v8/kavZ8hQ4ZYycnJVm5ubk3bt99+a9ntduv666+vabvnnnsswJo8ebLftS+//HIrISGh0XuyLMvyeDxWcnKyNWTIEKu8vLym/ZlnnrEAv9fkpZdesux2u7VkyRK/a1T/W3/xxReNjvPWW29ZgPXYY481OZ9qDb0ejf0bTZw40erSpUvN86lTp1rR0dFWZWVlo9d//fXXG/y6KiwstGJjY61f/OIXfu3Z2dlWTEyMX/vEiRMtwLr99tv9jl21apUFWK+//vrhb7SOyspKKyMjw+rSpYt18OBBv77qrxPLap6vC8uyrIsvvtjvdT2ctWvXWmFhYRZgDRkyxJo6dar15ptvWsXFxfWOPffcc63+/ftblmVZ06dPtwBrxYoVlmXV/tv/9a9/rTm++vtAY4+srKwjnqeIiEh7pO1OIiICmDwzV199NUuXLvXb5jNnzhxSUlI4//zzGz23Ognuu+++G5BcJHVX7JSVlZGTk8MZZ5wBcFzbKdavX8/kyZMZN24cd955Z4PjVVRUkJubS48ePYiNjfUb73//+x+DBw/m8ssvr3ftxt79z8rKYvXq1UyaNIn4+Pia9kGDBnHBBRfw/vvv1zvnV7/6ld/z4cOHk5ubS0FBQaP3tnz5cvbt28evfvUrv7w8kyZNqrfi4/XXX6dv37706dOHnJycmkf1qolPP/200XGq5xDsVTRgvq6Ki4v56KOPjvrcjz76iLy8PK655hq/e3Q4HJx++ukN3uOvf/1rv+fVr9uCBQuOeLsZwKpVq8jMzGTatGn1EkRXf50019fFsejfvz+rV6/mpz/9Kdu2bePxxx/nsssuIyUlhWeffbbR86ZOnUpcXFyDiYUPdffdd/PRRx/Ve9R9LURERE5ECtKIiEiN6jwcc+bMAWDXrl0sWbKEq6++uslEweeeey4TJkxg+vTpJCYmMm7cOGbPnn1E+U0acuDAAaZOnUpKSgphYWEkJSWRkZEBcES5QBpSUFDA+PHj6dixIy+++KJfUKW0tJS7776bTp064Xa7SUxMJCkpiby8PL/xtmzZwoABA45q3O3btwPQu3fven19+/YlJyeH4uJiv/bOnTv7PY+LiwPg4MGDhx2nZ8+efu0hISF069bNr23Tpk2sW7eOpKQkv0evXr2AhpPDVouOjgZoslx7oNx000306tWLMWPGkJ6ezuTJk5k/f/4Rnbtp0yYAzjvvvHr3+eGHH9a7R6fTSXp6ul9bRkYGt912G//6179ITExk9OjRPPnkk4f9GtyyZQtAk18rzfV10ZTs7Gy/R2lpaU1fr169eOmll8jJyeG7777jL3/5C06nk1/+8pd8/PHHDV4vJiaGadOm8fbbb7Nq1aomxx44cCCjRo2q92jpxN8iIiItTTlpRESkxtChQ+nTpw+vvPIKf/zjH3nllVewLKsmeNMYm83G3LlzWbZsGe+88w4LFixg8uTJPPLIIyxbtozIyMhGV5p4vd56bVdddRVffvklv/vd7xgyZAiRkZH4fD5+9KMf4fP5juneJk2axJ49e/j6669rAg3VbrnlFmbPns20adMYNmwYMTEx2Gw2rr766mMe73g0FhCzLCsg1/f5fAwcOJBHH320wf66+WsO1adPHwDWrFlzzOPbbLYG7+XQr4Xk5GRWr17NggUL+OCDD/jggw+YPXs2119/PS+88EKTY1T/u7300kukpqbW63c6/X8Fcrvd2O3137t65JFHmDRpEm+99RYffvght956KzNmzGDZsmX1gjrBFuivi7S0NL/ns2fPZtKkSfXGHDhwIAMHDmTYsGGMHDmS//znP4waNarBa1bnppk+fTozZ848pnmJiIicyBSkERERP9deey133XUX3333HXPmzKFnz56ceuqpR3TuGWecwRlnnMEDDzzAnDlzuPbaa3n11Vf5+c9/XvOuf15ent851SsKqh08eJCFCxcyffp07r777pr26pURx+LBBx/kzTffZN68eTVBhrrmzp3LxIkTeeSRR2raysrK6s21e/furF279qjGrq6Q8/3339fr27hxI4mJiQEp9Vw9zqZNm/ySvVZUVJCZmcngwYNr2rp37863337L+eeff9RJWnv16kXv3r156623ePzxxw+bhLYhcXFxbN26tV77oV8LYEqqjx07lrFjx+Lz+bjpppv45z//yV133UWPHj0anX/37t0BE+hpLKBwpKqDFHfeeSdffvklZ511Fk8//TT3339/k2OvXbu20bGb6+sCGt+Kd+g2sv79+zd5nVNOOQUwW7UaU72a5t5772XixIlHOVMRERHRdicREfFTvWrm7rvvZvXq1YddRQMmsHLou/lDhgwBqNny1KVLFxwOB4sXL/Y77qmnnvJ7Xr1a4NDrHeu78h9//DF33nknf/rTn7jssssaPMbhcNQb74knnqi3smPChAl8++23vPHGG/Wu0dhqhrS0NIYMGcILL7zgF/RZu3YtH374IRdddNHR3VAjTjnlFJKSknj66afxeDw17c8//3y9YNNVV13F7t27G8wvUlpaWm+bzaGmT59Obm4uP//5z6msrKzX/+GHH/Luu+82en737t3ZuHEj+/fvr2n79ttv+eKLL/yOO7Tkut1uZ9CgQUDt11V1IOPQexw9ejTR0dH85S9/aTBPUt2xG1NQUFDv/gYOHIjdbm9yK9/JJ59MRkYGM2fOrDev6q+T5vq6APMaNbRF69CtRtUra5YsWdLga1adJ6ehLVp1Vefiue+++wIwexERkROLVtKIiIifjIwMzjzzTN566y2AIwrSvPDCCzz11FNcfvnldO/encLCQp599lmio6Nr/tiMiYnhyiuv5IknnsBms9G9e3fefffderlBoqOjOeecc3j44YepqKigY8eOfPjhh2RmZh7T/VxzzTUkJSXRs2dPXn75Zb++Cy64gJSUFC655BJeeuklYmJi6NevH0uXLuXjjz+uKdFd7Xe/+x1z587lyiuvZPLkyQwdOpQDBw7w9ttv8/TTT/utVqnrr3/9K2PGjGHYsGH87Gc/qym1HBMTw7333ntM93WokJAQ7r//fm688UbOO+88fvzjH5OZmcns2bPr5aS57rrreO211/jVr37Fp59+yllnnYXX62Xjxo289tprLFiwoGbVREN+/OMfs2bNGh544AFWrVrFNddcQ5cuXcjNzWX+/PksXLiwJq9RQyZPnsyjjz7K6NGj+dnPfsa+fft4+umn6d+/v18S3J///OccOHCA8847j/T0dLZv384TTzzBkCFDaspsDxkyBIfDwUMPPUR+fj5ut5vzzjuP5ORkZs2axXXXXcfJJ5/M1VdfTVJSEjt27OC9997jrLPO4h//+EeTr+knn3zCzTffzJVXXkmvXr2orKzkpZdewuFwMGHChEbPs9vtzJo1i7FjxzJkyBBuuOEG0tLS2LhxI+vWrWPBggVA83xdgNnG+N///pfbbruNU089lcjISMaOHdvo8Q899BArVqxg/PjxNUGxlStX8uKLLxIfH8+0adOaHC8mJoapU6c2mUB4yZIllJWV1WsfNGhQzZgiIiInpBarKyUiIq3Wk08+aQHWaaed1mD/oaWvV65caV1zzTVW586dLbfbbSUnJ1uXXHKJtXz5cr/z9u/fb02YMMEKDw+34uLirBtvvNFau3ZtvRLNu3btsi6//HIrNjbWiomJsa688kprz549FmDdc889jc7DsuqXd6aJcr/VZZsPHjxo3XDDDVZiYqIVGRlpjR492tq4caPVpUsXa+LEiX73kJuba918881Wx44dLZfLZaWnp1sTJ060cnJyLMtquOS0ZVnWxx9/bJ111llWWFiYFR0dbY0dO9Zav3693zHVpZb379/f5OvdlKeeesrKyMiw3G63dcopp1iLFy9usOS1x+OxHnroIat///6W2+224uLirKFDh1rTp0+38vPzDzuOZVnWwoULrXHjxlnJycmW0+m0kpKSrLFjx1pvvfVWzTGNvR4vv/yy1a1bN8vlcllDhgyxFixYUK8E99y5c60LL7zQSk5Otlwul9W5c2frxhtvrFem+dlnn7W6detmORyOeuW4P/30U2v06NFWTEyMFRoaanXv3t2aNGmS39fmxIkTrYiIiHr3t3XrVmvy5MlW9+7drdDQUCs+Pt4aOXKk9fHHHx/R6/P5559bF1xwgRUVFWVFRERYgwYNsp544gm/Y5rj66KoqMj6yU9+YsXGxlrAYctxf/HFF9aUKVOsAQMGWDExMVZISIjVuXNna9KkSdaWLVv8jq1bgruugwcPWjExMUddgrvu/28REZETkc2yApSFUEREREREREREjply0oiIiIiIiIiItAIK0oiIiIiIiIiItAIK0oiIiIiIiIiItAIK0oiIiIiIiIiItAIK0oiIiIiIiIiItAIK0oiIiIiIiIiItALOlp5Aa+Pz+dizZw9RUVHYbLaWno6IiIiIiIi0c5ZlUVhYSIcOHbDbtZbiRKYgzSH27NlDp06dWnoaIiIiIiIicoLZuXMn6enpLT0NaUEK0hwiKioKMP85oqOjW3g2IiIiIiIi0t4VFBTQqVOnmr9H5cSlIM0hqrc4RUdHK0gjIiIiIiIizUYpN0Sb3UREREREREREWgEFaUREREREREREWgEFaUREREREREREWgHlpBERERERERGRoLAsi8rKSrxeb0tPpcU4HA6cTucR5RxSkEZEREREREREAs7j8ZCVlUVJSUlLT6XFhYeHk5aWhsvlavI4BWlEREREREREJKB8Ph+ZmZk4HA46dOiAy+U6IatXWZaFx+Nh//79ZGZm0rNnT+z2xjPPKEgjIiIiIiIiIgHl8Xjw+Xx06tSJ8PDwlp5OiwoLCyMkJITt27fj8XgIDQ1t9FglDhYRERERERGRoGhq1ciJ5EhfB71aIiIiIiIiIiKtgII0IiIiIiIiIiKtgII0IiIiIiIiItLq2Ww23nzzzZaeRlApSCMiIiIiIiIiLS47O5tbbrmFbt264Xa76dSpE2PHjmXhwoUBH2vRokXYbDby8vICfu3joepOIiIiIiIiItKitm3bxllnnUVsbCx//etfGThwIBUVFSxYsIApU6awcePGlp5igyzLwuv14nQGJryilTQiIiIiIiIi0qJuuukmbDYbX3/9NRMmTKBXr17079+f2267jWXLltU7vqGVMKtXr8Zms7Ft2zYAtm/fztixY4mLiyMiIoL+/fvz/vvvs23bNkaOHAlAXFwcNpuNSZMmAeDz+ZgxYwYZGRmEhYUxePBg5s6dW2/cDz74gKFDh+J2u/n8888D9jpoJY2IiIiIiIiItJgDBw4wf/58HnjgASIiIur1x8bGHtN1p0yZgsfjYfHixURERLB+/XoiIyPp1KkT//vf/5gwYQLff/890dHRhIWFATBjxgxefvllnn76aXr27MnixYv56U9/SlJSEueee27NtW+//Xb+9re/0a1bN+Li4o5pfg1RkEZEREREREREWszmzZuxLIs+ffoE9Lo7duxgwoQJDBw4EIBu3brV9MXHxwOQnJxcEwQqLy/nL3/5Cx9//DHDhg2rOefzzz/nn//8p1+Q5r777uOCCy4I6HxBQRoRERERERERaUGWZQXlurfeeiu//vWv+fDDDxk1ahQTJkxg0KBBjR6/efNmSkpK6gVfPB4PJ510kl/bKaecEpQ5K0gjIiIiIiIiIi2mZ8+e2Gy2o0oObLebFLt1AzwVFRV+x/z85z9n9OjRvPfee3z44YfMmDGDRx55hFtuuaXBaxYVFQHw3nvv0bFjR78+t9vt97yhbVmBoMTBIiIiIiIiItJi4uPjGT16NE8++STFxcX1+hsqk52UlARAVlZWTdvq1avrHdepUyd+9atfMW/ePP7v//6PZ599FgCXywWA1+utObZfv3643W527NhBjx49/B6dOnU6nls8YgrSiIiIiIiIiEiLevLJJ/F6vZx22mn873//Y9OmTWzYsIG///3vNflh6qoOnNx7771s2rSJ9957j0ceecTvmGnTprFgwQIyMzNZuXIln376KX379gWgS5cu2Gw23n33Xfbv309RURFRUVH89re/5Te/+Q0vvPACW7ZsYeXKlTzxxBO88MILzfI6KEgjIg3L2wZ7VsC+jVDpaenZiIiIiIhIO9atWzdWrlzJyJEj+b//+z8GDBjABRdcwMKFC5k1a1a940NCQnjllVfYuHEjgwYN4qGHHuL+++/3O8br9TJlyhT69u3Lj370I3r16sVTTz0FQMeOHZk+fTq33347KSkp3HzzzQD8+c9/5q677mLGjBk157333ntkZGQE/0UAbFawMvS0UQUFBcTExJCfn090dHRLT0ek+ZXshY3vwfJZULwHHJHQ7RI4/VeQ1LOlZyciIiIi0u60x79Dy8rKyMzMJCMjg9DQ0JaeTos70tdDK2lEpJavDNbPhUV3QNEOsCqhMg9+eBnm/wHysw57CRERERERETk2CtKISK28TbDinw337f8Ksr9t3vmIiIiIiIicQBSkEZFaxfugeG8jnZWQvaZZpyMiIiIiInIiUZBGRGo5QsAe0nh/eGyzTUVEREREROREoyCNiNSK6wSdz2y4zxEG6ac073xEREREREROIArSiEit0E5wxq8htot/uz0Ezr0fkga0zLxEREREREROAM6WnoCItCI2J6QOg3H/hD0rYO86iEiFzudC8mBwNrEVSkRERERERI6LgjQi4s8eCgknQfwg6F8BNjfYbC09KxERERERkXZPQRoRaZjNYR4iIiIiIiLSLJSTRkRERERERESkFVCQRkRERERERESkjieffJKuXbsSGhrK6aefztdff90s4ypIIyIiIiIiIiKtk88LPyyC5a+Yjz5v0If873//y2233cY999zDypUrGTx4MKNHj2bfvn1BH1tBGhERERERERFpfVbPg7u6wuMjYfZPzMe7upr2IHr00Uf5xS9+wQ033EC/fv14+umnCQ8P59///ndQxwUFaURERERERESktVk9D569AvJ2+bfn7TbtQQrUeDweVqxYwahRo2ra7HY7o0aNYunSpUEZsy4FaURERERERESk9fB54fWpgNVAZ1Xb3GlB2fqUk5OD1+slJSXFrz0lJYXs7OyAj3coBWlEREREREREpPXYvKT+Cho/FhzcaY5rZxSkEREREREREZHWoyArsMcdhcTERBwOB3v37vVr37t3L6mpqQEf71AK0oiIiIiIiIhI6xGdFtjjjoLL5WLo0KEsXLiwps3n87Fw4UKGDRsW8PEO5Qz6CCIiIiIiIiIiR6rHcIhNN0mCG8xLY4O4dHNcENx2221MnDiRU045hdNOO42ZM2dSXFzMDTfcEJTx6lKQRkRERERERERaD7sDrnzcVHHChn+gxmY+XDHTHBcEP/7xj9m/fz9333032dnZDBkyhPnz59dLJhwMCtKItFa+EvBsgpLPwXsAQk+C0MEQ0qmlZyYiIiIiIhJcQ8bDL+aaKk91kwjHpZsAzZDxQR3+5ptv5uabbw7qGA1RkEakpVgWVGyHiq3gK4aQzhCSAY5o8JVCwVtQMKf2+LJvIfxcCB0ElgcccRDSFZyJLXYLIiIiIiIiQTNkPAwaZ6o4FWSZHDQ9hgdtBU1roCCNSEuwvFCyGA7MAqu0tj30JIj7NXhzoeCV2nabGyJHQ96LcOAJcPUEmx2c6ZDwG3D3av57EBERERERCTa7A3qNaOlZNBtVdxJpCZ4tkPuEf4AGoDIXyr6D0uX47bsMPRny54DnB/AV1J5XuQtyZ0LlgeaauYiIiIiIiASJgjQiLaFsBVBR+9yRBlFjgUrIfw3KvwNvvllxA2ZrU/n6qoMt8/AVg/cgeNaZ4I2IiIiIiIi0aW0mSDNr1iwGDRpEdHQ00dHRDBs2jA8++KCmv6ysjClTppCQkEBkZCQTJkxg7969LThjkSZUZtV+bo+B0IGw/wEofBNKPgVnKng2QGU2WJVglfkf7yuH8g0msXD5RihdCWVrmv02jpgnCzw7W3oWIiIiIiIirVqbCdKkp6fz4IMPsmLFCpYvX855553HuHHjWLduHQC/+c1veOedd3j99df57LPP2LNnD+PHBzfbs8gxC+le+3noEMibXRWIcZrEwd58cHQEz0bw7jPt4edB/DSIvhIiz4e4G8GZYa5hs0HOQ1DRygIhZesg93HYfTXsuhL23QulK1p6ViIiIiIiIq1Sm0kcPHbsWL/nDzzwALNmzWLZsmWkp6fz3HPPMWfOHM477zwAZs+eTd++fVm2bBlnnHFGo9ctLy+nvLy85nlBQUFwbkCkrtDBYI8CXyHYQqFyt2l3xpvP81+EuF+a1TGeLSZxsM0GuQ+byk5WJdgiIP4mqNhrctn48k1QpLWU6C5bD9m3QMkXddpWQcGr0OElCD+15eYmIiIiIiLSCrWZlTR1eb1eXn31VYqLixk2bBgrVqygoqKCUaNG1RzTp08fOnfuzNKlS5u81owZM4iJial5dOrUSv7AlfbN1RUSbzfVmfCZNltYVQ4amwnEHPiHSQicfD94D4An0+SmsSrN8VYx5P0boi+tynEDVGS2wM00ouRz/wBNNU8m5P8HvGX1+0RERERERE5gbSpIs2bNGiIjI3G73fzqV7/ijTfeoF+/fmRnZ+NyuYiNjfU7PiUlhezs7Caveccdd5Cfn1/z2LmzlW0XkfYrdBAk/wXCh0PoUHB1r6raZKs9xrMO8EL+S6aSU0gXcPcGVw/z0R4FxR+CM8Uc7+zQEndSn7fQ5NdpTNG74NncbNMRERERERFpC9rMdieA3r17s3r1avLz85k7dy4TJ07ks88+O65rut1u3G53gGYocpScceCINVubDj5Lvbhp5MXgKwJvTtWWpxCz2sabU3tMZZYJ3thCIXRAc87+MHyNd1lev1iUiIiIiIiItLGVNC6Xix49ejB06FBmzJjB4MGDefzxx0lNTcXj8ZCXl+d3/N69e0lNTW2ZyYocKZsNIi6ExD9A+NlmdUxIBsRNMStmPNvB2Qkc8SZQE9LBVHiq5uoGVjkkTIOQbi12G34cURB5aeP9URe1nrmKiIiIiEjrZXmheBHkv2I+Wt6gD7l48WLGjh1Lhw4dsNlsvPnmm0Efs1qbWklzKJ/PR3l5OUOHDiUkJISFCxcyYcIEAL7//nt27NjBsGHDWniWIkfAEQ4R55igTPFnJrdM+UbwHQR7HMReA0XzzbG20KqtUSVgOUwwJKQLhKSbgE9rETEcwk6B0uX+7c4OEHOduWcREREREZHGFMyD7Kkm9UM1ZzqkPg7RwavmXFxczODBg5k8eXKzV41uM0GaO+64gzFjxtC5c2cKCwuZM2cOixYtYsGCBcTExPCzn/2M2267jfj4eKKjo7nlllsYNmxYk5WdRFqdkA4QeSGUr62q4uSB8HPA3Q8cKVD4tslbY3OCsyfE3whhrbRKUuhASJ0FRe+Zb654zIqh6Csg/PSWnp2IiIiIiLRmBfNg1xWA5d9eudu0p88NWqBmzJgxjBkzJijXPpw2E6TZt28f119/PVlZWcTExDBo0CAWLFjABRdcAMBjjz2G3W5nwoQJlJeXM3r0aJ566qkWnrWckMq3Qvm3UL4BnKkmKXDoQLAd4e5CZwI4z4WIc8GyalfHhFxjtkNV7gOby6yccSYG7z4CIWyQeUT/GPCBsws4Qlp6ViIiIiIi0ppZXrOC5tAAjekEbJA9DaLGgc3RvHMLsjYTpHnuueea7A8NDeXJJ5/kySefbKYZiTSgdBVk3wKeTbVt9khIeRSixh55oKZa3e1LNocp3e3qGoiZHh9fJXg2QMUOwAJnZ3D3BXsjARi38s+IiIiIiMgRKlniv8WpHgsqd5rjIkY016yaRZsJ0oi0epUHIGeGf4AGTHWmvf8HrgxTdrutqyyAwrmQ8yD48k2bLRoSb4Poq03FKhERERERkWNVmRXY49qQNlXdSaRV82w2kdyG+AqhbE3zzidYPOvM/lCbq7bNKoD990Lpl0d/vYq9UPK1ydRetha8RYGaqYiIiIiItEXOtMAe14ZoJY1IoPiKAV/j/d79zTaVoKjIAc9ayHsJrDKIOM+UAi94xQShAPJfhLCzwBl7ZNcsXQUH/g7enKoGG4SeBHE3miTKIiIiIiJy4gkfbqo4Ve6m4bw0NtMfPry5ZxZ0CtKIBIozwQQtqrcAHcrV6/DXsCyo2GW+GVleCEmDkM6mmlNLqsiBvH9CwVyo2GqCMiWfgLMjxN0EB54EKsCzDXx5QOwRXHMH5P4NvLmmYpXlBVuIKdltj4KEqea5iIiIiIicWGwOU2Z71xWADf9ATVXeztSZQUsaXFRUxObNm2ueZ2Zmsnr1auLj4+ncuXNQxqymII1IoLj6QuxEszLkUO6TTH9TrAqz5Sdvdu3KFJvbZCyPuBCcyf6JhJuTZ525L0cy2MKBqvlV7obihaYMeOmX4OwE9tgju2b5RqjcAxXbwFdS1WgDRxwUY8rpuZRwWERERETkhBQ93pTZzp7qn0TYmW4CNEEqvw2wfPlyRo4cWfP8tttuA2DixIk8//zzQRsXFKQRCRx7CMRcBzgg7wXwHTB5WyIuNKtC3BlNn1++vmpFireqwWG2/ni2QOVscKRCWFU57+ZWvNB89OaabUjefdREs0uWQMIfTJAmbqLZ6lSZC54foHwd2MMgdAiEdDOfV7OFQdwvwFduVs4UfwGFc8B7ALCDr6B571FERERERFqX6PHmTeuSJSZJsDPNbHEKctntESNGYFkNbbMKPgVpRALJ1Rnib4Ooi8F70Kw6cfU4fI4Wy6oKhFQHaGzmm8+BJ81qFXskOBPNyprUpyDi7CDfyCF81cl8vSao4upTVcWqEqgwwajEu0w+moo9kDvTlOiulv9fiL4KosaDIxyKP4Hs26F8edXthpuATdKfYf9d4Cs1r4mIiIiIiJzYbI52V2a7KQrSiASawwWOo1ztYpWDZ0ftc/cAyHuxKlFWVT8OqNwL++6C9JchpGPApnxY4WdC/n/M5979ZktT6BCzRSukG0SOhdA+JliT9y//AI25ASj4L7j7AU7IusncC3bAB1YJHHgcEu+B8JHgiPSvHiUiIiIiInICUAlukdbA5q4Nulg+cMSAZ6N/v1W1yqbiB1Puuzm5TzJBmWq+PKjYDpX7IPZ6CB8MdjdUZpu8Oo0p/QbKvjKrjLCBPRyos1Qx7zmIuRbcg5U0WERERERETjgK0oi0BjYbRF4A2E2ycp/Hv9+ZDFb1liNbne1HzcTdHVIeg9jJYE8AnBB6KnR4FsJH1R5neapKkTfCKofy76ueOMxKHFuo2c5lizDBH5urKvdNpyDekIiIiIiISOuj7U4irYW7P8T9CvKeB0cU4ACbZZJjWT6wKs1x9hgISW/++YX2A9efIXaSmYsjCUKS/Y9xxJrgSsW2hq8R0o2ahMM2OxButjr5fFXnJwK2qmBQWMPXEBERERERaacUpBFpimcXWMVgj6sfkAg0WwhEjjZ5WyqyIO7nULLIrJrx5dUeE3EBhBymUlSw2J3g7t14vyMGoq+E3L9RE4ypOTcaQvtDSJpJFGyVgM0JtsiqrVwWxP7crNAJiQvmXTTOsqBstUmK7M0BV3cI6Q7uHi0zHxEREREROaEoSCPSEM8uKF5Qlbw3y1RoivsFhJ8LzvjgjWuzg6uLeTgTzTagwv+ZLUGOJIi6COJ+CY7o4M2hMb5SqNgFVqkJuIR0arj0XdhpEH8L5L9ikgxjA3cfiJkIrgzwdYLUmbDvDrOtCbu5TtQ4U8K8JQM0he9A1i3gza5tDx8JKQ9C2JCWmZeIiIiIiJwwFKQROVTlQTjwd1OlyPIAPvNHe+nXkPxniL0R7M2QzsndA5KnQ+xE8BZUbSXqAvYWqHrk2Wa2YZWtAnxgC4PIUaaktjPR/1h7qMmvEzqkKkjjBGdHcERU9Tsh6lIT+PJsMSuFXF0hpEfwVys1pWwlZP2qKnBUR8mnpvJU8l8hJLHhc0VERERERAJAQRqRQ3k2Qt6z4CsxOVKcSaYaUeVeyH0Mws8x23aagy2k6e1FzaEyBw48Cp7M2jar1Kw6sbxmhZGtgW8lziTzaIjNZl7D5nodj0TZyvoBmmoFb5gVTArSiIiIiIhIEClII3Ko8u/Ndp64X4MvHyr2QNgZJuCQ/zpU7GxdwYVg82zxD9DUVbwQIs4zVZqsYrDHVq32CW3WKQZExe7G+6xS8DZRtUpERERERCQAFKQROZQ9zCTtzX3UBGmq2cIh4bcmP8yJpHJn433eA1DyBRS+UdXggLDTTQWokLTmmF3guHo13ueIM0mRRURERESkWVl4yWMJHrJwkUYsw7HRQG7MAJkxYwbz5s1j48aNhIWFceaZZ/LQQw/Ru3fz7HBohsQaIi3IWwDlG6DsO7Mi5kiEdIG8F/wDNGCqEeXNNqtsWoqvHMq3gmdH841pj2243fKAZytY5XUavVD6JeS/aOZ6OBV7oGQZFH8OZWtNPqCWEjoYQno23Bd7A7hOoNVTIiIiIiKtwH7msYyufMtINvATvmUky+jKfuYFbczPPvuMKVOmsGzZMj766CMqKiq48MILKS5unpX1Wkkj7VfZGjj4HFRsMc/tMRB9BUSMAkdk4+f5ysDmBmz4l5F2gDMBrMIgTrqxOfmg7GvI/49ZuWILg+jLIfISCO0T3LFdPcEWYbYz+c2pGNx9oTK7/jklyyBqB7gbCXpYXihZDDl/hbIVgB1CT4GYqyHsbHB3CfhtHFZof+jwDOy70wSasMAebgI0MTeAM7z55yQiIiIicoLazzzWcQX+f5NBObtZxxX0Zy5JjA/4uPPnz/d7/vzzz5OcnMyKFSs455xzAj7eoRSkkfbJkwk5D4KvoLbNlw95z5k/vCMvbPxcm81seQo9ySQL9pWZoI4jyQRvrMrgz/9QpUthzw3+q3ty/2pywqQ+YSpBBYLlNblZfAUmEOTqAiGdIeFWyJ1pcrNUcyRC1MVQ+EEDF6oEb34D7dX3sxL2/Ap8eVUNVUEoz/eQNB2csS2zvSjiTOj4IlRsNkEoeyK4+4EzqvnnIiIiIiJygrLwspmpHBqgqe4FG5uZRiLjgrr1CSA/3/xdEx8fH9RxqilII+1T6Ur/AE1dBXPNqg1nI//JnB3AkQrevWCPB0fVrkCby6zGCUkN/Hx9lVC+xqwqqdxnAgOhA8HV3WzZynumKkBjgeWrmo/dVCQq+zowQZqK3ZA/BwrfMsmRnckQ81MT0AobBilpJqmyN8dsCbO5IPdvQEUDF7PXltyud68eKPhvnQBN3b58KF1mAmQtlQPGlW4eIiIiIiLSIvJYQjm7mjjCopyd5LGEOEYEbR4+n49p06Zx1llnMWDAgKCNU5eCNNI+la9tvK8yqyrg0UiQJqQzRI6G4g9N1SK8QAjYHCZY4ewa2Ln6Kk1gZO/v/LcUuXqbVTI2JxQvqaqgVGZWu4CZjy3MrGSJ+cnxzaHyIOT8DYreMitIACp2QM5foHI/xEyE0J7gyqg9p2K3Gd8qq3899wBwNrJlyXsAytY3Ppfy78BXZ8WOr7RqS5XPrGZytGBOIBERERERCToPWQE97lhNmTKFtWvX8vnnnwd1nLoUpJH2yZnceJ89sirnTGP9bhP0cMRA0XzwFZrKTpHnQeRlja8QOVbla+oHaMBs/cn9GyTeDvhqgyfVLK85xxaA/N8VW6H0C/DmYZYP2k0QCBsUvGaS6ro6m9emWkhHSLwNch8zgZdqrm4Q9wtwNJLDxeYy24cayytsj6x9jcvWmdU95WsBH4R0h9ifQOjQqvmJiIiIiEh74+LIKsUe6XHH4uabb+bdd99l8eLFpKc330p7BWmkfQo/2wRY8NXvixgJzsP8Z3YmQMx1EHG+CY7YwkxQIhABkUOVraofoKlW/Akk/gEizjNJg+uxIOJCsCyTS+eY57AGKnb5B4JsTpO/x5dvcvNU7q+/DSh0CCQ/CBWZJsDjTIGQjMa3koHpixwLpV+Dr6R+f+TF5t+nfDPkPGCCZNUqtsD+ByHpbggbcuz3KyIiIiIirVYsw3GTTjm7aTgvjQ036cQyPOBjW5bFLbfcwhtvvMGiRYvIyMg4/EkBpBLc0j65epmqPIfGId0DTIDgSAIaNpsJzLh7gatTcAI0YHLQNN5pVqlE/xicDURvI8eYPDkNBTuOVMVOk/cGX9XDMg+rsnbbkc1lil01JCQNws+EqIsgbGjTAZpqEaPMqiT7IauSoiZAxAXgiILSxf4BmtoJQ+EbR1biW0RERERE2hwbDnrweM2zQ3sBejAzKEmDp0yZwssvv8ycOXOIiooiOzub7OxsSktLD39yAGgljbRPdrepPOTuC+UbzUoVVy+zXcYZ19Kz8+fu13ifPQEccVC4ANL+bpLqFn9qVrhEXW5ytJQua7pa1eGUrjR5ZRyJ4K0OGNkAh8mD4+5n8sA4U2rPqTwAZauh8G2zyib8dAgfceSrW0JSIelOiB5nSoqDyffj7g8hKaaiVunqxs/3bDbBK3vwljeKiIiIiEjLSWI8/ZnLZqb6JRF2k04PZgal/DbArFmzABgxYoRf++zZs5k0aVJQxqxLQRppv2wh4O5tHq2Zuz+4+oGngWS6cZNNX9jJcPBpcA+C2MkmH03JMvDtg4Tfgt11bGN7C6B0ORR/DHG/gv33m2tiAV5T5Sr6Wgg92byeAJUFZutVzgxzDEDJJ+D4F3R4xqyqORLOBHCOgIgR9ftsDpObpjG20Nr5iIiIiIhIu5TEeBIZRx5L8JCFizRiGR7UstuW1dD2quajII1IS3N3h9TH4cAjULQQqAB7ognQRP8Y7A6IGG6S55YtN9WPqkWMNnlhjlXFdrNKpmIr5M+F1EfBsxE8W0yZbXdfcA8xW768eWZVUuVOyH0YHLHmGt4DgAXe/ZDzV0h7FkISj31OYAIwkReapMoNiTwfnMc5hoiIiIiItHo2HEEts93aKEgj0hqEDYKUv0P8JpMHxhFvSnDbq/6LOpMh/lao2Gy2AdmcZnVNSDeTv+VYeQtMpStHMlRsgL2/MSt7QoeC96ApzR3T13zMexbK14E9tiqPzj6wR4MztXabVOkyk0T4eIM0YIJPESPN9q663P0gfOTxX19ERERERKSVUZBGpLVwxoDzlCb648B5KoSdGrgxHTFQuhTib4G85031pPJ1ZsVMxEiIOMcEhMq/hZIlJphjldWe7ysAK9oEeqxyTOLhigDNLRZifw7h55itXXgg9FSzukeraEREREREpB1SkEbkRBbS1TyKF0LUpWZVjs8D9jATdAnpYqo8FX1ojvcegPBDytx5c8DZAbzlpvy2I4DJfB3REHaKeYiIiIiIiLRzKsEtciJzRELcr8HVHUq/hKL5JgmwZ5MJ2jjjqkpxV5f4rirLHXZG7TUsL6YalB3ip4E7o/nvQ0REREREpB3QShqRE52rMyT+ESq2gTffrF4J6WI+AthDTf6bii3mednXED3ebDsqeh+wg6sPxE40ZbhFRERERETkmChIIyJmRY1jQOP94WebLU++fMBnSnY7OphcNuHnmKBOSGqzTVdERERERKQ90nYnETk8VzdIurMqN4wTsIEzGiLOM4mMFaARERERERE5blpJIyJHxt0HEu6AyizAB44kswJHREREREREAkJBGhE5cnYXuLq09CxERERERETaJW13EpH2oSIbij+Hwveh5CvwFrT0jERERERE5Dh58bKGRSzmFdawCC/eoI43a9YsBg0aRHR0NNHR0QwbNowPPvggqGPWpZU0ItL2la6E/X82ZcQBcELkjyDxdnD3bNGpiYiIiIjIsVnKPP7FVHLZVdOWQDo/53GGMT4oY6anp/Pggw/Ss2dPLMvihRdeYNy4caxatYr+/fsHZcy6tJJGRNo2zxbYe3udAA1AJRS9C7kPgbeoxaYmIiIiIiLHZinzeIgr/AI0ALns5iGuYCnzgjLu2LFjueiii+jZsye9evXigQceIDIykmXLlgVlvEMpSCMibVv5Jij/tuG+wvlQvqF55yMiIiIiIsfFi5d/MRWwGug1bc8xLehbn7xeL6+++irFxcUMGzYsqGNV03YnEWnbKrOb6KwAb26zTUVERERERI7fepbUW0HjzyKHnaxnCQMZEfDx16xZw7BhwygrKyMyMpI33niDfv36BXychihIIyJtmyOhiU47OGKP/prl26BiC/iKwJEIrr4QEn+MExQRERERkaNxkKyAHne0evfuzerVq8nPz2fu3LlMnDiRzz77rFkCNQrSiEjb5u4JId2gYmv9vvCzwNXr6K5X8iXsuxNKFpnntjCIuR7ib4bQ4CcKExERERE50cWRFtDjjpbL5aJHjx4ADB06lG+++YbHH3+cf/7zn0EZry7lpBGRts3VG1IeBlc3/3b3yZB4DziPYgVM6RrYc2NtgAbAKoW8f0LeM1CRH5Api4iIiIhI4/oxnATSAVsjR9hIpBP9GN4s8/H5fJSXlzfLWFpJIyJtm80G4WdDhxdMpSdvLjjTwNUHXB2P7lqejeBZ13Dfwech+hoIOeO4pywiIiIiIo1z4ODnPM5DXIEJ1NRNIGwCNz9jJg4cAR/7jjvuYMyYMXTu3JnCwkLmzJnDokWLWLBgQcDHaoiCNCLS9tls4O5lHsfDs7nxPqsQvAeP7/oiIiIiInJEhjGePzCXfzHVL4lwIun8jJkMY3xQxt23bx/XX389WVlZxMTEMGjQIBYsWMAFF1wQlPEOpSCNiEg1Z1Mrb1xgj2y2qYiIiIiInOiGMZ7TGMd6lnCQLOJIox/Dg7KCptpzzz0XtGsfCQVpRESqufuDIw28DWSJj74MQno2+5RERERERE5kDhxBKbPdWilxsIhItfCh0OFZcHY6pH0kJPwOXKktMy8RERERETkhaCWNiEhdUReB802Tn8a7H0IyIKQHhGoVjYiIiIiIBJeCNCIihwo7yTxERERERESakbY7iYiIiIiIiIi0AgrSiIiIiIiIiIi0AgrSiIiIiIiIiIi0AgrSiIiIiIiIiIi0AgrSiIiIiIiIiIi0AgrSiIiIiIiIiIi0AgrSiEjLsyrBqmjpWYiIiIiISCvjxcsivuQV3mQRX+LF26zjP/jgg9hsNqZNm9Ys4zmbZRQRkYZU7IWyVVD8CeCF8HMhbCiEdGzpmYmIiIiISAubx/tM5R52kVXTlk4ajzOd8VwU9PG/+eYb/vnPfzJo0KCgj1VNK2lEpGVU7IXcv8HBJ8GzATw/QN6zsP8BqNjZ0rMTEREREZEWNI/3uYIb/QI0ALvJ5gpuZB7vB3X8oqIirr32Wp599lni4uKCOlZdCtKISMso+xo8G+u3V+6sWlkjIiIiIiInIi9epnIPFla9vuq2adwb1K1PU6ZM4eKLL2bUqFFBG6MhCtKISPPzlULRwsb7i5dAZW7zzUdERERERFqNJXxVbwVNXRYWO9nDEr4KyvivvvoqK1euZMaMGUG5flOUk0ZEgqdiN5StgfLvwBEPYWeAqwdYPqCyqRMBXzNNUkREREREWpMs9gX0uKOxc+dOpk6dykcffURoaGjAr384CtKISHB4NsP+v4B3f21b4dsQOxEiL4Gw06Fie8Pnhp4Ejubb9ykiIiIiIq1HGskBPe5orFixgn379nHyySfXtHm9XhYvXsw//vEPysvLcTgcAR+3moI0IhJ4vlLIe8k/QAOABXkvgqsvhA+H4o/Be8D/EHskRI4Bm749iYiIiIiciIZzOumksZvsBvPS2LCRThrDOT3gY59//vmsWbPGr+2GG26gT58+/OEPfwhqgAYUpBGRYKjcA2XfNtLpg/KVEPNTSLwHit6F0q8AC0KHQNQ4cPduxsmKiIiIiEhr4sDB40znCm7Ehs0vUGPDBsBM7sVB4AMmUVFRDBgwwK8tIiKChISEeu3BoCCNiDTMqjA5ZSyP2XrkTKp/TGUuVOwAqwwcCRDSBexuc25Tmda9heajuxu4pkDllYAFzmStoBEREREREcZzEXP5J1O5xy+JcDppzORexnNRC84uePTXkIjU59kG+a9A6TdABTiSIeZKCDsHHOHmmLLv4MCTUFkVyMEBERdC7HUmSbAjEbw5DV/f3a/2c5sDQtKCfEMiIiIiItLWjOcixjGaJXxFFvtII5nhnB6UFTRNWbRoUbONpSCNiPiryIacB03wpZp3nwnIxFkQNcasnsl5GCqzoHIv+PIACyq2gc0O8bdA9JVwcFb964d0AVefZroZERERERFpyxw4GMGZLT2NZqMgjYj486z3D9DUVfA6hA2F8g1QmQ2eH6pW0VTxHoADsyD8XAgfYbYu5b8G3r1gc0P4GRB1FYSkNMutiIiIiIiItCUK0oiIv/L1jfd594P3IHi2g++Af4Cmmu8geDZB6ACIvBBCTwZvHthCIKSjcs6IiIiIiIg0wt7SEzhSM2bM4NRTTyUqKork5GQuu+wyvv/+e79jysrKmDJlCgkJCURGRjJhwgT27t3bQjMWaaPsMU10Ok2wxZlsgjUNsYWDNx+8uVWnJIK7B7i6KEAjIiIiIiLShDYTpPnss8+YMmUKy5Yt46OPPqKiooILL7yQ4uLimmN+85vf8M477/D666/z2WefsWfPHsaPH9+CsxZpg0JPptFvDWEng7MjuPuDParhYyLOM1Wh2s63FxERERERkVahzbytPX/+fL/nzz//PMnJyaxYsYJzzjmH/Px8nnvuOebMmcN5550HwOzZs+nbty/Lli3jjDPOaIlpi7Q9rh4Qez3kvQj4atsdqRB9rSmx7eoByQ/A3tv9KziFnWmCPI4wU91JREREREREjlibCdIcKj8/H4D4+HgAVqxYQUVFBaNGjao5pk+fPnTu3JmlS5c2GqQpLy+nvLy85nlBQUEQZy3SBtjdEHkJuPuYEtzePLNyxt0fQjqYY2w2CB0GiX8025qsYrDHm2pP5Wsh8Q5zjIiIiIiIiByxNhmk8fl8TJs2jbPOOosBAwYAkJ2djcvlIjY21u/YlJQUsrOzG73WjBkzmD59ejCnK9L22N21gZnGhCRC5AVQthqKPgVyIPwcCDvFJAiuy1cG2MHuCuKkRURERERE2rY2GaSZMmUKa9eu5fPPPz/ua91xxx3cdtttNc8LCgro1KnTcV9X5ITgTDYVnCLOB3wmqXBdnh1QugxKvjRJgyNGQehJKsEtIiIiIiLSgDaX2fPmm2/m3Xff5dNPPyU9Pb2mPTU1FY/HQ15ent/xe/fuJTU1tdHrud1uoqOj/R4icpRsjgYCNJmwfzrkvwQVW8DzPRx8Eg7MhMp9LTJNERERERGRptx7773YbDa/R58+fZpt/DYTpLEsi5tvvpk33niDTz75hIyMDL/+oUOHEhISwsKFC2vavv/+e3bs2MGwYcOae7oibVYZFRTjOb6LWD4ofB+8DQRjyteaLVIiIiIiIiKH4cXHIrbzCutYxHa8dYubBEn//v3JysqqeQRiF8+RajPbnaZMmcKcOXN46623iIqKqskzExMTQ1hYGDExMfzsZz/jtttuIz4+nujoaG655RaGDRumyk4iR2AvxSwni4/JpAIfp9GB4XQig9ijv1jlPrPN6RBeD3jLwOb5mIqw8whNcWJvM9+FRERERESkOc3je6byEbsorGlLJ4rHuYDx9A7auE6ns8kdOcHUZv48mjVrFgAjRozwa589ezaTJk0C4LHHHsNutzNhwgTKy8sZPXo0Tz31VDPPVKTt2U8xM/matdSW095OAQvZxl2cTQ/ijvKKFuD1a/EUQPE2k0PYGVfJzi98uJOh81Xgjj/uWxARERERkXZkHt9zBfOwDmnfTSFXMI+5jA9aoGbTpk106NCB0NBQhg0bxowZM+jcuXNQxjpUm9ru1NCjOkADEBoaypNPPsmBAwcoLi5m3rx5LRb9EmlLvmWfX4Cm2gHKeJsfqDzaJYXORHAPqnlaWQpFm6uKPAE+53CKNrvIeg+yPjiemYuIiIiISHvjxcdUPqoXoAFq2qbxUVC2Pp1++uk8//zzzJ8/n1mzZpGZmcnw4cMpLCw8/MkB0GaCNCISHD4sFrK90f5vyGIfxUd3UVsIRI8DWwQAFQVgVZoue0QHivediuegeb7nfSjZfSwzFxERERGR9mgJO/22OB3KAnZSyBJ2BnzsMWPGcOWVVzJo0CBGjx7N+++/T15eHq+99lrAx2pIm9nuJCLBYWHhayIC7cNqMIJ9WO6+kHwvFL6Dr+Jb7GFOiDiL0oIL2fbf2spslQVQeZQxIBERERERab+yKArocccjNjaWXr16sXnz5qCPBQrSiJzwHNg5h86sJ7fB/kEkk0TYsV3c3QdcPagIy+HgWju5q5Io3WXzHz8MHKHHdnkREREREWl/0ogM6HHHo6ioiC1btnDdddcFfSzQdicRAU4ihS5E12uPIITL6Y3reOK5NieOyFT2fJhcL0ADkHwuhKc3cJ6IiIiIiJyQhtOJdKKo/9eDYQM6EcVwOgV87N/+9rd89tlnbNu2jS+//JLLL78ch8PBNddcE/CxGqIgjYjQgShuZxhX0ocUwoknlJF05l7Oph+Jx339yO7Q61ZwRvi3xw2F9Alg03cikWbjOQj5GyB/I3jyWno2IiIiIvU5sPM4FwDUC9RUP5/JBTiCENLYtWsX11xzDb179+aqq64iISGBZcuWkZSUFPCxGqLtTiICQDrRXM9ALqY7XiziCcMZoG96NjskDYeIrqYMd2UJhHeAiAwIiQrIECJyGD4vHPgGMl+E0qoce+GdIWMixJ+iYKmIiIi0LuPpzVzGM5WP/JIIpxPFTC4IWvntV199NSjXPVIK0oiInwTCg3Jdmw0iOpuHiDS/gnWw4WGwKmrbSnbAhodgwHSIHdBycxMRERFpyHh6M46eLGEnWRSRRiTD6RSUFTSthYI0IiIi7Zy3wpS7rxugqebzQNZ8iO4DdieUZkPZXrA5IKwDuOObf74iIiIi1RzYGUGXlp5Gs1GQRkREpJ2rLIDCTY33F/5g8tMcXA7bXwHPAdMemgbdfgYJp5nVcCIiIiISXO13jZCIiIgAYHeDs4kKla44KNwIm2bVBmgAyrJg41+hYEPw5ygiIiIiCtKIiIi0eyGRkDam8f6Ol8HutwFf/T5fOez7FCwrWLMTERERkWoK0oiIiJwAEk6DpHPqtyePhNAUKNnV+LkF34O3LHhzExERERFDOWlEREROAO546HEjpIyCvG8BG8QNhsjuYFVCSBRUFjZybgLYQ5p1uiIiIiInJAVpREREThAh0RB/knkcKm0MbH2u4fNSR5vKT95y8BSArwQc4RCaFNz5ioiIiJxoFKQRERERkoabClD7F9dptEPnK8GVALvfhYKNkPUBWF6I6AIdx0HKSJN4WERERESOn4I0IiIigjsBevwK0kabHDT2EIjqbRIGZz5nctJsf6XOCTYo2QnbX4WKAgjvALEnQeyAFrsFERERkTZPiYNFREQEMHlpYgeZ1TPpl0F4J8j8N4R3gZ3zao9zxUP6OFOee9VtsP0/sOq38MVVkP1Ji01fREREJCB2797NT3/6UxISEggLC2PgwIEsX768WcZWkEZEREQaVJoFhT+Ar8yU4q7WYSxsehrK9gI+k3gYwJMLq38HBZtaZLoiIiLSDnmxWISXV6hkEV68WEEd7+DBg5x11lmEhITwwQcfsH79eh555BHi4ppnf7e2O4mIiEjDfIAFtkN+WwhNgqIfwFb9Vk+dt3xKd0HRZoju2VyTFBERkfZqHl6m4mFXnbZ04HFcjMcRlDEfeughOnXqxOzZs2vaMjIygjJWQ7SSRkREmkeJBesrYVEFLKuAzV5YU1n7eUVw3xWRo+dOgtA0kyjYlVjb7vNUfWIHWwOluRsr5S0iIiJypObh5YpDAjQAu4Er8DAPb1DGffvttznllFO48sorSU5O5qSTTuLZZ58NylgNUZBGREQCw2dBjg9yffX79vngH2VwRyk8Uga/L4UfF8JnFfBMGfyhBJ4rhwMNnCstxh0PXX8KB7+DHr8Eu9u0291gc5mVNBGdTeLgukI7NP9cRUREpP3wYjEVT4Mbm6rbpuEJytanrVu3MmvWLHr27MmCBQv49a9/za233soLL7wQ8LEaou1OIiJy/LZ44UMPrPZCJXCWE0aFQGeHKQ/0tgeWVCUuKbHM8ZXAo2Xw+zB4r8I8omxwrbsl70QOkTAMHGGw7zMYeC/krwV80H0y7P/cBGjq5qtJHQ1RvVpqtiIiItIeLMFXbwVNXRaws+q4EQHe9uTz+TjllFP4y1/+AsBJJ53E2rVrefrpp5k4cWJAx2qIgjQiInJ8Mivh00ooATrZIckO23zw51K4OwxswMcVtccXWCZAA1AM7PJBnA0OWvB+BYx0Qofg7DE+0XjLoTgTCjZAZRlE9YCQaPDkgTMCIrqYik5NcYRAwqkQ09+c1/Eys8KmKBNCYmHnf8GLuV7HcdDj1xCWHPRbExERkXYs6whXyBzpcUcjLS2Nfv36+bX17duX//3vfwEfqyEK0oiIyLGr8MHiSniwFOrmIRnhhDOdsLQSTnGYYEy1kkN+mO72mRU0By0TwClSbppAqCyFPe/A9jkmp4y3HEp2QUxfSDoH9n5sVrx0/wW4U0ywxt7EbwXOcPOoFpkB/e+Gzj82q2mckRDd2/8YERERkWORhi2gxx2Ns846i++//96v7YcffqBLly4BH6shCtKIiMixW1e1YubQRLGLKiHFDkU+GOaEKGqPCbUBllmn6gOSbbCiavtTIhAW+B+2JxpvKRxYDj/83VRmcoSaqkueXLNFKSID3ImQ8yUcXA2drwbPQegwBqL7gb2BhUxej9nW5IyorerkDIW4wc16ayIiInICGI6ddEyS4IbevrNhqjwND0Ka3d/85jeceeaZ/OUvf+Gqq67i66+/5plnnuGZZ54J+FgNUeJgERE5disrofyQtuoYy/wK6OSABBtc6Krtj7FBig2uCIGb3TDUCWk22O6F3lUBHTlmJbsh8yXI/DcUboKCjVC2D8pyao/Jmm+S+xZtNTlmvKWQ+yWsuQcOfOV/PU8+7FsEa+6G1b+HH56A/HUm1ZCIiIhIMDiw8Tjm98dD376rfj4TF44grKQ59dRTeeONN3jllVcYMGAAf/7zn5k5cybXXnttwMdqiFbSiIjIsdtflU9mn2U+Rtig0gKHDRxAhh3C7XBJCOT54LNKGGiHFCe8XFXHOdsHfRzwpzDzVsmXXrhIOWmORWUJbH0OKouhPLeq0TIls71FZksSNrOixlbnd5ryvSY5cGURbH0eovqYvDMVxWa7VNb7tceW7oL9S6DvH0yuGhEREZFgGI+DubiYekgZ7nRMgGZ8gBMG13XJJZdwySWXBO36TdFKGhGRE4XHCvzyhx5Okyi4ow2KLfjWC9/5YJXXlOKutEGhDxLt8OtQeCgMLnDB2xUQXRXISbab1Tj/8ZggzfsV5hw5aiXb4cAKKM/xr7Bks4PlA5/XPI/oCqVZtf0h8eAtM5+XZZkHQPFW/wBNNV85ZD5vEgmLiIiIBMt4HGwjlE9xMYcQPsVFJqFBDdC0NK2kERFpzyot2OiFTypMxaUOdlMau58DXAFYHnpS1XamnUC2ZXLM2DBvAVzsgvurKjydawe3DdLspuz2D16TTNhW9fBhtkHt94EbKEXbno6BJx/wQfk+iD/NVHKqKDDbmVyxJhBjAR3GwtZ/ARa4kkwQp3xfVaDGguLt5vO8NY2PVbLDBHpcsc1xZyIiInKicmALeJnt1kwraURE2rMvKuGuUvioEjZVbTe6pxQ+rABvAFbVdHPAraFQtY0GJxANXOcyK2vWek3empyqlTEHLfO8uiJ3dfJggPyq4wfbzSqbVsxXCYVbIfdrOPgtlB9o6RkZzsjaz3O/hD6/hai+UFlogjHhXaDbL0yemtLd4IyGnr+GzBfh4CqTn6ayFHK/gYLvTSDGV9H4eGjBk4iIiEhAaSWNiEh7leWFf5Wbqkl1+YAXyqG/AzIC8K5EnA1GhsDlNjOWDVhSAWur/oLf6astu11RtdrGZTOfHxonsgNnhVRVgGp55blVq0pKwZ0AEV1MEGPnXMj+0Gz7AQhLhx6/hrhBLTvfiM5mm1PhD+A5AHsXQuoocE0w1ZnihpjgTFgqJJ4BpXth0ywo223KdNtDoMs1sP1VCE2Dnr+ErA9MJahDhaZBaGqz36KIiIhIu6YgjYhIe7XbB3mNrJYpA3b4AhOkCbOZoMz2RsbqZK/dWhVth/ND4HkPhGO2NVWvxrADI0LMlqhWIG+NqWRUnZ8FOyQOg/hTYM87ZtVKVG+wO822nw0PweAHTL6XlhISDT1ugo1/Mwl+vaVV1Zps0PES2PqsSS5sd0HcUIhIh5BwsKWbAFTSObD7HZNY2JMLNhfEDDSBHVudfxabE7peZwJXIiIiIhI4CtKIiLRXh66gOVRT21iORmc7XOaGv5fVXxmTbDP5b1Kr/sKPs8EwJ6z3wtdekzi4Oo/NRFdtNagWVrLLBGhccWYVSclOqMgzK1OKt0P6eBOYObASYvpD0tngjIDinS0bpAGI6g6D/gxFmSbPjCve5KXJnG2qPoFZAZT7JaSOhsieENbBbG/64XGzoqZayTZIOM28BtkfmepPEV2h4ziIHdgSdyciIiLSvilIIyLSXqXaIQyzWuVQDiA9QFuKnDaY5DIltud4aoM/GXb4bSic7PQ/to8TRnphdAj84DMJhXvY4UBVKe5WoHgnRHaDnGUQ2R06jjVbgQo3m7LU+z6Hgyugy9Ww/RUo3GhWnSSdDZU3Q/J54AwL/jy9FVC60xTtCu8MjhDT7k7036KU9WFtgKYumwP2fgLh6SYQdShHqFk1k34ZpJxnkgmHxIDDHZTbERERETnhKUgjItJedbLDeJcpbX2o0SHQNYABkQ4OuCcMrnLBHsv8dOlshy52iDpkZUwfB9jc8IHHHFdZdfxP3JDe8kGasn2m8lH2x9Djl5DzJWx9xgQr4oaabUNle6DzVbDxr2Z1CYDlMblgNj0FzihIPie48zy4GnbOMzljrApIHgldroX4oWA7JP4W3cckCa4s8G/3HICk4eDJqS3TXS3uZKgogvQLzfOQaPMQERERkeBRkEZEpL1y2OCSEEiywxse2Ocz243GuuBsZ+CT80bY4ZQj3KrU2wHdQyHXMrloEm31Iwst5OAqyF8Hna+E7XOgaHNVh8cEZzY8DL3/D4o21QZoALCZKko+D+yaB3EnQUiQyogfXA3Lb4GiH2rbts8xgaXTZ0PCKf7HR3SGvr+FH/4O5Tm187V8MPBe2PoC+LxQusfcU/yp0G0yxPQ126dEREREpHkoSCMi0p5F2uF8O5zigCILwm0QF4ScL6U+2OCFLT7zk6WXwzxCmgi8OG2Q0joCM9W8FSbQ4U40OWZqAjRVKgrMtqeDq8BbUqfDBo5ws30IC0p2Q0V+cII03nLYt8g/QFOtfJ8J1sQOAofLvy/uJBj8YFW1qhJwJZr8MiGRMOAu0+45aLY4haZBaHL9a4iIiIhIcClIIyJyIoixQ0yQrr2vqtT3P8tN1SiAWBv8IRSucZvqT22Fz2wdCkuDkj2YVT51tgB5yyAiA8r3QlQfE5jBZoIzNrvZ5mR3m+CMPUh5W8oPwt5Fjffv/cQEa8LT6/eFppjHoUKizGobb4kJAFWWQMLpJtgT3iFQMxcRERFpG7p27cr27dvrtd900008+eSTQR1bQRoRETk+Cyvh8XL/tjwL7iw1yYNHtp3lGA43JJ4Je941FY+ckVXVjiwThHEngivWJNntfiPsfK32XJvDBHdsdki9EEKTgjNHm82U/W6MPQQTXDoKnnzIfAH2flTbdnA5hHWEfneY8twiIiIiLcHrgyV7IasU0sJgeAo4glwM9JtvvsHrrS15uXbtWi644AKuvPLK4A7MUf8aJyIiUkeWF14ob7jPC7zugYpD63K3bglngC3ErJixu0zQw+4yK2NCU812oPTLzXagnjeBIwzcCRDVyyTWTTgDUs4P3vxc8ZD2o8b7O1xk5nY0Ctb7B2iqle6GXW+ZfDUiIiIizW3eNuj6OoycDz/5zHzs+rppD6akpCRSU1NrHu+++y7du3fn3HPPDe7AaCWNiIgcj3wLdvsa79/mgzKr6dw0rUxEZ+h/J+z/EnpPhR+eNOW0Q1PNtqDQVOj+C1OiO7oPdBwHRZkmYXB0b9MezCpIjhCz2ifpbNj/uX9fVC/o/OOmV9o0ZO+njfflfgmdJkB4x6Ofq4iIiMixmrcNrvgUDn27b3eJaZ87EsZ3Df48PB4PL7/8Mrfddhu2Zih0oSCNiIgcmXILdlYFXWJt0NEOUTboajd5aRrS09G2ctJUicwwW3zK9kLKBZC/3iQCjukD0X3NtiYAR4SpkOSKMflonDEm+a6vwqyuCZaYfjDwL5C7FHa/Y/LopF4Iqeeb+R2tysLG+7zlVVu+RERERJqJ1wdTv6ofoAHTZgOmfQ3jOgd/69Obb75JXl4ekyZNCu5AVRSkERGRw8us2ta02mu2MUUCF7tgrBOud8M3JfV/irqAK1ymilMbZLObYExYGsSfVL+/4HvY+ChkfQDeUrA5oeMl0OESyPkKUkZA0lmmSlQwxPQ2j/Tx5rnrOFbvJJwB+Wsb7ovqCa4gBpxEREREDrVkL+wqabzfAnYWm+NGpAV3Ls899xxjxoyhQ4fmqaagII2IiDRtnw/+Wgo760RhioD/esxPyPMccEcYPFVmEgaDKa39pzBT+rsdKtsPa+81lZTwmapIViVse9GsoulwMWx6Anxl0PHS4M7leIIz1eJPht3JpipUXTYndLoSQoIUaBIRERFpSFZpYI87Vtu3b+fjjz9m3rx5wR2oDgVpRESkaZu8/gGaut7zwLnhMDkEhjvNdignZgtUb0ebXUVzOAUbIGeZ+dznNQGaarvfguSREJYOO+dC/Km126Naq/BO0O9PsGsu5H5tAk1RPaHzVRDXwCoiERERkWBKCwvsccdq9uzZJCcnc/HFFwd3oDoUpBERkaZtbSIxcDFm9UxnJ5yMeZwAijLBV1XU6tB8Ld4SqMgzpbrzd0F5TusP0gBEdYPet0FpFuAFVyKERLb0rERERORENDwF0sNNkuCG3iq0AekR5rhg8fl8zJ49m4kTJ+J0Nl/oRCW4RUSkaXFNrIaxA6HNNpNWw51YW0Hp0CT/Njs4I02eGmymfHdbYXdCRCeI6KoAjYiIiLQchx0eP918fuhvotXPZ54W3KTBH3/8MTt27GDy5MnBG6QBCtKIiEjT+jjA3UjfAAekt8+8M02J7Q8R3czntkPeWIk/A1zxZrVNVG+z7UlEREREjs74rqbMdsdw//b0iOYpv33hhRdiWRa9evUK7kCH0HYnERFpWjc7TAmFf5SBp057qg0muyG8feadaUp4FxgwHb79AxRngiPMrJyJ7A29boGcLyAkCrrdoKS7IiIiIsdqfFdTZnvJXpMkOC3MbHEKdtntlqQgjYiINM1ug3Oc0Ckc1nkh1wfdHSYxcGo7/gnZBJsNks+BM16G/O+gdDeEdQR3kinNnTQc4oZARJeWnqmIiIhI2+awB7/MdmuiII2IiByewwY9HOYhgAnURPcwj7qSh7fMfERERESk7Tsx3wIVEREREREREWllFKQREREREREREWkFFKQREREREREREWkFFKQREREREREREWkFlDhYRETaNV8llO0DnwfsLghLM0l/RURERERaGwVpRESk3SreBQe+gqwPwXMA4gZB/GkQfyq441t6diIiIiIi/hSkERGRdqk8BzJnw6Z/1LbtXwyhKTBoBqSNBrt+CoqIiIhIK6KcNCIi0i4VbPQP0FQr2wuZ/4biHc0/JxERERFp3bxeL3fddRcZGRmEhYXRvXt3/vznP2NZVrOMr/cQRUSkXcpZVr/N8oFVCXs/heJMqMiD2IFgD2n26YmIiIjIEfB6YckqyMqBtEQYfhI4HMEb76GHHmLWrFm88MIL9O/fn+XLl3PDDTcQExPDrbfeGryBqyhIIyIi7ZKvzP+55YXKIvCVm+fl++GrG+DkxyD1EghxN/8cRURERKRx8z6BqX+DXftq29KT4fHfwvjzgjPml19+ybhx47j44osB6Nq1K6+88gpff/11cAY8hLY7iYhIuxR/KtjqvBXhLa0N0EQPMEGa8r3wzY2Qt7Jl5igiIiIiDZv3CVzxe/8ADcDufaZ93ifBGffMM89k4cKF/PDDDwB8++23fP7554wZMyY4Ax5CK2lERKRVqSiDwvXgLQdXLET3ObaS2bFDIPV8yP4IvB7wVq2ssbuh963w/WPmeWUh5H4JScMCdQciIiIicjy8XrOCpqEsMBZgA6Y9AuPODfzWp9tvv52CggL69OmDw+HA6/XywAMPcO211wZ2oEYoSCMiIgGXvw72fwE5X4ArATpcDLGDIDSp6fPy1sDWf8P2OSZfTGRP6DkF0i6GyM5HN4ewFBh4P8T0h11vQ/FWiBkIna+CXW9C0ZbaY4syj/YORURERCRYlqyqv4KmLgvYudccN+KUwI792muv8Z///Ic5c+bQv39/Vq9ezbRp0+jQoQMTJ04M7GANUJBGREQC6sAK+OaXULKrtm37f6D3b6HbpMYDNYVb4Ls/QvaHtW1Fm2DVNPAWQ89p4DjKn1oRnc24qT+CfYsgfy2suRM8B/2Pi+53dNcVERERkeDJygnscUfjd7/7HbfffjtXX301AAMHDmT79u3MmDGjWYI0ykkjIiIBU1FothHVDdBU+/5RKNjQ+LmFP/gHaPzO/Tvkrzm2OdkdZgVNZTFse7F+gMadAgmnHdu1RURERCTw0hIDe9zRKCkpwW73D5U4HA58Pl/gB2uAgjQiIhIwRVth72eNdPpgf2N9QN7axvvK90J5E0teD8duh85XQ6+pYA+vbY8ZAKf/GxICvExWRERERI7d8JNMFafG0hLagE4p5rhAGzt2LA888ADvvfce27Zt44033uDRRx/l8ssvD/xgDdB2JxERCRhfBVDZeH9FIVhWw4mAXbFNXNgGjrDjm1tUN+h3N6RfAWVZ5nqR3SCqx/FdV0REREQCy+EwZbav+L0JyNRNIFz9a+TM/wt80mCAJ554grvuuoubbrqJffv20aFDB2688UbuvvvuwA/WAAVpREQkYMLSILKH2brUkIRhjVdqih0MjgiTf+ZQiWdBRLfjn58rEhK1tUlERESk1Rt/Hsx92FR5qptEOD3FBGjGnxeccaOiopg5cyYzZ84MzgCHoSCNiIgETHhH6HUrrLwVrEO27cadArEDGz83ZgCc9CisuAUsT217WDoMuAci0oMzZxERERFpncafZ8psL1llkgSnJZotTsFYQdNaKEgjIiIBlXYRnOKGzbMgbzWExEH6ZdD1p01vLQoJh05XmmOyF0LpHogbAglnQHwQ9huLiIiISOvncAS+zHZrpiCNiIgEVEgEpF8KiadD2X6wOyGiOzhCjuzcpLPNQ0RERETkRKMgjYiIBEVoinmIiIiIiMiRaVMluBcvXszYsWPp0KEDNpuNN99806/fsizuvvtu0tLSCAsLY9SoUWzatKllJisiIiIiIiIichTaVJCmuLiYwYMH8+STTzbY//DDD/P3v/+dp59+mq+++oqIiAhGjx5NWVlZM89UREREREREROTotKntTmPGjGHMmDEN9lmWxcyZM7nzzjsZN24cAC+++CIpKSm8+eabXH311c05VRERERGR4PBWQt5uqCyH0GiISW3pGYmISIC0qSBNUzIzM8nOzmbUqFE1bTExMZx++uksXbq00SBNeXk55eXlNc8LCgqCPlcRERERkWNycBesfB22fmGCNOFxMGgc9BkFYTH+x2ZvgM1fwPavIDIReo+C+C4Q3wmc7paZv4iINKndBGmys7MBSEnxz1KZkpJS09eQGTNmMH369KDOTURERESCzOeDHAtCbRDdpnb0H7niA7Do7yb4Uq3kICx7HirL4JSfgM1m2rd/A69Ogf2boaIULB98+jhcPB1S+kL3MyEivkVuQ0REGtdOf4IduTvuuIP8/Pyax86dO1t6SiIi0sKKd8CuN+G7u2Dj3yB3OVQUt/SsRKRRKyrgvjK4thiuL4b/lMP2ypaeVeDlbPUP0NT13TtwsOr32NJCWPgY5G6FihIToAHweeH9ewALNn7cLFMWEZGj026CNKmpZi/u3r17/dr37t1b09cQt9tNdHS030NERE5chZtgzV2w9TnIWw37PoN102HHf6FSgRqR1mdZBUwshlnl8J0XllbCbSUmaLPL29KzC6ycLWabkq2BX+E9xVCcW3XcZti8GLwVYFn+x3m9sGsl7N8EBXvrX0dERCgsLGTatGl06dKFsLAwzjzzTL755ptmGbvdBGkyMjJITU1l4cKFNW0FBQV89dVXDBs2rAVnJiIibYW3HLbPAc+B+n2734DCzc0/JxFpQoEPni6H/Vb9vncr4Nt2FKQpPgDuKEgfDL1GQu/zTNLgupyh5mOlB3yVZuVMQ0oLzOoaT2lw5ywiEgBeL6xYBB++Yj56m+Fb+89//nM++ugjXnrpJdasWcOFF17IqFGj2L17d9DHblM5aYqKiti8ufY35MzMTFavXk18fDydO3dm2rRp3H///fTs2ZOMjAzuuusuOnTowGWXXdZykxYRkTajdA8cXN14f+4yiBvcbNMRkcPZ4YOFFY33z6+Ai13NN59jVZpvcsfsWgU2B6SfBEndITTK9Odug08egz1rzHYnywdRyXDuzbBpMZQVQHJPiEs3x7siYNRvzXW3fW2SDHvrvE7pg2HXt+AKa/ZbFRE5Gp/Og8emwr5dtW3J6fCbx2Hk+OCMWVpayv/+9z/eeustzjnnHADuvfde3nnnHWbNmsX9998fnIGrtKkgzfLlyxk5cmTN89tuuw2AiRMn8vzzz/P73/+e4uJifvnLX5KXl8fZZ5/N/PnzCQ0Nbakpi4hIG2J5wWoijYW3pPnmIiJHwFf1aExbSEtTlANfPANbl9a2rZ4Hfc6H0yeCw236c7ZCSLipzpS7DQr3waIn4KxfmiTBZ/4cKivgqxfhi39B6UHYtwkyzoALfm+SBpcXQfezICwWup4O0SmNzUpEpMV9Og/uuAI4ZLHkvt2mfcbc4ARqKisr8Xq99eIIYWFhfP7554Ef8BBtKkgzYsQIrEP31dZhs9m47777uO+++5pxViIiEgy+SpPAtyIPsMyby+Hp4E4M3pjuBAhLh9JdDffHnRS8sUWOWfEBKNpv/pPEdgBXeEvPqPmk2+BsJyxqJBpzYRv4VTdzqX+AptrGhZA2EGI6wJ51ps1mg4hECAkzq2S85RDbEQZfBvGd4ev/wBu/M8dGJkFKH7NiJncbnPNrUwlqwFjIz4LB45rrDkVEjprXa1bQHBqggao2G8ycBueMA4cjsGNHRUUxbNgw/vznP9O3b19SUlJ45ZVXWLp0KT169AjsYA1oAz+5RETkRFO0Dba/AjtfN1uQonpDpwngOQidLofYQU2f762A4q2Qvw4qiyCqF0T1NEGYprjioMs1sPER6r07H9EVovoex02JBFqFB7YthW/+Y/7ottkhrR+cdp35eCKId8BNobC8CIoO6TvbCScF+Df3QCstgPXzG+9fPx9OuqK2OhOYQI070jwA7A4ToMnZBkueqj2uaL9ZeZPU0xyTNgA6DDB5a3qPNAmIRURaqdVL/Lc41WPB3p3muKEjAj/+Sy+9xOTJk+nYsSMOh4OTTz6Za665hhUrVgR+sEO0m8TBIiLSPpRmwfoZsP0/UJYFjlAo2mLaXLGw6Uko2dn4+d5yyH4fvr0dMmebQM/6B8z5JUeQ6y3hDOj7B4jsDtjBGQFpP4I+v4cw7QyQ1mTnClj4qAnQgPlDfs9amP+A2RpzohjugJcj4UoXdLZBHzvcGQYPhUPXVv5+ZGU5lDdRNq68yARj7E3cR3RVFdOSXJPXpq6KEji43ZTi3rbMBGmSeyhAIyKtXm5WYI87Wt27d+ezzz6jqKiInTt38vXXX1NRUUG3bt2CM2Adrfwnl4iInGjy1pigjDPSBGgqiyHEBc5w2PMBJA+Hgo0Q3qnh84s2w5Z/U28lTOH3sOsN6PFr86ZyYxwuSDoTYgeYlTs2J4SlNVzxVqTFlBfB6rn+KyyqlRWYZLGJwf9FslWw22GYHYY4IMsNLhukt/IVNNXCYkzC38zchvtT+5h/x27DYPOS+v2xHSGxu/nc4TIrZyoaSZ4VkRSYOYuINIOEtMAed6wiIiKIiIjg4MGDLFiwgIcffji4A6KVNCIi0socXA2+chNUObgCCjdC/ndwYCV4ciCiB5Q2sSJm/5c0mkh0/2KzfepIhERDRBcI76gAjbRCJQchd3vj/TtWgK+pjLrtUJgdujnbToAGwOmCAZeAI6SBPjf0ucBUYDrteuh+tv+KmuRepoJTVFXwJaknDLyk4XFsDrPFSUSkjRgy3FRxwtbIATZI6WSOC4YFCxYwf/58MjMz+eijjxg5ciR9+vThhhtuCM6AdWgljYiItCoOt1lJU5Hn3255oOB7iOhk8sw0xpPTeJ+3FHxNVOsVaTMcISZ5bGV5w/3hcWaFibR+HQbAqN/B1y/Bwaq9nAkZcPr1kFqVCCsmFUZOg8HboTTPJIeO6wJhUbXXcYXC2b+C7PVm21s1mwMuugc6DGyuOxIROW4OhymzfccVmEBN3QTCVYGbaTMDnzS4Wn5+PnfccQe7du0iPj6eCRMm8MADDxAS0kBQPcAUpBERkVYlZiCU7Wu4L+lMKM2GhNMaPz+6P+R82XBfaAq4oo9/jiItLioFeo2Eb99ouL/PqOadjxw7u8NsZ0rtAwV7TWLg6FSzFaquEDek9Gr6Wh36wzXPwO7vYMdyCI83JbfTBkBoZPDuQUQkCEaON2W2H5vqn0Q4Jd0EaIJRfrvaVVddxVVXXRW8AZqgII2IiLQqDhd0vQ62vYDfuyYRXSBhGBSsh85N/FCOGwIhsfVX4gCkTwhuCW+RZlHhgT3fmVwlEfEmSXBodO2+vMGXQ+oJUt2pPQmPM4/jldTdPIZcfvzXEhFpYSPHmzLbq5eYJMEJaWaLU7BW0LQGCtKIiEirYg+FinwYcC8c/Ba8RRDdD7DDD4/Dqc82fX5EZ+j3R9j6b5PXBssEbTpNgKRzgj9/kaAqyoGvXoIP/2KqAp1yDfQeBZVlZotMxhkmkaw7oqVnKiIiEhAOR3DKbLdWCtKIiEirEt0fovvChhkQ1dtUeNrxiqm0FDMQYvoe/hoxfaHXraZUt88DoakQ3dvsIhDxU3wAKkrN1hJ3G9gOsuULePsOsKqWmX39skkwG98JrngcOg5q2fmJiIjIcVGQRkREWpWQMMi4HvCaUtqV+WYXR+qF0O9PENO/6fN9FbBvMWQ+X7vlyRkJXa6BlAvAGRbkG5C2oTgXNi2GdR+YktWxHc32kE5DTTWd1qg4D5b+uzZAU62yHPZthiWzoPOpEB7T4OntjqfUfGyt/14iIiLHQEEaERFpdaJ7Q5/boePl4Mk1QZaIDFPZ6XDy18GmJ8Dy1rZVFsGWZ00+msQzgzdvaSPKimDpbNj0WW3bvh/gw4dh+I0w4OKWm1tTinPgwLbG+3O3QfH+9h+kydsD276q+vezoMc50PUMiOvY0jMTERE5bgrSiIhIq+SOBffpR3eOrxKyPvQP0NS1602IHQLO8OOcnLRtBzL9AzQ1LFj+KqSfBLEdmn1ahxUeZ5IFZ29suD+xG4TFN++cmtvB3fDhDDiwvbYtZytsXAg/+iPEpQdmnMJ9UHwQ3OEQdwTRYRERkQBRkEZERNoNbxmUbG+8vywbKgoVpDnh7dvceF9pHhTubZ1BmsgEOGOS2aJ16JYnmx1OnwiR7TxIs/Vz/wBNtbydsHkxnPqT47t+SR6s/wCWPg85W8zXwekTodf5kNj1+K4tcowqqWQne9jPARw46EYn4oht6WmJSJDYW3oCIiIigWJ3Q2hS4/0hsQrQCOAIabrf3orrenY9Ay7/m3+p5oh4mPAIdD3N/1ifDw7ugv1boHB/884zGEoLG1kBVWXzYijNP/brV5abnD//+z/YvRrKC2Hv9/D2H+HLZyE/+9ivLXKMcjnAJ3zJH5jBNUxhBn/nGeawku9aemoiEiRaSSMiIu2GIwTSxsCBFQ33dxwLIVHNOydphZJ7gt1p9scdKjoNYlpxbpPoFDhjMnQ93awesYD4zpDaH9x1EujmZ8G3b5ighqcEIhLhpPHQ41wIi26x6R8fH1i+Jrq9Tfcfzv6t8OVzDe+X/Ppl6HshxKQe+fWK9oO3EiISwOk69nnJCcuHj1Ws4wZu42LO43JG8yUreJ132UM2PixOYXBLT1NEAkxBGhERaVdiBkLX62D7q2BVmDabAzpcAglHmeNG2qmErnDKj+Hr//i3O91w5mSzrag1Cw2HrqcCpzbcX5IHn/0Ddtd5p704Bz5/BjzFcPKP22Y9+rAYE5xaPa/h/q6nQVjssV//4A4oOdBwX2WZWZHU89wjuM5u+P5j+GEReD2Q3AsGXwYdBoJdi9jlyO0mm1d5i4sYyTp+YCm170CsZA1r2MC/eIRudG7BWYpIoOknhYiItCvOcFMVasjD0Gsq9LwFBj8EXa6DkLa6gEACy+mGgePgorshYxgkdof+F8HYP5sgQFuXs8U/QFPXt29B3q7mnU8g9RxhtncdKjwOep9/fMEnx2HeuzxcP0DBXlj4V1g11wTGygpgx3J4/z6zhUrkKORwkFWsI5aYqgCNfy6qb9nA23yIj+NYQSYiDVq8eDFjx46lQ4cO2Gw23nzzTb9+y7K4++67SUtLIywsjFGjRrFp06aAjK2VNCIi0u44QiCqh3mINMgVBl1OhU5DwVthtqO0xdUlDcnZ0nhfeREU5bTdikWJGXDJfbB7janAVHIQQqNMgCax2/FdO6E7xHVuuMx5RAIk9Tz8NbLWmRU3h/J6YPl/Ibk3uCOOb55ywnDhZBB9WcoKrJoAjflow4YDB1+xin3kkEpyy01UJMh8Xti/BMqyIDQNkoYHP31ccXExgwcPZvLkyYwfP75e/8MPP8zf//53XnjhBTIyMrjrrrsYPXo069evJzQ09LjGVpBG2p/ig7B3IxTnml/cknpBbFpLz0qCKC8Htn8PefshPApSOkF6D60qF5EjYLebjNPtieswQYBA50epKDdbhcqLzc/duM7gPExy5oZYVtV2I1vDq2UAcjJh1euw7WsoKzJBm9OvN2Mer4QuMPoOmPsbqCipbXe44LzbILXP4a+xdWnjfXs3mjw1CtLIEepIGudwOuup/+68hUUHkrGwtJJG2rWd82DlVCitswg0LB1Ofhw61Y+dBMyYMWMYM2ZMg32WZTFz5kzuvPNOxo0bB8CLL75ISkoKb775JldfffVxja0gjbQve3+ABX+BDQtqkwd2HASXzoAup7Ts3CQoMjfAiw/Cp3NNfkaHA4aOgut+B/1PhxDlahSRE01yb7OczFtRvy8hA2LTAzfWwZ2w7AXYscIkYnaEQPezTSns6KNIsrt/C2z4ELZ/Y8qJ9zgbep1nkiJXVkD+blNt6aO/1eaNcYaYrVsfPmiCKxlnHN+92Gww4BIz77XvQdZ6k79owEWQNsi/olZjmgpO2exAO1mtJc1iJ7vpRy9GMZyvWeXXl0oy0UQziL4k0crzaIkco53z4IsrOHSnH6W7TftZc4MbqGlMZmYm2dnZjBo1qqYtJiaG008/naVLlypII1KjtAAWPgLrP/Bv3/0dvD4VJr1s3nGTdqOoAF6cAR//t7bN64WvF5g3dG99FHqp6IGInGgSusJZv4DP/2nWiFcLjTbtYTGBGac0Hz570mzxqeatgB8+hUoPjJxqtpUdzv7N8OYdZjVOWaEJ9OzfDJu/gPOmwpp3IXsDJPeATZ9CTAcIj69d6275YMV/Ia2/WclzPBxOE+zJOAPKS8wYIUex0qrHcNi8pOG+zkOPrjqUnPBKKGMmz3ILk/mO9azgO2zYSCYRB3acOLiM0YRwDCvXRFo5n9esoDk0QANVbTZYNQ06jgv+1qdDZWdnA5CSkuLXnpKSUtN3PBSkkfZj3/fmna+G5GyG7PUK0rQzmevgszcb7vv2c9i9RUEaETkBOZzQexTEdzHbggqzIaUPpA8xAZxAyd3mH6CpK3OpqWh0uC1CPp+p1rTtK/CW17YX7jVJd9e+B3s3mIpbu7+DynLIzQQsiKyTgyNnKxQfOP4gTV3u8KM/J7kPdDsLtn7h3x4WAyddaZJWixyhBGIpp4JHeYYJXMxJDGAxX5HDAfrRlylMoh+9WnqaIkGxf4n/Fqd6LCjZaY5LGdFcs2oeCtJI+1GSB74GlnZXO9iGq1mcACorTU4Znw/iko5sm1J+rkmF0JjcbJPioL3kAhUROWLOEEjrZx7BUriv8T7LZ5L6Hk5BNnz3jn+AxlzABIF2LIeUvlCa559rJz8LQmNr8+s43c3/VmpDIuLg7F9Cxulm+5an1Gy37nbm8Sc2lhNOF9IZwRl8xBL+x3ukk8ZFjMSOHTcu+nEEyaxF2qiyrMAeF0ipqWZV5N69e0lLq819unfvXoYMGXLc11eQRtqPsBiwO82e+IbEKHlwa7VrCyx5G9Z/Y5Y29hgEIy6HjMP8bRERAyGhUFHWcH9cogI0InICKNxvqjY53eZnXXN943NHNt3vOoKVKKUF4CluuM9XYSLx7kjY8x30uaB2S3NluamYVB2k6XrG0eXACaaIeOg1EroPN7+ThBxflQ85cYUQwjVchgsXn/AFu8gim/2cxhB+zKXEEqCtiyKtUOgR/ul2pMcFUkZGBqmpqSxcuLAmKFNQUMBXX33Fr3/96+O+voI00n4k9TTLuzfMr98X19m8Eyetzp5t8Nx9UHCgtm3tMtj8HfxiOnRtYqV8Rj8YcjZ883H9vs69oZNWAItIe1WaDwe2mxUl+zbBtmVm6WCfUTDgYohqhnK8CV1NQKL4QP2++M7mcThOF2QMg9Vz6/fZ7NBtGBTtNRH8/CwYckXVsbaqRLyYwNRJ4802r9bE4Wx9c5I2J4kEfsFPGMMICiginDA60QEXqowg7VvScFPFqXQ3DeelsUF4ujkuGIqKiti8eXPN88zMTFavXk18fDydO3dm2rRp3H///fTs2bOmBHeHDh247LLLjnts/eSQ9iMiDi78PXhKYMvi2vbEHnD5XyFFS0Jbo+++8A/QVCsrgS/eNaW0nY18p4pNgF/cByWFZhVOTUGvHvCbmdB9YNCmLSLSMizLVFJaNhu2fgn5e0zumVN+YoI1q+dB3m6TtDeQ+VkaEpNmxvn4EZM/plpEIpx785FVQwqNhK6nQeYyyD9kW3KHgZDaF75+2Tzf/S10HAxj7jb3GhEHXU+HDoMgtkPg7kuklXHgoAudWnoaIs3K7jBltr+4AlMYr26gpmrB6Ekzg7fTdfny5YwcObLm+W233QbAxIkTef755/n9739PcXExv/zlL8nLy+Pss89m/vz5hIYe/+pJm2VZDcWlTlgFBQXExMSQn59PdHR0S09HjkX+HvPLW+E+swUqsTskdW/pWUkDykrgH3+ArG0N90fFwS1/hYSUhvurZe+ErWth306IS4bOPSGjf8CnKyLS8rI3wDt3mXwv2RvAqqreZHfCmLtg/QKzxWbcX0yQozkc3Fn7czemAyT3PLotxhs+hJwtkJNpgjV2hynBndDNrNb5ZGZtFB7MGD+6E+L1R6uItB/t8e/QsrIyMjMzycjIOObgxc55pspT3STC4Z1MgKYlym8fjyN9PbSSRtqfmA7mIa2e3Q4hTVSNdIaA4wii46mdzENEpF2zLPj+k9p8LFad8tq+Slg/36w82bMWDuxoviBNXCfzOFbdzgZsZs69zjNbhCISoPf5ZtvWpcmw/WuzxavDAJMMWT/nRUROCJ3GmzLb+5eYJMGhaWaLU2vIFR8sCtKISItxhcKpF8COTQ33DzkbYhObd04iIq2Wp8SsnoHafCx17d8MGWeaz0PCmm9ex8sdDn0vgE4nmxVCjhCI7Vibz6VDf/MQEZETkt3R/spsN0VBGhFpUX2GQvcBsGWtf3tqJzh1VMvMSUSkVbAsk18mf495HtvRbOMFUzHIGQqVdcrbhUabUtbOUEjIaP75Hq/IBPNoC7yVZguWU8lbRUQksBSkEZEWFZ8M19wGm7+Fbxaa33tPOhd6nwxJWs0uIieqynKztenrl2uT8oYnwKCxsGs1OFwmYfD+zbXbnvpeYPK6nP1L0xcoJQchZ6vJO+OKgJTeJgjkbGK/antVlAu7VsHGj6DSY6pPdT3jyCpZSYMOkEcmO9jDXmKIohtdSKcFauqKiLQSCtKISIuLSzKrZoaeZ944PpI8NCIi7druNbDkaf+EuSW5pr3XSNj0mVlVk9rH5GrpPBS6DoOTfwzJvUzSr0DIz4LP/gG7v6ttszth2A3Q70cnzkqSg7th7wbzOjjdpnJV5lcmSLb2A5O0OalbS8+y1amggm3s4nu2UEIpPehKN7oQi0mKup1dzORfbGZbzTnRRDGNn3EqQ1pm0iIiLUxBGhFpNQL1N4WISJtWWQ5r3/UP0FTbuQIGjoWx95sEwZYX0gaYKobVW6ECxbJgzTv+ARowSYq/fA4Su5lEvu3d9uXwyWOQm2mqUAGk9YehV8O696E4B9a+DefcXJtHR/DgYQGL+DevUUllTftg+jGFScQSzfO85hegASigkEd5lge5gy6kU0QxpZQRSQRhHH9pWxGR1k4/SUSkTdmTCYUHIcQNnXo1XR1KRKRN8pSYXDSN2fYVDJkA6YMPf63cbWb1Te4WiO4A6UMgqceRRcXz98APnzbcZ/lg+zftP0hzYAcsfBTKC6Eop7Y9a11VNa1+sGeNWVVz0lUQq326FhaFFLGVHfyLV/HhH2z8lvW8y0ecwxmsYl2D1yiimA1sYis7eJsPOUAeHUjhUi7kJAYQirs5bkVEpEUoSCMibcLBfbB0PsybBbu3QngkDB8Hl/8SuvRp6dmJiASQM9Qk0C3Ibrg/IgFc4Ye/zq5v4cOHTICh2or/wsip0GM42GxNn1/pgfKi+u0hYdB9OFSUwqePmzLZHQdDUs/2l6dm36aq18+qv7Jp2zLoM8oEaXzehlc+nWC2sp1FLGUHuymgiD1kE0tMvaDKJ3zJAPpQSSVFFHOAPEooJZww4oklnDDW8j3fsoE88gGTu2YdP/ALfsIljMLGYb5+RUTaKG0uEJFWz7Lgs7fgid+ZAA1ASREs+A88/lvI3tGy8xMRCShXGAwY23j/gEvMMU0pPgBLZvkHaAC8Hlj8FBzcefh5hEVDVIp/myPEJChe87ZJXhweD4X7zcqSnSvBU9bwtdqqmtUzNoiI9+/zeU22ezDbn6KSm3Vqrc1mMrmXR3mD+RRQxC6y2MEetrKdcjx+xxZRTDihFFPCRrawlxwKKWYvOWxkC3kU4MRJMSV+51lYvMKb7CKrOW9NRKRZaSWNiByXnGzYvhF+WGW24vcaAp16Q0IAf1fd8QP876mG+zZ8A1vXQqoKa4hIe5I+BE65GlbONTlgwCTsPWmCSRJ8OAd3Nr5lylNs8qscriJRRAKcfAV89mRtW2o/2PIlnHwVLHoC9n1vIukAXU+HS6ZDtzNNct32IK5j7eehMf5lz0PCzA++kDAYMv7ESaLcgEoqeZuPOFi16iWXg/Qkg89YRhElFFBIErXl1VNJIpYY+tKT9Wyqd70Iwqikggoq/No9VLCXHLayg3TSTsjVNLkcJJMd7CSLGKLoQVc60eGEfC1E2isFaUTkmO3OhFcegbefq13l7XTBdb+HiydBSqfAjHNwP+Tsabz/h1Vw5kWBGUsatw0fK/HxCT5cwIXYGYSdDlqUKRJ47giT46TL6XBgO2CZstrxXY4sGFBZ3nR/efGRzaP7cJMjZ9X/TCnw2A4QEff/7N13fFvl3f7xz9Hy3nsnsTOcvSEQIGGFAAXKKqVll7YUnqctpYzSAi1t6QO0P+gCOijQBW0ZZa+QBSRAFtl7eMQz3tuSzu+Poyh2LCdOPGQ715uXXsTnlo5uJbYlXbrv79dapVO2tfN1935idaSKSoG08T07/2CXNBqiU62tZ85QSB5trRxqqoLxC8EeAuffP3we73Gq4ACrOVRgOgQXM5nCYj6mggMcoJpE4v1BwmVcQAUHGM1ILuQs3mUZbb5AZjLjuJXr+S3P+LdJefBwgBpKKKOVNjaxja3s4CLOJY2UrhMapvZRzGP8gZ3sI4YoQgmlnXa+yTWczHQFNSJ9aNmyZTzyyCOsXr2akpISXn75ZS655BL/+EsvvcSTTz7J6tWrqaqqYu3atUydOrVP7lshjYgct1WL4L9/7HzM3QbP/BxGTey7kMblApvdWlkeSGRs39yPdG8nHu7AzYoOBSD/jocrsfN9HGQrqBHpew4nJOdZl2MVkWCtZukurInL7Nl5QiKsVSIjTrK2/rS3wp6PrYLEgWxfDDO+BKn5R695MxREp8A5d1rhU/l2a9VM4igYeTVMuxzisk7oFTQHmYAXExs2zuF09lDAb3iayzif13iPWuoxMYkhii+ykLnMYi0b+YCPGEse93Ab7bQTSQTRROHBw0LmY2Cwjk1sYjuFWJ/WJBFPK+18wIcUsJ87+AZxxAb18feGGzd27EcNWFpp5QVe5VRmcQFn00wLDuzUUMcaNpBGMiPooxdeIoONx4TlbijxQpoNTnOAvX+fYxobG5kyZQo33ngjl156acDxuXPncuWVV3LzzTf36X0rpBGR41JWBK//JfCY6YX3n4dpZ0BMfODrHIu0kTB1LqxZ2nXM7oTxs3t/H3Jkr+DtFNAc9C88nIHtyCFNlRcKvNBkQpwBI+wQNgzevIkMZvE5kH+u1UL7cFnTIX7EsZ0vNsO61JXB5je7D3+8bmiuA0/78AkvkkfD+Q9AdYG1qig8ztoqNlweXx9IJoFpTADgNd5lHZsB2EsRV/EFZjGNJOJJI4UUEilkPy5cuHGzjZ1sYycjySaLNB7jzzTSSDRRmMBXuZQiStiHFwd2ruVyNvjOv54t7KaAGUMwpNnBHj5mFevZQhwxnMPpTGQMEUQEvP5+ypnEWH7LX3iHZXjxMpIs/pcbaaGNQvYrpJHh6aU2+HYjFJmHjmUa8HgEXNp/v4cXLlzIwoULux2/5pprANi7d2+f37dCGhE5Lk31UNVN4xGAihJobe6b+4pLgqvvgKJdUF506LjdDt/4CYwc5h1gg60IL//B3e34i3hYgI2oQEHNZg/8tgUKfQGPDZjtgBtdkGbvnwmLiFUrZdrl1kqYjW9aW5WcYTD6DGtlTFj08Z03OsWqS+MM7dr5yWaHsFgrxLAPsy5PYVEQNiHYsxi0HDi4mAW8xzJ/QANwORdQSTX38BAttDKH6cxmGgeoppkWxpHHR6wilSTyyeNBHseDhxQSSSWZBhr5I3/jNm4kikjmMJ3FfEwNdcQRgx07O9jDDCYH8dEfu/Vs5uf8tlNh5E9Yy6Us5EtcRDhdC4NXcoBvcz+72IeJ9WZ1D4V8lx/zJL/gPZYzkymEETpgj0Ok373UBpc3gHnY8WLTOv6fyH4NaoJFIY2IHJfYeMid1Dk06Wj0lL5ZRXPQhNlw/1+tQsFbV0NCCsw4E/ImQ9hRmpxI77QCR6peUY95WN8OnxIPPNIMlR2eWb3ASjeEAN8OBadW1IgE1NZsrdoIibACkeMREQ+zvgKj51uBijPUWg1j62VAmjMLcmbCjmXW0knDAJvTOv/ki4bPVic5JmPJ5RXeJpkEaqnnbE5jK7tYwWfYsOPBw2Z28AEfcxNX0UgTGaRxIWfRRjvvsxwHdjJIJYFYnDiIJAI3bj5jHSPJ4nGexoO19zmHDFJIChhoDGb1NPAs/+nSuQrgZd5mNlOZwNguY5+yjhLKceLAxNomdTCseYq/8V2+RhEljGZkfz+EI2qkkRIq8OAmlhhSSArqfGQI85jWCprDAxqwjhnAdxrhYme/b30aaAppROS4xKXAF26ET9871IH0oNAIOPNyCOnj102jxluXC67r2/PKkaUAM7HxZoDtTgCnYicm0F767d7OAU1HH7vhi17I1WoakU5aG61W1htes2rAxKTBpC9AxhQr+KjcZdWFiU6xApeeiE3v2zkmjoQvPgJv/RR2LAXTA84ImPwFmPFlq2aLDCnttLOLfXzMKoopYxy5zGYqOfSwdpFPLNHkkEk7bmYxhQf4FTas3/Nu3Hh9zyP/4nW+w028w1LiieUyLmAne8gnDxeHPhVvoolqatnGLpw4/QENwH7KSCCOcRxHzaYg2k8Z29kdcMzEZB2bug1pvHjx4MHARhghePDSShufs5kYomkL/JHJgGiimU1sYwkr+BevUc4BxjOaL3MJ53MmifThJ3dyYlju7rzF6XAmUOirVTNveK3eVEgjIsdt8ly443fwt/+DYt/rjVET4Mb7YMLJwZ2b9J1IbNyIgyW0dfncLwlYgA1HoJCmNHCoA0A7UHeEJ16RE5G7HTa8Cp/9AwwbJOVBTDoUfW5VTt/yHnzynNUCOnkszLsNxp1z/FuXeiNjMlz9FJRtg+ZaCIux6uDEpA38XKRX3Lh5j2X8lF9TRAmttOHEwRhG8Sg/YjqTenyu2UzjdRYRSzQllHcaiyCcFqxaRvU04PEFNlXUsIYNJBBHI533STfSRD0NzGGGP+A5yIvJNVzGyCFWh6Vj0BRIS4CgZTcFxBBFG+248QAe2mknBBchuIgnFgODWILwuwArXFrJal7lPf7Jf/3H17CRQvZTzgFu5VrChtiqJwmykiO8jjye6w0hCmlE5LjFxMOCq63CvRVF1gr65AzIHquV7sPNHAz+iIvf0c5KTOzAWdi5BTvTuisanHyEYsIOIFLfJCKdVO+DNf8GmwPGL4DdH8Pa/0BoFLQ2wbRLYfTpsPktKNsM/7oNvvQ7q8ZMMITHwUgl8kPdXgp5kMfZTQE5ZDKakbhxs54t/ITH+AMPk0xCj86VxwjOYz6L+ahTbRQHdtJJpcjXock6duhtSDGlXMp5/J7nOp3P2iblZSaTCSGETNLZyW4SiGcy+cxgEk6G1ifoySSSQiJlVAYcn8y4Tl830sRTPMeZnMof+DtebP5tTm20E0k4V3ERMUSRQXBC0iJK2E0BL/N2l7FKqniLD7iAM8lndBBmJ0NWWg87h/b0ekOIQhoR6RWn69A2JBm+HNg4G5iCwX7fi8McDGKP1NVptA1iDKgNsGJmhgOyh9+TqkivVBdZXZFy51phTclGK7Bxt0HVXvjwKZh9jbXCpmKnVQ9myW8he6bVbUjkOGxgK9XUcBvXU0Axa9lIIvHcwrUkEc9u9pFIHLYj/b73iSKSa7iUaUygmFISiPOv9HDjwet7/sgjh1rq/Lc7hZmcyiyKKOF1FvlXzcQSxRlcRikVfM5m4oghjRSaaWEDW7mKi/rnL6UfJRLP1XyRx/lzl9VBk8knjxGdjpVQzhZ2kUQiP+H7/Jhf0Uqr/+/yFGbyZS5hDAOzzbCCAzTRTDhhJPnCuzIqaKDJv1KqIxOop5H9lCmkkWNzmsPq4lRsBq5LY2CNn9Y/kUZDQwM7d+70f71nzx7WrVtHfHw82dnZVFVVUVBQwP79Vvi8bds2AFJTU0lNTe3VfSukERGRHkvC1vMSgJl2+H4oPNbSuTbNRBtc74IQraQR6cQwrCWJrggroAFwhFidmQ5a+yKc+jUrpAEo3QQNFQpp5LhVUcP1fIkneJYKqsgmg70U8R7LmcUULuQcNrOdS1hAPHFHPV80UZzCTNpoI5ww3+oPq5ZKJmnUUc81XM4SVgAwlQksZD7RRPFVLuM0TmIX+wAYSTb7KeNNFpFLDoXsp5paIgjnbm4lJkjbe3rrVGYSRigv8gYF7CecMM7hNM5iLnGHtRM38WJispSVnMpMnuf3bGQrtdQzhfGkkMRMpvT7nKupYTEreJ33OUA1icTzBc5mHnOwY8dB9zXmbBiEENLvc5Rhxu5rs315gxXIdAxqDr6EfCyi34oGr1q1ivnz5/u/vv322wG47rrreOaZZ3j11Ve54YYb/ONXXXUVAPfffz8PPPBAr+5bIY2IiPSfKQ54KBwKPFAPJBkwwgbRWkUj0kVsJoQnQHXBoWOm12pnbfh+ZpprOre3dkVYq21EjtNExvJ/PEEpFWSQRjGl/s5Dn/E5F3EOb7MEA4PruKJHK2oAXLg4l9MZQSYf8ikllJPHCMaQSxvt5DOaeGLJIYNoogAII5Rx5PmLAVdwgFLKCcFFHQ0s5EyySSeXHHIPW3EylIQQwhxmMIlx1FCHCyfJJAa8bjKJ5JDJPor4iFV8xCoySSOUEF7iTb7HN/t9vq208jyv8iYf+I+VU8mfeZ5yKrmYBTiwk0oypYfVIrJhkEwi2fRxAXM5MVzqstpsf7uxcxHhTMMKaPqx/fa8efMwze7rJ15//fVcf/31/XLfelYXEZE+4cVLFeAEYjq+iE+1WRcRObL4bJh4IZRuPHSsvQUik6CpGrzuQ6ttDppwPiSMGPCpyvARTRSb2Y4NG07snVpDhxLCStYyjlzeZglncSrZx9DxyYmTCYxlAmMpoYx/8AoP8yQVVBJLDJdzAacxm9lMJZaYTrctpZxf8hRb2eU/VkAxM5jENCb2/oEPApFEEEnEEa8TQzRf5VL+j9/jxmqnWUQJYG2PGohtTvso5l2WBhx7iyWcyalMYxJf52oe5UmaaPGPjyCL/+VGshTSyPG61GW12V7utooEp9msLU7DrO12RwppRESk19bg4XW8rMBDNAaXYWc2BiOOsPxZZEhqa7bqwzRUAgY4QyEqGeKyel8x3e6ECQsgJgVWvwAt9db5w+PANKFiB+TMsDoqAaTmw5wbrc5KIscpmkhGkoUbj7+zkA0boYTgwomJiYGNJpqppo7j2VhXSRUP8jhvs9jfwamKGv7A32mllWZauIhzMTp0ClzGJ50CmoNWs4HVrOc85ncZG65mMpn7+S6v8DY72UsYoZzD6ZzBycQftj2qP5RS7usq1ZUbNyVUcAoziCWaTNL5jHXsp4zJ5HMWc8knr9O/rcgxsxvDrs32kSikERGRXlmJh5to69CnwmQJXq7Azl1AloIaGS4O7IWP/ggbXof6MgiJhElfsAKazCmQdwbYe/nSyhUOI06CS38FS34DeK2tTq5wSBoFs6+FPSut8cxpkK6q7dI7SSQwl1m00U4VNdRQh4GBAzt2bJzENP9Km7DjrCuyk72sZ0uXFtsAL/MOI8mmkGJSSWYfxdRRzyu8TRttuOi6neEdlnIGczp1kBrOHDiYygTyyaOaOlw4elQfqK8crYOW0/fdMpZcxjCK8zgDh++YF2+Pt8iJiEUhjYiIHLc6vPwad8BGov/Gw4XYyBrwWYn0g/oKeP9R2PMx1Jdax1rrYdU/YMZVUFUIMenW6pbestlh7JnWNqaitdZ9p4yB1AkQmw5TLu5cl0akF1y4uJSFbMBaoVVGBR5f16ExjCKKCOppZCrjySLjuO5jNwU0BwhoAGqopZkW9lDES7zNUlYym6lsZgdV1DCCLGJ8NWsOaqHVv/XnRBJCCKk9L9/fZ7JI938fHC6aKLI6tP42MKilgdWs57+8Sz0NzONk5jJb3Z1EekghjYiIHLd9mCw/rIVoR+/j5RxM7FrmLENd5S4o3w715V3HNrwGZ90Ouz7qm5AGrBU5KWOsS5cxBTTSt/IZwwPczpt8QAThlFHBXGaTSw7vsZws0rmBq4575UoMUTi6vO0wacdNC6200EoRJTzOn8kijQoqmUw+77CUXexlHHmEE+a/5XQmHrWWi/SdDFK5ma/wa56mjTaaaKYdN2GE8l1uJqNDSFPOAX7JkzzDv/3H3mc5I8jkKf6PqUw4pvtup52t7KKAYuzYGUU2ueRg1ypdGcYU0oiIyHHz+i7daR+oiYj0twP7wOsFT4Dv6rZGa6yqoOuYnJBMTFppxeH7bygYRx55jOCrfJEa6iimjGJKuYNvMJqR3XYfqqMeAxuhuLrdFjOOXBKIo4D9eH3PGu24aaSJWUwFYBkraaKZnezFiZOruJgP+YxGmqinwR/SRBHBPE5RjZMBZGBwOicRQxQv8hab2UYW6UxkHB+ziizSGO0rYLyWjTzbIaA5aC9F/JF/8Aj3Ek54j+73AFX8jZf4DX/xr+JJJoF7uI3LOF9tvWXYGhrPGiIiMihlYTATGyu7iWrOxKZVNDI8RMRZ25DsIeBp7Txm2KzVLclayn+i8+JlHZvYwFb2UUQmaUwmn3zyiBgCKz9MTEqpYBEfUU4lueQQQ3TA4rSF7GczOyigiKWsBGAecziTUxlFTqfrjiCL2/k6D/IY29mNBy+ttJFJOldyIXmM5Cn+BoAHLxUc4CM+425u5Q3eZx9Fvros47mCCxnNyH7/u5DOPHj4gI84QBV5jKSOel7jPcDq/vRTvk8KSbzJItpox4MHGzbsvv8A3mIxt3AtExnbo/tcwgoe4rd0bIJczgHu4udkksbpnNzXD1NkUFBIIyIixy0eG/+LnfV4OzRttZyOwSQVC5ThImm01UUpOgWqD1sxkz0DGipg7FnBmZsMCnU08Alr+RY/oIAiABzYyWMkv+AHzBvkhW5NTD7gY37Ps/7VLhvZxhss4jZu4ExO9a9eKaKE//A6O9jDi7zlP8cyVvIGH/Az7mQ8h7bq2bEzn1PIIp1PWMceCogjhkxSKaeSAop9K46sALSeRiqo5G2WMIGx/C83kccIUkkaNKsnKqmihDJMII1kkkgI9pT6TRttbGEHkUSQQyYb2UodDf7xUsrZzT4ADlDdqY27gUE4YThx0kIrnm66RB2unEqe5l+YWOGnB4+/05gXL//hDU5h5pBZqSZyLPRdLSIivXIGdv6KwTO4WYWXKAwux8752BilkEaGi4QRMO9/YNEvrS1P9WVgeiE+B6ZfCcljtJLmBLeF7dzJT/0BDYAbD9vZzY/5f+SQ0Sm4GGwKKOZpnvcHNAe58fA0zzOWXDJ9tUdWsIowwjoFNACttLObffydl/kh3+4USh3s/jOWXGqp4zH+zId8SjMtjCCTBZzBi7wJWN2CDGy00852dnMjV5FDZj//DfSMGzcrWM0z/JtyX9n8JBK4lss5lZlH7YQ01OxiH2+wiGaaaaGVKCK5jPNZxXo2sNV/PRNYzqfMYw4v87avZbeJiUkTzURiYw4zSOlm29zhqqlhH0W4cdNEc6fvSzt2trOHZlqIIrKPH7FI8PU4pGlvb+fee+/lpZdeIj4+nm9+85vceOON/vGysjLS09PxeHqWjoocrg0PrbiJwIVN2yNEBkw7JgWYFGFiAPFAPSa7MAnBIBWDPAzSuglcHBjMxc4MDEoAF5CpcEaGG8OA3LkQmwElm6Cm2OrmFJdl/T86JdgzlCAqo4IiytjMdtJIZgHzSCQegA1s4RPWsZsCf0hjYlJGBW20E0fMoHijWUQJTd10YKqjgWJKyCSNRprYwk5KqQh43WpqWcNGSijrsu3poBiimcAYVvE5YNUrOYfTmcfJLOUTkknAwCCaSL7FdeR2c55g2MR2fsUffCGEpYIDPM6fiCGKaUwM4uz6VhElPMeLRBLGX3mJHewGYBTZ/Ijv0kiT/99uFet5hhe4k28xntFsYxftePD6VsA4sPNNriGV5B7ddySRZJHGLvbiwdvpnYEHD+k9PI/IUNTjkOZnP/sZzz33HHfccQc1NTXcfvvtfPLJJzz11FP+65imeYQzyHDRSBsF1NFEO7GEkk00zl5UWK+llXWU8Ra7qKWVcSRwNiMYT+JxFYWrpYVd1LCTKsJwMpZ4RhLbqzmKDFeNmCzGzW6sJ4R6YBMezsbOP/Cw1rcT/GRs3I2Dk7F1+3MZhs1XNlBkmDIMSBxlXUQ6qKOBRho5iWmcwiz+ySsUsh8bNmYxhf/lRtp9pdR3sodXeIeXeYt6mpjFZK7lck5melC38hytpfXBUOLglpM22rq9rrU95Uhl5eEMTmYLO/iUdQC8xzKmM5GvchkOHEQTRQ4ZZJA6aIoEt9POWyzuFNAc5MbD67zPBMbgwtXn911MKRvZyho2EkUkpzKT0Yzs1y5XG9hKCgn8lF/jxo0TB+242U0Bd/ATHucnZJLGW3xALfUUU8Z9/JKH+QHvsJR3WEINdcxmGrdyHacxu0f320YbNdTxZS7mPZZjrdMxsPk+xrVj50LOYS+FTCJwR70WWtnBHj5hDTXUMZl8JjCWDFL77O9Hhrdly5bxyCOPsHr1akpKSnj55Ze55JJLAGsByw9/+EPefPNNdu/eTUxMDGeffTa/+MUvSE9P7/V99zik+fvf/86f/vQnLrzwQgCuv/56Fi5cyA033MDTTz8NgGEMjl+g0n92Uc1TrGUrBzABJzZOJ4urmUDycTxJNNLGP9jEm+zyHyuinuUUcicnM5tj+yYvo5EnWMNqSv3HHBhcx2QWMooQ7fAT6WQLXj7A5C08VGGtovkhTn5MOy4MbFjdm1bi5V7a+Q0uJgySF8tyYqiph70lUF4FUeEwIh3SEqGpGSqqIcQFqT1bPS/Sb0JwEkcs8zmFB3ncf9yLl09Yyz6KeJE/sot93MFPWcFq/3VeZxErWcOvuJ8FzAvC7C1ppODAETCsCcFFKkkARBLBWHKJJJzXeL/LdWOJJo8cknwribqTRAL/y43sZC8b2YoTJ5MZzyiyO7XbHkwaaPTXXglkL0XU00hCNyFNA43YsB3z49tDAT/nt5RS7j/2Dku4lIVcwYX9FtSUUclbLMaDBwODMELx0owHDweoZi0bGUU29TQSggs7Nmqp4xZ+wCWcyy+5nygiKKWCVJKI6EFXpxLK+CP/5G/8h8f5CXfwTX7PszT57jeJeH7IdyigiLRuVtO00MKrvMffeAnT92HTUlaSQiL3cBu5jOjLvyYZCB4vLC+AkgZIi4TTssHev6u2GxsbmTJlCjfeeCOXXnppp7GmpibWrFnDj370I6ZMmUJ1dTXf/va3ueiii1i1alWv77vH71iLi4uZOPHQ8r28vDyWLFnCmWeeyTXXXMPDDz/c68nI4FZBI4+ykqIOhcLa8bKIfdgwuIXpx7xaZTc1vMku4ggll1hsGJTSSAF1PMt6xhBPbA+L7JmYvMmuTgENgBuTv/A5o4hlspZGivjV4OVPeHjZ94mgF0jFxl/x0Iz1sxMKvh33sAeTN/EwDkMdm2RAFJbCb16ALXsPHTt1CsyZBC8vgdVbIDoCrjgbzpgBI3v/4ZXIcUknlb0UspxPMYDD15bbsFHAfoop7RTQHFRJNX/in8xgsn+b1EDLIYMLOIv/8k6XsYs4l2wy/F/PYTpvsoipjGcdm/3HXThJJZmvcCmxxBz1PmOIZgaTmcHkvnkQ/SyUUGKIpqRDWNJRNJGEBlgNtY8iNrGdpayghjpOYSYnMY1x5B31Pttp59+83imgOegl3mIqE/pti1UMUeyh0P+1DTuRhPtXSZlYW71iiMLEJIkESqnAi5eXeJuXeJsHuJ0NbOVcTj/q/TXSxB/4O//gFWppYB2b8eLhTzxCJVW4cJJEAhvYymes41zOCHieXezrFNAcVEYl/+AV7uSWQVOAWnrgpS3w7XegqP7QscwoeHwBXBp4JVVfWLhwIQsXLgw4FhMTw3vvvdfp2G9/+1tmz55NQUEB2dnZvbrvHoc0qamp7Nq1ixEjRviPZWRksHjxYubPn8/111/fq4nI4LeTmk4BTUdLKeAC8sgl7pjOuZEKzmYElTTzAftowc10UvgCeSyjkP009DikKaWRRewNOOYFllOokEakg72YvH3Yku1sDBbjpQQYg0EDpn9BewOwHA9XYiNH2weln7W0wfPvQnMrJMVCRQ0kxsKYHLjiLjBNqyM2wKot8IXT4MdfhwyVhpEgcOAgnniaaSaTdMqowI0bO3bSSGEU2eyjkCpquj3HOjZRTmVQQpqKZqhqC+FU4zLGRuTzvP3fVHCAROK5hAWczIxOBXGzSGchZzKKHBbxEYv4ECcOTmIaX+GLTGH8gD+GgRBGKOdzJlvZGXD8As7qslpkL4X8k1f4NX/xF799hXcYzQh+z0NM7ma7zkEllPMJa7sd/4hV/RbS5JFDHDFUcMB/zMCGAxuJxJFKom/NrdXF6WC9mQoO4MGLAzvxxPJ9vklyDwoG76WQj/iMet/7jQKK+ZTP+S3PkE4K2WRQQDHjyGMGkxnRTTHpz/i8S0Bz0Bo2UEwZo+jdm2gZIC9tgcv/0zX5Lq63jv/n8n4Nao5FbW0thmEQGxvb63P1OKQ588wz+cc//sFZZ3VuL5mens4HH3zAvHnzej0ZGdyKqe92rA0vtb62iccinlCeYT3rOnw6sJdallDA7czu9hds4Dm4qT/CHEppPOb5iQxnFYAT/GUibUArJjHg703SseJADFbguRVzEJVwlMHONGF/BTQ2Q0QYpCdZpV2OZuseaGiCmgZIiYeTJkJKAvzuX1DbCOGh4OqQFb623FpRo5BGgiWOGDJIw0UI6aTgxYsLJ1FEYsdOFJHUH+G1iBcT+wAXXW92w/IyeGEPlLeA3XAxJX4q38odT2x0FRGEE0t0wNtmk0E2GcxmGt/kq76gKnbQblXqKzOYxIWcxRt84H+damCwgDOYxZRO1zUx2cg2fsMzXbpm7WAvT/E3fsl9AVffHOTBQ5uvnlEg9d18gNoXchnBdVzOvXTeMRFKCGkkM4upuHDyHssAayVVFukkEU87bmYylfOYR0w330OHO0C1r/qM9STxBov4JtfwJiF8xjpCCMGBg5lM5mtcTXg326fqjvB34sbjrw8lg5zHa62gCfR20PpGge+8CxeP7fetT0fT0tLCXXfdxZe//GWio3v2/X4kPQ5pfvSjH7F169aAYxkZGSxdurTLkh8ZXuKPsKLFBoQfR72XBto7BTQHVdHCxxTzRcb2+FxRhJBKJPu7+cU8oYct/0ROFGFACgb1HeLQ1Xi5ADsb8RAK1PqOhwBhGJyOndfxMBMbCergJIDXC4VlcKAWXE7ISoEYX6Oaimp4fTm8+4kVuESGwzknWateko6w8HLddrj399YKmYNcTvjDvYeOeQPUJF28GhbM6bvHJnI09TT42wCnk8LZnMYbLAp43dlMZdcR6pmczklkHmMtvt76uBx+0+HnzGPCmgNQ2ODiJ9NTie1BqZMYooghqv8mOchEE8U1XM5cZrOVXYDJOPIYGaCWThU1rGA1ngCFhgHeYyn7KGIsud3eXxyx/hUkgUxjwnE/lqMJJ4wLOZtSKvgXr+HG4//3/jKXMJl8vHg5i1NZxEcAvto1YaQQyU18qccBDUAYYYTgIpYYKqmilTae4DnmMYfzmE8u2aSRzGymHTEMnMhYf3B0uBQSSTjGlf8SJMsLOm9xOpwJFNZZ15s3YqBm1UV7eztXXnklpmnyxBNP9Mk5e/yuOicnh5yc7j87TU9P57rrruuTScnglEccUbioD1DNfwJJZPdg73FHJiarKCGBMA4c1vLRwKCQelqP0mmgo3jCuJxx/JquxZoicDKLtGOan8hwl4NBBgatQDEmHqAO8ACXY2OTryV3IpCIwUwM2jGpAn0GJQDUNsBry6xVLE0t1rGRafD1yyA3E/76Jizu8Cu5oQleXgzVdfCtKyAswIfHVbXw5H+sbU42A7y+BLGtHbbsscKdfSVB/9BMTnA11PEJa3iDRdRSTyZpXMwCzudMdrKHbb5WxWC9pvkyF5PPaEII4Vou4zle7HS+FBL5Ftf2qLBqX6lqtVbQBFLRChuqILP/GgcNaeGEMYGxTDjqh4nmEVd1tB9llQxYhZi/xBf4JU/hPWxJQSrJ3XY36iupJPNdvsYlLGAbu7BjZyx5jCTLvwLoeq5kOpN5lyU00MR0JnEqs465dfoIMkkhiWZaqKOeNtppo513WcYWdnI7NzORcUddrTWeMWSQSvFhdSoBruQLQav7JMeopIerxHp6vX5wMKDZt28fH3zwQZ+sooFjCGlEsonhO8zicT6jrkNQk000NzOV8A57lXvKhkEW0UTiopxGPJiE4SCVSGIJOYbNTpY5ZNBIG/9mq3+OOUTzNaYec70ckeEuE4Nv4eBx3MRg0OL7iduLyZ3YqQA+x0sbkION/XhZiclMbMSrcLAAiz6FFw5bRLunBB76C3z/Gli6JvDtlq2FC+bCuBFdxwrLoLjCCnDio6Gy9tDY9r0wdTQUl4M9QFmk+TOO95GI9FwTzfydl3ibJf5jVdSwka3cxg3czW3sYA8b2UY4oUxjIqPIIZQQxjOaa7icyeTzHsuppZ45TOc85jG1n+qKdKe6FUqaux//vBoWZg3cfIajOGKZxRT+xWsBx/PJI5mEo57nJKZxB9/keV6lgGJcODmJaVzBhQPSUjqCCCYyjomMCzgeSwyncxKnMAMPnuMuynuw49cjWKsRaqilmloSiefn3M00JvZoFUwqSdzNrfyL11jJWtppJ5UkruQLnMqs45qbBEFaZN9er48dDGh27NjB4sWLSUg4+s9yTymkkU4+p4yPKGITFWQTw3xymEoyLt+3ymzS+QXz2EUNVbSQQSS5xJF4HJ/8GBjMI4f1VJBCBAmE4cGLEzs2DKaTQsoxthSMxMUljGUWaVTQjBMbmUQR08PiwyInEgODudhIwclneCnCZBQGM7Bhx+Qp3IRirSbd7Ovl4AQuwY5LIc0Jr7QS/rs08FhdI6zfAZFh1p8P5/VaLbUDhTStvg+VbTbISLZW0lTXWd+H730Gj34bVm+FhsPeXH7hNJg8ujePSKRn9lLIO3T95vdi8ldeZCLjmMMM5tA1NbRhYzL55DGCszkNGzbiie1UlHegOG0QYoPWAFsHAeICd5GWY2DDxiymkE8eWw4rNhxKCF/jy6T4WpsfSQghnMZJTGIcVdTgwEEayUH5vjkSh++/3pjCeB7iHraxi/2UkUoSY8klp5siwd0ZQRbf5Wb2U0Y7buKI0Tanoea0bKuLU3F94Lo0BpAZbV2vHzQ0NLBz56Gf2z179rBu3Tri4+NJS0vj8ssvZ82aNbz++ut4PB5KS62VW/Hx8bhcvfsFqpBG/Jawj1t4mypa/Md+x2p+yVl8kbE4fPUnsogh6xi3NnVnMsmMJYFtHMDhqxYPEIWLLzL2mFt6H5RBNBnHsAdW5ETlBuzAVF9gk4pBmC+A+QEG/8TNeky8WN2ersLBJAU0AtQ3QVVd9+M7iyAuOnBIAxDSzeuXpDgIdVndnUJcMCoDmhKg3W2tnsnNhL//DF54Fz7daNW/+dI5cOYsSFPpMRkAO9jTbWODamoppZy0o3STDCcs6AV208NhTjIs6bojBLDGpPfyGc1veJCneYHXWUQrrUxkHF/nas7pQVvqjmKJ6VFr86Eui3Sy+qA+kxPnMYc7MojYbVab7cv/YwUyHX/tHnwp+ti5/bb/edWqVcyfP9//9e233w7AddddxwMPPMCrr74KwNSpUzvdbvHixb1uqqSQRgAopI4HWE4VLYRgx4GNdry04uEHLGEs8Uym71tmpBDB95jNCopZxF7a8DCNFM5mBGN6sPxTRI5fCV7+iocVeHFjFQCfjMHXcJCDjfHY+AFOSn1vR5IwiFJAIz6hLmtLUnM3TfVy0qwgJ5C4aMjpZoV+VjKcfyq8tNj62mazCg4DzMyHEekQHQEzx0FlDYSGQOyJU7NUBgHbUYqmG0Pk96TDBleMgN31UNAhTDWAr+bCaH3W1Wcmkc/D3Ms3uca39SZZdVFEeuLSfKvN9rff6VxEODPaCmj6sf32vHnzMM3ui28caay3ehzSfPrpp8yYMQN7oE3gQGtrK//973+58sor+2xyMnD2UMNuakghgkbaacFNGA7iCKWGFrZT1S8hDUAakVzKWM5hBG5MYgkZMi9wRIaqZkyewcPHHVqCeoF1mDyOmx/hJM63qmakfh4lgPQkOH06vLOi65jDDqdMhom58Mu/dQ5ywkLg1isgtZtVLw4HXDIPosLh1eXWVqfwUDhzJlw8zwpoDl6vu3OI9KfRjMKGrUtLZbBqagxEjZC+kh0J902FrTWwoQaiHDAzEXKjIFQf5fYpJ84jdnESkW5cmm+12V5eYBUJTou0tjgN4w4CPf71O2fOHEpKSkhOttY+RkdHs27dOkaNGgVATU0NX/7ylxXSDFGteIgmhJ1U+ypPWOzYyCWWhgHo5RLVTZExE5MyGvFikkAYIVoAJtJr+zBZGeANBsAOTPbgJe44txvKicFuh0vnw/5y2LDr0PEQF3zjizA6y7rOz2+Fz3dYHZlyUmHqGBh1lNXncdFw+dkwd6pVeybUZdWnMZQXSpC00speithPGRGEcwFn8irvdfpQyYGD67mCpCG2EjglzLqcoSaYIjJY2W1BbbM90Hr8bvfw5TyBlvf055If6V/xhFJJU6eABsCDl33U9ltnpDpaacVNNCEBw5dCanmT3XxEEW14yCeBLzKWSSRptY1IL9T46sx0p3zAZiJDWXoS3Hkt7N4Pe4qtbUmjs6ytTgcX3uZlWZfjYbP5igab1p/Tj15fU6TP1VDLC7zK2yzBjQeAmUzmZr7Cp6ylihpGkc15zCMfVa8WEZHe6dMlCcYg+Yjrd7/7HY888gilpaVMmTKF3/zmN8yePTvY0xo0ymhgI5V8yn5c2DmVTMJwcDnj+CPrulz/NLII7+PVK5U0sYJi3mY3DbSRRxxfYDQTSfIXD95PPT9nBUUc2n+4ilI2UMGPOJUpvu1X1bRQQwsObKQR6b+9iHTvaH3Thn9ZQukrsdEwPRqmB+7MelxME5asgV/9DT7dZB2bnAe3f8Xa9hRyfN1dRY7Lcj7ldRZ1OraK9WxgKz/lTtJJJZzQXne1ERERgWFYOPiFF17g9ttv58knn+Skk07iscceY8GCBWzbts2/VetEVkQdj/AJu6nxH1tCAZNJZjbpROLi32yhiHriCeML5DGWBJpx99kcamnlOTawjnJqacWLyaeUsIYyvs9JnOKrwr6Wsk4BzUGtePgPWxlJDGsp5wU2U0g9ob7A6YuMJUdvMUWOKBsbozDYHaBDSTyoDo0E1aeb4Os/7dwZav1O+MZD8Lcfw+ldOxuL9IsqqnmN9wOOtdLG2yzmO9w8IHOpbYUWL8S6IES7UUVkCNGOG0tP/x6OKaTZvHmzv/+3aZps3bqVhoYGACorK49xiv3jV7/6FTfffDM33HADAE8++SRvvPEGTz/9NHfffXeQZxdcJibvsqdTQHPQxxSRSBg1tHAzU4nASSsedlLNhxTyBfL6ZA7teNhIOVW0kEgYs0ijnjY+YT9uvPyVjeSTQCyhfEhRt+fZwgE2UMEv+cT/FrMFD4vYxw6quY9TSSGyT+Ys0t/qMSnxbT9KxiD+GAKSVkwKMKnDJAKDbAzCe3D7GAxuxcGjtFPS4XgscDtOUrUiTfpIdR2UVVkdY9KSDhX+7Y7HAy8v9gU0Jni84PaA1wtt7fCX12F6/qGOTyL9qYkWqgO8bjqokBLcuPt1FU1lC3xYBu8UQ4MbRkXBxVkwOd7q0CTDmwcPNmza5i9DktPpBKCpqYmwsLAgzyb4mpqstpcH/166c0zPKGeddVan9OfCCy8ErG1OpmkGfbtTW1sbq1ev5p577vEfs9lsnH322axYEaD9BFZXqtbWQ20n6urq+n2ewVJBE0spCDgWhoP1lJNEOB9R3GlsAaP6ZGVKPa38lx38jI/8QZEDG3PI4FLG8Ra7KKKeUhqJI4zQDkVL2/BQTxvVtGAA6URygJaA91NAHVs4oJBGhoR1eHkONzt8cWMmBl/BzknYcB7lBVkpXp47rIX2RAy+7muhfTRjsPEgTnb5QqJEDPIwyFBAI33A7YbPNsNf34BCX5GjURlw7QXW1qjuXjJU1cGqzYAJ7R5oaubQeq92WLEedhXBlDED8CDkhBdBGEkkUMj+gOOjyO7XgKamFf6wDVZUHDq25gCsr4LvTYS5/dN4UwaBbexiHZtYzXoSiWcOMxjPaBLUuluGELvdTmxsLOXl1guB8PDwoGcGwWCaJk1NTZSXlxMbG9ttx+yDevyssmfPnl5Prr9VVlbi8XhISen8jJWSksLWrVsD3uahhx7ixz/+8UBML+jceGn1Fbw7nB0bkbg4kxz200AtrcQSwvnkci6j+qSj0mpK+RFLO30S4MbLhxQxglhGEMNearH5xs8kh1WU0oqb3dRSz6EwbQapLKOAM8hmSYfgyYbBCGIop8MaeZFBajteHqKdpg7HijB51NcCe8YRQpoWXwvtjw5rob0ek8d8t+/JipwUbOg1vvSHTbvh4eesVTAH7S6GXzwDP/km5I8MfLuwEIiNslbOdApofGIiYc9+q1NUbHR/zV7EEkcsl7CA3/CXLmMOHMxjTr/e/676zgHNQW4TntsJ42MhfhDWaCqsh+o2iA2x2nzLsVnHJm7jXnaw138sBBf38r9cxvkkKqiRISQ1NRXAH9ScyGJjY/1/H0fS43feOTk5vZrQYHXPPfdw++23+7+uq6sjK+s421AMcvGEMYZ41lIWcPwUMjiPXKaQQjPthOMktY9Wo9TRypvsohk3yYeVLDUxeZtd3MnJGOC/zwkkcTLpvMz2TgFNOpGcQgY/4SNuYwZRuKinjdHEMZp4VlLMf9nBAVqYRzbjSNASURl0TEyW4O0U0BzkAV7BzXichHXzvXukFto7fS2049VCW4KktQ1eXdY5oDmopQ3e+wTG5lgdmw4XGQ5XLYAPPusa0AB86RxY9BnkZiikkYExhxmUU8krvEMrbQDEEs1NfJlxfbQdvDvrq7sfK2mG0ubBFdIUN8DiUmv1z656yImEm8fCmWnWn+XoGmni1zzdKaABqwbSz/g1ExjDXNQQRYYOwzBIS0sjOTmZ9vb2YE8naJxO51FX0BzU45CmoCDwNpnDZWdn9/SUfS4xMRG73U5ZWecQoqysrNvEKiQkhJATpE1EKA4uZSwbqaD9sDd3sYRwMhkApPXDNqEm2kkgjAWMopgGamiljAb/eA2thODgWiYRg/XvEU8Y1zOZWEJ5jz204mYGaaQTyXoqGEc8S9jHHDI5QDOxhPJjlmMC40jgTXaxiL3czmx/MWKRwaIZ2HiEJti7ManGyz4M1uOlGhiLQT4GKdiowexmXZylrz6raMXEAFwKOuUY1DXAzu7LirFlDzQ0d1+f5pTJcM0F8OSLnY9ffAaMzIDFq6G5re/mK3IkUURyFRdzCrMopRwHDjJJJZ2jfxraW46j/OodTJtTm9rgud3wwNpDxypbYfXHcPck+O54iA0N3vyGip3s5X2WBxxrpY2VrOVUZukDSBly7HZ7j0OKE12PQ5oRI0YE3D/WsRaNYRi43X3XBehYuVwuZsyYwaJFi7jkkksA8Hq9LFq0iNtuuy1o8xpMJpHEDziFF9jCNg5gx8YMUrmCcYwktl/ucz/1LKOQjyhiH7XMJI1zGcGLbGMPtbjxMpEkTiWTCSR2um0odjZSzhjicWDzBzgu7EwkmbHEE46TNCJ5iI/9bbgjsIoxteLhz3zOaOJIOmrTYZGB4wKOtAggF/gUk2dx+3urvQ5kYHAXjn5voV2Il5WYfIQHB3A2dqb5AiKRo3G5ICIUqmoDj0eFg+sINfPSk+DrX4R5M2DFBquY8MmToK0N/vKaddsENfGTAeTAwSiyGcXAfhg5JR7+tTfw2MhISBuAAtrNbqt4sc2AlLDuixVvrIVHNwQee3wTLMyEkxXSHFULrR2e+buqphoTUyGNyDDW45Bm7dq1AY+bpsnzzz/Pr3/9ayIjg7+O8fbbb+e6665j5syZzJ49m8cee4zGxkZ/t6cTnR0bM0ljHAlU0IQdgxQi+qTmTCClNPAon7CDKsppYjc1bOUAaUTyTabzZz7HBtzGDCaS1OX2MYSSSzxLKWAumayhlA/Y5x9PJIwryGc6KaQSSRseWnBTTQuRuAjFQTlNFFGvkEYGFQcGC7DzeTcvxOZi5wk8XUaLMfkbHm7DTh4GO/uhhfY+vPyUdko7HNuGmwkYfBeHgho5qphIOG8O/PGVwOPnnQKhriOfIzMZ/vmOVWA4xAXPv2t1dwI4a5ZVk0ZkuMuNgvMy4O3OPR0ItcN1eRBzlJ+j3vCaVoHif++FrbXgtMFJiXBxNoyKBrcXmtzWXFx2KGq0uk8F0uyFfQ1wcnL/zXe4SCGJLNLZ202X0+lMxqbnYZFhrcfvzKdMmdLl2Pvvv8/dd9/N9u3bufPOO/ne977Xp5M7Hl/60peoqKjgvvvuo7S0lKlTp/L22293KSZ8oovERST9+Mzus4ZSdlANGEQTwhjiKaCOEhpYSymTSeQsRnIWObTiZifVfEYJNbQwgSQmkMT55LKFStrwdApoHNhIIYJVlDCKWKpo8deuKaeJEOzkEUcELjwBKxuIBNcUbJyPnTcP27h0OjaagNOwEQY0Alvw+rcwrcFLFXa+hYNHcbO/w/d3LPBdnKQd5ws4E5M38XYKaA7ahMk6TOZhsgOTFXipxGQCNqZikK0XjdLBKZNhw05YubHz8bNnW92djiYmCm65HF54Dz7+3ApoIsJgwclw0eng6L+GOiKDRoQTvpoLk+LgrSKoa4f8GDgrHcb182qyDVXw08+h1bczt80LH5RCVSucnwVLS63gJTEUFmYcvR242oX3TA4Z3MxX+BGP4D1sW/QERjOZ/CDNTEQGimF27KndQ2vWrOGuu+5i+fLlfO1rX+O+++4jOXl4RON1dXXExMRQW1tLdLQqEvZGOx5+wBK2UuU/1oaHZty04CaOUH7BPMb7tji9wS6eZT1ewImNiSQxihgmkIQDG/eylDW+osfRuEgjEjsGzbh9xYHhLXbj7fCGNZoQppHCLzmLrCNuLhEJjkZMdmKyFi9twDQM0jD4Bx6exU0lkAJcjJ0wYIXv+/thnORjoxwvuzApxVpB09sW2mV4+T7tdFercgwGF2HnV7g7vXSMBX7gm5PIQbX1Vm2atdvAboNpYyE3E6KOYWGj2w2FZdDcam2Tykzpvn23yHDW5rGCknCHtfWoPzW74aH1sLaq8/H4EJgSB//eA4lhncfunQxXLbEKGh8uIQReOxtmJHYdk65qqOMl3uQp/k4hxbhwcR7zuJXrmKSQZtjS+1A56Jg+h9q1axc/+MEPePHFF7nyyivZvHkzo0aN6q+5yTBweFlUF3Zc2IkhhGhcpBJJCA42U+kPaEKxcy6jeJXt/JF1RBPCN5mKHYN8ErBjYGBQRB3VtNKCGzsGX2QsqymlnCZ/UFNPKxcxmkyiBvyxi/REBAZTMJjiCzeaMXkCNy/jodJ3nTLgD3i4HDujgUrwV5BKxkZfRuQmHLEgcQOwCE+Xn+0a4C+4uR8nEdonLz4xUTAj37ocL4fDKhYscqJz+bYVDYQDrdYWp8NNiYe/bIcmDySEdg5MV1fAU6fAR2XW84jbC+8Uw446+Ol0mKg6Uj0WSzQ3chVncxp11GPDzkiyCENFfUROBD0Oab71rW/x5z//mfnz57Nq1SqmTp3aj9OS4cCJnXlks52qgOPTSSUJq+Ldakr9b/rmksUfWEMB9QDU0spuaonARTENpBHBbmqoogWwtmek+erRXEAeqyhhJ9VkE81FjGYqKSquJkPGXkyW4iUKgxDMDs3n4TU83IOD07Ed93YmgF142Y6XYqxVOmMxGONr153oC4yWd9N5agoGn3QzthWTIkzG6udNRGRIsxtWDZrmw1J7lw3KW6xaOB1/04+KhAYv/HozVLVBSZN1/GtjrPbb46Mh5AjFwqWzAopYyVo+4jPsODiLU4knViGNyAmixyHNk08+SWhoKOXl5dx4443dXm/NmjV9MjEZHmaQSg7R7KOu0/FoXFxIHg7fG81a31vREOy04/UHNGCFMJup5Ery+YRionBR3eGtaxQuZpLGr/iUFCL4CaexjzrqaGWT73YiQ0UpJl4gBBiNjSK81GKtcPECyRic1YuA5jM83EU7mzpsC8wCHsPFXOw4MPgCdtbgpfGw26YCuRi81c25TaD9uGcmIiKDRUoYnJLctWCx1/fUkRiCP6WxGZAfCz9ZB1kRkBxmbW9ye2FFOZyRCrGHbY2S7u2hgJ/xa8r862lhB7vJJ4/v8Q1SAjTaEJHhpcchzf3339+f85BhKp0o7mIOyylgCYV48DKdVM5lJKOJ919vAom8w25iCWUvNZ3O4cKOHYM1lPI9TuJjitnKAQDySeAKxvFPNgFQRiNrKWcrlTTh5mrGk6GtTtILRXjZjsl+TNIxGNvLmi9HE9Lhz+FAHjaawVerCbIxiDrOlSpFePjpYQENQCHwPdr4Jy5GYScfGw/g5FU8rMeLHTgFOwuwUX6EItxxQMJxzUxERAYTmwEXZlndnfZ3rDFjWh2nojusismNguWlVoAT7ntnYRjg9G3NerUApidYRZDlyExM3mZJp4DmoC3sZA0bWMiZQZiZiAwkhTTS77KI5momspA8vHiJIwzbYW8y80kggyjqaSWNzq3c0311a/bTQBNt3MXJzCUTgAM0s4xCQnESRyg1tBJHCKE4uIxxnMtIbXWS4/Y5Xh6hnY7b8uOAO3EysZ+CmiwMosC/lswG/ubx8b7x47UbWNlNyLIX2IbJwSpj47CRh0ElJjYgyVcLKgovYzDYHuA8l+Ho1TYsEREZPHIi4b6psPYAfFRutdo+ORlyouDp7YfqDkY5YVWjtYImLEDNnNIWaGhXSNMTFRxgJd3vSljER5zFXFwD0KFVRIKn1w0sly5dSmNjI3PmzCEuLq4v5iTDVNwR9tGmEsndnMw/2UwCYYT46mOkEUkCh9bIjiWREcTwPJvZ2OFThjCc5BJHBE7OZARXkK8VNNIr5Xh5/LCABqAa+DXt/Bwnif0QSGRi8E0cPIa709ahEOAWHKT24j7rjtKK/sBh4w4MUg8LhRKw8V0cvIKHZXhpxqprczkO5iqgEREZVjIirMsFWYeKBLe6ITUU/lsIxU0Q47S6Nm2ttbq4HS4hRAFNT3nx4jlC+X437k5dTEVkeOpxSPN///d/NDQ08OCDDwJgmiYLFy7k3XffBSA5OZlFixYxYcKE/pmpBFRHC9upppE24ghjHPG4ep+9BcUIYrmDkyihnjQi+SNrMTu8QcwhmmuYSAyhfINp/D8+Y3eHrVGJhHE7s5ncp71u5ES1D5OKbsZKgAJM+qOTqIHBXGwk4+QTvBTgJRcbs3wrW3ojCQMH4A54v/R4G1cmNm7B4GJM2oFo6JfASkREBoeOXZxCHHBSMkyOh/p2a4vTlhp48HMCxgcXZUOkQpoeSSSeqUxgKSsDjp/GbEI7bYwWkeGox+/mX3jhBe666y7/1//5z39YtmwZy5cvJz8/n2uvvZYf//jH/Otf/+qXiUpXm6jgl3zKu+yhHQ9RuLia8dzIFEb4G/QOLU7sZBNLBtGMJ5GtHKCaFkYRy2jiSPJt/BhBLPczlz3UUEETMYQwgtguW6VEjtfhRXMdwHwgFzsGENqPn2TZMBiHwbg+Dj5GY3ABdv4b4FO6mdgYdwwhkB2jV1uvRERkaAtzWBeAyXFw42j4+25o8T3FOG1wSTbM6o9PNIYpBw4u5GxWs4GGw16JpJLMbKYFaWYiMpAM0zR79E4jLi6Ojz/+mPx8q1PODTfcgMfj4bnnngNg5cqVXHHFFRQWFvbfbAdAXV0dMTEx1NbWEh0dHezpdKuQOm7hbT6jpMvYjUzmfuYSSu8/tnDjpZA6Cn3dmTKIIptonATYdCwyjGzEwz2+NSdZwBdx8Dwe3sGDAzgfO9dh56Qh9rOwHQ//Dw+v4sGNVfNmHjZ+iIMJQ+yxiIjI4OH2QmGjdfGakBlu1bVx6qnlmG1lJ2+wiHVsxo6NU5nJuZxBjq8mowxPQ+V9qPS/Hq+kcbvdhIQcWl63YsUKvvOd7/i/Tk9Pp7KyayVy6R9bORAwoAF4ns1cQT7TSe3VfTTTzhvs4nk20+r75N2FjcsZx0WMJkJFy2QYG4GNaRisxeRSHHyNNhqBeAzaMXkXLxvw8hgmM4bQFsMx2HkYg5uwU41JlG/VTqy2K4mISC84bDAyyrpI74wjjzxGcIBqbNhIJF6NMEROID1+Z5Gbm8uyZcsYNWoUBQUFbN++ndNPP90/XlRUREKCmq8OlD2HtanuqAk3B2judrynPqecZ9nQ6VgbXv7BZjKJ4jSye30fIoNVpK+A70o8vO5bdeIEdvi3OZnsBf6Ll7G4iQxSUGNi0uSbm6uHL+CisDGzX2clIiIiveHAQQpJwZ6GiARBj99V3Hrrrdx2220sX76clStXMmfOHMaPH+8f/+CDD5g2TfskB0rHjkeBRPRyq1MbHt5gZ7fjr7GTGaQSrtU0MoylY2Ma8BBthAB7Dhv3Ai/h5UJszB746bEDL9vwUu0rcpyFwSRsjPW1yxYRERERkaGlxyHNzTffjN1u57XXXuP000/n/vvv7zS+f/9+brzxxj6foAQ2jngSCaMywIqZOWSQR+/aoTfRThlN3Y5X0EQTboU0MuyFAPHAtiOMb8RkOiaOAQxGNuJlNR7exMtavNQBdmAEBg/g4Czs2BTUiIiIDBn76mF/s9VxMcvX/lxETjw9Lhx8ohgqBZtMTN5hN9/hfapp8R/PI45fcw4zSOvV+dtw83NWsJrSgOMTSeQ+5hIWYMWOGw+F1FNPGwAh2HFgI4uoIdseXE5sv6Gd7+P2fUd3dgd27MB9OAkboFCkGZNnaWcL8Bc8tB42Ph6Dv+NkvAoBi4iIDHrN7fB+CTy6EbbWWsemxsMdE+HMNLCrbNwJYai8D5X+16t3zBdccAF/+tOfSEvrXSAgx87A4FxG8m8u4XMqKKGBPOKYRBJ5xPf6/C4cXEAeaynFG2D8IkYHDGhKaeB5NvMB+9hLLY20MY8cppFCA218lYlkol86MrSciY2TMFh+WNvt2RjEA+EYhA7gfEoxicbgNdx4gWjABBp8/9+JyWd4FdKIiIgMASsr4dYV0NrhRfe6KvjGx/CPM+Dk5ODNTUQGXq9CmmXLltHc3PsCtXJ8bNiYRAqTSOmX808miZuZxt/YSCPtAITj4CrGMzXAfTbRzp/4nBUUs49aKnzbpV5nJ420k0scv2Y1P2AOsQP6llakdyZg5+fA23hYjokBnIaNEEw+xeRBHANaA8bECoYcQApQj/XLfAQG9ZjU0bHAsYiIiAxW9W3w152dA5qDGt3w4l6YmWh1zxKRE4P2nki3QnBwAblMJon9NGBikk4UWUR3qXXRSBsbqWQJ+/BiUtNhCxbAUgqYRzZvsIvd1PS6PbjIQJuOjVpMwEMDsBkvUcB3cTBugGu/JGGQiEEzUNzheBkm6UASkKWW2iIiIn5tHmj3QrgDjEFUsq28BdZXdz++5gBUtULykXuGiMgw0quQJicnB6ezd12EZHAzMMgmhmxiOh2voxUPXmIJZSMV/JWNpBLBBipwYiOOUOppoxk3AF5M/5/3U6+QRoacMAwWYmcyNkoxsQPpGKQEIQwJA9bg4Xzs/BFPp7ESYD4Gk1Q0WEREhJpWa+vQO8XQ4IZJcTAvFcbEHP22AyHSAXEuKGwMPJ4QChHavSxyQjnmkKagoICsrCwMw2Djxo3+46ZpUlhYSHZ2dp9OUAaXYupZTiFLKcCDyQQSicRFAXVk+2rNNOPmANWMJp4WPJi+bRcuX32MKEKOeB9VNNNEO5G4tC1KBhUDg0wMMoM8jxJMlmIyFoPrsfOib3WPDZiBwY04GKuQRkRETnB1bfDMTlhUcujY3gZYtB/unQKTe1/GsddSwuHLo2D96sDjV42ECDVTFTmhHHNIM3LkSEpKSkhO7lzBqqqqipEjR+LxeLq5pfSFChrZShWrKcGNl1mkM5Z4Uons9/supp6H+Jh91PmPfcp+PHj5H2ZSTyuZRFFIHQYG5TQRhYs6WskiimbcROFiFLFdzl1KAwXUsYZS3mE3rXjIIYZLGcvJpB812BE5kbiBduBzTJIw+R4OPIALKMHLdrxcrd2sIiJygttR1zmgOajJA3/bBfdHQcQg2BRwdhp8lgMv7Tt0zABuGA2nqmiwyAnnmF/Fm6aJEWAjZ0NDA6GhWvXQn/ZTx59ZzxOswdOhKOjljONuTiaL/l23+RklnQIaL15qaaWJdj6jhHjC+DrTeIxP8WLSRDvxhBJPKDczjZUU8z/MIJMoAAqoZTOVeDBZyj5qaOO/bAfAhkE1LRRSRzkT+BL5OFRjQwSABAxGYrAbkwMYlOGlHesFXQhwobo6iYiIsKqy+7GttVDSDHmDIKTJjoIHpsKVI2FlBdgNOCUZ8mOs7U4icmLpcUhz++23A2AYBj/60Y8IDw/3j3k8Hj755BOmTp3a5xOUQz6llGfZwEJyySaadjysopQX2cp0UriJqf7rVtLEDqrYRCURuJhKMiOJJfQ4P11vxc1SCjodMzD8wclKirmGiSynkFuZQT1tHKCZ2aQTjQs7Ns5lJCOIwcBgExX8ghVkE8NGyplNOr9nLS5sOLHjxWQvtYTh5BW2cQoZjAywAkfkRBSNwVXY+YWvBbeDQ7/MU0H1aERERAD3ERodmoA5iBohpoRbl/lpwZ6JiARbj9+xr127FrBW0mzYsAGX69DmSJfLxZQpU7jjjjv6foYCQB0tfEox1zOZl9jG39hIOE7OIJv/ZRYvspULySOFSIqp51d8wnYOlYp/ns18lQlcSB5h9M1HBgYGyYRTR6v/WC2tvMMewnDwFSZwMWO63K6WFp5kDTW0ModInmM9E0mmHQ9uvERiw46BF5MG2ojASSmNCmlEOpiJjbtx8C887MbEBczBxqXYyQjCqrMmTBoxcQKxWvUmIiKDwPQEeLs48NiICHVMEpHBqcchzeLFiwG44YYbePzxx4mOju63SUlXLbhJJZK7Wezf6tREO2+xi60c4CtMoIl2vJi8wvZOAQ1Y3ZX+ykbGEM8UUo75/kNwcAbZ7KSaFtw00EYLHkKwk0MM00mlkHr/9fOI4yTSA56rgDr2+rZNeTBpx4vD98m/iYkHL9GEMpcsJpFEOE4i+yhYEhkunBjMwc5EbFRhYgPSMPw/SwOlHZPNeNmMyRI8FANTMDgfOxOAWG29EhGRHmr3wJ4G2FID9e1WB6a8KIg/zi0/Y6NhShx8fliLa4cBX8mFGBXkFZFB6Jj3vvzlL3/pj3nIUdgxeIc9nWrRgIEdg0LqCMFBEuGUUM+yw7YlHWQCH1J0XCENwCzSeJltLGIv7Xj9x9OJ5Fomsp0q8klgGqmMJZ54An880dqhZbCJSbSvKHAkLhpoYxSxXMY4XmE7r7OTGEIooR4XdsaScFxzFxmuojCICuL2pk/x8DEm/4ebOsADvAk8h4ef42QuXkZqZY2IiBxFmwfeLYY/7+i8TWl8DPxvPpS1WDVkQuyQGwUjo45+zvhQ+J/xsLQU3t8PTW4YHQ0XZ8PEuP57LCIivaH2H0NEHe3U0oodGx68OLFjA9rx4gVKaKCRNtrw0oS72/McoPm45+DAxulkkUoESymgBTezSWcyyfyTTdzPaSRi1SoqpYH32MNKinFh5zSyyCeBOMJIIIxQ7LTgYQsHuIQxvMsevsE0nmA1VzCOn/ExHkyicJFGBJ9TwT4+4iecrm1PIoNEBV62YvJ7X0DT8TdPMfAkbiKwEwakKqgRERGgsR1q2yDU3nmFzI46+OMO8HYIaGzA7CR4cjv8fSc0+j7ny4mAB6bBggywH+XpJSXMKsh7TroVBMWGWEGPiMhgpZBmiLBjkEI4k0lmDzXU0UYTbsJwkEU0brz8hjVcy0QyiaSIhoDnmUTScc+hgFr+yRaaaCefRH8B4P+ygzQi2U0NiYRTRB0Ps5I91Ppv+yFFzCWTrzOVLKI5j1G8wg6KqGc2aZxBNnuo5vecx4tsIwoXsYSSTDiRWGtRa2jlE/YrpBEJklZMCjFpwCQSgyZMGoAK6LA+7pBCTIqB3ZikDuxURURkkGl1w+oD8PI+KGqCKCcszITTUiAxFD6vsroadQxpZibCnnp4ZIN1fZtv4ei+Rvj2J/DCfKvuTE/EhfT9YxIR6Q8KaYaIdCI5iXSWU4QLO1U0W1XpMamnjXwSeIfdvMVuLmMcj7OqyzliCWF6L94qNdJOGQ2U08Suw2relPiOm5i8w55OAc1BH1LESWQwj2wuZRxhOHmPPYTiIIMoRhNHNCHMJRMbBs0BVgR9yn4uYyxO1bkQGVDFeHkOD5/ixQ04gaux04YV0ARqkGEDWoCigKMiInIiWVwKv9966PmiwQ3/3G11WIoPgcJGODUZnDb4pALq2mFSHNy/1teJ6bDz1bXDO0U9D2lERIYKhTRDhAM7V5DPDqrYTQ2VNPnHrmI8hdThBZZSwMWM5ltM519soZJmbEA+iVzHJHKIOe45ROCkipaAYzYM2vFQQVO3NXEA3mMPc8kkjlCuZgITSeKXrKSIBsJw0IaHKlr4OlNZzD4aaO90+0hfO28RGTj1mDyJm3UdXiK3A1vxkoxBKNAGh1XMglgMwkFlv0VETnAlTfCP3Z2fJ0Lt1hakn31urZJpdENBIyT56sgsK7WuV9horaAJVH1tay3sqYNQB6SFD8QjERHpfwpphpCRxPIAp/MK2/mQQiJxMY0UCqljI5UAvv5OsJBcppPKAZpwYCeTKMJ7+VYpiXBmk87HFHUZO4NsDtBMO95OhYEP1+yfIdTRyrOs5wAtmJiU0ICJ1cnqd6zmOiazmH2dbn8OI7EFsUiqyIloL95OAc1BGzC5DBtfxs4fDitrngGchY14IE/BqogMUaYJNW3WNpxodQI6buUtUN3W+djUePj7LmvrU2YExLnA2QwVLfDEFrg2z1qRmRYGxU2HtjqBtSWqxWMFOo9tgapWuCgLzs1QxyYRGfoU0gwxGUSRTwI7qKIdL++wxx96AOQSS4Kvq1IKEaQQ0Wf3HU8YlzGWSJwsoYA2XwvusxjBDFJJJJxYQsghmg8pwgBCcRCGg4Off8wiHZdvq1IBdWyjigM0s5da/+NIJpz9NGD4bnXw0Z1FTq9q6ojI8TnQzfEm4C3c3IqTcRg8i4cKTMZhYwE2UoEIDHIVrIrIENBMCwUU00AT0URgb8jgnaIQ1hywWjafmQanpkC6Vmwcs0BRfUooJITA/FQrcPFgtcxODIH8WMiJBMMGXxsDD204dDuvaa26CbXDnGR4dqf1WvG5XdDmhatHgaGnHREZwhTSDEH5JPIftlJIfafjdgyuYry/pXVfiyaEkcSSRiR3MwcvJjYM9lDDZ5SwkFxeZyejied5NtOCBwc2MokikXDiCWU2af7zNdBGM272dQhoACpoJplwInByChmE4uBUMhlLQr89NhHp3pGi3koMDOB/cHAeNqqxtkd5gUxsjMAgXCGNiAwiLZi4sX63Gb7fTwUU8zTPs5ZNePHS0m4nwz2dWaGXU9ac4g8BVpTDnZMhNSyYj2DoyYiwVsSU+JqMzk22gpTKVqst9qkpkB9jdV16qwie2g4Z4ZAdATeMhlvGWq25273gMa1w54FpsLKi8xaq1wvh9BRo9lj35TCsc2RGKLgRkaFDIc0QlEYkdzGH19jBhxTRips84rmccUwnpV/veyapuPHyPJsoogEHBlNI4etMZT/1/I1NpBLBPZzCq+xgHWW04CafBE4inT+xjnEkMJcsYgmhBfdhmySsYsiVvsLIVzCOXOL79TGJyJHlYJAMlAcYS8NgBAYGBmNU0FtEBrEDeFmDydt4aAGmYGM+NpJp4Lf8hS3sBKyVGkXNHta3f0ZztJtJid9gfaXVK3pHPXx+AFIzg/hAhqD4ELhpNDyyEaYlWF2ettbC9lormNnXAHnR8JVR8N5+ayV1mAPaTfjDdrghF14607qeYVjbz5aUwO7DmplOiIV/74XlZeD2vbyMcFircealgkO7b0VkCDBM01TbjQ7q6uqIiYmhtraW6OjoYE/niDx4KaURD17iCSVyAFeZVNHMAZqxY5BBFO14+CHL/V2fXNgYTxKTSKSeNhaxlwba/XFMFC7uZy6/Zw3Ps7nL+ceTyLmMYgEje9WRSkR6z4PJbkx+RnunrU/xwPdxMlE1Z0RkkKvB5Pe4WYG30/FI4BZ28AiP+o+1uGFzjfUm346N+9z38Mam0f7x8THw0MzONVLk6EwTttVaAc2P1kC00+rwVNtmbVNKDYORkdbWp821kBVuteZ22SHcDg/PsrZAvVEIT27rev5Yl7VdalEJRB5WhtFhwIPTYWLcwDxWkeMxlN6HSv/SSpohzI6NDKKCct/xhBHPobW+1bR06jjVhpf1lJNGBD/mQ8JxkE+ivzNTPW38lY3cxBTKaWQZhbjxYgAzSeNixrCEfVzN+IF+aCLisxMvH+FlA14SMbgJB05gLyapGIzGIEMBjYgMAVvxdgloAJqBTRzAAwHXAnrw0uyo7XRM22aOj2HAuFh4aZ+1tckwoNULe+utwsItHviwDL47EararGLBdhukhEGTB6pbrZBmbAy4bFaINj4a0iPA7YWsCOv2YQH+Id0mLClVSCMiQ4NCGunEjZcdVLGPWmwYZBPDWOL9e7a7E4GTRMKopdV/LI0I1vs2SITg6NKVaQMVfIUJzCWT08mmDQ8u7JTSwJvs5GLGkIVSZJFg+BwvD9FOo+/rbZh8hJcvYecy7ISpzoyIDCEfBwhowCpW6yWSVkx//awQu9XJqcr3kibU27lS8JlpWkXTG21esPnyfZfNKgA8ItKqLdPQbh0rb7a+Lm+GeJe1mibUF76MiLRq1GyrhXf3w2+2WCHM2GjIj4MLsuDdYrr8i+9rAI/XCn5ERAYzhTTiV08rf2MTv+YzqmgBIJkI7uUUvkAeEXTf0zCKEC5iNP+Pz/zH7NhowY3hO8/hQY8XEyd2LmIML7CZFRTThpdoXFxJPueRq3bbIkFQh8nTuGnE6siRA6Rg4AU+xMN0bIzXz6aIDCGBIxpLK+kkEU+jb8u2YVhbb+raYbSRSVVlhv+6o6Ngskrl9cqpydaWJ7Dq/9S3W4V+k0Otttwbqw8VA3ab1r/duBhrpQxYdWVyo+Afu2FTDcSHWnVnXHYrnGlxW/9G66o63++ISAU0IjI06FeV+H3APh7kQ39AA1BOI3ewiM8oOertZ5HGl8jH5fu2KqWBKSSTTQxRAQKekcSSRDhZRPMdZvFLzuJh5vMwZ/JlJhBHaN89OBHpsf2+GjSxwDnY2A38Cg+/xUMVsBcv7iO+5RERGVxOOsJL3hoSuJObiSPGfyzSCWdEJ3Kn4wZKamLIjoDr8+D7k9TZqbcmxcOoSOvPduNQ/Zg2L9yaD2s7FD8Ld1hdnm4eAxEd6sxsqoE3iqDVYxUZrm2zujklh8IHJZBx2L+Rw7AKB4uIDAVaSSMA1NLKc2zo0mkJoB0v/2Yrs0gl4gjFiaMI4UvkM4cM9tOADUgigkLq2ErnjzMcGFzNeGJ853NgZwSxffmQROQ4ubFe9J6MjR/hpqbD2H/wUoBJIk5mB2d6IiLHLB+DCRhsOux1TghwCQ6mM55fcA872UsFB0glmTznCJIdScyZbr3Jj+p+QbEcg9QwuHMSvF8CS0utlTGT42B+GnxaYdWkKW2y6tKclQazkyC9w46zxnYo8O3FbevweYHHtFbgJIdZK3MOinZanaXGHsrgREQGNYU0AkAdLezq9Fass51UUUPrEUMaACd2cokjl0OV2W7nJBaxlw/YSzNu8ojji4xlMsl9NX0R6UPJwHRgEd6AvxVqgLfwMhmDUC3IFJEhIBEb38HBMry8j5cWTPKxcSF2Jvq2b6aTSvrhHSUNiBu45pknjIwIuC4Pzs+wtjRVNluttvc2wqZaazvTV3Nhejw4DysEbDesFTaB1LRZXZ6mJ8CsJCtcy4qw7k9EZKhQSCOAtQomk0hKaAg4nkUM4TgDjh1NGpF8lYksYCTtmMQRQthxnktE+l8yNuZh50+0dxmLB5ow+QAPN2Ija+CnJyJyXFKxcSU2zsH0vR4xcKq+VlAl+bYlpYXDT6ZDSZO1GiYlFBK72VYW6rBCnOyIQytqOhoXa22pile4JiJDlD4CFQBiCeVaJgccs2NwKWOIo3ebsJOIIJ1IBTQiQ0A2BuMwiMZqSxsKZAGxQBkQDr38jSAiEhxxGCRjU0AzyMSFwPg4mBDXfUBz0NgYuGNi1/pAoyLhvikKaERkaNNKGvGbTzbfYRZPsJZW3ABE4uJ7zGYWaUGenYgMpJHYOBM7W3GTiNWmthpo9o1fgYNE7N2fQEREpJ8kh1mt0DPDre1RlS1WcDM5Dkar9oyIDHEKacQviQj+hxmcy0h2Uo0NG6OIYTTxRB+lFo2IDC8GBpdg430MPjqs0OaFGJymhZhygnG7oXQvFO2CthZIGwnpIyEiKtgzEzkxJYVZl5OSrWL3aq8tIsOFQhrpJJIQZpDGDK2cCaoqmmnGTTQuohSQSZCMx86TwMd4eQsvduBi7MzCxiiFNHICaW+DT96F154Gd4dSTRNPgou/DvGqgy8SNA49HYnIMKOQRmQQqaKZZRTyJruopYVUIrmUMcwijXDU+1MG3hjsjMHOVzCxYdWoEjnR7NsG//0jeL2dj2/8BFJzYOE1wZmXiIiIDD/KnkUGiSba+Csb+TOfU0IDTbjZTQ2P8invsAfzsC0nIgPJiaGARk5Y65Z1DWgO+uQ9OFA6sPMRERGR4UshjcggsZc6PmBvwLF/sYUi6gZ2QiIiAkDl/u7HGmuhvXXg5iIy3Jn6TEpETnDa7iQySOymmm4+qKWBdspoIgu1LBARGWg5+bBjfeCx+BQIU/FgkV450ALrquDNIihtgllJcFoKzEgM9sxERAaeQhqRQcJ1lHbG2moiIhIcE0+C5a9Ca3PXsfmXQUz8wM9JZLioaYF/7IY7V4HXt4rmP/sgPRyePQ1OTw3u/EREBpq2O4kMEqOIxdnNj2QS4WSij2pFRIIhazRcexckdmh8GBZhFQyefGrw5iUyHGyqhXs6BDQH7W+Cn30O+xuDMy8RkWDRShqRQSKHGL7KRJ5hfacSwS5s3MQUkogI2txERIYjtxvKCqFgG+zeCEkZkD8LMnPBOGzx4rgZcOsvoLzIasMdlwzJmV2vJyLH5tNKaO+mDs3SUtjTAOl6CSQiJxCFNCKDhBM755PLCGJ4lz2U0Ugeccwnh3EkBHt6IiLDSkMdbFsDa5ZAQw2MmQauEHj6QbjiNhg/q+ttouOti4j0nfq27sdMoNUzYFMRERkUFNKIDCKhOJhOKtNIoR3vUevUiIjIsWush7f/Cr+9EzzuQ8fHzoCb7oOX/wBpIyAuKWhTFDlhTD/C51AjIiElbODmIiIyGKgmjcggZGAooBER6Se71sMf7usc0ABsWw1LXoSR461tTSLS//Jj4ey0wGPfmwgT4gZ0OiIiQaeQRkRERE4ony0Crzfw2OKXICsP3EfYgiEifSc3Gh6eBd8dD8mh1puTqfHw9Fy4ODvYsxMRGXja7iQiIiInlOpysHXzMVVzg1UMOFZbnUQGzIQ4+OkM+EoutHkhzgWjooM9KxGR4NBKGhERETmhjJ8Ndjs4nF3HRoyHyBhI0Sf4IgPKYYNJ8TAjUQGNiJzYFNKIiIjICWX8bEjNgZAwcIUCvjbahg2+/F0YPRUcWmssIiIiQaCQRkRERE4oI8bB3U/ByedBWCSER0HuJOvYqRdARFSwZygiIiInKn1OJCIiIiecsdPhjt9B0U6rSHBsEmTmBntWIiIicqJTSCMiIiInpMhoGDc92LMQEREROUTbnUREREREREREBgGFNCIiIiIiIiIig4BCGhERERERERGRQUAhjYiIiIiIiIjIIKCQRkRERERERERkEFBIIyIiIiIiIiIyCCikEREREREREREZBBTSiIiIiIiIiIgMAgppREREREQGAbcXGtqt/4uIyInJEewJiIiIiIicyJrdsKEa3iqG8mbIiYQFGTAhFhz6SFVE5ISikEZEREREJEjaPfBGETy789CxgkZYUQ7/kw9npgdvbiIiMvCGTDb/s5/9jFNOOYXw8HBiY2MDXqegoIALLriA8PBwkpOT+f73v4/b7R7YiYqIiIiI9NC+RvjH7q7H3Sb8ZSfsbxr4OYmISPAMmZCmra2NK664gltuuSXguMfj4YILLqCtrY2PP/6YZ599lmeeeYb77rtvgGcqIiIiItIze+uhvZsaNDVtCmlERE40Q2a7049//GMAnnnmmYDj7777Lps3b+b9998nJSWFqVOn8uCDD3LXXXfxwAMP4HK5BnC2IiIiIiKBNVNPJYW00kRsTBxjY7LZVusMeF3THODJiYhIUA2ZkOZoVqxYwaRJk0hJSfEfW7BgAbfccgubNm1i2rRpAW/X2tpKa2ur/+u6urp+n6uIiIiInJj2s4N3eIpitgHQEuIiKW8eOQeu4t29SZ2uG+mA1LBgzFJERIJlyGx3OprS0tJOAQ3g/7q0tLTb2z300EPExMT4L1lZWf06TxERERE5MdVQxss87A9oAFz2NnY536U5/j/kRneupfilkZAZMdCzFBGRYApqSHP33XdjGMYRL1u3bu3XOdxzzz3U1tb6L4WFhf16fyIiIiJyYtrPdqrp/OGhzQbp4VAZtoi52YXEuiA/Bu6eZLXhNowgTVZERIIiqNudvve973H99dcf8TqjRo3q0blSU1P59NNPOx0rKyvzj3UnJCSEkJCQHt2HiIiIiMjxqiTwh4EOG0SHtTLFVcdp0RDlhPDAJWpERGSYC2pIk5SURFJS0tGv2ANz5szhZz/7GeXl5SQnJwPw3nvvER0dzfjx4/vkPkREREREjlcUid2OGdgIt4eREj6AExIRkUFnyBQOLigooKqqioKCAjweD+vWrQMgLy+PyMhIzj33XMaPH88111zDww8/TGlpKT/84Q+59dZbtVJGRERERILCg4diSvHgIZk8QoiglcYu18tlGkmoNqKIyInOMM2h0djv+uuv59lnn+1yfPHixcybNw+Affv2ccstt7BkyRIiIiK47rrr+MUvfoHD0fMsqq6ujpiYGGpra4mOju6r6YuIiIjICWYtG3md93mNdzExuJCzOI85rOApGjjgv14quVzEd0kmJ4izFZFg0vtQOWjIhDQDRT8cIsNUWSPsPADbDlgb/ccnQn4SOO3BnpmIiAxDa9nAjdzB52zudHw6E3mSnxJCHU3UkkAGyYwimoQgzVREBgO9D5WDhsx2JxGR47arCh5dCS9vhYOxdKQTfnEmjI6H1aVQ0QQTk2BCEoyMC+p0RURkaPPi5U2WdAloANawkVf5gG9xPan0TW1GEREZPhTSiMjw1uqGV7bBS1s7H48Phc2V8OvPYEfVofBmUhI8tgAmJg/4VEVEZHjYSyGv8V6346/zPlfzRYU0IiLShS3YExAR6Ve7a+CFrp9kcsFoeGQFFNVBRIc+pxsq4LFPoKltwKYoIiLDixcTk+4rClgjxkBNR0REhhCFNCIyvDW3Q2VT52PRIVDbCk3t0OLuWpfm3V2wvWrg5igiIsNKBil8gbO7jWEu5BwySR3QOYmIyNCg7U4iMrzFhMB3T4KqZvACKwqhqsUKZwwg0mVtieqo1QvN7kBnExEROaowwjiXM3iJt1jHpk5j48jjIs4hkoggzU5ERAYzhTQiMnztroY/r4W3d8OmCsiNg2/PttaZN7XBj063Apq/buh8u+RwSAgLypRFRGR4mMlknuQh3mYJr/EeJiYXcDYXcjazmBLs6YmIyCClkEZEhqeKRnh0BRTWWYHL3EyYNwJ+sBhC7RAfZnV0yo6Br0+HJ1eDx1c/4MapVtcnERGR42TDxmymMYExXMVFgEEOGYQQEuypiYjIIKaQRkSGpx1VVkADEOqAs0fCr1aC2wvNprXNKdIFe2rgo0I4Kd2qQ3PjVPjyRDBU0FFERHovggjGkBvsaYiIyBChkEZEhqeiukN/DnNAdQuUNh46Vt9m1alJiYD6VvjBXOvPYxLApoBGREREREQGnkIaERme4jrUlAlzQmWHgMbwXTxmh+DGhHGJAzhBERERERGRztSCW0SGpzHxEO60/tzQBhkxh8ZiQ63uTgdFOjuHOiIiIiIiIkGgkEZEhqfsGPjOSRDhhDYPuGwwIsb6OiXC2u500JcnwtiE4M1VREREREQEbXcSkeHKMODkDEg/yyoIXN8Gf7gQnlgFS/dZbbjD7HDlBLhpKoTo16GIiIiIiASX3pWIyPBlGJATa10OGpcAO6utLVBJ4ZCfaNWsERERERERCTKFNCJyYkmJtC4iIiIiIiKDjGrSiIiIiIiIiIgMAgppREREREREREQGAYU0IiIiIiIiIiKDgEIaEREREREREZFBQCGNiIiIiIiIiMggoJBGRERERERERGQQUEgjIiIiIiIiIjIIKKQRERERERERERkEHMGegIiIyFG5vbB6PyzaC9sOwLgEOGskTEsFpz3YsxMRERER6RMKaUREZHAzTXhjB3z7bWj2WMfe3gV/XAOPLYAvjAHDCO4cpc8U7YLiXdBYBzEJkDUGkjOCPSsRERGRgaGQRkREBrdtB+DexYcCmoMa3fCjJTAmAcYlBmVq0rfWfwy/+T5sXXXo2EkL4BsPwugpwZuXiIiIyEBRTRoRERnc9lRDRVPgsdJG2Fs7sPORfrF3G/zqfzsHNACfvANPPwhVZcGZl4iIiMhAUkgjIiKDW5v3KOPugZmH9Kui7bBrQ+Cxj9+Egu0DOx8RERGRYFBIIyIig1t6JDi7ebpy2SAjamDnI/2isqT7Ma8H6qsHbi4iIiIiwaKQRkREBrdxiXDN5MBj102BsQkDOx/pF4lp3Y/Z7BAVO2BTEREREQkaFQ4WERluTBOa3dbqk+HQnjoqBG6daa2YefZzKKyDrGi4fgpcNAYiQ4I9Q+kDmaNh1ATYvanr2JyFkDNu4OckIiIiMtAM0zTNYE9iMKmrqyMmJoba2lqio6ODPR0RkWOzoQze2gUfFUJ0CFyeDzPTIGOY/D7bVQVN7RDhhFHxwZ6N9LENK+Cx78L2tYeOzT4XvvkgjJ4atGmJiIj0O70PlYMU0hxGPxwiMmR9WgzfeAP2N3Q+/pWJcPtJkBkTnHmJHIPCXVC8CxpqIDYRskZDSlawZyUiItK/9D5UDtJ2JxGRvtbugX21UNsK4Q7IjoEIV//eZ0MbPLG6a0AD8PeNcO4ohTQyJGTlWhcRERGRE5FCGhGRvlTeAH/bCB8WQLsXDCA/Eb4xA0bF9d/9FtTCkr3djy/aC6dlQYTqt4iIiIiIDFbq7iQi0lfaPdaqlcV7rYAGwAQ2V8KjK6Cisf/u2+MFzxF2r7Z5wK3drSIiIiIig5lCGhGRvlJQC8sLAo8V1sGu6v677/QomJrS/ficTIjs5y1XIiIiIiLSKwppRET6Sk3roRU0geyv77/7TgiH22ZDaICW26dmwZRksOtXvoiIiIjIYKaaNCIifSXcYdWg6W5XUXxY/97/mSPguUvgT2tgTam1cuaSsXDBaMhP6t/7FhERERGRXlNIIyLSV7JjYEISbKzoOhbtgtx+LBwM4LDBGTnWtqfienDZIDMaQp39e78iIiIiItIntPZdRKSvRLjg5umQHd35eLQLvnsyZA1QC+yYUBifBHkJxx7QtLlhZxV8Xgp7qsF9hO1bhzNNKGuA4jpobj+2+xUREREREa2kERHpU6Pi4KfzYfsB2N8AcaHWCpqBCmh6Y1cV/GktvLYdWjyQHglfGAPXToaUyCPftqgO3t4JHxeBzYCsaLhoDExOUS0cEREREZEeUkgjItIXSuqtVtvLC8BrwmlZcHIGpEUFe2Y9U1IP9y+F9/YcOratCvZ+Bs1uuPMUCO3mKaOsAX79KaREwLhEKGkApx0W77Pq80xPG5CHICIiIiIy1CmkERHprcJaeOwTeH4zVDWBzQZ/2wALc61wIyc22DM8ui0HOgc0B7V64KWtcEV+98WHN1fAyFj41UooqDt0PDUCEsIgNxZi+rlosoiIiIjIMKA16CIivbW8AH67ylqN0uaBFjfsq7WCmsV7gz27ozNN2FbZ/XhFo7U6pjv7G+DpddZ1bMah46WN8LPlsKemr2YqIiIiIjKsKaQREemNsnorjHF7rIDC6NCDu7EdXtwCB5qCOsUe6W4rE1jbtwKNmyZsLLeCqTWlVjhlYHWVOqiw3gpxRERERETkqBTSiIj0RkUz7K+3whmvCR4TvBz6c2EdNLYFe5ZHZhgwKhaSIwKPT0kO3D78o0L40n+scOrg4212W1ukDgY18aFQ3dJvUxcRERERGU4U0oiI9Eao3epgZJr+BTSdTEwm8MAgk5cA351tdaPqKC0C7juja3en2hb47WdQ2WKFNGkdxtu91kMOtUNiuFVQWEREREREjkqFg0VEeiM7Gs4fDf/dDnWtncfCnfClCVaXo+sCrEQZTDKi4OxRkBButQ8va4TR8TA7Haakdr3+vlqrFg9YrbfPHgkriqxVMx6vFc5EuayW5HnxA/tYRERERESGKIU0IiK94XJCfgL8+HT49xb4pNja+jMzHW6aCphWAd2hIDvGCmvK062VQXFhEObs/vqGAU4DNlbAVROsmjQfFYLbsFbSzM6AW2fBiNiBegQiIiIiIkOaQhoRkd7KiYFJyZAUboUVDpsVdni88Od1cMvMYM+w5+w2SIs6+vXSI+HMEbCuDHZVw4+XwfwcK5QBOCkDZqaq9baIiIiIyDFQSCMi0luxYVa4sa4MxiVa4czLW6GyGVIjYGJS97eta4WGVohwQUxo99cbbBIj4Jsz4Jr/WjVoAD7YZ13OGWnVqRmboJBGREREROQYKKQREekLJ2da/39hExTVg9MGp2bBleMhI7rr9etb4dNieGUbVDRBQhhcPNY6T3TIwM79eIU74duzrO1Oq0usGjTzRoDdsLY9nZYNmQEeu4iIiIiIBKSQRkSkL4Q6rIBicjJUtVghTXoUOO1dr+v2wn+3wQubDx1rbIfffAbF9fDVSYFvN9g0u+G9PVbr7nNGgtuEzZXQ3G6NNw3y1uMiIiIiIoOMQhoRkb4UH25djqSg1lpBE8hr260VKEOhI1JimFV/p7zRuhyuJ7VtRERERETEzxbsCYiInHBKGqDVE3is3WutphkKsmNg/ojAYzPTrILKIiIiIiLSY1pJIyIy0OzGkccdRxkfLEIccPVEiHTCu7utLVuhDjg9Gy7Ph6ghUltHRERERGSQUEgjIjLQMqIg0gUNAWq2hDshcwitQEkMhxumwjmjrMcT5rSKBTu0UFNERERE5FjpVbSIyEDLjIYbp3RdUWMz4LrJkDXEOiIZBmTFQH4SjIhVQCMiIiIicpy0kkZEZKAZhtUJKjkS3t8NhXVWJ6hzR8GEJCusERERERGRE45CGhGRYHDaYUqK1bK71Q0uh8IZEREREZETnEIaEZFgMgwIdQZ7FiIiIiIiMgiocICIiIiIiIiIyCCgkEZEREREREREZBBQSCMiIiIiIiIiMggopBERERERERERGQQU0oiIiIiIiIiIDAIKaUREREREREREBgGFNCIiIiIiIiIig4BCGhERERERERGRQUAhjYiIiIiIiIjIIKCQRkRERERERERkEBgSIc3evXu56aabGDlyJGFhYeTm5nL//ffT1tbW6Xrr16/ntNNOIzQ0lKysLB5++OEgzVhERERERERE5Ng4gj2Bnti6dSter5ennnqKvLw8Nm7cyM0330xjYyOPPvooAHV1dZx77rmcffbZPPnkk2zYsIEbb7yR2NhYvv71rwf5EYiIiIiIiIiIHJlhmqYZ7Ekcj0ceeYQnnniC3bt3A/DEE09w7733UlpaisvlAuDuu+/mlVdeYevWrT0+b11dHTExMdTW1hIdHd0vcxcRERERERE5SO9D5aAhsd0pkNraWuLj4/1fr1ixgtNPP90f0AAsWLCAbdu2UV1d3e15Wltbqaur63QRERERERERERloQzKk2blzJ7/5zW/4xje+4T9WWlpKSkpKp+sd/Lq0tLTbcz300EPExMT4L1lZWf0zaRERERERERGRIwhqSHP33XdjGMYRL4dvVSouLua8887jiiuu4Oabb+71HO655x5qa2v9l8LCwl6fU0RERERERETkWAW1cPD3vvc9rr/++iNeZ9SoUf4/79+/n/nz53PKKafwhz/8odP1UlNTKSsr63Ts4Nepqandnj8kJISQkJBjnLmIiIiIiIiISN8KakiTlJREUlJSj65bXFzM/PnzmTFjBn/5y1+w2TovApozZw733nsv7e3tOJ1OAN577z3Gjh1LXFxcn89dRERERERERKQvDYmaNMXFxcybN4/s7GweffRRKioqKC0t7VRr5uqrr8blcnHTTTexadMmXnjhBR5//HFuv/32IM5cRETk/7d332FW1nf+/5/nTO+9wRR6L1JEsaNELClGo2ZN0cQ10ZDsGrNZTUOzG6Oru9+sySZxk3WNv924lsSaGAUbNkBEUAFB+tCGOkzv5/z+AE4cGRAYZs6BeT6ua66L8/nc577f93hfM2defookSZJ0eKI6kuZwzZkzh9WrV7N69WpKS0s79e3fQTwrK4vZs2czc+ZMJk2aRH5+PrNmzeJrX/taNEqWpGOntgVW7oKmNshNgZH5EHdcZOySJEmSjkAgvD/lEOD+9JJizOIquGcBPLESWjugMBX+dgJcPR7KsqJdnT4iTJjdbCFEB6lkk4a/R7rUFoL3Q7CmA0LAgCCMjINUw0dJUt/k36Ha77gYSSNJfdL7O+AfZsNrm/7atrUBfvo6tIZg1pkQHxe9+tRJNVUs4XniiWc3W6hkKalkM4ozKGYwZYwinoRolxl9dSF4tBVub4L6fW1JwPXJ8LeJUOgzLUmS+i5DGkmKRe2hvVOcPhzQ7NcRhvuXwOdGwriiXi9NB2qghhe4nywKmcNvWc1C2mgG4Fl+zWf5R3axiQlcQBx9PIRY2AE/bIKOD7W1APc0w+AgXNnHvz+SJKlPc1yxJMWi3Y17Q5qD9jfB9obeq0eHtI21xBHPfB5nA+9FAhqAdlr5M79gLYvZyPJeqSdMmM2sYjGzWcQzrOdd2mjrlWsfUmsIHmntHNB82O9aYPvBOiVJkk58jqSRpFgUCu9dJPhgAgFIS+y9enRIVawlkRT2sI1G9nykN0wz9bTRwkaWMYCxPVpLG228xVM8zD9Rzd5dEFPI4GK+ydl8gUwKevT6h1Qfhg2HCGE2haAmDIW9V5IkSVIscSSNJMWi/FQYnAO5yV33n10Bw3J7tyYdVDKphOggTOigx7TTQnNkEZaes5o3uY9vRwIagCbq+AN38B4v9fj1DykjAEMPMZ1pYBxkB3qvHkmSpBhjSCNJsSg+DgZmw//7BGR+ZMTMsFyYdRbkpUalNB2ohKHEk0gKGcQdsDhwgCBB0smlmCE9WkeIEAt4gjZauuyfw3+zm609WsMhJQThc4lwsEFgX02EAtekkSRJfZfTnSQpVg3M2RulP/I5eG87bK2DsYUwvghGOx8klhQygDJGMYHz2c0Wqli9rydAkDgmMIN22ihjZI/W0U4rm1hxQHuQONLIppk6qlhNPbspZADJpPVoPV2aHAf/mgo/aYLt4b1tmcCNyXCmH0skSVLf5qchSepN9a2wpQ46QlCQtnda06FU5EBZNowvhPggZB5k+pOiKo54hnMaWRRSQAUv8gAfsIA0spnCpxnGFIZxKtn07G5c8SRSxEBW8WakLUg8meSzkw0kksISnmctixnCRM7na+TSr0drOkBqEK5IhLFxUBnau4hwWRBGBCHRAb6SJKlvM6SRpN6wvR7e2wG/fguW79i7KPCQXPjyODi9DJIO8eM4GIBcpzbFugQSKGMkZYxkAhewi02E6CCZDIoZSFwv/MoNEmQql/IGfyREOwDp5LCddbTRwhQ+vW+kTZjVLCKR/+XT3Ej8Qecf9ZBAAEbFw6jevawkSVKsM6SRpJ62sQbmboB/fg327NuaeVcz7G7eu412SjxMLYtujTqmMskjk7yoXHswJ/Mlfsoj/DPNNBAmRJgw53EN7bR1Wrx4JfPYwaWU9PBaOZIkSTo8hjSSdAxsI0QzkAoUfHhN9nAYXt0I72z7a0Cz364myEmGP6yAMYWQkdSbJesElUIaZ/A3DOIktrOBenbTRB1bWMV63ul0bAftNPXCjlOSJEk6PIY0ktQNOwkxhxDP0kE1UAB8hnjOJkgWAdjWAGurYfnOrk+wowE27IGaZkMaHTOJJDKA8QxgPO/xEk/y/7o8Lkg8KaT3cnWSJEk6GFfok6Sj1EiYB+jgQTrYDYSB7cBvaecJOmgnvHeB4IZWyDpIANMRhrQESHDbYfWMfgwjnZwu+4YxhXycaidJkhQrDGkk6SitJ8wrhLrse5oOKgnvXSA4MW7v4sBdyU6GcwdCkaMZ1DPy6M9n+e5HdpYKMJQpnMdXCBCIWm2SJEnqzOlOknSUNhE+SEQDLcB2wgxKSYBLRsBj78MXxsCDS/cOuYG92w2fXQHnD+qlik88texiB+tpoZE44ilhCJkURLusmFPBWL7EHexgAy00kkQaO6nkd3yXDtqZxAUMZjLljI52qZIkSX2aIY0kHaWPW0EmYf8/xhVCKAyvb4R/OgdW7YakODh3AJxUvHe0jY5IB+18wAKe579ZwyIyKWAMZ/E2szmNy6hgTLRLjDlZFJBFAZtYwYPM4k2ejPTN5zFGcBp/y88ZwNgoVilJktS3GdJI0lGqIEAK0NRFXz5Qtn8aSVwQJpXAiDzY0QifHAIFaa5D0w1LeZn/4G+pZuu+lvdZzitM51pe4gE+wz+Q02l6j/ZbybxOAc1+K3iDhTxlSCNJkhRFrkkjSUepnADXEX9A2p0EfJ14Cj/6IzYtEQZkQ79MA5pu2MN2nuFXHwpo/upl/j/SyGYLK6NQWeyrYxev8+hB+1/nUbayuhcrkiRJ0oc5kkaSjlKQANMI0p8EXidEJSGGEuRUggx1MdYeU80WdrGxy7522qinmgZqermq40M7bbTQcND+VhrpoK0XK5IkSdKHGdJIUjfEE2AUAUY5MLHXhAgT99cVf7ro7yCVzF6s6PiRQzFjmcZK5nfZP4qzyKeil6uSJEnSfv5VIUk6rmRTRC79uwxiggTpx1CKccesg5nEJ8mj9ID2NHI4l2tIJjUKVUmSJAkMaSRJx5k8+vEJvkopo0kho1PfmXyBEZxOPmVRqi72DWUyN/F7zuIqUskikVSmcAnf5SFGcFq0y5MkSerTnO4kSTrujOVc0sjhNR5mMx+QQhpT+AxDOZV+DI52eTFvOKdSwTg+xY1AmAIGkE52lKuSJEmSIY0k6biTQBLDOZUBjKOROpJIcR2aI5RMKgMZH+0yJEmS9CGGNJKkmNNKM9tYSxutZJBHHv0JdjFDN4lUklxDRZIkSScIQxpJUkypZBlz+T1v8xfaaGUwEzmTzzOcqWSQG+3yJEmSpB5jSCNJihlbWM1v+BYbWRZpW8JsVjKPa/l3JnIBcf7qkiRJ0gnKT7qSpJixkjc6BTT7NVHHKzxIOWMpoiIKlR0oRIhtrCNEOzmUHLAmTiO1VLGGTawgngTKGE0RA0kkOUoVS5IkKdYZ0kiSYkIHHbzLiwftX81C6tgZEyHNRt7ndR5mAU/SRD2DmcgMvs5IziSBBGrYwWx+w0rmR94TIMjpXM6pfJZk0qJYvSRJkmKVIY0kKWYcapRJHInEk9CL1XRtC6u4j2+zjsWRtqW8zErmM5PfMoHzI68/LEQHc/lfShjCcE7t7bIP0EwDdewEIItiEkmKckWSJEkypJEkxYQ44pjMxbzJU4ToOKB/PNMpYmAUKutsDW93Cmj2a6OZZ/gPShnJYp4D9o6e6c9w8uhHGy1s5gNe4gEgQH+Gk0527xYPhAmzlrdZzSKqqSKLAlLIYDCTKGNkr9cjSZKkvzKkkSTFjKGcwqlcynwe6xTUFDKA6XyFFDKiWB200sRyXjlo/1oWs4dtNFFHEmmM5zwW8yzPcS/ttDKQkzibL/I+r/EB8ziPa0nt5Xt6lxf5LX8XGUUDMIBxtNNGPImUMLhX65EkSdJfGdJIkmJGNoVcySxOYjoLeZoWGhnNOYzhLEpjYpRHgERSOr1OIIkgcbTSRJA4EkkmnzKKGMTT3MM21kYCp7Uspp5qPsf3WcCTjOEcBnJSr1VfxVr+h+91CmgA1vMu6eSSRb4hjSRJUhQZ0kiSYko2hZzCJUzkIsKEYmo3pESSGcd5vMz/kEEeiaTQRB0QJo/+jOQ0ihnMmXyeeTzGHqo6jQgKEkcCSczjMcoZw1oW92pIU8kydrOly773eZ3JXEwLjSSR2ms1SZIk6a+C0S5AkqSuJJDYrYBmOxtYylyWMIdKlhEidEzqKmcMF/FNWmhkPe9QxWqqWMMuNjOUU6hiLeWMZg/biCcx8r5k0ilmMPVUU8l7ZJHf5do7PamOnQQP8qu/gzbChAn6/28kSZKixk9ikqQTSogQ7/I8D/FPbGUVAOnkcTEzOYPPk0let85fQBlDmEyAACuZRxN1lDOGTAp4mH/iYr5FDiXkU0opI6ljFyE66KCNOnYTop00suignUFMOBa3fNiKGEQm+exi8wF9iaRSxCASPhQsSZIkqXc5kkaSdEJZyyLu5RuRgAYglXQqWcYa3qadtm6dv4E9vMLveZZ7aaeNFLJYwRs8x700sIfFPMcetjCe6SSRSjLp1LKDeqoJ0Q7AGKaRQgbFDOlWLUeqP8MoZSTJpB/QdwZXUMaoXq1HkiRJnTmSRpJ0QlnCnH3rxEAiKczg6+xiI+/xEst5jalcyulcThmjCBA44vO30UIDNXTQxnreOaC/kVqaaaSCcYxlGu/yIv0YTg3baKaBMkZxOldQxkjSyOr2/R6JHEq4klk8zc9Zt28R4wSSmMqlTOPqbo8ykiRJUvcY0kiSThghQqzbF5wEiec8ruE1HmYD7wIQIMh8YDUL+TJ3UsHYI75GKtmUMoJVLATCB/SXMoI0ckgji0/wt4ziDJbzGq00MZiJlDKKQiq6c5vd0p/hfJk72EElrTSRTg4FVBBPQtRqkiRJ0l6GNJKkE0aQIAWUA1BAOc00RgIagASSaKeNjSznNR6mhGEkknRE10gkidO5kkX8hVp2dOpLJo3xTCeXYgBSyWQoUxjKlG7e2bGVSiYVjIl2GZIkSfoI16SRJJ1QTuZTBImnhMGsZmGnvmyKaaGBFhr5gDepYftRXWMQJ3EdP2cwkyJTpioYy5e4g5GcQQoZ3b4PSZIk9T2OpJEknVAGMZEv8hPe5UWCxEXasyginkSaqQcgTPio1qQBiCOecZxLBWPZzjraaSebAvIpJ+EIR+ZIkiRJ+xnSSJJOKCmkcxZX0Z+RbGQp29lAIsm00kw9u/cdFWAEp5G9b1rS0cqigCwKul/0IdSyk1p2EiSOXPqTTGqPXk+SJEnRY0gjSTGkhSa2sZYq1rCZD2inmXLGUM5YShgc7fKOGwkkUcYItrCSAYzjfV7r1F/CEM7k88THwK/BenaziRWsYwmN1DKA8ZQyklxKeJ/XeYUH2cM2AgQpYyTT+LJbZUuSJJ2gov/pVJIE7A1oFvMcm1nBH7mTVpoASCKVUZzJVfwzAxkf5SqPH2lkM5ZpxJHAECazjFdoo5mxnMupfJYyRka7RGrZxQIe5xFup5XGSPsITuMKfsjT3EOYEABhQlSyjEe5nS/wE4oYGK2yJUmS1EMMaSQpRmxlFTvZ2CmgAWihkTUs4k/8gq/yb6SR1e1rtdLCDtazh23EkUA+ZeTR/6jXaDlWWmiimq2ECZFJQbfvtYByTuWz7GITU/gUCaSQTxkJJALQQSMQII6UY1D9kdvIMh7ix7TT2qn9fV7nRR5gKCfzAQs69TVSyyoWGtJIkiSdgAxpJClGrGUJe9jaKaDZr47drOEttrKKIUzu1nXq2M0rPMg7vECIdgBSyGQGX2MkZxD3ocV2e1Mly5jL76lkGWFCFFLBWXyBoZxMXDd+XSWRQj+GdmprZiO1zKOG14AA2ZxDJqeQRL9u3gXUU70vaAqTTTEpZFLFKj7gTWrZTimjGMA4cunHUl4+IKCBvYsav86jfI1fHhDSAKzlbU7n8qiHapIkSTq2DGkkKUa00UQd1V32hQkRoqPLAOdIvcPzLOa5Tm1N1PI095BNIaVRmAa0lTU8yk9pojbStp0NPMZdXMkPGcykY3atJiqp5HZa2RJpq2Ite3iZcv6RJPof1XlDhFjNQl7kd+xkE7B3p6l+DOU1HgHCACzjVdLI5jJuof4g/70DQDP1nSKYJFIpZwwZ5JFNEY3UHpNRVZIkSYodhjSSFCOKGEwDNV32JZFKChmkk9eta+xhG4v4c5d9HbSxkvk9FtJsZQ2rWMAedpBNEQMYSxGDSCKF93mtU0CzX4h25vEYpYwi6RhNSdrDC50Cmv2aWUstCyjg0qM67yaW8xh3dRoZk0sJv+eHFFJBCpmR9gb28CK/Yyzn8goPHnCuAEH6M4LmfevUZFPEYCbyGo+wiffpxzCWMZdz+BJDmOyIGkmSpBNEMNoFSJL2KmMUKaTTn+EH9OVSwulcQSkjunWNFhqpi2xDfaDtrOvW+Q9mPe/yPPfRSC3reYdX+D1z+K994Uw961hy0PduZc2Hts7unjZ2U8PrB+3fw0t00HDE5+2gg8XM7hTQDGIiITpIIJFadtBEHSE6Iv2bWEkWBeR+ZIrV/oWiP88s2mklQJBhnMJj3MUm3ieHElJIZxvr+CP/wkaWH3G9kiRJik2GNJIUMptKkQAAJjlJREFUI/Lox0Qu4vPcxng+QRzxJJHKYCYzgxs4gysJdvPHdhJpZBxiNE4hg7p1/q40UssG3qOM0bzFMyzmWVbxJq/wIL/mejazotMokwNrTiF+30K/3RUmDPt2S+q6PxTZTelItNDAZj6IvB7CZDpoYx3vsJ0NVLGOjSxnN5vp2LcOEIRJIpUbuJcRnE6AIBO5mE9wHUmk8SZP00gNl3Ez1VSRTRGljCCXEoL7BsK208Jinv3QOSVJknQ8c7qTJMWQIgaQR38GcRJ72E6IDtLJoz/Duh3QAGRTyMl8khd54IC+eBIZzqndvsZ+rTSzjXWsYRGL+QtreYdCKvgkf89CnmYrq2imnif4N2bwNdbydpfnGce5ZFFwTGpKIJcMTmY3z3TZn8VpxJNxxOeNJ5FUMtnNZpJIJYlUZvMbZvB1gMh0pGqqIkFZKplkkEce/fkm97GDDSziGd7leZJI23f8Vt7leSZzMc00sJstJJNONkWk7KtzEytooo50co7mWyJJkqQYYkgjSTEmngSKGERRD4xqARjHedSyg8XMjozASCWLC7iefgw7JteoZRfv8gKLeY6FPE0KGexgAzvYwHJe5RL+gXp2U8cuNrOCTAo4ifNZwuxO5+nPCMYx/YDzt9PKDjbSQgMpZJBP2WHtABUgQA7nU8sbtLOnU18CBWRxxlHdbyLJTOJCNvE+/RnOEubQQTs1bGcoU6hk6b4ROkFq2E4aOZzKZ8nbt0hxBjnspJKVzIsENPvvs5oqXuUhhjKFRfyZenbTSA0lDCGVLJJJI56ko6pbkiRJscWQRpL6mHRymM61jGM6e9hGPAnkUUbeMdh+er93mEMDe3iLPxEkGJlG1EIjyaTxKg8xlmm8wR9IIYN22jiXaxjJ6aziTdpoYQiT6cdwssjvdO5dbOZl/ocPWEAH7SSQxBjO5nSuJJvCj60tlcFUcCvVPEstCwkQJJOp5HA+yVQc9T0PYiITuYAG9lDPbpJJYymvMJVLyaWEd3ieVpoooIJz+BJljKKRWlL3TfVazzuRc4UJEyZEE3XUsZN2WhjHeZH+EB2RUTUTuJBkUo+6bkmSJMUOQxpJ6oPiSaQfQ+nH0GN+7mq28T6vk7hvN6Yw4Q+NDgnTQTvbWMeZfJ5UssimmCwKSCWDwUxkMBMPeu4GaniGX7KB9yJtbbSwmNm00cJFfIvEwxhVksoQUvgGBewEAiSQ3+0dktLIYhrXsIuNVFPFCl5nOxv4C7+igrHM4HriSCBt3+iXB7iZIgYyg69TzmhCdBCigybqqGE7AYK00UwrzaSQSQ4lna7XRD3DOJWhnNytuiVJkhQ7XDhYknRMtdJIIzWdQo92WsmmCAgQJkSQOBJJpZABnMXfRKb9fFSYMO20RV5vZ32ngObDlvM6O1h/2HUGCJJIIYkUHLMtrFNIo5QRnM0XaaCGOOIJEKCSpfyFX/EU/0Y7bazmLdLIZhvr+AN3sINKyhlLDdvZwgc0sIc2mumgnWbqSSGDJNL4PLdyGpdzOpfzeW7lbL5ABrnHpHZJkiRFnyNpJEnHVBKpBAh0WlOnkRoyySeJNBr2raeSQjqXcTPDOPWAkKSVZjaynEU8wy42UcJQxnEujdQd9Loh2g+5vXhvyqGYi5jJSzxANVWECZFJAWfzBd7iz2RTRAHlNLCHRmpYzzv0ZyT9GMZONgLQShMZ5NNANVP4NAt4jHbaI4soV1N1TKeoSZIkKfoMaSRJx1Q2RUzmk6zhbU7hEhbwBAC17CSRFAYxgcu4hUFMIp2sA97fSC2LeY5n+A+2sZ42mgF4jv/kK/wryaTTTH2X106KkbVZ4ohnC6s4hy8TTyIhOtjOeubxR2rYTn+GR+4LYAsfkEkhg5gYWXi4kRqGMJlPc2NkN640stnDNpJJ5wyuiEwpkyRJ0onBkEaSdMzt3UFqJymkcwnf5V1eoIl6xnAWZ3AlZYwmjrhO79nGOt7jJUKEeIR/JoV0sshnF1sIE6KRGp7hV4zjXJbz6gHXzKeMAsp76xYPKYcSBjCWRfwF2DsqZiPLCdEBwBAmRfoAMimkg1aWMZc0spnADOJJ2LcI8R4mcRFVrCWOeAZyEmOZRv9jtBOXJEmSYochjSTpmMsgl+l8lR1UUssuTuITpJJFPqVdbpW9lTXcx7epZCmn8zl2s5kwIdLIoZhB7KASgEqWchE3sJq3aKUp8v50crmImaST02v3eChBgpzMp9nKarawigSSSSeXOnZyLl9hK2v2bckNQeIZyskECBAkngb2sIo3O50vi0I+z22kkUUKGcdsDR1JkiTFFkMaSVKPSCDpsHeQWsyzrGIBKWTQRithwgA0UE0TdSSTRjMNdNBGDTv4G25jBxupYRt5lNKf4QddfDha8inlMr7PFlZSyVKCxJNMGh+wkK18AEA8SVzA1ylhCB10cDIXs4AnDzjXyXySfEoNZyRJkk5whjSSpMMWJswettFBO+nkkBzZWvvo1bKLN3kKgCbqyKaIAIFIULOHbRQygGYaSCeXAEFy6EcZo7p97Z6WRT5Z5DOS0wGop5p+DKWKtaSQQT+GUsAA4ogjjnhO5woKqGAhT1NPNTkUcwqfYRATDWgkSZL6AEMaSdJh2cUmFvEXlvEKrTRRxCBO53MMZALxJBz1eUO00UZL5PU6ljCZT7JwX3ATIkSAIABncRX5lJNOdrfuJVrSySGdSQxmUpf9qWRyEp9gGKfSQiMppB+TIEySJEnHh2C0C5Akxb49bOdx/pU3eYoG9tBGC5t4n0f5KatZ2K1zZ1LIOM6NvF7Ky+RTxkV8kyIGUkA5BVRwGd+jkAoGMaG7txPzUskghyIDGkmSpD7GkTSSpI+1ieVUseaA9hAdvMKDlDGatC620z4cexfZ/RTzeYLdbAbgdR4hm2KmchlTuIRWmsimiEIqSCGjW/ciSZIkxSpDGknSx1rDooP2bWcDtew46pAGYCAn8Q3u5VUe5j1eIkCA0ZzFFC5hCCeT0I3pVJIkSdLxwpBGkvSxEkg+aF+QOILEdev8AQIMZQr9GcF5fAWAHPqRSW63zitJkiQdT1yTRpLUSSN17GIzdeyOtA1n6kGPH8h4cig5JtdOJZMKxlDBGAMaSZIk9TmOpJEkAdBCE6tZyDweo5qtpJLFZC5iFGfRj6FM4iIW8Uyn96SRzZn8DYmHGGkjSZIk6fAY0kiSCBNmMc/xPPdF2lpoZA73sZ31fILrOJsvMIgJvMMcGqllKCczhCkUMSB6hUuSJEknEEMaSRK72MRrPNxl3zu8yEmcTxmjGM6pDOdUQoQIOmNWkiRJOqb8hC1JYg/baKb+IL1hqljbqcWARpIkSTr2/JQtSfrY3Zni3QJbkiRJ6nHHTUjz6U9/mvLycpKTkykpKeFLX/oSW7Zs6XTMu+++y5lnnklycjJlZWXcddddUapWko4veZSSRUGXfXEkUMzgXq5IkiRJ6nuOm5Bm2rRpPPLII6xcuZI//vGPrFmzhs997nOR/traWs4//3wqKipYtGgRd999N7fddhu/+c1voli1JB0fsihgOn9LPIkf6QlwDl8gn4qo1CVJkiT1JYFwOByOdhFH46mnnuKSSy6hpaWFhIQEfv3rX/ODH/yAqqoqEhP3/pFxyy238MQTT7BixYrDPm9tbS1ZWVnU1NSQmZnZU+VLUswJEWIzK3iPl9jKarIp4iQ+QRmj3WJbkiSpB/l3qPY7Lnd32r17N7///e857bTTSEjYu07CvHnzOOussyIBDcCMGTP4l3/5F6qrq8nJyenyXC0tLbS0tERe19bW9mzxkhSjggQpYxSljKSdNuJJIEAg2mVJkiRJfcZxM90J4OabbyYtLY28vDwqKyt58sknI31VVVUUFRV1On7/66qqqoOe84477iArKyvyVVZW1jPFS9JxIkCABBINaCRJkqReFtWQ5pZbbiEQCBzy68NTlb773e+yePFiZs+eTVxcHF/+8pfp7myt733ve9TU1ES+Nm7c2N3bkiRJkiRJOmJRne70ne98h2uuueaQxwwaNCjy7/z8fPLz8xk2bBgjR46krKyM+fPnM3XqVIqLi9m2bVun9+5/XVxcfNDzJyUlkZSUdPQ3IUlHqI1WAgR6fVvreqrZxlq2s4FUMilmCIVUREbMhAmzjbVsYBl72EohAyljJPk4wlCSJEnqDVENaQoKCigo6HrL148TCoUAIuvJTJ06lR/84Ae0tbVF1qmZM2cOw4cPP+h6NJLUm3aykVUsZDmvEUcc4ziPQUwgm6KPf3O3r72JP/FzNvF+pC2RFC5iJqM4kwABVjCPp/l3WmmigAq2s4FlzOUsrqKc0T1eY1faaaWBWhJJIoWMqNQgSZIk9ZbjYuHgBQsWsHDhQs444wxycnJYs2YNP/rRjxg8eDBTp04F4KqrruLHP/4x1157LTfffDNLly7lnnvu4Wc/+1mUq5ck2M4GHuV2qtkaadvECkoZyWf4Djk9GNS008ar/F8koGmjmQ7aaaOZP/EL8uhPPEn8mV+QQzHjmU4du2ikhhQy2cpqcigmg7weq/GjOminkmW8xZ/YymqSSWciFzCMU8nsxTokSZKk3nRchDSpqak89thj3HrrrTQ0NFBSUsIFF1zAD3/4w8hUpaysLGbPns3MmTOZNGkS+fn5zJo1i6997WtRrl5SXxcmzBJmdwpo9tvE+6zlbSZxYY9dfxebWMl82milgWqq2UozDSSQSC79WcVCChlAOjmMYzqPcjvrWALsHW1zMp8ihQzGcA7BHlzKrJE6trCSeqoJEsfr/IFtrCGeRGrZybPcSyVLuYAbSMWtKSVJknTiOS5CmrFjx/Liiy9+7HHjxo3j1Vdf7YWKJOnw1bKTFbxx0P53mMNYziWRnlkfq5VmWmmilu1sYgVh9k0XpYF6qlnHEsoYyUQu4Hd8l+2s/9B7m3idR8ggl/4MJ4/+PVLjZlbyJD/jbZ4hiVQaqGEs06hgLGt5myTSAFjOa4znEwxmYo/UIUmSJEXTcbUFtyQdj0KE6KD9oP0dtEeCk56QQgZB4qlibZfXCRKkhSZq2dkpoPmrAG/yFDuo7JH6qtnKo/yUt3mGNlqII4F6djOPP7KH7SSSRgdtkePX806P1CFJkiRFmyGNJPWwTPIYyPiD9o/kDJJI6bHr59Gfk/gEbTQf0JdNMUHi2Moq6tjZ5fvjSaSFRlpo7JH6NvMB21hLGy0H9C3iTwxiAq00Rdp6csqVJEmSFE1+0pWkHhZHPJP5FMmkH9CXRSHDObVHrx8gwFBO5my+QPK+aUMAAxjHRXyD13gEgCIGkUgK7NuSO0CABJJJJIkEkkgnu8vz11PNZj5gC6toov6I69vJxk4jjdppi3yvmmkgSJAOOj5U90lHfA1JkiTpeHBcrEkjSce7UobzeWaxkKdZxzsEiWMYpzCJiyigvMevn0kerTRxEd8kQIA44qliHX/hXsKEKGM0aWRRzmg2sxIIs3fMyt4sfwqX0J8Rnc7ZQTsf8CZz+V92shEIUMpwzuFLDGDcEdSWTzwJkddN1JJLP6pYQ5AgAYLE7/t1NZ7pFDOou98OSZIkKSYZ0khSLyllJMUMpY4dBAiSSUGvTd0pYShTuYz7+DbttEbag8TxSf6OMkaSSApf5A4e4Z/YymraaSWOBMZxLp/i7zuNwoG9a8M8zt2EIqNgwmxiBY9yO1fxz/Rn2GHVVsoIMslnJ5tooYEQHTRSQwlDqWAMTdQwkIlM5mIGM4kUMo7Vt0WSJEmKKYY0ktSL4oknh5JObU3Us4cqwoTJpqjHtpc+mU+RSQGv8hBbWEkOJZzOFYzhbJJIBWA0Z/It/ptNrKCBavIpp5QRpJPT6VytNDGfJz4U0PxVC40sYy79GEpg39SpQymggku5mT9wJ5W8RxP1tNFCFgWczRcpZSQ5FJNI8rH5RkiSJEkxypBGkqIkTJj1vMPL/C+b+QAIU8wgzuaLDGbSMR9lk0ASYzibYZxCE3UkkkLKR9bJCRCggPKPnYK1N1Zae9D+DbxHK82HtSBygADDOIXr+DlbWMketpFFIXmUUkhFJECSJEmSTnSGNJIUJZtZyaP8tNPORVWs5Q/cwd9w2xGt63IkEknu9qiUBBJJIoUmarvsTyWTuA+tM3M4CiijgLJu1SVJkiQdz9zdSZKiIESId3i+U0CzXwdtLORPtNMWhcoOTwZ5nMT5B+0/iRmRxX4lSZIkHR4/QUtSFDRTTyXLDtq/hZXUs5tmGqimijjiyKOUPPr3YpWHNoaz2cB7rGNJp/aJXNBjo4AkSZKkE5khjSRFQTyJB+yW1Lk/ibUsZg7/RRstAKSSxSe4llGcSVwM/PjOpohP8222soo1vE08CQxhMsUMdgcmSZIk6ShE/1O+JPVBiSQzkQvYzMou+4dxCnP5fSSgAWikhqf5ORnkkkQa7bSRTi45FPVW2QfIIJcMTmEYp0StBkmSJOlEYUgjSVEyiImM5iyW8Uqn9oGMB8I0sOeA9zRRw4s8QDttbGc9GeRxOpczhnMOOTJHkiRJUuwzpJGkKMkglxl8nXGcyyoWEqKDwUwmm0Ie4OYDjm+lmS2sJp4kBnISAHXs4lnuJUiQiVx4zGusZhvttJBGNqlkHvPzS5IkSforQxpJiqJUMhnMJAYzKdJWTzVpZB+w81MTdbTTQg4ltNDQqe91/sBgJpNFwRHXUMtOOmgngzzi922bXU0Vi3mWd3mRJuopoIzTuJwhTO729t2SJEmSuuYW3JIUY9LJYQqfPqC9mTqCxDGMKWxjfae+GrZ3OT3qUKpYy5/5Bf/GVdzNlfwfs1jLYurZw5/4OW/wR+qppoM2qljLY9zFcl7txp1JkiRJOhRH0khSDBrFGexiM2/zLCHaAUglm2l8ed/W3eFOx8eTSDyJh33+KtZxHzfyAQsibZtZwWJmcy0/YxPvd/GuMK/wfwxiIpnkHc1tSZIkSToEQxpJikFpZHMe1zCWaexmM3HEk0Qaz/KfVLPlgOOHcwq59D/s86/gjU4BzX672MRLPMAgJrCKhZ36ChlABWN4kftpopb+jGQoUyhh8JHfoCRJkqQDON1JkmJUAkn0ZxhjmcYozqSc0UziAgIf+dFdQDmncyXxH5O7hwmzmy3soJLlvELcQY5/lxfpx/BObXn0J5d+PMLtLOJZ1rCYV3iQ/+X7rOHt7t2oJEmSJMCRNJJ03EggiUlcRH+Gs453aKSWMkbSn+FkU3TI91ZTxVv8iXd5iUzyaKCGbIoJE6aDNtpooZk6QoQIEkfwI0HQQCYwm9+QSgY7WE+QIBnk004rs/kNX+SnZJDbk7cvSZIknfAMaSTpOJJAEmWMooxRh/2eevbwZ37Bet4FIIMcJnEhv+UvhOggTAfJZJBDMfVUM4EZZH0o9IkniTji2L5vseL9I3AaqCGNbGDvNClDGkmSJKl7DGkk6QS3jTWRgCZIPBWMYyXzGcJk1vI2WZQCYdpooZRRnMs1lDOav+E23uMl8ikjniQ+ybeop5qlvEw1VQA0sIdGaminLYp3KEmSJJ0YDGkk6QS3mQ8i/y5lOEuYzXJe5QvcziQu4k2epIk6BjOJcZxHHv1JIpXBTCKFTJ7nPpYwh0qWkkcpZ3AllSzjA+YD0EaLo2gkSZKkY8CFgyXpBJdEauTf6eSykfcZxiks5lke407SyaEfw1jHO/wv3+cZfkUTdexkE49yO2t4mxYaySCPXWziSf6NAYwjg3wATuVSciiJ1u1JkiRJJwxH0kjSCa6UkQSJJ0Q77bSRQjpDmcJj3EmIECuYR4AAAClkso7F7GQj29lAHbuIJwEIk04OiaRQw3be4A9M5VKSSGMQE0gkObo3KUmSJJ0AHEkjSSe4QgZyLlcTIMhWVjGe6XTQTgftJJISCWgAsiggQJAGaiLr2AQIkr1vUeEO2imgnDjiGcREqtlKKSOjdWuSJEnSCcWRNJJ0gksggUlcSDGDWM6rZJBHC40kk06QuMhxmRSQSiawd0en9A+tM5NCBv0YSjVbqWc3iaQSJMin+HuKGNDbtyRJkiSdkAxpJKkPSCCJAYxjAOMA2MFGxjOdSpYRIEgaWSSRRhzxpJJFDkWM4FQW8jQQBvZOhUoinXZaGMd5TOQiEkmK4l1JkiRJJxanO0lSH1RAGZ/j+wxgPAWUk0oWccSTRCqf5Fvk0Z8ShjKNLxP40K+KIEFKGcnZfMGARpIkSTrGAuFwOBztImJJbW0tWVlZ1NTUkJmZGe1yJKlH7aCSjbzPDjaQSwnljKGIgZH+NlrYyhrW8jZN1FHOaPozgmwKo1i1JEnSicW/Q7Wf050kqQ8roJwCyg/an0AS5YyinFG9WJUkSZLUNzndSZIkSZIkKQYY0kiSJEmSJMUAQxpJkiRJkqQYYEgjSZIkSZIUAwxpJEmSJEmSYoAhjSRJkiRJUgwwpJEkSZIkSYoBhjSSJEmSJEkxwJBGkiRJkiQpBhjSSJIkSZIkxQBDGkmSJEmSpBhgSCNJkiRJkhQDDGkkSZIkSZJigCGNJEmSJElSDDCkkSRJkiRJigGGNJIkSZIkSTHAkEaSJEmSJCkGGNJIkiRJkiTFAEMaSZIkSZKkGGBII0mSJEmSFAMMaSRJkiRJkmKAIY0kSZIkSVIMiI92AbEmHA4DUFtbG+VKJEmSJEl9wf6/P/f/Paq+y5DmI+rq6gAoKyuLciWSJEmSpL6krq6OrKysaJehKAqEjeo6CYVCbNmyhYyMDAKBQLTLOSHU1tZSVlbGxo0byczMjHY5Os74/Kg7fH7UHT4/6g6fH3WXz1DfEg6Hqauro1+/fgSDrkrSlzmS5iOCwSClpaXRLuOElJmZ6S8YHTWfH3WHz4+6w+dH3eHzo+7yGeo7HEEjcOFgSZIkSZKkmGBII0mSJEmSFAMMadTjkpKSuPXWW0lKSop2KToO+fyoO3x+1B0+P+oOnx91l8+Q1De5cLAkSZIkSVIMcCSNJEmSJElSDDCkkSRJkiRJigGGNJIkSZIkSTHAkEaSJEmSJCkGGNKox6xfv55rr72WgQMHkpKSwuDBg7n11ltpbW3tdNy7777LmWeeSXJyMmVlZdx1111Rqlix5vbbb+e0004jNTWV7OzsLo+prKzk4osvJjU1lcLCQr773e/S3t7eu4UqZv3yl79kwIABJCcnc8opp/Dmm29GuyTFoFdeeYVPfepT9OvXj0AgwBNPPNGpPxwOM2vWLEpKSkhJSWH69OmsWrUqOsUq5txxxx2cfPLJZGRkUFhYyCWXXMLKlSs7HdPc3MzMmTPJy8sjPT2dyy67jG3btkWpYsWSX//614wbN47MzEwyMzOZOnUqf/nLXyL9PjtS32NIox6zYsUKQqEQ//mf/8myZcv42c9+xr333sv3v//9yDG1tbWcf/75VFRUsGjRIu6++25uu+02fvOb30SxcsWK1tZWLr/8cm644YYu+zs6Orj44otpbW3ljTfe4IEHHuB3v/sds2bN6uVKFYsefvhhbrrpJm699Vbefvttxo8fz4wZM9i+fXu0S1OMaWhoYPz48fzyl7/ssv+uu+7i5z//Offeey8LFiwgLS2NGTNm0Nzc3MuVKhbNnTuXmTNnMn/+fObMmUNbWxvnn38+DQ0NkWO+/e1v8/TTT/Poo48yd+5ctmzZwqWXXhrFqhUrSktLufPOO1m0aBFvvfUW5557Lp/5zGdYtmwZ4LMj9UlhqRfddddd4YEDB0Ze/+pXvwrn5OSEW1paIm0333xzePjw4dEoTzHq/vvvD2dlZR3Q/swzz4SDwWC4qqoq0vbrX/86nJmZ2emZUt80ZcqU8MyZMyOvOzo6wv369QvfcccdUaxKsQ4IP/7445HXoVAoXFxcHL777rsjbXv27AknJSWF/+///i8KFSrWbd++PQyE586dGw6H9z4vCQkJ4UcffTRyzPvvvx8GwvPmzYtWmYphOTk54f/6r//y2ZH6KEfSqFfV1NSQm5sbeT1v3jzOOussEhMTI20zZsxg5cqVVFdXR6NEHUfmzZvH2LFjKSoqirTNmDGD2trayP+BUt/U2trKokWLmD59eqQtGAwyffp05s2bF8XKdLxZt24dVVVVnZ6lrKwsTjnlFJ8ldammpgYg8nln0aJFtLW1dXqGRowYQXl5uc+QOuno6OChhx6ioaGBqVOn+uxIfZQhjXrN6tWr+cUvfsHXv/71SFtVVVWnP7CByOuqqqperU/HH58fHczOnTvp6Ojo8vnw2dCR2P+8+CzpcIRCIW688UZOP/10xowZA+x9hhITEw9YW81nSPu99957pKenk5SUxPXXX8/jjz/OqFGjfHakPsqQRkfslltuIRAIHPJrxYoVnd6zefNmLrjgAi6//HKuu+66KFWuWHA0z48kSceDmTNnsnTpUh566KFol6LjyPDhw1myZAkLFizghhtu4Oqrr2b58uXRLktSlMRHuwAdf77zne9wzTXXHPKYQYMGRf69ZcsWpk2bxmmnnXbAgsDFxcUHrFC//3VxcfGxKVgx5Uifn0MpLi4+YLcenx8B5OfnExcX1+XPF58NHYn9z8u2bdsoKSmJtG/bto2TTjopSlUpFn3zm9/kT3/6E6+88gqlpaWR9uLiYlpbW9mzZ0+nERH+PNJ+iYmJDBkyBIBJkyaxcOFC7rnnHq688kqfHakPMqTRESsoKKCgoOCwjt28eTPTpk1j0qRJ3H///QSDnQdvTZ06lR/84Ae0tbWRkJAAwJw5cxg+fDg5OTnHvHZF35E8Px9n6tSp3H777Wzfvp3CwkJg7/OTmZnJqFGjjsk1dHxKTExk0qRJvPDCC1xyySXA3mkIL7zwAt/85jejW5yOKwMHDqS4uJgXXnghEsrU1tZG/o+3FA6H+da3vsXjjz/Oyy+/zMCBAzv1T5o0iYSEBF544QUuu+wyAFauXEllZSVTp06NRsmKcaFQiJaWFp8dqY8ypFGP2bx5M+eccw4VFRX867/+Kzt27Ij07U//r7rqKn784x9z7bXXcvPNN7N06VLuuecefvazn0WrbMWQyspKdu/eTWVlJR0dHSxZsgSAIUOGkJ6ezvnnn8+oUaP40pe+xF133UVVVRU//OEPmTlzJklJSdEtXlF30003cfXVVzN58mSmTJnCv//7v9PQ0MBXvvKVaJemGFNfX8/q1asjr9etW8eSJUvIzc2lvLycG2+8kZ/85CcMHTqUgQMH8qMf/Yh+/fpFAkD1bTNnzuTBBx/kySefJCMjI7JWSFZWFikpKWRlZXHttddy0003kZubS2ZmJt/61reYOnUqp556apSrV7R973vf48ILL6S8vJy6ujoefPBBXn75ZZ577jmfHamvivb2Ujpx3X///WGgy68Pe+edd8JnnHFGOCkpKdy/f//wnXfeGaWKFWuuvvrqLp+fl156KXLM+vXrwxdeeGE4JSUlnJ+fH/7Od74Tbmtri17Riim/+MUvwuXl5eHExMTwlClTwvPnz492SYpBL730Upc/a66++upwOLx3G+4f/ehH4aKionBSUlL4vPPOC69cuTK6RStmHOyzzv333x85pqmpKfyNb3wjnJOTE05NTQ1/9rOfDW/dujV6RStmfPWrXw1XVFSEExMTwwUFBeHzzjsvPHv27Ei/z47U9wTC4XC4N0MhSZIkSZIkHcjdnSRJkiRJkmKAIY0kSZIkSVIMMKSRJEmSJEmKAYY0kiRJkiRJMcCQRpIkSZIkKQYY0kiSJEmSJMUAQxpJkiRJkqQYYEgjSZIkSZIUAwxpJEmSJEmSYoAhjSRJfcQ555zDjTfeeFjH/va3v2X8+PGkp6eTnZ3NhAkTuOOOOyL9t912G4FAgOuvv77T+5YsWUIgEGD9+vUArF+/nkAg0OXX/PnzD3r922+/ndNOO43U1FSys7OP9FYlSZKOS4Y0kiSpk//+7//mxhtv5O/+7u9YsmQJr7/+Ov/4j/9IfX19p+OSk5O57777WLVq1cee8/nnn2fr1q2dviZNmnTQ41tbW7n88su54YYbun0/kiRJx4v4aBcgSZJ63jXXXMPcuXOZO3cu99xzDwDr1q1jwIABBxz71FNPccUVV3DttddG2kaPHn3AccOHD6ewsJAf/OAHPPLII4e8fl5eHsXFxYdd749//GMAfve73x32eyRJko53jqSRJKkPuOeee5g6dSrXXXddZCRLWVlZl8cWFxczf/58NmzY8LHnvfPOO/njH//IW2+9daxLliRJ6nMMaSRJ6gOysrJITEwkNTWV4uJiiouLiYuL6/LYW2+9lezsbAYMGMDw4cO55ppreOSRRwiFQgccO3HiRK644gpuvvnmQ17/tNNOIz09vdOXJEmSOjOkkSSpDxs9enQkNLnwwgsBKCkpYd68ebz33nv8/d//Pe3t7Vx99dVccMEFXQY1P/nJT3j11VeZPXv2Qa/z8MMPs2TJkk5fkiRJ6sw1aSRJ6sOeeeYZ2traAEhJSenUN2bMGMaMGcM3vvENrr/+es4880zmzp3LtGnTOh03ePBgrrvuOm655Rbuu+++Lq9TVlbGkCFDeuYmJEmSThCGNJIk9RGJiYl0dHR0aquoqDis944aNQqAhoaGLvtnzZrF4MGDeeihh7pXpCRJUh9mSCNJUh8xYMAAFixYwPr160lPTyc3N5dg8MCZzzfccAP9+vXj3HPPpbS0lK1bt/KTn/yEgoICpk6d2uW5i4qKuOmmm7j77ru77N+1axdVVVWd2rKzs0lOTu7y+MrKSnbv3k1lZSUdHR2R6VFDhgxxPRtJknTCck0aSZL6iH/4h38gLi6OUaNGUVBQQGVlZZfHTZ8+nfnz53P55ZczbNgwLrvsMpKTk3nhhRfIy8s75PkPFqBMnz6dkpKSTl9PPPHEQc81a9YsJkyYwK233kp9fT0TJkxgwoQJ7iIlSZJOaIFwOByOdhGSJEmSJEl9nSNpJEmSJEmSYoAhjSRJkiRJUgwwpJEkSZIkSYoBhjSSJEmSJEkxwJBGkiRJkiQpBhjSSJIkSZIkxQBDGkmSJEmSpBhgSCNJkiRJkhQDDGkkSZIkSZJigCGNJEmSJElSDDCkkSRJkiRJigH/P8a+QvisCvQEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "\nResumen de Clusters:\n3 80\n4 70\n1 62\n5 48\n10 45\n0 42\n6 38\n12 31\n7 28\n11 18\n9 16\n8 10\n2 1\nName: Cluster, dtype: int64\n" + ] + } + ], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.decomposition import PCA\n", + "from sklearn.cluster import KMeans\n", + "from sklearn.metrics import silhouette_score\n", + "from sklearn.manifold import TSNE\n", + "from sentence_transformers import SentenceTransformer\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# Suponemos que ya tienes df, df_reduced, numerical_cols, categorical_cols definidos\n", + "# y que df_reduced contiene las columnas requeridas.\n", + "\n", + "model = SentenceTransformer('all-MiniLM-L6-v2')\n", + "\n", + "# Preprocesar columnas numéricas\n", + "print(\"Preprocesando columnas numéricas...\")\n", + "scaler = StandardScaler()\n", + "numerical_scaled = scaler.fit_transform(df_reduced[numerical_cols].fillna(0))\n", + "\n", + "# Generar embeddings para columnas categóricas\n", + "print(\"Generando embeddings para columnas categóricas...\")\n", + "categorical_embeddings = []\n", + "for col in categorical_cols:\n", + " embeddings = model.encode(df_reduced[col].fillna('Unknown').astype(str).tolist())\n", + " categorical_embeddings.append(embeddings)\n", + "\n", + "# Asignar importancia a las columnas categóricas según el orden dado\n", + "# Asumiendo el orden de categorical_cols:\n", + "# ['Midsole_Material', 'Cushioning_System', 'Additional_Technologies', 'Outsole', ...]\n", + "Midsole_Material_embeddings = categorical_embeddings[0] * 5.0 # 1ra prioridad\n", + "Cushioning_System_embeddings = categorical_embeddings[1] * 5.0 # 1ra prioridad\n", + "Additional_Technologies_embeddings = categorical_embeddings[2] * 2.0 # info adicional\n", + "Outsole_embeddings = categorical_embeddings[3] * 3.0 # 3ra prioridad\n", + "\n", + "# Otras columnas categóricas (si las hay)\n", + "if len(categorical_embeddings) > 4:\n", + " other_cat_embeddings = np.hstack(categorical_embeddings[4:])\n", + "else:\n", + " other_cat_embeddings = np.empty((len(df_reduced), 0))\n", + "\n", + "# Ajustar importancia en las variables numéricas:\n", + "# numerical_cols = ['Drop__heel-to-toe_differential_','Weight','regularPrice','undiscounted_price','percentil_discounted']\n", + "drop_idx = numerical_cols.index('Drop__heel-to-toe_differential_')\n", + "weight_idx = numerical_cols.index('Weight')\n", + "regular_price_idx = numerical_cols.index('regularPrice')\n", + "\n", + "# Aplicar factores\n", + "numerical_scaled[:, drop_idx] *= 4.0 # 2da prioridad\n", + "numerical_scaled[:, weight_idx] *= 2.0 # 5ta prioridad\n", + "numerical_scaled[:, regular_price_idx] *= 1.5 # 6ta prioridad\n", + "\n", + "# Combinar embeddings categóricos con sus factores\n", + "combined_categorical_embeddings = np.hstack([\n", + " Midsole_Material_embeddings,\n", + " Cushioning_System_embeddings,\n", + " Additional_Technologies_embeddings,\n", + " Outsole_embeddings,\n", + " other_cat_embeddings\n", + "])\n", + "\n", + "# Combinar características numéricas y categóricas sin volver a escalar,\n", + "# para no perder la ponderación manual\n", + "print(\"Concatenando características numéricas y categóricas...\")\n", + "combined_features = np.hstack([numerical_scaled, combined_categorical_embeddings])\n", + "\n", + "# Ahora aplicamos PCA, k-means, etc., sobre combined_features\n", + "print(\"Aplicando PCA para reducir dimensiones...\")\n", + "pca = PCA(n_components=400, random_state=42) # Ajusta n_components según necesidad\n", + "reduced_features = pca.fit_transform(combined_features)\n", + "\n", + "print(\"Calculando el Método del Codo para determinar el número óptimo de clusters...\")\n", + "wcss = []\n", + "k_values = range(10, 21) # Rango de k para explorar\n", + "\n", + "for k in k_values:\n", + " kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)\n", + " kmeans.fit(reduced_features)\n", + " wcss.append(kmeans.inertia_)\n", + "\n", + "# Visualizar el Método del Codo\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, wcss, marker='o')\n", + "plt.title('Método del Codo para Determinar el Número Óptimo de Clusters')\n", + "plt.xlabel('Número de Clusters (k)')\n", + "plt.ylabel('WCSS (Inercia)')\n", + "plt.xticks(k_values)\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "print(\"Calculando el Silhouette Score para diferentes valores de k...\")\n", + "silhouette_scores = []\n", + "\n", + "for k in k_values:\n", + " kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)\n", + " clusters = kmeans.fit_predict(reduced_features)\n", + " score = silhouette_score(reduced_features, clusters)\n", + " silhouette_scores.append(score)\n", + "\n", + "# Visualizar el Silhouette Score\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, silhouette_scores, marker='o', color='orange')\n", + "plt.title('Silhouette Score para Diferentes Valores de k')\n", + "plt.xlabel('Número de Clusters (k)')\n", + "plt.ylabel('Silhouette Score')\n", + "plt.xticks(k_values)\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "best_k = k_values[np.argmax(silhouette_scores)]\n", + "print(f\"El número óptimo de clusters según el Silhouette Score es: {best_k}\")\n", + "\n", + "print(f\"Aplicando K-Means con k={best_k}...\")\n", + "kmeans_final = KMeans(n_clusters=best_k, random_state=42, n_init=10)\n", + "clusters_final = kmeans_final.fit_predict(reduced_features)\n", + "\n", + "# Añadir etiquetas de cluster al DataFrame original\n", + "df['Cluster'] = clusters_final\n", + "\n", + "n_clusters_final = len(set(clusters_final))\n", + "print(f'\\nNúmero de clusters encontrados: {n_clusters_final}')\n", + "\n", + "print(\"Reduciendo dimensiones para visualización con t-SNE...\")\n", + "tsne = TSNE(n_components=2, random_state=42, perplexity=30, n_iter=1000)\n", + "tsne_results = tsne.fit_transform(reduced_features)\n", + "\n", + "df['tsne-2d-one'] = tsne_results[:, 0]\n", + "df['tsne-2d-two'] = tsne_results[:, 1]\n", + "\n", + "plt.figure(figsize=(12, 8))\n", + "palette = sns.color_palette(\"hsv\", n_clusters_final)\n", + "sns.scatterplot(\n", + " x=\"tsne-2d-one\", y=\"tsne-2d-two\",\n", + " hue=\"Cluster\",\n", + " palette=palette,\n", + " data=df,\n", + " legend=\"full\",\n", + " alpha=0.7\n", + ")\n", + "plt.title('Visualización de Clusters con t-SNE')\n", + "plt.xlabel('t-SNE 1')\n", + "plt.ylabel('t-SNE 2')\n", + "plt.legend(title='Cluster', bbox_to_anchor=(1.05, 1), loc='upper left')\n", + "plt.show()\n", + "\n", + "print(\"\\nResumen de Clusters:\")\n", + "print(df['Cluster'].value_counts())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "daf2d204-2dbb-4bf2-b7b8-573e94ce663b", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "Aplicando PCA para reducir dimensiones...\nCalculando el Método del Codo para determinar el número óptimo de clusters...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAImCAYAAAAv2AnvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+PklEQVR4nOzdd1QU198G8Gd3KQtI7ygigg3BhhGxFwQsRI0ltlijxhJbool5jYr1p0ZjjWiiRmOJJWpsQbA3RMUOFlTERlGQokif9w/DxpXisgKz6PM5x5PszN2ZZ2eHZb/MnXslgiAIICIiIiIiIo0jFTsAERERERERFYwFGxERERERkYZiwUZERERERKShWLARERERERFpKBZsREREREREGooFGxERERERkYZiwUZERERERKShWLARERERERFpKBZsREREREREGooFGxEREdF7Gjx4MBo0aICMjAyxoxDRB0ZL7ABERERE5dmRI0ewY8cOhIWFQVdXV+w4RPSB4RU2Ig104sQJzJgxA8nJyWJHISJSS1paGmbOnInDhw+LHaXUPX78GH/99ReqVasmdhQi+gCxYCPSMNHR0ejSpQsMDQ1hbGxcJvs8duwYJBIJjh07Vqr7+f333yGRSHD//v1iP3f69OmQSCQlH+o93L9/HxKJBL///rvYUagMaeK5WBxVqlTBwIEDS30/I0aMwM6dO9GoUaNS35fYvvjiC7Rr167U9zNw4EBUqVKl1PfzvsT+GSmrc5yorLBgIyohecWIRCLBqVOn8q0XBAH29vaQSCTo1KlTgdvIysrC559/joEDB2L8+PH51v/yyy8sDlR07NgxfPbZZ7CxsYGOjg6srKzg5+eHnTt3ih3tg5BX5Of909XVhbW1NVq1aoU5c+bg6dOnam/7yZMnmD59Oi5fvlxyganY8t7bhQsX5luX93l34cKFAp+7Zs0aHD9+HAcOHIChoWFpRxXNvn374OvrC3Nzc8jlclSvXh3ffvstEhIS1N4mz//C3b17F8OHD0fVqlUhl8thZGSEpk2bYsmSJXj16lWZZEhLS8P06dNL/Q+cRG9iwUZUwuRyOTZv3pxv+fHjx/Ho0aMi728IDw9Hr169CvyCBLBgU9W0adPQunVrXL9+HcOHD0dAQAAmTpyIFy9eoFu3bgW+P6SeMWPG4I8//sDq1asxceJEmJmZYdq0aahVqxaOHDmi1jafPHkCf39/jf3COmXKlDL7cqgJFixYgLS0NJXb5+TkICEhAYGBgbC1tS3FZOL69ttv4efnh9jYWHz33XdYvnw5vLy8sHz5ctStWxe3bt1Sa7tFnf+//vqr2tst7/bv3w83Nzds27YNfn5+WLZsGebOnYvKlStj4sSJGDt2bJnkSEtLg7+/Pws2KlMcdISohHXo0AHbt2/H0qVLoaX134/Y5s2b4e7ujmfPnhX63Hr16qFevXplkPLDtWPHDsyYMQPdu3fH5s2boa2trVg3ceJEHDx4EFlZWSImFN/Lly9hYGBQIttq3rw5unfvrrTsypUr8Pb2Rrdu3RAREaExX9pL6nVraWkp/WyXlZJ831RVr149XL58GQEBAZgwYYJKz5HJZJg0aVIpJ1NfSRzHLVu2YOHChfj888+xadMmyGQyxbqBAweidevW6NGjBy5evFii58qbn2cfk6ioKPTq1QsODg44cuSI0mfKqFGjcOfOHezfv1/EhO9PjJ9vKj94hY2ohPXu3RsJCQkIDg5WLMvMzMSOHTvQp0+fAp+Tm5uLxYsXo3bt2pDL5bC2tsbw4cPx/PlzRZsqVaogPDwcx48fV3RVatWqlWL9vXv30KNHD5iZmUFfXx+NGzcu8BfYo0eP0KVLFxgYGMDKygrjx48vdBjq7du3w93dHXp6erCwsEC/fv3w+PFjlY5DeHg42rRpAz09PVSqVAmzZs1Cbm5ugW3/+ecfNG/eHAYGBjA0NETHjh0RHh6u0n7e9uOPP8LMzAxr164t8MuNj4+PUpfU+Ph4DBkyBNbW1pDL5ahbty7Wr1+f73lJSUkYOHAgjI2NYWJiggEDBiApKanADEeOHFG8HhMTE3Tu3Bk3btx4Z/a8boZbt27FDz/8ABsbGxgYGODTTz/Fw4cPldqePHkSPXr0QOXKlaGrqwt7e3uMHz8+35WfgQMHokKFCrh79y46dOgAQ0ND9O3bt1jbKK66deti8eLFSEpKwvLly5XWPX78GIMHD4a1tTV0dXVRu3ZtrF27VukYfPLJJwCAQYMGKc71N68sh4aGwtfXF8bGxtDX10fLli1x+vRppf3k3UMTERGBPn36wNTUFM2aNQPw+mepU6dOOHbsGBo2bAg9PT24ubkp/mK+c+dOuLm5QS6Xw93dHZcuXSpw22+SSCQYPXo0du/eDVdXV8VrCwwMVGoXHR2NkSNHokaNGtDT04O5uTl69OiR777OvC6Hx48fx8iRI2FlZYVKlSoVedwzMjIwbdo0ODs7K97PSZMmvdcw802bNkWbNm0wf/78d54XrVq1UvpMyvP2fVd5937+9NNPWLFiBapWrQp9fX14e3vj4cOHEAQBM2fORKVKlaCnp4fOnTsjMTEx33ZV+dwo6vx/+fIlvvnmG9jb20NXVxc1atTATz/9BEEQ3nlc/P39YWpqitWrVysVawDQqFEjfPfdd7h27Rp27NihdHxcXV0RFhaGJk2aQE9PD46OjggICFC0edf5X1rH8pdffkHt2rWhq6sLOzs7jBo1qtDPt7edOnUKn3zyCeRyOZycnLBq1apC227cuFHxO8XMzAy9evXK99lWkPnz5+PFixdYs2ZNgX8AcnZ2LvIKW2H31BV0X/WFCxfg4+MDCwsLxXs0ePBgAK+Pt6WlJYDX50De+zN9+nTF82/evInu3bvDzMwMcrkcDRs2xJ49ewrcb0E/36mpqRg3bhyqVKkCXV1dWFlZoV27drh48eI7jxN9uHiFjaiEValSBZ6entiyZQvat28P4PUXi+TkZPTq1QtLly7N95zhw4fj999/x6BBgzBmzBhERUVh+fLluHTpEk6fPg1tbW0sXrwYX3/9NSpUqID/+7//AwBYW1sDAOLi4tCkSROkpaVhzJgxMDc3x/r16/Hpp59ix44d6Nq1KwDg1atXaNu2LR48eIAxY8bAzs4Of/zxR4Fd1/LyfPLJJ5g7dy7i4uKwZMkSnD59GpcuXYKJiUmhxyA2NhatW7dGdnY2vv/+exgYGGD16tXQ09PL1/aPP/7AgAED4OPjg3nz5iEtLQ0rV65Es2bNcOnSpWLdYB8ZGYmbN29i8ODBKt038+rVK7Rq1Qp37tzB6NGj4ejoiO3bt2PgwIFISkpSfAEQBAGdO3fGqVOn8NVXX6FWrVrYtWsXBgwYkG+bhw4dQvv27VG1alVMnz4dr169wrJly9C0aVNcvHhRpdcze/ZsSCQSfPfdd4iPj8fixYvh5eWFy5cvK47h9u3bkZaWhhEjRsDc3Bznzp3DsmXL8OjRI2zfvl1pe9nZ2fDx8UGzZs3w008/QV9fv9jbKK7u3btjyJAhCAoKwuzZswG8Pk8bN26sKG4sLS3xzz//YMiQIUhJScG4ceNQq1YtzJgxA1OnTsWwYcPQvHlzAECTJk0AvC6G27dvD3d3d0ybNg1SqRTr1q1DmzZtcPLkyXwDXPTo0QPVqlXDnDlzlL6I37lzB3369MHw4cPRr18//PTTT/Dz80NAQAB++OEHjBw5EgAwd+5c9OzZE7du3YJUWvTfOE+dOoWdO3di5MiRMDQ0xNKlS9GtWzc8ePAA5ubmAIDz58/jzJkz6NWrFypVqoT79+9j5cqVaNWqFSIiIhTvTZ6RI0fC0tISU6dOxcuXLwvdd25uLj799FOcOnUKw4YNQ61atXDt2jX8/PPPuH37Nnbv3q3Cu1aw6dOno0WLFli5cqXKV9lUsWnTJmRmZuLrr79GYmIi5s+fj549e6JNmzY4duwYvvvuO9y5cwfLli3Dt99+q1TYF+dzo6DzXxAEfPrppzh69CiGDBmCevXq4eDBg5g4cSIeP36Mn3/+udDckZGRuHXrFgYOHAgjI6MC2/Tv3x/Tpk3Dvn370KtXL8Xy58+fo0OHDujZsyd69+6Nbdu2YcSIEdDR0cHgwYPfef6XxrGcPn06/P394eXlhREjRuDWrVtYuXIlzp8/r/j9U5hr167B29sblpaWmD59OrKzszFt2jTF76Y3zZ49Gz/++CN69uyJL7/8Ek+fPsWyZcvQokWLd/5O2bt3L6pWrfrO4/C+4uPjFa/n+++/h4mJCe7fv6+499nS0hIrV67EiBEj0LVrV3z22WcAgDp16gB4/YfKpk2bomLFiorffdu2bUOXLl3w119/KX4X5yno5/urr77Cjh07MHr0aLi4uCAhIQGnTp3CjRs30KBBg1J9/aTBBCIqEevWrRMACOfPnxeWL18uGBoaCmlpaYIgCEKPHj2E1q1bC4IgCA4ODkLHjh0Vzzt58qQAQNi0aZPS9gIDA/Mtr127ttCyZct8+x43bpwAQDh58qRiWWpqquDo6ChUqVJFyMnJEQRBEBYvXiwAELZt26Zo9/LlS8HZ2VkAIBw9elQQBEHIzMwUrKysBFdXV+HVq1eKtvv27RMACFOnTi3yWOTlCQ0NVSyLj48XjI2NBQBCVFSUIqOJiYkwdOhQpefHxsYKxsbGSsunTZsmvOsj6++//xYACD///HOR7fLkHY+NGzcqlmVmZgqenp5ChQoVhJSUFEEQBGH37t0CAGH+/PmKdtnZ2ULz5s0FAMK6desUy+vVqydYWVkJCQkJimVXrlwRpFKp0L9//yLzHD16VAAgVKxYUbFvQRCEbdu2CQCEJUuWKJblnVtvmjt3riCRSITo6GjFsgEDBggAhO+//z5fe1W3UVTW7du3F9qmbt26gqmpqeLxkCFDBFtbW+HZs2dK7Xr16iUYGxsr8pw/fz7fcRUEQcjNzRWqVasm+Pj4CLm5uUqvw9HRUWjXrp1iWd750rt373y5HBwcBADCmTNnFMsOHjwoABD09PSUXvuqVauUfjbe3PabAAg6OjrCnTt3FMuuXLkiABCWLVumlPVtISEhAgBhw4YNimV5nyfNmjUTsrOz8z3nbX/88YcglUqVPgMEQRACAgIEAMLp06eVXv+AAQPeuU0AwqhRowRBEITWrVsLNjY2ivxvft7ladmyZYGfTwMGDBAcHBwUj6OiogQAgqWlpZCUlKRYPnnyZAGAULduXSErK0uxvHfv3oKOjo6Qnp4uCELxPjcKO//zfqZnzZqltLx79+6CRCJReh/flvfcd33OGBkZCQ0aNFA8btmypQBAWLhwoWJZRkaG4jMjMzNTEITCz/+811OSxzI+Pl7Q0dERvL29Fb8nBEEQli9fLgAQ1q5dW+Rr7NKliyCXy5V+ZiIiIgSZTKb0M3L//n1BJpMJs2fPVnr+tWvXBC0trXzL35ScnCwAEDp37lxklje9fY4X9vsj7zzO+520a9eufOf1254+fSoAEKZNm5ZvXdu2bQU3NzfF8RWE159bTZo0EapVq5ZvvwX9fBsbGyt+7ojysEskUSno2bMnXr16hX379iE1NRX79u0rtDvk9u3bYWxsjHbt2uHZs2eKf+7u7qhQoQKOHj36zv0dOHAAjRo1UnT5AoAKFSpg2LBhuH//PiIiIhTtbG1tle450tfXx7Bhw5S2d+HCBcTHx2PkyJGQy+WK5R07dkTNmjXfea/AgQMH0LhxY6WrHZaWloquSHmCg4ORlJSE3r17K712mUwGDw8PlV77m1JSUgBA5VHpDhw4ABsbG/Tu3VuxTFtbG2PGjMGLFy9w/PhxRTstLS2MGDFC0U4mk+Hrr79W2l5MTAwuX76MgQMHwszMTLG8Tp06aNeuHQ4cOKBSrv79+yu9hu7du8PW1lbp+W9erXz58iWePXuGJk2aQBCEfF34AChlV3cbxVWhQgWkpqYCeH2V8q+//oKfnx8EQVB6v318fJCcnPzOLj+XL19GZGQk+vTpg4SEBMXzX758ibZt2+LEiRP5ut1+9dVXBW7LxcUFnp6eisceHh4AgDZt2qBy5cr5lt+7d++dr9fLywtOTk6Kx3Xq1IGRkZHSc9885llZWUhISICzszNMTEwKfP1Dhw7N1+WuINu3b0etWrVQs2ZNpWPbpk0bACj2z9Lbpk+fjtjYWKXue++rR48eSlOX5B3rfv36Kd335eHhgczMTEV3bHU+N94+/w8cOACZTIYxY8YoLf/mm28gCAL++eefQnPnndPv+pwxNDRUfCbl0dLSwvDhwxWPdXR0MHz4cMTHxyMsLKzI7RVF3WN56NAhZGZmYty4cUpXkIcOHQojI6MiP+tzcnJw8OBBdOnSRelnplatWvDx8VFqu3PnTuTm5qJnz55K75mNjQ2qVatW5PlZ3M/195F3lW/fvn3Fvtc5MTERR44cQc+ePZGamqp4jQkJCfDx8UFkZGS+WwoK+vk2MTFBaGgonjx58l6vhT4s7BJJVAosLS3h5eWFzZs3Iy0tDTk5OfkGZsgTGRmJ5ORkWFlZFbg+Pj7+nfuLjo5W/IJ+U61atRTrXV1dER0dDWdn53x9+WvUqJFvewUtB4CaNWsWOG2BKnne3l5kZCQAKL5Uvq2w7kaFyWuf94XqXaKjo1GtWrV8Xd3ePG55/7W1tUWFChWU2hXnuNWqVQsHDx5U6cbytyfflUgkcHZ2VrrP4sGDB5g6dSr27NmjdK8jgHwTrmtpaRV4/1NxtqGOFy9eKL5kPX36FElJSVi9ejVWr15dYPt3net550tBXVHzJCcnw9TUVPHY0dGxwHZvfsEEoPiya29vX+Dyt4+PKtsEAFNTU6Xnvnr1CnPnzsW6devw+PFjpW6aBR3zwvK/LTIyEjdu3FDcX/M2VT5HitKiRQu0bt0a8+fPL7QILi5134Pifm4UdP5HR0fDzs4uXxHw9s9+QfKe867PmdTU1Hyf63Z2dvl+/qtXrw7g9f1RjRs3LnKbhVH3WBb2maWjo4OqVasWeRyePn2KV69eFThZeI0aNZT+wBQZGQlBEAqdWLyobpfF/Vx/Hy1btkS3bt3g7++Pn3/+Ga1atUKXLl3Qp0+fIkd4Bl53sxYEAT/++CN+/PHHAtvEx8ejYsWKiscF/XzPnz8fAwYMgL29Pdzd3dGhQwf0798fVatWfb8XR+UaCzaiUtKnTx8MHToUsbGxaN++faH983Nzc2FlZYVNmzYVuL6wL2AfgryrIX/88QdsbGzyrS/u6Go1a9YE8Pq+ig9ZTk4O2rVrh8TERHz33XeoWbMmDAwM8PjxYwwcODDfVSZdXd18RWlxt1FcWVlZuH37NlxdXQH8917369ev0IIr7z6QwuRtY8GCBYWOpvp2UV3QfZMACr1qVdjyNwurwqjy3K+//hrr1q3DuHHj4OnpCWNjY0gkEvTq1avAY15Y/rfl5ubCzc0NixYtKnD921/c1TFt2jS0atUKq1atKvDzTCKRFHiccnJyCtyeuu9BcT83Cjr/30deUXf16tVC20RHRyMlJQUuLi4ltt+ilMb5XJJyc3MhkUjwzz//FJjp7Z/bNxkZGcHOzg7Xr19Xe/+FTeL99rkpkUiwY8cOnD17Fnv37sXBgwcxePBgLFy4EGfPni0yZ955+e233+a7wpjH2dlZ6XFBP989e/ZE8+bNsWvXLgQFBWHBggWYN28edu7cqbgvnj4+LNiISknXrl0xfPhwnD17Flu3bi20nZOTEw4dOoSmTZu+88tZYb90HBwcCpyb5+bNm4r1ef+9fv06BEFQ2tbbz81rf+vWrXx/xb5165ZifWEcHBwUfwV/+7lvyus+ZmVlBS8vryK3qYrq1aujRo0a+Pvvv7FkyZIif7nm5bx69Spyc3OVvtAVdNwOHz6MFy9eKG2zqOP2tps3b8LCwkKlYZvfPnaCIODOnTuKgubatWu4ffs21q9fj/79+yvavTky6buUxDaKsmPHDrx69UrxxcXS0hKGhobIycl553td2Hmed74YGRmVyPkihh07dmDAgAFKcy2mp6erPCJfYZycnHDlyhW0bdu20OP3vlq2bIlWrVph3rx5mDp1ar71pqamBXYdLeoqjTpK4nPDwcEBhw4dQmpqqtJVtrd/9gtSvXp1VK9eHbt378aSJUsK7Kq3YcMGAFAakRZ4Pcfa21fZb9++DQCKgVJK6/0ryJufWW9ewcnMzERUVFSRx9fS0hJ6enoqf9YLggBHR0fFFcXi6NSpE1avXo2QkBClrsyqyrvqnpSUpPTHhsLOzcaNG6Nx48aYPXs2Nm/ejL59++LPP//El19+Wej7k3f8tLW13/vzydbWFiNHjsTIkSMRHx+PBg0aYPbs2SzYPmK8h42olFSoUAErV67E9OnT4efnV2i7nj17IicnBzNnzsy3Ljs7W+mLnIGBQYFf7Dp06IBz584hJCREsezly5dYvXo1qlSpovgrb4cOHfDkyROloabT0tLydVFr2LAhrKysEBAQoDQk+D///IMbN26gY8eORb72Dh064OzZszh37pxi2dOnT/NdRfTx8YGRkRHmzJlT4P0CT58+LXI/BfH390dCQgK+/PJLZGdn51sfFBSEffv2KXLGxsYqFdTZ2dlYtmwZKlSogJYtWyraZWdnY+XKlYp2OTk5WLZsmdK2bW1tUa9ePaxfv17pfbp+/TqCgoLQoUMHlV7Dhg0blLr/7NixAzExMYpf1nl/oX7zr+SCIGDJkiUqbb+ktlGYK1euYNy4cTA1NcWoUaMU++vWrRv++uuvAv9S/uZ7nfdl9u1z3d3dHU5OTvjpp5/w4sWLIrehqWQyWb6rG8uWLSv0KpSqevbsicePH+PXX3/Nt+7Vq1dFjjBZHHn3shXUrdXJyQk3b95Ueh+uXLmSb8qF91USnxsdOnRATk5Ovmknfv75Z0gkknd+MZ46dSqeP3+Or776Kt97FxYWhnnz5sHV1RXdunVTWpedna007H1mZiZWrVoFS0tLuLu7Ayj8/C8NXl5e0NHRwdKlS5XOyzVr1iA5ObnIz3qZTAYfHx/s3r0bDx48UCy/ceMGDh48qNT2s88+g0wmg7+/f77zXxAEJCQkFJlz0qRJMDAwwJdffom4uLh86+/evVvkZ1dekX/ixAnFspcvX+abwuX58+f58uVdzc/7XZg3kuvb74+VlZXiCnRMTEy+DKqclzk5Ofm6RltZWcHOzu69pueg8o9X2IhKUVH32uRp2bIlhg8fjrlz5+Ly5cvw9vaGtrY2IiMjsX37dixZskRx/5u7uztWrlyJWbNmwdnZGVZWVmjTpg2+//57xTQCY8aMgZmZGdavX4+oqCj89ddfiqtHQ4cOxfLly9G/f3+EhYXB1tYWf/zxR76hxLW1tTFv3jwMGjQILVu2RO/evRXD+lepUgXjx48v8jVNmjQJf/zxB3x9fTF27FjFsP55V7TyGBkZYeXKlfjiiy/QoEED9OrVC5aWlnjw4AH279+Ppk2b5vtC9S6ff/45rl27htmzZ+PSpUvo3bs3HBwckJCQgMDAQBw+fBibN28GAAwbNgyrVq3CwIEDERYWhipVqmDHjh04ffo0Fi9erPjLuZ+fH5o2bYrvv/8e9+/fh4uLC3bu3FngPUcLFixA+/bt4enpiSFDhiiG9Tc2Nlaaq6coZmZmaNasGQYNGoS4uDgsXrwYzs7OGDp0KIDXXT+dnJzw7bff4vHjxzAyMsJff/2l0n1WeUpiG8DrudzS09ORk5ODhIQEnD59Gnv27IGxsTF27dql1GXtf//7H44ePQoPDw8MHToULi4uSExMxMWLF3Ho0CHF/FBOTk4wMTFBQEAADA0NYWBgAA8PDzg6OuK3335D+/btUbt2bQwaNAgVK1bE48ePcfToURgZGWHv3r3Fyl/WOnXqhD/++APGxsZwcXFBSEgIDh06pBj2X11ffPEFtm3bhq+++gpHjx5F06ZNkZOTg5s3b2Lbtm04ePAgGjZs+N75W7ZsiZYtWyoG5HnT4MGDsWjRIvj4+GDIkCGIj49HQEAAateunW/wjfdREp8bfn5+aN26Nf7v//4P9+/fR926dREUFIS///4b48aNUxo8piB9+/bF+fPnsWTJEkRERKBv374wNTXFxYsXsXbtWpibm2PHjh357s2ys7PDvHnzcP/+fVSvXh1bt27F5cuXsXr1akXbos7/kmZpaYnJkyfD398fvr6++PTTT3Hr1i388ssv+OSTT9CvX78in+/v74/AwEA0b94cI0eOVPzBq3bt2kqf9U5OTpg1axYmT56M+/fvo0uXLjA0NERUVBR27dqFYcOG4dtvvy10P05OTti8eTM+//xz1KpVC/3794erqysyMzNx5swZxXQshfH29kblypUxZMgQTJw4ETKZDGvXrlWcN3nWr1+PX375BV27doWTkxNSU1Px66+/wsjISPEHNz09Pbi4uGDr1q2oXr06zMzM4OrqCldXV6xYsQLNmjWDm5sbhg4diqpVqyIuLg4hISF49OgRrly5UuTxTE1NRaVKldC9e3fUrVsXFSpUwKFDh3D+/Hmlq/L0ESqz8SiJPnAFDXNdkLeH9c+zevVqwd3dXdDT0xMMDQ0FNzc3YdKkScKTJ08UbWJjY4WOHTsKhoaGAgClIbTv3r0rdO/eXTAxMRHkcrnQqFEjYd++ffn2Ex0dLXz66aeCvr6+YGFhIYwdO1YxhcCbQ5cLgiBs3bpVqF+/vqCrqyuYmZkJffv2FR49eqTS8bh69arQsmVLQS6XCxUrVhRmzpwprFmzRmkI5TxHjx4VfHx8BGNjY0EulwtOTk7CwIEDhQsXLijaqDKs/5sOHz4sdO7cWbCyshK0tLQES0tLwc/PT/j777+V2sXFxQmDBg0SLCwsBB0dHcHNza3A4bQTEhKEL774QjAyMhKMjY2FL774Qrh06VKBw28fOnRIaNq0qaCnpycYGRkJfn5+QkRExDsz5w2Vv2XLFmHy5MmClZWVoKenJ3Ts2DHfMPsRERGCl5eXUKFCBcHCwkIYOnSoYhj5N/MMGDBAMDAwKHB/qm6jqKx5/7S1tQVLS0uhRYsWwuzZs4X4+PgCnxcXFyeMGjVKsLe3F7S1tQUbGxuhbdu2wurVq5Xa/f3334KLi4ugpaWVL8+lS5eEzz77TDA3Nxd0dXUFBwcHoWfPnsLhw4cVbfLOl6dPn+bLUNjPIN4Yxj5P3rDpCxYsyLftdz03b19vDi/+/PlzxflWoUIFwcfHR7h582a+dqp+nrwpMzNTmDdvnlC7dm1BV1dXMDU1Fdzd3QV/f38hOTm50EyFKew1vfnev51v48aNQtWqVQUdHR2hXr16wsGDBwsdiv7NY/rmdt+eKqKwY6HK50ZR539qaqowfvx4wc7OTtDW1haqVasmLFiwQGnKiHfZvXu30K5dO8HU1FTQ1dUVnJ2dhW+++abA865ly5ZC7dq1hQsXLgienp6CXC4XHBwchOXLl+drW9j5X1rHcvny5ULNmjUFbW1twdraWhgxYoTw/PlzlY7B8ePHBXd3d0FHR0eoWrWqEBAQUOjn9V9//SU0a9ZMMDAwEAwMDISaNWsKo0aNEm7duqXSvm7fvi0MHTpUqFKliqCjoyMYGhoKTZs2FZYtW6Y0lH5B53hYWJjg4eEh6OjoCJUrVxYWLVqUb1j/ixcvCr179xYqV64s6OrqClZWVkKnTp2UzilBEIQzZ84oXjPeGuL/7t27Qv/+/QUbGxtBW1tbqFixotCpUydhx44dijaFvQ8ZGRnCxIkThbp16wqGhoaCgYGBULduXeGXX35R6fjQh0siCGV85ykRERXo2LFjaN26NbZv317oqKJEVD61atUKz549e6/BM4jo48R72IiIiIiIiDQUCzYiIiIiIiINxYKNiIiIiIhIQ/EeNiIiIiIiIg3FK2xEREREREQaigUbERERERGRhuLE2WUoNzcXT548gaGhISQSidhxiIiIiIhIJIIgIDU1FXZ2dpBKC7+OxoKtDD158gT29vZixyAiIiIiIg3x8OFDVKpUqdD1LNjKkKGhIYDXb4qRkZGoWbKyshAUFARvb29oa2uLmuVtzKY+Tc7HbOphNvUwm/o0OR+zqYfZ1MNs6tPkfJqULSUlBfb29ooaoTAs2MpQXjdIIyMjjSjY9PX1YWRkJPrJ+jZmU58m52M29TCbephNfZqcj9nUw2zqYTb1aXI+Tcz2rlulOOgIERERERGRhmLBRkREREREpKFYsBEREREREWkoFmxEREREREQaStSCLScnBz/++CMcHR2hp6cHJycnzJw5E4IgKNoMHDgQEolE6Z+vr6/SdhITE9G3b18YGRnBxMQEQ4YMwYsXL5TaXL16Fc2bN4dcLoe9vT3mz5+fL8/27dtRs2ZNyOVyuLm54cCBA0rrBUHA1KlTYWtrCz09PXh5eSEyMrIEjwgREREREdF/RC3Y5s2bh5UrV2L58uW4ceMG5s2bh/nz52PZsmVK7Xx9fRETE6P4t2XLFqX1ffv2RXh4OIKDg7Fv3z6cOHECw4YNU6xPSUmBt7c3HBwcEBYWhgULFmD69OlYvXq1os2ZM2fQu3dvDBkyBJcuXUKXLl3QpUsXXL9+XdFm/vz5WLp0KQICAhAaGgoDAwP4+PggPT29lI4QERERERF9zEQd1v/MmTPo3LkzOnbsCACoUqUKtmzZgnPnzim109XVhY2NTYHbuHHjBgIDA3H+/Hk0bNgQALBs2TJ06NABP/30E+zs7LBp0yZkZmZi7dq10NHRQe3atXH58mUsWrRIUdgtWbIEvr6+mDhxIgBg5syZCA4OxvLlyxEQEABBELB48WJMmTIFnTt3BgBs2LAB1tbW2L17N3r16lUqx4iIiIiIiD5eohZsTZo0werVq3H79m1Ur14dV65cwalTp7Bo0SKldseOHYOVlRVMTU3Rpk0bzJo1C+bm5gCAkJAQmJiYKIo1APDy8oJUKkVoaCi6du2KkJAQtGjRAjo6Ooo2Pj4+mDdvHp4/fw5TU1OEhIRgwoQJSvv18fHB7t27AQBRUVGIjY2Fl5eXYr2xsTE8PDwQEhJSYMGWkZGBjIwMxeOUlBQAr+d/yMrKUvOolYy8/YudoyDMpj5Nzsds6mE29TCb+jQ5H7Oph9nUw2zq0+R8mpRN1QyiFmzff/89UlJSULNmTchkMuTk5GD27Nno27evoo2vry8+++wzODo64u7du/jhhx/Qvn17hISEQCaTITY2FlZWVkrb1dLSgpmZGWJjYwEAsbGxcHR0VGpjbW2tWGdqaorY2FjFsjfbvLmNN59XUJu3zZ07F/7+/vmWBwUFQV9f/53HpywEBweLHaFQzKY+Tc7HbOphNvUwm/o0OR+zqYfZ1MNs6tPkfJqQLS0tTaV2ohZs27Ztw6ZNm7B582ZFN8Vx48bBzs4OAwYMAAClK1dubm6oU6cOnJyccOzYMbRt21as6CqZPHmy0lW7lJQU2Nvbw9vbG0ZGRiIme13RBwcHo127dhozy3seZlOfJudjNvUwm3qYTX2anI/Z1MNs6mE29WlyPk3Kltf77l1ELdgmTpyI77//XlGUubm5ITo6GnPnzlUUbG+rWrUqLCwscOfOHbRt2xY2NjaIj49XapOdnY3ExETFfW82NjaIi4tTapP3+F1t3lyft8zW1lapTb169QrMqqurC11d3XzLtbW1RT9B8mhSlrcxm/o0OR+zqYfZ1MNs6tPkfMymHmZTD7OpT5PzaUI2Vfcv6iiRaWlpkEqVI8hkMuTm5hb6nEePHiEhIUFRNHl6eiIpKQlhYWGKNkeOHEFubi48PDwUbU6cOKHUTzQ4OBg1atSAqampos3hw4eV9hUcHAxPT08AgKOjI2xsbJTapKSkIDQ0VNGGiIiIiIioJIlasPn5+WH27NnYv38/7t+/j127dmHRokXo2rUrAODFixeYOHEizp49i/v37+Pw4cPo3LkznJ2d4ePjAwCoVasWfH19MXToUJw7dw6nT5/G6NGj0atXL9jZ2QEA+vTpAx0dHQwZMgTh4eHYunUrlixZotRdcezYsQgMDMTChQtx8+ZNTJ8+HRcuXMDo0aMBABKJBOPGjcOsWbOwZ88eXLt2Df3794ednR26dOlStgeOiIiIiIg+CqJ2iVy2bBl+/PFHjBw5EvHx8bCzs8Pw4cMxdepUAK+vtl29ehXr169HUlIS7Ozs4O3tjZkzZyp1Ndy0aRNGjx6Ntm3bQiqVolu3bli6dKlivbGxMYKCgjBq1Ci4u7vDwsICU6dOVZqrrUmTJti8eTOmTJmCH374AdWqVcPu3bvh6uqqaDNp0iS8fPkSw4YNQ1JSEpo1a4bAwEDI5fIyOFolJydXQGhUIsKeSWAelQhPZyvIpBKxYxERERER0VtELdgMDQ2xePFiLF68uMD1enp6OHjw4Du3Y2Zmhs2bNxfZpk6dOjh58mSRbXr06IEePXoUul4ikWDGjBmYMWPGOzNpqsDrMfDfG4GY5HQAMmyIvABbYzmm+bnA19X2nc8nIiIiIqKyI2qXSCpbgddjMGLjxX+Ltf/EJqdjxMaLCLweI1IyIiIiIiIqCAu2j0ROrgD/vREQCliXt8x/bwRycgtqQUREREREYmDB9pE4F5WY78ramwQAMcnpOBeVWHahiIiIiIioSCzYPhLxqYUXa+q0IyIiIiKi0seC7SNhZajaSJaqtiMiIiIiotLHgu0j0cjRDLbGchQ2eL8EgK2xHI0czcoyFhERERERFYEF20dCJpVgmp8LABRatE3zc+F8bEREREREGoQF20fE19UWK/s1gI1x/m6PvRvZcx42IiIiIiINI+rE2VT2fF1t0c7FBiF34hF0MhS5ZlWwMfQhzt5LRG6uACmvsBERERERaQxeYfsIyaQSeDiawd1CwDftqsFQroV7z17i6K14saMREREREdEbWLB95CroaqFPo8oAgN9ORomchoiIiIiI3sSCjTCgSRVoSSUIuZeA64+TxY5DRERERET/YsFGsDPRQ8c6rwccWXOKV9mIiIiIiDQFCzYCAAxp5ggA2HvlCWKT00VOQ0REREREAAs2+ledSiZo5GiG7FwBv5+5L3YcIiIiIiICCzZ6w9DmVQEAm0Oj8TIjW+Q0RERERETEgo0U2ta0QhVzfaSkZ2NH2COx4xARERERffRYsJGCVCpR3Mu25lQUcnIFkRMREREREX3cWLCRkm7ulWCir40HiWkIjogTOw4RERER0UeNBRsp0dfRQl+P1xNprzl1T+Q0REREREQfNxZslE9/zyrQlklw/v5zXH6YJHYcIiIiIqKPFgs2ysfaSI5P61YEAPx2klfZiIiIiIjEwoKNCpQ3+Mg/12Px6HmayGmIiIiIiD5OLNioQC52RmjmbIGcXAG/n74vdhwiIiIioo8SCzYq1JDmr6+y/Xn+IVLTs0ROQ0RERET08WHBRoVqWc0SzlYV8CIjG1vPPxQ7DhERERHRR4cFGxVKKpXgy3/vZVt3+j6yc3JFTkRERERE9HFhwUZF6lK/IswNdPA46RUCw2PFjkNERERE9FFhwUZFkmvL0K+xAwDg15NREARB5ERERERERB8PFmz0Tl94OkBHS4orD5MQFv1c7DhERERERB8NFmz0ThYVdPFZ/byJtKNETkNERERE9PFgwUYqyZtI+2BELKITXoqchoiIiIjo48CCjVRSzdoQrWpYQhBejxhJRERERESljwUbqezLZlUBANsuPERyGifSJiIiIiIqbSzYSGVNnc1R08YQaZk52HzugdhxiIiIiIg+eCzYSGUSiQRfNn99le33M1HIzOZE2kREREREpYkFGxWLX11bWBrqIi4lAweuxYgdh4iIiIjog8aCjYpFV0uGAZ55E2nf40TaRERERESliAUbFVtfDwfItaUIf5KCs/cSxY5DRERERPTBYsFGxWZqoIPu7pUAAL+dvCdyGiIiIiKiDxcLNlLL4KaOkEiAwzfjcffpC7HjEBERERF9kFiwkVqqWlZA25rWAIC1p6JETkNERERE9GFiwUZq+7K5IwBgR9gjJL7MFDkNEREREdGHhwUbqc3D0QxuFY2RkZ2LTWejxY5DRERERPTBYcFGans9kfbrq2zrQ6KRkZ0jciIiIiIiog8LCzZ6Lx3cbGFrLMezFxn4+/ITseMQEREREX1QWLDRe9GWSTGwSRUAwJqTUZxIm4iIiIioBLFgo/fWq1Fl6OvIcCsuFafuPBM7DhERERHRB4MFG703Yz1t9GxoDwD49SSH+CciIiIiKimiFmw5OTn48ccf4ejoCD09PTg5OWHmzJlK3eoEQcDUqVNha2sLPT09eHl5ITIyUmk7iYmJ6Nu3L4yMjGBiYoIhQ4bgxQvlyZyvXr2K5s2bQy6Xw97eHvPnz8+XZ/v27ahZsybkcjnc3Nxw4MABpfWqZPlYDW7qCKkEOHH7KW7Fpoodh4iIiIjogyBqwTZv3jysXLkSy5cvx40bNzBv3jzMnz8fy5YtU7SZP38+li5dioCAAISGhsLAwAA+Pj5IT09XtOnbty/Cw8MRHByMffv24cSJExg2bJhifUpKCry9veHg4ICwsDAsWLAA06dPx+rVqxVtzpw5g969e2PIkCG4dOkSunTpgi5duuD69evFyvKxqmyuD5/aNgA4kTYRERERUUkRtWA7c+YMOnfujI4dO6JKlSro3r07vL29ce7cOQCvr2gtXrwYU6ZMQefOnVGnTh1s2LABT548we7duwEAN27cQGBgIH777Td4eHigWbNmWLZsGf788088efJ61MJNmzYhMzMTa9euRe3atdGrVy+MGTMGixYtUmRZsmQJfH19MXHiRNSqVQszZ85EgwYNsHz5cpWzfOzyhvjfdekxnqZmiJyGiIiIiKj80xJz502aNMHq1atx+/ZtVK9eHVeuXMGpU6cUhVRUVBRiY2Ph5eWleI6xsTE8PDwQEhKCXr16ISQkBCYmJmjYsKGijZeXF6RSKUJDQ9G1a1eEhISgRYsW0NHRUbTx8fHBvHnz8Pz5c5iamiIkJAQTJkxQyufj46MoxlTJ8raMjAxkZPxXuKSkpAAAsrKykJWV9R5H7v3l7b8kc9SxM0Q9e2NcfpiM9afvYWxbZ43JVlI0ORug2fmYTT3Mph5mU58m52M29TCbephNfZqcT5OyqZpB1ILt+++/R0pKCmrWrAmZTIacnBzMnj0bffv2BQDExsYCAKytrZWeZ21trVgXGxsLKysrpfVaWlowMzNTauPo6JhvG3nrTE1NERsb+879vCvL2+bOnQt/f/98y4OCgqCvr1/gc8pacHBwiW6vnp4ElyHDulN34ZB2Gzoy9bdV0tlKkiZnAzQ7H7Oph9nUw2zq0+R8zKYeZlMPs6lPk/NpQra0tDSV2olasG3btg2bNm3C5s2bUbt2bVy+fBnjxo2DnZ0dBgwYIGa0EjF58mSlq3YpKSmwt7eHt7c3jIyMREz2uqIPDg5Gu3btoK2tXWLb9c7JRfDiU3iclI50mzro8kkljclWEjQ5G6DZ+ZhNPcymHmZTnybnYzb1MJt6mE19mpxPk7Ll9b57F1ELtokTJ+L7779XdCd0c3NDdHQ05s6diwEDBsDG5vUgFnFxcbC1tVU8Ly4uDvXq1QMA2NjYID4+Xmm72dnZSExMVDzfxsYGcXFxSm3yHr+rzZvr35Xlbbq6utDV1c23XFtbW/QTJE9JZ9HWBgY3q4qZ+yLwe0g0+jauAqlUohHZSpImZwM0Ox+zqYfZ1MNs6tPkfMymHmZTD7OpT5PzaUI2Vfcv6qAjaWlpkEqVI8hkMuTm5gIAHB0dYWNjg8OHDyvWp6SkIDQ0FJ6engAAT09PJCUlISwsTNHmyJEjyM3NhYeHh6LNiRMnlPqJBgcHo0aNGjA1NVW0eXM/eW3y9qNKFnqtZ8NKMNTVwt2nL3Hsdvy7n0BERERERAUStWDz8/PD7NmzsX//fty/fx+7du3CokWL0LVrVwCARCLBuHHjMGvWLOzZswfXrl1D//79YWdnhy5dugAAatWqBV9fXwwdOhTnzp3D6dOnMXr0aPTq1Qt2dnYAgD59+kBHRwdDhgxBeHg4tm7diiVLlih1Vxw7diwCAwOxcOFC3Lx5E9OnT8eFCxcwevRolbPQa4ZybfRq9Hoi7d84kTYRERERkdpE7RK5bNky/Pjjjxg5ciTi4+NhZ2eH4cOHY+rUqYo2kyZNwsuXLzFs2DAkJSWhWbNmCAwMhFwuV7TZtGkTRo8ejbZt20IqlaJbt25YunSpYr2xsTGCgoIwatQouLu7w8LCAlOnTlWaq61JkybYvHkzpkyZgh9++AHVqlXD7t274erqWqws9NrApo5Ye/o+ztxNQPiTZNS2MxY7EhERERFRuSNqwWZoaIjFixdj8eLFhbaRSCSYMWMGZsyYUWgbMzMzbN68uch91alTBydPniyyTY8ePdCjR4/3ykKvVTTRQwc3W+y98gRrTkZh0ef1xI5ERERERFTuiNolkj5sQ/+dSHvPlSeITU4XOQ0RERERUfnDgo1KTZ1KJmhUxQzZuQI2hNwXOw4RERERUbnDgo1K1ZB/r7JtCn2AtMxskdMQEREREZUvLNioVHnVskYVc30kv8rCjrBHYschIiIiIipXWLBRqZJJJRjc7PVVtrWnopCTK4iciIiIiIio/GDBRqWuu3slGOtp435CGg7diBM7DhERERFRucGCjUqdvo4W+npUBgCs4UTaREREREQqY8FGZWJAkyrQlklw7n4irjxMEjsOEREREVG5wIKNyoS1kRx+dewAAL+d4lU2IiIiIiJVsGCjMpM3xP+BazF4nPRK5DRERERERJqPBRuVmdp2xmjiZI6cXAHrz9wXOw4RERERkcZjwUZl6st/r7JtCX2A1PQskdMQEREREWk2FmxUplpVt4KTpQFSM7Kx7QIn0iYiIiIiKgoLNipTUqkEQ5pVBfB6Iu3snFyRExERERERaS4WbFTmPmtQEWYGOnic9AoHwzmRNhERERFRYViwUZmTa8vQr7EDAOC3U/dETkNEREREpLlYsJEovmjsAB2ZFJceJCEsOlHsOEREREREGokFG4nC0lAXXer/O5H2SU6kTURERERUEBZsJJovm78efORgeCweJKSJnIaIiIiISPOwYCPRVLc2RIvqlsgVgLWneZWNiIiIiOhtLNhIVEP/nUh724WHSH7FibSJiIiIiN7Ego1E1czZAjWsDZGWmYM/zz0QOw4RERERkUZhwUaikkgkGPLvVbbfz9xHFifSJiIiIiJSYMFGoutczw4WFXQRk5yOA9dixI5DRERERKQxWLCR6HS1ZBjg+Xoi7V9P3oMgCCInIiIiIiLSDCzYSCP0bewAubYU1x+n4PeQaIQ9kyA0KhE5uSzeiIiIiOjjpSV2ACIAMDPQwSdVzHAy8hnm/HMbgAwbIi/A1liOaX4u8HW1FTsiEREREVGZ4xU20giB12NwMvJZvuWxyekYsfEiAq/z3jYiIiIi+viwYCPR5eQK8N8bUeC6vA6R/nsj2D2SiIiIiD46LNhIdOeiEhGTnF7oegFATHI6zkUlll0oIiIiIiINwIKNRBefWnixpk47IiIiIqIPBQs2Ep2VobxE2xERERERfShYsJHoGjmawdZYDkkRbcwNdNDI0azMMhERERERaQIWbCQ6mVSCaX4uAFBo0Zb8KgvBEbFlF4qIiIiISAOwYCON4Otqi5X9GsDGWLnbo42xHHUrGSM7V8DITRexKTRapIRERERERGWPE2eTxvB1tUU7FxuE3IlH0MlQeDf3gKezFQRBwI9/X8eWcw/xf7uu41lqJsa0dYZEUlQnSiIiIiKi8o9X2EijyKQSeDiawd1CgIejGWRSCbRkUszp6oYxbZwBAD8fuo2pf4dzXjYiIiIi+uCxYKNyQSKRYIJ3Dfh/WhsSCfDH2Wh8veUiMrJzxI5GRERERFRqWLBRuTKgSRUs610f2jIJDlyLxaB155GaniV2LCIiIiKiUsGCjcqdTnXssG5gIxjoyHDmbgJ6rT6Lp6kZYsciIiIiIipxLNioXGpWzQJ/DvOEuYEOwp+koHvAGTxISBM7FhERERFRiWLBRuWWWyVj7BjRBPZmeohOSMNnK88g/Emy2LGIiIiIiEoMCzYq1xwtDPDXV01Qy9YIz15k4PNVZ3Hm7jOxYxERERERlQgWbFTuWRnJsXV4Y3g4muFFRjYGrj2PA9dixI5FRERERPTeWLDRB8FIro31gxvBt7YNMnNyMWrzRWw8Gy12LCIiIiKi98KCjT4Ycm0ZVvRtgN6NKkMQgCm7r2PxodsQBE6wTURERETlEws2+qDIpBLM6eqKMW2rAQAWH4rEj39fR04uizYiIiIiKn9YsNEHRyKRYEK76pjZuTYkEmDj2Qf4estFZGTniB2NiIiIiKhYWLDRB+sLzypY3rsBdGRSHLgWi4FrzyM1PUvsWEREREREKhO1YKtSpQokEkm+f6NGjQIAtGrVKt+6r776SmkbDx48QMeOHaGvrw8rKytMnDgR2dnZSm2OHTuGBg0aQFdXF87Ozvj999/zZVmxYgWqVKkCuVwODw8PnDt3Tml9eno6Ro0aBXNzc1SoUAHdunVDXFxcyR4QKnEd69ji90GfoIKuFkLuJeDzVWcRn5oudiwiIiIiIpWIWrCdP38eMTExin/BwcEAgB49eijaDB06VKnN/PnzFetycnLQsWNHZGZm4syZM1i/fj1+//13TJ06VdEmKioKHTt2ROvWrXH58mWMGzcOX375JQ4ePKhos3XrVkyYMAHTpk3DxYsXUbduXfj4+CA+Pl7RZvz48di7dy+2b9+O48eP48mTJ/jss89K8/BQCWnibIE/hzWGRQUdRMSkoPvKEEQnvBQ7FhERERHRO4lasFlaWsLGxkbxb9++fXByckLLli0VbfT19ZXaGBkZKdYFBQUhIiICGzduRL169dC+fXvMnDkTK1asQGZmJgAgICAAjo6OWLhwIWrVqoXRo0eje/fu+PnnnxXbWbRoEYYOHYpBgwbBxcUFAQEB0NfXx9q1awEAycnJWLNmDRYtWoQ2bdrA3d0d69atw5kzZ3D27NkyOlr0PlwrGmPHV01Q2UwfDxLT0G3lGVx/nCx2LCIiIiKiImmJHSBPZmYmNm7ciAkTJkAikSiWb9q0CRs3boSNjQ38/Pzw448/Ql9fHwAQEhICNzc3WFtbK9r7+PhgxIgRCA8PR/369RESEgIvLy+lffn4+GDcuHGK/YaFhWHy5MmK9VKpFF5eXggJCQEAhIWFISsrS2k7NWvWROXKlRESEoLGjRsX+JoyMjKQkZGheJySkgIAyMrKQlaWuPdS5e1f7BwFKa1sFY118OeXn2Dwhou4GZuKz1eHIKBPfTSuaiZ6tpKiyfmYTT3Mph5mU58m52M29TCbephNfZqcT5OyqZpBYwq23bt3IykpCQMHDlQs69OnDxwcHGBnZ4erV6/iu+++w61bt7Bz504AQGxsrFKxBkDxODY2tsg2KSkpePXqFZ4/f46cnJwC29y8eVOxDR0dHZiYmORrk7efgsydOxf+/v75lgcFBSmKTrHldUPVRKWVbaA98FuaFHdSgIG/n0f/armoZ168Yf81+bgBmp2P2dTDbOphNvVpcj5mUw+zqYfZ1KfJ+TQhW1pamkrtNKZgW7NmDdq3bw87OzvFsmHDhin+383NDba2tmjbti3u3r0LJycnMWIWy+TJkzFhwgTF45SUFNjb28Pb21upa6cYsrKyEBwcjHbt2kFbW1vULG8ri2ydsnLwzY5rOBgRj98jZZhWoxb6NrLXiGzvQ5PzMZt6mE09zKY+Tc7HbOphNvUwm/o0OZ8mZcvrffcuGlGwRUdH49ChQ4orZ4Xx8PAAANy5cwdOTk6wsbHJN5pj3siNNjY2iv++PZpjXFwcjIyMoKenB5lMBplMVmCbN7eRmZmJpKQkpatsb7YpiK6uLnR1dfMt19bWFv0EyaNJWd5Wmtm0tbXxS7+GmPr3dWwKfYDpe2/geVo2xnlVU+qSK0a2kqDJ+ZhNPcymHmZTnybnYzb1MJt6mE19mpxPE7Kpun+NmIdt3bp1sLKyQseOHYtsd/nyZQCAra0tAMDT0xPXrl1TGs0xODgYRkZGcHFxUbQ5fPiw0naCg4Ph6ekJANDR0YG7u7tSm9zcXBw+fFjRxt3dHdra2kptbt26hQcPHijaUPkjk0owq4srxratBgBYcjgSU3ZfR05u8bpHEhERERGVFtGvsOXm5mLdunUYMGAAtLT+i3P37l1s3rwZHTp0gLm5Oa5evYrx48ejRYsWqFOnDgDA29sbLi4u+OKLLzB//nzExsZiypQpGDVqlOLK1ldffYXly5dj0qRJGDx4MI4cOYJt27Zh//79in1NmDABAwYMQMOGDdGoUSMsXrwYL1++xKBBgwAAxsbGGDJkCCZMmAAzMzMYGRnh66+/hqenZ6EDjlD5IJFIML5ddVgY6iqutiW8yMTiXvUg15aJHY+IiIiIPnKiF2yHDh3CgwcPMHjwYKXlOjo6OHTokKJ4sre3R7du3TBlyhRFG5lMhn379mHEiBHw9PSEgYEBBgwYgBkzZijaODo6Yv/+/Rg/fjyWLFmCSpUq4bfffoOPj4+izeeff46nT59i6tSpiI2NRb169RAYGKg0EMnPP/8MqVSKbt26ISMjAz4+Pvjll19K8chQWfqisQPMDXQw7s/LCAyPxcB157C6f0MYyTXzMj4RERERfRxEL9i8vb0hCPm7oNnb2+P48ePvfL6DgwMOHDhQZJtWrVrh0qVLRbYZPXo0Ro8eXeh6uVyOFStWYMWKFe/MROVTBzdbmOhrY9iGMJy9l4heq87i98GfwMpQLnY0IiIiIvpIacQ9bESaoomTBf4c1hgWFXQREZOC7itDcP/ZS7FjEREREdFHigUb0VtcKxrjrxGeqGymjweJaegecAbXHycjJ1dAaFQiwp5JEBqVyMFJiIiIiKjUid4lkkgTOZgb4K8RTTBw3TmEP0lB95VnoK+rhcSXmQBk2BB5AbbGckzzc4Gvq63YcYmIiIjoA8UrbESFsDTUxZ/DGqOGdQWkZ+f+W6z9JzY5HSM2XkTg9RiREhIRERHRh44FG1ER9HW0kPwqq8B1eR0i/fdGsHskEREREZUKFmxERTgXlYjYlIxC1wsAYpLTcS4qsexCEREREdFHgwUbURHiU9NLtB0RERERUXGwYCMqgqpzsHGuNiIiIiIqDSzYiIrQyNEMtsZySN7R7vjteGTn5JZJJiIiIiL6eLBgIyqCTCrBND8XAMhXtL35OOD4PfRbE4r4FHaNJCIiIqKSw4KN6B18XW2xsl8D2Bgrd3u0MZYjoF8DLOtdHwY6Mpy9l4gOS08h5G6CSEmJiIiI6EPDibOJVODraot2LjYIuROPoJOh8G7uAU9nK8ikr6+zudgZYeTGi7gVl4q+v53FN941MKKlE6TSd3WmJCIiIiIqHK+wEalIJpXAw9EM7hYCPBzNFMUaADhZVsDuUU3R3b0ScgVgwcFbGLL+PJ6/Ndk2EREREVFxsGAjKiF6OjL81KMu5nerA10tKY7eeopOy07h0oPnYkcjIiIionKKBRtRCev5iT12jWyKKub6eJz0Cj1XhWDtqSgIgiB2NCIiIiIqZ1iwEZUCFzsj7P26GTq42SArR8CMfREYtfkiUtOzxI5GREREROUICzaiUmIo18aKPg0wzc8F2jIJDlyLhd+yU4h4kiJ2NCIiIiIqJ1iwEZUiiUSCQU0dsW24J+yM5bifkIauv5zGtvMPxY5GREREROUACzaiMlC/sin2j2mOVjUskZGdi0l/XcW326/gVWaO2NGIiIiISIOxYCMqI6YGOlg74BNM9KkBqQTYEfYIXVacxt2nL8SORkREREQaigUbURmSSiUY1doZG7/0gEUFXdyKS8Wny05h75UnYkcjIiIiIg3Ego1IBE2cLHBgTDN4OJrhZWYOvt5yCVP/vo6MbHaRJCIiIqL/sGAjEomVkRybvvTAqNZOAIANIdHoGRCCh4lpIicjIiIiIk3Bgo1IRFoyKSb61MS6gZ/ARF8bVx4lo+PSkzgUESd2NCIiIiLSACzYiDRA65pW2Pd1M9S1N0FKeja+3HABc/+5geycXLGjEREREZGIWLARaYhKpvrYPtwTA5tUAQCsOn4PfX4NRVxKurjBiIiIiEg0LNiINIiOlhTTP62NFX0aoIKuFs7dT0THpSdx+s4zsaMRERERkQhYsBFpoI51bLFndFPUtDHEsxeZ6LcmFEsPRyI3VxA7GhERERGVIRZsRBqqqmUF7BrZFD3cK0EQgEXBtzHw9/NIfJkpdjQiIiIiKiMs2Ig0mJ6ODAt61MX87nUg15bixO2n6Lj0JMKin4sdjYiIiIjKAAs2onKgZ0N77B7VFFUtDBCTnI7PV4Xgt5P3IAjsIklERET0IWPBRlRO1LQxwt+jm6JjHVtk5wqYtf8GRmy8iJT0LABATq6A0KhEhD2TIDQqETm8342IiIio3NMSOwARqc5Qro3lveujURUzzNofgcDwWETEpKCfR2WsO3MfMcnpAGTYEHkBtsZyTPNzga+rrdixiYiIiEhNvMJGVM5IJBIMaFIF279qgoomeniQmIY5/9z8t1j7T2xyOkZsvIjA6zEiJSUiIiKi98WCjaicqmdvgj2jm0JXq+Af47wOkf57I9g9koiIiKicYsFGVI7djnuBjOzcQtcLAGKS03EuKrHsQhERERFRiWHBRlSOxaemv7tRMdoRERERkWZhwUZUjlkZylVqJy+k2yQRERERaTZ+iyMqxxo5msHWWA7JO9p9s/0K1p6KQlZO4d0niYiIiEjzsGAjKsdkUgmm+bkAQL6iLe9xRRM9vMjIwYx9Eeiw5CRORT4r04xEREREpD4WbETlnK+rLVb2awAbY+XukTbGcgT0a4ATk1pjdldXmOprIzL+BfqtCcXwPy7gYWKaSImJiIiISFWcOJvoA+Draot2LjYIuROPoJOh8G7uAU9nK8ikr6+z9fVwQEc3Wyw+FIk/zkbjYHgcjt56iq9aVMVXrZygr8OPAiIiIiJNxCtsRB8ImVQCD0czuFsI8HA0UxRreUz0dTD909rYP6YZPKuaIzM7F0uP3EHbhcex98oTCALnaiMiIiLSNCzYiD4yNW2MsHmoB1b2bYCKJnqISU7H11su4fPVZxHxJEXseERERET0hmL1g7px4wb+/PNPnDx5EtHR0UhLS4OlpSXq168PHx8fdOvWDbq6uqWVlYhKiEQiQXs3W7SqYYVVJ+5i5bG7OBeViE7LTqKPR2V8064GTA10xI5JRERE9NFT6QrbxYsX4eXlhfr16+PUqVPw8PDAuHHjMHPmTPTr1w+CIOD//u//YGdnh3nz5iEjI6O0cxNRCdDTkWGcV3Uc/qYlOrrZIlcANp59gFY/HcOGkPvI5jQARERERKJS6Qpbt27dMHHiROzYsQMmJiaFtgsJCcGSJUuwcOFC/PDDDyWVkYhKWSVTfazo2wD97ibAf284bsamYurf4dgc+gDT/GrD08lc7IhEREREHyWVCrbbt29DW1v7ne08PT3h6emJrKys9w5GRGXP08kc+75uhi3nHuCnoNu4GZuK3r+eRUc3W0zuUBOVTPXFjkhERET0UVGpS6Qqxdr7tCcizaElk+ILzyo49m0rfNHYAVIJsP9aDNouPI7Fh24jPStH7IhEREREHw21Rol8+fIlDhw4gICAACxdulTpX3FUqVIFEokk379Ro0YBANLT0zFq1CiYm5ujQoUK6NatG+Li4pS28eDBA3Ts2BH6+vqwsrLCxIkTkZ2drdTm2LFjaNCgAXR1deHs7Izff/89X5YVK1agSpUqkMvl8PDwwLlz55TWq5KF6ENiaqCDmV1cse/r5mjkaIaM7FwsPhSJtguP48C1GE4DQERERFQGij1b7qVLl9ChQwekpaXh5cuXMDMzw7NnzxQF05gxY1Te1vnz55GT899f669fv4527dqhR48eAIDx48dj//792L59O4yNjTF69Gh89tlnOH36NAAgJycHHTt2hI2NDc6cOYOYmBj0798f2tramDNnDgAgKioKHTt2xFdffYVNmzbh8OHD+PLLL2FrawsfHx8AwNatWzFhwgQEBATAw8MDixcvho+PD27dugUrKyuVshB9qFzsjLB1WGPsvxaDOftv4HHSK4zcdBGeVc0x7VMX1LQxEjsiERER0Qer2FfYxo8fDz8/Pzx//hx6eno4e/YsoqOj4e7ujp9++qlY27K0tISNjY3i3759++Dk5ISWLVsiOTkZa9aswaJFi9CmTRu4u7tj3bp1OHPmDM6ePQsACAoKQkREBDZu3Ih69eqhffv2mDlzJlasWIHMzEwAQEBAABwdHbFw4ULUqlULo0ePRvfu3fHzzz8rcixatAhDhw7FoEGD4OLigoCAAOjr62Pt2rUAoFIWog+ZRCJBpzp2OPxNK4xpWw06WlKE3EtAx6WnMO3v60hKyxQ7IhEREdEHqdhX2C5fvoxVq1ZBKpVCJpMhIyMDVatWxfz58zFgwAB89tlnagXJzMzExo0bMWHCBEgkEoSFhSErKwteXl6KNjVr1kTlypUREhKCxo0bIyQkBG5ubrC2tla08fHxwYgRIxAeHo769esjJCREaRt5bcaNG6fYb1hYGCZPnqxYL5VK4eXlhZCQEABQKUtBMjIylKY4SEl5PSlxVlaW6AOz5O1f7BwFYTb1lXY+LQnwdStHdKlrjf8F3kZQRDzWh0Rjz5UnGNfWGZ83rASZVCJKtvfBbOphNvVocjZAs/Mxm3qYTT3Mpj5NzqdJ2VTNUOyCTVtbG1Lp6wtzVlZWePDgAWrVqgVjY2M8fPiwuJtT2L17N5KSkjBw4EAAQGxsLHR0dPJNI2BtbY3Y2FhFmzeLtbz1eeuKapOSkoJXr17h+fPnyMnJKbDNzZs3Vc5SkLlz58Lf3z/f8qCgIOjra8Zoe8HBwWJHKBSzqa8s8nU0BpxdJNgZJUVsWham7b2B1Ycj0M0xB05F9JLU5GPHbOphNvVocjZAs/Mxm3qYTT3Mpj5NzqcJ2dLS0lRqV+yCrX79+jh//jyqVauGli1bYurUqXj27Bn++OMPuLq6FjtonjVr1qB9+/aws7NTexuaZvLkyZgwYYLicUpKCuzt7eHt7Q0jI3Hv+8nKykJwcDDatWuncaN6Mpv6yjpfBwBf5+Ri8/lHWHL4Dh6nZWNpuBY6utngO5/qsDWWAwBycgWcvfsUR0LC0MbTHY2dLAu9EicGTX5fmU09zKY+Tc7HbOphNvUwm/o0OZ8mZcvrffcuxS7Y5syZg9TUVADA7Nmz0b9/f4wYMQLVqlVT3PNVXNHR0Th06BB27typWGZjY4PMzEwkJSUpXdmKi4uDjY2Nos3boznmjdz4Zpu3R3OMi4uDkZER9PT0IJPJIJPJCmzz5jbelaUgurq60NXVzbdcW1tb9BMkjyZleRuzqa8s82lrA0OaO6FL/UpYGHwbW849wP5rsThy8ylGtXZCZTN9zP3nJmKS0wHIsCHyMmyN5Zjm5wJfV9syyagqTX5fmU09zKY+Tc7HbOphNvUwm/o0OZ8mZFN1/8UedKRhw4Zo3bo1gNddIgMDA5GSkoKwsDDUrVu3uJsDAKxbtw5WVlbo2LGjYpm7uzu0tbVx+PBhxbJbt27hwYMH8PT0BPB6ou5r164hPj5e0SY4OBhGRkZwcXFRtHlzG3lt8raho6MDd3d3pTa5ubk4fPiwoo0qWYg+duYVdDGnqxv2jm6GT6qY4lVWDn4Kuo0xf17+t1j7T2xyOkZsvIjA6zEipSUiIiIqH9Sah60k5ebmYt26dRgwYAC0tP674GdsbIwhQ4ZgwoQJOHr0KMLCwjBo0CB4enoqBvnw9vaGi4sLvvjiC1y5cgUHDx7ElClTMGrUKMWVra+++gr37t3DpEmTcPPmTfzyyy/Ytm0bxo8fr9jXhAkT8Ouvv2L9+vW4ceMGRowYgZcvX2LQoEEqZyGi11wrGmPbcE/83LMuCuv1mDeDm//eCOTkcj43IiIiosKo1CWyQYMGOHz4MExNTVG/fn1IJIXfe3Lx4sViBTh06BAePHiAwYMH51v3888/QyqVolu3bsjIyICPjw9++eUXxXqZTIZ9+/ZhxIgR8PT0hIGBAQYMGIAZM2Yo2jg6OmL//v0YP348lixZgkqVKuG3335TzMEGAJ9//jmePn2KqVOnIjY2FvXq1UNgYKDSQCTvykJE/5FIJLAx1kNRtZgAICY5HeeiEuHpZF5m2YiIiIjKE5UKts6dOyuuWHXp0qVEA3h7e0MQCv5WJ5fLsWLFCqxYsaLQ5zs4OODAgQNF7qNVq1a4dOlSkW1Gjx6N0aNHF7pelSxE9J/41PR3NypGOyIiIqKPkUoF27Rp0wr8fyKiwlgZylVqZ6qvmTcjExEREWmCYt/Ddv78eYSGhuZbHhoaigsXLpRIKCIq/xo5msHWWI53Dd4/Y28ELj54XiaZiIiIiMqbYhdso0aNKnCC7MePH2PUqFElEoqIyj+ZVIJpfq9Ha327aMt7bCjXwp2nL9Ft5RnM3BeBV5k5ZZqRiIiISNMVu2CLiIhAgwYN8i2vX78+IiIiSiQUEX0YfF1tsbJfA9gYK3ePtDGWI6BfA5yc1BqfNagIQQDWnIqCz+ITOHP3mUhpiYiIiDRPsSfO1tXVRVxcHKpWraq0PCYmRmlYfiIi4HXR1s7FBiF34hF0MhTezT3g6WwF2b9j/i/qWQ9+de3ww85reJCYhj6/hqKPR2VMbl8ThnLe30ZEREQft2JfYfP29sbkyZORnJysWJaUlIQffvgB7dq1K9FwRPRhkEkl8HA0g7uFAA9HM0Wxlqd1DSsEjW+Bvh6VAQCbQx/A++cTOHozXoy4RERERBqj2AXbggUL8PDhQzg4OKB169Zo3bo1HB0dERsbi4ULF5ZGRiL6CBjKtTG7qxu2DG0MB3N9xCSnY9Dv5zF+62U8f5kpdjwiIiIiURS7YKtUqRKuXr2K+fPnw8XFBe7u7liyZAmuXbsGe3v70shIRB8RTydzBI5tgaHNHSGVALsuPUa7n4/jwLUYsaMRERERlbli3XSWlZWFmjVrYt++fRg2bFhpZSKij5yejgz/19EFHdxsMWnHVUTGv8DITRfhW9sGM7rUVnmONyIiIqLyrlhX2LS1tZGenl5aWYiIlNSvbIp9Y5phTBtnaEklCAyPRbtFJ7Aj7BEEQRA7HhEREVGpU2setnnz5iE7O7s08hARKdHVkmGCdw3sGd0MrhWNkPwqC99uv4KB687jcdIrseMRERERlapij8N//vx5HD58GEFBQXBzc4OBgYHS+p07d5ZYOCKiPC52Rtg9sil+PRmFnw/dxvHbT+G96Di+71ALfRtVhlT69vTcREREROVfsQs2ExMTdOvWrTSyEBEVSUsmxYhWTvCubY3vdlzFhejn+HH3dey98gTzutWBo4XBuzdCREREVI4Uu2Bbt25daeQgIlKZk2UFbBvuiQ0h9zH/4C2ci0qE7+IT+Ma7OoY0q5pvnjciIiKi8qrY97ABQHZ2Ng4dOoRVq1YhNTUVAPDkyRO8ePGiRMMRERVGKpVgYFNHHBzXAs2cLZCRnYs5B27is19O41ZsqtjxiIiIiEpEsQu26OhouLm5oXPnzhg1ahSePn0KAJg3bx6+/fbbEg9IRFQUezN9/DGkEeZ3qwNDuRauPEpGp2UnseRQJDKzc8WOR0RERPReil2wjR07Fg0bNsTz58+hp6enWN61a1ccPny4RMMREalCIpGg5yf2ODShJdq5WCMrR8DPh27j0+WncPVRktjxiIiIiNRW7ILt5MmTmDJlCnR0dJSWV6lSBY8fPy6xYERExWVtJMfqL9yxrHd9mBno4GZsKrqsOI25/9xAelaO2PGIiIiIiq3YBVtubi5ycvJ/8Xn06BEMDQ1LJBQRkbokEgn86toheHwLfFrXDrkCsOr4PXRYchLn7yeKHY+IiIioWIpdsHl7e2Px4sWKxxKJBC9evMC0adPQoUOHksxGRKQ28wq6WNq7Pn7r3xDWRrq49+wleq4KwbS/r+NlRraiXU6ugNCoRIQ9kyA0KhE5uYKIqYmIiIiUFXtY/4ULF8LHxwcuLi5IT09Hnz59EBkZCQsLC2zZsqU0MhIRqc3LxRqfOJph7oEb+PP8Q6wPicahG/H4Xzc3vMzIhv/eCMQkpwOQYUPkBdgayzHNzwW+rrZiRyciIiIqfsFWqVIlXLlyBX/++SeuXr2KFy9eYMiQIejbt6/SICRERJrCWE8b/+tWB53q2OH7nVfx6PkrfLHmXIFtY5PTMWLjRazs14BFGxEREYmu2AUbAGhpaaFfv34lnYWIqFQ1q2aBg+NaYF7gTWwIiS6wjQBAAsB/bwTaudhwEm4iIiISlVoFW2RkJI4ePYr4+Hjk5irPczR16tQSCUZEVBoMdLXQ3tW20IINeF20xSSn41xUIjydzMsuHBEREdFbil2w/frrrxgxYgQsLCxgY2MDieS/vz5LJBIWbESk8eJT00u0HREREVFpKXbBNmvWLMyePRvfffddaeQhIip1VobyEm1HREREVFqKPaz/8+fP0aNHj9LIQkRUJho5msHWWI6i7k6TALj37AUEgcP8ExERkXiKXbD16NEDQUFBpZGFiKhMyKQSTPNzAYBCizYBwP/tuo6+v4XiQUJamWUjIiIielOxu0Q6Ozvjxx9/xNmzZ+Hm5gZtbW2l9WPGjCmxcEREpcXX1RYr+zV4Yx6212yN5fixowueJL/CT0G3cOZuAnwWn8BEnxoY0KQKR40kIiKiMlXsgm316tWoUKECjh8/juPHjyutk0gkLNiIqNzwdbVFOxcbhNyJR9DJUHg394Cns5WiKGvnYo3v/7qGkHsJmLEvAvuuPsH87nXgbGUocnIiIiL6WBS7YIuKiiqNHEREopBJJfBwNEPCDQEejmZKV9AczA2w6UsP/Hn+IeYcuIGLD5LQYckpjPWqhmEtqkJbVuxe5URERETFwm8bRERFkEol6ONRGUHjW6B1DUtk5uRiwcFb6Lz8NK4/ThY7HhEREX3gVL7CNmHCBJXaLVq0SO0wRESays5ED2sHfoK/Lz/B9L3hiIhJQecVp/FVy6r4uk01yLVlYkckIiKiD5DKBdulS5fe2ebNSbSJiD40EokEXepXRFNnC0zfE47912Kw4uhdBF6PxfzudeHuYCp2RCIiIvrAqFywHT16tDRzEBGVG5aGuljRtwH8rsfix7+v4+7Tl+gecAYDm1TBRJ8a0Ncp9u3BRERERAXiPWxERGrydbXBofEt0d29EgQBWHf6PnwWn8DpO8/EjkZEREQfCJUKtv/9739IS1Nt4tjQ0FDs37//vUIREZUXxvra+KlHXawf3AgVTfTwMPEV+v4Wiu//uoqU9Cyx4xEREVE5p1LBFhERAQcHB4wcORL//PMPnj59qliXnZ2Nq1ev4pdffkGTJk3w+eefw9CQcxQR0celZXVLHBzfAv09HQAAf55/iHaLjuNQRJzIyYiIiKg8U6lg27BhAw4dOoSsrCz06dMHNjY20NHRgaGhIXR1dVG/fn2sXbsW/fv3x82bN9GiRYvSzk1EpHEq6GphRmdXbBvuCUcLA8SlZODLDRcwZsslJLzIEDseERERlUMq3xlft25d/Prrr1i1ahWuXr2K6OhovHr1ChYWFqhXrx4sLCxKMycRUbnRyNEM/4xtjp8P3cavJ+5hz5UnOHXnGaZ/Wht+dWw5oi4RERGprNhDmUmlUtSrVw/16tUrhThERB8GubYMk9vXQkc3W0zacRU3Y1MxZssl7Ln8BLO7usLaSC52RCIiIioHOEokEVEpqlPJBHtGN8N4r+rQlklw6EYcvBYdx9bzDyAIgtjxiIiISMOxYCMiKmU6WlKM9aqGfV83R91KxkhNz8Z3f13DF2vO4WGiaiPwEhER0ceJBRsRURmpYWOIv0Y0wQ8dakJXS4pTd57BZ/EJ/H46Crm5vNpGRERE+bFgIyIqQ1oyKYa1cELguBZo5GiGtMwcTN8bgZ6rQnD36Qux4xEREZGGee+CLTo6GhEREcjNzS2JPEREHwVHCwP8ObQxZnZxhYGODBein6P9kpP45dgdZOe8/jzNyRUQGpWIsGcShEYlIodX4YiIiD46Ko8SuXbtWiQlJWHChAmKZcOGDcOaNWsAADVq1MDBgwdhb29f8imJiD5AUqkEXzR2QJuaVvhh5zUcv/0U8wNv4cC1GHSuWxFrT0chJjkdgAwbIi/A1liOaX4u8HW1FTs6ERERlRGVr7CtXr0apqamiseBgYFYt24dNmzYgPPnz8PExAT+/v6lEpKI6ENW0UQPvw/6BAt71IWxnjauP07B7AM3/i3W/hObnI4RGy8i8HqMSEmJiIiorKlcsEVGRqJhw4aKx3///Tc6d+6Mvn37okGDBpgzZw4OHz5cKiGJiD50EokE3dwrIXBcc8i1Cv5ozusQ6b83gt0jiYiIPhIqF2yvXr2CkZGR4vGZM2fQokULxeOqVasiNja22AEeP36Mfv36wdzcHHp6enBzc8OFCxcU6wcOHAiJRKL0z9fXV2kbiYmJ6Nu3L4yMjGBiYoIhQ4bgxQvlm/evXr2K5s2bQy6Xw97eHvPnz8+XZfv27ahZsybkcjnc3Nxw4MABpfWCIGDq1KmwtbWFnp4evLy8EBkZWezXTERUmPvP0pCeXfg9wQKAmOR0nItKLLtQREREJBqVCzYHBweEhYUBAJ49e4bw8HA0bdpUsT42NhbGxsbF2vnz58/RtGlTaGtr459//kFERAQWLlyo1PUSAHx9fRETE6P4t2XLFqX1ffv2RXh4OIKDg7Fv3z6cOHECw4YNU6xPSUmBt7e34jUsWLAA06dPx+rVqxVtzpw5g969e2PIkCG4dOkSunTpgi5duuD69euKNvPnz8fSpUsREBCA0NBQGBgYwMfHB+npyt2WiIjUFZ+q2ueJqu2IiIiofFN50JEBAwZg1KhRCA8Px5EjR1CzZk24u7sr1p85cwaurq7F2vm8efNgb2+PdevWKZY5Ojrma6erqwsbG5sCt3Hjxg0EBgbi/Pnzii6by5YtQ4cOHfDTTz/Bzs4OmzZtQmZmJtauXQsdHR3Url0bly9fxqJFixSF3ZIlS+Dr64uJEycCAGbOnIng4GAsX74cAQEBEAQBixcvxpQpU9C5c2cAwIYNG2BtbY3du3ejV69exXrtREQFsTKUq9RuzakoVDLVh7uD6bsbExERUbmlcsE2adIkpKWlYefOnbCxscH27duV1p8+fRq9e/cu1s737NkDHx8f9OjRA8ePH0fFihUxcuRIDB06VKndsWPHYGVlBVNTU7Rp0wazZs2Cubk5ACAkJAQmJiZK99d5eXlBKpUiNDQUXbt2RUhICFq0aAEdHR1FGx8fH8ybNw/Pnz+HqakpQkJClEbAzGuze/duAEBUVBRiY2Ph5eWlWG9sbAwPDw+EhIQUWLBlZGQgIyND8TglJQUAkJWVhaysrGIdq5KWt3+xcxSE2dSnyfmYTTX1KxnCxkgXcSkZKOoutauPktFt5Rk0dzbH162dUL+ySVlFVNCk4/Y2ZlOfJudjNvUwm3qYTX2anE+TsqmaQSIIgmh3rsvlr/+SPGHCBPTo0QPnz5/H2LFjERAQgAEDBgAA/vzzT+jr68PR0RF3797FDz/8gAoVKiAkJAQymQxz5szB+vXrcevWLaVtW1lZwd/fHyNGjIC3tzccHR2xatUqxfqIiAjUrl0bERERqFWrFnR0dLB+/XqlovOXX36Bv78/4uLicObMGTRt2hRPnjyBre1/Q2r37NkTEokEW7duzff6pk+fXuDImZs3b4a+vv77HTwi+mBdSZBg7e28HuuSN9a8/rju7piLhy8kOP9Ugtx/19c0zoWvfS4cDcs2KxEREaknLS0Nffr0QXJystJYIW9T+QpbQdLT07F161a8fPkS3t7ecHZ2Ltbzc3Nz0bBhQ8yZMwcAUL9+fVy/fl2pYHvzypWbmxvq1KkDJycnHDt2DG3btn2f+KVu8uTJSlftUlJSYG9vD29v7yLflLKQlZWF4OBgtGvXDtra2qJmeRuzqU+T8zGb6joAaBAeh1kHbiI25b+r9LbGcvxf+5rwqW0NAHiQmIaAE1HYdekJbiZLcTNZiqZO5vi6ddUy6SqpacftTcymPk3Ox2zqYTb1MJv6NDmfJmXL6333LioXbBMmTEBWVhaWLVsGAMjMzISnpyfCw8Ohr6+PSZMmITg4GJ6eniqHtLW1hYuLi9KyWrVq4a+//ir0OVWrVoWFhQXu3LmDtm3bwsbGBvHx8UptsrOzkZiYqLjvzcbGBnFxcUpt8h6/q82b6/OWvXmFLS4uDvXq1Sswq66uLnR1dfMt19bWFv0EyaNJWd7GbOrT5HzMpppO9SqhfZ2KCLkTj6CTofBu7gFPZyvIpP9dcXOyNsaCHvUwpm11rDh6BzvCHuH03QScvpuAZs4WGOtVDZ9UMSv1rJp03N7GbOrT5HzMph5mUw+zqU+T82lCNlX3r/IokUFBQWjXrp3i8aZNmxAdHY3IyEg8f/4cPXr0wKxZs4oVsmnTpvm6Mt6+fRsODg6FPufRo0dISEhQFE2enp5ISkpSjGAJAEeOHEFubi48PDwUbU6cOKHUTzQ4OBg1atRQjEjp6emZbx65NwtQR0dH2NjYKLVJSUlBaGhosYpUIiJVyaQSeDiawd1CgIejmVKx9iZ7M338r1sdHP22FXo3soeWVIJTd56hR0AI+v52llMAEBERlWMqF2wPHjxQuhoWFBSE7t27w8HBARKJBGPHjsWlS5eKtfPx48fj7NmzmDNnDu7cuYPNmzdj9erVGDVqFADgxYsXmDhxIs6ePYv79+/j8OHD6Ny5M5ydneHj4wPg9RU5X19fDB06FOfOncPp06cxevRo9OrVC3Z2dgCAPn36QEdHB0OGDEF4eDi2bt2KJUuWKHVXHDt2LAIDA7Fw4ULcvHkT06dPx4ULFzB69GgArye1HTduHGbNmoU9e/bg2rVr6N+/P+zs7NClS5divW4iotJgb6aPuZ/lFW6VoSWV4PSdBPRcFYI+v55F6L0EsSMSERFRMalcsEmlUrw5PsnZs2fRuHFjxWMTExM8f/68WDv/5JNPsGvXLmzZsgWurq6YOXMmFi9ejL59+wIAZDIZrl69ik8//RTVq1fHkCFD4O7ujpMnTyp1Ndy0aRNq1qyJtm3bokOHDmjWrJnSHGvGxsYICgpCVFQU3N3d8c0332Dq1KlKc7U1adJEUTDWrVsXO3bswO7du5WmKpg0aRK+/vprDBs2DJ988glevHiBwMBAxeApRESa4HXh5oZjE1uhj0dlaMskOHM3AZ+vPoveq8/iLAs3IiKickPle9hq1aqFvXv3YsKECQgPD8eDBw/QunVrxfro6GhYW1sXO0CnTp3QqVOnAtfp6enh4MGD79yGmZkZNm/eXGSbOnXq4OTJk0W26dGjB3r06FHoeolEghkzZmDGjBnvzEREJLZKpvqY09UNI1s54Zdjd7H9wkOE3EtAyOoENK5qhrFtq8PTyVzsmERERFSEYs3D1qtXL+zfvx/h4eHo0KGD0iTXBw4cQKNGjUolJBERqS+vcBvV2hm/HL2DbRce4uy9RJy9dxYejmYY58XCjYiISFOp3CWya9euOHDgAOrUqYPx48fnm3dMX18fI0eOLPGARERUMiqa6GF2Vzccm9ga/RpXho5MitCoRPT+9Sx6rgrBmbvPIOLUnERERFSAYs3D1rZt20LnPps2bVqJBCIiotJV0UQPs7q4YWQrZ6w8dhdbzz/EuahE9Pk1FI2qmGGcVzV4OplDIil4VEoiIiIqOypfYYuMjETv3r0LnOAtOTkZffr0wb1790o0HBERlR47Ez3M7OKK45Naob+nA3RkUpy7n4g+v4Xi81VncfoOr7gRERGJTeWCbcGCBbC3t4eRkVG+dcbGxrC3t8eCBQtKNBwREZU+W2M9zOj8unAb4OkAHa3XhVvf30LRc1UITkXmL9xycgWERiUi7JkEoVGJyMllYUdERFQaVO4Sefz4cWzcuLHQ9T179kSfPn1KJBQREZU9W2M9+Hd2xYhWzgg4fhebzz3A+fvP0W9NKBo6mGKsVzU0c7bAwfBY+O+NQExyOgAZNkRegK2xHNP8XODraiv2yyAiIvqgqFywPXjwAFZWVoWut7CwwMOHD0skFBERicfGWI7pn9bGiFZOWHnsdeF2Ifo5vlhzDlUtDXDv6ct8z4lNTseIjRexsl8DFm1EREQlSOUukcbGxrh7926h6+/cuVNgd0kiIiqfrI1eF24nJ7XGoKZVoCOTFFisAUBeh0j/vRHsHklERFSCVC7YWrRogWXLlhW6funSpWjevHmJhCIiIs1hbSTHNL/aWNKrfpHtBAAxyek4F5VYNsGIiIg+AioXbJMnT8Y///yD7t2749y5c0hOTkZycjJCQ0PRrVs3HDx4EJMnTy7NrEREJKLMnFyV2sWnppdyEiIioo+Hyvew1a9fHzt27MDgwYOxa9cupXXm5ubYtm0bGjRoUOIBiYhIM1gZyku0HREREb1bsSbO7tSpE6KjoxEYGIg7d+5AEARUr14d3t7e0NfXL62MRESkARo5msHWWI7Y5HQUdpeaXFsK14q8n5mIiKikqFywRUVFwdHREXp6eujatWtpZiIiIg0kk0owzc8FIzZehAQosGhLz8pFj4AQrPrCHQ7mBmUdkYiI6IOj8j1sTk5OcHR0xODBg7Fx40Y8evSoNHMREZEG8nW1xcp+DWBjrNzt0dZYjm+9q8PSUBc3Y1Pht+wUjt6KFyklERHRh0PlK2xHjhzBsWPHcOzYMWzZsgWZmZmoWrUq2rRpg9atW6N169awtrYuzaxERKQBfF1t0c7FBiF34hF0MhTezT3g6WwFmVSCHg3tMWJjGC4+SMLg389jgld1jGrtDKlUInZsIiKicknlgq1Vq1Zo1aoVACA9PR1nzpxRFHDr169HVlYWatasifDw8NLKSkREGkImlcDD0QwJNwR4OJpB9m9BZm0kx5ZhjTFjbwQ2hT7AwuDbuPY4GQt71oWhXFvk1EREROWPyl0i3ySXy9GmTRtMmTIF/v7+GDNmDCpUqICbN2+WdD4iIipndLVkmN3VDfO71YGOTIqgiDh0WXEad+JfiB2NiIio3ClWwZaZmYkTJ07A398frVu3homJCb766is8f/4cy5cvR1RUVGnlJCKicqbnJ/bY9pUnbI3luPv0JbqsOI2D4bFixyIiIipXVO4S2aZNG4SGhsLR0REtW7bE8OHDsXnzZtja2pZmPiIiKsfq2Ztg79fNMGrTRYRGJWL4H2EY3doZ49tVV3SjJCIiosKpfIXt5MmTMDc3R5s2bdC2bVu0a9eOxRoREb2TRQVdbPzSA4ObOgIAlh+9g8G/n0dyWpbIyYiIiDSfygVbUlISVq9eDX19fcybNw92dnZwc3PD6NGjsWPHDjx9+rQ0cxIRUTmmLZNiqp8LFn9eD3JtKY7ffgq/5adwIyZF7GhEREQaTeWCzcDAAL6+vvjf//6H0NBQPHv2DPPnz4e+vj7mz5+PSpUqwdXVtTSzEhFROdelfkX8NaIJ7M308CAxDZ/9cgZ7rjwROxYREZHGUmuUSOB1AWdmZgYzMzOYmppCS0sLN27cKMlsRET0AaptZ4y9o5uheTULvMrKwZgtlzB7fwSyc3LFjkZERKRxVC7YcnNzce7cOcyfPx/t27eHiYkJmjRpgl9++QU2NjZYsWIF7t27V5pZiYjoA2Gir4PfBzXCiFZOAIBfT0bhizXnkPAiQ+RkREREmkXlUSJNTEzw8uVL2NjYoHXr1vj555/RqlUrODk5lWY+IiL6QMmkEnznWxN1Khrj2+1XEHIvAX7LTmHVFw3hVslY7HhEREQaQeWCbcGCBWjdujWqV69emnmIiOgj097NFs5WFTDsjzBEPXuJbgFnMLuLK3o0tBc7GhERkehU7hI5fPhwFmtERFQqqlkb4u/RTeFVywqZ2bmYuOMqftx9HZnZvK+NiIg+bmoPOkJERFSSjOTaWP1FQ4z3qg6JBPjjbDT6/HoW8SnpYkcjIiISDQs2IiLSGFKpBGO9qmHNgIYwlGvhQvRzdFp2CmHRiWJHIyIiEgULNiIi0jhtalpjz+hmqG5dAfGpGei1+iz+OBsNQRDEjkZERFSmWLAREZFGcrQwwK6RTdHBzQZZOQJ+3H0d3/11FelZOWJHIyIiKjMs2IiISGMZ6GphRZ8G+L59TUglwLYLj/D5qhA8SXoldjQiIqIywYKNiIg0mkQiwVctnbB+cCOY6GvjyqNk+C07hZC7CWJHIyIiKnUs2IiIqFxoXs0Se0c3g4utERJeZqLfmlD8dvIe72sjIqIPGgs2IiIqN+zN9PHXiCboWr8icnIFzNp/A+O2XsarTN7XRkREHyYWbEREVK7o6ciwqGddTPdzgZZUgr8vP0HXX07jQUIaACAnV0BoVCLCnkkQGpWInFxegSMiovJLS+wARERExSWRSDCwqSNq2Rph1OaLuBmbCr/lp9Df0wE7wh4hJjkdgAwbIi/A1liOaX4u8HW1FTs2ERFRsfEKGxERlVseVc2x9+tmqGdvguRXWVh25M6/xdp/YpPTMWLjRQRejxEpJRERkfpYsBERUblma6yHzUM9oKcjK3B9XodI/70R7B5JRETlDgs2IiIq9648TC5y4BEBQExyOs5FJZZdKCIiohLAgo2IiMq9+NT0dzcCEPXsRSknISIiKlks2IiIqNyzMpSr1G7K7usYsPYcdoQ9Qkp6VimnIiIien8cJZKIiMq9Ro5msDWWIzY5HYXdpaYllSA7V8Dx209x/PZT6OyUomUNS/jVtYNXLSvo6/BXIhERaR7+diIionJPJpVgmp8LRmy8CAmgVLRJ/v3v8j71Uc3aEPuuxGDv1Se4E/8CwRFxCI6Ig1xbira1rOFXxxatalhBrl3wACZERERljQUbERF9EHxdbbGyXwP4741QGtrf5q152MZ6VcOYts64FZeqKN6iE9Kw/2oM9l+NQQVdLbRzsYZfXVs0c7aEjhbvHiAiIvGwYCMiog+Gr6st2rnYIOROPIJOhsK7uQc8na0gk0qU2kkkEtS0MUJNGyN8410d1x+nYO/VJ9h35QmeJKdj16XH2HXpMYz1tOFb2wZ+de3QuKoZtGQs3oiIqGyxYCMiog+KTCqBh6MZEm4I8HA0y1esvU0ikcCtkjHcKhnje9+auPTwOfZeicH+azF4mpqBrRceYuuFh7CooIP2rrboVMcWn1Qxg/Qd2yUiIioJLNiIiIj+JZVK4O5gBncHM/zYyQWhUQnYdzUG/1yLwbMXmfjjbDT+OBsNGyM5OtZ5XbzVszeBRMLijYiISgcLNiIiogLIpBI0cbJAEycL+H9aG6fvPMO+qzE4GB6L2JR0rDkVhTWnolDJVA+d6tjBr64tXGyNWLwREVGJEr0z/uPHj9GvXz+Ym5tDT08Pbm5uuHDhgmK9IAiYOnUqbG1toaenBy8vL0RGRiptIzExEX379oWRkRFMTEwwZMgQvHihPDnq1atX0bx5c8jlctjb22P+/Pn5smzfvh01a9aEXC6Hm5sbDhw4oLRelSxERPTh0ZZJ0aqGFX7qURcXpnjh1/4N8WldO+jryPDo+SsEHL+LjktPoe2i41gUfBuRcakFbicnV0BoVCLCnkkQGpWInNzCJiEgIiJ6TdSC7fnz52jatCm0tbXxzz//ICIiAgsXLoSpqamizfz587F06VIEBAQgNDQUBgYG8PHxQXr6fyOA9e3bF+Hh4QgODsa+fftw4sQJDBs2TLE+JSUF3t7ecHBwQFhYGBYsWIDp06dj9erVijZnzpxB7969MWTIEFy6dAldunRBly5dcP369WJlISKiD5uulgztXKyxtHd9hE1phxV9GqC9qw10taS49/Qllh6ORLufT8B38QmsOHoH0QkvAQCB12PQbN4R9Ft7ARsiZei39gKazTuCwOsxIr8iIiLSZKJ2iZw3bx7s7e2xbt06xTJHR0fF/wuCgMWLF2PKlCno3LkzAGDDhg2wtrbG7t270atXL9y4cQOBgYE4f/48GjZsCABYtmwZOnTogJ9++gl2dnbYtGkTMjMzsXbtWujo6KB27dq4fPkyFi1apCjslixZAl9fX0ycOBEAMHPmTAQHB2P58uUICAhQKQsREX1c9HRk6FjHFh3r2OJFRjYORcRh75UnOBH5FDdjU3Ez9hYWHLwFB3N9RCek5Xt+bHI6Rmy8iJX9GiimHSAiInqTqAXbnj174OPjgx49euD48eOoWLEiRo4ciaFDhwIAoqKiEBsbCy8vL8VzjI2N4eHhgZCQEPTq1QshISEwMTFRFGsA4OXlBalUitDQUHTt2hUhISFo0aIFdHR0FG18fHwwb948PH/+HKampggJCcGECROU8vn4+GD37t0qZ3lbRkYGMjIyFI9TUlIAAFlZWcjKynqPI/f+8vYvdo6CMJv6NDkfs6mH2dQjRjZdKdDR1QodXa2Q/CoLQRHx2H8tFiH3Egos1oDXE3xLAPjvDUeraubvHNGyLPB9VQ+zqYfZ1KPJ2QDNzqdJ2VTNIGrBdu/ePaxcuRITJkzADz/8gPPnz2PMmDHQ0dHBgAEDEBsbCwCwtrZWep61tbViXWxsLKysrJTWa2lpwczMTKnNm1fu3txmbGwsTE1NERsb+879vCvL2+bOnQt/f/98y4OCgqCvr1/IUSlbwcHBYkcoFLOpT5PzMZt6mE09YmYzANDTCqghk2DtbVmh7QQAMckZWL41ENWMNeeeNr6v6mE29TCbejQ5G6DZ+TQhW1pawX/Me5uoBVtubi4aNmyIOXPmAADq16+P69evIyAgAAMGDBAzWomYPHmy0lW7lJQU2Nvbw9vbG0ZGRiIme13RBwcHo127dtDW1hY1y9uYTX2anI/Z1MNs6tGkbDlXY4Db197Z7liSKaq7VUHrGpaQaxde4JU2TTp2b2M29TCbephNfZqcT5Oy5fW+exdRCzZbW1u4uLgoLatVqxb++usvAICNjQ0AIC4uDra2//Xtj4uLQ7169RRt4uPjlbaRnZ2NxMRExfNtbGwQFxen1Cbv8bvavLn+XVnepqurC11d3XzLtbW1RT9B8mhSlrcxm/o0OR+zqYfZ1KMJ2WxNDFRqd/1JCsZsvYoKulrwdrHGp/Xs0NTZAtoyccYH04RjVxhmUw+zqYfZ1KfJ+TQhm6r7F3WUyKZNm+LWrVtKy27fvg0HBwcArwcgsbGxweHDhxXrU1JSEBoaCk9PTwCAp6cnkpKSEBYWpmhz5MgR5ObmwsPDQ9HmxIkTSv1Eg4ODUaNGDcWIlJ6enkr7yWuTtx9VshAREb2tkaMZbI3lKOzuNAkAywq6GN6yKiqa6OFFRjZ2XnqMgevOw2POYUzZfQ3n7ycil1MAEBF9lEQt2MaPH4+zZ89izpw5uHPnDjZv3ozVq1dj1KhRAACJRIJx48Zh1qxZ2LNnD65du4b+/fvDzs4OXbp0AfD6ipyvry+GDh2Kc+fO4fTp0xg9ejR69eoFOzs7AECfPn2go6ODIUOGIDw8HFu3bsWSJUuUuiuOHTsWgYGBWLhwIW7evInp06fjwoULGD16tMpZiIiI3iaTSjDN73VvkreLtrzHM7vUxuT2tXDqu9b4a4Qn+ns6wNxAB4kvM7Hx7AP0CAhBs3lHMPefGwh/kgxBYPFGRPSxELVL5CeffIJdu3Zh8uTJmDFjBhwdHbF48WL07dtX0WbSpEl4+fIlhg0bhqSkJDRr1gyBgYGQy+WKNps2bcLo0aPRtm1bSKVSdOvWDUuXLlWsNzY2RlBQEEaNGgV3d3dYWFhg6tSpSnO1NWnSBJs3b8aUKVPwww8/oFq1ati9ezdcXV2LlYWIiOhtvq62WNmvAfz3RiAm+b+5O22M5Zjm56IY0l8ikcDdwQzuDmaY2skFp+8mYM/lJzgYHosnyelYdfweVh2/B2erCvi0rh0+rWuHKhaqdbkkIqLySdSCDQA6deqETp06FbpeIpFgxowZmDFjRqFtzMzMsHnz5iL3U6dOHZw8ebLINj169ECPHj3eKwsREVFBfF1t0c7FBiF34hF0MhTezT3g6WxV6FD+WjIpWla3RMvqlpid5YqjN+Px9+UnOHIrHnfiX2BR8G0sCr6NupWM4VfXDn517WBtxD8gEhF9aEQv2IiIiD4WMqkEHo5mSLghwMPRTOV51+TaMrR3s0V7N1ukpGchKDwOf19+jNN3nuHKo2RceZSM2QduoLGjOTrXs0N7V1sY62vmjf5ERFQ8LNiIiIjKESO5Nrq7V0J390p4mpqBA9disOfKE4RFP0fIvQSE3EvAj39fR8vqVvi0nh28allBX4e/7omIyit+ghMREZVTloa6GNCkCgY0qYKHiWnYe/UJ9lx+gpuxqTh0Iw6HbsRBX0eGdi7W+LSuHZpXs4SOVuHjjeXkCgiNSkTYMwnMoxKL7LJJRERlgwUbERHRB8DeTB8jWzljZCtn3IpNxZ4rj7HnyhM8THyFvy8/wd+Xn8BEXxvtXW3RuZ4dGlUxg/SNYizweswbg6LIsCHyAmzfGhSFiIjKHgs2IiKiD0wNG0NMtKmJb71r4PLDJPx9+Qn2XY3BsxcZ2HLuAbacewAbIzn86tri07oV8eh5GkZuuoi3JwuITU7HiI0XsbJfAxZtREQiYcFGRET0gZJIJKhf2RT1K5vix04uCLmbgD1XHuOf67GITUnHryej8OvJKMikknzFGgAIeD1XnP/eCLRzsWH3SCIiEbBgIyIi+gjIpBI0q2aBZtUsMLOLK47deoo9l58gKDwWWbmFT8QtAIhJTse5qER4OpmXXWAiIgIAFH7nMREREX2QdLVk8KltgxV9G2D2Z24qPSc+Nf3djYiIqMSxYCMiIvqI2Zvqq9TOypCTchMRiYEFGxER0UeskaMZbI3lKOruNPMKOmjkaFZmmYiI6D8s2IiIiD5iMqkE0/xcAKDQoi0pLRN/hNyHIBR+rxsREZUOFmxEREQfOV9XW6zs1wA2xsrdHm2MdNGgsglycoHpeyMwesslvMjIFiklEdHHiaNEEhEREXxdbdHOxQYhd+IRdDIU3s094OlsBakEWHf6PuYcuIH9V2NwIyYFK/u6o4aNodiRiYg+CrzCRkRERABed4/0cDSDu4UAD0czyKQSSCQSDG7miK3DPWFrLMe9py/RecUp7Lz4SOy4REQfBRZsRERE9E7uDqbY93UzNK9mgfSsXEzYdgU/7LqG9KwcsaMREX3QWLARERGRSswr6OL3QY0wtm01SCTA5tAH6B5wBg8T08SORkT0wWLBRkRERCqTSSUY3646fh/UCKb62rj+OAUdl57EoYg4saMREX2QWLARERFRsbWsbon9Y5qjfmUTpKRn48sNF/C/f24iOydX7GhERB8UFmxERESkFjsTPWwd5olBTasAAAKO30Xf30IRn5oubjAiog8ICzYiIiJSm46WFNP8amN5n/ow0JEhNCoRHZeewtl7CWJHIyL6ILBgIyIiovfWqY4d9nzdDDWsDfE0NQN9fj2LlcfuIjdXEDsaEVG5xoKNiIiISoSTZQXsHtUUnzWoiFwBmBd4E8P+CENyWpbY0YiIyi0WbERERFRi9HRkWNijLuZ+5gYdLSkO3YhDp+Uncf1xstjRiIjKJRZsREREVKIkEgl6N6qMnSOawN5MDw8TX+GzlWewOfQBBIFdJImIioMFGxEREZUK14rG2De6ObxqWSMzOxc/7LqGb7ZdQVpmttjRiIjKDRZsREREVGqM9bXxa393fN++JmRSCXZeeoyuK87g7tMXYkcjIioXWLARERFRqZJIJPiqpRM2fekBS0Nd3IpLxafLTmHf1SdiRyMi0ngs2IiIiKhMNK5qjv1jmqFxVTO8zMzB6M2XMH1PODKzc8WORkSksViwERERUZmxMpRj4xAPjGjlBAD4/cx99FwVgsdJr0RORkSkmViwERERUZnSkknxnW9N/Na/IYzkWrj8MAmdlp7E8dtPxY5GRKRxWLARERGRKLxcrLF/THO4VjTC87QsDFx3DouCbyMnl0P/ExHlYcFGREREorE308eOr5qgr0dlCAKw9HAkBq47h4QXGWJHU1lOroDQqESEPZMgNCqRBScRlSgWbERERCQqubYMs7u6YVHPutDTluFk5DN0XHoKYdGJijaaWhQFXo9Bs3lH0G/tBWyIlKHf2gtoNu8IAq/HiB2NiD4QWmIHICIiIgKAzxpUQm07Y4zYFIZ7T1/i81VnMblDLdgZyzFjXwRiktMByLAh8gJsjeWY5ucCX1db0fIGXo/BiI0X8XbpGJucjhEbL2Jlvwai5iOiDwOvsBEREZHGqGFjiD2jm6FjHVtk5wqYuS8CIzZd/LdY+09eUSTWlaycXAH+eyPyFWsAFMv890ZozJVAIiq/eIWNiIjo/9u787ioyv0P4J9hGBh2ZB1QQRQUQUVARVLLBVmul9xKUzNcWvQHKXrVrt0UrWsupZZJWuZSV82lm/tKKqiJmggqoghELqwqyiqLcH5/KHMdAcEpOUf5vF+veQnzPOfMh0Nx5jvPc55DkmKsr4vlIzzRxbEZ5u5KqrWPAECGB0VRfzcV5DoyCIKAsvtVKKuoQtn9SpRWVKH0fiVKKx58rX6u4uFz96tQVlGJsvuPPPewXf3cw3/LHttHYVkFissq6/wZBABZ+aU4nZ4H3zaWz+Q4EVHTwIKNiIiIJEcmk8FVZfrEPtVFUae5B1BZ9aBYEyQ2oJVbWFp/JyKiJ2DBRkRERJLU0GKntpEuHdmDxUyUCjn0dXU0/lUqHvteV/M5/YfbKRU6UOrKof/w30e3vZxVgGk/na83m42J/lP/3EREj2LBRkRERJJkY6JsUL/PX+8EHyfLBwXXw+JKIZdBJpM9s2zt7UyxOOoKsvNLa72OrdqSg1cwb4g+2tqaPLMsRPRi46IjREREJEndnCxgZ6ZEXWWXDICdmRKDPVugpYUhrE30YapUQE9X55kWawAg15EhIthNnePxXACgJ9fBb1fv4G9fHsPC/Zdxr7zua96IiOrCgo2IiIgkqSFFUUSwG+Q6z7Y4q0tgBzuseNMLKjPNkUCVmRIr3/TC4WmvwK+9Le5XCVgRnQa/JTE4dClHlKxE9PzilEgiIiKSrOqiaO6uJI2l/VUSuA8b8CBffzcVYlNzcfDYKfj38oGvs426iPwupAsOXszGnJ0XkXH3HsZ/fwYB7raICHaHvbmBqNmJ6PnAgo2IiIgkrb6iSGxyHRl8nCxw+5IAHyeLGrn83VXo4WyFZYdS8N3xdBy4mINjKbcwxa8txvRoBYWcE56IqG78C0FERESSV10UeVvVXhRJnZG+Lmb+rT32TOqJLo7NUFJeiXl7LyH4q+OIu3pH7HhEJGEs2IiIiIgaiavKFFve88XCoR1hbqjA5exCDF1xAjN/Po+7JeVixyMiCWLBRkRERNSIdHRkGN7VAYf/0Ruve7cAAPx4+jr6LY7Bf+NuQJDa3b+JSFQs2IiIiIhEYGGkh89e98Dmd7vDxcYYt4vL8Y+t5/DGtyeRmlsodjwikggWbEREREQi8mltiT2TeuGDQFcoFTo4lZ6HoC+P4bMDvHcbEbFgIyIiIhKdnq4OJvZug6gpr6Cfqw0qKgVEHkmD/xcxOHI5V+x4RCQiUQu2OXPmQCaTaTxcXV3V7b17967RPmHCBI19XLt2DQMGDIChoSFsbGwwffp03L9/X6NPdHQ0vLy8oK+vD2dnZ6xbt65GlsjISLRq1QpKpRI+Pj44ffq0RntpaSlCQ0NhaWkJY2NjDB06FDk5vPklERER/XVaWhjiu5Au+Ga0N+zMlLiedw9j1/2GievjkJV/T+x4RCQC0UfY3N3dkZWVpX4cP35co/2dd97RaF+0aJG6rbKyEgMGDEB5eTlOnDiB77//HuvWrcPs2bPVfdLT0zFgwAD06dMHCQkJCA8Px9tvv40DBw6o+2zevBlTp05FREQEzp49Cw8PDwQEBCA393+faE2ZMgW7du3C1q1bERMTg8zMTAwZMuQZHhkiIiJqimQyGQLcVfhl6it4p5cT5Doy7EvMht/iGKw+no77lVViRySiRiR6waarqwuVSqV+WFlZabQbGhpqtJuamqrbDh48iKSkJKxfvx6dO3dGUFAQPvnkE0RGRqK8/MHSuCtXroSTkxMWL16M9u3bIywsDK+99hqWLl2q3s+SJUvwzjvvYOzYsXBzc8PKlSthaGiINWvWAADy8/OxevVqLFmyBH379oW3tzfWrl2LEydO4OTJk41wlIiIiKipMdLXxb8GuGH3+z3h5WCO4vJKfLI7Ca8u/xXx13jvNqKmQlfsACkpKbC3t4dSqYSvry/mz58PBwcHdfuGDRuwfv16qFQqBAcHY9asWTA0NAQAxMbGomPHjrC1tVX3DwgIwMSJE3Hx4kV4enoiNjYWfn5+Gq8ZEBCA8PBwAEB5eTni4uIwc+ZMdbuOjg78/PwQGxsLAIiLi0NFRYXGflxdXeHg4IDY2Fh079691p+trKwMZWVl6u8LCgoAABUVFaioqNDmcP1lql9f7By1YTbtSTkfs2mH2bTDbNqTcr6mms3ZygA/ju+KrWcz8NnBK0jKKsCQFSfwRpcW+Ed/F5gZKETL9mcxm3aknA2Qdj4pZWtoBpkg4s0+9u3bh6KiIrRr1w5ZWVmYO3cuMjIykJiYCBMTE3z77bdwdHSEvb09zp8/jw8++ADdunXDzz//DAB49913cfXqVY3pjSUlJTAyMsLevXsRFBSEtm3bYuzYsRoF2d69ezFgwACUlJTgzp07aN68OU6cOAFfX191nxkzZiAmJganTp3Cxo0bMXbsWI3iCwC6deuGPn36YOHChbX+fHPmzMHcuXNrPL9x40Z10UlERETUUEUVwI6rOjh988EkKWOFgEGOVehiJUAmEzkcET2VkpISjBw5Evn5+RqzCB8n6ghbUFCQ+utOnTrBx8cHjo6O2LJlC8aPH493331X3d6xY0fY2dmhX79+SEtLQ5s2bcSI/FRmzpyJqVOnqr8vKChAy5Yt4e/v/8RfSmOoqKhAVFQU+vfvD4XiyZ/MNTZm056U8zGbdphNO8ymPSnnY7YHhgE4lZ6HiF2XkHazGOtT5UitbIa5wW5obW0karanxWzakXI2QNr5pJStevZdfUSfEvkoc3NztG3bFqmpqbW2+/j4AABSU1PRpk0bqFSqGqs5Vq/cqFKp1P8+vppjTk4OTE1NYWBgALlcDrlcXmufR/dRXl6Ou3fvwtzcvNY+tdHX14e+vn6N5xUKhej/gVSTUpbHMZv2pJyP2bTDbNphNu1JOR+zAT3b2mLfZGusOvY7lh1Kwcn0OwiOjMV7r7RGaB9nKBVyAEBllYCz6XmIuyWD5Y1C+DrbQK4jvaE4/k61I+VsgLTzSSFbQ19f9EVHHlVUVIS0tDTY2dnV2p6QkAAA6nZfX19cuHBBYzXHqKgomJqaws3NTd3n0KFDGvuJiopST3/U09ODt7e3Rp+qqiocOnRI3cfb2xsKhUKjT3JyMq5du6YxjZKIiIiosejp6iC0jzOipryCPu2sUV5Zha8Op8J/6VHEXLmJ/YlZ6LnwMN5ccwY/pMjx5poz6LnwMPYnZokdnYiegqgjbNOmTUNwcDAcHR2RmZmJiIgIyOVyjBgxAmlpadi4cSP+9re/wdLSEufPn8eUKVPw8ssvo1OnTgAAf39/uLm5YfTo0Vi0aBGys7Px0UcfITQ0VD2yNWHCBCxfvhwzZszAuHHjcPjwYWzZsgV79uxR55g6dSpCQkLQpUsXdOvWDV988QWKi4sxduxYAICZmRnGjx+PqVOnwsLCAqampnj//ffh6+tb54IjRERERI3BwdIQa8Z0xYGL2ZizMwnX8koQsuZ0rX2z80sxcf1ZrHjTC4Edav+AnIikRdSC7caNGxgxYgRu374Na2tr9OzZEydPnoS1tTVKS0vxyy+/qIunli1bYujQofjoo4/U28vlcuzevRsTJ06Er68vjIyMEBISgo8//ljdx8nJCXv27MGUKVPw5ZdfokWLFvjuu+8QEBCg7jN8+HDcvHkTs2fPRnZ2Njp37oz9+/drrD65dOlS6OjoYOjQoSgrK0NAQAC+/vrrxjlQRERERE8gk8kQ2MEOPV2sseRgMtb8+ket/QQAMgBzdyWhv5tKktMjiUiTqAXbpk2b6mxr2bIlYmJi6t2Ho6Mj9u7d+8Q+vXv3Rnx8/BP7hIWFISwsrM52pVKJyMhIREZG1puJiIiISAzG+rro76aqs2ADHhRtWfmliE7ORb/2tnX2IyJpkNSiI0RERET05+QWljao3/jvz0BlqoSLrTHa2prAxcYYLrYmcLE1hqlSmgtFEDVFLNiIiIiIXiA2JsoG980uKEV2QSmOpdzSeL66kHOxMXlY0BnD2cak3pt0E9FfjwUbERER0Qukm5MF7MyUyM4vhVBLuwyAykyJPZN6If1WMVJyCnElpwgpuYVIySlSF3G1FXK2pvpoa2sCZxvNUTltCrnKKgGnqm85kJ4n2VsOEImNBRsRERHRC0SuI0NEsBsmrj8LGaBRtFWXQxHBbrAw0oOFkR68HZtpbF9QWoGUnCKk5j4o5K7kFCI1twhZ+aXIKShDTkFZjULOxkSzkGv7cHTOzLD2Qm5/Yhbm7kpCVn4pADl+SDkDOzMlIoLduHol0WNYsBERERG9YAI72GHFm16PFEUPqBpQFJkqFfB2bFZrIZeaW4SUnAcjcVcefp2VX4rcwjLkFpbheGrNQk5zaqUJrt0uxrSt52uM/vGWA0S1Y8FGRERE9AIK7GCH/m4qxKbm4uCxU/Dv5fOnph2aKhXwcmgGLwfNQq6wtAIpuUVIfTgal/KwkMt8pJD7NfV2vfvnLQeIaseCjYiIiOgFJdeRwcfJArcvCfBxsngmRZDJEwq5ByNyD66Pu5JThMSMu7hdXFHnvqpvOXA6PQ++bSz/8qxEzyMWbERERET0lzNRKuDp0AyejxRyOxIyMHlTQr3bNvTWBERNgY7YAYiIiIioaWjoLQf2nM/C7aKyZ5yG6PnAgo2IiIiIGkX1LQfqm5h5MCkHvT+PxrdH01B2v7JRshFJFQs2IiIiImoU1bccAFCjaJM9fIT7ucDNzhSFpffx6d7L8FsSgz3nsyAItd1VjujFx4KNiIiIiBpN9S0HVGaa0yNVZkqseNML4X5tsev9nvjstU6wMdHH9bx7CN14Fq+tjEX8tTsipSYSDxcdISIiIqJGVd8tB+Q6MrzepSUGdLLDNzG/49ujvyPu6h0M/voEXvWwx4zAdmjRzFDkn4KocXCEjYiIiIgaXfUtB7yt6r7lgKGeLqb0b4sj03rjNe8WkMmAnecy0XdxDBbtv4zC0rpvEUD0omDBRkRERESSpjJT4vPXPbArrCe6t7ZA+f0qfB2dhj6fR2PDqau4X1kldkSiZ4YFGxERERE9Fzo0N8OP73THqre6wMnKCLeKyvGvbYn427JjiLlyU+x4RM8ECzYiIiIiem7IZDL0d7PFgfCXERHsBnNDBa7kFCFkzWm8teY0krMLxY5I9JdiwUZEREREzx09XR2M7eGEmGl98HZPJyjkMhy9chNBXx7Fh9su4GYhb7xNLwYWbERERET03DIzVOCjv7shasorCHRXoUoANp66hj6fRyPySCpKK3jjbXq+sWAjIiIioudeKysjrBztjS3v+aJTCzMUld3HZweS0W9xDHYkZPDG2/TcYsFGRERERC+Mbk4W2P5/PbB0uAfszJTIuHsPkzclYNDXJ3Dmjzyx4xE9NRZsRERERPRC0dGRYbBnCxz+R29M828LQz05zl2/i9dWxiJ0w1lcu10idkSiBmPBRkREREQvJAM9OcL6uiB6em+80bUldGTAngtZ8FsSg0/3XkL+Pd54m6SPBRsRERERvdBsTJRYMLQT9kzqhZ7OViivrMK3R39H78+O4IfYP1DBG2+ThLFgIyIiIqImob2dKf4zvhvWjukKZxtj3CmpwOwdFxH4xVEcvpyjXpikskrAqfQ8xN2S4VR6HiqruGAJiUdX7ABERERERI1FJpOhj6sNerlY4cffrmNp1BWk3SzGuHVn0MPZEr3b2mDNr+nIyi8FIMcPKWdgZ6ZERLAbAjvYiR2fmiCOsBERERFRk6Mr18Ho7o6Int4b773SGnpyHfyaehvz9l56WKz9T3Z+KSauP4v9iVkipaWmjAUbERERETVZpkoFZga1x8EpL0OpqP2tcfWEyLm7kjg9khodp0QSERERUZOXlV+K0oq6Fx8RHvYZ/PWv8GxpDicrI7SyMkJrK2M0b2YAuY6s8cJSk8KCjYiIiIiavNzC0vo7ATh/Ix/nb+RrPKeQy+BgYfigiLM0gpO1EZwe/mtrooTOX1jMPbogimV6HnydbVgsvuBYsBERERFRk2djomxQv3dfdoKOTAfpt4rwx60SpN8uRvn9KqTdLEbazeIa/ZUKnQdF3MMROadHHpZGepDJGl5s7U/MwtxdSVwQpYlhwUZERERETV43JwvYmSmRnV+K2q5SkwFQmSnxQWB7jRGtqioBWQWlSL9ZjPTbxUi/WYw/bhcj/VYxrueVoLSiCpezC3E5u7DGPk30deFk/WBU7sH0yv8VdWYGCo2++xOzMHH92RrZqhdEWfGmF4u2FxQLNiIiIiJq8uQ6MkQEu2Hi+rOQARqFUXV5FhHsVmP6oY6ODM3NDdDc3AA9Xaw02ioqq5Bx5x7SbxWrH3/cLsbvN4uRmX8PhWX3a51iCQAWRnrqKZatrAyx+nh6rYWk8DDf3F1J6O+m4vTIFxALNiIiIiIiAIEd7LDiTa9Hph0+oNJy2qFCroNWD0fN+jzWVlpRiWt5Jf8r5B4p6nILy5BXXI684nLEXb1T7+tUL4hyOj0Pvm0snyojSR8LNiIiIiKihwI72KG/mwqxqbk4eOwU/Hv5PJOFPZQKOdramqCtrUmNtqKy+/jj4Whc+s1iHE25id/+qL9wy7hbAoAF24uGBRsRERER0SPkOjL4OFng9iUBPk4WjT7N0FhfFx2am6FDczMAQJdWFhix6mS9283anogzf9zBYM/m6NrK4i9dnZLEw4KNiIiIiEjC6lsQBQB0ZMC9iips+u06Nv12Hc3NDTDI0x6DPVvA2ca4UfPSX6v227kTEREREZEkVC+IAvxvAZRqsoeP5SO8sPEdHwzr0gLG+rrIuHsPkUfS4LckBq8uP461v6bjVlFZY0envwBH2IiIiIiIJK6hC6K81MYKHw/sgKikHGyLz0DMlZvqlSj/vecSXnaxwmCvFujf3hYGenKxfhx6CizYiIiIiIieAw1dEEWpkCPYwx7BHva4VVSG3ecysS0+A+du5ONI8k0cSb4JY31dBHZQYYhnc3Rvbcnr3SSMBRsRERER0XPiaRdEsTLWx5geThjTwwmpuUXYHp+BbfEZyLh7Dz/F3cBPcTdgZ6bEwM7NMdizOdqpaq5aSeJiwUZERERE1AQ42xhjWkA7TO3fFmeu3sG2+BvYfT4LWfmlWBmThpUxaXCzM8UQr+Z41cMeNqZKsSMTWLARERERETUpOjoydHOyQDcnC0QEu+PI5Vz8HJ+B6ORcJGUVIGlPAT7dewk9Xawx2NMeAe4qGOqxbBALjzwRERERUROlVMgR1NEOQR3tcKe4HLvPZ+Ln+AzEX7uLo1du4uiVmzDUS0SguwqDvZrjpTZWT5yGWVkl4FR6HuJuyWCZnvdMbjre1LBgIyIiIiIiNDPSw2jfVhjt2wp/3CrGtvgMbE/IwNXbJfg5PgM/x2fAxkQfAzs/uL+bm72pxvb7E7MeWcVSjh9SzsDusVUs6emxYCMiIiIiIg2trIwwpX9bhPu54Oy1O9gWn4Hd57OQW1iGVcfSsepYOlxVJhjk2RyDOjdHwvU7mLj+bI0be2fnl2Li+rNY8aYXizYtsWAjIiIiIqJayWQyeDtawNvRArP/7o4jybnYdjYDhy/n4nJ2IRbsu4wF+y5DT65To1gDAAEPbuw9d1cS+rupOD1SCyzYiIiIiIioXnq6OghwVyHAXYX8kgrsuZCFbfE38Nsfd1BeWVXndgKArPxSnE7Pg28by8YL/ILQETsAERERERE9X8wMFRjp44CtE15CxN/dGrRNbmHpM071YhK1YJszZw5kMpnGw9XVVd1eWlqK0NBQWFpawtjYGEOHDkVOTo7GPq5du4YBAwbA0NAQNjY2mD59Ou7fv6/RJzo6Gl5eXtDX14ezszPWrVtXI0tkZCRatWoFpVIJHx8fnD59WqO9IVmIiIiIiJoaVzvT+jsBOJl2G1n5955xmheP6CNs7u7uyMrKUj+OHz+ubpsyZQp27dqFrVu3IiYmBpmZmRgyZIi6vbKyEgMGDEB5eTlOnDiB77//HuvWrcPs2bPVfdLT0zFgwAD06dMHCQkJCA8Px9tvv40DBw6o+2zevBlTp05FREQEzp49Cw8PDwQEBCA3N7fBWYiIiIiImqJuThawM1OivqvTfvztOl5acBgjV53ET3E3UFR2v54tCJBAwaarqwuVSqV+WFlZAQDy8/OxevVqLFmyBH379oW3tzfWrl2LEydO4OTJkwCAgwcPIikpCevXr0fnzp0RFBSETz75BJGRkSgvLwcArFy5Ek5OTli8eDHat2+PsLAwvPbaa1i6dKk6w5IlS/DOO+9g7NixcHNzw8qVK2FoaIg1a9Y0OAsRERERUVMk15EhIvjBtMjHizbZw8coHwd0a2UBQQBOpN3GtK3n0OXfUZi8KR7Rybm4/4Rr4Jo60RcdSUlJgb29PZRKJXx9fTF//nw4ODggLi4OFRUV8PPzU/d1dXWFg4MDYmNj0b17d8TGxqJjx46wtbVV9wkICMDEiRNx8eJFeHp6IjY2VmMf1X3Cw8MBAOXl5YiLi8PMmTPV7To6OvDz80NsbCwANChLbcrKylBWVqb+vqCgAABQUVGBiooKLY/YX6P69cXOURtm056U8zGbdphNO8ymPSnnYzbtMJt2mO3p9Gtnha/e8MC/915GdsH/3v+qzPTxryBXBLg/eL9+/U4Jdp7LxvaETPxxuwQ7EjKxIyET1sZ6CO5kh4Gd7dBeZQKZ7NmsJimlY9fQDKIWbD4+Pli3bh3atWuHrKwszJ07F7169UJiYiKys7Ohp6cHc3NzjW1sbW2RnZ0NAMjOztYo1qrbq9ue1KegoAD37t3DnTt3UFlZWWufy5cvq/dRX5bazJ8/H3Pnzq3x/MGDB2FoaFjndo0pKipK7Ah1YjbtSTkfs2mH2bTDbNqTcj5m0w6zaYfZns4HbkBagQwFFYCpAmhjWozKq3HYe/V/fZwAhLsAV+2AMzd1cPa2DDeLyrHmxFWsOXEVdgYCulpXwdtKgLn+s8kphWNXUlLSoH6iFmxBQUHqrzt16gQfHx84Ojpiy5YtMDAwEDHZX2PmzJmYOnWq+vuCggK0bNkS/v7+MDVt2MWZz0pFRQWioqLQv39/KBQKUbM8jtm0J+V8zKYdZtMOs2lPyvmYTTvMph1m097T5iu/X4VjKbew/VwWDl3ORdY9YOc1OXZdB3xbW2CQhz383WxgpP/nSxcpHbvq2Xf1EX1K5KPMzc3Rtm1bpKamon///igvL8fdu3c1RrZycnKgUqkAACqVqsZqjtUrNz7a5/HVHHNycmBqagoDAwPI5XLI5fJa+zy6j/qy1EZfXx/6+jU/FlAoFKL/B1JNSlkex2zak3I+ZtMOs2mH2bQn5XzMph1m0w6zaa+h+RQKILBTcwR2al7j/m4n0vJwIi0PEbvkCHC3xWCvFujpbPWnb8AthWPX0NcXfdGRRxUVFSEtLQ12dnbw9vaGQqHAoUOH1O3Jycm4du0afH19AQC+vr64cOGCxmqOUVFRMDU1hZubm7rPo/uo7lO9Dz09PXh7e2v0qaqqwqFDh9R9GpKFiIiIiIj+nEfv73Z0eh9M7d8WrSwNca+iEtsTMhGy5jS6zz+EeXuSkJTZsBGq552oI2zTpk1DcHAwHB0dkZmZiYiICMjlcowYMQJmZmYYP348pk6dCgsLC5iamuL999+Hr6+vepEPf39/uLm5YfTo0Vi0aBGys7Px0UcfITQ0VD2yNWHCBCxfvhwzZszAuHHjcPjwYWzZsgV79uxR55g6dSpCQkLQpUsXdOvWDV988QWKi4sxduxYAGhQFiIiIiIi+us4WBpiUj8XvN/XGfHX72Lb2QzsOp+Jm4VlWHUsHauOpcNVZYLBns0xyLM5bE2VYkd+JkQt2G7cuIERI0bg9u3bsLa2Rs+ePXHy5ElYW1sDAJYuXQodHR0MHToUZWVlCAgIwNdff63eXi6XY/fu3Zg4cSJ8fX1hZGSEkJAQfPzxx+o+Tk5O2LNnD6ZMmYIvv/wSLVq0wHfffYeAgAB1n+HDh+PmzZuYPXs2srOz0blzZ+zfv19jIZL6shARERER0V9PJpPBy6EZvByaYdbf3RCdnItt8Rk4dCkXl7MLMX/fZSzcfxk9nK0w2LM5AtxVtV7vVlkl4FR6HuJuyWCZngdfZ5s/PbWyMYhasG3atOmJ7UqlEpGRkYiMjKyzj6OjI/bu3fvE/fTu3Rvx8fFP7BMWFoawsLA/lYWIiIiIiJ4dPV0d+Lur4O+uQn5JBXZfyMS2sxk4c/UOjqXcwrGUWzDUS0SAuwqDPZujx8Pr3fYnZmHuriRk5ZcCkOOHlDOwM1MiItgNgR3sxP6xnkhSi44QERERERE1hJmhAqN8HDHKxxHXbpdgW3wGtsXfwB/qrzNga6qPTi3MEZWUU2P77PxSTFx/Five9JJ00SapRUeIiIiIiIieloOlISb7ueDItN7478SX8GZ3B5gbKpBTUFZrsQYAwsN/5+5KQmWVUGsfKWDBRkRERERELwSZTAZvx2b496COOP2hH6b2b/vE/gKArPxSnE7Pa5yAWmDBRkRERERELxw9XR04Who2qG9uYekzTqM9FmxERERERPRCsjFp2FL/De0nBhZsRERERET0QurmZAE7MyXqWrxfBsDOTIluThaNGeupsGAjIiIiIqIXklxHhohgNwCoUbRVfx8R7Cbp+7GxYCMiIiIiohdWYAc7rHjTCyozzWmPKjOl5Jf0B3gfNiIiIiIiesEFdrBDfzcVYlNzcfDYKfj38oGvs42kR9aqsWAjIiIiIqIXnlxHBh8nC9y+JMDHyeK5KNYATokkIiIiIiKSLBZsREREREREEsWCjYiIiIiISKJYsBEREREREUkUCzYiIiIiIiKJYsFGREREREQkUSzYiIiIiIiIJIoFGxERERERkUSxYCMiIiIiIpIoFmxEREREREQSxYKNiIiIiIhIoliwERERERERSRQLNiIiIiIiIonSFTtAUyIIAgCgoKBA5CRARUUFSkpKUFBQAIVCIXYcDcymPSnnYzbtMJt2mE17Us7HbNphNu0wm/aknE9K2aprguoaoS4s2BpRYWEhAKBly5YiJyEiIiIiIikoLCyEmZlZne0yob6Sjv4yVVVVyMzMhImJCWQymahZCgoK0LJlS1y/fh2mpqaiZnkcs2lPyvmYTTvMph1m056U8zGbdphNO8ymPSnnk1I2QRBQWFgIe3t76OjUfaUaR9gakY6ODlq0aCF2DA2mpqai/8daF2bTnpTzMZt2mE07zKY9KedjNu0wm3aYTXtSzieVbE8aWavGRUeIiIiIiIgkigUbERERERGRRLFga6L09fUREREBfX19saPUwGzak3I+ZtMOs2mH2bQn5XzMph1m0w6zaU/K+aScrS5cdISIiIiIiEiiOMJGREREREQkUSzYiIiIiIiIJIoFGxERERERkUSxYCMiIiIiIpIoFmxNzPz589G1a1eYmJjAxsYGgwYNQnJystixAAArVqxAp06d1Dcy9PX1xb59+8SOVasFCxZAJpMhPDxc7CiYM2cOZDKZxsPV1VXsWGoZGRl48803YWlpCQMDA3Ts2BFnzpwROxYAoFWrVjWOnUwmQ2hoqNjRUFlZiVmzZsHJyQkGBgZo06YNPvnkE0hlnajCwkKEh4fD0dERBgYGeOmll/Dbb781eo6jR48iODgY9vb2kMlk2L59u0a7IAiYPXs27OzsYGBgAD8/P6SkpEgi288//wx/f39YWlpCJpMhISGhUXLVl62iogIffPABOnbsCCMjI9jb2+Ott95CZmam6NmAB3/zXF1dYWRkhGbNmsHPzw+nTp1qlGwNyfeoCRMmQCaT4YsvvpBEtjFjxtT4excYGCiJbABw6dIlvPrqqzAzM4ORkRG6du2Ka9euiZ6ttvOETCbDZ599Jnq2oqIihIWFoUWLFjAwMICbmxtWrlz5zHM1JFtOTg7GjBkDe3t7GBoaIjAwsNH+/jbk/W5paSlCQ0NhaWkJY2NjDB06FDk5OY2S72mxYGtiYmJiEBoaipMnTyIqKgoVFRXw9/dHcXGx2NHQokULLFiwAHFxcThz5gz69u2LgQMH4uLFi2JH0/Dbb7/hm2++QadOncSOoubu7o6srCz14/jx42JHAgDcuXMHPXr0gEKhwL59+5CUlITFixejWbNmYkcD8OB3+ehxi4qKAgC8/vrrIicDFi5ciBUrVmD58uW4dOkSFi5ciEWLFuGrr74SOxoA4O2330ZUVBT+85//4MKFC/D394efnx8yMjIaNUdxcTE8PDwQGRlZa/uiRYuwbNkyrFy5EqdOnYKRkRECAgJQWloqerbi4mL07NkTCxcufOZZanvturKVlJTg7NmzmDVrFs6ePYuff/4ZycnJePXVV0XPBgBt27bF8uXLceHCBRw/fhytWrWCv78/bt68KYl81bZt24aTJ0/C3t6+UXIBDcsWGBio8Xfvxx9/lES2tLQ09OzZE66uroiOjsb58+cxa9YsKJVK0bM9eryysrKwZs0ayGQyDB06VPRsU6dOxf79+7F+/XpcunQJ4eHhCAsLw86dO0XNJggCBg0ahN9//x07duxAfHw8HB0d4efn1yjvORvyfnfKlCnYtWsXtm7dipiYGGRmZmLIkCHPPJtWBGrScnNzBQBCTEyM2FFq1axZM+G7774TO4ZaYWGh4OLiIkRFRQmvvPKKMHnyZLEjCREREYKHh4fYMWr1wQcfCD179hQ7RoNNnjxZaNOmjVBVVSV2FGHAgAHCuHHjNJ4bMmSIMGrUKJES/U9JSYkgl8uF3bt3azzv5eUl/Otf/xIplSAAELZt26b+vqqqSlCpVMJnn32mfu7u3buCvr6+8OOPP4qa7VHp6ekCACE+Pr5RM1V7UrZqp0+fFgAIV69ebZxQDzUkW35+vgBA+OWXXxon1CPqynfjxg2hefPmQmJiouDo6CgsXbpUEtlCQkKEgQMHNnqWx9WWbfjw4cKbb74pTqBHNOS/uYEDBwp9+/ZtnECPqC2bu7u78PHHH2s8J8bf4sezJScnCwCExMRE9XOVlZWCtbW1sGrVqkbNJgg13+/evXtXUCgUwtatW9V9Ll26JAAQYmNjGz1ffTjC1sTl5+cDACwsLEROoqmyshKbNm1CcXExfH19xY6jFhoaigEDBsDPz0/sKBpSUlJgb2+P1q1bY9SoUY0yhaQhdu7ciS5duuD111+HjY0NPD09sWrVKrFj1aq8vBzr16/HuHHjIJPJxI6Dl156CYcOHcKVK1cAAOfOncPx48cRFBQkcjLg/v37qKysrPHJt4GBgWRGdwEgPT0d2dnZGv+/mpmZwcfHB7GxsSIme/7k5+dDJpPB3Nxc7CgaysvL8e2338LMzAweHh5ixwEAVFVVYfTo0Zg+fTrc3d3FjlNDdHQ0bGxs0K5dO0ycOBG3b98WOxKqqqqwZ88etG3bFgEBAbCxsYGPj88Tp5uKJScnB3v27MH48ePFjgLgwbli586dyMjIgCAIOHLkCK5cuQJ/f39Rc5WVlQGAxnlCR0cH+vr6opwnHn+/GxcXh4qKCo3zg6urKxwcHCR5fmDB1oRVVVUhPDwcPXr0QIcOHcSOAwC4cOECjI2Noa+vjwkTJmDbtm1wc3MTOxYAYNOmTTh79izmz58vdhQNPj4+WLduHfbv348VK1YgPT0dvXr1QmFhodjR8Pvvv2PFihVwcXHBgQMHMHHiREyaNAnff/+92NFq2L59O+7evYsxY8aIHQUA8M9//hNvvPEGXF1doVAo4OnpifDwcIwaNUrsaDAxMYGvry8++eQTZGZmorKyEuvXr0dsbCyysrLEjqeWnZ0NALC1tdV43tbWVt1G9SstLcUHH3yAESNGwNTUVOw4AIDdu3fD2NgYSqUSS5cuRVRUFKysrMSOBeDBdGZdXV1MmjRJ7Cg1BAYG4ocffsChQ4ewcOFCxMTEICgoCJWVlaLmys3NRVFRERYsWIDAwEAcPHgQgwcPxpAhQxATEyNqtsd9//33MDExkczUua+++gpubm5o0aIF9PT0EBgYiMjISLz88sui5qoufmbOnIk7d+6gvLwcCxcuxI0bNxr9PFHb+93s7Gzo6enV+BBKqucHXbEDkHhCQ0ORmJgoqU/E27Vrh4SEBOTn5+Onn35CSEgIYmJiRC/arl+/jsmTJyMqKqpR5tM/jUdHXDp16gQfHx84Ojpiy5Yton8CWFVVhS5duuDTTz8FAHh6eiIxMRErV65ESEiIqNket3r1agQFBTXq9SZPsmXLFmzYsAEbN26Eu7s7EhISEB4eDnt7e0kcu//85z8YN24cmjdvDrlcDi8vL4wYMQJxcXFiR6O/UEVFBYYNGwZBELBixQqx46j16dMHCQkJuHXrFlatWoVhw4bh1KlTsLGxETVXXFwcvvzyS5w9e1YSI/WPe+ONN9Rfd+zYEZ06dUKbNm0QHR2Nfv36iZarqqoKADBw4EBMmTIFANC5c2ecOHECK1euxCuvvCJatsetWbMGo0aNksx7ga+++gonT57Ezp074ejoiKNHjyI0NBT29vaizgZSKBT4+eefMX78eFhYWEAul8PPzw9BQUGNvniWFN/vPi2OsDVRYWFh2L17N44cOYIWLVqIHUdNT08Pzs7O8Pb2xvz58+Hh4YEvv/xS7FiIi4tDbm4uvLy8oKurC11dXcTExGDZsmXQ1dUV/dPJR5mbm6Nt27ZITU0VOwrs7OxqFNvt27eXzJTNalevXsUvv/yCt99+W+woatOnT1ePsnXs2BGjR4/GlClTJDPC26ZNG8TExKCoqAjXr1/H6dOnUVFRgdatW4sdTU2lUgFAjVW/cnJy1G1Ut+pi7erVq4iKipLM6BoAGBkZwdnZGd27d8fq1auhq6uL1atXix0Lx44dQ25uLhwcHNTniqtXr+If//gHWrVqJXa8Glq3bg0rKyvRzxdWVlbQ1dWV/Pni2LFjSE5Olsy54t69e/jwww+xZMkSBAcHo1OnTggLC8Pw4cPx+eefix0P3t7eSEhIwN27d5GVlYX9+/fj9u3bjXqeqOv9rkqlQnl5Oe7evavRX6rnBxZsTYwgCAgLC8O2bdtw+PBhODk5iR3piaqqqtTzoMXUr18/XLhwAQkJCepHly5dMGrUKCQkJEAul4sdUa2oqAhpaWmws7MTOwp69OhRYxndK1euwNHRUaREtVu7di1sbGwwYMAAsaOolZSUQEdH80+0XC5XfxItFUZGRrCzs8OdO3dw4MABDBw4UOxIak5OTlCpVDh06JD6uYKCApw6dUpS18ZKUXWxlpKSgl9++QWWlpZiR3oiqZwrRo8ejfPnz2ucK+zt7TF9+nQcOHBA7Hg13LhxA7dv3xb9fKGnp4euXbtK/nyxevVqeHt7S+Z6yYqKClRUVEj+XGFmZgZra2ukpKTgzJkzjXKeqO/9rre3NxQKhcb5ITk5GdeuXZPk+YFTIpuY0NBQbNy4ETt27ICJiYl6nq6ZmRkMDAxEzTZz5kwEBQXBwcEBhYWF2LhxI6KjoyVxkjMxMalxnZ+RkREsLS1Fv/5v2rRpCA4OhqOjIzIzMxEREQG5XI4RI0aImgt4sGTuSy+9hE8//RTDhg3D6dOn8e233+Lbb78VO5paVVUV1q5di5CQEOjqSudPYnBwMObNmwcHBwe4u7sjPj4eS5Yswbhx48SOBgA4cOAABEFAu3btkJqaiunTp8PV1RVjx45t1BxFRUUaowPp6elISEiAhYUFHBwcEB4ejn//+99wcXGBk5MTZs2aBXt7ewwaNEj0bHl5ebh27Zr6/mbVb1ZVKtUz/4T3Sdns7Ozw2muv4ezZs9i9ezcqKyvV5woLCwvo6emJls3S0hLz5s3Dq6++Cjs7O9y6dQuRkZHIyMhotNtx1Pd7fby4VSgUUKlUaNeunajZLCwsMHfuXAwdOhQqlQppaWmYMWMGnJ2dERAQIGo2BwcHTJ8+HcOHD8fLL7+MPn36YP/+/di1axeio6NFzwY8+LBn69atWLx48TPP8zTZXnnlFUyfPh0GBgZwdHRETEwMfvjhByxZskT0bFu3boW1tTUcHBxw4cIFTJ48GYMGDWqUBVHqe79rZmaG8ePHY+rUqbCwsICpqSnef/99+Pr6onv37s8831MTc4lKanwAan2sXbtW7GjCuHHjBEdHR0FPT0+wtrYW+vXrJxw8eFDsWHWSyrL+w4cPF+zs7AQ9PT2hefPmwvDhw4XU1FSxY6nt2rVL6NChg6Cvry+4uroK3377rdiRNBw4cEAAICQnJ4sdRUNBQYEwefJkwcHBQVAqlULr1q2Ff/3rX0JZWZnY0QRBEITNmzcLrVu3FvT09ASVSiWEhoYKd+/ebfQcR44cqfVvWkhIiCAID5b2nzVrlmBrayvo6+sL/fr1a7TfdX3Z1q5dW2t7RESEqNmqbzNQ2+PIkSOiZrt3754wePBgwd7eXtDT0xPs7OyEV199VTh9+vQzz9WQfLVpzGX9n5StpKRE8Pf3F6ytrQWFQiE4OjoK77zzjpCdnS16tmqrV68WnJ2dBaVSKXh4eAjbt2+XTLZvvvlGMDAwaPS/c/Vly8rKEsaMGSPY29sLSqVSaNeunbB48eJGuT1Nfdm+/PJLoUWLFoJCoRAcHByEjz76qNHOYQ15v3vv3j3h//7v/4RmzZoJhoaGwuDBg4WsrKxGyfe0ZILQyFf+ERERERERUYPwGjYiIiIiIiKJYsFGREREREQkUSzYiIiIiIiIJIoFGxERERERkUSxYCMiIiIiIpIoFmxEREREREQSxYKNiIga1bZt27BlyxaxYxARET0XWLAREVGjOX36NMLDw9G9e3exo/xp0dHRkMlkuHv37jN/rd69eyM8PPyZv05juX37NmxsbPDHH38AqP9Y3rp1CzY2Nrhx40bjhSQikggWbEREpJUxY8ZAJpNhwYIFGs9v374dMpmsRv/8/Hy8/fbb2LZtGxwcHBorpuSVl5dj0aJF8PDwgKGhIaysrNCjRw+sXbsWFRUVz+Q1ZTIZtm/f/kz23RDz5s3DwIED0apVqwb1t7KywltvvYWIiIhnG4yISIJYsBERkdaUSiUWLlyIO3fu1NvXzMwM58+fh5eXVyMkq115eblor12b8vJyBAQEYMGCBXj33Xdx4sQJnD59GqGhofjqq69w8eJFsSM+kTYFZUlJCVavXo3x48c/1XZjx47Fhg0bkJeX99SvSUT0PGPBRkREWvPz84NKpcL8+fPr7DNnzhx07txZ47kvvvhCY3RlzJgxGDRoED799FPY2trC3NwcH3/8Me7fv4/p06fDwsICLVq0wNq1azX2c/36dQwbNgzm5uawsLDAwIED1dPsHt3vvHnzYG9vj3bt2gEALly4gL59+8LAwACWlpZ49913UVRU9MSfde/evWjbti0MDAzQp08fjdepdvz4cfTq1QsGBgZo2bIlJk2ahOLi4jr3+cUXX+Do0aM4dOgQQkND0blzZ7Ru3RojR47EqVOn4OLiUut2tY2QmZubY926dQAeFIJhYWGws7ODUqmEo6Oj+ndUfdwHDx4MmUym8XvYsWMHvLy8oFQq0bp1a8ydOxf379/XeN0VK1bg1VdfhZGREebNm4c7d+5g1KhRsLa2hoGBAVxcXGr8nh4/jvr6+k+cFltSUoKgoCD06NFDPU3S3d0d9vb22LZtW53bERG9iFiwERGR1uRyOT799FN89dVXf/r6osOHDyMzMxNHjx7FkiVLEBERgb///e9o1qwZTp06hQkTJuC9995Tv05FRQUCAgJgYmKCY8eO4ddff4WxsTECAwM1RtIOHTqE5ORkREVFYffu3SguLkZAQACaNWuG3377DVu3bsUvv/yCsLCwOrNdv34dQ4YMQXBwMBISEvD222/jn//8p0aftLQ0BAYGYujQoTh//jw2b96M48ePP3G/GzZsgJ+fHzw9PWu0KRQKGBkZPe1hBAAsW7YMO3fuxJYtW5CcnIwNGzaoC7PffvsNALB27VpkZWWpvz927BjeeustTJ48GUlJSfjmm2+wbt06zJs3T2Pfc+bMweDBg3HhwgWMGzcOs2bNQlJSEvbt24dLly5hxYoVsLKyqjPbsWPH4O3tXWf73bt30b9/f1RVVSEqKgrm5ubqtm7duuHYsWNaHRMioueVrtgBiIjo+TZ48GB07twZERERWL16tdb7sbCwwLJly6Cjo4N27dph0aJFKCkpwYcffggAmDlzJhYsWIDjx4/jjTfewObNm1FVVYXvvvtOfc3c2rVrYW5ujujoaPj7+wMAjIyM8N1330FPTw8AsGrVKpSWluKHH35QF0TLly9HcHAwFi5cCFtb2xrZVqxYgTZt2mDx4sUAgHbt2uHChQtYuHChus/8+fMxatQo9eIgLi4uWLZsGV555RWsWLECSqWyxn5TUlLQu3dvrY9ZXa5duwYXFxf07NkTMpkMjo6O6jZra2sAD0bkVCqV+vm5c+fin//8J0JCQgAArVu3xieffIIZM2ZoXDs2cuRIjB07VuO1PD090aVLFwCo97q0q1evwt7evta27OxsDB8+HC4uLti4caP6d1bN3t4e8fHxDTgCREQvDo6wERHRn7Zw4UJ8//33uHTpktb7cHd3h47O/05Ltra26Nixo/p7uVwOS0tL5ObmAgDOnTuH1NRUmJiYwNjYGMbGxrCwsEBpaSnS0tLU23Xs2FHjjf+lS5fg4eGhMXrVo0cPVFVVITk5udZsly5dgo+Pj8Zzvr6+Gt+fO3cO69atU2cxNjZGQEAAqqqqkJ6eXut+BUGo77BoZcyYMUhISEC7du0wadIkHDx4sN5tzp07h48//lgj/zvvvIOsrCyUlJSo+1UXZtUmTpyITZs2oXPnzpgxYwZOnDjxxNe5d+9ercUrAPTv3x/Ozs7YvHlzjWINAAwMDDSyEBE1BRxhIyKiP+3ll19GQEAAZs6ciTFjxmi06ejo1ChMalusQqFQaHwvk8lqfa6qqgoAUFRUBG9vb2zYsKHGvqpHkQBoPa3waRUVFeG9997DpEmTarTVtSpm27Ztcfny5ad+LZlM9sRj6uXlhfT0dOzbtw+//PILhg0bBj8/P/z0009PzD937lwMGTKkRtujBdbjxzMoKAhXr17F3r17ERUVhX79+iE0NBSff/55ra9jZWVV5yI1AwYMwH//+18kJSVpFOvV8vLyNH63RERNAQs2IiL6SyxYsACdO3dWL+xRzdraGtnZ2RAEQT11MSEh4U+/npeXFzZv3gwbGxuYmpo2eLv27dtj3bp1KC4uVhcfv/76q3oqZl3b7Ny5U+O5kydP1siTlJQEZ2fnBmcZOXIkPvzwQ8THx9e4jq2iogLl5eW1FpzW1tbIyspSf5+SklJj5MnU1BTDhw/H8OHD8dprryEwMBB5eXmwsLCAQqFAZWVljfzJyclPlf/RPCEhIQgJCUGvXr0wffr0Ogs2T09PrF+/vta2BQsWwNjYGP369UN0dDTc3Nw02hMTE5/JFFIiIinjlEgiIvpLdOzYEaNGjcKyZcs0nu/duzdu3ryJRYsWIS0tDZGRkdi3b9+ffr1Ro0bBysoKAwcOxLFjx5Ceno7o6GhMmjTpiQugjBo1CkqlEiEhIUhMTMSRI0fw/vvvY/To0bVevwYAEyZMQEpKCqZPn47k5GRs3LhRvSJjtQ8++AAnTpxAWFgYEhISkJKSgh07djxx0ZHw8HD06NED/fr1Q2RkJM6dO4fff/8dW7ZsQffu3ZGSklLrdn379sXy5csRHx+PM2fOYMKECRqjkUuWLMGPP/6Iy5cv48qVK9i6dStUKpV6AY9WrVrh0KFDyM7OVo92zZ49Gz/88APmzp2Lixcv4tKlS9i0aRM++uijOvNXb7djxw6kpqbi4sWL2L17N9q3b19n/4CAAFy8eLHOUbbPP/8co0aNQt++fTVGH0tKShAXF6e+NpGIqKlgwUZERH+Zjz/+WD1lsVr79u3x9ddfIzIyEh4eHjh9+jSmTZv2p1/L0NAQR48ehYODA4YMGYL27dtj/PjxKC0tfeKIm6GhIQ4cOIC8vDx07doVr732Gvr164fly5fXuY2DgwP++9//Yvv27fDw8MDKlSvx6aefavTp1KkTYmJicOXKFfTq1Quenp6YPXt2nQtsAIC+vj6ioqIwY8YMfPPNN+jevTu6du2KZcuWYdKkSejQoUOt2y1evBgtW7ZEr169MHLkSEybNg2GhobqdhMTEyxatAhdunRB165d8ccff2Dv3r3qawQXL16MqKgotGzZUj2yFxAQgN27d+PgwYPo2rUrunfvjqVLl2osWFIbPT09zJw5E506dcLLL78MuVyOTZs21dm/Y8eO8PLywpYtW+rss3TpUgwbNgx9+/bFlStXADy45YCDgwN69er1xDxERC8amfCsrngmIiIiqsWePXswffp0JCYmaiw08yTdu3fHpEmTMHLkyGecjohIWngNGxERETWqAQMGICUlBRkZGWjZsmW9/W/duoUhQ4ZgxIgRjZCOiEhaOMJGREREREQkUbyGjYiIiIiISKJYsBEREREREUkUCzYiIiIiIiKJYsFGREREREQkUSzYiIiIiIiIJIoFGxERERERkUSxYCMiIiIiIpIoFmxEREREREQSxYKNiIiIiIhIoliwERERERERSdT/AzHU3cEt+kZWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculando el Silhouette Score para diferentes valores de k...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXVUlEQVR4nOzdd3wUdf7H8demNzqEkoSEKkUFpIMQOoIKChYEFdBTT0FBrHg/ewVR4awndxZEbIge4oEiQgApUqUjSAsBEnoLkLLz+2PYkJDC7mZ3Z5O8n49HHjs7OzvzzqZ+9ttshmEYiIiIiIiISLEEWB1ARERERESkNFBxJSIiIiIi4gEqrkRERERERDxAxZWIiIiIiIgHqLgSERERERHxABVXIiIiIiIiHqDiSkRERERExANUXImIiIiIiHiAiisREREREREPUHElIl6VkJDAsGHDcu4vWLAAm83GggULcvZ16dKFyy+/3PfhRDykoO9rgM8++4xGjRoRHBxMxYoVLclW1hT2tSipLv4d6onzXXfddR47n4jkpeJKRNyyfv16brrpJuLj4wkLCyMmJoaePXvy9ttvWx3NKzZt2sRzzz3Hrl278j323nvv8cknn3j8mna7nSlTptC2bVsqV65MuXLlaNiwIXfeeSfLli3z+PXEtGvXLmw2W85HcHAwVatWpUOHDjz11FPs2bPHqfNs2bKFYcOGUa9ePSZPnsyHH37o5eTuK+r725uuvPJKateujWEYhR7TsWNHqlevTlZWlg+TiYi4J8jqACJS8ixZsoSuXbtSu3Zt7rnnHmrUqEFycjLLli1j0qRJPPjggznHbt26lYCAkv8+zqZNm3j++efp0qULCQkJeR577733qFq1qkffXQZ46KGHePfdd+nfvz9DhgwhKCiIrVu3Mnv2bOrWrUu7du08ej3J67bbbqNv377Y7XaOHj3KihUrmDhxIpMmTeI///kPgwYNyjm2c+fOnDlzhpCQkJx9CxYswG63M2nSJOrXr2/Fp+C0or6/vWnIkCE8+eSTLFq0iM6dO+d7fNeuXSxdupSRI0cSFKR/WUTE/+k3lYi47OWXX6ZChQqsWLEiX1entLS0PPdDQ0N9mKz0SE1N5b333uOee+7J1+IxceJEDh486LMsWVlZ2O32PIWDvzp9+jSRkZEeOddVV13F7bffnmff7t276dWrF0OHDqVx48Y0a9YMgICAAMLCwvIc6/hZ8GR3QE9+fv5g8ODBjB07lmnTphVYXH3xxRcYhsGQIUMsSGcqba+5iHhXyX87WUR87q+//qJp06YF/tMYHR2d574r4wU2bdpE165diYiIICYmhvHjx+c7Ji0tjbvvvpvq1asTFhZGs2bN+PTTT/McU9iYC0d3r4u78G3ZsoWbbrqJypUrExYWRqtWrZg5c2bO45988gk333wzAF27ds3pLrZgwQISEhLYuHEjSUlJOfu7dOmS89xjx44xevRo4uLiCA0NpX79+owbNw673V7ka7Fz504Mw6Bjx475HrPZbPle52PHjvHwww+TkJBAaGgosbGx3HnnnRw6dMil187xGk2YMIGJEydSr149QkND2bRpk1OvVWFyn/ett94iPj6e8PBwEhMT2bBhQ55j161bx7Bhw6hbty5hYWHUqFGDu+66i8OHD+c57rnnnsNms7Fp0yYGDx5MpUqVuPrqq106h6vi4+P55JNPyMjIyPP9efH3XEJCAs8++ywA1apVw2az8dxzz+UcP3v2bDp16kRkZCTlypXj2muvZePGjXmuNWzYMKKiovjrr7/o27cv5cqVyyky7HY7EydOpGnTpoSFhVG9enXuu+8+jh49muccjvE1ixcvpk2bNoSFhVG3bl2mTJmSc0xR39+u5D1w4ADDhw8nNjaW0NBQatasSf/+/YvsahgXF0fnzp2ZPn06mZmZ+R6fNm0a9erVo23btuzevZsHHniAyy67jPDwcKpUqcLNN9/sdFfGb775hpYtWxIeHk7VqlW5/fbbSUlJyXOMJ17zlStX0rt3b6pWrUp4eDh16tThrrvuumQ+wzB46aWXiI2NJSIigq5du+Z7jR3c/b1SmE8//ZSgoCAee+wxt54vIheo5UpEXBYfH8/SpUvZsGGDxyaiOHr0KNdccw0DBgzglltuYfr06TzxxBNcccUV9OnTB4AzZ87QpUsXtm/fzsiRI6lTpw7ffPMNw4YN49ixY4waNcrl627cuJGOHTsSExPDk08+SWRkJF9//TU33HAD3377LTfeeCOdO3fmoYce4p///CdPPfUUjRs3BqBx48ZMnDiRBx98kKioKP7xj38AUL16dQDS09NJTEwkJSWF++67j9q1a7NkyRLGjh3L/v37mThxYqG54uPjAfMfwptvvpmIiIhCjz116hSdOnVi8+bN3HXXXVx11VUcOnSImTNnsnfvXqpWrerya/fxxx9z9uxZ7r33XkJDQ6lcubJTr9WlTJkyhZMnTzJixAjOnj3LpEmT6NatG+vXr8953ebOncuOHTsYPnw4NWrUYOPGjXz44Yds3LiRZcuWYbPZ8pzz5ptvpkGDBrzyyis5Y3dcPYcr2rdvT7169Zg7d26hx0ycOJEpU6bw3Xff8f777xMVFcWVV14JmJNcDB06lN69ezNu3DjS09N5//33ufrqq1mzZk2ebnlZWVn07t2bq6++mgkTJuR8H9x333188sknDB8+nIceeoidO3fyzjvvsGbNGn777TeCg4NzzrF9+3Zuuukm7r77boYOHcpHH33EsGHDaNmyJU2bNi3y+9uVvAMHDmTjxo08+OCDJCQkkJaWxty5c9mzZ0+RXQ2HDBnCvffey08//ZRnooX169ezYcMGnnnmGQBWrFjBkiVLGDRoELGxsezatYv333+fLl26sGnTpiJ/RhyvVevWrXn11VdJTU1l0qRJ/Pbbb6xZsybPG0XFec3T0tLo1asX1apV48knn6RixYrs2rWLGTNmFJrN4ZlnnuGll16ib9++9O3bl9WrV9OrVy8yMjLyHFec3ysF+fDDD/n73//OU089xUsvveTSc0WkAIaIiIt+/vlnIzAw0AgMDDTat29vPP7448ZPP/1kZGRk5Ds2Pj7eGDp0aM79+fPnG4Axf/78nH2JiYkGYEyZMiVn37lz54waNWoYAwcOzNk3ceJEAzCmTp2asy8jI8No3769ERUVZZw4caLQaxiGYezcudMAjI8//jhnX/fu3Y0rrrjCOHv2bM4+u91udOjQwWjQoEHOvm+++abAcxqGYTRt2tRITEzMt//FF180IiMjjT///DPP/ieffNIIDAw09uzZk+85ud15550GYFSqVMm48cYbjQkTJhibN2/Od9wzzzxjAMaMGTPyPWa32w3DcP61c7xG5cuXN9LS0vKcy9nXqiCO84aHhxt79+7N2b98+XIDMB5++OGcfenp6fme/8UXXxiAsXDhwpx9zz77rAEYt912W77jnT1HUVlff/31Qo/p37+/ARjHjx83DKPg7zlHvoMHD+bsO3nypFGxYkXjnnvuyXO+AwcOGBUqVMizf+jQoQZgPPnkk3mOXbRokQEYn3/+eZ79c+bMybc/Pj4+3+eclpZmhIaGGo888kjOvsK+v53Ne/To0Uu+ZoU5cuSIERoamu/r+OSTTxqAsXXrVsMwCv6aLl26NN/vjou/FhkZGUZ0dLRx+eWXG2fOnMk5btasWQZgPPPMMzn7ivuaf/fddwZgrFixwqXXIC0tzQgJCTGuvfbanJ9ZwzCMp556ygDy/A4t7u+V+Ph449prrzUMwzAmTZpk2Gw248UXX3Qpr4gUTt0CRcRlPXv2ZOnSpfTr148//viD8ePH07t3b2JiYpzqIlaQqKioPONbQkJCaNOmDTt27MjZ97///Y8aNWpw22235ewLDg7moYce4tSpUyQlJbl0zSNHjvDrr79yyy23cPLkSQ4dOsShQ4c4fPgwvXv3Ztu2bfm6Dbnim2++oVOnTlSqVCnn3IcOHaJHjx5kZ2ezcOHCIp//8ccf884771CnTh2+++47Hn30URo3bkz37t3z5Pr2229p1qxZgS1HjhYaV1+7gQMHUq1atZz7nnqtbrjhBmJiYnLut2nThrZt2/K///0vZ194eHjO9tmzZzl06FDO5B2rV6/Od86///3v+fa5eg5XRUVFAXDy5EmXnjd37lyOHTvGbbfdlud7IjAwkLZt2zJ//vx8z7n//vvz3P/mm2+oUKECPXv2zHOOli1bEhUVle8cTZo0oVOnTjn3q1WrxmWXXZbnZ6u4ecPDwwkJCWHBggX5usldSqVKlejbty8zZ87k9OnTgNlF7ssvv6RVq1Y0bNgw5xoOmZmZHD58mPr161OxYsUiv6YrV64kLS2NBx54IM+4uGuvvZZGjRrx448/5nuOu6+5owVs1qxZBXZzLMwvv/xCRkYGDz74YJ5W1dGjR+c7tri/VxzGjx/PqFGjGDduHP/3f//ndFYRKZq6BYqIW1q3bs2MGTPIyMjgjz/+4LvvvuOtt97ipptuYu3atTRp0sSl88XGxubrqlWpUiXWrVuXc3/37t00aNAg3+yDju5Lu3fvduma27dvxzAMnn76aZ5++ukCj0lLS8tTDLhi27ZtrFu3Lk+RcvG5ixIQEMCIESMYMWIEhw8f5rfffuODDz5g9uzZDBo0iEWLFgHmGLiBAwcWeS5XX7s6derkue+p16pBgwb59jVs2JCvv/465/6RI0d4/vnn+fLLL/O9RsePH8/3/IuzunMOV506dQqAcuXKufS8bdu2AdCtW7cCHy9fvnye+0FBQcTGxuY7x/Hjx/ONu3O4+POtXbt2vmMqVarkVBHkbN7Q0FDGjRvHI488QvXq1WnXrh3XXXcdd955JzVq1LjkdYYMGcJ3333Hf//7XwYPHsySJUvYtWtXnu6qZ86c4dVXX+Xjjz8mJSUlz/TtRX1NHd/bl112Wb7HGjVqxOLFi/PsK85rnpiYyMCBA3n++ed566236NKlCzfccAODBw8ucnIfR8aLfz6qVatGpUqV8mUpzu8VgKSkJH788UeeeOIJjbMS8TAVVyJSLCEhIbRu3ZrWrVvTsGFDhg8fzjfffJMzmN9ZgYGBBe43ilj/pjCFjafJzs7Oc98x+PvRRx+ld+/eBT6nOFNo2+12evbsyeOPP17g44535J1RpUoV+vXrR79+/ejSpQtJSUns3r07Z2yWp+VuJQDvv1a53XLLLSxZsoTHHnuM5s2bExUVhd1u55prrilwwP7FWd05h6s2bNhAdHR0vmLoUhzX/uyzzwosOi6ebjw0NDRfQWy324mOjubzzz8v8BoX/9NdnJ8tV/KOHj2a66+/nu+//56ffvqJp59+mldffZVff/2VFi1aFHmd6667jgoVKjBt2jQGDx7MtGnTCAwMzDPd/YMPPsjHH3/M6NGjad++PRUqVMBmszFo0CCPfE0divOa22w2pk+fzrJly/jhhx/46aefuOuuu3jjjTdYtmxZTotncXji90rTpk05duwYn332Gffdd1+Bb1CIiHtUXImIx7Rq1QqA/fv3e+X88fHxrFu3Drvdnuefny1btuQ8DuS803vs2LE8z7+4daZu3bqA2T2uR48eRV67qAkQCnusXr16nDp16pLndlWrVq1ISkpi//79xMfHU69evXwz7l3M2deuMK68VkVxtITk9ueff+ZMeHD06FHmzZvH888/nzORQWHPK4wnzlGUpUuX8tdff+Wbpt0Z9erVA8xZNd19HevVq8cvv/xCx44dCyws3VHU9zA4n7devXo88sgjPPLII2zbto3mzZvzxhtvMHXq1CKfFxoayk033cSUKVNITU3lm2++oVu3bnkKuunTpzN06FDeeOONnH1nz57N93N+Mcf39tatW/O1wG3dutWpNyhcfc3btWtHu3btePnll5k2bRpDhgzhyy+/5G9/+1uRGbdt25bzswZw8ODBfC2Mnvi9UrVqVaZPn87VV19N9+7dWbx4MbVq1XL7fCJygcZciYjL5s+fX+C73o5xMwV1v/GEvn37cuDAAb766qucfVlZWbz99ttERUWRmJgImP+oBAYG5ht78N577+W5Hx0dTZcuXfjXv/5VYEGYey0pxzo3Bf0jFxkZWeD+W265haVLl/LTTz/le+zYsWNkZWUV+rkeOHAgZ/rz3DIyMpg3bx4BAQE5LUUDBw7M6Zp5McfXydnXrjCuvFZF+f777/OMzfr9999Zvnx5zoyQjlaWi7+/XJkBzRPnKMzu3bsZNmwYISEhbnWn6t27N+XLl+eVV14pcEyOM6/jLbfcQnZ2Ni+++GK+x7Kysi5ZbBSksO9vZ/Omp6dz9uzZPI/Vq1ePcuXKce7cOacyDBkyhMzMTO677z4OHjyYb22rwMDAfF/Tt99+O1+L9MVatWpFdHQ0H3zwQZ4ss2fPZvPmzVx77bWXzObsa3706NF8GZs3bw5Q5OvQo0cPgoODefvtt/M8v6Dv2eL8XsktNjaWX375hTNnztCzZ89iL1MgIia1XImIyx588EHS09O58cYbadSoERkZGSxZsoSvvvqKhIQEhg8f7pXr3nvvvfzrX/9i2LBhrFq1ioSEBKZPn85vv/3GxIkTc8a/VKhQgZtvvpm3334bm81GvXr1mDVrVoFjEd59912uvvpqrrjiCu655x7q1q1LamoqS5cuZe/evfzxxx+A+Q9SYGAg48aN4/jx44SGhtKtWzeio6Np2bIl77//Pi+99BL169cnOjqabt268dhjjzFz5kyuu+66nKmvT58+zfr165k+fTq7du2iatWqBX6ue/fupU2bNnTr1o3u3btTo0YN0tLS+OKLL/jjjz8YPXp0znMfe+wxpk+fzs0338xdd91Fy5YtOXLkCDNnzuSDDz6gWbNmTr92RXH2tSpK/fr1ufrqq7n//vs5d+4cEydOpEqVKjldnMqXL0/nzp0ZP348mZmZxMTE8PPPP7Nz585LntvBE+cAc+KLqVOnYrfbOXbsGCtWrODbb7/FZrPx2Wef5Uyt7ory5cvz/vvvc8cdd3DVVVcxaNAgqlWrxp49e/jxxx/p2LEj77zzTpHnSExM5L777uPVV19l7dq19OrVi+DgYLZt28Y333zDpEmTuOmmm1zKVdT3tzN5//zzT7p3784tt9xCkyZNCAoK4rvvviM1NTVP175LfV6xsbH897//JTw8nAEDBuR5/LrrruOzzz6jQoUKNGnShKVLl/LLL79QpUqVIs8bHBzMuHHjGD58OImJidx22205U7EnJCTw8MMPO5XNmdf8008/5b333uPGG2+kXr16nDx5ksmTJ1O+fHn69u1b6PmrVavGo48+yquvvsp1111H3759WbNmDbNnz873O6I4v1cuVr9+fX7++We6dOlC7969+fXXX13u6ioiF7FkjkIRKdFmz55t3HXXXUajRo2MqKgoIyQkxKhfv77x4IMPGqmpqXmOdXYq9qZNm+a7ztChQ434+Pg8+1JTU43hw4cbVatWNUJCQowrrrgiz9TqDgcPHjQGDhxoREREGJUqVTLuu+8+Y8OGDfmmYjcMw/jrr7+MO++806hRo4YRHBxsxMTEGNddd50xffr0PMdNnjzZqFu3rhEYGJjnczhw4IBx7bXXGuXKlTOAPNOynzx50hg7dqxRv359IyQkxKhatarRoUMHY8KECQVOXe9w4sQJY9KkSUbv3r2N2NhYIzg42ChXrpzRvn17Y/LkyXmmazYMwzh8+LAxcuRIIyYmxggJCTFiY2ONoUOHGocOHXLptbvUNOTOvlYXy33eN954w4iLizNCQ0ONTp06GX/88UeeY/fu3WvceOONRsWKFY0KFSoYN998s7Fv3z4DMJ599tmc4wqa6tzVcxSV1fERFBRkVK5c2Wjbtq0xduxYY/fu3fme4+xU7LmP7927t1GhQgUjLCzMqFevnjFs2DBj5cqVOccMHTrUiIyMLDTnhx9+aLRs2dIIDw83ypUrZ1xxxRXG448/buzbty/nmNzTbueWmJiYb/mAwr6/ncl76NAhY8SIEUajRo2MyMhIo0KFCkbbtm2Nr7/+utD8BXnssccMwLjlllvyPXb06NGc79+oqCijd+/expYtW5z6HWMYhvHVV18ZLVq0MEJDQ43KlSsbQ4YMybMsgGEU/zVfvXq1cdtttxm1a9c2QkNDjejoaOO6667L83UtTHZ2tvH8888bNWvWNMLDw40uXboYGzZsyPf5GYb7v1cMo+DvieXLlxvlypUzOnfuXOCU9yLiPJthuDFaXERExAW7du2iTp06vP766zz66KNWxxEREfEKjbkSERERERHxABVXIiIiIiIiHqDiSkRERERExAM05kpERERERMQD1HIlIiIiIiLiASquREREREREPECLCBfAbrezb98+ypUrh81mszqOiIiIiIhYxDAMTp48Sa1atQgIKLptSsVVAfbt20dcXJzVMURERERExE8kJycTGxtb5DEqrgpQrlw5wHwBy5cvb2mWzMxMfv75Z3r16kVwcLClWQriz/mUzT3K5h5lc58/51M29yibe5TNff6cT9nc40/ZTpw4QVxcXE6NUBQVVwVwdAUsX768XxRXERERlC9f3vJvrIL4cz5lc4+yuUfZ3OfP+ZTNPcrmHmVznz/nUzb3+GM2Z4YLaUILERERERERD1BxJSIiIiIi4gEqrkRERERERDxAxZWIiIiIiIgHqLgSERERERHxABVXIiIiIiIiHqDiSkRERERExANUXImIiIiIiHiAiisREREREREPUHElIiIiIiLiASquREREREREPEDFlYiIiIiIiAeouBIREREREfEAFVciIiIiIuI/7NnY0pKIyVqILS0J7NlWJ3JakNUBREREREREAEieAatGEZS+l1YASW9CRCy0nARxA6xOd0lquRIREREREeslz4BFN0H63rz701PM/ckzrMnlAhVXIiIiIiJiLXs2rBoFGAU8eH7fqtF+30VQxZWIiIiIiFjr4KL8LVZ5GJCebB7nx1RciYiIiIiItc7s9+xxFlFxJSIiIiIi1gqv6dnjLKLiSkRERERErFWtkzkrYKFsEBFnHufHVFyJiIiIiIi1AgKh+fhCHrSZNy0nmsf5MRVXIiIiIiJivczj5q3togIqIhY6TS8R61xpEWEREREREbGWPRs2v2Fut5hAVrnLWbtsNs3b9SGoZle/b7FyUHElIiIiIiLWSpkJp7ZDSCWo9zcMQkkJOk2z6MQSU1iBugWKiIiIiIjVNr9u3jZ4AIKjrM1SDCquRERERETEOgd/g0NLISAEGo60Ok2xqLgSERERERHrOFqt6twJ4TWszVJMKq5ERERERMQaJ7bC3pnmdqNHrM3iASquRERERETEGpvfAAyI6QcVGlmdpthUXImIiIiIiO+dSYWdU8ztxo9Zm8VDVFyJiIiIiIjv/fk22M9BlXZQraPVaTxCxZWIiIiIiPhW5inY9p653eQxsNmszeMhKq5ERERERMS3dnwEGUchqj7E9Lc6jceouBIREREREd+xZ8GWt8ztxo9AQKC1eTxIxZWIiIiIiPhO8rdweheEVoU6Q61O41EqrkRERERExDcM48KiwQ1HQlC4tXk8TMWViIiIiIj4RtoCOLIKAsOhwQir03iciisREREREfGNTedbreoOh7Cq1mbxAhVXIiIiIiLifcc2wP7ZYAuARmOsTuMVKq5ERERERMT7Nk8wb2MHQLl61mbxEhVXIiIiIiLiXekpsHuaud34MWuzeJGKKxERERER8a6tk8CeCdGdoWobq9N4jYorERERERHxnswTsP1f5nYpbrUCFVciIiIiIuJN2z80C6zyjaFWX6vTeJWKKxERERER8Y7sDNgy0dxu/Kg5U2ApVro/OxERERERsc6er+BMCoTVgIQhVqfxOhVXIiIiIiLieYYBm88vGnzZQxAYam0eH1BxJSIiIiIinrf/Zzi2HoIiocHfrU7jEyquRERERETE8xytVvXugZBK1mbxERVXIiIiIiLiWUdWQ+o8sAVCo9FWp/EZFVciIiIiIuJZmyeYt7Vvhch4a7P4kIorERERERHxnNO7Yc/X5naT0r1o8MVUXImIiIiIiOdseQuMbKjRAyo1tzqNT6m4EhERERERz8g4Cn/929xuXLZarUDFlYiIiIiIeMq29yHrNFRsBjV6Wp3G51RciYiIiIhI8WWfha3/NLcbPwo2m7V5LKDiSkREREREim/X53A2FSJiIf5Wq9NYQsWViIiIiIgUj2G/MP36ZaMhINjSOFZRcSUiIiIiIsWT8iOc2ALB5aH+PVansYyKKxERERERKZ7Nr5u39f9uFlhllIorERERERFx36HlcHCR2RXwslFWp7GUiisREREREXGfo9UqYQhE1LI2i8VUXImIiIiIiHtObofkGeZ2o0etzeIHVFyJiIiIiIh7trwJGFCrL1RsanUay6m4EhERERER1509CDs+NrcbP2ZtFj+h4kpERERERFz357uQfRYqt4LoRKvT+AUVVyIiIiIi4pqsdNj2jrnd+DGw2azN4ydUXImIiIiIiGt2fgrnDkNkAsQNsDqN31BxJSIiIiIizrNnw+Y3zO1GYyAgyNo8fkTFlYiIiIiIOG/v93DqLwipDPXusjqNX1FxJSIiIiLiDfZsbGlJxGQtxJaWZLb4lHSGcWHR4AYPQFCktXn8jNrwREREREQ8LXkGrBpFUPpeWgEkvQkRsdByUskeo3RwMRxeDgGh0HCk1Wn8jlquREREREQ8KXkGLLoJ0vfm3Z+eYu5PnmFNLk9wtFrVHQrh1a3N4odUXImIiIhIyeVPXe8yT8HxLfD73wGjgAPO71s1umR2ETy+GVJ+AGzQ6BGr0/gldQsUERERkZLJF13vDLs55fiZ/ebH2QOFbO+HrNPOnBDSk+HgIqjexTMZfWXL+RkCY/tD+YbWZvFTKq5EREREpORxdL27uIXI0fWu0/SiC6zsjCIKpdzbqWBkOZ8rIBTs5y593Jn9zp/TH5zZDzs/M7cbP2ZtFj+m4kpEREREShZ7NqwaReFd72xm17ysM3AureCiKeOIa9cMrQbhNSCsJoSf/wirkX/7yEqY1/XS5wuv6dr1rbb1bbBnQNUOUK2D1Wn8loorERERESlZDi7KP1lEHgacOwhLby/6PAHBFxVINc0CKt92dfNYZ1TrZHZNTE+h4OLvvF2fQ5XWJWMq88yTsO19c7vxo9Zm8XMqrkRERESkZHG2S135xlCpWcEtTOE1zUVwbTbPZgsINMd8LboJsJG3wMp1/69/m0Vihy+gcgvPZvC0vz6CzGNQrgHE9LM6jV9TcSUiIiIiJYuzXepav2fNpBFxA8wxX6tG5W1hi4iFlhMhuCIsvQNObIWf20KzV6DRGLD54UTe9izY+pa53egRs3iUQln+FXz33XdJSEggLCyMtm3b8vvvvxd67MaNGxk4cCAJCQnYbDYmTpxY4HEpKSncfvvtVKlShfDwcK644gpWrlzppc9ARERERHyqWicIjy3iABtExJnHWSVuAPTbRVbiXFaGjiErcS7022nur9EN+q6D2BvBnglrHoNfe53vSuhn9nwDp3ebY87q3Gl1Gr9naXH11VdfMWbMGJ599llWr15Ns2bN6N27N2lpaQUen56eTt26dXnttdeoUaNGgcccPXqUjh07EhwczOzZs9m0aRNvvPEGlSpV8uanIiIiIiK+EhAIdYcV8uD5bn4tJ1rfyhIQiBGdSEpQZ4zoxLx5QqtAp2+hzWQIjIDUefC/KyH5O+vyXswwLiwa3PBBCAq3Nk8JYGlx9eabb3LPPfcwfPhwmjRpwgcffEBERAQfffRRgce3bt2a119/nUGDBhEaGlrgMePGjSMuLo6PP/6YNm3aUKdOHXr16kW9evW8+amIiIiIiK8YBhz4xdwOisr7WETspadh9xc2G9T/G/RZDZVbmjMYLhoAy+91cs0sL0v9FY6uMYu/hg9YnaZEsGzMVUZGBqtWrWLs2LE5+wICAujRowdLly51+7wzZ86kd+/e3HzzzSQlJRETE8MDDzzAPffcU+hzzp07x7lzF9YjOHHiBACZmZlkZma6ncUTHNe3Okdh/DmfsrlH2dyjbO7z53zK5h5lc4+yOc924GeCDi/DCAgj65r1ZB/dwoaVc7m8VU8Ca3YBWyD4SVanXrvwutA1iYANzxGw9Q1sf03GSEsiq+1nUMl7k11cKlvgxvEEANl1hmEPKO/T19SfvudcyWAzDKOIOSK9Z9++fcTExLBkyRLat2+fs//xxx8nKSmJ5cuXF/n8hIQERo8ezejRo/PsDwsLA2DMmDHcfPPNrFixglGjRvHBBx8wdOjQAs/13HPP8fzzz+fbP23aNCIiIlz8zERERETEawyDTmefpLJ9K9uD+rEx9C6rE3lU1ez1XHVuIuHGYewEsTl4MNuDb/D5ZBfl7bvoemY0BgH8Ev4+6QHVfXp9f5Kens7gwYM5fvw45cuXL/LYUjdboN1up1WrVrzyyisAtGjRgg0bNhRZXI0dO5YxY8bk3D9x4gRxcXH06tXrki+gt2VmZjJ37lx69uxJcLCT6yv4kD/nUzb3KJt7lM19/pxP2dyjbO5RNufYDvxM0KKtGAFhxPd5h/iwGn6V72KuZ+sLGfdgX3k/ASnf0TRzCo0rJZPd5iMIj/FZtsDfh8NuMGIH0KX9cI9et7jZfM3Rq80ZlhVXVatWJTAwkNTU1Dz7U1NTC52swhk1a9akSZMmefY1btyYb7/9ttDnhIaGFjiGKzg42PIvpoM/ZSmIP+dTNvcom3uUzX3+nE/Z3KNs7lG2IhgGbHoJAFuD+wkuF5fnYcvzFcGlbMHVofO3sOMjWPkQAWnzCfi5JbT9N8Td6P1sp5Nhz1cABDR9ggALX1N/+Jq6cn3LJrQICQmhZcuWzJs3L2ef3W5n3rx5eboJuqpjx45s3bo1z74///yT+Ph4t88pIiIiIn5g/89weBkEhkOTx61O4102G9S7G/qsgcqtck12cY/3J7vYOgmMLIjuAlVaefdapYylswWOGTOGyZMn8+mnn7J582buv/9+Tp8+zfDhZtPjnXfemWfCi4yMDNauXcvatWvJyMggJSWFtWvXsn379pxjHn74YZYtW8Yrr7zC9u3bmTZtGh9++CEjRozw+ecnIiIiIh5iGLD+OXO7wf0Q7n5PpxKlfEPo+Rs0eRKwwV//htlXwWEvreGacRy2f2huN37UO9coxSwdc3Xrrbdy8OBBnnnmGQ4cOEDz5s2ZM2cO1aubA+b27NlDQMCF+m/fvn20aHFhxpQJEyYwYcIEEhMTWbBgAWBO1/7dd98xduxYXnjhBerUqcPEiRMZMmSITz83EREREfGg3K1WjR+zOo1vBYZA81ehZm9Yegec/BN+bg/NXjJfC09OdrH9Q8g6CRWaQK0+njtvGWH5hBYjR45k5MiRBT7mKJgcEhIScGZyw+uuu47rrrvOE/FERERExGqGAeufNbfLUqvVxap3gT5/wO/3QfJ0WPsk7P8J2k8x1/cqruwMs0sgQKNHfT5DYWmgV0xERERE/Nv+n+Dw8rLZanWx0Mpw9dfQ9iMIioTU+fC/K2FP4ZO3OW33F3AmBcJrQsLg4p+vDFJxJSIiIiL+q6yOtSqKzQb1hsM1a6Bya8g4CotvguV/g8xT7p3TMGDzBHP7slEQmH8mbbk0FVciIiIi4r/UalW48g2g12/Q9CnMyS7+A3PcnOxi/xw4vgGCoqD+fR6PWlaouBIRERER/6RWq0sLCIZmL0P3+ea4q5PbzMkuNr4G9mznz7P5dfO2/r0QUtErUcsCFVciIiIi4p/ytFqV8nWtiqt6IvRdB7VvNteo+mMs/NrDXBD4Uo6uNsdu2YLgstFej1qaqbgSEREREf+Tp9XqAQivbmmcEiGkEnT8Ctp9bE52kbYAZjeDPdOLfFrg1jfMjfhBEBnn/ZylmIorEREREfE/GmvlHpsN6g6DPmuhSpvzk13cDMvuzjvZhT0bW1oSdTN+wJZ8vvjSosHFpuJKRERERPxLnnWt1GrllnL1oediaPoPwAY7PoLZLeDwCkieATMTCErqyRWZ/8GGAQGhcOovq1OXeCquRERERMS/7J8Dh39Xq1VxBQRDs5egxwKIiINT2+GndrBoIKTvzXus/RwsusksvMRtKq5ERERExH9orJXnRXeGvn9A3E2AvehjV412bZZByUPFlYiIiIj4D7VaeUdIJbNYLZIB6clwcJFPIpVGKq5ERERExD+o1cq7zh5w7rgz+72boxRTcSUiIiIi/kGtVt4VXtOzx0k+Kq5ERERExHq5W60ajlCrlTdU6wQRsYCtkANs5sQX1Tr5MlWpouJKRERERKynVivvCwiElpPO37m4wDp/v+VE8zhxi4orEREREbGWYcC68+taNRwBYdHW5inN4gZAp+kQEZN3f0SsuT9ugDW5SokgqwOIiIiISBm3bzYcWaFWK1+JGwAx/cnaP5+1y2bTvF0fgmp2VYuVB6i4EhERERHrXDzWSq1WvhEQiBGdSErQaZpFJ6qw8hB1CxQRERER66jVSkoRFVciIiIiYg21Wkkpo+JKRERERKyR02oVoVYrKRVUXImIiIiI76nVSkohFVciIiIi4nt5Wq0etTqNiEeouBIRERER3zIMWK91raT0UXElIiIiIr61739wZKVaraTUUXElIiIiIr6jsVZSiqm4EhERERHfUauVlGIqrkRERETEN9RqJaWciisRERER8Q21Wkkpp+JKRERERLxPrVZSBqi4EhERERHvy9Nq9ZjVaUS8QsWViIiIiHhXnlarkRBWzdI4It6i4kpEREREvGvfjxprJWWCiisRERER8R61WkkZouJKRERERLxn349wZJVaraRMUHElIiIiIt6hVispY1RciYiIiIh3qNVKyhgVVyIiIiLieWq1kjJIxZWIiIiIeJ6j1SooUq1WUmaouBIRERERz1KrlZRRKq5ERERExLNSZl1otWr0iNVpRHxGxZWIiIiIeI5araQMU3ElIiIiIp6TMguOrlarlZRJKq5ERERExDPUaiVlnIorEREREfEMtVpJGafiSkRERESKT61WIiquRERERMQD8rRaaV0rKZtUXImIiIhI8eRptXoQwqpaGkfEKiquRERERKR4Un7QWCsRVFyJiIiISHGo1Uokh4orEREREXFfyg9wdI1arURQcSUiIiIi7lKrlUgeKq5ERERExD1qtRLJQ8WViIiIeI49G1taEjFZC7GlJYE92+pE4i1qtRLJJ8jqACIiIlJKJM+AVaMISt9LK4CkNyEiFlpOgrgBVqcTT8tptYpSq5XIeWq5EhERkeJLngGLboL0vXn3p6eY+5NnWJNLvEOtViIFUnElIiIixWPPhlWjAKOAB8/vWzVaXQRLk5SZuVqtxlidRsRvqLgSERGR4jm4KH+LVR4GpCebx0nJp1YrkUKpuBIREZHiObPfs8eJf0uZCUfXqtVKpAAqrkRERKR4wmt69riyqKTMsqhWK5EiabZAERERKZ5qnSA8Fs4U0TUwuAJUvdp3mUoSf59lMVfhF7B5rVqtRIqglisREREpnoBAqNWn6GMyj8OSQZB5yjeZSgp/n2UxeQbMTCAoqSetzr1J4MbnzP01eqnVSqQAKq5ERESkeE4nw+4vze3ginkfi4iD+vdBQDAkfws/t4OT230e0S/5+yyLhRV+AHu/s77wE/FD6hYoIiIi7jMMWPEAZJ2Equ2hexJZB5JYu2w2zdv1IahmV7Nlq85QWDwQjm+EOa2h4xdQ6xqr01vL2VkWF94I5epCYBgEhJm3uT8CQi+6n/vx0Lz3A0LNr8elFFn4nbdqNMT0d+58ImWEiisRERFx356vYd8ss2Wq7b8hMBgjOpGUoNM0i0688I93tfbQeyUsvgkOLYUFfaHZy9DkSbDZrP0crOLs7In7fvDsdQOC8xZkFxdsAaGQddr56fWrd/FsPpESTMWViIiIuOfcYVj5oLnd9B9QoUnRx0fUgu7zzef8NRn+eAqOrIZ2H0NwlPfz+puQis4dV2cohNeC7LNgP2veOj7s5y6679g+l2v7DBj2C+ezZ5ofWR4Y/6bp9UXyUHElIiIi7lnzKJw7aBZVTZ507jmBodD2Q6jSClaOhOTpcGILdP4eytXzaly/cmAe/P7AJQ6ymbMGtv1P8bve2bMuXYzlvn90LWx+/dLn1fT6InmouBIRERHXHfgFdnwC2KDNv82iyRX174UKl8OigXB8A8xpVTbGYWUchdWPwI6PzfshVSDjMGAj7/im810lW070zJimgCAIiAKcbCGsfSvs/sKctbDAcVfnC79qnYqfTaQU0WyBIiIi4pqsdFh+r7ndcIQ5nsod1TrANaugSjvIPGaOw9r4mjlJRmm051uY1fh8YWWDBiOg/07o9C1ExOQ9NiIWOk23bp2rgEBznS0gp9DL4eHCT6QUUXElIiIirln/LJzeaRYAzV4p3rkiakGPBVDvb4ABf4yF324tXethndkPCweYk3mcTYXyjaDnImj9DgSXMwuofrvISpzLytAxZCXOhX47rV9AOG6AWeD5W+En4sfULVBEREScd2QVbHnT3G79vlkcFFdgKLSdDJVbwaoHYc835jisTt+V7HFYhgF//cccm5Z5HGxB5ti0y/9hzsqXW0BgwbMsWi1uAMT0J2v//PzT64tIPmq5EhEREefYM2H538yZ5+IHQcx1nj1/g/vM2QTDqsOx9fBTa9j3k2ev4Ssnt8Ov3eH3e8zCqnIrswtksxfzF1b+Lqfw64zhT4WfiB9ScSUiIiLO2fKmOYtcSOVc43E8rFrH8+Ow2pqTPyT1hU3jSs44LHsWbJ4A/7sSUudDYDi0mAC9lkKlK61OJyJepuJKRERELu3ENlj/nLl91ZsQFu29a0XEQI8kqHe32Uq29kn4bZC5sK0/O/oH/Nwe1jxmri1VvRv0XQ+NHzFn6xORUk/FlYiIiBTNMOD3e831j2r0gDp3ev+agaHQZjK0fs8cq7Tna7NwObXD+9d2VfZZ+OMf5nTyR1ZCcEVzbapuv5TsMWMi4jIVVyIiIlK0HR9B2gKzi1ubf4Ht4qm5vcRmgwb35x2HNacV7P/ZN9d3RtpimN0cNr4CRhbEDYTrNkG9u3z3OomI31BxJSIiIoU7sx9WP2puX/kiRNX1fYboq/OOw1rQBzaNt3YcVuYJWDECfukEJ7ZCWA1zvapO0yG8pnW5RMRSKq5ERESkcCsfMhf4rdwSLhtlXQ7HOKy6d50fh/UE/HabNeOwUn6EH5vCtvfM+/XuNlurtO6TSJmn4kpEREQKlvw9JE8HWyC0/bf1kzIEhpo5Wr17fhzWV/BzB9+Nwzp7EH4bAknXQfpesxWv2y9mppBKvskgIn5NxZWIiIjkl3EcVo4wtxs/BpWaWxonh80GDR/INQ5rHcxpDfvneu+ahgE7P4cfG8PuaWALgEaPmDMB1ujuveuKSIlTrOLq7NmznsohIiIi/mTtk3BmH0TVh8ufsTpNftFXwzUroUobyDgCC66BTa97fhzW6T1mS9XS2+HcYah4JfRaBldNgKAIz15LREo8l4sru93Oiy++SExMDFFRUezYYTbFP/300/znP//xeEARERHxsbRFsP0Dc7vthxAUbm2ewkTEnh+HNfz8OKzHYclgz4zDMuzw57vm2Kp9/4OAELjypfMFXevin19ESiWXi6uXXnqJTz75hPHjxxMSEpKz//LLL+ff//63R8OJiIiIj2Wfhd/vMbfr/Q2qd7U2z6UEhplrSjnGYe3+En7uCKd2un/O41vgl86wciRknYJqHaHPH3D5PyAg2HPZRaTUcbm4mjJlCh9++CFDhgwhMDAwZ3+zZs3YsmWLR8OJiIiIj214+cLU4i3GW53GOTnjsH6FsGg49oe5HtaBX1w7jz3T/PxnN4ODv0FQFLR6B3oshAqNvJNdREoVl4urlJQU6tevn2+/3W4nMzPTI6FERETEAsfWw6bXzO1W75S8GfCiO0HvlVC5tTkOa35v2DzBuXFYh1eaBdm6/wN7BtTqC9duhIYjzAksRESc4PJviyZNmrBo0aJ8+6dPn06LFi08EkpKCHs2trQkYrIWYktLAnu21YlERMRd9mxY/jcwsiD2hpK7ZlNkHPRcCHWHmeOm1jwGS4ZAVnrBf7ey0s1Fkn9ua848GFoVOnwOibMgsrbVn42IlDAuL1jxzDPPMHToUFJSUrDb7cyYMYOtW7cyZcoUZs2a5Y2M4o+SZ8CqUQSl76UVQNKb5sDilpNK7h9kEZGy7M934PDvEFzebLWy2axO5L7AMGj7EVRuBatGw+4v4OASsJ8j6OyBC3+3QquZrVJnU83nxQ+GlhMhrJp12UWkRHO55ap///788MMP/PLLL0RGRvLMM8+wefNmfvjhB3r27OmNjOJvkmfAopvMBRRzS08x9yfPsCaXiIi459QuWPcPc7v5eIiIsTSOR9hsZpe+7vMgqDyk74azB/Iec+6gWViFVDFbqjp+rsJKRIrFpeIqKyuLF154gTp16jB37lzS0tJIT09n8eLF9OrVy+0Q7777LgkJCYSFhdG2bVt+//33Qo/duHEjAwcOJCEhAZvNxsSJE4s892uvvYbNZmP06NFu55Nc7NmwahRQUP/18/tWjVYXQRGRksIwYMXfzenLq3WC+vdYncizqnaEoMiijwkMg5rX+CaPiJRqLhVXQUFBjB8/nqysLI8F+OqrrxgzZgzPPvssq1evplmzZvTu3Zu0tLQCj09PT6du3bq89tpr1KhRo8hzr1ixgn/9619ceeWVHstb5h1clL/FKg8D0pPN40RExP/tmgb7fzLXcWo7ufRN3nBwEZzdX/QxZ1L0d0tEPMLl36Ddu3cnKSnJYwHefPNN7rnnHoYPH06TJk344IMPiIiI4KOPPirw+NatW/P6668zaNAgQkNDCz3vqVOnGDJkCJMnT6ZSpRI225E/O3OJP1CuHiciItY5exBWjzK3L38Gyl9mbR5v0N8tEfEhlye06NOnD08++STr16+nZcuWREbmbWrv16+f0+fKyMhg1apVjB07NmdfQEAAPXr0YOnSpa5Gy2PEiBFce+219OjRg5deeqnIY8+dO8e5c+dy7p84cQKAzMxMy6eXd1zf6hwOtuBqTn3TZAVXw9BrVyhlc4+yucefs4F/5yvt2QJXjibg3GGMCpeT1WA0eOjz9KfXTX+3PMOfs4F/51M29/hTNlcy2AzDmcUfLggIKLyxy2azkZ3t/Fibffv2ERMTw5IlS2jfvn3O/scff5ykpCSWL19e5PMTEhIYPXp0vvFUX375JS+//DIrVqwgLCyMLl260Lx580LHZz333HM8//zz+fZPmzaNiIgIpz+fMsHIpteZewkzDlPQPFIGcMZWlbnh/wJbYAFHiIiIP4jOWk37cy9gYGNh2DiOBTa0OpJ36O+WiBRTeno6gwcP5vjx45QvX77IY11uubLb7W4H84Xk5GRGjRrF3LlzCQsLc+o5Y8eOZcyYMTn3T5w4QVxcHL169brkC+htmZmZzJ07l549exIcHGxpFgfb3vdg6a359hvn/2yFtHuXvrHX+zpWPv742jkom3uUzT3+nA38O1+pzZZ1iqCfzO6A9gYP0qH5aP/J5gXm361BGIAt14RM+rvlPH/OBv6dT9nc40/ZHL3anOFyceVJVatWJTAwkNTU1Dz7U1NTLzlZRWFWrVpFWloaV111Vc6+7OxsFi5cyDvvvMO5c+cIDMz7zlRoaGiB47eCg4Mt/2I6+FMW6twCOz6E1Hl5dtvCqkPrdwnys3Wu/Oq1u4iyuUfZ3OPP2cC/85W6bOteMKcmj4wnsPnLBHrpc/Ob163OLRAUZM52m2tSJltELLScqL9bLvDnbODf+ZTNPf6QzZXruzUlUFJSEtdffz3169enfv369OvXj0WLXJ9lJyQkhJYtWzJv3oV/0u12O/PmzcvTTdAV3bt3Z/369axduzbno1WrVgwZMoS1a9fmK6zETad3AZB9+Uscs9Ux99W7WwsIi4j4u0PLYeskc7v1BxAcZW0eX4kbAP12kZU4l5WhY8hKnAv9durvloh4lMvF1dSpU+nRowcRERE89NBDPPTQQ4SHh9O9e3emTZvmcoAxY8YwefJkPv30UzZv3sz999/P6dOnGT58OAB33nlnngkvMjIycoqmjIwMUlJSWLt2Ldu3bwegXLlyXH755Xk+IiMjqVKlCpdffrnL+aQAp5Ph1F9gC8Be/+9sDzn/h2nXNHO9FBER8U/ZGfD7PYABCbdDrTK2tlNAIEZ0IilBnTGiEyFAb7iKiGe53C3w5ZdfZvz48Tz88MM5+x566CHefPNNXnzxRQYPHuzS+W699VYOHjzIM888w4EDB2jevDlz5syhevXqAOzZsyfPJBr79u2jRYsWOfcnTJjAhAkTSExMZMGCBa5+OuKOtPNT8VdqCcHlORDYBiMoCtvpnXBoKVTrYG0+EREp2ObX4dh6CK0KV71ldRoRkVLH5eJqx44dXH99/kGf/fr146mnnnIrxMiRIxk5cmSBj11cMCUkJODiBIcqujwtbYF5W70LANm2UIyYG7Ht/gx2TVVxJSLij45vgQ0vmNstJ0FYVWvziIiUQi53C4yLi8szRsrhl19+IS4uziOhxM+lLjBvo7vk7LLHn2+x3P2V2e1ERET8h2GH3+8FewbU7APxt1mdSESkVHK55eqRRx7hoYceYu3atXToYLZQ/Pbbb3zyySdMmjTJ4wHFz+Qab0X01Tm7jeguEF7TXOF+/xyIdX4xaRER8bLtk+HgIgiKhDbvg62gFZ9ERKS4XC6u7r//fmrUqMEbb7zB119/DUDjxo356quv6N+/v8cDip+5aLwVjhWrbYEQPxi2vGF2DVRxJSLiH9JTYO3j5nazVyAy3to8IiKlmFvrXN14443ceOONns4iJcFF463yqHO7WVztnQkZxyGkgi+TiYjIxQwDVo6AzBNQpS00GGF1IhGRUs3lMVcrVqxg+fLl+fYvX76clStXeiSU+LECxlvlqNgMKjQF+zlI/taXqUREpCDJM2Dvf8EWBG3/ranHRUS8zOXiasSIESQnJ+fbn5KSwogRekesVCtkvFUOm81cNwXMroEiImKdjKOw8vxMvE3HQkWt9Sgi4m0uF1ebNm3iqquuyre/RYsWbNq0ySOhxE9dPN6qIAnnZw1MXWAWYyIiYo01j8PZA1C+ETT9h9VpRETKBJeLq9DQUFJTU/Pt379/P0FBbg3hkpLCUVxVTyz8mMjaEJ0IGLD7C5/EEhGRi6TOh7/+bW63mQyBodbmEREpI1wurnr16sXYsWM5fvx4zr5jx47x1FNP0bNnT4+GEz9T1Hir3NQ1UETEOllnYPm95naD+wvuxi0iIl7hcnE1YcIEkpOTiY+Pp2vXrnTt2pU6depw4MAB3njjDW9kFH+QvhdObTfHW1W7xB/q2jdBQAgcWw9H1/kmn4iImDa8YP6+Do+BZq9anUZEpExxubiKiYlh3bp1jB8/niZNmtCyZUsmTZrE+vXriYuL80ZG8QepjvFWV116ivWQihBzvbmt1isREd85uhY2v25ut35PS2KIiPiYW4OkIiMjuffeez2dRfxZUetbFSThdnM69l3TzHdONf2viIh32bNg+d/AyIbaN2sxdxERCzjdcvXnn3/y+++/59k3b948unbtSps2bXjllVc8Hk78iLPjrRxq9YGQSnAm5cJEGCIi4j1bJ8GRVRBcEVr+0+o0IiJlktPF1RNPPMGsWbNy7u/cuZPrr7+ekJAQ2rdvz6uvvsrEiRO9kVGs5sp4K4fAUKh9i7mtroEiIt51agese9rcvuoNCK9hbR4RkTLK6eJq5cqV9OnTJ+f+559/TsOGDfnpp5+YNGkSEydO5JNPPvFGRrGaK+OtcnPMGrhnujl7lYiIeJ5hwO/3QfYZqN4N6g63OpGISJnldHF16NAhYmNjc+7Pnz+f66+/Pud+ly5d2LVrl0fDiZ9wdbyVQ7UOEJkAWSch5QcPhxIRKcPs2djSkojJWkjA+n/AgV8gMAza/AtsNqvTiYiUWU4XV5UrV2b//v0A2O12Vq5cSbt27XIez8jIwDAMzycU67k63srBFgAJQ8xtdQ0UEfGM5BkwM4GgpJ60OvcmgVsnmPvjboZy9a3NJiJSxjldXHXp0oUXX3yR5ORkJk6ciN1up0uXLjmPb9q0iYSEBC9EFEu5M94qN0dxtW82nD3k2WwiImVN8gxYdJP5u/liu6aaj4uIiGWcLq5efvlltmzZQnx8PE888QTjx48nMjIy5/HPPvuMbt26eSWkWMjd8VYOFRpD5ZZgZMGerz2bTUSkLLFnw6pRQBG9RFaNNo8TERFLOL3OVUJCAps3b2bjxo1Uq1aNWrVq5Xn8+eefzzMmS0oJd8db5ZZwuzk98K6p0PABT6QSESl7Di4quMUqhwHpyeZxxfmdLSIibnO65QogKCiIZs2a5SusAJo1a0aVKlU8Fkz8hLvjrXKLH2R2Kzy0FE7+5YlUIiJlz5n9nj1OREQ8zqXiSsqY4o63cgivATV6mtu7PvdMNhGRsia8pmePExERj1NxJYUr7nir3BxrXu2aaq7JIiIirqnWCSJigcKmWrdBRJx5nIiIWELFlRQu7Xxx5Ym++7E3QGAEnNwGh1cU/3wiImVNQCC0nETBE1qcL7haTjSPExERS6i4ksI5JrOITiz+uYKjIO5Gc1trXomIuCf2Bgitln9/RCx0mg5xA3weSURELnCruFq0aBG333477du3JyUlBTCnYl+8eLFHw4mF0lPMVqbijrfKzdE1cPeXYM/0zDlFRMqSg4vh3EEIjCLr6h9YGTqGrMS50G+nCisRET/gcnH17bff0rt3b8LDw1mzZg3nzp0D4Pjx47zyyiseDygWcXQJrNQCQip65pw1ekBYtPmPwf65njmniEhZsnOKeRt/C0bN3qQEdcaITlRXQBERP+FycfXSSy/xwQcfMHnyZIKDg3P2d+zYkdWrV3s0nFjIE1OwXywgCOJvM7fVNVBExDVZ6bD7/GLsdYdam0VERArkcnG1detWOnfunG9/hQoVOHbsmCcyiT/wxOLBBXF0Ddz7PWSe9Oy5RURKs73/hayTEJngue7aIiLiUS4XVzVq1GD79u359i9evJi6det6JJRYzBvjrRwqt4Tyl0H2GUj+zrPnFhEpzXZ+at7WudP8/SwiIn7H5d/O99xzD6NGjWL58uXYbDb27dvH559/zqOPPsr999/vjYzia94Yb+Vgs+Vd80pERC4tfR8cOD9Wtc4d1mYREZFCBbn6hCeffBK73U737t1JT0+nc+fOhIaG8uijj/Lggw96I6P4mjfGW+WWMBjWPQ2p88x/GCJqeec6IiKlxa7PwbBDtY5Qrr7VaUREpBAut1zZbDb+8Y9/cOTIETZs2MCyZcs4ePAgL774ojfyiRW8Nd7KIaqu+Q+CYTenZRcRkcIZRt4ugSIi4rdcLq7uuusuTp48SUhICE2aNKFNmzZERUVx+vRp7rrrLm9kFF/y5nir3HK6Bn7mvWuIiJQGR9fA8Y0QEAq1b7E6jYiIFMHl4urTTz/lzJkz+fafOXOGKVOmeCSUWMib461yq30zBATD0bVwbIP3riMiUtI51raKvcG7v5dFRKTYnC6uTpw4wfHjxzEMg5MnT3LixImcj6NHj/K///2P6Ohob2YVX/D2eCuH0CpQq6+5vetz715LRKSksmfCrmnmtroEioj4PacntKhYsSI2mw2bzUbDhg3zPW6z2Xj++ec9Gk4s4O3xVrkl3G6u27Lrc2j2sqYWFhG52L45cO4ghFWHmr2sTiMiIpfgdHE1f/58DMOgW7dufPvtt1SuXDnnsZCQEOLj46lVS7O+lWi+Gm/lEHMdBJeH9GRIWwTVE71/TRGRksQxkUXCEAhweYJfERHxMad/Uycmmv/47ty5k9q1a2Oz2fIds2fPHmrXru25dOJbvhpv5RAYZo69+us/5ppXKq5ERC44dwRSfjC36wy1NouIiDjF5X5YdevW5eDBg/n2Hz58mDp16ngklFjEUVx5e7xVbo5ZA/d8A9lnfXddERF/t+crsGdAxWZQ6Uqr04iIiBNcLq4Mwyhw/6lTpwgLCyt2ILGQYzILX4y3cojuDBGxkHkcUn703XVFRPzdjvNdAuuq1UpEpKRwulvgmDFjAHPiimeeeYaIiIicx7Kzs1m+fDnNmzf3eEDxkfR9cPJP3423crAFmGMJNo0zuwbWHui7a4uI+KsTW+HwcrAFQvxgq9OIiIiTnC6u1qxZA5gtV+vXryckJCTnsZCQEJo1a8ajjz7q+YTiG44ugRWb+34dlYQ7zOJq34/mGIPQypd+johIaeZY26rmNRBe3dosIiLiNJdmCwQYPnw4kyZNonz58l4LJRbw5RTsF6vYFCo1NxcU3vMNNLjP9xlERPyFYYedn5nbWttKRKREcXnM1ccff0z58uXZvn07P/30E2fOnAEKH4slJYSvFg8ujGNii11Trbm+iIi/SF1gLlERXAFi+1mdRkREXOBycXXkyBG6d+9Ow4YN6du3L/v37wfg7rvv5pFHHvF4QPEBx3grbBDdyZoM8beZ1z+4GE7ttCaDiIg/cHQJjL/VXLJCRERKDJeLq9GjRxMcHMyePXvyTGpx6623MmfOHI+GEx/x9fpWBYmoBTW6m9u7plmTQUTEapmnIHm6ua21rUREShyXi6uff/6ZcePGERsbm2d/gwYN2L17t8eCiQ9ZOd4qt9xdA9XNVETKor3fQdZpiKoPVdtbnUZERFzkcnF1+vTpPC1WDkeOHCE0NNQjocTHrB5v5RB3IwSGw4ktcHS1tVlERKzgWNuqzp1gs1mbRUREXOZycdWpUyemTJmSc99ms2G32xk/fjxdu3b1aDjxAX8Yb+UQXB5i+5vbOzWxhYiUMaeTIfVXc7vOHdZmERERtzg9FbvD+PHj6d69OytXriQjI4PHH3+cjRs3cuTIEX777TdvZBRv8ofxVrkl3A67v4TdX0CL1yHA5W9REZGSaddUwIDoRIhKsDqNiIi4weWWq8svv5w///yTq6++mv79+3P69GkGDBjAmjVrqFevnjcyijf5y3grh5q9ILQqnE2FA/OsTiMi4huGcWGWQK1tJSJSYrnVLFChQgX+8Y9/eDqLWMFfxls5BARD/CD48x3zXdxava1OJCLifYdXmONNA8Oh9k1WpxERETe5XFwtXLiwyMc7d+7sdhjxMX8ab5Vbwu1mcZU8AzLfh+AoqxOJiHjXzvMTWcQNMMefiohIieRycdWlS5d8+2y5ZjTKzs4uViDxIX8bb+VQpY05DfGp7bD3v1BniNWJRES8J/ucOdYU1CVQRKSEc3nM1dGjR/N8pKWlMWfOHFq3bs3PP//sjYziLY7iyl/GWznYbFAn15pXIiKl2b4fIeMIhNeC6t2tTiMiIsXgcstVhQoV8u3r2bMnISEhjBkzhlWrVnkkmPiAYzILfxlvlVvCEFj/HBz4Gc6kQnh1qxOJiHiHYyKLhNshINDaLCIiUiwut1wVpnr16mzdutVTpxNvO7MfTmzF78ZbOZSrD1XagWG/0F1GRKS0OXsQUn40t9UlUESkxHO55WrdunV57huGwf79+3nttddo3ry5p3KJt6X66Xir3OrcDoeXmV0DG42yOo2IiOft/hKMLKjcEio2tTqNiIgUk8vFVfPmzbHZbBiGkWd/u3bt+OijjzwWTLwsp0tgoqUxilT7Flg1Go6shONboEIjqxOJiHiWY5bAOkOtzSEiIh7hcnG1c+fOPPcDAgKoVq0aYWFhHgslPuBviwcXJKwa1LwG9s2CXZ9DsxetTiQi4jnHNsKRVWALMtf3ExGREs/l4io+Pt4bOcSX/H28VW51bj9fXE2FK18wZxIUESkNHBNZxFxrvpkkIiIlnlsTWiQlJXH99ddTv3596tevT79+/Vi0aJGns4m35Iy3ag4hlSyNckkx10NQOTi9Cw4tsTqNiIhn2LMvLDWhiSxEREoNl4urqVOn0qNHDyIiInjooYd46KGHCA8Pp3v37kybNs0bGcXT/HkK9osFRUDtgeb2Tq15JSKlROo8OLMPQipDrWutTiMiIh7icnH18ssvM378eL766quc4uqrr77itdde48UXNSamRCgJ461ySzi/oPCeryA7w9osIiKe4OgSGD8IAkOtzSIiIh7jcnG1Y8cOrr/++nz7+/Xrl2+yC/FDJWm8lUN0FwivBRlHYf9sq9OIiBRP5glInmFua5ZAEZFSxeXiKi4ujnnz5uXb/8svvxAXF+eRUOJFJWm8lUNAICQMNrfVNVBESro930L2GSh/GVRpbXUaERHxIJdnC3zkkUd46KGHWLt2LR06dADgt99+45NPPmHSpEkeDygeVpLGW+WWcDtsngApP0DGMf9d+FhE5FJyr22lGVBFREoVl4ur+++/nxo1avDGG2/w9ddfA9C4cWO++uor+vfv7/GA4mElbbyVQ8UrocLlcHwDJH8L9e62OpGIiOtO7YK0JMB2YTypiIiUGi4XVwA33ngjN954o6eziLeVxPFWDjabuebV2ifNroEqrkSkJNr5mXlbvRtEqiu9iEhp41ZxBZCRkUFaWhp2uz3P/tq1axc7lHhJ2kLztiSNt8otfrBZXKUtgNN7IFLfayJSghjGhVkC62oiCxGR0sjlCS22bdtGp06dCA8PJz4+njp16lCnTh0SEhKoU6eONzKKp6QuMG9L2ngrh8i4C9l3aU01ESlhDi2FU9shKBJi1ftDRKQ0crnlatiwYQQFBTFr1ixq1qyJTYNxS46SOt4qtzq3m5/Hrs+gyRMaDC4iJYdjIou4myA4ytosIiLiFS4XV2vXrmXVqlU0atTIG3nEW84cgBNbKJHjrXKLGwgrRsDxTXDsD7OLo4iIv8s+C7u/Mrfr3GltFhER8RqXuwU2adKEQ4cOeSOLeFNaCVzfqiAhFSHm/CLWWvNKREqKvTMh8zhExJXs3gMiIlIkp4qrEydO5HyMGzeOxx9/nAULFnD48OE8j504ccLbecVdJX28VW51zk9fvHsa2LOtzSIi4gzHRBZ17gCby+9riohICeFUt8CKFSvmGVtlGAbdu3fPc4xhGNhsNrKz9c+uX8oZb5VoaQyPqNkHQiqbU8unzYcaPaxOJCJSuDOpsH+Oua0ugSIipZpTxdX8+fO9nUO8Kfd4q2oleLyVQ2AI1L4Ftn9gdg1UcSUi/mz3NDCyoUpbKH+Z1WlERMSLnCquEhNLQWtHWZYz3qoZhFa2Noun1LndLK6Sv4XW70FQhNWJREQKtuP8LIFa20pEpNRzqrhat26d0ye88sor3Q4jXlKaxls5VO0AkQlwepc5UDxhkNWJRETyO/qHObNpQAjUvtXqNCIi4mVOFVfNmzfHZrNhGEaRx2nMlZ8qDetbXcxmg4TbYeNLsGuqiisR8U+OiSxiri89PQdERKRQThVXO3fu9HYO8ZbSNt4qt4QhZnG1fw6cPQhh1axOJCJygT0Ldn1ubmsiCxGRMsGp4io+Pt7bOcRbSuN4K4cKjaByKziy0lyc87KRVicSEblg/89wNhVCq0KtPlanERERH3CquJo5cyZ9+vQhODiYmTNnFnlsv379PBJMPKQ0jrfKLeF2s7jaNVXFlYj4F0eXwPjBEBBsbRYREfEJp4qrG264gQMHDhAdHc0NN9xQ6HEac+WHSuN4q9ziB8GaR+DwcjixDco3sDqRiAhkHIO935vbmiVQRKTMcGqZeLvdTnR0dM52YR8qrPxMaR5v5RBeHWr0NLcdYxtERKy252uwn4MKTaFSC6vTiIiIjzhVXEkJlbbQvC2N461yS7jdvN01FS4xo6WIiE84ugTWGWrObioiImWC08XV0qVLmTVrVp59U6ZMoU6dOkRHR3Pvvfdy7tw5jweUYnB0CSyt460c4m6AoEg49ZfZPVBExEont8PB38AWYM5qKiIiZYbTxdULL7zAxo0bc+6vX7+eu+++mx49evDkk0/yww8/8Oqrr3olpLjJMZlFaR1v5RAUCbE3mts7p1qbRURk52fmbY2eEFHL2iwiIuJTThdXa9eupXv37jn3v/zyS9q2bcvkyZMZM2YM//znP/n666/dCvHuu++SkJBAWFgYbdu25ffffy/02I0bNzJw4EASEhKw2WxMnDgx3zGvvvoqrVu3ply5cjmTcGzdutWtbCXWmVQ4sZlSPd4qN0fXwD1fgj3T2iwiUnYZ9rxdAkVEpExxurg6evQo1atXz7mflJREnz4X1u1o3bo1ycnJLgf46quvGDNmDM8++yyrV6+mWbNm9O7dm7S0tAKPT09Pp27durz22mvUqFGjwGOSkpIYMWIEy5YtY+7cuWRmZtKrVy9Onz7tcr4SqzSvb1WQGt0hrAacOwz7f7I6jYiUVQcXw+ldEFQOYvtbnUZERHzM6eKqevXq7Ny5E4CMjAxWr15Nu3btch4/efIkwcGur+Px5ptvcs899zB8+HCaNGnCBx98QEREBB999FGBx7du3ZrXX3+dQYMGERoaWuAxc+bMYdiwYTRt2pRmzZrxySefsGfPHlatWuVyvhKrrIy3cggIgvjbzG11DRQRq+z41LyNvwWCIqzNIiIiPufUOlcAffv25cknn2TcuHF8//33RERE0KnThe5m69ato169ei5dPCMjg1WrVjF27NicfQEBAfTo0YOlS5e6dK6iHD9+HIDKlQtuwTl37lyeyThOnDgBQGZmJpmZ1nYxc1zf1RxBB+ZjA7KqXI3hxc/B3XxeETeI4K1vYez9L1nph8kkHPCTbBfxq9ftIsrmHmVznz/ncylbVjpBe74xf/fGDfbq716Xs/mYsrlH2dznz/mUzT3+lM2VDDbDcG7u6kOHDjFgwAAWL15MVFQUn376KTfeeGPO4927d6ddu3a8/PLLTl983759xMTEsGTJEtq3b5+z//HHHycpKYnly4ue+S0hIYHRo0czevToQo+x2+3069ePY8eOsXjx4gKPee6553j++efz7Z82bRoRESXvncdQ4xjXpA/DwMbsiClk2spZHck3DINuZx6knLGX1SEPkhzc/dLPERHxkJisJFqde4vTtur8Ev6+OVugiIiUeOnp6QwePJjjx49Tvnz5Io91uuWqatWqLFy4kOPHjxMVFUVgYGCex7/55huioqLcS+xFI0aMYMOGDYUWVgBjx45lzJgxOfdPnDhBXFwcvXr1uuQL6G2ZmZnMnTuXnj17Ot3t0pb8DSwDKlxBz163+l0+bwrYvB42PEPzihtp1OE1v8qWm7+9brkpm3uUzX3+nM+VbIEL34NUCGv8N/o2vc6vsvmasrlH2dznz/mUzT3+lM3Rq80ZThdXDhUqVChwf2Fd7opStWpVAgMDSU1NzbM/NTW10MkqXDFy5EhmzZrFwoULiY2NLfS40NDQAsdvBQcHW/7FdHApy2GzkLTV6Oqz/H7zWtW9AzY8Q0Dar4QcmElM1gpCjkYSVLMrBARe+vk+5jevWwGUzT3K5iJ7Nra0JcRkLSzZP6vp+yDtFwAC6w0n0Ievs19+Xc9TNvcom/v8OZ+yuccfsrlyfUv7LISEhNCyZUvmzZuXs89utzNv3rw83QRdZRgGI0eO5LvvvuPXX3+lTp06nohbcjjWtyork1nkFpUA5RsDELTsNlqde5OgpJ4wMwGSZ1gaTUQukjwDZiYQlNSz5P+s7vrcnIa9Wkco59r4YxERKT0s7xA+ZswYJk+ezKeffsrmzZu5//77OX36NMOHDwfgzjvvzDPhRUZGBmvXrmXt2rVkZGSQkpLC2rVr2b59e84xI0aMYOrUqUybNo1y5cpx4MABDhw4wJkzZ3z++flc7vWtojtbncb3kmec//wvkp4Ci24qmf+0iZRGyTPMn8n0vXn3l8SfVcOAnednCdTaViIiZZrL3QI97dZbb+XgwYM888wzHDhwgObNmzNnzpycNbX27NlDQMCFGnDfvn20aNEi5/6ECROYMGECiYmJLFiwAID3338fgC5duuS51scff8ywYcO8+vlYzrG+VcUry8b6VrnZs2HVqEIeNAAbrBoNMf39stuRSJmR87Na0HxKJfBn9egaOL4RAkKh9s1WpxEREQtZXlyBOTZq5MiRBT7mKJgcEhISuNQEh05OgFg6Oda3qt7FyhTWOLgo/7vgeRiQnmweVxZfHxF/Udp+Vh1rW8XeACEVrUwiIiIWs7xboHhYWR5vdWa/Z48TEe8oTT+r2Rmwe5q5XedOa7OIiIjlVFyVJmV9vFV4Tc8eJyLeUZp+VvfPgXOHIKw61OxldRoREbGYiqvS5OBC87YsjrcCqNYJImIBWyEH2CAizjxORKxTrj7YLjGWyhZkfvg7x0QWCUMgoATkFRERr1JxVZo4ugSWhDEK3hAQCC0nnb9zcYF1/n7LiSVjgLxIaZV1GhbeAEb2+R2FvBliZMG8RFjzOGSf9VU615w7Aik/mNuaJVBERFBxVbo4JrMoi+OtHOIGQKfpEBGTd39ErLk/boA1uUTEnCVwyRA4sgpCq0Krdwv4WY2D9p9Cwh3mulGbX4fZV8Gh363JXJTdX4I9Eyo2g0pXWp1GRET8gIqr0uJsGhzfRJkdb5Vb3ADot4usTj+SzflWqsRZKqxErLb2cdj7X3PK8s7fQ8MHzJ/VxLmsDB1DVuJc6LfTnBiiwxTo/F9zLNOJzTC3Pax9CrLPWf1ZXLBzinlbV61WIiJiUnFVWpTl9a0KEhCIUaMnhwOvMO+nzrc2j0hZt+0D2PKmud3uE6jW0dwOCMSITiQlqDNGdGLebrux/eDajRA/2GzF2vQqzGlptnxZ7cRWOLzcHDsWP9jqNCIi4idUXJUWZX28VSEOBjQzNw78Ym0QkbJs30+w8vxahle+CAmDnH9uaBXo+Dl0+hZCq5mL9f7UFv542pwG3SqOVqua10B4detyiIiIX1FxVVpovFWB0gLPF1dpC8yxESLiW8fWw+KbzQks6gyFpv9w7zxxA8xWrNq3mOfa+BL81BqOrPFsXmcYdtj5mbmtLoEiIpKLiqvSQOOtCnUiIAEjpCpknYJDy62OI1K2nNkPC66FrJPmGz9tPgRbYUslOCGsGlz9FVz9tTkhxrF18FMbWP+8b988SV0A6ckQXBFirvfddUVExO+puCoNcsZbXaHxVhezBWBU72puq2ugiO9knYakfmYRUq6h2a0vMMQz5659s9mKFTfQnLJ9/XNmV8Gj6zxz/ktxrG0VfysEhvnmmiIiUiKouCoNHOOt1CWwQPbqPcyNA3OtDSJSVhh2WHIHHFlpjpnq8j/Pv/ETFg1XfwMdvoCQynB0DfzUCja8DPYsz14rt8xTkPytuV3nTu9dR0RESiQVV6WBY7yVJrMokBHdzdw4vBwyT1gbRqQsWPsE7P0OAkKg0/dQrp53rmOzmZNjXLsRYvubXQPX/R/83A6ObfDONZNnmK1yUfWhanvvXENEREosFVclXc54KzTeqjCR8eY/Qkb2hVY+EfGObf+CzRPM7XafQPTV3r9meA3o9B20nwohlcyp2ue0hI2veb4VyzFLYJ07izd+TERESiUVVyVdnvWtqlibxZ/V7GneatyViPfs+wlWjjC3r3gBEm7z3bVtNqgzBPpugFrXgT0D/hgLczvC8c2eucbpZEj91dyuc4dnzikiIqWKiquSTuOtnFPDMe5KxZWIVxzbkGvK9Tvh8v+zJkdELUicabaaBVeAw7/D7Baw6XWwZxfv3Ls+AwyIToSoBA+EFRGR0kbFVUmn8VbOqd4VbAFwYjOk77U6jUjpcuZArinXOxd/yvXistnM9aeu3Qg1+4D9HKx9HH7pBCe2undOw8jVJVBrW4mISMFUXJVkGm/lvJBKULmVuX1gnrVZREqTrPTzU67vgXINoNMMCAy1OpUpIga6/Aht/wPB5eHQUpjdHLa85XIrlu3ICrMwCwyH2gO9k1dEREo8FVclWdpC81bjrZyjroEinmXYYekdcGRFrinX/ex3kc0G9e6CvuuhRk/IPgurx8C8LnByu/On2T3V3IgbYBZqIiIiBVBxVZJpvJVrauSa1MIwrM0ipYs9G1taEjFZC7GlJRV/bE9JsfZJc2rynCnX61udqHCRtaHrT9DmXxAUBQcXw/+uhK3/NIvEIgQYmQTs+cq8o7WtRESkCCquSjKNt3JN1fZml56zB+D4RqvTSGmRPANmJhCU1JNW594kKKknzEww95dm2yfD5tfN7bYf+WbK9eKy2aD+vXDtBqjeDbLPwKpRMK8rnNpR6NOqZ6/ElnkUwmtB9e4+DCwiIiWNiquS6mzahQJB462cExh64bVS10DxhOQZsOim/JOkpKeY+0trgbV/Lqy439y+4jlzCvSSJDIeus2F1u9BUKTZxfp/V8Kf7+VtxTrfItkgY7p5P34wBARak1lEREoEFVcllcZbuSena+Bca3NIyWfPNls9KKiL6fl9q0aXvi6CxzbC4pvMKdcTbofLn7E6kXtsAdDgfnMsVnQXyDptrtH1a084tStPi2Ql4y/zObs+K70Fs4iIeISKq5JK463c45jUIi0JsjOszSIl28FFl5jW34D0ZPO40uJMKiRdC5knzFbgtv+2dsp1T4iqA93nQcu3ITDCXCR4VmNYNDD/1/dsWulukRQRkWJTcVVSabyVeypeAaHVzHepDy+zOo2UZGf2e/Y4f5eVDgv7wend/jflenHZAuCykdD3D6jaEexnCzmwFLdIioiIR6i4Kok03sp9tgBNyS6eEV7TueNCKns3hy8Ydlh6Jxz+3fx8En8snd2Ry9WHK1+4xEGlsEVSREQ8RsVVSaTxVsWj4ko8oVoniIi99HHL/wY7Pi3ZLR1/PAXJ30JAMHT+Dso3sDqR95xNde640tIiKSIiHqXiqiTKGW+VaGmMEstRXB3+HTKOW5tFSq6AQEgobM2j8+OQQqrAmb2wbBjMuQr2zSl5a6xt/zdsGmdut/2o9LeWO9si6exxIiJSpqi4Kok03qp4ImtDuYbmbGeO11LEVWdSYce/ze2gqLyPRcRCp2/hhmRoPg6CK8CxdbCgjzkb3ZHVvs/rjgO/wIq/m9uXPwt1brc2jy/ktEgWNlGHDSLizONEREQuouKqpMk93qpaKX8H2ZvUNVCKw7CbrVFn06DC5XDjAbIS57IydAxZiXOh306IGwBB4dDkcej3FzQaAwEhkDoP5rSE34bAqZ1WfyaFO77JnBnPyIaEIXDFs1Yn8o2AQGg56fydiwus8/dbTtR6VyIiUiAVVyVNznirKyCsqrVZSjKtdyXFsfVt2D8HAsOg4xcQHIkRnUhKUGeM6MT8/3iHVoGr3oDrtpqFCsDuaTCrEawaA+cO+/5zKMqZVFhwLWQeh2pXQ9v/lPwp110RNwA6TYeImLz7I2LN/XEDrMklIiJ+T8VVSaP1rTyjehdz5sATW+F0stVppCQ5+gesfdzcbjEBKl7u/HOjEqDDVLhmJVTvDvYM2PoWzKxnjmvKOuOVyC7JOgML+8PpXRBVHzp9V3qmXHdF3ADot6vgFkkREZFCqLgqaTTeyjNCKkLl1uZ26jxLo0gJkpUOSwabRVGt66DBA+6dp3JL6DYXuswxZ/3MPA5rn4RZDWHHJ9bNLGjYYdlQOLzcnHK9y49lu4U8ILDoFkkREZGLqLgqSc4e1HgrT3J0DdyvroHipDWPmmORwmpAu4+K11XOZoNaveGa1dDuU3OShPS9sGw4zGkB+2b7fmbBP/4Be77JNeV6Q99eX0REpIRTcVWSaLyVZzkmtUj9peRNjy2+t/e/sO19c7v9FAir5pnzBgRC3TvN8VjNx5+fWXA9LOgLv/aAI6s8c51L+esj2PSaud3m36V/ynUREREvUHFVkji6BGq8lWdUbQeBEeaMb8fWW51G/Fn6Plh+t7nd6BGo2dPz1wgKhyaPQb8d5jUCQiD1V5jTCn4b7N2ZBQ/Mg9/vM7cvf9os9kRERMRlKq5KEsdkFhpv5RmBoRcWYtaU7FIYww5L7zRn9KvUApq97N3rhVaGqyacn1nw/LpSu7+AWZfBqoc9P7Pg8c2waCAYWRA/GK543rPnFxERKUNUXJUU5w7C8Q3mtsZbeY7Wu5JL2fyGOelJYIQ57bqvZs6LSoAOn8E1q8zvU3smbJ1oziy48TXPzCx4Ni3XlOsdoV0Zm3JdRETEw1RclRC2g4vMDY238ixH9660JMg+Z20W8T+HV8IfT5nbLSdB+ct8n6HyVebMgl1/gorNzELoj7HmzIJ/fez+zIJZZyCpP5zeCVH1oNP35rpdIiIi4jYVVyWE7eD5ySw03sqzKlwOYdGQnQ6HllmdRvxJ5ilz2nUjy1zbqN7d1uap2Qv6rDYn03DMLLj8LpjdHFL+59qkLIYdlg2Dw8sgpJKmXBcREfEQFVclREBakrmh8VaeZbNBdXUNlAKsHg0nt0F4DLSZ7B/d5WwBUOcOuP5PaPE6BFc0uwsnXQu/djdb2pyx7mnY87U55XqnGda0yImIiJRCKq5KgBDjOLYTWt/KaxxdAw9ovSs5b8838Nd/ABt0mGpOMuFPAsOg8aPQ7y/zNiAEUufDT63ht9vg1I4Lx9qzsaUlEZO1EFtaEmz/D2x8xXyszb/1ho2IiIgHBVkdQC6tSvb5wkrjrbyjenfz9sgKyDgGIRWtTCNWO70Hlt9rbjcd69/FR2hlswWr4Uj442nYNRV2fwnJ30KDB6Bic1j/NEHpe2kFkPTmhec2/T9NuS4iIuJharnyZ+ffcY7P/Nm8r1Yr74iMM7tFGfYL091L2WTPhiW3Q+YxqNIGrnjO6kTOiYyHDlPOzyzY8/zMgpNg+XBzbFZBKjX3aUQREZGyQMWVv0qeATMTCErqSXX7WnPf7i/N/eJ5NdQ1UIBNr8HBRRAUBR0+N8cklSSVW0C3n6HL/8BWVHYbrH7Y/ZkGRUREpEAqrvxR8gxYdFP+d5wzjpj7VWB5nta7kkPLYP2z5nard6FcfWvzFEdgOBiZRRxgQHqyWUiKiIiIx6i48jf2bFg1CihoWuXz+1aN1jvOnhbdBWyBcPJPc8yNlC2ZJ+C3wWBkQ/wgc0a+kuzMfs8eJyIiIk5RceVvDi4qfIwEoHecvSSkgjnGBtR6VRatGGEuphsZD63f949p14sjvKZnjxMRERGnqLjyN3rH2TrqGlg27fzcnGXPFmCOsyoNs0VW6wQRsUBhRaLNXIi4WidfphIRESn1VFz5G73jbJ3cxZVhtzaL+MapHbDifnP78megWkdr83hKQCC0nHT+zsUF1vn7LSeax4mIiIjHqLjyN3rH2TpV2kFQJJw7CMfWW51GvM2eBb8NgayTZlHV9B9WJ/KsuAHQaTpExOTdHxFr7o8bYE0uERGRUkzFlb/RO87WCQyB6ERzW10DS78NL8DhZRBcHtpPhYBSuKZ63ADot4usxLmsDB1DVuJc6LdThZWIiIiXqLjyR3rH2Tpa76psSFsEG182t1v/C6ISLI3jVQGBGNGJpAR1xohO1BszIiIiXlQK36otJeIGQEx/svbPZ+2y2TRv14egml31j5G3OcZdpS2E7HMQGGptHvG8jKOwZIg5rq7OUEgYZHUiERERKSXUcuXP9I6z71VoCmE1IPsMHFpqdRrxNMOA3/9uLmcQVQ9avW11IhERESlFVFyJ5Gaz5Zo1UF0DS52dn8Ker8EWBB2mQXA5qxOJiIhIKaLiSuRiZXm9K3s2trQkYrIWYktLAnu21Yk858Q2WDnS3L7yBajaxto8IiIiUupozJXIxRzF1ZGV5vickErW5vGV5BmwahRB6XtpBZD0pjmJSstJJX8SlewMWDIYsk5DdBdo/LjViURERKQUUsuVyMUiYqB8Y3PCg9T5VqfxjeQZsOgmSN+bd396irk/eYY1uTxl/TNmsRxSCTp8pvGLIiIi4hUqrkQKUpa6BtqzYdUowCjgwfP7Vo0uuV0ED/wKm8ab220mn1+kW0RERMTzVFyJFMRRXO0vA5NaHFyUv8UqD8OcXe/gIp9F8phzh2HpHYAB9e6B2gOtTiQiIiKlmIorkYJU7wK2QDi1HU7tsjqNd53Z79nj/IVhwPK/wZl9UP4yaPmW1YlERESklFNxJVKQ4PJQpa25nTrP2izeFl7TueMyjnk1hsdt/xD2fg8BwdDhCwiKtDqRiIiIlHIqrkQKU6OneVvauwZW63R+HJKt6ONWPgBzO0Hyd/4//ur4Zlj9sLnd7FWo3MLaPCIiIlImqLgSKYxj3FXqPHPmwNIqINCcbr3ACS1s5kd0otkCdHAxLBoAsy6Dre9A5ikfh3VC9jn47TbIPmMWyI0etjqRiIiIlBEqrkQKU7UtBEXBuUNwbJ3VabyragewFbDsXUQsdJoOPRZAv13QZKw5nfmpv2DVg/B9HKx90pyy3V+sHQvH/oDQqtD+U7Dp15yIiIj4hv7rEClMQLC54CyU/q6Bf74NRhZUaUdW4lxWho4hK3Eu9Nt5YQHhiFrQ/BW4IRlavQtR9SHzGGwaB/9NgCV3wJE1Vn4WsG8ObD0/cUXbj5wfTyYiIiLiASquRIpSFta7yjwJf75nbjd5AiM6kZSgzhjRiQUvthsUCQ0fgOu2QOfvIbqzWZjtmgpzroJ53SBllu+7Up5Ng2XDzO0GIyD2et9eX0RERMo8FVciRXEUVwcXQvZZa7N4y1//MVugyjWE2H7OPy8gEGL7Q48k6L0C4m8zp69PnQ9J18OPTWDbvyAr3WvRcxgGLBsOZ1OhQlNo8br3rykiIiJyERVXIkWp0MTsWpZ9Fg4usTqN59kzYcub5nbjR90fn1SlFXScZnYjbPyoOZX9ia2w4u/w39qw7hk4c8BzuS/25zuw738QEAodv4CgcO9dS0RERKQQKq5EimKzQfVS3DVw99eQngxh1aHOHcU/X2Sc2Wp0w164aiJEJsC5w7DhRfhvPCy7C45tKP51cju2HtY8Zm63eB0qXuHZ84uIiIg4ScWVyKXkjLsqZZNaGAZsHm9uX/YQBIZ57tzB5aDRKLh+G1z9DVRpB/YM2PEx/O8K+LU37P/ZzFAcWWfMadft56BWX2g40jP5RURERNyg4krkUhzF1ZFVcO6ItVk86cBcc4r5oEhocL93rhEQBLVvgt5LoecSiLvJ7Hp44GeY39sstP76yFybyh1rHoPjG82Wt3Yfmy2NIiIiIhZRcSVyKRG1zLFXGOZkDaXFpvOtVvXuMdeu8rZq7aHTN2Zr1mWjzDXEjm+E5XebXQbXvwhnDzl/vr0/wLZ3ze12n0JYtHdyi4iIiDhJxZWIM2r0NG9LS9fAI6shdZ45u1+j0b69dlRdaDnRXC+r+XhzoeKzqbD+GfhvHPz+dzi+Jf/z7NnY0pKIyVqILXmGOTsgwGUPQ63ePv0URERERAqi4krEGaVtvavN56cqjx8EkfHWZAipCE0eg347oMM0qNzSnJVx+7/gx8aw4HqzpdAwIHkGzEwgKKknrc69SdCyQZBxGCLiofmr1uQXERERuYiKKxFnRCeCLQhO/QWndlqdpnhO7YQ935jbjR+zNgtAQDAk3GauldUjCWL6ATbYN8tckHhmPVg0ENL35n9u+h7Y96PPI4uIiIgURMWViDOCy0HVduZ2SW+92vIWGNlQoxdUamZ1mgtsNojuDIn/heu2QIMHICAMTl+imF01GuzZPokoIiIiUhQVVyLOKg1dA88dhr/+Y2438YNWq8KUbwit34Wrv7zEgYa5TtfBRT6JJSIiIlIUFVciznIUV6nzwLBbm8Vdf74H2elQqQVU7251mkvLSnfuuDP7vZtDRERExAkqrkScVaUNBJUzW3+OrrU6jeuyzsCfb5vbjR8rGWtChdf07HEiIiIiXqTiSsRZAcFQvYu5XRK7Bu78FM4dNGcHrH2z1WmcU62TOVU7hRWCNoiIM48TERERsZiKKxFX5Iy7KmHrXdmzYfMb5najMRAQZG0eZwUEQstJ5+9cXGCdv99yonmciIiIiMVUXIm4wrGYcNois5tdSbH3ezi1HUIqQ727rU7jmrgB0Gk6RMTk3R8Ra+6PG2BNLhEREZGLlJC3r0X8RPlGEF4LzuyDQ0ugRgmYFMIwYPN4c7vBAxAUaW0ed8QNgJj+ZO2fz9pls2nerg9BNbuqxUpERET8ilquRFxhs11ovSopXQMPLoLDv0NAKFz2oNVp3BcQiBGdSEpQZ4zoRBVWIiIi4ndUXIm4qqStd7XpfKtV3WEQFm1pFBEREZHSTMWViKscXQGPrDanZfdnxzbCvh8BGzR6xOo0IiIiIqWaXxRX7777LgkJCYSFhdG2bVt+//33Qo/duHEjAwcOJCEhAZvNxsSJE4t9ThGXhNeECpcDBqT+anWaom2ZYN7G3QjlG1ibRURERKSUs7y4+uqrrxgzZgzPPvssq1evplmzZvTu3Zu0tLQCj09PT6du3bq89tpr1KhRwyPnFHFZSegamJ4Cuz43txs/bm0WERERkTLA8uLqzTff5J577mH48OE0adKEDz74gIiICD766KMCj2/dujWvv/46gwYNIjQ01CPnFHFZSSiutk4Ce6a5wG7VtlanERERESn1LJ2KPSMjg1WrVjF27NicfQEBAfTo0YOlS5f67Jznzp3j3LlzOfdPnDgBQGZmJpmZmW7l8BTH9a3OURh/zufVbJU7EGQLwnZqB5lHt0JUXf/JBpB5nKBt/8IGZDUcg+HCdcrs17SYlM19/pxP2dyjbO5RNvf5cz5lc48/ZXMlg80wDMOLWYq0b98+YmJiWLJkCe3bt8/Z//jjj5OUlMTy5cuLfH5CQgKjR49m9OjRxTrnc889x/PPP59v/7Rp04iIiHDjM5OyoOOZp6hq38TakPvZHdzb6jh51M/4jqaZn3LCFsf88Elgs7yRWkRERKRESk9PZ/DgwRw/fpzy5csXeawWEQbGjh3LmDFjcu6fOHGCuLg4evXqdckX0NsyMzOZO3cuPXv2JDg42NIsBfHnfN7OFrBpNWx8gSujU2navq//ZLNnEPTjA5AJES2foW+d6/wnWzEpm3v8ORv4dz5lc4+yuUfZ3OfP+ZTNPf6UzdGrzRmWFldVq1YlMDCQ1NTUPPtTU1MLnazCG+cMDQ0tcPxWcHCw5V9MB3/KUhB/zue1bLWugY0vEJC2gIDAALcWtfVKth2fw9l9EF6LoHp3QKB75y+TX1MPUDb3+XM+ZXOPsrlH2dznz/mUzT3+kM2V61vaVygkJISWLVsyb968nH12u5158+bl6dJn9TlFClSlNQSXh4wjcGyt1WlMhh02n59+/bJREFjwpC8iIiIi4nmWdwscM2YMQ4cOpVWrVrRp04aJEydy+vRphg8fDsCdd95JTEwMr776KmBOWLFp06ac7ZSUFNauXUtUVBT169d36pwiHhEQBNW7wt7/wv65ULml1Ylg32w4vhGCykH9+6xOIyIiIlKmWF5c3XrrrRw8eJBnnnmGAwcO0Lx5c+bMmUP16tUB2LNnDwEBFxrY9u3bR4sWLXLuT5gwgQkTJpCYmMiCBQucOqeIx1TvYRZXB36Bpk9anQY2v27eNrgPQipYm0VERESkjLG8uAIYOXIkI0eOLPAxR8HkkJCQgDMTHBZ1ThGPcax3dXAxZJ2BoHDrshz6HdKSICDY7BIoIiIiIj6l+ZlFiqP8ZRARC/ZzZoFlJUerVfxgM5OIiIiI+JSKK5HisNkutF4d+MW6HCe3Q/K35nbjR63LISIiIlKGqbgSKa7qflBcbXkTMKBWX6h4uXU5RERERMowFVcixeVouTq6Bs4e8v31z6bBjo/N7caP+/76IiIiIgKouBIpvvDqUPEKwIDUX31//T/fheyzULk1RHf2/fVFREREBFBxJeIZOV0D5/r2ulmn4c93zO0mj5tjwERERETEEiquRDyhZk/z9sBccGKpAI/562PIOAJR9SD2Rt9dV0RERETyUXEl4gnRnc31pU7vhlM7fHNNexZsecPcbvwIBAT65roiIiIiUiAVVyKeEBQJVTuY277qGpj8LZzeBaFVoc4w31xTRERERAql4krEU3y53pVhwKbx5nbDByEo3PvXFBEREZEiqbgS8RRHcZX6K9izvXut1PlwdDUEhkODB7x7LRERERFxioorEU+p3AqCK0DGUbPw8abN51ut6t0NYVW9ey0RERERcYqKKxFPCQiC6l3NbW92DTy6Dvb/BLYAaDTGe9cREREREZeouBLxJF+Mu9r8unkbdzNE1fHedURERETEJSquRDypxvn1rg4uhqx0z5//9B7Y/aW53eQxz59fRERERNym4krEk8o1gIg4sGeYBZanbZkIRhZU7waVW3r+/CIiIiLiNhVXIp5ks+XqGujh9a4yjsJfk83txmq1EhEREfE3Kq5EPM3RNdDT4662fQBZp6DiFVCzt2fPLSIiIiLFpuJKxNNqdDdvj66Fswc9c87ss7B1krnd+DGzhUxERERE/IqKKxFPC4uGis3M7QPzPHPOnVPhbKo5nit+kGfOKSIiIiIepeJKxBsc465SPdA10LDDlgnm9mWjISC4+OcUEREREY9TcSXiDY7iav9cMIzinSvlBzixFYIrQP17ip9NRERERLxCxZWIN0R3goAQSN8DJ7cX71ybxpu3De6H4HLFzyYiIiIiXqHiSsQbgiKhagdzuzhdAw/+BoeWmIXaZQ95JpuIiIiIeIWKKxFvyVnvqhjF1ebXzds6d0B4zeJnEhERERGvUXEl4i056139CvZs159/fAvsnWluN3rUc7lERERExCtUXIl4S+WW5iQUmcfgyCrXn7/lDcCAmH5QoZGn04mIiIiIh6m4EvGWgECo3s3cPjDXteeeOQA7p5jbTR73bC4RERER8QoVVyLeVNPRNdDFcVdb/wn2DKjaHqp19HwuEREREfE4FVci3lT9/KQWh5ZA1mnnnpN5Era9b243VquViIiISEmh4krEm8rVh8h4sxUqbZFzz/nr3+Y4rXINIbafV+OJiIiIiOeouBLxJpvNtSnZ7Zmw5S1zu/GjYNOPqIiIiEhJof/cRLytugvF1e6vID0Zwqqba1uJiIiISImh4krE22p0N2+P/QFnUgs/zjAuLBp82UMQGOb9bCIiIiLiMSquRLwtrBpUam5up/5a+HH7f4Zj6yAoEhrc75NoIiIiIuI5Kq5EfMGZcVeOVqt690BIJe9nEhERERGPUnEl4gs1HOtdzTW7/13syGpInQe2QGj0sG+ziYiIiIhHqLgS8YVqV0NAiDlZxclt+R93tFrFD4LI2r7NJiIiIiIeoeJKxBeCIqBaR3P7wNy8j53aCXu+NrcbP+bbXCIiIiLiMSquRHwlp2vgReOutrwFhh1q9IJKzXyfS0REREQ8QsWViK84JrVInQ/2LHP73GH46z/mdpPHrcklIiIiIh6h4krEVypdZc4CmHkc29FVAAT89QFkp0OlFlC9m8UBRURERKQ4VFyJ+EpAYE4BZUudR4BxjoDt75mPNX4cbDYLw4mIiIhIcam4EvGl810DbXtncOW5D7GdOwgR8VD7JouDiYiIiEhxqbgS8SXDDkDA8XXEZ88z92Ueh5SZFoYSEREREU9QcSXiK8kzYOXI/Pszj8Oim8zHRURERKTEUnEl4gv2bFg1CjAKePD8vlWjzeNEREREpERScSXiCwcXQfreIg4wID3ZPE5ERERESiQVVyK+cGa/Z48TEREREb+j4krEF8JrevY4EREREfE7Kq5EfKFaJ4iIBQpby8oGEXHmcSIiIiJSIqm4EvGFgEBoOen8nYsLrPP3W040jxMRERGREknFlYivxA2ATtMhIibv/ohYc3/cAGtyiYiIiIhHBFkdQKRMiRsAMf3J2j+ftctm07xdH4JqdlWLlYiIiEgpoOJKxNcCAjGiE0kJOk2z6EQVViIiIiKlhLoFioiIiIiIeICKKxEREREREQ9QcSUiIiIiIuIBKq5EREREREQ8QMWViIiIiIiIB6i4EhERERER8QAVVyIiIiIiIh6g4kpERERERMQDVFyJiIiIiIh4gIorERERERERD1BxJSIiIiIi4gEqrkRERERERDxAxZWIiIiIiIgHBFkdwB8ZhgHAiRMnLE4CmZmZpKenc+LECYKDg62Ok48/51M29yibe5TNff6cT9nco2zuUTb3+XM+ZXOPP2Vz1ASOGqEoKq4KcPLkSQDi4uIsTiIiIiIiIv7g5MmTVKhQochjbIYzJVgZY7fb2bdvH+XKlcNms1ma5cSJE8TFxZGcnEz58uUtzVIQf86nbO5RNvcom/v8OZ+yuUfZ3KNs7vPnfMrmHn/KZhgGJ0+epFatWgQEFD2qSi1XBQgICCA2NtbqGHmUL1/e8m+sovhzPmVzj7K5R9nc58/5lM09yuYeZXOfP+dTNvf4S7ZLtVg5aEILERERERERD1BxJSIiIiIi4gEqrvxcaGgozz77LKGhoVZHKZA/51M29yibe5TNff6cT9nco2zuUTb3+XM+ZXOPP2criia0EBERERER8QC1XImIiIiIiHiAiisREREREREPUHElIiIiIiLiASquREREREREPEDFlZ969dVXad26NeXKlSM6OpobbriBrVu3Wh0LgPfff58rr7wyZ1G39u3bM3v2bKtjFei1117DZrMxevRoq6Pw3HPPYbPZ8nw0atTI6lh5pKSkcPvtt1OlShXCw8O54oorWLlypdWxSEhIyPfa2Ww2RowYYXU0srOzefrpp6lTpw7h4eHUq1ePF198EX+ZK+jkyZOMHj2a+Ph4wsPD6dChAytWrPB5joULF3L99ddTq1YtbDYb33//fZ7HDcPgmWeeoWbNmoSHh9OjRw+2bdvmF9lmzJhBr169qFKlCjabjbVr1/oklzP5MjMzeeKJJ7jiiiuIjIykVq1a3Hnnnezbt8/ybGD+3mvUqBGRkZFUqlSJHj16sHz5cr/Iltvf//53bDYbEydO9Itsw4YNy/f77pprrvGLbACbN2+mX79+VKhQgcjISFq3bs2ePXssz1bQ3wmbzcbrr79uebZTp04xcuRIYmNjCQ8Pp0mTJnzwwQdez+VMttTUVIYNG0atWrWIiIjgmmuu8dnvX2f+3z179iwjRoygSpUqREVFMXDgQFJTU32Szx0qrvxUUlISI0aMYNmyZcydO5fMzEx69erF6dOnrY5GbGwsr732GqtWrWLlypV069aN/v37s3HjRquj5bFixQr+9a9/ceWVV1odJUfTpk3Zv39/zsfixYutjpTj6NGjdOzYkeDgYGbPns2mTZt44403qFSpktXRWLFiRZ7Xbe7cuQDcfPPNFieDcePG8f777/POO++wefNmxo0bx/jx43n77betjgbA3/72N+bOnctnn33G+vXr6dWrFz169CAlJcWnOU6fPk2zZs149913C3x8/Pjx/POf/+SDDz5g+fLlREZG0rt3b86ePWt5ttOnT3P11Vczbtw4r2cp7PqF5UtPT2f16tU8/fTTrF69mhkzZrB161b69etneTaAhg0b8s4777B+/XoWL15MQkICvXr14uDBg5Znc/juu+9YtmwZtWrV8nomB2eyXXPNNXl+733xxRd+ke2vv/7i6quvplGjRixYsIB169bx9NNPExYWZnm23K/X/v37+eijj7DZbAwcONDybGPGjGHOnDlMnTqVzZs3M3r0aEaOHMnMmTMtzWYYBjfccAM7duzgv//9L2vWrCE+Pp4ePXr45H9OZ/7fffjhh/nhhx/45ptvSEpKYt++fQwYMMDr2dxmSImQlpZmAEZSUpLVUQpUqVIl49///rfVMXKcPHnSaNCggTF37lwjMTHRGDVqlNWRjGeffdZo1qyZ1TEK9cQTTxhXX3211TGcMmrUKKNevXqG3W63Oopx7bXXGnfddVeefQMGDDCGDBliUaIL0tPTjcDAQGPWrFl59l911VXGP/7xD4tSGQZgfPfddzn37Xa7UaNGDeP111/P2Xfs2DEjNDTU+OKLLyzNltvOnTsNwFizZo1PM+VWVD6H33//3QCM3bt3+ybUec5kO378uAEYv/zyi29CnVdYtr179xoxMTHGhg0bjPj4eOOtt97yaa7Csg0dOtTo37+/z7NcrKBst956q3H77bdbEygXZ77f+vfvb3Tr1s03gXIpKFvTpk2NF154Ic8+K34XX5xt69atBmBs2LAhZ192drZRrVo1Y/LkyT7NZhj5/989duyYERwcbHzzzTc5x2zevNkAjKVLl/o8nzPUclVCHD9+HIDKlStbnCSv7OxsvvzyS06fPk379u2tjpNjxIgRXHvttfTo0cPqKHls27aNWrVqUbduXYYMGeKTbhTOmjlzJq1ateLmm28mOjqaFi1aMHnyZKtj5ZORkcHUqVO56667sNlsVsehQ4cOzJs3jz///BOAP/74g8WLF9OnTx+Lk0FWVhbZ2dn53lEODw/3q1bTnTt3cuDAgTw/rxUqVKBt27YsXbrUwmQl0/Hjx7HZbFSsWNHqKHlkZGTw4YcfUqFCBZo1a2Z1HOx2O3fccQePPfYYTZs2tTpOPgsWLCA6OprLLruM+++/n8OHD1sdCbvdzo8//kjDhg3p3bs30dHRtG3btsgul1ZJTU3lxx9/5O6777Y6CmD+rZg5cyYpKSkYhsH8+fP5888/6dWrl6W5zp07B5Dn70RAQAChoaGW/J24+P/dVatWkZmZmefvQ6NGjahdu7bf/n1QcVUC2O12Ro8eTceOHbn88sutjgPA+vXriYqKIjQ0lL///e989913NGnSxOpYAHz55ZesXr2aV1991eooebRt25ZPPvmEOXPm8P7777Nz5046derEyZMnrY4GwI4dO3j//fdp0KABP/30E/fffz8PPfQQn376qdXR8vj+++85duwYw4YNszoKAE8++SSDBg2iUaNGBAcH06JFC0aPHs2QIUOsjka5cuVo3749L774Ivv27SM7O5upU6eydOlS9u/fb3W8HAcOHACgevXqefZXr1495zFxztmzZ3niiSe47bbbKF++vNVxAJg1axZRUVGEhYXx1ltvMXfuXKpWrWp1LMaNG0dQUBAPPfSQ1VHyueaaa5gyZQrz5s1j3LhxJCUl0adPH7Kzsy3NlZaWxqlTp3jttde45ppr+Pnnn7nxxhsZMGAASUlJlma72Keffkq5cuX8pvvY22+/TZMmTYiNjSUkJIRrrrmGd999l86dO1uay1GojB07lqNHj5KRkcG4cePYu3evz/9OFPT/7oEDBwgJCcn3ZpE//30IsjqAXNqIESPYsGGDX73TfNlll7F27VqOHz/O9OnTGTp0KElJSZYXWMnJyYwaNYq5c+f6pP+3K3K3ZFx55ZW0bduW+Ph4vv76a794Z81ut9OqVSteeeUVAFq0aMGGDRv44IMPGDp0qMXpLvjPf/5Dnz59fDo+oihff/01n3/+OdOmTaNp06asXbuW0aNHU6tWLb943T777DPuuusuYmJiCAwM5KqrruK2225j1apVVkcTD8vMzOSWW27BMAzef/99q+Pk6Nq1K2vXruXQoUNMnjyZW265heXLlxMdHW1ZplWrVjFp0iRWr17tFy3gFxs0aFDO9hVXXMGVV15JvXr1WLBgAd27d7csl91uB6B///48/PDDADRv3pwlS5bwwQcfkJiYaFm2i3300UcMGTLEb/4XePvtt1m2bBkzZ84kPj6ehQsXMmLECGrVqmVpL5vg4GBmzJjB3XffTeXKlQkMDKRHjx706dPH5xMz+eP/u+5Qy5WfGzlyJLNmzWL+/PnExsZaHSdHSEgI9evXp2XLlrz66qs0a9aMSZMmWR2LVatWkZaWxlVXXUVQUBBBQUEkJSXxz3/+k6CgIMvf9cutYsWKNGzYkO3bt1sdBYCaNWvmK44bN27sV10Xd+/ezS+//MLf/vY3q6PkeOyxx3Jar6644gruuOMOHn74Yb9pOa1Xrx5JSUmcOnWK5ORkfv/9dzIz/7+9uw+n+v7/AP48Cee4iQ6H4yxHGclK7rJpphuqU1eTqIvFVXTfRrKtY2mVaSNcUVNmtVzHusbCulBWSUqprqU2JHTcTLpjrWRNNMrn90eX8/ueOagm52y9Htflj/O5ez/7nCvv8zrvz/utC+bm5sqOJsPn8wGg1+pPv/32m2wf6V9PYdXY2IiCggKVGbUCAG1tbVhYWMDZ2RkpKSkYPnw4UlJSlJqpuLgYd+7cgVAolPUVjY2N+PjjjzF69GilZlPE3NwchoaGSu8vDA0NMXz4cJXvK4qLiyGVSlWmr+jo6MDGjRuRkJAADw8PTJw4EcHBwfD19cX27duVHQ+Ojo4oKytDa2srmpqacOzYMdy7d29I+4m+Pu/y+Xx0dnaitbVV7nhV7h+ouFJRDMMgODgY2dnZOHnyJMaMGaPsSP3q7u6WPberTO7u7qioqEBZWZnsZ9KkSfD390dZWRnU1NSUHVGmra0N9fX1MDExUXYUAICLi0uv5U9rampgZmampES9SSQSGBkZYe7cucqOItPe3o5hw+R/laqpqcm+4VUV2traMDExwf3795Gfnw9PT09lR5IZM2YM+Hw+CgsLZdsePHiACxcuqNRcTlXVU1jV1tbixIkTMDAwUHakfqlCf7F48WJcvnxZrq8QCAQQi8XIz89XajZFbt68iXv37im9v9DQ0ICTk5PK9xUpKSlwdHRUibl9wNP/o11dXSrfV+jp6YHH46G2thaXLl0akn5ioM+7jo6OUFdXl+sfpFIprl+/rrL9Az0WqKKCgoKQnp6O3Nxc6Orqyp4r1dPTA4fDUWq28PBwzJkzB0KhEH/++SfS09NRVFSkEh2Srq5ur3lp2traMDAwUPp8tfXr18PDwwNmZma4ffs2IiIioKamhkWLFik1V48PP/wQb7/9NqKjo+Hj44OSkhLs3bsXe/fuVXY0AE8/kEkkEgQEBGD4cNX51eXh4YGoqCgIhUKMHz8epaWlSEhIwLJly5QdDQCQn58PhmFgZWWFuro6iMVijBs3DkuXLh3SHG1tbXLfujc0NKCsrAxcLhdCoRChoaH44osvYGlpiTFjxmDz5s0QCASYP3++0rO1tLTg+vXrsr8d1fPBks/nD8k3p/3lMzExwcKFC/HLL78gLy8PT548kfUXXC4XGhoaSstmYGCAqKgozJs3DyYmJrh79y6SkpJw69atIfkzCgO9r38vQtXV1cHn82FlZaXUbFwuF5GRkViwYAH4fD7q6+sRFhYGCwsLiEQipWYTCoUQi8Xw9fXFlClTMH36dBw7dgyHDx9GUVGR0rMBT7+YycrKQnx8/EvP8zzZpk6dCrFYDA6HAzMzM5w+fRr79+9HQkKC0rNlZWWBx+NBKBSioqIC69atw/z584dksY2BPu/q6elh+fLl+Oijj8DlcjFixAisXbsWkydPhrOz80vP90KUuVQh6RsAhT8SiUTZ0Zhly5YxZmZmjIaGBsPj8Rh3d3fm+PHjyo7VJ1VZit3X15cxMTFhNDQ0mNdee43x9fVl6urqlB1LzuHDh5kJEyYwmpqazLhx45i9e/cqO5JMfn4+A4CRSqXKjiLnwYMHzLp16xihUMiw2WzG3Nyc+fTTT5m//vpL2dEYhmGYjIwMxtzcnNHQ0GD4fD4TFBTEtLa2DnmOU6dOKfydFhAQwDDM0+XYN2/ezBgbGzOampqMu7v7kL3XA2WTSCQK90dERCg9X8/y8Ip+Tp06pdRsHR0djJeXFyMQCBgNDQ3GxMSEmTdvHlNSUvLScw2UTZGhXIq9v2zt7e3MrFmzGB6Px6irqzNmZmbMypUrmebmZqVn65GSksJYWFgwbDabsbW1ZXJyclQm2549exgOhzPkv+cGytbU1MQEBgYyAoGAYbPZjJWVFRMfHz8kf1JkoGxffvklM2rUKEZdXZ0RCoXMpk2bhqwPe5bPux0dHcwHH3zAjBw5ktHS0mK8vLyYpqamIcn3IlgMM8Sz1QghhBBCCCHkP4jmXBFCCCGEEELIIKDiihBCCCGEEEIGARVXhBBCCCGEEDIIqLgihBBCCCGEkEFAxRUhhBBCCCGEDAIqrgghhBBCCCFkEFBxRQghRKHs7GxkZmYqOwYhhBDyr0HFFSGEkF5KSkoQGhoKZ2dnZUf5x4qKisBisdDa2vrS25o2bRpCQ0NfejtD5d69ezAyMsK1a9cADHwv7969CyMjI9y8eXPoQhJCiAqh4ooQQv7jAgMDwWKxEBMTI7c9JycHLBar1/F//PEHVqxYgezsbAiFwqGKqfI6OzsRFxcHW1tbaGlpwdDQEC4uLpBIJOjq6nopbbJYLOTk5LyUaz+LqKgoeHp6YvTo0c90vKGhIZYsWYKIiIiXG4wQQlQUFVeEEPIKYLPZiI2Nxf379wc8Vk9PD5cvX4aDg8MQJFOss7NTaW0r0tnZCZFIhJiYGKxatQrnz59HSUkJgoKCsGvXLlRWVio7Yr9epPhrb29HSkoKli9f/lznLV26FGlpaWhpaXnuNgkh5N+OiitCCHkFzJgxA3w+H9u2bevzmM8++wx2dnZy23bu3Ck3ahEYGIj58+cjOjoaxsbG0NfXx9atW/H48WOIxWJwuVyMGjUKEolE7jo3btyAj48P9PX1weVy4enpKXvU7H+vGxUVBYFAACsrKwBARUUF3NzcwOFwYGBggFWrVqGtra3ff+uRI0cwduxYcDgcTJ8+Xa6dHmfPnoWrqys4HA5MTU0REhKChw8f9nnNnTt34syZMygsLERQUBDs7Oxgbm4OPz8/XLhwAZaWlgrPUzTypK+vj9TUVABPi7bg4GCYmJiAzWbDzMxM9h713HcvLy+wWCy59yE3NxcODg5gs9kwNzdHZGQkHj9+LNducnIy5s2bB21tbURFReH+/fvw9/cHj8cDh8OBpaVlr/fp7/dRU1Oz30dD29vbMWfOHLi4uMgeFRw/fjwEAgGys7P7PI8QQv6rqLgihJBXgJqaGqKjo7Fr165/PB/m5MmTuH37Ns6cOYOEhARERETg3XffxciRI3HhwgWsWbMGq1evlrXT1dUFkUgEXV1dFBcX49y5c9DR0cHs2bPlRqgKCwshlUpRUFCAvLw8PHz4ECKRCCNHjsTFixeRlZWFEydOIDg4uM9sN27cgLe3Nzw8PFBWVoYVK1Zgw4YNcsfU19dj9uzZWLBgAS5fvoyMjAycPXu23+umpaVhxowZsLe377VPXV0d2traz3sbAQCJiYk4dOgQMjMzIZVKkZaWJiuiLl68CACQSCRoamqSvS4uLsaSJUuwbt06VFVVYc+ePUhNTUVUVJTctT/77DN4eXmhoqICy5Ytw+bNm1FVVYWjR4+iuroaycnJMDQ07DNbcXExHB0d+9zf2tqKmTNnoru7GwUFBdDX15fte/PNN1FcXPxC94QQQv7Nhis7ACGEkKHh5eUFOzs7REREICUl5YWvw+VykZiYiGHDhsHKygpxcXFob2/Hxo0bAQDh4eGIiYnB2bNn8d577yEjIwPd3d3Yt2+fbI6XRCKBvr4+ioqKMGvWLACAtrY29u3bBw0NDQDAN998g0ePHmH//v2y4mX37t3w8PBAbGwsjI2Ne2VLTk7G66+/jvj4eACAlZUVKioqEBsbKztm27Zt8Pf3ly08YWlpicTEREydOhXJyclgs9m9rltbW4tp06a98D3ry/Xr12FpaYl33nkHLBYLZmZmsn08Hg/A05EuPp8v2x4ZGYkNGzYgICAAAGBubo7PP/8cYWFhcnOd/Pz8sHTpUrm27O3tMWnSJAAYcB5VY2MjBAKBwn3Nzc3w9fWFpaUl0tPTZe9ZD4FAgNLS0me4A4QQ8t9CI1eEEPIKiY2Nxbfffovq6uoXvsb48eMxbNj/dx/GxsawsbGRvVZTU4OBgQHu3LkDACgvL0ddXR10dXWho6MDHR0dcLlcPHr0CPX19bLzbGxs5D6kV1dXw9bWVm5UyMXFBd3d3ZBKpQqzVVdX46233pLbNnnyZLnX5eXlSE1NlWXR0dGBSCRCd3c3GhoaFF6XYZiBbssLCQwMRFlZGaysrBASEoLjx48PeE55eTm2bt0ql3/lypVoampCe3u77LieIqrH+++/jwMHDsDOzg5hYWE4f/58v+10dHQoLDQBYObMmbCwsEBGRkavwgoAOByOXBZCCHlV0MgVIYS8QqZMmQKRSITw8HAEBgbK7Rs2bFivIkLRQgjq6upyr1kslsJt3d3dAIC2tjY4OjoiLS2t17V6RmcAvPCjdc+rra0Nq1evRkhISK99fa2OOHbsWFy9evW522KxWP3eUwcHBzQ0NODo0aM4ceIEfHx8MGPGDPzwww/95o+MjIS3t3evff9bDP39fs6ZMweNjY04cuQICgoK4O7ujqCgIGzfvl1hO4aGhn0ugDJ37lwcPHgQVVVVcoV1j5aWFrn3lhBCXhVUXBFCyCsmJiYGdnZ2skUjevB4PDQ3N4NhGNnje2VlZf+4PQcHB2RkZMDIyAgjRox45vOsra2RmpqKhw8fygqFc+fOyR5H7OucQ4cOyW376aefeuWpqqqChYXFM2fx8/PDxo0bUVpa2mveVVdXFzo7OxUWhzweD01NTbLXtbW1vUZ0RowYAV9fX/j6+mLhwoWYPXs2WlpawOVyoa6ujidPnvTKL5VKnyv//+YJCAhAQEAAXF1dIRaL+yyu7O3t8d133yncFxMTAx0dHbi7u6OoqAhvvPGG3P4rV668lMcoCSFE1dFjgYQQ8oqxsbGBv78/EhMT5bZPmzYNv//+O+Li4lBfX4+kpCQcPXr0H7fn7+8PQ0NDeHp6ori4GA0NDSgqKkJISEi/i2v4+/uDzWYjICAAV65cwalTp7B27VosXrxY4XwrAFizZg1qa2shFoshlUqRnp4uW5mvxyeffILz588jODgYZWVlqK2tRW5ubr8LWoSGhsLFxQXu7u5ISkpCeXk5fv31V2RmZsLZ2Rm1tbUKz3Nzc8Pu3btRWlqKS5cuYc2aNXKjfAkJCfj+++9x9epV1NTUICsrC3w+X7Y4xOjRo1FYWIjm5mbZKNKWLVuwf/9+REZGorKyEtXV1Thw4AA2bdrUZ/6e83Jzc1FXV4fKykrk5eXB2tq6z+NFIhEqKyv7HL3avn07/P394ebmJjeq197ejp9//lk2l44QQl4lVFwRQsgraOvWrbLH9npYW1vjq6++QlJSEmxtbVFSUoL169f/47a0tLRw5swZCIVCeHt7w9raGsuXL8ejR4/6HcnS0tJCfn4+Wlpa4OTkhIULF8Ld3R27d+/u8xyhUIiDBw8iJycHtra2+PrrrxEdHS13zMSJE3H69GnU1NTA1dUV9vb22LJlS5+LNwCApqYmCgoKEBYWhj179sDZ2RlOTk5ITExESEgIJkyYoPC8+Ph4mJqawtXVFX5+fli/fj20tLRk+3V1dREXF4dJkybByckJ165dw5EjR2Rz2uLj41FQUABTU1PZiJlIJEJeXh6OHz8OJycnODs7Y8eOHXKLYSiioaGB8PBwTJw4EVOmTIGamhoOHDjQ5/E2NjZwcHBAZmZmn8fs2LEDPj4+cHNzQ01NDYCny8QLhUK4urr2m4cQQv6LWMzLmqVLCCGEkH+1H3/8EWKxGFeuXJFbxKQ/zs7OCAkJgZ+f30tORwghqofmXBFCCCFEoblz56K2tha3bt2CqanpgMffvXsX3t7eWLRo0RCkI4QQ1UMjV4QQQgghhBAyCGjOFSGEEEIIIYQMAiquCCGEEEIIIWQQUHFFCCGEEEIIIYOAiitCCCGEEEIIGQRUXBFCCCGEEELIIKDiihBCCCGEEEIGARVXhBBCCCGEEDIIqLgihBBCCCGEkEFAxRUhhBBCCCGEDAIqrgghhBBCCCFkEPwf7kLCmof8ZKsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "El número óptimo de clusters según el Silhouette Score es: 20\nAplicando K-Means con k=20...\n\nNúmero de clusters encontrados: 20\nReduciendo dimensiones para visualización con t-SNE...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGkAAAK9CAYAAACXazGoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zV5fn/8dc5J3vvQRZJ2FuGiIiAC1FxAFqtrSDWaosW9Nv+qrUObF2tA2sVRy1aW9wgigMFQXAgyJC9CQRISMjeOTnn8/vjkGMOOWGek5OQ99NHHnju+z6f+zqHQ3LOlfu+bpNhGAYiIiIiIiIiIuJTZl8HICIiIiIiIiIiStKIiIiIiIiIiLQJStKIiIiIiIiIiLQBStKIiIiIiIiIiLQBStKIiIiIiIiIiLQBStKIiIiIiIiIiLQBStKIiIiIiIiIiLQBStKIiIiIiIiIiLQBStKIiIi0suLiYmbMmMH333/v61BEREREpA1RkkZERE7aa6+9hslkIicnp83FMWrUKEaNGuWzmHJycjCZTLz22mtu+w3D4KabbmLp0qWcddZZrRKTL5+T4z0fIiIiIvITJWlERIQrr7ySkJAQKioqWhxz4403EhAQQFFRUStGdub529/+Rk5ODvPmzSMgIMDX4ZyWpUuXMn78eJKSkggICCAhIYFx48Yxd+7cVoth8+bNPPTQQz5PGLZlc+bMYebMmSd1n5ycHG6++Ways7MJCgoiKSmJ888/nwcffNBl3KhRozCZTIwbN87tNUwmE08++aSzbenSpZhMpha/3nrrrVN6jCIiImcKP18HICIivnfjjTfy0UcfMW/ePG666aZm/dXV1cyfP59LL72U2NhYfvnLX3L99dcTGBjog2iP7fPPP/fp/BkZGdTU1ODv79+sr7a2loaGBj755BOioqJaPzgPevDBB3n44Yfp2rUrt912GxkZGRQVFfHJJ58wYcIE/ve///Hzn//c63Fs3ryZGTNmMGrUKDp37uz1+dqjOXPmsHHjRqZPn35C43fu3MmQIUMIDg5mypQpdO7cmby8PNasWcMTTzzBjBkzmt1nwYIFrF69mkGDBp3QHL/73e8YMmRIs/Zhw4ad0P1FRETOVErSiIgIV155JeHh4cyZM8dtkmb+/PlUVVVx4403AmCxWLBYLK0d5gnx9eoUk8lEUFCQ276goCDuu+++Vo7I89577z0efvhhJk6cyJw5c1wSUn/4wx9YuHAhVqvVhxGevqqqKkJDQ30dhk8888wzVFZWsm7dOjIyMlz6CgoKmo1PT0+noqKCGTNm8OGHH57QHCNGjGDixIkeiVdERORMou1OIiJCcHAw48ePZ/HixW4/hM2ZM4fw8HCuvPJKwH0tmB9++IExY8YQFxdHcHAwmZmZTJkyxdnfuM1h6dKlLtd2V7Nk/fr1TJ48maysLOdWiylTppzQVquj66907ty5xa0VjbHs3buX3/72t3Tv3p3g4GBiY2O59tpr3W6hKS0t5a677qJz584EBgaSmprKTTfdxOHDh1t8PABffvklI0aMIDQ0lKioKK666iq2bNniMuahhx7CZDKxc+dOJk+eTFRUFJGRkdx8881UV1cf97EDvPzyy2RnZxMcHMzZZ5/N8uXL3Y6rq6vjwQcfpEuXLgQGBpKWlsb/+3//j7q6uuPOcf/99xMTE8O///1vtyuGxowZwxVXXNHi/VuqkTN58uRmq2HeeustBg0aRHh4OBEREfTt25dnn30WcLwOr732WgBGjx7d7O8V4NNPP3U+7+Hh4Vx++eVs2rSp2bxhYWHs2rWLyy67jPDwcGdCcseOHUyYMIGkpCSCgoJITU3l+uuvp6ys7LjP0/fff89ll11GdHQ0oaGh9OvXzxl7I2+/LkaNGsXHH3/M3r17nc/P8VYc7dq1i9TU1GYJGoCEhIRmbeHh4dx111189NFHrFmz5pjXFhERkWPTShoREQEcW55ef/113nnnHe644w5ne3FxMQsXLuSGG24gODjY7X0LCgq45JJLiI+P55577iEqKoqcnJxTrk3yxRdfsHv3bm6++WaSkpLYtGkTL7/8Mps2bWLFihWYTKYTvtbMmTOprKx0aXvmmWdYt24dsbGxAKxatYpvv/2W66+/ntTUVHJycpg1axajRo1i8+bNhISEAFBZWcmIESPYsmULU6ZMYeDAgRw+fJgPP/yQ/fv3ExcX5zaGRYsWMXbsWLKysnjooYeoqanhueeeY/jw4axZs6bZh+brrruOzMxMHnvsMdasWcO//vUvEhISeOKJJ475WF999VVuu+02zj33XKZPn87u3bu58soriYmJIS0tzTnObrdz5ZVX8vXXX/PrX/+anj17smHDBp555hm2b9/OBx980OIcO3bsYOvWrUyZMoXw8PBjxnO6vvjiC2644QYuvPBC52PfsmUL33zzDdOmTeP888/nd7/7Hf/4xz/405/+RM+ePQGcf77xxhtMmjSJMWPG8MQTT1BdXc2sWbM477zzWLt2rcvz3tDQwJgxYzjvvPN48sknCQkJob6+njFjxlBXV8edd95JUlISBw4cYMGCBZSWlhIZGXnM2K+44gqSk5OZNm0aSUlJbNmyhQULFjBt2jSgdV4X9913H2VlZezfv59nnnkGgLCwsGM+7xkZGSxatIgvv/ySCy644JhjG02bNo1nnnmGhx566IRW01RUVDgTm03Fxsae1L9vERGRM44hIiJiGEZDQ4ORnJxsDBs2zKX9xRdfNABj4cKFzrbZs2cbgLFnzx7DMAxj3rx5BmCsWrWqxesvWbLEAIwlS5a4tO/Zs8cAjNmzZzvbqqurm93/zTffNABj2bJlLcZhGIYxcuRIY+TIkS3G8c477xiA8fDDDx9zvu+++84AjP/85z/OtgceeMAAjLlz5zYbb7fbW3w8AwYMMBISEoyioiJn248//miYzWbjpptucrY9+OCDBmBMmTLF5drXXHONERsb2+JjMgzDqK+vNxISEowBAwYYdXV1zvaXX37ZAFyekzfeeMMwm83G8uXLXa7R+Hf9zTfftDjP/PnzDcB45plnjhlPI3fPR0t/R5MmTTIyMjKct6dNm2ZEREQYDQ0NLV7/3Xffdfu6qqioMKKiooxbb73VpT0/P9+IjIx0aZ80aZIBGPfcc4/L2LVr1xqA8e677x7/gTbR0NBgZGZmGhkZGUZJSYlLX+PrxDBa53VhGIZx+eWXuzyvx7Nx40YjODjYAIwBAwYY06ZNMz744AOjqqqq2diRI0cavXv3NgzDMGbMmGEAxurVqw3D+Onv/u9//7tzfOP3gZa+8vLyTjhOERGRM5G2O4mICOCoM3P99dfz3XffuWzzmTNnDomJiVx44YUt3rexCO6CBQs8Uouk6Yqd2tpaDh8+zDnnnANwWtspNm/ezJQpU7jqqqv485//7HY+q9VKUVERXbp0ISoqymW+999/n/79+3PNNdc0u3ZLv/3Py8tj3bp1TJ48mZiYGGd7v379uPjii/nkk0+a3ef22293uT1ixAiKioooLy9v8bH98MMPFBQUcPvtt7vU5Zk8eXKzFR/vvvsuPXv2pEePHhw+fNj51bhqYsmSJS3O0xiDt1fRgON1VVVVxRdffHHS9/3iiy8oLS3lhhtucHmMFouFoUOHun2Mv/nNb1xuNz5vCxcuPOHtZgBr165lz549TJ8+vVmB6MbXSWu9Lk5F7969WbduHb/4xS/Iycnh2Wef5eqrryYxMZFXXnmlxftNmzaN6Ohot4WFj/bAAw/wxRdfNPtq+lyIiIh0RErSiIiIU2Mdjjlz5gCwf/9+li9fzvXXX3/MQsEjR45kwoQJzJgxg7i4OK666ipmz559QvVN3CkuLmbatGkkJiYSHBxMfHw8mZmZACdUC8Sd8vJyxo8fT0pKCv/5z39ckio1NTU88MADpKWlERgYSFxcHPHx8ZSWlrrMt2vXLvr06XNS8+7duxeA7t27N+vr2bMnhw8fpqqqyqU9PT3d5XZ0dDQAJSUlx52na9euLu3+/v5kZWW5tO3YsYNNmzYRHx/v8tWtWzfAfXHYRhEREQDHPK7dU37729/SrVs3xo4dS2pqKlOmTOGzzz47ofvu2LEDgAsuuKDZ4/z888+bPUY/Pz9SU1Nd2jIzM7n77rv517/+RVxcHGPGjOH5558/7mtw165dAMd8rbTW6+JY8vPzXb5qamqcfd26deONN97g8OHDrF+/nkcffRQ/Pz9+/etfs2jRIrfXi4yMZPr06Xz44YesXbv2mHP37duXiy66qNmXrwt/i4iI+Jpq0oiIiNOgQYPo0aMHb775Jn/605948803MQzDmbxpiclk4r333mPFihV89NFHLFy4kClTpvDUU0+xYsUKwsLCWlxpYrPZmrVdd911fPvtt/zhD39gwIABhIWFYbfbufTSS7Hb7af02CZPnszBgwdZuXKlM9HQ6M4772T27NlMnz6dYcOGERkZiclk4vrrrz/l+U5HSwkxwzA8cn273U7fvn15+umn3fY3rV9ztB49egCwYcOGU57fZDK5fSxHvxYSEhJYt24dCxcu5NNPP+XTTz9l9uzZ3HTTTbz++uvHnKPx7+2NN94gKSmpWb+fn+tboMDAQMzm5r+7euqpp5g8eTLz58/n888/53e/+x2PPfYYK1asaJbU8TZPvy6Sk5Ndbs+ePZvJkyc3m7Nv37707duXYcOGMXr0aP73v/9x0UUXub1mY22aGTNmMHPmzFOKS0REpCNTkkZERFzceOON3H///axfv545c+bQtWtXhgwZckL3PeecczjnnHN45JFHmDNnDjfeeCNvvfUWv/rVr5y/9S8tLXW5T+OKgkYlJSUsXryYGTNm8MADDzjbG1dGnIrHH3+cDz74gLlz5zqTDE299957TJo0iaeeesrZVltb2yzW7OxsNm7ceFJzN56Qs23btmZ9W7duJS4uziNHPTfOs2PHDpdir1arlT179tC/f39nW3Z2Nj/++CMXXnjhSRdp7datG927d2f+/Pk8++yzxy1C6050dDS7d+9u1n70awEcR6qPGzeOcePGYbfb+e1vf8tLL73E/fffT5cuXVqMPzs7G3AkelpKKJyoxiTFn//8Z7799luGDx/Oiy++yF//+tdjzr1x48YW526t1wW0vBXv6G1kvXv3PuZ1Bg8eDDi2arWkcTXNQw89xKRJk04yUhEREdF2JxERcdG4auaBBx5g3bp1x11FA47EytG/zR8wYACAc8tTRkYGFouFZcuWuYx74YUXXG43rhY4+nqn+lv5RYsW8ec//5n77ruPq6++2u0Yi8XSbL7nnnuu2cqOCRMm8OOPPzJv3rxm12hpNUNycjIDBgzg9ddfd0n6bNy4kc8//5zLLrvs5B5QCwYPHkx8fDwvvvgi9fX1zvbXXnutWbLpuuuu48CBA27ri9TU1DTbZnO0GTNmUFRUxK9+9SsaGhqa9X/++ecsWLCgxftnZ2ezdetWCgsLnW0//vgj33zzjcu4o49cN5vN9OvXD/jpddWYyDj6MY4ZM4aIiAgeffRRt3WSms7dkvLy8maPr2/fvpjN5mNu5Rs4cCCZmZnMnDmzWVyNr5PWel2A4zlyt0Xr6K1GjStrli9f7vY5a6yT426LVlONtXgefvhhD0QvIiLSsWgljYiIuMjMzOTcc89l/vz5ACeUpHn99dd54YUXuOaaa8jOzqaiooJXXnmFiIgI54fNyMhIrr32Wp577jlMJhPZ2dksWLCgWW2QiIgIzj//fP72t79htVpJSUnh888/Z8+ePaf0eG644Qbi4+Pp2rUr//3vf136Lr74YhITE7niiit44403iIyMpFevXnz33XcsWrTIeUR3oz/84Q+89957XHvttUyZMoVBgwZRXFzMhx9+yIsvvuiyWqWpv//974wdO5Zhw4Zxyy23OI9ajoyM5KGHHjqlx3U0f39//vrXv3LbbbdxwQUX8LOf/Yw9e/Ywe/bsZjVpfvnLX/LOO+9w++23s2TJEoYPH47NZmPr1q288847LFy40Llqwp2f/exnbNiwgUceeYS1a9dyww03kJGRQVFREZ999hmLFy921jVyZ8qUKTz99NOMGTOGW265hYKCAl588UV69+7tUgT3V7/6FcXFxVxwwQWkpqayd+9ennvuOQYMGOA8ZnvAgAFYLBaeeOIJysrKCAwM5IILLiAhIYFZs2bxy1/+koEDB3L99dcTHx/Pvn37+Pjjjxk+fDj//Oc/j/mcfvnll9xxxx1ce+21dOvWjYaGBt544w0sFgsTJkxo8X5ms5lZs2Yxbtw4BgwYwM0330xycjJbt25l06ZNLFy4EGid1wU4tjG+/fbb3H333QwZMoSwsDDGjRvX4vgnnniC1atXM378eGdSbM2aNfznP/8hJiaG6dOnH3O+yMhIpk2bdswCwsuXL6e2trZZe79+/ZxzioiIdEg+O1dKRETarOeff94AjLPPPttt/9FHX69Zs8a44YYbjPT0dCMwMNBISEgwrrjiCuOHH35wuV9hYaExYcIEIyQkxIiOjjZuu+02Y+PGjc2OaN6/f79xzTXXGFFRUUZkZKRx7bXXGgcPHjQA48EHH2wxDsNofrwzxzjut/HY5pKSEuPmm2824uLijLCwMGPMmDHG1q1bjYyMDGPSpEkuj6GoqMi44447jJSUFCMgIMBITU01Jk2aZBw+fNgwDPdHThuGYSxatMgYPny4ERwcbERERBjjxo0zNm/e7DKm8ajlwsLCYz7fx/LCCy8YmZmZRmBgoDF48GBj2bJlbo+8rq+vN5544gmjd+/eRmBgoBEdHW0MGjTImDFjhlFWVnbceQzDMBYvXmxcddVVRkJCguHn52fEx8cb48aNM+bPn+8c09Lz8d///tfIysoyAgICjAEDBhgLFy5sdgT3e++9Z1xyySVGQkKCERAQYKSnpxu33XZbs2OaX3nlFSMrK8uwWCzNjuNesmSJMWbMGCMyMtIICgoysrOzjcmTJ7u8NidNmmSEhoY2e3y7d+82pkyZYmRnZxtBQUFGTEyMMXr0aGPRokUn9Px8/fXXxsUXX2yEh4cboaGhRr9+/YznnnvOZUxrvC4qKyuNn//850ZUVJQBHPc47m+++caYOnWq0adPHyMyMtLw9/c30tPTjcmTJxu7du1yGdv0CO6mSkpKjMjIyJM+grvpv28REZGOyGQYHqpCKCIiIiIiIiIip0w1aURERERERERE2gAlaURERERERERE2gAlaURERERERERE2gAlaURERERERERE2gAlaURERERERERE2gAlaURERERERERE2gA/XwfQ1tjtdg4ePEh4eDgmk8nX4YiIiIiIiMgZzjAMKioq6NSpE2az1lJ0ZErSHOXgwYOkpaX5OgwRERERERHpYHJzc0lNTfV1GOJDStIcJTw8HHD844iIiPBxNCIiIiIiInKmKy8vJy0tzfl5VDouJWmO0rjFKSIiQkkaERERERERaTUquSHa7CYiIiIiIiIi0gYoSSMiIiIiIiIi0gYoSSMiIiIiIiIi0ga0m5o0s2bNYtasWeTk5ADQu3dvHnjgAcaOHQtAbW0t//d//8dbb71FXV0dY8aM4YUXXiAxMdGHUYuIiIiIiIh0XIZh0NDQgM1m83UoPmOxWPDz8zuhmkPtJkmTmprK448/TteuXTEMg9dff52rrrqKtWvX0rt3b+666y4+/vhj3n33XSIjI7njjjsYP34833zzja9DFxEREREREelw6uvrycvLo7q62teh+FxISAjJyckEBAQcc5zJMAyjlWLyuJiYGP7+978zceJE4uPjmTNnDhMnTgRg69at9OzZk++++45zzjnnhK9ZXl5OZGQkZWVlOt1JREREREREvO5M/Bxqt9vZsWMHFouF+Ph4AgICOuTpVYZhUF9fT2FhITabja5du2I2t1x5pt2spGnKZrPx7rvvUlVVxbBhw1i9ejVWq5WLLrrIOaZHjx6kp6cfN0lTV1dHXV2d83Z5eblXYxcRERERERE509XX12O320lLSyMkJMTX4fhUcHAw/v7+7N27l/r6eoKCgloc264KB2/YsIGwsDACAwO5/fbbmTdvHr169SI/P5+AgACioqJcxicmJpKfn3/Maz722GNERkY6v9LS0rz4CEREREREREQ6jmOtGulITvR5aFfPVvfu3Vm3bh3ff/89v/nNb5g0aRKbN28+rWvee++9lJWVOb9yc3M9FK2IiIiIiIiIyIlrV9udAgIC6NKlCwCDBg1i1apVPPvss/zsZz+jvr6e0tJSl9U0hw4dIikp6ZjXDAwMJDAw0Jthi4iIiIiIiIgcV7taSXM0u91OXV0dgwYNwt/fn8WLFzv7tm3bxr59+xg2bJgPIxQRERERERERTzCZTHzwwQe+DsOr2k2S5t5772XZsmXk5OSwYcMG7r33XpYuXcqNN95IZGQkt9xyC3fffTdLlixh9erV3HzzzQwbNuykTnYSEREREREREd/Iz8/nzjvvJCsri8DAQNLS0hg3bpzLggxPWbp0KSaTidLSUo9f+3S0m+1OBQUF3HTTTeTl5REZGUm/fv1YuHAhF198MQDPPPMMZrOZCRMmUFdXx5gxY3jhhRd8HLWIiIiIiIiIHE9OTg7Dhw8nKiqKv//97/Tt2xer1crChQuZOnUqW7du9XWIbhmGgc1mw8/PM+mVdrOS5tVXXyUnJ4e6ujoKCgpYtGiRM0EDEBQUxPPPP09xcTFVVVXMnTv3uPVoRERERERERMT3fvvb32IymVi5ciUTJkygW7du9O7dm7vvvpsVK1Y0G+9uJcy6deswmUzk5OQAsHfvXsaNG0d0dDShoaH07t2bTz75hJycHEaPHg1AdHQ0JpOJyZMnA46yKo899hiZmZkEBwfTv39/3nvvvWbzfvrppwwaNIjAwEC+/vprjz0P7WYljYiIiIiIiIiceYqLi/nss8945JFHCA0Nbdbf9ICgkzF16lTq6+tZtmwZoaGhbN68mbCwMNLS0nj//feZMGEC27ZtIyIiguDgYAAee+wx/vvf//Liiy/StWtXli1bxi9+8Qvi4+MZOXKk89r33HMPTz75JFlZWURHR59SfO4oSSMiIiIiIiIiPrNz504Mw6BHjx4eve6+ffuYMGECffv2BSArK8vZFxMTA0BCQoIzCVRXV8ejjz7KokWLnIcQZWVl8fXXX/PSSy+5JGkefvhhl909nqIkjYiIiIiIiIj4jGEYXrnu7373O37zm9/w+eefc9FFFzFhwgT69evX4vidO3dSXV3dLPlSX1/PWWed5dI2ePBgr8SsJI2IiIiIiIiI+EzXrl0xmUwnVRzYbHaU2G2a4LFarS5jfvWrXzFmzBg+/vhjPv/8cx577DGeeuop7rzzTrfXrKysBODjjz8mJSXFpS8wMNDltrttWZ7QbgoHi4iIiIiIiMiZJyYmhjFjxvD8889TVVXVrN/dMdnx8fEA5OXlOdvWrVvXbFxaWhq33347c+fO5f/+7/945ZVXAAgICADAZrM5x/bq1YvAwED27dtHly5dXL7S0tJO5yGeMCVpRERERERERMSnnn/+eWw2G2effTbvv/8+O3bsYMuWLfzjH/9w1odpqjFx8tBDD7Fjxw4+/vhjnnrqKZcx06dPZ+HChezZs4c1a9awZMkSevbsCUBGRgYmk4kFCxZQWFhIZWUl4eHh/P73v+euu+7i9ddfZ9euXaxZs4bnnnuO119/vVWeByVpREREREREpBk7DVSQQylbqOIABt6pGyICjgK9a9asYfTo0fzf//0fffr04eKLL2bx4sXMmjWr2Xh/f3/efPNNtm7dSr9+/XjiiSf461//6jLGZrMxdepUevbsyaWXXkq3bt144YUXAEhJSWHGjBncc889JCYmcscddwDwl7/8hfvvv5/HHnvMeb+PP/6YzMxM7z8JgMnwVoWedqq8vJzIyEjKysqIiIjwdTgiIiIiIiKtror97OZtDvEtdurxJ4I0LiOVywjCc8cNi8OZ+Dm0traWPXv2kJmZSVBQkK/D8bkTfT5UOFhERERERESc6ihhE/+glC3ONivl7OYtbNTSlcmYsfgwQpEzl7Y7iYiIiIiIiFMFu10SNE3t5zOqyG3liEQ6DiVpRERERERExKmSvS322ailjqJWjEakY1GSRkRERERERJz8OXZNFAuBrRSJSMejmjQiIiIiIl5USin72EsxRYQTTjqdiSfe12GJtCiCLlgIxkZNs75wsggl3QdRiXQMStKIiIiIiHjJXvbyAv9gJ9udbYkkcid305NezcYf4hA72U4Oe4ghlh70pDOZmDC1ZtjSwYWRQS+msol/YKfe2R5AND24jYDjrLQRkVOnJI2IiIiIiBdUUcWrvOSSoAFHIuZZnmQGj5JIkrN9N7t4iifIJ8/ZFkQQt3Mn5zFCiRppNSZMJDGCUFIo4kdqOUQ42UTRizDSfB2eyBlNSRoRERER6VCqqmDPXti5B/z8oGsWdE6HQA+X2djHXjaz0W1fIYXsYY8zSVNNNa/xqkuCBqCWWl7kn6SSSiZZng1Q5BhMmImgCxF08XUoIh2KkjQiIiIi0mEUF8Nrb8KS5T+1+VngZ+PhyrEQEuK5uSqpxMBosb+kyQk5+8llC5vcjqulhh1sV5JGRKQDUJJGRERERDqMr1e4JmgAGmzwv3chqzOcPejUr72bXfzASrayhWSS6Ut/MsliD7vdjo9rUjy4hhrs2Fu8diklpx6YiIi0GzqCW0REREQ6hJJS+PiLlvsXfgk226ldex1reJD7eJs5/MhaPuMT/sajZJFNqpsaHsl0onOTlTFRRBNMcIvXTyfj1AITEZFT8vzzz9O5c2eCgoIYOnQoK1eubJV5laQRERERkQ6hpgbKy1vuP1wEVuvJX7eEEmbzL6qpcmk3YWIhnzGCUS5Ff0dxITdzKznsZhMbKaecNNK4mEvdXj+NdLLpevKBiYicCWw2+HEpLHnT8eepZtNPwttvv83dd9/Ngw8+yJo1a+jfvz9jxoyhoKDA63Nru5OIiIiIdAgREdApGbbvdN/frcupFQ8+wH72k+u2zw8LoYTwF56glGLCCOdTPuJvPEIDDQBkkc1tTGUcV2PCxBd8RhVVGMBABnETNxPfZGuUnHmqOUQV+7BRSxBxhNEZv2OsrBLpML6eCy9Og8P7f2qLS4Xbn4Xzxntt2qeffppbb72Vm2++GYAXX3yRjz/+mH//+9/cc889XpsXlKQRERERkQ4iLBTGj4MnZoJxVD3fAH8YfR6YTuGU6waOvfymnnp60hMrVl7gOb5nhUv/bnbxNH/jIf7KDfyCfvRnJzuppQYrVvLJJ454Qgk9+eBOkR07VqwEEKCjv73sMGvYxHPUcRhwnKqUwDC6cTPBJPo4Old1lFBJDrUUEUAEYXQmmARfhyVnqq/nwl8nwtEF2A8fcLT/+T2vJGrq6+tZvXo19957r7PNbDZz0UUX8d1333l8vqMpSSMiIiIiHcag/nDbzfDme1B2ZOtTYgLc8gvo0e3UrhlLPMEEU0wJZkwEEOiS1sgkG3Acyf0dX7u9xiHy2cVOTJiYyZNYmyR+FjCfifyMa5hIEEGnFuQJqqaazWzkCxZSTBHd6M4IRtGdHkrWeEEFOazn7zRQ6WwzsHOIb/Angh7chhmLDyP8SQU5bORZKvhpKVowifThbqLp5cPI5IxkszlW0Lg9Ic8ATPDSdBh2FVg8+2/k8OHD2Gw2EhNdk6SJiYls3brVo3O5oySNiIiIiHQYQUFw+SVwVl84VOB4b98pGeJiT+16NmxUUs5ZDOKfPIsZMzHEEE8CwQQziCF0JhOACspdki9H20sOq1jpdsw83mMgg+lOj1ML9ATUUccC5vM2c0gng06kUEoprzCLn3EjZzPUa3N3VCVscknQNJXHUtK4nPA2UDTaSiVbedElQQNQwyE28BSDeZSQNrbqR9q5jctdtzg1Y0BhrmNc/1GtFVWrUOFgEREREelwOiXDWf2hX59TT9AArGcdM7ifCsq5g2mkkEIhBZRQwljG8StuI4IIAEIIxXyMt9/hRHCghdo2NmzsZMepB3oCctjDp3zMZYzDipX3eYe5vIsdOzvZThFFXp2/I6qi5Q+hNmpoOKoYta9Uso8SNrvtq6WASva0ckRyxivO8+y4kxAXF4fFYuHQoUMu7YcOHSIpKcnj8x1NK2lERERERE5BFVW8y9tYsbKB9UQSxZVcQzjh1FFHL3qR0GR1QRrp9KEf61kHQCxx9KU/FsxY8COZTsQQyyHy3c5nw7snmuxkO+dxPi/yHAX8dILJXN7le1bQk97EchoZLWkmlNQW+ywE49eKdYiOxUoF7redONRR3HrBSMcQk+zZcSchICCAQYMGsXjxYq6++moA7HY7ixcv5o477vD4fEdTkkZERERE5BQUcZgdbHPeLqOU7/jGebuccs7lPOftYIK5mV/xHDOxUk8mWbzOvyihlEyyWMpiBnM24USwk+0uc5kw0cXLx3AHEsSPrHNJ0DQq4jD72Es6GYQQQrBOHvKIaHrjR6jbFTPJjDxmEqc1BRCBCTMGdrf9QTp9TDytzwjHKU6HD+A+QWiC+FTHOC+4++67mTRpEoMHD+bss89m5syZVFVVOU978iYlaUREREREToEJM/74U0ed2/4udGUV37OcZdRQzRCG0pd+/IkH2Mh67ucewokkkWSCCKKeej5kHjfwC/aRQz31zmuN5iIy6OzVx5NEEj/wfbP2oQxjIEN4kzf4iA/oRAqXMY5+9CeEEK/G1F7UUEgV+7FTTzAJhJKG+QQ+aoXTmX784cjpTo3bycwkMJTOTGwzRYNDySCWszjMajd9qYQdqbsk4jEWi+OY7b9OBEy4JmqOFDG/babHiwY3+tnPfkZhYSEPPPAA+fn5DBgwgM8++6xZMWFvMBnG0QcQdmzl5eVERkZSVlZGRESEr8MRERERkTbKipV/8DTfujmxaSCDMWPmB1a6tKeQyh+5j7f4n9v72bCTQQZ96c83LCeSSC7lMoZyLtFEe+2xAORxkFuZzAZ+dLZ1owcDGMgbvEYUUXSnJ35HEge/5GbGcRWWNpJI8AUDg8OsYgsvUXtkBZKFQNIZRzpXE0jkCV2nmnwq2YeNWoKII4zO+LexBFgV+9nKyxTxIxxZURNONr25gwi6+Da4M8CZ+Dm0traWPXv2kJmZSVDQKZ5M9/VcxylPTYsIx6c5EjReOH7bm070+dBKGhERERGRU+CPP1czga1sprhJTQ5//Mkimzf5L/74u9znAPtZxffktFBo1YKZSioZy+WM42qCCCLyBD/on65kOjGeiZRQQiEFNNDAhVzCy8wigABiiHUmaADe5S0GMJDOXl7h05aVs5P1PImNGmebjTr28B4BRJPBlSd0nRCSCMH7BUlPRyip9OMeKsmhnlL8CSOUjBNORImckvPGO47Z3rjcUSQ4JtmxxclLK2jaAiVpREREREROUTZduJ+H+YFVrGQFIYRwFdfwEfObJWgaNRYZPsgBt/3RRBNJFGGEeTN0ty5iDKv5gX3sw46NYIKxYSWEkGYreWqp4SAHOnSSppDvXRI0Te1lPgmcSzBxrRyV9/gTQjS9fB2GdDQWyxl3zPaxKEkjIiIiInIa0skgnQyu4hrnEdvv8XaL47exhVv5DVvY5Lb/Msb5JEEDjsdyD/ezku/4huWEEUoqaUQRTRDNl+ebGmtDdFDlxzgWvZYCGqiEMyhJ057YaaCag9ixEkg0gcT4OiSRE6IkjYiIiIiIBzStzTKEc9jcQhImg0z60p/ruZH3eQcrVuf9x3IFgzm7VeJtSdqR/y7lcvI4yJcsopbaZuOCCaYTnXwQYdsRQiqwxm1fAFFY3CS2xPsq2EsO73KIFdipI4RksvgZCZyLn04mkzZOSRoREREREQ87i0F8zIccptCl3Q8/xnMtMcRwNRMYyGBy2IMdOxl0Jp0MtytWfCGUUDLJ4lpu4A1mu/SZMHEdPyeNdB9F1zYkMpxcPsGgoVlfKmPafJ2Z9q6aPGzU4UeYc1tZNYdYzxNUkesybiMz6Y2dFC72VbgiJ0RJGhERERERD0sjjT9yH/N4n9WsxIqVbLoykevozwDAUWA4my5kt+GTcSxYGMNYOtGJT/iYQg6RQCKXcQV96e/c3tVRRdKNXvyWrbzSpDaNiSTOI5VLvTJnDQVUcQADOyEkEUqKV+Zpy2ooZD+fcoAvqKeUIBLI4GqSGUkpm10SNE3t5m1iOOuMqhMkZx4laUREREREvCCLbKZxN/nkYcNOLLE+qzVzOoIJ5mzOYQADqaKKUEIJIMDXYbUJZvzoxIVE0JVKcrBRRyipR47QDvXoXHZsFPAd23iVOg4D4E8E2dxAJy7sMNt4rFSynVc5xDfOtloK2MbL1FOC6RiJwxoOUU+xkjTSpilJIyIiIiLiJX74kUqar8PwiIAj/4krE2bC6Uy4l0+5KmULG3ka+5EaRgBWytnKywQSQyLnnvC1rFQfOUq7DH/CCCODACKajalgN8X8iJ0GYuhDOF18fuR2JXs5xLdu+/axgG7c3OJ9Tfhh0kdgaeP0ChURERERaeMaaGAfeymiiEACSCGNWGJ9HZa0EgODgyx2SdA07d3LPGLof0Krd6o4wDZe4TBrATsAEWTTizuJIBsAKxXs4m328SFgAJDDe8QxhJ7cTjAJHnpkJ6+Sfc6YjmajBjP+gMntmDjOIpRUr8YncrqUpBERERERacNKKGEe7/EFC6mnDoBkkrmV3zrr28iZrYEaytnZYn8VB7FSftwkTQO1bONfHGa1S3s5u9jAkwzkLwQTRzEb2Mf8Zvc/zCry6UUmE7FRTwPV+BGCpRVXWB3vxKwAosnm5+zify7twcSTzY2tGqvIqejYlb5ERERERNq4RSzkYz50JmgA8sjjaZ4ghz0+jExai4UAgohvsT+ACCyEHPc6leRQ1MKR4VXsp5I92GngAAtbvEYun3KYtfzIo6zi//Ejj1LAShrcHNPuDeF0xtJC/Z1gEgkjgwyuYjCPkMYVJDKCnkxlIH9xrhSSdsZug9ylsPVNx592m9enXLZsGePGjaNTp06YTCY++OADr8/ZSCtpRERERETaqDzy+IQFbvsqqWQ9P9KZzFaOSlqbGT9SuZTDrHLbn8YVJ1Qrpp5yjCNbnNypoQA7DdRR0sIIg0r2cpAvnatxqsnjMGvoxhTSGYcZy3HjOB2hpNOdX7GFWS5Hn1sIpge3OYsCx9CPGPp5NRZpBTvmwtJpULn/p7awVBj1LHQd77Vpq6qq6N+/P1OmTGH8eO/N446SNCIiIiIibVQVlZRT1mL/7mNsgZEzSwx96cIv2MVbTZITZlK46ISLBvsTRkv1WgACicFCINH0psLNKq0GavAnjPpmSRyDXcwhlgFeL6BsxkInRhNKCof4lmoOEEE34hlCRBs+zl5OwY65sGAizV6vlQcc7Ve857VEzdixYxk7dqxXrn08StKIiIiIiLRRQQQRQgjVVLvtTyallSMSX/EjmAyuIZazKGc3dqxEkH3kuO/jb3UCCCOdKHpSymaXdgMb/kQRSAw26klmFAdYjI0al3F2rKRwKQf5otm1bdRQzQGvJ2kAzPgTTW+i6e31ucRH7DbHChq3CUUDMMHS6ZB9FZi9u3qrtakmjYiIiIhIG9WJFEZygds+f/wZyKBWjki8rZpDlLKFcnbScFSSxEIAkXQjjUvJYBzR9DrhBA04VtL05HbCm9RmqaecBqrpxAWs4xE28HcMDAZwH+FNttIFk0gf7qaUzS2cMgUtrdDxljrKKGELZezA3mTrk5wBDix33eLUjAGVuY5xZxitpBERERERaaPMmBnHVRziEGua1CMJIYRb+Q3Z2t5xxrBSTT5L2M271FGECTMx9KMLNxFJV4/NE04mZ/EgleyhghxqOEQD1RxkEQ1UUcj3lLGVgcxgIH+hhjwMbASRiI0qdvFfAPwIJZq+BBIFQANVhJDmsTiPxU4Dh/iGrbxMId9jIYh0rqQLN2p1zZmiKs+z49oRJWlERERERNqwRJL4HXexlxwOsJ9ggulMJmmkY8Lk6/DEQw7xNVt40XnbwE4R66hkH4N4hDBSPTZXENH4E8ZBFpFP85UI9ZSRzzK6cbNLQWI7UWRyHQf4gljOYjdvU8ZWAJI4nyTOJ4w0TF7esJHP1yxjsnM7lpUKtvMqBXzLcF4kih5enV9aQWiyZ8e1I0rSiIiIiIi0ceGE04e+9KGvr0MRL6iliD2847avjmJKWO/RJE3jdYvZeFSrnQZqaKCKA3xOPGcTShoBRACOU6bSuIIgEviOqdRTjj/hBJNIA1Ws528MZAYxXnyd1lLCVl5sVi8HoJQtFLBSSZozQcoIxylOlQdwv43O5OhPGdHakXmdatKIiIiIiIj4UD2l1HCoxf7myZTTZ8YPCwHO2wZ2aiiklC1UkEMdpexkDpv5BzUUOMdZCOAwKwkjgyh6EUk3AonBhAU7VnL5xKv1Yao5SAHftdh/kEVem1takdniOGYboNmKwSO3R830WtHgyspK1q1bx7p16wDYs2cP69atY9++fV6ZrymtpBERERERkVOyna2sZz272EkKKQxhKNl0wU8fM06KGX8sBGKjzm1/IDEAGBhUsZ8q9mNgJZhkwshwSbacqCBiSWY0u3kLgAYqqWQfjasWkjifYtbRQDVhZNCFXwKOQsNlbMeEBQvNPyCXs4N6ygk6ErOnmbFgJhAbtW77/Qj2yrziA13HO47ZXjrNtYhwWKojQeOl47cBfvjhB0aPHu28fffddwMwadIkXnvtNa/NC0rSiIiIiIjISaqjjpWs4I/8HwfIBSCAQDqTyR+4lwu4SImakxBCJxIYRh5L3fSaSOAc7DSQz1ds5V80UHmkx480LiOT61xqx5yoZEZzmNWUs4M6imlM0CQyAjMWGo4c/b6fL+jExYSQBNgx44+NWiwEcvQqBz9Cj7R7RxiZpHEZu3nTbX8647w2t/hA1/GOY7YPLHcUCQ5Ndmxx8vKx26NGjcIwWve0skb6zikiIiIiIidlK1t5ksedCRqAeurYwXae5WmyyKaLB08kOtPZaSCFSyhlM1Xsx3xkZYwJM12YRARdKWMrm/gnRpOtRAYN7ONDQkgmnStOet5QOtGPP1LCRnbxX2zUEc8QGqhxKShspQw79RSykr18RBgZ7GU+gUQTTBJ+TY4BT+My/Ak9jWfj2PwIpBuTKWQFFexx6cvkWmIY4LW5xUfMFkgb5esoWo2SNCIiIiIicsJqqGErm/mRtc36DOwc5ABb2aIkzQkqZSs7eYNStpLIucQyCCvlhJJKLIMIJws/AsljqUuCpql9fEgC557SFqMQEgkhETv17Gch+XyNnXqXMaGkU0kuG3gSgwYSGEYKF7GfhVipIJLuWAgiifOJZ8gpPQ8nI5YBjODf5LOMgyzGn1AyGE8sAz1eYFmktSlJIyIiIiIiJ6yCcsopw3B74gpUU0UpJa0cVftUwV7W8Qj1lAKQx1LMBBBIHMlcQDQ9AbBjo4Icl/vaqMNGDQZ2bFipp/S06sBE0IVqZjdL0ABkcwM5zHUmiQr4jljOYiAzKGULoaTSiYuIINt5EpS3RdOLaHrRlVuO1KnRmThyZtArWURERERETlgQwQQRRCRRbvv9CaAL3Vo3qHaqiNXOBE0jO/XUcJBd/Jd6ygFHsdxwMp1j6imjlC2UsZ1ydmKljMOsdjmF6WRF0pX+/JFQUpxtfoTRlZsIIpFydhwV+1py+RQrlZiwEMdZrZagacoPfyVo5IyilTQiIiIiInLCIoigM525hgm8xqvN+s/lPLoqSXNCDrO6xb5K9lJHiTPxkcwoDrAIK+WUs8tl61MaV7CP+dRTQnduxdTsyOITE8cgwsh0nh4VRAKhpFLNgSMnKtUcdQ87tRRg19+3iMco5SgiIiIi0s410MAmNvIxHzKP91nFSsqPrMLwhj70pz9ncSu/IYEEAIII4efcxL3cTyyxXpv7TBJ41PNkwow/4ZgJwEIIZvydfZF0pzd3YsLsTNCYCSSbGzBooJ4yDrKYqibFnE9FEDHE0u9IwiYNEyaCSSKBc1q8TzKjTmtOEfmJVtKIiIiIiLRjNdTwER/wCA9RemTrjD/+/JxfchtTSfFCIdVoohnDZfSlP+czkgZsxBJLF7oR6sWTfc40yYwkjyWY8COBYfgTQjV5BBBJFL0IJsk51owfyYzGSiWV5GBgw0IQZWznMD8A0EA1DVSddBx1lGKlAj9CCHKTYDPjR2euoZQt1JDv0pfCxUQdqZ0jIqdPSRoRERERES+rpJI66oggAv8mqyM8YR1r+BN/wIrV2WbFyuv8mwwyuYVfe3S+RqGE0pVu2tp0GiLpQSbXYaOGXcyhlC0A+BFKDP0IJJYEznHZvhRAFIWspJ6yZtezEIzfSSTJrFRQwAr2Mo8aCgggijQuJ4mRzYoQh5PJQB6imHUUsAI/QklmNFH09EktGpEzlZI0IiIiIiJeUkIJP7CShXxCJZVkksVYrqAXvfHz0FvxT1jgkqBp6r+8zsWMIZ0Mj8wlnuVPKGmM48cjJzwFk4A/EfgRhoGNTcwkhCfwJ4JSNnKAxdRTRiTdCSCKfL7CRp3zep24gNATXDllx8Y+FrCLOc62Gg6xnX9TSS49uBU/gl3uE0oKoaSQxuWeeQJEpBklaUREREREvKCCCt7gNb7iS2dbIQWs4Qem83uGMfy057BhYze7Wuw/yAEqqTztecR76iignB2Ektasr4FqitlAGdvI5ytnexGrsWOjK5PJ5SNMmElgGJ25BtMJlh2tIpcc5rnty2MxKVzsPAJcRFqPCgeLiIiIiHhBDrtdEjSNGmjgf7xOMcWnPYcFCz2O8UE6nQwitBWlTWugBgNbi/2V5FDCBpe2AKLwJ5RaChjA/QzmMXrxO4JJPOF5azjk5rQmBwP7aRcgFvEYwwZVS6HsTcefRsv/XjzhscceY8iQIYSHh5OQkMDVV1/Ntm3bvDpnU0rSiIiIiIh4wcajPlg3lUce+eR5ZJ4xXEbQUdtSGk3mFlLdrNCQtiOASCwt/P0B+BGClYpm7RaCKGUzoaQRTS/8CTmpec3H2VRhIeCkrneyaiikgBXs4X0OspRKJYXEnfK5sKMz7B0NB37u+HNHZ0e7l3z11VdMnTqVFStW8MUXX2C1Wrnkkkuoqjr5otynQtudRERERER8oGkx2NNxFgN5kmf5Kw+Rz0HAUdT3Fm7jIsZ4ZA7xnlDSSOEi9vFRs75gErEQiL2FmkOOdverCuw0UEcJJizNigADhJBCIDHUuVnRZSGIMC/WMSpnFxt4kir2O9v8iaAvdxPHIK/NK+1M+VzYPxEwXNsbDjjaU9+DiPEen/azzz5zuf3aa6+RkJDA6tWrOf/88z0+39GUpBERERER8YI+9OM93nbbl0IqiU2OVz4d/vgzjqvoQU/2sZd66uhEKj3oSSCBHplDvMeMhQzGY2DjIIuPFAI2EUUPevBrStna4n2j6EmgmyOzS9lCLp9SzHrM+JPMaJIZSSgpzjEhJNGDW9nAM9ipd7abMNOVyYSS7tHH2chKJVt5ySVB42gvZyPPMITHT7j4sZzBDBvkT6NZgsbRCZggfzqEXwUmi1dDKStznKQWE9M82ekNStKIiIiIiHhBJllcyMUs5guXdn/8+Tk3EeNmdcPp0HHY7VcwcXTnVlIYQz0l+BFCKGn4E4aZIIJJooZ8l/uYCaQzE5qdwFTCZtYygwaqnW27eZNCvqc/9xLSJDmYwLkMJpY8vqKcnYSQQicuIIpemPHOB99K9jmPGj9aPWWUs0tJGoHq5dCw/xgDDGjIdYwLHeW1MOx2O9OnT2f48OH06dPHa/M0pSSNiIiIiIgXhBHGz7mJnvQ+cgR3BVl04RLG0ovevg5P2hgzfkSQ1aw9jFQGcB/7+JACVmDHShQ96cwEYujnMtZGPTm875KgaVTBbor50SVJY8JMFD2Joid2bF5LzDTlLram6in1egzSDjScYM2uEx13iqZOncrGjRv5+uuvvTpPU0rSiIiIiLQhNTWQdwgaGiA2xvEl7VcUUYzmQoYyjDrqCCccvzP8LbiBgRUrAW4Kzx7mMIcpxIKFZDoRRpgPImx/wulMT6bSmYkY2AkittkKGoAaCihmfYvXyecrUrjEbT2k1kjQgKNQsgk/DBrc9oeQ3CpxSBvnd4KvgxMddwruuOMOFixYwLJly0hNbb3VXWf2TwgRERGRdmT7TvjvO/DjRrDbITkRrp8Aw4dCoEqLtGshR/47FYc5zEEOYMdOIokk08nD0XlGLbVsYgOf8jF55NGN7lzCpXSnB1asfMc3vMMcDnEIEya60p1fMInetM4WgvbOjIXQ4/zdmzBhOsYBvqZWSsQcSxgZJDGCPJa47Qtzs5pIOqCQEeCX6igS7LYujcnRHzLC41MbhsGdd97JvHnzWLp0KZmZmR6f41iUpBERERFpA/blwiNPQXHJT215h2DmLPDzg/PP9V1s4ht27KxkBa/zbwo4hB2DcCK4kV8wkgsIIsjXITpZsTKfufyFB6mgAjDww495vMfDPEYIITzPs9ixA47VNtvZyt94hAf5K1lk+/YBnCGCSCCWgRzC/daMZEZ77FSxU2UhgGxuxISJfJYfOaHKTDS96c6tBBPn0/ikjTBZIOnZI6c7mXBN1Bx5DSfN9ErR4KlTpzJnzhzmz59PeHg4+fmOelCRkZEEBzdfweZpStKIiIiItAFrN7gmaBoZBrwzD/r3hsjI1o9LfGcrW5jJk9RSSwXlFFCIlXo2sZ4neJrRXIilDayMAEesM3iAKipIJY1hDCeaaIoo4nX+zRjGOhM0TVVSyUq+V5LGQyz405lrKGED9ZS59EXTl+ijatj4SgiJ9OQO0hlHPWX4EUoo6fif4mozOUNFjHccs50/zbWIsF+qI0HjheO3AWbNmgXAqFGjXNpnz57N5MmTvTJnU0rSiIiIiLQBq39suW/ffigtU5KmIzEwWMJiaqnjEPkc5ICzr4Zq/slMoolhEIN9GOVPtrCZKiq4homYMLGAD8knjxRSuYKriHNzTHSj9azlOq7HfIxtOnLiIunGQB4mn68o5AcsBJDCRcQxpE2tUrHgTwRdfB2GtHUR4x3HbFcvdxQJ9kt2bHHy4rHbhuFue1XrUZJGREREpA2IiWq5LyTYseVJOo4aatjFDmqoJo88QggliGDAoJZacsjhB1aSRjoJJPg6XEop4RzOpZBCFjDf2b6fXGbxHLHEkkU2u9nV7L4xxCpB42ERZBFBFplMxISf2yLDIu2GyeLVY7bbGn03FBEREWkDjlVz5rxhkJzUcr+ceQIIIJY4aqklngTqqSeXveSyDytWutCVaqrI46CvQwUggwwGMYRPWdCsL4AAFvE5Xenu9r6judDb4XVY/oQrQSPSzihJIyIiItIG9OgK117dvD2rM1x9GZj1rq1D8cOPS7gUE7CHXRymEOuR/wopoBe9SSABOzZfhwpAJtmEE47NTTzpZBBw5L+mTJi4hon0oFdrhSki0uZp4ayIiIhIGxASAhOvhLP6wqq1UFUN/XpDz26QEO/r6MQXetKby7mKDax3tpkwcRnjKKWEDaznIi71YYQ/ySSLdDqTQWcKKaCeeoIIJplk4kkkkEC604Ne3McmNhJIEP0ZQCZZp3w0uYjImUhJGhEREZE2IiQE+vZ2fInUUUctNdzPwxwiDytWEkliHWuYzzzOYwTBbWQriz/+9KEv3ehODDHYsBNIIMEEE0AA0cSQRTaJJHE25/g6XBGRNktJGhERERGRNsiMmUPksZLvqaeeYg5TTDGBBJFNF+JIOK0juA0cJ5iYMHkk3nQyuIPpzOI5GmhwtgcQyC3cRiIqrCQicjxK0oiIiIiItEHRRDOCUeTxJgH4E0gACSThjx8WLFzExYQSetLXzSef9azja77Cgh8jGU0f+hF3msczmzBxHueTRDIr+Ja95JBNF87mHLrS7bSuLSLSUShJIyIiIiLSRo1gJN+zgr3swR9//I+0d6U7Q05h29AB9vM0fyeH3c629ayjD/2YyrTTPs7bDz960JMe9Dyt64iIdFRK0oiIiIiItFGdSOEP3Ms61vA1XwEmRnEB/RlAAoknfb2vWOKSoGm0kfWsZTVjGOuBqEVE5FQpSSMiIiIi0oYlk0wyl3PJkZOcTrUOTRFFLOerFvu/5AtGMpoggk7p+iIicvrMvg5ARERERESOz3Lkv1Nlx4YVa4v99dRjw3bK1xcR8QYDG7UspYo3qWUphpe/T82aNYt+/foRERFBREQEw4YN49NPP/XqnE0pSSMiIiIi0gFEE0Nv+rbYP5izT6kQsYiIt1Qzlzw6U8hoivk5hYwmj85UM9drc6ampvL444+zevVqfvjhBy644AKuuuoqNm3a5LU5m1KSRkRERESkA/DDj7FcTgghzfqiiOZczvNBVCIi7lUzlyImYmO/S7uNAxQx0WuJmnHjxnHZZZfRtWtXunXrxiOPPEJYWBgrVqzwynxHU5JGRERERKSD6EFP7uUBBnM2QQQRQgjncT73cj+ZZPk6PBERwLHFqZRpgOG2F6CU6V7f+mSz2Xjrrbeoqqpi2LBhXp2rkQoHi4iIiIh0IL3oTRe6UkgBYCKRRPz0sUBE2pA6ljdbQePKwEYudSwniFEen3/Dhg0MGzaM2tpawsLCmDdvHr169fL4PO7ou7GIiIiISAcTQAAppPo6DBERt2zkeXTcyerevTvr1q2jrKyM9957j0mTJvHVV1+1SqJGSRoRERERERERaTMsJHt03MkKCAigS5cuAAwaNIhVq1bx7LPP8tJLL3llvqZUk0ZERERERERE2oxARmAhFTC1MMKEhTQCGdEq8djtdurq6lplLq2kEREREREREZE2w4SFKJ6liIk4EjWGSy9AFDMxYfH43Pfeey9jx44lPT2diooK5syZw9KlS1m4cKHH53JHSRoRERERERERaVNCGA+8RynTXIoIW0gliplH+j2voKCAm266iby8PCIjI+nXrx8LFy7k4osv9sp8R1OSRkRERERERETanBDGE8xVR057ysNCMoGM8MoKmkavvvqq1659ItpNTZrHHnuMIUOGEB4eTkJCAldffTXbtm1zGVNbW8vUqVOJjY0lLCyMCRMmcOjQIR9FLCIiIiIiIiKnw4SFIEYRyg0EMcqrCZq2oN0kab766iumTp3KihUr+OKLL7BarVxyySVUVVU5x9x111189NFHvPvuu3z11VccPHiQ8eO9swRKRERERERERMST2s12p88++8zl9muvvUZCQgKrV6/m/PPPp6ysjFdffZU5c+ZwwQUXADB79mx69uzJihUrOOecc9xet66uzqVKc3l5ufcehIiIiIiIiIhIC9rNSpqjlZWVARATEwPA6tWrsVqtXHTRRc4xPXr0ID09ne+++67F6zz22GNERkY6v9LS0rwbuIiIiIiIiIiIG+0ySWO325k+fTrDhw+nT58+AOTn5xMQEEBUVJTL2MTERPLz81u81r333ktZWZnzKzc315uhi4iIiIiIiIi41W62OzU1depUNm7cyNdff33a1woMDCQwMNADUYmIiIiIiIiInLp2l6S54447WLBgAcuWLSM1NdXZnpSURH19PaWlpS6raQ4dOkRSUpIPIhURERERkfbGwGAvOWxlC4UUkEY63ehBJzr5OjQR6QDaTZLGMAzuvPNO5s2bx9KlS8nMzHTpHzRoEP7+/ixevJgJEyYAsG3bNvbt28ewYcN8EbKIiIiIiLQzK1nBP5lJNdXOthhi+T330J0ezrYGAyyAyeSDIEXkjNVukjRTp05lzpw5zJ8/n/DwcGedmcjISIKDg4mMjOSWW27h7rvvJiYmhoiICO68806GDRvW4slOIiIiIiIijXLJ5QX+4ZKgASimiJd5gQf4C4XWSL6ph/UNEG2GSwKhtx+EtstqnyLS1rSbJM2sWbMAGDVqlEv77NmzmTx5MgDPPPMMZrOZCRMmUFdXx5gxY3jhhRdaOVIREREREWmPcthNJZUt9O1ho20f/6zoS6XxU/v39TA+CH4WDCFK1IjIaWo330YMw3D71ZigAQgKCuL555+nuLiYqqoq5s6dq3o0IiIiIiJyQsopb7GvwYBtthqXBE2jebWw2+bFwEQ6MDs28ljKLt4kj6XYad1/bI8//jgmk4np06e3ynztZiWNiIiIiIiIN6WQ0mKfzfCn3h7jts8A1lmhj7+XAhPpoHKYywqmUcV+Z1soqZzDs3RmvNfnX7VqFS+99BL9+vXz+lyN2s1KGhEREREREW/KIJOudHfbN4rR7KjLaPG+tW5W2IjIqcthLouZ6JKgAajiAIuZSA5zvTp/ZWUlN954I6+88grR0dFenaspJWlERERERESAaKK5g+kM5Vz8jmw6CCKYyxjHddxAmb3lpTL9tIpGxGPs2FjBNBzr1I7maFvBdK9ufZo6dSqXX345F110kdfmcEfbnURERERERI5IJZVp3M0B9lNNNRFEkEIqFrOFn4fAs5VgP+o+/fyhiz5ZiXjMIZY3W0HjyqCKXA6xnGRGeXz+t956izVr1rBq1SqPX/t49K1ERERERESkiUACySK7WfvwAAgOg7m1sLfBcZrTRYGOrxjtURDxmGryPDruZOTm5jJt2jS++OILgoKCPH7941GSRkRERERE5AQEmmBYIPT1h1IDAoF4i6+jEjnzhJDs0XEnY/Xq1RQUFDBw4EBnm81mY9myZfzzn/+krq4Oi8V7//CVpBERERERETkJYWYI83UQImewREYQSipVHMB9XRoToaSSyAiPz33hhReyYcMGl7abb76ZHj168Mc//tGrCRpQkkZERERERNwopJBD5GPCRDKdiMH98dNtjYGBjX3YKMCEBTOp+JHg67BE5CSYsXAOz7KYiYAJ10SNCYBzmIkZzydMwsPD6dOnj0tbaGgosbGxzdq9QUkaERERERFxsmLlW77mTf5LIQUAJJPML7iZsxmKuQ0fEGunilo+oZr3MKgGwEwcYdxKAMMwHflwJyJtX2fGcyHvsYJpLkWEQ0nlHGbSmfE+jM57lKQRERERERGnDaznn8zEjp0IIvAngEIKeZYn+TMz6I33f5N8KmwcppYllPMQYMZMFCbCsHOYcp4mir/gT09fhykiJ6Ez40nnKg6xnGryCCGZREZ4ZQXNsSxdurTV5lKSRkREREREAKijjgXMJ5V0etOH/eRSRSUDOIsaaljCInrQE0srf0A6ngYOUsMnVPMGdg4DYKcAM3FYSMME1LFMSZoWbGYT61nHLnaSTgYDGEhf+jn7bdjYTy6HKcSfAFJJazfb36T9M2PxyjHbbZWSNCIiIiIiAkA5ZQDEk8BjPEwDDc6+3vTlF0ymiioiiPBViG7V8gUGVdjY59Ju5/CRFTUxWNmBgQ1TG0sw+dq3fMN0fssh8p1tUUTxNM9xIZdQRhkfM5+PWUAtNQB0IoVbuI0BnOWrsEXOWG13Q6mIiIiIiLSqQILoQlde4QWXBA3AJjawhh8IIMBH0blno5A6lgI1mIlr1m+nEDCw0EkJmqPkso8H+ZNLggaglFL+xB/ZzS6+4kve511nggbgIAd4mifYw+7WDlnkjKckjYiIiIiIABBBBAc5gB272/5NbKSQwlaO6nisGNRiZQtBXNas16ABMBHEBa0fWhu3m11sZ6vbvnwOcpCDfMR8t/1VVLGWNd4MT6RDUpJGREREREScrFiJabYixUQCSfjjj5V6n8TVEhPR+NEFO8WYCSGIy2n6McdMImHcqno0blRRdcz+euoopqjF/p3s8HRIIh2eatKIiIiIiIhTPwawgm+JI45KKjEBYYQTQgjJdGpz9WjMBBPCNZSxkTq+xo8+RDIDGwWYCCGQCwigDyZ99GkmkUQCCKC+hcRbOOGEEUYllW77k0n2ZngiHZJW0oiIiEi7YGCwnVzmsIi/8SbvspSdHMDA8HVoImeUvvQnjjgiiKATnUimE+GEY8HCNUwkjnhfh9iMP/2I4B4sZNHARmr4GAM7wVxKIAOUoGlBd3pyNRPd9l3MGLLIZhQXuu33w4/BnO3N8EQ6JH23EhERkTbPwOAbNjKTd6nDCsBy1vMuS/g913O2tjGIeEw66fyBP/EfZrOdrRgYRBHF1UzkXM7zdXhumfAjkKH40RM7hZgwYyYJM8G+Dq1NCyOMqfyOcMJ5hzepoJwQQrmSq7mV24kljssZRx4HWc0q5/2CCGIKv6Yr3XwYvciZyWQYhn791ER5eTmRkZGUlZUREdG2lnKKiLSKgjIoyoHKQggOhpgM6JTq66ikg9tPIX/kRcqpbtYXRySPcxuJRPsgMpEzVxVVHGA/VqzEEkuStracsaxY2c5WyiknjDC60YNAAp395ZSzlxz2kUMIoWSSRRrpWHRalseciZ9Da2tr2bNnD5mZmQQFBfk6HJ870edDK2lEROQne3Phx3mw/i2oKXO0JXeHS/4A3Yb5Njbp0PZxyG2CBuAwZeRySEkaEQ8LJZRudPd1GNIK/PGnN31b7I8ggr70oy/9WjEqEd946KGHmDFjhktb9+7d2brV/UlonqYkjYiIOFTWwNYv4PuXXNvztsHc38Mv/wUp2lIivtG4xelU+0VERKR9smFjM8spIY9okunFCK+v4urduzeLFi1y3vbza73UiZI0IiLiUHgANrzlvq+iFPavVJJGfCaRGMyYsLspEuyHhQStojmjNWDnABVYsRFJEPGE+DokERFpBd8xl38xjSL2O9tiSeVXPMswxnttXj8/P5KSkrx2/WPR6U4iIuLQUAUlB1ruP7y59WIROUpnEhnewlL8ixhEBomtHJG0llzKeJZV/B+LuYvF/JElfMIuqpocGWxgkEsZ6ylgO0VUt3CcsIiItB/fMZcnmOiSoAEo4gBPMJHvmOu1uXfs2EGnTp3IysrixhtvZN++fV6b62haSSMiIg5BwRAc+VMtmqNFpbRuPCJNhBDEzYwlnii+4AcqqCaSUMYylLEMJQB/X4coXlBINU+ykt2UurTNYg0N2LiSbpRRywJ2sYAdVGLFjInexDGF/nTRCisRkXbJho1/MQ3crKB1tJl4lemczVUe3/o0dOhQXnvtNbp3705eXh4zZsxgxIgRbNy4kfDwcI/O5Y6SNCIi4pCUCQOvhG/eaN4XFgJZI1s/JpEm4oliMpcyhiFUU0coQSQT6+uwxIu2U+SSoGnqPbYxlE58yV7e4qeVfnYMNlDIE3zLw4wkmbBWilZERDxlM8ubraBxZXCYXDaznL6M8ujcY8eOdf5/v379GDp0KBkZGbzzzjvccsstHp3LHSVpRETEwd8fhtwAVfth/VKwG2AyQXQkjP09JPTydYTSgRgY7GA/37GJ7eynM0mMoB9dSaETcb4OT1rJVopb7CuhljyqWMBOt/35VLOVIiVpRETaoRLyPDrudERFRdGtWzd27nT/88bTlKQREZGfxGfA5X+BwdugeDsEhkFyb4jOBrN+ZEjr+Zr1/Jl/k0M+9Vjxx4904nmIKVzIQEyYfB2itIJwAlrsM2OilgbKj1F/ZhcljCbDG6GJiIgXRZPs0XGno7Kykl27dvHLX/7S63OBkjQiInK0kGjIPMfxJeIDByjkYf7DVn4q0leHlR0c5CFeowud6NwKb8rE9/qRgAUTNjc1CXoTRzSB+GGiwW3NAogh2NshioiIF/RiBLGkUsQB3NelMRFHKr0Y4fG5f//73zNu3DgyMjI4ePAgDz74IBaLhRtuuMHjc7mj051ERESkTdnBATayx23fTvazg2OcQiZnlGyiuJl+mI9aORVDEJPoSybRDGohYeePmb7Et0aYIiLiYRYs/Ipnj9w6evWs4/YtzPR40WCA/fv3c8MNN9C9e3euu+46YmNjWbFiBfHxrfMzRStpREREpE2ppAZ7CysjDKCcqtYNSHymCivDSKEXsXzNfoqopTdx9CWeVCIA+AV9yKeSvZQ77xeAmd8ykEyiKKKavZRTST3RBNGZSMIJ9NVDEhGREzSM8fyR9/gX01yKCMeRyi3MZBjjvTLvW2+95ZXrniglaURERKRNiSGCQPypw9qsz4KZBKJaPyhpVbmU8RW5LCcXGwZD6cSFZJDl5kjtzkTyIOexgxJ2U0IqEUQRRABmNlPIu2xlHQXO8X2I57cMJO1IkkdERNquYYznbK5iM8spIY9okunFCK+soGkrlKQRERGRNiWTRMYzgjf5slnfZQwlgyQfRCWtZT/lPMp37KfC2fYhO1hOLg9yHtluEjXxhBJPKGmE8yabWcFBKqmngCouowtnk8zKIyeAbKSQV/mRP3IOwfi32uMSEZFTY8Hi8WO22zLVpBEREZE2JZk4buBCbmMcScQAEE8kN3MpU7iMNBJ8HKF40/ccdEnQNCqhls/Y7bIVzsDgAOX8yCE2Ucjf+J7l7MeKnWqs5FHFq/xIBfWkE+6831oOsZeyVnk8IiIiJ0MraURERKTNGUx3oglnMN2ppIZQguhBOll00vHbZ7AarCwjt8X+lRzkWnqQQChV1LOQPbzPVqqwchGdWcBO0okggkDqsTvvN49tTGMI+44kf+wYxzy6W0RExFeUpBEREZE2x4KFbqTRjTRs2M7ovefyExPNz/Bw7f8pRbecXGazHoBIAsmlnGqs7KSEHsQS0GTBeLlLygbMmIggwNPhi4iInDZtdxIREZE2TQmajiMIf84nvcX+oXQijhCKqOF9tjnb67ERceTEpgbslFFHKAEEHnntmAC/Jm97zyKRzkR650GIiIicBiVpRERERKTNOIdOZLg5eSmWYMaQhQkT5dSR3+Qo9hoaiCGIkCOLxCuoIwAL2UQTjB8DSOQQlQD0JZ5b6E+QigaLiEgbpO1OIiIiItJmdCKcezmXb9jPV+zDhp1zSGEk6WQeOX49EAth+FPZ5Jj2tRziDgbzLKsIPPIWN4wAziWVOxmEDZhIDzoTSfiRVTft0WGqyaWcOmzEE0I6EfhrtZmIyBlDSRoREZF2rogytpFLIaWEEUwXOpFB8kldo4Iq8ijGhp1Eoolxs5JBpLWkEM519GQsWdhx1JxpKpkwLqAzH7LD2ZZHFSZM3MdwArBQg5XuxNCNGPwwE4w/UQS18iPxrNXkM4s1HDqyiigAM5eQxbX0IIZgH0cnIiKeoCSNiIhIO7adXB7hv3zOKufRxF1J4W/czrn0cY6zYyeXAvIowoSJTsSRSjwmTKxlB/9hITs5AEAKcfyCSxhKT/z1VkF8qKUVLyZMXEEXcihjPQXO9gKqSSaUS48kd9aQzz9YzQEqiCCAy+nCcFLbZUJjNyX8je+opsHZVo+dBewkkgCup3eL962mnvUUsoS95FHJQJIYQjK9iW+N0EVE5CTonZeIiEg7VUU1/+B9PmOlS/sODnAnM/kfD9CDdGqoYyEreZPFVFMHQDgh/JJL6EoKj/E/ao60AxzgME/xNn/mJgbRrVUfk8iJSiaMPzCUXZSwkxJC8Kc7MWQShT8WPmYnL7H2SOoSKqjnZdaxixJuZQCh7ex0p7UccknQNPUxuxhJBsmENeurwcq7bOVPfEXDkTOu3mYLKYTzIpdyNp28GreISHt04MAB/vjHP/Lpp59SXV1Nly5dmD17NoMHD/b63CocLCJnPGsR1GyD2l1gq/V1NCKes439fMg3bvv2U8RmcgBYyw5e5RNnggaggmpe5EPWs5v6JnU9GjVg4wOWuyRvRNqaKIIYRDI/oxfj6Eo3YvHHwgEqeJPNzgRNU1+ylxzKWj3W07Wb0hb7Sqmjinq3fZs4zP0sdyZoGh2ggif4jiKqPRmmiIjH2bCxjKW8zZssYyk2bF6dr6SkhOHDh+Pv78+nn37K5s2beeqpp4iOjvbqvI20kkZEzjj2WqjLgfqDYCuEkg/AVgYmfwjpCzG/gOAevo5S5PSVUUVdC79ZB9jHIWqoZT5fu+230sCHfEMXUthGbrP+3eRRRiXB7bjIqnRMBVRR1kKC0QB2UNLutvqkEN5iXyj+BLXwtn4N+S1+n/iW/eyilFhCPBKjiIinfcBcfs80DrDf2ZZCKk/yLFcz3itzPvHEE6SlpTF79mxnW2ZmplfmckcraUTkjGKrguJ34ODDULsB9k2DiiVQnwtGHVT/CHmPQN1eX0cqcvoiCHWeYuNOGolUUks+JW77TZjIo4jwFj6ghRJEoI4plhbU0cB2ilhEDovJYSfFWL38280TZcZ0zH7/dvgWeDBJBLQQ90V0bjGJU3qM1XB2oPYYiV4REV/6gLn8nIkuCRqAgxzg50zkA+Z6Zd4PP/yQwYMHc+2115KQkMBZZ53FK6+84pW53Gl/P6FExKcaysBW4esoWlbzI5S8C0E9oWQejl+ZGtBQALZSxxhbKVSv8V2MIp7SnVSu4Fy3fSnE0pvOhBBIHJFux5gx0ZMMqnC/D3AMQ4jWKU/iRgV1vM0W/sgSnmUVM1nF/2MJ77OtxW03rakT4SS0kHz0w0RXWmfJuid1IYZpDCG0SeLUBAyjE+PogqmFxFTfY6wYSiCEBEI9HaqIyGmzYeP3TMNws3G1se0PTPfK1qfdu3cza9YsunbtysKFC/nNb37D7373O15//XWPz+WOtjuJyAmp2wMVS6HyezBZIHwkhA2HgBTXcUYD1O+DhmIwBUFAOvi10mc8ez2Ufur4f78YqN3m2m89BJZoMPk5kjTR17ROXCLeEkYI05lIJTV8wQ8upzs9wW30IB2AcZzLU7zt9hrXMoqN5LAF1+Vlg+nOCPp59wEcg5UG9nKIAkoIwI80EkgkxmfxCNiwYzny+73V5PMuW136rdj5H5tIJ4JzSfVFiE7xhHAL/XmK76k/qhbLdfQko4XEZVtmxsQI0sgkihzKqMFKCuFkEEnYMYog9yaOc+jECg426/stg+iuf1ci0gZ9w/JmK2iaMjDYTy7fsJzzGeXRue12O4MHD+bRRx8F4KyzzmLjxo28+OKLTJo0yaNzuaMkjYgcV+1uODgDbMU/tRW9ARXLIPlPEHDkYIiGIsdWo/LFjq1FAIHZEH9769SAMeqg4fCR/7eCJdxRi8bZbwVsgB9Y9J5UzhDdSONpfss2cimklHBCyKITmSQ7xwyiG9cxmnksx3pka0Mg/lzPBQykGwPowjB6sYYdNNDAALqQTQrRx6iB4U2lVPING9hDPjbsgEEuBUxkFEPp2eKKAfE8A4NtFLOMfWynmCRCGUUGa8lv8T4fs4vBJBOApRUjbe4cUniY8/mSveygmDhCuJQs+hB3zG2CbZkJE2lEkHYSK9zSieQJRvMqPzKX7VRST2ciuZ2zuPwYK3BERHwpjzyPjjsZycnJ9OrVy6WtZ8+evP/++x6fy532+RNKRFqNYUDZZ64Jmkb1e6Hqewi4xjGuZD6UfeI6pm4X5D8OKY80X3XjaeZgR1LIuh9qd0L4hVA617W/8bte+EjvxiLSmuKIIo6oFvvDCeF6LuAcerGfQsyYSCOBdBLwO/KPoh/Z9CO7lSJumRUrH7OCx/gfhUdOs4kjkpu4hLksI5ZwupLm2yA7kO85yJN8T92R5eTbKGYxexlJGmlEkEt5s/sUUk0NVp8nacyY6E08vYijlgb8seDXQXf69yCOvzKSyfSlFjsxBJLZDrd8iUjHkdzkl02eGHcyhg8fzrZtrkvyt2/fTkZGhsfncqdj/qQSkRPWcNiRiGlJxVeOY63rc6F8YQvXKGq+9cgbTH4QOcbxp3UvhPSDoMYkuAn8kxxbtaKvgyCd7iQdjD9+dCWV0ZzFSAaQRSdngqYtWc127uMVZ4IG4DBlzOR9OpPEarb7LrgOppBqXmGdM0HTyIyJN9hEvxZqnaQRTkgbKjhtwkQw/h02QdMoED96k8AgkpSgEZE2bzgjSCG1xdV+JkykksZwRnh87rvuuosVK1bw6KOPsnPnTubMmcPLL7/M1KlTPT6XO23v3ZmI+Iy1yLE6xl7jqOkSkAFuanW5OlKY11YB9uqWh9Xt8WCgxxDcExLvgsOvQdnnEHU5mCaArQT8UyDsbAjIAotOGxVpc6w0sIDvqHFTeNaOnS/4gXEtFEo+FYcoYTu55JBPDBH0JJ1MkrX944gDVFBA82/sZkxEE0QptQRgdqn5YsbEZXTB38eraEREpH2zYOFJnuXnTMSEyaWAcOPP6b8zE4sXft4MGTKEefPmce+99/Lwww+TmZnJzJkzufHGGz0+lztK0ogIADUb4dA/wNq4rdMMoUMh7lcQOqTlVTJhI8ESDOYgxwoWo4WTPP0SvBJ2MyY/CD/fsVLGetCxDcs/GQKSWmd+ETl1VdSwn0L8sbg9ynkvhzxWPHg3B3mCNznIYWdbEAHcyXhG0E+JGqDhqIK7TUUSSAKhRBJE4ZFETgQB3ERf+hLXWiGekDoaqKCeQCyEE+jrcERE5ARdzXjm8B6/Z5pLEeEUUvk7M7ma8V6b+4orruCKK67w2vWPRUkaEaH+AOT9zbHaxMkOVd85ki+R46Bq5VH9QEAahA396f9Dzoaqb5tf3xQMwb29Fr5b/gmOLxFpP4IJJIkY4oniIEXN+hOJphunX9yqmlpe5ROXBA1ALfU8x1zSSHApvNxRJRJKKP5UYW3WZ8HE2XTiYjLJoxITjmOvU3xUbNqdBuxsoIAF7GQ3pYQTwFiyGUonYgj2dXgiInICrmY847iKb1hOHnkkk8xwRnhlBU1boSSNiFC7vXkCplHlNxA9Hjo9BBWLHckaLBA+wrFipbEYsDkAYn8BtqPqz5hDIeFOCMxsYe490FAIJn8I7AJ+bef9vYi0skACuIJzWcsO6rBSTLlzcbMfZm7lCrLodNrz5FLIRtzvwTyffuziIB/hyDgPojs9SSfmJE7TOVOkEs619OA1NjTrG0k6mUQSSsBJnTTUmr7jAE/zPQ1HXkWHqeEF1rCFw9zKAK2qERFpJyxYPH7MdlumJI2IYD3Qcp9R7zjGOqS/I9ESPQEwg19U87GBaZB8H9Tthvr9jiOwA7MhIB1MR+0csJZC+adw6Dmo3wX4Q+SFkDAdQs/y2EMTkXbmLLrwCy7hXZZSTjR11OOPH9dzARcxyCO/OaulDrubrTzXMIIf2MYD/JsAAgAwAVO4jDu4hk5tbBuPt5kwMYYsogliLtvIp4pIAhlLFqPJIPTIc9QWFVHDf9jgTNA0tYR9XEhn+pPog8hERESOTUkaEcHvGPVaTH6O1TDgSLT4HacchF80+A2C0EHHHlfxOeROb9JgdRz1XbMVMl+HYJ2+JNIhhRLMdYxiKD3ZQx4GBpkk05kkAj2UFIgijBACqabOpc1KA6/yCaEEOdsN4FU+4Sy6cC2jPTJ/exJGABfQmUEkUUE9QfgRR9uvvJ5PJflUtdi/gUIlaUREpE3q2GcRiggAQd3B0sJq9dBzHCthPKkuFw79031ffQ5UrfLsfCLSvgQSQDfSGMPZXMpQupPusQQNQBoJjOFsl7YR9OUdlmDBhMXN26M3+ZIiyjwWQ3sTSRCpRLSLBA1w3MLPZhWGFhGRNkpJGhEhMA2Sfg9+R63kDxngqDNj9vCK9obDULet5f6qlZ6dT0SkKTNmruY8xnM+IUfqkgQTRDEVhBCE2c3bo8OUUUlta4cqpyiJUFIJa7G/L/GtGI2IiMiJ03YnEQEg5CxIfQzq9oG9ypGwCezsqCvjaaYAMIWC0cJKdL9Yz88pItJUDBFMYgwXMpBSKoklnHKq2MVB9lPICjZT1+RUo75kEnOMD/3tSQ1WtlFMNVaiCaI7MW4TU+1ZDMFMoh9/YwXWo+oPXUoWWUT5JjAREZHjUJJGRJz8kxxf3haUDdFXQvGbbjrNEHGR92MQETFjJp1EAvHnS9aymDWsYDPdSeM3XMVnrGQr+wgigOsYTTihvg75tG2mkOdYzSfsopYG4gjmZvpxPb1JbUPHZ3vC2XTiYUbwGXvYQTERBHIZ2QwksU0XPRYRkY5NSRqRdsxeB3U5ULcDDCsEdYWAzmBp47/sNQdB3K1QsxFqmp7sanacDhXUx2ehiUgHU0w5zzGPH9mJHYNU4viRXaxkK3/kBsIJ5teMYzDdfR3qadtHOX9kCSvJc7Ydpoa/8z312PgD5+DvgdOz2gozJvqQQA/iqKKeQCwE4e/rsERERI5JSRqRdspWDaXzofhtwPZTe/hIiLu57W8ZCukNGS9B9Y9QvRIsURB+PgT1Br9IX0cnIh3FdvbzIzsBx4f6RGIIJ5Ra6tjCXp7mDrqSctxCtO3BVg67JGiams16xtGVviS0clTe54eZyCYndomIiLRlZ9YGZJEOpGYTFM/BJUEDUPEVVCxrPr6hCKpWQ/kSqFoHDaWtEORxBGVDzHhIfRyS74Gwc5WgEZHW9SO7mrWFEEgMEVRSg4H9jEjQAGyjuMW+cuopoLoVoxEREWm7OnfujMlkavY1depUr8+tlTQi7ZBhg/LPWu4v+xTCR4FftON27XbInwnW3J/GBHaBhN9BUKY3IxWRjqqKGuppIIIQLG14C82xtveYMJ1RBXVjCT5mf4i2AomISBtkw8Zy1pNHMcnEMIJ+Xn9vsWrVKmy2n34bvnHjRi6++GKuvfZar84LStKItEt2q2NlTEts5WCvAaLBWgT5z4B1v+uYup1Q+AIk3w9+EV4NV0Q6kEJK+Z4tfM4qaqijN5mMYQg9SPf4ipRa6gATQadRBHYQ3ZnHcrd93UkjmZhTvnZb05s4IgignPpmfcNIoQtayigiIm3LXJYxjefYT6GzLZV4nuVOxnO+1+aNj493uf3444+TnZ3NyJEjvTZnIyVpRNohcyAEdoW65qv0AQhIAcuRxEv9nuYJmka1W6F+L/j19U6cp6Mu11FYuG4b+CVAyEAI6gImfdcSabOKKWcWH7CKbc62fIr5lg3cxy/pTxePzJNLASvYzNesx4yZCxjIELqTxMkX4+pCJy7jHD5hhUt7KEH8gksII8QjMbcFfYjn71zA3Symqsnx4hlEch/nEn+GHDEuIiJnhrksYyIPYBzVfoBCJvIA7/GwVxM1jerr6/nvf//L3Xffjcnk/S3Q+rgj0g6ZTBAxGiqWgFF3dCdEjf/phKfj1Z6xlXsjwtNTswXyHgVb6U9txe9Cwm8h4gIwtd2dEyId2jZyXRI0jWqoZw6L6UoqIadZwHUv+fyVN8hvUl9lJwdYwlr+H9efdKImlGBu5EL6kcXn/EAZlfQli/PpT1dSTyvWtsaCmSvoSjoR/EA+B6mgJ3H0J5Eep5DgEhER8RYbNqbxXLMEDYABmIDp/JOrGO71rU8ffPABpaWlTJ482avzNFKSRqSdCuoJSb+Hw6+CNd/RZomCmOshZNBP4/yOs1Lf0sZWt9sqoPBl1wQNAA1Q+BIEZjkKDotI2/M9m1vs28peDlFCJsmnfH0Dg0WsdknQNNrBflaxjXGce9LXjSCM4fRlKD1pwH5a26faOj/MDCSZgafx9yAiIuJty1nvssXpaAaOlbXLWc8ozvJqLK+++ipjx46lU6dOXp2nkZI0Iu2UyQRh5zi2PVkPOIoJ+ydCwFHfOwI7Q0CGY1vT0YJ6Q2BGq4R7wupzHfVy3DHqoHaHkjQi7ZGBI8lyOooo4xs2tti/mNVczCCCCDyl6/vhpzdGIiIibUDeMU4kPJVxp2rv3r0sWrSIuXPnenWeps6cIwtEOij/WAjpB6FnNU/QgGMlTeJdEHgksWGJBP9UCBkMCb8BS3jrxuuO3Qq2KjAMsB+9fevosW1we5aIOAylV4t9PckgkejTur4dAxv2Fvtt2I/ZLyIiIu3DiRbu93aB/9mzZ5OQkMDll1/u1Xma0i+MRDqAoGxIngH126F6g2N7VHAP8PVnmYZyqFkHZZ85tjkF9YDw4WAOAXu1+/sEZrVqiCJylCpq2MVBfmAbdVgZQBe6kUYsEXQnjUF0YzXbXe4TTAA3cCGhxzkC+nhiiWAgXVnEarf9w+lz2nOIiIiI742gH6nEc4BCt+twTUAqCYygn9disNvtzJ49m0mTJuHn13qpEyVpRDqIui2Q/zQYNY7bVd+B+R1I+gOEDjr2fb3BVgUlb0Lpgp/a6nMc25nCR0HZJ83vE9RDSRoRX6qgmjdZzEd862z7hBX0IZNpTCCJWKZyDd+zhYWspIY6BtKNKxlO0mmuogGwYOEyzmElWyjHNZObQDTn0ue055D2z8DgABXkUo4VgyRCyCCSQL3tFRFpNyxYeJY7mcgDmMAlUdN4vtJM7vBq0eBFixaxb98+pkyZ4rU53DEZhnF6G8TPMOXl5URGRlJWVkZERISvwxHxiPqDsP+PborxAn5xkPq4o55Na6reAAf+5L4vYqxjm1bZJ2ArAVMghA2HmOscx4uLiG98xyYe5b9u+65jNL/kEuftCqoppJQN7GE+X1NBNRcykBH0ozeZpxXHdnL5hBWsYQcmTJxLb8ZwNp1JOq3rSvvXgJ2vyeUV1lFOPQB+mBhDFj+jF9GnebqYeI6BgQnvH2Ur0l6ciZ9Da2tr2bNnD5mZmQQFndr337ksYxrPuRQRTiOBmdzRKsdve9KJPh/6lYJIB1Cf6z5BA9Bw2NHf2kmamh9b7iv/FNJmQvhIsFc4kjQBKWDSdywRnzEw+IIfWuxfzGrGMISEIytmyqniad7hXb5yjlnGerJIZhZ3M4AupxxLN9LIIpkiyjFhIp4ofdhrBw5Qzk5KKaGWJELJJpp4Qjw6x3aKeZYfaGiyn7cBg4/ZRQKhjKe7R+eTk2OjjAY2Ucsi7FQRyFACGIwf6b4OTUTaqPGcz1UMZznryaOYZGIYQT+vH7vtS/rII9IB2GuO01/bOnE0ZTQcp78OArJBp8SKtA0N2CilssX+auqw8tM/7HXsdEnQNNpNHq/xKU9wG4GncdS1H34knkSxwD3ksYkcDnCYNOLpTWcytPKm1awln6dZSSk/VYdPJYzfcw7ZHtgK1+hrcl0SNE0tYCcjSCWeUI/NJyfORhlVzKaOxc42OyU0sJcgxuJPdyVbRcQtCxavH7PdlihJI9IB+CfgOMvN3ftWC/jFt3JAQHBfKHnffZ9/cuuv7BGRY/PHjwF0YQf73fZnkkwUYc7bHzapW3O0T1jB7VxJDzI8HidAHfXso4AqaogijAJKeZp3qOKnjHQ4IfyB6zmLrl6JQX5ygIpmCRqA/VTyEmt5gOGEneKx6UfbQ2mLfcXUUM1xfkNwBrJTjZ0CwISZRMw+2vLVwNYmCZoggriQBrZSzZvUsoAQriOQi/FHxedEpGNTkkaklZVRSD21hBBBKJGtMmdAZwgbBpXfNO8LPx8CO7dKGC4Cu0DoUKj6/qgOC8T+AvxiWz8mETm24fThU76nEtfleWbMTOB8l5OVqml5iV4t9S2udjhduRTwGp+xmm3YsHMxg3ifZQQSQCD+znEVVPNP5vI4vybegys5BMqpJZcK9lBKDmWkEE4+VQS5edu5hSL2Uk5vPPPbgiyi2chht32xBBPa5DVwpjMwsLKeat7GyibAjD/9COVn+NOr1eOpY7nz/4MYTRX/xsZeAGyYqeZd6viWCB5UokZEOjQlaURaSRkFrGMR6/icGiqIIZlhTKQbZxPo4T354Dje2lbqqOPinwxxU8AvGsq/dBxvbQ6DiIsh6kowe+YXmCfFLxLib4Pg3lC2EOyVEJgJUVdDsPdO0hOR05BNCvfxS97gc7awFwODVOK5gQs566gaMxcxiM9bqGEzjN6kEOfx+Mqo5Hk+YBN7nG1mzGwllxjCySQZC2ZnXwGl7KOgxSRNBVWUU0MwAcRwZhRx9KYSaljJQf7HZrZTTDdiGE06WyliG0V0IcZtkqQaq8diGE4qn7ILq5sk4Di6EueFn7dtVQNbKOcRDGdS1Y6VNZSxnUgexr+VV5E1xmEmgQZynAmaxl5HhMXUsQg/btXWJxHpsJSkEWkF1ZSzkJfZzk/LRgrYy3ye4hJ+zdmM89hc9jqoWgUl70DdXjCHOFbLRI2DuFsh4jIwqsEcCv4pYPLheyD/eIi+BsJHO2rQmCPAEnz8+4mI7/Qhkwe4iYMUYcdOPFFuExjn0IuepLOFfS7twQRwO1cRTbjHY8vhkDNBY2BQQz1V1GLDRgkVJBFDGK7fZGqPnADUVDW1rGQr81hOPkVEEsYVDOM8+ipZ04IK6pjNBj5iB1sowsBgD6UsZx9/4wJsGBygnC7EYHZ++Dbww0ykB7ffdCeGaQzhZdY2Od3JzFiyGNWBitMaNFDDx00SNE37KqnjS/zo0qqJkACGUs9KLKRRx5cufSZCMR1J4NXxPcFMwIKW1IpIx6QkjUgrOMRulwRNU9/wDl0YRAydXNoNA6wHjqx6CQX/TieWUKn8Bg49i7P+jL3ScZR17XZI/hMEpp3mg/ECvyhfRyAiJyOUYLqSeswx3Unnn0xnDov4kG+poZah9OI2xnEuvb0SVwElANRh5SCHKaKcCxlIFbX4YaGWepckjQUzsUdtOzUw+IyVzOZTZ1s1dbzCAnLI51dcToiOcW5mF6UsYS9l1GEcWRUBUE0DWzjMQJJYRR7VWLFip4hqrNgZT3eCPHhChwUzI0mnC9HkUo4VO8mEkk4EAR3oba+dEqxsbrG/nnUEU4GlFZOOAfTFjzQcq2aavqExYaETP30sMR3VLyLSsXScn1YiPnSA7S32VVFKKQUuSRprIZR+BOVfOJIs5nCIHAORl4P/MXYIWIug+E3cFgiu2wm1Wx2rV0REWkMfMnmYm7mZS2nATidiiWxSXNjTwgnBhp1cCiimAoAN7GEUA/iStdRjxYbNeWzncPqSgWuV8v0U8A5L3F5/Mau5iEH0orPXHkN7tY5DAG63Gf2LH3mJsTzPagqoYi/lBGDhQjJIJYL7+Ir7GE4PD66cSCGcFC+s1movTPhjOkYxZhNBzpUrrcVCMuHcQy1f4ljrsx0ToVjohLlJsiiQ4VhO4uQ2EZEzjZI0Iq0g4Di/dfVr8k/RVgOHX4PKZT/12yug5D1HjZn421uuIWM7DNb8luep2QDhI048bhGR0+WHH11pnSV8GSQSShAlRxI0AEtYy82MpRNxrGU71dSRQDQXMJDxjCD4yAfZBhoop5qSYxwzbscgh3wladxyrJ4JJ4ACqlx66rCxlzLOJpk+xJNLBf6YyaGML45sT3uTTdzLuW6LC8vJMxNFIBdSzX/c9gdxCWZaf3+xH+mEchMN7MDGAezkQZOVVGaSCOKCVo9LRKQt0U9CkVaQQg/M+GF3c/RnHGnEkOK8XZ8DlV+7v075Uoi4FIK7tzCRHy0ftY2jPk17YKtx1M0xhahGjZxB6q1gMoO/57Z2iKtkYrmdK9nMXg5TBjRuX/qeP/NLhtCdbqTRhRRSiceMGTt2NpHDp3zPdnIB6E8XDAy+Y1OzOfz11smt/iTyPtsJw59g/Khp8vOuG9EUUUMCoSxgJ4Vu6qT8SAEHqSBLJ215TBAjsPJDs21P/gwmgCEen8/AwMY+GtgH1GOmE350bpYMMmHGn+5EMoM6vqOOrwCDQM4jkOH4daDaQSIi7uidhkgrSKAzI7mRJfwHmuzVDyCYi7iFsCZvSq2HaDHJQgM0FAItJGn8O0FwH6hZ774/ZNCpRN96bDVQs9ax1ct6CPwTHQWPg89SsuZUGMapFYaurYaC/dBghYgYiEv2fGwdyoFiWLkHlm8Dixn+P3v3HR91fT9w/HU7l733Tgh7I0NEQRHEibi1itjaYa1aWmuHq63WVluLtlZ/dql1V1HrHgiCiigbREYgkBAyyN63f398QpJL7kIgNzLez8fjHnCfz/e+388Fkty97/15v88cA1OyICnq+I8VJyyOKL7PBbRho4p6kohBi4aXWU0LFqZQQGaXLU5fspsHeQFbe1DBgo33+YozmcJk8tlCYcexBvTkIN8QnuQRw+lksJYS8oihlEbqsGBEy7WMJ5soqmn1GKABcODC0eX3o+g/HclE8FNs7MLCZ2jQYeI09Iz2+XYiF3YsfEITT+KipX1Ui4l5hHEtOuLaaxU50LS//dCTjp7LMLMIFy50w3h7mhBiYHE4HNx77708++yzlJeXk5qayvXXX8+dd96JJgBdVyRII0QAGDAyjfNIIY9trKKeCjIYy2hmk9qtBab2OPUoe2uXrTND3LVQdr/aGtVVzGVgyju59QeCyw71b0P1051j9qPQuhPilqouUBpJQOiT0iLYtQH2bIGoOJh2JmSPBnPY8R97aA+8/TQc+BpcToiIgbMuU+foy+NFN8XV8Lu3VKDmmN1lMCoFfnIOJEcHbWlDVRrxbGM/tTRixsQ+DncEYOKIdAvQ1NLIM7zfMQ9gwkAmSXzAV9zNUrayHxcuNGi4lgU9atgIJRIT32Yi40ngXfaTTgTpRDKPTAxoSCQMXS/FYDOIIGEYtccOFB0J6DiDEM7w63Xs7KWRv4JbxrATC6swMAotsbTxJnZK0DOaEM5Ez3h0hKD1Y50qIcTQ4MDJOkooo4kUwplDBjq0frveH/7wBx5//HGefvppxo4dy8aNG1m2bBlRUVHccsstfrvuMRKkESJATJjJZTK5TMaJE62XHyzGTNBF9wyyAOjjwHic0g7mUZB2HzRvVFkpuhiImAsho0A3gF//Wkug5kXPczUvQdhUMOUEdk2D0YFd8NT90NzQObZ1nQq0nHkphPTyf6CiBJ76HTR0iSc01sLrT4LBADPP8d+6h6yPvnYP0Byzuww2HoTzJwV6RUNeAtH8iCU8yAvUd6mNEo6ZW7iE5C4ZBOXUUEJlj3PEEM5IMqiinmmMxIieBZzCWLJlu1MvYjFzDnlMI4UNHGE1h/gLm3C2Z8hcxzgyiaSYBrfHadFwNWOJlq5Zg5aFz8DDlm4deVj5nFbexUEJKpv4XZp5kmj+RAhnoZUMGiFEL1ayh1v5kMNd6s2lE8EjnM0Sb9sL+unzzz/noosu4rzzzgMgOzubF154gS+//NIv1+tOXmkIEQTeAjQAxlRIvAnKHwZXW5fHmNW4Ifn45zdlqRuX9H+tgWItBZfFfcxpA2sTtNWC6VNwlUD8GAjtpcPVcNbaDO885R6gOebjV2DkFMgb5/3x+7a5B2i6WvUKjJoG0fK177uqRvhsn/f5j76G+WMgxBi4NQ0TE8nnAb7Hbg5xmKOkEsdossiiDz9AAQ0aIgglgwSu5iwMGNBIS+A+20sNT7Clx/jzfM1tnMJualhHCS3YyCWayxjFlD7+24iBycEhj+MGRlPPnehIput2bxdNNPIwOtIxMS1AqxRCDDYr2cOlrOyxGbaURi5lJa+wxC+BmlNPPZUnn3ySvXv3UlBQwLZt2/j00095+OGHfX4tTyRII8QAFDYT0h+Ali0qw8SYBaGTIGQAb1fqt27vfxw2aCiG1mp1v7UGtrysgjQzfgzh8nq+h6ojcHC35zmXC3ZvAqMJ6qogNBySsyCss+spRT1rpHaoqYCmegnSnBCnC+wO7/MOp7oNUnbsFHKEzeylkjpGkM4EcskgMdhLAyCTRDKPs5ZkYskg0WM2DcAk8jEiQbQTYcfB+xzwMufieXbxB+ZxISOw4SCWEMJ7aRXtby5ctGHHgBY9sqf2ZOnIB7a5jWkIx8FhwIGnLBs7e7CzFyMT0Mj3mRCiGwdObuVDj9XKXKi3DrfxIRcxwudbn37+85/T0NDAqFGj0Ol0OBwO7r//fq655hqfXscbCdIIMQBpNBCSr27DhTENNGZwtdeUtNR3Bmh0YWBt/2lVtQsOrYaxVwVnnQOZ3a6CMZ5Y2+DgN7D9M6gqU2OZBXDJTZDeHvyLjPN+bmMIGOQ19ImJDYPJ2bDKS/RrVj6EDc7tHQ4crGYrf+N17KhA1Co2EU04v+CaQdOiOoYIrmOhW+HgY+YyibwunfdE31hxUkOb1/kmrLRhJ2UA1CHZRw2fUMJ2KojAxEJymUgCUbLt6oSZmEkrbwFdU2J1uGhDRxJOL63tXbTipA2dBGmEEN2so8Rti1N3LqCERtZRwlyyfHrtl19+meeee47nn3+esWPHsnXrVm677TZSU1NZunSpT6/lif+q7QghxAkwZkDc1ervLie0HO2cS7geind03i9aBS3VAV3eoBCdALEeapo6nVBRDAmpUNvl61q8F57/k8qsARg3U3WI9mTibIiTpjYnRq+DReMhwsMbvvhwmD2i5/ggcZAK/o//dQRojqmjib/zFo1dasEMdNMZxa9ZxhwmkEQMeaTxI5awjEVEDNNCtq3YcHptM9g7M3pG4T3im0UUkQPgDfl2KrmLtbzBXoqoZzuVPMQX/IedNGI5/gmEGz0jiWQ52i41n1xYMDEbMAHWHo/RkoiGGLTD9PtMCNG7Mi/B3ZM97kTcfvvt/PznP+fKK69k/PjxXHvttfz4xz/mgQce8Pm1PJFMGiHEgKDRQeRCMKRA7RtgaoaQGAg/C0oOQmNp57H2NlWvRriLiYeFV8OLj6hA1zGWFkjJgbZWcHTLOK8ogSNFahtTxgi4YBm89W8V2DkmPQ/mXQJ6+Y1x4kamwN2L4a2tsOUQaDUwMw/OnQhZg3fv2F5KsOD5m7CQUko4yhh6tgOz4xhwW0q0aBlPLqPJpIEWTBgIwxzsZfnNUZqppQ0jOtKIwND+7+HAyUbKeJNCdnKUDCJZwkimkkzkCWxH0qDhTLJYzSEs3YJ4WjQspoDQIAdpmrHyLDtp9vB/+H2KmE06k6VGzgnRoMHEqejJxc5hwIaWRLTEEMJCWnga3DYtaAjlGgyM6WjJLYQQXfU149IfmZktLS1ote6fXOp0OpzOwGxTl5+KQogBQ2eG8BlgngT2D+DgZ1C4CpzdAgvxo1QAR/Q0YTYYTPDxf6G8WHVzmnYm6I3w5QeeH1PbXo7DaIJTz4WsUVC4HVoaVevujAIVABInaVQK5CfC0Ua1lzExArSDO5G1kZZe5y1dPjW3Y2cPJaxhKwcoI414zmIqY8jEgMHfS+0zPXpiiTz+gYNUM1bWUsJ/2c1RWjCgZTopXMkYsonmfYq4mfc7AhfrKeUVvuHXnM61jMN8Av9Wo4jjDmbxb7ZR0p6qnkAo32Isk06wZpETFyU00IQVMwYyieh3oK+MJoqoYySxaNG0n78zYLORcgnSnCRVIFiPnUM4KQNshHMzerJo5hmcVKInBzOXYmQKBgZvRqEQwr/mkEE6EZTS6LEujQbV5WkOx2l9exIuuOAC7r//fjIzMxk7dixbtmzh4Ycf5oYbbvD5tTwZVEGatWvX8tBDD7Fp0ybKysp47bXXWLx4cce8y+Xinnvu4e9//zt1dXXMnj2bxx9/nBEj5BeAEIOJzgRRo6Hu+Z4BGp0RCi4EffDqTA5oRpPampQ/AZrqQKdXwZZHfuL9MZGd2ekYjJA9St2ED+l1kBId7FX4TC7e976FYiKOqI77n7KTR3ilY2vUXkr4hG18nwtZyCm9drsTvvMJxTzepeOSDSefUcpBGriNU/gNn/bILHECv+NzppFyQt2XNGg4hRTyieEIjThxkUwYCR6yq3pzlGZeYy8fcZBW7BjRMpt0rmQMqf1o2+zAxQWMYB3F2HExkzS0wGqKseHERi8Fv0WvrOygkb+0B2gAtJiYRRg3EMI5OKlDQwg6EtEh0X8hhHc6tDzC2VzKSjR0z8VTVnC2z4sGA/zlL3/hrrvu4qabbqKyspLU1FS+973vcffdd/v8Wp4MqldGzc3NTJw4kccee8zj/IMPPsijjz7KE088wYYNGwgLC2PhwoW0tXkvYCeEGJhi8+G0OyFpUmedlNgCmP0LSOiljbRQwiIgKQPiUyA+FXJGez4uOgFScwK7NjH45ZHGaC9F+i5gdkeHpyNU8U/e7lG7xomTf/Ou165Kwrcqaea/eG79VkojB6mniDqP863Y2c3JFQGLIYSxJDCexBMO0Fiw8xxf8yaFtLYXdbbiZHV7sKnhJOvG7KeW3/E5P+A9nmEnL7CLB1jPKg6xAPXDUNqBnxw7JTTwYJcADYATC5/RwovoycTEFIyMkQCNEKJPljCSV1hCWrfAfDoRfmu/DRAREcGKFSs4dOgQra2t7N+/n/vuuw+jMTDbdQdVJs2iRYtYtGiRxzmXy8WKFSu48847ueiiiwB45plnSEpK4vXXX+fKK68M5FKFED6QMBZm/xKay9V9cwKYgt8QZNAJDYclP4AXV0Bpl864MYlw9Y8hTt6PiBMUQwS3cgn/5RM+ZTsWbMQQwUXMZj7T0LR/xlVKFXVeCvq1YqGYSrLkDbHf1dJGFa1e51u91Bc6pnttmUAopoFPKPY4t5UKDlLPhBPcOtWClQ84wHscwIQeOzZcuKillc84zHgSmEsmBV2K34q+s7Ebl5dgXxtrMXMBeuRTASHEiVnCSC5iBOsooYwmUghnDhl+yaAZKAZVkKY3RUVFlJeXM3/+/I6xqKgoZsyYwfr1670GaSwWCxZL56cxDQ0Nfl+rEKLvDGaIltd0/ZaaA9++B8oOQt1RiIiG5GyI89ANSoi+SCOBm1nMxZyGBRsRhJLSrauPvVtb6+5kW0lgGNCiR4Pd465+iMdMPGaPgRwt9NqtyV+qafW6XoBymk44SFNGE++wH1Bfk3AMWHBgx0kTNrZQwaOcTewQLhztT05Ke5m1eG3DLYQQx6ND6/M22wPZkAk/lZerj9qTktzfcSQlJXXMefLAAw8QFRXVccvI8H3hISGEGAiiYmHUFBg1FfQGqDwMNRXBXpUYzPToySKZAjJ6BGgAkojF5KXgrB4d6bLlISDSiWQSniOyWjSkE8EtTPM4fxVjGUngK7WHHOdzxPCT6BDVgLVj6xSAHi2hGIjASDgGHDgJHUDFrAcbbS+1qsCA5gS3vAkhxHA1ZII0J+sXv/gF9fX1HbeSkpJgL0kIIfxmy1p44Eb48Xmw/Fz47TLY8AHYe0948IuaSjj4DZQUgsX7TgwxiGWSyGLmeJw7h+lkeQkcCN8youNbjCOZULdxLbCU8aQSwWWM5nHOYQpJRGJkBLH8htP5MdOJ7fa4QMgkkjQvbVWjMJF1Ep24TOiY2i2QoEEFqrRomEQScZJFc9IMjELjpaCzas8tH4QKIURfDJntTsnJak97RUUFKSmdv4ArKiqYNGmS18eZTCZMJmkTI4TTCc5m0IaAVj5IHJJ2fQn3fwea6zvHdm+C330XfvMsTDwtMOtobYGtn8BHL0NdlepGnT8BFl0LmQWBWYMIDD16LmI2iUTzOp9SRR3RRHAhp3Ia4zGdRDaEODl5xPBrzuBrjvI1R4khhFNIJY9oTOgxoWcJIzmNdGpoJQwDGV26dAVaLGZuZip/4AvquhQJDkXPj5hG2kkEaVKJYDzxJBNGOc3drhfCpYzG0M/23sOZniwi+SmNPIKTmo5xA1MI5Wo0kqUkhBB9MmSCNDk5OSQnJ7Nq1aqOoExDQwMbNmzgBz/4QXAXJ8QA5nRCy1dQ9z9o2QaGJIi9HEKngSHwZQjESXA4oLoM7DYIi1Lbmjwds+Y19wDNMdZWeOcZKJgC5gB8YL7jM3jlb533nU7YuxUqSuB7v1VdqcTQEUEoCziF6YymiRZCCSH2JN5gi/5LJZxUwjm7l+KtiYSROEC2pYwjkd8xl2+oopgGUghnDPHkEH1S54smhJmkcTsz+ZAiPuMwDpzMIJUfMY0pQc7sKqWRYhqwYCeJMLKJwjzIAhtGphDNH7BzCBctaElATzZaL1lRQgghehpUQZqmpiYKCws77hcVFbF161ZiY2PJzMzktttu47777mPEiBHk5ORw1113kZqayuLFi4O3aCEGuMaP4ND3VRbNMfVvQdLtkPBd0Mt7qQGt8jCseR22rlVbhuJT4KzLYPxs94BLfZXKpPFm9xaoKYe0XP+ut74aPvqv97nC7RKkGaqiCSda3qiJE5RBJBk+DOrlE0skJsaSwPVMwIyOTKJI9bJNJxBcuPicUh5nM/XtWUNaNJxOBksZT3wQtpv1h45kdNK1TQghTtqgCtJs3LiRefPmddxfvnw5AEuXLuWpp57iZz/7Gc3NzXz3u9+lrq6O0047jffee4+QkJBgLVmIAc1SAuUPuAdojqn4M0ScDuHTA78u0Te1VfD8w1Cyr3OsqgxeehRsVph9Xue4yQzh0d7PFR4JxgCUYmiqU1k/3hzY6b5uIYTwtYGULQRQSC1/5ku3VudOXKyhmHhCuY5xHW3thRBCDH2DqnDw3LlzcblcPW5PPfUUABqNht/85jeUl5fT1tbGRx99REGBFDgQwhvrIWjd5WXSDi2bA7occYJK9roHaLr66GWo7tLYLiwS5l/u/VzzL4eE3hpz+IjOAMZeyoBFeNiqJYQQQ9lGytwCNF19wAHKTqB1dRt2DlLHAWpp7FLLRwghxOAxqDJphBC+5TpORx+XNTDrECfnoLcAG9BQo25xXTLOx8+Gsy6HVS+7HzvzHJixwD9r7C4+FSacChtX95zTaGD8zMCsQwghBopiGjr+bkTLGWQSTQgt2PiEYlroW/u9b6jiBXaxnUocuCgglqsYw2SS0A2uz2WFEGJYk5/YQgxjhlQw9FL/I3Ry4NYiTpy5lxIKGi3ouoXhk9Jh2a/gN8/D4u/Chd+Gu5+GH9wPqd7riPqUXg9nXgqp2T3Xu+haSB8RmHUIIcRAkdPeRWs2aVzHeLZSwV/YyDsUci556Puw1Wk/tdzHZ2yhAgcuAPZSw+/4nJ0c9ev6hRBiKGpsbOS2224jKysLs9nMqaeeyldffRWQa0smjRDDmLkAkpdDyU8Ap/tczGUQMiooyxJ9lD9Bta92OnvO5Y6BxPSe43HJ6nbKWf5fnzdJmbDsLijeo2rQhEbCyMmQltf7VighhBiKppDCdipJI4LreJO29syZ7cAnlHA7M7iN6YT30rL+U0pooGf6qw0nr7OXUcRhkpf9QohByoGLdTRRho0UDMwhHJ2fa3V95zvfYefOnfznP/8hNTWVZ599lvnz57Nr1y7S0tL8em35aS3EMBd1PuhioOof0LYHdHEQfw1EngOGhGCvTvQmLVdln7zzDLhcneMR0XDudRAygBuCxCaq26Q5wV6JEEIEVx7RXMYolvFOR4AGNBjRYkTH42zmbHKZQarHx7dhYzMVXs+/lxpqaCUliB2shBDiZK2klls5zGFsHWPpGHiEdJYQ45drtra28uqrr/LGG29w+umnA3Dvvffy5ptv8vjjj3Pffff55brHSJBGiGFOHwnRiyBsOtirQWcGo7RAHhSMJph9PmQWwPbPVQvrvHFQMBmSM4O9OiGEEL1x4GQvNXzKYRIJZR81hLVny2iho46MHRdbKPcapNGhJQyD1+uEoMeAzufrF0IIf1tJLZdShKvbeCk2LqWIV8AvgRq73Y7D4ejRJdpsNvPpp5/6/HrdSZBGCAGAIU7dxOBiClHbnvInBHslQgjRd1bsHKYRA1oy2muyDDefcZgVfIUNJ0sZhxUHVpyEokfXLaji6PEWpZMBHQvIYYeX2jPzyCKeAZxaKYQQHjhwcSuHPf70cwEa4DYOcxHRPt/6FBERwaxZs/jtb3/L6NGjSUpK4oUXXmD9+vXk5+f79FqeSOFgIYQQQggRMF9xhF+whit4nSt4gwf4nG+o8np8FS1so4JNlFFCPa5eAhaDxREa+TtbsbUXhDOgI48YwEUrdpxdnqMODVNI9nImZSJJnE7PNNiRxHEmWT5duxBCBMI6mty2OHXnAkqwsY4mv1z/P//5Dy6Xi7S0NEwmE48++ihXXXUVWq3/QyiSSSOEEEIIIQLiS46wjLeoorVjbAVf8REH+RsLGUlnSqcLF19yhL+zjQqaAQjHwGWMYiG5HVuDBqPDNFKHpeP+55TyU2ZwCx9gw4kDF9r2T4avYzxj6D3VNYYQbmQSZ5DJ5xzGioMZpDGGOBII8+tzEUIIfyjrJUBzMsedqLy8PD755BOam5tpaGggJSWFK664gtzcXL9crysJ0gghhBBCCL9rw8bTbHcL0Byzk6N8SolbkGYvNTzEBiw4OsaasPFvdhBNCGeSHYhl+4Wty3MC2EUVSZh5hgt5nq/ZTy2phHMN4ziTLKII8XKmTtGEMJ1UpnupXSOEEINJSi+1tk7muJMVFhZGWFgYtbW1vP/++zz44IN+vR5IkEYIIYQQQgTAIRpZQ7HX+bfZz9WMxdz+gnsdJW4Bmq5WsoepJPcpeDEQJRGOES3W9u1OAKspIYwyFpDDqZxGChHEYQ7iKoUQInjmEE46BkqxedzkqkF1eZpDuF+u//777+NyuRg5ciSFhYXcfvvtjBo1imXLlvnlel1JTRohhBBCCOF3mi5beDzRoeko/ujAyW6qO+YMaIkhhJD2grrlNNOA1b8L9qMsIjmPnsUnm7Fjx8kIYiVAI4QY1nRoeIR0gB6/OY7dX0G6z4sGH1NfX88Pf/hDRo0axXXXXcdpp53G+++/j8Hg38wdkEwaIYQQQ9CRg1C4DXasB3M4TDkDcsZAlHQwEyJosoliIbn8h50e5xdTgLH9pakOLSmEc4h6Tm1/kX6ERmIxE4mJ/dR2BGwGIwM6LmEkiYTxOnuppoVYzJxPPnPJxCQv0YUQgiXE8ApwK4fdiginY2AF6X5pv33M5ZdfzuWXX+638/dGfgMIIYQYsFwuqCiB8kNgaYWENEjJBnMvdTAP7YFHl8OujZ1j//0LXPVjuPA7EB3v92ULITwwoudbjOMTiimmwW3uNNKZSZrb2HyyicLEk2zhUJfjIzHyEGcN+oK4UYRwPvnMIo1mrJjRD/rnJIQQvraEGC4imnU0UYaNlPYtTv7KoBkIJEgjhBBiQHI4YNs6WPkEtKrGLmg0MOFUOP8GiE3s+RinE957zj1Ac8wLf4ZR02D6fP+uWwjh3SSS+Cfn8T4HWMVBDOhYQgFzyGhvQd0pg0ge5ktKaOwY06CyUJ5lJ1NJJoPIAD8D34vDLFubhBCiFzo0zCUi2MsIGAnSCCGEGJAO74OXHgV7l86KLhds+wxik+C861XQxu0xhbBmpfdzfvqmBGmECLYJJDKBRJYxAT1aor0U/y2jiSpaGU0cLdhx4iIUPWYMWHCwn9ohEaQRQgghupIgjRBCCJ+zWeHQbti8Bo4egezRMH4WZIzoGVjxZtdX7gGarr78CGYshIRunWbtNmis837O+iqVbaOVsvlCBF08ob3Ot2JHi4YwjIRh7DFfh8VfSxNCCCGCRoI0QgghfMpuhw0fwBt/VwERgANfw2dvw7duhzGn9O08jbUwbibojdBYAwd3g8Ou5pobwNra8zHR8TByEjhdMHqqCsa0NMHmT6CiGCbMlgCNEINFDCEY0GLr0qa6q/RhlPouhBBi+JAgjRBCCJ8qPwRv/rszQHOMpRVefxJScyH6OF2W6o6C3gCfvQVNDZA5AmacA/t3qGBLRAyEeKivGZsE194Bz/8JXloBVgvEJcPcS1SAZ+JpPnuaQgg/yySSeWTxAUU95vKIJofowC9KCCGE8DP5PFEIIYRPle4Hu9XzXHU5HD3c++Mb6+G1/4NV/4WyQ2qL0o718O/fQlYBhEXCnAtU8KW72ir46GWoPAw6Q/s1K2DVS5A3Xt2EEIODAR1XMppzycXU3m5bi4apJPNjpkuxXSGEEEOSZNIIIYTwKUtb7/Pe6swcc7gQdm5QmTLpeSpQY7OoTJgPXoRlv1Lbljw+dh+UHYS4FAiPVo/TaCAkVNXHOXURJKafxJMSQgRFAmHcyGTOIY96LISiJ4NIzBiCvTQhhBDCLyRII4QQwqfScrzPmcMgxkPr7K4O7Oj8e3g0ZIeqrVIuJxiMkJINkTGeH1tS2Pl3k1ndjmlugPoaCdIIMdjo0crWJiGEEMOGbHcSQgjRg8ulujIdOQj11Sf22JRsmOgl02XuEkjK6P3xum4fHxiMEB7VWYem+3xX4VHe5zQaMJp6v7YQQgghhBDBJEEaIYQYICxtsGcLrHsTPn9HdUTqXnw3EKrK4I1/wCM/gT/9CB77OXzxnuqS1BehEXDBt2HBVRAZq4Iqielw+Y/g1HOP34I7f6L3udQciE/xPp8zWhUc9jg3RrJohBBCCCHE8a1du5YLLriA1NRUNBoNr7/+utu8y+Xi7rvvJiUlBbPZzPz589m3b59Pri3bnYQQYgCoqYR3noZX/wZtLWosKh6+fSfMWQwhAaqP2VgHrzwG+7Z1jlWXw38fg9YWmHvx8YMsADEJsPBqOGU+WNtU4MbbFqXu0nLhtPPh07fcx01mOG9p79kyKTlw8Xdh5f91tusGiIqD85ep7VZCCCGEEGLwcLhgnRXKHJCigzlG0PXh9Wh/NDc3M3HiRG644QaWLFnSY/7BBx/k0Ucf5emnnyYnJ4e77rqLhQsXsmvXLkJCQvp1bQnSCCHEALDpY3juj+5j9VXw6O2QkAaTTg/MOkoPuAdoulr9KoydfmLZKLHHqT/jiTkMzr4KcsaqDJ6mepUhM+1MyBzZ+2P1eph2ltpytXcr1FVBZoE6V2Laia9FCCGEEEIEz8pWuLUeDnfJLk/XwiNRsMSPH2IuWrSIRYsWeZxzuVysWLGCO++8k4suugiAZ555hqSkJF5//XWuvPLKfl1bgjRCCBFk1RXwv395nrPbYM1rMO5UFYDwt8OF3ueaG1TQIxBbhsIjYdJpMG6G+hqYzH3L4AG13SlrlLoJIYQQQojBaWUrXFoLrm7jpU41/gr+DdR4U1RURHl5OfPnz+8Yi4qKYsaMGaxfv16CNEIIMdg11kJFsff5w/vB0gL6SO/H1FWpbVLmMLW152SZjvOLzmA8+XOfDL3Be40ZIcTJK6eJg9TTgIVEwsgmimj6l54thBBC+IrDpTJougdoQI1pgNvq4aIQ/2996q68vByApKQkt/GkpKSOuf6QII0QQgRZeLTqeNRY63k+NRdMoZ7nGmph8xpVv6WhRgVoTr8QJp0BEb3UbvEme5Qq9Nu1nssxKdlq65UQYnDbTgV/5iuqaO0YKyCWW5hGFifxg0MIIYTwsXVW9y1O3bmAEqc6bu4Q694p3Z2EECLI4pNVUVtPdHqYt8TzVierBT58Ad78F9RWqsBKTQW8/nf4+L9qm9CJSslWa9F2++1gDofFN/ZetFcIMfCV0sgf+dItQAOwlxr+yTZaOYkfHEIIIYSPlTl8e5wvJScnA1BRUeE2XlFR0THXHxKkEUKIAeCU+XDlbWDsst0oMgZu/gOMmub5MeWHYMOHnuc+f0fNnyi9AWadA9+/H2afB6OnwbnXwQ/uh/wJJ34+IcTAsp9aamnzOLeNSg5RH+AVCSGEED2l6Hx7nC/l5OSQnJzMqlWrOsYaGhrYsGEDs2bN6vf5ZbuTEEIMALGJcMVtMHMhlJeATqeyWrJHq793V1MJ+3fAgZ2ACyLjVJaLoT3d025TBYnT8098LQYj5I1TNyHE0NI9g6YrJy6aJZNGCCHEADDHqLo4lTo916XRoObn+KleYlNTE4WFnR01ioqK2Lp1K7GxsWRmZnLbbbdx3333MWLEiI4W3KmpqSxevLjf15YgjRD+Zm3PwTMGIcwrBpUQM4ycom69qTkKG94DYwic8y1oa4WvPoLD+yAtX41DYLpBBVNjLdhsEB3fc3uWEMKzZMK8zunREMkQ29gvhBBiUNJpVJvtS2tVQKZroOZYneAVUf4rGrxx40bmzZvXcX/58uUALF26lKeeeoqf/exnNDc3893vfpe6ujpOO+003nvvPUJC+l+Ef4i/hBciiMpbYWMNfNy+V/H0RDglFtK8VIAVog/sdtiyGp77EzgdcOQgRESrLUm7N6vaNAlpKqsmMSPYq/WPI0WwZS2sfkV1tJo4B+ZcCKOOE9wSQkAeMSQTRjnNPeZmkiaFg8WAZHVAcTO0OiDKAOlhoA1wNxchROAtMas227fWuxcRTteqAI0/22/PnTsXl8tTDo+i0Wj4zW9+w29+8xufX1uCNEL4w5EWeGg3FDZ2ju1rhA/K4BdjIMP7J5lC9Gb/dnjiTmiqV1ubkjNV0OLFP8P1d8LbT6vjFt8ICanBXas/lBfD/90FX3apxbN/pwrY/OqfMHZG8NYmxGCQRBi3M4O/somi9vozWjScQgrXMR4jkvUpBpbiJnimEDZVg90FoTpYkAaLMyFOusYLMeQtMas22+usqkhwik5tcQp02+1AkiCNEP6wodo9QHNMSQt8Ugnfygn8msSgZ7fD+vfAZlX3bRZo00LGCGhugK83wOW3wKTTIG98cNfqL7s3uwdojqk9qrpa5YyDUImBCtGrAuL4DadTTAPNWIkmhGyiMGMI9tKEcFNjgT9/7f6SqsUBrxeDzQnfKQC9bHcVYsjTaYZem+3eSJBGCF9rtnVucfJkbSWclwYxfqpyJYYsSytUlKitTJbWzjFLK5jMUFcF6bkqQOOp2HBv6qpUIeL170JjPUw4FcZOV4WLB5LP3/Y+99UqKD8IuWMDthwhBq1oQohG0hDEwLa/wfNnXgAfHVEZNbkRgV2TEEL4mwRphPA1Byof1xu7C5xO7/NiSKs9CkcOqD+j4yElB+KS+vZYo0k9JioO6qtVB6djLK1gDlPdnE40QFNfBW88CS8+SkdVtrWvQ3oe/OxvMGLSiZ3Pn3r71nE6PFf/F0IIMTgVN4PNoerP6LplzFicUGsBJEgjhBhiJEgjhK9FGmBmHLzS4nl+aizEDKN8PdHh0B54/mGoOtI5FpsE1/ykbxkrBiOcugj2boWMAqgpV7VpXC4Ii4RLboLMghNbk6UV9m2Dd5+F6DjQaNXWKWsbHN4Pr/0f/OhPYPZTvWuLRWW/VB0BvQGSMiEpAzRe9hnPOgc+e8vz3JQzICndP+scqCxtqibR/h3q3yxnDKTlQWRMsFcmhBAnz+WCwgYwaiEzHPbUg8UB0UYwdPkgwtzHdzJ2J9Rb1fkiJJFZCDHASZBGCH84PVFteaqxuo9HGmBBsrQkGIbqa+DlR90DNAA1FfDCn+EHD6ggyfHkT4Szr4SPX4GQUFWXRquFMxbD1DNPfE2fvwsbP4TS/WpMq4PkLBWssbTAZ++o4I8/atw01MKHL8AXH6gsGICQMLjo2zBlnucW4qOnqq1Y2z93Hw+Lgou/r7aCDRetLbD2NfjwZXB1yTAaOQku+SHEJQdtaUII0S+bquHlIthdp7JpTomHtDB4sxgSzaoOTUHk8fswuFzwTR28Wwq76iBEB2enwqxESPJjVxghhOgPCdII4Q854XDPOHinDL6sBqdLZdCclwojIoO9OhEE5YdUZyJPqsqg7GDfgjTmMDjzUhhzigqsOJ2Qlgsp2aouzYnYsgZ2bVCZM8c4HSozI7NABWmsbapgsT9sWaOCRF21NcMrf4O4FMgb1/Mxqbnwwz/AF+/D6lfVGsefqgJXw62z08Fd8MGLPcf3bIUNH8K51wZ8SUII0W+FDfCTL2F3vcp8iTLCcwdUQOaqXPi4DPIj4LsjIeI4ta631cDvtqvW3cf8c58KAt02RrpDCSEGJgnSCOEvuRFwUzhclqEKZcSbpAXBMNbadJx5L4URPTGaVBDlRLc2dVVXBZ++Da3NKjvns64FeV1qG5XJrGrcxCae/HWOd31PHHbY8onnIA10Pvd5l4DdCrEpYBqGOwi/WtXL3Ecwc6F//u2EEMKfVh1RARoAqxMarJAXof5ud6rgysxESD3ONtwWG7xwoDNAo9fA2Gj1OIdLFSSWII0QYiCSII0Q/qTVSD6tACDiODVCImIDs45jLK3QWKuKD4dFqDomx7Y8gcqgiYiCy38ECWm+v35bCzTUeJ8vO6TS1L3VpgFISPX9ugYLp1MVfPamtVlthRNCiMGk3gKfV7qPWZxQ2aaCLOsqYGbC8QM0ABVtncEec/s2p7dK4F/7VJCmIBKWj4P5KVKnRggxsMjH+kJ40EgzX7CLx3idv7CSL/iaeo6TCiFEL5KzIN9LXZfsUZCSFdj1mMMhOkH9ffvncPktMOdCMLW/8B05BW59GKbN99P1wyAq3vt8el7vAZrhTquF/AntdxwOqG+B6kb1p91BUjqERwdzhUIIcXIMWgj10KXQ7lLZNOnHqUPjpv33yJwk+Ntu+OKoCtAAVFtUwGZNeb+XLIQQPiVBGiG6Kaeah/kvF3Mnv+Fp7uM/XMlv+B3PcZS6YC9PDFJhEbDkJhX80LT/5NW0v9G+9ObAF7yNjIG5F6u/Wy2qNkxiOnznHhWc+dEfYfb5EHoiL4ZPQFQcnHGR5zm9ASad7p/rDiXjZoFZ0wa7y2FjEWw6BF8Vodl9hDMXtREmbWmFEINMlAlOT1aBGE89Fs5Jg7zwvp0ryQxjo1RdmyYbHOnWdDO2fZvsq4egwktDTiHE8LV27VouuOACUlNT0Wg0vP76627zK1euZMGCBcTFxaHRaNi6davPri3bnYToZh07+BtvuI21YuVZPmQCuVzD2UFamRjsktLhujtUEeHmRggNVwV/Q/zU3vp4JpyqasOsfV0FakoKVcenxTdCTh9agvfXxNOgthLWvaVqy4DK/lh8Y//q7QwXGfEtLL3kKG+VWTlcqj4ajk7Vs+CqFkatex8mz4NEKVQuhBhczkiGT8pVkKayDZrtoNPAxBi4MgcieqlB5nTB4WawOqDFobo47axTBYStDlUaUKtRrbzD298FVVug3gZJAXl2QoiT4XCq7Y5lrZBiVtlxOj+nmzQ3NzNx4kRuuOEGlixZ4nH+tNNO4/LLL+fGG2/06bUlSCNEF2VU819We5yz42Al61jEDGKRNz7i5ISEQnYAAiB9ERapuiJNnA3V5SqDJTE9cK2bw6PgnG/B5NOhugJ0enX94Vxr5oTsLmPE/U/y3VnjOHrBSBwuDdF1B4l7cwOU18M5oyVII4QYdLLC4e6JsKYCPq1QxYLnJMFZKZDVS4ZgeQusPKTeyM1LgUd3QaoZlubD13XqGJ1GdYmKNYGhfUuVUatuQoiBaeVBuHUDHO6S8ZYeCo/MgCXZ/rvuokWLWLRokdf5a69VbTQPHjzo82tLkEaILppopYoGr/MV1GDBFsAVCeFfej2k5qhbUK5vUEWL0/KCc/1B7WgD1LcS9t5XhPFVz/mK+sCvSQghfCArApZGwEUZ6n70cTr4Ndngyb3wVZXq4PRBKRxtU7ff74A7xkNKqKprY9KBsUvNmxkJJ1jnRggRMCsPwqWrVaPcrkpb1Pgr8/wbqAkWiRsL0UUoJsaQ7XV+NFlEI7/JhRADQPhxesceb14IIQa4aNPxAzQAB5tUgAZUpsyGo51zR9tgTRl8Kw9a7Gp70zE54XBFjtoGJYQYWBxOlUHTPUADnWO3famOG2okk0aILpKIYQHTeIcvaKbNbc6AjmuYjxl54yOEGADyEmF0CnxT1nMuKw7yEwO/JiGECILuRYGdXd7VuYDdDWDSw10Tod4K8SEwMgoKoiBBXtYJMSCtq3Df4tSdCyhpVsfNTQnYsgJC4sZCdKFHz3RGcR/fZgydPZFzSeEv3MosxgZxdUII0UVmHDxwGWTEuI8nR8Ifr4Q8KYMphBgeQrt87HykBabGu89rNVDcDG8dhlOT4IYCmJ0kARohBrKyVt8eN5hIJo0Q3SQTx3nMZDx5VFCNFi0ZJJJPGho89IMUQohgmZUPz34fdpVCURVkxMK4dBgj1ZeFEMNHdjhEGqDBBt/Uw/kZsLNWdYYy6cDcXoNmVJTKoBFCDHwpZt8eN5hIkEYEnNWqipVqB3AeVxThjCec8QSpmqoQQvTVqBR1E0KIYSotFH44Ch7+GixO+LwCfjlBdYdqtEFciOoOdXqyZM8IMVjMSVJdnEpbPNel0aCKfs/xU+JwU1MThYWFHfeLiorYunUrsbGxZGZmUlNTQ3FxMUeOHAFgz549ACQnJ5Oc3L9WqRKkEQHhckHxXti6Fg7sgqhYmLEAcseBWerwDmx1zXCoGpotEBOmal2E9qGKnxBCCCFEAGg0MCsRfm+GbTVqy1OSGX47BUJ0qjBwjLx0EWJQ0WlVm+1LV6uATNdAzbG9DSumq+P8YePGjcybN6/j/vLlywFYunQpTz31FP/73/9YtmxZx/yVV14JwD333MO9997br2trXC6Xp8DUsNXQ0EBUVBT19fVERkYGezlDxu7N8MzvwdJtz+BZl6mbaQimqQ0Je8rgLx/BofaWCVoNTM2B75wOqTG9P1YMCw21ULwHdqwHpxPGTofsMRAdF+yVCSGEEEIMHkPxfWhbWxtFRUXk5OQQEnJyaWwrD6ouT12LCGeEqQDNYGu/3devh2TSCL9rrIO3/tUzQAPw8aswehrkjAn4ssTxVNTDH9+F8vrOMacLvjoABi0sPwdMhuCtTwRdfTW89n8qQHPM5jWQPx4uvxXipG6tEEIIIYTohyXZcFGm6uJU1qpq0MxJ8l8GzUAwhJ+aGCiqyqDskOc5lxMOfB3Y9Yg+2n/UPUDT1ZcHOrNrxLC1e5MK0LicYLOCw67GC3fAtk+DuzYhhBBCCDE06LSqzfZVuerPoRygAcmkEQHgtPc+b7MEZh3iBFV4CdAA2J3Q0Ba4tYgBx9IG69+FpnqoqYC2FlUQPCYRImLgyw/hlLMgIjrYKxVCCCGEEGLwkCCN8LvoRIiOh7puiRc2K9itkJantkJJXZoBJj7C+5xWA+HSHmE4s9uguhxK9qrC4KC+n8sOQkuT+p6324K6RCGEEEIIIQadIZ4oJAaCuCRYeDVo2v+3OZ1QXwWNNXD2VbDrK3jyHvj4FSgvDu5aRRd5CRDrpfXWxEzV5WkQqq2EvVthz2Y4eiTYqxm87DaISeoM0HRVXwWp2ZJFI4QYguotsLMO9jUEeyVCCCGGKMmkEQEx6XQwh8OalbBvO5gj4dxr4eVHoby9Xs0Hz8OYU+A798KIib2fz2qBimJobYbQCEjOBL3UsPWt1Bj46SL48/twtLFzfEwq3HgGmI3BW9tJcDhgx+fw5r86s7rCo1QAceqZYJLEoBNSdQRyx6ivYVO3nXGmUJgwW74nhRBDSJsNPq+BvxfCF1UQZYArs+CCNBgbHezVCSGEGEIkSCMCwmBUgZfUXPj8bQiNhGcegMrDncfYbSqT5uW/wE2/h5h4z+eqKIG3n4ZvNoLTod4ITjgVFl4D8SmBeT7DxvgMeOAyOFQNLRaICYP6FthaAqV1KtsmYXC0CDy4C55/uLO4LajgwsonVA2V8bOCt7bBSKOBrZ/CNT+Fz95WGXEuJxRMhtMXg/04taiEEGJQWXMUrvoMWpzq/pE2uGcnrKmER6dCweD4XSjcHWmBylbQayEtFGJMwV6REEJIkEYEQMk+2PwJ7Num3gi/9S8483L3AM0xze1FSCsOeQ7SNNXDK4+5d4Sy29T5bVa48scQIrVtfCspSt2+LoU/veueVZMaAz89B0YkB299feBwwIYP3QM0x7hc8MnrKogYEhrwpQ1acSnq67X+PcgdBzMXggv1/bvxI/j2PcFeoRBC+EhpC/xpd2eApqvVlbC9ToI0g0yrHVaVwUtFUGdVY+mh8O0CmBqnPogQQohgkZo0wq/274T/uxvWvqEKitaUQ32tCrZ4qmWhb99BY/XSOKjskPeW3V9vgPKDvli16OFoQ89tTwBHauHRD6GuOTjr6iNrG5Tu9z5/tBSaG73Pi56iYuG86wENFG6Hz99V3Z72bIZT5qusOSGEGBJKW2DtUe/zq8oDtxbhE19Vwf/t6QzQABxugQd3wF4pNySECLI+B2lsNhs/+9nPyM/PZ/r06fzrX/9ym6+oqECn0/l8gWLwamuB95+H1qbOseJCmDZPtep1OXo+JioetDqI8lKTtq6X10hOJzTU9m/NwouDVd5bch+sUtuhBjCDUXUb8iYiWjKwTsbY6fC936jv6cR0yBsL3/opLLgKzJKVJIQYKrQa0PeSWmGUzzwHkwYrvHLQ81yrAz6rCOhyhBCihz7/Vrn//vt55pln+P73v8+CBQtYvnw53/ve99yOcXlKjRDDVnV5z6yXyhLIHgPNDTDu1C4TGkhIhdBwmHQapGR7PmdoeO/XlDeGftLgJbXpmGZLYNZxkvQGmLXI+/yp50KYZKqfMK0WcsfC5bfCzX+A7/waJp8hX0shxBCTEwaLeil6t1AK4g0mDTYoa/U+v6sOHB52tgkhhpe1a9dywQUXkJqaikaj4fXXX++Ys9ls3HHHHYwfP56wsDBSU1O57rrrOHLEN61j+xykee655/jHP/7BT3/6U+677z42btzIxx9/zLJlyzqCMxrZwCm6cDpVIdHuNrwP4dFw5W1w/jJIy4XsUWp7xJwLYdF1YPTSaSc5y3uWTVIGJGX5avXCTVwv0TENED3wo2N541UnJ12XSlwaLcw6B8ZJ0eB+0elUYMYoBReFEENRXAjcOhKSPbw4uS5HujsNMiYtRPRSlTMhBHSSHCXEgOJwwpqv4YXP1J+BCKQ2NzczceJEHnvssR5zLS0tbN68mbvuuovNmzezcuVK9uzZw4UXXuiTa/e5cHBpaSnjxo3ruJ+fn8+aNWs488wzufbaa3nwwQd9siAxdMQmQnoeHO5WC8TphG2fwuQ58L37VAFhSwuEhKktE73tmotLhqt+DM/+EZrqOsej4+HyH0FkjF+eisiOh4Jk2Oth3/2kLMjyEjkLpNYqqCuEmt1gjIC4cRCVCzrVB9ocBnOXwKipcLhQdR/KyIfkbMnA8oXqCjhyAGqPQkyCCrrGJQV7VUII4SNzEuG/s+GtI7DuaGcL7umxkBUW7NWJE5BghgVp8NwBz/PzUwO7HiFE71Z+Cbc+BYdrOsfSY+GR62HJdP9dd9GiRSxa5DkVPyoqig8//NBt7K9//SvTp0+nuLiYzMzMfl27z0Ga5ORk9u/fT3Z2dsdYWloaq1evZt68eVx//fX9WogYesIiVebC079XHZi6yhsHGSNVbZrU7BM774iJ8MPfQ8leqK1UXWYyRkj7bb+KDoVbzoYn18DOw+B0qT36U7Lh26dDmJfUJ1+rL4K2atCaIGYE6Nuv23gYNj8Mtfs6j9XoYNwyyDoH9CrFw2iCzAJ1E75zaLcKnNZ02ccfk6jq02SPDt66hBDCp6bHq9vRNjBrIdwY7BWJk3RWKhxogvWVnWN6DVyVC2Oig7YsIUQ3K7+ESx9WHUS7Kq1R468s92+g5kTU19ej0WiIjo7u97n6HKQ588wzef755znrrLPcxlNTU/n444+ZO3duvxcjhp6RU+Hbd8O6N6B4H5jMcMpZMGUuRPcj+SIxTd1EAGXFw68uUEWCG9sg0qwyaMwBeJHaWgVF78C2v6lAjT4Ucs+DCT+A2JGwb6V7gAZUZeqd/4KofIgf6/81DlMNNfDiI+4BGlAB1Jcehe/f532LohBCDEoJAfpgQvhNQgjcPArOS4c99RCig5FRkB0Gpj6/OxJC+JPDqTJoPFW9daEqLtz2NFw0LfhbFNva2rjjjju46qqriIzsf3HGPv8Yuuuuu9i9e7fHubS0ND755JMeKT9C6HRQMEkVC26sUS22o2KDvSpx0kJNMDoIecD734RPf955394Ce/8LNXtg7sNQus7z41xOKPtCgjR+VHZQbVn0pPIwlB2SII0QQoiBJ9IIE2PVTQgx8Kz7xn2LU3cuoKRaHTc3iC/1bTYbl19+OS6Xi8cff9wn5+xzkCYrK4usLO9VWVNTU1m6dKlPFiWGHqNR1ZMR4oTV7oOtf/U8V7UdWirB0Uv3qbaB3R58sGtp7n2+tTEw6xBCCCGEEENHWZ1vj/OHYwGaQ4cO8fHHH/skiwZOoLuTEEIERetRaPKSqgHQXAGhid7n48b4fk2iQ2R07/MRQfiE0mqFliZwecqPFUIIIYQQA15KtG+P87VjAZp9+/bx0UcfERfnu9Rx2XUphBjYdCbQGsBp8zxva4YRl6p6Nd2ZYiB+on/XN8wlZ6v25vt39JzLHQsp2YFbS0Mt7NsKX7ynMnzyxsO0eVIoWgghhBBisJkzWnVxKq3xXJdGA6THqeP8oampicLCwo77RUVFbN26ldjYWFJSUrj00kvZvHkzb731Fg6Hg/Jy1QU3NjYWo7F/NTslSCOEGNgicyFjHhz6oOecVg8JE1S7bYcF9r0KljpAA7GjYNwNEJkR6BUPK2ERcMlN8OY/YM8WcDpBq1Vd2C68Uc2fDKsFyouhvgr0BggJg6Y60OkhKbNne++mBnj737BxdedY+SHY9DEs+xXkTzjppyiEEEIIIQJMp1Vtti99WAVkugZqNO1/rljqv6LBGzduZN68eR33ly9fDsDSpUu59957+d///gfApEmT3B63evXqfjdVkiCNEGJgM8fAlB9D3T7V2ekYrQ5m/RrixoMxFPIXQ/J0aKtRmTcR6WAIC9qyh5OkdPjWz1RQpblBBWaSsyAk9OTOV1sFHz6vAi5tzaoAcVgknL8Mtq5TQZvLboZRUzsfU7LPPUBzTFsLvPcsfPseMMt/ByGEEEKIQWPJdNVm+9an3IsIp8epAI0/22/PnTsXVy9753ub668+B2m+/PJLpk6dik6n8zhvsVh44403uPzyy322OCGEACBpCiz4N1RuVreQeMicC3ETVIDmmPBUdRMBFxIK2aP6fx6XCz79H2z4EHBBdTnUV6vbiytUcGb9e/DsQ3DTA5Caox6360vv5zy4G6rLID2//+sTQgghhBCBs2S6arO97htVJDglWm1xCnbbbX/qc5Bm1qxZlJWVkZioCnRGRkaydetWcnNzAairq+Oqq66SII0Qwj/iRqvb6GuCvRKfsLSCwaS2BolOlYfhi/adbZY2td3pmIYaVXfGHAatzbB/Z2eQxunwfk6XS4oICyGEEEIMVjptcNtsB1qfgzTd03k8pff4M+VHCCGGgj1b4cv3Ycd6iIyDMy+BUdMgtpcGVcNJS5Pa4gQq8OLoFnw5tvWptRkqSzrHR02FL973fM60HIiRr68QQgghhBgEfFqTRqPRHP8gIYQYprZ/Dg98F+qOdo599hYs+T5cdgtE+65zn1811sHhQtXRSWdQRYLTcn1T8yUkFIwhYG1TZYe0OvcsmbhkVX8GILFLTejMkVAwEfZucz+f3gALvwXhUf1fmxBCCCGEEP4mhYOFECIA6qvhhYfdAzTHrHwCpp0Fk08P/LpOVG2lWu+urzrHPnoJ5lwAZ1+pslz6IyFNfR02fACmEBW4qqlUc+YwiE2C3ZtUMCdvXOfjomLhsh/B1k9hw/tqO1lGAcy50P04IYQQQgghBrITCtLs2rWro/+3y+Vi9+7dNDU1AVBVVdXbQ4UQYlgrO6gyabzZsnZwBGm2rHUP0Byz7k3IGQsTZ/fv/Ho9nHkpNFTDN5sgLgXsdkADl96kCgRHxqoCwsfq0RwTm6S2j007E2xWiIgGo6l/6xFCCCGEECKQTihIc9ZZZ7nVnTn//PMBtc3J5XLJdichhPDC4ei9uK2lNXBrOVn1NZ1FfT3Z8D6MnaECLf0RnwJX/QTKD6muTEYThEaCtRXGnKLae8cle398ZEz/ri+EEEIIIUSw9PmldFFRkT/XIYQQQ1p8iso0Kfra8/yEUwO7npNhs3QW9fWksQ7stv4HaQDCItQ2Jdmq5K6tHuoPgbURQqIgMhtM4cFelRBCCCGE8JU+v5TOysry5zqEEGJIS8qAK2+FB28Ch919btIcyBsfnHWdiPBoSMmCwh2e53PGqjoywj9q9sPGv0Dt/vYBDSSOgyk/gKiMXh8qhBBCCCEGiT4HaYqLi/t0XGZm5kkvRgghhrJTFsBd/4bXn4R92yEiStVfOWMJJA+CH50hZrXWA7t6bt0ymWHqXJBdr/7RWg1fPgz1XX8Vu6ByB2x+Amb/Eow+6K4lhBBCCCGCq89BmuzsbI81Z7rWotFoNNjt9h7HCCGEALMZZiyA0dOgpgIMJtW6ejAZMRGuXg7vPqvqxYB6DucuhcyC4K5tKKs72C1A00XlDrUFKmFMQJckhBBCCDFkrV27loceeohNmzZRVlbGa6+9xuLFizvm7733Xl588UVKSkowGo1MnTqV+++/nxkzZvT72n0O0mzZssXjuMvl4sUXX+TRRx8lPFw2xgshxPFExqrbYGQwqC5UuWNVoEmrhfjU/rfeFr1rre5l0gWW+oAtRQghhBAioBwOWLceysohJRnmzAKdzr/XbG5uZuLEidxwww0sWbKkx3xBQQF//etfyc3NpbW1lT//+c8sWLCAwsJCEhIS+nXtPgdpJk6c2GPso48+4uc//zl79+7lZz/7GT/5yU/6tRghhBCDQ1ScuonACDlOxypjRGDWEWw2nBzCSi0OQtGSgZFI/PwqLYBacHAQK/U4CEdLJkai2l+qteDgUMecjswh9tyFEEIIT1a+Cbf+HA4f6RxLT4VHfg9LLvDfdRctWsSiRYu8zl999dVu9x9++GH++c9/sn37ds4666x+XfukenBs3ryZO+64g3Xr1vGd73yHd955h8TExH4tRAghhBCeRWdDRCo0Huk5FzcaooZBbf+j2HieWj6hERsuAPIx8QMSKGDwV6w+jJW/U8VWWnC2j+Vj4mYSCEHLP6hic5e5AkzcRAJ5Q+C5CyGEEJ6sfBMuXQoul/t4aZkaf+Vp/wZq+spqtfLkk08SFRXlMbnlRGlP5OD9+/dzxRVXMH36dBISEti1axd//etfJUAjhBBC+FFoAkz/sQrUdBWTD1N/AKYhnkljx8XL1PIRDR0BGoBCLDxIBeVYg7i6/mvB0SMIA+r5vUE9/0cVG7vN7cXCn6ikmoFfC9CB6/gHCSGEEF04HCqDpnuABjrHbvuFOi5Y3nrrLcLDwwkJCeHPf/4zH374IfHx8f0+b58zaW666Sb++c9/Mm/ePDZu3MikSZP6fXEhhBBC9E38KJh7vyoibK2HkFiIygbzcbZCDQUlWFlNo8e5Cmzsw0Iyxh5zTlyUYsOCkwh0JGHw91JPyiGsbKEFgBh0xKOnFSel2AhFw/9oJKJ9a5MDcKFewJVg5QAW4k4uMdqvrDjZTRsf00Q5ViYTyjTCyMGIFmkDJ4QQonfr1rtvcerO5YKSUnXc3NMCt66u5s2bx9atW6mqquLvf/87l19+ORs2bOh3Ekuff6s/8cQThISEUFlZyQ033OD1uM2bN/drQUIIIYTwLDRe3YabBhxYesnGKPGQSVOGjdeoZQ2NtOIiFh0XEc2ZRBA9wIIax2rQzCacI9jYg4VYdJxLFBFoacWFARd1OKhqzyWKQU8sOioHYCaNHRcf0siTHOUUQknDyEc08hGNXEw0swgjZoD9GwghhBhYysp9e5w/hIWFkZ+fT35+PjNnzmTEiBH885//5Be/+EW/ztvn35D33HNPvy4USI899hgPPfQQ5eXlTJw4kb/85S9Mnz492MsSQggxzDntql12XZH6e2SmyoYxhgZ7ZQNbKFp0qCwST+K7ZcjUY+dvVLKV1o6xGhz8m2qacXINsQMqmyMSHXOJ4M9UUt3lWb5BPb8kmdGEsI4mmrpseGrFRhV2QgbQ8zimGCv/porTCOdLmllLc8fcezSwlFhuJZGEAZrZJIQQIvhSkn17XCA4nU4sFku/zzPkgjQvvfQSy5cv54knnmDGjBmsWLGChQsXsmfPHqmdI4Rw11QGljq1byQsKdirEUOc3QIH3oPt/wFH++9vjRayz4Lx3wLzIG3LHggZGJlMKBvbtwR1FYaWkZjcxoqwugVojolGx2Gs7MdCLiZ0AyTAkYCed6h3C9CA2tb0D47yU5J5l4Yej4tHTzMOnLgGVNDpEFZMaLDgcgvQAFhxsZYmZhLO+UQFaYVDRIsdWu0QZoAQ6fQlhBha5sxSXZxKyzzXpdFo1PycWf65flNTE4WFhR33i4qK2Lp1K7GxscTFxXH//fdz4YUXkpKSQlVVFY899hilpaVcdtll/b72CRUO9uSTTz7hnXfeoba2tt+L8YWHH36YG2+8kWXLljFmzBieeOIJQkND+de//hXspQkhBorGUtjzErx/HbxxEbx/PexbCc0VwV6ZGMKqdsHWf3UGaEBl0+x7Aw58ANae8QfRLgQt1xNHfrdgTCRalpNEVo8gjfunWFpgHuHkYeI9GriTI/yFSr6hzd9L75MaHDTgJLTbyzITGmIx0IiDWYS5zaVj4CYSeIcGjgZpy1MNdrbQzCoa+JRGDmLBhQsbLvIJ8VpHyAm8Tz1NXnOjRK+abLC2Eu7dAbdvhd/uhC+qoG3gbX0TQoiTpdOpNtugAjJdHbu/4gF1nD9s3LiRyZMnM3nyZACWL1/O5MmTufvuu9HpdOzevZtLLrmEgoICLrjgAqqrq1m3bh1jx47t97X7nEnzhz/8gaamJn77298C4HK5WLRoER988AEAiYmJrFq1yieLOllWq5VNmza57QHTarXMnz+f9evXe3yMxWJxS0lqaOj5SZUQYghpa4BdT8EXv+kcazwEJR/D6X+E8d8Dfc8CpEL0h8sFB1eBq0t7HmujaqltbYANK1SQJnkSJE/u+WJEQBYm7iKFA1g4go0odORiIsNDweAw3F+xnUo4q2niy45MHA2raGQ9zdxJCuMxA6qWSjFWmnASjpYMDBj6/3nWcVnbAzQjMdGCEysuDGgwo8WAhjJsnE04C4igDgeR6LDgZBUN6NEEpXdSCVY+pIESrHxAI3XYKcDE90kgGyNfAY1u/agUHSr41Nr+PMUJsjng9cPwUnHn2FEL7KiD7+TBBWnyA0QIMWQsuUC12b715+5FhNNTVYDGn+23586di8tTCk+7lStX+u3afQ7SvPTSS9xxxx0d91955RXWrl3LunXrGD16NNdddx2//vWvefnll/2y0L6oqqrC4XCQlOS+bSEpKYndu3d7fMwDDzzAr3/960AsTwgxENR+Axsf8jz35e8gdTYkTQnsmsSQ57SrgMwxtmao2afGAVoqVcemz34Hp98DieODs86BLhY9sX146ZKPqWO7jQkNBjQdAZpQtJjbtwa14OQlasgnmXocvEgdn9KIpT1IciphXE0sqR4CQb4Uj54YdNTiIIqeHwmeQhhPUYUdMKBxa0M+jwjiA1yE14aTtTSyigY+oqljvIoWvuIQT5LJSEIYh5VD3Yo6J2PAjJYxmIn08FzFcRxqgVdLeo67gOcPweQYyAjrOT9YNdmgpAXqrGDSQW4YRJuO/zghxJCx5AK46FzVxamsXNWgmTPLfxk0A0GfPx4qKipiwoQJHfffeecdLr30UmbPnk1sbCx33nmn12yVgewXv/gF9fX1HbeSEg+/+IQItqPb4cCbsPcVOLIe2uqCvSLfsjZBcyXYetaQ8LmGIrB7uU5bDTQWe54Toh90BogZ0Xm/taYzQAOqgLC1SW2F2vs/sPdsViROQBZGvk8CeiAdI5vbAzR6IBMDhi71W3bQSgU2/kUNq2jo6CJlw8UnNPF/VPl9W04KRi7Hc1Gi0ZgZj5mU9kBR1wBNJFrOJwp9gOvRlGCjCadbgOYYG/AE1ZxCGFcRSyw6tIAZDTkYScKAGQ3nEBnwdQ8JJS1g9/LJbrMdjgTg92igHGqClYfhpo2weB1c8AnctAk2Vgd7ZUKIANPpVJvtqy5Vfw7lAA2cQCaN3W7HZOqMXK9fv57bbrut435qaipVVVU+XdyJio+PR6fTUVHhXleioqKC5GTPZZ9NJpPb8xJiQLFb4eDb8MlPoemwGtMZYdy3YdKtEJ0T3PX1l6UBKr5SAai2WghPhdwLIXEy6EP8c03NcX6qa/y/tUEMT1lnwMGPVIzQUu8+V3AhHPlS/b16d/u3g9SyPmk6NMwlgnQM7MfC2zSQiZFItD3qvmiAKhxs8BBwANhCCwexMq59S5S/nEk4IWh4lToOYyUMLXOJ4EKiSMXIL0hmNY2soxEHMJVQFhDJCPz0s7IXdpzsw3v3ioNYaMTJfCJ4iiyeo4Z9WDCgYSQhXE0so4Ow7mFhqMS9aq2w7ij8ahtY27fN2V2wqhwKG+GZmTBKCk8LIYamPgdp8vLyWLt2Lbm5uRQXF7N3715OP/30jvnDhw8TFxfnl0X2ldFoZOrUqaxatYrFixcDqg3WqlWruPnmm4O6NiFOSsVX8MF3wNblzYPDCtseh7BUmHa7//ee29tAowedj9Pp7RbY9woUvtY51lYDVV/D+Bsh93z/PLfIbDBGqkIg3YWlQESm768pBBA/CmYshy1PgmavGjNFwtiroOWo2gIFoDOBNrC7V4YkPRpGYWZU+7aaEjynJ40nlGacHqqnKC5o32jkX6HomE8kUwilHgdGNKRiQNP+rjsDI9cRx/lE4cRFLPqgdXQKR9dr6+8wtGgBDRpmEM44zFRgxwUko+9RM0icgIxQMGjA5iGbJkIPqf4NJgbMkfZtXVYP35nFzfBhuQRphBBDVp9fBv7whz/k5ptvZt26dXzxxRfMmjWLMWPGdMx//PHHHZWPg2n58uUsXbqUadOmMX36dFasWEFzczPLli0L9tKEODEuFxxe4x6g6WrnPyH3Aogb7Z/r1xVC6Tqo3AaGMMheAPETISTaN+dvOAj7/+dhwgW7X1DZNBHpvrlWV3HjYNa9Kjup69syrV6Nx0kxEOEfGi1kzIbYfCjfAtV7VGLX0Z2q4dgxOWdBaHA/8xhyxmBmEuYebblD0XIFMVi8hmg6j/O1FhxUtAd/ErsELo5Xd6cvNXn8LQUDswjnH1T3KP1rRMMYQkjB0DEWho7cLoEZFy4KsfAVLezHQgYGZhBGASEDpi36gJUVCldmwX8Ouo9rgWtzIC00GKvyvVor7PbSzMMFbKqBNoe0HhdCDEl9/k1/4403otPpePPNNzn99NO555573OaPHDnCDTfc4PMFnqgrrriCo0ePcvfdd1NeXs6kSZN47733ehQTFmLAc9qhdo/3+abD3gM4/VW1CzbcB7Yu7VOrtkPmWTD2BvXxf381HAKXlzoPtkZoLvNPkMZghoIrICoXvnkW6osgdiSMuhqSZg79Ta4i6MKSIHU6lG+Gw91KucWNgsy5QVnWkBaHnh+RyAaa+aC97swEzJxNJCMJoQobSeg7giZdxaMn08eFg3fQygvU8DWtuKBjC9AkzB2ZMwOZBg3TMPND4nmcqo6KPeFoOzo8xfTyEnMDzfyJCtraQzxfAv+jnltI5AzCB8XXIGgMOjg/TWXUvH0EKi2Qbobz0mBcVOA7O7lc0GADnQbCDcc/vq9C9RCmhxovBbqijaCX/ydCiKFJ4+qtr9Qw1NDQQFRUFPX19URG+uCNqBAny+WCDffDht96no/Mggvf8H0mja1FBWiqdnien3UvJE3t/3UOfQhbHvU+76vr9MbaApZaCIlVwRshAqi1Fmr2QMlnKl6ZOgMSxkBoQrBXNrQ14cCGiyh0btuFttPCg1RQ36VIcCRafkIyU/BddsIe2ribI7R0y94JQcO9pDLWz7VvfKkeO1/RzHZacQAp6JlCGKMJ8RpoqcDGzyn1uIUsDC0PkUYGUiuwT6wOaLGrYIYhCB8w7G+E1ZWqkK9eC2cmwax4SPHB/+EqCzyyB54s7DkXpoe/nwJnpfT/OkIMIEPxfWhbWxtFRUXk5OQQEiK1yPr69ehXzux5553HP/7xD1JS5IekED6n0UDGPNjyiOf6KeO+45+tTi3lUP219/nyDb4JnkRlg9YATlvPOVO0qg/jb8ZQdRMiCMwxkDZT3UTghHuphzKBUB4gjT20UYqNFAyMwkSmDwMGTlx8REOPAA1AGy7eoZ6RhPTa9WgLzXxGM1/TRi5G5hLBZMzo/bAl63hC0BKDgWZaKGvvOzUOV3urcM9KsHqt8dOMk0PYJEjTV0adugXDrnr45TaVyaPXgFkHh5rh06Nwx2hI6megJt4El2fCtlrY0KWbk1kHN+bBFM/d0IQQYijoV5Bm7dq1tLYOoVZ/Qgw0iVNh/pOw7nZobG8PrzOp7k75l/rnmi6nunnj8FFv4IhsGHk5fPOc+7hGB2OWqk5PvuawQeMh1cLcYFZFgo0Rvr+OEOKk2XFRipU2XESi7Wg9HQgZGMnw4/UacbAD76+bdtFGHQ7ivbw8+4gGbqKY+i5Bnsc4ygoyuJDI9nK9gWHHxbs08C+qOurSlGDlc5r4IYmcjedPgW09qti4O159IDEAlDbDY3thfZeurmYd5ITDvkbYUgvn+CCbZnw0PDIVvq6HDVUQZoDTE2BcNET6cGuVEEIMMMGvPieE8M4QAnkXQnSeKrTrsEB4OsSMAr0RqnepljCmKLX9SeeDTx/NCRCVo2q1eJI0rf/XANAZVLvtiCw4+A60VKnnkL1QFff1tZajsOcFKFnTmb0TUwATvg8xI3x/PSHECSvFysvU8hlNWHARjY4LiGIhkUQNgZcsBjSYewmkhKDB6CWLpggLd3HELUAD0IqLX1LKCEwB3SpVjJVnPRQOdgBPUcUYQkjzEPBKQI8BjcdgjRZI9ZqDI/ql1aG6IrXYVYAjM/Tktki12GFNJXxc0fP8+5tgVCR8XAlnJ4POB0HDnHB1Oz+t/+cSQohBol8/PbOysjAY5JepEH6l1UHCBBWsKbgMUmeBtU7Vqln3c/jiN7D2Dtj0Z2gq6//1TFEw6hrPPYBjx0DsqP5f4xhDqHo+M+6COX+AaT9VXZ10Pv654rTD3pdVHZyu26tq98LGB6G5wvtjhRABUYudRzjKxzRiaX8DX4eD/1DDG9TjPE4GxmAQio6FXjJMAM4mkkgv27GKsHDASxvxahzsx+KTNfZVCdaOf6fuGnBSioetrEAWRs7Bc+vkOYSTFcDMqWHjUDP8fhf8bAvcvQNu3wKPFULFSWTDH2qGyjZwevi3t7TXyBFCiCFg7dq1XHDBBaSmpqLRaHj99de9Hvv9738fjUbDihUrfHLtEw7SFBcXc6zW8M6dO8nIyADA5XJRXFzsk0UJIXrRWgOb/wxVX8OxF8guOxz5DHY9Bfa2/l8jaaoKnCROBkMEhCbCyCthym1gju//+bvTGVXHKE+BIV9oLIGS1Z7nmsuhbq9/riuE6LP9WPjGy1agt6mnxEuAYrCZRijTCesxPgEzpxHu9XFtxwlSNQd4m9Dxrubwsl4DWi4jmqXEEdsekIpCx+XEcD1xhHoJUomTVGOBFXtgc03nP5rNBavKVRtvi5cui9402KCkBaZ7eS1gdcIZCb7JohFCiHYOB2xaAx+8oP50nOCPrpPR3NzMxIkTeeyxx3o97rXXXuOLL74gNdV3pRpO+B1RTk4OZWVlJCYmuo3X1NSQk5ODIxBfMSGGs4YD3rcilW1Qra1jR/bvGlo9JE1RhYnb6lRmiz+CM4FiaVBbxbxpPBy4tQghPCrqJQjTgpMa7CRhYD8WttFKC07GEMJIQogbRFuh4jFwMwnsIYIvaMaBi5mEM+o4zyMFPWY07U273Wkh4BkoaRjQg8cSwGY0vW5bikHPpcQwh3BacBKCJqC1h4aVomYobPQ899lRuDANCk6gi0ykAYqa4Nw01dWpe4vssZFS1FcI4VOrV8Kfb4XKLi/XE9Phx4/AvCX+u+6iRYtYtGhRr8eUlpbyox/9iPfff5/zzjvPZ9c+4Vc1LpcLjabnfummpiZpqyVEIPS2NcflAEu9766lN0P44GkH65XBDBqt94LIIXGBXc8w5rRDW72KA4Z43vEghogmajjCPorYig4DeUwhmXzMXrJFvG3zOSYELa9Rx4vUdCQEvAGMIoTbSPRY/2SgikHPTMKZ2UvmTHejMLGUOJ6gqsfcYqIZGeCOSFkYuYBoXqOux9xlxPapAHOS1J/xv/JetjTZXVDneVuaV1lhqnDvmgr48SiVobOxBoxaVYfmW9m+acEthBCoAM0vLoXun09UlqrxB17xb6CmN06nk2uvvZbbb7+dsWPH+vTcfQ7SLF++HACNRsNdd91FaGhn21qHw8GGDRuYNGmSTxcnhPAgJLr3eUPPNPphLyIDEidBxeaec4aw/mceiT6p+gYK34WjO1WN69yzIX02hCcFe2XC1+qo5B3+ygG2dIx9wWtM4RzO4FuEeahJMgITJjQe65zkY6IJJ89T02NuN228RT3fJR5NL62rBzszer5LPAno+RfVlGIjAR1XEcvVxBAX4ICHCS2XEkMGRt6knmpsJGHgIqI5hVC0Q/jfYlA5Xhek0BPcXhaqh+/mw2P74M1SyAqFxekQbYBzUiFfOiYKIXzD4VAZNB53z7oADay4DU6/CHRB2Cn7hz/8Ab1ezy233OLzc/c5SLNli3qh5XK52LFjB0Zj5yckRqORiRMn8tOf/tTnCxRCdBOZCyGx0NbzzQoxBRCZGfg1DXR6M4y5QWUZ1e3vHDdEwNTbVFcp4VcV2+HT+8De5UPdbf+GI1/CzJ9CqIfddK21UFvYHtQxqDhbdC4YQ3seKwaWr1njFqA5ZjPvkcUExjKnx1wWRn5AAn+l0m0LTTQ6biaBt2jwer01NHIBUaQOomyak5GGkZtJ5BwiacRJKBpGYApo6+2uItFxNpHMJIxmnISjJVxqygwsueEqgOIpYyYvHDJP4oOdjDD41Vg42Ay1VgjXQ3YYxAY2m0sIMbRtXee+xakHF1SUqOOmzg3UqpRNmzbxyCOPsHnzZo+7jPqrz0Ga1atV0c1ly5bxyCOPEBl5AvtXhRC+E54CU5fDxj+BpbZzPCIdJt4ERvkUy6OoLJhxN9QfgKZS1cUqOk9l2Qi/srXCrpfcAzTHHP1a3bLOcB9vqoBNj0F5l/f5X78EIy+G0ZeBSf6bD1iN1LCVD73Ob+V9RjITfbfMDx0aziCCDIxspoVK7IzAxDhCyMBEFdVez9mC02NL56Eqn4G1vTwCHRESnBmY0kLhtlHw8DfQ0CX8mWyGm0YcP9PGmwgDjI/2yRKFEMKT6j42re3rcb60bt06Kisryczs/HDc4XDwk5/8hBUrVnDw4MF+nf+Ea9L8+9//7tcFhRA+kDAR5vxeBRzaaiA0CaLyPKcjiE7mWHVjWrBXcuLaaqDpiCrqEpoI4b6rIO9vzZUqEOPN4c96BmkOfuweoDlmz2sQPwbSZ/p2jcJ37Fhpo8XrfAsNOLD1CNIA6NFQQAgFHoIQkwhlq5fuT+kYiZIggRCeTY2F30+CfY1QZYFUM4yIgCSpHSOEGLjiUnx7nC9de+21zJ8/321s4cKFXHvttSxbtqzf5x887RCEEO7CUwfVG3VxklwuqNgIX/+rswuVKVq1RM88U23lGuA0gEbjeUsxqJrOXTUfhSLviRgUfQBp03s+TgwMYUSRTC5FbPU4n8k4jJz4/9uphPIaddTT2UXShepsdDkxRMtLGiG8ywhTNyGEGCQmzVFdnCpL8fwiUgNJ6eo4f2hqaqKwsLDjflFREVu3biU2NpbMzEzi4twbjxgMBpKTkxk5sv+1LuUlrhBCBJO1GWr3qSwZT2r3wsaH3NuEW+pg+xNQ/lVAlthfoYmQON77fMZs9/tOK9iavR/fVqcSisTAZMTMTBaj9RA0MRHKOOaeVIHfbEz8kmTGEEILTkqwUoeD84kiBh1teOneJoQQQohBR6dTbbYBerxsaL9/2wr/FQ3euHEjkydPZvLkyYBqpDR58mTuvvtu/1ywC/nYSQghgsFhhSPr4Zv/QPmXqg34qKshYx7E5HceV7rOczEXgH0rIWHygC/QYjDDmCugem/P4EvyZLV9qStTtCohVPWN5/MljAPd0K4PO+hlM5GL+Smf8CxVqABjGgXM5VrSKDjp847BzLeIJRcjNqANJ5/RxFvUcx1xXEgURvn8SQghhBgS5i1Rbbb/fKt7EeGkdBWg8Wf77blz5+Jy9b3eXX/r0HQlQZohxG6Ho1Vqd0RiAujlX1eIgav4I3jnW2DvErUo+xxGXgWzfq2iFA471HiJVAA0HwFr/YAP0gAkjIUzfgMHV0HFNtCbIGcBpE4Hs3u2KMYwGHUJfPY7cHVLjjCEQoaf0lqF7+jQM5rZZDCGOirRoiWGFMyE9+u8Ndj5G1Ucxtpj7jmqmYDZYz0bMXC04qAWBya0xMnLUCGEEMcxb4lqs711nSoSHJeitjgFo+12oMhvxyGi8AC8+iZ89gXYbDBrOlx6EYzp/5Y4IYSvNRTDVw+5B2iO2fMCjLxCBWm0OjAnqC1PnhgjQD943pDGFUDsCLA0qJbahl5aaSdNhum3wc7noLlCjcXmw4SlEDciIMsVPhBODOHE+Ox8pdg8BmgA7MAe2iRIM0DZcLGNFl6jjgNYCEPLfCKZRwRJHopICyGEEMfodIFvsx1MEqQZAg4chNvvhs3boM2ixrbugA/XwON/hHFjenu0ECfB2qg6SzntqrNURHqwVzS4NB1WWTPelKyBnEWq2m7W2XDkM8/HZS0E8+Dq6KXRQEjU8Y/TGyF7nqpl01yp4lXhqb5JGmoohboDYG1SGT0hsRBbAMZegkZiYHAcp822ZRi14R5sNtDMnyjnWDmpJpw8Rw07aWU5ScTKS1IhhBACkCDNoOdywXsfwZebwN7Z8AKnC/YWwkuvweiRQzsdTARYxSbY8hco+QgcNogfB5NvhYyz1D4V0QfHKZqq7TIfNwZGXwu7XwBXl2q5qbNU/ZohLjTet53lq3bBjmchLAl2vQy1haAzQcGFMPUmSJCg9oCWgJ5ItDR4KRI8AlOAVzRwVWOnBjt6NKRiwBTEWj212HmOGjzV+95GK3uxMFNeknpX2QZ7G6DSAlEGyA6DzDAwSP0lIYQYiuQ34iDX2ARrPnUP0HT1wWq4/mrIywnsusQQVbUTPvyuygTpOvbRD2DBP1T2hzi+iDRIne09QyZ9buff9WbIuwgSJkLtHnBYIKYAonLVdifRZ211sOXvEDMCPr0PXO0/Nx0W2PM6NJXBWQ9BTG4wVyl6k4aRK4jl71T1mJtFGDkSpKENJ5/TxIvUUoYNPTCNMK4khrwgbQWrxO51mxrAVlqYiQT5PdpVD7/dCasrVAtanQZOi4cfjYSZcWCQT+GEEGKokSDNIKfTqoLB3mg0YLUFbj1iiCtd5x6gOcZlVy2hE6eoFAXRu4hMOOUOePcatXWsq9HXQuxo9zG9CWJHqps4aQ3FYIyEff/rDNAc47RBczkc2SBBmoFuPhFEouNV6ijDSgQ6FhLJWe3jw916mlhBZcfGLzvwBc0UYeXXpJBG4FujaVH5g942oxlPoiX7sFBrUQGajys6xxwu+OQo2F3wu4kwqpf9oy12KGkBixNiDZAWql4YCiGEGNAkSDPIhYXBwvnw2Zee5+fNgUj5sF34Suk673OVW6D1qARp+ipjPlzwmioUXP4VhMSoFtxpcyAyK9irG5JsrWCOhao9nueddijbBKMvVzVwetNUDvWHwN6iajtHZYPJQ+Mil0vV1HFYoLUKyjaD0wpJkyBuZM/OVuL4QtExlwgmY6YBJyY0JErhWUB1v3qZOo/BkAps7KA1KEGaFAyMJITdtHmcn4oUhPJoTyOsrfQ893kV7Gv0HqTZ1wj/2q8ycZxAhB4uTINz0yBSvl+EEGIgkyDNEHDaLJg4DrbtdB8fmQ+nzYQUec8sfCWkl3eUxkjQ9vLCz2FTXYpK16psnOgRkDJLbd0Zjp/s6XSQPgeSpqkUDmOoKsIs/CYkBpwOFUyxt/Sc14VASPTxAzRlm+GrR6G1un1AAylTYPL3ICKl87j6EjjwHrTWQsMhKPoIwpPVt0rhu5AwDqbfqsbEiYtCTx9qUA8rtTg8bivSAxHo+IY2zgnCVy0cHdcSy+8op7lbPaFziSJPtql5Vm2BWJOK9mo0KjOm2a5SklxAtZctZKUt8MDXcNTSOdZoh+cOgV4Ll2YGYvVCCCFOkgRphoAxBXDfr2D1p7Duc/W7fOYpUJAPUyeCVurKCV/JuxD2vux5Ln8xROd7nnM54fBq2Pp4Z/Hbo9vhwFsw9SeqCO5wZTBDtBSNCoSoLBWEyT4Lvn7Bfc4Uof4pcs7u/Rz1h+CLP3bbpeZSGTimF2DaLaDTQ+MRWP97aCyDrDPgm1fUoZYG1UnKFAlHd8LBVTDuGl8+SzGcGQATmo4uV3pgLnbiKKWKA2QRTxnjSSQHXYC3hk0glN+Sylqa2EErkehYQAQTCCVctqn1dKQF6m1woEltbdICcSZICIGjbSpIk+gluPVNvXuApqs3DsOpCZBq9tfKhRBC9JMEaYYAjQZOmQJpyXD2PLBa1BanjHSI8JB+L8RJS5gMk26GrX91H0+cAqOu8Z6C0FAMO/7h3p0I1B6QHU+qIriyTUr4md4EIy5QmSvVe6B8c3tL8BjVRX7UJRB/nO5OVbt7lhE6puQzKFisatpUbof6YogbBcVrO49xOaHpiGqEptFB0SrIWQBhCT57mmIYS8XIdMJYRxNa4GJa2chf+JhCAEYSwh5CWcQPGMcZ6AL8MnAEIYwghDYc6NGil1o0njXb4Mn9EK6HERHwTYPasnTUomrSRBogKwwKIj0/fq+XH1IAdTZosEqQRgghBjAJ0gwRGg2kpambEH4TGg8Tb4L006F4FdiaIPU01XkoOs/74xoPgb3V81xrldr+JEEaEQBhCZC7AGLyoXa/ymYJiYbU6RCTB8bjBLabjnifc1jB1qz+XtLeuEtnVNkzXVmb1LF6M9ha1N+F8AU9Gi4nhgNYicLBAf7LofYATSoGwtBix8I7PEYCGaRSEJR1hkjmTO8ONsPmGjDr4KYR8Je9qsaMC6ixwvQ4uHMs5HspOhjXy/YxgwaM8vUXQojjWbt2LQ899BCbNm2irKyM1157jcWLF3fMX3/99Tz99NNuj1m4cCHvvfdev68tQRohxIkxx0H6GerWV3YvadfHOKUFmQgcrR7iCtQt/wS7xkf0EgjXmTqDPLr22qwtR1XtmcrtXQ7UtN9QWTchMSe2BiF6k42Je0mmlAP8H5tIwkAMOsLQom3/j+fARhHbghakCQSbHYqroKEVQk2QGQ/mwNdMPjnVVhWQaXHAqnJYlqu2O9VaIcYIM+LglF5qxE2KgRcPqW1S3U2PgwzJohFCDC5OB5Ssg6YyCE+BjDnHryHYX83NzUycOJEbbriBJUuWeDzmnHPO4d///nfHfZPJNzXWJEgjxHBkaYDmMrX3IjRJtbzxh7ZaaCxRP0Wzz4Xa3VB/wP0YnUkK5opBI340mKLAUt9zLusMiMxQf8+eC0e+VC8mRpwPpmiw1Km5kGj1316jg5FLVM1oIXwpGSM2XGSiBS/dnBqp9jg+GLXRgoVmzERgJITyOnj+M/h0N9gcoNXA5Gy4YZ4K1gx4YV1enrc4YHWFCtIYtGB1wpzE3h+fFw4/GAFP7ANbl0BNbjhclQ0GyaQRQgweu1fCB7dC4+HOsYh0WPAIjPIcO/GJRYsWsWhR75/mmUwmkpN93wFCgjRCDCcul2qVvespqC9SY2EpMPpaSJkJOh+25Ty6HbY/oYI0Lge0VKqtUckzofyLzuPyLoSIDN9dVwg/isyAU38GXz4KzRVqTKOFtFkw+jKVpQMQNxbSZkLpF1DyKcz8Cex9HY5+rWriRGWqgsFJE4P2VMQQF0okoUTSQoPH+RS8FHofRFppZD+b+JI3aaSaWFKY6riQjV9PYvXXndkiThdsKoLGNrjzYogZ6PX6MkMhKQQqurQsdwIWpxrPPE5kV6+FM5NUUGZXvSpAnBeu6tskhPh16UII4Uu7V8KrlwLdEgMbS9X4Ja/4N1BzPGvWrCExMZGYmBjOPPNM7rvvPuLiesl07CMJ0ggxnNTuga9+714fprkMNj0MM++EpKm+uU7DIfjqD2Btf3Og0altUqXrIPc8CE9VeYv5iyHt9M53tkIMAokT4Mzfq05P9lb1XzsqW3WHOiY0Fqb+ANJPVa23a/fD9B9DaAIYQtWfZtnmJPwojjRO4QI+4bkec5HEk87oIKzKd+xY2cAbfMpLHWONVPON7WtyM24gLfYiSmvcCxPvLYODVYMgSJMQAreOhIe+UVucjokxqvG+BFr0WlWzxlvdGiGEGOCcDpVB0z1AA+1jGvjwNii4yP9bnzw555xzWLJkCTk5Oezfv59f/vKXLFq0iPXr16PT9W9B8s5IiOHC5YKS1Z4L+LrsUPg6xI1R1Uz7q2p7Z4DmGK1RBWdqdsOsX0Noonp3K8QgFBqvbr0xx0L2PMico3YW6gZLPQwxZExhEQ7sbOQt2mgGNGQwivl8hzgGd6eBSg6xnld7jFvsLj62v8iZE6dQujqzx3xFXQAW5wvjo+GBiapTU3krJJuhIALSZH+kEGJ4KFnnvsWpBxc0lKjjsuYGalWdrrzyyo6/jx8/ngkTJpCXl8eaNWs466yz+nVuCdIMQzYblJRCYxOEhUJmOhjlzcPQZ2+F6l3e5+uLVKENXwRp6vb3vg6tTgI0YtiQRDERLGFEcQbXMJYzaKIGAybiySCEsGAvrd+qOYwDe49xvQ6anc2YosuAnkGayMFUMzctVIIyQohhq6nMt8f5W25uLvHx8RQWFkqQRvRdSwvsOwDPvAgfrIYQI8THwhmnwbVXQlpKsFco/EprAGOk93lDqKpm6gthvfxn0ptBJ3vihRBDQL1VtUtuc0CoDlLMED+wfr5p0JBABgkMj9pfZiOYTUCrpsdcbDhkH6fmrhBCiIEhvI/vTft6nL8dPnyY6upqUlL6vyAJ0gwTra2w7nN4+kVYtbZzvKwC2qzQ1Aw/uxUiZevy0KUzQPZCtRXJk+yFvusFnDgZ9rzkubV22hwIH9xp9kJ0Z7eoGjUtFSoeGpEBkfLffGgrbobnD0KsCb6qhsImSDPD9bkwK969Q4/wuXgy0WPEjtVtXK+DsQkR6Hanuo1HmuHWRZAqtaCEEGJQyJijujg1luK5Lo0GItPVcf7Q1NREYWFhx/2ioiK2bt1KbGwssbGx/PrXv+aSSy4hOTmZ/fv387Of/Yz8/HwWLlzY72vLK4hh4sBBKCqGNZ+5j9vscLgUNm+DQyUwfkxQlicCJWES5JwLRe+4jyefooInvhKVB5NvgW2Pg73F/fojLg1OdS8h/KS1Fna9BAfeB2f77gtTJEz5HmScpro/iSGmxQ7PHYQIPdy/E9qcavxgM2yphZ+MgquzIEReZvlLApnM4UpW84zbuAYti0KuJTM3jcwL4UgtJERCfjJkyC5bIYQYNLQ61Wb71UsBDe6BmvZkybNX+O9txcaNG5k3b17H/eXLlwOwdOlSHn/8cbZv387TTz9NXV0dqampLFiwgN/+9reYTP3fmSCvHoaJLduh1QIOR8+5xiZos8DRqsCvSwSYKRJGXweps+HoNpXpkjABovIhJNp319HqIP0MiMyB+v1ga4bITIjMBlOU764jxABwaDUUvu0+ZmmADStUF6f4wd1ER3hS3AI64JkiFaAxalXnnTorHLHCb3eq9scTolWmjfA5PQamcT7xZLCRt6nnKPGkM5VFZDEefaSGhF52+AohhBj4Ri1RbbY/uNW9iHBkugrQ+LP99ty5c3G5PKXwKO+//77fri1BmmGiuRWMBs9zLlTjnzCpTTc8GMNUYCZhgn+vo9FAVJa6CTFEtRyFfW95nnPa4PB6CdIEnMUBh5qhtBV0GsgIhcxQ0PkwpanRBmEGONSirhFjhMJGOPZBiAtYUwnba+H6PIj08gtY9IsJMyOZSR5TsNCKiVD0yNdaCCGGklFLVJvtknWqSHB4itriNJQT8yVIM0yMG61q0uRmq61PXZmMkJoMWcOjpqAQA5u9FZrLwOkEc7xvM5yEz1lboLXa+3zdgcCtRQANNnilGN4sBXv7p19mHVybAwuSweSjV3SRBvXpBkCEAY60dgZoALSAzQlfVMPsRJga65vrCo/0GNEjbSqFEGKo0uqC02Y7WGSn/DAxMh8aGuGGayAxwX1u9Ej46Y8gOSk4axNCtKv5Bjb8Dtb8GD75MXz+KzjyOTg8FGAWA4IhFEJ6ef8dnR2wpQiA9VXw2uHOAA1AqwP+UQi76n13ncwwiDdBYoja6tTYpRW0FpW1kxmmxjfV+O66QgghhBjyJJNmmIiPg5u+A++tgptugOYWqKuHCWNh2mSVYSOGGJdLbTkSg0N9EXxxP1i7vJFsKIavHoQZv4Tk6cFbm/AqLAEKzodtT/Wc0xogbXbAlzR81Vvhf6We55zA+2UwMQa0Pvi5aNbBGUlQbYUnOzs/oNOoVtznparuT+C5I4UQQgghhBcSpBlG0lNVJk1ZuSogHBUJUVLDdWhx2FQ2xuE1ql9dbIEqEhwzUgI2A13ZF+4BmmNcDtj3KsSNU2kbYsDJOhOaKqDow87uTsZImPJdiCsI7tqGlRY71Fi8zx9pBasTQny05SnFDN/KgpER8Og++KZeZdcsSgWTFj49qo6bKj2fhRBCCNF3EqQZZrRaSEsN9iqEXzjtUPwBbH8SXO3tYGt2QdG7MPUnkDoruOsT3jkdULHJ+3zdAWirkSDNAGWOgUnfhpz50FyhMmgiMyAyLdgrG2bCDZAQAk1NnuezwlTwxJeiTDA/RV13VTk0O2BvA9S1b1GcEQf54b69phBCCCGGNAnSCDFUNBbDzn93BmiOcVhgx98hOg9CE4OzNtE7jValXnijN6t3/mLA0ptU1oxkzgRRhAEuToeHd/ec02ng7GT/ZRSOj1bbqN4+Agat6ia1KBVmxkG0tOAWQgghRN9JkEaIoaL+oArIeNJ6VG1/kiDNwKTRQNbZUPGV5/mMufJvJ0RfTI+Fa7JhZYkqGAyqE9OyXBjtx/29Wo0K1IyKUB2mjDoVNBJCCCGEOEESpBFiqHBYe593SoegAS1uLOScC0XvuI/HjICshVJTSIi+CDPAZRkqg6WsVWXQpIWqWyAYdBDno5o3QgghhBiWJEgjRKA5bGprUmOx6sAUkQ4RWWq/RH9EZAAaPLYS0ZshVHqsD2imSBj9LUiZqYoIOyyQOBViR0FoQrBXJ8TgodNCdri6CSEEYKWNUnZTySG0aEkkmzRGo5e3QkKIAUh+MgkRSLYWlSmx+wVwtme+aPWQtxhGLAFjxMmfOypHbYspWd1zLv9iVclUDGzGCEicrG5CCCGE6LdGqlnNf3iTR7DSAkAoUVzKL5jFZYQiAV0hRE9r167loYceYtOmTZSVlfHaa6+xePFit2O++eYb7rjjDj755BPsdjtjxozh1VdfJTMzs1/XliCNEIFUtQN2Pe0+5rTDvlcgMhMy5vXtPK1VUF8ErdUQEqMCNKGJMGapyqgpehcsdWosf4nq7KTxcVeT4aTVCvsr4asiaGqD8RkwOgWSpIe9EMOS3anaeZt1shVRiAFuB6t5kXuwY0eDBj1GmqnjP/ySBDKZwFnBXqIQ4jhcDmhcB7YyMKRAxBzQ+Hl3cXNzMxMnTuSGG25gyZIlPeb379/Paaedxre//W1+/etfExkZyddff01ISEi/ry1BGiECxWHrWW+kq/3/g+TpYAjr/Tx1hbDpT9B4uHMsNAmm/VRtjSm4DNLngr1VZWaExPhk+cNWiwVe2wQvbugc+2AnZMfD7edCZlzw1iaECKwWO+ysh/fLoLIN8sJhfjKMjlTbrIQQA8oR9vE+T2KlrWPMgQ09JoyEsI4XGclsTPT/TZUQwj9qV0LxrWDr8tbHkA6Zj0BMz9iJzyxatIhFixZ5nf/Vr37Fueeey4MPPtgxlpeX55NryysKIQLF3gYtld3GWsFSC23VKujSVtf7OSz1sOWv7gEagJYK2PQwtFSp+6EJKjNHAjT9t7fCPUBzzMEqWLkJ7I7Ar0kIEXg2B7xVCr/dCV9Ww8FmWFUBd22Hz6qCvTohRDdWWimjkAoO9JizY8GJg3KKaKMxCKsTQvRF7UrYf6l7gAbAVqrGa1cGZ11Op5O3336bgoICFi5cSGJiIjNmzOD111/3yfklSCNEoOjN7cV9AVwqMFPzDdTug7r9YG+BI5+rLUzeNByE+v2e55rL1LzwrU/3ep/7fC+U1QduLUKI4DnYAi8c6jlud8G/9kNFW885IUTQ1FJOHRUkkeNx3o6NFHIxExnglQkh+sLlUBk0nnqiHBsrvk0dF2iVlZU0NTXx+9//nnPOOYcPPviAiy++mCVLlvDJJ5/0+/yy3UmIQNHpIeccKN8A1gZVU8bl7JzPXgR7X1I/aUZd6fkctqber2GVgIHP1TZ7n2u19T+TproJ9pTB1mIw6uGUHMhLhHBJvRZiQDnQpAIynlRb4UgLJMn3rRADhRMHO/iYuVzH16ztMa9By2lciZF+dtcUQvhF47qeGTRuXGArUcdFzg3UqhSnU72Hu+iii/jxj38MwKRJk/j888954oknOOOMM/p1fsmkEcLXXC5oOgL1h9T2pK7ixsPEm9QxxwI0xkiYdLPKgnFYVN2a5grP5zZGo9psexHSj/ooDpuqd1OxEap3gfU4AaHhYlIv1dkzYiE6tO/nstpV4WFX+xu9sjr4w9vwwFvw7nZ4YzPc+So8/wU0tvZr2UIIH7M7e593eAngCCGCIpIEQonESgtXci9mOjtohhHLDfyREUwP4gqFEL2xlfn2OF+Kj49Hr9czZswYt/HRo0dTXFzc7/NLJo0QvtR4GA68CYfXqu1LERlQcLkqCKwPAZ0BshaozkvNFYATNHrV9an5iDqHpVbVqvEkKhsSxsPR7e7jLqe6lq0RCt+A6DyIzAHjcYoQH9NSCbufV+t22gCNKkI84bsQnX9yX4uhYlIWxIZBTbeMGg1w+XSI6cPXuL4FtpXAe9uhvhXGpMLC8bBuL3xzpOfxb26BCRkw0zfFx4QQPpATrj7a8hSridRDsjnQKxJC9CKMKE7nGlbyIPmcwi08RTN1aNASSTx5TMMs7beFGLAMKb49zpeMRiOnnHIKe/bscRvfu3cvWVlZ/T6/BGmE8JWWKtj8sKoxc0zDIdj4R5hyK2S2t3jUaFTGTPGHns8TEgcGL9kZhjCY8H3Y/mR7oMaptkeFJkPSNHUtlxPQQMZc1ZLbfJzsGocd9rwIxau6DLpUvZyND8Gpv1WtvIerjFi48yJ49nPYVgwOJyRHwZUz+xZEaW6D59arTJljiqtVVs3aXurdfLgDsuJUd6noUIiL8H6sEML/csJwLkjG+t4BbO2dYgyEYMKM5oosSJMgzYmoogQLrUSRQDhS5F74Rz7TuIxfsp5XWc0zGAlhLGeQyVgiiQ328oQQvYiYo7o42UrxXJdGo+Yj5vjn+k1NTRQWFnbcLyoqYuvWrcTGxpKZmcntt9/OFVdcwemnn868efN47733ePPNN1mzZk2/ry1BGiF8pXaPe4Cmgwt2vwDxEyE0Xg0lz1Attx2Wnofnnd97UCQiA6b/Qm2PsjaAwwpFb8O2x9T2Kl2Iuk7xKpVNM+Li3tfdVAwlXgpcNR1RW6CGc5AGYEQS/OI8OFKnatDEhkN8H4Mm+4/Cuj2qzozNAYdrwOkCjRb2lqsgkEHn/phWK3xdBo9/DFsOQUq0ytqZPQLMRl8/OyFEH1jMVoqvrkafA5o3a7E3tGJIiSTy4kmETYnBqOllK6roUMFBNvAan/Ffmqknm4nMZxkjmEGYFHAVPqbHwAhOIYOxNFGDHgNRJKLpbeu4EGJA0OhUm+39l6Iy2LsGatq/hTNXqOP8YePGjcybN6/j/vLlywFYunQpTz31FBdffDFPPPEEDzzwALfccgsjR47k1Vdf5bTTTuv3tSVII4SvVO30PtdSAW1VnUGamAKYuhy2PaG2NwFo27dCpfWh0JQhFOLGqNomn/4Sdj3TWePG1gxtNRCZoYI3GWdASC+fFrXVgdPqfb6pt4pdw0iIEXJPIlhVXg/jMmBniSoGfM4EKK6CmiYVoLHY3YM0FjsUVsKUbCht/79RVgePfKCCOwvG+eLZCCFO0AG28GrM7zGfG0nB7ClEtERSHVlMYdgbXMRPGMWsYC9xwKuhjGf5JdvpzNzcwSp28yk38ihTOQ89hiCuUAxVIYQSwgnUkBNCDAgxSyDvFdXlqWsRYUO6CtDELPHftefOnYvL1Xu9uRtuuIEbbrjB59eWIM0w5HJBWxsYDKCX/wG+422LEgBaVXvmGI0GUk9VmS5NJWBrURkwrVWw/w0wJ0D8OFVbpjctR1U9G1f3IgkuVR8nNNl7fZuOdYeprI4e52jXn2LEw92BShVc2Xiwc+x/W+GamaDXwYWT4dWN7o9paAWTHnISetareXkDTM6CBNn6JEQgWWnjK94EoJUGtkX9P3v3Hd9WefZ//KMt7xHvOHacvTdZrARCIIwCAbpooS0tLaWD0gFtH6ALaIE+LQ+/tkAHdDEKZc+wdwJJCNl7J7YzvKdk6fz+uOMVS46d2JJsf9996YV17qOj2+mxrXOd676uNyGldXw5zzGc6biIfKZbE03sZQMVlODCQw7DGcTgiM+jK7azkrW82WG7n0Ze5j6GMIE8BngdNBERaSdtMaReeKTbU7GpQZN0au9l0MQCXaIPIMEgLP8YXnwVPlkLudmw+AKYNhnSUqM9u34gaypsfoyQiyYzxkNiXsftibngTjQFezc/BvvfB4Km0HBjmem4NGhM+PdsOAzJBVD6UccxK2gyaNzHSB9PGgIZE+HgJx3HXEmQOrLz10to/iZ47COobug49u+l8LOL4GAl/PQCs9/mEhOgKciAxTNMHRu3AxLatAYtrTIZOArSiERUA7VUcjDseCUHaKA24kGaMop5m3/zMvdTh+kmWMAEPsstjOe0iM6lK9bzLkECIce28zGVlCpIIyIiHdgckW+zHU0K0gwgr70F1/wAqqtbt/33WfifH8CXPgeJKnB/YlKHm05Omx9tv92TCuOuCJ9pU7YJPrgFqve0btv2DOz/AGbfYoIw4V7rr4HMKaZtd6iMmeEXgvsYF/SueJhwFaz8HVTuaN3uTjYFj5M7aUEt4RVXwrJtEO+GtHgor2s/vno3fHUeTB9qCgS/faQ6fJ0PfvOCWfbktMPonNZAjdPesX6NiPQ6LwmkkUMlB0KOp5GLly520+tBy3mOJ7mz3bbdrOVPXMMPeIihTI74nDrTWRDLjhMb9gjOpvvK2M9O1rCL1cSTyihmksdIPFpGIyIiPUhBmgFiz1647X/bB2jALH36zd0wazqcNC06c+s3nHEwcrGpFbP3LVMXJmsqZE+H5E5ase15vX2Apln9QTOWOwtcYQIl8TmmFs70H8D6v0P1brPdmw5jLof0cV2be0oRzL4ZKrabVuCeVBN0ShrStddLR00BUyjY5YDCDEiqgQPVpjtUvNu09Z6Ub/b9cAc8scJ8ff4U8B2509wUNK8Z6jEF0qYUwmB1QRGJNDdeZnA+O1lDx2xJGydxfsSzaIrZxsvcH3KsmkNs5IOYC9JMZD5L+AtBmjqMjeMU0mN0mZaFxQ4+4SFuYjsfY8dOEhm8z384jc8zl8vUyllERHqMgjQDxK49sH5T6DGfD1avU5CmR7jiIXuaeXSFrwaK3w8/XrLMFAIOJynftNre8l8YdZmpL2MFTfTNndi9LJi4DPOQnpGeCAWDTLttt8O07R6UaIr/uhxw+lhwOU2L7vfbdAXbVAxfPQ3+fKTjVmWdWTo1OA0unwMeFdUUiYYiprCAr/AOD9OIyYzzEM/pXE5hFIIh9VRxiN1hx3eyOoKz6ZqhTOEMruBVHqBtsCuZTBZydczW0tnDel7mXrbwIQABoIx91FHJ2zzMUCYxnOnRnaSIiPQbCtIMEP6ON63aqQ9RNkMiwGYDd0r4cXdi58uVbDYoPBu8abD1SagtMccbdh4MPu0YxYylV6XGw2dnwV0vmsAMtC5Vyk2FCUcuRux2cLRJ8d9SCqOy4RcXw5o9UO+HC6fB9EIY3EmXLhHpVR7imMmnGMZUDrMPGzYGkUcGBVFp5+vCSwLp1FIWcjyT2MuETCSVT/F9RnMyH/A4NZQxillM4SyGMhkHsbecs4FatvMxn/BqiLEaGqhhLW8pSCMiIj1GQZoBIi8HcrKgJPRyeiarq290uBKgaBHsfw98R61Fs9lgxCUmW6Yz7gQYMh+ypptjOL0Qp45MMWHmMPjhufDIMth1yHRtmj0CLp0BeUeWLcW54YyxsK3ND+fmUvPITTXLny6YYs4HkVgXCLYPOvYzduxkUUgWnSxhjZDBjOYULuNl7usw5sTNBOZHYVbHlkIGMzmfqSzERwNe4nHE8MfRKg5STzUNhM5qraGcWioiOykREenXYvevovSo0SPhe9+EG3/WcTX9xeebcYmSwadCwQKztKn+kFmu5Io3QZfhF3b9OJ5k85DY4XHBKaNgYj4crgWX3QRenEfdLT5pGLy5CbaUdDzGtEIFaCR21DdBTRMkOCH+yEcIy4JN1fDeQdhYBbleOCMHxiaDLwhVfvA4IMPT+bGlW+zYmc8VHGAHH7OkZbuXBL7AbQxjahRnd2wu3FFpWd5dNuxUU0Y+Y9jD+hDjNmXRiIhIj1KQZgC5+HzTavv+v8OmLZA5CD5/GXxqEWSpFEn0JA42RXtLPoRdr4AVgPx5kHcyJMdeuroch5R48wgnNxV+tAiW74TX1kMwCKeOhlnDYIiyoiQG1DXBx+XwzD4orYdML1wwGKanwdpKuHMDNAbNvhur4I1SuKQAShtgRRkkOeHsXJifbV4rPSKXEVzJXZzFJvaykTiSGMJYBjOuTwRA+oIUsnHgYDaL2ctGLILtxvMYFfMBMRER6VtslmUdnVgxoFVVVZGSkkJlZSXJyf0zK+HgIThcBvFxUKAYQGzx1wOWasn0F5ZlCgfvPmw6NuWlwtAMs+wpYIVup93gM//16gJLYkTQgqf2wtN7wWmDMh80Hfno8J1R8MhuOHBUYbMDjVBSBzeOhxf2t26fNQi+MxqSVQBb+o69bOB1/kkqWbzHY5SwFQcuprKQT3E9hWjNuIicuP54HdrQ0MCOHTsoKirC69VNmq7+eyiTZgDKzDAPiUGuuGjPQHpKUwDe2AB/eQvqjgRe5gyH/EGwYT/4mmDWcJMtU9jmB1LBGYk1u2qgrBFyvFAbgPlpZtnT+4dgaw3sqDHLn5o1BmB/nVnqVO4Dj701y2bZYdheDVNUBFv6jnzGchZXsYUPOYMriCOZDIYwmNGkkBnt6YmISC94++23ufPOO1mxYgXFxcU8+eSTXHTRRS3jtjDlCO644w5++MMfntB7K0gjItIbNpXAH1+DpiMXpzOLYGMx3P0qDEmH3BTYXALPr4L/uRBGZkd1uiIh1TfBkhL42RrarfKYkgYX5oM/CA1BSGgz1hg0ARow/3Uc9SFmo4I00vfkMpxchtNIHQ6cOLWcTEQkcgIWvNMExUHItcOpzo6fL3pYbW0tkydP5itf+QqLFy/uMF5cXNzu+YsvvshVV13FJZdccsLvrSCNiEhveHtTa4DG6YCUBHh5nXleWgnpCWbZU1kt/Hc5fP9scOlXssSYTdXwz50cVYYDVpXDiCSYnQ7JR523bT8z5caZmjRtuVQIW/ouD1qOLCISUU/44Lu1sLdNlZZ8G9ydAIt7L2C+aNEiFi1aFHY8Jyen3fOnn36a+fPnM2zYsBN+7/7bJ1NEQgv4oWY/1JaYTlLSO3Yfbv26IB0+2t763B8wxYGbfbQNSiojNzeRrnr7AHgdphbN0V4tNrVpvljUfrvXAXEOWJgDe49qW2wHxqX02nRFRESkH3nCB5fWtA/QAOyzzPYnfNGZ11FKS0t5/vnnueqqq3rkeLpt28dUVMK2HbBtJyTEmdbZhUPApRqM0hWH1sG2p+DQWrA5IG82FJ0HKUXHfKl004hsWLvXfO2wQ2NT65jbCY42RYObgqY4q0isOdhoAi6D42F3LbQ9TauboDABJqRAigue2AvljZAZB5cWQK0fXi1tf7xPF0JRAiIDxUF2s49NVFJKOoPJYxSDGBztaYmIxL6AZTJoQn1EtjCZu9fVwoWuXl/6dCx///vfSUpKCrks6ngoSNOHFJfA//sLrF7bus3lgqu+AAvPaA3UHDwENTXg8UBuDthspsnM9p2wfhMcOgxDC2DMSDMuA8Th9bD0F9BU17pt58twYBXMvkXtvnvaySPghVWmq9O+cphaCG9tMmM5KeBuE6QZnQsZiVGZJoCFxT42UspOfDSQwWDyGE0CyngY8CanmqVNmR7wOEwXp4aA+XpWOmR54TcbTaHgCSlQmAUTU2FiCmypgQQXrK+EDA+clQPjU8B7jI8e5Y2wrcYUJU5wwphkGJoALiX/Su9ooI5D7KGJBhJII4Mh2DjxD/zbWMlT/JZ6qlq2JZHOYm5gCONO+PgiIv3aO00dM2jasoA9R2rVzItuxsLf/vY3Lr/88h7rYKUgTR9hWfDMS+0DNAB+P9z/dxN0yR8Mb74DT71gAjHJSbBgHpx/NmzYDP93HzQ2tr42KxNuvA5GDo/kdyJREfDDtqfbB2ia1ZVC6TIFaXraqBz43jlw/5tQXgtxLhiTA5X1MKhNQMblgM/MgoTotCX042MVS/gXP6WCEgCcuDiFz3I+3yUTnRcD2ox003670g+pLlN/JmCZO1afLYS7NsDhI6nGSw+bxzP74BeTTHBldLIJVLrs5o7Bseyvg3s2w9o2y/9cNrhquFk+FaptvcgJ2M8WXuNv7GY9FkG8JDCD8zmJC04oUF1OMc9yd7sADUA1ZTzP/+NyfkUSKqAtIhJWcRfLMnR1v17yzjvvsGnTJh599NEeO6aCNH3E/mJ4453QY8EgvL8MMjLgb/9q3V5VDU88C0mJ8NDjJqDT1oGDJsBzyw2QqOzz/q3+kFniFM6+92HYp8ChbhU9xm6HU0bBiCzYW25acp81Ht7bCu9uhka/yaBZPB0mRi8QspNP+AvfoYFaUshiIvNJYhA2bGzkfTL4dI/cUZY+amgi/GQ8PLgDNlaC3WayZz5dACX1rQGatuoDpl7NqCSzv7uLgZWgBU/ubR+gAfBbcP9WKEpUPRvpUWXs57/8mkoOtGxroJZ3eRQ7Dk7jc8d97FJ2UkNZyLFD7OEguxWkERHpTG4XM2i7ul8v+etf/8r06dOZPHlyjx1TQZo+wueD2trw4zv3wNYdHbd7PLBlOxwuh+QQqyk2bYE9e2Hs6J6bq8Qgm93UoAnH7gRdiPeOnFTzaDZuMFw41dShSU+AuOgGxtbxNg3UMpTJjGY27/AIB9kFwGhmk0kBY5gT1TlKlI1LgVvGw756Uyg4w2M+PfxgVfjXrK2Eaj+kdOP83l9nChWHEgSWHlKQJsJ8NODAiaOfflzcy8Z2AZq2PuI5xnPacdePaaSTD22AjxCZrSIi0upUp+nitM8KXZfGhhk/tXf+RtXU1LB169aW5zt27GDVqlWkp6dTUFAAQFVVFY899hi//e1ve/S9tcC7j0hMguzM8OMjhkFxacftHrfJqKmvD/06y4KGxtBj0o/EZ0FeJxfaBQvAoerTEWGzQXYKDE6LeoDGwmI/W/CSwHhO4ynubAnQAGxiGY9xK8Vsi+IsJSYkuGBUsgmSZHlNW/m4TgK/cc7u15BpDEJdIPx4aUP3jifHbT9beIW/8g9u5FF+yQbeo+6oZTv9QTFbwo7VU0Udx991L4WssGN2HCQx6LiPLSIyIDiOtNmGjveSm5//PqHXigYvX76cqVOnMnXqVACuv/56pk6dys0339yyzyOPPIJlWXzuc8efeRmKgjR9ROYgWHxB6LGkRJg4FsorOo7V1EJeTvtGMm3FeSEttadmKTHLZoOh50JCiErRmZMga2rk5yRRZ8PGYEYxhpP5iGcJ0n5NrwsPPurYxAdRmqHErGQXnJUbfvycXIjv5p2tZJcpUBzOuOTuHU+Oy05W829uYhlPUcI2trOS//Jr3uZh6o+RHdLXJJERdsyBExfHXyssi6EUMjHk2BjmkknhcR9bRGTAWOyG01txWgAAbwNJREFUxxNh8FGBmHyb2b649254zps3D8uyOjwefPDBln2uvvpq6urqSEnp2UxfBWn6kFPnwhWfM0GZZkWFcOP3YFgR5GZ3fE0wCH4fTArTROCsM2CIOkEODCmFpovThK9A2igYNB6mfhemXgfxnaRpSZ8XIMABdrGH9RxgFwFa24GP53SyKWI/mzu8LoN8PCSwk08I0EmGgwxMczNgeoiaGnMyTMHh7sr0wuIw9ZmSXTAlrfvHlG6pp4Y3+EfIpTrLeY7SfpZVN5SJOAidRTqCGWSQf9zHjieZRXyTMczFfmS5mBMPkziT+VyB+wQCQCIiA8piN+xMhTeS4KEE898dqb0aoIm2/rnIuJ9KSoRLPwVzZpjuTS435OdCc+Du61+GO+6GujZLm5wOmDQBLrkQ/vkorPjY1C9NiIezz4QLzw2fZSP9UFK+eRSdb7Jr7PoV0N9VcICl/JfVvIGPetzEMZ7TOJnLSCWbIqbQSC3v8h8OYApb2bAziMGkkwdAIuk40C8KOUqWF74zCjZXw4eHTerxrAwYlQipnWTEdOb0LFN4+Mk9UH0kmDg8Eb46HAqj16Z+oCinmH1sCju+jRUMZVIEZ9S7shnGuVzLi/yJJlrXfmcxlNP5Ak5O7AIgg3wu5HoOsYcGaokjiQwKcOrjt4hI9zhsUW+zHUn6K9HH2Gym1XZ+iOyX6VPgtpthxSrYtBUG58DsmTBqODid8KPvwO69UN8AKckmg6YrHVGlH1L9mQHBRz2v8yDreafdto95mToquYDrWurRXMB3eYO/EySICw9xJGE/EpiZwoJofQsS69I9MNsDs8MvG+mWJBdcOsRk4xxqBI8dBsebTJreFrRgTx0cbDD1dPLjYdBxBpv6qKOXPB6tiRDdvPowB04mMI8sCtnHRmqpIJth5DKSFHomw9SFh1xG9MixRERkYFCQpp8ZXmQeobjdpsCwSCyorYLinVC6B+qqTcfqvGEwZCQkqoFLjzjALjbwXsixzXzIAXZSwHgAZnMxh9nLTla32cvGXC5hMGMjMFuRI2w2EyDJj4/ce1b74fl9pgV4c/HiHC9cPcIs3RogdzRSyCSdPMrYH3K8iP5Xv8yBg1xGKJAiIiIxQ0EaEYm4qnJ47T+mu9jjf4DyIx1Qk1LhlAvgs9dB1vGXApAjqjiIFebOuEWQKg62PE8jhwv5PsVsZTdrceGliMlkMwwPcZGaskh0vHsQ/r2r/baSBrhzA9w6CUYOjKLFSaRzOl/gaX5L8Kg6VEVMUSBDREQkAhSkEZGI27QSmprgP/8HNRWt26sr4OO3IGUQfP77pu6SHD/3MYIrR48nkU4SMxnFzN6clkhsKWs0NXBCqQ/A0sMDJkgDMIrZXMb/sJQnKGUHHuKZwgImcgZJHEdBaBEREekWBWlEJKIaG2D56xCf2D5A06z8IKx+H864DIbopu0JyaCAFDKpbJMx0yyJdLWAFQFToLi0Ifz4xqouHaaCUnaxlvW8gx0H4zmNAiaQzKAemmhkuHAxkhkUMI5aKnDiJrmTVtW9oYz9NFKHm3jSycVGzy43C9BEgCZceI772FUcppEaXMSRSlaPzk9ERAY2BWlEJKKafBAMQMWh0OOBgGkb31AX2Xn1R6lkcR7f5gnuoIGalu0eEjiPb5NGThRnJxIjvHZIcUN5mKK4g4+93K+M/TzFXexnS8u2LXxIEVM4n+/0WBHa3mZhUU4xTfiIJ6Wlw1ukVHGYlbzISl6kjiriSGYqC5nBuST3wL9hPbXsYS0reYkayhnMaCYyn8GM7nKwpo4q1vMOy3iKSg6SQCrTWcQkFsRkQM7Cwk8jDlzq0ici0kcoSCMEArBrN+zZDz4f5ObA6BHgUgMg6QVxiZA71BQLDjmeAPEJJtNGTtwwpnIFv2Y3aznMXgYxmCGMJ5swFcZFBprsOFiYA4/u7jhmB049dpbEOt5qF6BptoNVbGM501jUAxPtXfvYzDKeYilP0kgdQ5nEfK5gLCfjofeLOPtp5B0e4mOWtGyrp4r3eZxqDrGIbx5zCWdnfDSwlP/yHo+1bCthG6t5jcXcwEhOOuYxAjTxIU/zLv9p2VbNYd7kXxxmH+fwjYj8W3VFgAC7WcMKXmAvG0knjxmczwhm4MYb7emJiEgnFKQZ4Bob4a334c67YfV6sy0zHb75VbjsYsiMvZtC0sfZ7TDtdFj+BgzKgcMlrWM2O6Rnw7T5kF0QvTn2N1kUkqWlTSLhnZ0Le+vhvTZLAz12+PIwGJPU6UtrKGc1b4Qd/5glTGB+TF8Y72cL/+AGNvJ+y7ZVlLCLNXyOnzOLC3t9DgfYxSe8HnJsLW8znfPIZ8xxH7+UHbzPfzts99PIazxALiNIJK3TYxxiD8t4Jswc32IaixgSI93w1vIGf+G6dgXi3+JffI5fcDpfwIWKvomIxCp7tCcg0fXJOvjuDa0BGoCDZfDzO+DVN6M2LennCsfA5FPgihthyCizzRsPhaPg5PPgzE+DUyFkEYmUTC9cOxJun2zabn9nFNwxxQRvXJ0vEQnQRBONYcf9+Ajg7+EJ95wm/GxlebsATbNyinmdBymjuNfnUckBgjSFHLMIUkHpCR1/D+vDdrs7xJ6wbcePnqOf0PWLLIIcIkwB6ggro5jHua1dgAbM/9eP8kv2sC5KMxMR6TvefvttLrjgAvLy8rDZbDz11FPtxmtqavjWt75Ffn4+cXFxjBs3jnvvvbdH3luXQQNYUxO89S6UVYQev+8BOG0uDM6N6LRkALDZYOQkyCuC0dOg4iBYQZNFkzMU3J5oz1BEBpwkF0xINY9uSCSNQiaylrdCjg9nGl5id/1mJQfYyoqw48VspZpDpNO7HwaOldnh4sT+MBwrUHZ0y/FQHMf42Bwr2SklbGMvG0KO+ahjN+sZxtQIz0pE5AQEgvDOQSiuh9w4ODUTHL2bb1JbW8vkyZP5yle+wuLFizuMX3/99bz++uv861//YujQoSxZsoRvfvOb5OXl8alPfeqE3ltBmgHM74c168OPb9kOFZUK0kjvSUiChNFQODraMxEROT4OnEznXDbzIT7q243Fk8wETu/x7kQ9KUAT7k4CIAH82On9InUZFJBIOjWUdRiLJ4UMTmwNbGdLpZIYRArZxzzGIPJJJoMqOla+dxNHFkNPZIo9pgkfwTBZQwCNbQrJi4jEvCf2wHdXmGXJzfLj4O7psHhIr73tokWLWLQofE25999/nyuvvJJ58+YBcPXVV3Pffffx4YcfnnCQRsudBjC3u/MATFYGxB9/jT4REZEBIZ+xfIabGMZUHLhw4mE0s/k0N5HLiGhPr1MJpJDPGOxhOv+MYjYZDO71eaSRw7khigO78LCIbzLoBDtNZTOMMcztsN2GndO5nLQuBGlSyWYhV7dk9dhxMIRxTOUczuPbXQr0REIq2SSF6TRlx0EuIyM8IxGR4/TEHrj03fYBGoB99Wb7E9FbZjp37lyeeeYZ9u3bh2VZvPHGG2zevJmFCxee8LGVSTOAORxw7kL4+8Mmg+xon10MQ1W8VUREpFM2bBQykVxGUskBwEYa2ThjZPlLZxJIJY9RLORrvMx9WFgtYyZwci1xdF48uaeMZCZf5Da2sZID7CSTAoYzrUNQwcKikTocuLq8xCieZM7iawxmNCt5iXqqyWQIs1ncraU/o5nN5dzKDlZix8EnvM52nuYTllDEFOZyGYVM6Nb33dMGM4Zz+RaP8vMOY7O4iByGR2FWIiLdFAiaDBorxJgF2IDrVsKFg3t96VMo99xzD1dffTX5+fk4nU7sdjt//vOfOe2000742H0mSHPrrbfy/PPPs2rVKtxuNxUVFR322b17N9dccw1vvPEGiYmJXHnlldx+++04VYE0rGmT4Nab4Oe/gfojtfAcdjj3LPjcJaZ2iIiIiBybGy+ZJ7gsJxqKmALYyGEY63mXGsoZyUymcg5FTIrYPGzYyGVEp9lHO1jFCl5iA++SQApzuJRRzOpSpk0KGcxhMROYh58G4knBS0K355jPaOzYeYibaaAGFx6CBNnGSvaykc/x8xPqRHWiHDiYw8XEk8Qb/JOD7CKJQczmIqZxrrr9iUjf8M7Bjhk0bVnAnjqz37zIZzLec889LF26lGeeeYbCwkLefvttrr32WvLy8liwYMEJHbvPRC98Ph+XXXYZc+bM4a9//WuH8UAgwHnnnUdOTg7vv/8+xcXFXHHFFbhcLm677bYozLhvSEiAyy+DqZNgzTqoqYPxY8xjUHq0ZyciIiK9zYWHUcwkj1FM5AwcuEhiEM4I1KLpjk0s4w989Ui2kvEJr3Iqn+MSbiCti8WNkzixDzgWFp/wKg0hars0UsfHvEQuI45ZaLg3pZHLyXyaUcyihnLceBnEkBP+3kVEIqa4kwDN8ezXg+rr6/nJT37Ck08+yXnnnQfApEmTWLVqFXfdddfACdL8/OcmZfPBBx8MOb5kyRLWr1/Pq6++SnZ2NlOmTOGXv/wlN9xwAz/72c9wu2M/5Tha3G6YMtE8REQGqoYg7AmAD0i3Q27nnZdF+p1EUkkkNdrTCKmOal7g/7UL0DR7h4eZwXldDtKc+Fyq2MEnYcd3soZaKkkOUxcmUlx4yGNUVOcgInLccrtYHLWr+/Ugv9+P3+/Hbm+/zMrhcBAMhi/c3lV9JkhzLB988AETJ04kO7s11enss8/mmmuuYd26dUydGnq9cWNjI42NjS3Pq6qqen2uMsBZFuwNQokFDmCwHbJVw1skmrY0wd/rYI0fgkCaDRbHwQIPJOrHUyTqDrKTNbwRdnwVrzCFsyIyFwfOTmvhOHFHNYtGRKRfODXTdHHaVx+6Lo0NyI83+/WCmpoatm7d2vJ8x44drFq1ivT0dAoKCjj99NP54Q9/SFxcHIWFhbz11lv84x//4H//939P+L37zV+QkpKSdgEaoOV5SUlJ2NfdfvvtLVk6Ir2uzoKXfPAfH9Qe2ZZhg694YK4THCoCJBJp+wJwezUcbHPjo9yCv9aB0wbne6M3NxExggQI0BR2vInGsGM9zUsCUziLl7k/5PhkFpBASsTmIyLSLznsps32pe+agEzbQE3zJdPvp/Va0eDly5czf/78lufXX389AFdeeSUPPvggjzzyCD/+8Y+5/PLLKSsro7CwkFtvvZVvfOMbJ/zeUb0/eOONN2Kz2Tp9bNy4sVfn8OMf/5jKysqWx5490WvjJQPAR03wQJsADcAhC37XABtPPDVORLpvnb99gKat/9ZDaSCy8xGRjtLIYyQnhR2fwLzITQbTiWpoiKLK+YxlLCdHdC4iIv3W4iHw+Ckw+KglTfnxZvviIb321vPmzcOyrA6P5vIrOTk5PPDAA+zbt4/6+no2btzI9ddfj60HOu9ENZPm+9//Pl/60pc63WfYsGFdOlZOTg4ffvhhu22lpaUtY+F4PB48Hk+X3kPkhFQH4Qlf6DE/8KYPxnnVUkskwtaHvznPoSBUBiFb9WkkBtRTQzkluPCQSe99MO0OHw3UUoELN4k9UJS2lgoaqMVLYrtslFSyOJ/v8Ae+io+Gdq8ZzRyGMvmE37s7UsnmU3yPPaxjLW9jEWQ8p1HABFLondR7EZEBafEQ02b7nYOmSHBunFniFIW225ES1SBNZmYmmZk984dszpw53HrrrRw4cICsrCwAXnnlFZKTkxk3blyPvIfICam2oKSTbJktQROsUY1rkYgaFOJvvIX5kbUsOBgAtw2G9psFwtLX+PCxhaW8zoNsZQXxJHMylzKd8zptV92bAjSxi9Us42mK2YaHeKZyNuM5lRSyun28OqrYwHt8xLNUc5hkMpjJhYxmNvEkAzCO0/ku/+BV/sZ2VhBHErNZzEw+RQ5du6nXk5LJYDynM57TI/7eIiIDisMelTbb0dJnPnLu3r2bsrIydu/eTSAQYNWqVQCMGDGCxMREFi5cyLhx4/jiF7/IHXfcQUlJCf/zP//Dtddeq0wZiQ1xNkixmbo0oeTYibFupyIDwnQXPF5vCgYDNFqmTs2uAJzpgVtroMqCW5LgTDfY+++NG4lR63mLP/A1fJg2oxWU8Bi3sYH3+BK/jUpWzWY+5EnuJHikTkwdlbzOg+xmDefzXRJJ6/KxmvDzPo+zlCcBsGHnIHt4nnuooIRT+dyRUr1uJnA6w5hCOSU4cJPNUGwcfwaqn0ZK2cF+thCkiVxGkk0RXhKO+5gix6XiAOzZCDtWgzcRRs2A3OHgiXznGhGJrj4TpLn55pv5+9//3vK8uVvTG2+8wbx583A4HDz33HNcc801zJkzh4SEBK688kp+8YtfRGvKIu2l2eF8N/w5RHFDG3CWU0udRKJgpBO+Gm8KBQcw9Wm2BmCME05ywx9qTQDnm5XwcCrMUNxfIqiCAzzL3S0BmrbW8hY7+STiQZoaynmLf7YEaNraygqK2cJIZnb5eAfZxUc8xxDGkc0w6qjEiQsnbjaylLGcTA7DAajkIFUcwoGTVLJPKEDTQC3LeIr3eIwgrcWnJnEG87mSpB5YviV9SH0tFG+DbR9DoAmGTYa8EZCY2rpPQx2U7oR9mwEb5I+E7CJwuqFkO+xcA1WHzeuGjIH0LraFP7AH/nuXOUaz95+A0z4Dcy8Gb3wPfqMiEuv6TJDmwQcfbCnSE05hYSEvvPBCZCYkcjxOdZrb8682td62dwNf8MCEPvPjKNKvuGxwjtcEaz70wft+uNBratHcX9v6o1plwes+BWkksg6zj618FHZ8LW9wEudHcEYmcHSIvWHHt7OqW0GaMvYzmlnsZytv8s+WgEkcSZzN16minHQaWM+7vMPDVHIAG3byGcMZXMkQjm9Z+y7W8A6PdNi+mtfJZQQnccFxHVf6oNoqeOPf8FGb64gPnoJRJ8F534DULKithDceguUvmrWwYFIrZ14AQ8fD43dCk7/19anZ8JkbTcCmM4EAfPBk+wANmPd46xEoHA/Dp/TEdykifYSStkUiKc0OV3nh13HwTQ98xwu/iYfzXeBRFo1ItLhsMMYFM93wsR/+VgcPNdChqe8n/pAvF+k1dmzYO7mn5ohCITP7MbJXnN28B+gmjnpq+Ihn2mW01FPNM/yeBqpYyUs8wi0cZBcAFkH2sJ7HuJVSdnT7ewjQxMe8HHZ8OS9QS0W3jyt91PZV7QM0zTZ/BGvfMV9v+sjsY7VZth4MwpsPwcZlYDvqsqqiFF7+m8m+6Ux5Max7N/x48/uLyIChII1IpMXbYKwTFrnhLBeMcJgrRIB6CzY1wcdNsC0A/jD1a0SkVzgxP3YhFiUCMFRdniTCMilkPKeFHZ/MmRGcjZFGLrmMDDs+jGndOl48qazkxQ7bLYL4qGcD77CMJylmK3tYTxWHsDB/H+uoYivLu/cNAE34qOJQ2PE6qmhss8SsCR/72cJ63mUzyzjM/m6/p8SoJj+sCB+wY8XLUH4APnwu9Hh9DXz8Cgwe1XFs1zo4FD7rrOX9GzsuZ2xRU97560Wk39H6CpFYsSsAf2mE1QGzvsIFnOaEz3kgW/FUkUgY4YIvxMFvajuOOYFzvRGfkgxwiaRxHt9mB59Qw+F2Y6fwWQqYGPE5xZHEfK7gcW7rUCtnKmeT082OUy7cOHFjCrS13pwI0EQauRxgN7VUAhAkwAF24MaDlyQAtrOSk7msW+/pJo48RnKAnSHHMxhM/JEW4DWU8y6P8jEvEzhShyeBVM7m64zl5BOqiyMxoMkPdVXhxxvroKEm/D4Bv6lDE6rArxUEf0PH7W0lpkHGEDi0J/S4ljqJDDgK0ojEgrIg/K4BtrVp0e0HXjtSu+Zar5ZDiUTIYq9JZHuiobUeTYINfpEE09SBTaJgLHO5nn+ynOfZyAfEk8TJfJpRzCGN6LQkHcYULueXrOENdrOOOJKYxjkMZTJxJHbrWF4SyWcsDlxUcwgf9Tjx4MJDLRVkMITD7GvZ38KimvKWIE0ymd2evw0bkziTtbxFE74Oo7O4GC+mWOtqXmM5z7fbo5YKnuH3JJNBPmO6/f4SQzxxUDDOFAQOJacIUjMhswAqD4Z4fQJkF0JNRcexuEQThOlMYiqc/hl44rftl1IBJKXDsKld+CZEpD9RkEYkFmwPtA/QtPVOE1wQhJFaZyESCUNdJiBzeRxsboI4G4x2mlWKHiW1SZQMZzpFTKWWCtx48RD9bi+DGU0eo2ik/kg3puOLYiYziDlczEvcRzzJWARpwsdO1uDGSy7DqeYQO/i45TVtM3gmMO+43jefsVzED3iVv1JBKWAyZE7n8wzDXBhXcICPeDbk65toZDPLFKTp62w2mDwfPnkDfEctO3I4Yc5FEJcEsy+A7R+bOjRtJaTAjHPg3cc7HnvmeZCRf+w5jJ4FF34X3noYykvB7oCiSXDG5ZAV2e5tIhJ9CtKIxILiTmrPNAHlQUBBGpFIGeSAuQ6Yq05OEkPs2GOuLbQNW0vGyYkYy6lUcZiPeBY/jdiwk8kQ5nEFa3mLYUxjKFPYySqAI0EqG6fw6eMOktixM4Y55DKScvYTJEAaOaTR2ja5kTqqKQt7jOMpWiwxKH+06cT06j9MG26AQXlwxhdMsARg6CQTSHntH2Z5E0BKJiy40mTblO6CrStM++74ZJh1PsxYZIJAx+LxwtQzTdvv6sNgd0JGHrhDLKESGYgCQXhnExRXQm4KnDoaHL175+ztt9/mzjvvZMWKFRQXF/Pkk09y0UUXtYyXlpZyww03sGTJEioqKjjttNO45557GDkyfM22rlKQRiQWpB7jD3iCljqJiEj/lUAKp3M54zmNckpw4qKBWl7lr9RQzse8zCTO4CTOYz9bKGQCYzmFbIbh4cQuZFPIIIWMkGMe4kgknZowgZosCk/ovSVG2GwwYhrkjoCyYlNLJi3bLDdq5nLBlDNMS+zyYsAG6bmmPTfAZT+Eg3tNDZqEVBPk6UqApq2UDPMQkVZPLIfv/hv2timinZ8Gd18Oi2f02tvW1tYyefJkvvKVr7B48eJ2Y5ZlcdFFF+FyuXj66adJTk7mf//3f1mwYAHr168nISHhhN5bQRqRWDDMDik2qAyRUTPKDgVaYyEiIv2bAyfZFJFNEQC1VDKB+SzneZpoZAPvkkoWi7iWYUyNSMHeVLKZwbm8yb9CzNfFaGb3+hwkghKSzaMzadnmcTSXB/KG9868RAaqJ5bDpf+vbU15Y1+52f74t3otULNo0SIWLVoUcmzLli0sXbqUtWvXMn78eAD+9Kc/kZOTw8MPP8xXv/rVE3pvBWlEYsFgB3zPC//bAFVtfgvl2OAbXkhSkEZERAaWBFKYzxeZwOlUUIoTF4PIJ42ciM5jEguo5ACf8BpBAgDEkczZXE0eoyM6FxGRASMQNBk0oapCWJiGgNc9BBdO6/WlT0drbGwEwOttbftpt9vxeDy8++67CtKI9BvTnfDrONgShENBGGyHEY6utd+2LNgagJUB2BWEIjtMdcJwe/dTbUVERGKEAyc5DCOHYVGbQzKDOIurmcJCKijBgZsMhjCIwWq/LSLSW97Z1H6J09EsYE+Z2W/e2IhNC2DMmDEUFBTw4x//mPvuu4+EhAR+97vfsXfvXoqLi0/4+ArSiMSSIQ7z6K4PmkwWTuOR5+8Aj/ng+3EwSz/mIiIiJ8KNh8GMZrAyZ0REIqO4smf360Eul4snnniCq666ivT0dBwOBwsWLGDRokVYVicNYbpIV28ifd2+APyxsTVA06we+GMDFMZDjpZLiYjIiauhnApKABtp5JJASrSnJCIi/VFuF/++dHW/HjZ9+nRWrVpFZWUlPp+PzMxMZs2axYwZJ14jR0Eakb5uTzB0wWGAMgt2BxSkEYkRQQsOBs1/Mxzg0koJ6SMCNLGFj3iTf3CIvYDpbDSfKxnBDC37ERGRnnXqaNPFaV956Lo0NiA/3ewXRSkpJki0ZcsWli9fzi9/+csTPqaCNCJHKw1CyZGrqEy7qQ0Ty3Vdjs6gOZovIrMQkWPY0QQvNMBSHwSBSS74lBfGuqI9M+lxTUHYVQtba6CuCYYlQlEiJPfd/7N3s44nuYMATS3bDrCLJ/gNn+PnFDA+irPrmgABitnCFj6inGJyGcEwprZ0kxIRkRjisJs225f+PxOQaRuoab40+/3ne61ocE1NDVu3bm15vmPHDlatWkV6ejoFBQU89thjZGZmUlBQwJo1a/jud7/LRRddxMKFC0/4vRWkEWlWb8EbfvhzI6wOQIMF0x1wtdf8N/c4asVEQpYN7JirvqM5gcwYDjCJDBC7m+BX1XCgzc/puz742A+3JClQ06/4A/BqKfx1GzS2+T98ejpcMxKyveFfG6Oa8LGc59oFaJr5aWQVSxjMGBzE6N9JIEiQdbzF89zT8n2s5x3e4zEW8yOGMTXKMxQRkQ4WzzBttr/77/ZFhPPTTYCml9pvAyxfvpz58+e3PL/++usBuPLKK3nwwQcpLi7m+uuvp7S0lNzcXK644gpuuummHnlvBWlEmn3QBLfWw7Zga6R2WQC21cFP4uAsG2TF4LKhoQ44zQlvdvzwzHynGReRE1IcgMogeG2Q7wBnN2OfS33tAzTNai14vgFGOrt/TIlRW2rgvq0QOCo3e0UZPLsPrhoW29mZIdRSRTFbw47vZRMN1MR0fZpD7OYl7u0QaGqghhf5E1fwa5JIj9LsREQkrMUzTJvtdzaZIsG5KWaJUy+33Z43b16nRYC/853v8J3vfKdX3ltBGhGA8iA83Aj7rI5rHg9ZsDFg2lnHYpAmzgZXemCQHZb4oBpItsE5LjjXBZ6+dTEgEkuqAubH6pl6KLfADcxyw+fiYEgX/4I2BOH9TpYdfuKHQ0HIUTy1f3j/UMcATbPXSuDcXMiLj+ycTpAbDx4SgEMhx+NIxIUnspPqplJ24KM+5Fg5xRxij4I0IiKxymGPeJvtaFKQRgSgwjIZNPVhPlhvDMA4O8yO0TUJGXa40g1nOU1Xp3ggT1d8IifCsuD5RniozXWdD3jHB/uDcFMiDOrCj5nd1nmWjOPIikXpJ4pDBwIAqGlqvwSqj4gjiWmcw8vcF3J8GotwE9vLuBqp63S8SQXcREQkRuhzoQiY2+NJELY5RarNXEnFmoAFWwPwtA8ebDSBpiRb5AI0Pss8RPqhvQF4piH02LYm2BLo2nHcNjizkySDk92mRrn0E2OSw49leSCxb94fG80cxnFKh+2TWcBwpkVhRt2TwZCwYy48JJERwdmIiIiE1zc/KYj0tFw7nOWGDQ2h21lPc8KoGMtMCVimDs0fG6DaggZMR6phDrjFC8N78ce7NAgrm+B1PwSAU1ww02GKdYj0E2UW1HQSg9zWBLPdXTvWNBdMcMLao0pH5dphoafPlSiRzkxLg//ugdoQdcIuHgKZsZ1xEk4ygziHa5jMWezkE2zYKWIK2QwjnqRoT++YshjKSE5iCx91GJvOuWR2EsQRERGJJAVpRMCsR7jYBeua4Fk/+Ju3A1d5IMMGI2PsVveOIPyhwVQj3RVsbbW9LQhe4LY4yDhG0GR3ADYGTdBlsB1G22HwMV5TGoS76s3rmm1phJdt8NM4KOiHgZryWmjwQ7IXEvrmBVa0NVlmNaHXBq4+EpDw0LHjY1vJ3fg+sh1wXSKs8sNrjebf41QPzHB1vbaN9BHDk+DGcXD/VthzZIlNggMuzIfTsqI7txMUTzLDmdYnMmeOFk8yZ/N1UshmDW/QSC2JpDGTTzGZBTj0kVhEpNd0VoB3IOnqv4P+Iok0G+yAX8XDZU2wtAmagPEOKLLDSAckHBWkORCEzQHYHTRFe0fbodAeuVvi6wKmls72oMlmaRYEnvPDp92woJOAyYom+G29KTTcLN0GP/LC+E5+NXzU1D5A02y/Ba/64csR/DfobYer4Z0t8OInUN0Ag9Pg4hkwrRC8MVqfKMb4LRP7fLnBxAQz7bDICxOdEB9jcc+j5TtgjBM2hEiIcNH9ttnZDjjbAWd4TODH3U9+TCSEKWlw62TYWwe+gMmeGRLff3439lGpZHM2VzOD8/DTgJdE0siJ9rRERPotl8t8WKqrqyMuLi7Ks4m+ujpz86b53yUcBWlE2hpkhzPc5mFZ4T9QbwvAHfUmMNEsHrjOC7OdkfkgXh407WZC1cUIYDJtDgZDF7soDsL/NbQP0IBZ33FPA9wWD+khXtdgmSVO4bzbBJ9ym8yjvq6mAR58F97c2LptYzH8+lm45kxYNCl6c+tD3vbBPTWtp+nuAKzwwxfj4WJvbGfVJNrhqgS4rRrK2sQlncA3Eo6/u30sf8/Sg9Lc5iExxYaNDPKjPQ0RkQHB4XCQmprKgQMHAIiPj8c2AG9YWJZFXV0dBw4cIDU1FYej8w+RCtKIhBPuF0htEO5vaB+gAagD7m4wrVULI7DkZ7gD6sKkzKXazHxqLcgMMb4zYAIyoeyzTHZQqCBNkNalYKEEjuzTH+w42D5A08wCHl4KUwogNzXSs+pT9gfggdrQccRH6kydlhEx/ldotBNuS4Z1ftjUZGKeU47Mu7OOTSIiIiICOTkmY7E5UDOQpaamtvx7dCbGPx6LxKA9QdgQJhJRC2wJRiZIM8oBox2wLFRxSrdpTeMNcxe39hjHDhf8ibfBXCfsDNOqdIrDLJnqDzaXhh8rr4XSSgVpjmF/IHQdbjCxvp1NsR+kAbMScrADFkZ7IiIiIiJ9jM1mIzc3l6ysLPz+zu729m8ul+uYGTTN+sDHY5EYU0/4SqLQfl1Eb8q2w8/i4LZ6eL/JpCuk2eAiNyQAw5yQE6boR1YngRQHnQda5jrhFT8cPOofIRE4191/0gtcx/gl2sVfsgPZsX4S+kvSlYiIiIh0zuFwdDlIMdApSCPS1q4AbArCoSAMsZtsleyjAh2pNtP2pTHMMQoiWA11kgO+74WFAdPdKYipcprhgLM7KUg11G5euzrEQpS5zs6LbRQ64KY4eMEHywImODTVAee7TWZPfzEqx3T9CoaIyOWkQF5qxKfU1+TaIdEWuo21g8gknImIiIiI9CUK0og0W9YEv6tvvxQoxwY/ijPdnZoNscOZLnghRLpeoR1GRPDK02kzhYoH200b7kZgwZEgS3wnGS3JdvimB/7la+1k5QFOc8JnPKZPcmeKHHCNFy6xTFZRpq3/ZNA0K8qAT8+ER5a13+5xwldOg0GJ0ZlXH5LvgM/GwV/qOo5d4IWhfeAvUDAI9hjvQiUiIiIi/YfNUtPydqqqqkhJSaGyspLk5ORoT0ciZU8Abqjr2O0IYNSRZUVJdtPxaV/QFNYtCZr6NMsDUGWZzJSrPMff8iUafJb5Hmotk/JQYO9/wZYTUdcIa/bCy2vgUA2MzoH5Y2FsnlrpdlF9ED72w1MNUBKANLsJ0Mx0QXIM/6hs8MN7Pnit0cQ7L/SaQsf5IQJLTRYcDJhTItMODp0aNDVBZSU4nZCSEu3ZiIiIxD5dh0qzPnAfUyQCtgVDB2gANh8Jygyzwat+eMRngjIWpg7LFR4YbYM8J8T1saszt810iZLQ4j0wazhMHwr+AHhdCs50U5wd5npMR6RqywQ8kmI8M2WND75RCVvbrAZ8rhEu88KNie0DNZua4Nl6E4iyASe54XwPDO9ktWF/t2EzvPgKrF0PbjecOQ9OmQ252dGemYiIiEjsU5BGBKDiGAll9cDKJnjaByc5zK1yB1AZhIca4ca4vhegka5zOsxDjlu8HeIxyWhb/LDCDzsCUOCAk460tLbHwI9QYxAerG8foGn2WAOc42kN0mz2wy+qTcy22auNsNIHP0uGogH4F3btevjlnVBX37rtHw/Dhyvgh9+GrMzozU1ERESkLxiAHyFFQhjcydWhC5Mx877fVDr9cyMcOnJVNsIOX/CYejbjHcqyEDmGD/1wRzWUWVAVNPWuB9ngf5JggTfaszOBoxcbwo8/1QDnx5l60ksa2wdompVZ8HbjwAvSNDTAf55qH6BptnEzrNuoII2IiIjIscR40rlIhAxzwPAwPw7znKajk80O/6+hNUADsDUId9WDF5NtIyJhlQTgD7WwN2iakO0NwoEgbAjA9ythrS/aM4SABfWdJNbVWaaYcFkQVoaoHd5smd8EoQaSA4dgzfrw4+98ELm5iIiIiPRVCtKIAAyyw/e8MN3R+lPhARa54HMeU3/m2TBXkDWYujXuyEx1wGgKQFU9+JqiPRPpIXsC5rErYH6k2iqxzBKohigHNvIcMLuTn+UFHtPtyW7rPBXVceQx0HSWTKhEQxEREZFjG2DJ2CKdKHTADXHmKrIOSLGZdttOm9nW2e31g0GFPHuKvwnW74cX18CuQ5CRCOdOhslDTCFf6bN8R5Y4hftJOhQ02TUjovizlOaAqxPgA1/H5LiRDph7JICTbofTPPBomAy6Mz2QMMB+J+RkwZSJ8NHK0OOnzY3sfERCqaEcPz4SScOluysiIhKDFKQRaSvOBqNC/Fh4bFBoNwWGD1qtV5k2YLAdihyxUfW0P3hnM/zfKxA4klKxtwxW7YbPz4FLpoN7ALfN6eOyOglaODBd4H3HqOEdCae64O9pcF8tLPVDHHCeF74YB2PanH7z3LDUZzKD2hrphFkD8NrP7YbLLjT1Z6pr2o9NmgDjx0RnXtL/NdJAHZXEk4KH0MWtKjnAOt5hFUtopI5chjOTCylkIg59HBYRkRiiv0oiXZFlh/PcUOaDQZYpTGEDEmymp/ACBQ66paYB9pRBvQ/SEmBIuumeVFwBD77bGqBp6z8fwowiGKk+vn1VgRMuiYO7azuOLfTAwQCkxkD2idMOp3tgshP2BUwy3TAHuI6aW74Tfpxkujm96TPJdGd4YJoLsgfiWidg7Gj4+Y/h9bfh49Xg8cBZ82HmNMgYFO3ZSX9TTRlb+Yi3eYgD7CKbIk7nckYyk3iSW/aroZwX+CPbWNGybSsr2MEnXMyPGMOcaExfREQkJAVpRLrqTBdsC5pOTklHsmacwOVuGDtAr8iOx5ZS+PObsHG/yUjyOGHhBLjkJNhfAeUhruDB1KjZcbA1SFPbAPvKwReAQYmQmxqZ+ctx89jg83Hgt0w764NB09npPC/k2E03pLwY+lFKdZhHZwY7YHAcnHPk5r1LCXWMHA4jhplsGqcD4uOjPSPpjw6yl494mgf4ARZBbNjYzses4AW+wG3M4wpcmBso+9nSLkDTLEATb/Ev8hlLIqkR/g5ERERCU5BGpKuy7PAdD+xwweYAeG0w2g5DHeDWlVmXlFTAb56H0srWbY1N8OwqcNhh4pDOXx88kmGzcT/87Z3WQE9qPFx6EiwYBwkx0MdZwhrqhKviYazTdEiqt6A4AMOcpihvrNjbBOuaTCttuw1Od8MEJ+SE+aup4Ex7NhskJ3W+T0UtFJeDwwEjsk1BZpGuqOQge1jLf/gVFubvgoWFnwbA4gl+zShmUshEAHbwcdhjHWQ3lRxQkEZERGKGgjQi3ZFsh8l2sw5Cum9TSfsATVtL1sKcEZDshaqGjuMOOwzNhD2H4bbn2mfcVNTBX94CtxMWTeqduUuPyXfChQ6zlKjRMkuccmMog2ZHE/yyGp5vbN12fx1c5oUbEmGIfvxPiM8P722G+1+F5dtNPfALZ8Dn5sLY/GjPTvqC/WyhmsPUUNZhrAkfNZRzgF0tQRr7MXqt2VCUVUREYofuW4lI5Ow6FH6szmfq/Hx+jlnaVFkPh2tMG25/AM6fDEMHwSd7wi+JevwjOFTVK1OXnuWxmeyZsa7IBWiKA7DKB5/4TP2bcF5rbB+gafZYA7zr6735DRRvbYAv/RFeX2d+vEsq4L5X4TsPwpaSaM9O+oKD7MIK0yfOavlfa22z4UwPe6zBjCKNnB6fY18RbAKrk9+HIiISebofKCKRM6iT9Q9OuylgMSYPLp0JT62AXYchMwkumALzxoHXbdpzh3OgCiobICM5/D4y4DRa8FYj/KsOyo9c12XZ4UvxpqW2o81N9JJA+LbaYMbO90BSDGX+9CUHq+APL0ODv+PY6t2wYjuM7EPXy5ZllnZJZCWSRoAm4kimno6BeS9JZFLQ8jyHEUxmAZ/warv93MQxjy8SxzHW5vVDDTug5h2oWgI2B6ScDwnTwTMs2jMTEREFaUQkcsblQZwL6kNcoU0pNLVlfvaUubU+KR/mjoQGH7y9CbYfhJsvhEEJ4Y/vdZklTyJtfOKHP9RC255hB4LwuxpITYaJbZqz1VtQGaK5WLPKoGnuNvAu6XpGcQUs2xZ+/LW18Nm5EZvOcalpgI374NW1JqlvSiHMGgHD1HguYgYzmnf5DxfxAx7m5nZjDpxcyPfIZ2zLtniSOIMrKWIyK3mJemooYDyTOIPBjI709KOuYSvsvg7qPmrdVvkSJJ0Beb+EuBFRm5qIiKAgjYhE0tAM+M5CuOcVs7yp2bBM+NIppi337sNm2+q97V+7ucRk1sweAc98bAI99X5TTNjthDg3nDIK8lIj9u1I7KsPwlMN7QM0zfzAkkYY52zNpsmyw3Q37ApRFglgphsGaaHwcXPYTEO3+jDLxhJiqHh0KHWN8N9l8Piy1m3r98JzK+EnF8H4Y9Q+l56RxVDGMJd9bORb/JU3+RcH2EE2w1jI1YznNFy0P5kSSGUC8xjNXAL48RA/IGvRWBaUP9k+QNOs+nWoOQu8RSa7RkREokNBGhGJHJsNTh4J+Wmw5QBU1sGQdBieBRlJJlumM9X1MKPILIe6+b9QdyQjx4YJ0CyaaAoMixxRbZlOTeFsbzqSGXPkWi3BDpfHwUsNUHfUvsk2uCTOrMyT41OUBWdPhqdCXCACLJoS0el02/YDJkhztKp6+PvbcMslajAXCTZsjOMUMsinlO18hptw4iGNHDLovPq0Czcu3BGaaexpKoXK58KPVz4DKYvAnRu5OYmISHsK0ohI7yqvNRkwNQ2QlmCK/w7NNI+jpcZ3fqzkONhfAZ/sghvPN1k3NY0myNPgh3c2m4IWKhIhR3gxTdnKwxTGTLeD96jTZZYL7k+F39fCcr+JAc52wXWJcJIr1FGkq+I98PUFpvbMnsPtxy4/BSYXhH5drPh4J2HK1ZolUPvLYaQubiPCho1sisimKNpT6VOsIAQ7qbsVaACrk8C2iIj0PgVpRKT3bCw2S5ualzDZgKmFcPV8GJzWcf+hGVCUCTtCZNSMyTXjr28wrbw3lUBKHLgc8MZ6aApCvBsWTjTZOSJAsgPO88IfwzQEW+QB11FBGpcdzvLCJCfsCZrTttABGUr/7xHTiuDBa0yXpzfXQ7IXLpoJM4ZBTohfC7GkoZPuXhbm15BILHNmQOLJULYr9HjSqeBIieycRESkPQVpRKR3lFbCXS9AaZvOGxawchc88A784BzTramttAT47pGaNdsOtG4fkwvXnglJca0BHzBtutuq85miESJtzHbD1iZ4pbE1C8KOWbo0uZPMmGwnqBZs75hQYB5fO9MsH7P3kSVkE4bAMytCj2WnmGZ0IrHM7ob0z0PlixAobz/mLoCkM8GpBokiIlGlII1IVwXroakYrAA4MsAZ47d8T8T+chNccdggL83Ui+mu7QfbB2iaeZzmdvSOQ2aZ0tHdmIZnwc8uhp2HoLrBZMsMzTBLnaDzLJl4t1lPIdJGmh2+Eg9neGBzEziAUU4ocoJHK+Oiqq81YxuVC+MGw/p97bfbbfD5kyFDF7fSByTMgKIH4eBfoOZtsLlMZ6f0z0HC1GjPTkRE+tjHI5EoadwIFf+GxtVAEJz5kPJ5iJ9tPt30F/U+eH09PLy0NUslOwWuOg1mD+9erZfSyo7bJg2BrCRYsg42H4DxeXD+FJg4GNxt/h1T42FKmOIUk4aYTk6h2sOcMc4UJRY5SoIdxtthfD/6cY2UQ1WwYT8s32ZWF84eaYIVyccoIdUfDUqC686Flz6B19dBbQMUZsCls81yLZG+wGaDxNngnQD+Xabjk2swuPTnU0QkJtgsywpXA29AqqqqIiUlhcrKSpKTdUtMAN9OOHATBCuOGrBDxo9NoKavsyzzqe29LfCb5zpWxvQ44ReLzS3krnp3M/zm+dbnwzLB44K/v2eKfIzNg0SPuQV9zZlwzsSuH/vD7fD/XjVFicEcY+5I+PIpkKXF9CI9pbgcfvcCbDgqc2T+ePjy6ZCWGJ15RZtlmTi0vwlSE8xKTBERkROh61BppkwakWOp/zBEgAYgCFWPgWcCOProlcrWUnh/C6zdB4MSITcVRuWYorxtNTbBGxtMYKWr2TQjsiAjEQ7VmOdj8+BXz5qvk+NMNgxA0IJ/vQcT89sXE65tgLJacDogJ6X9+84cBr/5NOwuM0unspLNkqi4gdtWVaQ3vLGuY4Cmefv0YXD62MjPKRbYbJCTGu1ZiIiISH+kII1IZywLGsJUiQTw7TCV9/pikGbVLrj9OVNsF0wL6/X74UunmqyX7Ud1WNpSCo3+jsV+w8lJhR8sgt8tgcM1UFEP/gAkeaFgkKl306yyHoorTJCmKQAf74LHl8O2UpN9c9poOHcSDBnU+prcVPMQkV5xqBpeWxt+/OVP4OSR4NQniRNyuBo27YcVO0yNnpOGw8gcZeeIiIgMVPpoJdIZmw0cqeHH7fF9syZNZR385e3WAA2Aw27arDzwDtxyYccgTUZS96t8js+H2y81GS+bS2BMjsl2cR3pZdwUBF/Tka8D5r/Ld5olV829bBub4LlVsG4f/OQCk1UjIr3O32Rit+HUNJgf0578IOFrMpk7G/dDTT2MyjPJfdmpPfgmXZzH/jLwByE9wdSi6Q0lFXD3i7B2T+u251bCWRPhytMgJaF33ldERERil4I0IscSfybUvR9m7HRw9sEmvfvKYdeh9ttcDrNsaHcZ7C2HZC9UNZj6NP4AnDH2+PrkZiabR6LHXO00B18q6808ahvNUqvtB82t44eXtu7T1o6DpqWKgjTSQywLKiywW5DiiPZsYk9aAozIhpU7Q49PHdr1xLq2yqpNzPXtDRAIwCljTGvr5Dh4ejn85FEToGl23jT46cUwPEK/areXwiPvw0fbTew4Nw0+M8eUvYrr4eZxr69rH6Bp9soa8+976gBdTiYiIjKQHccVl8gA4xkLSZ/quN09EpIWda/jUawIFQQBSE80dWQa/eBwmBbYe8pMZ6f3tsATy0N3beqKoRlw0XTzdXWDWT5V02j+/b4413SVem8zrA5xxdJs+c7je2+Ro6z1w29q4NNl8LkKuLcGtnWSNTIQed1w8czWxLe2krxw6pjuH/NQFfzfS3DHM7B0iwmE/O4F+M0zZrnPD/7VPkAD8PxKeOhdCIb5tdWTisvh4fdh9+HW5L7icvj9C/DBlp59r0PV8Nqa8OMvf9I6BxERERk4lEkjciyOJEj+HMTNhLoPwaoH71TwjAFnZrRnd3wyk8xt8ubuSM3cDhiSDudOhj2HYddhE7TZsN/cTn97E6zYCdef3f38f48LFs+AwkFw35smQFM4CM4cB5uKobTKZOxU1EGCx3SAOpq3Dy4tk5iz2gdfrYBdbS76V/jhhUb4XQoM11/GFhML4MYL4aH3TIkou81kvVx+CozI6f7xlm83wZijuRwme6R59ePRHnkfLpsNY7rRYK67tpXAy6th1U6TVHj+NJPlsvPIys9HP4AphZDeQ0uf/E1Q7ws/XtNogjROZXmJiIgMKPooKtIVjkRwTAbv5GjPpGfkpsJnZsG9r5vnFqbAxKEamDzEZNJ8sgd2HjJft7V6D2wohlOO40olyQsT8mFqIYwfbN7zlbWtmT27DsOEwXCwOvTt+5NHdv89AXx+U9sm3mNq78iA1RSEh+vbB2iaLfPD240K0rTlsMPMETAmDw5Wgc1ufn0cTyO1Bh8sCZM5kpEEa3abJWihkhMPVXdeH+dEfbzDZPOs3mXqnAM8+RF8+xwTO95XBvvLTVy7p4I0qQlmCdeqXaHHJxUe33IyERER6dt0tSIyUJ0xFn64CIoyzfqCijpYNBFmFsG2A/DQBybn3wrx2g+2Hv/7uhymvsyybaYwRdulV5tL4LwppkbN0c6eCKO6WZSiqt5k//zsKbjhP3D3Eli7NzLrJiQm7QrAksbw4880QJ2WmHSQHA/Dc2BY1vF3um8KdIz5Ntt1CMblh/51A1CQASnxx/e+x1JeA/e/bspjtc1aCQTh3ldgcqF57nZ2P6ulut4sl6qs7TgWd2Q5mTPEJ7FEL5w6unvvJSIiIv2D7heKDFRxbjhtDAzNhJdWm0K+m0tgYzEsmgTYTD2aJC/EH3VVdjwFhJulxMPCCfC3tzuOBYKQkQC3XQof7YAPt5v3XzDeZN50pydtXSM8ugye+bh1254yU/fmB+fCnBHH/z1InxU88gjHAqw+WGaqL0jwwvQi2H2o49jOg3DRDBOfPXoVJsDVZ0JRVu/Ma28Z7D1svk5LbF92q8FvgjgeF8wcBnlpXTtmXaNZ2vXEh3Cg0mTNXDAN5owyXzebVAA/+hT8+z3YddAsJxs7GL5wKozM7bnvUURERPoOBWlEBroDVfDsqvbb9pXDSUWwdJspmnB0kGbuCQY4Th4BK3d1zPOfNdwUfchIgsIMWDz9+ANCOw7Bsx933O4LwIPvwOgcUyhZBpR8O8z3wL/rQ48v8kCCckx7hc0Gp42F19aaJLe24txQmAn3fg1+/jis32u2J8eZAM0F03pvXlX1ZjlVRa2ZR3YKlFS2lsWq95tSXZ+eA64ufGqyLHhpFTzwVuu26gb44ysmQHXl6a3LmJwOE7gZl2+COXY75KZAvLenv0sRERHpKxSkERnoAiHyCjbsh/Mnw/r9HdcfnFQEY46jYmhbWSnwvYWwscQse7LZYM5wGJVjCho3O5GMnfX7wq+d2F9hHgrSDDhxDvisF15vhOKjTv3xDji1h1ssS3sjcuCmxfD4Mli5wwQ0xuebAMjwbDM+/JtmRWSD39S/GZPXteDI8dhzGLaWmK5TzYGjRK+JETf4zcrI08eaOeZ2MYtm9yFTZDiUFz+B+RNMIKi63mToZCabBMPeWs4lIiIifYuCNCIDXXYyxLnM7eJm/gC8sxluONfUqtlaam4xnz0BZhSZNQEnKj3RZOScaFZOOIFwEZojrGOMS7813Q33p8BTDfCmz/whPM8L53pgnBqI9boxg+GHFxxZVmRBZkr7OjdDMsyjt1kWPLcSPtllgkR/OVJHvabBPEbnwYKJMHO4qcnTVaWVUBema9OoHFMg+Z71UFwByV44ezKcOQEykrs399IK86s6LQESu7ESVERERGKbgjQiA13BILj0JPjn++23l9eaSp/XnmGWCLkcpjtSXzEuL/xYVjLkpERuLhJTHDaY6YFxTrgqaCroD3aCW7VoIsbjMsWAo6mkAt7daDJoMpLgunPhyQ9NEeNBiTBvHHz9zO4FaEoqTHHkRVNMls7GNrXRs1MgKR7ues68H8BBP/zrXdhxAK49u2tlt/aVwQsfw1sbzGrUoZlw6SyYMaz3Mo5EREQkcvTnXGSgs9vhvMnmquGpleY2cFoCXDAFTh4FcR7oi3dpizJh/lh4Y0P77XYbfGGuWWMgA1qiwzxiWVkQigNm5V6OHTJifL59SdtuU5/sMgV9L5llAiUNfggEzMrMrqhtgNfXwuMfmlbdW4ph+jA4bxq8/Ik53qQCuP+10Md8bzOcO83s05mDlfDb52BLSeu2zcXw66fh++ebmj8iIiLStylIIyKm7coZ48xSppoGs/agbW2YE1FWa9qn+JtMYGRIuqlB09uSvPClU2F0Lry42twuH5oBF06FSUN6//1FTkDQgg998Pc62NuciWGHL8bDXDe4lPVzwtITYVg2bNhnnlfUwrubWse/dFrXf1W9ud608QbwukwXqPc2mfo0XzwVXlljChHHuTvWYW+2pfjYQZqNxe0DNM2CFjz8Hkws6Llf3SIiIhIdCtKISKvkOPPoKR/vgvvfNEEaMFcnF003RYm70077eKUnmCyhU0eZW9nJ3ta2KiIxbEMT3FUDjW22lQbhdzWQmGTq6siJSfDCZbPhtidblyQ1S0+EGcO7dpwDlWb50ehcEyzZfci83uU0BYnBLJ2aVAhZn0Bjk1mmZFngcZrAjd1ugjvHsmpn+LG9Zeb9FKQRERHp2xSkEZHese0A/OZ5qG1zmVnng4c+MFku50+J3Fx6Ovgk0osCFrzS2D5A0zKGKXicZoNKCxJtUOAEjzJrjsvUoXDDhfDI+7Ct1LTEnl4En5ljWoJ3xcEqyB8Ey7eB0wknjzYx4Q82m187waCpd1NRa371vbvZJBaCydTJTIbCQTAy99jv1Vkgx24Dh9rHi4iI9HkK0ohI71i+o32Apq0nV8Ds4a3VM0WkRZ0Fm5pCjzVY8FYjJNvg7SOdqWa64Yp4GKx6Nd3mdMDskTBuMByqNkGOnFRT2Lgr9h6Gu1+EZ1eYLBqAN9eZ2jAnjzbLpwYlmeOW18K8CfDhttYgjWWZIM81Z5kyWscycwQ8syL02MQhXW8TLiIiIrFL91xEpHdsLA4/dqDK1L4RkQ48NkgN8de5CdgVAGxQb7Vue98H99dCTbDja6RrkuNNfZrCzK4HaMDUmtlXbooOt/X2BlODJsFjCggDLN0CyzbDjRfBZ+eajJ1zJsMtl5qCwGU1x36/4dlw4YyO21Pi4Quntm9lLiIiIn2TMmlEpHfkpYYfS/aCuxtXQiIDiNsGizyw1t9+e70FVRZc6YH1R4197IedAZigWy8Rc7DKBGPsNlMouN5nHs3e2Qg/uABGZJvn2w/AoRqTdZObZmrUNPjhpVUmC6fOF/Jt2kn0mqVYkwrg1TVQWW+CPScNh6KsXvk2RUREJMIUpBGR3jF3JDz/CQRC3N4/czzkdrG3rcgANMUJ53vh+QbTfhvAZ8FCj/nDXWW139/CtOuWyAkEwXdk2VK8B0blmgTBmgazjConDaYNbY1HF2XCR9vM18Xl5tEsNaHrWTBJcWbZ08wRZrlUJJrliYiISOQoSCMivWNUNnx9Pvz1LdPOpNlJRabjkq4sRMJKdsAX4+AUt8moCWBqzrzWAO+GybhI0I9URKUnwrh8s4wJzDIpj8vUoAHT0SkpHkorYH+5WaoUDJpOTkc7d4qphdNd+jUqIiLS/yhIIyK9w+WEs8bDqBzT6aneB0MzzO1kdVoSOaZ4O4y3w/gjmRgHA/DPMNkyuXYoVOHgiHI7TX2YVTvNsqW20hJg9gizHOqBN01R4txUOG8aPP2RybSx201B4TPGw8JJUfgGREREJCbZLMuyjr3bwFFVVUVKSgqVlZUkJydHezoiIiIt1vrhzmooa/OXO90GP0yCCSrzFHGWBWt2w2NLYd3e1hbei2eapVD/8x9oCrTuPyjRtP0emQsJXshJNsWKvSr4KyIy4Ok6VJopk0ZERKSPmOCC21NgSxOUBiDbASOdkKcsmqiw2UwB4JG5ppCw3QbZKSZL5vcvtA/QAByugVfXQnEF3HyJqWXTVZV1sK0U1u0xwaBJBaZYcHeOISIiIrFPQRoREZE+JM+hoEysiXNDQUbr85oG080pnH1lUF3f9QDLwSq471VYtrV128PvwUUnwWWzTTFhERER6R/UrFNERESOydcEW4rh/c2wYjscrIz2jGKXxwkZieHHU7rRzQlMbZu2ARowHb2e/MgstxIREZH+Q5k0IiIi0qnD1fDQe/D6utYlPFnJ8M2FMH1YdOcWKZZlCgDbbKa2TGedlVxOOGcKrNwZevz8qZAc37X3LauBlz8JP/7yatOO26nsKhERkX5BmTQiIiISlmXB8ythyer2NVYOVMGdz8KOTpb19BfbSuGPr8CP/m0ef3kddh7s/DWTCuBzc8HZ5pOW3QbnTIbZI7v+3o1+s3wqnPLajrVvREREpO9SJo2IiIiEtb8cXgqTyVHbCJ/sMgVs27Is2LzfFMgtrzW1V8bkmU5Gfc22Uvj54+b7aPbMCrP86KbF4b+nBC9cMgtmDIOtpRAIwogcKMzoXrHflHjzHmv3hB4fOxg86uwlIiLSbyhIIyIiImHVNkJ1J5kcR2eUlFaYWil/fR3Kak1g4oLp8NYG+MwcmFzYq9PtUZZlMojaBmialVbCe5s6Dzx5XDAqzzyOV7wHLj4J1u+FoNV+LM4N88d3vvRKRERE+hYtdxIREZGw4twQ30mR28HprV9X1JrW0796AnYfNst0Vu2EW5+A9AT459twqKp35mlZx96nu8pq4KNt4cff22y6NPW2qUPhu4tMHaBmhZlww6dgdG7vv7+IiIhEjjJpREQiwfKDbxs0rISmw+AZA55x4Boc7ZmJdCo/Hc4YD8993HHM4zIBhGZbS+GdjeA/qkZK0DItoz97sgneZCTTY9bsNlk672w0gaCLTjJzyko58WPbbKaOTDh2G9gjcLvL5YQzJsDEAjhQad4zL80shRIREZH+RUEaEZHeZvmhZgmU/xk4cvVauwQcWZD5Y3CPiOr0RDpjs5nAx+EaWLrFtH4GSI4z3Z2GZ7fuu26Pqb0Syt4yk5XT6O+5uS3fDlffD/vKWrc98SF84yz41tmQeYLBoPREOHm0OWYo88ZBQjfqy5yozOQT/57kxBxiL8VsoZoykhhEHiMYRH60pyUiIv2IgjQiIr3Ntx3K/0JLgKZZ4ACUPwiZPwV7XDRmJtIl2almuc2FM6CkEuJcUJBhljq1rYfidnZexNZph0FJPTOn6nr4fy+1D9A0u/cVU6tl3rjwry8pN7V2vC7zfYTLiDljPLy/GUoq2m8vzOxelybp+7bzMf/gRnawqmXbMKbxRW5nGFOiNi8REelfFKQREeltjWuApvBj/r3g0dWexLYEL4wfYh7hTCo09WtSE0x9mrbGD4GMRNPdqCfsOACvrgk//uqa0EGaylp4ZY3p0FRea+Z7+jhTnDc3reP+hZlw8yWmSPB7m0xQat44mD0C8tI77i/902H28U9+2i5AA7Cdlfybn/BN/sIgTqBCtIiIyBEK0ohI/1W/FqxqsMWBezw4otSnNlBp/muLA+9UcKSC1Qg2j6lTY/miMy+RHjYsEz4zF/71LrgcpvBuIAip8fCdc+CU0T3XLrop2LH2TVu1ITpSBYLw1HJ4fFnrtjofvLgKisvhB+dDSkLH1w0ZBJ+da7pU2eheC23pH/azhe2sCDm2lRUUs0VBGhER6REK0ohI/+PbCdVPQNm94N8FjkGQ8gVI/TJ4x0Z+Pu5RYE+C+HlQ+Q/wbTHbbW5IPA9s3sjPSaQXxHng0lkwdjC8/AkUV8LYPDh1jGm93ZOtonNSYFIBrN4devzUED/qew7B8yEKIAOs2gU7DsKUEEGaZpGsPyOxpZbyY4xXRGYiIiLS7ylIIyL9S6AeKh6EQ7e32XYYyu4G/07I/l9wR7jIo2c0JJwNh++EwMHW7ZYPGpZD3WvgLgJbBNrEiPSyBC/MHAEnDTfZLi5H77xPXjp891z4xp87ZtRMHwZTCju+5lAN1HeSuLbrIEwZ2qPTlH4ikUHHGA+xVk5EROQ46IpARPqXxnVQ9ofQY9VPg29TZOcD4MwyS5wI0PJr1+YGVwE4MqHmVWjaG/q1TQfBt8v8V6QPsdl6L0DT7Izx8NdvwNzRpnNUdip8fQH89oswLLvj/p5j3JpKUFKbhJHHCEYyM+TYaGaTy6gIz0hERPorZdKISP8SKIFgVfjxxs2QeGbk5tMscBDcwyDYAATB5jI1aQCseghUQ9taHU3lUPcGVD9nMoEcGZB0ASTMOxLwEZF4D5w9GaYXQWkluJwwPAscYYJD+emmvsyewx3HvK727cRF2konjy/wKx7iZjaxtGX7aObweX5JOjlRnJ2IiPQnfSKTZufOnVx11VUUFRURFxfH8OHDueWWW/D52ucsr169mlNPPRWv18uQIUO44447ojRjEYka2zFaWUcrwOHMAexgjwd7YmuABkxWjT2+9XmwEaoehooHjiyPCpp23RV/har/QFCFhkXaykg23aNG5YYP0ACkJcI3zoLko35NOB1me091npL+aSiTuYb7+BGP8U3+zI94nGu4j6FMjPbURESkH+kTmTQbN24kGAxy3333MWLECNauXcvXvvY1amtrueuuuwCoqqpi4cKFLFiwgHvvvZc1a9bwla98hdTUVK6++uoofwci0iXBBmjaZzof2dPBdRx3Jl1DTQelhhDVQR1ppohvNHjGmwCSVd9xLG4OuNr0NfbvhJpXQh+n+iWIPwM8I3plmiL93aQCuO2zplDwlhLITTU1bEZkg71P3LqSaEojhzRlzYiISC+yWZZlRXsSx+POO+/kT3/6E9u3bwfgT3/6Ez/96U8pKSnB7XYDcOONN/LUU0+xcePGLh+3qqqKlJQUKisrSU5O7pW5i0gIjdug8p/QsAoIgCMdkhZDwpngSOzesWpeh/1fhqaS1m12L+TcC0mXRqcVt2VB/YdQ9n/tl2N5JkH6N8E1uHVb7Vtw+K7wxxp0AySc0ntzFRHp45qCsKcWDjaA2w5DEmCQag6JSAzTdag06xOZNKFUVlaSnp7e8vyDDz7gtNNOawnQAJx99tn85je/oby8nLS00FX3GxsbaWxsbHleVdVJLQsR6R3+Yjj0a1NPplmgDCr+YqqPJn2qe8dLPAPyn4D6pdC42mTXxJ8O3mnRCdCA+T7iZ4HrNyZTJlgDzlxwFYHjqD/EtmPM8VjjIiIDWGUjPLELnt8LjUGzLTcOvj4apmtJm4iIxLg+GaTZunUr99xzT8tSJ4CSkhKKiora7Zednd0yFi5Ic/vtt/Pzn/+89yYrIsfWuL59gKatqv+Cdxa4ulnRM366ecQaV755dMY5BOxJEKzuOGZPOfbrRaRPsiwot0zBwFQtvTpurxXDE7vbbyuuhzvWwG3TYbhuUIuISAyL6keAG2+8EZvN1unj6KVK+/bt45xzzuGyyy7ja1/72gnP4cc//jGVlZUtjz179pzwMUWkm3wbwo8FyiBY0TvvG2yExq3QsBp8O8Fq6p336S5XPqR9jY5xdBekXd1+aZSI9AvbmuDPdfCjSrihEv5VB3ti5FdSX1JaB0+H+ShXF4CVITp7iYiIxJKoZtJ8//vf50tf+lKn+wwbNqzl6/379zN//nzmzp3L/fff326/nJwcSktL221rfp6TE77Am8fjwePxhB0XkQhwpHcy6Oyd5T2+PVD5d6hfATSBzQsJZ0DypeDM7Pn36w6bDeJPNR2hat8F/3bTvjv+lOgVPhaRXrPNDz+vNlk0zR6th/d98NMkGNxJxyppr7YJyhrDj2/RqnYREYlxUQ3SZGZmkpnZtYuhffv2MX/+fKZPn84DDzyA/agWDHPmzOGnP/0pfr8fl8tc0L3yyiuMHj067FInEYkRninAo0Cw41jcDHD28PKepnIo+z34Nrdusxqg5gWTTZP+jejXfbE5wTPWPESk3wpY8EJj+wBNsz0BWOaDxXEdxyQ0rwMSnVATJgspLz6y8xEREemuPrHied++fcybN4+CggLuuusuDh48SElJCSUlrTUsPv/5z+N2u7nqqqtYt24djz76KHfffTfXX399FGcuIl3iLoKUz0PTIWjaD8FKsPzgHGy2293HPkZ3+Le3D9C0VfsG+Hb17PuJiIRxOAjLfeHH326EhhDxawktNx7Oygs95rTBrCgnSoqIiBxLnygc/Morr7B161a2bt1Kfn77O+rNHcRTUlJYsmQJ1157LdOnTycjI4Obb76Zq6++OhpTFpGuCvqg9jWoXQqpXwL/DghUgXcqJM43AZye1rSvk0E/BMt7/j1FRMKxASEyaaT7bDY4bwjsr4dlB1u3xzlMd6eRKhosIiIxzmY1RzkEUH96kYhrWAsHfkrLUid7Gtg9ECiHxHMg9Srzqbsn1b4Fh+8KP551O3gn9Ox7ioiEYFnwpzp4sSH0+FXxcJGWO3VbtR921sDuGoh3QlEiFCSCvYf/nIiI9BRdh0qzPpFJIyL9WN37tKtFEyxvfVr7GiSeC64wuevHyzUM7MkQDFFB0jUcXAU9+34iImHYbHCOx9SeKTtqWVOhA2b28GrPgSLJBRPTzENERKQv6RM1aUSkH2sqCT8WrAGrkzYdx8s9BNK/A7ajKkg6MiH9GnDo7oWIRM4wJ/wsCS71Qr4dChxwRRz8OAny1NlJRERkQFEmjYhEl2csNHwUesyRbTJeekP8LHD+BnyboOmAyZ5xjwJXbu+8n4hIJ4qc5nGR1yzJSdJtNBERkQFJQRoRia646VD9hMmaOVryJeAc1Hvv7R5qHiIiMSJFmTMiIiIDmu7TiEh0uYdBxo3gKmzdZk+ClCsg/pTozUtERERERCTClEkjItHnnQxZt4J/L+ADewa48nu+q5OcGMtv/mtzRXceYFri+PdC024INoIz12RF2dUGR0RERET6LgVpRCQ2OFLMI9YEGsG3zizHsieBexI4Bth6BH8JNKyA2jeBIMSfDnEzer7rVldZAah7G8rvb7NMzg4Jp5sMLGdGdOYlIiIiInKCFKQREQmnYSNU/BUq/wGBCnBkQOqXTSDAOyras4sMfzEcvhN8W1q3+TZD7ZIjy9TyIz+nxs1w+B7A32ZjEGrfAEcOJF0Ivu0QOAR2D7iKVBBaRERERPoEBWlERELxlcDh26Dy0dZtgUMmYBEsh4xfgSstevOLlPql7QM0zfy7TDZLyucjP6eGpbQP0LRRvwywweHfQtMe87VnEmTcYDJtbPqzJyIiIiKxS4WDRURC8W2GysdCj5X/E3wbIjufE+HbZ7JMqp+Fug8hUN211wVqoPb18OO1b0JTeY9MsVt8u0Nvt5pMZs/hO44EaAAsaPwESq6HhjURm6KIiIiIyPHQLUURkVAC+4BgmMFGaCqO5GyOj2VB3Ttw8Gfg22SCGDgh6WJI/zY4Ek2dHUdymAMEj7wm3PEDhP836kXu4dCwvON211Dz/VqNHccCpVD9FHgnKptGRERERGKWMmlEREKxJXQ+bj/GeCzwbYXSH0LjujbBFj9U/Rsq/ghVL8GBn0LNq6GzaxzJED8z/PHjpoEjCku+4maCzdNxuyPFfB/BUJlClqll09UsIhERERGRKFCQRkQkFFcRuIaEHvOMMeOxrv4D8B+1NMhqhGAdVDwErmzw74Syu6H66dBZM/Gngz1EIMaeDAkLwRaFPyPukTDo++BIb7PRBZ7J4EwDyxfiRTazv90bqVm2F6gzy7QaVkPdcmjcYJaTiYiIiIi0oZxvEZFQ4iZCzu9h/9cgUNa63ZEN2XeCd3TUptZl/l20W45kBSB4ZClQsAqsOrDFgVVvlgLFzwX3sPbHcA+DzFug5jmo/wiwIG4qJF4AnpER+kaOYrNB/BwTKGvaa4Iyjiywx0OgGOre6/gaexIkXwz2uMjO1bKgcTXUL4fG9SYYBuAaDN6ZkPZV8PSBc0lEREREIkJBGhGRcOIXwZBnTHDCvxXco8A7A+JnRHtmXdMh2ycIWOZLexrgAutIlySr0bTbPjpIA+AZDu5vQdNB83pnZmzUdXHlmEdbCQvAtw2qHm/dZk+AtGsh7qTIzg/AtxHK/mYyeCr/1bq9cQtgg0OHIOtXJmgjIiIiIgNeDHzKFhGJUQ4HxJ9kHn2Rd7rJ/AmUdhxLvgiCtUCbJU6dLV2yOToGRGKRdxIMuhGSLzOZKzYveKeCezQ44iM7FysANUvAMwzK/nTUYMAEveyJ0LhRQRoRERERARSkERHpv7xjIfduKL3R1J7BAbgh+QJIPAeqnm7d154IzvwoTbSHuYeYR8K86M4jWG2KNnsnQzBEq/JgtakD5NsGnBnx6YmIiIhI7FGQRkSkP0uYD4P/aTo9BcpNB6RgI1Q/C8FDR3ZyQOpXwNVPgjQxw2Vq/mAz3aiObg1uc5gxZ2Y0JiciIiIiMUhBGhGR/s4zyjzA1KBpXAf+MeBPOpJxsgA840xBXuk5jgRIXAi1b0D8qVD76lHjmabYsWdidOYnIiIiIjFHQRoRkYHE5gLvFPBMMl2RbB4FZ3pT3ExoWAnuEdC039TJAbCngDMH0r8VuliziIiIiAxICtKIiAxENrspqiu9y5lpOkv5NoMzyyx5ClSDMxe848E1tPOCzSIiIiIyoChIIyIi0puc6eCcHe1ZiIiIiEgfoNt3IiIiIiIiIiIxQEEaEREREREREZEYoCCNiIiIiIiIiEgMUJBGRERERERERCQGKEgjIiIiIiIiIhIDFKQREZG+zwqA5Y/2LERERERETohacIuISN/VVA4NK6DmRQjWQ/zJ5uEeGu2ZiYiIiIh0m4I0IiLSN/kPQdn/QuW/wWoAbFC7BLyTIevX4BkZ7RmKiIiIiHSLljuJiEjf1PAhVPztSIAGwIJgNdQvhcp/avmTiIiIiPQ5CtKIiEjfE6iF6qcAq+OY1QS1r0JTSaRnJSIiIiJyQrTcSURkoGsqA/8esOrBMQhchWB3R3tWnQvWQLAq/HjTYVNMWERERESkD1GQRkRkILD84NsF/u3ma3cROIea52V/gKa9R3Z0QsI8SPk8ODOjOOEu8J4EtW+EHoubBo4Yn7+IiIiIyFEUpBER6e+CDVDzAlT8C2iu02KH1K9C5b/Aqmuz85GlQvZ4SL0KbDG6KtaZBZ6x4B4Nvk3tx2weSP0aOBKiMzcRERERkeMUo5++RUQkpEDdkYyY3RD0de01jeuh4kFaAzSYQIZvLfh3hH5Nzavg3xt6LBL8B6BhLdSvAP++juM2G3inQPo3Ifkz4MgCexLEnQw5/w+8MyM+ZRERERGRE6VMGhGRvsCyoGEVVP0HGjeAzQHeaZB8KXhGd/662iV0KLBrTwbfXmgqBUc62FxHva7OdEqKtKZyaFhh5mwFwD0SAofN95pwBtg9rfu68iBhAbhGQcKZ5ntwFZmaOo74yM9dREREROQEKUgjItIXNK6BQ7eC1WieWwHTarpxI2T9wtSYCcXym0BMh+214Co40qY6ABwVpLF5zJKnSGoqg7LfQ/n9tAsqJX3KPHWkQ/ys9q9xZpgH0yI3TxERERGRXqLlTiIisS7YCNVPtwZo2o1VQN174V9rc4FrRIjX1ZjCwM4MQsbr4+eCa8jxzvj41H8AVY/TIeun+hmwu6DmJQjWR3ZOIiIiIiIRpCCNiEisC5SZjJlw6j8yxYFDsdkgcT4dMmUA6pZB1q9NhkpbnimQ/FmwRTDZMlAN1c9DsC70eO0bJrsnGkuwREREREQiRMudRERinc0JNnf4cXucqVETjnsMDLoeKv4KgUNHXpMIyRdC/HzwTgL/TgjWgjMXXEPBkdyT38GxWY3m/W1usEJkywQqTB0dW1xk5yUiIiIiEkEK0oiIxDpnJiTMO7IUKITEhR0L/zazLBPg8E6E7DvBvwcIgCMbXPkm08aRb76OJnsyeEaBfxv4KjuOe0aDdzI4kiI/NxERERGRCFGQRkSkL0hYAA0rwbe9/fa4OWZ5UiiNW6D2FahfabJxEuZB/KngGtzbs+0+uxuSzjdLsJyDoWk/LbVpbPGQtBi8E6I6RRERERGR3mazLMs69m4DR1VVFSkpKVRWVpKcHOF0fxGRzvhLoHEt1L1vghrxp5mlTMEqs1zIngKuHLNv4yY4+Asz1pZ7GAy6EVy5kZ//sVhNUP8hVPwdfFvM8idXEaRdbYJRDi11EhERkf5J16HSTJk0IiJ9hSvHPBIXmOe+3VDxZ5N9gt8UAE6+xARvqp/tGKABk4nTsBJc50V06l1ic5quUu4xECgFbODMAUdqtGcmIiIiIhIRCtKIiPRFTQfg8B3g39W6LVAG5X+GQB3494Z/be2bkHh2ZLs3dYcz3TxERERERAYYteAWEemLGje3D9C0Vf1fcI/q5MW2Iw8REREREYklMXobVUREOuXbFH7MqjcdocJJmN95y26REHy1ULkT6svAnQAphRA3KNqzEhEREelfFKQREemL7J0VlHOYAsH2VAhWtB9yjwDv1F6cmPRHVfvg4/uh5GNamm4lDYaZ34WMsVGdmoiIiEi/oiCNiEhf5J0ElU6gqeOYZwJ4xkHmz6DuTaj/yGTOJJwJcbNbO0CJhNFQCRXboWwzxGfBztehZCXY2iySrt4H798BZ9wOiTqlRERERHqEgjQiIn2RexikfdUUCibQut2RCalfAnsceIab/ZIvBezgSIrSZKUvqT0AK++F/R+Z58MXweoHISELErLbr5SrPwTlWxSkEREREekpCtKIiPRFNhckLgT3cNNSu+kweMaYDBrX4Db72cCREr15Sp+zfUlrgAYg2AQBn1ny5EoAz1GnU82ByM5PREREpD9TkEZEpK+yuY4EZsZEeybSx1gWVO0FXw244iA5H+xOqCmFHa+039fuNI9gk8mcOTpIk9BJjWoRERER6R4FaURERAaQusOw5RnY9jL4a8HhgYJTYeynTSCmsbr9/lV7YMgpsOtNaPK1H4tLh7QREZu6iIiISL9nP/YuIiIi0h8E/LD+Edj4hAnQAAQaYcersOKPYHdBUl771xxaD4XzIG8meNqUNUrIhtk/7Li/iIiIiBw/ZdKIiIgMEJW7YMdrocdKV0H9ARh7KSz9bet2KwjbXoL8uVB4uqlP40qElEItdRIRERHpaQrSiIiIDBD1hyDoDz9evR8KToNpX4d1j0JjhdmenA/Dz4acaRGZpoiIiMiApSCNiIjIAOHwdj7uSgBXPIw83wRk6g6aosFJg8GbGpEpioiIiAxoCtKIiIgMECkFJiumam/HMXcSpAxtfZ6Up3ozIiIiIpGmwsEiIiIDRFw6TP8meJLbb3d64aRvmQCOiIiIiESPMmlEREQGkKyJMP92OLgOKndAYi5kTYLUYWCzRXt2IiIiIgObgjQiIiIDTEqBeYiIiIhIbNFyJxERERERERGRGKAgjYiIiIiIiIhIDFCQRkREREREREQkBihIIyIiIiIiIiISAxSkERERERERERGJAQrSiIiIiIiIiIjEAAVpRERERERERERigII0IiIiIiIiIiIxQEEaEREREREREZEYoCCNiIiIiIiIiEgMUJBGRERERERERCQGKEgjIiIiIiIiIhIDFKQREREREREREYkBCtKIiIiIiIiIiMQABWlERERERERERGKAgjQiIiIiIiIiIjFAQRoRERERERERkRigII2IiIiIiIiISAxQkEZEREREREREJAYoSCMiIiIiIiIiEgMUpBERERERERERiQEK0oiIiIiIiIiIxABntCcQayzLAqCqqirKMxEREREREZGBoPn6s/l6VAYuBWmOUl1dDcCQIUOiPBMREREREREZSKqrq0lJSYn2NCSKbJZCde0Eg0H2799PUlISNput19+vqqqKIUOGsGfPHpKTk3v9/aT/0zklPU3nlPQ0nVPSG3ReSU/TOSU9rbNzyrIsqqurycvLw25XVZKBTJk0R7Hb7eTn50f8fZOTk/XLX3qUzinpaTqnpKfpnJLeoPNKeprOKelp4c4pZdAIqHCwiIiIiIiIiEhMUJBGRERERERERCQGKEgTZR6Ph1tuuQWPxxPtqUg/oXNKeprOKelpOqekN+i8kp6mc0p6ms4p6QoVDhYRERERERERiQHKpBERERERERERiQEK0oiIiIiIiIiIxAAFaUREREREREREYoCCNCIiIiIiIiIiMUBBmij51Kc+RUFBAV6vl9zcXL74xS+yf//+dvusXr2aU089Fa/Xy5AhQ7jjjjuiNFvpC3bu3MlVV11FUVERcXFxDB8+nFtuuQWfz9duP51X0h233norc+fOJT4+ntTU1JD77N69m/POO4/4+HiysrL44Q9/SFNTU2QnKn3KH/7wB4YOHYrX62XWrFl8+OGH0Z6S9BFvv/02F1xwAXl5edhsNp566ql245ZlcfPNN5Obm0tcXBwLFixgy5Yt0Zms9Am33347J510EklJSWRlZXHRRRexadOmdvs0NDRw7bXXMmjQIBITE7nkkksoLS2N0owl1v3pT39i0qRJJCcnk5yczJw5c3jxxRdbxnU+ybEoSBMl8+fP5z//+Q+bNm3iv//9L9u2bePSSy9tGa+qqmLhwoUUFhayYsUK7rzzTn72s59x//33R3HWEss2btxIMBjkvvvuY926dfzud7/j3nvv5Sc/+UnLPjqvpLt8Ph+XXXYZ11xzTcjxQCDAeeedh8/n4/333+fvf/87Dz74IDfffHOEZyp9xaOPPsr111/PLbfcwsqVK5k8eTJnn302Bw4ciPbUpA+ora1l8uTJ/OEPfwg5fscdd/B///d/3HvvvSxbtoyEhATOPvtsGhoaIjxT6Sveeustrr32WpYuXcorr7yC3+9n4cKF1NbWtuzzve99j2effZbHHnuMt956i/3797N48eIozlpiWX5+Pr/+9a9ZsWIFy5cv54wzzuDCCy9k3bp1gM4n6QJLYsLTTz9t2Ww2y+fzWZZlWX/84x+ttLQ0q7GxsWWfG264wRo9enS0pih90B133GEVFRW1PNd5JcfrgQcesFJSUjpsf+GFFyy73W6VlJS0bPvTn/5kJScntzvPRJrNnDnTuvbaa1ueBwIBKy8vz7r99tujOCvpiwDrySefbHkeDAatnJwc684772zZVlFRYXk8Huvhhx+OwgylLzpw4IAFWG+99ZZlWeYccrlc1mOPPdayz4YNGyzA+uCDD6I1Telj0tLSrL/85S86n6RLlEkTA8rKyvj3v//N3LlzcblcAHzwwQecdtppuN3ulv3OPvtsNm3aRHl5ebSmKn1MZWUl6enpLc91XklP++CDD5g4cSLZ2dkt284++2yqqqpa7hiJNPP5fKxYsYIFCxa0bLPb7SxYsIAPPvggijOT/mDHjh2UlJS0O79SUlKYNWuWzi/pssrKSoCWz08rVqzA7/e3O6/GjBlDQUGBzis5pkAgwCOPPEJtbS1z5szR+SRdoiBNFN1www0kJCQwaNAgdu/ezdNPP90yVlJS0u6iB2h5XlJSEtF5St+0detW7rnnHr7+9a+3bNN5JT1N55R0x6FDhwgEAiHPGZ0vcqKazyGdX3K8gsEg1113HSeffDITJkwAzHnldrs71GXTeSWdWbNmDYmJiXg8Hr7xjW/w5JNPMm7cOJ1P0iUK0vSgG2+8EZvN1ulj48aNLfv/8Ic/5OOPP2bJkiU4HA6uuOIKLMuK4ncgsai75xXAvn37OOecc7jsssv42te+FqWZS6w6nnNKRESkv7v22mtZu3YtjzzySLSnIn3c6NGjWbVqFcuWLeOaa67hyiuvZP369dGelvQRzmhPoD/5/ve/z5e+9KVO9xk2bFjL1xkZGWRkZDBq1CjGjh3LkCFDWLp0KXPmzCEnJ6dDle/m5zk5OT0+d4ld3T2v9u/fz/z585k7d26HgsA6rwS6f051Jicnp0NnHp1TEk5GRgYOhyPk7yGdL3Kims+h0tJScnNzW7aXlpYyZcqUKM1K+opvfetbPPfcc7z99tvk5+e3bM/JycHn81FRUdEu+0G/t6QzbrebESNGADB9+nQ++ugj7r77bj7zmc/ofJJjUpCmB2VmZpKZmXlcrw0GgwA0NjYCMGfOHH7605/i9/tb6tS88sorjB49mrS0tJ6ZsPQJ3Tmv9u3bx/z585k+fToPPPAAdnv7ZDmdVwIn9rvqaHPmzOHWW2/lwIEDZGVlAeacSk5OZty4cT3yHtJ/uN1upk+fzmuvvcZFF10EmL9/r732Gt/61reiOznp84qKisjJyeG1115rCcpUVVW13MkWCcWyLL797W/z5JNP8uabb1JUVNRufPr06bhcLl577TUuueQSADZt2sTu3buZM2dONKYsfVAwGKSxsVHnk3SJgjRRsGzZMj766CNOOeUU0tLS2LZtGzfddBPDhw9v+eH8/Oc/z89//nOuuuoqbrjhBtauXcvdd9/N7373uyjPXmLVvn37mDdvHoWFhdx1110cPHiwZaw5Mq/zSrpr9+7dlJWVsXv3bgKBAKtWrQJgxIgRJCYmsnDhQsaNG8cXv/hF7rjjDkpKSvif//kfrr32WjweT3QnLzHp+uuv58orr2TGjBnMnDmT3//+99TW1vLlL3852lOTPqCmpoatW7e2PN+xYwerVq0iPT2dgoICrrvuOn71q18xcuRIioqKuOmmm8jLy2sJCooc7dprr+Whhx7i6aefJikpqaUuSEpKCnFxcaSkpHDVVVdx/fXXk56eTnJyMt/+9reZM2cOs2fPjvLsJRb9+Mc/ZtGiRRQUFFBdXc1DDz3Em2++ycsvv6zzSbom2u2lBqLVq1db8+fPt9LT0y2Px2MNHTrU+sY3vmHt3bu33X6ffPKJdcopp1gej8caPHiw9etf/zpKM5a+4IEHHrCAkI+2dF5Jd1x55ZUhz6k33nijZZ+dO3daixYtsuLi4qyMjAzr+9//vuX3+6M3aYl599xzj1VQUGC53W5r5syZ1tKlS6M9Jekj3njjjZC/k6688krLskwb7ptuusnKzs62PB6PdeaZZ1qbNm2K7qQlpoX77PTAAw+07FNfX29985vftNLS0qz4+Hjr4osvtoqLi6M3aYlpX/nKV6zCwkLL7XZbmZmZ1plnnmktWbKkZVznkxyLzbJUqVZEREREREREJNrU3UlEREREREREJAYoSCMiIiIiIiIiEgMUpBERERERERERiQEK0oiIiIiIiIiIxAAFaUREREREREREYoCCNCIiIiIiIiIiMUBBGhERERERERGRGKAgjYiIiIiIiIhIDFCQRkREREREREQkBihIIyIiMkDMmzeP6667rkv7/vnPf2by5MkkJiaSmprK/2/v/l1SbeM4jn88PoSJkCSVRpGgJKSLNRk0FA41R64JIWhDRUQFQT/AKGjyDzAaKwiioSFqkIgMGoTGhszFlpps6eezBTdZp4fzHI4d3y+4lvv6Xr/WD9d938FgUCsrK2/9i4uLMplMisfjhnG5XE4mk0n5fF6SlM/nZTKZyrZsNvvh+svLy+ru7pbVapXdbv+vRwUAAPiWCGkAAIDB+vq6JiYmNDY2plwup5OTE01PT6tUKhnqLBaL0um0Li8vfzrn4eGhisWioXV1dX1Y//DwoKGhISUSiV8+DwAAwHfxz5/eAAAA+P2i0agymYwymYxSqZQk6erqSm63+13t3t6eIpGIRkZG3p75/f53dT6fT42NjZqbm9P29van6zscDjmdzi/vd2lpSZK0sbHx5TEAAADfHTdpAACoAqlUSqFQSLFY7O0mS2tra9lap9OpbDar6+vrn867urqqnZ0dnZ+f/99bBgAAqDqENAAAVIG6ujrV1NTIarXK6XTK6XTKbDaXrV1YWJDdbpfb7ZbP51M0GtX29rZeXl7e1XZ2dioSiWhmZubT9bu7u2Wz2QwNAAAARoQ0AABUMb/f/xaaDAwMSJJcLpdOT091cXGh8fFxPT09aXh4WP39/WWDmmQyqePjYx0cHHy4ztbWlnK5nKEBAADAiG/SAABQxfb39/X4+ChJqq2tNfQFAgEFAgGNjo4qHo+rp6dHmUxGvb29hjqPx6NYLKbZ2Vml0+my67S2tsrr9f6eQwAAAPwlCGkAAKgSNTU1en5+Njxra2v70tiOjg5J0v39fdn++fl5eTwebW5u/tomAQAAqhghDQAAVcLtduvs7Ez5fF42m0319fX68eP9m8+JRELNzc3q6+tTS0uLisWiksmkGhoaFAqFys7d1NSkyclJra2tle2/vb3Vzc2N4ZndbpfFYilbXygUdHd3p0KhoOfn57fXo7xeL9+zAQAAfy2+SQMAQJWYmpqS2WxWR0eHGhoaVCgUytaFw2Fls1kNDQ2pvb1dg4ODslgsOjo6ksPh+HT+jwKUcDgsl8tlaLu7ux/ONT8/r2AwqIWFBZVKJQWDQQWDQf4iBQAA/mqm19fX1z+9CQAAAAAAgGrHTRoAAAAAAIAKQEgDAAAAAABQAQhpAAAAAAAAKgAhDQAAAAAAQAUgpAEAAAAAAKgAhDQAAAAAAAAVgJAGAAAAAACgAhDSAAAAAAAAVABCGgAAAAAAgApASAMAAAAAAFABCGkAAAAAAAAqwL/s+y16NHhP3gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "\nResumen de Clusters:\n5 49\n14 44\n8 38\n1 35\n2 31\n6 31\n19 30\n18 27\n7 27\n12 27\n4 25\n9 22\n10 20\n16 19\n15 15\n13 14\n17 13\n11 9\n3 9\n0 4\nName: Cluster, dtype: int64\n\nCluster 0:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n68 278.0 Exterior de malla técnica ... 19.815088 -10.885159\n74 NaN Exterior de malla ... 21.941719 -10.785176\n165 330.0 Exterior de malla técnica ... 20.837984 -10.885697\n282 330.0 Exterior de malla técnica ... 20.412170 -10.892855\n\n[4 rows x 15 columns]\n\nCluster 1:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n19 320.0 Parte superior textil ... -21.108912 -6.493203\n46 323.0 Parte superior de malla ... -15.119090 -1.197047\n47 364.0 Exterior textil ... -18.662340 -0.758213\n48 286.0 Parte superior textil ... -19.311958 -3.636598\n96 NaN Exterior de malla ... -12.407335 -4.614008\n\n[5 rows x 15 columns]\n\nCluster 2:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n10 275.0 Exterior de malla ... -6.962754 -21.797403\n13 NaN Exterior en tejido de malla ... -7.990644 -24.520367\n20 267.0 Parte superior de malla transpirable ... -10.867888 -24.307665\n45 239.0 Textil ... -22.723793 -15.788798\n52 275.0 Exterior de malla ... -4.509296 -22.302498\n\n[5 rows x 15 columns]\n\nCluster 3:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n5 NaN Malla Técnica Reciclada ... 17.060745 10.778292\n83 NaN Malla Técnica Reciclada ... 16.683235 10.083214\n180 NaN Malla Técnica Reciclada ... 16.605957 10.964303\n187 NaN Malla Técnica Reciclada ... 17.209896 11.870272\n189 NaN Malla Técnica Reciclada ... 17.400578 11.692134\n\n[5 rows x 15 columns]\n\nCluster 4:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n23 279.0 Parte superior de malla ... 24.868908 25.097902\n37 299.0 Exterior de malla ... 27.103107 24.626539\n71 279.0 Parte superior de malla ... 24.243345 24.382366\n78 310.0 Parte superior de malla ... 24.756914 24.047520\n97 310.0 Parte superior de malla ... 22.776726 23.787300\n\n[5 rows x 15 columns]\n\nCluster 5:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n25 268.0 Exterior en tejido de malla ... 9.414218 -11.095246\n33 NaN Exterior de malla ... 14.699205 -9.345591\n42 540.0 Exterior de malla técnica ... -0.360923 -1.651374\n55 295.0 Exterior de tejido adidas PRIMEKNIT ... 19.124922 -5.523604\n61 257.0 Exterior de malla con refuerzos de TPU ... 11.038683 -10.796019\n\n[5 rows x 15 columns]\n\nCluster 6:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n12 223.0 Synthetic ... 12.747667 27.678469\n17 295.0 Exterior en malla ... 16.390188 24.164738\n21 230.0 Exterior liviano en malla ... 14.460028 23.500111\n26 230.0 Exterior liviano en malla ... 13.874146 22.178349\n27 265.0 Parte superior de malla ... 17.188601 22.407335\n\n[5 rows x 15 columns]\n\nCluster 7:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n3 200.0 Parte superior de malla ... 1.755538 11.330632\n28 230.0 Exterior liviano en malla ... 0.703063 14.455057\n65 275.0 Exterior textil ... -23.018738 4.829057\n117 265.0 Parte superior de malla ... -0.186041 10.122837\n125 275.0 Exterior textil ... -22.996166 4.856834\n\n[5 rows x 15 columns]\n\nCluster 8:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n2 166.0 Parte superior de malla técnica ... 8.224779 10.782299\n8 NaN Exterior de malla con cuello acolchado ... 6.570870 6.397749\n11 238.0 Parte superior de malla ... 13.326708 9.309869\n24 230.0 Exterior liviano en malla ... 6.502467 13.272505\n38 NaN Parte superior de malla acolchada ... 9.434493 8.326558\n\n[5 rows x 15 columns]\n\nCluster 9:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n22 585.0 Exterior textil ... 5.375830 -1.062628\n43 540.0 malla técnica ... 1.160343 -2.220453\n54 260.0 Exterior textil ... 5.994472 -2.767516\n92 272.0 Parte superior textil ... 8.725078 -0.769287\n93 NaN Exterior de malla con cuello acolchado ... 1.027744 0.455712\n\n[5 rows x 15 columns]\n\nCluster 10:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n15 334.0 Exterior técnico de malla ... -5.793875 -10.719331\n76 277.0 Parte superior de malla acolchada ... -8.826781 -13.096778\n87 320.0 monomalla ... -3.203534 -17.623938\n89 320.0 Parte superior de monomalla ... -3.568880 -17.335764\n112 277.0 mesh ... -6.326353 -16.414343\n\n[5 rows x 15 columns]\n\nCluster 11:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n32 247.0 Parte superior de monomalla ... 17.916094 5.371136\n77 247.0 Monomalla ... 18.768627 4.620423\n136 247.0 monomalla ... 18.994259 4.688051\n185 247.0 monomalla ... 19.126192 5.276633\n262 230.0 Exterior Monomesh ... 10.349771 -20.242315\n\n[5 rows x 15 columns]\n\nCluster 12:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n7 213.0 Parte superior de malla ... 2.448739 -16.902372\n40 254.0 Monomalla ... -0.392282 -18.852966\n49 254.0 Forro interno textil ... 10.334534 -3.532351\n79 213.0 Parte superior de malla ... 2.740963 -16.275845\n85 242.0 Parte superior de malla ... 5.266422 -18.370689\n\n[5 rows x 15 columns]\n\nCluster 13:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n0 183.0 Synthetic ... 10.893925 27.395477\n1 289.0 adidas Primeknit ... 4.881872 22.404074\n44 278.0 Technical mesh ... -28.522972 -8.019142\n63 243.0 Exterior de malla acolchada ... -0.501422 -13.866938\n101 267.0 mesh ... -28.068459 -7.972044\n\n[5 rows x 15 columns]\n\nCluster 14:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n14 NaN Parte superior de malla ... -12.902549 1.474306\n30 270.0 Exterior de malla ... -7.744373 1.824502\n31 306.0 Parte superior de malla ... -10.323046 5.550931\n36 NaN Exterior de malla con cuello acolchado ... -6.863936 7.874070\n39 664.8 Exterior textil ... -10.836259 10.468987\n\n[5 rows x 15 columns]\n\nCluster 15:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n455 NaN termoplástico, ; . ... -7.866673 -1.848189\n456 203.0 mesh, , termoplástico ... -4.990084 -4.200123\n460 248.0 , termoplástico ... -4.633328 -3.072667\n464 240.0 , termoplástico, termoplástico ... -3.273659 0.947516\n465 NaN termoplástico, ... -16.431103 10.599090\n\n[5 rows x 15 columns]\n\nCluster 16:\n Weight Upper_Material Midsole_Material ... Cluster tsne-2d-one tsne-2d-two\n454 NaN , Cuero bovino ... 16 -20.825001 11.226727\n458 NaN EVA ... 16 -18.891546 14.067634\n459 169.0 , ... 16 -20.181263 13.110445\n461 315.0 , ; EVA ... 16 -16.950970 12.168805\n462 255.0 , ... 16 -19.486427 12.905893\n\n[5 rows x 15 columns]\n\nCluster 17:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n72 306.0 Parte superior de malla ... -18.173550 -12.906224\n95 286.0 Textil ... -23.084425 -12.398204\n122 286.0 Textil ... -22.423227 -13.125884\n181 343.0 Parte superior en tejido de malla ... -20.020899 -11.947750\n201 286.0 Textil ... -22.604563 -13.830274\n\n[5 rows x 15 columns]\n\nCluster 18:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n18 303.0 null ... 1.648412 -4.487958\n35 248.0 Exterior textil ... -0.826562 -7.918261\n51 292.0 adidas PRIMEKNIT ... 16.231256 -1.089768\n82 237.0 Exterior textil ... -0.378965 -7.250349\n115 216.0 Parte superior de malla técnica ... 11.755957 3.241534\n\n[5 rows x 15 columns]\n\nCluster 19:\n Weight ... tsne-2d-two\n4 319.0 ... -16.600161\n6 304.0 ... -15.279252\n9 334.0 ... 4.823231\n16 304.0 ... 3.862275\n34 304.0 ... -14.713323\n\n[5 rows x 15 columns]\n" + ] + } + ], + "source": [ + "\"\"\"\n", + "# Reducción de dimensionalidad con PCA\n", + "print(\"Aplicando PCA para reducir dimensiones...\")\n", + "pca = PCA(n_components=489, random_state=42)\n", + "reduced_features = pca.fit_transform(scaled_features)\n", + "\n", + "# -------------------- Determinación del Número Óptimo de Clusters --------------------\n", + "print(\"Calculando el Método del Codo para determinar el número óptimo de clusters...\")\n", + "wcss = []\n", + "k_values = range(2, 21) # Rango de k para explorar\n", + "\n", + "for k in k_values:\n", + " kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)\n", + " kmeans.fit(reduced_features)\n", + " wcss.append(kmeans.inertia_)\n", + "\n", + "# Visualizar el Método del Codo\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, wcss, marker='o')\n", + "plt.title('Método del Codo para Determinar el Número Óptimo de Clusters')\n", + "plt.xlabel('Número de Clusters (k)')\n", + "plt.ylabel('WCSS (Inercia)')\n", + "plt.xticks(k_values)\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "# Silhouette Score\n", + "print(\"Calculando el Silhouette Score para diferentes valores de k...\")\n", + "silhouette_scores = []\n", + "\n", + "for k in k_values:\n", + " kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)\n", + " clusters = kmeans.fit_predict(reduced_features)\n", + " score = silhouette_score(reduced_features, clusters)\n", + " silhouette_scores.append(score)\n", + "\n", + "# Visualizar el Silhouette Score\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, silhouette_scores, marker='o', color='orange')\n", + "plt.title('Silhouette Score para Diferentes Valores de k')\n", + "plt.xlabel('Número de Clusters (k)')\n", + "plt.ylabel('Silhouette Score')\n", + "plt.xticks(k_values)\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "# Determinar el mejor k basado en el Silhouette Score\n", + "best_k = k_values[np.argmax(silhouette_scores)]\n", + "print(f\"El número óptimo de clusters según el Silhouette Score es: {best_k}\")\n", + "\n", + "# -------------------- Aplicar K-Means con el Número Óptimo de Clusters --------------------\n", + "print(f\"Aplicando K-Means con k={best_k}...\")\n", + "kmeans_final = KMeans(n_clusters=best_k, random_state=42, n_init=10)\n", + "clusters_final = kmeans_final.fit_predict(reduced_features)\n", + "\n", + "# Añadir etiquetas de cluster al DataFrame original\n", + "df['Cluster'] = clusters_final\n", + "\n", + "# Resumen final de clusters\n", + "n_clusters_final = len(set(clusters_final))\n", + "print(f'\\nNúmero de clusters encontrados: {n_clusters_final}')\n", + "\n", + "# -------------------- Visualización de los Clusters --------------------\n", + "print(\"Reduciendo dimensiones para visualización con t-SNE...\")\n", + "tsne = TSNE(n_components=2, random_state=42, perplexity=30, n_iter=1000)\n", + "tsne_results = tsne.fit_transform(reduced_features)\n", + "\n", + "df['tsne-2d-one'] = tsne_results[:, 0]\n", + "df['tsne-2d-two'] = tsne_results[:, 1]\n", + "\n", + "plt.figure(figsize=(12, 8))\n", + "palette = sns.color_palette(\"hsv\", n_clusters_final)\n", + "sns.scatterplot(\n", + " x=\"tsne-2d-one\", y=\"tsne-2d-two\",\n", + " hue=\"Cluster\",\n", + " palette=palette,\n", + " data=df,\n", + " legend=\"full\",\n", + " alpha=0.7\n", + ")\n", + "plt.title('Visualización de Clusters con t-SNE')\n", + "plt.xlabel('t-SNE 1')\n", + "plt.ylabel('t-SNE 2')\n", + "plt.legend(title='Cluster', bbox_to_anchor=(1.05, 1), loc='upper left')\n", + "plt.show()\n", + "\n", + "# -------------------- Análisis de Clusters --------------------\n", + "print(\"\\nResumen de Clusters:\")\n", + "print(df['Cluster'].value_counts())\n", + "\n", + "# Opcional: Ver registros en cada cluster\n", + "for cluster in range(n_clusters_final):\n", + " print(f'\\nCluster {cluster}:')\n", + " print(df[df['Cluster'] == cluster].head())\"\"\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "7bc44aab-490e-47b7-a4ed-483d26032ab5", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightUpper_MaterialMidsole_MaterialOutsoleCushioning_SystemDrop__heel-to-toe_differential_regularPriceundiscounted_priceGenderAdditional_Technologiesidpercentil_discountedClustertsne-2d-onetsne-2d-two
459169.0,100.0 Acetato de etileno y vinilo10.087000.0790000.08351800-8.08046088.2911001.462351
460248.0, termoplásticoEVA70.0 Acetato de etileno y vinilo 30.0 CauchoEVA4.0330000.0NaNmujerLas hendiduras de flexión acompañan la extensi...8670212NaN016.4084996.210423
461315.0, ;EVA100.0 Caucho sintéticoEVA8.0299000.0NaNHombre8642811NaN016.4233956.361099
462255.0,60.0 Caucho sintético, 40.0 Acetato de etileno...10.0250000.02290000.0mujer8572326-8.16000087.7962931.183642
463NaN, .EVACaucho sintético, Acetato de etileno y viniloKalensole , CS (Circular System)10.0275000.0NaNHombre8666719NaN012.3348085.093338
464240.0, termoplástico, termoplásticoCaucho sintético, Acetato de etileno y viniloespuma Kalensole) y absorción impactos (CS).NaN426000.03090000.0Mujer8767800-6.25352186.8190941.120482
465NaNtermoplástico,EVACaucho sintético, Acetato de etileno y viniloNaN249000.0NaNHombre8759629NaN012.5556983.515450
466243.0,IMEVACaucho sintético, Acetato de etileno y viniloFlexibilidad4.0185000.0NaNHombre8757332NaN012.7504817.847188
467255.0,Entresuela de espuma EVA y concepto de amortig...Caucho sintético, Acetato de etileno y viniloEspumas gruesas en el talón y en la lengüeta.10.0250000.02290000.0MujerAgarre: Suela estriada 3 mm para mayor agarre ...8544265-8.16000087.923182-0.259708
468NaNEVACaucho sintético, 80.0% Acetato de etileno y v...FlexibilidadNaN199000.0NaNHombreAgarre: Gracias a las estrías y geometría de l...8803397NaN012.9298875.782633
469NaNPoliamida, ;EVAAcetato de etileno y viniloNaN199000.0NaNHombre8803408NaN012.2893243.397114
470251.0, termoplásticoEVACaucho sintético, Acetato de etileno y viniloflexibles (61 N/mm)4.0249000.0NaNHombreTranspirabilidad: Nueva tela mesh desarrollada...8670191NaN015.0184684.532474
471295.0,Entresuela de espuma EVA y concepto de amortig...Caucho sintético, Acetato de etileno y vinilo10.0250000.02290000.0HombreSuela estriada de 3 mm para más agarre en cami...8488639-8.16000087.8291120.046291
472366.0EVAAcetato de etileno y viniloflexibilidadNaN139000.0NaNMujer8803078NaN013.4003496.981575
473243.0,IMEVACaucho sintético, Acetato de etileno y viniloFlexibilidad4.0185000.0NaNHombre8757334NaN012.7505697.847071
474295.0,Entresuela de espuma EVA y concepto de amortig...Caucho sintético, Acetato de etileno y vinilo10.0250000.02290000.0HombreAgarre: Suela estriada de 3 mm para más agarre...8767790-8.16000087.8277690.047635
475251.0, termoplásticoEVACaucho sintético, Acetato de etileno y vinilotenis flexibles (61 N/mm)4.0249000.0NaNHombreLibertad de movimientos: Las hendiduras de fle...8670196NaN015.1024104.388563
476NaNtermoplástico,EVACaucho sintético, Acetato de etileno y viniloFlex-HNaN249000.0NaNMujerAdaptabilidad: Disponible en dos anchos de pie...8750403NaN013.4843074.651424
477200.0,IMEVACaucho sintético, Acetato de etileno y viniloFlexibilidad4.0185000.0NaNMujer8757345NaN012.7497627.856787
478180.0,Acetato de etileno y vinilo;10.087000.0790000.0Hombre8351755-8.08046088.2941701.447252
479210.0,Suela de espumaCaucho sintético, Acetato de etileno y viniloFlexibilidad para mejorar el desarrollo del pie.4.0135000.0NaNMujerAdherencia: Refuerzo de caucho en la suela, en...8733475NaN012.9493228.663089
480NaNEVAAcetato de etileno y viniloLa flexibilidad de la suela es ideal para todo...NaN169000.0NaNHombreTranspirabilidad: Su mesh 3D aireado permite q...8803079NaN012.7549235.676413
481203.0, termoplásticoEVACaucho sintético, 70.0% Acetato de etileno y v...tenis flexibles (61 N/mm)4.0249000.0NaNMujerLas hendiduras de flexión acompañan la extensi...8670202NaN015.0611804.392717
482235.0termoplástico, ,KALENSOLECaucho sintético, Acetato de etileno y viniloKALENSOLENaN399000.0NaNMujertela mesh, más elástica.8772824NaN0-17.9420076.408968
483205.0, termoplástico, ,MFOAMCaucho sintético, Acetato de etileno y viniloMFOAM6.0499000.0NaNMujerBuen agarre en piso mojado gracias a la textur...8772779NaN1-12.33320033.055355
484216.0termoplástico, ;VFOAMCaucho sintético, Acetato de etileno y vinilo,...Pebax8.0399000.02400000.0mujergeometría de la suela de las KIPRUN KD500 2, c...8756260-5.01503886.2822821.016790
485280.0termoplástico, ;KalensoleCaucho sintético, Acetato de etileno y viniloKalensole6.0309000.0NaNHombre8772865NaN0-17.9403346.414684
486252.0, termoplástico,espuma MFOAMCaucho sintético, Acetato de etileno y viniloespuma MFOAM6.0499000.0NaNHombreAdherencia: Buen agarre en piso mojado gracias...8830204NaN0-12.31372433.078747
487225.0,Caucho sintético, Carbono, Amida de bloque de ...8.0849000.0NaNHombreImpulso: Espuma Pebax® de Arkema y placa de ca...8666803NaN010.4167862.686541
488218.0termoplástico,espuma Pebax® de Arkema.Caucho sintético, Amida de bloque de poliéter8.0699000.05990000.0HombreImpulso: Excelente retorno de energía gracias ...8798231-7.56938586.781542-0.310688
\n", + "
" + ], + "text/plain": [ + " Weight Upper_Material ... tsne-2d-one tsne-2d-two\n", + "459 169.0 , ... 8.291100 1.462351\n", + "460 248.0 , termoplástico ... 16.408499 6.210423\n", + "461 315.0 , ; ... 16.423395 6.361099\n", + "462 255.0 , ... 7.796293 1.183642\n", + "463 NaN , . ... 12.334808 5.093338\n", + "464 240.0 , termoplástico, termoplástico ... 6.819094 1.120482\n", + "465 NaN termoplástico, ... 12.555698 3.515450\n", + "466 243.0 , ... 12.750481 7.847188\n", + "467 255.0 , ... 7.923182 -0.259708\n", + "468 NaN ... 12.929887 5.782633\n", + "469 NaN Poliamida, ; ... 12.289324 3.397114\n", + "470 251.0 , termoplástico ... 15.018468 4.532474\n", + "471 295.0 , ... 7.829112 0.046291\n", + "472 366.0 ... 13.400349 6.981575\n", + "473 243.0 , ... 12.750569 7.847071\n", + "474 295.0 , ... 7.827769 0.047635\n", + "475 251.0 , termoplástico ... 15.102410 4.388563\n", + "476 NaN termoplástico, ... 13.484307 4.651424\n", + "477 200.0 , ... 12.749762 7.856787\n", + "478 180.0 , ... 8.294170 1.447252\n", + "479 210.0 , ... 12.949322 8.663089\n", + "480 NaN ... 12.754923 5.676413\n", + "481 203.0 , termoplástico ... 15.061180 4.392717\n", + "482 235.0 termoplástico, , ... -17.942007 6.408968\n", + "483 205.0 , termoplástico, , ... -12.333200 33.055355\n", + "484 216.0 termoplástico, ; ... 6.282282 1.016790\n", + "485 280.0 termoplástico, ; ... -17.940334 6.414684\n", + "486 252.0 , termoplástico, ... -12.313724 33.078747\n", + "487 225.0 , ... 10.416786 2.686541\n", + "488 218.0 termoplástico, ... 6.781542 -0.310688\n", + "\n", + "[30 rows x 15 columns]" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.tail(30)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "79d3ce3e-b470-4297-b973-07f95888a71f", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "output_type": "stream", + "text": [ + "/databricks/spark/python/pyspark/sql/pandas/conversion.py:401: UserWarning: createDataFrame attempted Arrow optimization because 'spark.sql.execution.arrow.pyspark.enabled' is set to true; however, failed by the reason below:\n Expected bytes, got a 'int' object\nAttempting non-optimization as 'spark.sql.execution.arrow.pyspark.fallback.enabled' is set to true.\n warn(msg)\n" + ] + } + ], + "source": [ + "spark_df_adidas = spark.createDataFrame(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "c7b73d63-1802-436f-830d-244db6ddf731", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df_adidas.write.mode(\"overwrite\").saveAsTable(\"preprod_colombia.scraping_adidas_dkt_clusters\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "0cf2cbda-19d0-4774-9699-ce83ae969123", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "source": [ + "## Clustering NIKE" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "65b5ec70-9e23-41b6-a4a2-5cd3d34f3777", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df_nr = spark.table(\"preprod_colombia.scraping_nacionrunner_etiquetado\")" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "dcdc7277-6135-4a76-b371-357e846d008c", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df_selected = spark_df_nr.select(['Weight',\n", + " 'Upper_Material',\n", + " 'Midsole_Material',\n", + " 'Outsole',\n", + " 'Cushioning_System',\n", + " 'Drop__heel-to-toe_differential_',\n", + " 'Pronation_Type',\n", + " 'Usage_Type',\n", + " 'Gender',\n", + " 'Width',\n", + " 'Additional_Technologies',\n", + " 'regularPrice',\n", + " 'undiscounted_price']\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "ce4ec8d9-0a4c-4ee5-9a08-21fbbf18f574", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df_nr = spark_df_selected.toPandas()" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "b599d705-4ee7-478e-9598-ebbc85a946ab", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "#Remplaza los caracteres no numéricos\n", + "df_nr['Weight'] = df_nr['Weight'].apply(lambda x: re.sub(r'[^\\d.]', '', str(x)))\n", + "df_nr['Drop__heel-to-toe_differential_'] = df_nr['Drop__heel-to-toe_differential_'].apply(lambda x: re.sub(r'[^\\d.]', '', str(x)))\n", + "df_nr['regularPrice'] = df_nr['regularPrice'].apply(lambda x: re.sub(r'\\D', '', str(x)))\n", + "df_nr['undiscounted_price'] = df_nr['undiscounted_price'].apply(lambda x: re.sub(r'\\D', '', str(x)))" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "7cd09b49-0be3-4933-aafc-82e2e9909f28", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df_nr['Weight'] = df_nr['Weight'].replace('', np.nan)\n", + "df_nr['Drop__heel-to-toe_differential_'] = df_nr['Drop__heel-to-toe_differential_'].replace('', np.nan)\n", + "df_nr['regularPrice'] = df_nr['regularPrice'].replace('', np.nan)\n", + "df_nr['undiscounted_price'] = df_nr['undiscounted_price'].replace('', np.nan)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "4fed4f5b-274e-4342-a3e3-f1c33fce5c2c", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df_nr['Weight'] = df_nr['Weight'].astype(float)\n", + "df_nr['Drop__heel-to-toe_differential_'] = df_nr['Drop__heel-to-toe_differential_'].astype(float)\n", + "df_nr['regularPrice'] = df_nr['regularPrice'].astype(float)\n", + "df_nr['undiscounted_price'] = df_nr['undiscounted_price'].astype(float)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "49fd365e-5e42-4281-87d5-3abdb7813cf5", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df_nr['percentil_discounted'] = 1-(df_nr['undiscounted_price']/df_nr['regularPrice'])" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "1cd243cc-19bc-4acb-a994-5604e61e26ae", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightUpper_MaterialMidsole_MaterialOutsoleCushioning_SystemDrop__heel-to-toe_differential_Pronation_TypeUsage_TypeGenderWidthAdditional_TechnologiesregularPriceundiscounted_price
0242NeutroProFly+Asfaltonull5nullnullnullnullnull59990007499000
1WovenFlyteFoam Blast+ ECOAHARFlyteFoam Blast+ ECO8Neutro • SupinadorEntreno en pistanullnullWaterproofing, Reflectivity6999000
285Mesh técnicoFF Blast MaxASICS Grip y AHARPLUSFF Blast Max6Neutral or SupinatorDaily training, racingUnisexStandardWaterproofing, reflectivity8499000
3305nullFF BLAST PLUS ECOAsfalto4D Guidance System10nullDaily Training, RacingMennullWaterproofing, Reflectivity, Customized Fit Sy...8799000
4270Technical FabricsPureGelAsfaltoPureGel8PronadoresDaily TrainingMenStandardFlyteFoam, OrthoLite Hybrid Max, Waterproofing4999000
..........................................
18080Malla JacquardEVAAsfaltoMetaRocker8NeutralDaily trainingUnisexnullWaterproofing, Reflectivity6999000
181malla knitFlyteFoam BLAST PLUS ECO, PureGELASICSGRIP, caucho AHAR PLUSFlyteFoam BLAST PLUS ECO, PureGEL8Neutro, SupinadorDaily training, Racingnullnullnull64990008499000
182282AsfaltoJ-FrameAsfaltoJ-Frame5PronadorDaily trainingMennullWaterproofing, reflectivity, customized fit sy...7499000
183275234nullAmplifoam+AsfaltoEquilibrada y Versatilidad8Neutral, SupinadorDaily training, RacingnullBreathability, TranspirabilityNone3299000
184nullnullAsfaltoSuperior10PronadorDaily TrainingMennullnull69990007699000
\n", + "

185 rows × 13 columns

\n", + "
" + ], + "text/plain": [ + " Weight Upper_Material ... regularPrice undiscounted_price\n", + "0 242 Neutro ... 5999000 7499000\n", + "1 Woven ... 6999000 \n", + "2 85 Mesh técnico ... 8499000 \n", + "3 305 null ... 8799000 \n", + "4 270 Technical Fabrics ... 4999000 \n", + ".. ... ... ... ... ...\n", + "180 80 Malla Jacquard ... 6999000 \n", + "181 malla knit ... 6499000 8499000\n", + "182 282 Asfalto ... 7499000 \n", + "183 275234 null ... 3299000 \n", + "184 null ... 6999000 7699000\n", + "\n", + "[185 rows x 13 columns]" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_nr" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "b5f996d7-2228-482b-9d46-6dc0a3eb1eef", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['Weight', 'Upper_Material', 'Midsole_Material', 'Outsole',\n", + " 'Cushioning_System', 'Drop__heel-to-toe_differential_',\n", + " 'Pronation_Type', 'Usage_Type', 'Gender', 'Width',\n", + " 'Additional_Technologies', 'regularPrice', 'undiscounted_price'],\n", + " dtype='object')" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_nr.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "52ba5d71-54fa-452c-82e5-3f377e7cc5de", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "# Identificar columnas numéricas y categóricas\n", + "numerical_cols = ['Weight', 'Drop__heel-to-toe_differential_','regularPrice','undiscounted_price','percentil_discounted']\n", + "categorical_cols = ['Upper_Material', 'Midsole_Material', 'Outsole', 'Pronation_Type', 'Usage_Type', 'Gender', 'Width',\n", + " 'Cushioning_System', 'Additional_Technologies']" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "f96cb877-7fc3-446e-aaa4-eefd7f08dbb2", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "# Definir los pipelines de preprocesamiento\n", + "numerical_pipeline = Pipeline(steps=[\n", + " ('imputer', SimpleImputer(strategy='median')),\n", + " ('scaler', StandardScaler())\n", + "])\n", + "\n", + "categorical_pipeline = Pipeline(steps=[\n", + " ('imputer', SimpleImputer(strategy='constant', fill_value='Desconocido')),\n", + " ('onehot', OneHotEncoder(handle_unknown='ignore'))\n", + "])\n", + "\n", + "# Combinar pipelines\n", + "preprocessor = ColumnTransformer(transformers=[\n", + " ('num', numerical_pipeline, numerical_cols),\n", + " ('cat', categorical_pipeline, categorical_cols)\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "23a561f7-9e74-4c84-82a5-b872a702e66d", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "Preprocesando columnas numéricas...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m\n", + "\u001B[0;31mNameError\u001B[0m Traceback (most recent call last)\n", + "File \u001B[0;32m, line 20\u001B[0m\n", + "\u001B[1;32m 18\u001B[0m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mPreprocesando columnas numéricas...\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n", + "\u001B[1;32m 19\u001B[0m scaler \u001B[38;5;241m=\u001B[39m StandardScaler()\n", + "\u001B[0;32m---> 20\u001B[0m numerical_scaled \u001B[38;5;241m=\u001B[39m scaler\u001B[38;5;241m.\u001B[39mfit_transform(df_nr[numerical_cols]\u001B[38;5;241m.\u001B[39mfillna(\u001B[38;5;241m0\u001B[39m))\n", + "\u001B[1;32m 22\u001B[0m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mGenerando embeddings para columnas categóricas...\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n", + "\u001B[1;32m 23\u001B[0m categorical_embeddings \u001B[38;5;241m=\u001B[39m []\n", + "\n", + "\u001B[0;31mNameError\u001B[0m: name 'df_nr' is not defined" + ] + }, + "metadata": { + "application/vnd.databricks.v1+output": { + "arguments": {}, + "data": "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m\n\u001B[0;31mNameError\u001B[0m Traceback (most recent call last)\nFile \u001B[0;32m, line 20\u001B[0m\n\u001B[1;32m 18\u001B[0m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mPreprocesando columnas numéricas...\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 19\u001B[0m scaler \u001B[38;5;241m=\u001B[39m StandardScaler()\n\u001B[0;32m---> 20\u001B[0m numerical_scaled \u001B[38;5;241m=\u001B[39m scaler\u001B[38;5;241m.\u001B[39mfit_transform(df_nr[numerical_cols]\u001B[38;5;241m.\u001B[39mfillna(\u001B[38;5;241m0\u001B[39m))\n\u001B[1;32m 22\u001B[0m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mGenerando embeddings para columnas categóricas...\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 23\u001B[0m categorical_embeddings \u001B[38;5;241m=\u001B[39m []\n\n\u001B[0;31mNameError\u001B[0m: name 'df_nr' is not defined", + "errorSummary": "NameError: name 'df_nr' is not defined", + "errorTraceType": "ansi", + "metadata": {}, + "type": "ipynbError" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.decomposition import PCA\n", + "from sklearn.cluster import KMeans\n", + "from sklearn.metrics import silhouette_score\n", + "from sklearn.manifold import TSNE\n", + "from sentence_transformers import SentenceTransformer\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# Asumiendo que ya tienes: \n", + "# df_nr (DataFrame) con columnas numéricas en numerical_cols y categorías en categorical_cols\n", + "# df (DataFrame) que es el DataFrame base donde se añadirán los clusters\n", + "# model = SentenceTransformer('all-MiniLM-L6-v2') # si aún lo necesitas para las columnas categóricas\n", + "\n", + "# Preprocesar columnas numéricas y categóricas\n", + "print(\"Preprocesando columnas numéricas...\")\n", + "scaler = StandardScaler()\n", + "numerical_scaled = scaler.fit_transform(df_nr[numerical_cols].fillna(0))\n", + "\n", + "print(\"Generando embeddings para columnas categóricas...\")\n", + "categorical_embeddings = []\n", + "for col in categorical_cols:\n", + " embeddings = model.encode(df_nr[col].fillna('Unknown').astype(str).tolist())\n", + " categorical_embeddings.append(embeddings)\n", + "\n", + "combined_categorical_embeddings = np.hstack(categorical_embeddings)\n", + "\n", + "# Combinar características numéricas y categóricas\n", + "print(\"Concatenando características numéricas y categóricas...\")\n", + "combined_features = np.hstack([numerical_scaled, combined_categorical_embeddings])\n", + "\n", + "# Escalar las características combinadas\n", + "print(\"Escalando características combinadas...\")\n", + "scaled_features = scaler.fit_transform(combined_features)\n", + "\n", + "# Reducción de dimensionalidad con PCA\n", + "print(\"Aplicando PCA para reducir dimensiones...\")\n", + "pca = PCA(n_components=400, random_state=42)\n", + "reduced_features = pca.fit_transform(scaled_features)\n", + "\n", + "# -------------------- Determinación del Número Óptimo de Clusters --------------------\n", + "print(\"Calculando el Método del Codo para determinar el número óptimo de clusters...\")\n", + "wcss = []\n", + "k_values = range(2, 21) # Rango de k para explorar\n", + "\n", + "for k in k_values:\n", + " kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)\n", + " kmeans.fit(reduced_features)\n", + " wcss.append(kmeans.inertia_)\n", + "\n", + "# Visualizar el Método del Codo\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, wcss, marker='o')\n", + "plt.title('Método del Codo para Determinar el Número Óptimo de Clusters')\n", + "plt.xlabel('Número de Clusters (k)')\n", + "plt.ylabel('WCSS (Inercia)')\n", + "plt.xticks(k_values)\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "# Silhouette Score\n", + "print(\"Calculando el Silhouette Score para diferentes valores de k...\")\n", + "silhouette_scores = []\n", + "\n", + "for k in k_values:\n", + " kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)\n", + " clusters = kmeans.fit_predict(reduced_features)\n", + " score = silhouette_score(reduced_features, clusters)\n", + " silhouette_scores.append(score)\n", + "\n", + "# Visualizar el Silhouette Score\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, silhouette_scores, marker='o', color='orange')\n", + "plt.title('Silhouette Score para Diferentes Valores de k')\n", + "plt.xlabel('Número de Clusters (k)')\n", + "plt.ylabel('Silhouette Score')\n", + "plt.xticks(k_values)\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "# Determinar el mejor k basado en el Silhouette Score\n", + "best_k = k_values[np.argmax(silhouette_scores)]\n", + "print(f\"El número óptimo de clusters según el Silhouette Score es: {best_k}\")\n", + "\n", + "# -------------------- Aplicar K-Means con el Número Óptimo de Clusters --------------------\n", + "print(f\"Aplicando K-Means con k={best_k}...\")\n", + "kmeans_final = KMeans(n_clusters=best_k, random_state=42, n_init=10)\n", + "clusters_final = kmeans_final.fit_predict(reduced_features)\n", + "\n", + "# Añadir etiquetas de cluster al DataFrame original\n", + "df_nr['Cluster'] = clusters_final\n", + "\n", + "# Resumen final de clusters\n", + "n_clusters_final = len(set(clusters_final))\n", + "print(f'\\nNúmero de clusters encontrados: {n_clusters_final}')\n", + "\n", + "# -------------------- Visualización de los Clusters --------------------\n", + "print(\"Reduciendo dimensiones para visualización con t-SNE...\")\n", + "tsne = TSNE(n_components=2, random_state=42, perplexity=30, n_iter=1000)\n", + "tsne_results = tsne.fit_transform(reduced_features)\n", + "\n", + "df_nr['tsne-2d-one'] = tsne_results[:, 0]\n", + "df_nr['tsne-2d-two'] = tsne_results[:, 1]\n", + "\n", + "plt.figure(figsize=(12, 8))\n", + "palette = sns.color_palette(\"hsv\", n_clusters_final)\n", + "sns.scatterplot(\n", + " x=\"tsne-2d-one\", y=\"tsne-2d-two\",\n", + " hue=\"Cluster\",\n", + " palette=palette,\n", + " data=df_nr,\n", + " legend=\"full\",\n", + " alpha=0.7\n", + ")\n", + "plt.title('Visualización de Clusters con t-SNE')\n", + "plt.xlabel('t-SNE 1')\n", + "plt.ylabel('t-SNE 2')\n", + "plt.legend(title='Cluster', bbox_to_anchor=(1.05, 1), loc='upper left')\n", + "plt.show()\n", + "\n", + "# -------------------- Análisis de Clusters --------------------\n", + "print(\"\\nResumen de Clusters:\")\n", + "print(df_nr['Cluster'].value_counts())\n", + "\n", + "# Opcional: Ver registros en cada cluster\n", + "for cluster in range(n_clusters_final):\n", + " print(f'\\nCluster {cluster}:')\n", + " print(df_nr[df_nr['Cluster'] == cluster].head())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "3eef2a78-db14-45a5-bb35-abdd9363197d", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df_nr = spark.createDataFrame(df_nr)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "a010ca5a-7a89-4aa1-b237-cee64fe2f8a8", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df_nr.write.mode(\"overwrite\").saveAsTable(\"preprod_colombia.scraping_nr_clusters\")" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "cc9a01b0-0ceb-4b50-b8d0-7bd5af7cd620", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "application/vnd.databricks.v1+notebook": { + "computePreferences": null, + "dashboards": [], + "environmentMetadata": { + "base_environment": "", + "client": "1" + }, + "language": "python", + "notebookMetadata": { + "pythonIndentUnit": 4 + }, + "notebookName": "Clustering", + "widgets": {} + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file From e4eb8f66d16158410b0e9c20680599c9d5e33118 Mon Sep 17 00:00:00 2001 From: jumcorrealo Date: Thu, 19 Dec 2024 23:10:52 -0500 Subject: [PATCH 55/84] Update deploymentdoc.md --- docs/deployment/deploymentdoc.md | 221 +++++++++++++++++++++++++++++-- 1 file changed, 207 insertions(+), 14 deletions(-) diff --git a/docs/deployment/deploymentdoc.md b/docs/deployment/deploymentdoc.md index 182c4782a..92b3a4c64 100644 --- a/docs/deployment/deploymentdoc.md +++ b/docs/deployment/deploymentdoc.md @@ -2,30 +2,223 @@ ## Infraestructura -- **Nombre del modelo:** (nombre que se le ha dado al modelo) -- **Plataforma de despliegue:** (plataforma donde se va a desplegar el modelo) -- **Requisitos técnicos:** (lista de requisitos técnicos necesarios para el despliegue, como versión de Python, bibliotecas de terceros, hardware, etc.) -- **Requisitos de seguridad:** (lista de requisitos de seguridad necesarios para el despliegue, como autenticación, encriptación de datos, etc.) -- **Diagrama de arquitectura:** (imagen que muestra la arquitectura del sistema que se utilizará para desplegar el modelo) +- **Nombre del modelo:** Clasificador de productos +- **Plataforma de despliegue:** AWS +- **Requisitos técnicos:** +Librerías: torch, fairscale, fire, blobfile, pandas, requests, openpyxl, httpx, boto3, scikit-learn, matplotlib, flask (requirements.txt) +LLMs: AWS Bedrock o Llama 3.1, modelo de 70B de parámetros +Databricks: Ambiente conectado a Glue Storage + +- **Requisitos de seguridad:** En este momento la base de datos en firebase no requiere autenticación, pero se implementará en un futuro cercano. +- **Diagrama de arquitectura:** + +![arquitectura (1)](https://github.com/user-attachments/assets/4565491e-0dc2-4345-948c-c88167d42f16) + +Arquitectura ## Código de despliegue -- **Archivo principal:** (nombre del archivo principal que contiene el código de despliegue) -- **Rutas de acceso a los archivos:** (lista de rutas de acceso a los archivos necesarios para el despliegue) -- **Variables de entorno:** (lista de variables de entorno necesarias para el despliegue) +- **Archivo principal:** src/main.py +- **Rutas de acceso a los archivos:** https://scraping-firestore-178159629911.us-central1.run.app//v1/scraping/ +- **Variables de entorno:** + +En el despliegue en databricks se solicita: +ACCESS_TOKEN: Token de acceso generado por databricks +USERNAME: Usuario corporativo + ## Documentación del despliegue +**Flujo de datos** ![dataflow](https://github.com/user-attachments/assets/2f14053b-4d55-4ca5-8afd-05d1321add3a) Flujo de datos +### **Instrucciones de instalación** +Para iniciar un ambiente virtual e instalar las dependencias necesarias para la aplicación, sigue los siguientes pasos: -![arquitectura (1)](https://github.com/user-attachments/assets/4565491e-0dc2-4345-948c-c88167d42f16) +1. Asegúrate de tener Python 3.7 o superior instalado. +2. Crea un ambiente virtual: + ```bash + python -m venv venv + ``` +3. Activa el ambiente virtual: + - En Windows: + ```bash + venv\Scripts\activate + ``` + - En macOS/Linux: + ```bash + source venv/bin/activate + ``` +4. Instala las dependencias listadas en el archivo `requirements.txt`: + ```bash + pip install -r requirements.txt + ``` -Arquitectura +### **Instrucciones de configuración** +Para configurar el modelo en la plataforma de despliegue: + +1. Asegúrate de que los modelos entrenados estén ubicados en: + - `src\comparative_analysis\models\K-MeansV1\` + +2. Verifica que el archivo Excel requerido para la base de datos se encuentre en: + - `src/comparative_analysis/database/Adidas_etiquetado.xlsx` + +3. Configura el puerto de ejecución predeterminado (2626) si es necesario modificarlo, ajustando el archivo `main.py`. + +### **Instrucciones de uso** + +#### **Manual Técnico: Endpoints de la API REST** + +**Aplicación desarrollada en Flask.** + +1. **Endpoints disponibles:** + + - **GET /api/test** + - Descripción: Este endpoint es una prueba básica para verificar el funcionamiento del servidor. + - Respuesta esperada (200): + ``` + { + "message": "¡Hola! Esta es una respuesta GET de prueba.", + "status": "success" + } + ``` + + - **GET /api/product** + - Descripción: Permite obtener la información de un producto a partir de su ID. + - Parámetros: + - `id` (obligatorio): ID del producto a buscar. + - Ejemplo de solicitud: + ``` + GET http://127.0.0.1:2626/api/product?id=08sjncACSjSvg2t9DS73 + ``` + - Respuesta esperada (200): + ``` + { + "Additional_Technologies": "ENERGYRODS 2.0, Waterproofing, Recyclable material", + "Available_Sizes": NaN, + "Cushioning_System": "Lightstrike Pro", + "Drop__heel-to-toe_differential_": "6 mm", + "Gender": "Woman", + "Midsole_Material": NaN, + "Outsole": "Textile rubber", + "Pronation_Type": NaN, + "Upper_Material": "Synthetic", + "Usage_Type": "Racing", + "Weight": "183 g", + "Width": NaN, + "category": "Mujer • Running", + "characteristics": NaN, + "description": "Los Adizero Adios Pro 3 son la máxima expresión de los productos Adidas...", + "id": "08sjncACSjSvg2t9DS73", + ... + } + ``` + - Errores posibles: + - 400: Si no se proporciona el ID del producto. + - 404: Si el producto no se encuentra. + + - **POST /api/products** + - Descripción: Busca productos que coincidan con los parámetros proporcionados. + - Cuerpo de la solicitud: + ``` + { + "key1": "value1", + "key2": "value2", + ... + } + ``` + - Ejemplo de solicitud: + ``` + POST http://127.0.0.1:2626/api/products + { + "category": "Mujer • Running", + "Cushioning_System": "Lightstrike Pro" + } + ``` + - Respuesta esperada (200): + ``` + [ + { + "id": "08sjncACSjSvg2t9DS73", + "category": "Mujer • Running", + ... + }, + ... + ] + ``` + - Errores posibles: + - 400: Si no se proporcionan parámetros. + - 404: Si no se encuentran productos que coincidan con los parámetros. + + - **POST /predict/KMeansV1** + - Descripción: Realiza una predicción utilizando un modelo K-Means para asignar un producto a un cluster y devuelve productos similares en el mismo cluster. + - Cuerpo de la solicitud: + ``` + { + "key1": "value1", + "key2": "value2", + ... + } + ``` + - Ejemplo de solicitud: + ``` + POST http://127.0.0.1:2626/predict/KMeansV1 + { + "category": "Mujer • Running", + "Cushioning_System": "Lightstrike Pro", + ... + } + ``` + - Respuesta esperada (200): + ``` + [ + { + "id": "08sjncACSjSvg2t9DS73", + "category": "Mujer • Running", + ... + }, + ... + ] + ``` + - Errores posibles: + - 400: Si no se envían datos para la predicción. + - 500: Si ocurre un error interno. + +2. **Notas técnicas:** + - La API utiliza pandas para manipular datos en formato Excel y pickle para cargar los modelos entrenados. + - Todos los modelos (encoder, scaler y KMeans) deben estar en la ruta `src\comparative_analysis\models\K-MeansV1\`. + - El archivo Excel utilizado debe estar en `src/comparative_analysis/database/Adidas_etiquetado.xlsx`. + - El puerto de ejecución por defecto es el 2626. + +3. **Requerimientos:** + - Python 3.7 o superior. + - Flask. + - Pandas. + - Re. + - Pickle. + +4. **Cómo iniciar la aplicación:** + Ejecuta el archivo `main.py`: + ``` + python main.py + ``` + +### **Instrucciones de mantenimiento** +1. **Actualización del modelo:** + - Sustituye los archivos del modelo en la ruta `src\comparative_analysis\models\K-MeansV1\` con las versiones actualizadas. + - Reinicia el servidor para cargar los nuevos modelos. + +2. **Actualización de la base de datos:** + - Sustituye el archivo `Adidas_etiquetado.xlsx` en la ruta `src/comparative_analysis/database/`. + - Asegúrate de que el formato del archivo sea compatible con las funciones existentes. + +3. **Monitoreo del servidor:** + - Verifica los logs para identificar errores o problemas de rendimiento. + - Asegúrate de que el puerto de ejecución (2626) esté disponible y no haya conflictos. + +4. **Resolución de errores:** + - Consulta los mensajes de error en el log para diagnosticar problemas. + - Realiza pruebas con los endpoints usando herramientas como Postman o cURL para verificar su correcto funcionamiento. -- **Instrucciones de instalación:** (instrucciones detalladas para instalar el modelo en la plataforma de despliegue) -- **Instrucciones de configuración:** (instrucciones detalladas para configurar el modelo en la plataforma de despliegue) -- **Instrucciones de uso:** (instrucciones detalladas para utilizar el modelo en la plataforma de despliegue) -- **Instrucciones de mantenimiento:** (instrucciones detalladas para mantener el modelo en la plataforma de despliegue) From 14c066051ca809c15c5f095ad5f9e2f5a2514872 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Thu, 19 Dec 2024 23:31:45 -0500 Subject: [PATCH 56/84] cambios kmeansv2 y red neuronal --- .../{__init__.py => main.py} | 0 .../models/K-MeansV2/Clustering.ipynb | 3060 +++++++++++++++++ .../models/K-MeansV2/K-Means.py | 284 ++ .../models/K-MeansV2/message.txt | 111 + .../models/RedNeuronal/test.py | 10 + .../models/RedNeuronal/train.py | 118 + 6 files changed, 3583 insertions(+) rename src/comparative_analysis/{__init__.py => main.py} (100%) create mode 100644 src/comparative_analysis/models/K-MeansV2/Clustering.ipynb create mode 100644 src/comparative_analysis/models/K-MeansV2/K-Means.py create mode 100644 src/comparative_analysis/models/K-MeansV2/message.txt create mode 100644 src/comparative_analysis/models/RedNeuronal/test.py create mode 100644 src/comparative_analysis/models/RedNeuronal/train.py diff --git a/src/comparative_analysis/__init__.py b/src/comparative_analysis/main.py similarity index 100% rename from src/comparative_analysis/__init__.py rename to src/comparative_analysis/main.py diff --git a/src/comparative_analysis/models/K-MeansV2/Clustering.ipynb b/src/comparative_analysis/models/K-MeansV2/Clustering.ipynb new file mode 100644 index 000000000..f362b4e16 --- /dev/null +++ b/src/comparative_analysis/models/K-MeansV2/Clustering.ipynb @@ -0,0 +1,3060 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "19c9ae5b-6e84-4ec3-8777-b85b2f92839e", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "import re\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "# Preprocesamiento\n", + "from sklearn.preprocessing import StandardScaler, OneHotEncoder\n", + "from sklearn.impute import SimpleImputer\n", + "\n", + "# Modelado\n", + "from sklearn.cluster import DBSCAN\n", + "from sklearn.cluster import KMeans\n", + "\n", + "# Embeddings\n", + "from sentence_transformers import SentenceTransformer\n", + "\n", + "# Reducción de dimensionalidad (opcional, pero recomendado para mejorar el rendimiento de DBSCAN)\n", + "from sklearn.decomposition import PCA\n", + "\n", + "# Para combinar diferentes tipos de features\n", + "from sklearn.compose import ColumnTransformer\n", + "from sklearn.pipeline import Pipeline\n", + "\n", + "# Para manejar matrices dispersas\n", + "from scipy.sparse import hstack\n", + "from scipy.sparse import csr_matrix\n", + "\n", + "# Evaluación\n", + "from sklearn.metrics import silhouette_score\n", + "\n", + "# Visualización\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.manifold import TSNE\n", + "\n", + "import pyspark.sql.functions as F\n", + "\n", + "from sklearn.base import BaseEstimator, TransformerMixin" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "bcde3eb7-f9b7-4caf-9a27-99ae8d119276", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df = spark.table(\"preprod_colombia.scraping_adidas_etiquetado\")\n", + "spark_df_dkt = spark.table(\"preprod_colombia.scraping_dkt_etiquetado_running\")" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "5bd4c26d-7f89-47ba-ada3-03624dac06ab", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "columns = ['Weight','Upper_Material','Midsole_Material','Outsole','Cushioning_System','Drop__heel-to-toe_differential_','regularPrice','undiscounted_price', 'Gender','Additional_Technologies',\"id\"]\n", + "columns_dkt = ['Weight','Upper_Material','Midsole_Material','Outsole','Cushioning_System','Drop__heel_to_toe_differential_','regularPrice','undiscounted_price', 'Gender','Additional_Technologies',\"model_code\"]\n", + "spark_df_selected = spark_df.select(columns)\n", + "spark_df_dkt_selected = spark_df_dkt.select(columns_dkt)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "ecc7987b-a9ae-436a-88d1-a1b8de22a510", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df_dkt_selected = spark_df_dkt_selected.withColumnRenamed(\"model_code\", \"id\")\n", + "spark_df_dkt_selected = spark_df_dkt_selected.withColumnRenamed(\"drop__heel_to_toe_differential_\", \"Drop__heel-to-toe_differential_\")\n", + "spark_df_dkt_selected = spark_df_dkt_selected.withColumn(\"Drop__heel-to-toe_differential_\",F.col(\"Drop__heel-to-toe_differential_\").cast(\"string\"))\n", + "spark_df_dkt_selected = spark_df_dkt_selected.withColumn(\"regularPrice\",F.col(\"regularPrice\").cast(\"int\"))\n", + "spark_df_dkt_selected = spark_df_dkt_selected.withColumn(\"undiscounted_price\",F.col(\"undiscounted_price\").cast(\"int\"))\n", + "spark_df_dkt_selected = spark_df_dkt_selected.withColumn(\n", + " \"Upper_Material\", \n", + " F.regexp_replace(F.col(\"Upper_Material\"), \"Poliéster\", \"\")\n", + ")\n", + "\n", + "spark_df_dkt_selected = spark_df_dkt_selected.withColumn(\n", + " \"Upper_Material\", \n", + " F.regexp_replace(F.col(\"Upper_Material\"), \"Poliuretano\", \"\")\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "608993b9-826d-4006-ae30-5288e124a35f", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df_adidas = spark_df_selected.toPandas()\n", + "df_dkt = spark_df_dkt_selected.toPandas()\n", + "df = pd.concat([df_adidas, df_dkt], ignore_index=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "867ef166-13f4-4146-bb6d-dde41a168195", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightUpper_MaterialMidsole_MaterialOutsoleCushioning_SystemDrop__heel-to-toe_differential_regularPriceundiscounted_priceGenderAdditional_Technologiesid
469NaNPoliamida, ;EVAAcetato de etileno y viniloNone199000NaNHombre8803408
470251.0, termoplásticoEVACaucho sintético, Acetato de etileno y viniloflexibles (61 N/mm)4.0249000NaNHombreTranspirabilidad: Nueva tela mesh desarrollada...8670191
471295.0,Entresuela de espuma EVA y concepto de amortig...Caucho sintético, Acetato de etileno y vinilo10.0250000229000.0HombreSuela estriada de 3 mm para más agarre en cami...8488639
472366.0EVAAcetato de etileno y viniloflexibilidadNone139000NaNMujer8803078
473243.0,IMEVACaucho sintético, Acetato de etileno y viniloFlexibilidad4.0185000NaNHombre8757334
474295.0,Entresuela de espuma EVA y concepto de amortig...Caucho sintético, Acetato de etileno y vinilo10.0250000229000.0HombreAgarre: Suela estriada de 3 mm para más agarre...8767790
475251.0, termoplásticoEVACaucho sintético, Acetato de etileno y vinilotenis flexibles (61 N/mm)4.0249000NaNHombreLibertad de movimientos: Las hendiduras de fle...8670196
476NaNtermoplástico,EVACaucho sintético, Acetato de etileno y viniloFlex-HNone249000NaNMujerAdaptabilidad: Disponible en dos anchos de pie...8750403
477200.0,IMEVACaucho sintético, Acetato de etileno y viniloFlexibilidad4.0185000NaNMujer8757345
478180.0,Acetato de etileno y vinilo;10.08700079000.0Hombre8351755
479210.0,Suela de espumaCaucho sintético, Acetato de etileno y viniloFlexibilidad para mejorar el desarrollo del pie.4.0135000NaNMujerAdherencia: Refuerzo de caucho en la suela, en...8733475
480NaNEVAAcetato de etileno y viniloLa flexibilidad de la suela es ideal para todo...None169000NaNHombreTranspirabilidad: Su mesh 3D aireado permite q...8803079
481203.0, termoplásticoEVACaucho sintético, 70.0% Acetato de etileno y v...tenis flexibles (61 N/mm)4.0249000NaNMujerLas hendiduras de flexión acompañan la extensi...8670202
482235.0termoplástico, ,KALENSOLECaucho sintético, Acetato de etileno y viniloKALENSOLENone399000NaNMujertela mesh, más elástica.8772824
483205.0, termoplástico, ,MFOAMCaucho sintético, Acetato de etileno y viniloMFOAM6.0499000NaNMujerBuen agarre en piso mojado gracias a la textur...8772779
484216.0termoplástico, ;VFOAMCaucho sintético, Acetato de etileno y vinilo,...Pebax8.0399000240000.0mujergeometría de la suela de las KIPRUN KD500 2, c...8756260
485280.0termoplástico, ;KalensoleCaucho sintético, Acetato de etileno y viniloKalensole6.0309000NaNHombre8772865
486252.0, termoplástico,espuma MFOAMCaucho sintético, Acetato de etileno y viniloespuma MFOAM6.0499000NaNHombreAdherencia: Buen agarre en piso mojado gracias...8830204
487225.0,Caucho sintético, Carbono, Amida de bloque de ...8.0849000NaNHombreImpulso: Espuma Pebax® de Arkema y placa de ca...8666803
488218.0termoplástico,espuma Pebax® de Arkema.Caucho sintético, Amida de bloque de poliéter8.0699000599000.0HombreImpulso: Excelente retorno de energía gracias ...8798231
\n", + "
" + ], + "text/plain": [ + " Weight ... id\n", + "469 NaN ... 8803408\n", + "470 251.0 ... 8670191\n", + "471 295.0 ... 8488639\n", + "472 366.0 ... 8803078\n", + "473 243.0 ... 8757334\n", + "474 295.0 ... 8767790\n", + "475 251.0 ... 8670196\n", + "476 NaN ... 8750403\n", + "477 200.0 ... 8757345\n", + "478 180.0 ... 8351755\n", + "479 210.0 ... 8733475\n", + "480 NaN ... 8803079\n", + "481 203.0 ... 8670202\n", + "482 235.0 ... 8772824\n", + "483 205.0 ... 8772779\n", + "484 216.0 ... 8756260\n", + "485 280.0 ... 8772865\n", + "486 252.0 ... 8830204\n", + "487 225.0 ... 8666803\n", + "488 218.0 ... 8798231\n", + "\n", + "[20 rows x 11 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.tail(20)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "1a02981c-9475-4bcb-adea-9692e3ce3819", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "source": [ + "## Funciones" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "605cc91a-a695-4dce-a870-9c7ac634a193", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "# Definir una función para combinar textos relevantes\n", + "def combine_text(row):\n", + " text_fields = categorical_cols\n", + " combined_text = ' '.join([str(row[field]) if pd.notnull(row[field]) else '' for field in text_fields])\n", + " return combined_text\n", + "\n", + "def preprocess_outsole(text):\n", + " if pd.isna(text):\n", + " return \"Desconocido\"\n", + " # Reemplazar porcentajes o valores numericos por una etiqueta genérica\n", + " text = re.sub(r'\\d+(\\.\\d+)?\\%?', 'X%', text)\n", + " # Unificar materiales\n", + " text = text.replace(\"Acetato de etileno y vinilo\", \"EVA\")\n", + " text = text.replace(\"Caucho sintético\", \"CauchoSintetico\")\n", + " # Quitar espacios extra\n", + " text = re.sub(r'\\s+', ' ', text).strip()\n", + " return text\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "b8594999-2770-46ec-83ed-1766c12305d5", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "source": [ + "## Procesamiento del dataframe" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "26c8c077-ba52-4485-b8cd-2477d0f7e597", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "#Remplaza los caracteres no numéricos\n", + "df['Weight'] = df['Weight'].apply(lambda x: re.sub(r'[^\\d.]', '', str(x)))\n", + "df['Drop__heel-to-toe_differential_'] = df['Drop__heel-to-toe_differential_'].apply(lambda x: re.sub(r'[^\\d.]', '', str(x)))\n", + "df['regularPrice'] = df['regularPrice'].apply(lambda x: re.sub(r'\\D', '', str(x)))\n", + "df['undiscounted_price'] = df['undiscounted_price'].apply(lambda x: re.sub(r'\\D', '', str(x)))" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "9a7fecad-6de2-4472-8e09-d4961eb94ab3", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df['Weight'] = df['Weight'].replace('', np.nan)\n", + "df['Drop__heel-to-toe_differential_'] = df['Drop__heel-to-toe_differential_'].replace('', np.nan)\n", + "df['regularPrice'] = df['regularPrice'].replace('', np.nan)\n", + "df['undiscounted_price'] = df['undiscounted_price'].replace('', np.nan)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "771e495f-7a5b-4351-98fe-53922c6e7cd7", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df['Weight'] = df['Weight'].astype(float)\n", + "df['Drop__heel-to-toe_differential_'] = df['Drop__heel-to-toe_differential_'].astype(float)\n", + "df['regularPrice'] = df['regularPrice'].astype(float)\n", + "df['undiscounted_price'] = df['undiscounted_price'].astype(float)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "dcc99e26-1ce7-4639-962e-32819c122bf9", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df['percentil_discounted'] = 1-(df['undiscounted_price']/df['regularPrice'])" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "01a546ca-a735-4019-b003-a4a2fc8da694", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df_reduced = df[['Weight','Upper_Material','Midsole_Material','Outsole','Cushioning_System','Drop__heel-to-toe_differential_','regularPrice','undiscounted_price','percentil_discounted', 'Gender','Additional_Technologies']]" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "31fe59c0-c9c5-459b-bf1c-610e7ff96d60", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightUpper_MaterialMidsole_MaterialOutsoleCushioning_SystemDrop__heel-to-toe_differential_regularPriceundiscounted_pricepercentil_discountedGenderAdditional_Technologies
0183.0SyntheticnullTextile rubberLightstrike Pro6.01299950.0909965.00.300000WomanENERGYRODS 2.0, Waterproofing, Recyclable mate...
1289.0adidas PrimeknitBOOSTStretchweb with Continental Better RubberLinear Energy PushNaN799950.0NaNNaNWomanParley Ocean Plastic, waterproofing
2166.0Parte superior de malla técnicanullSuela de caucho Continental™Amortiguación Lightstrike Pro6.01049950.0629970.00.400000MujerContiene al menos un 20 % de material reciclad...
3200.0Parte superior de mallanullSuela de caucho Continental RubberAmortiguación Lightstrike Pro6.01049950.0734965.00.300000HombreVarillas ENERGYRODS, Talón Slinglaunch, Contie...
4319.0Parte superior textilMediasuela CloudfoamSuela de TPUCloudfoam6.0279950.0NaNNaNHombrenull
....................................
484216.0termoplástico, ;VFOAMCaucho sintético, Acetato de etileno y vinilo,...Pebax8.0399000.02400000.0-5.015038mujergeometría de la suela de las KIPRUN KD500 2, c...
485280.0termoplástico, ;KalensoleCaucho sintético, Acetato de etileno y viniloKalensole6.0309000.0NaNNaNHombre
486252.0, termoplástico,espuma MFOAMCaucho sintético, Acetato de etileno y viniloespuma MFOAM6.0499000.0NaNNaNHombreAdherencia: Buen agarre en piso mojado gracias...
487225.0,Caucho sintético, Carbono, Amida de bloque de ...8.0849000.0NaNNaNHombreImpulso: Espuma Pebax® de Arkema y placa de ca...
488218.0termoplástico,espuma Pebax® de Arkema.Caucho sintético, Amida de bloque de poliéter8.0699000.05990000.0-7.569385HombreImpulso: Excelente retorno de energía gracias ...
\n", + "

489 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " Weight ... Additional_Technologies\n", + "0 183.0 ... ENERGYRODS 2.0, Waterproofing, Recyclable mate...\n", + "1 289.0 ... Parley Ocean Plastic, waterproofing\n", + "2 166.0 ... Contiene al menos un 20 % de material reciclad...\n", + "3 200.0 ... Varillas ENERGYRODS, Talón Slinglaunch, Contie...\n", + "4 319.0 ... null\n", + ".. ... ... ...\n", + "484 216.0 ... geometría de la suela de las KIPRUN KD500 2, c...\n", + "485 280.0 ... \n", + "486 252.0 ... Adherencia: Buen agarre en piso mojado gracias...\n", + "487 225.0 ... Impulso: Espuma Pebax® de Arkema y placa de ca...\n", + "488 218.0 ... Impulso: Excelente retorno de energía gracias ...\n", + "\n", + "[489 rows x 11 columns]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_reduced" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "cd5bc1e4-0b47-40de-b629-c7e47e446b19", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['Weight', 'Upper_Material', 'Midsole_Material', 'Outsole',\n", + " 'Cushioning_System', 'Drop__heel-to-toe_differential_', 'regularPrice',\n", + " 'undiscounted_price', 'percentil_discounted', 'Gender',\n", + " 'Additional_Technologies'],\n", + " dtype='object')" + ] + }, + "execution_count": 243, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_reduced.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "caa09e55-f642-4d32-b06c-96a8c7af0da8", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "output_type": "stream", + "text": [ + "/root/.ipykernel/1017/command-2628091764913739-2217468474:1: SettingWithCopyWarning: \nA value is trying to be set on a copy of a slice from a DataFrame.\nTry using .loc[row_indexer,col_indexer] = value instead\n\nSee the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n df_reduced['Outsole'] = df_reduced['Outsole'].apply(preprocess_outsole)\n" + ] + } + ], + "source": [ + "df_reduced['Outsole'] = df_reduced['Outsole'].apply(preprocess_outsole)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "0357324b-81b4-4974-90e9-e6232b0f8d1a", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "source": [ + "## Clustering" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "c6a33e05-a578-4ea5-aadc-008198155e57", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + " \n", + " # Identificar columnas numéricas y categóricas\n", + "numerical_cols = ['Drop__heel-to-toe_differential_','Weight', 'regularPrice','undiscounted_price','percentil_discounted']\n", + "categorical_cols = ['Midsole_Material', 'Cushioning_System', 'Outsole', 'Upper_Material', \n", + " 'Additional_Technologies', 'Gender']\n", + " \n", + "# Definir qué columnas numéricas se imputarán con mediana y escalado\n", + "numeric_impute_cols = ['regularPrice']\n", + "\n", + "# Definir columnas numéricas \"especiales\" que no se deben imputar con mediana\n", + "special_numeric_cols = ['Drop__heel-to-toe_differential_', 'percentil_discounted','Weight', 'undiscounted_price']\n", + "\n", + "###################################\n", + "# Transformador personalizado\n", + "###################################\n", + "class SpecialNumericToCategory(BaseEstimator, TransformerMixin):\n", + " \n", + " \"\"\"\n", + " Este transformador convierte las columnas numéricas \"especiales\" en categorías.\n", + " Por ejemplo:\n", + " - Si el valor es NaN, lo marca como \"NoValue\".\n", + " - Si tiene valor, lo convierte a una categoría del tipo \"Value:X\".\n", + " \"\"\"\n", + " def __init__(self, cols):\n", + " self.cols = cols\n", + " \n", + " def fit(self, X, y=None):\n", + " return self\n", + "\n", + " def transform(self, X):\n", + " X = X.copy()\n", + " for col in self.cols:\n", + " X[col] = X[col].apply(lambda val: 'NoValue' if pd.isna(val) else f'Value:{val}')\n", + " return X[self.cols]\n", + "\n", + "###################################\n", + "# Pipelines\n", + "###################################\n", + "\n", + "# Pipeline para columnas numéricas \"normales\"\n", + "numeric_pipeline = Pipeline(steps=[\n", + " ('imputer', SimpleImputer(strategy='median')), # Imputar con mediana\n", + " ('scaler', StandardScaler()) # Escalar a media=0, std=1\n", + "])\n", + "\n", + "# Pipeline para columnas numéricas \"especiales\", convertidas a categóricas\n", + "special_numeric_pipeline = Pipeline(steps=[\n", + " ('to_category', SpecialNumericToCategory(special_numeric_cols)),\n", + " ('imputer', SimpleImputer(strategy='constant', fill_value='Unknown')), \n", + " ('onehot', OneHotEncoder(handle_unknown='ignore'))\n", + "])\n", + "\n", + "# Pipeline para columnas categóricas normales\n", + "categorical_pipeline = Pipeline(steps=[\n", + " ('imputer', SimpleImputer(strategy='constant', fill_value='Unknown')),\n", + " ('onehot', OneHotEncoder(handle_unknown='ignore'))\n", + "])\n", + "\n", + "# Combinar todos los pipelines con ColumnTransformer\n", + "preprocessor = ColumnTransformer(transformers=[\n", + " ('num', numeric_pipeline, numeric_impute_cols),\n", + " ('special_num', special_numeric_pipeline, special_numeric_cols),\n", + " ('cat', categorical_pipeline, categorical_cols)\n", + "])\n", + "X_transformed = preprocessor.fit_transform(df_reduced)\n", + "feature_names = (preprocessor.named_transformers_['num'][-1].get_feature_names_out(numeric_impute_cols).tolist() \n", + " + preprocessor.named_transformers_['special_num'][-1].get_feature_names_out(special_numeric_cols).tolist()\n", + " + preprocessor.named_transformers_['cat'][-1].get_feature_names_out(categorical_cols).tolist())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "70b99eca-b229-47bf-a0c6-8f4eb86c230d", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "Preprocesando columnas numéricas...\nGenerando embeddings para columnas categóricas...\nConcatenando características numéricas y categóricas...\nAplicando PCA para reducir dimensiones...\nCalculando el Método del Codo para determinar el número óptimo de clusters...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAImCAYAAAA8D0kbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACr3ElEQVR4nOzdd1gU59oG8HuXskvvVRFRVEQUARWxYwFLiN2IvUSNmhg1MR5zEsUYY9TYYsfErok1Jpao2BuigNg1aBBsgIjSO/P94WE/V3YRFBjK/bsur2R33p159mFYuJmZdySCIAggIiIiIiKicicVuwAiIiIiIqLqioGMiIiIiIhIJAxkREREREREImEgIyIiIiIiEgkDGRERERERkUgYyIiIiIiIiETCQEZERERERCQSBjIiIiIiIiKRMJARERERERGJhIGMiIiIqAijRo2Cu7s7srKyxC6FiKogTbELICIiIqqoTpw4gd27dyMsLAwymUzscoioCuIRMqJydubMGXz33XdISkoSuxQioneSnp6OOXPm4Pjx42KXUuYeP36MPXv2oF69emKXQkRVFAMZUTmKjo5Gr169YGBgACMjo3LZ5qlTpyCRSHDq1Kky3c7GjRshkUjw4MGDEr82ICAAEomk9It6Dw8ePIBEIsHGjRvFLoXKUUXcF0uidu3aGDFiRJlvZ/z48di7dy9atGhR5tsS29ChQ9GlS5cy386IESNQu3btMt/O+xL7e6S89nGi8sRARlQMBWFDIpHg3LlzhZYLggA7OztIJBJ88MEHKteRk5ODjz76CCNGjMCUKVMKLV+1ahV/+S+mU6dOoU+fPrC2toa2tjYsLS3h5+eHvXv3il1alVAQ4gv+yWQyWFlZoUOHDvjhhx/w7Nmzd173kydPEBAQgIiIiNIrmEqs4Gu7aNGiQssKPu9CQ0NVvvbXX3/F6dOncejQIRgYGJR1qaI5cOAAunbtCjMzM8jlctSvXx9ffvklnj9//s7r5P6v3v379zFu3DjUqVMHcrkchoaGaN26NZYtW4aMjIxyqSE9PR0BAQFl/gdMojcxkBGVgFwux/bt2ws9f/r0aTx69KjI6wtu3ryJgQMHqvwFCGAgK65Zs2bB29sbN27cwLhx47BmzRpMmzYNqamp6Nu3r8qvD72bSZMmYcuWLQgMDMS0adNgamqKWbNmoWHDhjhx4sQ7rfPJkyeYPXt2hf2F9Jtvvim3X/4qgoULFyI9Pb3Y4/Py8vD8+XMcPnwYNjY2ZViZuL788kv4+fkhNjYW06dPx4oVK9C5c2esWLECrq6uuHv37jutt6j9f926de+83sru4MGDaNy4MXbu3Ak/Pz8sX74c8+bNQ61atTBt2jR8/vnn5VJHeno6Zs+ezUBG5Y6TehCVQPfu3bFr1y78/PPP0NT8/2+f7du3w8PDAwkJCWpf27RpUzRt2rQcqqy6du/eje+++w79+vXD9u3boaWlpVg2bdo0HDlyBDk5OSJWKL60tDTo6emVyrratm2Lfv36KT139epV+Pj4oG/fvrh161aF+aW8tN63pqam0vd2eSnNr1txNW3aFBEREVizZg2mTp1arNdoaGjgq6++KuPK3l1p9PG3337DokWL8NFHH2Hbtm3Q0NBQLBsxYgS8vb3Rv39/hIeHl+q+8vrnWXUSFRWFgQMHwt7eHidOnFD6TJk4cSLu3buHgwcPiljh+xPj+5sqFx4hIyoBf39/PH/+HEFBQYrnsrOzsXv3bgwaNEjla/Lz87F06VI0atQIcrkcVlZWGDduHF68eKEYU7t2bdy8eROnT59WnErUoUMHxfJ///0X/fv3h6mpKXR1ddGyZUuVP6AePXqEXr16QU9PD5aWlpgyZYraaZp37doFDw8P6OjowNzcHEOGDMHjx4+L1YebN2+iY8eO0NHRQc2aNfH9998jPz9f5di///4bbdu2hZ6eHgwMDNCjRw/cvHmzWNt507fffgtTU1OsX79e5S8vvr6+SqeMxsfHY/To0bCysoJcLoerqys2bdpU6HUvX77EiBEjYGRkBGNjYwwfPhwvX75UWcOJEycU78fY2Bg9e/bE7du331p7wWmAO3bswNdffw1ra2vo6enhww8/xMOHD5XGnj17Fv3790etWrUgk8lgZ2eHKVOmFDpyM2LECOjr6+P+/fvo3r07DAwMMHjw4BKto6RcXV2xdOlSvHz5EitWrFBa9vjxY4waNQpWVlaQyWRo1KgR1q9fr9SD5s2bAwBGjhyp2NdfPzIcEhKCrl27wsjICLq6umjfvj3Onz+vtJ2Ca1hu3bqFQYMGwcTEBG3atAHw6nvpgw8+wKlTp9CsWTPo6OigcePGir947927F40bN4ZcLoeHhweuXLmict2vk0gk+PTTT7Fv3z64uLgo3tvhw4eVxkVHR2PChAlo0KABdHR0YGZmhv79+xe6rrLglMDTp09jwoQJsLS0RM2aNYvse1ZWFmbNmgVHR0fF1/Orr756r2nYW7dujY4dO2LBggVv3S86dOig9JlU4M3rngquvfzpp5+wcuVK1KlTB7q6uvDx8cHDhw8hCALmzJmDmjVrQkdHBz179kRiYmKh9Rbnc6Oo/T8tLQ1ffPEF7OzsIJPJ0KBBA/z0008QBOGtfZk9ezZMTEwQGBioFMYAoEWLFpg+fTquX7+O3bt3K/XHxcUFYWFhaNWqFXR0dODg4IA1a9Yoxrxt/y+rXq5atQqNGjWCTCaDra0tJk6cqPbz7U3nzp1D8+bNIZfLUbduXaxdu1bt2K1btyp+ppiammLgwIGFPttUWbBgAVJTU/Hrr7+q/AOPo6NjkUfI1F3Tpuq65tDQUPj6+sLc3FzxNRo1ahSAV/22sLAA8GofKPj6BAQEKF5/584d9OvXD6amppDL5WjWrBn++usvldtV9f2dkpKCyZMno3bt2pDJZLC0tESXLl0QHh7+1j5R1cYjZEQlULt2bXh5eeG3335Dt27dALz6xSEpKQkDBw7Ezz//XOg148aNw8aNGzFy5EhMmjQJUVFRWLFiBa5cuYLz589DS0sLS5cuxWeffQZ9fX3897//BQBYWVkBAOLi4tCqVSukp6dj0qRJMDMzw6ZNm/Dhhx9i9+7d6N27NwAgIyMDnTp1QkxMDCZNmgRbW1ts2bJF5allBfU0b94c8+bNQ1xcHJYtW4bz58/jypUrMDY2VtuD2NhYeHt7Izc3F//5z3+gp6eHwMBA6OjoFBq7ZcsWDB8+HL6+vpg/fz7S09OxevVqtGnTBleuXCnRBeyRkZG4c+cORo0aVazrVjIyMtChQwfcu3cPn376KRwcHLBr1y6MGDECL1++VPyAFwQBPXv2xLlz5/DJJ5+gYcOG+OOPPzB8+PBC6zx27Bi6deuGOnXqICAgABkZGVi+fDlat26N8PDwYr2fuXPnQiKRYPr06YiPj8fSpUvRuXNnREREKHq4a9cupKenY/z48TAzM8OlS5ewfPlyPHr0CLt27VJaX25uLnx9fdGmTRv89NNP0NXVLfE6Sqpfv34YPXo0jh49irlz5wJ4tZ+2bNlSEV4sLCzw999/Y/To0UhOTsbkyZPRsGFDfPfdd5g5cybGjh2Ltm3bAgBatWoF4FXY7datGzw8PDBr1ixIpVJs2LABHTt2xNmzZwtNING/f3/Uq1cPP/zwg9Iv2vfu3cOgQYMwbtw4DBkyBD/99BP8/PywZs0afP3115gwYQIAYN68eRgwYADu3r0LqbTov0+eO3cOe/fuxYQJE2BgYICff/4Zffv2RUxMDMzMzAAAly9fxoULFzBw4EDUrFkTDx48wOrVq9GhQwfcunVL8bUpMGHCBFhYWGDmzJlIS0tTu+38/Hx8+OGHOHfuHMaOHYuGDRvi+vXrWLJkCf755x/s27evGF811QICAtCuXTusXr262EfJimPbtm3Izs7GZ599hsTERCxYsAADBgxAx44dcerUKUyfPh337t3D8uXL8eWXXyoF95J8bqja/wVBwIcffoiTJ09i9OjRaNq0KY4cOYJp06bh8ePHWLJkidq6IyMjcffuXYwYMQKGhoYqxwwbNgyzZs3CgQMHMHDgQMXzL168QPfu3TFgwAD4+/tj586dGD9+PLS1tTFq1Ki37v9l0cuAgADMnj0bnTt3xvjx43H37l2sXr0aly9fVvz8Uef69evw8fGBhYUFAgICkJubi1mzZil+Nr1u7ty5+PbbbzFgwAB8/PHHePbsGZYvX4527dq99WfK/v37UadOnbf24X3Fx8cr3s9//vMfGBsb48GDB4prjy0sLLB69WqMHz8evXv3Rp8+fQAATZo0AfDqD5GtW7dGjRo1FD/7du7ciV69emHPnj2Kn8UFVH1/f/LJJ9i9ezc+/fRTODs74/nz5zh37hxu374Nd3f3Mn3/VMEJRPRWGzZsEAAIly9fFlasWCEYGBgI6enpgiAIQv/+/QVvb29BEATB3t5e6NGjh+J1Z8+eFQAI27ZtU1rf4cOHCz3fqFEjoX379oW2PXnyZAGAcPbsWcVzKSkpgoODg1C7dm0hLy9PEARBWLp0qQBA2Llzp2JcWlqa4OjoKAAQTp48KQiCIGRnZwuWlpaCi4uLkJGRoRh74MABAYAwc+bMIntRUE9ISIjiufj4eMHIyEgAIERFRSlqNDY2FsaMGaP0+tjYWMHIyEjp+VmzZglv+zj6888/BQDCkiVLihxXoKAfW7duVTyXnZ0teHl5Cfr6+kJycrIgCIKwb98+AYCwYMECxbjc3Fyhbdu2AgBhw4YNiuebNm0qWFpaCs+fP1c8d/XqVUEqlQrDhg0rsp6TJ08KAIQaNWooti0IgrBz504BgLBs2TLFcwX71uvmzZsnSCQSITo6WvHc8OHDBQDCf/7zn0Lji7uOomrdtWuX2jGurq6CiYmJ4vHo0aMFGxsbISEhQWncwIEDBSMjI0U9ly9fLtRXQRCE/Px8oV69eoKvr6+Qn5+v9D4cHByELl26KJ4r2F/8/f0L1WVvby8AEC5cuKB47siRIwIAQUdHR+m9r127Vul74/V1vw6AoK2tLdy7d0/x3NWrVwUAwvLly5VqfVNwcLAAQNi8ebPiuYLPkzZt2gi5ubmFXvOmLVu2CFKpVOkzQBAEYc2aNQIA4fz580rvf/jw4W9dJwBh4sSJgiAIgre3t2Btba2o//XPuwLt27dX+fk0fPhwwd7eXvE4KipKACBYWFgIL1++VDw/Y8YMAYDg6uoq5OTkKJ739/cXtLW1hczMTEEQSva5oW7/L/ie/v7775We79evnyCRSJS+jm8qeO3bPmcMDQ0Fd3d3xeP27dsLAIRFixYpnsvKylJ8ZmRnZwuCoH7/L3g/pdnL+Ph4QVtbW/Dx8VH8nBAEQVixYoUAQFi/fn2R77FXr16CXC5X+p65deuWoKGhofQ98uDBA0FDQ0OYO3eu0uuvX78uaGpqFnr+dUlJSQIAoWfPnkXW8ro393F1Pz8K9uOCn0l//PFHof36Tc+ePRMACLNmzSq0rFOnTkLjxo0V/RWEV59brVq1EurVq1dou6q+v42MjBTfd0Sv4ymLRCU0YMAAZGRk4MCBA0hJScGBAwfUnq64a9cuGBkZoUuXLkhISFD88/DwgL6+Pk6ePPnW7R06dAgtWrRQnJIFAPr6+hg7diwePHiAW7duKcbZ2NgoXfOjq6uLsWPHKq0vNDQU8fHxmDBhAuRyueL5Hj16wMnJ6a3n6h86dAgtW7ZUOlphYWGhOFWoQFBQEF6+fAl/f3+l966hoQFPT89ivffXJScnA0CxZ3U7dOgQrK2t4e/vr3hOS0sLkyZNQmpqKk6fPq0Yp6mpifHjxyvGaWho4LPPPlNa39OnTxEREYERI0bA1NRU8XyTJk3QpUsXHDp0qFh1DRs2TOk99OvXDzY2Nkqvf/1oY1paGhISEtCqVSsIglDoFDsASrW/6zpKSl9fHykpKQBeHWXcs2cP/Pz8IAiC0tfb19cXSUlJbz0lJyIiApGRkRg0aBCeP3+ueH1aWho6deqEM2fOFDot9pNPPlG5LmdnZ3h5eSkee3p6AgA6duyIWrVqFXr+33//fev77dy5M+rWrat43KRJExgaGiq99vWe5+Tk4Pnz53B0dISxsbHK9z9mzJhCp8SpsmvXLjRs2BBOTk5Kve3YsSMAlPh76U0BAQGIjY1VOr3uffXv31/p1h4FvR4yZIjSdVeenp7Izs5WnC79Lp8bb+7/hw4dgoaGBiZNmqT0/BdffAFBEPD333+rrbtgn37b54yBgYHiM6mApqYmxo0bp3isra2NcePGIT4+HmFhYUWuryjv2stjx44hOzsbkydPVjoCPGbMGBgaGhb5WZ+Xl4cjR46gV69eSt8zDRs2hK+vr9LYvXv3Ij8/HwMGDFD6mllbW6NevXpF7p8l/Vx/HwVH6Q4cOFDia40TExNx4sQJDBgwACkpKYr3+Pz5c/j6+iIyMrLQKf+qvr+NjY0REhKCJ0+evNd7oaqHpywSlZCFhQU6d+6M7du3Iz09HXl5eYUmPigQGRmJpKQkWFpaqlweHx//1u1FR0crfgC/rmHDhorlLi4uiI6OhqOjY6Fz6Rs0aFBofaqeBwAnJyeV0/oXp5431xcZGQkAil8a36TudCB1CsYX/ML0NtHR0ahXr16hU9Fe71vBf21sbKCvr680riR9a9iwIY4cOVKsC7ffvLmsRCKBo6Oj0nUOMTExmDlzJv766y+law0BFLqhuKampsrrj0qyjneRmpqq+CXq2bNnePnyJQIDAxEYGKhy/Nv29YL9RdWpogWSkpJgYmKieOzg4KBy3Ou/QAJQ/DJrZ2en8vk3+1OcdQKAiYmJ0mszMjIwb948bNiwAY8fP1Y6jVJVz9XV/6bIyEjcvn1bcX3Lm4rzOVKUdu3awdvbGwsWLFAbckvqXb8GJf3cULX/R0dHw9bWttAv+W9+76tS8Jq3fc6kpKQU+ly3tbUt9P1fv359AK+uT2rZsmWR61TnXXup7jNLW1sbderUKbIPz549Q0ZGhsqbYTdo0EDpD0iRkZEQBEHtjbOLOi2ypJ/r76N9+/bo27cvZs+ejSVLlqBDhw7o1asXBg0aVOQMycCr06AFQcC3336Lb7/9VuWY+Ph41KhRQ/FY1ff3ggULMHz4cNjZ2cHDwwPdu3fHsGHDUKdOnfd7c1TpMZARvYNBgwZhzJgxiI2NRbdu3dSeH5+fnw9LS0ts27ZN5XJ1v2BVBQVHM7Zs2QJra+tCy0s6O5mTkxOAV9c1VGV5eXno0qULEhMTMX36dDg5OUFPTw+PHz/GiBEjCh0lkslkhUJnSddRUjk5Ofjnn3/g4uIC4P+/1kOGDFEbqAquw1CnYB0LFy5UOxvpm6FZ1XWLANQedVL3/OvBSZ3ivPazzz7Dhg0bMHnyZHh5ecHIyAgSiQQDBw5U2XN19b8pPz8fjRs3xuLFi1Uuf/MX83cxa9YsdOjQAWvXrlX5eSaRSFT2KS8vT+X63vVrUNLPDVX7//soCG3Xrl1TOyY6OhrJyclwdnYute0WpSz259KUn58PiUSCv//+W2VNb37fvs7Q0BC2tra4cePGO29f3U2q39w3JRIJdu/ejYsXL2L//v04cuQIRo0ahUWLFuHixYtF1lmwX3755ZeFjhAWcHR0VHqs6vt7wIABaNu2Lf744w8cPXoUCxcuxPz587F3717FdelUPTGQEb2D3r17Y9y4cbh48SJ27NihdlzdunVx7NgxtG7d+q2/fKn7oWJvb6/y3jR37txRLC/4740bNyAIgtK63nxtwfi7d+8W+iv03bt3FcvVsbe3V/wV+83Xvq7g9C5LS0t07ty5yHUWR/369dGgQQP8+eefWLZsWZE/PAvqvHbtGvLz85V+YVPVt+PHjyM1NVVpnUX17U137tyBubl5saY1frN3giDg3r17isBy/fp1/PPPP9i0aROGDRumGPf6zJ5vUxrrKMru3buRkZGh+MXEwsICBgYGyMvLe+vXWt1+XrC/GBoalsr+Iobdu3dj+PDhSvcazMzMLPaMdurUrVsXV69eRadOndT27321b98eHTp0wPz58zFz5sxCy01MTFSe2lnUUZZ3URqfG/b29jh27BhSUlKUjpK9+b2vSv369VG/fn3s27cPy5YtU3kq3ebNmwFAaUZX4NU9xt48Sv7PP/8AgGIikrL6+qny+mfW60dgsrOzERUVVWR/LSwsoKOjU+zPekEQ4ODgoDgiWBIffPABAgMDERwcrHSqcXEVHDV/+fKl0h8T1O2bLVu2RMuWLTF37lxs374dgwcPxu+//46PP/5Y7denoH9aWlrv/flkY2ODCRMmYMKECYiPj4e7uzvmzp3LQFbN8Royonegr6+P1atXIyAgAH5+fmrHDRgwAHl5eZgzZ06hZbm5uUq/qOnp6an8xa179+64dOkSgoODFc+lpaUhMDAQtWvXVvyVtnv37njy5InSVMzp6emFTiFr1qwZLC0tsWbNGqUps//++2/cvn0bPXr0KPK9d+/eHRcvXsSlS5cUzz179qzQUUBfX18YGhrihx9+UHm+/rNnz4rcjiqzZ8/G8+fP8fHHHyM3N7fQ8qNHj+LAgQOKOmNjY5UCc25uLpYvXw59fX20b99eMS43NxerV69WjMvLy8Py5cuV1m1jY4OmTZti06ZNSl+nGzdu4OjRo+jevXux3sPmzZuVTs/ZvXs3nj59qvhhXPAX5tf/yi0IApYtW1as9ZfWOtS5evUqJk+eDBMTE0ycOFGxvb59+2LPnj0q/9L9+te64JfVN/d1Dw8P1K1bFz/99BNSU1OLXEdFpaGhUejoxPLly9UeRSquAQMG4PHjx1i3bl2hZRkZGUXO0FgSBdeSqTrttG7durhz547S1+Hq1auFbknwvkrjc6N79+7Iy8srdFuGJUuWQCKRvPUX35kzZ+LFixf45JNPCn3twsLCMH/+fLi4uKBv375Ky3Jzc5Wmhc/OzsbatWthYWEBDw8PAOr3/7LQuXNnaGtr4+eff1baL3/99VckJSUV+VmvoaEBX19f7Nu3DzExMYrnb9++jSNHjiiN7dOnDzQ0NDB79uxC+78gCHj+/HmRdX711VfQ09PDxx9/jLi4uELL79+/X+RnV0GIP3PmjOK5tLS0Qrc4efHiRaH6Co7GF/wsLJgJ9c2vj6WlpeII8tOnTwvVUJz9Mi8vr9Cpy5aWlrC1tX2v21dQ1cAjZETvqKhrXQq0b98e48aNw7x58xAREQEfHx9oaWkhMjISu3btwrJlyxTXn3l4eGD16tX4/vvv4ejoCEtLS3Ts2BH/+c9/FNPsT5o0Caampti0aROioqKwZ88exdGfMWPGYMWKFRg2bBjCwsJgY2ODLVu2FJpqW0tLC/Pnz8fIkSPRvn17+Pv7K6a9r127NqZMmVLke/rqq6+wZcsWdO3aFZ9//rli2vuCI1IFDA0NsXr1agwdOhTu7u4YOHAgLCwsEBMTg4MHD6J169aFfmF6m48++gjXr1/H3LlzceXKFfj7+8Pe3h7Pnz/H4cOHcfz4cWzfvh0AMHbsWKxduxYjRoxAWFgYateujd27d+P8+fNYunSp4i/ffn5+aN26Nf7zn//gwYMHcHZ2xt69e1Ve87Nw4UJ069YNXl5eGD16tGLaeyMjI6V71RTF1NQUbdq0wciRIxEXF4elS5fC0dERY8aMAfDq1My6deviyy+/xOPHj2FoaIg9e/YU6zqnAqWxDuDVvcwyMzORl5eH58+f4/z58/jrr79gZGSEP/74Q+mUsh9//BEnT56Ep6cnxowZA2dnZyQmJiI8PBzHjh1T3B+pbt26MDY2xpo1a2BgYAA9PT14enrCwcEBv/zyC7p164ZGjRph5MiRqFGjBh4/foyTJ0/C0NAQ+/fvL1H95e2DDz7Ali1bYGRkBGdnZwQHB+PYsWOKafHf1dChQ7Fz50588sknOHnyJFq3bo28vDzcuXMHO3fuxJEjR9CsWbP3rr99+/Zo3769YsKb140aNQqLFy+Gr68vRo8ejfj4eKxZswaNGjUqNLnF+yiNzw0/Pz94e3vjv//9Lx48eABXV1ccPXoUf/75JyZPnqw0OYsqgwcPxuXLl7Fs2TLcunULgwcPhomJCcLDw7F+/XqYmZlh9+7dha6NsrW1xfz58/HgwQPUr18fO3bsQEREBAIDAxVji9r/S5uFhQVmzJiB2bNno2vXrvjwww9x9+5drFq1Cs2bN8eQIUOKfP3s2bNx+PBhtG3bFhMmTFD8QatRo0ZKn/V169bF999/jxkzZuDBgwfo1asXDAwMEBUVhT/++ANjx47Fl19+qXY7devWxfbt2/HRRx+hYcOGGDZsGFxcXJCdnY0LFy4obleijo+PD2rVqoXRo0dj2rRp0NDQwPr16xX7TYFNmzZh1apV6N27N+rWrYuUlBSsW7cOhoaGij+o6ejowNnZGTt27ED9+vVhamoKFxcXuLi4YOXKlWjTpg0aN26MMWPGoE6dOoiLi0NwcDAePXqEq1evFtnPlJQU1KxZE/369YOrqyv09fVx7NgxXL58WemoOlVT5TafI1ElpmoaaFXenPa+QGBgoODh4SHo6OgIBgYGQuPGjYWvvvpKePLkiWJMbGys0KNHD8HAwEAAoDTF9P3794V+/foJxsbGglwuF1q0aCEcOHCg0Haio6OFDz/8UNDV1RXMzc2Fzz//XDHF/utTewuCIOzYsUNwc3MTZDKZYGpqKgwePFh49OhRsfpx7do1oX379oJcLhdq1KghzJkzR/j111+VphgucPLkScHX11cwMjIS5HK5ULduXWHEiBFCaGioYkxxpr1/3fHjx4WePXsKlpaWgqampmBhYSH4+fkJf/75p9K4uLg4YeTIkYK5ubmgra0tNG7cWOV008+fPxeGDh0qGBoaCkZGRsLQoUOFK1euqJye+tixY0Lr1q0FHR0dwdDQUPDz8xNu3br11poLppL/7bffhBkzZgiWlpaCjo6O0KNHj0LT0N+6dUvo3LmzoK+vL5ibmwtjxoxRTLP+ej3Dhw8X9PT0VG6vuOsoqtaCf1paWoKFhYXQrl07Ye7cuUJ8fLzK18XFxQkTJ04U7OzsBC0tLcHa2lro1KmTEBgYqDTuzz//FJydnQVNTc1C9Vy5ckXo06ePYGZmJshkMsHe3l4YMGCAcPz4ccWYgv3l2bNnhWpQ9z2I16Z5L1AwrfjChQsLrfttry3Y1uvTb7948UKxv+nr6wu+vr7CnTt3Co0r7ufJ67Kzs4X58+cLjRo1EmQymWBiYiJ4eHgIs2fPFpKSktTWpI669/T61/7N+rZu3SrUqVNH0NbWFpo2bSocOXJE7VTtr/f09fW+eSsFdb0ozudGUft/SkqKMGXKFMHW1lbQ0tIS6tWrJyxcuFDplgpvs2/fPqFLly6CiYmJIJPJBEdHR+GLL75Qud+1b99eaNSokRAaGip4eXkJcrlcsLe3F1asWFForLr9v6x6uWLFCsHJyUnQ0tISrKyshPHjxwsvXrwoVg9Onz4teHh4CNra2kKdOnWENWvWqP283rNnj9CmTRtBT09P0NPTE5ycnISJEycKd+/eLda2/vnnH2HMmDFC7dq1BW1tbcHAwEBo3bq1sHz5cqWp5lXt42FhYYKnp6egra0t1KpVS1i8eHGhae/Dw8MFf39/oVatWoJMJhMsLS2FDz74QGmfEgRBuHDhguI9440p8O/fvy8MGzZMsLa2FrS0tIQaNWoIH3zwgbB7927FGHVfh6ysLGHatGmCq6urYGBgIOjp6Qmurq7CqlWritUfqtokglDOV38SEVVDp06dgre3N3bt2qV2Vk4iqpw6dOiAhISE95qcgoiqL15DRkREREREJBIGMiIiIiIiIpEwkBEREREREYmE15ARERERERGJhEfIiIiIiIiIRMJARkREREREJBLeGLqU5Ofn48mTJzAwMIBEIhG7HCIiIiIiEokgCEhJSYGtrS2k0qKPgTGQlZInT57Azs5O7DKIiIiIiKiCePjwIWrWrFnkGAayUmJgYADgVdMNDQ1FrgbIycnB0aNH4ePjAy0tLbHLqTDYF9XYF/XYG9XYF/XYG9XYF/XYG9XYF/XYG9UqUl+Sk5NhZ2enyAhFYSArJQWnKRoaGlaYQKarqwtDQ0PRd8iKhH1RjX1Rj71RjX1Rj71RjX1Rj71RjX1Rj71RrSL2pTiXMnFSDyIiIiIiIpEwkBEREREREYmEgYyIiIiIiEgkDGREREREREQiYSAjIiIiIiISCQMZERERERGRSBjIiIiIiIiIRMJARkREREREJBIGMiIiIiIiIpEwkBEREREREYmEgYyIiIiIiEgkDGREREREREQiYSAjIiIiIiISCQNZFZSXLyAkKhFhCRKERCUiL18QuyQiIiIiIlJBU+wCqHQdvvEUs/ffwtOkTAAa2BwZChsjOWb5OaOri43Y5RERERER0Wt4hKwKOXzjKcZvDf9fGPt/sUmZGL81HIdvPBWpMiIiIiIiUoWBrIrIyxcwe/8tqDo5seC52ftv8fRFIiIiIqIKhIGsirgUlVjoyNjrBABPkzJxKSqx/IoiIiIiIqIiMZBVEfEp6sPYu4wjIiIiIqKyx0BWRVgayEt1HBERERERlT0GsiqihYMpbIzkkBQxxtpQhhYOpuVWExERERERFY2BrIrQkEowy88ZANSGMpmWBlIzc8uvKCIiIiIiKhIDWRXS1cUGq4e4w9pI+bREc30Z9GWaiH6eDv91F/EiLVukComIiIiI6HW8MXQV09XFBl2crRF8Lx5Hz4bAp60nvBwtcS8+FYN/uYhbT5Phv+4itn7sCXN9mdjlEhERERFVazxCVgVpSCXwdDCFh7kATwdTaEglaGBtgN/HtoSFgQx3YlPgH3iRMy4SEREREYmMgawacbQ0wI6xLWFtKEdkfCoGrr2I2CLuXUZERERERGWLgayaqWOhjx3jWqKGsQ7+TUjDR4HBePIyQ+yyiIiIiIiqJQayasjeTA+/j20JO1MdRD9Px0eBwXiYmC52WURERERE1Q4DWTVlZ6qLHWO9UNtMFw8TMzAw8CKin6eJXRYRERERUbXCQFaN2Rrr4PexXqhjoYfHLzPw0dqL+PdZqthlERERERFVGwxk1Zy1kRy/j22Jepb6iE3OxEeBF3EvPkXssoiIiIiIqgUGMoKlwatQ5mRtgGcpWRgYeBF3YxnKiIiIiIjKGgMZAQDM9GX4bUxLNLI1REJqNgYGBuPmkySxyyIiIiIiqtIYyEjBRE8b2z9uCdeaRniRnoNB60Jw/RFDGRERERFRWWEgIyVGulrY8rEn3GsZIykjB4N+uYgrMS/ELouIiIiIqEpiIKNCDOVa2DzaE81rmyAlMxdDf72E0AeJYpdFRERERFTlMJCRSvoyTWwa1QIt65giNSsXw9ZfQsi/z8Uui4iIiIioSmEgI7V0tTWxYUQLtHE0R3p2HoZvuITz9xLELouIiIiIqMpgIKMi6Whr4JfhzdChgQUyc/IxauNlnP7nmdhlERERERFVCQxk9FZyLQ2sHeqBzg0tkZWbjzGbQnHiTpzYZRERERERVXoMZFQsMk0NrBrsga6NrJGdl49xW8Jw9Gas2GUREREREVVqDGRUbNqaUiwf5IYeTWyQkydgwrZwHLr+VOyyiIiIiIgqLQYyKhEtDSmWfdQUvZraIjdfwGe/XcGfEY/FLouIiIiIqFJiIKMS09SQYtGApujnURN5+QKm7IjA3vBHYpdFRERERFTpMJDRO9GQSrCgbxP4t7BDvgB8sesqdl5+KHZZRERERESViqiB7MyZM/Dz84OtrS0kEgn27duntDwgIABOTk7Q09ODiYkJOnfujJCQEKUxtWvXhkQiUfr3448/Ko25du0a2rZtC7lcDjs7OyxYsKBQLbt27YKTkxPkcjkaN26MQ4cOlfr7rWqkUgnm9mqMoS3tIQjAV3uuYVtItNhlERERERFVGqIGsrS0NLi6umLlypUql9evXx8rVqzA9evXce7cOdSuXRs+Pj549kz5Pljfffcdnj59qvj32WefKZYlJyfDx8cH9vb2CAsLw8KFCxEQEIDAwEDFmAsXLsDf3x+jR4/GlStX0KtXL/Tq1Qs3btwomzdehUilEnzXsxFGtq4NAPjvHzew8XyUuEUREREREVUSmmJuvFu3bujWrZva5YMGDVJ6vHjxYvz666+4du0aOnXqpHjewMAA1tbWKtexbds2ZGdnY/369dDW1kajRo0QERGBxYsXY+zYsQCAZcuWoWvXrpg2bRoAYM6cOQgKCsKKFSuwZs2a932bVZ5EIsHMD5yhrSHF2jP/ImD/LeTmC/i4bR2xSyMiIiIiqtBEDWQlkZ2djcDAQBgZGcHV1VVp2Y8//og5c+agVq1aGDRoEKZMmQJNzVdvLTg4GO3atYO2trZivK+vL+bPn48XL17AxMQEwcHBmDp1qtI6fX19C51C+bqsrCxkZWUpHicnJwMAcnJykJOT875v970V1FCetXzRuS6kEgGrT0fh+4O3kZmdi3HtHMpt+8UhRl8qA/ZFPfZGNfZFPfZGNfZFPfZGNfZFPfZGtYrUl5LUUOED2YEDBzBw4ECkp6fDxsYGQUFBMDc3VyyfNGkS3N3dYWpqigsXLmDGjBl4+vQpFi9eDACIjY2Fg4NyKLCyslIsMzExQWxsrOK518fExqq/8fG8efMwe/bsQs8fPXoUurq67/x+S1tQUFC5bq+BAHStKcHhRxr4KSgSt+7cgW9NoVxrKI7y7ktlwb6ox96oxr6ox96oxr6ox96oxr6ox96oVhH6kp6eXuyxFT6QeXt7IyIiAgkJCVi3bh0GDBiAkJAQWFpaAoDSka0mTZpAW1sb48aNw7x58yCTycqsrhkzZihtOzk5GXZ2dvDx8YGhoWGZbbe4cnJyEBQUhC5dukBLS6tct90DwOrT/2LxsXs49FADtevUweROdSGRSMq1DlXE7EtFxr6ox96oxr6ox96oxr6ox96oxr6ox96oVpH6UnD2XHFU+ECmp6cHR0dHODo6omXLlqhXrx5+/fVXzJgxQ+V4T09P5Obm4sGDB2jQoAGsra0RFxenNKbgccF1Z+rGqLsuDQBkMpnKwKelpSX6DvA6seqZ1LkB5Nqa+OHQHaw6/S/yIcH0rg0qRCgDKt7XqaJgX9Rjb1RjX9Rjb1RjX9Rjb1RjX9Rjb1SrCH0pyfYr3X3I8vPzla7delNERASkUqniCJqXlxfOnDmjdB5nUFAQGjRoABMTE8WY48ePK60nKCgIXl5eZfAOqo+x7epi5gfOAIA1p+9j7sHbEISKd/oiEREREZFYRD1Clpqainv37ikeR0VFISIiAqampjAzM8PcuXPx4YcfwsbGBgkJCVi5ciUeP36M/v37A3g1YUdISAi8vb1hYGCA4OBgTJkyBUOGDFGErUGDBmH27NkYPXo0pk+fjhs3bmDZsmVYsmSJYruff/452rdvj0WLFqFHjx74/fffERoaqjQ1Pr2bUW0coKUhwbd/3sQv56KQk5ePgA8bVZgjZUREREREYhI1kIWGhsLb21vxuOCarOHDh2PNmjW4c+cONm3ahISEBJiZmaF58+Y4e/YsGjVqBODVaYO///47AgICkJWVBQcHB0yZMkXp2i4jIyMcPXoUEydOhIeHB8zNzTFz5kzFlPcA0KpVK2zfvh3ffPMNvv76a9SrVw/79u2Di4tLOXWiahvqVRtaGlLM+OM6NgVHIydfwPc9XSCVMpQRERERUfUmaiDr0KFDkaew7d27t8jXu7u74+LFi2/dTpMmTXD27Nkix/Tv319x5I1K38AWtaCpIcW03VexPSQGuXn5mNenCTQYyoiIiIioGqt015BR5dXPoyaWftQUUgmwM/QRpu26irx8XlNGRERERNUXAxmVq55Na2C5vzs0pBLsvfIYk3dEIDcvX+yyiIiIiIhEwUBG5a5HExusHOQOLQ0J9l99gs9+u4IchjIiIiIiqoYYyEgUXV2ssXqwB7Q1pPj7RiwmbAtHVm6e2GUREREREZUrBjISTWdnKwQO84C2phRBt+LwyZYwZOYwlBERERFR9cFARqLq0MAS64c3h1xLipN3n2HM5lCGMiIiIiKqNhjISHRt6pljw4gW0NXWwNnIBIzaeBnp2blil0VEREREVOYYyKhC8Kprhk2jWkBPWwMX7j/HiPWXkZrFUEZEREREVRsDGVUYzWubYsvHnjCQaeLSg0QMX38JKZk5YpdFRERERFRmGMioQnGvZYJtYzxhKNdEWPQLDPn1EpIyGMqIiIiIqGpiIKMKp0lNY2wf0xLGulq4+vAlBv9yES/Ts8Uui4iIiIio1DGQUYXkUsMIv41pCTM9bdx4nAz/dSF4npoldllERERERKWKgYwqrIY2hvh9bEuY68tw+2ky/NddxLMUhjIiIiIiqjoYyKhCq2dlgB3jWsLKUIZ/4lIxMDAY8cmZYpdFRERERFQqGMiowqtroY8dY71gayTH/Wdp+CjwIp4mZYhdFhERERHRe2Mgo0qhtrkedozzQg1jHUQlpOGjtRfx6EW62GUREREREb0XBjKqNOxMdbHzEy/UMtVFTGI6Plp7ETHPGcqIiIiIqPJiIKNKpYaxDnaO84KDuR4ev8zAR4HBeJCQJnZZRERERETvhIGMKh1rIzl2jG2JuhZ6eJqUiQFrg3EvPlXssoiIiIiISoyBjColS0M5fh/rhQZWBohPycLAwIv4Jy5F7LKIiIiIiEqEgYwqLQsDGX4b2xLONoZISH0Vym4/TRa7LCIiIiKiYmMgo0rNVE8b28d4onENIySmZcN/3UXceJwkdllERERERMXCQEaVnrGuNrZ+7ImmdsZ4mZ6DQesu4urDl2KXRURERET0VgxkVCUY6Whhy+gW8LA3QXJmLob8EoKw6Bdil0VEREREVCQGMqoyDORa2DyqBVo4mCIlKxfDfg3BpahEscsiIiIiIlKLgYyqFD2ZJjaObI5Wdc2Qlp2H4esv4cL9BLHLIiIiIiJSiYGMqhxdbU2sH9EcbeuZIyMnD6M2XsbZyGfIyxcQEpWIsAQJQqISkZcviF0qEREREVVzmmIXQFQW5FoaWDesGSZsC8eJO/EYueEyDOSaeJGeA0ADmyNDYWMkxyw/Z3R1sRG7XCIiIiKqpniEjKosuZYG1gzxgGtNI+TmC/8LY/8vNikT47eG4/CNpyJVSERERETVHQMZVWkaUgnikrNULis4YXH2/ls8fZGIiIiIRMFARlXapahExCZnql0uAHialMnZGImIiIhIFAxkVKXFp6gPY+8yjoiIiIioNDGQUZVmaSAv1XFERERERKWJgYyqtBYOprAxkkNSxBhNqQQ1TXTKrSYiIiIiogIMZFSlaUglmOXnDABqQ1luvoC+qy/g+qOk8iuMiIiIiAgMZFQNdHWxweoh7rA2Uj4t0cZIjrm9XFDfSh/xKVkYsDYYR2/GilQlEREREVVHvDE0VQtdXWzQxdkawfficfRsCHzaesLL0RIaUgn8mtpi4rZwnI1MwLitYfhv94YY3cYBEklRJzoSEREREb0/HiGjakNDKoGngyk8zAV4OphCQ/oqcBnKtbBhRHMM9qwFQQC+P3gb3+y7gdy8fJErJiIiIqKqjoGMCICmhhTf93LBNz0aQiIBtoXEYOTGy0jOzBG7NCIiIiKqwhjIiP5HIpHg47Z1sGaIB3S0NHA2MgH9Vl/AoxfpYpdGRERERFUUAxnRG3wbWWPnOC9YGsjwT1wqeq28gIiHL8Uui4iIiIiqIAYyIhUa1zTCvomt4WRtgITULHy0Nhh/X38qdllEREREVMUwkBGpYWusg93jW8G7gQWycvMxfls41py+D0EQxC6NiIiIiKoIBjKiIujLNLFuWDMM97IHAPz49x38Z8915HAGRiIiIiIqBaIGsjNnzsDPzw+2traQSCTYt2+f0vKAgAA4OTlBT08PJiYm6Ny5M0JCQpTGJCYmYvDgwTA0NISxsTFGjx6N1NRUpTHXrl1D27ZtIZfLYWdnhwULFhSqZdeuXXBycoJcLkfjxo1x6NChUn+/VDlpakgxu6cLAvycIZUAO0IfYsSGS0jK4AyMRERERPR+RA1kaWlpcHV1xcqVK1Uur1+/PlasWIHr16/j3LlzqF27Nnx8fPDs2TPFmMGDB+PmzZsICgrCgQMHcObMGYwdO1axPDk5GT4+PrC3t0dYWBgWLlyIgIAABAYGKsZcuHAB/v7+GD16NK5cuYJevXqhV69euHHjRtm9eap0RrR2wC/Dm0FXWwPn7z1H39UX8DCRMzASERER0bsTNZB169YN33//PXr37q1y+aBBg9C5c2fUqVMHjRo1wuLFi5GcnIxr164BAG7fvo3Dhw/jl19+gaenJ9q0aYPly5fj999/x5MnTwAA27ZtQ3Z2NtavX49GjRph4MCBmDRpEhYvXqzYzrJly9C1a1dMmzYNDRs2xJw5c+Du7o4VK1aUfROoUunoZIVdn3jB2lCOe/Gp6LXyPMKiX4hdFhERERFVUppiF1Bc2dnZCAwMhJGREVxdXQEAwcHBMDY2RrNmzRTjOnfuDKlUipCQEPTu3RvBwcFo164dtLW1FWN8fX0xf/58vHjxAiYmJggODsbUqVOVtufr61voFMrXZWVlISsrS/E4OTkZAJCTk4OcHPFPZSuooSLUUpGURl/qW+hi17gWGLf1Cm49TYH/uotY0McFPRpbl1aZ5Y77i3rsjWrsi3rsjWrsi3rsjWrsi3rsjWoVqS8lqaHCB7IDBw5g4MCBSE9Ph42NDYKCgmBubg4AiI2NhaWlpdJ4TU1NmJqaIjY2VjHGwcFBaYyVlZVimYmJCWJjYxXPvT6mYB2qzJs3D7Nnzy70/NGjR6Grq1vyN1pGgoKCxC6hQiqNvoywAzZnSnHjBTB55zUEBV9BlxoCJJJSKFAk3F/UY29UY1/UY29UY1/UY29UY1/UY29Uqwh9SU8v/mUtFT6QeXt7IyIiAgkJCVi3bh0GDBiAkJCQQkGsvM2YMUPpqFpycjLs7Ozg4+MDQ0NDESt7JScnB0FBQejSpQu0tLTELqfCKO2+fJgvYP6Rf7DhQjQOPtSAtrktvv/QGdqalWsCU+4v6rE3qrEv6rE3qrEv6rE3qrEv6rE3qlWkvhScPVccFT6Q6enpwdHREY6OjmjZsiXq1auHX3/9FTNmzIC1tTXi4+OVxufm5iIxMRHW1q9OH7O2tkZcXJzSmILHbxtTsFwVmUwGmUxW6HktLS3Rd4DXVbR6KorS6osWgFkfuqCOpQEC/rqJP648wZOXmVg71APGutpvfX1Fw/1FPfZGNfZFPfZGNfZFPfZGNfZFPfZGtYrQl5Jsv3L9GR9Afn6+4totLy8vvHz5EmFhYYrlJ06cQH5+Pjw9PRVjzpw5o3QeZ1BQEBo0aAATExPFmOPHjyttJygoCF5eXmX9dqiKGNrSHr8ObwZ9mSZCohLRZ9UFPEhIE7ssIiIiIqrgRA1kqampiIiIQEREBAAgKioKERERiImJQVpaGr7++mtcvHgR0dHRCAsLw6hRo/D48WP0798fANCwYUN07doVY8aMwaVLl3D+/Hl8+umnGDhwIGxtbQG8mqlRW1sbo0ePxs2bN7Fjxw4sW7ZM6XTDzz//HIcPH8aiRYtw584dBAQEIDQ0FJ9++mm594Qqrw4NLLF7vBdqGOvg34Q09F51HpcfJIpdFhERERFVYKIGstDQULi5ucHNzQ0AMHXqVLi5uWHmzJnQ0NDAnTt30LdvX9SvXx9+fn54/vw5zp49i0aNGinWsW3bNjg5OaFTp07o3r072rRpo3SPMSMjIxw9ehRRUVHw8PDAF198gZkzZyrdq6xVq1bYvn07AgMD4erqit27d2Pfvn1wcXEpv2ZQleBkbYg/JrZCk5pGeJGeg8HrQrDvymOxyyIiIiKiCkrUa8g6dOgAQRDULt+7d+9b12Fqaort27cXOaZJkyY4e/ZskWP69++vOPJG9D4sDeTYMdYLU3ZE4PDNWEzeEYGohDRM7lwPkso8BSMRERERlbpKdw0ZUWWgo62BVYPdMa5dHQDAsuORmLIjAlm5eSJXRkREREQVCQMZURmRSiWY0b0h5vVpDA2pBPsinmDILyFITMsWuzQiIiIiqiAYyIjKmH+LWtg0sgUMZJq4/OAFeq86j/vPUsUui4iIiIgqAAYyonLQpp459k5ohZomOoh+no4+qy4g+P5zscsiIiIiIpExkBGVk3pWBvhjQms0tTNGUkYOhq0Pwe6wR2KXRUREREQiYiAjKkcWBjL8PrYlejS2QU6egC93XcVPR+4iP1/9bKNEREREVHUxkBGVM7mWBpb7u2Gid10AwIqT9zDp9yvIzOEMjERERETVDQMZkQikUgmm+TphQb8m0JRKcODaUwxadxEJqVlil0ZERERE5YiBjEhEA5rZYfPoFjCUayI85iV6rzqPe/EpYpdFREREROWEgYxIZK3qmuOPia1Ry1QXDxMz0HvVBZy/lyB2WURERERUDhjIiCqAuhb62DexNZrZmyAlMxfD11/C75dixC6LiIiIiMoYAxlRBWGqp42tH3uiZ1Nb5OYL+M/e6/jx7zucgZGIiIioCmMgI6pA5FoaWPpRU0zqVA8AsOb0fUzcHo6MbM7ASERERFQVMZARVTASiQRTu9TH4gGu0NKQ4O8bsRi47iLiUzLFLo2IiIiIShkDGVEF1ce9JraO9oSxrhauPnyJ3isv4G4sZ2AkIiIiqkoYyIgqMM86ZvhjQms4mOvh8csM9F19Aaf/eSZ2WURERERUShjIiCo4B3M97B3fCi0cTJGalYtRGy9j68VoscsiIiIiolLAQEZUCZjoaWPL6Bbo41YDefkCvtl3A98fuIU8zsBIREREVKkxkBFVEjJNDSwa4IovutQHAPxyLgqfbA1DenauyJURERER0btiICOqRCQSCT7rVA/LBjaFtqYUQbfiMGBtMOKSOQMjERERUWXEQEZUCfVsWgPbP/aEqZ42bjxORq+V53HrSbLYZRERERFRCTGQEVVSzWqb4o8JrVDHQg9PkzLRf80FnLwTL3ZZRERERFQCDGRElZi9mR7+GN8aXnXMkJadh9GbLmPThQdil0VERERExcRARlTJGelqYdOoFhjQrCbyBWDWXzcR8NdNzsBIREREVAkwkBFVAdqaUszv2wRfdW0AANh44QHGbA5FahZnYCQiIiKqyBjIiKoIiUSCCR0csXKQO2SaUpy4E4/+a4LxNClD7NKIiIiISA0GMqIqpkcTG/w2tiXM9bVx+2kyeq44jxuPk8Qui4iIiIhUYCAjqoLca5ngjwmtUc9SH/EpWei/JhhHb8aKXRYRERERvYGBjKiKsjPVxZ4JrdC2njkycvIwbmsYfjn7LwSBk30QERERVRQMZERVmKFcC+tHNId/i1oQBOD7g7fx7Z83kJuXL3ZpRERERAQGMqIqT0tDih96u+C/3RtCIgG2XozBqE2hSMnMEbs0IiIiomqPgYyoGpBIJBjTrg5WD/aAXEuKM/88Q7/VwXj0Ih15+QJCohIRliBBSFQi719GREREVI40xS6AiMpPVxdr7DT2wuhNobgbl4Juy85CW0OK52nZADSwOTIUNkZyzPJzRlcXG7HLJSIiIqryeISMqJppUtMY+ya2Rg1jOVIyc/8Xxv5fbFImxm8Nx+EbT0WqkIiIiKj6YCAjqoasDeXIVXNqYsGzs/ff4umLRERERGWMgYyoGroUlYi45Cy1ywUAT5MycSkqsfyKIiIiIqqGGMiIqqH4lMxSHUdERERE74aBjKgasjSQF2uchb6sjCshIiIiqt4YyIiqoRYOprAxkkPylnGrT99HQqr6UxuJiIiI6P0wkBFVQxpSCWb5OQNAoVBW8FhTKsHZyAR0W3YW5yITyrU+IiIiouqCgYyomurqYoPVQ9xhbaR8+qK1kRxrhrjj4KS2qGepj2cpWRi6PgQLj9xBTl6+SNUSERERVU28MTRRNdbVxQZdnK0RfC8eR8+GwKetJ7wcLaEhfXWc7K9P2+C7Azfx26WHWHnyPoLvP8fP/m6oaaIrcuVEREREVQOPkBFVcxpSCTwdTOFhLsDTwVQRxgBAR1sD8/o0wYpBbjCQaSI85iW6LzuLv6/zptFEREREpYGBjIje6oMmtjj0eVu42hkjOTMX47eF45t915GZkyd2aURERESVGgMZERWLnakudn/ihXHt6wAAtl6MQa+V53EvPkXkyoiIiIgqL1ED2ZkzZ+Dn5wdbW1tIJBLs27dPsSwnJwfTp09H48aNoaenB1tbWwwbNgxPnjxRWkft2rUhkUiU/v34449KY65du4a2bdtCLpfDzs4OCxYsKFTLrl274OTkBLlcjsaNG+PQoUNl8p6JKjMtDSlmdGuITaNawFxfG3diU/DB8nPYcTkGgiCIXR4RERFRpSNqIEtLS4OrqytWrlxZaFl6ejrCw8Px7bffIjw8HHv37sXdu3fx4YcfFhr73Xff4enTp4p/n332mWJZcnIyfHx8YG9vj7CwMCxcuBABAQEIDAxUjLlw4QL8/f0xevRoXLlyBb169UKvXr1w48aNsnnjRJVc+/oWOPR5W7RxNEdmTj6m77mOSb9HIDkzR+zSiIiIiCoVUWdZ7NatG7p166ZymZGREYKCgpSeW7FiBVq0aIGYmBjUqlVL8byBgQGsra1Vrmfbtm3Izs7G+vXroa2tjUaNGiEiIgKLFy/G2LFjAQDLli1D165dMW3aNADAnDlzEBQUhBUrVmDNmjUq15uVlYWsrP+/YW5ycjKAV0f2cnLE/6W0oIaKUEtFwr6o9i59MZFr4Nehblh37gGWHL+H/VefICLmBZYOaIImNY3KqtRyx31GNfZFPfZGNfZFPfZGNfZFPfZGtYrUl5LUIBEqyHlGEokEf/zxB3r16qV2zLFjx+Dj44OXL1/C0NAQwKtTFjMzM5GTk4NatWph0KBBmDJlCjQ1X2XNYcOGITk5Wel0yJMnT6Jjx45ITEyEiYkJatWqhalTp2Ly5MmKMbNmzcK+fftw9epVlbUEBARg9uzZhZ7fvn07dHU5JThVL1EpwOZIDSRmSSCVCPCrlY8ONgKkb951moiIiKgaSE9Px6BBg5CUlKTILepUmvuQZWZmYvr06fD391d6U5MmTYK7uztMTU1x4cIFzJgxA0+fPsXixYsBALGxsXBwcFBal5WVlWKZiYkJYmNjFc+9PiY2NlZtPTNmzMDUqVMVj5OTk2FnZwcfH5+3Nr085OTkICgoCF26dIGWlpbY5VQY7ItqpdGXoRk5+HrfTRy5FY8/ozXwQtsMC/q4wExfVsrVli/uM6qxL+qxN6qxL+qxN6qxL+qxN6pVpL4UnD1XHJUikOXk5GDAgAEQBAGrV69WWvZ6KGrSpAm0tbUxbtw4zJs3DzJZ2f0iKJPJVK5fS0tL9B3gdRWtnoqCfVHtffpipqWFNUObYfulGHy3/xbORD6H36qLWPpRU7R2NC/lSssf9xnV2Bf12BvV2Bf12BvV2Bf12BvVKkJfSrL9Cj/tfUEYi46ORlBQ0FuPPnl6eiI3NxcPHjwAAFhbWyMuLk5pTMHjguvO1I1Rd10aEakmkUgw2NMef37aGo6W+niWkoUhv4Zg4ZE7yM3LF7s8IiIiogqnQgeygjAWGRmJY8eOwczM7K2viYiIgFQqhaWlJQDAy8sLZ86cUbqwLigoCA0aNICJiYlizPHjx5XWExQUBC8vr1J8N0TVh5O1IfZ/2gb+LewgCMDKk/fxUeBFPHqRLnZpRERERBWKqIEsNTUVERERiIiIAABERUUhIiICMTExyMnJQb9+/RAaGopt27YhLy8PsbGxiI2NRXZ2NgAgODgYS5cuxdWrV/Hvv/9i27ZtmDJlCoYMGaIIW4MGDYK2tjZGjx6NmzdvYseOHVi2bJnSqY6ff/45Dh8+jEWLFuHOnTsICAhAaGgoPv3003LvCVFVoaOtgXl9mmC5vxsMZJoIi36B7svO4vCNp2KXRkRERFRhiBrIQkND4ebmBjc3NwCvrgdzc3PDzJkz8fjxY/z111949OgRmjZtChsbG8W/CxcuAHh1Hdfvv/+O9u3bo1GjRpg7dy6mTJmidI8xIyMjHD16FFFRUfDw8MAXX3yBmTNnKqa8B4BWrVph+/btCAwMhKurK3bv3o19+/bBxcWlfBtCVAX5udri4KS2cLUzRnJmLj7ZGo5v9l1HZk6e2KURERERiU7UST06dOiAombdf9uM/O7u7rh48eJbt9OkSROcPXu2yDH9+/dH//7937ouIiq5Wma62DXOC4uO3sXaM/9i68UYhD54gRWD3OBoaSB2eURERESiqdDXkBFR1aGtKcWM7g2xaVQLmOlp405sCvyWn8fOyw/f+scXIiIioqqKgYyIylX7+hb4+/O2aO1ohoycPHy15xo+/z0CKZnFv6M9ERERUVXBQEZE5c7SUI4tozwxzbcBNKQS/HX1CXr8fA5XH74UuzQiIiKicsVARkSikEolmOjtiJ3jWqKGsQ5iEtPRd/UFrDvzL/LzeQojERERVQ8MZEQkKg97Uxya1BbdXKyRmy9g7qHbGLXpMp6nZoldGhEREVGZYyAjItEZ6Wph1WB3fN/LBdqaUpy6+wzdlp3FhXsJYpdGREREVKYYyIioQpBIJBjS0h5/fdoajpb6iE/JwuBfQ7Do6F3k5uWLXR4RERFRmWAgI6IKxcnaEH992hoDm9tBEIDlJ+5hYOBFPH6ZIXZpRERERKWOgYyIKhxdbU382LcJfvZ3g75ME6HRL9B92VkcvhErdmlEREREpYqBjIgqrA9dbXFoUlu41jRCUkYOPtkahpl/3kBmTp7YpRERERGVCgYyIqrQapnpYtcnrTCuXR0AwObgaPRaeR734lNFroyIiIjo/TGQEVGFp60pxYzuDbFxZHOY6WnjTmwK/Jafw87QhxAE3rOMiIiIKq8SBbLbt29j1qxZ6NixI+rWrQsbGxs0adIEw4cPx/bt25GVxfsGEVHZ6dDAEn9/3hatHc2QkZOHr3Zfw+QdEUjJzBG7NCIiIqJ3UqxAFh4ejs6dO8PNzQ3nzp2Dp6cnJk+ejDlz5mDIkCEQBAH//e9/YWtri/nz5zOYEVGZsTSUY/MoT0zzbQANqQR/RjzBB8vP4dqjl2KXRkRERFRimsUZ1LdvX0ybNg27d++GsbGx2nHBwcFYtmwZFi1ahK+//rq0aiQiUqIhlWCityNa1jHFpN8iEP08HX1XX8D0rk4Y1doBUqlE7BKJiIiIiqVYgeyff/6BlpbWW8d5eXnBy8sLOTk8fYiIyp6HvSkOTWqL6Xuu4fDNWHx/8DbO30vAT/1dYaYvE7s8IiIiorcq1imLxQlj7zOeiOhdGelqYfUQd8zp5QJtTSlO3n2GbsvO4sL9BLFLIyIiInqrYh0he1NaWhpOnz6NmJgYZGdnKy2bNGlSqRRGRFRcEokEQ1vao5m9CT777Qruxadi8C8h+MzbEZM61YOmBieUJSIiooqpxIHsypUr6N69O9LT05GWlgZTU1MkJCRAV1cXlpaWDGREJJqGNob469PWmP3XLewIfYifT9xD8L/PsXSgG2oY64hdHhEREVEhJf6z8ZQpU+Dn54cXL15AR0cHFy9eRHR0NDw8PPDTTz+VRY1ERMWmq62J+f2a4Gd/N+jLNHH5wQt0X3YWR27Gil0aERERUSElDmQRERH44osvIJVKoaGhgaysLNjZ2WHBggWcWZGIKowPXW1xcFIbuNY0QlJGDsZtCcOsP28gMydP7NKIiIiIFEocyLS0tCCVvnqZpaUlYmJiAABGRkZ4+PBh6VZHRPQe7M30sOuTVhjbrg4AYFNwNHqvuoB78akiV0ZERET0SokDmZubGy5fvgwAaN++PWbOnIlt27Zh8uTJcHFxKfUCiYjeh7amFF93b4gNI5vDVE8bt58mw2/5OewKfQhBEMQuj4iIiKq5EgeyH374ATY2NgCAuXPnwsTEBOPHj8ezZ88QGBhY6gUSEZUG7waW+PvztmhV1wwZOXmYtvsapuyIQGpWrtilERERUTVW4lkWmzVrpvh/S0tLHD58uFQLIiIqK1aGcmwZ7YnVp+5hybFI7It4goiHL7Hc3x2NaxqJXR4RERFVQ7w5DxFVKxpSCT7tWA87xraErZEcD56no8/q8/jl7L88hZGIiIjKXbGOkLm7u+P48eMwMTGBm5sbJBKJ2rHh4eGlVhwRUVlpVtsUhz5vi+l7ruHIzTh8f/A2Ltx/joX9msBMXyZ2eURERFRNFCuQ9ezZEzLZq19QevXqVZb1EBGVG2NdbawZ4oGtF6Mx5+BtnLgTj+4/n8XSj9zgVdcMefkCQqISEZYggVlUIrwcLaEhVf8HKSIiIqKSKlYgmzVrlsr/JyKq7CQSCYZ61YaHvSk+/S0c/z5Lw6BfLqJbI2uEx7xEbHImAA1sjgyFjZEcs/yc0dXFRuyyiYiIqIoo8TVkly9fRkhISKHnQ0JCEBoaWipFERGVN2dbQxz4rA0GNKsJQQAO3Yj9Xxj7f7FJmRi/NRyHbzwVqUoiIiKqakocyCZOnKjyBtCPHz/GxIkTS6UoIiIx6GprYl6fJjDW0VK5XPjfv//uu4G7scmIT8lEZk5eudZIREREVUuJp72/desW3N3dCz3v5uaGW7dulUpRRERiuRSViJcZOUWOeZ6aDd+lZxWPZZpSGOpowUhHC4ZyzVf/VTz+3391NBWPFct0tGAg04S0kl2XxmvriIiISk+JA5lMJkNcXBzq1Kmj9PzTp0+hqVni1RERVSjxKZlvHwRAR0uKzNx8CAKQlZuPZylZeJaSVeLtSSSAgUyzyABnpKs+2Mm1NEq8zfdx+MZTzN5/C0+TeG0dERFRaShxgvLx8cGMGTPw559/wsjo1Y1UX758ia+//hpdunQp9QKJiMqTpYG8WOPWj2gBTwdTpGTlIjkjB0kZOUjOzEFyRg6SM3IVj5Mycl5bnqv0OOt/gS45MxfJmbl49CKjxPVqa0qLfWTuzeUG8pIdnTt84ynGbw3Hm3drK7i2bvUQd4YyIiKiEipxIFu4cCHat28Pe3t7uLm5AQAiIiJgZWWFLVu2lHqBRETlqYWDKWyM5IhNyiwUPABAAsDaSI4WDqaQSiUw+l/AsXuHbWXm5P0vxOW+EeheC3DprwU7RcDLRXJmDgQByH7Po3P6sjcDm6biPb1+dM5Apon//nFDZU+E//Vl9v5b6OJszdMXiYiISqDEgaxmzZq4du0atm3bhqtXr0JHRwcjR46Ev78/tLRUXwhPRFRZaEglmOXnjPFbwyEBlAJIQcyY5edcKqFDrqUBuZYGLA1K/tr8fAGp2W8Etv8FtUKhTunxq/9m5rw6OpeSmYuUzFwAJT869zoBwNOkTFyKSoRXXbP3WhcREVF1UqJAlpOTAycnJxw4cABjx44tq5qIiETV1cUGq4e4v3at1CvWFehaKalU8uo6Mvm7/SEsKzdPEeDePK0yWUWAi3mejofFOKWyuNfgERER0SslCmRaWlrIzOQPWyKq+rq62KCLszWC78Xj6NkQ+LT1rFKzCco0NWBhoAELA1mxxgfffw7/dRffOq641+ARERHRK+90H7L58+cjNze3LOohIqowNKQSeDqYwsNcgKeDaZUJY++i4Nq6ojpgZShDCwfTcquJiIioKijxNWSXL1/G8ePHcfToUTRu3Bh6enpKy/fu3VtqxRERUcVQ1LV1BQxkWsjJy4eGtHyn4iciIqrMSnyEzNjYGH379oWvry9sbW1hZGSk9I+IiKqmgmvrrI2UT0u00JdBriXFvWepmPx7BPLyVcU1IiIiUqXER8g2bNhQFnUQEVEloO7auktRiRi+/hIO34zF7P03MfvDRpBIqu8pnkRERMVV4iNkAJCbm4tjx45h7dq1SElJAQA8efIEqamppVocERFVPKqurfOqa4YlHzWFRAJsDo7GqlP3xS6TiIioUijxEbLo6Gh07doVMTExyMrKQpcuXWBgYID58+cjKysLa9asKYs6iYioguvRxAbxKc6Yvf8WFh65CytDOfp51BS7LCIiogqtxEfIPv/8czRr1gwvXryAjo6O4vnevXvj+PHjJVrXmTNn4OfnB1tbW0gkEuzbt0+xLCcnB9OnT1dMHGJra4thw4bhyZMnSutITEzE4MGDYWhoCGNjY4wePbrQkbpr166hbdu2kMvlsLOzw4IFCwrVsmvXLjg5OUEul6Nx48Y4dOhQid4LEREBI1s7YFz7OgCA6Xuu4dTdeJErIiIiqthKHMjOnj2Lb775Btra2krP165dG48fPy7RutLS0uDq6oqVK1cWWpaeno7w8HB8++23CA8Px969e3H37l18+OGHSuMGDx6MmzdvIigoCAcOHMCZM2eUblqdnJwMHx8f2NvbIywsDAsXLkRAQAACAwMVYy5cuAB/f3+MHj0aV65cQa9evdCrVy/cuHGjRO+HiIiA6b5O6O1WA3n5AiZsC8fVhy/FLomIiKjCKvEpi/n5+cjLyyv0/KNHj2BgYFCidXXr1g3dunVTuczIyAhBQUFKz61YsQItWrRATEwMatWqhdu3b+Pw4cO4fPkymjVrBgBYvnw5unfvjp9++gm2trbYtm0bsrOzsX79emhra6NRo0aIiIjA4sWLFcFt2bJl6Nq1K6ZNmwYAmDNnDoKCgrBixQqegklEVEJSqQTz+zZBQmoWzkYmYNTGy9gzvhVqm+u9/cVERETVTIkDmY+PD5YuXao4wiSRSJCamopZs2ahe/fupV7g65KSkiCRSGBsbAwACA4OhrGxsSKMAUDnzp0hlUoREhKC3r17Izg4GO3atVM6oufr64v58+fjxYsXMDExQXBwMKZOnaq0LV9fX6VTKN+UlZWFrKwsxePk5GQAr061zMnJKYV3+34KaqgItVQk7Itq7It67I1qb+uLBMDPHzXBkPWXcfNJCoatD8HOMS1gpi8rxyrFwX1GNfZFPfZGNfZFPfZGtYrUl5LUUOJAtmjRIvj6+sLZ2RmZmZkYNGgQIiMjYW5ujt9++62kqyu2zMxMTJ8+Hf7+/jA0NAQAxMbGwtLSUmmcpqYmTE1NERsbqxjj4OCgNMbKykqxzMTEBLGxsYrnXh9TsA5V5s2bh9mzZxd6/ujRo9DV1S35Gywjbx5lpFfYF9XYF/XYG9Xe1peBNsDS5xqIScxA/xWn8FmjPMiqyX2juc+oxr6ox96oxr6ox96oVhH6kp6eXuyxJQ5kNWvWxNWrV/H777/j2rVrSE1NxejRozF48GClST5KU05ODgYMGABBELB69eoy2UZJzZgxQ+moWnJyMuzs7ODj46MIjGLKyclBUFAQunTpAi0tLbHLqTDYF9XYF/XYG9VK0peWbdMwIPASHqblYH+iFdYOcYOWxjvddaVS4D6jGvuiHnujGvuiHnujWkXqS8HZc8VR4kAGvDoKNWTIkHd5aYkVhLHo6GicOHFCKexYW1sjPl55Bq/c3FwkJibC2tpaMSYuLk5pTMHjt40pWK6KTCaDTFb41BstLS3Rd4DXVbR6Kgr2RTX2RT32RrXi9KWetTE2jGwB/8CLOHvvOb756zYW9Xet8jeO5j6jGvuiHnujGvuiHnujWkXoS0m2/06BLDIyEidPnkR8fDzy8/OVls2cOfNdVqlSQRgr2J6ZmZnSci8vL7x8+RJhYWHw8PAAAJw4cQL5+fnw9PRUjPnvf/+LnJwcRWOCgoLQoEEDmJiYKMYcP34ckydPVqw7KCgIXl5epfZeiIiqs6Z2xlg12B0fbw7F3vDHsDaU46uuTmKXRUREJLoSB7J169Zh/PjxMDc3h7W1tdJfOCUSSYkCWWpqKu7du6d4HBUVhYiICJiamsLGxgb9+vVDeHg4Dhw4gLy8PMU1XaamptDW1kbDhg3RtWtXjBkzBmvWrEFOTg4+/fRTDBw4ELa2tgCAQYMGYfbs2Rg9ejSmT5+OGzduYNmyZViyZIliu59//jnat2+PRYsWoUePHvj9998RGhqqNDU+ERG9H28nS8zr0xhf7b6GVafuw8pQjuGtaotdFhERkahKHMi+//57zJ07F9OnT3/vjYeGhsLb21vxuOCarOHDhyMgIAB//fUXAKBp06ZKrzt58iQ6dOgAANi2bRs+/fRTdOrUCVKpFH379sXPP/+sGGtkZISjR49i4sSJ8PDwgLm5OWbOnKl0r7JWrVph+/bt+Oabb/D111+jXr162LdvH1xcXN77PRIR0f8b0MwOcUmZWBT0DwL234SlgQzdGtuIXRYREZFoShzIXrx4gf79+5fKxjt06ABBENQuL2pZAVNTU2zfvr3IMU2aNMHZs2eLHNO/f/9Se19ERKTepx0dEZuciW0hMfh8RwTM9GVo4WAqdllERESiKPE0V/3798fRo0fLohYiIqoGJBIJvuvpAh9nK2Tn5uPjTZfxT1yK2GURERGJosRHyBwdHfHtt9/i4sWLaNy4caEZRCZNmlRqxRERUdWkIZXgZ383DP4lBGHRLzB8/SXsGd8KtsZlc/sUIiKiiqrEgSwwMBD6+vo4ffo0Tp8+rbRMIpEwkBERUbHItTTw6/Bm6Lv6Au4/S8OIDZewa1wrGOlyCmciIqo+ShzIoqKiyqIOIiKqhox1tbFpVAv0XX0B/8SlYsyWUGwe1QJyLQ2xSyMiIioXJb6GjIiIqDTVNNHFxpEtYCDTxKWoREzdGYG8/LdP6kRERFQVFPsIWcGU9G+zePHidy6GiIiqp4Y2hlg7zAMj1l/GoeuxsDS4hVl+zkr3uiQiIqqKih3Irly58tYx/MFJRETvqlVdcywa4IrPfruCjRcewMpQjvEd6opdFhERUZkqdiA7efJkWdZBREQEP1dbxKdkYc6BW5h/+A6sDGXo415T7LKIiIjKDK8hIyKiCmV0GweMbVcHAPDV7ms4/c8zkSsiIiIqO8UKZD/++CPS09OLtcKQkBAcPHjwvYoiIqLq7T9dndCrqS1y8wWM3xqG64+SxC6JiIioTBQrkN26dQv29vaYMGEC/v77bzx79v9/rczNzcW1a9ewatUqtGrVCh999BEMDAzKrGAiIqr6pFIJFvRzRRtHc6Rn52HkxkuIfp4mdllERESlrliBbPPmzTh27BhycnIwaNAgWFtbQ1tbGwYGBpDJZHBzc8P69esxbNgw3LlzB+3atSvruomIqIrT1pRi9RB3ONsYIiE1G8PXX0JCapbYZREREZWqYk/q4erqinXr1mHt2rW4du0aoqOjkZGRAXNzczRt2hTm5uZlWScREVVDBnItbBzVHH1WXcCD5+kYvfEyto9pCT1ZsX98ERERVWgl/okmlUrRtGlTNG3atAzKISIiUmZpIMfmUS3Qd/UFXH2UhInbw7FuWDNoaXBeKiIiqvz404yIiCq8Ohb6WD+iOeRaUpy6+wwz9l6HIAhil0VERPTeGMiIiKhScKtlgpWD3KEhlWB32CMsOvqP2CURERG9NwYyIiKqNDo1tMLcXi4AgBUn72HLxWiRKyIiIno/DGRERFSpDGxRC1M61wcAzPzzBg7fiBW5IiIionf33oEsOjoat27dQn5+fmnUQ0RE9FaTOjnCv0UtCAIw6fcruPwgUeySiIiI3kmxA9n69euxePFipefGjh2LOnXqoHHjxnBxccHDhw9LvUAiIqI3SSQSzOnZCJ0bWiE7Nx+jN15GZFyK2GURERGVWLEDWWBgIExMTBSPDx8+jA0bNmDz5s24fPkyjI2NMXv27DIpkoiI6E2aGlIs93eDey1jJGfmYvj6S3ialCF2WURERCVS7EAWGRmJZs2aKR7/+eef6NmzJwYPHgx3d3f88MMPOH78eJkUSUREpIqOtgZ+Hd4cdSz08CQpEyPWX0ZSRo7YZRERERVbsQNZRkYGDA0NFY8vXLiAdu3aKR7XqVMHsbG8sJqIiMqXiZ42No1sAQsDGe7GpWDs5lBk5uSJXRYREVGxFDuQ2dvbIywsDACQkJCAmzdvonXr1orlsbGxMDIyKv0KiYiI3sLOVBcbRzaHvkwTIVGJ+GLnVeTn88bRRERU8WkWd+Dw4cMxceJE3Lx5EydOnICTkxM8PDwUyy9cuAAXF5cyKZKIiOhtGtkaIXCoB4ZvuISD15/C0lCGmR84QyKRiF0aERGRWsU+QvbVV19hzJgx2Lt3L+RyOXbt2qW0/Pz58/D39y/1AomIiIqrlaM5Fg1oCgDYcP4BAs/8K25BREREb1HsI2RSqRTfffcdvvvuO5XL3wxoREREYvjQ1RbxyZn4/uBtzPv7DiwNZejtVlPssoiIiFQqdiBTJTMzEzt27EBaWhp8fHzg6OhYWnURERG9s4/b1kFsUiZ+OReFabuuwVxfhrb1LMQui4iIqJBin7I4depUfPbZZ4rH2dnZ8PLywpgxY/D111+jadOmCA4OLpMiiYiISurr7g3xoastcvMFfLIlDDceJ4ldEhERUSHFDmRHjx5Fly5dFI+3bduG6OhoREZG4sWLF+jfvz++//77MimSiIiopKRSCRb2b4JWdc2Qlp2HERsuI+Z5uthlERERKSl2IIuJiYGzs7Pi8dGjR9GvXz/Y29tDIpHg888/x5UrV8qkSCIionch09TA2qEeaGhjiITULAzfcAnPU7PELouIiEih2IFMKpVCEP7/ni4XL15Ey5YtFY+NjY3x4sWL0q2OiIjoPRnItbBpZHPUMNZBVEIaRm0KRXp2rthlERERAShBIGvYsCH2798PALh58yZiYmLg7e2tWB4dHQ0rK6vSr5CIiOg9WRrKsXl0CxjrauHqw5f4dPsV5Obli10WERFRye5DNmPGDHTq1AmdOnVC9+7d4eDgoFh+6NAhtGjRokyKJCIiel91LfTx6/DmkGtJceJOPL7+47rSmR9ERERiKHYg6927Nw4dOoQmTZpgypQp2LFjh9JyXV1dTJgwodQLJCIiKi0e9iZY7u8OqQTYGfoIS4L+EbskIiKq5kp0H7KCo2OqzJo1q1QKIiIiKktdnK3wfa/G+PqP6/j5xD1YGckx2NNe7LKIiKiaKvYRssjISPj7+yM5ObnQsqSkJAwaNAj//vtvqRZHRERUFgZ51sKkTvUAAN/uu4EjN2NFroiIiKqrYgeyhQsXws7ODoaGhoWWGRkZwc7ODgsXLizV4oiIiMrKlM71MLC5HfIFYNJvVxD6IFHskoiIqBoqdiA7ffo0+vfvr3b5gAEDcOLEiVIpioiIqKxJJBJ838sFnZwskZWbj9GbQnEvPkXssoiIqJop0Y2hLS0t1S43NzfHw4cPS6UoIiKi8qCpIcXyQW5oameMpIwcDF9/GXHJmWKXRURE1UixA5mRkRHu37+vdvm9e/dUns5IRERUkelqa2L9iOaoY66Hxy8zMHz9JSRn5ohdFhERVRPFDmTt2rXD8uXL1S7/+eef0bZt21IpioiIqDyZ6mlj06gWsDCQ4U5sCsZuDkVWbp7YZRERUTVQ7EA2Y8YM/P333+jXrx8uXbqEpKQkJCUlISQkBH379sWRI0cwY8aMsqyViIiozNiZ6mLDiObQl2ni4r+JmLrzKvLzeeNoIiIqW8UOZG5ubti9ezfOnDkDLy8vmJqawtTUFK1atcLZs2exc+dOuLu7l2WtREREZcqlhhHWDPGAloYEB689xfcHb0MQGMqIiKjsFDuQAcAHH3yA6Oho7N69Gz/++CPmzZuHPXv24MGDB/jwww9LvPEzZ87Az88Ptra2kEgk2Ldvn9LyvXv3wsfHB2ZmZpBIJIiIiCi0jg4dOkAikSj9++STT5TGxMTEoEePHtDV1YWlpSWmTZuG3NxcpTGnTp2Cu7s7ZDIZHB0dsXHjxhK/HyIiqvza1DPHT/1dAQDrz0fhl7NRIldERERVmWZxB0ZFRcHBwQE6Ojro3bt3qWw8LS0Nrq6uGDVqFPr06aNyeZs2bTBgwACMGTNG7XrGjBmD7777TvFYV1dX8f95eXno0aMHrK2tceHCBTx9+hTDhg2DlpYWfvjhB8V769GjBz755BNs27YNx48fx8cffwwbGxv4+vqWynslIqLKo2fTGohLzsQPh+5g7qHbsDSUoWfTGmKXRUREVVCxA1ndunVhb28Pb29vdOzYER06dEDNmjXfa+PdunVDt27d1C4fOnQoAODBgwdFrkdXVxfW1tYqlx09ehS3bt3CsWPHYGVlhaZNm2LOnDmYPn06AgICoK2tjTVr1sDBwQGLFi0CADRs2BDnzp3DkiVLGMiIiKqpMW3rIDYpC+vPR+HLXVdhri9Da0dzscsiIqIqptiB7MSJEzh16hROnTqF3377DdnZ2ahTpw46duwIb29veHt7w8rKqixrVWvbtm3YunUrrK2t4efnh2+//VZxlCw4OBiNGzdWqs3X1xfjx4/HzZs34ebmhuDgYHTu3Flpnb6+vpg8ebLabWZlZSErK0vxODk5GQCQk5ODnBzxp0suqKEi1FKRsC+qsS/qsTeqVZe+TPdxRFxSBg7eiMXYLaHYPro5nG2KvsVLdelNSbEv6rE3qrEv6rE3qlWkvpSkhmIHsg4dOqBDhw4AgMzMTFy4cEER0DZt2oScnBw4OTnh5s2bJS74fQwaNAj29vawtbXFtWvXMH36dNy9exd79+4FAMTGxhYKigWPY2NjixyTnJyMjIwM6OjoFNruvHnzMHv27ELPHz16VOmUSbEFBQWJXUKFxL6oxr6ox96oVh360lEP+MdQishkYOi6YEx2yYOZ/O2vqw69eRfsi3rsjWrsi3rsjWoVoS/p6enFHlvsQPY6uVyOjh07ok2bNvD29sbff/+NtWvX4s6dO++yuvcyduxYxf83btwYNjY26NSpE+7fv4+6deuW2XZnzJiBqVOnKh4nJyfDzs4OPj4+FeIG2Tk5OQgKCkKXLl2gpaUldjkVBvuiGvuiHnujWnXri3fnHAz65TLuxKViS4whfh/TAqZ62irHVrfeFBf7oh57oxr7oh57o1pF6kvB2XPFUaJAlp2djYsXL+LkyZM4deoUQkJCYGdnh3bt2mHFihVo3759iYstbZ6engCAe/fuoW7durC2tsalS5eUxsTFxQGA4roza2trxXOvjzE0NFR5dAwAZDIZZDJZoee1tLRE3wFeV9HqqSjYF9XYF/XYG9WqS19MtbSwabQn+qy6gKjn6fhkewS2f9wSOtoaal9TXXpTUuyLeuyNauyLeuyNahWhLyXZfrGnve/YsSNMTEwwYcIExMfHY9y4cbh//z7u3r2LdevWYejQoahVq9Y7FVyaCqbGt7GxAQB4eXnh+vXriI+PV4wJCgqCoaEhnJ2dFWOOHz+utJ6goCB4eXmVT9FERFThWRnKsWlUcxjpaOFKzEt8uj0cuXn5YpdFRESVXLED2dmzZ2FmZoaOHTuiU6dO6NKliyL0vKvU1FREREQoQlRUVBQiIiIQExMDAEhMTERERARu3boFALh79y4iIiIU137dv38fc+bMQVhYGB48eIC//voLw4YNQ7t27dCkSRMAgI+PD5ydnTF06FBcvXoVR44cwTfffIOJEycqjnB98skn+Pfff/HVV1/hzp07WLVqFXbu3IkpU6a81/sjIqKqxdHSAL8ObwaZphTH78Tjm303eONoIiJ6L8UOZC9fvkRgYCB0dXUxf/582NraonHjxvj000+xe/duPHv2rMQbDw0NhZubG9zc3AAAU6dOhZubG2bOnAkA+Ouvv+Dm5oYePXoAAAYOHAg3NzesWbMGAKCtrY1jx47Bx8cHTk5O+OKLL9C3b1/s379fsQ0NDQ0cOHAAGhoa8PLywpAhQzBs2DCl+5Y5ODjg4MGDCAoKgqurKxYtWoRffvmFU94TEVEhzWqb4md/N0glwO+XH2LpsUixSyIiokqs2NeQ6enpoWvXrujatSsAICUlBefOncPJkyexYMECDB48GPXq1cONGzeKvfEOHToU+ZfFESNGYMSIEWqX29nZ4fTp02/djr29PQ4dOvTWWq5cufLWdREREfk2ssZ3PV3wzb4bWHY8ElaGcgzyFP+0fSIiqnyKfYTsTXp6ejA1NYWpqSlMTEygqamJ27dvl2ZtREREFdaQlvb4rKMjAOCbfdcRdCsOefkCQqISEZYgQUhUIvLyeTojEREVrdhHyPLz8xEaGopTp07h5MmTOH/+PNLS0lCjRg14e3tj5cqV8Pb2LstaiYiIKpSpXeojLjkTO0MfYcK2MBjKtfA8LRuABjZHhsLGSI5Zfs7o6vJ+11wTEVHVVexAZmxsjLS0NFhbW8Pb2xtLlixBhw4dyvReX0RERBWZRCLB3N6NcetJMm48Sf5fGPt/sUmZGL81HKuHuDOUERGRSsUOZAsXLoS3tzfq169flvUQERFVKlKJBM9Ss1QuEwBIAMzefwtdnK2hIZWUa21ERFTxFTuQjRs3rizrICIiqpQuRSUiLll1IANehbKnSZm4FJUIr7pm5VcYERFVCu88qQcREREB8SmZpTqOiIiqFwYyIiKi92BpIC/mOFkZV0JERJURAxkREdF7aOFgChsjOd52ddiv56IQl8yjZEREpIyBjIiI6D1oSCWY5ecMAIVCmUQxBjh2Ox6dF5/G75diIAi8PxkREb3CQEZERPSeurrYYPUQd1gbKZ++aG0kx5oh7jg4qS1caxohJTMX/9l7HYN/CUH08zSRqiUiooqk2LMsEhERkXpdXWzQxdkawfficfRsCHzaesLL0VIx1f3eCa2x4XwUfjp6FxfuP4fv0jP40qcBRrZ24HT4RETVGI+QERERlRINqQSeDqbwMBfg6WCqFLQ0pBJ83LYOjkxuB686ZsjMycf3B2+jz+oLuBubImLVREQkJgYyIiKicmRvpoftYzzxY5/GMJBp4urDl/hg+VksCfoH2bn5YpdHRETljIGMiIionEkkEgxsUQtBU9ujc0Mr5OQJWHY8Eh8sP4srMS/ELo+IiMoRAxkREZFIrI3kWDfMAysGucFMTxv/xKWiz+oLmHPgFtKzc8Uuj4iIygEDGRERkYgkEgk+aGKLY1Pbo49bDQjCq3uWdV16FhfuJYhdHhERlTEGMiIiogrARE8biz9qig0jm8PWSI6YxHQM+iUE/9lzDUkZOWKXR0REZYSBjIiIqALxbmCJo1PbY5iXPQDg98sP0WXxaRy5GStyZUREVBYYyIiIiCoYfZkmvuvpgp3jvFDHXA/xKVkYtyUME7eF41lKltjlERFRKWIgIyIiqqBaOJji0OdtMaFDXWhIJTh4/Sm6LDmNveGPIAiC2OUREVEpYCAjIiKqwORaGviqqxP+nNgazjaGeJmeg6k7r2LEhst49CJd7PKIiOg9MZARERFVAi41jPDnp60xzbcBtDWlOP3PM/guOYPNwQ+Qn8+jZURElRUDGRERUSWhpSHFRG9HHJrUFs3sTZCWnYeZf97EgLXBuP8sVezyiIjoHTCQERERVTKOlvrYOc4Lc3o2gp62BkKjX6DbsrNYefIecvLyxS6PiIhKgIGMiIioEpJKJRjqVRtHprRD+/oWyM7Nx8Ijd9FzxXnceJwkdnlERFRMDGRERESVWE0TXWwc2RyLB7jCWFcLt54mo+fK85h/+A4yc/LELo+IiN6CgYyIiKiSk0gk6ONeE0FT2qNHExvk5QtYfeo+ui87i0tRiWKXR0RERWAgIyIiqiIsDGRYOcgda4d6wNJAhn8T0jBgbTC+3XcDKZk5YpdHREQqMJARERFVMb6NrBE0tT0GNrcDAGy5GA3fJWdw8k68yJUREdGbGMiIiIiqICMdLfzYtwm2feyJWqa6eJKUiZEbL2PKjggkpmWLXR4REf0PAxkREVEV1trRHIcnt8XHbRwglQB/XHmMLotPY//VJxAE3lCaiEhsDGRERERVnK62Jr75wBl7xrdCfSt9PE/Lxme/XcGYzWGITcoUuzwiomqNgYyIiKiacKtlggOftcXkzvWgpSHBsdtx6LL4NH67FMOjZUREImEgIyIiqka0NaWY3Lk+DnzWFq52xkjJysWMvdcxaF0IHiSkiV0eEVG1w0BGRERUDTWwNsDe8a3wTY+GkGtJEfzvc3RddgbrzvyLvHweLSMiKi8MZERERNWUhlSCj9vWwdHJ7dGqrhkyc/Ix99Bt9Fl1Hndik8Uuj4ioWmAgIyIiquZqmeli28eemN+3MQzkmrj6KAkf/HwOi4P+QVZuntjlERFVaQxkREREBIlEgo+a18Kxqe3RxdkKufkCfj4eiQ9+PofwmBdil0dEVGUxkBEREZGClaEcgUM9sHKQO8z1tREZn4q+qy/gu/23kJ6dK3Z5RERVDgMZERERKZFIJOjRxAZBU9qjj3sNCAKw/nwUfJeewbnIBLHLIyKqUhjIiIiISCUTPW0sHtAUG0c2Rw1jHTxMzMCQX0Pw1e6rSErPEbs8IqIqgYGMiIiIitShgSWOTGmH4V72AICdoY/QeclpHL4RK3JlRESVHwMZERERvZW+TBOze7pg1ydeqGOhh2cpWfhkaxgmbAtDfEqm2OUREVVaDGRERERUbM1rm+LQpLaY0KEuNKQSHLoeiy6Lz2B32CMIAm8oTURUUqIGsjNnzsDPzw+2traQSCTYt2+f0vK9e/fCx8cHZmZmkEgkiIiIKLSOzMxMTJw4EWZmZtDX10ffvn0RFxenNCYmJgY9evSArq4uLC0tMW3aNOTmKs8UderUKbi7u0Mmk8HR0REbN24s5XdLRERUNci1NPBVVyf8ObE1GtkaIikjB1/uuoph6y/hYWK62OUREVUqogaytLQ0uLq6YuXKlWqXt2nTBvPnz1e7jilTpmD//v3YtWsXTp8+jSdPnqBPnz6K5Xl5eejRoweys7Nx4cIFbNq0CRs3bsTMmTMVY6KiotCjRw94e3sjIiICkydPxscff4wjR46U3pslIiKqYlxqGGHfxNaY3tUJ2ppSnI1MgO/SM9h4Pgr5+TxaRkRUHJpibrxbt27o1q2b2uVDhw4FADx48EDl8qSkJPz666/Yvn07OnbsCADYsGEDGjZsiIsXL6Jly5Y4evQobt26hWPHjsHKygpNmzbFnDlzMH36dAQEBEBbWxtr1qyBg4MDFi1aBABo2LAhzp07hyVLlsDX17d03zQREVEVoqUhxfgOdeHTyAoz9lzHpQeJCNh/C/uvPcX8vo3haGmAvHwBIVGJCEuQwCwqEV6OltCQSsQunYioQhA1kL2vsLAw5OTkoHPnzornnJycUKtWLQQHB6Nly5YIDg5G48aNYWVlpRjj6+uL8ePH4+bNm3Bzc0NwcLDSOgrGTJ48We22s7KykJWVpXicnJwMAMjJyUFOjvhTARfUUBFqqUjYF9XYF/XYG9XYF/Wqa29qGcuwZaQHfrv8EAuPRiIs+gW6LTuLro2scOnBC8QlZwHQwObIUFgbyvBNdyf4NrJ663qrg+q6z7wN+6Iee6NaRepLSWqo1IEsNjYW2traMDY2VnreysoKsbGxijGvh7GC5QXLihqTnJyMjIwM6OjoFNr2vHnzMHv27ELPHz16FLq6uu/8nkpbUFCQ2CVUSOyLauyLeuyNauyLetW1NyYAvnQBdv4rxe2XUuy/FgtAAPD/R8RikzPx6e8RGFU/H65mPLWxQHXdZ96GfVGPvVGtIvQlPb3419NW6kAmphkzZmDq1KmKx8nJybCzs4OPjw8MDQ1FrOyVnJwcBAUFoUuXLtDS0hK7nAqDfVGNfVGPvVGNfVGPvXllYF4+Ws4/haSMXLwexl559fjAU11MHdgGMi2Ncq+vIuE+oxr7oh57o1pF6kvB2XPFUakDmbW1NbKzs/Hy5Uulo2RxcXGwtrZWjLl06ZLS6wpmYXx9zJszM8bFxcHQ0FDl0TEAkMlkkMlkhZ7X0tISfQd4XUWrp6JgX1RjX9Rjb1RjX9Sr7r0JjXn+vzCmXnxKFly+Ow5zfRksDWSwMHj1X0tDGSwN5K89J4eloQzyKh7cqvs+ow77oh57o1pF6EtJtl+pA5mHhwe0tLRw/Phx9O3bFwBw9+5dxMTEwMvLCwDg5eWFuXPnIj4+HpaWlgBeHcY0NDSEs7OzYsyhQ4eU1h0UFKRYBxEREZVMSW4WnZCahYTULOBp0eMM5JrKIe218KYIcwZyGOpoQiLhpCFEVDmIGshSU1Nx7949xeOoqChERETA1NQUtWrVQmJiImJiYvDkyRMAr8IW8OqIlrW1NYyMjDB69GhMnToVpqamMDQ0xGeffQYvLy+0bNkSAODj4wNnZ2cMHToUCxYsQGxsLL755htMnDhRcYTrk08+wYoVK/DVV19h1KhROHHiBHbu3ImDBw+Wc0eIiIiqBksDebHGrR7iDjsTXTxLycKzlCzEp2QiPiUL8cmv/v9Z6qv/z8rNR0pmLlIyc3H/WVqR69TWlCofcXstvL0e5sz0ZaLP9sgZKIlI1EAWGhoKb29vxeOCa7KGDx+OjRs34q+//sLIkSMVywcOHAgAmDVrFgICAgAAS5YsgVQqRd++fZGVlQVfX1+sWrVK8RoNDQ0cOHAA48ePh5eXF/T09DB8+HB89913ijEODg44ePAgpkyZgmXLlqFmzZr45ZdfOOU9ERHRO2rhYAobIzlikzKhatoOCQBrIzl8nK3fGkAEQUByZi6e/S+sPXstsCkep2QhPjkTyZm5yM7Nx6MXGXj0IqPI9UolgJm+DBb6BUfa/v/0yP9/7tXRt7I4XfLwjaeYvf8WniZlomAGShsjOWb5OaOri02pb4+IKiZRA1mHDh0gCOpnVxoxYgRGjBhR5DrkcjlWrlyp9ubSAGBvb1/olERVtVy5cqXIMURERFQ8GlIJZvk5Y/zWcEgApVBWEL9m+TkX62iQRCKBkY4WjHS04GhpUOTYzJw8RUB79trRNqWjbylZeJ6ahXwBiiNzt95yuqShXFPperaC8Pb6dW8WBnIYyot3uuThG08xfmt4obAam5SJ8VvDsXqIO0MZUTVRqa8hIyIiooqrq4sNVg9xf+0o0CvWZXgUSK6lATtTXdiZFn0Lmrx8Ac/T3ghryVmKUyRfD2/ZuflIzsxFcjFOl5RpSpVPlTSUKV33ZmEgg5m+NgL+uqXyyGHBDQJm77+FLsU4ekhElR8DGREREZWZri426OJsjeB78Th6NgQ+bT0rxHVSGlLJ/64lK/paN6XTJZOzXjtF8o1r3VKykJyZi6xini5Z5DYBPE3KxKWoRHjVNXvn9RBR5cBARkRERGVKQyqBp4Mpnt8W4OlgKnoYK4l3O10y87Xr2gpf65aQkqXy6NibSjJTJRFVXgxkRERERKWguKdLnot8hiG/XipyDAD8GfEENU104F7LhNP4E1VhDGRERERE5cirrnmRM1AWOHEnHifuxMPBXA993Gqgt3sN1DQpOuwRUeUjFbsAIiIiouqkYAZK4P9nnCwg+d+/yZ3qoY97DehqayAqIQ2Lgv5Bm/kn4R94EbvDHiEtK7e8yyaiMsIjZERERETlrLgzUM7pmYu/b8RiT9gjBP/7XPFv5p830NXFGv3ca6JlHTNIK9F1eUSkjIGMiIiISATFmYFST6aJfh410c+jJh69SMcf4Y+xJ/wRHjxPx97wx9gb/hg1jHXQ260G+nrUhIO5nojviIjeBQMZERERkUhKMgNlTRNdfNapHj7t6IjwmBfYHfYYB649weOXGVhx8h5WnLwH91rG6OtREx80sYWRjlY5vhMielcMZERERESViEQigYe9KTzsTTHLzxlBt+KwJ/wRzvzzDOExLxEe8/J/N5a2Qj/3mmhbzxyaGpw2gKiiYiAjIiIiqqTkWhrwc7WFn6st4pMzsS/iMfaEPcbduBQcvPYUB689hYWBDL2a2qKvR004WRuKXTIRvYGBjIiIiKgKsDSUY2y7uhjTtg5uPknG7rBH+OvqEzxLycK6s1FYdzYKjWwN0de9Jno2tYWZvkzskokIDGREREREVYpEIoFLDSO41DDC190b4tTdeOwJf4QTd+Jx80kybj65hR8O3UaHBpbo51EDHZ2soK3JUxqJxMJARkRERFRFaWtK4dPIGj6NrJGYlo39V59gT/gjXHuUhGO343DsdhyMdbXwoast+rrXRJOaRpBIOIU+UXliICMiIiKqBkz1tDG8VW0Mb1Ub/8SlYE/4I+y78hhxyVnYHByNzcHRqGepjz7uNdHbrQasjeRil0xULTCQEREREVUz9a0MMKNbQ3zl64Rz9xKwJ+wRjtyMRWR8KuYfvoOFR+6gtaM5+nnUhI+zNXS0NcQumajKYiAjIiIiqqY0pBK0r2+B9vUtkJyZg0PXnmJP+CNcfvACZyMTcDYyAQYyTXRvbIO+HjXRvLYJT2kkKmUMZEREREQEQ7kWBraohYEtaiH6eRr2hD/G3vBHePQiAztCH2JH6EPUMtVFH/ca6OteE3amumKXTFQlMJARERERkRJ7Mz1M7VIfkzvVw6UHidgT9giHrj9FTGI6lh6LxNJjkfB0MEVfj5ro3tgG+jL+Skn0rvjdQ0REREQqSaUStKxjhpZ1zDC7ZyMcuRmLPWGPcf5+AkKiEhESlYhZf95EVxdr9HGvgVZ1zaEh5SmNRCXBQEZEREREb6WrrYnebjXR260mnrzMwB9XHmNP2CP8m5CGP648xh9XHsPGSI5ebq9OaXS01Be7ZKJKgYGMiIiIiErE1lgHE70dMaFDXVx5+BJ7wh5h/9UneJqUidWn7mP1qftoameMvh414dfEBsa62mKXTFRhMZARERER0TuRSCRwr2UC91om+PYDZxy/HY894Y9w+p9niHj4EhEPX2LO/lvo7GyJvu410a6+BbQ0pGKXTVShMJARERER0XuTa2mgRxMb9Ghig2cpWfgz4jF2hz3CndgUHLoei0PXY2Gur42eTV+d0uhsayh2yUQVAgMZEREREZUqCwMZPm5bBx+3rYObT5KwJ+wx/ox4jITUbPx6Lgq/notCQxtD9HWvgZ5Na8DCQKb0+rx8ASFRiQhLkMAsKhFejpacLISqLAYyIiIiIiozjWyN0MjWCDO6O+H03WfYE/4Ix2/H4/bTZHx/MBnz/r6DDvUt0NejJjo1tMTJO/GYvf8WniZlAtDA5shQ2BjJMcvPGV1dbMR+O0SljoGMiIiIiMqcloYUnZ2t0NnZCi/Ts7H/6hPsDn+Mqw9f4videBy/Ew9dbQ2kZ+cVem1sUibGbw3H6iHuDGVU5TCQEREREVG5MtbVxlCv2hjqVRv34lOwJ/wx9oY9QlxKlsrxAgAJgNn7b6GLszVPX6QqhdPcEBEREZFoHC0NML2rExZ/1LTIcQKAp0mZuBSVWC51EZUXBjIiIiIiEl1CquqjY296/DK9jCshKl8MZEREREQkOksDebHG/XDoNrZejEZ2bn4ZV0RUPhjIiIiIiEh0LRxMYWMkR1FXh0klQGJaDr7ZdwMdF53CztCHyM1jMKPKjYGMiIiIiESnIZVglp8zABQKZZL//Vv6UVME+DnDwkCGRy8y8NXua+iy5Az2XXmMvHyhvEsmKhUMZERERERUIXR1scHqIe6wNlI+fdHaSI7VQ9zxYdMaGNHaAWemeePr7k4w1dNGVEIaJu+IQNelZ3Do+lPkM5hRJcNp74mIiIiowujqYoMuztYIvhePo2dD4NPWE16OlkpT3etoa2Bsu7oY5GmPTRceYO3p+4iMT8WEbeFoaGOIqV3qo3NDS0gknB6fKj4eISMiIiKiCkVDKoGngyk8zAV4Opiqve+YvkwTE70dce4/HfF5p3rQl2ni9tNkjNkcil4rz+PU3XgIAo+YUcXGQEZERERElZqhXAtTutTH2a+8Mb5DXehoaeDqoySM2HAZ/dcE48L9BLFLJFKLgYyIiIiIqgQTPW1M7+qEs9O98XEbB8g0pQiNfoFB60LgH3gRoQ94U2mqeBjIiIiIiKhKMdeX4ZsPnHHmK28M87KHloYEwf8+R781wRi2/hKuPnwpdolECgxkRERERFQlWRnK8V1PF5ya5g3/FnbQlEpw5p9n6LnyPD7eFIpbT5LFLpGIgYyIiIiIqrYaxjqY16cJTnzRAX3da0IqAY7djkP3n89iwrYwRMaliF0iVWMMZERERERULdQy08WiAa44OqU9/FxtIZEAh67HwmfpGUz+/QqiEtLELpGqIQYyIiIiIqpWHC31sdzfDYc/b4eujawhCMC+iCfovPg0pu26ioeJ6WKXSNUIAxkRERERVUsNrA2wZqgHDnzWBh2dLJGXL2BX2CN4/3QKX/9xHU9eZohdIlUDogayM2fOwM/PD7a2tpBIJNi3b5/SckEQMHPmTNjY2EBHRwedO3dGZGSk0pjatWtDIpEo/fvxxx+Vxly7dg1t27aFXC6HnZ0dFixYUKiWXbt2wcnJCXK5HI0bN8ahQ4dK/f0SERERUcXjUsMI60c0x94JrdC2njly8wVsD4lBh4WnEPDXTcQnZ4pdIlVhogaytLQ0uLq6YuXKlSqXL1iwAD///DPWrFmDkJAQ6OnpwdfXF5mZyt8U3333HZ4+far499lnnymWJScnw8fHB/b29ggLC8PChQsREBCAwP9r787joqr3PoB/hnUAYQRZhrkCYiJuCGKGpJALAj5dBTWXpNQupXbhIlrY1ce9TLHc5WqLS940zVuimRG4sBiI12VUEBGNJBMwRURABJ3z/OHD5MQMYMmcUT7v14vX6845v5nznQ/YnS/nnC8ff6xek5mZiZdffhmRkZE4deoUwsPDER4ejpycnJZ540RERERkcHxdbfHvSD/snNwXz7nbofa+Clsyf0LgB4fx/v483Ki8K3aJ9BQyEfPgQ4cOxdChQ7XuEwQBq1atwpw5cxAWFgYA2Lp1K5ycnJCYmIhx48ap11pbW0Mul2t9nW3btqG2thabNm2CmZkZunfvDqVSiRUrVmDy5MkAgNWrVyM0NBRxcXEAgHfffRcpKSlYt24dNmzY8DjfMhEREREZOL+O7bBzcl/8cPEGlqfk41RROT5O/xGfH72M1/p1wOSAZyCzNBW7THpKiNqQNaawsBAlJSUICgpSb5PJZPDz80NWVpZGQ7Z06VK8++67cHV1xfjx4zF9+nSYmDx4a1lZWQgMDISZmZl6fUhICOLj43Hz5k3Y2toiKysLM2bM0Dh+SEhIg0soH3b37l3cvfvbb0kqKh78HYu6ujrU1dX9qff+ONTXYAi1GBLmoh1z0Y3ZaMdcdGM22jEX3ZiNdoaQi18HGXa+3gdpBdex6uBF5F69jYTDl7A16zJee94Nk/zdYC3V/8dpQ8jGEBlSLo9Sg8E2ZCUlJQAAJycnje1OTk7qfQAQExMDX19f2NnZITMzE7NmzUJxcTFWrFihfh13d/cGr1G/z9bWFiUlJU0e5/eWLFmChQsXNtienJwMS0vLR3inLSslJUXsEgwSc9GOuejGbLRjLroxG+2Yi27MRjtDyeUNV+CstQT7i4xQfOce1hy6hE/TL2KQQoVAuQBzY/3XZCjZGBpDyKW6uvmTOg22IWuuh89s9ezZE2ZmZpgyZQqWLFkCc3PzFjvurFmzNI5dUVEBFxcXBAcHw8bGpsWO21x1dXVISUnBkCFDYGrKU+r1mIt2zEU3ZqMdc9GN2WjHXHRjNtoZYi4vApipEvBdbinWHLqEH69XYV+RMTJvmGJKgDvGP+cCqWnLd2aGmI0hMKRc6q+eaw6Dbcjq7wkrLS2Fs7OzentpaSl8fHx0Ps/Pzw/37t3DTz/9BE9PT8jlcpSWlmqsqX9cfwxda3TdlwYA5ubmWhs+U1NT0X8AHmZo9RgK5qIdc9GN2WjHXHRjNtoxF92YjXaGmEu4rwuG+bTHHuUvWHWgAEVl1ViSdAEbf7iM6EGdMLaPC8xNWr4xM8RsDIEh5PIoxzfYv0Pm7u4OuVyOgwcPqrdVVFQgOzsb/v7+Op+nVCphZGQER0dHAIC/vz/S09M1ruNMSUmBp6cnbG1t1WsePk79msaOQ0REREStl7GRBCN92+PgWy9g6Ugv/KWtBa7dvot5e3Ix6MM0fHGsCHX3VWKXSU8AURuyyspKKJVKKJVKAA8GeSiVShQVFUEikSA2Nhbvvfce9u7di7Nnz2LChAlQKBQIDw8H8GBgx6pVq3D69Gn8+OOP2LZtG6ZPn45XXnlF3WyNHz8eZmZmiIyMRG5uLnbu3InVq1drXG44bdo0JCUlYfny5Th//jwWLFiA48ePIzo6Wt+REBEREdETxNTYCOOec8Wht1/Au2Hd4WRjjl/K72DW12cxeHkavjpxBfdVgthlkgET9ZLF48ePY+DAgerH9U3SxIkTsWXLFsycORNVVVWYPHkyysvL0b9/fyQlJUEqlQJ4cNngjh07sGDBAty9exfu7u6YPn26RrMlk8mQnJyMqKgo9O7dG/b29pg3b5565D0APP/889i+fTvmzJmD2bNnw8PDA4mJiejRo4eekiAiIiKiJ5m5iTFe9e+A0c+64POjl7Eh7RKKyqrx1q7TSEi9iNigzvirlzOMjCRil0oGRtSGbMCAARAE3b8xkEgkWLRoERYtWqR1v6+vL44ePdrkcXr27ImMjIxG14wePRqjR49u8rWIiIiIiHSRmhrj9YCOGO/nis8yL+Oj9Ev48dcqxHxxCgmHLmL6kM4I6e4EiYSNGT1gsPeQERERERE9qSzNTPDmgGeQMXMgZgzpDGupCfJLb2Pq5ycwbN0RHDpf2uiJCWo92JAREREREbUQa6kpYgZ74MjMQYge2AlWZsbI+aUCf9tyHCP+lYmMgl/ZmLVybMiIiIiIiFqYzNIUb4d4IuOdQZgS2BFSUyMofy7HqxuPYezHR5H94w2xSySRsCEjIiIiItITOyszzPqfrkifORCTnu8AM2MjHCssw9iPj+KVT7Nxsuim2CWSnrEhIyIiIiLSM0drKRYM7460mQMQ4ecKU2MJjly8jpH/ysRrm4/h7JVbYpdIesKGjIiIiIhIJM4yCywe4YVDbw3AmGfbw9hIgsP5v2LYuiOY8u/jOF9SobH+vkpAdmEZTlyXILuwjH/j7Ckg6th7IiIiIiICXOwssewlb7w5oBNWH7iAPaev4vvcUiSfK8WLXs6IDeqMi9duY+E351B8qwaAMbYWHIezTIr5w7ohtIez2G+B/iCeISMiIiIiMhDu9lZYNa4XkmMD8aKXMwQB2HemGENWpGHq5yf/vxn7TcmtGrz5+Ukk5RSLVDH9WWzIiIiIiIgMjIeTNRIifPFtTH8M7uIIXRcm1m9f+M05Xr74hGJDRkRERERkoLorZHg9oGOjawQAxbdqcKywTD9F0WPFhoyIiIiIyIBdu13T9KJHWEeGhQ0ZEREREZEBc7SWNmtd3T1VC1dCLYENGRERERGRAXvO3Q7OMikkTayb+dUZLPwmF7fu1OmlLno82JARERERERkwYyMJ5g/rBgANmrL6x97tZVAJwOYffsLAD1OxPbuIQz6eEGzIiIiIiIgMXGgPZ6x/xRdymebli3KZFBte8cWe6P74d+Rz6OTYBmVVtZi9+yyGrzuC4z9x0Ieh4x+GJiIiIiJ6AoT2cMaQbnJkXbyG5IxsBAf4wb+TI4yNHpwnC/BwwHfTArA16zJWHbiA3KsVeGlDFsJ8FPjn0C5wllmI/A5IG54hIyIiIiJ6QhgbSeDnbofe9gL83O3UzVg9U2MjRPZ3x+G3B+Dl51wgkQB7lFcx6MM0rDtUgJq6+yJVTrqwISMiIiIiesrYtzHHkpE9sTeqP3q72eJO3X18mHwBQ1am4fvcEggC7y8zFGzIiIiIiIieUl7tZfjPVH+sHucDJxtz/Fx2B1P+fQKvbjyGgtLbYpdHYENGRERERPRUk0gkCPP5Cw69NQBRA5+BmbERjly8jtDVGRyTbwDYkBERERERtQJW5iaIC+mClBmBGNLNCfdVgnpM/hfHOCZfLGzIiIiIiIhaEbd2VvhkwrPY+rffxuTP+ppj8sXChoyIiIiIqBUK7PxgTP7cv3aDtdREPSZ/2o5TKL51R+zyWg02ZERERERErdTDY/LH9eGYfDGwISMiIiIiauXs25hj6SiOyRcDGzIiIiIiIgLw25j8VWM1x+RP2MQx+S2FDRkREREREalJJBKE99Ick59RwDH5LYUNGRERERERNcAx+frBhoyIiIiIiHR6eEz+Mw5WHJP/mLEhIyIiIiKiJgV2dkBSbOCDMfnmmmPyS27ViF3eE4sNGRERERERNYt6TH7c78bkL09FwuGLHJP/B7AhIyIiIiKiR/L7MfnVtffxwff5CF6ZzjH5j4gNGRERERER/SG/H5NfVFbNMfmPiA0ZERERERH9YQ+Pyf/7AM0x+Yu+Occx+U1gQ0ZERERERH+albkJZoY+GJMf1PXBmPxNPxRiEMfkN4oNGRERERERPTZu7azw6cTfxuTf+P8x+WEJHJOvDRsyIiIiIiJ67H4/Jj/nF47J14YNGRERERERtQiOyW8aGzIiIiIiImpRD4/J93VtqzEmP7mVj8lnQ0ZERERERHrh1V6Gr958XmNM/uT/H5N/8VrrHJPPhoyIiIiIiPRG55j8Va1zTD4bMiIiIiIi0rvfj8m/10rH5LMhIyIiIiIi0bT2MflsyIiIiIiISHT1Y/LnvNhVY0x+7FM+Jl/Uhiw9PR3Dhg2DQqGARCJBYmKixn5BEDBv3jw4OzvDwsICQUFBKCgo0FhTVlaGiIgI2NjYoG3btoiMjERlZaXGmjNnziAgIABSqRQuLi5YtmxZg1p27dqFLl26QCqVwsvLC/v373/s75eIiIiIiHQzNTbC6wEdcThuAMY++2BMfuJTPiZf1IasqqoK3t7eSEhI0Lp/2bJlWLNmDTZs2IDs7GxYWVkhJCQENTW/dcgRERHIzc1FSkoK9u3bh/T0dEyePFm9v6KiAsHBwXBzc8OJEyfwwQcfYMGCBfj444/VazIzM/Hyyy8jMjISp06dQnh4OMLDw5GTk9Nyb56IiIiIiLSyb2OO+Jdax5h8URuyoUOH4r333sOIESMa7BMEAatWrcKcOXMQFhaGnj17YuvWrbh69ar6TFpeXh6SkpLw6aefws/PD/3798fatWuxY8cOXL16FQCwbds21NbWYtOmTejevTvGjRuHmJgYrFixQn2s1atXIzQ0FHFxcejatSveffdd+Pr6Yt26dXrJgYiIiIiIGnp4TL6jte4x+fdVArILy3DiugTZhWVP1EAQE7EL0KWwsBAlJSUICgpSb5PJZPDz80NWVhbGjRuHrKwstG3bFs8++6x6TVBQEIyMjJCdnY0RI0YgKysLgYGBMDMzU68JCQlBfHw8bt68CVtbW2RlZWHGjBkaxw8JCWlwCeXD7t69i7t376ofV1RUAADq6upQVyf+qM76GgyhFkPCXLRjLroxG+2Yi27MRjvmohuz0Y656NYas3mxhyNe8LDDhrRCbMr8ST0m/xU/F3R3tsHyAwUoqbgLwBhbC45DbmOOOf/TBSHdnUSp91G+NwbbkJWUlAAAnJw0Q3RyclLvKykpgaOjo8Z+ExMT2NnZaaxxd3dv8Br1+2xtbVFSUtLocbRZsmQJFi5c2GB7cnIyLC0tm/MW9SIlJUXsEgwSc9GOuejGbLRjLroxG+2Yi27MRjvmoltrzKYbgHe8gMTLRsi5aYQtWUUA6s+GSdTrSipqEL1Dib91VsG7nf7PllVXVzd7rcE2ZIZu1qxZGmfVKioq4OLiguDgYNjY2IhY2QN1dXVISUnBkCFDYGpqKnY5BoO5aMdcdGM22jEX3ZiNdsxFN2ajHXPRjdkAEwGk5f+KKduVuK/StkICCYDvSi0xMyIQxkYSbYtaTP3Vc81hsA2ZXC4HAJSWlsLZ2Vm9vbS0FD4+Puo1165d03jevXv3UFZWpn6+XC5HaWmpxpr6x02tqd+vjbm5OczNzRtsNzU1Nah/GIZWj6FgLtoxF92YjXbMRTdmox1z0Y3ZaMdcdGvt2VhZmDd6r5gAoPjWXZy6chv+z7TTX2HAI31fDPbvkLm7u0Mul+PgwYPqbRUVFcjOzoa/vz8AwN/fH+Xl5Thx4oR6zaFDh6BSqeDn56dek56ernEdZ0pKCjw9PWFra6te8/Bx6tfUH4eIiIiIiAzLtdvN+9tkzV0nFlEbssrKSiiVSiiVSgAPBnkolUoUFRVBIpEgNjYW7733Hvbu3YuzZ89iwoQJUCgUCA8PBwB07doVoaGheOONN3Ds2DH88MMPiI6Oxrhx46BQKAAA48ePh5mZGSIjI5Gbm4udO3di9erVGpcbTps2DUlJSVi+fDnOnz+PBQsW4Pjx44iOjtZ3JERERERE1AyO1tLHuk4sol6yePz4cQwcOFD9uL5JmjhxIrZs2YKZM2eiqqoKkydPRnl5Ofr374+kpCRIpb+Fum3bNkRHR2Pw4MEwMjLCqFGjsGbNGvV+mUyG5ORkREVFoXfv3rC3t8e8efM0/lbZ888/j+3bt2POnDmYPXs2PDw8kJiYiB49eughBSIiIiIielTPudvBWSZFya0aaLtwUQJALpPiOXc7fZf2SERtyAYMGNDoH3WTSCRYtGgRFi1apHONnZ0dtm/f3uhxevbsiYyMjEbXjB49GqNHj268YCIiIiIiMgjGRhLMH9YNb35+EhJAoymrH+Exf1g3vQ/0eFQGew8ZERERERFRY0J7OGP9K76QyzQvS5TLpFj/ii9CezjreKbhMNgpi0RERERERE0J7eGMId3kyLp4DckZ2QgO8IN/J0eDPzNWjw0ZERERERE90YyNJPBzt8ONPAF+7nZPTDMG8JJFIiIiIiIi0bAhIyIiIiIiEgkbMiIiIiIiIpGwISMiIiIiIhIJGzIiIiIiIiKRsCEjIiIiIiISCRsyIiIiIiIikbAhIyIiIiIiEgkbMiIiIiIiIpGwISMiIiIiIhIJGzIiIiIiIiKRsCEjIiIiIiISCRsyIiIiIiIikZiIXcDTQhAEAEBFRYXIlTxQV1eH6upqVFRUwNTUVOxyDAZz0Y656MZstGMuujEb7ZiLbsxGO+aiG7PRzpByqe8J6nuExrAhe0xu374NAHBxcRG5EiIiIiIiMgS3b9+GTCZrdI1EaE7bRk1SqVS4evUqrK2tIZFIxC4HFRUVcHFxwc8//wwbGxuxyzEYzEU75qIbs9GOuejGbLRjLroxG+2Yi27MRjtDykUQBNy+fRsKhQJGRo3fJcYzZI+JkZER2rdvL3YZDdjY2Ij+A2mImIt2zEU3ZqMdc9GN2WjHXHRjNtoxF92YjXaGkktTZ8bqcagHERERERGRSNiQERERERERiYQN2VPK3Nwc8+fPh7m5udilGBTmoh1z0Y3ZaMdcdGM22jEX3ZiNdsxFN2aj3ZOaC4d6EBERERERiYRnyIiIiIiIiETChoyIiIiIiEgkbMiIiIiIiIhEwoaMiIiIiIhIJGzInmDp6ekYNmwYFAoFJBIJEhMTNfYLgoB58+bB2dkZFhYWCAoKQkFBgTjF6llT2Xz99dcIDg5Gu3btIJFIoFQqRalT3xrLpa6uDu+88w68vLxgZWUFhUKBCRMm4OrVq+IVrEdN/cwsWLAAXbp0gZWVFWxtbREUFITs7GxxitWjpnJ52NSpUyGRSLBq1Sq91SemprKZNGkSJBKJxldoaKg4xepRc35m8vLyMHz4cMhkMlhZWaFPnz4oKirSf7F61FQuv/9Zqf/64IMPxClYj5rKprKyEtHR0Wjfvj0sLCzQrVs3bNiwQZxi9aipXEpLSzFp0iQoFApYWloiNDS0VXzOW7JkCfr06QNra2s4OjoiPDwc+fn5GmtqamoQFRWFdu3aoU2bNhg1ahRKS0tFqrhpbMieYFVVVfD29kZCQoLW/cuWLcOaNWuwYcMGZGdnw8rKCiEhIaipqdFzpfrXVDZVVVXo378/4uPj9VyZuBrLpbq6GidPnsTcuXNx8uRJfP3118jPz8fw4cNFqFT/mvqZ6dy5M9atW4ezZ8/iyJEj6NChA4KDg/Hrr7/quVL9aiqXert378bRo0ehUCj0VJn4mpNNaGgoiouL1V9ffPGFHisUR1O5XLp0Cf3790eXLl2QmpqKM2fOYO7cuZBKpXquVL+ayuXhn5Pi4mJs2rQJEokEo0aN0nOl+tdUNjNmzEBSUhI+//xz5OXlITY2FtHR0di7d6+eK9WvxnIRBAHh4eH48ccfsWfPHpw6dQpubm4ICgpCVVWVCNXqT1paGqKionD06FGkpKSgrq4OwcHBGu97+vTp+Oabb7Br1y6kpaXh6tWrGDlypIhVN0GgpwIAYffu3erHKpVKkMvlwgcffKDeVl5eLpibmwtffPGFCBWK5/fZPKywsFAAIJw6dUqvNRmCxnKpd+zYMQGAcPnyZf0UZSCak82tW7cEAMKBAwf0U5QB0JXLlStXhL/85S9CTk6O4ObmJqxcuVLvtYlNWzYTJ04UwsLCRKnHUGjLZezYscIrr7wiTkEGojn/jQkLCxMGDRqkn4IMiLZsunfvLixatEhjm6+vr/C///u/eqxMXL/PJT8/XwAg5OTkqLfdv39fcHBwED755BMRKhTPtWvXBABCWlqaIAgPPu+ampoKu3btUq/Jy8sTAAhZWVlildkoniF7ShUWFqKkpARBQUHqbTKZDH5+fsjKyhKxMnqS3Lp1CxKJBG3bthW7FINSW1uLjz/+GDKZDN7e3mKXIyqVSoVXX30VcXFx6N69u9jlGJzU1FQ4OjrC09MTb775Jm7cuCF2SaJSqVT49ttv0blzZ4SEhMDR0RF+fn6NXgrbGpWWluLbb79FZGSk2KUYhOeffx579+7FL7/8AkEQcPjwYVy4cAHBwcFilyaau3fvAoDGmWUjIyOYm5vjyJEjYpUlilu3bgEA7OzsAAAnTpxAXV2dxmfgLl26wNXV1WA/A7Mhe0qVlJQAAJycnDS2Ozk5qfcRNaampgbvvPMOXn75ZdjY2IhdjkHYt28f2rRpA6lUipUrVyIlJQX29vZilyWq+Ph4mJiYICYmRuxSDE5oaCi2bt2KgwcPIj4+HmlpaRg6dCju378vdmmiuXbtGiorK7F06VKEhoYiOTkZI0aMwMiRI5GWliZ2eQbjs88+g7W1tWFfYqVHa9euRbdu3dC+fXuYmZkhNDQUCQkJCAwMFLs00dQ3GLNmzcLNmzdRW1uL+Ph4XLlyBcXFxWKXpzcqlQqxsbHo168fevToAeDBZ2AzM7MGv0w25M/AJmIXQESGp66uDmPGjIEgCFi/fr3Y5RiMgQMHQqlU4vr16/jkk08wZswYZGdnw9HRUezSRHHixAmsXr0aJ0+ehEQiEbscgzNu3Dj1//by8kLPnj3xzDPPIDU1FYMHDxaxMvGoVCoAQFhYGKZPnw4A8PHxQWZmJjZs2IAXXnhBzPIMxqZNmxAREfHU31fXXGvXrsXRo0exd+9euLm5IT09HVFRUVAoFBpnQVoTU1NTfP3114iMjISdnR2MjY0RFBSEoUOHQhAEscvTm6ioKOTk5DzxZwV5huwpJZfLAaDBRJnS0lL1PiJt6puxy5cvIyUlhWfHHmJlZYVOnTqhb9++2LhxI0xMTLBx40axyxJNRkYGrl27BldXV5iYmMDExASXL1/GW2+9hQ4dOohdnsHp2LEj7O3tcfHiRbFLEY29vT1MTEzQrVs3je1du3Z96qcsNldGRgby8/Px+uuvi12KQbhz5w5mz56NFStWYNiwYejZsyeio6MxduxYfPjhh2KXJ6revXtDqVSivLwcxcXFSEpKwo0bN9CxY0exS9OL6Oho7Nu3D4cPH0b79u3V2+VyOWpra1FeXq6x3pA/A7Mhe0q5u7tDLpfj4MGD6m0VFRXIzs6Gv7+/iJWRIatvxgoKCnDgwAG0a9dO7JIMmkqlUl/H3xq9+uqrOHPmDJRKpfpLoVAgLi4O33//vdjlGZwrV67gxo0bcHZ2FrsU0ZiZmaFPnz4NRlRfuHABbm5uIlVlWDZu3IjevXu3+vtT69XV1aGurg5GRpofWY2NjdVnXFs7mUwGBwcHFBQU4Pjx4wgLCxO7pBYlCAKio6Oxe/duHDp0CO7u7hr7e/fuDVNTU43PwPn5+SgqKjLYz8C8ZPEJVllZqfGb1sLCQiiVStjZ2cHV1RWxsbF477334OHhAXd3d8ydOxcKhQLh4eHiFa0nTWVTVlaGoqIi9d/Yqv9wIJfLDfa3J49DY7k4OzvjpZdewsmTJ7Fv3z7cv39ffa21nZ0dzMzMxCpbLxrLpl27dli8eDGGDx8OZ2dnXL9+HQkJCfjll18wevRoEatueU39W/p9025qagq5XA5PT099l6p3jWVjZ2eHhQsXYtSoUZDL5bh06RJmzpyJTp06ISQkRMSqW15TPzNxcXEYO3YsAgMDMXDgQCQlJeGbb75BamqqeEXrQVO5AA9+cbpr1y4sX75crDJF0VQ2L7zwAuLi4mBhYQE3NzekpaVh69atWLFihYhVt7ymctm1axccHBzg6uqKs2fPYtq0aQgPD3/qh51ERUVh+/bt2LNnD6ytrdWfVWQyGSwsLCCTyRAZGYkZM2bAzs4ONjY2+Mc//gF/f3/07dtX5Op1EHfII/0Zhw8fFgA0+Jo4caIgCA9G38+dO1dwcnISzM3NhcGDBwv5+fniFq0nTWWzefNmrfvnz58vat0trbFc6v8EgLavw4cPi116i2ssmzt37ggjRowQFAqFYGZmJjg7OwvDhw8Xjh07JnbZLa6pf0u/15rG3jeWTXV1tRAcHCw4ODgIpqamgpubm/DGG28IJSUlYpfd4przM7Nx40ahU6dOglQqFby9vYXExETxCtaT5uTy0UcfCRYWFkJ5ebl4hYqgqWyKi4uFSZMmCQqFQpBKpYKnp6ewfPlyQaVSiVt4C2sql9WrVwvt27cXTE1NBVdXV2HOnDnC3bt3xS1aD3R9Vtm8ebN6zZ07d4S///3vgq2trWBpaSmMGDFCKC4uFq/oJkgEoRXd+UdERERERGRAeA8ZERERERGRSNiQERERERERiYQNGRERERERkUjYkBEREREREYmEDRkREREREZFI2JARERERERGJhA0ZERE9Nrt378aXX34pdhlERERPDDZkRET0WBw7dgyxsbHo27ev2KX8aampqZBIJCgvL2/xYw0YMACxsbEtfhx9uXHjBhwdHfHTTz8BaDrL69evw9HREVeuXNFfkUREBoQNGRERNTBp0iRIJBIsXbpUY3tiYiIkEkmD9bdu3cLrr7+O3bt3w9XVVV9lGrza2losW7YM3t7esLS0hL29Pfr164fNmzejrq6uRY4pkUiQmJjYIq/dHIsXL0ZYWBg6dOjQrPX29vaYMGEC5s+f37KFEREZKDZkRESklVQqRXx8PG7evNnkWplMhjNnzsDX11cPlWlXW1sr2rG1qa2tRUhICJYuXYrJkycjMzMTx44dQ1RUFNauXYvc3FyxS2zUH2kYq6ursXHjRkRGRj7S81577TVs27YNZWVlj3xMIqInHRsyIiLSKigoCHK5HEuWLNG5ZsGCBfDx8dHYtmrVKo2zI5MmTUJ4eDjef/99ODk5oW3btli0aBHu3buHuLg42NnZoX379ti8ebPG6/z8888YM2YM2rZtCzs7O4SFhakvg3v4dRcvXgyFQgFPT08AwNmzZzFo0CBYWFigXbt2mDx5MiorKxt9r/v370fnzp1hYWGBgQMHahyn3pEjRxAQEAALCwu4uLggJiYGVVVVOl9z1apVSE9Px8GDBxEVFQUfHx907NgR48ePR3Z2Njw8PLQ+T9sZrrZt22LLli0AHjR60dHRcHZ2hlQqhZubm/p7VJ/7iBEjIJFINL4Pe/bsga+vL6RSKTp27IiFCxfi3r17Gsddv349hg8fDisrKyxevBg3b95EREQEHBwcYGFhAQ8Pjwbfp9/naG5u3uhlq9XV1Rg6dCj69eunvoyxe/fuUCgU2L17t87nERE9rdiQERGRVsbGxnj//fexdu3aP31/z6FDh3D16lWkp6djxYoVmD9/Pv7617/C1tYW2dnZmDp1KqZMmaI+Tl1dHUJCQmBtbY2MjAz88MMPaNOmDUJDQzXOhB08eBD5+flISUnBvn37UFVVhZCQENja2uK///0vdu3ahQMHDiA6OlpnbT///DNGjhyJYcOGQalU4vXXX8c///lPjTWXLl1CaGgoRo0ahTNnzmDnzp04cuRIo6+7bds2BAUFoVevXg32mZqawsrK6lFjBACsWbMGe/fuxZdffon8/Hxs27ZN3Xj997//BQBs3rwZxcXF6scZGRmYMGECpk2bhnPnzuGjjz7Cli1bsHjxYo3XXrBgAUaMGIGzZ8/ib3/7G+bOnYtz587hu+++Q15eHtavXw97e3udtWVkZKB3794695eXl2PIkCFQqVRISUlB27Zt1fuee+45ZGRk/KFMiIieZCZiF0BERIZrxIgR8PHxwfz587Fx48Y//Dp2dnZYs2YNjIyM4OnpiWXLlqG6uhqzZ88GAMyaNQtLly7FkSNHMG7cOOzcuRMqlQqffvqp+p61zZs3o23btkhNTUVwcDAAwMrKCp9++inMzMwAAJ988glqamqwdetWdcOzbt06DBs2DPHx8XBycmpQ2/r16/HMM89g+fLlAABPT0+cPXsW8fHx6jVLlixBRESEeviGh4cH1qxZgxdeeAHr16+HVCpt8LoFBQUYMGDAH85Ml6KiInh4eKB///6QSCRwc3NT73NwcADw4IyaXC5Xb1+4cCH++c9/YuLEiQCAjh074t1338XMmTM17t0aP348XnvtNY1j9erVC88++ywANHlf2OXLl6FQKLTuKykpwdixY+Hh4YHt27erv2f1FAoFTp061YwEiIieLjxDRkREjYqPj8dnn32GvLy8P/wa3bt3h5HRb/+X4+TkBC8vL/VjY2NjtGvXDteuXQMAnD59GhcvXoS1tTXatGmDNm3awM7ODjU1Nbh06ZL6eV5eXhof7PPy8uDt7a1x9qlfv35QqVTIz8/XWlteXh78/Pw0tvn7+2s8Pn36NLZs2aKupU2bNggJCYFKpUJhYaHW1xUEoalY/pBJkyZBqVTC09MTMTExSE5ObvI5p0+fxqJFizTqf+ONN1BcXIzq6mr1uvrGq96bb76JHTt2wMfHBzNnzkRmZmajx7lz547W5hQAhgwZgk6dOmHnzp0NmjEAsLCw0KiFiKi14BkyIiJqVGBgIEJCQjBr1ixMmjRJY5+RkVGDxkPbMAhTU1ONxxKJROs2lUoFAKisrETv3r2xbdu2Bq9VfxYIwB++7O9RVVZWYsqUKYiJiWmwT9dUyc6dO+P8+fOPfCyJRNJopr6+vigsLMR3332HAwcOYMyYMQgKCsJ//vOfRutfuHAhRo4c2WDfww3U7/McOnQoLl++jP379yMlJQWDBw9GVFQUPvzwQ63Hsbe31zkE5sUXX8RXX32Fc+fOaTTj9crKyjS+t0RErQUbMiIiatLSpUvh4+OjHpxRz8HBASUlJRAEQX1poVKp/NPH8/X1xc6dO+Ho6AgbG5tmP69r167YsmULqqqq1M3FDz/8oL5UUtdz9u7dq7Ht6NGjDeo5d+4cOnXq1Oxaxo8fj9mzZ+PUqVMN7iOrq6tDbW2t1obSwcEBxcXF6scFBQUNzhzZ2Nhg7NixGDt2LF566SWEhoairKwMdnZ2MDU1xf379xvUn5+f/0j1P1zPxIkTMXHiRAQEBCAuLk5nQ9arVy98/vnnWvctXboUbdq0weDBg5Gamopu3bpp7M/JyWmRSzyJiAwdL1kkIqImeXl5ISIiAmvWrNHYPmDAAPz6669YtmwZLl26hISEBHz33Xd/+ngRERGwt7dHWFgYMjIyUFhYiNTUVMTExDQ6YCQiIgJSqRQTJ05ETk4ODh8+jH/84x949dVXtd4/BgBTp05FQUEB4uLikJ+fj+3bt6snGtZ75513kJmZiejoaCiVShQUFGDPnj2NDvWIjY1Fv379MHjwYCQkJOD06dP48ccf8eWXX6Jv374oKCjQ+rxBgwZh3bp1OHXqFI4fP46pU6dqnE1csWIFvvjiC5w/fx4XLlzArl27IJfL1QMyOnTogIMHD6KkpER9tmrevHnYunUrFi5ciNzcXOTl5WHHjh2YM2eOzvrrn7dnzx5cvHgRubm52LdvH7p27apzfUhICHJzc3WeJfvwww8RERGBQYMGaZw9rK6uxokTJ9T3BhIRtSZsyIiIqFkWLVqkvqSwXteuXfGvf/0LCQkJ8Pb2xrFjx/D222//6WNZWloiPT0drq6uGDlyJLp27YrIyEjU1NQ0esbM0tIS33//PcrKytCnTx+89NJLGDx4MNatW6fzOa6urvjqq6+QmJgIb29vbNiwAe+//77Gmp49eyItLQ0XLlxAQEAAevXqhXnz5ukcYAEA5ubmSElJwcyZM/HRRx+hb9++6NOnD9asWYOYmBj06NFD6/OWL18OFxcXBAQEYPz48Xj77bdhaWmp3m9tbY1ly5bh2WefRZ8+ffDTTz9h//796nv0li9fjpSUFLi4uKjPzIWEhGDfvn1ITk5Gnz590LdvX6xcuVJjIIg2ZmZmmDVrFnr27InAwEAYGxtjx44dOtd7eXnB19cXX375pc41K1euxJgxYzBo0CBcuHABwIOR/K6urggICGi0HiKip5FEaKm7jomIiKjV+fbbbxEXF4ecnByNQS6N6du3L2JiYjB+/PgWro6IyPDwHjIiIiJ6bF588UUUFBTgl19+gYuLS5Prr1+/jpEjR+Lll1/WQ3VERIaHZ8iIiIiIiIhEwnvIiIiIiIiIRMKGjIiIiIiISCRsyIiIiIiIiETChoyIiIiIiEgkbMiIiIiIiIhEwoaMiIiIiIhIJGzIiIiIiIiIRMKGjIiIiIiISCRsyIiIiIiIiETChoyIiIiIiEgk/wcTUdqPk/gbSAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculando el Silhouette Score para diferentes valores de k...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAIjCAYAAAD80aFnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYiklEQVR4nOzdd3xUVfrH8c+k90IJgRASikiRJiCi0qSKCoq9rIL+1FURBUXFXbGgS1kLrOvK6qprwwLqrmUFEQFRikpv0nsLkEYIqXN/f1xmIKYwCZO5U77v1yuvOXPnzswzhyGZZ845z7EZhmEgIiIiIiIitSrI6gBEREREREQCgZIvERERERERD1DyJSIiIiIi4gFKvkRERERERDxAyZeIiIiIiIgHKPkSERERERHxACVfIiIiIiIiHqDkS0RERERExAOUfImIiIiIiHiAki8RsVx6ejrDhw93Xl+wYAE2m40FCxY4j/Xu3ZvzzjvP88GJuElF72uA9957j1atWhEaGkpCQoIlsQWayv4tfNXvf4e64/GuuOIKtz2eiJyi5EtEas3atWu59tprSUtLIyIigpSUFPr3788rr7xidWi1YsOGDTz99NPs3Lmz3G3/+Mc/+Pe//+3257Tb7bz77rt069aNOnXqEBsbS8uWLbnttttYunSp259PTDt37sRmszl/QkNDqVevHhdddBFPPPEEu3fvdulxfvvtN4YPH07z5s154403eP3112s58pqr6v1dm9q3b0+TJk0wDKPScy6++GIaNGhASUmJByMTEam+EKsDEBH/tHjxYvr06UOTJk246667SE5OZs+ePSxdupRp06bxwAMPOM/dtGkTQUG+/13Qhg0beOaZZ+jduzfp6ellbvvHP/5BvXr13PrtNMCoUaN49dVXGTp0KLfccgshISFs2rSJb775hmbNmnHhhRe69fmkrJtuuonBgwdjt9vJysril19+YerUqUybNo0333yTG2+80Xluz549OXHiBGFhYc5jCxYswG63M23aNFq0aGHFS3BZVe/v2nTLLbfw+OOPs2jRInr27Fnu9p07d7JkyRJGjhxJSIg+1oiId9NvKRGpFc8//zzx8fH88ssv5aZSZWRklLkeHh7uwcj8x6FDh/jHP/7BXXfdVW7EZOrUqRw+fNhjsZSUlGC328skFt7q+PHjREdHu+Wxzj//fG699dYyx3bt2sWAAQO4/fbbad26NR06dAAgKCiIiIiIMuc6/i+4c7qhO1+fN7j55psZN24cM2bMqDD5+vDDDzEMg1tuucWC6Ez+1uciUnt8/6tmEfFK27Zto23bthV+qExKSipzvTrrFTZs2ECfPn2IiooiJSWFKVOmlDsnIyODO++8kwYNGhAREUGHDh145513ypxT2ZoPx3Sy308R/O2337j22mupU6cOERERdOnShS+++MJ5+7///W+uu+46APr06eOcjrZgwQLS09NZv349CxcudB7v3bu3877Z2dk89NBDpKamEh4eTosWLZg8eTJ2u73KvtixYweGYXDxxReXu81ms5Xr5+zsbEaPHk16ejrh4eE0btyY2267jSNHjlSr7xx99MILLzB16lSaN29OeHg4GzZscKmvKnP647788sukpaURGRlJr169WLduXZlz16xZw/Dhw2nWrBkREREkJydzxx13cPTo0TLnPf3009hsNjZs2MDNN99MYmIil1xySbUeo7rS0tL497//TVFRUZn35+/fc+np6Tz11FMA1K9fH5vNxtNPP+08/5tvvqFHjx5ER0cTGxvL5Zdfzvr168s81/Dhw4mJiWHbtm0MHjyY2NhYZxJit9uZOnUqbdu2JSIiggYNGnDPPfeQlZVV5jEc63t+/PFHLrjgAiIiImjWrBnvvvuu85yq3t/ViffgwYOMGDGCxo0bEx4eTsOGDRk6dGiVUxlTU1Pp2bMns2bNori4uNztM2bMoHnz5nTr1o1du3Zx3333ce655xIZGUndunW57rrrXJ4qOXPmTDp37kxkZCT16tXj1ltvZd++fWXOcUef//rrrwwcOJB69eoRGRlJ06ZNueOOO84Yn2EYPPfcczRu3JioqCj69OlTro8davp7pTLvvPMOISEhjB07tkb3FxGTRr5EpFakpaWxZMkS1q1b57ZCGVlZWQwaNIhhw4Zx/fXXM2vWLB577DHatWvHZZddBsCJEyfo3bs3W7duZeTIkTRt2pSZM2cyfPhwsrOzefDBB6v9vOvXr+fiiy8mJSWFxx9/nOjoaD755BOuuuoqPv30U66++mp69uzJqFGj+Nvf/sYTTzxB69atAWjdujVTp07lgQceICYmhj/96U8ANGjQAID8/Hx69erFvn37uOeee2jSpAmLFy9m3LhxHDhwgKlTp1YaV1paGmB+YLzuuuuIioqq9Ny8vDx69OjBxo0bueOOOzj//PM5cuQIX3zxBXv37qVevXrV7ru3336bgoIC7r77bsLDw6lTp45LfXUm7777LseOHeP++++noKCAadOmcemll7J27Vpnv82dO5ft27czYsQIkpOTWb9+Pa+//jrr169n6dKl2Gy2Mo953XXXcc455/CXv/zFuXaouo9RHd27d6d58+bMnTu30nOmTp3Ku+++y+eff85rr71GTEwM7du3B8wiHLfffjsDBw5k8uTJ5Ofn89prr3HJJZewcuXKMtP+SkpKGDhwIJdccgkvvPCC831wzz338O9//5sRI0YwatQoduzYwd///ndWrlzJTz/9RGhoqPMxtm7dyrXXXsudd97J7bffzltvvcXw4cPp3Lkzbdu2rfL9XZ14r7nmGtavX88DDzxAeno6GRkZzJ07l927d1c5lfGWW27h7rvvZs6cOWUKQaxdu5Z169Yxfvx4AH755RcWL17MjTfeSOPGjdm5cyevvfYavXv3ZsOGDVX+H3H0VdeuXZk4cSKHDh1i2rRp/PTTT6xcubLMF0ln0+cZGRkMGDCA+vXr8/jjj5OQkMDOnTv57LPPKo3NYfz48Tz33HMMHjyYwYMHs2LFCgYMGEBRUVGZ887m90pFXn/9df74xz/yxBNP8Nxzz1XrviLyO4aISC349ttvjeDgYCM4ONjo3r278eijjxpz5swxioqKyp2blpZm3H777c7r8+fPNwBj/vz5zmO9evUyAOPdd991HissLDSSk5ONa665xnls6tSpBmC8//77zmNFRUVG9+7djZiYGCM3N7fS5zAMw9ixY4cBGG+//bbzWN++fY127doZBQUFzmN2u9246KKLjHPOOcd5bObMmRU+pmEYRtu2bY1evXqVOz5hwgQjOjra2Lx5c5njjz/+uBEcHGzs3r273H1Od9tttxmAkZiYaFx99dXGCy+8YGzcuLHceePHjzcA47PPPit3m91uNwzD9b5z9FFcXJyRkZFR5rFc7auKOB43MjLS2Lt3r/P4smXLDMAYPXq081h+fn65+3/44YcGYPzwww/OY0899ZQBGDfddFO58119jKpi/etf/1rpOUOHDjUAIycnxzCMit9zjvgOHz7sPHbs2DEjISHBuOuuu8o83sGDB434+Pgyx2+//XYDMB5//PEy5y5atMgAjA8++KDM8dmzZ5c7npaWVu41Z2RkGOHh4cbDDz/sPFbZ+9vVeLOyss7YZ5XJzMw0wsPDy/07Pv744wZgbNq0yTCMiv9NlyxZUu53x+//LYqKioykpCTjvPPOM06cOOE876uvvjIAY/z48c5jZ9vnn3/+uQEYv/zyS7X6ICMjwwgLCzMuv/xy5/9ZwzCMJ554wgDK/A49298raWlpxuWXX24YhmFMmzbNsNlsxoQJE6oVr4hUTNMORaRW9O/fnyVLljBkyBBWr17NlClTGDhwICkpKS5NQatITExMmfU1YWFhXHDBBWzfvt157H//+x/JycncdNNNzmOhoaGMGjWKvLw8Fi5cWK3nzMzM5Pvvv+f666/n2LFjHDlyhCNHjnD06FEGDhzIli1byk1Lqo6ZM2fSo0cPEhMTnY995MgR+vXrR2lpKT/88EOV93/77bf5+9//TtOmTfn888955JFHaN26NX379i0T16effkqHDh0qHHlyjPBUt++uueYa6tev77zurr666qqrSElJcV6/4IIL6NatG//73/+cxyIjI53tgoICjhw54iwusmLFinKP+cc//rHcseo+RnXFxMQAcOzYsWrdb+7cuWRnZ3PTTTeVeU8EBwfTrVs35s+fX+4+9957b5nrM2fOJD4+nv79+5d5jM6dOxMTE1PuMdq0aUOPHj2c1+vXr8+5555b5v/W2cYbGRlJWFgYCxYsKDcN70wSExMZPHgwX3zxBcePHwfMKXgfffQRXbp0oWXLls7ncCguLubo0aO0aNGChISEKv9Nf/31VzIyMrjvvvvKrMu7/PLLadWqFV9//XW5+9S0zx0jaF999VWF0ygr891331FUVMQDDzxQZlT2oYceKnfu2f5ecZgyZQoPPvggkydP5s9//rPLsYpI5TTtUERqTdeuXfnss88oKipi9erVfP7557z88stce+21rFq1ijZt2lTr8Ro3blxuKlhiYiJr1qxxXt+1axfnnHNOueqJjulRu3btqtZzbt26FcMwePLJJ3nyyScrPCcjI6NMslAdW7ZsYc2aNWWSmN8/dlWCgoK4//77uf/++zl69Cg//fQT06dP55tvvuHGG29k0aJFgLkG75prrqnysarbd02bNi1z3V19dc4555Q71rJlSz755BPn9czMTJ555hk++uijcn2Uk5NT7v6/j7Umj1FdeXl5AMTGxlbrflu2bAHg0ksvrfD2uLi4MtdDQkJo3LhxucfIyckpt+7P4fevt0mTJuXOSUxMdClJcjXe8PBwJk+ezMMPP0yDBg248MILueKKK7jttttITk4+4/PccsstfP755/z3v//l5ptvZvHixezcubPMdNgTJ04wceJE3n77bfbt21emPH1V/6aO9/a5555b7rZWrVrx448/ljl2Nn3eq1cvrrnmGp555hlefvllevfuzVVXXcXNN99cZfEhR4y///9Rv359EhMTy8VyNr9XABYuXMjXX3/NY489pnVeIm6k5EtEal1YWBhdu3ala9eutGzZkhEjRjBz5kxnsQFXBQcHV3jcqGL/n8pUtp6ntLS0zHXH4vRHHnmEgQMHVnifsykRbrfb6d+/P48++miFtzu+0XdF3bp1GTJkCEOGDKF3794sXLiQXbt2OdeGudvpowxQ+311uuuvv57FixczduxYOnbsSExMDHa7nUGDBlVYUOD3sdbkMapr3bp1JCUllUuWzsTx3O+9916FScnvy6mHh4eXS5jtdjtJSUl88MEHFT7H7z+Un83/rerE+9BDD3HllVfyn//8hzlz5vDkk08yceJEvv/+ezp16lTl81xxxRXEx8czY8YMbr75ZmbMmEFwcHCZcv4PPPAAb7/9Ng899BDdu3cnPj4em83GjTfe6JZ/U4ez6XObzcasWbNYunQpX375JXPmzOGOO+7gxRdfZOnSpc4R07Phjt8rbdu2JTs7m/fee4977rmnwi8wRKT6lHyJiEd16dIFgAMHDtTK46elpbFmzRrsdnuZD0e//fab83bA+U1xdnZ2mfv/fnSnWbNmgDn9rl+/flU+d1UFGiq7rXnz5uTl5Z3xsaurS5cuLFy4kAMHDpCWlkbz5s3LVQz8PVf7rjLV6auqOEZSTrd582ZnQYasrCzmzZvHM8884yy0UNn9KuOOx6jKkiVL2LZtW7ky9K5o3rw5YFYFrWk/Nm/enO+++46LL764wsSzJqp6D4Pr8TZv3pyHH36Yhx9+mC1bttCxY0defPFF3n///SrvFx4ezrXXXsu7777LoUOHmDlzJpdeemmZhG/WrFncfvvtvPjii85jBQUF5f6f/57jvb1p06ZyI3ibNm1y6QuM6vb5hRdeyIUXXsjzzz/PjBkzuOWWW/joo4/4v//7vypj3LJli/P/GsDhw4fLjVC64/dKvXr1mDVrFpdccgl9+/blxx9/pFGjRjV+PBExac2XiNSK+fPnV/ituWPdTkXTe9xh8ODBHDx4kI8//th5rKSkhFdeeYWYmBh69eoFmB9kgoODy619+Mc//lHmelJSEr179+af//xnhQnj6XtpOfb5qeiDXnR0dIXHr7/+epYsWcKcOXPK3ZadnU1JSUmlr/XgwYPO8u6nKyoqYt68eQQFBTlHmq655hrn1M/fc/w7udp3lalOX1XlP//5T5m1YT///DPLli1zVrR0jNL8/v1VnQpu7niMyuzatYvhw4cTFhZWo+laAwcOJC4ujr/85S8VrglypR+vv/56SktLmTBhQrnbSkpKzpiMVKSy97er8ebn51NQUFDmtubNmxMbG0thYaFLMdxyyy0UFxdzzz33cPjw4XJ7ewUHB5f7N33llVfKjWj/XpcuXUhKSmL69OllYvnmm2/YuHEjl19++Rljc7XPs7KyysXYsWNHgCr7oV+/foSGhvLKK6+UuX9F79mz+b1yusaNG/Pdd99x4sQJ+vfvf9bbMIiIRr5EpJY88MAD5Ofnc/XVV9OqVSuKiopYvHgxH3/8Menp6YwYMaJWnvfuu+/mn//8J8OHD2f58uWkp6cza9YsfvrpJ6ZOnepcfxMfH891113HK6+8gs1mo3nz5nz11VcVroV49dVXueSSS2jXrh133XUXzZo149ChQyxZsoS9e/eyevVqwPwAFRwczOTJk8nJySE8PJxLL72UpKQkOnfuzGuvvcZzzz1HixYtSEpK4tJLL2Xs2LF88cUXXHHFFc7S3sePH2ft2rXMmjWLnTt3Uq9evQpf6969e7ngggu49NJL6du3L8nJyWRkZPDhhx+yevVqHnroIed9x44dy6xZs7juuuu444476Ny5M5mZmXzxxRdMnz6dDh06uNx3VXG1r6rSokULLrnkEu69914KCwuZOnUqdevWdU6hiouLo2fPnkyZMoXi4mJSUlL49ttv2bFjxxkf28EdjwFmYY73338fu91OdnY2v/zyC59++ik2m4333nvPWTq+OuLi4njttdf4wx/+wPnnn8+NN95I/fr12b17N19//TUXX3wxf//736t8jF69enHPPfcwceJEVq1axYABAwgNDWXLli3MnDmTadOmce2111Yrrqre367Eu3nzZvr27cv1119PmzZtCAkJ4fPPP+fQoUNlpg6e6XU1btyY//73v0RGRjJs2LAyt19xxRW89957xMfH06ZNG5YsWcJ3331H3bp1q3zc0NBQJk+ezIgRI+jVqxc33XSTs9R8eno6o0ePdik2V/r8nXfe4R//+AdXX301zZs359ixY7zxxhvExcUxePDgSh+/fv36PPLII0ycOJErrriCwYMHs3LlSr755ptyvyPO5vfK77Vo0YJvv/2W3r17M3DgQL7//vtqT6UVkdNYUmNRRPzeN998Y9xxxx1Gq1atjJiYGCMsLMxo0aKF8cADDxiHDh0qc66rpebbtm1b7nluv/12Iy0trcyxQ4cOGSNGjDDq1atnhIWFGe3atStTOt7h8OHDxjXXXGNERUUZiYmJxj333GOsW7euXKl5wzCMbdu2GbfddpuRnJxshIaGGikpKcYVV1xhzJo1q8x5b7zxhtGsWTMjODi4zGs4ePCgcfnllxuxsbEGUKbs/LFjx4xx48YZLVq0MMLCwox69eoZF110kfHCCy9UWJrfITc315g2bZoxcOBAo3HjxkZoaKgRGxtrdO/e3XjjjTfKlKM2DMM4evSoMXLkSCMlJcUICwszGjdubNx+++3GkSNHqtV3Zyqz7mpf/d7pj/viiy8aqampRnh4uNGjRw9j9erVZc7du3evcfXVVxsJCQlGfHy8cd111xn79+83AOOpp55ynldRKffqPkZVsTp+QkJCjDp16hjdunUzxo0bZ+zatavcfVwtNX/6+QMHDjTi4+ONiIgIo3nz5sbw4cONX3/91XnO7bffbkRHR1ca5+uvv2507tzZiIyMNGJjY4127doZjz76qLF//37nOaeXFT9dr169ym2PUNn725V4jxw5Ytx///1Gq1atjOjoaCM+Pt7o1q2b8cknn1Qaf0XGjh1rAMb1119f7rasrCzn+zcmJsYYOHCg8dtvv7n0O8YwDOPjjz82OnXqZISHhxt16tQxbrnlljLbHhjG2ff5ihUrjJtuuslo0qSJER4ebiQlJRlXXHFFmX/XypSWlhrPPPOM0bBhQyMyMtLo3bu3sW7dunKvzzBq/nvFMCp+TyxbtsyIjY01evbsWWFJfxFxjc0warBSXURExM127txJ06ZN+etf/8ojjzxidTgiIiJupzVfIiIiIiIiHqDkS0RERERExAOUfImIiIiIiHiA1nyJiIiIiIh4gEa+REREREREPEDJl4iIiIiIiAdok+Uastvt7N+/n9jYWGw2m9XhiIiIiIiIRQzD4NixYzRq1IigoMrHt5R81dD+/ftJTU21OgwREREREfESe/bsoXHjxpXeruSrhmJjYwGzg+Pi4iyNpbi4mG+//ZYBAwYQGhpqaSzeRP1SOfVNxdQvlVPfVEz9Ujn1TcXUL5VT31RM/VI5b+qb3NxcUlNTnTlCZZR81ZBjqmFcXJxXJF9RUVHExcVZ/sbzJuqXyqlvKqZ+qZz6pmLql8qpbyqmfqmc+qZi6pfKeWPfnGk5kgpuiIiIiIiIeICSLxEREREREQ9Q8iUiIiIiIuIBSr5EREREREQ8QMmXiIiIiIiIByj5EhERERER8QAlXyIiIiIiIh6g5EtERERERMQDlHyJiIiIiIh4gJIvERERERERD1DyJSIiIiIi4gFKvkRERERERDxAyZeIiIiIiIgHKPkSEQGwl2LLWEhKyQ/YMhaCvdTqiERERMTPhFgdgIiI5fZ8BssfJCR/L10AFr4EUY2h8zRIHWZ1dCIiIuInNPIlIoFtz2ew6FrI31v2eP4+8/iez6yJS0RERPyOki8RCVz2Ulj+IGBUcOPJY8sf0hREERERcQslXyISuA4vKj/iVYYB+XvM80RERETOkpIvEQlcJw649zwRERGRKij5EpHAFdnQveeJiIiIVEHJl4gErvo9zKqG2Co5wQZRqeZ5IiIiImdJyZeIBK6gYLOcfIVOJmSdp5rniYiIiJwlJV8iEthSh8E595U/Hl4feszSPl8iIiLiNkq+RESObQGgNH04ObY081j7CUq8RERExK2UfIlIYCvIgEPzALC3fpTDwR3M47kbLQxKRERE/JGSLxEJbHs+BaMU6nSBmBYcC0o1j+estzYuERER8TtKvkQksO36yLxMuxGAY0FNzOtKvkRERMTNlHyJSODK3wsZi8x2k+sBTo18ndgPRdnWxCUiIiJ+ScmXiASu3TMBA+pfAtFm0lVii8KI1NRDERERcT8lXyISuH435dDBiG9jNpR8iYiIiBsp+RKRwJS3HY7+DLYgSL22zE1G3MnkK1vJl4iIiLiPki8RCUy7PjYvG1wKkQ3K3ORMvjTyJSIiIm6k5EtEAlMlUw4BiGttXir5EhERETdS8iUigSdnA2SvgaBQaHx1uZsNR/JVcBAKMz0cnIiIiPgrJV8iEngcUw6TB0J4nfK3h8ZClPb7EhEREfdS8iUigcUwqp5y6BDf1rxU8iUiIiJuouRLRAJL1io4thmCI6DxkMrPS1DyJSIiIu6l5EtEAotj1KvRFeb0wspo5EtERETcTMmXiAQOw+7alENQ8iUiIiJup+RLRALHkaWQvxtCYqDR4KrPdVY8zICCI7Ufm4iIiPg9JV8iEjgco16Nr4KQyKrPDY2B6HSzrdEvERERcQMlXyISGOylsPsTs32mKYcOjqmHuRtqJyYREREJKEq+RCQwZCyEgkMQlgjJ/V27jyP5ytbIl4iIiJw9JV8iEhgcUw5Tr4HgMNfuo6IbIiIi4kZKvkTE/5UWwZ5PzbarUw5Be32JiIiIWyn5EhH/d/A7KMqEiAaQ1Nv1+8W1BmxQeBgKDtdWdCIiIhIglHyJiP9zTDlsch0EBbt+v5AoiGlqtjX6JSIiImdJyZeI+LeSE7D3P2a7OlMOHbTuS0RExPvYS7FlLCSl5AdsGQvNqsY+QMmXiPi3A99AyTGIagL1ulf//kq+REREvMuez+CLdEIW9qdL4UuELOwPX6Sbx72cki8R8W+OKYdpN4CtBr/ylHyJiIh4jz2fwaJrIX9v2eP5+8zjXp6AKfkSEf9VfAz2fWW2azLlECC+jXmZsx4Mwz1xiYiISPXZS2H5g0BFf49PHlv+kFdPQVTyJSL+a9+XUHoCYs+BxE41e4y4VpgVD49CQYZbwxMREZFqOLyo/IhXGQbk7zHP81JKvkTEfzmnHN4INlvNHiMkCmKamW1NPRQREbHOiQPuPc8CSr5ExD8VZcGB2Wa7plMOHbTuS0RExHqRDd17ngWUfImIf9rzOdiLIaHdqXVbNaXkS0RExHr1e0BEgypOsEFUqnmel1LyJSL+6fQph2dLyZeIiIj1bEEQXr+yG82LzlMhKNhTEVWbki8R8T8FGXBontlucsPZP17CacmXKh6KiIhYY9+XkLMObCEQkVz2tqjG0GMWpA6zJjYXhVgdgIiI2+2eBYYd6nSF2OZn/3hxrcxv24qyoOCgV88lFxER8UulRbDiYbPdeiy0n0DJgfmsWvoNHS+8jJCGfbx6xMtBI18i4n/cOeUQIDgCYk4mcZp6KCIi4nlbXoW8reaar7bjICgYI6kX+0J6YiT18onEC7wg+Xr11VdJT08nIiKCbt268fPPP1d67htvvEGPHj1ITEwkMTGRfv36VXj+xo0bGTJkCPHx8URHR9O1a1d2797tvL2goID777+funXrEhMTwzXXXMOhQ4dq5fWJiIfl7z21v0fa9e57XOe6rw3ue0wRERE5s4IjsPZZs93heQiNtTaes2Bp8vXxxx8zZswYnnrqKVasWEGHDh0YOHAgGRkVb2S6YMECbrrpJubPn8+SJUtITU1lwIAB7Nu3z3nOtm3buOSSS2jVqhULFixgzZo1PPnkk0RERDjPGT16NF9++SUzZ85k4cKF7N+/n2HDvHt+qIi4aNcn5mX9Hub8b3dR0Q0RERFrrH0airMhsSM0HW5tLGfJ0jVfL730EnfddRcjRowAYPr06Xz99de89dZbPP744+XO/+CDD8pc/9e//sWnn37KvHnzuO222wD405/+xODBg5kyZYrzvObNT635yMnJ4c0332TGjBlceumlALz99tu0bt2apUuXcuGFF7r9dYqIB7l7yqGDki8RERHPy9kAW6eb7fNf8pnphZWxLPkqKipi+fLljBs3znksKCiIfv36sWTJEpceIz8/n+LiYurUqQOA3W7n66+/5tFHH2XgwIGsXLmSpk2bMm7cOK666ioAli9fTnFxMf369XM+TqtWrWjSpAlLliypNPkqLCyksLDQeT03NxeA4uJiiouLq/Xa3c3x/FbH4W3UL5Xz277J20Zo5i8YBFHScChU8/VV2S/RLQkFjOz1lBQVgc3mhoB9h9++Z86S+qVy6puKqV8qp76pWKD3S/DyMQQZpdgbDaG0ziVl/rZ7U9+4GoPNMKypm7x//35SUlJYvHgx3bt3dx5/9NFHWbhwIcuWLTvjY9x3333MmTOH9evXExERwcGDB2nYsCFRUVE899xz9OnTh9mzZ/PEE08wf/58evXqxYwZMxgxYkSZRArgggsuoE+fPkyePLnC53r66ad55plnyh2fMWMGUVFR1Xz1IlIbzimaSZviD8gI6sCSyPL/X89GkFHM5fk3EISdOZFvURBUx62PLyIiImUllayge+Gz2Anh+8hXOB7kvdWG8/Pzufnmm8nJySEuLq7S83y21PykSZP46KOPWLBggXM9l91uB2Do0KGMHj0agI4dO7J48WKmT59Or169avx848aNY8yYMc7rubm5zjVnVXWwJxQXFzN37lz69+9PaGiopbF4E/VL5fy1b0K+/TPkQJ3z72dw08HVvv+Z+sU2uwUc20zfrskYDfpV8Aj+y1/fM2dL/VI59U3F1C+VU99ULGD7xV5CyLePQyEYLR+gV4c7y53iTX3jmBV3JpYlX/Xq1SM4OLhclcFDhw6RnJxcyb1ML7zwApMmTeK7776jffv2ZR4zJCSENm3alDm/devW/PjjjwAkJydTVFREdnY2CQkJLj9veHg44eHh5Y6HhoZa/o/t4E2xeBP1S+X8qm+y15sbLwaFEpJ+LZzF66q0XxLOg2ObCcnbBI0vO4tgfZdfvWfcSP1SOfVNxdQvlVPfVCzg+mXz63DsNwivR3D78QRX8dq9oW9cfX7Lqh2GhYXRuXNn5s2b5zxmt9uZN29emWmIvzdlyhQmTJjA7Nmz6dKlS7nH7Nq1K5s2bSpzfPPmzaSlpQHQuXNnQkNDyzzvpk2b2L17d5XPKyJebvfH5mXDQRCWWDvPoaIbIiIita8oC9Y+ZbbbPwthCZaG406WTjscM2YMt99+O126dOGCCy5g6tSpHD9+3Fn98LbbbiMlJYWJEycCMHnyZMaPH8+MGTNIT0/n4MGDAMTExBATEwPA2LFjueGGG+jZs6dzzdeXX37JggULAIiPj+fOO+9kzJgx1KlTh7i4OB544AG6d++uSocivsowaq/K4emUfIm4xl6KLWMhKSU/YMuIhoZ9fL5CmYh40LrnoPCo+Xe3+V1WR+NWliZfN9xwA4cPH2b8+PEcPHiQjh07Mnv2bBo0aADA7t27CQo6NTj32muvUVRUxLXXXlvmcZ566imefvppAK6++mqmT5/OxIkTGTVqFOeeey6ffvopl1xyifP8l19+maCgIK655hoKCwsZOHAg//jHP2r/BYtI7chaCce2QHAkpAypveeJPzmlOWe9mfAFWMVDEZfs+QyWP0hI/l66ACx8ydxzr/M0SNWemiJyBrlbYPMrZrvTixDksyUqKmT5qxk5ciQjR46s8DbHaJXDzp07XXrMO+64gzvuuKPS2yMiInj11Vd59dVXXQ1TRLzZrg/Ny5QrIDSm9p4ntiXYgqE4F07sc+8mziL+YM9nsOha4HeFlPP3mcd7zFICJiJVWzUW7MXQaDA0Gmh1NG5n2ZovERG3MOyw6+R6r9qccggQHA6x55jtbE09FCnDXgrLH6Rc4gWnji1/yDxPRKQiB7+Hvf81v+js9ILV0dQKy0e+RETOypElkL8HQmKhoQcqEMa3hdzfzKmHfviNnEilDANKjkNRpvlTmFm2nbUK8vdW9QDm/9VfR0LdLmZhnN//hMRqOq9IoLKXwgpzqyjOuRfiW1sbTy1R8iUivs1RaKPxVRASWfvPF98W9nyqohviu0UlDMOcOltZEvX7duHRU8fsxWf//Funw9ZKbrMFm1XNQitIzM70Exrn/Ymbr75nRDxh+9uQvQZCE6Dd01ZHU2uUfImI77KXwO5PzHZtTzl0UMVDAe8oKmEvheLsMydPv28XZYFxFlP/gkIhrC6E14Gwkz/hdaD4OOyZeeb7N+hnTuEtyir7Yy804yo8av5Uly3I/NBWLjGr40LiFmvevzZ5w3tGxFsV58KaP5ntdk9BeF1r46lFSr5ExHdlLISCDPPDVXI/zzynM/naoIqHgcrdRSVKi04mINVIoAozzcTrbARHlU+gXGkHR1X8vreXwhdLzH6ocN2XzUw2+syueLSn5MRpyVhm+eSsqh97obn+09E/1VVp4ubqiNsZEjcVIhGp2vqJ5t/z2JZwzn1WR1OrlHyJiO9yTDlMvQaCwzzznLHngC0ESo6Z61eim3jmecU7nLGohA1+ud/8IF+c41oyVZJ3djGFxJrfElcngQpLhOCIs3ve3wsKNkdxFl0L2CjbRyeTtc5TK59mFxJp/kQ1qv5zl0nczvBT/LvrpQVuSNziq0jO4mHjX6nyPbP8IUgZqimIEpjydsBvL5vtTi947u+5RZR8iYhvKi0y116B56YcgvlHIa6lOfKVs17JV6A5vOjMRSUKDsL3fav5wDZzrVN1R6HCEs1pgN4idZg5irP8wbL9FNXYTLxqa3TnbBK30oJTiVjhGUbcKk3cTl6vkZOFSA4vgga9a/gYIj5s1WPm6HWDvuaWMX5OyZeI+KaDc80POxHJkNTLs88d3/ZU8tXIAxUWxXucOODaeZENITrd9WQqNN5/Rj1Sh0HKUEoOzGfV0m/oeOFlhHhzYYngCPPfK7Jh9e97euJW2U/mCjOxOhNX31si/iTjR9g90xxBPv+lgJjKr+RLRHyTY8phk+s9/6Euvi0w00zAJLC4+gH9ohmBPYoRFIyR1It9IcfpkNTLexOvs+VK4nZoAczrc+bHqknyJ+LLDDuseMhsN/8/SGxvaTieok2WRcT3lJyAvf8x256ccuigioeBq34PcwodlX07a4OoVPM8EdB7RqQyO96HzOXmutV2z1odjcco+RIR37P/f2aRgug0qHeh55//9xUPJXA4ikpUyIWiEhJ4yrxnKkrADHO6ld4zEkhKjsPqcWb7vD9DZANr4/EgJV8i4nucUw5vsGZ+eGwLs8hBSR7k7/b884u1HEUlgqPKHo9qrJLhUjHHeyYq5Xc3nPz9VXDI4yGJWGrDFDixH6KbwrkPWh2NRyn5EhHfUnwM9n9ltq2Ycghm4hV7rtnO1tTDgJQ6zCyoAWwJuYqSXnNhyA4lXlK51GEwZCclvebya/gY8z3jGBFb9Tgc32VtfCKekr/35PYLQKe/mpuuBxAlXyLiW/Z+YVYYi20JiR2ti0PrvgJbST4c+w2A7aFDMPy5qIS4j7MQSU/zPdPyfqh/iTmK/vMfNY1ZAsOqcVB6ApJ6BuQXVkq+RMS3OKYcpt1obUlaJV+BLXsNGHaM8AYU2BKtjkZ8lS0Iuv0LgsLhwGzY8Z7VEYnUriM/w873AVvAlJb/PSVfIuI7CjPh4ByznXaDtbEkKPkKaJkrADASOwXkhwdxo7hzod3TZnvFQ3BC67/ETxnGqdLyzW6HOp0tDccqSr5ExHfs/RzsxZDQHuLbWBtL3Mnnz9lg7lUigSXLkXx1tDYO8Q+tH4bETuamzMsfsDoakdqx62M4sgRCoqH981ZHYxklXyLiO06fcmi12BYQFAal+VooH4gcI18JnSwORPxCUCh0exNswbB7Juz53OqIRNyr5ASsesxst3kcohpZG4+FlHyJiG84cQgOfW+2rZ5yCBAUYk4XAk09DDSlhZCzDjg57VDEHep0gjYnP5z+cp85CibiLza9bG7NEpUKrR62OhpLKfkSEd+wZ5Y5va/uBRDTzOpoTCq6EZhy1pvTX8MSISrN6mjEn5z3pPmlTsFBWPGI1dGIuMeJA7D+L2a74yQIibQ2Hosp+RIR3+BNUw4dHMmX9voKLCenHJJ4voptiHsFR5jTD7HB9rfg4HdWRyRy9lb/GUqOQ90LIe0mq6OxnJIvEfF+x/fA4R8BGzS53upoTtHIV2A6WWyDOudbG4f4p/oXQ8uRZnvZXVCcZ208ImcjcwVsf9tsd35ZX1ih5EtEfMHuT8zLpB4QlWJtLKdzJF+5G1XxMJCcPvIlUhs6/AWimsDxnbDmz1ZHI1IzhgErxgCGOeJV70KrI/IKSr5ExPt545RDgJjm5uaopScgb4fV0Ygn2Esge7XZ1siX1JbQGOj2htne9Dc4vMTaeERqYu9/IGOhOZ224ySro/EaSr5ExLsd2wqZv5olmFOvsTqasoKCIa6V2dbUw8CQ+xuUFkBIjLndgEhtaTgAmg0HDFh2p1llU8RXlBbCypNFY1o9AtFNrI3Hiyj5EhHvtutj87JBX4hIsjaWimjdV2BxTjnsBDb9CZVa1ulFiGhgTm1e95zV0Yi4bvMrkLcdIhue2kJBACVfIuLtvHXKoUOCI/naYG0c4hmZy81LTTkUTwivA11eNdsbJkHWamvjEXFFwWFYN8Fsd/iLOY1WnJR8iYj3yl5nbmYbFAqpV1sdTcU08hVYslRsQzysyTXmlGujxJx+aC+xOiKRqq0ZD8W55u/JprdZHY3XUfIlIt7LMeWw4WUQlmBpKJU6veKhvdTaWKR2GXbIWmm2NfIlntTl7xCaYI68/vaS1dGIVC57HWx73Wx3flnTsyugHhER72QY3j/lECC6qVnJqbQAjqvioV87tsXcKDQ44lShFRFPiEw2P8gCrH0KcjdbG49IRRyl5Q27OVqb1NPqiLySki8R8U5ZKyBvKwRHQsqVVkdTuaBgiGtttjX10L85im0kdICgEGtjkcDT9HZIHmB+0fPzXdpbULzP/v/BwbkQFAadplgdjddS8iUi3mnnh+ZlypXev1hX674Cg2O9l6YcihVsNrjgnxASDRk/wNZ/Wh2RyCn2Ylj5sNk+9yGIaWZpON5MyZeIeB/DDrtPrvfy5imHDo7kK1vJl19zjHzV6WxtHBK4YtKhw0SzvfJROL7b0nBEnLa8BrmbILw+nPcnq6Pxakq+RMT7HF4M+XshJBYaXWZ1NGemkS//Zxin7fGlkS+xUMv7od5FUJIHP//RfG+KWKkwE9Y+bbY7PAehcZaG4+2UfImI93EU2ki92ixu4O3i25iXub+p4qG/Or4TirPNbQ8cybaIFWxB0O1Nc13NgW9g5wdWRySBbt2zUJQFCe2g2Z1WR+P1lHyJiHexl8CemWbbF6YcAsQ0NQuD2Ashb5vV0UhtcIx6xbeD4DBrYxGJbwXtnjLbyx+Eggxr45HAlbsJNp/cCPz8l8wiVFIlJV8i4l0yFpgfJMLqQHI/q6NxjS1IFQ/9nYptiLdpPRYSO0JRJvw6yupoJFCteMTcADzlSt/5m20xJV8i4l0cUw6bXGtO8fIVWvfl3zKVfImXCQo1px/ags0CRXv/a3VEEmgOzIX9X4EtBDq9YHU0PkPJl4h4j9Ii2P2p2U67ydpYqitByZffMgzIXG62VWxDvEmd880RMIBf7oWibEvDkQBiLzE3VAZoORLiWlobjw9R8iUi3uPgt2ZRg8iGUL+H1dFUj0a+/NeJ/VB42BxhSGhvdTQiZZ03HmJbwokDsHKs1dFIoNj2JuSsM5cItBtvdTQ+RcmXiHgP55TD631v0a4j+crdZH4jKP7DMeUwrjWERFobi8jvhURCt3+Z7W3/goPzrI1H/F9RDqx50my3exrCEi0Nx9co+RIR71CSf2rNgq9UOTxddBoER4G9CI5ttToacScV2xBvl9QDzrnfbC+7C0qOWxuP+Lf1z5uzAeJawTl/tDoan6PkS0S8w/7/mZuGRqdB3W5WR1N9tqBT+31p6qF/0ebK4gs6ToSoVDi+A1Y/aXU04q+ObYNN08x2pxd9qzCWl1DyJSLewTHlMO1GsNmsjaWmtO7LP2nkS3xBaCxc8LrZ3jQVjiy1NBzxU6seNWd4JA+ARpdZHY1PUvIlItYrzoX9X5ttX5xy6OBMvjZYG4e4T0EG5O8124kdLQ1F5IwaDYKmtwEGLLsTSgutjkj8yaGFsOczc6bH+S/57helFlPyJSLW2/sFlBZA3LmQ0MHqaGpOI1/+J3OleRnb0hxZEPF2578EEUnml0Dr/2J1NOIv7KWwYrTZbnHPqe1VpNqUfImI9ZxVDn14yiGc+mN0bBPYi62NRdxDUw7F14TXhS5/N9vr/wJZa6yNR/zDjnchayWExkO7Z6yOxqcp+RIRaxVmwoE5ZjvtBmtjOVtRTSAkxky8VPHQP6jYhvii1Guh8dVglJjTD7X9hZyN4jxY/YTZPu9JiKhvbTw+TsmXiFhrz2fmB4SEDhDf2upozo7NpoqH/kYjX+KLbDbo+qo5SpH5q1mAQ6SmNkyCgoMQ0xxajrQ6Gp+n5EtErHV6lUN/oHVf/qMoC/K2m+3ETtbGIlJdkQ3N9V9gboir0XipieO74bcXzXanFyA43Np4/ICSLxGxzomDkDHfbPv6lEMHJV/+I2uVeRmdDuF1rIxEpGaajYDkfmZBo2X/B4bd6ojE16x63Hz/JPWGxkOtjsYvKPkSEevsnmV+GKjbDWKaWh2Neyj58h+ZmnIoPs5mM/f+Co6CjIWw9Q2rIxJfcngJ7PoQsEHnl327IJYXUfIlItbZ7WdTDuHUmq/czVBaZG0scnZUbEP8QUxT6HCy5PzKsaf2rROpimE/VVq++R3a59CNlHyJiDWO74bDPwE2aHKd1dG4T1QqhMSaRUSObbE6GjkbKrYh/qLlSKjXHUqOwc9/BMOwOiLxdjs/hKPLzAq+7Z+zOhq/ouRLRKyx+xPzMqknRKVYG4s7qeKhfyjOg9xNZlsjX+LrgoKh278gKAz2f31yKplIJUryYfXjZrvtExCZbG08fkbJl4hYw9+qHJ5O6758X/ZqwIDIRhDZwOpoRM5efBtzjyaA5aOg4LC18Yj32viiOT01Og1ajbY6Gr+j5EtEPC93C2QuB1swpF5jdTTup+TL92m9l/ijNo9BQnsoPArLH7Q6GvFG+fvMfb0AOk6G4Ahr4/FDSr5ExPN2f2xeJveDiPrWxlIblHz5Pq33En8UFAoXvgW2IHPq4d4vrY5IvM3qP0FpPtS7CJpcb3U0fknJl4h4nj9POQRIOJl8HdsCpYXWxiI1ozLz4q/qdIZWj5jtX/4IRTnWxiPe4+ivsOMds915qkrL1xIlXyLiWdnrzBGhoDBofJXV0dSOyBQIjQOjFI5ttjoaqa7SglOjlpp2KP6o3dMQew6c2A+rHrU6GvEGhnGqtHz6H6BuV2vj8WNKvkTEsxyjXo0ug7AES0OpNTbbqamH2Zp66HOy15qJc3g9iGpsdTQi7hcSaVY/BNj6Ohyab208Yr09n8LhHyE4Ejr+xepo/JqSLxHxHMM4lXw18dMphw5a9+W7Ti+2oWk34q+SesI595rtZf9nlheXwFRaYG7ADdD6UX3pVMuUfImI52T+CnnbIDgKGl9pdTS1S8mX71KxDQkUHSeZH7TztsOa8VZHI1bZNA2O7zSnzLcZa3U0fk/Jl4h4jmPUK+VKCIm2Npba5ki+cjdYG4dUn4ptSKAIjYOu/zTbm16GIz9bG4943olDsO55s91xov//bfYCSr5ExDMMO+w6WWLeX6scns6RfB3bqoqHvsReDNlrzLaKbUggSBkM6beav6OX3QmlRVZHJJ605kkoOQZ1ukD6LVZHExCUfImIZxz+CU7sM79pbTTI6mhqX2RDCE0wCzfkbrI6GnFVzgawF0FoPMQ0szoaEc84/2UIrw8562DDRKujEU/JWg3b3zTbnaea+79JrVMvi4hnOKYcNr4agiOsjcUTbLZT+31p3ZfvcBbb6KRiGxI4IupBl1fM9vrnzS1BxL8ZBqwYY454Nrke6l9sdUQBQ8mXiNQ+ewnsnmm2A2HKoYOKbvgeFduQQNXkemg81Jx6u+xOsJdaHZHUpn1fwqHvISgcOk62OpqAouRLRGrfoflQeBjC60JyX6uj8RwlX77n9DLzIoHEZoMu/zCn3B792ayAJ/6ptAhWPmK2W42BmHRLwwk0Sr5EpPY5phymXgdBodbG4klKvnyLvRSyVpltjXxJIIpqBJ1eMNtr/gzHtlkbj9SOLa/CsS0Q0QDajrM6moCj5EtEaldpIez5zGwH0pRDgPg25mXeNnMTS/FuxzZDab5Zajm2pdXRiFij+Z3Q4FIoPQE/32WuDRL/UXgU1j5rtjs8D6Gx1sYTgJR8iUjtOvAtFGdDZCOof4nV0XhWRDKEJZoLmnN/szoaOZPM5eZlYkcICrY0FBHL2GzQ7Q0IjjSnjG/7l9URiTutfdr8m5zYEZoOtzaWAKXkS0Rql2PKYZPrA+8Drc12auphtqYeej2t9xIxxTQzR0XAXBuUv8/aeMQ9cjbAltfM9vkvBd7fZC+h5EtEak9JPuz7r9kOtCmHDlr35TtU6VDklJajoG43KM6FX+7V9EN/sOIRc+/JxldBgz5WRxOwlHyJSO3Z/zWUHIfodKh7gdXRWEPJl28w7JC10mxr5EvEHBXp9qZZJGnfl7DrY6sjkrOxfzYc+Mb89+z0V6ujCWhKvkSk9jimHKbdGLgb1ir58g15281v+IPCIb611dGIeIeEttD2z2Z7+QNQcMTaeKRm7CWw8mGz3XIUxLawNp4Ap+RLRGpHcS7s+9psB+qUQziVfOVtN6dhindyrPdKaB9Y2yGInEmbxyGhHRQegRUPWR2N1MTW1831XuH14Lw/Wx1NwFPyJSK1Y+9/wV4Ica3MD7SBKiLJ3FwaQxUPvZnWe4lULDjMnH5oC4KdH5z6Uk18Q1EWrB1vtts9A2EJloYjSr5EpLZoyqHp9IqHmnrovTKVfIlUqm5XaDXGbP98jzmzQXzDuufMvb3i20CLu62ORlDyJSK1ofCoub8XQJMbrI3FGyj58m6GcWrkS8U2RCrW7hmIaQEn9sHKx6yORlyRuwU2v2K2O70EQSHWxiOAki8RqQ17PgOjxNzEMb6V1dFYT3t9ebf8PeYXBrYQSDjP6mhEvFNIlLn5MsDW6XBogaXhiAtWjQV7MTS8DBoNtDoaOUnJl4i43+lTDuVU8pW7wdo4pGKOKYfxbSE4wtpYRLxZg97Q4h6zvewuFRHyZge/N9de24Lh/BetjkZOo+RLRNzrxAE4NN9sa8qhyVnxcIc+rHgjFdsQcV3HyRCZAnlbYe3TVkcjFbGXworRZvuce7V9hpdR8iUi7rV7FmBA3QshJt3qaLxDRH0Ir49Z8XCj1dHI72VqvZeIy8Li4YLpZvu3F+Hor9bGI+Vtfxuy10BoArR72upo5HeUfImIe2nKYcW07st7aeRLpHpSroC0m8Gww7I7oLTI6ojEoTgX1pzcy6vdUye3OhFvouRLRNzn+C44shiwQZPrrI7Gu6jioXc6ccD8wQaJHayORsR3dJ5qbtqbvRY2TLY6GnFYPxEKDkHsOXDOfVZHIxVQ8iUi7rPrE/MyqRdENbI2Fm+ToOTLK2WuNC/jWkFItLWxiPiSiPrQ+W9me/0EyFFBIcvl7YTfXjbbnV40N8gWr6PkS0TcR1MOK6eRL++kKYciNZd2I6RcaZYzX3qHWehBrLPqMbAXQoO+5tRQ8UpKvkTEPXI3mx9kbcGQeo3V0XgfR/J1fCcU51kaipxGxTZEas5mg67/gNA4OLrs1Ia+4nkZP8LuT8AWBOe/ZP7biFdS8iUi7rHrY/MyuT9E1LM2Fm8UXhciksy2Kh56D418iZydqMbQ6a9me/WfIG+7tfEEIsN+qrR88/+DxPbWxiNVUvIlImfPMGDXh2ZbUw4rp6mH3qXwqFkkBiCxo6WhiPi05ndBgz5Qmg/L7jb/Jojn7HgfMn+FkFho96zV0cgZKPkSkbOXs84czQkKg8ZXWR2N91Ly5V2yThbbiGkOYQmWhiLi02w2uOB1CI6EQ/Ng+1tWRxQ4So7D6nFm+7w/Q2QDa+ORM/KK5OvVV18lPT2diIgIunXrxs8//1zpuW+88QY9evQgMTGRxMRE+vXrV+784cOHY7PZyvwMGjSozDnp6enlzpk0aVKtvD4Rv+cotNFosLkBp1RMe315l0xNORRxm9gW0H6C2V7xMOTvtzaeQLHhr3BiP0Q3hXMftDoacYHlydfHH3/MmDFjeOqpp1ixYgUdOnRg4MCBZGRkVHj+ggULuOmmm5g/fz5LliwhNTWVAQMGsG/fvjLnDRo0iAMHDjh/Pvzww3KP9eyzz5Y554EHHqiV1yji1wxDVQ5dpZEv76JiGyLude5DUPcCKM6BX+/T9MPalr8XNk4x252mQHC4tfGIS0KsDuCll17irrvuYsSIEQBMnz6dr7/+mrfeeovHH3+83PkffPBBmev/+te/+PTTT5k3bx633Xab83h4eDjJyclVPndsbOwZz3EoLCyksLDQeT03NxeA4uJiiouLXXqM2uJ4fqvj8Dbql8q5s29smb8QkrcdIziKkqSB4MP9XevvmeiWhALk76Y4PxNCY2vneWqBP/5/Cslcjg0oiWuPUcPX5Y/94i7qm4r5fb90nk7I3G7Y9v6Xkh0fYqRe5/Jd/b5vaqiyfgle8RhBpSew17uE0uQhPv33t6a86T3jagw2w7Dua4mioiKioqKYNWsWV111lfP47bffTnZ2Nv/973/P+BjHjh0jKSmJmTNncsUV5p4Gw4cP5z//+Q9hYWEkJiZy6aWX8txzz1G3bl3n/dLT0ykoKKC4uJgmTZpw8803M3r0aEJCKs5Hn376aZ555plyx2fMmEFUVFQ1X7mI/2hb+BYtSr5gb3APlkc8bHU4Xm9g/ggijCx+iJhCVnBLq8MJWCFGPpfn3wzAN1HvUGTTdFkRdzm36ENaFX9MIfHMi3qFYluc1SH5nYTSzfQqeBQDGwsj/kpOcAurQwp4+fn53HzzzeTk5BAXV/l73tLka//+/aSkpLB48WK6d+/uPP7oo4+ycOFCli1bdsbHuO+++5gzZw7r168nIiICgI8++oioqCiaNm3Ktm3beOKJJ4iJiWHJkiUEBwcD5ojb+eefT506dVi8eDHjxo1jxIgRvPTSSxU+T0UjX6mpqRw5cqTKDvaE4uJi5s6dS//+/QkNDbU0Fm+ifqmc2/rGsBPyVTNsBfspuWgWRsoQ9wVpAU+8Z4IXDiIo43tKuryO0XR4rTxHbfC3/0+2w4sIWdAXIzKVkiu21fhx/K1f3El9U7GA6Bd7ESFzL8CWuwF72i2UXvC2S3cLiL6pgXL9YhgEz+9N0NEl2NNvo7Trv6wO0TLe9J7Jzc2lXr16Z0y+LJ92eDYmTZrERx99xIIFC5yJF8CNN55ad9KuXTvat29P8+bNWbBgAX379gVgzJgxznPat29PWFgY99xzDxMnTiQ8vPyc2fDw8AqPh4aGWv6P7eBNsXgT9UvlzrpvMn6Agv0QGk9I6hUQ7B/9XKvvmYTzION7QvJ+Ax98X/rN/6fcNQDY6p7vltfjN/1SC9Q3FfPvfgmFC9+Gud0J2vUBQek3Q8pg1+/t131Tc85+2fUxHF0CIdEEdZxIkPrKK94zrj6/pQU36tWrR3BwMIcOHSpz/NChQ2dci/XCCy8wadIkvv32W9q3r3ozuWbNmlGvXj22bt1a6TndunWjpKSEnTt3uhy/SMBzFNpIvVoLfV2VoKIbXkHFNkRqV70LzAIcAL/8EYpzLQ3Hb5ScgJWPmu3Wj0FUI2vjkWqzNPkKCwujc+fOzJs3z3nMbrczb968MtMQf2/KlClMmDCB2bNn06VLlzM+z969ezl69CgNGzas9JxVq1YRFBREUlJS9V6ESKCyl8DumWY77SZrY/ElzoqHG6yNI9Blqcy8SK1rPwFimkH+Hlg1zupo/MOmlyF/N0SlQmuts/ZFlpeaHzNmDG+88QbvvPMOGzdu5N577+X48ePO6oe33XYb48ad+g87efJknnzySd566y3S09M5ePAgBw8eJC8vD4C8vDzGjh3L0qVL2blzJ/PmzWPo0KG0aNGCgQMHArBkyRKmTp3K6tWr2b59Ox988AGjR4/m1ltvJTEx0fOdIOKLDn0PhUcgvB40uNTqaHyHI/nK36Nvgq1Skm9uCg4a+RKpTSFR0O3keqQt/zCnqkvNnTgA6yea7Y6TzP4Vn2N58nXDDTfwwgsvMH78eDp27MiqVauYPXs2DRqYO3Tv3r2bAwcOOM9/7bXXKCoq4tprr6Vhw4bOnxdeeAGA4OBg1qxZw5AhQ2jZsiV33nknnTt3ZtGiRc41W+Hh4Xz00Uf06tWLtm3b8vzzzzN69Ghef/11z3eAiK9yTDlsch0E+fTyUc8KS4DIk9NENPpljew1YNghogFEVj4jQkTcoEEfaH6X2V72f+a0OXGdvRRbxkJSSn4g+Je7oSQP6nbTjBMfdlafmAoKCsoUuqipkSNHMnLkyApvW7BgQZnrZ1qTFRkZyZw5c6o85/zzz2fp0qXVCVFETldaCHs+M9vaWLn64tvCif3muq96F1odTeA5fb2XzWZtLCKBoNNfYf/XcGwLrHvGHLWRM9vzGSx/kJD8vXQBcJRIaHyVfnf5sGqPfNntdiZMmEBKSgoxMTFs374dgCeffJI333zT7QGKiBc6MAeKc8wRnPqXWB2N73FMPcxW0Q1LaL2XiGeFxUPX6WZ74wuQudzaeHzBns9g0bWQv7f8baufOPUFqPicaidfzz33HP/+97+ZMmUKYWFhzuPnnXce//pX4O4zIBJQnFMObwCb5bOXfU+8Kh5aKlPJl4jHNb7SnClhlMLSO8BebHVE3steCssfBKrYinf5Q+Z54nOq/anp3Xff5fXXX+eWW25xblgM0KFDB3777Te3BiciXqjkOOz9r9nWlMOaUfJlndJCyFlntlVsQ8SzOk+D8LrmussNU6yOxnuUFkHuFtg/Bzb/A366ueIRLyfDLNp0eJHHQhT3qfaar3379tGiRYtyx+12O8XF+hZDxO/t+xpK8yG6KdTtanU0vim+jXl5Yh8UZZtFOMQzctab37iHJUJ0mtXRiASWiCQ4fxosuRXWPQupwyC+tdVReUZhJuRth7xtJy9Pa+fvMYsAVdeJA2c+R7xOtZOvNm3asGjRItLSyv7RmjVrFp06dXJbYCLipRxTDtNu1ILfmgqLh8gUM/nK2QD1L7I6osChYhsi1kq/GXZ9aBbgWHYn9FsEQcFnvp+3s5eYSdTpSdWx0xKt4uyq7x8cZe6JFtMMgsJgz6wzP6eqtfqkaidf48eP5/bbb2ffvn3Y7XY+++wzNm3axLvvvstXX31VGzGKiLcoyoH9/zPbmnJ4duLbnky+1iv58iRnsY3O1sYhEqhsNuj6GnzdFo4sgS2vwrmjrI7KNcW55ZMqR6J1fBcYJVXfP7KhmVxFN4PY5ieTrZOXEQ1OfSFkL4Uv0iF/HxWv+7JBVGOo38PNL1A8odrJ19ChQ/nyyy959tlniY6OZvz48Zx//vl8+eWX9O/fvzZiFBFvsfe/YC+EuNaQ0M7qaHxbfFs4+K3WfXmaim2IWC86FTpNgV/uhVXjIGUIxKRbHZU59S9/X8VTA/O2Q+GRqu8fFA4xTcsmVc52U9c3RQ4KNtfHLboWsFE2ATuZoHWe6h8jhgGoWslXSUkJf/nLX7jjjjuYO3dubcUkIt5KUw7dJ0FFNzzOXgLZq822im2IWKvF3ebflIyF8PNd0Osb52bCtoxoaNindpKLkuOQt6P81MDj283j9qKq7x9ev3xy5RjFimzkvgrAqcOgxyyz6uHpxTeiGpuJV+ow9zyPeFy1kq+QkBCmTJnCbbfdVlvxiIi3KjgCB09+6ZJ2g7Wx+ANVPPS83N+gtABCYs0PSyJiHVsQXPAGfNMeDn4HnycRUpRlbia88KWTSca06icZhgEFByueGpi3DQoOVX1/WwhEp5dNqpyJVlMIjavhC66B1GGQMpSSA/NZtfQbOl54GSG1lZSKx1R72mHfvn1ZuHAh6enptRCOiHitvZ+Z89kTO0HcuVZH4/ucFQ8PQFGWWX1PapdzymEn7U8n4g3izoHU62Dne+bvwdPl7zOn3fWYVT4BKy2AvJ1lkypnorUdSk9U/bxhiZVMDWxmJn1B1f54XHuCgjGSerEv5Dgdknop8fID1X53XXbZZTz++OOsXbuWzp07Ex0dXeb2IUOGuC04EfEip085lLMXGgdRqWZ1rOz1kHSJ1RH5P0exDU05FPEO9lI4NL+SG0+uc1p2F2Sthfydp6YJnthX9ePagiCqSdmkKva0REtfdomFqp183XfffQC89NJL5W6z2WyUlmq3bRG/c+IAHFpgtptcb2kofiW+rZl85Sj58ggV2xDxLocXwYmqNhMGijJh3dPlj4fEmIlVuamBzcw9/IJCayVkkbNV7eTLbq/BJnAi4tt2zwQMqNfdOypS+Yv4tnBgttZ9eYJhh6yVZlsjXyLewdVNgpN6QXK/0xKs5hBeV4WfxCd50aRWEfFamnJYO1R0w3OObYGSPAiO1JpFEW/h6ibB7Z6GBr1rMxIRj6nRiuOFCxdy5ZVX0qJFC1q0aMGQIUNYtGiRu2MTEW+Qt9PcCBMbNLnO6mj8i5Ivz3FMOUzo4F2L6UUCWf0eZoELKhvBsplrY7WZsPiRaidf77//Pv369SMqKopRo0YxatQoIiMj6du3LzNmzKiNGEXESrs/MS8b9Hb9W0pxjaPiYcEhKDxqbSz+LkvrvUS8jmMzYaB8AqbNhMU/VTv5ev7555kyZQoff/yxM/n6+OOPmTRpEhMmTKiNGEXESppyWHtCY8yF4QA5G6yNxd+p2IaId3JsJhyVUvZ4VOOKy8yL+LhqJ1/bt2/nyiuvLHd8yJAh7Nixwy1BiYiXyN1kFimwhUBj/QGsFZp6WPsM41TypWIbIt4ndRgM2UlJr7n8Gj6Gkl5zYcgOJV7il6qdfKWmpjJv3rxyx7/77jtSU1PdEpSIeIldH5uXyf0hop61sfgrJV+17/hOKM42S087+ltEvItzM+GeGNpMWPxYtVcdP/zww4waNYpVq1Zx0UUXAfDTTz/x73//m2nTpp3h3iLiMwwDdn1otjXlsPYo+ap9jlGv+HYQHGZtLCIiEtCqnXzde++9JCcn8+KLL/LJJ+ZC/NatW/Pxxx8zdOhQtwcoIhbJXgu5v0FQODTW/+1ao+Sr9qnYhoiIeIka1du9+uqrufrqq90di4h4E8eoV6PBEBZvbSz+LL61eVmQAQVHNL2zNqjYhoiIeIlqr/n65ZdfWLZsWbnjy5Yt49dff3VLUCJiMcNQlUNPCYmG6HSzrdEv9zMMyFxutlVsQ0RELFbt5Ov+++9nz5495Y7v27eP+++/3y1BiYjFjv5sFikIiYaUy62Oxv9p6mHtObEfCg+DLRgS2lsdjYiIBLhqJ18bNmzg/PPLf3vYqVMnNmzQPjUifsEx6pUyxEzApHYp+ao9jimHca0hJNLaWEREJOBVO/kKDw/n0KFD5Y4fOHCAkJAaLSETEW9iL4XdJ0vMa8qhZyj5qj0qtiEiIl6k2snXgAEDGDduHDk5Oc5j2dnZPPHEE/Tv39+twYmIBQ7/CCcOQGgCNBxodTSBIUHJV63R5soiIuJFqj1U9cILL9CzZ0/S0tLo1KkTAKtWraJBgwa89957bg9QRDzMMeUwdRgEh1sbS6CIaw3YoPCIWfUwIsnqiPyHRr5ERMSLVDv5SklJYc2aNXzwwQesXr2ayMhIRowYwU033URoaGhtxCginmIvhj2zzLamHHpOSBTENIW87ebol5Iv9yjIgPy9Zjuxo6WhiIiIQA33+YqOjubuu+92dywiYrWD35ujL+H1oUEfq6MJLPFtzeQre7363l0yV5qXsS0hNNbaWERERKjGmq/Nmzfz888/lzk2b948+vTpwwUXXMBf/vIXtwcnIh62++SUwybXQZAK6HiUim64n6YcioiIl3E5+Xrsscf46quvnNd37NjBlVdeSVhYGN27d2fixIlMnTq1NmIUEU8oLYQ9n5ltTTn0PCVf7qdiGyIi4mVc/mr7119/5dFHH3Ve/+CDD2jZsiVz5swBoH379rzyyis89NBDbg9SRDzgwGwozoXIFKh/sdXRBJ7Tky/DAJvN2nj8gUa+RETEy7g88nXkyBEaN27svD5//nyuvPJK5/XevXuzc+dOtwYnIh7kqHKYdgPYqr0LhZytuFZmvxdlmoUi5OwUZZlr6AASO1kbi4iIyEkuf8KqU6cOBw4cAMBut/Prr79y4YUXOm8vKirCMAz3Rygita/kOOz9wmxryqE1QiIhupnZ1tTDs5e1yryMTofwOlZGIiIi4uRy8tW7d28mTJjAnj17mDp1Kna7nd69eztv37BhA+np6bUQoojUun1fQWk+xDSDOl2sjiZwabNl98nUlEMREfE+Lq/5ev755+nfvz9paWkEBwfzt7/9jejoaOft7733HpdeemmtBCkitcw55fBGrTWyUnxb2PtfJV/uoGIbIiLihVxOvtLT09m4cSPr16+nfv36NGrUqMztzzzzTJk1YSLiI4pyYP//zLamHFpLFQ/dR8U2RETEC1VrI5+QkBA6dOhQ4W2VHRcRL7f3P2Avgvg2EH+e1dEENlU8dI/iPMjdZLY18iUiIl5EJc1EAp1jymETTTm0XNy5JyseZkHBQauj8V3ZqwEDIhtBZAOroxEREXFS8iUSyAqPwMG5ZjvtBmtjEQiOgJjmZltTD2tO671ERMRLKfkSCWBBez8Ho9T8kBrX0upwBE5NPcxW8lVjWu8lIiJeSsmXSACz7fnEbKjQhvdQ0Y2z5ywz39naOERERH6nRsnXokWLuPXWW+nevTv79u0DzFLzP/74o1uDE5HaE2HPxHb4B/NK2vXWBiOnKPk6O6UFp/pOI18iIuJlqp18ffrppwwcOJDIyEhWrlxJYWEhADk5OfzlL39xe4AiUjsalf6EDQPqXQTRaVaHIw6/r3go1ZO91pxKG14fIlOsjkZERKSMaidfzz33HNOnT+eNN94gNDTUefziiy9mxYoVbg1ORGqBvRRbxkKaFp/c26uJRr28Sty5YAuG4hw4sd/qaHxP5mnrvVS9U0REvEy1k69NmzbRs2fPcsfj4+PJzs52R0wiUlv2fAZfpBOysD8xxgHz2IbJ5nHxDsHhENvCbGvqYfVlqdKhiIh4r2onX8nJyWzdurXc8R9//JFmzZq5JSgRqQV7PoNF10L+3rLHCw6ax5WAeQ+t+6q5TFU6FBER71Xt5Ouuu+7iwQcfZNmyZdhsNvbv388HH3zAI488wr333lsbMYrI2bKXwvIHgYrWEJ08tvwh8zyxnpKvmrEXQ/Yas63kS0REvFBIde/w+OOPY7fb6du3L/n5+fTs2ZPw8HAeeeQRHnjggdqIUUTO1uFF5Ue8yjAgf495XoPenopKKqO9vmomZwPYiyA0HqKbWh2NiIhIOdVOvmw2G3/6058YO3YsW7duJS8vjzZt2hATE1Mb8YmIOxzf49p5Jw7UbhziGkfylbvBrHiowhGuUbENERHxctWednjHHXdw7NgxwsLCaNOmDRdccAExMTEcP36cO+64ozZiFJGzkfEjrPmza+dGNqzdWMQ1sS3BFgLFuXBin9XR+A4V2xARES9X7eTrnXfe4cSJE+WOnzhxgnfffdctQYmIGxRlwbK74LsekL+bqv+72yAqFer38FR0UpXgMIg9x2xr6qHrVGxDRES8nMvTDnNzczEMA8MwOHbsGBEREc7bSktL+d///kdSUlKtBCki1WAYsOsjWPEQFGSYx5r/H9S/BJaOcJx02h1OTs/qPBWCgj0Xp1Qtvi3kbjSLbjQaaHU03s9eClmrzLZGvkRExEu5nHwlJCRgs9mw2Wy0bNmy3O02m41nnnnGrcGJSDXlbYdf7oMDc8zrca3hgn9C0skRrdBYs+rh6cU3ohqbiVfqMI+HK1WIbwt7ZqnioauObYbSfAiJPjVqKCIi4mVcTr7mz5+PYRhceumlfPrpp9SpU8d5W1hYGGlpaTRq1KhWghSRM7AXw28vwdpnoPQEBIXDeX+G1o+aU9gcUodBylBKDsxn1dJv6HjhZYQ07KMRL2+UoHLz1eKYcpjYUe9nERHxWi4nX7169QJgx44dNGnSBFsFlaR2795NkyZN3BediJzZkaXw892Qvda83uBS6PoaxJUfoQYgKBgjqRf7Qo7TIamXPqh6K+deX6p46BIV2xARER9Q7YIbzZo14/Dhw+WOHz16lKZNta+KiMcU5ZhTDL+9yEy8wuvChe/Apd9VnniJ74g9x6x4WHLM3INNqqZiGyIi4gOqvc+XYRgVHs/LyytThENEaolhwJ5PYfmoU/tyNRsOHf8KEfUsDU3cKCjUTKJzNphTD6M1q6BShl0jXyIi4hNcTr7GjBkDmIU1xo8fT1RUlPO20tJSli1bRseOHd0eoIic5vgu+OV+2P+1eT32HLOgRoM+1sYltSO+7ankq9FlVkfjvfK2m3uiBYVDfGuroxEREamUy8nXypUrAXPka+3atYSFnVrEHxYWRocOHXjkkUfcH6GIgL0ENv0N1jxpVnQLCoU246DtOAjWiLPfim8LzFTRjTNxTDlMaG/+3xAREfFS1ap2CDBixAimTZtGXFxcrQUlIqc5+qtZUCPL/AKE+j3M0S59w+//HEU3tNFy1bK03ktERHxDtdd8vf322wBs3bqVbdu20bNnTyIjIzEMo8IKiCJSQ8XHYPWfYcvfzTUtYYnQ6a/QbATYql0rR3yRI/nK3WC+B/TvXjEV2xARER9R7b/kmZmZ9O3bl5YtWzJ48GAOHDAX/N955508/PDDbg9QJCDt+Q981Ro2/8380J1+C1zxGzS/Ux/AA0lsC3MaXclxOL7b6mi8k2Go2IaIiPiMan+Ke+ihhwgNDWX37t1lim7ccMMNzJ49263BiQSc/L3ww9Ww6Go4sQ9imkGfOXDR+xCRZHV04mlBoRB7rtnWuq+K5e+BwqNmWf6E86yORkREpErVnnb47bffMmfOHBo3blzm+DnnnMOuXbvcFphIQLGXwpZXYfWfoCTP/CDZeiyc9ySERFodnVgpvi3krDOTr5TLrY7G+zimHMa3VfEZERHxetVOvo4fP15mxMshMzOT8PBwtwQlElAyV5oFNTJ/Na/X624W1EhoZ21c4h0c67408lUxFdsQEREfUu1phz169ODdd991XrfZbNjtdqZMmUKfPtprSMRlJcdhxSMwp6uZeIXGQ9fXoP+PSrzklAQlX1XK1HovERHxHdUe+ZoyZQp9+/bl119/paioiEcffZT169eTmZnJTz/9VBsxiviffV/DL/dB/skiCk2uh85TIbKhpWGJF3KOfG1UxcOKaORLRER8SLX/ip933nls3ryZSy65hKFDh3L8+HGGDRvGypUrad68eW3EKOI/ThyAH6+HhVeYiVd0GvT6Gi75WImXVCymOQSFmZtrH99pdTTe5cQB8wcbJHawOhoREZEzqvbIF0B8fDx/+tOf3B2LiP8y7LD1n7DqcSjOBVswtBoN7Z6GkGiroxNvFhQCca0gew3kbDArYIop8+TG43Gt9P9IRER8QrWTrx9++KHK23v27FnjYET8UvZaWHY3HF1qXq/TFbq9DokdLQ1LfEh825PJ13pIucLqaLyHphyKiIiPqXby1bt373LHbDabs11aWnpWAYn4jZJ8WDcBNr4ARgmExEKH5+Gc+yAo2OroxJc41n1lq+hGGSq2ISIiPqbayVdWVlaZ68XFxaxcuZInn3yS559/3m2Bifi0A9/CL/dC3nbzeuOrocvfIKpx1fcTqYjKzVdMI18iIuJjqp18xcfHlzvWv39/wsLCGDNmDMuXL3dLYCI+6cQhWDEGds0wr0c1hi5/h8ZDrY1LfJsj+cpVxUOnwqNwfJfZ1hReERHxETUquFGRBg0asGnTJnc9nIhvMeyw7U1Y+SgUZ5sfjls+AO0nQGis1dGJr4tpBkHhUHoC8nZArCrLknWy2EZMcwhLsDQUERERV1U7+VqzZk2Z64ZhcODAASZNmkTHjh3dFZeI78jZAD/fA4d/NK8ndoILXoe6XayNS/xHUPDJioerzamHSr5OrffSlEMREfEh1U6+OnbsiM1mwzCMMscvvPBC3nrrLbcFJuL1Sgtg3fOwcTLYi81S1+0nmCNeQW4bVBYxxbc9lXw1HmJ1NNZTsQ0REfFB1f6EuGPHjjLXg4KCqF+/PhEREW4LSsTrHfwefvkjHNtiXm90BXT9u7lpskhtSGgLu1DRDQcV2xARER9U7eQrLU0fLiWAFRyBlQ/DjnfN65ENofMrkDoMTttyQcTtVPHwlOLcU198aORLRER8SI1KZi1cuJArr7ySFi1a0KJFC4YMGcKiRYvcHZuI9zAM2P5v+LrVycTLZu7XdflGaHKNEi+pfc6Kh7+BPcD3U8xaZV5GNYGIepaGIiIiUh3VTr7ef/99+vXrR1RUFKNGjWLUqFFERkbSt29fZsyYURsxilgrdzN83xeWjjDLWye0gwGLoeurEFZ+6wWRWhHdFIIjzLWGjv3jApWKbYiIiI+q9rTD559/nilTpjB69GjnsVGjRvHSSy8xYcIEbr75ZrcGKGKZ0kLYMBnWPw/2IgiOhHZPQ6vREBRqdXQSaIKCIa61WWI9Zz3EnWN1RNZRsQ0REfFR1R752r59O1deeWW540OGDClXjEPEZ2Usgm86wtqnzMSr4UC4fB20eVSJl1hH675MKrYhIiI+qtrJV2pqKvPmzSt3/LvvviM1NdUtQYlYpjATlv0ffNfTXFsTkQQXfQi9vzE3uhWxkpIvKMmH3I1mW8mXiIj4mGpPO3z44YcZNWoUq1at4qKLLgLgp59+4t///jfTpk1ze4AiHmEYsHMGrBgNhYfNY83vgk6TISzR2thEHJR8QfYaMOwQkWxWGxUREfEh1U6+7r33XpKTk3nxxRf55JNPAGjdujUff/wxQ4cOdXuAIrXu2Db45V44ONe8Ht8Guv4Tki6xNi6R30s4veJhSWBu5q1iGyIi4sNq9Jf76quv5uqrr3Z3LCKeVVoEv70I6541K8gFhcN5T0LrsRAcZnV0IuVFp0NwFJTmQ942iDvX6og8L0vFNkRExHfV+GvToqIiMjIysNvtZY43adLkrIMSqXWHF8PP90DOOvN6g0uh6/TAriAn3s8WBPGtIXM55GwIzORLI18iIuLDqp18bdmyhTvuuIPFixeXOW4YBjabjdLSAN/8U7yDvRRbxkJSSn7AlhENDfuYpbqLsmHVONg63TwvvB6c/xKk36qNksU3xLc9mXyth9QAm4FQWnjqCxMlXyIi4oOqnXwNHz6ckJAQvvrqKxo2bIhNH1jF2+z5DJY/SEj+XroALHwJIhtD2vVmUY2Cg+Z5zUZAp79CeF0roxWpnkAuupGzHuzFEFYHojTLQkREfE+1S82vWrWKf/7zn1x22WV07NiRDh06lPmpiVdffZX09HQiIiLo1q0bP//8c6XnvvHGG/To0YPExEQSExPp169fufOHDx+OzWYr8zNo0KAy52RmZnLLLbcQFxdHQkICd955J3l5eTWKX7zIns9g0bWQv7fs8RN74beXzMQrtiX0nQ8XvqXES3xPICdfp0851Bd/IiLig6qdfLVp04YjR464LYCPP/6YMWPG8NRTT7FixQo6dOjAwIEDycjIqPD8BQsWcNNNNzF//nyWLFlCamoqAwYMYN++fWXOGzRoEAcOHHD+fPjhh2Vuv+WWW1i/fj1z587lq6++4ocffuDuu+922+sSC9hLYfmDgFH5OaFxMGglNOjtqahE3MuRfOVuMiseBhIV2xARER/nUvKVm5vr/Jk8eTKPPvooCxYs4OjRo2Vuy83NrXYAL730EnfddRcjRoygTZs2TJ8+naioKN56660Kz//ggw+477776NixI61ateJf//oXdru93MbP4eHhJCcnO38SE0/t1bRx40Zmz57Nv/71L7p168Yll1zCK6+8wkcffcT+/fur/RrESxxeVH7E6/eKcyGz8pFVEa8X3QRCosFeBMe2Wh2NZ6nYhoiI+DiX1nwlJCSUWdtlGAZ9+/Ytc05NCm4UFRWxfPlyxo0b5zwWFBREv379WLJkiUuPkZ+fT3FxMXXq1ClzfMGCBSQlJZGYmMill17Kc889R9265hSzJUuWkJCQQJcuXZzn9+vXj6CgIJYtW1ZhGf3CwkIKCwud1x2JZnFxMcXFxS6/5trgeH6r47CaLW+PS2/okrw9GHUCu6/0nqmYr/RLcGwrgrKWU5K5GiOquUee0/K+sZcQkrUaG1Ac2w685N/I8n7xYuqbiqlfKqe+qZj6pXLe1DeuxuBS8jV//vyzCqYyR44cobS0lAYNGpQ53qBBA3777TeXHuOxxx6jUaNG9OvXz3ls0KBBDBs2jKZNm7Jt2zaeeOIJLrvsMpYsWUJwcDAHDx4kKSmpzOOEhIRQp04dDh48WOHzTJw4kWeeeabc8W+//ZaoqCiXYq1tc+fOtToESyWXrKebC+ctXb2Lo+v+V+vx+IJAf89Uxtv7pVNhHE2ALb/+l81rIjz63Fb1Tax9F5faCygmkv/9sAlsWyyJozLe/p6xkvqmYuqXyqlvKqZ+qZw39E1+fr5L57mUfPXq1eusgqktkyZN4qOPPmLBggVERJz6AHLjjTc62+3ataN9+/Y0b96cBQsWlBuxc9W4ceMYM2aM83pubq5zvVlcXFzNX4QbFBcXM3fuXPr3709oaKilsVjFduB/BP9sTlU1gIqW4hvYIDKFbpc/ArZgj8bnbfSeqZiv9EvQpo2wZj7nNiimRffBHnlOq/vGtvM9+AWC63VhcJ8rPP78lbG6X7yZ+qZi6pfKqW8qpn6pnDf1javLr1xKvtasWePyE7dv397lc+vVq0dwcDCHDh0qc/zQoUMkJydXed8XXniBSZMm8d13353xOZs1a0a9evXYunUrffv2JTk5uVxBj5KSEjIzMyt93vDwcMLDw8sdDw0Ntfwf28GbYvGYkuOw4pFT+3ZFpWJzrvs6vfCGzUzIukwjNMyzIwXeLCDfMy7w+n5JNH/nBR3bSJCH47Ssb3LNv0NBdTt7/DW7wuvfMxZS31RM/VI59U3F1C+V84a+cfX5XUq+OnbsiM1mwzCqqCIH1V7zFRYWRufOnZk3bx5XXXUVgLN4xsiRIyu935QpU3j++eeZM2dOmXVbldm7dy9Hjx6lYcOGAHTv3p3s7GyWL19O586dAfj++++x2+106+bKxDXxCkd/gcW3wrHN5vVzR0PHv8D+/5lVD08vvhHVGDpPhdRhloQq4lYJJyseHtts7nsVFAB/jFVsQ0RE/IBLydeOHTtqLYAxY8Zw++2306VLFy644AKmTp3K8ePHGTFiBAC33XYbKSkpTJw4EYDJkyczfvx4ZsyYQXp6unONVkxMDDExMeTl5fHMM89wzTXXkJyczLZt23j00Udp0aIFAwcOBKB169YMGjSIu+66i+nTp1NcXMzIkSO58cYbadSoUa29VnETewlsmARrnwGjBCIbQfd3IPnkur/UYZAylJID81m19Bs6XngZIQ37QFBgTzUUPxLVBEJioCQPjm2B+DZWR1S7DDtkrTTbKjMvIiI+zKXkKy0trdYCuOGGGzh8+DDjx4/n4MGDdOzYkdmzZzuLcOzevZugoFMV8V977TWKioq49tpryzzOU089xdNPP01wcDBr1qzhnXfeITs7m0aNGjFgwAAmTJhQZtrgBx98wMiRI+nbty9BQUFcc801/O1vf6u11ylucmwbLPkDHDlZDbPJddB1OoSXrXZJUDBGUi/2hRynQ1IvJV7iX2w2M+E6+rO52bK/J1/HtpqJZnAkxJ1rdTQiIiI15lLy9cUXX3DZZZcRGhrKF198UeW5Q4YMqXYQI0eOrHSa4YIFC8pc37lzZ5WPFRkZyZw5c874nHXq1GHGjBmuhihWMwzY/rY5nbAkD0JioeurkH6r+UFUJNDEtzWTr+z15pcQ/swx5TChAwS59GdLRETEK7n0V+yqq65ylmd3rM2qSHXXfIm4pOAI/HIP7PnMvF6/B3R/F2LSLQ1LxFLxJ9d95ay3Ng5PyNJ6LxER8Q8uJV92u73Ctkit2z8Hlg6HgoNmUYF2z0LrsZpGKBJIyVfmcvNSyZeIiPg4zd8Q71RyAlY9Cpv/bl6Paw0Xva8PXyIOjuTr2BYoLYLgMGvjqS2GcWraoYptiIiIjws68ymmJUuW8NVXX5U59u6779K0aVOSkpK4++67KSwsdHuAEoAyV8DszqcSr5YPwKDlSrxEThfVGELjzIqfju0W/NHxnVCcbY58OxJOERERH+Vy8vXss8+yfv2p6S1r167lzjvvpF+/fjz++ON8+eWXznLwIjViL4X1k+DbCyF3I0QkQ+/Z0OVvEBJpdXQi3sVmg7iTVQ5zNlgbS21yjHrFt/Pf0T0REQkYLidfq1atom/fvs7rH330Ed26deONN95gzJgx/O1vf+OTTz6plSAlAOTthHl9YPU4c9PY1GEweC00Gmh1ZCLeKyEA1n2p2IaIiPgRl9d8ZWVlOffeAli4cCGXXXaZ83rXrl3Zs2ePe6MT/2cYsPN9+OV+KDlmbhzb+W/QbLhKyIucSSAU3chU8iUiIv7D5ZGvBg0asGPHDgCKiopYsWIFF154ofP2Y8eOERoa6v4IxX8VZsJPN8CS28zEq95FMHg1NB+hxEvEFf6efBnGqUqHKrYhIiJ+wOXka/DgwTz++OMsWrSIcePGERUVRY8ePZy3r1mzhubNm9dKkOKHDn4H/2sHu2eCLQTaPwf9FkJMM6sjE/EdZSoe+mHBoxP7ofAw2IIhob3V0YiIiJw1l6cdTpgwgWHDhtGrVy9iYmJ45513CAs7tfj5rbfeYsCAAbUSpPiR0gJYNQ42TTWvx7aEiz6Aul0sDUvEJ0U2gtB4KM4xKx4mtLM6IvdyTDmMa62iOyIi4hdcTr7q1avHDz/8QE5ODjExMQQHl93kdubMmcTExLg9QPEjWath8S2npkidcy90+iuERFsbl4ivstkgvg0cWQLZ6/0v+VKxDRER8TPV3mQ5Pj6+wuN16tQ562DETxl2+O0lWP0nsBdBRBJ0ewtSLrc6MhHfF9/WTL78cd2XNlcWERE/U+3kS6Raju8xC2pkLDCvpwyBbm+YCZiInD1/LrqhkS8REfEzSr6k9uz8EH6511yPEhwFnadC8/9TJUMRd/LX5KsgA/L3mu3EjpaGIiIi4i5KvsT9irLhl/tg14fm9brdoPt7EHeOpWGJ+CVH8pW31SxoExxhbTzukrnSvIxtCaGx1sYiIiLiJi6XmhdxyaH58L/2ZuJlC4Z2T0P/H5V4idSWyIYQmmCurczdZHU07qMphyIi4oeUfIl7lBbCyrEwry/k74GYFtD/J2j3FARpgFWk1thskOCHUw8dxTbqdLY2DhERETfSp2I5e9nrzBLy2WvM683vgvNfglBtPSDiEfFt4fBP/pV8ZanSoYiI+B8lX1Jzhh02/Q1WPQ72QgivB93ehMZDrI5MJLD4W9GNoizI226263SyNhYRERE3UvIlNZO/F5YMh0PzzOuNBpuJV2SypWGJBCRH8pXtJ8lX1irzMrophCVaGoqIiIg7KfmS6tv1CfzyR/Pb6eBIc4phi3tUQl7EKs6Kh9ug5ASERFobz9nKVLENERHxT0q+xHVFOfDrA7DzPfN6nS5w0fsQd661cYkEuogGEFYHijIh9zffn6qn5EtERPyUqh2KazIWwTcdzMTLFgRt/wwDFivxEvEGNpt/rftSsQ0REfFTGvmSqpUWwdqnYMNkwDDXYFz0PtS/yOrIROR08W3h8CLI2WB1JGenOO/UfmWJPj6CJyIi8jtKvqRyORvNEvJZK83rzUZA56kQGmdpWCJSAX8Z+cpeDRgQmQKRDayORkRExK2UfEl5hgGbX4VVY6G0wFxL0u0NSB1mdWQiUhl/2WhZ671ERMSPKfmSsk4cgKV3wIHZ5vWGA6HbWxDVyNq4RKRqzoqH26EkH0KirI2nprTeS0RE/JgKbsgpez6D/7UzE6/gCOj8CvT+RomXiC+ISDI3OscwKx76Ko18iYiIH1PyJVB8zBztWnQNFB6FxI4waDmcO1J7d4n4kvg25qWvTj0sLTgVu5IvERHxQ0q+At3hxfBNR9j+NmCDNo/DgGWnPsSJiO/w9aIb2WvBKIXw+mbBDRERET+jNV+Byl4Ma5+FDX8Bww7RadD9XUjqaXVkIlJTjuQr20eTr9OnHGrUXURE/JCSr0CUuwkW3wqZv5rX0/8AXV6BsHhr4xKRs+PrI18qtiEiIn5OyVcgMQzYOh1WPAylJyAsEbpOh7TrrY5MRNzBkXwd3wElxyEk2tp4qkvFNkRExM8p+QoUJw7Bsjth/9fm9eR+cOG/IUrrKkT8RkR9c71U4WFzk/S6XayOyHX2YsheY7aVfImIiJ9SwY1AsPcLs4T8/q8hKBzOfxn6zFHiJeKPfHXqYc4GsBdBaDxEN7U6GhERkVqhkS9/VpwHK8bAtjfM6wnt4aIPIOE8a+MSkdoT3xYyFvhe8qViGyIiEgCUfPk6eym2jIWklPyALSMaGvaBoGA4sswsqpG3FbBB64eh/XMQHG51xCJSmxJ8dORLxTZERCQAKPnyZXs+g+UPEpK/ly4AC1+CyMZQ/yLY86m5X05UY7OEfIM+VkcrIp7gq9MOVWxDREQCgJIvX7XnM1h0LWCUPX5iL+z+xGyn3QRdXzWrGopIYHBWPNxlTj0OjbE2HlfYSyFrldnWyJeIiPgxFdzwRfZSWP4g5RKv04XVge7vKfESCTThdSGigdnO2WBtLK46thlK883S+LHnWB2NiIhIrVHy5YsOL4L8vVWfU5RpnicigcfXph46phwmdjTXrIqIiPgpJV++6MQB954nIv7FkXzl+sjIl4ptiIhIgFDy5YsiG7r3PBHxL47kK9vHRr5UbENERPycki9fVL+HWcWQyvbCsUFUqnmeiAQeX5p2aNg18iUiIgFDyZcvCgqGztNOXvl9AnbyeuepWjshEqgce33l74biY9bGciZ5O6A4F4LCIb611dGIiIjUKiVfvip1GPSYBVEpZY9HNTaPpw6zJi4RsV5Y4qlpx95e8dAx6pXQHoJCrY1FRESklmmfL1+WOgxShlJyYD6rln5DxwsvI6RhH414iQjEtTGL7uSsh3rdrI6mcpnLzUut9xIRkQCgkS9fFxSMkdSLfSE9MZJ6KfESEZOvrPtSsQ0REQkgSr5ERPxRgg8kX4ahYhsiIhJQlHyJiPgjXxj5yt8DhUfBFgIJ51kdjYiISK1T8iUi4o8cyVf+XijKsTaWyjimHMa3heAIa2MRERHxACVfIiL+KCwBIhuZbW+teJil9V4iIhJYlHyJiPgrb596mKn1XiIiEliUfImI+CtvT7408iUiIgFGyZeIiL/y5uTrxAHzxxYEiR2sjkZERMQjlHyJiPgrb06+Mleal3GtICTa2lhEREQ8RMmXiIi/im9jXp7YD0XZloZSjvb3EhGRAKTkS0TEX4XFQ1Rjs+1to1+ZWu8lIiKBR8mXiIg/89aphxr5EhGRAKTkS0TEnzmTLy/a66vwKBzfZbYTO1oaioiIiCcp+RIR8WfeOPKVdbLYRkwLc2qkiIhIgFDyJSLiz7wx+dJ6LxERCVBKvkRE/Jmz4uEBKMqyNhYHJV8iIhKglHyJiPiz0FiIamK2s71k9EvFNkREJEAp+RIR8XeO0S9vmHpYnAvHtpjtxE7WxiIiIuJhSr5ERPydN637ylplXkY1gYh6loYiIiLiaUq+RET8nTclX1rvJSIiAUzJl4iIv/PG5EvrvUREJAAp+RIR8XeONV8Fh8wNjq2UpZEvEREJXEq+RET8XWgMRKeZbStHv0ryIXej2VbyJSIiAUjJl4hIIPCGqYfZa8CwQ0QyRDa0Lg4RERGLKPkSEQkEjuTLyr2+VGxDREQCnJIvEZFA4A0jX9pcWUREApySLxGRQOANyZdGvkREJMAp+RIRCQTxrc3LwsNQcNjzz19aCDnrzLaSLxERCVBKvkREAkFINEQ3NdtWjH7lrAd7MYTVgagmnn9+ERERL6DkS0QkUFg59fD0KYc2m+efX0RExAso+RIRCRQJFiZfKrYhIiKi5EtEJGA4R742eP65VWxDREREyZeISMCwatqhvQSyV5ttjXyJiEgAU/IlIhIo4loBNig8AgUZnnve3N+gtABCYiG2ueeeV0RExMso+RIRCRQhURDTzGx7cvTLOeWwE9j0Z0dERAKX/gqKiAQSx9TDbA8mXyq2ISIiAij5EhEJLPFtzEtLRr6UfImISGBT8iUiEkg8XXTDsEPWSrOtkS8REQlwSr5ERALJ6cmXYdT+8x3bCiV5EBwJcefW/vOJiIh4MSVfIiKBJK6VWfSiKBMKDtX+8zmmHCZ0gKCQ2n8+ERERL6bkS0QkkIREQrQHKx5mab2XiIiIg5IvEZFAk+DBdV8qtiEiIuKk5EtEJNB4quiGYajMvIiIyGmUfImIBBpPJV/Hd0JRFgSFnXpOERGRAKbkS0Qk0Jy+0XJtVjx0FttoB8Fhtfc8IiIiPsIrkq9XX32V9PR0IiIi6NatGz///HOl577xxhv06NGDxMREEhMT6devX5Xn//GPf8RmszF16tQyx9PT07HZbGV+Jk2a5K6XJCLiveLONSseFmfDiQO19zyacigiIlKG5cnXxx9/zJgxY3jqqadYsWIFHTp0YODAgWRkZFR4/oIFC7jpppuYP38+S5YsITU1lQEDBrBv375y537++ecsXbqURo0aVfhYzz77LAcOHHD+PPDAA259bSIiXik4AmJamO3anHqoYhsiIiJlWJ58vfTSS9x1112MGDGCNm3aMH36dKKionjrrbcqPP+DDz7gvvvuo2PHjrRq1Yp//etf2O125s2bV+a8ffv28cADD/DBBx8QGhpa4WPFxsaSnJzs/ImOjnb76xMR8Uq1ve7LMCBzudnWyJeIiAgAlu54WVRUxPLlyxk3bpzzWFBQEP369WPJkiUuPUZ+fj7FxcXUqVPHecxut/OHP/yBsWPH0rZt5Yu8J02axIQJE2jSpAk333wzo0ePJiSk4i4pLCyksLDQeT03NxeA4uJiiouLXYq1tjie3+o4vI36pXLqm4oFUr8ExbYiGLBnraXUhddb7b45sY/QwsMYtmBKYlqBn/ZpIL1nqkt9UzH1S+XUNxVTv1TOm/rG1RgsTb6OHDlCaWkpDRo0KHO8QYMG/Pbbby49xmOPPUajRo3o16+f89jkyZMJCQlh1KhRld5v1KhRnH/++dSpU4fFixczbtw4Dhw4wEsvvVTh+RMnTuSZZ54pd/zbb78lKirKpVhr29y5c60OwSupXyqnvqlYIPRLSkkRXYCsXYv5MeN/Lt/P1b5pUPIzFwK5NGbBnPk1C9KHBMJ7pqbUNxVTv1ROfVMx9UvlvKFv8vPzXTrP0uTrbE2aNImPPvqIBQsWEBERAcDy5cuZNm0aK1aswGazVXrfMWPGONvt27cnLCyMe+65h4kTJxIeHl7u/HHjxpW5T25urnO9WVxcnBtfVfUVFxczd+5c+vfvX+kUy0Ckfqmc+qZiAdUvOanw7YvUCT7A4Msugyp+X0L1+yZo/XLYALFNejL4gsHuitrrBNR7pprUNxVTv1ROfVMx9UvlvKlvHLPizsTS5KtevXoEBwdz6NChMscPHTpEcnJylfd94YUXmDRpEt999x3t27d3Hl+0aBEZGRk0adLEeay0tJSHH36YqVOnsnPnzgofr1u3bpSUlLBz507OPffccreHh4dXmJSFhoZa/o/t4E2xeBP1S+XUNxULiH5JbAu2YGzFOYSWHIaoFJfu5nLf5KwGIKheF4L8vS8JkPdMDalvKqZ+qZz6pmLql8p5Q9+4+vyWFtwICwujc+fOZYplOIpndO/evdL7TZkyhQkTJjB79my6dOlS5rY//OEPrFmzhlWrVjl/GjVqxNixY5kzZ06lj7lq1SqCgoJISko6+xcmIuLtgsMh9hyzXRtFN1RmXkREpBzLpx2OGTOG22+/nS5dunDBBRcwdepUjh8/zogRIwC47bbbSElJYeLEiYC5nmv8+PHMmDGD9PR0Dh48CEBMTAwxMTHUrVuXunXrlnmO0NBQkpOTnSNaS5YsYdmyZfTp04fY2FiWLFnC6NGjufXWW0lMTPTgqxcRsVB8W8j9zUy+Gg5w3+MWZED+XsAGiR3c97giIiI+zvLk64YbbuDw4cOMHz+egwcP0rFjR2bPnu0swrF7926Cgk4N0L322msUFRVx7bXXlnmcp556iqefftql5wwPD+ejjz7i6aefprCwkKZNmzJ69Ogya7pERPxefBvY86n7R74yV5qXcS0hNNa9jy0iIuLDLE++AEaOHMnIkSMrvG3BggVlrle2Zqsqv7/P+eefz9KlS6v9OCIifsWx11e2m5MvTTkUERGpkOWbLIuIiEUcyVfuBnNTZHfJPJl81VHyJSIicjolXyIigSq2JdhCoDj35BotN9HIl4iISIWUfImIBKrgMPdXPCzKgrztZrtOJ/c8poiIiJ9Q8iUiEsgcUw/dlXxlrTIvo5tCmKrHioiInE7Jl4hIIHN38qX1XiIiIpVS8iUiEsgSlHyJiIh4ipIvEZFA5hz5clPFQxXbEBERqZSSLxGRQBZ7DgSFQkke5O8+u8cqzoPcTWY7UcU2REREfk/Jl4hIIAsKNUvOw9lvtpy9GjAgMgUiG5x1aCIiIv5GyZeISKBzV9ENrfcSERGpkpIvEZFA567kS+u9REREqqTkS0Qk0J1edONsaORLRESkSkq+REQCnSP5yt0Ahr1mj1FacGrkTMmXiIhIhZR8iYgEutgWEBQGJcfheA0rHmavBaMUwuubBTdERESkHCVfIiKBLigE4s412zVd93X6lEObzT1xiYiI+BklXyIicvZFN1RsQ0RE5IyUfImICMS1MS/dMfIlIiIiFVLyJSIikHAWI1/2YsheY7aVfImIiFRKyZeIiJw27XBj9Sse5mwAexGExkN0U/fHJiIi4ieUfImICMQ0NyselubD8Z3Vu6+KbYiIiLhEyZeIiJyseNjKbGdXc+qhim2IiIi4RMmXiIiYalrxUMU2REREXKLkS0RETDVJvuylkLXKbGvkS0REpEpKvkRExFST5OvYZnOdWEg0xJ5TO3GJiIj4CSVfIiJiciRfuRvNES1XOKYcJnaEoOBaCUtERMRfKPkSERFTTDMIjoDSAji+w7X7qNiGiIiIy5R8iYiIKSj4VMVDV6ceOottdK6dmERERPyIki8RETmlOuu+DPupkS9VOhQRETkjJV8iInKKI/lyZa+vvB1QnGtOVYxrXbtxiYiI+AElXyIickp1Rr4co14J7c1NmkVERKRKSr5EROQUZ8XD385c8TBTxTZERESqQ8mXiIicEtMUgiPBXgh526s+N1PrvURERKpDyZeIiJxiCzq1fquqqYeGAVnLzbaSLxEREZco+RIRkbJcWfeVvwcKj4ItBOLP80xcIiIiPk7Jl4iIlBXfxrysKvlyTDlMOA+Cw2s/JhERET+g5EtERMpyZeQrS8U2REREqkvJl4iIlJVwesXDkorPUbENERGRalPyJSIiZUWnQ3AU2Isgb1vF52jkS0REpNqUfImISFm2IIivouLhiQPmjy0IEtt7NjYREREfpuRLRETKc6z7yq4g+cpcaV7GtYKQaM/FJCIi4uOUfImISHlVFd3QlEMREZEaUfIlIiLlVZV8qdiGiIhIjSj5EhGR8hzJ17FNYC8ue5tGvkRERGpEyZeIiJQX3cRcz2UvhmNbTx0vPArHd5ntxI6WhCYiIuKrlHyJiEh5tiCIa2O2T5t6aMteZTZiWkBYvOfjEhER8WFKvkREpGIJ5dd92bJOVjrUei8REZFqU/IlIiIVq6Dohi1byZeIiEhNKfkSEZGKVZR8OUa+VGxDRESk2kKsDkBERLyUI/nK3Qz2YkKMfGzHTxbfSOxkXVwiIiI+SiNfIiJSsahUCIkFowTythBv33HyeBOIqGdtbCIiIj5IyZeIiFTMZoN4s+KhLWcD8fZt5nGt9xIREakRJV8iIlK5k1MPbbkbSLBvN49pvZeIiEiNKPkSEZHKOUa+cjcQX3oy+dLIl4iISI0o+RIRkco5Rr4yVxBr7DWPKfkSERGpEVU7FBGRyjmSr/ydABgRydgiG1oYkIiIiO/SyJeIiFQuqrFZ8fAkI7IJ2EstDEhERMR3KfkSEZHK7f0c7IXOq0FZP8MX6bDnM+tiEhER8VFKvkREpGJ7PoNF14K9qOzx/H3mcSVgIiIi1aLkS0REyrOXwvIHAaOCG08eW/6QpiCKiIhUg5IvEREp7/AiyN9bxQkG5O8xzxMRERGXKPkSEZHyThxw73kiIiKi5EtERCrgajl5lZ0XERFxmZIvEREpr34Ps8w8tkpOsEFUqnmeiIiIuETJl4iIlBcUDJ2nnbzy+wTs5PXOU83zRERExCVKvkREpGKpw6DHLIhKKXs8qrF5PHWYNXGJiIj4qBCrAxARES+WOgxShlJyYD6rln5DxwsvI6RhH414iYiI1ICSLxERqVpQMEZSL/aFHKdDUi8lXiIiIjWkaYciIiIiIiIeoORLRERERETEA5R8iYiIiIiIeICSLxEREREREQ9Q8iUiIiIiIuIBSr5EREREREQ8QMmXiIiIiIiIByj5EhERERER8QAlXyIiIiIiIh6g5EtERERERMQDlHyJiIiIiIh4gJIvERERERERD1DyJSIiIiIi4gEhVgfgqwzDACA3N9fiSKC4uJj8/Hxyc3MJDQ21OhyvoX6pnPqmYuqXyqlvKqZ+qZz6pmLql8qpbyqmfqmcN/WNIydw5AiVUfJVQ8eOHQMgNTXV4khERERERMQbHDt2jPj4+EpvtxlnSs+kQna7nf379xMbG4vNZrM0ltzcXFJTU9mzZw9xcXGWxuJN1C+VU99UTP1SOfVNxdQvlVPfVEz9Ujn1TcXUL5Xzpr4xDINjx47RqFEjgoIqX9mlka8aCgoKonHjxlaHUUZcXJzlbzxvpH6pnPqmYuqXyqlvKqZ+qZz6pmLql8qpbyqmfqmct/RNVSNeDiq4ISIiIiIi4gFKvkRERERERDxAyZcfCA8P56mnniI8PNzqULyK+qVy6puKqV8qp76pmPqlcuqbiqlfKqe+qZj6pXK+2DcquCEiIiIiIuIBGvkSERERERHxACVfIiIiIiIiHqDkS0RERERExAOUfImIiIiIiHiAki8f8sMPP3DllVfSqFEjbDYb//nPf8rcbhgG48ePp2HDhkRGRtKvXz+2bNliTbAedKZ++eyzzxgwYAB169bFZrOxatUqS+K0QlV9U1xczGOPPUa7du2Ijo6mUaNG3Hbbbezfv9+6gD3kTO+Zp59+mlatWhEdHU1iYiL9+vVj2bJl1gTrYWfqm9P98Y9/xGazMXXqVI/FZ5Uz9cvw4cOx2WxlfgYNGmRNsB7kyvtl48aNDBkyhPj4eKKjo+natSu7d+/2fLAedqa++f37xfHz17/+1ZqAPeRM/ZKXl8fIkSNp3LgxkZGRtGnThunTp1sTrIedqW8OHTrE8OHDadSoEVFRUQwaNCggPudNnDiRrl27EhsbS1JSEldddRWbNm0qc05BQQH3338/devWJSYmhmuuuYZDhw5ZFHHVlHz5kOPHj9OhQwdeffXVCm+fMmUKf/vb35g+fTrLli0jOjqagQMHUlBQ4OFIPetM/XL8+HEuueQSJk+e7OHIrFdV3+Tn57NixQqefPJJVqxYwWeffcamTZsYMmSIBZF61pneMy1btuTvf/87a9eu5ccffyQ9PZ0BAwZw+PBhD0fqeWfqG4fPP/+cpUuX0qhRIw9FZi1X+mXQoEEcOHDA+fPhhx96MEJrnKlftm3bxiWXXEKrVq1YsGABa9as4cknnyQiIsLDkXremfrm9PfKgQMHeOutt7DZbFxzzTUejtSzztQvY8aMYfbs2bz//vts3LiRhx56iJEjR/LFF194OFLPq6pvDMPgqquuYvv27fz3v/9l5cqVpKWl0a9fP44fP25BtJ6zcOFC7r//fpYuXcrcuXMpLi5mwIABZV736NGj+fLLL5k5cyYLFy5k//79DBs2zMKoq2CITwKMzz//3HndbrcbycnJxl//+lfnsezsbCM8PNz48MMPLYjQGr/vl9Pt2LHDAIyVK1d6NCZvUVXfOPz8888GYOzatcszQXkBV/olJyfHAIzvvvvOM0F5icr6Zu/evUZKSoqxbt06Iy0tzXj55Zc9HpuVKuqX22+/3Rg6dKgl8XiLivrlhhtuMG699VZrAvIirvyeGTp0qHHppZd6JiAvUVG/tG3b1nj22WfLHDv//PONP/3pTx6MzHq/75tNmzYZgLFu3TrnsdLSUqN+/frGG2+8YUGE1snIyDAAY+HChYZhmJ93Q0NDjZkzZzrP2bhxowEYS5YssSrMSmnky0/s2LGDgwcP0q9fP+ex+Ph4unXrxpIlSyyMTHxJTk4ONpuNhIQEq0PxGkVFRbz++uvEx8fToUMHq8OxnN1u5w9/+ANjx46lbdu2VofjVRYsWEBSUhLnnnsu9957L0ePHrU6JEvZ7Xa+/vprWrZsycCBA0lKSqJbt25VTmUNVIcOHeLrr7/mzjvvtDoUy1100UV88cUX7Nu3D8MwmD9/Pps3b2bAgAFWh2apwsJCgDKjxkFBQYSHh/Pjjz9aFZYlcnJyAKhTpw4Ay5cvp7i4uMxn4FatWtGkSROv/Ays5MtPHDx4EIAGDRqUOd6gQQPnbSJVKSgo4LHHHuOmm24iLi7O6nAs99VXXxETE0NERAQvv/wyc+fOpV69elaHZbnJkycTEhLCqFGjrA7FqwwaNIh3332XefPmMXnyZBYuXMhll11GaWmp1aFZJiMjg7y8PCZNmsSgQYP49ttvufrqqxk2bBgLFy60Ojyv8s477xAbG+u906Q86JVXXqFNmzY0btyYsLAwBg0axKuvvkrPnj2tDs1SjmRi3LhxZGVlUVRUxOTJk9m7dy8HDhywOjyPsdvtPPTQQ1x88cWcd955gPkZOCwsrNwXx976GTjE6gBExHrFxcVcf/31GIbBa6+9ZnU4XqFPnz6sWrWKI0eO8MYbb3D99dezbNkykpKSrA7NMsuXL2fatGmsWLECm81mdThe5cYbb3S227VrR/v27WnevDkLFiygb9++FkZmHbvdDsDQoUMZPXo0AB07dmTx4sVMnz6dXr16WRmeV3nrrbe45ZZbAmIt3Jm88sorLF26lC+++IK0tDR++OEH7r//fho1alRmZCPQhIaG8tlnn3HnnXdSp04dgoOD6devH5dddhmGYVgdnsfcf//9rFu3zqdH+zTy5SeSk5MBylV2OXTokPM2kYo4Eq9du3Yxd+5cjXqdFB0dTYsWLbjwwgt58803CQkJ4c0337Q6LEstWrSIjIwMmjRpQkhICCEhIezatYuHH36Y9PR0q8PzKs2aNaNevXps3brV6lAsU69ePUJCQmjTpk2Z461btw6IaoeuWrRoEZs2beL//u//rA7FcidOnOCJJ57gpZde4sorr6R9+/aMHDmSG264gRdeeMHq8CzXuXNnVq1aRXZ2NgcOHGD27NkcPXqUZs2aWR2aR4wcOZKvvvqK+fPn07hxY+fx5ORkioqKyM7OLnO+t34GVvLlJ5o2bUpycjLz5s1zHsvNzWXZsmV0797dwsjEmzkSry1btvDdd99Rt25dq0PyWna73TnnPlD94Q9/YM2aNaxatcr506hRI8aOHcucOXOsDs+r7N27l6NHj9KwYUOrQ7FMWFgYXbt2LVcSevPmzaSlpVkUlfd588036dy5s9aUYv5NKi4uJiio7MfT4OBg50iqmGv669evz5YtW/j1118ZOnSo1SHVKsMwGDlyJJ9//jnff/89TZs2LXN7586dCQ0NLfMZeNOmTezevdsrPwNr2qEPycvLK/Mt6o4dO1i1ahV16tShSZMmPPTQQzz33HOcc845NG3alCeffJJGjRpx1VVXWRe0B5ypXzIzM9m9e7dz/yrHB4Hk5GSv/EbEnarqm/9v596Doqz+P4C/V77ALnJzBbmMgGMgQ4ZclMIhEEFdHFMESQomwbxRKDKNkDoqYoMCI2goEZMMxARxyRGMtEQTAZ3ESpCbiKRmBlOGNqOLgfL8/nDYXyu7oDjsmr5fM/yxzznPOR8+C8N+OM85VlZWCAkJwc8//4yKigo8ePBA8Wy0VCqFnp6etsIedUPlZfz48UhKSsKiRYtgZWWFmzdvIjMzEzdu3MCbb76pxag1Y7jfp0cLdF1dXVhaWsLR0VHToWrUUHmRSqVITEzEkiVLYGlpiY6ODsTHx8Pe3h4ymUyLUY++4X5e4uLiEBoaCh8fH8yePRvffvstvv76a1RVVWkvaA0ZLjfAw3+SlpaWIi0tTVthatxweZk1axbi4uIgkUhgZ2eHU6dOIT8/H+np6VqMWjOGy01paSnMzc1ha2uLxsZGrF+/HosXL37uDyOJjo5GYWEhysvLYWRkpPisYmJiAolEAhMTE6xYsQIffPABpFIpjI2NsW7dOsycOROenp5ajl4F7R62SE/i5MmTAoBBXxEREYIgPDxufuvWrYKFhYWgr68v+Pv7C21tbdoNWgOGy0tubq7K9oSEBK3GrQlD5Wbg6H1VXydPntR26KNqqLz09PQIQUFBgrW1taCnpydYWVkJixYtEurq6rQdtkYM9/v0qBflqPmh8iKXy4V58+YJ5ubmgq6urmBnZyesWrVK6Orq0nbYo+5xfl5ycnIEe3t7QSwWCy4uLkJZWZn2Atagx8lNdna2IJFIhNu3b2svUA0bLi+dnZ1CZGSkYG1tLYjFYsHR0VFIS0sT+vv7tRu4BgyXm48//liYOHGioKurK9ja2gpbtmwR/vnnH+0GrQHqPqvk5uYq+vT09Ajvv/++MG7cOMHAwEAICgoSOjs7tRf0EESC8ALt0iMiIiIiItIS7vkiIiIiIiLSABZfREREREREGsDii4iIiIiISANYfBEREREREWkAiy8iIiIiIiINYPFFRERERESkASy+iIhoxA4dOoSSkhJth0FERPSfwOKLiIhGpK6uDrGxsfD09NR2KE+tqqoKIpEIt2/fHvW5fH19ERsbO+rzaMpff/2FCRMm4OrVqwCGz+XNmzcxYcIE/Pbbb5oLkojoGcHii4iIEBkZCZFIhOTkZKXrZWVlEIlEg/r//fffWLlyJQ4dOgRbW1tNhfnM6+3tRWpqKlxcXGBgYAAzMzN4eXkhNzcXfX19ozKnSCRCWVnZqIz9OJKSkhAYGIhJkyY9Vn8zMzMsW7YMCQkJoxsYEdEziMUXEREBAMRiMVJSUnDr1q1h+5qYmODChQtwd3fXQGSq9fb2am1uVXp7eyGTyZCcnIzVq1fjzJkzqKurQ3R0NPbt24fm5mZthzikkRSHcrkcOTk5WLFixRPdt3z5chQUFKC7u/uJ5yQi+i9j8UVERACAOXPmwNLSErt27VLbZ/v27XB1dVW6tnfvXqVVj8jISCxevBg7d+6EhYUFTE1NsWPHDty/fx9xcXGQSqWYOHEicnNzlca5fv06li5dClNTU0ilUgQGBioeZfv3uElJSbC2toajoyMAoLGxEX5+fpBIJBg/fjxWr16NO3fuDPm9HjlyBFOmTIFEIsHs2bOV5hlQW1sLb29vSCQS2NjYICYmBnfv3lU75t69e1FdXY0TJ04gOjoarq6umDx5MsLCwnD27Fk4ODiovE/VypWpqSny8vIAPCzq1q5dCysrK4jFYtjZ2Sneo4G8BwUFQSQSKb0P5eXlcHd3h1gsxuTJk5GYmIj79+8rzZuVlYVFixZh7NixSEpKwq1btxAeHg5zc3NIJBI4ODgMep8ezaO+vv6Qj57K5XLMnz8fXl5eikcRp06dCmtraxw6dEjtfUREzyMWX0REBADQ0dHBzp07sW/fvqfej/P999/j999/R3V1NdLT05GQkIA33ngD48aNw9mzZxEVFYU1a9Yo5unr64NMJoORkRFqampw+vRpGBoaIiAgQGmF68SJE2hra0NlZSUqKipw9+5dyGQyjBs3DufOnUNpaSmOHz+OtWvXqo3t+vXrCA4OxsKFC1FfX4+VK1di48aNSn06OjoQEBCAJUuW4MKFCyguLkZtbe2Q4xYUFGDOnDlwc3Mb1Karq4uxY8c+aRoBABkZGTh8+DBKSkrQ1taGgoICRZF17tw5AEBubi46OzsVr2tqarBs2TKsX78eLS0tyM7ORl5eHpKSkpTG3r59O4KCgtDY2Ih3330XW7duRUtLC44ePYrW1lZkZWXBzMxMbWw1NTWYPn262vbbt29j7ty56O/vR2VlJUxNTRVtr776KmpqakaUEyKi/6r/aTsAIiJ6dgQFBcHV1RUJCQnIyckZ8ThSqRQZGRkYM2YMHB0dkZqaCrlcjs2bNwMANm3ahOTkZNTW1uKtt95CcXEx+vv7ceDAAcUes9zcXJiamqKqqgrz5s0DAIwdOxYHDhyAnp4eAOCzzz7DvXv3kJ+fryhu9u/fj4ULFyIlJQUWFhaDYsvKysJLL72EtLQ0AICjoyMaGxuRkpKi6LNr1y6Eh4crDsZwcHBARkYGZs2ahaysLIjF4kHjtre3w9fXd8Q5U+fXX3+Fg4MDXn/9dYhEItjZ2SnazM3NATxcKbO0tFRcT0xMxMaNGxEREQEAmDx5Mj766CPEx8cr7bUKCwvD8uXLleZyc3PDjBkzAGDYfVzXrl2DtbW1yrauri6EhobCwcEBhYWFivdsgLW1Nc6fP/8YGSAien5w5YuIiJSkpKTg888/R2tr64jHmDp1KsaM+f8/MRYWFnB2dla81tHRwfjx4/HHH38AABoaGnD58mUYGRnB0NAQhoaGkEqluHfvHjo6OhT3OTs7K32Ib21thYuLi9KqkpeXF/r7+9HW1qYyttbWVrz22mtK12bOnKn0uqGhAXl5eYpYDA0NIZPJ0N/fjytXrqgcVxCE4dIyIpGRkaivr4ejoyNiYmJw7NixYe9paGjAjh07lOJftWoVOjs7IZfLFf0GiqwB7733HoqKiuDq6or4+HicOXNmyHl6enpUFqIAMHfuXNjb26O4uHhQ4QUAEolEKRYiohcBV76IiEiJj48PZDIZNm3ahMjISKW2MWPGDCoyVB3UoKurq/RaJBKpvNbf3w8AuHPnDqZPn46CgoJBYw2s7gAY8aN7T+rOnTtYs2YNYmJiBrWpO91xypQpuHjx4hPPJRKJhsypu7s7rly5gqNHj+L48eNYunQp5syZg6+++mrI+BMTExEcHDyo7d/F0qP5nD9/Pq5du4YjR46gsrIS/v7+iI6Oxu7du1XOY2ZmpvaAlgULFuDgwYNoaWlRKrwHdHd3K723REQvAhZfREQ0SHJyMlxdXRWHWgwwNzdHV1cXBEFQPB5YX1//1PO5u7ujuLgYEyZMgLGx8WPf5+TkhLy8PNy9e1dRSJw+fVrxuKO6ew4fPqx07YcffhgUT0tLC+zt7R87lrCwMGzevBnnz58ftO+rr68Pvb29KotHc3NzdHZ2Kl63t7cPWhEyNjZGaGgoQkNDERISgoCAAHR3d0MqlUJXVxcPHjwYFH9bW9sTxf/veCIiIhAREQFvb2/ExcWpLb7c3NzwxRdfqGxLTk6GoaEh/P39UVVVhZdfflmpvampaVQe0yQiepbxsUMiIhrE2dkZ4eHhyMjIULru6+uLP//8E6mpqejo6EBmZiaOHj361POFh4fDzMwMgYGBqKmpwZUrV1BVVYWYmJghD/8IDw+HWCxGREQEmpqacPLkSaxbtw7vvPOOyv1eABAVFYX29nbExcWhra0NhYWFipMFB3z44Yc4c+YM1q5di/r6erS3t6O8vHzIAzdiY2Ph5eUFf39/ZGZmoqGhAb/88gtKSkrg6emJ9vZ2lff5+flh//79OH/+PH788UdERUUprRKmp6fjyy+/xMWLF3Hp0iWUlpbC0tJScXjFpEmTcOLECXR1dSlWobZt24b8/HwkJiaiubkZra2tKCoqwpYtW9TGP3BfeXk5Ll++jObmZlRUVMDJyUltf5lMhubmZrWrX7t370Z4eDj8/PyUVgXlcjl++uknxV4+IqIXBYsvIiJSaceOHYrHAgc4OTnhk08+QWZmJlxcXFBXV4cNGzY89VwGBgaorq6Gra0tgoOD4eTkhBUrVuDevXtDroQZGBjgu+++Q3d3Nzw8PBASEgJ/f3/s379f7T22trY4ePAgysrK4OLigk8//RQ7d+5U6jNt2jScOnUKly5dgre3N9zc3LBt2za1h0sAgL6+PiorKxEfH4/s7Gx4enrCw8MDGRkZiImJwSuvvKLyvrS0NNjY2MDb2xthYWHYsGEDDAwMFO1GRkZITU3FjBkz4OHhgatXr+LIkSOKPXVpaWmorKyEjY2NYsVNJpOhoqICx44dg4eHBzw9PbFnzx6lwzpU0dPTw6ZNmzBt2jT4+PhAR0cHRUVFavs7OzvD3d0dJSUlavvs2bMHS5cuhZ+fHy5dugTg4TH4tra28Pb2HjIeIqLnjUgYrR3CRERE9Nz75ptvEBcXh6amJqVDVobi6emJmJgYhIWFjXJ0RETPFu75IiIiohFbsGAB2tvbcePGDdjY2Azb/+bNmwgODsbbb7+tgeiIiJ4tXPkiIiIiIiLSAO75IiIiIiIi0gAWX0RERERERBrA4ouIiIiIiEgDWHwRERERERFpAIsvIiIiIiIiDWDxRUREREREpAEsvoiIiIiIiDSAxRcREREREZEGsPgiIiIiIiLSABZfREREREREGvB/Iemr3s8TjMEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "El número óptimo de clusters según el Silhouette Score es: 13\nAplicando K-Means con k=13...\n\nNúmero de clusters encontrados: 13\nReduciendo dimensiones para visualización con t-SNE...\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "output_type": "stream", + "text": [ + "/databricks/python/lib/python3.10/site-packages/sklearn/manifold/_t_sne.py:795: FutureWarning: The default initialization in TSNE will change from 'random' to 'pca' in 1.2.\n warnings.warn(\n/databricks/python/lib/python3.10/site-packages/sklearn/manifold/_t_sne.py:805: FutureWarning: The default learning rate in TSNE will change from 200.0 to 'auto' in 1.2.\n warnings.warn(\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGkAAAK9CAYAAACXazGoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5xU1fnH8c+UndneKyxl6R0UGyoKihJUREGNxihIiomoEH8pmtgwGtRExRjFaAy2oFGCXUFFEVRQaUpVytJ3gV3YXmZ35v7+ONuGLbSZbXzfr9e8duece+85d1i2PHPO89gsy7IQEREREREREZEWZW/pCYiIiIiIiIiIiII0IiIiIiIiIiKtgoI0IiIiIiIiIiKtgII0IiIiIiIiIiKtgII0IiIiIiIiIiKtgII0IiIiIiIiIiKtgII0IiIiIiIiIiKtgII0IiIiIiIiIiKtgII0IiIizezAgQNMnz6dr776qqWnIiIiIiKtiII0IiJy1J5//nlsNhvbtm1rdfMYMWIEI0aMaLE5bdu2DZvNxvPPP99gv2VZXH/99SxatIiTTjqpWebUkq/J4V4PEREREamlII2IiHDppZcSHh5OYWFho8dce+21uFwucnNzm3Fm7c/DDz/Mtm3beOONN3C5XC09neOyaNEixo8fT2pqKi6Xi+TkZMaOHcu8efOabQ7r16/n3nvvbfGAYWs2Z84cZs6ceVTnbNu2jRtuuIHu3bsTGhpKamoq55xzDvfcc4/fcSNGjMBmszF27NgGr2Gz2fjb3/5W07Zo0SJsNlujj1dfffWY7lFERKS9cLb0BEREpOVde+21vPPOO7zxxhtcf/319fpLSkp46623+NGPfkRCQgLXXXcdV199NW63uwVm27QPP/ywRcfv0qULpaWlhISE1OsrKyujsrKS999/n9jY2OafXADdc8893HffffTs2ZMbb7yRLl26kJuby/vvv8+ECRP4z3/+w09+8pOgz2P9+vVMnz6dESNG0LVr16CP1xbNmTOHtWvXMm3atCM6fvPmzZx66qmEhYUxefJkunbtSlZWFitXruShhx5i+vTp9c559913WbFiBUOHDj2iMW699VZOPfXUeu3Dhg07ovNFRETaKwVpRESESy+9lKioKObMmdNgkOatt96iuLiYa6+9FgCHw4HD4WjuaR6Rll6dYrPZCA0NbbAvNDSUP/3pT808o8CbO3cu9913H1dccQVz5szxC0j97ne/Y8GCBVRUVLTgDI9fcXExERERLT2NFvHYY49RVFTE6tWr6dKli1/fvn376h3fuXNnCgsLmT59Om+//fYRjTF8+HCuuOKKgMxXRESkPdF2JxERISwsjPHjx7Nw4cIG/wibM2cOUVFRXHrppUDDuWCWL1/O6NGjSUxMJCwsjIyMDCZPnlzTX73NYdGiRX7XbihnyXfffcekSZPo1q1bzVaLyZMnH9FWq0Pzr3Tt2rXRrRXVc9m+fTs33XQTvXv3JiwsjISEBK688soGt9Dk5eXxm9/8hq5du+J2u0lPT+f6668nJyen0fsB+OSTTxg+fDgRERHExsYybtw4NmzY4HfMvffei81mY/PmzUyaNInY2FhiYmK44YYbKCkpOey9AzzzzDN0796dsLAwTjvtNJYsWdLgceXl5dxzzz306NEDt9tNp06d+P3vf095eflhx7jrrruIj4/n3//+d4MrhkaPHs0ll1zS6PmN5ciZNGlSvdUwr776KkOHDiUqKoro6GgGDhzI448/DpivwyuvvBKAkSNH1vt3Bfjggw9qXveoqCguvvhi1q1bV2/cyMhItmzZwkUXXURUVFRNQHLTpk1MmDCB1NRUQkNDSU9P5+qrryY/P/+wr9NXX33FRRddRFxcHBEREQwaNKhm7tWC/XUxYsQI3nvvPbZv317z+hxuxdGWLVtIT0+vF6ABSE5OrtcWFRXFb37zG9555x1WrlzZ5LVFRESkaVpJIyIigNny9MILL/Daa69x880317QfOHCABQsWcM011xAWFtbgufv27ePCCy8kKSmJ22+/ndjYWLZt23bMuUk++ugjtm7dyg033EBqairr1q3jmWeeYd26dSxbtgybzXbE15o5cyZFRUV+bY899hirV68mISEBgG+++YYvv/ySq6++mvT0dLZt28asWbMYMWIE69evJzw8HICioiKGDx/Ohg0bmDx5MieffDI5OTm8/fbb7Nq1i8TExAbn8PHHHzNmzBi6devGvffeS2lpKU888QRnnXUWK1eurPdH81VXXUVGRgYzZsxg5cqV/Otf/yI5OZmHHnqoyXt97rnnuPHGGznzzDOZNm0aW7du5dJLLyU+Pp5OnTrVHOfz+bj00kv5/PPP+eUvf0nfvn1Zs2YNjz32GD/88ANvvvlmo2Ns2rSJjRs3MnnyZKKiopqcz/H66KOPuOaaazj//PNr7n3Dhg188cUXTJ06lXPOOYdbb72Vv//97/zxj3+kb9++ADUfX3rpJSZOnMjo0aN56KGHKCkpYdasWZx99tmsWrXK73WvrKxk9OjRnH322fztb38jPDwcj8fD6NGjKS8v55ZbbiE1NZXdu3fz7rvvkpeXR0xMTJNzv+SSS0hLS2Pq1KmkpqayYcMG3n33XaZOnQo0z9fFn/70J/Lz89m1axePPfYYAJGRkU2+7l26dOHjjz/mk08+4bzzzmvy2GpTp07lscce49577z2i1TSFhYU1gc26EhISjur/t4iISLtjiYiIWJZVWVlppaWlWcOGDfNrf/rppy3AWrBgQU3b7NmzLcDKzMy0LMuy3njjDQuwvvnmm0av/+mnn1qA9emnn/q1Z2ZmWoA1e/bsmraSkpJ657/yyisWYC1evLjReViWZZ177rnWueee2+g8XnvtNQuw7rvvvibHW7p0qQVYL774Yk3b3XffbQHWvHnz6h3v8/kavZ8hQ4ZYycnJVm5ubk3bt99+a9ntduv666+vabvnnnsswJo8ebLftS+//HIrISGh0XuyLMvyeDxWcnKyNWTIEKu8vLym/ZlnnrEAv9fkpZdesux2u7VkyRK/a1T/W3/xxReNjvPWW29ZgPXYY481OZ9qDb0ejf0bTZw40erSpUvN86lTp1rR0dFWZWVlo9d//fXXG/y6KiwstGJjY61f/OIXfu3Z2dlWTEyMX/vEiRMtwLr99tv9jl21apUFWK+//vrhb7SOyspKKyMjw+rSpYt18OBBv77qrxPLap6vC8uyrIsvvtjvdT2ctWvXWmFhYRZgDRkyxJo6dar15ptvWsXFxfWOPffcc63+/ftblmVZ06dPtwBrxYoVlmXV/tv/9a9/rTm++vtAY4+srKwjnqeIiEh7pO1OIiICmDwzV199NUuXLvXb5jNnzhxSUlI4//zzGz23Ognuu+++G5BcJHVX7JSVlZGTk8MZZ5wBcFzbKdavX8/kyZMZN24cd955Z4PjVVRUkJubS48ePYiNjfUb73//+x+DBw/m8ssvr3ftxt79z8rKYvXq1UyaNIn4+Pia9kGDBnHBBRfw/vvv1zvnV7/6ld/z4cOHk5ubS0FBQaP3tnz5cvbt28evfvUrv7w8kyZNqrfi4/XXX6dv37706dOHnJycmkf1qolPP/200XGq5xDsVTRgvq6Ki4v56KOPjvrcjz76iLy8PK655hq/e3Q4HJx++ukN3uOvf/1rv+fVr9uCBQuOeLsZwKpVq8jMzGTatGn1EkRXf50019fFsejfvz+rV6/mpz/9Kdu2bePxxx/nsssuIyUlhWeffbbR86ZOnUpcXFyDiYUPdffdd/PRRx/Ve9R9LURERE5ECtKIiEiN6jwcc+bMAWDXrl0sWbKEq6++uslEweeeey4TJkxg+vTpJCYmMm7cOGbPnn1E+U0acuDAAaZOnUpKSgphYWEkJSWRkZEBcES5QBpSUFDA+PHj6dixIy+++KJfUKW0tJS7776bTp064Xa7SUxMJCkpiby8PL/xtmzZwoABA45q3O3btwPQu3fven19+/YlJyeH4uJiv/bOnTv7PY+LiwPg4MGDhx2nZ8+efu0hISF069bNr23Tpk2sW7eOpKQkv0evXr2AhpPDVouOjgZoslx7oNx000306tWLMWPGkJ6ezuTJk5k/f/4Rnbtp0yYAzjvvvHr3+eGHH9a7R6fTSXp6ul9bRkYGt912G//6179ITExk9OjRPPnkk4f9GtyyZQtAk18rzfV10ZTs7Gy/R2lpaU1fr169eOmll8jJyeG7777jL3/5C06nk1/+8pd8/PHHDV4vJiaGadOm8fbbb7Nq1aomxx44cCCjRo2q92jpxN8iIiItTTlpRESkxtChQ+nTpw+vvPIKf/zjH3nllVewLKsmeNMYm83G3LlzWbZsGe+88w4LFixg8uTJPPLIIyxbtozIyMhGV5p4vd56bVdddRVffvklv/vd7xgyZAiRkZH4fD5+9KMf4fP5juneJk2axJ49e/j6669rAg3VbrnlFmbPns20adMYNmwYMTEx2Gw2rr766mMe73g0FhCzLCsg1/f5fAwcOJBHH320wf66+WsO1adPHwDWrFlzzOPbbLYG7+XQr4Xk5GRWr17NggUL+OCDD/jggw+YPXs2119/PS+88EKTY1T/u7300kukpqbW63c6/X8Fcrvd2O3137t65JFHmDRpEm+99RYffvght956KzNmzGDZsmX1gjrBFuivi7S0NL/ns2fPZtKkSfXGHDhwIAMHDmTYsGGMHDmS//znP4waNarBa1bnppk+fTozZ848pnmJiIicyBSkERERP9deey133XUX3333HXPmzKFnz56ceuqpR3TuGWecwRlnnMEDDzzAnDlzuPbaa3n11Vf5+c9/XvOuf15ent851SsKqh08eJCFCxcyffp07r777pr26pURx+LBBx/kzTffZN68eTVBhrrmzp3LxIkTeeSRR2raysrK6s21e/furF279qjGrq6Q8/3339fr27hxI4mJiQEp9Vw9zqZNm/ySvVZUVJCZmcngwYNr2rp37863337L+eeff9RJWnv16kXv3r156623ePzxxw+bhLYhcXFxbN26tV77oV8LYEqqjx07lrFjx+Lz+bjpppv45z//yV133UWPHj0anX/37t0BE+hpLKBwpKqDFHfeeSdffvklZ511Fk8//TT3339/k2OvXbu20bGb6+sCGt+Kd+g2sv79+zd5nVNOOQUwW7UaU72a5t5772XixIlHOVMRERHRdicREfFTvWrm7rvvZvXq1YddRQMmsHLou/lDhgwBqNny1KVLFxwOB4sXL/Y77qmnnvJ7Xr1a4NDrHeu78h9//DF33nknf/rTn7jssssaPMbhcNQb74knnqi3smPChAl8++23vPHGG/Wu0dhqhrS0NIYMGcILL7zgF/RZu3YtH374IRdddNHR3VAjTjnlFJKSknj66afxeDw17c8//3y9YNNVV13F7t27G8wvUlpaWm+bzaGmT59Obm4uP//5z6msrKzX/+GHH/Luu+82en737t3ZuHEj+/fvr2n79ttv+eKLL/yOO7Tkut1uZ9CgQUDt11V1IOPQexw9ejTR0dH85S9/aTBPUt2xG1NQUFDv/gYOHIjdbm9yK9/JJ59MRkYGM2fOrDev6q+T5vq6APMaNbRF69CtRtUra5YsWdLga1adJ6ehLVp1Vefiue+++wIwexERkROLVtKIiIifjIwMzjzzTN566y2AIwrSvPDCCzz11FNcfvnldO/encLCQp599lmio6Nr/tiMiYnhyiuv5IknnsBms9G9e3fefffderlBoqOjOeecc3j44YepqKigY8eOfPjhh2RmZh7T/VxzzTUkJSXRs2dPXn75Zb++Cy64gJSUFC655BJeeuklYmJi6NevH0uXLuXjjz+uKdFd7Xe/+x1z587lyiuvZPLkyQwdOpQDBw7w9ttv8/TTT/utVqnrr3/9K2PGjGHYsGH87Gc/qym1HBMTw7333ntM93WokJAQ7r//fm688UbOO+88fvzjH5OZmcns2bPr5aS57rrreO211/jVr37Fp59+yllnnYXX62Xjxo289tprLFiwoGbVREN+/OMfs2bNGh544AFWrVrFNddcQ5cuXcjNzWX+/PksXLiwJq9RQyZPnsyjjz7K6NGj+dnPfsa+fft4+umn6d+/v18S3J///OccOHCA8847j/T0dLZv384TTzzBkCFDaspsDxkyBIfDwUMPPUR+fj5ut5vzzjuP5ORkZs2axXXXXcfJJ5/M1VdfTVJSEjt27OC9997jrLPO4h//+EeTr+knn3zCzTffzJVXXkmvXr2orKzkpZdewuFwMGHChEbPs9vtzJo1i7FjxzJkyBBuuOEG0tLS2LhxI+vWrWPBggVA83xdgNnG+N///pfbbruNU089lcjISMaOHdvo8Q899BArVqxg/PjxNUGxlStX8uKLLxIfH8+0adOaHC8mJoapU6c2mUB4yZIllJWV1WsfNGhQzZgiIiInpBarKyUiIq3Wk08+aQHWaaed1mD/oaWvV65caV1zzTVW586dLbfbbSUnJ1uXXHKJtXz5cr/z9u/fb02YMMEKDw+34uLirBtvvNFau3ZtvRLNu3btsi6//HIrNjbWiomJsa688kprz549FmDdc889jc7DsuqXd6aJcr/VZZsPHjxo3XDDDVZiYqIVGRlpjR492tq4caPVpUsXa+LEiX73kJuba918881Wx44dLZfLZaWnp1sTJ060cnJyLMtquOS0ZVnWxx9/bJ111llWWFiYFR0dbY0dO9Zav3693zHVpZb379/f5OvdlKeeesrKyMiw3G63dcopp1iLFy9usOS1x+OxHnroIat///6W2+224uLirKFDh1rTp0+38vPzDzuOZVnWwoULrXHjxlnJycmW0+m0kpKSrLFjx1pvvfVWzTGNvR4vv/yy1a1bN8vlcllDhgyxFixYUK8E99y5c60LL7zQSk5Otlwul9W5c2frxhtvrFem+dlnn7W6detmORyOeuW4P/30U2v06NFWTEyMFRoaanXv3t2aNGmS39fmxIkTrYiIiHr3t3XrVmvy5MlW9+7drdDQUCs+Pt4aOXKk9fHHHx/R6/P5559bF1xwgRUVFWVFRERYgwYNsp544gm/Y5rj66KoqMj6yU9+YsXGxlrAYctxf/HFF9aUKVOsAQMGWDExMVZISIjVuXNna9KkSdaWLVv8jq1bgruugwcPWjExMUddgrvu/28REZETkc2yApSFUEREREREREREjply0oiIiIiIiIiItAIK0oiIiIiIiIiItAIK0oiIiIiIiIiItAIK0oiIiIiIiIiItAIK0oiIiIiIiIiItAIK0oiIiIiIiIiItALOlp5Aa+Pz+dizZw9RUVHYbLaWno6IiIiIiIi0c5ZlUVhYSIcOHbDbtZbiRKYgzSH27NlDp06dWnoaIiIiIiIicoLZuXMn6enpLT0NaUEK0hwiKioKMP85oqOjW3g2IiIiIiIi0t4VFBTQqVOnmr9H5cSlIM0hqrc4RUdHK0gjIiIiIiIizUYpN0Sb3UREREREREREWgEFaUREREREREREWgEFaUREREREREREWgHlpBERERERERGRoLAsi8rKSrxeb0tPpcU4HA6cTucR5RxSkEZEREREREREAs7j8ZCVlUVJSUlLT6XFhYeHk5aWhsvlavI4BWlEREREREREJKB8Ph+ZmZk4HA46dOiAy+U6IatXWZaFx+Nh//79ZGZm0rNnT+z2xjPPKEgjIiIiIiIiIgHl8Xjw+Xx06tSJ8PDwlp5OiwoLCyMkJITt27fj8XgIDQ1t9FglDhYRERERERGRoGhq1ciJ5EhfB71aIiIiIiIiIiKtgII0IiIiIiIiIiKtgII0IiIiIiIiItLq2Ww23nzzzZaeRlApSCMiIiIiIiIiLS47O5tbbrmFbt264Xa76dSpE2PHjmXhwoUBH2vRokXYbDby8vICfu3joepOIiIiIiIiItKitm3bxllnnUVsbCx//etfGThwIBUVFSxYsIApU6awcePGlp5igyzLwuv14nQGJryilTQiIiIiIiIi0qJuuukmbDYbX3/9NRMmTKBXr17079+f2267jWXLltU7vqGVMKtXr8Zms7Ft2zYAtm/fztixY4mLiyMiIoL+/fvz/vvvs23bNkaOHAlAXFwcNpuNSZMmAeDz+ZgxYwYZGRmEhYUxePBg5s6dW2/cDz74gKFDh+J2u/n8888D9jpoJY2IiIiIiIiItJgDBw4wf/58HnjgASIiIur1x8bGHtN1p0yZgsfjYfHixURERLB+/XoiIyPp1KkT//vf/5gwYQLff/890dHRhIWFATBjxgxefvllnn76aXr27MnixYv56U9/SlJSEueee27NtW+//Xb+9re/0a1bN+Li4o5pfg1RkEZEREREREREWszmzZuxLIs+ffoE9Lo7duxgwoQJDBw4EIBu3brV9MXHxwOQnJxcEwQqLy/nL3/5Cx9//DHDhg2rOefzzz/nn//8p1+Q5r777uOCCy4I6HxBQRoRERERERERaUGWZQXlurfeeiu//vWv+fDDDxk1ahQTJkxg0KBBjR6/efNmSkpK6gVfPB4PJ510kl/bKaecEpQ5K0gjIiIiIiIiIi2mZ8+e2Gy2o0oObLebFLt1AzwVFRV+x/z85z9n9OjRvPfee3z44YfMmDGDRx55hFtuuaXBaxYVFQHw3nvv0bFjR78+t9vt97yhbVmBoMTBIiIiIiIiItJi4uPjGT16NE8++STFxcX1+hsqk52UlARAVlZWTdvq1avrHdepUyd+9atfMW/ePP7v//6PZ599FgCXywWA1+utObZfv3643W527NhBjx49/B6dOnU6nls8YgrSiIiIiIiIiEiLevLJJ/F6vZx22mn873//Y9OmTWzYsIG///3vNflh6qoOnNx7771s2rSJ9957j0ceecTvmGnTprFgwQIyMzNZuXIln376KX379gWgS5cu2Gw23n33Xfbv309RURFRUVH89re/5Te/+Q0vvPACW7ZsYeXKlTzxxBO88MILzfI6KEgjIg3L2wZ7VsC+jVDpaenZiIiIiIhIO9atWzdWrlzJyJEj+b//+z8GDBjABRdcwMKFC5k1a1a940NCQnjllVfYuHEjgwYN4qGHHuL+++/3O8br9TJlyhT69u3Lj370I3r16sVTTz0FQMeOHZk+fTq33347KSkp3HzzzQD8+c9/5q677mLGjBk157333ntkZGQE/0UAbFawMvS0UQUFBcTExJCfn090dHRLT0ek+ZXshY3vwfJZULwHHJHQ7RI4/VeQ1LOlZyciIiIi0u60x79Dy8rKyMzMJCMjg9DQ0JaeTos70tdDK2lEpJavDNbPhUV3QNEOsCqhMg9+eBnm/wHysw57CRERERERETk2CtKISK28TbDinw337f8Ksr9t3vmIiIiIiIicQBSkEZFaxfugeG8jnZWQvaZZpyMiIiIiInIiUZBGRGo5QsAe0nh/eGyzTUVEREREROREoyCNiNSK6wSdz2y4zxEG6ac073xEREREREROIArSiEit0E5wxq8htot/uz0Ezr0fkga0zLxEREREREROAM6WnoCItCI2J6QOg3H/hD0rYO86iEiFzudC8mBwNrEVSkRERERERI6LgjQi4s8eCgknQfwg6F8BNjfYbC09KxERERERkXZPQRoRaZjNYR4iIiIiIiLSLJSTRkRERERERESkFVCQRkRERERERESkjieffJKuXbsSGhrK6aefztdff90s4ypIIyIiIiIiIiKtk88LPyyC5a+Yjz5v0If873//y2233cY999zDypUrGTx4MKNHj2bfvn1BH1tBGhERERERERFpfVbPg7u6wuMjYfZPzMe7upr2IHr00Uf5xS9+wQ033EC/fv14+umnCQ8P59///ndQxwUFaURERERERESktVk9D569AvJ2+bfn7TbtQQrUeDweVqxYwahRo2ra7HY7o0aNYunSpUEZsy4FaURERERERESk9fB54fWpgNVAZ1Xb3GlB2fqUk5OD1+slJSXFrz0lJYXs7OyAj3coBWlEREREREREpPXYvKT+Cho/FhzcaY5rZxSkEREREREREZHWoyArsMcdhcTERBwOB3v37vVr37t3L6mpqQEf71AK0oiIiIiIiIhI6xGdFtjjjoLL5WLo0KEsXLiwps3n87Fw4UKGDRsW8PEO5Qz6CCIiIiIiIiIiR6rHcIhNN0mCG8xLY4O4dHNcENx2221MnDiRU045hdNOO42ZM2dSXFzMDTfcEJTx6lKQRkRERERERERaD7sDrnzcVHHChn+gxmY+XDHTHBcEP/7xj9m/fz9333032dnZDBkyhPnz59dLJhwMCtKItFa+EvBsgpLPwXsAQk+C0MEQ0qmlZyYiIiIiIhJcQ8bDL+aaKk91kwjHpZsAzZDxQR3+5ptv5uabbw7qGA1RkEakpVgWVGyHiq3gK4aQzhCSAY5o8JVCwVtQMKf2+LJvIfxcCB0ElgcccRDSFZyJLXYLIiIiIiIiQTNkPAwaZ6o4FWSZHDQ9hgdtBU1roCCNSEuwvFCyGA7MAqu0tj30JIj7NXhzoeCV2nabGyJHQ96LcOAJcPUEmx2c6ZDwG3D3av57EBERERERCTa7A3qNaOlZNBtVdxJpCZ4tkPuEf4AGoDIXyr6D0uX47bsMPRny54DnB/AV1J5XuQtyZ0LlgeaauYiIiIiIiASJgjQiLaFsBVBR+9yRBlFjgUrIfw3KvwNvvllxA2ZrU/n6qoMt8/AVg/cgeNaZ4I2IiIiIiIi0aW0mSDNr1iwGDRpEdHQ00dHRDBs2jA8++KCmv6ysjClTppCQkEBkZCQTJkxg7969LThjkSZUZtV+bo+B0IGw/wEofBNKPgVnKng2QGU2WJVglfkf7yuH8g0msXD5RihdCWVrmv02jpgnCzw7W3oWIiIiIiIirVqbCdKkp6fz4IMPsmLFCpYvX855553HuHHjWLduHQC/+c1veOedd3j99df57LPP2LNnD+PHBzfbs8gxC+le+3noEMibXRWIcZrEwd58cHQEz0bw7jPt4edB/DSIvhIiz4e4G8GZYa5hs0HOQ1DRygIhZesg93HYfTXsuhL23QulK1p6ViIiIiIiIq1Sm0kcPHbsWL/nDzzwALNmzWLZsmWkp6fz3HPPMWfOHM477zwAZs+eTd++fVm2bBlnnHFGo9ctLy+nvLy85nlBQUFwbkCkrtDBYI8CXyHYQqFyt2l3xpvP81+EuF+a1TGeLSZxsM0GuQ+byk5WJdgiIP4mqNhrctn48k1QpLWU6C5bD9m3QMkXddpWQcGr0OElCD+15eYmIiIiIiLSCrWZlTR1eb1eXn31VYqLixk2bBgrVqygoqKCUaNG1RzTp08fOnfuzNKlS5u81owZM4iJial5dOrUSv7AlfbN1RUSbzfVmfCZNltYVQ4amwnEHPiHSQicfD94D4An0+SmsSrN8VYx5P0boi+tynEDVGS2wM00ouRz/wBNNU8m5P8HvGX1+0RERERERE5gbSpIs2bNGiIjI3G73fzqV7/ijTfeoF+/fmRnZ+NyuYiNjfU7PiUlhezs7Caveccdd5Cfn1/z2LmzlW0XkfYrdBAk/wXCh0PoUHB1r6raZKs9xrMO8EL+S6aSU0gXcPcGVw/z0R4FxR+CM8Uc7+zQEndSn7fQ5NdpTNG74NncbNMRERERERFpC9rMdieA3r17s3r1avLz85k7dy4TJ07ks88+O65rut1u3G53gGYocpScceCINVubDj5Lvbhp5MXgKwJvTtWWpxCz2sabU3tMZZYJ3thCIXRAc87+MHyNd1lev1iUiIiIiIiItLGVNC6Xix49ejB06FBmzJjB4MGDefzxx0lNTcXj8ZCXl+d3/N69e0lNTW2ZyYocKZsNIi6ExD9A+NlmdUxIBsRNMStmPNvB2Qkc8SZQE9LBVHiq5uoGVjkkTIOQbi12G34cURB5aeP9URe1nrmKiIiIiEjrZXmheBHkv2I+Wt6gD7l48WLGjh1Lhw4dsNlsvPnmm0Efs1qbWklzKJ/PR3l5OUOHDiUkJISFCxcyYcIEAL7//nt27NjBsGHDWniWIkfAEQ4R55igTPFnJrdM+UbwHQR7HMReA0XzzbG20KqtUSVgOUwwJKQLhKSbgE9rETEcwk6B0uX+7c4OEHOduWcREREREZHGFMyD7Kkm9UM1ZzqkPg7RwavmXFxczODBg5k8eXKzV41uM0GaO+64gzFjxtC5c2cKCwuZM2cOixYtYsGCBcTExPCzn/2M2267jfj4eKKjo7nlllsYNmxYk5WdRFqdkA4QeSGUr62q4uSB8HPA3Q8cKVD4tslbY3OCsyfE3whhrbRKUuhASJ0FRe+Zb654zIqh6Csg/PSWnp2IiIiIiLRmBfNg1xWA5d9eudu0p88NWqBmzJgxjBkzJijXPpw2E6TZt28f119/PVlZWcTExDBo0CAWLFjABRdcAMBjjz2G3W5nwoQJlJeXM3r0aJ566qkWnrWckMq3Qvm3UL4BnKkmKXDoQLAd4e5CZwI4z4WIc8GyalfHhFxjtkNV7gOby6yccSYG7z4CIWyQeUT/GPCBsws4Qlp6ViIiIiIi0ppZXrOC5tAAjekEbJA9DaLGgc3RvHMLsjYTpHnuueea7A8NDeXJJ5/kySefbKYZiTSgdBVk3wKeTbVt9khIeRSixh55oKZa3e1LNocp3e3qGoiZHh9fJXg2QMUOwAJnZ3D3BXsjARi38s+IiIiIiMgRKlniv8WpHgsqd5rjIkY016yaRZsJ0oi0epUHIGeGf4AGTHWmvf8HrgxTdrutqyyAwrmQ8yD48k2bLRoSb4Poq03FKhERERERkWNVmRXY49qQNlXdSaRV82w2kdyG+AqhbE3zzidYPOvM/lCbq7bNKoD990Lpl0d/vYq9UPK1ydRetha8RYGaqYiIiIiItEXOtMAe14ZoJY1IoPiKAV/j/d79zTaVoKjIAc9ayHsJrDKIOM+UAi94xQShAPJfhLCzwBl7ZNcsXQUH/g7enKoGG4SeBHE3miTKIiIiIiJy4gkfbqo4Ve6m4bw0NtMfPry5ZxZ0CtKIBIozwQQtqrcAHcrV6/DXsCyo2GW+GVleCEmDkM6mmlNLqsiBvH9CwVyo2GqCMiWfgLMjxN0EB54EKsCzDXx5QOwRXHMH5P4NvLmmYpXlBVuIKdltj4KEqea5iIiIiIicWGwOU2Z71xWADf9ATVXeztSZQUsaXFRUxObNm2ueZ2Zmsnr1auLj4+ncuXNQxqymII1IoLj6QuxEszLkUO6TTH9TrAqz5Sdvdu3KFJvbZCyPuBCcyf6JhJuTZ525L0cy2MKBqvlV7obihaYMeOmX4OwE9tgju2b5RqjcAxXbwFdS1WgDRxwUY8rpuZRwWERERETkhBQ93pTZzp7qn0TYmW4CNEEqvw2wfPlyRo4cWfP8tttuA2DixIk8//zzQRsXFKQRCRx7CMRcBzgg7wXwHTB5WyIuNKtC3BlNn1++vmpFireqwWG2/ni2QOVscKRCWFU57+ZWvNB89OaabUjefdREs0uWQMIfTJAmbqLZ6lSZC54foHwd2MMgdAiEdDOfV7OFQdwvwFduVs4UfwGFc8B7ALCDr6B571FERERERFqX6PHmTeuSJSZJsDPNbHEKctntESNGYFkNbbMKPgVpRALJ1Rnib4Ooi8F70Kw6cfU4fI4Wy6oKhFQHaGzmm8+BJ81qFXskOBPNyprUpyDi7CDfyCF81cl8vSao4upTVcWqEqgwwajEu0w+moo9kDvTlOiulv9fiL4KosaDIxyKP4Hs26F8edXthpuATdKfYf9d4Cs1r4mIiIiIiJzYbI52V2a7KQrSiASawwWOo1ztYpWDZ0ftc/cAyHuxKlFWVT8OqNwL++6C9JchpGPApnxY4WdC/n/M5979ZktT6BCzRSukG0SOhdA+JliT9y//AI25ASj4L7j7AU7IusncC3bAB1YJHHgcEu+B8JHgiPSvHiUiIiIiInICUAlukdbA5q4Nulg+cMSAZ6N/v1W1yqbiB1Puuzm5TzJBmWq+PKjYDpX7IPZ6CB8MdjdUZpu8Oo0p/QbKvjKrjLCBPRyos1Qx7zmIuRbcg5U0WERERERETjgK0oi0BjYbRF4A2E2ycp/Hv9+ZDFb1liNbne1HzcTdHVIeg9jJYE8AnBB6KnR4FsJH1R5neapKkTfCKofy76ueOMxKHFuo2c5lizDBH5urKvdNpyDekIiIiIiISOuj7U4irYW7P8T9CvKeB0cU4ACbZZJjWT6wKs1x9hgISW/++YX2A9efIXaSmYsjCUKS/Y9xxJrgSsW2hq8R0o2ahMM2OxButjr5fFXnJwK2qmBQWMPXEBERERERaacUpBFpimcXWMVgj6sfkAg0WwhEjjZ5WyqyIO7nULLIrJrx5dUeE3EBhBymUlSw2J3g7t14vyMGoq+E3L9RE4ypOTcaQvtDSJpJFGyVgM0JtsiqrVwWxP7crNAJiQvmXTTOsqBstUmK7M0BV3cI6Q7uHi0zHxEREREROaEoSCPSEM8uKF5Qlbw3y1RoivsFhJ8LzvjgjWuzg6uLeTgTzTagwv+ZLUGOJIi6COJ+CY7o4M2hMb5SqNgFVqkJuIR0arj0XdhpEH8L5L9ikgxjA3cfiJkIrgzwdYLUmbDvDrOtCbu5TtQ4U8K8JQM0he9A1i3gza5tDx8JKQ9C2JCWmZeIiIiIiJwwFKQROVTlQTjwd1OlyPIAPvNHe+nXkPxniL0R7M2QzsndA5KnQ+xE8BZUbSXqAvYWqHrk2Wa2YZWtAnxgC4PIUaaktjPR/1h7qMmvEzqkKkjjBGdHcERU9Tsh6lIT+PJsMSuFXF0hpEfwVys1pWwlZP2qKnBUR8mnpvJU8l8hJLHhc0VERERERAJAQRqRQ3k2Qt6z4CsxOVKcSaYaUeVeyH0Mws8x23aagy2k6e1FzaEyBw48Cp7M2jar1Kw6sbxmhZGtgW8lziTzaIjNZl7D5nodj0TZyvoBmmoFb5gVTArSiIiIiIhIEClII3Ko8u/Ndp64X4MvHyr2QNgZJuCQ/zpU7GxdwYVg82zxD9DUVbwQIs4zVZqsYrDHVq32CW3WKQZExe7G+6xS8DZRtUpERERERCQAFKQROZQ9zCTtzX3UBGmq2cIh4bcmP8yJpHJn433eA1DyBRS+UdXggLDTTQWokLTmmF3guHo13ueIM0mRRURERESkWVl4yWMJHrJwkUYsw7HRQG7MAJkxYwbz5s1j48aNhIWFceaZZ/LQQw/Ru3fz7HBohsQaIi3IWwDlG6DsO7Mi5kiEdIG8F/wDNGCqEeXNNqtsWoqvHMq3gmdH841pj2243fKAZytY5XUavVD6JeS/aOZ6OBV7oGQZFH8OZWtNPqCWEjoYQno23Bd7A7hOoNVTIiIiIiKtwH7msYyufMtINvATvmUky+jKfuYFbczPPvuMKVOmsGzZMj766CMqKiq48MILKS5unpX1Wkkj7VfZGjj4HFRsMc/tMRB9BUSMAkdk4+f5ysDmBmz4l5F2gDMBrMIgTrqxOfmg7GvI/49ZuWILg+jLIfISCO0T3LFdPcEWYbYz+c2pGNx9oTK7/jklyyBqB7gbCXpYXihZDDl/hbIVgB1CT4GYqyHsbHB3CfhtHFZof+jwDOy70wSasMAebgI0MTeAM7z55yQiIiIicoLazzzWcQX+f5NBObtZxxX0Zy5JjA/4uPPnz/d7/vzzz5OcnMyKFSs455xzAj7eoRSkkfbJkwk5D4KvoLbNlw95z5k/vCMvbPxcm81seQo9ySQL9pWZoI4jyQRvrMrgz/9QpUthzw3+q3ty/2pywqQ+YSpBBYLlNblZfAUmEOTqAiGdIeFWyJ1pcrNUcyRC1MVQ+EEDF6oEb34D7dX3sxL2/Ap8eVUNVUEoz/eQNB2csS2zvSjiTOj4IlRsNkEoeyK4+4EzqvnnIiIiIiJygrLwspmpHBqgqe4FG5uZRiLjgrr1CSA/3/xdEx8fH9RxqilII+1T6Ur/AE1dBXPNqg1nI//JnB3AkQrevWCPB0fVrkCby6zGCUkN/Hx9lVC+xqwqqdxnAgOhA8HV3WzZynumKkBjgeWrmo/dVCQq+zowQZqK3ZA/BwrfMsmRnckQ81MT0AobBilpJqmyN8dsCbO5IPdvQEUDF7PXltyud68eKPhvnQBN3b58KF1mAmQtlQPGlW4eIiIiIiLSIvJYQjm7mjjCopyd5LGEOEYEbR4+n49p06Zx1llnMWDAgKCNU5eCNNI+la9tvK8yqyrg0UiQJqQzRI6G4g9N1SK8QAjYHCZY4ewa2Ln6Kk1gZO/v/LcUuXqbVTI2JxQvqaqgVGZWu4CZjy3MrGSJ+cnxzaHyIOT8DYreMitIACp2QM5foHI/xEyE0J7gyqg9p2K3Gd8qq3899wBwNrJlyXsAytY3Ppfy78BXZ8WOr7RqS5XPrGZytGBOIBERERERCToPWQE97lhNmTKFtWvX8vnnnwd1nLoUpJH2yZnceJ89sirnTGP9bhP0cMRA0XzwFZrKTpHnQeRlja8QOVbla+oHaMBs/cn9GyTeDvhqgyfVLK85xxaA/N8VW6H0C/DmYZYP2k0QCBsUvGaS6ro6m9emWkhHSLwNch8zgZdqrm4Q9wtwNJLDxeYy24cayytsj6x9jcvWmdU95WsBH4R0h9ifQOjQqvmJiIiIiEh74+LIKsUe6XHH4uabb+bdd99l8eLFpKc330p7BWmkfQo/2wRY8NXvixgJzsP8Z3YmQMx1EHG+CY7YwkxQIhABkUOVraofoKlW/Akk/gEizjNJg+uxIOJCsCyTS+eY57AGKnb5B4JsTpO/x5dvcvNU7q+/DSh0CCQ/CBWZJsDjTIGQjMa3koHpixwLpV+Dr6R+f+TF5t+nfDPkPGCCZNUqtsD+ByHpbggbcuz3KyIiIiIirVYsw3GTTjm7aTgvjQ036cQyPOBjW5bFLbfcwhtvvMGiRYvIyMg4/EkBpBLc0j65epmqPIfGId0DTIDgSAIaNpsJzLh7gatTcAI0YHLQNN5pVqlE/xicDURvI8eYPDkNBTuOVMVOk/cGX9XDMg+rsnbbkc1lil01JCQNws+EqIsgbGjTAZpqEaPMqiT7IauSoiZAxAXgiILSxf4BmtoJQ+EbR1biW0RERERE2hwbDnrweM2zQ3sBejAzKEmDp0yZwssvv8ycOXOIiooiOzub7OxsSktLD39yAGgljbRPdrepPOTuC+UbzUoVVy+zXcYZ19Kz8+fu13ifPQEccVC4ANL+bpLqFn9qVrhEXW5ytJQua7pa1eGUrjR5ZRyJ4K0OGNkAh8mD4+5n8sA4U2rPqTwAZauh8G2zyib8dAgfceSrW0JSIelOiB5nSoqDyffj7g8hKaaiVunqxs/3bDbBK3vwljeKiIiIiEjLSWI8/ZnLZqb6JRF2k04PZgal/DbArFmzABgxYoRf++zZs5k0aVJQxqxLQRppv2wh4O5tHq2Zuz+4+oGngWS6cZNNX9jJcPBpcA+C2MkmH03JMvDtg4Tfgt11bGN7C6B0ORR/DHG/gv33m2tiAV5T5Sr6Wgg92byeAJUFZutVzgxzDEDJJ+D4F3R4xqyqORLOBHCOgIgR9ftsDpObpjG20Nr5iIiIiIhIu5TEeBIZRx5L8JCFizRiGR7UstuW1dD2quajII1IS3N3h9TH4cAjULQQqAB7ognQRP8Y7A6IGG6S55YtN9WPqkWMNnlhjlXFdrNKpmIr5M+F1EfBsxE8W0yZbXdfcA8xW768eWZVUuVOyH0YHLHmGt4DgAXe/ZDzV0h7FkISj31OYAIwkReapMoNiTwfnMc5hoiIiIiItHo2HEEts93aKEgj0hqEDYKUv0P8JpMHxhFvSnDbq/6LOpMh/lao2Gy2AdmcZnVNSDeTv+VYeQtMpStHMlRsgL2/MSt7QoeC96ApzR3T13zMexbK14E9tiqPzj6wR4MztXabVOkyk0T4eIM0YIJPESPN9q663P0gfOTxX19ERERERKSVUZBGpLVwxoDzlCb648B5KoSdGrgxHTFQuhTib4G85031pPJ1ZsVMxEiIOMcEhMq/hZIlJphjldWe7ysAK9oEeqxyTOLhigDNLRZifw7h55itXXgg9FSzukeraEREREREpB1SkEbkRBbS1TyKF0LUpWZVjs8D9jATdAnpYqo8FX1ojvcegPBDytx5c8DZAbzlpvy2I4DJfB3REHaKeYiIiIiIiLRzKsEtciJzRELcr8HVHUq/hKL5JgmwZ5MJ2jjjqkpxV5f4rirLHXZG7TUsL6YalB3ip4E7o/nvQ0REREREpB3QShqRE52rMyT+ESq2gTffrF4J6WI+AthDTf6bii3mednXED3ebDsqeh+wg6sPxE40ZbhFRERERETkmChIIyJmRY1jQOP94WebLU++fMBnSnY7OphcNuHnmKBOSGqzTVdERERERKQ90nYnETk8VzdIurMqN4wTsIEzGiLOM4mMFaARERERERE5blpJIyJHxt0HEu6AyizAB44kswJHREREREREAkJBGhE5cnYXuLq09CxERERERETaJW13EpH2oSIbij+Hwveh5CvwFrT0jERERERE5Dh58bKGRSzmFdawCC/eoI43a9YsBg0aRHR0NNHR0QwbNowPPvggqGPWpZU0ItL2la6E/X82ZcQBcELkjyDxdnD3bNGpiYiIiIjIsVnKPP7FVHLZVdOWQDo/53GGMT4oY6anp/Pggw/Ss2dPLMvihRdeYNy4caxatYr+/fsHZcy6tJJGRNo2zxbYe3udAA1AJRS9C7kPgbeoxaYmIiIiIiLHZinzeIgr/AI0ALns5iGuYCnzgjLu2LFjueiii+jZsye9evXigQceIDIykmXLlgVlvEMpSCMibVv5Jij/tuG+wvlQvqF55yMiIiIiIsfFi5d/MRWwGug1bc8xLehbn7xeL6+++irFxcUMGzYsqGNV03YnEWnbKrOb6KwAb26zTUVERERERI7fepbUW0HjzyKHnaxnCQMZEfDx16xZw7BhwygrKyMyMpI33niDfv36BXychihIIyJtmyOhiU47OGKP/prl26BiC/iKwJEIrr4QEn+MExQRERERkaNxkKyAHne0evfuzerVq8nPz2fu3LlMnDiRzz77rFkCNQrSiEjb5u4JId2gYmv9vvCzwNXr6K5X8iXsuxNKFpnntjCIuR7ib4bQ4CcKExERERE50cWRFtDjjpbL5aJHjx4ADB06lG+++YbHH3+cf/7zn0EZry7lpBGRts3VG1IeBlc3/3b3yZB4DziPYgVM6RrYc2NtgAbAKoW8f0LeM1CRH5Api4iIiIhI4/oxnATSAVsjR9hIpBP9GN4s8/H5fJSXlzfLWFpJIyJtm80G4WdDhxdMpSdvLjjTwNUHXB2P7lqejeBZ13Dfwech+hoIOeO4pywiIiIiIo1z4ODnPM5DXIEJ1NRNIGwCNz9jJg4cAR/7jjvuYMyYMXTu3JnCwkLmzJnDokWLWLBgQcDHaoiCNCLS9tls4O5lHsfDs7nxPqsQvAeP7/oiIiIiInJEhjGePzCXfzHVL4lwIun8jJkMY3xQxt23bx/XX389WVlZxMTEMGjQIBYsWMAFF1wQlPEOpSCNiEg1Z1Mrb1xgj2y2qYiIiIiInOiGMZ7TGMd6lnCQLOJIox/Dg7KCptpzzz0XtGsfCQVpRESqufuDIw28DWSJj74MQno2+5RERERERE5kDhxBKbPdWilxsIhItfCh0OFZcHY6pH0kJPwOXKktMy8RERERETkhaCWNiEhdUReB802Tn8a7H0IyIKQHhGoVjYiIiIiIBJeCNCIihwo7yTxERERERESakbY7iYiIiIiIiIi0AgrSiIiIiIiIiIi0AgrSiIiIiIiIiIi0AgrSiIiIiIiIiIi0AgrSiIiIiIiIiIi0AgrSiIiIiIiIiIi0AgrSiEjLsyrBqmjpWYiIiIiISCvjxcsivuQV3mQRX+LF26zjP/jgg9hsNqZNm9Ys4zmbZRQRkYZU7IWyVVD8CeCF8HMhbCiEdGzpmYmIiIiISAubx/tM5R52kVXTlk4ajzOd8VwU9PG/+eYb/vnPfzJo0KCgj1VNK2lEpGVU7IXcv8HBJ8GzATw/QN6zsP8BqNjZ0rMTEREREZEWNI/3uYIb/QI0ALvJ5gpuZB7vB3X8oqIirr32Wp599lni4uKCOlZdCtKISMso+xo8G+u3V+6sWlkjIiIiIiInIi9epnIPFla9vuq2adwb1K1PU6ZM4eKLL2bUqFFBG6MhCtKISPPzlULRwsb7i5dAZW7zzUdERERERFqNJXxVbwVNXRYWO9nDEr4KyvivvvoqK1euZMaMGUG5flOUk0ZEgqdiN5StgfLvwBEPYWeAqwdYPqCyqRMBXzNNUkREREREWpMs9gX0uKOxc+dOpk6dykcffURoaGjAr384CtKISHB4NsP+v4B3f21b4dsQOxEiL4Gw06Fie8Pnhp4Ejubb9ykiIiIiIq1HGskBPe5orFixgn379nHyySfXtHm9XhYvXsw//vEPysvLcTgcAR+3moI0IhJ4vlLIe8k/QAOABXkvgqsvhA+H4o/Be8D/EHskRI4Bm749iYiIiIiciIZzOumksZvsBvPS2LCRThrDOT3gY59//vmsWbPGr+2GG26gT58+/OEPfwhqgAYUpBGRYKjcA2XfNtLpg/KVEPNTSLwHit6F0q8AC0KHQNQ4cPduxsmKiIiIiEhr4sDB40znCm7Ehs0vUGPDBsBM7sVB4AMmUVFRDBgwwK8tIiKChISEeu3BoCCNiDTMqjA5ZSyP2XrkTKp/TGUuVOwAqwwcCRDSBexuc25Tmda9heajuxu4pkDllYAFzmStoBEREREREcZzEXP5J1O5xy+JcDppzORexnNRC84uePTXkIjU59kG+a9A6TdABTiSIeZKCDsHHOHmmLLv4MCTUFkVyMEBERdC7HUmSbAjEbw5DV/f3a/2c5sDQtKCfEMiIiIiItLWjOcixjGaJXxFFvtII5nhnB6UFTRNWbRoUbONpSCNiPiryIacB03wpZp3nwnIxFkQNcasnsl5GCqzoHIv+PIACyq2gc0O8bdA9JVwcFb964d0AVefZroZERERERFpyxw4GMGZLT2NZqMgjYj486z3D9DUVfA6hA2F8g1QmQ2eH6pW0VTxHoADsyD8XAgfYbYu5b8G3r1gc0P4GRB1FYSkNMutiIiIiIiItCUK0oiIv/L1jfd594P3IHi2g++Af4Cmmu8geDZB6ACIvBBCTwZvHthCIKSjcs6IiIiIiIg0wt7SEzhSM2bM4NRTTyUqKork5GQuu+wyvv/+e79jysrKmDJlCgkJCURGRjJhwgT27t3bQjMWaaPsMU10Ok2wxZlsgjUNsYWDNx+8uVWnJIK7B7i6KEAjIiIiIiLShDYTpPnss8+YMmUKy5Yt46OPPqKiooILL7yQ4uLimmN+85vf8M477/D666/z2WefsWfPHsaPH9+CsxZpg0JPptFvDWEng7MjuPuDParhYyLOM1Wh2s63FxERERERkVahzbytPX/+fL/nzz//PMnJyaxYsYJzzjmH/Px8nnvuOebMmcN5550HwOzZs+nbty/Lli3jjDPOaIlpi7Q9rh4Qez3kvQj4atsdqRB9rSmx7eoByQ/A3tv9KziFnWmCPI4wU91JREREREREjlibCdIcKj8/H4D4+HgAVqxYQUVFBaNGjao5pk+fPnTu3JmlS5c2GqQpLy+nvLy85nlBQUEQZy3SBtjdEHkJuPuYEtzePLNyxt0fQjqYY2w2CB0GiX8025qsYrDHm2pP5Wsh8Q5zjIiIiIiIiByxNhmk8fl8TJs2jbPOOosBAwYAkJ2djcvlIjY21u/YlJQUsrOzG73WjBkzmD59ejCnK9L22N21gZnGhCRC5AVQthqKPgVyIPwcCDvFJAiuy1cG2MHuCuKkRURERERE2rY2GaSZMmUKa9eu5fPPPz/ua91xxx3cdtttNc8LCgro1KnTcV9X5ITgTDYVnCLOB3wmqXBdnh1QugxKvjRJgyNGQehJKsEtIiIiIiLSgDaX2fPmm2/m3Xff5dNPPyU9Pb2mPTU1FY/HQ15ent/xe/fuJTU1tdHrud1uoqOj/R4icpRsjgYCNJmwfzrkvwQVW8DzPRx8Eg7MhMp9LTJNERERERGRptx7773YbDa/R58+fZpt/DYTpLEsi5tvvpk33niDTz75hIyMDL/+oUOHEhISwsKFC2vavv/+e3bs2MGwYcOae7oibVYZFRTjOb6LWD4ofB+8DQRjyteaLVIiIiIiIiKH4cXHIrbzCutYxHa8dYubBEn//v3JysqqeQRiF8+RajPbnaZMmcKcOXN46623iIqKqskzExMTQ1hYGDExMfzsZz/jtttuIz4+nujoaG655RaGDRumyk4iR2AvxSwni4/JpAIfp9GB4XQig9ijv1jlPrPN6RBeD3jLwOb5mIqw8whNcWJvM9+FRERERESkOc3je6byEbsorGlLJ4rHuYDx9A7auE6ns8kdOcHUZv48mjVrFgAjRozwa589ezaTJk0C4LHHHsNutzNhwgTKy8sZPXo0Tz31VDPPVKTt2U8xM/matdSW095OAQvZxl2cTQ/ijvKKFuD1a/EUQPE2k0PYGVfJzi98uJOh81Xgjj/uWxARERERkXZkHt9zBfOwDmnfTSFXMI+5jA9aoGbTpk106NCB0NBQhg0bxowZM+jcuXNQxjpUm9ru1NCjOkADEBoaypNPPsmBAwcoLi5m3rx5LRb9EmlLvmWfX4Cm2gHKeJsfqDzaJYXORHAPqnlaWQpFm6uKPAE+53CKNrvIeg+yPjiemYuIiIiISHvjxcdUPqoXoAFq2qbxUVC2Pp1++uk8//zzzJ8/n1mzZpGZmcnw4cMpLCw8/MkB0GaCNCISHD4sFrK90f5vyGIfxUd3UVsIRI8DWwQAFQVgVZoue0QHivediuegeb7nfSjZfSwzFxERERGR9mgJO/22OB3KAnZSyBJ2BnzsMWPGcOWVVzJo0CBGjx7N+++/T15eHq+99lrAx2pIm9nuJCLBYWHhayIC7cNqMIJ9WO6+kHwvFL6Dr+Jb7GFOiDiL0oIL2fbf2spslQVQeZQxIBERERERab+yKArocccjNjaWXr16sXnz5qCPBQrSiJzwHNg5h86sJ7fB/kEkk0TYsV3c3QdcPagIy+HgWju5q5Io3WXzHz8MHKHHdnkREREREWl/0ogM6HHHo6ioiC1btnDdddcFfSzQdicRAU4ihS5E12uPIITL6Y3reOK5NieOyFT2fJhcL0ADkHwuhKc3cJ6IiIiIiJyQhtOJdKKo/9eDYQM6EcVwOgV87N/+9rd89tlnbNu2jS+//JLLL78ch8PBNddcE/CxGqIgjYjQgShuZxhX0ocUwoknlJF05l7Oph+Jx339yO7Q61ZwRvi3xw2F9Alg03cikWbjOQj5GyB/I3jyWno2IiIiIvU5sPM4FwDUC9RUP5/JBTiCENLYtWsX11xzDb179+aqq64iISGBZcuWkZSUFPCxGqLtTiICQDrRXM9ALqY7XiziCcMZoG96NjskDYeIrqYMd2UJhHeAiAwIiQrIECJyGD4vHPgGMl+E0qoce+GdIWMixJ+iYKmIiIi0LuPpzVzGM5WP/JIIpxPFTC4IWvntV199NSjXPVIK0oiInwTCg3Jdmw0iOpuHiDS/gnWw4WGwKmrbSnbAhodgwHSIHdBycxMRERFpyHh6M46eLGEnWRSRRiTD6RSUFTSthYI0IiIi7Zy3wpS7rxugqebzQNZ8iO4DdieUZkPZXrA5IKwDuOObf74iIiIi1RzYGUGXlp5Gs1GQRkREpJ2rLIDCTY33F/5g8tMcXA7bXwHPAdMemgbdfgYJp5nVcCIiIiISXO13jZCIiIgAYHeDs4kKla44KNwIm2bVBmgAyrJg41+hYEPw5ygiIiIiCtKIiIi0eyGRkDam8f6Ol8HutwFf/T5fOez7FCwrWLMTERERkWoK0oiIiJwAEk6DpHPqtyePhNAUKNnV+LkF34O3LHhzExERERFDOWlEREROAO546HEjpIyCvG8BG8QNhsjuYFVCSBRUFjZybgLYQ5p1uiIiIiInJAVpREREThAh0RB/knkcKm0MbH2u4fNSR5vKT95y8BSArwQc4RCaFNz5ioiIiJxoFKQRERERkoabClD7F9dptEPnK8GVALvfhYKNkPUBWF6I6AIdx0HKSJN4WERERESOn4I0IiIigjsBevwK0kabHDT2EIjqbRIGZz5nctJsf6XOCTYo2QnbX4WKAgjvALEnQeyAFrsFERERkTZPiYNFREQEMHlpYgeZ1TPpl0F4J8j8N4R3gZ3zao9zxUP6OFOee9VtsP0/sOq38MVVkP1Ji01fREREJCB2797NT3/6UxISEggLC2PgwIEsX768WcZWkEZEREQaVJoFhT+Ar8yU4q7WYSxsehrK9gI+k3gYwJMLq38HBZtaZLoiIiLSDnmxWISXV6hkEV68WEEd7+DBg5x11lmEhITwwQcfsH79eh555BHi4ppnf7e2O4mIiEjDfIAFtkN+WwhNgqIfwFb9Vk+dt3xKd0HRZoju2VyTFBERkfZqHl6m4mFXnbZ04HFcjMcRlDEfeughOnXqxOzZs2vaMjIygjJWQ7SSRkREmkeJBesrYVEFLKuAzV5YU1n7eUVw3xWRo+dOgtA0kyjYlVjb7vNUfWIHWwOluRsr5S0iIiJypObh5YpDAjQAu4Er8DAPb1DGffvttznllFO48sorSU5O5qSTTuLZZ58NylgNUZBGREQCw2dBjg9yffX79vngH2VwRyk8Uga/L4UfF8JnFfBMGfyhBJ4rhwMNnCstxh0PXX8KB7+DHr8Eu9u0291gc5mVNBGdTeLgukI7NP9cRUREpP3wYjEVT4Mbm6rbpuEJytanrVu3MmvWLHr27MmCBQv49a9/za233soLL7wQ8LEaou1OIiJy/LZ44UMPrPZCJXCWE0aFQGeHKQ/0tgeWVCUuKbHM8ZXAo2Xw+zB4r8I8omxwrbsl70QOkTAMHGGw7zMYeC/krwV80H0y7P/cBGjq5qtJHQ1RvVpqtiIiItIeLMFXbwVNXRaws+q4EQHe9uTz+TjllFP4y1/+AsBJJ53E2rVrefrpp5k4cWJAx2qIgjQiInJ8Mivh00ooATrZIckO23zw51K4OwxswMcVtccXWCZAA1AM7PJBnA0OWvB+BYx0Qofg7DE+0XjLoTgTCjZAZRlE9YCQaPDkgTMCIrqYik5NcYRAwqkQ09+c1/Eys8KmKBNCYmHnf8GLuV7HcdDj1xCWHPRbExERkXYs6whXyBzpcUcjLS2Nfv36+bX17duX//3vfwEfqyEK0oiIyLGr8MHiSniwFOrmIRnhhDOdsLQSTnGYYEy1kkN+mO72mRU0By0TwClSbppAqCyFPe/A9jkmp4y3HEp2QUxfSDoH9n5sVrx0/wW4U0ywxt7EbwXOcPOoFpkB/e+Gzj82q2mckRDd2/8YERERkWORhi2gxx2Ns846i++//96v7YcffqBLly4BH6shCtKIiMixW1e1YubQRLGLKiHFDkU+GOaEKGqPCbUBllmn6gOSbbCiavtTIhAW+B+2JxpvKRxYDj/83VRmcoSaqkueXLNFKSID3ImQ8yUcXA2drwbPQegwBqL7gb2BhUxej9nW5IyorerkDIW4wc16ayIiInICGI6ddEyS4IbevrNhqjwND0Ka3d/85jeceeaZ/OUvf+Gqq67i66+/5plnnuGZZ54J+FgNUeJgERE5disrofyQtuoYy/wK6OSABBtc6Krtj7FBig2uCIGb3TDUCWk22O6F3lUBHTlmJbsh8yXI/DcUboKCjVC2D8pyao/Jmm+S+xZtNTlmvKWQ+yWsuQcOfOV/PU8+7FsEa+6G1b+HH56A/HUm1ZCIiIhIMDiw8Tjm98dD376rfj4TF44grKQ59dRTeeONN3jllVcYMGAAf/7zn5k5cybXXnttwMdqiFbSiIjIsdtflU9mn2U+Rtig0gKHDRxAhh3C7XBJCOT54LNKGGiHFCe8XFXHOdsHfRzwpzDzVsmXXrhIOWmORWUJbH0OKouhPLeq0TIls71FZksSNrOixlbnd5ryvSY5cGURbH0eovqYvDMVxWa7VNb7tceW7oL9S6DvH0yuGhEREZFgGI+DubiYekgZ7nRMgGZ8gBMG13XJJZdwySWXBO36TdFKGhGRE4XHCvzyhx5Okyi4ow2KLfjWC9/5YJXXlOKutEGhDxLt8OtQeCgMLnDB2xUQXRXISbab1Tj/8ZggzfsV5hw5aiXb4cAKKM/xr7Bks4PlA5/XPI/oCqVZtf0h8eAtM5+XZZkHQPFW/wBNNV85ZD5vEgmLiIiIBMt4HGwjlE9xMYcQPsVFJqFBDdC0NK2kERFpzyot2OiFTypMxaUOdlMau58DXAFYHnpS1XamnUC2ZXLM2DBvAVzsgvurKjydawe3DdLspuz2D16TTNhW9fBhtkHt94EbKEXbno6BJx/wQfk+iD/NVHKqKDDbmVyxJhBjAR3GwtZ/ARa4kkwQp3xfVaDGguLt5vO8NY2PVbLDBHpcsc1xZyIiInKicmALeJnt1kwraURE2rMvKuGuUvioEjZVbTe6pxQ+rABvAFbVdHPAraFQtY0GJxANXOcyK2vWek3empyqlTEHLfO8uiJ3dfJggPyq4wfbzSqbVsxXCYVbIfdrOPgtlB9o6RkZzsjaz3O/hD6/hai+UFlogjHhXaDbL0yemtLd4IyGnr+GzBfh4CqTn6ayFHK/gYLvTSDGV9H4eGjBk4iIiEhAaSWNiEh7leWFf5Wbqkl1+YAXyqG/AzIC8K5EnA1GhsDlNjOWDVhSAWur/oLf6astu11RtdrGZTOfHxonsgNnhVRVgGp55blVq0pKwZ0AEV1MEGPnXMj+0Gz7AQhLhx6/hrhBLTvfiM5mm1PhD+A5AHsXQuoocE0w1ZnihpjgTFgqJJ4BpXth0ywo223KdNtDoMs1sP1VCE2Dnr+ErA9MJahDhaZBaGqz36KIiIhIu6YgjYhIe7XbB3mNrJYpA3b4AhOkCbOZoMz2RsbqZK/dWhVth/ND4HkPhGO2NVWvxrADI0LMlqhWIG+NqWRUnZ8FOyQOg/hTYM87ZtVKVG+wO822nw0PweAHTL6XlhISDT1ugo1/Mwl+vaVV1Zps0PES2PqsSS5sd0HcUIhIh5BwsKWbAFTSObD7HZNY2JMLNhfEDDSBHVudfxabE7peZwJXIiIiIhI4CtKIiLRXh66gOVRT21iORmc7XOaGv5fVXxmTbDP5b1Kr/sKPs8EwJ6z3wtdekzi4Oo/NRFdtNagWVrLLBGhccWYVSclOqMgzK1OKt0P6eBOYObASYvpD0tngjIDinS0bpAGI6g6D/gxFmSbPjCve5KXJnG2qPoFZAZT7JaSOhsieENbBbG/64XGzoqZayTZIOM28BtkfmepPEV2h4ziIHdgSdyciIiLSvilIIyLSXqXaIQyzWuVQDiA9QFuKnDaY5DIltud4aoM/GXb4bSic7PQ/to8TRnphdAj84DMJhXvY4UBVKe5WoHgnRHaDnGUQ2R06jjVbgQo3m7LU+z6Hgyugy9Ww/RUo3GhWnSSdDZU3Q/J54AwL/jy9FVC60xTtCu8MjhDT7k7036KU9WFtgKYumwP2fgLh6SYQdShHqFk1k34ZpJxnkgmHxIDDHZTbERERETnhKUgjItJedbLDeJcpbX2o0SHQNYABkQ4OuCcMrnLBHsv8dOlshy52iDpkZUwfB9jc8IHHHFdZdfxP3JDe8kGasn2m8lH2x9Djl5DzJWx9xgQr4oaabUNle6DzVbDxr2Z1CYDlMblgNj0FzihIPie48zy4GnbOMzljrApIHgldroX4oWA7JP4W3cckCa4s8G/3HICk4eDJqS3TXS3uZKgogvQLzfOQaPMQERERkeBRkEZEpL1y2OCSEEiywxse2Ocz243GuuBsZ+CT80bY4ZQj3KrU2wHdQyHXMrloEm31Iwst5OAqyF8Hna+E7XOgaHNVh8cEZzY8DL3/D4o21QZoALCZKko+D+yaB3EnQUiQyogfXA3Lb4GiH2rbts8xgaXTZ0PCKf7HR3SGvr+FH/4O5Tm187V8MPBe2PoC+LxQusfcU/yp0G0yxPQ126dEREREpHkoSCMi0p5F2uF8O5zigCILwm0QF4ScL6U+2OCFLT7zk6WXwzxCmgi8OG2Q0joCM9W8FSbQ4U40OWZqAjRVKgrMtqeDq8BbUqfDBo5ws30IC0p2Q0V+cII03nLYt8g/QFOtfJ8J1sQOAofLvy/uJBj8YFW1qhJwJZr8MiGRMOAu0+45aLY4haZBaHL9a4iIiIhIcClIIyJyIoixQ0yQrr2vqtT3P8tN1SiAWBv8IRSucZvqT22Fz2wdCkuDkj2YVT51tgB5yyAiA8r3QlQfE5jBZoIzNrvZ5mR3m+CMPUh5W8oPwt5Fjffv/cQEa8LT6/eFppjHoUKizGobb4kJAFWWQMLpJtgT3iFQMxcRERFpG7p27cr27dvrtd900008+eSTQR1bQRoRETk+Cyvh8XL/tjwL7iw1yYNHtp3lGA43JJ4Je941FY+ckVXVjiwThHEngivWJNntfiPsfK32XJvDBHdsdki9EEKTgjNHm82U/W6MPQQTXDoKnnzIfAH2flTbdnA5hHWEfneY8twiIiIiLcHrgyV7IasU0sJgeAo4glwM9JtvvsHrrS15uXbtWi644AKuvPLK4A7MUf8aJyIiUkeWF14ob7jPC7zugYpD63K3bglngC3ErJixu0zQw+4yK2NCU812oPTLzXagnjeBIwzcCRDVyyTWTTgDUs4P3vxc8ZD2o8b7O1xk5nY0Ctb7B2iqle6GXW+ZfDUiIiIizW3eNuj6OoycDz/5zHzs+rppD6akpCRSU1NrHu+++y7du3fn3HPPDe7AaCWNiIgcj3wLdvsa79/mgzKr6dw0rUxEZ+h/J+z/EnpPhR+eNOW0Q1PNtqDQVOj+C1OiO7oPdBwHRZkmYXB0b9MezCpIjhCz2ifpbNj/uX9fVC/o/OOmV9o0ZO+njfflfgmdJkB4x6Ofq4iIiMixmrcNrvgUDn27b3eJaZ87EsZ3Df48PB4PL7/8Mrfddhu2Zih0oSCNiIgcmXILdlYFXWJt0NEOUTboajd5aRrS09G2ctJUicwwW3zK9kLKBZC/3iQCjukD0X3NtiYAR4SpkOSKMflonDEm+a6vwqyuCZaYfjDwL5C7FHa/Y/LopF4Iqeeb+R2tysLG+7zlVVu+RERERJqJ1wdTv6ofoAHTZgOmfQ3jOgd/69Obb75JXl4ekyZNCu5AVRSkERGRw8us2ta02mu2MUUCF7tgrBOud8M3JfV/irqAK1ymilMbZLObYExYGsSfVL+/4HvY+ChkfQDeUrA5oeMl0OESyPkKUkZA0lmmSlQwxPQ2j/Tx5rnrOFbvJJwB+Wsb7ovqCa4gBpxEREREDrVkL+wqabzfAnYWm+NGpAV3Ls899xxjxoyhQ4fmqaagII2IiDRtnw/+Wgo760RhioD/esxPyPMccEcYPFVmEgaDKa39pzBT+rsdKtsPa+81lZTwmapIViVse9GsoulwMWx6Anxl0PHS4M7leIIz1eJPht3JpipUXTYndLoSQoIUaBIRERFpSFZpYI87Vtu3b+fjjz9m3rx5wR2oDgVpRESkaZu8/gGaut7zwLnhMDkEhjvNdignZgtUb0ebXUVzOAUbIGeZ+dznNQGaarvfguSREJYOO+dC/Km126Naq/BO0O9PsGsu5H5tAk1RPaHzVRDXwCoiERERkWBKCwvsccdq9uzZJCcnc/HFFwd3oDoUpBERkaZtbSIxcDFm9UxnJ5yMeZwAijLBV1XU6tB8Ld4SqMgzpbrzd0F5TusP0gBEdYPet0FpFuAFVyKERLb0rERERORENDwF0sNNkuCG3iq0AekR5rhg8fl8zJ49m4kTJ+J0Nl/oRCW4RUSkaXFNrIaxA6HNNpNWw51YW0Hp0CT/Njs4I02eGmymfHdbYXdCRCeI6KoAjYiIiLQchx0eP918fuhvotXPZ54W3KTBH3/8MTt27GDy5MnBG6QBCtKIiEjT+jjA3UjfAAekt8+8M02J7Q8R3czntkPeWIk/A1zxZrVNVG+z7UlEREREjs74rqbMdsdw//b0iOYpv33hhRdiWRa9evUK7kCH0HYnERFpWjc7TAmFf5SBp057qg0muyG8feadaUp4FxgwHb79AxRngiPMrJyJ7A29boGcLyAkCrrdoKS7IiIiIsdqfFdTZnvJXpMkOC3MbHEKdtntlqQgjYiINM1ug3Oc0Ckc1nkh1wfdHSYxcGo7/gnZBJsNks+BM16G/O+gdDeEdQR3kinNnTQc4oZARJeWnqmIiIhI2+awB7/MdmuiII2IiByewwY9HOYhgAnURPcwj7qSh7fMfERERESk7Tsx3wIVEREREREREWllFKQREREREREREWkFFKQREREREREREWkFFKQREREREREREWkFlDhYRETaNV8llO0DnwfsLghLM0l/RURERERaGwVpRESk3SreBQe+gqwPwXMA4gZB/GkQfyq441t6diIiIiIi/hSkERGRdqk8BzJnw6Z/1LbtXwyhKTBoBqSNBrt+CoqIiIhIK6KcNCIi0i4VbPQP0FQr2wuZ/4biHc0/JxERERFp3bxeL3fddRcZGRmEhYXRvXt3/vznP2NZVrOMr/cQRUSkXcpZVr/N8oFVCXs/heJMqMiD2IFgD2n26YmIiIjIEfB6YckqyMqBtEQYfhI4HMEb76GHHmLWrFm88MIL9O/fn+XLl3PDDTcQExPDrbfeGryBqyhIIyIi7ZKvzP+55YXKIvCVm+fl++GrG+DkxyD1EghxN/8cRURERKRx8z6BqX+DXftq29KT4fHfwvjzgjPml19+ybhx47j44osB6Nq1K6+88gpff/11cAY8hLY7iYhIuxR/KtjqvBXhLa0N0EQPMEGa8r3wzY2Qt7Jl5igiIiIiDZv3CVzxe/8ADcDufaZ93ifBGffMM89k4cKF/PDDDwB8++23fP7554wZMyY4Ax5CK2lERKRVqSiDwvXgLQdXLET3ObaS2bFDIPV8yP4IvB7wVq2ssbuh963w/WPmeWUh5H4JScMCdQciIiIicjy8XrOCpqEsMBZgA6Y9AuPODfzWp9tvv52CggL69OmDw+HA6/XywAMPcO211wZ2oEYoSCMiIgGXvw72fwE5X4ArATpcDLGDIDSp6fPy1sDWf8P2OSZfTGRP6DkF0i6GyM5HN4ewFBh4P8T0h11vQ/FWiBkIna+CXW9C0ZbaY4syj/YORURERCRYlqyqv4KmLgvYudccN+KUwI792muv8Z///Ic5c+bQv39/Vq9ezbRp0+jQoQMTJ04M7GANUJBGREQC6sAK+OaXULKrtm37f6D3b6HbpMYDNYVb4Ls/QvaHtW1Fm2DVNPAWQ89p4DjKn1oRnc24qT+CfYsgfy2suRM8B/2Pi+53dNcVERERkeDJygnscUfjd7/7HbfffjtXX301AAMHDmT79u3MmDGjWYI0ykkjIiIBU1FothHVDdBU+/5RKNjQ+LmFP/gHaPzO/Tvkrzm2OdkdZgVNZTFse7F+gMadAgmnHdu1RURERCTw0hIDe9zRKCkpwW73D5U4HA58Pl/gB2uAgjQiIhIwRVth72eNdPpgf2N9QN7axvvK90J5E0teD8duh85XQ6+pYA+vbY8ZAKf/GxICvExWRERERI7d8JNMFafG0hLagE4p5rhAGzt2LA888ADvvfce27Zt44033uDRRx/l8ssvD/xgDdB2JxERCRhfBVDZeH9FIVhWw4mAXbFNXNgGjrDjm1tUN+h3N6RfAWVZ5nqR3SCqx/FdV0REREQCy+EwZbav+L0JyNRNIFz9a+TM/wt80mCAJ554grvuuoubbrqJffv20aFDB2688UbuvvvuwA/WAAVpREQkYMLSILKH2brUkIRhjVdqih0MjgiTf+ZQiWdBRLfjn58rEhK1tUlERESk1Rt/Hsx92FR5qptEOD3FBGjGnxeccaOiopg5cyYzZ84MzgCHoSCNiIgETHhH6HUrrLwVrEO27cadArEDGz83ZgCc9CisuAUsT217WDoMuAci0oMzZxERERFpncafZ8psL1llkgSnJZotTsFYQdNaKEgjIiIBlXYRnOKGzbMgbzWExEH6ZdD1p01vLQoJh05XmmOyF0LpHogbAglnQHwQ9huLiIiISOvncAS+zHZrpiCNiIgEVEgEpF8KiadD2X6wOyGiOzhCjuzcpLPNQ0RERETkRKMgjYiIBEVoinmIiIiIiMiRaVMluBcvXszYsWPp0KEDNpuNN99806/fsizuvvtu0tLSCAsLY9SoUWzatKllJisiIiIiIiIichTaVJCmuLiYwYMH8+STTzbY//DDD/P3v/+dp59+mq+++oqIiAhGjx5NWVlZM89UREREREREROTotKntTmPGjGHMmDEN9lmWxcyZM7nzzjsZN24cAC+++CIpKSm8+eabXH311c05VRERERGR4PBWQt5uqCyH0GiISW3pGYmISIC0qSBNUzIzM8nOzmbUqFE1bTExMZx++uksXbq00SBNeXk55eXlNc8LCgqCPlcRERERkWNycBesfB22fmGCNOFxMGgc9BkFYTH+x2ZvgM1fwPavIDIReo+C+C4Q3wmc7paZv4iINKndBGmys7MBSEnxz1KZkpJS09eQGTNmMH369KDOTURERESCzOeDHAtCbRDdpnb0H7niA7Do7yb4Uq3kICx7HirL4JSfgM1m2rd/A69Ogf2boaIULB98+jhcPB1S+kL3MyEivkVuQ0REGtdOf4IduTvuuIP8/Pyax86dO1t6SiIi0sKKd8CuN+G7u2Dj3yB3OVQUt/SsRKRRKyrgvjK4thiuL4b/lMP2ypaeVeDlbPUP0NT13TtwsOr32NJCWPgY5G6FihIToAHweeH9ewALNn7cLFMWEZGj026CNKmpZi/u3r17/dr37t1b09cQt9tNdHS030NERE5chZtgzV2w9TnIWw37PoN102HHf6FSgRqR1mdZBUwshlnl8J0XllbCbSUmaLPL29KzC6ycLWabkq2BX+E9xVCcW3XcZti8GLwVYFn+x3m9sGsl7N8EBXvrX0dERCgsLGTatGl06dKFsLAwzjzzTL755ptmGbvdBGkyMjJITU1l4cKFNW0FBQV89dVXDBs2rAVnJiIibYW3HLbPAc+B+n2734DCzc0/JxFpQoEPni6H/Vb9vncr4Nt2FKQpPgDuKEgfDL1GQu/zTNLgupyh5mOlB3yVZuVMQ0oLzOoaT2lw5ywiEgBeL6xYBB++Yj56m+Fb+89//nM++ugjXnrpJdasWcOFF17IqFGj2L17d9DHblM5aYqKiti8ufY35MzMTFavXk18fDydO3dm2rRp3H///fTs2ZOMjAzuuusuOnTowGWXXdZykxYRkTajdA8cXN14f+4yiBvcbNMRkcPZ4YOFFY33z6+Ai13NN59jVZpvcsfsWgU2B6SfBEndITTK9Odug08egz1rzHYnywdRyXDuzbBpMZQVQHJPiEs3x7siYNRvzXW3fW2SDHvrvE7pg2HXt+AKa/ZbFRE5Gp/Og8emwr5dtW3J6fCbx2Hk+OCMWVpayv/+9z/eeustzjnnHADuvfde3nnnHWbNmsX9998fnIGrtKkgzfLlyxk5cmTN89tuuw2AiRMn8vzzz/P73/+e4uJifvnLX5KXl8fZZ5/N/PnzCQ0Nbakpi4hIG2J5wWoijYW3pPnmIiJHwFf1aExbSEtTlANfPANbl9a2rZ4Hfc6H0yeCw236c7ZCSLipzpS7DQr3waIn4KxfmiTBZ/4cKivgqxfhi39B6UHYtwkyzoALfm+SBpcXQfezICwWup4O0SmNzUpEpMV9Og/uuAI4ZLHkvt2mfcbc4ARqKisr8Xq99eIIYWFhfP7554Ef8BBtKkgzYsQIrEP31dZhs9m47777uO+++5pxViIiEgy+SpPAtyIPsMyby+Hp4E4M3pjuBAhLh9JdDffHnRS8sUWOWfEBKNpv/pPEdgBXeEvPqPmk2+BsJyxqJBpzYRv4VTdzqX+AptrGhZA2EGI6wJ51ps1mg4hECAkzq2S85RDbEQZfBvGd4ev/wBu/M8dGJkFKH7NiJncbnPNrUwlqwFjIz4LB45rrDkVEjprXa1bQHBqggao2G8ycBueMA4cjsGNHRUUxbNgw/vznP9O3b19SUlJ45ZVXWLp0KT169AjsYA1oAz+5RETkRFO0Dba/AjtfN1uQonpDpwngOQidLofYQU2f762A4q2Qvw4qiyCqF0T1NEGYprjioMs1sPER6r07H9EVovoex02JBFqFB7YthW/+Y/7ottkhrR+cdp35eCKId8BNobC8CIoO6TvbCScF+Df3QCstgPXzG+9fPx9OuqK2OhOYQI070jwA7A4ToMnZBkueqj2uaL9ZeZPU0xyTNgA6DDB5a3qPNAmIRURaqdVL/Lc41WPB3p3muKEjAj/+Sy+9xOTJk+nYsSMOh4OTTz6Za665hhUrVgR+sEO0m8TBIiLSPpRmwfoZsP0/UJYFjlAo2mLaXLGw6Uko2dn4+d5yyH4fvr0dMmebQM/6B8z5JUeQ6y3hDOj7B4jsDtjBGQFpP4I+v4cw7QyQ1mTnClj4qAnQgPlDfs9amP+A2RpzohjugJcj4UoXdLZBHzvcGQYPhUPXVv5+ZGU5lDdRNq68yARj7E3cR3RVFdOSXJPXpq6KEji43ZTi3rbMBGmSeyhAIyKtXm5WYI87Wt27d+ezzz6jqKiInTt38vXXX1NRUUG3bt2CM2Adrfwnl4iInGjy1pigjDPSBGgqiyHEBc5w2PMBJA+Hgo0Q3qnh84s2w5Z/U28lTOH3sOsN6PFr86ZyYxwuSDoTYgeYlTs2J4SlNVzxVqTFlBfB6rn+KyyqlRWYZLGJwf9FslWw22GYHYY4IMsNLhukt/IVNNXCYkzC38zchvtT+5h/x27DYPOS+v2xHSGxu/nc4TIrZyoaSZ4VkRSYOYuINIOEtMAed6wiIiKIiIjg4MGDLFiwgIcffji4A6KVNCIi0socXA2+chNUObgCCjdC/ndwYCV4ciCiB5Q2sSJm/5c0mkh0/2KzfepIhERDRBcI76gAjbRCJQchd3vj/TtWgK+pjLrtUJgdujnbToAGwOmCAZeAI6SBPjf0ucBUYDrteuh+tv+KmuRepoJTVFXwJaknDLyk4XFsDrPFSUSkjRgy3FRxwtbIATZI6WSOC4YFCxYwf/58MjMz+eijjxg5ciR9+vThhhtuCM6AdWgljYiItCoOt1lJU5Hn3255oOB7iOhk8sw0xpPTeJ+3FHxNVOsVaTMcISZ5bGV5w/3hcWaFibR+HQbAqN/B1y/Bwaq9nAkZcPr1kFqVCCsmFUZOg8HboTTPJIeO6wJhUbXXcYXC2b+C7PVm21s1mwMuugc6DGyuOxIROW4OhymzfccVmEBN3QTCVYGbaTMDnzS4Wn5+PnfccQe7du0iPj6eCRMm8MADDxAS0kBQPcAUpBERkVYlZiCU7Wu4L+lMKM2GhNMaPz+6P+R82XBfaAq4oo9/jiItLioFeo2Eb99ouL/PqOadjxw7u8NsZ0rtAwV7TWLg6FSzFaquEDek9Gr6Wh36wzXPwO7vYMdyCI83JbfTBkBoZPDuQUQkCEaON2W2H5vqn0Q4Jd0EaIJRfrvaVVddxVVXXRW8AZqgII2IiLQqDhd0vQ62vYDfuyYRXSBhGBSsh85N/FCOGwIhsfVX4gCkTwhuCW+RZlHhgT3fmVwlEfEmSXBodO2+vMGXQ+oJUt2pPQmPM4/jldTdPIZcfvzXEhFpYSPHmzLbq5eYJMEJaWaLU7BW0LQGCtKIiEirYg+FinwYcC8c/Ba8RRDdD7DDD4/Dqc82fX5EZ+j3R9j6b5PXBssEbTpNgKRzgj9/kaAqyoGvXoIP/2KqAp1yDfQeBZVlZotMxhkmkaw7oqVnKiIiEhAOR3DKbLdWCtKIiEirEt0fovvChhkQ1dtUeNrxiqm0FDMQYvoe/hoxfaHXraZUt88DoakQ3dvsIhDxU3wAKkrN1hJ3G9gOsuULePsOsKqWmX39skkwG98JrngcOg5q2fmJiIjIcVGQRkREWpWQMMi4HvCaUtqV+WYXR+qF0O9PENO/6fN9FbBvMWQ+X7vlyRkJXa6BlAvAGRbkG5C2oTgXNi2GdR+YktWxHc32kE5DTTWd1qg4D5b+uzZAU62yHPZthiWzoPOpEB7T4OntjqfUfGyt/14iIiLHQEEaERFpdaJ7Q5/boePl4Mk1QZaIDFPZ6XDy18GmJ8Dy1rZVFsGWZ00+msQzgzdvaSPKimDpbNj0WW3bvh/gw4dh+I0w4OKWm1tTinPgwLbG+3O3QfH+9h+kydsD276q+vezoMc50PUMiOvY0jMTERE5bgrSiIhIq+SOBffpR3eOrxKyPvQP0NS1602IHQLO8OOcnLRtBzL9AzQ1LFj+KqSfBLEdmn1ahxUeZ5IFZ29suD+xG4TFN++cmtvB3fDhDDiwvbYtZytsXAg/+iPEpQdmnMJ9UHwQ3OEQdwTRYRERkQBRkEZERNoNbxmUbG+8vywbKgoVpDnh7dvceF9pHhTubZ1BmsgEOGOS2aJ16JYnmx1OnwiR7TxIs/Vz/wBNtbydsHkxnPqT47t+SR6s/wCWPg85W8zXwekTodf5kNj1+K4tcowqqWQne9jPARw46EYn4oht6WmJSJDYW3oCIiIigWJ3Q2hS4/0hsQrQCOAIabrf3orrenY9Ay7/m3+p5oh4mPAIdD3N/1ifDw7ugv1boHB/884zGEoLG1kBVWXzYijNP/brV5abnD//+z/YvRrKC2Hv9/D2H+HLZyE/+9ivLXKMcjnAJ3zJH5jBNUxhBn/nGeawku9aemoiEiRaSSMiIu2GIwTSxsCBFQ33dxwLIVHNOydphZJ7gt1p9scdKjoNYlpxbpPoFDhjMnQ93awesYD4zpDaH9x1EujmZ8G3b5ighqcEIhLhpPHQ41wIi26x6R8fH1i+Jrq9Tfcfzv6t8OVzDe+X/Ppl6HshxKQe+fWK9oO3EiISwOk69nnJCcuHj1Ws4wZu42LO43JG8yUreJ132UM2PixOYXBLT1NEAkxBGhERaVdiBkLX62D7q2BVmDabAzpcAglHmeNG2qmErnDKj+Hr//i3O91w5mSzrag1Cw2HrqcCpzbcX5IHn/0Ddtd5p704Bz5/BjzFcPKP22Y9+rAYE5xaPa/h/q6nQVjssV//4A4oOdBwX2WZWZHU89wjuM5u+P5j+GEReD2Q3AsGXwYdBoJdi9jlyO0mm1d5i4sYyTp+YCm170CsZA1r2MC/eIRudG7BWYpIoOknhYiItCvOcFMVasjD0Gsq9LwFBj8EXa6DkLa6gEACy+mGgePgorshYxgkdof+F8HYP5sgQFuXs8U/QFPXt29B3q7mnU8g9RxhtncdKjwOep9/fMEnx2HeuzxcP0DBXlj4V1g11wTGygpgx3J4/z6zhUrkKORwkFWsI5aYqgCNfy6qb9nA23yIj+NYQSYiDVq8eDFjx46lQ4cO2Gw23nzzTb9+y7K4++67SUtLIywsjFGjRrFp06aAjK2VNCIi0u44QiCqh3mINMgVBl1OhU5DwVthtqO0xdUlDcnZ0nhfeREU5bTdikWJGXDJfbB7janAVHIQQqNMgCax2/FdO6E7xHVuuMx5RAIk9Tz8NbLWmRU3h/J6YPl/Ibk3uCOOb55ywnDhZBB9WcoKrJoAjflow4YDB1+xin3kkEpyy01UJMh8Xti/BMqyIDQNkoYHP31ccXExgwcPZvLkyYwfP75e/8MPP8zf//53XnjhBTIyMrjrrrsYPXo069evJzQ09LjGVpBG2p/ig7B3IxTnml/cknpBbFpLz0qCKC8Htn8PefshPApSOkF6D60qF5EjYLebjNPtieswQYBA50epKDdbhcqLzc/duM7gPExy5oZYVtV2I1vDq2UAcjJh1euw7WsoKzJBm9OvN2Mer4QuMPoOmPsbqCipbXe44LzbILXP4a+xdWnjfXs3mjw1CtLIEepIGudwOuup/+68hUUHkrGwtJJG2rWd82DlVCitswg0LB1Ofhw61Y+dBMyYMWMYM2ZMg32WZTFz5kzuvPNOxo0bB8CLL75ISkoKb775JldfffVxja0gjbQve3+ABX+BDQtqkwd2HASXzoAup7Ts3CQoMjfAiw/Cp3NNfkaHA4aOgut+B/1PhxDlahSRE01yb7OczFtRvy8hA2LTAzfWwZ2w7AXYscIkYnaEQPezTSns6KNIsrt/C2z4ELZ/Y8qJ9zgbep1nkiJXVkD+blNt6aO/1eaNcYaYrVsfPmiCKxlnHN+92Gww4BIz77XvQdZ6k79owEWQNsi/olZjmgpO2exAO1mtJc1iJ7vpRy9GMZyvWeXXl0oy0UQziL4k0crzaIkco53z4IsrOHSnH6W7TftZc4MbqGlMZmYm2dnZjBo1qqYtJiaG008/naVLlypII1KjtAAWPgLrP/Bv3/0dvD4VJr1s3nGTdqOoAF6cAR//t7bN64WvF5g3dG99FHqp6IGInGgSusJZv4DP/2nWiFcLjTbtYTGBGac0Hz570mzxqeatgB8+hUoPjJxqtpUdzv7N8OYdZjVOWaEJ9OzfDJu/gPOmwpp3IXsDJPeATZ9CTAcIj69d6275YMV/Ia2/WclzPBxOE+zJOAPKS8wYIUex0qrHcNi8pOG+zkOPrjqUnPBKKGMmz3ILk/mO9azgO2zYSCYRB3acOLiM0YRwDCvXRFo5n9esoDk0QANVbTZYNQ06jgv+1qdDZWdnA5CSkuLXnpKSUtN3PBSkkfZj3/fmna+G5GyG7PUK0rQzmevgszcb7vv2c9i9RUEaETkBOZzQexTEdzHbggqzIaUPpA8xAZxAyd3mH6CpK3OpqWh0uC1CPp+p1rTtK/CW17YX7jVJd9e+B3s3mIpbu7+DynLIzQQsiKyTgyNnKxQfOP4gTV3u8KM/J7kPdDsLtn7h3x4WAyddaZJWixyhBGIpp4JHeYYJXMxJDGAxX5HDAfrRlylMoh+9WnqaIkGxf4n/Fqd6LCjZaY5LGdFcs2oeCtJI+1GSB74GlnZXO9iGq1mcACorTU4Znw/iko5sm1J+rkmF0JjcbJPioL3kAhUROWLOEEjrZx7BUriv8T7LZ5L6Hk5BNnz3jn+AxlzABIF2LIeUvlCa559rJz8LQmNr8+s43c3/VmpDIuLg7F9Cxulm+5an1Gy37nbm8Sc2lhNOF9IZwRl8xBL+x3ukk8ZFjMSOHTcu+nEEyaxF2qiyrMAeF0ipqWZV5N69e0lLq819unfvXoYMGXLc11eQRtqPsBiwO82e+IbEKHlwa7VrCyx5G9Z/Y5Y29hgEIy6HjMP8bRERAyGhUFHWcH9cogI0InICKNxvqjY53eZnXXN943NHNt3vOoKVKKUF4CluuM9XYSLx7kjY8x30uaB2S3NluamYVB2k6XrG0eXACaaIeOg1EroPN7+ThBxflQ85cYUQwjVchgsXn/AFu8gim/2cxhB+zKXEEqCtiyKtUOgR/ul2pMcFUkZGBqmpqSxcuLAmKFNQUMBXX33Fr3/96+O+voI00n4k9TTLuzfMr98X19m8Eyetzp5t8Nx9UHCgtm3tMtj8HfxiOnRtYqV8Rj8YcjZ883H9vs69oZNWAItIe1WaDwe2mxUl+zbBtmVm6WCfUTDgYohqhnK8CV1NQKL4QP2++M7mcThOF2QMg9Vz6/fZ7NBtGBTtNRH8/CwYckXVsbaqRLyYwNRJ4802r9bE4Wx9c5I2J4kEfsFPGMMICiginDA60QEXqowg7VvScFPFqXQ3DeelsUF4ujkuGIqKiti8eXPN88zMTFavXk18fDydO3dm2rRp3H///fTs2bOmBHeHDh247LLLjnts/eSQ9iMiDi78PXhKYMvi2vbEHnD5XyFFS0Jbo+++8A/QVCsrgS/eNaW0nY18p4pNgF/cByWFZhVOTUGvHvCbmdB9YNCmLSLSMizLVFJaNhu2fgn5e0zumVN+YoI1q+dB3m6TtDeQ+VkaEpNmxvn4EZM/plpEIpx785FVQwqNhK6nQeYyyD9kW3KHgZDaF75+2Tzf/S10HAxj7jb3GhEHXU+HDoMgtkPg7kuklXHgoAudWnoaIs3K7jBltr+4AlMYr26gpmrB6Ekzg7fTdfny5YwcObLm+W233QbAxIkTef755/n9739PcXExv/zlL8nLy+Pss89m/vz5hIYe/+pJm2VZDcWlTlgFBQXExMSQn59PdHR0S09HjkX+HvPLW+E+swUqsTskdW/pWUkDykrgH3+ArG0N90fFwS1/hYSUhvurZe+ErWth306IS4bOPSGjf8CnKyLS8rI3wDt3mXwv2RvAqqreZHfCmLtg/QKzxWbcX0yQozkc3Fn7czemAyT3PLotxhs+hJwtkJNpgjV2hynBndDNrNb5ZGZtFB7MGD+6E+L1R6uItB/t8e/QsrIyMjMzycjIOObgxc55pspT3STC4Z1MgKYlym8fjyN9PbSSRtqfmA7mIa2e3Q4hTVSNdIaA4wii46mdzENEpF2zLPj+k9p8LFad8tq+Slg/36w82bMWDuxoviBNXCfzOFbdzgZsZs69zjNbhCISoPf5ZtvWpcmw/WuzxavDAJMMWT/nRUROCJ3GmzLb+5eYJMGhaWaLU2vIFR8sCtKISItxhcKpF8COTQ33DzkbYhObd04iIq2Wp8SsnoHafCx17d8MGWeaz0PCmm9ex8sdDn0vgE4nmxVCjhCI7Vibz6VDf/MQEZETkt3R/spsN0VBGhFpUX2GQvcBsGWtf3tqJzh1VMvMSUSkVbAsk18mf495HtvRbOMFUzHIGQqVdcrbhUabUtbOUEjIaP75Hq/IBPNoC7yVZguWU8lbRUQksBSkEZEWFZ8M19wGm7+Fbxaa33tPOhd6nwxJWs0uIieqynKztenrl2uT8oYnwKCxsGs1OFwmYfD+zbXbnvpeYPK6nP1L0xcoJQchZ6vJO+OKgJTeJgjkbGK/antVlAu7VsHGj6DSY6pPdT3jyCpZSYMOkEcmO9jDXmKIohtdSKcFauqKiLQSCtKISIuLSzKrZoaeZ944PpI8NCIi7druNbDkaf+EuSW5pr3XSNj0mVlVk9rH5GrpPBS6DoOTfwzJvUzSr0DIz4LP/gG7v6ttszth2A3Q70cnzkqSg7th7wbzOjjdpnJV5lcmSLb2A5O0OalbS8+y1amggm3s4nu2UEIpPehKN7oQi0mKup1dzORfbGZbzTnRRDGNn3EqQ1pm0iIiLUxBGhFpNQL1N4WISJtWWQ5r3/UP0FTbuQIGjoWx95sEwZYX0gaYKobVW6ECxbJgzTv+ARowSYq/fA4Su5lEvu3d9uXwyWOQm2mqUAGk9YehV8O696E4B9a+DefcXJtHR/DgYQGL+DevUUllTftg+jGFScQSzfO85hegASigkEd5lge5gy6kU0QxpZQRSQRhHH9pWxGR1k4/SUSkTdmTCYUHIcQNnXo1XR1KRKRN8pSYXDSN2fYVDJkA6YMPf63cbWb1Te4WiO4A6UMgqceRRcXz98APnzbcZ/lg+zftP0hzYAcsfBTKC6Eop7Y9a11VNa1+sGeNWVVz0lUQq326FhaFFLGVHfyLV/HhH2z8lvW8y0ecwxmsYl2D1yiimA1sYis7eJsPOUAeHUjhUi7kJAYQirs5bkVEpEUoSCMibcLBfbB0PsybBbu3QngkDB8Hl/8SuvRp6dmJiASQM9Qk0C3Ibrg/IgFc4Ye/zq5v4cOHTICh2or/wsip0GM42GxNn1/pgfKi+u0hYdB9OFSUwqePmzLZHQdDUs/2l6dm36aq18+qv7Jp2zLoM8oEaXzehlc+nWC2sp1FLGUHuymgiD1kE0tMvaDKJ3zJAPpQSSVFFHOAPEooJZww4oklnDDW8j3fsoE88gGTu2YdP/ALfsIljMLGYb5+RUTaKG0uEJFWz7Lgs7fgid+ZAA1ASREs+A88/lvI3tGy8xMRCShXGAwY23j/gEvMMU0pPgBLZvkHaAC8Hlj8FBzcefh5hEVDVIp/myPEJChe87ZJXhweD4X7zcqSnSvBU9bwtdqqmtUzNoiI9+/zeU22ezDbn6KSm3Vqrc1mMrmXR3mD+RRQxC6y2MEetrKdcjx+xxZRTDihFFPCRrawlxwKKWYvOWxkC3kU4MRJMSV+51lYvMKb7CKrOW9NRKRZaSWNiByXnGzYvhF+WGW24vcaAp16Q0IAf1fd8QP876mG+zZ8A1vXQqoKa4hIe5I+BE65GlbONTlgwCTsPWmCSRJ8OAd3Nr5lylNs8qscriJRRAKcfAV89mRtW2o/2PIlnHwVLHoC9n1vIukAXU+HS6ZDtzNNct32IK5j7eehMf5lz0PCzA++kDAYMv7ESaLcgEoqeZuPOFi16iWXg/Qkg89YRhElFFBIErXl1VNJIpYY+tKT9Wyqd70Iwqikggoq/No9VLCXHLayg3TSTsjVNLkcJJMd7CSLGKLoQVc60eGEfC1E2isFaUTkmO3OhFcegbefq13l7XTBdb+HiydBSqfAjHNwP+Tsabz/h1Vw5kWBGUsatw0fK/HxCT5cwIXYGYSdDlqUKRJ47giT46TL6XBgO2CZstrxXY4sGFBZ3nR/efGRzaP7cJMjZ9X/TCnw2A4QEff/7N13fFvl3f7xz9Hy3nsnsTOcvSEQIGGFAAXKKqVll7YUnqctpYzSAi1t6QO0P+gCOijQBW0ZZa+QBSRAFtl7eMQz3tuSzu+Poyh2LCdOPGQ715uXXsTnlo5uJbYlXbrv79dapVO2tfN1935idaSKSoG08T07/2CXNBqiU62tZ85QSB5trRxqqoLxC8EeAuffP3we73Gq4ACrOVRgOgQXM5nCYj6mggMcoJpE4v1BwmVcQAUHGM1ILuQs3mUZbb5AZjLjuJXr+S3P+LdJefBwgBpKKKOVNjaxja3s4CLOJY2UrhMapvZRzGP8gZ3sI4YoQgmlnXa+yTWczHQFNSJ9aNmyZTzyyCOsXr2akpISXn75ZS655BL/+EsvvcSTTz7J6tWrqaqqYu3atUydOrVP7lshjYgct1WL4L9/7HzM3QbP/BxGTey7kMblApvdWlkeSGRs39yPdG8nHu7AzYoOBSD/jocrsfN9HGQrqBHpew4nJOdZl2MVkWCtZukurInL7Nl5QiKsVSIjTrK2/rS3wp6PrYLEgWxfDDO+BKn5R695MxREp8A5d1rhU/l2a9VM4igYeTVMuxzisk7oFTQHmYAXExs2zuF09lDAb3iayzif13iPWuoxMYkhii+ykLnMYi0b+YCPGEse93Ab7bQTSQTRROHBw0LmY2Cwjk1sYjuFWJ/WJBFPK+18wIcUsJ87+AZxxAb18feGGzd27EcNWFpp5QVe5VRmcQFn00wLDuzUUMcaNpBGMiPooxdeIoONx4TlbijxQpoNTnOAvX+fYxobG5kyZQo33ngjl156acDxuXPncuWVV3LzzTf36X0rpBGR41JWBK//JfCY6YX3n4dpZ0BMfODrHIu0kTB1LqxZ2nXM7oTxs3t/H3Jkr+DtFNAc9C88nIHtyCFNlRcKvNBkQpwBI+wQNgzevIkMZvE5kH+u1UL7cFnTIX7EsZ0vNsO61JXB5je7D3+8bmiuA0/78AkvkkfD+Q9AdYG1qig8ztoqNlweXx9IJoFpTADgNd5lHZsB2EsRV/EFZjGNJOJJI4UUEilkPy5cuHGzjZ1sYycjySaLNB7jzzTSSDRRmMBXuZQiStiHFwd2ruVyNvjOv54t7KaAGUMwpNnBHj5mFevZQhwxnMPpTGQMEUQEvP5+ypnEWH7LX3iHZXjxMpIs/pcbaaGNQvYrpJHh6aU2+HYjFJmHjmUa8HgEXNp/v4cXLlzIwoULux2/5pprANi7d2+f37dCGhE5Lk31UNVN4xGAihJobe6b+4pLgqvvgKJdUF506LjdDt/4CYwc5h1gg60IL//B3e34i3hYgI2oQEHNZg/8tgUKfQGPDZjtgBtdkGbvnwmLiFUrZdrl1kqYjW9aW5WcYTD6DGtlTFj08Z03OsWqS+MM7dr5yWaHsFgrxLAPsy5PYVEQNiHYsxi0HDi4mAW8xzJ/QANwORdQSTX38BAttDKH6cxmGgeoppkWxpHHR6wilSTyyeNBHseDhxQSSSWZBhr5I3/jNm4kikjmMJ3FfEwNdcQRgx07O9jDDCYH8dEfu/Vs5uf8tlNh5E9Yy6Us5EtcRDhdC4NXcoBvcz+72IeJ9WZ1D4V8lx/zJL/gPZYzkymEETpgj0Ok373UBpc3gHnY8WLTOv6fyH4NaoJFIY2IHJfYeMid1Dk06Wj0lL5ZRXPQhNlw/1+tQsFbV0NCCsw4E/ImQ9hRmpxI77QCR6peUY95WN8OnxIPPNIMlR2eWb3ASjeEAN8OBadW1IgE1NZsrdoIibACkeMREQ+zvgKj51uBijPUWg1j62VAmjMLcmbCjmXW0knDAJvTOv/ki4bPVic5JmPJ5RXeJpkEaqnnbE5jK7tYwWfYsOPBw2Z28AEfcxNX0UgTGaRxIWfRRjvvsxwHdjJIJYFYnDiIJAI3bj5jHSPJ4nGexoO19zmHDFJIChhoDGb1NPAs/+nSuQrgZd5mNlOZwNguY5+yjhLKceLAxNomdTCseYq/8V2+RhEljGZkfz+EI2qkkRIq8OAmlhhSSArqfGQI85jWCprDAxqwjhnAdxrhYme/b30aaAppROS4xKXAF26ET9871IH0oNAIOPNyCOnj102jxluXC67r2/PKkaUAM7HxZoDtTgCnYicm0F767d7OAU1HH7vhi17I1WoakU5aG61W1htes2rAxKTBpC9AxhQr+KjcZdWFiU6xApeeiE3v2zkmjoQvPgJv/RR2LAXTA84ImPwFmPFlq2aLDCnttLOLfXzMKoopYxy5zGYqOfSwdpFPLNHkkEk7bmYxhQf4FTas3/Nu3Hh9zyP/4nW+w028w1LiieUyLmAne8gnDxeHPhVvoolqatnGLpw4/QENwH7KSCCOcRxHzaYg2k8Z29kdcMzEZB2bug1pvHjx4MHARhghePDSShufs5kYomkL/JHJgGiimU1sYwkr+BevUc4BxjOaL3MJ53MmifThJ3dyYlju7rzF6XAmUOirVTNveK3eVEgjIsdt8ly443fwt/+DYt/rjVET4Mb7YMLJwZ2b9J1IbNyIgyW0dfncLwlYgA1HoJCmNHCoA0A7UHeEJ16RE5G7HTa8Cp/9AwwbJOVBTDoUfW5VTt/yHnzynNUCOnkszLsNxp1z/FuXeiNjMlz9FJRtg+ZaCIux6uDEpA38XKRX3Lh5j2X8lF9TRAmttOHEwRhG8Sg/YjqTenyu2UzjdRYRSzQllHcaiyCcFqxaRvU04PEFNlXUsIYNJBBHI533STfSRD0NzGGGP+A5yIvJNVzGyCFWh6Vj0BRIS4CgZTcFxBBFG+248QAe2mknBBchuIgnFgODWILwuwArXFrJal7lPf7Jf/3H17CRQvZTzgFu5VrChtiqJwmykiO8jjye6w0hCmlE5LjFxMOCq63CvRVF1gr65AzIHquV7sPNHAz+iIvf0c5KTOzAWdi5BTvTuisanHyEYsIOIFLfJCKdVO+DNf8GmwPGL4DdH8Pa/0BoFLQ2wbRLYfTpsPktKNsM/7oNvvQ7q8ZMMITHwUgl8kPdXgp5kMfZTQE5ZDKakbhxs54t/ITH+AMPk0xCj86VxwjOYz6L+ahTbRQHdtJJpcjXock6duhtSDGlXMp5/J7nOp3P2iblZSaTCSGETNLZyW4SiGcy+cxgEk6G1ifoySSSQiJlVAYcn8y4Tl830sRTPMeZnMof+DtebP5tTm20E0k4V3ERMUSRQXBC0iJK2E0BL/N2l7FKqniLD7iAM8lndBBmJ0NWWg87h/b0ekOIQhoR6RWn69A2JBm+HNg4G5iCwX7fi8McDGKP1NVptA1iDKgNsGJmhgOyh9+TqkivVBdZXZFy51phTclGK7Bxt0HVXvjwKZh9jbXCpmKnVQ9myW8he6bVbUjkOGxgK9XUcBvXU0Axa9lIIvHcwrUkEc9u9pFIHLYj/b73iSKSa7iUaUygmFISiPOv9HDjwet7/sgjh1rq/Lc7hZmcyiyKKOF1FvlXzcQSxRlcRikVfM5m4oghjRSaaWEDW7mKi/rnL6UfJRLP1XyRx/lzl9VBk8knjxGdjpVQzhZ2kUQiP+H7/Jhf0Uqr/+/yFGbyZS5hDAOzzbCCAzTRTDhhJPnCuzIqaKDJv1KqIxOop5H9lCmkkWNzmsPq4lRsBq5LY2CNn9Y/kUZDQwM7d+70f71nzx7WrVtHfHw82dnZVFVVUVBQwP79Vvi8bds2AFJTU0lNTe3VfSukERGRHkvC1vMSgJl2+H4oPNbSuTbNRBtc74IQraQR6cQwrCWJrggroAFwhFidmQ5a+yKc+jUrpAEo3QQNFQpp5LhVUcP1fIkneJYKqsgmg70U8R7LmcUULuQcNrOdS1hAPHFHPV80UZzCTNpoI5ww3+oPq5ZKJmnUUc81XM4SVgAwlQksZD7RRPFVLuM0TmIX+wAYSTb7KeNNFpFLDoXsp5paIgjnbm4lJkjbe3rrVGYSRigv8gYF7CecMM7hNM5iLnGHtRM38WJispSVnMpMnuf3bGQrtdQzhfGkkMRMpvT7nKupYTEreJ33OUA1icTzBc5mHnOwY8dB9zXmbBiEENLvc5Rhxu5rs315gxXIdAxqDr6EfCyi34oGr1q1ivnz5/u/vv322wG47rrreOaZZ3j11Ve54YYb/ONXXXUVAPfffz8PPPBAr+5bIY2IiPSfKQ54KBwKPFAPJBkwwgbRWkUj0kVsJoQnQHXBoWOm12pnbfh+ZpprOre3dkVYq21EjtNExvJ/PEEpFWSQRjGl/s5Dn/E5F3EOb7MEA4PruKJHK2oAXLg4l9MZQSYf8ikllJPHCMaQSxvt5DOaeGLJIYNoogAII5Rx5PmLAVdwgFLKCcFFHQ0s5EyySSeXHHIPW3EylIQQwhxmMIlx1FCHCyfJJAa8bjKJ5JDJPor4iFV8xCoySSOUEF7iTb7HN/t9vq208jyv8iYf+I+VU8mfeZ5yKrmYBTiwk0oypYfVIrJhkEwi2fRxAXM5MVzqstpsf7uxcxHhTMMKaPqx/fa8efMwze7rJ15//fVcf/31/XLfelYXEZE+4cVLFeAEYjq+iE+1WRcRObL4bJh4IZRuPHSsvQUik6CpGrzuQ6ttDppwPiSMGPCpyvARTRSb2Y4NG07snVpDhxLCStYyjlzeZglncSrZx9DxyYmTCYxlAmMpoYx/8AoP8yQVVBJLDJdzAacxm9lMJZaYTrctpZxf8hRb2eU/VkAxM5jENCb2/oEPApFEEEnEEa8TQzRf5VL+j9/jxmqnWUQJYG2PGohtTvso5l2WBhx7iyWcyalMYxJf52oe5UmaaPGPjyCL/+VGshTSyPG61GW12V7utooEp9msLU7DrO12RwppRESk19bg4XW8rMBDNAaXYWc2BiOOsPxZZEhqa7bqwzRUAgY4QyEqGeKyel8x3e6ECQsgJgVWvwAt9db5w+PANKFiB+TMsDoqAaTmw5wbrc5KIscpmkhGkoUbj7+zkA0boYTgwomJiYGNJpqppo7j2VhXSRUP8jhvs9jfwamKGv7A32mllWZauIhzMTp0ClzGJ50CmoNWs4HVrOc85ncZG65mMpn7+S6v8DY72UsYoZzD6ZzBycQftj2qP5RS7usq1ZUbNyVUcAoziCWaTNL5jHXsp4zJ5HMWc8knr9O/rcgxsxvDrs32kSikERGRXlmJh5to69CnwmQJXq7Azl1AloIaGS4O7IWP/ggbXof6MgiJhElfsAKazCmQdwbYe/nSyhUOI06CS38FS34DeK2tTq5wSBoFs6+FPSut8cxpkK6q7dI7SSQwl1m00U4VNdRQh4GBAzt2bJzENP9Km7DjrCuyk72sZ0uXFtsAL/MOI8mmkGJSSWYfxdRRzyu8TRttuOi6neEdlnIGczp1kBrOHDiYygTyyaOaOlw4elQfqK8crYOW0/fdMpZcxjCK8zgDh++YF2+Pt8iJiEUhjYiIHLc6vPwad8BGov/Gw4XYyBrwWYn0g/oKeP9R2PMx1Jdax1rrYdU/YMZVUFUIMenW6pbestlh7JnWNqaitdZ9p4yB1AkQmw5TLu5cl0akF1y4uJSFbMBaoVVGBR5f16ExjCKKCOppZCrjySLjuO5jNwU0BwhoAGqopZkW9lDES7zNUlYym6lsZgdV1DCCLGJ8NWsOaqHVv/XnRBJCCKk9L9/fZ7JI938fHC6aKLI6tP42MKilgdWs57+8Sz0NzONk5jJb3Z1EekghjYiIHLd9mCw/rIVoR+/j5RxM7FrmLENd5S4o3w715V3HNrwGZ90Ouz7qm5AGrBU5KWOsS5cxBTTSt/IZwwPczpt8QAThlFHBXGaTSw7vsZws0rmBq4575UoMUTi6vO0wacdNC6200EoRJTzOn8kijQoqmUw+77CUXexlHHmEE+a/5XQmHrWWi/SdDFK5ma/wa56mjTaaaKYdN2GE8l1uJqNDSFPOAX7JkzzDv/3H3mc5I8jkKf6PqUw4pvtup52t7KKAYuzYGUU2ueRg1ypdGcYU0oiIyHHz+i7daR+oiYj0twP7wOsFT4Dv6rZGa6yqoOuYnJBMTFppxeH7bygYRx55jOCrfJEa6iimjGJKuYNvMJqR3XYfqqMeAxuhuLrdFjOOXBKIo4D9eH3PGu24aaSJWUwFYBkraaKZnezFiZOruJgP+YxGmqinwR/SRBHBPE5RjZMBZGBwOicRQxQv8hab2UYW6UxkHB+ziizSGO0rYLyWjTzbIaA5aC9F/JF/8Aj3Ek54j+73AFX8jZf4DX/xr+JJJoF7uI3LOF9tvWXYGhrPGiIiMihlYTATGyu7iWrOxKZVNDI8RMRZ25DsIeBp7Txm2KzVLclayn+i8+JlHZvYwFb2UUQmaUwmn3zyiBgCKz9MTEqpYBEfUU4lueQQQ3TA4rSF7GczOyigiKWsBGAecziTUxlFTqfrjiCL2/k6D/IY29mNBy+ttJFJOldyIXmM5Cn+BoAHLxUc4CM+425u5Q3eZx9Fvros47mCCxnNyH7/u5DOPHj4gI84QBV5jKSOel7jPcDq/vRTvk8KSbzJItpox4MHGzbsvv8A3mIxt3AtExnbo/tcwgoe4rd0bIJczgHu4udkksbpnNzXD1NkUFBIIyIixy0eG/+LnfV4OzRttZyOwSQVC5ThImm01UUpOgWqD1sxkz0DGipg7FnBmZsMCnU08Alr+RY/oIAiABzYyWMkv+AHzBvkhW5NTD7gY37Ps/7VLhvZxhss4jZu4ExO9a9eKaKE//A6O9jDi7zlP8cyVvIGH/Az7mQ8h7bq2bEzn1PIIp1PWMceCogjhkxSKaeSAop9K46sALSeRiqo5G2WMIGx/C83kccIUkkaNKsnKqmihDJMII1kkkgI9pT6TRttbGEHkUSQQyYb2UodDf7xUsrZzT4ADlDdqY27gUE4YThx0kIrnm66RB2unEqe5l+YWOGnB4+/05gXL//hDU5h5pBZqSZyLPRdLSIivXIGdv6KwTO4WYWXKAwux8752BilkEaGi4QRMO9/YNEvrS1P9WVgeiE+B6ZfCcljtJLmBLeF7dzJT/0BDYAbD9vZzY/5f+SQ0Sm4GGwKKOZpnvcHNAe58fA0zzOWXDJ9tUdWsIowwjoFNACttLObffydl/kh3+4USh3s/jOWXGqp4zH+zId8SjMtjCCTBZzBi7wJWN2CDGy00852dnMjV5FDZj//DfSMGzcrWM0z/JtyX9n8JBK4lss5lZlH7YQ01OxiH2+wiGaaaaGVKCK5jPNZxXo2sNV/PRNYzqfMYw4v87avZbeJiUkTzURiYw4zSOlm29zhqqlhH0W4cdNEc6fvSzt2trOHZlqIIrKPH7FI8PU4pGlvb+fee+/lpZdeIj4+nm9+85vceOON/vGysjLS09PxeHqWjoocrg0PrbiJwIVN2yNEBkw7JgWYFGFiAPFAPSa7MAnBIBWDPAzSuglcHBjMxc4MDEoAF5CpcEaGG8OA3LkQmwElm6Cm2OrmFJdl/T86JdgzlCAqo4IiytjMdtJIZgHzSCQegA1s4RPWsZsCf0hjYlJGBW20E0fMoHijWUQJTd10YKqjgWJKyCSNRprYwk5KqQh43WpqWcNGSijrsu3poBiimcAYVvE5YNUrOYfTmcfJLOUTkknAwCCaSL7FdeR2c55g2MR2fsUffCGEpYIDPM6fiCGKaUwM4uz6VhElPMeLRBLGX3mJHewGYBTZ/Ijv0kiT/99uFet5hhe4k28xntFsYxftePD6VsA4sPNNriGV5B7ddySRZJHGLvbiwdvpnYEHD+k9PI/IUNTjkOZnP/sZzz33HHfccQc1NTXcfvvtfPLJJzz11FP+65imeYQzyHDRSBsF1NFEO7GEkk00zl5UWK+llXWU8Ra7qKWVcSRwNiMYT+JxFYWrpYVd1LCTKsJwMpZ4RhLbqzmKDFeNmCzGzW6sJ4R6YBMezsbOP/Cw1rcT/GRs3I2Dk7F1+3MZhs1XNlBkmDIMSBxlXUQ6qKOBRho5iWmcwiz+ySsUsh8bNmYxhf/lRtp9pdR3sodXeIeXeYt6mpjFZK7lck5melC38hytpfXBUOLglpM22rq9rrU95Uhl5eEMTmYLO/iUdQC8xzKmM5GvchkOHEQTRQ4ZZJA6aIoEt9POWyzuFNAc5MbD67zPBMbgwtXn911MKRvZyho2EkUkpzKT0Yzs1y5XG9hKCgn8lF/jxo0TB+242U0Bd/ATHucnZJLGW3xALfUUU8Z9/JKH+QHvsJR3WEINdcxmGrdyHacxu0f320YbNdTxZS7mPZZjrdMxsPk+xrVj50LOYS+FTCJwR70WWtnBHj5hDTXUMZl8JjCWDFL77O9Hhrdly5bxyCOPsHr1akpKSnj55Ze55JJLAGsByw9/+EPefPNNdu/eTUxMDGeffTa/+MUvSE9P7/V99zik+fvf/86f/vQnLrzwQgCuv/56Fi5cyA033MDTTz8NgGEMjl+g0n92Uc1TrGUrBzABJzZOJ4urmUDycTxJNNLGP9jEm+zyHyuinuUUcicnM5tj+yYvo5EnWMNqSv3HHBhcx2QWMooQ7fAT6WQLXj7A5C08VGGtovkhTn5MOy4MbFjdm1bi5V7a+Q0uJgySF8tyYqiph70lUF4FUeEwIh3SEqGpGSqqIcQFqT1bPS/Sb0JwEkcs8zmFB3ncf9yLl09Yyz6KeJE/sot93MFPWcFq/3VeZxErWcOvuJ8FzAvC7C1ppODAETCsCcFFKkkARBLBWHKJJJzXeL/LdWOJJo8cknwribqTRAL/y43sZC8b2YoTJ5MZzyiyO7XbHkwaaPTXXglkL0XU00hCNyFNA43YsB3z49tDAT/nt5RS7j/2Dku4lIVcwYX9FtSUUclbLMaDBwODMELx0owHDweoZi0bGUU29TQSggs7Nmqp4xZ+wCWcyy+5nygiKKWCVJKI6EFXpxLK+CP/5G/8h8f5CXfwTX7PszT57jeJeH7IdyigiLRuVtO00MKrvMffeAnT92HTUlaSQiL3cBu5jOjLvyYZCB4vLC+AkgZIi4TTssHev6u2GxsbmTJlCjfeeCOXXnppp7GmpibWrFnDj370I6ZMmUJ1dTXf/va3ueiii1i1alWv77vH71iLi4uZOPHQ8r28vDyWLFnCmWeeyTXXXMPDDz/c68nI4FZBI4+ykqIOhcLa8bKIfdgwuIXpx7xaZTc1vMku4ggll1hsGJTSSAF1PMt6xhBPbA+L7JmYvMmuTgENgBuTv/A5o4hlspZGivjV4OVPeHjZ94mgF0jFxl/x0Iz1sxMKvh33sAeTN/EwDkMdm2RAFJbCb16ALXsPHTt1CsyZBC8vgdVbIDoCrjgbzpgBI3v/4ZXIcUknlb0UspxPMYDD15bbsFHAfoop7RTQHFRJNX/in8xgsn+b1EDLIYMLOIv/8k6XsYs4l2wy/F/PYTpvsoipjGcdm/3HXThJJZmvcCmxxBz1PmOIZgaTmcHkvnkQ/SyUUGKIpqRDWNJRNJGEBlgNtY8iNrGdpayghjpOYSYnMY1x5B31Pttp59+83imgOegl3mIqE/pti1UMUeyh0P+1DTuRhPtXSZlYW71iiMLEJIkESqnAi5eXeJuXeJsHuJ0NbOVcTj/q/TXSxB/4O//gFWppYB2b8eLhTzxCJVW4cJJEAhvYymes41zOCHieXezrFNAcVEYl/+AV7uSWQVOAWnrgpS3w7XegqP7QscwoeHwBXBp4JVVfWLhwIQsXLgw4FhMTw3vvvdfp2G9/+1tmz55NQUEB2dnZvbrvHoc0qamp7Nq1ixEjRviPZWRksHjxYubPn8/111/fq4nI4LeTmk4BTUdLKeAC8sgl7pjOuZEKzmYElTTzAftowc10UvgCeSyjkP009DikKaWRRewNOOYFllOokEakg72YvH3Yku1sDBbjpQQYg0EDpn9BewOwHA9XYiNH2weln7W0wfPvQnMrJMVCRQ0kxsKYHLjiLjBNqyM2wKot8IXT4MdfhwyVhpEgcOAgnniaaSaTdMqowI0bO3bSSGEU2eyjkCpquj3HOjZRTmVQQpqKZqhqC+FU4zLGRuTzvP3fVHCAROK5hAWczIxOBXGzSGchZzKKHBbxEYv4ECcOTmIaX+GLTGH8gD+GgRBGKOdzJlvZGXD8As7qslpkL4X8k1f4NX/xF799hXcYzQh+z0NM7ma7zkEllPMJa7sd/4hV/RbS5JFDHDFUcMB/zMCGAxuJxJFKom/NrdXF6WC9mQoO4MGLAzvxxPJ9vklyDwoG76WQj/iMet/7jQKK+ZTP+S3PkE4K2WRQQDHjyGMGkxnRTTHpz/i8S0Bz0Bo2UEwZo+jdm2gZIC9tgcv/0zX5Lq63jv/n8n4Nao5FbW0thmEQGxvb63P1OKQ588wz+cc//sFZZ3VuL5mens4HH3zAvHnzej0ZGdyKqe92rA0vtb62iccinlCeYT3rOnw6sJdallDA7czu9hds4Dm4qT/CHEppPOb5iQxnFYAT/GUibUArJjHg703SseJADFbguRVzEJVwlMHONGF/BTQ2Q0QYpCdZpV2OZuseaGiCmgZIiYeTJkJKAvzuX1DbCOGh4OqQFb623FpRo5BGgiWOGDJIw0UI6aTgxYsLJ1FEYsdOFJHUH+G1iBcT+wAXXW92w/IyeGEPlLeA3XAxJX4q38odT2x0FRGEE0t0wNtmk0E2GcxmGt/kq76gKnbQblXqKzOYxIWcxRt84H+damCwgDOYxZRO1zUx2cg2fsMzXbpm7WAvT/E3fsl9AVffHOTBQ5uvnlEg9d18gNoXchnBdVzOvXTeMRFKCGkkM4upuHDyHssAayVVFukkEU87bmYylfOYR0w330OHO0C1r/qM9STxBov4JtfwJiF8xjpCCMGBg5lM5mtcTXg326fqjvB34sbjrw8lg5zHa62gCfR20PpGge+8CxeP7fetT0fT0tLCXXfdxZe//GWio3v2/X4kPQ5pfvSjH7F169aAYxkZGSxdurTLkh8ZXuKPsKLFBoQfR72XBto7BTQHVdHCxxTzRcb2+FxRhJBKJPu7+cU8oYct/0ROFGFACgb1HeLQ1Xi5ADsb8RAK1PqOhwBhGJyOndfxMBMbCergJIDXC4VlcKAWXE7ISoEYX6Oaimp4fTm8+4kVuESGwzknWateko6w8HLddrj399YKmYNcTvjDvYeOeQPUJF28GhbM6bvHJnI09TT42wCnk8LZnMYbLAp43dlMZdcR6pmczklkHmMtvt76uBx+0+HnzGPCmgNQ2ODiJ9NTie1BqZMYooghqv8mOchEE8U1XM5cZrOVXYDJOPIYGaCWThU1rGA1ngCFhgHeYyn7KGIsud3eXxyx/hUkgUxjwnE/lqMJJ4wLOZtSKvgXr+HG4//3/jKXMJl8vHg5i1NZxEcAvto1YaQQyU18qccBDUAYYYTgIpYYKqmilTae4DnmMYfzmE8u2aSRzGymHTEMnMhYf3B0uBQSSTjGlf8SJMsLOm9xOpwJFNZZ15s3YqBm1UV7eztXXnklpmnyxBNP9Mk5e/yuOicnh5yc7j87TU9P57rrruuTScnglEccUbioD1DNfwJJZPdg73FHJiarKCGBMA4c1vLRwKCQelqP0mmgo3jCuJxx/JquxZoicDKLtGOan8hwl4NBBgatQDEmHqAO8ACXY2OTryV3IpCIwUwM2jGpAn0GJQDUNsBry6xVLE0t1rGRafD1yyA3E/76Jizu8Cu5oQleXgzVdfCtKyAswIfHVbXw5H+sbU42A7y+BLGtHbbsscKdfSVB/9BMTnA11PEJa3iDRdRSTyZpXMwCzudMdrKHbb5WxWC9pvkyF5PPaEII4Vou4zle7HS+FBL5Ftf2qLBqX6lqtVbQBFLRChuqILP/GgcNaeGEMYGxTDjqh4nmEVd1tB9llQxYhZi/xBf4JU/hPWxJQSrJ3XY36iupJPNdvsYlLGAbu7BjZyx5jCTLvwLoeq5kOpN5lyU00MR0JnEqs465dfoIMkkhiWZaqKOeNtppo513WcYWdnI7NzORcUddrTWeMWSQSvFhdSoBruQLQav7JMeopIerxHp6vX5wMKDZt28fH3zwQZ+sooFjCGlEsonhO8zicT6jrkNQk000NzOV8A57lXvKhkEW0UTiopxGPJiE4SCVSGIJOYbNTpY5ZNBIG/9mq3+OOUTzNaYec70ckeEuE4Nv4eBx3MRg0OL7iduLyZ3YqQA+x0sbkION/XhZiclMbMSrcLAAiz6FFw5bRLunBB76C3z/Gli6JvDtlq2FC+bCuBFdxwrLoLjCCnDio6Gy9tDY9r0wdTQUl4M9QFmk+TOO95GI9FwTzfydl3ibJf5jVdSwka3cxg3czW3sYA8b2UY4oUxjIqPIIZQQxjOaa7icyeTzHsuppZ45TOc85jG1n+qKdKe6FUqaux//vBoWZg3cfIajOGKZxRT+xWsBx/PJI5mEo57nJKZxB9/keV6lgGJcODmJaVzBhQPSUjqCCCYyjomMCzgeSwyncxKnMAMPnuMuynuw49cjWKsRaqilmloSiefn3M00JvZoFUwqSdzNrfyL11jJWtppJ5UkruQLnMqs45qbBEFaZN9er48dDGh27NjB4sWLSUg4+s9yTymkkU4+p4yPKGITFWQTw3xymEoyLt+3ymzS+QXz2EUNVbSQQSS5xJF4HJ/8GBjMI4f1VJBCBAmE4cGLEzs2DKaTQsoxthSMxMUljGUWaVTQjBMbmUQR08PiwyInEgODudhIwclneCnCZBQGM7Bhx+Qp3IRirSbd7Ovl4AQuwY5LIc0Jr7QS/rs08FhdI6zfAZFh1p8P5/VaLbUDhTStvg+VbTbISLZW0lTXWd+H730Gj34bVm+FhsPeXH7hNJg8ujePSKRn9lLIO3T95vdi8ldeZCLjmMMM5tA1NbRhYzL55DGCszkNGzbiie1UlHegOG0QYoPWAFsHAeICd5GWY2DDxiymkE8eWw4rNhxKCF/jy6T4WpsfSQghnMZJTGIcVdTgwEEayUH5vjkSh++/3pjCeB7iHraxi/2UkUoSY8klp5siwd0ZQRbf5Wb2U0Y7buKI0Tanoea0bKuLU3F94Lo0BpAZbV2vHzQ0NLBz56Gf2z179rBu3Tri4+NJS0vj8ssvZ82aNbz++ut4PB5KS62VW/Hx8bhcvfsFqpBG/Jawj1t4mypa/Md+x2p+yVl8kbE4fPUnsogh6xi3NnVnMsmMJYFtHMDhqxYPEIWLLzL2mFt6H5RBNBnHsAdW5ETlBuzAVF9gk4pBmC+A+QEG/8TNeky8WN2ersLBJAU0AtQ3QVVd9+M7iyAuOnBIAxDSzeuXpDgIdVndnUJcMCoDmhKg3W2tnsnNhL//DF54Fz7daNW/+dI5cOYsSFPpMRkAO9jTbWODamoppZy0o3STDCcs6AV208NhTjIs6bojBLDGpPfyGc1veJCneYHXWUQrrUxkHF/nas7pQVvqjmKJ6VFr86Eui3Sy+qA+kxPnMYc7MojYbVab7cv/YwUyHX/tHnwp+ti5/bb/edWqVcyfP9//9e233w7AddddxwMPPMCrr74KwNSpUzvdbvHixb1uqqSQRgAopI4HWE4VLYRgx4GNdry04uEHLGEs8Uym71tmpBDB95jNCopZxF7a8DCNFM5mBGN6sPxTRI5fCV7+iocVeHFjFQCfjMHXcJCDjfHY+AFOSn1vR5IwiFJAIz6hLmtLUnM3TfVy0qwgJ5C4aMjpZoV+VjKcfyq8tNj62mazCg4DzMyHEekQHQEzx0FlDYSGQOyJU7NUBgHbUYqmG0Pk96TDBleMgN31UNAhTDWAr+bCaH3W1Wcmkc/D3Ms3uca39SZZdVFEeuLSfKvN9rff6VxEODPaCmj6sf32vHnzMM3ui28caay3ehzSfPrpp8yYMQN7oE3gQGtrK//973+58sor+2xyMnD2UMNuakghgkbaacFNGA7iCKWGFrZT1S8hDUAakVzKWM5hBG5MYgkZMi9wRIaqZkyewcPHHVqCeoF1mDyOmx/hJM63qmakfh4lgPQkOH06vLOi65jDDqdMhom58Mu/dQ5ywkLg1isgtZtVLw4HXDIPosLh1eXWVqfwUDhzJlw8zwpoDl6vu3OI9KfRjMKGrUtLZbBqagxEjZC+kh0J902FrTWwoQaiHDAzEXKjIFQf5fYpJ84jdnESkW5cmm+12V5eYBUJTou0tjgN4w4CPf71O2fOHEpKSkhOttY+RkdHs27dOkaNGgVATU0NX/7ylxXSDFGteIgmhJ1U+ypPWOzYyCWWhgHo5RLVTZExE5MyGvFikkAYIVoAJtJr+zBZGeANBsAOTPbgJe44txvKicFuh0vnw/5y2LDr0PEQF3zjizA6y7rOz2+Fz3dYHZlyUmHqGBh1lNXncdFw+dkwd6pVeybUZdWnMZQXSpC00speithPGRGEcwFn8irvdfpQyYGD67mCpCG2EjglzLqcoSaYIjJY2W1BbbM90Hr8bvfw5TyBlvf055If6V/xhFJJU6eABsCDl33U9ltnpDpaacVNNCEBw5dCanmT3XxEEW14yCeBLzKWSSRptY1IL9T46sx0p3zAZiJDWXoS3Hkt7N4Pe4qtbUmjs6ytTgcX3uZlWZfjYbP5igab1p/Tj15fU6TP1VDLC7zK2yzBjQeAmUzmZr7Cp6ylihpGkc15zCMfVa8WEZHe6dMlCcYg+Yjrd7/7HY888gilpaVMmTKF3/zmN8yePTvY0xo0ymhgI5V8yn5c2DmVTMJwcDnj+CPrulz/NLII7+PVK5U0sYJi3mY3DbSRRxxfYDQTSfIXD95PPT9nBUUc2n+4ilI2UMGPOJUpvu1X1bRQQwsObKQR6b+9iHTvaH3Thn9ZQukrsdEwPRqmB+7MelxME5asgV/9DT7dZB2bnAe3f8Xa9hRyfN1dRY7Lcj7ldRZ1OraK9WxgKz/lTtJJJZzQXne1ERERgWFYOPiFF17g9ttv58knn+Skk07iscceY8GCBWzbts2/VetEVkQdj/AJu6nxH1tCAZNJZjbpROLi32yhiHriCeML5DGWBJpx99kcamnlOTawjnJqacWLyaeUsIYyvs9JnOKrwr6Wsk4BzUGtePgPWxlJDGsp5wU2U0g9ob7A6YuMJUdvMUWOKBsbozDYHaBDSTyoDo0E1aeb4Os/7dwZav1O+MZD8Lcfw+ldOxuL9IsqqnmN9wOOtdLG2yzmO9w8IHOpbYUWL8S6IES7UUVkCNGOG0tP/x6OKaTZvHmzv/+3aZps3bqVhoYGACorK49xiv3jV7/6FTfffDM33HADAE8++SRvvPEGTz/9NHfffXeQZxdcJibvsqdTQHPQxxSRSBg1tHAzU4nASSsedlLNhxTyBfL6ZA7teNhIOVW0kEgYs0ijnjY+YT9uvPyVjeSTQCyhfEhRt+fZwgE2UMEv+cT/FrMFD4vYxw6quY9TSSGyT+Ys0t/qMSnxbT9KxiD+GAKSVkwKMKnDJAKDbAzCe3D7GAxuxcGjtFPS4XgscDtOUrUiTfpIdR2UVVkdY9KSDhX+7Y7HAy8v9gU0Jni84PaA1wtt7fCX12F6/qGOTyL9qYkWqgO8bjqokBLcuPt1FU1lC3xYBu8UQ4MbRkXBxVkwOd7q0CTDmwcPNmza5i9DktPpBKCpqYmwsLAgzyb4mpqstpcH/166c0zPKGeddVan9OfCCy8ErG1OpmkGfbtTW1sbq1ev5p577vEfs9lsnH322axYEaD9BFZXqtbWQ20n6urq+n2ewVJBE0spCDgWhoP1lJNEOB9R3GlsAaP6ZGVKPa38lx38jI/8QZEDG3PI4FLG8Ra7KKKeUhqJI4zQDkVL2/BQTxvVtGAA6URygJaA91NAHVs4oJBGhoR1eHkONzt8cWMmBl/BzknYcB7lBVkpXp47rIX2RAy+7muhfTRjsPEgTnb5QqJEDPIwyFBAI33A7YbPNsNf34BCX5GjURlw7QXW1qjuXjJU1cGqzYAJ7R5oaubQeq92WLEedhXBlDED8CDkhBdBGEkkUMj+gOOjyO7XgKamFf6wDVZUHDq25gCsr4LvTYS5/dN4UwaBbexiHZtYzXoSiWcOMxjPaBLUuluGELvdTmxsLOXl1guB8PDwoGcGwWCaJk1NTZSXlxMbG9ttx+yDevyssmfPnl5Prr9VVlbi8XhISen8jJWSksLWrVsD3uahhx7ixz/+8UBML+jceGn1Fbw7nB0bkbg4kxz200AtrcQSwvnkci6j+qSj0mpK+RFLO30S4MbLhxQxglhGEMNearH5xs8kh1WU0oqb3dRSz6EwbQapLKOAM8hmSYfgyYbBCGIop8MaeZFBajteHqKdpg7HijB51NcCe8YRQpoWXwvtjw5rob0ek8d8t+/JipwUbOg1vvSHTbvh4eesVTAH7S6GXzwDP/km5I8MfLuwEIiNslbOdApofGIiYc9+q1NUbHR/zV7EEkcsl7CA3/CXLmMOHMxjTr/e/676zgHNQW4TntsJ42MhfhDWaCqsh+o2iA2x2nzLsVnHJm7jXnaw138sBBf38r9cxvkkKqiRISQ1NRXAH9ScyGJjY/1/H0fS43feOTk5vZrQYHXPPfdw++23+7+uq6sjK+s421AMcvGEMYZ41lIWcPwUMjiPXKaQQjPthOMktY9Wo9TRypvsohk3yYeVLDUxeZtd3MnJGOC/zwkkcTLpvMz2TgFNOpGcQgY/4SNuYwZRuKinjdHEMZp4VlLMf9nBAVqYRzbjSNASURl0TEyW4O0U0BzkAV7BzXichHXzvXukFto7fS2049VCW4KktQ1eXdY5oDmopQ3e+wTG5lgdmw4XGQ5XLYAPPusa0AB86RxY9BnkZiikkYExhxmUU8krvEMrbQDEEs1NfJlxfbQdvDvrq7sfK2mG0ubBFdIUN8DiUmv1z656yImEm8fCmWnWn+XoGmni1zzdKaABqwbSz/g1ExjDXNQQRYYOwzBIS0sjOTmZ9vb2YE8naJxO51FX0BzU45CmoCDwNpnDZWdn9/SUfS4xMRG73U5ZWecQoqysrNvEKiQkhJATpE1EKA4uZSwbqaD9sDd3sYRwMhkApPXDNqEm2kkgjAWMopgGamiljAb/eA2thODgWiYRg/XvEU8Y1zOZWEJ5jz204mYGaaQTyXoqGEc8S9jHHDI5QDOxhPJjlmMC40jgTXaxiL3czmx/MWKRwaIZ2HiEJti7ManGyz4M1uOlGhiLQT4GKdiowexmXZylrz6raMXEAFwKOuUY1DXAzu7LirFlDzQ0d1+f5pTJcM0F8OSLnY9ffAaMzIDFq6G5re/mK3IkUURyFRdzCrMopRwHDjJJJZ2jfxraW46j/OodTJtTm9rgud3wwNpDxypbYfXHcPck+O54iA0N3vyGip3s5X2WBxxrpY2VrOVUZukDSBly7HZ7j0OKE12PQ5oRI0YE3D/WsRaNYRi43X3XBehYuVwuZsyYwaJFi7jkkksA8Hq9LFq0iNtuuy1o8xpMJpHEDziFF9jCNg5gx8YMUrmCcYwktl/ucz/1LKOQjyhiH7XMJI1zGcGLbGMPtbjxMpEkTiWTCSR2um0odjZSzhjicWDzBzgu7EwkmbHEE46TNCJ5iI/9bbgjsIoxteLhz3zOaOJIOmrTYZGB4wKOtAggF/gUk2dx+3urvQ5kYHAXjn5voV2Il5WYfIQHB3A2dqb5AiKRo3G5ICIUqmoDj0eFg+sINfPSk+DrX4R5M2DFBquY8MmToK0N/vKaddsENfGTAeTAwSiyGcXAfhg5JR7+tTfw2MhISBuAAtrNbqt4sc2AlLDuixVvrIVHNwQee3wTLMyEkxXSHFULrR2e+buqphoTUyGNyDDW45Bm7dq1AY+bpsnzzz/Pr3/9ayIjg7+O8fbbb+e6665j5syZzJ49m8cee4zGxkZ/t6cTnR0bM0ljHAlU0IQdgxQi+qTmTCClNPAon7CDKsppYjc1bOUAaUTyTabzZz7HBtzGDCaS1OX2MYSSSzxLKWAumayhlA/Y5x9PJIwryGc6KaQSSRseWnBTTQuRuAjFQTlNFFGvkEYGFQcGC7DzeTcvxOZi5wk8XUaLMfkbHm7DTh4GO/uhhfY+vPyUdko7HNuGmwkYfBeHgho5qphIOG8O/PGVwOPnnQKhriOfIzMZ/vmOVWA4xAXPv2t1dwI4a5ZVk0ZkuMuNgvMy4O3OPR0ItcN1eRBzlJ+j3vCaVoHif++FrbXgtMFJiXBxNoyKBrcXmtzWXFx2KGq0uk8F0uyFfQ1wcnL/zXe4SCGJLNLZ202X0+lMxqbnYZFhrcfvzKdMmdLl2Pvvv8/dd9/N9u3bufPOO/ne977Xp5M7Hl/60peoqKjgvvvuo7S0lKlTp/L22293KSZ8oovERST9+Mzus4ZSdlANGEQTwhjiKaCOEhpYSymTSeQsRnIWObTiZifVfEYJNbQwgSQmkMT55LKFStrwdApoHNhIIYJVlDCKWKpo8deuKaeJEOzkEUcELjwBKxuIBNcUbJyPnTcP27h0OjaagNOwEQY0Alvw+rcwrcFLFXa+hYNHcbO/w/d3LPBdnKQd5ws4E5M38XYKaA7ahMk6TOZhsgOTFXipxGQCNqZikK0XjdLBKZNhw05YubHz8bNnW92djiYmCm65HF54Dz7+3ApoIsJgwclw0eng6L+GOiKDRoQTvpoLk+LgrSKoa4f8GDgrHcb182qyDVXw08+h1bczt80LH5RCVSucnwVLS63gJTEUFmYcvR242oX3TA4Z3MxX+BGP4D1sW/QERjOZ/CDNTEQGimF27KndQ2vWrOGuu+5i+fLlfO1rX+O+++4jOXl4RON1dXXExMRQW1tLdLQqEvZGOx5+wBK2UuU/1oaHZty04CaOUH7BPMb7tji9wS6eZT1ewImNiSQxihgmkIQDG/eylDW+osfRuEgjEjsGzbh9xYHhLXbj7fCGNZoQppHCLzmLrCNuLhEJjkZMdmKyFi9twDQM0jD4Bx6exU0lkAJcjJ0wYIXv+/thnORjoxwvuzApxVpB09sW2mV4+T7tdFercgwGF2HnV7g7vXSMBX7gm5PIQbX1Vm2atdvAboNpYyE3E6KOYWGj2w2FZdDcam2Tykzpvn23yHDW5rGCknCHtfWoPzW74aH1sLaq8/H4EJgSB//eA4lhncfunQxXLbEKGh8uIQReOxtmJHYdk65qqOMl3uQp/k4hxbhwcR7zuJXrmKSQZtjS+1A56Jg+h9q1axc/+MEPePHFF7nyyivZvHkzo0aN6q+5yTBweFlUF3Zc2IkhhGhcpBJJCA42U+kPaEKxcy6jeJXt/JF1RBPCN5mKHYN8ErBjYGBQRB3VtNKCGzsGX2QsqymlnCZ/UFNPKxcxmkyiBvyxi/REBAZTMJjiCzeaMXkCNy/jodJ3nTLgD3i4HDujgUrwV5BKxkZfRuQmHLEgcQOwCE+Xn+0a4C+4uR8nEdonLz4xUTAj37ocL4fDKhYscqJz+bYVDYQDrdYWp8NNiYe/bIcmDySEdg5MV1fAU6fAR2XW84jbC+8Uw446+Ol0mKg6Uj0WSzQ3chVncxp11GPDzkiyCENFfUROBD0Oab71rW/x5z//mfnz57Nq1SqmTp3aj9OS4cCJnXlks52qgOPTSSUJq+Ldakr9b/rmksUfWEMB9QDU0spuaonARTENpBHBbmqoogWwtmek+erRXEAeqyhhJ9VkE81FjGYqKSquJkPGXkyW4iUKgxDMDs3n4TU83IOD07Ed93YmgF142Y6XYqxVOmMxGONr153oC4yWd9N5agoGn3QzthWTIkzG6udNRGRIsxtWDZrmw1J7lw3KW6xaOB1/04+KhAYv/HozVLVBSZN1/GtjrPbb46Mh5AjFwqWzAopYyVo+4jPsODiLU4knViGNyAmixyHNk08+SWhoKOXl5dx4443dXm/NmjV9MjEZHmaQSg7R7KOu0/FoXFxIHg7fG81a31vREOy04/UHNGCFMJup5Ery+YRionBR3eGtaxQuZpLGr/iUFCL4CaexjzrqaGWT73YiQ0UpJl4gBBiNjSK81GKtcPECyRic1YuA5jM83EU7mzpsC8wCHsPFXOw4MPgCdtbgpfGw26YCuRi81c25TaD9uGcmIiKDRUoYnJLctWCx1/fUkRiCP6WxGZAfCz9ZB1kRkBxmbW9ye2FFOZyRCrGHbY2S7u2hgJ/xa8r862lhB7vJJ4/v8Q1SAjTaEJHhpcchzf3339+f85BhKp0o7mIOyylgCYV48DKdVM5lJKOJ919vAom8w25iCWUvNZ3O4cKOHYM1lPI9TuJjitnKAQDySeAKxvFPNgFQRiNrKWcrlTTh5mrGk6GtTtILRXjZjsl+TNIxGNvLmi9HE9Lhz+FAHjaawVerCbIxiDrOlSpFePjpYQENQCHwPdr4Jy5GYScfGw/g5FU8rMeLHTgFOwuwUX6EItxxQMJxzUxERAYTmwEXZlndnfZ3rDFjWh2nojusismNguWlVoAT7ntnYRjg9G3NerUApidYRZDlyExM3mZJp4DmoC3sZA0bWMiZQZiZiAwkhTTS77KI5momspA8vHiJIwzbYW8y80kggyjqaSWNzq3c0311a/bTQBNt3MXJzCUTgAM0s4xCQnESRyg1tBJHCKE4uIxxnMtIbXWS4/Y5Xh6hnY7b8uOAO3EysZ+CmiwMosC/lswG/ubx8b7x47UbWNlNyLIX2IbJwSpj47CRh0ElJjYgyVcLKgovYzDYHuA8l+Ho1TYsEREZPHIi4b6psPYAfFRutdo+ORlyouDp7YfqDkY5YVWjtYImLEDNnNIWaGhXSNMTFRxgJd3vSljER5zFXFwD0KFVRIKn1w0sly5dSmNjI3PmzCEuLq4v5iTDVNwR9tGmEsndnMw/2UwCYYT46mOkEUkCh9bIjiWREcTwPJvZ2OFThjCc5BJHBE7OZARXkK8VNNIr5Xh5/LCABqAa+DXt/Bwnif0QSGRi8E0cPIa709ahEOAWHKT24j7rjtKK/sBh4w4MUg8LhRKw8V0cvIKHZXhpxqprczkO5iqgEREZVjIirMsFWYeKBLe6ITUU/lsIxU0Q47S6Nm2ttbq4HS4hRAFNT3nx4jlC+X437k5dTEVkeOpxSPN///d/NDQ08OCDDwJgmiYLFy7k3XffBSA5OZlFixYxYcKE/pmpBFRHC9upppE24ghjHPG4ep+9BcUIYrmDkyihnjQi+SNrMTu8QcwhmmuYSAyhfINp/D8+Y3eHrVGJhHE7s5ncp71u5ES1D5OKbsZKgAJM+qOTqIHBXGwk4+QTvBTgJRcbs3wrW3ojCQMH4A54v/R4G1cmNm7B4GJM2oFo6JfASkREBoeOXZxCHHBSMkyOh/p2a4vTlhp48HMCxgcXZUOkQpoeSSSeqUxgKSsDjp/GbEI7bYwWkeGox+/mX3jhBe666y7/1//5z39YtmwZy5cvJz8/n2uvvZYf//jH/Otf/+qXiUpXm6jgl3zKu+yhHQ9RuLia8dzIFEb4G/QOLU7sZBNLBtGMJ5GtHKCaFkYRy2jiSPJt/BhBLPczlz3UUEETMYQwgtguW6VEjtfhRXMdwHwgFzsGENqPn2TZMBiHwbg+Dj5GY3ABdv4b4FO6mdgYdwwhkB2jV1uvRERkaAtzWBeAyXFw42j4+25o8T3FOG1wSTbM6o9PNIYpBw4u5GxWs4GGw16JpJLMbKYFaWYiMpAM0zR79E4jLi6Ojz/+mPx8q1PODTfcgMfj4bnnngNg5cqVXHHFFRQWFvbfbAdAXV0dMTEx1NbWEh0dHezpdKuQOm7hbT6jpMvYjUzmfuYSSu8/tnDjpZA6Cn3dmTKIIptonATYdCwyjGzEwz2+NSdZwBdx8Dwe3sGDAzgfO9dh56Qh9rOwHQ//Dw+v4sGNVfNmHjZ+iIMJQ+yxiIjI4OH2QmGjdfGakBlu1bVx6qnlmG1lJ2+wiHVsxo6NU5nJuZxBjq8mowxPQ+V9qPS/Hq+kcbvdhIQcWl63YsUKvvOd7/i/Tk9Pp7KyayVy6R9bORAwoAF4ns1cQT7TSe3VfTTTzhvs4nk20+r75N2FjcsZx0WMJkJFy2QYG4GNaRisxeRSHHyNNhqBeAzaMXkXLxvw8hgmM4bQFsMx2HkYg5uwU41JlG/VTqy2K4mISC84bDAyyrpI74wjjzxGcIBqbNhIJF6NMEROID1+Z5Gbm8uyZcsYNWoUBQUFbN++ndNPP90/XlRUREKCmq8OlD2HtanuqAk3B2judrynPqecZ9nQ6VgbXv7BZjKJ4jSye30fIoNVpK+A70o8vO5bdeIEdvi3OZnsBf6Ll7G4iQxSUGNi0uSbm6uHL+CisDGzX2clIiIiveHAQQpJwZ6GiARBj99V3Hrrrdx2220sX76clStXMmfOHMaPH+8f/+CDD5g2TfskB0rHjkeBRPRyq1MbHt5gZ7fjr7GTGaQSrtU0MoylY2Ma8BBthAB7Dhv3Ai/h5UJszB746bEDL9vwUu0rcpyFwSRsjPW1yxYRERERkaGlxyHNzTffjN1u57XXXuP000/n/vvv7zS+f/9+brzxxj6foAQ2jngSCaMywIqZOWSQR+/aoTfRThlN3Y5X0EQTboU0MuyFAPHAtiOMb8RkOiaOAQxGNuJlNR7exMtavNQBdmAEBg/g4Czs2BTUiIiIDBn76mF/s9VxMcvX/lxETjw9Lhx8ohgqBZtMTN5hN9/hfapp8R/PI45fcw4zSOvV+dtw83NWsJrSgOMTSeQ+5hIWYMWOGw+F1FNPGwAh2HFgI4uoIdseXE5sv6Gd7+P2fUd3dgd27MB9OAkboFCkGZNnaWcL8Bc8tB42Ph6Dv+NkvAoBi4iIDHrN7fB+CTy6EbbWWsemxsMdE+HMNLCrbNwJYai8D5X+16t3zBdccAF/+tOfSEvrXSAgx87A4FxG8m8u4XMqKKGBPOKYRBJ5xPf6/C4cXEAeaynFG2D8IkYHDGhKaeB5NvMB+9hLLY20MY8cppFCA218lYlkol86MrSciY2TMFh+WNvt2RjEA+EYhA7gfEoxicbgNdx4gWjABBp8/9+JyWd4FdKIiIgMASsr4dYV0NrhRfe6KvjGx/CPM+Dk5ODNTUQGXq9CmmXLltHc3PsCtXJ8bNiYRAqTSOmX808miZuZxt/YSCPtAITj4CrGMzXAfTbRzp/4nBUUs49aKnzbpV5nJ420k0scv2Y1P2AOsQP6llakdyZg5+fA23hYjokBnIaNEEw+xeRBHANaA8bECoYcQApQj/XLfAQG9ZjU0bHAsYiIiAxW9W3w152dA5qDGt3w4l6YmWh1zxKRE4P2nki3QnBwAblMJon9NGBikk4UWUR3qXXRSBsbqWQJ+/BiUtNhCxbAUgqYRzZvsIvd1PS6PbjIQJuOjVpMwEMDsBkvUcB3cTBugGu/JGGQiEEzUNzheBkm6UASkKWW2iIiIn5tHmj3QrgDjEFUsq28BdZXdz++5gBUtULykXuGiMgw0quQJicnB6ezd12EZHAzMMgmhmxiOh2voxUPXmIJZSMV/JWNpBLBBipwYiOOUOppoxk3AF5M/5/3U6+QRoacMAwWYmcyNkoxsQPpGKQEIQwJA9bg4Xzs/BFPp7ESYD4Gk1Q0WEREhJpWa+vQO8XQ4IZJcTAvFcbEHP22AyHSAXEuKGwMPJ4QChHavSxyQjnmkKagoICsrCwMw2Djxo3+46ZpUlhYSHZ2dp9OUAaXYupZTiFLKcCDyQQSicRFAXVk+2rNNOPmANWMJp4WPJi+bRcuX32MKEKOeB9VNNNEO5G4tC1KBhUDg0wMMoM8jxJMlmIyFoPrsfOib3WPDZiBwY04GKuQRkRETnB1bfDMTlhUcujY3gZYtB/unQKTe1/GsddSwuHLo2D96sDjV42ECDVTFTmhHHNIM3LkSEpKSkhO7lzBqqqqipEjR+LxeLq5pfSFChrZShWrKcGNl1mkM5Z4Uons9/supp6H+Jh91PmPfcp+PHj5H2ZSTyuZRFFIHQYG5TQRhYs6WskiimbcROFiFLFdzl1KAwXUsYZS3mE3rXjIIYZLGcvJpB812BE5kbiBduBzTJIw+R4OPIALKMHLdrxcrd2sIiJygttR1zmgOajJA3/bBfdHQcQg2BRwdhp8lgMv7Tt0zABuGA2nqmiwyAnnmF/Fm6aJEWAjZ0NDA6GhWvXQn/ZTx59ZzxOswdOhKOjljONuTiaL/l23+RklnQIaL15qaaWJdj6jhHjC+DrTeIxP8WLSRDvxhBJPKDczjZUU8z/MIJMoAAqoZTOVeDBZyj5qaOO/bAfAhkE1LRRSRzkT+BL5OFRjQwSABAxGYrAbkwMYlOGlHesFXQhwobo6iYiIsKqy+7GttVDSDHmDIKTJjoIHpsKVI2FlBdgNOCUZ8mOs7U4icmLpcUhz++23A2AYBj/60Y8IDw/3j3k8Hj755BOmTp3a5xOUQz6llGfZwEJyySaadjysopQX2cp0UriJqf7rVtLEDqrYRCURuJhKMiOJJfQ4P11vxc1SCjodMzD8wclKirmGiSynkFuZQT1tHKCZ2aQTjQs7Ns5lJCOIwcBgExX8ghVkE8NGyplNOr9nLS5sOLHjxWQvtYTh5BW2cQoZjAywAkfkRBSNwVXY+YWvBbeDQ7/MU0H1aERERAD3ERodmoA5iBohpoRbl/lpwZ6JiARbj9+xr127FrBW0mzYsAGX69DmSJfLxZQpU7jjjjv6foYCQB0tfEox1zOZl9jG39hIOE7OIJv/ZRYvspULySOFSIqp51d8wnYOlYp/ns18lQlcSB5h9M1HBgYGyYRTR6v/WC2tvMMewnDwFSZwMWO63K6WFp5kDTW0ModInmM9E0mmHQ9uvERiw46BF5MG2ojASSmNCmlEOpiJjbtx8C887MbEBczBxqXYyQjCqrMmTBoxcQKxWvUmIiKDwPQEeLs48NiICHVMEpHBqcchzeLFiwG44YYbePzxx4mOju63SUlXLbhJJZK7Wezf6tREO2+xi60c4CtMoIl2vJi8wvZOAQ1Y3ZX+ykbGEM8UUo75/kNwcAbZ7KSaFtw00EYLHkKwk0MM00mlkHr/9fOI4yTSA56rgDr2+rZNeTBpx4vD98m/iYkHL9GEMpcsJpFEOE4i+yhYEhkunBjMwc5EbFRhYgPSMPw/SwOlHZPNeNmMyRI8FANTMDgfOxOAWG29EhGRHmr3wJ4G2FID9e1WB6a8KIg/zi0/Y6NhShx8fliLa4cBX8mFGBXkFZFB6Jj3vvzlL3/pj3nIUdgxeIc9nWrRgIEdg0LqCMFBEuGUUM+yw7YlHWQCH1J0XCENwCzSeJltLGIv7Xj9x9OJ5Fomsp0q8klgGqmMJZ54An880dqhZbCJSbSvKHAkLhpoYxSxXMY4XmE7r7OTGEIooR4XdsaScFxzFxmuojCICuL2pk/x8DEm/4ebOsADvAk8h4ef42QuXkZqZY2IiBxFmwfeLYY/7+i8TWl8DPxvPpS1WDVkQuyQGwUjo45+zvhQ+J/xsLQU3t8PTW4YHQ0XZ8PEuP57LCIivaH2H0NEHe3U0oodGx68OLFjA9rx4gVKaKCRNtrw0oS72/McoPm45+DAxulkkUoESymgBTezSWcyyfyTTdzPaSRi1SoqpYH32MNKinFh5zSyyCeBOMJIIIxQ7LTgYQsHuIQxvMsevsE0nmA1VzCOn/ExHkyicJFGBJ9TwT4+4iecrm1PIoNEBV62YvJ7X0DT8TdPMfAkbiKwEwakKqgRERGgsR1q2yDU3nmFzI46+OMO8HYIaGzA7CR4cjv8fSc0+j7ny4mAB6bBggywH+XpJSXMKsh7TroVBMWGWEGPiMhgpZBmiLBjkEI4k0lmDzXU0UYTbsJwkEU0brz8hjVcy0QyiaSIhoDnmUTScc+hgFr+yRaaaCefRH8B4P+ygzQi2U0NiYRTRB0Ps5I91Ppv+yFFzCWTrzOVLKI5j1G8wg6KqGc2aZxBNnuo5vecx4tsIwoXsYSSTDiRWGtRa2jlE/YrpBEJklZMCjFpwCQSgyZMGoAK6LA+7pBCTIqB3ZikDuxURURkkGl1w+oD8PI+KGqCKCcszITTUiAxFD6vsroadQxpZibCnnp4ZIN1fZtv4ei+Rvj2J/DCfKvuTE/EhfT9YxIR6Q8KaYaIdCI5iXSWU4QLO1U0W1XpMamnjXwSeIfdvMVuLmMcj7OqyzliCWF6L94qNdJOGQ2U08Suw2relPiOm5i8w55OAc1BH1LESWQwj2wuZRxhOHmPPYTiIIMoRhNHNCHMJRMbBs0BVgR9yn4uYyxO1bkQGVDFeHkOD5/ixQ04gaux04YV0ARqkGEDWoCigKMiInIiWVwKv9966PmiwQ3/3G11WIoPgcJGODUZnDb4pALq2mFSHNy/1teJ6bDz1bXDO0U9D2lERIYKhTRDhAM7V5DPDqrYTQ2VNPnHrmI8hdThBZZSwMWM5ltM519soZJmbEA+iVzHJHKIOe45ROCkipaAYzYM2vFQQVO3NXEA3mMPc8kkjlCuZgITSeKXrKSIBsJw0IaHKlr4OlNZzD4aaO90+0hfO28RGTj1mDyJm3UdXiK3A1vxkoxBKNAGh1XMglgMwkFlv0VETnAlTfCP3Z2fJ0Lt1hakn31urZJpdENBIyT56sgsK7WuV9horaAJVH1tay3sqYNQB6SFD8QjERHpfwpphpCRxPIAp/MK2/mQQiJxMY0UCqljI5UAvv5OsJBcppPKAZpwYCeTKMJ7+VYpiXBmk87HFHUZO4NsDtBMO95OhYEP1+yfIdTRyrOs5wAtmJiU0ICJ1cnqd6zmOiazmH2dbn8OI7EFsUiqyIloL95OAc1BGzC5DBtfxs4fDitrngGchY14IE/BqogMUaYJNW3WNpxodQI6buUtUN3W+djUePj7LmvrU2YExLnA2QwVLfDEFrg2z1qRmRYGxU2HtjqBtSWqxWMFOo9tgapWuCgLzs1QxyYRGfoU0gwxGUSRTwI7qKIdL++wxx96AOQSS4Kvq1IKEaQQ0Wf3HU8YlzGWSJwsoYA2XwvusxjBDFJJJJxYQsghmg8pwgBCcRCGg4Off8wiHZdvq1IBdWyjigM0s5da/+NIJpz9NGD4bnXw0Z1FTq9q6ojI8TnQzfEm4C3c3IqTcRg8i4cKTMZhYwE2UoEIDHIVrIrIENBMCwUU00AT0URgb8jgnaIQ1hywWjafmQanpkC6Vmwcs0BRfUooJITA/FQrcPFgtcxODIH8WMiJBMMGXxsDD204dDuvaa26CbXDnGR4dqf1WvG5XdDmhatHgaGnHREZwhTSDEH5JPIftlJIfafjdgyuYry/pXVfiyaEkcSSRiR3MwcvJjYM9lDDZ5SwkFxeZyejied5NtOCBwc2MokikXDiCWU2af7zNdBGM272dQhoACpoJplwInByChmE4uBUMhlLQr89NhHp3pGi3koMDOB/cHAeNqqxtkd5gUxsjMAgXCGNiAwiLZi4sX63Gb7fTwUU8zTPs5ZNePHS0m4nwz2dWaGXU9ac4g8BVpTDnZMhNSyYj2DoyYiwVsSU+JqMzk22gpTKVqst9qkpkB9jdV16qwie2g4Z4ZAdATeMhlvGWq25273gMa1w54FpsLKi8xaq1wvh9BRo9lj35TCsc2RGKLgRkaFDIc0QlEYkdzGH19jBhxTRips84rmccUwnpV/veyapuPHyPJsoogEHBlNI4etMZT/1/I1NpBLBPZzCq+xgHWW04CafBE4inT+xjnEkMJcsYgmhBfdhmySsYsiVvsLIVzCOXOL79TGJyJHlYJAMlAcYS8NgBAYGBmNU0FtEBrEDeFmDydt4aAGmYGM+NpJp4Lf8hS3sBKyVGkXNHta3f0ZztJtJid9gfaXVK3pHPXx+AFIzg/hAhqD4ELhpNDyyEaYlWF2ettbC9lormNnXAHnR8JVR8N5+ayV1mAPaTfjDdrghF14607qeYVjbz5aUwO7DmplOiIV/74XlZeD2vbyMcFircealgkO7b0VkCDBM01TbjQ7q6uqIiYmhtraW6OjoYE/niDx4KaURD17iCSVyAFeZVNHMAZqxY5BBFO14+CHL/V2fXNgYTxKTSKSeNhaxlwba/XFMFC7uZy6/Zw3Ps7nL+ceTyLmMYgEje9WRSkR6z4PJbkx+RnunrU/xwPdxMlE1Z0RkkKvB5Pe4WYG30/FI4BZ28AiP+o+1uGFzjfUm346N+9z38Mam0f7x8THw0MzONVLk6EwTttVaAc2P1kC00+rwVNtmbVNKDYORkdbWp821kBVuteZ22SHcDg/PsrZAvVEIT27rev5Yl7VdalEJRB5WhtFhwIPTYWLcwDxWkeMxlN6HSv/SSpohzI6NDKKCct/xhBHPobW+1bR06jjVhpf1lJNGBD/mQ8JxkE+ivzNTPW38lY3cxBTKaWQZhbjxYgAzSeNixrCEfVzN+IF+aCLisxMvH+FlA14SMbgJB05gLyapGIzGIEMBjYgMAVvxdgloAJqBTRzAAwHXAnrw0uyo7XRM22aOj2HAuFh4aZ+1tckwoNULe+utwsItHviwDL47EararGLBdhukhEGTB6pbrZBmbAy4bFaINj4a0iPA7YWsCOv2YQH+Id0mLClVSCMiQ4NCGunEjZcdVLGPWmwYZBPDWOL9e7a7E4GTRMKopdV/LI0I1vs2SITg6NKVaQMVfIUJzCWT08mmDQ8u7JTSwJvs5GLGkIVSZJFg+BwvD9FOo+/rbZh8hJcvYecy7ISpzoyIDCEfBwhowCpW6yWSVkx//awQu9XJqcr3kibU27lS8JlpWkXTG21esPnyfZfNKgA8ItKqLdPQbh0rb7a+Lm+GeJe1mibUF76MiLRq1GyrhXf3w2+2WCHM2GjIj4MLsuDdYrr8i+9rAI/XCn5ERAYzhTTiV08rf2MTv+YzqmgBIJkI7uUUvkAeEXTf0zCKEC5iNP+Pz/zH7NhowY3hO8/hQY8XEyd2LmIML7CZFRTThpdoXFxJPueRq3bbIkFQh8nTuGnE6siRA6Rg4AU+xMN0bIzXz6aIDCGBIxpLK+kkEU+jb8u2YVhbb+raYbSRSVVlhv+6o6Ngskrl9cqpydaWJ7Dq/9S3W4V+k0Otttwbqw8VA3ab1r/duBhrpQxYdWVyo+Afu2FTDcSHWnVnXHYrnGlxW/9G66o63++ISAU0IjI06FeV+H3APh7kQ39AA1BOI3ewiM8oOertZ5HGl8jH5fu2KqWBKSSTTQxRAQKekcSSRDhZRPMdZvFLzuJh5vMwZ/JlJhBHaN89OBHpsf2+GjSxwDnY2A38Cg+/xUMVsBcv7iO+5RERGVxOOsJL3hoSuJObiSPGfyzSCWdEJ3Kn4wZKamLIjoDr8+D7k9TZqbcmxcOoSOvPduNQ/Zg2L9yaD2s7FD8Ld1hdnm4eAxEd6sxsqoE3iqDVYxUZrm2zujklh8IHJZBx2L+Rw7AKB4uIDAVaSSMA1NLKc2zo0mkJoB0v/2Yrs0gl4gjFiaMI4UvkM4cM9tOADUgigkLq2ErnjzMcGFzNeGJ853NgZwSxffmQROQ4ubFe9J6MjR/hpqbD2H/wUoBJIk5mB2d6IiLHLB+DCRhsOux1TghwCQ6mM55fcA872UsFB0glmTznCJIdScyZbr3Jj+p+QbEcg9QwuHMSvF8CS0utlTGT42B+GnxaYdWkKW2y6tKclQazkyC9w46zxnYo8O3FbevweYHHtFbgJIdZK3MOinZanaXGHsrgREQGNYU0AkAdLezq9Fass51UUUPrEUMaACd2cokjl0OV2W7nJBaxlw/YSzNu8ojji4xlMsl9NX0R6UPJwHRgEd6AvxVqgLfwMhmDUC3IFJEhIBEb38HBMry8j5cWTPKxcSF2Jvq2b6aTSvrhHSUNiBu45pknjIwIuC4Pzs+wtjRVNluttvc2wqZaazvTV3Nhejw4DysEbDesFTaB1LRZXZ6mJ8CsJCtcy4qw7k9EZKhQSCOAtQomk0hKaAg4nkUM4TgDjh1NGpF8lYksYCTtmMQRQthxnktE+l8yNuZh50+0dxmLB5ow+QAPN2Ija+CnJyJyXFKxcSU2zsH0vR4xcKq+VlAl+bYlpYXDT6ZDSZO1GiYlFBK72VYW6rBCnOyIQytqOhoXa22pile4JiJDlD4CFQBiCeVaJgccs2NwKWOIo3ebsJOIIJ1IBTQiQ0A2BuMwiMZqSxsKZAGxQBkQDr38jSAiEhxxGCRjU0AzyMSFwPg4mBDXfUBz0NgYuGNi1/pAoyLhvikKaERkaNNKGvGbTzbfYRZPsJZW3ABE4uJ7zGYWaUGenYgMpJHYOBM7W3GTiNWmthpo9o1fgYNE7N2fQEREpJ8kh1mt0DPDre1RlS1WcDM5Dkar9oyIDHEKacQviQj+hxmcy0h2Uo0NG6OIYTTxRB+lFo2IDC8GBpdg430MPjqs0OaFGJymhZhygnG7oXQvFO2CthZIGwnpIyEiKtgzEzkxJYVZl5OSrWL3aq8tIsOFQhrpJJIQZpDGDK2cCaoqmmnGTTQuohSQSZCMx86TwMd4eQsvduBi7MzCxiiFNHICaW+DT96F154Gd4dSTRNPgou/DvGqgy8SNA49HYnIMKOQRmQQqaKZZRTyJruopYVUIrmUMcwijXDU+1MG3hjsjMHOVzCxYdWoEjnR7NsG//0jeL2dj2/8BFJzYOE1wZmXiIiIDD/KnkUGiSba+Csb+TOfU0IDTbjZTQ2P8invsAfzsC0nIgPJiaGARk5Y65Z1DWgO+uQ9OFA6sPMRERGR4UshjcggsZc6PmBvwLF/sYUi6gZ2QiIiAkDl/u7HGmuhvXXg5iIy3Jn6TEpETnDa7iQySOymmm4+qKWBdspoIgu1LBARGWg5+bBjfeCx+BQIU/FgkV450ALrquDNIihtgllJcFoKzEgM9sxERAaeQhqRQcJ1lHbG2moiIhIcE0+C5a9Ca3PXsfmXQUz8wM9JZLioaYF/7IY7V4HXt4rmP/sgPRyePQ1OTw3u/EREBpq2O4kMEqOIxdnNj2QS4WSij2pFRIIhazRcexckdmh8GBZhFQyefGrw5iUyHGyqhXs6BDQH7W+Cn30O+xuDMy8RkWDRShqRQSKHGL7KRJ5hfacSwS5s3MQUkogI2txERIYjtxvKCqFgG+zeCEkZkD8LMnPBOGzx4rgZcOsvoLzIasMdlwzJmV2vJyLH5tNKaO+mDs3SUtjTAOl6CSQiJxCFNCKDhBM755PLCGJ4lz2U0Ugeccwnh3EkBHt6IiLDSkMdbFsDa5ZAQw2MmQauEHj6QbjiNhg/q+ttouOti4j0nfq27sdMoNUzYFMRERkUFNKIDCKhOJhOKtNIoR3vUevUiIjIsWush7f/Cr+9EzzuQ8fHzoCb7oOX/wBpIyAuKWhTFDlhTD/C51AjIiElbODmIiIyGKgmjcggZGAooBER6Se71sMf7usc0ABsWw1LXoSR461tTSLS//Jj4ey0wGPfmwgT4gZ0OiIiQaeQRkRERE4ony0Crzfw2OKXICsP3EfYgiEifSc3Gh6eBd8dD8mh1puTqfHw9Fy4ODvYsxMRGXja7iQiIiInlOpysHXzMVVzg1UMOFZbnUQGzIQ4+OkM+EoutHkhzgWjooM9KxGR4NBKGhERETmhjJ8Ndjs4nF3HRoyHyBhI0Sf4IgPKYYNJ8TAjUQGNiJzYFNKIiIjICWX8bEjNgZAwcIUCvjbahg2+/F0YPRUcWmssIiIiQaCQRkRERE4oI8bB3U/ByedBWCSER0HuJOvYqRdARFSwZygiIiInKn1OJCIiIiecsdPhjt9B0U6rSHBsEmTmBntWIiIicqJTSCMiIiInpMhoGDc92LMQEREROUTbnUREREREREREBgGFNCIiIiIiIiIig4BCGhERERERERGRQUAhjYiIiIiIiIjIIKCQRkRERERERERkEFBIIyIiIiIiIiIyCCikEREREREREREZBBTSiIiIiIiIiIgMAgppREREREQGAbcXGtqt/4uIyInJEewJiIiIiIicyJrdsKEa3iqG8mbIiYQFGTAhFhz6SFVE5ISikEZEREREJEjaPfBGETy789CxgkZYUQ7/kw9npgdvbiIiMvCGTDb/s5/9jFNOOYXw8HBiY2MDXqegoIALLriA8PBwkpOT+f73v4/b7R7YiYqIiIiI9NC+RvjH7q7H3Sb8ZSfsbxr4OYmISPAMmZCmra2NK664gltuuSXguMfj4YILLqCtrY2PP/6YZ599lmeeeYb77rtvgGcqIiIiItIze+uhvZsaNDVtCmlERE40Q2a7049//GMAnnnmmYDj7777Lps3b+b9998nJSWFqVOn8uCDD3LXXXfxwAMP4HK5BnC2IiIiIiKBNVNPJYW00kRsTBxjY7LZVusMeF3THODJiYhIUA2ZkOZoVqxYwaRJk0hJSfEfW7BgAbfccgubNm1i2rRpAW/X2tpKa2ur/+u6urp+n6uIiIiInJj2s4N3eIpitgHQEuIiKW8eOQeu4t29SZ2uG+mA1LBgzFJERIJlyGx3OprS0tJOAQ3g/7q0tLTb2z300EPExMT4L1lZWf06TxERERE5MdVQxss87A9oAFz2NnY536U5/j/kRneupfilkZAZMdCzFBGRYApqSHP33XdjGMYRL1u3bu3XOdxzzz3U1tb6L4WFhf16fyIiIiJyYtrPdqrp/OGhzQbp4VAZtoi52YXEuiA/Bu6eZLXhNowgTVZERIIiqNudvve973H99dcf8TqjRo3q0blSU1P59NNPOx0rKyvzj3UnJCSEkJCQHt2HiIiIiMjxqiTwh4EOG0SHtTLFVcdp0RDlhPDAJWpERGSYC2pIk5SURFJS0tGv2ANz5szhZz/7GeXl5SQnJwPw3nvvER0dzfjx4/vkPkREREREjlcUid2OGdgIt4eREj6AExIRkUFnyBQOLigooKqqioKCAjweD+vWrQMgLy+PyMhIzj33XMaPH88111zDww8/TGlpKT/84Q+59dZbtVJGRERERILCg4diSvHgIZk8QoiglcYu18tlGkmoNqKIyInOMM2h0djv+uuv59lnn+1yfPHixcybNw+Affv2ccstt7BkyRIiIiK47rrr+MUvfoHD0fMsqq6ujpiYGGpra4mOju6r6YuIiIjICWYtG3md93mNdzExuJCzOI85rOApGjjgv14quVzEd0kmJ4izFZFg0vtQOWjIhDQDRT8cIsNUWSPsPADbDlgb/ccnQn4SOO3BnpmIiAxDa9nAjdzB52zudHw6E3mSnxJCHU3UkkAGyYwimoQgzVREBgO9D5WDhsx2JxGR47arCh5dCS9vhYOxdKQTfnEmjI6H1aVQ0QQTk2BCEoyMC+p0RURkaPPi5U2WdAloANawkVf5gG9xPan0TW1GEREZPhTSiMjw1uqGV7bBS1s7H48Phc2V8OvPYEfVofBmUhI8tgAmJg/4VEVEZHjYSyGv8V6346/zPlfzRYU0IiLShS3YExAR6Ve7a+CFrp9kcsFoeGQFFNVBRIc+pxsq4LFPoKltwKYoIiLDixcTk+4rClgjxkBNR0REhhCFNCIyvDW3Q2VT52PRIVDbCk3t0OLuWpfm3V2wvWrg5igiIsNKBil8gbO7jWEu5BwySR3QOYmIyNCg7U4iMrzFhMB3T4KqZvACKwqhqsUKZwwg0mVtieqo1QvN7kBnExEROaowwjiXM3iJt1jHpk5j48jjIs4hkoggzU5ERAYzhTQiMnztroY/r4W3d8OmCsiNg2/PttaZN7XBj063Apq/buh8u+RwSAgLypRFRGR4mMlknuQh3mYJr/EeJiYXcDYXcjazmBLs6YmIyCClkEZEhqeKRnh0BRTWWYHL3EyYNwJ+sBhC7RAfZnV0yo6Br0+HJ1eDx1c/4MapVtcnERGR42TDxmymMYExXMVFgEEOGYQQEuypiYjIIKaQRkSGpx1VVkADEOqAs0fCr1aC2wvNprXNKdIFe2rgo0I4Kd2qQ3PjVPjyRDBU0FFERHovggjGkBvsaYiIyBChkEZEhqeiukN/DnNAdQuUNh46Vt9m1alJiYD6VvjBXOvPYxLApoBGREREREQGnkIaERme4jrUlAlzQmWHgMbwXTxmh+DGhHGJAzhBERERERGRztSCW0SGpzHxEO60/tzQBhkxh8ZiQ63uTgdFOjuHOiIiIiIiIkGgkEZEhqfsGPjOSRDhhDYPuGwwIsb6OiXC2u500JcnwtiE4M1VREREREQEbXcSkeHKMODkDEg/yyoIXN8Gf7gQnlgFS/dZbbjD7HDlBLhpKoTo16GIiIiIiASX3pWIyPBlGJATa10OGpcAO6utLVBJ4ZCfaNWsERERERERCTKFNCJyYkmJtC4iIiIiIiKDjGrSiIiIiIiIiIgMAgppREREREREREQGAYU0IiIiIiIiIiKDgEIaEREREREREZFBQCGNiIiIiIiIiMggoJBGRERERERERGQQUEgjIiIiIiIiIjIIKKQRERERERERERkEHMGegIiIyFG5vbB6PyzaC9sOwLgEOGskTEsFpz3YsxMRERER6RMKaUREZHAzTXhjB3z7bWj2WMfe3gV/XAOPLYAvjAHDCO4cpc8U7YLiXdBYBzEJkDUGkjOCPSsRERGRgaGQRkREBrdtB+DexYcCmoMa3fCjJTAmAcYlBmVq0rfWfwy/+T5sXXXo2EkL4BsPwugpwZuXiIiIyEBRTRoRERnc9lRDRVPgsdJG2Fs7sPORfrF3G/zqfzsHNACfvANPPwhVZcGZl4iIiMhAUkgjIiKDW5v3KOPugZmH9Kui7bBrQ+Cxj9+Egu0DOx8RERGRYFBIIyIig1t6JDi7ebpy2SAjamDnI/2isqT7Ma8H6qsHbi4iIiIiwaKQRkREBrdxiXDN5MBj102BsQkDOx/pF4lp3Y/Z7BAVO2BTEREREQkaFQ4WERluTBOa3dbqk+HQnjoqBG6daa2YefZzKKyDrGi4fgpcNAYiQ4I9Q+kDmaNh1ATYvanr2JyFkDNu4OckIiIiMtAM0zTNYE9iMKmrqyMmJoba2lqio6ODPR0RkWOzoQze2gUfFUJ0CFyeDzPTIGOY/D7bVQVN7RDhhFHxwZ6N9LENK+Cx78L2tYeOzT4XvvkgjJ4atGmJiIj0O70PlYMU0hxGPxwiMmR9WgzfeAP2N3Q+/pWJcPtJkBkTnHmJHIPCXVC8CxpqIDYRskZDSlawZyUiItK/9D5UDtJ2JxGRvtbugX21UNsK4Q7IjoEIV//eZ0MbPLG6a0AD8PeNcO4ohTQyJGTlWhcRERGRE5FCGhGRvlTeAH/bCB8WQLsXDCA/Eb4xA0bF9d/9FtTCkr3djy/aC6dlQYTqt4iIiIiIDFbq7iQi0lfaPdaqlcV7rYAGwAQ2V8KjK6Cisf/u2+MFzxF2r7Z5wK3drSIiIiIig5lCGhGRvlJQC8sLAo8V1sGu6v677/QomJrS/ficTIjs5y1XIiIiIiLSKwppRET6Sk3roRU0geyv77/7TgiH22ZDaICW26dmwZRksOtXvoiIiIjIYKaaNCIifSXcYdWg6W5XUXxY/97/mSPguUvgT2tgTam1cuaSsXDBaMhP6t/7FhERERGRXlNIIyLSV7JjYEISbKzoOhbtgtx+LBwM4LDBGTnWtqfienDZIDMaQp39e78iIiIiItIntPZdRKSvRLjg5umQHd35eLQLvnsyZA1QC+yYUBifBHkJxx7QtLlhZxV8Xgp7qsF9hO1bhzNNKGuA4jpobj+2+xUREREREa2kERHpU6Pi4KfzYfsB2N8AcaHWCpqBCmh6Y1cV/GktvLYdWjyQHglfGAPXToaUyCPftqgO3t4JHxeBzYCsaLhoDExOUS0cEREREZEeUkgjItIXSuqtVtvLC8BrwmlZcHIGpEUFe2Y9U1IP9y+F9/YcOratCvZ+Bs1uuPMUCO3mKaOsAX79KaREwLhEKGkApx0W77Pq80xPG5CHICIiIiIy1CmkERHprcJaeOwTeH4zVDWBzQZ/2wALc61wIyc22DM8ui0HOgc0B7V64KWtcEV+98WHN1fAyFj41UooqDt0PDUCEsIgNxZi+rlosoiIiIjIMKA16CIivbW8AH67ylqN0uaBFjfsq7WCmsV7gz27ozNN2FbZ/XhFo7U6pjv7G+DpddZ1bMah46WN8LPlsKemr2YqIiIiIjKsKaQREemNsnorjHF7rIDC6NCDu7EdXtwCB5qCOsUe6W4rE1jbtwKNmyZsLLeCqTWlVjhlYHWVOqiw3gpxRERERETkqBTSiIj0RkUz7K+3whmvCR4TvBz6c2EdNLYFe5ZHZhgwKhaSIwKPT0kO3D78o0L40n+scOrg4212W1ukDgY18aFQ3dJvUxcRERERGU4U0oiI9Eao3epgZJr+BTSdTEwm8MAgk5cA351tdaPqKC0C7juja3en2hb47WdQ2WKFNGkdxtu91kMOtUNiuFVQWEREREREjkqFg0VEeiM7Gs4fDf/dDnWtncfCnfClCVaXo+sCrEQZTDKi4OxRkBButQ8va4TR8TA7Haakdr3+vlqrFg9YrbfPHgkriqxVMx6vFc5EuayW5HnxA/tYRERERESGKIU0IiK94XJCfgL8+HT49xb4pNja+jMzHW6aCphWAd2hIDvGCmvK062VQXFhEObs/vqGAU4DNlbAVROsmjQfFYLbsFbSzM6AW2fBiNiBegQiIiIiIkOaQhoRkd7KiYFJyZAUboUVDpsVdni88Od1cMvMYM+w5+w2SIs6+vXSI+HMEbCuDHZVw4+XwfwcK5QBOCkDZqaq9baIiIiIyDFQSCMi0luxYVa4sa4MxiVa4czLW6GyGVIjYGJS97eta4WGVohwQUxo99cbbBIj4Jsz4Jr/WjVoAD7YZ13OGWnVqRmboJBGREREROQYKKQREekLJ2da/39hExTVg9MGp2bBleMhI7rr9etb4dNieGUbVDRBQhhcPNY6T3TIwM79eIU74duzrO1Oq0usGjTzRoDdsLY9nZYNmQEeu4iIiIiIBKSQRkSkL4Q6rIBicjJUtVghTXoUOO1dr+v2wn+3wQubDx1rbIfffAbF9fDVSYFvN9g0u+G9PVbr7nNGgtuEzZXQ3G6NNw3y1uMiIiIiIoOMQhoRkb4UH25djqSg1lpBE8hr260VKEOhI1JimFV/p7zRuhyuJ7VtRERERETEzxbsCYiInHBKGqDVE3is3WutphkKsmNg/ojAYzPTrILKIiIiIiLSY1pJIyIy0OzGkccdRxkfLEIccPVEiHTCu7utLVuhDjg9Gy7Ph6ghUltHRERERGSQUEgjIjLQMqIg0gUNAWq2hDshcwitQEkMhxumwjmjrMcT5rSKBTu0UFNERERE5FjpVbSIyEDLjIYbp3RdUWMz4LrJkDXEOiIZBmTFQH4SjIhVQCMiIiIicpy0kkZEZKAZhtUJKjkS3t8NhXVWJ6hzR8GEJCusERERERGRE45CGhGRYHDaYUqK1bK71Q0uh8IZEREREZETnEIaEZFgMgwIdQZ7FiIiIiIiMgiocICIiIiIiIiIyCCgkEZEREREREREZBBQSCMiIiIiIiIiMggopBERERERERERGQQU0oiIiIiIiIiIDAIKaUREREREREREBgGFNCIiIiIiIiIig4BCGhERERERERGRQUAhjYiIiIiIiIjIIKCQRkRERERERERkEBgSIc3evXu56aabGDlyJGFhYeTm5nL//ffT1tbW6Xrr16/ntNNOIzQ0lKysLB5++OEgzVhERERERERE5Ng4gj2Bnti6dSter5ennnqKvLw8Nm7cyM0330xjYyOPPvooAHV1dZx77rmcffbZPPnkk2zYsIEbb7yR2NhYvv71rwf5EYiIiIiIiIiIHJlhmqYZ7Ekcj0ceeYQnnniC3bt3A/DEE09w7733UlpaisvlAuDuu+/mlVdeYevWrT0+b11dHTExMdTW1hIdHd0vcxcRERERERE5SO9D5aAhsd0pkNraWuLj4/1fr1ixgtNPP90f0AAsWLCAbdu2UV1d3e15Wltbqaur63QRERERERERERloQzKk2blzJ7/5zW/4xje+4T9WWlpKSkpKp+sd/Lq0tLTbcz300EPExMT4L1lZWf0zaRERERERERGRIwhqSHP33XdjGMYRL4dvVSouLua8887jiiuu4Oabb+71HO655x5qa2v9l8LCwl6fU0RERERERETkWAW1cPD3vvc9rr/++iNeZ9SoUf4/79+/n/nz53PKKafwhz/8odP1UlNTKSsr63Ts4Nepqandnj8kJISQkJBjnLmIiIiIiIiISN8KakiTlJREUlJSj65bXFzM/PnzmTFjBn/5y1+w2TovApozZw733nsv7e3tOJ1OAN577z3Gjh1LXFxcn89dRERERERERKQvDYmaNMXFxcybN4/s7GweffRRKioqKC0t7VRr5uqrr8blcnHTTTexadMmXnjhBR5//HFuv/32IM5cRETk/7d332FW1nf+/5/nTO+9wRR6L1JEsaNELClGo2ZN0cQ10ZDsGrNZTUOzG6Oru9+sySZxk3WNv924lsSaGAUbNkBEUAFB+tCGOkzv5/z+AE4cGRAYZs6BeT6ua66L8/nc577f93hfM2defookSZJ0eKI6kuZwzZkzh9WrV7N69WpKS0s79e3fQTwrK4vZs2czc+ZMJk2aRH5+PrNmzeJrX/taNEqWpGOntgVW7oKmNshNgZH5EHdcZOySJEmSjkAgvD/lEOD+9JJizOIquGcBPLESWjugMBX+dgJcPR7KsqJdnT4iTJjdbCFEB6lkk4a/R7rUFoL3Q7CmA0LAgCCMjINUw0dJUt/k36Ha77gYSSNJfdL7O+AfZsNrm/7atrUBfvo6tIZg1pkQHxe9+tRJNVUs4XniiWc3W6hkKalkM4ozKGYwZYwinoRolxl9dSF4tBVub4L6fW1JwPXJ8LeJUOgzLUmS+i5DGkmKRe2hvVOcPhzQ7NcRhvuXwOdGwriiXi9NB2qghhe4nywKmcNvWc1C2mgG4Fl+zWf5R3axiQlcQBx9PIRY2AE/bIKOD7W1APc0w+AgXNnHvz+SJKlPc1yxJMWi3Y17Q5qD9jfB9obeq0eHtI21xBHPfB5nA+9FAhqAdlr5M79gLYvZyPJeqSdMmM2sYjGzWcQzrOdd2mjrlWsfUmsIHmntHNB82O9aYPvBOiVJkk58jqSRpFgUCu9dJPhgAgFIS+y9enRIVawlkRT2sI1G9nykN0wz9bTRwkaWMYCxPVpLG228xVM8zD9Rzd5dEFPI4GK+ydl8gUwKevT6h1Qfhg2HCGE2haAmDIW9V5IkSVIscSSNJMWi/FQYnAO5yV33n10Bw3J7tyYdVDKphOggTOigx7TTQnNkEZaes5o3uY9vRwIagCbq+AN38B4v9fj1DykjAEMPMZ1pYBxkB3qvHkmSpBhjSCNJsSg+DgZmw//7BGR+ZMTMsFyYdRbkpUalNB2ohKHEk0gKGcQdsDhwgCBB0smlmCE9WkeIEAt4gjZauuyfw3+zm609WsMhJQThc4lwsEFgX02EAtekkSRJfZfTnSQpVg3M2RulP/I5eG87bK2DsYUwvghGOx8klhQygDJGMYHz2c0Wqli9rydAkDgmMIN22ihjZI/W0U4rm1hxQHuQONLIppk6qlhNPbspZADJpPVoPV2aHAf/mgo/aYLt4b1tmcCNyXCmH0skSVLf5qchSepN9a2wpQ46QlCQtnda06FU5EBZNowvhPggZB5k+pOiKo54hnMaWRRSQAUv8gAfsIA0spnCpxnGFIZxKtn07G5c8SRSxEBW8WakLUg8meSzkw0kksISnmctixnCRM7na+TSr0drOkBqEK5IhLFxUBnau4hwWRBGBCHRAb6SJKlvM6SRpN6wvR7e2wG/fguW79i7KPCQXPjyODi9DJIO8eM4GIBcpzbFugQSKGMkZYxkAhewi02E6CCZDIoZSFwv/MoNEmQql/IGfyREOwDp5LCddbTRwhQ+vW+kTZjVLCKR/+XT3Ej8Qecf9ZBAAEbFw6jevawkSVKsM6SRpJ62sQbmboB/fg327NuaeVcz7G7eu412SjxMLYtujTqmMskjk7yoXHswJ/Mlfsoj/DPNNBAmRJgw53EN7bR1Wrx4JfPYwaWU9PBaOZIkSTo8hjSSdAxsI0QzkAoUfHhN9nAYXt0I72z7a0Cz364myEmGP6yAMYWQkdSbJesElUIaZ/A3DOIktrOBenbTRB1bWMV63ul0bAftNPXCjlOSJEk6PIY0ktQNOwkxhxDP0kE1UAB8hnjOJkgWAdjWAGurYfnOrk+wowE27IGaZkMaHTOJJDKA8QxgPO/xEk/y/7o8Lkg8KaT3cnWSJEk6GFfok6Sj1EiYB+jgQTrYDYSB7cBvaecJOmgnvHeB4IZWyDpIANMRhrQESHDbYfWMfgwjnZwu+4YxhXycaidJkhQrDGkk6SitJ8wrhLrse5oOKgnvXSA4MW7v4sBdyU6GcwdCkaMZ1DPy6M9n+e5HdpYKMJQpnMdXCBCIWm2SJEnqzOlOknSUNhE+SEQDLcB2wgxKSYBLRsBj78MXxsCDS/cOuYG92w2fXQHnD+qlik88texiB+tpoZE44ilhCJkURLusmFPBWL7EHexgAy00kkQaO6nkd3yXDtqZxAUMZjLljI52qZIkSX2aIY0kHaWPW0EmYf8/xhVCKAyvb4R/OgdW7YakODh3AJxUvHe0jY5IB+18wAKe579ZwyIyKWAMZ/E2szmNy6hgTLRLjDlZFJBFAZtYwYPM4k2ejPTN5zFGcBp/y88ZwNgoVilJktS3GdJI0lGqIEAK0NRFXz5Qtn8aSVwQJpXAiDzY0QifHAIFaa5D0w1LeZn/4G+pZuu+lvdZzitM51pe4gE+wz+Q02l6j/ZbybxOAc1+K3iDhTxlSCNJkhRFrkkjSUepnADXEX9A2p0EfJ14Cj/6IzYtEQZkQ79MA5pu2MN2nuFXHwpo/upl/j/SyGYLK6NQWeyrYxev8+hB+1/nUbayuhcrkiRJ0oc5kkaSjlKQANMI0p8EXidEJSGGEuRUggx1MdYeU80WdrGxy7522qinmgZqermq40M7bbTQcND+VhrpoK0XK5IkSdKHGdJIUjfEE2AUAUY5MLHXhAgT99cVf7ro7yCVzF6s6PiRQzFjmcZK5nfZP4qzyKeil6uSJEnSfv5VIUk6rmRTRC79uwxiggTpx1CKccesg5nEJ8mj9ID2NHI4l2tIJjUKVUmSJAkMaSRJx5k8+vEJvkopo0kho1PfmXyBEZxOPmVRqi72DWUyN/F7zuIqUskikVSmcAnf5SFGcFq0y5MkSerTnO4kSTrujOVc0sjhNR5mMx+QQhpT+AxDOZV+DI52eTFvOKdSwTg+xY1AmAIGkE52lKuSJEmSIY0k6biTQBLDOZUBjKOROpJIcR2aI5RMKgMZH+0yJEmS9CGGNJKkmNNKM9tYSxutZJBHHv0JdjFDN4lUklxDRZIkSScIQxpJUkypZBlz+T1v8xfaaGUwEzmTzzOcqWSQG+3yJEmSpB5jSCNJihlbWM1v+BYbWRZpW8JsVjKPa/l3JnIBcf7qkiRJ0gnKT7qSpJixkjc6BTT7NVHHKzxIOWMpoiIKlR0oRIhtrCNEOzmUHLAmTiO1VLGGTawgngTKGE0RA0kkOUoVS5IkKdYZ0kiSYkIHHbzLiwftX81C6tgZEyHNRt7ndR5mAU/SRD2DmcgMvs5IziSBBGrYwWx+w0rmR94TIMjpXM6pfJZk0qJYvSRJkmKVIY0kKWYcapRJHInEk9CL1XRtC6u4j2+zjsWRtqW8zErmM5PfMoHzI68/LEQHc/lfShjCcE7t7bIP0EwDdewEIItiEkmKckWSJEkypJEkxYQ44pjMxbzJU4ToOKB/PNMpYmAUKutsDW93Cmj2a6OZZ/gPShnJYp4D9o6e6c9w8uhHGy1s5gNe4gEgQH+Gk0527xYPhAmzlrdZzSKqqSKLAlLIYDCTKGNkr9cjSZKkvzKkkSTFjKGcwqlcynwe6xTUFDKA6XyFFDKiWB200sRyXjlo/1oWs4dtNFFHEmmM5zwW8yzPcS/ttDKQkzibL/I+r/EB8ziPa0nt5Xt6lxf5LX8XGUUDMIBxtNNGPImUMLhX65EkSdJfGdJIkmJGNoVcySxOYjoLeZoWGhnNOYzhLEpjYpRHgERSOr1OIIkgcbTSRJA4EkkmnzKKGMTT3MM21kYCp7Uspp5qPsf3WcCTjOEcBnJSr1VfxVr+h+91CmgA1vMu6eSSRb4hjSRJUhQZ0kiSYko2hZzCJUzkIsKEYmo3pESSGcd5vMz/kEEeiaTQRB0QJo/+jOQ0ihnMmXyeeTzGHqo6jQgKEkcCSczjMcoZw1oW92pIU8kydrOly773eZ3JXEwLjSSR2ms1SZIk6a+C0S5AkqSuJJDYrYBmOxtYylyWMIdKlhEidEzqKmcMF/FNWmhkPe9QxWqqWMMuNjOUU6hiLeWMZg/biCcx8r5k0ilmMPVUU8l7ZJHf5do7PamOnQQP8qu/gzbChAn6/28kSZKixk9ikqQTSogQ7/I8D/FPbGUVAOnkcTEzOYPPk0let85fQBlDmEyAACuZRxN1lDOGTAp4mH/iYr5FDiXkU0opI6ljFyE66KCNOnYTop00suignUFMOBa3fNiKGEQm+exi8wF9iaRSxCASPhQsSZIkqXc5kkaSdEJZyyLu5RuRgAYglXQqWcYa3qadtm6dv4E9vMLveZZ7aaeNFLJYwRs8x700sIfFPMcetjCe6SSRSjLp1LKDeqoJ0Q7AGKaRQgbFDOlWLUeqP8MoZSTJpB/QdwZXUMaoXq1HkiRJnTmSRpJ0QlnCnH3rxEAiKczg6+xiI+/xEst5jalcyulcThmjCBA44vO30UIDNXTQxnreOaC/kVqaaaSCcYxlGu/yIv0YTg3baKaBMkZxOldQxkjSyOr2/R6JHEq4klk8zc9Zt28R4wSSmMqlTOPqbo8ykiRJUvcY0kiSThghQqzbF5wEiec8ruE1HmYD7wIQIMh8YDUL+TJ3UsHYI75GKtmUMoJVLATCB/SXMoI0ckgji0/wt4ziDJbzGq00MZiJlDKKQiq6c5vd0p/hfJk72EElrTSRTg4FVBBPQtRqkiRJ0l6GNJKkE0aQIAWUA1BAOc00RgIagASSaKeNjSznNR6mhGEkknRE10gkidO5kkX8hVp2dOpLJo3xTCeXYgBSyWQoUxjKlG7e2bGVSiYVjIl2GZIkSfoI16SRJJ1QTuZTBImnhMGsZmGnvmyKaaGBFhr5gDepYftRXWMQJ3EdP2cwkyJTpioYy5e4g5GcQQoZ3b4PSZIk9T2OpJEknVAGMZEv8hPe5UWCxEXasyginkSaqQcgTPio1qQBiCOecZxLBWPZzjraaSebAvIpJ+EIR+ZIkiRJ+xnSSJJOKCmkcxZX0Z+RbGQp29lAIsm00kw9u/cdFWAEp5G9b1rS0cqigCwKul/0IdSyk1p2EiSOXPqTTGqPXk+SJEnRY0gjSTGkhSa2sZYq1rCZD2inmXLGUM5YShgc7fKOGwkkUcYItrCSAYzjfV7r1F/CEM7k88THwK/BenaziRWsYwmN1DKA8ZQyklxKeJ/XeYUH2cM2AgQpYyTT+LJbZUuSJJ2gov/pVJIE7A1oFvMcm1nBH7mTVpoASCKVUZzJVfwzAxkf5SqPH2lkM5ZpxJHAECazjFdoo5mxnMupfJYyRka7RGrZxQIe5xFup5XGSPsITuMKfsjT3EOYEABhQlSyjEe5nS/wE4oYGK2yJUmS1EMMaSQpRmxlFTvZ2CmgAWihkTUs4k/8gq/yb6SR1e1rtdLCDtazh23EkUA+ZeTR/6jXaDlWWmiimq2ECZFJQbfvtYByTuWz7GITU/gUCaSQTxkJJALQQSMQII6UY1D9kdvIMh7ix7TT2qn9fV7nRR5gKCfzAQs69TVSyyoWGtJIkiSdgAxpJClGrGUJe9jaKaDZr47drOEttrKKIUzu1nXq2M0rPMg7vECIdgBSyGQGX2MkZxD3ocV2e1Mly5jL76lkGWFCFFLBWXyBoZxMXDd+XSWRQj+GdmprZiO1zKOG14AA2ZxDJqeQRL9u3gXUU70vaAqTTTEpZFLFKj7gTWrZTimjGMA4cunHUl4+IKCBvYsav86jfI1fHhDSAKzlbU7n8qiHapIkSTq2DGkkKUa00UQd1V32hQkRoqPLAOdIvcPzLOa5Tm1N1PI095BNIaVRmAa0lTU8yk9pojbStp0NPMZdXMkPGcykY3atJiqp5HZa2RJpq2Ite3iZcv6RJPof1XlDhFjNQl7kd+xkE7B3p6l+DOU1HgHCACzjVdLI5jJuof4g/70DQDP1nSKYJFIpZwwZ5JFNEY3UHpNRVZIkSYodhjSSFCOKGEwDNV32JZFKChmkk9eta+xhG4v4c5d9HbSxkvk9FtJsZQ2rWMAedpBNEQMYSxGDSCKF93mtU0CzX4h25vEYpYwi6RhNSdrDC50Cmv2aWUstCyjg0qM67yaW8xh3dRoZk0sJv+eHFFJBCpmR9gb28CK/Yyzn8goPHnCuAEH6M4LmfevUZFPEYCbyGo+wiffpxzCWMZdz+BJDmOyIGkmSpBNEMNoFSJL2KmMUKaTTn+EH9OVSwulcQSkjunWNFhqpi2xDfaDtrOvW+Q9mPe/yPPfRSC3reYdX+D1z+K994Uw961hy0PduZc2Hts7unjZ2U8PrB+3fw0t00HDE5+2gg8XM7hTQDGIiITpIIJFadtBEHSE6Iv2bWEkWBeR+ZIrV/oWiP88s2mklQJBhnMJj3MUm3ieHElJIZxvr+CP/wkaWH3G9kiRJik2GNJIUMptKkQAAJjlJREFUI/Lox0Qu4vPcxng+QRzxJJHKYCYzgxs4gysJdvPHdhJpZBxiNE4hg7p1/q40UssG3qOM0bzFMyzmWVbxJq/wIL/mejazotMokwNrTiF+30K/3RUmDPt2S+q6PxTZTelItNDAZj6IvB7CZDpoYx3vsJ0NVLGOjSxnN5vp2LcOEIRJIpUbuJcRnE6AIBO5mE9wHUmk8SZP00gNl3Ez1VSRTRGljCCXEoL7BsK208Jinv3QOSVJknQ8c7qTJMWQIgaQR38GcRJ72E6IDtLJoz/Duh3QAGRTyMl8khd54IC+eBIZzqndvsZ+rTSzjXWsYRGL+QtreYdCKvgkf89CnmYrq2imnif4N2bwNdbydpfnGce5ZFFwTGpKIJcMTmY3z3TZn8VpxJNxxOeNJ5FUMtnNZpJIJYlUZvMbZvB1gMh0pGqqIkFZKplkkEce/fkm97GDDSziGd7leZJI23f8Vt7leSZzMc00sJstJJNONkWk7KtzEytooo50co7mWyJJkqQYYkgjSTEmngSKGERRD4xqARjHedSyg8XMjozASCWLC7iefgw7JteoZRfv8gKLeY6FPE0KGexgAzvYwHJe5RL+gXp2U8cuNrOCTAo4ifNZwuxO5+nPCMYx/YDzt9PKDjbSQgMpZJBP2WHtABUgQA7nU8sbtLOnU18CBWRxxlHdbyLJTOJCNvE+/RnOEubQQTs1bGcoU6hk6b4ROkFq2E4aOZzKZ8nbt0hxBjnspJKVzIsENPvvs5oqXuUhhjKFRfyZenbTSA0lDCGVLJJJI56ko6pbkiRJscWQRpL6mHRymM61jGM6e9hGPAnkUUbeMdh+er93mEMDe3iLPxEkGJlG1EIjyaTxKg8xlmm8wR9IIYN22jiXaxjJ6aziTdpoYQiT6cdwssjvdO5dbOZl/ocPWEAH7SSQxBjO5nSuJJvCj60tlcFUcCvVPEstCwkQJJOp5HA+yVQc9T0PYiITuYAG9lDPbpJJYymvMJVLyaWEd3ieVpoooIJz+BJljKKRWlL3TfVazzuRc4UJEyZEE3XUsZN2WhjHeZH+EB2RUTUTuJBkUo+6bkmSJMUOQxpJ6oPiSaQfQ+nH0GN+7mq28T6vk7hvN6Yw4Q+NDgnTQTvbWMeZfJ5UssimmCwKSCWDwUxkMBMPeu4GaniGX7KB9yJtbbSwmNm00cJFfIvEwxhVksoQUvgGBewEAiSQ3+0dktLIYhrXsIuNVFPFCl5nOxv4C7+igrHM4HriSCBt3+iXB7iZIgYyg69TzmhCdBCigybqqGE7AYK00UwrzaSQSQ4lna7XRD3DOJWhnNytuiVJkhQ7XDhYknRMtdJIIzWdQo92WsmmCAgQJkSQOBJJpZABnMXfRKb9fFSYMO20RV5vZ32ngObDlvM6O1h/2HUGCJJIIYkUHLMtrFNIo5QRnM0XaaCGOOIJEKCSpfyFX/EU/0Y7bazmLdLIZhvr+AN3sINKyhlLDdvZwgc0sIc2mumgnWbqSSGDJNL4PLdyGpdzOpfzeW7lbL5ABrnHpHZJkiRFnyNpJEnHVBKpBAh0WlOnkRoyySeJNBr2raeSQjqXcTPDOPWAkKSVZjaynEU8wy42UcJQxnEujdQd9Loh2g+5vXhvyqGYi5jJSzxANVWECZFJAWfzBd7iz2RTRAHlNLCHRmpYzzv0ZyT9GMZONgLQShMZ5NNANVP4NAt4jHbaI4soV1N1TKeoSZIkKfoMaSRJx1Q2RUzmk6zhbU7hEhbwBAC17CSRFAYxgcu4hUFMIp2sA97fSC2LeY5n+A+2sZ42mgF4jv/kK/wryaTTTH2X106KkbVZ4ohnC6s4hy8TTyIhOtjOeubxR2rYTn+GR+4LYAsfkEkhg5gYWXi4kRqGMJlPc2NkN640stnDNpJJ5wyuiEwpkyRJ0onBkEaSdMzt3UFqJymkcwnf5V1eoIl6xnAWZ3AlZYwmjrhO79nGOt7jJUKEeIR/JoV0sshnF1sIE6KRGp7hV4zjXJbz6gHXzKeMAsp76xYPKYcSBjCWRfwF2DsqZiPLCdEBwBAmRfoAMimkg1aWMZc0spnADOJJ2LcI8R4mcRFVrCWOeAZyEmOZRv9jtBOXJEmSYochjSTpmMsgl+l8lR1UUssuTuITpJJFPqVdbpW9lTXcx7epZCmn8zl2s5kwIdLIoZhB7KASgEqWchE3sJq3aKUp8v50crmImaST02v3eChBgpzMp9nKarawigSSSSeXOnZyLl9hK2v2bckNQeIZyskECBAkngb2sIo3O50vi0I+z22kkUUKGcdsDR1JkiTFFkMaSVKPSCDpsHeQWsyzrGIBKWTQRithwgA0UE0TdSSTRjMNdNBGDTv4G25jBxupYRt5lNKf4QddfDha8inlMr7PFlZSyVKCxJNMGh+wkK18AEA8SVzA1ylhCB10cDIXs4AnDzjXyXySfEoNZyRJkk5whjSSpMMWJswettFBO+nkkBzZWvvo1bKLN3kKgCbqyKaIAIFIULOHbRQygGYaSCeXAEFy6EcZo7p97Z6WRT5Z5DOS0wGop5p+DKWKtaSQQT+GUsAA4ogjjnhO5woKqGAhT1NPNTkUcwqfYRATDWgkSZL6AEMaSdJh2cUmFvEXlvEKrTRRxCBO53MMZALxJBz1eUO00UZL5PU6ljCZT7JwX3ATIkSAIABncRX5lJNOdrfuJVrSySGdSQxmUpf9qWRyEp9gGKfSQiMppB+TIEySJEnHh2C0C5Akxb49bOdx/pU3eYoG9tBGC5t4n0f5KatZ2K1zZ1LIOM6NvF7Ky+RTxkV8kyIGUkA5BVRwGd+jkAoGMaG7txPzUskghyIDGkmSpD7GkTSSpI+1ieVUseaA9hAdvMKDlDGatC620z4cexfZ/RTzeYLdbAbgdR4hm2KmchlTuIRWmsimiEIqSCGjW/ciSZIkxSpDGknSx1rDooP2bWcDtew46pAGYCAn8Q3u5VUe5j1eIkCA0ZzFFC5hCCeT0I3pVJIkSdLxwpBGkvSxEkg+aF+QOILEdev8AQIMZQr9GcF5fAWAHPqRSW63zitJkiQdT1yTRpLUSSN17GIzdeyOtA1n6kGPH8h4cig5JtdOJZMKxlDBGAMaSZIk9TmOpJEkAdBCE6tZyDweo5qtpJLFZC5iFGfRj6FM4iIW8Uyn96SRzZn8DYmHGGkjSZIk6fAY0kiSCBNmMc/xPPdF2lpoZA73sZ31fILrOJsvMIgJvMMcGqllKCczhCkUMSB6hUuSJEknEEMaSRK72MRrPNxl3zu8yEmcTxmjGM6pDOdUQoQIOmNWkiRJOqb8hC1JYg/baKb+IL1hqljbqcWARpIkSTr2/JQtSfrY3Zni3QJbkiRJ6nHHTUjz6U9/mvLycpKTkykpKeFLX/oSW7Zs6XTMu+++y5lnnklycjJlZWXcddddUapWko4veZSSRUGXfXEkUMzgXq5IkiRJ6nuOm5Bm2rRpPPLII6xcuZI//vGPrFmzhs997nOR/traWs4//3wqKipYtGgRd999N7fddhu/+c1voli1JB0fsihgOn9LPIkf6QlwDl8gn4qo1CVJkiT1JYFwOByOdhFH46mnnuKSSy6hpaWFhIQEfv3rX/ODH/yAqqoqEhP3/pFxyy238MQTT7BixYrDPm9tbS1ZWVnU1NSQmZnZU+VLUswJEWIzK3iPl9jKarIp4iQ+QRmj3WJbkiSpB/l3qPY7Lnd32r17N7///e857bTTSEjYu07CvHnzOOussyIBDcCMGTP4l3/5F6qrq8nJyenyXC0tLbS0tERe19bW9mzxkhSjggQpYxSljKSdNuJJIEAg2mVJkiRJfcZxM90J4OabbyYtLY28vDwqKyt58sknI31VVVUUFRV1On7/66qqqoOe84477iArKyvyVVZW1jPFS9JxIkCABBINaCRJkqReFtWQ5pZbbiEQCBzy68NTlb773e+yePFiZs+eTVxcHF/+8pfp7myt733ve9TU1ES+Nm7c2N3bkiRJkiRJOmJRne70ne98h2uuueaQxwwaNCjy7/z8fPLz8xk2bBgjR46krKyM+fPnM3XqVIqLi9m2bVun9+5/XVxcfNDzJyUlkZSUdPQ3IUlHqI1WAgR6fVvreqrZxlq2s4FUMilmCIVUREbMhAmzjbVsYBl72EohAyljJPk4wlCSJEnqDVENaQoKCigo6HrL148TCoUAIuvJTJ06lR/84Ae0tbVF1qmZM2cOw4cPP+h6NJLUm3aykVUsZDmvEUcc4ziPQUwgm6KPf3O3r72JP/FzNvF+pC2RFC5iJqM4kwABVjCPp/l3WmmigAq2s4FlzOUsrqKc0T1eY1faaaWBWhJJIoWMqNQgSZIk9ZbjYuHgBQsWsHDhQs444wxycnJYs2YNP/rRjxg8eDBTp04F4KqrruLHP/4x1157LTfffDNLly7lnnvu4Wc/+1mUq5ck2M4GHuV2qtkaadvECkoZyWf4Djk9GNS008ar/F8koGmjmQ7aaaOZP/EL8uhPPEn8mV+QQzHjmU4du2ikhhQy2cpqcigmg7weq/GjOminkmW8xZ/YymqSSWciFzCMU8nsxTokSZKk3nRchDSpqak89thj3HrrrTQ0NFBSUsIFF1zAD3/4w8hUpaysLGbPns3MmTOZNGkS+fn5zJo1i6997WtRrl5SXxcmzBJmdwpo9tvE+6zlbSZxYY9dfxebWMl82milgWqq2UozDSSQSC79WcVCChlAOjmMYzqPcjvrWALsHW1zMp8ihQzGcA7BHlzKrJE6trCSeqoJEsfr/IFtrCGeRGrZybPcSyVLuYAbSMWtKSVJknTiOS5CmrFjx/Liiy9+7HHjxo3j1Vdf7YWKJOnw1bKTFbxx0P53mMNYziWRnlkfq5VmWmmilu1sYgVh9k0XpYF6qlnHEsoYyUQu4Hd8l+2s/9B7m3idR8ggl/4MJ4/+PVLjZlbyJD/jbZ4hiVQaqGEs06hgLGt5myTSAFjOa4znEwxmYo/UIUmSJEXTcbUFtyQdj0KE6KD9oP0dtEeCk56QQgZB4qlibZfXCRKkhSZq2dkpoPmrAG/yFDuo7JH6qtnKo/yUt3mGNlqII4F6djOPP7KH7SSSRgdtkePX806P1CFJkiRFmyGNJPWwTPIYyPiD9o/kDJJI6bHr59Gfk/gEbTQf0JdNMUHi2Moq6tjZ5fvjSaSFRlpo7JH6NvMB21hLGy0H9C3iTwxiAq00Rdp6csqVJEmSFE1+0pWkHhZHPJP5FMmkH9CXRSHDObVHrx8gwFBO5my+QPK+aUMAAxjHRXyD13gEgCIGkUgK7NuSO0CABJJJJIkEkkgnu8vz11PNZj5gC6toov6I69vJxk4jjdppi3yvmmkgSJAOOj5U90lHfA1JkiTpeHBcrEkjSce7UobzeWaxkKdZxzsEiWMYpzCJiyigvMevn0kerTRxEd8kQIA44qliHX/hXsKEKGM0aWRRzmg2sxIIs3fMyt4sfwqX0J8Rnc7ZQTsf8CZz+V92shEIUMpwzuFLDGDcEdSWTzwJkddN1JJLP6pYQ5AgAYLE7/t1NZ7pFDOou98OSZIkKSYZ0khSLyllJMUMpY4dBAiSSUGvTd0pYShTuYz7+DbttEbag8TxSf6OMkaSSApf5A4e4Z/YymraaSWOBMZxLp/i7zuNwoG9a8M8zt2EIqNgwmxiBY9yO1fxz/Rn2GHVVsoIMslnJ5tooYEQHTRSQwlDqWAMTdQwkIlM5mIGM4kUMo7Vt0WSJEmKKYY0ktSL4oknh5JObU3Us4cqwoTJpqjHtpc+mU+RSQGv8hBbWEkOJZzOFYzhbJJIBWA0Z/It/ptNrKCBavIpp5QRpJPT6VytNDGfJz4U0PxVC40sYy79GEpg39SpQymggku5mT9wJ5W8RxP1tNFCFgWczRcpZSQ5FJNI8rH5RkiSJEkxypBGkqIkTJj1vMPL/C+b+QAIU8wgzuaLDGbSMR9lk0ASYzibYZxCE3UkkkLKR9bJCRCggPKPnYK1N1Zae9D+DbxHK82HtSBygADDOIXr+DlbWMketpFFIXmUUkhFJECSJEmSTnSGNJIUJZtZyaP8tNPORVWs5Q/cwd9w2xGt63IkEknu9qiUBBJJIoUmarvsTyWTuA+tM3M4CiijgLJu1SVJkiQdz9zdSZKiIESId3i+U0CzXwdtLORPtNMWhcoOTwZ5nMT5B+0/iRmRxX4lSZIkHR4/QUtSFDRTTyXLDtq/hZXUs5tmGqimijjiyKOUPPr3YpWHNoaz2cB7rGNJp/aJXNBjo4AkSZKkE5khjSRFQTyJB+yW1Lk/ibUsZg7/RRstAKSSxSe4llGcSVwM/PjOpohP8222soo1vE08CQxhMsUMdgcmSZIk6ShE/1O+JPVBiSQzkQvYzMou+4dxCnP5fSSgAWikhqf5ORnkkkQa7bSRTi45FPVW2QfIIJcMTmEYp0StBkmSJOlEYUgjSVEyiImM5iyW8Uqn9oGMB8I0sOeA9zRRw4s8QDttbGc9GeRxOpczhnMOOTJHkiRJUuwzpJGkKMkglxl8nXGcyyoWEqKDwUwmm0Ie4OYDjm+lmS2sJp4kBnISAHXs4lnuJUiQiVx4zGusZhvttJBGNqlkHvPzS5IkSforQxpJiqJUMhnMJAYzKdJWTzVpZB+w81MTdbTTQg4ltNDQqe91/sBgJpNFwRHXUMtOOmgngzzi922bXU0Vi3mWd3mRJuopoIzTuJwhTO729t2SJEmSuuYW3JIUY9LJYQqfPqC9mTqCxDGMKWxjfae+GrZ3OT3qUKpYy5/5Bf/GVdzNlfwfs1jLYurZw5/4OW/wR+qppoM2qljLY9zFcl7txp1JkiRJOhRH0khSDBrFGexiM2/zLCHaAUglm2l8ed/W3eFOx8eTSDyJh33+KtZxHzfyAQsibZtZwWJmcy0/YxPvd/GuMK/wfwxiIpnkHc1tSZIkSToEQxpJikFpZHMe1zCWaexmM3HEk0Qaz/KfVLPlgOOHcwq59D/s86/gjU4BzX672MRLPMAgJrCKhZ36ChlABWN4kftpopb+jGQoUyhh8JHfoCRJkqQDON1JkmJUAkn0ZxhjmcYozqSc0UziAgIf+dFdQDmncyXxH5O7hwmzmy3soJLlvELcQY5/lxfpx/BObXn0J5d+PMLtLOJZ1rCYV3iQ/+X7rOHt7t2oJEmSJMCRNJJ03EggiUlcRH+Gs453aKSWMkbSn+FkU3TI91ZTxVv8iXd5iUzyaKCGbIoJE6aDNtpooZk6QoQIEkfwI0HQQCYwm9+QSgY7WE+QIBnk004rs/kNX+SnZJDbk7cvSZIknfAMaSTpOJJAEmWMooxRh/2eevbwZ37Bet4FIIMcJnEhv+UvhOggTAfJZJBDMfVUM4EZZH0o9IkniTji2L5vseL9I3AaqCGNbGDvNClDGkmSJKl7DGkk6QS3jTWRgCZIPBWMYyXzGcJk1vI2WZQCYdpooZRRnMs1lDOav+E23uMl8ikjniQ+ybeop5qlvEw1VQA0sIdGaminLYp3KEmSJJ0YDGkk6QS3mQ8i/y5lOEuYzXJe5QvcziQu4k2epIk6BjOJcZxHHv1JIpXBTCKFTJ7nPpYwh0qWkkcpZ3AllSzjA+YD0EaLo2gkSZKkY8CFgyXpBJdEauTf6eSykfcZxiks5lke407SyaEfw1jHO/wv3+cZfkUTdexkE49yO2t4mxYaySCPXWziSf6NAYwjg3wATuVSciiJ1u1JkiRJJwxH0kjSCa6UkQSJJ0Q77bSRQjpDmcJj3EmIECuYR4AAAClkso7F7GQj29lAHbuIJwEIk04OiaRQw3be4A9M5VKSSGMQE0gkObo3KUmSJJ0AHEkjSSe4QgZyLlcTIMhWVjGe6XTQTgftJJISCWgAsiggQJAGaiLr2AQIkr1vUeEO2imgnDjiGcREqtlKKSOjdWuSJEnSCcWRNJJ0gksggUlcSDGDWM6rZJBHC40kk06QuMhxmRSQSiawd0en9A+tM5NCBv0YSjVbqWc3iaQSJMin+HuKGNDbtyRJkiSdkAxpJKkPSCCJAYxjAOMA2MFGxjOdSpYRIEgaWSSRRhzxpJJFDkWM4FQW8jQQBvZOhUoinXZaGMd5TOQiEkmK4l1JkiRJJxanO0lSH1RAGZ/j+wxgPAWUk0oWccSTRCqf5Fvk0Z8ShjKNLxP40K+KIEFKGcnZfMGARpIkSTrGAuFwOBztImJJbW0tWVlZ1NTUkJmZGe1yJKlH7aCSjbzPDjaQSwnljKGIgZH+NlrYyhrW8jZN1FHOaPozgmwKo1i1JEnSicW/Q7Wf050kqQ8roJwCyg/an0AS5YyinFG9WJUkSZLUNzndSZIkSZIkKQYY0kiSJEmSJMUAQxpJkiRJkqQYYEgjSZIkSZIUAwxpJEmSJEmSYoAhjSRJkiRJUgwwpJEkSZIkSYoBhjSSJEmSJEkxwJBGkiRJkiQpBhjSSJIkSZIkxQBDGkmSJEmSpBhgSCNJkiRJkhQDDGkkSZIkSZJigCGNJEmSJElSDDCkkSRJkiRJigGGNJIkSZIkSTHAkEaSJEmSJCkGGNJIkiRJkiTFAEMaSZIkSZKkGGBII0mSJEmSFAMMaSRJkiRJkmKAIY0kSZIkSVIMiI92AbEmHA4DUFtbG+VKJEmSJEl9wf6/P/f/Paq+y5DmI+rq6gAoKyuLciWSJEmSpL6krq6OrKysaJehKAqEjeo6CYVCbNmyhYyMDAKBQLTLOSHU1tZSVlbGxo0byczMjHY5Os74/Kg7fH7UHT4/6g6fH3WXz1DfEg6Hqauro1+/fgSDrkrSlzmS5iOCwSClpaXRLuOElJmZ6S8YHTWfH3WHz4+6w+dH3eHzo+7yGeo7HEEjcOFgSZIkSZKkmGBII0mSJEmSFAMMadTjkpKSuPXWW0lKSop2KToO+fyoO3x+1B0+P+oOnx91l8+Q1De5cLAkSZIkSVIMcCSNJEmSJElSDDCkkSRJkiRJigGGNJIkSZIkSTHAkEaSJEmSJCkGGNKox6xfv55rr72WgQMHkpKSwuDBg7n11ltpbW3tdNy7777LmWeeSXJyMmVlZdx1111Rqlix5vbbb+e0004jNTWV7OzsLo+prKzk4osvJjU1lcLCQr773e/S3t7eu4UqZv3yl79kwIABJCcnc8opp/Dmm29GuyTFoFdeeYVPfepT9OvXj0AgwBNPPNGpPxwOM2vWLEpKSkhJSWH69OmsWrUqOsUq5txxxx2cfPLJZGRkUFhYyCWXXMLKlSs7HdPc3MzMmTPJy8sjPT2dyy67jG3btkWpYsWSX//614wbN47MzEwyMzOZOnUqf/nLXyL9PjtS32NIox6zYsUKQqEQ//mf/8myZcv42c9+xr333sv3v//9yDG1tbWcf/75VFRUsGjRIu6++25uu+02fvOb30SxcsWK1tZWLr/8cm644YYu+zs6Orj44otpbW3ljTfe4IEHHuB3v/sds2bN6uVKFYsefvhhbrrpJm699Vbefvttxo8fz4wZM9i+fXu0S1OMaWhoYPz48fzyl7/ssv+uu+7i5z//Offeey8LFiwgLS2NGTNm0Nzc3MuVKhbNnTuXmTNnMn/+fObMmUNbWxvnn38+DQ0NkWO+/e1v8/TTT/Poo48yd+5ctmzZwqWXXhrFqhUrSktLufPOO1m0aBFvvfUW5557Lp/5zGdYtmwZ4LMj9UlhqRfddddd4YEDB0Ze/+pXvwrn5OSEW1paIm0333xzePjw4dEoTzHq/vvvD2dlZR3Q/swzz4SDwWC4qqoq0vbrX/86nJmZ2emZUt80ZcqU8MyZMyOvOzo6wv369QvfcccdUaxKsQ4IP/7445HXoVAoXFxcHL777rsjbXv27AknJSWF/+///i8KFSrWbd++PQyE586dGw6H9z4vCQkJ4UcffTRyzPvvvx8GwvPmzYtWmYphOTk54f/6r//y2ZH6KEfSqFfV1NSQm5sbeT1v3jzOOussEhMTI20zZsxg5cqVVFdXR6NEHUfmzZvH2LFjKSoqirTNmDGD2trayP+BUt/U2trKokWLmD59eqQtGAwyffp05s2bF8XKdLxZt24dVVVVnZ6lrKwsTjnlFJ8ldammpgYg8nln0aJFtLW1dXqGRowYQXl5uc+QOuno6OChhx6ioaGBqVOn+uxIfZQhjXrN6tWr+cUvfsHXv/71SFtVVVWnP7CByOuqqqperU/HH58fHczOnTvp6Ojo8vnw2dCR2P+8+CzpcIRCIW688UZOP/10xowZA+x9hhITEw9YW81nSPu99957pKenk5SUxPXXX8/jjz/OqFGjfHakPsqQRkfslltuIRAIHPJrxYoVnd6zefNmLrjgAi6//HKuu+66KFWuWHA0z48kSceDmTNnsnTpUh566KFol6LjyPDhw1myZAkLFizghhtu4Oqrr2b58uXRLktSlMRHuwAdf77zne9wzTXXHPKYQYMGRf69ZcsWpk2bxmmnnXbAgsDFxcUHrFC//3VxcfGxKVgx5Uifn0MpLi4+YLcenx8B5OfnExcX1+XPF58NHYn9z8u2bdsoKSmJtG/bto2TTjopSlUpFn3zm9/kT3/6E6+88gqlpaWR9uLiYlpbW9mzZ0+nERH+PNJ+iYmJDBkyBIBJkyaxcOFC7rnnHq688kqfHakPMqTRESsoKKCgoOCwjt28eTPTpk1j0qRJ3H///QSDnQdvTZ06lR/84Ae0tbWRkJAAwJw5cxg+fDg5OTnHvHZF35E8Px9n6tSp3H777Wzfvp3CwkJg7/OTmZnJqFGjjsk1dHxKTExk0qRJvPDCC1xyySXA3mkIL7zwAt/85jejW5yOKwMHDqS4uJgXXnghEsrU1tZG/o+3FA6H+da3vsXjjz/Oyy+/zMCBAzv1T5o0iYSEBF544QUuu+wyAFauXEllZSVTp06NRsmKcaFQiJaWFp8dqY8ypFGP2bx5M+eccw4VFRX867/+Kzt27Ij07U//r7rqKn784x9z7bXXcvPNN7N06VLuuecefvazn0WrbMWQyspKdu/eTWVlJR0dHSxZsgSAIUOGkJ6ezvnnn8+oUaP40pe+xF133UVVVRU//OEPmTlzJklJSdEtXlF30003cfXVVzN58mSmTJnCv//7v9PQ0MBXvvKVaJemGFNfX8/q1asjr9etW8eSJUvIzc2lvLycG2+8kZ/85CcMHTqUgQMH8qMf/Yh+/fpFAkD1bTNnzuTBBx/kySefJCMjI7JWSFZWFikpKWRlZXHttddy0003kZubS2ZmJt/61reYOnUqp556apSrV7R973vf48ILL6S8vJy6ujoefPBBXn75ZZ577jmfHamvivb2Ujpx3X///WGgy68Pe+edd8JnnHFGOCkpKdy/f//wnXfeGaWKFWuuvvrqLp+fl156KXLM+vXrwxdeeGE4JSUlnJ+fH/7Od74Tbmtri17Riim/+MUvwuXl5eHExMTwlClTwvPnz492SYpBL730Upc/a66++upwOLx3G+4f/ehH4aKionBSUlL4vPPOC69cuTK6RStmHOyzzv333x85pqmpKfyNb3wjnJOTE05NTQ1/9rOfDW/dujV6RStmfPWrXw1XVFSEExMTwwUFBeHzzjsvPHv27Ei/z47U9wTC4XC4N0MhSZIkSZIkHcjdnSRJkiRJkmKAIY0kSZIkSVIMMKSRJEmSJEmKAYY0kiRJkiRJMcCQRpIkSZIkKQYY0kiSJEmSJMUAQxpJkiRJkqQYYEgjSZIkSZIUAwxpJEmSJEmSYoAhjSRJfcQ555zDjTfeeFjH/va3v2X8+PGkp6eTnZ3NhAkTuOOOOyL9t912G4FAgOuvv77T+5YsWUIgEGD9+vUArF+/nkAg0OXX/PnzD3r922+/ndNOO43U1FSys7OP9FYlSZKOS4Y0kiSpk//+7//mxhtv5O/+7u9YsmQJr7/+Ov/4j/9IfX19p+OSk5O57777WLVq1cee8/nnn2fr1q2dviZNmnTQ41tbW7n88su54YYbun0/kiRJx4v4aBcgSZJ63jXXXMPcuXOZO3cu99xzDwDr1q1jwIABBxz71FNPccUVV3DttddG2kaPHn3AccOHD6ewsJAf/OAHPPLII4e8fl5eHsXFxYdd749//GMAfve73x32eyRJko53jqSRJKkPuOeee5g6dSrXXXddZCRLWVlZl8cWFxczf/58NmzY8LHnvfPOO/njH//IW2+9daxLliRJ6nMMaSRJ6gOysrJITEwkNTWV4uJiiouLiYuL6/LYW2+9lezsbAYMGMDw4cO55ppreOSRRwiFQgccO3HiRK644gpuvvnmQ17/tNNOIz09vdOXJEmSOjOkkSSpDxs9enQkNLnwwgsBKCkpYd68ebz33nv8/d//Pe3t7Vx99dVccMEFXQY1P/nJT3j11VeZPXv2Qa/z8MMPs2TJkk5fkiRJ6sw1aSRJ6sOeeeYZ2traAEhJSenUN2bMGMaMGcM3vvENrr/+es4880zmzp3LtGnTOh03ePBgrrvuOm655Rbuu+++Lq9TVlbGkCFDeuYmJEmSThCGNJIk9RGJiYl0dHR0aquoqDis944aNQqAhoaGLvtnzZrF4MGDeeihh7pXpCRJUh9mSCNJUh8xYMAAFixYwPr160lPTyc3N5dg8MCZzzfccAP9+vXj3HPPpbS0lK1bt/KTn/yEgoICpk6d2uW5i4qKuOmmm7j77ru77N+1axdVVVWd2rKzs0lOTu7y+MrKSnbv3k1lZSUdHR2R6VFDhgxxPRtJknTCck0aSZL6iH/4h38gLi6OUaNGUVBQQGVlZZfHTZ8+nfnz53P55ZczbNgwLrvsMpKTk3nhhRfIy8s75PkPFqBMnz6dkpKSTl9PPPHEQc81a9YsJkyYwK233kp9fT0TJkxgwoQJ7iIlSZJOaIFwOByOdhGSJEmSJEl9nSNpJEmSJEmSYoAhjSRJkiRJUgwwpJEkSZIkSYoBhjSSJEmSJEkxwJBGkiRJkiQpBhjSSJIkSZIkxQBDGkmSJEmSpBhgSCNJkiRJkhQDDGkkSZIkSZJigCGNJEmSJElSDDCkkSRJkiRJigH/P8a+QvisCvQEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "\nResumen de Clusters:\n3 80\n4 70\n1 62\n5 48\n10 45\n0 42\n6 38\n12 31\n7 28\n11 18\n9 16\n8 10\n2 1\nName: Cluster, dtype: int64\n" + ] + } + ], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.decomposition import PCA\n", + "from sklearn.cluster import KMeans\n", + "from sklearn.metrics import silhouette_score\n", + "from sklearn.manifold import TSNE\n", + "from sentence_transformers import SentenceTransformer\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# Suponemos que ya tienes df, df_reduced, numerical_cols, categorical_cols definidos\n", + "# y que df_reduced contiene las columnas requeridas.\n", + "\n", + "model = SentenceTransformer('all-MiniLM-L6-v2')\n", + "\n", + "# Preprocesar columnas numéricas\n", + "print(\"Preprocesando columnas numéricas...\")\n", + "scaler = StandardScaler()\n", + "numerical_scaled = scaler.fit_transform(df_reduced[numerical_cols].fillna(0))\n", + "\n", + "# Generar embeddings para columnas categóricas\n", + "print(\"Generando embeddings para columnas categóricas...\")\n", + "categorical_embeddings = []\n", + "for col in categorical_cols:\n", + " embeddings = model.encode(df_reduced[col].fillna('Unknown').astype(str).tolist())\n", + " categorical_embeddings.append(embeddings)\n", + "\n", + "# Asignar importancia a las columnas categóricas según el orden dado\n", + "# Asumiendo el orden de categorical_cols:\n", + "# ['Midsole_Material', 'Cushioning_System', 'Additional_Technologies', 'Outsole', ...]\n", + "Midsole_Material_embeddings = categorical_embeddings[0] * 5.0 # 1ra prioridad\n", + "Cushioning_System_embeddings = categorical_embeddings[1] * 5.0 # 1ra prioridad\n", + "Additional_Technologies_embeddings = categorical_embeddings[2] * 2.0 # info adicional\n", + "Outsole_embeddings = categorical_embeddings[3] * 3.0 # 3ra prioridad\n", + "\n", + "# Otras columnas categóricas (si las hay)\n", + "if len(categorical_embeddings) > 4:\n", + " other_cat_embeddings = np.hstack(categorical_embeddings[4:])\n", + "else:\n", + " other_cat_embeddings = np.empty((len(df_reduced), 0))\n", + "\n", + "# Ajustar importancia en las variables numéricas:\n", + "# numerical_cols = ['Drop__heel-to-toe_differential_','Weight','regularPrice','undiscounted_price','percentil_discounted']\n", + "drop_idx = numerical_cols.index('Drop__heel-to-toe_differential_')\n", + "weight_idx = numerical_cols.index('Weight')\n", + "regular_price_idx = numerical_cols.index('regularPrice')\n", + "\n", + "# Aplicar factores\n", + "numerical_scaled[:, drop_idx] *= 4.0 # 2da prioridad\n", + "numerical_scaled[:, weight_idx] *= 2.0 # 5ta prioridad\n", + "numerical_scaled[:, regular_price_idx] *= 1.5 # 6ta prioridad\n", + "\n", + "# Combinar embeddings categóricos con sus factores\n", + "combined_categorical_embeddings = np.hstack([\n", + " Midsole_Material_embeddings,\n", + " Cushioning_System_embeddings,\n", + " Additional_Technologies_embeddings,\n", + " Outsole_embeddings,\n", + " other_cat_embeddings\n", + "])\n", + "\n", + "# Combinar características numéricas y categóricas sin volver a escalar,\n", + "# para no perder la ponderación manual\n", + "print(\"Concatenando características numéricas y categóricas...\")\n", + "combined_features = np.hstack([numerical_scaled, combined_categorical_embeddings])\n", + "\n", + "# Ahora aplicamos PCA, k-means, etc., sobre combined_features\n", + "print(\"Aplicando PCA para reducir dimensiones...\")\n", + "pca = PCA(n_components=400, random_state=42) # Ajusta n_components según necesidad\n", + "reduced_features = pca.fit_transform(combined_features)\n", + "\n", + "print(\"Calculando el Método del Codo para determinar el número óptimo de clusters...\")\n", + "wcss = []\n", + "k_values = range(10, 21) # Rango de k para explorar\n", + "\n", + "for k in k_values:\n", + " kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)\n", + " kmeans.fit(reduced_features)\n", + " wcss.append(kmeans.inertia_)\n", + "\n", + "# Visualizar el Método del Codo\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, wcss, marker='o')\n", + "plt.title('Método del Codo para Determinar el Número Óptimo de Clusters')\n", + "plt.xlabel('Número de Clusters (k)')\n", + "plt.ylabel('WCSS (Inercia)')\n", + "plt.xticks(k_values)\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "print(\"Calculando el Silhouette Score para diferentes valores de k...\")\n", + "silhouette_scores = []\n", + "\n", + "for k in k_values:\n", + " kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)\n", + " clusters = kmeans.fit_predict(reduced_features)\n", + " score = silhouette_score(reduced_features, clusters)\n", + " silhouette_scores.append(score)\n", + "\n", + "# Visualizar el Silhouette Score\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, silhouette_scores, marker='o', color='orange')\n", + "plt.title('Silhouette Score para Diferentes Valores de k')\n", + "plt.xlabel('Número de Clusters (k)')\n", + "plt.ylabel('Silhouette Score')\n", + "plt.xticks(k_values)\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "best_k = k_values[np.argmax(silhouette_scores)]\n", + "print(f\"El número óptimo de clusters según el Silhouette Score es: {best_k}\")\n", + "\n", + "print(f\"Aplicando K-Means con k={best_k}...\")\n", + "kmeans_final = KMeans(n_clusters=best_k, random_state=42, n_init=10)\n", + "clusters_final = kmeans_final.fit_predict(reduced_features)\n", + "\n", + "# Añadir etiquetas de cluster al DataFrame original\n", + "df['Cluster'] = clusters_final\n", + "\n", + "n_clusters_final = len(set(clusters_final))\n", + "print(f'\\nNúmero de clusters encontrados: {n_clusters_final}')\n", + "\n", + "print(\"Reduciendo dimensiones para visualización con t-SNE...\")\n", + "tsne = TSNE(n_components=2, random_state=42, perplexity=30, n_iter=1000)\n", + "tsne_results = tsne.fit_transform(reduced_features)\n", + "\n", + "df['tsne-2d-one'] = tsne_results[:, 0]\n", + "df['tsne-2d-two'] = tsne_results[:, 1]\n", + "\n", + "plt.figure(figsize=(12, 8))\n", + "palette = sns.color_palette(\"hsv\", n_clusters_final)\n", + "sns.scatterplot(\n", + " x=\"tsne-2d-one\", y=\"tsne-2d-two\",\n", + " hue=\"Cluster\",\n", + " palette=palette,\n", + " data=df,\n", + " legend=\"full\",\n", + " alpha=0.7\n", + ")\n", + "plt.title('Visualización de Clusters con t-SNE')\n", + "plt.xlabel('t-SNE 1')\n", + "plt.ylabel('t-SNE 2')\n", + "plt.legend(title='Cluster', bbox_to_anchor=(1.05, 1), loc='upper left')\n", + "plt.show()\n", + "\n", + "print(\"\\nResumen de Clusters:\")\n", + "print(df['Cluster'].value_counts())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "daf2d204-2dbb-4bf2-b7b8-573e94ce663b", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "Aplicando PCA para reducir dimensiones...\nCalculando el Método del Codo para determinar el número óptimo de clusters...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAImCAYAAAAv2AnvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+PklEQVR4nOzdd1QU198G8Gd3KQtI7ygigg3BhhGxFwQsRI0ltlijxhJbool5jYr1p0ZjjWiiRmOJJWpsQbA3RMUOFlTERlGQokif9w/DxpXisgKz6PM5x5PszN2ZZ2eHZb/MnXslgiAIICIiIiIiIo0jFTsAERERERERFYwFGxERERERkYZiwUZERERERKShWLARERERERFpKBZsREREREREGooFGxERERERkYZiwUZERERERKShWLARERERERFpKBZsREREREREGooFGxEREdF7Gjx4MBo0aICMjAyxoxDRB0ZL7ABERERE5dmRI0ewY8cOhIWFQVdXV+w4RPSB4RU2Ig104sQJzJgxA8nJyWJHISJSS1paGmbOnInDhw+LHaXUPX78GH/99ReqVasmdhQi+gCxYCPSMNHR0ejSpQsMDQ1hbGxcJvs8duwYJBIJjh07Vqr7+f333yGRSHD//v1iP3f69OmQSCQlH+o93L9/HxKJBL///rvYUagMaeK5WBxVqlTBwIEDS30/I0aMwM6dO9GoUaNS35fYvvjiC7Rr167U9zNw4EBUqVKl1PfzvsT+GSmrc5yorLBgIyohecWIRCLBqVOn8q0XBAH29vaQSCTo1KlTgdvIysrC559/joEDB2L8+PH51v/yyy8sDlR07NgxfPbZZ7CxsYGOjg6srKzg5+eHnTt3ih3tg5BX5Of909XVhbW1NVq1aoU5c+bg6dOnam/7yZMnmD59Oi5fvlxyganY8t7bhQsX5luX93l34cKFAp+7Zs0aHD9+HAcOHIChoWFpRxXNvn374OvrC3Nzc8jlclSvXh3ffvstEhIS1N4mz//C3b17F8OHD0fVqlUhl8thZGSEpk2bYsmSJXj16lWZZEhLS8P06dNL/Q+cRG9iwUZUwuRyOTZv3pxv+fHjx/Ho0aMi728IDw9Hr169CvyCBLBgU9W0adPQunVrXL9+HcOHD0dAQAAmTpyIFy9eoFu3bgW+P6SeMWPG4I8//sDq1asxceJEmJmZYdq0aahVqxaOHDmi1jafPHkCf39/jf3COmXKlDL7cqgJFixYgLS0NJXb5+TkICEhAYGBgbC1tS3FZOL69ttv4efnh9jYWHz33XdYvnw5vLy8sHz5ctStWxe3bt1Sa7tFnf+//vqr2tst7/bv3w83Nzds27YNfn5+WLZsGebOnYvKlStj4sSJGDt2bJnkSEtLg7+/Pws2KlMcdISohHXo0AHbt2/H0qVLoaX134/Y5s2b4e7ujmfPnhX63Hr16qFevXplkPLDtWPHDsyYMQPdu3fH5s2boa2trVg3ceJEHDx4EFlZWSImFN/Lly9hYGBQIttq3rw5unfvrrTsypUr8Pb2Rrdu3RAREaExX9pL6nVraWkp/WyXlZJ831RVr149XL58GQEBAZgwYYJKz5HJZJg0aVIpJ1NfSRzHLVu2YOHChfj888+xadMmyGQyxbqBAweidevW6NGjBy5evFii58qbn2cfk6ioKPTq1QsODg44cuSI0mfKqFGjcOfOHezfv1/EhO9PjJ9vKj94hY2ohPXu3RsJCQkIDg5WLMvMzMSOHTvQp0+fAp+Tm5uLxYsXo3bt2pDL5bC2tsbw4cPx/PlzRZsqVaogPDwcx48fV3RVatWqlWL9vXv30KNHD5iZmUFfXx+NGzcu8BfYo0eP0KVLFxgYGMDKygrjx48vdBjq7du3w93dHXp6erCwsEC/fv3w+PFjlY5DeHg42rRpAz09PVSqVAmzZs1Cbm5ugW3/+ecfNG/eHAYGBjA0NETHjh0RHh6u0n7e9uOPP8LMzAxr164t8MuNj4+PUpfU+Ph4DBkyBNbW1pDL5ahbty7Wr1+f73lJSUkYOHAgjI2NYWJiggEDBiApKanADEeOHFG8HhMTE3Tu3Bk3btx4Z/a8boZbt27FDz/8ABsbGxgYGODTTz/Fw4cPldqePHkSPXr0QOXKlaGrqwt7e3uMHz8+35WfgQMHokKFCrh79y46dOgAQ0ND9O3bt1jbKK66deti8eLFSEpKwvLly5XWPX78GIMHD4a1tTV0dXVRu3ZtrF27VukYfPLJJwCAQYMGKc71N68sh4aGwtfXF8bGxtDX10fLli1x+vRppf3k3UMTERGBPn36wNTUFM2aNQPw+mepU6dOOHbsGBo2bAg9PT24ubkp/mK+c+dOuLm5QS6Xw93dHZcuXSpw22+SSCQYPXo0du/eDVdXV8VrCwwMVGoXHR2NkSNHokaNGtDT04O5uTl69OiR777OvC6Hx48fx8iRI2FlZYVKlSoVedwzMjIwbdo0ODs7K97PSZMmvdcw802bNkWbNm0wf/78d54XrVq1UvpMyvP2fVd5937+9NNPWLFiBapWrQp9fX14e3vj4cOHEAQBM2fORKVKlaCnp4fOnTsjMTEx33ZV+dwo6vx/+fIlvvnmG9jb20NXVxc1atTATz/9BEEQ3nlc/P39YWpqitWrVysVawDQqFEjfPfdd7h27Rp27NihdHxcXV0RFhaGJk2aQE9PD46OjggICFC0edf5X1rH8pdffkHt2rWhq6sLOzs7jBo1qtDPt7edOnUKn3zyCeRyOZycnLBq1apC227cuFHxO8XMzAy9evXK99lWkPnz5+PFixdYs2ZNgX8AcnZ2LvIKW2H31BV0X/WFCxfg4+MDCwsLxXs0ePBgAK+Pt6WlJYDX50De+zN9+nTF82/evInu3bvDzMwMcrkcDRs2xJ49ewrcb0E/36mpqRg3bhyqVKkCXV1dWFlZoV27drh48eI7jxN9uHiFjaiEValSBZ6entiyZQvat28P4PUXi+TkZPTq1QtLly7N95zhw4fj999/x6BBgzBmzBhERUVh+fLluHTpEk6fPg1tbW0sXrwYX3/9NSpUqID/+7//AwBYW1sDAOLi4tCkSROkpaVhzJgxMDc3x/r16/Hpp59ix44d6Nq1KwDg1atXaNu2LR48eIAxY8bAzs4Of/zxR4Fd1/LyfPLJJ5g7dy7i4uKwZMkSnD59GpcuXYKJiUmhxyA2NhatW7dGdnY2vv/+exgYGGD16tXQ09PL1/aPP/7AgAED4OPjg3nz5iEtLQ0rV65Es2bNcOnSpWLdYB8ZGYmbN29i8ODBKt038+rVK7Rq1Qp37tzB6NGj4ejoiO3bt2PgwIFISkpSfAEQBAGdO3fGqVOn8NVXX6FWrVrYtWsXBgwYkG+bhw4dQvv27VG1alVMnz4dr169wrJly9C0aVNcvHhRpdcze/ZsSCQSfPfdd4iPj8fixYvh5eWFy5cvK47h9u3bkZaWhhEjRsDc3Bznzp3DsmXL8OjRI2zfvl1pe9nZ2fDx8UGzZs3w008/QV9fv9jbKK7u3btjyJAhCAoKwuzZswG8Pk8bN26sKG4sLS3xzz//YMiQIUhJScG4ceNQq1YtzJgxA1OnTsWwYcPQvHlzAECTJk0AvC6G27dvD3d3d0ybNg1SqRTr1q1DmzZtcPLkyXwDXPTo0QPVqlXDnDlzlL6I37lzB3369MHw4cPRr18//PTTT/Dz80NAQAB++OEHjBw5EgAwd+5c9OzZE7du3YJUWvTfOE+dOoWdO3di5MiRMDQ0xNKlS9GtWzc8ePAA5ubmAIDz58/jzJkz6NWrFypVqoT79+9j5cqVaNWqFSIiIhTvTZ6RI0fC0tISU6dOxcuXLwvdd25uLj799FOcOnUKw4YNQ61atXDt2jX8/PPPuH37Nnbv3q3Cu1aw6dOno0WLFli5cqXKV9lUsWnTJmRmZuLrr79GYmIi5s+fj549e6JNmzY4duwYvvvuO9y5cwfLli3Dt99+q1TYF+dzo6DzXxAEfPrppzh69CiGDBmCevXq4eDBg5g4cSIeP36Mn3/+udDckZGRuHXrFgYOHAgjI6MC2/Tv3x/Tpk3Dvn370KtXL8Xy58+fo0OHDujZsyd69+6Nbdu2YcSIEdDR0cHgwYPfef6XxrGcPn06/P394eXlhREjRuDWrVtYuXIlzp8/r/j9U5hr167B29sblpaWmD59OrKzszFt2jTF76Y3zZ49Gz/++CN69uyJL7/8Ek+fPsWyZcvQokWLd/5O2bt3L6pWrfrO4/C+4uPjFa/n+++/h4mJCe7fv6+499nS0hIrV67EiBEj0LVrV3z22WcAgDp16gB4/YfKpk2bomLFiorffdu2bUOXLl3w119/KX4X5yno5/urr77Cjh07MHr0aLi4uCAhIQGnTp3CjRs30KBBg1J9/aTBBCIqEevWrRMACOfPnxeWL18uGBoaCmlpaYIgCEKPHj2E1q1bC4IgCA4ODkLHjh0Vzzt58qQAQNi0aZPS9gIDA/Mtr127ttCyZct8+x43bpwAQDh58qRiWWpqquDo6ChUqVJFyMnJEQRBEBYvXiwAELZt26Zo9/LlS8HZ2VkAIBw9elQQBEHIzMwUrKysBFdXV+HVq1eKtvv27RMACFOnTi3yWOTlCQ0NVSyLj48XjI2NBQBCVFSUIqOJiYkwdOhQpefHxsYKxsbGSsunTZsmvOsj6++//xYACD///HOR7fLkHY+NGzcqlmVmZgqenp5ChQoVhJSUFEEQBGH37t0CAGH+/PmKdtnZ2ULz5s0FAMK6desUy+vVqydYWVkJCQkJimVXrlwRpFKp0L9//yLzHD16VAAgVKxYUbFvQRCEbdu2CQCEJUuWKJblnVtvmjt3riCRSITo6GjFsgEDBggAhO+//z5fe1W3UVTW7du3F9qmbt26gqmpqeLxkCFDBFtbW+HZs2dK7Xr16iUYGxsr8pw/fz7fcRUEQcjNzRWqVasm+Pj4CLm5uUqvw9HRUWjXrp1iWd750rt373y5HBwcBADCmTNnFMsOHjwoABD09PSUXvuqVauUfjbe3PabAAg6OjrCnTt3FMuuXLkiABCWLVumlPVtISEhAgBhw4YNimV5nyfNmjUTsrOz8z3nbX/88YcglUqVPgMEQRACAgIEAMLp06eVXv+AAQPeuU0AwqhRowRBEITWrVsLNjY2ivxvft7ladmyZYGfTwMGDBAcHBwUj6OiogQAgqWlpZCUlKRYPnnyZAGAULduXSErK0uxvHfv3oKOjo6Qnp4uCELxPjcKO//zfqZnzZqltLx79+6CRCJReh/flvfcd33OGBkZCQ0aNFA8btmypQBAWLhwoWJZRkaG4jMjMzNTEITCz/+811OSxzI+Pl7Q0dERvL29Fb8nBEEQli9fLgAQ1q5dW+Rr7NKliyCXy5V+ZiIiIgSZTKb0M3L//n1BJpMJs2fPVnr+tWvXBC0trXzL35ScnCwAEDp37lxklje9fY4X9vsj7zzO+520a9eufOf1254+fSoAEKZNm5ZvXdu2bQU3NzfF8RWE159bTZo0EapVq5ZvvwX9fBsbGyt+7ojysEskUSno2bMnXr16hX379iE1NRX79u0rtDvk9u3bYWxsjHbt2uHZs2eKf+7u7qhQoQKOHj36zv0dOHAAjRo1UnT5AoAKFSpg2LBhuH//PiIiIhTtbG1tle450tfXx7Bhw5S2d+HCBcTHx2PkyJGQy+WK5R07dkTNmjXfea/AgQMH0LhxY6WrHZaWloquSHmCg4ORlJSE3r17K712mUwGDw8PlV77m1JSUgBA5VHpDhw4ABsbG/Tu3VuxTFtbG2PGjMGLFy9w/PhxRTstLS2MGDFC0U4mk+Hrr79W2l5MTAwuX76MgQMHwszMTLG8Tp06aNeuHQ4cOKBSrv79+yu9hu7du8PW1lbp+W9erXz58iWePXuGJk2aQBCEfF34AChlV3cbxVWhQgWkpqYCeH2V8q+//oKfnx8EQVB6v318fJCcnPzOLj+XL19GZGQk+vTpg4SEBMXzX758ibZt2+LEiRP5ut1+9dVXBW7LxcUFnp6eisceHh4AgDZt2qBy5cr5lt+7d++dr9fLywtOTk6Kx3Xq1IGRkZHSc9885llZWUhISICzszNMTEwKfP1Dhw7N1+WuINu3b0etWrVQs2ZNpWPbpk0bACj2z9Lbpk+fjtjYWKXue++rR48eSlOX5B3rfv36Kd335eHhgczMTEV3bHU+N94+/w8cOACZTIYxY8YoLf/mm28gCAL++eefQnPnndPv+pwxNDRUfCbl0dLSwvDhwxWPdXR0MHz4cMTHxyMsLKzI7RVF3WN56NAhZGZmYty4cUpXkIcOHQojI6MiP+tzcnJw8OBBdOnSRelnplatWvDx8VFqu3PnTuTm5qJnz55K75mNjQ2qVatW5PlZ3M/195F3lW/fvn3Fvtc5MTERR44cQc+ePZGamqp4jQkJCfDx8UFkZGS+WwoK+vk2MTFBaGgonjx58l6vhT4s7BJJVAosLS3h5eWFzZs3Iy0tDTk5OfkGZsgTGRmJ5ORkWFlZFbg+Pj7+nfuLjo5W/IJ+U61atRTrXV1dER0dDWdn53x9+WvUqJFvewUtB4CaNWsWOG2BKnne3l5kZCQAKL5Uvq2w7kaFyWuf94XqXaKjo1GtWrV8Xd3ePG55/7W1tUWFChWU2hXnuNWqVQsHDx5U6cbytyfflUgkcHZ2VrrP4sGDB5g6dSr27NmjdK8jgHwTrmtpaRV4/1NxtqGOFy9eKL5kPX36FElJSVi9ejVWr15dYPt3net550tBXVHzJCcnw9TUVPHY0dGxwHZvfsEEoPiya29vX+Dyt4+PKtsEAFNTU6Xnvnr1CnPnzsW6devw+PFjpW6aBR3zwvK/LTIyEjdu3FDcX/M2VT5HitKiRQu0bt0a8+fPL7QILi5134Pifm4UdP5HR0fDzs4uXxHw9s9+QfKe867PmdTU1Hyf63Z2dvl+/qtXrw7g9f1RjRs3LnKbhVH3WBb2maWjo4OqVasWeRyePn2KV69eFThZeI0aNZT+wBQZGQlBEAqdWLyobpfF/Vx/Hy1btkS3bt3g7++Pn3/+Ga1atUKXLl3Qp0+fIkd4Bl53sxYEAT/++CN+/PHHAtvEx8ejYsWKiscF/XzPnz8fAwYMgL29Pdzd3dGhQwf0798fVatWfb8XR+UaCzaiUtKnTx8MHToUsbGxaN++faH983Nzc2FlZYVNmzYVuL6wL2AfgryrIX/88QdsbGzyrS/u6Go1a9YE8Pq+ig9ZTk4O2rVrh8TERHz33XeoWbMmDAwM8PjxYwwcODDfVSZdXd18RWlxt1FcWVlZuH37NlxdXQH8917369ev0IIr7z6QwuRtY8GCBYWOpvp2UV3QfZMACr1qVdjyNwurwqjy3K+//hrr1q3DuHHj4OnpCWNjY0gkEvTq1avAY15Y/rfl5ubCzc0NixYtKnD921/c1TFt2jS0atUKq1atKvDzTCKRFHiccnJyCtyeuu9BcT83Cjr/30deUXf16tVC20RHRyMlJQUuLi4ltt+ilMb5XJJyc3MhkUjwzz//FJjp7Z/bNxkZGcHOzg7Xr19Xe/+FTeL99rkpkUiwY8cOnD17Fnv37sXBgwcxePBgLFy4EGfPni0yZ955+e233+a7wpjH2dlZ6XFBP989e/ZE8+bNsWvXLgQFBWHBggWYN28edu7cqbgvnj4+LNiISknXrl0xfPhwnD17Flu3bi20nZOTEw4dOoSmTZu+88tZYb90HBwcCpyb5+bNm4r1ef+9fv06BEFQ2tbbz81rf+vWrXx/xb5165ZifWEcHBwUfwV/+7lvyus+ZmVlBS8vryK3qYrq1aujRo0a+Pvvv7FkyZIif7nm5bx69Spyc3OVvtAVdNwOHz6MFy9eKG2zqOP2tps3b8LCwkKlYZvfPnaCIODOnTuKgubatWu4ffs21q9fj/79+yvavTky6buUxDaKsmPHDrx69UrxxcXS0hKGhobIycl553td2Hmed74YGRmVyPkihh07dmDAgAFKcy2mp6erPCJfYZycnHDlyhW0bdu20OP3vlq2bIlWrVph3rx5mDp1ar71pqamBXYdLeoqjTpK4nPDwcEBhw4dQmpqqtJVtrd/9gtSvXp1VK9eHbt378aSJUsK7Kq3YcMGAFAakRZ4Pcfa21fZb9++DQCKgVJK6/0ryJufWW9ewcnMzERUVFSRx9fS0hJ6enoqf9YLggBHR0fFFcXi6NSpE1avXo2QkBClrsyqyrvqnpSUpPTHhsLOzcaNG6Nx48aYPXs2Nm/ejL59++LPP//El19+Wej7k3f8tLW13/vzydbWFiNHjsTIkSMRHx+PBg0aYPbs2SzYPmK8h42olFSoUAErV67E9OnT4efnV2i7nj17IicnBzNnzsy3Ljs7W+mLnIGBQYFf7Dp06IBz584hJCREsezly5dYvXo1qlSpovgrb4cOHfDkyROloabT0tLydVFr2LAhrKysEBAQoDQk+D///IMbN26gY8eORb72Dh064OzZszh37pxi2dOnT/NdRfTx8YGRkRHmzJlT4P0CT58+LXI/BfH390dCQgK+/PJLZGdn51sfFBSEffv2KXLGxsYqFdTZ2dlYtmwZKlSogJYtWyraZWdnY+XKlYp2OTk5WLZsmdK2bW1tUa9ePaxfv17pfbp+/TqCgoLQoUMHlV7Dhg0blLr/7NixAzExMYpf1nl/oX7zr+SCIGDJkiUqbb+ktlGYK1euYNy4cTA1NcWoUaMU++vWrRv++uuvAv9S/uZ7nfdl9u1z3d3dHU5OTvjpp5/w4sWLIrehqWQyWb6rG8uWLSv0KpSqevbsicePH+PXX3/Nt+7Vq1dFjjBZHHn3shXUrdXJyQk3b95Ueh+uXLmSb8qF91USnxsdOnRATk5Ovmknfv75Z0gkknd+MZ46dSqeP3+Or776Kt97FxYWhnnz5sHV1RXdunVTWpedna007H1mZiZWrVoFS0tLuLu7Ayj8/C8NXl5e0NHRwdKlS5XOyzVr1iA5ObnIz3qZTAYfHx/s3r0bDx48UCy/ceMGDh48qNT2s88+g0wmg7+/f77zXxAEJCQkFJlz0qRJMDAwwJdffom4uLh86+/evVvkZ1dekX/ixAnFspcvX+abwuX58+f58uVdzc/7XZg3kuvb74+VlZXiCnRMTEy+DKqclzk5Ofm6RltZWcHOzu69pueg8o9X2IhKUVH32uRp2bIlhg8fjrlz5+Ly5cvw9vaGtrY2IiMjsX37dixZskRx/5u7uztWrlyJWbNmwdnZGVZWVmjTpg2+//57xTQCY8aMgZmZGdavX4+oqCj89ddfiqtHQ4cOxfLly9G/f3+EhYXB1tYWf/zxR76hxLW1tTFv3jwMGjQILVu2RO/evRXD+lepUgXjx48v8jVNmjQJf/zxB3x9fTF27FjFsP55V7TyGBkZYeXKlfjiiy/QoEED9OrVC5aWlnjw4AH279+Ppk2b5vtC9S6ff/45rl27htmzZ+PSpUvo3bs3HBwckJCQgMDAQBw+fBibN28GAAwbNgyrVq3CwIEDERYWhipVqmDHjh04ffo0Fi9erPjLuZ+fH5o2bYrvv/8e9+/fh4uLC3bu3FngPUcLFixA+/bt4enpiSFDhiiG9Tc2Nlaaq6coZmZmaNasGQYNGoS4uDgsXrwYzs7OGDp0KIDXXT+dnJzw7bff4vHjxzAyMsJff/2l0n1WeUpiG8DrudzS09ORk5ODhIQEnD59Gnv27IGxsTF27dql1GXtf//7H44ePQoPDw8MHToULi4uSExMxMWLF3Ho0CHF/FBOTk4wMTFBQEAADA0NYWBgAA8PDzg6OuK3335D+/btUbt2bQwaNAgVK1bE48ePcfToURgZGWHv3r3Fyl/WOnXqhD/++APGxsZwcXFBSEgIDh06pBj2X11ffPEFtm3bhq+++gpHjx5F06ZNkZOTg5s3b2Lbtm04ePAgGjZs+N75W7ZsiZYtWyoG5HnT4MGDsWjRIvj4+GDIkCGIj49HQEAAateunW/wjfdREp8bfn5+aN26Nf7v//4P9+/fR926dREUFIS///4b48aNUxo8piB9+/bF+fPnsWTJEkRERKBv374wNTXFxYsXsXbtWpibm2PHjh357s2ys7PDvHnzcP/+fVSvXh1bt27F5cuXsXr1akXbos7/kmZpaYnJkyfD398fvr6++PTTT3Hr1i388ssv+OSTT9CvX78in+/v74/AwEA0b94cI0eOVPzBq3bt2kqf9U5OTpg1axYmT56M+/fvo0uXLjA0NERUVBR27dqFYcOG4dtvvy10P05OTti8eTM+//xz1KpVC/3794erqysyMzNx5swZxXQshfH29kblypUxZMgQTJw4ETKZDGvXrlWcN3nWr1+PX375BV27doWTkxNSU1Px66+/wsjISPEHNz09Pbi4uGDr1q2oXr06zMzM4OrqCldXV6xYsQLNmjWDm5sbhg4diqpVqyIuLg4hISF49OgRrly5UuTxTE1NRaVKldC9e3fUrVsXFSpUwKFDh3D+/Hmlq/L0ESqz8SiJPnAFDXNdkLeH9c+zevVqwd3dXdDT0xMMDQ0FNzc3YdKkScKTJ08UbWJjY4WOHTsKhoaGAgClIbTv3r0rdO/eXTAxMRHkcrnQqFEjYd++ffn2Ex0dLXz66aeCvr6+YGFhIYwdO1YxhcCbQ5cLgiBs3bpVqF+/vqCrqyuYmZkJffv2FR49eqTS8bh69arQsmVLQS6XCxUrVhRmzpwprFmzRmkI5TxHjx4VfHx8BGNjY0EulwtOTk7CwIEDhQsXLijaqDKs/5sOHz4sdO7cWbCyshK0tLQES0tLwc/PT/j777+V2sXFxQmDBg0SLCwsBB0dHcHNza3A4bQTEhKEL774QjAyMhKMjY2FL774Qrh06VKBw28fOnRIaNq0qaCnpycYGRkJfn5+QkRExDsz5w2Vv2XLFmHy5MmClZWVoKenJ3Ts2DHfMPsRERGCl5eXUKFCBcHCwkIYOnSoYhj5N/MMGDBAMDAwKHB/qm6jqKx5/7S1tQVLS0uhRYsWwuzZs4X4+PgCnxcXFyeMGjVKsLe3F7S1tQUbGxuhbdu2wurVq5Xa/f3334KLi4ugpaWVL8+lS5eEzz77TDA3Nxd0dXUFBwcHoWfPnsLhw4cVbfLOl6dPn+bLUNjPIN4Yxj5P3rDpCxYsyLftdz03b19vDi/+/PlzxflWoUIFwcfHR7h582a+dqp+nrwpMzNTmDdvnlC7dm1BV1dXMDU1Fdzd3QV/f38hOTm50EyFKew1vfnev51v48aNQtWqVQUdHR2hXr16wsGDBwsdiv7NY/rmdt+eKqKwY6HK50ZR539qaqowfvx4wc7OTtDW1haqVasmLFiwQGnKiHfZvXu30K5dO8HU1FTQ1dUVnJ2dhW+++abA865ly5ZC7dq1hQsXLgienp6CXC4XHBwchOXLl+drW9j5X1rHcvny5ULNmjUFbW1twdraWhgxYoTw/PlzlY7B8ePHBXd3d0FHR0eoWrWqEBAQUOjn9V9//SU0a9ZMMDAwEAwMDISaNWsKo0aNEm7duqXSvm7fvi0MHTpUqFKliqCjoyMYGhoKTZs2FZYtW6Y0lH5B53hYWJjg4eEh6OjoCJUrVxYWLVqUb1j/ixcvCr179xYqV64s6OrqClZWVkKnTp2UzilBEIQzZ84oXjPeGuL/7t27Qv/+/QUbGxtBW1tbqFixotCpUydhx44dijaFvQ8ZGRnCxIkThbp16wqGhoaCgYGBULduXeGXX35R6fjQh0siCGV85ykRERXo2LFjaN26NbZv317oqKJEVD61atUKz549e6/BM4jo48R72IiIiIiIiDQUCzYiIiIiIiINxYKNiIiIiIhIQ/EeNiIiIiIiIg3FK2xEREREREQaigUbERERERGRhuLE2WUoNzcXT548gaGhISQSidhxiIiIiIhIJIIgIDU1FXZ2dpBKC7+OxoKtDD158gT29vZixyAiIiIiIg3x8OFDVKpUqdD1LNjKkKGhIYDXb4qRkZGoWbKyshAUFARvb29oa2uLmuVtzKY+Tc7HbOphNvUwm/o0OR+zqYfZ1MNs6tPkfJqULSUlBfb29ooaoTAs2MpQXjdIIyMjjSjY9PX1YWRkJPrJ+jZmU58m52M29TCbephNfZqcj9nUw2zqYTb1aXI+Tcz2rlulOOgIERERERGRhmLBRkREREREpKFYsBEREREREWkoFmxEREREREQaStSCLScnBz/++CMcHR2hp6cHJycnzJw5E4IgKNoMHDgQEolE6Z+vr6/SdhITE9G3b18YGRnBxMQEQ4YMwYsXL5TaXL16Fc2bN4dcLoe9vT3mz5+fL8/27dtRs2ZNyOVyuLm54cCBA0rrBUHA1KlTYWtrCz09PXh5eSEyMrIEjwgREREREdF/RC3Y5s2bh5UrV2L58uW4ceMG5s2bh/nz52PZsmVK7Xx9fRETE6P4t2XLFqX1ffv2RXh4OIKDg7Fv3z6cOHECw4YNU6xPSUmBt7c3HBwcEBYWhgULFmD69OlYvXq1os2ZM2fQu3dvDBkyBJcuXUKXLl3QpUsXXL9+XdFm/vz5WLp0KQICAhAaGgoDAwP4+PggPT29lI4QERERERF9zEQd1v/MmTPo3LkzOnbsCACoUqUKtmzZgnPnzim109XVhY2NTYHbuHHjBgIDA3H+/Hk0bNgQALBs2TJ06NABP/30E+zs7LBp0yZkZmZi7dq10NHRQe3atXH58mUsWrRIUdgtWbIEvr6+mDhxIgBg5syZCA4OxvLlyxEQEABBELB48WJMmTIFnTt3BgBs2LAB1tbW2L17N3r16lUqx4iIiIiIiD5eohZsTZo0werVq3H79m1Ur14dV65cwalTp7Bo0SKldseOHYOVlRVMTU3Rpk0bzJo1C+bm5gCAkJAQmJiYKIo1APDy8oJUKkVoaCi6du2KkJAQtGjRAjo6Ooo2Pj4+mDdvHp4/fw5TU1OEhIRgwoQJSvv18fHB7t27AQBRUVGIjY2Fl5eXYr2xsTE8PDwQEhJSYMGWkZGBjIwMxeOUlBQAr+d/yMrKUvOolYy8/YudoyDMpj5Nzsds6mE29TCb+jQ5H7Oph9nUw2zq0+R8mpRN1QyiFmzff/89UlJSULNmTchkMuTk5GD27Nno27evoo2vry8+++wzODo64u7du/jhhx/Qvn17hISEQCaTITY2FlZWVkrb1dLSgpmZGWJjYwEAsbGxcHR0VGpjbW2tWGdqaorY2FjFsjfbvLmNN59XUJu3zZ07F/7+/vmWBwUFQV9f/53HpywEBweLHaFQzKY+Tc7HbOphNvUwm/o0OR+zqYfZ1MNs6tPkfJqQLS0tTaV2ohZs27Ztw6ZNm7B582ZFN8Vx48bBzs4OAwYMAAClK1dubm6oU6cOnJyccOzYMbRt21as6CqZPHmy0lW7lJQU2Nvbw9vbG0ZGRiIme13RBwcHo127dhozy3seZlOfJudjNvUwm3qYTX2anI/Z1MNs6mE29WlyPk3Kltf77l1ELdgmTpyI77//XlGUubm5ITo6GnPnzlUUbG+rWrUqLCwscOfOHbRt2xY2NjaIj49XapOdnY3ExETFfW82NjaIi4tTapP3+F1t3lyft8zW1lapTb169QrMqqurC11d3XzLtbW1RT9B8mhSlrcxm/o0OR+zqYfZ1MNs6tPkfMymHmZTD7OpT5PzaUI2Vfcv6iiRaWlpkEqVI8hkMuTm5hb6nEePHiEhIUFRNHl6eiIpKQlhYWGKNkeOHEFubi48PDwUbU6cOKHUTzQ4OBg1atSAqampos3hw4eV9hUcHAxPT08AgKOjI2xsbJTapKSkIDQ0VNGGiIiIiIioJIlasPn5+WH27NnYv38/7t+/j127dmHRokXo2rUrAODFixeYOHEizp49i/v37+Pw4cPo3LkznJ2d4ePjAwCoVasWfH19MXToUJw7dw6nT5/G6NGj0atXL9jZ2QEA+vTpAx0dHQwZMgTh4eHYunUrlixZotRdcezYsQgMDMTChQtx8+ZNTJ8+HRcuXMDo0aMBABKJBOPGjcOsWbOwZ88eXLt2Df3794ednR26dOlStgeOiIiIiIg+CqJ2iVy2bBl+/PFHjBw5EvHx8bCzs8Pw4cMxdepUAK+vtl29ehXr169HUlIS7Ozs4O3tjZkzZyp1Ndy0aRNGjx6Ntm3bQiqVolu3bli6dKlivbGxMYKCgjBq1Ci4u7vDwsICU6dOVZqrrUmTJti8eTOmTJmCH374AdWqVcPu3bvh6uqqaDNp0iS8fPkSw4YNQ1JSEpo1a4bAwEDI5fIyOFolJydXQGhUIsKeSWAelQhPZyvIpBKxYxERERER0VtELdgMDQ2xePFiLF68uMD1enp6OHjw4Du3Y2Zmhs2bNxfZpk6dOjh58mSRbXr06IEePXoUul4ikWDGjBmYMWPGOzNpqsDrMfDfG4GY5HQAMmyIvABbYzmm+bnA19X2nc8nIiIiIqKyI2qXSCpbgddjMGLjxX+Ltf/EJqdjxMaLCLweI1IyIiIiIiIqCAu2j0ROrgD/vREQCliXt8x/bwRycgtqQUREREREYmDB9pE4F5WY78ramwQAMcnpOBeVWHahiIiIiIioSCzYPhLxqYUXa+q0IyIiIiKi0seC7SNhZajaSJaqtiMiIiIiotLHgu0j0cjRDLbGchQ2eL8EgK2xHI0czcoyFhERERERFYEF20dCJpVgmp8LABRatE3zc+F8bEREREREGoQF20fE19UWK/s1gI1x/m6PvRvZcx42IiIiIiINI+rE2VT2fF1t0c7FBiF34hF0MhS5ZlWwMfQhzt5LRG6uACmvsBERERERaQxeYfsIyaQSeDiawd1CwDftqsFQroV7z17i6K14saMREREREdEbWLB95CroaqFPo8oAgN9ORomchoiIiIiI3sSCjTCgSRVoSSUIuZeA64+TxY5DRERERET/YsFGsDPRQ8c6rwccWXOKV9mIiIiIiDQFCzYCAAxp5ggA2HvlCWKT00VOQ0REREREAAs2+ledSiZo5GiG7FwBv5+5L3YcIiIiIiICCzZ6w9DmVQEAm0Oj8TIjW+Q0RERERETEgo0U2ta0QhVzfaSkZ2NH2COx4xARERERffRYsJGCVCpR3Mu25lQUcnIFkRMREREREX3cWLCRkm7ulWCir40HiWkIjogTOw4RERER0UeNBRsp0dfRQl+P1xNprzl1T+Q0REREREQfNxZslE9/zyrQlklw/v5zXH6YJHYcIiIiIqKPFgs2ysfaSI5P61YEAPx2klfZiIiIiIjEwoKNCpQ3+Mg/12Px6HmayGmIiIiIiD5OLNioQC52RmjmbIGcXAG/n74vdhwiIiIioo8SCzYq1JDmr6+y/Xn+IVLTs0ROQ0RERET08WHBRoVqWc0SzlYV8CIjG1vPPxQ7DhERERHRR4cFGxVKKpXgy3/vZVt3+j6yc3JFTkRERERE9HFhwUZF6lK/IswNdPA46RUCw2PFjkNERERE9FFhwUZFkmvL0K+xAwDg15NREARB5ERERERERB8PFmz0Tl94OkBHS4orD5MQFv1c7DhERERERB8NFmz0ThYVdPFZ/byJtKNETkNERERE9PFgwUYqyZtI+2BELKITXoqchoiIiIjo48CCjVRSzdoQrWpYQhBejxhJRERERESljwUbqezLZlUBANsuPERyGifSJiIiIiIqbSzYSGVNnc1R08YQaZk52HzugdhxiIiIiIg+eCzYSGUSiQRfNn99le33M1HIzOZE2kREREREpYkFGxWLX11bWBrqIi4lAweuxYgdh4iIiIjog8aCjYpFV0uGAZ55E2nf40TaRERERESliAUbFVtfDwfItaUIf5KCs/cSxY5DRERERPTBYsFGxWZqoIPu7pUAAL+dvCdyGiIiIiKiDxcLNlLL4KaOkEiAwzfjcffpC7HjEBERERF9kFiwkVqqWlZA25rWAIC1p6JETkNERERE9GFiwUZq+7K5IwBgR9gjJL7MFDkNEREREdGHhwUbqc3D0QxuFY2RkZ2LTWejxY5DRERERPTBYcFGans9kfbrq2zrQ6KRkZ0jciIiIiIiog8LCzZ6Lx3cbGFrLMezFxn4+/ITseMQEREREX1QWLDRe9GWSTGwSRUAwJqTUZxIm4iIiIioBLFgo/fWq1Fl6OvIcCsuFafuPBM7DhERERHRB4MFG703Yz1t9GxoDwD49SSH+CciIiIiKimiFmw5OTn48ccf4ejoCD09PTg5OWHmzJlK3eoEQcDUqVNha2sLPT09eHl5ITIyUmk7iYmJ6Nu3L4yMjGBiYoIhQ4bgxQvlyZyvXr2K5s2bQy6Xw97eHvPnz8+XZ/v27ahZsybkcjnc3Nxw4MABpfWqZPlYDW7qCKkEOHH7KW7Fpoodh4iIiIjogyBqwTZv3jysXLkSy5cvx40bNzBv3jzMnz8fy5YtU7SZP38+li5dioCAAISGhsLAwAA+Pj5IT09XtOnbty/Cw8MRHByMffv24cSJExg2bJhifUpKCry9veHg4ICwsDAsWLAA06dPx+rVqxVtzpw5g969e2PIkCG4dOkSunTpgi5duuD69evFyvKxqmyuD5/aNgA4kTYRERERUUkRtWA7c+YMOnfujI4dO6JKlSro3r07vL29ce7cOQCvr2gtXrwYU6ZMQefOnVGnTh1s2LABT548we7duwEAN27cQGBgIH777Td4eHigWbNmWLZsGf788088efJ61MJNmzYhMzMTa9euRe3atdGrVy+MGTMGixYtUmRZsmQJfH19MXHiRNSqVQszZ85EgwYNsHz5cpWzfOzyhvjfdekxnqZmiJyGiIiIiKj80xJz502aNMHq1atx+/ZtVK9eHVeuXMGpU6cUhVRUVBRiY2Ph5eWleI6xsTE8PDwQEhKCXr16ISQkBCYmJmjYsKGijZeXF6RSKUJDQ9G1a1eEhISgRYsW0NHRUbTx8fHBvHnz8Pz5c5iamiIkJAQTJkxQyufj46MoxlTJ8raMjAxkZPxXuKSkpAAAsrKykJWV9R5H7v3l7b8kc9SxM0Q9e2NcfpiM9afvYWxbZ43JVlI0ORug2fmYTT3Mph5mU58m52M29TCbephNfZqcT5OyqZpB1ILt+++/R0pKCmrWrAmZTIacnBzMnj0bffv2BQDExsYCAKytrZWeZ21trVgXGxsLKysrpfVaWlowMzNTauPo6JhvG3nrTE1NERsb+879vCvL2+bOnQt/f/98y4OCgqCvr1/gc8pacHBwiW6vnp4ElyHDulN34ZB2Gzoy9bdV0tlKkiZnAzQ7H7Oph9nUw2zq0+R8zKYeZlMPs6lPk/NpQra0tDSV2olasG3btg2bNm3C5s2bUbt2bVy+fBnjxo2DnZ0dBgwYIGa0EjF58mSlq3YpKSmwt7eHt7c3jIyMREz2uqIPDg5Gu3btoK2tXWLb9c7JRfDiU3iclI50mzro8kkljclWEjQ5G6DZ+ZhNPcymHmZTnybnYzb1MJt6mE19mpxPk7Ll9b57F1ELtokTJ+L7779XdCd0c3NDdHQ05s6diwEDBsDG5vUgFnFxcbC1tVU8Ly4uDvXq1QMA2NjYID4+Xmm72dnZSExMVDzfxsYGcXFxSm3yHr+rzZvr35Xlbbq6utDV1c23XFtbW/QTJE9JZ9HWBgY3q4qZ+yLwe0g0+jauAqlUohHZSpImZwM0Ox+zqYfZ1MNs6tPkfMymHmZTD7OpT5PzaUI2Vfcv6qAjaWlpkEqVI8hkMuTm5gIAHB0dYWNjg8OHDyvWp6SkIDQ0FJ6engAAT09PJCUlISwsTNHmyJEjyM3NhYeHh6LNiRMnlPqJBgcHo0aNGjA1NVW0eXM/eW3y9qNKFnqtZ8NKMNTVwt2nL3Hsdvy7n0BERERERAUStWDz8/PD7NmzsX//fty/fx+7du3CokWL0LVrVwCARCLBuHHjMGvWLOzZswfXrl1D//79YWdnhy5dugAAatWqBV9fXwwdOhTnzp3D6dOnMXr0aPTq1Qt2dnYAgD59+kBHRwdDhgxBeHg4tm7diiVLlih1Vxw7diwCAwOxcOFC3Lx5E9OnT8eFCxcwevRolbPQa4ZybfRq9Hoi7d84kTYRERERkdpE7RK5bNky/Pjjjxg5ciTi4+NhZ2eH4cOHY+rUqYo2kyZNwsuXLzFs2DAkJSWhWbNmCAwMhFwuV7TZtGkTRo8ejbZt20IqlaJbt25YunSpYr2xsTGCgoIwatQouLu7w8LCAlOnTlWaq61JkybYvHkzpkyZgh9++AHVqlXD7t274erqWqws9NrApo5Ye/o+ztxNQPiTZNS2MxY7EhERERFRuSNqwWZoaIjFixdj8eLFhbaRSCSYMWMGZsyYUWgbMzMzbN68uch91alTBydPniyyTY8ePdCjR4/3ykKvVTTRQwc3W+y98gRrTkZh0ef1xI5ERERERFTuiNolkj5sQ/+dSHvPlSeITU4XOQ0RERERUfnDgo1KTZ1KJmhUxQzZuQI2hNwXOw4RERERUbnDgo1K1ZB/r7JtCn2AtMxskdMQEREREZUvLNioVHnVskYVc30kv8rCjrBHYschIiIiIipXWLBRqZJJJRjc7PVVtrWnopCTK4iciIiIiIio/GDBRqWuu3slGOtp435CGg7diBM7DhERERFRucGCjUqdvo4W+npUBgCs4UTaREREREQqY8FGZWJAkyrQlklw7n4irjxMEjsOEREREVG5wIKNyoS1kRx+dewAAL+d4lU2IiIiIiJVsGCjMpM3xP+BazF4nPRK5DRERERERJqPBRuVmdp2xmjiZI6cXAHrz9wXOw4RERERkcZjwUZl6st/r7JtCX2A1PQskdMQEREREWk2FmxUplpVt4KTpQFSM7Kx7QIn0iYiIiIiKgoLNipTUqkEQ5pVBfB6Iu3snFyRExERERERaS4WbFTmPmtQEWYGOnic9AoHwzmRNhERERFRYViwUZmTa8vQr7EDAOC3U/dETkNEREREpLlYsJEovmjsAB2ZFJceJCEsOlHsOEREREREGokFG4nC0lAXXer/O5H2SU6kTURERERUEBZsJJovm78efORgeCweJKSJnIaIiIiISPOwYCPRVLc2RIvqlsgVgLWneZWNiIiIiOhtLNhIVEP/nUh724WHSH7FibSJiIiIiN7Ego1E1czZAjWsDZGWmYM/zz0QOw4RERERkUZhwUaikkgkGPLvVbbfz9xHFifSJiIiIiJSYMFGoutczw4WFXQRk5yOA9dixI5DRERERKQxWLCR6HS1ZBjg+Xoi7V9P3oMgCCInIiIiIiLSDCzYSCP0bewAubYU1x+n4PeQaIQ9kyA0KhE5uSzeiIiIiOjjpSV2ACIAMDPQwSdVzHAy8hnm/HMbgAwbIi/A1liOaX4u8HW1FTsiEREREVGZ4xU20giB12NwMvJZvuWxyekYsfEiAq/z3jYiIiIi+viwYCPR5eQK8N8bUeC6vA6R/nsj2D2SiIiIiD46LNhIdOeiEhGTnF7oegFATHI6zkUlll0oIiIiIiINwIKNRBefWnixpk47IiIiIqIPBQs2Ep2VobxE2xERERERfShYsJHoGjmawdZYDkkRbcwNdNDI0azMMhERERERaQIWbCQ6mVSCaX4uAFBo0Zb8KgvBEbFlF4qIiIiISAOwYCON4Otqi5X9GsDGWLnbo42xHHUrGSM7V8DITRexKTRapIRERERERGWPE2eTxvB1tUU7FxuE3IlH0MlQeDf3gKezFQRBwI9/X8eWcw/xf7uu41lqJsa0dYZEUlQnSiIiIiKi8o9X2EijyKQSeDiawd1CgIejGWRSCbRkUszp6oYxbZwBAD8fuo2pf4dzXjYiIiIi+uCxYKNyQSKRYIJ3Dfh/WhsSCfDH2Wh8veUiMrJzxI5GRERERFRqWLBRuTKgSRUs610f2jIJDlyLxaB155GaniV2LCIiIiKiUsGCjcqdTnXssG5gIxjoyHDmbgJ6rT6Lp6kZYsciIiIiIipxLNioXGpWzQJ/DvOEuYEOwp+koHvAGTxISBM7FhERERFRiWLBRuWWWyVj7BjRBPZmeohOSMNnK88g/Emy2LGIiIiIiEoMCzYq1xwtDPDXV01Qy9YIz15k4PNVZ3Hm7jOxYxERERERlQgWbFTuWRnJsXV4Y3g4muFFRjYGrj2PA9dixI5FRERERPTeWLDRB8FIro31gxvBt7YNMnNyMWrzRWw8Gy12LCIiIiKi98KCjT4Ycm0ZVvRtgN6NKkMQgCm7r2PxodsQBE6wTURERETlEws2+qDIpBLM6eqKMW2rAQAWH4rEj39fR04uizYiIiIiKn9YsNEHRyKRYEK76pjZuTYkEmDj2Qf4estFZGTniB2NiIiIiKhYWLDRB+sLzypY3rsBdGRSHLgWi4FrzyM1PUvsWEREREREKhO1YKtSpQokEkm+f6NGjQIAtGrVKt+6r776SmkbDx48QMeOHaGvrw8rKytMnDgR2dnZSm2OHTuGBg0aQFdXF87Ozvj999/zZVmxYgWqVKkCuVwODw8PnDt3Tml9eno6Ro0aBXNzc1SoUAHdunVDXFxcyR4QKnEd69ji90GfoIKuFkLuJeDzVWcRn5oudiwiIiIiIpWIWrCdP38eMTExin/BwcEAgB49eijaDB06VKnN/PnzFetycnLQsWNHZGZm4syZM1i/fj1+//13TJ06VdEmKioKHTt2ROvWrXH58mWMGzcOX375JQ4ePKhos3XrVkyYMAHTpk3DxYsXUbduXfj4+CA+Pl7RZvz48di7dy+2b9+O48eP48mTJ/jss89K8/BQCWnibIE/hzWGRQUdRMSkoPvKEEQnvBQ7FhERERHRO4lasFlaWsLGxkbxb9++fXByckLLli0VbfT19ZXaGBkZKdYFBQUhIiICGzduRL169dC+fXvMnDkTK1asQGZmJgAgICAAjo6OWLhwIWrVqoXRo0eje/fu+PnnnxXbWbRoEYYOHYpBgwbBxcUFAQEB0NfXx9q1awEAycnJWLNmDRYtWoQ2bdrA3d0d69atw5kzZ3D27NkyOlr0PlwrGmPHV01Q2UwfDxLT0G3lGVx/nCx2LCIiIiKiImmJHSBPZmYmNm7ciAkTJkAikSiWb9q0CRs3boSNjQ38/Pzw448/Ql9fHwAQEhICNzc3WFtbK9r7+PhgxIgRCA8PR/369RESEgIvLy+lffn4+GDcuHGK/YaFhWHy5MmK9VKpFF5eXggJCQEAhIWFISsrS2k7NWvWROXKlRESEoLGjRsX+JoyMjKQkZGheJySkgIAyMrKQlaWuPdS5e1f7BwFKa1sFY118OeXn2Dwhou4GZuKz1eHIKBPfTSuaiZ6tpKiyfmYTT3Mph5mU58m52M29TCbephNfZqcT5OyqZpBYwq23bt3IykpCQMHDlQs69OnDxwcHGBnZ4erV6/iu+++w61bt7Bz504AQGxsrFKxBkDxODY2tsg2KSkpePXqFZ4/f46cnJwC29y8eVOxDR0dHZiYmORrk7efgsydOxf+/v75lgcFBSmKTrHldUPVRKWVbaA98FuaFHdSgIG/n0f/armoZ168Yf81+bgBmp2P2dTDbOphNvVpcj5mUw+zqYfZ1KfJ+TQhW1pamkrtNKZgW7NmDdq3bw87OzvFsmHDhin+383NDba2tmjbti3u3r0LJycnMWIWy+TJkzFhwgTF45SUFNjb28Pb21upa6cYsrKyEBwcjHbt2kFbW1vULG8ri2ydsnLwzY5rOBgRj98jZZhWoxb6NrLXiGzvQ5PzMZt6mE09zKY+Tc7HbOphNvUwm/o0OZ8mZcvrffcuGlGwRUdH49ChQ4orZ4Xx8PAAANy5cwdOTk6wsbHJN5pj3siNNjY2iv++PZpjXFwcjIyMoKenB5lMBplMVmCbN7eRmZmJpKQkpatsb7YpiK6uLnR1dfMt19bWFv0EyaNJWd5Wmtm0tbXxS7+GmPr3dWwKfYDpe2/geVo2xnlVU+qSK0a2kqDJ+ZhNPcymHmZTnybnYzb1MJt6mE19mpxPE7Kpun+NmIdt3bp1sLKyQseOHYtsd/nyZQCAra0tAMDT0xPXrl1TGs0xODgYRkZGcHFxUbQ5fPiw0naCg4Ph6ekJANDR0YG7u7tSm9zcXBw+fFjRxt3dHdra2kptbt26hQcPHijaUPkjk0owq4srxratBgBYcjgSU3ZfR05u8bpHEhERERGVFtGvsOXm5mLdunUYMGAAtLT+i3P37l1s3rwZHTp0gLm5Oa5evYrx48ejRYsWqFOnDgDA29sbLi4u+OKLLzB//nzExsZiypQpGDVqlOLK1ldffYXly5dj0qRJGDx4MI4cOYJt27Zh//79in1NmDABAwYMQMOGDdGoUSMsXrwYL1++xKBBgwAAxsbGGDJkCCZMmAAzMzMYGRnh66+/hqenZ6EDjlD5IJFIML5ddVgY6iqutiW8yMTiXvUg15aJHY+IiIiIPnKiF2yHDh3CgwcPMHjwYKXlOjo6OHTokKJ4sre3R7du3TBlyhRFG5lMhn379mHEiBHw9PSEgYEBBgwYgBkzZijaODo6Yv/+/Rg/fjyWLFmCSpUq4bfffoOPj4+izeeff46nT59i6tSpiI2NRb169RAYGKg0EMnPP/8MqVSKbt26ISMjAz4+Pvjll19K8chQWfqisQPMDXQw7s/LCAyPxcB157C6f0MYyTXzMj4RERERfRxEL9i8vb0hCPm7oNnb2+P48ePvfL6DgwMOHDhQZJtWrVrh0qVLRbYZPXo0Ro8eXeh6uVyOFStWYMWKFe/MROVTBzdbmOhrY9iGMJy9l4heq87i98GfwMpQLnY0IiIiIvpIacQ9bESaoomTBf4c1hgWFXQREZOC7itDcP/ZS7FjEREREdFHigUb0VtcKxrjrxGeqGymjweJaegecAbXHycjJ1dAaFQiwp5JEBqVyMFJiIiIiKjUid4lkkgTOZgb4K8RTTBw3TmEP0lB95VnoK+rhcSXmQBk2BB5AbbGckzzc4Gvq63YcYmIiIjoA8UrbESFsDTUxZ/DGqOGdQWkZ+f+W6z9JzY5HSM2XkTg9RiREhIRERHRh44FG1ER9HW0kPwqq8B1eR0i/fdGsHskEREREZUKFmxERTgXlYjYlIxC1wsAYpLTcS4qsexCEREREdFHgwUbURHiU9NLtB0RERERUXGwYCMqgqpzsHGuNiIiIiIqDSzYiIrQyNEMtsZySN7R7vjteGTn5JZJJiIiIiL6eLBgIyqCTCrBND8XAMhXtL35OOD4PfRbE4r4FHaNJCIiIqKSw4KN6B18XW2xsl8D2Bgrd3u0MZYjoF8DLOtdHwY6Mpy9l4gOS08h5G6CSEmJiIiI6EPDibOJVODraot2LjYIuROPoJOh8G7uAU9nK8ikr6+zudgZYeTGi7gVl4q+v53FN941MKKlE6TSd3WmJCIiIiIqHK+wEalIJpXAw9EM7hYCPBzNFMUaADhZVsDuUU3R3b0ScgVgwcFbGLL+PJ6/Ndk2EREREVFxsGAjKiF6OjL81KMu5nerA10tKY7eeopOy07h0oPnYkcjIiIionKKBRtRCev5iT12jWyKKub6eJz0Cj1XhWDtqSgIgiB2NCIiIiIqZ1iwEZUCFzsj7P26GTq42SArR8CMfREYtfkiUtOzxI5GREREROUICzaiUmIo18aKPg0wzc8F2jIJDlyLhd+yU4h4kiJ2NCIiIiIqJ1iwEZUiiUSCQU0dsW24J+yM5bifkIauv5zGtvMPxY5GREREROUACzaiMlC/sin2j2mOVjUskZGdi0l/XcW326/gVWaO2NGIiIiISIOxYCMqI6YGOlg74BNM9KkBqQTYEfYIXVacxt2nL8SORkREREQaigUbURmSSiUY1doZG7/0gEUFXdyKS8Wny05h75UnYkcjIiIiIg3Ego1IBE2cLHBgTDN4OJrhZWYOvt5yCVP/vo6MbHaRJCIiIqL/sGAjEomVkRybvvTAqNZOAIANIdHoGRCCh4lpIicjIiIiIk3Bgo1IRFoyKSb61MS6gZ/ARF8bVx4lo+PSkzgUESd2NCIiIiLSACzYiDRA65pW2Pd1M9S1N0FKeja+3HABc/+5geycXLGjEREREZGIWLARaYhKpvrYPtwTA5tUAQCsOn4PfX4NRVxKurjBiIiIiEg0LNiINIiOlhTTP62NFX0aoIKuFs7dT0THpSdx+s4zsaMRERERkQhYsBFpoI51bLFndFPUtDHEsxeZ6LcmFEsPRyI3VxA7GhERERGVIRZsRBqqqmUF7BrZFD3cK0EQgEXBtzHw9/NIfJkpdjQiIiIiKiMs2Ig0mJ6ODAt61MX87nUg15bixO2n6Lj0JMKin4sdjYiIiIjKAAs2onKgZ0N77B7VFFUtDBCTnI7PV4Xgt5P3IAjsIklERET0IWPBRlRO1LQxwt+jm6JjHVtk5wqYtf8GRmy8iJT0LABATq6A0KhEhD2TIDQqETm8342IiIio3NMSOwARqc5Qro3lveujURUzzNofgcDwWETEpKCfR2WsO3MfMcnpAGTYEHkBtsZyTPNzga+rrdixiYiIiEhNvMJGVM5IJBIMaFIF279qgoomeniQmIY5/9z8t1j7T2xyOkZsvIjA6zEiJSUiIiKi98WCjaicqmdvgj2jm0JXq+Af47wOkf57I9g9koiIiKicYsFGVI7djnuBjOzcQtcLAGKS03EuKrHsQhERERFRiWHBRlSOxaemv7tRMdoRERERkWZhwUZUjlkZylVqJy+k2yQRERERaTZ+iyMqxxo5msHWWA7JO9p9s/0K1p6KQlZO4d0niYiIiEjzsGAjKsdkUgmm+bkAQL6iLe9xRRM9vMjIwYx9Eeiw5CRORT4r04xEREREpD4WbETlnK+rLVb2awAbY+XukTbGcgT0a4ATk1pjdldXmOprIzL+BfqtCcXwPy7gYWKaSImJiIiISFWcOJvoA+Draot2LjYIuROPoJOh8G7uAU9nK8ikr6+z9fVwQEc3Wyw+FIk/zkbjYHgcjt56iq9aVMVXrZygr8OPAiIiIiJNxCtsRB8ImVQCD0czuFsI8HA0UxRreUz0dTD909rYP6YZPKuaIzM7F0uP3EHbhcex98oTCALnaiMiIiLSNCzYiD4yNW2MsHmoB1b2bYCKJnqISU7H11su4fPVZxHxJEXseERERET0hmL1g7px4wb+/PNPnDx5EtHR0UhLS4OlpSXq168PHx8fdOvWDbq6uqWVlYhKiEQiQXs3W7SqYYVVJ+5i5bG7OBeViE7LTqKPR2V8064GTA10xI5JRERE9NFT6QrbxYsX4eXlhfr16+PUqVPw8PDAuHHjMHPmTPTr1w+CIOD//u//YGdnh3nz5iEjI6O0cxNRCdDTkWGcV3Uc/qYlOrrZIlcANp59gFY/HcOGkPvI5jQARERERKJS6Qpbt27dMHHiROzYsQMmJiaFtgsJCcGSJUuwcOFC/PDDDyWVkYhKWSVTfazo2wD97ibAf284bsamYurf4dgc+gDT/GrD08lc7IhEREREHyWVCrbbt29DW1v7ne08PT3h6emJrKys9w5GRGXP08kc+75uhi3nHuCnoNu4GZuK3r+eRUc3W0zuUBOVTPXFjkhERET0UVGpS6Qqxdr7tCcizaElk+ILzyo49m0rfNHYAVIJsP9aDNouPI7Fh24jPStH7IhEREREHw21Rol8+fIlDhw4gICAACxdulTpX3FUqVIFEokk379Ro0YBANLT0zFq1CiYm5ujQoUK6NatG+Li4pS28eDBA3Ts2BH6+vqwsrLCxIkTkZ2drdTm2LFjaNCgAXR1deHs7Izff/89X5YVK1agSpUqkMvl8PDwwLlz55TWq5KF6ENiaqCDmV1cse/r5mjkaIaM7FwsPhSJtguP48C1GE4DQERERFQGij1b7qVLl9ChQwekpaXh5cuXMDMzw7NnzxQF05gxY1Te1vnz55GT899f669fv4527dqhR48eAIDx48dj//792L59O4yNjTF69Gh89tlnOH36NAAgJycHHTt2hI2NDc6cOYOYmBj0798f2tramDNnDgAgKioKHTt2xFdffYVNmzbh8OHD+PLLL2FrawsfHx8AwNatWzFhwgQEBATAw8MDixcvho+PD27dugUrKyuVshB9qFzsjLB1WGPsvxaDOftv4HHSK4zcdBGeVc0x7VMX1LQxEjsiERER0Qer2FfYxo8fDz8/Pzx//hx6eno4e/YsoqOj4e7ujp9++qlY27K0tISNjY3i3759++Dk5ISWLVsiOTkZa9aswaJFi9CmTRu4u7tj3bp1OHPmDM6ePQsACAoKQkREBDZu3Ih69eqhffv2mDlzJlasWIHMzEwAQEBAABwdHbFw4ULUqlULo0ePRvfu3fHzzz8rcixatAhDhw7FoEGD4OLigoCAAOjr62Pt2rUAoFIWog+ZRCJBpzp2OPxNK4xpWw06WlKE3EtAx6WnMO3v60hKyxQ7IhEREdEHqdhX2C5fvoxVq1ZBKpVCJpMhIyMDVatWxfz58zFgwAB89tlnagXJzMzExo0bMWHCBEgkEoSFhSErKwteXl6KNjVr1kTlypUREhKCxo0bIyQkBG5ubrC2tla08fHxwYgRIxAeHo769esjJCREaRt5bcaNG6fYb1hYGCZPnqxYL5VK4eXlhZCQEABQKUtBMjIylKY4SEl5PSlxVlaW6AOz5O1f7BwFYTb1lXY+LQnwdStHdKlrjf8F3kZQRDzWh0Rjz5UnGNfWGZ83rASZVCJKtvfBbOphNvVocjZAs/Mxm3qYTT3Mpj5NzqdJ2VTNUOyCTVtbG1Lp6wtzVlZWePDgAWrVqgVjY2M8fPiwuJtT2L17N5KSkjBw4EAAQGxsLHR0dPJNI2BtbY3Y2FhFmzeLtbz1eeuKapOSkoJXr17h+fPnyMnJKbDNzZs3Vc5SkLlz58Lf3z/f8qCgIOjra8Zoe8HBwWJHKBSzqa8s8nU0BpxdJNgZJUVsWham7b2B1Ycj0M0xB05F9JLU5GPHbOphNvVocjZAs/Mxm3qYTT3Mpj5NzqcJ2dLS0lRqV+yCrX79+jh//jyqVauGli1bYurUqXj27Bn++OMPuLq6FjtonjVr1qB9+/aws7NTexuaZvLkyZgwYYLicUpKCuzt7eHt7Q0jI3Hv+8nKykJwcDDatWuncaN6Mpv6yjpfBwBf5+Ri8/lHWHL4Dh6nZWNpuBY6utngO5/qsDWWAwBycgWcvfsUR0LC0MbTHY2dLAu9EicGTX5fmU09zKY+Tc7HbOphNvUwm/o0OZ8mZcvrffcuxS7Y5syZg9TUVADA7Nmz0b9/f4wYMQLVqlVT3PNVXNHR0Th06BB27typWGZjY4PMzEwkJSUpXdmKi4uDjY2Nos3boznmjdz4Zpu3R3OMi4uDkZER9PT0IJPJIJPJCmzz5jbelaUgurq60NXVzbdcW1tb9BMkjyZleRuzqa8s82lrA0OaO6FL/UpYGHwbW849wP5rsThy8ylGtXZCZTN9zP3nJmKS0wHIsCHyMmyN5Zjm5wJfV9syyagqTX5fmU09zKY+Tc7HbOphNvUwm/o0OZ8mZFN1/8UedKRhw4Zo3bo1gNddIgMDA5GSkoKwsDDUrVu3uJsDAKxbtw5WVlbo2LGjYpm7uzu0tbVx+PBhxbJbt27hwYMH8PT0BPB6ou5r164hPj5e0SY4OBhGRkZwcXFRtHlzG3lt8raho6MDd3d3pTa5ubk4fPiwoo0qWYg+duYVdDGnqxv2jm6GT6qY4lVWDn4Kuo0xf17+t1j7T2xyOkZsvIjA6zEipSUiIiIqH9Sah60k5ebmYt26dRgwYAC0tP674GdsbIwhQ4ZgwoQJOHr0KMLCwjBo0CB4enoqBvnw9vaGi4sLvvjiC1y5cgUHDx7ElClTMGrUKMWVra+++gr37t3DpEmTcPPmTfzyyy/Ytm0bxo8fr9jXhAkT8Ouvv2L9+vW4ceMGRowYgZcvX2LQoEEqZyGi11wrGmPbcE/83LMuCuv1mDeDm//eCOTkcj43IiIiosKo1CWyQYMGOHz4MExNTVG/fn1IJIXfe3Lx4sViBTh06BAePHiAwYMH51v3888/QyqVolu3bsjIyICPjw9++eUXxXqZTIZ9+/ZhxIgR8PT0hIGBAQYMGIAZM2Yo2jg6OmL//v0YP348lixZgkqVKuG3335TzMEGAJ9//jmePn2KqVOnIjY2FvXq1UNgYKDSQCTvykJE/5FIJLAx1kNRtZgAICY5HeeiEuHpZF5m2YiIiIjKE5UKts6dOyuuWHXp0qVEA3h7e0MQCv5WJ5fLsWLFCqxYsaLQ5zs4OODAgQNF7qNVq1a4dOlSkW1Gjx6N0aNHF7pelSxE9J/41PR3NypGOyIiIqKPkUoF27Rp0wr8fyKiwlgZylVqZ6qvmTcjExEREWmCYt/Ddv78eYSGhuZbHhoaigsXLpRIKCIq/xo5msHWWI53Dd4/Y28ELj54XiaZiIiIiMqbYhdso0aNKnCC7MePH2PUqFElEoqIyj+ZVIJpfq9Ha327aMt7bCjXwp2nL9Ft5RnM3BeBV5k5ZZqRiIiISNMVu2CLiIhAgwYN8i2vX78+IiIiSiQUEX0YfF1tsbJfA9gYK3ePtDGWI6BfA5yc1BqfNagIQQDWnIqCz+ITOHP3mUhpiYiIiDRPsSfO1tXVRVxcHKpWraq0PCYmRmlYfiIi4HXR1s7FBiF34hF0MhTezT3g6WwF2b9j/i/qWQ9+de3ww85reJCYhj6/hqKPR2VMbl8ThnLe30ZEREQft2JfYfP29sbkyZORnJysWJaUlIQffvgB7dq1K9FwRPRhkEkl8HA0g7uFAA9HM0Wxlqd1DSsEjW+Bvh6VAQCbQx/A++cTOHozXoy4RERERBqj2AXbggUL8PDhQzg4OKB169Zo3bo1HB0dERsbi4ULF5ZGRiL6CBjKtTG7qxu2DG0MB3N9xCSnY9Dv5zF+62U8f5kpdjwiIiIiURS7YKtUqRKuXr2K+fPnw8XFBe7u7liyZAmuXbsGe3v70shIRB8RTydzBI5tgaHNHSGVALsuPUa7n4/jwLUYsaMRERERlbli3XSWlZWFmjVrYt++fRg2bFhpZSKij5yejgz/19EFHdxsMWnHVUTGv8DITRfhW9sGM7rUVnmONyIiIqLyrlhX2LS1tZGenl5aWYiIlNSvbIp9Y5phTBtnaEklCAyPRbtFJ7Aj7BEEQRA7HhEREVGpU2setnnz5iE7O7s08hARKdHVkmGCdw3sGd0MrhWNkPwqC99uv4KB687jcdIrseMRERERlapij8N//vx5HD58GEFBQXBzc4OBgYHS+p07d5ZYOCKiPC52Rtg9sil+PRmFnw/dxvHbT+G96Di+71ALfRtVhlT69vTcREREROVfsQs2ExMTdOvWrTSyEBEVSUsmxYhWTvCubY3vdlzFhejn+HH3dey98gTzutWBo4XBuzdCREREVI4Uu2Bbt25daeQgIlKZk2UFbBvuiQ0h9zH/4C2ci0qE7+IT+Ma7OoY0q5pvnjciIiKi8qrY97ABQHZ2Ng4dOoRVq1YhNTUVAPDkyRO8ePGiRMMRERVGKpVgYFNHHBzXAs2cLZCRnYs5B27is19O41ZsqtjxiIiIiEpEsQu26OhouLm5oXPnzhg1ahSePn0KAJg3bx6+/fbbEg9IRFQUezN9/DGkEeZ3qwNDuRauPEpGp2UnseRQJDKzc8WOR0RERPReil2wjR07Fg0bNsTz58+hp6enWN61a1ccPny4RMMREalCIpGg5yf2ODShJdq5WCMrR8DPh27j0+WncPVRktjxiIiIiNRW7ILt5MmTmDJlCnR0dJSWV6lSBY8fPy6xYERExWVtJMfqL9yxrHd9mBno4GZsKrqsOI25/9xAelaO2PGIiIiIiq3YBVtubi5ycvJ/8Xn06BEMDQ1LJBQRkbokEgn86toheHwLfFrXDrkCsOr4PXRYchLn7yeKHY+IiIioWIpdsHl7e2Px4sWKxxKJBC9evMC0adPQoUOHksxGRKQ28wq6WNq7Pn7r3xDWRrq49+wleq4KwbS/r+NlRraiXU6ugNCoRIQ9kyA0KhE5uYKIqYmIiIiUFXtY/4ULF8LHxwcuLi5IT09Hnz59EBkZCQsLC2zZsqU0MhIRqc3LxRqfOJph7oEb+PP8Q6wPicahG/H4Xzc3vMzIhv/eCMQkpwOQYUPkBdgayzHNzwW+rrZiRyciIiIqfsFWqVIlXLlyBX/++SeuXr2KFy9eYMiQIejbt6/SICRERJrCWE8b/+tWB53q2OH7nVfx6PkrfLHmXIFtY5PTMWLjRazs14BFGxEREYmu2AUbAGhpaaFfv34lnYWIqFQ1q2aBg+NaYF7gTWwIiS6wjQBAAsB/bwTaudhwEm4iIiISlVoFW2RkJI4ePYr4+Hjk5irPczR16tQSCUZEVBoMdLXQ3tW20IINeF20xSSn41xUIjydzMsuHBEREdFbil2w/frrrxgxYgQsLCxgY2MDieS/vz5LJBIWbESk8eJT00u0HREREVFpKXbBNmvWLMyePRvfffddaeQhIip1VobyEm1HREREVFqKPaz/8+fP0aNHj9LIQkRUJho5msHWWI6i7k6TALj37AUEgcP8ExERkXiKXbD16NEDQUFBpZGFiKhMyKQSTPNzAYBCizYBwP/tuo6+v4XiQUJamWUjIiIielOxu0Q6Ozvjxx9/xNmzZ+Hm5gZtbW2l9WPGjCmxcEREpcXX1RYr+zV4Yx6212yN5fixowueJL/CT0G3cOZuAnwWn8BEnxoY0KQKR40kIiKiMlXsgm316tWoUKECjh8/juPHjyutk0gkLNiIqNzwdbVFOxcbhNyJR9DJUHg394Cns5WiKGvnYo3v/7qGkHsJmLEvAvuuPsH87nXgbGUocnIiIiL6WBS7YIuKiiqNHEREopBJJfBwNEPCDQEejmZKV9AczA2w6UsP/Hn+IeYcuIGLD5LQYckpjPWqhmEtqkJbVuxe5URERETFwm8bRERFkEol6ONRGUHjW6B1DUtk5uRiwcFb6Lz8NK4/ThY7HhEREX3gVL7CNmHCBJXaLVq0SO0wRESays5ED2sHfoK/Lz/B9L3hiIhJQecVp/FVy6r4uk01yLVlYkckIiKiD5DKBdulS5fe2ebNSbSJiD40EokEXepXRFNnC0zfE47912Kw4uhdBF6PxfzudeHuYCp2RCIiIvrAqFywHT16tDRzEBGVG5aGuljRtwH8rsfix7+v4+7Tl+gecAYDm1TBRJ8a0Ncp9u3BRERERAXiPWxERGrydbXBofEt0d29EgQBWHf6PnwWn8DpO8/EjkZEREQfCJUKtv/9739IS1Nt4tjQ0FDs37//vUIREZUXxvra+KlHXawf3AgVTfTwMPEV+v4Wiu//uoqU9Cyx4xEREVE5p1LBFhERAQcHB4wcORL//PMPnj59qliXnZ2Nq1ev4pdffkGTJk3w+eefw9CQcxQR0celZXVLHBzfAv09HQAAf55/iHaLjuNQRJzIyYiIiKg8U6lg27BhAw4dOoSsrCz06dMHNjY20NHRgaGhIXR1dVG/fn2sXbsW/fv3x82bN9GiRYvSzk1EpHEq6GphRmdXbBvuCUcLA8SlZODLDRcwZsslJLzIEDseERERlUMq3xlft25d/Prrr1i1ahWuXr2K6OhovHr1ChYWFqhXrx4sLCxKMycRUbnRyNEM/4xtjp8P3cavJ+5hz5UnOHXnGaZ/Wht+dWw5oi4RERGprNhDmUmlUtSrVw/16tUrhThERB8GubYMk9vXQkc3W0zacRU3Y1MxZssl7Ln8BLO7usLaSC52RCIiIioHOEokEVEpqlPJBHtGN8N4r+rQlklw6EYcvBYdx9bzDyAIgtjxiIiISMOxYCMiKmU6WlKM9aqGfV83R91KxkhNz8Z3f13DF2vO4WGiaiPwEhER0ceJBRsRURmpYWOIv0Y0wQ8dakJXS4pTd57BZ/EJ/H46Crm5vNpGRERE+bFgIyIqQ1oyKYa1cELguBZo5GiGtMwcTN8bgZ6rQnD36Qux4xEREZGGee+CLTo6GhEREcjNzS2JPEREHwVHCwP8ObQxZnZxhYGODBein6P9kpP45dgdZOe8/jzNyRUQGpWIsGcShEYlIodX4YiIiD46Ko8SuXbtWiQlJWHChAmKZcOGDcOaNWsAADVq1MDBgwdhb29f8imJiD5AUqkEXzR2QJuaVvhh5zUcv/0U8wNv4cC1GHSuWxFrT0chJjkdgAwbIi/A1liOaX4u8HW1FTs6ERERlRGVr7CtXr0apqamiseBgYFYt24dNmzYgPPnz8PExAT+/v6lEpKI6ENW0UQPvw/6BAt71IWxnjauP07B7AM3/i3W/hObnI4RGy8i8HqMSEmJiIiorKlcsEVGRqJhw4aKx3///Tc6d+6Mvn37okGDBpgzZw4OHz5cKiGJiD50EokE3dwrIXBcc8i1Cv5ozusQ6b83gt0jiYiIPhIqF2yvXr2CkZGR4vGZM2fQokULxeOqVasiNja22AEeP36Mfv36wdzcHHp6enBzc8OFCxcU6wcOHAiJRKL0z9fXV2kbiYmJ6Nu3L4yMjGBiYoIhQ4bgxQvlm/evXr2K5s2bQy6Xw97eHvPnz8+XZfv27ahZsybkcjnc3Nxw4MABpfWCIGDq1KmwtbWFnp4evLy8EBkZWezXTERUmPvP0pCeXfg9wQKAmOR0nItKLLtQREREJBqVCzYHBweEhYUBAJ49e4bw8HA0bdpUsT42NhbGxsbF2vnz58/RtGlTaGtr459//kFERAQWLlyo1PUSAHx9fRETE6P4t2XLFqX1ffv2RXh4OIKDg7Fv3z6cOHECw4YNU6xPSUmBt7e34jUsWLAA06dPx+rVqxVtzpw5g969e2PIkCG4dOkSunTpgi5duuD69euKNvPnz8fSpUsREBCA0NBQGBgYwMfHB+npyt2WiIjUFZ+q2ueJqu2IiIiofFN50JEBAwZg1KhRCA8Px5EjR1CzZk24u7sr1p85cwaurq7F2vm8efNgb2+PdevWKZY5Ojrma6erqwsbG5sCt3Hjxg0EBgbi/Pnzii6by5YtQ4cOHfDTTz/Bzs4OmzZtQmZmJtauXQsdHR3Url0bly9fxqJFixSF3ZIlS+Dr64uJEycCAGbOnIng4GAsX74cAQEBEAQBixcvxpQpU9C5c2cAwIYNG2BtbY3du3ejV69exXrtREQFsTKUq9RuzakoVDLVh7uD6bsbExERUbmlcsE2adIkpKWlYefOnbCxscH27duV1p8+fRq9e/cu1s737NkDHx8f9OjRA8ePH0fFihUxcuRIDB06VKndsWPHYGVlBVNTU7Rp0wazZs2Cubk5ACAkJAQmJiZK99d5eXlBKpUiNDQUXbt2RUhICFq0aAEdHR1FGx8fH8ybNw/Pnz+HqakpQkJClEbAzGuze/duAEBUVBRiY2Ph5eWlWG9sbAwPDw+EhIQUWLBlZGQgIyND8TglJQUAkJWVhaysrGIdq5KWt3+xcxSE2dSnyfmYTTX1KxnCxkgXcSkZKOoutauPktFt5Rk0dzbH162dUL+ySVlFVNCk4/Y2ZlOfJudjNvUwm3qYTX2anE+TsqmaQSIIgmh3rsvlr/+SPGHCBPTo0QPnz5/H2LFjERAQgAEDBgAA/vzzT+jr68PR0RF3797FDz/8gAoVKiAkJAQymQxz5szB+vXrcevWLaVtW1lZwd/fHyNGjIC3tzccHR2xatUqxfqIiAjUrl0bERERqFWrFnR0dLB+/XqlovOXX36Bv78/4uLicObMGTRt2hRPnjyBre1/Q2r37NkTEokEW7duzff6pk+fXuDImZs3b4a+vv77HTwi+mBdSZBg7e28HuuSN9a8/rju7piLhy8kOP9Ugtx/19c0zoWvfS4cDcs2KxEREaknLS0Nffr0QXJystJYIW9T+QpbQdLT07F161a8fPkS3t7ecHZ2Ltbzc3Nz0bBhQ8yZMwcAUL9+fVy/fl2pYHvzypWbmxvq1KkDJycnHDt2DG3btn2f+KVu8uTJSlftUlJSYG9vD29v7yLflLKQlZWF4OBgtGvXDtra2qJmeRuzqU+T8zGb6joAaBAeh1kHbiI25b+r9LbGcvxf+5rwqW0NAHiQmIaAE1HYdekJbiZLcTNZiqZO5vi6ddUy6SqpacftTcymPk3Ox2zqYTb1MJv6NDmfJmXL6333LioXbBMmTEBWVhaWLVsGAMjMzISnpyfCw8Ohr6+PSZMmITg4GJ6eniqHtLW1hYuLi9KyWrVq4a+//ir0OVWrVoWFhQXu3LmDtm3bwsbGBvHx8UptsrOzkZiYqLjvzcbGBnFxcUpt8h6/q82b6/OWvXmFLS4uDvXq1Sswq66uLnR1dfMt19bWFv0EyaNJWd7GbOrT5HzMpppO9SqhfZ2KCLkTj6CTofBu7gFPZyvIpP9dcXOyNsaCHvUwpm11rDh6BzvCHuH03QScvpuAZs4WGOtVDZ9UMSv1rJp03N7GbOrT5HzMph5mUw+zqU+T82lCNlX3r/IokUFBQWjXrp3i8aZNmxAdHY3IyEg8f/4cPXr0wKxZs4oVsmnTpvm6Mt6+fRsODg6FPufRo0dISEhQFE2enp5ISkpSjGAJAEeOHEFubi48PDwUbU6cOKHUTzQ4OBg1atRQjEjp6emZbx65NwtQR0dH2NjYKLVJSUlBaGhosYpUIiJVyaQSeDiawd1CgIejmVKx9iZ7M338r1sdHP22FXo3soeWVIJTd56hR0AI+v52llMAEBERlWMqF2wPHjxQuhoWFBSE7t27w8HBARKJBGPHjsWlS5eKtfPx48fj7NmzmDNnDu7cuYPNmzdj9erVGDVqFADgxYsXmDhxIs6ePYv79+/j8OHD6Ny5M5ydneHj4wPg9RU5X19fDB06FOfOncPp06cxevRo9OrVC3Z2dgCAPn36QEdHB0OGDEF4eDi2bt2KJUuWKHVXHDt2LAIDA7Fw4ULcvHkT06dPx4ULFzB69GgArye1HTduHGbNmoU9e/bg2rVr6N+/P+zs7NClS5divW4iotJgb6aPuZ/lFW6VoSWV4PSdBPRcFYI+v55F6L0EsSMSERFRMalcsEmlUrw5PsnZs2fRuHFjxWMTExM8f/68WDv/5JNPsGvXLmzZsgWurq6YOXMmFi9ejL59+wIAZDIZrl69ik8//RTVq1fHkCFD4O7ujpMnTyp1Ndy0aRNq1qyJtm3bokOHDmjWrJnSHGvGxsYICgpCVFQU3N3d8c0332Dq1KlKc7U1adJEUTDWrVsXO3bswO7du5WmKpg0aRK+/vprDBs2DJ988glevHiBwMBAxeApRESa4HXh5oZjE1uhj0dlaMskOHM3AZ+vPoveq8/iLAs3IiKickPle9hq1aqFvXv3YsKECQgPD8eDBw/QunVrxfro6GhYW1sXO0CnTp3QqVOnAtfp6enh4MGD79yGmZkZNm/eXGSbOnXq4OTJk0W26dGjB3r06FHoeolEghkzZmDGjBnvzEREJLZKpvqY09UNI1s54Zdjd7H9wkOE3EtAyOoENK5qhrFtq8PTyVzsmERERFSEYs3D1qtXL+zfvx/h4eHo0KGD0iTXBw4cQKNGjUolJBERqS+vcBvV2hm/HL2DbRce4uy9RJy9dxYejmYY58XCjYiISFOp3CWya9euOHDgAOrUqYPx48fnm3dMX18fI0eOLPGARERUMiqa6GF2Vzccm9ga/RpXho5MitCoRPT+9Sx6rgrBmbvPIOLUnERERFSAYs3D1rZt20LnPps2bVqJBCIiotJV0UQPs7q4YWQrZ6w8dhdbzz/EuahE9Pk1FI2qmGGcVzV4OplDIil4VEoiIiIqOypfYYuMjETv3r0LnOAtOTkZffr0wb1790o0HBERlR47Ez3M7OKK45Naob+nA3RkUpy7n4g+v4Xi81VncfoOr7gRERGJTeWCbcGCBbC3t4eRkVG+dcbGxrC3t8eCBQtKNBwREZU+W2M9zOj8unAb4OkAHa3XhVvf30LRc1UITkXmL9xycgWERiUi7JkEoVGJyMllYUdERFQaVO4Sefz4cWzcuLHQ9T179kSfPn1KJBQREZU9W2M9+Hd2xYhWzgg4fhebzz3A+fvP0W9NKBo6mGKsVzU0c7bAwfBY+O+NQExyOgAZNkRegK2xHNP8XODraiv2yyAiIvqgqFywPXjwAFZWVoWut7CwwMOHD0skFBERicfGWI7pn9bGiFZOWHnsdeF2Ifo5vlhzDlUtDXDv6ct8z4lNTseIjRexsl8DFm1EREQlSOUukcbGxrh7926h6+/cuVNgd0kiIiqfrI1eF24nJ7XGoKZVoCOTFFisAUBeh0j/vRHsHklERFSCVC7YWrRogWXLlhW6funSpWjevHmJhCIiIs1hbSTHNL/aWNKrfpHtBAAxyek4F5VYNsGIiIg+AioXbJMnT8Y///yD7t2749y5c0hOTkZycjJCQ0PRrVs3HDx4EJMnTy7NrEREJKLMnFyV2sWnppdyEiIioo+Hyvew1a9fHzt27MDgwYOxa9cupXXm5ubYtm0bGjRoUOIBiYhIM1gZyku0HREREb1bsSbO7tSpE6KjoxEYGIg7d+5AEARUr14d3t7e0NfXL62MRESkARo5msHWWI7Y5HQUdpeaXFsK14q8n5mIiKikqFywRUVFwdHREXp6eujatWtpZiIiIg0kk0owzc8FIzZehAQosGhLz8pFj4AQrPrCHQ7mBmUdkYiI6IOj8j1sTk5OcHR0xODBg7Fx40Y8evSoNHMREZEG8nW1xcp+DWBjrNzt0dZYjm+9q8PSUBc3Y1Pht+wUjt6KFyklERHRh0PlK2xHjhzBsWPHcOzYMWzZsgWZmZmoWrUq2rRpg9atW6N169awtrYuzaxERKQBfF1t0c7FBiF34hF0MhTezT3g6WwFmVSCHg3tMWJjGC4+SMLg389jgld1jGrtDKlUInZsIiKicknlgq1Vq1Zo1aoVACA9PR1nzpxRFHDr169HVlYWatasifDw8NLKSkREGkImlcDD0QwJNwR4OJpB9m9BZm0kx5ZhjTFjbwQ2hT7AwuDbuPY4GQt71oWhXFvk1EREROWPyl0i3ySXy9GmTRtMmTIF/v7+GDNmDCpUqICbN2+WdD4iIipndLVkmN3VDfO71YGOTIqgiDh0WXEad+JfiB2NiIio3ClWwZaZmYkTJ07A398frVu3homJCb766is8f/4cy5cvR1RUVGnlJCKicqbnJ/bY9pUnbI3luPv0JbqsOI2D4bFixyIiIipXVO4S2aZNG4SGhsLR0REtW7bE8OHDsXnzZtja2pZmPiIiKsfq2Ztg79fNMGrTRYRGJWL4H2EY3doZ49tVV3SjJCIiosKpfIXt5MmTMDc3R5s2bdC2bVu0a9eOxRoREb2TRQVdbPzSA4ObOgIAlh+9g8G/n0dyWpbIyYiIiDSfygVbUlISVq9eDX19fcybNw92dnZwc3PD6NGjsWPHDjx9+rQ0cxIRUTmmLZNiqp8LFn9eD3JtKY7ffgq/5adwIyZF7GhEREQaTeWCzcDAAL6+vvjf//6H0NBQPHv2DPPnz4e+vj7mz5+PSpUqwdXVtTSzEhFROdelfkX8NaIJ7M308CAxDZ/9cgZ7rjwROxYREZHGUmuUSOB1AWdmZgYzMzOYmppCS0sLN27cKMlsRET0AaptZ4y9o5uheTULvMrKwZgtlzB7fwSyc3LFjkZERKRxVC7YcnNzce7cOcyfPx/t27eHiYkJmjRpgl9++QU2NjZYsWIF7t27V5pZiYjoA2Gir4PfBzXCiFZOAIBfT0bhizXnkPAiQ+RkREREmkXlUSJNTEzw8uVL2NjYoHXr1vj555/RqlUrODk5lWY+IiL6QMmkEnznWxN1Khrj2+1XEHIvAX7LTmHVFw3hVslY7HhEREQaQeWCbcGCBWjdujWqV69emnmIiOgj097NFs5WFTDsjzBEPXuJbgFnMLuLK3o0tBc7GhERkehU7hI5fPhwFmtERFQqqlkb4u/RTeFVywqZ2bmYuOMqftx9HZnZvK+NiIg+bmoPOkJERFSSjOTaWP1FQ4z3qg6JBPjjbDT6/HoW8SnpYkcjIiISDQs2IiLSGFKpBGO9qmHNgIYwlGvhQvRzdFp2CmHRiWJHIyIiEgULNiIi0jhtalpjz+hmqG5dAfGpGei1+iz+OBsNQRDEjkZERFSmWLAREZFGcrQwwK6RTdHBzQZZOQJ+3H0d3/11FelZOWJHIyIiKjMs2IiISGMZ6GphRZ8G+L59TUglwLYLj/D5qhA8SXoldjQiIqIywYKNiIg0mkQiwVctnbB+cCOY6GvjyqNk+C07hZC7CWJHIyIiKnUs2IiIqFxoXs0Se0c3g4utERJeZqLfmlD8dvIe72sjIqIPGgs2IiIqN+zN9PHXiCboWr8icnIFzNp/A+O2XsarTN7XRkREHyYWbEREVK7o6ciwqGddTPdzgZZUgr8vP0HXX07jQUIaACAnV0BoVCLCnkkQGpWInFxegSMiovJLS+wARERExSWRSDCwqSNq2Rph1OaLuBmbCr/lp9Df0wE7wh4hJjkdgAwbIi/A1liOaX4u8HW1FTs2ERFRsfEKGxERlVseVc2x9+tmqGdvguRXWVh25M6/xdp/YpPTMWLjRQRejxEpJRERkfpYsBERUblma6yHzUM9oKcjK3B9XodI/70R7B5JRETlDgs2IiIq9648TC5y4BEBQExyOs5FJZZdKCIiohLAgo2IiMq9+NT0dzcCEPXsRSknISIiKlks2IiIqNyzMpSr1G7K7usYsPYcdoQ9Qkp6VimnIiIien8cJZKIiMq9Ro5msDWWIzY5HYXdpaYllSA7V8Dx209x/PZT6OyUomUNS/jVtYNXLSvo6/BXIhERaR7+diIionJPJpVgmp8LRmy8CAmgVLRJ/v3v8j71Uc3aEPuuxGDv1Se4E/8CwRFxCI6Ig1xbira1rOFXxxatalhBrl3wACZERERljQUbERF9EHxdbbGyXwP4741QGtrf5q152MZ6VcOYts64FZeqKN6iE9Kw/2oM9l+NQQVdLbRzsYZfXVs0c7aEjhbvHiAiIvGwYCMiog+Gr6st2rnYIOROPIJOhsK7uQc8na0gk0qU2kkkEtS0MUJNGyN8410d1x+nYO/VJ9h35QmeJKdj16XH2HXpMYz1tOFb2wZ+de3QuKoZtGQs3oiIqGyxYCMiog+KTCqBh6MZEm4I8HA0y1esvU0ikcCtkjHcKhnje9+auPTwOfZeicH+azF4mpqBrRceYuuFh7CooIP2rrboVMcWn1Qxg/Qd2yUiIioJLNiIiIj+JZVK4O5gBncHM/zYyQWhUQnYdzUG/1yLwbMXmfjjbDT+OBsNGyM5OtZ5XbzVszeBRMLijYiISgcLNiIiogLIpBI0cbJAEycL+H9aG6fvPMO+qzE4GB6L2JR0rDkVhTWnolDJVA+d6tjBr64tXGyNWLwREVGJEr0z/uPHj9GvXz+Ym5tDT08Pbm5uuHDhgmK9IAiYOnUqbG1toaenBy8vL0RGRiptIzExEX379oWRkRFMTEwwZMgQvHihPDnq1atX0bx5c8jlctjb22P+/Pn5smzfvh01a9aEXC6Hm5sbDhw4oLRelSxERPTh0ZZJ0aqGFX7qURcXpnjh1/4N8WldO+jryPDo+SsEHL+LjktPoe2i41gUfBuRcakFbicnV0BoVCLCnkkQGpWInNzCJiEgIiJ6TdSC7fnz52jatCm0tbXxzz//ICIiAgsXLoSpqamizfz587F06VIEBAQgNDQUBgYG8PHxQXr6fyOA9e3bF+Hh4QgODsa+fftw4sQJDBs2TLE+JSUF3t7ecHBwQFhYGBYsWIDp06dj9erVijZnzpxB7969MWTIEFy6dAldunRBly5dcP369WJlISKiD5uulgztXKyxtHd9hE1phxV9GqC9qw10taS49/Qllh6ORLufT8B38QmsOHoH0QkvAQCB12PQbN4R9Ft7ARsiZei39gKazTuCwOsxIr8iIiLSZKJ2iZw3bx7s7e2xbt06xTJHR0fF/wuCgMWLF2PKlCno3LkzAGDDhg2wtrbG7t270atXL9y4cQOBgYE4f/48GjZsCABYtmwZOnTogJ9++gl2dnbYtGkTMjMzsXbtWujo6KB27dq4fPkyFi1apCjslixZAl9fX0ycOBEAMHPmTAQHB2P58uUICAhQKQsREX1c9HRk6FjHFh3r2OJFRjYORcRh75UnOBH5FDdjU3Ez9hYWHLwFB3N9RCek5Xt+bHI6Rmy8iJX9GiimHSAiInqTqAXbnj174OPjgx49euD48eOoWLEiRo4ciaFDhwIAoqKiEBsbCy8vL8VzjI2N4eHhgZCQEPTq1QshISEwMTFRFGsA4OXlBalUitDQUHTt2hUhISFo0aIFdHR0FG18fHwwb948PH/+HKampggJCcGECROU8vn4+GD37t0qZ3lbRkYGMjIyFI9TUlIAAFlZWcjKynqPI/f+8vYvdo6CMJv6NDkfs6mH2dQjRjZdKdDR1QodXa2Q/CoLQRHx2H8tFiH3Egos1oDXE3xLAPjvDUeraubvHNGyLPB9VQ+zqYfZ1KPJ2QDNzqdJ2VTNIGrBdu/ePaxcuRITJkzADz/8gPPnz2PMmDHQ0dHBgAEDEBsbCwCwtrZWep61tbViXWxsLKysrJTWa2lpwczMTKnNm1fu3txmbGwsTE1NERsb+879vCvL2+bOnQt/f/98y4OCgqCvr1/IUSlbwcHBYkcoFLOpT5PzMZt6mE09YmYzANDTCqghk2DtbVmh7QQAMckZWL41ENWMNeeeNr6v6mE29TCbejQ5G6DZ+TQhW1pawX/Me5uoBVtubi4aNmyIOXPmAADq16+P69evIyAgAAMGDBAzWomYPHmy0lW7lJQU2Nvbw9vbG0ZGRiIme13RBwcHo127dtDW1hY1y9uYTX2anI/Z1MNs6tGkbDlXY4Db197Z7liSKaq7VUHrGpaQaxde4JU2TTp2b2M29TCbephNfZqcT5Oy5fW+exdRCzZbW1u4uLgoLatVqxb++usvAICNjQ0AIC4uDra2//Xtj4uLQ7169RRt4uPjlbaRnZ2NxMRExfNtbGwQFxen1Cbv8bvavLn+XVnepqurC11d3XzLtbW1RT9B8mhSlrcxm/o0OR+zqYfZ1KMJ2WxNDFRqd/1JCsZsvYoKulrwdrHGp/Xs0NTZAtoyccYH04RjVxhmUw+zqYfZ1KfJ+TQhm6r7F3WUyKZNm+LWrVtKy27fvg0HBwcArwcgsbGxweHDhxXrU1JSEBoaCk9PTwCAp6cnkpKSEBYWpmhz5MgR5ObmwsPDQ9HmxIkTSv1Eg4ODUaNGDcWIlJ6enkr7yWuTtx9VshAREb2tkaMZbI3lKOzuNAkAywq6GN6yKiqa6OFFRjZ2XnqMgevOw2POYUzZfQ3n7ycil1MAEBF9lEQt2MaPH4+zZ89izpw5uHPnDjZv3ozVq1dj1KhRAACJRIJx48Zh1qxZ2LNnD65du4b+/fvDzs4OXbp0AfD6ipyvry+GDh2Kc+fO4fTp0xg9ejR69eoFOzs7AECfPn2go6ODIUOGIDw8HFu3bsWSJUuUuiuOHTsWgYGBWLhwIW7evInp06fjwoULGD16tMpZiIiI3iaTSjDN73VvkreLtrzHM7vUxuT2tXDqu9b4a4Qn+ns6wNxAB4kvM7Hx7AP0CAhBs3lHMPefGwh/kgxBYPFGRPSxELVL5CeffIJdu3Zh8uTJmDFjBhwdHbF48WL07dtX0WbSpEl4+fIlhg0bhqSkJDRr1gyBgYGQy+WKNps2bcLo0aPRtm1bSKVSdOvWDUuXLlWsNzY2RlBQEEaNGgV3d3dYWFhg6tSpSnO1NWnSBJs3b8aUKVPwww8/oFq1ati9ezdcXV2LlYWIiOhtvq62WNmvAfz3RiAm+b+5O22M5Zjm56IY0l8ikcDdwQzuDmaY2skFp+8mYM/lJzgYHosnyelYdfweVh2/B2erCvi0rh0+rWuHKhaqdbkkIqLySdSCDQA6deqETp06FbpeIpFgxowZmDFjRqFtzMzMsHnz5iL3U6dOHZw8ebLINj169ECPHj3eKwsREVFBfF1t0c7FBiF34hF0MhTezT3g6WxV6FD+WjIpWla3RMvqlpid5YqjN+Px9+UnOHIrHnfiX2BR8G0sCr6NupWM4VfXDn517WBtxD8gEhF9aEQv2IiIiD4WMqkEHo5mSLghwMPRTOV51+TaMrR3s0V7N1ukpGchKDwOf19+jNN3nuHKo2RceZSM2QduoLGjOTrXs0N7V1sY62vmjf5ERFQ8LNiIiIjKESO5Nrq7V0J390p4mpqBA9disOfKE4RFP0fIvQSE3EvAj39fR8vqVvi0nh28allBX4e/7omIyit+ghMREZVTloa6GNCkCgY0qYKHiWnYe/UJ9lx+gpuxqTh0Iw6HbsRBX0eGdi7W+LSuHZpXs4SOVuHjjeXkCgiNSkTYMwnMoxKL7LJJRERlgwUbERHRB8DeTB8jWzljZCtn3IpNxZ4rj7HnyhM8THyFvy8/wd+Xn8BEXxvtXW3RuZ4dGlUxg/SNYizweswbg6LIsCHyAmzfGhSFiIjKHgs2IiKiD0wNG0NMtKmJb71r4PLDJPx9+Qn2XY3BsxcZ2HLuAbacewAbIzn86tri07oV8eh5GkZuuoi3JwuITU7HiI0XsbJfAxZtREQiYcFGRET0gZJIJKhf2RT1K5vix04uCLmbgD1XHuOf67GITUnHryej8OvJKMikknzFGgAIeD1XnP/eCLRzsWH3SCIiEbBgIyIi+gjIpBI0q2aBZtUsMLOLK47deoo9l58gKDwWWbmFT8QtAIhJTse5qER4OpmXXWAiIgIAFH7nMREREX2QdLVk8KltgxV9G2D2Z24qPSc+Nf3djYiIqMSxYCMiIvqI2Zvqq9TOypCTchMRiYEFGxER0UeskaMZbI3lKOruNPMKOmjkaFZmmYiI6D8s2IiIiD5iMqkE0/xcAKDQoi0pLRN/hNyHIBR+rxsREZUOFmxEREQfOV9XW6zs1wA2xsrdHm2MdNGgsglycoHpeyMwesslvMjIFiklEdHHiaNEEhEREXxdbdHOxQYhd+IRdDIU3s094OlsBakEWHf6PuYcuIH9V2NwIyYFK/u6o4aNodiRiYg+CrzCRkRERABed4/0cDSDu4UAD0czyKQSSCQSDG7miK3DPWFrLMe9py/RecUp7Lz4SOy4REQfBRZsRERE9E7uDqbY93UzNK9mgfSsXEzYdgU/7LqG9KwcsaMREX3QWLARERGRSswr6OL3QY0wtm01SCTA5tAH6B5wBg8T08SORkT0wWLBRkRERCqTSSUY3646fh/UCKb62rj+OAUdl57EoYg4saMREX2QWLARERFRsbWsbon9Y5qjfmUTpKRn48sNF/C/f24iOydX7GhERB8UFmxERESkFjsTPWwd5olBTasAAAKO30Xf30IRn5oubjAiog8ICzYiIiJSm46WFNP8amN5n/ow0JEhNCoRHZeewtl7CWJHIyL6ILBgIyIiovfWqY4d9nzdDDWsDfE0NQN9fj2LlcfuIjdXEDsaEVG5xoKNiIiISoSTZQXsHtUUnzWoiFwBmBd4E8P+CENyWpbY0YiIyi0WbERERFRi9HRkWNijLuZ+5gYdLSkO3YhDp+Uncf1xstjRiIjKJRZsREREVKIkEgl6N6qMnSOawN5MDw8TX+GzlWewOfQBBIFdJImIioMFGxEREZUK14rG2De6ObxqWSMzOxc/7LqGb7ZdQVpmttjRiIjKDRZsREREVGqM9bXxa393fN++JmRSCXZeeoyuK87g7tMXYkcjIioXWLARERFRqZJIJPiqpRM2fekBS0Nd3IpLxafLTmHf1SdiRyMi0ngs2IiIiKhMNK5qjv1jmqFxVTO8zMzB6M2XMH1PODKzc8WORkSksViwERERUZmxMpRj4xAPjGjlBAD4/cx99FwVgsdJr0RORkSkmViwERERUZnSkknxnW9N/Na/IYzkWrj8MAmdlp7E8dtPxY5GRKRxWLARERGRKLxcrLF/THO4VjTC87QsDFx3DouCbyMnl0P/ExHlYcFGREREorE308eOr5qgr0dlCAKw9HAkBq47h4QXGWJHU1lOroDQqESEPZMgNCqRBScRlSgWbERERCQqubYMs7u6YVHPutDTluFk5DN0XHoKYdGJijaaWhQFXo9Bs3lH0G/tBWyIlKHf2gtoNu8IAq/HiB2NiD4QWmIHICIiIgKAzxpUQm07Y4zYFIZ7T1/i81VnMblDLdgZyzFjXwRiktMByLAh8gJsjeWY5ucCX1db0fIGXo/BiI0X8XbpGJucjhEbL2Jlvwai5iOiDwOvsBEREZHGqGFjiD2jm6FjHVtk5wqYuS8CIzZd/LdY+09eUSTWlaycXAH+eyPyFWsAFMv890ZozJVAIiq/eIWNiIjo/9u787ioyv0P4J9hGBh2ZB1QQRQUQUVARVLLBVmul9xKUzNcWvQHKXrVrt0UrWsupZZJWuZSV82lm/tKKqiJmggqoghELqwqyiqLcH5/KHMdAcEpOUf5vF+veQnzPOfMh0Nx5jvPc55DkmKsr4vlIzzRxbEZ5u5KqrWPAECGB0VRfzcV5DoyCIKAsvtVKKuoQtn9SpRWVKH0fiVKKx58rX6u4uFz96tQVlGJsvuPPPewXf3cw3/LHttHYVkFissq6/wZBABZ+aU4nZ4H3zaWz+Q4EVHTwIKNiIiIJEcmk8FVZfrEPtVFUae5B1BZ9aBYEyQ2oJVbWFp/JyKiJ2DBRkRERJLU0GKntpEuHdmDxUyUCjn0dXU0/lUqHvteV/M5/YfbKRU6UOrKof/w30e3vZxVgGk/na83m42J/lP/3EREj2LBRkRERJJkY6JsUL/PX+8EHyfLBwXXw+JKIZdBJpM9s2zt7UyxOOoKsvNLa72OrdqSg1cwb4g+2tqaPLMsRPRi46IjREREJEndnCxgZ6ZEXWWXDICdmRKDPVugpYUhrE30YapUQE9X55kWawAg15EhIthNnePxXACgJ9fBb1fv4G9fHsPC/Zdxr7zua96IiOrCgo2IiIgkqSFFUUSwG+Q6z7Y4q0tgBzuseNMLKjPNkUCVmRIr3/TC4WmvwK+9Le5XCVgRnQa/JTE4dClHlKxE9PzilEgiIiKSrOqiaO6uJI2l/VUSuA8b8CBffzcVYlNzcfDYKfj38oGvs426iPwupAsOXszGnJ0XkXH3HsZ/fwYB7raICHaHvbmBqNmJ6PnAgo2IiIgkrb6iSGxyHRl8nCxw+5IAHyeLGrn83VXo4WyFZYdS8N3xdBy4mINjKbcwxa8txvRoBYWcE56IqG78C0FERESSV10UeVvVXhRJnZG+Lmb+rT32TOqJLo7NUFJeiXl7LyH4q+OIu3pH7HhEJGEs2IiIiIgaiavKFFve88XCoR1hbqjA5exCDF1xAjN/Po+7JeVixyMiCWLBRkRERNSIdHRkGN7VAYf/0Ruve7cAAPx4+jr6LY7Bf+NuQJDa3b+JSFQs2IiIiIhEYGGkh89e98Dmd7vDxcYYt4vL8Y+t5/DGtyeRmlsodjwikggWbEREREQi8mltiT2TeuGDQFcoFTo4lZ6HoC+P4bMDvHcbEbFgIyIiIhKdnq4OJvZug6gpr6Cfqw0qKgVEHkmD/xcxOHI5V+x4RCQiUQu2OXPmQCaTaTxcXV3V7b17967RPmHCBI19XLt2DQMGDIChoSFsbGwwffp03L9/X6NPdHQ0vLy8oK+vD2dnZ6xbt65GlsjISLRq1QpKpRI+Pj44ffq0RntpaSlCQ0NhaWkJY2NjDB06FDk5vPklERER/XVaWhjiu5Au+Ga0N+zMlLiedw9j1/2GievjkJV/T+x4RCQC0UfY3N3dkZWVpX4cP35co/2dd97RaF+0aJG6rbKyEgMGDEB5eTlOnDiB77//HuvWrcPs2bPVfdLT0zFgwAD06dMHCQkJCA8Px9tvv40DBw6o+2zevBlTp05FREQEzp49Cw8PDwQEBCA393+faE2ZMgW7du3C1q1bERMTg8zMTAwZMuQZHhkiIiJqimQyGQLcVfhl6it4p5cT5Doy7EvMht/iGKw+no77lVViRySiRiR6waarqwuVSqV+WFlZabQbGhpqtJuamqrbDh48iKSkJKxfvx6dO3dGUFAQPvnkE0RGRqK8/MHSuCtXroSTkxMWL16M9u3bIywsDK+99hqWLl2q3s+SJUvwzjvvYOzYsXBzc8PKlSthaGiINWvWAADy8/OxevVqLFmyBH379oW3tzfWrl2LEydO4OTJk41wlIiIiKipMdLXxb8GuGH3+z3h5WCO4vJKfLI7Ca8u/xXx13jvNqKmQlfsACkpKbC3t4dSqYSvry/mz58PBwcHdfuGDRuwfv16qFQqBAcHY9asWTA0NAQAxMbGomPHjrC1tVX3DwgIwMSJE3Hx4kV4enoiNjYWfn5+Gq8ZEBCA8PBwAEB5eTni4uIwc+ZMdbuOjg78/PwQGxsLAIiLi0NFRYXGflxdXeHg4IDY2Fh079691p+trKwMZWVl6u8LCgoAABUVFaioqNDmcP1lql9f7By1YTbtSTkfs2mH2bTDbNqTcr6mms3ZygA/ju+KrWcz8NnBK0jKKsCQFSfwRpcW+Ed/F5gZKETL9mcxm3aknA2Qdj4pZWtoBpkg4s0+9u3bh6KiIrRr1w5ZWVmYO3cuMjIykJiYCBMTE3z77bdwdHSEvb09zp8/jw8++ADdunXDzz//DAB49913cfXqVY3pjSUlJTAyMsLevXsRFBSEtm3bYuzYsRoF2d69ezFgwACUlJTgzp07aN68OU6cOAFfX191nxkzZiAmJganTp3Cxo0bMXbsWI3iCwC6deuGPn36YOHChbX+fHPmzMHcuXNrPL9x40Z10UlERETUUEUVwI6rOjh988EkKWOFgEGOVehiJUAmEzkcET2VkpISjBw5Evn5+RqzCB8n6ghbUFCQ+utOnTrBx8cHjo6O2LJlC8aPH493331X3d6xY0fY2dmhX79+SEtLQ5s2bcSI/FRmzpyJqVOnqr8vKChAy5Yt4e/v/8RfSmOoqKhAVFQU+vfvD4XiyZ/MNTZm056U8zGbdphNO8ymPSnnY7YHhgE4lZ6HiF2XkHazGOtT5UitbIa5wW5obW0karanxWzakXI2QNr5pJStevZdfUSfEvkoc3NztG3bFqmpqbW2+/j4AABSU1PRpk0bqFSqGqs5Vq/cqFKp1P8+vppjTk4OTE1NYWBgALlcDrlcXmufR/dRXl6Ou3fvwtzcvNY+tdHX14e+vn6N5xUKhej/gVSTUpbHMZv2pJyP2bTDbNphNu1JOR+zAT3b2mLfZGusOvY7lh1Kwcn0OwiOjMV7r7RGaB9nKBVyAEBllYCz6XmIuyWD5Y1C+DrbQK4jvaE4/k61I+VsgLTzSSFbQ19f9EVHHlVUVIS0tDTY2dnV2p6QkAAA6nZfX19cuHBBYzXHqKgomJqaws3NTd3n0KFDGvuJiopST3/U09ODt7e3Rp+qqiocOnRI3cfb2xsKhUKjT3JyMq5du6YxjZKIiIiosejp6iC0jzOipryCPu2sUV5Zha8Op8J/6VHEXLmJ/YlZ6LnwMN5ccwY/pMjx5poz6LnwMPYnZokdnYiegqgjbNOmTUNwcDAcHR2RmZmJiIgIyOVyjBgxAmlpadi4cSP+9re/wdLSEufPn8eUKVPw8ssvo1OnTgAAf39/uLm5YfTo0Vi0aBGys7Px0UcfITQ0VD2yNWHCBCxfvhwzZszAuHHjcPjwYWzZsgV79uxR55g6dSpCQkLQpUsXdOvWDV988QWKi4sxduxYAICZmRnGjx+PqVOnwsLCAqampnj//ffh6+tb54IjRERERI3BwdIQa8Z0xYGL2ZizMwnX8koQsuZ0rX2z80sxcf1ZrHjTC4Edav+AnIikRdSC7caNGxgxYgRu374Na2tr9OzZEydPnoS1tTVKS0vxyy+/qIunli1bYujQofjoo4/U28vlcuzevRsTJ06Er68vjIyMEBISgo8//ljdx8nJCXv27MGUKVPw5ZdfokWLFvjuu+8QEBCg7jN8+HDcvHkTs2fPRnZ2Njp37oz9+/drrD65dOlS6OjoYOjQoSgrK0NAQAC+/vrrxjlQRERERE8gk8kQ2MEOPV2sseRgMtb8+ket/QQAMgBzdyWhv5tKktMjiUiTqAXbpk2b6mxr2bIlYmJi6t2Ho6Mj9u7d+8Q+vXv3Rnx8/BP7hIWFISwsrM52pVKJyMhIREZG1puJiIiISAzG+rro76aqs2ADHhRtWfmliE7ORb/2tnX2IyJpkNSiI0RERET05+QWljao3/jvz0BlqoSLrTHa2prAxcYYLrYmcLE1hqlSmgtFEDVFLNiIiIiIXiA2JsoG980uKEV2QSmOpdzSeL66kHOxMXlY0BnD2cak3pt0E9FfjwUbERER0Qukm5MF7MyUyM4vhVBLuwyAykyJPZN6If1WMVJyCnElpwgpuYVIySlSF3G1FXK2pvpoa2sCZxvNUTltCrnKKgGnqm85kJ4n2VsOEImNBRsRERHRC0SuI0NEsBsmrj8LGaBRtFWXQxHBbrAw0oOFkR68HZtpbF9QWoGUnCKk5j4o5K7kFCI1twhZ+aXIKShDTkFZjULOxkSzkGv7cHTOzLD2Qm5/Yhbm7kpCVn4pADl+SDkDOzMlIoLduHol0WNYsBERERG9YAI72GHFm16PFEUPqBpQFJkqFfB2bFZrIZeaW4SUnAcjcVcefp2VX4rcwjLkFpbheGrNQk5zaqUJrt0uxrSt52uM/vGWA0S1Y8FGRERE9AIK7GCH/m4qxKbm4uCxU/Dv5fOnph2aKhXwcmgGLwfNQq6wtAIpuUVIfTgal/KwkMt8pJD7NfV2vfvnLQeIaseCjYiIiOgFJdeRwcfJArcvCfBxsngmRZDJEwq5ByNyD66Pu5JThMSMu7hdXFHnvqpvOXA6PQ++bSz/8qxEzyMWbERERET0lzNRKuDp0AyejxRyOxIyMHlTQr3bNvTWBERNgY7YAYiIiIioaWjoLQf2nM/C7aKyZ5yG6PnAgo2IiIiIGkX1LQfqm5h5MCkHvT+PxrdH01B2v7JRshFJFQs2IiIiImoU1bccAFCjaJM9fIT7ucDNzhSFpffx6d7L8FsSgz3nsyAItd1VjujFx4KNiIiIiBpN9S0HVGaa0yNVZkqseNML4X5tsev9nvjstU6wMdHH9bx7CN14Fq+tjEX8tTsipSYSDxcdISIiIqJGVd8tB+Q6MrzepSUGdLLDNzG/49ujvyPu6h0M/voEXvWwx4zAdmjRzFDkn4KocXCEjYiIiIgaXfUtB7yt6r7lgKGeLqb0b4sj03rjNe8WkMmAnecy0XdxDBbtv4zC0rpvEUD0omDBRkRERESSpjJT4vPXPbArrCe6t7ZA+f0qfB2dhj6fR2PDqau4X1kldkSiZ4YFGxERERE9Fzo0N8OP73THqre6wMnKCLeKyvGvbYn427JjiLlyU+x4RM8ECzYiIiIiem7IZDL0d7PFgfCXERHsBnNDBa7kFCFkzWm8teY0krMLxY5I9JdiwUZEREREzx09XR2M7eGEmGl98HZPJyjkMhy9chNBXx7Fh9su4GYhb7xNLwYWbERERET03DIzVOCjv7shasorCHRXoUoANp66hj6fRyPySCpKK3jjbXq+sWAjIiIioudeKysjrBztjS3v+aJTCzMUld3HZweS0W9xDHYkZPDG2/TcYsFGRERERC+Mbk4W2P5/PbB0uAfszJTIuHsPkzclYNDXJ3Dmjzyx4xE9NRZsRERERPRC0dGRYbBnCxz+R29M828LQz05zl2/i9dWxiJ0w1lcu10idkSiBmPBRkREREQvJAM9OcL6uiB6em+80bUldGTAngtZ8FsSg0/3XkL+Pd54m6SPBRsRERERvdBsTJRYMLQT9kzqhZ7OViivrMK3R39H78+O4IfYP1DBG2+ThLFgIyIiIqImob2dKf4zvhvWjukKZxtj3CmpwOwdFxH4xVEcvpyjXpikskrAqfQ8xN2S4VR6HiqruGAJiUdX7ABERERERI1FJpOhj6sNerlY4cffrmNp1BWk3SzGuHVn0MPZEr3b2mDNr+nIyi8FIMcPKWdgZ6ZERLAbAjvYiR2fmiCOsBERERFRk6Mr18Ho7o6Int4b773SGnpyHfyaehvz9l56WKz9T3Z+KSauP4v9iVkipaWmjAUbERERETVZpkoFZga1x8EpL0OpqP2tcfWEyLm7kjg9khodp0QSERERUZOXlV+K0oq6Fx8RHvYZ/PWv8GxpDicrI7SyMkJrK2M0b2YAuY6s8cJSk8KCjYiIiIiavNzC0vo7ATh/Ix/nb+RrPKeQy+BgYfigiLM0gpO1EZwe/mtrooTOX1jMPbogimV6HnydbVgsvuBYsBERERFRk2djomxQv3dfdoKOTAfpt4rwx60SpN8uRvn9KqTdLEbazeIa/ZUKnQdF3MMROadHHpZGepDJGl5s7U/MwtxdSVwQpYlhwUZERERETV43JwvYmSmRnV+K2q5SkwFQmSnxQWB7jRGtqioBWQWlSL9ZjPTbxUi/WYw/bhcj/VYxrueVoLSiCpezC3E5u7DGPk30deFk/WBU7sH0yv8VdWYGCo2++xOzMHH92RrZqhdEWfGmF4u2FxQLNiIiIiJq8uQ6MkQEu2Hi+rOQARqFUXV5FhHsVmP6oY6ODM3NDdDc3AA9Xaw02ioqq5Bx5x7SbxWrH3/cLsbvN4uRmX8PhWX3a51iCQAWRnrqKZatrAyx+nh6rYWk8DDf3F1J6O+m4vTIFxALNiIiIiIiAIEd7LDiTa9Hph0+oNJy2qFCroNWD0fN+jzWVlpRiWt5Jf8r5B4p6nILy5BXXI684nLEXb1T7+tUL4hyOj0Pvm0snyojSR8LNiIiIiKihwI72KG/mwqxqbk4eOwU/Hv5PJOFPZQKOdramqCtrUmNtqKy+/jj4Whc+s1iHE25id/+qL9wy7hbAoAF24uGBRsRERER0SPkOjL4OFng9iUBPk4WjT7N0FhfFx2am6FDczMAQJdWFhix6mS9283anogzf9zBYM/m6NrK4i9dnZLEw4KNiIiIiEjC6lsQBQB0ZMC9iips+u06Nv12Hc3NDTDI0x6DPVvA2ca4UfPSX6v227kTEREREZEkVC+IAvxvAZRqsoeP5SO8sPEdHwzr0gLG+rrIuHsPkUfS4LckBq8uP461v6bjVlFZY0envwBH2IiIiIiIJK6hC6K81MYKHw/sgKikHGyLz0DMlZvqlSj/vecSXnaxwmCvFujf3hYGenKxfhx6CizYiIiIiIieAw1dEEWpkCPYwx7BHva4VVSG3ecysS0+A+du5ONI8k0cSb4JY31dBHZQYYhnc3Rvbcnr3SSMBRsRERER0XPiaRdEsTLWx5geThjTwwmpuUXYHp+BbfEZyLh7Dz/F3cBPcTdgZ6bEwM7NMdizOdqpaq5aSeJiwUZERERE1AQ42xhjWkA7TO3fFmeu3sG2+BvYfT4LWfmlWBmThpUxaXCzM8UQr+Z41cMeNqZKsSMTWLARERERETUpOjoydHOyQDcnC0QEu+PI5Vz8HJ+B6ORcJGUVIGlPAT7dewk9Xawx2NMeAe4qGOqxbBALjzwRERERUROlVMgR1NEOQR3tcKe4HLvPZ+Ln+AzEX7uLo1du4uiVmzDUS0SguwqDvZrjpTZWT5yGWVkl4FR6HuJuyWCZnvdMbjre1LBgIyIiIiIiNDPSw2jfVhjt2wp/3CrGtvgMbE/IwNXbJfg5PgM/x2fAxkQfAzs/uL+bm72pxvb7E7MeWcVSjh9SzsDusVUs6emxYCMiIiIiIg2trIwwpX9bhPu54Oy1O9gWn4Hd57OQW1iGVcfSsepYOlxVJhjk2RyDOjdHwvU7mLj+bI0be2fnl2Li+rNY8aYXizYtsWAjIiIiIqJayWQyeDtawNvRArP/7o4jybnYdjYDhy/n4nJ2IRbsu4wF+y5DT65To1gDAAEPbuw9d1cS+rupOD1SCyzYiIiIiIioXnq6OghwVyHAXYX8kgrsuZCFbfE38Nsfd1BeWVXndgKArPxSnE7Pg28by8YL/ILQETsAERERERE9X8wMFRjp44CtE15CxN/dGrRNbmHpM071YhK1YJszZw5kMpnGw9XVVd1eWlqK0NBQWFpawtjYGEOHDkVOTo7GPq5du4YBAwbA0NAQNjY2mD59Ou7fv6/RJzo6Gl5eXtDX14ezszPWrVtXI0tkZCRatWoFpVIJHx8fnD59WqO9IVmIiIiIiJoaVzvT+jsBOJl2G1n5955xmheP6CNs7u7uyMrKUj+OHz+ubpsyZQp27dqFrVu3IiYmBpmZmRgyZIi6vbKyEgMGDEB5eTlOnDiB77//HuvWrcPs2bPVfdLT0zFgwAD06dMHCQkJCA8Px9tvv40DBw6o+2zevBlTp05FREQEzp49Cw8PDwQEBCA3N7fBWYiIiIiImqJuThawM1OivqvTfvztOl5acBgjV53ET3E3UFR2v54tCJBAwaarqwuVSqV+WFlZAQDy8/OxevVqLFmyBH379oW3tzfWrl2LEydO4OTJkwCAgwcPIikpCevXr0fnzp0RFBSETz75BJGRkSgvLwcArFy5Ek5OTli8eDHat2+PsLAwvPbaa1i6dKk6w5IlS/DOO+9g7NixcHNzw8qVK2FoaIg1a9Y0OAsRERERUVMk15EhIvjBtMjHizbZw8coHwd0a2UBQQBOpN3GtK3n0OXfUZi8KR7Rybm4/4Rr4Jo60RcdSUlJgb29PZRKJXx9fTF//nw4ODggLi4OFRUV8PPzU/d1dXWFg4MDYmNj0b17d8TGxqJjx46wtbVV9wkICMDEiRNx8eJFeHp6IjY2VmMf1X3Cw8MBAOXl5YiLi8PMmTPV7To6OvDz80NsbCwANChLbcrKylBWVqb+vqCgAABQUVGBiooKLY/YX6P69cXOURtm056U8zGbdphNO8ymPSnnYzbtMJt2mO3p9Gtnha/e8MC/915GdsH/3v+qzPTxryBXBLg/eL9+/U4Jdp7LxvaETPxxuwQ7EjKxIyET1sZ6CO5kh4Gd7dBeZQKZ7NmsJimlY9fQDKIWbD4+Pli3bh3atWuHrKwszJ07F7169UJiYiKys7Ohp6cHc3NzjW1sbW2RnZ0NAMjOztYo1qrbq9ue1KegoAD37t3DnTt3UFlZWWufy5cvq/dRX5bazJ8/H3Pnzq3x/MGDB2FoaFjndo0pKipK7Ah1YjbtSTkfs2mH2bTDbNqTcj5m0w6zaYfZns4HbkBagQwFFYCpAmhjWozKq3HYe/V/fZwAhLsAV+2AMzd1cPa2DDeLyrHmxFWsOXEVdgYCulpXwdtKgLn+s8kphWNXUlLSoH6iFmxBQUHqrzt16gQfHx84Ojpiy5YtMDAwEDHZX2PmzJmYOnWq+vuCggK0bNkS/v7+MDVt2MWZz0pFRQWioqLQv39/KBQKUbM8jtm0J+V8zKYdZtMOs2lPyvmYTTvMph1m097T5iu/X4VjKbew/VwWDl3ORdY9YOc1OXZdB3xbW2CQhz383WxgpP/nSxcpHbvq2Xf1EX1K5KPMzc3Rtm1bpKamon///igvL8fdu3c1RrZycnKgUqkAACqVqsZqjtUrNz7a5/HVHHNycmBqagoDAwPI5XLI5fJa+zy6j/qy1EZfXx/6+jU/FlAoFKL/B1JNSlkex2zak3I+ZtMOs2mH2bQn5XzMph1m0w6zaa+h+RQKILBTcwR2al7j/m4n0vJwIi0PEbvkCHC3xWCvFujpbPWnb8AthWPX0NcXfdGRRxUVFSEtLQ12dnbw9vaGQqHAoUOH1O3Jycm4du0afH19AQC+vr64cOGCxmqOUVFRMDU1hZubm7rPo/uo7lO9Dz09PXh7e2v0qaqqwqFDh9R9GpKFiIiIiIj+nEfv73Z0eh9M7d8WrSwNca+iEtsTMhGy5jS6zz+EeXuSkJTZsBGq552oI2zTpk1DcHAwHB0dkZmZiYiICMjlcowYMQJmZmYYP348pk6dCgsLC5iamuL999+Hr6+vepEPf39/uLm5YfTo0Vi0aBGys7Px0UcfITQ0VD2yNWHCBCxfvhwzZszAuHHjcPjwYWzZsgV79uxR55g6dSpCQkLQpUsXdOvWDV988QWKi4sxduxYAGhQFiIiIiIi+us4WBpiUj8XvN/XGfHX72Lb2QzsOp+Jm4VlWHUsHauOpcNVZYLBns0xyLM5bE2VYkd+JkQt2G7cuIERI0bg9u3bsLa2Rs+ePXHy5ElYW1sDAJYuXQodHR0MHToUZWVlCAgIwNdff63eXi6XY/fu3Zg4cSJ8fX1hZGSEkJAQfPzxx+o+Tk5O2LNnD6ZMmYIvv/wSLVq0wHfffYeAgAB1n+HDh+PmzZuYPXs2srOz0blzZ+zfv19jIZL6shARERER0V9PJpPBy6EZvByaYdbf3RCdnItt8Rk4dCkXl7MLMX/fZSzcfxk9nK0w2LM5AtxVtV7vVlkl4FR6HuJuyWCZngdfZ5s/PbWyMYhasG3atOmJ7UqlEpGRkYiMjKyzj6OjI/bu3fvE/fTu3Rvx8fFP7BMWFoawsLA/lYWIiIiIiJ4dPV0d+Lur4O+uQn5JBXZfyMS2sxk4c/UOjqXcwrGUWzDUS0SAuwqDPZujx8Pr3fYnZmHuriRk5ZcCkOOHlDOwM1MiItgNgR3sxP6xnkhSi44QERERERE1hJmhAqN8HDHKxxHXbpdgW3wGtsXfwB/qrzNga6qPTi3MEZWUU2P77PxSTFx/Five9JJ00SapRUeIiIiIiIieloOlISb7ueDItN7478SX8GZ3B5gbKpBTUFZrsQYAwsN/5+5KQmWVUGsfKWDBRkRERERELwSZTAZvx2b496COOP2hH6b2b/vE/gKArPxSnE7Pa5yAWmDBRkRERERELxw9XR04Who2qG9uYekzTqM9FmxERERERPRCsjFp2FL/De0nBhZsRERERET0QurmZAE7MyXqWrxfBsDOTIluThaNGeupsGAjIiIiIqIXklxHhohgNwCoUbRVfx8R7Cbp+7GxYCMiIiIiohdWYAc7rHjTCyozzWmPKjOl5Jf0B3gfNiIiIiIiesEFdrBDfzcVYlNzcfDYKfj38oGvs42kR9aqsWAjIiIiIqIXnlxHBh8nC9y+JMDHyeK5KNYATokkIiIiIiKSLBZsREREREREEsWCjYiIiIiISKJYsBEREREREUkUCzYiIiIiIiKJYsFGREREREQkUSzYiIiIiIiIJIoFGxERERERkUSxYCMiIiIiIpIoFmxEREREREQSxYKNiIiIiIhIoliwERERERERSRQLNiIiIiIiIonSFTtAUyIIAgCgoKBA5CRARUUFSkpKUFBQAIVCIXYcDcymPSnnYzbtMJt2mE17Us7HbNphNu0wm/aknE9K2aprguoaoS4s2BpRYWEhAKBly5YiJyEiIiIiIikoLCyEmZlZne0yob6Sjv4yVVVVyMzMhImJCWQymahZCgoK0LJlS1y/fh2mpqaiZnkcs2lPyvmYTTvMph1m056U8zGbdphNO8ymPSnnk1I2QRBQWFgIe3t76OjUfaUaR9gakY6ODlq0aCF2DA2mpqai/8daF2bTnpTzMZt2mE07zKY9KedjNu0wm3aYTXtSzieVbE8aWavGRUeIiIiIiIgkigUbERERERGRRLFga6L09fUREREBfX19saPUwGzak3I+ZtMOs2mH2bQn5XzMph1m0w6zaU/K+aScrS5cdISIiIiIiEiiOMJGREREREQkUSzYiIiIiIiIJIoFGxERERERkUSxYCMiIiIiIpIoFmxNzPz589G1a1eYmJjAxsYGgwYNQnJystixAAArVqxAp06d1Dcy9PX1xb59+8SOVasFCxZAJpMhPDxc7CiYM2cOZDKZxsPV1VXsWGoZGRl48803YWlpCQMDA3Ts2BFnzpwROxYAoFWrVjWOnUwmQ2hoqNjRUFlZiVmzZsHJyQkGBgZo06YNPvnkE0hlnajCwkKEh4fD0dERBgYGeOmll/Dbb781eo6jR48iODgY9vb2kMlk2L59u0a7IAiYPXs27OzsYGBgAD8/P6SkpEgi288//wx/f39YWlpCJpMhISGhUXLVl62iogIffPABOnbsCCMjI9jb2+Ott95CZmam6NmAB3/zXF1dYWRkhGbNmsHPzw+nTp1qlGwNyfeoCRMmQCaT4YsvvpBEtjFjxtT4excYGCiJbABw6dIlvPrqqzAzM4ORkRG6du2Ka9euiZ6ttvOETCbDZ599Jnq2oqIihIWFoUWLFjAwMICbmxtWrlz5zHM1JFtOTg7GjBkDe3t7GBoaIjAwsNH+/jbk/W5paSlCQ0NhaWkJY2NjDB06FDk5OY2S72mxYGtiYmJiEBoaipMnTyIqKgoVFRXw9/dHcXGx2NHQokULLFiwAHFxcThz5gz69u2LgQMH4uLFi2JH0/Dbb7/hm2++QadOncSOoubu7o6srCz14/jx42JHAgDcuXMHPXr0gEKhwL59+5CUlITFixejWbNmYkcD8OB3+ehxi4qKAgC8/vrrIicDFi5ciBUrVmD58uW4dOkSFi5ciEWLFuGrr74SOxoA4O2330ZUVBT+85//4MKFC/D394efnx8yMjIaNUdxcTE8PDwQGRlZa/uiRYuwbNkyrFy5EqdOnYKRkRECAgJQWloqerbi4mL07NkTCxcufOZZanvturKVlJTg7NmzmDVrFs6ePYuff/4ZycnJePXVV0XPBgBt27bF8uXLceHCBRw/fhytWrWCv78/bt68KYl81bZt24aTJ0/C3t6+UXIBDcsWGBio8Xfvxx9/lES2tLQ09OzZE66uroiOjsb58+cxa9YsKJVK0bM9eryysrKwZs0ayGQyDB06VPRsU6dOxf79+7F+/XpcunQJ4eHhCAsLw86dO0XNJggCBg0ahN9//x07duxAfHw8HB0d4efn1yjvORvyfnfKlCnYtWsXtm7dipiYGGRmZmLIkCHPPJtWBGrScnNzBQBCTEyM2FFq1axZM+G7774TO4ZaYWGh4OLiIkRFRQmvvPKKMHnyZLEjCREREYKHh4fYMWr1wQcfCD179hQ7RoNNnjxZaNOmjVBVVSV2FGHAgAHCuHHjNJ4bMmSIMGrUKJES/U9JSYkgl8uF3bt3azzv5eUl/Otf/xIplSAAELZt26b+vqqqSlCpVMJnn32mfu7u3buCvr6+8OOPP4qa7VHp6ekCACE+Pr5RM1V7UrZqp0+fFgAIV69ebZxQDzUkW35+vgBA+OWXXxon1CPqynfjxg2hefPmQmJiouDo6CgsXbpUEtlCQkKEgQMHNnqWx9WWbfjw4cKbb74pTqBHNOS/uYEDBwp9+/ZtnECPqC2bu7u78PHHH2s8J8bf4sezJScnCwCExMRE9XOVlZWCtbW1sGrVqkbNJgg13+/evXtXUCgUwtatW9V9Ll26JAAQYmNjGz1ffTjC1sTl5+cDACwsLEROoqmyshKbNm1CcXExfH19xY6jFhoaigEDBsDPz0/sKBpSUlJgb2+P1q1bY9SoUY0yhaQhdu7ciS5duuD111+HjY0NPD09sWrVKrFj1aq8vBzr16/HuHHjIJPJxI6Dl156CYcOHcKVK1cAAOfOncPx48cRFBQkcjLg/v37qKysrPHJt4GBgWRGdwEgPT0d2dnZGv+/mpmZwcfHB7GxsSIme/7k5+dDJpPB3Nxc7CgaysvL8e2338LMzAweHh5ixwEAVFVVYfTo0Zg+fTrc3d3FjlNDdHQ0bGxs0K5dO0ycOBG3b98WOxKqqqqwZ88etG3bFgEBAbCxsYGPj88Tp5uKJScnB3v27MH48ePFjgLgwbli586dyMjIgCAIOHLkCK5cuQJ/f39Rc5WVlQGAxnlCR0cH+vr6opwnHn+/GxcXh4qKCo3zg6urKxwcHCR5fmDB1oRVVVUhPDwcPXr0QIcOHcSOAwC4cOECjI2Noa+vjwkTJmDbtm1wc3MTOxYAYNOmTTh79izmz58vdhQNPj4+WLduHfbv348VK1YgPT0dvXr1QmFhodjR8Pvvv2PFihVwcXHBgQMHMHHiREyaNAnff/+92NFq2L59O+7evYsxY8aIHQUA8M9//hNvvPEGXF1doVAo4OnpifDwcIwaNUrsaDAxMYGvry8++eQTZGZmorKyEuvXr0dsbCyysrLEjqeWnZ0NALC1tdV43tbWVt1G9SstLcUHH3yAESNGwNTUVOw4AIDdu3fD2NgYSqUSS5cuRVRUFKysrMSOBeDBdGZdXV1MmjRJ7Cg1BAYG4ocffsChQ4ewcOFCxMTEICgoCJWVlaLmys3NRVFRERYsWIDAwEAcPHgQgwcPxpAhQxATEyNqtsd9//33MDExkczUua+++gpubm5o0aIF9PT0EBgYiMjISLz88sui5qoufmbOnIk7d+6gvLwcCxcuxI0bNxr9PFHb+93s7Gzo6enV+BBKqucHXbEDkHhCQ0ORmJgoqU/E27Vrh4SEBOTn5+Onn35CSEgIYmJiRC/arl+/jsmTJyMqKqpR5tM/jUdHXDp16gQfHx84Ojpiy5Yton8CWFVVhS5duuDTTz8FAHh6eiIxMRErV65ESEiIqNket3r1agQFBTXq9SZPsmXLFmzYsAEbN26Eu7s7EhISEB4eDnt7e0kcu//85z8YN24cmjdvDrlcDi8vL4wYMQJxcXFiR6O/UEVFBYYNGwZBELBixQqx46j16dMHCQkJuHXrFlatWoVhw4bh1KlTsLGxETVXXFwcvvzyS5w9e1YSI/WPe+ONN9Rfd+zYEZ06dUKbNm0QHR2Nfv36iZarqqoKADBw4EBMmTIFANC5c2ecOHECK1euxCuvvCJatsetWbMGo0aNksx7ga+++gonT57Ezp074ejoiKNHjyI0NBT29vaizgZSKBT4+eefMX78eFhYWEAul8PPzw9BQUGNvniWFN/vPi2OsDVRYWFh2L17N44cOYIWLVqIHUdNT08Pzs7O8Pb2xvz58+Hh4YEvv/xS7FiIi4tDbm4uvLy8oKurC11dXcTExGDZsmXQ1dUV/dPJR5mbm6Nt27ZITU0VOwrs7OxqFNvt27eXzJTNalevXsUvv/yCt99+W+woatOnT1ePsnXs2BGjR4/GlClTJDPC26ZNG8TExKCoqAjXr1/H6dOnUVFRgdatW4sdTU2lUgFAjVW/cnJy1G1Ut+pi7erVq4iKipLM6BoAGBkZwdnZGd27d8fq1auhq6uL1atXix0Lx44dQ25uLhwcHNTniqtXr+If//gHWrVqJXa8Glq3bg0rKyvRzxdWVlbQ1dWV/Pni2LFjSE5Olsy54t69e/jwww+xZMkSBAcHo1OnTggLC8Pw4cPx+eefix0P3t7eSEhIwN27d5GVlYX9+/fj9u3bjXqeqOv9rkqlQnl5Oe7evavRX6rnBxZsTYwgCAgLC8O2bdtw+PBhODk5iR3piaqqqtTzoMXUr18/XLhwAQkJCepHly5dMGrUKCQkJEAul4sdUa2oqAhpaWmws7MTOwp69OhRYxndK1euwNHRUaREtVu7di1sbGwwYMAAsaOolZSUQEdH80+0XC5XfxItFUZGRrCzs8OdO3dw4MABDBw4UOxIak5OTlCpVDh06JD6uYKCApw6dUpS18ZKUXWxlpKSgl9++QWWlpZiR3oiqZwrRo8ejfPnz2ucK+zt7TF9+nQcOHBA7Hg13LhxA7dv3xb9fKGnp4euXbtK/nyxevVqeHt7S+Z6yYqKClRUVEj+XGFmZgZra2ukpKTgzJkzjXKeqO/9rre3NxQKhcb5ITk5GdeuXZPk+YFTIpuY0NBQbNy4ETt27ICJiYl6nq6ZmRkMDAxEzTZz5kwEBQXBwcEBhYWF2LhxI6KjoyVxkjMxMalxnZ+RkREsLS1Fv/5v2rRpCA4OhqOjIzIzMxEREQG5XI4RI0aImgt4sGTuSy+9hE8//RTDhg3D6dOn8e233+Lbb78VO5paVVUV1q5di5CQEOjqSudPYnBwMObNmwcHBwe4u7sjPj4eS5Yswbhx48SOBgA4cOAABEFAu3btkJqaiunTp8PV1RVjx45t1BxFRUUaowPp6elISEiAhYUFHBwcEB4ejn//+99wcXGBk5MTZs2aBXt7ewwaNEj0bHl5ebh27Zr6/mbVb1ZVKtUz/4T3Sdns7Ozw2muv4ezZs9i9ezcqKyvV5woLCwvo6emJls3S0hLz5s3Dq6++Cjs7O9y6dQuRkZHIyMhotNtx1Pd7fby4VSgUUKlUaNeunajZLCwsMHfuXAwdOhQqlQppaWmYMWMGnJ2dERAQIGo2BwcHTJ8+HcOHD8fLL7+MPn36YP/+/di1axeio6NFzwY8+LBn69atWLx48TPP8zTZXnnlFUyfPh0GBgZwdHRETEwMfvjhByxZskT0bFu3boW1tTUcHBxw4cIFTJ48GYMGDWqUBVHqe79rZmaG8ePHY+rUqbCwsICpqSnef/99+Pr6onv37s8831MTc4lKanwAan2sXbtW7GjCuHHjBEdHR0FPT0+wtrYW+vXrJxw8eFDsWHWSyrL+w4cPF+zs7AQ9PT2hefPmwvDhw4XU1FSxY6nt2rVL6NChg6Cvry+4uroK3377rdiRNBw4cEAAICQnJ4sdRUNBQYEwefJkwcHBQVAqlULr1q2Ff/3rX0JZWZnY0QRBEITNmzcLrVu3FvT09ASVSiWEhoYKd+/ebfQcR44cqfVvWkhIiCAID5b2nzVrlmBrayvo6+sL/fr1a7TfdX3Z1q5dW2t7RESEqNmqbzNQ2+PIkSOiZrt3754wePBgwd7eXtDT0xPs7OyEV199VTh9+vQzz9WQfLVpzGX9n5StpKRE8Pf3F6ytrQWFQiE4OjoK77zzjpCdnS16tmqrV68WnJ2dBaVSKXh4eAjbt2+XTLZvvvlGMDAwaPS/c/Vly8rKEsaMGSPY29sLSqVSaNeunbB48eJGuT1Nfdm+/PJLoUWLFoJCoRAcHByEjz76qNHOYQ15v3vv3j3h//7v/4RmzZoJhoaGwuDBg4WsrKxGyfe0ZILQyFf+ERERERERUYPwGjYiIiIiIiKJYsFGREREREQkUSzYiIiIiIiIJIoFGxERERERkUSxYCMiIiIiIpIoFmxEREREREQSxYKNiIga1bZt27BlyxaxYxARET0XWLAREVGjOX36NMLDw9G9e3exo/xp0dHRkMlkuHv37jN/rd69eyM8PPyZv05juX37NmxsbPDHH38AqP9Y3rp1CzY2Nrhx40bjhSQikggWbEREpJUxY8ZAJpNhwYIFGs9v374dMpmsRv/8/Hy8/fbb2LZtGxwcHBorpuSVl5dj0aJF8PDwgKGhIaysrNCjRw+sXbsWFRUVz+Q1ZTIZtm/f/kz23RDz5s3DwIED0apVqwb1t7KywltvvYWIiIhnG4yISIJYsBERkdaUSiUWLlyIO3fu1NvXzMwM58+fh5eXVyMkq115eblor12b8vJyBAQEYMGCBXj33Xdx4sQJnD59GqGhofjqq69w8eJFsSM+kTYFZUlJCVavXo3x48c/1XZjx47Fhg0bkJeX99SvSUT0PGPBRkREWvPz84NKpcL8+fPr7DNnzhx07txZ47kvvvhCY3RlzJgxGDRoED799FPY2trC3NwcH3/8Me7fv4/p06fDwsICLVq0wNq1azX2c/36dQwbNgzm5uawsLDAwIED1dPsHt3vvHnzYG9vj3bt2gEALly4gL59+8LAwACWlpZ49913UVRU9MSfde/evWjbti0MDAzQp08fjdepdvz4cfTq1QsGBgZo2bIlJk2ahOLi4jr3+cUXX+Do0aM4dOgQQkND0blzZ7Ru3RojR47EqVOn4OLiUut2tY2QmZubY926dQAeFIJhYWGws7ODUqmEo6Oj+ndUfdwHDx4MmUym8XvYsWMHvLy8oFQq0bp1a8ydOxf379/XeN0VK1bg1VdfhZGREebNm4c7d+5g1KhRsLa2hoGBAVxcXGr8nh4/jvr6+k+cFltSUoKgoCD06NFDPU3S3d0d9vb22LZtW53bERG9iFiwERGR1uRyOT799FN89dVXf/r6osOHDyMzMxNHjx7FkiVLEBERgb///e9o1qwZTp06hQkTJuC9995Tv05FRQUCAgJgYmKCY8eO4ddff4WxsTECAwM1RtIOHTqE5ORkREVFYffu3SguLkZAQACaNWuG3377DVu3bsUvv/yCsLCwOrNdv34dQ4YMQXBwMBISEvD222/jn//8p0aftLQ0BAYGYujQoTh//jw2b96M48ePP3G/GzZsgJ+fHzw9PWu0KRQKGBkZPe1hBAAsW7YMO3fuxJYtW5CcnIwNGzaoC7PffvsNALB27VpkZWWpvz927BjeeustTJ48GUlJSfjmm2+wbt06zJs3T2Pfc+bMweDBg3HhwgWMGzcOs2bNQlJSEvbt24dLly5hxYoVsLKyqjPbsWPH4O3tXWf73bt30b9/f1RVVSEqKgrm5ubqtm7duuHYsWNaHRMioueVrtgBiIjo+TZ48GB07twZERERWL16tdb7sbCwwLJly6Cjo4N27dph0aJFKCkpwYcffggAmDlzJhYsWIDjx4/jjTfewObNm1FVVYXvvvtOfc3c2rVrYW5ujujoaPj7+wMAjIyM8N1330FPTw8AsGrVKpSWluKHH35QF0TLly9HcHAwFi5cCFtb2xrZVqxYgTZt2mDx4sUAgHbt2uHChQtYuHChus/8+fMxatQo9eIgLi4uWLZsGV555RWsWLECSqWyxn5TUlLQu3dvrY9ZXa5duwYXFxf07NkTMpkMjo6O6jZra2sAD0bkVCqV+vm5c+fin//8J0JCQgAArVu3xieffIIZM2ZoXDs2cuRIjB07VuO1PD090aVLFwCo97q0q1evwt7evta27OxsDB8+HC4uLti4caP6d1bN3t4e8fHxDTgCREQvDo6wERHRn7Zw4UJ8//33uHTpktb7cHd3h47O/05Ltra26Nixo/p7uVwOS0tL5ObmAgDOnTuH1NRUmJiYwNjYGMbGxrCwsEBpaSnS0tLU23Xs2FHjjf+lS5fg4eGhMXrVo0cPVFVVITk5udZsly5dgo+Pj8Zzvr6+Gt+fO3cO69atU2cxNjZGQEAAqqqqkJ6eXut+BUGo77BoZcyYMUhISEC7du0wadIkHDx4sN5tzp07h48//lgj/zvvvIOsrCyUlJSo+1UXZtUmTpyITZs2oXPnzpgxYwZOnDjxxNe5d+9ercUrAPTv3x/Ozs7YvHlzjWINAAwMDDSyEBE1BRxhIyKiP+3ll19GQEAAZs6ciTFjxmi06ejo1ChMalusQqFQaHwvk8lqfa6qqgoAUFRUBG9vb2zYsKHGvqpHkQBoPa3waRUVFeG9997DpEmTarTVtSpm27Ztcfny5ad+LZlM9sRj6uXlhfT0dOzbtw+//PILhg0bBj8/P/z0009PzD937lwMGTKkRtujBdbjxzMoKAhXr17F3r17ERUVhX79+iE0NBSff/55ra9jZWVV5yI1AwYMwH//+18kJSVpFOvV8vLyNH63RERNAQs2IiL6SyxYsACdO3dWL+xRzdraGtnZ2RAEQT11MSEh4U+/npeXFzZv3gwbGxuYmpo2eLv27dtj3bp1KC4uVhcfv/76q3oqZl3b7Ny5U+O5kydP1siTlJQEZ2fnBmcZOXIkPvzwQ8THx9e4jq2iogLl5eW1FpzW1tbIyspSf5+SklJj5MnU1BTDhw/H8OHD8dprryEwMBB5eXmwsLCAQqFAZWVljfzJyclPlf/RPCEhIQgJCUGvXr0wffr0Ogs2T09PrF+/vta2BQsWwNjYGP369UN0dDTc3Nw02hMTE5/JFFIiIinjlEgiIvpLdOzYEaNGjcKyZcs0nu/duzdu3ryJRYsWIS0tDZGRkdi3b9+ffr1Ro0bBysoKAwcOxLFjx5Ceno7o6GhMmjTpiQugjBo1CkqlEiEhIUhMTMSRI0fw/vvvY/To0bVevwYAEyZMQEpKCqZPn47k5GRs3LhRvSJjtQ8++AAnTpxAWFgYEhISkJKSgh07djxx0ZHw8HD06NED/fr1Q2RkJM6dO4fff/8dW7ZsQffu3ZGSklLrdn379sXy5csRHx+PM2fOYMKECRqjkUuWLMGPP/6Iy5cv48qVK9i6dStUKpV6AY9WrVrh0KFDyM7OVo92zZ49Gz/88APmzp2Lixcv4tKlS9i0aRM++uijOvNXb7djxw6kpqbi4sWL2L17N9q3b19n/4CAAFy8eLHOUbbPP/8co0aNQt++fTVGH0tKShAXF6e+NpGIqKlgwUZERH+Zjz/+WD1lsVr79u3x9ddfIzIyEh4eHjh9+jSmTZv2p1/L0NAQR48ehYODA4YMGYL27dtj/PjxKC0tfeKIm6GhIQ4cOIC8vDx07doVr732Gvr164fly5fXuY2DgwP++9//Yvv27fDw8MDKlSvx6aefavTp1KkTYmJicOXKFfTq1Quenp6YPXt2nQtsAIC+vj6ioqIwY8YMfPPNN+jevTu6du2KZcuWYdKkSejQoUOt2y1evBgtW7ZEr169MHLkSEybNg2GhobqdhMTEyxatAhdunRB165d8ccff2Dv3r3qawQXL16MqKgotGzZUj2yFxAQgN27d+PgwYPo2rUrunfvjqVLl2osWFIbPT09zJw5E506dcLLL78MuVyOTZs21dm/Y8eO8PLywpYtW+rss3TpUgwbNgx9+/bFlStXADy45YCDgwN69er1xDxERC8amfCsrngmIiIiqsWePXswffp0JCYmaiw08yTdu3fHpEmTMHLkyGecjohIWngNGxERETWqAQMGICUlBRkZGWjZsmW9/W/duoUhQ4ZgxIgRjZCOiEhaOMJGREREREQkUbyGjYiIiIiISKJYsBEREREREUkUCzYiIiIiIiKJYsFGREREREQkUSzYiIiIiIiIJIoFGxERERERkUSxYCMiIiIiIpIoFmxEREREREQSxYKNiIiIiIhIoliwERERERERSdT/AzHU3cEt+kZWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculando el Silhouette Score para diferentes valores de k...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXVUlEQVR4nOzdd3wUdf7H8demNzqEkoSEKkUFpIMQOoIKChYEFdBTT0FBrHg/ewVR4awndxZEbIge4oEiQgApUqUjSAsBEnoLkLLz+2PYkJDC7mZ3Z5O8n49HHjs7OzvzzqZ+9ttshmEYiIiIiIiISLEEWB1ARERERESkNFBxJSIiIiIi4gEqrkRERERERDxAxZWIiIiIiIgHqLgSERERERHxABVXIiIiIiIiHqDiSkRERERExANUXImIiIiIiHiAiisREREREREPUHElIl6VkJDAsGHDcu4vWLAAm83GggULcvZ16dKFyy+/3PfhRDykoO9rgM8++4xGjRoRHBxMxYoVLclW1hT2tSipLv4d6onzXXfddR47n4jkpeJKRNyyfv16brrpJuLj4wkLCyMmJoaePXvy9ttvWx3NKzZt2sRzzz3Hrl278j323nvv8cknn3j8mna7nSlTptC2bVsqV65MuXLlaNiwIXfeeSfLli3z+PXEtGvXLmw2W85HcHAwVatWpUOHDjz11FPs2bPHqfNs2bKFYcOGUa9ePSZPnsyHH37o5eTuK+r725uuvPJKateujWEYhR7TsWNHqlevTlZWlg+TiYi4J8jqACJS8ixZsoSuXbtSu3Zt7rnnHmrUqEFycjLLli1j0qRJPPjggznHbt26lYCAkv8+zqZNm3j++efp0qULCQkJeR577733qFq1qkffXQZ46KGHePfdd+nfvz9DhgwhKCiIrVu3Mnv2bOrWrUu7du08ej3J67bbbqNv377Y7XaOHj3KihUrmDhxIpMmTeI///kPgwYNyjm2c+fOnDlzhpCQkJx9CxYswG63M2nSJOrXr2/Fp+C0or6/vWnIkCE8+eSTLFq0iM6dO+d7fNeuXSxdupSRI0cSFKR/WUTE/+k3lYi47OWXX6ZChQqsWLEiX1entLS0PPdDQ0N9mKz0SE1N5b333uOee+7J1+IxceJEDh486LMsWVlZ2O32PIWDvzp9+jSRkZEeOddVV13F7bffnmff7t276dWrF0OHDqVx48Y0a9YMgICAAMLCwvIc6/hZ8GR3QE9+fv5g8ODBjB07lmnTphVYXH3xxRcYhsGQIUMsSGcqba+5iHhXyX87WUR87q+//qJp06YF/tMYHR2d574r4wU2bdpE165diYiIICYmhvHjx+c7Ji0tjbvvvpvq1asTFhZGs2bN+PTTT/McU9iYC0d3r4u78G3ZsoWbbrqJypUrExYWRqtWrZg5c2bO45988gk333wzAF27ds3pLrZgwQISEhLYuHEjSUlJOfu7dOmS89xjx44xevRo4uLiCA0NpX79+owbNw673V7ka7Fz504Mw6Bjx475HrPZbPle52PHjvHwww+TkJBAaGgosbGx3HnnnRw6dMil187xGk2YMIGJEydSr149QkND2bRpk1OvVWFyn/ett94iPj6e8PBwEhMT2bBhQ55j161bx7Bhw6hbty5hYWHUqFGDu+66i8OHD+c57rnnnsNms7Fp0yYGDx5MpUqVuPrqq106h6vi4+P55JNPyMjIyPP9efH3XEJCAs8++ywA1apVw2az8dxzz+UcP3v2bDp16kRkZCTlypXj2muvZePGjXmuNWzYMKKiovjrr7/o27cv5cqVyyky7HY7EydOpGnTpoSFhVG9enXuu+8+jh49muccjvE1ixcvpk2bNoSFhVG3bl2mTJmSc0xR39+u5D1w4ADDhw8nNjaW0NBQatasSf/+/YvsahgXF0fnzp2ZPn06mZmZ+R6fNm0a9erVo23btuzevZsHHniAyy67jPDwcKpUqcLNN9/sdFfGb775hpYtWxIeHk7VqlW5/fbbSUlJyXOMJ17zlStX0rt3b6pWrUp4eDh16tThrrvuumQ+wzB46aWXiI2NJSIigq5du+Z7jR3c/b1SmE8//ZSgoCAee+wxt54vIheo5UpEXBYfH8/SpUvZsGGDxyaiOHr0KNdccw0DBgzglltuYfr06TzxxBNcccUV9OnTB4AzZ87QpUsXtm/fzsiRI6lTpw7ffPMNw4YN49ixY4waNcrl627cuJGOHTsSExPDk08+SWRkJF9//TU33HAD3377LTfeeCOdO3fmoYce4p///CdPPfUUjRs3BqBx48ZMnDiRBx98kKioKP7xj38AUL16dQDS09NJTEwkJSWF++67j9q1a7NkyRLGjh3L/v37mThxYqG54uPjAfMfwptvvpmIiIhCjz116hSdOnVi8+bN3HXXXVx11VUcOnSImTNnsnfvXqpWrerya/fxxx9z9uxZ7r33XkJDQ6lcubJTr9WlTJkyhZMnTzJixAjOnj3LpEmT6NatG+vXr8953ebOncuOHTsYPnw4NWrUYOPGjXz44Yds3LiRZcuWYbPZ8pzz5ptvpkGDBrzyyis5Y3dcPYcr2rdvT7169Zg7d26hx0ycOJEpU6bw3Xff8f777xMVFcWVV14JmJNcDB06lN69ezNu3DjS09N5//33ufrqq1mzZk2ebnlZWVn07t2bq6++mgkTJuR8H9x333188sknDB8+nIceeoidO3fyzjvvsGbNGn777TeCg4NzzrF9+3Zuuukm7r77boYOHcpHH33EsGHDaNmyJU2bNi3y+9uVvAMHDmTjxo08+OCDJCQkkJaWxty5c9mzZ0+RXQ2HDBnCvffey08//ZRnooX169ezYcMGnnnmGQBWrFjBkiVLGDRoELGxsezatYv333+fLl26sGnTpiJ/RhyvVevWrXn11VdJTU1l0qRJ/Pbbb6xZsybPG0XFec3T0tLo1asX1apV48knn6RixYrs2rWLGTNmFJrN4ZlnnuGll16ib9++9O3bl9WrV9OrVy8yMjLyHFec3ysF+fDDD/n73//OU089xUsvveTSc0WkAIaIiIt+/vlnIzAw0AgMDDTat29vPP7448ZPP/1kZGRk5Ds2Pj7eGDp0aM79+fPnG4Axf/78nH2JiYkGYEyZMiVn37lz54waNWoYAwcOzNk3ceJEAzCmTp2asy8jI8No3769ERUVZZw4caLQaxiGYezcudMAjI8//jhnX/fu3Y0rrrjCOHv2bM4+u91udOjQwWjQoEHOvm+++abAcxqGYTRt2tRITEzMt//FF180IiMjjT///DPP/ieffNIIDAw09uzZk+85ud15550GYFSqVMm48cYbjQkTJhibN2/Od9wzzzxjAMaMGTPyPWa32w3DcP61c7xG5cuXN9LS0vKcy9nXqiCO84aHhxt79+7N2b98+XIDMB5++OGcfenp6fme/8UXXxiAsXDhwpx9zz77rAEYt912W77jnT1HUVlff/31Qo/p37+/ARjHjx83DKPg7zlHvoMHD+bsO3nypFGxYkXjnnvuyXO+AwcOGBUqVMizf+jQoQZgPPnkk3mOXbRokQEYn3/+eZ79c+bMybc/Pj4+3+eclpZmhIaGGo888kjOvsK+v53Ne/To0Uu+ZoU5cuSIERoamu/r+OSTTxqAsXXrVsMwCv6aLl26NN/vjou/FhkZGUZ0dLRx+eWXG2fOnMk5btasWQZgPPPMMzn7ivuaf/fddwZgrFixwqXXIC0tzQgJCTGuvfbanJ9ZwzCMp556ygDy/A4t7u+V+Ph449prrzUMwzAmTZpk2Gw248UXX3Qpr4gUTt0CRcRlPXv2ZOnSpfTr148//viD8ePH07t3b2JiYpzqIlaQqKioPONbQkJCaNOmDTt27MjZ97///Y8aNWpw22235ewLDg7moYce4tSpUyQlJbl0zSNHjvDrr79yyy23cPLkSQ4dOsShQ4c4fPgwvXv3Ztu2bfm6Dbnim2++oVOnTlSqVCnn3IcOHaJHjx5kZ2ezcOHCIp//8ccf884771CnTh2+++47Hn30URo3bkz37t3z5Pr2229p1qxZgS1HjhYaV1+7gQMHUq1atZz7nnqtbrjhBmJiYnLut2nThrZt2/K///0vZ194eHjO9tmzZzl06FDO5B2rV6/Od86///3v+fa5eg5XRUVFAXDy5EmXnjd37lyOHTvGbbfdlud7IjAwkLZt2zJ//vx8z7n//vvz3P/mm2+oUKECPXv2zHOOli1bEhUVle8cTZo0oVOnTjn3q1WrxmWXXZbnZ6u4ecPDwwkJCWHBggX5usldSqVKlejbty8zZ87k9OnTgNlF7ssvv6RVq1Y0bNgw5xoOmZmZHD58mPr161OxYsUiv6YrV64kLS2NBx54IM+4uGuvvZZGjRrx448/5nuOu6+5owVs1qxZBXZzLMwvv/xCRkYGDz74YJ5W1dGjR+c7tri/VxzGjx/PqFGjGDduHP/3f//ndFYRKZq6BYqIW1q3bs2MGTPIyMjgjz/+4LvvvuOtt97ipptuYu3atTRp0sSl88XGxubrqlWpUiXWrVuXc3/37t00aNAg3+yDju5Lu3fvduma27dvxzAMnn76aZ5++ukCj0lLS8tTDLhi27ZtrFu3Lk+RcvG5ixIQEMCIESMYMWIEhw8f5rfffuODDz5g9uzZDBo0iEWLFgHmGLiBAwcWeS5XX7s6derkue+p16pBgwb59jVs2JCvv/465/6RI0d4/vnn+fLLL/O9RsePH8/3/IuzunMOV506dQqAcuXKufS8bdu2AdCtW7cCHy9fvnye+0FBQcTGxuY7x/Hjx/ONu3O4+POtXbt2vmMqVarkVBHkbN7Q0FDGjRvHI488QvXq1WnXrh3XXXcdd955JzVq1LjkdYYMGcJ3333Hf//7XwYPHsySJUvYtWtXnu6qZ86c4dVXX+Xjjz8mJSUlz/TtRX1NHd/bl112Wb7HGjVqxOLFi/PsK85rnpiYyMCBA3n++ed566236NKlCzfccAODBw8ucnIfR8aLfz6qVatGpUqV8mUpzu8VgKSkJH788UeeeOIJjbMS8TAVVyJSLCEhIbRu3ZrWrVvTsGFDhg8fzjfffJMzmN9ZgYGBBe43ilj/pjCFjafJzs7Oc98x+PvRRx+ld+/eBT6nOFNo2+12evbsyeOPP17g44535J1RpUoV+vXrR79+/ejSpQtJSUns3r07Z2yWp+VuJQDvv1a53XLLLSxZsoTHHnuM5s2bExUVhd1u55prrilwwP7FWd05h6s2bNhAdHR0vmLoUhzX/uyzzwosOi6ebjw0NDRfQWy324mOjubzzz8v8BoX/9NdnJ8tV/KOHj2a66+/nu+//56ffvqJp59+mldffZVff/2VFi1aFHmd6667jgoVKjBt2jQGDx7MtGnTCAwMzDPd/YMPPsjHH3/M6NGjad++PRUqVMBmszFo0CCPfE0divOa22w2pk+fzrJly/jhhx/46aefuOuuu3jjjTdYtmxZTotncXji90rTpk05duwYn332Gffdd1+Bb1CIiHtUXImIx7Rq1QqA/fv3e+X88fHxrFu3Drvdnuefny1btuQ8DuS803vs2LE8z7+4daZu3bqA2T2uR48eRV67qAkQCnusXr16nDp16pLndlWrVq1ISkpi//79xMfHU69evXwz7l3M2deuMK68VkVxtITk9ueff+ZMeHD06FHmzZvH888/nzORQWHPK4wnzlGUpUuX8tdff+Wbpt0Z9erVA8xZNd19HevVq8cvv/xCx44dCyws3VHU9zA4n7devXo88sgjPPLII2zbto3mzZvzxhtvMHXq1CKfFxoayk033cSUKVNITU3lm2++oVu3bnkKuunTpzN06FDeeOONnH1nz57N93N+Mcf39tatW/O1wG3dutWpNyhcfc3btWtHu3btePnll5k2bRpDhgzhyy+/5G9/+1uRGbdt25bzswZw8ODBfC2Mnvi9UrVqVaZPn87VV19N9+7dWbx4MbVq1XL7fCJygcZciYjL5s+fX+C73o5xMwV1v/GEvn37cuDAAb766qucfVlZWbz99ttERUWRmJgImP+oBAYG5ht78N577+W5Hx0dTZcuXfjXv/5VYEGYey0pxzo3Bf0jFxkZWeD+W265haVLl/LTTz/le+zYsWNkZWUV+rkeOHAgZ/rz3DIyMpg3bx4BAQE5LUUDBw7M6Zp5McfXydnXrjCuvFZF+f777/OMzfr9999Zvnx5zoyQjlaWi7+/XJkBzRPnKMzu3bsZNmwYISEhbnWn6t27N+XLl+eVV14pcEyOM6/jLbfcQnZ2Ni+++GK+x7Kysi5ZbBSksO9vZ/Omp6dz9uzZPI/Vq1ePcuXKce7cOacyDBkyhMzMTO677z4OHjyYb22rwMDAfF/Tt99+O1+L9MVatWpFdHQ0H3zwQZ4ss2fPZvPmzVx77bWXzObsa3706NF8GZs3bw5Q5OvQo0cPgoODefvtt/M8v6Dv2eL8XsktNjaWX375hTNnztCzZ89iL1MgIia1XImIyx588EHS09O58cYbadSoERkZGSxZsoSvvvqKhIQEhg8f7pXr3nvvvfzrX/9i2LBhrFq1ioSEBKZPn85vv/3GxIkTc8a/VKhQgZtvvpm3334bm81GvXr1mDVrVoFjEd59912uvvpqrrjiCu655x7q1q1LamoqS5cuZe/evfzxxx+A+Q9SYGAg48aN4/jx44SGhtKtWzeio6Np2bIl77//Pi+99BL169cnOjqabt268dhjjzFz5kyuu+66nKmvT58+zfr165k+fTq7du2iatWqBX6ue/fupU2bNnTr1o3u3btTo0YN0tLS+OKLL/jjjz8YPXp0znMfe+wxpk+fzs0338xdd91Fy5YtOXLkCDNnzuSDDz6gWbNmTr92RXH2tSpK/fr1ufrqq7n//vs5d+4cEydOpEqVKjldnMqXL0/nzp0ZP348mZmZxMTE8PPPP7Nz585LntvBE+cAc+KLqVOnYrfbOXbsGCtWrODbb7/FZrPx2Wef5Uyt7ory5cvz/vvvc8cdd3DVVVcxaNAgqlWrxp49e/jxxx/p2LEj77zzTpHnSExM5L777uPVV19l7dq19OrVi+DgYLZt28Y333zDpEmTuOmmm1zKVdT3tzN5//zzT7p3784tt9xCkyZNCAoK4rvvviM1NTVP175LfV6xsbH897//JTw8nAEDBuR5/LrrruOzzz6jQoUKNGnShKVLl/LLL79QpUqVIs8bHBzMuHHjGD58OImJidx22205U7EnJCTw8MMPO5XNmdf8008/5b333uPGG2+kXr16nDx5ksmTJ1O+fHn69u1b6PmrVavGo48+yquvvsp1111H3759WbNmDbNnz873O6I4v1cuVr9+fX7++We6dOlC7969+fXXX13u6ioiF7FkjkIRKdFmz55t3HXXXUajRo2MqKgoIyQkxKhfv77x4IMPGqmpqXmOdXYq9qZNm+a7ztChQ434+Pg8+1JTU43hw4cbVatWNUJCQowrrrgiz9TqDgcPHjQGDhxoREREGJUqVTLuu+8+Y8OGDfmmYjcMw/jrr7+MO++806hRo4YRHBxsxMTEGNddd50xffr0PMdNnjzZqFu3rhEYGJjnczhw4IBx7bXXGuXKlTOAPNOynzx50hg7dqxRv359IyQkxKhatarRoUMHY8KECQVOXe9w4sQJY9KkSUbv3r2N2NhYIzg42ChXrpzRvn17Y/LkyXmmazYMwzh8+LAxcuRIIyYmxggJCTFiY2ONoUOHGocOHXLptbvUNOTOvlYXy33eN954w4iLizNCQ0ONTp06GX/88UeeY/fu3WvceOONRsWKFY0KFSoYN998s7Fv3z4DMJ599tmc4wqa6tzVcxSV1fERFBRkVK5c2Wjbtq0xduxYY/fu3fme4+xU7LmP7927t1GhQgUjLCzMqFevnjFs2DBj5cqVOccMHTrUiIyMLDTnhx9+aLRs2dIIDw83ypUrZ1xxxRXG448/buzbty/nmNzTbueWmJiYb/mAwr6/ncl76NAhY8SIEUajRo2MyMhIo0KFCkbbtm2Nr7/+utD8BXnssccMwLjlllvyPXb06NGc79+oqCijd+/expYtW5z6HWMYhvHVV18ZLVq0MEJDQ43KlSsbQ4YMybMsgGEU/zVfvXq1cdtttxm1a9c2QkNDjejoaOO6667L83UtTHZ2tvH8888bNWvWNMLDw40uXboYGzZsyPf5GYb7v1cMo+DvieXLlxvlypUzOnfuXOCU9yLiPJthuDFaXERExAW7du2iTp06vP766zz66KNWxxEREfEKjbkSERERERHxABVXIiIiIiIiHqDiSkRERERExAM05kpERERERMQD1HIlIiIiIiLiASquREREREREPECLCBfAbrezb98+ypUrh81mszqOiIiIiIhYxDAMTp48Sa1atQgIKLptSsVVAfbt20dcXJzVMURERERExE8kJycTGxtb5DEqrgpQrlw5wHwBy5cvb2mWzMxMfv75Z3r16kVwcLClWQriz/mUzT3K5h5lc58/51M29yibe5TNff6cT9nc40/ZTpw4QVxcXE6NUBQVVwVwdAUsX768XxRXERERlC9f3vJvrIL4cz5lc4+yuUfZ3OfP+ZTNPcrmHmVznz/nUzb3+GM2Z4YLaUILERERERERD1BxJSIiIiIi4gEqrkRERERERDxAxZWIiIiIiIgHqLgSERERERHxABVXIiIiIiIiHqDiSkRERERExANUXImIiIiIiHiAiisREREREREPUHElIiIiIiLiASquREREREREPEDFlYiIiIiIiAeouBIREREREfEAFVciIiIiIuI/7NnY0pKIyVqILS0J7NlWJ3JakNUBREREREREAEieAatGEZS+l1YASW9CRCy0nARxA6xOd0lquRIREREREeslz4BFN0H63rz701PM/ckzrMnlAhVXIiIiIiJiLXs2rBoFGAU8eH7fqtF+30VQxZWIiIiIiFjr4KL8LVZ5GJCebB7nx1RciYiIiIiItc7s9+xxFlFxJSIiIiIi1gqv6dnjLKLiSkRERERErFWtkzkrYKFsEBFnHufHVFyJiIiIiIi1AgKh+fhCHrSZNy0nmsf5MRVXIiIiIiJivczj5q3togIqIhY6TS8R61xpEWEREREREbGWPRs2v2Fut5hAVrnLWbtsNs3b9SGoZle/b7FyUHElIiIiIiLWSpkJp7ZDSCWo9zcMQkkJOk2z6MQSU1iBugWKiIiIiIjVNr9u3jZ4AIKjrM1SDCquRERERETEOgd/g0NLISAEGo60Ok2xqLgSERERERHrOFqt6twJ4TWszVJMKq5ERERERMQaJ7bC3pnmdqNHrM3iASquRERERETEGpvfAAyI6QcVGlmdpthUXImIiIiIiO+dSYWdU8ztxo9Zm8VDVFyJiIiIiIjv/fk22M9BlXZQraPVaTxCxZWIiIiIiPhW5inY9p653eQxsNmszeMhKq5ERERERMS3dnwEGUchqj7E9Lc6jceouBIREREREd+xZ8GWt8ztxo9AQKC1eTxIxZWIiIiIiPhO8rdweheEVoU6Q61O41EqrkRERERExDcM48KiwQ1HQlC4tXk8TMWViIiIiIj4RtoCOLIKAsOhwQir03iciisREREREfGNTedbreoOh7Cq1mbxAhVXIiIiIiLifcc2wP7ZYAuARmOsTuMVKq5ERERERMT7Nk8wb2MHQLl61mbxEhVXIiIiIiLiXekpsHuaud34MWuzeJGKKxERERER8a6tk8CeCdGdoWobq9N4jYorERERERHxnswTsP1f5nYpbrUCFVciIiIiIuJN2z80C6zyjaFWX6vTeJWKKxERERER8Y7sDNgy0dxu/Kg5U2ApVro/OxERERERsc6er+BMCoTVgIQhVqfxOhVXIiIiIiLieYYBm88vGnzZQxAYam0eH1BxJSIiIiIinrf/Zzi2HoIiocHfrU7jEyquRERERETE8xytVvXugZBK1mbxERVXIiIiIiLiWUdWQ+o8sAVCo9FWp/EZFVciIiIiIuJZmyeYt7Vvhch4a7P4kIorERERERHxnNO7Yc/X5naT0r1o8MVUXImIiIiIiOdseQuMbKjRAyo1tzqNT6m4EhERERERz8g4Cn/929xuXLZarUDFlYiIiIiIeMq29yHrNFRsBjV6Wp3G51RciYiIiIhI8WWfha3/NLcbPwo2m7V5LKDiSkREREREim/X53A2FSJiIf5Wq9NYQsWViIiIiIgUj2G/MP36ZaMhINjSOFZRcSUiIiIiIsWT8iOc2ALB5aH+PVansYyKKxERERERKZ7Nr5u39f9uFlhllIorERERERFx36HlcHCR2RXwslFWp7GUiisREREREXGfo9UqYQhE1LI2i8VUXImIiIiIiHtObofkGeZ2o0etzeIHVFyJiIiIiIh7trwJGFCrL1RsanUay6m4EhERERER1509CDs+NrcbP2ZtFj+h4kpERERERFz357uQfRYqt4LoRKvT+AUVVyIiIiIi4pqsdNj2jrnd+DGw2azN4ydUXImIiIiIiGt2fgrnDkNkAsQNsDqN31BxJSIiIiIizrNnw+Y3zO1GYyAgyNo8fkTFlYiIiIiIOG/v93DqLwipDPXusjqNX1FxJSIiIiLiDfZsbGlJxGQtxJaWZLb4lHSGcWHR4AYPQFCktXn8jNrwREREREQ8LXkGrBpFUPpeWgEkvQkRsdByUskeo3RwMRxeDgGh0HCk1Wn8jlquREREREQ8KXkGLLoJ0vfm3Z+eYu5PnmFNLk9wtFrVHQrh1a3N4odUXImIiIhIyeVPXe8yT8HxLfD73wGjgAPO71s1umR2ETy+GVJ+AGzQ6BGr0/gldQsUERERkZLJF13vDLs55fiZ/ebH2QOFbO+HrNPOnBDSk+HgIqjexTMZfWXL+RkCY/tD+YbWZvFTKq5EREREpORxdL27uIXI0fWu0/SiC6zsjCIKpdzbqWBkOZ8rIBTs5y593Jn9zp/TH5zZDzs/M7cbP2ZtFj+m4kpEREREShZ7NqwaReFd72xm17ysM3AureCiKeOIa9cMrQbhNSCsJoSf/wirkX/7yEqY1/XS5wuv6dr1rbb1bbBnQNUOUK2D1Wn8loorERERESlZDi7KP1lEHgacOwhLby/6PAHBFxVINc0CKt92dfNYZ1TrZHZNTE+h4OLvvF2fQ5XWJWMq88yTsO19c7vxo9Zm8XMqrkRERESkZHG2S135xlCpWcEtTOE1zUVwbTbPZgsINMd8LboJsJG3wMp1/69/m0Vihy+gcgvPZvC0vz6CzGNQrgHE9LM6jV9TcSUiIiIiJYuzXepav2fNpBFxA8wxX6tG5W1hi4iFlhMhuCIsvQNObIWf20KzV6DRGLD54UTe9izY+pa53egRs3iUQln+FXz33XdJSEggLCyMtm3b8vvvvxd67MaNGxk4cCAJCQnYbDYmTpxY4HEpKSncfvvtVKlShfDwcK644gpWrlzppc9ARERERHyqWicIjy3iABtExJnHWSVuAPTbRVbiXFaGjiErcS7022nur9EN+q6D2BvBnglrHoNfe53vSuhn9nwDp3ebY87q3Gl1Gr9naXH11VdfMWbMGJ599llWr15Ns2bN6N27N2lpaQUen56eTt26dXnttdeoUaNGgcccPXqUjh07EhwczOzZs9m0aRNvvPEGlSpV8uanIiIiIiK+EhAIdYcV8uD5bn4tJ1rfyhIQiBGdSEpQZ4zoxLx5QqtAp2+hzWQIjIDUefC/KyH5O+vyXswwLiwa3PBBCAq3Nk8JYGlx9eabb3LPPfcwfPhwmjRpwgcffEBERAQfffRRgce3bt2a119/nUGDBhEaGlrgMePGjSMuLo6PP/6YNm3aUKdOHXr16kW9evW8+amIiIiIiK8YBhz4xdwOisr7WETspadh9xc2G9T/G/RZDZVbmjMYLhoAy+91cs0sL0v9FY6uMYu/hg9YnaZEsGzMVUZGBqtWrWLs2LE5+wICAujRowdLly51+7wzZ86kd+/e3HzzzSQlJRETE8MDDzzAPffcU+hzzp07x7lzF9YjOHHiBACZmZlkZma6ncUTHNe3Okdh/DmfsrlH2dyjbO7z53zK5h5lc4+yOc924GeCDi/DCAgj65r1ZB/dwoaVc7m8VU8Ca3YBWyD4SVanXrvwutA1iYANzxGw9Q1sf03GSEsiq+1nUMl7k11cKlvgxvEEANl1hmEPKO/T19SfvudcyWAzDKOIOSK9Z9++fcTExLBkyRLat2+fs//xxx8nKSmJ5cuXF/n8hIQERo8ezejRo/PsDwsLA2DMmDHcfPPNrFixglGjRvHBBx8wdOjQAs/13HPP8fzzz+fbP23aNCIiIlz8zERERETEawyDTmefpLJ9K9uD+rEx9C6rE3lU1ez1XHVuIuHGYewEsTl4MNuDb/D5ZBfl7bvoemY0BgH8Ev4+6QHVfXp9f5Kens7gwYM5fvw45cuXL/LYUjdboN1up1WrVrzyyisAtGjRgg0bNhRZXI0dO5YxY8bk3D9x4gRxcXH06tXrki+gt2VmZjJ37lx69uxJcLCT6yv4kD/nUzb3KJt7lM19/pxP2dyjbO5RNufYDvxM0KKtGAFhxPd5h/iwGn6V72KuZ+sLGfdgX3k/ASnf0TRzCo0rJZPd5iMIj/FZtsDfh8NuMGIH0KX9cI9et7jZfM3Rq80ZlhVXVatWJTAwkNTU1Dz7U1NTC52swhk1a9akSZMmefY1btyYb7/9ttDnhIaGFjiGKzg42PIvpoM/ZSmIP+dTNvcom3uUzX3+nE/Z3KNs7lG2IhgGbHoJAFuD+wkuF5fnYcvzFcGlbMHVofO3sOMjWPkQAWnzCfi5JbT9N8Td6P1sp5Nhz1cABDR9ggALX1N/+Jq6cn3LJrQICQmhZcuWzJs3L2ef3W5n3rx5eboJuqpjx45s3bo1z74///yT+Ph4t88pIiIiIn5g/89weBkEhkOTx61O4102G9S7G/qsgcqtck12cY/3J7vYOgmMLIjuAlVaefdapYylswWOGTOGyZMn8+mnn7J582buv/9+Tp8+zfDhZtPjnXfemWfCi4yMDNauXcvatWvJyMggJSWFtWvXsn379pxjHn74YZYtW8Yrr7zC9u3bmTZtGh9++CEjRozw+ecnIiIiIh5iGLD+OXO7wf0Q7n5PpxKlfEPo+Rs0eRKwwV//htlXwWEvreGacRy2f2huN37UO9coxSwdc3Xrrbdy8OBBnnnmGQ4cOEDz5s2ZM2cO1aubA+b27NlDQMCF+m/fvn20aHFhxpQJEyYwYcIEEhMTWbBgAWBO1/7dd98xduxYXnjhBerUqcPEiRMZMmSITz83EREREfGg3K1WjR+zOo1vBYZA81ehZm9Yegec/BN+bg/NXjJfC09OdrH9Q8g6CRWaQK0+njtvGWH5hBYjR45k5MiRBT7mKJgcEhIScGZyw+uuu47rrrvOE/FERERExGqGAeufNbfLUqvVxap3gT5/wO/3QfJ0WPsk7P8J2k8x1/cqruwMs0sgQKNHfT5DYWmgV0xERERE/Nv+n+Dw8rLZanWx0Mpw9dfQ9iMIioTU+fC/K2FP4ZO3OW33F3AmBcJrQsLg4p+vDFJxJSIiIiL+q6yOtSqKzQb1hsM1a6Bya8g4CotvguV/g8xT7p3TMGDzBHP7slEQmH8mbbk0FVciIiIi4r/UalW48g2g12/Q9CnMyS7+A3PcnOxi/xw4vgGCoqD+fR6PWlaouBIRERER/6RWq0sLCIZmL0P3+ea4q5PbzMkuNr4G9mznz7P5dfO2/r0QUtErUcsCFVciIiIi4p/ytFqV8nWtiqt6IvRdB7VvNteo+mMs/NrDXBD4Uo6uNsdu2YLgstFej1qaqbgSEREREf+Tp9XqAQivbmmcEiGkEnT8Ctp9bE52kbYAZjeDPdOLfFrg1jfMjfhBEBnn/ZylmIorEREREfE/GmvlHpsN6g6DPmuhSpvzk13cDMvuzjvZhT0bW1oSdTN+wJZ8vvjSosHFpuJKRERERPxLnnWt1GrllnL1oediaPoPwAY7PoLZLeDwCkieATMTCErqyRWZ/8GGAQGhcOovq1OXeCquRERERMS/7J8Dh39Xq1VxBQRDs5egxwKIiINT2+GndrBoIKTvzXus/RwsusksvMRtKq5ERERExH9orJXnRXeGvn9A3E2AvehjV412bZZByUPFlYiIiIj4D7VaeUdIJbNYLZIB6clwcJFPIpVGKq5ERERExD+o1cq7zh5w7rgz+72boxRTcSUiIiIi/kGtVt4VXtOzx0k+Kq5ERERExHq5W60ajlCrlTdU6wQRsYCtkANs5sQX1Tr5MlWpouJKRERERKynVivvCwiElpPO37m4wDp/v+VE8zhxi4orEREREbGWYcC68+taNRwBYdHW5inN4gZAp+kQEZN3f0SsuT9ugDW5SokgqwOIiIiISBm3bzYcWaFWK1+JGwAx/cnaP5+1y2bTvF0fgmp2VYuVB6i4EhERERHrXDzWSq1WvhEQiBGdSErQaZpFJ6qw8hB1CxQRERER66jVSkoRFVciIiIiYg21Wkkpo+JKRERERKyR02oVoVYrKRVUXImIiIiI76nVSkohFVciIiIi4nt5Wq0etTqNiEeouBIRERER3zIMWK91raT0UXElIiIiIr61739wZKVaraTUUXElIiIiIr6jsVZSiqm4EhERERHfUauVlGIqrkRERETEN9RqJaWciisRERER8Q21Wkkpp+JKRERERLxPrVZSBqi4EhERERHvy9Nq9ZjVaUS8QsWViIiIiHhXnlarkRBWzdI4It6i4kpEREREvGvfjxprJWWCiisRERER8R61WkkZouJKRERERLxn349wZJVaraRMUHElIiIiIt6hVispY1RciYiIiIh3qNVKyhgVVyIiIiLieWq1kjJIxZWIiIiIeJ6j1SooUq1WUmaouBIRERERz1KrlZRRKq5ERERExLNSZl1otWr0iNVpRHxGxZWIiIiIeI5araQMU3ElIiIiIp6TMguOrlarlZRJKq5ERERExDPUaiVlnIorEREREfEMtVpJGafiSkRERESKT61WIiquRERERMQD8rRaaV0rKZtUXImIiIhI8eRptXoQwqpaGkfEKiquRERERKR4Un7QWCsRVFyJiIiISHGo1Uokh4orEREREXFfyg9wdI1arURQcSUiIiIi7lKrlUgeKq5ERERExD1qtRLJQ8WViIiIeI49G1taEjFZC7GlJYE92+pE4i1qtRLJJ8jqACIiIlJKJM+AVaMISt9LK4CkNyEiFlpOgrgBVqcTT8tptYpSq5XIeWq5EhERkeJLngGLboL0vXn3p6eY+5NnWJNLvEOtViIFUnElIiIixWPPhlWjAKOAB8/vWzVaXQRLk5SZuVqtxlidRsRvqLgSERGR4jm4KH+LVR4GpCebx0nJp1YrkUKpuBIREZHiObPfs8eJf0uZCUfXqtVKpAAqrkRERKR4wmt69riyqKTMsqhWK5EiabZAERERKZ5qnSA8Fs4U0TUwuAJUvdp3mUoSf59lMVfhF7B5rVqtRIqglisREREpnoBAqNWn6GMyj8OSQZB5yjeZSgp/n2UxeQbMTCAoqSetzr1J4MbnzP01eqnVSqQAKq5ERESkeE4nw+4vze3ginkfi4iD+vdBQDAkfws/t4OT230e0S/5+yyLhRV+AHu/s77wE/FD6hYoIiIi7jMMWPEAZJ2Equ2hexJZB5JYu2w2zdv1IahmV7Nlq85QWDwQjm+EOa2h4xdQ6xqr01vL2VkWF94I5epCYBgEhJm3uT8CQi+6n/vx0Lz3A0LNr8elFFn4nbdqNMT0d+58ImWEiisRERFx356vYd8ss2Wq7b8hMBgjOpGUoNM0i0688I93tfbQeyUsvgkOLYUFfaHZy9DkSbDZrP0crOLs7In7fvDsdQOC8xZkFxdsAaGQddr56fWrd/FsPpESTMWViIiIuOfcYVj5oLnd9B9QoUnRx0fUgu7zzef8NRn+eAqOrIZ2H0NwlPfz+puQis4dV2cohNeC7LNgP2veOj7s5y6679g+l2v7DBj2C+ezZ5ofWR4Y/6bp9UXyUHElIiIi7lnzKJw7aBZVTZ507jmBodD2Q6jSClaOhOTpcGILdP4eytXzaly/cmAe/P7AJQ6ymbMGtv1P8bve2bMuXYzlvn90LWx+/dLn1fT6InmouBIRERHXHfgFdnwC2KDNv82iyRX174UKl8OigXB8A8xpVTbGYWUchdWPwI6PzfshVSDjMGAj7/im810lW070zJimgCAIiAKcbCGsfSvs/sKctbDAcVfnC79qnYqfTaQU0WyBIiIi4pqsdFh+r7ndcIQ5nsod1TrANaugSjvIPGaOw9r4mjlJRmm051uY1fh8YWWDBiOg/07o9C1ExOQ9NiIWOk23bp2rgEBznS0gp9DL4eHCT6QUUXElIiIirln/LJzeaRYAzV4p3rkiakGPBVDvb4ABf4yF324tXethndkPCweYk3mcTYXyjaDnImj9DgSXMwuofrvISpzLytAxZCXOhX47rV9AOG6AWeD5W+En4sfULVBEREScd2QVbHnT3G79vlkcFFdgKLSdDJVbwaoHYc835jisTt+V7HFYhgF//cccm5Z5HGxB5ti0y/9hzsqXW0BgwbMsWi1uAMT0J2v//PzT64tIPmq5EhEREefYM2H538yZ5+IHQcx1nj1/g/vM2QTDqsOx9fBTa9j3k2ev4Ssnt8Ov3eH3e8zCqnIrswtksxfzF1b+Lqfw64zhT4WfiB9ScSUiIiLO2fKmOYtcSOVc43E8rFrH8+Ow2pqTPyT1hU3jSs44LHsWbJ4A/7sSUudDYDi0mAC9lkKlK61OJyJepuJKRERELu3ENlj/nLl91ZsQFu29a0XEQI8kqHe32Uq29kn4bZC5sK0/O/oH/Nwe1jxmri1VvRv0XQ+NHzFn6xORUk/FlYiIiBTNMOD3e831j2r0gDp3ev+agaHQZjK0fs8cq7Tna7NwObXD+9d2VfZZ+OMf5nTyR1ZCcEVzbapuv5TsMWMi4jIVVyIiIlK0HR9B2gKzi1ubf4Ht4qm5vcRmgwb35x2HNacV7P/ZN9d3RtpimN0cNr4CRhbEDYTrNkG9u3z3OomI31BxJSIiIoU7sx9WP2puX/kiRNX1fYboq/OOw1rQBzaNt3YcVuYJWDECfukEJ7ZCWA1zvapO0yG8pnW5RMRSKq5ERESkcCsfMhf4rdwSLhtlXQ7HOKy6d50fh/UE/HabNeOwUn6EH5vCtvfM+/XuNlurtO6TSJmn4kpEREQKlvw9JE8HWyC0/bf1kzIEhpo5Wr17fhzWV/BzB9+Nwzp7EH4bAknXQfpesxWv2y9mppBKvskgIn5NxZWIiIjkl3EcVo4wtxs/BpWaWxonh80GDR/INQ5rHcxpDfvneu+ahgE7P4cfG8PuaWALgEaPmDMB1ujuveuKSIlTrOLq7NmznsohIiIi/mTtk3BmH0TVh8ufsTpNftFXwzUroUobyDgCC66BTa97fhzW6T1mS9XS2+HcYah4JfRaBldNgKAIz15LREo8l4sru93Oiy++SExMDFFRUezYYTbFP/300/znP//xeEARERHxsbRFsP0Dc7vthxAUbm2ewkTEnh+HNfz8OKzHYclgz4zDMuzw57vm2Kp9/4OAELjypfMFXevin19ESiWXi6uXXnqJTz75hPHjxxMSEpKz//LLL+ff//63R8OJiIiIj2Wfhd/vMbfr/Q2qd7U2z6UEhplrSjnGYe3+En7uCKd2un/O41vgl86wciRknYJqHaHPH3D5PyAg2HPZRaTUcbm4mjJlCh9++CFDhgwhMDAwZ3+zZs3YsmWLR8OJiIiIj214+cLU4i3GW53GOTnjsH6FsGg49oe5HtaBX1w7jz3T/PxnN4ODv0FQFLR6B3oshAqNvJNdREoVl4urlJQU6tevn2+/3W4nMzPTI6FERETEAsfWw6bXzO1W75S8GfCiO0HvlVC5tTkOa35v2DzBuXFYh1eaBdm6/wN7BtTqC9duhIYjzAksRESc4PJviyZNmrBo0aJ8+6dPn06LFi08EkpKCHs2trQkYrIWYktLAnu21YlERMRd9mxY/jcwsiD2hpK7ZlNkHPRcCHWHmeOm1jwGS4ZAVnrBf7ey0s1Fkn9ua848GFoVOnwOibMgsrbVn42IlDAuL1jxzDPPMHToUFJSUrDb7cyYMYOtW7cyZcoUZs2a5Y2M4o+SZ8CqUQSl76UVQNKb5sDilpNK7h9kEZGy7M934PDvEFzebLWy2axO5L7AMGj7EVRuBatGw+4v4OASsJ8j6OyBC3+3QquZrVJnU83nxQ+GlhMhrJp12UWkRHO55ap///788MMP/PLLL0RGRvLMM8+wefNmfvjhB3r27OmNjOJvkmfAopvMBRRzS08x9yfPsCaXiIi459QuWPcPc7v5eIiIsTSOR9hsZpe+7vMgqDyk74azB/Iec+6gWViFVDFbqjp+rsJKRIrFpeIqKyuLF154gTp16jB37lzS0tJIT09n8eLF9OrVy+0Q7777LgkJCYSFhdG2bVt+//33Qo/duHEjAwcOJCEhAZvNxsSJE4s892uvvYbNZmP06NFu55Nc7NmwahRQUP/18/tWjVYXQRGRksIwYMXfzenLq3WC+vdYncizqnaEoMiijwkMg5rX+CaPiJRqLhVXQUFBjB8/nqysLI8F+OqrrxgzZgzPPvssq1evplmzZvTu3Zu0tLQCj09PT6du3bq89tpr1KhRo8hzr1ixgn/9619ceeWVHstb5h1clL/FKg8D0pPN40RExP/tmgb7fzLXcWo7ufRN3nBwEZzdX/QxZ1L0d0tEPMLl36Ddu3cnKSnJYwHefPNN7rnnHoYPH06TJk344IMPiIiI4KOPPirw+NatW/P6668zaNAgQkNDCz3vqVOnGDJkCJMnT6ZSpRI225E/O3OJP1CuHiciItY5exBWjzK3L38Gyl9mbR5v0N8tEfEhlye06NOnD08++STr16+nZcuWREbmbWrv16+f0+fKyMhg1apVjB07NmdfQEAAPXr0YOnSpa5Gy2PEiBFce+219OjRg5deeqnIY8+dO8e5c+dy7p84cQKAzMxMy6eXd1zf6hwOtuBqTn3TZAVXw9BrVyhlc4+yucefs4F/5yvt2QJXjibg3GGMCpeT1WA0eOjz9KfXTX+3PMOfs4F/51M29/hTNlcy2AzDmcUfLggIKLyxy2azkZ3t/Fibffv2ERMTw5IlS2jfvn3O/scff5ykpCSWL19e5PMTEhIYPXp0vvFUX375JS+//DIrVqwgLCyMLl260Lx580LHZz333HM8//zz+fZPmzaNiIgIpz+fMsHIpteZewkzDlPQPFIGcMZWlbnh/wJbYAFHiIiIP4jOWk37cy9gYGNh2DiOBTa0OpJ36O+WiBRTeno6gwcP5vjx45QvX77IY11uubLb7W4H84Xk5GRGjRrF3LlzCQsLc+o5Y8eOZcyYMTn3T5w4QVxcHL169brkC+htmZmZzJ07l549exIcHGxpFgfb3vdg6a359hvn/2yFtHuXvrHX+zpWPv742jkom3uUzT3+nA38O1+pzZZ1iqCfzO6A9gYP0qH5aP/J5gXm361BGIAt14RM+rvlPH/OBv6dT9nc40/ZHL3anOFyceVJVatWJTAwkNTU1Dz7U1NTLzlZRWFWrVpFWloaV111Vc6+7OxsFi5cyDvvvMO5c+cIDMz7zlRoaGiB47eCg4Mt/2I6+FMW6twCOz6E1Hl5dtvCqkPrdwnys3Wu/Oq1u4iyuUfZ3OPP2cC/85W6bOteMKcmj4wnsPnLBHrpc/Ob163OLRAUZM52m2tSJltELLScqL9bLvDnbODf+ZTNPf6QzZXruzUlUFJSEtdffz3169enfv369OvXj0WLXJ9lJyQkhJYtWzJv3oV/0u12O/PmzcvTTdAV3bt3Z/369axduzbno1WrVgwZMoS1a9fmK6zETad3AZB9+Uscs9Ux99W7WwsIi4j4u0PLYeskc7v1BxAcZW0eX4kbAP12kZU4l5WhY8hKnAv9durvloh4lMvF1dSpU+nRowcRERE89NBDPPTQQ4SHh9O9e3emTZvmcoAxY8YwefJkPv30UzZv3sz999/P6dOnGT58OAB33nlnngkvMjIycoqmjIwMUlJSWLt2Ldu3bwegXLlyXH755Xk+IiMjqVKlCpdffrnL+aQAp5Ph1F9gC8Be/+9sDzn/h2nXNHO9FBER8U/ZGfD7PYABCbdDrTK2tlNAIEZ0IilBnTGiEyFAb7iKiGe53C3w5ZdfZvz48Tz88MM5+x566CHefPNNXnzxRQYPHuzS+W699VYOHjzIM888w4EDB2jevDlz5syhevXqAOzZsyfPJBr79u2jRYsWOfcnTJjAhAkTSExMZMGCBa5+OuKOtPNT8VdqCcHlORDYBiMoCtvpnXBoKVTrYG0+EREp2ObX4dh6CK0KV71ldRoRkVLH5eJqx44dXH99/kGf/fr146mnnnIrxMiRIxk5cmSBj11cMCUkJODiBIcqujwtbYF5W70LANm2UIyYG7Ht/gx2TVVxJSLij45vgQ0vmNstJ0FYVWvziIiUQi53C4yLi8szRsrhl19+IS4uziOhxM+lLjBvo7vk7LLHn2+x3P2V2e1ERET8h2GH3+8FewbU7APxt1mdSESkVHK55eqRRx7hoYceYu3atXToYLZQ/Pbbb3zyySdMmjTJ4wHFz+Qab0X01Tm7jeguEF7TXOF+/xyIdX4xaRER8bLtk+HgIgiKhDbvg62gFZ9ERKS4XC6u7r//fmrUqMEbb7zB119/DUDjxo356quv6N+/v8cDip+5aLwVjhWrbYEQPxi2vGF2DVRxJSLiH9JTYO3j5nazVyAy3to8IiKlmFvrXN14443ceOONns4iJcFF463yqHO7WVztnQkZxyGkgi+TiYjIxQwDVo6AzBNQpS00GGF1IhGRUs3lMVcrVqxg+fLl+fYvX76clStXeiSU+LECxlvlqNgMKjQF+zlI/taXqUREpCDJM2Dvf8EWBG3/ranHRUS8zOXiasSIESQnJ+fbn5KSwogRekesVCtkvFUOm81cNwXMroEiImKdjKOw8vxMvE3HQkWt9Sgi4m0uF1ebNm3iqquuyre/RYsWbNq0ySOhxE9dPN6qIAnnZw1MXWAWYyIiYo01j8PZA1C+ETT9h9VpRETKBJeLq9DQUFJTU/Pt379/P0FBbg3hkpLCUVxVTyz8mMjaEJ0IGLD7C5/EEhGRi6TOh7/+bW63mQyBodbmEREpI1wurnr16sXYsWM5fvx4zr5jx47x1FNP0bNnT4+GEz9T1Hir3NQ1UETEOllnYPm95naD+wvuxi0iIl7hcnE1YcIEkpOTiY+Pp2vXrnTt2pU6depw4MAB3njjDW9kFH+QvhdObTfHW1W7xB/q2jdBQAgcWw9H1/kmn4iImDa8YP6+Do+BZq9anUZEpExxubiKiYlh3bp1jB8/niZNmtCyZUsmTZrE+vXriYuL80ZG8QepjvFWV116ivWQihBzvbmt1isREd85uhY2v25ut35PS2KIiPiYW4OkIiMjuffeez2dRfxZUetbFSThdnM69l3TzHdONf2viIh32bNg+d/AyIbaN2sxdxERCzjdcvXnn3/y+++/59k3b948unbtSps2bXjllVc8Hk78iLPjrRxq9YGQSnAm5cJEGCIi4j1bJ8GRVRBcEVr+0+o0IiJlktPF1RNPPMGsWbNy7u/cuZPrr7+ekJAQ2rdvz6uvvsrEiRO9kVGs5sp4K4fAUKh9i7mtroEiIt51agese9rcvuoNCK9hbR4RkTLK6eJq5cqV9OnTJ+f+559/TsOGDfnpp5+YNGkSEydO5JNPPvFGRrGaK+OtcnPMGrhnujl7lYiIeJ5hwO/3QfYZqN4N6g63OpGISJnldHF16NAhYmNjc+7Pnz+f66+/Pud+ly5d2LVrl0fDiZ9wdbyVQ7UOEJkAWSch5QcPhxIRKcPs2djSkojJWkjA+n/AgV8gMAza/AtsNqvTiYiUWU4XV5UrV2b//v0A2O12Vq5cSbt27XIez8jIwDAMzycU67k63srBFgAJQ8xtdQ0UEfGM5BkwM4GgpJ60OvcmgVsnmPvjboZy9a3NJiJSxjldXHXp0oUXX3yR5ORkJk6ciN1up0uXLjmPb9q0iYSEBC9EFEu5M94qN0dxtW82nD3k2WwiImVN8gxYdJP5u/liu6aaj4uIiGWcLq5efvlltmzZQnx8PE888QTjx48nMjIy5/HPPvuMbt26eSWkWMjd8VYOFRpD5ZZgZMGerz2bTUSkLLFnw6pRQBG9RFaNNo8TERFLOL3OVUJCAps3b2bjxo1Uq1aNWrVq5Xn8+eefzzMmS0oJd8db5ZZwuzk98K6p0PABT6QSESl7Di4quMUqhwHpyeZxxfmdLSIibnO65QogKCiIZs2a5SusAJo1a0aVKlU8Fkz8hLvjrXKLH2R2Kzy0FE7+5YlUIiJlz5n9nj1OREQ8zqXiSsqY4o63cgivATV6mtu7PvdMNhGRsia8pmePExERj1NxJYUr7nir3BxrXu2aaq7JIiIirqnWCSJigcKmWrdBRJx5nIiIWELFlRQu7Xxx5Ym++7E3QGAEnNwGh1cU/3wiImVNQCC0nETBE1qcL7haTjSPExERS6i4ksI5JrOITiz+uYKjIO5Gc1trXomIuCf2Bgitln9/RCx0mg5xA3weSURELnCruFq0aBG333477du3JyUlBTCnYl+8eLFHw4mF0lPMVqbijrfKzdE1cPeXYM/0zDlFRMqSg4vh3EEIjCLr6h9YGTqGrMS50G+nCisRET/gcnH17bff0rt3b8LDw1mzZg3nzp0D4Pjx47zyyiseDygWcXQJrNQCQip65pw1ekBYtPmPwf65njmniEhZsnOKeRt/C0bN3qQEdcaITlRXQBERP+FycfXSSy/xwQcfMHnyZIKDg3P2d+zYkdWrV3s0nFjIE1OwXywgCOJvM7fVNVBExDVZ6bD7/GLsdYdam0VERArkcnG1detWOnfunG9/hQoVOHbsmCcyiT/wxOLBBXF0Ddz7PWSe9Oy5RURKs73/hayTEJngue7aIiLiUS4XVzVq1GD79u359i9evJi6det6JJRYzBvjrRwqt4Tyl0H2GUj+zrPnFhEpzXZ+at7WudP8/SwiIn7H5d/O99xzD6NGjWL58uXYbDb27dvH559/zqOPPsr999/vjYzia94Yb+Vgs+Vd80pERC4tfR8cOD9Wtc4d1mYREZFCBbn6hCeffBK73U737t1JT0+nc+fOhIaG8uijj/Lggw96I6P4mjfGW+WWMBjWPQ2p88x/GCJqeec6IiKlxa7PwbBDtY5Qrr7VaUREpBAut1zZbDb+8Y9/cOTIETZs2MCyZcs4ePAgL774ojfyiRW8Nd7KIaqu+Q+CYTenZRcRkcIZRt4ugSIi4rdcLq7uuusuTp48SUhICE2aNKFNmzZERUVx+vRp7rrrLm9kFF/y5nir3HK6Bn7mvWuIiJQGR9fA8Y0QEAq1b7E6jYiIFMHl4urTTz/lzJkz+fafOXOGKVOmeCSUWMib461yq30zBATD0bVwbIP3riMiUtI51raKvcG7v5dFRKTYnC6uTpw4wfHjxzEMg5MnT3LixImcj6NHj/K///2P6Ohob2YVX/D2eCuH0CpQq6+5vetz715LRKSksmfCrmnmtroEioj4PacntKhYsSI2mw2bzUbDhg3zPW6z2Xj++ec9Gk4s4O3xVrkl3G6u27Lrc2j2sqYWFhG52L45cO4ghFWHmr2sTiMiIpfgdHE1f/58DMOgW7dufPvtt1SuXDnnsZCQEOLj46lVS7O+lWi+Gm/lEHMdBJeH9GRIWwTVE71/TRGRksQxkUXCEAhweYJfERHxMad/Uycmmv/47ty5k9q1a2Oz2fIds2fPHmrXru25dOJbvhpv5RAYZo69+us/5ppXKq5ERC44dwRSfjC36wy1NouIiDjF5X5YdevW5eDBg/n2Hz58mDp16ngklFjEUVx5e7xVbo5ZA/d8A9lnfXddERF/t+crsGdAxWZQ6Uqr04iIiBNcLq4Mwyhw/6lTpwgLCyt2ILGQYzILX4y3cojuDBGxkHkcUn703XVFRPzdjvNdAuuq1UpEpKRwulvgmDFjAHPiimeeeYaIiIicx7Kzs1m+fDnNmzf3eEDxkfR9cPJP3423crAFmGMJNo0zuwbWHui7a4uI+KsTW+HwcrAFQvxgq9OIiIiTnC6u1qxZA5gtV+vXryckJCTnsZCQEJo1a8ajjz7q+YTiG44ugRWb+34dlYQ7zOJq34/mGIPQypd+johIaeZY26rmNRBe3dosIiLiNJdmCwQYPnw4kyZNonz58l4LJRbw5RTsF6vYFCo1NxcU3vMNNLjP9xlERPyFYYedn5nbWttKRKREcXnM1ccff0z58uXZvn07P/30E2fOnAEKH4slJYSvFg8ujGNii11Trbm+iIi/SF1gLlERXAFi+1mdRkREXOBycXXkyBG6d+9Ow4YN6du3L/v37wfg7rvv5pFHHvF4QPEBx3grbBDdyZoM8beZ1z+4GE7ttCaDiIg/cHQJjL/VXLJCRERKDJeLq9GjRxMcHMyePXvyTGpx6623MmfOHI+GEx/x9fpWBYmoBTW6m9u7plmTQUTEapmnIHm6ua21rUREShyXi6uff/6ZcePGERsbm2d/gwYN2L17t8eCiQ9ZOd4qt9xdA9XNVETKor3fQdZpiKoPVdtbnUZERFzkcnF1+vTpPC1WDkeOHCE0NNQjocTHrB5v5RB3IwSGw4ktcHS1tVlERKzgWNuqzp1gs1mbRUREXOZycdWpUyemTJmSc99ms2G32xk/fjxdu3b1aDjxAX8Yb+UQXB5i+5vbOzWxhYiUMaeTIfVXc7vOHdZmERERtzg9FbvD+PHj6d69OytXriQjI4PHH3+cjRs3cuTIEX777TdvZBRv8ofxVrkl3A67v4TdX0CL1yHA5W9REZGSaddUwIDoRIhKsDqNiIi4weWWq8svv5w///yTq6++mv79+3P69GkGDBjAmjVrqFevnjcyijf5y3grh5q9ILQqnE2FA/OsTiMi4huGcWGWQK1tJSJSYrnVLFChQgX+8Y9/eDqLWMFfxls5BARD/CD48x3zXdxava1OJCLifYdXmONNA8Oh9k1WpxERETe5XFwtXLiwyMc7d+7sdhjxMX8ab5Vbwu1mcZU8AzLfh+AoqxOJiHjXzvMTWcQNMMefiohIieRycdWlS5d8+2y5ZjTKzs4uViDxIX8bb+VQpY05DfGp7bD3v1BniNWJRES8J/ucOdYU1CVQRKSEc3nM1dGjR/N8pKWlMWfOHFq3bs3PP//sjYziLY7iyl/GWznYbFAn15pXIiKl2b4fIeMIhNeC6t2tTiMiIsXgcstVhQoV8u3r2bMnISEhjBkzhlWrVnkkmPiAYzILfxlvlVvCEFj/HBz4Gc6kQnh1qxOJiHiHYyKLhNshINDaLCIiUiwut1wVpnr16mzdutVTpxNvO7MfTmzF78ZbOZSrD1XagWG/0F1GRKS0OXsQUn40t9UlUESkxHO55WrdunV57huGwf79+3nttddo3ry5p3KJt6X66Xir3OrcDoeXmV0DG42yOo2IiOft/hKMLKjcEio2tTqNiIgUk8vFVfPmzbHZbBiGkWd/u3bt+OijjzwWTLwsp0tgoqUxilT7Flg1Go6shONboEIjqxOJiHiWY5bAOkOtzSEiIh7hcnG1c+fOPPcDAgKoVq0aYWFhHgslPuBviwcXJKwa1LwG9s2CXZ9DsxetTiQi4jnHNsKRVWALMtf3ExGREs/l4io+Pt4bOcSX/H28VW51bj9fXE2FK18wZxIUESkNHBNZxFxrvpkkIiIlnlsTWiQlJXH99ddTv3596tevT79+/Vi0aJGns4m35Iy3ag4hlSyNckkx10NQOTi9Cw4tsTqNiIhn2LMvLDWhiSxEREoNl4urqVOn0qNHDyIiInjooYd46KGHCA8Pp3v37kybNs0bGcXT/HkK9osFRUDtgeb2Tq15JSKlROo8OLMPQipDrWutTiMiIh7icnH18ssvM378eL766quc4uqrr77itdde48UXNSamRCgJ461ySzi/oPCeryA7w9osIiKe4OgSGD8IAkOtzSIiIh7jcnG1Y8cOrr/++nz7+/Xrl2+yC/FDJWm8lUN0FwivBRlHYf9sq9OIiBRP5glInmFua5ZAEZFSxeXiKi4ujnnz5uXb/8svvxAXF+eRUOJFJWm8lUNAICQMNrfVNVBESro930L2GSh/GVRpbXUaERHxIJdnC3zkkUd46KGHWLt2LR06dADgt99+45NPPmHSpEkeDygeVpLGW+WWcDtsngApP0DGMf9d+FhE5FJyr22lGVBFREoVl4ur+++/nxo1avDGG2/w9ddfA9C4cWO++uor+vfv7/GA4mElbbyVQ8UrocLlcHwDJH8L9e62OpGIiOtO7YK0JMB2YTypiIiUGi4XVwA33ngjN954o6eziLeVxPFWDjabuebV2ifNroEqrkSkJNr5mXlbvRtEqiu9iEhp41ZxBZCRkUFaWhp2uz3P/tq1axc7lHhJ2kLztiSNt8otfrBZXKUtgNN7IFLfayJSghjGhVkC62oiCxGR0sjlCS22bdtGp06dCA8PJz4+njp16lCnTh0SEhKoU6eONzKKp6QuMG9L2ngrh8i4C9l3aU01ESlhDi2FU9shKBJi1ftDRKQ0crnlatiwYQQFBTFr1ixq1qyJTYNxS46SOt4qtzq3m5/Hrs+gyRMaDC4iJYdjIou4myA4ytosIiLiFS4XV2vXrmXVqlU0atTIG3nEW84cgBNbKJHjrXKLGwgrRsDxTXDsD7OLo4iIv8s+C7u/Mrfr3GltFhER8RqXuwU2adKEQ4cOeSOLeFNaCVzfqiAhFSHm/CLWWvNKREqKvTMh8zhExJXs3gMiIlIkp4qrEydO5HyMGzeOxx9/nAULFnD48OE8j504ccLbecVdJX28VW51zk9fvHsa2LOtzSIi4gzHRBZ17gCby+9riohICeFUt8CKFSvmGVtlGAbdu3fPc4xhGNhsNrKz9c+uX8oZb5VoaQyPqNkHQiqbU8unzYcaPaxOJCJSuDOpsH+Oua0ugSIipZpTxdX8+fO9nUO8Kfd4q2oleLyVQ2AI1L4Ftn9gdg1UcSUi/mz3NDCyoUpbKH+Z1WlERMSLnCquEhNLQWtHWZYz3qoZhFa2Noun1LndLK6Sv4XW70FQhNWJREQKtuP8LIFa20pEpNRzqrhat26d0ye88sor3Q4jXlKaxls5VO0AkQlwepc5UDxhkNWJRETyO/qHObNpQAjUvtXqNCIi4mVOFVfNmzfHZrNhGEaRx2nMlZ8qDetbXcxmg4TbYeNLsGuqiisR8U+OiSxiri89PQdERKRQThVXO3fu9HYO8ZbSNt4qt4QhZnG1fw6cPQhh1axOJCJygT0Ldn1ubmsiCxGRMsGp4io+Pt7bOcRbSuN4K4cKjaByKziy0lyc87KRVicSEblg/89wNhVCq0KtPlanERERH3CquJo5cyZ9+vQhODiYmTNnFnlsv379PBJMPKQ0jrfKLeF2s7jaNVXFlYj4F0eXwPjBEBBsbRYREfEJp4qrG264gQMHDhAdHc0NN9xQ6HEac+WHSuN4q9ziB8GaR+DwcjixDco3sDqRiAhkHIO935vbmiVQRKTMcGqZeLvdTnR0dM52YR8qrPxMaR5v5RBeHWr0NLcdYxtERKy252uwn4MKTaFSC6vTiIiIjzhVXEkJlbbQvC2N461yS7jdvN01FS4xo6WIiE84ugTWGWrObioiImWC08XV0qVLmTVrVp59U6ZMoU6dOkRHR3Pvvfdy7tw5jweUYnB0CSyt460c4m6AoEg49ZfZPVBExEont8PB38AWYM5qKiIiZYbTxdULL7zAxo0bc+6vX7+eu+++mx49evDkk0/yww8/8Oqrr3olpLjJMZlFaR1v5RAUCbE3mts7p1qbRURk52fmbY2eEFHL2iwiIuJTThdXa9eupXv37jn3v/zyS9q2bcvkyZMZM2YM//znP/n666/dCvHuu++SkJBAWFgYbdu25ffffy/02I0bNzJw4EASEhKw2WxMnDgx3zGvvvoqrVu3ply5cjmTcGzdutWtbCXWmVQ4sZlSPd4qN0fXwD1fgj3T2iwiUnYZ9rxdAkVEpExxurg6evQo1atXz7mflJREnz4X1u1o3bo1ycnJLgf46quvGDNmDM8++yyrV6+mWbNm9O7dm7S0tAKPT09Pp27durz22mvUqFGjwGOSkpIYMWIEy5YtY+7cuWRmZtKrVy9Onz7tcr4SqzSvb1WQGt0hrAacOwz7f7I6jYiUVQcXw+ldEFQOYvtbnUZERHzM6eKqevXq7Ny5E4CMjAxWr15Nu3btch4/efIkwcGur+Px5ptvcs899zB8+HCaNGnCBx98QEREBB999FGBx7du3ZrXX3+dQYMGERoaWuAxc+bMYdiwYTRt2pRmzZrxySefsGfPHlatWuVyvhKrrIy3cggIgvjbzG11DRQRq+z41LyNvwWCIqzNIiIiPufUOlcAffv25cknn2TcuHF8//33RERE0KnThe5m69ato169ei5dPCMjg1WrVjF27NicfQEBAfTo0YOlS5e6dK6iHD9+HIDKlQtuwTl37lyeyThOnDgBQGZmJpmZ1nYxc1zf1RxBB+ZjA7KqXI3hxc/B3XxeETeI4K1vYez9L1nph8kkHPCTbBfxq9ftIsrmHmVznz/ncylbVjpBe74xf/fGDfbq716Xs/mYsrlH2dznz/mUzT3+lM2VDDbDcG7u6kOHDjFgwAAWL15MVFQUn376KTfeeGPO4927d6ddu3a8/PLLTl983759xMTEsGTJEtq3b5+z//HHHycpKYnly4ue+S0hIYHRo0czevToQo+x2+3069ePY8eOsXjx4gKPee6553j++efz7Z82bRoRESXvncdQ4xjXpA/DwMbsiClk2spZHck3DINuZx6knLGX1SEPkhzc/dLPERHxkJisJFqde4vTtur8Ev6+OVugiIiUeOnp6QwePJjjx49Tvnz5Io91uuWqatWqLFy4kOPHjxMVFUVgYGCex7/55huioqLcS+xFI0aMYMOGDYUWVgBjx45lzJgxOfdPnDhBXFwcvXr1uuQL6G2ZmZnMnTuXnj17Ot3t0pb8DSwDKlxBz163+l0+bwrYvB42PEPzihtp1OE1v8qWm7+9brkpm3uUzX3+nM+VbIEL34NUCGv8N/o2vc6vsvmasrlH2dznz/mUzT3+lM3Rq80ZThdXDhUqVChwf2Fd7opStWpVAgMDSU1NzbM/NTW10MkqXDFy5EhmzZrFwoULiY2NLfS40NDQAsdvBQcHW/7FdHApy2GzkLTV6Oqz/H7zWtW9AzY8Q0Dar4QcmElM1gpCjkYSVLMrBARe+vk+5jevWwGUzT3K5iJ7Nra0JcRkLSzZP6vp+yDtFwAC6w0n0Ievs19+Xc9TNvcom/v8OZ+yuccfsrlyfUv7LISEhNCyZUvmzZuXs89utzNv3rw83QRdZRgGI0eO5LvvvuPXX3+lTp06nohbcjjWtyork1nkFpUA5RsDELTsNlqde5OgpJ4wMwGSZ1gaTUQukjwDZiYQlNSz5P+s7vrcnIa9Wkco59r4YxERKT0s7xA+ZswYJk+ezKeffsrmzZu5//77OX36NMOHDwfgzjvvzDPhRUZGBmvXrmXt2rVkZGSQkpLC2rVr2b59e84xI0aMYOrUqUybNo1y5cpx4MABDhw4wJkzZ3z++flc7vWtojtbncb3kmec//wvkp4Ci24qmf+0iZRGyTPMn8n0vXn3l8SfVcOAnednCdTaViIiZZrL3QI97dZbb+XgwYM888wzHDhwgObNmzNnzpycNbX27NlDQMCFGnDfvn20aNEi5/6ECROYMGECiYmJLFiwAID3338fgC5duuS51scff8ywYcO8+vlYzrG+VcUry8b6VrnZs2HVqEIeNAAbrBoNMf39stuRSJmR87Na0HxKJfBn9egaOL4RAkKh9s1WpxEREQtZXlyBOTZq5MiRBT7mKJgcEhISuNQEh05OgFg6Oda3qt7FyhTWOLgo/7vgeRiQnmweVxZfHxF/Udp+Vh1rW8XeACEVrUwiIiIWs7xboHhYWR5vdWa/Z48TEe8oTT+r2Rmwe5q5XedOa7OIiIjlVFyVJmV9vFV4Tc8eJyLeUZp+VvfPgXOHIKw61OxldRoREbGYiqvS5OBC87YsjrcCqNYJImIBWyEH2CAizjxORKxTrj7YLjGWyhZkfvg7x0QWCUMgoATkFRERr1JxVZo4ugSWhDEK3hAQCC0nnb9zcYF1/n7LiSVjgLxIaZV1GhbeAEb2+R2FvBliZMG8RFjzOGSf9VU615w7Aik/mNuaJVBERFBxVbo4JrMoi+OtHOIGQKfpEBGTd39ErLk/boA1uUTEnCVwyRA4sgpCq0Krdwv4WY2D9p9Cwh3mulGbX4fZV8Gh363JXJTdX4I9Eyo2g0pXWp1GRET8gIqr0uJsGhzfRJkdb5Vb3ADot4usTj+SzflWqsRZKqxErLb2cdj7X3PK8s7fQ8MHzJ/VxLmsDB1DVuJc6LfTnBiiwxTo/F9zLNOJzTC3Pax9CrLPWf1ZXLBzinlbV61WIiJiUnFVWpTl9a0KEhCIUaMnhwOvMO+nzrc2j0hZt+0D2PKmud3uE6jW0dwOCMSITiQlqDNGdGLebrux/eDajRA/2GzF2vQqzGlptnxZ7cRWOLzcHDsWP9jqNCIi4idUXJUWZX28VSEOBjQzNw78Ym0QkbJs30+w8vxahle+CAmDnH9uaBXo+Dl0+hZCq5mL9f7UFv542pwG3SqOVqua10B4detyiIiIX1FxVVpovFWB0gLPF1dpC8yxESLiW8fWw+KbzQks6gyFpv9w7zxxA8xWrNq3mOfa+BL81BqOrPFsXmcYdtj5mbmtLoEiIpKLiqvSQOOtCnUiIAEjpCpknYJDy62OI1K2nNkPC66FrJPmGz9tPgRbYUslOCGsGlz9FVz9tTkhxrF18FMbWP+8b988SV0A6ckQXBFirvfddUVExO+puCoNcsZbXaHxVhezBWBU72puq2ugiO9knYakfmYRUq6h2a0vMMQz5659s9mKFTfQnLJ9/XNmV8Gj6zxz/ktxrG0VfysEhvnmmiIiUiKouCoNHOOt1CWwQPbqPcyNA3OtDSJSVhh2WHIHHFlpjpnq8j/Pv/ETFg1XfwMdvoCQynB0DfzUCja8DPYsz14rt8xTkPytuV3nTu9dR0RESiQVV6WBY7yVJrMokBHdzdw4vBwyT1gbRqQsWPsE7P0OAkKg0/dQrp53rmOzmZNjXLsRYvubXQPX/R/83A6ObfDONZNnmK1yUfWhanvvXENEREosFVclXc54KzTeqjCR8eY/Qkb2hVY+EfGObf+CzRPM7XafQPTV3r9meA3o9B20nwohlcyp2ue0hI2veb4VyzFLYJ07izd+TERESiUVVyVdnvWtqlibxZ/V7GneatyViPfs+wlWjjC3r3gBEm7z3bVtNqgzBPpugFrXgT0D/hgLczvC8c2eucbpZEj91dyuc4dnzikiIqWKiquSTuOtnFPDMe5KxZWIVxzbkGvK9Tvh8v+zJkdELUicabaaBVeAw7/D7Baw6XWwZxfv3Ls+AwyIToSoBA+EFRGR0kbFVUmn8VbOqd4VbAFwYjOk77U6jUjpcuZArinXOxd/yvXistnM9aeu3Qg1+4D9HKx9HH7pBCe2undOw8jVJVBrW4mISMFUXJVkGm/lvJBKULmVuX1gnrVZREqTrPTzU67vgXINoNMMCAy1OpUpIga6/Aht/wPB5eHQUpjdHLa85XIrlu3ICrMwCwyH2gO9k1dEREo8FVclWdpC81bjrZyjroEinmXYYekdcGRFrinX/ex3kc0G9e6CvuuhRk/IPgurx8C8LnByu/On2T3V3IgbYBZqIiIiBVBxVZJpvJVrauSa1MIwrM0ipYs9G1taEjFZC7GlJRV/bE9JsfZJc2rynCnX61udqHCRtaHrT9DmXxAUBQcXw/+uhK3/NIvEIgQYmQTs+cq8o7WtRESkCCquSjKNt3JN1fZml56zB+D4RqvTSGmRPANmJhCU1JNW594kKKknzEww95dm2yfD5tfN7bYf+WbK9eKy2aD+vXDtBqjeDbLPwKpRMK8rnNpR6NOqZ6/ElnkUwmtB9e4+DCwiIiWNiquS6mzahQJB462cExh64bVS10DxhOQZsOim/JOkpKeY+0trgbV/Lqy439y+4jlzCvSSJDIeus2F1u9BUKTZxfp/V8Kf7+VtxTrfItkgY7p5P34wBARak1lEREoEFVcllcZbuSena+Bca3NIyWfPNls9KKiL6fl9q0aXvi6CxzbC4pvMKdcTbofLn7E6kXtsAdDgfnMsVnQXyDptrtH1a084tStPi2Ql4y/zObs+K70Fs4iIeISKq5JK463c45jUIi0JsjOszSIl28FFl5jW34D0ZPO40uJMKiRdC5knzFbgtv+2dsp1T4iqA93nQcu3ITDCXCR4VmNYNDD/1/dsWulukRQRkWJTcVVSabyVeypeAaHVzHepDy+zOo2UZGf2e/Y4f5eVDgv7wend/jflenHZAuCykdD3D6jaEexnCzmwFLdIioiIR6i4Kok03sp9tgBNyS6eEV7TueNCKns3hy8Ydlh6Jxz+3fx8En8snd2Ry9WHK1+4xEGlsEVSREQ8RsVVSaTxVsWj4ko8oVoniIi99HHL/wY7Pi3ZLR1/PAXJ30JAMHT+Dso3sDqR95xNde640tIiKSIiHqXiqiTKGW+VaGmMEstRXB3+HTKOW5tFSq6AQEgobM2j8+OQQqrAmb2wbBjMuQr2zSl5a6xt/zdsGmdut/2o9LeWO9si6exxIiJSpqi4Kok03qp4ImtDuYbmbGeO11LEVWdSYce/ze2gqLyPRcRCp2/hhmRoPg6CK8CxdbCgjzkb3ZHVvs/rjgO/wIq/m9uXPwt1brc2jy/ktEgWNlGHDSLizONEREQuouKqpMk93qpaKX8H2ZvUNVCKw7CbrVFn06DC5XDjAbIS57IydAxZiXOh306IGwBB4dDkcej3FzQaAwEhkDoP5rSE34bAqZ1WfyaFO77JnBnPyIaEIXDFs1Yn8o2AQGg56fydiwus8/dbTtR6VyIiUiAVVyVNznirKyCsqrVZSjKtdyXFsfVt2D8HAsOg4xcQHIkRnUhKUGeM6MT8/3iHVoGr3oDrtpqFCsDuaTCrEawaA+cO+/5zKMqZVFhwLWQeh2pXQ9v/lPwp110RNwA6TYeImLz7I2LN/XEDrMklIiJ+T8VVSaP1rTyjehdz5sATW+F0stVppCQ5+gesfdzcbjEBKl7u/HOjEqDDVLhmJVTvDvYM2PoWzKxnjmvKOuOVyC7JOgML+8PpXRBVHzp9V3qmXHdF3ADot6vgFkkREZFCqLgqaTTeyjNCKkLl1uZ26jxLo0gJkpUOSwabRVGt66DBA+6dp3JL6DYXuswxZ/3MPA5rn4RZDWHHJ9bNLGjYYdlQOLzcnHK9y49lu4U8ILDoFkkREZGLqLgqSc4e1HgrT3J0DdyvroHipDWPmmORwmpAu4+K11XOZoNaveGa1dDuU3OShPS9sGw4zGkB+2b7fmbBP/4Be77JNeV6Q99eX0REpIRTcVWSaLyVZzkmtUj9peRNjy2+t/e/sO19c7v9FAir5pnzBgRC3TvN8VjNx5+fWXA9LOgLv/aAI6s8c51L+esj2PSaud3m36V/ynUREREvUHFVkji6BGq8lWdUbQeBEeaMb8fWW51G/Fn6Plh+t7nd6BGo2dPz1wgKhyaPQb8d5jUCQiD1V5jTCn4b7N2ZBQ/Mg9/vM7cvf9os9kRERMRlKq5KEsdkFhpv5RmBoRcWYtaU7FIYww5L7zRn9KvUApq97N3rhVaGqyacn1nw/LpSu7+AWZfBqoc9P7Pg8c2waCAYWRA/GK543rPnFxERKUNUXJUU5w7C8Q3mtsZbeY7Wu5JL2fyGOelJYIQ57bqvZs6LSoAOn8E1q8zvU3smbJ1oziy48TXPzCx4Ni3XlOsdoV0Zm3JdRETEw1RclRC2g4vMDY238ixH9660JMg+Z20W8T+HV8IfT5nbLSdB+ct8n6HyVebMgl1/gorNzELoj7HmzIJ/fez+zIJZZyCpP5zeCVH1oNP35rpdIiIi4jYVVyWE7eD5ySw03sqzKlwOYdGQnQ6HllmdRvxJ5ilz2nUjy1zbqN7d1uap2Qv6rDYn03DMLLj8LpjdHFL+59qkLIYdlg2Dw8sgpJKmXBcREfEQFVclREBakrmh8VaeZbNBdXUNlAKsHg0nt0F4DLSZ7B/d5WwBUOcOuP5PaPE6BFc0uwsnXQu/djdb2pyx7mnY87U55XqnGda0yImIiJRCKq5KgBDjOLYTWt/KaxxdAw9ovSs5b8838Nd/ABt0mGpOMuFPAsOg8aPQ7y/zNiAEUufDT63ht9vg1I4Lx9qzsaUlEZO1EFtaEmz/D2x8xXyszb/1ho2IiIgHBVkdQC6tSvb5wkrjrbyjenfz9sgKyDgGIRWtTCNWO70Hlt9rbjcd69/FR2hlswWr4Uj442nYNRV2fwnJ30KDB6Bic1j/NEHpe2kFkPTmhec2/T9NuS4iIuJharnyZ+ffcY7P/Nm8r1Yr74iMM7tFGfYL091L2WTPhiW3Q+YxqNIGrnjO6kTOiYyHDlPOzyzY8/zMgpNg+XBzbFZBKjX3aUQREZGyQMWVv0qeATMTCErqSXX7WnPf7i/N/eJ5NdQ1UIBNr8HBRRAUBR0+N8cklSSVW0C3n6HL/8BWVHYbrH7Y/ZkGRUREpEAqrvxR8gxYdFP+d5wzjpj7VWB5nta7kkPLYP2z5nard6FcfWvzFEdgOBiZRRxgQHqyWUiKiIiIx6i48jf2bFg1CihoWuXz+1aN1jvOnhbdBWyBcPJPc8yNlC2ZJ+C3wWBkQ/wgc0a+kuzMfs8eJyIiIk5RceVvDi4qfIwEoHecvSSkgjnGBtR6VRatGGEuphsZD63f949p14sjvKZnjxMRERGnqLjyN3rH2TrqGlg27fzcnGXPFmCOsyoNs0VW6wQRsUBhRaLNXIi4WidfphIRESn1VFz5G73jbJ3cxZVhtzaL+MapHbDifnP78megWkdr83hKQCC0nHT+zsUF1vn7LSeax4mIiIjHqLjyN3rH2TpV2kFQJJw7CMfWW51GvM2eBb8NgayTZlHV9B9WJ/KsuAHQaTpExOTdHxFr7o8bYE0uERGRUkzFlb/RO87WCQyB6ERzW10DS78NL8DhZRBcHtpPhYBSuKZ63ADot4usxLmsDB1DVuJc6LdThZWIiIiXqLjyR3rH2Tpa76psSFsEG182t1v/C6ISLI3jVQGBGNGJpAR1xohO1BszIiIiXlQK36otJeIGQEx/svbPZ+2y2TRv14egml31j5G3OcZdpS2E7HMQGGptHvG8jKOwZIg5rq7OUEgYZHUiERERKSXUcuXP9I6z71VoCmE1IPsMHFpqdRrxNMOA3/9uLmcQVQ9avW11IhERESlFVFyJ5Gaz5Zo1UF0DS52dn8Ker8EWBB2mQXA5qxOJiIhIKaLiSuRiZXm9K3s2trQkYrIWYktLAnu21Yk858Q2WDnS3L7yBajaxto8IiIiUupozJXIxRzF1ZGV5vickErW5vGV5BmwahRB6XtpBZD0pjmJSstJJX8SlewMWDIYsk5DdBdo/LjViURERKQUUsuVyMUiYqB8Y3PCg9T5VqfxjeQZsOgmSN+bd396irk/eYY1uTxl/TNmsRxSCTp8pvGLIiIi4hUqrkQKUpa6BtqzYdUowCjgwfP7Vo0uuV0ED/wKm8ab220mn1+kW0RERMTzVFyJFMRRXO0vA5NaHFyUv8UqD8OcXe/gIp9F8phzh2HpHYAB9e6B2gOtTiQiIiKlmIorkYJU7wK2QDi1HU7tsjqNd53Z79nj/IVhwPK/wZl9UP4yaPmW1YlERESklFNxJVKQ4PJQpa25nTrP2izeFl7TueMyjnk1hsdt/xD2fg8BwdDhCwiKtDqRiIiIlHIqrkQKU6OneVvauwZW63R+HJKt6ONWPgBzO0Hyd/4//ur4Zlj9sLnd7FWo3MLaPCIiIlImqLgSKYxj3FXqPHPmwNIqINCcbr3ACS1s5kd0otkCdHAxLBoAsy6Dre9A5ikfh3VC9jn47TbIPmMWyI0etjqRiIiIlBEqrkQKU7UtBEXBuUNwbJ3VabyragewFbDsXUQsdJoOPRZAv13QZKw5nfmpv2DVg/B9HKx90pyy3V+sHQvH/oDQqtD+U7Dp15yIiIj4hv7rEClMQLC54CyU/q6Bf74NRhZUaUdW4lxWho4hK3Eu9Nt5YQHhiFrQ/BW4IRlavQtR9SHzGGwaB/9NgCV3wJE1Vn4WsG8ObD0/cUXbj5wfTyYiIiLiASquRIpSFta7yjwJf75nbjd5AiM6kZSgzhjRiQUvthsUCQ0fgOu2QOfvIbqzWZjtmgpzroJ53SBllu+7Up5Ng2XDzO0GIyD2et9eX0RERMo8FVciRXEUVwcXQvZZa7N4y1//MVugyjWE2H7OPy8gEGL7Q48k6L0C4m8zp69PnQ9J18OPTWDbvyAr3WvRcxgGLBsOZ1OhQlNo8br3rykiIiJyERVXIkWp0MTsWpZ9Fg4usTqN59kzYcub5nbjR90fn1SlFXScZnYjbPyoOZX9ia2w4u/w39qw7hk4c8BzuS/25zuw738QEAodv4CgcO9dS0RERKQQKq5EimKzQfVS3DVw99eQngxh1aHOHcU/X2Sc2Wp0w164aiJEJsC5w7DhRfhvPCy7C45tKP51cju2HtY8Zm63eB0qXuHZ84uIiIg4ScWVyKXkjLsqZZNaGAZsHm9uX/YQBIZ57tzB5aDRKLh+G1z9DVRpB/YM2PEx/O8K+LU37P/ZzFAcWWfMadft56BWX2g40jP5RURERNyg4krkUhzF1ZFVcO6ItVk86cBcc4r5oEhocL93rhEQBLVvgt5LoecSiLvJ7Hp44GeY39sstP76yFybyh1rHoPjG82Wt3Yfmy2NIiIiIhZRcSVyKRG1zLFXGOZkDaXFpvOtVvXuMdeu8rZq7aHTN2Zr1mWjzDXEjm+E5XebXQbXvwhnDzl/vr0/wLZ3ze12n0JYtHdyi4iIiDhJxZWIM2r0NG9LS9fAI6shdZ45u1+j0b69dlRdaDnRXC+r+XhzoeKzqbD+GfhvHPz+dzi+Jf/z7NnY0pKIyVqILXmGOTsgwGUPQ63ePv0URERERAqi4krEGaVtvavN56cqjx8EkfHWZAipCE0eg347oMM0qNzSnJVx+7/gx8aw4HqzpdAwIHkGzEwgKKknrc69SdCyQZBxGCLiofmr1uQXERERuYiKKxFnRCeCLQhO/QWndlqdpnhO7YQ935jbjR+zNgtAQDAk3GauldUjCWL6ATbYN8tckHhmPVg0ENL35n9u+h7Y96PPI4uIiIgURMWViDOCy0HVduZ2SW+92vIWGNlQoxdUamZ1mgtsNojuDIn/heu2QIMHICAMTl+imF01GuzZPokoIiIiUhQVVyLOKg1dA88dhr/+Y2438YNWq8KUbwit34Wrv7zEgYa5TtfBRT6JJSIiIlIUFVciznIUV6nzwLBbm8Vdf74H2elQqQVU7251mkvLSnfuuDP7vZtDRERExAkqrkScVaUNBJUzW3+OrrU6jeuyzsCfb5vbjR8rGWtChdf07HEiIiIiXqTiSsRZAcFQvYu5XRK7Bu78FM4dNGcHrH2z1WmcU62TOVU7hRWCNoiIM48TERERsZiKKxFX5Iy7KmHrXdmzYfMb5najMRAQZG0eZwUEQstJ5+9cXGCdv99yonmciIiIiMVUXIm4wrGYcNois5tdSbH3ezi1HUIqQ727rU7jmrgB0Gk6RMTk3R8Ra+6PG2BNLhEREZGLlJC3r0X8RPlGEF4LzuyDQ0ugRgmYFMIwYPN4c7vBAxAUaW0ed8QNgJj+ZO2fz9pls2nerg9BNbuqxUpERET8ilquRFxhs11ovSopXQMPLoLDv0NAKFz2oNVp3BcQiBGdSEpQZ4zoRBVWIiIi4ndUXIm4qqStd7XpfKtV3WEQFm1pFBEREZHSTMWViKscXQGPrDanZfdnxzbCvh8BGzR6xOo0IiIiIqWaXxRX7777LgkJCYSFhdG2bVt+//33Qo/duHEjAwcOJCEhAZvNxsSJE4t9ThGXhNeECpcDBqT+anWaom2ZYN7G3QjlG1ibRURERKSUs7y4+uqrrxgzZgzPPvssq1evplmzZvTu3Zu0tLQCj09PT6du3bq89tpr1KhRwyPnFHFZSegamJ4Cuz43txs/bm0WERERkTLA8uLqzTff5J577mH48OE0adKEDz74gIiICD766KMCj2/dujWvv/46gwYNIjQ01CPnFHFZSSiutk4Ce6a5wG7VtlanERERESn1LJ2KPSMjg1WrVjF27NicfQEBAfTo0YOlS5f67Jznzp3j3LlzOfdPnDgBQGZmJpmZmW7l8BTH9a3OURh/zufVbJU7EGQLwnZqB5lHt0JUXf/JBpB5nKBt/8IGZDUcg+HCdcrs17SYlM19/pxP2dyjbO5RNvf5cz5lc48/ZXMlg80wDMOLWYq0b98+YmJiWLJkCe3bt8/Z//jjj5OUlMTy5cuLfH5CQgKjR49m9OjRxTrnc889x/PPP59v/7Rp04iIiHDjM5OyoOOZp6hq38TakPvZHdzb6jh51M/4jqaZn3LCFsf88Elgs7yRWkRERKRESk9PZ/DgwRw/fpzy5csXeawWEQbGjh3LmDFjcu6fOHGCuLg4evXqdckX0NsyMzOZO3cuPXv2JDg42NIsBfHnfN7OFrBpNWx8gSujU2navq//ZLNnEPTjA5AJES2foW+d6/wnWzEpm3v8ORv4dz5lc4+yuUfZ3OfP+ZTNPf6UzdGrzRmWFldVq1YlMDCQ1NTUPPtTU1MLnazCG+cMDQ0tcPxWcHCw5V9MB3/KUhB/zue1bLWugY0vEJC2gIDAALcWtfVKth2fw9l9EF6LoHp3QKB75y+TX1MPUDb3+XM+ZXOPsrlH2dznz/mUzT3+kM2V61vaVygkJISWLVsyb968nH12u5158+bl6dJn9TlFClSlNQSXh4wjcGyt1WlMhh02n59+/bJREFjwpC8iIiIi4nmWdwscM2YMQ4cOpVWrVrRp04aJEydy+vRphg8fDsCdd95JTEwMr776KmBOWLFp06ac7ZSUFNauXUtUVBT169d36pwiHhEQBNW7wt7/wv65ULml1Ylg32w4vhGCykH9+6xOIyIiIlKmWF5c3XrrrRw8eJBnnnmGAwcO0Lx5c+bMmUP16tUB2LNnDwEBFxrY9u3bR4sWLXLuT5gwgQkTJpCYmMiCBQucOqeIx1TvYRZXB36Bpk9anQY2v27eNrgPQipYm0VERESkjLG8uAIYOXIkI0eOLPAxR8HkkJCQgDMTHBZ1ThGPcax3dXAxZJ2BoHDrshz6HdKSICDY7BIoIiIiIj6l+ZlFiqP8ZRARC/ZzZoFlJUerVfxgM5OIiIiI+JSKK5HisNkutF4d+MW6HCe3Q/K35nbjR63LISIiIlKGqbgSKa7qflBcbXkTMKBWX6h4uXU5RERERMowFVcixeVouTq6Bs4e8v31z6bBjo/N7caP+/76IiIiIgKouBIpvvDqUPEKwIDUX31//T/fheyzULk1RHf2/fVFREREBFBxJeIZOV0D5/r2ulmn4c93zO0mj5tjwERERETEEiquRDyhZk/z9sBccGKpAI/562PIOAJR9SD2Rt9dV0RERETyUXEl4gnRnc31pU7vhlM7fHNNexZsecPcbvwIBAT65roiIiIiUiAVVyKeEBQJVTuY277qGpj8LZzeBaFVoc4w31xTRERERAql4krEU3y53pVhwKbx5nbDByEo3PvXFBEREZEiqbgS8RRHcZX6K9izvXut1PlwdDUEhkODB7x7LRERERFxioorEU+p3AqCK0DGUbPw8abN51ut6t0NYVW9ey0RERERcYqKKxFPCQiC6l3NbW92DTy6Dvb/BLYAaDTGe9cREREREZeouBLxJF+Mu9r8unkbdzNE1fHedURERETEJSquRDypxvn1rg4uhqx0z5//9B7Y/aW53eQxz59fRERERNym4krEk8o1gIg4sGeYBZanbZkIRhZU7waVW3r+/CIiIiLiNhVXIp5ks+XqGujh9a4yjsJfk83txmq1EhEREfE3Kq5EPM3RNdDT4662fQBZp6DiFVCzt2fPLSIiIiLFpuJKxNNqdDdvj66Fswc9c87ss7B1krnd+DGzhUxERERE/IqKKxFPC4uGis3M7QPzPHPOnVPhbKo5nit+kGfOKSIiIiIepeJKxBsc465SPdA10LDDlgnm9mWjISC4+OcUEREREY9TcSXiDY7iav9cMIzinSvlBzixFYIrQP17ip9NRERERLxCxZWIN0R3goAQSN8DJ7cX71ybxpu3De6H4HLFzyYiIiIiXqHiSsQbgiKhagdzuzhdAw/+BoeWmIXaZQ95JpuIiIiIeIWKKxFvyVnvqhjF1ebXzds6d0B4zeJnEhERERGvUXEl4i056139CvZs159/fAvsnWluN3rUc7lERERExCtUXIl4S+WW5iQUmcfgyCrXn7/lDcCAmH5QoZGn04mIiIiIh6m4EvGWgECo3s3cPjDXteeeOQA7p5jbTR73bC4RERER8QoVVyLeVNPRNdDFcVdb/wn2DKjaHqp19HwuEREREfE4FVci3lT9/KQWh5ZA1mnnnpN5Era9b243VquViIiISEmh4krEm8rVh8h4sxUqbZFzz/nr3+Y4rXINIbafV+OJiIiIiOeouBLxJpvNtSnZ7Zmw5S1zu/GjYNOPqIiIiEhJof/cRLytugvF1e6vID0Zwqqba1uJiIiISImh4krE22p0N2+P/QFnUgs/zjAuLBp82UMQGOb9bCIiIiLiMSquRLwtrBpUam5up/5a+HH7f4Zj6yAoEhrc75NoIiIiIuI5Kq5EfMGZcVeOVqt690BIJe9nEhERERGPUnEl4gs1HOtdzTW7/13syGpInQe2QGj0sG+ziYiIiIhHqLgS8YVqV0NAiDlZxclt+R93tFrFD4LI2r7NJiIiIiIeoeJKxBeCIqBaR3P7wNy8j53aCXu+NrcbP+bbXCIiIiLiMSquRHwlp2vgReOutrwFhh1q9IJKzXyfS0REREQ8QsWViK84JrVInQ/2LHP73GH46z/mdpPHrcklIiIiIh6h4krEVypdZc4CmHkc29FVAAT89QFkp0OlFlC9m8UBRURERKQ4VFyJ+EpAYE4BZUudR4BxjoDt75mPNX4cbDYLw4mIiIhIcam4EvGl810DbXtncOW5D7GdOwgR8VD7JouDiYiIiEhxqbgS8SXDDkDA8XXEZ88z92Ueh5SZFoYSEREREU9QcSXiK8kzYOXI/Pszj8Oim8zHRURERKTEUnEl4gv2bFg1CjAKePD8vlWjzeNEREREpERScSXiCwcXQfreIg4wID3ZPE5ERERESiQVVyK+cGa/Z48TEREREb+j4krEF8JrevY4EREREfE7Kq5EfKFaJ4iIBQpby8oGEXHmcSIiIiJSIqm4EvGFgEBoOen8nYsLrPP3W040jxMRERGREknFlYivxA2ATtMhIibv/ohYc3/cAGtyiYiIiIhHBFkdQKRMiRsAMf3J2j+ftctm07xdH4JqdlWLlYiIiEgpoOJKxNcCAjGiE0kJOk2z6EQVViIiIiKlhLoFioiIiIiIeICKKxEREREREQ9QcSUiIiIiIuIBKq5EREREREQ8QMWViIiIiIiIB6i4EhERERER8QAVVyIiIiIiIh6g4kpERERERMQDVFyJiIiIiIh4gIorERERERERD1BxJSIiIiIi4gEqrkRERERERDxAxZWIiIiIiIgHBFkdwB8ZhgHAiRMnLE4CmZmZpKenc+LECYKDg62Ok48/51M29yibe5TNff6cT9nco2zuUTb3+XM+ZXOPP2Vz1ASOGqEoKq4KcPLkSQDi4uIsTiIiIiIiIv7g5MmTVKhQochjbIYzJVgZY7fb2bdvH+XKlcNms1ma5cSJE8TFxZGcnEz58uUtzVIQf86nbO5RNvcom/v8OZ+yuUfZ3KNs7vPnfMrmHn/KZhgGJ0+epFatWgQEFD2qSi1XBQgICCA2NtbqGHmUL1/e8m+sovhzPmVzj7K5R9nc58/5lM09yuYeZXOfP+dTNvf4S7ZLtVg5aEILERERERERD1BxJSIiIiIi4gEqrvxcaGgozz77LKGhoVZHKZA/51M29yibe5TNff6cT9nco2zuUTb3+XM+ZXOPP2criia0EBERERER8QC1XImIiIiIiHiAiisREREREREPUHElIiIiIiLiASquREREREREPEDFlZ969dVXad26NeXKlSM6OpobbriBrVu3Wh0LgPfff58rr7wyZ1G39u3bM3v2bKtjFei1117DZrMxevRoq6Pw3HPPYbPZ8nw0atTI6lh5pKSkcPvtt1OlShXCw8O54oorWLlypdWxSEhIyPfa2Ww2RowYYXU0srOzefrpp6lTpw7h4eHUq1ePF198EX+ZK+jkyZOMHj2a+Ph4wsPD6dChAytWrPB5joULF3L99ddTq1YtbDYb33//fZ7HDcPgmWeeoWbNmoSHh9OjRw+2bdvmF9lmzJhBr169qFKlCjabjbVr1/oklzP5MjMzeeKJJ7jiiiuIjIykVq1a3Hnnnezbt8/ybGD+3mvUqBGRkZFUqlSJHj16sHz5cr/Iltvf//53bDYbEydO9Itsw4YNy/f77pprrvGLbACbN2+mX79+VKhQgcjISFq3bs2ePXssz1bQ3wmbzcbrr79uebZTp04xcuRIYmNjCQ8Pp0mTJnzwwQdez+VMttTUVIYNG0atWrWIiIjgmmuu8dnvX2f+3z179iwjRoygSpUqREVFMXDgQFJTU32Szx0qrvxUUlISI0aMYNmyZcydO5fMzEx69erF6dOnrY5GbGwsr732GqtWrWLlypV069aN/v37s3HjRquj5bFixQr+9a9/ceWVV1odJUfTpk3Zv39/zsfixYutjpTj6NGjdOzYkeDgYGbPns2mTZt44403qFSpktXRWLFiRZ7Xbe7cuQDcfPPNFieDcePG8f777/POO++wefNmxo0bx/jx43n77betjgbA3/72N+bOnctnn33G+vXr6dWrFz169CAlJcWnOU6fPk2zZs149913C3x8/Pjx/POf/+SDDz5g+fLlREZG0rt3b86ePWt5ttOnT3P11Vczbtw4r2cp7PqF5UtPT2f16tU8/fTTrF69mhkzZrB161b69etneTaAhg0b8s4777B+/XoWL15MQkICvXr14uDBg5Znc/juu+9YtmwZtWrV8nomB2eyXXPNNXl+733xxRd+ke2vv/7i6quvplGjRixYsIB169bx9NNPExYWZnm23K/X/v37+eijj7DZbAwcONDybGPGjGHOnDlMnTqVzZs3M3r0aEaOHMnMmTMtzWYYBjfccAM7duzgv//9L2vWrCE+Pp4ePXr45H9OZ/7fffjhh/nhhx/45ptvSEpKYt++fQwYMMDr2dxmSImQlpZmAEZSUpLVUQpUqVIl49///rfVMXKcPHnSaNCggTF37lwjMTHRGDVqlNWRjGeffdZo1qyZ1TEK9cQTTxhXX3211TGcMmrUKKNevXqG3W63Oopx7bXXGnfddVeefQMGDDCGDBliUaIL0tPTjcDAQGPWrFl59l911VXGP/7xD4tSGQZgfPfddzn37Xa7UaNGDeP111/P2Xfs2DEjNDTU+OKLLyzNltvOnTsNwFizZo1PM+VWVD6H33//3QCM3bt3+ybUec5kO378uAEYv/zyi29CnVdYtr179xoxMTHGhg0bjPj4eOOtt97yaa7Csg0dOtTo37+/z7NcrKBst956q3H77bdbEygXZ77f+vfvb3Tr1s03gXIpKFvTpk2NF154Ic8+K34XX5xt69atBmBs2LAhZ192drZRrVo1Y/LkyT7NZhj5/989duyYERwcbHzzzTc5x2zevNkAjKVLl/o8nzPUclVCHD9+HIDKlStbnCSv7OxsvvzyS06fPk379u2tjpNjxIgRXHvttfTo0cPqKHls27aNWrVqUbduXYYMGeKTbhTOmjlzJq1ateLmm28mOjqaFi1aMHnyZKtj5ZORkcHUqVO56667sNlsVsehQ4cOzJs3jz///BOAP/74g8WLF9OnTx+Lk0FWVhbZ2dn53lEODw/3q1bTnTt3cuDAgTw/rxUqVKBt27YsXbrUwmQl0/Hjx7HZbFSsWNHqKHlkZGTw4YcfUqFCBZo1a2Z1HOx2O3fccQePPfYYTZs2tTpOPgsWLCA6OprLLruM+++/n8OHD1sdCbvdzo8//kjDhg3p3bs30dHRtG3btsgul1ZJTU3lxx9/5O6777Y6CmD+rZg5cyYpKSkYhsH8+fP5888/6dWrl6W5zp07B5Dn70RAQAChoaGW/J24+P/dVatWkZmZmefvQ6NGjahdu7bf/n1QcVUC2O12Ro8eTceOHbn88sutjgPA+vXriYqKIjQ0lL///e989913NGnSxOpYAHz55ZesXr2aV1991eooebRt25ZPPvmEOXPm8P7777Nz5046derEyZMnrY4GwI4dO3j//fdp0KABP/30E/fffz8PPfQQn376qdXR8vj+++85duwYw4YNszoKAE8++SSDBg2iUaNGBAcH06JFC0aPHs2QIUOsjka5cuVo3749L774Ivv27SM7O5upU6eydOlS9u/fb3W8HAcOHACgevXqefZXr1495zFxztmzZ3niiSe47bbbKF++vNVxAJg1axZRUVGEhYXx1ltvMXfuXKpWrWp1LMaNG0dQUBAPPfSQ1VHyueaaa5gyZQrz5s1j3LhxJCUl0adPH7Kzsy3NlZaWxqlTp3jttde45ppr+Pnnn7nxxhsZMGAASUlJlma72Keffkq5cuX8pvvY22+/TZMmTYiNjSUkJIRrrrmGd999l86dO1uay1GojB07lqNHj5KRkcG4cePYu3evz/9OFPT/7oEDBwgJCcn3ZpE//30IsjqAXNqIESPYsGGDX73TfNlll7F27VqOHz/O9OnTGTp0KElJSZYXWMnJyYwaNYq5c+f6pP+3K3K3ZFx55ZW0bduW+Ph4vv76a794Z81ut9OqVSteeeUVAFq0aMGGDRv44IMPGDp0qMXpLvjPf/5Dnz59fDo+oihff/01n3/+OdOmTaNp06asXbuW0aNHU6tWLb943T777DPuuusuYmJiCAwM5KqrruK2225j1apVVkcTD8vMzOSWW27BMAzef/99q+Pk6Nq1K2vXruXQoUNMnjyZW265heXLlxMdHW1ZplWrVjFp0iRWr17tFy3gFxs0aFDO9hVXXMGVV15JvXr1WLBgAd27d7csl91uB6B///48/PDDADRv3pwlS5bwwQcfkJiYaFm2i3300UcMGTLEb/4XePvtt1m2bBkzZ84kPj6ehQsXMmLECGrVqmVpL5vg4GBmzJjB3XffTeXKlQkMDKRHjx706dPH5xMz+eP/u+5Qy5WfGzlyJLNmzWL+/PnExsZaHSdHSEgI9evXp2XLlrz66qs0a9aMSZMmWR2LVatWkZaWxlVXXUVQUBBBQUEkJSXxz3/+k6CgIMvf9cutYsWKNGzYkO3bt1sdBYCaNWvmK44bN27sV10Xd+/ezS+//MLf/vY3q6PkeOyxx3Jar6644gruuOMOHn74Yb9pOa1Xrx5JSUmcOnWK5ORkfv/9dzIz/7+9uw+n+v7/AP48Cee4iQ6H4yxHGclK7rJpphuqU1eTqIvFVXTfRrKtY2mVaSNcUVNmtVzHusbCulBWSUqprqU2JHTcTLpjrWRNNMrn90eX8/ueOagm52y9Htflj/O5ez/7nCvv8zrvz/utC+bm5sqOJsPn8wGg1+pPv/32m2wf6V9PYdXY2IiCggKVGbUCAG1tbVhYWMDZ2RkpKSkYPnw4UlJSlJqpuLgYd+7cgVAolPUVjY2N+PjjjzF69GilZlPE3NwchoaGSu8vDA0NMXz4cJXvK4qLiyGVSlWmr+jo6MDGjRuRkJAADw8PTJw4EcHBwfD19cX27duVHQ+Ojo4oKytDa2srmpqacOzYMdy7d29I+4m+Pu/y+Xx0dnaitbVV7nhV7h+ouFJRDMMgODgY2dnZOHnyJMaMGaPsSP3q7u6WPberTO7u7qioqEBZWZnsZ9KkSfD390dZWRnU1NSUHVGmra0N9fX1MDExUXYUAICLi0uv5U9rampgZmampES9SSQSGBkZYe7cucqOItPe3o5hw+R/laqpqcm+4VUV2traMDExwf3795Gfnw9PT09lR5IZM2YM+Hw+CgsLZdsePHiACxcuqNRcTlXVU1jV1tbixIkTMDAwUHakfqlCf7F48WJcvnxZrq8QCAQQi8XIz89XajZFbt68iXv37im9v9DQ0ICTk5PK9xUpKSlwdHRUibl9wNP/o11dXSrfV+jp6YHH46G2thaXLl0akn5ioM+7jo6OUFdXl+sfpFIprl+/rrL9Az0WqKKCgoKQnp6O3Nxc6Orqyp4r1dPTA4fDUWq28PBwzJkzB0KhEH/++SfS09NRVFSkEh2Srq5ur3lp2traMDAwUPp8tfXr18PDwwNmZma4ffs2IiIioKamhkWLFik1V48PP/wQb7/9NqKjo+Hj44OSkhLs3bsXe/fuVXY0AE8/kEkkEgQEBGD4cNX51eXh4YGoqCgIhUKMHz8epaWlSEhIwLJly5QdDQCQn58PhmFgZWWFuro6iMVijBs3DkuXLh3SHG1tbXLfujc0NKCsrAxcLhdCoRChoaH44osvYGlpiTFjxmDz5s0QCASYP3++0rO1tLTg+vXrsr8d1fPBks/nD8k3p/3lMzExwcKFC/HLL78gLy8PT548kfUXXC4XGhoaSstmYGCAqKgozJs3DyYmJrh79y6SkpJw69atIfkzCgO9r38vQtXV1cHn82FlZaXUbFwuF5GRkViwYAH4fD7q6+sRFhYGCwsLiEQipWYTCoUQi8Xw9fXFlClTMH36dBw7dgyHDx9GUVGR0rMBT7+YycrKQnx8/EvP8zzZpk6dCrFYDA6HAzMzM5w+fRr79+9HQkKC0rNlZWWBx+NBKBSioqIC69atw/z584dksY2BPu/q6elh+fLl+Oijj8DlcjFixAisXbsWkydPhrOz80vP90KUuVQh6RsAhT8SiUTZ0Zhly5YxZmZmjIaGBsPj8Rh3d3fm+PHjyo7VJ1VZit3X15cxMTFhNDQ0mNdee43x9fVl6urqlB1LzuHDh5kJEyYwmpqazLhx45i9e/cqO5JMfn4+A4CRSqXKjiLnwYMHzLp16xihUMiw2WzG3Nyc+fTTT5m//vpL2dEYhmGYjIwMxtzcnNHQ0GD4fD4TFBTEtLa2DnmOU6dOKfydFhAQwDDM0+XYN2/ezBgbGzOampqMu7v7kL3XA2WTSCQK90dERCg9X8/y8Ip+Tp06pdRsHR0djJeXFyMQCBgNDQ3GxMSEmTdvHlNSUvLScw2UTZGhXIq9v2zt7e3MrFmzGB6Px6irqzNmZmbMypUrmebmZqVn65GSksJYWFgwbDabsbW1ZXJyclQm2549exgOhzPkv+cGytbU1MQEBgYyAoGAYbPZjJWVFRMfHz8kf1JkoGxffvklM2rUKEZdXZ0RCoXMpk2bhqwPe5bPux0dHcwHH3zAjBw5ktHS0mK8vLyYpqamIcn3IlgMM8Sz1QghhBBCCCHkP4jmXBFCCCGEEELIIKDiihBCCCGEEEIGARVXhBBCCCGEEDIIqLgihBBCCCGEkEFAxRUhhBBCCCGEDAIqrgghhBBCCCFkEFBxRQghRKHs7GxkZmYqOwYhhBDyr0HFFSGEkF5KSkoQGhoKZ2dnZUf5x4qKisBisdDa2vrS25o2bRpCQ0NfejtD5d69ezAyMsK1a9cADHwv7969CyMjI9y8eXPoQhJCiAqh4ooQQv7jAgMDwWKxEBMTI7c9JycHLBar1/F//PEHVqxYgezsbAiFwqGKqfI6OzsRFxcHW1tbaGlpwdDQEC4uLpBIJOjq6nopbbJYLOTk5LyUaz+LqKgoeHp6YvTo0c90vKGhIZYsWYKIiIiXG4wQQlQUFVeEEPIKYLPZiI2Nxf379wc8Vk9PD5cvX4aDg8MQJFOss7NTaW0r0tnZCZFIhJiYGKxatQrnz59HSUkJgoKCsGvXLlRWVio7Yr9epPhrb29HSkoKli9f/lznLV26FGlpaWhpaXnuNgkh5N+OiitCCHkFzJgxA3w+H9u2bevzmM8++wx2dnZy23bu3Ck3ahEYGIj58+cjOjoaxsbG0NfXx9atW/H48WOIxWJwuVyMGjUKEolE7jo3btyAj48P9PX1weVy4enpKXvU7H+vGxUVBYFAACsrKwBARUUF3NzcwOFwYGBggFWrVqGtra3ff+uRI0cwduxYcDgcTJ8+Xa6dHmfPnoWrqys4HA5MTU0REhKChw8f9nnNnTt34syZMygsLERQUBDs7Oxgbm4OPz8/XLhwAZaWlgrPUzTypK+vj9TUVABPi7bg4GCYmJiAzWbDzMxM9h713HcvLy+wWCy59yE3NxcODg5gs9kwNzdHZGQkHj9+LNducnIy5s2bB21tbURFReH+/fvw9/cHj8cDh8OBpaVlr/fp7/dRU1Oz30dD29vbMWfOHLi4uMgeFRw/fjwEAgGys7P7PI8QQv6rqLgihJBXgJqaGqKjo7Fr165/PB/m5MmTuH37Ns6cOYOEhARERETg3XffxciRI3HhwgWsWbMGq1evlrXT1dUFkUgEXV1dFBcX49y5c9DR0cHs2bPlRqgKCwshlUpRUFCAvLw8PHz4ECKRCCNHjsTFixeRlZWFEydOIDg4uM9sN27cgLe3Nzw8PFBWVoYVK1Zgw4YNcsfU19dj9uzZWLBgAS5fvoyMjAycPXu23+umpaVhxowZsLe377VPXV0d2traz3sbAQCJiYk4dOgQMjMzIZVKkZaWJiuiLl68CACQSCRoamqSvS4uLsaSJUuwbt06VFVVYc+ePUhNTUVUVJTctT/77DN4eXmhoqICy5Ytw+bNm1FVVYWjR4+iuroaycnJMDQ07DNbcXExHB0d+9zf2tqKmTNnoru7GwUFBdDX15fte/PNN1FcXPxC94QQQv7Nhis7ACGEkKHh5eUFOzs7REREICUl5YWvw+VykZiYiGHDhsHKygpxcXFob2/Hxo0bAQDh4eGIiYnB2bNn8d577yEjIwPd3d3Yt2+fbI6XRCKBvr4+ioqKMGvWLACAtrY29u3bBw0NDQDAN998g0ePHmH//v2y4mX37t3w8PBAbGwsjI2Ne2VLTk7G66+/jvj4eACAlZUVKioqEBsbKztm27Zt8Pf3ly08YWlpicTEREydOhXJyclgs9m9rltbW4tp06a98D3ry/Xr12FpaYl33nkHLBYLZmZmsn08Hg/A05EuPp8v2x4ZGYkNGzYgICAAAGBubo7PP/8cYWFhcnOd/Pz8sHTpUrm27O3tMWnSJAAYcB5VY2MjBAKBwn3Nzc3w9fWFpaUl0tPTZe9ZD4FAgNLS0me4A4QQ8t9CI1eEEPIKiY2Nxbfffovq6uoXvsb48eMxbNj/dx/GxsawsbGRvVZTU4OBgQHu3LkDACgvL0ddXR10dXWho6MDHR0dcLlcPHr0CPX19bLzbGxs5D6kV1dXw9bWVm5UyMXFBd3d3ZBKpQqzVVdX46233pLbNnnyZLnX5eXlSE1NlWXR0dGBSCRCd3c3GhoaFF6XYZiBbssLCQwMRFlZGaysrBASEoLjx48PeE55eTm2bt0ql3/lypVoampCe3u77LieIqrH+++/jwMHDsDOzg5hYWE4f/58v+10dHQoLDQBYObMmbCwsEBGRkavwgoAOByOXBZCCHlV0MgVIYS8QqZMmQKRSITw8HAEBgbK7Rs2bFivIkLRQgjq6upyr1kslsJt3d3dAIC2tjY4OjoiLS2t17V6RmcAvPCjdc+rra0Nq1evRkhISK99fa2OOHbsWFy9evW522KxWP3eUwcHBzQ0NODo0aM4ceIEfHx8MGPGDPzwww/95o+MjIS3t3evff9bDP39fs6ZMweNjY04cuQICgoK4O7ujqCgIGzfvl1hO4aGhn0ugDJ37lwcPHgQVVVVcoV1j5aWFrn3lhBCXhVUXBFCyCsmJiYGdnZ2skUjevB4PDQ3N4NhGNnje2VlZf+4PQcHB2RkZMDIyAgjRox45vOsra2RmpqKhw8fygqFc+fOyR5H7OucQ4cOyW376aefeuWpqqqChYXFM2fx8/PDxo0bUVpa2mveVVdXFzo7OxUWhzweD01NTbLXtbW1vUZ0RowYAV9fX/j6+mLhwoWYPXs2WlpawOVyoa6ujidPnvTKL5VKnyv//+YJCAhAQEAAXF1dIRaL+yyu7O3t8d133yncFxMTAx0dHbi7u6OoqAhvvPGG3P4rV668lMcoCSFE1dFjgYQQ8oqxsbGBv78/EhMT5bZPmzYNv//+O+Li4lBfX4+kpCQcPXr0H7fn7+8PQ0NDeHp6ori4GA0NDSgqKkJISEi/i2v4+/uDzWYjICAAV65cwalTp7B27VosXrxY4XwrAFizZg1qa2shFoshlUqRnp4uW5mvxyeffILz588jODgYZWVlqK2tRW5ubr8LWoSGhsLFxQXu7u5ISkpCeXk5fv31V2RmZsLZ2Rm1tbUKz3Nzc8Pu3btRWlqKS5cuYc2aNXKjfAkJCfj+++9x9epV1NTUICsrC3w+X7Y4xOjRo1FYWIjm5mbZKNKWLVuwf/9+REZGorKyEtXV1Thw4AA2bdrUZ/6e83Jzc1FXV4fKykrk5eXB2tq6z+NFIhEqKyv7HL3avn07/P394ebmJjeq197ejp9//lk2l44QQl4lVFwRQsgraOvWrbLH9npYW1vjq6++QlJSEmxtbVFSUoL169f/47a0tLRw5swZCIVCeHt7w9raGsuXL8ejR4/6HcnS0tJCfn4+Wlpa4OTkhIULF8Ld3R27d+/u8xyhUIiDBw8iJycHtra2+PrrrxEdHS13zMSJE3H69GnU1NTA1dUV9vb22LJlS5+LNwCApqYmCgoKEBYWhj179sDZ2RlOTk5ITExESEgIJkyYoPC8+Ph4mJqawtXVFX5+fli/fj20tLRk+3V1dREXF4dJkybByckJ165dw5EjR2Rz2uLj41FQUABTU1PZiJlIJEJeXh6OHz8OJycnODs7Y8eOHXKLYSiioaGB8PBwTJw4EVOmTIGamhoOHDjQ5/E2NjZwcHBAZmZmn8fs2LEDPj4+cHNzQ01NDYCny8QLhUK4urr2m4cQQv6LWMzLmqVLCCGEkH+1H3/8EWKxGFeuXJFbxKQ/zs7OCAkJgZ+f30tORwghqofmXBFCCCFEoblz56K2tha3bt2CqanpgMffvXsX3t7eWLRo0RCkI4QQ1UMjV4QQQgghhBAyCGjOFSGEEEIIIYQMAiquCCGEEEIIIWQQUHFFCCGEEEIIIYOAiitCCCGEEEIIGQRUXBFCCCGEEELIIKDiihBCCCGEEEIGARVXhBBCCCGEEDIIqLgihBBCCCGEkEFAxRUhhBBCCCGEDAIqrgghhBBCCCFkEPwf7kLCmof8ZKsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "El número óptimo de clusters según el Silhouette Score es: 20\nAplicando K-Means con k=20...\n\nNúmero de clusters encontrados: 20\nReduciendo dimensiones para visualización con t-SNE...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGkAAAK9CAYAAACXazGoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zV5fn/8dc5J3vvQRZJ2FuGiIiAC1FxAFqtrSDWaosW9Nv+qrUObF2tA2sVRy1aW9wgigMFQXAgyJC9CQRISMjeOTnn8/vjkGMOOWGek5OQ99NHHnju+z6f+zqHQ3LOlfu+bpNhGAYiIiIiIiIiIuJTZl8HICIiIiIiIiIiStKIiIiIiIiIiLQJStKIiIiIiIiIiLQBStKIiIiIiIiIiLQBStKIiIiIiIiIiLQBStKIiIiIiIiIiLQBStKIiIiIiIiIiLQBStKIiIiIiIiIiLQBStKIiIi0suLiYmbMmMH333/v61BEREREpA1RkkZERE7aa6+9hslkIicnp83FMWrUKEaNGuWzmHJycjCZTLz22mtu+w3D4KabbmLp0qWcddZZrRKTL5+T4z0fIiIiIvITJWlERIQrr7ySkJAQKioqWhxz4403EhAQQFFRUStGdub529/+Rk5ODvPmzSMgIMDX4ZyWpUuXMn78eJKSkggICCAhIYFx48Yxd+7cVoth8+bNPPTQQz5PGLZlc+bMYebMmSd1n5ycHG6++Ways7MJCgoiKSmJ888/nwcffNBl3KhRozCZTIwbN87tNUwmE08++aSzbenSpZhMpha/3nrrrVN6jCIiImcKP18HICIivnfjjTfy0UcfMW/ePG666aZm/dXV1cyfP59LL72U2NhYfvnLX3L99dcTGBjog2iP7fPPP/fp/BkZGdTU1ODv79+sr7a2loaGBj755BOioqJaPzgPevDBB3n44Yfp2rUrt912GxkZGRQVFfHJJ58wYcIE/ve///Hzn//c63Fs3ryZGTNmMGrUKDp37uz1+dqjOXPmsHHjRqZPn35C43fu3MmQIUMIDg5mypQpdO7cmby8PNasWcMTTzzBjBkzmt1nwYIFrF69mkGDBp3QHL/73e8YMmRIs/Zhw4ad0P1FRETOVErSiIgIV155JeHh4cyZM8dtkmb+/PlUVVVx4403AmCxWLBYLK0d5gnx9eoUk8lEUFCQ276goCDuu+++Vo7I89577z0efvhhJk6cyJw5c1wSUn/4wx9YuHAhVqvVhxGevqqqKkJDQ30dhk8888wzVFZWsm7dOjIyMlz6CgoKmo1PT0+noqKCGTNm8OGHH57QHCNGjGDixIkeiVdERORMou1OIiJCcHAw48ePZ/HixW4/hM2ZM4fw8HCuvPJKwH0tmB9++IExY8YQFxdHcHAwmZmZTJkyxdnfuM1h6dKlLtd2V7Nk/fr1TJ48maysLOdWiylTppzQVquj66907ty5xa0VjbHs3buX3/72t3Tv3p3g4GBiY2O59tpr3W6hKS0t5a677qJz584EBgaSmprKTTfdxOHDh1t8PABffvklI0aMIDQ0lKioKK666iq2bNniMuahhx7CZDKxc+dOJk+eTFRUFJGRkdx8881UV1cf97EDvPzyy2RnZxMcHMzZZ5/N8uXL3Y6rq6vjwQcfpEuXLgQGBpKWlsb/+3//j7q6uuPOcf/99xMTE8O///1vtyuGxowZwxVXXNHi/VuqkTN58uRmq2HeeustBg0aRHh4OBEREfTt25dnn30WcLwOr732WgBGjx7d7O8V4NNPP3U+7+Hh4Vx++eVs2rSp2bxhYWHs2rWLyy67jPDwcGdCcseOHUyYMIGkpCSCgoJITU3l+uuvp6ys7LjP0/fff89ll11GdHQ0oaGh9OvXzxl7I2+/LkaNGsXHH3/M3r17nc/P8VYc7dq1i9TU1GYJGoCEhIRmbeHh4dx111189NFHrFmz5pjXFhERkWPTShoREQEcW55ef/113nnnHe644w5ne3FxMQsXLuSGG24gODjY7X0LCgq45JJLiI+P55577iEqKoqcnJxTrk3yxRdfsHv3bm6++WaSkpLYtGkTL7/8Mps2bWLFihWYTKYTvtbMmTOprKx0aXvmmWdYt24dsbGxAKxatYpvv/2W66+/ntTUVHJycpg1axajRo1i8+bNhISEAFBZWcmIESPYsmULU6ZMYeDAgRw+fJgPP/yQ/fv3ExcX5zaGRYsWMXbsWLKysnjooYeoqanhueeeY/jw4axZs6bZh+brrruOzMxMHnvsMdasWcO//vUvEhISeOKJJ475WF999VVuu+02zj33XKZPn87u3bu58soriYmJIS0tzTnObrdz5ZVX8vXXX/PrX/+anj17smHDBp555hm2b9/OBx980OIcO3bsYOvWrUyZMoXw8PBjxnO6vvjiC2644QYuvPBC52PfsmUL33zzDdOmTeP888/nd7/7Hf/4xz/405/+RM+ePQGcf77xxhtMmjSJMWPG8MQTT1BdXc2sWbM477zzWLt2rcvz3tDQwJgxYzjvvPN48sknCQkJob6+njFjxlBXV8edd95JUlISBw4cYMGCBZSWlhIZGXnM2K+44gqSk5OZNm0aSUlJbNmyhQULFjBt2jSgdV4X9913H2VlZezfv59nnnkGgLCwsGM+7xkZGSxatIgvv/ySCy644JhjG02bNo1nnnmGhx566IRW01RUVDgTm03Fxsae1L9vERGRM44hIiJiGEZDQ4ORnJxsDBs2zKX9xRdfNABj4cKFzrbZs2cbgLFnzx7DMAxj3rx5BmCsWrWqxesvWbLEAIwlS5a4tO/Zs8cAjNmzZzvbqqurm93/zTffNABj2bJlLcZhGIYxcuRIY+TIkS3G8c477xiA8fDDDx9zvu+++84AjP/85z/OtgceeMAAjLlz5zYbb7fbW3w8AwYMMBISEoyioiJn248//miYzWbjpptucrY9+OCDBmBMmTLF5drXXHONERsb2+JjMgzDqK+vNxISEowBAwYYdXV1zvaXX37ZAFyekzfeeMMwm83G8uXLXa7R+Hf9zTfftDjP/PnzDcB45plnjhlPI3fPR0t/R5MmTTIyMjKct6dNm2ZEREQYDQ0NLV7/3Xffdfu6qqioMKKiooxbb73VpT0/P9+IjIx0aZ80aZIBGPfcc4/L2LVr1xqA8e677x7/gTbR0NBgZGZmGhkZGUZJSYlLX+PrxDBa53VhGIZx+eWXuzyvx7Nx40YjODjYAIwBAwYY06ZNMz744AOjqqqq2diRI0cavXv3NgzDMGbMmGEAxurVqw3D+Onv/u9//7tzfOP3gZa+8vLyTjhOERGRM5G2O4mICOCoM3P99dfz3XffuWzzmTNnDomJiVx44YUt3rexCO6CBQs8Uouk6Yqd2tpaDh8+zDnnnANwWtspNm/ezJQpU7jqqqv485//7HY+q9VKUVERXbp0ISoqymW+999/n/79+3PNNdc0u3ZLv/3Py8tj3bp1TJ48mZiYGGd7v379uPjii/nkk0+a3ef22293uT1ixAiKioooLy9v8bH98MMPFBQUcPvtt7vU5Zk8eXKzFR/vvvsuPXv2pEePHhw+fNj51bhqYsmSJS3O0xiDt1fRgON1VVVVxRdffHHS9/3iiy8oLS3lhhtucHmMFouFoUOHun2Mv/nNb1xuNz5vCxcuPOHtZgBr165lz549TJ8+vVmB6MbXSWu9Lk5F7969WbduHb/4xS/Iycnh2Wef5eqrryYxMZFXXnmlxftNmzaN6Ohot4WFj/bAAw/wxRdfNPtq+lyIiIh0RErSiIiIU2Mdjjlz5gCwf/9+li9fzvXXX3/MQsEjR45kwoQJzJgxg7i4OK666ipmz559QvVN3CkuLmbatGkkJiYSHBxMfHw8mZmZACdUC8Sd8vJyxo8fT0pKCv/5z39ckio1NTU88MADpKWlERgYSFxcHPHx8ZSWlrrMt2vXLvr06XNS8+7duxeA7t27N+vr2bMnhw8fpqqqyqU9PT3d5XZ0dDQAJSUlx52na9euLu3+/v5kZWW5tO3YsYNNmzYRHx/v8tWtWzfAfXHYRhEREQDHPK7dU37729/SrVs3xo4dS2pqKlOmTOGzzz47ofvu2LEDgAsuuKDZ4/z888+bPUY/Pz9SU1Nd2jIzM7n77rv517/+RVxcHGPGjOH5558/7mtw165dAMd8rbTW6+JY8vPzXb5qamqcfd26deONN97g8OHDrF+/nkcffRQ/Pz9+/etfs2jRIrfXi4yMZPr06Xz44YesXbv2mHP37duXiy66qNmXrwt/i4iI+Jpq0oiIiNOgQYPo0aMHb775Jn/605948803MQzDmbxpiclk4r333mPFihV89NFHLFy4kClTpvDUU0+xYsUKwsLCWlxpYrPZmrVdd911fPvtt/zhD39gwIABhIWFYbfbufTSS7Hb7af02CZPnszBgwdZuXKlM9HQ6M4772T27NlMnz6dYcOGERkZiclk4vrrrz/l+U5HSwkxwzA8cn273U7fvn15+umn3fY3rV9ztB49egCwYcOGU57fZDK5fSxHvxYSEhJYt24dCxcu5NNPP+XTTz9l9uzZ3HTTTbz++uvHnKPx7+2NN94gKSmpWb+fn+tboMDAQMzm5r+7euqpp5g8eTLz58/n888/53e/+x2PPfYYK1asaJbU8TZPvy6Sk5Ndbs+ePZvJkyc3m7Nv37707duXYcOGMXr0aP73v/9x0UUXub1mY22aGTNmMHPmzFOKS0REpCNTkkZERFzceOON3H///axfv545c+bQtWtXhgwZckL3PeecczjnnHN45JFHmDNnDjfeeCNvvfUWv/rVr5y/9S8tLXW5T+OKgkYlJSUsXryYGTNm8MADDzjbG1dGnIrHH3+cDz74gLlz5zqTDE299957TJo0iaeeesrZVltb2yzW7OxsNm7ceFJzN56Qs23btmZ9W7duJS4uziNHPTfOs2PHDpdir1arlT179tC/f39nW3Z2Nj/++CMXXnjhSRdp7datG927d2f+/Pk8++yzxy1C6050dDS7d+9u1n70awEcR6qPGzeOcePGYbfb+e1vf8tLL73E/fffT5cuXVqMPzs7G3AkelpKKJyoxiTFn//8Z7799luGDx/Oiy++yF//+tdjzr1x48YW526t1wW0vBXv6G1kvXv3PuZ1Bg8eDDi2arWkcTXNQw89xKRJk04yUhEREdF2JxERcdG4auaBBx5g3bp1x11FA47EytG/zR8wYACAc8tTRkYGFouFZcuWuYx74YUXXG43rhY4+nqn+lv5RYsW8ec//5n77ruPq6++2u0Yi8XSbL7nnnuu2cqOCRMm8OOPPzJv3rxm12hpNUNycjIDBgzg9ddfd0n6bNy4kc8//5zLLrvs5B5QCwYPHkx8fDwvvvgi9fX1zvbXXnutWbLpuuuu48CBA27ri9TU1DTbZnO0GTNmUFRUxK9+9SsaGhqa9X/++ecsWLCgxftnZ2ezdetWCgsLnW0//vgj33zzjcu4o49cN5vN9OvXD/jpddWYyDj6MY4ZM4aIiAgeffRRt3WSms7dkvLy8maPr2/fvpjN5mNu5Rs4cCCZmZnMnDmzWVyNr5PWel2A4zlyt0Xr6K1GjStrli9f7vY5a6yT426LVlONtXgefvhhD0QvIiLSsWgljYiIuMjMzOTcc89l/vz5ACeUpHn99dd54YUXuOaaa8jOzqaiooJXXnmFiIgI54fNyMhIrr32Wp577jlMJhPZ2dksWLCgWW2QiIgIzj//fP72t79htVpJSUnh888/Z8+ePaf0eG644Qbi4+Pp2rUr//3vf136Lr74YhITE7niiit44403iIyMpFevXnz33XcsWrTIeUR3oz/84Q+89957XHvttUyZMoVBgwZRXFzMhx9+yIsvvuiyWqWpv//974wdO5Zhw4Zxyy23OI9ajoyM5KGHHjqlx3U0f39//vrXv3LbbbdxwQUX8LOf/Yw9e/Ywe/bsZjVpfvnLX/LOO+9w++23s2TJEoYPH47NZmPr1q288847LFy40Llqwp2f/exnbNiwgUceeYS1a9dyww03kJGRQVFREZ999hmLFy921jVyZ8qUKTz99NOMGTOGW265hYKCAl588UV69+7tUgT3V7/6FcXFxVxwwQWkpqayd+9ennvuOQYMGOA8ZnvAgAFYLBaeeOIJysrKCAwM5IILLiAhIYFZs2bxy1/+koEDB3L99dcTHx/Pvn37+Pjjjxk+fDj//Oc/j/mcfvnll9xxxx1ce+21dOvWjYaGBt544w0sFgsTJkxo8X5ms5lZs2Yxbtw4BgwYwM0330xycjJbt25l06ZNLFy4EGid1wU4tjG+/fbb3H333QwZMoSwsDDGjRvX4vgnnniC1atXM378eGdSbM2aNfznP/8hJiaG6dOnH3O+yMhIpk2bdswCwsuXL6e2trZZe79+/ZxzioiIdEg+O1dKRETarOeff94AjLPPPttt/9FHX69Zs8a44YYbjPT0dCMwMNBISEgwrrjiCuOHH35wuV9hYaExYcIEIyQkxIiOjjZuu+02Y+PGjc2OaN6/f79xzTXXGFFRUUZkZKRx7bXXGgcPHjQA48EHH2wxDsNofrwzxzjut/HY5pKSEuPmm2824uLijLCwMGPMmDHG1q1bjYyMDGPSpEkuj6GoqMi44447jJSUFCMgIMBITU01Jk2aZBw+fNgwDPdHThuGYSxatMgYPny4ERwcbERERBjjxo0zNm/e7DKm8ajlwsLCYz7fx/LCCy8YmZmZRmBgoDF48GBj2bJlbo+8rq+vN5544gmjd+/eRmBgoBEdHW0MGjTImDFjhlFWVnbceQzDMBYvXmxcddVVRkJCguHn52fEx8cb48aNM+bPn+8c09Lz8d///tfIysoyAgICjAEDBhgLFy5sdgT3e++9Z1xyySVGQkKCERAQYKSnpxu33XZbs2OaX3nlFSMrK8uwWCzNjuNesmSJMWbMGCMyMtIICgoysrOzjcmTJ7u8NidNmmSEhoY2e3y7d+82pkyZYmRnZxtBQUFGTEyMMXr0aGPRokUn9Px8/fXXxsUXX2yEh4cboaGhRr9+/YznnnvOZUxrvC4qKyuNn//850ZUVJQBHPc47m+++caYOnWq0adPHyMyMtLw9/c30tPTjcmTJxu7du1yGdv0CO6mSkpKjMjIyJM+grvpv28REZGOyGQYHqpCKCIiIiIiIiIip0w1aURERERERERE2gAlaURERERERERE2gAlaURERERERERE2gAlaURERERERERE2gAlaURERERERERE2gAlaURERERERERE2gA/XwfQ1tjtdg4ePEh4eDgmk8nX4YiIiIiIiMgZzjAMKioq6NSpE2az1lJ0ZErSHOXgwYOkpaX5OgwRERERERHpYHJzc0lNTfV1GOJDStIcJTw8HHD844iIiPBxNCIiIiIiInKmKy8vJy0tzfl5VDouJWmO0rjFKSIiQkkaERERERERaTUquSHa7CYiIiIiIiIi0gYoSSMiIiIiIiIi0gYoSSMiIiIiIiIi0ga0m5o0s2bNYtasWeTk5ADQu3dvHnjgAcaOHQtAbW0t//d//8dbb71FXV0dY8aM4YUXXiAxMdGHUYuIiIiIiIh0XIZh0NDQgM1m83UoPmOxWPDz8zuhmkPtJkmTmprK448/TteuXTEMg9dff52rrrqKtWvX0rt3b+666y4+/vhj3n33XSIjI7njjjsYP34833zzja9DFxEREREREelw6uvrycvLo7q62teh+FxISAjJyckEBAQcc5zJMAyjlWLyuJiYGP7+978zceJE4uPjmTNnDhMnTgRg69at9OzZk++++45zzjnnhK9ZXl5OZGQkZWVlOt1JREREREREvO5M/Bxqt9vZsWMHFouF+Ph4AgICOuTpVYZhUF9fT2FhITabja5du2I2t1x5pt2spGnKZrPx7rvvUlVVxbBhw1i9ejVWq5WLLrrIOaZHjx6kp6cfN0lTV1dHXV2d83Z5eblXYxcRERERERE509XX12O320lLSyMkJMTX4fhUcHAw/v7+7N27l/r6eoKCgloc264KB2/YsIGwsDACAwO5/fbbmTdvHr169SI/P5+AgACioqJcxicmJpKfn3/Maz722GNERkY6v9LS0rz4CEREREREREQ6jmOtGulITvR5aFfPVvfu3Vm3bh3ff/89v/nNb5g0aRKbN28+rWvee++9lJWVOb9yc3M9FK2IiIiIiIiIyIlrV9udAgIC6NKlCwCDBg1i1apVPPvss/zsZz+jvr6e0tJSl9U0hw4dIikp6ZjXDAwMJDAw0Jthi4iIiIiIiIgcV7taSXM0u91OXV0dgwYNwt/fn8WLFzv7tm3bxr59+xg2bJgPIxQRERERERERTzCZTHzwwQe+DsOr2k2S5t5772XZsmXk5OSwYcMG7r33XpYuXcqNN95IZGQkt9xyC3fffTdLlixh9erV3HzzzQwbNuykTnYSEREREREREd/Iz8/nzjvvJCsri8DAQNLS0hg3bpzLggxPWbp0KSaTidLSUo9f+3S0m+1OBQUF3HTTTeTl5REZGUm/fv1YuHAhF198MQDPPPMMZrOZCRMmUFdXx5gxY3jhhRd8HLWIiIiIiIiIHE9OTg7Dhw8nKiqKv//97/Tt2xer1crChQuZOnUqW7du9XWIbhmGgc1mw8/PM+mVdrOS5tVXXyUnJ4e6ujoKCgpYtGiRM0EDEBQUxPPPP09xcTFVVVXMnTv3uPVoRERERERERMT3fvvb32IymVi5ciUTJkygW7du9O7dm7vvvpsVK1Y0G+9uJcy6deswmUzk5OQAsHfvXsaNG0d0dDShoaH07t2bTz75hJycHEaPHg1AdHQ0JpOJyZMnA46yKo899hiZmZkEBwfTv39/3nvvvWbzfvrppwwaNIjAwEC+/vprjz0P7WYljYiIiIiIiIiceYqLi/nss8945JFHCA0Nbdbf9ICgkzF16lTq6+tZtmwZoaGhbN68mbCwMNLS0nj//feZMGEC27ZtIyIiguDgYAAee+wx/vvf//Liiy/StWtXli1bxi9+8Qvi4+MZOXKk89r33HMPTz75JFlZWURHR59SfO4oSSMiIiIiIiIiPrNz504Mw6BHjx4eve6+ffuYMGECffv2BSArK8vZFxMTA0BCQoIzCVRXV8ejjz7KokWLnIcQZWVl8fXXX/PSSy+5JGkefvhhl909nqIkjYiIiIiIiIj4jGEYXrnu7373O37zm9/w+eefc9FFFzFhwgT69evX4vidO3dSXV3dLPlSX1/PWWed5dI2ePBgr8SsJI2IiIiIiIiI+EzXrl0xmUwnVRzYbHaU2G2a4LFarS5jfvWrXzFmzBg+/vhjPv/8cx577DGeeuop7rzzTrfXrKysBODjjz8mJSXFpS8wMNDltrttWZ7QbgoHi4iIiIiIiMiZJyYmhjFjxvD8889TVVXVrN/dMdnx8fEA5OXlOdvWrVvXbFxaWhq33347c+fO5f/+7/945ZVXAAgICADAZrM5x/bq1YvAwED27dtHly5dXL7S0tJO5yGeMCVpRERERERERMSnnn/+eWw2G2effTbvv/8+O3bsYMuWLfzjH/9w1odpqjFx8tBDD7Fjxw4+/vhjnnrqKZcx06dPZ+HChezZs4c1a9awZMkSevbsCUBGRgYmk4kFCxZQWFhIZWUl4eHh/P73v+euu+7i9ddfZ9euXaxZs4bnnnuO119/vVWeByVpREREREREpBk7DVSQQylbqOIABt6pGyICjgK9a9asYfTo0fzf//0fffr04eKLL2bx4sXMmjWr2Xh/f3/efPNNtm7dSr9+/XjiiSf461//6jLGZrMxdepUevbsyaWXXkq3bt144YUXAEhJSWHGjBncc889JCYmcscddwDwl7/8hfvvv5/HHnvMeb+PP/6YzMxM7z8JgMnwVoWedqq8vJzIyEjKysqIiIjwdTgiIiIiIiKtror97OZtDvEtdurxJ4I0LiOVywjCc8cNi8OZ+Dm0traWPXv2kJmZSVBQkK/D8bkTfT5UOFhERERERESc6ihhE/+glC3ONivl7OYtbNTSlcmYsfgwQpEzl7Y7iYiIiIiIiFMFu10SNE3t5zOqyG3liEQ6DiVpRERERERExKmSvS322ailjqJWjEakY1GSRkRERERERJz8OXZNFAuBrRSJSMejmjQiIiIiIl5USin72EsxRYQTTjqdiSfe12GJtCiCLlgIxkZNs75wsggl3QdRiXQMStKIiIiIiHjJXvbyAv9gJ9udbYkkcid305NezcYf4hA72U4Oe4ghlh70pDOZmDC1ZtjSwYWRQS+msol/YKfe2R5AND24jYDjrLQRkVOnJI2IiIiIiBdUUcWrvOSSoAFHIuZZnmQGj5JIkrN9N7t4iifIJ8/ZFkQQt3Mn5zFCiRppNSZMJDGCUFIo4kdqOUQ42UTRizDSfB2eyBlNSRoRERER6VCqqmDPXti5B/z8oGsWdE6HQA+X2djHXjaz0W1fIYXsYY8zSVNNNa/xqkuCBqCWWl7kn6SSSiZZng1Q5BhMmImgCxF08XUoIh2KkjQiIiIi0mEUF8Nrb8KS5T+1+VngZ+PhyrEQEuK5uSqpxMBosb+kyQk5+8llC5vcjqulhh1sV5JGRKQDUJJGRERERDqMr1e4JmgAGmzwv3chqzOcPejUr72bXfzASrayhWSS6Ut/MsliD7vdjo9rUjy4hhrs2Fu8diklpx6YiIi0GzqCW0REREQ6hJJS+PiLlvsXfgk226ldex1reJD7eJs5/MhaPuMT/sajZJFNqpsaHsl0onOTlTFRRBNMcIvXTyfj1AITEZFT8vzzz9O5c2eCgoIYOnQoK1eubJV5laQRERERkQ6hpgbKy1vuP1wEVuvJX7eEEmbzL6qpcmk3YWIhnzGCUS5Ff0dxITdzKznsZhMbKaecNNK4mEvdXj+NdLLpevKBiYicCWw2+HEpLHnT8eepZtNPwttvv83dd9/Ngw8+yJo1a+jfvz9jxoyhoKDA63Nru5OIiIiIdAgREdApGbbvdN/frcupFQ8+wH72k+u2zw8LoYTwF56glGLCCOdTPuJvPEIDDQBkkc1tTGUcV2PCxBd8RhVVGMBABnETNxPfZGuUnHmqOUQV+7BRSxBxhNEZv2OsrBLpML6eCy9Og8P7f2qLS4Xbn4Xzxntt2qeffppbb72Vm2++GYAXX3yRjz/+mH//+9/cc889XpsXlKQRERERkQ4iLBTGj4MnZoJxVD3fAH8YfR6YTuGU6waOvfymnnp60hMrVl7gOb5nhUv/bnbxNH/jIf7KDfyCfvRnJzuppQYrVvLJJ454Qgk9+eBOkR07VqwEEKCjv73sMGvYxHPUcRhwnKqUwDC6cTPBJPo4Old1lFBJDrUUEUAEYXQmmARfhyVnqq/nwl8nwtEF2A8fcLT/+T2vJGrq6+tZvXo19957r7PNbDZz0UUX8d1333l8vqMpSSMiIiIiHcag/nDbzfDme1B2ZOtTYgLc8gvo0e3UrhlLPMEEU0wJZkwEEOiS1sgkG3Acyf0dX7u9xiHy2cVOTJiYyZNYmyR+FjCfifyMa5hIEEGnFuQJqqaazWzkCxZSTBHd6M4IRtGdHkrWeEEFOazn7zRQ6WwzsHOIb/Angh7chhmLDyP8SQU5bORZKvhpKVowifThbqLp5cPI5IxkszlW0Lg9Ic8ATPDSdBh2FVg8+2/k8OHD2Gw2EhNdk6SJiYls3brVo3O5oySNiIiIiHQYQUFw+SVwVl84VOB4b98pGeJiT+16NmxUUs5ZDOKfPIsZMzHEEE8CwQQziCF0JhOACspdki9H20sOq1jpdsw83mMgg+lOj1ML9ATUUccC5vM2c0gng06kUEoprzCLn3EjZzPUa3N3VCVscknQNJXHUtK4nPA2UDTaSiVbedElQQNQwyE28BSDeZSQNrbqR9q5jctdtzg1Y0BhrmNc/1GtFVWrUOFgEREREelwOiXDWf2hX59TT9AArGcdM7ifCsq5g2mkkEIhBZRQwljG8StuI4IIAEIIxXyMt9/hRHCghdo2NmzsZMepB3oCctjDp3zMZYzDipX3eYe5vIsdOzvZThFFXp2/I6qi5Q+hNmpoOKoYta9Uso8SNrvtq6WASva0ckRyxivO8+y4kxAXF4fFYuHQoUMu7YcOHSIpKcnj8x1NK2lERERERE5BFVW8y9tYsbKB9UQSxZVcQzjh1FFHL3qR0GR1QRrp9KEf61kHQCxx9KU/FsxY8COZTsQQyyHy3c5nw7snmuxkO+dxPi/yHAX8dILJXN7le1bQk97EchoZLWkmlNQW+ywE49eKdYiOxUoF7redONRR3HrBSMcQk+zZcSchICCAQYMGsXjxYq6++moA7HY7ixcv5o477vD4fEdTkkZERERE5BQUcZgdbHPeLqOU7/jGebuccs7lPOftYIK5mV/xHDOxUk8mWbzOvyihlEyyWMpiBnM24USwk+0uc5kw0cXLx3AHEsSPrHNJ0DQq4jD72Es6GYQQQrBOHvKIaHrjR6jbFTPJjDxmEqc1BRCBCTMGdrf9QTp9TDytzwjHKU6HD+A+QWiC+FTHOC+4++67mTRpEoMHD+bss89m5syZVFVVOU978iYlaUREREREToEJM/74U0ed2/4udGUV37OcZdRQzRCG0pd+/IkH2Mh67ucewokkkWSCCKKeej5kHjfwC/aRQz31zmuN5iIy6OzVx5NEEj/wfbP2oQxjIEN4kzf4iA/oRAqXMY5+9CeEEK/G1F7UUEgV+7FTTzAJhJKG+QQ+aoXTmX784cjpTo3bycwkMJTOTGwzRYNDySCWszjMajd9qYQdqbsk4jEWi+OY7b9OBEy4JmqOFDG/babHiwY3+tnPfkZhYSEPPPAA+fn5DBgwgM8++6xZMWFvMBnG0QcQdmzl5eVERkZSVlZGRESEr8MRERERkTbKipV/8DTfujmxaSCDMWPmB1a6tKeQyh+5j7f4n9v72bCTQQZ96c83LCeSSC7lMoZyLtFEe+2xAORxkFuZzAZ+dLZ1owcDGMgbvEYUUXSnJ35HEge/5GbGcRWWNpJI8AUDg8OsYgsvUXtkBZKFQNIZRzpXE0jkCV2nmnwq2YeNWoKII4zO+LexBFgV+9nKyxTxIxxZURNONr25gwi6+Da4M8CZ+Dm0traWPXv2kJmZSVDQKZ5M9/VcxylPTYsIx6c5EjReOH7bm070+dBKGhERERGRU+CPP1czga1sprhJTQ5//Mkimzf5L/74u9znAPtZxffktFBo1YKZSioZy+WM42qCCCLyBD/on65kOjGeiZRQQiEFNNDAhVzCy8wigABiiHUmaADe5S0GMJDOXl7h05aVs5P1PImNGmebjTr28B4BRJPBlSd0nRCSCMH7BUlPRyip9OMeKsmhnlL8CSOUjBNORImckvPGO47Z3rjcUSQ4JtmxxclLK2jaAiVpREREREROUTZduJ+H+YFVrGQFIYRwFdfwEfObJWgaNRYZPsgBt/3RRBNJFGGEeTN0ty5iDKv5gX3sw46NYIKxYSWEkGYreWqp4SAHOnSSppDvXRI0Te1lPgmcSzBxrRyV9/gTQjS9fB2GdDQWyxl3zPaxKEkjIiIiInIa0skgnQyu4hrnEdvv8XaL47exhVv5DVvY5Lb/Msb5JEEDjsdyD/ezku/4huWEEUoqaUQRTRDNl+ebGmtDdFDlxzgWvZYCGqiEMyhJ057YaaCag9ixEkg0gcT4OiSRE6IkjYiIiIiIBzStzTKEc9jcQhImg0z60p/ruZH3eQcrVuf9x3IFgzm7VeJtSdqR/y7lcvI4yJcsopbaZuOCCaYTnXwQYdsRQiqwxm1fAFFY3CS2xPsq2EsO73KIFdipI4RksvgZCZyLn04mkzZOSRoREREREQ87i0F8zIccptCl3Q8/xnMtMcRwNRMYyGBy2IMdOxl0Jp0MtytWfCGUUDLJ4lpu4A1mu/SZMHEdPyeNdB9F1zYkMpxcPsGgoVlfKmPafJ2Z9q6aPGzU4UeYc1tZNYdYzxNUkesybiMz6Y2dFC72VbgiJ0RJGhERERERD0sjjT9yH/N4n9WsxIqVbLoykevozwDAUWA4my5kt+GTcSxYGMNYOtGJT/iYQg6RQCKXcQV96e/c3tVRRdKNXvyWrbzSpDaNiSTOI5VLvTJnDQVUcQADOyEkEUqKV+Zpy2ooZD+fcoAvqKeUIBLI4GqSGUkpm10SNE3t5m1iOOuMqhMkZx4laUREREREvCCLbKZxN/nkYcNOLLE+qzVzOoIJ5mzOYQADqaKKUEIJIMDXYbUJZvzoxIVE0JVKcrBRRyipR47QDvXoXHZsFPAd23iVOg4D4E8E2dxAJy7sMNt4rFSynVc5xDfOtloK2MbL1FOC6RiJwxoOUU+xkjTSpilJIyIiIiLiJX74kUqar8PwiIAj/4krE2bC6Uy4l0+5KmULG3ka+5EaRgBWytnKywQSQyLnnvC1rFQfOUq7DH/CCCODACKajalgN8X8iJ0GYuhDOF18fuR2JXs5xLdu+/axgG7c3OJ9Tfhh0kdgaeP0ChURERERaeMaaGAfeymiiEACSCGNWGJ9HZa0EgODgyx2SdA07d3LPGLof0Krd6o4wDZe4TBrATsAEWTTizuJIBsAKxXs4m328SFgAJDDe8QxhJ7cTjAJHnpkJ6+Sfc6YjmajBjP+gMntmDjOIpRUr8YncrqUpBERERERacNKKGEe7/EFC6mnDoBkkrmV3zrr28iZrYEaytnZYn8VB7FSftwkTQO1bONfHGa1S3s5u9jAkwzkLwQTRzEb2Mf8Zvc/zCry6UUmE7FRTwPV+BGCpRVXWB3vxKwAosnm5+zify7twcSTzY2tGqvIqejYlb5ERERERNq4RSzkYz50JmgA8sjjaZ4ghz0+jExai4UAgohvsT+ACCyEHPc6leRQ1MKR4VXsp5I92GngAAtbvEYun3KYtfzIo6zi//Ejj1LAShrcHNPuDeF0xtJC/Z1gEgkjgwyuYjCPkMYVJDKCnkxlIH9xrhSSdsZug9ylsPVNx592m9enXLZsGePGjaNTp06YTCY++OADr8/ZSCtpRERERETaqDzy+IQFbvsqqWQ9P9KZzFaOSlqbGT9SuZTDrHLbn8YVJ1Qrpp5yjCNbnNypoQA7DdRR0sIIg0r2cpAvnatxqsnjMGvoxhTSGYcZy3HjOB2hpNOdX7GFWS5Hn1sIpge3OYsCx9CPGPp5NRZpBTvmwtJpULn/p7awVBj1LHQd77Vpq6qq6N+/P1OmTGH8eO/N446SNCIiIiIibVQVlZRT1mL/7mNsgZEzSwx96cIv2MVbTZITZlK46ISLBvsTRkv1WgACicFCINH0psLNKq0GavAnjPpmSRyDXcwhlgFeL6BsxkInRhNKCof4lmoOEEE34hlCRBs+zl5OwY65sGAizV6vlQcc7Ve857VEzdixYxk7dqxXrn08StKIiIiIiLRRQQQRQgjVVLvtTyallSMSX/EjmAyuIZazKGc3dqxEkH3kuO/jb3UCCCOdKHpSymaXdgMb/kQRSAw26klmFAdYjI0al3F2rKRwKQf5otm1bdRQzQGvJ2kAzPgTTW+i6e31ucRH7DbHChq3CUUDMMHS6ZB9FZi9u3qrtakmjYiIiIhIG9WJFEZygds+f/wZyKBWjki8rZpDlLKFcnbScFSSxEIAkXQjjUvJYBzR9DrhBA04VtL05HbCm9RmqaecBqrpxAWs4xE28HcMDAZwH+FNttIFk0gf7qaUzS2cMgUtrdDxljrKKGELZezA3mTrk5wBDix33eLUjAGVuY5xZxitpBERERERaaPMmBnHVRziEGua1CMJIYRb+Q3Z2t5xxrBSTT5L2M271FGECTMx9KMLNxFJV4/NE04mZ/EgleyhghxqOEQD1RxkEQ1UUcj3lLGVgcxgIH+hhjwMbASRiI0qdvFfAPwIJZq+BBIFQANVhJDmsTiPxU4Dh/iGrbxMId9jIYh0rqQLN2p1zZmiKs+z49oRJWlERERERNqwRJL4HXexlxwOsJ9ggulMJmmkY8Lk6/DEQw7xNVt40XnbwE4R66hkH4N4hDBSPTZXENH4E8ZBFpFP85UI9ZSRzzK6cbNLQWI7UWRyHQf4gljOYjdvU8ZWAJI4nyTOJ4w0TF7esJHP1yxjsnM7lpUKtvMqBXzLcF4kih5enV9aQWiyZ8e1I0rSiIiIiIi0ceGE04e+9KGvr0MRL6iliD2847avjmJKWO/RJE3jdYvZeFSrnQZqaKCKA3xOPGcTShoBRACOU6bSuIIgEviOqdRTjj/hBJNIA1Ws528MZAYxXnyd1lLCVl5sVi8HoJQtFLBSSZozQcoIxylOlQdwv43O5OhPGdHakXmdatKIiIiIiIj4UD2l1HCoxf7myZTTZ8YPCwHO2wZ2aiiklC1UkEMdpexkDpv5BzUUOMdZCOAwKwkjgyh6EUk3AonBhAU7VnL5xKv1Yao5SAHftdh/kEVem1takdniOGYboNmKwSO3R830WtHgyspK1q1bx7p16wDYs2cP69atY9++fV6ZrymtpBERERERkVOyna2sZz272EkKKQxhKNl0wU8fM06KGX8sBGKjzm1/IDEAGBhUsZ8q9mNgJZhkwshwSbacqCBiSWY0u3kLgAYqqWQfjasWkjifYtbRQDVhZNCFXwKOQsNlbMeEBQvNPyCXs4N6ygk6ErOnmbFgJhAbtW77/Qj2yrziA13HO47ZXjrNtYhwWKojQeOl47cBfvjhB0aPHu28fffddwMwadIkXnvtNa/NC0rSiIiIiIjISaqjjpWs4I/8HwfIBSCAQDqTyR+4lwu4SImakxBCJxIYRh5L3fSaSOAc7DSQz1ds5V80UHmkx480LiOT61xqx5yoZEZzmNWUs4M6imlM0CQyAjMWGo4c/b6fL+jExYSQBNgx44+NWiwEcvQqBz9Cj7R7RxiZpHEZu3nTbX8647w2t/hA1/GOY7YPLHcUCQ5Ndmxx8vKx26NGjcIwWve0skb6zikiIiIiIidlK1t5ksedCRqAeurYwXae5WmyyKaLB08kOtPZaSCFSyhlM1Xsx3xkZYwJM12YRARdKWMrm/gnRpOtRAYN7ONDQkgmnStOet5QOtGPP1LCRnbxX2zUEc8QGqhxKShspQw79RSykr18RBgZ7GU+gUQTTBJ+TY4BT+My/Ak9jWfj2PwIpBuTKWQFFexx6cvkWmIY4LW5xUfMFkgb5esoWo2SNCIiIiIicsJqqGErm/mRtc36DOwc5ABb2aIkzQkqZSs7eYNStpLIucQyCCvlhJJKLIMIJws/AsljqUuCpql9fEgC557SFqMQEgkhETv17Gch+XyNnXqXMaGkU0kuG3gSgwYSGEYKF7GfhVipIJLuWAgiifOJZ8gpPQ8nI5YBjODf5LOMgyzGn1AyGE8sAz1eYFmktSlJIyIiIiIiJ6yCcsopw3B74gpUU0UpJa0cVftUwV7W8Qj1lAKQx1LMBBBIHMlcQDQ9AbBjo4Icl/vaqMNGDQZ2bFipp/S06sBE0IVqZjdL0ABkcwM5zHUmiQr4jljOYiAzKGULoaTSiYuIINt5EpS3RdOLaHrRlVuO1KnRmThyZtArWURERERETlgQwQQRRCRRbvv9CaAL3Vo3qHaqiNXOBE0jO/XUcJBd/Jd6ygFHsdxwMp1j6imjlC2UsZ1ydmKljMOsdjmF6WRF0pX+/JFQUpxtfoTRlZsIIpFydhwV+1py+RQrlZiwEMdZrZagacoPfyVo5IyilTQiIiIiInLCIoigM525hgm8xqvN+s/lPLoqSXNCDrO6xb5K9lJHiTPxkcwoDrAIK+WUs8tl61MaV7CP+dRTQnduxdTsyOITE8cgwsh0nh4VRAKhpFLNgSMnKtUcdQ87tRRg19+3iMco5SgiIiIi0s410MAmNvIxHzKP91nFSsqPrMLwhj70pz9ncSu/IYEEAIII4efcxL3cTyyxXpv7TBJ41PNkwow/4ZgJwEIIZvydfZF0pzd3YsLsTNCYCSSbGzBooJ4yDrKYqibFnE9FEDHE0u9IwiYNEyaCSSKBc1q8TzKjTmtOEfmJVtKIiIiIiLRjNdTwER/wCA9RemTrjD/+/JxfchtTSfFCIdVoohnDZfSlP+czkgZsxBJLF7oR6sWTfc40yYwkjyWY8COBYfgTQjV5BBBJFL0IJsk51owfyYzGSiWV5GBgw0IQZWznMD8A0EA1DVSddBx1lGKlAj9CCHKTYDPjR2euoZQt1JDv0pfCxUQdqZ0jIqdPSRoRERERES+rpJI66oggAv8mqyM8YR1r+BN/wIrV2WbFyuv8mwwyuYVfe3S+RqGE0pVu2tp0GiLpQSbXYaOGXcyhlC0A+BFKDP0IJJYEznHZvhRAFIWspJ6yZtezEIzfSSTJrFRQwAr2Mo8aCgggijQuJ4mRzYoQh5PJQB6imHUUsAI/QklmNFH09EktGpEzlZI0IiIiIiJeUkIJP7CShXxCJZVkksVYrqAXvfHz0FvxT1jgkqBp6r+8zsWMIZ0Mj8wlnuVPKGmM48cjJzwFk4A/EfgRhoGNTcwkhCfwJ4JSNnKAxdRTRiTdCSCKfL7CRp3zep24gNATXDllx8Y+FrCLOc62Gg6xnX9TSS49uBU/gl3uE0oKoaSQxuWeeQJEpBklaUREREREvKCCCt7gNb7iS2dbIQWs4Qem83uGMfy057BhYze7Wuw/yAEqqTztecR76iignB2Ektasr4FqitlAGdvI5ytnexGrsWOjK5PJ5SNMmElgGJ25BtMJlh2tIpcc5rnty2MxKVzsPAJcRFqPCgeLiIiIiHhBDrtdEjSNGmjgf7xOMcWnPYcFCz2O8UE6nQwitBWlTWugBgNbi/2V5FDCBpe2AKLwJ5RaChjA/QzmMXrxO4JJPOF5azjk5rQmBwP7aRcgFvEYwwZVS6HsTcefRsv/XjzhscceY8iQIYSHh5OQkMDVV1/Ntm3bvDpnU0rSiIiIiIh4wcajPlg3lUce+eR5ZJ4xXEbQUdtSGk3mFlLdrNCQtiOASCwt/P0B+BGClYpm7RaCKGUzoaQRTS/8CTmpec3H2VRhIeCkrneyaiikgBXs4X0OspRKJYXEnfK5sKMz7B0NB37u+HNHZ0e7l3z11VdMnTqVFStW8MUXX2C1Wrnkkkuoqjr5otynQtudRERERER8oGkx2NNxFgN5kmf5Kw+Rz0HAUdT3Fm7jIsZ4ZA7xnlDSSOEi9vFRs75gErEQiL2FmkOOdverCuw0UEcJJizNigADhJBCIDHUuVnRZSGIMC/WMSpnFxt4kir2O9v8iaAvdxPHIK/NK+1M+VzYPxEwXNsbDjjaU9+DiPEen/azzz5zuf3aa6+RkJDA6tWrOf/88z0+39GUpBERERER8YI+9OM93nbbl0IqiU2OVz4d/vgzjqvoQU/2sZd66uhEKj3oSSCBHplDvMeMhQzGY2DjIIuPFAI2EUUPevBrStna4n2j6EmgmyOzS9lCLp9SzHrM+JPMaJIZSSgpzjEhJNGDW9nAM9ipd7abMNOVyYSS7tHH2chKJVt5ySVB42gvZyPPMITHT7j4sZzBDBvkT6NZgsbRCZggfzqEXwUmi1dDKStznKQWE9M82ekNStKIiIiIiHhBJllcyMUs5guXdn/8+Tk3EeNmdcPp0HHY7VcwcXTnVlIYQz0l+BFCKGn4E4aZIIJJooZ8l/uYCaQzE5qdwFTCZtYygwaqnW27eZNCvqc/9xLSJDmYwLkMJpY8vqKcnYSQQicuIIpemPHOB99K9jmPGj9aPWWUs0tJGoHq5dCw/xgDDGjIdYwLHeW1MOx2O9OnT2f48OH06dPHa/M0pSSNiIiIiIgXhBHGz7mJnvQ+cgR3BVl04RLG0ovevg5P2hgzfkSQ1aw9jFQGcB/7+JACVmDHShQ96cwEYujnMtZGPTm875KgaVTBbor50SVJY8JMFD2Joid2bF5LzDTlLram6in1egzSDjScYM2uEx13iqZOncrGjRv5+uuvvTpPU0rSiIiIiLQhNTWQdwgaGiA2xvEl7VcUUYzmQoYyjDrqCCccvzP8LbiBgRUrAW4Kzx7mMIcpxIKFZDoRRpgPImx/wulMT6bSmYkY2AkittkKGoAaCihmfYvXyecrUrjEbT2k1kjQgKNQsgk/DBrc9oeQ3CpxSBvnd4KvgxMddwruuOMOFixYwLJly0hNbb3VXWf2TwgRERGRdmT7TvjvO/DjRrDbITkRrp8Aw4dCoEqLtGshR/47FYc5zEEOYMdOIokk08nD0XlGLbVsYgOf8jF55NGN7lzCpXSnB1asfMc3vMMcDnEIEya60p1fMInetM4WgvbOjIXQ4/zdmzBhOsYBvqZWSsQcSxgZJDGCPJa47Qtzs5pIOqCQEeCX6igS7LYujcnRHzLC41MbhsGdd97JvHnzWLp0KZmZmR6f41iUpBERERFpA/blwiNPQXHJT215h2DmLPDzg/PP9V1s4ht27KxkBa/zbwo4hB2DcCK4kV8wkgsIIsjXITpZsTKfufyFB6mgAjDww495vMfDPEYIITzPs9ixA47VNtvZyt94hAf5K1lk+/YBnCGCSCCWgRzC/daMZEZ77FSxU2UhgGxuxISJfJYfOaHKTDS96c6tBBPn0/ikjTBZIOnZI6c7mXBN1Bx5DSfN9ErR4KlTpzJnzhzmz59PeHg4+fmOelCRkZEEBzdfweZpStKIiIiItAFrN7gmaBoZBrwzD/r3hsjI1o9LfGcrW5jJk9RSSwXlFFCIlXo2sZ4neJrRXIilDayMAEesM3iAKipIJY1hDCeaaIoo4nX+zRjGOhM0TVVSyUq+V5LGQyz405lrKGED9ZS59EXTl+ijatj4SgiJ9OQO0hlHPWX4EUoo6fif4mozOUNFjHccs50/zbWIsF+qI0HjheO3AWbNmgXAqFGjXNpnz57N5MmTvTJnU0rSiIiIiLQBq39suW/ffigtU5KmIzEwWMJiaqnjEPkc5ICzr4Zq/slMoolhEIN9GOVPtrCZKiq4homYMLGAD8knjxRSuYKriHNzTHSj9azlOq7HfIxtOnLiIunGQB4mn68o5AcsBJDCRcQxpE2tUrHgTwRdfB2GtHUR4x3HbFcvdxQJ9kt2bHHy4rHbhuFue1XrUZJGREREpA2IiWq5LyTYseVJOo4aatjFDmqoJo88QggliGDAoJZacsjhB1aSRjoJJPg6XEop4RzOpZBCFjDf2b6fXGbxHLHEkkU2u9nV7L4xxCpB42ERZBFBFplMxISf2yLDIu2GyeLVY7bbGn03FBEREWkDjlVz5rxhkJzUcr+ceQIIIJY4aqklngTqqSeXveSyDytWutCVaqrI46CvQwUggwwGMYRPWdCsL4AAFvE5Xenu9r6judDb4XVY/oQrQSPSzihJIyIiItIG9OgK117dvD2rM1x9GZj1rq1D8cOPS7gUE7CHXRymEOuR/wopoBe9SSABOzZfhwpAJtmEE47NTTzpZBBw5L+mTJi4hon0oFdrhSki0uZp4ayIiIhIGxASAhOvhLP6wqq1UFUN/XpDz26QEO/r6MQXetKby7mKDax3tpkwcRnjKKWEDaznIi71YYQ/ySSLdDqTQWcKKaCeeoIIJplk4kkkkEC604Ne3McmNhJIEP0ZQCZZp3w0uYjImUhJGhEREZE2IiQE+vZ2fInUUUctNdzPwxwiDytWEkliHWuYzzzOYwTBbWQriz/+9KEv3ehODDHYsBNIIMEEE0AA0cSQRTaJJHE25/g6XBGRNktJGhERERGRNsiMmUPksZLvqaeeYg5TTDGBBJFNF+JIOK0juA0cJ5iYMHkk3nQyuIPpzOI5GmhwtgcQyC3cRiIqrCQicjxK0oiIiIiItEHRRDOCUeTxJgH4E0gACSThjx8WLFzExYQSetLXzSef9azja77Cgh8jGU0f+hF3msczmzBxHueTRDIr+Ja95JBNF87mHLrS7bSuLSLSUShJIyIiIiLSRo1gJN+zgr3swR9//I+0d6U7Q05h29AB9vM0fyeH3c629ayjD/2YyrTTPs7bDz960JMe9Dyt64iIdFRK0oiIiIiItFGdSOEP3Ms61vA1XwEmRnEB/RlAAoknfb2vWOKSoGm0kfWsZTVjGOuBqEVE5FQpSSMiIiIi0oYlk0wyl3PJkZOcTrUOTRFFLOerFvu/5AtGMpoggk7p+iIicvrMvg5ARERERESOz3Lkv1Nlx4YVa4v99dRjw3bK1xcR8QYDG7UspYo3qWUphpe/T82aNYt+/foRERFBREQEw4YN49NPP/XqnE0pSSMiIiIi0gFEE0Nv+rbYP5izT6kQsYiIt1Qzlzw6U8hoivk5hYwmj85UM9drc6ampvL444+zevVqfvjhBy644AKuuuoqNm3a5LU5m1KSRkRERESkA/DDj7FcTgghzfqiiOZczvNBVCIi7lUzlyImYmO/S7uNAxQx0WuJmnHjxnHZZZfRtWtXunXrxiOPPEJYWBgrVqzwynxHU5JGRERERKSD6EFP7uUBBnM2QQQRQgjncT73cj+ZZPk6PBERwLHFqZRpgOG2F6CU6V7f+mSz2Xjrrbeoqqpi2LBhXp2rkQoHi4iIiIh0IL3oTRe6UkgBYCKRRPz0sUBE2pA6ljdbQePKwEYudSwniFEen3/Dhg0MGzaM2tpawsLCmDdvHr169fL4PO7ou7GIiIiISAcTQAAppPo6DBERt2zkeXTcyerevTvr1q2jrKyM9957j0mTJvHVV1+1SqJGSRoRERERERERaTMsJHt03MkKCAigS5cuAAwaNIhVq1bx7LPP8tJLL3llvqZUk0ZERERERERE2oxARmAhFTC1MMKEhTQCGdEq8djtdurq6lplLq2kEREREREREZE2w4SFKJ6liIk4EjWGSy9AFDMxYfH43Pfeey9jx44lPT2diooK5syZw9KlS1m4cKHH53JHSRoRERERERERaVNCGA+8RynTXIoIW0gliplH+j2voKCAm266iby8PCIjI+nXrx8LFy7k4osv9sp8R1OSRkRERERERETanBDGE8xVR057ysNCMoGM8MoKmkavvvqq1659ItpNTZrHHnuMIUOGEB4eTkJCAldffTXbtm1zGVNbW8vUqVOJjY0lLCyMCRMmcOjQIR9FLCIiIiIiIiKnw4SFIEYRyg0EMcqrCZq2oN0kab766iumTp3KihUr+OKLL7BarVxyySVUVVU5x9x111189NFHvPvuu3z11VccPHiQ8eO9swRKRERERERERMST2s12p88++8zl9muvvUZCQgKrV6/m/PPPp6ysjFdffZU5c+ZwwQUXADB79mx69uzJihUrOOecc9xet66uzqVKc3l5ufcehIiIiIiIiIhIC9rNSpqjlZWVARATEwPA6tWrsVqtXHTRRc4xPXr0ID09ne+++67F6zz22GNERkY6v9LS0rwbuIiIiIiIiIiIG+0ySWO325k+fTrDhw+nT58+AOTn5xMQEEBUVJTL2MTERPLz81u81r333ktZWZnzKzc315uhi4iIiIiIiIi41W62OzU1depUNm7cyNdff33a1woMDCQwMNADUYmIiIiIiIiInLp2l6S54447WLBgAcuWLSM1NdXZnpSURH19PaWlpS6raQ4dOkRSUpIPIhURERERkfbGwGAvOWxlC4UUkEY63ehBJzr5OjQR6QDaTZLGMAzuvPNO5s2bx9KlS8nMzHTpHzRoEP7+/ixevJgJEyYAsG3bNvbt28ewYcN8EbKIiIiIiLQzK1nBP5lJNdXOthhi+T330J0ezrYGAyyAyeSDIEXkjNVukjRTp05lzpw5zJ8/n/DwcGedmcjISIKDg4mMjOSWW27h7rvvJiYmhoiICO68806GDRvW4slOIiIiIiIijXLJ5QX+4ZKgASimiJd5gQf4C4XWSL6ph/UNEG2GSwKhtx+EtstqnyLS1rSbJM2sWbMAGDVqlEv77NmzmTx5MgDPPPMMZrOZCRMmUFdXx5gxY3jhhRdaOVIREREREWmPcthNJZUt9O1ho20f/6zoS6XxU/v39TA+CH4WDCFK1IjIaWo330YMw3D71ZigAQgKCuL555+nuLiYqqoq5s6dq3o0IiIiIiJyQsopb7GvwYBtthqXBE2jebWw2+bFwEQ6MDs28ljKLt4kj6XYad1/bI8//jgmk4np06e3ynztZiWNiIiIiIiIN6WQ0mKfzfCn3h7jts8A1lmhj7+XAhPpoHKYywqmUcV+Z1soqZzDs3RmvNfnX7VqFS+99BL9+vXz+lyN2s1KGhEREREREW/KIJOudHfbN4rR7KjLaPG+tW5W2IjIqcthLouZ6JKgAajiAIuZSA5zvTp/ZWUlN954I6+88grR0dFenaspJWlERERERESAaKK5g+kM5Vz8jmw6CCKYyxjHddxAmb3lpTL9tIpGxGPs2FjBNBzr1I7maFvBdK9ufZo6dSqXX345F110kdfmcEfbnURERERERI5IJZVp3M0B9lNNNRFEkEIqFrOFn4fAs5VgP+o+/fyhiz5ZiXjMIZY3W0HjyqCKXA6xnGRGeXz+t956izVr1rBq1SqPX/t49K1ERERERESkiUACySK7WfvwAAgOg7m1sLfBcZrTRYGOrxjtURDxmGryPDruZOTm5jJt2jS++OILgoKCPH7941GSRkRERERE5AQEmmBYIPT1h1IDAoF4i6+jEjnzhJDs0XEnY/Xq1RQUFDBw4EBnm81mY9myZfzzn/+krq4Oi8V7//CVpBERERERETkJYWYI83UQImewREYQSipVHMB9XRoToaSSyAiPz33hhReyYcMGl7abb76ZHj168Mc//tGrCRpQkkZERERERNwopJBD5GPCRDKdiMH98dNtjYGBjX3YKMCEBTOp+JHg67BE5CSYsXAOz7KYiYAJ10SNCYBzmIkZzydMwsPD6dOnj0tbaGgosbGxzdq9QUkaERERERFxsmLlW77mTf5LIQUAJJPML7iZsxmKuQ0fEGunilo+oZr3MKgGwEwcYdxKAMMwHflwJyJtX2fGcyHvsYJpLkWEQ0nlHGbSmfE+jM57lKQRERERERGnDaznn8zEjp0IIvAngEIKeZYn+TMz6I33f5N8KmwcppYllPMQYMZMFCbCsHOYcp4mir/gT09fhykiJ6Ez40nnKg6xnGryCCGZREZ4ZQXNsSxdurTV5lKSRkREREREAKijjgXMJ5V0etOH/eRSRSUDOIsaaljCInrQE0srf0A6ngYOUsMnVPMGdg4DYKcAM3FYSMME1LFMSZoWbGYT61nHLnaSTgYDGEhf+jn7bdjYTy6HKcSfAFJJazfb36T9M2PxyjHbbZWSNCIiIiIiAkA5ZQDEk8BjPEwDDc6+3vTlF0ymiioiiPBViG7V8gUGVdjY59Ju5/CRFTUxWNmBgQ1TG0sw+dq3fMN0fssh8p1tUUTxNM9xIZdQRhkfM5+PWUAtNQB0IoVbuI0BnOWrsEXOWG13Q6mIiIiIiLSqQILoQlde4QWXBA3AJjawhh8IIMBH0blno5A6lgI1mIlr1m+nEDCw0EkJmqPkso8H+ZNLggaglFL+xB/ZzS6+4kve511nggbgIAd4mifYw+7WDlnkjKckjYiIiIiIABBBBAc5gB272/5NbKSQwlaO6nisGNRiZQtBXNas16ABMBHEBa0fWhu3m11sZ6vbvnwOcpCDfMR8t/1VVLGWNd4MT6RDUpJGREREREScrFiJabYixUQCSfjjj5V6n8TVEhPR+NEFO8WYCSGIy2n6McdMImHcqno0blRRdcz+euoopqjF/p3s8HRIIh2eatKIiIiIiIhTPwawgm+JI45KKjEBYYQTQgjJdGpz9WjMBBPCNZSxkTq+xo8+RDIDGwWYCCGQCwigDyZ99GkmkUQCCKC+hcRbOOGEEUYllW77k0n2ZngiHZJW0oiIiEi7YGCwnVzmsIi/8SbvspSdHMDA8HVoImeUvvQnjjgiiKATnUimE+GEY8HCNUwkjnhfh9iMP/2I4B4sZNHARmr4GAM7wVxKIAOUoGlBd3pyNRPd9l3MGLLIZhQXuu33w4/BnO3N8EQ6JH23EhERkTbPwOAbNjKTd6nDCsBy1vMuS/g913O2tjGIeEw66fyBP/EfZrOdrRgYRBHF1UzkXM7zdXhumfAjkKH40RM7hZgwYyYJM8G+Dq1NCyOMqfyOcMJ5hzepoJwQQrmSq7mV24kljssZRx4HWc0q5/2CCGIKv6Yr3XwYvciZyWQYhn791ER5eTmRkZGUlZUREdG2lnKKiLSKgjIoyoHKQggOhpgM6JTq66ikg9tPIX/kRcqpbtYXRySPcxuJRPsgMpEzVxVVHGA/VqzEEkuStracsaxY2c5WyiknjDC60YNAAp395ZSzlxz2kUMIoWSSRRrpWHRalseciZ9Da2tr2bNnD5mZmQQFBfk6HJ870edDK2lEROQne3Phx3mw/i2oKXO0JXeHS/4A3Yb5Njbp0PZxyG2CBuAwZeRySEkaEQ8LJZRudPd1GNIK/PGnN31b7I8ggr70oy/9WjEqEd946KGHmDFjhktb9+7d2brV/UlonqYkjYiIOFTWwNYv4PuXXNvztsHc38Mv/wUp2lIivtG4xelU+0VERKR9smFjM8spIY9okunFCK+v4urduzeLFi1y3vbza73UiZI0IiLiUHgANrzlvq+iFPavVJJGfCaRGMyYsLspEuyHhQStojmjNWDnABVYsRFJEPGE+DokERFpBd8xl38xjSL2O9tiSeVXPMswxnttXj8/P5KSkrx2/WPR6U4iIuLQUAUlB1ruP7y59WIROUpnEhnewlL8ixhEBomtHJG0llzKeJZV/B+LuYvF/JElfMIuqpocGWxgkEsZ6ylgO0VUt3CcsIiItB/fMZcnmOiSoAEo4gBPMJHvmOu1uXfs2EGnTp3IysrixhtvZN++fV6b62haSSMiIg5BwRAc+VMtmqNFpbRuPCJNhBDEzYwlnii+4AcqqCaSUMYylLEMJQB/X4coXlBINU+ykt2UurTNYg0N2LiSbpRRywJ2sYAdVGLFjInexDGF/nTRCisRkXbJho1/MQ3crKB1tJl4lemczVUe3/o0dOhQXnvtNbp3705eXh4zZsxgxIgRbNy4kfDwcI/O5Y6SNCIi4pCUCQOvhG/eaN4XFgJZI1s/JpEm4oliMpcyhiFUU0coQSQT6+uwxIu2U+SSoGnqPbYxlE58yV7e4qeVfnYMNlDIE3zLw4wkmbBWilZERDxlM8ubraBxZXCYXDaznL6M8ujcY8eOdf5/v379GDp0KBkZGbzzzjvccsstHp3LHSVpRETEwd8fhtwAVfth/VKwG2AyQXQkjP09JPTydYTSgRgY7GA/37GJ7eynM0mMoB9dSaETcb4OT1rJVopb7CuhljyqWMBOt/35VLOVIiVpRETaoRLyPDrudERFRdGtWzd27nT/88bTlKQREZGfxGfA5X+BwdugeDsEhkFyb4jOBrN+ZEjr+Zr1/Jl/k0M+9Vjxx4904nmIKVzIQEyYfB2itIJwAlrsM2OilgbKj1F/ZhcljCbDG6GJiIgXRZPs0XGno7Kykl27dvHLX/7S63OBkjQiInK0kGjIPMfxJeIDByjkYf7DVn4q0leHlR0c5CFeowud6NwKb8rE9/qRgAUTNjc1CXoTRzSB+GGiwW3NAogh2NshioiIF/RiBLGkUsQB3NelMRFHKr0Y4fG5f//73zNu3DgyMjI4ePAgDz74IBaLhRtuuMHjc7mj051ERESkTdnBATayx23fTvazg2OcQiZnlGyiuJl+mI9aORVDEJPoSybRDGohYeePmb7Et0aYIiLiYRYs/Ipnj9w6evWs4/YtzPR40WCA/fv3c8MNN9C9e3euu+46YmNjWbFiBfHxrfMzRStpREREpE2ppAZ7CysjDKCcqtYNSHymCivDSKEXsXzNfoqopTdx9CWeVCIA+AV9yKeSvZQ77xeAmd8ykEyiKKKavZRTST3RBNGZSMIJ9NVDEhGREzSM8fyR9/gX01yKCMeRyi3MZBjjvTLvW2+95ZXrniglaURERKRNiSGCQPypw9qsz4KZBKJaPyhpVbmU8RW5LCcXGwZD6cSFZJDl5kjtzkTyIOexgxJ2U0IqEUQRRABmNlPIu2xlHQXO8X2I57cMJO1IkkdERNquYYznbK5iM8spIY9okunFCK+soGkrlKQRERGRNiWTRMYzgjf5slnfZQwlgyQfRCWtZT/lPMp37KfC2fYhO1hOLg9yHtluEjXxhBJPKGmE8yabWcFBKqmngCouowtnk8zKIyeAbKSQV/mRP3IOwfi32uMSEZFTY8Hi8WO22zLVpBEREZE2JZk4buBCbmMcScQAEE8kN3MpU7iMNBJ8HKF40/ccdEnQNCqhls/Y7bIVzsDgAOX8yCE2Ucjf+J7l7MeKnWqs5FHFq/xIBfWkE+6831oOsZeyVnk8IiIiJ0MraURERKTNGUx3oglnMN2ppIZQguhBOll00vHbZ7AarCwjt8X+lRzkWnqQQChV1LOQPbzPVqqwchGdWcBO0okggkDqsTvvN49tTGMI+44kf+wYxzy6W0RExFeUpBEREZE2x4KFbqTRjTRs2M7ovefyExPNz/Bw7f8pRbecXGazHoBIAsmlnGqs7KSEHsQS0GTBeLlLygbMmIggwNPhi4iInDZtdxIREZE2TQmajiMIf84nvcX+oXQijhCKqOF9tjnb67ERceTEpgbslFFHKAEEHnntmAC/Jm97zyKRzkR650GIiIicBiVpRERERKTNOIdOZLg5eSmWYMaQhQkT5dSR3+Qo9hoaiCGIkCOLxCuoIwAL2UQTjB8DSOQQlQD0JZ5b6E+QigaLiEgbpO1OIiIiItJmdCKcezmXb9jPV+zDhp1zSGEk6WQeOX49EAth+FPZ5Jj2tRziDgbzLKsIPPIWN4wAziWVOxmEDZhIDzoTSfiRVTft0WGqyaWcOmzEE0I6EfhrtZmIyBlDSRoREZF2rogytpFLIaWEEUwXOpFB8kldo4Iq8ijGhp1Eoolxs5JBpLWkEM519GQsWdhx1JxpKpkwLqAzH7LD2ZZHFSZM3MdwArBQg5XuxNCNGPwwE4w/UQS18iPxrNXkM4s1HDqyiigAM5eQxbX0IIZgH0cnIiKeoCSNiIhIO7adXB7hv3zOKufRxF1J4W/czrn0cY6zYyeXAvIowoSJTsSRSjwmTKxlB/9hITs5AEAKcfyCSxhKT/z1VkF8qKUVLyZMXEEXcihjPQXO9gKqSSaUS48kd9aQzz9YzQEqiCCAy+nCcFLbZUJjNyX8je+opsHZVo+dBewkkgCup3eL962mnvUUsoS95FHJQJIYQjK9iW+N0EVE5CTonZeIiEg7VUU1/+B9PmOlS/sODnAnM/kfD9CDdGqoYyEreZPFVFMHQDgh/JJL6EoKj/E/ao60AxzgME/xNn/mJgbRrVUfk8iJSiaMPzCUXZSwkxJC8Kc7MWQShT8WPmYnL7H2SOoSKqjnZdaxixJuZQCh7ex0p7UccknQNPUxuxhJBsmENeurwcq7bOVPfEXDkTOu3mYLKYTzIpdyNp28GreISHt04MAB/vjHP/Lpp59SXV1Nly5dmD17NoMHD/b63CocLCJnPGsR1GyD2l1gq/V1NCKes439fMg3bvv2U8RmcgBYyw5e5RNnggaggmpe5EPWs5v6JnU9GjVg4wOWuyRvRNqaKIIYRDI/oxfj6Eo3YvHHwgEqeJPNzgRNU1+ylxzKWj3W07Wb0hb7Sqmjinq3fZs4zP0sdyZoGh2ggif4jiKqPRmmiIjH2bCxjKW8zZssYyk2bF6dr6SkhOHDh+Pv78+nn37K5s2beeqpp4iOjvbqvI20kkZEzjj2WqjLgfqDYCuEkg/AVgYmfwjpCzG/gOAevo5S5PSVUUVdC79ZB9jHIWqoZT5fu+230sCHfEMXUthGbrP+3eRRRiXB7bjIqnRMBVRR1kKC0QB2UNLutvqkEN5iXyj+BLXwtn4N+S1+n/iW/eyilFhCPBKjiIinfcBcfs80DrDf2ZZCKk/yLFcz3itzPvHEE6SlpTF79mxnW2ZmplfmckcraUTkjGKrguJ34ODDULsB9k2DiiVQnwtGHVT/CHmPQN1eX0cqcvoiCHWeYuNOGolUUks+JW77TZjIo4jwFj6ghRJEoI4plhbU0cB2ilhEDovJYSfFWL38280TZcZ0zH7/dvgWeDBJBLQQ90V0bjGJU3qM1XB2oPYYiV4REV/6gLn8nIkuCRqAgxzg50zkA+Z6Zd4PP/yQwYMHc+2115KQkMBZZ53FK6+84pW53Gl/P6FExKcaysBW4esoWlbzI5S8C0E9oWQejl+ZGtBQALZSxxhbKVSv8V2MIp7SnVSu4Fy3fSnE0pvOhBBIHJFux5gx0ZMMqnC/D3AMQ4jWKU/iRgV1vM0W/sgSnmUVM1nF/2MJ77OtxW03rakT4SS0kHz0w0RXWmfJuid1IYZpDCG0SeLUBAyjE+PogqmFxFTfY6wYSiCEBEI9HaqIyGmzYeP3TMNws3G1se0PTPfK1qfdu3cza9YsunbtysKFC/nNb37D7373O15//XWPz+WOtjuJyAmp2wMVS6HyezBZIHwkhA2HgBTXcUYD1O+DhmIwBUFAOvi10mc8ez2Ufur4f78YqN3m2m89BJZoMPk5kjTR17ROXCLeEkYI05lIJTV8wQ8upzs9wW30IB2AcZzLU7zt9hrXMoqN5LAF1+Vlg+nOCPp59wEcg5UG9nKIAkoIwI80EkgkxmfxCNiwYzny+73V5PMuW136rdj5H5tIJ4JzSfVFiE7xhHAL/XmK76k/qhbLdfQko4XEZVtmxsQI0sgkihzKqMFKCuFkEEnYMYog9yaOc+jECg426/stg+iuf1ci0gZ9w/JmK2iaMjDYTy7fsJzzGeXRue12O4MHD+bRRx8F4KyzzmLjxo28+OKLTJo0yaNzuaMkjYgcV+1uODgDbMU/tRW9ARXLIPlPEHDkYIiGIsdWo/LFjq1FAIHZEH9769SAMeqg4fCR/7eCJdxRi8bZbwVsgB9Y9J5UzhDdSONpfss2cimklHBCyKITmSQ7xwyiG9cxmnksx3pka0Mg/lzPBQykGwPowjB6sYYdNNDAALqQTQrRx6iB4U2lVPING9hDPjbsgEEuBUxkFEPp2eKKAfE8A4NtFLOMfWynmCRCGUUGa8lv8T4fs4vBJBOApRUjbe4cUniY8/mSveygmDhCuJQs+hB3zG2CbZkJE2lEkHYSK9zSieQJRvMqPzKX7VRST2ciuZ2zuPwYK3BERHwpjzyPjjsZycnJ9OrVy6WtZ8+evP/++x6fy532+RNKRFqNYUDZZ64Jmkb1e6Hqewi4xjGuZD6UfeI6pm4X5D8OKY80X3XjaeZgR1LIuh9qd0L4hVA617W/8bte+EjvxiLSmuKIIo6oFvvDCeF6LuAcerGfQsyYSCOBdBLwO/KPoh/Z9CO7lSJumRUrH7OCx/gfhUdOs4kjkpu4hLksI5ZwupLm2yA7kO85yJN8T92R5eTbKGYxexlJGmlEkEt5s/sUUk0NVp8nacyY6E08vYijlgb8seDXQXf69yCOvzKSyfSlFjsxBJLZDrd8iUjHkdzkl02eGHcyhg8fzrZtrkvyt2/fTkZGhsfncqdj/qQSkRPWcNiRiGlJxVeOY63rc6F8YQvXKGq+9cgbTH4QOcbxp3UvhPSDoMYkuAn8kxxbtaKvgyCd7iQdjD9+dCWV0ZzFSAaQRSdngqYtWc127uMVZ4IG4DBlzOR9OpPEarb7LrgOppBqXmGdM0HTyIyJN9hEvxZqnaQRTkgbKjhtwkQw/h02QdMoED96k8AgkpSgEZE2bzgjSCG1xdV+JkykksZwRnh87rvuuosVK1bw6KOPsnPnTubMmcPLL7/M1KlTPT6XO23v3ZmI+Iy1yLE6xl7jqOkSkAFuanW5OlKY11YB9uqWh9Xt8WCgxxDcExLvgsOvQdnnEHU5mCaArQT8UyDsbAjIAotOGxVpc6w0sIDvqHFTeNaOnS/4gXEtFEo+FYcoYTu55JBPDBH0JJ1MkrX944gDVFBA82/sZkxEE0QptQRgdqn5YsbEZXTB38eraEREpH2zYOFJnuXnTMSEyaWAcOPP6b8zE4sXft4MGTKEefPmce+99/Lwww+TmZnJzJkzufHGGz0+lztK0ogIADUb4dA/wNq4rdMMoUMh7lcQOqTlVTJhI8ESDOYgxwoWo4WTPP0SvBJ2MyY/CD/fsVLGetCxDcs/GQKSWmd+ETl1VdSwn0L8sbg9ynkvhzxWPHg3B3mCNznIYWdbEAHcyXhG0E+JGqDhqIK7TUUSSAKhRBJE4ZFETgQB3ERf+hLXWiGekDoaqKCeQCyEE+jrcERE5ARdzXjm8B6/Z5pLEeEUUvk7M7ma8V6b+4orruCKK67w2vWPRUkaEaH+AOT9zbHaxMkOVd85ki+R46Bq5VH9QEAahA396f9Dzoaqb5tf3xQMwb29Fr5b/gmOLxFpP4IJJIkY4oniIEXN+hOJphunX9yqmlpe5ROXBA1ALfU8x1zSSHApvNxRJRJKKP5UYW3WZ8HE2XTiYjLJoxITjmOvU3xUbNqdBuxsoIAF7GQ3pYQTwFiyGUonYgj2dXgiInICrmY847iKb1hOHnkkk8xwRnhlBU1boSSNiFC7vXkCplHlNxA9Hjo9BBWLHckaLBA+wrFipbEYsDkAYn8BtqPqz5hDIeFOCMxsYe490FAIJn8I7AJ+bef9vYi0skACuIJzWcsO6rBSTLlzcbMfZm7lCrLodNrz5FLIRtzvwTyffuziIB/hyDgPojs9SSfmJE7TOVOkEs619OA1NjTrG0k6mUQSSsBJnTTUmr7jAE/zPQ1HXkWHqeEF1rCFw9zKAK2qERFpJyxYPH7MdlumJI2IYD3Qcp9R7zjGOqS/I9ESPQEwg19U87GBaZB8H9Tthvr9jiOwA7MhIB1MR+0csJZC+adw6Dmo3wX4Q+SFkDAdQs/y2EMTkXbmLLrwCy7hXZZSTjR11OOPH9dzARcxyCO/OaulDrubrTzXMIIf2MYD/JsAAgAwAVO4jDu4hk5tbBuPt5kwMYYsogliLtvIp4pIAhlLFqPJIPTIc9QWFVHDf9jgTNA0tYR9XEhn+pPog8hERESOTUkaEcHvGPVaTH6O1TDgSLT4HacchF80+A2C0EHHHlfxOeROb9JgdRz1XbMVMl+HYJ2+JNIhhRLMdYxiKD3ZQx4GBpkk05kkAj2UFIgijBACqabOpc1KA6/yCaEEOdsN4FU+4Sy6cC2jPTJ/exJGABfQmUEkUUE9QfgRR9uvvJ5PJflUtdi/gUIlaUREpE3q2GcRiggAQd3B0sJq9dBzHCthPKkuFw79031ffQ5UrfLsfCLSvgQSQDfSGMPZXMpQupPusQQNQBoJjOFsl7YR9OUdlmDBhMXN26M3+ZIiyjwWQ3sTSRCpRLSLBA1w3MLPZhWGFhGRNkpJGhEhMA2Sfg9+R63kDxngqDNj9vCK9obDULet5f6qlZ6dT0SkKTNmruY8xnM+IUfqkgQTRDEVhBCE2c3bo8OUUUlta4cqpyiJUFIJa7G/L/GtGI2IiMiJ03YnEQEg5CxIfQzq9oG9ypGwCezsqCvjaaYAMIWC0cJKdL9Yz88pItJUDBFMYgwXMpBSKoklnHKq2MVB9lPICjZT1+RUo75kEnOMD/3tSQ1WtlFMNVaiCaI7MW4TU+1ZDMFMoh9/YwXWo+oPXUoWWUT5JjAREZHjUJJGRJz8kxxf3haUDdFXQvGbbjrNEHGR92MQETFjJp1EAvHnS9aymDWsYDPdSeM3XMVnrGQr+wgigOsYTTihvg75tG2mkOdYzSfsopYG4gjmZvpxPb1JbUPHZ3vC2XTiYUbwGXvYQTERBHIZ2QwksU0XPRYRkY5NSRqRdsxeB3U5ULcDDCsEdYWAzmBp47/sNQdB3K1QsxFqmp7sanacDhXUx2ehiUgHU0w5zzGPH9mJHYNU4viRXaxkK3/kBsIJ5teMYzDdfR3qadtHOX9kCSvJc7Ydpoa/8z312PgD5+DvgdOz2gozJvqQQA/iqKKeQCwE4e/rsERERI5JSRqRdspWDaXzofhtwPZTe/hIiLu57W8ZCukNGS9B9Y9QvRIsURB+PgT1Br9IX0cnIh3FdvbzIzsBx4f6RGIIJ5Ra6tjCXp7mDrqSctxCtO3BVg67JGiams16xtGVviS0clTe54eZyCYndomIiLRlZ9YGZJEOpGYTFM/BJUEDUPEVVCxrPr6hCKpWQ/kSqFoHDaWtEORxBGVDzHhIfRyS74Gwc5WgEZHW9SO7mrWFEEgMEVRSg4H9jEjQAGyjuMW+cuopoLoVoxEREWm7OnfujMlkavY1depUr8+tlTQi7ZBhg/LPWu4v+xTCR4FftON27XbInwnW3J/GBHaBhN9BUKY3IxWRjqqKGuppIIIQLG14C82xtveYMJ1RBXVjCT5mf4i2AomISBtkw8Zy1pNHMcnEMIJ+Xn9vsWrVKmy2n34bvnHjRi6++GKuvfZar84LStKItEt2q2NlTEts5WCvAaLBWgT5z4B1v+uYup1Q+AIk3w9+EV4NV0Q6kEJK+Z4tfM4qaqijN5mMYQg9SPf4ipRa6gATQadRBHYQ3ZnHcrd93UkjmZhTvnZb05s4IgignPpmfcNIoQtayigiIm3LXJYxjefYT6GzLZV4nuVOxnO+1+aNj493uf3444+TnZ3NyJEjvTZnIyVpRNohcyAEdoW65qv0AQhIAcuRxEv9nuYJmka1W6F+L/j19U6cp6Mu11FYuG4b+CVAyEAI6gImfdcSabOKKWcWH7CKbc62fIr5lg3cxy/pTxePzJNLASvYzNesx4yZCxjIELqTxMkX4+pCJy7jHD5hhUt7KEH8gksII8QjMbcFfYjn71zA3Symqsnx4hlEch/nEn+GHDEuIiJnhrksYyIPYBzVfoBCJvIA7/GwVxM1jerr6/nvf//L3Xffjcnk/S3Q+rgj0g6ZTBAxGiqWgFF3dCdEjf/phKfj1Z6xlXsjwtNTswXyHgVb6U9txe9Cwm8h4gIwtd2dEyId2jZyXRI0jWqoZw6L6UoqIadZwHUv+fyVN8hvUl9lJwdYwlr+H9efdKImlGBu5EL6kcXn/EAZlfQli/PpT1dSTyvWtsaCmSvoSjoR/EA+B6mgJ3H0J5Eep5DgEhER8RYbNqbxXLMEDYABmIDp/JOrGO71rU8ffPABpaWlTJ482avzNFKSRqSdCuoJSb+Hw6+CNd/RZomCmOshZNBP4/yOs1Lf0sZWt9sqoPBl1wQNAA1Q+BIEZjkKDotI2/M9m1vs28peDlFCJsmnfH0Dg0WsdknQNNrBflaxjXGce9LXjSCM4fRlKD1pwH5a26faOj/MDCSZgafx9yAiIuJty1nvssXpaAaOlbXLWc8ozvJqLK+++ipjx46lU6dOXp2nkZI0Iu2UyQRh5zi2PVkPOIoJ+ydCwFHfOwI7Q0CGY1vT0YJ6Q2BGq4R7wupzHfVy3DHqoHaHkjQi7ZGBI8lyOooo4xs2tti/mNVczCCCCDyl6/vhpzdGIiIibUDeMU4kPJVxp2rv3r0sWrSIuXPnenWeps6cIwtEOij/WAjpB6FnNU/QgGMlTeJdEHgksWGJBP9UCBkMCb8BS3jrxuuO3Qq2KjAMsB+9fevosW1we5aIOAylV4t9PckgkejTur4dAxv2Fvtt2I/ZLyIiIu3DiRbu93aB/9mzZ5OQkMDll1/u1Xma0i+MRDqAoGxIngH126F6g2N7VHAP8PVnmYZyqFkHZZ85tjkF9YDw4WAOAXu1+/sEZrVqiCJylCpq2MVBfmAbdVgZQBe6kUYsEXQnjUF0YzXbXe4TTAA3cCGhxzkC+nhiiWAgXVnEarf9w+lz2nOIiIiI742gH6nEc4BCt+twTUAqCYygn9disNvtzJ49m0mTJuHn13qpEyVpRDqIui2Q/zQYNY7bVd+B+R1I+gOEDjr2fb3BVgUlb0Lpgp/a6nMc25nCR0HZJ83vE9RDSRoRX6qgmjdZzEd862z7hBX0IZNpTCCJWKZyDd+zhYWspIY6BtKNKxlO0mmuogGwYOEyzmElWyjHNZObQDTn0ue055D2z8DgABXkUo4VgyRCyCCSQL3tFRFpNyxYeJY7mcgDmMAlUdN4vtJM7vBq0eBFixaxb98+pkyZ4rU53DEZhnF6G8TPMOXl5URGRlJWVkZERISvwxHxiPqDsP+PborxAn5xkPq4o55Na6reAAf+5L4vYqxjm1bZJ2ArAVMghA2HmOscx4uLiG98xyYe5b9u+65jNL/kEuftCqoppJQN7GE+X1NBNRcykBH0ozeZpxXHdnL5hBWsYQcmTJxLb8ZwNp1JOq3rSvvXgJ2vyeUV1lFOPQB+mBhDFj+jF9GnebqYeI6BgQnvH2Ur0l6ciZ9Da2tr2bNnD5mZmQQFndr337ksYxrPuRQRTiOBmdzRKsdve9KJPh/6lYJIB1Cf6z5BA9Bw2NHf2kmamh9b7iv/FNJmQvhIsFc4kjQBKWDSdywRnzEw+IIfWuxfzGrGMISEIytmyqniad7hXb5yjlnGerJIZhZ3M4AupxxLN9LIIpkiyjFhIp4ofdhrBw5Qzk5KKaGWJELJJpp4Qjw6x3aKeZYfaGiyn7cBg4/ZRQKhjKe7R+eTk2OjjAY2Ucsi7FQRyFACGIwf6b4OTUTaqPGcz1UMZznryaOYZGIYQT+vH7vtS/rII9IB2GuO01/bOnE0ZTQcp78OArJBp8SKtA0N2CilssX+auqw8tM/7HXsdEnQNNpNHq/xKU9wG4GncdS1H34knkSxwD3ksYkcDnCYNOLpTWcytPKm1awln6dZSSk/VYdPJYzfcw7ZHtgK1+hrcl0SNE0tYCcjSCWeUI/NJyfORhlVzKaOxc42OyU0sJcgxuJPdyVbRcQtCxavH7PdlihJI9IB+CfgOMvN3ftWC/jFt3JAQHBfKHnffZ9/cuuv7BGRY/PHjwF0YQf73fZnkkwUYc7bHzapW3O0T1jB7VxJDzI8HidAHfXso4AqaogijAJKeZp3qOKnjHQ4IfyB6zmLrl6JQX5ygIpmCRqA/VTyEmt5gOGEneKx6UfbQ2mLfcXUUM1xfkNwBrJTjZ0CwISZRMw+2vLVwNYmCZoggriQBrZSzZvUsoAQriOQi/FHxedEpGNTkkaklZVRSD21hBBBKJGtMmdAZwgbBpXfNO8LPx8CO7dKGC4Cu0DoUKj6/qgOC8T+AvxiWz8mETm24fThU76nEtfleWbMTOB8l5OVqml5iV4t9S2udjhduRTwGp+xmm3YsHMxg3ifZQQSQCD+znEVVPNP5vI4vybegys5BMqpJZcK9lBKDmWkEE4+VQS5edu5hSL2Uk5vPPPbgiyi2chht32xBBPa5DVwpjMwsLKeat7GyibAjD/9COVn+NOr1eOpY7nz/4MYTRX/xsZeAGyYqeZd6viWCB5UokZEOjQlaURaSRkFrGMR6/icGiqIIZlhTKQbZxPo4T354Dje2lbqqOPinwxxU8AvGsq/dBxvbQ6DiIsh6kowe+YXmCfFLxLib4Pg3lC2EOyVEJgJUVdDsPdO0hOR05BNCvfxS97gc7awFwODVOK5gQs566gaMxcxiM9bqGEzjN6kEOfx+Mqo5Hk+YBN7nG1mzGwllxjCySQZC2ZnXwGl7KOgxSRNBVWUU0MwAcRwZhRx9KYSaljJQf7HZrZTTDdiGE06WyliG0V0IcZtkqQaq8diGE4qn7ILq5sk4Di6EueFn7dtVQNbKOcRDGdS1Y6VNZSxnUgexr+VV5E1xmEmgQZynAmaxl5HhMXUsQg/btXWJxHpsJSkEWkF1ZSzkJfZzk/LRgrYy3ye4hJ+zdmM89hc9jqoWgUl70DdXjCHOFbLRI2DuFsh4jIwqsEcCv4pYPLheyD/eIi+BsJHO2rQmCPAEnz8+4mI7/Qhkwe4iYMUYcdOPFFuExjn0IuepLOFfS7twQRwO1cRTbjHY8vhkDNBY2BQQz1V1GLDRgkVJBFDGK7fZGqPnADUVDW1rGQr81hOPkVEEsYVDOM8+ipZ04IK6pjNBj5iB1sowsBgD6UsZx9/4wJsGBygnC7EYHZ++Dbww0ykB7ffdCeGaQzhZdY2Od3JzFiyGNWBitMaNFDDx00SNE37KqnjS/zo0qqJkACGUs9KLKRRx5cufSZCMR1J4NXxPcFMwIKW1IpIx6QkjUgrOMRulwRNU9/wDl0YRAydXNoNA6wHjqx6CQX/TieWUKn8Bg49i7P+jL3ScZR17XZI/hMEpp3mg/ECvyhfRyAiJyOUYLqSeswx3Unnn0xnDov4kG+poZah9OI2xnEuvb0SVwElANRh5SCHKaKcCxlIFbX4YaGWepckjQUzsUdtOzUw+IyVzOZTZ1s1dbzCAnLI51dcToiOcW5mF6UsYS9l1GEcWRUBUE0DWzjMQJJYRR7VWLFip4hqrNgZT3eCPHhChwUzI0mnC9HkUo4VO8mEkk4EAR3oba+dEqxsbrG/nnUEU4GlFZOOAfTFjzQcq2aavqExYaETP30sMR3VLyLSsXScn1YiPnSA7S32VVFKKQUuSRprIZR+BOVfOJIs5nCIHAORl4P/MXYIWIug+E3cFgiu2wm1Wx2rV0REWkMfMnmYm7mZS2nATidiiWxSXNjTwgnBhp1cCiimAoAN7GEUA/iStdRjxYbNeWzncPqSgWuV8v0U8A5L3F5/Mau5iEH0orPXHkN7tY5DAG63Gf2LH3mJsTzPagqoYi/lBGDhQjJIJYL7+Ir7GE4PD66cSCGcFC+s1movTPhjOkYxZhNBzpUrrcVCMuHcQy1f4ljrsx0ToVjohLlJsiiQ4VhO4uQ2EZEzjZI0Iq0g4Di/dfVr8k/RVgOHX4PKZT/12yug5D1HjZn421uuIWM7DNb8luep2QDhI048bhGR0+WHH11pnSV8GSQSShAlRxI0AEtYy82MpRNxrGU71dSRQDQXMJDxjCD4yAfZBhoop5qSYxwzbscgh3wladxyrJ4JJ4ACqlx66rCxlzLOJpk+xJNLBf6YyaGML45sT3uTTdzLuW6LC8vJMxNFIBdSzX/c9gdxCWZaf3+xH+mEchMN7MDGAezkQZOVVGaSCOKCVo9LRKQt0U9CkVaQQg/M+GF3c/RnHGnEkOK8XZ8DlV+7v075Uoi4FIK7tzCRHy0ftY2jPk17YKtx1M0xhahGjZxB6q1gMoO/57Z2iKtkYrmdK9nMXg5TBjRuX/qeP/NLhtCdbqTRhRRSiceMGTt2NpHDp3zPdnIB6E8XDAy+Y1OzOfz11smt/iTyPtsJw59g/Khp8vOuG9EUUUMCoSxgJ4Vu6qT8SAEHqSBLJ215TBAjsPJDs21P/gwmgCEen8/AwMY+GtgH1GOmE350bpYMMmHGn+5EMoM6vqOOrwCDQM4jkOH4daDaQSIi7uidhkgrSKAzI7mRJfwHmuzVDyCYi7iFsCZvSq2HaDHJQgM0FAItJGn8O0FwH6hZ774/ZNCpRN96bDVQs9ax1ct6CPwTHQWPg89SsuZUGMapFYaurYaC/dBghYgYiEv2fGwdyoFiWLkHlm8Dixn+P3v3HR91fT9w/HU7l733Tgh7I0NEQRHEibi1itjaYa1aWmuHq63WVluLtlZ/dql1V1HrHgiCiigbREYgkBAyyN63f398QpJL7kIgNzLez8fjHnCfz/e+388Fkty97/15v88cA1OyICnq+I8VJyyOKL7PBbRho4p6kohBi4aXWU0LFqZQQGaXLU5fspsHeQFbe1DBgo33+YozmcJk8tlCYcexBvTkIN8QnuQRw+lksJYS8oihlEbqsGBEy7WMJ5soqmn1GKABcODC0eX3o+g/HclE8FNs7MLCZ2jQYeI09Iz2+XYiF3YsfEITT+KipX1Ui4l5hHEtOuLaaxU50LS//dCTjp7LMLMIFy50w3h7mhBiYHE4HNx77708++yzlJeXk5qayvXXX8+dd96JJgBdVyRII0QAGDAyjfNIIY9trKKeCjIYy2hmk9qtBab2OPUoe2uXrTND3LVQdr/aGtVVzGVgyju59QeCyw71b0P1051j9qPQuhPilqouUBpJQOiT0iLYtQH2bIGoOJh2JmSPBnPY8R97aA+8/TQc+BpcToiIgbMuU+foy+NFN8XV8Lu3VKDmmN1lMCoFfnIOJEcHbWlDVRrxbGM/tTRixsQ+DncEYOKIdAvQ1NLIM7zfMQ9gwkAmSXzAV9zNUrayHxcuNGi4lgU9atgIJRIT32Yi40ngXfaTTgTpRDKPTAxoSCQMXS/FYDOIIGEYtccOFB0J6DiDEM7w63Xs7KWRv4JbxrATC6swMAotsbTxJnZK0DOaEM5Ez3h0hKD1Y50qIcTQ4MDJOkooo4kUwplDBjq0frveH/7wBx5//HGefvppxo4dy8aNG1m2bBlRUVHccsstfrvuMRKkESJATJjJZTK5TMaJE62XHyzGTNBF9wyyAOjjwHic0g7mUZB2HzRvVFkpuhiImAsho0A3gF//Wkug5kXPczUvQdhUMOUEdk2D0YFd8NT90NzQObZ1nQq0nHkphPTyf6CiBJ76HTR0iSc01sLrT4LBADPP8d+6h6yPvnYP0Byzuww2HoTzJwV6RUNeAtH8iCU8yAvUd6mNEo6ZW7iE5C4ZBOXUUEJlj3PEEM5IMqiinmmMxIieBZzCWLJlu1MvYjFzDnlMI4UNHGE1h/gLm3C2Z8hcxzgyiaSYBrfHadFwNWOJlq5Zg5aFz8DDlm4deVj5nFbexUEJKpv4XZp5kmj+RAhnoZUMGiFEL1ayh1v5kMNd6s2lE8EjnM0Sb9sL+unzzz/noosu4rzzzgMgOzubF154gS+//NIv1+tOXmkIEQTeAjQAxlRIvAnKHwZXW5fHmNW4Ifn45zdlqRuX9H+tgWItBZfFfcxpA2sTtNWC6VNwlUD8GAjtpcPVcNbaDO885R6gOebjV2DkFMgb5/3x+7a5B2i6WvUKjJoG0fK177uqRvhsn/f5j76G+WMgxBi4NQ0TE8nnAb7Hbg5xmKOkEsdossiiDz9AAQ0aIgglgwSu5iwMGNBIS+A+20sNT7Clx/jzfM1tnMJualhHCS3YyCWayxjFlD7+24iBycEhj+MGRlPPnehIput2bxdNNPIwOtIxMS1AqxRCDDYr2cOlrOyxGbaURi5lJa+wxC+BmlNPPZUnn3ySvXv3UlBQwLZt2/j00095+OGHfX4tTyRII8QAFDYT0h+Ali0qw8SYBaGTIGQAb1fqt27vfxw2aCiG1mp1v7UGtrysgjQzfgzh8nq+h6ojcHC35zmXC3ZvAqMJ6qogNBySsyCss+spRT1rpHaoqYCmegnSnBCnC+wO7/MOp7oNUnbsFHKEzeylkjpGkM4EcskgMdhLAyCTRDKPs5ZkYskg0WM2DcAk8jEiQbQTYcfB+xzwMufieXbxB+ZxISOw4SCWEMJ7aRXtby5ctGHHgBY9sqf2ZOnIB7a5jWkIx8FhwIGnLBs7e7CzFyMT0Mj3mRCiGwdObuVDj9XKXKi3DrfxIRcxwudbn37+85/T0NDAqFGj0Ol0OBwO7r//fq655hqfXscbCdIIMQBpNBCSr27DhTENNGZwtdeUtNR3Bmh0YWBt/2lVtQsOrYaxVwVnnQOZ3a6CMZ5Y2+DgN7D9M6gqU2OZBXDJTZDeHvyLjPN+bmMIGOQ19ImJDYPJ2bDKS/RrVj6EDc7tHQ4crGYrf+N17KhA1Co2EU04v+CaQdOiOoYIrmOhW+HgY+YyibwunfdE31hxUkOb1/kmrLRhJ2UA1CHZRw2fUMJ2KojAxEJymUgCUbLt6oSZmEkrbwFdU2J1uGhDRxJOL63tXbTipA2dBGmEEN2so8Rti1N3LqCERtZRwlyyfHrtl19+meeee47nn3+esWPHsnXrVm677TZSU1NZunSpT6/lif+q7QghxAkwZkDc1ervLie0HO2cS7geind03i9aBS3VAV3eoBCdALEeapo6nVBRDAmpUNvl61q8F57/k8qsARg3U3WI9mTibIiTpjYnRq+DReMhwsMbvvhwmD2i5/ggcZAK/o//dQRojqmjib/zFo1dasEMdNMZxa9ZxhwmkEQMeaTxI5awjEVEDNNCtq3YcHptM9g7M3pG4T3im0UUkQPgDfl2KrmLtbzBXoqoZzuVPMQX/IedNGI5/gmEGz0jiWQ52i41n1xYMDEbMAHWHo/RkoiGGLTD9PtMCNG7Mi/B3ZM97kTcfvvt/PznP+fKK69k/PjxXHvttfz4xz/mgQce8Pm1PJFMGiHEgKDRQeRCMKRA7RtgaoaQGAg/C0oOQmNp57H2NlWvRriLiYeFV8OLj6hA1zGWFkjJgbZWcHTLOK8ogSNFahtTxgi4YBm89W8V2DkmPQ/mXQJ6+Y1x4kamwN2L4a2tsOUQaDUwMw/OnQhZg3fv2F5KsOD5m7CQUko4yhh6tgOz4xhwW0q0aBlPLqPJpIEWTBgIwxzsZfnNUZqppQ0jOtKIwND+7+HAyUbKeJNCdnKUDCJZwkimkkzkCWxH0qDhTLJYzSEs3YJ4WjQspoDQIAdpmrHyLDtp9vB/+H2KmE06k6VGzgnRoMHEqejJxc5hwIaWRLTEEMJCWnga3DYtaAjlGgyM6WjJLYQQXfU149IfmZktLS1ote6fXOp0OpzOwGxTl5+KQogBQ2eG8BlgngT2D+DgZ1C4CpzdAgvxo1QAR/Q0YTYYTPDxf6G8WHVzmnYm6I3w5QeeH1PbXo7DaIJTz4WsUVC4HVoaVevujAIVABInaVQK5CfC0Ua1lzExArSDO5G1kZZe5y1dPjW3Y2cPJaxhKwcoI414zmIqY8jEgMHfS+0zPXpiiTz+gYNUM1bWUsJ/2c1RWjCgZTopXMkYsonmfYq4mfc7AhfrKeUVvuHXnM61jMN8Av9Wo4jjDmbxb7ZR0p6qnkAo32Isk06wZpETFyU00IQVMwYyieh3oK+MJoqoYySxaNG0n78zYLORcgnSnCRVIFiPnUM4KQNshHMzerJo5hmcVKInBzOXYmQKBgZvRqEQwr/mkEE6EZTS6LEujQbV5WkOx2l9exIuuOAC7r//fjIzMxk7dixbtmzh4Ycf5oYbbvD5tTwZVEGatWvX8tBDD7Fp0ybKysp47bXXWLx4cce8y+Xinnvu4e9//zt1dXXMnj2bxx9/nBEj5BeAEIOJzgRRo6Hu+Z4BGp0RCi4EffDqTA5oRpPampQ/AZrqQKdXwZZHfuL9MZGd2ekYjJA9St2ED+l1kBId7FX4TC7e976FYiKOqI77n7KTR3ilY2vUXkr4hG18nwtZyCm9drsTvvMJxTzepeOSDSefUcpBGriNU/gNn/bILHECv+NzppFyQt2XNGg4hRTyieEIjThxkUwYCR6yq3pzlGZeYy8fcZBW7BjRMpt0rmQMqf1o2+zAxQWMYB3F2HExkzS0wGqKseHERi8Fv0WvrOygkb+0B2gAtJiYRRg3EMI5OKlDQwg6EtEh0X8hhHc6tDzC2VzKSjR0z8VTVnC2z4sGA/zlL3/hrrvu4qabbqKyspLU1FS+973vcffdd/v8Wp4MqldGzc3NTJw4kccee8zj/IMPPsijjz7KE088wYYNGwgLC2PhwoW0tXkvYCeEGJhi8+G0OyFpUmedlNgCmP0LSOiljbRQwiIgKQPiUyA+FXJGez4uOgFScwK7NjH45ZHGaC9F+i5gdkeHpyNU8U/e7lG7xomTf/Ou165Kwrcqaea/eG79VkojB6mniDqP863Y2c3JFQGLIYSxJDCexBMO0Fiw8xxf8yaFtLYXdbbiZHV7sKnhJOvG7KeW3/E5P+A9nmEnL7CLB1jPKg6xAPXDUNqBnxw7JTTwYJcADYATC5/RwovoycTEFIyMkQCNEKJPljCSV1hCWrfAfDoRfmu/DRAREcGKFSs4dOgQra2t7N+/n/vuuw+jMTDbdQdVJs2iRYtYtGiRxzmXy8WKFSu48847ueiiiwB45plnSEpK4vXXX+fKK68M5FKFED6QMBZm/xKay9V9cwKYgt8QZNAJDYclP4AXV0Bpl864MYlw9Y8hTt6PiBMUQwS3cgn/5RM+ZTsWbMQQwUXMZj7T0LR/xlVKFXVeCvq1YqGYSrLkDbHf1dJGFa1e51u91Bc6pnttmUAopoFPKPY4t5UKDlLPhBPcOtWClQ84wHscwIQeOzZcuKillc84zHgSmEsmBV2K34q+s7Ebl5dgXxtrMXMBeuRTASHEiVnCSC5iBOsooYwmUghnDhl+yaAZKAZVkKY3RUVFlJeXM3/+/I6xqKgoZsyYwfr1670GaSwWCxZL56cxDQ0Nfl+rEKLvDGaIltd0/ZaaA9++B8oOQt1RiIiG5GyI89ANSoi+SCOBm1nMxZyGBRsRhJLSrauPvVtb6+5kW0lgGNCiR4Pd465+iMdMPGaPgRwt9NqtyV+qafW6XoBymk44SFNGE++wH1Bfk3AMWHBgx0kTNrZQwaOcTewQLhztT05Ke5m1eG3DLYQQx6ND6/M22wPZkAk/lZerj9qTktzfcSQlJXXMefLAAw8QFRXVccvI8H3hISGEGAiiYmHUFBg1FfQGqDwMNRXBXpUYzPToySKZAjJ6BGgAkojF5KXgrB4d6bLlISDSiWQSniOyWjSkE8EtTPM4fxVjGUngK7WHHOdzxPCT6BDVgLVj6xSAHi2hGIjASDgGHDgJHUDFrAcbbS+1qsCA5gS3vAkhxHA1ZII0J+sXv/gF9fX1HbeSkpJgL0kIIfxmy1p44Eb48Xmw/Fz47TLY8AHYe0948IuaSjj4DZQUgsX7TgwxiGWSyGLmeJw7h+lkeQkcCN8youNbjCOZULdxLbCU8aQSwWWM5nHOYQpJRGJkBLH8htP5MdOJ7fa4QMgkkjQvbVWjMJF1Ep24TOiY2i2QoEEFqrRomEQScZJFc9IMjELjpaCzas8tH4QKIURfDJntTsnJak97RUUFKSmdv4ArKiqYNGmS18eZTCZMJmkTI4TTCc5m0IaAVj5IHJJ2fQn3fwea6zvHdm+C330XfvMsTDwtMOtobYGtn8BHL0NdlepGnT8BFl0LmQWBWYMIDD16LmI2iUTzOp9SRR3RRHAhp3Ia4zGdRDaEODl5xPBrzuBrjvI1R4khhFNIJY9oTOgxoWcJIzmNdGpoJQwDGV26dAVaLGZuZip/4AvquhQJDkXPj5hG2kkEaVKJYDzxJBNGOc3drhfCpYzG0M/23sOZniwi+SmNPIKTmo5xA1MI5Wo0kqUkhBB9MmSCNDk5OSQnJ7Nq1aqOoExDQwMbNmzgBz/4QXAXJ8QA5nRCy1dQ9z9o2QaGJIi9HEKngSHwZQjESXA4oLoM7DYIi1Lbmjwds+Y19wDNMdZWeOcZKJgC5gB8YL7jM3jlb533nU7YuxUqSuB7v1VdqcTQEUEoCziF6YymiRZCCSH2JN5gi/5LJZxUwjm7l+KtiYSROEC2pYwjkd8xl2+oopgGUghnDPHkEH1S54smhJmkcTsz+ZAiPuMwDpzMIJUfMY0pQc7sKqWRYhqwYCeJMLKJwjzIAhtGphDNH7BzCBctaElATzZaL1lRQgghehpUQZqmpiYKCws77hcVFbF161ZiY2PJzMzktttu47777mPEiBHk5ORw1113kZqayuLFi4O3aCEGuMaP4ND3VRbNMfVvQdLtkPBd0Mt7qQGt8jCseR22rlVbhuJT4KzLYPxs94BLfZXKpPFm9xaoKYe0XP+ut74aPvqv97nC7RKkGaqiCSda3qiJE5RBJBk+DOrlE0skJsaSwPVMwIyOTKJI9bJNJxBcuPicUh5nM/XtWUNaNJxOBksZT3wQtpv1h45kdNK1TQghTtqgCtJs3LiRefPmddxfvnw5AEuXLuWpp57iZz/7Gc3NzXz3u9+lrq6O0047jffee4+QkJBgLVmIAc1SAuUPuAdojqn4M0ScDuHTA78u0Te1VfD8w1Cyr3OsqgxeehRsVph9Xue4yQzh0d7PFR4JxgCUYmiqU1k/3hzY6b5uIYTwtYGULQRQSC1/5ku3VudOXKyhmHhCuY5xHW3thRBCDH2DqnDw3LlzcblcPW5PPfUUABqNht/85jeUl5fT1tbGRx99REGBFDgQwhvrIWjd5WXSDi2bA7occYJK9roHaLr66GWo7tLYLiwS5l/u/VzzL4eE3hpz+IjOAMZeyoBFeNiqJYQQQ9lGytwCNF19wAHKTqB1dRt2DlLHAWpp7FLLRwghxOAxqDJphBC+5TpORx+XNTDrECfnoLcAG9BQo25xXTLOx8+Gsy6HVS+7HzvzHJixwD9r7C4+FSacChtX95zTaGD8zMCsQwghBopiGjr+bkTLGWQSTQgt2PiEYlroW/u9b6jiBXaxnUocuCgglqsYw2SS0A2uz2WFEGJYk5/YQgxjhlQw9FL/I3Ry4NYiTpy5lxIKGi3ouoXhk9Jh2a/gN8/D4u/Chd+Gu5+GH9wPqd7riPqUXg9nXgqp2T3Xu+haSB8RmHUIIcRAkdPeRWs2aVzHeLZSwV/YyDsUci556Puw1Wk/tdzHZ2yhAgcuAPZSw+/4nJ0c9ev6hRBiKGpsbOS2224jKysLs9nMqaeeyldffRWQa0smjRDDmLkAkpdDyU8Ap/tczGUQMiooyxJ9lD9Bta92OnvO5Y6BxPSe43HJ6nbKWf5fnzdJmbDsLijeo2rQhEbCyMmQltf7VighhBiKppDCdipJI4LreJO29syZ7cAnlHA7M7iN6YT30rL+U0pooGf6qw0nr7OXUcRhkpf9QohByoGLdTRRho0UDMwhHJ2fa3V95zvfYefOnfznP/8hNTWVZ599lvnz57Nr1y7S0tL8em35aS3EMBd1PuhioOof0LYHdHEQfw1EngOGhGCvTvQmLVdln7zzDLhcneMR0XDudRAygBuCxCaq26Q5wV6JEEIEVx7RXMYolvFOR4AGNBjRYkTH42zmbHKZQarHx7dhYzMVXs+/lxpqaCUliB2shBDiZK2klls5zGFsHWPpGHiEdJYQ45drtra28uqrr/LGG29w+umnA3Dvvffy5ptv8vjjj3Pffff55brHSJBGiGFOHwnRiyBsOtirQWcGo7RAHhSMJph9PmQWwPbPVQvrvHFQMBmSM4O9OiGEEL1x4GQvNXzKYRIJZR81hLVny2iho46MHRdbKPcapNGhJQyD1+uEoMeAzufrF0IIf1tJLZdShKvbeCk2LqWIV8AvgRq73Y7D4ejRJdpsNvPpp5/6/HrdSZBGCAGAIU7dxOBiClHbnvInBHslQgjRd1bsHKYRA1oy2muyDDefcZgVfIUNJ0sZhxUHVpyEokfXLaji6PEWpZMBHQvIYYeX2jPzyCKeAZxaKYQQHjhwcSuHPf70cwEa4DYOcxHRPt/6FBERwaxZs/jtb3/L6NGjSUpK4oUXXmD9+vXk5+f79FqeSOFgIYQQQggRMF9xhF+whit4nSt4gwf4nG+o8np8FS1so4JNlFFCPa5eAhaDxREa+TtbsbUXhDOgI48YwEUrdpxdnqMODVNI9nImZSJJnE7PNNiRxHEmWT5duxBCBMI6mty2OHXnAkqwsY4mv1z/P//5Dy6Xi7S0NEwmE48++ihXXXUVWq3/QyiSSSOEEEIIIQLiS46wjLeoorVjbAVf8REH+RsLGUlnSqcLF19yhL+zjQqaAQjHwGWMYiG5HVuDBqPDNFKHpeP+55TyU2ZwCx9gw4kDF9r2T4avYzxj6D3VNYYQbmQSZ5DJ5xzGioMZpDGGOBII8+tzEUIIfyjrJUBzMsedqLy8PD755BOam5tpaGggJSWFK664gtzcXL9crysJ0gghhBBCCL9rw8bTbHcL0Byzk6N8SolbkGYvNTzEBiw4OsaasPFvdhBNCGeSHYhl+4Wty3MC2EUVSZh5hgt5nq/ZTy2phHMN4ziTLKII8XKmTtGEMJ1UpnupXSOEEINJSi+1tk7muJMVFhZGWFgYtbW1vP/++zz44IN+vR5IkEYIIYQQQgTAIRpZQ7HX+bfZz9WMxdz+gnsdJW4Bmq5WsoepJPcpeDEQJRGOES3W9u1OAKspIYwyFpDDqZxGChHEYQ7iKoUQInjmEE46BkqxedzkqkF1eZpDuF+u//777+NyuRg5ciSFhYXcfvvtjBo1imXLlvnlel1JTRohhBBCCOF3mi5beDzRoeko/ujAyW6qO+YMaIkhhJD2grrlNNOA1b8L9qMsIjmPnsUnm7Fjx8kIYiVAI4QY1nRoeIR0gB6/OY7dX0G6z4sGH1NfX88Pf/hDRo0axXXXXcdpp53G+++/j8Hg38wdkEwaIYQQQ9CRg1C4DXasB3M4TDkDcsZAlHQwEyJosoliIbn8h50e5xdTgLH9pakOLSmEc4h6Tm1/kX6ERmIxE4mJ/dR2BGwGIwM6LmEkiYTxOnuppoVYzJxPPnPJxCQv0YUQgiXE8ApwK4fdiginY2AF6X5pv33M5ZdfzuWXX+638/dGfgMIIYQYsFwuqCiB8kNgaYWENEjJBnMvdTAP7YFHl8OujZ1j//0LXPVjuPA7EB3v92ULITwwoudbjOMTiimmwW3uNNKZSZrb2HyyicLEk2zhUJfjIzHyEGcN+oK4UYRwPvnMIo1mrJjRD/rnJIQQvraEGC4imnU0UYaNlPYtTv7KoBkIJEgjhBBiQHI4YNs6WPkEtKrGLmg0MOFUOP8GiE3s+RinE957zj1Ac8wLf4ZR02D6fP+uWwjh3SSS+Cfn8T4HWMVBDOhYQgFzyGhvQd0pg0ge5ktKaOwY06CyUJ5lJ1NJJoPIAD8D34vDLFubhBCiFzo0zCUi2MsIGAnSCCGEGJAO74OXHgV7l86KLhds+wxik+C861XQxu0xhbBmpfdzfvqmBGmECLYJJDKBRJYxAT1aor0U/y2jiSpaGU0cLdhx4iIUPWYMWHCwn9ohEaQRQgghupIgjRBCCJ+zWeHQbti8Bo4egezRMH4WZIzoGVjxZtdX7gGarr78CGYshIRunWbtNmis837O+iqVbaOVsvlCBF08ob3Ot2JHi4YwjIRh7DFfh8VfSxNCCCGCRoI0QgghfMpuhw0fwBt/VwERgANfw2dvw7duhzGn9O08jbUwbibojdBYAwd3g8Ou5pobwNra8zHR8TByEjhdMHqqCsa0NMHmT6CiGCbMlgCNEINFDCEY0GLr0qa6q/RhlPouhBBi+JAgjRBCCJ8qPwRv/rszQHOMpRVefxJScyH6OF2W6o6C3gCfvQVNDZA5AmacA/t3qGBLRAyEeKivGZsE194Bz/8JXloBVgvEJcPcS1SAZ+JpPnuaQgg/yySSeWTxAUU95vKIJofowC9KCCGE8DP5PFEIIYRPle4Hu9XzXHU5HD3c++Mb6+G1/4NV/4WyQ2qL0o718O/fQlYBhEXCnAtU8KW72ir46GWoPAw6Q/s1K2DVS5A3Xt2EEIODAR1XMppzycXU3m5bi4apJPNjpkuxXSGEEEOSZNIIIYTwKUtb7/Pe6swcc7gQdm5QmTLpeSpQY7OoTJgPXoRlv1Lbljw+dh+UHYS4FAiPVo/TaCAkVNXHOXURJKafxJMSQgRFAmHcyGTOIY96LISiJ4NIzBiCvTQhhBDCLyRII4QQwqfScrzPmcMgxkPr7K4O7Oj8e3g0ZIeqrVIuJxiMkJINkTGeH1tS2Pl3k1ndjmlugPoaCdIIMdjo0crWJiGEEMOGbHcSQgjRg8ulujIdOQj11Sf22JRsmOgl02XuEkjK6P3xum4fHxiMEB7VWYem+3xX4VHe5zQaMJp6v7YQQgghhBDBJEEaIYQYICxtsGcLrHsTPn9HdUTqXnw3EKrK4I1/wCM/gT/9CB77OXzxnuqS1BehEXDBt2HBVRAZq4Iqielw+Y/g1HOP34I7f6L3udQciE/xPp8zWhUc9jg3RrJohBBCCCHE8a1du5YLLriA1NRUNBoNr7/+utu8y+Xi7rvvJiUlBbPZzPz589m3b59Pri3bnYQQYgCoqYR3noZX/wZtLWosKh6+fSfMWQwhAaqP2VgHrzwG+7Z1jlWXw38fg9YWmHvx8YMsADEJsPBqOGU+WNtU4MbbFqXu0nLhtPPh07fcx01mOG9p79kyKTlw8Xdh5f91tusGiIqD85ep7VZCCCGEEGLwcLhgnRXKHJCigzlG0PXh9Wh/NDc3M3HiRG644QaWLFnSY/7BBx/k0Ucf5emnnyYnJ4e77rqLhQsXsmvXLkJCQvp1bQnSCCHEALDpY3juj+5j9VXw6O2QkAaTTg/MOkoPuAdoulr9KoydfmLZKLHHqT/jiTkMzr4KcsaqDJ6mepUhM+1MyBzZ+2P1eph2ltpytXcr1FVBZoE6V2Laia9FCCGEEEIEz8pWuLUeDnfJLk/XwiNRsMSPH2IuWrSIRYsWeZxzuVysWLGCO++8k4suugiAZ555hqSkJF5//XWuvPLKfl1bgjRCCBFk1RXwv395nrPbYM1rMO5UFYDwt8OF3ueaG1TQIxBbhsIjYdJpMG6G+hqYzH3L4AG13SlrlLoJIYQQQojBaWUrXFoLrm7jpU41/gr+DdR4U1RURHl5OfPnz+8Yi4qKYsaMGaxfv16CNEIIMdg11kJFsff5w/vB0gL6SO/H1FWpbVLmMLW152SZjvOLzmA8+XOfDL3Be40ZIcTJK6eJg9TTgIVEwsgmimj6l54thBBC+IrDpTJougdoQI1pgNvq4aIQ/2996q68vByApKQkt/GkpKSOuf6QII0QQgRZeLTqeNRY63k+NRdMoZ7nGmph8xpVv6WhRgVoTr8QJp0BEb3UbvEme5Qq9Nu1nssxKdlq65UQYnDbTgV/5iuqaO0YKyCWW5hGFifxg0MIIYTwsXVW9y1O3bmAEqc6bu4Q694p3Z2EECLI4pNVUVtPdHqYt8TzVierBT58Ad78F9RWqsBKTQW8/nf4+L9qm9CJSslWa9F2++1gDofFN/ZetFcIMfCV0sgf+dItQAOwlxr+yTZaOYkfHEIIIYSPlTl8e5wvJScnA1BRUeE2XlFR0THXHxKkEUKIAeCU+XDlbWDsst0oMgZu/gOMmub5MeWHYMOHnuc+f0fNnyi9AWadA9+/H2afB6OnwbnXwQ/uh/wJJ34+IcTAsp9aamnzOLeNSg5RH+AVCSGEED2l6Hx7nC/l5OSQnJzMqlWrOsYaGhrYsGEDs2bN6vf5ZbuTEEIMALGJcMVtMHMhlJeATqeyWrJHq793V1MJ+3fAgZ2ACyLjVJaLoT3d025TBYnT8098LQYj5I1TNyHE0NI9g6YrJy6aJZNGCCHEADDHqLo4lTo916XRoObn+KleYlNTE4WFnR01ioqK2Lp1K7GxsWRmZnLbbbdx3333MWLEiI4W3KmpqSxevLjf15YgjRD+Zm3PwTMGIcwrBpUQM4ycom69qTkKG94DYwic8y1oa4WvPoLD+yAtX41DYLpBBVNjLdhsEB3fc3uWEMKzZMK8zunREMkQ29gvhBBiUNJpVJvtS2tVQKZroOZYneAVUf4rGrxx40bmzZvXcX/58uUALF26lKeeeoqf/exnNDc3893vfpe6ujpOO+003nvvPUJC+l+Ef4i/hBciiMpbYWMNfNy+V/H0RDglFtK8VIAVog/sdtiyGp77EzgdcOQgRESrLUm7N6vaNAlpKqsmMSPYq/WPI0WwZS2sfkV1tJo4B+ZcCKOOE9wSQkAeMSQTRjnNPeZmkiaFg8WAZHVAcTO0OiDKAOlhoA1wNxchROAtMas227fWuxcRTteqAI0/22/PnTsXl8tTDo+i0Wj4zW9+w29+8xufX1uCNEL4w5EWeGg3FDZ2ju1rhA/K4BdjIMP7J5lC9Gb/dnjiTmiqV1ubkjNV0OLFP8P1d8LbT6vjFt8ICanBXas/lBfD/90FX3apxbN/pwrY/OqfMHZG8NYmxGCQRBi3M4O/somi9vozWjScQgrXMR4jkvUpBpbiJnimEDZVg90FoTpYkAaLMyFOusYLMeQtMas22+usqkhwik5tcQp02+1AkiCNEP6wodo9QHNMSQt8Ugnfygn8msSgZ7fD+vfAZlX3bRZo00LGCGhugK83wOW3wKTTIG98cNfqL7s3uwdojqk9qrpa5YyDUImBCtGrAuL4DadTTAPNWIkmhGyiMGMI9tKEcFNjgT9/7f6SqsUBrxeDzQnfKQC9bHcVYsjTaYZem+3eSJBGCF9rtnVucfJkbSWclwYxfqpyJYYsSytUlKitTJbWzjFLK5jMUFcF6bkqQOOp2HBv6qpUIeL170JjPUw4FcZOV4WLB5LP3/Y+99UqKD8IuWMDthwhBq1oQohG0hDEwLa/wfNnXgAfHVEZNbkRgV2TEEL4mwRphPA1Byof1xu7C5xO7/NiSKs9CkcOqD+j4yElB+KS+vZYo0k9JioO6qtVB6djLK1gDlPdnE40QFNfBW88CS8+SkdVtrWvQ3oe/OxvMGLSiZ3Pn3r71nE6PFf/F0IIMTgVN4PNoerP6LplzFicUGsBJEgjhBhiJEgjhK9FGmBmHLzS4nl+aizEDKN8PdHh0B54/mGoOtI5FpsE1/ykbxkrBiOcugj2boWMAqgpV7VpXC4Ii4RLboLMghNbk6UV9m2Dd5+F6DjQaNXWKWsbHN4Pr/0f/OhPYPZTvWuLRWW/VB0BvQGSMiEpAzRe9hnPOgc+e8vz3JQzICndP+scqCxtqibR/h3q3yxnDKTlQWRMsFcmhBAnz+WCwgYwaiEzHPbUg8UB0UYwdPkgwtzHdzJ2J9Rb1fkiJJFZCDHASZBGCH84PVFteaqxuo9HGmBBsrQkGIbqa+DlR90DNAA1FfDCn+EHD6ggyfHkT4Szr4SPX4GQUFWXRquFMxbD1DNPfE2fvwsbP4TS/WpMq4PkLBWssbTAZ++o4I8/atw01MKHL8AXH6gsGICQMLjo2zBlnucW4qOnqq1Y2z93Hw+Lgou/r7aCDRetLbD2NfjwZXB1yTAaOQku+SHEJQdtaUII0S+bquHlIthdp7JpTomHtDB4sxgSzaoOTUHk8fswuFzwTR28Wwq76iBEB2enwqxESPJjVxghhOgPCdII4Q854XDPOHinDL6sBqdLZdCclwojIoO9OhEE5YdUZyJPqsqg7GDfgjTmMDjzUhhzigqsOJ2Qlgsp2aouzYnYsgZ2bVCZM8c4HSozI7NABWmsbapgsT9sWaOCRF21NcMrf4O4FMgb1/Mxqbnwwz/AF+/D6lfVGsefqgJXw62z08Fd8MGLPcf3bIUNH8K51wZ8SUII0W+FDfCTL2F3vcp8iTLCcwdUQOaqXPi4DPIj4LsjIeI4ta631cDvtqvW3cf8c58KAt02RrpDCSEGJgnSCOEvuRFwUzhclqEKZcSbpAXBMNbadJx5L4URPTGaVBDlRLc2dVVXBZ++Da3NKjvns64FeV1qG5XJrGrcxCae/HWOd31PHHbY8onnIA10Pvd5l4DdCrEpYBqGOwi/WtXL3Ecwc6F//u2EEMKfVh1RARoAqxMarJAXof5ud6rgysxESD3ONtwWG7xwoDNAo9fA2Gj1OIdLFSSWII0QYiCSII0Q/qTVSD6tACDiODVCImIDs45jLK3QWKuKD4dFqDomx7Y8gcqgiYiCy38ECWm+v35bCzTUeJ8vO6TS1L3VpgFISPX9ugYLp1MVfPamtVlthRNCiMGk3gKfV7qPWZxQ2aaCLOsqYGbC8QM0ABVtncEec/s2p7dK4F/7VJCmIBKWj4P5KVKnRggxsMjH+kJ40EgzX7CLx3idv7CSL/iaeo6TCiFEL5KzIN9LXZfsUZCSFdj1mMMhOkH9ffvncPktMOdCMLW/8B05BW59GKbN99P1wyAq3vt8el7vAZrhTquF/AntdxwOqG+B6kb1p91BUjqERwdzhUIIcXIMWgj10KXQ7lLZNOnHqUPjpv33yJwk+Ntu+OKoCtAAVFtUwGZNeb+XLIQQPiVBGiG6Kaeah/kvF3Mnv+Fp7uM/XMlv+B3PcZS6YC9PDFJhEbDkJhX80LT/5NW0v9G+9ObAF7yNjIG5F6u/Wy2qNkxiOnznHhWc+dEfYfb5EHoiL4ZPQFQcnHGR5zm9ASad7p/rDiXjZoFZ0wa7y2FjEWw6BF8Vodl9hDMXtREmbWmFEINMlAlOT1aBGE89Fs5Jg7zwvp0ryQxjo1RdmyYbHOnWdDO2fZvsq4egwktDTiHE8LV27VouuOACUlNT0Wg0vP76627zK1euZMGCBcTFxaHRaNi6davPri3bnYToZh07+BtvuI21YuVZPmQCuVzD2UFamRjsktLhujtUEeHmRggNVwV/Q/zU3vp4JpyqasOsfV0FakoKVcenxTdCTh9agvfXxNOgthLWvaVqy4DK/lh8Y//q7QwXGfEtLL3kKG+VWTlcqj4ajk7Vs+CqFkatex8mz4NEKVQuhBhczkiGT8pVkKayDZrtoNPAxBi4MgcieqlB5nTB4WawOqDFobo47axTBYStDlUaUKtRrbzD298FVVug3gZJAXl2QoiT4XCq7Y5lrZBiVtlxOj+nmzQ3NzNx4kRuuOEGlixZ4nH+tNNO4/LLL+fGG2/06bUlSCNEF2VU819We5yz42Al61jEDGKRNz7i5ISEQnYAAiB9ERapuiJNnA3V5SqDJTE9cK2bw6PgnG/B5NOhugJ0enX94Vxr5oTsLmPE/U/y3VnjOHrBSBwuDdF1B4l7cwOU18M5oyVII4QYdLLC4e6JsKYCPq1QxYLnJMFZKZDVS4ZgeQusPKTeyM1LgUd3QaoZlubD13XqGJ1GdYmKNYGhfUuVUatuQoiBaeVBuHUDHO6S8ZYeCo/MgCXZ/rvuokWLWLRokdf5a69VbTQPHjzo82tLkEaILppopYoGr/MV1GDBFsAVCeFfej2k5qhbUK5vUEWL0/KCc/1B7WgD1LcS9t5XhPFVz/mK+sCvSQghfCArApZGwEUZ6n70cTr4Ndngyb3wVZXq4PRBKRxtU7ff74A7xkNKqKprY9KBsUvNmxkJJ1jnRggRMCsPwqWrVaPcrkpb1Pgr8/wbqAkWiRsL0UUoJsaQ7XV+NFlEI7/JhRADQPhxesceb14IIQa4aNPxAzQAB5tUgAZUpsyGo51zR9tgTRl8Kw9a7Gp70zE54XBFjtoGJYQYWBxOlUHTPUADnWO3famOG2okk0aILpKIYQHTeIcvaKbNbc6AjmuYjxl54yOEGADyEmF0CnxT1nMuKw7yEwO/JiGECILuRYGdXd7VuYDdDWDSw10Tod4K8SEwMgoKoiBBXtYJMSCtq3Df4tSdCyhpVsfNTQnYsgJC4sZCdKFHz3RGcR/fZgydPZFzSeEv3MosxgZxdUII0UVmHDxwGWTEuI8nR8Ifr4Q8KYMphBgeQrt87HykBabGu89rNVDcDG8dhlOT4IYCmJ0kARohBrKyVt8eN5hIJo0Q3SQTx3nMZDx5VFCNFi0ZJJJPGho89IMUQohgmZUPz34fdpVCURVkxMK4dBgj1ZeFEMNHdjhEGqDBBt/Uw/kZsLNWdYYy6cDcXoNmVJTKoBFCDHwpZt8eN5hIkEYEnNWqipVqB3AeVxThjCec8QSpmqoQQvTVqBR1E0KIYSotFH44Ch7+GixO+LwCfjlBdYdqtEFciOoOdXqyZM8IMVjMSVJdnEpbPNel0aCKfs/xU+JwU1MThYWFHfeLiorYunUrsbGxZGZmUlNTQ3FxMUeOHAFgz549ACQnJ5Oc3L9WqRKkEQHhckHxXti6Fg7sgqhYmLEAcseBWerwDmx1zXCoGpotEBOmal2E9qGKnxBCCCFEAGg0MCsRfm+GbTVqy1OSGX47BUJ0qjBwjLx0EWJQ0WlVm+1LV6uATNdAzbG9DSumq+P8YePGjcybN6/j/vLlywFYunQpTz31FP/73/9YtmxZx/yVV14JwD333MO9997br2trXC6Xp8DUsNXQ0EBUVBT19fVERkYGezlDxu7N8MzvwdJtz+BZl6mbaQimqQ0Je8rgLx/BofaWCVoNTM2B75wOqTG9P1YMCw21ULwHdqwHpxPGTofsMRAdF+yVCSGEEEIMHkPxfWhbWxtFRUXk5OQQEnJyaWwrD6ouT12LCGeEqQDNYGu/3devh2TSCL9rrIO3/tUzQAPw8aswehrkjAn4ssTxVNTDH9+F8vrOMacLvjoABi0sPwdMhuCtTwRdfTW89n8qQHPM5jWQPx4uvxXipG6tEEIIIYTohyXZcFGm6uJU1qpq0MxJ8l8GzUAwhJ+aGCiqyqDskOc5lxMOfB3Y9Yg+2n/UPUDT1ZcHOrNrxLC1e5MK0LicYLOCw67GC3fAtk+DuzYhhBBCCDE06LSqzfZVuerPoRygAcmkEQHgtPc+b7MEZh3iBFV4CdAA2J3Q0Ba4tYgBx9IG69+FpnqoqYC2FlUQPCYRImLgyw/hlLMgIjrYKxVCCCGEEGLwkCCN8LvoRIiOh7puiRc2K9itkJantkJJXZoBJj7C+5xWA+HSHmE4s9uguhxK9qrC4KC+n8sOQkuT+p6324K6RCGEEEIIIQadIZ4oJAaCuCRYeDVo2v+3OZ1QXwWNNXD2VbDrK3jyHvj4FSgvDu5aRRd5CRDrpfXWxEzV5WkQqq2EvVthz2Y4eiTYqxm87DaISeoM0HRVXwWp2ZJFI4QYguotsLMO9jUEeyVCCCGGKMmkEQEx6XQwh8OalbBvO5gj4dxr4eVHoby9Xs0Hz8OYU+A798KIib2fz2qBimJobYbQCEjOBL3UsPWt1Bj46SL48/twtLFzfEwq3HgGmI3BW9tJcDhgx+fw5r86s7rCo1QAceqZYJLEoBNSdQRyx6ivYVO3nXGmUJgwW74nhRBDSJsNPq+BvxfCF1UQZYArs+CCNBgbHezVCSGEGEIkSCMCwmBUgZfUXPj8bQiNhGcegMrDncfYbSqT5uW/wE2/h5h4z+eqKIG3n4ZvNoLTod4ITjgVFl4D8SmBeT7DxvgMeOAyOFQNLRaICYP6FthaAqV1KtsmYXC0CDy4C55/uLO4LajgwsonVA2V8bOCt7bBSKOBrZ/CNT+Fz95WGXEuJxRMhtMXg/04taiEEGJQWXMUrvoMWpzq/pE2uGcnrKmER6dCweD4XSjcHWmBylbQayEtFGJMwV6REEJIkEYEQMk+2PwJ7Num3gi/9S8483L3AM0xze1FSCsOeQ7SNNXDK4+5d4Sy29T5bVa48scQIrVtfCspSt2+LoU/veueVZMaAz89B0YkB299feBwwIYP3QM0x7hc8MnrKogYEhrwpQ1acSnq67X+PcgdBzMXggv1/bvxI/j2PcFeoRBC+EhpC/xpd2eApqvVlbC9ToI0g0yrHVaVwUtFUGdVY+mh8O0CmBqnPogQQohgkZo0wq/274T/uxvWvqEKitaUQ32tCrZ4qmWhb99BY/XSOKjskPeW3V9vgPKDvli16OFoQ89tTwBHauHRD6GuOTjr6iNrG5Tu9z5/tBSaG73Pi56iYuG86wENFG6Hz99V3Z72bIZT5qusOSGEGBJKW2DtUe/zq8oDtxbhE19Vwf/t6QzQABxugQd3wF4pNySECLI+B2lsNhs/+9nPyM/PZ/r06fzrX/9ym6+oqECn0/l8gWLwamuB95+H1qbOseJCmDZPtep1OXo+JioetDqI8lKTtq6X10hOJzTU9m/NwouDVd5bch+sUtuhBjCDUXUb8iYiWjKwTsbY6fC936jv6cR0yBsL3/opLLgKzJKVJIQYKrQa0PeSWmGUzzwHkwYrvHLQ81yrAz6rCOhyhBCihz7/Vrn//vt55pln+P73v8+CBQtYvnw53/ve99yOcXlKjRDDVnV5z6yXyhLIHgPNDTDu1C4TGkhIhdBwmHQapGR7PmdoeO/XlDeGftLgJbXpmGZLYNZxkvQGmLXI+/yp50KYZKqfMK0WcsfC5bfCzX+A7/waJp8hX0shxBCTEwaLeil6t1AK4g0mDTYoa/U+v6sOHB52tgkhhpe1a9dywQUXkJqaikaj4fXXX++Ys9ls3HHHHYwfP56wsDBSU1O57rrrOHLEN61j+xykee655/jHP/7BT3/6U+677z42btzIxx9/zLJlyzqCMxrZwCm6cDpVIdHuNrwP4dFw5W1w/jJIy4XsUWp7xJwLYdF1YPTSaSc5y3uWTVIGJGX5avXCTVwv0TENED3wo2N541UnJ12XSlwaLcw6B8ZJ0eB+0elUYMYoBReFEENRXAjcOhKSPbw4uS5HujsNMiYtRPRSlTMhBHSSHCXEgOJwwpqv4YXP1J+BCKQ2NzczceJEHnvssR5zLS0tbN68mbvuuovNmzezcuVK9uzZw4UXXuiTa/e5cHBpaSnjxo3ruJ+fn8+aNWs488wzufbaa3nwwQd9siAxdMQmQnoeHO5WC8TphG2fwuQ58L37VAFhSwuEhKktE73tmotLhqt+DM/+EZrqOsej4+HyH0FkjF+eisiOh4Jk2Oth3/2kLMjyEjkLpNYqqCuEmt1gjIC4cRCVCzrVB9ocBnOXwKipcLhQdR/KyIfkbMnA8oXqCjhyAGqPQkyCCrrGJQV7VUII4SNzEuG/s+GtI7DuaGcL7umxkBUW7NWJE5BghgVp8NwBz/PzUwO7HiFE71Z+Cbc+BYdrOsfSY+GR62HJdP9dd9GiRSxa5DkVPyoqig8//NBt7K9//SvTp0+nuLiYzMzMfl27z0Ga5ORk9u/fT3Z2dsdYWloaq1evZt68eVx//fX9WogYesIiVebC079XHZi6yhsHGSNVbZrU7BM774iJ8MPfQ8leqK1UXWYyRkj7bb+KDoVbzoYn18DOw+B0qT36U7Lh26dDmJfUJ1+rL4K2atCaIGYE6Nuv23gYNj8Mtfs6j9XoYNwyyDoH9CrFw2iCzAJ1E75zaLcKnNZ02ccfk6jq02SPDt66hBDCp6bHq9vRNjBrIdwY7BWJk3RWKhxogvWVnWN6DVyVC2Oig7YsIUQ3K7+ESx9WHUS7Kq1R468s92+g5kTU19ej0WiIjo7u97n6HKQ588wzef755znrrLPcxlNTU/n444+ZO3duvxcjhp6RU+Hbd8O6N6B4H5jMcMpZMGUuRPcj+SIxTd1EAGXFw68uUEWCG9sg0qwyaMwBeJHaWgVF78C2v6lAjT4Ucs+DCT+A2JGwb6V7gAZUZeqd/4KofIgf6/81DlMNNfDiI+4BGlAB1Jcehe/f532LohBCDEoJAfpgQvhNQgjcPArOS4c99RCig5FRkB0Gpj6/OxJC+JPDqTJoPFW9daEqLtz2NFw0LfhbFNva2rjjjju46qqriIzsf3HGPv8Yuuuuu9i9e7fHubS0ND755JMeKT9C6HRQMEkVC26sUS22o2KDvSpx0kJNMDoIecD734RPf955394Ce/8LNXtg7sNQus7z41xOKPtCgjR+VHZQbVn0pPIwlB2SII0QQoiBJ9IIE2PVTQgx8Kz7xn2LU3cuoKRaHTc3iC/1bTYbl19+OS6Xi8cff9wn5+xzkCYrK4usLO9VWVNTU1m6dKlPFiWGHqNR1ZMR4oTV7oOtf/U8V7UdWirB0Uv3qbaB3R58sGtp7n2+tTEw6xBCCCGEEENHWZ1vj/OHYwGaQ4cO8fHHH/skiwZOoLuTEEIERetRaPKSqgHQXAGhid7n48b4fk2iQ2R07/MRQfiE0mqFliZwecqPFUIIIYQQA15KtG+P87VjAZp9+/bx0UcfERfnu9Rx2XUphBjYdCbQGsBp8zxva4YRl6p6Nd2ZYiB+on/XN8wlZ6v25vt39JzLHQsp2YFbS0Mt7NsKX7ynMnzyxsO0eVIoWgghhBBisJkzWnVxKq3xXJdGA6THqeP8oampicLCwo77RUVFbN26ldjYWFJSUrj00kvZvHkzb731Fg6Hg/Jy1QU3NjYWo7F/NTslSCOEGNgicyFjHhz6oOecVg8JE1S7bYcF9r0KljpAA7GjYNwNEJkR6BUPK2ERcMlN8OY/YM8WcDpBq1Vd2C68Uc2fDKsFyouhvgr0BggJg6Y60OkhKbNne++mBnj737BxdedY+SHY9DEs+xXkTzjppyiEEEIIIQJMp1Vtti99WAVkugZqNO1/rljqv6LBGzduZN68eR33ly9fDsDSpUu59957+d///gfApEmT3B63evXqfjdVkiCNEGJgM8fAlB9D3T7V2ekYrQ5m/RrixoMxFPIXQ/J0aKtRmTcR6WAIC9qyh5OkdPjWz1RQpblBBWaSsyAk9OTOV1sFHz6vAi5tzaoAcVgknL8Mtq5TQZvLboZRUzsfU7LPPUBzTFsLvPcsfPseMMt/ByGEEEKIQWPJdNVm+9an3IsIp8epAI0/22/PnTsXVy9753ub668+B2m+/PJLpk6dik6n8zhvsVh44403uPzyy322OCGEACBpCiz4N1RuVreQeMicC3ETVIDmmPBUdRMBFxIK2aP6fx6XCz79H2z4EHBBdTnUV6vbiytUcGb9e/DsQ3DTA5Caox6360vv5zy4G6rLID2//+sTQgghhBCBs2S6arO97htVJDglWm1xCnbbbX/qc5Bm1qxZlJWVkZioCnRGRkaydetWcnNzAairq+Oqq66SII0Qwj/iRqvb6GuCvRKfsLSCwaS2BolOlYfhi/adbZY2td3pmIYaVXfGHAatzbB/Z2eQxunwfk6XS4oICyGEEEIMVjptcNtsB1qfgzTd03k8pff4M+VHCCGGgj1b4cv3Ycd6iIyDMy+BUdMgtpcGVcNJS5Pa4gQq8OLoFnw5tvWptRkqSzrHR02FL973fM60HIiRr68QQgghhBgEfFqTRqPRHP8gIYQYprZ/Dg98F+qOdo599hYs+T5cdgtE+65zn1811sHhQtXRSWdQRYLTcn1T8yUkFIwhYG1TZYe0OvcsmbhkVX8GILFLTejMkVAwEfZucz+f3gALvwXhUf1fmxBCCCGEEP4mhYOFECIA6qvhhYfdAzTHrHwCpp0Fk08P/LpOVG2lWu+urzrHPnoJ5lwAZ1+pslz6IyFNfR02fACmEBW4qqlUc+YwiE2C3ZtUMCdvXOfjomLhsh/B1k9hw/tqO1lGAcy50P04IYQQQgghBrITCtLs2rWro/+3y+Vi9+7dNDU1AVBVVdXbQ4UQYlgrO6gyabzZsnZwBGm2rHUP0Byz7k3IGQsTZ/fv/Ho9nHkpNFTDN5sgLgXsdkADl96kCgRHxqoCwsfq0RwTm6S2j007E2xWiIgGo6l/6xFCCCGEECKQTihIc9ZZZ7nVnTn//PMBtc3J5XLJdichhPDC4ei9uK2lNXBrOVn1NZ1FfT3Z8D6MnaECLf0RnwJX/QTKD6muTEYThEaCtRXGnKLae8cle398ZEz/ri+EEEIIIUSw9PmldFFRkT/XIYQQQ1p8iso0Kfra8/yEUwO7npNhs3QW9fWksQ7stv4HaQDCItQ2Jdmq5K6tHuoPgbURQqIgMhtM4cFelRBCCCGE8JU+v5TOysry5zqEEGJIS8qAK2+FB28Ch919btIcyBsfnHWdiPBoSMmCwh2e53PGqjoywj9q9sPGv0Dt/vYBDSSOgyk/gKiMXh8qhBBCCCEGiT4HaYqLi/t0XGZm5kkvRgghhrJTFsBd/4bXn4R92yEiStVfOWMJJA+CH50hZrXWA7t6bt0ymWHqXJBdr/7RWg1fPgz1XX8Vu6ByB2x+Amb/Eow+6K4lhBBCCCGCq89BmuzsbI81Z7rWotFoNNjt9h7HCCGEALMZZiyA0dOgpgIMJtW6ejAZMRGuXg7vPqvqxYB6DucuhcyC4K5tKKs72C1A00XlDrUFKmFMQJckhBBCCDFkrV27loceeohNmzZRVlbGa6+9xuLFizvm7733Xl588UVKSkowGo1MnTqV+++/nxkzZvT72n0O0mzZssXjuMvl4sUXX+TRRx8lPFw2xgshxPFExqrbYGQwqC5UuWNVoEmrhfjU/rfeFr1rre5l0gWW+oAtRQghhBAioBwOWLceysohJRnmzAKdzr/XbG5uZuLEidxwww0sWbKkx3xBQQF//etfyc3NpbW1lT//+c8sWLCAwsJCEhIS+nXtPgdpJk6c2GPso48+4uc//zl79+7lZz/7GT/5yU/6tRghhBCDQ1ScuonACDlOxypjRGDWEWw2nBzCSi0OQtGSgZFI/PwqLYBacHAQK/U4CEdLJkai2l+qteDgUMecjswh9tyFEEIIT1a+Cbf+HA4f6RxLT4VHfg9LLvDfdRctWsSiRYu8zl999dVu9x9++GH++c9/sn37ds4666x+XfukenBs3ryZO+64g3Xr1vGd73yHd955h8TExH4tRAghhBCeRWdDRCo0Huk5FzcaooZBbf+j2HieWj6hERsuAPIx8QMSKGDwV6w+jJW/U8VWWnC2j+Vj4mYSCEHLP6hic5e5AkzcRAJ5Q+C5CyGEEJ6sfBMuXQoul/t4aZkaf+Vp/wZq+spqtfLkk08SFRXlMbnlRGlP5OD9+/dzxRVXMH36dBISEti1axd//etfJUAjhBBC+FFoAkz/sQrUdBWTD1N/AKYhnkljx8XL1PIRDR0BGoBCLDxIBeVYg7i6/mvB0SMIA+r5vUE9/0cVG7vN7cXCn6ikmoFfC9CB6/gHCSGEEF04HCqDpnuABjrHbvuFOi5Y3nrrLcLDwwkJCeHPf/4zH374IfHx8f0+b58zaW666Sb++c9/Mm/ePDZu3MikSZP6fXEhhBBC9E38KJh7vyoibK2HkFiIygbzcbZCDQUlWFlNo8e5Cmzsw0Iyxh5zTlyUYsOCkwh0JGHw91JPyiGsbKEFgBh0xKOnFSel2AhFw/9oJKJ9a5MDcKFewJVg5QAW4k4uMdqvrDjZTRsf00Q5ViYTyjTCyMGIFmkDJ4QQonfr1rtvcerO5YKSUnXc3NMCt66u5s2bx9atW6mqquLvf/87l19+ORs2bOh3Ekuff6s/8cQThISEUFlZyQ033OD1uM2bN/drQUIIIYTwLDRe3YabBhxYesnGKPGQSVOGjdeoZQ2NtOIiFh0XEc2ZRBA9wIIax2rQzCacI9jYg4VYdJxLFBFoacWFARd1OKhqzyWKQU8sOioHYCaNHRcf0siTHOUUQknDyEc08hGNXEw0swgjZoD9GwghhBhYysp9e5w/hIWFkZ+fT35+PjNnzmTEiBH885//5Be/+EW/ztvn35D33HNPvy4USI899hgPPfQQ5eXlTJw4kb/85S9Mnz492MsSQggxzDntql12XZH6e2SmyoYxhgZ7ZQNbKFp0qCwST+K7ZcjUY+dvVLKV1o6xGhz8m2qacXINsQMqmyMSHXOJ4M9UUt3lWb5BPb8kmdGEsI4mmrpseGrFRhV2QgbQ8zimGCv/porTCOdLmllLc8fcezSwlFhuJZGEAZrZJIQQIvhSkn17XCA4nU4sFku/zzPkgjQvvfQSy5cv54knnmDGjBmsWLGChQsXsmfPHqmdI4Rw11QGljq1byQsKdirEUOc3QIH3oPt/wFH++9vjRayz4Lx3wLzIG3LHggZGJlMKBvbtwR1FYaWkZjcxoqwugVojolGx2Gs7MdCLiZ0AyTAkYCed6h3C9CA2tb0D47yU5J5l4Yej4tHTzMOnLgGVNDpEFZMaLDgcgvQAFhxsZYmZhLO+UQFaYVDRIsdWu0QZoAQ6fQlhBha5sxSXZxKyzzXpdFo1PycWf65flNTE4WFhR33i4qK2Lp1K7GxscTFxXH//fdz4YUXkpKSQlVVFY899hilpaVcdtll/b72CRUO9uSTTz7hnXfeoba2tt+L8YWHH36YG2+8kWXLljFmzBieeOIJQkND+de//hXspQkhBorGUtjzErx/HbxxEbx/PexbCc0VwV6ZGMKqdsHWf3UGaEBl0+x7Aw58ANae8QfRLgQt1xNHfrdgTCRalpNEVo8gjfunWFpgHuHkYeI9GriTI/yFSr6hzd9L75MaHDTgJLTbyzITGmIx0IiDWYS5zaVj4CYSeIcGjgZpy1MNdrbQzCoa+JRGDmLBhQsbLvIJ8VpHyAm8Tz1NXnOjRK+abLC2Eu7dAbdvhd/uhC+qoG3gbX0TQoiTpdOpNtugAjJdHbu/4gF1nD9s3LiRyZMnM3nyZACWL1/O5MmTufvuu9HpdOzevZtLLrmEgoICLrjgAqqrq1m3bh1jx47t97X7nEnzhz/8gaamJn77298C4HK5WLRoER988AEAiYmJrFq1yieLOllWq5VNmza57QHTarXMnz+f9evXe3yMxWJxS0lqaOj5SZUQYghpa4BdT8EXv+kcazwEJR/D6X+E8d8Dfc8CpEL0h8sFB1eBq0t7HmujaqltbYANK1SQJnkSJE/u+WJEQBYm7iKFA1g4go0odORiIsNDweAw3F+xnUo4q2niy45MHA2raGQ9zdxJCuMxA6qWSjFWmnASjpYMDBj6/3nWcVnbAzQjMdGCEysuDGgwo8WAhjJsnE04C4igDgeR6LDgZBUN6NEEpXdSCVY+pIESrHxAI3XYKcDE90kgGyNfAY1u/agUHSr41Nr+PMUJsjng9cPwUnHn2FEL7KiD7+TBBWnyA0QIMWQsuUC12b715+5FhNNTVYDGn+23586di8tTCk+7lStX+u3afQ7SvPTSS9xxxx0d91955RXWrl3LunXrGD16NNdddx2//vWvefnll/2y0L6oqqrC4XCQlOS+bSEpKYndu3d7fMwDDzzAr3/960AsTwgxENR+Axsf8jz35e8gdTYkTQnsmsSQ57SrgMwxtmao2afGAVoqVcemz34Hp98DieODs86BLhY9sX146ZKPqWO7jQkNBjQdAZpQtJjbtwa14OQlasgnmXocvEgdn9KIpT1IciphXE0sqR4CQb4Uj54YdNTiIIqeHwmeQhhPUYUdMKBxa0M+jwjiA1yE14aTtTSyigY+oqljvIoWvuIQT5LJSEIYh5VD3Yo6J2PAjJYxmIn08FzFcRxqgVdLeo67gOcPweQYyAjrOT9YNdmgpAXqrGDSQW4YRJuO/zghxJCx5AK46FzVxamsXNWgmTPLfxk0A0GfPx4qKipiwoQJHfffeecdLr30UmbPnk1sbCx33nmn12yVgewXv/gF9fX1HbeSEg+/+IQItqPb4cCbsPcVOLIe2uqCvSLfsjZBcyXYetaQ8LmGIrB7uU5bDTQWe54Toh90BogZ0Xm/taYzQAOqgLC1SW2F2vs/sPdsViROQBZGvk8CeiAdI5vbAzR6IBMDhi71W3bQSgU2/kUNq2jo6CJlw8UnNPF/VPl9W04KRi7Hc1Gi0ZgZj5mU9kBR1wBNJFrOJwp9gOvRlGCjCadbgOYYG/AE1ZxCGFcRSyw6tIAZDTkYScKAGQ3nEBnwdQ8JJS1g9/LJbrMdjgTg92igHGqClYfhpo2weB1c8AnctAk2Vgd7ZUKIANPpVJvtqy5Vfw7lAA2cQCaN3W7HZOqMXK9fv57bbrut435qaipVVVU+XdyJio+PR6fTUVHhXleioqKC5GTPZZ9NJpPb8xJiQLFb4eDb8MlPoemwGtMZYdy3YdKtEJ0T3PX1l6UBKr5SAai2WghPhdwLIXEy6EP8c03NcX6qa/y/tUEMT1lnwMGPVIzQUu8+V3AhHPlS/b16d/u3g9SyPmk6NMwlgnQM7MfC2zSQiZFItD3qvmiAKhxs8BBwANhCCwexMq59S5S/nEk4IWh4lToOYyUMLXOJ4EKiSMXIL0hmNY2soxEHMJVQFhDJCPz0s7IXdpzsw3v3ioNYaMTJfCJ4iiyeo4Z9WDCgYSQhXE0so4Ow7mFhqMS9aq2w7ij8ahtY27fN2V2wqhwKG+GZmTBKCk8LIYamPgdp8vLyWLt2Lbm5uRQXF7N3715OP/30jvnDhw8TFxfnl0X2ldFoZOrUqaxatYrFixcDqg3WqlWruPnmm4O6NiFOSsVX8MF3wNblzYPDCtseh7BUmHa7//ee29tAowedj9Pp7RbY9woUvtY51lYDVV/D+Bsh93z/PLfIbDBGqkIg3YWlQESm768pBBA/CmYshy1PgmavGjNFwtiroOWo2gIFoDOBNrC7V4YkPRpGYWZU+7aaEjynJ40nlGacHqqnKC5o32jkX6HomE8kUwilHgdGNKRiQNP+rjsDI9cRx/lE4cRFLPqgdXQKR9dr6+8wtGgBDRpmEM44zFRgxwUko+9RM0icgIxQMGjA5iGbJkIPqf4NJgbMkfZtXVYP35nFzfBhuQRphBBDVp9fBv7whz/k5ptvZt26dXzxxRfMmjWLMWPGdMx//PHHHZWPg2n58uUsXbqUadOmMX36dFasWEFzczPLli0L9tKEODEuFxxe4x6g6WrnPyH3Aogb7Z/r1xVC6Tqo3AaGMMheAPETISTaN+dvOAj7/+dhwgW7X1DZNBHpvrlWV3HjYNa9Kjup69syrV6Nx0kxEOEfGi1kzIbYfCjfAtV7VGLX0Z2q4dgxOWdBaHA/8xhyxmBmEuYebblD0XIFMVi8hmg6j/O1FhxUtAd/ErsELo5Xd6cvNXn8LQUDswjnH1T3KP1rRMMYQkjB0DEWho7cLoEZFy4KsfAVLezHQgYGZhBGASEDpi36gJUVCldmwX8Ouo9rgWtzIC00GKvyvVor7PbSzMMFbKqBNoe0HhdCDEl9/k1/4403otPpePPNNzn99NO555573OaPHDnCDTfc4PMFnqgrrriCo0ePcvfdd1NeXs6kSZN47733ehQTFmLAc9qhdo/3+abD3gM4/VW1CzbcB7Yu7VOrtkPmWTD2BvXxf381HAKXlzoPtkZoLvNPkMZghoIrICoXvnkW6osgdiSMuhqSZg79Ta4i6MKSIHU6lG+Gw91KucWNgsy5QVnWkBaHnh+RyAaa+aC97swEzJxNJCMJoQobSeg7giZdxaMn08eFg3fQygvU8DWtuKBjC9AkzB2ZMwOZBg3TMPND4nmcqo6KPeFoOzo8xfTyEnMDzfyJCtraQzxfAv+jnltI5AzCB8XXIGgMOjg/TWXUvH0EKi2Qbobz0mBcVOA7O7lc0GADnQbCDcc/vq9C9RCmhxovBbqijaCX/ydCiKFJ4+qtr9Qw1NDQQFRUFPX19URG+uCNqBAny+WCDffDht96no/Mggvf8H0mja1FBWiqdnien3UvJE3t/3UOfQhbHvU+76vr9MbaApZaCIlVwRshAqi1Fmr2QMlnKl6ZOgMSxkBoQrBXNrQ14cCGiyh0btuFttPCg1RQ36VIcCRafkIyU/BddsIe2ribI7R0y94JQcO9pDLWz7VvfKkeO1/RzHZacQAp6JlCGKMJ8RpoqcDGzyn1uIUsDC0PkUYGUiuwT6wOaLGrYIYhCB8w7G+E1ZWqkK9eC2cmwax4SPHB/+EqCzyyB54s7DkXpoe/nwJnpfT/OkIMIEPxfWhbWxtFRUXk5OQQEiK1yPr69ehXzux5553HP/7xD1JS5IekED6n0UDGPNjyiOf6KeO+45+tTi3lUP219/nyDb4JnkRlg9YATlvPOVO0qg/jb8ZQdRMiCMwxkDZT3UTghHuphzKBUB4gjT20UYqNFAyMwkSmDwMGTlx8REOPAA1AGy7eoZ6RhPTa9WgLzXxGM1/TRi5G5hLBZMzo/bAl63hC0BKDgWZaKGvvOzUOV3urcM9KsHqt8dOMk0PYJEjTV0adugXDrnr45TaVyaPXgFkHh5rh06Nwx2hI6megJt4El2fCtlrY0KWbk1kHN+bBFM/d0IQQYijoV5Bm7dq1tLYOoVZ/Qgw0iVNh/pOw7nZobG8PrzOp7k75l/rnmi6nunnj8FFv4IhsGHk5fPOc+7hGB2OWqk5PvuawQeMh1cLcYFZFgo0Rvr+OEOKk2XFRipU2XESi7Wg9HQgZGMnw4/UacbAD76+bdtFGHQ7ivbw8+4gGbqKY+i5Bnsc4ygoyuJDI9nK9gWHHxbs08C+qOurSlGDlc5r4IYmcjedPgW09qti4O159IDEAlDbDY3thfZeurmYd5ITDvkbYUgvn+CCbZnw0PDIVvq6HDVUQZoDTE2BcNET6cGuVEEIMMMGvPieE8M4QAnkXQnSeKrTrsEB4OsSMAr0RqnepljCmKLX9SeeDTx/NCRCVo2q1eJI0rf/XANAZVLvtiCw4+A60VKnnkL1QFff1tZajsOcFKFnTmb0TUwATvg8xI3x/PSHECSvFysvU8hlNWHARjY4LiGIhkUQNgZcsBjSYewmkhKDB6CWLpggLd3HELUAD0IqLX1LKCEwB3SpVjJVnPRQOdgBPUcUYQkjzEPBKQI8BjcdgjRZI9ZqDI/ql1aG6IrXYVYAjM/Tktki12GFNJXxc0fP8+5tgVCR8XAlnJ4POB0HDnHB1Oz+t/+cSQohBol8/PbOysjAY5JepEH6l1UHCBBWsKbgMUmeBtU7Vqln3c/jiN7D2Dtj0Z2gq6//1TFEw6hrPPYBjx0DsqP5f4xhDqHo+M+6COX+AaT9VXZ10Pv654rTD3pdVHZyu26tq98LGB6G5wvtjhRABUYudRzjKxzRiaX8DX4eD/1DDG9TjPE4GxmAQio6FXjJMAM4mkkgv27GKsHDASxvxahzsx+KTNfZVCdaOf6fuGnBSioetrEAWRs7Bc+vkOYSTFcDMqWHjUDP8fhf8bAvcvQNu3wKPFULFSWTDH2qGyjZwevi3t7TXyBFCiCFg7dq1XHDBBaSmpqLRaHj99de9Hvv9738fjUbDihUrfHLtEw7SFBcXc6zW8M6dO8nIyADA5XJRXFzsk0UJIXrRWgOb/wxVX8OxF8guOxz5DHY9Bfa2/l8jaaoKnCROBkMEhCbCyCthym1gju//+bvTGVXHKE+BIV9oLIGS1Z7nmsuhbq9/riuE6LP9WPjGy1agt6mnxEuAYrCZRijTCesxPgEzpxHu9XFtxwlSNQd4m9Dxrubwsl4DWi4jmqXEEdsekIpCx+XEcD1xhHoJUomTVGOBFXtgc03nP5rNBavKVRtvi5cui9402KCkBaZ7eS1gdcIZCb7JohFCiHYOB2xaAx+8oP50nOCPrpPR3NzMxIkTeeyxx3o97rXXXuOLL74gNdV3pRpO+B1RTk4OZWVlJCYmuo3X1NSQk5ODIxBfMSGGs4YD3rcilW1Qra1jR/bvGlo9JE1RhYnb6lRmiz+CM4FiaVBbxbxpPBy4tQghPCrqJQjTgpMa7CRhYD8WttFKC07GEMJIQogbRFuh4jFwMwnsIYIvaMaBi5mEM+o4zyMFPWY07U273Wkh4BkoaRjQg8cSwGY0vW5bikHPpcQwh3BacBKCJqC1h4aVomYobPQ899lRuDANCk6gi0ykAYqa4Nw01dWpe4vssZFS1FcI4VOrV8Kfb4XKLi/XE9Phx4/AvCX+u+6iRYtYtGhRr8eUlpbyox/9iPfff5/zzjvPZ9c+4Vc1LpcLjabnfummpiZpqyVEIPS2NcflAEu9766lN0P44GkH65XBDBqt94LIIXGBXc8w5rRDW72KA4Z43vEghogmajjCPorYig4DeUwhmXzMXrJFvG3zOSYELa9Rx4vUdCQEvAGMIoTbSPRY/2SgikHPTMKZ2UvmTHejMLGUOJ6gqsfcYqIZGeCOSFkYuYBoXqOux9xlxPapAHOS1J/xv/JetjTZXVDneVuaV1lhqnDvmgr48SiVobOxBoxaVYfmW9m+acEthBCoAM0vLoXun09UlqrxB17xb6CmN06nk2uvvZbbb7+dsWPH+vTcfQ7SLF++HACNRsNdd91FaGhn21qHw8GGDRuYNGmSTxcnhPAgJLr3eUPPNPphLyIDEidBxeaec4aw/mceiT6p+gYK34WjO1WN69yzIX02hCcFe2XC1+qo5B3+ygG2dIx9wWtM4RzO4FuEeahJMgITJjQe65zkY6IJJ89T02NuN228RT3fJR5NL62rBzszer5LPAno+RfVlGIjAR1XEcvVxBAX4ICHCS2XEkMGRt6knmpsJGHgIqI5hVC0Q/jfYlA5Xhek0BPcXhaqh+/mw2P74M1SyAqFxekQbYBzUiFfOiYKIXzD4VAZNB53z7oADay4DU6/CHRB2Cn7hz/8Ab1ezy233OLzc/c5SLNli3qh5XK52LFjB0Zj5yckRqORiRMn8tOf/tTnCxRCdBOZCyGx0NbzzQoxBRCZGfg1DXR6M4y5QWUZ1e3vHDdEwNTbVFcp4VcV2+HT+8De5UPdbf+GI1/CzJ9CqIfddK21UFvYHtQxqDhbdC4YQ3seKwaWr1njFqA5ZjPvkcUExjKnx1wWRn5AAn+l0m0LTTQ6biaBt2jwer01NHIBUaQOomyak5GGkZtJ5BwiacRJKBpGYApo6+2uItFxNpHMJIxmnISjJVxqygwsueEqgOIpYyYvHDJP4oOdjDD41Vg42Ay1VgjXQ3YYxAY2m0sIMbRtXee+xakHF1SUqOOmzg3UqpRNmzbxyCOPsHnzZo+7jPqrz0Ga1atV0c1ly5bxyCOPEBl5AvtXhRC+E54CU5fDxj+BpbZzPCIdJt4ERvkUy6OoLJhxN9QfgKZS1cUqOk9l2Qi/srXCrpfcAzTHHP1a3bLOcB9vqoBNj0F5l/f5X78EIy+G0ZeBSf6bD1iN1LCVD73Ob+V9RjITfbfMDx0aziCCDIxspoVK7IzAxDhCyMBEFdVez9mC02NL56Eqn4G1vTwCHRESnBmY0kLhtlHw8DfQ0CX8mWyGm0YcP9PGmwgDjI/2yRKFEMKT6j42re3rcb60bt06Kisryczs/HDc4XDwk5/8hBUrVnDw4MF+nf+Ea9L8+9//7tcFhRA+kDAR5vxeBRzaaiA0CaLyPKcjiE7mWHVjWrBXcuLaaqDpiCrqEpoI4b6rIO9vzZUqEOPN4c96BmkOfuweoDlmz2sQPwbSZ/p2jcJ37Fhpo8XrfAsNOLD1CNIA6NFQQAgFHoIQkwhlq5fuT+kYiZIggRCeTY2F30+CfY1QZYFUM4yIgCSpHSOEGLjiUnx7nC9de+21zJ8/321s4cKFXHvttSxbtqzf5x887RCEEO7CUwfVG3VxklwuqNgIX/+rswuVKVq1RM88U23lGuA0gEbjeUsxqJrOXTUfhSLviRgUfQBp03s+TgwMYUSRTC5FbPU4n8k4jJz4/9uphPIaddTT2UXShepsdDkxRMtLGiG8ywhTNyGEGCQmzVFdnCpL8fwiUgNJ6eo4f2hqaqKwsLDjflFREVu3biU2NpbMzEzi4twbjxgMBpKTkxk5sv+1LuUlrhBCBJO1GWr3qSwZT2r3wsaH3NuEW+pg+xNQ/lVAlthfoYmQON77fMZs9/tOK9iavR/fVqcSisTAZMTMTBaj9RA0MRHKOOaeVIHfbEz8kmTGEEILTkqwUoeD84kiBh1teOneJoQQQohBR6dTbbYBerxsaL9/2wr/FQ3euHEjkydPZvLkyYBqpDR58mTuvvtu/1ywC/nYSQghgsFhhSPr4Zv/QPmXqg34qKshYx7E5HceV7rOczEXgH0rIWHygC/QYjDDmCugem/P4EvyZLV9qStTtCohVPWN5/MljAPd0K4PO+hlM5GL+Smf8CxVqABjGgXM5VrSKDjp847BzLeIJRcjNqANJ5/RxFvUcx1xXEgURvn8SQghhBgS5i1Rbbb/fKt7EeGkdBWg8Wf77blz5+Jy9b3eXX/r0HQlQZohxG6Ho1Vqd0RiAujlX1eIgav4I3jnW2DvErUo+xxGXgWzfq2iFA471HiJVAA0HwFr/YAP0gAkjIUzfgMHV0HFNtCbIGcBpE4Hs3u2KMYwGHUJfPY7cHVLjjCEQoaf0lqF7+jQM5rZZDCGOirRoiWGFMyE9+u8Ndj5G1Ucxtpj7jmqmYDZYz0bMXC04qAWBya0xMnLUCGEEMcxb4lqs711nSoSHJeitjgFo+12oMhvxyGi8AC8+iZ89gXYbDBrOlx6EYzp/5Y4IYSvNRTDVw+5B2iO2fMCjLxCBWm0OjAnqC1PnhgjQD943pDGFUDsCLA0qJbahl5aaSdNhum3wc7noLlCjcXmw4SlEDciIMsVPhBODOHE+Ox8pdg8BmgA7MAe2iRIM0DZcLGNFl6jjgNYCEPLfCKZRwRJHopICyGEEMfodIFvsx1MEqQZAg4chNvvhs3boM2ixrbugA/XwON/hHFjenu0ECfB2qg6SzntqrNURHqwVzS4NB1WWTPelKyBnEWq2m7W2XDkM8/HZS0E8+Dq6KXRQEjU8Y/TGyF7nqpl01yp4lXhqb5JGmoohboDYG1SGT0hsRBbAMZegkZiYHAcp822ZRi14R5sNtDMnyjnWDmpJpw8Rw07aWU5ScTKS1IhhBACkCDNoOdywXsfwZebwN7Z8AKnC/YWwkuvweiRQzsdTARYxSbY8hco+QgcNogfB5NvhYyz1D4V0QfHKZqq7TIfNwZGXwu7XwBXl2q5qbNU/ZohLjTet53lq3bBjmchLAl2vQy1haAzQcGFMPUmSJCg9oCWgJ5ItDR4KRI8AlOAVzRwVWOnBjt6NKRiwBTEWj212HmOGjzV+95GK3uxMFNeknpX2QZ7G6DSAlEGyA6DzDAwSP0lIYQYiuQ34iDX2ARrPnUP0HT1wWq4/mrIywnsusQQVbUTPvyuygTpOvbRD2DBP1T2hzi+iDRIne09QyZ9buff9WbIuwgSJkLtHnBYIKYAonLVdifRZ211sOXvEDMCPr0PXO0/Nx0W2PM6NJXBWQ9BTG4wVyl6k4aRK4jl71T1mJtFGDkSpKENJ5/TxIvUUoYNPTCNMK4khrwgbQWrxO51mxrAVlqYiQT5PdpVD7/dCasrVAtanQZOi4cfjYSZcWCQT+GEEGKokSDNIKfTqoLB3mg0YLUFbj1iiCtd5x6gOcZlVy2hE6eoFAXRu4hMOOUOePcatXWsq9HXQuxo9zG9CWJHqps4aQ3FYIyEff/rDNAc47RBczkc2SBBmoFuPhFEouNV6ijDSgQ6FhLJWe3jw916mlhBZcfGLzvwBc0UYeXXpJBG4FujaVH5g942oxlPoiX7sFBrUQGajys6xxwu+OQo2F3wu4kwqpf9oy12KGkBixNiDZAWql4YCiGEGNAkSDPIhYXBwvnw2Zee5+fNgUj5sF34Suk673OVW6D1qARp+ipjPlzwmioUXP4VhMSoFtxpcyAyK9irG5JsrWCOhao9nueddijbBKMvVzVwetNUDvWHwN6iajtHZYPJQ+Mil0vV1HFYoLUKyjaD0wpJkyBuZM/OVuL4QtExlwgmY6YBJyY0JErhWUB1v3qZOo/BkAps7KA1KEGaFAyMJITdtHmcn4oUhPJoTyOsrfQ893kV7Gv0HqTZ1wj/2q8ycZxAhB4uTINz0yBSvl+EEGIgkyDNEHDaLJg4DrbtdB8fmQ+nzYQUec8sfCWkl3eUxkjQ9vLCz2FTXYpK16psnOgRkDJLbd0Zjp/s6XSQPgeSpqkUDmOoKsIs/CYkBpwOFUyxt/Sc14VASPTxAzRlm+GrR6G1un1AAylTYPL3ICKl87j6EjjwHrTWQsMhKPoIwpPVt0rhu5AwDqbfqsbEiYtCTx9qUA8rtTg8bivSAxHo+IY2zgnCVy0cHdcSy+8op7lbPaFziSJPtql5Vm2BWJOK9mo0KjOm2a5SklxAtZctZKUt8MDXcNTSOdZoh+cOgV4Ll2YGYvVCCCFOkgRphoAxBXDfr2D1p7Duc/W7fOYpUJAPUyeCVurKCV/JuxD2vux5Ln8xROd7nnM54fBq2Pp4Z/Hbo9vhwFsw9SeqCO5wZTBDtBSNCoSoLBWEyT4Lvn7Bfc4Uof4pcs7u/Rz1h+CLP3bbpeZSGTimF2DaLaDTQ+MRWP97aCyDrDPgm1fUoZYG1UnKFAlHd8LBVTDuGl8+SzGcGQATmo4uV3pgLnbiKKWKA2QRTxnjSSQHXYC3hk0glN+Sylqa2EErkehYQAQTCCVctqn1dKQF6m1woEltbdICcSZICIGjbSpIk+gluPVNvXuApqs3DsOpCZBq9tfKhRBC9JMEaYYAjQZOmQJpyXD2PLBa1BanjHSI8JB+L8RJS5gMk26GrX91H0+cAqOu8Z6C0FAMO/7h3p0I1B6QHU+qIriyTUr4md4EIy5QmSvVe6B8c3tL8BjVRX7UJRB/nO5OVbt7lhE6puQzKFisatpUbof6YogbBcVrO49xOaHpiGqEptFB0SrIWQBhCT57mmIYS8XIdMJYRxNa4GJa2chf+JhCAEYSwh5CWcQPGMcZ6AL8MnAEIYwghDYc6NGil1o0njXb4Mn9EK6HERHwTYPasnTUomrSRBogKwwKIj0/fq+XH1IAdTZosEqQRgghBjAJ0gwRGg2kpambEH4TGg8Tb4L006F4FdiaIPU01XkoOs/74xoPgb3V81xrldr+JEEaEQBhCZC7AGLyoXa/ymYJiYbU6RCTB8bjBLabjnifc1jB1qz+XtLeuEtnVNkzXVmb1LF6M9ha1N+F8AU9Gi4nhgNYicLBAf7LofYATSoGwtBix8I7PEYCGaRSEJR1hkjmTO8ONsPmGjDr4KYR8Je9qsaMC6ixwvQ4uHMs5HspOhjXy/YxgwaM8vUXQojjWbt2LQ899BCbNm2irKyM1157jcWLF3fMX3/99Tz99NNuj1m4cCHvvfdev68tQRohxIkxx0H6GerWV3YvadfHOKUFmQgcrR7iCtQt/wS7xkf0EgjXmTqDPLr22qwtR1XtmcrtXQ7UtN9QWTchMSe2BiF6k42Je0mmlAP8H5tIwkAMOsLQom3/j+fARhHbghakCQSbHYqroKEVQk2QGQ/mwNdMPjnVVhWQaXHAqnJYlqu2O9VaIcYIM+LglF5qxE2KgRcPqW1S3U2PgwzJohFCDC5OB5Ssg6YyCE+BjDnHryHYX83NzUycOJEbbriBJUuWeDzmnHPO4d///nfHfZPJNzXWJEgjxHBkaYDmMrX3IjRJtbzxh7ZaaCxRP0Wzz4Xa3VB/wP0YnUkK5opBI340mKLAUt9zLusMiMxQf8+eC0e+VC8mRpwPpmiw1Km5kGj1316jg5FLVM1oIXwpGSM2XGSiBS/dnBqp9jg+GLXRgoVmzERgJITyOnj+M/h0N9gcoNXA5Gy4YZ4K1gx4YV1enrc4YHWFCtIYtGB1wpzE3h+fFw4/GAFP7ANbl0BNbjhclQ0GyaQRQgweu1fCB7dC4+HOsYh0WPAIjPIcO/GJRYsWsWhR75/mmUwmkpN93wFCgjRCDCcul2qVvespqC9SY2EpMPpaSJkJOh+25Ty6HbY/oYI0Lge0VKqtUckzofyLzuPyLoSIDN9dVwg/isyAU38GXz4KzRVqTKOFtFkw+jKVpQMQNxbSZkLpF1DyKcz8Cex9HY5+rWriRGWqgsFJE4P2VMQQF0okoUTSQoPH+RS8FHofRFppZD+b+JI3aaSaWFKY6riQjV9PYvXXndkiThdsKoLGNrjzYogZ6PX6MkMhKQQqurQsdwIWpxrPPE5kV6+FM5NUUGZXvSpAnBeu6tskhPh16UII4Uu7V8KrlwLdEgMbS9X4Ja/4N1BzPGvWrCExMZGYmBjOPPNM7rvvPuLiesl07CMJ0ggxnNTuga9+714fprkMNj0MM++EpKm+uU7DIfjqD2Btf3Og0altUqXrIPc8CE9VeYv5iyHt9M53tkIMAokT4Mzfq05P9lb1XzsqW3WHOiY0Fqb+ANJPVa23a/fD9B9DaAIYQtWfZtnmJPwojjRO4QI+4bkec5HEk87oIKzKd+xY2cAbfMpLHWONVPON7WtyM24gLfYiSmvcCxPvLYODVYMgSJMQAreOhIe+UVucjokxqvG+BFr0WlWzxlvdGiGEGOCcDpVB0z1AA+1jGvjwNii4yP9bnzw555xzWLJkCTk5Oezfv59f/vKXLFq0iPXr16PT9W9B8s5IiOHC5YKS1Z4L+LrsUPg6xI1R1Uz7q2p7Z4DmGK1RBWdqdsOsX0Noonp3K8QgFBqvbr0xx0L2PMico3YW6gZLPQwxZExhEQ7sbOQt2mgGNGQwivl8hzgGd6eBSg6xnld7jFvsLj62v8iZE6dQujqzx3xFXQAW5wvjo+GBiapTU3krJJuhIALSZH+kEGJ4KFnnvsWpBxc0lKjjsuYGalWdrrzyyo6/jx8/ngkTJpCXl8eaNWs466yz+nVuCdIMQzYblJRCYxOEhUJmOhjlzcPQZ2+F6l3e5+uLVKENXwRp6vb3vg6tTgI0YtiQRDERLGFEcQbXMJYzaKIGAybiySCEsGAvrd+qOYwDe49xvQ6anc2YosuAnkGayMFUMzctVIIyQohhq6nMt8f5W25uLvHx8RQWFkqQRvRdSwvsOwDPvAgfrIYQI8THwhmnwbVXQlpKsFco/EprAGOk93lDqKpm6gthvfxn0ptBJ3vihRBDQL1VtUtuc0CoDlLMED+wfr5p0JBABgkMj9pfZiOYTUCrpsdcbDhkH6fmrhBCiIEhvI/vTft6nL8dPnyY6upqUlL6vyAJ0gwTra2w7nN4+kVYtbZzvKwC2qzQ1Aw/uxUiZevy0KUzQPZCtRXJk+yFvusFnDgZ9rzkubV22hwIH9xp9kJ0Z7eoGjUtFSoeGpEBkfLffGgrbobnD0KsCb6qhsImSDPD9bkwK969Q4/wuXgy0WPEjtVtXK+DsQkR6Hanuo1HmuHWRZAqtaCEEGJQyJijujg1luK5Lo0GItPVcf7Q1NREYWFhx/2ioiK2bt1KbGwssbGx/PrXv+aSSy4hOTmZ/fv387Of/Yz8/HwWLlzY72vLK4hh4sBBKCqGNZ+5j9vscLgUNm+DQyUwfkxQlicCJWES5JwLRe+4jyefooInvhKVB5NvgW2Pg73F/fojLg1OdS8h/KS1Fna9BAfeB2f77gtTJEz5HmScpro/iSGmxQ7PHYQIPdy/E9qcavxgM2yphZ+MgquzIEReZvlLApnM4UpW84zbuAYti0KuJTM3jcwL4UgtJERCfjJkyC5bIYQYNLQ61Wb71UsBDe6BmvZkybNX+O9txcaNG5k3b17H/eXLlwOwdOlSHn/8cbZv387TTz9NXV0dqampLFiwgN/+9reYTP3fmSCvHoaJLduh1QIOR8+5xiZos8DRqsCvSwSYKRJGXweps+HoNpXpkjABovIhJNp319HqIP0MiMyB+v1ga4bITIjMBlOU764jxABwaDUUvu0+ZmmADStUF6f4wd1ER3hS3AI64JkiFaAxalXnnTorHLHCb3eq9scTolWmjfA5PQamcT7xZLCRt6nnKPGkM5VFZDEefaSGhF52+AohhBj4Ri1RbbY/uNW9iHBkugrQ+LP99ty5c3G5PKXwKO+//77fri1BmmGiuRWMBs9zLlTjnzCpTTc8GMNUYCZhgn+vo9FAVJa6CTFEtRyFfW95nnPa4PB6CdIEnMUBh5qhtBV0GsgIhcxQ0PkwpanRBmEGONSirhFjhMJGOPZBiAtYUwnba+H6PIj08gtY9IsJMyOZSR5TsNCKiVD0yNdaCCGGklFLVJvtknWqSHB4itriNJQT8yVIM0yMG61q0uRmq61PXZmMkJoMWcOjpqAQA5u9FZrLwOkEc7xvM5yEz1lboLXa+3zdgcCtRQANNnilGN4sBXv7p19mHVybAwuSweSjV3SRBvXpBkCEAY60dgZoALSAzQlfVMPsRJga65vrCo/0GNEjbSqFEGKo0uqC02Y7WGSn/DAxMh8aGuGGayAxwX1u9Ej46Y8gOSk4axNCtKv5Bjb8Dtb8GD75MXz+KzjyOTg8FGAWA4IhFEJ6ef8dnR2wpQiA9VXw2uHOAA1AqwP+UQi76n13ncwwiDdBYoja6tTYpRW0FpW1kxmmxjfV+O66QgghhBjyJJNmmIiPg5u+A++tgptugOYWqKuHCWNh2mSVYSOGGJdLbTkSg0N9EXxxP1i7vJFsKIavHoQZv4Tk6cFbm/AqLAEKzodtT/Wc0xogbXbAlzR81Vvhf6We55zA+2UwMQa0Pvi5aNbBGUlQbYUnOzs/oNOoVtznparuT+C5I4UQQgghhBcSpBlG0lNVJk1ZuSogHBUJUVLDdWhx2FQ2xuE1ql9dbIEqEhwzUgI2A13ZF+4BmmNcDtj3KsSNU2kbYsDJOhOaKqDow87uTsZImPJdiCsI7tqGlRY71Fi8zx9pBasTQny05SnFDN/KgpER8Og++KZeZdcsSgWTFj49qo6bKj2fhRBCCNF3EqQZZrRaSEsN9iqEXzjtUPwBbH8SXO3tYGt2QdG7MPUnkDoruOsT3jkdULHJ+3zdAWirkSDNAGWOgUnfhpz50FyhMmgiMyAyLdgrG2bCDZAQAk1NnuezwlTwxJeiTDA/RV13VTk0O2BvA9S1b1GcEQf54b69phBCCCGGNAnSCDFUNBbDzn93BmiOcVhgx98hOg9CE4OzNtE7jValXnijN6t3/mLA0ptU1oxkzgRRhAEuToeHd/ec02ng7GT/ZRSOj1bbqN4+Agat6ia1KBVmxkG0tOAWQgghRN9JkEaIoaL+oArIeNJ6VG1/kiDNwKTRQNbZUPGV5/mMufJvJ0RfTI+Fa7JhZYkqGAyqE9OyXBjtx/29Wo0K1IyKUB2mjDoVNBJCCCGEOEESpBFiqHBYe593SoegAS1uLOScC0XvuI/HjICshVJTSIi+CDPAZRkqg6WsVWXQpIWqWyAYdBDno5o3QgghhBiWJEgjRKA5bGprUmOx6sAUkQ4RWWq/RH9EZAAaPLYS0ZshVHqsD2imSBj9LUiZqYoIOyyQOBViR0FoQrBXJ8TgodNCdri6CSEEYKWNUnZTySG0aEkkmzRGo5e3QkKIAUh+MgkRSLYWlSmx+wVwtme+aPWQtxhGLAFjxMmfOypHbYspWd1zLv9iVclUDGzGCEicrG5CCCGE6LdGqlnNf3iTR7DSAkAoUVzKL5jFZYQiAV0hRE9r167loYceYtOmTZSVlfHaa6+xePFit2O++eYb7rjjDj755BPsdjtjxozh1VdfJTMzs1/XliCNEIFUtQN2Pe0+5rTDvlcgMhMy5vXtPK1VUF8ErdUQEqMCNKGJMGapyqgpehcsdWosf4nq7KTxcVeT4aTVCvsr4asiaGqD8RkwOgWSpIe9EMOS3anaeZt1shVRiAFuB6t5kXuwY0eDBj1GmqnjP/ySBDKZwFnBXqIQ4jhcDmhcB7YyMKRAxBzQ+Hl3cXNzMxMnTuSGG25gyZIlPeb379/Paaedxre//W1+/etfExkZyddff01ISEi/ry1BGiECxWHrWW+kq/3/g+TpYAjr/Tx1hbDpT9B4uHMsNAmm/VRtjSm4DNLngr1VZWaExPhk+cNWiwVe2wQvbugc+2AnZMfD7edCZlzw1iaECKwWO+ysh/fLoLIN8sJhfjKMjlTbrIQQA8oR9vE+T2KlrWPMgQ09JoyEsI4XGclsTPT/TZUQwj9qV0LxrWDr8tbHkA6Zj0BMz9iJzyxatIhFixZ5nf/Vr37Fueeey4MPPtgxlpeX55NryysKIQLF3gYtld3GWsFSC23VKujSVtf7OSz1sOWv7gEagJYK2PQwtFSp+6EJKjNHAjT9t7fCPUBzzMEqWLkJ7I7Ar0kIEXg2B7xVCr/dCV9Ww8FmWFUBd22Hz6qCvTohRDdWWimjkAoO9JizY8GJg3KKaKMxCKsTQvRF7UrYf6l7gAbAVqrGa1cGZ11Op5O3336bgoICFi5cSGJiIjNmzOD111/3yfklSCNEoOjN7cV9AVwqMFPzDdTug7r9YG+BI5+rLUzeNByE+v2e55rL1LzwrU/3ep/7fC+U1QduLUKI4DnYAi8c6jlud8G/9kNFW885IUTQ1FJOHRUkkeNx3o6NFHIxExnglQkh+sLlUBk0nnqiHBsrvk0dF2iVlZU0NTXx+9//nnPOOYcPPviAiy++mCVLlvDJJ5/0+/yy3UmIQNHpIeccKN8A1gZVU8bl7JzPXgR7X1I/aUZd6fkctqber2GVgIHP1TZ7n2u19T+TproJ9pTB1mIw6uGUHMhLhHBJvRZiQDnQpAIynlRb4UgLJMn3rRADhRMHO/iYuVzH16ztMa9By2lciZF+dtcUQvhF47qeGTRuXGArUcdFzg3UqhSnU72Hu+iii/jxj38MwKRJk/j888954oknOOOMM/p1fsmkEcLXXC5oOgL1h9T2pK7ixsPEm9QxxwI0xkiYdLPKgnFYVN2a5grP5zZGo9psexHSj/ooDpuqd1OxEap3gfU4AaHhYlIv1dkzYiE6tO/nstpV4WFX+xu9sjr4w9vwwFvw7nZ4YzPc+So8/wU0tvZr2UIIH7M7e593eAngCCGCIpIEQonESgtXci9mOjtohhHLDfyREUwP4gqFEL2xlfn2OF+Kj49Hr9czZswYt/HRo0dTXFzc7/NLJo0QvtR4GA68CYfXqu1LERlQcLkqCKwPAZ0BshaozkvNFYATNHrV9an5iDqHpVbVqvEkKhsSxsPR7e7jLqe6lq0RCt+A6DyIzAHjcYoQH9NSCbufV+t22gCNKkI84bsQnX9yX4uhYlIWxIZBTbeMGg1w+XSI6cPXuL4FtpXAe9uhvhXGpMLC8bBuL3xzpOfxb26BCRkw0zfFx4QQPpATrj7a8hSridRDsjnQKxJC9CKMKE7nGlbyIPmcwi08RTN1aNASSTx5TMMs7beFGLAMKb49zpeMRiOnnHIKe/bscRvfu3cvWVlZ/T6/BGmE8JWWKtj8sKoxc0zDIdj4R5hyK2S2t3jUaFTGTPGHns8TEgcGL9kZhjCY8H3Y/mR7oMaptkeFJkPSNHUtlxPQQMZc1ZLbfJzsGocd9rwIxau6DLpUvZyND8Gpv1WtvIerjFi48yJ49nPYVgwOJyRHwZUz+xZEaW6D59arTJljiqtVVs3aXurdfLgDsuJUd6noUIiL8H6sEML/csJwLkjG+t4BbO2dYgyEYMKM5oosSJMgzYmoogQLrUSRQDhS5F74Rz7TuIxfsp5XWc0zGAlhLGeQyVgiiQ328oQQvYiYo7o42UrxXJdGo+Yj5vjn+k1NTRQWFnbcLyoqYuvWrcTGxpKZmcntt9/OFVdcwemnn868efN47733ePPNN1mzZk2/ry1BGiF8pXaPe4Cmgwt2vwDxEyE0Xg0lz1Attx2Wnofnnd97UCQiA6b/Qm2PsjaAwwpFb8O2x9T2Kl2Iuk7xKpVNM+Li3tfdVAwlXgpcNR1RW6CGc5AGYEQS/OI8OFKnatDEhkN8H4Mm+4/Cuj2qzozNAYdrwOkCjRb2lqsgkEHn/phWK3xdBo9/DFsOQUq0ytqZPQLMRl8/OyFEH1jMVoqvrkafA5o3a7E3tGJIiSTy4kmETYnBqOllK6roUMFBNvAan/Ffmqknm4nMZxkjmEGYFHAVPqbHwAhOIYOxNFGDHgNRJKLpbeu4EGJA0OhUm+39l6Iy2LsGatq/hTNXqOP8YePGjcybN6/j/vLlywFYunQpTz31FBdffDFPPPEEDzzwALfccgsjR47k1Vdf5bTTTuv3tSVII4SvVO30PtdSAW1VnUGamAKYuhy2PaG2NwFo27dCpfWh0JQhFOLGqNomn/4Sdj3TWePG1gxtNRCZoYI3GWdASC+fFrXVgdPqfb6pt4pdw0iIEXJPIlhVXg/jMmBniSoGfM4EKK6CmiYVoLHY3YM0FjsUVsKUbCht/79RVgePfKCCOwvG+eLZCCFO0AG28GrM7zGfG0nB7ClEtERSHVlMYdgbXMRPGMWsYC9xwKuhjGf5JdvpzNzcwSp28yk38ihTOQ89hiCuUAxVIYQSwgnUkBNCDAgxSyDvFdXlqWsRYUO6CtDELPHftefOnYvL1Xu9uRtuuIEbbrjB59eWIM0w5HJBWxsYDKCX/wG+422LEgBaVXvmGI0GUk9VmS5NJWBrURkwrVWw/w0wJ0D8OFVbpjctR1U9G1f3IgkuVR8nNNl7fZuOdYeprI4e52jXn2LEw92BShVc2Xiwc+x/W+GamaDXwYWT4dWN7o9paAWTHnISetareXkDTM6CBNn6JEQgWWnjK94EoJUGtkX9P3v3Hd9WefZ//KMt7xHvOHacvTdZrARCIIwCAbpooS0tLaWD0gFtH6ALaIE+LQ+/tkAHdDEKZc+wdwJJCNl7J7YzvKdk6fz+uOMVS46d2JJsf9996YV17qOj2+mxrXOd676uNyGldXw5zzGc6biIfKZbE03sZQMVlODCQw7DGcTgiM+jK7azkrW82WG7n0Ze5j6GMIE8BngdNBERaSdtMaReeKTbU7GpQZN0au9l0MQCXaIPIMEgLP8YXnwVPlkLudmw+AKYNhnSUqM9u34gaypsfoyQiyYzxkNiXsftibngTjQFezc/BvvfB4Km0HBjmem4NGhM+PdsOAzJBVD6UccxK2gyaNzHSB9PGgIZE+HgJx3HXEmQOrLz10to/iZ47COobug49u+l8LOL4GAl/PQCs9/mEhOgKciAxTNMHRu3AxLatAYtrTIZOArSiERUA7VUcjDseCUHaKA24kGaMop5m3/zMvdTh+kmWMAEPsstjOe0iM6lK9bzLkECIce28zGVlCpIIyIiHdgckW+zHU0K0gwgr70F1/wAqqtbt/33WfifH8CXPgeJKnB/YlKHm05Omx9tv92TCuOuCJ9pU7YJPrgFqve0btv2DOz/AGbfYoIw4V7rr4HMKaZtd6iMmeEXgvsYF/SueJhwFaz8HVTuaN3uTjYFj5M7aUEt4RVXwrJtEO+GtHgor2s/vno3fHUeTB9qCgS/faQ6fJ0PfvOCWfbktMPonNZAjdPesX6NiPQ6LwmkkUMlB0KOp5GLly520+tBy3mOJ7mz3bbdrOVPXMMPeIihTI74nDrTWRDLjhMb9gjOpvvK2M9O1rCL1cSTyihmksdIPFpGIyIiPUhBmgFiz1647X/bB2jALH36zd0wazqcNC06c+s3nHEwcrGpFbP3LVMXJmsqZE+H5E5ase15vX2Apln9QTOWOwtcYQIl8TmmFs70H8D6v0P1brPdmw5jLof0cV2be0oRzL4ZKrabVuCeVBN0ShrStddLR00BUyjY5YDCDEiqgQPVpjtUvNu09Z6Ub/b9cAc8scJ8ff4U8B2509wUNK8Z6jEF0qYUwmB1QRGJNDdeZnA+O1lDx2xJGydxfsSzaIrZxsvcH3KsmkNs5IOYC9JMZD5L+AtBmjqMjeMU0mN0mZaFxQ4+4SFuYjsfY8dOEhm8z384jc8zl8vUyllERHqMgjQDxK49sH5T6DGfD1avU5CmR7jiIXuaeXSFrwaK3w8/XrLMFAIOJynftNre8l8YdZmpL2MFTfTNndi9LJi4DPOQnpGeCAWDTLttt8O07R6UaIr/uhxw+lhwOU2L7vfbdAXbVAxfPQ3+fKTjVmWdWTo1OA0unwMeFdUUiYYiprCAr/AOD9OIyYzzEM/pXE5hFIIh9VRxiN1hx3eyOoKz6ZqhTOEMruBVHqBtsCuZTBZydczW0tnDel7mXrbwIQABoIx91FHJ2zzMUCYxnOnRnaSIiPQbCtIMEP6ON63aqQ9RNkMiwGYDd0r4cXdi58uVbDYoPBu8abD1SagtMccbdh4MPu0YxYylV6XGw2dnwV0vmsAMtC5Vyk2FCUcuRux2cLRJ8d9SCqOy4RcXw5o9UO+HC6fB9EIY3EmXLhHpVR7imMmnGMZUDrMPGzYGkUcGBVFp5+vCSwLp1FIWcjyT2MuETCSVT/F9RnMyH/A4NZQxillM4SyGMhkHsbecs4FatvMxn/BqiLEaGqhhLW8pSCMiIj1GQZoBIi8HcrKgJPRyeiarq290uBKgaBHsfw98R61Fs9lgxCUmW6Yz7gQYMh+ypptjOL0Qp45MMWHmMPjhufDIMth1yHRtmj0CLp0BeUeWLcW54YyxsK3ND+fmUvPITTXLny6YYs4HkVgXCLYPOvYzduxkUUgWnSxhjZDBjOYULuNl7usw5sTNBOZHYVbHlkIGMzmfqSzERwNe4nHE8MfRKg5STzUNhM5qraGcWioiOykREenXYvevovSo0SPhe9+EG3/WcTX9xeebcYmSwadCwQKztKn+kFmu5Io3QZfhF3b9OJ5k85DY4XHBKaNgYj4crgWX3QRenEfdLT5pGLy5CbaUdDzGtEIFaCR21DdBTRMkOCH+yEcIy4JN1fDeQdhYBbleOCMHxiaDLwhVfvA4IMPT+bGlW+zYmc8VHGAHH7OkZbuXBL7AbQxjahRnd2wu3FFpWd5dNuxUU0Y+Y9jD+hDjNmXRiIhIj1KQZgC5+HzTavv+v8OmLZA5CD5/GXxqEWSpFEn0JA42RXtLPoRdr4AVgPx5kHcyJMdeuroch5R48wgnNxV+tAiW74TX1kMwCKeOhlnDYIiyoiQG1DXBx+XwzD4orYdML1wwGKanwdpKuHMDNAbNvhur4I1SuKQAShtgRRkkOeHsXJifbV4rPSKXEVzJXZzFJvaykTiSGMJYBjOuTwRA+oIUsnHgYDaL2ctGLILtxvMYFfMBMRER6VtslmUdnVgxoFVVVZGSkkJlZSXJyf0zK+HgIThcBvFxUKAYQGzx1wOWasn0F5ZlCgfvPmw6NuWlwtAMs+wpYIVup93gM//16gJLYkTQgqf2wtN7wWmDMh80Hfno8J1R8MhuOHBUYbMDjVBSBzeOhxf2t26fNQi+MxqSVQBb+o69bOB1/kkqWbzHY5SwFQcuprKQT3E9hWjNuIicuP54HdrQ0MCOHTsoKirC69VNmq7+eyiTZgDKzDAPiUGuuGjPQHpKUwDe2AB/eQvqjgRe5gyH/EGwYT/4mmDWcJMtU9jmB1LBGYk1u2qgrBFyvFAbgPlpZtnT+4dgaw3sqDHLn5o1BmB/nVnqVO4Dj701y2bZYdheDVNUBFv6jnzGchZXsYUPOYMriCOZDIYwmNGkkBnt6YmISC94++23ufPOO1mxYgXFxcU8+eSTXHTRRS3jtjDlCO644w5++MMfntB7K0gjItIbNpXAH1+DpiMXpzOLYGMx3P0qDEmH3BTYXALPr4L/uRBGZkd1uiIh1TfBkhL42RrarfKYkgYX5oM/CA1BSGgz1hg0ARow/3Uc9SFmo4I00vfkMpxchtNIHQ6cOLWcTEQkcgIWvNMExUHItcOpzo6fL3pYbW0tkydP5itf+QqLFy/uMF5cXNzu+YsvvshVV13FJZdccsLvrSCNiEhveHtTa4DG6YCUBHh5nXleWgnpCWbZU1kt/Hc5fP9scOlXssSYTdXwz50cVYYDVpXDiCSYnQ7JR523bT8z5caZmjRtuVQIW/ouD1qOLCISUU/44Lu1sLdNlZZ8G9ydAIt7L2C+aNEiFi1aFHY8Jyen3fOnn36a+fPnM2zYsBN+7/7bJ1NEQgv4oWY/1JaYTlLSO3Yfbv26IB0+2t763B8wxYGbfbQNSiojNzeRrnr7AHgdphbN0V4tNrVpvljUfrvXAXEOWJgDe49qW2wHxqX02nRFRESkH3nCB5fWtA/QAOyzzPYnfNGZ11FKS0t5/vnnueqqq3rkeLpt28dUVMK2HbBtJyTEmdbZhUPApRqM0hWH1sG2p+DQWrA5IG82FJ0HKUXHfKl004hsWLvXfO2wQ2NT65jbCY42RYObgqY4q0isOdhoAi6D42F3LbQ9TauboDABJqRAigue2AvljZAZB5cWQK0fXi1tf7xPF0JRAiIDxUF2s49NVFJKOoPJYxSDGBztaYmIxL6AZTJoQn1EtjCZu9fVwoWuXl/6dCx///vfSUpKCrks6ngoSNOHFJfA//sLrF7bus3lgqu+AAvPaA3UHDwENTXg8UBuDthspsnM9p2wfhMcOgxDC2DMSDMuA8Th9bD0F9BU17pt58twYBXMvkXtvnvaySPghVWmq9O+cphaCG9tMmM5KeBuE6QZnQsZiVGZJoCFxT42UspOfDSQwWDyGE0CyngY8CanmqVNmR7wOEwXp4aA+XpWOmR54TcbTaHgCSlQmAUTU2FiCmypgQQXrK+EDA+clQPjU8B7jI8e5Y2wrcYUJU5wwphkGJoALiX/Su9ooI5D7KGJBhJII4Mh2DjxD/zbWMlT/JZ6qlq2JZHOYm5gCONO+PgiIv3aO00dM2jasoA9R2rVzItuxsLf/vY3Lr/88h7rYKUgTR9hWfDMS+0DNAB+P9z/dxN0yR8Mb74DT71gAjHJSbBgHpx/NmzYDP93HzQ2tr42KxNuvA5GDo/kdyJREfDDtqfbB2ia1ZVC6TIFaXraqBz43jlw/5tQXgtxLhiTA5X1MKhNQMblgM/MgoTotCX042MVS/gXP6WCEgCcuDiFz3I+3yUTnRcD2ox003670g+pLlN/JmCZO1afLYS7NsDhI6nGSw+bxzP74BeTTHBldLIJVLrs5o7Bseyvg3s2w9o2y/9cNrhquFk+FaptvcgJ2M8WXuNv7GY9FkG8JDCD8zmJC04oUF1OMc9yd7sADUA1ZTzP/+NyfkUSKqAtIhJWcRfLMnR1v17yzjvvsGnTJh599NEeO6aCNH3E/mJ4453QY8EgvL8MMjLgb/9q3V5VDU88C0mJ8NDjJqDT1oGDJsBzyw2QqOzz/q3+kFniFM6+92HYp8ChbhU9xm6HU0bBiCzYW25acp81Ht7bCu9uhka/yaBZPB0mRi8QspNP+AvfoYFaUshiIvNJYhA2bGzkfTL4dI/cUZY+amgi/GQ8PLgDNlaC3WayZz5dACX1rQGatuoDpl7NqCSzv7uLgZWgBU/ubR+gAfBbcP9WKEpUPRvpUWXs57/8mkoOtGxroJZ3eRQ7Dk7jc8d97FJ2UkNZyLFD7OEguxWkERHpTG4XM2i7ul8v+etf/8r06dOZPHlyjx1TQZo+wueD2trw4zv3wNYdHbd7PLBlOxwuh+QQqyk2bYE9e2Hs6J6bq8Qgm93UoAnH7gRdiPeOnFTzaDZuMFw41dShSU+AuOgGxtbxNg3UMpTJjGY27/AIB9kFwGhmk0kBY5gT1TlKlI1LgVvGw756Uyg4w2M+PfxgVfjXrK2Eaj+kdOP83l9nChWHEgSWHlKQJsJ8NODAiaOfflzcy8Z2AZq2PuI5xnPacdePaaSTD22AjxCZrSIi0upUp+nitM8KXZfGhhk/tXf+RtXU1LB169aW5zt27GDVqlWkp6dTUFAAQFVVFY899hi//e1ve/S9tcC7j0hMguzM8OMjhkFxacftHrfJqKmvD/06y4KGxtBj0o/EZ0FeJxfaBQvAoerTEWGzQXYKDE6LeoDGwmI/W/CSwHhO4ynubAnQAGxiGY9xK8Vsi+IsJSYkuGBUsgmSZHlNW/m4TgK/cc7u15BpDEJdIPx4aUP3jifHbT9beIW/8g9u5FF+yQbeo+6oZTv9QTFbwo7VU0Udx991L4WssGN2HCQx6LiPLSIyIDiOtNmGjveSm5//PqHXigYvX76cqVOnMnXqVACuv/56pk6dys0339yyzyOPPIJlWXzuc8efeRmKgjR9ROYgWHxB6LGkRJg4FsorOo7V1EJeTvtGMm3FeSEttadmKTHLZoOh50JCiErRmZMga2rk5yRRZ8PGYEYxhpP5iGcJ0n5NrwsPPurYxAdRmqHErGQXnJUbfvycXIjv5p2tZJcpUBzOuOTuHU+Oy05W829uYhlPUcI2trOS//Jr3uZh6o+RHdLXJJERdsyBExfHXyssi6EUMjHk2BjmkknhcR9bRGTAWOyG01txWgAAbwNJREFUxxNh8FGBmHyb2b649254zps3D8uyOjwefPDBln2uvvpq6urqSEnp2UxfBWn6kFPnwhWfM0GZZkWFcOP3YFgR5GZ3fE0wCH4fTArTROCsM2CIOkEODCmFpovThK9A2igYNB6mfhemXgfxnaRpSZ8XIMABdrGH9RxgFwFa24GP53SyKWI/mzu8LoN8PCSwk08I0EmGgwxMczNgeoiaGnMyTMHh7sr0wuIw9ZmSXTAlrfvHlG6pp4Y3+EfIpTrLeY7SfpZVN5SJOAidRTqCGWSQf9zHjieZRXyTMczFfmS5mBMPkziT+VyB+wQCQCIiA8piN+xMhTeS4KEE898dqb0aoIm2/rnIuJ9KSoRLPwVzZpjuTS435OdCc+Du61+GO+6GujZLm5wOmDQBLrkQ/vkorPjY1C9NiIezz4QLzw2fZSP9UFK+eRSdb7Jr7PoV0N9VcICl/JfVvIGPetzEMZ7TOJnLSCWbIqbQSC3v8h8OYApb2bAziMGkkwdAIuk40C8KOUqWF74zCjZXw4eHTerxrAwYlQipnWTEdOb0LFN4+Mk9UH0kmDg8Eb46HAqj16Z+oCinmH1sCju+jRUMZVIEZ9S7shnGuVzLi/yJJlrXfmcxlNP5Ak5O7AIgg3wu5HoOsYcGaokjiQwKcOrjt4hI9zhsUW+zHUn6K9HH2Gym1XZ+iOyX6VPgtpthxSrYtBUG58DsmTBqODid8KPvwO69UN8AKckmg6YrHVGlH1L9mQHBRz2v8yDreafdto95mToquYDrWurRXMB3eYO/EySICw9xJGE/EpiZwoJofQsS69I9MNsDs8MvG+mWJBdcOsRk4xxqBI8dBsebTJreFrRgTx0cbDD1dPLjYdBxBpv6qKOXPB6tiRDdvPowB04mMI8sCtnHRmqpIJth5DKSFHomw9SFh1xG9MixRERkYFCQpp8ZXmQeobjdpsCwSCyorYLinVC6B+qqTcfqvGEwZCQkqoFLjzjALjbwXsixzXzIAXZSwHgAZnMxh9nLTla32cvGXC5hMGMjMFuRI2w2EyDJj4/ce1b74fl9pgV4c/HiHC9cPcIs3RogdzRSyCSdPMrYH3K8iP5Xv8yBg1xGKJAiIiIxQ0EaEYm4qnJ47T+mu9jjf4DyIx1Qk1LhlAvgs9dB1vGXApAjqjiIFebOuEWQKg62PE8jhwv5PsVsZTdrceGliMlkMwwPcZGaskh0vHsQ/r2r/baSBrhzA9w6CUYOjKLFSaRzOl/gaX5L8Kg6VEVMUSBDREQkAhSkEZGI27QSmprgP/8HNRWt26sr4OO3IGUQfP77pu6SHD/3MYIrR48nkU4SMxnFzN6clkhsKWs0NXBCqQ/A0sMDJkgDMIrZXMb/sJQnKGUHHuKZwgImcgZJHEdBaBEREekWBWlEJKIaG2D56xCf2D5A06z8IKx+H864DIbopu0JyaCAFDKpbJMx0yyJdLWAFQFToLi0Ifz4xqouHaaCUnaxlvW8gx0H4zmNAiaQzKAemmhkuHAxkhkUMI5aKnDiJrmTVtW9oYz9NFKHm3jSycVGzy43C9BEgCZceI772FUcppEaXMSRSlaPzk9ERAY2BWlEJKKafBAMQMWh0OOBgGkb31AX2Xn1R6lkcR7f5gnuoIGalu0eEjiPb5NGThRnJxIjvHZIcUN5mKK4g4+93K+M/TzFXexnS8u2LXxIEVM4n+/0WBHa3mZhUU4xTfiIJ6Wlw1ukVHGYlbzISl6kjiriSGYqC5nBuST3wL9hPbXsYS0reYkayhnMaCYyn8GM7nKwpo4q1vMOy3iKSg6SQCrTWcQkFsRkQM7Cwk8jDlzq0ici0kcoSCMEArBrN+zZDz4f5ObA6BHgUgMg6QVxiZA71BQLDjmeAPEJJtNGTtwwpnIFv2Y3aznMXgYxmCGMJ5swFcZFBprsOFiYA4/u7jhmB049dpbEOt5qF6BptoNVbGM501jUAxPtXfvYzDKeYilP0kgdQ5nEfK5gLCfjofeLOPtp5B0e4mOWtGyrp4r3eZxqDrGIbx5zCWdnfDSwlP/yHo+1bCthG6t5jcXcwEhOOuYxAjTxIU/zLv9p2VbNYd7kXxxmH+fwjYj8W3VFgAC7WcMKXmAvG0knjxmczwhm4MYb7emJiEgnFKQZ4Bob4a334c67YfV6sy0zHb75VbjsYsiMvZtC0sfZ7TDtdFj+BgzKgcMlrWM2O6Rnw7T5kF0QvTn2N1kUkqWlTSLhnZ0Le+vhvTZLAz12+PIwGJPU6UtrKGc1b4Qd/5glTGB+TF8Y72cL/+AGNvJ+y7ZVlLCLNXyOnzOLC3t9DgfYxSe8HnJsLW8znfPIZ8xxH7+UHbzPfzts99PIazxALiNIJK3TYxxiD8t4Jswc32IaixgSI93w1vIGf+G6dgXi3+JffI5fcDpfwIWKvomIxCp7tCcg0fXJOvjuDa0BGoCDZfDzO+DVN6M2LennCsfA5FPgihthyCizzRsPhaPg5PPgzE+DUyFkEYmUTC9cOxJun2zabn9nFNwxxQRvXJ0vEQnQRBONYcf9+Ajg7+EJ95wm/GxlebsATbNyinmdBymjuNfnUckBgjSFHLMIUkHpCR1/D+vDdrs7xJ6wbcePnqOf0PWLLIIcIkwB6ggro5jHua1dgAbM/9eP8kv2sC5KMxMR6TvefvttLrjgAvLy8rDZbDz11FPtxmtqavjWt75Ffn4+cXFxjBs3jnvvvbdH3luXQQNYUxO89S6UVYQev+8BOG0uDM6N6LRkALDZYOQkyCuC0dOg4iBYQZNFkzMU3J5oz1BEBpwkF0xINY9uSCSNQiaylrdCjg9nGl5id/1mJQfYyoqw48VspZpDpNO7HwaOldnh4sT+MBwrUHZ0y/FQHMf42Bwr2SklbGMvG0KO+ahjN+sZxtQIz0pE5AQEgvDOQSiuh9w4ODUTHL2bb1JbW8vkyZP5yle+wuLFizuMX3/99bz++uv861//YujQoSxZsoRvfvOb5OXl8alPfeqE3ltBmgHM74c168OPb9kOFZUK0kjvSUiChNFQODraMxEROT4OnEznXDbzIT7q243Fk8wETu/x7kQ9KUAT7k4CIAH82On9InUZFJBIOjWUdRiLJ4UMTmwNbGdLpZIYRArZxzzGIPJJJoMqOla+dxNHFkNPZIo9pgkfwTBZQwCNbQrJi4jEvCf2wHdXmGXJzfLj4O7psHhIr73tokWLWLQofE25999/nyuvvJJ58+YBcPXVV3Pffffx4YcfnnCQRsudBjC3u/MATFYGxB9/jT4REZEBIZ+xfIabGMZUHLhw4mE0s/k0N5HLiGhPr1MJpJDPGOxhOv+MYjYZDO71eaSRw7khigO78LCIbzLoBDtNZTOMMcztsN2GndO5nLQuBGlSyWYhV7dk9dhxMIRxTOUczuPbXQr0REIq2SSF6TRlx0EuIyM8IxGR4/TEHrj03fYBGoB99Wb7E9FbZjp37lyeeeYZ9u3bh2VZvPHGG2zevJmFCxee8LGVSTOAORxw7kL4+8Mmg+xon10MQ1W8VUREpFM2bBQykVxGUskBwEYa2ThjZPlLZxJIJY9RLORrvMx9WFgtYyZwci1xdF48uaeMZCZf5Da2sZID7CSTAoYzrUNQwcKikTocuLq8xCieZM7iawxmNCt5iXqqyWQIs1ncraU/o5nN5dzKDlZix8EnvM52nuYTllDEFOZyGYVM6Nb33dMGM4Zz+RaP8vMOY7O4iByGR2FWIiLdFAiaDBorxJgF2IDrVsKFg3t96VMo99xzD1dffTX5+fk4nU7sdjt//vOfOe2000742H0mSHPrrbfy/PPPs2rVKtxuNxUVFR322b17N9dccw1vvPEGiYmJXHnlldx+++04VYE0rGmT4Nab4Oe/gfojtfAcdjj3LPjcJaZ2iIiIiBybGy+ZJ7gsJxqKmALYyGEY63mXGsoZyUymcg5FTIrYPGzYyGVEp9lHO1jFCl5iA++SQApzuJRRzOpSpk0KGcxhMROYh58G4knBS0K355jPaOzYeYibaaAGFx6CBNnGSvaykc/x8xPqRHWiHDiYw8XEk8Qb/JOD7CKJQczmIqZxrrr9iUjf8M7Bjhk0bVnAnjqz37zIZzLec889LF26lGeeeYbCwkLefvttrr32WvLy8liwYMEJHbvPRC98Ph+XXXYZc+bM4a9//WuH8UAgwHnnnUdOTg7vv/8+xcXFXHHFFbhcLm677bYozLhvSEiAyy+DqZNgzTqoqYPxY8xjUHq0ZyciIiK9zYWHUcwkj1FM5AwcuEhiEM4I1KLpjk0s4w989Ui2kvEJr3Iqn+MSbiCti8WNkzixDzgWFp/wKg0hars0UsfHvEQuI45ZaLg3pZHLyXyaUcyihnLceBnEkBP+3kVEIqa4kwDN8ezXg+rr6/nJT37Ck08+yXnnnQfApEmTWLVqFXfdddfACdL8/OcmZfPBBx8MOb5kyRLWr1/Pq6++SnZ2NlOmTOGXv/wlN9xwAz/72c9wu2M/5Tha3G6YMtE8REQGqoYg7AmAD0i3Q27nnZdF+p1EUkkkNdrTCKmOal7g/7UL0DR7h4eZwXldDtKc+Fyq2MEnYcd3soZaKkkOUxcmUlx4yGNUVOcgInLccrtYHLWr+/Ugv9+P3+/Hbm+/zMrhcBAMhi/c3lV9JkhzLB988AETJ04kO7s11enss8/mmmuuYd26dUydGnq9cWNjI42NjS3Pq6qqen2uMsBZFuwNQokFDmCwHbJVw1skmrY0wd/rYI0fgkCaDRbHwQIPJOrHUyTqDrKTNbwRdnwVrzCFsyIyFwfOTmvhOHFHNYtGRKRfODXTdHHaVx+6Lo0NyI83+/WCmpoatm7d2vJ8x44drFq1ivT0dAoKCjj99NP54Q9/SFxcHIWFhbz11lv84x//4H//939P+L37zV+QkpKSdgEaoOV5SUlJ2NfdfvvtLVk6Ir2uzoKXfPAfH9Qe2ZZhg694YK4THCoCJBJp+wJwezUcbHPjo9yCv9aB0wbne6M3NxExggQI0BR2vInGsGM9zUsCUziLl7k/5PhkFpBASsTmIyLSLznsps32pe+agEzbQE3zJdPvp/Va0eDly5czf/78lufXX389AFdeeSUPPvggjzzyCD/+8Y+5/PLLKSsro7CwkFtvvZVvfOMbJ/zeUb0/eOONN2Kz2Tp9bNy4sVfn8OMf/5jKysqWx5490WvjJQPAR03wQJsADcAhC37XABtPPDVORLpvnb99gKat/9ZDaSCy8xGRjtLIYyQnhR2fwLzITQbTiWpoiKLK+YxlLCdHdC4iIv3W4iHw+Ckw+KglTfnxZvviIb321vPmzcOyrA6P5vIrOTk5PPDAA+zbt4/6+no2btzI9ddfj60HOu9ENZPm+9//Pl/60pc63WfYsGFdOlZOTg4ffvhhu22lpaUtY+F4PB48Hk+X3kPkhFQH4Qlf6DE/8KYPxnnVUkskwtaHvznPoSBUBiFb9WkkBtRTQzkluPCQSe99MO0OHw3UUoELN4k9UJS2lgoaqMVLYrtslFSyOJ/v8Ae+io+Gdq8ZzRyGMvmE37s7UsnmU3yPPaxjLW9jEWQ8p1HABFLondR7EZEBafEQ02b7nYOmSHBunFniFIW225ES1SBNZmYmmZk984dszpw53HrrrRw4cICsrCwAXnnlFZKTkxk3blyPvIfICam2oKSTbJktQROsUY1rkYgaFOJvvIX5kbUsOBgAtw2G9psFwtLX+PCxhaW8zoNsZQXxJHMylzKd8zptV92bAjSxi9Us42mK2YaHeKZyNuM5lRSyun28OqrYwHt8xLNUc5hkMpjJhYxmNvEkAzCO0/ku/+BV/sZ2VhBHErNZzEw+RQ5du6nXk5LJYDynM57TI/7eIiIDisMelTbb0dJnPnLu3r2bsrIydu/eTSAQYNWqVQCMGDGCxMREFi5cyLhx4/jiF7/IHXfcQUlJCf/zP//Dtddeq0wZiQ1xNkixmbo0oeTYibFupyIDwnQXPF5vCgYDNFqmTs2uAJzpgVtroMqCW5LgTDfY+++NG4lR63mLP/A1fJg2oxWU8Bi3sYH3+BK/jUpWzWY+5EnuJHikTkwdlbzOg+xmDefzXRJJ6/KxmvDzPo+zlCcBsGHnIHt4nnuooIRT+dyRUr1uJnA6w5hCOSU4cJPNUGwcfwaqn0ZK2cF+thCkiVxGkk0RXhKO+5gix6XiAOzZCDtWgzcRRs2A3OHgiXznGhGJrj4TpLn55pv5+9//3vK8uVvTG2+8wbx583A4HDz33HNcc801zJkzh4SEBK688kp+8YtfRGvKIu2l2eF8N/w5RHFDG3CWU0udRKJgpBO+Gm8KBQcw9Wm2BmCME05ywx9qTQDnm5XwcCrMUNxfIqiCAzzL3S0BmrbW8hY7+STiQZoaynmLf7YEaNraygqK2cJIZnb5eAfZxUc8xxDGkc0w6qjEiQsnbjaylLGcTA7DAajkIFUcwoGTVLJPKEDTQC3LeIr3eIwgrcWnJnEG87mSpB5YviV9SH0tFG+DbR9DoAmGTYa8EZCY2rpPQx2U7oR9mwEb5I+E7CJwuqFkO+xcA1WHzeuGjIH0LraFP7AH/nuXOUaz95+A0z4Dcy8Gb3wPfqMiEuv6TJDmwQcfbCnSE05hYSEvvPBCZCYkcjxOdZrb8682td62dwNf8MCEPvPjKNKvuGxwjtcEaz70wft+uNBratHcX9v6o1plwes+BWkksg6zj618FHZ8LW9wEudHcEYmcHSIvWHHt7OqW0GaMvYzmlnsZytv8s+WgEkcSZzN16minHQaWM+7vMPDVHIAG3byGcMZXMkQjm9Z+y7W8A6PdNi+mtfJZQQnccFxHVf6oNoqeOPf8FGb64gPnoJRJ8F534DULKithDceguUvmrWwYFIrZ14AQ8fD43dCk7/19anZ8JkbTcCmM4EAfPBk+wANmPd46xEoHA/Dp/TEdykifYSStkUiKc0OV3nh13HwTQ98xwu/iYfzXeBRFo1ItLhsMMYFM93wsR/+VgcPNdChqe8n/pAvF+k1dmzYO7mn5ohCITP7MbJXnN28B+gmjnpq+Ihn2mW01FPNM/yeBqpYyUs8wi0cZBcAFkH2sJ7HuJVSdnT7ewjQxMe8HHZ8OS9QS0W3jyt91PZV7QM0zTZ/BGvfMV9v+sjsY7VZth4MwpsPwcZlYDvqsqqiFF7+m8m+6Ux5Max7N/x48/uLyIChII1IpMXbYKwTFrnhLBeMcJgrRIB6CzY1wcdNsC0A/jD1a0SkVzgxP3YhFiUCMFRdniTCMilkPKeFHZ/MmRGcjZFGLrmMDDs+jGndOl48qazkxQ7bLYL4qGcD77CMJylmK3tYTxWHsDB/H+uoYivLu/cNAE34qOJQ2PE6qmhss8SsCR/72cJ63mUzyzjM/m6/p8SoJj+sCB+wY8XLUH4APnwu9Hh9DXz8Cgwe1XFs1zo4FD7rrOX9GzsuZ2xRU97560Wk39H6CpFYsSsAf2mE1QGzvsIFnOaEz3kgW/FUkUgY4YIvxMFvajuOOYFzvRGfkgxwiaRxHt9mB59Qw+F2Y6fwWQqYGPE5xZHEfK7gcW7rUCtnKmeT082OUy7cOHFjCrS13pwI0EQauRxgN7VUAhAkwAF24MaDlyQAtrOSk7msW+/pJo48RnKAnSHHMxhM/JEW4DWU8y6P8jEvEzhShyeBVM7m64zl5BOqiyMxoMkPdVXhxxvroKEm/D4Bv6lDE6rArxUEf0PH7W0lpkHGEDi0J/S4ljqJDDgK0ojEgrIg/K4BtrVp0e0HXjtSu+Zar5ZDiUTIYq9JZHuiobUeTYINfpEE09SBTaJgLHO5nn+ynOfZyAfEk8TJfJpRzCGN6LQkHcYULueXrOENdrOOOJKYxjkMZTJxJHbrWF4SyWcsDlxUcwgf9Tjx4MJDLRVkMITD7GvZ38KimvKWIE0ymd2evw0bkziTtbxFE74Oo7O4GC+mWOtqXmM5z7fbo5YKnuH3JJNBPmO6/f4SQzxxUDDOFAQOJacIUjMhswAqD4Z4fQJkF0JNRcexuEQThOlMYiqc/hl44rftl1IBJKXDsKld+CZEpD9RkEYkFmwPtA/QtPVOE1wQhJFaZyESCUNdJiBzeRxsboI4G4x2mlWKHiW1SZQMZzpFTKWWCtx48RD9bi+DGU0eo2ik/kg3puOLYiYziDlczEvcRzzJWARpwsdO1uDGSy7DqeYQO/i45TVtM3gmMO+43jefsVzED3iVv1JBKWAyZE7n8wzDXBhXcICPeDbk65toZDPLFKTp62w2mDwfPnkDfEctO3I4Yc5FEJcEsy+A7R+bOjRtJaTAjHPg3cc7HnvmeZCRf+w5jJ4FF34X3noYykvB7oCiSXDG5ZAV2e5tIhJ9CtKIxILiTmrPNAHlQUBBGpFIGeSAuQ6Yq05OEkPs2GOuLbQNW0vGyYkYy6lUcZiPeBY/jdiwk8kQ5nEFa3mLYUxjKFPYySqAI0EqG6fw6eMOktixM4Y55DKScvYTJEAaOaTR2ja5kTqqKQt7jOMpWiwxKH+06cT06j9MG26AQXlwxhdMsARg6CQTSHntH2Z5E0BKJiy40mTblO6CrStM++74ZJh1PsxYZIJAx+LxwtQzTdvv6sNgd0JGHrhDLKESGYgCQXhnExRXQm4KnDoaHL175+ztt9/mzjvvZMWKFRQXF/Pkk09y0UUXtYyXlpZyww03sGTJEioqKjjttNO45557GDkyfM22rlKQRiQWpB7jD3iCljqJiEj/lUAKp3M54zmNckpw4qKBWl7lr9RQzse8zCTO4CTOYz9bKGQCYzmFbIbh4cQuZFPIIIWMkGMe4kgknZowgZosCk/ovSVG2GwwYhrkjoCyYlNLJi3bLDdq5nLBlDNMS+zyYsAG6bmmPTfAZT+Eg3tNDZqEVBPk6UqApq2UDPMQkVZPLIfv/hv2timinZ8Gd18Oi2f02tvW1tYyefJkvvKVr7B48eJ2Y5ZlcdFFF+FyuXj66adJTk7mf//3f1mwYAHr168nISHhhN5bQRqRWDDMDik2qAyRUTPKDgVaYyEiIv2bAyfZFJFNEQC1VDKB+SzneZpoZAPvkkoWi7iWYUyNSMHeVLKZwbm8yb9CzNfFaGb3+hwkghKSzaMzadnmcTSXB/KG9868RAaqJ5bDpf+vbU15Y1+52f74t3otULNo0SIWLVoUcmzLli0sXbqUtWvXMn78eAD+9Kc/kZOTw8MPP8xXv/rVE3pvBWlEYsFgB3zPC//bAFVtfgvl2OAbXkhSkEZERAaWBFKYzxeZwOlUUIoTF4PIJ42ciM5jEguo5ACf8BpBAgDEkczZXE0eoyM6FxGRASMQNBk0oapCWJiGgNc9BBdO6/WlT0drbGwEwOttbftpt9vxeDy8++67CtKI9BvTnfDrONgShENBGGyHEY6utd+2LNgagJUB2BWEIjtMdcJwe/dTbUVERGKEAyc5DCOHYVGbQzKDOIurmcJCKijBgZsMhjCIwWq/LSLSW97Z1H6J09EsYE+Z2W/e2IhNC2DMmDEUFBTw4x//mPvuu4+EhAR+97vfsXfvXoqLi0/4+ArSiMSSIQ7z6K4PmkwWTuOR5+8Aj/ng+3EwSz/mIiIiJ8KNh8GMZrAyZ0REIqO4smf360Eul4snnniCq666ivT0dBwOBwsWLGDRokVYVicNYbpIV28ifd2+APyxsTVA06we+GMDFMZDjpZLiYjIiauhnApKABtp5JJASrSnJCIi/VFuF/++dHW/HjZ9+nRWrVpFZWUlPp+PzMxMZs2axYwZJ14jR0Eakb5uTzB0wWGAMgt2BxSkEYkRQQsOBs1/Mxzg0koJ6SMCNLGFj3iTf3CIvYDpbDSfKxnBDC37ERGRnnXqaNPFaV956Lo0NiA/3ewXRSkpJki0ZcsWli9fzi9/+csTPqaCNCJHKw1CyZGrqEy7qQ0Ty3Vdjs6gOZovIrMQkWPY0QQvNMBSHwSBSS74lBfGuqI9M+lxTUHYVQtba6CuCYYlQlEiJPfd/7N3s44nuYMATS3bDrCLJ/gNn+PnFDA+irPrmgABitnCFj6inGJyGcEwprZ0kxIRkRjisJs225f+PxOQaRuoab40+/3ne61ocE1NDVu3bm15vmPHDlatWkV6ejoFBQU89thjZGZmUlBQwJo1a/jud7/LRRddxMKFC0/4vRWkEWlWb8EbfvhzI6wOQIMF0x1wtdf8N/c4asVEQpYN7JirvqM5gcwYDjCJDBC7m+BX1XCgzc/puz742A+3JClQ06/4A/BqKfx1GzS2+T98ejpcMxKyveFfG6Oa8LGc59oFaJr5aWQVSxjMGBzE6N9JIEiQdbzF89zT8n2s5x3e4zEW8yOGMTXKMxQRkQ4WzzBttr/77/ZFhPPTTYCml9pvAyxfvpz58+e3PL/++usBuPLKK3nwwQcpLi7m+uuvp7S0lNzcXK644gpuuummHnlvBWlEmn3QBLfWw7Zga6R2WQC21cFP4uAsG2TF4LKhoQ44zQlvdvzwzHynGReRE1IcgMogeG2Q7wBnN2OfS33tAzTNai14vgFGOrt/TIlRW2rgvq0QOCo3e0UZPLsPrhoW29mZIdRSRTFbw47vZRMN1MR0fZpD7OYl7u0QaGqghhf5E1fwa5JIj9LsREQkrMUzTJvtdzaZIsG5KWaJUy+33Z43b16nRYC/853v8J3vfKdX3ltBGhGA8iA83Aj7rI5rHg9ZsDFg2lnHYpAmzgZXemCQHZb4oBpItsE5LjjXBZ6+dTEgEkuqAubH6pl6KLfADcxyw+fiYEgX/4I2BOH9TpYdfuKHQ0HIUTy1f3j/UMcATbPXSuDcXMiLj+ycTpAbDx4SgEMhx+NIxIUnspPqplJ24KM+5Fg5xRxij4I0IiKxymGPeJvtaFKQRgSgwjIZNPVhPlhvDMA4O8yO0TUJGXa40g1nOU1Xp3ggT1d8IifCsuD5RniozXWdD3jHB/uDcFMiDOrCj5nd1nmWjOPIikXpJ4pDBwIAqGlqvwSqj4gjiWmcw8vcF3J8GotwE9vLuBqp63S8SQXcREQkRuhzoQiY2+NJELY5RarNXEnFmoAFWwPwtA8ebDSBpiRb5AI0Pss8RPqhvQF4piH02LYm2BLo2nHcNjizkySDk92mRrn0E2OSw49leSCxb94fG80cxnFKh+2TWcBwpkVhRt2TwZCwYy48JJERwdmIiIiE1zc/KYj0tFw7nOWGDQ2h21lPc8KoGMtMCVimDs0fG6DaggZMR6phDrjFC8N78ce7NAgrm+B1PwSAU1ww02GKdYj0E2UW1HQSg9zWBLPdXTvWNBdMcMLao0pH5dphoafPlSiRzkxLg//ugdoQdcIuHgKZsZ1xEk4ygziHa5jMWezkE2zYKWIK2QwjnqRoT++YshjKSE5iCx91GJvOuWR2EsQRERGJJAVpRMCsR7jYBeua4Fk/+Ju3A1d5IMMGI2PsVveOIPyhwVQj3RVsbbW9LQhe4LY4yDhG0GR3ADYGTdBlsB1G22HwMV5TGoS76s3rmm1phJdt8NM4KOiHgZryWmjwQ7IXEvrmBVa0NVlmNaHXBq4+EpDw0LHjY1vJ3fg+sh1wXSKs8sNrjebf41QPzHB1vbaN9BHDk+DGcXD/VthzZIlNggMuzIfTsqI7txMUTzLDmdYnMmeOFk8yZ/N1UshmDW/QSC2JpDGTTzGZBTj0kVhEpNd0VoB3IOnqv4P+Iok0G+yAX8XDZU2wtAmagPEOKLLDSAckHBWkORCEzQHYHTRFe0fbodAeuVvi6wKmls72oMlmaRYEnvPDp92woJOAyYom+G29KTTcLN0GP/LC+E5+NXzU1D5A02y/Ba/64csR/DfobYer4Z0t8OInUN0Ag9Pg4hkwrRC8MVqfKMb4LRP7fLnBxAQz7bDICxOdEB9jcc+j5TtgjBM2hEiIcNH9ttnZDjjbAWd4TODH3U9+TCSEKWlw62TYWwe+gMmeGRLff3439lGpZHM2VzOD8/DTgJdE0siJ9rRERPotl8t8WKqrqyMuLi7Ks4m+ujpz86b53yUcBWlE2hpkhzPc5mFZ4T9QbwvAHfUmMNEsHrjOC7OdkfkgXh407WZC1cUIYDJtDgZDF7soDsL/NbQP0IBZ33FPA9wWD+khXtdgmSVO4bzbBJ9ym8yjvq6mAR58F97c2LptYzH8+lm45kxYNCl6c+tD3vbBPTWtp+nuAKzwwxfj4WJvbGfVJNrhqgS4rRrK2sQlncA3Eo6/u30sf8/Sg9Lc5iExxYaNDPKjPQ0RkQHB4XCQmprKgQMHAIiPj8c2AG9YWJZFXV0dBw4cIDU1FYej8w+RCtKIhBPuF0htEO5vaB+gAagD7m4wrVULI7DkZ7gD6sKkzKXazHxqLcgMMb4zYAIyoeyzTHZQqCBNkNalYKEEjuzTH+w42D5A08wCHl4KUwogNzXSs+pT9gfggdrQccRH6kydlhEx/ldotBNuS4Z1ftjUZGKeU47Mu7OOTSIiIiICOTkmY7E5UDOQpaamtvx7dCbGPx6LxKA9QdgQJhJRC2wJRiZIM8oBox2wLFRxSrdpTeMNcxe39hjHDhf8ibfBXCfsDNOqdIrDLJnqDzaXhh8rr4XSSgVpjmF/IHQdbjCxvp1NsR+kAbMScrADFkZ7IiIiIiJ9jM1mIzc3l6ysLPz+zu729m8ul+uYGTTN+sDHY5EYU0/4SqLQfl1Eb8q2w8/i4LZ6eL/JpCuk2eAiNyQAw5yQE6boR1YngRQHnQda5jrhFT8cPOofIRE4191/0gtcx/gl2sVfsgPZsX4S+kvSlYiIiIh0zuFwdDlIMdApSCPS1q4AbArCoSAMsZtsleyjAh2pNtP2pTHMMQoiWA11kgO+74WFAdPdKYipcprhgLM7KUg11G5euzrEQpS5zs6LbRQ64KY4eMEHywImODTVAee7TWZPfzEqx3T9CoaIyOWkQF5qxKfU1+TaIdEWuo21g8gknImIiIiI9CUK0og0W9YEv6tvvxQoxwY/ijPdnZoNscOZLnghRLpeoR1GRPDK02kzhYoH200b7kZgwZEgS3wnGS3JdvimB/7la+1k5QFOc8JnPKZPcmeKHHCNFy6xTFZRpq3/ZNA0K8qAT8+ER5a13+5xwldOg0GJ0ZlXH5LvgM/GwV/qOo5d4IWhfeAvUDAI9hjvQiUiIiIi/YfNUtPydqqqqkhJSaGyspLk5ORoT0ciZU8Abqjr2O0IYNSRZUVJdtPxaV/QFNYtCZr6NMsDUGWZzJSrPMff8iUafJb5Hmotk/JQYO9/wZYTUdcIa/bCy2vgUA2MzoH5Y2FsnlrpdlF9ED72w1MNUBKANLsJ0Mx0QXIM/6hs8MN7Pnit0cQ7L/SaQsf5IQJLTRYcDJhTItMODp0aNDVBZSU4nZCSEu3ZiIiIxD5dh0qzPnAfUyQCtgVDB2gANh8Jygyzwat+eMRngjIWpg7LFR4YbYM8J8T1saszt810iZLQ4j0wazhMHwr+AHhdCs50U5wd5npMR6RqywQ8kmI8M2WND75RCVvbrAZ8rhEu88KNie0DNZua4Nl6E4iyASe54XwPDO9ktWF/t2EzvPgKrF0PbjecOQ9OmQ252dGemYiIiEjsU5BGBKDiGAll9cDKJnjaByc5zK1yB1AZhIca4ca4vhegka5zOsxDjlu8HeIxyWhb/LDCDzsCUOCAk460tLbHwI9QYxAerG8foGn2WAOc42kN0mz2wy+qTcy22auNsNIHP0uGogH4F3btevjlnVBX37rtHw/Dhyvgh9+GrMzozU1ERESkLxiAHyFFQhjcydWhC5Mx877fVDr9cyMcOnJVNsIOX/CYejbjHcqyEDmGD/1wRzWUWVAVNPWuB9ngf5JggTfaszOBoxcbwo8/1QDnx5l60ksa2wdompVZ8HbjwAvSNDTAf55qH6BptnEzrNuoII2IiIjIscR40rlIhAxzwPAwPw7znKajk80O/6+hNUADsDUId9WDF5NtIyJhlQTgD7WwN2iakO0NwoEgbAjA9ythrS/aM4SABfWdJNbVWaaYcFkQVoaoHd5smd8EoQaSA4dgzfrw4+98ELm5iIiIiPRVCtKIAAyyw/e8MN3R+lPhARa54HMeU3/m2TBXkDWYujXuyEx1wGgKQFU9+JqiPRPpIXsC5rErYH6k2iqxzBKohigHNvIcMLuTn+UFHtPtyW7rPBXVceQx0HSWTKhEQxEREZFjG2DJ2CKdKHTADXHmKrIOSLGZdttOm9nW2e31g0GFPHuKvwnW74cX18CuQ5CRCOdOhslDTCFf6bN8R5Y4hftJOhQ02TUjovizlOaAqxPgA1/H5LiRDph7JICTbofTPPBomAy6Mz2QMMB+J+RkwZSJ8NHK0OOnzY3sfERCqaEcPz4SScOluysiIhKDFKQRaSvOBqNC/Fh4bFBoNwWGD1qtV5k2YLAdihyxUfW0P3hnM/zfKxA4klKxtwxW7YbPz4FLpoN7ALfN6eOyOglaODBd4H3HqOEdCae64O9pcF8tLPVDHHCeF74YB2PanH7z3LDUZzKD2hrphFkD8NrP7YbLLjT1Z6pr2o9NmgDjx0RnXtL/NdJAHZXEk4KH0MWtKjnAOt5hFUtopI5chjOTCylkIg59HBYRkRiiv0oiXZFlh/PcUOaDQZYpTGEDEmymp/ACBQ66paYB9pRBvQ/SEmBIuumeVFwBD77bGqBp6z8fwowiGKk+vn1VgRMuiYO7azuOLfTAwQCkxkD2idMOp3tgshP2BUwy3TAHuI6aW74Tfpxkujm96TPJdGd4YJoLsgfiWidg7Gj4+Y/h9bfh49Xg8cBZ82HmNMgYFO3ZSX9TTRlb+Yi3eYgD7CKbIk7nckYyk3iSW/aroZwX+CPbWNGybSsr2MEnXMyPGMOcaExfREQkJAVpRLrqTBdsC5pOTklHsmacwOVuGDtAr8iOx5ZS+PObsHG/yUjyOGHhBLjkJNhfAeUhruDB1KjZcbA1SFPbAPvKwReAQYmQmxqZ+ctx89jg83Hgt0w764NB09npPC/k2E03pLwY+lFKdZhHZwY7YHAcnHPk5r1LCXWMHA4jhplsGqcD4uOjPSPpjw6yl494mgf4ARZBbNjYzses4AW+wG3M4wpcmBso+9nSLkDTLEATb/Ev8hlLIqkR/g5ERERCU5BGpKuy7PAdD+xwweYAeG0w2g5DHeDWlVmXlFTAb56H0srWbY1N8OwqcNhh4pDOXx88kmGzcT/87Z3WQE9qPFx6EiwYBwkx0MdZwhrqhKviYazTdEiqt6A4AMOcpihvrNjbBOuaTCttuw1Od8MEJ+SE+aup4Ex7NhskJ3W+T0UtFJeDwwEjsk1BZpGuqOQge1jLf/gVFubvgoWFnwbA4gl+zShmUshEAHbwcdhjHWQ3lRxQkEZERGKGgjQi3ZFsh8l2sw5Cum9TSfsATVtL1sKcEZDshaqGjuMOOwzNhD2H4bbn2mfcVNTBX94CtxMWTeqduUuPyXfChQ6zlKjRMkuccmMog2ZHE/yyGp5vbN12fx1c5oUbEmGIfvxPiM8P722G+1+F5dtNPfALZ8Dn5sLY/GjPTvqC/WyhmsPUUNZhrAkfNZRzgF0tQRr7MXqt2VCUVUREYofuW4lI5Ow6FH6szmfq/Hx+jlnaVFkPh2tMG25/AM6fDEMHwSd7wi+JevwjOFTVK1OXnuWxmeyZsa7IBWiKA7DKB5/4TP2bcF5rbB+gafZYA7zr6735DRRvbYAv/RFeX2d+vEsq4L5X4TsPwpaSaM9O+oKD7MIK0yfOavlfa22z4UwPe6zBjCKNnB6fY18RbAKrk9+HIiISebofKCKRM6iT9Q9OuylgMSYPLp0JT62AXYchMwkumALzxoHXbdpzh3OgCiobICM5/D4y4DRa8FYj/KsOyo9c12XZ4UvxpqW2o81N9JJA+LbaYMbO90BSDGX+9CUHq+APL0ODv+PY6t2wYjuM7EPXy5ZllnZJZCWSRoAm4kimno6BeS9JZFLQ8jyHEUxmAZ/warv93MQxjy8SxzHW5vVDDTug5h2oWgI2B6ScDwnTwTMs2jMTEREFaUQkcsblQZwL6kNcoU0pNLVlfvaUubU+KR/mjoQGH7y9CbYfhJsvhEEJ4Y/vdZklTyJtfOKHP9RC255hB4LwuxpITYaJbZqz1VtQGaK5WLPKoGnuNvAu6XpGcQUs2xZ+/LW18Nm5EZvOcalpgI374NW1JqlvSiHMGgHD1HguYgYzmnf5DxfxAx7m5nZjDpxcyPfIZ2zLtniSOIMrKWIyK3mJemooYDyTOIPBjI709KOuYSvsvg7qPmrdVvkSJJ0Beb+EuBFRm5qIiKAgjYhE0tAM+M5CuOcVs7yp2bBM+NIppi337sNm2+q97V+7ucRk1sweAc98bAI99X5TTNjthDg3nDIK8lIj9u1I7KsPwlMN7QM0zfzAkkYY52zNpsmyw3Q37ApRFglgphsGaaHwcXPYTEO3+jDLxhJiqHh0KHWN8N9l8Piy1m3r98JzK+EnF8H4Y9Q+l56RxVDGMJd9bORb/JU3+RcH2EE2w1jI1YznNFy0P5kSSGUC8xjNXAL48RA/IGvRWBaUP9k+QNOs+nWoOQu8RSa7RkREokNBGhGJHJsNTh4J+Wmw5QBU1sGQdBieBRlJJlumM9X1MKPILIe6+b9QdyQjx4YJ0CyaaAoMixxRbZlOTeFsbzqSGXPkWi3BDpfHwUsNUHfUvsk2uCTOrMyT41OUBWdPhqdCXCACLJoS0el02/YDJkhztKp6+PvbcMslajAXCTZsjOMUMsinlO18hptw4iGNHDLovPq0Czcu3BGaaexpKoXK58KPVz4DKYvAnRu5OYmISHsK0ohI7yqvNRkwNQ2QlmCK/w7NNI+jpcZ3fqzkONhfAZ/sghvPN1k3NY0myNPgh3c2m4IWKhIhR3gxTdnKwxTGTLeD96jTZZYL7k+F39fCcr+JAc52wXWJcJIr1FGkq+I98PUFpvbMnsPtxy4/BSYXhH5drPh4J2HK1ZolUPvLYaQubiPCho1sisimKNpT6VOsIAQ7qbsVaACrk8C2iIj0PgVpRKT3bCw2S5ualzDZgKmFcPV8GJzWcf+hGVCUCTtCZNSMyTXjr28wrbw3lUBKHLgc8MZ6aApCvBsWTjTZOSJAsgPO88IfwzQEW+QB11FBGpcdzvLCJCfsCZrTttABGUr/7xHTiuDBa0yXpzfXQ7IXLpoJM4ZBTohfC7GkoZPuXhbm15BILHNmQOLJULYr9HjSqeBIieycRESkPQVpRKR3lFbCXS9AaZvOGxawchc88A784BzTramttAT47pGaNdsOtG4fkwvXnglJca0BHzBtutuq85miESJtzHbD1iZ4pbE1C8KOWbo0uZPMmGwnqBZs75hQYB5fO9MsH7P3kSVkE4bAMytCj2WnmGZ0IrHM7ob0z0PlixAobz/mLoCkM8GpBokiIlGlII1IVwXroakYrAA4MsAZ47d8T8T+chNccdggL83Ui+mu7QfbB2iaeZzmdvSOQ2aZ0tHdmIZnwc8uhp2HoLrBZMsMzTBLnaDzLJl4t1lPIdJGmh2+Eg9neGBzEziAUU4ocoJHK+Oiqq81YxuVC+MGw/p97bfbbfD5kyFDF7fSByTMgKIH4eBfoOZtsLlMZ6f0z0HC1GjPTkRE+tjHI5EoadwIFf+GxtVAEJz5kPJ5iJ9tPt30F/U+eH09PLy0NUslOwWuOg1mD+9erZfSyo7bJg2BrCRYsg42H4DxeXD+FJg4GNxt/h1T42FKmOIUk4aYTk6h2sOcMc4UJRY5SoIdxtthfD/6cY2UQ1WwYT8s32ZWF84eaYIVyccoIdUfDUqC686Flz6B19dBbQMUZsCls81yLZG+wGaDxNngnQD+Xabjk2swuPTnU0QkJtgsywpXA29AqqqqIiUlhcrKSpKTdUtMAN9OOHATBCuOGrBDxo9NoKavsyzzqe29LfCb5zpWxvQ44ReLzS3krnp3M/zm+dbnwzLB44K/v2eKfIzNg0SPuQV9zZlwzsSuH/vD7fD/XjVFicEcY+5I+PIpkKXF9CI9pbgcfvcCbDgqc2T+ePjy6ZCWGJ15RZtlmTi0vwlSE8xKTBERkROh61BppkwakWOp/zBEgAYgCFWPgWcCOProlcrWUnh/C6zdB4MSITcVRuWYorxtNTbBGxtMYKWr2TQjsiAjEQ7VmOdj8+BXz5qvk+NMNgxA0IJ/vQcT89sXE65tgLJacDogJ6X9+84cBr/5NOwuM0unspLNkqi4gdtWVaQ3vLGuY4Cmefv0YXD62MjPKRbYbJCTGu1ZiIiISH+kII1IZywLGsJUiQTw7TCV9/pikGbVLrj9OVNsF0wL6/X74UunmqyX7Ud1WNpSCo3+jsV+w8lJhR8sgt8tgcM1UFEP/gAkeaFgkKl306yyHoorTJCmKQAf74LHl8O2UpN9c9poOHcSDBnU+prcVPMQkV5xqBpeWxt+/OVP4OSR4NQniRNyuBo27YcVO0yNnpOGw8gcZeeIiIgMVPpoJdIZmw0cqeHH7fF9syZNZR385e3WAA2Aw27arDzwDtxyYccgTUZS96t8js+H2y81GS+bS2BMjsl2cR3pZdwUBF/Tka8D5r/Ld5olV829bBub4LlVsG4f/OQCk1UjIr3O32Rit+HUNJgf0578IOFrMpk7G/dDTT2MyjPJfdmpPfgmXZzH/jLwByE9wdSi6Q0lFXD3i7B2T+u251bCWRPhytMgJaF33ldERERil4I0IscSfybUvR9m7HRw9sEmvfvKYdeh9ttcDrNsaHcZ7C2HZC9UNZj6NP4AnDH2+PrkZiabR6LHXO00B18q6808ahvNUqvtB82t44eXtu7T1o6DpqWKgjTSQywLKiywW5DiiPZsYk9aAozIhpU7Q49PHdr1xLq2yqpNzPXtDRAIwCljTGvr5Dh4ejn85FEToGl23jT46cUwPEK/areXwiPvw0fbTew4Nw0+M8eUvYrr4eZxr69rH6Bp9soa8+976gBdTiYiIjKQHccVl8gA4xkLSZ/quN09EpIWda/jUawIFQQBSE80dWQa/eBwmBbYe8pMZ6f3tsATy0N3beqKoRlw0XTzdXWDWT5V02j+/b4413SVem8zrA5xxdJs+c7je2+Ro6z1w29q4NNl8LkKuLcGtnWSNTIQed1w8czWxLe2krxw6pjuH/NQFfzfS3DHM7B0iwmE/O4F+M0zZrnPD/7VPkAD8PxKeOhdCIb5tdWTisvh4fdh9+HW5L7icvj9C/DBlp59r0PV8Nqa8OMvf9I6BxERERk4lEkjciyOJEj+HMTNhLoPwaoH71TwjAFnZrRnd3wyk8xt8ubuSM3cDhiSDudOhj2HYddhE7TZsN/cTn97E6zYCdef3f38f48LFs+AwkFw35smQFM4CM4cB5uKobTKZOxU1EGCx3SAOpq3Dy4tk5iz2gdfrYBdbS76V/jhhUb4XQoM11/GFhML4MYL4aH3TIkou81kvVx+CozI6f7xlm83wZijuRwme6R59ePRHnkfLpsNY7rRYK67tpXAy6th1U6TVHj+NJPlsvPIys9HP4AphZDeQ0uf/E1Q7ws/XtNogjROZXmJiIgMKPooKtIVjkRwTAbv5GjPpGfkpsJnZsG9r5vnFqbAxKEamDzEZNJ8sgd2HjJft7V6D2wohlOO40olyQsT8mFqIYwfbN7zlbWtmT27DsOEwXCwOvTt+5NHdv89AXx+U9sm3mNq78iA1RSEh+vbB2iaLfPD240K0rTlsMPMETAmDw5Wgc1ufn0cTyO1Bh8sCZM5kpEEa3abJWihkhMPVXdeH+dEfbzDZPOs3mXqnAM8+RF8+xwTO95XBvvLTVy7p4I0qQlmCdeqXaHHJxUe33IyERER6dt0tSIyUJ0xFn64CIoyzfqCijpYNBFmFsG2A/DQBybn3wrx2g+2Hv/7uhymvsyybaYwRdulV5tL4LwppkbN0c6eCKO6WZSiqt5k//zsKbjhP3D3Eli7NzLrJiQm7QrAksbw4880QJ2WmHSQHA/Dc2BY1vF3um8KdIz5Ntt1CMblh/51A1CQASnxx/e+x1JeA/e/bspjtc1aCQTh3ldgcqF57nZ2P6ulut4sl6qs7TgWd2Q5mTPEJ7FEL5w6unvvJSIiIv2D7heKDFRxbjhtDAzNhJdWm0K+m0tgYzEsmgTYTD2aJC/EH3VVdjwFhJulxMPCCfC3tzuOBYKQkQC3XQof7YAPt5v3XzDeZN50pydtXSM8ugye+bh1254yU/fmB+fCnBHH/z1InxU88gjHAqw+WGaqL0jwwvQi2H2o49jOg3DRDBOfPXoVJsDVZ0JRVu/Ma28Z7D1svk5LbF92q8FvgjgeF8wcBnlpXTtmXaNZ2vXEh3Cg0mTNXDAN5owyXzebVAA/+hT8+z3YddAsJxs7GL5wKozM7bnvUURERPoOBWlEBroDVfDsqvbb9pXDSUWwdJspmnB0kGbuCQY4Th4BK3d1zPOfNdwUfchIgsIMWDz9+ANCOw7Bsx933O4LwIPvwOgcUyhZBpR8O8z3wL/rQ48v8kCCckx7hc0Gp42F19aaJLe24txQmAn3fg1+/jis32u2J8eZAM0F03pvXlX1ZjlVRa2ZR3YKlFS2lsWq95tSXZ+eA64ufGqyLHhpFTzwVuu26gb44ysmQHXl6a3LmJwOE7gZl2+COXY75KZAvLenv0sRERHpKxSkERnoAiHyCjbsh/Mnw/r9HdcfnFQEY46jYmhbWSnwvYWwscQse7LZYM5wGJVjCho3O5GMnfX7wq+d2F9hHgrSDDhxDvisF15vhOKjTv3xDji1h1ssS3sjcuCmxfD4Mli5wwQ0xuebAMjwbDM+/JtmRWSD39S/GZPXteDI8dhzGLaWmK5TzYGjRK+JETf4zcrI08eaOeZ2MYtm9yFTZDiUFz+B+RNMIKi63mToZCabBMPeWs4lIiIifYuCNCIDXXYyxLnM7eJm/gC8sxluONfUqtlaam4xnz0BZhSZNQEnKj3RZOScaFZOOIFwEZojrGOMS7813Q33p8BTDfCmz/whPM8L53pgnBqI9boxg+GHFxxZVmRBZkr7OjdDMsyjt1kWPLcSPtllgkR/OVJHvabBPEbnwYKJMHO4qcnTVaWVUBema9OoHFMg+Z71UFwByV44ezKcOQEykrs399IK86s6LQESu7ESVERERGKbgjQiA13BILj0JPjn++23l9eaSp/XnmGWCLkcpjtSXzEuL/xYVjLkpERuLhJTHDaY6YFxTrgqaCroD3aCW7VoIsbjMsWAo6mkAt7daDJoMpLgunPhyQ9NEeNBiTBvHHz9zO4FaEoqTHHkRVNMls7GNrXRs1MgKR7ues68H8BBP/zrXdhxAK49u2tlt/aVwQsfw1sbzGrUoZlw6SyYMaz3Mo5EREQkcvTnXGSgs9vhvMnmquGpleY2cFoCXDAFTh4FcR7oi3dpizJh/lh4Y0P77XYbfGGuWWMgA1qiwzxiWVkQigNm5V6OHTJifL59SdtuU5/sMgV9L5llAiUNfggEzMrMrqhtgNfXwuMfmlbdW4ph+jA4bxq8/Ik53qQCuP+10Md8bzOcO83s05mDlfDb52BLSeu2zcXw66fh++ebmj8iIiLStylIIyKm7coZ48xSppoGs/agbW2YE1FWa9qn+JtMYGRIuqlB09uSvPClU2F0Lry42twuH5oBF06FSUN6//1FTkDQgg998Pc62NuciWGHL8bDXDe4lPVzwtITYVg2bNhnnlfUwrubWse/dFrXf1W9ud608QbwukwXqPc2mfo0XzwVXlljChHHuTvWYW+2pfjYQZqNxe0DNM2CFjz8Hkws6Llf3SIiIhIdCtKISKvkOPPoKR/vgvvfNEEaMFcnF003RYm70077eKUnmCyhU0eZW9nJ3ta2KiIxbEMT3FUDjW22lQbhdzWQmGTq6siJSfDCZbPhtidblyQ1S0+EGcO7dpwDlWb50ehcEyzZfci83uU0BYnBLJ2aVAhZn0Bjk1mmZFngcZrAjd1ugjvHsmpn+LG9Zeb9FKQRERHp2xSkEZHese0A/OZ5qG1zmVnng4c+MFku50+J3Fx6Ovgk0osCFrzS2D5A0zKGKXicZoNKCxJtUOAEjzJrjsvUoXDDhfDI+7Ct1LTEnl4En5ljWoJ3xcEqyB8Ey7eB0wknjzYx4Q82m187waCpd1NRa371vbvZJBaCydTJTIbCQTAy99jv1Vkgx24Dh9rHi4iI9HkK0ohI71i+o32Apq0nV8Ds4a3VM0WkRZ0Fm5pCjzVY8FYjJNvg7SOdqWa64Yp4GKx6Nd3mdMDskTBuMByqNkGOnFRT2Lgr9h6Gu1+EZ1eYLBqAN9eZ2jAnjzbLpwYlmeOW18K8CfDhttYgjWWZIM81Z5kyWscycwQ8syL02MQhXW8TLiIiIrFL91xEpHdsLA4/dqDK1L4RkQ48NkgN8de5CdgVAGxQb7Vue98H99dCTbDja6RrkuNNfZrCzK4HaMDUmtlXbooOt/X2BlODJsFjCggDLN0CyzbDjRfBZ+eajJ1zJsMtl5qCwGU1x36/4dlw4YyO21Pi4Quntm9lLiIiIn2TMmlEpHfkpYYfS/aCuxtXQiIDiNsGizyw1t9+e70FVRZc6YH1R4197IedAZigWy8Rc7DKBGPsNlMouN5nHs3e2Qg/uABGZJvn2w/AoRqTdZObZmrUNPjhpVUmC6fOF/Jt2kn0mqVYkwrg1TVQWW+CPScNh6KsXvk2RUREJMIUpBGR3jF3JDz/CQRC3N4/czzkdrG3rcgANMUJ53vh+QbTfhvAZ8FCj/nDXWW139/CtOuWyAkEwXdk2VK8B0blmgTBmgazjConDaYNbY1HF2XCR9vM18Xl5tEsNaHrWTBJcWbZ08wRZrlUJJrliYiISOQoSCMivWNUNnx9Pvz1LdPOpNlJRabjkq4sRMJKdsAX4+AUt8moCWBqzrzWAO+GybhI0I9URKUnwrh8s4wJzDIpj8vUoAHT0SkpHkorYH+5WaoUDJpOTkc7d4qphdNd+jUqIiLS/yhIIyK9w+WEs8bDqBzT6aneB0MzzO1kdVoSOaZ4O4y3w/gjmRgHA/DPMNkyuXYoVOHgiHI7TX2YVTvNsqW20hJg9gizHOqBN01R4txUOG8aPP2RybSx201B4TPGw8JJUfgGREREJCbZLMuyjr3bwFFVVUVKSgqVlZUkJydHezoiIiIt1vrhzmooa/OXO90GP0yCCSrzFHGWBWt2w2NLYd3e1hbei2eapVD/8x9oCrTuPyjRtP0emQsJXshJNsWKvSr4KyIy4Ok6VJopk0ZERKSPmOCC21NgSxOUBiDbASOdkKcsmqiw2UwB4JG5ppCw3QbZKSZL5vcvtA/QAByugVfXQnEF3HyJqWXTVZV1sK0U1u0xwaBJBaZYcHeOISIiIrFPQRoREZE+JM+hoEysiXNDQUbr85oG080pnH1lUF3f9QDLwSq471VYtrV128PvwUUnwWWzTTFhERER6R/UrFNERESOydcEW4rh/c2wYjscrIz2jGKXxwkZieHHU7rRzQlMbZu2ARowHb2e/MgstxIREZH+Q5k0IiIi0qnD1fDQe/D6utYlPFnJ8M2FMH1YdOcWKZZlCgDbbKa2TGedlVxOOGcKrNwZevz8qZAc37X3LauBlz8JP/7yatOO26nsKhERkX5BmTQiIiISlmXB8ythyer2NVYOVMGdz8KOTpb19BfbSuGPr8CP/m0ef3kddh7s/DWTCuBzc8HZ5pOW3QbnTIbZI7v+3o1+s3wqnPLajrVvREREpO9SJo2IiIiEtb8cXgqTyVHbCJ/sMgVs27Is2LzfFMgtrzW1V8bkmU5Gfc22Uvj54+b7aPbMCrP86KbF4b+nBC9cMgtmDIOtpRAIwogcKMzoXrHflHjzHmv3hB4fOxg86uwlIiLSbyhIIyIiImHVNkJ1J5kcR2eUlFaYWil/fR3Kak1g4oLp8NYG+MwcmFzYq9PtUZZlMojaBmialVbCe5s6Dzx5XDAqzzyOV7wHLj4J1u+FoNV+LM4N88d3vvRKRERE+hYtdxIREZGw4twQ30mR28HprV9X1JrW0796AnYfNst0Vu2EW5+A9AT459twqKp35mlZx96nu8pq4KNt4cff22y6NPW2qUPhu4tMHaBmhZlww6dgdG7vv7+IiIhEjjJpREQiwfKDbxs0rISmw+AZA55x4Boc7ZmJdCo/Hc4YD8993HHM4zIBhGZbS+GdjeA/qkZK0DItoz97sgneZCTTY9bsNlk672w0gaCLTjJzyko58WPbbKaOTDh2G9gjcLvL5YQzJsDEAjhQad4zL80shRIREZH+RUEaEZHeZvmhZgmU/xk4cvVauwQcWZD5Y3CPiOr0RDpjs5nAx+EaWLrFtH4GSI4z3Z2GZ7fuu26Pqb0Syt4yk5XT6O+5uS3fDlffD/vKWrc98SF84yz41tmQeYLBoPREOHm0OWYo88ZBQjfqy5yozOQT/57kxBxiL8VsoZoykhhEHiMYRH60pyUiIv2IgjQiIr3Ntx3K/0JLgKZZ4ACUPwiZPwV7XDRmJtIl2almuc2FM6CkEuJcUJBhljq1rYfidnZexNZph0FJPTOn6nr4fy+1D9A0u/cVU6tl3rjwry8pN7V2vC7zfYTLiDljPLy/GUoq2m8vzOxelybp+7bzMf/gRnawqmXbMKbxRW5nGFOiNi8REelfFKQREeltjWuApvBj/r3g0dWexLYEL4wfYh7hTCo09WtSE0x9mrbGD4GMRNPdqCfsOACvrgk//uqa0EGaylp4ZY3p0FRea+Z7+jhTnDc3reP+hZlw8yWmSPB7m0xQat44mD0C8tI77i/902H28U9+2i5AA7Cdlfybn/BN/sIgTqBCtIiIyBEK0ohI/1W/FqxqsMWBezw4otSnNlBp/muLA+9UcKSC1Qg2j6lTY/miMy+RHjYsEz4zF/71LrgcpvBuIAip8fCdc+CU0T3XLrop2LH2TVu1ITpSBYLw1HJ4fFnrtjofvLgKisvhB+dDSkLH1w0ZBJ+da7pU2eheC23pH/azhe2sCDm2lRUUs0VBGhER6REK0ohI/+PbCdVPQNm94N8FjkGQ8gVI/TJ4x0Z+Pu5RYE+C+HlQ+Q/wbTHbbW5IPA9s3sjPSaQXxHng0lkwdjC8/AkUV8LYPDh1jGm93ZOtonNSYFIBrN4devzUED/qew7B8yEKIAOs2gU7DsKUEEGaZpGsPyOxpZbyY4xXRGYiIiLS7ylIIyL9S6AeKh6EQ7e32XYYyu4G/07I/l9wR7jIo2c0JJwNh++EwMHW7ZYPGpZD3WvgLgJbBNrEiPSyBC/MHAEnDTfZLi5H77xPXjp891z4xp87ZtRMHwZTCju+5lAN1HeSuLbrIEwZ2qPTlH4ikUHHGA+xVk5EROQ46IpARPqXxnVQ9ofQY9VPg29TZOcD4MwyS5wI0PJr1+YGVwE4MqHmVWjaG/q1TQfBt8v8V6QPsdl6L0DT7Izx8NdvwNzRpnNUdip8fQH89oswLLvj/p5j3JpKUFKbhJHHCEYyM+TYaGaTy6gIz0hERPorZdKISP8SKIFgVfjxxs2QeGbk5tMscBDcwyDYAATB5jI1aQCseghUQ9taHU3lUPcGVD9nMoEcGZB0ASTMOxLwEZF4D5w9GaYXQWkluJwwPAscYYJD+emmvsyewx3HvK727cRF2konjy/wKx7iZjaxtGX7aObweX5JOjlRnJ2IiPQnfSKTZufOnVx11VUUFRURFxfH8OHDueWWW/D52ucsr169mlNPPRWv18uQIUO44447ojRjEYka2zFaWUcrwOHMAexgjwd7YmuABkxWjT2+9XmwEaoehooHjiyPCpp23RV/har/QFCFhkXaykg23aNG5YYP0ACkJcI3zoLko35NOB1me091npL+aSiTuYb7+BGP8U3+zI94nGu4j6FMjPbURESkH+kTmTQbN24kGAxy3333MWLECNauXcvXvvY1amtrueuuuwCoqqpi4cKFLFiwgHvvvZc1a9bwla98hdTUVK6++uoofwci0iXBBmjaZzof2dPBdRx3Jl1DTQelhhDVQR1ppohvNHjGmwCSVd9xLG4OuNr0NfbvhJpXQh+n+iWIPwM8I3plmiL93aQCuO2zplDwlhLITTU1bEZkg71P3LqSaEojhzRlzYiISC+yWZZlRXsSx+POO+/kT3/6E9u3bwfgT3/6Ez/96U8pKSnB7XYDcOONN/LUU0+xcePGLh+3qqqKlJQUKisrSU5O7pW5i0gIjdug8p/QsAoIgCMdkhZDwpngSOzesWpeh/1fhqaS1m12L+TcC0mXRqcVt2VB/YdQ9n/tl2N5JkH6N8E1uHVb7Vtw+K7wxxp0AySc0ntzFRHp45qCsKcWDjaA2w5DEmCQag6JSAzTdag06xOZNKFUVlaSnp7e8vyDDz7gtNNOawnQAJx99tn85je/oby8nLS00FX3GxsbaWxsbHleVdVJLQsR6R3+Yjj0a1NPplmgDCr+YqqPJn2qe8dLPAPyn4D6pdC42mTXxJ8O3mnRCdCA+T7iZ4HrNyZTJlgDzlxwFYHjqD/EtmPM8VjjIiIDWGUjPLELnt8LjUGzLTcOvj4apmtJm4iIxLg+GaTZunUr99xzT8tSJ4CSkhKKiora7Zednd0yFi5Ic/vtt/Pzn/+89yYrIsfWuL59gKatqv+Cdxa4ulnRM366ecQaV755dMY5BOxJEKzuOGZPOfbrRaRPsiwot0zBwFQtvTpurxXDE7vbbyuuhzvWwG3TYbhuUIuISAyL6keAG2+8EZvN1unj6KVK+/bt45xzzuGyyy7ja1/72gnP4cc//jGVlZUtjz179pzwMUWkm3wbwo8FyiBY0TvvG2yExq3QsBp8O8Fq6p336S5XPqR9jY5xdBekXd1+aZSI9AvbmuDPdfCjSrihEv5VB3ti5FdSX1JaB0+H+ShXF4CVITp7iYiIxJKoZtJ8//vf50tf+lKn+wwbNqzl6/379zN//nzmzp3L/fff326/nJwcSktL221rfp6TE77Am8fjwePxhB0XkQhwpHcy6Oyd5T2+PVD5d6hfATSBzQsJZ0DypeDM7Pn36w6bDeJPNR2hat8F/3bTvjv+lOgVPhaRXrPNDz+vNlk0zR6th/d98NMkGNxJxyppr7YJyhrDj2/RqnYREYlxUQ3SZGZmkpnZtYuhffv2MX/+fKZPn84DDzyA/agWDHPmzOGnP/0pfr8fl8tc0L3yyiuMHj067FInEYkRninAo0Cw41jcDHD28PKepnIo+z34Nrdusxqg5gWTTZP+jejXfbE5wTPWPESk3wpY8EJj+wBNsz0BWOaDxXEdxyQ0rwMSnVATJgspLz6y8xEREemuPrHied++fcybN4+CggLuuusuDh48SElJCSUlrTUsPv/5z+N2u7nqqqtYt24djz76KHfffTfXX399FGcuIl3iLoKUz0PTIWjaD8FKsPzgHGy2293HPkZ3+Le3D9C0VfsG+Hb17PuJiIRxOAjLfeHH326EhhDxawktNx7Oygs95rTBrCgnSoqIiBxLnygc/Morr7B161a2bt1Kfn77O+rNHcRTUlJYsmQJ1157LdOnTycjI4Obb76Zq6++OhpTFpGuCvqg9jWoXQqpXwL/DghUgXcqJM43AZye1rSvk0E/BMt7/j1FRMKxASEyaaT7bDY4bwjsr4dlB1u3xzlMd6eRKhosIiIxzmY1RzkEUH96kYhrWAsHfkrLUid7Gtg9ECiHxHMg9Srzqbsn1b4Fh+8KP551O3gn9Ox7ioiEYFnwpzp4sSH0+FXxcJGWO3VbtR921sDuGoh3QlEiFCSCvYf/nIiI9BRdh0qzPpFJIyL9WN37tKtFEyxvfVr7GiSeC64wuevHyzUM7MkQDFFB0jUcXAU9+34iImHYbHCOx9SeKTtqWVOhA2b28GrPgSLJBRPTzENERKQv6RM1aUSkH2sqCT8WrAGrkzYdx8s9BNK/A7ajKkg6MiH9GnDo7oWIRM4wJ/wsCS71Qr4dChxwRRz8OAny1NlJRERkQFEmjYhEl2csNHwUesyRbTJeekP8LHD+BnyboOmAyZ5xjwJXbu+8n4hIJ4qc5nGR1yzJSdJtNBERkQFJQRoRia646VD9hMmaOVryJeAc1Hvv7R5qHiIiMSJFmTMiIiIDmu7TiEh0uYdBxo3gKmzdZk+ClCsg/pTozUtERERERCTClEkjItHnnQxZt4J/L+ADewa48nu+q5OcGMtv/mtzRXceYFri+PdC024INoIz12RF2dUGR0RERET6LgVpRCQ2OFLMI9YEGsG3zizHsieBexI4Bth6BH8JNKyA2jeBIMSfDnEzer7rVldZAah7G8rvb7NMzg4Jp5sMLGdGdOYlIiIiInKCFKQREQmnYSNU/BUq/wGBCnBkQOqXTSDAOyras4sMfzEcvhN8W1q3+TZD7ZIjy9TyIz+nxs1w+B7A32ZjEGrfAEcOJF0Ivu0QOAR2D7iKVBBaRERERPoEBWlERELxlcDh26Dy0dZtgUMmYBEsh4xfgSstevOLlPql7QM0zfy7TDZLyucjP6eGpbQP0LRRvwywweHfQtMe87VnEmTcYDJtbPqzJyIiIiKxS4WDRURC8W2GysdCj5X/E3wbIjufE+HbZ7JMqp+Fug8hUN211wVqoPb18OO1b0JTeY9MsVt8u0Nvt5pMZs/hO44EaAAsaPwESq6HhjURm6KIiIiIyPHQLUURkVAC+4BgmMFGaCqO5GyOj2VB3Ttw8Gfg22SCGDgh6WJI/zY4Ek2dHUdymAMEj7wm3PEDhP836kXu4dCwvON211Dz/VqNHccCpVD9FHgnKptGRERERGKWMmlEREKxJXQ+bj/GeCzwbYXSH0LjujbBFj9U/Rsq/ghVL8GBn0LNq6GzaxzJED8z/PHjpoEjCku+4maCzdNxuyPFfB/BUJlClqll09UsIhERERGRKFCQRkQkFFcRuIaEHvOMMeOxrv4D8B+1NMhqhGAdVDwErmzw74Syu6H66dBZM/Gngz1EIMaeDAkLwRaFPyPukTDo++BIb7PRBZ7J4EwDyxfiRTazv90bqVm2F6gzy7QaVkPdcmjcYJaTiYiIiIi0oZxvEZFQ4iZCzu9h/9cgUNa63ZEN2XeCd3TUptZl/l20W45kBSB4ZClQsAqsOrDFgVVvlgLFzwX3sPbHcA+DzFug5jmo/wiwIG4qJF4AnpER+kaOYrNB/BwTKGvaa4Iyjiywx0OgGOre6/gaexIkXwz2uMjO1bKgcTXUL4fG9SYYBuAaDN6ZkPZV8PSBc0lEREREIkJBGhGRcOIXwZBnTHDCvxXco8A7A+JnRHtmXdMh2ycIWOZLexrgAutIlySr0bTbPjpIA+AZDu5vQdNB83pnZmzUdXHlmEdbCQvAtw2qHm/dZk+AtGsh7qTIzg/AtxHK/mYyeCr/1bq9cQtgg0OHIOtXJmgjIiIiIgNeDHzKFhGJUQ4HxJ9kHn2Rd7rJ/AmUdhxLvgiCtUCbJU6dLV2yOToGRGKRdxIMuhGSLzOZKzYveKeCezQ44iM7FysANUvAMwzK/nTUYMAEveyJ0LhRQRoRERERARSkERHpv7xjIfduKL3R1J7BAbgh+QJIPAeqnm7d154IzvwoTbSHuYeYR8K86M4jWG2KNnsnQzBEq/JgtakD5NsGnBnx6YmIiIhI7FGQRkSkP0uYD4P/aTo9BcpNB6RgI1Q/C8FDR3ZyQOpXwNVPgjQxw2Vq/mAz3aiObg1uc5gxZ2Y0JiciIiIiMUhBGhGR/s4zyjzA1KBpXAf+MeBPOpJxsgA840xBXuk5jgRIXAi1b0D8qVD76lHjmabYsWdidOYnIiIiIjFHQRoRkYHE5gLvFPBMMl2RbB4FZ3pT3ExoWAnuEdC039TJAbCngDMH0r8VuliziIiIiAxICtKIiAxENrspqiu9y5lpOkv5NoMzyyx5ClSDMxe848E1tPOCzSIiIiIyoChIIyIi0puc6eCcHe1ZiIiIiEgfoNt3IiIiIiIiIiIxQEEaEREREREREZEYoCCNiIiIiIiIiEgMUJBGRERERERERCQGKEgjIiIiIiIiIhIDFKQREZG+zwqA5Y/2LERERERETohacIuISN/VVA4NK6DmRQjWQ/zJ5uEeGu2ZiYiIiIh0m4I0IiLSN/kPQdn/QuW/wWoAbFC7BLyTIevX4BkZ7RmKiIiIiHSLljuJiEjf1PAhVPztSIAGwIJgNdQvhcp/avmTiIiIiPQ5CtKIiEjfE6iF6qcAq+OY1QS1r0JTSaRnJSIiIiJyQrTcSURkoGsqA/8esOrBMQhchWB3R3tWnQvWQLAq/HjTYVNMWERERESkD1GQRkRkILD84NsF/u3ma3cROIea52V/gKa9R3Z0QsI8SPk8ODOjOOEu8J4EtW+EHoubBo4Yn7+IiIiIyFEUpBER6e+CDVDzAlT8C2iu02KH1K9C5b/Aqmuz85GlQvZ4SL0KbDG6KtaZBZ6x4B4Nvk3tx2weSP0aOBKiMzcRERERkeMUo5++RUQkpEDdkYyY3RD0de01jeuh4kFaAzSYQIZvLfh3hH5Nzavg3xt6LBL8B6BhLdSvAP++juM2G3inQPo3Ifkz4MgCexLEnQw5/w+8MyM+ZRERERGRE6VMGhGRvsCyoGEVVP0HGjeAzQHeaZB8KXhGd/662iV0KLBrTwbfXmgqBUc62FxHva7OdEqKtKZyaFhh5mwFwD0SAofN95pwBtg9rfu68iBhAbhGQcKZ5ntwFZmaOo74yM9dREREROQEKUgjItIXNK6BQ7eC1WieWwHTarpxI2T9wtSYCcXym0BMh+214Co40qY6ABwVpLF5zJKnSGoqg7LfQ/n9tAsqJX3KPHWkQ/ys9q9xZpgH0yI3TxERERGRXqLlTiIisS7YCNVPtwZo2o1VQN174V9rc4FrRIjX1ZjCwM4MQsbr4+eCa8jxzvj41H8AVY/TIeun+hmwu6DmJQjWR3ZOIiIiIiIRpCCNiEisC5SZjJlw6j8yxYFDsdkgcT4dMmUA6pZB1q9NhkpbnimQ/FmwRTDZMlAN1c9DsC70eO0bJrsnGkuwREREREQiRMudRERinc0JNnf4cXucqVETjnsMDLoeKv4KgUNHXpMIyRdC/HzwTgL/TgjWgjMXXEPBkdyT38GxWY3m/W1usEJkywQqTB0dW1xk5yUiIiIiEkEK0oiIxDpnJiTMO7IUKITEhR0L/zazLBPg8E6E7DvBvwcIgCMbXPkm08aRb76OJnsyeEaBfxv4KjuOe0aDdzI4kiI/NxERERGRCFGQRkSkL0hYAA0rwbe9/fa4OWZ5UiiNW6D2FahfabJxEuZB/KngGtzbs+0+uxuSzjdLsJyDoWk/LbVpbPGQtBi8E6I6RRERERGR3mazLMs69m4DR1VVFSkpKVRWVpKcHOF0fxGRzvhLoHEt1L1vghrxp5mlTMEqs1zIngKuHLNv4yY4+Asz1pZ7GAy6EVy5kZ//sVhNUP8hVPwdfFvM8idXEaRdbYJRDi11EhERkf5J16HSTJk0IiJ9hSvHPBIXmOe+3VDxZ5N9gt8UAE6+xARvqp/tGKABk4nTsBJc50V06l1ic5quUu4xECgFbODMAUdqtGcmIiIiIhIRCtKIiPRFTQfg8B3g39W6LVAG5X+GQB3494Z/be2bkHh2ZLs3dYcz3TxERERERAYYteAWEemLGje3D9C0Vf1fcI/q5MW2Iw8REREREYklMXobVUREOuXbFH7MqjcdocJJmN95y26REHy1ULkT6svAnQAphRA3KNqzEhEREelfFKQREemL7J0VlHOYAsH2VAhWtB9yjwDv1F6cmPRHVfvg4/uh5GNamm4lDYaZ34WMsVGdmoiIiEi/oiCNiEhf5J0ElU6gqeOYZwJ4xkHmz6DuTaj/yGTOJJwJcbNbO0CJhNFQCRXboWwzxGfBztehZCXY2iySrt4H798BZ9wOiTqlRERERHqEgjQiIn2RexikfdUUCibQut2RCalfAnsceIab/ZIvBezgSIrSZKUvqT0AK++F/R+Z58MXweoHISELErLbr5SrPwTlWxSkEREREekpCtKIiPRFNhckLgT3cNNSu+kweMaYDBrX4Db72cCREr15Sp+zfUlrgAYg2AQBn1ny5EoAz1GnU82ByM5PREREpD9TkEZEpK+yuY4EZsZEeybSx1gWVO0FXw244iA5H+xOqCmFHa+039fuNI9gk8mcOTpIk9BJjWoRERER6R4FaURERAaQusOw5RnY9jL4a8HhgYJTYeynTSCmsbr9/lV7YMgpsOtNaPK1H4tLh7QREZu6iIiISL9nP/YuIiIi0h8E/LD+Edj4hAnQAAQaYcersOKPYHdBUl771xxaD4XzIG8meNqUNUrIhtk/7Li/iIiIiBw/ZdKIiIgMEJW7YMdrocdKV0H9ARh7KSz9bet2KwjbXoL8uVB4uqlP40qElEItdRIRERHpaQrSiIiIDBD1hyDoDz9evR8KToNpX4d1j0JjhdmenA/Dz4acaRGZpoiIiMiApSCNiIjIAOHwdj7uSgBXPIw83wRk6g6aosFJg8GbGpEpioiIiAxoCtKIiIgMECkFJiumam/HMXcSpAxtfZ6Up3ozIiIiIpGmwsEiIiIDRFw6TP8meJLbb3d64aRvmQCOiIiIiESPMmlEREQGkKyJMP92OLgOKndAYi5kTYLUYWCzRXt2IiIiIgObgjQiIiIDTEqBeYiIiIhIbNFyJxERERERERGRGKAgjYiIiIiIiIhIDFCQRkREREREREQkBihIIyIiIiIiIiISAxSkERERERERERGJAQrSiIiIiIiIiIjEAAVpRERERERERERigII0IiIiIiIiIiIxQEEaEREREREREZEYoCCNiIiIiIiIiEgMUJBGRERERERERCQGKEgjIiIiIiIiIhIDFKQREREREREREYkBCtKIiIiIiIiIiMQABWlERERERERERGKAgjQiIiIiIiIiIjFAQRoRERERERERkRigII2IiIiIiIiISAxQkEZEREREREREJAYoSCMiIiIiIiIiEgMUpBERERERERERiQEK0oiIiIiIiIiIxABntCcQayzLAqCqqirKMxEREREREZGBoPn6s/l6VAYuBWmOUl1dDcCQIUOiPBMREREREREZSKqrq0lJSYn2NCSKbJZCde0Eg0H2799PUlISNput19+vqqqKIUOGsGfPHpKTk3v9/aT/0zklPU3nlPQ0nVPSG3ReSU/TOSU9rbNzyrIsqqurycvLw25XVZKBTJk0R7Hb7eTn50f8fZOTk/XLX3qUzinpaTqnpKfpnJLeoPNKeprOKelp4c4pZdAIqHCwiIiIiIiIiEhMUJBGRERERERERCQGKEgTZR6Ph1tuuQWPxxPtqUg/oXNKeprOKelpOqekN+i8kp6mc0p6ms4p6QoVDhYRERERERERiQHKpBERERERERERiQEK0oiIiIiIiIiIxAAFaUREREREREREYoCCNCIiIiIiIiIiMUBBmij51Kc+RUFBAV6vl9zcXL74xS+yf//+dvusXr2aU089Fa/Xy5AhQ7jjjjuiNFvpC3bu3MlVV11FUVERcXFxDB8+nFtuuQWfz9duP51X0h233norc+fOJT4+ntTU1JD77N69m/POO4/4+HiysrL44Q9/SFNTU2QnKn3KH/7wB4YOHYrX62XWrFl8+OGH0Z6S9BFvv/02F1xwAXl5edhsNp566ql245ZlcfPNN5Obm0tcXBwLFixgy5Yt0Zms9Am33347J510EklJSWRlZXHRRRexadOmdvs0NDRw7bXXMmjQIBITE7nkkksoLS2N0owl1v3pT39i0qRJJCcnk5yczJw5c3jxxRdbxnU+ybEoSBMl8+fP5z//+Q+bNm3iv//9L9u2bePSSy9tGa+qqmLhwoUUFhayYsUK7rzzTn72s59x//33R3HWEss2btxIMBjkvvvuY926dfzud7/j3nvv5Sc/+UnLPjqvpLt8Ph+XXXYZ11xzTcjxQCDAeeedh8/n4/333+fvf/87Dz74IDfffHOEZyp9xaOPPsr111/PLbfcwsqVK5k8eTJnn302Bw4ciPbUpA+ora1l8uTJ/OEPfwg5fscdd/B///d/3HvvvSxbtoyEhATOPvtsGhoaIjxT6Sveeustrr32WpYuXcorr7yC3+9n4cKF1NbWtuzzve99j2effZbHHnuMt956i/3797N48eIozlpiWX5+Pr/+9a9ZsWIFy5cv54wzzuDCCy9k3bp1gM4n6QJLYsLTTz9t2Ww2y+fzWZZlWX/84x+ttLQ0q7GxsWWfG264wRo9enS0pih90B133GEVFRW1PNd5JcfrgQcesFJSUjpsf+GFFyy73W6VlJS0bPvTn/5kJScntzvPRJrNnDnTuvbaa1ueBwIBKy8vz7r99tujOCvpiwDrySefbHkeDAatnJwc684772zZVlFRYXk8Huvhhx+OwgylLzpw4IAFWG+99ZZlWeYccrlc1mOPPdayz4YNGyzA+uCDD6I1Telj0tLSrL/85S86n6RLlEkTA8rKyvj3v//N3LlzcblcAHzwwQecdtppuN3ulv3OPvtsNm3aRHl5ebSmKn1MZWUl6enpLc91XklP++CDD5g4cSLZ2dkt284++2yqqqpa7hiJNPP5fKxYsYIFCxa0bLPb7SxYsIAPPvggijOT/mDHjh2UlJS0O79SUlKYNWuWzi/pssrKSoCWz08rVqzA7/e3O6/GjBlDQUGBzis5pkAgwCOPPEJtbS1z5szR+SRdoiBNFN1www0kJCQwaNAgdu/ezdNPP90yVlJS0u6iB2h5XlJSEtF5St+0detW7rnnHr7+9a+3bNN5JT1N55R0x6FDhwgEAiHPGZ0vcqKazyGdX3K8gsEg1113HSeffDITJkwAzHnldrs71GXTeSWdWbNmDYmJiXg8Hr7xjW/w5JNPMm7cOJ1P0iUK0vSgG2+8EZvN1ulj48aNLfv/8Ic/5OOPP2bJkiU4HA6uuOIKLMuK4ncgsai75xXAvn37OOecc7jsssv42te+FqWZS6w6nnNKRESkv7v22mtZu3YtjzzySLSnIn3c6NGjWbVqFcuWLeOaa67hyiuvZP369dGelvQRzmhPoD/5/ve/z5e+9KVO9xk2bFjL1xkZGWRkZDBq1CjGjh3LkCFDWLp0KXPmzCEnJ6dDle/m5zk5OT0+d4ld3T2v9u/fz/z585k7d26HgsA6rwS6f051Jicnp0NnHp1TEk5GRgYOhyPk7yGdL3Kims+h0tJScnNzW7aXlpYyZcqUKM1K+opvfetbPPfcc7z99tvk5+e3bM/JycHn81FRUdEu+0G/t6QzbrebESNGADB9+nQ++ugj7r77bj7zmc/ofJJjUpCmB2VmZpKZmXlcrw0GgwA0NjYCMGfOHH7605/i9/tb6tS88sorjB49mrS0tJ6ZsPQJ3Tmv9u3bx/z585k+fToPPPAAdnv7ZDmdVwIn9rvqaHPmzOHWW2/lwIEDZGVlAeacSk5OZty4cT3yHtJ/uN1upk+fzmuvvcZFF10EmL9/r732Gt/61reiOznp84qKisjJyeG1115rCcpUVVW13MkWCcWyLL797W/z5JNP8uabb1JUVNRufPr06bhcLl577TUuueQSADZt2sTu3buZM2dONKYsfVAwGKSxsVHnk3SJgjRRsGzZMj766CNOOeUU0tLS2LZtGzfddBPDhw9v+eH8/Oc/z89//nOuuuoqbrjhBtauXcvdd9/N7373uyjPXmLVvn37mDdvHoWFhdx1110cPHiwZaw5Mq/zSrpr9+7dlJWVsXv3bgKBAKtWrQJgxIgRJCYmsnDhQsaNG8cXv/hF7rjjDkpKSvif//kfrr32WjweT3QnLzHp+uuv58orr2TGjBnMnDmT3//+99TW1vLlL3852lOTPqCmpoatW7e2PN+xYwerVq0iPT2dgoICrrvuOn71q18xcuRIioqKuOmmm8jLy2sJCooc7dprr+Whhx7i6aefJikpqaUuSEpKCnFxcaSkpHDVVVdx/fXXk56eTnJyMt/+9reZM2cOs2fPjvLsJRb9+Mc/ZtGiRRQUFFBdXc1DDz3Em2++ycsvv6zzSbom2u2lBqLVq1db8+fPt9LT0y2Px2MNHTrU+sY3vmHt3bu33X6ffPKJdcopp1gej8caPHiw9etf/zpKM5a+4IEHHrCAkI+2dF5Jd1x55ZUhz6k33nijZZ+dO3daixYtsuLi4qyMjAzr+9//vuX3+6M3aYl599xzj1VQUGC53W5r5syZ1tKlS6M9Jekj3njjjZC/k6688krLskwb7ptuusnKzs62PB6PdeaZZ1qbNm2K7qQlpoX77PTAAw+07FNfX29985vftNLS0qz4+Hjr4osvtoqLi6M3aYlpX/nKV6zCwkLL7XZbmZmZ1plnnmktWbKkZVznkxyLzbJUqVZEREREREREJNrU3UlEREREREREJAYoSCMiIiIiIiIiEgMUpBERERERERERiQEK0oiIiIiIiIiIxAAFaUREREREREREYoCCNCIiIiIiIiIiMUBBGhERERERERGRGKAgjYiIiIiIiIhIDFCQRkREREREREQkBihIIyIiMkDMmzeP6667rkv7/vnPf2by5MkkJiaSmprK/2/v/l1SbeM4jn88PoSJkCSVRpGgJKSLNRk0FA41R64JIWhDRUQFQT/AKGjyDzAaKwiioSFqkIgMGoTGhszFlpps6eezBTdZp4fzHI4d3y+4lvv6Xr/WD9d938FgUCsrK2/9i4uLMplMisfjhnG5XE4mk0n5fF6SlM/nZTKZyrZsNvvh+svLy+ru7pbVapXdbv+vRwUAAPiWCGkAAIDB+vq6JiYmNDY2plwup5OTE01PT6tUKhnqLBaL0um0Li8vfzrn4eGhisWioXV1dX1Y//DwoKGhISUSiV8+DwAAwHfxz5/eAAAA+P2i0agymYwymYxSqZQk6erqSm63+13t3t6eIpGIRkZG3p75/f53dT6fT42NjZqbm9P29van6zscDjmdzi/vd2lpSZK0sbHx5TEAAADfHTdpAACoAqlUSqFQSLFY7O0mS2tra9lap9OpbDar6+vrn867urqqnZ0dnZ+f/99bBgAAqDqENAAAVIG6ujrV1NTIarXK6XTK6XTKbDaXrV1YWJDdbpfb7ZbP51M0GtX29rZeXl7e1XZ2dioSiWhmZubT9bu7u2Wz2QwNAAAARoQ0AABUMb/f/xaaDAwMSJJcLpdOT091cXGh8fFxPT09aXh4WP39/WWDmmQyqePjYx0cHHy4ztbWlnK5nKEBAADAiG/SAABQxfb39/X4+ChJqq2tNfQFAgEFAgGNjo4qHo+rp6dHmUxGvb29hjqPx6NYLKbZ2Vml0+my67S2tsrr9f6eQwAAAPwlCGkAAKgSNTU1en5+Njxra2v70tiOjg5J0v39fdn++fl5eTwebW5u/tomAQAAqhghDQAAVcLtduvs7Ez5fF42m0319fX68eP9m8+JRELNzc3q6+tTS0uLisWiksmkGhoaFAqFys7d1NSkyclJra2tle2/vb3Vzc2N4ZndbpfFYilbXygUdHd3p0KhoOfn57fXo7xeL9+zAQAAfy2+SQMAQJWYmpqS2WxWR0eHGhoaVCgUytaFw2Fls1kNDQ2pvb1dg4ODslgsOjo6ksPh+HT+jwKUcDgsl8tlaLu7ux/ONT8/r2AwqIWFBZVKJQWDQQWDQf4iBQAA/mqm19fX1z+9CQAAAAAAgGrHTRoAAAAAAIAKQEgDAAAAAABQAQhpAAAAAAAAKgAhDQAAAAAAQAUgpAEAAAAAAKgAhDQAAAAAAAAVgJAGAAAAAACgAhDSAAAAAAAAVABCGgAAAAAAgApASAMAAAAAAFABCGkAAAAAAAAqwL/s+y16NHhP3gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "\nResumen de Clusters:\n5 49\n14 44\n8 38\n1 35\n2 31\n6 31\n19 30\n18 27\n7 27\n12 27\n4 25\n9 22\n10 20\n16 19\n15 15\n13 14\n17 13\n11 9\n3 9\n0 4\nName: Cluster, dtype: int64\n\nCluster 0:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n68 278.0 Exterior de malla técnica ... 19.815088 -10.885159\n74 NaN Exterior de malla ... 21.941719 -10.785176\n165 330.0 Exterior de malla técnica ... 20.837984 -10.885697\n282 330.0 Exterior de malla técnica ... 20.412170 -10.892855\n\n[4 rows x 15 columns]\n\nCluster 1:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n19 320.0 Parte superior textil ... -21.108912 -6.493203\n46 323.0 Parte superior de malla ... -15.119090 -1.197047\n47 364.0 Exterior textil ... -18.662340 -0.758213\n48 286.0 Parte superior textil ... -19.311958 -3.636598\n96 NaN Exterior de malla ... -12.407335 -4.614008\n\n[5 rows x 15 columns]\n\nCluster 2:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n10 275.0 Exterior de malla ... -6.962754 -21.797403\n13 NaN Exterior en tejido de malla ... -7.990644 -24.520367\n20 267.0 Parte superior de malla transpirable ... -10.867888 -24.307665\n45 239.0 Textil ... -22.723793 -15.788798\n52 275.0 Exterior de malla ... -4.509296 -22.302498\n\n[5 rows x 15 columns]\n\nCluster 3:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n5 NaN Malla Técnica Reciclada ... 17.060745 10.778292\n83 NaN Malla Técnica Reciclada ... 16.683235 10.083214\n180 NaN Malla Técnica Reciclada ... 16.605957 10.964303\n187 NaN Malla Técnica Reciclada ... 17.209896 11.870272\n189 NaN Malla Técnica Reciclada ... 17.400578 11.692134\n\n[5 rows x 15 columns]\n\nCluster 4:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n23 279.0 Parte superior de malla ... 24.868908 25.097902\n37 299.0 Exterior de malla ... 27.103107 24.626539\n71 279.0 Parte superior de malla ... 24.243345 24.382366\n78 310.0 Parte superior de malla ... 24.756914 24.047520\n97 310.0 Parte superior de malla ... 22.776726 23.787300\n\n[5 rows x 15 columns]\n\nCluster 5:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n25 268.0 Exterior en tejido de malla ... 9.414218 -11.095246\n33 NaN Exterior de malla ... 14.699205 -9.345591\n42 540.0 Exterior de malla técnica ... -0.360923 -1.651374\n55 295.0 Exterior de tejido adidas PRIMEKNIT ... 19.124922 -5.523604\n61 257.0 Exterior de malla con refuerzos de TPU ... 11.038683 -10.796019\n\n[5 rows x 15 columns]\n\nCluster 6:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n12 223.0 Synthetic ... 12.747667 27.678469\n17 295.0 Exterior en malla ... 16.390188 24.164738\n21 230.0 Exterior liviano en malla ... 14.460028 23.500111\n26 230.0 Exterior liviano en malla ... 13.874146 22.178349\n27 265.0 Parte superior de malla ... 17.188601 22.407335\n\n[5 rows x 15 columns]\n\nCluster 7:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n3 200.0 Parte superior de malla ... 1.755538 11.330632\n28 230.0 Exterior liviano en malla ... 0.703063 14.455057\n65 275.0 Exterior textil ... -23.018738 4.829057\n117 265.0 Parte superior de malla ... -0.186041 10.122837\n125 275.0 Exterior textil ... -22.996166 4.856834\n\n[5 rows x 15 columns]\n\nCluster 8:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n2 166.0 Parte superior de malla técnica ... 8.224779 10.782299\n8 NaN Exterior de malla con cuello acolchado ... 6.570870 6.397749\n11 238.0 Parte superior de malla ... 13.326708 9.309869\n24 230.0 Exterior liviano en malla ... 6.502467 13.272505\n38 NaN Parte superior de malla acolchada ... 9.434493 8.326558\n\n[5 rows x 15 columns]\n\nCluster 9:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n22 585.0 Exterior textil ... 5.375830 -1.062628\n43 540.0 malla técnica ... 1.160343 -2.220453\n54 260.0 Exterior textil ... 5.994472 -2.767516\n92 272.0 Parte superior textil ... 8.725078 -0.769287\n93 NaN Exterior de malla con cuello acolchado ... 1.027744 0.455712\n\n[5 rows x 15 columns]\n\nCluster 10:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n15 334.0 Exterior técnico de malla ... -5.793875 -10.719331\n76 277.0 Parte superior de malla acolchada ... -8.826781 -13.096778\n87 320.0 monomalla ... -3.203534 -17.623938\n89 320.0 Parte superior de monomalla ... -3.568880 -17.335764\n112 277.0 mesh ... -6.326353 -16.414343\n\n[5 rows x 15 columns]\n\nCluster 11:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n32 247.0 Parte superior de monomalla ... 17.916094 5.371136\n77 247.0 Monomalla ... 18.768627 4.620423\n136 247.0 monomalla ... 18.994259 4.688051\n185 247.0 monomalla ... 19.126192 5.276633\n262 230.0 Exterior Monomesh ... 10.349771 -20.242315\n\n[5 rows x 15 columns]\n\nCluster 12:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n7 213.0 Parte superior de malla ... 2.448739 -16.902372\n40 254.0 Monomalla ... -0.392282 -18.852966\n49 254.0 Forro interno textil ... 10.334534 -3.532351\n79 213.0 Parte superior de malla ... 2.740963 -16.275845\n85 242.0 Parte superior de malla ... 5.266422 -18.370689\n\n[5 rows x 15 columns]\n\nCluster 13:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n0 183.0 Synthetic ... 10.893925 27.395477\n1 289.0 adidas Primeknit ... 4.881872 22.404074\n44 278.0 Technical mesh ... -28.522972 -8.019142\n63 243.0 Exterior de malla acolchada ... -0.501422 -13.866938\n101 267.0 mesh ... -28.068459 -7.972044\n\n[5 rows x 15 columns]\n\nCluster 14:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n14 NaN Parte superior de malla ... -12.902549 1.474306\n30 270.0 Exterior de malla ... -7.744373 1.824502\n31 306.0 Parte superior de malla ... -10.323046 5.550931\n36 NaN Exterior de malla con cuello acolchado ... -6.863936 7.874070\n39 664.8 Exterior textil ... -10.836259 10.468987\n\n[5 rows x 15 columns]\n\nCluster 15:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n455 NaN termoplástico, ; . ... -7.866673 -1.848189\n456 203.0 mesh, , termoplástico ... -4.990084 -4.200123\n460 248.0 , termoplástico ... -4.633328 -3.072667\n464 240.0 , termoplástico, termoplástico ... -3.273659 0.947516\n465 NaN termoplástico, ... -16.431103 10.599090\n\n[5 rows x 15 columns]\n\nCluster 16:\n Weight Upper_Material Midsole_Material ... Cluster tsne-2d-one tsne-2d-two\n454 NaN , Cuero bovino ... 16 -20.825001 11.226727\n458 NaN EVA ... 16 -18.891546 14.067634\n459 169.0 , ... 16 -20.181263 13.110445\n461 315.0 , ; EVA ... 16 -16.950970 12.168805\n462 255.0 , ... 16 -19.486427 12.905893\n\n[5 rows x 15 columns]\n\nCluster 17:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n72 306.0 Parte superior de malla ... -18.173550 -12.906224\n95 286.0 Textil ... -23.084425 -12.398204\n122 286.0 Textil ... -22.423227 -13.125884\n181 343.0 Parte superior en tejido de malla ... -20.020899 -11.947750\n201 286.0 Textil ... -22.604563 -13.830274\n\n[5 rows x 15 columns]\n\nCluster 18:\n Weight Upper_Material ... tsne-2d-one tsne-2d-two\n18 303.0 null ... 1.648412 -4.487958\n35 248.0 Exterior textil ... -0.826562 -7.918261\n51 292.0 adidas PRIMEKNIT ... 16.231256 -1.089768\n82 237.0 Exterior textil ... -0.378965 -7.250349\n115 216.0 Parte superior de malla técnica ... 11.755957 3.241534\n\n[5 rows x 15 columns]\n\nCluster 19:\n Weight ... tsne-2d-two\n4 319.0 ... -16.600161\n6 304.0 ... -15.279252\n9 334.0 ... 4.823231\n16 304.0 ... 3.862275\n34 304.0 ... -14.713323\n\n[5 rows x 15 columns]\n" + ] + } + ], + "source": [ + "\"\"\"\n", + "# Reducción de dimensionalidad con PCA\n", + "print(\"Aplicando PCA para reducir dimensiones...\")\n", + "pca = PCA(n_components=489, random_state=42)\n", + "reduced_features = pca.fit_transform(scaled_features)\n", + "\n", + "# -------------------- Determinación del Número Óptimo de Clusters --------------------\n", + "print(\"Calculando el Método del Codo para determinar el número óptimo de clusters...\")\n", + "wcss = []\n", + "k_values = range(2, 21) # Rango de k para explorar\n", + "\n", + "for k in k_values:\n", + " kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)\n", + " kmeans.fit(reduced_features)\n", + " wcss.append(kmeans.inertia_)\n", + "\n", + "# Visualizar el Método del Codo\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, wcss, marker='o')\n", + "plt.title('Método del Codo para Determinar el Número Óptimo de Clusters')\n", + "plt.xlabel('Número de Clusters (k)')\n", + "plt.ylabel('WCSS (Inercia)')\n", + "plt.xticks(k_values)\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "# Silhouette Score\n", + "print(\"Calculando el Silhouette Score para diferentes valores de k...\")\n", + "silhouette_scores = []\n", + "\n", + "for k in k_values:\n", + " kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)\n", + " clusters = kmeans.fit_predict(reduced_features)\n", + " score = silhouette_score(reduced_features, clusters)\n", + " silhouette_scores.append(score)\n", + "\n", + "# Visualizar el Silhouette Score\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, silhouette_scores, marker='o', color='orange')\n", + "plt.title('Silhouette Score para Diferentes Valores de k')\n", + "plt.xlabel('Número de Clusters (k)')\n", + "plt.ylabel('Silhouette Score')\n", + "plt.xticks(k_values)\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "# Determinar el mejor k basado en el Silhouette Score\n", + "best_k = k_values[np.argmax(silhouette_scores)]\n", + "print(f\"El número óptimo de clusters según el Silhouette Score es: {best_k}\")\n", + "\n", + "# -------------------- Aplicar K-Means con el Número Óptimo de Clusters --------------------\n", + "print(f\"Aplicando K-Means con k={best_k}...\")\n", + "kmeans_final = KMeans(n_clusters=best_k, random_state=42, n_init=10)\n", + "clusters_final = kmeans_final.fit_predict(reduced_features)\n", + "\n", + "# Añadir etiquetas de cluster al DataFrame original\n", + "df['Cluster'] = clusters_final\n", + "\n", + "# Resumen final de clusters\n", + "n_clusters_final = len(set(clusters_final))\n", + "print(f'\\nNúmero de clusters encontrados: {n_clusters_final}')\n", + "\n", + "# -------------------- Visualización de los Clusters --------------------\n", + "print(\"Reduciendo dimensiones para visualización con t-SNE...\")\n", + "tsne = TSNE(n_components=2, random_state=42, perplexity=30, n_iter=1000)\n", + "tsne_results = tsne.fit_transform(reduced_features)\n", + "\n", + "df['tsne-2d-one'] = tsne_results[:, 0]\n", + "df['tsne-2d-two'] = tsne_results[:, 1]\n", + "\n", + "plt.figure(figsize=(12, 8))\n", + "palette = sns.color_palette(\"hsv\", n_clusters_final)\n", + "sns.scatterplot(\n", + " x=\"tsne-2d-one\", y=\"tsne-2d-two\",\n", + " hue=\"Cluster\",\n", + " palette=palette,\n", + " data=df,\n", + " legend=\"full\",\n", + " alpha=0.7\n", + ")\n", + "plt.title('Visualización de Clusters con t-SNE')\n", + "plt.xlabel('t-SNE 1')\n", + "plt.ylabel('t-SNE 2')\n", + "plt.legend(title='Cluster', bbox_to_anchor=(1.05, 1), loc='upper left')\n", + "plt.show()\n", + "\n", + "# -------------------- Análisis de Clusters --------------------\n", + "print(\"\\nResumen de Clusters:\")\n", + "print(df['Cluster'].value_counts())\n", + "\n", + "# Opcional: Ver registros en cada cluster\n", + "for cluster in range(n_clusters_final):\n", + " print(f'\\nCluster {cluster}:')\n", + " print(df[df['Cluster'] == cluster].head())\"\"\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "7bc44aab-490e-47b7-a4ed-483d26032ab5", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightUpper_MaterialMidsole_MaterialOutsoleCushioning_SystemDrop__heel-to-toe_differential_regularPriceundiscounted_priceGenderAdditional_Technologiesidpercentil_discountedClustertsne-2d-onetsne-2d-two
459169.0,100.0 Acetato de etileno y vinilo10.087000.0790000.08351800-8.08046088.2911001.462351
460248.0, termoplásticoEVA70.0 Acetato de etileno y vinilo 30.0 CauchoEVA4.0330000.0NaNmujerLas hendiduras de flexión acompañan la extensi...8670212NaN016.4084996.210423
461315.0, ;EVA100.0 Caucho sintéticoEVA8.0299000.0NaNHombre8642811NaN016.4233956.361099
462255.0,60.0 Caucho sintético, 40.0 Acetato de etileno...10.0250000.02290000.0mujer8572326-8.16000087.7962931.183642
463NaN, .EVACaucho sintético, Acetato de etileno y viniloKalensole , CS (Circular System)10.0275000.0NaNHombre8666719NaN012.3348085.093338
464240.0, termoplástico, termoplásticoCaucho sintético, Acetato de etileno y viniloespuma Kalensole) y absorción impactos (CS).NaN426000.03090000.0Mujer8767800-6.25352186.8190941.120482
465NaNtermoplástico,EVACaucho sintético, Acetato de etileno y viniloNaN249000.0NaNHombre8759629NaN012.5556983.515450
466243.0,IMEVACaucho sintético, Acetato de etileno y viniloFlexibilidad4.0185000.0NaNHombre8757332NaN012.7504817.847188
467255.0,Entresuela de espuma EVA y concepto de amortig...Caucho sintético, Acetato de etileno y viniloEspumas gruesas en el talón y en la lengüeta.10.0250000.02290000.0MujerAgarre: Suela estriada 3 mm para mayor agarre ...8544265-8.16000087.923182-0.259708
468NaNEVACaucho sintético, 80.0% Acetato de etileno y v...FlexibilidadNaN199000.0NaNHombreAgarre: Gracias a las estrías y geometría de l...8803397NaN012.9298875.782633
469NaNPoliamida, ;EVAAcetato de etileno y viniloNaN199000.0NaNHombre8803408NaN012.2893243.397114
470251.0, termoplásticoEVACaucho sintético, Acetato de etileno y viniloflexibles (61 N/mm)4.0249000.0NaNHombreTranspirabilidad: Nueva tela mesh desarrollada...8670191NaN015.0184684.532474
471295.0,Entresuela de espuma EVA y concepto de amortig...Caucho sintético, Acetato de etileno y vinilo10.0250000.02290000.0HombreSuela estriada de 3 mm para más agarre en cami...8488639-8.16000087.8291120.046291
472366.0EVAAcetato de etileno y viniloflexibilidadNaN139000.0NaNMujer8803078NaN013.4003496.981575
473243.0,IMEVACaucho sintético, Acetato de etileno y viniloFlexibilidad4.0185000.0NaNHombre8757334NaN012.7505697.847071
474295.0,Entresuela de espuma EVA y concepto de amortig...Caucho sintético, Acetato de etileno y vinilo10.0250000.02290000.0HombreAgarre: Suela estriada de 3 mm para más agarre...8767790-8.16000087.8277690.047635
475251.0, termoplásticoEVACaucho sintético, Acetato de etileno y vinilotenis flexibles (61 N/mm)4.0249000.0NaNHombreLibertad de movimientos: Las hendiduras de fle...8670196NaN015.1024104.388563
476NaNtermoplástico,EVACaucho sintético, Acetato de etileno y viniloFlex-HNaN249000.0NaNMujerAdaptabilidad: Disponible en dos anchos de pie...8750403NaN013.4843074.651424
477200.0,IMEVACaucho sintético, Acetato de etileno y viniloFlexibilidad4.0185000.0NaNMujer8757345NaN012.7497627.856787
478180.0,Acetato de etileno y vinilo;10.087000.0790000.0Hombre8351755-8.08046088.2941701.447252
479210.0,Suela de espumaCaucho sintético, Acetato de etileno y viniloFlexibilidad para mejorar el desarrollo del pie.4.0135000.0NaNMujerAdherencia: Refuerzo de caucho en la suela, en...8733475NaN012.9493228.663089
480NaNEVAAcetato de etileno y viniloLa flexibilidad de la suela es ideal para todo...NaN169000.0NaNHombreTranspirabilidad: Su mesh 3D aireado permite q...8803079NaN012.7549235.676413
481203.0, termoplásticoEVACaucho sintético, 70.0% Acetato de etileno y v...tenis flexibles (61 N/mm)4.0249000.0NaNMujerLas hendiduras de flexión acompañan la extensi...8670202NaN015.0611804.392717
482235.0termoplástico, ,KALENSOLECaucho sintético, Acetato de etileno y viniloKALENSOLENaN399000.0NaNMujertela mesh, más elástica.8772824NaN0-17.9420076.408968
483205.0, termoplástico, ,MFOAMCaucho sintético, Acetato de etileno y viniloMFOAM6.0499000.0NaNMujerBuen agarre en piso mojado gracias a la textur...8772779NaN1-12.33320033.055355
484216.0termoplástico, ;VFOAMCaucho sintético, Acetato de etileno y vinilo,...Pebax8.0399000.02400000.0mujergeometría de la suela de las KIPRUN KD500 2, c...8756260-5.01503886.2822821.016790
485280.0termoplástico, ;KalensoleCaucho sintético, Acetato de etileno y viniloKalensole6.0309000.0NaNHombre8772865NaN0-17.9403346.414684
486252.0, termoplástico,espuma MFOAMCaucho sintético, Acetato de etileno y viniloespuma MFOAM6.0499000.0NaNHombreAdherencia: Buen agarre en piso mojado gracias...8830204NaN0-12.31372433.078747
487225.0,Caucho sintético, Carbono, Amida de bloque de ...8.0849000.0NaNHombreImpulso: Espuma Pebax® de Arkema y placa de ca...8666803NaN010.4167862.686541
488218.0termoplástico,espuma Pebax® de Arkema.Caucho sintético, Amida de bloque de poliéter8.0699000.05990000.0HombreImpulso: Excelente retorno de energía gracias ...8798231-7.56938586.781542-0.310688
\n", + "
" + ], + "text/plain": [ + " Weight Upper_Material ... tsne-2d-one tsne-2d-two\n", + "459 169.0 , ... 8.291100 1.462351\n", + "460 248.0 , termoplástico ... 16.408499 6.210423\n", + "461 315.0 , ; ... 16.423395 6.361099\n", + "462 255.0 , ... 7.796293 1.183642\n", + "463 NaN , . ... 12.334808 5.093338\n", + "464 240.0 , termoplástico, termoplástico ... 6.819094 1.120482\n", + "465 NaN termoplástico, ... 12.555698 3.515450\n", + "466 243.0 , ... 12.750481 7.847188\n", + "467 255.0 , ... 7.923182 -0.259708\n", + "468 NaN ... 12.929887 5.782633\n", + "469 NaN Poliamida, ; ... 12.289324 3.397114\n", + "470 251.0 , termoplástico ... 15.018468 4.532474\n", + "471 295.0 , ... 7.829112 0.046291\n", + "472 366.0 ... 13.400349 6.981575\n", + "473 243.0 , ... 12.750569 7.847071\n", + "474 295.0 , ... 7.827769 0.047635\n", + "475 251.0 , termoplástico ... 15.102410 4.388563\n", + "476 NaN termoplástico, ... 13.484307 4.651424\n", + "477 200.0 , ... 12.749762 7.856787\n", + "478 180.0 , ... 8.294170 1.447252\n", + "479 210.0 , ... 12.949322 8.663089\n", + "480 NaN ... 12.754923 5.676413\n", + "481 203.0 , termoplástico ... 15.061180 4.392717\n", + "482 235.0 termoplástico, , ... -17.942007 6.408968\n", + "483 205.0 , termoplástico, , ... -12.333200 33.055355\n", + "484 216.0 termoplástico, ; ... 6.282282 1.016790\n", + "485 280.0 termoplástico, ; ... -17.940334 6.414684\n", + "486 252.0 , termoplástico, ... -12.313724 33.078747\n", + "487 225.0 , ... 10.416786 2.686541\n", + "488 218.0 termoplástico, ... 6.781542 -0.310688\n", + "\n", + "[30 rows x 15 columns]" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.tail(30)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "79d3ce3e-b470-4297-b973-07f95888a71f", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "output_type": "stream", + "text": [ + "/databricks/spark/python/pyspark/sql/pandas/conversion.py:401: UserWarning: createDataFrame attempted Arrow optimization because 'spark.sql.execution.arrow.pyspark.enabled' is set to true; however, failed by the reason below:\n Expected bytes, got a 'int' object\nAttempting non-optimization as 'spark.sql.execution.arrow.pyspark.fallback.enabled' is set to true.\n warn(msg)\n" + ] + } + ], + "source": [ + "spark_df_adidas = spark.createDataFrame(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "c7b73d63-1802-436f-830d-244db6ddf731", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df_adidas.write.mode(\"overwrite\").saveAsTable(\"preprod_colombia.scraping_adidas_dkt_clusters\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "0cf2cbda-19d0-4774-9699-ce83ae969123", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "source": [ + "## Clustering NIKE" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "65b5ec70-9e23-41b6-a4a2-5cd3d34f3777", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df_nr = spark.table(\"preprod_colombia.scraping_nacionrunner_etiquetado\")" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "dcdc7277-6135-4a76-b371-357e846d008c", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df_selected = spark_df_nr.select(['Weight',\n", + " 'Upper_Material',\n", + " 'Midsole_Material',\n", + " 'Outsole',\n", + " 'Cushioning_System',\n", + " 'Drop__heel-to-toe_differential_',\n", + " 'Pronation_Type',\n", + " 'Usage_Type',\n", + " 'Gender',\n", + " 'Width',\n", + " 'Additional_Technologies',\n", + " 'regularPrice',\n", + " 'undiscounted_price']\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "ce4ec8d9-0a4c-4ee5-9a08-21fbbf18f574", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df_nr = spark_df_selected.toPandas()" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "b599d705-4ee7-478e-9598-ebbc85a946ab", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "#Remplaza los caracteres no numéricos\n", + "df_nr['Weight'] = df_nr['Weight'].apply(lambda x: re.sub(r'[^\\d.]', '', str(x)))\n", + "df_nr['Drop__heel-to-toe_differential_'] = df_nr['Drop__heel-to-toe_differential_'].apply(lambda x: re.sub(r'[^\\d.]', '', str(x)))\n", + "df_nr['regularPrice'] = df_nr['regularPrice'].apply(lambda x: re.sub(r'\\D', '', str(x)))\n", + "df_nr['undiscounted_price'] = df_nr['undiscounted_price'].apply(lambda x: re.sub(r'\\D', '', str(x)))" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "7cd09b49-0be3-4933-aafc-82e2e9909f28", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df_nr['Weight'] = df_nr['Weight'].replace('', np.nan)\n", + "df_nr['Drop__heel-to-toe_differential_'] = df_nr['Drop__heel-to-toe_differential_'].replace('', np.nan)\n", + "df_nr['regularPrice'] = df_nr['regularPrice'].replace('', np.nan)\n", + "df_nr['undiscounted_price'] = df_nr['undiscounted_price'].replace('', np.nan)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "4fed4f5b-274e-4342-a3e3-f1c33fce5c2c", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df_nr['Weight'] = df_nr['Weight'].astype(float)\n", + "df_nr['Drop__heel-to-toe_differential_'] = df_nr['Drop__heel-to-toe_differential_'].astype(float)\n", + "df_nr['regularPrice'] = df_nr['regularPrice'].astype(float)\n", + "df_nr['undiscounted_price'] = df_nr['undiscounted_price'].astype(float)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "49fd365e-5e42-4281-87d5-3abdb7813cf5", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "df_nr['percentil_discounted'] = 1-(df_nr['undiscounted_price']/df_nr['regularPrice'])" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "1cd243cc-19bc-4acb-a994-5604e61e26ae", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightUpper_MaterialMidsole_MaterialOutsoleCushioning_SystemDrop__heel-to-toe_differential_Pronation_TypeUsage_TypeGenderWidthAdditional_TechnologiesregularPriceundiscounted_price
0242NeutroProFly+Asfaltonull5nullnullnullnullnull59990007499000
1WovenFlyteFoam Blast+ ECOAHARFlyteFoam Blast+ ECO8Neutro • SupinadorEntreno en pistanullnullWaterproofing, Reflectivity6999000
285Mesh técnicoFF Blast MaxASICS Grip y AHARPLUSFF Blast Max6Neutral or SupinatorDaily training, racingUnisexStandardWaterproofing, reflectivity8499000
3305nullFF BLAST PLUS ECOAsfalto4D Guidance System10nullDaily Training, RacingMennullWaterproofing, Reflectivity, Customized Fit Sy...8799000
4270Technical FabricsPureGelAsfaltoPureGel8PronadoresDaily TrainingMenStandardFlyteFoam, OrthoLite Hybrid Max, Waterproofing4999000
..........................................
18080Malla JacquardEVAAsfaltoMetaRocker8NeutralDaily trainingUnisexnullWaterproofing, Reflectivity6999000
181malla knitFlyteFoam BLAST PLUS ECO, PureGELASICSGRIP, caucho AHAR PLUSFlyteFoam BLAST PLUS ECO, PureGEL8Neutro, SupinadorDaily training, Racingnullnullnull64990008499000
182282AsfaltoJ-FrameAsfaltoJ-Frame5PronadorDaily trainingMennullWaterproofing, reflectivity, customized fit sy...7499000
183275234nullAmplifoam+AsfaltoEquilibrada y Versatilidad8Neutral, SupinadorDaily training, RacingnullBreathability, TranspirabilityNone3299000
184nullnullAsfaltoSuperior10PronadorDaily TrainingMennullnull69990007699000
\n", + "

185 rows × 13 columns

\n", + "
" + ], + "text/plain": [ + " Weight Upper_Material ... regularPrice undiscounted_price\n", + "0 242 Neutro ... 5999000 7499000\n", + "1 Woven ... 6999000 \n", + "2 85 Mesh técnico ... 8499000 \n", + "3 305 null ... 8799000 \n", + "4 270 Technical Fabrics ... 4999000 \n", + ".. ... ... ... ... ...\n", + "180 80 Malla Jacquard ... 6999000 \n", + "181 malla knit ... 6499000 8499000\n", + "182 282 Asfalto ... 7499000 \n", + "183 275234 null ... 3299000 \n", + "184 null ... 6999000 7699000\n", + "\n", + "[185 rows x 13 columns]" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_nr" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "b5f996d7-2228-482b-9d46-6dc0a3eb1eef", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['Weight', 'Upper_Material', 'Midsole_Material', 'Outsole',\n", + " 'Cushioning_System', 'Drop__heel-to-toe_differential_',\n", + " 'Pronation_Type', 'Usage_Type', 'Gender', 'Width',\n", + " 'Additional_Technologies', 'regularPrice', 'undiscounted_price'],\n", + " dtype='object')" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_nr.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "52ba5d71-54fa-452c-82e5-3f377e7cc5de", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "# Identificar columnas numéricas y categóricas\n", + "numerical_cols = ['Weight', 'Drop__heel-to-toe_differential_','regularPrice','undiscounted_price','percentil_discounted']\n", + "categorical_cols = ['Upper_Material', 'Midsole_Material', 'Outsole', 'Pronation_Type', 'Usage_Type', 'Gender', 'Width',\n", + " 'Cushioning_System', 'Additional_Technologies']" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "f96cb877-7fc3-446e-aaa4-eefd7f08dbb2", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "# Definir los pipelines de preprocesamiento\n", + "numerical_pipeline = Pipeline(steps=[\n", + " ('imputer', SimpleImputer(strategy='median')),\n", + " ('scaler', StandardScaler())\n", + "])\n", + "\n", + "categorical_pipeline = Pipeline(steps=[\n", + " ('imputer', SimpleImputer(strategy='constant', fill_value='Desconocido')),\n", + " ('onehot', OneHotEncoder(handle_unknown='ignore'))\n", + "])\n", + "\n", + "# Combinar pipelines\n", + "preprocessor = ColumnTransformer(transformers=[\n", + " ('num', numerical_pipeline, numerical_cols),\n", + " ('cat', categorical_pipeline, categorical_cols)\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "23a561f7-9e74-4c84-82a5-b872a702e66d", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "output_type": "stream", + "text": [ + "Preprocesando columnas numéricas...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m\n", + "\u001B[0;31mNameError\u001B[0m Traceback (most recent call last)\n", + "File \u001B[0;32m, line 20\u001B[0m\n", + "\u001B[1;32m 18\u001B[0m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mPreprocesando columnas numéricas...\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n", + "\u001B[1;32m 19\u001B[0m scaler \u001B[38;5;241m=\u001B[39m StandardScaler()\n", + "\u001B[0;32m---> 20\u001B[0m numerical_scaled \u001B[38;5;241m=\u001B[39m scaler\u001B[38;5;241m.\u001B[39mfit_transform(df_nr[numerical_cols]\u001B[38;5;241m.\u001B[39mfillna(\u001B[38;5;241m0\u001B[39m))\n", + "\u001B[1;32m 22\u001B[0m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mGenerando embeddings para columnas categóricas...\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n", + "\u001B[1;32m 23\u001B[0m categorical_embeddings \u001B[38;5;241m=\u001B[39m []\n", + "\n", + "\u001B[0;31mNameError\u001B[0m: name 'df_nr' is not defined" + ] + }, + "metadata": { + "application/vnd.databricks.v1+output": { + "arguments": {}, + "data": "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m\n\u001B[0;31mNameError\u001B[0m Traceback (most recent call last)\nFile \u001B[0;32m, line 20\u001B[0m\n\u001B[1;32m 18\u001B[0m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mPreprocesando columnas numéricas...\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 19\u001B[0m scaler \u001B[38;5;241m=\u001B[39m StandardScaler()\n\u001B[0;32m---> 20\u001B[0m numerical_scaled \u001B[38;5;241m=\u001B[39m scaler\u001B[38;5;241m.\u001B[39mfit_transform(df_nr[numerical_cols]\u001B[38;5;241m.\u001B[39mfillna(\u001B[38;5;241m0\u001B[39m))\n\u001B[1;32m 22\u001B[0m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mGenerando embeddings para columnas categóricas...\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 23\u001B[0m categorical_embeddings \u001B[38;5;241m=\u001B[39m []\n\n\u001B[0;31mNameError\u001B[0m: name 'df_nr' is not defined", + "errorSummary": "NameError: name 'df_nr' is not defined", + "errorTraceType": "ansi", + "metadata": {}, + "type": "ipynbError" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.decomposition import PCA\n", + "from sklearn.cluster import KMeans\n", + "from sklearn.metrics import silhouette_score\n", + "from sklearn.manifold import TSNE\n", + "from sentence_transformers import SentenceTransformer\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# Asumiendo que ya tienes: \n", + "# df_nr (DataFrame) con columnas numéricas en numerical_cols y categorías en categorical_cols\n", + "# df (DataFrame) que es el DataFrame base donde se añadirán los clusters\n", + "# model = SentenceTransformer('all-MiniLM-L6-v2') # si aún lo necesitas para las columnas categóricas\n", + "\n", + "# Preprocesar columnas numéricas y categóricas\n", + "print(\"Preprocesando columnas numéricas...\")\n", + "scaler = StandardScaler()\n", + "numerical_scaled = scaler.fit_transform(df_nr[numerical_cols].fillna(0))\n", + "\n", + "print(\"Generando embeddings para columnas categóricas...\")\n", + "categorical_embeddings = []\n", + "for col in categorical_cols:\n", + " embeddings = model.encode(df_nr[col].fillna('Unknown').astype(str).tolist())\n", + " categorical_embeddings.append(embeddings)\n", + "\n", + "combined_categorical_embeddings = np.hstack(categorical_embeddings)\n", + "\n", + "# Combinar características numéricas y categóricas\n", + "print(\"Concatenando características numéricas y categóricas...\")\n", + "combined_features = np.hstack([numerical_scaled, combined_categorical_embeddings])\n", + "\n", + "# Escalar las características combinadas\n", + "print(\"Escalando características combinadas...\")\n", + "scaled_features = scaler.fit_transform(combined_features)\n", + "\n", + "# Reducción de dimensionalidad con PCA\n", + "print(\"Aplicando PCA para reducir dimensiones...\")\n", + "pca = PCA(n_components=400, random_state=42)\n", + "reduced_features = pca.fit_transform(scaled_features)\n", + "\n", + "# -------------------- Determinación del Número Óptimo de Clusters --------------------\n", + "print(\"Calculando el Método del Codo para determinar el número óptimo de clusters...\")\n", + "wcss = []\n", + "k_values = range(2, 21) # Rango de k para explorar\n", + "\n", + "for k in k_values:\n", + " kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)\n", + " kmeans.fit(reduced_features)\n", + " wcss.append(kmeans.inertia_)\n", + "\n", + "# Visualizar el Método del Codo\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, wcss, marker='o')\n", + "plt.title('Método del Codo para Determinar el Número Óptimo de Clusters')\n", + "plt.xlabel('Número de Clusters (k)')\n", + "plt.ylabel('WCSS (Inercia)')\n", + "plt.xticks(k_values)\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "# Silhouette Score\n", + "print(\"Calculando el Silhouette Score para diferentes valores de k...\")\n", + "silhouette_scores = []\n", + "\n", + "for k in k_values:\n", + " kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)\n", + " clusters = kmeans.fit_predict(reduced_features)\n", + " score = silhouette_score(reduced_features, clusters)\n", + " silhouette_scores.append(score)\n", + "\n", + "# Visualizar el Silhouette Score\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, silhouette_scores, marker='o', color='orange')\n", + "plt.title('Silhouette Score para Diferentes Valores de k')\n", + "plt.xlabel('Número de Clusters (k)')\n", + "plt.ylabel('Silhouette Score')\n", + "plt.xticks(k_values)\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "# Determinar el mejor k basado en el Silhouette Score\n", + "best_k = k_values[np.argmax(silhouette_scores)]\n", + "print(f\"El número óptimo de clusters según el Silhouette Score es: {best_k}\")\n", + "\n", + "# -------------------- Aplicar K-Means con el Número Óptimo de Clusters --------------------\n", + "print(f\"Aplicando K-Means con k={best_k}...\")\n", + "kmeans_final = KMeans(n_clusters=best_k, random_state=42, n_init=10)\n", + "clusters_final = kmeans_final.fit_predict(reduced_features)\n", + "\n", + "# Añadir etiquetas de cluster al DataFrame original\n", + "df_nr['Cluster'] = clusters_final\n", + "\n", + "# Resumen final de clusters\n", + "n_clusters_final = len(set(clusters_final))\n", + "print(f'\\nNúmero de clusters encontrados: {n_clusters_final}')\n", + "\n", + "# -------------------- Visualización de los Clusters --------------------\n", + "print(\"Reduciendo dimensiones para visualización con t-SNE...\")\n", + "tsne = TSNE(n_components=2, random_state=42, perplexity=30, n_iter=1000)\n", + "tsne_results = tsne.fit_transform(reduced_features)\n", + "\n", + "df_nr['tsne-2d-one'] = tsne_results[:, 0]\n", + "df_nr['tsne-2d-two'] = tsne_results[:, 1]\n", + "\n", + "plt.figure(figsize=(12, 8))\n", + "palette = sns.color_palette(\"hsv\", n_clusters_final)\n", + "sns.scatterplot(\n", + " x=\"tsne-2d-one\", y=\"tsne-2d-two\",\n", + " hue=\"Cluster\",\n", + " palette=palette,\n", + " data=df_nr,\n", + " legend=\"full\",\n", + " alpha=0.7\n", + ")\n", + "plt.title('Visualización de Clusters con t-SNE')\n", + "plt.xlabel('t-SNE 1')\n", + "plt.ylabel('t-SNE 2')\n", + "plt.legend(title='Cluster', bbox_to_anchor=(1.05, 1), loc='upper left')\n", + "plt.show()\n", + "\n", + "# -------------------- Análisis de Clusters --------------------\n", + "print(\"\\nResumen de Clusters:\")\n", + "print(df_nr['Cluster'].value_counts())\n", + "\n", + "# Opcional: Ver registros en cada cluster\n", + "for cluster in range(n_clusters_final):\n", + " print(f'\\nCluster {cluster}:')\n", + " print(df_nr[df_nr['Cluster'] == cluster].head())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "3eef2a78-db14-45a5-bb35-abdd9363197d", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df_nr = spark.createDataFrame(df_nr)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": { + "byteLimit": 2048000, + "rowLimit": 10000 + }, + "inputWidgets": {}, + "nuid": "a010ca5a-7a89-4aa1-b237-cee64fe2f8a8", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [ + "spark_df_nr.write.mode(\"overwrite\").saveAsTable(\"preprod_colombia.scraping_nr_clusters\")" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "cc9a01b0-0ceb-4b50-b8d0-7bd5af7cd620", + "showTitle": false, + "tableResultSettingsMap": {}, + "title": "" + } + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "application/vnd.databricks.v1+notebook": { + "computePreferences": null, + "dashboards": [], + "environmentMetadata": { + "base_environment": "", + "client": "1" + }, + "language": "python", + "notebookMetadata": { + "pythonIndentUnit": 4 + }, + "notebookName": "Clustering", + "widgets": {} + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/src/comparative_analysis/models/K-MeansV2/K-Means.py b/src/comparative_analysis/models/K-MeansV2/K-Means.py new file mode 100644 index 000000000..eb7dbc894 --- /dev/null +++ b/src/comparative_analysis/models/K-MeansV2/K-Means.py @@ -0,0 +1,284 @@ +# Librerías estándar +import re +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +import seaborn as sns + +# Preprocesamiento +from sklearn.preprocessing import StandardScaler, OneHotEncoder +from sklearn.impute import SimpleImputer +from sklearn.compose import ColumnTransformer +from sklearn.pipeline import Pipeline + +# Modelado +from sklearn.cluster import KMeans + +# Embeddings +from sentence_transformers import SentenceTransformer + +# Reducción de dimensionalidad +from sklearn.decomposition import PCA + +# Evaluación +from sklearn.metrics import silhouette_score + +# Visualización de datos +from sklearn.manifold import TSNE + +# Transformadores personalizados +from sklearn.base import BaseEstimator, TransformerMixin + + +df = pd.read_excel(r"C:\\Users\\cdgn2\\OneDrive\\Escritorio\\Maestría\\Maestria\\Metodologias Agiles\\Proyecto\\Comparative-analysis-of-products\\src\\comparative_analysis\\database\\Adidas_etiquetado.xlsx") + + +def preprocess_outsole(text): + if pd.isna(text): + return "Desconocido" + # Reemplazar porcentajes o valores numericos por una etiqueta genérica + text = re.sub(r'\d+(\.\d+)?\%?', 'X%', text) + # Unificar materiales + text = text.replace("Acetato de etileno y vinilo", "EVA") + text = text.replace("Caucho sintético", "CauchoSintetico") + # Quitar espacios extra + text = re.sub(r'\s+', ' ', text).strip() + return text + + +#Remplaza los caracteres no numéricos +df['Weight'] = df['Weight'].apply(lambda x: re.sub(r'[^\d.]', '', str(x))) +df['Drop__heel-to-toe_differential_'] = df['Drop__heel-to-toe_differential_'].apply(lambda x: re.sub(r'[^\d.]', '', str(x))) +df['regularPrice'] = df['regularPrice'].apply(lambda x: re.sub(r'\D', '', str(x))) +df['undiscounted_price'] = df['undiscounted_price'].apply(lambda x: re.sub(r'\D', '', str(x))) + + +df['Weight'] = df['Weight'].replace('', np.nan) +df['Drop__heel-to-toe_differential_'] = df['Drop__heel-to-toe_differential_'].replace('', np.nan) +df['regularPrice'] = df['regularPrice'].replace('', np.nan) +df['undiscounted_price'] = df['undiscounted_price'].replace('', np.nan) + + +df['Weight'] = df['Weight'].astype(float) +df['Drop__heel-to-toe_differential_'] = df['Drop__heel-to-toe_differential_'].astype(float) +df['regularPrice'] = df['regularPrice'].astype(float) +df['undiscounted_price'] = df['undiscounted_price'].astype(float) + + +df['percentil_discounted'] = 1-(df['undiscounted_price']/df['regularPrice']) + + +df_reduced = df[['Weight','Upper_Material','Midsole_Material','Outsole','Cushioning_System','Drop__heel-to-toe_differential_','regularPrice','undiscounted_price','percentil_discounted', 'Gender','Additional_Technologies']] + + +df_reduced['Outsole'] = df_reduced['Outsole'].apply(preprocess_outsole) + + + + # Identificar columnas numéricas y categóricas +numerical_cols = ['Drop__heel-to-toe_differential_','Weight', 'regularPrice','undiscounted_price','percentil_discounted'] +categorical_cols = ['Midsole_Material', 'Cushioning_System', 'Outsole', 'Upper_Material', + 'Additional_Technologies', 'Gender'] + +# Definir qué columnas numéricas se imputarán con mediana y escalado +numeric_impute_cols = ['regularPrice'] + +# Definir columnas numéricas "especiales" que no se deben imputar con mediana +special_numeric_cols = ['Drop__heel-to-toe_differential_', 'percentil_discounted','Weight', 'undiscounted_price'] + +################################### +# Transformador personalizado +################################### +class SpecialNumericToCategory(BaseEstimator, TransformerMixin): + + """ + Este transformador convierte las columnas numéricas "especiales" en categorías. + Por ejemplo: + - Si el valor es NaN, lo marca como "NoValue". + - Si tiene valor, lo convierte a una categoría del tipo "Value:X". + """ + def __init__(self, cols): + self.cols = cols + + def fit(self, X, y=None): + return self + + def transform(self, X): + X = X.copy() + for col in self.cols: + X[col] = X[col].apply(lambda val: 'NoValue' if pd.isna(val) else f'Value:{val}') + return X[self.cols] + +################################### +# Pipelines +################################### + +# Pipeline para columnas numéricas "normales" +numeric_pipeline = Pipeline(steps=[ + ('imputer', SimpleImputer(strategy='median')), # Imputar con mediana + ('scaler', StandardScaler()) # Escalar a media=0, std=1 +]) + +# Pipeline para columnas numéricas "especiales", convertidas a categóricas +special_numeric_pipeline = Pipeline(steps=[ + ('to_category', SpecialNumericToCategory(special_numeric_cols)), + ('imputer', SimpleImputer(strategy='constant', fill_value='Unknown')), + ('onehot', OneHotEncoder(handle_unknown='ignore')) +]) + +# Pipeline para columnas categóricas normales +categorical_pipeline = Pipeline(steps=[ + ('imputer', SimpleImputer(strategy='constant', fill_value='Unknown')), + ('onehot', OneHotEncoder(handle_unknown='ignore')) +]) + +# Combinar todos los pipelines con ColumnTransformer +preprocessor = ColumnTransformer(transformers=[ + ('num', numeric_pipeline, numeric_impute_cols), + ('special_num', special_numeric_pipeline, special_numeric_cols), + ('cat', categorical_pipeline, categorical_cols) +]) +X_transformed = preprocessor.fit_transform(df_reduced) +feature_names = (preprocessor.named_transformers_['num'][-1].get_feature_names_out(numeric_impute_cols).tolist() + + preprocessor.named_transformers_['special_num'][-1].get_feature_names_out(special_numeric_cols).tolist() + + preprocessor.named_transformers_['cat'][-1].get_feature_names_out(categorical_cols).tolist()) + + + +model = SentenceTransformer('all-MiniLM-L6-v2') + +# Preprocesar columnas numéricas +print("Preprocesando columnas numéricas...") +scaler = StandardScaler() +numerical_scaled = scaler.fit_transform(df_reduced[numerical_cols].fillna(0)) + +# Generar embeddings para columnas categóricas +print("Generando embeddings para columnas categóricas...") +categorical_embeddings = [] +for col in categorical_cols: + embeddings = model.encode(df_reduced[col].fillna('Unknown').astype(str).tolist()) + categorical_embeddings.append(embeddings) + +# Asignar importancia a las columnas categóricas según el orden dado +# Asumiendo el orden de categorical_cols: +# ['Midsole_Material', 'Cushioning_System', 'Additional_Technologies', 'Outsole', ...] +Midsole_Material_embeddings = categorical_embeddings[0] * 5.0 # 1ra prioridad +Cushioning_System_embeddings = categorical_embeddings[1] * 5.0 # 1ra prioridad +Additional_Technologies_embeddings = categorical_embeddings[2] * 2.0 # info adicional +Outsole_embeddings = categorical_embeddings[3] * 3.0 # 3ra prioridad + +# Otras columnas categóricas (si las hay) +if len(categorical_embeddings) > 4: + other_cat_embeddings = np.hstack(categorical_embeddings[4:]) +else: + other_cat_embeddings = np.empty((len(df_reduced), 0)) + +# Ajustar importancia en las variables numéricas: +# numerical_cols = ['Drop__heel-to-toe_differential_','Weight','regularPrice','undiscounted_price','percentil_discounted'] +drop_idx = numerical_cols.index('Drop__heel-to-toe_differential_') +weight_idx = numerical_cols.index('Weight') +regular_price_idx = numerical_cols.index('regularPrice') + +# Aplicar factores +numerical_scaled[:, drop_idx] *= 4.0 # 2da prioridad +numerical_scaled[:, weight_idx] *= 2.0 # 5ta prioridad +numerical_scaled[:, regular_price_idx] *= 1.5 # 6ta prioridad + +# Combinar embeddings categóricos con sus factores +combined_categorical_embeddings = np.hstack([ + Midsole_Material_embeddings, + Cushioning_System_embeddings, + Additional_Technologies_embeddings, + Outsole_embeddings, + other_cat_embeddings +]) + +# Combinar características numéricas y categóricas sin volver a escalar, +# para no perder la ponderación manual +print("Concatenando características numéricas y categóricas...") +combined_features = np.hstack([numerical_scaled, combined_categorical_embeddings]) + +# Ahora aplicamos PCA, k-means, etc., sobre combined_features +print("Aplicando PCA para reducir dimensiones...") +pca = PCA(n_components=400, random_state=42) # Ajusta n_components según necesidad +reduced_features = pca.fit_transform(combined_features) + +print("Calculando el Método del Codo para determinar el número óptimo de clusters...") +wcss = [] +k_values = range(10, 21) # Rango de k para explorar + +for k in k_values: + kmeans = KMeans(n_clusters=k, random_state=42, n_init=10) + kmeans.fit(reduced_features) + wcss.append(kmeans.inertia_) + +# Visualizar el Método del Codo +plt.figure(figsize=(10, 6)) +plt.plot(k_values, wcss, marker='o') +plt.title('Método del Codo para Determinar el Número Óptimo de Clusters') +plt.xlabel('Número de Clusters (k)') +plt.ylabel('WCSS (Inercia)') +plt.xticks(k_values) +plt.grid(True) +plt.show() + +print("Calculando el Silhouette Score para diferentes valores de k...") +silhouette_scores = [] + +for k in k_values: + kmeans = KMeans(n_clusters=k, random_state=42, n_init=10) + clusters = kmeans.fit_predict(reduced_features) + score = silhouette_score(reduced_features, clusters) + silhouette_scores.append(score) + +# Visualizar el Silhouette Score +plt.figure(figsize=(10, 6)) +plt.plot(k_values, silhouette_scores, marker='o', color='orange') +plt.title('Silhouette Score para Diferentes Valores de k') +plt.xlabel('Número de Clusters (k)') +plt.ylabel('Silhouette Score') +plt.xticks(k_values) +plt.grid(True) +plt.show() + +best_k = k_values[np.argmax(silhouette_scores)] +print(f"El número óptimo de clusters según el Silhouette Score es: {best_k}") + +print(f"Aplicando K-Means con k={best_k}...") +kmeans_final = KMeans(n_clusters=best_k, random_state=42, n_init=10) +clusters_final = kmeans_final.fit_predict(reduced_features) + +# Añadir etiquetas de cluster al DataFrame original +df['Cluster'] = clusters_final + +n_clusters_final = len(set(clusters_final)) +print(f'\nNúmero de clusters encontrados: {n_clusters_final}') + +print("Reduciendo dimensiones para visualización con t-SNE...") +tsne = TSNE(n_components=2, random_state=42, perplexity=30, n_iter=1000) +tsne_results = tsne.fit_transform(reduced_features) + +df['tsne-2d-one'] = tsne_results[:, 0] +df['tsne-2d-two'] = tsne_results[:, 1] + +plt.figure(figsize=(12, 8)) +palette = sns.color_palette("hsv", n_clusters_final) +sns.scatterplot( + x="tsne-2d-one", y="tsne-2d-two", + hue="Cluster", + palette=palette, + data=df, + legend="full", + alpha=0.7 +) +plt.title('Visualización de Clusters con t-SNE') +plt.xlabel('t-SNE 1') +plt.ylabel('t-SNE 2') +plt.legend(title='Cluster', bbox_to_anchor=(1.05, 1), loc='upper left') +plt.show() + +print("\nResumen de Clusters:") +print(df['Cluster'].value_counts()) + + +df.to_excel('src\\comparative_analysis\\models\\K-MeansV2\\productos_con_clusters.xlsx', index=False) \ No newline at end of file diff --git a/src/comparative_analysis/models/K-MeansV2/message.txt b/src/comparative_analysis/models/K-MeansV2/message.txt new file mode 100644 index 000000000..afd969edb --- /dev/null +++ b/src/comparative_analysis/models/K-MeansV2/message.txt @@ -0,0 +1,111 @@ +import pandas as pd +import numpy as np +import tensorflow as tf +from tensorflow import keras +from sklearn.model_selection import StratifiedKFold +from sklearn.impute import SimpleImputer +from sklearn.preprocessing import StandardScaler, OneHotEncoder +from sklearn.compose import ColumnTransformer +from sklearn.pipeline import Pipeline +from sklearn.metrics import classification_report, confusion_matrix +from pandas.api.types import CategoricalDtype + +print("TensorFlow version:", tf.__version__) + +# Cargar datos +df = pd.read_excel("src\\comparative_analysis\\models\\RedNeuronal\\productos_con_clusters.xlsx") + +# Ajustar nombres de columnas según disponibilidad real en el DataFrame. +# Ejemplo si la columna se llama "Drop heel-to-toe differential": +numerical_cols = ['Drop heel-to-toe differential', 'Weight', 'regularPrice','undiscounted_price','percentil_discounted'] +categorical_cols = ['Midsole_Material', 'Cushioning_System', 'Outsole', 'Upper_Material', + 'Additional_Technologies', 'Gender'] + +target_col = 'Cluster' +df = df.dropna(subset=[target_col]) + +X = df[numerical_cols + categorical_cols] +y = df[target_col] + +# Convertir a categoría si no lo es ya +if not isinstance(y.dtype, CategoricalDtype): + y = y.astype('category') + +num_classes = len(y.cat.categories) + +numeric_transformer = Pipeline(steps=[ + ('imputer', SimpleImputer(strategy='median')), + ('scaler', StandardScaler()) +]) + +categorical_transformer = Pipeline(steps=[ + ('imputer', SimpleImputer(strategy='most_frequent')), + # Para versiones de scikit-learn >= 1.2, usar 'sparse_output=False' + # Si tienes una versión más antigua, usa 'sparse=False' si está disponible o retira el argumento + ('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False)) +]) + +preprocessor = ColumnTransformer( + transformers=[ + ('num', numeric_transformer, numerical_cols), + ('cat', categorical_transformer, categorical_cols) + ] +) + +skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) + +all_reports = [] +all_conf_matrices = [] + +for fold, (train_index, test_index) in enumerate(skf.split(X, y)): + X_train, X_val = X.iloc[train_index], X.iloc[test_index] + y_train, y_val = y.iloc[train_index], y.iloc[test_index] + + X_train_processed = preprocessor.fit_transform(X_train) + X_val_processed = preprocessor.transform(X_val) + + y_train_cat = keras.utils.to_categorical(y_train.cat.codes, num_classes=num_classes) + y_val_cat = keras.utils.to_categorical(y_val.cat.codes, num_classes=num_classes) + + model = keras.Sequential([ + keras.layers.Input(shape=(X_train_processed.shape[1],)), + keras.layers.Dense(64, activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)), + keras.layers.Dropout(0.3), + keras.layers.Dense(32, activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)), + keras.layers.Dropout(0.3), + keras.layers.Dense(num_classes, activation='softmax') + ]) + + model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) + + early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True) + + history = model.fit( + X_train_processed, y_train_cat, + validation_data=(X_val_processed, y_val_cat), + epochs=100, + batch_size=16, + callbacks=[early_stopping], + verbose=0 + ) + + val_loss, val_acc = model.evaluate(X_val_processed, y_val_cat, verbose=0) + print(f"Fold {fold+1}: Accuracy = {val_acc:.4f}") + + y_pred_proba = model.predict(X_val_processed) + y_pred = np.argmax(y_pred_proba, axis=1) + y_true = y_val.cat.codes + + report = classification_report(y_true, y_pred, target_names=y_val.cat.categories.tolist()) + conf_mat = confusion_matrix(y_true, y_pred) + + all_reports.append(report) + all_conf_matrices.append(conf_mat) + +print("\n=== Resultados de cada fold ===") +for i, rep in enumerate(all_reports): + print(f"Fold {i+1} report:") + print(rep) + print("Matriz de confusión:") + print(all_conf_matrices[i]) + print("-"*50) diff --git a/src/comparative_analysis/models/RedNeuronal/test.py b/src/comparative_analysis/models/RedNeuronal/test.py new file mode 100644 index 000000000..9c4a5fe67 --- /dev/null +++ b/src/comparative_analysis/models/RedNeuronal/test.py @@ -0,0 +1,10 @@ +import tensorflow as tf +import tensorflow.keras + + +from tensorflow.keras.models import Sequential +from tensorflow.keras.layers import Dense, Dropout +from tensorflow.keras.callbacks import EarlyStopping +from tensorflow.keras.optimizers import Adam + +print(tf.__version__) \ No newline at end of file diff --git a/src/comparative_analysis/models/RedNeuronal/train.py b/src/comparative_analysis/models/RedNeuronal/train.py new file mode 100644 index 000000000..8d1fc477b --- /dev/null +++ b/src/comparative_analysis/models/RedNeuronal/train.py @@ -0,0 +1,118 @@ +import pandas as pd +import numpy as np +import tensorflow as tf +from tensorflow import keras +from sklearn.model_selection import StratifiedKFold +from sklearn.impute import SimpleImputer +from sklearn.preprocessing import StandardScaler, OneHotEncoder +from sklearn.compose import ColumnTransformer +from sklearn.pipeline import Pipeline +from sklearn.metrics import classification_report, confusion_matrix +from pandas.api.types import CategoricalDtype + +print("TensorFlow version:", tf.__version__) + +# Cargar datos +df = pd.read_excel("src\\comparative_analysis\\models\\RedNeuronal\\productos_con_clusters.xlsx") + +# Ajustar nombres de columnas según disponibilidad real en el DataFrame. +# Ejemplo si la columna se llama "Drop heel-to-toe differential": +numerical_cols = ['Drop__heel-to-toe_differential_', 'Weight', 'regularPrice','undiscounted_price','percentil_discounted'] +categorical_cols = ['Midsole_Material', 'Cushioning_System', 'Outsole', 'Upper_Material', + 'Additional_Technologies', 'Gender'] + +target_col = 'Cluster' +df = df.dropna(subset=[target_col]) + +X = df[numerical_cols + categorical_cols] +y = df[target_col] + +# Convertir a categoría si no lo es ya +if not isinstance(y.dtype, CategoricalDtype): + y = y.astype('category') + +num_classes = len(y.cat.categories) + +numeric_transformer = Pipeline(steps=[ + ('imputer', SimpleImputer(strategy='median')), + ('scaler', StandardScaler()) +]) + +categorical_transformer = Pipeline(steps=[ + ('imputer', SimpleImputer(strategy='most_frequent')), + # Para versiones de scikit-learn >= 1.2, usar 'sparse_output=False' + # Si tienes una versión más antigua, usa 'sparse=False' si está disponible o retira el argumento + ('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False)) +]) + +preprocessor = ColumnTransformer( + transformers=[ + ('num', numeric_transformer, numerical_cols), + ('cat', categorical_transformer, categorical_cols) + ] +) + +skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) + +all_reports = [] +all_conf_matrices = [] + +for fold, (train_index, test_index) in enumerate(skf.split(X, y)): + X_train, X_val = X.iloc[train_index], X.iloc[test_index] + y_train, y_val = y.iloc[train_index], y.iloc[test_index] + + X_train_processed = preprocessor.fit_transform(X_train) + X_val_processed = preprocessor.transform(X_val) + + y_train_cat = keras.utils.to_categorical(y_train.cat.codes, num_classes=num_classes) + y_val_cat = keras.utils.to_categorical(y_val.cat.codes, num_classes=num_classes) + + model = keras.Sequential([ + keras.layers.Input(shape=(X_train_processed.shape[1],)), + keras.layers.Dense(64, activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)), + keras.layers.Dropout(0.3), + keras.layers.Dense(32, activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)), + keras.layers.Dropout(0.3), + keras.layers.Dense(num_classes, activation='softmax') + ]) + + model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) + + early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True) + + history = model.fit( + X_train_processed, y_train_cat, + validation_data=(X_val_processed, y_val_cat), + epochs=100, + batch_size=16, + callbacks=[early_stopping], + verbose=0 + ) + + val_loss, val_acc = model.evaluate(X_val_processed, y_val_cat, verbose=0) + print(f"Fold {fold+1}: Accuracy = {val_acc:.4f}") + + y_pred_proba = model.predict(X_val_processed) + y_pred = np.argmax(y_pred_proba, axis=1) + y_true = y_val.cat.codes + + print("---------y_pred.shape---------") + print(y_pred.shape) + print("---------y_true.shape---------") + print(y_true.shape) + print("---------y_val.shape---------") + print(y_val.shape) + + report = classification_report(y_true, y_pred, target_names=y_val.cat.categories.tolist()) + conf_mat = confusion_matrix(y_true, y_pred) + + all_reports.append(report) + all_conf_matrices.append(conf_mat) + +print("\n=== Resultados de cada fold ===") +for i, rep in enumerate(all_reports): + print(f"Fold {i+1} report:") + print(rep) + print("Matriz de confusión:") + print(all_conf_matrices[i]) + print("-"*50) \ No newline at end of file From b2af6accfacf331af742355a65014f02f4ed7aac Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Fri, 20 Dec 2024 01:10:52 -0500 Subject: [PATCH 57/84] se corrigieron algunos problemas pero persiste el error del one hot encoder --- src/comparative_analysis/main.py | 60 ++++++++- .../models/K-MeansV2/message.txt | 115 ++++++------------ .../models/RedNeuronal/modelo_entrenado.h5 | Bin 0 -> 335376 bytes .../models/RedNeuronal/modelo_entrenado.keras | Bin 0 -> 331615 bytes .../models/RedNeuronal/train.py | 23 +++- 5 files changed, 116 insertions(+), 82 deletions(-) create mode 100644 src/comparative_analysis/models/RedNeuronal/modelo_entrenado.h5 create mode 100644 src/comparative_analysis/models/RedNeuronal/modelo_entrenado.keras diff --git a/src/comparative_analysis/main.py b/src/comparative_analysis/main.py index 25bbf13f8..e98386386 100644 --- a/src/comparative_analysis/main.py +++ b/src/comparative_analysis/main.py @@ -1,6 +1,15 @@ -from flask import Flask +from flask import Flask, jsonify, request from apiRest.get import test, get_product_by_id from apiRest.post import get_products_by_parameters, predictKMeansV1 +from sklearn.pipeline import Pipeline +from sklearn.compose import ColumnTransformer +from sklearn.impute import SimpleImputer +from sklearn.preprocessing import StandardScaler, OneHotEncoder + +import numpy as np +import pandas as pd +import tensorflow as tf +import keras # Crear la instancia de Flask app = Flask(__name__) @@ -13,6 +22,55 @@ app.add_url_rule('/api/products', view_func=get_products_by_parameters, methods=['POST']) app.add_url_rule('/predict/KMeansV1', view_func=predictKMeansV1, methods=['POST']) +model = keras.saving.load_model(".\src\comparative_analysis\models\RedNeuronal\modelo_entrenado.keras") + +# Ajusta las columnas según tu caso real: +numerical_cols = ['Drop__heel-to-toe_differential_', 'Weight', 'regularPrice','undiscounted_price','percentil_discounted'] +categorical_cols = ['Midsole_Material', 'Cushioning_System', 'Outsole', 'Upper_Material', + 'Additional_Technologies', 'Gender'] + +numeric_transformer = Pipeline(steps=[ + ('imputer', SimpleImputer(strategy='median')), + ('scaler', StandardScaler()) +]) + +categorical_transformer = Pipeline(steps=[ + ('imputer', SimpleImputer(strategy='most_frequent')), + ('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False)) +]) + +preprocessor = ColumnTransformer( + transformers=[ + ('num', numeric_transformer, numerical_cols), + ('cat', categorical_transformer, categorical_cols) + ] +) + + +categories = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] + +@app.route('/classify', methods=['POST']) +def classify(): + # Se espera un JSON con las llaves que coincidan con las columnas esperadas + data = request.get_json() + # Crear DataFrame con el nuevo elemento + # Asumimos que 'data' es un dict con las columnas correctas + nuevo_elemento = pd.DataFrame([data]) # Convierte el dict a DF con una fila + + # Preprocesar + #preprocessor.fit_transform(nuevo_elemento) + X_new_processed = preprocessor.fit_transform(nuevo_elemento) + + + # Predecir + y_pred_proba = model.predict(X_new_processed) + y_pred_class = np.argmax(y_pred_proba, axis=1) + predicted_cluster = categories[y_pred_class[0]] + + # Retornar la predicción en formato JSON + return jsonify({'prediction': predicted_cluster}) + + # Ejecutar la aplicación if __name__ == '__main__': app.run(debug=True, port=2626) \ No newline at end of file diff --git a/src/comparative_analysis/models/K-MeansV2/message.txt b/src/comparative_analysis/models/K-MeansV2/message.txt index afd969edb..6df2eecd5 100644 --- a/src/comparative_analysis/models/K-MeansV2/message.txt +++ b/src/comparative_analysis/models/K-MeansV2/message.txt @@ -1,38 +1,27 @@ -import pandas as pd +```python +from flask import Flask, request, jsonify import numpy as np +import pandas as pd import tensorflow as tf from tensorflow import keras -from sklearn.model_selection import StratifiedKFold -from sklearn.impute import SimpleImputer -from sklearn.preprocessing import StandardScaler, OneHotEncoder -from sklearn.compose import ColumnTransformer -from sklearn.pipeline import Pipeline -from sklearn.metrics import classification_report, confusion_matrix -from pandas.api.types import CategoricalDtype -print("TensorFlow version:", tf.__version__) +app = Flask(__name__) -# Cargar datos -df = pd.read_excel("src\\comparative_analysis\\models\\RedNeuronal\\productos_con_clusters.xlsx") +# Asume que has cargado tu modelo previamente (fuera del endpoint) +model = keras.models.load_model("mi_modelo_final") # Ajusta la ruta a tu modelo -# Ajustar nombres de columnas según disponibilidad real en el DataFrame. -# Ejemplo si la columna se llama "Drop heel-to-toe differential": +# Cargar el preprocessor que se usó en el entrenamiento +# Esto depende de cómo lo hayas serializado. Si no lo has guardado, deberás reconstruirlo igual que en el entrenamiento. +# Aquí se asume que lo tienes disponible en el entorno: +from sklearn.pipeline import Pipeline +from sklearn.compose import ColumnTransformer +from sklearn.impute import SimpleImputer +from sklearn.preprocessing import StandardScaler, OneHotEncoder +# Ajusta las columnas según tu caso real: numerical_cols = ['Drop heel-to-toe differential', 'Weight', 'regularPrice','undiscounted_price','percentil_discounted'] categorical_cols = ['Midsole_Material', 'Cushioning_System', 'Outsole', 'Upper_Material', 'Additional_Technologies', 'Gender'] -target_col = 'Cluster' -df = df.dropna(subset=[target_col]) - -X = df[numerical_cols + categorical_cols] -y = df[target_col] - -# Convertir a categoría si no lo es ya -if not isinstance(y.dtype, CategoricalDtype): - y = y.astype('category') - -num_classes = len(y.cat.categories) - numeric_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()) @@ -40,8 +29,6 @@ numeric_transformer = Pipeline(steps=[ categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='most_frequent')), - # Para versiones de scikit-learn >= 1.2, usar 'sparse_output=False' - # Si tienes una versión más antigua, usa 'sparse=False' si está disponible o retira el argumento ('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False)) ]) @@ -52,60 +39,30 @@ preprocessor = ColumnTransformer( ] ) -skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) - -all_reports = [] -all_conf_matrices = [] +# Asumimos que dispones de las categorías originales tal como se entrenaron +# Por ejemplo: +categories = ['Cluster0', 'Cluster1', 'Cluster2'] # Ajusta según tus categorías reales -for fold, (train_index, test_index) in enumerate(skf.split(X, y)): - X_train, X_val = X.iloc[train_index], X.iloc[test_index] - y_train, y_val = y.iloc[train_index], y.iloc[test_index] - - X_train_processed = preprocessor.fit_transform(X_train) - X_val_processed = preprocessor.transform(X_val) - - y_train_cat = keras.utils.to_categorical(y_train.cat.codes, num_classes=num_classes) - y_val_cat = keras.utils.to_categorical(y_val.cat.codes, num_classes=num_classes) - - model = keras.Sequential([ - keras.layers.Input(shape=(X_train_processed.shape[1],)), - keras.layers.Dense(64, activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)), - keras.layers.Dropout(0.3), - keras.layers.Dense(32, activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)), - keras.layers.Dropout(0.3), - keras.layers.Dense(num_classes, activation='softmax') - ]) +@app.route('/classify', methods=['POST']) +def classify(): + # Se espera un JSON con las llaves que coincidan con las columnas esperadas + data = request.get_json() + # Crear DataFrame con el nuevo elemento + # Asumimos que 'data' es un dict con las columnas correctas + nuevo_elemento = pd.DataFrame([data]) # Convierte el dict a DF con una fila - model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) + # Preprocesar + X_new_processed = preprocessor.transform(nuevo_elemento) - early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True) - - history = model.fit( - X_train_processed, y_train_cat, - validation_data=(X_val_processed, y_val_cat), - epochs=100, - batch_size=16, - callbacks=[early_stopping], - verbose=0 - ) - - val_loss, val_acc = model.evaluate(X_val_processed, y_val_cat, verbose=0) - print(f"Fold {fold+1}: Accuracy = {val_acc:.4f}") - - y_pred_proba = model.predict(X_val_processed) - y_pred = np.argmax(y_pred_proba, axis=1) - y_true = y_val.cat.codes + # Predecir + y_pred_proba = model.predict(X_new_processed) + y_pred_class = np.argmax(y_pred_proba, axis=1) + predicted_cluster = categories[y_pred_class[0]] - report = classification_report(y_true, y_pred, target_names=y_val.cat.categories.tolist()) - conf_mat = confusion_matrix(y_true, y_pred) - - all_reports.append(report) - all_conf_matrices.append(conf_mat) + # Retornar la predicción en formato JSON + return jsonify({'prediction': predicted_cluster}) + +if __name__ == '__main__': + app.run(debug=True) -print("\n=== Resultados de cada fold ===") -for i, rep in enumerate(all_reports): - print(f"Fold {i+1} report:") - print(rep) - print("Matriz de confusión:") - print(all_conf_matrices[i]) - print("-"*50) +``` \ No newline at end of file diff --git a/src/comparative_analysis/models/RedNeuronal/modelo_entrenado.h5 b/src/comparative_analysis/models/RedNeuronal/modelo_entrenado.h5 new file mode 100644 index 0000000000000000000000000000000000000000..7c4c5590bd64c2fc4115670a5a6ffca91d627563 GIT binary patch literal 335376 zcmeFY2|SnG)&Po>F(H+i3=u^_hX1oRqDcdVW=TjSvr40x3>nHyBBhBmDE#+&Dk@WR zG;306jz$gY{!Qn+=l#C-ocrB-fA@aBd(Pv>e)d{xuf6x$YpuQZdbVxTZKe(tl^5mf zd4z@e1oI3-Y{V)9eWn6!`U!d=WpKl0X4^FlpF4@mtbxZ!kS$`m1r7i1Cp9{CZ6E@BAct`2`2M zdii?!db;$p{8#*JdIr_cPmuTeSN>pv5D&?FD*Fn)f8`G<75fMW^r64me~Nz-2@Lpy z^8Wey_m`Cq`>c(hZ&0sY4eS>K`_8JiKK%5)f=AQy^SAAVZ@}KmKlKq@{nAg^&wqf= zbh$pjK>y-=S-k*$p2f)Ub~_)}P@d26bzS4pHHDj!|RXuA-wuuJ=3i1X7!Gs$06{Zf!Pj>$578iZvqcK;AZ;*1wOuD z58oiaz?D9J>w25B00aV-T;;C4ZjK3}63{ z;8{JZ{HG39xCXneatT`H+B?=IJ)Fj=8XB27|6vAd1HJQLLH@3RK|Rx2>FN{IGtB{s zc=hz)(x*s9YMXh(`STcTc#Giir|t(@yZ7K+3?}xV|98kT#MdjhN0gI{ctdh^3-(&; z8qC`)c@W+L_=NNfG=w+g6<)4ARQ+qtTVG$^hR)k_dUU5}Bj@4%ivsBV0Uy*WkblsI zX+C~|e!)(@UMu|q*ZfIdK^`9NJeC6s{@1F|Gp_%e<5=tw=+`&A-u<{|CjVUh`e)A@ zREUpj;9t)E5BUFP_Op6*;14F}Gm+Qx1ic9p4E}lVy)*s;?|w1y)~SD7Jf1H_*@DFC_R+>+v`J?Zdj5_Tc|_C~%-_aF3l%&@=?{9ttNHqQ@l%X#Bv;RE`{Qri%{x6DE2JCg>g#Ti% zL4GTP*SN0lS(^WBv3&vOz=r?dZn1qqo7(@Q8=x~!_$xxZeB60KL{DHhuvz>eLfpKW zmw)Sfde6rg5&R7@fwd{ z9(ix{%JbiDA%U*EXt-w>ed!TiwEK68{uu{`__}zwdU^!qwxXyzb9S(5Ow_HdBDou_0N&mz|Qa5kMi+w4eU)d z{LPMe5zBIU%*4pppl2uUn~jURhns89p!;Xy=Hun>+Y|2n4dUtJx1vXO{{_(l zS?lT((zChux9+hLk2S7;kO8mevc_)>Pv{{%JSXUxneqDWf%@^XKI;O#f<0VT2KF9e zcvAiwqu!MX;;k7E%iBZ!dcxQKK0E_m-Mx7HTzb}K4KKj!k*iCutp855!Xwz##h|Z4 zUVpvSzVOYgZvg&5UOv4+w1LO?2_`%e*EK;soOw-pmt!+esd&%8d9L@I$g8{ehgW7j zNZvDWM(jUw^7S7djQZ0u14qvRxZwcZpZS^gvFkgJ^4 zFy4Xlr+6QjPrkqW<8e`cfVqB;!S)dh?WgNc6Y>4`^nJ$PLn_fv|Ihdv{(=9n{}cQT z_5aSl|9JgR$8Yop{!;%Z_#6F!e?K|jfcyvQ|EhGDV`sz9JKYbglYhSh8ps1=_17!= z6=Wcva=X7iKzH>~-&@C%0m#4V`Tt+|fxOY5<@MKj-G82k{bOFY=l$<_*uTm*|8su5 z_SC<~JvR1N`7u7_zIBP~U!H%Jhn+sUk8nVL`kVcy_&1TjKpu8s|9l7h!}0;g+YkSv z|Lp+{cnQmX{QtD*^IJpy=C``~^RWYbRr?*eW&bz^#>E%gM=?OB-Cv)+tq-EzKal-N z|47Goy06}q*H@bM)1ArxN4l#w`|2IH`^xG4bXV{EBVAX2UG{z-d_aC({q;U5AD?P# z-Z$ti9exOpVPXxC$`pSP5m+aT-qx+8^ z__tA=f0*cB`GKx}{TU!0IH3)k90%;xa)97}SpL}$r1b0U0N+3B@&AzhzYRG*F9Xmk zvwp$x^J(|aonN32;M@w|bPOAm>Zs!D%OO_gtyFyE-H{q%!*p1KDwAkfE9 zxc`RQApVZNj`;WnSoXJA-(UWJQw*Hb2l5CV(ftDWi{T9Ty{s{RLGW)1W^3-^y4t~5 zvVI@l{k58_K5q}+z!<9TT*la?eP%Yg7h&1ZeGs6BXf8#3X8j|B{$=7(t&T$=m-F=MAR2+C#O;cmX82;P|}s(cje#*f01IeVz7 zKqBg!ex#kXahNS61P+hF@Ycz9-0hoKc=5A@Q4%_iyVjgX=h726x8e|c5y=_lkjGk9=UMs6gs?Kk7E|;lXD^_BztKJv$u8}D3@sx@v)-BL*Il{ zj&DMv+Enc9dc|ox7>^-CB5>E*7wG@1mR{eZL|nB`>QIJfK1$E7qqjPOzVEHX6MLsaxy1Ag!y=z39XZ5ckhkF>n3qTJkA?8sCCg@ zxvp$m?MS5U@{p2WM%PG-;K&;dIMPytjlKR2+|D0>@$+Yq&94>^i+Mj_$8$c^&3ult zhl|0`DWR;ofe>rIZYwi4>L51MNTHIzKJIs+PORBB1+(%>aFP0R2)mt#sRyRwQN`)> z^r=}yIq@1s2M&V@D_!L3$db=f;;H$O8D#d}11K7hgzJ>gK+cg3`1W)Wdhc}yVaP?B zw)GhEFpyRIVn&O$)neQsTj<=SL9Fvu;{$^^OzX+puzBc8*+!=x)PiEQN!VIuL3|D$f{Ka0hZIGA-1q;iWwQp~jcaZVWHe3eRF-dr*=>`1IWVs%nUveE(Rna>CK27pWfW_)N zX~&`&WUJ+A&iTPRIl{^AaPR}Q702PB3(ta+1UuBmMlR<%WKrMGyx+sZ8#Q7vZ>~$Wz^8l z8sGkYOEtbn(bHd5p-H(IO7GM{&Q4tnybz0gBcib7{R*&ks-ZtD)fk8Q70kq+G7u&_ z7a7YvT&-c3IjdI6p=0xK9R7g9%;_SK-z~yQo!k0@AjE% z>68YR-O<(aoHdypYRUBLw-hsDr(fK6O;^mT?XEMgpE|f!4d$E8+idgu{^y)fkbUM|lB68kEP4i%nyHz|6r z`%NE~Yk=y?TcBgdhqdPx;mhmKV5#PH>Nk85xKupK7Jc!7IeU5nD9lNRjX%TTv`Q}6 z=t%;1To|Lfx(N5~m1biU51@xw1#_4GA(LKgU(j^kh{ zNJhBk;W;Zh$ny%le&dZ?>$xWE+SvlJ26DJj`3jzFGUZn5ZlXSZ3%HiHrOd5>*HroV z7RZx#!nliT(ID$2)8=cBvNDSy!>1IF`JF-i#0PNnz&CU@O=aGEaR-vIo>`eyisQ<% zn6Oc`)Vd=TKF{8T66%OcT5h30a4Gyu%>?PAL*V|+(d@?8BQSZTFsj(JBerI7=gHn+ z#I9+Q&HJy@Z_Ot;H_UVibY>}YoV5p*_}AQzM5NT<$i zaBSa>tX?)0v;e z2dT-AU1(vFi>=lLP=CK0>Zvg34KpR&uI=XR+;OyCqKlR-st4nV2bq0s3dE>^gBAC- z!n3SGx^}rgcA2+R?`ggmaOD$B%wWwE3tMUYuA$7u_@ngs{9{aU*LN5^S%9dVNQ17U zq8!s$Ay9K#KpmScNS)4j;%2Tv9g9bi%Q<&&v}H50FB0(l)DAlMRvKO8dx3kZG8?Oe z-C_E!;bd}t3tbob6q3G&;pRDQQ2Le&!@uUzYq>I5cRmCSe$O?pp-=Ut_Dm1FVrxonVd zvg4M;Ev9l?rOZ>bhZdx255vwnP5Ssr2Av+Az*Jn%L0x)+mdtTbNNzQU)fIcu>sU4x zja|KAdj#X5^M*RG37cTkos!F;=nv=JuT%KL)iQF`b5&3brYU^}`_J-|L9kS4V{qv2{51!GPWC`hGa z)wU26Sh`d`_?rl^cKo>Oq)wcCS>%0qsr8J;)#cOqx+#p_q%Wh>?k7<3E<3obcoRN_ z#^PAfxyqOP9niXM7r2ZW&#+DRG3Xp0&VI5Qe=%LK_U&2NZJLU@AqBLy2x+86HLkpT z3yvjU!G=kfaFu9<(i5$CEZKbocHWU>MMwi&6qX^gT)H6VOAhyi1R?gBFLBx6>8Spp zi_#iB+^w(2uFFr$ef?<-*d3ikvr7zFMf0chhZw-A8`t3G0lgg0J@w4H5nIrzVlJUk z1z;EznYUe828R6n3SSp*z~F$%WXB~@^49wZJe|ChnVF!#`n+4sH0lr{r7lR{zrP1| zUZU)zhtuGBz*)St=QyM&E`UU9E6CdM1=79p;LY(X@UlDxXPmf9wvlFmW?b1CPVbDJ$recX!<9GF$d_wHmS^`|-b^Z^6WRH%KQQ&L>qyXAOA?znoIIZM0b_p{ za35!FA|stcNC2-sarGc#w^u~rUj0d|a}{Q7@2_L6&nvRScNcLFM&@AGD`_ldSz7s~ z7!MuPW><9#XBTfvXSZD6fYsdn_`zS94Sr!wBwDg@W6ELD#%IeaQ6VC=a59O!YQVmq z;73kMjAET)9LNXL(a=3ClDt}+0;$LI8R=ii)H6c?Mqf;V=X>2p8Z$y# zp)DsAnjf2T?2Q(2*4>`KS(5#p@wt*n?R-Ny4L&y59{CgwODm(scx9Mcz5Cr{^=y2b3?$hjL^gGv`x%E33+=^~;UwMZ!4m)gcr1BzW&Y^D3MeZ1s zw4X%dj!VPL&jxhHXfKHB977jQX@jG?4M6LV2drqEjL{NG5c7CDv*PJEyf)DZ8|n{o zMxOO#I)9&~hr*uH$pOOnyT%bO=>CNAbU8fdXwrGuWN<1GI7 z%(Ds4sk-PcX5;i7Dr+qU$qE1XUOmP}6`PuO(zfL7jE8q4$G?M^**_ktaCfgCO}ITG zdqXjoadcV$l5#h)?pXOkq5UU@Teg7{ILHAPP8tiJ7Y*JskKAIER&3x{t-Zm0UHqWn z-OY0x2i?O^ayTSE&M}%{9}L69xH_iMRt?KunsFR{3#utcUEqGTTMoBHN5O89z3^g# zI_$ot&g5+sK!bU^G1pNO<8}6+>dUebkNqb@n&U`CjV3{euK}j{K%n`#^qrKi!xzll zZYWGBzFfU|&j${-u%*(Eqf>ZSJrHA^ZP+nC_EEKGF|0(b6}xHiPt>0lP2_8LV%EX& zL~PtTM)$)?V)KrYs%M()WeWv1YLhx!xW59`hwLRkET#~NdE?0O+3qB^MUpLdE#_=E zYl9$r1&>_aN4AcXClMM}1oHXV!=~j>f8;h6E|~#ehqzvtez5B7D627TdHV+4wF+R$`(PQLHy(7lp{PPKvX@c*g_Ke=vg_ zS$K?8Cx@_lr$S+tOFAuGw}Py_l#kKsBU#2lmn}&1!0zr`dD)~#vi?jKOUq)_tXR&vnc`t7hOQxBX6itiy>Y#O=sG2 zm5B7d?>IFs0V|HT(Iu%HvEZ%nqi-y zt~-G9LUJg!eAOi{>=BCG> z?1vdPlya+W@1CHx+(o!(_yY4o&t;KQV1XAb(ok#g1UlhrHzqsq&Xk4<_;jlVHD0wH zraU|gfypJb>ZLKkjyv!{J_>)fFF`RXMndO{;-ef{hLt#pF^`RL<>Z^lw{;a(D}{4~ ztDZs{4#$>@!ax&MiCME8Td36r7jN%@Ws$F-e%^U_&jqqMzZ>QV8W8C!6)<|b7itw% z*jSY-)SsS3wRx+#;}Zxta(1dLycq}b=Z=9|ZVvaXju?)8{S1tUJ)r!GT1>v?9uN?@ z!FiZ_IDh}42S}WL(c{PD@yzgi{IK5@pG>zxw!R)FTBzY+jw+ndEmwSdd=zMJUaj!W zv#he_q&&XhJ46o{8!?B!4LRP^Y~8uf!87kKHST<8vFUE66!xIuwy zvfX4?#=T~Y936<}%^e7BIS_v~kvp?`5ULe;g7=ge5Sg_X%m-bB>6X8;qKN@hb#gNk zrgasjPYlDT%d$wXE=1B0$2r;_gRZZ$LFL6qy2goXzEde17loHGB;Ww|mM$+w`97BB z{|?|Ltz2mCX2%7^1s?dGxPp{?1NFH%Xjge>3z+|CM3ayC$lrB_K0A^_(;qp)H?_ks zFY+3c&r%~IaY)aNN@aF@_r}_=S@f6SeNgy572ZZpfe(8#@f+cXeb)KRSH*cSxF{Mf zuC&1MmdmlwcW$0Yy(CtQb~BItEde;_4bwT=8unzAab|83Mb)>o^aFeB&4j`Y};T&$;BB zIr`M>pjR!km_tn)!Ci1Z9*et(+vl%EtzWuSJlm6Z4hX|vCc0om9@$ zb4uW9Ce4b@&1J#@W@Ci;eqOXZ4=wIb!lhGd88v~q%+%ro7{A{bbL~dKgiTX`IP1dlCtQ<9EXYw|!9TWz0Q!;XCulb~=6-wIA{~xtGk%ILn6?8zW^pzeq^=^1i`T@8FYK& zdTi|+!){tX3oBiZ!_C4FI&5nxx9zqgN@$Kk{pJJo(4-UGlXcaM=>i9EwM0DI9*BHL zCREG&XfXTSvf#=$Srjxr0FGPc;hEK^(XM1@j-+Td^VB8+xf2GViSG*V_jW?DCOeVsB&c~b}42v^Nk-e z<9tN9%QhHs!xlZpDvSBpVE>UW4S$H;KLvrgvk(rMT`h>*&;YMNYT6bK5p1;+|z37+=$yywoG2%Y6WKskzem@rr zXB}YbN~{<(8p1d&)F(qTw24NjGhOi`hP&mk2xvJ^BCSL7QK&lwozB;RWm^%>KD&_^ zh&)8;kVrJh;3GG8Kf`rToT%%WM>%d2SYYzF-uo*^ms`p`(aM`c14_b`l@PoW#oA>Nt`=5@SZ$qU+qtj7y{_n{V|T zFV0V8TIcM?hJZ>Gx!(x1eTj=B_UZ)1gvaBx~LBT6p@n z5vS@8hr$s*p~^S8`rNiU*sx$79Mx1SaFa1C>}Kf#X}}$m%Hfbm8=8m~a|jog}&_f&Ch68KMR0s)`pAj^!- zcQ%kkhmI6#xGEKrY=1FjZ`$K|KMy)kHd_~ z$58KhAQE;F`dKBy#KVex4 z8_!6xR**UKHFJ97V4~c(n8ZpKQD`EvG>=fkS?%?}i4!7W3y7 zXR6dq;*en|=ccDJt^9frKad2FSu}+%7EqxxwOqMDf$_M`GZ#NpF3Q?}(-zL!tmb%I z=m7PR!KJwi=z*tcRO#RY$l9w2>!$ny_d(NXM93bfe2^%AneQ|0I5QF*rjEtJCzY`1 zyD(jqwi5Nm$)L%gBUEVgRG9nHACyaeGX>J;n5+@OkU7DfnTyWUduS1CpEHaIyiuf* ziz?vLyjK(jeKA*J5BgWv;?cEB@I8M9Rr3<0ugV@U{3X>8EtAi=|3nP}wtC`Az5);% zI*E$hS&dugBvdO+8A2QP3Xo}?S)e`kCa`CN&5xZISG4}L0F8Eh=Z^I;E0}3{2Hzde zgy-M%3)@Hf%3A~xxm6c_gRa;IJQH`Csf#!Xu_o=1_0tkHjX$ILT`hUL;~(h=0ZW|K zN+?;Zj6+xC!G%4GQS$=BiY?G0CvJ^k9ZSSX%g@;bolS|bbj~w|fAs+{@bhNGez!Ba zo1Q9!o@&AFLqg1|nM)WpDuC;{;1EWQ*^PV0W}(-bJ5*6k4;o|m)Kj(?6+Wz(ORo(% z38PeAf|7mu=wZv>g2qiai!rX;NrB$zb$ULW9kL!Kf4vAT zrbEb@8evvqUm53+MOpQdRbRMw8;`;6+dRLOM~GkSFpO5+MI%zuKxvLQ&G3#O9p@x4 zAp0W7&Q>HZk5}xHQ)lo+%XLuRl!zBn)5t6JYG}T7h6e43W&Bdl;u1>n$}Ea+%9WdpOynXgAb z(95kC@LFmJ`{S4@J8r8u_ij@J+iCNwDEOlwabF`z4(g6zAJhc`=kXZwP^$>$+*k@$ znvJ-|ZYW!PWi;n;yE`#7)FE~&lSuQsh2*8|SXS$DDNPcIW%)CnGSY(+$lf?!ZhV(I zt5X_A_MPZvj5I9Cnjdqx$s0~1x007fn4f|dbS>d}<7qHoxt96R=>nCHgOD2)B7bSg zF3?F+pmj2z;Qh#IbaJu829}(U>kiDCgttH z+`(yF(-GeEW%DfVy?a?OgYN)LR9D2tDJSXX9SYP+GZ|JD9KdUyk)FU$5;j|x|!!3(1 zKxgLk^S2l@kf|zngn|#6o}!T7qE^dAukf49Yv4mjyL7p zEN{T_f^^3B`*OHBHjktI<|d=3X{n#|5_H zQ$HK>=Jq`%YPmR(4g+%GcRqF>HDh7^QM3x!$2%i=V)|7M-cA%{V}4&mt@Hq5Yh49P z)sN#A$y_WFNhKfruffyj+QiAv73bUQ;)f~4I3fB6B*|-_@2;_Av*uV*t~8v8WS)Zx zeqB~ZY7AMDx|a->9KiOfsxlmP}prj21YRpk>`Dw(#Ir=AH0K zqBd(X!K|-P7-kH|heoltQ^v44!Pj`Xc`bI`mMyG&`yNc670vj)n*mQA7~!_s!`P%G z4Z{{5#TglnxG+8xrwJEek%SVdfBO?8QvzwN;2ey}$fZV)qtI8r8uDIzrK?sAVJ|<9 zN9D;oAdInwQ5!RvDfY5(ahgBCMPtJ6_yT2`zro?7et26;2>idz!^a~9V7Q73TU5Fe zXI0$?F7G?S)Uqmc%2361LRK{T-b(Vau#tO^aX_m17RgW6&|oW_LmP zv0yZ58w*w|>f!vYWH1x;hqlop@XH86u2{`ikPNXyhTk6-Sc=l|`%S><&Ipno6HWBe z>#=eb#TWOU!kvf@Y6y}r-`ggsUE9uae*erS(5FQlh{tdTOjeujQns}KtyKM z;HH~9$cxkO@XY4@Oh!{Mu4!M0GnF}P(A5cOykY@K4C8|A!#H+n+#^~o)C4-82NQqi zTUoU;g)mlEi!GZul%$VYLh~nc$mbSwmQ~&k?iVlOGXsXCt7wy$G<7l}g`af(HekOm zd_|k0qKPcuPpnngiI>_{*s`sWjOmUIY_>xM<1=?Je0?Q?JNLE1OzvEIp?Lv}&Q@YC z?0Acw@A9!Y;RUmL<}#8l>B??z=h>8HKD+VMC9HW=L0rb%!n3Li>7C?gHo>M2n%{LW zw>BIhIQkU~nzN1fol1w5`g#>6yKZLRnl_^LjNxpnwjz1IO@RI05=Fwxve=TwGmP~Z zA9AHpj@-Vl2g&>6xTZVf(RxEXS*}+D*TaV}Z`%fwwwfUvVO3Rj#GMfK$hh@vsZ=Q{ zg>Qw>vIv;>vx{!Nq=StKIT+}u#r{xF!!fT`uxjIqF)gnUcm0fHeXWRuAW9rsMS^?dDFq*W;`+n$*v33+Rlv1>-`L!1(PwSg+}V&t1jI zHLWc;O?wxrt$Tujono}Hp&B2Z3xn751YqBkz4TIqC(|;+6SgSrf@f*s5L0{{_@-9E zc#{fnE8U3WckTl-HO<@#4FT5JEE(>dFUS0=qu5yjSMaI1KJ#4YBw7f~rn9U|aKw|x z7|T01?~AxWe=0`7<%Oegqo@%(M#KcNzWku2W#=J-HNjA`&rr*)g7~l^)cW#;c_~(f z*S^NUNUcqH{e?1_^Xw8>8Vn=;R`r;<_9IBSKcRsSqHyH?O=!G*58b6Q43E5Yfax*k z7_R?L-i?h-oJU&YAyVuO=k%RqW{svh7KdI0^hks;qgo(-^(E%FV+lN2%KNtO-U63g zf76*YEmUu@DW0)SpqbUuWSGND2(0+V2{2TKum*P=FCEIsz~faXZ_mV&E@I}!*%KjA z-V;(n8e#CaXdE%sns|&p2|-e?Ar7R`c%mpVI>ezyAcE2H>v2=~HF$h!Dp*aGz@t}% zIT8!N77_E{39wtu511}(q~SFWBKuQG^;KaqeNYtwP(Itlpogpa&5pNPNB8maE( zF!@tmKS8(jF&s{M4>P^?z_qf`MDbiQ4X8Q|Z*)zm)XfI8YA(Za?|V3Sq$X)x`UYIa zi^CJz4gL+gFsq&4T&>-iyMC)N`)<<(u4wsS@;iAq*ea+KnTArVk#GeYGYfJr@dQka z+J>jDOOja!SHa7m?O3&;jFt{M3`eXPc(iE)&VG6dla)L%OZGhm4ADV;5pDAJ_B(i@ zKZ&@zIgtFpxg1GZDIyqeL$3Qa19dSW)AmfkWpz@dWokT?4c-TG{5K%|UMma_oPfdp zQuImF8oZ|&MZL1lgZc|ioPVks)orzK(VH+dcI90`xEPMR_myGy$kn(kZx3}6m!U(9 zJz$vr6^JHsctSrB=Db_SNxl7?Ix2agGbY1=xuZC5MN)Cjf&_fDBn`7pEthR~*os2$ zRN%z4>!2~#5ZXGVuvzRggwJYbay!IOsH}(^BrzWkx~D^6NH$ZuE(r{)?^H7;Zs1d=dvbu5$DP1orjzN)o3d=k;S|_WGzR8r2(!~CCealw z4!C;BX}L`)A>_jvPnM=lfJXo2WRTQniuu9rs<&;^E zob}|M^#%Ou9nJbjgc0HEKQK9A7a2|>P~}+?vHIph4%JO1Zyrn}d>Q3%eeo>Ckt=7i zdLPpuKKnWI*vk%f%$GzuBZBp}8N((QU&EyQ4#viK@kpzVyZE&30K{a}!`16vowTBhr&1(q_H9h{2QxA{=^9Q=(ZUR0|cSZV~16$4H z>B>V2VDrQlj>c?z&%<1ta1xith~9Q#Fwn2i1eboKK9)I%nop$pR=)cnIC{NmU);Gf}B^ z9_b#UioVk{VAQCu7~2w!E)B9=P7Of=-d^^0i8Kj}iifZBg+VD+6Q180ffiJR#053O zx%NGb=Hc)7m~2N^DoF~RqnXN;$HA*h5Jwhy;Dfx+Fm-$-ZVY+O*%CDuk3XJEGG^{( zMg^46=JN$8Xt0lwogu{frECF5^t*ElCUBbJ@>DNLUB2}XQuKGgUaL36$=z1}fask1YPG16k0Tn|qLyKo(_e7O^A##N({LK8E2 z#=e3}!WPxH(>iJ7p=#>cF2)>PonRScOMUfkaAsRyr8j0xgzZ0z zAw=IB9M+xThCNZilOhiwYSL&qxAW52JxPo{vYii!{8{ixr7-_<@kmGr+l|f2@hEjm z7dad;6c3qKWsTiy{YX;BmKcMk;rE-$bH!wQd&alH-kXcjo z6!xc$WHN?T&`UbZ?sESmPPLXiR%}=Y#`^8l+{1?(I}6{wZqY9W@Pes)y5Q z$En|SZ%kd~!l?Ldrd=&2u%)XBaK-}oTwlzwUb2L#SUm=gr$40$Ni`6p$veN!T%T`f zy$w>Ps%1^k{E~P4BOj~yDwbQ~?S=c!3Zr*GE%(8(6xeFD9~Lxsa}w`GabD6Q#?|&J zoNs%}=u9f-CWOY*4gMO`JZuX*sM`(7<3E6ykSZ>>o|0#KcPz8w@-{m6!gAbKQ;n5b zUW{Rv1~#pcztcU_=wX>f&chx@}2EjtMTTzC-mFk7qBI zb6{kNGui1VM3l{@;snbt@RaW{T80Xc7wmAhQ{)-WT-l6?YS$qntP8iiw<59eGHkl! z%OXCHA8=Ry6?DD+0eiO^;sbFP@Z~HbV=I5d%WZY$_a*{y+PE-RWPO~;KyFkBzHfeR^tDH#OJnRZGl2weKvm`q%tr<0agoukw7$XwS zi(xkpVq-3sL2R55F?xOuC0Z(BzM&Q?HDMFcoAsG7RFWn2a|DQ7q7{C3qD8E#7gdQTI8+^RWvTzLg|{j^!t<46XUSgoQGukx@ctvM%p z@L_1V+{vW2Md4nBTF_a^kCCpq_<3(NRZEYeW26s&b#5O0#5?0!b!p`*L-^sMi*GE3!>4mb=HI%6@{-0QjS4@4%PdPlMS2J{>TBR#;RqVioTiW( z@e(cXa&gYLdnnj7m#AJ!$N5`3ndu*Yq2hw&Eb$N{BOYBtx5QlHyULindN_)0_&5f) zK@kZPUI(!nTUo^_j#&eEkeXBbh(5C(*9_C)-Nku@(|x~#eb!2H>Uufay4bSIWFF%4 zJrN{t2OrxISO^}2q=-jI1!*i2XZLCrvO-snANzMwqV?w5O~kACwtCMM9F~fI3(jT`fkc4qlcB@ef>%JB+r%H*_uEc zpH61Sh8wb;Z`QMk8$4KxZ9?R7xC*=Gts_a!Z$&qgm-xkc6l}IUW;%h zr{_eWPDmCgHCnOf9&KY4&Jy;iODaxvT*|vs>B8PgJ5o8xTAmmWYs}{J6d+=QCbFL@ zW>JR}0ro(|7Ls>Fnr-qTRNZY(Hs9WDoJ;h*Cnnj<3Sz zmkET8G$2=BUBsU=^3hBnod~sRu#bKgGvWK6;*~iLtjQ2Vc3Rprw)N%)GUVnQ7=0&< zp55sIN;hURlgd)yljd!z5VIe&8Vv~dp)~8zH3F4J%_N(*C(?z7C`UiLXtv@M}yv#1^aKis^J_1?$oKJ@4+e;Zm-~%I{QuM2_O)@`rSb`$Bqsy)fB*AO#fLHL>Bt zE-y2AQAU6{CteEZ#kCl`c4mC6w;)A)&>Rs_-48kKm_dn^<@ zNWxb(%FH7V27O}v(d|kZIs!jF9-@u@pAZYP8X+)km~!p>8&vMaHuLsp>d5!x0`Tp> z%cPyPVGOQQkI4!jm4i$(P5&mY&T9;k|tlI^Q;g{M2_uX)ND6P-oPdEYBlTtwOJ?nT_$ zwzg29JNoooKo>kBW3$A$6jxr|824XD6d%rMcbpde^V#0={}-u){FH|+(d znx!b;slvYcd>DM6q%nb5`#b#gj3vVy7$sn?neu(=C5A>OTER-H~CEfdxMWT8A_E!Ii~gy4i3tu z1w*l1D1naKJDt|JO~B0_!n+rrorngT6LLfz{o<(nRDvIg68RPjw?NyF7`UHn!3q7G zfFrgz!kpu$-L|XDt(d{En-?3^WjdKpzU7MT=2qae zS)H3PBoG!}iDN|cTY#MV3C_z`!g4kW-qvU_WhR~UPIww!t1ra)JkKAd&sO4i?=PX= zwsN`IMfMP!KADMeI>7`r1jD?pAly8+idq>aGs0O(^t*dJbMVGF?&Hbf%;g8KIKOT# z<$So~3f3EKao6h5+)q2yK`%pu_|#cIl%XiAAJ6-a2*q$hPZ10~E~rH-2B5d>DO}&- zgY%vz!l@%Q5VP?Jm>EoB%4ZISPoHeSHu(_xKitIGKa+#)ZXr2YL1}nr_zc=n(FQe{ z=kcQCDDIM=Fa$tPaDA^U*W2kZexGg+Z0lz3%iJ9B-q9sDWW{JWa>@#9-an=#EtMFe6H71b zO@j1mhn2^cjK^Q8B{V`%0ZcbPV@yt)Lf4Hz2wHZNS^U(V2^(zy`%i@DK04?Jc3Gd9 z`a0R1u%;bgu)Px%?1b2J#izJm9wnp3r8j$`*KEgY4cKHV!trW-{ZptjH(% z{P^I}FJ{+vLzq{*9FICnqn%#?CaXrmG%a2ZS79$SRf=*x{Z^-j;$paKyDaxM(^)N% zHWNc?tC>&JXL03++oOi|Y-pF3RDQzy-fs}$g7Y`mP~HXfQ&$#W=XQT;r+P(vL^mb} zj_eD;nOB8i&E?~8>8%rI0q>6S?M`*M*{Zt4=wUjubBP#~3FUS}Hh_xSarap*Wf`te!(WB|gw|{+D5E+I*4 zAPlOg=G|}VQVGg0qycyD(LEEtVg1iU6_eUL$Qqgkfu<$giV??|Cz*o4brPiCWY_1G z=x$bR->3kVQ*JU6LP;L#%1?e^s;kYb_e>hfyHBUfl8FX`?#MlexyB!Y(v4+s+r(2jKj3JsLnt zgG{-ufz>XrIb9Fe;I-V>6mDIB-x6amQ@aZ17ii!?=+`se%WIwyWgx4&_`o+KLkg@a8gm=fL&NYd7IwK!s zLR+hwIBs}eZX}V@I|Qq1-7r)|6u*AmgTJ+7q5gCxc14^(b7@}wGwL|92_J!U%fsS` zQha*fn(FfIiGPw;!}P#5SXyupvzyK`d3Mg`0im}!G8PeZ#{NOv*8=I>s~QThcwa1p zT_?b-I0b8X-^e^~B6EFF85UY>qs1?@F~X4_ZCc{df97qPmU0_JV#i_<%*A9YJ)CKO z7Pi)%gq?$KfOKO7)}$Q42~Wr3%An z|9i=7{T8A14@GR>;Rl;lAH(tfU7&Y&PzZmIMk|p^>{w%WLFDTMmcFzSn-68+`$;>w z>HBqQdj50nMe_r0m*ae#`d=YkZtxgYyCzcdZw`uUY4QggKd@!OcdEN z1pQk+fZI3#h5@;uPbH|_ZDUss4n?M=4v_(A9boGyxp=nYV7C_MYE3TT7p2yw~78ErjP~i?D~=+0A}#>VeMUJ}x?S z6uj|pr8N?IeA~KxQ2Xo-q;uYMhMXtt=$U~AryGc+qCMMZSnLq0)h;+(F^Zmv38mGA z{@`1pLhq-kqe#SNWW&2L{6!voG2w9igG1zYNir;H&VaCa<+!r(HcE}0OpVp2kkO@G zq~CTUzx;0&DLlOogM>`f!VB*N*Y6#NcvVw=&RXHD$;k-b9La;9t;-3l}=_LNu+d zJHdUupM)(Z#p(KuQ~A}I1T9By8~}m*ism-^sjNiXk1_ zzJw3jGJ|bye94B6%*3X@&iF}5l)p6RELmRELT2?QF$I4q*i*9Z<_|W9{*g|PzuNgZ$r;rPF6l;?PRGRNS&*V-&E|jn zuCs2M7}8m1IbxN}&WEdzmy6DkF*A%fd5CA@*BIl;V#0h)`V~FnHdD3*`2f5h&gf(p%CP5`UlMymfPb?cD zK{*o~6z8$ohbu_qlGj<%k2XMJOd8C*eW$>qxl72?`oj6+7TEg91m62{OtmeUxWFOp zHP(3r{nB5^E$Kk4jI!bT`#v%@O`5K#zsvbK2hi#_`>}A+4GcW`2JcsnqSDq5EcJ#r zy%l;3CBDYMcbUhmUpF1IpU>cT>5Sz2_eRqHoL;lCl7G17B;AMRPw8k31}HlPd9|3XRQ+`Dm0XNQ_m%iKWpjE)Wr~BQ?ks*Nr3st2oCkSrTkPMv5iWCm zE;eXvy_Y#}^pCZeh149a{A^N)M7ZDr1A_wc>op?ehT8g&XhQZMgbt5&TQ=1u6F&SXVh&klrJPGfmX#LGxx-en}JhCJTGQ zb7$a~6Rvp0`MHoW9nU+l?YuXi zzL`=22R&?HcBL%r8t;Lhb829R!3MMzX3{=?m_^(U-jhB0r1nat``KA4jurtbu zowRsC?pQs=VpxbJ58cR7d<8Zh;m~*1nJbLY;`MG$p&3JEV8~0+*QOIt*GC(V*gfFX z+70QtrRzY&L;xSo--G1Za`YPQi>^~7$#(ZUJ0}M=hnSI$E%5~OG%Hm25iTJ z`g4F(yo999ecYmtGpU8RDlYX+X1+Tm>APnNe5ov;^*Ek&=47MwPzyx&zJp2HlDuh^ z70mhlg0#IUz-yYabUxd7J5pdiww-Kf&&S4#%MpxsFtw{6fIHcerM+C7 z1SgbXKvp1h{jOtQ&L1Q>52tb8{%a)4%lF{Q zvY-n#NigY@ELcCj4~NI;vAHx4rw;6;e69jS{~H2>jaIO>E|SC<7YXmoyKwjAB=W^t z77KoDCfgn)K-;LvBz|mf{gIbzNpM~<)COBKfyXh7f1(FF%R@<%`#9Vr{eh{gzk%?{ zK_s$h8T0*OM55&032u7iu=Ju4ptOA?Z&Nyirwyd=kiQ5M9}y0>y0+mLS6Q%~do?X2 zq6>~1J`%)xErLReJZzN8BRMTj2%>rH!kTbg+Dh@YdNa|SKH+*n%-Z=3YUb+<0^@ohV6nve|-wYEaS)eUUy<5BP~ zs0UN4B#bQ^;*V+4!6nz3ADkn3!dXoCwd>INJqQ+* zOh)z8DA1aol`|`4H~W+NjHo={h}NkmaDLuc3>Liue)em1Cv7>*`(+#R%Vxz2>&go1 zIEB%hKNiw)r)5d=0a3bCjpzTqO@a5vBA7$HHNX3#KZa|VfqAqEy_zUZ%?G|h$}1nR zGWVqudhQD*+q$^xDtxQOQCetNL?7uKpchuy z0Oj7Yg2~gUQ=X_`@UI8|?W{Ndx8n%qoQnmy2le^h=4i|wvkRP-+3*hk!uV^i!}+Bb zRH*`%;l`+Rpys-C`#*blUlq*LpAuA%It7Yc3vnPk0AqFr(Q=m#aNYeMhW*QhuNzD7 zznpGncWx!WbfO5|lfcpIXWU3lWh1Fi9&N4HGYYSX3z_>ps_aV9dHADxi~Dp_8-IB{ z015B?Fw~uf8gJ#%x3>^$gb2|;yJFZ>V}!0QHSlXj9=>y~%a8eQDr%khKuWt5ajv60 z$|%Ob5AlC&{yI@`5%z|fyRWjgH*eU|l{rk|x-9J3lZ+9;i!LtRx&}V#+}6ISmq#=^ zg7IaPaL&;h&W#Y4I#K<;7Vj3v;Xn6kX7gC5K55DnICgvlIaJmS?#7uQSRg?8+lL@@ z{T+7NVgqax)}BXK>*BY+i@;COgf4kG2dAkwk-68_;d3`Rlrf%<3yVg>iNFjnH@JyG z&Np!Xv%B!!wv)}&IR^Jfsj}?MBwSxMf(nTl47Ugrc%0gSGAafrZzt@#ejEZ-hcPhF z5D$SDzTvc7dHOWyD6TWk#d$OPFz9AAvXjs8%g{*L(y$RCf=@8Z57QxP9tR&jT_t11 z#(?*wTEDWd@yu+KWCoecDO9Cgk57GZX8(hg)E6uN^KqoCCUXAolDy4k4-j_j-I8y2$d49=f9 zfw`_zq#LWsh{N_DNY_6XcuEXF$;2qmXl$ZDFX=sN`1TC43rk_7hYDShx(`CfnbV}p zne4QNDSh+84rdJ6u=kHnVc;BDu4h>jH0qoH73EZ}BeDpRZ{=`aM>O%#cXz?H(@7Yn zwt;<_6$ACuSFrN%9qs~Fz&D!}0Go{xk= zlT*;BYD-_*jpDz)(V&Li|4_L(1Vw#kV%()3Y%3hes|ZYJ*`^5S4%Ov_yZY#~lK-el zPZfIfErtD&Mc6f4oyPQypx%=M>CEGs$-C}Q%4!%38%U(=t2*j*j^Ve6jN!s@Y2PbXq|qFU7aGw&v}xM|2eG^=D0ebOKc~-FXVSkyt1hI z^G$Tuml5=kwmk2*I)hH{+0BI*>GAr~Bl+@bS*p}y0hj1JQqww*Z;rF#Ur9^yg_Ha6 z-_TS#RctE#-WxqN%%{AB@~{USODVp4r$ZVDoa} zyZllVH~w4_A=awdO1~oYrr7)w1hBk~aAG1cS*Az~CLXenIBKpVBh0^d6+g^c zd}k!Pcyk$KAF50r=Y9-&R_-I?U4jLh_0sVSTMO=~J?U>HUlG?;;`lr8Hh17>MZxaW z%K|@%2&n#iM(exsBywxYIo28^11-9SSS0|5?@#V&HSd{CN<1@Qyv#@_oRI@sK}H~} z|D=wOGG!J@t?1b`7BguK-l#~>a+a71I&HJG4>=r$CoOSAcEetBY1p|wncoEle9M?S zz0d1|JUKkOv1ruV0= z-H!^)m3{?^`!Yazu@&qPX4B?A_aK)>Uqq=UC)~C`j=$<$q@}pFPH;X$0oKc$g?;1e z!670N-{&u8zXcv7Gh2$dTHIiB(+`3Ex?%3p>QW5*A;C}he)Zz(HRkv#;|M-ci9_+| zH(+h`feU$m86*_MfteDwOq(6x91p{+oY_BB=ebRdDeOWKGJ=6)j~dQZTm#D}~ z^o#7RniX!a*TlY}sd&{gj!XS|hNPcQCg(4=utd8Q*mBK;9qd^Hz1IqH_RJxH+_9~A z*7prc=GPYX=FEWkyCs;xB1zghNT52@74FRGs!u-X0)rB(p;(s_cuCcA*W-6#mFNag z3KP!KL;~Uav`F@a4zOsmEif)m4nLL*3x2Jo==%ML0AKl%)Jk!kC+mH%L;MIDmr1fY z%hjp&kvr^~nI1hlVF1c)R51L^Q@mk688WKQF#BO8Y!6AtVJTfaUX_n|H5bYJl9jM$ z{Yd)g!DDK67b?~oR~2=F#dcG$G1r*7SZnP_Nbk6Lbycr<;2z*7Us7<&U~ zcQ}FVmsb&&mF{%|50u&33V@D38rbzQ5aPNQ2szUhJn{Hu=4u^;z9VPYrrJMDX>kE8 zsauS5-a3L^+LA0!k7?|4zXE^sQy+P@Xaj8W4`&Z}eLl&u5`4a`))$R)V!~+!dZQQ0 zu`yU~B%IHQ3Hw<2wp`H9YE(E&@ki7m(w=r7yIw`ZuT(i&mT#|jPUkcPMTHn-3@Fgn zuyQ!6rh&^U_kxa8h4!<>1SR&iz|!JUcD3pmTU(;SF3Mfz_Wi1cmqUjz)3+QZT+U%^ z)q98T#Rc5IImu}HI19Z`%fU-=W7?ZP%=S;Y3rV{p;Y^qS^tAgTDY5uVNFe=;I;@pBWP(HJev?VFCh_xbof7)SmcKbsv z75sz)%?W~)q9dq{NId?T`<|^Tn+rLqb3nILtiFQ=gH>D?S_iGc_ictS>Jo#~l{@J_ zHWM52Dp`DcJ|wmjfa&xI+!?)u%C!I_*LR`k%wD{={uny^dV!4^b~tBgGCn)5&L4Yw z8EdaS2A`|+p~M566o9AoJEsp1z(O!A1y>S{F z23%3n_#nWh)1ds~Fz5>2L0QojT(GAA@>I@{3-le_F7~8{T2pbx{RG%`RGrTezlm3p zt#Fl9FP_&wq`&RE0$RH8xbAN!F*xc4mueP(WtJqc1GBjIA`P%*`ay837(msfUJkJ# z#duje3@SR7A?MpTmLePO9S*{2Mbx_tm%+8x~x9E>oY68aE*&dnMRzPYsn1PXCx#;43_!tAld)f z!4;to>BC^=h!x|bO(7{)LhNV;=eOL_Y7^X zc_)ay;zqcjRK~td%qCk#nz0|&Le{Gzko>kt5v(e!W9d7i1n$A6@am}mcD$Jd13ShE z=zGmv^BXms#77CdZL(N*MR0+`>Xsa~bw_mJ$6o_lDOczhzQ z=@bqQhqFatT^RIMj(#&%W#C)SK&cbX{U=Ry#>vr{_qFNQKau!LE&>aeuEgIO_pp6? zy2JU5M*Ny~Mld?d14CbE@rsiZaO*v75EHWOPyQjX+Cgx6mMLg(OT!w$r%Ant&hx_BS=s7DTT+?F&-73pq+eb2_PwSvKm=8K}cp4ub*kjugm&~eHD(}8oyxb*(XkQ{WIw40Rz}7;Z3KDTXGl2 zEXL%@jZpFHDP+b=(BOG7eDKOP6g5#}*-5I@^?5bvyQdC27Kze=szR7#6$|oWvti#9 zYbqA^l8Kz~BxeWazp9i|DyO~jCGMWEh1Z?oDf=hu8U~&61887tYbbGl1 z6O&;UHq+?y-MaKc?G`%DxQ_MNH-J|`BwqS&41{mnOj~ZNA$X^vme_yP>P`eFQ!8X7 zH`}6}_A=1jUWOf+)vWz*2~&Vmf;oGR;~0%B;$$FC-QE~7-+*?|DpSL`CpA&B+y;Ge zYr)ZdGi*D)oGO2-BTsy7pnO{=c~(@(EJe2C^egM|pF}U*-YSZwRUUXV!<{s$Kj%Ew zM1kJKVNmcr3QHtpKvYf{6t0E9i8Cd{@|-x`Ikb%S=nN9)i4&+%oCdo#`3OEun}p*7 z2XK0@5qo~umf?#eW^qLycHRF6sFwf+d%u!^26MFdvkQ*=Jxgp#;_ysH4m-a# z|LE1LdqLWKEf%@F;l^G30Y@s1quQ6`yGKo3IKO zWPD_QH;o2`nu%EQAWg7);!9GU=?Bn00gmrGN6s(whRGik=*%~M_47uH;Ox&ya3Hfg zePWwIL7!DFTWKPTM?8a3Ew2KX`WSNkE32|2Ri<#Wnit_aF^kuKQhy_G$GdK5lg zF2RYq7Wk!oF+}}{fTp*rz;CDkzm!yfM@oZWRHG~|{}l+oeI)ss>r26?&zd-Fu7kdR zMKI&M2k5g{biO7}1z~_nwnY?R0$k>^1wf-jXYSA_J?|}l`yywiVZuVz=VW-)Xj}zFW zZ*!pOTsD#Uqr(~Ji$ac%198yX$x3w8h?wv*^vcroHVF?1yS|eQIyr$$*%R(+cppqo zj|X!-9eBI=5W88G0(mDDxXDI+%;0shkS}T=KP(prz8c=nsrjUp2GoZm(4J((&fzKx=$ckMD*FMh!cWF_$aHIpbyHt{oYmV24?2SN~ zQG4*_@yR%4@VHL&k2r{G8+Mqh2S|3UB5LnUz-Ce_nE^KxeG%T^AO_k%OV zYQ>+26|xm&UqjWkekSLa2!X2~VS^YC&U4ye?JQYdO)3%76IJ=F;Gbyu@ESW;7y!%C z?8(u6A=qePj&BoG@p1heni+cw<}LVw`DIg>gOn#&+&3x>C zB#QHtC-T4g7s2M#FRZh#Ki$3cBaH8Rk5Q|xlj@Y^blS^U_JnEhSzhnpr!a@n#g~I} zkrp0^JpyiPO!&wzEkGck%6RqfveQWM*XCCD?U?ho=hm*g5JUny*|z#1Bv4^EJv@`+^L-@=%$& zUA4qB7SCAzBM-VLeWBp@VQ0Gk+GKj*>r1ksv`7Wl0@ z2O73#!Q|j%eyLFooAgx~AODuY_&lM*^_U^rC-ab-1U5Jg?b@T^j|~2ZCZ-yU2AA) zb1R_n-2XGIu;`x#?>o1fNPKjHs{vJP-?Kq5?s*8er-i|ucl-F)Q6kLjOa#s^R>JX@ zexT^31bpOKhDO3?vuaT_e5KQw5eX!(rK7SXf4ks?By0L(wqE9!oay}8V~<#fu?e~g zjqy`;R2DE0P1de`ZfVbl>34^bO{LL@J0=2eTu&DP%?m^KJytVZw_D0Nx@3~3% zl~4Ov!IdY_Qsl*b5F1S+4y=Y~r4A_9xhN1<;?UCeE*rhc8@y~sVy1ioTWUBiy}2`& zkk9FP>N988`$vgFm_f9b&e;86xUUBO`0^3U+;cQGj+)WB<@LXVh&86J$AL|WGd z*yr9hs&9P!F74+SZ_+k1oUB!l;uE!uH3!}vXXEreS>n4&oF?SjuO3XtgS!xaZH$03 zyA4QKu; zG8E08R^e~0gZSu33;Q(uge^||0zDrtkoY-S?8c-$Sd)Aezx-37JJy*(WRD2;?OQ;` zpDcm&c%hT|dk9#pIgWRXJ>b=758AhFIyv2&hYPBDVRM`WF1_rAE6$E%qJ5W`>6$nC zYjad^?St=3Fjkgccn}53rKcRMTCc-al~8?1;m-J?#+p10#Qw*1x3t6G0DLci@6^3Hj|}Q z_mZ;q3|V6Mm6gU9J&SP}4=y%@I#dtbUh^A?U9{4)l&wnk~S z1kJ_&VlJ?>aj`6P)hu=(=C9zY*LwDiHnLxKmh8u&D{R`rTAXh-g>;M!1~>1A8qNx0 zFsN||=4^ao|8jySzP#@VQtTMJr?ZCqv~$3tMRJ0fWta1UW`E^08}E`j{}{Ob;ElkR zyFsjl4%b~y=TL9DD?}?RYsHLIhb87`1)k$#;a%V{s9YKeCr_?`13x3dGW8VRSYnDF z^CNM~L#!)S3xKf!TA7)eVN7Y=2>9(a2WwJ0gnKGhL&nk4%%`6x5{0xGkaRMi85{d# zxhxpQu$am8NOlw}cifMfj|Oq^-B9Q$I)`1ItI6F5)$D<{B$CMUstSqPTrkw0JdSPM^rKbe}-~V;=Hi8@a5^=S(*C1C+Vc zFx~S%i27 zpzYZPvg`}2pE`yP=Uf0!?=W&{p+Cue{2couMzB-imbi6V1J}J>gDzSkt2<5M6}i`D z1(Qn-t$o{V7%5(;@J&)ON!_lWW^|8h1Be{>6+!OXH z=K46)T61t#Shp98r-Dhw0CNZLthROK(BtwD1m=mN z8b>dN@=Q_VD2a0Q#ZF0A=K1w3EU*%z<+0O2ZjU}jXulxB*BOaDHWz#c4#T6k2r~EL zTKs-s-WaCIGh@4L)p z?2pRXp=AosimM^8HYP9T%{r|Ash_E{^R|OwID*)kI&_<Glfoz&x06sH%s zabjyAb-`_x7p_lzVXN7(*JsqngGhQ{?JXShvXYfxoM zo1odL9afK&Cz}Fn;rnHG`zIUx;Z)o=QZwZ`5wz7pT(T6MSf`DvOqRmDkt^B6>CvoB zRErtMTH>x#%XRd&rLn)6?i{&QNZx2m3%qV9GN-^jTvY|KB?%=k+oUlyYtw<_jZio}4m9k<@%!$HXuAHK?yrJ34tM>0(cqOUOw@|fNICc1AotBV zqPn<)sori+~AITzq zNN{PMKO|@>Fh1B9oatC?qsXVM?)wWC)0WTr7aoI`8C{&nx6v3{Jc6xIJz*4~J|3of z3+MT3B}x2hS#UgI3u7_}xnl8zOd9eBKQSfRP;;L>NQ;2OpR$=utshRB8;CRYTrgEl z504EU!T0MV*pp>@$sCau66`I7it)W{;*3?OtQ1Rb?MxJW7}R6WJzeou`*^nIvlfId z^aD4M9N2J5l!PwL*WfDv#deo4qv*seN2PC=;gtxBFLIe%ersu~3+Hw^a<4M!{PR4_sJ@n3(# zw>75>gbH-lx48gr%@~0o6_T|pd=K=I-z;i-CU$(UfO|;}5NAD~JWD==o{>g)jy=Qa zKZ3Ht!#YhccfbRa9-*@Zl1EUMWHO4$|# zZPAKZ=d>y^>&4F*$Yn-wkIt6ko(nr*{Hc|i5w%*}L+c&*=u$1ak#enilCXX({rZBv z=pP_!Lv-Nk`3-2fX9}6JzW|OE9wrZ-DniSpr1XoaJHXDVTu>lQK;(`Wie?Xzg8yXT z<=$}E-TRuU?;K{*S1I~=1MX2thwtXmI}xtG7H3kzmQl9f5_s&j6U0TWv1iLHSe!ir-}KjDpjaXvN|T1PvSPA# zl!CylTXPqM;lab0~uIqzg z@+E9w!RUW=8tsAyFnW9?-k6gGlIF3{H=z<<3Vp>+k{e*&Sq;h!gp;ZLH@Tumx1oRe zbdorn2*2HBpm~HLey(Z&^$!Jb+182H>{tm_gDrwk^NnCwYzH6mHR!^t7f@YZ2NDzy zz|PIXBtm69`7$LI#iBGp(`_9LPZx(Vx@PogK?!+nBoAK>CRP59%jWi$Dlsn>kLSjp zfKe{DxwtBAT)M&lzM2X5KqQn3_g*RB@(=wuw{Z?9yR`roe(^=}K@8Gr{P6ogsLl$- z(I_}r<3R<%Cn=4fcYs0Bf%Zh-av z40!G%z`GYDL2=q0)^w{BHXXYG9flqU}8ptc+uy zmgS&Z(PrH6=?Lo(@)$PL$i4_lRZwo3je5zO;NW#RoNnUkcmc9cPI)O5(H zIEyb{J|`}xJPFHJf=8bOaKmCEi~OXExz~T`eg50c=!gmSndW-1O}P7r@(%FWX%x)* zC4=W1OIhESUiQn?9v-NA;5nZm=JLBvd#$AojP0z2$AL~7`^2(wZBJMB^)3Ev|Cb8b zde{`rsAXOz09FY=%1b14~=3LShPl$J}=?P zy>n9d~ppjb@Nm=egv`0wN`fJo5~lJ_kR#6-4mk2xJ^7T*WIg&wBcYFW5`!wl3t)Xpxv zdo39HQXvR&c?G3+M?<0L0I8kn2=<_k@!l1fv&BH@rxc;i*{@*#x)==RUw}*JF;GsP zhoyG*oEP)vWGAJuv5S_%;&porI8$;ton>GjYtiYuxTx7s$y!hlzO8Lvl@J6v!TvhJo|O zpfIzHl-&5uHVN;cK`ky2DqhD;`QZc-hX=T=_tY_KXg5Bb(#bwuu4blNV+B5cY%oIl8rlBYlzDDi22-lGk*#n4u+zIb*`~-Lrc^HUyZRDXvwIO})`|%} zRE^TM8m{F^g#IzbFE-ihgf6kB@i|N?uzw7ZZOxuC{T}ux$|7d3#ktN6B=&3?G+Z8L z!y;#4QQHSD+2SF)FWg~5(-R<|r-LNT>4ZrVs$5~;U$B0erX6+TB(WG_gUTk_=$_CF zvt#todp?ga*8xR>_Hp(n1W;+&2cvgtQL*EU1*iH4OuSUk`Sqw+>kiYc0-yj-hHq|-xCFYO#; z8>zFrkArxtUYvfsB7*zQUBM|o+c3ygcwYIdqSwdW7HNBymqg|O$9mR#~gK1 zed8~fg_N*%>qGF{(@&p!mctykS+hR}bYa;g5o*{Oj>mjL1^Sr}p`$P#A771O4^*_~KR(yE}3eiY%3ec>THz zvy+YN)8YAWWsf3leVqjL65C-I%0&o8Sm+KcZCr9>ykuuOtVgd#yjHVKTWf_F_koC zN~br5G!nT-w(vYvJH5Pm4D8%_80;EtE^b?HP(SmzBr(%C#x$(rS@gJb%OBaqi^Q~hBH&Ma-|88vDu|tcBF!A>s$q`kwSObtWtOu zxDlKbR)K@HI>?15uvS|K?Qd^?U|85?w$}cA-N}baWACgG22SF>+sYYj-o=o#7QsW)G%-X;)EFB~FI(vGmH6_)sQ{!hX4T^?lP zo(Dv~UzM$n$=CiqKc3t?F2nh6naM5&e9~AnNj>{PV_bddvZ1UA?!FK?@o%cw-l~II-Pc!LJobo#HzV(mq?%+QQd3GU zFCBC+y=%pt(mYmgcT|)7-BXgSJl%#!kC&sDTxv5lTFdi(uYHxf>%-ifeX6p$J`3`h zw5D)2@YSo{oMvdLiRBl(?bCvm4-%wE!IE>*o&+mUm9%`D%8p5oB@(_n*bZ(3`<N8IC4`S5@bgTzBI&;(QmxTjrm7ewA)r#ueAcU6e?FAVBpXU(3};_@~8m(PAnoW!v5TzaJQ@l z^}{T}L%8>B{tBpVTL$0y!@1@<&i?A{1m+d@la17P%G5sfGZDjwq%%g9ajN<3yS+Xe zmg`_&zJ3L@w5w1qJC;9?`b+3tKF>5Sn!xTKvEY|TMY zx}q_abt`+r1l2`U-olWL-Yh}8gE}3ewA#s1;TiU6qcZ;^xDWou7(;S&FC;en2N}Nd z%w;eH=X^>ay3Vs{gtw7aI&>dA5Uk2o0=4LpdfU5()GABZU&t>P zc;CJt;4g}R`j-@9cF3J92|ikXV1EgC&j{cwcZI{VHIraOyBqC|o&u$#LdfIK!fb@U zDXk+n$SYy*teVwe)bKEv31|KeD?gHJ-DMy>Zy($=dchpit21L;_7O$ZRWNw`gTw7) z2G~Bhh{Zo0tF0WNAM)v~)ne%8edjtMH*6J|ctqrd3 zKfq*!XVbxe9c0nZeeCmoM<|mV1&3Okp(g1lX%q6r-@2WkLFj)g5jyZ@4qpa`GKG_( zch`Y)Tc~!vex-Ki;0Jc!(2aa*4!~RfVpw@DoO@Y*1Rg1BgZG;h68cUKEX7uncaj8> zKffUIpCXx;PA-o9I#!qm{=spDmHdoPNAREu!)1hmty+P}h584ck z11~-UBCcn%jwM;--sRi4vScPz^Oy(!ME=3|=Uc&RuPF`MWyey5_qpKDZ`g);tFg`1 z0*f#1#IO_m4hY;BP&AcWVR@qx)$0M~)6V>e2hZ8zJ09g}NS9(5{&C5e+)ffw3r45xKnwlX813e(6<|J0ebAj*YADtT<$PzcMTRaTI#TYSw1lG zjwwHX^fs(-bE2n?lws7PA(;2d3%X=797Gfo;AMa=zkb0cu-!45YVA7#3&+0zXc3{C z&Fa~$|GPZv!ZF1yO6WXX4~dEm&^Y)U#4kR?O-g;}(VxZ)hMPfTcsX#kk*K?{10Rlh z#|^!F29h0<;oypSbcBTry|Zy5{udm8ab`dgJ*vS)tpveOxJR)v0!#d+fmnwno%HDi zY)%Uh#H=XAf!qCTjJF$G_VX&1Mi|2gD_0tN+nSau#Dcs3Nw{DT3vY5%`Nd6X@N4xG z?ah0)a3h7j?>d>)V76}|jPA$;t8wen#(F#BiFy@sf8S?zbLVR|wf`$?RX?3K(W8l+ zT`89<7T}1^QKK@`iY_u&X9uY7n8Fl=ziG^q2e98mtWN8IE%&!!Iw;KRWR~8c!a34% zeDxxsVBZ-9lu>BFQtACrv|ftN^Gf3KvL@m0N(T~HW5}w63GKOQ?c{;IIRy4=ldaqA z!PTG}wh={W%Uug&TU$W%vQF;Tq$Sy~-yMBT_Tfpx^)PYvb~O2G0qdr0g*Dq+^i&$t z@b9$4u)wxlCm^CqkUMHYmZVK8I&RacKao+vh;JbzWvdEiD^+5y*d2U#R!Z+rB6rFcmPVXDXHArcxl=dPj4V1=nUq>l> zq=ZBwMJR+2(LkjwmG-1mS~S$TuZK!RLugQ$Um+tE2^qih`?EiLUe9x%`&`%O^L~>f zhw4ea|2=j2KdKmA*+g@H3&Zh$?x1gQhxdIj99M{qg1urC(uw-8ew`;+YNW&0g}YE- zlt(zx3P7>C{L!+Wws>>Ag>bUO`? zzO{pY#!blZPps{|`wgz$KMU3pMqDo8A>3H-m}*_0PctX9&`&mtp&Mtzy6K!7ZlO91 zx!%A>J1ICeN067Ea?rO^7K{v4K{RI$9#5~u+UP&*wQ2=sY!}CIv!8}~Kks04Q6{@f z=N@S=S7U>gNsr4H1b6LCq(Z5VnMjYq3Ej*jeCvSihNl(keQF6Ch@ful_> ztL57Sjwezq7Zv%!&zea3ZNV}c^kNb&?vB6%QEH5NMLLc}8Pbo|J8;6zhopL43Uu{~ zG5_6^VD8UufM4b7=+a0v=9KA0n7{TLD10$2;hHJP3{FEx|Co z1t>ge78ySzkNbUlh-OBf5{a2U~%S(dCez9=YznmI%4q@-)TyR$u zVy-I)FdKI~L52N$F}`6lk1Fq@7&%PcZ^zM`9c?^^XK~mh8;#nZTk` zy7240F{GNNz>8mAFggA^8zAwSXET1AEDhr_;)UK+f3_qk+Vuec)EaQv)CzXeHVMf3 zz6xRAH*zuUC|HYykrLR6DY7vzwPK8&_(L9ao?avRbqg@}o;>RQJ_BC|l$bYiOGv>= zDLirK0Toc*$i0Io(~^&OGWW`cnFdH+0g-4|`1or+F4726;rVT$X}|Pq4NB&#WF51C zd*#+p_|;g0&t(VB=iQ>iMw+6eg`|$bDbeKdw@Z1uoDnk@22DdcibBh0LS$dOQt_=M&DZt_mPKv^=lc^# zZe z;c#zwM(h}!6{`=`Mcd%;ssZBcUrQw~<4n*-GBXXDPY{w37CpKJ9(yAex z3auOD9X0d@uT=yGFT~~EBy-s4*G25mLvhTF+t2RE%7FHOq}1-_FO(EU5i#zpu8rlo z2Om}G;b)OVZQ&H$G<=%K$r#ZiQgKjush52DwwGSf;4%u|Co}f_k9euLtTx$agqoc7 zggD(bV0CIg(T^KW88_`?=eAs^Nt7&sz-gVS%a;n^fiKzY(z^%Y)Hg#iZe|HruAC#) ze;=~4x>@Aq2&Hn-u_`jsnA}sd9%ed-;}Uae*mc(`sbN(VJc>Y6p=J{K7 za8}o5_J?rp^QpIR>KskT)Y4?K!xz$?|AK0VST0{?;0iesHt=q!3`GZDJES$L*cd_!1{VNnO+gCMaGXm6|OW-xDz?cf5?0eGmb?a*pH5_raGJ ziWuwp-9#=njp0zxjQ*4`rtZ&0^saWra+BLwC((@0+LIY$m!teQIzeb>wc9el{TzL# z%jNrRmvektasGq&TC86Bm`+YIM+>L`iTXTdkA4F!-;oL(AGtfy-Fr2=rA7JP-(SMm z_LWfoPmKQ`F9*Ba1o69_6$r(g;a6PL;rdj^nQfB|mx%{XXP#|g7V9j)Gd@;$ zUXXicpDD#@)3O+ezwYFd(?PzOeJel=-MuFOeYFfT5g3)^H6d6wrc1r7GmxQe@?wOAd_-l&j=0~&7fM2wLIlh zDy()*10ik|M7bmg76j*k@V!;YAIP$lsk*@a85M`CUHhQLN{BI=$90LDd#UY*70QzC zCJ-|FVXc|*2Kdjmg1B7RfDZ!B(d?JV`qh4iD7k~=rxmvg;C46jW+AtCG31>(iuc}>uzZd6(8sZ&1%*XH@5w>s7dwTR#WMv!xsl^${g{DwPA3pctyy^P zYYwkeIv8z~x6-c5^+X}ins-l9jIZW<7T-BNA?oM^KWsy$GoiOEU$f`%)Fy7%-jEJI z3-UnVSsT6hE)aeRiD11D=j`az;h1!HVgJuiw)e^%HgqsPJKFjiyq0lg4;%;vaql9I z|8a?%!R|!mqF4~x`-9xREDFXyGr{!UGorI+B{XvU2hW?nnC-Czg%+o?ZQiZq*|H1p z!FL)=T&_+ZwpIR_h}K$5in4`=eh?ZBGoWwZZI6paKTzb zee~gG*jm(^_v1_wEd7;3D?_$I#a2z?teyj{`m#B%S1hLUfGQ|GS zt0@ySY!b#cWD+Zv{g%TQr_=TFH(}1d3T(1FptK~9ftS@e&|bHfh+6m4n&5Fdq33=| zLPnVKwwOaO@!9Fxua&`Mc*zR-S$vFmjtj7L3I?g8Whp949Ltk`?Qp;crx#| zJ)O3a=(pW5kD7T2w%dEFe{gFe6|wViEosj@9OnZeGj<{KAWPlgs3%WkPal~-+mJ|& zY%_cEoduW3K>Rc*(sIB3UT}V%2RrOk(RWQ0Wj$ZgZ>pCS8&4=^yGJH~WT+>*^|%fh zS&&R^R&kCxsrN*tC@D$ft4PhC3#BR9D`jzK0Ow$dZ>P==X5+l2a#;V>h__Jv7Q5Ca z7T#TvfXK(|pd?!qW>~B6;C&mh%$)^?R{o^?P$|r#v1HrjNldcPWq5a8macv4fRmqx zC<~U_@S>MZ#xz%B;*qG2i`P%7pyLL3lx2Dprfz^0o?o9mF zxF6Q~+L49=YxoiMjGfJkgrAbL$Vhfb##b$C@q$Vt(dXVD)8Y!@p!Hc& z=$k@XHh!|a7l>3t3bfbv)vj=KqrT_&D}V7c0I%7)yhqz6V&c-=*9ii*5^m{6jyi^t?=j zZY~6+7=LK}sg3iBhpCkNHE<&5;q@g)aFHq{hV?Gs8Lz^8QThb_da-n$j~e_4GG;}% zv##oMHhBBJ$E3#C{FUdhOnTV=S(?coH>>hC ziy|XtPe8KtlfqPk6-7R4dQr`kC){}B0IM2$|(3|*q z(*su4Hv?7}xj|FVHgHqE2u=0zHAY^I)OOlka+F8t`F+nwve8q5Oszo!VD^*Xi<88&EPbkGy*&&GUWWnEw0veah!6lI!L9 z=%Emd>;Gw^!z~q*FEv6#nBn^5=?)az(u`*_PO=^s zZMZ#g6CCc6AWsE)VDlL>@T#hVV2Ly$#goJ$Gmar8_?K7|y#dCy5#vWnRBv*53P(v* z#nuv4LT^WsUGZPw{jyMnBkNe$UZx8LqD~ES33ejAy&#VaCJh zbkllK{)MRR&>8yxjWdVg^!2Xf+`@Y>z_FHs3d$j4TQ!aE`aovAot;7^OW|J63TkNi zlpV>POO71;M}JvK@{h?2@Ee@v+3{06_J-Fq#rKbO6fcLeWYP;Re`itwK7PrW=cPUq zAMGM&xt^TT@o|#!Iqv_xF7cF&+i@KyCCgw$&s-SUodAAehhX$qFns=W8OLVLt6lkT zD&5SRkDnKhkett7$>&vB@H_B4{bQC%z4l!ro=s6LaK^@ku}|`z#^&MySMsv~`_+N-h3FSthFk zuy@C5lp~Usr^Vx_XYy1!!!^UA&2qWQN|*DbEqt7KXDE?@v|M`*i-((QXpv z@`gS(4<-*|*U;hEJ>Qf?%A~wR;{R5h&(d&8p%+d%+s3v{S!ZhUa_3_51cl1HALAFNZ78sNiqbsaubx zrUhPCRJk+BpA8Q*q)Dd?U~Od?StP#+%U|yxDpyLOCo6?O`d_*`V+ia14P?}Pb|v!d zMer+L8yjw2!_LwS>=>F$av2GpU6I0!jm~GNhnf~-Y4`9pB>g}w75hxlf^c#rV=u@* zf64~P$zs#t-Q;GW1oj@DLp2)o;MKly+N5NNB(jpcX-mLwfo^1C%3%z++yDWy9>SLI zJCzgPYVfXRN|Co_8c@UtgPn~h@JGJl@oSyfarz1_o7ipXC>Mw)ojh=?;1NuhXrogn zyTJR~rOEgy3Qf}_xHECB#@`3|uwYkS%2oc?WaHjYrS}Q@2w8lV)}3p~9uHSgGEi!# zS{?%=)Y=|Y{;naZ`)-l=PurEM6JltkTPysmwZdp8C;HDR8+!H5VR@rGj(JzmkNYFo zkgCLV%eZp(=BgT^7Fi6h1F~WLV4zz14t;RF^MY z`o6bH_3QzLj;QI;**StZU3h+#k)aj7IT;U!Y!9GsX*uZR9)vsL^LbzQ37}Vr2s1Kw zDb}tZfxHn5TsE1@xTv_mBAA4~q$lIjW=ouRGm`jt+R#s{oXN|F+wsaJ?s>i3f@Wqp zqDagn(1?0L+SYSfeR(cR+H@Q@-m8SN+G64pXNTS0^B4}8%$M=~K-B!hplf$4o&9PX z`7*}cV@HIcwt6Oezj7xy$_wKxmwfDcwFREgTr?K{iVOFhgYv3p=(_JAJpS&15ANS$ z(Yy+j1v5#e#Z2rN`&s*u+xHAEt;gX5t1-HlV*2XSsJT6Z>>9s`1rLHOWtx7Xw#)+b zo%Dz7&ow6b)4xIHx)m5sJVA2%Th!Rl%5FKI1kLvZ(cMb|t#a;xL8T(-@7;u2Y11$= zF9xJ%a{Ji57r1QSRL0u#Kk}g?gXBu_F~NQeDy^NNF5ij7i=JZiG|rMwR!DJEq_u?rQ8^-vOz z<9eDe-V*a?{iJQRF*r4;)3%NOcnzmUNNLC4+EZEjID2$)ib=yWIzv{I)UXv9Zaw~l z;dr9IzEq|uADw_Tjf!x2T4#pZ$P!llx~_^`lp&@((oD^LKS6uWl?lLvH1cNulV(S< zJLu+IhP5*eq*|&)cxrP7y)^X#=V;kNzWIi;BD;6ORNFv!r+JrGAEHclbWP0uUcUfN zw+<7BR*uWBu?c!CZoztkWb(v)5CZ2bm=#p6q8`+;5LayD+)Ld*}CirPEc=vK|CnCChMEoEM?P-Hg5%Ke4= zdR&igeHx_5h%;f!2Q5!m_rmStxzuUB2KK#@hYGtK+RyE-)1Qg+XGqP(E>}@z*MSc= z+FyC$ev2s#{S$*x-1$3NaTperPQ~-lx9R@9;rJkFfYsyTJBW>hD*%& z-gW|v#0L)?@wWowOMr}m34rJn^iC4y_jUEqp@w?i$rTT%%fCx_YeppMep$@aNoP>c z^WR|e$+;-HN0O#WcHz!#YK+Xs8a%T&223V%e~WxT|EV9y#NEl*)LIP_YV)z}QX}s2 z{!GumP(-clAas%(ry7zuIH&6}s@e5{hmsPh&Row57^T%r@6o~uy*$RPL=P-WS}?eT zVS?_hp}ni0!}C?ZNM;leBO_~$>+Z}x*(rkGJy)T4eFYS`rDOEL{XEfig_b3kyR}Dt zx|36P=HmQn5x$uF^3=DDXQ-y89WFm2#@Ijag^ioFX<@5D>Tur>-97y&Pvh<&ed!tm z61RWQ(fM=enZOb-Xo;mB!n3hsgBHI>ssLJh6&WSvCP}SZDG_ZIYi%76|#@UJjuT+s{Hi@^ZDp7&n^>I4IZQ%`$bWZvlEcN|+|T*6e#{2tQ5|N4%Lfa~ z84%~Uk0DM$9s1wPGpXZCaN4_Xu$bdboY4CZTq<6n!~Qz#U+N8#duC(F!A-z%mvJ5q z#33I&?2C&7Q?*GP$y)UIb#L0W?ix{jFUgb_sG^MQcKo?go+#9)!rQ(- zARBuJzRi0_V~%mGKYs_}Iyw$zw|&U__>CAeCla%-c!8kXL)_`Hg?X;7VV>|dlw?HB z#%)ss;Y*25*89`t@IxgHS0shk1W8FSg)P%b?W9R6$A#}wm)DByr0L^j!Xi<4FTYXg zh+-0bd-oGO-&RSx@BBj#6AEV)U6Ail4bh5Hwf=V|GE+m>f#RhUu=st4_s44Dg_SWNC1<{!w)YfC;*aa9=xS1k9R)U9Ttb})GPIEc7 zX|UC9a<~Bze9i^we8-lv2aRXPY#@g>Ezmt6n?|?>E5ot`Hi8ebvl5&x5 zx@AH%2Hbi`w*`5_tG`YtTKA4*8^=?f<{MPtTO{8Ph1mJ3z`>d;77(BX4$J87=AhkW&^MBjC>(w-$}8Du1up!I}P#QfpPGadrps7 zIayxPQ3uzE<=7Q!$KO6D4^|JYW#VG>dG7Xz5-VgGxrsfbfi5PS7PrB@&8xBc;C|TM zVaU8b(F(zv%AjV=Yij=D6){$u!Q9V$j09fLt@TrwssH_i3)hxH_rN90+9M7O=M!#G z;QIZa%)#q`2h^R6hWBcR;Hs)WT1qycUgi_LGBk*=&NkiQJooDn@;Lxa;^uVldSE9 zqqXpxOITF(lKMJx!?O7i%eSA z?}WSl`jeLmk?=1)7nXGFMd?&gNU}Zwwc~COw$p)bSzv<;h3!y5YBpQ^W-+;; zy5aMcXz2XWK;3;5Al=c2YTWRsox6GsxX#uFN0|aDRG$z2Yg$uN*DHaQmjhfIJjA)o zX5w$*{c6X{Y;olh2Ksh?NlHC_iU=(a!M|3aJpGJaxFlkk@*J6SL_#`|xm|Teh@yUgnJn3*dKrk<#aUhQ{ycQ#n}Y zj5=3-lQ*S>*d8j6;go+4`euDVPP{3Gy$%vx_pwH`!5&LCkOCP(7?K_Mz> z5s9iMbHTT3nDh3|Ai0UIyr%4v@YpI4hYv?$=#c~D+JC#j=-GYp^4(&~qZJddB=b6M z8%v}$uTr5!b_FbZR7{<3&0v%Rxh{-sIGMKNCB_=A$G&S@QO!G@#O;kiVcjWUD0Zus zV~%6U>p+<6mPO0nw@@JwK5^L|ju!_X!guqvTyIE|kqtY`aXqe*X5+&Us&NuWy5`cO z2@MdIH9(DT&*mJtmN+d=7`+`5iP0LX+L!`AUK!Ve9Wp#gpQenFor?^~#rgsetC*2K zDpRL4ZOUPMYYU`%*%lHTW(%FS1*wYYM9wpkIbHAGd*1Jzx@=Aup23zNe@v4ik>p zkbAy6v3`3#UGZv|o)k;hNZ~TAEiDs~;oM-sChm|d*G%q?b`X(!_VoLU2zDf4E_g+5 zr56;#GV?Z`ru>tWbA;-w;I|BL494B6w?9py&fh|4Lcj;b2Ulg&XmA(l?@HoTvrkP0 zKL}&!ScPS-^&qY{ctlM7O6V6$u16GIhFNl3@TA6D5WF}oYg?Ds^vTT?^!E-K^hynf zIY+O;gk_`TOMyH5eH>zLo*~K{m3>CfFEhmmiBhtEx;}0ki$PiT5GeScCf~)xYvUJx zB!ZlaNaT_{O{r7HO&dC#FDoSfNQO>lCgIB_+L)>0+_{V)XSs8&lv}*7?=St^Ki35X`8zIQR zpZZDO1@nYsP%z#?6E8opkg0ftr&F%OBa;KrysHpox%>1buKz9Q&;swO-r)W!4e03m zME_X*pv3vay8Pw{bk&`>&+kIX59la5ztdith4V+W9)0Fx3K7>dgSz>uH zO^{!^S(mSa5%iaZGLF>~#?r6P;;QylX!Hn!jdorbyfuXizuOEJ`_gIyK8In3hZ?K0 zNuJ-5yB8Zy+gQwTT!J5ytWe&5fY=;948JEYW{&JDptb=kU~1cJ{<@Wt{QS9PxNOE} z`lULYMz8lo$&RZyxFm!$XPLk*e?BoTOQpV?kL?8iC)oM!$7`<^FmI?CsEN)6=M-@! zOZhC*nr%!^d-3>Mr3OUnTNHVnUrGdvr!c0b;+7wa1z~gKPy7LDyp7*hsB5VwE8RQU z1eMzMSQUF7%!UdeMHv|3fd7*3Uhg57?@#4VmlPo5k38w~JFjtqxEAxo^FKC*n|r!{ zt%pxSLQK2eDUAJ8%BBc%{^piIs<-+Rd(?`%4`uuysy6HJrsPRd?lc79s(+y%sRnE% z&tTi;I_OHC$vo%oyoS3EpcpTg#Odhc7UeCxwVS6iqkd=bm(*p{xUIzRpL~@J4DoTI za}6u(a|{!{%R$MUwWzC~!)`Z~;<=yBVBITH;qKii8ld>vvikZX`t#*RsB4+b4-TEn z!AO%ZzQ7Pmy3U};vxCSBzl9sKJF&oc9<#FL1(es9fk?*|`rXF7CZ;F|dXm?Gs@*s6 ztMP{OhacmuQ~g+CbPpB=OEK5-^PyRAGjoe;W$*G^01+=AV4Kql7z}v}+g`dt9{I@@ zfi34K38#BSoFLotKQ24zgJJTw$<4q{dOtl9|0F&DS$8k$zbgiA$~&QL?g12nSzIq% zGf7D!gKiK^!6}VgFLTxuCX4BZh|V(3QMDDSOiHNK=3LxuJ_p}LzoLCH zllg1cO=s4v8iNu43TWUwM20WLsqS%qP#Ts~S(7#gvyYpiyNng~?6}W5y9zL8^Gr#x znmY~O)Q%^_MVN0s)#R#U4+iMm#-gQ%VWr1o@Oq=pOz>sMOaxb=@n#jy-YQ*=>Mzqqzi)K|AG20&{VqFfGzkG0$Hfej| z;5%E))kWOn5``WwVxT-+8?NuL#ioraWb8r%-2eB3XR+fx$+?t^LopJ}p5%B?uV&%W z#v5eG{Tq4MRRY2Z z;7vy+1b=da!fmB6(|IH3WD~$;w|0TZ>nz?)9aTKy`I@eDZ4b;f(b z#pKiT2s(4kd-i$6VbE+`3)A5|`)T_F;^wdyy}6n2AGVq2;l7a?HeX`X%~rz8+4Jf0 z2RZOH#)#U?R)lUpt}*GJ4x6)<<5N~0~GX&7Kx zuqgKaaKoL)8%f>JZAd)42&RR|LW=tWkPMv2esOVx6P9)$D6<|a6u4*O?=g11W*lqj z#De65Ciu^20@$4~0P6$iNZ=J0s<`#M`f^VlSbAtTjjgYsIov&I^GR>A-Q*k&1clJ7 zG%wgV{{poSH-NN$Jxb`h=qtHKcfa@scd|F(j+2`)So9{6(L*3mqsU16 zE{3Ch`h2C7A)40z1U}R~VaxY!q-*^TsEx-B!O`GUaLaw9K6mRyuvOx?{_c60_Hzch z?@R)p9d{uwE(-D%MnJ@d&Ddt+2XmYPlb@&G!wG+{W1Z<;bWlEo877>M&r5(#J9Gxf z%k{j`%^DZ`w#kFqqEhzrTSwd=(`Wg{`8gCxy&#cn1^nvPWTvdRfYXy(QKS0;{25cj z84H&(NB4>|AGllu%@l?3m0XV1M2%S$K$t*r0bZt25IVL8VOh@+OxxHEU)M_hW@#oh^fgttZO0$UBFx1s2b{#8&7@SNAlq^sY~@tx6fJce zS8rwQkn_?VcSd#XD`eg5D=_Ny3VQAyqlZ7T^mV`kYW#5tdCMyzW-I1mi?a_d7q@}* zUlUO_<^t}}yA0YHN?6f%19Upmc<)PWA+CLCx^?SE@-{yLc5Bq|3iJAi@E;GdsK1KE zp(AATXfw$(n-7(Sl63o^I2OAE(vo8dFvCPrYgY6l()lVHI`jpZ&NaSSwwH+mE+{^A-~*U3r)~Z!P4Q z0fx|c{08JaxdhYyNHYA`V0w-fMZK5n=>j)5ay;oSDEghQopHAkL^oJbg%v_%SX-KM zgkjQ)zA#%%k%`Ti15e}2So7^ZmaFtc7=4AO7$dP8`=Zq${iz4}c0!YB|D_L30cX*i z<1?k4%%w}jo`LGW$#mL#Q5fi&hRv3Z>?$`kd^1~xI_!I2>%A!y=00&m=fW1UZb3VU z%q&3Hq%F$&*DHC_0p~zIK?dwqSK)laJKSC=mMk8NfUz5CC@Uerh}Q&L_Nv;zlr8t^ ziVs`B_5_mPT?b*aA7d^Dm$8v^JKxCo$13UCL7l%YIQPbYtV=#GM)@+HKL42KvT&Tx z1Df=a^gnpi;>0j-UgF5?Z7^eV63p3h1|Q8yg~YUCe5w^qU)q(x?^RBi8d@Me4sDU`+CFElc1?VrryieV5O`XLpA^$=78gACMB#l^38UQy3 zZlAE}D(`Ok3;1uro7!1njl2)tY4E}AId7-aF%;EnhSxeN_(9Db_KMC1)g=;)w4?x- zEYJXlwZ&w7KgXVEv;mE$x9N-U>98aKu|e0HQD_u~7L5c@5n!Rv{5+hCInQ%7=ab6n zL%1j15<7gVv0_{ZeR^)e2?Z`ww_JtFtkh(_Jk(;ugHOY(MVch;(-2Nb>jDLN&W&(- z6FC+aO#{?)n1qIGB5kIG{4jl7tEz}HS9GZ@kzt=(;{aP9|YCwoy@qwCiT*3qYCcug68Te*i77WiUgQ7woAPEYL=Q0fpcprk* zCp(bna_{XMwt-ikBE%i?r0w=fQ20&{_D1hOgGDRhSL_3LDwhY37e>M+Qw>~D6ahlo z9FJ?I6HH8B3-d&W*fDW47_TlN9q(u1nJd+h?sNuY7I%P0HU*8*7euUxpKS8z7F?-Z z12)#rIX2TXIP^#d+Rtf#V?hS)+hxKhk0LS7&j)Uq9LB(p+RWU`YWVo?eJmKu$Bqoq zq|Pf!jNHRNI5#<-964qTPru#6U!x}2C>a1xTuPwzVm^v~uSu~xU#ldQKZ>iDq@^7a zzl9wyYM{Be730#Sl+WlJt1})pM6^d7O=W7co_@{1H?onG2b|}|b`=%)KmV-d6Dlow zMEvCI;L}ne{P;5#WnW*0S!*1i|MOOImCFcDiEPEcDM8q0kcweNLLm0M70OSEflO~T z{F0!s|LiSLI3mqhNX$W>P#&sk9YR;mxmEaNBEKS_5f*U#65qcP_@9(Nyv>-0yR46) zhFu(eCM>}m{U=I09A(M#Kbx38v2#%OeUs&fphid{5f&{%uQ={^8$=!8yiz--(Txj( z=o<%hhF7S=oLC!0d9ea~Be^u9{9+C<{+dNM+^T_^e@?t|ok;Xvp8{6G`b_ob6;NLB z8k$<3z-Eaocsu(%Ib)%N&u@xjs?0KcrLMs2_fvxd8am9C7>c*yDVG@#$BM3-cyNy+ zJhslqBbV&4PAU-3=tW}5l}XAwKMJyyv;@AM1gg2{8JWD;od#A_kbb*Ukg@g-Ow4{* zt8-xmY|{3FQ$i(>Gr9;v1qCpucmYf+Pq&mhsld2%XTYg}w{+IEY6y`N#nmr|azwh8 z;VN>Oj7JG$%%0P1pi?TA{Fz4!_l40N4n5Fq?0~M@{8;7O$;{!ipHcsEMOw!|G21>R z7fK3p$kK-Sc=Y0GTA?CEXU!JOc9C<&%)1DGpDofZ?y%>WdfA}hbcPl<{2`C8ECQdZ zt7>X5YSHY*6WnvvoQ$n2rS9}~%HNJPtXk?m-qUL#Xs_{w6sjD;pII|-+Kn?nZbvrx==vVs z($?uHAA1pVZ7)FNrX>(~;4m)W+|Aou)r?j@n5{XGq=i%5XQGc~2F7a4qsMM!kvrWj znw{=*Ql^wgqvgx@IDB~x&MDl8tM)Zh8-E}xUqqmHaT^Lckkt{@DPff0xo&NeZ9o~p&!+#LZX>#nyxgRlA<;Vtt0OguMdvF@B^1eb`{`+VnS(T;wkx^*V*+no-EC0S zbY}1VEQiAUc38ya>K2LbK*`=0Fr+cRcGhSgeRb_4y`x`66L;{{^P0Ty*Arj(#qGcZ zy}WQJLIMNk*OB9GmdH-8B4OM9BsFWBW7dQFWN&X3lm*`hkb6%|bvKeFr@7u!j1!e} zKZw64#o(#`9?;f<8Za@uFZ0RUvv9w2KYU$&4(CjrPZPcMK_|{2<%Pi@@kpNqM?R(F zygm86r}xuvk+wAxzxNBrNc;&2`O9c(-59KmDg-%SOD6lSFq8AUwRZh~QE=NZ7pHRX zXpK*7Ao!Lz#vfsDSDY^MXKE#F3fAY3x25CO?U_uswE+Lz{rlvD1_KAbg@AF3GJi;o zkEVkH%zq>d{FW2(z$2Y87s5-c2&bmir)HQ7;@XE3QM<4J z&C5+v57(tZthF||){@JHu7MyBZFy zZz0M_fgrPH7ry7sWvfiZ;16gqOXQb9zRU|8&Ap2UPSz)j|B6?A<+h1=RJofjp7)O( zFI$f_kBdlK$_DDRsXj;YTLl&Stk1Fyy(r(HjgwkO*pw%Sa8ZmpaR|$y3!X1V#x0%X zMLUtS)Q4bHXb6e7e${+DB>}fJUciVU;rL(qxTUBFqa;={2PB#}zY50)Njr!k6*E=W zClx~5iGEBx{GQz!eIIXk-NAVO4KcVS7R4%$5W ziqFe+`E6F+mF#L;l1c zWaHIK@b`Bbb(@w@>mZxMLskmk@2P|687?rl(G9AqC=qMvu?O@s{XMs=fXm z@0Gj_%9w`H2K}Y%De+l2-RlWYTmC7?v;?yEt&fA|?Xz4@rzo}Ba8`gUKNNwT2A%Zc6S1Ujj}R>LwP3dW=H68tCNK*ev%%)W2QbGjI1tc@G497f z-EtT^{^jFg!4F_pz{1B#n*22pZ7^w(KWTq+1s47Fr!VZ+quR&W4s3f8+N^R#9Mz=mt4Fgsp~IofnAr^+w}^=GBS z{sa$jpLrfLyDwsE_!REB*-5YYh~@^)eny6kg5mp`W2p)r4p7l8#P#MU@xv4QiJrO` z=y;{$dP^hrbD%c9+ocP&whNiAxFKpFaXQ5V;A zO8j;3bh~G5k3}Agl^=)Q%J;z`V>Ns@M%hnd9rU6_Be~4&!me$72a9SLl5%ne`6D{j zeCbFH`4Mb@QbRqw_fwjn`|&B7%M)+OZlV?C1PTXq2mqMVO)UW7ay~)j1pkds9nwE-`7&(oDQR3%Wa;%?>iEG zRiCMR+7BsTU&8B13)q|HfE)Nf*qE~%i~58#7`}_e+H9rIoLi&l$+56<8_`F`P4fTi?#{!*DRd^3%j}9ca{zHRd@o^ zW{k4iZ#<_vj5gx$q+r;clS2e_&6(gIP4wCQPN=Ud(mW^?L<8qov5#Dg>`e(QTkdTyKnjm z-lm+}Y;a-#zD{G)Ni*5O1f$n0f6gNoR zC8I_X&^XaH^G%`}NwS)c2mO>ay+0O`GW$DerIT-wbh#t7&3kj{_ER%q)2UnZ`a%PC zXjvh-_NR^1Da@ntj|L#+u|01|l_z!6|3MY5DL{tmJ4;x;2*CF;Jt~?*im!O{(#&^} z6Q2v{E{^{rBxeUtHk`!G-@|yf{+%V5tWFPtFS$QhZobBUA~1@zybqsi$d|1nq<=sI zWUTT*sO%v8vb(|JKF)XSolK?G0$DdBW2G?lmvojyD|^@WBz-t;!amLBLByXFFfZ|C z<<;~6R&A#W!|KrTAs*JvG)0-sCfU=D^w0y#9l^SBEBHFk0$xTidvc->4d{%bPeLxz zt$BTb-@`()Cbu$Js^EE-eAsQh9@n0UP%`fMe5izm5>b*uMoB}ZC13r{??1Tr zan3#WbKdXQ>-l_@P&aQ{1S=#rpwW5EuB@aFz4^5c=KtCQX4`8C*vq5)23JVB;4fTt zWeQzneAV}>{4wXq4&?bOm(=?H(N^A<1?xD{@Mno7oH!>A;~uoSXW(w;xP6s&JBX;?Q4d#W!F-E3xH~tG)MFBD*fHg-&J|Gu^0>Jw8!`XH99N zWlaCrM>aTjXmJ60VQdTY2Wo-E{ECCT`g0*1KeH2tMFVf?rsD1CxqB0cl2-uk(omtR z8&pxc?;c`4YX+o<@l?&vr=jbC(WGXxKi;QXMz`n2aW1hN(z0?3h&WLFs}5>3=Lh>`y<>;N9 zGf?A#8nmLoohVt$;N2%>xmyHcNSR9jHmJ*njhQcy`8O7TmMk~%lMdt;+ks|qFlpuJ zLG2nvP?-|0FHqHDIP#c$A7nvl@oU)rP5_GcXW*L7349vY&}SoKVK+1XAJ7-&I@~-2 zV~b|Mzfd8DLEet6T2D}m->~=R#%{gpy9QB7;!W$(T_San? zr8o594>M=$|6Bljs-NQBGV-*rzarWBRD(7b>4L7zG9yB1C{RQP z9#4*=XNo&Xo2?Xm>826>d?g5r%2Q-zYzMe+@FfF70a%0K&)u^9LM~6`!b4{#qA`>Q z{=M>y1LGudSm=&Et-K53MS(2#yBWn+lavo#=LaSDAZPJ>TjA9J(SHR0gd z6m;bT<6K#_g$x}Yr2S4sLi6K$8Rpy&5*uHHe}u7+a!(`@YY&HPu@k_G5J6-}2KvTr zLBVX!T+fkE$c*EFT;&~>YWpWD-#U>P&e}zmDvFXzzn$T zt}H2ZRVBsEEUuM%CPbJRfd4v8@-Iq?Gv}lQ9J=iT*Va{nWhDeD&j3B<5hYJ8zP z{2th(tsv_Lbv5LpWXYM6Nz6HE1vxS%0GBkblDGK@m}6~E=Gl3Gc%Bv0g*HJt?*?#6 zL^{Y6+L0gCk2pV1&4U)tK=|Aehva7pAoI81@QjgAb?4ON%;=P7@LzftUAVpsA9x%} z7H4h2o>JmqZAGaBp9~}c>u#Y+Ya0@^%O6`DUq}Q;7~f_`CK$vhVnL%PILc}^800p< znN|PrxAr9T^rKE%*!OzQUeA|U@Ru+Xmb67{cM8|1?=$7@5bQ&?b_G;ro*9wmiE4`~ zw{hH!x`@5LFG>zGCO^MNl1W|=Rs1g+ETTVyk%v1P7n_8M({a!z@rSc&GY{>(CXL#3 zSnz6z5JbL{hHF1-$s_tv#_SSAb!}Ce)xH}!PH$!Fg;j=8sn37p zo~JT4<|))mN!O5YBLS{xsxdBY`boFHtt0nJ{qcwMHr$`d&G5@gnb-wJfVF`#>2!19 z4pys^N6$Ca^JU}ET9s&KpIu5ec$sjOS*KBPS+DB2`3_iob^%w>{2#g{aDXhCL%@gO zu5?nW zB!KDF->=ffJ2%|a(n<`1r(@+%)62Yu%55VvohqP&H&5H{fm`~HLV4C2UL8JsEuJ4W z<%w-F3&7(*2esHg7yM?);fHJ6nR%%lcHXW|1{)c+>-&>nP`V1lC3VU4w@tuqnL|7Cm-iBI&hj$V&>g=zJ9uOk-!ULp_$7>gC>imXZ_2e=cF;}`$?;)Jwvp~P$C@JHm($`hOHkAXsD{BjPY6-%d`75tC(5Sfu4HI<8QZIq{cL+VhH zULrQ($ijhtU}P(>j|0zQ7E%*Hf7j-NlkH9 zBbxDZ5!_yJA5CS%q3AIgxaygWZ|;{w_8B+$sCO}m$eH4q@EyqU&`SPOV;k_ylBCBO zmeg_GqtqGs7ija6ZY}G$WVGyGzlvD=b@Vpr5BekGNF6%ZiW4^p!mqWdeBIUow0Zru z6p<~xY^7Q&+IoHvwz3s~&@TdT<5vqO^JP18&rQLxKfJ_s;{o=(!iYN+p)sF`0^XO=VC?pA5;} zr;6Bm;4=D9)Ici=hfujcl^~~%j~2!jqVrc-$e~D-tO|F5b^G6=ORA!3>favJBRUUnD2Wx8XVNleo*k5}MXxa##z4^w4fnb^a2*1azhB7)6>RyIRJ zc*&U@7?p@2!rdeEf)}>XIID|u@QyxdPN{+O0UQz?Fb08_bjT@II=Yjz70xnznvKa~ zM2;VakL-0oewhkHNTwQy^QahO5#jP89ObELBE)ub?K#j zAj9}iPOHB{di=|*;uo*+*62Yj^G%RQPFhf7F^}o_UbD%oKY4iOdGoY2D`kQ2;sNVq zf?&~DCY^MK$&Jb*q(3bIiQ+zRs85LdGCG#ia3u(CJmulnJ*UW~<-^2#{W`+&R3m~{ z@8d}?5!{#>gk;^N!24Oy0Vov`I(H6&VH!w;RKAg@iHtRJ`mvHWAGYKs=y5paQa!cXy@XG4_bt6V%ku8Urv zu0YqX6P_CtF@ucW^usqAs=@VJKH<>*aNv9>ZNB0G)*DnHdCZKL>o=ReYqA$ga_fl8 zNCtkP6acob#Yy6dN9fQblf!9G#hP+TSbzN*lIHdp?`;+&5084$k6Nl}iUh-98zuDl z!nk_pUuCL7PJyh-$_I7NH>gQ9gcQ0k>psQh)Yu9x{nV$3c>jtbD^A|QPq&1?>%hC@ zdHQS;67>d6ACyF&>mI>3>Nb2XGv#LSKH*8ICRRoP5c|LgOPn*N6k<-(2kwr7)A{Q} zzS#jSF?A*G_9^JyYGxOfasnhin330s-q?LZEP1--Ci;4Q5)22Hz}%0q#46CAUhZ+3 zHmG=ytl==eU~?H{_bZ^;F&On;Y(%FrW^vKMVx%)H3|G}KR9-B>zsFRt@Yh{nS{n;K zU*h5V^#YFSKN9vTa#0={{-;sis}2NYYOQHVb`GnX9IT zii!}GWA1I0i?(B!3nhhO~%_)r=uc$Y>qVbCtV(4tT3G6@XfoA;Z;GMU8%bxz83@Y2@QPzGYkGCh7 zU2;J~qYPcbBF^)%gXf+czwWhE(7stlA1wbnLh2Ni$R7nMWait0IXCi&2ek&uW9M;S*96w@wk^kvhf=_M?{9b#W{w=c zPLL12^MGA&hv^mqaP1ik?m!)KYkUFtuP>Ap&F30#NFeJRG|1GG4p^QM2+7?{PUovU z*}pBCTP%E#{Ao?WyULa7k1IZczC+1a%IPyPdMO1g>qeBMn@V;s*-jn=7;^Vfj1SKi z@NuU9GruQ+wDbvcuYOC$Nn&bT`_?$PUHFNxJ{|)D;}GsvyN%@iE`}xgDU^6|$8cG{ zC&>Ky0j}&^$Y#!C;gWrHoKGlaBNR*2c3MFrtcJ_Q38<-5fPJw$B4b991lBYWCrW-F z@kfq5F+HV*9am?kz4DDdokgw*yW-BIB7AGuAjh=JB0F^xi#};($k{WflCM2rO&lG7N?(2xz3DB+CpNKR zbU%|-5dDNsN^2makYMJ3pa7{aN6;f-jHE3((V^ujxcu#FJd%@3jo%)^EsUG*ZYIWS zW@e(AwGp)b(RkH2)qByRgSOD){eW#7@rHJq4oKbR%=A8zFJ}n^sX$0>4ljveyBTbV zgSP#JII2XO|6zd{F@ty_xV8scSEy#}PSwFT;U;-r%FK^lFG8&+!w_B@h5hdYL37It zf)7%#^3)nqF_1xGdE3dqya6P^?3MyUtl?MddU8ANJL|daS{V6ulyNN|gw>(JxN1%j zI{)n!T;<7tjh0QF+V*m&eV(h9R%A;`9+cyK%T&m?fG%0(D@;<}hyuT)9p_lcr&k=H z@R=G%@{7(Vmaa6pqmYb_#$6z8e;vr`u_$;sPY$^)-vAw zKIe4dx$;~nPVI*6&mz#AmUJQ>+=-&Ia){qTeeSiz9CAIJ174>~kn)98I6fq{gwOM$EQo#HREw?exWRqEegS_$Z|j;kH^=25n9UTzwpU8wvJY~lw+dsC7tOfvdtVVIy+;~E>m#3QD z|4C1rmC9smIg^DwKaeLRQ*O0aa4%mBS@lPw*&SEtr9ShCNr^47(N%_t5iJz%IE8M? zH=;IKQ*e&Rpp0+%zyebq&L7&&`hTxQ=&>wm9^T8is+WLulr-ZvN}#&V)X{5J9p&v1 zUxI%BJxMnRC08$VX+#gTPU73YPNTT8*~H1&7X&w6h65UZQHtwt_Wa&rwBSEWtP{%o z*H<**E`L?zzu1BQ&8G?TN@S0B@KcZHeewk1OIl*fwy@&tENaF zKk!IEikCOh>f3dwJ#Ka|GVvTvw~Ld)$9}|}$wj8Mt-!eKIQkkYjS8w&xQh)d`29(B zDA~CR)-V2z%gf(^2R9fVgv*kB2BYY&kQP~gUIk{I*MZl^E+T4I4O-k;208kBq0qa9 zIJ{t~rp}NA&$Ixr(o%vGm7-)Umf7t-?j(+k-|_nXCOWaTjqV6IneB^*P{;LMP&w#_ z$ZJHX-!BkzacXY9!TOG`y!9auU7Kn>t3R6ODo)%%i^u{euC`!o+0W&9skbUqsacH04r?r zEY@m?M++`EA-NyoaNpe>szWX4Wq206s-21a9OjXBe|54$@HIWWPXuJdvTSV3wxRx@ z@07FSa(<-VLoD&=tIB64qnCf^IyU`~gw=Oqe65ZJPv1wXnEFV-3$0Rgmmi5P9{hn< z&D4ON=~CLr?aTOlziqilQ`r#}@?21peiyQ}{f$07iefL(EJnu%1UP&522fwn(28SbqnvQU!!x+1gIewF?94{0G3ZM=P3&GQMGCU zX?0e6upECaPCgNYsuKH$70syrxi*|&GU*py_rs2358%M_RQ&AfAo}^{E~Q>viw?WUfVtN(u=pJYuCc2@ zdLKpZ%nrqxGtT3j)Oqm9S(6ASaq-*8LQt4A;Vh7H;5N11gVs+>F8}O%I_|MB{J1E< z70~Ix_dQh6@ZG1(@A@BB@J%Q0X=naylbO_vyxI7m-Fwtf*@beX*Ad|^hIgNTFO?*T zGW)I@|_*0A-eE!+QUZ}rcP5ps33GWkE zwU7*ho3q%sADVIhk0hdc)svbO_lIGZMR4?YAQ|!E@J9tD$+WK-4m43l?|056=I_(d zsy0K?qaBHwUOu9)gn!MJD7pgtX=iHvN)=+>vjUgfS(3FC2jG{hI*Xs7K&_IvjnrTK zWlcV;28}I(aC?Uq>5Py~OF!L*MJ0OKitX;udw2xNUFZU}Ln~3BuPyBHJVMTgSm6k7 zbF$}506wlJ!hIm1PBK>tk|iGBXxptdDB~=TaUf}u?)`P?ks5PRJ7Mx(Zl)b%yLB~GEhtbCYss5?b-OQpNY_PkKl2p{XF3S@S|;Py=}&XM*prTW_XHd5dy2*qbF;0#Si5S}^$M!Rx}^g%T=(a}bl#ZsYW%TuUa zwiHe$uc2DibwH!?GxAxQi&=?=XzYkJ#lmvvB<(|;*{!Fc^sj?{G-XV#YW>9$Uv3bY zWuK9x&M&k?ND}r$EP`n={Zu9SWMR&IC~`E!~-3O2-^Vr z65isIUMfWVX;mG_EFo@lUZD*~`;fAQ9i*OGMC-USJIN=*=^NC&F2yJ6sKon<*s_J*FBvUGS#Hdl7W}ljX|1$66i{Vb7a!!K#XCj_l zlaD1WLC$b`wG!c9VWCUg4pTu=3bg+9Y@+5hi`2RNMH4HkVNjqHCx0*{Q>jB6zYj5$X5Kk%F~}k zRJ2n$w!*Km1U1UA?$tOZ6C!z!Mi!##JFYDMNpsk#a|nd)pQg%=KSw)F1sQgYG<=`u z!0d42k>>8tSo!7{3VC)OFDK&AdUP|~jPC`1r!$&|d_$41K^V`l>k0i>$N(bBuhC*% zZ?W5YJy0DtQW2Cs3_4*hXo%$jg?pm-&&rmQT2f3bI#OW!l~fXey`YnRgPw=n2Vspj zgw8R?F@^nP*R(#ptMdWOW8Uxfi)7=%_!ey8v7M;OZ33xu2_g~|Gso9HkSLzZV0_m{ z>9TYhyuTiWzHKY<{LN$-U7c$%e#Ue7!y@X$RSCRVD8GO+rEoi}#Bx3AhfZvWc zk*J-b>=Q~ku)>pJ@I1ajKHYr-F>Z;p{i|T&7hFv}D+(~gZ0w_3dV!)pdeYgQ=V)Vor9ESzC!P}>EXL0{YWN~an|Lmf#EetgIGGT6hFDSIPGs}3+v>^d{kAtw@!6<6-xVLinMLYDdoR&sP5{) zG?j9TOgC%ebc^|p#9@NzB$~Id6nh!w+}A36|1+gEM$wdGbtF2~riY>q^ds%sXu9>K z4jq$x#OAS@B&5biV6lc=Y}N1@*Nbe2(ToSEtk;>J{j~@;*zDt#)^O2fgWdEQp+xj! zN`mx${7L6tIEu9wwj+&o9mr;Z3#T(*9?0-9G|Bh?0&W=bxax0d9OZ;!-ppp(GBe}% z4^_!Py<8e6<0MsFlz@)zu%lgG_0q)&`++-Vg!^_Wr2kQUg0|n;0%~erlvGb0{iVGL zXFAGewmNk4KCitA#+EsJQ-2oipTWT?uFAOZ+9{OzsfpL!AYb>J3gH|}Vo@$#$2l2` zZ_stLAaT097rl%K;&WGBp?h!CQM~3j^z7t3phed+yA*!1wdYLgUqcuwO~|QPH^6l6 zk9lG$Xp~_-Xdx3HCA=oeAKUbcvm7G+P_LMI;IEfqsEc2WL$!+W_dAF2>C-YmFDXM4 zFAmawSM6qa9Qw4smp!;S@6iY=l)<5uW&A^*GnAbzn;`ShF>*glKL148AJ)zvbK&@q z4l)TRX!`1E7*1SCYD(_cILIA>VAE0LzIQ!x&(!Dmp7O>w?(1hB-Xq5T@*@Q;ygc*9 zarSjI=W7(d+JZ(FCu{K{?Pi|b6JPCJds|fuetp1qC1dHxoFHU8Lz0vztB{`8Z!cQ(_>GlLY{{OzV48Q!k4^7hvnvwUH2_m=X45@>_QLdX7X)|9DdaH zNvdOYjrDBqXu9f+gb8%{?Acn>QbM=gDaH#Ej-ZRHUh{jqUn}2Of>kT5&!z|XHR2)i z1GiZprUv4k;Qhl4litIE|3PgnClKGG`i-U0f8im>fPaNn*l$?pQju;kuHL|(S#g3N zG9{!Q=6|~broCgq%$+4m)0HpK7*D@C_-Ub*YNI?{rC#*!AmB3 zDS?yQ(EHMpHmO_B!tS2cc4=y_;L`b;HZ$`RhsgRnDODzK0i-@6TWi3w$d4cDmU zB?=>_nMcsNCs**lBnhaCH7EXjQ>{%dN5Rhe2&{@{uCG8g9;sxyiFYK_{x!s;9bK9P z^4nDDmPY%mNNH1&R8hffWUIAqld{HQ`hO)jGpiS!zf#=YriVxJ_5oZ&#~(|m}tR}9~_gAETm_ON56&rw5{ zc}PKC0>o|`rY?S7fK`tQlJh|kS|YMa(8LZT*SCAK1W0S{^@|(XK1CPkTbr)Y9~1+D zQd>bZ_l3~zFIZrZlMa$2Bj~!oXS_1$A>BGCkU48SIP;!#Fbsd)%y0J{p>nYa$*D@j zGMefcXZ8N7@7fYTP6ppb7e^wk1Fa-8JD>fR_H>pCksN0XZoF_L-F0hGt&jlaye$j8 zsInzack)pBnqcQY+Gd}hzPsslDI&q2oJZJ4*?34KCVlN}n~ zK~EcO#Q9fa(Q4+*d3nYq;@l)oUKks}a;w!KZ^_KK*a=WCV1w_JryyYm9`d~Y0iWFU z6FuH2$nf8ffRhiG(-mT(>i=gh?J=E^cIsv&Ex4|NJ~4d(uIZ*gr{yz#=lffDYeNdT zbB+fF-(ujt+YxZIl~v!lZ!k6Xp9P-pc_(f7qcU=NJ`=r770jsf4nwC~qOxqxC8JQs z7}mViYvC66BCt1=vvQN?!r;>&NT^>9Lh`fy zuxjIW&^=)SkwH;7!l#GzBmNd~xxW;bb^N7@cs6S8mec6p;)}4vEjjDhc~|CMDTVc6 zUTH^idTJF%RZ}b3HF(rgR8_R1g<#)T{MEBF(hRg)s5m8C*pxYf8%6SK(*Enh{2jZp zw;QbD-M{x9s4kIPTQzjj8!f}A4A-sb>yg*A(RsF}Oh`H_&(K^oCA}6`{t3m>0WRpf z-Xxyb9*o}lsPJRLnye*zv(c(|!oZn)$p0H5MJr|2s!X2At`%N$99Vtbtm$3O_`0qP z4%vAL#Aa?o#d;z{E$#*GJ;~EJ)hI-gZnWT@X)*Fp$pKq0eu-V*%M$SenK;biGSKn< z^txyLh^$=>|4r#4og&fnts)3}?smgl`nR)RzVd)7+jT^DSX8yuKt5-WgxY9KhF_zvz+tJC$ z*g6@G8@c+a!fAgxjh=lCEto!0}`IaUM4Z?##%ggbTS?;GjI^ zZ*7*MuJ#P^@e`~vR!T`kHR2~vobYheI8M-ULd8~t==^C%rq{3#Uad($hgW~1mXzqF zSeCs8H&*KQPKn@*>*kHeGF%W$N&9tM1U zP_ErBrenF4ysf>G_U@A(3?{O1A;@r1omhSB`jwE3?bO;7R=}Fx*WfR(4}NZ`qYc^$ z0B6-wwFe%veHO-o{tR!+Yh#XqbsOvI#e`NumHaY#cIi4A{&ZZ+y~jo3$tt*#qX78s#Dsg-bdn<0r(J_`3; zPGfWN35JCxLrSu};pT-WFsdv@onPos_dfrf&Clz0#3%kJ>{c@7F7r4JrAy+-xvERq z`yDLNUscADJGUBb?Y;tE%;-AagK_NqCkoGcCZHO=*d2O8JRwRG<1-V?H`Ui6b5_1k zU)N$nL~HD!VfB;Dh?UX&u#rpTwbXBZhd^rDjEoZA?v^>JbNY5z%iX<=ANt-UO1*9L z{(lnaY(zQE$nEEA-7Kj4w&(auH_vNpR2$V$qgM09S? zpu9vF*ZE35GG5R@qzZ4tdf8w|tmYxjrnPCkGqZ@Nnp)Ps-ca)9{xrNaiX(q@ipe7P z&!qdzIL9+Uj4iq1D=U8~kXyG`!5WFsbnR9zlFeC|B&0c?d^$IRzU9xtih{3F7f2XD zn5_eOV5&f~bSQWk8I6TiZ>D}(asq#QC_vam4u89yML1TL47)D?vilfk<7hRCIUY>T z2r+a2B2TZ1R+%&LfuW5kdciEbqMU6#?dOrx z6P{S-WHo>@14Xo4?QF=EpaK{x8Aqw83Rf+6!>qY3_{yVbBqSL?lCOV9*Rs>dbz!DU zn%a*SZJY~Y+Yzj6PsY)k-5_X&DRNX>g#>2qLF?rAqlBhhWc4(FIy3JOd`Y$;qA|m) zgKqaeqzav980@BuH}W5@=J9LiN=oz2SI47qjmP+W%I7q%&F|<7flrCa zPagQS?}KOV>&RF4{cx&Uf$>=sf}Mvf`Tey3iZ3K%eFf(<9QXyhSmi?DS7WaK+#}$& zFof;da|JJOioweRBH@I^Fib3dMOEQ`a(RVM+5*J{6)y8#zP@PTk8KGDEi{ZT{s|>i zq#xoPw_)+Kna8lX%s?aN=@)viv=2=tZ6)VR zDV*cwiXUAaLwSxSBu(NP{!g6Apsjh2p5`i$B#&kkcIY%(-WP}smr$@`bpmc?=9{CL z0<=)&26*;bf$`G5x2am_=aBvniNTbk8}29ubRF~ORPGLR-YfjLk2=5Yikis^U$I;eEyYYVK$50 zb7({BGwabgl~MX`QXhWw#R;sAufXwM%)Hq2JGx&k0dXrr(cEb{=qdGr2Op+TNuCHy zG-yN2F-Ma0y%YC5)*~_c6}X5$g`fXU$4k!>l;=AaT`?a|i*anhY2nK`qKSVqtOPDo zdQsn4a(WZ^#Bal#n|p*QLzSiEziM$_qVsZwAyN#wfe-MdA&OY+vmj5)b6D&0GAZAN z9I)NAxU~DFZn}|*3Hkl=Dz#jsB;!S0Q|k9L0DHpyfwD)A7lHsQc^< zn7CVvUN7wc=l;iJZp>PAcAdR>A0uk#Pu+?NOUnBGg$-=oYvB@v`7?vM>r zvgEB;Bc)W}3a(Af_+pG|y=7?@L75M**(-)Y(;u9z)cKPw94A233YXI|pWnho#_jPV z=_Pn~Er6M2GO(j*2F>$R;rb~~Q9;22bxZv0NcZ?(ShDjJc{LOWieEF}_FuXB#_5gt ztHciSMCA**UQZa8%rJ-_5amXh2a?i^Qu1H=ail9}1e%9Ru=S=fw0OrYbW8V+%{24A zkiCV6-)MZuaO*JOh`9UXJGwl2UCvgBa7!nzY$8yu^LrI3`xlvA_jss4cL;wV4)~k= zY1PoHiJ2XZ#W?Tz5qK218ou5`8N4?m8TB$@^wE1Cs55Ue)aRUM!HBsisVJF~mM!c7 zoxVK!1;eFnZ$bEE`v5ZBI~PXhDnRr%5n{uA1X|am@v<4Mx8w#9+K@PdtQPG+4o8hi zRmXj_b6F#9)ooVmzw!gk5lu&0%P8vgvv+8GVJEKK$A&Y-QtH~@Po?KFGwpS8LTTJ1 zu5fDl8*2(EQw= zacq4$dqx{d-6>B!vy8QoGRwqrQxPD%@Hn&=on)CCoh2<3x{&{25$xaX1urHZE_7ud z!%@}eGgi{foO+a|KKGeGve&6J4Q@2ATtonQI-bNIt5LQ}rA9`CXc9Q6J78AS9enDK zA$>ICT>3YjC3~aGDY9VmNBlj;1~%%_RGrmtG+i~L=9BlGoVtB^9RsDo0=RWD z5^Y)WjIKUwgse@MLBi&KCNs4YYkZ^Ag;sat2aR(0k((n#PadKy8~;O%ze`|;Nf^;F zjKRfk`sqW{S0N)vA78W_BMFZEWVgOBE>K}X{&O3~hq@HHRb^PIgONz}cPHv)>oOb^ zVZy&3joaT3!4B~e?Em$;%H~}*yiLwJ&>Ag-d=e8;`x_DR-f3l;-Y+}O#XTJiG1QK@ z*J(oR!@blu&sX5HQjh4EJ)jGcXK;O11+rp}8R1gzLtt0EA8T5qkPG^;C@m^lb%RDY zX__y@Up&Zk{lnzzo4+|w3lw+4!PLcRl^M^W^z0hAsqzaBHW$G1g%s@d3ZMj(!*HH7 zVP@y^(TAPS;8sE?nRq2f{+sM&K@h#jFJ%|}bdM(mqd(N#4JF97a9zB2WdQj+XaYH% z+R)j?)82bkCi73gUQ+$<7pJL3iTK^#3gXHGxZ5xg?H}+4bmef0l<%R?-uiLuyQL1AJz12A{sfNhH^y3z7?1Kt zuk0`O1Mu>%j}766qK@nluv%k)`u{rfcGB(GMkyAF|GQhgPk{#g9rKv??n~&@)M10?GD^yPLI3_P8s#_YcuCoU>ZuBlVWWOXg7~bQ#I1BRndm7oe zdnNg#!F06V3)Y8hY9m$M7)K09L7uK2xgFn*4>x5}*A~6OsUJ#IbSq*xWPzZ~;@U*a z`?H!JO=O-~t_&N{T@pUtnxMkvzGJzR4kY>GE;Dakjk`Y1#GXnzc+=cOC}G&AK~B%; zSD&k?H8MlUkYO)q-dhac4xS)qM!0vJ3{Snd_O-&3`>24`v^h=Dlp{rSRZB zLUxCsvHV3q!y2I8Mo>BPD+z)up3Q#DqdKUy|3zMmmd*tDhO=Mw|9J!QO z0}fwX;IQuRTupBP>6%jS}w zgoa;V1z-7-*xr2udFMZ@QgHDfekLhGiT!+l{5f@CxOOF6-ZhBoyeIIuRyt<=c#SVx zuYyaCtBCipeb~59L!(Dh51x7ag{u4jcIfV7gvjNy>s^wNxzh*GvDPDZmd2qc{(3n5 z_Pe}wA`6KX>oTyH_2DFMs4VP$ zc%B^TRMd$(=t>JET%e48i9zd|TK-LIQLr3zKzpCeCE4$qk>v|r95A#U@^|FHueWnx zI6MIMT)Rx(v@Ia~L1k=dZ$K)JdCjeE_=j!1jj6Fs!DxQUDC}>MfyGxM(4!#*60n$q zX1yGw^PZ1lojJPn*P5R=t?q1k(_I%h5f=;xW^&V1m(8Xc=FTVSBF(D7=^V;nY8Ef^ z_Ajd9`~|+FRTBQv6HhJLm5f!V(s1_jDRea@3^p`jd@n2=N>|jRok?<|_neI($y^tx z=7yt9A9-N+Lnq_pPKIsp_X;vJ(<4zTi*U%m6Y6DGEUcGPWY<-kAX5oN*ymL@D%$vm z^NaCe{g0vZ@TcmH+FT!QV zKF0IxWuQ{R2qO1yCbfftWXW%BEO;dZUbHj3%Aj17AFTixe*Y|u->Qla0RxKu?Bya->+ioma}l$w8E(8@vGfp9zx@ZiIIl;afy<3(?%7WH@d(25ddaMX|J$n596 z-TjJM?XCwU>-K`?VN-ZIPYl)XxI(g%H-YP1L94sA(Xcy+@q}hw0vC^2Dsr>ph*E|x z&z@nq#o?1sJnsbg8xRIpb5{Uv-vu8j3!>esfgi8@o;Uka96~ZiL~r9Sx`GH3&4CMG zIogR_Kb%Ax1eL+irWiIaynweCTxOg(56ED<0kL$|BB7sUV4mP{I{P;T<5!b$M=uAe zu4Q5Q)IVr<)8qPZW|p-7*bv^e@+-9?J{o%+)J5AWgrL))7?L+Kcf;kmkTUjwx8-L% znOXl48;INCG}lBtBzThEbxxn0xwi*WT%rjPt-+fc*J3y20r0w-4-UC;aQRaZ$+;Os z_Dz@1m%Dopx*!$X+?%1-Ro_Lgny~ut{z5duXG5&}N~s4%aVX5egDjoPaAcSH!}Ol@ zAa%MAWqMbmAh}n{aNeC&vv(OfAaxSkPWHjqw~1i zY;(997E|5WcgH;{pdgJS^hyaDbK=p3PxYux#+Nsj1|7Q@7j7ETC*^3S^B%G?u%YjG&BMI~P1wo4 z2A@&Sz!`HtqPOOA;lzP@q&vPtL zoHQxb*TD`CneN=mR?b+>4pRQKln#IJ0oKjDhTO-&X!#u(tM4j)WVmp(Ri!So{>^)e z$C~v?g5M-n>ii8$Vk5%Vi$#Vi*U&f;qD}@sCV4G!#N1cT>fh@7#Mb*Kylq)cO13V+ z*YX?i7wfmMQ}8-*ZOIh-@*%!CT7?RZCHh7&Eh9)b^@ZZn|6uv%@)|^g6 z4PNG`KhK#=B|gBfXWgk5?%t0AwVz;+I0}{U6};A7fYoM;pi$5d{>eXAG4|t!Dmo7t z)V{>xBgY`!*bS#>W-!UuPCPHO7q#xMr#>|a!IW7Lq^6vNi6JjEG}i)D{>Y++`8jZS zR~k}yIS+4TGF@8_s1ewkMqW+)!51$(V)uI*aLlxg;z(K39P{JISMdi$J=z5K*niR8 zTMtNc?^dAkIo#>2Nd5ez1XE1LFkkdAI6qN_j&m20#pyi^>w&RVUww$jALTaKh7VHL z-iz`0GajSjmzK1CP%C}ChXt}}=}5W9nRaXvh1yLM=)>7pl*ao*a6RD-jv@Yd<9I9H z^TEloj(eGEi#ZPlems16EFU>)4KLG5$v*FL z3x8ucEdTWRVZY4)YLN-2ZJKA{WzQ4wh&l()D89wK4+%J7_j42+Er%7>x8rNU2HYJh z7sI)a@A1AvLHOh|eybH3nv`989WnnCL9DGM$R?8=SSv!l(Y+;)#I-LcYrZ;J3GLA! zt>+aRRSX`$E!GioZ`)t^b<2!2{nod-WwMs4vv~lD*^i)gKR;9oDU*lhl8sKcjKEKQ zEA(o;gRz~13Z;SE;gtOHkh z1OkE1D0oLKs8l7u4f)ylIo(XwhWv)M?}P9@ya_%vJs@Wy#PCH$nqGZmJ`v@YfE)h7 zaQ-ukY*bzf$Ir4FJ||TXv56>nBoIYPf0iNNo{PLk!{+c>O2q0O)AjJ~i^rJBVO6?4 zLd&dgkl`y7lhaqlg9kh?XLl^|d{Rh?OzeogmLM_sy%W_0G0!m;CL%G8aJ+CKZcI%C zMK&A#)=VKfS$t&t?q$$?bDrd!Z-b1N;W&Cx3~HV@OC}zQ(`|+4A@xTCT`G}}s*43- z-|i4Hub~+1W6g+ewku3~?jfhYJbdXmLhW7jyEmEnhf2JfyfS^F6O zOo^dl+}-JKeLb4Iy30!G8UA*HrZ?G4(=bcb$gtS6tGiXl@}nD$Zo zh(5}!hHoOKj3=rDVp9Kumdpv9-Vb0FbeZV+JVA|Odr9oriTuFi15jO9UJ#*o1V%SK zMn{9IvTThPASnC~7MSU3c!)pI>R-u0o;N(R9RIaypDlsBLxr})GWI^~S`mkn9p-?$ z#}hcyuWIFgM~5u?evw3U?jtedHpD5t72;j>$%JeJx#VC-u8UQYF70Iyu62wUHC`sO z!}-W7qa8TS=o#vI8V3Jr?=l(K|FEM}0to*SM{P@o@l1{=8HkI5mklrJFDQ^K_`QxK zntmpm4_{PX&h%*gSgN37(g|&^Ik3R;B$<;w0A~O0AaX^E1P>_?nLJk_7LW#(6ByNN zXM>93b6#D|Hgf9TL+};TgsOKrr1rQe;a4dl*fAOowM#S_C*B}ul~!W?q!ePb{XST7 zmEgte*F-`#p4fWUk$|OfSoxa=J~F@$_qJ<7(ryCm${--;QedlH0RF;ffj{h@2d)jG zkeiT7g61s+j%g0LR8Nskyg5?N`drK4@n(6;s- zc)UrlP*bs*4*8}`hE2lZ4Uu2)EbuvGikkaWihN6kaQn{_5WTk^d1cFD zg^VZ6`!^pF2QE^^nU4u2!SEE*vNJy13(vM~|3(|VxRvvBpq$b$2xHibk04cdL%LL< zT850|tpfJjtpNm`J0#ohg2^atnN*XIb_5satJGcmmVGa~jPuBjDTy7Eiv6@sJBjTh%{1 z06S&}qKYk8+sCe8h3lW7+AI>hZ)$vN`4?Y5m-+HvA=$vLq3-7gm3q2iGW2he2bSR8iP-W-J4lp z)XUfCn9Fzxm#BgNPz79IT$`%qda#~4MB+8}5dzIfA;6Hy9jCyfW!fZ#w*}umtl0Rb z$({7em5{sIS!67E26g(_z@11gkr0?7=lAClafvlnQ#~6<*TOUs_$U&aojeLBG;8ql z@I_X4b`GHMqrs?W^$eN)bAqf0aRS4Kspfky>{9_0pHG}mwWDJ@Md7=|Fr_0HOO0-GB8QKC3<+tHT9#bthStB=2Ee_QX~?Fn4ezW^Btl8cap;F{I6z8~9x`?#wk*cwRIwSB@64qZ zeNX^A&83o`okJeSnE8Bi499(;7^w)7q01WE(WK^k^rO`h-UoZr&mBZmyo9dcou$es z=TRYT#kdYXmdE10NkJ^3>W`gYT*JJ>>Q<*W&{+NV74o8Ih{SdE60z-%i0Q}s)L;(3 zmBO$*IsP}7)UO`|y$j{&@8U1;PD#otw2LV`^^1@}DMzS%bC&o#q#1_e5-KNN+iGQ8 zKCeMqLi_AkPcWY+oC;2a5)E0%*5b2*EsIE4(IqPE>OK1Ig5AVr)f5h1 zdJoKAsZodSG!i{=57;&C1HT*R;%ChNIMSH$vxQ%T-qRPc^n*vBU`6PooMzx&-cGFK z6(HHU)3VmHP`UX%jhD~|>tefpBB{s1U@Ck{W!9|7{s6o;xCc&-nZmZcOz)=6 zk+S{MjFLN|aFR#~glo5gn5h}8`lkYV*Fs5og#yFxxeZ6s77&|9Bk1G93uJALJwfee zq)x{LYU}6Vz&>Bp7np?JxZgwOj(JGNG6ZLb5?`8CH#w;MP8I!kS#01$k`h) z@NG{FzF4{y8e^mh>P~^@R(l}HDhsEVZX*M)ba4O4O=KyCSEZBEFrJObF;r6yn ztP|Ua(Hk|8X1a36p5;U5i&AXJX9923tMR*sI4}b0!~>4fFQfk*+5TQH*Sm;-xJ{y#FfxWBlb=cs8>ytlQ$NmR~H6_C#;O=07jd zUtYgKkqrv)rTPn6Qo9Y$*d$R@rUaxI?_=HrI^f$wLFw_;1U778xR#Ibvc0n*`r~1o zvpF1d9~{iv-6KeQuWhwVjI2OwKK%z%+#7hlMXG+Y_Oi~Jtr&HHV+_NTWH^YcAOFYP*Yz|BgvZ(O+WXq!BGvvo5%+ZU^z zctKW~kH3PwFD_nP@|ijm6sK6m39UfOS5}Zf{Q$J@fePG?d5@;9{ztwKWgyYs5!}pg zf&A{yrM6jq!!LbrQ_7BdL{LW<&c8i?#ihO~$K)dL%hkaTMq{z1OAs1Sk|Et6MJT?~ ze{#LXyObXvIge6)ag=WE)J9_;{qcppONq^qty#fLPT^Lf4hdb7Ybom!L$)>)qfkc~ zq*Urc?-e})y>YI2%hE)0%cg9|&|hJ|H-1q^jaEbKpZUCELwDeosj;$*oz**}PtYrS z_mTta{XrwCfR-7nLkI7yBLBpG(qj%4lz#nVBwgtZl3H`YV0kD#y4D@tog)Ux{dRDt z`Vx4Be8-W+9xzX-jLfk~Q`vlGFngjPfy6$t=K982;Elp^m^Rg+e$|M8ZvK7hxRf(; z44A}5KYr7*ghe5=GoOxo{6lkDR2r_ypQ|bL>@1dv{)p6KTUEvvuuKot| zk1-?>aR9p+in8DI+rm=mWe{KW0xwnwL2Dld!g}S|psVi>fnoB*f^jI@9lb_-oH-74 z+;P-nE{t5(pUk-U;Q?JZ5CFDYg3*lzCt7D%04lD3MD43@V*f+==&%D9c^tCO(+rb? z-Cn;N?w41hPWVKPnPsBCwjMBdk2JI!y3%BK0xA;A#FF)A*%o`=;j;HKP;+~NdcAco zmTeD56Q5S1W76@wITq6N&MUE?ta=`{8}QH@$9&`|cAgX~Tfjw~y|DUHCM+9vg4J?g z=~+3-_>ou-UT&j`+&9XQ`988%@w&m_;hRFg{4GZ+!@tm$ahk;8SQwa&9K$KABFJdW zEV6s4JS=F71HL&%bmc@p3Kwq1-Qha00oM_oSb&lecU)^Ki#`YrV3#X-wB&gjuiBVG zg7jRFz<-_qX_?rlcs>3iYeL4WucHV#K_oxHN18WVGCj)$R>ll}*e|dUq}-2?lVPW* z1dlEX-L-?SR|Tx%QzOxiDrRowAA^?`&LYo@o56R>Z}!b}9SB!mMaG}Fk`H{#NW?$~ zD6XQ2=U*0l_eez(Q+mf?w|snqYmG-6P&8X1Y@!roL%5E_Vt&G!nxAyytX zyr^%u_9>*m5~;!G%9Hromh-&jqRX+RxFmU3VNcRe_2;gCp^KUq*3eZd=TI6Eg5~HJ z>ON3Oo@^+97p03Z%PkA4b7{sY99rEAN%)&~%<1TaFFZqf zqU$o90n)^=>nKdb?S+rSsr1U~Yp8}LLJAHdGVyjDDJcf-$ zQkK7##bn#}=n>lyW0G#MhGdDXAuYvUu%y{lbauxtws5$DPMK{otM`ja4$z z-fH3K#+LgUZS zG-Ocnhn!`xEv419q2a}K`1PueI=>*37`mjR;ggJOJ6VMs@d_Y2He{fF=OL2D z3Rq14(Wu)XQEZ>Y5{TckwcUqDGKo%x=hD ze*^3_&EM5|sSzB#Ga{fM+X6el7e4y9XCTujD^CS^tpnw!I)i+&*+p z?=_bD?f^ZL23BFmTHu5f2RaP)K-{^tq+L87Zs||r=C*wEvJaj>^?#( z3X*5Vt3X}oE|VMYhciQl&=ENeA?K>I`c?_U@@qplQ~ngPOZv){X>KNw2Pr%&J_^r| z@390UP2AsbiB>r32jR@Dfnst#A$gNXW=8=rdvXTm797RC=`=mzdyL1Gk3^CG=2{tV zKf?`KB}*T(Zzev!0zfZhFKnK;3h{4b$@}{cESGV02-O<_jEfNqt8XJy%iUnjJ`2_w z*XPtjfm)KFCAq-9Vmbu3Dph%o{Vyw4vuJby^0{kFGS(YhsA{2dKYYOZp8=C znR7yz?~)1;h?+vYfg1W+j4rMGpbV>MFQ@CMN>l?*2A$|^6c~&FZ3!no>P0roch$5k3}4U>RnboMf!%uRj~uU4Yq?Z zbo?J%+IvwXURw}K8BP_UX|H1BT|d#Fn<#|6WESDFGoc_?-ir<>tw5gV2rB7C-1K>l z)a(!YvGo=&oXNgp@$W|kb{Ioi<1S5d}esOSAdz38K5G8aHUP3 z#Il74^Kuh4TG423Je(`6L!BaBSz<^0vb#SEW%Cu+t6a%1#Gkpv)M=*(%)fhM-iBTi z)$`XPkmi=C+$|0@NOJ2Z%1YxP-nY1sV>x>g`|tdtCUMvk{L@Y$q1>z3Be4}d%&Vau z70DqTd;{yPGg5U`oC7vXMeu;X2ZT*AUZb`3;1-aBPOV-5+qb`CYu>#|$6VCL+fD{z zKXwFoU(tfKzjBZavlmtWcN6_GV=~8v+USMtL!9KDt!ydOgW_AWU_sY$sMl~N66toJ z?-GT&vkl?IUoWEW;tY;k3+RSbRVt&0qUq8r&(Vkvpr|h%c#&d0UVM*>JM8Xb6S+4y z%EA~L&i+CMxAoy(|1V@?=1;vm&8*`^h2W1_A-ak(;jvE`()&|P`J(4Y@NEqaTs_`! z$-%(dp46x6UC_Rz5-l+WJ0tq$>HXF0MFkpq>Q}{(!XJJF`fragRN+m z=M#LYAl%Z4@%=U$J;8p$_26vX*j9WbcYIOP1ZIzQ_i z))B}pSP-+4s*ZD~^CH%wvnRvz6vn>f{hMFU=@Y`d6)C=1KX3<5VMii!CwX3%n0JA9 z-*<{tX@?&0*CW}cX#6kA4~c$HfT+XqD!COQRYog3&_EyjnTj)pcwv3Hq18nCQPpiju?C=>o*xRcKGFyhr2u>rv5nj zGQ5E7(`mvA6KQ16+ENe@S!boge8#qO6o2)-2+lMj$4rD8|ErB5QB^HOd-xK4xNZ#< zjaQOl#@ictUbb=Md=51CR$!j_A1E$wfa!fBlzx^13X8r#qg_wX-J^<7W_y(0w@?f1 zmQ%pIc@8C>cWg+{_eoS4@tUd)AAx^alUxBJ4Ii&WTBI~{(bm)eoN8%Lvp(y>Yge6Y z;kLWD%fzzjsJwn0&kQC& zw(|g<8@!x+_B&|#sXCK>JG+$=RD2$fPUzF@10v`cuN_raMxzxT!f4in7MXYYF&e$M z1<6lOV!w9+I7u`C8#CPK_mK~f#Y1s?Rs9hXx^SCD!XxZkZRsGfKsct86pcRos8Ra~_0LB^IV8o6dfOw5GS^g~L2Y3u z`|}ym8rrbYzYn{eyoQztx=>@INidzB4&H_=!hfg}eew~MgeK6?_8SA}MNr^B}8ES%!yPj@O0vDbb%fVUMaf@V209CVe*g$CC0rrm#`zOehK z<-0uhW}h+$t?9xrnKiH{kUpd;Us zfwaz3w$uAU`|Z!e!E)cx0xJRP#J?fjUaI8!@PG7l*$U`wO2*+Y z7+&kn7?3&0hos7bA?C3QT^{%x3ugT(hzndpKrh{z``T5%*^88iMSSJb9|J2weBEPhb6<*Jc z+uo=}8!tgS^Svz26+eTyzqnnzM*+8QDA1N zg0@s;(2rv%d_emdI#TY2!`j(!%e)YjhqHOyL-+96v`RW?Dx6e>PIJEPS^*>d>L}zb z)4PFKw)CeqRDt*6Z_%^hWPuyGzA_q{Wa~rBnH6|N(h6`tQAjI39z(%-T1eEb3SD*! zhTj)vkaY`}yX>|qXYlPNPIs{#xviOv#yix=Sg3Ge%PS5&V_!~(aMh`=E%T7E?G$>h z*H5qQE5Uv7x+H2S2Ju4IQ8TqCxF^R_i0rfbN^3bcsM)mvFv<8rezr@KyYh?StK&tw z-|7sy&V=K?9hyMC>Y2EH`XQG3-i~)foCD3Z$sqo%7VLzhv7YKRbo|uz939CtFf>kq z&89n*weRSY4TrbGw~O;h)V7VFB>o2rkB%VO-UZx~Hgx`AXCdl7bdNei^MlrRGm8vpp*RxPLvxZ^f$^w6zDKXX? zR1v>r209I%DzDo&;u!H%YN>_|xpG|;^YsdXhP znh>9Fg;^?c9>jhw8|}Vm2}Ok*h_=3fehS6apC6e6r*^mj{zj-owMn{6^#X2HIgdKB zWU$~qCm7`Dfu#O3bVKJ5Hd}TU&zuY=2PVwvp-r6-DDahSzSD?P$`gc5ea#JmM?JvB zy#V3k>#6jmm#Fs9m$;>-4Xx>G#nrXhD4TwaSY?j%rkUF~IwBjAua9RM+RXvw&wr?x z)#s=`0?G94vW0Nwt_GwQ5Re$nr)LGuqu$0k(0XhMogg+KJtJk6RT|>tZ0}dx6%k`pp31Zgj~#pCO1bI1Sak<*0+^)@@$Ad}YeLhxsqsWc8R6NZo5^hX4l-BjLqj;Got z_n+3_8aEDlwbhwDUb*R#hxQ?CFw}x)1l%aGGA36w?=~u!S%}8LfsAc`}mUX-g2@SIWR=u{Nt*Lnvs~)Mn1d zwo}C&9cU<8kX(*D0~2Kd_(SAMh8KRZAfh^r%zvOuz8aacs@g4a)p$MLjPg<2y|egC zb^tV$jv`0zGWub*E>_jpL#6r`pvBXtG7DFykrS)tXjSpd!883h(-WytRE1D|vaX~zvdL{%X zTiAHTyT3?$Su^dnMnO@(`wp$MSJXoEb0iAfSdS8eT;ZEXERtQe9i7WWIOu=`aS6)9 zszK7qCk%P`(CQxL$MLh#uy;PzvbJQGbStnL_g1oRUQYzF?=$^;JCAKq0i@NCfqMm7mgze1G-j!>L0J2$>LzS<{5g8DbiHzPlRlo2+D1#@ zLaLtUiubHuL$$UnLsGeJM7Hn++W)a0^_JTsy;&RK^q>9s{!+$+Kwsjx)-au{z$f%; z)miZEcRN+xu?CjCC}v-Fy^R+egiw!GhN?TNTcFuHXQA59&yc5*6nqR|I=2Onsoz-_ zv2yQ8%&|-Z(Y20+R_}+X`0hT+TA72N>g~WHhxH5kj=tidu50uz|4yWfaq;v*5X-()U6u8@#XudxQD9{R|8 zk|(a9@o6Hr{nvB#SL&OTp9tJW>H|vX=Ef%0rQDS`T0?dx-KMhe>K zxCm|TDMB7zixFap!M7bpd3<-jvkUq}8(xi{z%Kd=vD!t#Q`LQkE+{yl0yQt zzMSc7eH-!rT+JRBp30sK45nnVl_2YDDlfXLpW1%AfpzS+1cZ&fLH%e7MeBK@xw|Kk z*av5v`F90OH;Zb~r)KDRE6VWxrwQ24WCE?#n2qY)dyql@ZS-CBB)T#Yk38-n-p|XD zoX>wQ;G|mzv7Qifc6lO~68lOk<*y#3zGX6Q zPd%m6!erJ?T&B36fACZu)KcE|`WXE;!ft#zkE7FhiF0ITJ+~=oK3W0KEoCJZX&y3j zZIE#)K@NJ?RW91MQGch(viic#!TLF4Y(W=Iu(O+D+Z-)Gf`XB_3P+&_e9@@Zoy!x8 z3qt~@G%(D4OAYm2rIvKfLghn7s8_^@idZw(LO|w@#`gQ)*pp+Pyh+&*Tzu3Tz3keK z>^H=#muwA1?@s?g7b^Q34n7&cj=YBqL--o?QmL8VqOp|TuWF4fiv($DcV*=8ssZ0J zeM#TnIf=vi=Hf-mHPN>7U#a2KbJ^y^1({#og+dm+M9a(cQ0PYiRC!JgCP(L>{*fY# zxPatx!?b>DQE+)k6z$A4g%fg1sIOk$bi1G-emJ}j9hVBiS$$98NE^))-<*ns%4C#$ zjy|S^JI(RziBi02k2CC&+{jz28;V8uKB9T1fv9HP3N(k+k9L_dwROIisCHdCR&b(` z?{Z)4bTSL1Z`y+4-8TBNniY6|AD~-z%8@tc(RZD{|(*=VHbAKH~? zga59!!-vwkFzbjmx-Vo5|Msn8d?N4ZJ>M9wp+ZisuE{lC&7TCGt-cw3{)0Je+ZUs> zM_Z>(Pqd4!|H6kKH-w>C^%iKnWenx*X`y0wWFUvHA;_s)jnX;2kZQ`yL$v{7G#x1k ziS=c;cqABiFVDpvvfc5OAN(3ug>taP_Q)J{x%Egqmtny05mew3LQyX(u};M!B-`@~ z-I`T_J2RZKLe$!r=gB0x9<~;IW)hJPe@(`Xe-UW^bXm63o?wpN&rmvZ>}mb3wr!|r zTd7i0!D(*m##%b_u{}LGAwl|x7N(x8g6U$yZrIZePcEwC!E9~;U&0bRduA0fb!Vgf ziv9GSg^k&7pZ1{yKaSFUr==*0XO-pTkdF69OMz3#22NJ333k$nqU+ySqm?qDD4Ah_ z(dS;Gt&igo+c6i}GXjgog)`JxC5jChVk45gzm&dys45-c4vq5KV z6ujLTi(aO5vp<|(gzbwLaXlh*SP`Y!*`e02DSrAnQdn?^d+MM7XH`%Y?WP50}br@cYDz%dj%9S6+veuci?WN(@5fTEcNq?6>NU2h;}b|!Q1|YPet`~ zOZ^dJH{M`DIQ`)APT1Vv&M31?=tT_AP^Fox7^c*RERRXUtLuy4J6}AtdTs++Y8Qc) zoEt(@`!Fh;r3Fi)M2XtoBJfGLouwwVl6+o&8#k*RA!)ydG$$--agj2IcfZS-KH~5e z@pY$Qchpdyn-EAke_TXgN{@lzfm7;bIFPpOA^6;BNiYd?0?}VTP$lCa5w#ehMokCs z^i)pHocnXgRjwkIGwMLyyG4}`%+2ETu5F?ZNUf&>bzWm#+d!&KlHq}DG@~4TEP)qM z$EZ{!Mi#h<;rQ5eR2P|t?4{g6Dxs}ma4DBvJ@qsvcw{xbw(&C^pLvZJ_fHa;Y0<30 z*QIp!e<3=&kir%8I;4KMT*{LCd9}yZi_5=e8Jz z=eC-R+82;apBg-+Hq@^-X`! z>xyXXJSk3xr7MzJ=6uIoh^9*NejtnLR@8jY0`IU8E_^<*nWL#1N$(coBPC2fExMvy zOD6uQGNrtfT&_~aQPgUzt#y_csA~wdQ(kNX4}Ca>h8t$y$I$tg^YD(cSzv4$hc^}! z^V;*~Bc(7VAi;?Yh>CQal_o)>7{n8~PFa)6kCf)J7VvN~{L8 zGwmoNdMn!49Eq;HlSL`MezXn8A5JRohb(DNyuw2W7P>2N*VJ2+99n|N51qu9Y<-5OS1GXtS3g>?7(gog@dxj z*y6XN$=WrmNwa}`65tX%?_gRO9C`j`XSGWFu1=V8J(?Jgs#e8fXVDytO=7@@7@*D21e<)$lVtl zO1h~=`Y0J;`suNa3zR2|(&^>CZs2`yF}(RB4HC*J^t$z0WCd>nv^HK;{;)a6QfWzh zc5->Y<~i@hXeGlR$Y7$DqRKmt2!xGEF}lpF5wZ65h&knPTF!p@s$_Xk+umN z(q_ug^m8|ele$Nh45ove^#L>||BrTi*)MF(WjMeE%OLubFp(aZPXaDB;ZO6FvUUo_ zpzm$#;B<^TYztoqhNE)ibs$9!=*30`qma{AlqDcQ5U?y zUEKt0rp;m8>+jWXKRv=~juWKMqPO_*vF(hzK#um?sY(_+8{=6UZlbeItx(@o3)0!n zgNH}bDA^2W7-HGM)UH&7?+AeBIZcokzmcmpxgJ`T0`q))gGulj6T2Y!mhp&(6c##=4+A$e?C*>H5fthOLn5?Wi%0e%e+On&n$cHc~c5XG7$b_ z70L6|AoD_YkeJy(pBH4I;p7OYs8xmA;hUjIWoz6D(|G_HlbYc_VWisG?HTMxpQG zaQlb=)gS!}89(TvE{#f&>FqLP`GJ;PYF`Z!U-Zs$qsmWY(Ym=_F6JmCjXRT{lTj%9 z;Sv0CTu(XXay9)%K}Mx-L71LrtSu6=me--> z6TNturAxyXV-xj<7pHJZd8o2wIt%@$br&R!8D@x~1QIH=g`~6=m3KaeXlJ)W$W2;; z=Qh)b`yB4!0=<8f8}7*&sQO0@jIRRU=EJ~ci<4f%Tv9TkOYM;Ssm8ykkorE%P2YWX z7W;yP0^{UPKu=oNfZW!jXxPbv+Wa{a?dIQt*Oun9*Q%tGj|ZRPb@W2&QixF2Sh*mC zES3O=r;xSNypHT#A`O{Z0<7!@8*y^h^Ng`s5x9Jj9&w7*<9vJ8POkipgr`c^csuO* z!7rtOY!W?zEnkF@Y{zNN4OJ~%UA}{Ci|j#tN+C?=p$?q>Wr6)6cQ6QWQ#k}ifNNQr907|(UN(RpTgfq1j#6N=Zx5n%y3o7p+DOv}V z_LSp_Gy6!sVZZvV#wKo{bY#|_@So7MKm|;~3n09I2h6deiA3g2c9Ho8m52L^u-}rW znLMXSuAXcpb^9lcA|9k5(d@VB@$dT~roUb5xxYOQXMDnAtV@s+90Zy7Tj2Ly6IJcv z5qv|E;JN2j$ZQ-yR{rG>&*#svo8(q9{!yi9Te&~^b0#ZmUvCJ*Cc6(y^wr4WJJKNY zMa1gv&`ElnTZ?zED2Iyzp;+R9GP$mN1a0?T!@anRMLNpgVZK?J%uIyeiWD!R9#q{# z_IlTtG2}&VOelhT6dKFr`+XE(VL~vfmzQ;#ymC+JjXYt*xM*7dB9JW~9 zo4(%I63v+v$~yY&GERP$n&lk#jPgH{4@Mof_`ItTJc478cs<>6R=Nug5*bI^C;@!O zLzj$9ZJ|XoO|rd=%WzJEF?kWs3WmQ5QZ_`EL zzQ0hG^GXO2js*4OdgSxl9BdEfK$^#itjDbhT!r5mWKSUn-?ux26pqQ0c@B&=O4k8) z2}`h=CvIVDscf|Pi(^*7#@p2RszRj{{kgf9A}b zd+sxH=ia$@&gOx&tGlSKu3nW^ul2rMwTuZFo4ig-r*bZ{AY>x(Zka$H%UhAq>pS53 zy`d!ZN_?G^?n~jSNju@ow6(DDwj($F+-Mf|iDla684`B|1vusw#Q5ARVC>AwnYG0# z#HC7!yc^vtT-o)4O%{E@$V{|?Jnspxx!!`y^Gjsj4B115is=e3cUy2)$}x5QJ~d^_ zd9CCm7B{mWk82bSvdo7Mi_Z(!7`njsJq$NPD@4mCF_C-JK7a@Gy2HT< zGzNup6Sl`@2K*Foi%kr;g||AGl!42ja9cT}`uR45>M3S;(-F*Oe$2J+RwE|mEl~e@ z9vog|#4T8Cz%1IjkBpgm31+*Ef)mzC?7U0on5=7VWNXJ@;$O}4h(2NH35OLzygpYQaLS%s_&#x>6;*C7-#vUGwZq6fS8(YQv+*Sz5uM-*LemSuD zt|_}xwVOE|xs6ow@s|eL4WKenj!TxW;Q4y;K`W}4k^Cu+w;lFz={l=m;*A!oP1lM@ zIG(C=OROcK89Vvd3^&-=JB_=0dJ#5=iFF7 z03JN+6eP(R!gs&7Tv2!oJ1b&6v)-M7^>%ky`7b71y{iam-KGdOr9(iiS1CJnI75iW zP3EvoIEWSW30}v?gNmdUUgqs0j=}tz-`N$SySvt4gFq2z7-2n8S?}Rs@q9k2imy1okCj63F3h}XFY{|5I zX3^I@pc3RZ0uj3c1U`KQj*IP^*9&~~pb94^_PnMp|9er~-S;3@|cgJF~uk(AU2{T$iEWlN`ZAbv=^0`NJU4D@J zjgvKJ*>O;jJ`AE;+Zb~--p@2Zm)u=B5~P>zhPh*o)crj7taiw%Bv{JtOMbrj&e>k} z<>#L`SUjzpNxt!lyZ54%tlk3TRvGVi96gRWrf6XTkKZ3|8bmISZ6ce8&(RvHDTa%} zcXOhy=QxFrq1?jF5hQb_1Xtk~!(@p2!rmDLr1!$>90T@_rU@T6plmHcX30A;<|jlU zZCN+h<4rXjw~tgedE=$ALCl96|Fj@W;zXSA{<7u7?_D1Fl;v`bAEp62|2bD)b%}9y z{k>kW31Pusd! zWrc!FF@sD^eHlegC1D(={V<#RQ5DPG+;dmxqcR8vHZO*0g{$D*%y9Ni-D5r`U?BVR zs|+)_(Uc3UizBgK@?8EaX9!(2fdq_K8DiOKF7&f8gt?X7OlE)$4D^vARROQr7KM0n ze@;46Vy;kEvS}Deyd#9K(@V6i9rU5IMuft-i7w0a;Y+aV9#b;`0_yIGh%zMbpd zBgXl^vf;$GZ2NnD~h4Yn@!vruhU@LDnWvqZ*k`Z7rD++ zuV7TV7@c%ZmOR;L#|@y{nE6JD@V-8gX{6|ol^Qn{rrNsO7IH~g6Nh%r4IQR~m+HkIht?O~%nS>1+Kp=feE z_i0nJP~m=uT4T^2;nlY8>VD+u5hETV)lSJ9~hq<0>)#)S8lH8OZJR5kMCCdjtSEdhm~^^*?}h}fSPTLveHS z3K-Y4fKd;%W4bCmVBE58L~Z&7R?xYIm~9AUwtg=l3QMN~xb)}D>m!BH(W*SQA@3u` zRPuZK7Lv0ng-Nu&4`cnWlDd$A^aECc%8OEnlza(WR;#1kS9x+Q z&t}Zqdzl~CqsZ0@4X$?MN=P}9#Tc(NLz7sZTeWc@5hyl8n0_jV-e*Cf&OM;so)Y`&142klja5Ac#e%2$iMvtEZ#ITwWo~X(IF)AwQq799xV~NE$n6T66=|Q zH;v%l!`mK}mg(O;6Oolx996ga=^d`6RR~VQKe95{d7KuLQm$u*0a0cn$fF5)mP$tx zVbQ2DdP~2)=Efh&71*i-a%W^4gkz!)Go`mVrf+I4gH%wg<#8wmiaq z`$1)myl+mz2m=F+kg`C{w`<>W@?r`Cb(0_5vLs{m3-i0IdsNK8J}e%zW0x^27EBg? zK0TG0)Ap2!+I>Q>Sp81TwEa~Ak*S$xb?RrBRfcJxeB}^xQBRCK@s-Sj(HFTB$9LxD zu5=`8-zAdE7Xumld9S%L{qfAVt4!g#;qD}5w*X>>uu!yRKhrcs$W^q==kgvVa%|rz z&g;$qk|*>P&M2M_0{u2dTcto)H7Nz|`%WiMqDB+zjjG%t|7T3BSvmChJ!FnLc$3Oe zC%En&3!&r0b}$xd4LM{S$n?Kp$Rt%4fK>DrX8WvGrfqREGkk6wsLRH3FMcMm!o#xK zpS8|#^%cXQAEQe4ESSQI3}2Z$Ikytji-p;}-48hIFol#AI1{6*#zaW_H>Ki)&ER{HzhK-O6Hx2CH+Xuj`re=*XApUrtRixj6+Ac?&l%p~@ws0+3Lopw(|o3w zLppB{%-nzPhw!KMYIxCcNmD}dHZxaX3D(Sb2vz*V-I{tFPL@UJ^luqN=F6UCidR;0 z`njHYwX%|AefTcs2eVUs#>8pFbiO!5)m~r{T@NwC`1rmSY5Bs@8~PD7vmfkwzpYT^ z7Ym{{qM3HTKxWk1!OYP|@@n^f>?Mz;b+GzFve{H?1yFssPJ8A|5AIp!39du9n0$3u z!R|SJjIkOXo+azp!mOCRUAXjdEO{^M!7Z8*&S>~}z`cl4W?8x!kLuKuGEX&6;xaE?= z@yL<^l&#H#aW!eMpT`4> zo15e8PMm+vfsB$d?6&=*_j(pP6c*alF=kc@Wd9p$dcU(R%jQHiH%`lk{H(BGmD>!2 zsaLWD;mXK;)ed13W=AuQ?x(qw=U?|+eda5af1Xb|hbEHRHKWOh%>(ha^B4%O>c|-v ze2ew1s^>o6<$blgcX3Ky>$p>oWN4s$84=ref_y7E#o^5qSlW1>b>H6()*~M=qgz+N zO)o2raH%jd%f6i?TU6{@ru`Y>l9ub)^)}}^9jMpbrE!G$mSDs!mKmcTHBv3RXVF=b zyYo7CurQarD)uDn``skgFIvGk!GLU8p$A!WE@&^9r3+nEQiV?xT-mVqswD6ILGJR_ zA&l>y86Yz?9ioe_K*uOCyvq-l-+~8gM|v5PJB}R3480A*JianhPRo(+A0;)HEX-$2 zRdTu6$fz40nZY}bbE<(; ziCJbg>FmyeyWiqj4=PTAjs0Oe<=-py=k;Q95sdR!(pjoDf+=_($D|sz0&AH{E_JJu zEi)F7QEd}AxfR37iMnj4z1Yjy#;DYu{`!RLp57q*QDVpHIcIP$#*TxOrT$QrItkWW zsbTQYcxKQMckZmbR^iQnVbB$$EG#?O#WmFjl2_h=BxPGAdC12H#zgOcZKq|(=x7T# z`^JbFGNLQ%I$c8UPfq~D&?)4t&l)Dqw2qs7K86G-Hxmb`)iCqa1u$JZ3ASDCBi+@hPIR+}- zNnq#d1IB}SU*f1>uv43teWLX)S57;~*JGndKuIZ?afc-dF_xU}THeoP`#j+Zseu~v zYec|c{1LV!dLB6@BEqF=nIhwmN;KMeT${=RwCj?w29!tPgdmn z!r4UWqc;oETBIoK2+x6ffSf#P&0Mg4!0ulClqAm1gW$zF(C%)=jVo8>hVCo|@7gwE zLk3~Yl_YXm#tbE1rNigqBM|t&A8f{+f_;W7VfXCGW?5+7!(~sIeL^wKf?J8K<*P`IN7~7t(mt3W7Goe_?QU3` za*a{&9?98#|4G8XZ{-l%kvF~q6)@B5&Sw^@ByG-6?SeFBt zI>DNAn0{Mhymnk+^%8rKIvQ1S@|%spPvJJgxO73G=RHP~e}_8JejHu>P8}AVE#1>H zNt*a?(x=m+twCQp0OIc+h3h4A*q+9vT(f%uxgnNDi(PDgOxi;icMmIH=Yyv>#NqyIX5`ltjM3+Y&%)AsoSJ*ri+5Diy z7U67@c6jyVq?(+?ZuW!4Q|{iCevGXRzouL^1n%n?WnVrn$u%7dgK0-cgWc_1@Y!Mr z8H_UX*~U)jHM)T4&KgSI?mtF64@9Z^b-6)_X;yA=yC2hToWaaL(8XCFdSabY8vtx> zdUjXxPBwbS2cdnwsnw~dVH(z_O31Oad|2IIhL|4Vk(MjAYt`QmCQ+j{5&w1jxb-p@ z^2HD5z^u>-Aana5>*-L$4Epqv3D!*KJ~b+8MQUm7NxSR>bFhs*JK#s;maJVe8=b=&*6Ul$YIa-d2_c9 z3V7e^`wZ_~2xD_x;gz2=e7GUbQk{4xJ2M1MPuAl4`bQT`e4PnrJnwU{*P?5}wYs$` z<#^7^LP-eizl}R_%Zq4T(-iTbV^%Mh}dy05E$sX(n=Rld58fh)92ECCpp>`LK6`eH)Zf|}I4m{WM zMY9#Kv(}cm6Eha(yf9`8?o`3HLoYd%_aV@CSR5B>DZtO16+^OuVd7u_3KV(GIP^NuW8BhTs@4a(Y}p7(GFqJtcjRQ=9#P z)4$T6jtL*i4xX`@IQgvug_F&NpNFr>`F2a0QJnD#4%FE}z_SYOpi&ag;q(!-j~c_~ z;flZ-K8Jj14RG??L2MJxbK(z`VEXEFj6_j5&^OQFR7yRgJtMMC_+SzIcr*Z>@@uH9 zMK_t5y7!<#bOW@Co@VcT&juH%9>za-ASQ;a2aBf~Xe^fwDm)M5oy9uLb2$^dbyyR+ zCr82N>9r8+QVwhL9zX{~zz7=+7~|3e^|Csgc%eL_X*d*nHa}ugLq0GAPsK8NZn1E% zI0x>R`~dfvDb@>`RG^HXynZk?Yo5c94+Z3* z!U-5NRTh;OJ^`7R6S>Th!`O!Y1>guOki1Y8CC^<3sT^JK&eB1pGoh$_N(ZfPf8cVr zy2Hy@!uFcaCVt`{Vd%ogJPuQT4hq~rhr25rnH$P!N2bBdN3CFIB#n86t?bW{`LJx% z9d_e(b#Pw!l50`mU9=l+f!Cxba43ESNc!!8=wshG`EzQZ7b4AEoYKi?CM{%r#@jqr;|+Q9V@ugY{hL*NFl9rmy%F^47VA3f`9LI7}{1zKhYJbj%ib#rxitwMm{P{zu{gDz875(#o z&0kU?BEO|LfBug%ih8;t5`Q_TCo))CWN_%Oe3By4e>pEECia&Cq<@tsF8U_%pDyt$ z@1J7(zexR`PKb(#|E2zawt|R=0{`>Jr(wsRwf|k)InI+N{n1)K|LXI*{%>~unP2+% zfq%&VRxL1PlI^TNZrJtLUH{gn6~FZ8cVh(ltlQw@w|?c~)t=^m9Q)Nr{;9wH&i6kn z6@TgL@Yp{~n)2&<14LH*r3g_GIT2;PPj2*CxqQWXPrt=$d;CmX_zgi~i+Dl-Tr>Z9 zZT`5(KR*ARTHtT>qocp{=XYBy_3;bz@fVjRdkWM4VzC$pv$24XME;~VZY+&n9aZ(*)q-2^RjA1O2#t|Ej?;jh@K*U9^mX2WqbXlu#I<+e=&=jNDJ8?}+0yu3{{dWD z&BCgy9S{|E8U`N?hhnvC*txI>WL6G`cHSRR|YV_zSi<1hWHHi!lQ(*0FDe$Jo7t zjD@2=W-&2C%LN{uPOQi<6?UC-HEZ+Cp53B)OlYiKQI~X6jyvxs!pc91XD^&c5H2cr zW=maTgio9l>I^E*u@#Z&th7~I?R5iXPTxtI3kn&^g+&LmQza*|U4#9sZO582$4@;H zPG?2gpUc99T0NJ97G0v;&grVGWWh&a*~KZ$!zlH-evj|f;ioiqddWcc+WaPA>GfQp zLBlF$vWB5x)uqJ(mogPWUCSVWZSx#~tMMj*fMy7$y?$ujA}u0t@vF05Uo%bMs30Q{ z?THY`od^{4tg;p8OnzuR>Z6R{amZ3ZmaTzcQRrTQc%PkM^|(~Qp?)(2ot0Ar`=h1_ zZdyLH4(+xO94}ldn0M7*uuol2kbHBdKxltP@comaz^2(t;3%3Q=&pWf-9AE9u(NKB zpi9SGa5B|FP~x^xAlm39$e=ocdOKyoR)_flTlEQo%z;vZbuF_6+mD6_vYxsLbhtQy zl*n`I_uDcA>k`)sUf)X;lz#CL`0Y0rTv_#SsrBNvRf00NrGhVB#M<6hR&ZWvzqOsQ zy5Mt~nxOB6lE7xVl^}P@MeCfgo`RsBNdnupeu9L6bJo+G`wJpBY6+fiFcVzf{L}ig zi=6eIp%vDHs{>f3KvcMPtR4Gh{j0kBU$51fK1~u%?$ux?>*ooHPC9EL_E{jZv&71< zr&b_%ttotSwm;i$p?@PSI}W+C3y6q*1GekwV*D{MDR+x%~~f$PcSjlMzHm4wYBk(J=W4QdaM)OBm@Vn zyRHA;*!++4|7d~#>=tlwnmO^0wa)K->XcvW^WW=}zh1BZXV>Td*7E<}KIUllpDp^k zo&RsW&wteW-`4_v-Or?d?GJwUv%lU~{QIu*|NejdYkTGJzudIwpXSDYvYY7rY6_cQ z@^|__V86`$^{jpu^{eFIU-JKq_*1XMepy#UMBb3!8uf42=lA$iko7;#_iz9A|GP*3 z);?bC_f!9M>;J3mb$`pwu>aRS{!H_q&*^XF+uri$`TeJV=li$q0xNF(d49!TJ;Jt) zukmu>K{`zT8SL)rgHq3UtTC^m@%o$a`sYEEj0bXU$Xa@K<0O3O9Rn#2$2j%Y@t`kh ziH8PfQGwzeYMEM&0pbrxpT3Zkf0U)mCFbDq`U*Bl@-7<8H>7&L$H|^oiQrihM*{k9 z1@6;rX2PiToaFm(Oq9~12CkX-ZH_)ZojM$=WK-GY21k*(ErZ)*8U(8X)gbGJF^c9y z;ltF0RHCV!6CeDBoK$VZT{{&peS|G8D!t1_F>N^9EFb4N3Fx~Y_etK%^)zlo3mNcZ zHjU3LL3Q=(EHH!f-x!iu&!_%&qI3)aIX*S>>=>RY!>Z1I+S*7 zTZ|sly=g&l6fS?W1BX9T!u1P+(Q)c|W{$j&=ZSH~0|HlU8r}vY&vY^Vn~^@*^BR5M zSP-4No2ZHTS1x+&5U}VfAV$N+kkchc(Ojj189BrSeYRSmxcw*6ZoLcV^L#o@Lywd9 zK?CR!v!$qdTa@kK`4%0dFTg}TPH~Lkc}TtzgVXf-;r-W#u^FxCjYZ0|=C%w-?)1WD zp3${~?#B3@WR(0-iee|4VEfxpn*Vq=+D%JCkn1HHkH2t*&l#-u=_Io%^Kt*H2DFvE zMbDf|q?>!rl9kbMggJQ|t)u6oVik{(f%iyF`v>Ax6pmx;}UaK8*ew1=|CVeHH;Rj$VDMYR}5zQOyXw%hLx^A)yHZ{(``0)$T=0*VK zwKbusy)qqiaTlD3N1W}FO1Iok#^Q66=m0laY~C5pDE8dJs$moZXZUfG-|yw#DZPS; zmn~>$tO5@IBu9Iq(s17Lel#LPgs$$Nfx`@{>6tIC#3ZX3)8*$-=7|i7T^6N}(@sI1 zd?3!!cEgY1%Jk5Z!PKL44HZ)K9NE(==rxH*T5lGKrZv-rvcc%FG*1`mOV$F1-VB>$qCD7?#G!Svu3G@`8AjL1 zy5LQ3U+VT{7#3d4gB=Gh(+9E7gu~WX6LqycC^pF!WZXWIIph+_E%u_PJZ`a)LmePQ z&x;wc+kuSOwh<5RUBtS|C!qS%0FwHy1ZH0yLbb*Wpmfbx+B#}JJ!caE=g(}WZDY$& zer^-oUh)9y6rxZbvN+ih{n28;a(qF|$S9Fms-_-FgD%?PCf!WZv$26b+7g1_{RT0y zQ^V*oUkBmp5HWgju0NH^i^s2P&lA7-8R(Z|fy2~I>C;A}if=wa>dmXLPG1TAzHX!A zk6ngq&oXe^-nZD%qk=|T)o8^UeXeA^Xnj%sA{;!6!K{lWX!vCXD(9u4bnii)o0;c3 zy6nicR@C!67$a!Er#X01rvlz= z_gp%NWk$J}^16nMx-zsf{TZ0G5cF(#Mcm4DaZaBOG%NRl|G;m|Gchf&XqiNR z%<+O%2V8Lq3(U2z9gOUj8uH_AC6l~vCi$>6h#PiI9$!wgM_=|WIIe8~PP#w#E?z;r zF`14^k7Po8P<$TGX_B!NZTdD~K|c$eDH%>{8YQu2b}`C7 zyaHvV$8gE09CEU)nhLt_qq|ZI4V*2>87N%AN)?V?_ym*_9KhMzCSXy(0+bukjjyu> z@X&n+-F4;!G1Jf?O&g4;XSf^QZjBFP!E2Wu7FX+P)F7$-TDdS~XLUhEcXKJq*F_USW1L)OrZSsdgHSO|+B-zP8n z*`V&Fbkvx!n@TyFVA5SHsw>i;9u0}X`(K{Jjt!Qysxyq9ug;=hALQV^`7cpVZ4nuH zV=`tfiNcigzL5BNJGF8($B8$Ouq}!PN_^68Qj_xZCgJjxh}w>})8J!>{XFJET* z+i1?ddLJ}hzX6{@dEWE={4`rSh>9*WCoU^f$iw|DI7rEzoQo^sJR>tm%ONd1vfP&% zx|&cq_j^nqYm2=p^7I@Z*?#5JPk1xp44r@GD~v0yV;sjtz|7L+IJ0jqN_rh6iw@Xf zr@a{#Dz3ugz9BTVw-TS1#G}dP!^A8gkqck$fR7ETVQ9%p6rU`DrJcJ-`Aa>nY~)D# z*|Hx#l(&W(uh(FFd_3=2XpWZ~vT=;&Qo8oaWYk@9nz_sKz`n3^KnDwDoN2k3=b2nW z-ak>L$@6AnDsDornlD79`S-QLFEb&?+&D_-eA;{ccODy)p|EUwk7Sg|fu=-b&g!bQexu z%u`92l;A^&OPtQ#{ZyiRAI@&d!wR)F(&ayfNQ}&)uJWg_e2Oo%dv+Kf-;G9-M?bh` z#dg{nXhtVa(V->>OsOml!4iMK#>!~&{+ujuf(w{3^ar`TrT}Lo)r0%zU7Y$dJ|>vI z;|iCfWOTheogNs4b2V}pv)%bnP~bIbplZT?)5#VOByN==Tf)9#@cj zA3hv|#1>JhFB5QV^FUniteC6TYb5e(`;#RW(=m6&D-!RbM$=C0p)cYqa0S#cdbEnU z8p)B6>J;?PHN&}~Q?S!{1o1r>!{~<1q`KipargK0C|chpSbpXKIXo?b=~(gvN0to4 zwL?xrjI$}db72(OIYNz=?H@-kg{R{9`%*Oi`&42dn@e?Dg27Ksnk>Dv6yK^OK}FJG zL9XK=TsrPPIT#X;Q{=0OWmr3yedf9F8W^Ivdlc!aV{t@NAFO9Da7Q#-kp1k0Vs1Iu zlCzLb2|onm@7bZ2O9_qLu@=g|=AkwB1v(C`Wv&Kh(OjJoH2ckCQZ0Fz*U3S2TeS)8 zG5iL*y2{Do1tzF%;EyRAWoaTwCHp*lh-k_-+`KlPo=+&^Dh7W<_xioC?x_l09y%Mh zc^$+FQVE;{&!={DcQ@&6Frtc|lsVM_A7P15h}NI0aj>;M)eUTe(SwDwIAJp%dlZV# z7gwOdc_Hn0JP9kGD-bE4I9Q4q^i^OWx-r(A%2IWDex@Fl_sk+2G-}aKjF9K?HZ)Ky zgX+GS%p{7})9sy7#3P0GV~*+thxh&Iyxx)AQ5i$J%Jm?b9LF2QU*9K{+Ap|Ay%89N z#yB|IgUB6JL6x&jq=$cw=?5C=kQv$dZp{vQCbOM6=o?18wdY`hUj-Vf$PKAcibKiovj)WAd)bx=1aa$DCFCWCp)sx7#izDd3j6O&U z)T16o8rUh)N!D%J51ns*!nuLz;A^^t40n2ghAShW)$H2k2*hw00KHmY$85iinsEYp)=Qa+-->6H64v46ubVKcZx-5q{tVX?*O0zdYUFXib22q25)*x*ah+o` z_g&kW9uZGKO`dP6_j4kZQyfFhh4JKV(iU_yRlu~lH=!#t9_u{ZNc@74bV{Q=##ArG z(B@q7BxoqDI-JOiPD)4nyew>)5zE0NWiEJ82EAw946@Jlxz=$)8mco4O#@2d+K^zB zSn5PQh8obND^pOWd>-x4G{lhL`@)i|gz1Y7qE}8X!1|yll9@gqj!4PUw7H3}9y{ZT*dib!=$!rgqKl&^Yzp6u% zH5-|Gy8Qd>Q>rwzc^17Hp@T+ay5YTlAyw{(Lal;*7WsOHKB{9e_cG5pdykOL z!FRZ}h$x&F+=SCiS7DD+J_#DT8+`^JBXp{S zFE7Z1qwZj8D@EU4kHG}je)Q83fR7IKpj~cBBPGhH<=7RpN_7(*I5CQ9CLKrZhy*BZ zO+we4lMr(4HCcM~6t`~ZYScP>gUk{-pmE1D=zJeR6G~H1FY5$7UKc=1N-l!P*D?ZY z_M+shfi!dVQD#66qQ`|w;)>_8SaT`HjhZ)=P-Iu;0y^- zs`yAn98XDK=K41*#_NLxRI53LnV0#KOAXDywis>Vq&ti%j!R%mjGLL9$~byOToo5Z z%>ED_{YpwH|N^=78r+YB3_DiVUB$3p0_>AjZXAqHF|ptxcMuJbP>zN(ry ztx6Zk^bNRt#X*cSYog^N29QBZPFB??4pLg+wY^ztyfb2{A zm>phU;KG@F$UHp_9#5+!_j)Dhe5rH7bGvKtdqEX^F`G+^%Cb zDP~sXh2XNb-FA@kGho-*OJBbP2>UL*D?zlYkP&PJhc}$N*tqOV_k5osyV7v zRO61jQfR)io~-N0!Uwm#Xr!|vcgQ#s4_Md1_BoL-ZdMU~23MG|e>ZKNAu{20&lC_0 z(&l6LO;BT+COvs*Ax89EV9vSDVFRbHrE|~wW6W?1T=>2cu2g@3$T=Qpvr(JottrEi zYFe1JX8{bYTaD>^{FwM~9q!8BR+v221n6u z^Xpji{W|(j{7Q;fY0`VCnH)$@!nb?-Q;Z0NRaPr7tZh9G@3Dp}XQR<~y((DMMBwwS3pj8ygnkR6I4u1XyoxvkM|Tu*&kpdoSv4|fnX-&nOim*Pj1dlsjzZ5;o)g)^ z5^u+eKtGLaY`uH}ce$6-*}+!yyXk(&K0S{MR6hrdY!8mRR6!>5nDH70ju`pXnLd4c z0i%4+;c;0F6i*K(ZVM`Cn9)bFBxM9X+pI*(qV;Vs(W%a=QSZSKqQ344?Dmd@^5;W^_rKNqM+{6wy%(RN6F{?Myi7RzcE>RN| z-DY9R!E`2RJFlPLmQm*`?K~DX3xi9Fnc^7!nr_RmZroo;yo=k3sCi7&PBEqLx z)ZJH~O7a*R$KP$olOIxPh9a^9?96XBZeEcD;r|2pT-q=XN5$&h};_%g*(_s zFl9>$exGkjo{73*x5R8b&~k~iH5ZY`mEK@^yc!2cIHT>n!}Ln430)~n#L} zD7A@KpmOCUXnJQEhArBNqhH@7OZ*#&@+_q9PVFI?9@}wo^8-{<7NKdQoneA93$BML zQJ|CPTBj#uVaF(HWpfD*?T;bP=ekjuwTIv>XNaTuJ$q&GQ|6If3)v;%PDdEc5gtDK zhQzen;Z5BFT60T_Wa);{=xLL2NsbRf{bvmOoP%mJQ|M0ix$yGqCFErOLEM&`hTF2I zqLfl5eHI{(w;rD%-wfJdvb`g@MC-_%LGy7F!A>Z= zJsh=-3C#6XBBI%8#NU!3`?npzJNc97jd3%uy&@m_q@R$MpkesprZ_1oY^UiD^5~JM zFk(}n!b&*yAbL+l<)TP*mMkE5KSe>bfi~`|o=mKdXOpfiW%OAaORkhE(x9>DAkbR^ zRGqVl_Ubw0DbC{Dy7pk(x!rWs{6@6t+772A6zQkQj}V%x$%KR1SXkqPL*JD_Rj&q7 zmMFq2j^|K~siN~lKER+GJGdt@4~g4&FPf(P9Hu<>K*fegT-ursDe>O8W5fj<$Xq2x zp-SL>+@0RN)PgI{UPRT6%Q5~<1bsdu2HLzj$QN5APfxsoML}W2Y-lXrK0k;WJ77qE~x;fnwt5b2f0LXT%$apV$OU0_5vR3|g@dgh?>qtn=VTotd4 zJP8WVCtyIRIr(vw$B#d&jq)-{wCSro>E5hMNlY&Ha14u!>pkcRK16ty`8_iEr7PB@ z7h_xMT*mZ`BRvu4WDlBetD zh_GgZ-l2-o2>Rrv0EJ2;NzT<-q`?0h(Ld3NUT;cjm#$UCW2=-=@KqPC+>XWx@=Ng6 z#ECR&_GM0_x5{dx>T`PjMF8Es;w7Uh%j1ZNYJy$y0`%Kag%4-slS4Ik$dYf#AYoa| z?s{s7<0=-StIv9P;TBETh?mmwIwLT2>q)Y8*GZZ-ZX`}Q;ZJCg1EofC6OJuAMDj-n zNL_w7zW%8NH!Yn&a@SRq<@Y16JNu)RZz10KbQNw*jK?7xZZa}Mcan=Y_K_r)&DfTd zO>6ZB(|N|*aQ&@Vu&B668DTm`k7lXbl(Xo(BMm2S1uB5uG$AMxY)VY1t;HP5EotTP zeUfNQkO7@#Fr0ooQiRVWjp^!TgYY^KGV+xbDQMb8wGQROl~*BTUEED!&fFo)V0V^W z+pCY-ab>8-x6_5m4X{O#<;UL;%={@z+5KpU4eZ7(&A9|X5{ok#lxbJ2Uc5e}$shKS=Y;oG<2beJ%Kz6rRGyCbcrpjrV> zsuz=Y7AI);ByR{Q3r4ezugTobE_AwQ$sSEl!&%RgAh1Ck6}H-v^Oqw@ejSpLLwD1* zrT3xf)kM0=+mf8TQGurqg<@M(8qK!N2P5fzRCwSlJd>v6^Cnq*0(?KF`e<6X0&hK< ziXr|yud!|ho|>_X+;B5N{h$|U;a~y9qgT-VI?14RJe2r+?*pFXlv(n?6Bkczr^ig1 zLAOX6ErKGc@JlIE#PgPgie6_*m)8(7wt$&4FpZk^c0iJpE#4eD1;wJhNt*ULYH{3{ zM{Ul41KAxoGqRObD)gg0<6?0B#uiL+UVx**Ww?Qk@pOpQB6L{LOJa3WXqJT*x;NzD zl$GgR|4%#7;L=8jHrHN7mcoAGO!K`%sF(k)VP z^p?Xy+AFX_`7Ku&nX|L&4kj5x&}>6m?yrP(r{7`FP-8mV^Z^)3Z=p0;8%;~6;(7To z^w^IiGzlJnP3I?I?bpe0w~y!R?RDehqxV5TnKpi#=t^&-$fFUrkB?jTq_@rWsc0{c zuV8VAj1QEcN$=wDQf{YUhxZ~nah}wKvE53rm7j;BL=WT9f@6f6=td*fq%x928gaz> zc`KOgoWmS^GJ#IMbq3Du7(pA~@bmv}8%%vCjwT*S_`%f)?`?J?XC!ygE)#d!zT_@5 zdBFqnGg_3EL`(w7UTJdkjt+gN63dmVNK%D$7w~PZ7Y+?`g^NZ;-t^!)4}U^ZU@Br)Ddsucg7qw zpOn!1Crq)n`x5Gn-^P5}oI$QO8{=VK2V646=-lWyIx=hoE+~2p_oY9RhkX2`e)B@= zV49E8118egO;gcyixWTBr(*Hkk7Q)59NkguN#jPhqScQKnzy}_eBB<6|JtAC&q$@; zaX)&$`~`l?|A7BY(w`m(VZTcJEw=yu@?S#!JwHC1lYidDZ$Fy<5|#c(CH}Xy!0$LV zk@`RN;B(HO@;@`aPLaR6e;!}=M~vRz(^I`O|IpL_ZA$T9@IrsfpRMPYKiTgp|B9RY zOYG?%$Ntose}CNEU;DYP{pCORyWGF_Yx`Y~f5?B?0)MZ62cP>#|NfUP_TMY@xBB;) zUw)v!TjPIq-05HU?>&FjzyI1F^>;n~A^&9y{Ofi1@V{jE?Z>Y7E4%V9`Pb=x|2n+k z{I9WC=2y|b#D6V6_J)q%GseHHN8BX;(*Nxc#O`aQ*VBNO^?Rc56u}? zU(y~&PmEF}G8;K&b<-dmd`Yxkywj91`g$9`Jefqjhy8!-y$4tnO_wi@h~x~CMMPAB zB6+HMW*QVDVnRVg!~lXQCJ+OP0+Mr-b2OpUV zF6CWeydQd#mU~8#8(-#f!{pM*BjwS|^0y4byec7MWggY2R8HaWv%*L>6)|!ZyMwXw zF(f@AM&|k=PF&*+e&msWNdmLS69p%js+z@*g#`6-$GD5O$1`bTE69x9cbUg~^2tt~ z1LL)Jv|xet4D#3~iaE2Yhj}s1i@X`H!Bt-Onpwk@5p2_u5?Bp6kaeBO(2R!wt;9WWd-cCjlgUm69Hs;gnTJH0O`OG)N(PZShR5HWFwy;2Yg*eU2-K6;)hxW8Nscq>A@#I(lREMb7!Ut+vd>zD88E)hY-n3XYVI#& zdLmnx!KASQjl%1snOJ>|TVQa_-JE5Nvi?c3_)|35!Mr11uJmR0ce2Sjj)2KooLI9P z%aiO?Nz94V3}%T^HB+JLQr*nWW#k4Qle7_^vGQ(Vn#oa&qOF!7Ij@)7lzo(};mQjd zANrEZf`iE$vm(jfwf7j82~z~&Q-f=k=-nX)iq?=b*7`87^CSdw#7jx%=-mw4y^>tA z_ZFkY+QPVa$O?iV-e#%{61X~g-frDtNfTYfBTxlb>~TMNm)VC z%R%zisUxK1)}@SGVPDO1rTa{Q_B%#g?{v-f>qnWU7f`VKjR)yGIGveJ z++^xXcqA*XmJB?&j2yGhkzDarkK|_uk>BNSGY2!Z*akP{NP(`rK)fWM)X6TYxj*Ph z>O2r|_u&(ajk7a34tmtQh>7E_lib5J_r-BDHx_f%Pid2VYlO&ScIJZQBpoL3KoS}9 zU4;Zb9~hNU24u6-OQueYSMyk87CC92w&1bi3BJ>VNUquHW#mDnA~L#pwBUS?Jz1A6 zBVcQqGY)gpxo|@y*TXQL{4nxeK+>2gf~t4o0-f4uQu^8z()e&L*_J6I@XWR%=U;AN ziZ|Lb4^;;lUT_k#fRY!~BzKXz6AT0!a-NXe+54D9TOTtC;(#o7h^$#)*}zt3cLvYUxh-%X~kZ6cKys*}SBBl__L5`xeRUr9RY3HKJ) zidojy$cVnQXI9O4PUdJ0(Pu>?naceiIMwM*oTl52Y^P3`T zE?(1RqMUO`nJsIWiizJir{_d7ug&6_ahIQvDn_Q{*yn6=1yjYm>QxnN_8P@W=O=QT zdTN-!Q)jvJlpioomkYRdd$JjEoiL_ZtAUw4FRmtDcO&Vv05MFDAyenqz=WrfWafpr zWKNMc<8Q(e%$9k}$XA{r18ZJ-p=B3@lzpk|DY>#v80f68tAN!uFNN& z>l`A>JGtbT>QqM4v5Xmdp)5%L_=Zcko+DolbI7B+CJLU1C^Oe`A!+DeLJHIuatqYj z7&B90fxD+3`C9X64KFo}Y|B4Gs#h4-h`+v4y|A{5api@OYiyn}{XN$>QQG&Id-?B} zr0NYd_Ey=X9|h%(80?|B*9!eas1t=OHP7Z zP$4GJ7g|N;pLb;T>B}(cX)~CT3@$k|JC?bh*f8A2Y6&m_|VMY%4Xhsmjd zvCPwiZ|unEI$EZ~lH68!oD5mgP|cjYRC6JrjrRwJ`gSI`uz#+`ZNL`|kd zD><=gH@WrIB(ehZGdcUsne8vmaHD<3F-UJxjncbdvMnQ$A?<|)9}8}i`EA;Q%{lF) zxWX7govM<+$opGO{Do`$42yhbX;~EMs-D3tOU`FJzOb0WWpNBAD}q$ac4HzIDUvrH zZY8x>1(SDuE-|i#*Q(t{*D;9(#hls$&zZz8ouuC`BY~2JfZRT^XJ%8uZN{nl4C8gL zjU{dNu1#(lDl6Bq6g5%^MvooQX z)U}UeR@EvB%GTRf-}oX)micBfQ%t4FN5F!+Y)wYZ@uR!QO)@%yge{uP&POVYrGYb3 z6Jy70HIfok&KPAqv`(hxal3$Xzbl{d`fR{J??a6DEg?qp(laI}dyK$qk|p__wU>NS zG)|CqXfi3RK7k~&4v@zZ6PV`@qPU+DE|VTRG;1vECz0_lf#9O9B)PU$lMKI_Me0=+ zleaS$lSc8E$eB9F8K01mJq1x?m=hg)$Ev3xW)^4`6i!OKWRPTSP&;LE2`0fAK=MmczevZ8VX6Eb< z!|VT!`h1~(Xs7QF75^*vKM;XG>rsBsE9HNEFZ&yk-?Pj=_x9h{|Fiz@b%dstpEwWUOX1~_+%>G3G-7e;z*ZVwtw{73%zjF=vmEbr1+c??IZQIxQY}mEIXU&#v z9wYxh?Z*23|6V8j{r=PG{E39kFMR%Y%k@87N1ONgXZgS1`@eDf%m1H&z@O#y$KHw` zPX5tv3H?d0^H{g#N9cF#&r#aXYyXx1-~GSo*Zbv7&(EBth4lXx_($VE^^vPT>iFaL zGsVxI`+NNN!}jtI_ea0t@lVblaf&0q-?Yp~*zgau)SqbS5nBHb*MF4sM_S@f{67|y z{+Qp7Qvb;R!*=u^=^sPaKl1-DUHV6Q%%Av0|3r(8&~t4U+yAX~zi!;mmj29V6L|chgz?uJ7*>e{c(pSnvPoe&F`Q{lohHJ^k;JfAasp^oRSW z?X_6*uiE z@x%R7e9ivt`}0GFez^a5`rkGGneK;-{%}9!_J{l1{q@vnGV8UIIl z|2v=e&J80R-rKhR3&__p3E%_~(q<=9i)XY5tr+C;nC({6Ep^zbg43Mc}u7@BFWW z%fx^A^1{D0C;!o${&ReP-X|~gOJVZ6n^k=H8EX3UJLW%^|Nj*3|8<}IPYu#<)JBhJ zLVtwiN1}gTvH2S`|M(or^S}13{N(-@9P|Dq_}@76vtNn){k)FEf!|2{+m-(LHLs9R z@8G}B_j~t$!>Zq!%zrz-ykF6+uKzyYzn%KOPwYSMSO3*>P8)vpuiu*8-)+wL9r$nQ z|F3xH|E-?Czeid9tNYmes{Nno|N1^M^zB#Hzq9;R!tWmWi~P&`cM+JU{ETv$dfaNq zf*f$w&KX-@Rf8Qan$#Ph!#U1BNH2;MgU{yYu+LxI&NmS|z<+x17D$H#5!H4L3wf8Y z*6V8#2b|C2a1~4ZH1H6+LZgLO>8Al-MY+St{xVpXQan;7mFZi;eAtihgSeO;ZUheRdu+tbYLBHRqa*i<(LYRp}Q3cg9v*Dt%! z`wtkiJu;Gk7XJ&-)o2EM;||PXjjJAh^dH%s7A$H^VXS8zR zAYRhb2$NTJ!3&=6`JT%*5_gz3ysgUs-_O>hcTR3$4URUVyYFYfs|#nc#TMKq_T;9r z_0`q+kwPJSj<6BikSEEHS`k6}%;|uxo9wV+hc!QW?q2qBtIzb#B1N{RX*Ay%1NO=1 zn(U|B6KSoX622?v8qJ%(f&IEAj(&P;F1rKk(~VS<1xQyb_Gb`or3rN4sGEGFEynE0_cZxV^Q`&T zIp^VvS)R0=cn{h>E1$1m@5tejmk8&VqdCILg`DSSX0z{jTJj%M?`7MTuVEi@`a~yu zoX62)IkDME^89ei861MSNY`C`L^mg?vu*ciu@A(|=H#U9;MEKJm_pQ>^dAG3Ciszi2yFty0GD55zrU z+xd;+ESHqxaQBVpJM9U_&n5f$yt-Wek+tgl;ebs3T6uF~C|tGrvZgG5mf0JkSi+eT zb3=+f^BkAG-;Bcv$P3_~)?34QsT|0!_#TNKvBNp?;|tk}6AS1BgFfPVdp7;BozG7- zZUzm#&p6RvQ#kgU9?-9J)Hzw33OEh3UJz6@!H?(kvRldnh@ny5v{u{%&a&PR{$TuB zdc%-5XDW9PqtMlKphYM=B{)vp3t7z>e?Nu4{)0+&?DUzmw3Zo1Ln)2_ed;xSJXp^@ znbt_Z6J5)`lBLV;ewoIOT+OLo+6+0xAzGa7M%`+q5Bb#}ZuQbVizPXkk-6+Sd*87Y zrDEx7yAT|BD}?{HN`f{CIgiAd1j6S<5xYCHkAEQaF}-$!5HWOhJZCEJ2rhb-zzzq) z>^Jpg_?Dt2$9}^wEl(8j;@1{&ZVKM9SIR}R!|!PD-Cv!h{X16kbMj)?$~o^i&M6;= zW;ahZXL%ai#x|3~_q1p0h3>@D2U2K{yF1v*^4a{y!gd_X!XkENwjaOLb_}QE&`$VZ z0$^WWIhP+Fi0Iz)hMde$J$~FfqWajj>omvw6n%5&2Y%A~ZG>TZHv8228d@lCC*3z? z4|}7?2eytwHNQ7Qg;VoXl5@{UwOYPmS~bzCTKyinS23ezLN$*ka3v;-{bO!pujR(ZeO-Sid z8t8~b!q-x<|&*Wi3nN8BSd2MMnY!ZY7DDh;4f_la63B$7LKzax@TM? z)b16+((n&>vce!H1v~JOXWBF~YRkB*WxWHpD?Y1n+B1MW628 z!@8c4JdgcV=vm7!X8N@W3H68ckg7ZuubxJTCAmPh{z=r%d%)_T#^a~cF}?h_Gxo_l zPM`Q>NM~4QVY754D8G0X(g2@v!1y^t#sL;F%S)M^SHh)*Z_dw`0yssPw4<&1(_cO!c!S8dihYiFW*H&b_1E4GK z4N!cK9(ps#L;m~kfCy>>&CuSU_6)^ckxmy<#KNyWF?6qk@;tMhfc;zH-2eFiIUrJ z{7Nr)KrKZ&^=29s@1+S-k6H3U%I`|wBNSpc-;*WAHSfWZ$&&DDlO`?nzA5&!p1OR3 z!e*HG@Cptu%LGrx&IHv_W1z4S51CfVNk=>Fh7wzGO4y{a(goi~(~Hz{k!|RED41{( z5y!ffyVwrY^wvi3VTcVQBbyOt@IgZ1gnHBya2h?Y35JJuYhw3AJ#^ObA`-P$f!P5M zfm4f|bj>_=Us*kA}R zyj)IKc+^rwX3li^K`A!l;7kWpJK^D=aJjtEt#EKShi+DDNB63m=no+jFgwj)2a{HC z^xhSs!&DZ}xKs!4s%=NAZMR{k{6zX*8xOjwyd*;JM$$dX%BXzL4En{$Ii)%uDLUML z0es1sz)}jiM10#SiA%C%`1=;=(6>|+iCr$!3E}Ty;8}nfts7WJKdWDaW0MU)-Olgu zfX`}tOu8Q{rN_dMRBO84WHi4}s02>EScHYg>EcMUaw1PR2O5v>psyS)!al=!py1g& zwpf8R5dMhqmpzJf!#iE#Vzn?G)6+_{@2$gITFY>9{{SuHF_RElw=imtyd8dQQA2!6 z+(66_j>azxz3Eq;Mr`KQ3n2U01TRvVhfDly=_(6ttmrC4PgJ$UC3?DqlSVXN#Zllp zu|(L507GxfOu_qeSj4BfcL{3~XC$=6pLcq69_=u!#rHk3haq#~(u?V@<4@5BP$K zn;OAhodQxqAWewiLiiZz-h}7O;E%0pxMC8HA}dB7xKb?2KNZ z*XpJCjPN9MZt*&pb_ubXHeW#^-(oge~E5yK-2NFbG6v=wRssXW(wJlOQDK2-4X( zgSFkg5e$Ew4maJZ@2Pbr4k!zUKkBXX$GdZ zE(BezE1;13C-A226F4^Bk4j?e!#⪙N2ZzU{rfHlu%EC^ws#}$@E9b<)1cEJqNwe zXZ2Imc@rL9!l|%YUtnea<@F93siK28d&ngEy^1~<23W8z6CNamDAyHfijEC_R<&oAqpN4-K~Q@rD|*KXaPadCU^9On z(#k2rF7Jkw@2PfTvmOX<^#_8o=t=OkJwZplU&eZRp9h08b@74kOHjADA8ZJmDA6*i z5)?ivj?a3Ng0H@gLZeyLmL=C)uxhp~eDQ3JY~ZDcsu==FR$$hlvmZBPr#R{x6F~kt znpk|2He~wXwP_uMqP`uv>1#yyo`|QPhqch4(Uv&yEQH=uy$sLH)S}I#KLX^_1`?l{ zvC9qp>5gMD^wyo7@ZpJBL_mWJR!DvgADynFpO$WckM=dg*_zjgVsRI`FEkkYEmbCn z>UKiHsut#o`Jxil=R}~+WIA%>4Cb0cB!oe1>30G{VwSG~@l`9D_KFl>$^;^{vk-5;bL98m;&K0C6r_g?O`Gp5g9;NxUWE0#O5JvzII zgwRSXe`-7-Q~Mc;kIW~nSKYvSE=?nR>pS4mxaqXn=Ocu7$wQ=NJO>+=(dg^P8sN_a5?;+u*pZ?@tY=JVH`l z6yEYXfC8VDLlGDV$*FS*zGD>8?p8y|R6N7|S$=4e>0`Qi&p23H>p&}A9!u}y>d~RJ z2Q89Zjhn+J;*Es>7uTe~S5;9W`XdtYv_hWGHw@ zE3*tdl8{G09PYf~N1>@!R(ljwa9)cG8aM6&%;DFg4DuT_urvkKw=aVdCy#*GT|CyA z^w-q#mK(s=#{icI(TO;O!X}XVS^DczC#NPU0Bb1BiC;= zy)YpeBo4tPL!m6yW21q4dIvH)CqS;55mc{<70b7)fpr#3v%c!)R1NCR#ukUxqm#Z< zk^e_i+?5(eQA*?ShqwLcQ_p5(azvH)^>S{)IZh19S@kHsaDR1WQR!B6+5aqxFeX?7 zi^kxNpenR|U^YyT5rKY82jX>R%dE2ZM|)Q%p=~9pKqUb}|5qoh`f|KbMwUGqvyTHW zO6*4T<^ZU2x(I*%ItFP8+ejq|CL-$__2|{NSk`%?b?1g=NaCp<6Ox3>=VMSIiKjsx z`q*m$2Tm984$#v0X!K-Qr-wlO_ZX=4a1xvuNW`DJrEIl8DHngZG#@H>#=r&DBG|Qb zG#*|S3Y%|=VTY>CxXm*d9UEF^sne{D^Wt2NUWpM( zYoXo_VK`T_Pflsj2#a-AD#iw_z&Xn{1BWpJt9XaGNLTv=DAmme7xxUIR_<%w+T~Y~ zL8T=+ye$O1TF0R74KlDhWjw3)%0#&Ts3TTA6bi%w&EeG<7V z>(2ANXsl5^^3Y#_orN0F-dYp%?0y>vDZT+Gyb!{opK4|Ov%do7k|yqSVGfiNK8;_*bzvpPGcS+i zJPz%W!a*G?(TCluaf1CjltTrh!(^4B-10E^TvjB0u8spXk$YkZ)`e4#GTOmQyk1ti zScdhz#|;@xC6IB<9H^!}7Vcf>fi)_`z!ohYn$<)gw)Ii`6r4f^KBIwwb|q`*R-Y9Z z{~iaXOeb0#&Qe+7&LD?#6IyN#qGe@gBe#(P)7pi>yj+;{@# zYl;!Fre%~)wgt{PYDauk$)NK-OVR0%x`6MNqsaUL&8m#?#uIHv<__t)bm`W5`sG+J z+<4(M7|hE>pH76paq8B%;&i9giR~IJ<>=+`ro#dJ=H^)b$_wx4ApK5W|9mMr_Vsug z1qcz2xkbb%k1=#Hrvi8@`w*dJ^>kKfH?n!ZknnMQiG1rYh~FKJb{ek5P1B{3wrmt? zDKW(v^Mb%^n zZ}Yn-uqH7Nh$RoOgk`*VX(M{y#LeTW49}1_`N%k{2jVAKS9M(Br~dn3$vsW^{t4N@ zs>c<1#hU?BWiE=%j0L@elJLuhsYlQY-c3V#!lNMa{zNsr%mkJrJo-S+QjwpDS z6Ab6YBw&T&iMTn!l%5?H#FA~7BR&gFCdx*$Q5cm11`_t55aDLla=R$>mL*9nQ56Ok zc8@ldS!kseQs*T4qjwd=!w^&`=aSg5?9E}z&=|Y`*RbW<6qGTX!2Agut(U*nk z*sA&p>yAqfHTK?DO3r6FJY}W|YgWGk*IuZhr8691GHXgr?bGlb^!h@hZ2*{ZOWb8zXmYk;Td4P0J}qMK`Iy#4cN zFqoKz_k)vY#&<(cWzEb9TmPfF!#08ZO=WzK1HJCjUwH*sRViC-NMh)NyYpCRa*3QFz}8zil+_70PuDi z@u>80ym91ZoN|{1Zt4(lopf+AvCx_bJnbJW%1u27AD%F%+K&d_4 z!^&8-8M=t-j4flU!r^#Tm~%`nHd{GXQko?Tb@M4en>?eAocxZ8cPS7LWEBA}w4>Ll z`Ou=7^U&(bJyy#tRcWMsfWEh;1b^uEfc+Wc>5NShwCoFEq?|1auPkW9*(N=-PeTM; z2xij{uaCn`iOq?E6A#hz!HtAum@?}8&ZVWrD3q}#3QoLDz+3B%5^o|V(Ml4ow4I1D zKE?JY#-(Y}+Z%2Yo_Wpm2~|IQwlNc?i3$ku&2NdC+-PD-xDdNsWdosHJB={CE(A@O zZWxlCgek5Nt!9*q7kqQ!P5L;NC>zI8_S@A=XFb*;rDtg+G;Ha zXRVUvuaDKHwaqPP18y?0)?+p>f98X^K3DLZ01P@y?gE9KCA@@XrD$huGjgiPj9tPQ zvU1v4DDB}|Y*yThF3y|@Lga)};+N!u9#JFYxKsu&xWYwNb(`_+?=fihyx92B3fp1o z=J}RxH+|tjneq5*-Z&)DT1d^#lYm{b_o9t45kQ6(L!+iY;9aq|V5OHg0ngA}n7_`v zN?2ZsRV-o*c^=lF;gSh3C{V>8#u?xXZEU>U!;w{O^^gZr>%q0QBvchL7bH)m(QCFQ z78;j=2BLJ)RxEi=ZLTZJ|MP3~*6s{&9#OmPm^hZjU33OyR={;a#j-oT5~gFj&$uO*0RFc9T_@o*49O^b$JAF#&$K(s9jCBypu*r zuAyw=78_4t=OTxkr*LF&%XSq~;}@tWvX3a{5|{5p(SkV<{D7~qw8_#6;$et4q9fAS zuJ8acHqx4R_tJG*y2k+RGM3}dO-bk9AAJR&0C~RSbrpIRbVDY6``H6;hXkzPymIYiJS?g0rTk2zpjIolOI^R^} zx6v1Q3f)D;7kq%V9tF-U9R}gvXV41ucuGlP50$@KA3Ge6g#Opgf>pp5R-6t;oc*H2 z6V?tiX-*ij%sd43rW?S8eep0LY6_ei$U#G|AF%p*SHfh2N2p1G23wy<6Oz7Di2Y*M z(A_s~IC$oAFv`G;FkN9xkJ8elj|)kl?itfqOn)!(xh+L3$ZZ9_qufA^_hxYT4G)+- zQ>RANcjA}fVYqwtVZ^`JhE0#e!D+U_gjvaLRCP-de7XDPEd)a+Q0@+uu8S$@= zSw_eo3t@{sa%XdP&ZVu=&a*vol;CySW&HJP!Qg}taNgdP@`1^y}~JyxKuEKZ?xeK?NO6M+;NEpLW52ijIF2&b#A1B*CM34+Y2t!9uJ?yOlRE} zEkzGp)leQX#FK+B0lCax6gD;nyJS5^0|w%-Q$2zr`U##P*N{3lN*JAA7y-xkZN~f+ z>tRWUFxJ0{LEGy<^dMgY#Oy7=#e6^1(Ypz5PpX2w0kg0w^%`BuUW=-nN}%F`JFL_= zQOuFpiBBvZWQA}-SovQ|;S(YlyAOQ=vMtuwKXo%Knp_X>jy(|o4|W^F1#2_Gd9@1`2d%%L$(c*7 zPFwDyyLJ)u%%ws6;!Vo@flXtG+pdGOAdE*3YM-WMunJgGEea=YtR#wtD=0_N6u$S+ zV?s1h5^q@(%UU}@iXGtP%$}zgM|^O+30-E{;Rb(Cd}a78?KnRReRhtbU9Qas)i1}= zXOB!Jh`gKp@>o8c9-0NS%SQdFgc;-zd|e74YoqE<97uiXAJV zN>C#z{BMVZ+3d=Z`)<@v55)~pQe!JexsxlF?;5T^P#_lyqXJ6n`UjgG?f?aFB2@1}xC3NGyCS#V>e~M61u=PCqmq z&o};Zm@eagAsp&;*ks}ne9E}kvP3NtUy=@@mp%8Q&si{NRmD{>>hn6{>X-sn8o3fw zomRm*af|3JQt9a7;&wVa)Qx_zaVZ-t@5gWSH0ksGe)vd%GT%vK5XZFg>7LTV^vsQu z*@>$!!ji%j>`SXV2uVMASQ@c_xMP2sUZAoWeZmS#T7&V? z)L`ixak$4M99iD_2EI0>!V6QJ;5m8@-fLk8hqie^daMH0Y1ji=sWZIKpC3?rAF5*& z|2W8w+5*>$mcUY|jF*2D%nAZjF74x@Top?YWqUPNm#KV^Sn7_bOC?sAFy*=i(Kx zvRxVDvqdm#n;L6((z+G!Y;2}dR>|1;o zYOCxU2FvF(fbMu{9^1$bj;=PG6m zfg27Gn*#$=yphMuJPPaaZC43HUqN8-~;05b!pzP>SG%0llJ%eoo z4sVr#_kD!v!Ae8u{y~V|BpL{N5;3+>h|XIPi;HJlfk|#@m>xGtTr_zm{zT3v_{$<; zjH)}_C9Q?sLRrAM&w*|(Y?tabm&cKc^I&1bJ?P_8KsiMz!_n7g5clRbAO)K+s3pRJ zdJKd2JX3}1b@ib~PBzdFvBoE}ufQVw6&icCBm3TPJfX4zzZg~`X1=XQ$>H+Q%WkXH zrTqhdyh-5W?*2$2sSbTJNJVh|5GBi3!k=?Z&?4ERz|pi2EzKuEO2o)MxL4gVL7yhc z_9X{UHdFHued#i*sO8i-p&@x(c7l%v_RT}D9Up*oJ3djC3BEwz`J?3&hb|!PtdG9W zN@HEIPC{>7CgNdrXidMc6nwrwMlJcKD9KRHq^aCrh+)U@}T?lEdzYG~t*JdT_|C1m%bs z0E=%OV=s@Ff?r3D3|xgM;I}sc@rAVFQX?SYFn1@~dRLM5iV(x{k2GMXrYfEjG%~I< zvV@Og{itx0F*I9g0!Ei((LEjCk^5xEdS4)qpGpk#CY}+(7N1|SJYLGun?@TE_jhc> z_1A>pP34z(lim}w?3NLI&bJNHObyi>>qQvnHbQ@H4DD#}9Bz6Zk7sQb!R5qh+Trm5 z!t%m9SoZi4eBir+CYC)#dv5nqt@~1lw%PUYL2Vv*SffaY^2IS{^BRaZT}R~N75Mr3 zMp(k{z}r5Cf!Vec!AM)+Z~HI8Qtc2ty~`0UIe3@|$g=@^CXj^Tl8L+kt7_<<7KS;O zE)wNrJz*0ggnN2#$~U#W0C1*_W%5-X&{vg*i_SL#RgaS_6aP~Qj{Fdwn7jfj@K&eH zP);J)aiAYHFJa;8IlI87$Oif0`wCSCL95ZWtEs4cO(3tL?(&FU_Y%PQ^N`&G44hX> zpj%Z(S#D7#=(4;Mu%ITuF{!D*Z2c7K$i+%@Uds+vB)i8xx6481iWxi?gBXysO$zEr z4<$Tv-2l|?d_gWB#W4Sd3Nq^zq#XTX3cb}n0V#{q;M!+5%1FxzJk?c+-ni{CTH}-{ z`v`7FkMUDvyippfmzX03B@3(c$;t}G?$?thaf-oO5UxPv?&3{dK(p4XMS`$9b|`3K zP0TcxyR57;9l(tJq3VMFVn~aZR!ysSL6+p+l!0=ZHT!-zs?d{z9))|+y{&ht2?3K) zRk;oNFwGZtW!IW5@v(+6&WY&Gm@9~%X->V+=%+%T$APX&Ygjk85U5J)u=H(hS;x5E zVDZo{R9>qMhe{U1Vp)zXsx1XM-)&+=-QDB@<=ru70p=agdyI$0m49_i*9$DjNBO7Z&w6+4E`us28tNB+D8n_&eTc3!;$Bve% zYneuwN4ua*vwD=CYK&c_-C37k?nN47B6#YHHplRuJL9LCn^@C#2jgb)HJG5Gja^jD z;DDJ5boFYYmSwL58%NqD!cRi|J!jzlnkB4;L;09HyC1l1+%uwKc83=N%5nb^ODt&E zg(s!6pzOLmxME8_?B*BXG3;nWA58c$*1^iDemHcHLbi$4p#75wv>2-hvs~q@+{+T7 z%ha^E06$5*@Q@1r)Z&4!naJZ82Mf^+-;-d~cOA4OIaNWX?l?=cJ{X6*8W}UUdZX_X z%B@ryA~BTl#6GM%Sk=aXF}EFH!}e`>=kx6#Kfwr=#m>O+D1bTkx>(z#0SwpDEYpMT za7lVNb^J>P>Q6PHy>?zGJm-^#R((-`^Wwfx+8e^5dzc9K94Wh+`;Sp%<`R)rSz-2$BkCCIH-8ZI7l z8XII4;pLrTg!AjeP;bdwWH2cQsH_vA*NRJE4bz8k>G31rdHxa2x?bLI-TWsfBiS>S@H*$i^)d`R`hj|JOasw1h0%SgXL1$#a{jwu&55vYHW zcXYcBz4G&99A-D2Xt$BX^k_jJl1f#@n%Bc608a92j3Dp=(!utDoz-4w4@6iwhWhWCXrwjtw+3SL^ zJ!WIg6Cd%@2`hlRbqeYeE4K7`AduZ!u0fNk8ALcSMDq?V<3GRdK(}vdCgx0%pgFoU zkP6YG<&0YJr%ZMJG}cV^hqiYpX>U9sUpkiElOe~x@-?3*>|F+Hhx*~QQz9@vc^dm- zLNDKEvl?G1|02DlaxXjFy&GJwr|Bn>yFlrwTv`*B5^@(k=`43W{>QNi^ac}C!tY2B z5;@-?Wu85Of8OyG^=6$8JdyE+mJc{jeE4vlFbUeqPpxW1PlIFWEnRxVr(?VDeAJ#fU2xUmi?p^w6#?HaQQ1P59PFoohRf7Z<&Tqqr5w$xsp=S2BW!?L3i!dK$DbyCrkHs0**I zP=#*W3Q_tXU69_0-%KO|+>+i=4!X zl=^h)yH=AGYO})K8x65x(I>d|_MxgBjnA;!$xQI7UJmbQkRQ>dq$bp1BNR1m4mvz> z8ETd~j{pkB{@%6dhIAlmD&I-lAH5Gl7Im{UcuGiL&VaU64T9wy9+VN3&;W#@x~~_Y z;_c`3er_gyHf0=KkHQtsEyL8}yxH`&t`ErOq&l(AbqCR#yOJ2{-k0QSnTfu|FsUOiZQmv-ogSK6@t43Vn)04y!|v zmdiN6`XREN!o|5vHM;tJKe{;45PUgs7TUN-;uYgWpd~jB?R%01_4RBhu2eVX_tfD^ zc~9!&EID|d*$%cu^q;ABeg;f5(xrE;{sy<%DB)d-gP>Ci_OC35h? zlPtW}UZ2&z+XU_srQr-x1WDeZu=9lL)QTHwP;WFuIa7|}Yv(la2_hAq_8_3A(lH$0 zEJAPmav3*8ok2wA4H)ic1{tgj>#Z{BeL2y1=8ZDM^*sifcBG@pd*k4|C$6xiuLOTO zIg2jYdK`Z(wxFH7WZ}EE3HU@)3d~U$$BIjD!PhJA;{CHnVb@Q|xM`j>)De{;oId44 z2Y+S!e3A`Cgjvyr?;#H2r|}kD`3#&B1F+8FO}NWt4y#uvnd-NngzQcW(WhP%;&ZmQ z(UlGQ2*%69oAq4!gkcG-b|spanU{qeK1(A>kx}^Iqy{V@7HSo2T0-}Its<6tD&b`B z3BbDk4%NN!EK&(=mNoZ{r1u?KLZoJA(}lu4_&j?yzPz*yy{WB-dDTw{uccP(!{1Hm zF$JTsZ~bw4wo@Mxx6MF$+suhIw?*(cK?{*KKNQ8k6vexT9Qb{P8*oufAmLoCfMq4( zs4AOFwBI%be#6I+eFCaS=yUgk_;*%K#}DRip|@sE#5@K1Bi*MjT z^B(wk`V`*fpb5mniQ7Q>`=_8pL7HguJq|^$nc`QYg5a$$VfYd|23lFohFRmnp!WQG zl~c-=;8XkJahI|r&!R7nt`&&mC^7^eBTeW}gL6+H5p>n&{WT>74 zjx1e+COIy|qSAFufgx<`+z8u<+z; zl;O4repb@=ayiA#@zUA(4n{FW5v^pBuO^mG4Fl(ZO9W_wrhDCTE+(UI|4}+Og z6?vWWq~P}>DpYM&DBk(i44Qm=ROPj13LLfLHcM!h2^71-z&GkfaFKSG)l4r5XxDZL zIqM|ghtsSvgzYHIb29vvx)gOr=p*r~-z@^aG@`4*9OTRl15VOISqs&v=o#Q6EtWhM zop{jF_WefCfB7J|x^0Nk+!KqfN)}iBe;l2MKh@tK$C15vQc03TMaKP{^SMHUREp9f zMcT`1Nhzc3y=7EZB2sZb@AJ7)WJH6I=!=9(DydXj`rXIxZ@A~4&-?v)JzuX=y)+-C zNcBJ>na8$8orx_CZDcz3Xq&Qh z%1Su_{nPtTA!NQN{rfQL9vmjzSS^qN>y|V6-H9io>2tc%ofG^+3nL!=-BlmOY zDV~}F){c{qEPNBb$H<`HoKHC2Kon`@OQQ!y;qeoPm$6w+%gE7kZLE8?7>6>FL{FVh zb)W4<_8zqfrU^9dRb)m9y^I1j!jE?DJum0R#L%z9O4#zsdXUQ2rcDgyp}94ga+)3s zQ9--~>Z}}qtQ>uun!JbZnpQ%sx+%&V8E8R8nh_kWH?p{8yAS47|3K<0`_R=Db10%$ z!W^;)1pN&XoXbC3k@Xro&gz?M;O(tLm zx+f^T3q*%!DlyZAo2mS+=Tx6+1XZNgh;$F{hEn~4m|FcD^e;aGzj#uDE>7+uR`(+a zV0>jhli4l?x98ZO_NLWF|;q=-LyBAA!o zL$tLnihI?JE>D|{K6f=FhU=R_8JmDMX9NhO>%(BKei~vaRpOzgh-;VpMMnm0u+|ev z=Hl~hOtt!IkY6Xmo0{8B{kfYApN40lu50`X|FDnXwyP06IoGFnEbav_yM7<@XVe8Q zKT?65ZY`*I)dlXeRPgXOY5Z}15p0+|Qn_a7H09_%!KEnz@7g&#on<}JqfKn1eC{)poI&||jDqmhfO5~+IS zKo+j{h1Ii<6BqMEXxrV5c>1A7=;P}hSZDc7aN=ykmZg$d`Huj!Tw<(xVJTf{Jt?A6;eq!!HjU=wT`Bcl44(~i|vsrPrUr2&0ONx3#w=QIa=L24?S;Dr}nz*A_v7>dk5hAD%XlW!I@=gkTv5Oai|!(OhgVc!l}n}ApHNVEWJnpW@_{ogzNqd?BQO6_ zFB%&@fQXPFTzl<_AIRXyaK)6DadO24?s_jKZ@x4g=*WLq2t3X=&=7h z@SE<6buG=I>zy`C-kF3UsY3kr-ea(vh zzL^n#zpk?{;{i zUl%SMnbJ%dWc-5R4Hx0PxY5)#0VX7B=3_XOx(qA3<>7~cIpkd8X8cWK7u*aSg}dgB z(66@*EbP@_oxLFv%KvOKE$@gRr?CrH$I0VfGgVxe%@WIZ$Dm`@Bj#9aC|2Ga4PSTP zA~hRJk%WOQ*%*|`9A8(AR4r$du=^|F%|tHb%((#tUTg88joReez$dEV=}WUkjfF_j zvy)k#NEp3YMb!7QS17*K2XTrIq8Q_O*!}n~YR{%|YIUbNsrGxuBwTj`%br;1I*-L+EqB3$%9GF&J8<0d*=B$%aqmseE@$azDb3SdjoG+&c?P zyxsxxdS3B*Pf@IFwE^8x7fDp27Ge*Xe(0GkLN48Pqqprn0WbYR*!?2Gc<**C+U~Fn ziT>0`2h?cOinCP7p&P|y+c6`y&I_?Fdf}vVG>Hw@^dt|}9q7_YOWbas0j!M-vKSKO zZf`fG!*$c?mF+3)U-?OBKlzkM7@CvVo!5!Ss=cu4Qwk__cfjF{CFH|}7*w&3OTNi( zB83L-Y~m7z{k(KNeJ;QjXXR|g?oVCK*4OO77e5$cg@dB}1^YcnV`c!^nthtCz}gTT z^OgQRD~QZDG-16nl_`m1O{`6z2kTw8khQ)tjh5RaU=bD4Nxrx+JLiH8dw5)$9XV@B zd;bXIUa?ugdQ4x7hr-vP{^wR^bEL}H3l1!|>HK?k>lSsqzuFfhb3N(C*i4x6#9yhv z#EgD+BNOiESn_kd68QDI%IV8Js;r0ODZZDTDM;JgK>7=#Nb%-GHrN(%b!w#O&E0$1 zjh7VYbGHk*6LQ}Cx%-{@*@b&p3zsY0{$GQ%PeB%&;vdHLNCdMx)MWYZ2TSqmnj9QF zU4)ify_;WiCX;no62hMMJHVZJVwiNT;11$VG(H9g_HiCdgM%AQy)LHaM( zaigLl`H>%dY2~AFWd4*t*y!vtVz%ct30qUb{g}W-i@#bSnY2D8nF>aG57?tMZ=W+E z`>K(umnrkxQ~_U|t;+c7Z$WPiH!xO8K$X_ZqxaVq3Vac%ID5NAGL77|ir%{~L;bfY zcyirTXq)(CD$4~<>5+2t2QLelBR(@w_*$w`sQ3m)D7uoWA?a{x;3#Kd`tr&ldA{o5 zz-3?&Fl*|1`V7bYel;@iXh(OFgW$5)2da8R4LyG*hVs=V&;u9)txRGq8qeZPu@8^cR_f<@Wn{Xp0R&pErQ zkNm3=#|v8Cp<{Md$SFmd7D{s=?J+fY!+$!kQTSVBBS^Eyb_$W!+&hrm&SQRu907jb zLmc;86>rg59R2G0EBHHb4I7H70VQ{oOje|U$Ic<SAk%Q4tENQ98 zTNOwS=D3n$KcABB1v%)_yBVa*-UNMeyr&p%~xtyHp&mq0@E(rWqG3m>l(Z zLik3@iQ5@lT+ylrgEJek_WS#cVk1NR2MWk5*V(jew<@uY{eXr)Y~-bmy~Iw_pF{H| zBU~~3iUcTbAmUG7QtHfOf%Y9L$gf0^CYLLu>!Cd@`*I5vFz^)bdB&1m^((;CNC@(j zzZ3uBFVq>6C=$Lcmkxh}iKmvXz@PMH&8}F|w|82hp*_2if22M8w>%xO+j7aNg-39( zq9RmwJO+&`O4xXt4pCTDO|~!cU_t2!ek1!Fk0@P%#nT?+%IV2C(B&!F!t~?&dBcbw z_7jJx2|SDESMX$|9Z9y(c=}+XeNmr&KTopkx*u*f&xC3)5$b!*oikxQ6d9dc-Y%iig@jCA^Pn;tbDU-qmKGEIE~{|^En}bo?j#cb?pLS+E^&Qc(k>Z-uZS3N(Ph^hrNjCUSB~IR6zzXH*nJ#M* z;g^23g?zpWJJ>OZCsIVXYx0khV#n)5XOTC^nT(Mg=0C^+Bf#7DkI`t^Np@4v5!_{} z!#16^WG@Vrv**MT@aX9X!H&~Ox5+wFyJHn8j+``bHWnhSrHgp2M=nv!ttvd-|0Z+P z&68v;3qpp@7ED9Nap;u2gT{+u$l1NEOrHN#JeIJMct5%eA>--LrzOiIQsa#9-~c11 z7=zYF^~nh}xmDP1o(j2-R^b`)UU2S5Z1mv9IOcp}CUf}TOzAel|RUVv+bAzhlPPBQ<7>N(*3vykd zVC^%9YSy)3#ES1DPvtBuvn~n`m`8$Hi5ebCRYRU0%b5X>=gh@3;^gk>6V&C3ERvXe z3-xxWVcX70^Ot7-p>pBPWN@`RQfOjvTn|CE>?ugO=S6zP#UP(?0#Btj*j5ullxO%7 z(=$8a)#_QGe(*Co`n(kfU6Lib&w|5Gg&SaR9}Uv>w~Q>Tb;4r1|Dl*y58(B%D|wF8 zNEF^kh9u6T`*r$Qdu1opJ7pHMXV@H^}=o3iE3$mZ|*e9*Jk6;JPnkxUYm%3G{De?Q*El zyMX(67+abihnnORJmL3BL1z6M;&x{2;a~hPvOx%EIm`z~Yj`fup58skSdNC+K zaBtavmtyVvcgb~U8$wlq9lX816GB_Y1@mVRk!Y%iaP*~X*jg;a#Eo*eyBLfzg znXx08F<3*Lhb_u)umbu8;v&yrd7-bY>#_`@l%|Q{$_k}l8woRGlLf2!avZqprqRQ~ z?(`0Q7uvP6C+=3NHmdL*sm*h!TFqpGdZN_gwyqyFYRKvZ>_bhb%6)`Wr|dZJ{+^ zm(zavfplW3F?Tl<I&Rn9r`=md(B4_JZ3Np}_SU z%AwXd8?*9OSoav^3DXZ&qnba#%meY`*xbq(i>jSu;#zWWec3Qt^5YXslc|Nn;mJ60 z3F0Zuh{7Km=Yq$QR9tAW3rDcd$wRX=u!Y}Rm>V>cd|{+jkkIPkVWe;U3N{|nCUdxdm9SP|79 z0-sfVFWJ1$o02&tL!{0fz(qO{II?t%8TkGXnP%o8lUH6)>nMzTwM_8R(=)N^-FM)4 zj)A4iMDSpPu#$-bfzrqSq0O7}(DREo0I7LVwhPA?alRG!-ZdlJoW8@Ek|n%Z*D7HC zT?1ILjDxqHYDKVd97PKFw|8^P@V3ZJIH%E;{AV+Ols@@jUv(vtuk;t0oiE@i;v1E3 zhze0PPr^EpNAN`Xeq0+?4$UNW1nf}d~Ytk>K+RwPyNZ* z8fRD((8B!Zcv_IdTZb-$#DccF5?*Oqh0Zl67j( zqVpF@JvlgLy$Y6e1qh1BMjI`D!(#!{B^;zn+M`zD^=hIxe{CgoS!M^;T4_gKuXDlq z&Kku1r8IdTG7cXVB9ZWC7qZ<@9LN3h!A!m<`Dl`eoRSpD+fY%W>Z*hn7_~r#&`jWn zW+8v`di>>5C*m~+u++Q9>?Dv_Fl*_a6^24)n;;*+jTOkoU zX7z#R#crI&d5E`#8Q~?ZHF(97ew5Qy!kN0;2zPmOWAW~Elrva{)4SrZYwRca=&-Fy zUF2eAVz0mp6>s3Z6Xf43(tdGrUY|7`@u%b7=AR=ko^j;!?(X2NJ~;(zdrpM!ZCt_r zJU4??7_P*zDig3j;R@NOXCCDlKM!>Vgy5xIAtt}hD5b^XC`U)66eJoH(WzWhN}{w4 z`Hgy`!FhJD?qeCr4V)Rf)uN5WWxC+aGknnC>{XpWd;`59TJa)X`_nMCG?Fo@IM0QSVAxrMsv!Rii&({Kqg! zp}@|DZrUK=Q<4lx6=w$KnRmdG>7fbI)^l-w`7=)B;2-L{k}avM>7=$CTZ0?_Yz0Rj zTXRPfGZLd@fIQBr;Fd-CFn7ca+Z7KWh3$fLz|R0kwW)y61trvehamiZyAb(svKoah z4ki|x8qvqaw_&>cO*AlJf!)nNq2oURwr0ImtaiV}JXQ`>8je53oAYs!DxFb=Hik;T z3A-2wxPKC2d)gtRdn&Oj*CWAZ|H*8E6rUp#$Rl+I*&=5Q>;EQ0!nq&R zhOG^dcU1`YmD+&!Bt>eMpCMVEuNl+Ax3KbTKh(@y&Ghq}@y8Dtyk+?+XwS8$R6)Wr zQaYf4Y~GtvUn;hcEyqidm_#{q@A)TcmZmy>xUrb1-2KJOxko^_;U@ezI0L^5DMPYe zQP^tdTyo7jhCJLF!%X}Uupe8VQCgZld7#Mw zeQ{lKd~y%`llee}{rnD|o&;!TrV90sdNO4zZ)3X<39i3LE*pIDFgMx!IxXGS#;&*B!Ecm3wgvH+35yHW5P+?$wE{=g+ZzXa`4-=kmRiKhm;ozNe2b_-vnt1Y}uqt-u^Oy z#{pNs$!Z2M6y$%?4~@dv1Hxnm*+bp&+(Je@1HdotDtfIulo*}liGLXusMOEiKw6jA zQ1spljA2AATFkv4^S2})((kyzdVLxm3HJGgQtCKIYd6t4vKJMtn*gbd_b~UCfERC= zkNtCh^BQyBVg7%?_-)P#_FwrCdR#jUOL^q1&=6*d<}ctWvWLt8zSwn3fg8z~d@{ z@7Z9tC!TEf{X%xVd>0vhF8KCdv>>799$_qh8-=>Y;(_QC9KP%&eszBlYvM4-?n#)! ze`T19e(Z2(KTJ7D&Ylqz$(cT*wW1AJ15O_!dP~5TIJC28XSbp+?hEL^V-jY|pWTFE zM@On-><4-jdI325o}*LU9%Py{q5CV6$(@Cb)YxfZUcj1Q{7ttINhmKx(LVdIUZFVp z5+}>+Zo3I#=jS0Kmpat8XAib6S;Aa?-H0?Mo6!7oDKPUy2WTWnF!m3RV)y&km<)lZ zvArOT++0zMI7@EhO9RHFVCn~?Ep*p7gv!EmB>P`~A^EVSd z?<%_bX)&4h@i|PMawdvAW94A~OvYRA|G(q20XdJQqj}9@q;GBz*pz1#gI62SJ z8e1*$@O4||Ym+13<|>cBn*BlYdqS|S-2yh4V|9H!9`cg+`5 zimKwI;kV)!D0z+5U>UpevD3Ikc&zFoqozDYacGEN{9KVGW zb+RbY5@*g*;}EKFi3I$*tq2l-TNE>1b}`dN9>bEhvXq0dgR(I%D%px81C(k$oqfXW zL$=L!XoytkrA!P-YnYT__BW3+9xSX))yOBVRgg^&i~!aw;hk zaU=2trR2-aNGg8rDf;)62f&NSXPx60(~FHX=n!uP&kVT1roI!w1CBe`mw9Jk$Ln5z zsGlUbawQHgK8w|#Pv8YN#Mz9q#wcz_H#t3_PR^1_xIdVHwVeY|?2ULZO44Ql@F{aU%+`BTtYj>8=^;VZ20HO z(pg<=ds2ec*`%Yw{4pO1?!flHtG%;kuc-uasue`k`v@K zJ&%3zSC=pTFP9Viu#=>I7IcSNO3)(wpV&jnkSn}=Hu)odpEUN33TDJ`yvwYV)ER5> z`PQNIJ)c`lWOX_b6Ei}7x=IjkZ^%?n`AZu*7ePY22EW|9kZ$_V7Z=vwWdD{-;J2Y; zY}=;`Sf%bVGC3(u$!F_eZ1k8>MI$_ur3WBSUV-=>{6SX>=HLONBFbpRDCPt&BH@BN z{bhwH9bzJ2)Lf@B?msr;teXpwTlg;K?x9wE)?1Y8nk|L1M4qyh)O&hJFOuCcau-D_ zzMxjWdI%3irsC!A^vKS*TlAytk5GS@4n!wcpt?R5uat11E4IYayTz=)W^X^~YM+Z& zF&|jltWs3FYz12wB*HRsb}a922y2>tiv&w)kgwA!Kuy$&tgPzeDLlOfULF6?&Grx+ zC+S75+gV^?{Xs}`lfbrzYhlsYW-M}GDn6%q4IdA>Y@Xhyh4p&ms15B65UOBC#?@QF zvp|`wj`RXuM+52;3PXQu+o(#PPpGKjI?`^D#1AFp@rUv*%KqsK=C~TmJLr58r@cLd zuTUDqPc;`CG>LPzaRqmqav<6sc$@TO3q#6g0Z-*JkJ*#1h?38*z_N;M=)Uf0qH21T ze4Z_Xg(QBOIqw|?xc81ZVV4Et=WU^XYbIrpEsp=$sDk(DA(%x?Bk^&2pzvQY4Canf z9*bFY?}s75#5h#e?p7Lkgv@7r~H!p6rQx+?+JcV`) z^FyL{^!Xj{l-Y}G+DVL1IoT4V$Zlw`6KC!>C%3NW&A|| z@$QkVZHKtUQ4RD-dmUE#y*%MbrP7fuO+-^MgKchl&0g}o!A+NO=iBZx<-WRVhf_rJ zSfP*vY+Mx$9ThLxY#m+xVz!n&6mCi*-%xtd=^*-=_g?O=k12SEs|fj$caLsRE~U%J z3#1;liN9*gJk~T$hHqJ~PToj2fRpVKI#wZ(k7}o|Th^#^t$TF%POU-Eq_m#|?9PE7 z#W$c|Xf7L^*lWJJRF@PSb5V+45XHQcl43s}xQgef9*BN@aw&cDLJQnjq{e0b@X*H^**hA*6EzYNAykYgL*jezE|C=j?0WckW>$dUI3$zB&H-%tNW zb&9&?)6y5xg)%I}HR{l(=H#IPzAOIQ))nEFsVGS8%lhiib-DHE3z+bgD#l8^l)3L7T(RGkLg>No^CO zmi%-Ap2?CJ=By~*I7x^qL#>twYoxY~ZG6^~-MWZ^Y! z+U)ZZ;u|lH_kKGApYUyBrzOaIs=gwAhN|SMK*y-K5CY+?<}kl%CLI?WiNBW?V&f0z z(24|kQv6njCs8VfFYMHU;`k+a+o4$epk1C-KDCBE+IxWeCJbH<*p%G5UF7x2dOIwBeqe9t8-%N6O*Dz5z?LlW2EN0)k$k9?iPm-n$40^Wu z4#@l6jynEEm|vtR$u-&|@My3HU!{ge^S7L*`N8}6RN6Bf5&I5Vbo#^M=M>GAz+@9Z8(S@8F7tw3mU!hg!EnvjckGnB>7UP)a&K`_-3~}2J@aO)x!kn`W z;PR!L!0Ved>+j?MB}rS^&a8OQwm3>2R13JJ>4Ajj9t3kkg@|rW1q37wz?F9^*rOvM z=+d*dlk<{%?BhoW%p!uBYdtj9hR}a+PT+I%55qkfFXd8{|NwlNTxbU~hL={hXaPP4z_PP2+nnmGh_@d`p-00{h$H;aeKgupY3eEu63 zOYBAT+6nmdJ)hBb4x#?#<;2#`u0_HEkN!-j^VlE!qP{RGKZIn} zo;jmlyVnq4kxbODuo0aaEVE|o1?G#CGMSbrPo64lB(5*F5|ahO_<+m~YW&i;$(fuD zN=3C7(ZW~;ZHiAz(k;0F|9vznt+T2}N7l_k({|0_y^rXjIPM$Jy)gsmnkx;y8%j`l zTou)EX9+S>-jkwdco=!OEn!S5Cx8yCp@vU1Fr7}LsD6{J+;zN<@~X~JKYuLVT8?;z4n-mQQc)^}Q`s)lKurn%nZU=yE}asmuy^ z6nTOTzP63DY~BttE@|NM(W%UcpWypFx)l%SC6N;ko!B3jlZlI#G3!>vpvMzOnQ^xy zJl<=FneDyAtfQHv7Of?=F*)R^o;418sYvhCD8dQ5J_0MyIQnL(v%db~WcbBZ=E~#0 z=zEhX41A6R>oxY&8f7oa?}!GB<_fWU7Mvq47hb@-@-S2(*N!Bz7qV@70{%ZYh_=0# ziE7R(khTeej8DZA>(o)RG0Us${uqYFVhv!up_p>_m;u`RvS77OQR}ZiY_^t z$&LjJa#Rt&p{scw$j|M=TVtNnRs#P2gOmw7*%TK==$nq+(BF?yQVbBGp>VGKUkvU`y-|HXI=$R#ARlCLIN#b!w| zRC0j5H)js174ZMo1=h@>#nODaU=4QWKszYMtt5^<#@r>7@w8;Y1#)>~B@?E+R&G&s zHk`aT$ok4%WcMrEv#B{z=-NAsAMViwi}EHSqJ9%Lw8kM*{}}Y=U=Avo^B~6aNeAkc zp9yaF9xzrmPRzyD+Y~Q7p4pJS8l$Jn1i$+)re$3aR)2GhT)fhR5`Sw&ngx2INrMJd z5G;c|l#`j8G5e6?Km#KWj?~EJG1741JW-m+L$3GlGnY;np^jZ~#C6dVPPbASx##3( zp8BE_nrFn2$p^VnIi31wtxG>A?(7Cq)G`&vn+G$$%oad!s|n`Jx4>^)eev++DNl<(#oBP z21VntgO|*eAH9SV->t~7qc^8hN16mU{6~!n`ag38J>+(yPtbo)XEDJ&C6(3^hsYCD zS1Bpp&Ab-74I{@I88?S4-e!%1%?GXqPffA=};wF+@(zF zP1nGYmv2F7|2kCoWdzN7ah{P`=_cS}W>W9p?Pko{RdAQ_IaIhKojG}gpc=mi$h<W2Ig=T1XCz9OL1`rwmZ-Vo=4W7rc|~C+Mn7 zgy^AaL4S}|;DiSj;{Cw=fX5NuP7h=WquUdEBl5zWw0Oq+5Lju3yRU-qgT+7fIC$m zjimDL#(`+CDU1aK!{vJU%GrObp}Kh{C#k?qYO4@YvnN*C37G7RfHSkDu(zF5)T_O<)cnxnya?AzjN-D(B>T@$#1DrkUcIvf zd3)HAy3Ez2YIa9K*Q4`zWjkVD^iE)%{W*APe-iM$d&vDYF8K7z0I)K*V1M2agS@j% zjC@KIv$rIWlsPCU{Meg}TVsrQ`)L#1#{t{i?;y=S0H zkO8idBGY{haom*vob_un=|41|SIBdQ;O&FBtLB1|ov}72KD`O%c*dYb%d@05TQ#eC zOkPB9211xBKO?9%><2fgF*x{Ci7ZSJrOTaTVAsN_xaI9!GO0KX|9TyZHdI{2lExeG zRiQBaaao_z!Q;8a{iiZ%ZP6q_pICPJVMX%6LyotaswLqa`H=abp4`RuNH_d6Sh@}1 z2X?L?xs_rUIO~x5c4a!z={QbIwk2jO`_QMmr^t;E6?*Z?I6)UoC-Y#l41L@}l&l(? zLh=Vyu)3xLIZ|IsWS{G^Kda=)Y2#tC!(C97>SIC<30N{Cr75(HTq&l*9^(Cj3hYp> zAG(m<_iWUxWJR7s1Rn)0_W6Q!- zRMNREFm`(yI#?Y|=`oThYiS?lw`V@3YT$$nkOB2I^Fn-Z$#>qF4T_uzkt}4HI{;7X z80awOL8kW%-lqkz)S!b5PWo4iBDi;u^sG{gShG^AtIcbYn@7Jj@0CNlq_S3@Vksdok%Uf)Gg@pr+*>j(I9t+A3v1X{4u8R=jD z4$GChpzNd#xoRjLtFcN7Dd;3uuD)k$Zlm`Hg~B(a(^Lxu=2xh!qsfYXTh>C@&`VUf zZ3Kx+ti$%!Yj}sY2=*V<^US7wA*8R`0DLB-h)hxh#ncU;!d6?kEjE(aPVF07a4nn> zcB%x+z;5(tZ$Xls>**Nlvx726q&BB244tZc5&aF)^UF}oX_M&V#-SG`Y#08!^Kl8O(medFAQ4N=c00ncJyTLU9?D;#tWidnBi4Db;6nErc>n=`+fjsKiWOfJsjhx7)psU|16m#lAb zJ?=>GTi?87bHW=~zwYa_MMf0;s&r`LLB>M^adT3?aucS$>8@b4CjC7zr}XkwBncW9BFZ{h1^X2aQco?E2%nG z&3>)Yp?y9a?r*aE+FQMJ{v&a`y261w@jw(g zTr*_NuPW${KmNz-bX$bK2YiS5eS2}UkujFDJHgD|ZjW!ze~n5Oh!e}&S|~m3ji1S{ zkjpBCl0SmCJWj0zr}>M?nJPm_=hlI@eFGFpKSAHzcF-Ed zb3t451M~BrIP*!U2nYR51YfB`H%+Qvl06NvGNvs&$oefwbY~{O_H$pDEkTmXOq(=) zSg3*X?5P%$Ym$l%B`;&AiK(%Dkycy;4gz=L`%4gtedVt z&r`XIPptk7eRG1S!6-o=sG%(RV%LDP1pNmOJg?&u&XO>ircCN$W)3$RM{RuyW{wrCW6rD1JraZHz7702+pD2lvo@IM^Wxj^LUNQj65Ll z-%N}<;$UA@FYpBOkMDLTEd6p04i%RJ-mDp z)f4;0o8Z>>ZKhWQ=er8cMbUxJnZ$2-=%`*Aj5_%Ux;KL0dYuUho{0qP%{Y9rwU94Y zbH&O&-_ebamQixDLxOL}4TTQ#G~y#4NyW}+qWa3LNV-@tdh_ZE>H!h*DzS(+gh4PVvDl zL!Gvhf#(5xTjJboZ9XdsnK7Pdqbz`t&<0qJUp_WK0T}G;pv`I@g7ysCjL^{Yp`q%|CkhNaP za<>(c^xPV3_VEGUzvc!MJvD~N&_L4KS;NXs5h5!RZD+29Eut*Oa zy59%RMfm9d3P#)_VXILcT+{L5wT4>C35{z|4QD0sFMc_^8tGv=*yHG;<0GUJ_l~-u zcLKhqe})g&OkwuXY4CK%ZItSLkBZi{=cQt}a6ofIp0dvQLlwFwoR3n4t#F3l`2i>J6EcF7atC54dkD7`=V9d+=ZU}3 zdAv+M5NkfGro1(?!KHx<=I=+4`}aokl-G}my{j#LaJd#)1Qx)$*SpbPv;Rov$0bS8 zekVx0m<~Dhr5}wxcEw}IHj}E62=XMMi@@Dh6ty1V(swH4caRVyxtn2=Fd4ExtDL9Q zvJRg--WI*lS&%*bx14BR69cIPM{3)&XK)}+2{+VTqv{H`;W}w!T(r~yPVrmuf65+& zm)?O}KHY#siF-uc_7T4J<{Pu3YA^T>7jY<+X(V5EJ^q~_1UfPGXr0SK74oTq8PZ7M zxhqPVh4h~w`yzT_!9^?d*wYh9X_%0WFSW?=zqa_`iM4qCT66XsyB&9iaB%LK z0U1kffY;Cz)-+X(9Db@s(DnxqDe?|+nL5MHKG|cR7NzxDQU z)l^Gv=bsoZa#fGXxh7!1>NX*xqYkJeu>=aE{&Ixh%tUuMuc=K&^}GbJS+QRS0${Ja zPo+EdU`{Mfk^Mg7gM11YLW|-2*r{imP*f8SMkQ6@v!gDv!LCBeao%He*;^8<68^;O zJoN-UcH1v_Pi#f>@zWELHM<@|!iP@SP<2N>d-|-n!X53*`^>AHwCAC*W>1P`bn@;| zT^(B(*R7Y(O@$sN|LVTzW4w8{EzZ+e2zXiC}nTf_@JCtnX6_kU&d{Q_WW*DCxGZVV?o6()n*A+Q23!~>=K9_p^ z+6F;Klpf`?f3h-RVJb3_Q9(zqPOFq)YpFLa`tV#KnUT%YgprMIlxWc+X7qq5R=6wJ zZ??!&@?R|Bq@h2M6_r$uVKFm$`3Cy^?Hv#OkD~MNr~3QjxV`rt8L33Fiu*a|bM-Z% zP(%qSvr;6KltdztJ+qaRQTDo@b3PZTBvMFe(UznLDeZpu_cz?f{haqX@7L@3)OAKL z*O1`%o7pz!jsZr)=W5{9dIHu{a~w02XNmkhm@vonK(LLqU=stqV7R8)M%uKrdG*-z~XwA z)zA0T^3C4#KQal6r4o2zaR;5VFO(+ru7WYn%<0AWj01R_X{ShGQt(D3nP3@08-`yY zPnjOTW@Co*ozK^?;qS0#P&>VAbp}@PwS@t9JK(-1KH4<*JD!P|Aoc$4 z2S(!_XhHr59T1j4C;E-!D;b+1qjVHKeOiKDeiq=`k1ebOGMl`>aVBgm^`eDBUEojo z|LEakE7)%ZQ^+8v*Ep(X60dWw#60iYq4?_*Y*qi6{#)gUZ}73{!(t322a**MW*&$VtuoZ zh$9!rfPbSQHCdtyuU|?;W*q*TO(A!B9(OH~eDx0ca8m=uISEjP9S^AOLIKG5n;f19 zmc--xf0@|(n8Wj2N09G>4AkqaO08kfPz$;_;IrHX&MqYvbO_B6iCvbU5+#Bi9R6E0 z=es5eSHW?dD?gu-03wbzOW3@Vml#~bnH_JPCGM@CMBfE`ke)*->-}j(IJv40{51PS z{ESNmk2gJKR4vH^OREII%-VQF{8GiYI{|vuszeC=@rQmnyFj>g94c_E5M%IKp;!H0 z=vxhkLp%8d?NZgI9)uL3ul8S1?NBEyUHKQ~?@a>kh2F?}1wTbz-GnXPG_^k3!C7oY zG{Mq`>j)7^Rh&E>1eR>Qj?3h3i;GXy;-=A8ZU78;QI2|cTO2U=l#P{ zOZ*9>-DJ=RsQ_MpD)c^b13Yc{fq<(*VBANJr(*0EOH*;-!rArxRQp*7$ z_!fPZu0@Aya?n{16Z~SQAawd=27m72;xNDG0J|-dxMX$!-*)gr-TEit=RzI0_lG33 zRy{4|C7BKjN;x_7L4O>X-w7=VRj` ziP-iI$4w~91s#re!u-SB*!+zF{yp~%yGE`71K9<5Kkp_seI|*FTG+t8J#&^FyG@5} zYZ?ruoVI~u~k1U(xItyOuvc^%pvXqI$a@~OtbpSj<;PwBI!4HKFN%I z*v)~RqtVNpDmstNy4lQ#KT7Psb_eKfBb%9G4(;sf)&@ABdX}kT;m$UQypEW~R_r7# zZD!0$S!VHuQu5#AZDyzFac0zfDp{?S#T5Sfi&-zZ$R_t>vcp3KnKjL-X1?GS4Wdra z@`LYa`4v%2vhON$qP~#%;p-`8tkN&QkYAs^&9M$_RkFtPb;xNdT|1J<+uE)ZfFi5%U965hJD6kXaPm^-jV0}R}U(g!H_lr+QUgFUPYIt7&9#!+b>|AJxmJ1Ixk-{}Dx z&x2Ia9(0}m7BCjdMfdeAsE$W#(8tcwtjeJhdW}H$;tBz zz_1iEYVw5$>&x$!>|4HhNcpEYYMN2O5{e5*0{9X<1~vHW&k@RT@;$Qu!2-j_-hrn@ zUpQR;=LDIa$ynqk;HRVx_-XYQkeyLUoS)!$rVW2lny)$|4a{~jJkfH{6m}+C=JJ3-faY5i=N>jpA2fWd=#no zH$b~;H)tWDg;^#UIPk}PaIgOxxb4yaV+UnnMS3oh`k{hhh!L3+G>XOR5N!T0nrUFH zNv^w)MmJ8!&`pXZ@GPKFp)H3^cDs!%I?4~--QAc8yB>lcvIS7FJrp=zT!sImE15jb zrDR@;AAab3kTgi(hF&jUU`|Sld}TAjtZX) zO_A;Vw4QDrFu_AtvzReXvdqm@qHJ{uLwcd28^nrk#s)eO~%x5Ywc`Z?o-`GNaHnfOm)X0tz>`XdSpSCBa6`3QI#bq0xP zGbk5TW!(MaDD)lEqK0Pnz?oM(jH#Deq=}>y(vDuB{IfiPL%cAuJ{u3~SQX%RUI|s; ze2*GBy99=${6?=j<6-wPJ+k(-KN&EgjYNDiDLoZqn7qrITz%*Zu2zHeqn<>3XD`It zN4W9k2TMq?N@=+6OEF5QWP`%*%VD_!7xLQi5?iE{0rLDt_-vsKPrZtV9WP}_u_gp~ zPyM5UW{bd94ig|kwh68jwZKA6XTXnwQyd0r5fmdFIBshO>ibqreUc0VF`}Vxh@ph< zMWv))vh)GYDx5pP=~H0kg-75cI0jDc&LkX48i-RDg$W*$b)f622+_Prf@*vDj&58-9$%+*q!r&zuGMWU(;V2QpHBQ`}dPoeV?m{P( zSD^~MHK5wrA3kWa1f%0;P^ynwg z6$F~pRYexja}w%&i^Nb&A^^tmvXMvlp*RplQKQbF=SnE>T-M0hMe1PXSYf%PMpX>A zjgDxC#3_W76-1U#JAukD1@zre812syMys6F(QNyBYFlYtT6XJe_&Q zx*|%D%)l}#+fN-$+&zi7+`B1za+K)YP>JNW#-&}>tU#Xo+~Ja%E392BYbcc|A+SU| z6AH8)gAuyHVEgpuHtX7wb5l{C#NE0Ejx7Sp1*Uhx% zo)Fg6^*c?cZO$PnFReCneL);ne}VNafutVha(=_ER+iOMNvvDS+1Gn%5x@A7;gN4k zAkPzfk^=a%~&1iXH`|NH-y7cLwFZjzQ+oDK)=5 zl|r97!I4*5h~4!K%_Y>MUQ!$!UVjBOE9Rv6N6TU6>U2=try|$ZuaZSw7E1f}DvNro zwn#u}h{dwlfC4A$sQOPU!BKlpPIvh?>u=*qtYtrmqGrA!#g`C>?`{T3Tg9pU zb=uHtnvaSc-Vc$;m_Jy!$5~9>Zt^tRU0^l^~ z(q{Eq1D%xI310UN^mNdpH@5aDq^be&}?80CsoTUz|&!axI^%G~`u3+t;O(chQw2KOE{{w;^m~*C& za1h}WDcr-}2$OpIs4~-+XH~yC1;cx~oXr{|@W>yHjwGw}AwC z<@DqJa$0v=8tx0IA#1CTP`SdI*mmMH=iSc=kF(#xs$JRS4;4-aXkHkK;S3f=EVR{O1y^t2_mcp8c$ ztk=R^vcBpEM!i^^oD!?P=HqFV=2 z;SpIY`mSwk+qUnW#Ms@dFqPFoi??M$LLnA?piC(({!hr@W(N@2pG0R0>EV-szbUWx z1nJ|mo6=5`U^;)`#WgOwaLSggQ0R>m`|@oyEb+b-XLl8VD^9K?_#R42WsE~39yWNQ z%ZE>gkhpF5EOclYpx4(XV{P?W%)3dO=6T1D%s=gNcJ&e+Q!UmXP$sc4G2;4=fsWCC8V`(oJff z(Dy?eDUkXb`Vxb1#j#lWBDVy+x6_d>T2hQt1kU4!C#}d0iF@#f_cOSvSpmCyT!CU^T5qWbHtMohG&i2(5AP%#A%b$lz`A(4ntQbd!lAH(r2;|*%Zs# zI_d39++Gcck!|7yU{ZK?_DD z;#0fN5$a`25IaI2eZ8)ZwSpGVo`DH8kbV}~UQ3}`*AIjF=iAetW;~TJNe}=PEuSgo zoiBiAEl7E=BM&_ENCZcA-x=G8TMw8u)O! z<0Qiccip>zZmhWoIV3=E);Cqu_m(ks;?cr|2glIpJ#|==y#a2D=)!s%ZsPZK>QMB+ z3ha`?0(&A~!P-)@Hf3K80=!nu)nC66amOt~D-O(pnV(KDgXbg8bi9Kqd{0p_P3pMu z-CtyXH4P=bKX!m-=%$c)dkEHlhMeZcfceyooaFmN2&j;k*FcXaQO28NL|UK z#9Js}&Dc-;tNp^+fhOc>bu~~=T13z+%oYFXECuZoV^M#%QredIl=SX>Jm9RvZN{e# zZ_0fCbzmxGf-Rl$#H;czvepL=gHP9J7Cfns)ZXr)Qe&J`7dm@V@1(o|A`bSga?DKP z!Z}s+bt(~PM80p^sh5>D`%7C==Dd?Ak82Cs5nh6-p7v3JpJNd@Sd7A6U16nsd%#+% zei$TVIfD)4V}jz|hqAZlQzsG{35&cd;7M~HrFG~aa#|Bf4g53!iVNz*58tr1BevzJ zPq17fKCJ|;crJv7cE=LOlrEvNm!Yj!kGw@%Z?b`)Lk8$H+-NG+IZy4mrp7w)XBoWN z*CLyKz5%H8&a$3!yr}NNn>fGM3B(&wl%3G7%{W>v2ps>NCaNPO7_}llz_@EL(>|@h zMDd<6=|^kA-P}#|rS096ZDA2PyFX1#f66u2MD!x@UQLKK&!pG~FX!$a>gl34B!(0N4I`?BM^G z9=!5{zFqK`$gQ|cpD0?1;vXoIwUbML-Ro%VD8HTNzspbcx5?w-NP%?MFHW!)u0tu_ zTG-7VFnxV@GD~=3k(XEk7BJUm_Z=~4jrwvCgx+;EH9Bs{&apTuZ^_?CiD#rEKhT+c z<7fz(7Q|#4j`U?2tGv&>F5U*pT207_s$z75DyL6c7NHyNR!G7^5ZW_;&LZur7Iq@O;4!)<-C!@v$_@ zaouwwsbY>{fA3mO_eND1WI!|a_Hw+$xfRHW?<_c?FhIm?c>VkP5U!!Z>`&3}n-D1E_420ln%1 zjG?=mSUzH!j9yY2?hqRQ%9rGjfe0_`_Z5fJ_yOEheFVMSeTWhf5&+VUgDC69c6ilL z48~zMFz~Di9qeX$#!x*x3;0TH#2;?95cOq! zL^a=b6gl@BSZmCbLKcNmw z`UEh~Q+aTnz7g9?| zKrDV^arZZEq8qmBz)-`zCU^I~ql!MhV|YIhg!|%@7+mMrS$kF#L0z?JaJKag5-}Y? zAxA^e&)VIv*~S#?UVKPRt(1f}R~$z(>iej@i+aQ*S$@zPN)T2h7i!fHC*tJwE3i?R z5t7`+8PXILv5CV73tWb*lAc&#a&B#!T=hHZ+AS_L#MvHhKn1wr_y>X$)M%0raI*5LBGo*A(qp zEy%OsA7}5{0ws1*NlV{w;5U){^fe6|kV+)uuvR{Nyyp1y(@prtI2TqJ3C2eCrRdv%i#VjX1}Up`q2{qwyM4ZPsAJvI$r+fn52*(}bP7Blw#eLh-vuppxOMyOpARBFre`-D?w$czV znv%)ZLK_%E?iP2t$nk~@x#1=4R#0PL5qw^_PRP88$3a)_!n6&K;WrNkd8^k+V!yu{ z{QFXbRR3NGO_w+W$+Oqs*6BTHK0_FXFUt_ith!;63jR>d&V7`QX*;}e(~Y)oy-xtz zfK;wkpdT3ky!e^Jq>ri)8||IK7GiNAZ14->87Kt-KWxa7J%b{Zo@X)l=QZ^BJ!Ntv z`eEC~%qX-}A{lSf3B;~K{cVAR_H^Vqx0Jp~{`5VAF+fPe7=|xd4WC=)$^iXVz;|;M zv_H=;dTnH>_{I?kpMLBGK5=VsmSZeBx@9T3#ETnJvo`e7&u+9pwGy6|yVBaN^bH4l zadsfuud(pbW8grv4DI0{L+4!LMbX9P;5|Kng{}^w_NI$@2dqnA&XhU3bw*6U=oP zqdKd-EMwkb%1vSu@R98&KDDesC(2w9+o~;lWz;w!(|#NMDpF?Q52@&ZI%m!pkmt+{ zw^&zQ1Yu*r07LF^1rY`N39h~A&GpKSa#_L!sCNUWH!o(EJ6`z|xWlDr<)fGBI}E4N z+e7&zX*&ThQOr*Xe{Tj~52*mnj~Lz6-$uoW>QLQfam3-$VuTLGBUb4(*`&rgf(T25 z<@(7Sud@<1m#-&AXAUxqE5=QI?RV!nH1wf$>_`-Lju%loi?N)WiAGhpDQpFCR06R-clx`7l@yeb%@(w4>ay@fmiOmNBg6K(fN1ZsNu0C zP~c5|<_RZZP97=<40CenzB2-_txF!My}AJQ-3`TINr6zRrvb|EHiq2)U8F{h(y@h& zKXv@Frc`kGDmZl>!FTBe@V2#1L;b%z&|;W}eO(`*d)MvpR7O9T4KZUxRkk4BqSLV2 z>ns+l%_5vfFQY5J6OkJKG~ytUP~$BwSdyKOYIX<%xlT76chZ10$Y?;m3M-&!^ciX& zhi~k+~B9j~|`bw`*`AtXgw~}brFRQXGh-91kvuKf34dl;P-ZXctI6J#-j^38GoK7tmq7OMS*)ajtY@?qq=^cr# z?8`k5kwCaDb9mb#Z6OWVQw&|$w;%_DMYHL82_vS!{z~Se-!%NC{FeUBal+nOd5CRX z&C5RStqE0Cf79e?2d2q}LhyI>Ks-4*|h2(~gIX01Gtca;-5b(&01ibw|!RFzt45|;zv#jljV-wseNQ-eH@Mxb3+ zmQ#McR~~N7m4BM~O*EH~2^IsE^-5B;`iqo6z9d*xUMl60*wl91;l4z|Oe9L#m6LXP zzf(?$WG49RdYiG-*O4k+T#DY%4Q<9>oT-l-KC8O_B=u*x6=ANs3VhMdWjRXwfk3gB z#C-1^M$V8li1%%k<|%weP}&(p*U$T)3!DdA!v27l&wmqsR-2*M^CS}=brJLsx}cuD z&xy!_7BGBaFFcgf2lVp#K(53vavlmncE)6@(G7^4q}##glwZ`5e{TVw$U88$r?91| zp2HXr-URO^h=KZh@hI@&9C%`CNvwP)`~NC0l8o*E?VbZ5)1{SVrZY&@XQd$)(-OJ7 zlS4Oh+~C@j3?SC*02GxxA=h~yBoa9V)T|D`-7F!npAh#VZMcQyi0o;U9_oyx4Ijk#*aeO{Cq1KuQbGOIQ`d% zwlCOB(ULs8SCIBv=?h(s|Au&mq+dIF;SM7?a@Lx27r!13_6Pd|fnUkEGAy3>AmN0c z_X;ENQFo}a*Be}w>x3@R|Db(MG=1n$D>^T;fs%<$BFE~C0w{311zf4@S8C$ zmQR{9++{n%nUA-_(ZFO|;XF{pbb>=C!>Hg!W#Xw^39IXVfk~Ws z0E+6t$W5B_#^JUdspJ6kBnv8>Ru`tO<5_e}+67-LD;DPsZKSHbE&#`GMo{fqG+aCH zM16Fq7ypz`poY{{=r~^;^0>1GoHoxu9j_0euQ!A-GxjnPp3ouk!<+E%uOP^ES`AKx zo5Kn%5wPxi6b}3K3@N59AYjLh3^trcb3(>2-`4=Ijn{)Jgay+0c9j(pa1L%5@;LbexLiGrj_04kA|v;S6s8ZVIif{r zDGkw8|0?i{=rq#GHkAHyD~|3y;XxaGd_{{F2otxhOt6$OFS%dy4xR~kkIvOd{1cHue7|$Z)*-=F8?E@&y;-W1okIZbGQ_a-J^`f($D9XK79?N=k+-rqj+d-UIw4< z{|CifU!>(9;XzD?)vU)t4roWua@jMt;E)A3gD}Q_UVT`ByeYl10kMfi}pnagG>i2w4>Vyeb{5@@iFpZrkq z82@-0DIRgR35eXw!Um^OB={D7Q}@*7P}R6T49@F98rrbcA z_Zs0n9FO&k+rb0Pv*^XX0(3U`F>$F`OY1X;(zgKzzkihU7k(&`zYX+Sz6UwE=h4;Ge?Ug%c~oKVK{RpruWsHe zk#lYv7P>qG?UfqQ@6wIXpy&$t!114Hie|z2a5<@1n{gc5VFZ^Px{QR5K0rC)FF5YP zkF3?#n@l{qSn#NFBiSUgA0ICMO{K2mbSSwmp}k&hNSWh56Xx(=n}}A%rurE)ym2#T zsgJ_gcbzRa4JYxkfi9q1WrH<6rRY?@wQ|K5^^maE22{LJ3aK9KM(3zlJW}@@xiw}Y z(*GbGe!l{K^+_jIyYUe1^BZX;r8AuW3k%9_KTqE`jYmQ~1+a48JUwb&h~;mrfGOM_ z(u%H_`ZQ!o`$SD3jo<2|HMA$qme`X80>TpXM*we$<-^B5ckv$~Ub?$D3m-xlb1$1P^@+5$?#(k7PcN6s{b**#V5}4}oL$Jjb@d-a*6<(>L zjtQ&6QsyaY+p|FsQKEy^dmbUy#w131hLRGwXzt+%8N ztQ5&4!iPIp4a=ojf5#~40uD$0Zom%7Tk)9`dbA|-KcPPK^r|`ddDsVZr{@U^%qF*% ztgw~dwBsn@x=;*;3|qxl9t7ZJX)AL2aGE8acb%hm$XJIg_1U@tLJx(S)ua)C!v4*}28CuFkDW@cBYH@RrrM8BMM z!8}Wo$TC!hB46(yRrfi9E$P~*XTB9~(>7rhJa9r@<^Is0!|(SjOlRh*-z0zan__2Y z7nr4^0FOSD$Atj^2$e@M)&0Ua-J`d_KW+^AtQKSH=GD;Kwj545jyajC_6CW9J{$>5q+SKb9R-#aIt6r z4w(;PUKm@>yxCn#d5shT6TxM;e!Q9Sz?!0Yz3RZ(H5{AmYA&SdbO0$|2}GV@rm$SF z19(%dc(u|mX6nBRYK2lNgF9>p-TBF;RQuO}fEhL7{!1A+dwxc;Vf3z;nDZ3+8y*k# zwtpg?i+6(Kfnt>Ik5gbv^lgqp0RTr0l!v$m1+=+OZdqzA+ zcsKvKQIQ%THJS$KqP>!S>s6?I)>(+}%yqG7wKW-Y>Wf5zgCbb7d6GE3dn4z+A8tyj zhvNQI-w58YXOzWnQNY9D7BYXdqj~8qFn?sN?7RmcxTD6Yqx^2@_2(Zz?jkolxv7|V zWl{))*vY15OZGt3`790#Edz~wyU+3x%R!#{qFDF*Q}FW4DaKb9skW9Q4uEG$0e-K? zCTHIUBOm_>&U@)5$ZhRH#N;UBJ2Ana+{~seQqNZ0$o4(;W>N{?kBy}iZVF?b4UVAi zeOueY=f?EIbOZ%{k05_mA0_BvO6*&!3-AA#K*P}j_~(BsfTyt#-21c(P=DK4M{n~% z@?q8jU!i~9UNuLgw8T$|2&AJGlWTarX zFZJk)wLTgy=moo@4&fr%Q=l&O4USlF!bd(Eu)NoW0G?7K7<~eP)`wh#Q*uhbsKr=Upm|` zgg{l1HuC(A$cx9->Dvct;B|QkRKl6lg~W?ZOaBFupB$9oVDx_aMX+Udb8AuBinsPO zw|WCoBK*kq%?BuF<#u>J{dZeU_z>u?^1^YcX*gRQQ&&gJ&~5TLz2Lna_MZK~;T>dB zd2U*?`|nP;K7^aj5Oakaetfb(vRV!3(jQS;SgM2W2wQ_!teQe0jB_O4SPSjLwU(aj zUWamrCh>tk5@`AI9K>>dK^oXqQYS2vNBZ_eF)E5ZfqDK)fe3dWI^mzllCH@~or|NmYSqup3VP-G~sAANp@S4((5J zLm9Ot_;14lFw(}ElZSo-olk>A(IYP~B%noX@Pe5q{R+_d{dy$KFNY%e)N!U?6G(Ec zAd>EMP}V_3tgZL%0Gs_s;p02iSg4HS_B{6=j%eti|Fo)*K@mzgzRr;jZg+uIGe1Bn zVM$kRzfWk%mXlW(2>ffR1?TC$L#ZXH7)}|}6L+}a6@H96eMV`v;~N+$6GO*!AH*K_ zH<7`#3i-WQfgF5ePoMPr27Q`1`D6QQ*lA>h{$!Gjy2G8p`5s+-P836^5lJ^F%_4gP z2QXsbKz{vP2>mA2>F13a^tXYFfTv!F?)cRONL4j*;nOlwIoSq#ZOSGKzl-915{K~K z-Es7hHK$1S^c3V)z7DIeq>_G)S$F_eK+WPB7@FTp>PuWEE1J7teB?vqS5v{zd?16i zJ5-^bSP>lLKoHeuWN?(ucF5u0QLC)PvD3*5K%%Vy*iEeO^~jl*8(wX{2|Q>$SbO3<_-Sm2ifSc6s*)?i%UzUU9vox5IP^)f`)18C}k>@whZh=s=FIh}XOE>M<#sBPLT1pK|V8%XO4!RHzV!0tsV z*mQ)G-&`*adhW=BTTb27th_LF>5U>7F?>pG+aHY9wtt^}o_Vr|B&~4d0{| z-||ukuGd)y#H6snX%encZbm#>()ixvKj@*75^|MF%T`@8M#a#(fKtbM%5MJ$>eAjG z;>?4K1V8t3lxvQ_c=Tm3$ghU>{?SAy&+ujYYkWgTyrkf!zm6a>eKWifc?BH3;|)|! zN5RIM^JsHl0PL=}L|JzmVMc8pxZ72T`4bDMY#T(y?`e^$f2(u8)J;&9 z`yPRLff)2#G=chByBWvb%LMHqBKW!qKXk}QAUqq=fOw{b=%Jg>f%B?N`0T+1G)y2U zK2sqmy|fLiOJU-*CNtE)DOn*m`%F-=EC)ObN#r;n9#ctY(#UGpVx)4!A8W}xA~MJc z!tt{cE?N9dMnCRA&vF&nDJE>P$*dBj&fTQzhF?JB{E=>TkAwnbKiGW247-GKW(n78 zh)2E#JRf<3?tWFoR&89&S79MIB=#yLYrUFmU>M@i8*}p)#{%)u0@$_6 zpC~RA!aFlEpvs&m^X{XUz6te27@wu=uIk}flgp$9 z=gbccuVlpaD!^{VLMZXqo$Ps@Ltak)LtT=5j=30KRAJI2Eytw?WXA&OaWiH5+o`3r zW^O7yrI&(-Xdenm&!Rf^3@gfK7zk$pbi5$|m!2v@_P$R*OIR^wpA^Xm%AThN$4jaB zi${@<+$SnyPdoxE`H=3z9jKafcMI8DhI;;d1rP1YQQhlaM&qFnM!b-@6QiK-{WK*wVGzoWCZtAc%0ni#BPItEj7D(>|v}+n+@Gb=u>*P^!D=veO4?5WY zeFIF}xt7?UagCE@_)B;O&7w9^0N)A|K*u)Oz@B|+C?Y=#hQ)DQA!6!O)MyDjas3oh z)m2B=dpMdl?+Z|CK>#a-ZopK80Cs9Vl(y&YdvK(ACvLXk#G$U;LKoH7!?#gQSSrK` zq_>M;G&hNsSQHYEr?_Cgx(Mz1#T(cgE~3DF@pzTz8J2$xz}cldkvhP06CzqdbVH-aVX3NyCrz6A|?DT!M zY^L=kdh4hS9d|Gj#{+Hpvcyv6sjF+rn0qUj)%U!aZW~uK`|uHFwy!5MYO^=z8H4I=EikPKSO9Va`00VM-n2Vy|X*lRIlV$$O^4Y`#EK9L*GEr-t+rh954_ zYvo>%haKIS9(|Vd;31BCS;3DfyP40dr^SoZJnF(WsLNxT-pOa4U0h2qcadR6ES{sm zRW`}-iZInZ4l~7NwV67>VKA|Z2Ue;Z0jXVlgkrWZx&Bx_EV?ucRb?`eS3m-tv?Le0 z$gH=>C!qc*H}Z;vFCCI=_Z|BsTyKt|aI~-IH+l>tUp$V23B`rJ?)T6Da&u5V;WD zMjrObAk7YnqnAIl=#T?@Xf9U`@~@>URFuzx3*$e~=rs}g(Rw|)pf&`?s5{XS=0eog z9ehBJX@rUz%)x|iFj>S7AHGcuY~_-;)0Yvj^Ok5`b(b$*d|4xPonBF^J!(*!tsRF=FGmIkHV z_mHY(eK1F@7lu%R=rq!mY>Xs6ZfLBEv^ouoa+Y9XDw6;l=Z5 z;^fD3C#m#L3;6D(7nIc3E0pjtBM=j^7P>5S6CnzrxSZzNTW~!+1$OfBf^E_AGf%@5?LFg}W!QU%|$g8@qS`R%~ z3Lh8Whi5j3!>gKu*eQfT?hjVPksEKaX8(JF%i>KycO?T=44#AOHSghSCmH$se=3nm z+)rp2)q@@63h=?(n%L=D3|0TEiTZ2qg88;Jp)GrU;D}p=w70{4yj|Q>GA^nadiQN5 zzu6fwG-M9K)!!_s=hu8mz9b;Cvc8Yj3rwWbYc4A6w_(!!`8@Quh(M@v_8O@<#NuSA zRv00^P;w=A3hfj9jg@uCi*#GAkt$qtnWef5Ga_!jLPx4>@ymcrXv&{~&K}o?wl-F2 zVw`>t#ZCmoqYc!BavxM?w}{x#2JdMG&^l78nZ1rqznCV34UZebJNayCFV}vUoRi|Ays*6MYIDX8I3n*ChJco}eiX~TSfzJN*c=I795%l2=_{I z>;q!xYZ>~ll5@rns^cd|9{@GI88BF53KdE%F}Lmv*t`x?Di&;9;V_Ka${&F3k_A+c zlp_7ukUwK=RWGF)bq3D(Y04?tsgTQJb;*bRdZ^$BgHU~cRbtv`59xUEPfGO74S-#? z7G99AB($(J8MPWh5sjnZ_aA4hwu&Dfxz|U@u1!VNGd>9E{=l8CAF_h%3(4fs@3=v; z7x)*pqxBjQsIlf6?D$@Y4(F}_|2_yNS4{4qGp~F=V@LzWFAT#^`W)xCxhh!xPK4v= zJx(3VT~FTS>?NJE@~Is8D3X2JK$hoI0hu9qiM}lJ4UNrekONz4!1aMRaoaH)aAng$ z&|uDky?hx^5A7oN+U#Zv9*bvkJ^4(!FJs{quH#t5LY=7tHn2sd|6^(%9H*n^Jjm>& z7nl>~-{@8Ir)jB!%52$vg>?Q-3HFqQ9s4l19{X`s2(2)r%ydyEnXkj$NUq^?ko;;# z#;qu2+L~%I_a-c-6>9d~%w5Lx3BCXr zu_feiIg{S+cpv?@Z#!Ejts2?|NwBvqCgaO9QJ_BP5*|L5%8YxbOJ7_Rg0El}lU?wP z?0U0>t+^(fzC2#e-txYZ_KSeDQEmV|@AZeAcvs6-Qn&{Bbo9u(>Pe)<*etAn#l!Yo zaR=RU9+S50vH?%huZQ_ zod6G6HAp6Efm+=bk2D&@B^8e@LxV!oC{h0mrMae?c(l3-^jPf7z&>*5U+#_^F}j2C zLG^s&VeKb`?sF#`|Oq2iMV^&(?tWA|}@3X9w-P%H==&w1ktdo@W&|t0B{* z)##dCmaMnlGWg;*FFJZSG_%_KghVt>r~dm!Gd2}n&CuEAOqexPfnQv9sJ_!4rpxH1 z^BYY87UhRNarolf+%Jp&an^umdzKPuO>HdIUophu>n^nG_jyKF?pE@A%iW2d ziDyLZ+(F>@QxAj=mobd|y9t(f8W?$-4JxLY#HMRsQLs$~wQJpZFlsIdg=($=zKC{0 z!ElUmOlK9^?s|~gJXeGMTY3@5yyrlj%ANzhI2uenmIv|wwF0g6f=Itt2|ZLSlsM&; zZaR6q#>C^ZndxN)5_KJa4?@(F{zuVy_|^RValECyx3rKnweLCS-l9^Wj3OzKkdTB* zd=*V;@1>NeL<`mZob$OEEm1-!qY@DnWrVEc_xb$?J$gLu=bZC?zh2KL+{)~Z=gim; z3(rpS`3E=YzPMxK%Jx$*0n4NPMU8OFpa{wxNG8>KJ=}S>9O${ceDdOU6&6Ez9M39oj(kTv@8hR*QgT_6L@K-lY_AbI(PNgk zB58)F5WNCQ*roGy6VEgL`583ZeTR5V&7mWNeR3d z(~4p&PUx5y#~i8B-PWDNSVO-_dx10d`I3!V#bjCODF#jUt6wP;wY?`zLnld{Zb+1mD^m0+Rdi3(g57^JmB>9PYK0>DUE2uYg$2o*(nt0sg7iggZ5a2Xgm(8T1iHP& zWT^TR{!hG}d|L*%RiTn7P1%&b@Q#MwJYo9dwMsI}s)qyd4(M?H7m%^)ZDZbwHRy59 zK3KY^0L|^uKyd*luoIHF4F&qU`3IcuFqRncppErr*D91HwhYh*6VW=CViKw6k3`N2Bfa&D=&K7BBTFN9 zri0I%AI_htO`9Un#7HjvXs#8y{KAlaV>$;#U+5xJR3Ev|Fb5wB+mf)2`$?r9^POJF zwB;=xLTX3_ZP6>jM=w<%J%cJL;jJ*ZD`rDKR$qh@7QBSwDPLi2zqWG!1vPqIza`uY z_QMgQ0bG80DZQw67a4i6A9$9OU6G!kv=V?uhbi{YWKlR z;TZZw$Zxnq_a0fO49IA}9W=4-CY-FQhriX=(hGI+FID;x>{pAw9xhB87fA-6HcgCqh-Fw-DzWV51sY^sFZhtEq~iaNcvW%Bl^Hzg!DH z{HDmaQzyYxR5jEYk3x4H^%2urqYFHeiK~Dj@<12yTftPRf!iMR1J^ZNktIxqdpHYq zG%rNXS@V$Lf)dytXh9c#{s|=MSH#eC6Wq5-oqlnl20DTU$Zgd?9d}FM$nbXh&C@T? z|36ddJbhb`@ht}L@jOL>o~e@8m*0|y%uKlIa49ibC5lz<7a?WCMaa?QFkSM<44qye zzVF*>KGE;z1QlyWH(;Z)efmua7WhB!DohEnFQq2i;X>K*W+)ay4n5RIl zhJB@s6RzW6lOM3{x(NMfFpZ3SiU&esUlkqJY@iIvGl|T?Ii$Z%8m`jHWKGN!Mpurq zSQlc>pc79vlP6%9wIS*z`Fv{-=ZiVPfCKYE*S}EM`zb~&%ST#i$v#)2_uGq^Ey+VO zYf*Gz;U|2v$B6WPo0s7$kd{IVyNQ|pD8b7V-@z4q2Dn)`hdX(}5{HN{!>2BL!dF5{ z@SRID98XyUg%3DW7g8s{tPM@ItC=Eeg?XsA?v#u633vPee^Vo2K`s{>#GJ-=yVSsNt|V0aa)(Q5IC)RR z8rbo`8}4uVCs%X10KC4QMr5ZxX1=j01*UTUNpBdK3lDt{22*^hr26nSn85HZbDCzk zzvo%OgEGFb)Ktc5D9jzHM;2l|g&aJk??IZ+aG?8-1n$bkccF=Q8d0V8Tx487}y1D4!`UdLaU);F{s+j)A6C(|% zt6!4wZ{!EfYSl+xN1w>e$ty$GntGry*+`V4G|`baFG&vHTM*S;0yiG#Hb|(xAPayy zIlL(mt$qdAswqEEiHtUSzfXtO$QQyEnS0nSLCe`@{@c)%e-5Y)h?2*Px{4278Y3y&D6<1!G0gD&d!rm2Ei1h<)h^AlS(BNULo%Imxi2sf|Hsz9p2XgeI?MC3$ zm*bQIuLb5wSCc3D%05czd)U{rsW!{9>!NrNjXIBpl0^TkgWQa+#W}U z7j>{0>-0y#fFC!Mr(V91c@VCZ% z<{Q2j)W{SNj}H$3e0CigzSM)mCkW-_T_V+?*@+deaPZ)r7VhiCB4DzhiL~XdU}o!@ zGHS;EK(LJ(!@_dM$M~ga4>j8A*2_q#ZZ5^TEEB|V=R`<-rX6&uluDlZElbkM7tjs- zg0z6lY)1YSQ?j zFIW8iM#aP9$KjEs`e-ilBn#9xNypB=P2|Le=$;Wn_Q8)utJ!=~ab%dZ(rTk~n$~NNp*zM*JfdSga@kLKg;q=Gkxwot z<6jRHX1vY80&8e-yScp0lapw$-wpljkYjRM=4>s(bj1`)Xe+aA^dql&`jdYnYA|Ko z&Ud0|(`9PxlYv>V=-36G!21Jqel`US?Bq!Jcq^?i|12*mkB_JP_!N?rypCSvf8=$v zv>~h2nrzip9kz17ae8`}IGy7A9X0P+M$Zhbgn<*Ktj&H`tafhAqb~`cN2Y&<$c&5z zaw=3tm7yniVn>-hOkxH-P+dX`-#!4+Rv#ygzq8rd7LN2O>HBDv_&#_vFwyFaS{Up* z*#p;|vEiK%UPUZx*|dpa9l32?KsGb?kg2oDbhxbwUOTvwtWFA`bp;)eMU+df0yRdaGSRvd=B zP6EnaMnHIE3>HN?Lg%q-sS6HMKzsZjc`nvKu3x)KY=4B3uA50xH9t) zY3-}RQQDKNy^<7Yf4m$FoEZSm)?I6yBgN$J?*6~8`isPtz2T<$ODR1(vKg$`l}4*1 zqR69-8bH*8pRB7DMq%B8NaN5NX+3wZOdFkjWb%DCtV^4L15Yo)8=3s*W~2&AJoh!n zV!?jmAe2C)H1xm!J5Y>M*crNI+k3Dh|~Ik?&<1^$Y<0UspTqNjP@uxwim*m3kM zwDev=5BqowGsnoFVk9=NK2ONodRD1G30=29B!Rb2QzxoPJm+?G~`Og}b zb0On<`@pAEU+B!+9e)l66=u;p-gC*ixxP&&j~(On4agDrWe;aGtrw1IsG*R79yT48 z!g=0Nz*;>0lYRAU6n#s05VGhkoC20h)0Hj$GQs&ytP7!Ab9^Gl;D=%*T9Z@Axh5Bq z!yg<)8+0!tn67?hmjf-DXG?ZuPm&eD2l0YF z0JWkT+ThzI^!I=fuZZyltm=+Ihog3&g4;R7KR}fp5ids`e;Z(@FE{b|lw=T0|_YGcizBJ$^K5=xZY3RmY$5N0w(xZ0jX;;Jz!7heJQTdNS} zzhzZjyH{qVW;je~K1Bki;$cj85wf&-inmUF`t1<(&ci z&*K0cW#LDyd#gf|T`RaNo-*EF6sZ``aB928m!cgR*)p??cj^A52EvokN}bzf)5I&w zBpkOZl7-EqjhCwZ@O1BUm>0bO%(?y(n!k0&f3GbjT%lV0)$ut{(Kmf z6hodx9DrxWx4RlzgD*d{A0!2L*BpQi7av zfDqq`)Jv&V;I2?Co@(9+wKhqB6W%LeFf+fopX?4_pE`?+cVEeBSJEQ)9J`1fdk3Xl zdla5-kHTF_`@xMj7m4KSoD8r;o>f(ym^ytnA2;l10pa{gz+AEo9&Q&Ro8*teCC!Y> zAaDf;D|H}Y<>v6Jd?Cwk<6=ttqYmEqMITUXAsASs3;#@25IZR+(x@Ly<}0p*zR$TZ zzd;T*oF*`NSv{-#LxJqZ7d}9FSrzQF%LL6+-CWPKpHJImK#2VtuAw9V# zWJDh6PxUd z@XTKTXU=OucPD??oHsZ1j;jqXqR*eqr{w5sBeu|CM?Lv+Rhux$csNISBeLooV}&I_ zUaYeqT1P*EW;`b}D0>^5znH_r9yui7XEjajSEr>l_pvYg{zLUaI;e*4Eut5D@GkcB zv+I5rO8%}n1xucd0jbt@$+(ds3 z^nke^50eUm2{6BP5tA)EpM0F@uKV?!1*c*!kzdWzu>5l~1D|+ISVKPK>=1<|UZ|to z{HVOWz61=#%(NkENE(ViVs*q*PE%3{ugY-z)FSv;+Kx7CYb3;M!bwZc6wDZUD zClXUkQw>mab~E~%T7XU|d^3F%@Ce#PX3(ywf5@sen7+N}0zCJo-RfvlAHg~Zh2A!VU&pPtq5i|EvoKCIxGlN#ElCj=N z3EK3OTVt}*8*0h)F8tcf2sZkKqFpJ&&?`q9-(tGu<@4O7+RKCqX8JRBAAge5N#o>G zqY`ygIh}NEenH6Cw&a(aRmq~B8_c)I2Yu14fSx8vu)cziOr@40VDuciKVietE%5}! zA4M7v6#$f=jMh;}2Z zzS^MVa07BrzKpan{*$=OWbnZ@2Yhh%guRB*&~@Lj%7KIe`dKlhL$T5PzZNt}pizQxVACg6zocVINHmAY^w9)8}k zo5U^Qqa&8jNF5P#Fg|$dLy~=dJ&7znfV|7Lpx<+3$&D%jx>@)zX?ATVw@Y+T?$YZ} z69z%vnO)SDSzWqr@m_LVH-x*hi^e9E3l+0w@JOfozc<9athGoH#S*tm#F6xSj5{J@BdskVNKdS6 zMz5aLqbp}>SfS?cNq~a^&p6eQ(v22H!G~km+kQW$a}*6}Z-H+5=fR_}tW5+&oLmgE zC@tQyvL3Qr;u>^%Bgj5pUV+5#*B}PMPMc;3^XQp!B0gly({5#$9-A1h>_jPfDCkAE zTyBTC3$G*pIw5@G;Vjf`Bs-E=Y%Az)EEH8%TfAE}gR89>3P!S7_tJHHW z228jduU?>9aEjHhvxb%aat{pcl7+U$Ml9<~wLmrg1CH6(-5FwB-DSpIq=5DZ&` zlS_BQ6uT4P-QLZVV^IOM&Eo+`kT2%CAMH%LUT6rru7|78sdT0EzQ=eNa-cSXUCcXtn$ z=6&ODdZHNJuqi(pI{m17u3RV>2{TT}4P<`vz&OYDi_PyiiltDa?CtT6=^daC- zj^%6#(`&SOi9u6b=Rx-N**8rpDUW!qpVT-J0{pyf7hcijBiV3?z;e#_KpA#ps2NYi z_!rW;xRv*gn#5m&mT-I?s&kf1EM|)ykLL0Db~g1na$pj(cl9o~$h-O3g7fT|2)*c( zAxGw9EysIrbaYHpgA8tk~7L~`CP#}BK&!v*O>74tyH<#(_~ z&I+p8C}y0}JO#QHi^-LZ?$Y}iX`J};R0+-+Jy?4=LB6s3IQ(Izly2R?CO>x!!k$;s z-0Fk~yhf9YL-p?xEq8=m4ceriR<6fU5${RsxGe1V2!}_}4;app!h7ppz}|~%NM3m) z^d*;w*x6yCAkshvQW$o%OatzpJ`T5kyhKEFccz-gG{RrZ-DmUGM^KQZN8Vq*2cGhY zpt~W*U{<0+V`$naG&ReX<)H}jjnjQ`#g>eKSm)UO?Vf#7Ncq4^g$u zz4*mZep>dJ8r}Dz81%YVlZz(h#8FuUg*Q3_jm;G>Lnf09-ZzHqfhVwZIF|5vzXZ3B zi_o7l2jEU09hhmA3k$o8U~sG+cs(V`KJ?myH!o_EH_6Ai*E>7dr@r^KP=;FWH`-+W zCAF#1rH=NsS;o2WK!BENT+RDl{tSf;WFQNLR+thV##Xp7r-`RDKwp{XPj?M6d%BeC z^u3}yUZCqH&bAv5*%}ecnpRkquuU^`I5)JTnlieqd8S&)Jo4c*Z(J>eHuAi{$@`Me zIoUUtt(kSG$#UF_UTSKCd}<7M|I+sH;%|6!2J0`=ZwoQ|!kwe2I$E&lk?tGvS~rx_ zeKMELn>6FC{MUqZJHA`qJ|_qlJc*@c@^-`dja7IhuMr<+I*;vJYES|HI1I=YqAlN= zz>alJfb}StnGGb+5vDcdw^0sy_RWrnR5G3l6>k`6+ly2WYayMZ{-~dQgN(h9rh`Ja zz=%#uGNq1TX+$J=xac}*NE4;c7?jca?iWGK{VGr;xSi^nc*eS$I}Sinh`@cu35ulmmc7nu3upBvtI1} zWU;h=OIgZ)spqlGw&xkHEfu7-?GP-8OklBcRuPme3ip(&;Gg^YxrN?-guF^7`W?zFO@V`d&Tz!oP|sr9G{Dk>4oJt>f&?=c&vjOj@H&ns-jD4eCvzn*6B~f)R`K9@t|v_P`vz38 zAzGa!f?khX(0kfD=l49vUkZQ)1^><{e0Hm*di!5r+^h3<^-p{cVMIKVwpAm1yEMH9omdS zXq|znfP^xByLueSDt|%dZ4Ch(9WtQjFhBC#tprE)kFk7vA*{R_4|g|k zN!`bFFo4nY-7=1W>Vlf^n6fUlprUTkCp%+u_wD1f(vmhT?0$$!RJ|hI5H$yGJyAhC zmF9BQZzC#5S4z6%XaHI9Efp+H*n#2dTVO-)G$02ILD9ol@Zymf(3zczeU<&t~C?R7S z`tX-aC43(n3U!wp04M%=K#A^J?$&3YG53@M_}Q@=Ua4va>U$(nD626Q3*^GVMXflu zauWZTj+PH+iy?4EDD!32MJTH)iVA|BBxNlbCkK*0l6RBotSxI-f$--~K&dUx{U0t1I(yo*4Yt-V6HSMHdw&v0^&ZY2B+C%cBLz!pT z*oBnezb1>6z1e;}N60;X4$pt~4P4{!9f?GLpbK-4psdYBD1L7eTkh*Z_JSWnNbX_* ziINvY)h8{H$Jbn>xJQFN^hTJ@h<-(4IDg4MrrX*6Hv}$G>!Bm+sv)Jf7Hn4?0LK_jwf`!uYk6$Ukf*4K3Mx~Jxzv`*vBlZ>8C$dv4yY5k^^`6kjavt zbduf&TC13lL~SkJ?aH|+n;UDP`eSomQpt86=%}X#rkh#ohkNiE_YX*4`UdYm!cX4{ zl2o=f9a8w4?ISG~E6OW%n}iooCP~>lj{tv`oKK=K`_S9Rj9+pty>fG$taq_m+NsJ` zbS<7j@2#ZL7KHKAgYSBg`Pxg<@+w4mL%ws^hXbB*d&g>4skns^-Bs~M27IdP=UEC}`NXdq_>a*2JIEWw{eVBiT~ z7}}psbUyl~t{n}=cA7@ur%^hYU3L``u_{>DUZl*5{gspFcAmMXbyATB6Uk#IX~~=o z%xw9@2tMR`9Xd?xmEO|f365_L#^s-n$qKb*!N}fZ@WS9W@m4wxWy-fE>+MZZuFqh4 zuMfQx%s-@pKj(Fb@Wv?koLMj$bUn#v))|COLk*-+u$81%HNbA-NrO>RsW@)yO0F zrgYgGzv|F;EnQN=6y@Rh?i*;7;pZAH6M<%qKhfMh2@on4bHBSzl08Rb>Fz-;t@O1F zc6-g?PJCKL-v`3%)va=LNNg~jbuokIp`*mxZaje`&F0f4&kj;zy9(gXKeD`H9`iOI zI|H}fw4=v|is^|jCy>SMtjs>ve%7c_6NyoAA%kJ&G@~nm3A7ND^Yez^IcacT93QIv zZxS96In3}gov5yVW>PO)^~pS$OE7fTJQ(A-8um+O!8;b&BrP(UT%wu&h~Z`8xHA^U zUtSC^7B;|VzAkvxFyrLY?ImBdor&4E#qe-*CLBEQAiH5E5w7To!rrDmsk*!Ffbs*C zV9-#Qx{EKGGZA{^f@OQ%UOKf(jI$Pqz(^R&Ljx|~6dlYxEL-DCIz0{IP zLHh2(z_b#HZ^ZagEN7W{Hyb*5pq0n$(F3VJP}1ZG>b<2#ubK?yT)6fN?$^>KVC8e9 z+b74__^^<7tuTS6c%gRVw%x(b-ysWZy(1~c-};}zHcYXmIiWOEz{;C`c}~Ts}rDN_6v!VL1*y5 z$1A+tO|xW`i#g}Qt5wJ>H&K%5nx^FJYLHic*~8uNH4`^zeCNpS>IO+qKVr4D>D1JF zE0U1oOXBy=<%-XkP&^T5GUm+iqYiz5mVfz4`xhgqcdLpeKplo+&FPSYH*rzt6D-pC z5;*nAaFYZbA>V@>+{<+pJNU_j4AgU}n5^|umeQ9XHOP-0x@WCcO3Dz%N<*BZt4OVc z9t_*ZvFv_+B6lO4rFxYm(kioQSkHY5>xMLd|IJdYdP4$u@DH;1od}cf3WY}|w8=F8 zD||>v8-$G=A`T+SP|QFWnYjLt_uaxUFVdW4c8#dRpp_-iJ!%u4zb~8A>wjjAtOVj8 z4X?pS-xJ)dy|*Y~3(3o))-`^z6F{ z@m@%=&x!Jk>V)Y3&Qvnqk(>C`heq;u(`U5)o(r02)lcFL3= zw<{vo^%v3B6Xno#auL394Z@!<8;QG%aN3<+QS?lb7kzDeH+|?=5E%BTB1h_F9y(X3Ya z5z6(31r=zt7|sOQQlZZqvdp`xL3Wu8iM!jdFpu!hAw~2&6^iQDP2E@3nh(n zzOHwNWqpR^Sw{x^CK}IjSS3MBYL}CWh_|ehllOqV)<>#QQUu0LnSs5POy2imWcuRe z>g0$18A?%$Ev+8k2eVx)v5d51+M3hBQmPM4fM51jP;O!c{e_uxjeCZ8MKnk&USqOv zlU2ZLmoeE=tw)5j@3P>ep;WN|k`Day7&vHMsb75E3Fx1m1A>PeSZ}X=vf{h=TvQ`o zKl54ZPRX2)l_bPPox}{Nq%LvRBCqcMz>4Dul%UirtD~Pzvoz=suxc&~=tiB#k1pH? z=iWX9+x?4Rn|1^?bWkDZoJ)aMU4T3>+-l@MQAlyXCo z4di~dAshu_7j@^K!Cw^mIi60hvdWQVo-YDLk@PW13+JuPsPk_NZQ<5!gM6yq|W37eONZ8y6 zUWxe34R7j$8`djOYES3UMqjrrKKr#B}6_hvqxeJidUpxK(zW3&kh zS2nX+A5~-1n^AO%!yb;gDY%+)+LXOWW+4o@bDn4Kn#Fz7Uc{Cxi^|)N4%xYfSvZlt3chuO^CF#Uh?F_x+>P}v- z&qB(fdK5>G-j({MV~vFTB&-hPs?)EB*qr0cOrs~`G47u1px5bJG&w1wM$VH2h&u_Z zsCYq>*xgqOjnC@DFK=r_ZeNH{D#>l5AY>kdfYs zO{wPmIDpr_2lkTlNx(ci*7!zKqVhD2C1ojv)oc_>E!#Z7jXGnjkfjc-s#>Hj6zAg^ zvtCyGy}zk5lsEh+p+K(hyq;Ztaf_74`9;tu_X1v)@{gJsTMTouo5|HyJ1MX7Er5b` zF#YXq9JZyZ;VA!VEIAsNdQ($NX0Lb_!wA1|rAmGqrS5!;sD;?V%p!HJ*|Wq%XU1T4 zy|z5nLtT*A7HN~`+xD~i=~+Bja2X%1EN=W}G{?#%dM;!Ky#Omke1UN7DzfQF7(Vk> z6Zg*=14W~g4N;qKU~gM>;=WP_9?&WR{-1gpHojg>W(8{HQjcuI>eKhJWUUr_6+DXz z7q#I-6I;pt&BCy`XOg8=a@joFs0IGJlZdq=N}=DLxzbOYe}jdNQuu)4vh3E#PVUGN zKC&|CjI_@!Gue&HLIHL9G#EUefp;eBLI;Cxa{1jO1(T?=@UPSejGVKX)D2DJxeWip zdQFV1UXN$W9npIDqIs$@@teK8=E(#iq&Ce>%_?kg!3vqaImTk%3ukf)zpfxRKBrM< zrhBXo{YWEW-?xzCqgqx`Wig5o`xRmJwkF^oE=4VLE{9ocZ|V5V58C-n!hkUR-*t?` zpit@_tC)Karj<4Ue(oaDw2@6z7EYu))@1?tA8q7^1V88}A>_JS12KG8O)e*AR=KQ;clOFz7Na#Ng%|SYOyLg`D{DNww-_C4l z4_#rHaw(RIte%D9k8DARNGO#Za)@rb`4|Q!euQ&(o0ABGDJp7^n;{YIk-6koE?C`? zWqxPxIo8@`^}t|wJCxV_D`U28VMegPLG-#>5z7;5Ip%G!u3QR6EO-tN z{Iv$=-ltjRNh4(6@pgD6dI0j>`2^h~#jO7J6sBE|7oaR|6-qoF5J%GGA8=Q77|Lh< zzIf%ETv3mMY^#(wPJxUy&u6|0;!}JBzeT^4_4B_X`A3z@$u)hFBK@kCCB8YG_n&B? z%(g-rG~7v)w-DfmV@uCSKH}ImdFK>2ZSi-PO43!mQwg`kT&K` z!1GczXORcHptDNC&-Q8BJGBtb#Vf8&g75b?$$u*2IgFNahW^v$c$?^DD{i~VQ-+4VzA^m`q)IO}4>Me>9~w*Pa<62c%h2DI7mTJ-qbPiWL82EE2oT};9p^k-JnJ4J)grK*a?>Ut@WWYZPJ~7F z(~mn-;&M-I=c?9%R-5{1MrhJ`aG1VrJ z#(#Cd@J4wH{05ICZ%+}#J53JbUqcMj;CV18&a)w<`)r8zB}v(&dj@1hc>rmAznR?F zw-N7s#38baju2$8O>9fY;ghPZSe7n?YV$JS&1Yo*J=h~9C}@IB{`_XG>eh@I1Hly8=qE^<&LeYo@Wn`@!mUqHx(06+(tCQ};Q$ zu)xMd$(0XkQ%^e6a8vK(G*PC2T&0RG`BkWd*9mf>*$QqkvzD>hp)Z-)=m zl>TzaJMe=gT7M4SF%Jf&UfPzqXkE(YrC;#Z4eP+cjE5Pc`n_-=$AnDRNT;$NuVQWM z%aPi&^dAT`SU?phUV|+Q_|VqA$M7+yl2UnjiENs=Mn>AhQ%iN%;X4C>oa;n%pu|$T z#?Br()eB?{osNRLoc6(WZc_9p!#^@DTTPqg_mhFl^mMDE2auBv*AlnwMv6uA=o9oH z&IV_3X~{F@3~DAvt|Y_9I(j&AmoTvlSdSg&|AYxE&Z4z-3%Lu-eo{|j7}v*^0`9>> zA+WUNK4D*9KyMB-rr+#Ng>&S%)YGEdaM9{M{4HD$`fKt?OpX=Z!?0^2tQ6?I8Sfh; zxBmvtQdfz^!K*N++zUmDo`uHDY%+Au@67Xu{ef4y5z=Wu{!c(1rN3m;uNu zI4W5c;wJO4+gE&tZNJ$@?F=YC&UB?DPGI=HmGxHtK76lH0ME9zQj?Z8sCF;?m7*b-U0iA_LV7~Sv35y01nGMS> z5uRZfe6ib}d{5R6wzL-l@-lM?M69d3#u>}-j_;=4!x#YmsIO(lu()L-h-!@HZSV)VWk@U|NV0>8L*8Qa1t*hYmW3EW1RhUk7Tm-*m zacI$7I}>%DuS>NX8piMak|ew9o(ex$ zo#aHCRYk9gY$%Y{^m@kKzFC2eP>xKUdLxhLB(#wauf!~YArZ|AHs~A zs?hD93d)ZOl0<#yB)mm;LrSu~aeDqB_#>!K><;`OvBm*(RSbWsXQa86ZjC+KYOIA6 zKAc2-g^@@%^+c+5-F`AM{2SkUm47DQTIOV^@)o&4N^>kaLRqRkxYwjE@cRecI{-|?d=_x~CIojJs zthjZ$?6lv@rL&#N=rb&)tLZd`G=){zPm+Du8!R&=EzdA4v9uPReaI>D<>Ou{(IU)N z87tta)Td_5S!*XT^70n`lCGNmnZ1NueDj}R}bx-hCAE!E6N zJEl2wq*yQ8B+H2%z4Q_qbj=58AJ^uD@%g7M%Uj0_IJ=9Q2P5dLbOS8m#?R|!-gbwc zH^OkhhxeF&rdBIuP|VtZv}*FxBNZo5rT-L3NW71By`7*f$E=WkxgPs3V!{7bn;>NH zie9@!56zdUq2>RaVsH6tPtSEMp}QUmqlCz>nBDk_st`E_UD`82)XEg7GrNeiH05Vp z(_LdFEGos!f7vX%w!8b zUC@YY40GXzT1WURcsKkxvzzb)55W2RDV+I))JFVz1n9DLkonJ@G~2C(36z7C z(-ASbUc0^UL{A^kbMgj-u5;mcg<&jo>jjv)`&{;V{aNXFz;L`EjC*X5PgtA&*h~ zZ{QMat6ztltSKo?i7_V6puu>oNv%oz2^xL2p(jkLA?B{3wXe;kySH)iY~L9D`BWjj zrAdaIbECkqlPl%qSB^p}X>;=9R3{8{vX=JB$}~!4Sli(uEc)5p0}2ztyws?ipHMUB zE^ct-(#wm^Bi~4kRM&h%neWfV>2=3aq0AXs7`Fd5e9}~l?sGb+r-y5mHhqyKXA(tH zj`Oi3Hg1rl&wa9yEr<$W4Y;=D{&jB4vlhuD!SR};!}SQ9H$R^8k+^6zC}93_fG1i1zlo!u7t9l)l=2@=^VURl(jg@&0~A`0|_{Y1nTBS@+tdHV50n zIc0kQQl!nvojB}y_XAw~D;>(G2*bI*g&4164ont20Y_iqFDjy-_fx0Sf*wGnLbYLSkZmm>FQp1=>_au&}!7@m_G8Yd^2 zDMrcPY{Y(tw6Jc_k7k!QH@Ht7Wn}LC6=ojIG$D4g)S&11O!P)95hh$-*NwcO@(gwL znWwDn+{ceP=#$qLGT%<-s{EV?hm&1nnfIKUHS zVg)2OGFhc}s3uiSW`+F?YV+l9Oyl$()&i|jV!S+tk<%1oQq;FINAy=A>lYc5iK)3-3?ZVAlI0ue^@+f#1n(qx#P%7d|x zeJK2sBw0JbrGm=NvC>4_v5?z5`ix>adHCxr{+~xQrrw)}r&|qZz4#5sp(frU_9rO--pZx;fyb{bZE}Ej;CQ;^+v<4;l&XZZ7mxE^VDoB8m45cCTjO@q`1!tQu z^6R-e0}ji7b8Ax$M{y~!DpF(GO}~&i^X4P9bzzLx;8!pywTIM~H^|vAJ8Eg~ z5mM+J4t_>6i6^sylsczl53zPKc7B?Yp43nHaPM~W`eWIoAmA8t{!c1;zwTD{X<->CbF@0^pvi<&K2!3onz z*IsAn)pe2750q8;kXr)r%TiFvGlt$X5)aCLm+-oPLfQg3K=W7p+YEh{7k7QeVlO zpt|QSqE)79VaiO7X(_V6wY*#4{OlI(ny%zYRVgccoGjbjg>l z7j#y5FBzWNz+M}+i9cRvBe+}I&ktAs4v%s~TX^Zh{C6TQROtgFD*0qFxgEcXoo6~u z2{E(zflCCQ;}5d@OeH0h|4^2n=B&zuIZN@6Ii6!z%j>e!o_4Xtywv!!R=)vcDM2j% z&S4x|lh`UXFPT%9ib?O?RA#1)27i5~2kJa?hJRG{9lO)4h_vVKAsTO4{8aC!l$IBl zx;1FQpPMJb|2R#YK`-*~AH_H}X)I({29=<|pK>j$126N3l^;_+!6|IfV|~o2rer3< z{14VTevV(5pwEA;benzkkq-a-ocV0e&D!imQ$dtYP##-i?K^gkNGy9#mm8i;`hnhL z$CBvzH}Uh$r&(Wo){|KmRHe$eCDz*N2I!vlQY@u^nqL3h3EC5Uf>SX?kAuif|>oQr>vl;D9DF>5@3A{ll95(!+z=0!7 zCB!d=!Kn}UYl;wda&5-}(#MGH+jwH^$ARtpGeOhr0@{^a1q15lq~Ws&vP6RzJ+#Jl zcf;^_-z}VA#A#OSF@Z&aE1(eGW8OM(0VB(pxw1@-G<`Zu5-SVo+q1+O`zi&rQYRk< zB75yl8I}8cAvJK%3$c9!jM9HvR9J5YxzO{R zNSS$)rLWznj7^)UK@}M?l&;G7br+F;k_0?AI}k777Lqghk3_BKk+#{(IeRnuN#-`T zb-7M5(BXGL{OTF}`(82>PNosfbK8klODt)$_XI~7fk*gVC;5~SlC|+pAhm#DQDKo@ zvL^1Qh-uI&nK-Q@%(|#!Fs%3#sk%NVWd_yYY^DCBUmQ^c zH}u(jH8BX^jeho*k-_Y0>?u?PLxYRa@8#R6oAVN7l|sv}6!Lki>?sN_mIS;>}mm#LEB^Q4cv2I%cCNrq!4%WnA(dX;=8S~A-oa^K|BIer_# z(DpvE@J=T7!tYUu?L+#?^LwDCAxHUc+zTNi;}HKrmhqpKLCg#RM?Q=t{!L}7OOAz{+*wEJgK;dd_R9+P|6?RI?;gsRa;F#FnMW26>(KR%g3Pttuq%QsjK6{&CnRm%>==?lbkl#X_mt>RI z?YSr_WCoQkC(0d}F+|L36>#d+Y3RM(X{1@lpnU&PSe_$Bn%}Tl@}26)Re-KqS!)Q2 z8`eIPo|#Ip+Wo9o<+3E8T9Hh<;YwN-*uhba zR4BhAN=<1?QtgE+Dd%hAfKJ#_&^tsNpBEC}PbXoW%}w;+V;8HZvW84{hQfc&ZN#AO zA^uP%%?$sRqrNSE4D9dXl+4Kr@|df{RGUOW`|DUr?9V3HYj+4s_N}Ehx=Ez}9n2yd z=UvB}8YAFRbr#&)@q*NkK7!L@uifwa$D2`E$09mG?`7bI_#?6+Cue`OPu}+4K2iOtvunY{V!Yzj2*aQ=tSa zmM5|{jqV2=C7rRM#9f{g2U>APKWR_hqvR)@R@B5#n z*%w&mBvg4mkVXv>`tB-GU;2zw9h1%vs9ntl$8vtZ$|Yvh@FoeYPy;8=SCm1?8#c#- zW%GK3#Xq-xm_)5T&;R&1g=n@MCjm|i+56VEvuYm=`W8YONNj0)#v`^hrib$3ur%n)RNDnDkz2>(|wix9w^cB zD0~jTu>S$cIJl5GWw*daN<52wr80%7zo$-u)8eHotdj{3f8cL!E$7=vyYTn61cGB~ zHF2p*0I$i%*erGnT2Sgtw{Uuh*{WD_z^wx<8IC~1p*7^2g)}uQFr1npVMqz4Bw)1Y zBOJW=Ej>n3z>_oTK#!tyNMlnCI2NA9dFy{d-Czd!wnQCDXO{qX;xqbl{~rKHoH9Es z0e%lcVa+`^nDJSUst`#0=z>Z5zvBmCB3euUv(RS-E0+^y0v{@l z#yj=qAdziTP;KT0P_~yj8Icd+!-IIwq!CFqI|&1VJJKl;Mas?NF&yLxdbn<`Q2gKt z>*kWDWSyQpedpRFEB((PQvc!!obWF6UgRzwF7<*t`+AV}b#;20Q5bBokAOIjTIBs; z7-Cm%Cr=e}@j87VQw|a=<6mwpe|dQ-jgw2XmG+5={|mSF#L>D&)tJkyhu0^C z&@M|)GGo341?$`pr2gbB_}+nXa&RM8L5yo(ul0aB!58BahK# z=nId4$n%n9c4~H}!s#0PFna*6ec6v^A3n>gP*?+tqnhET+dQP)dls%bdg0T(4G6|Q1UR8m^to~xvds>1s-XmPHS`qlU z7wEOFN+h5qKjV0P9PE2NKra5%A5$tO z6(Fm-kTFDeAbD&v$*hh8r&~E}&&f`{z*ebp!(+bXi7f0IC4&o|LXXKkax&15dZFk<%wOoCj~h;-9v=xtQs8$l_}WYJs|W zL1lR1;fJ8e&PJ>97s4ywHqbfP!!o~I3?1<$WSTG`iYNL>eaJz$KF1vvXC=VFXM1tb zuRowEISsOwo+k}Kf*jow1?s4)I+YrA3m)zK4=(HwVWi)vFbbl};3D~nrRXl}4f!+3 zqbu+6MFGay>6bMbs_$r6;A=)SIy6`co8oDS9~YEwp#&+FP!E|1T_4c0o{P5l3Y-In z{_u2C;_+3M0eN^+9sMU_Mwxnhptjyj^h+q298>j$Roef-)Rht013ob%LOBmD(tIJ$ z6>}_XZ1(2r8E#UQ zS7}tbbIgFO`RhX6x3(slaVJQTb^33eiMlv2{#6)>Nf~XDwzn-;_ z(K}m9{xu6`tyxDXk2x!u{Iyo(p5jXK{!clTGHC?tWDh3KY8h1@auk2exhm+_5b{gl zhxuIFMPV#y<#t8jC>?OX8Nt$EaY7hek7+UkFRI|M!Ca=2dx^wG27)3@!Egqh z*VuIyLawEPr*k;^nI+3C7`33g)qX-kf;S~f>E@n%tW1V`s>n#02qmlX8x&5xg}mrB zaCu@KF^OJAUG$H(;=Fs5DQUHYJ9AqS%$JXa6??^*!eu$6*5orwKawP;RA8R@sGBA<{X6W;GYCcDqkaUL^e8h3JuOtdJ^_w8d9r+tmY zzJH9+#cky9!WbfE5+%JuWGJ`sN}x^D?2k|87wpG zOkVA>UGA>hVn!kNlmac?%^DduWSZ8=P*Y#Oi9Z~Tm;9l5BTrRj4w=k9A1pa;fg@GtmBEPb<-@t}vLvBV8yA#BQ8&`N;JHRH%vv*Iy{O2W>bxFK&aL@^ zlS=K0T0$_RDadO@cK8dFH}+6n*@J42cu-zPEva?!ggn`y%Ut-vC8dKh)ciNLly}2B z`n<~&xwEg8Tz5GFKlHKyeTk>4jRf;2jw@_8H=&GH6~dC|8U%|kAt9TOpril(!7bwp zT|?jfyLx`^B+E?FFQ1z$L? z4fB0}5&kkE#?4^4e1^y{krwHLH$nqg`qz2pxWWxuLu5bga7fUrEB?f%M&{X|&V2UY znJ1W=GKjs>Hhjh3D12ELvxgTAMJ19DDa2tiUcP`KiE_9Vq|aQMK8L@f^52QJunmP*GjGRtQH(pFasnt^~b=V_5aN zE9IDN0PK4j3i4KFlE;ECK8B-7@J}|;58DjeuYbiCZRM%O z{UT_ajs=mZs>2uiXF|U~-?7%L4NzAWStwG7))c-acR|302wMvAdU7CqN|foZao}#w zSPhG!KcO$`FY&sUljKZbHsOZUK(nvv;XB;g&6kMEj}jUSs+RJ|wB8MWhiZwO!xOP!!99^9uMKQv}0D!yQ!fLG)dU*I!6 zW=JAN<}s;l;v^%Xjrtl9%amd-@^n)Q6*$w837K=3wDhZiUtcXVDpN-q1_Vy8a{)}r zO>v@|RYf9MhWsa6p2J6Gf;hOohl}N}7&+&4j7j4|O5Z(&-0GD`PqkYk|@O($X+GK zZ`x=i|YN=4_`Tj?+tErnQ{W6_7`n#A35Lc(X#9|mtpQ9k&Dn-tn z(~{i-(qw(LPkpjmBK)cHgDMh{VZGr!zIio>wOikiys^Fqx>5CbaSUP}U5_CWVh+$+ zy$d&8zk}~>wxGE!v5;l|4fIkRiJVD+fSF`YE~a5f-l|CS&LrY&|83-XWd^qJN05a| z!EP{!e2SWZz3r7aA8h2PXM)K2+4b49m4M@Du+W@3a<>Yd4-xQa4=ups_js%gnnGmk zl`>_iZA+b*z758k??Wo?AdBpu^ZeU%DMP;&azarGmWYWl!rz<7p`HN3-b;i2Y$Nh% z^(FML$q~i{S^R=uO=!K%RpN6~8VC4WbA=m@!P>(nWQpKhc2K;On54ggRQ1hRYt3os zFginYri)X1mQ1Hq-}GV#7kq!Z$6!C30upRIjk>n~K5U)#f{t-H1D)P-C?G1GT$%9# z8UH>_^mg!})cGLZv)&2H%f$&*tbmH<0$B>B=1?#r$Lcwn?kk}yy2wCDmbkdz< zyj;q_HYO3Pm8=HCuIbcr?>jQ{KbDg1I8lZ+PZDs8j&KglUMEwel?PQ~m$4jO0_Xhr zfYIUH>elB-DnFT=+w%`}12ggA$b1rRJ|S&+XAMc#))liTkpj_A;pC0CC|<>sb61v_ zkW$*5M7Fo#HQ|N$!`(?J7BIHfWrZ^~-sfTATn|!nsSJDDN#X<5YoPtUA^i3qfsI3n zq%^aLrTI=awM93Frx&HjylE-H7nN@k)zqVMUB!Cnecf?1-T5k7kSgeYUv4FZ89`9O zoy3-R7NUPM>&Y&=PIR!i65dzJBh|MtOqzWi{0J5$eQr6Hm`^bs4LekuU$oFO zwSMB*dn=(i<2o!c4a0};&0(x>=Q4Mcjzh$`qqyq95ce^C1$+G`Py8EpAYwCzVekC{ z9|jneY0u(uq>i{EPw^yfm)eRupIDH?CQf)+t~{4F^_2VZelCfy$bt6)*4gcq3#iOX zm2l#;Dr9RuNv+)z)hH(55k9lrPId$uP@|6~$=fa&DBUAR%S!XPqA8=u!>tr^ey5Pz zLTky5KZ%)-5}ymQ)<>Xzt{kLsW@KJU70+`%?20T!xrnRXp7Y0foZG+t7#5F;R(N6) z1<&5hL#kGfXtEhGx6T_tV0Q!@(@ldO;S1#K-W8DJo=Uv0*P!N=V<<1Qh#YZVWxei0 zJ)!hBLgapV6829;*85KpR8>tUjk(ff`;moU;FUt2)ty1UIki&NKO}+$L9l+oXRt%_p|XVNBrbC06ZOJHYSAQY!!cAEf`~8f)&iS}=3qfYW_# z#ka99V0uLz8Oy)UN_yS`La#)4%A1G4wtiB&dc-o@W6pP8exDX}y*~!3!E9u^RS6;j z_A{|&_SB!+5GpS%iQ)at7jPi`AfK%ZvHu+=LF*2|by*!|Mdf=U{z94=nMfn!A)eIV zZ6E{{;Nk{lQ+_ic>9^nMw++c6wd*d3i8mL2D zwS(~S`X*v3(S&~fY6Op0tH`~uXP^;eC+LD?0YBje7#m##AsJ!lY!)N#ch5`AYTu8m z&L)66s}gm;G6E^5M3_C^2}L2X^xxcObc{cfG}hYZcHHenQqCzPkvE1mycY(~tdp=N z-yhJbm#D{lf_L9m1HDsTKPpZS3O z8)i_~R;p06PaisccoLqt3pUaG3h2M(i!S6>!A<#@RF=UmS;o`e4`0u%qMpskL86m0DT}Lbi2aQzbo0q^?3>mL(#^-H+wmN9 zORW-YOr^=n$%QE9*&}P~WrBBmseo^{N|iy=q?ufo0%FtWO4%Ew6WP-ON7--#UL~gi z+=3C*=z0|YjoeC?I?rXIl{)Z`pNLpi=933IdGP-B69E&hfQ%QKQpvx3Zdc}y3(>GcvVFBp5`9MdS4=y}?o@5lPMXjExNWb$J zR75`{9*2{NUc@2hboLl55Z7gv%rV64zKJm6b{mMte@WIq47OU`%rB=8P7|wMLFgt^O&)k?6_bCEKtUqx2&KOYrB6;|369;r&`as}NX!CZjIYca_0766x zIB9tWU-`_wX0XLO!1LXS@)xxFu+~{v#`HwKLq55vAAp zbff7?UvT1Ye_mi!4^KLq!xIh4M~z=S$xr40lne47KHEN8Wk2{TE$%4KbabCY**W7l z#@CacU`Fv^#%*%Nw17_ikO`HCezQv6Z^@XOuvfl1+ZlFRsxocECy;N_T5`|fOYYCb z0c5KOk$Z(@@EoTW+`OZjm;9y%LPDFe_gva8m$2kEKT7W-`DL+$y`{Mok0d1X3$y*G ziIwZAsu3eTEL_O`{L+Xo^WiIV@!|+mu;dRjFKRje*%k?E=FC)n@%~0Cdf_D)EC0ZL z`DzbeJ7YS#vaX*=o;?DNrO(;AyH2uAKFhPWk%yFTbU4}CUdujxR@z2*`w(*~_8@!p zd4b`fVU#`hgA+g1WHs|IeT2Nom_v=fO=KGgHSy0{KjCk@SjS{`^zcP4RPfJyn**o6 zmhiLmaw(B*JK2fJ;UH&L4hLPcDgT_8%msb5mV1R$@Z0kvA;&hbmG;#$(yb}{m~AOc zoWWHpZ9I&antcUXh%S{g?zCen=DQN1W6D2T3dK!M0mU;O@E$zwdm-F2z!qTrT1H;bx>+v6R~T zMk_P9K;- znZFidPVZVw1z!(>Q;+i*jV-^4RK^R`QIo>ByGc{h+=Em@fj*_)mqujmhe`Ie*-XuA zHr2Aq5GDe5Q^6CXaBg50H6?H%*`2B)b1I@ZoKHonF_U5Nh_fA@1{M+Cwpk?nNeUiP z&!G%Adp4`=mXaxtT}@7xb}>5hqL_kD!26E0sNzMBn@!CF@`FZi%5WrP$iIsT*4M7; z;#7xb`rK7NEHs!$ZY^+xn;rRd&>m}^F*S}?v)1C-E>5s?X)jc1o3YHJyl`ikHSE3g z9@f8drOkZG$-nR7@ae84zS6pgzS`mo=DKIFa-0%Nb9*YioX!TktCJ+MTmtgaPpQJO8taQ{HHODo~X85f1} ztmky9dnFM!$_0<7|3S*$a+n)90@2$Yz6p8$VZdQsiB+)m8ZgQ@Efbd=BW^EXL3ez8$3%X?#b~xb;vCD?j zr?rWYa;<1AT@!Ee2F9ukO>OE+kuscfE(15cyY>7p>3rssQ7a$rq zn|Az=^-L~QJRV{U4(3D9;t&EauLh*=9*@h|EVoF`V^x`~%FpkZS9XSVUEwNzqEMMD zq5m-Bd!#7%2bX2_EM5YC<>%t^@nUSfD36mHxsuEr5Y3cRxCKhGx6w=gAsnzq2$FtB zpq}wj7W$w?Ufx&ARQzNG!iSr1J<5cA_dSuvs06iPg&O1u90q=j1WWebd7Kzog?~6b z#+P+(gJJ0rsGfTV9WLQvcg|Dvy)uh*ZJvc#f2y(F!8DnVQ%}&d_rlc0MFsGvqKxG6 z(_vK5{afSY0vD(=WTi3@umwW!{5=n4Lqrba&paK-@A$(yKfe|qt$c_deKjT5zl)KC z6kk%)9u8J3SHQ4a5-fFfgfY!p)|K^NVB04zc;2}j);9=K5jP4@fGQ8$Y~PBmXoQjn zTLovuIU5MCy#m5&&Vy%XGI0)f1-COAV2~A((^d{RvIV0?K{2~I>@>*+s2xnu?i2HHK2%UZC!4? zskQpX2<&x24Nrc4hE7Y0K~&Z*?52ZJ^2j-ao=U^AB^4Eoe_L=%8iV{^KEYycrF8!$ zCy;!p$@-pXPV*$*pg-ahNLy(iQhQ-XpT%n6w#*vTifqw~OgW{QuK{KqDbGnwnq65N za}saWZ_T?>)nu)*D~h+WIs$2?`ezTUA5i=_=SG@?#V0y`=W}j#Ng2M@U4W{pUpDC- zGgj3c^rzkDr6M)%7u3J@9$u7p9OVl7?=O6o%9)5yvKBf!lauEfSz?yPsDD}<*apJoKJcZ!Veab#Df!}#A zks)h3DS3Nm^nPF^L+cdtjRVry`I4BTlfO|_4h+d#F2oG9%;&Fc)nEt4XYkt$IZXc0 zJicPQCK+8P%yb*u@V9XGP=}4R_?u7m@{R4J`Lm=rOvGPVCi{XYe>gOf`KELmZJqyv zG8J%z(mYwrvURgs5)#phS*!J#022?k=Yvap zF~*fCSh(@v?x2`|1GsED@foE8K{cTpHhbq@$ zsu=!a7x?m+BL1mYA$zd`2@6ai)rX{6Y8y6T?UWhZX`o0Lt9xj@OaZ#M<1R|QlZ9UD zWzb!FEGUGL1^JAq};t4r(Sl1?&g^|)NnSr(Po=F z>Ys$)YtNxG7S};k_Gan*i&aQ6Yd*=Gb{jS2r;z$%DOe)c5`+e|P?4A-wS8|v<}Tm1 zoTdwoWN2Rk%s6`w8GNpU@ODwGJ1ZX~BSkp7kF7;nKlifKmROOV+bnpp{US^K;6c{5 zvqSjzf*a^r?0eL=ClVm=1kB!AEZ8g8khVRtpc(Uw^)x0E>~qM1@kf)+h(#^p!(Z3xdWmSZ^Mzf9Nyv@1;KAULnSLw z9>fyT@uAJWWc?H$xvSoT%vM=WsGxV37&wN;mM{Lz2ZbpCqSXH-caIA+EfJ9PjWBY4EvcAboQMh!juTuH{>v4s3CxykYnx&h5) zI+VQ60oZG@!20raqVmzRO)1FxW}dqsCz!h4L@G4k4bjeN%{maLLQQ{qCL`$-&-(V? zRWb@AS9p6xci>`&MWpH32_&O4gLzd|MyKi6;8p%QfW24atoNeKy{Co5q`H9B`pB75 zIxvG;`Sd#(y!$ZS{@iN(VJU|8i%}?SV?4UHbvf+WLt~kranPIM0tRvdCPD8dc=OK+ zS0*;W+Hp}l+3g1l947JS9~jj&8$njF8L^)unX!MORr-*VHurw+NpeZh1Kjzth@3k6 zr|DIiDJUPVw_fCC#X8N^gj)mdi1xGPZJ(Bgj1&rpoJ@Ny{kN>c%Q zTEOoHU+_)HV@dOrve-%|VB_@>P!-Lh)Kk;I>z)rO?B4M(2AvX`N@uv?N5MzbefnS<6b`%2Q(k{6o<*e*s5c z*OgYa5hBw#4wU>{KgmZWiOl}&)7Z(pff#I)V1$I8TkQEXLeS>f)Ol$_znpX+F=-C8 zr`-DE6;lkfj@GBw7nC8#HZSUd)-BrlQvqB|nogBopdmKIl+Yg=;Fxbo-S%wj^AYa_+=^;AP&bQm8hS>eI)XXwho{KZk&F1E z(?&A!?Kn9qrNR__K{V%Q8MaF*f@p(K600zmtjn}z^p+f9Em88uH_lg+=;wAg#$*a= z5@Lx^#BGrE(__AciowzyaRd!Dkr1!9Bzg20zO^lcx*D~ashOQkteUH^sCE~rdwda` zSQnV9RRwt0*f=cfoQd62UgO-7czixkmRcupa$R45$%@iva6mQ?uaNR<=9O7+<6M4{ zthEx9+nmot^MD|i8`VZ$uQ6eAxI3tO1<$Qpqy*=(IquoL+1`z&KV~tehlHum?PI91 z=mfK$*^L*qYm@)}72~tC3d3E7@o+*E=rF;Zx?z4{W!#cGl*1qPsNOzNhE#m-W&WD!rB6=bvi z6l%172@ZO*LFM28x~5k{8uZtYcV%r2t2WK#{+uNZJHN&NbykoMej!Y$^8Ph81=_>( z15&uQ^Co&UYYIPDJ&iiD%@kkrx+XU{_XS;*K7kf$abQo+ZcGkPq*`6zt}HJlTfWc2 zUOUvObw{?t1~oOoox)nAtbCKVd3hO_PF6tI)5|ER#1!sbJVHz-nuw@5fh|Qo$mWc+ zs(6?hzL4QR@fJ%l7&OnutNB< z3_EZg*%vIUqOg%bd#4+-*#4VDS2xDLUB}2-;rDQ4_6{a^y*P9G%TXvymCQPRVu}R# zOk=XTjg__>e2p{|w6KqT2um|H1Koc(jWnJ=LR^-sz{jLL$U*ieFqGSYJx3ro=pyak@+D2;egU@K z;f|L&?S%!R9_U5GMR+S=4(uC>(C6)rQN;$*zCV_zanfXV_g=-j6AjZZ$RhaD`VFsj zEk+}0rD?Ld#Vpa=Z((b@266o$f{&U4R3$3rPKnKd3_l-mH2BN8=VS&;w+i?U18Y!| z<4@M77m0$qj8zcl+>0Of7o&U67Qv$Hry)K58QSNw2%q!*-gLsdPHAG{BNp4OlpIFa z(coAGsEMc2+RtR5;qES+=hQ?t|8>gn^bjUSeL6T&ViN85HHX=mzThfRMgO?F2)613 zW6jR%V7S{a|5E>9dc)(hw8@tfB(IUsGhd5l_ntfC4y0WXB~d zIH4~C0g|F%q*VgnuAau?$Bl^ejSC$298IiT)Q#1^$%z8rhK5U%^Qt&Uc`$fEy>>}J(IHhhePb~QuavUV+`NM2c|VEQ5jZdV zFGN~xaSE0S*d}0=)r{bi8d@}~&k|*&hgr8~m7;5zX4KkeBBW-KIZ3;nsq(jA7PT;R z2x+beQhDK^3L}CUt%CCd)HkRLZ~W#8TtL>yf85wQA-b29<@nY*qm_%)Z~X^9-t^M} z0cCjoK}E%|pUbUv$9Lh2M_cGI*N@QYtOIXKqF6$_u*%WK1oZZd)5uvTJkB}^N$;F zkbrm6`su#R(QU${S#%8+J@B@9mE2MkInzclwXW6r&LR)mz4jh8`qHVY%R{`)m#4zT|=X;Ak<)U%352gg~wkLju(*+xGk{^OKESn@_Y1+bKB`T zEAn&@i<7N_&iZ$tkH_q}m0}YtsrggsTU!?8Li*e7$M(aPh#b|GNJMwy-OV2DCLnVtJS%brLP;Rt_hQMX$ zOJNb*;XQ5|T)kZKA(21{?>1vSqoDNf;Y+gL)IG>++!fC?Y}<`Xb~vEzr&Se{JmPqk z6SH8Q?i!v?-dps!^se;c{wv6L^e=kj9Ig5<9sUY|HCvZr^0oZzPhKlRqJM`DK zV!XI%8S1c@5AT%IpsFkwmIn?YhkgsN==jPq{_NUZuLP-%%lmMq$XX(_@;_vXl2|vt zuw^V#FJjrEt1QDO(^eBYgAofzfuKDZi@u9$tb zZ&`{Y;jsgGbTSuoPWw0i`u&71oh1u;Q=JQ{*Nmeb$75miccFl3)_^2Us!&SEcV4ys zO`b;|3!mZzS{F{`OMm#Cz^O1QPY*23V#WXCTRF)aC@X#LXGM34!#9-3ZIf+c-M;XZ z8!LGS`jeN^`*@D<{$)K+QROaT=p5WD8HbR60(v25LnIeIK_lPvvFh(KR4)Ft(No&j zTFEyJ1&j7tyDcc9Eu1@*SG=H$(pKUqiVgISo&fX9j)R;u%SM_!`p{$mK(8p zJx(L9f;6P26pE0a1c+TpMS*28$k*2gjM7q3%x8Z=kG>f6H=kG0yV(WZazcb38wR6& zo-iZC7P|zO;p+RAFn#}LV(}{#Zti`DBV9`2*#_^l>ecQfV%`kW{%Qn+x+#AA)06yn zES4O}=q7LMdywwWM%Lcnsqj}~6Kj8jJV|I$#_ZG55Uf7Vnsjr4Wgi-Np#e+bQqNQL zgLebNb!oxbE1xX+RZmK5y99TJYY7voB;WmDrGPPB1+S|7$gkXLRB$;A^0$joz8gNG z$;}H$w17{dx-}m62>THi^H>;9J%_%(UB~+DoPs)S#mGL6HOUn{n)!5z7PIu#ZF1nd zloUrbH|2HVOcK6Wmfj?O4p%ZWQL5w`=uQ`8qB8a1KwlRgz-Zl7?{GrMx#8dUT##3*4J}BDuR>sBU2CQdZ=OjOM|zr|9tY zTJ$~K3wSDuq&N8$@=2Hltd7M*cX|%~tb7szQVn@8H$Fl7;!0$GlQapsa0dI%2V8N< zGN-K6jQn%)&C;(}fv!5H!P<}xpH|&j_NsJ}D zp=8}n&|H55UM*%Z$(y(HefFwjbz4!@>aql^8!!u2w0l8e+hK+!;+r||C{5L@*Gt>! zehBmCW^#SL*5Upyj&S<2U7C-)CAr&DMx>IH(0%-X*&>ura#k&&X7Nj@?%)=98LW;j zEKG;F-SX6qM;Va4P>v`X^)U5&<jsNlbu-s!0vhsr>#$uTa+Yw_uK%SEWS}T zCN)e_&tg3DRIHM9w5c*XV8P;y{LC1s(LMv7#js7HMVgdtyg4p4toK`8+xZ zQE|nxhO=VHS3xgL2epxp)z_8#{RahX_fB4=*mGJ&QyWs6JMg5@J9>jnC)wK9iHaOr zV0^q$X?h`_Ha8b=V@6$}_J|-`-Yo*Y0`9SmxxoAN#f(rY-3plkrfKff4*Yn24_ccP z$|=1tz>x_2NT2od!*OmBq}WK;`eBC~s5RKrIqt=>ftidL4+E z3Ua^9#GspJ~ta*&O9XhL8!io6MAm@I+TTo>ZfvQXGthM@m zX#Q9k{Mstax>Sjg#MVPr@06zjci|+aW*>)u(kP9sOJc_IY0WL;`^e~{)O5>Ynz(fN;)3j*lxgPzK8N2&9k=6B zE96Fr(7+UP+wTShSM9@ldY1FmB>Xaq%X3Mlgs0#+IWiEqR5kH+1hwRnQ*+nMt!VPG z2A`F?kC{GW5$aapNLk_P9NMkE5HCv*hSDQ8X>WMB+$Ygh_etw6W9A%2T;Q1W53?Zo zkUwpSS+b~jP|#TV;R_Mkf0q-={tw|(9pvrh*@12QwQVC`thxVF_nuKv1YNr*Ip>@+A~{W0RresEl2k-d5m6Dr42r0T zpeQ-#AYcFqqDW8_n5iB>Fd-nKf+&iZ5CejuVnUER-y7~)?>Yazv)29Y=^wMFdTOe> zcURtfKM%5YuO$)>dZFvegXsAkrA%MmTwA+G0omr?S{1g9#9%o|N5n{90%sbp%d!h{ zaG(5lBk^x_sV@^nN~N)-R`j48;}zVs-r2N` zzZ6)h+is^n-ntrPu~tcBIHj>;E=SRv4|NhD7pu|9f_<1O^komKy}@ndTU@1Xf$rZn zCYSl%!u)wgbjDL9EJgT}zP>;3-@N7c+?yRxFFFcsFpfqGax)Q~pn-;cwaA^)&)~*g zwTc5=pPyN;d06js2U7asiix3A{Nb_$UN0V#J~ogIm-5{}SKLR@4v#1lSmA@cjNjqN z!U5>foGH1h(2?cFTbpa5cu8uNkT99_D+JA6w186&wn+YY@QjP)Jd1yY&efSXJ#AEU zE<<0@e92FUg!-vm`}pzotlR10>>L?QuK$ZZ-aD#FTC)P!ZKiA_AZC^Kh)_=7Y2DTo zYWJJ1^8Pa#9eUEF_fV4d(H6YC(L93nRs0d$DLfzD_LC>kNp197K!S|dF+}3YEig1f zkL)co!re-RvYOdhTziai-ayL}{5R_v-YlAm1)C1x`zr=<#Fr0@v)v7l&s_}hEepfl z_#|8RWdS5YxcYfN#5SLZ&xx8Aqz@11(EJi3P|x8s+8lZbwHY+Su0L|MIuC>Kqxbhx zL!2d91#%l`Wzv+bvLyXoLhsRdfT1y%&+pi zm*9R@T znht4aW5ko44@)<6utXZ2kxz_1{igc1Sb*wh)(IzhkUgh|sK^pL9GHaP+OzQSI1Sd6 zLnb`z`2<~_yN-?y-$D^umq1Vdc5GwD18SCzfG}@3ck|8jsCGn%c6^dnO$!N(k*m*Z)&~GL$KK(nO zG1AH|_e(X4eWE`ti!}B^CL>0qn0`0-Uc!&sBP-Ev%`;h}(&a49WIM~izLSlO67lSf6Ot zL^M|Yn@o$oH0N0&JlD@EF9$pz3 zkEpk|5i9LGTlj$=3cYs_2VL;OQAv^LL%Aqzn9N63wVTtOtGb|T?OV*-ki)i0Nal_q zqF9ya#>NWga#fZINZZsu$%q);N~&boLLn{&!@7hr_({r|4(fF$7Tr56wL7y7vMN7G ztjgDt5uS1etGXPJzKc2vtcnq>bYPHJxLa{)yCcis)f)P7E{WYk{rNDwAnGD2Y&t}Cn?zuK z!6w8i3r6yKU0C4oBV@qVU^mwYkt=5^Su4`7qM;a1a<-rhN%;4o%SO@2OIbSe>7g>k zXAhO>ia>MP)Q3Wyqi*zJ(Jkm|av!=X8<>G|=hy)y)yT~Ca;kRZD`_54lp%Iql#W|l zjelp9;g#;WX#2*v%!3cFpf9aov9#J+lE<-E3UY?3d-X)EETl&%?S!N$fk>amZ;v4!!?*(DwN*?wWl_ znx%XCF?-idjCoAwnuMEPNi&tBP;BRMyc(`T-d+l%%Uynaj&B~?TpWdlmgli1Z>J&; z2ql zr92Kdeyw1?oHR&jnTtnVGEn0hX9tJLY-<53G?1$&u53s)mWMaKqO=;F(3nx~- z7ORc4P;oasI9`JLI1P(JIFfH(bE-Kz*ya`qbb8TqvdAKs&0X@cOX}>!7J3X(vpY6( zlrs<0ubwM%Iqeow>$tum+tiGxpLI!`xt4r({m1R-wfiROk4-YY{&^-lW)x6ODLbj@ z>|&bNBO7*m@KU=STBXLOTUl?v7c%-c6ew*;5+RpUpUFGK7kXYfADSmDFHN)4+56Ay zv3d^Gqqo;KNTU=^6L{auxhcAgYW&hn9=o#_-Lj!2;;jSez!qhSbCc#gZqa78_4-q9 zo*HE78hTM)!VefJYfho~F$d1K3DGo-1Agqmv=g+pK?42O@+T^IQ;0iUN%ClPhp=VB z9Eb~9MKN{l@YA4UoVLHeeR`H0fdlOvlpRg+uS_Gm?IdZbrTfWQ z)k=Kwx)Eu=p0_!`A(bBVsl}(qVkr-4efsNtKIV%e6SDfP1}($c&$3bI=6F4xN9!Ih z;!HgGOP&y9q30%5Y=uG-nmv7|=|_ejnR;B7cJ!;Hg_~ZoBePPm@y?ZsYgS(*w_8DW z|;R2#fN;}XFTsiWm5#rrw~&(84KiJw zWR-RwEJW*h=d)@AoY?0aL@>SDmaIP7qhRd#lM$+@d(orw0*Q8?XP?Tor*HRtMS6;3 zY^xp%yjIN}@3L(o{hNX@Z;CcLsUbrCSS~>s-H=01Tjvn3@=p42m@BS$9fb~G5~Q3( zddbPR-A$#a8i}5&qb(kvqi1e@r@z`XP{~mV9G<2899H2iXrZ8t^2@E6C#}{}BfgtC z?&HFgS;$dx&$qXntE);l#vYZNRqh6~envB8n0TC=+?Plvvb`wvpgo*`XR6HCcT?GX z=ed~9)*nfm^SLy0yobXVV#1MnZ^ZfhNtvVYwUN@?lh-VBL`{00fG&Bf_crCRr;xl_ zyp^&p)#va;DljW{j<8$Ab;@F^#Ru)as7rrSmCr_(4hpt)L+-JQ^iqA=q zw2NB}Tz|b`zfP+{$)?hD)HDle4*W#ze^Z;To~#F3HN(05VfLh_fCC&iiba{~dgR9C z#pwLd3M_eU1MNr_VgF=bQp{NlYwVUJU)Nq@-EIrBR*!uerdak<)Y%wfGZu7110=W{zd}}4UMPLdK z9MYm|U$ZhF9g`zJ_$?tH#+gHvuW#^@hhFqC!`-yLho;o@URlyxmm9&lLY0L zPQruEHORg|itZg=EG=SvP}2XjEp~~I226oYx(~jz4f7?pm=E>Tb)C z*7LfSH*0Q0pIb1Cy-$>K_SA&Zi{==dj+j!e{jrd_+({z?nn5~HFU z&QS}U#5lRMH0^8s38QC^se;}gXy{Q5)%J{!9vp0^a$2OZ&%9*(k~fDMzj%kb+~k8Q z7Ta?KB>ZU2h8^^im8=!dCqBk~Pvu4n zIb%H?^n4IOu}*5U24cNAdY+HTS7;N*+D;bf7wzNB>%9eMY^hM!~qfk zcR3=*xLYxw1*wn2M)cxvJ6g-jneK5a>aiwdo;q`eocVAecT=7{I5)iy z?Vj1i#RaC2-pmE|tiZ{p;oMbdOg&AOEHeO8sa|-$+j3M*e@1_=TtwGgxiPLQ645=w zEUdI~H5!U}xt&oS#0Ct|ME|wpgD6zMYAv z>+$ec-1%EOOC?*7@p4Wsb+_GV{5aW?<}p8-zM?V^2{3n{MbFltd&`z()ag32ln!kL z-|x?1q1W=@@U9b>VcmqL_bH((U+=Tq&+9PsuH7Na4vdkhkFs#z^808{X*ubkr%0;3 zDJKP+WoR+#F;)C0+?1#6 zH^p$GWvfZObUTVK&W~dsU5R{|4diu?EcT6^J{-5|P(q2Pne6oKgU8&t@$vx!cw(yy zdH!!adba&Jn%V0}wLP)t)HzDfr2(7BC)1vkv|cCe7UfH>{dkv5&2GiPhVjVk=PwlX zJCi=SJ`snwO`!K@H)8J>W9VMab2={GmA=Qfk`nVbCv$dM(kCAnVCMT$F4mzB)mxNF z&TqYfNTX0vORbgNHXDTqzG|-TpR2T7PdjLwaYpIdawxylioAN2A75?SCa>zDUX7=@F?vb{{N&845;0T54&&l@7G>JFCy+^5f zh31Rra5+k1ut;4lihf749!JTNTi5VI?A?wJ*9&7au03;gt2J5?p;S0O@HAZP_W;GS z4Up6gPpobCmL=9&i`EA|LLfPtJ@Gw_rR*<|wYEeS^VP?*Pgd^0X19&;+lI&43a=W` z*=>56yPWE|dvu4`U59P*1_i^?n!8uxMc%SQA=1aL8Dn zWZLzm0_l8BTiOKQMB%=IOk3u0xb#&qJG!?PsZ{fG3Kcc+yy;V<`8OW<w59(fbXX z1~sv_s3g+k`kM5?A$ewR{YiAKVTd!de2C)M#&HHT6)BJMT9kAxh7MNAplwem(VmwQ zC>^U`i2cb1kp~k=<>kxCS=k+wOJo{V`AAo?MT6p4$tBTszwU6ZFZqlIY!f)$Z@E z5@{G7LxlK}x4Cs-E0G{CKpAeJ2V(hXmyc)2lKl&i+=5)BTyc{;QE`Oys<@2C+4^{`B?He+ z8KO5G$#hQD4YG7VttoSX8yABmlpQOlL+{T0hRoEvu}rxR%wfl&?U^^&;YA-&$fqQF zrbeCoWay1J5w%#!xr1D`M}xjo(}}|B`q7${0x%Uife#l{lUL3SlF331_`~xg?ii+s z)V9uNzi&>)_RDW$f#PU3k8+q;NOu%Eofk=pcu%puE=TNm+a^$68japWOR@MoK>q2P zoa54J3+aK1AgptSra#ev89_zf=!g1stXlB2DfpxyB%BACkuruDw5w(Y=NtJ9I0|y zAkXHyNRC2|mK0BOtP_6W zL{@df7M}{NGV%oeTJPVa>fg!Ui2`V9=~uK+Bm(C!Ly)1~EOt>>!5KqK66d`MBB#`WzaMGgUH?|s=AS;>{;>7VGaYh>9zrnBIq<;sAY;J{q-&cbS+O;c zJhLg9Y%Q0h0{1S(`<*fRDqVxBGMMz9Hxq2Pu5R(w!pD%mP99osm_$aOvEXtHm2$#7 zbeStAYN+u|dbGix0T?sJA#*bf$@8kh%xT?|9PyB^sQrs6Rd?t&=TSuu{;RtlKZ^g1 z^V>#Ar!%jS=pk7uX#6M!DO)-7-btbz>GaOC9dsSW$zqd2Xd^!4XF9Ers%&`ybKoNL>5 za{Q%IIT5)x(eYbaWczyoQelS}^Rh5OU;DV3E}3$rg@j`1M7JQk|7IhMhu?4^Ax-No z+*j_F^B?SKKwizg&_fia+U+t1{N%Nvloto0TH8)~YaiTYe4u(C<<@ zEI=JQ8Wc&c_2pti-Or<&Jt%m$>NtW2=Vah7E$Y|2&D3QBF;XLX4Y9~-KIuR3nA|#i5cRz~P5KArlU0Ss zC2xiv&b?-|5_Y-o!VZf>*te`%^mW&IVAL$#*vX%f@$qaFUHZ~nUOn(0Q53{a&hNI# zyfNX#Ny<>;#Fq7tUtBTnUz|zH*hWiSJ?4&%MC6etJ$Tru`Fe80?gxO8Py_o=hYT{# z$Y=3-TtzaWPoTj-#d|^#wn8XwH#PG)=NMQ zeA7BKep0-Ds{yr^=s>HMt;Qp1i1br-ls4I#gJ%EsVK1IS6f?RPze0iRBw(-%C@*&k&r&rT0W{5*+Xcci0@ zJxusXZW@1|KE+;%+tJcmX|nA~8*p;8Y4K7`uWVn(8CBclXe$S~-r@ z*{bH9f*(0GKPpLmGZQMvxr=)E=|Hp7b<{jEKEJt4)390KXfMY<@;qx=&zLC~9L0$c zJk4xxXOKsRG?*;rN>b@=KJ#gg1Cy|5WSX95w$wd6)O>~Q#WdJrZ6_0=z_}UT*{rg^ zmBY)Y!<@VDgfbjxXHHj+ayV-uI66M@c;#U?oaZ^Oxo?SNvpdgmrgrB8s;Wnz1vh6Je6~<*;Du`=fp+9W~RMJ^X{U==Er&E%#TY&?6`J)Dm?2k~$NS5HlKvjIv^$8K1w4B~; zB1C^anMuD$l)^i&s?&ewpGS(FZHg5$Uo)RtZU?z>8L-m)HsTY1#@0*MLicA@p`_QH zDF2Q*s#vz1tSmZ&LSBf`0r^GvQTa*s9q(7T>30mAvR@2^j7&(i)pr}sH%MXoG=J28 zz>-WS?D5L=NAQAOGwAi_H7o;hDYD6JEoN19a<=yGXI2xhInX_bdA6#yS#_^Wvs~CU zs-$a%S}vy1JlOJ?**E6Gh`d4$< z?jg>sNM7@m;HS(_YG3JNy01u$+m)Ps&f?4v{^!j%RWh1uULI+lx$&_1Yu5K>!SPbg zPP%})u{ELj?Wx5~zl2LnpyR<*)*odG3dA#wdj-e@nU3Z&=@HaxD`0o_Y#?V{#v8gz ztem+aj-PpP+e>;;#}Vq!bhw?+mK&(|*EdpNCk;J^{K-B)AyQE64tYA}9oj4%fjYCb zvE0~Ndg4Yuj!l0LjVI;F%G}GGqpzLmC{I!9*m_@1vxYb--r~zipKHR5FOi(^o6qU_ z%05_cauaDtT2sB3@8QtYg>;TbA%{1@j7r!qMionZBE!YKI471TlBY^y*sRWRl2Uq) zL25UfNAxm1V5W>){WQ=$zAn6G!!Kl0{F7WAaD_BjkL%-DJuurRzuRmQUHGkLAzrU1o&IEdr_veL^8`GNUkM>76k8cf;0^2R9 zEr3n(@(A+q@^FuTeEgS~|6eH{UcP^x@cq|$$A6sV;rU z@n5&~Z~5PU{+_J=SLOflsLB74`kzkxf2fb_|2y^ZpY28GUoTAIU-ExV|M%+)78d+x znPUGc`d{LIw!Qr4z5Ji2{`dO!pZazD*CllRCI8p-|ABtn{@H)={JZFXUEzOLzyE{! zc=3OSKK`?R{`brKxBTzdhn}2&_D9kGst5lT|NrWr|9w~gT^YIh4e{yK1Sw1R5m#QN zlAFU7fp*wdQaGPxzN&U%wrVsG+n-#cbmAa$d-EuDG{hCi{+*y^?L>h8gHq!0F?HrX zVO`+q^@iXAb}^f*Zcr~~mxGPP7StUT3+9=ObJTsuGsKn`bHw2@I$+|HE9Iy29NcP@ zA-$+z<~`L{)b6nTl+d3wK-jH}sJOkEX}rdcSrs%()I1gkA&1SuV_?h-Z(B#5HwF|9 zl|e(5232^mm3ZO(m#VpH4Z4%$sBb@2m=YHhnak&Uft5#1fi>*{%3o>%D%Oyx(jm`W z^dONM=dlEnvUjO0rYQI}_k+rOm=A_o`J}?n&D2WpoOCdCrC!wrQhmDG)aYk|x-)o_ zjEwk+HpzTLTU&mS9qHOGmQHSC-O#L6d30W@Po)QtJ1w5pt_tJT?9rkb~Kf z8k&`)vcEhhx8$l)iyUi6r?2nGia}q}pn*euRq>$QxO1=oZ$8T6buzgcDN#JU=G3Y$ zie%DXW%9=!Nh%`z9qDRiL0xgTq#9Vpq<7vdvM}+WhIv#dV^Imp?2HSgMF>+lPq&e8 zc{Y6lU{c`06d6;!j6#i46!>gJ zehL+(HdeY*oin1;1xppG)ZT!aSBj{f{OwfD+OyQj_(;S*Q5M`FQj>_%uqPD{^^1*6M zwjZ~pq~Lz)!=L3;M?o=_w!@yXbF`wG(oCq_ko}Z)C8S#B1yj6y8q|sz5z3Ss+fbYa zDa^$qk(4*0-g>!G)j~65OJ^3jE%Og~@6`?Rw1Cv}?IP-LjtUhpT1qAg22(*?Jd*Hz2Gj>(CaLPL zOlh~gBsVhWQ>!|9si6~0%1ZAD1zJ~A-vR+ukrzSbTu-3>tW}`y#(7f2d>?8%<0&b# ze=oJGWHZ&cOq5DUIz=@~?4pun^C-hLY1B96?G))VM#>#dCr3jUQ33~!QtLZ*Qtw0R zsheF(spo3zsF6_%YURrcs>MrAYpC^Q=Is3I# zubKpPGW!_0?_3x8q9}>Xj%_2u{WYi!#nR0Ak&e`fa8qi-YF#RJ6`)?s*i-(OOR1OF z>Znk4UMlQ%7^yY&lT2x*sAWKqYA-CITEh}3eko5XAdQzw@LNPpAJL)8{I#f2c!U~# z#iX{zr%+GQeJK~URaDg<3rcB?E+r5^QR7GAC_#Zu6g%CBx+|+ih1b2M>Y^7?MqY~24(eHjGA|$g?ul;M}7ahh^oop zqaya&P=YV?skU?HsqA$KgoJ(|Z0@!bEl2hckCfCw z1B+EJ6FJUX%min*g8+L$u;GCbINIF^)LWcEc;#LqWj;-0+D8C+pF^N)dIJ0$G$0y7 zT8Wwc9hOIaxdX;68DLlNgLqEx0-?()VAqjwvn8FLmS+~TiHR?QpkF4_4}*ZP0T^^C8;V98K#fZaVPv)+ zjEG$XP4aicw!-UR&BL3JwVy;a89ZF93GN=#qtDRXE*V;mS3q4ACs?eU3{4A$;dS;U z=u>$B9?&2m|MO_1AMhNy0X~8y=8U`-0>(2vNz|M>3d32v$eVu@ro`NXO`Duy)Wb^H zc5xnze8)gF`@h4~9ZImLq7I&Z@DwpVcpxoKIPx}6gA=K~NSWsyjGg2qpWa>qe;rAI z3%-4YLGT3(b5TYCs&;ViQGT@X%10Pc_6tlJ2!LfBTy7r`W$-&k7Bps2KrnF!2<@qc zo-yl*568YU@|%uyh0|c|ijTy(02i=-T^~^xtqLBu7Z64X--+6aYrx#( zA&AZwA%LP$9qYFU|SXvJf2XHeW~ z!}k}azhs4gKb1#l^qYg*=SvCQ#THils~w19LwzWrcC=gGmvZcK0&{|4;6lCUnx-!kc0 zGLZkM4JRHx1Ma7GfS{pb(B%>VzjbT_N2K>c=1vD#s~QisFxtSc0xz(94}ujpLM-M5 zs)GmNR^TA*09`h@5#0`F!KpbGP+NV%rogxoOy0GIsn+rEmc%&_uvOgh=Yd%8)T$qN zw^3j$!x|c$5{HCl1<+X<1};3!fS>4Pz#z&T`aINNd_3a@jJIpSP8D9DI&1-5zBU5g z03ndgmk4+Y--DLhOps*y1T1V(0K2W1!o~?(z&;g;Zk-x~id+A{w?nN^MsXur;G~GQ z98*9ug(k4^#V_LF!KEma?t?mO#L<^q+30TX1l&{o5XLxnz(#*TQo7m{85q4IeA?zeJGgvjx7^(^m=DTG+5N{Jl7-n+|7)ujV z7(vf|5FfoN314k#;^&@~V4fod0y1tAQ%?}FN9sATXG{vbzSK|Ln|nh9S!^NhZ)qeZ zm30Ws$EHNx##4mW#~6ZG9>{2K<0lTx7XwLdgM{tKh;2=FFtL=kgowC#jmQYQNz{1^ z5(=KN3_7q5_(ZdbrQjkFD~!P574qO6?MSRh%K{-eNd)h%E+Y7FEukE-9PE*k2dttK z#QhNw;8ppDC>;|9exFVfs)g>v(ONI!3Vom08>0zg)e4CO;xEw<^@^x}S_${*o&=@u zL|}l{ZNhVR4VZXs4mQ1h2}gnvxYyzfJHyX|Lrdb};=ih}%TE#RF?~Q>K4uKp$uYpq zk!)_9#yfDX*9x}wRDd?T4cg!70$X-^!KCI3VCS7aA}*Wy1!QUkx<7Yy|7aszKiME1(c4!tD>u;U7(V_$^NW-pj9nU`Za7+w=i=@il?( zB1_=e0!hf<`Wb|WTfx1Lji5;0L*QwY0UuuBg9e%c+}MyS5b$*X@5#qdflP$Ub%f!W ztX>%SA`a?2+6eFSdccMwfpBIWk=dyIHmvz=J}(Fh#BoI?004>Fb=iXaL@ z4}zE99y7iR7Jz|W`bKrSsf6949E*tO+&tM|7)rSrgz%I*QG06{@wn2%qW1l5TlS_V zMypJ{%_mW1tAo|ipirj-x~{zj$rMXi@}n4rnFyi})h_6OehrM>_zVuEcfgaz$6=;5 zg@DEl7%*-If4V9lu}Mc{Q}+kzEl7r5r$0dXjgMi}_r=iR(k-~_Lk|?2Qbv5a@8RNg zGtj871XgQYhLs0PVDk<`w63%se)~HI^+y#^@$EAB{pcEabIUN~@k}zCH`WE~m1g0U znL4;OTN0@+{Rw7A4#Usg3Gl^!W8_>t11osbVPds9(gK$uZ+ahmnJR*A@XSJAo;;ZG z#|l|q+=BAmjM3@EQmCgh3tn*^hC{EN&>YV=92R&9B?B+Pvm^58PyK47GGz{RPOJjO zMI~TT@&dR|%mU@8I53nS505;tA(Cbm!m!pHQ1?<4?g&l?_eUnc{sJ*L?9JuSJaU_e zcn}Q^l?DM3>3A^d{}B9I4#A}q?tCHo2}s)B07%|EVs)+{#4i+JpWPKO&~g^2$J7Ds zCA&a+pDeVq)P-`<9$>sm8}2sy15W<5gF01V@cW5jAo#5msJSY^IMM_TKez^5y(yTV zQNWEj7J}&lc|gok8ont7(AYj7Hmo=aYWrirMyLb=m7<~Lxit8--xXxOI}dC=J_pM- zP+*;p8%#GC0L3%e;P^9bu*>}wn7)j-V}t?_*l`@Zd)Wgn@z#Ox{Kw$-p0(ha)oX?k zrimx>;=yk>5@;+rPkcG+1pf5YFbdS}gUK&!V!x9Xxb{;9ShuBs>g8!bjV%hk#__;I zwrwC>vjof+j|EjC-$4W4E5eD(7<0lp0qmYH3wHa7K$%k~0i_uS>N61-G#_SsUuO)9 zwXOrFSYdd8odRmuABo8;EkNn#M&R>I0d_|yz`wE1Ah&Rwm>;kh{HQj8j2D_P>|!%; zezAeUrB4N$*A7`e^~na`^CCdm_7>o*ssTowMF6!Wo%oe~ilNK#0zp*;gd%;@>a|iK zIO=^B1Q$gTcE65+IX@2gCN>O2e|3R}*V94ECJ~VCp=GHc6bOv()?3^NE@W((f)xqe=kwNG1cd-))RV?bcxNw^-0@1HpE32|&U+;8?ho#dG!F3~~4GgcB_a9bNK( z>SiHO)xHwE5Yzy{9hSheD|3t z?P{ZopwfZ|ychmVtay`0$XkB1{IsJPtO$$-OT(W5iHRtXCu|Fny|_3#m1^L6P96~Y z*#R7tO9`*n_lX4sqTtR>T|(HV9LQbU3VMshKykoR@a^XWaqY=p;^!$IAn;!}PyDeU z=<9AmK)Bf=Gg%TWnAWrX@%|-2e^CcR;lGIt2{}+8(?!U1I}rzWAi}3q8l1kI2=4n$ z6V$1#mc0T>z^|zQl)0E%D#WdVzw2LEy1(otmPo7z8LFP(LH&L%OKK=%FK?O6Sa$_* zv+M-Kh&)&v|Ch)tlmrJp4+GxnOrZDH1{^l=0DJtqh(ZKFqn25{~x=B|o=8EnE31T1dd8Qu( z^o#-VW(hF6X&!iHa*udt@&bry)q%6>8pMu+^+ZCg6ja>r36`A6Bm{06fGfK+&2QYi zOZ+r&0-1gaP}TVuh{?5w6+2}>UAzu(|J*=aA3X$a@4X8Q3jBfd&Msoz<_AFanZA|2 z#w~EgXA>c81;D6}G|X~Y0662tAa7CuaMoTRgo1^E*Q&jsb0n2$il%_FPzCWuWi5~| z8wFG0gT$s~Ye5rD0L3^rMnkV5(@RAknN%dpZR??-*m&A!DsmbBOh@vm2 zz;82-g;w`*a3=CHP%O+O6n%GtV+D%9|4u1m=Cw5pU$Yp5D=me4Ti3x4qspKu>jn{~ zoeF}&72%pI8{o`L2wdUI3);um!w)ZgV4zbP%$T?URerC4i#KUOk(C|5uQ~@>$xndQ zvAv)uEEYz&Xu*Az!ob{WDOBf6fEyNR!JgR$7~k0sBQ!L?cGcD3ICUN_G#rA50tje5 z{~`Q*p$A@D@qoBK0HNWFJ@BlLE?gDi3I}Ivz&P_3>~znC7g04lw7VYq_~$d$e2?H_ z`zFKbEj}=k&j*@l<-+woR&ev-6Y%ZlBFG9>gT$y83|GkS=MG*S;Mp%sXqqX-^p67m6-r%dzCGYj$b8S4Eutn!BK+e zZ5lCr(j2_8aR*Y(Dd0p~55YRbYjbPs9rKl!UlAE2cfj-Y0~Tj>g$S3uj_{*s9JnWX z1a#i=22m=5MDWQZpv}e5P(HK}G%}k&_u898z~UtH$0-`X_l6me->C-IT09059_uXM zn0bN4l^o*tUISqJjR94PV*#si7tA|4YWY1Q&3uJ04HzmfiQ%XGU?wYr*z~jkY)#Jt z_m%BIf?_=|+47v=hUNk0#(RX;T_I%oMTKzvU`43gRsv0>4d7z!7O?AZI0MXn& zO8xCOfb=LZVtX8L1h<1HNkZ_>=`nD2&JIL~JSOhGUIui1Bf%YdJ@n8W0n*X4j9>eL zfKa3vSX%tSw)|rVq4WMS=o(1^k=b$#r@uBJd!H_FbDSeix1I$$t&YZlA%|&1jZiwn$luHEFvSppwcj6TD;@%h3~R7!_%o5!VhOlV{=|nxF+i0I7%aGV3T*As z0YX7VU~W|^Ari6^ytaQ2V%9T({`e(g$0|p#_5D>w=AB@0T;L9fekuk=>VFY*KnKV* zMj-a;0Wc94M|jp7gCnIAj0f4Dz@=3U;7SfZ^l1_UD^l964?E`*3ol55GxrxWEDkF| zoqAWWLd?PHMxuau`++gzXA=BSrE3WE>+u2Vkpk4Y*b97A&J!!ls=;ZNjOmq%w~P+| ztw2LHo0#t11(gSngORC~pgVmL{3d@Ftn^fe>lHIW(VE+qfl`jJIg|lD9T@_H-h#ld zzM0s+D#1eLiUW9(y98V{b_M(Neh}Svqrh)hZZPtSWUy9Tn;1J~0Bi0F2P&+&YmRZ@u{r0yAk7j)$omd9qHkG8tE0o>7w;;2RH6pDs>3n87+lx zOv=Ftn-sXQauHJ3D~GKnUBtl;4(OEO8mo}sw_t8u7u4&jf`JQcq0_xL(0!%|`gNGX z{*r7s%XC0`>9&v&~;Z1FEln6euOBw6ISJA*Hw zOKhVP8;Q|FnM7}u9a!;w8zWw66EObD1a2c&h?7gl2)}Aw;$pHlk)8jTus!gISm=;s zYu0MODBr3AgH%+2+B)udAruF+h19?wMhh{@T`%vAB|yk#RlqVm0%G?rCSuo564%`U zcxI*pQ$)6aQI#rNfh8{BUcL|z9^VFrhu?u}S`jpJ_lHkMJ+hR$E<{Ad>j6Kv>%?EI z0+cj16HPx72!-#_&~`Zq-Zh3p%lo_F#SLljL17+Tto|JSHqRu6FF!F4Q{`e78BYNN z$7sT{VFXHz1K_Kk4tXNf%w`t`mh3O6 z=kA08dM#j~qZ@4MUk?o@=fh>?y)b2D3+P#7OU|Kx%V zWGi@4cpO{|eFF@J0kj-$2gwZ<@I$yD^mn`l4oJNOUPA;Fw%Y-D?(c@evxcx6n!wrf zAHb!SIoQ>)A1=Y)_eclK<{>nn0W@Gq! zmj={YE(Zn8=fOAM4PcwaJXq9f0y7K5!EWx{k|=xyBipCo^dSRyqg(_o>ofy@pGm+I zlqX@H7e+{pzXgS-yusDO$>5ExC`@VeCUJZ()4%=`KF_q{M?j@ z486CZE^`Z#k8A7FHJC@r9jGPq%Th^;C-USo8H@@Hq{#C2?AK-`g z@}7OxTF=_tbd$QoL|i7h*IPw0-s_~K{KrB`*QJO2T<0UcsIQLXR-0H7@oleUqGyss z%IH7I>9B8{zkDaTC$Q&9g^MK0+fpTC_IXS04N;ebbx)N{_%~6aJZ76@@zi{YN{p(c z_lEuuHF_aPeFzd-HZGJ~Y@vKms);TA;~@*qWS_XF}n!|Il}XY z&8&~E6ydKCZ-InrtK_{T%sp( zr!n(*cX2kAx%pFI^GPbIuOpd3F*H<8=v=cB^ZHh6()>J-ckdE9W7mbz*!p~SL08y> zgxh4hMd)N(Ys0gzxYB<|`f*E*jWnxd9p7|m1P?8rY<8+fkreKO_)=b9hVad+WqEn=bvmW`kj{NhrZp-NJh6EN{n+q@8+?67_cwP^ zmSh+=9Bstaw#=mI7hco4Z~b_We;Tcn{G|jz%W`|(P7C4cxlozb)N-mT@N6Yne#84tw!ArIBAd=gaqX|Ked)ZQQvum@m>e#G6XeIDfuJ;<|nd zxA>4Gk?hcvT=CPA6vUk3%l2R3QmrR=bmk@2+@T;*yH(G-&Pcdc^$afOrX^X&HcAFw zjN;z8D&U9pq;|J#1PySaOAVZs zw2p&*SOS~gFb%s)ZE(X+iejd|WibaABd0Ttb{Dwgu=8TpV6g(9+KyXTO;aW9_CglC zdMb50&!EtIQuHrFgr7=V@n7{7Ht53+T3t7Q!hd?wk@j2c<#lP=6E_L}b}94abMA|8 zADRd0UH36`pC8(arcjh{Ki)Qb8J@glxF&Gl(Syfh!>hk6d#)C_#2%zIKGSIA$Nz94 z%MweM?_>k?Q*n7=GIrKE2=k8@v_4c~N4WuNhV`MD=RUINg@WcXHkK*B(S*v6RAhAL z;&YlMs?~y!epM5X^KN5fumXNQoQ5rjgRxpGfwj5xg1uN7pB|KBNA4Q@J2DktL{_K_ zTa3u^ckFUP8k1k^hW;l)#5a!Yf<==Rp1s`<{kgHw3HXD34VNH4Y8F=h9KxoUu7#GM z$6FR?vRB{I@W#Xs*6ohS$ytL}gHDL^OYX2$3mlk!#9L-``wPlo4_EwS!?XubSB?q3 zm|R2BtSTf2X2B@y1v=kcg-+Z0OZ7E&YF?mS2RGSRX@pS8MtAhg zAA^@`S7610cCGo~_fdO_z8ALOSVaj+WES90+d%U4_YisxGjKZeIjcN5 z7p_C4Xw=DB$g+EZQA#fn^tCrq&o^NChiW{#)E`Sa^^ux;7nyd&*lF?ud!F6J{PVkU z!oLfj#@UcUc{|1_M8ooDD6YT!BK#e-;aHOf3^xyD%7KlDnHz}u8}D&f)Su3stHkGD z$KmqZ7u!RG{WNpGq32;fJff%2%#M3l`}Z9x&k^l(zk?q^6X?#Z7f31Aro*$Und=X2 z?6R##Nuh*9my^-2%M8yJ$YIZ}6j)6ZI76FG*7*1vZmS2O^Iskk^*dSmmtdsa4ubrX zIaqUd2No6FW&6zHFgNrSj*Kd1Lp2WK%@#+rzi~!C)o99k;fGMRhvn@w!rR|RFxO%V z;^PmS2W&E?J6~78H_8nqervHK;Q=fJy+QuTR=jQw#(~NWxF2Q@dBJb`^Jot%Z>~r9 z>C0@t@O!pT=}&o|U0{21ImTI-!ysCjYSpu_YiJ(aHl@OPhat!(issu#Q}}ihyq(dT zYKMMB)zKM(wl8IFeE%RR4h;}!KvNp^T#J8S`vInO?kmKnl(HJf9R2chQ=x06H`7JsmrpK?B$Cq}D(`lKJ33RgWty zZ`bUimy;Su~2xJ^`7HJ`Rj*dTl_ z6}tZ?iDrvz=t!ar-A#T?w_DEBhxXp|&-WT`wa1cy>@9K}6b3OV!|>B}Hum)d*lbWE zzn#S_Q&^eHJeG z@WB+GFDz}V%KOl>r4KOa>{ZtGN{pxSz8FDyu&tSfqfr_-?sbV()mtJiFa_yfJ|n0n zp4lJ&!Y*uiffz}JaHkqf>!f9?LT@jfdAw7pUCLV~%_YhTD5%^x9^m z*LC1`N()99%wt)m$1(PyyVyP<9}&|OsVX)GTTeY^C&LcH(Q~?$yKMrBRxQBhm!3HP zel_dA~XFrpF%Y$E8n7DK^K z5$(8?NGtOnqSwO`o!ij-+{Zy9mq&5O7e(uw%YjdZbXE8Q-wLfhU7k=~7A`1IvE>u_EQ zjiMXaF+3X6MCaLGH!IPx4To8>pFdvwYq9v&A@~^vQn(>3a1AYZ$<9Z=7w!AgOFX%! zjG0~uhkw2yOk=LWe@QtzxBoGl9jp(ZpDu_nKf%sED`1D*z6t)_QJfk4jMabNim{)T zS-nMc^YR+@w!h$|O!}CvF;{OO<G?+u*-afsJ0E zgfqI1Y|rg5bX7lNIU6fk$TwMB_l#wi-)Q00NhR#KI0I3OT|};(ubB;nnyZKgiEds! zfSV(T-BTTj7{imydu4{WhBhD|tBsxM+=$nKmzmq%>8!{=7k>)d+36ecnEYLvA{>*& zhnjVfpj(8(@)(@8)5AWWvzC&<<5_mj4{_jlfyLGuMoDXrFq7k^?Dn2q?7w~6H0)Os zW+s~o8mv5hAG{hXYQ@xZcqD~ZjG^6^jaYzKf&*g|IM1wNtJid3N!m_Qvi}T&adntE zq7O}Pw5GrrMb!G)kw$txqFeWtz}IvqCY*kTTekZ2a<#Pe3ALfLW7=U%oT*41dcWB4 zp&nRT5>M-#3b8bDIr}Kg;OWOFSdL08X7-E3boJ5*dOL0uszQC3Ta^VpUOO6(4%`+o z%Npjm`5v~14WaJl(X>YEIiv#P>9W-b8oiXf8Vz{C+T5NJ2M2&Xctbk7vhJ^DAXOZ zLw$||REOH*f?02@dVG+1y#0?nKF<+9-;{zqYZy|DbI`hN1^z45Fxe9}6QgIFVA+6J zsNShYwto|j1=zxFxh0kv96~?M0jTmH$MzO(MzKRI&RqE;c&4Dm6)M5=rUdgIIO5N-V0?%>g50;A7+zk&PBrzV(<}so z`~Ags;mm9=RYFVhU8FmC(gk6kUu2sZChzS<$ z4RRJ<`0_f9p-GSK3g^bv$9vdzsfoz^G*f(ZlRS+oSq0gS9JIN3;7gqx=I?sWTCWJ+ zz;7ALD)~5Eymbv8$qINoAKb_}-CZrtgVkiU*)2WC&!Z4`(072H@BJ z37D<;kv%!GoBervj$JCMfU!s#F{>iQOWsQGP>7!%6nyCEx^LN+${5T0^){IDb|zIx zx8R%MXJ)^l2t$|Gvlx?Smd~91`SGPABx>9D^K|R0JYP|Ur|=v6#LQ%hn9@KG8r%7( z6{b|ZEQOz+Sjgk5zR~ezO}rz*RdV>@9G=;%$)C5SbM>>w_z0@vHX6%#s++20!RyET zQ&tB*ku_eDI@k&Ck1pbViJDyPR3~q{5Wu^h=t}m@86_DSbA|t1Jes?BkL7cty3BnC z+!nG&>JlTrF+5kBe$Tt)%rj%+GiSa2Buef}Gjw&DK|K*LB{Mq8b zC#<}~?_{`B**HhZd@E~SR4p&*8a7*^FjI>g#m4YJ*X?}6Z%av?&T1|<{0vvTuEU2I zz2i?ZSK|*Yfy48Ca7}h&S3X{2-*fKa;Hz-FVk)@g(F+S_npvK5a)i>4qp zamMM`C=&uXSwEcDm{0f5j>VJQA*7eR9MuK^i23l8)eZMW#fY15@;NGAXf+5ug3oa3 zg$mVV9DrE0+*V_}JoyIyW}jZP!mVDNF0|;1ln=&>|D2SCPf#>oJ+Ni1$!$$)Sg<&OG^BVu|8lOB93O<+xY{nH z=~IT7zdO}LUxSE$`k=wD>s+N>LAKoQ<62%&eS#F@w_;IjCn=72PsTpGx|3^%wQNT|%34IKR-+kB3}4ODW--=ts2?H}s99hbMQ@x|?UH z+j17qOE4$rjB;3;zeMGSX14#2puzfYV`g7&VcDi&GH^1Xbc+k{7iOXT0bAjnDTp?FC_F|_nv;Y7L&S-8be_dF4~oz(_i)TNWkpE1mL78#fXQtUH%GTc9eM(%in z(^c!St@bVJ@1{Ur;fge>IE77DorcxzZY=XsD_IJ+H|?RD?OwzrI0B`(8RZ zU+_IW{pfSQ$>h4w4KLHyQQF6QP_nk7OR>$!y_to(k*&bKcs#31!ae(LHn+VK^0hbN zzx^&6F4y4Zcn9XX?*U#sa3z0vMauaXMy=U?bc;OjIPDdj8f!2!tv_w=_Q&frF(iL9 zf}Go4vVhH3Q9sm^EM(Ro^Nbh@M}A&(Oxr{ z=1)3E4&n0jcEWIqQ{0R7s%|K?y8?ABA7otLi+UtO-(w-(A18{u_pGxWFV!#enNOG2(1r{fLTje`Z|7q>{gMGipAqRPvxnvd>8NuPWEl@S)aYn<#$F4rE_? zhF3vSG^KVgIrtaDQ0@Wd2^~Y>M_&qgppUF${!6CPCJ$MIBRJ+7Cpxr#AHtunWC8on zBL2V}bbG0w^G*wf+r2|Y`!=+BX^`a^LyJ4Y8P>8^A2Zh*z&-f@IxiU@Hh(RAzv_@l z(tf5r+?4(9DnzOOMx0pe2+eIC?2_j*Th9%uY`vrfj+qu1|K&bY?l%&5FK5FeWDUH$ z8c_RtA3nZ1%I@19#S}R&=yY5{PuOcr*&l_Ck4A}IIz3S%{S)EpmXtg$0a`2HvhZI? zxEmgf_ohAw?h;|iwTD<4A!a{*a7-R`K@jEpAw0PNz4y*QV2VGhcD076uN?k$iP+&m zTbRp~OxsVco7kX5ub5|j436J7@9d14~E-%k(6=k>;-5rbLvqd9EC%~9Yp*9gUXAyO8;AIXRaMn)o*2QXWwSuhc09`zc!0RQ;#F=y(}AEU&n5~ zZ(#dE=Q0=7DCR1g$)=B}5;>36rE_xo*>;ty?3vGXTvzb3n3VGs;uWJP-{~|Wy)1CW zWS97@%K;1XmqqO5lKHIGQwGIk%)AbKLX5!>>f2vkTq}NsQ4>|^<84+c+*BQAbw5i(sGs+B#+|EGu& z^$7aiwut1$mfJ3%!*V(?so*O@D%PUw=RWGK7>Hvl zV$p0cU92%hOnt8unuQmfK%4$W?0J`i>*FKPKRy-<{8dCAg$FI}q902Zoff_SK1H1U zDV^@hCa`FO@vL-{JG1;^$TX#M*)F3`Z0;Fb^4$?Hj@H;{yLqKF7GBL{TZ!*m5gQH+pC#2jHbD?P7Aad=k0{N#~n9~iR6?xVkX3|RvQd@GE z@v}&F;PrmyJKKaAe90EgD;|Ktn7z=PuWzRD*$pWjM=-qsIJo{FyK$$9-TAP@D#)On zRm6W`H)aa=ASo{d|14nN=YA1cIxS^ee;C6$KnA_H4#VgZ%J_Og4c2~X2znd`V{cdV znl6v^eHd$bxR{*{br8=>nJ+e6AIp-g)7i8w{cT3~uSZ$yC@hbS5e?1pLS@EGSOkLI zF_E!#UR;Wx8^6VY`r0@;<|}Ky(Z(Jm)UlFRGq8B2Fn_2BI@X?FBMQ@YqpFuTwi{bO zSD1$~mt~?dVgSz6h2V9&GWJRdrr7ErJn8br)ak3xe^?amjH+Q@G6q1e@-_n9hvK^S zJ8|ixnHXqZ#WEXbLoswGZp!V)&$uEsKr<74h5d_0QD#UwIvwrfmLf6rFqCe@!CUt@ zn>{ZQ^6pZoTpNwn?op8Bso>_jdJI18jQgkdp?7j53VW;(W`7okU4RnVc?gV>!l*i6 z#_cHl_g)b`-GWZ{)d5Y~eXMS%=wgPm2b@YC;C4%^=t?PJ*u3rR;q5%}ghfS6@rNgD zb?e#aRdXy~jqha@;2?vVYq!`<%`dF+8e8A@*xgIJGFtkGc<4Y`hTN123lrU}8$85nFLnL17 zjm3udS=*yj7JYoKRiIukX!Yc=&lQHYk;k8iHaqLVXoD9!-q8n>=4G-Kw^~_f{9g-i z-)lCdqn2S*^BCyOUcvaVVC)WRW*T2KQET{s&6!!x)P-k|)9?aEU3F+ga5Y=EQU`-W zg$!shr;AsUp<8c`akJ%66rO_PuKE-y>SUGAzQIsC2vZ~S@maHzg$VlR-!NIPItS>IZ#+S4|Q0qop`r^P8PiIm7I$9NCeMgK*ln z4wE|kgFJQn~G}29oJHNuRe*qzs7%Rs5GqmoGIz zJ90RG+*gX!ietECdnQe3n?{Lm{y_0cJ>@iXQJ(o`?v*OTT~D`R&g3GB)yw8xFMd$A zxiq3a+$U-e?{ZTY_MLch=b{Dtuij)H zNY-5H-hKYZSewTR`$nHXo5l-WQhD`_k$n0XH~y*U9zDALleb(s!^h0N&UZ|o%~fp^ z_;(c_{_3o$M0ajBomemCpA+Ztg=?zl(51fomC`FJ@{;0l%#csZnaIzpq_Ck;1K5j( z^Q_N*!&$$#6Tn|b*c_c=fOfmV;?2Ee(Kj%G<=A&IZ`(XpP+BH_`&bD9ErN)#`={mQ zbu&$)PR5CpG}|)YdwT49U5{m6{&ObfqKupc=2kPuonhjW zOW7*FrOaPE0N38Apl6ylYufSHLZ`#Ts%Os-S`)a5j0Lu`AhHW@BFEFHN7~dTeT?7! zI1FK9dZAS<5euV+Qfljc1YH=(;~pAgtG<{foxXq{2D7RE@_%SNra=*Zr1>7}Vmi3Q zhwSf|QP(yND!O+DaXOdjQ^X1C&>T;xNXtQq2E8$-ir&Mi>`)pxUfV#Qq~a+5 z$WE%cYYiRm3{vF-`QsN2G{X2jE?)eNFxgt<>{La}6gSFCN~OsQWN5OJ1;Sn&r*VCP zXxHjmd`RDhF@pZJ?{OOIxT;4}O0DVL={;=DPB$dMSG-QpMr}%0p|Uv#16(~YVTl~{ zh36a{ERBbLg=V&|H>1_%I@GfjFeCC7#+;mkqL6Yn!^0Xgp9ir?4l~%lcWdxu;aisS z1y~lb6h^V0SYl+0`{$&QGjKCLx1F%q_a_1~6T6vpN*KocHEYe1Zrw;gm33ryC31W|lD)6fVMH8k6x zEMcaQk$nKis!wd^utJ1Z++?ff#)|YKQ_1_)D>7^|qvUNKM4RqW^pPe~H#k8V;WBjD z)SsSx-G&X_zsTKOOeX?d;k})WJGXW(7wCLaCOm?u> zHMUi^90A>H*tNcCsQkMEtCq`B-pv~r`A(J=51N3x(c5t%{y5A2<&EI=xu7Y|Fj5X~ z#;Uu?R3G9@tNo;T>&z$`)awy*Zk|U6PCusb`)A2`RWwcLzm^bo? z);*Aadvt`tp6s9?_ZTeIzf1$0?6C9QXnx?&N9vIpM}bx2Xz3SWfAaV~WaTT%MW#Ap z_i|rqx9iP69Xo}hwQZy=UO-O^Hxl*MqF#qodFd>5`myf_^%IT54V~%yzX>`hJFt`m zw4`DGu>_Vsww0+lPGkGdoW*e~&K|G$##)D_u-ZGX*ca0@wy}N&PV}CLSq1&sg%kD6 zan>;Gp0*o$W`wur{uAp>bry2m>CAbY83y-hwTP>0VJ_amY*Bx8D2#}~n+^KrSN3YK zStlfr8~+rosUgTcYbA0_o+t3phE|tzuCP=qKYSkhnQbVTg9(=Eacg_=* zYW$ovMr=e+SqmF#KL8Wv8l%Oho%yUEgCPl8EM|!oo+xdC)Uj$DjhKz|PnKY$cq+Q@ zJ!en)Bp@_8iTMe632y}%f$ealsH9{ZdvAm96_em5@E_v_1KU;~!ke+T**Sqx{!sRp znf)HXc7F4Kgdb)9{WhkW=Z#<{W6;{SKimtPp?q#BevcOZ_cqKin*Y54CgVd{<%%Xi zs{`F-N~j1nMwng$JNWRikRv~e=Hc4RKD?Cma_UcU$2_4X@E<#)he5V;sd>7hNs)pnz;VBQlt-!yQkQF@fsBR+(gv&c{m|`o#_PL!IeA@E9XsDP%Q8t z`c({JtUt+q9*ryS_F{OaI-0zS*!p$ycsgkr{GTVVdQUs_^cK!?f&civb2YY4U4m7# z4_({b*so{T*r7l7G3r4$tnF0L?*NR`&eD3TJ(W$U_@$s{=D3~9O(U+q!(JU73dmJE@SI_3FCSZd1SNJ<} zOn7w}F}vjG{ALX*5cKaqHV+Y`nZXt$uOct|b7(o1&%TWl*d24x*_>}celj2X`>|0=844h)F+95&pU||=19Vpp5YOR zNBKzoa*663NW^z;N}f)UwIk*8k}b1VO9C__B?i`m>`d-%lbl?sZowW+XC^_z&E4lUjmC(g&DoIbu=JO_+NN)DsEeSKy7WRo8lNcKx zmFypWQsOu3phRtup5%zMvR%dBI*E#OnIvS`L&?OjYDr7oC`t9297$Y}g5CF&XvufC zEt2KilS8Qk)?;~3@c*0|7U76+CrEKN z!qPLIRx^&oBUteNbcOlv!(9oEpLT>rOE5aqkHBPlCseCT*oc>Xi6aEw-~Xb1^H!7< z2=m{TyIA{c3LRRz5OL4VU@BxIn@9U%mX19(IN!wNUlz1-K^5dZtV#R)7t9EFA&wC8 zZ$0@EDi`u^X4*=W5m4iDYVp4j1 z8i{>Z!RwSWZnot?VbMlhl1qid-*s4@lZ7GK!g-N%6$W9(sJzn;A(8=tM&OLPh+3!? zO+vMT3TFLkLAI3vDyth1u{#CYfA$G;L@ge>J`wUmyTF^hsiN8mI)Y~+^WFmQw5)l> zMlq%iE~W9UQuNL@p3)YNrz?Z}C@-xBbN())%xAXn*SJfbk+zh-Y%_^uWa))#CCwf; zkb0iw)1r;)_|FnX{RqrBuPx$Xs4 z8b(mA<1wDXg_uKOQJ57t@PZxFAqz4 z%07Ee7kkdlU`N{oA6+4zSv_cC%h)V7{m~E0DZ1sN=dUGf(|0HK-tWA4^tiz+tJOkm zEcL^t-%WjyLy5Oo{As70#EeaGfrUBI3W7=bS*w=&n9X0gJT)$Di6DnajmAU^-!POOzKwsy<+V+K1VQdu`}^k%Kd1{OSDA2BtStj-(YY z!%AS%ChW@)ZTioSs-tp6RRfk%e8qR9YYB5qfj2H#5uCR4qro{FvFOADXm)s0mxG1H zJ-!qJjZ?8NqZJ~d^Wb>o0eZJ?24=?3r^!br(Up;Qq$v|YE3$%VRK`|B9yx$xeO;;6 zemNbiE$E@`4<2huW_ zhfD>+K7|AndI((SdSfj72fEUpOV(Z^F+AfK`&s{lwH}WV-BZuQyrG{lXJ|6a*T|7^ z_ilXI{D>{H=!K0!*Uj*^%}C1B67RdYl(pSS#1~ zMJ2FUZAF7zr(4+zOxdCG+0dV4LboRDfvbKfRGNo~MNZjJ7ILOPiq|1&t3AHE#UL^_ z6B7)Rar<~NqK!U^J0>1rAFd3=!Nv(}Sk-uTDr+wsuDOT@2=AYajFXltorb{6bR%Xh z+mEKLxv*?1WJW&uI9yeM(*~!pOIMk07)w#dIHB`pf^cRDUtiQ`DyxgAhT}maeCkYx zX;%#@ukVI~cM{m^A5hr#3Bx^lqq}6bm6UE7W}XW|;rZtXnkw)!z0)y#UK^V-Rt1yH zOYmlL4<6)M6H9bqnzyH7`tsgZOO&?5dRiUg2gjgtz#hCk6akZ}-IfiqhN7hSGN#a= ziu7lH*({MJ&%4u(e3NE&Fx3aoCIUMSx{5zniD;_e1$_%-7;T9b+fk9m&U-{8A^ogC-VuAnN_%j6V zcTTb<)ohHlGPVplpMir>#~~}c501`QBKQ^>!h2-Dc>6(Xsz`LiSm``^u)Ky^8?ulz z@H#t?9Zxe{{-a>mM6z6-M!!0e5HKK~bXM-C^HoCsvds{#q*p^(K7Z+Vo*r%RxJ6y> zoJeoxYI@UiksK61(1MM3ust+_c1u5^`{p0$RJ9D3sg2@(FAh?Vpo4##`++XLa^+tw zcT!2!K>lfqDwmpihn4nCrXQ1}g$|4LRQo1_I?L|Sh01&MyZk+k7}=j+t(49CUBYk>5(vaH4wPgQ# zHm!Yso~DIOqVknu9`C#w7lXI6Md?16Csu&Jiz!Y|p9d+et90`Ae(|)=(Y9B0ilHw% z5_6Uc?`qK)s!;eV?k?F2N1rY1pR6KQEsMdu{N;$1?n9HOISJiQ(=hwhe{jyW!GwR4 z&@p)@OcQS4xAI!d_&ORFD>7J~*c|qE%_+@j7!?oEz>Pu^^7wL*KK$8*WI+!~^U1`y zE?Fzf>WP^2&JK5WxZq>A27M|T2uJztEadVgY#Nk}5usUFI4=e2%LN|TKN8Dlr6G61 z0GhS77z2ys@llUKWtjBJazrL$QIm z8t!FQtAkin{adm1`fG&4t-ozNO=O9R4`skKsv_GtH~P^*h*d}BdY9lA7HdOZym z?kxA$fqEV!BRtWNT&oMnbGbUL(7J}!7NY&7At;;fOy?F{hJp2C*d05IqIG*HYo-Gi zkL)2C`>z!5r^w}EJh}IimlW8unQJzE7k`!iPHwv{^N|(d zyu3qv+98(?<~Px&@**Zf{9H&keazZS7X+_D_R?zpbX+>g3_ZoG z?bFGotr36zmeW{eFH+rfpUzz$MlaqL^P=H8)UbgteCizR_?d!+P=Whd9}A@o0W{>L z5(_9ELh>>GSme}-8U1PFYdw-a|4F=B*?`_@UP04u zOFCoiM5=Q#pxYIXMLj=o`I8F8iS|Q1Z6N8tnT^K2=TS7<8^7+=K-&HXDyyc`;r@~6 z@D0S9FB(wGo=g0D2#s%aLF~O1Xp29KGkyLs+YQ60*Wo1mc(fD;`s-uYe=l&xzCS_* zZtm(Af3W_wZ0dR) zJLCgfwQwM|cFN+);EV8`m4`Pvg{*hJJl+~cv-h`6kbLYgoaUFIw}}o0o#~CUk$sV| z^aDG&paqFhed&6EHq5GbV&_V0ay=7_0OOl%{E5EM(NSRMla&Q#Ko@<)f09sQu~%Y~9@^R*l)i)W=D~wmpcA zC_BoUgflK(Sr#?*rM9uLovdzJ71vu=%fIT&^5(h>{%Oe}o<2I2mum|<)ce1u3Fd3a zZ@CtgMIYihej=WA!k1^wc}N3x>(J=^&*`1+PX5)t4=*^S$SbNx2)h9txYF5NUcWkl z|4WRcv0P5jR~c{n9>(3rjONiIZ|<^VEN?p2hp$S!%pJ;dsa?^Rr=<6isFo@6eHV0j zON0S0ZaU64{mAAIT3UG2%xa42xIhjQ9C&4z0>7E)Ds(e!=7B2bN#oaSoZK;w=T>j# z4_B7c?^pZztf!0lcDq1cC#Onxvdk#gaw456_2Es=BwWgP60h9;m9GpxLSF|dlYe|J zJ|xY?oEcKsmSn;*=s6PJ`xzTC?JUfs|O;&Ga`6#L<-9f|ss@ z=^cWuG4hw#z4$idR%Nr+%i5%-JraYaCbP2h*O^bM4GuV!u<;W^*|M-=rm3!j*!QjM zZ1D!hFWhG0bz2}Bn7|s;cCh>_+l1V;z3FzNfmRmVdL#Ue8SWRzqR+hrLf@SOES;mR z5`}y7m*8N`l0>q?bMKhDYF}18)f!K$gwDs^%BcPB$5y_$z-B$qVjVHt(WBPD@&_f^ z=%k48viXkC{rDcD(2H!m{Wzw4yf5|KHzMbXcZfArhR1^xX04*a_Fs6<`pGZG_T&gi z*%UJU>`6@f?0)w3KQ$clDP(QeO2ivO18jzs?ql+9OW5oEXIZ$-ayH{pFTA>B!RCd3 zV(XlyGPBCl?8K9SP&;x#9H6#~)rozW?2snro9D|qN2@_bE0wA0U1GJxlUdsfCcd}z z1}pvUYB6WBaChfp*wV1USSNIAPP(jw+DzancI?Tz+f}I>@jO%IZ*(NCwyLefGD=yF2dxI|4C^Evy zIqmFnYd>uE+{yW|fDIZv2L9D3H152xpPF2`6-()g5r-Xa%5%x;x<#|2iJ~NIw$!r#>uri;2tk;?_ z>&A-mPg^cCp zZ4z{)zhetVZ)dA_>f_sQD`-`35PC~H*rrSeo9;2W?8Ue;_Sh>8bt7Lu&R+>99I|n1 z$6@i9-y5+-K@)+3uHtoPC`zxJV$X^)Ha+AKx{bZy`TaPwMz_Oh{Yr$S+`zB2S8UUj z8UzS)rSVuL^1Idt_<3QbFClP#HF4vs~m_PznggHb`jlMvk)>g3lRmq#Huyxaem1s zoW1h_Wpd}BP}raMI}*=FY2Beu`d(BZbILMxUOz4+J(lgZ|A^{^r>W>&AMD9pLA84K zN$Ot+ZU`P=hlA0)t*Iser70oGp`9WR2BI_a( z8;&JEhh%aT+w!KnvDCCLi}x|`rUW~AF0xsSGad0r8`Ei889zdElsGmqN~0}q$d5E z#q@xbogd2`otc9jb9x7G^s&K>;Zx>zodvA$wPVs zGDqmsg3%)_D-+9+DAhni9&E&ur1$i`Mov^QZ95i@zJdpA70K^8Ma$zaz|~MfXZt14 zYr!jhw9kvSch08$M)lCl3FJG+l+&(;0y-KX%cqDoLD}*GJqjL90mrVmN=GLbc&Qx)ZI`;D(5Q>bC%O7pYlW|H4? zC!Ett$2Mstx)5%}9p_OsRg zYw7Zb&vf+TVT`<@NztNGrmb>;GHhm`sQx&noZe|;Te*W2iU(3dVG-&~?C^J=Jbm>T zV&?uxmTpey5QPmMYCBtL5IO5MnN9UK#HO+%NK@Fya)o}m1NI9r6iHEmKbN%uRB;P zGR2Yn848mBCE&|Ee(H_<4J`5~hSx<-_;Tn7e*fh{`rcJTz(VFe`Ob>-P;NQ7qAdw7 zA3ot%-8`~+h8Otk&qCYXZidxz2T1$*tsHr^9N0?DgrtDaxbd0+>0WmW?U?-k*vL~* za#bdZ&hb$HuMJl)v$KtLx@4j99TeQ+Ng@;@@sP9$$<#50GpetsTSXRTO?c_Y1$ptiW9^i#S3mdvMhj5fqs3LAsPUyVWfiiaBdu#U<9HQME$lw+;WIbs#gc#*GWEzG=2n55)09t z%SJoD#W=mM0|eZAS$|ud7+y{u94ZP2pNc5T(D^28yA?)FUTeVi`DXA`ECfDj|AAjF zWngTc2#N|S2qk>0P6 zw8RI#o_-A9)@N}8EMYvXUC7ydEhUXHiP}Tl0+6Jqk#2*#> zL)y_xCkkRGp2FNPn(5fTfTJ%(N#sufO#Nn!>)46V)*Vf)(T&Hi^G@N)e-|)OmB|Op z9t4@VQ0(@%K)v6&C~%=3n}p_I?yPX|o+XPpnNM)U!VozRL(u1yKINEm7~?~A*~t<9 zxMIN)r0NeKhnEQ!x`$!$o;Vl{ImY^IumE4Y7Nnfq)Y#(Ly42OOvy^oICY*1z369wA z0nwd&+|7EWXlBHRXUc|PLtip{dvuu<_W3q;uMfs4zgK9z^Ek3*a`8%GBwor>L946D zX!qp-8Y`TKl6M{8#qckeTWWwrelC95ycIX5&qQVKmq-f?LGO!cFwf@0H-&NUxcOwOzgrlc+VU`M|QE)rY~ z1CIXC;>yhNjt4-V+%|l?O-G+^%}eUnyNA@3jpwOpmq+;XqKJ-tw;Yw-$edl}k5flm zD!{XDHd=@>|5siWuzf=$Y;HdZV0M>bD_zC)a#{FaI0sWE&tODKGVBfXLicxb@boKv z{Bx{_wJVv6w+BvegBImn82@c2b$lXocC7g6{ zQutta*0qOXsb8eDS+%fQJs3YcM6SJmE*#mF1>e@~c=YZ$j%JIC=Ox#|s%k*!;U;!Vqqi(y2Vk&PzI?xl=|0jaEtb5d=CjwaY zDgpN&TMOAY!y$in8Ma$pgyC2he6b~t+WIvf?CkGxtNQPwG{ctBGv0+6HH;tON4J6K zydco_Xac39i>V{;YH^2;1y-uq&+& za+;zRuG>Vh>O){d(gzrMsLm-$oR1f%Z&a!FO6vQRA$#e|O`PZXJkABuS$GN<1VK{5YmC zGVOyE#npIpq6Ju*_o;5{o$Mk>Ph(5oPjG*^4x@8o5j%cE#v^fbXbgeu77qEQ^ASXt z&y(bd_0&Yo3jEe=ZK!H1f^cmfE{}XmWh*}eZ?$x=K_$+X%RPp}vr7#I{nm4|R(&_- zo3JIz9jw5)Ay!{<+cpr9RYfKLA!^32abvyR%h0y-4>kY9a#(rQ8Ft=#0erQ0skW#= zc#-m%+WK<`WC*|4`_ujv=15ggU!4j-!B7@^Jkp`cQy<<6oC1_o2cf%64_wm=LL~)2 zyjc-#-<8AOJ?kO(&H$C8bQH4I%>;`dpD9ZPFIcYdloD%C0JpbN5HNHTj0|cM?|LsD|TXfR6%Kqxic_nEkK@9`4MB0$nHQ+SEZkpO$B;Nc73oWRS#-bl z1-jGs9Q|A%Y6-NbeIYHlJcFK9v4L)U5Jj(dx=df0GNgrl|ByDhINJ5wYdX8;PL=#mdFh{@<>dN9_JX>u0ONoJ{ZG3N(? z>=HWR>v1}^n-5p0_~14?d6-3^}}oqjrQ3H^!&ncvBhwumR1P{F9P=81rnZ z!v{?MDSa~+&HY)}w5tFOm~%_#tR=9Q;UDBO{DU$)!eseQ8eh+$Fx=~@p4kg$ykPzx zPA{B+l?GaPoV2kG4#r^cnPRlMD1pLlJgj?RjVsRYVrG+-B>@kl2kK38y7nRj9tV}?whz_um;1kv1`S$ABLo<@+>8GWHZA| z-2~$IeL;Q~AJ;>t6f;5@{`b7^ApbfUB$xhSD>M9W2Q7xz9rOy9OCQJAVqB)@5{YH{ zswi8Wma7oU6P`q2OD`Gg6Qjq2C5RYvhm!w! z3d3%0CZ`Ua!GUMHNkx<_z4+;WicuJoXN+%MJZ!3vofgHJ$Z$Uav z?jiio)rj=3T(lZBB1wMP|?j18)`@vr_HgSVw=*scTTPQlhcNaYp-9lCcOcM(cReDFC6rJMj zMt6mD(xRu=(~2bv>Br|jlB3Zc^uqj&bgF7BeJkt^xw2D*<_kYZ0>|y?O}irLG4)9@ zdmH0%&vzoMh9u-)nM@v>DX>7VvoI;3s2UWb5Cr)N162) z2Ucr4Z&utkLt#ttn)*OhmQiVJzbJ&0QDAlv*1Xw#W-NKFE;nKZZ z)R*Q8NV?<5{n{1{3+Cj3{Gn8)3p`21dv1bXMK-Jv@j7_b(FO^@nb3NCCm6o`OsQ^Z zWqy82-9EuQ&+EFtwz!%Ssk#O6HtJ~Gn~d$EtSW*|dHNj=h1=c5{W%z#a zBI<{b6eoigVbAJ`N3A9~Y`jv7QQjIj=adg#q7`vX@C)+&bQqQKP82Ldo6whk9S+;L zV&ilK@k>);c+?Efs{1f2ap760oc;tq#LhAtXF-D3%CLnigX}Fn*tNO^rp7|ie`z7k z&6rD8DrIAWHjTO&RUrG5>Cg?YC($b$Ns(JP4%ZozI9rC%rJIk7u6IG;jZAdjqs_^Y zF+q`XcRVC+i}Q5l2^cfHvj=9lwKoZWpMH$Tn4C?~%=tLI<}!2~--ND=b4~rF39;;a zh|0_S4Q=X{VphR=?7IGiE8ye{mhab~`i38+37^FY>|b^myXG_b z#gL8UH@*hP zO8y-nA~|Fnx^oTb8eE1q#muRSb>0weszR0|Yaxh7V#9|in60A8TIIQfeOlRxRO?5u z-8erf+N>1(x`fz!))L6)&DU?UmjaJBd@RL-Taa^h3HcD&t=%eMgSH|C_+REKZkEg# z_fqXqczxOe{#%fOEog|^J)c;K(%zhT2?AtnLkQMi5+grt^suO788Oikzy&UmEK$Q1 zF!PWddwNj>9>O({91{rAJKy2nc`f*}uMjx=$?%R*(hPs!$GTS4iA#5#hYxxMIJNZ< z$0siawTpj4z*mYL!}h^7Y6*tMXKJ@Cp8?V~-3C97pJzVfT?U-*R;azc z0#c#?R~&N3C06pN_~1U2Jqd>G>zcSPb||uHD@5>sjwiSDT`~2uFw5ZI!(Xg7JUwIhE4zU-f(+}sBZJ!{7x;y-cZ6dpAQ-QKFZ`B(^E zKOuqYHCe1>O@pj*DM7rHC4vnJ=UCjPy@utZ-A1KC86Yy_Hw>uFfX>rW20k%-l+jv( zNz00$IOYy`91up$75y;0Qk8nTp@~c1cmo5ItJzYodcbL$2w5rWZLoIi3%hcll^uA; zojs7`#y(PV9mF;FU`cv3H(&Fdfy=6m9J`}0sj2@`LH@=M?m1}*Fd`$AOiKrqqgaHC z*2)03`cQ#?dnvDr?Ud*bA#lHY5xoVH;7$Eq>PO)+@YXSeV;j^U0lrfj7Cqqpkm(E` z)uIwStl-8`5h~@k0*qVRVb=Tx$Z{X1dKv;Dq%#8^*gJqrXdxK1%b?9u5%{7W1PLXj z@N@oKs)dW34p~KLWs8DP#(a?BJIU33ss=ex`Ea6<1CbBnK~G-}`fU~Q*_INBSxG_c z*Jwk(hgtAroQ+nRJ>bIn1ZHussj0#^>SkCb^lP#e2^Ygs-uO6#ChAI;%WZESUOwSjy^6dz?*qFn2w{kJn>6B z-jKyGebRp`t+ythp8K|i_LR)04=0H5c8gJ@bf%)G4#2SQ2O>kG2SpQk6xs8j+Q<@MCa;@@UrI)&~C2bymtl%X-A1~bcydQ z-u-#=c?O1(JbpDv-b7M6EofUsFTXpFN3}N7*91~&q5R8qi+}^qySWiUrfP7F=yHRz zNp6@M;efw>he5|!0{Q825{^_gQIcBftaTz1D96mE@`rOU+`JV^OP1h63u#m^GDPRc zdDw0=mn+Ng-;S-@i{4CjbH^r8Fk$#_HS3uS#n*#4{`VbRUw98HHVWce=`gs-@ZT=~ zk-+;qHemP(KTf2?C;0vLE$i^$5tjAMJoNTsGRI=3czWJ7823C)Y0<~f>)u*p|k}ndzm|vNPH)|5{ z;t3sQ=TBqIc7jyrdmMdv4o51t;rq`X_|Ne+w&!hRG8~!k=}ZW=cHagMrbEe1O2P9J zud%;49$oLPBXx3r(Z4kf&vmTF>Sqs7eD*C|EtiWg>MPKrtPEu?#9^rJ8$71L?9r}s z@k|rVFk|;&L%S-eR1C*!awhoc%3QLpJrXbQGi=bD?>K7xk~y!-5~~Bjh9k#I(RH&Y zCfX?DtiCrWuAxgl&I%xF=cZ!cK4ZhLk!K(-k?|CDH^R5M$=JBwlCHcgEz=|cUqKR8~h$4&fjftj&Zw_3Ez8fC+O#zz(q1Y+L5A)lHV|Qvj)azM5 zzrP_lFRYCA$N0%mt0LLle+b`oU5Dg+Cct`P4jG;+Ml3>v@lj1Dv)|<>@@xTWS;0@# z+dKs8$FuSHI70z>d4yQL-$4vF2k{znL`~j=#`4-l4)Geap7ZR(_)Qk~kMeeU+VhG} z?d9c2hS4FfZt(&SC-GWBKk6b@ZnWN1pvy1Mg$sd0yX(gyuXv-MCV3C9-Q`Ub=kuJGB5y_YC7w~Ju*uk) zV?2{zKmYE!^kHL!iRF=f`L2zHp$FM{tah<9Z?hWU|hJAvX3%t)mpY0>q z_rw)O0yjdK7}L$VB11iAA4T4SPBm=MZuq4CY%S2=V46#Mq9#x43d+e+)a%<->dfW?!@83d(M?Bhgkt z7~b87kq#elMdTi$EZK*Dmp&sc-u}4kx*zdv5F{^|y`Q(rD9(^fBu5@HE-qyW5_#th z`9uad zNU470E-NOd59E-Mjjj07!HmS6WxPMzJxTGyGbDAzMsmjXGm3B7M>zb-Br{5d=>1wm zY8R$rsr(mQcFvnvTKN$Da!>N_AeVGjM&hKhDlynUlgyS1B57iQWaUUb&ii)~@0aS5 z{nfAGI`i4T$G4EQ#B#~9?}y>IydEwrIZ0dXn<5`nddSD7E;2*uB+Zr*p}RT1X?c=Q zg53qln7cN;y^oLHzD1IrwmU-Cf9@u^qE2*n67yU?%a73koSAej=MnjFHHE&KZbJ(t?xR&!t);b9+DNR53BB7kn6}_sOMeU# zqcx^p5lvHNdfzh@`aHLn#F#dd^u|oureB3_dzwMi!^en*=L_!QWt0_{h5Uo@mVG%U225kP#1(8veT;rmPf=8(4g(I~#bP2&QomS{ zB4+3PNqHVwEH#_#+3*hEz4%H(pD!UVwi%QBS}WoiB1KHQ*W=q^D>53;j=Sts@Y8aJ zH7s%xFQf>P?Xz@AaGo3y%>IsTAVDh1zv1!gL+J2>CQB#wL9u%>E_wNol<2gR{ThPA zdPP6_ndsw5qc`YyLKeiIrBeM9!ORT91l85U(E8OYy!9%a|E2xe~kKqV_yP|7y|CfB9mQrAH+ySa}?u~GQaEa4r`oe8bQsD zcfe1VZ&4usnZ5J16zA*wPvGURk7BDz;d8wyyXulF4hBtf(|=X7F6eqe*a|&7_Cb`R zwBQ}o9XSYM0yWg(=sq|sc$qt__6#S6bU4}1>$vupFM`(OX{tYQLU+O>f(rlGP90EA zr&e2WD6R7*Aadg{)Z8Cs-8(*bBf(_#Tz2XbL%>&8dxw1=Q^l zS-AB2Cv{stgthYFA~?uzkFJ&t)aNKuDk64>dLFqDehisl*VJaJ(!7oPVAB$g(LFYl z`PahY`&#T$xddv(pLX`D4N>sKfCs1Tm%xj(`KYX511n@MQhTnB>Q6kVFi6+jI0f<-(oBPt=HWG&Ol~ zFD10D8L}2^r7nqv!{dUrC`>=2)ZGt4^eQ`$H}VI@NXQPK*97J_4pRN)8>pWzeuA zmijj)SGD{*XgpKqJaEWo(mg3Cb^iG1VJL2xL4u;s5EYb(z;Zb++BsaandN! z`w6e@kH_iXrpTFl1LALuKwr5&ey?7J&u=fpSXXm6D<}h9_lsbIq#DDEYK0Yd)v!v| z7#+6k;2g*?h2bgYZqri)B9;L#p{a#db|S2_lp=6Uy$1^&I^bf>Qe5~|5iP#lFpj&t z1vDzM;ouh~N=nNZB~2E?;^`SUxlbAQRr=smxDl8h$pwdt8Sun91NJcIuOgcW$xl<{Cz%V{9lC$tU37h#@wGu0*AVyIQ9%K9&`of_E3rDWA^!rjj=LF#B7 ze0rP>lJB$GN{UjrWlIXh-Rp!?4Rs*H9)XaYmr&Tb3};E#K~mBp;F##)hvo**na_u@ zJ4T6E7|>bL;Y9tT5-pr+MBYnE)3diPWc)vZEEm0aqA`b2*JGQiu!Io4KoL)}C1~w3bgQHlg{F40ktS54-v+3=05R!Z?vRkkL ztCaZY!in!>pWzN#;zj}e=*vrTT!KgP?96e0oGt6dP(9Ht{l&Nz9-@@05bg9xpR_s$ zlD+TtkyIIN!sgSU-@P;?JQqXK`mmVn*quQe)}@hS%U+Vz1!s}I6GJN(I5FOB37VRf zNdG92C5^KO$(dnm!f$ehF4bVN&yFQTT15sUc>#1a!^HT^`bmQSZX0Wxc2!Q}vxgeZ+dt0kYWaDp@Wv ziYk0!w1R{(o#y$N^eXq@{q#Q=?7EsXpSw47X(#a+&Ll!c(e&z*;v~K3 zIvE)9p(Vl&5w*i_Nb;SJWJe~O_L5mni&RGvU%?tOpYfm6)yojs^NB>Mj*m8;`9{x z?TaYk#+9h@+6cYvZ-VjRG&C$RL0)|!o?o&LUMb#VHAq)58GH-<>qS8r`92Dkr|y7n zufq*Re-%Q3k}urx4TD?rQh=j64x2x(A`TCAp=PBJtX}dKWRGoRt#PVnfujO$3R6P2 z3$Nkg*+qKWwg=*hjWuX~HJfE`a8{oxdJ88)%&7K#qwwYaF8p{R0A%G-;P~ykpy_6T znkH{C`iTQq=dl=Geb@*~6OZ89x32iMYc~poZv>;l6vI{3>i8{+$>^vjp!i#3yzyum ziZc9%R8hpMI}7kD!++r0z6X0h{ssF+X}HT|b;I_RfM20D(+%%N)9dDFK1T+fXWHTA zBp>v#{s&b;=`5X{?KrZ*ANDD9GTGv97{d5JRnwWS+~YQge$|VNbO9Z#n0ZOu6&U?3 zN&Yx6Jh{x1u(L=L={aS3AziJ&I%b7_?h0f!vujQ`ZBCR9%HUJoc{q3XbtoDL#D+hu zm>RGJWpkS$bf6nEOiVZuEe-hm;6@O82sltJO;+YEVxD7}IHykmKdmW(m3|`F=ClV> z1Y+S~g$YVB{?8{GYcM>b6wWPe<~|ybhfSe%@TeshdL<_z_k--7#(4e)fmDSZF98SVz8QTydCp!r`F;2y06 zKfXu6g@BV4H#_K2OU1%)Yz`q;GOIWe^z;N-$z(d^OJI6jbj~UCixG3M7d+o zCn4zAa|-qwD&o)8%c#r0^&$6D9~5dDVzOd680r^sdqwl$VfrOjSXvf@aXhG%cQ(RU zvn+OtQShqe9cXtaL+AJusLG8RFJ}A@Wa112+0VvkcX5tL?I+m!s}-RZs>87BIcgqfV$TypXzbCI*Zw z{S3Gob2ukklW}BEK6lA*1a+ybkP6=L9Ri3LTwY_R*T>hy6-~`BnDw&)_T13G(^Loi z9*M=-A5~Gbav|jsDn)Hr$h`MHmT;TldmUl=<<4HWDEGP;YFWh)96h5CyI0S|oh+#>stl^)VJFiZ2Z^%%do0&Bs*i zo_>7z;xroEoK3ytm%+ju8eTfghq5&))Qzy6_LP;mVnKeaCHZnlTTzntz1x<>^@E zSBfG>r0|;cD5dsR5aWWrL)x`;O5tfHu3BS(HjeVBoYRlJ7bXntK5YVx$#EE0ISDIt zPh<1IQT#iY1TOqcN3&}Y**sqdvsaA69qT@n6k`~zF^lld94BHBa2V~^IWnDTXACvw zl6Q-~<3;BHlsIRDkp@pd$SjiFIi3$8QZM0~PdnCq9l&K)fAJ~9kksGRjMGOfNRCMp zJZ5G$W%p(gd9!fLQF0(lD%FU&_k29baAV8+v#{<-0=`b`M%QkNtiQ@fKAb6n-0XbZ zxNQYVIQfWuGmXLrw#<&SehX?2%p}Lz*U&lK7o&fcU~)t*PR{WsoP*-zn#=>7-B*ki zW*^XT@dKJM+<{fAaZwqU>6I&!N+2=_z}!JFVepmbp~N7GCNZ+|YtGa}9$ zmm7+xwQ~fAO(+~;{ET<=uE4R;Vm#@^FbsFj=Ei#ehLvx9p*=QK%E=q&i zAJ-W^QZ1Z`GrE-{HL(=u7=*%x@FI}kauLRc zr8(yx>4J7|2sLKf#(w9LNZrkg!Yse>Yt zUIrc;IRzUUUZLj>b+SRe8aCN{gRe7mu*PfBU}n-sC=QV&Nnzt~TXGPOta*#&OwU7R zmICfssY29GjDz#1QcMiAMC&glaIn~f`qNSmkq5F+Y-WmuAZxyy#>*_pGg_FtoZ zycK3`=tg|+d>c1>yNv;(3=3~Z0lYg`%yG$d`}l!@P#-A$Qj859`S$_y2TO?ODgcXEgq< zcI0IJDh8XsqpTjqLbRWMlqw&duYaFeu*}wt#SLZ)Ib-v;v(+}G!I7&XcNx9q)Wnz#(4RaHPJzNK#>HE%Z0NLV#P}l56Lxzqg)J#Sj#U1JlVXF=raO$Y za<<`@`HA>5VhiSV(*|98>v3{7g^FK!c&Q--?EXqZl-F$iy$4>xd3y563W@s0ZTN3}Cs*e;!(_Cu)Vq0=kG1{iIr#16iq01c@JIPecEwR;Oxlu%GM~U; zRRU4-LR zhd|qK25?jsb1SCCSg}>|a9Vean(MqAH20KKE9A2DjiM8cb|`f)Gmu6w*V6?fhybNS zQh4&>KdNl45{ygrQ=xTl*(<$N;J6w;2A~ftazBlad}hFU;q~yM@EYZKZxEV9%8VPE z%o*0rPH-;afyx|nPSA`WAS$W_!)sJIH#fII&41EZs94W(75vWnv*R9XBCUXGz9B&U zTa<=mcn+DK+==#=y*0}{czlLDqid3>FI-mLd6^4(`sNme4!?3947G6xY z$Hq%V=+Ddydnf^tmNS6izg6&s<}`YT_TbaTjU=v`@z{?fqmpik-btooZrW`@95+jI z+|+zY^BQ+UyD!-W`j?&>%p2iie{~67nbPOTE7TZXRI8(g=PM5r3&aVmBFKmzUx~gaqZUQr`?5Jp?UF-!z`gnbUi}veJ;%Q%Z zM1>W`;5!Lt@A09-3VRG{I|t|Kix4qhLWxK9z*~D8h8?h#y*ZJCXIkDs{d0tn*~^XH zvu=P-NFnZ7m4(O5yfN34>8NxKQpM3sj&WNJ8t+g;V3=q=_v#>VuOe7io=1N9Hjv)6 z0q^-Wfr35M^|sgeONyn03v zHGLdVwCn>N=sAm*{HlP?xY17Aw>j`Egq?Yz4>$9Ct~SxPC<&ha#^bb~(|VrDl4g2q zk0bB<_3b>(>~h+4bum4t_?vF@t*0fMSv&|^%DbSxnkV{dB`-AFm)HMQjQ3vZAJbjW zre8$x@z%GP@Ct`zc*^13^rnn%TJU%cZ|9Q^IuG~L4_d8x-cbkW^xUy(?U?6=@$exJ=#iugf?Y?0yF&iCeJ0L>c@I?Vfcu%7mo zx8b?UyYcQ$MewN0(!985^LXXj{Jagi^LeLoHu3laX7IK@{YA%rlj40|9K}1OB#Ewi zqDJlM7BJm2sC&B91>74)*fI$%RB*PUq0Ycj_N_h2a3(2=wKl*70w>*ZzWGr~dtBK# z>qEYNs`zy(*x@U?RXdh?FUhbSU0Yc@>=uGSS3fMjzKv_%=>T8&4vArCka&+4`06HrzUwwh^7>`!&zu-8KmSrV|9-JStywET)D#u&P{1Aue{oqO=lGnTE2FC<$$HMG0$!Z{#qhr419QiWq_;L!Jn%Dc6P>#7|_ zRa`?1-4RIr6?_HhUS5#@{S-BLPF|-iqWA#(($!&DxlvHz zL}8L*GB`8tEk{#d%KU08)#oXPE8HZpfw^;a9Gr=cPZB}0=sE}woxs#65tuPuz`fR% zPd$Agi4xpQxDuj|8^$!zp|{gG?WY5F#3#L1=!7xt)kG|)}1q`2E z{&p;Aa=$>#!v)w&{e`^7Xof%b28L43VL8L_z4rPC46WUYmlX8Ds9FZE1T)`5vG@u<=pCwbs z-^N?Glv!Z~X?Hj^l%-Q_%csSZp63lKU6+bR$z?_;t*l~C{PR$9W z-dF5r95%H$cyR^3J~fJtYR*VkrV;BxrkA|x2FmG1;?u-T)cyDkcNY{hY*-ia{q}64 zr4|aqhxCa-^b+#PKM*Ob^WEVu*pQpD}M6UoypC5K16$esO_r0eNTqPUvLZWi^D)ZH%-d2>i> zx(OM(&Ag5)1~9`nmH1ot64m4xHUtsjs8wValUrQsU55S^ z@38B{Tv9Z+oXnA9*tkm4*d~&T-E#^_(P%sgU$%kFJm!O0LAqpHWFm<>e3ckk)sSS7 zbdoBrg5lzG$YX_S^h{#Tg4>soHM^#8w#y*&^{A56H)b57cMp$9rJ>QwEQYhGdhdumV691+zMd`QCp?Ur{7!AD-VNW8-^|n-wmjL4^ z?_G*5X%PnY{LESM`6b{kW$yZmSKv1FxttwS$rxN%fLG(h*`76n)V9QAW^NUNH}$)~ zENUP2TB%^~HA(E#{{+_~6tIO)nDsI6Bv$G#!yXfVRMKKR-S#K&+v5ow{7(pRWVxYS zpfWDHorX6i$5@5`v6=7IbIe_O78YJw%J>UQ(O>qev2v6O)~E5~sQWBx(NiCEy}uA6 z&xnz1#d=)xj_G@S5Fxiq@58d6PodyOEqKmTBC`Uz@yYrI+<0|6*4RXW;fF+=;LpX? z?{l#-Sf5m7yD{#ne<=7;2iq zz)Ot^#BX2`Xa12W>OJE>dwVb#bKeA`r*0U&JYb2NlOF*;F9vt$Fy2}X8f7vV|5=0x zxlyJ_E;IaBt-|N{g5kfKH2afLgPXYI-UZmKeg!*b-(u4(NpSk#VmzXdidCf)4$Ne@ zrBb=*Da*&o2+AizoR=h?+DtO9@X-cM+O(L(G2+twfaJAoCB2o#s2CK55yMN#Zl=qU zbapv;!1#hzHU1(OEnSIcZx?0_{UVWTii!MDQ~Ggv2mfiA@p2 z%tDZS+P)ME9W&^U!!L-MSQ-h}6(s3S7g5z%i`>QSB(H`dmjnM|xw#14deMcnysIKp z_fv>6Go#X`^~niUNjiJuWy1e)Gs*91BHJ$Kkzu#_q^j;M+NLxSdfp4vpSuTD=B=c+ z^p_(q(3=QcGr^C7_IOlPgz*`Aq1WeW61>`#?B&aWUEYCAcP#)XEhSON=n*Vo{I}cK z^5o&864-9~9{(Pu+}U`W{$* z-xfa&=^(6iha>zK@LQF|^Py~*&RA{6nsLk&1QVWD?#BG!zK zpyIzMxN~I`)DQPzf!J+4uv>-HPV*BVPCFEp2#|mGcB9|iDAdri$H>S66ZImwA+lensnhBhc5xF7 zs4m5E|8SIlY=VoOx57N#M)q#qb+BJY5JvxdYHZ>+#x43%!_IGS1u3B^)|)_cXbd)E zzu0yUE-NpEnn)i0v1r#FH5BKn7hGm%z&5;jP5|4TFB;y{`#`0Iis3r-R?wt}s6^G3 z@NMg6@YTFV?ee3*b<`YYcu51L!2+E_Ja~PL=_fJ1zk-Qv2CpV%aprdx!*O+ld!HL% zlDSJI9CQ||lXb$|uwg|G zs_ZXi+>@?2@2WF-vT*{<{%NDV$Sr*Csfk?8U_5Vk6Pp8=-mb(N$}e#(o*4NHvZF$H z+eME2e3g##grx}S3BZ_IF~W_oWO!PuiQp?CvgDl_(G+2FYK?rj&nOZ5(jH;h2Qeb^ zU4!@~PN9ODI}tVAL5kNfUJ@?D`JUxOE_k2743TDd!>}UGrCefMpP4xD*^6wI(;*A1 z*WtHaZFtN2EgGfHAtS0gaHEG6xp`qW(z0jBncbs!#;*f)#d~q%ZA*M^_!>K^Z=lAr z3-IbfGzQOg!=t7O=)!o1g|DxHh`?ehtk4rG2P~<>+xQ^U!TtZz3^eZ4XUp6>WN`0e zE;uIcqn^|hQd$iLI6LGtwZL2p;`Xo6I~I7F@>9RY%~^OHY~sCONA64F?4AON1u+kxeNR9Az~PEMAficb_@11Jo$Eo!kpc+%_9nD#^0P{@kRBhA&WG%QKB;(wm{-M;Ev0 zKEv-aI|Uc+mQigpQ{m{(8K~n{1X9DZvH0sGyLjtiE>Bnhq{2$T?3^{4{P_zh`r)u( z%QSRwI$>NO6Hl0*2I0e(U`%--@Ea+kO8r~l35#Q1iYYv(38gBp#KMW$a~SV}A1HTt zz=y35!MD^F`5p^k_<1LM@>Uif&AH5NSx{)`&+UfMv=?yC{{Uo*JO`&jOD2EP%w3;; ziY3-xLHYjD!!`bKaC+hh*e@_cpM(+EKje(x_kN_}+jrw<18tPcm^9A5QU(H<4?x>t zlG=3RCTzHtjJL1WLG1M;_#Z{*;a21S#_`f#8Z?a(O6#0c=eh6uIW1*XNQ0zoq0kVO z5t>qww9`OBgNhIhqG%9`M2M`C@iod8zvuT4be*p2oX_)l?)&|Iy)rqs_mS>>c(Oc) zskc}~mttIL!IX5oYGH=gbdm2@Gy3#W}54>W_!?vF%C}G`l+VobBO|G89e%+l* z3CohGX6-oA=J+G)imhpT$3j%T(~3#|9VD4?LlC>?6P*=Al4?CmZ}jr%!aG}5C-o^^ z%k?7fnfvKg^A|FmZcms0h*6usmeyW35vBxs(~pigI{1M{eo<~TvbUAuH!h;MHZi&h zJ~V3fDq?;<#07aGs=xT0u5z6tpKPvd+-=ELC|J^fp%W#$+f%K<9t>QYMyn(Wa7Rv= zFlIT@q>z&|5G>90iafc#(==+ZswTtT1!%3I%w9jHz;5VRLVqSjlVkD^`rgHm^XR7( z{3wN*zRF@F$K{*&C6D4V1K79Pr^ww{iLDHq!-iS<oCe)brljE$MHgQTfXB_f)S}u%?y9x4 z#6yYWHs43(jAB|fCXQWysFP+4f1zuebVz#VS@O%tr)N8JSjH@Z4g{pqh5|p@x8Xi@ zlvUD){Jmr+A4HLco}~9Dg}(R;P^GMehGt)Ym;qTfP<$ere8+*>tYT>Gi=U*qyo!#P zT%~7o-!sG8IB#@v63rN&gnIUm>CaTI1AK%?)9WPd`p7*)N2=j7=SYhEzMK|v?+&F0 z>?mpPRy>z`7DDc2QgFE!1vQD$e9n`;TRDb3oE1chPNUf4ZBZni{+9Z>V#(dKh*rn! zp)GL(bgAw*wMf3iTN)1Z#yg2tmX2U2{cNGbQ_+f-e!!)^f5IBv|FDt9Lz7knATdRS!Bj$*J_4vx}I)3Z~+M@K?NpyA16x7n;805(}Y3+wT>fMpS_RgxN zul_Qu*=;Losy3!me=gCPiX^g1>102i0W#EC#xC3Yk*Z1)Y1QvP)ElSD_A%P5c$qG{ zT~^4-*u}676U5kG7o%8qfh{ZN70CMRn#y*lx0342LUOYtv~&5=EtbcHgtc2ch2QuaCAr_0j*?48~5Y{;M|`+ndQ zd02{Qzp(`8?OjX$%bV%R*!$3hy7tgu3Y|Xq~qo ze+Q}2-C;L$zIX_|c4}b88F~7q^a5szjlt77lYpbS;1-7ztoWCJdt1lhe>0b0m6;UY zmaD_41~EJqJQKexT95UCx0zo$5;!?U8od)wV3+3_Z0&N!sV}r~`H_WqXI?j#F^q!J zx%N0NdBE5wD-KtEQpR4NMEv9*fm_6%;5yl2G(cyD zjgRg?&cV9|eQOU|oIc$FQ!B>7`A?m2%f1&QI35ou4M0+YB*`t1Lsq{M1=r7^@~12` z%<06nKN=t`{4W#bYKTv$P1v?Q0?yxF$qX!)LI0_v%-*;0@#(ekP&LAuaj~ywE>BWM z$=-)>uUQ1H!LI1pwFd2DUU55yg`I~rQEqfEDD1ak8Z%>H=fheMixWqwt>58MuonJ&)X4nMYQ_^w z6>z!Db@;J?MI|R|TySR%sNPM%15@(g{D-%2BK0OLN?C>-=7#7~dJvw*siK;j4CWj% z=GcDE!1B;mINjI^OEML(f4mLeyw(J#l1E@s`dHj*^%Mkib>YL0AUtO(jiC$M;h9GY z>D_b234cA{)TGD!sMdBU?a_dkVR`WBt3|C|A-)eS#j{GUp*L|Z*Y_Na$1LAKvadCU zWp?q|SbvP`n}C~oKEqTd1d|{6W2&VCY9`8%@A3?M{q-xJex;3hrFj&vt_q`@#!%L@ z>Bzc{!Gf3!zD!6XI$xWO2hD%-W6O*1z;$b^{aeWK{S$HOvras8Bn@FtEY=J%czB&X zikj=u@35-zvKH=nKH(sJ5$z|%#fv!hejl#5B#r!@`%)KZWZau1Coy4C(mtXno{7)E@86-5HX}x8I%Sd`uzrUqA7`Ul+00%#b|l zcGKZGl9cY2N%wZLB-`Crm;-7Y|0~%CbG$Y|?~Tor@*~%g3@(KkZsq;?aqH-pJgBHSn?PC8JpwT=rv?-zyPO;N*ZnfgiX%q(e zXW`-vG8p$b9gK72u%*YJ<4lQD*dclBu}#3+75||2M+U}9SK&gB8Vn6x20jW;nU%jo z@m`@N7MPyFjMp)^RR0mjnJtAellbtXOqHqlCQfBH^Kp7!J2r956SFoXPtM17PWw1+ zs(py(Cbi&WwRrSCor(8k#p%#s9Lk(k#PX8+DEA^AiyIR#^DLKF^%bJm{GfnY*h%3j}q1Ss;vNlYi!f_rV!M0VR$EPNWf=fn=-XGwLmhW>C ztxho&>4cwVtrB%bdbYmo0@q0*ySr*4o7<~I@ljhu#=oLOg$Ms*$E;NneH6%vq%Nt7 zYDz;zXA5SEqQ%2R>-n=p+8@G14xa)=snuuLbD9z&&r(Ct(d-hDMZUPGU2MLn;d6zk z+uM@!*^CuAu3shEJp7A}i#WQe-fmILI|I?Q_Zvj^TarbO&E8v+$^0MyiS5P zuA*Fv?PyhS5;Z0^qU@r1baKxp)cq|^B3=fLRUG8b`y|}*JP^~PkD$*Q8?q{Sj$3ID z8lN>lpPfZm|J93jOUY8xjXSivDw$MXpTZH>i@Ds*21>}+#Wb?UgRg}2b5b(LZz#sK zS<~p|+xW3`7EgxsgYzvfq*mJBuEe>+Mhd>MVYU?e^I5UcUWRj0p4{xOWs$d%N(T)SK@1V59nKW^xEdAs( za9bA0v7S0l>ESn3(n_^wrM~TB6DB|9*k!e*OQ+mHYl#oM!tNtTYf5P4*Cg(JWrmqU zrRl)w&@%Wa@xHlwa8Q)|}iY|3_-P&E#cu zo-#Ii(g9lqa=a!-%=2wzbRd)(3pmf@1t%&T%72Q#SO&?ICRJdC!1fxKxQ9~G1(+&ouN(LogG-_Y=t$e?x431 z&unMzU5lQyYjC5Eb5Ta5;i^lVzfScaG%h!zviuIS>E70~seBR!IB0S#Lk5R?q{#8O zFD2gN5cEnfSc;&lX`L%VP#+<3+ak8k*dMPoK%o}&-$Ec_0^V^87o09#DH;YK6= zTSYh5Po#?%!tjG25+!wVxH%dzVzMLYiJ*jI57^^Tcfwzf-e4}*Arno_hvYT8IcDrU za`!hkXX^|EtrGf}IWrI(M)2_UlO<@pzX;DIu!5n<&8BU4=iujWP52{+%O*Mghtu`4 z@WQnU9MFuzeTRxcu~m%@FW{r+!JYVo+v#LPIHK&+Nnn!ejv8-WNIuC9tsd{iuIYOz zL#34%-wl|dBmmRNx_C~il=GW};%6T%+|*Ug-De)~ZVZny&ss7KZF}_vU&hs7(3#m7 zPJ@j4yvMLBErquv>=cE@%J%pxENakeScTu!yQsE z!s;f(z-f4>av9`12KXCFT}fhdAji$ghNrXSFlGD&JZ@`^51rfKQ`AK`11}c=0`Ru&{t%x z?a8kHzE3o%B8T1Q79yH)u9jW4;Rfruq@Pv)^NxH@K4*hoKI8aB$JlRAZn1taRwTX6 zS@b*BoDG^DF7h|a5cSyaC!CQ&H{Ks)m4l1f0nJ!e&3LqE)7SItn|GJ#SYo=`w+ zDeKgtDwr{ZzRKZgIQg%P;QKCw1s4YR7`6vhj5x>Vt_c+GJcVRd=fW&?A2{3;Yw|Qu zob=7+32gWKVBCgt{44wt=$iEge2=RLGR|MY`y=JCbwM0|V|pnsjxP(JM64|%sX8<4o{ABL3u$pcIO{8n|6j!sWb&@g~ynmod12wXm`A! zdlUXD>6zUx@8n(i$N3R&+=lGvLAZYn;EBW#ES+WqpCxuf;y7nm)^X50Jl6|@dq=^T z)$uTIYCW7y{KRZI^ax{O9BOL7aW5#CkvG?p1c&@w`hd)$+c)$}#o@jts64Ln8 zq8sQ<3LLWh##^T}0*5~xgO{H{sH*2`a!pJZzbUxE!b*7@(#QhMyN{r4UWBRav#S;Z zod3P`&s2`1z6sI>*J0hF2k`2i7V?GNuqWgu#NJ1)|0hdZ8pWBy7hDERyBg~Uub@_j z3u;N_V9+W{lXF|n^S>OOLR(KyXHI>qfR3ylShm3!6;@9L7hNYoZ}$wQgers@qpH!k z`!DLvP{pxNM$w;75xA_ohH06o1D67Kpz7_>_)Ib%+pAAvX~6&fSbcI?EHa;LCvtOwrj2T~ZmgwO6i<(x^&@M`H1 z3>{s;ynQv7c0HbnRX%Na#CE%SvpD|7Iqy^IBLp@g|gQ ziGjo)8rV~qO|thdVa%E>cxgo$ni$B@#CiHeMe<}6dI`ron}s)2+qk0DdQ2;l=Gd$m zOrqp#V5()XZbv8ztE6d`-8d}0{22rI|KT_;^Kj4ToA5^GM~K{a7VCek#Ge`xxX61C z=K>-1~L|rcO^qg~jU3dXD)nvPnX&&N#)xVLUm%`GN z4Ro|!j!mz5MRm@KWOHW{#yfi82RSo3>mG(3tM$n4sVZCl%Ylwx9>!@|BPk~(hBEEs zY3+;{^1L;NB5fv9$AM||>#+^}4%H`CQye3P#OUSaJi5cZr)=Pt(5|RIsJ7dX9Uj<; zj~^?sBjqpCCMRz}xK1R_+OJ6K=gp^rUv;=sY&6{&??JtHk3oOdD#6+E4t)G&5h+W4 zHp^VUncNQ(l`M3l2AFkDo{#(@$W0#CdwQCyl%}1k?UDUmW|{ zfS0@Y1_tYD(3G#`^guh3oTswXTs(%JhcuwB(-m%SEkSSBOrtXa>EQg_nflH}LdhCF z{Wz>iGYo!lJfpv;u&WoFo#ykN{2l?WN%E)?XNmq_T$%DLDYoJ342;x&1P}5&&|v&g zcs|qzMq5Pyzar^DYAkb8Ob$$Mjl%XfDyX;kCxpFJri{BU;75Q7=C867ObuJZ?U0^< zAY%-Un3#(ix|X2lrivCvHL*QkA1u}Z>R#qy?9qcL)o+g@Ws1SqZ4=B@oruA=zHkA* z61;Y*60&P{;_J=-@2&raYnd!GSLmajU5Uw(vaw*iyA{0VeT0Jb+&fm0IBNg=0Nv9* zz^XS}@zcaz_&fSDW07?L_H9$ah}icKsK~MEPBDyYT?7%t(Yljbuo9bp~|Ta-O!-l~Zy*TL?z?ay_z- z8{o*a74Xe6A1@D|WnPRbgZz@I{D9O$rk7jQ3{zAtf_3*}xY}TVW0q(Lf}hL=J(V7& z`&2M&T5|`atTpkEq(AJh*$rXe+?nE;Tt8QR8MglL!qs>BK=0i}l-pK~E403YXS20X zPAVJ1GA@{|J(>ku-}%D3Njy-nO2F81dvMR;1GfagJ5$a;#fHV8Xwm?lwaXZveXAj& zxY;;%z6E#Rz7FNb8u*JZ9D}RdW4JrQ#yC_ynQ_Uphh6hzn8077VT!sFE@iL7%;le$)m2*{e`_w- z&z%jkXBBfSWEH%oAOlj*LqU5(IdscEX4a+NF*$Q{6wEY}h42D>2=Ll3Y*{iEhS!|{ z7fW*(x|jr!W7R-qw>s*cEQJpng-}0UTTu1iA&}_dqk={k90`5{xd(fgTW))q;_!SX z_wyWBy4VCv|5d<2h0jdF=i|Z~4DQ@L!^Z?!CFt%rpavr(-<-XJkmcfUkkqq>%};iYtJpFX!b;yl0N}! z3pc?Sx0@jHd&AV~yaw;<9$?cy5i4zQ= zZfyn}Qr*ia9(91|2@_Dv{W!Dw{%ecNS@ZG7qQ$%uIUAVOrGJ>_6bHebG4agZPzNS? z=|Pw)au76Z&E`!E$Yq*V%RqsXC104A!QGo;K;c9p>`s~~NO!0f>MbsYHR2r*xc3Xx ztTG2>$+wWad{Fozc@-3?Ou)yjpW*fMwXpE74vMxuh7~m%KurG%dMvF6J&XHbU2z_c za%`h)s}0<?j}GvCmzZu2af2_B!Pw@^u`J6$@TxMA z<5La6>c+LuMZ3+0G7s=?KAww-YHHxfeXo4T8me8F@v6oo7$yIaM0ZtnH0Jg-A0OFb zo9uZwDV74h$_4x^*H-K}^O3(Wrj55{+f@ii(P37%KZ4~&N8p}EfZ&qsI6;5x85pQk zz<^PQ;LN(Oyv2^@=)OapM*E(oha)#qmt+TK?mR;YY8EuH$&rry;O5Y-JW8$o!?DrR zD9~M-PK|$0@%`bHSiqy8bLljEejJ^zRhg(zteec^i8 zw`pug0(c~p(QgGMcE3v*%@5vBqe2zfy+ht~uW}g$zEfkRIHuO0@g*pyI+-TE<@PKF zqjBAKSh7XQXhE5aD=~lXUi|rdKQ?o`j~V4} zkl8Im;^KpN@!D&A{!^Adp6$oM?>3ZN(}*t?_u~j(bGokF$IbqQxW2s$Zg=?8ZwpDP zKNyepGDy|&NEN}Bw8Ti6o0n+Pg8>=3+&lx{+l{8dV`a4DO%5gX%%I;3*U`zP9k9rl zXxkkfdVN=xF0kTsG+RXdTyHOBu_Q&D7*Ai!ZE@FhADqxR8!uEF(c;)pbZOK;zwEc@ zJ#8KZ-=9n>R&(h6j|7;nKNG(D%md#A`k=Y002cRtf{sWbDW=6U_ZLSAKa_}LM|&2` z^j;6$Zb_Kwwa3CK^B?Vjia-hMUz-a% zn*YI{;6uPG+rjy%j=*#YBlxx`U2tNTD)xNJL(5f4yb~9=@4U$=H2A<`^4(!b-gF<{ zJlVsWmdE)I^1pzk)maF%azpvy&r#V z^B?8{|AkXvy5C)tO$b4u!hY}^ZwJ~P`#@UpG2V)>@*66>SiVUFS-fxe-44{nxDuw z;Ii`Z+Hl%uE9aIxjbl_S`I<>DVT}3%tlun)QL<%?5)q z6LIo*MWm`!*!FWO>REFfn(SS4uSh|l5Y-B={nla3+_|v+4(C~M=)q?@-63_XJ{7x6 z#SC8!s^Ww*3nM$>v+z9Hax=%R{L9Q?^+0SaT}>s;f6;-vOYdBE3~fwm_*?zY@I~=w zXoKxk;h)L{5OFOHuRHpq-Ro$0y?3IC_KOxQ>NpQJ9_LUoZVT-M4Sf7IjQY+h(xw%c z8T(C5%(nn*Y^t%t;WmA`URlAh&L{CcY>7ADvOk8Z0}N^IRs-5`dJ4(cHBpXdBp&7* ze0OZNqU9aFAot%BRGwx_o-$#m_A`rSXe}p=Yt5)IWfOjOSxf0oKfx?)BR!Qqj(ywT zBdJ<4!oHs<`uGmlj&5hf(^YBqNRE#qe~({3yqBpC(G?`xg`;nIKh*5!I0$P*0^dDz zNM^_lcYUeAI2TQfotlA5Rqf~uZx;9W;vsOXJfpD5lm>37;=k2<@V`u5GPj>c4e3WlkRNO|=?-k42@ zJ4>_Zq+vJin_Gm}>YK^=TNURNGQ$gbU8a_QxV+;id1`k>9N)ExvSH#U@X9;8GtYf6Y z3EQ*lfXYiC3{!e^oLpTRF)z%Okvsg0oXG$2P^{*!tefCm~PVq^~Pv0nJr?KE8EvYRKJGT_ov2LC*&fGwkbL)3ka50hVPHqmfASXF0(n&d2;{U!~c zD9nZ0`}g6ixeES>onsMMG9EIxyHhF0_AUSM6oNVhcwVy-3>608xanr}lAD285(;mJ z^5MCs7&e3};=hZRg;x*z!n8qs)HqxRpB77E-;X9Yki4XG%22c+PVcyE?e+(fag2hA6JPRt4s%cuK&MRKv{uao!V=ZZmPK2^Q08x@m(c~A05yW{o z0-ROs1tp7bFei2e7(YTD=#}I!_E$yV*VW0KobL|DR4N&*_0r(_P|WnLm=?dkk!5Tr zX2FImd6@BiH>8XxW`38+LW^W3nARrnhRzf)9miYwTcwsuRyW9H3;ry--^m{Kd8 zk^96H-v0>YN79*#d0LF;qYP%{SOBH`G~q60C7kir;4+|(g=37)bG@)=rupD@h(Dyo zj5YYiWH@xdy7Cw}k@1T;l-vv%+)PwFng@>ugFw3^2=pHxfcK8?OmD|=T?xa{UU=$E6I^_)LXxH*@b3Fb`0m&_Tyu`| z+{Pr(saF;x-dsjQmS?z~b}V{4=bSwpf81fbmuVi?!`Zjc9B?5wR}3D3fA4HVGqJ<; z$7(PBS)ztG-Im-BIP%}8TxVPjoGG^FJg#^)ft(jNGt$!Xbka`;y>(QCrs?%4*F6;# zjV5E4N-gf0Fp_MxSUFqx{~@sZ z4xq8X5${@!!OB!i$ei!MIILPHn0Ma)=E}-Q5ev7wy8fzU4yG%{d_Mplg=y z)Wz5<9cN|*UWKPaQD~iwLNm^P5-N9yJO56Ygmj8~2)8m}J)!6vq8C+iF1NYX*q6+7=wr!WdclF5#S3P07 z+ivg;sKCrK$6!Lze0=|DFZ1m}5`aU!Fs1(rZY<;D1&eifx>*ueNO$nx^R~ekixvp? zpU#v`E8-^QBLSMaj8vLSw$bwX6;X%-b1XM?IQR6@usH z%*N;Gr-3c*hY5Gm@tof=ydGwQpGIs)LHRDU&vb@|&L{A^&O2y7u>h-lSK{-2Mcj9} z8{`tVbF22fjM`#Fn0<0GQ~j-xnRZhi)p@fq_TUhIk&_-?RS&`eyVn>y|0nJ@1qBH8ZXpqbG@0QJ>6|B!H zc9iz%E3m`sQ^|S8W0KDr!5W>FWE4OD!Lem0=+tW`5;RB9`K`Zbw!R7Zzkh(YFUHcE zJFTRrA3)oZQfTrf7mf+WqoxCS^mT3@z2Mlp4>Cux(W4JhK<`ItZ;PdUi_W9m+uhi; z!jp#i!({XPHI&LkBqVbSqOcUlHC8I528E>v*z_`{%FdWx*uZBg-jLbj828s_Uce( zvVa-X^x_Yi>5B47j6}~+U3AUyF8en+M^v^fU(}wECzA7#6-{c?6s?~Z#fA@sh>UEW zvR#`BL<@Ia618OgVdY22hHQD=+4Xy(5dQJH~@Xw0}RBJWEfB7;DE zQIXeu)@{xhQTT{N(bLL8Q3RNY_*XSWS-FEEhpN#c-4EKLN}mi-qe>#H>o{H%anw&F zqZK4FY_Jx6c^M}XSZx#?8fzpfi8;=Woars<(GL?{jM5gFzM3IA-;yIb=j9?AeAX^{ zmcwOzx{r#+IqVZHNyrjS@LentYYP_jx+sXWY!-+dOE!s$Mr(`uTLq#MW%EU=hD$~1 zyA;vIc_t%#KPU_m;~1&FS3y>@2W}Ny0{hJq%uKzO@N)wSVd~yXaJ`uak+n0h-C+`Q zc7B-Yc*B0vi($*bMRoDpWv8BQ{IlI86?l+W$A7TDY7yv-zcUE(KJ`G$-Dw;b@;77-n8KFcVWx6?HY5#~ zgLiu%aRb;9JvL>aHzA*CMBmVoF`Z#xs1b^9ce^8b(MwSM7zQy!-wtK<=ZCJRDt=#C( zhSb=zlc$ui6I_%<dGBStw#Bn;&E!Xv`<( znxtq_|4M3pn$Cs?8jE(G z-2QTk-c3Iv( z+@r(McU!m)n8tXL&{L;JA5P$mNHq#y z@fLT+Y0&D*GpMpbjANCYpzG3YFk#Vnte1{w?))9%2?C-_Ej;!x7aZj{YC20(m?;zA z!OPm$jP*x()BpEc0wWK=l<++0b>n=R(Xw#JZ!`1dzjNT<-O2lF#KPL}IZQb3Ij^rx zAFdC`flBXmkWI~l4Jn(kvnB?-XIa9k6IJ}6fFb`5XdHqw*{d=9?>5*`x*RLN{{q+PH<;lW-*8a=2xEJ#8Ppy2VpO0723|OZ^~DmH zzC{wFCip?1q&OwF>S6sWwl*YRD?qWMSK#h-#P_Bnv23I^ zDkeY0sXNrbGxk0IiIF-^Gzg>mAA#s*os627op|F4v#2OSglZwCXkg?>M|&H@0`51H4up25;B9H;Nh2zcn03YVH@Gmlp*LSpt#CgFuO z^X^gy$UNQ##}7>8H+?T>CLFyf+?4;95pN$MxIeTXrhHE0Z+NYX`_Eowa;6swAN5<}u#f8UL7B&Ss`7`<5}KTXr&bil>-co!N}* zxWi_u_QV_<421}eIr;MFUS{EgaHdZ6EYleHfib=CgE9Z02Fh(U%)hQqq5Q+iOx*P8 zOx}<-^O`MUlrsascjhGpGrn*^#b_Eoef_q%t-wD z0M1snAg?|0)GD)w;!5gJ_(`4q)Jl+%Mm!!Iv!4vrpJL*_L#Uc_kyN*=qak+{I+m~s z{Yx{b+T%CpIIiUSYCWiOG?HX|-MIY0M?5SgB0nzsYp9Tfo)KIxx;2rme{aPglA|u2 z=_K>LA2ly6#|mR>vh7P_-f%38nC==3_w2)hheBE{S%A(xiDYU25Tu*sso|3t`BZMe ziJ_Tv^=vyHJjZ2LJZx$6gF!s0SA}U^iezPHOf`3pQ_YJI>X~FlFAV$8yama5IGRk4 z#!!;zJXR!EP_-||i74_$@qi=n_ffgYUWZOlX#4=Xa37vu83}x&GG?Z=7S!o0gX#!r zRNfklT|2x4Z|o-tQaodLizGe4?`0V%%dY}ve+tY>%HwM-xCjv|HPCr!75vwl$d7W1 z=A9X*3TBVuAn9=uZ%L^)|8I#N#NUhNZB@2L>Gziy4Z$otVH1Ih>yw#j&C$U7C5>fY z>@deV3gaY(;c2iku1}MPI|*9QK>|2?RTEymsD;D1*O|3X#tX7Jj={^Ja}W@259;b! zutfhm$gu)^6gO;q{=i5GyYLZwcW&jG$G!mfd5Rc1s}R;a?Ke4969rW#OL=DRK7c@r z4J?PVb(%)gMNJPWJ2vuY7}-& zihk}?Lal)JIAUZub|mekm_-xms^3V8kSoBiJ+@T4{{z=gbHh=;C$M2zFHlwMKT28U zz%dV^sXRS|DhfuRbIUR+_!3S#4ShH+%5h9Ob&c*vU#G^=wH(jo0ZrXLi@j%DZL;O= zZd^KU303bZz|;~|k`*temgh5QR}0~k4@{=uMXLvg{c%5orv?QmefQ$BXPi?Ppg=x@Hvp7%xr}#3k4dM^>`8)vxfs zJf8uNQ#V7(-QBP&7Ob8YaY_FNoi z@(i|3f5r&S{PEpqO+l*(*NyzL8x9r8@bs5HWL~BzfMlmJO6f0ws>4PCUr{O36AX+2 ztpUrTb9`gFIOc)IMc7>Qi-~^11CI*M_nCKy_bYlf{7W)JUiK!8j5z=q95=}~WZ{(a z)3PCUS{Cy-J_gz@dSaOL68@C#-SD773(MoiVAdBt&f5JFMC$|ajfXeBavz5!MUybw z{Uh`F+7#aBx;D7`&Jpwu_Axpw2H5gy2IJUU0qfIacu#j{!&Sx2n8sx$pE=LNKhEKh z8*IQiEmJUbdn(RoAHd08t+;T`GjM#Ngd_j>pgTA3)DLgK?cozq>#Qw$&#%C1KO<1- zsW}?hG~lSk@hF*j4|pk#f+Mqcpfygy#K*_b^6+=m?v}tQbp`OrDjK4`Dq_viSoE{n zgWlc!%qCr9{9)24q?j2oSsd@| zZKCn-`k=}t5GpHI!_XElP~AAd{Ec)G{w%HMp5Z3UF)kzU-9#3~ira(M*KQ{5zo}5} za~)1w-Gu>sCA_~aiD_XSp{{5Yv^npG$X6!9z&`IO@jQ-Ewab>d+iq<3^29%8;Ozm} z%T-@aCFXK>-3!omi{skAS_tpd)P-W#T?AhnU&81pUEa_73(&_%VG6!vK4fi&%baiY za?u|+6zUBU?|mWb4G(st=fXPK2&mV|hh<5PP?yTh@fJ!8ZcLgBd3PuCX9~HjXjmB> zo@~qLwK9n0J3@G}4eWpMgmJT23nORv(b31v_-bGuE;DtvLX$e3CfkR!bXwdc7N2 zxmNs?&YgXAw=wJDN?f_G1{&v@qeG=1G|DZ3*TGxyis%hI>j$)a6NFmanK40Mh~3c~ zJ5@Utzlyn-MGtMo)uT9u*N9MDw3PD< z2ZlKR%Gst`wAdw%IUzfl-J>k=*+xsWoJUx1-3M2vPUneQEpSfSQqq-th&@Zbz@%9v z_+qdXuHO4&Wyt_wU`oDWMK@AF)ubNT&Se?YTuhPh6p zI%tPqU=)MYE#A+OGvTAus<7^7uIG)%aC&e)-xM5`GTy5+rr*zA7-MsI}`DBD~v7FfK{p! zEX4Ia1X~+-!tga)#$ie>b5ctVtd%O^R@!G~@0%S$wf)N^5p)!FnV1L%gqB~o3+?Ah2(xd^6Rz{!3CXHUs zM>9a(BbqqoFuDHTR8I4-o9Z@`@UkPe!Qa+s89GWRY__$%MaGLe1Ow zhhZ@&yJnFb^|uOL!WQb1KZ3MNz}f^T^&|B8DOsu)|6lZ%tUSE+|t{3@0_r;gCJ z3yqc>l0qMdg~WZ^d78`nIV}}UWL0+#pM6qEt_z}~{Bm5hJJn*_`)JrTECzyYLoj#i zNAr)U459l9*gTOi$D{Km9GjoLwaf8MFE~xqM0~nln&Hpdnn_oP3l?+8rf7^yGedP;iEgdFX+%x&Z=CW`se+E}vRUEeHXpzs%WUw7CgshXk_}`YBU{jny z{w-^U2$yFTul8Ppd7<)fEiwTDqK$ZK`+1=KE)EXeui!2YI0NzQPTx-BGqbwsjmZfj z1DwyAWb=oK*G2-Xju z;LpqCFh_cWNsezjvFTiEfsysh=>z$UT)&O!=gwx*c}*N_N*1U?~~$b&y}aCG82;CX#w{V{!f zdB14V6f48@zNsemYs6q6`K&bG<(n%*EB<`^kx* zi3VIby?AmUTL-q@`^4dG$bym6^58Lf5-�mXqgKN5U??=Sx-k@)wBv!o?k;xZuPC z&bQQKu>L^|>?)UmWplF3_k5Ix$xfx5$*iAp&7%s)9-U;dY^aGZNSX#0A_vJ<9do|* zfWOf?MMLHXeZ_GsG6qGlDezf+8?nd;htAuBq&0R8Kl|M^{<+i9aJ$}uaGS%yOogCK zq9|++N(0YN74TrwN{hJL*GR*y6R_cXF?fyoL9FgYixJ@^Fu-OXMNeD7<(2wmZvGWg zPqx9lzf<7a^#%xHhl;4{2Vc(}u(+42ir2jKpvB=n3>7JHofg~y2`UB~BE)&44<5n4 zkOSmp6`$E#xsKWM-yq*F*P19g1(5eiEE{sK9HtAa@;sH45NqFQ>u z)i03ADjzkSW-N!nt@kay#jvZ;X>ihe33jK5Px0$y*R}AC5Fn!Z)oSOb>f3;{{K(;bsJvlArk# z$hx`=Oj_WCXYb8sc?W-B!{9v-e;y8ZD$+qJ{}H)=J(BrUS;WkD@xzl}MR;>^FOo<7 zN_dU*!RzKZ%v90^-BUVZjfq`PwPf>01ATa4Yc{$V>4XLZ5-#}pvE*}&Da;4nK( zpke4G?vg`T`}`i>pH+;Bo@anAKLIsqXK}%UF-9mcrY^_g+*xl!@e6`ak@-`KfA6$HIeWuAEg%S(I8Je)BJ7CY3MXDy10T;KdiN8{wa841uv^YtUx5o^r3va6!XFQ`Pl9xtHriX|;bC zj+RPNyB#Lz`^<&@n>hoaFxZ#mqQ+YN*3U*is)cC6_ugKI1^ zoo^|?ECH8O$a#oYf9Atc*HR494`9@v#N%N0PnhOC$W*Nhz&S04QT((pcX*vXzr3@_ zOmDL=+XIN;N?7Gn?F*skpA}*DWhjRXE>(rBf*6Q@KFeb1ElVgmDZ~rwY3IH(SH^|e zX6CD|&*2yqbXYX4`a-n&Kk^M+{xCK+%4Xq_MclxJe@XCwFJzSgIK|tb<>n+}+Vt7N zab~iG?z8KpUi%eUdh7w&)V2)n9ACjz2Ps~pfe5k?evYnU1u_5oiPUW!XJCkc=aP0`*I8Z)wsarv{b?b-G}^7H(|-e74Tbl9j*&^VEJ9T&|MS(;lsDd zt}epK=3XYRi*&$0NRewX5D(%kv(DtiOlItb60anEJ@25CJkhXgA#It87_wIr4!9|E zXDUu4TemNQ4$aH(^40;1HH&;n#wG_&Qd$+qFWnhjgmNsVG;c6^l)jvF%v%Z>%F~GK zO3HgtrpPEib7mBGRFX5#uYm2X8e)Dp2h5w;z00$^=FR~;GSHbv?jCC(=NfEb=h3BL zU8Tmow}->TYA%I$XA_JUDK3J?pVktyQ$om>5`unH75MVGk^f=qHco1v3H0t$h4HuN z$(<|u@MT>DdFY)9t{qEA(?fZvHBI0zs%V0*b5?>>;%6fC@{H-d9sh`T(SP8=O=O(3 zG9cA1g}f?nGgC3X$v+sF!r8|pkQ*XL_`WksVV{F6RyOWJ{T6qa*)NB29ow*^uY=Pj zUjc)|KZw^3LQfvKjt7%RfqHl{H5dD##=aRFUu$DG%RdU4XoQdcxS)KOEc0}M1CBV@ z@QwU0K-2!iu;Se;^x3ejuG`;JW5GIMqGJ*>@@!ZPtCdCE8 zV0q|dJo;xgsJ!K%S78T)4UIzR;ho^-G8JPC#qjGZL^fIr9qf59o7>0jkr(2CDI=2WyCaGZT+V_j4BfyJNQgZYsXnIF6Qk zQ@GJ;e6(2CXSkBhEzR5^hjXnJA@S!$)2@lE|3hC5r{B(mLs93^{j4em&F(XOva|s6 zo8{2u!ZgTD%D|I*|D)kMMbYs>4mNAbVq{Y&y_Oh=J%$9omruh*BD%P_lJ!sb0#-ks zjZZ~#;PC4ycrVQZcXRbdsHkYhjmx&JIdob9`h)&#b(RB1lJ$F27KL)1U zgb#+vxL&TE$TrHF)mBQZ{W@y%#raHp+l zRaZI4Cu-vPn!Dh7Lle8$c}R`(9`5D{OK224AY~G#Aac(hD0rujGCz&bf|Fx>V%t&_ zT^@%MVjjV9-Aqnh_$oYgT!FVEx}Tlvs8Z=U%UE9gF?_I34z=H&!K6GpI({+Pu-JYo zr#tfyrco)50ery)=bkcW2d~2*S;fw;-my8TL?}AOL5D-G`1?vc{#@SZiPg70>SAi%vhz*35}e%`zj$rbgi3#{H;dvmE7=yJ1B~48A>Ak6(gqu*~5i=BPJ9 zPLQAJyf{s?Pd7soJvI7BtqT`7XK_QXx?{wdS~z!556`e!_Q@OH^!oY#}Xc^Ov$ zzDE+k@y|TC%+BznhjdX>ql^?8brNPtBX|GU4TdK_m3!osFL+nZ0x`D_;E~b?0|P9J z{M&8j?54M5!BtCm8)A-8r7O|tw9C)iiIlH0Z-4r0ciLzmP6UhrmR_FJLF1Q$)gETasI&s$5(l=!!y zQaz6u;fg`p{Y7v{^d!79dkfQhM8G*|J=bUx@c&q{&aQz3Xun@eQtm7UJ3#=;q)2d@ z*@CMK)4;Ip4)#jw15c+12glRFeO?e*cS#pMB#Ke*nZ;~p>H?&hsIdIa5m;LLg}Z0j zQGD$D0M5y4ve}<9=G?Ln(9nJaZd;9!f8G*bzUnr6D}9+cpFF~>d_E2;I>%uDS79iv ze2QCMIY5O%HJv`8frduqq1t;cg}2qz{a+fbzImOBS6HLDh9R@0ZXuq3HHS`4+9;TN z`x6GPOQyf-h+sj>9imhAmey*$rWG~uH2GAF;Nh@1HQ4os%E_l=!-C)V%g_X`j2H^S zzW%@qiC=JBErac+Mc|_~9|cW6Khu_f4{>^}F@4!Pm3KfTnVXy}N4I#~AjkY1so8^2 z>hkO&6_dUJOC=rPM*U%^)SgKn=_$it;yTuua|4Z7W@3<(JH8LNhGOa#w0tmHu)XCd zZFUl+7e>Z0_|*jZ?(Z_{7&%3-?0y0j|E)p8g!8eEFG~v*w?K4(Cxk6Zhy34NpvUGw zyZ_e0->fL+M(soL!|xo~Sazj zkHdQ_E^O+TVf|9woT>pS8n;FP$3AU0o2sBohyF=n)OmGkf94pGDt5uc{Uwmp&$5j3 zE}>Aq8i4jEa$lpEk)0bwXUu58AFQt}_y@ynV=Q<&5?SCDvIX5XNbtJ-WVsjDoxrg7 ziLl414}X`Wv-|A|&LIycMup`zH|ckXf6B9|J!YAHwyAuE17bf4-HYr>UT6l%SLYv|K+9&GQtwewkv}Dz<>- z-z~EE_GJgoS(*gAbJ93TG#Ex};!v|T3#?;Oadx^ca=oO@g|^-$*LUt_?5sm+W3n1r zI;Fxzb33!Yi*y*H-Uv1Wpbe2nBzXTK%o+FBDOfQe!{)Om<3w+He(riFu2gLT_gq>j z+WDu!&(B%lYR~3sZL8pHjjct?C6?Z~ZZ9eaL~uO4v`H1~5_tO3gU6Y*7*)qgnBYeW zOy|Hk`1xTMsmVQn&KYw_#9|)V^g$kHW^2(NpEl|tFGSaVJ56(Qn&|jcwzsakf=-Wf zr5VeE$+nZDT%)Usv^LNM{S9wp#TPe>nB{tWa2U=M)hW@&~}Hp zW{`1>OCLp22iLDSdMbt5yX(?(eTPloJP{%fEGpTeR+eh5Sa(o8c z`2OZcsdYTV75ANs3J0VGEpqBaT;w~1m*s=rm=sg(J{5IyPvB~iLhAE}PlW|1hzA)* zNBsd#mi|$+Z#o0dyQ)xS{JH{6osf`!|=Z} zd>zkV=`R~}n(!Yq_#DH#FWa!x_Bf7xTn=WJvf$gS#k^;NA<#4k#6zuZQ2wZhNH|KH z{62gT?+i^q_ZKW{d$A&3Q;j6kW%aPTri{FKyoV{$i-sssUkD!Aj{juY4s1gdY~V@a z=Mp*4RDF$x5)%Y7Pv+5{q@A>-E}#CmA|u$f`wQJWJ&Ha&bCTs;@~~`n3a$PmNj8FB8f`uthD5kkk*)Cn0WfMqWm^ac`8wr7S?`3MD!-&%70d@lLv zw+vja-ho3e?a7_^W1u^_AD+*TAyszm{AXoTVM6^1P?3BObz04EbAdARw>}RBYp;OS zN;ODZ+Rm@s(F(La zpd`5(yOEUlW`o7$uW(~sA1pm52j4tYfq4=LBW~GbLq-t^FK{LoL}Wp(NFBcV#IpWO zH!>s27wpUj$&UXHK@$7D%ALLj`|P}7ZC4;@&J*EJGOofoc|vG^@+$LVxYTX0V zPoC(se-S3A?!d|ZJBjPsGK$6^GsfrsW~?# zZUe6(>LSR+_ClwFJ{~S;;(h$(3_mBlCWGbM;Zjit71aF|wFcu^o=b zBdc+WtrsSp`ww!3uV4}D7q}qt6I@Fz`BmGpz%X?K@A|b&&{xqJ5Vf)Vy(qoC+zfk^- zGGR1q$%Ox0ec{;LBs|6ow`gDS2h!L%!>%3)EYS$V?cusmec&Xz&$j1GYm~)bJu&b* zS(Ig^=D=k3S$Y?g2MGfq@cvmobe=Z`5$P?w(I1Lv|Lqv^6~~Qss?0~<&lNcBh5&!? z|3TZMN6_)>HuKQqKd96H1{pfl@E~Rp4oocpfkgyYbyEO@-8I0i|L<65=;4Q}vN&F# zj3wS_I4%~0RV+WZrBw{4CbP$-WIxDSKZpD(+d#59Vt~W;hR-fnw2%?LgR=z>QO7}= zZrUqH^`-^m^?~dBTEDaSeu*7y={*J?hG*dx7HrkM{1CpY^Tyr>5Ai@|1L{R{=%mrh z824@gehiVq>$gNuyEzG^U!2Fe4^E;(dn_n9rQnHo7WCJi$EYfH2Gy2w=(g&3x@DU> zj__PjC7_Yb8!KZfQ%@#+b*DAT;athOF;qS|jyA`yL9DSRZmh^cz3lb)eVzu!DZRw$ zSCy%TVhkj`)#iP>ynsEU1>*O|m$16bk2dKq#-+QL(C91`YH9EQcRk_L0Cj6RwJ!+P zM>nu@z&F^Pb_A@(PoetR+py4`N4@K9!0dA@NNQx0k(HVtk!`_W*>Mg^tn6Vji6bTl zr?GnxBfiZvTS)I0$1JlWX#TGq%0EuVd+dfm=N;>AdoKw_ai$h`BUi&BlZkAWkDb3g z@`oc#4Y?(14;@PkaGAR{%C?HqiVyiv+E5SAZw7OZ8Wv-l$3Dm(E#<$HQ^8xoFBn6v zA_R&MHbZfWWYiyp?pJeg%A()!beAH`DXfDS*2z;jDG%C<%ehlBA~~YnTEK}+g+;Xs z(6+4;^!}=#`xG(!R$a<9%v1rt^E_Vk`2e0;cq}drlEL&@dtlM5d+=n>2{Vxmzf+|ZZ` z2YsS|&i_hWepeI2ty|&Bwi~P9nGwz%~)L$Wvim$xruqM20@5g?RLY zFP#?*be^>lO`gAr_1`sup6oFY(_T*7*)#8nDP!np-@wMI^=aPidGyHQ9&B;W#9JCG za8rH+rY(4jZ)(FZ;XxDzBuvGB)7YF@br(9HzmC%*zjL}}E%D@`33O7W8NO&8#IQ7m z?t7(+j=Cp6__ZB*YMf6xEp;%<(;P1?KZDm=JL9m~dGx#F{m;X#uOnCSr~{+)r+$;;4a zDeKKN5QnpdCJ;DWg}Yq~5xjdyx*p5qH;lk5%6=@vtqZ=nbi+~4HSn=6ojqg3!L5CJ zVUANQEVrzH7n!y2;Y&2;il`zl^EVNUDqvmY3=Aka4Y6E340Bt8uZQ^X_U|ZIua^gj zQ)=vt){sPx@dy*lLg=Ti#JL`zQI=#d+`x5$tgwt zJ$aCN96-2FUXVqe56Q#wiE!Su1pR-qv)wD#NH6O*P&>$lzzj8bwBieK$?bwcYYvVC z>yrj=8}P6cCkK^SSEut_be`S>Rx7>|kw3fPd~gm(b~-`A!E(s7QADd_VsN}Yn9a7H zhmn}4q^5rp<9vHE{c;9+%yEF zZ&Bu_*l9c$w+gx5$MLjkIgPJ0rwguTP@VfeSYLbql=zZxN418o-YiR%TMPx=>7OaH zISbG1G^5$&S5YdEphbKP+sg~4)~93Xn))lqovowc-_HA77!-e(L#8d7)d1^G< znr_%Tk+$5mrR`^D2&PRoq~^2l;bYw_e5~ifNS3bWe){D=H*edC*@oiO;&LedCt5}~ zUzke&JhJ9(`dLQ*oJhs~&8^JZv3#n#avfd^JcXu0ophCcD(=x_9jgE0sO(i!=+ASc zw!x9u@vacMuC`OXC-3lF=L#IS$MR+?PSD5cQi6lhld0d;7JQ|7AIc(p@lFYY6EAaU zUN*}W->#1|a3c)QI!!#XQc-(&7-}5E>8Xc#sAPSCxaeu(Tftr2HJ5{?oC-Wq>5rb- zmH1;y58G8ai5j_bENjJ`?K*|x-tJ1g!`(_xl(a*%=o1v)_m>DM?4r4!Jy4TQqs#1{ zqpjo%kUo=(Q+*5I+S3TS1oxrz)J&?m<^`K=A~=6!FD~}Bg6pVkobaI@F4cNsh(Q5P*7wAQ zoH&R&;f)m1Y^})czNI-US7PK*`hWXlw~HsO7C#y^#ZmxCd#l*i6Y#~_NEo*EP$4Wt>Cex z3LG6*vsq7nT<94NbyDm-uj(R1)n7&30WQis_yL=C8S#qw_h5DJT;9tjMVz@@9%;G( z_dlOJSQPn}-1zi|nJ41Rn-};P#5!Jc>UR3_UTezn9^HG3pLS@`TOPN-+e#ZR&$@%6 z%>w$Z`7ru8nxLDH7^ZrrpxFGWbg#uH(0cP7)igKb)3ic#RQm*lQod}*Witk@Sc{AP zrXy*83=brtaeqWVzIt^U8kI}XA>S5v4mzS(P$<=I^}<|(91wq?k39ybF~!RbDZ;Vz8S^rGKi$Dw5D7PMS`fOXtkp`|6u_kWTD5-0EA!b=UX zO>8+<4a-xpDRWW8dmBm^nW1c`EZv}#jn!}S@m6>$x*na5r#6RD{;5OsUY0R#&7Vlg z>0wN0T|t#idiX1cI4IRL2WLbGVXICqy2do((3Nr|zWLnrE9AhWMQf2io&ik; zIz+q7)IvTb+{j=a>z(qqMDfbgOrftEX83VIOzAo}Ihf*9X-hnqevi$-9V5RR=W^p- zs^BaeUw(zna$ei%qo8nC1SeiAhtQ@fxb5R+Hmli+N8OH+L1T9styKyiyDLG*>oaH^ zz6Hk4`|yWz7pQWL88z)@Mp`7@j>* zr9!i{aU|TBZc~2_UWa5be_sZO(A_-a=iyi;=ZtQ(R=8+oF(mKr!w-(Kw6)n04}Dup zD?(hUNlmBm{I(TLg|abtPdLMD2)IUW>7KyOTy@-X{j5PUC&Fa6loM~|SRwo@TEiI^ zTLWH&m3Vv~rK~!HZ)n{Jol+OkYxZhfpz#i$eT~FopK0{zv|G6RnLh5Q%cQd78dx?n z3Uyf@)ZIUJ^q2f@>YnRJt5^RZj=E5eOeQYc%d%ce{m?ofidsGI z!`bmSaieA%#e06VKBNd?(_DJsV?Eq=`iu|G#L$An29&A1L4TAf(tJfJy4vVH4&05w zm&M01n7uc@+Hr^;z2;A+`Awq3>&B_ZBw0*(w~_jmT%v=kR^p+Eay(L_K#zsU(;LBa zX^&tgmC?V4fe%V?AA1*YY*e9h)VuMlH|vob-a+M;df^qF88ljMI_-!pK=UOMf;kJv z@z;!O9Q`XnxMbhJaEa&|h7b{jw5OjxKr4eu3sL|3` zTJLO3pYqFTeJn#SE&qk1SHkI?W>37f-IuyWOri5X+R)j~i|HxXUpTSgKfK2&rbg!a zbYjRO*ijKeqwmb5D|V_2cDlt-!&o=^?BWi*`C&2@Zr({#m6WLcA1&&^_Tdc!KcTvl zl;Ho}1c&uoss9@rLF%Xh4X@XyA@^J;eRrC!wA7|6uNBk8fk+xb8!;=F(va0H)U-sM zCY2qaB@12Yg2Cx@%`abiq5K=|e>;Nyr?dp>%U9Bc)*V!pWwhxTYE#P=)@3Ylfd+Id zQG<qK>gX{Gc`plTUfw~dbu&S3C6_BaVFyGNxx?qZYhclLmJ>AgoG+9$$n44q zGW}S(1>#iAVey$T{E+0pjndM9(@{skmt{Fdl-h&nn^3rNn|&;F49MDaOMLpvmT1k3 zfYSaU!rW!=7jmaSGVBD{iYCF5^G6^de~@%KH^T_aXjnVVh_fA+!t|*x;q>zh#BK2q zgobZ|DQXR%yV#0UP1_GzPRD?^J`AMUdC-z8HjwQ<6a3^f&}s21#EM&H@7bLG$!7v` z;-L_F>Mq6Tdq#MBP8q1Rv~lBGu9Hay1N^N{f62$ydiYJfnV64Bk*nHIK*_DpBIj{9 zJ#oC4?YxenzRoXvYIcCeEjFb^8KyKy&Xa1$F2Z4$L<7?!=xBKcop^T%JrjG2UK&=U z2_>7+x~hQAoR*Dm)H^Xh{xcSA%A*$}m(wrK&v0<98qHj;OZ|kV)4Cm@^iXR%%E4qM{we30sW)>28}IlK<@Q+G*io@ z0E)dZY4YhT9I)Pk&qi$M zThA^$AjPHL>s{&LRoT?wd?}i`@21lYv@kAiAvh_|=Qb?PfY7^hE&P=%(T8P!{A$)= zCgg1dBhf*=68L@gepNj<^gA|NClj8JWiah6vC;hcaT#Q#+6{R{Mi;^+-?4n z7`U|2Y-juhPMwu7l$1t7c4RcH6#ERr4JJI}Z7<;m%ZlA+KMtJdk*E>X3*VRLn{ABz z0nVX4`gTtY@pe-d_<0QS`#1^Q?{~Cdebrkc{iPLn4mZJLs|NV`$3V@~E>b^y7&`*J zNZgK4qOhL_-1K75UR?kOZpENj4`ID-T2QTg*=S-(C=ts~29MeUJ~!6r3#?u&w>2jDWGMZMkN2Wk$Khg;B7?#3} zCk1xsBV68701qRl;r0oG5Lw~KThRQQ-?c}Smv#F-|8LlOV*YRj`l!ai+tucr#wb&6 z1It;He0Uz(ngtyGw?x$ZxE8G@-h$}wdyL(t6j}uN9{`EQBw~0w7lT;Nc7pFhsEwE9 z4Te7F4yo0U43i!3N9GQc>I7oY<9J4!HO5qS=E6RocF>*a$;3A-;>lhWg$*p5pm(Dz zFMG~kPTsc=vRdd9qZn-upBC~!(zJk7O{m83H?v{(9ci?Um%z5pauB&>i4QmJ1IP8< z5I2QoPlwzCw@N!W`&%9tP;LBoSrINIZ{ms!+y*!Gt8nK*4>`Co2^Kt2Mf+zgM`wMF zNxA!Lj?P{iV1n{EtMC4Ui7SG@QZ*D6#cjAxzQ~|brYIiEKF#;3S_2Ex9+1tQ$;2on zhbSq^(AKq9{GAGS8HeX3Af@U7!mm2WR39@uIduZLbn`AWu76^-?rRg1IU34uqc31} z{U|8S9w2YGCIfY7fzg}C$fbMHAhs|OnybuFqK|zyKQVzP4|0gzv`4_nEX4J%Brv8( z2FRVeaGJ3E>hB_q-lGsE>fZ=VGq+^c>l>5Ca%IwB69wHD`an)3kEqx_Bg;AxAa>t& z2(uoB;}Ju|`Y(s~U$P^l)N1j%c1*zI>`Zs=JTc~9nHNl*wGXy!{>{lVO6I=_SjkcT zxdEcvWQlFucQ|Ah2i@)>0BnCWP<aj^c~=fuqZ4U&IBQ2E6`H0z%Oim zeQIPc+0s}FZToXTr1~e^9xev8m(B3^PbmCx=D`u;;~=tD9JuTqeQ$Fbe0~y7#D3}+ z`9m_uH6MY1*PigVO9WOEKJ4GEg6F4Xk!kV!iB#ibxbHKKC*+b24Kp~9@l^*TKjpy4 zjwi6AB_Cc&c|pjn0=`g!EtJ@Eq5Q)Hwl`J+1z*@;q=h(~kLo0ES~B^^23c;jQ!8{P z#X#x83-Bht1lrD5kYueQP+m3&-;VY})tV#-Y@dj-CPJ90;E5xB|3Q|_b+Twd4ckH8 z59!fyXrrx-a|CVtQg^xp_UIUEYoq<1=38U=T2htlZ3>mioTl9O$)Q_*g zAdB`YrL>Um0|98-=d#ui(H;_Wk^$7yORa;Rg>L%=jyUR(GbO1DicOa_JJZ z9M*(~0bv-Wej7%rp8&_v9ka|eXlWFiP1{g_isAo(@MswbAHB?mKv|Zy<~jVnC;{Tf zdLYl|76_iWBiHgFhR-+-1N{YPaA7m5&TWL9QuDy$*#H>yr^0}p5Nd3!1|f}HSexgH zS{f0ABY6$x%3g+lYKviOlM6mx76msGh46il7+teS8;clykTdY&jjvt@kLsPlK(>gV z-)xD4uUOXwQwrj{`OS6^@GoDQs;=u^&RLBjypDy28Wj$CU7& z?R}Vkip_l0*e7}zM+`G+0;fEO@BPsy-iU$m6W`S0C1gZ&zWB9Kt zaKqLfc9&$re$}%iT6Hgvk$wpeh&4E_oMd*eRE=1rhhtK-3{*<*;v2r$1 zIndotTWMEB5gn1cK`-0%)9%2NbdBB`%F%jB$Ag{d)s#VczCcRgl=Ot&=ZDj2m%h`( zJw5c#D;>c|uorb$cZJr4T%cYXd+AQeVtR6(onG1?)%je?_u&g(oY_v*S4l|;HQ_bZKv ze@zoT>!{0=cDh`lm6j$*2#TFO*qlQNbx6#hw^tX_sfji8Q-?9#=Q~L-Feis5?K&uU z-7t-5h&c_SDJ${&K1!r3RG9AtLD;mD&7K%Yf)|VvWzlI+H|YY1*j|AT8Rhi2o}Nv(^Tocw!7T_&?0zV$gIUZn}Tw4cJnO#=Kq z{tmPh_MqUn24w8q#hg+64K2Tp!sXpQc(C{&OuDZD^1&9kv!@wHZ(bsoy-&bd;*Y}G zwIu7u1(>l`5q}>G$FE;MK;W#?c&#cE0@AEuGMk}Z;b@GK?JuCESqJ*JwwrApSE0TS>2)5abK32sm)om7P%qLmDP>UD{|=6iCV z&w32b94EJ~b`xJ6b#M}jfRCbX5h14h zQVV(1#y37163gW0nh~!w_S|#j9piZ{njGqQM;clQzrW!lBXr${L>=XU(#-c{*|0i! zpZ$|?!w*2BQ!O((Wt?1I7YjcXyujiH7w#SDfke@ASfdsP>Tk}$qfJ{uUB(W=UqzCR z3-`#p09(A|roiyVw(^Bhj^D70%jT_H$rGzU`Uihb zS|Ir^o$W>ap3Uni<}!~8BjKvuC#G@9JeDJxOguL!!FEMoGpisI^qzT*IZ3X=s*W+T z##>_yXdlvlmQ^8lgFTmjL zIBbl61gB4hg2mKoupQNaZCO!-z8_`TAU>FMYXaCVR>0fe1-LEe6iiwsg;%yJ;R%d z1+Y$Z7hE#qqPMXV>VB6s>w6+W(mIn!7x2mKQ}_55K7M4XavHJSHA>d0M01&N2@CJ? z6e8yMiN9ji6q2-lD*Tl;B&qwKlIm(r@+#jL>U^}!y#_h3xub%=DN2^Sys1WPAKQc9 zs#gB_Z=d<{JQdLGN+(>2t;F=b4?ju1pZw6+1P!UWB)j%I6F!CIo&MJ2jr1%uH#N9L zWG2kz30?H&e_SWef47uRPUuhMxlEbNll$Vx5jkAPKYsKMN3JZ4?3?RKy1(7Akgo9J z4VBH}o0*>`Gj1`Ep2gmcg-VHM=sJj4_<=j~bqx8zy+*c7asuPQxrFm^J19I|2-MS* zp8N8ao_$-!a$_&xOIahTaCI4d(|Vg_g%s1&Q@M1H#de(Z>L>NK-b>4FzMzrYztD|A z0rbc1Y`SH(6rDfeCDlG3!G2dODDUJo8u&7iZk}b0tNHh-!0{`+DOg91v{VGO4-^D- z2Y;hi=1=TPd`U~J%moM79gxFT5F{L)E*O~=O5=l4Xzz@Rv`2pjEjh83MxK0+`_rcg zI=7vnX(D~};EiAOMu`+%*3?6#On%d&3op^)3)!^Crj=z`9-xe3KULlFAC(X{q_U?k z(yJ(-@_F7g?eY?O407nb#xlD0Ocy;VEiD*s_Yf?Nmj=&(S7g;1d;U;PJ!ua11hIrr z*uN_oU)nhGqZGrr(Lx*HMb&3A=d2EVe;Cf@iffqmvsUl`5Ac_;vw^&~=_Joro}WHi z3cH$38EL61lIt%4)6=dKKh6j8+KCURl^vijypL!{*hA6RErboZb6pb~K%!J0A0Ofq z$1Qtda3~4)_?SZL;Y#p4rwhHSMLAPh$El0hfL8Wp1FO#hJs`6}eU<;URm*Jl1DF-b67Ru0{pPjX%N zmO}5%DwYXuiZgaKgL3&>2-i8zH`;jwKK>y*O&bj;v6%(6)A)GvHT%EX{SoZT`Z!^$ z-N}iBcsLt*0{7qYgb~$9*s0+Ir}^QyZ>j={CHUj1g9`Y=IuC-IE1CIUE1=AL6k_cA zpz_rcXuB|E@n<-c-G@b@-IgSvdLsDn*&MLxm+m!?@0Bjr*epQ`{m zUq^^sp}L{D{499X?u^PdP2^yrB{_EW6Y(R4;P`zehF@UwkYC&Ritm$6w;$oM`QckI z9(RE=w>zF(+w#z?CN2&nuL!_B)DBMm(?tn02k0s(B>Spec%~O+dF0nJ-q^ey@O_Dt zS>hWC%NCtwq(aynM}H9G5*5rh7hBEQQf^2V9El?XMT=okE6X*T%AR-J;>a7Z?Ii1b z8(e&|j@YJ0!Y^ZiJDCzG3bw@|&IkF9YS5$KK$6Ddny*(r&W)*SBN?~(63Lss| z-ra2tVZ+co+<9)-{}?*&xSIYjjyELIkQQku(Z2WUexK*ub8cpllq54$h{_I`Q7YQe zBq3!}X(`=vBhoTb#xF%0gosiZiTIuW`ma~L&iS72Gd}OPjhU+vCh3nSmctY<)F&E7 zKtJ?koQF}bO32H5$~dFR58eNM;gz)}S~;9A5g@Qrs96Zo6LC-Jd8kw4a&4bh;h63dc%(-NiXDb9 zz-979L+vo#RRuq_H(7Ub{X~`KEs)}|1^6AKF{DEkYkb^b;(yBgAp=_AX?_%kHLAdW z9et#>F&aL3a;~kPEKGHqk0JisZB`hM#Gq;cyiL0W8+j^_-sgc!4W!U>qy~J==RkdR zGKBk%z&xBfk zN_gzvW;A3EVe-H>o}+#WwsX(>?)7STz_bB^w;h0K1M2Y9%NE<-Z3TC^Rj_!hE#9@A z48qd~;ep3oBDUgkYTn%JTD@(RxsEK^c>uZN~%0kKzlXSg6}vL|!UtqM4TZpUKco-hh0FAm5i<6i9 z;nLJm&|Omq*S;}62|ajNJnHh|Ph1uK*7Lqux#iHcRRE%K*zW1wp_D9@zO=8KQf!I!>xI-TqYp5;*n{I{4Z@B~W2vG!HkhS(1v{Qkq%Q4W&9@A) zLO#c!)N|CQmKCnSt9CZ1v^#3b;~Fc>+k62Q@@Dfd|0y6LwQr`3+O&eFl@&%_SctJI zU=I2(X)YV?i_6mdMrHDwT@P;2w;@mt7ya}fsLzb18!cZF43x5JB}I5PUP9p9^73H0eE zqViw__&0BY_D^CcQ7(jK{U_k`HZ#EQ3Yb=L9yB<1S5L}Kh`Dt@I9+uiTW??RGBsL)5QYG~T>3OyoK6Y&&i?zx?{_Jqv z!}Xm9IEKc|gwv#F`wB93Uo5#DRc5^^@I2RVwGq($H8A$nFjScwZq~L&73^O1!<4lp zU>~K6p;f~$JT4gYvXc0cDQ1`&I0>$pDhep)xA5xzZ1QO7Y{-uogCh&&;j<~7J z`XijleDO#~y2Wul$Il1DwMT&2RVYl)h=je989420g!j)CLP|?0^sVN4Ch9&gsff!# zxU2*wu$wpj{Rw#RFot|O)C+qmcM;26u73V%0PMB^-n*X5L^E&?=q%L~+;32TekVg= znSlz9a=j*nhe^o6s z54&n*WS0rLruIT(>sF$4;SY#a;^DEWJ4_jS5xUcxVVHvu{^gZJ;@87qIBOrS2)OR6Ox(jy>QCPZO0#4iPAw>TaS)w9?7ZXPE!zb^Dz!$&C$2bw%I2pq4 z6+R%1Cdl3-0o2RzDGL)A>sh9u|=c z#sT1~&cfzp#;|^fWAyI5A=F9zK;lQgB=_{L@@umWl5Od<6_r~GZ~l&l;E)Yu^6`jyu6fh;V!UQWC?Zc4PvCvxzRIn3FaEc|IE2XfY*$eDf*@T*)W zD0~`4=-5M06_5`#$CrW(dI@?RDutD6ZOJlu4d^lp0Sjk!Y__T=ovb=c#~9&%ZPDa& z>}>M8zBZ))NBT{3z7}n+u16$8bc-3i$zFek5<^DQiy)cs8{rHsl zFMmb8Y|w>6m+$d|mG#L#hgx!FX(qUTx(IDvq426n7R)OMWF{tnWBoY6&gZ{`T5GGx z+lQf$u;{mN!|PG7YXP$2TodqUMM4BbJV!~;BjUh8wdHn7Qf+tcvxsX zZ=RagId2s3VpO!i6hZE|Z!kRs5I6#pH5LB56#0O)Q+RljgQpq)^&I zT#hS~z9e0n_jj#`>4}YGfPaSY&)+1TM;yqZQSQWUyc4MlTnrAoh6x{fC<}MB#aq?8 zd?bb^YK6PLHITxKSIM=M)7H$A;V_ZiMPe81A$O}%h}INY7}1+6l;=1SFVBA?b;IU^ zf0iP7bnY1$Z+?nYPJBh;RxARy;8fwr$|!iBqX-who|40Ff0N}$Pm`MVDzc!xmGsOf zC#L=i z)<@C?$fQ%xyItq+rM=V&hEWwD873E(;-(MxKA&McQg#5RWVNr0Z2G z(HP|XrUmzf%e|)wo~d6ZzSomUPDLn5@lN9SBC4=p)K7j-_^$YFkRS_@{`P7 z>`!!kw+qAALE<#E+2+J|UC8QqC7i+azD%xbf%DcZ;hk&qVd+8}qG$S>_^M7I-?rT* zOGS#X+$WaA@d2|xH&5mH2rsyUY9hS+fzVZ zlUAG4ffYn4ryY{=SHS`B!-gL_$>#5y;7`UaixBSrYvw&oINY<0jK3hndwa&gVx3Cp z4VVL6xE(HCcLv&i5%5+SK$5|DnCLnK*0~-e*Qii<6Nwn$+5@}-mi%hw_Bp*Agz`#Y-#Tm60vK?>o1XCsPkbUr)mu!wnGp_9M|e`v}GzdqJ`<*g@6K zr<@1(7CF8|3XfkJ;_VMfxX<&OaImv%%Eaq4NR*rj9QM4%uTgTs5wtD2pIU7m6dY;( z>9!o~2jmM zb6XABKD?P<)Ri@*N$r_X&^Vjie|sLn-Ez%?-+h=8{{9(xAO_*L)6+NRT0^ove~_=YO##MT zzQB*N<&m?u&coR5eZ(~>6vla%k_n@@9r^?sKAk*9%2vIxp6ZZG0(JL6*89^iZ|+6# zb&NGP*tifb-SXj=I~iGB`70(yDr4RAusjcIR8oZ_oJN5{ z^mo$R@f*5V=fKO3T3EC|1wMQ$AzE7#VMDq)<~aOEYEy^ElySY}){hIko)^!oPk)Q$ zPn+KabNPFq+4%!cHR7H{|4n1^mSd95+Yk!DUUR18c6-4ni&1<~O2X@torKSx{1Z-l zvY4yGlE|1R95?;o1l%{UhJ^9jA%4PP-e--wHZ9r7Hm1L}lZ*C;;r{Anf^Mc&c<;Zb zFs1&D#jGt=q?Ka}DIJJ{H^)R!(D0Pxck08K%uB@P>2w@uI0Jk8Rj^%bj6HM1c~HS{ z8MZy}Ja-tTOt%))u6h7ca}XXIqDZr%C5*qpz|Gq{c(Hv7o(-K2w;or*5yw%2Tg$7# zbZH^vO?w8E#aB2f>kevjG|+qj#||tihld*Ze88#PbSXF(#*|aDkYaYtY8ZMI+;aRi5oaezc^J@^avw;N2hH);F z6QuLg0zt`wP)oU08sNHC2Mz~WlHAPYg6~a1yikk3&>B`o^tsu6#KUSEP5=p$qF38k z^{mDwb{g?pBn$Bhwh&bDn549vBtH~2P)&xnnTH!cKQSG4Ca1!ByE`PG?2-ID$|`D{?*lR#5*eg|q^$=XkD{i`UV$4F~ z;xpUA&UK%)kH%Q)!@Dd@JpKrRe4WYf`n43bBMnDjGqopY4d|pCux|GH3ii3BM%*!s}=Nwv(DVCZdyQ$e$JrjQ8=weySD~K0-J|_ce zUrkY%V}ms%xoC9pC6u?WqIk7gnD_1q4&S_j%d6c$cbPtjjZT8`9DlL$Oc>Y~ufwm` zkD|ZhGF0im%F8kTz z_n4E8b9eA&mKrR!Izy!^pC)$~n(?ok&4e9QPB6TD5;F1U!PGO*vZK2Jo_~64Rn>Hk zc*MwAC7Fzcu(wC3#-?r7D-EPrMQdVxQH)?y#4vREHW>$$Pr{R57jR{uD{ib%qwXHL z0D*_{@!F#hTz!|uw~Mbppq(kkZXJWpM`l6yu6mf8nT^h8HL1L^ErP#OIPb&XnLzti zfTNx&$Q0(lf35!D6fx0yGxw}~I=2Q-tct^l!6VTzQX9kW=}-m>?t}Id1^&hMZ4N!b&jb?3$V@Y^{H=S*|4`7@_d*wS?#Gh0-x$8Ac(Ih;~0 zjjk0&+`LL4F%G;Iwn8CSXMA}w8Y;@yKx)G;e&Fd_mYQd~h4%u_kzn3->`?kDoH9X< zD%u`91zfGk&YN@5rA-CQl|O?`Z4b2WPsW(}9%veAMaHk=9hM;^o3*aylH^5(dokbw+cv_N+RrkXoTOn{ok$D?I3mQLi&0&X#dXS z|DBhPYV>}rDrtq!J6%v;FvvL!=Rlf%&6I;N_8{KsXYu&nO`^E}1#Z846FzAdLGy)I zJcZ~G$dDU>8^dh{elzq)K)y28tW(8Fx}R{F|5f3reNSza=M|8!vxi7h+BQ66`VSIA zw&O(?H$44HU@@Q;LPGOb!-HmB=wFb6K@nehLH8G-=PYmdR(F=nbJ`5ExbNM!Z9ZVE zRF2(NJIP*32fs*e3hn1020y$Et?ykqyjMDCUrFG&hH;?T)e2j#K7m+n$E<$YQC$1d z#=KU zs$|GGhwq~#fKN7wR@--1@RL0_R?^mR&};G~b9S#0IC6jMTjg#+-O1_D8M;QWU9c1` zhxqd|#kHi;qsTI#;4wefWE^1r4F0|3MI2vZ1;^$(NZuaNu(8N<6^vhSgBbpC5!iS| z5|;c2dmZX{-6JPMO67Zqsox^ZV>x!>Q*Ah1cN3;+Ibw>il|RPaopY;H*+k7-hAwsL zpvrlr^**G6{l0pRQLhC9C+}I?t!*M!k}{s686Uo^-vZZ$+Q|OR^Ee;gNL3m;l|cc#|Dqdh~!EUAu9M&BiJ3nXwfRwQU-Cc?b@nPk#5f3sNytAz)D z06$A*E8vLP{3bOH^zx<-Ht=eB{wc*!P?rH!cZB$^QyV1E3i@XZcwf0Ko$lb5aHVw` z|G@hqaxd&B8JY5&%=>eks1`lohh+s5XLnV8>8yCjny-RJ?kVJIq#i6)G={~4JNdV^ zyeB!2OkwIF1$ZYkgNznM;HUj(^D8ZzpApW@vN;Bz#lQ*ZyEp=d$DYN~t7o9#^f&&a zh>;+gS8U<3Ss&gj#DMp76__2QfdATU;qIg_WI)pv-W#&SziYg3px+Exty9qT<|ud^ z)8maPc?#{%dbs_`xxBO$s#urn4xSE=EQaQdCGQJ6%x}%wL-x2W0h!uFtG{u*_#n*~ z-L_G}JI~!<@J1_6-l_rF*FNBMJ<$o&ACDyvUo{OYqm`)shdTr#@^$%dHd^EU#*rBD_Z=4GKgN3+ zWBJ)f8cF8yIn*}m9(ba<5+eF@u*FIqdpXxp)2AdbI;e*&WtY)NO+vLX=VAXN9o&80 z4CX27;1eSiP>NZB9?ft0b7zd;J6g6_d#$^TmwF=MX68j~66m8OPMfm57cZQ#?IWb!PK4LPgD`xi3_3^i$aQXa`;gThLGyhFtOz&Z3B=Rzobqp!_`U-( z$4rKY- zJJ7qa6`K6_@~nam!<-LA5cc^$u)J~-E*33>eI=DV*BkXDATb)m@qOfl!xwUdUkTfn zk0$Xi8C)a#+%kgQ16h+s^T#WNKxh%cUEe0c!Ov;1<@;f9sA;h2)E^EnIOpzq^N(bj z;v)!4{6l01IF7blCbvXh4D(FfVJp|)GpD#2(UAnuy?X`b#^eZ3PDz3ZV_LvqxE18x z%mx1aOz{2piOZ9$gS!VTp!G~JsA=?C2Wa&1inx8#l&cb0^g;;k+*#A($<0~F1sJIO zU^)NKAbII%1e;`zTQlaRLgTBqtzF-%LKJtluF%lKC6ed7rZqny_v0ZLUwsMqB5O3P zadm!1Yp?Mhgo_!4?N2`NuR{(4%uZDQk z#*$Z2P|*Ah%32!W_Xcm+yZ$0%B-+C1pW#s4LSW2(IZWLz3u(XP;p$6{-&vE+Yy0F2 zS8kVr>&=~lg{m{r<>?8sazG9>)*glYQ?(aFXs$sePIDDip&ri@81y^SLHR-MB*bGdbn`9@lzYN3~76uz1^4 zG+(@hN>@0Gp))Jd$!S1%HqHr?CS1h%@6%zse+0FN^iNIh2!8$)b=f-vNRcLQ`A-~|J7W=X?K*>O&dk(;@(K=X6zWM z?bKZix2>RL{7P}hWOwup(Wm_FPf{!WlyQ2}Gj4XVk{Vz_DL)9K0ykWs1jE1M_f$e{ zV+a-MT}j3FHejE*E#=Sdr-p4mf%lsgsjnu{cv?6fb4SI%Es=m)X%a?q`n<4l{SNqG z_Xr$^S%YxvS#UD<7v!!B0MNTc;=xV`hq56n`7?RQ?TWu+xcvM!157YE0*|#?N#80> z)V}8jhv#r^lF3(~!}S4}jF5tJ1PxP(CYr8XYTf(Y2d;*lAv){0b71;KB1pdk+BR2^ z3Hu9GvxVSwdOhZu*zhLjxC;u%ad6elv{@ay1lZ<{RU6Lf&5y z&e~yu-|6QtzW6&V)_4F41$8)UR)Of%pLVLyv5tCr>NoXivYBXQ;Std=NiYTSJZkF4 zLpaz&i*6j17xnb3i@q*7Br>%dqNdD?p=5JLiC$KZrJujgrS5q2ikx|zD=|1r^nSuQ z>P*~3k&^rhQAH+;)x=V?JLQllm+hrAPE8P%?uZjDyqO`2a?PZu5q+YVI} zC$iA&{4c7YB8K|DtdknAPK$;cF`@~(=Tk+U1E_MPiyFGFEBaC00uB>~i}c?v5uI2Q zF8VyiT=czBLTTz|iyA((QdMy$M5|K0MP5s@L<)-@Qm-~Xr$&Tjh#J;+QJK@cL{-+k zBA&KCz54caUf(ST)YJCkzQdWopLiKUWFFx2a&_+fsGO`$$MjwUvXyD(q=G$vGVyA*YI@bfos!65m8 zULVWJzYTZbPw{hDI=29=+84DilqMf^Bk7G`;v z;jwBRysaN)?XhH$z(a1cK+u{4Cuhs>+Qv>GZgrE;NZ%QQ3#Q@zx!Zw%Js0vFbx>v9 zX}(919y(bC;Prtv-pfpVY~GoMeQVysvYzYEx*-<#cg~<1tgLx3E(Gh6vcO2e2Iy%C zu;KG)Y!)AeNv?*7J}ZT6O{j3M$tc`jei=N9$D!xkC~SXif$5jq;3zk5NwE2aJ9a*R z!BJl^b_M7nOO*eEY-Gg_HC-Fbo`XGBVnFN76dY1ix?6tLMlbnIiuT6*C z%3PdvMv-c|to%8slR-S@gf-iu zAY+LP)((c_=U*qNN|_20`0FAp){?<Q!Fh}+V ziTxM>j=vF-K%bwuFihBWkYoRF{uigy7fE5BwczomX*iVe8&1s#L8A$Wu|;b>xc4rC ziJ?0ot^PZt-O?d1ci$%JRSa}qlYy7NR3Q6M3UQnqPLe(;^N*&P2<%>UqHUU-NX2g{ z)o^w-m2$&`@(#X1HLiG1t*iTvs1%Bam;2)V{;5>@jYLW@G=ZwQQA!yaxlnWYrqp}; zNNUuEOCtFlYE=K^43SMo7bVCLieghzDYqHf)Tu>Zsk1F7ITqq0>iVA=DxzX76+e0% z6=l#t?Km<`v}d^z_59>!(T=79kCF>QenW>i3N4BCQ5P%6i!i>XG+uQIScWNZnmd(4(h~dJFy$Msfwr?R>}wB?X+8 zB}0zgUGC7!V8Hy@1AaM2y&@^Bm!{Q~(92o;DlL50v4iQn% zR5Em`k*vQaN9u(ap!$9jIeA`H(0N-4&oRe9w09P)p4LjL#nIsEpo5_qR?sx+qRon9 zOYy{p0~T609@_lOEyfKwh2-Dfhr%;&&RE}V9R>l;BFPo?{+H+u}7NtVji-AKJQ5>p?a?uPOO@~}Zth=28~!p&GWoO?aNT3ZWzA9 zUgduU#el9el zA_F)k=-#80$2>b~VQ?QN$8_E4IASE!xgH=u3CaOyDc z7RnVHQ1gb*r2+y^qRY=I)cQr1RP|kZ%)PHiIsH?k+;^4WRjXI{kz>H-wJ!(F+0po? zR-4~s?~K*D+d*f}LMpy&BBOX#cs`P2+hu4PcylFN?yOh6;Q%}|>s zi<$NDpslQ6V>ojGSHBJM*Z6;d)N4X=f*FouMqVN1&Zi*JOAlOE&VWb5eZV{CA@R=d zhrdPFAaKnE(98r&b9Dna#w)Vio2A6Fx}}02>~cxuyB7GgaJ;#5g(rDaqK6aB_ruvj z2UIHYhMcWONK%tC?6sZ>XS}b$^zz5pr`sx+;5Qn!-Drj22z8u0?I`Sxzri1qaFk4VTRr27=o`WQKk(=~!~LEJMnT;DV&!wV>8A_o$`ug7_3VvXRI$_P5Zq3fkEzMY zuQx}Pc*x-}mwe)Gss)A{UqXjB=b0OmL{{{zBO5h^eBYxn zB>kKhtUI|Jf=~E^?)+GOQ|DNm>1WO3f1NB`^w)*FN*?6P2;N%_NG}i_*9~w}M-CK? z-&=OFrWki@1vE!(#96C1Vcr*g-1Kh_@1N)mIc#e}uKl|Snh{Z8+TRJG-|Pr>T!MU` zQd|^&1Zv+3xbUbq>O17(tI&%WIO-dIvRuo1cPJ8b6UX4WY=&c2M8kdF5QG(chGpqv zsm`iMsI_*$7na)S$bEOs7wO|N+erTYC$7vjz-ePH%J61(;W;d<^H{QC7c z?B_TW598Wx>Ko&6p!gmJ8@vIVq9K@nN0WMH7=@u%hA{d;80ya002|x&Fwd_9TiQeL z@}o-pU8RrL4pNx<>jR{0sKU!5$5A7rub?pak+aaUfRA0Z{A9W z6fZM$epCWCO9OFOwLEG$Hi9Jhs-Pg~8j9_P z#hc8RubefdKrIWN`A1s3JeG_1k6WVR?+~HY@f+aZPIDURR&0M>Y4$@`N_L4f@Y;cO zysb+NIWEF*9FUBIh)i#&v$4gT0%L(y&^B1~W-08;VPX5d6MW@(iVE3ejnB5tw(>dl z7#0s>AWi!f3{I{GH+^5wnZ`EHa2-Us%j0{O zNkBgK;_05HxaFcMH8eFEHImQaJeMM@>|BTwHT$sr(*^8Ytc8UdEl?Nx4>eu3;6v&- zp3!N=Q5P4&SVEQ=1!AU#%Ftw@eie_kHuty%{?+Kp&Rc+cLEDz$O@J50*`DvL4G{PgIPTW z+rNZU6}y&Ozxc2bEzi!wvj=j7^}1h$WirFD$TkvG#tp}{0t(9eX4Had`OJrzwBMa zE9JP%&b_m7^N_B9F_T)~Q@n+LXC45n-XKIz7JHpvp?33q{CPK)tDQ#RnBq8o*{=oQb)W z+_M(1iEo4Wp!m-eJ1!o_oYz0#WE3}}oT7@E2bSV!nf-zb%~>D{Ie;67zlXnWPH36* z9O~kdtqx7xhDp_jux6wJHK-Dasy$^yr)&xieh9@@r10BnN6he^z&S9F@jvl?ktwsj zgFrHpO4Lun0MFs*eA^ZORgT9aMgrV^CmFx*a)l9NGla`h15o!zEN6M+a@$V}N_gQF~G9H&_?+_HstU&pT^H7`<#Se+NjJ@3Xk$>wv-ku+gQ1cw8 zbSL4dpu^Y}3aI~YCVsCd!?>nG>m`v#QTjQR+W6)u)!n@eXVUL+fA(-}V^cBaeE?Y- z(QGm2^;anWYCyW|7h%u4ooKYsjY^zAQ|mJqpQj~cPTX|;7-rqkpe|3o1QxN8)X`tZG4-%9o`3ciheaCWyTn7(>Tx@$ zD5@N?K5*a9G3TiZIwPp#du!3Ws{+2&YvY7+O~9ToDrijZ2op+l8xfYj7Bf13WRd_X8?8t)mWb{-kH&Jk<801^K=W z_#%BOj{U&BKSyHGwWJJB{E5OBS1*`-^>~fG6Dx6PIu9Q- zaeR^LX_Pm}P-@AqA-cVV*U+(wswjVNO%28K?{$e#Q)3m+guAQS1!-Ci=3mACWCF?h zCjr(4|IHSRFpI&@$1Vt-?eG$09yy7|qr<5fYZ-{K`o(b@4pAR!rI;>1%wmyu0RA19 zNNs+049AT1!nPuF>Q3c%i11NBuPqYln%G*DRo)7x?ky!z;$%=M$b|rd3ve;xDQGHq z!nwj6>*&{V0wGsFjh3;8LgP}Bx>6T%-K@ywxbHR>M{l$~oxg~T{h=t>x@Z;L9jS*4 z!)NlQyqSQTf;K>H#5#!9y#w6~ieRZjj@4f^j#a$7pUm6!fDCJV#CQHtDEx756c!qJ z39q|tBF3C2ujtbRI4^P_hucx||Y)!Uy@aC=J;U-Tjx>hivl=54Xid1gMGJLkkX4u( zwq3M&8uZojj>jQ9y>cY-eq@7Q?+hIIvy)f2Rv*9GyP(^{mss?7fL~Nhp=!i2SZ#BG z2m-Idb!9iqnEnuaB9nRJbX!afpL6}pn#VA#whx9%0lGGSgTp0epflzOj8&cwdv_&F zaY}SYEtcCkaEOE&stgYJeI+`9+)TN+l8mjN3(1fCNZWP+o~XJ5=jX-X72Q18v#A*# z-Z8-}HwBz@paFKbC2(_NdBGfAIoy}WPc4HtvAQvwiXThZmgVc`O?LW#YGwRFei6zJB*P}%A zsmI~;M~6t-{b3~SyLTL8KK>j%v*{J^MUuXXir4WXIFOVa;@2OflUzRfcijVom!!?V(o(=hOH8yG!c?U#Gy5uNhiW?CUUmA-t9rJH|_VV*Ad%X_Uqgo%k~QI+0-3F#lW^D7-M zWi`OELOy=FUnYFj_=4zXrsBxJDk3iS#vB&`(xx{duAvy0PqoFziMx5hU16%(1!n)tz;r?$g{A;-tI)cJrn(bxOjy;SW@?1?h*Af)JnczQz zU3l&mmwi#H<2^sBiQRtdapUOCSUy%3GM?zwC&6s|q)mEORnd1|B z>L70_)fG!b6V|0s3i+d`#P^4(kMCls)D+IueZ-Zrw$!7V?ECPEdk~fGw3GTYbPi?vK9@lWSlbX^#%1Ltwch4Ne&sl}|(8QZ+t`DSi zCJ&-|+DmY!W>Wr9&(ZzWbgHrtC!X1E?JWL!Fj-Qm<|F;u{F6>~QWU>`*2MH>Ut{KaKbOe3t%Kc3 zcUV9B`O?e#Uou(l<%~`7EM|tr_mc6hZOqe@k*wvJt>Wh9qteS2*Cc!c1*y(-Za7&M zP4}kHWS7sm%--sbVFpg+usQe387lBFJLs0jWYPB+b?Xjx?AK59rHvD$mR2TAq#%^d zZMiQw<#v=+-CZd$H!Nqb9A8!tXi)@ia*^zHi?a;K7-a?^@U zoZ%_G*Hg+GPkPKGvESLr*%rESZf0V#>Qe4 zz4!N9=6ZMrv(-3-^#_%bb76DnKNo>%=t^e(+C{N{3_@7xz!qtFeFFP@+;?Wo9BsyL zLI~YEs(_8?3Kg5Z+|3x>oi1*3wPRLq;7LDzA17YU+bPL33}a8uie!?{o|j}h%Svy2 zJizKTN}0v`9K>HuH?mVT{<3FI$V>Jq{i0LKeZ?4C&q$2aS-b8`sl`Yix_x(;#P6XN zv(G$^-TF;IS}lKBqWeBceBNRd>tkTVYIV7>f%i8uV=tY#+5hz&*ZNCF;)N13#15@U%m0RbQ`UsVG>IcK-t-v@2kuPg$~>Uq&+p{a4sFl{-|& zrxKB5q&rh`MI>#}?3X;+fTI3?8<-&n`%OJiDmhf8g}f~8eT%ccJ7 z$BAR~#)v)p2I+=LqohSVYvwP%PIB^P8-wfm*}ji`5^s-K=9{A{b0tBKRos18GNW}7 z6Rb8`I@d&tUNz=2n_YdAIT7+w+VS(Gq(e(6UG+7JIcrhO9=r0Im5o#vx5kHwHtm;{ zCNJ2+UY;6951*LNj!cM=^!xIqiP!e9_L2@}-}Q0gG-F4m@r%A#dSse(uYDf9X5~n> zQ#P5&h|*y9bpBwcBpb1VC-1OBy3K66!Cq#Iv9`1+^{eRNoO>+GFJjxjEMT5|OsD(K znn<6ry&`^E2>WjKAIXoUk0d%DXVbH6q9uzm-DnM2Imv%Z6Ih!s@>0DgO_HIUIA*7b zrufhN7m_rurD7L0h0Q;!C+=RK_Hh(8{FB>in4D1B1b$_y?%CU#nAD{Wj8&tBMZ zwd9veA7i~Vh&8S7WT$BsGgppVOJB8LV27JZMK_hkiY*E)rCncKnUis}^lrMc^v;;k zOwI8b(ygr$=JeEM635UmX^)JibeR2KW~9nr$c1gfG@!nSF0-#<;u8LotlM&$+2PpE@`kOX>z5R;Z5}-$a{aBy$>lzMG~x^W z{6;%_dAGgz?5iXu`_Xgu!Z8>d|PaA&F#r9{I4>Cg?E_Di=!x5-~GzMhv@t zUJM&v!IK_Z*iVmW7|%R=T*DYiO;~3ph?$&sn6Y*UVFu64lstJ-!nBybr%k>#OH>~W zr|Skg*iSRhF$b3FumOb%O#Xx@I_s*Aba-(z+wuL7B>(p`R&RA6d*GA|yK&|RS~tjz zZJrRqs`f3DUTmMr8qSYk3TGCwZvSd-$|n3_=gzB;G|Uy#>NY$v^|q`;&bW^;@*OK( zmp&-kGH;r=%eh?=K9nJOvXn?gwr%XUk}{6&+$>qWz>m4G{|4)otu8IS5yq|!uw=4z zC$OTDvn7i33h9N%GnvAl@@&e9JT_sksx&UQmyNYpAo2gNy(EBr!q)uNmDX=bk)G2@ zU>a@CF?k*<#N`#%;Ybt#hN8hBC-^+%ezdN&AsvLuaHVf{rb`3 zwcB5_ebM`v>ZkFNL$-g|fm5@kx@NF-E@t; zeAJ8S|C-B=6KIIl{#(U9@NBp_W%nDp@u!;jP-`iiu)V_`+iWKt)_PR@qb80S)PBgs z7ay1SZu`luWCEFU6PJm5F6OXfG9EIM5+*WZg4eJqNwoBWrV$evAP{ey`am@Y51&nBQF?}>_fJwY9VRxSFlFXeTp&Mlqn15A^nGLNInU?dW?6Mt8+0_r- z*}1PTvzz9i6hdUhd#}5TzgI3~R*l=v2A@@+Yp(1Q@e@xmq5@zh8uDpRt!vEhu5Q-L zE{zTNXCMvNuVw#A`X&65R5oIH53SZPQhMfiHp`#y!Cv!dXCHK1Gv{TESYuxWsoc*@ z=5qUF>9Tj_?43J0jMC9!=I(hD_Dk3Y)-8Fi)H!pCIA*>Z<2LS~_|k79DO;w-?wVA| z9J_u>96j(vdTHtlM&_tKJub4zkbRXh@5B`LvUzr}QK5 zB~xFM&p1w0W=3dON?+a`VAFCN=(_V)8IUcKro;_NLUSiGi{HJKXeGrl^XDFt7`k5) zul0*&*N=I~-N`i=l^e)PbK{sY(_hS|h3D8cQyN%7*r4bflfqVAs9|d@)-ih(vsncd z0jnJp%kaXq=`G4}Y&eV3S;K~yfw&H)jBR4xPdArVn~joQoW4`Ct1yuf+0%4<^J|HY zRv@#OHKiYEr?a-&nXEyyFLTN(T5>dd9UEgPWQwe1*@3)A5_T2Eyse&8a$7!w7y zwaRy7wYPtuN67DFpBm(_DoX#csc}wXrJ&cWi*OsOH|&J8D&j5ErhA8ZSJ1@_eium% zR(i9GH4>PYp}|bs%Tdw`SXVOKAd2lC*udy5E)nGngh(v%nQ1*dy=h5a*pPI!+du1_R-u=u3 zmHE;yw==o3J&ipUkj1#?wA-X8Hagu#QvP!$(^x!0TKYGEvDs+Ho*a3H8M`A{I!`&C z?)L638T(D2t(h2E^2_l6E44~z!gJ?HmsLMu*Q^dJQSkB?Cwus^GsDM7FL3vddDSM& zjs8u{;jOOX)|*3Yp!$F8(8`tK2Ll@7A5G3u>6W|9^~c$Cr%o0-qtiq>cYLWN&eTRM zw{V#xIc^VYI3t2d`ryN;rKGdZMjd8SOv>4Cb1mj(M-#ieCYKd>PZhUx%1RgB`O2L0 zjbSH#td!WE6tiDXs7n0Q-m_t0nqXC+@V1K4NQCt2rjn^?04J(Benar7_phW$Gwg?SyW%FeF3 z!|eV0KXq>&j@9?~i<_g&$y)H&UOCyUFYoUy05kGwcpo!ueJ7iulKOldaVh3 zzNbH}yduq9_(*REHfIbzz=lV$!5=ZOUB3c7QW~Pv+V)H z1lQL)xa(tQ(LJK6tm=!EV3+cQjJVa!JDd#R4WeZPHfJDh^vEUW^<23{f2%}GjvZhX zjoXCd4@G=Tcqy}frOnN*DrO5x&(o>m7m(^NV0~RITj*f3}@^|^EH~cT#>HX8%9O$(KNA1 zMEC33@Tsd~XkgqXHo|fxD^@ks4+YIKGUA@KLCR8$0+f0TvBe{I}?<{0R8cV(~OYnT@$la{)<9UVSRKK%> zEL68)w;w5R+H3oBx+6Do`gem_<++_iYGqT|Sn`#%E=?mowQ5|_^&_nMwi35L?*QxQ zIm4crH`30iPjpV^Ui#fMlcgrf3%v)X@M9kY5jiPY2`o`m*~6SlGID4fH!E~DKgvx} z_%eN!5MV0B9kabc?Gq<*yJX{-fp;w5$3vcLwz*H0+w1wk%^sYM=3c75(pI>XF_lR@ zs%8QHpJ=IyA6d1}UP#(mKr7?#u+aH2{F^g9#Ba)HGGxVPx?pY%o7Hzdf5b?ci@AN5 zMLYFlOFs=@%4^NJsq)KM>}@3>cEUCxe7q7}(V)ammMC$zuKr~KnPb_&rw?es&C_&t zsS&62%37$sR!-z(KhTttk8F5ZGV685lpA|rN*L(oOtXUhm`MDVdCJt1%^RbcBUjEJ z>@Fx%@fpSp<~p#Zo_FMFfwHj5coY5kE0#r9S#fdNoba&lCvQ5rL@3Y-!it=2G(G$j z(VeCwf-2Ax>-QtNE0_y>2|)se6l<6<=V6J@wqme34Ln{XTs+ zsEAs;&Eu^G_Y>lJBH7j_K73SJH}P>xXOV7BWW!)pZo{e{{NKcIcJ;7C_nkE2Zf{9q zhaIo5V>4$9?wp9rzhKTkXs9E}A1&$Y#bb%SvY5V_cb;C$e9OMdrO_bgB!1ZzP2uFg zJYu6hll3Z@%e`aM*{||k{zh{E{X9O36)!cR%}a9mA>KpyEbpWe>Fw9quHkRUmThvl zFl?d_V--bppJ`!Wlp$wdc@=NAZQvuV5(ROM3D@uUM_O2s#=SXwls8z~n z?Dur8R}(rYcN z*d2+aK6U&KhlRAEWeM9cVG5V`tdG!J<^(mGn9K(kcW@5PRlKF{3qD9|x}b2Sikgqq z5e&MQ^B-JB2|p5)xY|w8Y<=SeHln$i-8>d5GP+$vhuHdX<1&BIez}rwRUFT0=QXjV z6>Er|Pc7YdmT(QXBIvAplBl}hY;I0l9Oq+F&Rg4#;}TBCQq3`?qAI>^x#~|d(J4Q zE4DZB@B5@Nwb?7V;XBT-p8ZWkb454x#xVZX+IcKK?-mP~sliQ~Ude18wzFL280vlb zJiB7mmkyinA>3|?V^{xn)9T3H0$16=SC0=CbOKM%u2B=|)QA;y(t0bQK;bP(?P%f; zUMk{VK2sO0?M^UP-#ye!c34?nRyKblejoEz8%GOb>ew{7<@}y8FX@N4dsvhcFXS}d zrQbuN*ok^Q<{3Fs@KwCaI^AsOB#ED}e}Tl#c#~A-7PyD*KjO*1IeCGa$`uKF9A&r> zvL*EE+J$7`6F08n#zfrHjAuz>p3tf4Uxfax18G=v7Y0>I%ks2@!;63N$<6J2 zy8L`rpgF2cv1mH~Fv)g;8 zZk}h9D0p-!ofqvWta$d982L`---)H@OXk58R6|&k+8ch7?*;1J^^EDsA7h75&pyw| zqy5_@w%gtydU3#7re@y84>mtU|HS_!8=`gzb9barQ>#Wc^puiN9P5qBcc0j!xdF7K zE10i2aG8~Vv}bB2Yv`|>Or~TT$@=II;=3=7phLE&Gym``CN(mcUQ%pg-SWMd=2ms$ z)bBADVDpgoDSln{CtO~vH9n2qv6aN0GPiS|E9`|`&zI5I!Re$dDU>QdC=wQ2O{U(# zi}^|Bon>8944JPR&kTB@ zSv0cY0bTf0hxX5}7JiPtMrYX^qTw5&gx9XBT=fZO(TsR8mFll3xci5)oxQH`#@c4w z>i#3}`kEb^G9w4tbFH`sqidO}lpjrZ1{pJ;pv)&Tp57fMVu|(6RN-6%|3PghjY!QC z(ysK-dCq_6^~pU{v;Syz#JPxuO_G7iuY!=I69wVdGo_Y3;^U1Vo` z0y)hk4lG#4mtFcfoa--bCVYCfm>W2uh~(KX;*FS=aQbl#uY12Yd8FY=$FG&6q3&nd zVY51xale!#cjht8t`jtFSAY z(wv*D`iU0sYQo9S!7Q?8GPfqQv@G>qEj^Vqf{*N<#!O?9*+jGXj6SR8I;R|BohKXF zrhs&&aQhLJ>3xp9IMq&-#wW0wBVC9=tR%+%&4lXT^XGJ$7tjwYC$j9HbGW?|dJAa- z)dbnDTHZly!pmk|V#27o^wan-iJyL&b=-<&jZa^Zo<0MZw$fp`z3DpB8&pn}PU;CO zhG?D zRs{QWQC{#<+|Ftjexr|$tmK0SS_tNIzpxuCV|kMJgH0Ouo4+EL_!*he2Cm~A}6pG>o4C;TP%&7;cX zhbamU>t}N7!j;(@$%3$oL4B!S`2_Y}%ANbca_E~FRe`$d39k+ski~@>!b$5f+{E5} znbJ26cJ}#43}3Bky|2=gEqr{1)!U{Bc2k{5$GQ;V>Ci#k^p?{!?N9)>V}3OgsSV&ZQad`t9mlVPVS|kY-Uky2pdOdFU zzC)bv#mz!I)(Pr?qqv~u>YUvaJ3-wzf^O+k%dSgocvtU%!d;{5e79;WcU{+t?9dbO zzakZAUG!|$ZcvN)Qe)VG&<#wfKt=E$8qQ)y=doYmTd44g2z?F1>FMf%vX&XHEWP>& zEAP<~Ty{UmFIP6FQ*W4-De;&2x4&ap)T2`Vz_^)Y?wE8o z)h>=*{#;VFx_k?f-5pOKoKNNb&VMS)O>h*v3bV^bZS5vW{+;ycw~f^CqZ6m>l3BLd z=@rHNxx(`yt4Z5rMfP`ug&>lPW)2?vSZ~vr+>38|{3^>0_-;JaDcU7_cK%RB)38EL28km89 z3zd#YwiQEp@WB%ZFwop^y?@y?eE0QQumj}qaO|4q(|k4e?g1UE6#Dn zLjH#;&$jv|FgeAQ)MB2JP~JI;zF(5T_pfi@2U+UzbW#Ev@pcNg#$BKX`;@ZO181rB ztw!c*k;c1@)ZlV8otc8?FyZ5b8dB2|f&D43h`yyc^YnX9gPZQq8J@vxbdC%i`!0*# z;>+mDKo21{eD+@is+_taa7Wrq@>hO%(^ysA*FypXq#(_-g0=W#Y!PuRZu(}e(5B>ZY2+(LCt zPW-7iXAsdzT@Cfw0?{0{=kcGx~egpRyC5h6-ONl$Jedea18|Nzszsci6qhL4w_)%j{RZ z6~^~d7EX;B#|}8^3hBNsG|H(T7q~u?u6!;l=;;m>mP-ZGBSq2d>9l!l=)4!SM>UAe z>!=asE$L<+m!}dl>22KlCrxC)lNd5p_YPl^B}a{NqWNwIa0-{zgkOI=g*9do)Lg|* znDpMa^km&@HfwGvE8J1SPFlX9htn2H>^ohev<`yIulv-hw-0R(=c#mc6xDu`&L%k| zmn~W~h#fR)p^H9_U{^>0HM^k48&+AeT+K-SnO_qNTdA);j5tj_!M*cKIMZ9OelY|7d4hG zXHz%I3TFnqV=0Y8*l2TCW_W%i8B?^Msh`%6!~~TIX7{0bgND(E?T^Z)KL{yvU6;uM zTSM4fr$o9-qQiIYJjE2}){z&N+qsG$XR9TRy#w%uMX}hK%RJbswpb)BS9m)2NZDl_mxzo~SQ>tmG zEbNLs#LNyA(R-CSbW%?rVUltKQqtS#{LlFqyrm0&63-*(?GN~-8k5j~vf>IM%o0_97+ntFj(z3l&M?`$1&Q*j!9r>_80n zJ^~$l2hE>)kv+mJk~*#c?L{9je!4u#Xub&j;5baTdWXI{{vcwqIq~54;cJ#PnbzV4 zo73gcG1`rsnKj@hUWBZE6y|9>flrABIa2fxODFUu*-u`>=Jz{f-Cag@`f3u5wXN7_ z%p*fL9FqgXNn+D)bRPeU&iVSJXY>%V*NP(xPc%a+HxY(yeaPRGWAF&O1JU{oWX9+5 zWZ#w3&^~5PCTris$x;=f*<(#iXQ-0nAwi_1pCLIcokGqf=aK{EZFn2C1RvYZVB+gZ z!?pT8Wy-%Xm{y%h^r4jqa*S@GJW(B+ERfV zrtU~`K89&Sb;;RRE%*aVm^@)<{A__69sAHQ{2To8v*G^X0{jdnV1s)T`0u^Q=obkX zG%W&`Plz!m=LwD~)?ju@4qS&`!rarO&UJeSrA7YUuTUj?!I2NoT?mEU302dne_?T0bB1 z7v#v$U~96pvl=twHAujL2E3fzj1wBsNMDhMC2~y|{q`I5QeDtd%8`)43y>=x38lZT zm=+O_$izCdJf4IsgXcK&rw4-i2b?*&6E^P0QKfkgof(Lr{hz)LnWJ`Cm%pM?W=8=-rEK z3o?h_tV@_Z?mixj$ip0UF`kZ{0iVsi$v10B-@loQgV)C)yZr*Tb`@arbpg)#hf$oJ z3x#vW$R5288b2J!ZIwuHPY&bn$Z}k`)(kWEBB+IA;MhnlJleMn>P8db(-MX;Z4=0j z=3eB%_Z?_`dL3DtQ_$yq7fvpdBfM@I1S1pTF-MBHUtCYN%SV%|uis+ND`i|Zbi%fB zB{Cy24-0P|!TKl{xIBr+=Ch{}8kvj=#9{Tqr=suoL!tC(A7*Q9K=Jr|gv>fE%6||D zk2~==nWKu($_9u^Q*mx@jcCwrJ0L?F3nDUbMm`=I_I9`v6A7|oAnGc1;G_LZ1Zmi! zW5!e@bF;C`h#y-E;r!qoqFUoZe5-nou1Qb1D#b`k9hw zQ7~4`tb)8>BkcC4Aj&xet(7CmtMoWjjgf=$feW~ms0w?(B{-a*O=P=P;d^K#9t7IM zE8i8Rj(4Ct;uyjYA3}#bkIM^uVO`Oeq^o;jpI01iTvjD%MWxs?L5>uxdW2~z>5y0Y zfSm!g2)dew2VP^zUbuh&z7JIgrB5M2+7<-Swmiun#QxOBhYKn(ifiT-?1Nq{iQ1!OQ)W?k?zktth z|JIIMG6vZ3?Fe*di||u525U;EKuRwb!)5p5Oe%qX-z#v6E=2Dce#re80Sm)qYy*g2G!oOQuff7iK*5wy;&4oXWQ>nP0IuUw!#qq0yo1WzNu+YeCG@URC2M<9 z(6hmh+*3^>ORJ-BJS7I}OEYj{_b}qpryZw~i!h=8Pn;a|0C(S>g~gjBB9p92GP_iX z;Y)d<*fE`?sP`f(|Ckfi8?)eD^%4uDqa-q+MqCU+$i6=_$lSVC+_*G`^jrHDv*-XK zI%Q1~GW3Y2o*(&fq9187K0+2OyiG2oS&`CgO@!$m#(L+4r0Z`Va;`*&%-OsZ2b!*6 z%hnB$lD!Y*iE}aQ=1TNF9EzYVnee_Dj`GR1aC|-zQf|RmdT%IBt46>hHX98t3@^X! z$9;c$)NWe{&uQ0D8xw(uF>zQtJs$%iIz*#(B%wIo18d)20760_`Vj(;yL)j*v>zd% z=kYpq7P1XbU~FDCrYp*j;QBQ9#MVjl?+SEFY=qS)#6iit|3cMz(XS3qw2O^kEa@9F z^-58(NQ11KTMVr~2hb+E2y>UyaNqU?t#=2Kjz!XBo^=+UZxJw^-oiqeFX%URE86Dx zA=7smKA$Uu+PueDV{i}~yyeJJr9;@U`3pLKTtM@wbXYb>lRNj$Vq(*IT-&BatdZ|h*qK<)^_7%R7D#UGH7CiSXf{cu$|Ba5p`w^`x1}DC9))YVjy1at-_jn zXAmE#LHdkJfISUEUfL(b88bY7!eg;xIS#jFK>1EEYR*+daqwdd9lHX#yL%I<*N3oi z@EtttJc_K#b} zF?Z-J+?4okKYv9cGb#(oAK!`Q3lp(pupVln!*HN)0QOzA#_r21D06rxn!WX-C|_{I z_+H`g{H6f5WHD|e-W6RbibIsi3e50}g82eH+&*IlwE$CST^|D-n=L51dJAQri_rS@ z8Wwiz5xw#|xcFuk)Dz^0cuOj32V@~{PyzC~uEF+dD$FBdaI_-~=Vy*14s-gE-UHU- zVDnLIsvL(5hYLvdy8@k-A|%g#3PpvZxaZf3Zw>NfjOu;7YQF<1)h?7?>V^YRBq?TT z$eE)+o}W`E)0Dk1ePb`OVo)ol%2`8ZMfX0tyr#p>ofCIC#VXa=s+6pc0*SD#RsGj%?g2L-JMrVBmQZQf4m$I9$e= z;!UWr8A1{t#F2?tO-Y*5J9uW+V{~3OzQhhB%af;&I4VPQGZv6d0~HBrPa+GZXOTxH zlyHZ1Q6jN-6oh$1LE#J5QaKXMAII3nQY@P@3x(cI*mG|iR6g8#(-o1dlI7H_( zq37#5Ot=t;GP~)BF7!gLx=R?FSp&~QMcB|Lp|NPgsU~T%)?6J~%kp59=#22&N6>tA z0#WC)5nJMo!}^6-@LM963T3#MlYnW%7a?QX0i^tyiQUKNLiUO?;fgg$cj|hKo?nBP zo7`Z&w;SBH$2ebBij!q(Wd5*ntjd~Cwr$!^dK(`=ymbJcelI{Tv%VzK@B!4;CqSw( z43+QqBKSocx?kPJwQE0c==&W};{EqnEk2CCZH;);UJQ$jqY&-A1G)Vd&=qfuRBkS5 z>}NzOO64$T-DAwOw7`XuLhM#O0>j3`u=h9zP3?8ib+3f=u2Njz*^bH^mr&CpV59vd z1ciM?SJ!F`KPXQIJyIj1rEBrMW&%-5Qy}FtzoO%~8F{SSha|5YOit>3$I!P%*s@Ta zxbMA)L30&}TYDh+K2?RRzLyQU>K!gF&cV?;3S@@$QewLG9pVPfChPRXu&a$D(q*aS zQj{#|_Fn-di>ol6Y)?iF{tH=C74ppe6dvmP;Mm@25LZkm_D72RJn=Z@4*u32!2Qy*7~i2o zDo#Wq_xZym%L8A-qreGg z=A6am(M~85OWH|hFBERKV(-ZW(Hi?mh@PlQ&LPae`h%A+(Y*#U-}>P3kua<>2}8lW zR4DWcMzwD;IN3|+3bcZU6%Pjm0jHEcVeXP%;3~)9=A>jSFCZ{6&xQW}bkNNwFnZWC zJaaW%sHg_<2RyUs9IigE&q!_c99Wfs@nrxTg!g#k zJM6>S_a|VTyBnc1@(@xT1AAo$)X&X9Q%(%FN^L^2dJyaa$KqF>DiUr+L+9okG)z|` zV}tI2%Q8gl*==amRl(Aosjy9HMdpf4m{7GFBc1!AclB@BotGkyryjwlw=#J1I2ndZ zuEJaLEra5h!oemQ?gN7Hti}qP@AfBoO*wch8B^XTYml?o+{p09KTtnRfTid;#)+Gu z*c=4sl0(Sxx`9>K+L1414y(&k$Qj!exMaT*t;yj~HaUm#Ir1cB{T%eZra?*<%aT2p z&!Fn@T8!h8;2vFt{F@~h=6@U`tTtfC%=5^*a11q3J;SzYdkyC+!)?eHe<4^}*Pq_yLxEX5gyEXB;VffjKj8 zpi-?KD!PyG!Bi6-62JWZ%~G^>f5z=gl72M05RPVq z@gR2HQHGZI5EkEhh|YWQ65B8vlit}OZowq%u6Tz}eFT`R6v1cCPh57+!KV@NF3v`MhxT;e0|fFQ5e*jX)4xbx%4 z*!$~<^S%lU1CNqW%CS|wp!~4lH^2pqsgjjRL*ee)$ z6Phq;tramgQXqSxdJ#|A+t?L0jzC+NSj-@#GIJ77P#G$X_GF~)ZfCWCjJzzm%S zFv(ISvIB;ayCtf`-|z!k&JH9qEJeg@iwc>(OOwnyJdX^l&A|^3kQVU;Oi3(6QdnP- z=Q@P6@DjhYR#KNPHL`5~bIcxo6rHY*adwjqNolnq9ZRB+Sq61+Y##azOu`9IYeWQwfoQp7br?m-d>JTkJkI)zMz(jCsA$)CXo}lJ zZzT3(N7_s{Y*j{f9}h(8DM76*9EA?8h+8%dzq-_L>TYi=+`kJBdn3@X{3H~r3Q?!c zOLXCJ3}&}r5q%uZ%S~W5?K_Me+oALN75?76fQRAVuqk={Q?ymA7Y{E7D#1Q!7x4(eCkp7 znU$dN+dgDZxrrNo*Kli75o(t9C-?0#MLEK7Vq5Ny6VuGdC*J5y^QS#rEA_MV{`F(0K6#9~CyhCMXIY9SyNjz`86DMS z@F=^E>a0fWbdo2#x_9A3gA9iALy_Gw3_msfV8<=S*G&o#rJlgSwbOCxF?pn}E|Lm+sLKL{F041?#S4*be0fpSF^W?jiebJ$gUd)9-2TT4(pP?OlI%ptv+TX0Kskm&5= z$WS*!B6rc53?AY|%2#NR&FR);pPoe5eX%9yuHVLj@t@FNVFtNlv7KB=J_CI#G1-i} zIM+FZRDWSm36~=8>Kuqd=6wv#SxGuit|cQ@_9MK-dn{QkN6Jh`kkxM&5FNE;M5WaR zzh0!FEZ76`O&5{Hm&16BIhMYXAx;i?D4+QXpFiwILscd+b{xj@6Z6q^Q43teUz{;Y z!_@wfqJ-r)k+iKp5-XR%ThbpZc1NLfO&px)YUm8xgy6V+c(*DZhkn>$a@$tSJsgc+ z%Pa9YIsmo0-UywSgJE+@uySb~d}^Mfe0wzPi;knS-!mMry@{~?k8t0>5S!($pmNm_ z*xZbQ;fG&1cS4RFAc}~|YsRVC=}^6S6fGw{W2$O_1Z%DcXZ`2klFL(=td}O+oXgOp z-UoM_W8kNC5ed0Za6Tam=jlQ8d@hII&?q#g^(Verry-cPUbj6!{ph#2`=UST z^Py36Xv-xmD~yBLyhrHx=sSv$=D&&)iB_>ag!joC0C@`1kT%QUQj0?xHJO9WoS_ ze%tZfMg~@ct+2gOA}bR6ThYZ93JSKExb`HZBsPW71AFw%vLW?HCHh6u4~MN7PL`+N zg3{0igqIB^Tc6A(Kb^$b2mCRJjX#1BW-Cmt>l>SV!yP=s~xXnYb0k5nEBg*5|7^FuLKULH<-^LR{hxenRiRcN{X5IScYFfed1`86pUkLh*v3-p3* zK>;@G0*T)wBK0n>@UGzu*3HZUzebLvYbcWaQw@pqP9<`&a5|DUen;cFJd8V1hKvgr zVY5t%c%Zz{&nI zOe=n2ujIR}dT)ms`*>u?mV#a^#+aRe)vd)~iw?lIuQM*TO^3cDW_QuDTXb{Yd6-TT zp0=kyrS?e*pm7HgK z)!ZGX$#N*tIFDAL8mskOaHR8-sNG~O#@7{L=Dtjv77U<%;uPM#IS!+a47@sQLXt;D zKzHdY43XW6fRYM~98`yA4~k)AWG1RnNQT~<{%Bo!4%<5=_TiC_xE=Qv-|qP$_0?&- zoBt4L$NQ3Z`+F1J@ImBy?m4))&L`8_mlDgXl2goLhM_!X790X!z_czG758dzXUJxZ zER2RIa2mQz4eICH-bQaU91|5FHjrYwe9Q(w4k-HVoGlX3c7 zJ~C|&;h07|hFsxM>%9ca9XH{a(?*0kn;|*q1-=!X#*%^;;Mz~1W?~hl{+)~VxdjJutnx5c1dRadBrb z8XOalnYaR5tNhT_hw1KG1Fofzvu~@|3T~VT){NRIfwftaZ4*SCN=gX`=S*0`5D3bkjaY z#78pM_WTcW8)~4keI7>1N^I=URd8`g#7_DKiMO1vAyX0ud2=3)13lp7VoXeFJ5EL| zg4gPU$ceH*ty&elI$I#WBNOH`j$%}T9{O86L-DP4SZGIp`W?c0nM@o#o{yO5Zp@a< zlREOX=+zO8znzk?p~408B=La}lX5UEMhx>}S+Z^2b=*9{A!uMDIM;EIp5PCk{WUP{ zbqV$EpAn|D6kV6)Q1Oz9_Q;!{zsE?@X1E5n9UF1qVmb7OUBs*eNjzfAUzl_&!1C}w z;$!ez#0^bC>AHBVZH$Guxd{5jQ_-(Tg?OI12z5yvy5{;x?1Wdi6!#iqV?W@)mtv9M z##HE5=%ZE=msk+_2w4ixu~Ongj&fR!aglfM-me6*+MO`DE5V~3q)Cq3MPk2HD{cUCZcZ@i8La~-BiOUX%%kox!Q+fV6#?*8*+-apx8uCo6* z!9TgW|FBuV@_$Y@>0hstmj9pf`#=4mw3NKmzg6X*`bbOZ{#%iyrT;y{;GYWoE0vWz z|1VE84D=WTovB{+(mcKa~GUBL8*s ze^k0*%Ua)+TQ+R+{-;!)YghVuZ}48XLXx{ylIOQ}v;SJ}EgM#Pt{A^!&0252wJXdm zR%~4B>%G=L6|AFIwR^M?e{@2R)58Z#@_Mew;{QqM4{wv*o;P{`FZ~Xsa`Tn8%58R~wT_z;o zrA+eszv=q#<@w)7Na=qUM~Srl`=#|y`v3m_zc1fq8vl%hz5ikTPqOX5{rms(zyH2H z{@d~GU+wU(^nbtpH~$&m{-tUDRnh-5$G3l#?*GpNv~E=$A*-)UI88%?L4 z(wZbzH%;(uinboxnjk(nbFlSsr{}`VA9|eDffO!meuSVMWx{p8XrNXnBjL{3(POU1 zsJ~?M?#4qBJcEr!bavxcnysW^y;nR!yyfc=Hp5Mc9?I>Z-_soh@2!its*DJ3!;A0K zz$%*to&GCa(0)m8yGj;CDb!K%hH4tIxsH8~TF!YQwzTGN6uEk8DmTB-h%S$H6yNO~ z%Oto!LUq^<>egvRZTvoPqkH;^kNH+|`!3C;N2>1=mnlx1ZSydyaZ!Q(_>oM(!Ym$aU;eya2mF9OitO5`VO?UKJ|S9cO>yP zJ?pba=t>IW62qg#)%maKkqJ}jnU^1ge!W6y^YAob?$iz3u*TzpW3dLOI&Z6>p%ccP z_phO^(p-h5$;D*YZ8`4Qg*5szO^1B5v!b_FgAOxP;G8PAi3dHp!)cA6!m&kbx!Yf~ zX-=pH=XnoA&R`L@H0UmUHC2hW2gnN+jncx4(nwCZcn*1{z=^NiJirxr6$)13ul)Pt z(&Cb19-QH|Z9?C7X4a>#6^Tcs&EP`j_On(9IlxVgDCM3lil_C96RBO5AvtaMo&MgH zOSf@6*V&RsV$R92wh2496(@UW^{i&vx2%tF=S&kffBsRRfOb~>pq4AUKa84+l)2?w7tj|2Mlc5n%81kZZ)MYu+R&*7 zCQ}a`W$S(OuF!orUMgL-C!eN1 zI7Sy$q)^3at2nne@htpHJ{djtk}!Ri6fHdRlMNf0A!ucdCH^fT^x;oJj~j*1nU^ED zFD;B^&D$-$#=Eg^C$5n-sn@By-3emuplba?E{R&tYUN_nr-;|LxY0?CkC;^IC#&%- z{it#H7|wj|2&yK*xXaMmNYkInaULtr2+voA(em<8s%mwYp3N{9Rl4GhmsDw`=qT+8J<8Rs zJNBgy=IR7l&m8|$Sj=(F7TTaXCGb3T)*a! zyotulqF0e%>5)Z!M>PmfxMq@6oj@%-U(=;wqp7Ce7`~rl7^ihXgAVog;wDZSL``4F zv!_p`xJ9;qiF&835U(95GCntozWa8XMQl^&a+djtpN@FK5<6Cqc~iv_td11Y{`D7^ ze9N1=Zjj8B7MHLNl^mioY9yQZ{Qgk~GXarO$&>8@mZW)jfAc_s`LysC}~K1IjNzV%Jvx^}Ln%f*Mu zr{O&JI&pwF|4qFxV()cs$9H48Rymip_b(*ppQ^BTMN2s;*+{CpKA9RAyrUyM)L2yQ zA>oJ4WMR?qS#%@sBuwW6g)qq;@rs3m%YNRn;4~q@&Pi(_Nu$-c36~~tCGlJ7YpY2T zEWTRWCQjp8o(2oUO$KqpHQhsL4w}0#X@Y@Zf@MQh18=aSWrCA zb6Vm~y8llJbN^Z-%#XF;0wep0W7lib;mZr?t*Tn`X2J>bjW1-r7Y(`NFFTk=O)(w6 z^%Q;0U4eb>YtkP0L5TR2LaS}mxm$)WIr-${v?TumyL)dG=R@>3-M7ny;Pnsb)2=?; z<-j1i)IFBS=a$n+a}8;qR}Y22y%WS?D{Huyuk3_{lJWA&l$qS5kJ8k;(?Wd4IYzMh z&_N@toY@1-eM05?iPp!G)^Ss($J2LKPlN?@30+sOWIcaUAMvhrxA?YIx^!%IHQ%Du zP8;SpP|?p`-0JoyM)Fd~=mQb_vk}gmP3r)9;r)FfO@ASs<|e`3`8mGE8x8ZJb`+vxBj>AK!bJz+x>!Y3U{B50(etjIB z@vx4R&Nxek&CukG-HMraUxlzngqlEgexg$JX z@tK9?Hn7AI1(d3q(Xff`T=H)_!D>t#w=`@q<47KjnA1vqGdaO_sjG1ByC$cqt;v0p zV1dZ)?B<5K$W!qk!fjQtuvVS0RBY$;kY-M@VOdd+xcFnogyHW_a_XBRC74UH*3uTs zgw9`e!s$JIxFN@H3inmT!qf2qT+h)5Lgfm|T}uk&>K~sXkLQPROS*Z^a(kul=g&zN zEH>b7sQ2f*!!v}lJ&xSK>T%*x2OU^=#~x~b)m-?y`6`VveahbH-k==6flcTBKAA9K_4ftBuQm2UrDwNryr7L%HOO*jwl1ftmd0H1Q5|lHx`Vad zHZh&JL4y;=oaIN>SaM%Wr8zTxIaR!)AedGMi9^cG*y34(xUipVxRm7v;)}Z(Sytjj z1K%IysxLNDt?Ej8e3XT@Y}Q;A!eE4S+BTsp??6%Oe4qN5hql4_$k>Td5#XO5B_9oBf1Uh9a&(yg+b-1Fa5 zC$@<^oo7W`6Q5h9lNeEL=|gbAp(N_GKefeH;u4#L$lMent^m4#GGThdVs5w3oiTo+OYcYkMyS0b3eSA&6UXv%6 zZQ984ZC{ZyuATBSWPH9vsSw!s%?a83H7o@x-0duwvAdj8m>Gax-RIr^uyCb~mjiJHZ z_w5E`^kNO_OZg*E>N#c%7p!@qpx)?l6OtZ>B#Z&FqPg% zzo>Dfpm>m zAd8CfL~TdvNy8XR@@hPwHth^>!L&X>!xx1dKI~pKxqbuDraSTz=B{bWk9^?Nk#!~&k*sxv`C$E*F zahm#CBG_yn@A*p+q-If@POpq!CDja#vh%-Q==v||2q*gUY~q|b({D*-teqlkuWxG&TCAhd`HeP#Nz-gQu*=^moTa`QMc!>v*fk z?=%gn>zsro2ajUW{mHcAwmcDkOQ1WPo{9{o+LAcwKO(n@s>H}xOuDCZ;dnzfc`(7> zik3ejTC=7QOP_3-vF*wU`PvC3ssQL(eMc(7m2}=*F#8 zqQugEqQeyr;9ej__XbJPVG_{3UtB+tf=&xH8a+=GyhMg>5+x(~lOf4)?S)3&-J-hG z9OADvk=O=_t@J(9=u59_#JG`C-{;>*@zZjviT_VCXBrgsl|}ImvRch5C~62Gg2<|X z{lEAA8)Q(U1RRw`L82my(F7O3s5CAtjY0%l!_v@f4MqZjfPe;qvK7M!h$4s$h>5ak zFep(=Ok`wwDtzYCR4U(3y;ryDeRy?#=blCHdChGyM(6lShASzd&S^~?o~)*IA42gU z*OInM20-zmI(k~@QBLtk2xDWIpHfR^_3rTF(M$AZtc!e_J8*BlF7S+LiVvAQZ$C=0KSayFPN3@GR9c>2kL^2eU}TgH3H?>s!}s-Q)0xE-{Jx5O zH+@F-v0W4y>kNMSnb?z|#J(Gv4l>fryAG#?P1u;el`{U( zha{Lox(~m`D=Od8FSTdEVDEiwH!Q=?SBr4ItcXG?pHlq(%kW2^5E5>EN-K&AsG_74 z>#VAo=dGi-Cu=|0t{(@DNEfW{UIMw-cEkQrXLdx(7FMoUK}9CssHU6?JMRyX*vwm= zX>`KQQAK)RnasGXO~tD89c1m^0wZnnP?B;KQfn4axL!U5SbI|~cNx8pa%RS3y4kks zwb)W3g1bJSg4kpjdgYxcL%h@2gg)3Nu_WE1XeLp+o^~)1XjG#Ii@6)2SN9IK{(J&2 zCr9Gzg%YZOXUvPau9Ove5>wvV;7k9_WN>pHl?hZS%*PIc1@a8}z6LaRF{T~`L+m&G zia5pV@e8GY;myWj#;|82N>e#_vW<_T3N^MU#-DkfOK2={!|2Uf)bsELzF7JMq}sY5 z{NMpY@y6_{&U>U3T8(uBJm`#lgxzaSkiGXeV0QH_25Ki`w66Rum|M^#{!?nqTL$yF zT#Virh8gRmRA0;^?Py2JAd}3Hd*F%~>&}&C| zeLvF26WWxgr9#%XlhAtj9==lbhh%#j>e_q}4leYBf#q&kHZ=*4>s~^$YasmW%fT%t z*U?J(u31B%7;C+wK~TCE2d6J1&(9qnM61!a4$icMNko}^SLf|x`QO=U5o@?!07a*H zWO<+o4~SmNcQWR(RZ1H`^|uG0ex?}RR`RI*hXIrfZY5ZE0nZ*QW`eIKfyat8{I?n( zi#LRm>NO+mwmJZ3#;eG@`kp-J+Xh1I8xWNx#S$M z9WRWDahJ0-?Y=yP;tC-x{-_+;R%HtI8iS!d(4Z*;Kv&Qw@91K zpPUayksSKfG9E5Q1VB|n8kuaEN5(<&yxY(vaafHp1caOsiWTu-g$gL4Y4|{ovuXdsB#!~GNiIXEii>mbYwDxLQ;-meQ^YK99lq2 z^(`>&yCzI*HOCYd<^* zv!zFiGU2I77pC<|P=8mSywj~h9xaSvhQ=K5RB|f5IsOC+r@~O%vhMa*frr=OpW3=2Awab;ByOT zJ71G3*CxVb!DrB7@RDr!xs)OErR{ZU%HOZ-pI7QAyOmC{R^ zV4>>`lBNwnVGRp~>9?81a@M```yLED$fu$^x!5b`%?g%t$Xqsz)dv(|Kqf(zrN?lx zrx~W}qF@+}=u2K4eOagu-^7$t`u%^RN8Kk_YV$kO-6%sDUx5Z==g7Or{>T56Ik#pE z%niF{=XDb^Iv@Ypb=7}DD$Zl2*}2~186C%9cHQ0?-LoCD-+O*W*Qq%BdH-*}_OJ8D NKTiI0#J{&c{$Ez*l6U|B literal 0 HcmV?d00001 diff --git a/src/comparative_analysis/models/RedNeuronal/modelo_entrenado.keras b/src/comparative_analysis/models/RedNeuronal/modelo_entrenado.keras new file mode 100644 index 0000000000000000000000000000000000000000..d1bb586eaac663ab55948981873abf9ac3b0c821 GIT binary patch literal 331615 zcmeFY2Ut{1lPC-l2Nb~wh(tw@AW71kY6KA#a|RQVlq4uYMGQ!iAt*^iL`4u#5J5!3 zoUS9Nm=yymilUgan8o-H3g5opyZi08d++n#yLcBGZ|+NpmxQ{jQu!%>Q2Vx1p( z(M+B}fs1{Ybj`Cg$SW+syK|&pGj>kk8Q>lg;uh$>^jGx^@8x0MfuX+c0l(UQ^%bE< zXm=xo{0+g)q7x-F*xfhK-Q(Awp}}F^og{~bFY6pELi?Xi=QvY@IyET3*E9Sd%(plo z$UW5DOna?p;9&11z9FIB!QNio^ah3n1c(|!eB3)LgFO7aJwx4mJ4Iz?X=*Xj%*@i< z!g8c#XXgO-aFKXLE%W{rUB+E)BCNlc#`wTxVWAT{JN}6}5BE?{A2-pozZjkOn+$Uc zn+2jFy4lz6CcTruW$wWtoibVM9uU$gqi%8fcFy4TYkrYD|1p!Imj5`}j^2Ty$vV0D z*X!ri+2&?y_FrS|IvEZN^bPG?7fTBf;O-gfyTU!RYZnB22ZVJJ8YUvy!`HnNt4qg3 z>Ko`C;N~mpE7Dcp)uI*pHx$nJ5A7kp1oC&vJ~kjII4E>hpzq?K;H7_(SBUqo9oMh!M~{_#YjRrd(<4e)aN1A)Ic%fGSf z){4gYPi&9ipk+Z}p?_NN?j7m%yVcFQv;Dt~bqf|96Teo^TtxLBbXNog2KkD%Pq)E-;afrg^iWPNYhSVWu>?85}!~vFK$6I zwy_b--B}wX3c6PY`-+0>#lgQqTTvwXw}AqJM4@qrr@KgQi$(rGP-l?QHOG=*cQ0Sj zcy8{Vo?%NxZg^+R;wFktmvu%d-C8G#^4&~-PbiwtqZ9n?WZV2EU|EQ7z^{Pc)Z56! zN`&IRG^BH6QI}t&|NDn;CwU@FZBLQ&w->na6=I@vfp>s$7qP}Z zBL(9eoqEZs%88o9#AIc~eq;TDe*OE|^>p^{e7fOZfau?%t}o(UWqen;x5w`<;$oeD zVq(f&^-8~}5EJ_|-puJ^#)ye9yT|V?ySjB#*ML`+R3m>7uR}S z<*6<`>jK4Ah>}2^-+!l@#Kit)V!IH!_0*)h!#^p-#U%bte-*p*S5M}5$39CGcnc?Y3j_U3RUT{cipIrR?36{~P6u$x|FVb-2^^cRuk0f0y0! zly|`wReslZ+v!D@e`9px#dpDbn|{}H)2}J<_v4N0f_?tP*Ke%If3GN z6X=Ay&0hC9bmyGA#4pC{L=ruJOSSz5Md$nP=TH62yO-xDbD1-a^8P}z^-Q)jRkGu2a;}U;k{0*-QPD%bp|# z-Y)pmk>B;*d}_x0J>Ix3*eC9Hy=K>VE>(Yz7uf~p*8HyTLi;~n{G{ z{<~}UxU0J0EY1J$kpCkQyYI{XEU*97`?5~E+Q}9p*q>nu(Hkk9C`y_dU3XWSVgqHx2CnbI?>q@Q+k5o*J)msY8!Qsyr*!@_ zWEZ%qtNg!H$e-1w-*x(6ZGFj5|(;Ql%P(p`!)zJJ)qwxK^ z4EQ?mGgKZ7ggu#)sL$kuaNB1r4zG`=!v^v2UUdYt!yUHe>LY6VN*oWow5OLtKGNck zLh4a}l18PNh6$7+b?>UBnV)Tt8E&;=|aUH zKbek0=8%=rlUC?UV57$&y7`$G7S5fFYfshDj~dcwGrrblWlAl4e%FgwR>&grp+BA| z(WPX;6qpeIkZ#nt4DYu((~CFu)8ZBKbh4=?niyu&74p+Dtmq7r#?D8n-48KnO(uxR zX>zk06*+}Pw{WqYBKhjB#%vp$1fEq7_&sv^(Wp=p*fa8@@M_6CW|~lgvoO=;`TO5- z@qQVu!|4gjwKmhkt2Qw+me0Ynh|GJ7 zS-ZmFasQs2%%~Z}IdBq*-PVJwIyr{#TqRFZM)&3VQB6?)@R2d=r$$a2iV=n9L!rm1 ze3&c$iLJW~aC4kAccNhluC?#Og|z~a7B0rpYV<0oPn8 z29mk1Tv?ru2p)oc24r#`8UxApj%Jv!rUI|uDu=uyMX(~Qf|-1Y;G!=G%C_UU`Mb|B z)7v<3yRn1W@<|8n4fW99Y6n*D*Wn%<$%998j>ApuLe%X068q0j;H1Y7= zzvI>@)>{$h=8i-E&kv~Fy|K(w_9Uz8uoFvbdSX#j1IjwyVl=NG!^+7#s$YDK?nqgO z(*jkPobi+Ck%$d=C^{2nTnOW0?6lFsehuUuvH^d$NPNDg67H!V$IqW*sQ;|o`cw?E%{B=i?HqG&oe(P8(;BMVa)MAZIp=e>W=+_eJ%m zP1oy@ul@j^zP86ZS{&*gaRrGtS|C4eBn*5v04`sg!AzTR0J8OwiGI?`e2>j%%@5i$ zCE9U}!Z4O5Sd4<;dSl!amB7EbO9gXPRv^6+FMKm%KCF&9&Hp~Y3MbT!MvK#SaH(%3 zLsQ-}KYB;fqX%W7xc(;p5ecAr!J06-rIlaq=*UP+s-p|{453rr&BF*0eH)TXXy1Vc z*cO+Q{8`UEm=G@|v@BP`@U{17XvrC7vF&DdjMFfvS>q0?QufeMF0Yuu^K~%bi4T=2 z(ZlA3WlUcQWmqu0fpRI4)W^yd@4xkcy>2{a>&go1P4nnd31pJq6*G(dPct(s8kncX z?QB*3Y$juO4kT#F(=AO~*dt$F!;kCY;AKC77yG1;YCGPFKP=V8-fBK)TawL#l1bGT zN*`i)S5>Ov)5v0IJ!!_fUFyNy8&|+8_8!cPToB2Rnvn+lEHz$aeUi*v@4mFs{RE?a zZVL0Ms2|Rma9i+Y#eLqB97$V4ot{u=^F#2$%ouf*YXz->$2@o8T9`SYn9;CS6%GlU z%@=E{I8n+-`kug> zVJ+_%^{x92rHS-k*j>}~N$qCC20|D>r-#~?{HkZTV&z%T1`xS#J9khwob zaLcmJvk%}WtP$Hu*X$lG9JY88IWpoI4%sA5{IlcexF&|&7_GyN-lM_!9{z}?s=DOi zxADy2Xniynw2ICQXYOprS@5WSgrCE9vfgq<@P5&ICiz`0FJSgkm_2AUilx}V+C(L2 zYB1%^PWOY;uH}qu-f?z-(@2=9a$E59X8>n<)tIAIn{mZUAdIF0kt~^xY{_*qQ*tG7?LNl8z9@&f^++H6CKtQLT*bC2^Wr;ut5QK8bzS`>RWXE_bG7C zf@3L8g5uOdM#^p$annepahv_JRgR;C;x;Rz z=uSs#6!2%&CxOqIF}OGO5`5C{1d|V8zKK}G@>6~ab z&h;z*W^63v`&vNK)ijjy=t=bSUr>cFW5NB^Pr5{LED?9zTr+N)I)>gng(u8YvC&l= zcbuzWHmuFW^`lhi(Y>0ux$L+waK}`X{&ounsV5+N)P;UY^2Ah2*|s;j3RSSu&#Kgpe{cG4AX3&^uj(|t(=YilP2MwCwuVGJS*^c zorbQu`e@v{iMQ;tv|#X)EzH&***N9OQGBpvB6>bKF6`yIn$ETIs!a=d$|O2&fJ+^X zbmaIx@O)4sq|Ywqzlcu3Sfg5njo<31m%TBrce=%lo?C=FrIYD$vm5M=2nGC98$@f* zOQPUG94zZOA9pq$0jZvi;1TA@?5x@gj75ULGnX)Cw-2xZ*YcpbnBZeY7L1k7@mzx& zu}(b>W~d`bJddI!YpWTZ>JhNMv@g~NEMv774~-u(av-kMJ|?^S% zc{?4R+JH&l1~Yf+s?aPzmb>e3K-TDMa)~uxA>`punAxESjn`@boU5^9WF4M6??8%Y z_946v%h=DKbvUi3PlRG3-Ld|8m$|&bkQmCo7M?oU02`!^;M3w$g4XE=@$>1g^t7Qf z#>b=xm+dg4fkWRxFF9RYf4?`$9Bz+li{x;~Arc7y zcsVKuml}@XWLH@c4Tj+ihxWjbSK@N|>=16j@knyhH3^*y^~u$T-%!QYf=jgxCWCi1 zgTa)maQQ?7_u_R5>Amb5&FnG8_Mt@>IoMZ^@S~pL+=DAf#u!UzJsrhJ7_{Mv4YlM^ zKN)UKoDT6T98G$A#c|h67<@2f6!}xyPv&DKq1_Ge#V;3`8hN_-KfxeO+E z_b;N)#K%$6PmD&)uH{>87x}A_1nj|)vzL5iG#>31IF2o|&Wv$olD^2mCR;Dq z8JNtp9jU~&l32P-V*)cYP6DUCbCeY~JA~y5dBR7ZGGxqDa(H@auX#q(-Y~tFM8YdF z8BWPr(zbdna;hzm6BsX~GVcSq5x9=u;Mjys;US>qHN@xWjUlWcR8<+}-aW5z1{K7ab0g z^Sh>SOCsaR;#Znv?$!{v7u=icQ+5b74o~M=)+jL&x6?&?+>Sc%WTD(38~gT5r&0lJ zcr@)fy+M>PIY*CNo?nBlmLqV_B4_5OT{+deP*Qs?b2kpr{Rqz zCs|b6AnX{DM!zZ?!1jP*y3w{CCC1Fc$)>?@aj!q_u40*KM{?j~m=*T%c>|Y@oQIkx zez+^Q5bWphP%N}b6zddXWzY|LbK(GU?93^Mp6@`$yxfXXQp3?vr4Z)%-C%}{Rl?YB zK(d|oG7F=(qvow`$Ssy5;r0Hs>BSY+Y?L!Ge(?WCj=UbY>dE2w@qPyf}ly_T@mS9ZTginn0{<3@__NJ`~t*WZugvlIMXrSnhWa z%8vNL={>rz=~V_j<#U}@+Bi~Mhb?rDT_SkR@siszM-De@_DGoHaGbK+ir88Ahhb0I z^;o^{B{Le2Q?ZxTZ1S27j83y79v=P(1a}5uhGja93zxuSi6e3T-F&((yMtEbe1o7K zu2??n1?*d;343;h;is=gICf_aGsw6ZCO=YPoYJ>58*ZL~9Q~2FaM>vIwo}4juLgc_ zh$h{W(F3aWmojQA>*0w!j~BAghxwE{i<^+7Wy8)W#=s>!<7L1e3#_H3($wavT=3&ZA2$qY%&%AH^>#|d+ z-q1OiCOr&JPZPrfW%F=BiVE}URt2rJJBbxzKSH0Z1)y6ui=7+k#hy14;18#0`q=O+ zGjQ!>dMWcK)rk?==Se-$ix+{x`97Fvn~O?!?lJY^2Ql*JHmWw{AgtJS6_1tggYJp9{ipN?qjdY)r_$L5G(cL#vA|J*RXV)-CNNh$zd2 ziG>A1;rC0_-*XY(+ZcmW9$x0V1^p1N30sUB-)BNnfw;`E`=a&zT0lcD_s53E6JTUk zlrY0jw8uTJqHfIz-V4>k;Np-M@BV5YN*&vePuD9D!}xN{@|h&quxB=2+b}?oGQWWy zU3)-I*@j?yZXx5-=!BthS)l8o2=14!!?o4Dkbg{_EO&d(Ty+e`l4BC6ck&W%!OF8# zv3W6LVyH#d5CxpPU@-q&&+AN`^eSwhSBH8h5VuPVrWVOPr#95W|{re_Z%Z7O%^>S@pU zO&>o))fZzNH&lh=8OyL%Kd(d8ZEHNyd>r`6BQax9F6ytnNsV*v0n;McF&iEMn8S>>e*4+XmSL1 zlwRVm_pMU5+R;QU74=Dv*42X5{ExU!E)6IBe1SWsU#9(QYQgA|GbUK|5x7JS;r0&{ z$Hd}j+$WfUWn22wSnX*rV=qcm6<6o3y6=aHZ%fy96D zb#_!p9`y{jldZhC8})i`pnhLQ)VQBJD3~yy7{oXEv9~&!*_TQepq^`CpBKsDDeKqN z*t{4f`@I+3Qj)|`_Zy&EJe~QHH3TXf`^gf!RBCE9nB1<~ZZ+}hLP(u58pqzu!koGc zdhli?d^fl+P#qD;Y}G7;@){{plX#T3I^(U3^P3_zbl@dgG)Qs z%c5FkByZBI?O6BVJQK)If#=LIEbV6uhlcB5N!#$+w576KKxG3C(tHEJnt%&jS4&vpuo`ur8_j#u2A85zL6wvXrqLz-=^4&n1Vc$KM6R5QYo zJbF@%3(pN>jM@*<;jJ2^F6##*x;WKt-ExGvD~d0NEU%59ux%9+9&%OSUB4MTtdBBd zmi8s?4~_6a#41@w<-0J^G6d(h@8RnlTLTRe>F7T=17@GS$_zOf06Vt!vntpnMI+8K zFik85%^x&F#_Q>}3nq-jM?W`UR%{j==vj_W$0slyywCKxZK2@9tP{M~(Nme_=f5-6 zflBaz#^Le0Oz1Da4>d zZ4C~ZWQ7WHO7OmS0TymN1Z_1J@tcx$n9PvnC{jO2lXjLk7KboD%XX0+beV7jjbTFx`p9>sPH$9NCc@*6|8FC)o4?+ zm45FqAqFpsZGxtSuu%CG&-ZAA+N_V*5I%%3Rn{cb)SO66bHdrTUqFlS0DfJN!I<4s zfsDDfg0~B#aMQPuLW3(M%oDc~Y_|2oh0mPf)wS!`f9nps{#b!j^5SWpof#b_ZUJj+ zCZgknzO-*#GopH@DImrNdV8+Etw}dz=(^3;*9;L3`5J8*Z9}^Ea4*BMJcgsgSqJ&bBR{HFQ+U~iTj>!B0uMxXJ(jf zg1`wU;P`C^C{#`$R&TY?<;PN@9uUZ#Upkh{zcHRmzPXwVlzK{k7SF&JS5nc)+nL19 zIWC+7A@tdrEm(49DwD~5!B6^~XZ~Ha~Oz=i4puiv8!{_m&@Y@8Ar!`C+5XcPtS1xY|$N0`dcxVPoKjp)*VP7HR=!f{m@&aCqk&aE=rf}+^ zs>;58V8MkPN`jl~`*H_(-nh-#o~NUD2lrhs0@DNTuG1643TQ4phv6=*&?*_rjIDeJ1x|3-lLyi*_02+&Zq0;wK+k~XB=AYjk$M6kdI+~IQ!T$xb4k8uutv9iEY)zY^86k zTWlCLzxl)_wKkRJOjyHYxs5^jg<~+ts{s>#%tA}`6sW3N0eJ=U(Y3LU@D1|<9i$er z%MQoF=7=&{|F#8e+85z~0BKV2x{R@Soo;IxHi#r1kl^^4L$JtZ8Dz`%!dC7Q=;@|{ z@N^Lqd1)-2)Zql55^^DDeJ@mG3&3N$9qV#9isAZ3qLcg}qTAyw9YA?7YSmPl=kuWW z0!bzr{2JcH#&IT!kA1V@l;z~M1PLx439R4 zmy;0K1KP|i{(0KGC?7}1Y(@)3O9(XhlzsbPdw1?kJUg%enB-V2 z`sTwASUv_8U~_=Rbus!#E<|M~r9`4kaC}@0py@m3*~zMNl$x0Kp}F$?bF%a&HBn8#Zzl z!q%}Qb0CnS*Xm^Iy1v{Z*N-^ou?c70lET?NpGFkLV{!7li)7Z^9ky@fZex$7=`h>e z8%=T(FnRhbSR8X6uDR9FXV)|cvAd77BMFWUt7DE==h2U=eCdSyk=Q1?1REmmVZ`h$ zXt^baZm+)zbDm0YTfbkS9&0=Z=G4;5A4_4z2c&a?j)TM2PoVNj7SAd6LN72PdA3Sq z8d<>HJ=%_i_S&@_LtMbMHkyI&1Bd}AQS*Bmq(EgWdX#0-%oPPFt8fq#)+%ytKQ8c3 zj=3s~D7XZx#Cl=Ky52-vIT$~?oTe2`*V*tlIT(3nDFz+0LdWD>F!Y~EA`evIj%qX1 z7`q#-4!?xa6H{@xDEC4(rLuOe_MGIa5Zr%S0#Cc7atj-sn54;5iLK@^?#De{ayluQ zQ%lH)>znq$308{Rgb<^6 zC+_$I88UBdf4cN)8^Ak5qV`^wGnyX&)tgC=0TOy4x8=y4LHmH5 zD25kt%2*{0WT;ED?d1Mq+~#C&@|HV3){ty&*Jvf;&^VLZqH$6%d+!eG z)3G7kxzJoPq}85v)fNy2Zs4?6Xg)88T+16xtge2+Tx!V4czR*l;9n?NHXW39J#G*03M$nvR_}ukbnUJSXFL~^8Wp~yP1)wUR91? z_w?r`ts2J7Nlhc`DvsG6?6?Or97J(zf+^YUcb2i4Gnp5%Ga1WnzXC(GY+l>8(Zt7N z7}qk)fvedkPEx9#fwAr`SSSA$2e;p0R_{}Q6ru%oQ`4dE)6b9>o`j42A3zf?0H!9N zfqs1+qtdGZTCTl35Mo7CeWe0s$5q_24$M`*DjnK(ep%W8K-GL|=vmRa!G$9$7)JRIZ1V=u@_zELnD~!)`_^x0>HEsEV#C7u|VUe5LEw zic?Lkd^*FmH)f93N2k;~U~Vpki-t}^#h+K$sk#qg|JEotyl#_Ca$XA)^00)aM@SJY zks{ZXKd=j@IHSvAb+qj>9^qpHNR{5;?;d*+a;H|%{Fip1vWFq3W*uYmYIA7X{4gA2 z?h77EqESuw4kphYkEh2p!SrqYYYj}xpi*KRn;-iUcmH^V;tR$K9ULk#eAo$0esn~X z=-UG?+{MUK*HO4bHw@L-CVaMZvyhu9$wlR!gt%T8anXlXz`i?~o}02!eDgE9Vc}qu z-_s0wYgRH(;&0F|JEa-d8&?GL%F=N73jaeyN0<4nZ{iG7MJ)32|uxIE*QSxG;r#iVdB@A11J@JJ=!*;15AMKBh zAhtzgV1da>(nlr?Z~3nVr%WsI=q}=tsuYa;Qja?PAbc}q1hXzQ2@3Yeko0~V@pI{O z`e6Dq8ai<}+-l9h%z?4|oajSCCZ~jA+R6>o)`iFTMA|Zqnx%|-!CZWYW;pA>7W|%6 z#dIi)#Z6yCcLOOEP)F{t92*J*S9Xuu;Z?t;X2CBc6ZM zCL4M!F+|59SDvg=lO;|^j4P zz_M3*oZ77o$W@&tevY$+=DS5V4Z~M(BS!2XIYxvtsmLHJ2j>x3vY!NdX<^99J*4#U z3eIld4|pJYFUd#knC!E{@!Y7%&A2FWEnFGgil^t?!G#g`!ItB5dPk>oy&t8Mv!XNn z>8B_(zS0arwPjq({o&Xs6GL>GO6W=Ty)^axQ2JhK58fo3dHW*k(X`GEyc7r?Ik^#M z=)T6iC(LNhieje;%NhTD>W=p>+llH)g5npDKQD}hrFUgRO0Bi@(NZ@`xtXbE(ZrUC&AOl zJ79Fscs#`l;OyNmHb0LarTwEDZqQ*wou27qhVCR24Wql#N~Xk zgw4@5)b6bS?DzL2$}f*W$Njx@Snxcu(I5f`E;Gb)Bd-b9Jbr*GsD=YdQgNBsRD2a_ zfZl6H)9*De>7@`YoHD{4EA9mFoLr@-&iyJL&(jP{ii)WDk4E-ewJE%?N@F9=DB8}L zxEp7D+ea_AS(?|o`Z$(A5QZ1A*xvC8M4h90P_U+6`c@26iG?u2lIK;P3@q{;Gs>lyq1nIL> zAnGdu30$;ig{OY9Om5l~05GqGM^7Q(3-|M;8Ui| z(>vM|XE;?cHdlqTLD0W4w6Pp4DG|lOFX9VJ}zBfh_$*oVKTp!IcA;Aaj4VL2e?JmCwaz z7|fK$q}sxzlT7oDYOo8ReQAAfon^P(tkE`YzfL7jh_-x96 zw9`1QeG$t@ieIF0F9b}FT>(%qT!l;zIY8ZGPr;Tb6`PM9=V1MZJ2-2K4T1hecvJNl z#E+Q;cQpEQ)!%va~IHj+-JVy$!IHMYcJ#*JuP^DGzM6d04XIlF1?(}PUa7#_)) zI~+BRIia~hHHJ0$;O=2dsMhxqtPDPlRZTG3 zN*{mR+s>X)6fisH>;h>cdHCwwW-E4|qXT^o*!mqw#49Z%;Bg&WyVsBz^&(!7Wts#RJ}BV$L1*D~k_6t@+Y*1yHx~IVZ7|}* zc%IktmvCr*C|=YlXZoq^23vM7T0SBm=O=?oL9=j4i66f4J;^@1b&HudYClZLdki(> z<1k6fhORm_7v~Q50ox_j`1M^Q!^lg4SEL87HCfD<3wyy_=b6xFq!e5fTFD4(DN1NL(B9sSA4p7kIu1aL-jzwO z?$9FQ&Xt^&FrO>(&qbfwL~eIz45{gnfXMRCVsU$R8Dl@wzEsQ(?%D- zE+(8u(jmM!NaMjS7?a^_paFs?-pc~`TD+W0)IoV}R@C@OFvyBtWN+Y~Zh--#=}VoCIK<@ONgSdOGd!A3*h6%kcXC z3s~Q83kD5-#3qifz_$7%Jl5NTKW=4(aDdxXT)F=iND4{;C%=c2Gat}8%NeAl!$|Z# z_ZDc6ZUC*KO>o*N39WaVV%ynwwLKM+Q0Lt^Sa5kOsGC291w9ji|9%kJx+#>28j#24 z4@A86MhzPZKd`eIBkUVqDLnc4But8NBvNt}ZjvfBe&|B;|m4icUuabp$tHTm6=DVVXP!n8l1*6q>2dZCno!K=h z3@^`95|l2;fKxT6pqKwFa0wg39N9jaOqJKhZO?B5??fd$UK_xS*)|&;o*tktzigCE zn4KojvX!Q*H7j8Cus1M3q8GDlM_*X;RUJm{*^Dt2^*DCYd6dh3Ko2hNgFhpz(M2o; zq&7|sdlKHpw-7q65wx+Cs_Ug z0#_2ICb$8OpA6($?ET4_Kv(YdsSo@~s;kg**D`Fk?KnKV<1rlW(+u<8e1+4=PwAEr zOL9BqII1-2lHtDk+|Q%{V&v41<3Ca0X115$n7uF2soynvYjqkf;8)_kc}=*Er^Kze zdL16rZN_kQ6Ec0{Sk#(!mR7GfN6C9}7$wdSTMr%Xb)4w^*oK`L+xH4gZxLX?CMiMB z!+pulrc$V@{myRL7Q@s@*3$ZorIZFn2s=!A&}}OeY43FtSToI$MEvtt$i+M`s;*+@ zCw^emL(i5(gMkzkn_1rlU*P2~(QhJ3a`?te z_u>618F)2SobdJ3pl!J|-?bqW-FgYZpiQ;9-QNNEv$nxy%t58y4){9wv7p?)C->%l zTD(!!MjE%}7?!Y>knA%V!kW@Rg5Lw)U**%&p$5zcJqfts_JE08sVF0)@7Tmo8oY{! z?E>FL_if)-l`~m^;yl}TTjU?UEQAST2f&8@z2M%9mHe%u-%U*GAt_kcCQnbWZOpp9 zXJqX(s_BF+YBWePoC(M_q0iqNV&s^90!#M3Kq2a?^}y-7`6fL-)ec~Uv*;=zad_%1OBv}bA3 z13l9OufEITz$<>tgPyv=Z`zH*Rd)u%;sgnF&^Mu~d==j5hcZ~Cq+(s3m&q4=Zxvdd z_|C+*9c3C0*D$&Z3ef9zfBrhCquPt-F_U!WV(`1~yv9OvI=Qq?zQrMzeXt^qo-dcj zZCX+S$M-4L;U@+$t`jEk#g=}S(Um&MFW9u68G1Sitfuo}t&tu|=j6&hQIF@Rw5T&n zPmDm9v3J><{ma;?XQGB4@qWj{1LN_%@j(8Z96R2b9{U(o>kyvIqYv@#)fQ4QtxTjF zW#OvIR=90*2pK^pXwMFYNn^xtUb`mdc%2k%dW|$;Mm#%dY9iCJE{6%`kDxsoqd+5Z z3Zv)#3a5$vV9NF9GTS1@(Y>!s!0LPmjTa($g$;gU^ zcm*9O6+g__Pv}o`Zq3KwgblnW*G@AAqbz8HyB2h0=(GEavO&(Vz;?l!OFY+Q3~Z|y zi8l>OBG^rQ@jX19ibW z`@VSbh!e=r5qRU1rl9{%bte3QtGZPCK>_2C&pg_lO_LMkp<@T1D<$u#8o6Z(8!1@l!ckI7TJ3I=`e z(l7cxFf#NQl?Y8{8m4;EM>%`(Msq!7h6cyCs;$LPyA=Fl%A)4E1&}x55{y$^fUj3h zLkC_APMbL#9bV7I;}Kur#*stVx@IRNh*dM;s`gk|md3XC*cbn)Xbo6dl?iw2G~?Ps zyZK+UqIru86ER@WL$JHAL^s>+qozT7P_1~gAZqz2)S)k6;>~<2T`~iwHmsm>?y)fB zp*|$Z1`9$4ZD(dl8{pv43&~T3!62`!hZD_b;vKIlc96N4Kvgyg6t%5*g(k}65xWo1 zw+GR~WgFq@t~&aqVGMg^>=L@@%CTCv1s~WS`{sfE&_lj8c6?Bj@zPd{Ojs%Zz&;E@rtH*^!YY`+3atsbHUDqx=yf9&&VAascGpRJEQnJ}N}!&s$gJej?L zMmhBcwTTC8pW62U$EYZbI&FqVt7A|~r5E*i?}R(6+8LA73WzAXE_{A61%HO8!?tW5 znc^7CPFOP+H6k+UEm8jSSc(+}x~d5cCvJ!KxrP`Ue+dpG`mxVG-NtFr%7m^NU2}}M zGo~LrF=6%&VCEjhYXwIIL-!q`HRHVESIRCzRemHh%zgt%AKgvmc3rPMb95tn^`$Ag zg$vI>VzW?evH~0rea4!o!gW&7)U?0xU)^&#!d3c7Oi0 z=y~8L(Vssd=@IkRIR-C(v}Z=WRDkAc4S1wy0^7qc(8Ki^bf!Wj?8{eWo-WGg*PDl7 za8Wi@$RHGE_QAbvw`@zd91;vkPGY`(GJxuZIRaB37beDV4afwIgJn;)!xRHq4BUT~ z{(lsmX*^VK8^`SoDhk;u5~4^+WbW&bO8cr+yGpC5B!xn@358^fPzXheEOYMblqHI! zvQ+*O+KX1&EIsFWJzmUw%-rX?f6MpEgcWQSPZTRG$YQmm$b|;|hPH1JE;QE3<~{f%rocn6H81 zbaQ4XhK-ZuV(Xt^R*1Y%6n+r@=$!?vDW**DfA8^dxiS;3v4mN$ZWEJ{9m`DYdWC+w zZepY2R~q+tANwaS5SL%+#O6IynXna_P~5taQ5u-SIHyP8#|UpUGQ3Dlrj6uOq;Ar? zd(UC5fjpPwI+;mmn8FOJ7n70+8##%VMCMu2L_B=61nt9Iq3E3ky;gICJN>x^Kd2b6 zqsN{Dy_E-1Sh$sW{udZYs|C#6RKkQzbR;In8*q%m1&liNkWpwl#xC7B0?+<;j;;wV zg=jw+T=}sSn}50rSDT!}<{yW+3(AX`@cSdUw17Xz6(pdJ{S@0x*=OjgV-0YxVF$NZ zN|TW)v*X;H%rHT7G<(vg3QWx@<}5CReL?cfH=kH^JeW_s9TL&m#0L8f=aR!GdocH= zB=)MyFdG{CarF3?)N}0uPAaeim&dl^()D6G@V5k*Dk~bhBpMoB%;G8;bA2%0A; zV@s0|*db+MMP)XqSG0<{*(ZVuZ&g%YHibSuGzo9cpUdl@>O{Kfnjk<`9=~;|LTgP^ zk?y1ope_>#?t1oUvo4ZU)?K5f4S&PBW$N;>zRP3buT6mNXGrMT3sCs{w?Mx_j-MMZ zkk8iw!veB)(!ozcfd8%&S(8*M>2;2d$zvJg$oL0qEfE%sWjLA5Y1q240=~6R z#XpZapk>4|axpxad97NCV~!5Tv5v`1>vbLOXPPZYKZu5_iTrQpFz;=TwBhgTUtvx#inp=mN@n4={v9&r(f>4|@$r_nopM;@T zj`IJL5zOtHCb+y=hCAjM!pHH^`s{w~9Z zhi744rw;ebHy4XKIn>>m0-N6FqvzbK%!T?GjQM*ChG-wo8C!>6bdNLZ9&2)5EtOzd zppCyI?D3ngHD3Sc!@g{6BS-g^K&bOO7;M>!nO4qwuz@E?@!JTlDw6&Klp}YJN=+qK- z=H9;-aIxVPojpt!t(NPf!BG*){(8?2kSwy%t{Ke-wNYi88ZKv9{F*!u@8ti+d#)+A zT)HJUYDW!xU-2E-r^=wzXUY^YlH>&cd-MF$1m!~<{7syI^+{!Lud@hjcRr+ZRPWp7 zt3SuK+8~f>wj;IS(oEyT@nn?a0`h892DrICL77BLShy=kXm*!Bo44peNAwfiW+Elr z^K~6o$(uk?(in05QzJNFRtjpp^EizqU7$H}47%u+z@k2N27(lslDPADYkdJ8T_R*2 zeCIX#!DTpmgA!HF(%>Gkf59g&3ddbPj!%WfaQTTAGehCAP;#sd^XNwb`b5h>w$d`l z@cfT1TJ1sgcYViSxWo44Ih1Jg76RtPOGDlPRo{IdZp#Dye|*#Cp3_S z?ek#`8N&<@ETI3Mx#L*PY0QXFC8l0;+3T z=Eaut*z;#5weiVBDZZzFCr*#6+?vk1+BJ*aLoFDsl``0CYs}n?*@GUHvf}o_2-~rC zxmbTX0G~dehqKPE2lW|Sm@zSJczMYo9MA|xyE*^h*Yrx1U(!UM`|qHM4>zN9$zk}z z_k7;pZ9&I3GE8gTf1q393qLkXFu6MMv@Zo59N}{1{vs;lO35 zj^Qq(^y4k71EAab5mlc^aX)ScZOlx>ncdN ztIa%TkHKi^HXMF)J#8B%&D1J73XSh*F$rg1uwT^mnXi`LFz9eEtNfxEXP<7wbXtY` zzm1@;9qXz8&z*2s!wAt_k-2nQntS9uoI7@FDYzUC#$Cr#aK7VQu4z;kY$jtn&b{8qgCV*n%r(8tey~o#dC8YlyTGG)}cZ0Sj>w{MdN?%^yAYDWUO}zyTo+`X0}*DY2t10W-CZf{<@L}ehq?=`N~Mu zl(8UA6sD=4PFC2=w}~q63_U3|j-Q>paNmy#;^D0ZRy)PwFW1h}N9|<_OJ$e9<|B8k zU&jZNWPL|^5!?knd+hPS-U%@I`dHBltbk_LMfjBuOw8M+`t5%;Z> zz-`k_Q7=%7L|L))OTRm-#D@2ueHL_LD5)pY%h&^T1TuvOm(je(tP!O z^uc~*oHz3fx+m?%_?c<=^O`i=_*j5dKgXeKdlYz^cB0PxY_N!(ObhlO2C1jf5cuad z`M!r`J@*Y`WWSk$jv${tFIgj)#y+K^Hx2`bhG6oz;4Q3bJuNssv;?Xmvc=rcWBTvF zR@|-QhmX~t3+?z=z^Sd-Xj8y|%)yATFX?;W8{hwUVXuM9OzmO&(*W`23?nj(G@-Yd zTUcUj1q@9&Bd}$?u<&voin>jikAioo*pnzo*6b9`NofJCOVXgRsz;=nG8V7y*TL^Z zO6dKkiCB*Af%JKL@JQ|@88IyaB+}x<=^z2oISDwVEur|kKbD=aA(DRGpvzQ0^Mdxx z{cOb>C-^=$4Chzwp`4ikKFp9LaiZCHezp`bN%O&8qkGh1?RB*ItZefm`yn(>90>}$ zjOoW03YeUFll)p^i%Y9Fh}Q(tz?*EvfNd3c}8>Cc_!Ur z9)3I62^9@BjPw`*CvQ{A#YQz^l=K=dsC6FmH&6w1D!rK6w+^trMuS4?U=9?<-+H+aW2n9NxeMa?^pV_)h@Z275+$5v0o za2r)Bw0Z$m)GO)N0=)m8yX_ zmG}Q9ui8mx-Iz?WU%gj|xtj%N{|-mgu7llW(zxm4Q^E4=9r);ZCrs0C5o}rb3F6Z{ zF=O{=*mL3xT#RkNzZ)4ix?3KLPTmqc^9;s@Te8f6S(W_yN?k_L+>%oYeva2}NixG~ zx?%12K&UGDgG!ebVQ@nZ@spnb!*<4j*ET68Q!^0f7r%$n7YASypBvpd@D?BSXfRW1 zdhxM$2#lX*K+8^4;J%l2bm5#&VD?;+St~Ue#r1CZ?$0^w89|`phJPd6@j%uPonQ2r@2It6lFviFE0zckXT^zp{zlN{ zSNZ(gp4;?8p%k}l=0e)i>VrMo+o}1S7J9O1Jhw)C4(if0!8c2q(S1^l3*RU)*-awR z(x2om&ok_MB$ka=|5Xo6uW}(0?*DR7W};wp>0yC(RoHYaJy)C4W`((%!WtEwuHXS6HHj?-bCDDRE52VXJ(G`;gblCbR8n;~=C!an` zM^?5$SCk{(>(s%It3&AJhPTkLu8!!J$+Go1m&p@@8?-vU2Ra4^V0PdRs+nPcS1bd zb6Xhw`xN(=NHUG4=TLW@C3oWKaPGVALTsC=%uV|~jXUBvnk$_u$CP~B#q2c-LaC$w z@Zw`-PHROE#_u!brrSm_+vW^ngnH7~dX{*1Y#qvnp?4`jOIKD#-K1-%_=sFX3!yo@E{tr!^=AdOnC{wVj z2TUH1!{)+ou-dN%rM9umi-Q)-Y_THO*rLPjeBd;!adCTqIgnW-oOM{kLNDT zI|~VZA&k>61upo2CTMxPlx>*31ZT_r1zW{ZvifX{KyH~Qy}Bqtbcv`SBTl0pSwrNr zQ@^0IrAtJ6Yk;&afN%1R3MxU*$PM-3xcr=q?KQstE`|BD`dOM(d$qU_vN?+FLlV z_dEN{md`K4TPkt7Ph{G73xCcKiF2Qg7p<^WRB+q+Srq2;o%|AZsj*HnHbU7T5tSuGZOgQ7IU%UGDzI(f%6~T(dV%Qliwx5yl6fLTT6Xl z%nMa+*_JAhC{|(qTJ2{hBxJGwqGCWj1RDBbbSEgdvkZ;$LzP z$7P2KKqtxNDv;vT#`ag$_Q77NRy)=Th@~&>aYM~LlKY^EZcKcE zN^A-7J3UJrl%5_sqJ!XQ_uJ%jt^wP)ekS|=pB)U_&;;X&HN;%%6DcuBuX_8Eb-waA z+FGBvJT!wI+qngrJI>Oq+}jYf*uV5p?052S`A(G9xI+@0E`a~AL`(>ON6MQ*VE>ma zFryz};>Iy_vvxQJt<_`>X50ktE=y6ge+boh^ihx>;fY%BM$*i1GZ@%kH2wQ)HNmJq zwv68|CFXVQRDo>3PLSTxC|r8=B%PD91tb0p!i4i5M1m7%QOjf++mjItzh+H>)s1_w z!kf?XTGxyIEmA?lFZbabClZwim*Z~L@q(1bK+*P=;ovNP5MKJJARYjitQw9R`}EOs z_qBfz-slYkiR7fl7Gh2;ulxLN+m1k_r*&Di(>jj&2x%!w5yA&i{ymB*I4N z*Wh*cpm^!X%hcyb9sNAtpLQLn#&3Uu;78{K+;n{r^}8^dvE0wn?ds;j2n`9whwuOD zJ8N+^X7cQJaS7OV*G0o2unJ3O;g(**_;@(StiLSIGTIIdrJq=Zc zd*A}AR2u0Sat2&AE>YX<&E)n!8>V(_1kSaO#7!zSxc*5fTvM{z8g`DK?knRY>-ocK~zOZ<`DL$EhjfOSqKuLB2TK4Mmtfhq@S?GcT zyNz&d?`o#!b|1|?eH;UCq(I{?7*867(;I|IXa4r%Qpok>%wlf zL+%o-%jiK5Ln#s4C<)z?W^{Y&378i7o+#coX0Cs@Y8yDOPT-jM8{V9_gF=QQK5Z9B z>8Q8#s`w$)jhPNMD-&R1Vk5QJ`9wapB!VpW9kcR!VQ`l}%RX5t7~?PsPidBbrg9FJ zzL0{H`Y@ti8kFGZ`APKh(N0MDmcr(qI{@(q>+ro?6&zmvjTTLvEu36=nRbMYWmfux zYE2P#(H*)k(a1a#I}S+ z{Zq2@%oU;Gf1$7@RR_y{2MJ;fLtuyIV!HEFt~go!H<>B>mVP=q4JN&qPb}X4AzgtYy5R~$Zi%eqjJTi#BQ z?ZZT3>idnTk2y!4`taZ5$75i7j}7i_83ndR<@BlMX1JqylKn696&=;&PjgP4!j#FH zydQRs&a|tf5lwa|6wG21c@|})n+DDeF#!J)wzxIMh|IKILfdu+u^01Z!@Vz3Sk#e8 zqzBj2=e)jBn2--l*im$p_ao1(q`CFWbIIiRE9e%#iyUnDh1>Fa*^z@=uvDdp%;2-3 z4|lJ^MR6Rw*ut?BN5#SN^@H$e?Fli08IBtx9$=H>F7WZ#q zeo81c{!r*<)i*K#HK&@SRaQM!*xcUORODTmg06+u`A-Tew00G$kI_xsC2NjOyKQSgiIM_n$t% z#n0Y=b@s=(40#DAiPv|AUd_XgH%z&oO+!Eq%Cm!pxtvC~K9jVGxEfJD(>Qur)tn`nhMiBPmWunqQx{R$TEsAwqSG1UM{*j9ONZ;5R0e# zn7pi+I5TmixN|6)lRTcs4cgD*I^2wzGm1~JTw)EgASQ}>ntI`n1KXMXV9WfQ;K%HJ zznT%O+smvKTQjBxd2He7&5WPu29taF9Cr3zhnNbES#0uE#-GZ?XpI$b_>I2<0#N3Z))G(aI6f2?1NWzNg7Sa=_n{kx6R)^4G- zQWL4Ao*J$mS)TI2Y$^J$QDD|R)4{3{^WpZSam-c6GP1&@j_0L@!13-A^w>jl=IX{{ zIKJy0s5ObO<8uIp885(NqkhAL?bTE>K?gPn7n1KOhRoDs`)!-nmI*tCY2YaPJ7{3^ zfzFDv#6fl$#9c5#^SBiLxjlu?)$GRZ!(y0RB*8@1Zoy%es?3$ZgM#Ug|SX! zkP~Y&p3{_>Pv(-$mx~?La>{hE96Jn-oD3p+XZhgAoDOJzkU`FK@ff_-A8UPe8C^L| zX4u?bBIPnbB+VH7EqR3o)OC@M3Uf+MYTCnpXOTqxb7rI##n9=ImlZ0hK67o`K5UGv zBoYnh$qUa_*f&a&`Ow@cRovpTy?J%?kZUoV&56b%;nyL&Cm1=0c6LS41t{eK1R+kn6{}rhflGooXo|)Xc-{Oy_!A*p8hMC`Pb!`?cK?ktoBT3($T`a z{bRr>&?B6Lribj!0xO(yunlInE3r$gd*GInBG)Ogh!!e0vPZl+KxL973~TGBjYmvj zUMJ6-2{;11k8{YS^Uq-6jAlL~d=~u61E9^=7e;(>q-zpmL3bz@Cx_htw_<7FWcJOk$Q1QqZHl_Qw zAVJy`Hgt{0S2@xkY2ifcyWfZ(oHW9JrZJ`36PD2(w=O8Yv`k<(2#tu`bR$+JJB#?< z8U?!5ui0OGK4+7KDUFr8U*>M+MEgUgl08qeY@K{xkvUs^g~r!{N;AIN3T2jzXFonK zCOs=wurBqvGxg=f!Vi*HZ3m6iXlsEg9QiPo9vhV=9+i_dHLnQ=`l`|W%-op&^i z95{c2)wnPNB&u2J;Pz1X{#FJA$ybP`|2iskoNYkwER}@#n0?sovjYli!|5_FZ3s)M z3$2P82h$TzQ@M3+m}gOdZK_{N1Lsb_tRIEc@W4EL*m0HI9h(jrBmGHmMFc)o-Het| z0it%(G+dJ94_B3a_<4FZgr^>*#X7?jpUgN%S(?|^O=gb1+4m?AoQ$EhR}zj>AS9_v}TSqyLMY7-1|D0^cj0A z%#hqj>}FZegF`Gd&U#6T>desi@-$SveVWayu*S|;2{7#P39@L_6EI3rAQPmDgc=@& zV38Gu#Ze8UL;AY#P2VNFVkg7+t-K05F8Q;8{w<(adrEKstN8b_3R}zfLq~5i=4sCn zP7E1^iHR|MF5js%dngecTzICC&lNm1Y=~|!RpuEc=L8PLrvZOmh9gNyp!zeP^>NyS(xqC3QI@q zAoD9Ex!f1tSn^2|AIy4JQhz3g_YUWwoU{tA^VMNCwbbB9bxVxjD9L$Toy&}VTu$CA zhr#l*ve@&VJ6MOu<4$f%vVk-Hxw*t?YdlGuz{1|7K?PUAIRE=(! zJ&W;QYRnW>R`dG$9`1>nEAFYQLzMF6+9L9V-@;~~W43^}{4}Lg)p%XE=pXT@&H}k{ zX571pmH7SDCX8Gc3VlAG=(c#*Qm-)Ht`pA;`$_xG%wZ;4Tfl|}1M2=Qf-188f)@2#ko=10niCIZk;P_i z{n&6kBsO5u)TVJogHnYT{iGBP7Td8+KkcE;GaBQMRKZZ1Ki!8f*%pgX7}el|($?R> zAWM(i+8T>Cyw*N-z8zMprDFYmr*M&h85pEe_Qsy6c<0||9IT4L%d2`ZPsN>ksP72- zFF51YrP9n1zmqi2?GZjb^cio@cHq`5te_u^&Y(kC5Zz|YfLuTfZLUkk@W#8uqjxN) z?vfE!zk4QE)+@<9u~{qFTz-arUU(B?HFOxYjBMMv=gR14-f#Ppf%rPl6V^QqW~P~r zVixN*;%|i*$~Hv7UTy(<@wOyacw#Zv`Q|0cCGb6R1wS+dYiPI`%)F9GA~O%U&}+x; z2^AKovJX#K)45tz=?_2NZfYeQbCChv zRVlFMunsPbXlvW|`D z@V6q2+^WvikBkMGWFuj*l&|PmWaZ3P4}J(rBrnn?fftQP*agy|XJOW#Z15#YB_z|0 z_(!#gA||Y+lNYzboQi7r@FWN9=c>?j{ZLTO8n+^@8b;Tt3Z)q=N ztLxy;B5lT!&(q0dG{dX|?J%KyI_#r&(4ObV*Yf#)3qJoJ;@VF_rXGQ!3@v8Yk{sBZ zV8?{(WWejGm)L3z#Ea}0tZq`m3!hT3s3IDRB+DTvcMg;Bek7(u`_pg(mbQ3*f#4n0 zuxrnKsB$$%YiiH*^4zueHqTVWF%en`XX+7QjgbvYV*Eg6xug$K-H)n z@HF`woNiuAS2s;z%I)t9UT5yX&fgcX!DJQel>0>ON4kiIH2rbsrx~c#ydJ%$JtBHG zet3AtWIS8=lq8DBqPKO0s3-a_)b!NB4_7G|_$o_249sWD4{2l5=RVl25CYTBn?Y}g z6CMrkre`(=2m-%EhruC^7!}vSpb^i3c~MO~469&U-B;m-av!XknuDW{*P{EvYZ!W@_mQj5tQc(|j7ZET{Z_%k(ra=8t>&Y6<1?1q=Nr=%1?hsVN84$ehmC0Jvs3i`9YvnkAp=*cLx|~^ zuOx0mE!bU&qr)biWtV;Lg2R{jM4>=d?EO5MMA@g&ii@YHaD*&55>!a(_=wX%DI0BX zcHiR9h;G<8a!B;PE((UXO(bzE9?_ggPduvB3o{!&3;ndVV!102zkeHH|EBBYK=Tb6 z`=z=p$89?GQVYONV>xEBmab4XUI{%n`iUN$st|o#Fc%bGp9YKX-uS_D5xm{2^|KQC?N$-h0m$;NJ+MIWi`o}eHMqC^4|O>9ZU`yL2L4cs7A0Ae!bp6 z7w(nAHz@-UzuXz+emn;Wp38ACAPB?nOW}uw4dnNaPDtB4i`-C2CdZ%GLh9W*x_@RQ zRlA{qmzPRYjdL3Gf}tI#JGha8iG9#DGBeD}>>j=CbQIq7T8eNW8h`Wr%jQM~x}87J zZk;eeZbLj>bLfX?M8gs6iT)xu5gv}W^{&J9g$6LBah|M&bbQM5FZY$X39m}dgN3s) z@m*sg`DneI4!boUSIQfM>4!70y!twvEp8GtEF(lq?E-zBbdFb%hCx`_DuK0!6V#pb z6DBcXuxIZ$);m*HG|3q)uC_$DmpKCO{WXMV`#nVB{Q>N!)M+qW$)5G{k|F&C)+jBMW)x<~ zFlE!tFf4RDvtN5WW(&_lKR+c*JSh@%Cj^k5-VbE2^nNgu6T()ntHLGQv*FR*Q{W}N z6(ArU4h6PjTlQ1o1G5&QJyU@RKN^J9`KD;`Uo!3cvmQ@+@obv+@2Pd&SzNgE6fQVi zNvt~U>6oxkATbxw*JlGp?fE)0>c$qhr!PZvmDPy%^fBD3IhR4|+DYMr$Og7xp(6gX zQ((sO*({F_Ghw_>B0kR)A$v)VE8-Hw&WFrUOPj^kzOy(+y^P$ijlr9@ufv(0irh3~ zd0VlP7FCp8h4!2x!zUYXo}nW9#9R?>JUNCYdLv<4dN2+9WhQj%J1?%|b0;5L{?Xei zL89hR6Lh%CDYVt=@GMy&xa!+FGUBM=Hl3`N#u;W7wPLN7WPy;39J5F ztMJ)$2`clPoEuocF7aK0o#;vp7FLs<5w56Hr~(^jsDsX$Wl*p?1Xf5(VfgAans)kv z_?hEN@=3vqt(fzZ&2Ww)*UEWLY+D6+ZrVxCNdQex4Q4M)YZ9DPyFgCX>?u3p8dZ{L z+fRE^3dq5e_xW7WDp+A$Dh#}O%J$dbDr`$^7tAhwKvwN@6)lpT3Ss@OM8c^D93^su zZNm;JBYoqRL?kFHvt z0B2W>LBX?=WPwQ=`(#TA*zNE>?=eT*g77{W81)oh0teTQ+#h*)_TT;5Zs(+ z$mgq9!xcI%%y|1KQV`*Fx=bw-hZYC0|BOD`cBtGF`~so1ctsvuzWNE~`0f#0hG=N_ zdrd1X%yD|93--Sahvl4t;L&A&9KUNLW|jOVlzR~-S)IUUjF2_@TmDzz9TU%U!BXJX zJTJkx^Z~jdcu2H-S+1b0WCh!&xQ<`o(NAx^0P6I79rlJd()J}iba4A1-J5%sx;=R- z=-HlCyx5E1SHd2oNfwas6{Rj`lF(uKc9A-pDK9YHyR^xJN`Mkjt=UxWcLCcDjdBEXMAChLf>f zC+ehR?j_P$7*FM9n84*1n@E4|ODZuhH>lu`wdlQc3%PPAQ>c9BFMXmPA(~)yNz`^{ z9hOgD3EXFnJ!+gogWYw|hIoj|{q4|U?h<%e>0c^o_M>d^Xm{3j(o5o8HMw+mtBfeJ zd5cieIF;`HmJS`WZj)WVt?+=_4SMwT6q@{cwdm+5bKpM82y%9uf;BhKQOEcbWNnE8 z+*0#m>7tQ%lIK#6ym}5M&a5IDTjd!m$pZX#;Un}UXF!GfM$i;|LFHq)F#q=k;pntn z82dRD6S{BG8KG;1*AFd)iNZ$yY=}djN$D`_Qz-uNDuHnepF!Z#v(Pe0gBmrC70yvg zWjbc+Fq3YyfqX)j&`re$X021E6ZCi<5hurWWbJ|at|`>5p`RqRTrN}6a)s8U&BQtK z8%VD$#K}+cV85XNrCx`iU{Vgej@SXu%09rywK7b`6G>RM;v6W|ET<~Dui^6B1H4ZE z1a9g!lKVAVVNtOHb4s$2{w9U=qqHPrX>)^3G;m;?C)C45uUx_I=NT~Z?tc{hT4?JX z2Xyc8M1u{#$+^>+r1|G%@b_FGw7OSLcD()$v&*JZH{*0c*RnXlC!52Vs@=dI>l{VO z%D+R(8yS#$#gW5HN@@9HdCbbGrMi91_^y9HT{mt6qS`KuHM7QoU#6I9_JVet%_c3M zbKu9X@t{&0EHoP!Np~FlJJYc%0ux3SiSp_rz~Q+AMg$d!0>>tR?54Zq>F_ArsdgQ# zBQCLX`TSFrzLCH|Ee1aR9F9}v?}MX`4DP6XEXX!ogd^KJ`Mh4~spC6(;K)KR1d%Lw z7xh6_Zw{_J#emfwz86^WU8FHw5vM1(39bZH(bj*pwgH*CxI#e+z4`ekB%q2aAI-E? z|9zaOJ@vt*{QML9UI$HF;@N8!uV}2R6-L@Uq75hHQTE~h%m}l@y?tIVb}$jv_7m** zqJvX|+sXGIFX6MgIhkS}Phw}(LW!p=PThWs1};~{x%rcYF||{uQrjisS-hY8x_%Xg ztR@LQ?EFi2rW}DsSM(LOy@^J}aw81y+6xZu2eIwEyXe@%c&gI=M(|Q94p*%kCz6*q zjT1B;fw!~)fWI-Q$|s=*KmWK+=IPAuOn}{lSovf?Sf{_7>UvMZCkn>Uy@}9$)6~R$ z4<#6`Sex}`UX#_=SbjH;9kuZt1{L3$Kr?zbK5tS2?ex1s-PzrE^ggfq7ILIqR-3ur zn@>(|{t5Wko`^)!O#H_iP%}{)qJqc3+h$uva;_ceTz`xfR;r;=d>Xu2SqZf_MCd#} z1ky&_LZ@0o=8Hei#d#MGAJ*QcYHiBse9{3`73x9t@?_}IVo~8_GMMj77H*lQfVSn) z2nA_mL##UpM!GY8JZ5n5M;9{gLE}uf26=3o{f2B?yNwu6VBuBEY-mb6gSz#}M7#a2 zPMF1IEdaZ?&+x6b1IMc00N*boiTk}>aPdVR^je?67c<^~q5M%Q zvT?(EnT6muIScym4c$977}+TPY;X^OW6H~5-?dPb@xKKA3-7U>>?vw!>;X$k9+1X8 zAIrv^^C#zwrC?^oC;Bu^j*;AY4ns$oQUMyk3%?Zh%GYJU-3kEb*i_glbra>E<^l!{}9Kl|B4GdUJ5VUydaIW*QobqMfg}~N6UxQvEtKq zy7J9gxU%L0Ez(UQn_~0hwB-W@_TEe6?Nbs-aaJN}<^A72t71B%(il#!S%9H;M?soi zIgRo^3^_U{*%rQMEy?@8Nh*Q3f%kv2^jqkFRU?fWki%p53fPWuws32W4EB4Efvlf4 zsQG&&(R(q6){mrOw;QwJ&NnHPlYdVXw4CV{EnOygnF$jgU?JSiePb`gwxjioGlGTM zq2yk3y@Gan5~L3q!>p-&@PGdGOU^;0)hf&A&Pc^O1^J>1&neJ$JP`YYA0S<&i~M}u z4u|vP!miz;LKCSXFdS&W$9q1&kr`n$t@{N#*+afe=HPpHBy8d5?MmX}D1pUKcL?%V zoEOyo=qE$h^k7}X8c05uj}22;YV>{x-eldx z_H1X8t6onhX*YuH+(@EY#%maSkM&maap;~@Dyn*<3lhB+3geQD=voz7NLr@!XBRi zp-p`za(Vj=V8a1UxM9E3j|s1YLK)(2V&MA5sodadlV>~hz6eVMO?ZC4CAnv{ z4K#L0l8*uTck5s%@f!ScJPn8L2cmv;(ah4T z(WHs`LSF5FXkY=~H{JGHR{uK(kA5KcCR5uv{DIqyAvmbJ5_ojCXu!{>bi?=WxaQ0)k;Gt;V8r(xQjoSsF!J&+!4W$zI-%e^ z85ryftI^J*ZM)3KI%H|%UPY)b@@Bu~4)8tkUWJ0{w9rglbDQv(4BD#nl8oPZi@L4q zF3Hz?b5mmW2ul2yz`;+__?Yi-YZP#0{qKBX*OgGQPFoVjMXaEDYX?Qjx{{|i{xKCC zO%10z%byE&AGsi!m6L=nlb(^(8!zQEFUNzH(;^7^^hP+%?1S*=;{bYJ>IyxW(?I67{KoeG=Z* zAkZ!s#&$326gX{M0k@NP3tPEC@^}TZ>&6`wZ`iy6F3v0?{fWV(_I*g1rjtDVo|{DU zaO}fw_*BST(@2km=+m0+TAFbsLAcMs9CjpL5WD8xCuO}4sk;AS zYI*$(q?-mq`axa#pScEjWW?gntG^*c^$WXLeEHQ9(hWIc$M!Kj8&1^n`^6+b{ zB2x*Od+x%n*+<~?1aqe9oed_9K173K`XS!-4ZRjDhBc#H=qP(*>ZI&L^WS>F1*IhH z|Gt8&;rBJ=U5$c3>Aj4_n=;#u0~3U|`l9jdqHvg1E5+RpUJm)?KS{3P4fV_2DTh}B89r#;8d)5zv(xNrUj z*PpRr7I{SD=b2i}(&uu_=i%X)b7da$D}~oXTVKMU93`yfRyt8~Asm=LDA0T-i|1-j zlie}#bi>Xz^6vN^y6j0H7{wZ5&QPw0M?o^u!VFjwU^; zXa|}@wRC2#1Fg}shB?PJD7aS|!l+Rpblw?z{F14R=dy>Zr~W`4(`1Da|Gh=-yTE@}?LJoAgV zaeOj;{eg`cPA4jAL^#}BDM<0p6oPo>8-XV7swCd2rWHlgLo*R*Mx33GU)F>cQN#=72% z=AXrGXzTQfE}T1pN&UACT}Jz(I8sEPy`9JmzAOM|(V3ay2N#3I6gf<~JDL$rY6Yt% zcY12dPx@-!U$*c13u=;*0V<#7lWqPB8I^TQP&m#D^osdB(yUk1CCkxfo@gv;tF2|8 zm0lEF&pF3jExttUxWB@iIG6T}RcE^PeuC*$^>pm`dHh{*2kL*R5#{n4$cOkNjN{0D zLEbnm=HYZFu=e$ZIj$w-DOF{z?kd1A$;He9BZlYMuA~xM&!6H~)4~CH59p)^xF-Yu z30EKB@Y0NhBv<=~ZRF4xX8p<};h^y>QW4Gf0TqA2zm88-_(2(6-v?l^QVt|MY^LYg znaEs~L%H}2*t6;dq#az#jZr=W^|HaB#N5Z4ocGknQJ33xo}r~YudngS9M0u)thg}D zh)q~+#I&XKLs+?m&F-77j6~LdB75@(sOD2je;k!$C!EN~#vNvOL^Pavyw#iuh+l-a zPb|ao>!XG2I|uOwmq#%6AcvC4v1k+#2e~6wqLQ>b;d42%s~54xF2!hj6E%X->~S^jbcW3ylqw(?!e-p&TPAaym= z%$*EHC7y6?L=6_~3Bb}#_})1czI5-!*(!M;$UF|JGF>34 z8HYFRn(3gsGEB_jcSar5#b0WM*xl|2MZ8LL#pp12W(5dol`Cch2SbE~3>H3Zpc~fQ zf!0<2c&Vej$iO!r?i=yX0+TW0KKMyPNA+XD@=X5Om7YUOSIovK zr^Dg(^S#*Bt${HCf9SM$FRXkz9J1ImWTu*_?U}P@=q2Z0q$bY@eOEjy+q*Ute)HLe zI!S54w~O~?4mqU?PVCz*IBGxzn|-&48t)ae;XnD^S4thU?fqr29g4&3#PMji?T z-zGMN9qi97TS>vGQ=;zIO4Pqc0_NMDgVk0>IKgDRf`d&f1p0l0-M5{1rinQ?wxrnl z>~x0wUA8c?`3?9LmWSP_*bE!;wQzgrVzO|m3hZ2&kGo`y(DLv9I64n^D&Iej%RY#b zWMm{MtE`N3?$6Vtq9W23+N8auBJ&s#vQkE}ii{HHxj%;@r9q^UQob~mN|AQI=lcBz z=eq9azRrDr?)Urk`a#C7>V+k<7UQj6SMX!^18FknUDTZ`G)YT`%|Ywo+o|U@Sxhx? zoAa6EK_=&g4uzu*krc#YJF)ZvMROO`MOP{gKfi*YTZ`)SkGTU67ku{$Am@J0v zFJ97H*92r06UX{HIWSHMvaA%J<^3M~msBApOC0^2%A8d2+Z6mTc1o&AV60MN4}q z>x~4hX?4iIdeOwQahKq%x-R(b+lj$(Rs5H3cQGX723R)7!kMWb@szJRbCmpo45dM+ zwbAA}{%Yc9({06Wl@%PLsuxT)cVnGVISvV@GYT68ViRr#^jl4eiOr4@$eenMYuBp? zmbw`LSz$*TCvU`zE3Mf5NDjGcEy;@GyEv?|H zk1d*cXTzs2bHGjIYR#OnQp~uD4m7@y&9AhHfFef&l#V|Oau0kU<@H`}hVqV1s+|q} z54~Yg^DFv1wi*6OMUn=o6QnD9HrkB#gP^7)8ZhGk(NMW3C>tFa84{RFHY{98%=5*h zV`eBcfD9%d5<{u)3WBPS;Nj6u+TNBAcW;dptlOf3&CB^18f}4XNe5wH`h0<+NFAXy z5LG_w;Ld58;@1344@%F$z^mow5JBrm!); zna()dLN_dbD*WmCi9Oe^je$p+qwY+1rOy9kA*o9mGpm<_-sTlV?o=AxJy9LH1}CuN zuGnIzrzLe|hRFmE8Lr>)iCo4hY}Pv)bQ?}0bM(W>>v5N^|yBs)3-l%0dn z<4`iYcgDl&}Y)#AwQrE)q zZzrQ@8X_g%i0RQlzl`YYrKE#+`DVLtgXnuyE@_&u-6aS30_PykG{4RQG_ z5;0?7g<}xYr zKU$XZD&0Hl**b>22((?OMe2dWUd1qmB|Een)h@n>7u8e6(L* zogpt3r-UoAtAzO{yx0+v|B)@*Hsj#C96HcvLITp)32nb>65+nND6w2OYC%L8_y4qv z#%GR#;TbR4NALfN7XRuM)$0t%U&dzP)j0-epZ8eb*-FT!mq!TQCt3?tubpC3IL37E zIXm|LnK|$$?*a9B`-oIb^@sVl4`I6jSz0j(zh$m&{@69NO<)^25z8Fr1UHHeh9!>`~ldaW~uwGJyFJ1ioJ zm;FyNd+$M>f}aERtCoif*v<({)Hr|MZ4JJMye_4Q^b)S;pZPi5XO*Z}IdXK6-w2S&N(b+-!UR=#TncHj! z=P^$#sOHtDTqFKhj}hzZTX0=nyGZs$bJWGP-}pzbAEj@dZc>A_|LAqDN025sz@{5I z;^zl7qUW}PnmS^OI?4IuIGalD+bIZ+`4+N^hf{eTKi%mH@FA@vuz#Ds(dhj&3KC$t~oMtuK>5D-E(Ob8+(vX|d9{rL@h|1lx=C9oXlb zt9|V;y8ggf8dp4q%zk{3*chwhvy}l%N{|xc-`qz$+syIxf*|;kwTzr)FY)(t?@`;m zPT|vUTd>K!3M;pC!m8m-IHfFz>@s{zpUm4$4f^Im?!?dd{^=QTP|{-F4aXCyRVk#& zaUHxf=4OsIU+F8y&CGdoX(lu(1*V3Vf<*Z+Sd4C=3ePXXpTTfq;-ZI3*9CyokS``5 zcfe_5M>B3OFY*2FzoF9tjK#Z(6~q%_zJRbPnK?T$pLy;YCjMZNh%N`ZaGueACSb;7 z^o%t_9g!le3$ljr{>`xT*i<;qtOpy#K<3+OmN1Stv1da$-nqrO(&h$>4_zG3EOm%u zw(a^$^)6S6zu2y#b%pyF{SO7?)4@#fgb5Wm`Orx=b+QEGzKH9IpFY48{81u5LLC@y zV>R$nT_@Jh-O9vujbnPvgTd^Kz1Skso4N8KN<3O;7jrh~BeqJ*K-tqJVwK)0z^n5H zD!55!)Te=;@=e?tJVE@d@d;}&Dp-6k@G7I4^o_pTttpNg%wVQxS73@}9lAyJ@=RIE z>b4}243%u&wNf(}AFu{`j$aZEGeYE3GphOL8>wBNPfps8!V6BWGhs76HaapQjFy+obW@RtnP+1{8KV~5eG}h8p`9UPNgPR#l z7DfDf8A>Ob+KOZ@n2~~@Jo;cDjxIF*N#tJ{V&GOW&9_Q}`46+`yu;_&`SMjnY0F>w z;^hpsMfWgRL}t_R{10@oa+@$R?zyOWiwDnZu>>lLccG=b1_^gcrAiyBu|Mh^)G={z z-${?{-0s0IXgq`Kf2h$-@(si$d^VkU=?|T9(~o9)Dj{of;{UVqbN1ON)<*LAQyJDo zHqg}@nxO8;f9Sum5K^qos6pi(_*EDRKStFNt??}DpLhqt?wEkTPbtlDPv`Ms9@E`- z6(RV1tKjdeR*)235&FFfgMsmdBK+G*@2>N~GJ_-dQd))V2@7ST?bo7uyer(hpURVe zw1xATou?}$#-YdksnBkDT%^CYg1CD;E7)=toi;X`fovj;8DXff$`#G;iB0~$la9rC_S?^s_F46_GL>^R59H}cH{-J zzx0wwRTAfrJvS))k)~fptBvVw!3fK|9lb=9`$yR6_FSla_&Qx4w*vpT=GR!*Zh*h~ zf7#wsPGF#6MV_Ul(32rs1yV_ugij7~>ndpnUzHb<5H&m4x^OrBlY0chpE$wAa3O7; z`ICHeoD331(#U`Hnk`%wFWMluF1+N=3M~$tkD6YYOlCcpOQyYyg3X7y_pQozWRd0z zfo<7mTGnKNN5`|m?cbwlMOPv3JpYUEd3hp#L3tN@>v;|@O*u@?qjwQKemaSotN4oc z9N;;-PSmK%B)7<-5wowZ(M?qUls8rs-pKfaSsiJ!@XMoZ2) z|AK`2iG?Lgl)z+MHW~f>Cb@lb3@j_oqZuRia9M#EDB##Q^>LBp^;9!RcR0!Wa z3+$*{3!}kU6yzK;yQJQ1ZtZRn*-s}NukTB)5vI>@`y_45j9YYs?DP#SX{2(pzBx&43@ zINuYw%b1|jZL{i4bA$QDj&XvD4bjl(S3|yYIl+*C5OS()Yt4eYYIO943emXxj?nLW zoHfswEV6xjpA|W^3H}&Nr5mU16Xm&2hth`0te0P^VEVxTI#4%{-|1H_9G$loR1!5Q zwxRHEunFON7}ChQ{|V>J*aKfa#?y@gDbyMDk2NSd2DOv4;C-&^rQctkv!CToi(cAZ zfSBf35;Q_h&>rJTOaCSb0*b~co;w@>+JZ}hsb%M2!n9>H+W!)v*ZDA^L4szUn?eoX zw!m~-I;d`wg0k_~VV_e04)#1D%Z%DZb3T3}kL?G@u%0?m-oOO6#$$3F+jpQJOyIH8^>tuG>tYI8-72}}5+jR?#OsliRht!VG1pQ0b{Jm}Ur zU&;L0ZGv&XmEc703Rr(<1|c~z0v~lL2pEwCy<;Rv@9;8sVtAa+e{m7ky)J^nwlBbz0P=e z;2)XdtOsdl6fy2wKmSVH5!k=}CnSDRA$JeH6b!Ovkf>Bw9hrWHT6U^~wDoixwf+gU zyq82xPQIb9QXRp>d}j5dEPYZsDh(XF-7$2qlpZ=$5w*X25A1JlCHq31@k~tsO>fu; z-}IbugFXWGuqvsQx79TcZl3svvQy5|!x5i_<4;FG;Duq7SMu%w;SiQvC_E5tG+^hFTxPQB4%(Ll}>7L&JKCPWmcZnVhPVENK_bOhB zPc4pFs*BFt{w=jpgplZE==>y=7_D>?+I-A}YfGe9f4Pt-^Bu40)S>0r-)e@*o_#=U z&fyW<2VbxI@COp)>FupcV27?MTOH_!2fzMDH6;}p)we0U>E4wBoe!O;cHI$fc_gBv zRukk;xeZTC#nAUw2HO|L!_!?tObc`7%f6mYJ`NA@c6%t&V|g0F%5ewCmaThnTkUKt zjg}{gsj0Yh&p~`5yb8I~CHOyVEZ7TM6NrqqGwv>Nq{DeT;qKIPbhexeJ`|Plw$HRg zkJkOdjL6qC>8GMVYG}fxmm@~vgEf+9(E40nu46Hqsx(M%7&^cPRqOI3 z6fERT&&yy*+HE?#I+$wx`CI+CPK7+NmyPc1yT@z)w-`m~&!ZMw#Zj#=6mE-bR?!25NKT@kA4U6Mr zsjY^PtoUIBU#*jcmot|UjVlu^+aD(g)yFK3+Okt7D$7o#rg(d}KzUiIK)YiiD8fnX z9UsZlP&0-jE4pF+b?$BP*D*BT7ao(EkV6grTOk~==Qe8JjmHhylZ1a=yx4_P?t&9J z1ZV861+|O3V8U#Ie@4Eb4_@aG&xN^G&cOv};v|hSVJG3|=INL?_BigaF2I*NHt{mE zylAkE46OL?R@CQlr`ZSpJ>o6Sxfm7TZ31)i48dA_lKT1t!i#}g)Z^}pmj1ip_w8<4 z-yVxmJsRMav<34H*TU^prX+9pG9CT84o4IRkVU;EsLweu#;K(O=uN>01qJcqghJHM zzJcG$gM!o(}e3V>i@zD!w$oBXYZ$NW5r~sTUz6xM#b@+wKiBy+DI_@;xt>l{ zEZl!sLMP_+u#w@?)Zg0$ZX`_s@#LvQBhrl)zczs4Rg?y{2k@qrA$<@$8qFO4h$?ND zuq%8u(P6X{c6|Lr){pduC!0PCUd=4W?Wwbv^A5h)c=9_{eYb!tkEn(D-JHuORK%(u z`3}vVMVQn05Hp`w5xtE8aQELtbdUAI*g9oYK5-gM+>hgr+z!%lK?1VM`=CvAD+zJm zP5N3(SX@P+S7Sf))s4okB{DD&co?^|Nio5`6U5Ccd+5X?<1nCX5SB{2<0nriM!i%8 zwhyX{uTBhxV>tzaolOY(A8m2Lv_)da?;mihNfZuUh#<>9Six>jWjZ@H5{~YiB<@(U zj+L2v9^1upG5PUUe%aAxu-Lwr9Ui?IUrAeVEVp=!9|$KOrKChIH*aIFlUNw0jSi?TO1qu{LlS>gV{Y%1GS88t7>4TFu+1;evH2s!To>pt5ROeb1`^Q)Jloju;5 zIrIJbrQTD8d)pS1&0*JhRHv2x)={7Ws~}Kt{zPq5i@BNK`=~(o)F|gw=BS^^eFHUa zbnTODVXl`IFDiKvZ*j(L61#wqX5kKuZeIaWL&oTQ&6Qph*^wXK3N*td3~O_Zc@1Zd z)Az4u!&&|wqQ1SBM+{D|lkVEFYj!Cjoe@e+p5*ao`=+zcoi<`y?R7eSwFhd9&yP~H zYZT60eJ-M?<1q=#Qh`N{=Sk*TX`H)Sk-XeCOs>ar4Bts};mPVkJDVlpaLP@NN1N}F zL@gn$_o}DOE@3R+Zw)Ufox#ZQ+W5ZvbG72gIAU~sBSge;oxxk~QJ+3OqKoBKqnrX? zuq0y+{GIJfJ%eVzI;mLN$Xm}JaY2IJ=yr9w2%W=uA2#=VBX{)FnD;mN zj9PjH?sd};iDri3WV->V?kvOP;yA zvFv&u)to;cZc84=hE6r|^sEtMesdXqJ+c~YZ)cF8Q_f5Xe*!nh|Azz5O^NpRNmQh) zBY3j5yZT^74e*y+pndHr$a*M;y0@m_tYQmhGA+CGH zLs-lGj!6*=#MHr?Q1}0r26=N_||Dl8sZ``vuLf#z6vkM}91*$LtZA(0 z@wHasfh+6aP{uW3@y`crJx+3P9u!&{7eUra{tkW;b7DCji}}R;C=G? z!7l$iNW7Kf=_}*AU?HeP={s4VyH}Uos58S4KC57}!c4^x+mrBj#Bx+I{|otkZdZ>L zPJ>e`y>R=;c~H7C7#H60f#JW$ffSd5%2+#eJtW0s)YTw6SDU!By(Z^h?&PWb^TzY7 zoYAn^6}|a$*yNOQs#N}*9CSjwam@#dT~nc4c{XXE_^4)`WIin2vloAlza=;@_>G>l zlBE52?~>I+Sv32^l^W-|@@R?7HXf0npjjt@o^Myf-V?F-RNx{wd$pcaY(GLiRvU}n z_ly@*Pl_ekZl$E(YXq*Cb`U0Bu*VJW*FwL)Jy?lbsPg{#k@ZGwG4i$To zdov>G^o4PPtq*6zvsvfJzJzCj8&!zCRR#1_gFQ_0*95A25=yTZVziMAPI&*DJ*A#Q z+YEMKUt3`Hjbq`0IrqM@Gg<;`ii+IG>7P4*IW`RpPMC$dQ1;{l8T4qU21PCG_Knq;W`C0WW_3x0>{ND?*n>RoI}B&* znuXKOm4agm_op*?;;s}p?`lV5p8frHR1@Ey!HhaLKh?*afVxlJP1_SS3?9uF{;H?{tTC4}ne|8(&Pmds>r^ciFEbe|@ z8jGc&EmTpb9<`%xkp7y7@IXNo{P-1upO55mOkxFbuF%90-?bbXJnF!6W)!MisbF6z z-iLzoVf5De)wHZa1W%`S2$lF_@${Ng4#!?|t`dn*UgF_=7(YD;W9m2I+?|uqV9|B> zJuMg)&wdF3dI^~AbQZqN9>HAi3&C$!PJ`L<44#p;CR1|20Dn!GjdyoiGm!NW3`S{) z4V)Wr#RhpAfC(U7ph^lB{Q;e!c2sya5862XfA8{<%&x;mD_ zN`Dh(W{Vmv-7^dMoh#w+leyRwFb&|)AU?LbkDqkI@a4-#F!G%`lX$S0eErWG?>(N3 z4~n0I#I3OJFX{Z4SXZ_p7i~tj-U;V1tvA zrEs@)1YNMCf<0_lPhvl1(^H(E`No%cP3tIwCCj5-&Iwvqa~Wn; zhk(|zD0uj-a8)!G`C6y7q(NB!tt9l)+*x6P0NHvI=RF^QkTB@ zFqX<{M=FSN&y#|RYI<;1Gw+hjVUbsKIcv`4EB9=SBDg(VC=nk*ci4|%jeh8pvGtL} z<8TCTc}dvS$oMqsss4-=s4oy5eyA_7iYRBVU9e<_KYkLtZHg1vXd014`ceunrDkwk zOqQrm`$opf?Iy~;4#G+Lj>56u%~|SQE3%%f+L=C**6L1=YjV`X|RvXKbK36+3jp#Bae9zl#XsC z{?KFln8Y+yVy$HXs{f0_qPJ3TM`Nsb>A^)f)H)h7)YIv*U5DA3HxGc>&Nw)@yB2z1 z?-xnmvm{DiWngsKK`c3vjc>1gC->(aLGAcj(sAV#n1d1-6mFn_|P#PG7fOQus4sOoPm;yBVo4w5ws zpzi5RDDImL^R7Q9<(Nbk3D45?W?T>S&oUl4Tg0yWvyrE;-JPUrucv?fW`b1CDPf?( zK8}AE1%vv}X!74HLcZi_(l(q#r}d42Gc!`yT`$JM&gZ>yXWmZ5MzaATwP6*m-5^QK z1}@MM6%U2KrY{!uz3(6{>wnV_-*nA$)xqm+Ue}{d-SJlv*5Q^ zkRY#Xw=hI6l?Z2SB<8oYL1JdN&B?-~%bM>`&>HEH7+b*Qcz??f6NB+MatlkYn>b=$ zU@1+X_Kv=4b%uzm#&%`?B{jt-g*?rDx8=ubtcTRAhtOnc5-S_nLhja|h*Ej2M{jR@ z1haJ+VO{(OczQ1eX>TIk*AqwPy7J+gxfhh&{7P+C{l^|p)}?7NLZR8o`y@G3g7GU; znI6Vi!<0}}a?Zd2V)p||CMtrNya_JcoB_-1+==h_IBc1wDY)HX0+OXS$^QFV;=1z< z4*xhdn*`V0HF}#ym-ZCFRs(5#b2*!O{r47^3_K^#GFtJG&t~$-CCwp!!+OD6Vr#4G z(M@OBQ^D95wlM0U8(5aiMWJC131u_k_XQ3_66}P3PMc%fUr9l>Zz+*^K8SHWcBt;U zhkq(o1wQMlLi`5(Hc>mG^_?X-UsR{}(^MewYc5@!U_s_|$Y2hHJs3lJLI}gPP&)A@|bx^q8T`>3H zV)9{G3>NJBN`1<+p_A(u1zuOc$}pbTDDDb48Qa6%lwkgj?He)RydHh{M_N2(jWW*j zZ6k)QMQ}cQJ(mA{0zV{5>G}{8s=MeabT&3X@fCAexpO-6t05LIq-WrUjq`DwQ8?uJ zoI=;g2yo)uZpHFhWUS?XFe0xT3g5j0!@V9bb<}s%omj$oye;sBuNpDzmBl-SZIB!^ zPX6cQEimWjPWZLOgpIg)mYsg~FLa)qgrcHQ!TvL!q3xY9)84m+i3{z*S2G$=-sT;A zXs!d*L*9(6^c8BtHO-mYVYs359E7$H;kw~GklfY;WrcjQWvGWM4M~V7kz5=jfhu$4nDQ1QJU@Gy_}j)Q;8Wp2{GEGoe6W}w+8Zf2aivS-Vs;s? zN4XHN7ejn$3C-8rPkfwv1qw$gjmm#a3Or3b?W}_82)6t4m(J zH4$a;HNos~6S0Uq&MxwN14s6b63^GThD$8J36^V%AcXVZL~S|Fu@NSb{`db)MQ5kehR6U&7uF5KJ2!<{9{!*RLZg$BAfpFyZgVfaj8f)?R z7Cg}V!Fy-52i_`uMc23vP_O(6%9EvVOq3IUAXgu!N(aMUbf$k-jHU+`ofBo*N}=r! z9cXdf4BNZnU|xC{_AH%=?h_WlR_ko8V>wKwMF-ISy)Q(rljJb3d?G!cHwDEj+$yX% zw%7XPAV@0uLpA(9z+`St)FZ|DVZU+A_=h(rJv16CM|`H?@!_!KZzz>6V2QJdkglA6 z9#`#+f_&KdC zQ7hj@Jn%*Wr@AJZJ9wGHb0`uM-}0Ca|V2C`Al!G7!7u9zT%!|M$FFncL>8d z%oNpzVd|F%7&h*vu3JCS@9qa^*QGM3vG|6=r_<@56D8~xk67kh{YN_GVgPBUAi;0)%r|Zg{G?)udGcyTZu&&=qN3~kHMMd~Vn-D-TJznw>u zSmSb_>dwo1nwuxS{qY%}{<9M?I2Rrv*IviX~ z8(SMe^tuG>hNIcWO}^NgGDyE3`bO8ysDW>@&QsIAI5@*MLBqcb!3KVUuXUC%IbsT( z`88L>9CRR4-dIOW9W1K$`)J+qKXCig20T3 z3)L>MuaO}yN|-6b3OFfEpp~!6#m>F>lqo{bKKH0E&?=6_=@N4pj^;>YwC1bw#pG8;gKfA$w&qv^_ zS^@J+-;=GW-Vn4y&HB!PMEb`&489NtviW=oX%A|I-v>Ci4xb^aTe&WYbq(?w@@wAT z&%;^y*Qn8`0eUr#k`t}{IJQ*@S8q+maTWe}=v@uU(ZBGKyHbkQ(>d+Nq z#!m^UhS?Hli9s#r-#l^$pw5^XJ-(lOOjy8NcCjJ0EkDs@^(dI3uoCCRj%UpM-I>XC z3^QD?6_3Ok(n(bcFg+`WI?9&f=vOw(+#gc#D=r?_MoLhPp^dzO#h=-*FlF*6$Au*4 zej`C%Tpna&VTDofVRVoPr>o^N$lA_cE}u9R_xqjZ)^(e(XU8D1x#LXZdeiAtyAd>~ zNQND;T7F1yGM{6Y!NwX+GEQe`flKcxv7t1HYq)catqU{qsa}KsOHb_gtnA zHY;P{7?&!#fn#K=3<{>zJr`+m-n;1wpNsr$oIzG=JX5(W8jlVBA@wJ231sJG2tLWm zquKWzU@n-A?pxonsgGXJpkI-MnJRCWoN=yvtJNz{c*JZ>=$$3kJ3e>QgLHe;g0CXR>a z4zU^UXhLNu`|GiYYO80`B*h%iw<;7*x8gJ7jC06Q?eVPSIx{#N{t-Rz@(I5q8dubQ z#hL>p#PR!cd{Zt(e>&TMj7~H7)+FJR+dt6dcNWdB2m=GhhXSdNrC_)A4D9SaK-3C{ zp|fra8lH=z&2!zkOwuX5)TRSVBgZ3_Rnd)nYdmZh3mkNfX(;D9vpkLk`aK(0OmqVM zIc3z^ItX2c?ch$&K@2zQgP}ERId=PbQrvtBmtNa~qm}fSi8pOUOXjrm_1_)F^aE$m z-XR|)#y^6i%o%%GOR#yE0H>>J;HFnK99nyaJ+#k_ zj@!PJ^yLS$p^}pseyEr@T}k6QQf)+>whM|^U%;ys3!LVNCD(uA4QuYBrlUvDzZyfLEWZy}eEto4>P0Yk7xhrHYI3R{}g*n@RUC z(1-ogZQ*aIFFd{x>tI!K1E<%>FgH(3!J+-?kmY$Dr4B`r(b|__htgjVFOS4C^GtB6 z<0@+PCqhssv6jDkP?<3stq<8*oX6mW3rymC%&QL+K%aI4OfGvVntyvD9JK*V7$GGd z4qphvpRUjk{?+8{unF6+B#{_Z#zFxe#wNKlL>WWzg{d54U>gNDx>>>a1HtfR*(N*@ zr_FJKU7)e1igfqC!8FlpHU@>nEO4xY(wh?EmFNstd^mTbLLhsoH5HbnKOrB&+xhX{ zjkM@^~BR1|0&_Yh&H<5nmZ^Mr`Xr7nT_** z%&PG!lf=EJ?tphh6wc@@gQ0awH2S@V^ASqNP_<~u$H@zK<*(KypowgM%I_pp28X6-#!JIL0ziYAV7##^OpV3K%)K+QA@h31JQxW`|R+)%@=aGi+DpO1q{ z^T(q1sZ~+Oj>tiTM*zrJ27;v7b&^wCKz;mv%Aflcg=7C%u)D21aj9z}IW=-6{nbst zr)w;4Q=Tr&ar31kia)WB_b#G~Hc4aaX-OPc8cIep8;Nk#6IPGw0cvzs@aWo7yc8ON z%CEzy)qV%i)-#2bKG#U?A(yH2qXf8pxg?x%=P-=OZ{lXkvxsGrDL6byhy8}*c{V{J z!J((Wgfkwb3b*F*1;H6Jz_Q>ByLe5WQ1@0TD89%9zmI!B(Jz@TkP?yW8Xm$QyA`Q- zXfQCZFY@??59z1c@zh<)om8%G5uEHS#-^4+Hdk^%^vnDof=!w{^5wmS;MRrdtiF9) z_4WeFo1UKz=Nm)8JH?2^7OKFj*{5mY)HGJ*_F~}oFUD@U_2}gKNdE7d<*1&p9F&)z zqTU||L>H< zjrjumv(s?yiU>M4u9}}TCPjR3yR-PjP%f-nxg3_AOc#WiCZKuE8r0KohpEaT;$$xG z{&bq0xL-08o6Q%)+xG9U{@HifdHWNvq4rGs_ZnimUkx-im4WAQ7r7p3!f2PCg#)Le zFxX-eiVsy#D}97H9zU@-qz8@GuMywWoF=xflOs8^mNC++! zv}TGLlf2tsY^=u3I1U*yH|KtZ)bcbOul*NoXDW-O{kF3c?v&xAoQdLnOfz1V*aEHV zE>MXCWvtMY!X26;6y_#}BEOdM#HVv;mD6GCdFeYb;E9gV@XV-u?@^p7zfhvFswqP|AO zpyhCjAmDF%)Z@)7pbqqT!}S%siQ7hs?|)6k>Yn2YiWemypnDu`GV=o|wFk6w%(I${ z4ogAZ;Q>$PjWa0Te^0EP3`w_=J8Uzlk$;gE2*)_4%P83%I<bVc((nHh3cLFwZ z{&)4u(O3WDJOWoa|N8>tcxrXx4msVvLh#Gv0iE=rnQj>MjWRC+L1f*>_S-h`4aB$T zn@eMaQ7Hj*!a6V5%XOIi4_%eNwQVAPx$#Rl(r7FF!4HN`s}7oyZN<*tU?);;j(|DR zAIRL-PLWf#3=8($&J_85NQW`AtRO3SIdxl@TD{J3nV|E}@9MleCm}HUg}_1~2gaW4 zqbn=!5sMoca9Pq2r@#J!{~ehFbk|Mxd}#shHZH}3+iiGNpF^>%-<@anbQJGil19x@ zr4_W*T$)IGIPxkK3vpxqYa%y}gFk#c46h|elcySscr}ec-kp#TFV(B!Z7^AiH`(7c zk$d%E=w}tnxvt3RB1dq&c1QRjL>85*{cv_-7)_c`3`<|d^0bzoyZ$gomK@-%l>%-3FRnPrx(F6iZADm@y}f znWJ-4vAg&N{Me(&WKELBI)~9XrXxg@d9GUcsCBV?O|vWS#3C&in^OkntEVs}FIS>h zS0Z#o+hOO4(N|xw-|6ie>Y$gXMAfDQK&E8^UNwEepZ_sWutI#8N}oN*Hg*zRUneWp zuOk@!2Z_b5M$YH=9MvOtz^T*}Jied@+;-{0BRU0lrn}&#rmL{O$c`zsnGNcu+u<(H z25!BXL}Lw9YXp%xaId~cz(1^wGfU%ec%=hQ{FNf020gg;u`T)hD-<*x`f=n#9vC|+ zz}ffj`DYjA!ka1GIBk$)UM{kM-J|Tu4|)$gW8M<~$`*L6Y)Njs&|=!JOVCF;GBD}r z6}Z%K7IG5D(~JKO(FrrkX}d?q?4tf`9OT}khj;c>UpN+p0n~%6YfYldHeQ5< zm-@)tHEKNnjozZ=2@{#*F9B%!=_A!>=6-)f0iKR6U>_+?7q5IZ0kw|*f{6Bc%zsbg ziQfx8#1wIN$j4S-G%g9JY;ghguu-_`ct3m{t3|Bdf2FUR=b@$kV`|)a0FL~gj1|+n z;cLM}+I`j=`hRXD-Qj9@HIQSa4@l9A65hPAk8V?0)hBGzO zi3h0HmE-xbe+~$1-)0GZn)r~{^KKK@%Wvu2W4S`FY6)ST(O8%hxfp}~OCp*tCxXYW z-MDaOIE<=jBLP0!G2L|mwJ_PhTQu@A9dDpTp0-}4X@#@U{c9ZU*qBLf%n;-5kA65u zZ8`81WifxMEu8As5ET>&QCbS+AGOTI;3s~hIc5aSx?DzwIlt}{wE>8k83t72CuOGe zk&P|ex&CHlRQ-gt%1BG4tv#9kxA8@=o$nLc?WBjk| zy6Sj9hJIId#<*)2G5Ps3b|`TkE2v4QKG#a9OwkjX%H7TR*1zb&Rk_gjH<1P>*%j~}-QPmS-mRp8Zd^~NbGqPDVmkTx z6HsX)HTR}fhp9W)v+1&R051=i);c}LRL2wx@10qMO%zt|X%1zU>+k9Sq_`h&*v zI_?b!e)lU9qb@71gK302RbGjXS zSMzyNu^@NE9~#hgx<*wun*U|vGtu0NH-aNvht@<A4Z9=(Afn{@4ghYcXtS$Jvv4ustf4E%og%sxTs2IK@l-oY(k!W4+P$x zC{`nkFDzTP1a5||6!ib>B3+tK*#!q(MO8Koco<(HdEVhf0$plW?3Jh1Ogag!wV~$R z{^|*O&t6H9QMmD+7AD6@!O&7!TtD=i^@&)>yRp;H`o2pxk9T}4>7DkKR50O0M|hWQ zcWEXI@@;9n-eh=uE0@M;aV*CD!8M0vCMcJjLlwv}Cp=&AqFJ zDJNC9uHr+gIm!~=UVBJ=wX|ru(j7W2KSR*uI2H8zlSRor7f4C)eR}rzd->hWHKLv- zg(sxW3STf1|KsR9{IPofKQ0;fQQ4KfDv_)x+~<1VNF^0YDQ&Ar8cI7t-~Pco=UHc8*`s`pWGa0{JEyK7ThC7d7w^SKEi7rl*eg4aT}svg|icV6%)`BOvY=lgh-=QIB3$ZOW^$a*GgC?v{H zupU2JQVn+}-{PFh&4vCbP4Y0(KB{llEHZg<0j#+uhmCfa;A@G8SV1J0wCiq#D{;#N z-EMhcenf#;d1)SaYgeH6b;c0aJAyvnY(+XsxvV~056d4mfE#>~~?dwA;_chI`*W)>Xof~ADH*crBZ z5cK*cv-bOWGLNGWL#Azk!Ydn~%FmndU+KWIwDa`zj+1QSeRY<1`y=-3W$ThMc0=ja zQ)J$Fkk!7Z|Byt6H}aqD3$iYbOqjx1_$`^pU+i8Tb!lZNW9Z7KKan_2$G#3mFAIT) zwgi0tbe0_7XGWA(aY%530DCSMg`7q=5)!XPO55F-tTnyVjAOR+M5isu(c+V9JLV7v z-}iz_kK;I~Lm%0`dyDRF)PY-0cX6o~LLnN$9(%ze{I64nkd>A4OZ?(#^L%BpdxHjg z$AbnD6FSX>Gz82k(N?lbX@ncBR&O6Q2-PGhh=l#Q#;=D~fXGmySuCMh{- z2+^N{Np9~^qWn8Un8z%JTMJooGSP(B@gyI)eocp+>G`m6?tCOZMaT>UFA!yGP@X3i z?$C?LMg0;m4r_qBk5|(_?>%Bmvd`nKfvF^Bq#h>RcA&>cJ5lodZ7^rOZC1jhJkdpQQ^zXzuV2CL?*t42U$Q9#g12v#D{&CfMrOCIv z5Af=WIxHln$HQO>$wN^ppml$u)>-F~(ZYw~&)tt0~pK`ABiOa2M;T4P9Xy zY5l&_05wvymb?Y^bKPt zG3ay#l44y8Fj8!0)x@_@lNKuw3u-CE*BFz`jz!FdzZyt+b9F}Z4;j9!aUa?>a|*q7 z{arNms49-#bq*|orO37{8Yvu(M2EA>;3hItd8oPvYqY76CDs}wF!dj^U*~s&zt&;0 zdtev4URizS&tmR@WqIin`KR&8tJ2U_cbr5jdg4R12k;)A z9zHew1G;}nkrdXoqvNZ?NU!yJJoj`h+5IRDj#aH8p4P=s`otJQ(`|{O)=k*IOB<}d zhSo1zBuggS`3O?r5dLbsfDKxN!5RNxN~yho1$uDQ-Df|vp10=0n=gesK_v^)yD1C~U9uJ^(^+Iww(O&+mTfePBcUxP8cg9|7gK8}{UbBl7?K#7muS`RQ zABU+W<|mlEM~Y+t++&JgrUeYY=UrqaH!b|>U!ppPEXNrfMc@kzXnE7Fu zP&zG^Y(2)J;B_&OJopLbg^EeNTpkD|w@UcOx3r*djb@9Uy(ol&!4_(-hr3m=`%|#y z6~dPTVbuJgM7-c$D>KhohH)~UNryS)!@UU1RQ&pkn=e*yY9FLxv*)8o@!LbPQ9hMi z36YJ?i;;tx51z1NW(xYRd@V6L_MBQB^N}f2T@DOY8HeQAF!AkCkX*KNkCa#z%}=_5WDoV4c;LlM0#8jOHUl-o8P{R{yhd5txduq z?d4c%V`f94bz#G<)DbMz8VkQJSYeO9LT+zC5uP-8I=!)V4&H^+*w+TdkP_vAiXUX) zqHW5wSimIC;n&5ig4PKb5D&v;E4l=duX3BBRV4H&y1cm*Dtx@L$ zt3OQ!A8sc1Z|#8`*fxp>giUC;u_M;qOpg;Sc7+gb^x8&a!x5 z+>TejjOB-5Y2T{-eJz*!M>7(9FAL;`%;xV%#83+8ZV|>;1Nfg1kB&bU z!`H9J;#+?@@zmya>_2HweMaC{uJ@aQPLD6dS;FkF#jbAl_U!=VtFncfp)NwB%VE?p5qq5fO^dv!$f?nyZsQO4 zub&a|Oq1NaL)dBA-j5WgoWM6;TS%U(EW^{6U!=wYFSAMcktj@>#Wptz>5EO3beE4r zz4`QoZ1tN!b|Cx&8ch?yCAI}PzvVMmy7Lt!YI}ideP4y#b^gQO0!!GW&1rbq>iziO zUKuRwoQlLhOA)Wh3IgYAHT1pOnc%wS4U#*5rQtMZ4ZG-cui&%f5PG{n8;M*Rsdw-- zsNX3fkF#V2%Wa8&SGVoU)$%Yq@h>LEl!gEV_X%)(LXsse2%Iydi)rUvt18~Y% z9(mP!7wy@57VqJwpwAPLge!E=sP4?fYyKs`O@+G|=jm%`PK!+glq8@Cu@%X$w72jC48kp`zn5 zDiz-VNBuOh$FpQ)QQZrZ`V+vupn<*C>p)&<2)TZFBUUGP1|-fM<5$o4*x-!>uWIHP zHjTQ3q9@DqmX{Ymo_~nYp%jlVJ4sWckEcV2f)@;Vi&LvIYd}fZ|NQmSh|FoorsZ6; z(e%5{SU-9OzHVxPPYE95A=Rf*YmZfN_np0oPg^aev!frgH|u}VJu>(Bp3h97YOOo; z7#1K$r2yydM#C@i*n#dY_~=bD#HB~zMzQ7OMi7#FyJ)D`DK+H?!> zDs_dnY*~mA_CHH}i!2Wc`=7m6k}wsgP8Qv}kFO{fqoo%lVMS>Sgy)pu1Bdxm`e(%O z%0&`jer68jj@hB7O{=j&=*R@}?m6u#nciPzg5{WzoYYi@Hq|O~F5KO+3O)EMdMQt+uxT<3pToP9!&rKrG?5ckD zc3KTAIIYOGb-Lo;bMLULKiH7OIU3}KdkB(#WrX)e2H}aS6(rQ67EhH6BI5hRL1|Ev zOnhzS3Ny7>Q02o-^3{a>ehy@3#S7GPrG{$qvclzM>Db5on$^@}GVngn2UM6N?8DyE z(2(|mP2c>O9sj7ns0M4{4WHET>FZ0F<)5s`s{STix?P<08oq#bF3D#<9y!mwa9ADb z=MA!lZhPSGE6eE*(v>JQv;ghgX^c-6goA@kX#@91Ak6x11iv0;p+qGuvUidV6Cf8` zZD!|CwRy!uI{9ih>NlSaCuDA-TeEGz!x1CJnn!{*n-xMPLcU<%w;X(5Mwc96mv9xG zg3zB0XW>v?yP$SYJC;)~5U839+1~pH(2RLq$n#wg*JWcMT$6ow-lI`9!*BJzC`4QR->-QUo^FNn0rqCI%F0L4ep-~!u9`F zVaIh*FvnNu1Z*rrPxb5I{*nF2YJMY@Kbu5sJba1HV@Lch(Aw&DcoSRsK%Qvq)gVQ! z^WoUH4LH5Tob-k5gV+)`LhCLelOwLMC(v0~fjhxQ+Z04xpW{5?zI(?@;q&VXBj8~O zhq=ADDfKcK29=Ujo0mw^M3!fC#e%n~D+Nt%TS-*?mB`kn61Xyc8nWrlXvaM_7`bv5 z2eliZRXRNI^ooRex;(-W&ePhw&%s6aQQTi*3SLid2)h-fM7sS9y5M#jS#B4HB{jNVLr{W>{#_$`s73Ik;k*z1|lY0~0{&6C8eTHI3cTi-GPFQ9qzaj74!me#URTlilwd{lQCzXLhxmWWBlD-n!lS|S1Z&Ah`Ygql{DZB4)1bx#}jd>w2A;qp~ty5tP*pGIv zv0HvLg~(0hU9AZHbGM=S7e&~8bIUAJ|HksQqY~-JSK9EQw2j}gqn2%UET+yJT_#|k zKeY0Ge+7%HEoTc1#iLG*NkH(amx3eXi8xkSN9ZEi#1F6ek8$bS1bYJX;7OJ$#u^q- za4`%oxoU`e(}mCd)+4<6+ji3SPm4G$3nX^xjY#H9DynZeWV!jn6+HB&4ShvQI9)!s z-Y#GgG>2-D1>qDKzcy~=`BmR?cIsw+e!GA=v@oo$dZ7ioT`wGogsjGaZ(I3F13FDSWN1&NIGm8_=&6k<`x>c=ChNmEnutAuQ1|ynk3a3Abo2meBCe?Mb7D`>#nbZ z+EjyxATouE!vl8*_?NsgE;xs$S(e2`c`7RI*WYnL~W57)oJsLN-p_HGXO;kPd^=NR( zFzJ0X0~STS##K7;=(^C8w>;2N7`A>cW``eU>hZBS8!zUOMx z+kJ0m-#!n*?#pYKN85j37t;p~-zJtL-9$X+u*Eoqc>kKQy7nKcKJpHoPs(Q8YIh6TPrPJDf4AUegF-fG zWjc0=R|A6XVbkL^NbTzuczyga_4av^kSY5Z@2fM$M|5_g^ke0)_S;i*Fs~HqGiPCA z-9l39HUlfK4$UeQ8#)3ea(v4yk>GudC>l;MTmu0;8p z9jRJ;1uV-01QSX2%!pT;z`RQtvz{9%-clbF<11YB+9<$y zpQ9_b{Rg58K0_Rn1Q&~snO0tkf&Baxc#mE&Wl?GZ25N>}^Y?MU{v9Ldy(ZA?&}e9l zf6Y2YY{8YrD)`JkgjJ^{Vz<2)QOQ6&^*P`^;u>Vvn7GcNcj!N}^877EjB{9OwVWFz zV-bUsTIb^UOIi3u*cv?L@EmyKzPe$U(I?4Hnb^GGBz31hg_RP{j& zDO}38(uz%#G;j}M%!>Zf-siQk%h+M;m>X;Qu2!At+58!sJd%f~w7nKR^5-P|`vmxT zhc$KZo(G=ro(Aqo39QNJe^jMaJ?@h~izdJywDNhozxaEa8xT82@{6Ey{Q-#~h!@0A!XwWVu=jkVE zHiA6f6m(u)k_imWMjn@MQ60yoAf@AfsiLjXjORBQ#-Zg)o$p|eU|*s!j@PKo|p~;FK><`OCD_bK4Vn5M_9JQm_v=5qKGjfyAx3lp3 z4n925w*{9xFT8d909n7plN2<(0Ii8!aM*T^d(V0rR_qp@9oRUO^Q0B2CamZEI6jEi zKYa|;id?WBHV11xfAVGO3J|%QfK>et!@WEcB72Cz#$VHj@99k>JLXzmB4%6fM(C{>SVriTPtJaFb+@LOecf(|%3;RA)KYary z|7{b4wo&xOkdMVcwnZSZ^H85Q*{LVWr0!eimo7_?(zi(F&o|71R(f9}UeW6dJ zzPN#tv>~HATNZatPsWGV2P4688eAqBfum*ud9`efU?EqU*z`z4e&tR4^ZrHlc2Ew| z?Oem^7RvH%a5I`FUWLTE#o+n5;`%v1YS^w7d+?>fW;8E<8rk3%TYr1nB1ra`f!7Z@ zkgdO)X@#1dAgVh+CoZ)m`Qg{-!zSlhzZ&?%TAQa#Wg5oHxd!M`NqdrHI}5V#y(@ z-7uf6Hu}X*Yi~l`_tz13o!xNGosVTc|88)%`$HRN)YUaOXDr>0dl+nf_1kXiE{!F1o|-B?r)W*k(F4 zZw`cwc(F+bp4T0TYr=KA3eb;7=ZWfaj0AhufN9+iHk?{Tw(PaW3x)4jd*cfnVlaa^ zis$2}hia@UYe(qzg$fPZ4jQ8YS;D652^I3hqlBA|bHu}}7;Rx@3l46a4vIGSv2j)w zTAyZ38urUW`7)NuFfG9+v#ju};Aw2i&m|CZ^Ao<%`IB1xlEoiVB5;3*H~R5JfSr4z z!AeJ(t@d%F&U?l}e&Q82GIJ8Sr(R>3SD}qVmpmt$zW(@u+YM6eg(4HInAT@hV_?L4?ztWARx0BqQoiWz zl4UrQ5q4n0;=nLXp6~``kZJZxa@=Jb*-3S0{geR*zo#H^7NquF_-D1553)s|CzbKmtXDJ ztoj^Yf1l5)xrTH9%nK)9GTe!--d%J_IUEJ%RU)T(HRxjm#t@@P_p8`Li)$2g2gYNa z?iuu|%p=I_)H!CbJXDw?wd3~K5I-XB>7{{~Ov zU1vRz^`|g|RxLsdFO;?WEWiso?lZf&#(1&nHY)T~AXv}e%%&_}My?zEg^zsU`QLen zu|Ki`dhU-gCH~ELtSqILwwk#9fGaN~qdvvZqtKw-%=a`UJR+4#MhQ@DK{IVJ3rC>ot*PJQoS zd;a!ONw|hOaj}qQ#zGGW8!2^z5$y zb;n=GVqm+V3R6)EJW5)6A*n;d+S-&M~b@grn;j zJ}(CBRofv*nO^Y3|%xc-vxc7-6&K_#^*iebm#Pv#De|OT6dl zS^V+h3{cq~gJk~M!L`x7I7uml3Ao!%8?+gr*LP>&ZO&(r`ZqobaZkan%L4GsN2|!~ zK~)krH;iS)2aw%R9mH(yfPAYgGFRCOJ5pOn|J<`6{@-o#Q|p`;1qQC zhb4$euY)6VBp}~Khs^T}AnOv6$rUwQcsLwG&IW41o-GxyQFjNPbj*sxZnA>i4{yP7 z`5d9seIY5i5yf_t{}ilfiJ^D?!T8>zX7tKv7kO8T!1H4PBcokGN;P^R<6$NCOo)Pe zZx>-Z1%LQEM}|C$QGr$KM)0WUQ6klG3%k!nV75FFx`MXiUAr$5lWY}u^L97c+3XDm z8k&jgolwvlIzjuqh$S23K7eX_I`KVoM^fZz2Hwy0r?cNhaAh`U<91bq6@9pp%Unyi z7d&~C3M!&3Tl*NLET8&Bbur|o_L6e8xPm`w-lh%WJFwcy0rvY>n_AfeofLnU9U9Fv zC;PWz{w~?3de@b9j85Akqy&GR;D#=`uv41hTjyL{tQvsXBjuE5ehyNKV533~ zlu;2aFInT|SFj1TZz!U^B4%6yFa3TW6?v^dGMsfdS!)*kl$*j_kAE%@XB&{$Lt|8U z$Q{LhTqY>GBAgZT*V3Waw&2S}`pDAc5_%)dzmAl=t+x-!7x+dvbMQV5X7!2+CbA}h zJLVkB4fi%g56ney>LxR~|FR+Nz0(yR8-9!%i4GM!b5Vnq_$Nx_4#OGsva9pVyed$V zZKh;7vDAmpt8hindiFxkPJuW%gt8`HHKbpE!;A~=Q@*qxmZ@FI^ceqP3uBLQ)e4P~ zMn1!M&U{8|?z>7W^-p1fqRktg9pkg%Rtc3G0>jbL#zIEvegX6J)EKL|W)GpXER5617AH!>B@FQS+bwA$_fAPEg+t!K}v1& z(XWyiJo4R$yLix;1nhHSqEz=|W0CVxQev;AHZ)2}i@3@)To~WXTpb-}(k`~(JZQp) z>TcqhN1N&L(m`5v_8Dg3#|;aTa*c?|r*h^ImCL>vs--e2-_Q|vlpAgYxuNApb>O{! zB_&v@Ams9fp{~%HD*xF((8FdwiYM>Qxqc=e2YZQ=JuhU);BkL=^+bRm#vejLHf2;Apf8_?L56vobRM=&?Z*Jae0jFHZT#ZVFAda%KGS#1vU9uUgMp zWxtZ0Q8Y;^U$UF}KD>jeSr8=n6_iP#kP7NttQGDu=c9};iYooLooza=FL*9z#Ho55 zOexkzvNkUpBvm&!vIQ2q`8y_Jg&YniO84|?y8c%jjZXYvg1^RFzKDLr4x96@5O1$HW8*b<3P`q&F%H*80%p2XML3`?Uo8&c7AZyN9VwgF|^hf@*n#n{HX ze())x0O>wZfh|gV8hZYGMmzRqqRrX9*g9-GO5N>*Fn&$FW;e11lT?`XQNV9{(myT~)7gf)tjxU|)O)>TL1>tO`Td}Y>YhH^ z*z5jO!Kd^B=1bKM4#sV4`{X;chrt`>+h8o+-4jn|;vq^i_0XI*YS*yF@dnO{w14cb z@74^iv7`%TKB6+tKd05g$7tWVu9W(u?z&r(huI6g3vf#%q4iJnGYfuaFll|A?CvHr ztQ}I!Jy~`O{i;w9=u4F#XI~CFaWcN)a{m)Fb-_VClc9r}FaJU(s2Q}^2^OX6X5#xP zH;@Wafi&fb&P8{4mys*}r2xRa7w@ zmvz>$A!iO|evN18byME4r=gtjsZOh?mm9^$-18a5OmDoPL5g{__l$7ExR!eMRYT}M zHxq=s8jkc6W_;Q$p9mEG@ES_xUJ0||BUIO%r&RBc0Q|~AY!lt zDde^yEr-px{g4Ljd)_AMeWN$B{r(@~`}fcmr;nl*(@fm+S{c-y+(uR(j-8d} zCtQNeeD{S4d*H-+<_uAR4tbpJosAZ<$3C)8Mf~`;9=v7(g>2%vlmEjVn?v!PgY(&Q ze`HWjK?w&{R7xiNbt0Ujb_`$0{|zdXkZQa*gD$*yjZ&Yp7u{=UMQ*7;MbsR^p{cH{ zn$}+YOQZ|!80uu)g$}e9Icf5y`YJA-NXBz^fAh+(U1tM=d zIUkpgPzBvP8P(MR^ow8Nv||((F228sJ-N&1N5eDO6E+lSE&7LVJPv18HDuvcW6pg3 zQ7Pu>ZiCvlQmg9n(!bN*m5ZnoOC^biCYSyo%t|epQGoXQj`O)eAyna|J8auZ5mM6< z$MjxXh<#S?tUlOOi{w|y5njb10fnca@53u8^QZT!cKak?8H3B5=C>HNUr1&8XSY+H z659Cg(=GUXTAW3=)n*V?H^&DQQqb7D`>5{FJsgTu1z9sB&@v@JN9cXTGEt)t3Ywr7#>H0}l$)Sgkm1HvLL|gFP&PTw9B@vO|%c3OnkBwDN3M_~0SCx22 z083fYP4Mx+S;(n60P$)vB<8|5G_YQivDvUmciw7y(9=?6R=_zVF*=>O{OJ$=v|S7w zy&}nGjbFISD1)kJVwskkldzJ>6=Ocnowe$&WyBhOP_5P_5bWv%LCi^TXWwA&&^2|s z{RPCv$rxFF&BYBuez?f=UjDYJu_Vq_37=SRL~kzI61~dIm<3xs(nF_`r8}3PowNJV zp|fFRoHK)6I&RA}*QarsPt2z{U8ni$9@=7ACjIF>|t>hj|>{%0;+v zZ#m9%iDte3HPYCypURp!g*oJHM)vJGLJmy%%uf4~i9}r{>ebh}z*|Lsnyc`^B6zz1 zc|=}SUHRc4lCyorKKGS}$Q=SSOiT=tRU$=v(S2~kL`J>E&zwhf0 zM-Ee*QB{88e?$BWW^q^~+Dg1J@EY^)=>j5RO%q#X5q9_NnY8=*9(-)F2Gh77GrztG zeO-p_jPSIM&vQ$eGJjokez2E+UdVYVDl0(+S?$!3?=J=7W6RjZW5MiTP8(Wir$Q}r z&X=sx_a@sr*OR!-qpb3BE}Z<}QFkQW5q>W|ge&F+>1$48A_vb~f~A^MVPu^X`d6Y3 zfBdGyj+60>Q|DBW>GgwG#RzLE58(4_JJ8p&P0W#5(nw^s8^82wRJ}%%NhotCOZxxfw%QBq&lS&^3#B=bmZohb>~PS1?#1x+ zu`@nR__*J3A^9yf8)S!-n71=pg#Ymq;J3(;YpZhwNv3r%RbhH~R+=VnzoQyC*fWM6 zUDm`gOJW&fx{77qe6Vs>NUj7 zlRC}+y<0{8y<(VUuaLbfS9gH;b1uPg8AbFxvjie$mXlt)QgkFKgu6@G8;7{uw{lTt z@yBFa*e^LjGUr`n+vUHYb!;`c^v{>(X4_)vyOGHHm7gVd=qMg%uBmW=!-l3gvNEU50;Lcn%kRXe*f|0Z~ zhVZ0*FrMj$hc<5~LpMwW>a96!!d?|*zmR1T*MwpzsWr^cd7UQCPd8e1&q$=c$4n)k zo}6K}D{Nz@Hpzf(#s(5_qX~EXn1_xAhjB_jC?mJwTcqcO4s+~yIPu+b7AqZ)hVHR@ z>=+}-4w}CdD5O|1MU!7KTUMEqPdCyu{HhtYFG!u58yLjDH^mu0>zIeLe(&bC9o!6i ze4R*irU{5a2E-YjAi9IYf?J<2VJWd9fpcLYT>Iq;kuFxyF=B!*Z@_R=L=|cd8k3L; zFOXi7!wP%tm2T5J}`k# z7L&SNr|_@m#`Qf9B&jO7Qn)#~i;Zg%I>fq5U|*;#_9>Gh$F1JusZXk5(f0w$;2A|! zceTODus1D{HXFJkq?rdVBQbBSE$^1!xRqd?6WrWnMUsAGkXErIe7Ub0#`Q#{Mh_iF zMK|`rbQDyV z4e{C38`%DKG7KE_X|T`wMt(|tCq-f6uvtNtn9F-k5hN+WvD2x*rR$jZw9lw*d{Wfk zjDLJ1bqOiI$#2vN5#|p_As5s#Ok<;Wb8azc<U*z z=~Wtj(_794aw@3M(l#_>cLvH_*or$HrP(X%Z!=1N&8V_(uaWFO3CKNVkG~&PhZ)-5 z^v=o1|Qxdg1IUxptz z%D|!f7qNMcAAa|VE0x;IT5dCTWO{;6Qa(Y;C?9f#j!zimBA-&Mx%05_f42+WHHzTA zJLG^TZ#p7a^wWuTy3tpEJYA9@<^jxDKycN`&?vmTWHEaGXcx$Fn(mo26S)bzPl?6 zgIo@MEF%GVPLhG8hd-b%p+ZOe@XjfHIR@as$%BZh8oWlVj{a#e86LiiV>3E=wC{)I zZ1cZ5zFRquLvD9aF^|O1^zL3%bd(REycfz6P9T4E2ejb-_8u!*(B`gQK+c*dBxq6N zi6@6}zN094_EDE7I{6nFnx#zCT4i`c&t}5Q+{2hxIU7a&d`r}1)(hG5KIBC1PF}A3 z+Q!$XHF;@QeBs67N$BJ*b>1XvWn5Wr*jVGxMdas4@`~BAn$}_kQhH%+qe%2PXg5kX z8al1#Ns5G_Gx3{v(Qh}C=0Ovl!^nN|S7r^|+E1ag%72k`=rEY;%Aw#t0f%K50AZ2a(O;9O-jH~7v|OXKeuI-CpDlTDHpoR zHVF^6E2G6Hqws+IZAvUT3>mBtM*}l@&;-}!Vu9uf3wvsaTNBMesgosG<;dkIy4e7z zNr|-eyG;BtvqfE9FBBwd5K0@0#8^l}%E zPOeFzH0xt<&{;Ly+Z)NIosD9vVF6f-NOO}Kl<3^$>tU_OsA-U!Jh_uPc`AQoQ%$?w z3Zg!{nF-c#<-FtyaPp1KL{8;8inkSop*U@1Sa${-&Wey_d*kT?Yk6?#lM>%|OC%+6 zcm`{~awBAf2=AVDZ745B+^TAmpcZwmL#?6=em8v%ez6Xt{Pbyf`_<{B@JXD&U9BCK z52R3Dg}RUsr;e_^C=l2mo(%4fl3}s)ZsyvWNTB^TpoO!ZH#m%jVTF~^u;IHN(fC?V z9*{K5zBotX?|o*j#cAO3r{0kCIFZ;%_gFpuv5f3j9it2qY9TjUgWTx}Co00Z@AVBj z#BbsY8xy*Wyxp@B8z=Wrn(s<+?Dx-9?tUr$rQbfBCu8sNgga(NW~cFgYQDnq4fe!i z$259MxF>qFJczBHdkzLXg$}OeYmjD}Crs7*EG)10Fst@)a8|7uXn1c2g;x@wHNru6 z;Vb5~it+F-0B`kUVE<;C96RUuOj+pw-rmcyAIC+1+C7DylX!{*pV;Y$wY zknlGL+-tHKt))A``ECLI;gBZ&FP+9(wz;rF=smwz&m&7W4AEK7h0czNJsde@U-oVB z5vba1K{7Plgc;)>_|%6?D%3Lz?n}%g%Yt3VgUNefw~(dn{`ons_%Va!xwqigC$3S? z?9S2cPm7{{*UK}9+k|~(RiS5B>;-jlsDcUfu_Zp`T3FG#j%bK2BkL~MvDIBg!ac`F zeElU&es!0ilClnJiC-?&OxB?xKLkC_k&t`92=sKmqD`kx;1zO}w3=5Y*hm|Z0aty} zpR@sAyRMAm4s_z(Z^F^!$v3d$qig7z>I^a~BnOY}(ScN+0S+v;CA%+6k#9$w{-1ZD zFXS6w2P1IV`UpLVngrRVp7=kB*+M29OXV!x0lPVGp)%f$-gj|5%Dod0h67I+EvHK8 z=+%a-{bLZP$$+!BB+(T1KC3xpNPpib4sSSvuRbv+*N*3M#02v7llk#P#CZZ=I@yQ5 z=X{4AMLyh~7-H|8+FG~t;x$~fay!JhE){h42=C1bX4uxGfN&NDGm+EnX-=sD@;%cA z=ME;&ku?VRZ!@24Q-8+Q6|ywUr_4bMT~5LNki*3JMHy-R!NJR}>he~O@`&;2PdG|@ z3Xy-Ci@pTyMs?*bf)PU%SR3^MpWXHYo&M#E`!iUgiTmNQ5+6G_ghQ@b5HW~|66U=V z$tyJiH*)5xYu!AA2k*`&QQ0CeBfAO~>a9fM4n=hd)81o)#6J96dOz6y)FuH}lz5Ro zW(~^GpRE$)A3~_Pecj9Xzp&iL-ugqPH(BHLrFgxYEf|L02D8p-aD8DC_R0K0X?@fr zd(k8azjC8t&qaSM(y;^`ck^Loe`j)BPxxZ7%*m?^h6Y9{=$KgYm?MJ*A2a~tVR5JU3CORQ)j_#OB)}y7O7l@=cH_x%FZ$B;T!KcNRZJNj@yAzt#|13pQcf1}7Ny>5o*s6HIkI$R?98 zLH7^M0nteW`>wx98JD}E)?{y7hSk{q{3YbIb}~eJy%2Q7h}Yj#Ndxgk1`FmtEJ6Oy zT}ec25lk&V(^&B#7ynU*M*itZJWD}~1k zbm3@+KIxU1-%y@9nO&n1*-$*=8sce81{XA`j`u?!ym*=O51C1U3P&CutXIKpn@ibU zzxiaJe=5qJDu)ilS^QmNdySvknGL~LsBqJL!gqe)2c;T zPq3~-j0}q|V2c)gN0&--s3WdYBrCp#$ibIKsqln(0ETLNbfJiW^D=tEtMm8_x-ebF>N+}Y0Cjb?LqbThoRje zi0WRw4{HkjQTrPvm`m%=lb)721UF!(1<=2zEf(Kb~C_m(*!6gFz)iHR0k(WY?2&qDRl0ni~8Emj3vPWTw`E2RC=3 zsI*|Fo6m-G(-q*!Uqxg&Z~({1)=~Ki>)?g|)KIMH_-+nN~5roYt9Z1;y92hva77ji0!hYA5!X5UJY=O7$ z!(N$5;g-jn;ITWJ_}fq~tMuCvuq2Tyr>5~f{QmD8AV-U#xCQf|&EYF(YiSGw6L#H z`T55%D}SFscJ2u-`$$eYczYFvb9LeEwrKp{CSTN9aSTm+l@RrZOyD=aNo0UM7!N}V zo?f8>$0JPfxZQ8wj~hZf^`^t%RBI5dj8TDoL=JjD-G&$V7Qp#!{G4Z;WF(TB0rboH z;hV>o;YE!l@cuH!HB_`0>YFs7>CKJ6{%RngZ^hunF^6H5YYz6|710jXS3&xQ6!^#8 z9Io#=gs+@91M2+?;iFU1*huCh3A%!bjz4RG{2mrm_U30D=#;>V4Nrn|OPRCR**Z|{ zmWpb32B4$7o7F{ycfq$ieCSHn056Sk#^)@zA?B+%;v~lvaBS&gvc+Wq{&YhLXFN~9 zX0hkcr=-`6pQR8-wXKI1+cOATt7urZt{WLY34kkGyUPb7$H>eb`w_4az+SZvkr!1@ zcg8aODn}K#KE4R)XNf>t$(6>lx37_Xr08gCcFsM)x^ z5$QcW!IsaABhm!4VDP{asP*Flx-Rty+02*3dcl8??DuzQPq_ig6?}`O zs;iCy5?gKqjR`%petj0VL^K{<^j-&^yep*bwCZ`h%5SvsA35&Dt!IJ6&myo!Iu>NN zJ0LN^v&7QFG|&xABM;t)rcGnkQQx#oxk5&{bl{0Cbc0&x0s;e?POGNt%ABiZU9c%duVMNF_4OTc;BYY=%9nkK&8DD zR8G0bJCYYn_oqy7ccB<|3pzu6_jG`G?PXY&K7!BpS>SVf83&?7C$zN+ zMXu+qIVvafS%Xqn@weYE@Ged@Y~vqANA7H_>1*-D{5@=(lCzg7>oNZk?Ll~`kc+CS zUV<T$rhWN{*Y1zkb_;c_WrM z=wdV#7|>0uX1HxWcjF*;%>?wUEd_(uJK=bT1(f`90f%?r$6IUX)mnQEp#Og8;K9z_ z_%?^(y6xG+X{nCKcOFyNZQDsKCZ@%ya-g8goC7p>VB_ceBsiW6uA=85kwk4J53TC- zL>6anVv~pt(2*61OP{xcAp9PD|EG*({i12l0fA(*KkcVE~A_e!Yr=FJdfZ3`wVEn8Eta`kL7k^eD!ZbUJa(gxgBz`PG;>GPG zK`g+zH>6PypjZ7 zpRc2V%y<-_+5!aBF2YAYpVMwDzW*gLNNbp5N&sh!%jOh4+j?qk?Dux;Jv|Z zQ0wO)`OtKbjH?boXZZ_|W%hqSs6Eo5&KarkXA~hQ}6fy`|?|8c)?|&F-8&Z zfr9YkjaFo(BaBq{_z}HvI+Y%+O;kqDHSp%qLg=(F2rOCJOjmTh2Ja|CbVzDBeEwf9 zdQ+*VC(ajv~Q+Ctxm{sXc99Ij>a72j2u>he`;&7j$Z`iO$MUAEoq=! z><}l#F%^G5ZG;werNA#f^&sLyHI53L#{7T(!)3KM;Y;CloVsU`sG6C8N*&!CeE%MoqZ2kW2V?{EDNcpZ>sgbXjyB;^U|$f z_7VAR2eq%wrO;W1by;}QzE;3<5T4ud56phntsRw&KpPLJ)E4V7nuOvl9Ic3Apr(=q zr(eb+6{8@$Y<3Krn12k|C%K;Q{LSRazDOMG_4nIw)Vu2gCv34m7 zzRwH72Q_wLzJu#=!h1X1CY1$`t{20G(SMN40S(yN^qfp_RDgpnhB)Z@Gw^O{LFuIf z=egyNf?-4cHds6rM8z1MWlyc1rJl;2K%q}xv9+Gcqtdg^M7mT7d22I2bTp4={J9mx zp&u*YBHI+&=K5j88oG#vvLSR;N*O%zFzG8)0*4hB z;_peZ(7`m0{=ACK*ov?9{;vast4^T^Jd+#t46^qf89U33lDb zu5zt2;jy*8O!x?;}+<7+8x^sgFc^=JE$=!gT zTDH|p^+{5P`Yl-*-WRAF9gMknojm-r>Nsrw5RJQQ-{XP{d06qc7O3`&W;_!uup{sW z9zJ4;r)pHNlb;e)KA45qzU=|IsVA}pN-ks0$ymh6D+m5Ek|)BSbC(g>}dwOPlQANdH+GU-&cgI=g0Wyb9BMbh(B_~92oA<%nOn6f$G+) z&;_+8y!wxcaB7hN_Qab(PtKsQi{}~`Z?FQc{Qd=eP7Fn{UD@nIC%TYHyCTdtcgNwo zoN1x`A}ICcaiGm)EzjE_==l?b^TYq42g34T-eJZOHgJ-i6t#_<>r(_)-iDxq-wUqn z2}jdubG+e$^>E|4bExUhW8$-iGd{|RLGO%pp!3(uFqX*#d%f2q^HW8JI~yyYGTwpL z{V9gETGN&LkH^Dp85Gp|Zw@(6vY9@79C40ntjblNkL&H5$n8F>kc-t{k#{1o)%EKZ za-JFWP*-p1a-0l>Ym;rEq4Cl@tkf>eIhbEdda)Y0y?p@N;dadG3?}|bWbtw@Zs%mV zMH64ggQ0hgK0KIU1{2vYK-JbOP-P9{im2*_Gjii7I(8MFKDdZIpi~6+|NFvzxNj8a zD(~m!Ef2s}x@x$=lY=S7mpQCT(^f}GqQAldZwo1fJC^>XKh!c^X=Q69z__&XdH2FQ zzA4pe)fA)WllgE_Y&^79*RD0L^M`83hI!MX6w+#B`uoMK+IC-cyh*zkT3yhrz1uTU z^^w?udCU%B)00LhWcQ9m-H_lcs+^@hPxR1RBA0{UD}~_uZUbyP|37ScwE)jKtp+>C z(oxCBemI%_3;iy60Iy|#Mw7B{L5kByGI7=nH|A}|K7-Hkr2`FUddvbw9Qgzv-#vn~ zZx#Zc=tt;sei&b$Jc#SA)1aAfL7MHm;pm&~)2LRHuCgu6SJlRKyi(_h!hT zYYU2DkR2Z+4-uS|F>L0)ZyUThGD`1>QHG_N8JPZh3D4Gl#hiF4y!_2dJbVU0=1K)Q zu3@AP(j4g20i39E7rp`oD0m`l2!vxbXIZT2 zT*tom$^@%2&X33(ZTP9`EgtO`#;NU3&>`*JC?t}PBd#yGXNl)1%@ZNb|gue}z!)&!gT+AMUxpT{E zcdM1-zWd@Z`_?4h*h%9LX9J-5eO27tbr&wV+kscaK4P5Vx3Thm1suJ55iDJJ3#lGv z_*-g+uz0OH-ni40^Y`BX7B(nHyVn1Ng3MiRomnN9qs_&kDlF)`uO0+RtwQ4U^Wki} zKhm=tql=}ofPGJ-iP1`T_S~v9XxSxM*c5pReQq8#%w9Mj1|EAraIH(|HK#0qWWgfB z*}xhsE!cyqM(jbFut<&7{7m|nX$zTf?LTxZ-U7HS-_5(Zs2!Ow_g|Yia}X04$S&bq zj#l&>;O5nAyK`ab9a`+(WA^%}^FZ(BXVNO|EccS`FaWDwB7=HoFpFpCs85Qp_+&Er zcczW{;B>!=nUq!!)?VRl{I(2@IVF~P{o71P+>S(%J3WEdS*CNbX)91H^F@;8n&f4z z-MlA<#ObY-%zgV|86m##DL6K%S}nWC+vxJ(4|pi)I#hjX0snh3j?kXlaHhT;`2Guk z=iOuR$A2q1OBEhsDt;GPZtH;YU4~oNoj}JfSOcX$r@^G_TalF~7t3&nTK+H-wCX#; zetro17wm=ybynj>*)!0-E(|T`RKNu2#Mk51uK(4mb{A@e&q{nf`*DQ>V~n z&&|*iY_H`Pszht8gYkQz$GFL_2_F}pgRUfpQwi_FXPYTViK~%*$JF7ji>+92)gn&N zva|5*%M7?KwE`a=%Ev0YrSRZvKXm-AQ+tl3gJ;)f;*O~Qp!G%>C_0$|Ys5L6kMr1| zi90O~gwZG3KUW7l zQ%WY~)lGnN4C5z*N-+0P1S(w~PCKbYaM@!^!G_MC+}@_sF!E6afh^?UVx>*^d~R~M zBe2Dq5mzuVaTD)d6OKgQR#JBp3gO~4%|!V>ZFo*o883C!L(J@z_TWpTwy0_1V$mrS zxWE7o=4Qj};Xg<(>IzEOC69feEF2>ov0!H!(j5OlJqV1aziiJT2dW*zM~a(~NB;%j zI=+M!x?q8P?4+>kBT4M8+R89f+z^mi4!zG*n$#Y*#VeUiOIqj{w}-U~JJ3b=Z{a^c zbnZn9e9geK01L?PoP!#34XJHMW`LHcKNPCh6uhznqNi5(lW(GG^`;oQf67W~aHDF`B3jE&hgP%w|NArAT zDH93CYfoPX4)Xh%tZWs$X{=0MyU+k0v=r5B>L?(p`5%#D$$zMCeJeqpk|p@1od93E z%cBK+h!ufVc|Y0`W4I~Af?1SW&lq63d>0b4v2jraZm5nfE^;!6~dF1ZV8b-&R| zul0a0zmA~9&wX_DJt6LrH{*c!<{3LmE{pA!PN1{gI70PL1R;8Ul9YZl0hT{l#`Zhd zM>pv&g0h@&bli9&Ogb+J6!IP5T_LY(o%ds;)A3%ymqn5|Ui-;wh@8 zwxCxNL%gK{myv?`SMbhI%w%8lH6}Xc3oD<@=#yJtUSf7u4 z055#4Xo*aQDWi0udhrQuv_o|x-W{|bK4^@_1Jk#_^%G{W?818Fed{6?t;j-)m+ycA zH-qVSVZoUE^a2$Wr=s>X_dwJ35UQLt0CxPBN{*}(HAx6^1!_MT@6EO`@OPyS*s{k2 z3~F!1FOR9h3rpXjN(W^)soRA9C`_@!=SN{P<5<|<;sum950THxrHGWJwe*K`3~Qx& zJ-D1-id7PCLAxhbsJ-VBw?@#FVP0<`?*0|SjfOj*x*!Rs?+f8)4(c^iWv3A@_Y$?% zPZ2nkg)4){eA$#)DtiY$d(@< zOlk<|_S_&!^cRBUrCDTQO&vOYOaneG69+ft_(b^TmW912uqXLsB2l)-Q()5I3i2Ee z68rV|MS?$n0^NLyCiXg;fcfSfc)Q(lnC=w9n$L99cYRhtEn>Ft=1YNyWj*62*O?Aj z?))`4=GPngpvOA8Bx?{U%I!hf47dBUpd6C3eN5`U_yOMPoIvVIu^|6x2O(lUN_fTz z!)N0JDX!^8kB4$mXYUl@FKC4{_sT*ogJLeXp$ev_Z^HVA&A`5j-{`dZP2eJLN9Q+g zrDZNg(U;fBV^$^&KIbx7!)jZ2YR_|WmmLBZuceT&+bux#*e76mbe2p|Dfp&SU_Tml*cwb3+Z=C>P z=ad0;TLGOq(n{BFQG;e)%zbp{1z@}9C%Mw$2gpxSM#r|i(ZD$!=%1j4*=_sL!a*A6#eAj}wD)5-MQPk?k%}ehE~1ChK+aCJ z)bi;>=vIt2f3GwCyqm-&a)o&A!Y9!7#0-vHSj)&yLh4?EH8Nz2tHcHTY71n4A)x0 z3-a(L%nX?+qXj8y{+q|WyOOdPQ6l?N{6YJi1sZx) z3i>M^(L3fT6EEk9MMk&A17mH*p?FLmL{?|=7RzlVv|j{MBRvklTt0|i;a~#%Ss$o{ zi(0_#jWXPy3onC0^I@{OUlcBOc}BUOKSe$yXTp>lma!A=C9;|%pOLd0IrMg+404qm zAH8^A9Qo=^BdxWe0MrwiFXl-r>tz!1{yCUfmfP=JO#$)~K1|_!IZ( zu%Fg&uiX$z#l84QP9~lz46;bldQmzmMX)37aqYCn|wLVdme!wVqfU*!}^R9iVOYcso`pmzrf1+ zDl~9<4vWp&fM9bCl$|(_ogEYqCEv(fG}i*W;;w=S<(;5m-)Hdcc_;h8y8wJGVm%4_&@n+DAXs9rv{|pmEBL!x#I(H zn{gQ&y?hj_@rPpLC0pVBs8IAFass=(+=<(!=Llz2=G@{_U9B|O59YT2Vfx)|V0Q5s z{q`xu^X5H9KN>9Qw^lvmZ&?G_aKjQE{rL&#Pgqe!cp*HySsH%%-4U)46pc)iVu-UA zTj2aFO+3K^lAtJR77bLHGCiQrfLhx^9u~1{Q%Ead&UqoR2UO5ZBVIUg38y<*Dhv#+H zpa%6U7@z+T@7&OZa;`^VS=&VHdF%m(3(AoTt;${HT?6;ddeB#-nO?ZNBz||l5G&>N zfh8((Ma#t(V>4#{6Ywh8jd?qyRlk) zqb3wd{K?w(P6n=a9^icuOs4jBS%doLu^??jK3HWlA6-wKA{8HG(yh~d-Uvk>qw&Op@FP(v;@l9`FmTyekTy_9gy^Go3A%T)tTNw%p>;>O_7t>C= zW{^n;zlg-Sb@YVQ6EJfs&E&py1t^N4X}+D^ghf3wOY;~ZogTH-EbNPCdf!KxJVpda z`28eyXNsVR&rKCO8V$j%gDv2b!&?;l>Ie`Q-%h4#5uop5CjIa16ZEC&Yqc+r4QelL z#gx_GnoQva`ey4W82!%dTl7~`O$^U__pmdu#v=t-g%5(y&4R3mbUU;nolW0+o6h!R zCy}eU>Qt_(1-LHjV0bfiHN&tj;O0fHqvi=Kk=B()wBuS^@>{qw_&Pro$uOU_?7ANE zCly4B3?);wgUO)(_I{9ffFB*&phh|v`tVlWaHg!CXG$BV&VZzvi(vZ0J<|6NiPTUo zONLcTT{p}J$%a+r9#LBm%ZflBCewlXx;=={`pGult`gSl^b0u0n?(7ieP;>F4Wbv4 z#VB0oISL=SOPi{m2)`HFOCPd?JmrE4`o)D}!ec}To`3w3j(qDxl4qn%N+R>h-7fwm z36L6oWkL&>uR4NM>XJ~Md?lKfr$c%f>_ee52~hdaacaA6Gw@p{!;O>h1FVNy3Pn=? z(22}Fs3S0xn7ZAE&ci;W-fT@vZY}_)UcUl|2JLAX)*X7s81vpQsb-^X5vWs35Q;?X zLpi!qVEl;!xbljb<<(U$mK*QZIvXwk8;{qLA^WAkrF-|d8G7f0qsFyR53+;Z3K6_Z zwHvu9aR|vbX@DOaHq+a520>Fq5W2iF8O>y^M+4yo@Lym6c&2)S+99NgE*|crwU#Y} z+K<)2{pFc#Bpywl-c&>jtQ28&OpXJg*u=2ScXePwkOPv4_W_3bvtYi#1XY^;iz1R@ z>9iAP;3}pkQ*n_7(ygtid;N~`wAfIv{m6CD-L(m=xF1UUzc->kd9Q?4g#u8axsBE{ z4Tg?B(Ws)Z9K2*`w+|DpLC0kxz%j=Xp3=Py>K69`_;M`}rcTl-&O6AqAA7(d`CDMy z$@^qY3!ClpD;I?y+=-fER*-a6Cz<_f68Y&yBA#>@IL7`=>eT7b>wXS^^BP<<`9al?lZ9(n0<@rspf80-F}qpb;k1f1TS1RZmve`LsVvhtgeV}CWo?-2~GX7IOv6I4fKi(o2rEU<%*FfDVTg*J3KxvOU z6Hg`=Aghmef!6at@GrIvS+^-5x_1i-Iyy?W-bzH%4S4j+NlX~%3*!|E@l4nBJ=-K8 zn^c-Pi%u3qv-YnqLdielz}0kZ^q1Vu?73Q@^pSGjji{Z}^L!rCH`v0B+q)hRgEVN> z!=$k36>`7c74T|P886GIie5Hjh`$=F<=z-g2MQr$%Qy-^SVZLaTO>L?jN)wB;yu$#5LnhmaQ+!F%f@ zYQ6eKQBQU%Zip#_URvSIuH|b;n{|S9F9ztT!zZxY+7bHra4t+U6t6Wt$E;%5tnepq&QUBK|+UP z-$AXn5NE@ZkLab{YrIVH4PBVCt=7=02-^?NhgDnw=;Zna?{%#r2lHjHp=BEmXjX%_ zizsZb+KH#zpW|H}5%i#&6DAJnV8@?YoB$n7DAaZw?_7P6^Gt0$C-$iaG{0#8tK8gx zQv5+utfZcJ{K=P!`WnqXDg26lo>2gFcSZ21JL0giVhhE`PhH(1y&3+_TZRuky%?SW zE7-OMf=GHZ^S$e^p*1dF0S$I`DAH$+wBZ$i;Sxb?L%s&tdf{M&t#o*&=uVNxK{enl zHwkr4^?+w?S5c2_8|$@i1r@X`o#!dEg>1+#2Q3HgpkN_c$gd-UTBgT&9#4Y81K07v zh`A)O^xtCwS)zBTy`HhSdO4xug!4T8&zI~Xd-!f@-bCRZzhz~o#CEZ zA6&^xVZZn30`6Y7c*(VfwEGDOSlVS3_AW`5eMM|FbdcH%53EUG%cU?JSqX2tp-zt^ z>zY9Ae_rU((scTp&0{ovMTyoCVzL3_9+bI^0o{#01|kN6_(1+$B1kS3*55paj#1X2 zSuc+C_k9I=8!h0!i$1(O+d&ky)eZjoVg%nk76detRSbj;Q8ylB0xPBKAd(IMFV&9_ z`fOwP_&Oi{cuZdV39LolrkRwQ*&@6#=L4^F*p#(EZY{ighag%1CBT>q2~@J409sB+ z0X_NoTdZJ3Q`Ix5ShJQ|GU|kGo_L9BQZmR5(FI`w zGuDJl<^`YxJtJp}&540E8DYH#Sd?R@IP#qMKA2jG|8_ZzMU3 zUD+=gk9yRJ_h_%nmb=nd&d}HPD^=aulgzH#Jd2hDLU{6wJoV9U3Vd653Y^=07iF|1 zl52e@neY7*s{K8~q2DPGQ4%!_ZqSLefM`11E1XL&Iky5ztP{go(a*r2`9H{zGxgBa z_f2@8v4shcR3zX~p8?3uFO%<*Z#xkP|Vbz-Cii&}Kuu9n*9$wv# zat#B4>+0v|{H;)GDDsL{)Z1}nkhUKN8fJjXpmb=%-%Lb(631o7n3(jNHwF$?Ju0^z$h8a!0y65dW}gG+M|&ML>)^(p{X0&Zgo3&OMIeAE2MDt#6#4Z)WdSj zWV)983*pK08L+zTH;PC7y7vtR>FbBNC}e{cs`QJZg;bi^Urj}MqsP?H+WY_5kAGK# zm;-GhZpK$YN|_(hW|-QED@F1AQ$rxfYKQO+R0C%FwQ15I4z(?aAqEbXPsTF_x*1GmEPDaI9;riut%CTTZ+cZ!ktCeR zIE#L?MfV(4QVss5jbnC%BsvZz3 z!7$$MHQGf9V5|;7q;fwFH+aY7bGdL~*cr^U|M7@N9zL{R5%L6oq6oo4Y%tx6oBV^& z^w$uq=G2TM(mZ+Pn?KQib(5icQ3K3S-Co%!XUTSXRzpX-X~Xuy5llER4&{nxVD|fJ z95ekEyN|oUjNWMM0+tY^{BGz=b`Y^{#W*i6{2l?mtcNMCp>WxR34Fe)p7HR_qow43 zQ=jf%XPC--oPv!sLAQ&*$XO$-cknSRma=1c{JTmW_gjp2rlM*c6&232-xycR3=Xs|iLIlnhWl2% zTy%?^ck>27GPAs|uR5x%=jq%J@epTkJ(GWL2``!CllQtx*L@*_mSlnG?SbeYS_G|> z&ETO;Dp24efQyB0prQUM)G4u?rR?qr_*#U}JVQBTaC(LnF7lpqSh1auvNy{cQ5`?tMi28UhKSQR4KHWpGhnHuo+MgCU7P}9U4&^cweQA(Tl z?cg@xm_1FNx)0I7?Fo?@4>P7?y_{`zY(ELs*?{oYTIq7qW4|7$FLRq4EG3RuW(hp6EM=5@r;j(fVH;|` zq)8a;T1>9hjR83$DyT#{8>9(oz}MqNAZkJoeo`{yC3p#Q!-C_9`lP+!3%xarp(oBiqE{9i0EUVaEJIm2 zsJ-|o@35E{3|Zer2?>P)v8-#PtkM*#=4_v^^1L-%T=g8VZu|wGBS(q7CY9v$9#7=m z`v#cpR)_8jV~D3K*~E%PMKxljCqNg|H_ga+MD|K_5r5Yf@E)9X1smR7BOPsJK*8%C zv?FXjKD6dFaA%2ua_cxS`BK$z%xM7`+ggV_+Pk@n8DDvVGp9^bWr~zd-auAtS%p6Q zS^>#b1gxuQ011aDfOn(_3R^168@!NQV!mvhQQrPBtPdHP9{KDlq?3#yZ?>~xN+8!*DkxW^%E@0=%6v_&SU1!i?OSW|$ zCLbT0C0{K!F;q-X1@;$c9hUwuxU)kCM9-c_O5T|~g@s<=VPqm@ux}06&J_^xU+n;f zD)Ph6)*MEbYg0)5rAO%J-Gj7NsVO;r!H(49--CAaSpw<09mEbWOy;#+rQA2JH$Hz~ zk8E4Lr{ak46RJ-jDE$1j{VnOFk9PCc10@a%}SRM3$}!c{CYk@`dR6Mve_lPbtiTjkL*dL+9qVH zziDWKBj*~@+=aXc++J0I;Bbe~~Py}}Gzrj*FE(HvKT?_Xv8)JVG z*~hR?lo5OwO&ezEnw)LKqK z6_9vOCBJh=`}rS`#T60M-iI+jD>;x97C#EQY`zd8A}w4_nIi@77E=Ybi%GwWO6bm8 z9ddZIkgloStG$RErsAs=6W@jUfzK@pTt&UTz~?G|rBh=(k?}&(SUL1E*sFiYs70}l zu2uiSty>XD4CdZKQmO8whWmZ8HpPg#ch7~~{gn^OY@H+jel^p5K3oT)n`_aS{e0NB zx(bwSxJ|cdsL<)M#z2355)t?|jI=%@7!jrN0z8dNBOl~GCVLl`k#EZM(Ec`eXejIr z3BT1y*Si!fjx0l~%k2q;U82Y-hoa6ceGS@pz2sq0C+M23h*!&epysS8SjV$Q9jEJg zqIq3FFL)SLp56%$tS%tq>!-ogz%iqKkGJIL<~KmUsTjFwi9n_H^=PrhBszV@1+6vO z4p)+g@tvmuz)4(A4*9I5T<-lK4uqxxz325{NG2Ynj1-~SCtC2?Gc&x9mVz#7b?BRs zC*y}q$?roJeX*b};2ND@9G?oyOOe0vjIgt{PI$n-A#%RO zQR==#GZ2nm#(kP32n~1Mr8>2ADM^|KE=`-G&5L?@dp|HP-F%vt@<E)TF`vyw5d>I=jJMepf2~>NGMs?u`OcJlV=0 z6}b5pDrApU6{@()MI|K$=q>O7Kjr7+4JvFPUMOfXET#{#8*B*Sm{8j0Zy;z)5fJ%D zUZbV`-qEr9kAd-$|3Lciag)7L4d{)%o@fji!dhthk2F~FjnEx`Nq+a&r!U@&1>IgI z6zg|uxy1D*Qsb%s?yQdDl|;z0#mDvdOnjelIb}sWledtixe$E!BN{mL zd?X$-zk#1SSW@XuGf{V4v$&l7A+N-thDb;W3Z` za)kMi^^POp+0Q0=alixCq2DdS%k9E|1=eHkH^m@BjzE!1yMVFP62_5x8q9cmBfgAk zkmy`S-SGcTyPZEpyIf^BQ6E#`o=G5? z{Z&BVUK~AkGX%VGI%hbmLISjWJ0V&`kR78nXp!VkS z29jB1_TOYw>uCqZPG-^D5?V=X;VZ-rdX$%Sdj^DZ3XM;zKBOZrKS0h`Z{YQf$Kj)m zZ1l46qQ+ zt~Z2-GRu(FCoSw5u@LKgzK7b=l_=Zxae89i72Li=8uqqnk*^I-!nUv5VSN`}gBM}^ zv&0W}Nk@_AB>qt52ZLE1^IU3-FFE2HjW)P6ToDTzZ^x$^-yk11N4Rv)H5~Pi=@TY5 z0H@m`|7a<{G2S5XudThy5O z^2v{a&%2i30(Wy=CxaNAwkZXURYmA6?McFyiPgv|kpUHTI@Zcin`Z}-OJa|~qz)&SGXPFiL8n6|K z9hwK1ISAleFBCu+EyUx!|454N?;);j9RyX{;5Lp1Wz{khB1*UmgT~arx8%8B2WO zunqihFq82fy(BLhvcuQDzC-XfEyB)sOwpcrH`EkujUDu_qBoj#KuGy0{`XQ6hLtP9 zrwJx7EMgbDxQZWN70E#^J?Xql4sStbCWls7t4=Qo3jiXHTk%rGkDws73>?0(0VNwP zA-^53pdRHHfyRlE8l#f38lC13NdMtouv>AI7g-R3SAOfG693)=tqB&4XDEl|xB-#% zNm-Qcj~uj1Yy+{ue={!plR<`b@Q93iF6hp;E6`qM9sH^yLxdGbbFt1g| zhLX^VrkDRIqZLoA!8}$UotQYE_TG|Ci(0y3_Xm&AZ?Sm1Q-C8PG zioHF_M8-Oq0PKc_|e7cOko%_cwfZ_q%Y9%Ta*s;!Y`C(cwM0x1ZX6DwwD3 zw-LDfJ%g?gcWA#fF=ElF3i3m3FWc?QE%wX>Rr;(4muNegLWF46k^NuVfX5aK@T%)B zsj@|Z_f=>oy^TB$Qu&f;zaUSvGp#Qy-Jk-=jRw)q3$)QM+io77NUizmcZ3K(y{$+A?W=g6dqmO0af0< z2p?eY3jJ>&3R+7CLlu#DLdb9_VPz@F>c9RMoAAxx(7;q24mp_kX#k%Y6v8(#<=EVL z9)~5?3D?xAb1wTg!VI@DyoTYp2)S)1-bg5Nd=(Y3;>rwYR&x?ZRCwW4h4VSOcU$3s z!`I12ox7+pEgOQ&EFyD0c!qu$+JudYEwFobEewO|ocE#sFt1mSJ2=}3#n$}?b*3-j zV?N5zZ~qu^FuRtR(+(=nFU*3oLpyMQW~AY6d45i@n=I$M!y5Q=ZWy`UD+6nmZy@Ab zd%)4IIGA_i3QODmJeIH*BK$L1B>$S5^vTQ5akfAZ=JOS1RcUU})BJk}t$Iq~`e&Kk z0mCR()wgHV3CTP-Q8xv}e5~PILpS{Lq7MB_-G;xeZiEJp|KUyCU~JDY98A;Ou&+cq zB4&j&DD_bv8~{fe9%m!Wr0+bL;_-0-)H+X?ZW ze!|320*Pk3GrO7j$T~tN@wCJ7r0=m! zJWe9QM(9&^d6h>W3fhY1@`VXQ=tAugMK>n>fme^?`JH{rd3{Alv=~z| z*KITmr^m?K0~ZK&PU61kM-juN?L^|>7a~lEBzcBn(DYapB+foAta}we-agFWS6XJ1 zLl%$tQfoxHWaVFyJFYhbOM<47W%GUt^pXSR8oM)i!|q!7j<~l{XtCEFOrJy%rO;@B zTKy9)bha(IZrjFt*1tsbKUf29MrRwp`H~U0Sj&m#o_U;rFp{$kJtg$~VN3gt4kJpX-}uXu`M`$oXp4!EdoeSHE0U3= z;ulkS-;USIo=s2(8@oKtyYvJ}2pL80ReE#thn*JXtkeLtz4vnC=X=1r$pQSX+%aGj zHlNtmOyzVu3b>d<*?ie^1!g{42HbY74?GXadwj>FdfxeIaU~xMa_A`GI&!?eo3kNu zG>e-=Uw)iOs|L=8>=t#pc<2LSc}=G{Nz;^~$s6IP(<{lCL04dPaWHLI&*!>sT?Zqj zAN*>m_1u?3y`b%I6MxFl2Jq1qC#J2rAT!^Gn!56+tffY(flXgFNLj`uvWrI zBY&E-yiJ%GmLfbo&;st;?}OyG>73YtJlHTNfZp!9!RI{1AgwN%u86Fo!FN|f|9~KF z(_CBN-fKXL`6;2n+_ChzQ@n89sP|B`XS`?~TTNA_q``vdL}H};j6^(BU@dD_5YKW2 z`YP@=%(j$;x(BPF-!(}bGw~$!b1{XoYclkKK{f4LC}3@BzZ8wnjikj6x>KWWXW{Nct!1`-h-ZVhp)B> zUpAbBrnCbj&g25Q$BUHx@WhzzKAy{~4SvIuZmbdnYKyZzP6FAQ<`MKo!3~%)x0#qG z#DcX?FZS$>oXC&L$mXZ8d?-ua85L?st%B zT}~=gv}lOhUE!X^i(yql9erPr>8s%34w@N#Xye)ly7gd9)107_GC7JdA1=lx9Q< zqqRmsf>cmR$&gJP+vF%b7X5%zwi*prCW+AzVfTceYtIOW#V_TGrY99!Pai;9a2m-x z=}L0HujQuDQqEd2n0uh$McSv^@NVBd%B^}gfH{F* zA_ga&eaZK`LdWeD-0O4+uI)-5_tj1xeoQmxjzl$bZF@$MLu(|cR#ud66o&Dmt44BB z?_TgzG}VRM&g>ye@3?WM(GoDbLX7x`@+;m-+BrU4kZZPSyPWV^$48;?&S!qiN6Jl6 z*c6r(Uk1|x*Mj}50Weg}lsHJL!G_CbL~day$WAySJoRuQ_qk~jZTGQ7Zl-_)f5|47 z%-cBkRsqc(yO`5hJDZHt^@JfK6{xixrVX!y zODS&DVf!t?u%@xpZlnts#oXiWZi*+j^VG@FJRMqA+ATn>KAh{;Q~=-?SG8{A9HWD| zLn`I`m%-{ni!r&}k>z|k%P1V$Y)24Z=aa(Ct4xV>v8VBLl(WWo5%;?|V&bnXp92wOXDXx!mAa!X*wZPl}dJF9AVXZsJLRT|xb zDeF&g)gJG;^@TTRSiJ(=(bE)4?avk5Jhy{>JZ(=WYgFb&iBg9b zQ>$j!l}3wKKLDQ5PLkkyk~1q)M6C<^xC#wTn6hab_3t_W z)0Q0MyKM0$-@S^t2H4IUVKU1s;Lr)~YQa*nc|jlUMgPyjN|7((1d~2AKkNrzw?PZm z&u|n31RNuemyHviH;EVa`+0&BpD9Py76fyLSM;N^EQ*Ei!*+2~(!zL~%1gL~i_?Tp z61C`?Gc~053Om?c;3Zt<6vO}C;7;}$jVF6wuIIl{83~7GjfEBwPp!XH^L!WU!gz&V zv@0--3)NDmdsZ}a;oEPL@6Hc~-tia4!WI94e5AV)pY+=L%)NWlY< z|6@n>J^neL9sCZ1xm?YJF0yX#1u~)65pL+h(?yF`stczaN+;8j`U`eP zBKHm&?4VKO;-t*=llrl8R*euz3bcYIQr~S;Xqj3EFKeli$>7npbV*h(P*~|ISQn7Z z>vQZh-?Cq{(08Vl;AzhM;#)oA1)-~jL-zunm!nin*@BQg# zrhKRkMi$%giR+ogwTW)kk2zAq>P;a4bZ32lIEN7I81^ zD}SMX=z&atKDyR&Ofu?clWC)KVHck@7s!vDIj(zX=Z{PH${^noI zLht!;iRvf0x{=YsN)rjNzHpe#OS9$%bgYBW*l;e^t+$|IpDwwXEHAip(ZLsOKA7na zDBxzjY!l3)pZ(U!M8To(huq8CeW8A)2R~Vna-r#(vSnHFCV^Lht+*^8d!RrG!Up0LtbkIz$MRiY2k}FFOX!N*lkiPuBDEJqmHMgjLAYRNkf=Rb%zE{$ z&_Xbj1vsUEotYMO@^~ond;CO;1vzxZPJ;k*d(iPWoo z7C$dPQl?>lA?=n;5Ew5P6B>-%z%z=ep`YyT@M~)cZ)?8{8h%RT*FA8(;K!9j&eF7w z6y9tiE!slD4;0dwa_%0kGUn?7sds7?QF{7D zaI*E3aFvs^U)W;n_*_z3qQ)mzA zaf6|*H5$4P91_JNTmhFKUKHgmwFN(i49ICaK+n9dpIC*=kQ+Dk*KAjV$%BG3-KefWS-0B!4DARZ)=uvU24)H$?F}InX8usN zyo9b%4y3*VJV{7OHW|7^iK-;6?d4sVL~b)A;X-d{+by7z_Kl^(nHNkkek$kW;76AF zdsAiqSu{$ej%>K^4y9wnU~`ihER{G)^TpeRH^p?p=XoXfwp$d_!NrrBf80bi=WGDi z^JjgRd{ZT=vQ4~Ii&aQm(g0Yy?}XsV(p+xyodCY4hcd;j`P{a~QaF3(D3!Z@8oGD+ z!PwVt&-qB(QGt)4nPdOVNpi~;fK^@%DB6glkyINu@%C2uak$iYVMiZ&N8$un%;0ek zM%QrBXEia`-jYa_0B5WHjYNJ-rNRvxidJ@}QyaMo;)fLwqq2v#D=mR2g$2;~P!|S8 zba8UN@zB0?13%3CD(oLH(ZadFzli+3t!OF zR?eWP+W|R8x6tdy%sAbt&q(&$Th!=lBS|{$31aj$JzeTfzvLHj(lbjqzvl_`tLZWF zW2PrvuO0)3J>GE1GNqioLZ!@euVLhzu>#v8cU>TyJc-SJ91J&SNXQ+X8V&4JCbdis z6X8GY{gq!Ofq%Cs=aoyC?Cjh~m>|Jt3qRtdq|Qv?ji*+$qG&g5DcVf!M0pX8{5%K^ z0q^LYGixC|I4*VY`<9Y%3BI(hd?K9iYy|OB69q%OW8wIHV;FmLGh|&bq}Rnik+kX= zzOE}XVAQv6qJ1_h?`(r7ly_Qj*nc)PU2M!-HSij|%Xc1ks-=+h5@D&6s@3r5D3PtW ztBV^X;%RDK2ILK^fr~4a3xpMURBeJH?j0;CuebU(Y%<$T--&W~+pc*%k;~1X$G=^X z?RQQM%-ubTwC+1mvF--Zdv6i9^P*6YKJx_09C4m^%}j+}EKVYmG`@3NG;4TEhf2w{ zisIKlvRVoQ_fO;n=8E4si%S@uy ztJv^OsKDsZJEAWsAWsVy!1!-7c&%jv>37=;yhA31a$UWCa)O-;zy(KBYik=~aHC7x z)83ZW&*2G=G(HzPn||looU~-?g=>l{*<7w;v_AdR=tG^m-U*x@?c~-COrdjP^vU3v zz8sm`MRd+9@C?_7)1mr7B?(Xc{3aK_m-VPPC-7+Q;u?D`gV$k`V56#~@T6J_S?qqH zIIH55P+R1>q^|sc#Gc&@G|tf0l-jusl1a~H-2l7ST>Je$cveu&Nua^XWg(Tp$> z?Ozu{^x{z^^yjgnuU%0jWrhQ<{_R#$uQum zW>z#ogsGJ}_JF@JLkP+xABgV2tK5!drC`$5heo^-{a%+HgG}FZBqUiG`rYgl<_??*&gXO+UC8-+q8R3qKOjh=oSXi|16=i+!QlO4Zl_x{ z_b6fzTrU^{zTq8U?O6mbOr=os>I?ogXJ7F1zDk=V2jWegpIj8-VI~g5jXUkRTXDC9 zD5FFs9QX>gkt?7H%F-J`ltFTeh?6i0U z*(r7f&fE2m;!Z(Ia??S zcIYQ;Idhami`SF0^JKwt$_cJ*o5!T);7i1?IZ9~UDvI5EIR=*QI!twQwc(EIUik5` zlW%qBtMIU!8oz#R8&^ZB`CoR4-j#;0Ct5$H$lckSs7rSq_&f-vm$sw>mOKD&9|u_K zdyd~0qz6YgZzW&f`w<6H1df^dz|YMmE5rB@_}NvsZ^tl_)Oej-Q#$~oL|CwF<94%) z@e$Cspqu0ee&c=~ArLw>g3j-2CH%~92m9g~MEF3QHs(hOU*|n60W>q}!{x=)*$T zRxbvDm7QGkms9X=*AhA}y#>a|*})tLRTv%rIL ztL>pSBnIX!QGh1!1#lassXu>B5YOgQ>N& zKX@KE0LK!Q(8xZL_IazvY4u$IM(h1yihUn$M(SJcX?PA~8+UR0M+8Eiyf0aMx0bW3 zNC2;V239W0u+}LYZu0KXQ{~F|!*v|oYF-Je(k`35ec=HUw++A_3AIq+dz~zJc}Enx zYYJU{MH^ce48Zw{K4k1V3!HwiiyQxRCi!6L37IBqN+e^7h{J_Eaqe{HH4|C(=`V*pde-#44Xa& zv_g-9%axyGuBIlZxat~|t4~DUUMZ^gv>Mj0xC`Gze(=YxhjFPJOGu4#JvX7*jY_?| z#&@|k3g#So46p5n(&zbUkh@YGB~*WMd;hTlMBth4>H!{z(`RNe@aZFD-UJDo<%KCHM~DwtKP$LfwDqd{TU?4O&cap zo(A(~&7LMMCLty(_UltLat?$hkw_T7R|^X*Ciw*{%k<@cYBiJI!AuB_^Z3$ z)kVbje;xi8I69Kf;E`Y_)OK%!x%N+?;^TY3`}yFyMGeb#Cy4C+sgOQy5`3N33RC3V zp+Lt0b~&cO@rZiJpCbi9qgAp0r?;@kFd2rdyAOjd<-vpAzTneR4rTVGP+->%QWplH z=AD7q_oqA59qNs@YO^7`APF+9T|w3AEpFC`OoS%$%b;*6R%CCu0tu&-@Se{n*pl!K?xkD>anbbrF;BmwKs3){zkWH^ zM}N)UI`3c9Vea(lVxpQq|MKaX!dSttdOg3-p7OuxzXk`ar(4+n@uZ7>KW@+Z>-$@N zdbqILX~)h#j(c1>cR1MyT9aD>>tYSKiU1?xBWNa zz+dIJXC1Tty{`2=*s_^yHuljQM>q_BZ_{HDbS4@8MsgW{;lyE5H6(J^6>$?9r2d*a!ZteZk;Q#)|(k5B$&h*ZH&b zf5}77`9E)Oa6kE57J8cc-NWAB^#2aoBq@&Zfs5G2FUQfxBbX^k&8Sg zj>mV4F_XeXQ28#)xqO(y3QC+<$(vUAtSMsQ z^h;5EODXf4ZGOzfdjQ+rHb|I$cP;;Cui2;|bwVh$?>yE9g|MbIJl6O8aNM{{8{!W5 zaILp>(V#_-MOy&eOcwngevJt`(kBHLR)(=Yvs~G*lUl4Pd=XYM9>L)Xyf5^a-bVPE{F%;4JOc06>a)-rb6M+j zHP}8pi(T03%9@pDqO+F=joo#G>4f!RFvuMr-YBEb+znW=lP=o;TaVCPj&(Pf`kASkp}V>W{*Ya>zC;7T~_4Wnj2uIL;obfFl}5u=#n8 z>|?qMyfb)y`HcgZQr)@H?8jrVJi!9+|(8LY;Zr6QqX5nRgb9h-eGLT`y|%T zn1++KZ(+q-BH&9f&>>f>(Q4{Nrqj9<9A7SH2lBVWg7KxG{;ml8To@5HoPnajqtGhw zI$i%_FSBg-#wA6In1s>-9DIV$b}p0S?sn!evG?1k*`fzjV@@?r@9dx+YZb9rJb-Op zbrzfLL*ZHHaXeq2g_;inFr00|sLYYfxN;Ni{k0rUbVSiQ#m6)zh2q;m@sQHInoY3k z%W8M2vb7s8(n1SGoKbGh)hK+W{LfQx(cm)LTswm82|tcQ7A$8WOU2Di!@ThLF-f*_ zLo}@t;NA1JGr!=WoO*sRb3@}%o5{b|31#V8GAdCx2G@+UiVpU&>EmXS74GqWVgNsWkblKTrqm(N2I`k5}n>J#wb_9*l&&Ds;4q%4tIxPRT3u`~0 z1jDz(;CWdEWNhlDHy6b4rTe?1Fj5h%M~UIej8{bYQ8iz?S)G0BKLZ-&Z$cOwGaq@UBZ=`e9b8b|$^!L+*y5E=qIn+- z^YbW5jdw(eskOA%X>Otb_nLUbrsUA0^HxDqbqJ1?Im!;a-ic}Rtl9i6@~mONET-8{iJeUBO;>8fLXz8brq}!m z^e%kFc_FRn_Q8my|Bzto+O%oYd&p<-}4_cqGTl4Gthkyw~>53J<$=;Kji zv913jy4s@>v^OVWP`nX;XW=E<^d**tiE=`@rig=yMjbl!3E}!YGGg`v;>eE;hgkIN zw{S*v0(0q=DT1q7<0;cKIPQc7a~it_M|irBN&BVED?9nrd5JyOGNTj>Ph`P@dz$D| zs*c%*&%k2yT$cIr8g^-UW8gbJQ)s$QqqWo7$nWkj+i@21F72d}OSIwH&d2nI=OV@} z=+CC)EWq+pTUa*?XYpeX;IiX+7$FhE_I`ZHmth*P6JfX1Wq8*FN zRK>=biTETghJ8D<2cK@%MKGx0EM|lV8|PjpPH*3U!DKb_zIR8n)iYP))lq9%>>4k0 z%?)Eln~mx1uvli$q>OeVe3xy&5o-C>j76QC&hk6gv-AULME3P5Z1>V;fcltt-x5aL zQbS>}7WJK@VSZtm9(P+q1&U;S@Yw(%*6jLB&x@@l1GjC%r56^nWo;L+`@%Y?@0*IN z7nDPYuLHaDRRTA>)Wrt(^=)1C1$k(^04bv+zuG4{i zRa!|)b_>|%Wk<20AQh`r&Qb9PLz$L|5AHv58z*oqCBf-#<6eT@r`YNJ*#k!`!L$#Sx0;g(b4EY4q&UpYDj zKkHqj=QDuL^+DEpjl*wG%y6BB7y}nW^dI6*H!eJnGdDTo+m7e3?$b%SR9YToV@^Zz z7+>ag*OfgR7>pW03-HO=@mLg@LO1Xp(ZFtkR?kZ4_eb^Isi;*J)o$~PZANGUPRTMeK!H5X%A z{jmB#DwPz)1y|iM2PaF%G9PxDx(D<(-}0V<)Wss&aoz?E=El&8i^NdBt}jb+5JRVv z0eB|c791P}pjcfC-h--HrOF!Ir)kR8ue1_oZ&P9wm3G*5-2k&!PshZvqgXan3a^x< zQKMFI{xVYyjNci9h4HWGnyRa;$?67^yP?Nc1QoQ<&xjxp8dH}5=$ z8b!)%ztd8t=5PpF?C!w*I0x8MByN5;#FM=nU`9=fX9Ay@IAvB zSGCS$2frw=wbn{7acmyyCl5!xRt>zm{4V>z4W))52K1}Ldq|yJP8Ur(#kM!7vMVR+ zslN6J*kLw=-Lm&%E0nuvxBp0Jmt4V~o!o;b_+MeokIR^lqQH_Khhsyq9n6w-U=sbG z2?u9vqO-;=!LI7wR9E^ZTwdaZRgq29V^k9y7}x^BaMKdi7$w$QcmofK_C>dwE4Zwo zc1$C~kY&&9$0pjo6YU*RnXvCo+P6j=3N%UYlcIu#1=Lb6AsSG~amP|IK zT4Bbx3|O8vmyI42O^rL7+12wYST^1d)iVxJqw@98J=F!4xe>If5rdHnJg{+AJ$|{F zOuGyf;Ypw(6_39u+z90uX|orFQ7w?2H-wXSI)K7}7`(Un3#5o*&L7Oz0kMca>~ond zTPm{#^-Kil;cv$zzm#B6z*hF;tSjnu`C#i1JA4{jOg-Euv(WBFFr*Q}yYcq(Ac34gOEm}vTtN38DqmWuxx-+}<$<+MPaJFGGO$WV%oiZy~((9op-KQUhMKXHuofFF{_s6~4jNy>e2;sSt zMOa)`Lz7P&XK;A}srDFyORVRzM-y9xQev<0{%bL+5vM`7Y#z)`ZEnCJ1%ucclOWi1 zeLJ--3t&&*gd*Tp%ze;e`nD{K=2&#l^Jh0O$#Lo2smv_q{Im$I$1i1`TMB6^SHZt8 z;f3O&yz^dRy)jb$J2`ss8JucPN5za#a?YIx1q~Eh zUdF2xX>9X=Ffe?%2VIVo@X-o#_z%~1N#u>`)( z?#Jdn@k3Oda2s)iq6J*Mo=P>sOxWb?7m(3w%PAZN zanHeMPCWhQdV&8@p#WaI*bVk19C>0Hv^*e?%Dhrx$zm~}>15CL9sfqxZBqd^*Hktr ze?H!bDZ-VP16g9wK=fOp%aqNO(fMgIx@7Nx{EfTln8<7l8<2-{tZu>ShUp@G;6r0_ zk=+|5h1-i)qv7uPczNUy%(=IM#XOkCT&K9wVQ*rX$=&PNOZ2|t5q4H5AYvFBYI8e>NQwq(qYjO~+HyG|Y0{#F&xB5z?sp3S9@=vuo0aP(0I`smnfq zzyv>P`{E3xl6+LC?}8_mci`jW8${d`P&&;E%$0_)dACB@_S$~tR!xIQxl#gazm2SO zOC|X3vY?GKWV!ouQ(5gIMfQUq#|2j=kh+f7km2fwYo;U4X%yv8wNhs(ha}BsN^9+?Dk3#*bXzKHeDpx(XZ5Y=`PO$8gf}wXCMo3X43G$XHR%*S2Zn*wdVB zw6|VK!-fntw>we@wfX|`B5*JXR2#+&7Y{_cR(Y(|QAAJc+juEl2B+`0g6_R7Ebu}h z%eM-}0Y~bH$Hv_>Ep8WnK6(;ewx*N}F7JyKH$Q-{VqYwB-p(BF*WrkdNzA6S7)MIX z$G9aXxGU}wk@r$&-w(#a#EC1|62m;^I6;q^+okw!(ZbJ{06h+mAmM}91plG!nVleegui1Pl)mJ=a{+S5u6u)O!x2Y zYn~ptgYLT$4w9?fNbOBe++XCw=Zo??Yt}2{<*e`U>diLXSgj4Vol4C4y#dBgL}v8j z8m`>51{dVZv-}QK`Y11p&fKt+jmUaNhkSIzCkB0)hx01-Fkl!R3YhcRg71Wa{V%bs~!;=F>3)ZBd;8(X=XNrZP|Nm3)Vdv}1jmn6YB zeg_?}0J&qazHB!1Gw)3L4tByC?)B0!U@EIdUpuJcw@?nZ-HB%JUewZ->fx;PoEKZV zdLwu4X9nsGw;=s^L1f^ottbi(!5q#l!H3zow5j3-9vAsoH5N^$DfC>aGFlvXMURP(2Gy)77~8srz125miK-*mu|XF}OWrs7>g{rr zi9E|7r^8rhV_#dkU}#Sal=f2TNBw2WbfKSCgLi-1nv z8_T98dLq1WW2bgUAdJ00AALQ64=ZNkqN`aV9BV$7KWE&kqj5sx!OnPNnlzVDT7c{3 zJfZ6beg(0t6>NF*TF!EgG84<%!MQf{rt;#uFx;kw%CIXqW4|J!t~@N7eGHBmE5H#I zOH`;Df!~6bV)45m_VYz3>%H|dO&j6G)ZV_P?lv=-;EE;w*mRoM?(4>>c{=E}VKkGx z_!`u-y-_@0)UI_Mj$9N-Pc)@aC)e{VbUfCH<`I$IudfAMGxuhByg+=iYbjS=@spYbB;kzS8(G-t z(-8Y|8#6yVm_2-K#1*;4Lhs@^tg&AX=06f*-q^9 zyN?bM*%lUI?sHe{JAO5j*0sj1RnH;S#|GbN93++LR=B2V6b%xd#>o08lI-SzHy_lq z{)*--rtcSG{d@vWTjayGbWWxY-&I-s=+OZUu~{)FO(+Wx%{c<8E#E` zi}t7wMx>*c^*A=m%9y#mSdIoiyCG3O7dJjSi}sNg?1N7y37vX_)463%%g%&Dla(S< zd^(7}IFrmA=H@WC?#0EM5jJ;lA@mD3h4q)?F~02r(p&q;#Jy87tx%P&%*uo-11ji= zSc*!~16WXSqR=MrB2E4QETne_8K3ULYTiDhc}C0F?QzN2{Kf#=x}7jB=PV2JJdK8f z{aM9=QOqoF2h|Yqc4M17idl701sw_8=2Xq;s83?7mz&aQQ%z1GRnbNL(iXZIusv)|3e9K&mLjfoU$r(Xg!pGzzu^dv4D!N)p& zI;5F5ficOYKXu3Afro(kwfk5{^&Gb0jW=BE(qnmO%)*8*rRxssAs_we>^6Petz?0v zBg6U5!vBjI6&E$W~TLn_G{_$H+N8*w%4b z)JA{idnN#)W*f3&N}E~7hxMYI(YA0UL6Pl?j>Ey$*VuBYkr=olmae+e%&wb0pqG-= z(e3hDlpL5|BK3X|g$;@H#dQf*{neI5A6&@9U6x@)WEs2qei4|j;+dP@)n+kLd0k z4z>QWh50q_h9B||=yn$Yo3SYZC8YFesPz}HmPjS}pIjLiA4c~NtViy9B3omxj}@Ea zasQIt=%j8zPg}GQd6_brI+&yP201dfS;1H(P({z5v7&c%Gg`6b8jUM_16xWe!El`t z%6KehUu$ll_s$AxJA4Avr%lDT^%X2+U>@z}HR9Rf0hE}G61^jBq_2l&;U+#C6#bp)%VxZUBqe{s1&$ z?uhbu+Omf1J9LIofXMcD7HsF8V95{CVCsqz8Z)jPyX#YNPnrq45p7ESR*P&tZw7HM zL_YaO)|ctRGdoy(M>YE~>n7uwG~=w}FUZUvmx+0`1a>|!M(Md~Fkqj6`di1dgVR%S z$eST7yQ7Va(o!%FWhaT^qhK`VOJG~*VB9At;-+7Wg9T5I;UJSh*lnxFyxxt*^H;}< zavu)C#2LfUUP~L^uDQSloK2_aLfTQm+>@&8y^P)cqAZ*L&Z zG%v@`XKYxtv=~#j*n*#{njzudR961H45Qv!qeIjQNRL&(R@V^N9H5Km?o#qzKbGy@ zvJ$U99?6z`y+X9>cyP1iGMDSPhXqbEq}~gM<2U+t>RiR{Jh6nqpG&p(wYq~CUXV(~X0e8d(qdT%HO^b1El zQT`t5{x`roSQflX*5IScDQIX;NQZ?bTb6T~yzpPlX1R;AYeOfpvAz}^c6nyEyv#XMRwn}UTAu`KRYvWCYsLD#pGgl_Wq_AZb;T; z=LD9l%^TcEqwxz1W0TN!+t|bGCTIHJaS?jT)B% z+jMU?Dm_v)_q1C9jnCGg?Xn@Pzhef;$t;C)aoVi?u_v19N-&L@GgK(avHK|mNq_}D zjXn=%>58oVQ5!(~DG^5UAPYo#SWeD|9m3B?=EIhAmbg8~liiOfz_c3{a7ELDs~982=2qw7nkymn z$F%+|&}lM$>OGr=e+GImJCj~{l8bq*yYW?A790$bWC{;N%I?Q{2t3$`E8~|SyAUiHmWHGPnCZryto{E{mh5;?+#@( zdi~ibqh+}AK@{HD=TC}njA54+$Ky~fXSA>k<*Hvwg43c4*gS9!yOA;s0~`Z!Z0B{* zPUX-;O_GzmzL4!c-oo6ajqrl=F*Ymf8*MBR>96nURQ1$Ny0PXBNSOA=iU9}kj`2a( zuJ3|XHJ;devM-(S6~>+|!=-#2v-bq6>>rImyLjyU z@_FRer7!gG`4QYe>+w`;=TffrVmouc5{e!59dO$@6s-NS!6WA-O4XTTgG?aG9d%?f zL;cxN^heE!pQx7bC=>6GtSjdcPBxaKQ+B(vmt+pOh4JylH!Zw=S%)1q&SOqxm)MH= zTd?*}E=0zCfH#^Q3i$$&U2P$@Z5QCET`}}h>qR>Fh?M!H=&`Ji{SeB} zoyMIQ`w{e&r=ndyaSpci23;*5$d2-1hsVpZ7hkH_Ea~Hzo#H{K56h+ZUL41YQ-`r; zm>$+Hb-<}BRfP|IBiWsc`-Gi~L^**P8Pz-_Vg4x9g(l7oXDX}piUNdQ#HEYR!asVk zzv5Q5{r0!|N8SiMepQ$9dOTbHQO$p?@_*}B^2_t62e+d0n;kv$pZ6na&i}=E_unn{ z5Z|7I{}NQs@gvC22o>QN{ozyCDX>!8DT<@(4G-2|fN{EV7&Y(~6v#w?{Nf*6;DI1` zuPleb(IK46Q)Q@oEQMOl-}sK-d9c?EP|r${+kSBftO-{^u2~=L23`cQO$MlTb`;+A zuLOVj0uW4!hXb1J(73q{aPr1~h#PS)_{F{0qF?mi^CxT;{;K!O`}V&CYyTd^eQC6S{+0cfpPr%oXZgeG&|mWC_`Bo3aU(r5@HhQ`?Ej7%krr|5AK^xlf3Gu_ zN`KARzo#d~F8r$3BVYgRCgSf0`v2s>U)Px)J=ykKetK^H&(f3DmA~ZC@ps4np8OWo z|Ek|J?w;}fP5(7G@K^cm!HpzW{E~|vE{yqo@c$QXWOCWB{(5>{_xs%UFXQML&)@VH z2YU46U-|XV>d8O!SPyQbm+1K4zTX@C*>MkUMCZ>lF%gFI*XOV2|NQ%YQPpo*ko(>A zZ}NW^H?k{QoIz?C>)1by{albt`j+Uj-1-r?`I--=$IZp7ArhrmEl*?U=n{7NXbk#{ zZzkGRV@qRqKE|?#SXvWX%!Xe{Md?X5=sef67@PNn<=h&^d^+z@)p5)5JTb)mPmVI8 zcMz8i&0?`fR^q~t*|_xQ1@?BUPO10OcPRGpAhXYwHrFn>!it*-=HGB&D;AEzvD@dP zr=0}qe7n!y9ejgFL_VecRG+g)Q>Wre^9t;}`2qJaZWp_gFq);!QY}3p7+g9>VIzwQ zI*uSMS32bJOZakEsx)P#U+Ik1he{Q@TiE+od+_z*;q1-YJ0d%r4OVca%;?6#(qnQV z*!jh*bndk{JXa=D+WCT4`f6bzM(T+2^#l^OSnCqg@1<9IWxgRBUnhriWP;I0@d%EM zO=C@66Odkt##z#7@X)Q9m7k2ml+ldsJ|Ms!H|HyO*_Jdd9 zHu!Ru2~)W(kMjq23BUF+E>%8#48F+|rgm4gH16eOdam;xn=lpPY=N4@9yR`v#S^@KRCH?h{Kuaq}TA>HO?30ZeaNB6@Cq$)>v$(tGKr$)_<2 z)U~x8)%t#8mmd`1jJh0lW}A>5unfcLrN^1IgiL9_J{F}r8|+H+eD2{^VF?qPna`e# zUB~8GE~Jlci*N@+h3qMQVXJf6nd7YIR6L?DE|TnD`lLXfauybNV?b|niQ_fG!eOeV z0lYq?0-pI7i%w_ZQ$CmaRatVE3?PCwbpP;94 zFfm*?q;&p3IrAS8w^?#rKG&dVQTk@GSn1}Yk6F`_Jlu9Vla)@K!Q@?eOj`N2$oH=h ze||i|0*?5x^*=4~-J^9ZZP^E^AoB@!zfQ%5&km&%Uu&}wKddO+3TM*c8LV=vMCtr> znx&r2#-(m|E(urU&Bv+!yV=m0|AW1E52xz;{>9z4`~6NxD3aV+bFR&%QVAg`x?f0A zsdQ11#NLHOBq7(xrIh<#bFR(al0+ejZb~;PMOUSg`uU!B?{l8>`JT_`JkR%e&iS6- z?|1eeYpuD~*mKP})>vbX@fvfEb%%f8>?A)v2(!wroM+8XKHzXYX_ug|>pqKDdx>un zcducgMV`+4cv7Y1`3oh-Q=NS1!PM}b< znlJNl5n$;YaE$W3{I4cGPR>tY<{r;zvK-!B^yRSRE^_@L%4z{ zb)#sQf3uQg#l%e&jBwNhjbFGd#lSZH_>HlKxmE4_cVp%Chb^mE!!wq$UJgtb>=xW- z^^{l%K3=)R^64=Y#2?zt$|g>;82y?8ugo+MtCjLy z=N#t`e6M$Wz>{z=8j7#K&|l>EeAhHVlt(Jx^Ij9{!&WhY`yn1H`dt_+Ek{kzCG?Ed zQ=RUp(fNoqtL!)bWLGo)^r9M8YfKS;r%b(L|DHI$h_bq1i<=++TIXh#=b|Ql`Z^QA zipcG(OJdrBxBGak+{-G0xzrf{(5{oL^=)ri&Z(*V=hdbBLAzl-N-Jhvp6qu@Z31i7 zwj%yDw+M$NCT#vlysyAZDr9mEz$$(vpTl}TVB7G?!=C??NAVN%%mi{34y>;s9V{Je zAlNInwL$FZS(g2l2!Y>NCF^8ICaWls#jO2si50NXl;ym}f~9z&+i_xB>f~I`ZLFuE z3k8{8Qw4Ji>;wYuT$bC|X2+umg$;pzGJ>SZ__?>iS4U#CAHOtkkgpXvLjaSRg8l)}J1HH-6$ ze}|S3T>P%e?-_StZ68$##4L^LlYKk(c|y#tLE!Rjk3O(a`;CcT;~VvR&XM} z2@C98#RM|lXZba0i&?GZqbv_8%=-0wDXS^mfwh6t$Nw~4Sy1UKCFpka6qL+Lam;i{ z;TxS*6nq_)6|9k!6r9hoWDPj_3A(or@-L0Zu;5WW0jp#;YgU_~ARrA0G}|__GB_Lu z_G}kc)k01~{lYDLO?DLjM!_Y=WK~&#dzi3b+4}GX>l6tmUsfsWhbk1Tb{1o;-2035 z&PQLcenA;4Jui=6FLjQu@x_9r)2J-)>*Y1PR6fE#mR9Wec{9h+UG55By>JKXtGA!P z?~{Q*>FO1hmPm$UdeaZS_q}C;eANZ4!$n6M!o#6paZ58REjfXI*nSJkergBnL*PM{ zlXN@Z^23iGwWxu$kXGRbeDUYAMGN?X;XYQVUjtt)hs!FK zG+|92@D+$|WeIY2xH)d`k`cJfPh!oYY+0pUa|9t_;e7kae1#INCs}#7V)?;u>;(h6 zVp-xxQ}_YjQ~AVO(}t_Y&sf<8CwWizHnUV6${ZciH3hz(dYQWN3WB(SZoVjvWnBvj zub+l*@^g2a2@G5>vQBc0`BE{bSo3#@2*i4O9q;a2%>SY?$Rg9f@j0JZg2mt=Un8cB zC48R8lD>16^>m(yptxqxQK2Y-@1WJEaaLC;#@_X=6nw2-(2*PHEVl5AL+hoh<=s9KP4B+uQqjLWgf3=Nc$eZZ&?1! zF;6?0zj)f@y1YDRzLl!HV?mUOAU$xYU`1~mf4Df2Rg==pf*S$<$>Af8b%Eh5?R6&Lt!#2`d_bUMo~FPtX00LL^NyvU&`VO#7y5|xeDxuI zZ>}S&;+UPl)WnuAx1y8f$~emU$GBnXAAkG5w^9FF>A(8b-G6&F|LxlUpO5~%U-93^ z4gdBh{@(w`{RqX|e{tUXAJ`rD59R;dVrA3S`cwlKeuQxzuWb{3*R(( z@RvNU|8wKN{I{q6H@^9AY2^OB z9rD*m_xE!WoyeE4u6jde~SN`cf1+lz@u-&u?w;Uo-Ozn3f zVZ}F`479-g#v}O4yvz6i>mr?27YP^3>d^STHC`|C5hN`c18G;sDJsAU8lHKMvr|40 zvz{1&;PI>6OMyY;`l7X%|9mU{F^2+!7Qb-f>!Zv;oena~JcKE_T8C*AB+E-SYNPWs zeerd-^LU_IuYUSb2c~|fCaE3soY(%02W4B%({nBRNPp=#?9|szez;V}yRb5acNg~4 zqfP>-Zg-acF!2QVzjNk|d{gHMMcUIYrM+a9g)Vule-=-|tqtn??V{h%=a^|V6ZE^x z1N4i-RdiNe7F5<|@v`ayu-yGl9MT>|wj>%m%(%#BI+qF4V>O}_gYGO;W!A2kL1%sG zrkjHk>G|XSJOf(=-s+2wXlaS>^y!zS%!#^O`WHuu^iGjus!e<&2j;wDvUkj*-F!rN zo65zRExQNF=;a6D>UKbPj+M{{?JMb+>Y2P1;%dyTZ_{}#LeuF|Q)MQYHIo-d?xGDO zEqFV=q>+^q8+rXXvE)R}dHSK<4O-jBnx3)L2DAGgkaAudn5|Fk=sWd&^pNXDUYC(A z^FitsI$B~n93H%co4!xuZ7eY64SLEmhxapiE4r`2XF?p_vctJdlUO7A>qcqv%R^sY zkZT+-`sy?q`7fYN!|v0H@_^p>yp2u@7vY88v0;Adh-E?{dEUIoE%f@CGc64-)6v#>Kz8;D zddK@7p2)X0`r1`pCY=?*yLhz;d%C96uj?|HGvhpId*Ual=J1A>>SDu7eSd;HbjpC| zEWU#G!)ZG&I9-lBS-y(S-f2(g#}zRRcT;rF!YDF0;Ru~`^BAqSR*W9|&0@|!oj|YF zw&j`Kb787eJ4n|NbCP{TpY&M7p;zx-%$%5dhis1^nDU2iG0S6lyp$(Pc{6*KlM+#< zc^!ugnWhIYQ*XC3b2;CUcRGJ3^V4%3o@%x_I#Vuw)7+lS3G4;(cyJdj2+6S zs0lxIQKGe7Sy!rEw1*BndFB1=9VHA#nCE7YGvxs=Xyu7ndle8|DKUyaJ_Sr2nFia~ zV!%h|yx52NZ1DJkCW_;@Q}> zTX#@vD^)%BXI(qP6`5?a#p`&Ti)@> zbsyw;ycq`CmgdH0WQS8SU z4i%)}U1u}#kd_UWZ@Np%EzY7(Z2U-7S6b1o($yrKxsGme5{G1Y3AMSh7Je-k;U%j% zFrF}q@UOOB)XP3d&+l4JcRi)WKCih-R-`H6F{5!R>_7t@p}C$@Bw*9uT5GYPy&8`H zSq9tBy5kT1rD$-}g#M}%fi{ellICAV=oMv3%-oZR@UB}3e+$>)wV{6aLS!!NKCu=` zxvGKQgb3n@Q6Vx5H9#MDSHZQo8PpfoRIum#e9*671n&+kL}Lba)ftUm5GBpTN4+gT zVn8jBGnhc;V!L3?18c&#?mOUBFQ!hbXAq}^Z-DKW&LIoWg>aX74LDp8f@U7AMpVfR zI8k^7k+btb8YdoE?EOVdmpfK>X-O5ebOsIN+zx}%pAI;f9|YI8m7^c?uMyl%6I6T$ z!{qauYPu?;(T3?8@r7SDxYIcoar@=~a_Iwv&m2IPO*g0 zN5W{&P2}czo*UK~0+V`wqf41TfOE!Cq`5nkvuTrKFmIML92i*6@SR9vi{ES~9CcLiLxp+x;9~{QTQg8s zY*hn7v~r10U1!0QjgLXv^xc$D=?%h+ng%&%rW40ZrSXyOyJB@)Rgi>R7P=+t4@5(? z@bK%&0NE~8s&UC4B&A)7)VD52_tJ)eVsHZ*c{vNl4Lkxu`;DnR9Y%14up+0Ey^H&` z^%4~`EDl?<`;gJ>QKVht$!Ko2#Z66$`1eaKcs5`g+Cw}>${J~)_54W$grtGy?)q2@ z5gsx$cjK7{V4i$E zxHIFteQbmpyqckfT?B(@mA5U_c+Z5h+@@0eed&1G&5k;cH^)H3qiAq()gjm%632CY zS`LcJgR$N_FHXy0UA)yDqOgps=# zu@fkFcp)9*Xorhlm*DTCC*j>4LZr4X3-3E%MR)Gq2)`T0(~%3VAeWz-sYmAH#R_hp?6n!uVV-&LA>rnN|Dn ztVRU27B!$Pm($5%MFIM`xsKd<@C@Z}cRRP|gb0$d8KKf<$Abg)@spp6O8|SA%j_LH z*P**s&FF?+N8PosEMm{1b}G3sii+gNQY!2?6r?m0?VtQ&*mjxYsD1t&`!^?s2WO!g0Sm`ZBdn4MZ%Kj~2PVGKW-5t(lre=aAvrZA>>0hX-0|fPD zDn&)JXVrPMFSZ}K@VqYjs1IB3SPC`h@EWwP7-a_)+o5K)g(yZ*3LFT_p@d9XXx-cp zv@5KF?IU!FIy!jMuJqAraTKz>$)=0#<%5gXbBH_L`1;loJ912uMD?c4?%d!4!rC4 zW|S~ojTi&1=+gD?C^aMtO)1_3H_pBXFD&^DSmwq!dRYj%;{6(}G_b-em$6~Lo;Y5! z!5q%mC5@E=6>&y@CB8lT8G1H*f>?JfnTWd;hn8*6Kt`_@qp6lkc*f#&@Kcxr4li#( zo`q|$*PIDd{Y?ZX?7aYg#hyZu+xt*~Hi^|&U51aO0-=}c7ZfMA2_8zEK)~! zHog*WvYQN&twqtxy;^6><*Zj;?Cxklb|QfiTEy=38EgC+9}(2)!3w+V5hXXPkx?f zF{SFsLTj>>IJ%oSXdhRFqaOG~EM`vzp_p@qI}$aF6va=XBk{GTYAgDX=x%j9cZWWO zcs#o}Z$r*)&3QJmRcat;=mE;UF&i7Lo5#7VW`N5-zd+Uh{#6iGMX~O8T(7}0jEkC9$g}htDkS7vIc#D@^(GEF={#GQe#7VSbNj1 zLuw@bi;qK+OJI`J5cZ!^Np_E<;KkWX={@0y9BtoBRy&=??0tE7>T?ac-93U_+S?E2 z*`6lv-CIi++t0^yoc4p?A9mx?23Jz3uM5U~8wME;=5*(sT71G*h~|FtA%%~L(j^Hh zwEypuXgW|OWtW}8l|>@-^qn6FdGS>E^IH+UdG{E43|z6IQx#!pou!%A~Wrx_<`$%_oKc3v^v z9g#!^yph5JF+E(oIsg&=irAf4kDY?o;k4~10I)m`pXN`28@}X#Y0pYAR>`AQ zFTY8p9ImQO)nA6cpD6>YB3`4<@|H56;CXR>N&f~?0 z0uiVFB)V~H8dlx$o_qD=3OF}`haNcwVVUY|@PxSq#@x!`R&;g)8~7GTzOn?Pd|PaP z^)YI`gFqnfGJ00S#9QOUamb>pXxoPnd@e8u9$Fv_(pl0_bDJ~T;0$r#fHXd7bOq$C zUkUqM6ENqR1u9SW#8VOwN(wTf_HLg8WD91&uKYFdQD+Ps%HUx)-AW|nB!@5mE}*^~ zeM8ZHJK(Z|dqKU&=h{zVXNZ9_#wa!RE!v<|POY|{#(k3WUaX^2z#a9`gFS}c@Ty0c z=t+qwaB#a8nxC4Ex6ErNs^<&PUM*juC-D{%T2_a*em@IU{N_{A*V6z)>0<4!>Skcp zwGU^A9D_#+&VZqN$6)IbFLrsF61&Xn3UD(Jg%|73p$AtNV9g9MOnQmok;Zd4N|B%* zFPMV{w3DEdZ3(w+F9z8(1KJFjV>g%8)a+DCQ09LP<$5W?!1`a5@=yg8zb_f3|9k_U zEx%5^|9Ju7RiS9JhYSw!DTPUIzoIyX6B3k_p%>QbzH;1_DD_(q`*=zRh3 zt9B_UX`@MvXEmTl;Z|sMz;O_Cqy*m4PonfY8-eiXW*|@Iu#d<?vtRmYB6(FdM7F(^*e(WEegf2Px(%sL zz7yqMEF^OAG1XmRiDs0PATQKK{dBNL8>Fn@>m2}5y(G*JYA1g1(~xgZEb3ZNOH_Ml z!se7D>RJ6}AR{gdcN`YMwM{)pS`dVyg-M{MC=3iu`;6U*X!tc!D+ z3i~V0h^h99;K&^-ki&vHP#S#;8GGzy=y(-SJdYiWggqT-V7?DykKP^h(Ows7W#1vz zr%8apQ$LZ^Yc}i?UPIx-=fPniXY|p+nRv6wk5IN~_n1*=vBPzPW6zy;N3 z!BD3vvXF3!)!S`|7Uy(L>Ka3|?#B_h`qOdt_<$mO!H}yFM1&wlx-jmQ_=>Dr2e}H) zrbss8z#8=4`wH8=w;f$G_)cWsuHr_X6NhKT z0X27-6xd#P3Kd?DhqTRFFe17N?>}<{ahWR^m$!8g&ow@xDzWn*`u#Xk&Yg*NcbkJ9 zvUSLHu{92~HK9K44MX>4FT^$rg$Y>=5hV0>JNhu`qf~o-rB>6?_CFWQgZmpykjpf0 zlzy%f-7g77S@))6)c|>TXQv1-AJs)v&q}zoW-T}st3pT$AAqaPjw8*=NIcipgHU*+ z4A<^e!-C~A;RB`1L}Q~N&M8YIRw}K55;pnBZ%H#)>vfpBAt{D1+*S=<_Q!(jN2X5d z^~ij)0M|? z`H4!p^(LT`&8~o>Jqgg^cnUcll0lz*`5o)jF2dpu%kaR{FKB%2QzS{%qLk-6q&Q{( z%l3bV&i8HMJl_}8d;>trjRjz>NDfZYD2B~9*V59}vr)UX5m>)99!qnpmH7)?u;&Lu zSj-pUu%}pJ{}=P2_O20ZQYL|q?qWcD{LVmS=whd?3Ms@hjK9XB|ScN)Otql{!6sfzP_0Y>O3uG=M1LbleIRh=t_y_fa z<|wVEEo|dJf>F8X^3XwaYV0dL`@<#c-RbLTAnOSaZWkjD&o@E@JC(L@3*rcWT|}(P z)1vd7TMFVzdN@w z4(QvUgQ}hM){izYdhKj(MDBZXKPMAb7VV)Hl+Cc;=3q+mXWT&UjdEgBR;_|LtvlJ} zt8DPW-UZNuD1$ytzp0l?DlY~*sRQq)D-daW1SCF{C9}7@Mu$zMx%j7Pa`4#!S*s=T@u+n}82A=BNcnwV z0>i&f!}X&lvF*G^X!HJ!;D??SUc6KvDW+^fC#%dj9pQ@^!P{g&M^7o3R}=z{thQxxt}_N0GncJ~;kGm3lWUg~4bYl~ni)WnVaqmqSy0)WIiHh+X5g@U)FC=yg`QUCI{~IQ_LeUVdK#K0e1ns#7ko?}@sS3gSF) zt2ds_4Sa*IT`s{#_eydW)^wvT@n`6bS2WN+8bUTl*AYGLjl{C^hdDkgPS909k}=4C z!yaFn$K{GtfH&UmAVjkR?l7K?Yk5p~FQEiJ^Vw#f@K~H&&{)O2q0)|t3xK|OR|4+b zKhO4q`xC7DKn-upx1qn4Ibcg&dsyfb10{~=LpVPloj({4btW)Wp4E-t1r&knmNfg3 zh9XzFc(B&3<_4Z6aRDptq7h+q3fSzukCk^-qK8FCVOWnAoPNjv5^5pjK%EIvSk?=6 zj!uC)UF)IeI&pYVWe?+da1i^HF)TqE?|?+MDzgt*%j_Md-;I^|nRHLkmeo0l#C?-Q-?v)?69@M{CES`TnyO(G1CzfOG;`$;4-=fQ2Q zU0_Z?B?NOKk;Bg}D5QQI_eDR%!F%Mewn+kr^pi&E7CG4L3lr(D&j+_;8ePUHis#O0}yLO^>UabxnOMa@Ks$UFn+uQZ#emE~GtC9b`#`H>>ZZK)^M>30Es z#+8J@#!*uGJyLw=sq)dyjJMoi}i@>gU5blep|DXEi)e+aF&u>Brx`?Lfr% zDLmLTfgexbLzf>H;snML_Ox-&54sW;>8Qxitw&}q2g{c7Z`i{L7)E#wBf0?1GnCf^Y1r1fr7dTdiW zwQh`AdagH>ie}VMC2I1tV#0Is;q6wac_j`i-#U+%Z*+yNZS%<|x@XX5Ss9WHK1Z4^ zt)XszU4zEQ(uuuAV!CSChG9=9(I#0vR&)VrK)u;FA6(syu2Q#Q`Rp~szwuvAgl zcJLKt7U&GOZWkaEr%-rVte1Gdd$rxYpe1mX+i|R8ory*j;t2I;W@u`WCEO!96=JhY zqHrt))mFuU5%*JoJ)DVlxIY2*u98SMc`tGIdpvUP#H2nztvF8HS@`VXCAJm{Pi2<-dcRJLH=c6ga3k|ZzbBi;edfhPj^r1ZOyt5K-H&>i2 zeXoxr>W}fne%yoQxv%Kk`{j5Dh%i-XHd%YUiFUp(&y$}!g*+pqPd|QqfX*6BLHRki z=+(*%WKFjrL=*XNLBW2SeO#Ts)@{#QI_nIG{ymotSw_=8mp`Ma%`k_aTXpNHNg>87OfWwrhYvInX zyFhel5V=1(fL0xEBR{14u)lv0!Jbny>79x@__AkZ`gZb z8ct8Oql6E2AY+sPw7sOUy1WpkL@pAUE1U56qXg`Kf`|OmW$EjZ8{iiOf}Z0)16ytxv2{J?3PdPxO0n*TyR%KG%S_FZ`S+d}+XNrB0abt1>FdO-QgspR8h z9<-j43#sd7NmEumV523;Gbug+m_hI9)q>5?>Zl3Ny5}@pyk?ZV#2mt|RT_BJ*VC|U zQzp%2@aZ^%c#0iHKx6UmC@^CxWQKpiMV>1$u{jxkw^S#O=?jqRPG!=5$Ga&ybxeAt z_)&W^V_$N>Ply-bau65gVm9{wauZ$D!Xzf?)!D?OKS zSIa5d3TDww(%H;`20l{SmqBjiNb)weZijmh2=ko8V@XXi1B-oG&YaQP1C6u#;ioD? z^3~IF(lyA+eQYGHsojLJ7kb$0U0qFch@*?z)OF34EcXQMXa(*1%Ef&# z5G{{O1ma^`DG}W$BF)JTG{sgSox9b953!mN_e&8i(0>8q)#O1!_X(ugW`eFg)FrOd zi!indg5r2Oto7C7NW3{?AERrCeoKv@>Sw+fN)1sf_8FrI*Wk$*?qYOWsSSx~Xu?}L zM?mvA2Po^Vi0{fBLAPd$h|NH1Fp`wPw@&Xzw&zW#{jKr#$8!78_%93iYJWSmb5;?q zpq&t1CWAWdS0lzD0tMuHpz9Y-QG?oxPYg7m*Dn&@<{bHE-7-3f$6wZQc5)cVETfL;WI9+M5Z49x-c@C&ajlEvD%H z@LOaTdL2x!x`s3lnL-)$VwAdQ(tbSmllmAh564{`DGj-mxbog|{Fp0I_s&5DZ&uL8 z9yh1s3mQVuy}=HKmI~qg#zFK7x?lqv4ke|q49idY1ZTFAcot;>pLaA62kLZibl5ve z79JTa zgJsW?km=#2$VBBD^{~DZ*f@*ATPZ84wu`EEnr$o4(W}Ry;mj>Cw3~~BOlwiI*lmKa zKRX$tONa8u&Vt8V-ooFW*O8ln0^~6=;P>V!*g|$GkoateQ)ey)?x|8JcFF|WscMN| zIM#v}eTR{M)EnYTjR2*+)Q4R?G??>S9JE{CL~|n)xV zP5mMJE9+HY^@@4m`}`l^*U2F68;5RS8E;0tOqo-CPS*rvdp$*%`h+$)CWDHBS)32o z3aIs4)^UQD)DuN|$I-`&9mun40g%c&Tl*|NjC)bM0%?S(Ly?8+@uQCYFid(G&Wlih zI(JJES;0r2Z>l3>!3*}u{%{!Ns|a@td|^+7-G%4oegU`Nu0b6G5AZt2sYFhIKAakz zO_$f-qh9%bg}*BkY0j4^>yV+&eY zCJ7SPTZnnpk+6}SP4+%tPLk7R<9x4($#{1*E>~3|4@CCD?JRq8hN3Ecv@V}ke*PPX zOtFT-O|S7eA2V_hLml}ozYTQDSYls<4as{8cfgOIl3-PnEcR*HgnuRvBhA-OVNzf! zvYb1CBZHcePFy*3H*}<@_%g^Bk9zRh1YxqtAqHxDwLx&^CD#7#jMG9D8NIPu`1Pc} z!t1__jt%`nBNkRzgs2hYXz|e8%_fYpk|AV%GMbohI)jqywlLN%jpPKhZAbA1`e5D; zcQiAqi~Gc-3EWqD4EiqJ1LHfl68+7J4D%IVz&w?W$g5=vJQ}zkdEJaeOJ?N}R)-xS z+fg6=0+mRsq7*E=6$SJB6dBQ+(_)V<97nT$yh7*B&$BxpcpJSAEkTyM9#dvg6g8;) zh$zXE#dE)$2312XU?To2LQ^*rjXPBAv`6Jp_)K$j%~us&_$UT{Ud#ntH2}*E+fmii z`!(wx{U&A&N3qB1O;FaW0dUr?2SpCGqbJ%^(8-C1Sm>b={e>2y7~d>U4_=)Q%ZGJorF}LaV%ufBKllMU zK4k`H?32}{iYs?9qrDWpQ>cXbgF9egR5!Z8{)~-J9H-xYK8>a93Ncr~-sbR|Ik@Pi z22QX#3RX?VecCF|;-?MSU}s-Fy|i5svf}h;t5vE{eswyXJCsTX&G-bXLsOCF(6zcI zw`HXEPc3BeP@X*cn~M)OWg-`&04iqm8zozN7deVhi5~a-H%W8ACe~z=>(U zsnc)Fs5n_Jh$k*_Gb*LI1@~3(JMI8Qj7@MIO-2ZL?rESY9}P_X>d`BnzsO`XI^wci76KvCFCfMjafm5ewd>m8rkT0x?- zE3VtW&b$J0f>ROsr5(Ke5e~9nDl%9PB&lEB>&4{q&R??CQUwRjse^mE%5cTrxu9kB zNid(#f^U}4NqWjk*{jbjpw z1!opQ|0|({wipko*NMY@ss&=JT=>+>H>U`V2RqR*-_!Q72X;`Zt7gLP@g`)HZ49FA zX2VbBTR8K&B)R81lkLa7w{stsy(M-XISJ;eo(FeN6(Ro3Kyakak;tDG%h^<<4qA`I zqHHmF?D8fP)t4@Z_sC3@)ZeP?YrqP&bW4=Y!kP@t9P$#P{sj7#A*ktWgGU&L-;0WnZB51J{V9ADRLC z{A?_w|BlkRG`SqQOdn;fc!@k3r{J-tM*#Cny4}YU0rq~CS?IxWHisF=WG1TLg6_%v z>}NAIdCQ^#NU^P_P{yHlT2G+>rcR-0zQ!64OfE-fcaRP->U2+I9@)@fL3%x(O}cI| z#SczT#@L36(W`MaGS+wvxiai9y*WG_<*r^ymZn9Kg&Ij{X^J~2c`-ncQlU65IT-di z8r$0}(?iZPU5@|$Z zLd%JaZF`AzW8J9TG5~O1)e#}<7lOmO=fKiarKnW=1Lf7!fZmMk2erGW;bF(ty7gAa zL4oc}F2fI_+=XWW6&MM>6^|fo&)lGx@)4_M=Jni5)tZBy?BL89^wYWLR@GheoqYFZdi zo;a;ad+x6w56>wf&j;0Fxt|#BXnjwoD;d%Qa?j~Ub5(HNkzVkw!Ikcw{f5-G?S!K& z8+vp9DOlw$JL%sqqiao;kPEX{lA*(0_{u?N=Kg^rus1CcXlZW8Q#~Q6_j466ksX0A zKBtq*4MdrWs2KS9SCGp+Xly6iPpfVo!S}Wm!XP16a{ZZ;DE_)7Ghs9mXJ(jU@8}uO z*};+d=;B4V+;us#sksElYZk(LLKXPcit8{eKa75PA{ED7b|gppr;rDCL9%VDGQBW( z3%K}0k- zVQ~-LG#&@lvxK2Oe>sd)$%k$ahS0{OIxzYw7jC;(1eRIab6Bu_a;vm zsBH$#<{E-f-A~Begaq&JDB-Ode$%O>Zo8N;8Y4vaYx zC-CB5&rxpI1vKZBe9VpkRk$kPGa`?3!EB9Kq;PK(EEc+p?8ZG|99JE$&fGp2nLuV1*@=Xk7&$x{%rshGFO^;wF-v9z(W%8la5<1+nfU;a?1P=#$&{LP>VQ-V? zILdn%>D#p9%~FXt)gl(y@QjePc^*vq(2Ej;!^rTaB-FRj3T#Qv#``_S@fv4;x@MgP zzQ_roiLKH&h7O+yWDoJL9tI(a_Z(ySWD-y1G3EIpS;ya@kQPKBw z6i_S$!z<B&1<){Ki)N6tgX}6!gc`6#{eo4U-+EmKa*Qnsi6fBi5fz1bg zqel%*NO9kD6d}q7u_cj|SMUwAcF$30=rI%0I+OFLyoS+*^>(mcSrHD^nm|sFGjwi? zN55)EQ5?GlrEH6+O|g-|U#EG&?avf(<>R$b^6^hXh3^5^H<^R``Auk={VY6xfd)P} zF^_s&z@={tREobek; zS|yBHfOIGE@0j_6oY06zIP;B&hJ@b~O!w7hF3=i!uV;J~{zU}{r8EIhgr*IK0`Vrw?6 zedP!S;5Xo@e;5oazCpIGE>Lrk91OZQ59|-SkDgXNw0qxYj@B*Pf-UaSV5ew4*U-@c zA8a{=+cL_a*aALYzyAc7cC-PlD(*!7FYZ>XAF+q2XA7xpt~opi?@{x`IdCU$K9*Ok zfEQBFqehd<@Q@4(=dX>&SB+NU6E9hKxpy|zS1E}t3n$|=5{C#z>ZD#=b&U!Vb;O&( zgQ0%pNu+QjiAu)FNQnG~2Bw^X+IJIh`hA+Zk@l1b;Z29tPcV{pKfyjN;SW30hJdD= zE47P36N&2U(7tyK)PweFZs?m);@X>Il-Eip?uNQTIPE(N8mg(oBU|Ocw5kP!_Prqr zuKS!bbr~8*9 za_)2Xyq&4+6RB1ZeSQcSVWLDQZw;(0aYmc&akx|USuo`OO~i&I;rfYz57-W%*Uige zaI6cs?&NNt{ptdm?=u4qe^9A9mBB@VpgwRsP9C4oia`rKcW`d}+<^0B_1Ut|%ejdj z(zt(nIY__21B;FhfXJ`8sN)lf?9L6?x1WyyP>=&uwfjX1WCMYnXP#Jx?H*1d;MsXx z=^)y@9aS!v3%VlGDeahQqHj(NJLIr2GW2l(-p%vHzQl`ylTO`4 zS6(`G$i|k)|Gfv4=$>LvXK&@CC&=2=6Sf4aieG!~`A&`&^QX=BpaxN}RhS6tGzJFt z#kI9BpHhksd#OyPVB*5a6%gxj5c!)3VKZ%I#>^>7=<3}s#NF#wgz;1rj!CKmiq|-e zR!NK26+EUu>yq`nIXl;VqJpKGQ28ev96BBiJ_p~T;t!g^BMg6-@Gb_Q>pBD;+%d#l z-JiH{a{_Ji`ZtJ}*&ciQ$wm%`p2Uvbb#P#68XPs1Bocq9a9uBxNV}^F2rZ`3Lq-af zXCuN;>KrCeloxV;ya$->+y;INEdpe0qTSBh{*1f5_dx2TeUj(PC)@>>sI4vM0b8U9 zkS=FHWy{q%jY~dA`Mxyl-OUD@wB)d6XE`{OcLfd2&Sk5GCxQNX@gS%F6?&dn#@@Cl zms)DHUunTUz*%VV1bmFipuCAxu#SF51#s^JtC{;50l=)Fg^II$kK&)kqMcfM@fJrr_%dA;3!hsDBJ9>ewU+PH+mSZ_s`OE4tsOQA zzXJx`<*@gMC8#KIAl9Yq3+gN~!H+>K$iF5J0_OAs{y|fu(fSCr1dI~_UO@;nN#M8A zVv}*Xern!=i{QJT1zac*hti77fVrtXd*0_(B%+px9vxOEqW&L_&cmO|_y6O@IYKhC zcXr4=_jTPg$S6rFiH7==kffoVvd&S-DiTr&QHZQ_zpq=vC@ZP7OETJ1(NgJmzQ4cV zJkGlB_x*l7U(c)ZBCp4v!wrubhJ{>ZTs}I$*go&#sXbF7lVVf_Czd=0^IwnA;N=fY zQGXFUh_c3VDk<=ZUrQ}l9pR%xnn*tD1N3~8L4Ry&g$Bv>@M_L|_!ngik6s?&D_0~# zQDMznVNX+|n-JN)V{0lvOL zwU0s>L|@~eHe*}Hvu6;A>w#hH}ofkHc*yR{3-KcYRIYbcw#8Mx)wVL8)8KJ&rP2np@?fz zD7y18jOK7b{+|KadUz9Kcqtz#-A#gC90&c|t9afo^Qqo-T-<+eK5?goyobuAb%SAN z(EAJ3%#b`BB&NL(x!=tBK*nf8jF)lic+mn}&!IU-FBt?SwT<-z$MGd~+@Zf%YXHIf`7h&@h z6>8O~2{p@GxA9~Omtv);+3GSXnu*{s3c31cIMv zm)=e4**5`P+q(|iPmpGGc12KAxeLKTD2cQ995Q#C9lDwnjcNiep#OSi!Pw{B)c%Rm zFu(pUd{<894QjZ;Pqj7BS`rWcx>LcUk0$i9!TOl3a%f864ODXVE3$kpgR^#?MZ(ex zgHW!r9IWTU24Ce$~MJCFtaKWN` zLW9N@xIA$QUb1v5iQRn*o!htoGI(d1E8h~>@|)Gf21IPFTp@Y4tbkRso{ru0=8(3R zAIYLNZ*oDp0HiWfv0czov@#Ll<*9p(m{$0gH8d?1nNmcIvH#bZmG8W1eS5zD&v{ z(zlL~8)^l3M@>I(L{WpDv$PCT!g=J$h$_*=x<(&Lb&oGyIpBI{(W@rJxonJnrd|AoJA&eG-neAe~h zd@^!FkDh0q$)@E0W^2FcVVwwZR_D-h0_pRd2VyuRCGi-!pA$!<-Zi0apXs#x{YE-* zM<$8g`jG50yiOjx-2mlVCX?|`lkiv9IrMQ)3hU4lox3v@5w7{5kXd`3M25Nxj^rre+W#>nGFYZ%VN9c~#N{5_o<<4zWw&5V*vAzxQX7)LY(Q{caS`a?B=jx^Ge8aVw z33GlMy{Cwp*c}Mm!b56aJJ4c3 zGhDSz5!-9eA=|8m@aO~4^O?jdEWUwH8fOgRw1s`(6}5u+#k-KnpN#9T7# z%#9v=rFc51w^);bYB zz1mE*Sn3hetaFHI-bfYff8scQYz?0Btr_kf{KUB?;8v~Qgtm~~^bFF1I1zh5 zergT-%gKWnS&iW}>~p7yt(A0givk|IlS%&<;e%eA8Ib9X_INMv0W97j%SPW!#;Px$ zu%}KNAh{xE{OM~S4%_w_6$$-G{pu22Y0ys6E#AQoooC=119aRIYb;wJg)_43h{`cZ z^4%f@D-Nm?hgLIsXPzRi+LumZ>}O%+8FIwlt(mK>pGJzIz8*_&ehqa3pPrZG9;Atv16+k&p?W}>R$M6`Em zm+)t}DITm9Co5g|FlW0z0{^f!IdC?EWaxeZ9>2TZS27uIgk%tVJ%YL{D!?#B3y$3= zL)9jZ#Oj7P@oOrF^D6@o-z)^z%yc7VMHApz!5Jtk5F*`6js(}g1#_Q8l(fWjVe3PC zc3XZfqwsI4sGE{PdwPp@P!FD>9Q#^!<@h6X;zKp@**cfDy!4caUWL3|Yrzd&F-FpQ za;Yg_(#X&vb?0jzZZKA^%gDK{U+~-fbT;*)2c6b^oPG5zhUt5_q~W4ihN#PXm(6lJ z0u!C}8hS4OMyn6#I=kxMAkm+XGD-qjEZbblZdd-!&RLtm=%>tMpSR|dtu}9k;YVV~ zm7vAs=o)YG*kC4YB_;(84t(6Qqy~Qcox#SeJx;_6*3w-?{jA@110u0FgXXT7MQ>9c zLu)b<@X5aptm}XAq~J>il;wDV%ab6Yzu*--lUIfnJ5$l|rhn@i@vdknbdU+6kn7D zxLfi;A|wai1ieJZMg0$nsOvDZ&IJu>T!V$1c;rpJ7EZ2~#lK4^;U?$x=xB)=+0HbI z_8>8+%E<^WE~a7JFi(^hZiYE0j7Zo-Y0?=onIyz~q%N8)AgecChK;paIL3Ypv2L=$ z*my1z$SPr1qj9v*HxYeKUdzlX+9hKCHzD3iS$MSQA!n296mUNyL=}_Fo&1!O@UmD@ zChXaPDyk;eZjFh6%X#8t(R@)aP`powRLtN__%u>ydKB$OntW*|IkY&Z2CC~e!kf%v zNO>A7{Gc+K>QLK4ChYA`w05WQ?-3R5@hVF~Y0W0Ro(cHt5nr;+NSk}OBU~^|rj+`% z$wv6nZ@VCY1;@zwkZjCz&mD`l+*@&aONHuJ1Za^~6Q<$T2o^xXJNp|=aa=y3!9`3VHV@H>jH~jZF$=OOhAMd-j zqhU>>ZNvR}FW8mnJKd-{k&bFQ$<}yevWM26Z4hQ_H#iAHaLmwFGQ8i-dD=D17LS|K z8g@U({eK}1&)%NG{kK%8i@R1ko5@tt?vTf36d!1KvtysLL8b<4(O$%cZuepfhD;me z*@_0v$vjr8^f4W%cZ;qfdaS|wH*|1~1PhA~vel_moL6)$rxRi#$vSOc=fL6Xtg%0* zfj*Sx9J9vOx%Xx$>{xKXx$9hl^9LrM_8DoySydg_&-)Di@Ps(8x|+_qoJ*wR<*u-I z?!IT?xtX(HlXSy9TQ|Y>wtSY!yi99%iD5T2Rph@{iX2^*&-QF<2(b|AIe; z(6UO~*jD{GSg002=g-_r|JR)ef!-X(6Rg-maZ|M3 zf%3-~WYn`!lC&jb)3KG1bI~5^JXEmX?g;!~-7vE8?}y~kbTqNl5}EypLzN55srz0D z_;9c)d3xU!zfJv(J|ihS9x|0!#YLlx>RhKy)C4?L#J~Ntp-EX>Bupulz?uzi_^$m` zRIJ4?!?w2>w&^emyA#d~8=CO`URr=0MC?_^y2;3)e+}2*;3uYU+7NQuu7Fx@r$QrR z4)g!Yq8bHXlBSGtXNV!D1nL5{XB&8#i>JV4@fNU~6hc&$-ZHaqIs;p;0DCt3f(Yk> z_BZm_N??qHr`F=xVjkq#CwJZ{o1cJu=e1PrE>VBR?jQsg9D{e(aiEqt!YGS6sOo`f(LiC_^4ft5s;m7M_ z825^W%yNDeS=W_|53igHJb6Bz1uUF#D+QrVC>eO#3PVrN;~8)N!YWxc9J$_rWN5iT zqF**irz6mxtAD61mAByGlmUEAtPgft)#859&P(&k7u5LkRDH$G5)xUskwodVK-Fne z68_=@ahWE{{ce9m8Ele2;X)E=b)FcVdWT`zV>mb}gEcl>hK`(J zW`>0(8MvZM+5<)VvE6gg@KZ4)oHP;5fAIpm;`fu!yL0jBC_i#pLz!%`D<*d*Ehh>g zy`Yx(61(rd1G5rb$)j>*z;>cMDQYcVuigo{qRf%$nonLJRooR?iTAv;2DZ;ik zJMkMtaFt0X~j zNWU(j6Jv4mW<7HI^-S)Dy%TW8D?PAozKGN|9U|G{H_(j$7ow=-LxLzvn4Im!+hjaM z7Z)oy%}%SQ7u8kasRxW$P34DVeO@fP(RLb0{yf7H#RT9n@{I1Zcy{0ST>7u>IDTHO z2M>Lk0K1*x zSO!Q7qHX_D_tH5q`;aMU1ndXTy|UzS&UxyRSs9hGI*~M=hyjD%T>_Jst5kbq67%!% z1m^Ma&nSDpD(S3kKr43{kl{m1!FrV+dXU%zN=FA_;qDutSLtfx|^hbSE zy(W{@{uo(&n}+JfI8c~x%KvbB8Cb*{n4!Dj^t+jy;PTdhW; ztq+YzVDU~yO*|OCgnS?kq73-hREV3_<`nC$hn+?JUlrkLW^(f_)YoOlM*KOe<3RLyrus5ThUVE+orRR9Snfhkfy9E}QqV74B{O z$@teCrTe_juwjAH?4g|1$ar}GzL|2EwAp16G1;F){Dvz^Ry4!8dwsFrh!)-5{vNLK zchCxpt*C>m6!1GEJ9>Qp#r|5MOoGki@Sf$m;7k>AJdHV({S@nM{)~zb9KkxPe=?6tzM`$`dXeczd$h4em4rR{3JrG2{A5W-6s|HK zrYvtmZ+X&~lADTqtdBY^OI*aYOAN*i@xjDu##O4@p_ezb<{$HoUV_D@4k4Fb0kW%H z1phrVz%YIRjsCZZT>lt~YgJw|*PDAeBRkU2n7$^~dAgW<8H+^UbDuFu!Rt~IcSZ~B z|BB%k*>9QDXPrn~awB=8BI@8TN`UW8YGj$&Z|3d0d~E+DKV{!Q9h{TcPD~BFhz3>3 zB#E!0>@M=iE1Uh0cg6#)f2afS-5b8&EyA0kcQg0S-bY)ao~ODpTEnU)(sus`RF?}LYIupbl3qK4!_mAoYa|&0)#WH_|8q~!Psnny2*BWaqu5AF*pplnP)@J%O}jb#*0FKV`+iJ>{t9ljoN5ZZy`#qZlylfZwCK0 zx>V5a1X5OGg&X^QL3*?v1%(?6|MWG(Tlyt4&%O(SD=f(TE!M;+&lDfjEr9i}#L(%S zNc?S75modJ!wHKLXqlr)E+hmqE-^cVHv$XL*P}`B`B5J->7EW7AHD;X#nW)rB++hV zUm`00KA!~N9i{l)x@77US>{1`GWj7piMg%7Lj2BNYC+^)So5TeNoDo%Vv(ONV9N_M z-o76{7+1sJY>iP}(SP{ScOE#Vt;Rlowcxj3I`;o&O}2iVM?!^4R7+I^c8VDR@33L& z49r2i`E&3g&r26S{?>;5K`uls-IL5%wU#8UI|Wybe?vuHD6jFG96XzEi#tyngLkP3 z9=Bw$h3{=Jzhs1{fm6c!rpG~I)=P-USq-Qu82eAR!3J@saQpnt@JX%>3VJ-H?Tg##22BmpC<~4+COA;6TH<-S95orZD)1fN%c%Nujwg2jWWWU7` zkb0%>yhv(N!`CMjY{`RVw7YscSu3k8ye#D4tO^bC?N$S%8a`k@IKIGte^p_Jn_|uf zkpS%LZZi$mMnq+==sS9DK^WcnDf=L<)D5Qizf*Ll^hifQ z3p({T754a?1wnNT_PuZqNr)U|X!s~(&zi=_U}8@A;G6;1`pvQzV9;+OX|?h}O^@Pn@7~$)Lv1RNra44A zNQ;TMP$%jZ|Dv9_iQ!JR7Reb%U}wz$0-jy34X+N-hIwvwoLOGUytvMQ`o`OuDD0dReRFLM1gx7x$|5~j zDW^X~OQ}ehcgU5szobC#9U6yRr6Ja4!3P{`TEHB*;Saa&N;P<@T!S~0RH5B0j&6L^ zWYZP1UZ9;hwPBmfJeFkXG!*=F#DQ81@SLMz^s$Wt*$u-j?dR0IX9sb}iPtWlod0nfHUuvy|j)_BX^Ybm%f9W*x#ika0_0gxT^`y|3 z<~|~uahZ&^o`5%Td%3=MB)1H9Vo!ZPobB-$c6|lX^DGIs-jc??Z5-6g zbm0A4CK0o_{lr+8;Q!YCq%=Fe;aRAJ43EmNuJR?MuF44f&e@YmZC_DC;z8`Axd^>0 zH={3U&S#@MOt4)6pKjiCgm_<3X6MLdkwstS*Z@-=-6iHt%lw{9&kByjqe;EkB{+nV zC~_vBJtwjI<>s^V#5>7_A1`qGY%5lHTAQr4tRpRyIliqUN7t{&C(dVUNwTw8f~Mhl z=B=NL$myj;W!8t_2<63OSNDW^@apINC#8brlX&QgrykhE_97E^LvYS|jdUBt&{T5{ z?)L9?@~Z4Y4X2yYv&1XGl%GL&i zi;ki*(UXX2Ee$X~8>PIH6ZsSeh2`>xQTd+ZsAB(ee(3Ir#O=BdwCe6=+;09tGn*v% zcO@9O5}M6$XE&g>Rr}D{#4~X7jyPV4?xF*h2b@ZVx!CioDSS_i;r8b#35U*C!PBkl zQQ1`vob=q!tWm0C1g{#Hz@B>M@5ML#cZUuN6;kgpx9(!-s_{U^E}BS#`(8NyvII8d zx(P>1mEp3#A-qVl0U4ROARkmkd8t;SHAd&qP`>d5n$oO;w$!hL_LipATAcT&o5@_oM_0qb;N*=%&>Q}cVXJ~DlZ81*y`)U| z!{8TMy4YPnztv}?d%iGN-mgH9MjBz2W+$54-oey;H$bVcb|%hH^+x2oB=m{gipx7R zN!J(8+H01vFvC2X(Op{vf$ygv_T~i4&XKRvyCX@`YpdYglnH_|cPTO$R*2&IYhko} zB{E#*#axtK3B9*>)ra>UfPveE)H;n$p+o9OU4`5Qo=#Xk=UP=0sE?dMH@l=r=Ywu$ zW95A)^l28p)%gUMcZy*n4|7O5x`$cv^&qnqiQ@|HIMopKlqq-o>;iT3qY;LEE9$il-XQlK>K<_(v zMvywy8em61yI9}LBrxseP zHj|Gx@8iCwvh}>2bO=hfr+e>zA*tJU;*6i4iCldP8*w}hH$iAhn%dZ^i zbqy28KV{_nZ-2JLn=NmqK;UMjAZ;v{69iuA(dBWFMDZ1Ej z1qY3V(&m+XqQ{#`n^w7yTM9Rc)5k`TiHPMczhi5fT)rIa* z=CbRrMvzasE4cScZ&0sq`{AMY5~OU;dvqG@C;ktok?^&enEP0URNUi=cn&Y}Bo=e!TQ^`J`RVdCxlsg65kiQe(!s$upiC%t&)6*xX z38gMU`X&r;u2+2qzqJh7c;5@SW^0&kLk^g@#G~5*GNjMf9dBIm77vdX2p8V}k4&#W z1P28oji1#{JjLevsceIXYXj5pyV)wOuPa6a9$*Nv%~d!1ZJ&aBrjwV~hE zNRqA-COkviHu6;BD6nIQj2Ugfj+(=8p^vpn^ESizNeV_=qQ5ZvGwP{@>lV=~O`bBh zX1~I6OJ|gRTc!_IN4ojT2026zG3bfqVLZ;b;h?HNOvBNi*lX-7r*`>%Zr1!=Wb^Xh zkpE@?I6aBvR1d(POUrT9#A>JbEXQhxOP1*T^J|=Lixi$o;1nFOF#v7ET>MTy8v2|p zND220$e(s6&ZFnJ-B;ftSql@$Fz$dC1KFf~>0>lK$AQ%EbS7=fgUQ<8Qo@1h91?h7 z6)B80VI)2ss_i@}j=y~jz`?o4s8fVJJ=yC&zH#q$D#xb{=BF4z(a7F;y%O?XrFEYFFEz+UX>hw@PsF zy)oQq#8|7@0{8GVaQ?j{Mr4ym1BJ&V?Unqw_W#yGY;z*NDCHfRb3c*HGe-g*eXc?!Z7A>91NnOU)n%M{m^po%O-5l^VeTxi}TJX^5^ypvuqcTZ|D z7vjCa%-?`KD4alSW@?lEBR=&nb~iJ1GFOo9Iztq5%b56Cm*Yz*m(T+d|F4ohfeiZ> zpw&4#xOIFLmR%Hp6Rcl@tElhnpP36mBL2Tz#Q)P@tnoBvbbLN0*44c31O)Z11q>|5NwelH+Me( zD-r)+zBLp0>)ZvDeXB1p~ruIDTRrTj>GK5GIYl*0S=3tdGyBPC3hM0I!-ZAAvBwA^|obc~GKu>j85bHL>n{LxM_^TE7-(^4OZI^^H zk4$vo=WG&qYLY1DT8GXS>A=n)F8p49fMGaeFmn7q?)|r^D06RlZSn67@cpX~cuE{% zc6~AD&pmg2hb8r|p#D{uC#P=n-Duu}M^Txd~J` zaFE`IiS^u7Bg~ETMVtjMJi*vcj4TSap+Ob69)pvsM{`GXqRM$ zFyqc~>VqH)lpP#Ea@Hy+ZPTw)S6c*8v)5gGI&}_j5q+MTRpN?tmk2mWINeTc+H^{y z(Oqa9G7(nGH#iNq)=?WwTww{voLgKK5B;QxKPI^orVe#OmER?lr5KJ(J@z88%L_>5 zsV2rguT?n3c@Exp9AVD|U+TQ8c2fIJOn_YxZ<%TQI?8f!9J6}&v-l9_3r#4E@k@DUjAs&}y5_mZ0M@i6F}=3&V%5fECd4f<;p znbg-|=-sUupsvZn)WBDXnaCL2Ja%FJeGZxF%K#M>C2%v-1gE|X&YOv9OzP&fyo8fS zfiw3tNTeB~;jb1jqN0sPt=99ju1S+Ur?v6VwKHJtv_PgkeJUiKDTNMo4jlD%hXh$W z92`S~%yvus-=fcyB~=V$hdX>68>1F)G{CQV*D@-4;Yf`uhr1H4z+l)0@RQjD3zM6v zbC)I{TkSX$_bi5?PZ{8oWBPoqjRD9{(8a+&F7Y*1Nsx4r|FWoK5G7qW0v-}F+ylO6 z7?;Yuf|c%<;ndTuT+M)cAT}n8Yq#H}dXJ>kJMZEUW0C)|bjvShw^<%)KAj8IdXK5o zCQGT(Lw0}{$Dubh=8P$~4EfJr!R8p`^U;bCMR8pdM*>H;rZIyv7-J;H!-w)xHnVTS`y~ydy^_i5+lu}A1 zsh=5A+l^dLR8i8CuE6*VC;PZpi_ziw1lV9!fzC`2fY!ZK&ck#wPOhpdojY7R~ul3Gqd@NI%Hw>ssgYRG2r=2@|kNrP2XPGeMTycPgE_++T}yOy%hJ77oPZdN=Q1do*&|Jri>m z7?X2xZA9vm3zpK&!65it`c>DORo&Jk==Xv%7f7}#BRlgXJiPhr2vsiq}20b&l9I>~BJu8*s@j#>h? zfntS>z;$Ulln!G~)afKZ6}jk-=PZufa1--Av8FyRCK`2*grf@8WiZKJ8w#`L!}*@$ zRHeiKf8u)yVN=;T`0CC@>z`*)_b>S)_GbusjMfNDL&~7s#|n+UZK7PYx_J*T`SSh4 zJUJCRO93xQfS2nEg`DrLuysZbb2t7sMJC?;pTro=+@65`KCVSUQ7=(q-ZH4Y?g=5T zdCbK$9{LwMgL&sfGd)u-Q*+XbAVRnhmE~BYI|=%b_C%d}a(X%US6n+aJ50UqVrT+2 z{pk`26q|?Ar>JB4(>b()dBN+yI>0j?-UMsBLb-M;+o;nC!+fLnX{atkKq)M6z)X>j z=$rF@VMQRK+z!Jr_H;4 z=pCo@{wSlWwjClL)C&g}*HWri9sp+`gQKzYI$T%qgSk#esXIME{QMwiVXBXux>I31 zS1+LnCKbqIy#5Er0T)mK`x6BP##US%!yENgoA_u|S_Uk4*MSdIGn}+M0)IvR+p=b3 zXo_rS`YNNi+240ulzQm^Mpe_$vorHa_~af&;@LJBU1bTkwzdPyoTd!%*}9(}-C$Y4 zLZbiXANpRqhO1P%n{%+6Cy=c$Vs>_N(dN44ctmM}W5*u_2$W_RkA@jYq00QuFs z!>hw7e3_lMd3(>=L(bm$$h-IxwIrw!mYUB7PO#`V{^~j3F!>O=W|zqMnUI4XZsddR zT`x-eQ#r+1$`xA7z77SYvUKNpRV5ra= z@r2r9bbi`>c>Y*G?~60Rf8Kh~2+v#Jk?Rq2arIP%tNtJ@fZ9Hq2N;PcL_*2U>cNgOG>5jr79f^HaDda@D!- zW83LJBLBh4(qdZrr!8Im!kR9cHkGUwolo<$vIDj%snONuE9oWo<5=~KF%aVg(obLR zqX*K{LFZKjwW~q~#rm%!b=S9Gr3)j+a`vVQt-<$-u&z)dhzF&kT>v@9U zg>%^%yDCxI{4~;EybbMWTL1t2Q%6H3XKUC$h!pWpmJ_GqPQ6>uZ4|^+UAvccoq7b1 zKbS0`aY`8%3J%b7e%9A}1}e~DJ2i-w!zB^d?gY-pI|TN<>Ttg46K9B4XO=efI4wz8 z30B!1a68o)l~!m$M)x%2spiG>w|oN-%|B?>43IZ?A#`w5gG&cWMLu8-^!ABzUD5or zX2x&E<~g9*aTUnlU;(Vj-T+_qrIEokJzVlAmQh_2f>uRO#9xj*5phlenEW^t(zA@w zkD5P}g-tFs3HC9jEh4Y-oI1`5gL&XRPX|Y?1WAFn1ZkhY9Ns%|aF^_NNG8Ml2GRVJ zFljwk_QxC8C3B9ia`q0mR-0f>Ne^W|q=X7{{y^(%J{~^a&iHr7qmb<_5LQ2n>YKfk zlGB|8OZ-I~m-tbLV$(r3Dh|9ytjU(U6~uRL5-PV!U=CEx!!fg(aGcU@_&S)6>Vi~= z+DJY5#7{vZ2}e;_j1O7iu1G#OR=`%ePUx6eigJz0$cO(=fyS`n-#`PUAg_`)0Xg=Ki%LCuJe;kEsN|D6q6jW7R$h6*a z5=s`!lGPK!c&Yt8)Sk3NP!pd{>c*;3?5QC%SE~@mKpy$rD^IN$lwv-p#h{9c8)#3l z2N{r_K{6Vik|!&zV0^KZaQ5FvP|3T%C~3Td$rkOXQf7#>Kk`TZp6^Lv+d^D@k4xLh zTcHVimB@J8V~7s=3)j8F@X<(F@~M9|eRkm>@j85vOqi#R9Um#er_p&>=a~m=vFIc( z%tqLYwt4Ku?p`dkO=feY4x`W6+y=!L3)$AF2J$1)4HwPzq2~oj65Ai)tXZeXKV)@_ zY1*-fb>BFPUAk3~DIB06$7Bd?^lD@yD|6X>ZJi`r!I)hhSWe`>9V1oSZHTgmK3RC( zfbPHeTKI8g5O!uafYMkJ{aD0AojXzs*{=ubUsBQyFY+0-JpB`nzMaUn>8xU9`Yp)s z*;AMTo)cMVw}9Ps@fLP>zlKX!y{3l>?eVE|k5JL{VrJcR(etb32d3=$GszVp6G`PK z8P3+Z$xwIg67TZXF{CKUf2|MeOAeX(;`quKCZtxMnzP=Xl6rWBS($E*iu*59hnjoP zdFzggH)}sK9>x7s$+`Db+q(?(@vsdE*_cG;dWb{DhSg}n?#*yev6b;yS}l}KoWR|0 zqabO1QX3tyO+raEt(3)4cUWt+jPgqqkc$;oxUbh2rk`m=m64+S*S-^Oit=9%nNEln z<-c`z5ZUZ(j5&Y8K%GBCo%j@nykBTykG~RlSj6gB9{T3AcHaavdGQ#!dm=%wuvZd~`9un= zlFslWH~8698tCJ2Pd6r*Tc3F3syaU9Q-zH2sSTNhw)__1T}McnnQ`LC@^)l zU=6*1k{yZ^WQrKwuS)`u;i?YEO2~xZ*J|A29mV`ee-60+3N8)*vR|m};U-{r>=Gay zBkcA%9vvyUhd!HH!zSky)$>Xe$?rP}R9xIqCM^9k)LK2{Z&GZ8*`i>OFeY%gJ zMZ;Y9Oe!5Z!EYIHdFt7H%t^C!i?lViS?xXV3&Vr+P zHEN+AFcU=mhf&@ZPVknogtD;(4qs({Fw9jEyO_C&nJ`tQhW{_Qykj(wSrt`^x|h4a z3`0JIn{N{C6f`0E)idgq*QybZw)2eR>jc3nxkN#*ZyD#dZWD9M??0~KvX0=3hG;J} zZh^k8NMwEmexou!I)Zt}dGx966!M(AmZ!k&LytH+xKSN4X#0xe%!OJ_)b_50_kovz zUg??%tlw@0N1tE>hgI?A#kG*Swx8mM>_Wl^`<+C{gzdb~GE97xm*Aw#49Q4$DePBx z7QMKOqP>m%Aro zJ{VMapmkyllPn`noi@D4+5S4lMn+6eiRFxsoenj;Ed(N4qC(a#i^h%KU zJPJX^#`O=Hxa4;C5bxr7(V2r|A}(qe7}G=lcxrAc;8rjW{f#=LMJ5S3T|OjSzHOs$ z@M{G;Ptw6le~bQab!`wjcm$#CzDP@VCVbI6h>V^QsQURxl&4Jww>yVnZ>TKk`7Ls~ z?qDG3WH*BrABFn4Pmsp@awx49G1*)9;ZKteF!f=FA#BAoqG5FtB`O?2omS!a z%YF`yJgqH!A20`WaRy3r6_B`$?a)}2gR1=Z0)NE;&@hO`H&-9W3q+awoUnd)VDCaD zr$>NOn=`&NJqPxFJOzt->^tzL_*o-o^wfPA&C|h5<?$})bIZOoImF^cV^Ccp3mp~9;K|D=D_(a z+sV}odn_s)ZRWb^pYTNFQTSLwoBO>e2b$mcgg!MdpyCRb08tk$)*&SVvw}KEkn%lT z-Lr-2IqD<`cV~Hnm!rX0Rv1^@+8b{Aqe2{(WmBfJlUOh5HW**0OKxwhVp&(Spk?VJ z6r!aXag%jSDfHX`d2wB2uB0UOE9?jv-W>^6h)00q$E{%CC2MfRR)vZz@*-h>-C&U{ z26Ix^LF=$?{Os07D50H-zaKh_|J~V-_IfZdb^mJAO5Y=cOP_<|%h!RRMfzlFggQ>I zizj0xE$H{(Q^32MkV!cqTI@sP-4m^F?vl0SO6qMhL){_xZ@0Gq&vhZbP2W(Nfghat za4}>5TA3EnoMDwaunWHF<1_tR7czIoR@FRveG3+x>LH)3xivr`uEzXr7g^(=Q&Zx9 zotO!vtR{_mq0&A=e|<8HT|15G`-$gi=XnWql$|M~T`pd8I>m$@ANj^`QeQKd_fNHY zuk(jq>i3md?(9cv>lVQU2lQ*2)bbh2OVM;j|3Z5Erx{jnIvhfs0ii_SlliDRVahH-~xXj6o;XT<})tmEb1W_tRCZx%igQ`Ck*hy8u?x zj`KKG7q4)(G)kf<&BAg6CUvkhO>ww3h~OJ<*09_N)2Vd`eJq=_S-K z5yqRgDjqCUa6|Z)FSb`_GvGZH ziUN^m%rK~rajP~9)`kAh3C^NAz=evNh|6BEr+lhI{n{B+%GQPW@hynQugQ_+CAnxj z-9r5{-wK^fPAu3* z8deRGK-W`@gL?rp(anPkZ_3kRuh-($+}UJz??w2I?e~`4S>(&4mShk*pm-;c3G-8Dyfjxc^*6ZSxV;keVwu$9H^g{{9sEdX>rdXd zFV{c@>-w@k6$h3+JI``?MPN%t5LkLQp~~^9F>F}4gJh*#5}xzX291r2+5Mm>43!-R zl~1Q(sqlw*!S1sF?=S}|TMMz`qdAbf{jJca>MrkT{1W_v_Jq`b%dlg19H_!G$&ig4 zsQ)lQRq4v{vY$zSdD&d}*oo~WFV}?HKls9$b=t5Jnd0Y-tHI%3HC}k#Dja`}>cocb3NOYUxGoaphgV6KSIV`iu0|kk8 z;{TLf$@b1_oLHO2@1ID$=SmrA@M4D13k^R5{#;4qmXoYs5 zn9UAI0c2uW{TzmGuFhOsS4CO@e-*AJBlR0we2vO6R?r7%d;S3g79M5{Uh} zOg-;@kKE_JYfN0&JbT!$0isoKWn5Bt!2_}$1ydiZW=nu8K zrkc{~4&u6>z9jsVy8*l*$EZV`2uhOk4lRv#pqgCe(1-LSB$+@{x|Uq3__Tm;6r&cR;yhfMrdZOt{ z-JDa^i1STdNFBD5=2~dE2psd}I5`>bIPRs-d9?*OXwlU>Dq))06*gf{d22d{k;9i_ zPFz(n=T=i9MISkY69OzKp~M*~bRZg)HLOC#16h$bv;h|5-@@@rR`52@JVw>LdIPYv zuVCS=Ogz);K}5l8N&N-V&gP?8`ka{&>#?vF2o4rI3hyg_1B0I7=-Hd;_)FUr5cujV zpH1&kKeFb6DcxryH$3RWf46-?lBXX6;Vlk2n*EtqcIO@CpmvJ$WMsV{dPy>#*S`Yy z_C;cyEOrU_wt_G7r$+cLr$?B9m5){FSFk{jNl`x&V0bfeB^CE(I0E72w1PbB+XjqCnp zu^?oY0?P4`#+H*Ml!V%S5GHFccv0>L-ffJ>;a-0gP*Reh5 z={a2-CuM1Nm+gM83zaNqmCV(>Wuw$Us1v?)=Y-&t-UHyf&={P};$yj+GM3~B7H6@p@ETQRWtJXg`CodsHB$W_TIaI98H6%T%Aa~wYaTX@vIZyMEyE? z;hHVf(-p%yN#^)d+<9u+`uD<_Mv1r}D5`p8%&aQ;EmpXv=w9`nz%%Hyo(ON!gO3<1 zRc`d20JOACm1$cs16xbKr#{>@WU8EYV$V&d=*tUS8RKLP`tuSmVrL^mho+cA(PK4a zeJh|t;WY9%>miYvC&ehvDkCQo*ODITaZ1%Olis}W1K#P!rH4F>=;r1^@aOzCnDA;3 zak?A_m0fo-#bWtrsTBoYAG?F!k4n?lJNt34$6@B|@<-(9Q!jdU*e>{QUnCfMC&D-m zDlvyFa-m}>n?W|_Q!3I6z=|RSfBqfC*%e3Vowc*!)WrMv>k&iZRvSyNPYD2e!vZqg zrwL8De{tzrUt&bJz^#Az%&jI(*5x3_NCjP`%TFSpwc;3|V-(4Ukvf>kmuE7DDv(yP zYE5~_C-Pv{Z}KzjKkU)`6X%K-FkgxukX?iWLzRmE9Cmz4} z`2%X6?n8~|kHV4aGBH7%>CIvNWXGz*A6U!em>xK95@-%VU&{Be2b<3ldf7OD{Gp~VfqHMS5lO_mm)FqW>m&l2gV{ox- zA-T9-!2Eh!PLNswG=FFW=eMsUrG}>P!|7zOFWdyKpmWLF8hxgDbvLbXDTCB3mZN1J zUc#SRl}JX=WAI|B5)rO#f+mUExc@GnL7EGLfotq+Zi1pI4lw9Nod!GsY6`*a>ju#3 zkzwk?!B@C`gp122H7T0{8P25`YY=rX)3Ti1^}b0s2sXs?sWvd@)+1Xn}@5slaW&ui#S+&D5M9 zWuSA{U254(f_AIV0(mDx(e$KBG!?Xi-S6eXeV12LiQ~OhJGN_pz4=`Ht~dt$IdKzQ zV@~1u){m*=ktuNIV;}r6u!7PKa-|Fm+pB9Mb_#v!9|J*(Iu?2GTsZFIA#hw=Q|)&8 zDQBa{ZTz5n0xR2FgC-G#hd%RIzUC|#N0cDfM^ZR(%MnbUHk)*8K8XsoLV(Ma4&>@V zTeCVtW@nZd-9G3rZs3nXNH*_VLou~0V_mxoL*nSeS)d)VzaYW)TM-dPQno)18)4jhF;hph#v^T)uMNX5#1 zEdSwciU_e<_Z83B6e`q6qVVG_BBc3FHprT$%Ki6G5}acFpP{dVaKd0T(05^kC#+vn z_2LJ}JF`6g=^c7-(cUH8V@dPL(gQB!dz~ws-0ea{+E#I2?fi@H(T_lnTpSL2Y=h1` z`H3^41GvkMm{Hp#$2e=&%LqF9_Og}JgVi}z6T%%ufWLWp6#nmK365#)souGA2Cq$` zUU-w_BcoACD&avAE{^lzziqfm{kEg{Q(JcnzbTv(e!W)*6qox`xBna$>^2~U3odV? zj`{k5>#r(+^u<$xg3nt8t6vLnqSQ6~p=?DJXVVDC{WdIgtPBQgKJlsJi$5TbJT;0^ z;|VlwM}bCj40^jBQBh?UKv*D#`qnG}*{Y4~Ih&xqf9zhkDg_+Tw!^!{KcMdBi`9;M zmI|&%ED}tu(BhvxI29Ov-AjFbngFb;4e)yDAds`8k>~nH2QSEq!|VUp2~vLh3~Q@Wtx3(CaQ^p?oBKHhORv zA1d9;553rqE~H3W>e-8cy$ekQ3q>~r5hX*aLhFFwzbjWN1RL{^?AQM4S?+VFm-+{} z8F{}V9a01Eu+t>U^<7*&{qs`bpEWF8Q$>MnH)F8AM+#ZzEC$nEmI(^B&j&^$0G!vJ zK@DoOQ5vXF7~Y%&3YOJ^(T3FOovb_iTf-9YWV#I%NNWivy4V~?MiXD=V;4VcbuM3C zlARkCsqpHK4uV};=J;#Y1~4x{8#@$VM|iayH9zQ&SlroI8;u8I_xk!;lOV!&~^ zD}sD~Og9~WyBq{AsG>ezsN##kIarD+ruvUkXbEQDlM|b_AV(vglgs#8NjbiCOc5U< zFF~KhWaT20Bj7hU4E&HL4!PI`QU_LZTkL#5NB9RIR+1n z!3ADl&2!*p&_%V$jUk7M2CC2Rs*rQ;1nT~lQJuQH0JQc7RXf z*lguqJ!f$qP3@%K+*Ik9IbX2=mb9IgkBbKKb8@B(~c z4wvXJW_g0;8*yJC4-OeRu|B8@JWDwfZ1U;CYFi6o-?3a&v{xN^3u-8%N0L;=ZkDxZ zavrubL%^vd0?f3Xi<@$-aH+#TY=j_F0(qW+B<1vtO zJQ0NTSp(yzd$5OcF>l|6so?LCCMOocAVeDLWil_g{1zvm<2co5_ zK(IiCv}LmWYgKEkweB&$Oy;w2#_dQXx!hV1VoS5GCpi%2Aj^B|7)`Yd-9c~X-ND!2 zJVAx?bb!tGIZ)!BJXTkjP5z7Ek>z|oXWiKlqM6C&VMVS|>9SS$)$U>>GjN4c_1K3i zO-M!Dt-dG4s70!aq(eZdu9t6kyOeH#BZQd<_2bT7N7kA@O0oyB|mC}h9{LJU8Pg#Jql!CZn;z2~j zy9ZW3Akd`ctG_Ae~Y$@z;e;k8$QpL;xobWD2+E=FljADirGBz z%seY%`)DP);jE3@AG{Stq{)NLWm`$hTSGo*h{oRxt4nVFi>GdM-bUR~)nMbnqkz9| zGGf#51;Sm+g0b(zWHjf%H!u)T&XM}8FW|GYGqV~cGQ6b#+a2ByJ?N1NEbAUkrS z(~C2%t70^P;c)E&tq z+@&wC3X@-FQtu^1@l*#pu;XzSe|)JuH`h0w3cSqnE2kRb3Dp|PCBa7cD$oH$zV{Jc zuy;kwuO-;uTF&xd$q&5y(FE1v?*uF=rwesr+c}o$skmm5H8p-s0*~z0#;2mMVV4a` z0<{Als5j>m=DAcU3x3!4M(&c`9Z7DTrBr(GKmvDFmr!E>%sM%fc!sC)`1@O8H%+I#6K?#fX8>ui2aRroLDRXlgrJpSDFdY;tBva?E#i^ zb%OWYeL>p6?MTgc6Y(*5PnmSd63ugI*vL;FPW_Pajd&}c6Ha&4r-tJKkCdIV{Xo&Zt&(*B6!vrg|lj% zER$rML2}GbVQ8uvvR;tRs~>w?Ii)d~YgW;XoAx&&j$bhE++-%(E!-(=@%YKl$(Di> zWEEgzePE|X9oA5O1MYQ>BhR2zaC*;i5OOvKsP44I0dFs0iBt2rWA%?YVNVZ%C04(v z7tZD&s5c*d_SA-(b(+v>&p3=KxcFjmA3pM7F81>s61E<@jy?CAg9p$4QWb(>wCdqo zq#31zr@sgT5AJB=bz@~zieUhb#pz)BSvPRmbBtrV_#FPb(-*%_)56JzT<|LyG18H? z9GWN1wo>t(gode@xmz4tlkhl$-mR!obBb5Va1{5`^-`y6f~uE6Fl0{W`{$DZ*F17= zk7*6p^%a!bFHNr*ie^$5dRnP-nwa_SdzplRMYQ5N)tU#-Lm8WOEpT7?46DJ`HOy+| z({#`N)it>ua#s8M(;1z;AxxuuJso;zV@*}yV&>vA1!lomHGT7Q6cE~;XP)$g)Bi#? zkTJLW@b6!9rm3isxn?B6glNvRx|XS1)22Mn>SBnT)q~W>^h@rs}$Of{M7I}E58WKO=HwiS41 zXHZ(5(V(R2lBoXT&%FL1UBU2U0lIn3j(;V)3>!)h2q)Ga66hIBLwrvJn5fmjc~l)$ zpKSzJN6zwml@PyK@Pks!TETS*6T{=5N-bv`=>(N~*5f7VDj5FT#+Oo)=LcEG;}gXc z=n^+aTXgjWn<8sCaWgwOgCFgH*Nrsl^7>Znn^6YFs?TFvZWMBlZlY2eYO9X29r}Ll ztDJZ>Ros$O0L*m5DU+*q+=Q}l;Tp*gLjUqutdU)cuDdkz{t1P`V3t>OG(-_AoG!!v zy3F~r*Q^q(Zx@_W@aBN^i&wI2!4XQ~RuZ*COo*Rq&4njKF5`);-=LJ)VCr$=JyKp2 z%|N`BoW+^xVsQ2W8$=|Bkd)Fg5@w@oS#D{ITQainv5nKnvhDqp+CCc1AhYX#9Mr9Upjo75V>%a8v6vprvfgdax6!MT$&`xJf2hYp)90bj+~t z^L(Hx>WUw*Y|5fX%9NT<10GV$!&RkRa9|}>{_F)yT)M;EEl-cU%?)lM`2BiCrp?*h&oB^_3$stWZ3Wc9Y)C_>mZRfDHpSs}R^vl%Xq&T=26oDI3 zeJE?`Z2WD-RHFXlV^#gRGTyJ(o-oT+oyc!G4kXU-sawwk_?_o=E{hO@{p}yY4%Jd> ztSAq7>vKuYkOekNw1A`Q{$NVok~hyT7Fy)XlI1J@fZu@;u+TmMN`^@ZL&9=MgbB-c zIkXc6gx6DVuSHgFe)AV7-nfDDGMv!2&SR|4^D*{2p$|*9Gzd?gmZnBaa&ZdpAuxJj zMm|MZ!(*+gc>i~QZrE549-Z_6{Qpvr|AFh+aqmdEu=*h$+BKDEtHy)luPZT&jexBS z9kJExdaC{SRyfokLfQ{r!MUbwV14Zm+V*KN-uCYa-F)%_REbJviZ$MmU-gB|_uiRg zfk*`trFWUm57>mgAKhgZJ+QRe;Mq&d$u7eDyvJ0fm_1Ruag$Eha3xW#_4Iz3WM=O` zA$@SL4j$|}#y)HHc)++7RV+&;acK_V#UVbO=zWF$RZ~dwf*GKy_>d(0h=4xRAJK<6 zl0-GJ229wk#hRHGRuebRGcWtuuEDk=!hA^q-64C9$#aOJZ*A@d6L=VJj}S0Y!;vhr zV-;L@B#^xFD1b60ujs%(qm0$V_2f^S7#uFBpe43lAtPDOiBz7D#4F%vo#)-Rf#yqCUIF9Q3vP7`nYEale$o7VE|ASGPpGjDWFaD^bO*8B+ z`kLw}^u7}bbc|1M#kw)#O|ODZS0|{Eoe{j;Z;EvA+pCnkv5cIzpzKw?C1=+P;#4k+Z_jTbGg;bvLbe6;{`@_+z)TF0wTFJdoSW!!u_%lNFwYj{V8xFxrk-f0o=^WVmY8R+!=@;fW2eEtAFy1}I zy)dg|2%Wtz&fCpq_~!R+AXZa02(+XMDYLuRcu%+d=7bfnAJF3j@a@M3T+#j>yjb)L zg#6nDkGhmVzZ?B{aIg%tuet=i^Xq|H{C4h**DCm#iweGdX8~N6p{%gJ0955$N+ni@-kwp0HoDbBU8H@I_cU`#zc9D(L zVE)O|SX{2nT-ucbYey6D<`Dl)??U+SrjH=DKtME<{^H<|uW(DC z1b4OOY&g8lhRDz~h#rW=BLx{ipf-wyPh4S!VkbUTJ;75>()oY4jz}IifPaIvxw-2< zW2*-#_ekRHI;|7c|z_;-b$o|ogLyQCS-@pqui#D|GF;7qpdSwTd3 z-c;4Ce2nU&p`jBWaPHN!HM|`(vvfMsnc9aBF*Gbc=F6PBM>FqQ*OS4NT_kLpJ2`Vv z!YW}rjebnW!!L1!{>XBSeJ=*kngO4{xux%EnPGWo-z#b*{hNmEa#!Jv`y#a2$?wqW zQ!25{Ga;`(ErxF#4}jt`6=Y>!2CSESimN~$HW0MoJxML#>6232GkFhZ>{1~4#y|Ko zU=5bFdCm{|o{yU@KC&=cUWtP~>j<3Jtq@4f%EK;=U#W$AR^qiw^@ZzqH-UBE{sX5k zu-@QBNmRN<5r6fTG2rCs_ZjZsS#4!SbvYm-xeZ zQMWnwBZ~RcS^u<6g)w;gL@9p-~m)AZor(?V?56=U%-J`Z$gV@|heAP&C& z21LDlgq2+4@F5L#T>tC^-(}kus=%d1=pyTc(!2%SmCBMJ=;|vJ^J6tvMrwXFuj9Hf z?tv?^75<^3K1m7^-TKfI8%1II#A&K7{56%RA;qn{aiQF4jjGD_|1ZGd)pYkBY`ULM9k2_sJCaHBw^Q$d?s#9^!5y+dJ zSLua(W}RJOVASRj{%o3n&&T#vv?&|wk!ly-h5m(YYTj~)Ek68 zJ4}X`u)CafC6-IazoPayACf710CZJ~5trk$z`P+7V0&=@`%Kp)_3fe5Xiq%v)HHvR zYAHl90a18u@H^^$;1>{M^^9lGfrJ~a=EB=g4RANlSom+Sl}cP+j+gwjB;IEZ01w|p zaQVEB@J-Z0aAK<*e61GA`(wNlZrC_Zy*iXlE~ozj-Epn)fnj%DXex0HjMUu5xtA*_xd2PN z@jpW#bFPy9>m#TKVQ#TA=f10IP3) zhmUUbhyITo1m`2v1f9hu*msi+DUfa@$s0T&X`cxO4@~kaqczE#wgUK~Mv7%Bn3;sS zYLupa48(=1*MVY^g8&-EQz3KRv5ChGVcytvY_Nh)qCOd7+Gzu(+>S!a4IKIuQlw~hXzyl+22ib^tY`PtxQ^)0YL?L1!2 zW*VcDW#Q?Z2DH~)h;8o#;uA)vt2@r?fbTQ?$jZ)CygYDBIPk{>G$^Zq^XH|jw%Ce7 zI;jvZ z6_j+35Y*p40cz8KgId=b5Wg`E>XsT{78Xs0_0QwEEk{A3YzRIzmz}wNSPKd{W;lD< zR49LU1*Dp{!QB`9(KgXgvZPLcHwXss*K%F3&9RtulA6FBze>cmzFtmNsBQ%&PV&_8 znl-qp^C5is_#Zkr62Y7d_y{Ca`OxL(2Kwc{Riw~Vi-av%K@S9q!vyw!%=@Y}&za2v z*hI&Gn;mcAR)LWI`sNhU{^3d+6w`Fb!QEISz8*DNYm@iYw&dgJE9}F2O|RGv@o)cn zQoJ;t)S69!Yr~uvtBfyjNbDzE)*4TX2$cxs{TdAau_punJ%pEyM?uSPTi~wRj899m zP7-fpBIN6nmV$KBbuI&SH7sNDJ$Phu;cRM9y9fJKx`IjHDLA(K1>Te8PR$tiqeMDq zu`U(_tL!gf@s69sOyeH7%RPp4Q*ObQFIO%1LOxz4YKf!bctj(IPuXz|;I4q*s7miD z74b_PdN^#wzuGAfa^o*3Y(E2+znez!KMWD8)^R4jY6~NwmIS|9$nokeKd7|Y^ z^ZN6|{ofA!)wh@2GUgJW(Oh`gM49k6N3q=WlkkFhJ?uUBAI!IMfJbM#(_NBN$)N}B zxKM9|zWYq7MoJ==iGH9$H&rW=u9tj#|H3L*CjO98+;IkfSaOG1efua(Xul11?Vf7Y zx!8fb>;z5TPA@>0Ms?uNca)HokYfE?Ymv6{bK%jNM*iXXZ;@yAJMe1WJTCAGeX#o{=aEL&$Wf9+or)15Zh z^7jx`SEYmBG=0T%mLlxG_yNq>BMwr2yn!3OZf6`HE&XBGf>v%@?4~Vg3ILf7J zdBJ0!u&pK^I=J4ZOah#V*4J`osP+aqtGbxkGd-O=_H<-Q^U4?r83aJQEV-9$PGZFq z>4toJW_gS&{U>o2^K6X<{8u`HlW%w6ch|R9u6h0n$+C=rb8>Fr%1kXhbu5M4Y1)td zTC9ZgpO~YsEf<6>P4lqTF+KeAvLm)U-viL-JG|tABEA|ph{JMJpnZK7Zqzx8TS{#) zulO7;3-1K$-(P^^(b-^Po)Y$ZbPykWl?-h7XGpcI3%1dW1UY&H2i9N2X^6*q+A`r_ z-E(AKJs-vOeZ`~lwJ0TS4qUpKhlP=4cz@=1+*Xqc)IZt+pYxC5ksT-T&TtX@@XLKN zTlqS)&^N*60kfg;-@VkDnOE_;`ew4JcQ3x%SqygOI)KH9526mg$48Iq2|hnJMVhtG z(T!L>+WPejcqn`a47sO4Kf6z}FFlGu+DEM3_!!OL#R_*WZ9$>WBe6mCR-Aak4YhxG zk4ic0-8m{6&4!~$Ira+`9efW2<_=VE{x`_u+-t+XZPnpvSB$k19-v&j5&W072@GZ& z6&~EZ5v*P(0UY;?B2Tl^)DtfQO8m2ikkh#myt7#(oOdEb3|#3g-I_>K+v{M{M@eS zl1%Y9m>;tMuYC3um_)?l&HMg=gX8CLlD<8@G0&A~z50q}W;dcISM@BDckII3!;}R^ ziqpZC!9!?HQZtx&Lz+lYbMZ$i7c7G3L```fxaE~TdB!PYb9D9iYe_vQPaXv5bOrDR zSFqRBQ&{6y9LSx2ey0kLxb~@ zJ&Tt4?ZY0kTyWr%RB-IDE0hz@z-EdJ+b8)1%nFJ#r01|_)mRhDHkZ8el->YfueT0< z)E)+Xvf;oWc_FAPaW*=t)r>OpzXD(@3P5c%xVpm%S~#3T;?615UysE&{I@zudtq9& zo@HqCZT^a6`a5yJ(x1fd_hzE6;7inNyz!xOM6ETQ2jjJ`01M;G;I?cDahZMzzwDmG ze#y3}QCcRs>N>yYaT%jaS9J`LO~=7xgOuH((-rnq6%0+=v1#?KDW2ji_9g>K2R zRL4s@Fn+v?`ma?K3OO23KJ)`++xiB~;B=xC|BsaVG9N&_tVK>kXK^rhA6ngr}IVMbyub#vnkn)^*1JM7J*+13m> zZ2nLvq7s5H1X==*Pwz3?m?AS%3mI}Tm#F%*62;!_@KAjYefVh_6Ia%W`nHa;F3*1~ zm%a%fE}DX*-7cdgDtE{-=`#4XW(*wpF%Cvc#L&-D16nuo9X3lTL3z(q>6KQu$nVcr zg?obvVA$g`z`b5NO=UKZ(t7_KZkZy@y=yN36Dh2x&HFj2kuqcqyBy%EtUAi~Lz2F5 zXA2dw;%0Sl&OBNF14fE9+x+6_ zx*4-*^Ogj>=5idPx`1KcO-~@~HI)945li=l+tX_*yy^a<@pSJmO)S6jmvg7`n6j=vnaa~$P|<@$4uIp5MyaP{Lr7g z*`Eyi9a8b-c_m=&@&i0k%R4am%q{GHQXSC4LY(@=hwvTKDVi&egVxEAmC6D5LYOc4 z#*2qqAvUmRUcU)$hKv`rK<<;9g4vJ z7UclVrPD}lj3@eTA;9AUGUS2R60&`^66}1ILhkyHpf;Bnq@%YO;DF0Q)lCQ0^YYb6&&aN1byb(P)8zL7`zy7TdG!>2fq@v5q5m zWCb1*4jIEs;hTx8=1<<=tb<_5+PT1XGLJ`3`wDiIt|95(K5%+tBydoy z0o(o@gim_T!|n8T^Yn)YOKDUg(h}MdQM>2bolxA&=S~ zTuhm8hj}kztMQ4r6ue-fi=F=l0JSyxJhd$>n@sT}rk}i^8d8(-$Nvt4iY+5ZAmRY0 zI)w-g{(eSb&yJIs?JF^7PC8j}vq$(;JqP>kDyEX867j?$fbG?Kct00dLl;#?q$0T& zh9<7U^Ch+MIer`|8=MEM;}ErGR2*Pp3oRV*l^> zWfnuVC>m4F-;B6rIZ2Uu`q}uz_6OyDdom(Vth7TGaDMH*J7hWDXgXeHgJ)rBkVk20nWxeT<@6&zA#=Om(8^qT`l^xZrWt39*7 zGistWIQeNEb1?flITXvzhu;z5yf?H8?JGeM3ojDaJXyM}K|rpbxS%)k z;TU6kktdLP>WJ4ZioxF(N>a8?oA5_RLl`W`<9L_mvHj8rL0j)ELFr0U-q8&k;X17( z>TIH+z$eEF$9~l%b=8gF``o8!-|p#vn);T%(qA9TRQv?91m@h8cmWJ|ctS0YPeOq# zbNcVOAn?U=IkGmj;#~R}L+O3w0_FMgc>KGLP|9s_<)zFe+}dJKFn9YB5OGEX3WH^c z_kT~2=RQp|#GbLms;84@+vgE`)2*DK+m~^*Pap13lP23fOcfqgKZu9V&Lo>Wb#PDm zOt`Z{5ADruI^z$-R>rf4-W8 z-ki;}uLkhN@u->s2d5p|3 z%K@1rqR!oPc9JOx`&uMy8NWnwWwPJ{=`BoS`zT#CWJ=z!9>h9pCos#qf@Fjp0#7H; z&>?G96UEsZh{Bp|@cR2P`2F8&CXMDZ0~^f2kzhGyliqH+a+Maty?+As{ihB!7YDURK76vBdhQ9(6vi5MG%1mJU{bL>FhgBtd$0%*iKR zOx3-3x~@8zzJ!1_uN zXKsZBw|(t9ygo>lh|X5xuRpd36g@CRxha>ycE<>OnHy5o^Y{g5s`BKvc{hNcMa#jG zP6eDg83DFwIdF8f9#acg{!#2^D?sU#Femv=qz8Uu=Wv5C-CV9dXh0bYKe}h)fz;g2YANtK6lc zaMJY>Y;gLvx&~r79_kj@q^SkjN=Abn@9J3>LM0jvkHp$-1-QJus62D)Nu0s@-&@QU zqT(DU@Ucz>P3VSW)u*Fq(Y<_}v*;E$wDlrNkS(?x{`(iX-$>#QiT*)O@}=Nv0>&|Z z%Q!JkS8%jsgure0F%+GC6MQerLcRrd!g6^@YOTjRU{v7@IzCE8hTk_3s_d$%m?ky{ zUR{z7en+zN)MK1Vg>P4?ebBW^m5>3De&3I>`OgAo8@D0#^4UPeRUB@3kd8aP9Ux`P z7Qw1Z7&nMXk{3Di$p^VAj-&5xtiALpr};-3XWOECm9{loQ0)B)p_@$;CpvOA>1Q(l zx=&`~qWmH--NOwpzQ{%18J~E{OFhVL5y0JdY#5C>| z#~O0#_Soz+-?-ZQ3xD715rAXe{$5K<9GjPrIxt2RDU!dCmq|k=vvP1!_$4SOJshBz?94)_y z6x8HXOTy-oy#@-bztbKYvOf03M=s$$g-A+nH-f!0Gr=y)%iy?af-q-y6jGLi*hV%$ z=$EWR?VX!}7iP@DS^=~13NiM1f4Y#|D<$}Xa}KDK-A=T!qA9uDP@psR#!}mPs&L<= z1-aIxLu|fW0jV;j)D|Om7?^z)tlm3cDC>8Cy0>x{+_EMSQ6FxBio4}|WmDdbSo6Vj}X!LPaBV14KvtoQ5_&h?Ukk?#ALwA>DosDBUG6zpQgC#uQ# zj%U=};0E}cHlY2-s-V9=LXWiGF_&F*D-(m~G3oyQk-E3)AOOv0$~F8Msh>%l@r$Z( zuHp-D;Z!b}7`X~HR~o>Im)GgPx8sEF{rF9S$%c{W@*)uOru|{``QEu&dq>}-iDE#th;4^j>1i$kx7{)JK_CJo!JD$q-|KrBFtz^rrlo62?=eq7gLJ|^b zT4j~Aq#c!cZiJ9MBS|USIrnwlM@fp(5T(*iQ%m|ZXz{&&zyHs}U*~r2_xt^NJ)h+$ zeo6%MoVQ7I&MXGU>9pfL{zYix(kfudeS$x<#nIu;Bb-A?(zxAlC)1Yh%QBn~;^xbJ z=!)h;;KmCEPTLnU$8)kFZ$}(c@b@b7KsR6HZTgn=?s#w_clF@^v`l&2jTy|*Jx55q zy_nAFSwVU}RV2fReIwbRYz=zr-}T>PBV+&sZiaaBTQ4q2$_3-HYUA#MB#es zJV&ic)OWt6CC*j8?Ui!@4rSd5<{e9U^qWhZtLGG{vpFVhl#{xsPfw~%SFaB%8_XaB zS^m>Sms-)1ZX>(9&&x?`myG7_o?+e$wxfIst1wZXm(l)^c=Xuy5nBID-Y#g%Tztu* zTIBh35pT+925;<84f@w|gg10aHfeom1aD%ICGRG+l^#jn%8UP(%#+-o41)#HkpI(4 zm>faj@n%;%Wz>?WEXe`sF$;*b0#i78&jeMsQIk20v~Z5YZt;`20alqb;#2j{Zix|RK23d&_p1GF{j0PeXxmMq5E)BcdOaT~2CTpetkz#(&uar&P>DH6DDAYox?-B%AswHCN}$MXRFQnZz5;*(ps$7z5e=y zATJ>e{JB3J=iiCpTpxT%+Z41R!h0rlZk{Vv9+(E}eh%BZ>TRRz-ln2Q!Oa-m976O5 zXSm=+GKspC@ey@NhT}hvDMMTM|1}+8yp)sJo^mBPN4H|`j5A2@^Ck3u{f~wiOQFNK zHJIad1_lK$gPmH17{&)f)6>E8uf|`%Ap%_}!*X@x)f#Zsp$z=#t}nKd{s2cW?FX_2 zy0AS|ooroSgM9|yq4$%PoEa<=#aON!{4%(Wqz)&dM>{^j%MaGzm9fj<^fFm;VO=*) z^-BhZ9_xXO=Xo~kXG-eR|G~FYr{G2Dv+p_6n`*#HMY}!!1uPHSRRJ~8R*~4 zeQC3VGy7o(w(qIIh2vxVrIxSJ)t^7%v$wxdvO@)OYFq)=OFqQAyH3J0CIoU?K#+fM zDSyKgAq?}8hMbsecy!tWwwK?67PO0FPMRq?cheA9#%T$yjY81VW^uf!J|9GBS77}y zQC{wtJ1nbx%oUq;5Ulro13pJr;>+6``L@hA^fAsHM;*yF(+j(W&)gqICx$-4p2Z%N z;euhD_h6ipXORXESbc)y^mHa8@ic5&zMSsf<$`XN$D^{CblkuDHZ37`6Y{+~u*|Ma{3pN10D0=2WyaafmgFL^oD_I?}9f;zXUp>B<-Xg1z~i$<=ZJ(d3O#A$m*vT_8*2f9JK>a{lW@85>c2WJw?dld0d zFWaMERRs?`5wZ-*K71{30|kv*@u}o4ypQ)E{H3FSt*^>6M_h^_|M_w(SQiUUY_;Wo zyNtwe6{SqSyuPR|Yza3$VF3!aUBi3!dID@&wt^>o zzLmVi?*Fchy}@5U6^M+-2S~SjJf`*VAo*mI4QY2&oac7ImYnmhnY5W(!l-C;^E8)^ zVwXfmGV@phqu^abj&SOjo}w3w@daOIF!hA!dy>9L@zG+DGBziFAKFLOygP_1@BU-_ zZ8dm>g({>;#z*p@StipzzLr!65qQ3Hx+wANKm1?P6w#K|oAJ|%S)#XtcVTv3DieTq zF-6Z^SRG0^IOErVM<9SHu&>CT(`%kBRqNhJ>krIKV$si zpg2!^&rF=i294`azhx498d3OihEz@SVcviXc*kaWhW~ggo`2yzQcT;;oUCfahb@~K zl^99h9O(|2@=glqRjas4?KM{gbWDx(?2g_b;HjK{>YYya;kvUO^kWPeBQZYPeah z5Ju>|5%!&1funEBksr$w;CgmOZwP6DrO&Hy%BMFRVt*#w@-qdNJ$#3+Ev5PI-H)UG zT+QrdZ{m_#lfS{9A$xFm$_{vH;1#M#dJAK%p;!bfsW$`f<50f)}r%aGA^iQX5f);mgJG`TG*EWzJM)_DPza?3}<$d=cE$?T!_{orH>c zN8wb{n^@R89nR1H17nQ>!t6#%Y?zfP=*+Jm15kU6OIe{PTHpHG=jzhf}8K{x-#r*DK2bh~s#Pa8L z$POiI;Vj=>_~yG_FjL?HZ+95syVX^AZm$>lInfzr?lZ$-`ntFvS)VNWQHR@Fj=*^v zzG1un@}c%?4w-YS32jJKWb{}cK;#X5lwBGEoi#q7!NZ&3r*RQ}H)?>A3408>#hIBe z?qX)$7N~r17*DEPfijDx5{tsCp}`Fi=WOvjPIT{wRypx4uu1t1+QzxeuQbTR=bKN$ zb+>A;nD8a$=)FYDp4$jFDMOXdAxvRn5b>k#G*0st)DK@MNA`C;xms_F;MK|rTKstc zF-^(?Jr4U1C&alRZCz`qbUTuetozHKv6*F)1^B@4jkm#_79RO&um~@-k|nziXF{iT z2KS#)U^es5fUy<7aJ-Htc^#yYgO1YVHp?I^C)LK)^wuOp6A9+UhEhQX=ocg!C*T^_ zP?&HlV!j{nAQGMT5hspE5&NX%Sw`S#c(7WFe8RP(l3WRTT7-Zs9#u|W>=R7BydB9T zFX|G^BX*&)X69@rwHpp!m17)|(~+gmR7P{I9{I#D4edM-OXBK6f*RK$UoPu_@oQ`7 zP{}_)`>+o=P0@;(TG&V~n<&NuCHi>HqCe%FOGS z2qfPN;VOS`CZau<^4e9%SWd}FD)h4&C_6pN0R7*wn>m! zupauVXE7(bc9B0_3Fx;z1a%2!;;sAQ87b~b{&+7<9vjYNHZ*L)|3>d&(=HqGn|%U# ze}@T$HO7*)fA*wb`wK4y@lswQPNw!JL5E=ye!Eb343~)CDI{7dUgI0XH4rNThz+L%sc62nFY4$-p5) zu6kM)ei*tEu9KY3XskI7RxY*yHa}b$%Vq1RB!NC7|4b9#llQ=Ct(MHIA5wU(t}pHm z_hVLG5(DSTQo-YqEzA}fcJ|QaFy)^kS)avrDr44h$!+~E)MKgxh;r=Vk57I0d-ziB z$P|BEV3P!G0=kghlg!72U4NaLS4 z5UY~m{|$P|_9bi}Q5S?7SLYy$;X3ZRA8fZjM+eW!{|l9J3c0!XE^JFT#69QUax=c_ zabL$-p!$a#^4FSsAR=@Ejm5mTjr9tVY&Ek*ZjuSGbJum0^iW^u%5w9}E+*pM$4}5) zn&l)|<|Fw#OR(XhU#O9L21d!V-))XDj+grYhzF5q8Sg6G()N&++t7|a&%A>4-R{#T z*>2mBq-?k~EETSe*g)3YeZ3Ak-iL6y^HvR(IVG+Lnq-*|XY z1{dbTde6g@=dO0HW&JU$2eDre+@Q_5IH5)?;4c)siQmrtwgpg~hvdK+$@wTfv8?Z&abC z9*p4sQi~^!M%ADIhd>~=a|wF)`!w#}NnkIh672p&r`1!I%@{g7rFX26v<=)j8zda~ z4u;AkaQli-?36o>THmP(p7x)Dc7oZ^t9TQxd_KY7ay^apeR$yQg>KMw&I4ra#`d&k z{F^`O{|OY>FMxT941dQ@8R${&jX6%6!L{iu2Zi$x&X5_S8}rvd{m*YW(dE~{q^AsV z?chPQsWb)$gjY2FAajx7dcOoN&skEO6>ScV1wfl=SGcK|P1%LnA!*uzSTtEftM9dD zy9PheM(x)iVY?cZmEPH6^T3_9&)G)f8bdgI;}WuUGQ}TpukB~q&BV539pa(6BTT!W zhUQrMgW63aD1Ub$YRGj*iK_NU_v}$DKKHxejc*T<3{!%uShvRY1w{hg;Vhv-L$5&d zECq%_>cE}4%vR0*=oXFeNp$m!J(U`=6f_mGJi8-&_-WyHjeudf5EbrM`ZE=O!GCr zid-u$W5-=v;S%u_(d{!&z$aTD(JiC%Or7Q$`eRi-3SW1Zu^KpqW>^pMB*r26cj$=d z*QH+3*t_Fc?xG>7AGwY>^0SDM*PJ1$YN16@_qVdX>H(f~^k-ZWbx?GBlQ))_@DO?I z{Dv=^y&|_qjlfxZui*{FByahuIii1~4CAZT&eM=i;cdtbAYGPQ*`=+IB$s~sj~ukt zAU}lE@IvSuY;LP$cj&9Lh%XgS)>lmxxfih9O0giO`%i%=I4>GYvd_qd+q%NJ?_A-# zs}10$IG?k8+t~m2KQraBv71{1*Agki(v)wsBkTX_2n@B!T=fMl=&#^M&wqjk&17(D zdlvV>B+Ey*c8->`^yF86QzZivGvVSn6uhd@&hjqKvt3elj!GC7mV1>-tppst$EDG6qF~yJ{_NI26Zz{vjuOFrRyERWx@^ zLod*5e};m@ir}GRx|m2R2Z^Df2)C$^DUD6^{qZ8ySF%qq^&o|>g;1Dgv)k)lW})1Z z2;F4;CpQ1a(Bhj{aP3(Ve#_r-x1L?tD`=$U63zfjjr+%=jn-w<(_M2B@-vI`$oiv9%Dz5nZnsV3__D>iQ z%|{aaY~i+(*U_2Vd^QiMgrYK6Var9Q;e!b!I&Z5IUR-q#IraPpw`d)M2kO3~%U+4} zHJ2JFMnA$9!ZP~4iab~Ca2O6_y_?0+@=WfvwMf2kN73vBJy4rCMlR_2#aNlRGX)=J zGU8X`aLmIf-p1imz$_sJajP52UR8VMvV0@f*!+R{Y&}GtxKc*8NAjLbVcQBddMp;a~UzoB+MvY$A_MTF|&F9$RQ0sQS6Ww%KLDV?6bbh z=AlZ-YmUY|!xi4l0r7GCoTVa;c~!#xJ3AS59ShPm?gr9$dI28n4InvASxmIWa^|%l zitLn;Cws0uW5$SFrmb!r=_nZrwe+KzsJZE+*ggnTTh72mCamxD zz}PJz^Yy3r!o~i1+&_|BDypwUqcb##-cY222QJJ3%lH0}>@pkV6qt)a_X}_7_WJ#x zWc(*OIldP24oAbxQ%cD7m?qw7fH|c-H(=N`g)@!)#r&I-_Ytg7#wJ4$?;1^>KM~Z3 z#&S!96FY|J`(0+Z+F&D5UpNcO#Wmn%kM9A=uNk&SoV17)vH8#}pcsGtw-|PgiICA- z0n`Do~Cl!)=yL0oS=eTT9^x*D}9Z5vGW!0ZHW=1a_^xiN@E&t;EpR#=GK5n zb43fj6?THu{I!7TzC(#jQ$6j17n-!m9{023OX=8o*+`2tQiJR)#4Q+m`}e5Er2yM+ z7IBoi#POvtFWeb32+y0H2iHHdJP#awlTBvhbZbDJGJOf> zt?WP^FXez&?HWX(uSu>hUex8%@1R1z7Z{{AfwwD6an$lIm}ysyHk+_!#~sFaf4>sa z*}e?VxRZppY*2)AJP7#yZ-KQ%xCGAGqmC7Xee~Q@GGM3o0;nJ5jRRiPp=qD8Y>?h* zYv~=|l8RHDh=Hur&0O!3*r94Abko0p(`T&W`$xwx*7JVDt(%jHQIy5FlsjUBpN*Pz zgIfS!uNd!OnK0flD|s?L6bAQ|n1U(?-b@K0^k7}>pN5ldpUA{B-HK1SBc=B>e+^G;=1R+e>(`Nt{6P?Pb_LY5 ztAoKBOL(dB+mO!>Rc7i2A*uc^9OvC>hMwB8T&h;-k*y3OMug-WsuSsW^cXam| zhI-}Ce0-9|n>MRZl>TH1FLZ4NSrMDg3m;(R!u~pI$~fsGlXhrhWxMi`>Wo;sNG@vkYSSud8Owz{7L_eoIlu79xKVDq@hZeAx)-o?rV=Bu_yjER zD8qS2;sM7*iU~P3hNFM{hGRD@m`pPxY@@#w4Q?5Q(_;SN2zw!O%Q_2ZvH9{b;X53# zM~YdqrM!amfI+RQDfr6uPte>^tMBq zN$O3lDCg$|^kbF9^9@Lvf6?;w#@d^M0_fdeaC8v#miLRqU(D` zg)`JSDB!_-GEU|ltT`Z${RJw(?DicC@;$qkV)J2912yQJq#?RxpTcqj+i~SJb28|= zk8sATKK{8+$;fl{Y`P@q6~`ZK1ama`_~^Z_+~?kA5H+)`)b*D5M(ylGzg5YQa-2%~ zd3VBJ;%#tD!p-C%z6whnlF*9CdBmYX3#hEH+%{7_80JdPVk{Ht0gbl7pw|(2)HD_; zJa<95^*pfF^%&9+egQhnG(t-_4Q@j2jb+L$Hm?7aF^YD<)G=ows&SB`?n9W!Mdd`rnP1`bYa8O1!!BJBvE?w0{x?O0Vo+5KvB2&AZNuicsV@>Nxpq2 zA*RHk93(z)j}@P@owz}>Ja37)iksPNP2n+oM`{b?SZ%fX9Q07){OYf0zC7X-*e$VH&^yQqSd&p@h=eq-cDtbcOUex1ejb@|4 zvL?=bJRpcuv80UPwR0sSHi%7LpnXo#bpG$v+*>{mtv9ZiLU^Q3Z%HtY0G(P>fZ?}P zl;|r@wYEA?eyxjzWdZx>fJZ6y%FBIG%H!Dr=N&QpyN6yOu`g#qy)Cx-rO?~*;MPG@ zrFMaPGi=z__fsIZ_oX2?wzpcSvC0}nm7N7D_a1Y5LUj2JvI4GEg*K&FHvmRl9NC_1 z50I~kq6%6H!Is-A!LD`H^pv7$Hb7?qY^Vr=F3G3o3*McES4L0b@GJ5#eq|s`Z_)$X-N>3%D&)pWRmSP{Wvo}h2tKTR#GP6j2fJ78B6k+dz$u-HaI=^= zd3x)0Sg^pBaqgKz9waUUza%vn^;(J<&WOZKUn_Br*jXGKm4d_jycmOcf zs2oZLdU3;1JkAg3hq7_Ho2K# zPuVJ47qv{Z<4p#f`1d@i8F?Zgm!v0n=8%Bhdv+7^-q+byPaFe_ ziDK^Ifurt<*iLaCs>}6bqTT1SOD`~2@AfM)@ee?o_ z%@rWP(wX>=-AUO@tOIt^Ixyqm1^Do{G?SMYOT1h;h+aCy+rFF71GO8{!BD6_eE&;= zRz5Mvu}mq2MI%+T-s>3f{_aJjbNLj^(0Pc~C#S-lxyzZSq8xm{k;H52Oi8Kc&)AdY z8|+xX;QFitEU`KVPpN)~=dL6W?pk%c3htjMRQ>+k{VQ$X!Q4Bj0-3Pl?K!IPy+7)zEzIH{Y2-;{Bf>d2JmbBW_BlST703fIu84|A5ZszC>Ssl|lZ}A*3ol zj5fYZqVpRaZFk$g#Pb(-;`n4cxT3BPX?<7+TN>8F{f29BxQslvT`dca?D`2;la)wc zNgUiOxeiiRXi$FLHOOXHv+YCb0TT3yaF$9v%9vis9dXIOT<% z=k28wGLA_KKJ^3D)p4-n;9V3kM;lG=>I9cV&j>FE$-$YUb~cOie!_#r4!~n`JA5-+ z6UW^M07Wxr0OP0{P{gF72A(92UFJ_kjZ`CGJj^*&PqDiadwQ#dHLlg#4kS8-7|sl* z?gS>HAKE*q-V^07e8#3!NEEc z+}`)OaHE1VVLBgSC9`6#Vq`JgeEBUHw$R7R&RXKTU!6HK%ip5&!z$z*;{#lWA6vkq z@9PNZAbY|s?jd*YL>!#_Y=U!$IWX`h+tG`f3M1sD&=>cGj7*3CN7+_zf`itA3wk|p zR^mC3K0}c_dV*kX*UloHPmI#?y;`_WY6^7HOh>%DQT#|_9d^vK!>`Ux<7_Iu363Z7 zr~^j}pv-PL60X<@ZN9bDQ`b^})i8(pu_})7|8!B<=(38sn8h;v4eZDPF>jK;8`JpL z7u#zt=+^1hE0YP=G}99y6S#(guH-b?G5 zy1s12y|=EZGwTNb$XYW948H@T8?*VA*{gJ43iJp zkP<=DnexcbSnoeeVReTdH<2?98VxAppe1^+B)9{sWt@Rl8%(Jid*qlRg9#Y8t5)a{ z(*)hF>_UEK3b5t1KfZ8m7QDTTVmqe;_iP!1bzM%sO!UK> zrx-yW7juR%bb^6)645J@!VsD@X4pPj-g^xB% z+cQ2YqoR~?6aq# zZzzwFAF?7)++VsTZydSoA8wUf5(n|i9(wGcCREw-j~nk=hTIFIxuH8WshNJ3z@g(R zc>m@ZkgLi96AO!l$G{x4qkImq*pi1d_sPL?di7wdo)f+{=0?B$-74(tdMo+1vYgMo zWJ9U?nS$_WIV_#xfd<#=p>qo(fy5~-`r^k>^h@h8;$1(%v4CIE3%wZPRpK;G=B=9M zhL$8@#0F;~d`N}Zn=luN_ZNeP_D=%y?Ek=?_>9(bvyjb%sXtM$N&)RuyUC9Vnu^lZ z^=*@5EkNA?IZAuhV{ZL$vkjS+#^*_zn#GoM*@m3iQv3V(Vc=n7Ms>RzQJ;2n(ykAS z(7az&*1zaj@IhCSK6)UA-k@C#+y`20Hrh>xs{D_9X5%|y?RGJ^usIu)Ov)5nA z_c2g?s0~}!x_hz{*CjVD%4(xm;OgsQi4;F?p%IG6Ni zqE!nEExTlA3m5<55VkW`(dG%El0j82w9?4aB(XOgTtRp*XL#8kTi@X$T-oV|sqR&) z&m}$xLJQvz!m0)U{8e}H;S`#4^^Og)-6@7&UlSFONw>jz*@?M5=1 zD?!66Sz`B1b>ty^2|kU|fp0xG!0ik5%<_Kg!2?Bqz>IE5^dV^s&}ISP&GI6Y;t05j z1yy{x``!G1qw^`pFC4z%`3E%bpBioa(H>@G}ats(i?m$opAoq#4xF>iKytb&s5oTq>G|pM@@^QzW7&XA@2EeWnV&=R$zBYdFQn zQVycu-Ag!5JyIy8_ac9^DV7ervz8d8+@Q);4rVVA9KA(7P36rk;F9DDW09Yoy4&Zn}|!*H_;wd4(7Y2 z3SNhg0oU{Qg(K>waKYg-pj`D4?QUIeYdN7p<&omB?Y1f8QITlc+jg)CmeE^X%%NP5 zJT#cGT_7wX!J$SqAXt$GK5rfYUN!;Z2OCJjZ2?IgkMSX1KROIlJNBa!v-;toHjJNW z)qz`a)nMVDO1yuZLvEOQn6MC|(Cg?BLRM)yXYQ_tR#9F@anlKLzT({-RBq=C{H7xh z2Olj#nWmwbnOTZPnuX|j#yZK0&$diJ>Sg{#mj4^PDUdo6X~bQtu$Wk_`w1Qv2thTt zz=?fROJ}<(z!^#$99(AtRhBHH?rt>U{3;9tgU`}nRr_3QWOf0}OLU@BSpIL+^nAAe z>5YaX7U4ciC0kwN|L{uP`S5l{JnU_nLeFL-Ik}1z*pQBd-iu`LG(Q9U%;pWw@vq{{ zO?n7)!z@e#t6e#Tq1%X6C*ScG+6qBNcM8xo%7qiRcB5CSy(m~+5x#ibk6&eH;i6DE zsv~bE*135p>H3Kr{+(sUO*&KMn^U(aqYs=8&cwbY7@Jwa-k#|U6Q|dDY26n76Gw5v zy;K=yu^qCF$JD7^IdQlE}Q z82VI;l3nUe824;O^wT{^;k6>}9nvAiKE&fiD;L0b@t5J6+tYEqAIas?3ZTw12R!(4 z5pEj%1pO%yEMBt+pZVSfe|Yr4BgHfDo}0;#*&+#@?AGI@fz#3Ag$eWDnJwq6?zZHw zy6Q!o6@}93>^pY2gfbl4BSs!oA(-)$|7^9Aet^z+MY2=7H)*@A4C$0HF9~0@mDH;^ z*f3jmCi(WK6H-|1Ok_W|B9C7>1D*YIU_wh7-k7eA^M9S@OJ#C2^MY#Op;cx4RaV}> zR^d3G>Dq#e_D8@G{XX1On2TjRXA?nNRjK==Ha6H5H3#PIp>s|xptkBH5WlxiC;Lg( z>2YQNhFQ(Szr{S7{p*#OBL+J_d(tuXwkOH7_^sk!{Qen#*zSr}8fBn;RkhR?OJn+b zJo`?<<1qZySAj3mg5QRp;`9Auvkw{HP;g-G;{f*YT1}S_aeTy(Ga8Oez4|YM61ZK z6}Gpp;6}n378Q#$p>@~atkpyBf#3Nukf#&}A1=s%iL7Th^UEISw?Z2_vW|I)XNh!q zsV!8Q*^^k+y9IvRDNQ7vHX_Qr%OuapNK*5S18`-79c+sk?wtBN^REJ2!2gO@Ec|sLf;Snxb~O432~z%P4gpK z**@_a^n9u=O!q71?BIGzuG>!IiX9EOJU)Z=c@qT3bYq(9J!;{ZP0e&qS%Pk)%@+{Y z^Fb)#JP1ZM27;?=z2F+XKp1>bnKC)!1huBu!8vNWbl8vCrj3>BKyLSYEPMsT) z=Q^%){I~mZ6j(p-7G5{E+~GRPd-@o>$a4bbK?i_j$Z>wlg8?j7w+u%{R?x$C8>!1b zq)GGR&_@2mB)5*4Mwa?A=-;{)#D@Oy&xAC1eXNi#nj+3MwfqjJzq8_=zo-ZcU3{o@ zF8)Z}G@ax*2H`Jz=0e@QYtSUiZWV8R!rA%sG*k-E6mB<^BR#8C$TT)@=Nmhf&{=+* zll^TWI{hXBy*|mHsV`?S8L2X)Xm~$!Tb*TSO|RyZN5%CjlNJ=P>2t<=pR| zUtk5hBf@6o7-sb}FXo_w0%<^+LnE~=7#rh-;;j$ko}Y=NGMnSh?EH`O^yOl*-^U54 zy6Q55+sm01&eyPi!hLX&EnW3**o&?A?MAmRXj9zwGX8(#5>lR{Ce#;;P%7ivMZDDF z7^?q}$dy+$!r$Do@l~0#9Dmo}+>hH=;tc&nlvHVm_MiNPD{iJ3Mn{S8gFHXmEbD62 zY3~TcQV7U#9RNz#6Ztw{BvCu}61o(mi{ZO6G*SrpAtenQ2YwZnDUHPw4}|nt|6{PP zR1M$ED}`5WaD&zh!<{nKmN z=V&gJbTVfB*7i8$q%{1S`Vc*-y#<#9m@-ji#mJni250A+Go@i2AaZ^i*zw*MJV}`| ze~FzjPPf{}{5e#DTVJUWlh&B?q~ZX*YPo=W=+0-nTJj<^?CHnWjbTvl**v)Ql?7J! ztbwbK-No(PZTPag6M1^ZCb)CeEYgkjV`ITzNQ|kGSG-IZIc7cFuO$l`ZePHY=P_zG zQDnHsnz=H+KJfi(mf{YpaoS*)68U|vE2%gOVt(f{yf^!ppkpKmG_wA?5F=-5#Tg#f z>v_cYE9^D)*10f0&qSTzu>QOJ^U{>$Yw{bG3t)}eui7AF@=T13oOCzT>3|J$%?R6{Dw;7CO&0{mnxO zzj2p@%eFs*H@=wQu{f5P`e`>6LB7V;WHnlpQrU9;UKZ!q`e~$Y;z7DwN)4rRe!}b9 z7ogxDGjPyu3vAY`N)p){h`_sD%;VbMqN=!15owbO?*<>`cXMB{U9b_6y(MAWp%*Gj zJMTm8i7^>PC~syidJr4N zoId@8;hvhu?5ItEk7V8Xr-BbM_9g}7GxK87Gt-^)dnbf?CRRLohc?^&U5A-K>G!-r zw&PqTT`O8$D9#&c+1L1*+C&`qvzQdSx{V*QT@hd0cS{sG>Ou+%BH--fUw9oE2GI7= z8t8JrlPX&q4bLBq#GPIwr6SOWj~^yc>F5x@of}9zICBqAB-C>b^fYp;n%ORi4x1V0 zw_?A|zK|K?AccZ%bV=FC%K7;VVAohmIYykuouk8i7Mnf4==Bz)#gj%o-6w?`9FwWw z+5+6}^q1DWor8XS4S`(u^+fHQ3!K&ErP$SFG2ZN$1vZ6#0ykegq4PYG;OBQvNcGbR zZeMX8-amCfc;l=j_UfMrwIc-J!t~$5W6M5sViI?t4$UDLg(JbvX_7GX#x11i#KGTt z+yz59{?yE&Xkx|hpPZLVIyv8EbGYG|CxI!*g|XcqfReEUvr96Yzx-`9JTmhIY;@g5 zs15l-trkzpvr37odb!Nveycn_d|eV7q$E<4D-z*_##*@Ouo!#-SoY5w< zRkVr<-rmYFxYP){F6P13tL8wZ{WSa{Wyu{5_61k!&p@x>L_9Y^fR7v~#s*1W&_C-k z@H^uU_jEnew96_!DPYDGn=yyYD8*YONDkWwcRvcm|9n`NPW4$%rK#uqC7Qv26 zEZbB;ha^eU8}$3oQI!}l5;+TUkNFc7ZgRNdS2`+MH4pEuCvdlnFBLY!gHs;@@swG{ zG_R{#s033WQ)-GdTj#;LwXEm2FxgiAnm2TPaut2`DMX#7pFoMxG8kt5iDmovO0MmU zgU?rU$mtP=Y`tZ zt9x3Y+6hY-p2Wijcn37jSK{tmvxEFzl7K!qWHUM)DR@-O0&mScK~8q1Fs9GP(aM3n zq-gmNT=9Ggj^$axfJ@=bpJ^CBt9^$LY1|;gH88W6$R(G5xe8z3z79@H7Lpul3A*KX zo{^2#Wd76)lD#Lx8dIbEP*n2`<~Q5bE+T>$#Ru)=T$M~%wycRf7xw_~e33yKMXzBT zezn0#U)BSvwiAjTtz$}z`1sc66r695nR$vw7|{?d+!NKpY`f)(Yj09)?>QOn(b|Gn zvp0k}A@4AEz7cnHL=0xH31&`6Tj2$hr<-RwFJlhecLru+aU3Oc9%tNq8NPqp8$6as zg4<#pfz$01DC=8L3%ztHzVZ7N?LWDR>*>5$`0}GZdbaU6`sTcfka6||rPNmV-=0MJ zX8FbAox@4iAtO@U_LgmQ+s2M=4`fb=E z*tTL9SS+W_eJPg*t46Em>UApPnGt%Z6DO> zFp;f4`0M>y=BU~L>UbK=cHw5CAU{5)J&)wT|bl{PY(`5VN@*XRncO=g(*UFcNK*%2V;Y zJ13ba$7yZqK?(e4%E1(hosAZazJ_}OYGMAeH6o{Lw?$;jiL>#qXTkkd+n4~uawHX& zAo@2Y9$&qug8R$O=nt9APzT)R%Z^6FgO*LSp4Cd;08dwxuuz!{n>&kIC7CKRpD8JF z(`V4jRabC9yEd6 z5H8x=m9%ADlNk3}V+#mD$w*o~qF z0^o?Sl9eEXk?Hi^6;8-QtZ{ZqSje)bJ$s68eM( zy$w7up3<=YIC^N4aYR(=3&7ZzQl}|VEgHc)dC9)bn-oFaM6a$w#se7@rfSNt<>DVp_a3l}y-K}(M}G@;$p@f-;cu@`CF3iQdT+i`Zedh62OGRqz_VDU>2yx$(U`2$>QaQ$syJgufP$I1M7b@cP_NW2d^06I#zKT>9`oL%}gUpB~=7_Qrm5& z%Nmm#K1;N?VIyAtobcA%mU`MN_b0lhY>N95(%C!UT^t(IjJ7>FMC5H-i;Ip#!z)~0 z!Qc@k;iXxbAjEVt{pFA;N92gvMs8@|3&mA+Soe@4vmVDlSGA>JzWhDV+&J2#ApQd=?ykVTHU!hz zb6jvIB?<>Gcx8hZ?L#(c&G^;$dzx|yh8_}ys9&`S)~`!SN)>U4L7P7~LuM*;%k{%8 zXQOdalRFVUyac>Bm5S;E)LHj?J_ZNfVb1Uk;mz9tE$2=QLyem!=KAdZi@5%5M>^^s zdRghs3`mP(r4|vR^Km`%xh9-9+36vQ&15A7D~mvOZ9GZTwvf-U0z9xKi< z_#yo^EIVN!2zok2`_wlhtsm;tqpm>eYdDvRYc}+`;1&T{jd_REBXTeofIMF zx?QD|e|mCsRi9Ei1?|M?DN)X8+7Dm2J&UkCA4bf^GpHb?8&p+r9CheE&F>#>r*t00 z*ta+}K@(3741lP6UU;+lXQb9qfkR!TpmX^O zxV~EoM${vG2;IFq5>?}ucX ztf1HV>-^a4hbXn`0{ob-1FcUQW2XO3yldMfyw6;m#}CHfeUK1)>t_|%UI6RHG%;G^3I#cHkZsfp{I5WnNOxX|7c|Gy=Qk$qtGR-OGNf_4 z^gYxrX-a5c{DzXaHiShM4`x29#{t9p@m7B&*kL~l6I;@d?9D)UkujGr4Y`V?ztrO& z9lLS;7e&~NMPQ|eE&zN;)D8q81d*3^hl=@px?{D*E>Ph7_> zgX?+Fxd^odMloIb?qlV@v!d-aeK^E+IU&y-01xYKklVv&F?)hb+?upS11{I$qaDxj z@H0N}SmgzttZ~HVZqZOLEgAaly$v^>dTDVrFa@hMZ^Uv}j`2?4&IQ<}o15rk00X-^ zK~B+AaNL39?mKyzYs}|Bbvk41QYy{G0n5ORj7K>A=ruUV{KQsE_Xhq0am;7oJ-{-x zi2YVS0!K`z!}^}BaK{^K=6U<;+}mquHwixh&&Iz1pCks5p3_2}!^KbB`E6eK`+rU7 zTCg&RN&SQ?PxXUmA`E6+L^gh&tc2ceu7G!`Xzp4yYeQL^DSW8<1J)c~)fBWe6g=2A z7hTUW!6h{RqPW!!ha8B2y}svQPB5=wU9AQ5_vSEvdVc3V7M_M0Lan&QHwLC>WuWj2 zawO}`LOj+@|0kcghQ(#ip_E1Ic)t7h!D7b^I8<;PUbOIqjkIh2<|R?Kvs(h!#byXD zP`ZF$*{F{9lk z&XDdue_wkVhJ}yQz70=?o?AZhe5sYPVfrvv$n!ZISapi@c20tC4$=QR`^Vu%ZYfrI zyBE(B>jR1OiRt&a`I)!ZqHz-26Yr$&Jznq9;{9`}1Cu_#u)0G9f9P2zEdR6!l)k%$ zJ8#<)@6&sYp4`jd=gcTtfMrD zb1ky)a8)SLUz!eg>2`y{n~A_KED5hW+XJ#k&I37TacWrD7s{IoQ%5CaVY|E|wb1l3 zjOz%6brS{n)tp%nv+_F}R_0^xee*zT&_UqKxe4E`nTA2M$u4!-IWU0YkhFIq z61F^oQ!1=}zL65FbyKH^l0k;OeLogi-~kVAW)dNjr*WWxDEj=} ziW1tg4@T)3;l)qZP>Dy9P<68^^SiYSN)GcOeEmnD-ofJPtxGddu#g#XEqER6Wu+No zd>_<2Tf|bpcaiC7dS6x;44>}(X?CTh0~h*tK;~*D{#YS`@~`fOGkX@{@MdLvwPywe z>O-P?C6m$!Z3eri=D-UpufnlAQg~IJ2HO3y5Na*CjB`GJVSVzqAoctn(sRIjR_c6P ze6(N{?FpJozV|%_##-Nl?O#U8>&YSn+8G3+DtOd-lTP?eZV>(AufeK~7L6wFmJp6V z9^%Qp|4>TI6xtrG#8eA>fj_K{CsGx+;Dvc~5Pnn~8~zzWo`I6YjE^3*zHA|pCiaUT z(BQ`0@h%%KvgYACQmRmDY#2GTD#NKWmylVXO6{0g0(oSw9JA3N2J1WgWPks&#aJj_ zl>R(DYm??*1=1aA;I+ON;tP&9)zxL-%i@KoajP-QEZ7$vKgC4lCwZ(SD?{WSdlFs{ zNd*osRA5liZ-(BN77!J$g!MX-0P}erH~mR#V~W}_T!@yF+TIoD%wFEY;iMxt=&m7r zV|}Sf)TRXd*ck|~ba;Zb`(>c+*+Zm`_cH`{vw70BY|t>B2Bf}vK=G15@awQ7*&cKO zPI7m^--HGK%NB?pS64J~zVBrnXsBUd+4q!G(6Itt@Atq5o6;$h{q1;NfFE#A%f`+* zd6+M~2b;x35_N11hQ{l0EWYC;RUtp0S}sRmDFhnB_lrI94;;9Vbvx5u>k4-N>PQ?!mGHm0DLAZOjqqm&fY?)F)cPDfD!6JsWzndNSJ5t` zTe`B;zR*ed&#;29e?Sl)20x({!AEfly|>D}c#^VgDTMuzHTZJq7`zg0M#u!tWwLg- z;s+8c_*`uUbW=2=i1W|!VxBJ?kcohGw)e<)rK{05oj~;LsXinZY(yts+VbAz=)ud0 z(rg8LZD{7!4ibc9c`qJ{0Z#M+9OL~4$S@pXiKP~PV9~;UQ}ho#EV#+$1U_iGIQEUr z3*iI%4gI9b*Gu4&&jMik(-QQvuX7LgErN&oyV+uYg5hGZW$ZO4<9QB?)Op)>IKWu9 zWO~k@&rftXfyE~e!reiAEbpu0c#!trl$F;*tGdfz>DUxldQuXbhghJ~&o(r6RDJ-w zwI7g2RvaizQpaCpr0@$%N%$hWkLGMCqw6~R`IBB_4VhAZLHA(>TQWilL^Q9!lbipt z57Tq);`wDTN&N)q-_$@_KL|q`bEZ)LuS#I7n{5n7#NaD=M{r5uAq*-EB1c^`cr4Xc zm?JsCx^vzV%99_-_NN2n3XJy--^Jxl=&LS>{u>~eJexEk~*Y$IoRqhP^1XKb-r zh^bibgnvppz;6sW+!eG0*oufU552fr)8_5O>rvK)`&Cy#uKg9TXIlYj9ODC#`!s4M zX!eAv5LPxHgy)zhOTIl(u$?_3p*XAeX5f9Fta#a+Bb;Xj(6z@$Cb{pep$6*_O8 zPMxcGP31ODqJvdl)HmyDSiY(Zh<|$ox7zv=F~T*}`(8hy(J`HxrCC~mM&a=F>^M<$ za~=HkED+nCuqQeWT2U~skP3JGk7E2eK)i4nBsyPr5~&B&2-g^ThoxMKT~)IQA|`!ceArsb zcd1Pzo~0z=SLc+d@H?68C15d;{QWlGd`*aQY;D3LUmEen0dFERaxp#7s^?Q|Q{tSB%pIqM-1UB9xi= z1iikonA6oku!(ya)%Hl@)gSH1;mkz%mRQF)60{g=Jy6E#-}K?SxKHeL<(1sfXlsjS zw=3(cYHab@p?9!8;U&xE^dB@&CycRYAc9+}R0{OOYCzjZ9{ya+2Nz_YqRNj@)bNKX zTE~86kZRk-8@6#b^y9%`A`sB;Z7rS~*^WRr{^f3E-`-{*iW@0K#( z7lrYEY}tnM(oZ+`Jj>zcq`VYWzA(cLG+G2TAJP2})CMQ5H$y_fjS5s-2@E78@f&)7 zch@+GvSTDb|I`0rX3Q$^`f3**zpq4i@A?NvIbzWN-~)WsX94b|yI>}v(`dM@4_5fN zVF8TB4HubD%%lm66fNE5qM%N_dv8V8K>3>2iKPt@G`%8xD%wAi}L5=XVC zW6237VVon`Bv&azj2mu*p=!UNY?UG@e}5Kc`euLvy|oRIVH8jt5T>@6vD7uR|2tsIHb7Jurejo7*l(2Oz=CqWOwbivW!`hL~PpeX+Gr`2G(;ig0 zz6~May$KtQT*Kajia1_avbKMV4SSf*8heB#ih6WpH+G(zMRi3(U^%ZA87@wR?^tF0 z<}U)EoVyO&{+i?q%|8R?*{I<7;|6frBSCcc`MIF5GXq}qJOuEW?;u$Zv6$_&zau3O z7Ek5k^iN%^kb7Qe)wvola;O=>4pFc)>K#@xFv9n3xkysk47bOoVdd@!Y@qc77%i?u zNgX`sxA78KDDjE>5Ict$_YOw)0@pH=@7}~}wR}`~yAfTs{t2Gg^GPZ5DnrOA1n&IkrniMRvCgnP)x2JUssH8- zI;!#<#T}c+Tr+iJUGx8OYb)Z4~r`<;cSy$@lTW#VY^h$yA|>=y8$ z*{+gjmvN0`DU`9R6RCVT3Ij@h!;|G#sdIj#aQ(Vy^!em+tbCvkzH!mTijU?~Mgc*v zdLu@upJwWMUu(ffes}N+O)aRR=)-tF_dMZP70sLZXUp!K;@p)CHy8ep~c=g9HO9|>c~^!B&?Z$ay4@(n?yON)$d4^ zUJIp!7ggdvcF|Br^ARZ9J&$uHP+0I+a~=`c@)w!3%@Le3SVlEViBoNUnN-tiZOX}Y zoZeZv5<U_|q%2P&$EFU$d7ItcKJEwj9OO&Bre;oThA#2N9#*OR3M5#neoHCArmS z8zFso2X)AJ86mRpET9c6lm|EkgM^O|K{M&p^P%I!_7qv_KVCjecXOhIf0q$|Y<5uU zZ~wsKemYcypoS8}PC?=LMCy`cD!i1lp4jauL7iS1NwMCpA!IJHh^N~wQPb8wgytD0 zY)HQf4jU|Ne8ytH#IMW9iQ*#A;8zQDPAs#iR-$(X)zL^{Xgl0Mb|OiUI+MBQ7Q%ws zRm}ULU&*S8V)oW+xeR{%d7vS_6LneHf(Rk;h8U$x_UfH1;M>!Nq8skNgzoveFSE_{b<%SDIdZ#LEW5a>GdubikIKccWpoi}v3QQO znNp|~tU@d8myimRi}-U-|6q}IXFy+z1+!jkC&+!3S=)`mO-&Y^B~HbJ6G^Wzl$|_` zqYd(@gYT2^)!m~o)Y62|W5p4xr5964?P@@4q7L8W-6NLm76SYJVd(kjFWsm2N9QHw ziIFX-)Jlb2sBm#82&-R3ExIiRKRnujI;PdA?RR%llh0~VqOLqyeI$)qp3q7CR9;BE zI1q%JC0Jlby#@Ygv=vVm$%3@_K5BpeAoLGz!aL~Pp;&W1VdI-cji_;FyJ@*kSew0$X$t-t=vfNnXv)c=wl_ z8BB-oPpx3ijafo7iVE>lr}Wdg19Kj=&a@2%d6$<+ec*R@$VSAesQz$eW{)q6x z$DY=at}iOk@1=^om-NmfQ_~GgbA@5o^GC5Wn50fPmlXkS@#P$@z!-HQd?Q@PN$K> z2))SBY%xUV9&wwV#+Twb`NuiWvz=h5Z5_w<ai^*_ar=Afg zobN@xZxwl$|1fwFKgtDxi**GB+jbFKBo0u?T0sK4zLV6s`@=wRN}IWNbq!o8qX;8U$5VYOZhS_zNoRC*Cg2?DB?(Fzt?5Y?GPtaU~m9>1h!aa`dTQW~j z?IYRP>TSfFZS~=3lPD8U2GrvQY*?ZRDT0^appgctUT4HTJTFD88W_d?AmVT9j=uLVnW~_!` zU)7m3A|ztw zQ<0(3WJbGrwSPFQ~s{z5(_5 zpT$E%m*C$k@^qj6EbI?$@@`pT8OH-nEp%!sIC`7z z%MUOTme=5W*GYJuzBBAf*^Jekf`NhA8)T-*;2FpSv)!G4Gt#xcklr^kfbESCXotBx zes>&iNL~_ZZWu%=etVc6A>lwjA`+chr~tq0w1!I11RjKX%=OB`fTh2eWwGZ6YVJM@ zXS$lfq8~BLB>CmBn|$)v8ktW~&*u@4QMH6`yK92c5FXD=-E9Ml<>r9)^4*|!R}D)>xWIeiYDO4An`?7%Yf=-d_Um^}Z< z0Gx1M4rgx82Rjzf+#sd1;GBpley2STYEeg#1BcGJXc4R``()gG*BmQ+eE>hN*v}I7 zBk-YvL*x==L%8wld03qD8W%f=!RdWTps>aW6aRDo&QFI{8k+Vu;mU1^4gru$KW0K?ne58&am!bC#;QLHqZgLl?3n5MqzFi=^P z)pcw+%!=(Md%V2iZ$A`ae$1|Tzsi{D3X7bLh=u?RePqRD%q+Z)ZwUv0m{hQk0v7|WWdJ9Qn z{U2#c(x?yT$QV#N4s-&4H8~t$`v$)s*hfr+sDnq`LolbELKSq^cgb)zlI81(9?rS| zt{#@dZBA(*T_&1&Xq5m&uYOLh-0^}jd(o8FX6z09lU_hgowrc(d?#MgdIzqHDgaM< zgvghn*P*NDGps8yzdVa&T<`R+0klrnV&{}t!l29<+8&9fK1dvfK9-m9%;GZ0865^= zXO|H*_VIXvUB&Vk*p7ci*zhwBc4DbWT#IUQ z-zc5Szq*TU=|>mJf0uE=lsNnN-%X(3!xiniPy%v34wH`#l`__rKt_prGq@;s7^%(f z1f_kQ8yPhrggu$zrpFIVpczSBXx{#UQ*f~891g~%enRqf}u?_CBvN}YLc z><*H@6Sl;Cn(nj^^_|BEc$m+Acvh869a_#xn0nAOXR3-dmh^#qa5xw2y&q}1*=d^X zn|zdaXY>^7(zC;0z5ZEJk>!nE+g@vQa@>N~yUb886IzIEppC${-37Mkg#vBIg`COD zcBEB>9;dDJJaNNYL9mWtCum=}_32O3byqf|Lx1(c&92Z^W&N-y81ymqbN1ZgH=lL;?sQ_UgD$#5A}J71ae(%~GZ z!zhWfYR-Mq`amP$CgsSHFTFx=3@0hu4+WIk>{5Z_q`JUO+Xv3}o)q||`%+s|TX42k zGeFBw|71v@m-cTge#_lFz--<_0j;hOp6@ftpE{;mW+0Gbc* zstj3oUnI+Zq_G@nhBo>3EIae^dN}9$F7Cwy*|%qE58Uc6F0%Y>KyYTp*j4CE0^%|^|1}cI=lE9O>03S zw-r2Hlz^R_YGL{7Y#78nh4oCdXl|Ab{G_e{*E%W#8}I{h(|){yOE^!^IC=3Agb_tfZwH-fV+Xmj| zH~u*6t}b3ZyN%5HbcJzYA`N6ZoMZpg&SPJ=R0-XymQd>AJAjIVDpLRNB67W#2Fkpa zvX4}V!iMW-*!r6P;7Q%n7Ju2XyvW} zTk2gvst=V24Yd{6=kr|jZ=i+Ut|N@6hxWw%%2&d9TTk$kON7zm$EmQvF_tlN$RBE~ zHbk!PRd|wfy@3ADLGZcoIxxu>M^~8h*tdL)(Z!>`0Apw?m>AB4Z|X<6Id$!zd0HEI zUU{N`n32+6Z{}<#yAC`*NiGd=(S3%mlFFWd@&9V27hmahXfV6#j7P zYp`l8hUN6;2asCa+ccuFnF+pO9J)akZ1{S)N%{~Ie>>}n%2l#J!J`P~(2<>}G4AHo z@yIeTwEsU4ePf%r;UfR}r^Z>NUt`AyCuJ$6$U&#|pj)pwL(*H3$x-4Y~v{NPveKMp~PefD7G5;_QMuHjBSd`F%g zqKr4*5rZ2oUC7I41zgHw7CHYlBCnl&#zvFZfOk`J(;T6fprWf3^ofZ@FG+^V2a=r zsC-NFhzdi=v|HaSJ}cCr$4?sAVPaFUGI}Q1f7ellf_MyL12Yiy9&JV;Hey)W)(2Vc z8IEh?C!jIG2X;WGDap|{V&3z6#O6m`MTY~L*^DjO=J=KV)#wFLKq+6BJN{J+pQwpJ z{iuv~JFmt!V{*_ok!hCk85trd=PP&l(d+Qom02XvzRFfgKh3Vn_rXu!CZXqt#hA-! zzJ9gpQJm`BhQeJ&!6kD99=$cfy~UHHft~}liOgaVJC*T%bq^@=+#9#9_z7-I{$u@7 zp-^W+qSR%z3py`WH$Zc3H7vR6Dq?S5({z4|rs&wVJ$O}I161b~T0DsyX*7j@ zF@_vX&tvJy7Kz@yy9@3;Zyh(}as@g>$l-5u=ff;OGcf#4@JQh(p597Z*iZWfe$|P9 zxYRiOC7jLyNvT!8v)xV}pJ;%>IScU;4L|VBsuZ)AUw}Fq`q)UX5B*RqgR`QB;K=rJ zyc1`jvds)4Mzjq_z8EL>f4>3HKLaXnUMXMZavvyoSB*{>zGfdgF&EiCy$Gp!fR!23 z0_(46Qg{1bgKDM=EdE;o`+rO!=)%O}!gR)av;~Po6oEsYacIvE5yGK8x?$LNjO~KW zfLntiHg(Fvt=}VH_@D|{oaF`&=?wv;=oL`$upRE2^@7p%^QaX{lJu#& zLw0C}iF6zkhrx{WA-ze}74!vUVKPMv1@+$B_ zJOdbnsAA9m=Ao9&h2*WhbHKbCy=X^`0c3;PfRH`1Mc{snRjHH6_M>7?li78snF2DC5?Ta3lR1@&LS<@Cz9p>=7D5Up__ zExZT0=4gQL9jkFy`bNg_06O}t5ddBvZv@MKY=B;FZkSPB4ez(_AyvQ8&;N^g-1NX0 zIIW|^L>d{SBRdwW?4dIuygKt@l>rd;Ed)vwMLq< zyC5%YaQ`CJD)tPVk50p@e%ezj_Q+weW%0ZdvGH-Gsj857BMy(ee~8=P>>}*eTk?8O zy7ReWLs(?Nr@j?e+Yi~uz}}Xu$Raf9-`;V z7dX$m3A$fAM9A(x51A4sr22%pMZ~4VSmtY8mhU?*H2gCHJJ#p0rcbS8$CNI_H#b9+ zCrmRoz#L3EC6US79m^y5S-|aVMjHd+qz*3e!U%V2!=R4@E8!9yQ*-9=5Ww6S0HUY=6$OVC4iH>QWO$^La8 z7+y0c+q2>rZuC>aaT^;&W&T}&8qYtF8S?W{pgG3ETO4ee~`AOk=4P9r(JS3vG%f$4Ku8}KWk%FKPp3x7RB0|9t3 z@b|qrI9&E5vtxKA&w6<%z!fgcA8M)a=FVbpv?>5HZXJXh?mgz8yZ##`oYe={@Baly z-mQXYZXmNOqlhf;l!WshM}p#|*OH}GsG_2#)SzbaBYr_uy0%`K+S8PE}ApGtbTX+0K0eoXQaDc zoO|hUD07=o0qDr~$IlI9!SU)8;G>&}ewQyp1?NJTj}DEKGt=$VfQvD+q2xWP6g5J} zItQTlzEr~Gi8}SQR2AANu%V6HSBJREt3V-WSrFei( z)j#cIdmP+HvEFUueGf8+dCu{?>X<9^K3fZ~ekqBbd~YQ~X?9uewhdTGtq+F9m9l2n zDG*&|-rOvhBf`>LMV!{4Ie}5P@H@v9I7F-sz8jC`{jT|oPndgBxAeto%08q~m%|>y zmZ-I)^mGASoyx=lySY48Ta3D1)oOIAeh0K{`i57Xo=4o)b7M}JDfR05{sI6TLz!DKpbSyw|Z6JqR2Cd3irDC6R|Vk!sl7GB-{vs}tP?^S z#!7!fkw?-Hd23A^cUzSb-#k$S>V40_lje%(bD0xVwO)da#qOY?+m3L%fg&1Ly$}1f zPU0(xwJ@{#K{Fek-G0nz%j96`Xz6IeE_kJecTS)I0g;Rp#kzSWHp&Sg4o!5 z^r}S09n$u(9iK{-!-4-u@U&SK9C)!9-%i;I8N4JI{Vc=$OuilDOCI8x+l1rua%T9L z#2!ZB`K|EDxxFxXmmD!NwiEMx&KYosc>rb^;Y}N4aK+W%^gp`dqNFdhgbKy9@Om3gSmgVL#Lf~ zjekXta_i{ct_**iumAOi^YOPjhm>uH(L1zHY5vno;b^~X`92z+1`Q;4#vPalXRE9 z`2nH6z?sTg)xm}j-{6PedN`+7x$;MAHE`R&9D&kg8!X%BP`fa+666HEAU}CGaxA4@ z5}cGn9I9O!mVbSVYd#7H_Mb*<6E=g7zbRwfbeC8$qbbgeR-59_W3!l6CoXchwGZH$ z^q-ubOnaVSaD+dRc9M77bvZWgSwq})uwvRRQ6r|@Z8*FI;#6Qmo9OWub9hxZ%Q%5L zstqG^iUi-hzHnO3eV~#nO$D<$>pAC`(XdeS26pU~Cgig)er0kUN|||?`n+!g#1%Q- z*JL%K>z)>CV}~a$>`NfKKRSz=?u><*Q*TI{WzkKQ`LU=wY5`%8V@3qhozX$tee~P6 z#K+!bVE6UoP;UNyQcAoK$JFeg9L*-G1hzI=7GD|L z9&YB%JiZ3IpS$3)3G=uUga0tY?F!nt;{Z$HPdMta?LuK~5&ShOrqm^ud^jC(8suwQ z;mEzU>`io^YPVt!Y~1+{C(iSv&+i5J>lQ7reKoAN8nA|^Lsmc;eF_fs)Hk`)U8fJ$ zF<`-bJ}#dV&$G{60h_y8;Ut8cGp`>nU z78of!0EFIM27wJDNKNibW2D?GQbuEzRm&^|A7;DjWWL!|Y-b!H@5v6)bA$tm&3Yp| z<7Nt4oEpG;SuJGJ_yUN93B%QE&Ed+GzR;pu6e%o}!I_PjqJ4gK;HlIi6rbRVru*0k zZU?xI@hJ6LH7E`P^5in~+A> zevtJ;=NEc*B#G^xddR}N^-h!VhcLcXQyPD>;zi^oLwk9Q36L+;$v#?`!t!h_fbIp? z;0KEh;A7ARSbHR|(KeB7@wsa+I{fw-SxJlWazES!n>Rb)9=Mq-3(Ey|&9U&;Qw=<_ zV;B)?JF)tCKeivuSXtZFN$yiN1Cu*z;3?_3yur^FFxax0FVI~Ft#eYjv#w2~jqw>) z;$1njyWRPW%8xCi$hVW|?~x-g;E4${GRYdCkZkgEmNqO;n+J6b%emW^HZ#iOG?8Is z4=@Qo&pu`Afp&MQ@YuOGfn6pOH>K7A3%YD>-=m6Ns2QMi9?3tPQcl|0H}lIa)}VE! z(R|y>BIw)0!zgX62kEp{F?Nq`N6)t`g2Lj;INX#28{T~b%&sROJz^y^Uf$Ex*^^4P zHOn&(d9{P(d%^)}K!EuVeNlN?9CAlYXcS%sI#=tX-@jwf$&2zRJ>3n}7ID!PPB6Q* zB8~jLQ63t;j$)8XN2nbhQv9tAcfh6ZUOaocr_$585w4R7W+eUNh*p#NjlIqt@C?HM zK6!bNdF;(7Ov>p*c7;kDI~`)=@a8)UQCAvVi?^1 z2ITxd;h)_GRN7TB8o0y7vbS~NFmEF@G;ceKynVu0S^6W(2XDgiu@(H!rD{aL+#Dz} z^s#9&dl;+Vi$ZE@g|K8t7k;d<0vgBfg<(h3&@ay4rj+ndT`PjHHeGRxYtm5ShIW4{pGeko-54Y;Ky;%hf<&T(^;mhVuMVBe7cW$KGTI~u0x=t+akD9C7Ad7 zSROx4Keg%D5ku4`RnGnM*bZrV42x#?MpxK1NCGb(AyU|Y4c1B2uoj2PHnptX&G@{% zg`qa^ggvrMh~2WnhpiuRLiD_^4{v&olEshGpX{_69kXNKSm@+{5Wjk#ERQwjh;kn$ zfGdq06#PwGzeV*U-_<0Ut(10!-6%C-{0bL=AB%i-7OrH$LEmDKsI?PGwz~6w)Sm(` zD-?NM*7<;w8_L|QZ3d)A&ABP&acEbS2#Ac>MP7BfNB+3n#NL;r0c4D5XQj>p5Enei zkm>dT8!PAVq<21I7j9N$R}-T;(w1v^!dHI8rJGa8TkxO7EemVjkeD6$0)J+oc$G`m z%*rsIrLoD$vLvo&=|j^f24dg(=#HLpzkr|@{p?i%R)&VvkmTRnw@Y}<{i*ctXI!rfPw7i2IJe6aO#|M>?@x2T&p)*(0>>0>8>+_JlYf=CoFAE zCM&3+C|_k1lcsw0$%07m-OadciAWUK|K%T$eDMVRiuYg_IXz_=>|iiWcKreIn~fL) zFX`OF0&(sT?+n|(w!v^mkgp=IENQq-Cn0{v`#he7<4R4xO#vEdrD@c>MkI$3?)eRXk8zdRoWNeLv4GZLYXA?L;k}j0A?Bi}^8io;Bu;if%gP!)U01gpB=x^fDM08B)I9$BwB3Q}qhsWJ~O*Lg^0(;Zaa`V?wg z9{SL`O?1?-GtSgVl}ud!hN}@QgDOTx8gD<9#65S+c|R6j<3{=^#&y0ir{H=KEvI_W>hQGnT1GaeJ z{5bcIlr|oJwhin4wud%JB@OZ?AES8hVYJfYG1lns$CGs?_=bBJ`q7hueY$>`51-Qo zMQ4W?Z>G~pV{{soCC4*6B)nitlMy_yYIxbHN8E4Qe~StyWB`Fz z7&Di;20TOM$XxqLU~WKh+h6}zy*$7e91U5E{ZD2CZ=JKOBK>(->ChBt(!gMHhHvpQ z`ytm+_94iP-$rgTn?k!}joLZSnelM&6Yv)`<(fW2sx=$2jv=4ylkX1b4u1z3>)NN{gJAkaL zno;|~bD&#%SCf|uKz=0;$qLwxc1gWJP1d?l;#?}yiP{Ejb{ym0y~Q&S{*wdFa7FNn z=!N*W)els$B?0<5tHKqR4lo%*D_LKeX1wK6rx>dL%>jS(4m0ollZ2Md$I)84>+G?gf%EJf8FGI^MG2b2FCF3x^!;amQNauH z7f$=R?MRrxB1)FS+Lwiy@Aq(v)mK;^^8|Zl5j@iGBWyf z4kgp`lzv4x3c4}@0>fFj{q_{L%;wZ|p%v)aOL5$1CW&rn^T|hYDd2ggCl+y1HVZhs z7IzumLB=m=HqZ|j#0v0W7BENSp8Zt7YAiV@8=Qy6Z}g#DuQYbTq2p+?eKGo`^@AJT z#E1D0=Q1xf(Vi(O1-$>6IF543Lrdfrvn98L(b;wdoN{<8I$1YPcCX3C?pe9WbBiM0 z^+5%?n}sv^F%0&9w`;-lGbbb^a*f@)UIE>0mWF~$zkp5Z5~ku&NksW}o8M8>U|yKN z0DSst%=6vV1EL?VvUpp!6LuG{_@l&fW(RW$%yW53PKeNV+hcuXxk)r~n$m!KvOB;| zvtQuS){o{gVpnMY@>;NOp#qja5)ZTuAQ_xqfi_% zroHXuJ}>J5SVRb}YKR31R(xdq%?y4HI)fCm8^N<@$(8#!gW!?Pea2343E-a*k1Sjl zpqzkU?z8s<&{R5y{@nh99F#V*{Z!0m`p0 zL2vSDDZuDEwEvPbF%*3a^|n`{kfBzb;@1uJ-?X(9w>N6ay zT>-zk?jY~{45v7+iil%3BJiKX8U#na8SfDu#aoING^rT7z>quM_H_9^)H z?Jan8OFg>6%AxZVkk?{i3{Q4yLEUU8k%7;#__)bq{lj7n@cBOm)y?cS?A+Uk$6|J) z_V4PHqP!zc&o~YZzm(u<`&vAxvJ(F~Ucxxs%0({ogmI+KF4$0c1b)!XgjX*(Q}N^H z%#}@zi5pFau~3CBNKz_}OApjw_RbIEeXuBlhpgy(ToG+*jP(I;Yq^FVF-houemnKO z@D`oxxPWC%cVoBi9Rv()Y>GYp47FJNrt{t!@VZS8erat<%J3S<`_TrJ!%tNlG7*BC zJwsvCLIkSwPqL1Dx7i3EgfFUC--0RN3`%9AQ zr}HXBg?>fzGGtAV(BrfG?~6|3)hm?ol6~UP>isVKv1~Csv(TXlc${V*WNl^cZl6Kw z+rnTVUzB(5-EH$VEq-{@o7b4kEP>1Q#qdO@EnA!+&vz+rhrw&ZFn+d+Iqi8CZ+;)g z6X;Z8^gIVDWEnF%Sa(sfya8X^_ZSS_;04z^ZNcLbN%%vFBNp4S3B3G%oVm|IifqrQ z!hth1_bo33ES&L$UE6m;E@L@w#JL&|hunk_OW%PvVpHsXhrYN=`G(Bv;z#gziDVRf z?*yV>1vhM{N3$x^;JM-eu4vm0`7~dve7p#1+`R^k2Dad1=hos0%UrbRA{(AtVuI9# zVoCY5a@v#Jicg)`4OPQrpxr-p+^n7gx*XWNVDD$3TtBB#uPg@mN7!NE?dzextpr$l z^CK>p-N766egG!ER>Qf2%NYTm$Jr7U+C1?-9`amwm$8-JaelOTP4*S8V&3b$if&(i z1-Hexz@WM6=or1SbTdd`^Gfc=yc`+^GESPz7F$uwEYjyIW(~sU_Z@M5f;ztNhY{y~ zVKdXDH5t#BH-c3QEzrp}CFX49TBd_r7}I%d6>P0O3(^w=c!mBQDD+DTo3C(iMhuZA5><#?~X8%jdc=p z#`}0ro-E^x`%2&gO~U`GUJd{51zEgjkrO>qY9YQnrHP4_x`(^H6*+6CmLLvKiX-ZF zNkTdCgYD~FOLCt^8Y+^1969^iQ{qckBJ)Q>0k_9atv>rW9C?RD^KQ59;w`5L+%-JP z^ZKqtX6EeRiC~v?gcj z-l^DicLjKOOOQ(i1B}(9Gu8L{`sv)hX#R$=JSMvB6Mc7Dbd>0#ASQ=ZW0!@=vF!b! z8c3td4W{@qDzyih6EUkWuR4#PbjW}SDm}`RyH&(5+2zO!`20Y^W2j7G(t%aH&jZEC zc>E@_a=oI^S4Nrrc|(;vCMp&k94gP&hM2Pn9|OqdttaT%w;CM&d_hg4^Su+*Ngr@vK{H<<+&D z)czh%9^*(c%eQ}E`b9G_S#V#X`-lY|F#U|@Jo_R3ZtZ<$=PKc%bnjyRht~pT`<;WV z&d&Wbezi-yC1$$WoiL%6?};f(w^&uTO_h{bverFXGtL<6-QG?X{5ghiZJxje(Y=hP z*iFV`{{{ZozjT%xd5&@YUBleH7Q;GR-cy!Q=Grkxu@B?t>gj z({0hOTwkCwVKL0cH%BXf&eGr<&zR2HsiA}oj}~La35q_utsH-;X{0~w`$ZRy_9Ibw z8Rk!|HPdihlW7R)p=I3TaQB>pc=UbuRq5l`=zw>|Xu+<@%(`#eQPq!hte%ldTMVs^ z-qs#ZZ~qk)t)~*qxtYV|%yjFD8eI5?UtsYXuU(r=*U~ehA8hMI_XK_P{Ov&;jrfJg z`%V$cS)h(?zM6}5F25A=dr3xf^aIU%O!HlePXT*k5u>?)$22^h%yhgBj4rAxVaBA_7=KLIDuQ!`9gSvf)Cs1SpggoT_n#YWumI_(1eJ`_O z-5Q2_`w4yPv~zs_`N z(^BTpHBEA4cNXm-|AvW~YC&&2&~A{ksEd*I{vp)fE#==3&gUoQe8!|nDEYe5PGYdf zn(h5Im2q6!g4|*&adpWP@+l6+Jw6F+*v3z`>8~c>GV98*Te^_F-}4b$hIQflgn;dD z%4RnI^yBObwZON0tZ1*nshk;O9sK!2p-gO{4x{&e8*PL?!Qd}5T&{Bzi`LGf-yE=J zV$5<7^S~cPWY=NFbT?=8_Z2+UU61)scF-g4Ed9mpJp3Clh0i8+xPP`Tf1B#f8hrj> zP1Z~y!}R3|=C^@4<27DE`1VHN6MH`4a$!Aqhpz_Sl3Gkl#(L68hfXlN@gu~n>a($N ztD>j9PeZ2$XW{wF2+qEZb#!IPHvHP~Gs^Ey<}WxonJJrz>4!p{#h{En(%CVE-lC`^tr`61CvpR}5DyN{VCsH+0SD(^t`-XTYS4ycxj+`d<+82?c zwRiF4eRX6pZ;e3qa1r~>t&0gT8DIl_X!f$|X2EdiQtDjrUcpZZ#O{<$Wf~7eu{A2w zkd5IqYDd*}wz+o$?KzP{M0Ecl581zGegF1T^CzQ~ zrQRJUN13V2Ho~9$H{eG-zmdUC6?J7je~VJn_=V){74rl;2dxC}B6Qf57dlD%@F{{1 zIU20)>-AJtMG>j=N`a~$$fZTN)s&m%W8ANMT;fr!Nc8)X)$E})dC`MZCxevJ@eQR> z`g!_7l3C=!7HY)PQ6XjYT(=MS%ky{~H>}8rPq~EAL<{4$)*w1$mJ@b0qxl~CvTPJj zf&Y*nN7#!3Rx6ptUb8)pC#M8Oe;96qxoZe^u>rzfPQzHnFa=4zRVI`3k7M6OKBTjB zJ8YoLX~n#}8pma^c$ug=t1oqjS3Bl}mCoO#-wX`X2CFnV)p!ZXFV*GDn|_YoS!~Xl zKU+lptnOt-e}&U8w-ulc10GiP`Hi=XdWx@#m1FOod4#X&UxjUE8f2N|IVQvE5c43_ zNFpq+iCOPRamFtn;taj;i0&($!FptfOJvulGILr*NeKfZ=2qqY=&WI)Uw&X@pFQPw&-e*rXKfj$QyEON z$44xE(V5p$kOs$&$g;!b3S?#UamHe=7W!H4fr_8J!F$g*kvkvAF^)%%GqsBp=vb9H zx;=iJaU3(|O&r~Z?@N7Tx;_ptLc9`hbjBR=0e_5hUn!U2bYEgRt0@vsYh+el^#?!S z1bjfR2Txe9Wy)1^C0>YDFmJym;d8MZ^m^L}7K40-Z_8uQfM#@Y=YB?zV#X0sv4CwR z7J|9OiX5$hSR6iIiB{K072Ke*$=P&0Z&jKoQ1 z?S%ybrS&ar{moLUqY|S4t?x2t&(9PR?``cjbv_~A}-0b!&SYDab4h1 zsw=x$V(Ez%R^)F9yVl#3I{iF?_tff4P1rVq*~<;&e{(p_n1vr#t!Us zvE$6}xB%}{m_t3WRI&JL!Xr*UG9kibXOa@hx5?e#!vt3{b)|0Hv?9(Ot`tx` z7bvO5Jajl@37If`NHC_SOIGA?*vOF8f|Tx2MvNK9+<&5^;fFF-vnW{bL$m|S55Hyo zx+jxk&$&XMoh8&pLr1&u-xt_b(kIzaS{&)bgWaqJU#X-P1tvu@kUexHTOc2%Xm^++ zW~XOrTKhHou3+PIGxp$5lJb0W2zNhR6n*sa`LgUyQ^~(OWI1~F3&>+aJ+s&1)zKPk zHgiVr2aW&*d|K`eZF$9#2|k_7NL`GIHsF3ms|Oa7bk@%*%iWr|;-e&9ddC&bF3qPG z+^@nJi(fH1CdTAS>y_wyKs|p;wI9Q+d5N$4H_#%!TUoc=ldMlHXk#4rJ);$Lw3+oa zJY3#2jd?J(v|2xg%QjE0#=mVos`;-y&U71|q$@;v@#cah92~KX`93Eq+I!>*QV6WX zTHXiP4qJqaCNF2yrus4>QZnq;UlMHd(FL5hWgJp-VkaA0cZ$3Hd^1y2K7#XtzTxJ7 zh8(Z&Tr%!yrNX<|0p_CmMTp;OiI1aaG>Wrj_V~-O8c|vJx=_cepnZat@RgqjDUx#nWe#6_JcOm=rxj1=5n&h9_fRiszLowAZWZZLi zGM?JR^n7}Qb*NUHz9)`6Wj3F!PCQ44gdJx-oYEtgY!6`aqVD01>u=FqZaPj^;|X&> zFBzFZcl0%wFFL`bBsVal zsRVh~O^FRYAwm8#6tbgMPG?sgtfWiBz-p!Mb zIR?pmF=p6nJO9<=cyw%o7XG)6LBB&YnZH6m$Dyz$`oMJ^&f|e5@nq`_Np~0z zp^x2jvnha#dhoFWDOh8q4L?va#m~zv`62dK=__&Bc-Z?qHoo^0n`jVR`4wJxL#QOF z@!SwAhj?%_>O1KvvrnO(_x|)g-zcusqgpy)!j)a@DTQ*g3K;v}<;>Gh2Y6p?-{PSh zNphuK9AhH#2g^Lq!}pW6GGfoOnB_VLIGOW`_zN$0G4Hof*yYPOZ%&9U=ZHB%X8cg% zcHAHO=*3CZ)+wj>OSeX1&mJ+P&C%dhwa#SE6-uJ=M15w&v=-f*wwsp7~4RO;jx5&RBGk3xs&n5 zqQ7|EcTon0R->&-d;`9lLyw2pD*RY?Xqew@EgL zzwojXdM0!+WSa+`{OlB+u(=YoJEe$^?48NDhze`rCQXh0eOw%WTKo_lS({0J4n`=4 zw#M_7gQBPYF^?YVkg**)5|1X9)mN9j)Z#pCdur>wG>W&bH;2yzuf+LrFRj-aKcY{k zKA|5i+lCSYF5{U8jxyuj((IM3Z9FP(Dx>512dUh)LgRVQdEI4*f!0&Z4&%?&8`@c1 z_U#paP--c2Wr`cU_NF6mM?*J0mox2ZwLp=t?Dm&G=BaLb}{o zm@Br?ArG8SW4bm+qR)%!(dJln@^S7}HZU+94oc`T%2QUdB58@_w`N`BY$Ha_s3@Yva9TbbEc3z^tJaY0*~0(oU- z3)iyDl=}Hx=zV=^4H?wn&$inK3!WBcvTE;Ek;l$`Wi-Xc$f^Ug1#|X#l9NYs*_lCe z1Zl@YnV$J8*z8GoBV4Nd9lu!>TJdXYzfNO`)QwF!kYc5 zlFVhp*}{0xj?-pW&V;91vXW;%p+m}JjMQpjMD|%1KVN1bUUF25ZLt>W4~-5-KfRiZ zxkm?ieS=peJben76E+=8fLJ?|lrKxFoy%lY-Wri%cLI>d;n*n8`aM`h@d|dAy^qg{ zP2jfqlBB7<6lrai$}D*xP8NQ&Afwg~F%kT;$bEx3xu@_w^Pn*mhuID>duPjY+6)<< zitB1lxOEtQxFQT$Bw7l!cNdt2B@VdTcrt6clylXqVG*O&BS|`1U7$Z^NRYj=q}VNg z%;`}QF+F&I=07?n@$M&w-g(=IRa3jlly5TU_vJS+GM|>P5+|47lX;fxcMmOcwuJ^Q z;#bEQ3**H@lkVZ4cT!2bG?~_Gy@9RCGHiD)D!N3RWa0}p@#8xG*0^2MWwIr-am_A$ zM#t|p<~upF`6nJSgO8%{miOjt4_(IW!jG7jd++nee=UsK+v%)|)J)dRyb>q8m14H& zE+eNUY?dhaE{}iQU4$1bUq@P5PiF5HMUgYkt)e6CzToT0PV^=pf-&>E&F|8zV|?X~ zV+oVRY}(I$Mt{aFx-(Id>2V2Q&V4&B=08(di>$Mdj(YtB-+4UDJlZgcIhVj<)B0^3 zj}T90<_&#zRls>>V15Pj!L|YWN3`OoK|lCv|T=yxAZA^s79nU^Eaik$va`LIuqO?=f)yFF1SH;fcB=EbkD z!x2d#b4VO3hMM5CB02Kxr`7a_A9Ki-mQ?!DZ4dI%3vuSnW_$k1@#W-gUwP8t&Lomu z^IhoUAGNRA!}5}^`tk9rcV31Q%fId=TcT!>=_~$W&S)Qgn6HWJdZx2KCvKy)`U zu+POq0U~T1)}mv_&oMts7wn*COGqXVVCp-Nq&#nvi2n0 z*S`X93i6}7$7`du9uyVa2p%KNro-iemz(+SPtD0N?fJMX@0x`BEgQkg53fyUxTrG6 zo)V0LML3%@rpwOnoP>{r%CZyDmAJ6dkK8@=4e#VJZ&r87B!Q3Ag6J#ShNL{qVXuBU zMgFktv{L>thuxyFNUNCtg`mCI0X!ML% zhU~g)3Cz~dz4R-oc_3dmhe>ETCDGt0&4$KsYb@MPbFBS#3%zqqqMctA;QB}6WM-K% zE9aF&w8np>pG>3^%d=0>^LLEk&{!X4hZlpTutT)wcUxR!Jy0E$E@Z>5En)5oW~%I( zr9cP&?V)!!-lj*&a`2m1H?Z{cI(ilz#Q3$HV@fq+Dpns!V6tyX;9^ZHI_0l6Hdv-f zN9so~q}(XI@z#Cjq(liepU|b>d+n~;a{fNO+3k(Qkml|~mRujfDBJP8$#mtf~Pt8kQGl|)jDfWCj}Po-OoKKb}*9Nt;~ zh%U?3th)bb1^;Q--%8$!DCr=7q)3yusaYC*E8CRFYWPE95)TMF-Mh9%z zRZl_$=3?&!jkLRH{*XF;1?wV(m#m_F84i&vFHIBO|)ju1;Ife=NM# zvEr_v!{;fL6q9Br8mTVW@J+pTiy)YqUPIKbFL@{!R7nzu^sN${bT1Y3t;i5W+=>&B zH@6AdBv5OteOqu%YQEjiUYhxF;*4PJt|Kg|BwMTZFpe5rdywin_LN-XkVh_`}?L5uf=^IU-1={=DsUKT8 zg2B8)cAcaq`&m0lur0ZneExL!amme(3gt^4{BX{ux{f~PUx9#+gp0>}K zaj{QkUVo^Bu-iSfY(@~1@=FJYe4NC7zPJbiv@BkHt^LkG{=!(5-WO#9$Ga>J1XTs~_R3b{k$ zm6a(de{(VYd5rtm&pfDSGPRYc(?@c1EXI)(aYoRO}+{oT(C_lq6?zQ|+#YZ>jN<5tNp}=GuwR zZq(QwR680m*KWm*T)_(4#M7xq*=iEf<9kO^t}gUiMrZ$zg?^94(aV@dRohcD-tlFMz&@kXr@a<+mqZWk#acTjKHnz`i^ zF)q)phAt7QA=5#jdVm;daH|I-o?75kq9zW;mN@xMn!ME>8lxQNDoPgT^LCL;0QK6)bRlSS0S z{sfBO92Oa4zwllD?;|XBlt%Crp9MaP--G9B?z-2muG6**${4& zq0L*OVU0L=SI@I6q7>}{E?y&!Bx-??Mm=$|@H)9sel2h(j!=hHoXB^7pAmYO;;4*H z+1X|LOQ?-ci^!Weq^4*6 zqK3`1NRxevb|EHRMEGkCfUY^t6Msu33d@GR2{2T~Ob{K6208ztn%(#X4fwe`z|PoT z$YtKOhU^-8PAW^hC-j;n?4m!;foqR;*;!xwgjY*Wp-!p}k%RJ6$nD`R;jEG>uBETtl^9izJ8U33+s( zHRL9J52{LA$PalRLUo#tlJ%Oe$;&HWkz38ODbAu}l==BQ%GB*9DZeh9T3l>PhOO!+ zLu+PJVFr3spmr~*P;rbh@-ihg=7v$41DaHru-}C5EQ(V;L3)pMkr9GVZV>TDQz>EJS}~cN;cd>X(c95YJO$Zw>P&bmS`kvbv9FuFS1Cq2rea@J5nzn z-ythD5@dyYXGaisQ%#njDMPm0fEQBI!< zs1`Mfis~gP{pO|AM*X$a<7b|fAasCKzOG5Fp1hx0vnGhrIa@=0=j&4%vmGfnts=@s zWC2z4sDj$!I)i#Qwv#G(@sfI9|BnpwI72?P>mVP*m6KK+OX_&bMJmbT2qnbpQ>s(u zQWf3NRKD6{YKr+a%E|3KIlgHdb#>T}92*!S7p9m{xqXKzNt-D0jh`xMmsdgsTBK6# zdsHd;-H}x4UJ0r-NrIYXAI|>?nv&ZPNQO~L3NxA8=6L4j9W^D z7_Oq0m#S0qrD&1|W)!u@jk15cgVK_EKuK>ArFbX2sPt>)RNy^JYH~*<<@VQ}Vw{XA z)w2&NC#P^SNJz%ay_iehwhSkU1{11!PX!eazMIOLc30>nvw*UB5k}>9tfZd&J4wB4 z{!Lczcc5mzbPTk^y7?RND$HPdsdqI?aK`JFmOHzwQCQ-Y2 zUr8sYN945le`LOJ4D@{^LB+QmgxdX5!~v}v+ys|!*tSy-2FS@~uU3<=-GH?Gd+#IH zcj*+O#k`n!SyW)-DbZ&B>V6!ocDzaieB5Jpc|4Xd>yRW)JWC=DOFbtx?H7YluO{<~ zt1Z^tL-B;<149^em4%?`bBSine6#3TgsUwVs*N>sxI}!p@ToUvcCt34ejGZ<)k0xGM_DpfQ45Gzb0L9TUpG_ zv=-$W-M&G*y7&N|ez6D5?l**Fuo7GdZYS1S&bAd2%|Ie)w)xSrqwqi@otv?!nW#L= zBUTzu1GyeR?QV_eOPo2LpOB2^w=TpTcDDHQv;k<;$wK5LC1k|8hn)NNqG#Ky(T6wl zkY#=)QtfR*&&jvwuvjA6-cW=V@e@(gHy3p2>RAL+5lWWJMQZ&`+-KuWsN?fXWN>RM zD&$w9ovL$?>;-!v7a|lLXkCa>*e7V-roX7f=WAh^e6*QH=j4xmdQQO~$W!PodpI9Wauz54ELhW5p3e zm|Nn2wvJwcbftFW(^HOgyQ0ybz7I%UYytAr?Lwxr8{t<)K4_KGuwmd?OzXQ+ZL4^N_MYav)X)v)Cq4p~Q#J&%6;iJDS+E5<} zV~#68<2MIpM8CCt^!_nn9EMH0tMSz@lEHiQ&u!RBqI;Qh0P zP+F8=d-j02tyXk63~cm)t+re+ad`u;MCL%ONfj~NB7om})!}!-Hz+&r!1YK$P~fkL zER(ZgZi*Tt#p{FMjv{<0{zxo~k_L`M9*nKxfNWnhO!Rnzh|)`ZCNt(~{=xMggjguTo|8kPsBnVm zN<&1{xj?ufTML$wGN_3zhWWlSF!|dd5NO}EoFB0bLVuTl!~Fo^{9+fZ4Nil55+UaD zWzXQ^)I|_m(FQZ$D?xOB50N=!3$08xTuVC)p2xZ@megMdleYPm`!t_&m-N?zTBaL# zpL|BFIj)W7O=LigdMBty^NIay6yP=c6O4x(plF8^7|!kcuO9g$l|B^+CK6&!+F!7JDWvUNHMs@wrWCohK^70W<|dkL*o zbp`utO~i_A)sXrtm`j{jg!zm*xHXxgi1c!2$Xc$N@+c(S)C`2Rxgy zT$pGvCS>FMU?{bU(6wI&T~nF~t<_3!p6wx8eK%XK+HVV6$OB;Oyas+TXCUXgCn%>L zg!#>PVaDl;u(8Gn=}Vs{OkLJnzL8Bs=Dlj`S z&HadLzq{dfhfQc>hmgPSeh$q%V~B4)mVmYuCvZsAZrFQ*z(oQpoa)kmPt|GR$n+=3 zDXkK*CVF_jP!BH%tApO$<2cAooLn3fi#XA8c;*Wp{-bDt+u0{XMKFgP{N6<9rz|5p z9j_2KezJOAz0f#y$OaAu(*6!|j-Rl6%9t%vM`8gy1{d5%T*3iH4jV1b{u! z+TX&Rav5`*Dys<*!&+{E+E;GT8Y!ajW;l^FXV~@{*+)DX-@?5;t;Wnw7DjA76wm-}Go1J^+KyLUXiz|FYkWww2W4AGtWgR3uBMpUxf3H>Y`?tvTU z2~iG3tQZqm_lIQ>BJrCElX;48+y5>xH1v+EwTDO8oIXoPZ%F~S`9I)tUm@6wS)rqK zdr{R;E8$cZBjo;vLh1JHARX8SJ7*LCQ&j*jPCI}Kbp#eSX2RE)ByjvDjdq(&fNWg^ zJUqccR<&}F8mS9?E^Tl$TMm7^J`MIJ8KZ>?@LF;PnmDVB)J${W^obLoC2NYN zoo|A@Yo@@7kA09k`5_^FsT3`wF*4j33zZ8CprT&_d1{Ok(-+vGk1;Or@mn*hOs|0t zz8l6r?Lz?2YIEZ=d6qe_~d`nyoWHSh5Ju zRo|KKc$zxPC@UW#FNA`ZrH1A4QayO~H61>`Sx;o#34)eP5oF%+)Kca9TIqO(o zZ(^SY<}M!^u-%m9VnH&2;Ho+-d^SbHj9W`A{zhrRw(%(Q>3Z6h@{tQ5#O@|BoJd2; zoJ``e#v<#u5@Bq`vw?Z%-*M%YDqv2qsKuhaEw;WdjuU9cDLCtS9yC^*FpqRLgqIIj zLQT*wf^=4b=0g+2&3&t8@vV%}*@ZuCCrMwhOvf7L>vUAj3x@T<;z%0I8ovmMlYVn! z4oTt-u0N1witzfCVW?$ZA-ZtwHM)AV8I3-_iZ)!vcoDRqshUgBO9>M1TlEjJPL85a zRkzSbG7wqE8)A#oQ*pwN4fy@4qsZF#Il6dw2KHEQjaGzsAjd`B=xozmY$)A>3WHA} z-=1{bn;Vaoo-0HsG)?%tbw`YNA-ae@A+52qXmHnbtW)O>_gb4#%5iTT3meh##XYFp z`UX7w_7#~8)}iu-QINl}5?zkogvHuUBX!raNUQV^QkN7`N_%dhy-)8VFx5pDvQw~! zD2uYD%HoE-F+#uNEEKh(3e6XF#}0nFC{ul$n4#6TT39VJBC@=~9-hCsk?05*Zsw-iE=}~xp@-6%n`3d)tYeJmvX?id8fU}iQ zpN2QUYv)C9UTKUd3N}XHg!k>_w@0|z+(Ovq_KzEXQpiwm;z8SnBCvf@W#O@C3cQnS zgXo}AxS~JVGPyzzJznMyd7nK13pC;T*?ZvcooD;L+m_t6N%v#35rUPH*p#+_8x?Q3S-#sxfwW(JArc4 zf-H?iMDkZlnCfNAy;zq|49%DdGj(4Q%@q--YPBJe{x=Vx!eV| zd!GY^-YZ1(Ob^)1n+XFix(F#w5gdt;gKYivmNPp~KuE_V^uWp;?7hRFH*p%8)KmzR zuPsci9)t@EszCOKGn}qfMXoQt64J8S;IHY4oaz=34}N&kP_QCEAj0xbWi8Q zxq0$v-#CWYLwv&M{w`R$ugXYwgD48sv;s3{BlIrjE)2d}hq5^7u=+t1%sns8z5V+= zaXjl2HzU&+z7Cv)i-)^RN>+x$ii`~wc8BC3S?MY_ChY?;u;Vp2mde58ZD)xs4XuP1 z=MyBZFou&}Qm9Ec0J4G~6T3tjh~T}kV9U29c09RCXd81-*8({>v1%VItX>Dre)=%p zCjpTz2}Gwt5a=nE5lS^u;73X$y+~!W<%0~&?C2qaEB_L{Eh9vuxeNGZ89~J^8oZOQ zS$3~K4QUfsVEK%17IS@`LD3yASf-l`{dJZglPhnUdH6cFsn^e9l>rw<(k(4z!mfi% z9|`W^R|#VVz*RRJ@^&~NUngy78r%n;_t!x9(0W2U@c^+}axpY2{v~>x28f0Ja-g|J z5q8Bn!{6Emur@m%R=^tA(7BO2rQ8UltWzQMhXjZ@OoFqsEeWeDHH5kCbi#1P3*yo3 zy)bdo7Cx>G1J#nJ1iIV~kN21X5mEv36#jzv!6-OI{-i2h0RmpR+~g>A znAkR39d0UE!cOrKqWHiCOMz4`k$C1fVIY_w4oUlg*h3H7=;yL9B63yuJa;uGDkH%C zbGNxhzY9F=iGZlN5=hcU5;f|zm|Yrb0=xRHW^#4Oa4w+CMESf2m>M?|jVVHJsdh(L zWzT`|hdD49TM6j8C33t}Ol&`P6Ab1gKsuXgcJ)pyU~y#-Q67Uk%e)}K>H_?{@|d{w zbOdhe6a#VlFF4&Zh7#+)FxN63W^XkCr9+nR>iA#a>t{mN+ZgEC8U(WTn}~~()M1*# zd>Al)M(p~R1!lk2Lh90U#Jo3Oh}uoNkXP;@xKU|LT)BG?u8nBJx}0gq-c$|7?czc0 z%96VWEq2?&oHfe5Dvq`!BW_0WBNbYC(U$v7ulv{@sil#WN0xgZ-tUY&l72z8i4*0gXYL?gR0&I==PgHnqAYEEx5Apac7$VmuB}h$ z8S~($wxG47iEF=c7m<~660Bys6BAnBxYa+Z2-P1L%qI?8u8}DvGG1pw<*8b@U^^G$ z%zjzy`xH)SPI#cEMQ^#|)5eLJRt>}}Z8h{-e;v2@#Xx8e zeMdw+Q9-*Gs-yG%cj3rx7OtzQ0P(&G_60h^^5$n|Ei0>`qw}I=N#J`z-({3||4tXV z%u*pd(xYqyg)(TR+9^m;zrw9JvIHa&rb3&XF0y%653LWAp!1oCZFI_Bn7MN^ycy^L zm7k5^`bh(IERE#$AEt;;&6!|58=(v4)gU-;4>5DoOtMW2Y`#{gpmi5>;KE!l6sukW zS`GzZ9=5a^Quru&EC z5S;)H6$e3kNfJz-+&~!Mm%x0jvb0=rhxqnb1N}HO1n;kxK*XDPIOB8+beAm$k9J?8 zQ)iTj^p=NDD}&5Z6>XL~Ht&)*L8z}()PaX7sf6~{ zKH~jdbI6~s2KlpmAR(xU@GsD}<;cGvj6!!1viCcQv|JgmNtT39!uiP^T@kQTkAxhE z0J8{1&}o$eg1^r)&t1Yigqk3pWSu8=S-d8U(KsO+;sxvT^q_go7ebu;M&v(f0hPCD z+&NE`VYTZWBKC1YX2Gd31h}mbNP~8P^^)V=YVhksQd6fO7KZ!L#+u_TCVnX)I zaYEc(jCgp@6I#POV7Y2PF>xx9Fus*-QIaKvqL&_rXBX_uO9vHE`;u|E^Kq_a|IXXs z;Ksqi4Kagb=<-3A5=^SHOF@?l+K6!@H{kjITDw%KJj3DXi|^r9vYTzAN!-@j8J z(MKJ9F9=1|uP`JsZJ=;S81LUyf=ixD;alQyi<}R_aWdtP?b;v@SgrU8S`SVG|36=e zO>>XKt$;YFxOWR2RI3Q_4L`Z91*+)wf<|bb@{ABOeG0Q$6`*}%Hq?dZSw_4zfb8`m z=2klin4)z7jXI1#sq#tG_Vgy|OJz~=BPG=0asnBsB%_jTdPq@82|?Ukw9uyj-t@c# z%NB7wM=A|f@NJQmT`sy|W{EO?I;xt(oY{lylH5dKqz?Q*8%+))HSL%fNQD2Xfomp-M%lGeJbdl!ejJ0qSqqYROs1w>l1PKdjdKmIt^WDQpO2UfvA5x z9tEh56QXJgXokBwl&|PTDU*Xyf|WZuJR1;?RY0l+QZSaa58@sf&ieK33Uql}LZ#ys z?$%*(3(XuaVUBKytG{UyVZQnujMUZ;)=~=zJ;MYbl@@_`O}u5N?p}x)egkqEc?7?D zGc+6+o)xSRN-W9?L;RL(0$((O1?C%t?<-Yibrkr1IHiO!M+zM^6rGFgy z)PD}VRTOR8b3O35s~UcnavX(3F2S?P!_e-vjY!8{981Y+3Yj4EC{MBkZulxubd zzopC36=nrmR;rA@{L#Ym9`aDbW+R*WR0Bv;62Y=F&G6U)9`--kiPkho;lHoz(EJ!a z(o3nv>G$ry%EBbnuO5nDqcg;VE>{SB5=1!kOol~FGkW3WfSnW@(Nty&dUM7TiFqeL z*FH(q@WKYgX-N{J61_kvE+$+I_Cv*)PRRJN4DlWHAl}i4TbPWH&QxQxcUv0Nr8L9f z!CTPnd~Dk9tum;>*8r5w4xn+td}6_* z24ZvW1Vn$7M<2E|g8r&xSSgIp4jP{Vv2PoJqFTWu>?YR#rQLY3N(y;*>j*Y9HY8=%Zz3NAEGG3|lH~PWkvMaO7TFe2 zi669;lDs&Q98C4WId`{`p}|YZ7-9+;J?cU(_m&}D=fA)z?`D#@2OLN+IE%X@JxH1I zKX}J>aWZ78KDlnphdk~&ll0mrPCjV}B7aFnkV$eH*{?3-!(2qx zNNynW?|YKxE4d`jA<6MA>12S=6LgIRkDNSb2N}A$nDm+9MBe|rfz%ap5O2l-c`ibM zlqt$1wQA+at_#s*(7yn3F}s({q?V9GngeMzO_tm%6@jnE6ya+*YUHWHajYKaNH*F% zB*Y5Z!P_Mr&ROZgnSpVlza#>v1sB0nLk$LB=fFMjBp4w?Q6m)q&bA)J7p*l!w(Aq< zzqbZzFE@kF)t&I$>ooCdS|yb9@*#cded6-;$6)TALX6DV42!?ofW_TBhz%4${abIr zCtU_~bBqxJ9t^c<2>m(T;Ge~OZlcT$B5+A0^wmZGl?VzT9io0pJ3J&M*fJ4uIf=LKVbow>GE>(B12|fdpyqds7yAT36s-RUd z29J$j!CU!UVr!Nph&2cxM*1YQY~aFfuLazzQYFaXl_U<=mxnL2ba3MyYy5YmBwls> zJo1WgLgO-lIQ4ltS~Rl|k!3z8XW4&zXVtJ_vphZ`E}SbT|3k*>t*}x~E)s0Njw~83 zqkAVmq394UY8-AtwTIe~;36Nj)RdqB*A}$5x-|!2;M65N?Dz_yKrck586o8r5h&ch9(}Bvf@PdeSZikc zqGml+oWUkx&Z8Kd!H>jOjCe@;JK)8e^6*Wt!lY~>x>rWwzIao-Z`*o2s(%Y96gru= zT@SMT_NNaeM|qQ1{P%E|Zv8|K)nd{&a1P3r%EZ!zgZSqgF+A3I7C*{cfU7cA;o(OJ zC)i8i4ueE;O~+>9Owba1S8h7~H>Qc5u3g11II(!>-fKL(Efw#{u)y!`wBl=4f%=sS8;mrIXJqj7msEqqdL8CoY2*Ty_js$cd;!teX$t#25I9XE1K}1>%Z{K^jNfk z=)x`sv&n_M>e&A4UYuhrO1fVP#xWbGg2bN#Bv;iKs=mlrMrR&^6?QAo&(#^`&wd7> zQafQ^9HYe z6_CqyM|M$?z;pLSp0_pdA2A1uP`7NfzLAD2#RouXgD^+oyNu{5pZICc&XYKBv3rC%Jr@^D7JMmT!68c>ACMq2yyK2IS|2t7S7;Nz1}czIowY03@4 z*?a}GDa=DPzqt?<77Jy0eyB5a3!JX0;U`(H(D2tFY<^z|=X91pOO^*pi!4S1NR-dycwLmoew?J9Z~kO8aDb`W1;qIc<}N%e(oQO@r?~| zFz+u)oS7rol{piyk6Vf|pYqXg%y@d+WKZe)H8Fp(I!UM>V6LfG;gY%2;Doyft!UGx zLmCUjdNN$Z@CqT-@hrcOhN+^WuEd1oh@dWIk$ zlThZtMBKmA7Tzq~gjar*;F8A$_`-*WuMfn-gjrGi`ftgYocjPDx|mYb(?qb2lA&s^ zy`Zr>6w^I^pz+u|oH3w^zN-z;6erQ=LwXo--iH|qO+=|(4q&J9Xsy?yYKy%apTJ4MM6^E|j2*$} z;Opn5m_FMc8LvFpoo|YDlag`x%v?OQdH`amVFt3-kRi)B% zPH&B!7E1Mvg(M=%lK$v5;PlOv%(`~d^x;|LF!mPxkdb~Mgz2f)jnfEo5rpIRN+{X9#&1o-BcFzTI8j*5G&0maMZQPW=su^J z@=eQ0;m+^c#N z{9rdEblA-p(mL??oe;;U?+q3$qRaN{lQo3;_X&c)H(r9nJdjfXhDxfneZBkAqd zMzn7mPSvJELhXjxsET0nD!|gv`UpBun?HluKlnb*kXeF!- z&4ojqGJM&=w}O+kHyEoMJAr5Rp1Ij`3a;hk!h!C$-1%`6sJ=n!SZHh8R|-*6<{IgYJQrNrZH{V+6QE~gE#6ZE$Q)wun%_?_2S=(s zb%1|lJ&QA(Btc}h63xD@j$X5^akKnRcx58Qxs%_U9N#wIsAFxJsmQu|R6n{@5PIq! zjlaJGB-Y-BHJrw3`n4XKmpg&n$rjjSr;d(tHgqB-8cYH%F=J1RB5BiL6th~#f9(=a z!&mHR=DKXtBW9dF5%mk*#@&X497FNWJ{D80MG@peN&QVXD66-?aPba|p5=pDK7aAI zbtaq+yn%}8ldx0L33ueVV^^R$xfQI!YhmLsCPE7@KHflE&QAbx>BFI4dQ?#tLB{Xp zA<*6iH@Rx#<|IY@I98P|_cvpJS0W}nJVHl-M_r}+DBH*ZzpmPcRhsM3^5IqEA%%F% zw(7+4em+(uTu14_8c$mp7jMa0F{3 z^!R7mCefygm*L|XBYxKP0o?Rk8m&K_!Ofw6QCoj4Zaz01wvC(1Kf=wv3l8ez0 zx!3{w(vx{(dynHta6Zn+KEvOY6pj{kBbahZ5mycdAnW}G>u$(m?d$bW%jq$nr%c8A zz0;th>NLdnS>wp4Z^+r^@WUT#=zAlDS9Ji#ExLmfrgj5;IRx=#jyQR14m{5q0C!vN z@AFH5NE<24__C8@uq-guaT*HV*kSu8!mcxcXgt^q1GU+3UR(y>e!GXE4GkE$QW6i= zOh5;-0+^FD8?(BUpmh32;N9`WRoe3SsBOgLO8FEtpFDud`wQTYq&5EBFcx;K-i5!_ zdZ5G85hXo)KxJP$>@yt#!|hp2z3na35bgzw>N5N%qKa=!b#S$o7+M)_LO)LLDdeZX zI2|Y4H+vLa<<69?C1Sjacsr(T?jM$EHDtA`6)9|wsE}*9XYa{uW(Dr^g!1}c>{pj| zRy|W+*h-@8lNU4DW!yQga4?yDs8`Fv-(Ys>*M02igX4wkcHU%lqk75Q;t(6WdmlS@ zAd`mPuOP{w8|tTLvqQW-);942>v+G8@-Ee}u2#?3%jb5n zVsdv`izRn)V3P=Y`Ta5yw|`EX9Bo*QN_X}~UlJRbpTbH+d(u4RDQw8TbUHb*iWM2> z&Wg7w30IeFXFV+%X!6w%dfFs21V2s zE<3gLKn~_xD`S@Nd7ku%C^UQJk5AX~XyzITn$WcZeK=65q&FNN6op~rn@!+lJqe@M zR-)?ABNOuJTYi%?c>CFf zr}Wrw>pxTD4>Pv!dM7uJ&S$5q#*skIgVqMCu;bf2+21)PY?HxEcG0^D>>L+MHsD|? z?K8Du7xdjGVP!mR?aL%aSDO8n`Hb#uS;{WwvM2YXR8p~WAiMH-5ec;#No)FP@>pZV zzTvv7KS)N8bo(owZ#TkG_nUC*gm-vpBnsiRA#Lc)!md7DvT=(?wXSjWrc;QX z%H`-A`vRk)6sS!;9v#ZWu_*DnKvkjz;KeRZfvs`R$_z zJ2TMo-h7PHlc7$rPW14;f~zg^k(VBhMhET4*vt||-@EY#mxYsOPzxC5oWqyaHnd%= z0LOczP*|QkIqkWF^V+|laAyWNFKb8Zk~8S7{)j*C>vgmp{TDk|yr6>nhSU<(2Q6D3 zP~!V%_{SvyZN6@xE6I29dTBI`+OUe2hiH;e@;0hyRdZ)r7fOZ|qi^bUJaT0Q*~E5Y z-~&(kL?NW(97<6cqv?ul3R;`JfM4HL1R6yOblmeEK5}isWxA7bMnoBYJ8%Iz$9a># zM+?b@uOmn67@T_O7Y_bZrZ2DKG3H<;GnLa62NwijvSu~yO!d-oa~EpvDT7gK!Wh@(+BEt}7mO+GhRGdwFiG1U$C{;KoXj+w^}LPg z{kjnKzf8cRQhI{Dd!q4h)_4>eRcjpSNaA8a$ogk1`(LA!B$8 zZuB~hp(`iA3PlUpGO>=CmFxpL98Y-S&kEzD3xAnSSNcry(D07Y`DxC)9XiIB7)TS0EB(cjJ`xM7@9%-=f{y~V_qXAd z{z@pVJT6d+i3FoTZTSB5I6Mk+H`pOJ1Jc45!s6N7nXh!%SpDN+sOVOKkRL)OWa(5` zwt6!pSVq8!^S_v42^Id7ptIoe(_Jv;tOC=tyQCgn=xAi|<^W@58ySZI>CsmJL2Do7E1W(=&uSPKGp(u6KouS9a40zX* z_|zU*f^v@CIJ$i@CF$969kAngav_g!{I>gOC3X#ceZ;|Pb}o}(a>;~ee8EKBk56(3 zW>7;@IbUhbZ0^1*WqLHdj(6N`H9mVKMf$sXaM$8kEC^hJEe##GV%QJclI&pqozKuV zcR!!QHlUoZjkamy@J~k~83q|b?D%+$Eea<^Ql~kW6;b*}59p0sK}YsTv06KO8QVq& zULQ{9{S=nrt`oB;K6*O|EN0QUh(3^4f57!f3!&5|7u>Fia+P57}y2OLl{%UCNUBUA`lnGLfjwo_u0ZM2;;PD^bh69skn7_Nz!c*#3;hKTZ zfXKi**uZ`E<+Y-C_j@E*$}a;~l~B0##R^lt)$=vjeN_1uIClE%0?V^ANghOTp| zplPIlTUWP0>N`K2v{Z!Jq-r7Hzq>fR!yUvr)o~y^7EMYsNX)`pF(M9G%hEKon!v7cp0P zJB*E#{IIjs0%=SfPPA!ZB)=nnTw5eAR(pUw60WdQ`8DVygy4?2dwd7GGdOitH2&on zU-?^;FkDFu^NwcY8r=wNUOK_p)$TazkE}#-B~$u%HVmDQ$D!N5X5{H)fUVCl)8LC~ zSQPBYZ#t?#vc3jrF1-{Jx;Ejtssi}bX$xTJ2N?tDP+nieSd5#Byh$hEzNRHcEJ@_2 zZR%#`n=fa+NM8lJ;$g53SZ97IH6IQo_@mOBwQyV`7nDzy!n621xVmCDEV&&GgXxO| z;}! z-yyz*vGGx?&v^?DL9gINB}QeQ3p`URf;XcG8hyPx0F2G?ahc06kjc@qwi_N^tsTh+{ph_~j{>`pXSH z;siLM&=!C9v_lxjwLSIY^d{ePV6|u&@*M5ajMG1NTrkBS`pI~&aSq0`d*hAViKq~i zihsBHGuxi;$Ht<|kjCksnzuVZdQ%YdLp}wQYu>@{v%z@omm(|`p2NPttC*3qT##Va z2s=3a(=w$3!TK>Odp+cv`z(af+cHh|6lkGOb^=V?xDTILKZM7e{uyCe2jDUheU0v* z^SY<#;PDk}By2EusUF>Z(u@3O5@aRU4He^*c)h0=qF=xgxR@G>svE2Ye3cq7eItS^ z=iY(eTc1MclI5`ZnF`P}9^SYf3RPF4AouxX#yLy|i@SZ1nJ+2_rXLsywe!ly%)mC1AiIAnMYx7NdP!K z7!TIHfuQ!`54fo`@h|mkhn1HJ0=za^XnTH!Fa7OsMMV_Xrt-1UunLNbq;Zx;kj3!J zTzLHZCsV$m9d3Ev0j(w%e#PBfs1Y?oi6`xld|n4fm>qcV&QTbdkOf&$-C*DMu3gQdsPz4RvXcYICi3TxT7zY1yaxEvd{ z_b_fU{Xk=Op2p}GV(b#8ggym^(`DCI`rUVyM(V=Zx1W00@s9Om{V0m%Z5}V2vDlZj z3@~RU-AwT3f+2c1C5m>)UuSi{1+y#c#?w&3b#~+Re)jRa^{lzULUyvJ4SU+`0(s9B z;ruKs*nBF$+ja)*0Y;5`y)9;I2He@F@*%89&>HsMj5wN=X~6n9MzT+JHQ4cL_wZ!a z50bwpWU@!{*hzKe?2&QhY)0^YR&itst1MW}y5%LZ?YZ%+PI5Y{xHf{Fykvwec@WKh z77J!8rgEJVn&;Se2S%}cr@ic#CAw^>*ljk&Gm-uGj_dH{_>MH=4Xmm59IBlWPh36< zo9D}CHLMS?yPLAvnU=c*CVM*JU56Flrl$?$c8!C7|CKYkN4~?^^_(BcDI9jp0mk`J zA^3jEwJ_8uVbtyGz}Dn3DBg|Xxx76NA^v6{B`p_6L1&^|LI#iO3q$6qehE?0p0$T9q+c zGZ#k5KY$tQ-|=?v?*l(~7AOtfwy5~}75tWr#t$uk10g3td6X-Bl@;<6=1(%qRPF?C z{W17r{#uB8q>u6%p}da3-w@~U7S4f&>AlinM#5|#MigX$zWjOE|vyGPQVe-F~7%`kgP1UkvN<@R8pb>2{MUDH6B*7=}*|Yp5gsAu4dZ)*;$R z^(%|;Zp$Ow{4|9emv-Y?HU)Q*DP;zJL;IW(%*nrso7eeJs@hn})Xt>IC7f}w;{>)D z&!dYUPT-jOEf{Gx0Vg&Z)82<-q`E(oWUZU=*PK~&t1Ss*gCl8FhdkN4UnG@nH-R^? z2|d3&z=Q{7DBHs^;`Iw?-$Qql3({gOLbs9g9z7D?NT-wl6z55Y$ZCtSNF2gvsiXwAM1^Fk7!YU*fQu*Zn!gfBV$ zONP_GUUB-@eOnn^b+I0^);HjTO_JF7lDo4j6+q+Z*;x8c39@ZIf>n(t=e3c?XY48y zA*X-+TGEdOs|z4e+!}GySh(7{6J=C;px}ff+HdKBwBUBAGadwuEm_R=4YzRL-950O zstj!;RIx-&2b*t+VpYUOJggLi_q9{uowgHtS&t&6oq&}Gjd=6@&6!y>@$|lnp-1n# zFgGomPOSx8Zo-`d^dxAW=7t)AA7Ky&yN#=U#RPDEes*F3H6Gl6zu8uM{}0!d#49IsPs=UOPbxQ_jc6T;CasV@YQ)pbFA227c_WEU z0qXo5O3I%vQ%2}k^v-F4x{PLgHFN@JcuzoYk$>>cFbIdX72<8dcyybVhJLxn@K1mU z?UME6{13KJH(@n+xwT^G_tkiw<6lhrcA(OzBv8=5gpm^0aF0?0%s%`COE<@WEyurT zzOumehcj`D*eEJrSB(dX_WWPRr|iLWZ5l;dB9&U;~BsR}%( zibm(6QVi<#02PjZxwEkvUwzP|4yFais3$PdmKU+5*c%&f{=!KI${?-#HY)zNh}%7+ z;??Q3cz9ekj_gpu_4EItPwO-6KjbTMM)RXeI6Xeq(#xBm{W}@QuX6z8 zotsUv(U;-D-eJ@f`-vF`l4$bwDw^8cf}`To$kViyzKbrQgUM^?*Lg>pcG-%`Dx_G| zJ=W~F1^JXQoCn3XiedWe2e9qUSD5V2pzQ1zNExe!7Ar+5OYt0<_szinJe;t56SrrI zi{iLyEj-n95-p>ec|lLwxcxySMz>4g&I9&%-KZMFrzqfzx0BF)M>fP(?!fM+1F&r+(5ksppQLfJg?Vh+X7AaHks&*XO5B=Z&ff79E$}fe^S-K!K`6=)>`QXlz0$k{N z1ZB9M5OL1`VH#tMx8yIP#K%EYIv9*I_eVp$y#ViLX<d%KpI{`SrL{d9h&jkFlsAbrFTh*LbJn15r}>hN)DU4SIEP zbICt3n)OqH?qA8_Jy1Svx|`F#FU(cOYsW%(^W&q?CEFis-Fc+BO@gLxT8`8Fs!_5j z9B*9<$FT*QV7=2M>{Y5nQ|oOe45xp)3vDprYA-&WAAw)A7vWMzFZ?1MkC{JD;rt~N zD0_hke#*FoZVQj0_81!+@3a-y&MHLBbYpDd^zWD&YurBLG>)8IgeIK+EhyE-e~FTe z+!0$0s45h|-tN%{^hIj=`1oc^7q;({mE+4Cp4MX^%T_X#KLSD&`q z{sRlEHcz|yqeYlB-b`q7Cq=l%;fnD1*d*cpoKm6K`K>~`ix$Fxs#xJg&2-`YpT^Vj zalIT^xK=Ro21!bD+xZG_N$Opb6*S-5a^g0}D=|D5pF$1%d6E6xe4-ueq0 zmpM!mf21z7O^X&v_oWNNZ*Lab_Qnf^s;OKB^Ae$@(!^;ixBClyb3%mEUn~{o8aD{f ztS%8swU)B$?_L*{X4(lGhk}J0FXRj7Zr7aVzi*8YKOYn>vuYAby)PB&wf72NwyO(e zu00mMEL=EkMAk-F#>5J@^=Avc_4f+@mj7c{l*&$9qC1n_U~|lPe8L2}Jyt-&aYoo- z8-n>X(!}UfWl(cD z08f3A#4|co0Lkl+&+Y%px&7aiVk!RSF}fte&4>@R%J{Zr1DG)&jiEo!;A(FF=UVHE zoAaiF-UEBS=;$2G*{hF_xc%Q}ZvU5&FJT(P6_frKl8?z<$9a{U4jjqt|L%bzcFhaK z>FgT}DU;=9!1b^$Mwi!h@c=gVI#Szj4W2{dHtKwvL63)$=x4Vy#ovv=(*E73GMqOQ7tPx~kKgYk-a{Qae^G$S!%=Ad*KKsa{OD)du6)Od2J}#bIWIGipBzLzT@2G{$%%Iq6N{uP8nbcg*|1Rl*0R`Eh+= z91CbyTn5uD{=>FQF|c`g1=K9xhp(5mLYq+*Ot8p;$jxKXM6?&~$Av-lvOsJ)pMX^_ z0%7Y>2fXw!4KC-&;ysV~aOU0sh_pWfL-lDW^M%0++23H?nqpXL8xNESRr0 zh4=(<6h0h_pZ^_!`x<3<-&+?}EWOICJHG~ln$|=6&!4c`d>jheBe1gMJDjY~fRl#d zXeiqSp{=rTMREwdN9MwX+7w*>eHp%sb%Ks|ITUPMjwQ1zK&!(YNlqO9NIt~QE!t=> zsexmqO3^&A5OQBNW44$DSsfn2wck&Y>FQ_nBw;>I5g8&S|7<+Z+X@mKLcjeuq~tm5{^TN#xV2f!Ewtk?WfnOlTX;ZgS42)pAwn zI$fQ}%8WWghha)-I+=alj`{n!yxECHlohE+-*=|ciCxv$`QjdoU6n3qtw}`h)fUvN zCyAjuCh%MRA7jO~GXCX=Rrq4N9{w3Gfh%t{@w;+Mc&j;YU{uQ?T$BX7!`(Vq#rfYO z-PeJ|Jue(C9Yu=vCymc6UtwOt`QHz5{`cYWEMxlVi@@KRG1-4*D~?nD&Siy#;t@ipSo;v)HutqTpSGJk5{idQ9!Ak^h_99mRCxsWojlaL$90u@*01 zSV<3}LP^*afb-YAMUQRa=q%rjndWkIEA|+r7)0ZW<1>h_$jt#+rE zX0(e5H*ri+{8dM?iBG|$SrTN^bQO0`)S`kxK8+0@OP^x6Y><$v*u#1E3L{S7_b1$b zEm&Z(xNQeM-fu?bnK_L5OQKBQduXM0p7Xj+r;fuxu&DAeb7kvU^nGE0{@GV?U%&#o zc=r!Zm|KI%t5?wPotnJh+yuO}(jWH+tirhpv+3|Q?%B{P$BF(!Xno@u21#9FyrN!U zQJ5Q3HHmd}tiNUD0rVERg^ur$YAMn#5n1n6+ zNbE#6+V*AO^Cyuohda|VV-C=#$aKtKIE?-4M)NCN5|RIK543D7Us|s=P%*tk3x)Dn2mKx7qIwHFRy@O z^^R?9fg^La;>CgK$o#4T-NbuLxNE3sW!n^5W_<|VejUTDTyD=IjVb(F^TzU5m~`UZ zE^ibpsl)QW3FsYSjIW1#;hD|@h)B0Wm!w#nH8XPRfw9A2E6wM!X7*y@^ieo`UmY_% zZP0P?bKGd?hvQdUp)tkny}WNt@hUi1~`xVjhx&r0M>(I=VFhxg;Ium(J^U@BGm z)Zz8meEyH}7?jas`4UBo@u$IkSbi)M7Y5G3{KXPTnQ5r+e+ef};?uq}XF%5PE_O_d z!iv#)rq-9j(USB3Zr}44zpq@1siuWE!1;eK&+EgskEgNt%@Drj{J-i+LwIF2H!ILo zJRQi#pF4)|wOkS!z6e7F4=;Q+!yPQfjK?*rt?+v2e{l3qGG=$L!Qdr%@OD`*Y~cLA z)tLuy{c=N)ytyAAbN=73RBd88|8GxvB$^&s2ddZ0FkwLu{yLe6$Kw;wJ?thf+|>`m zWr=w4dmOy>D#g3=IQ}xh8BG5x!lT_b5bk9KH5>D2NVSdTLp|*YeoPBCtfPsax6|L7 zaipGJO_Q=`lg6U=Bzn$=T5`0hYM&~(-8f3NA7W_b%XV^%$i*p7CXvL`NRoeQLUr%X zlEs@%6k4J}B0FYNUGR5m`w>o#w|CJWuAA}w!CEvG6=lo*T2mco{T{KFBgGFF>9e~c zb*)yT4CRw_HF_56sBfZV`7jE4b_PzR+tZSS!<^)jM$mqmq*Z$8$Z>x>B~uQqJzg~a zi6^d6pG<3)o+8`(QMex zIfk=#9>BL^3ix%|6pl>~Lm#JF<0Rdc__iYiKK-tMg`xeB`TY}m`8YGGnOgk6lcI6L zrD+tRqXAWwRWM}s7Z(GUO(3-iMLNnMXP-F!RsIj0Ee)|=Y84*($fB)uJ~};f;+Okn zLfxJa{Ht{ry(~U+=Yt|Td-Ba!b%dB6@s_0@S9LLL#da*I9ZfYpfw;ac61p#Yb92#h z&V$g7-n{jE-sx5-xip`0b6U`~#uoYP6yG$(tGQ=0Y1znO}k?=Z+)lt-~kR0RMa54{KlgFk?!m!y>62@N_{1|KtWs z`0wZ>zIo3Su*&vf9`5wTN!)H?|8!ISiqn%Ye`7E>d{qU{R&S{H3x}0APJ#R5bQm{U z8D4qn2sW*b192Z^Fxhc|X}h2ZPE&5d!H6+9wxfYjwKBkm-0Zm~R0AsdPne&ZR?C}~ z^qAjpKL?()*+Hmn806(g0Yv`*JI>c?Sepf2TY^EeSqd%dMlmwIcVS6nJfxqig>lzy zp<;0|j2piN8qbU2)BY#0a^g4~Q~MBRTnPZrgfS@EzaI{}H!#Md!bgy`!fweQq|Yn5?DoeY5Dh#}s&x{}m6^8sk8X3x!K4<5{I@j-88v4CCc! zrEwW=eIy$5!yOOGT}GRWqiFAoXE^qq7{zaxLE{Fp@L0unymB-gr{#^JqBj*-ut$r$ zjGLi!aW?w83b0*c4vB=V#MOQ4Y1Pun0)cZBL|)IwlIBi)y|n?;>^i|=b_Uv~XMk$k zOdLFEi<=*1p@>@&Htf};caGUOVGqYvpahh}aUPWilejr=9~$$9QU0X}eOVz!vI*8$ z?y7{#eLrK!@JGR=%R6v%{!Nsd`3Cpej$otyJdB)bz~*NMu%}iA&@@GRb}&GNy?r8u ztV_bkG3qYf)ghWTH5jK{H(-Z1T%p;KpHSwhDm!)3EOyNuX?9Ae5gV`4K#4mS5EmUy zXTAimW9A>g_qXF&k+zL=v$ct$ESpKDY$m&J*)l5h?WXc*2ioMrvIb{G*gzLPyDPj7 z?YjJ!uHA1a;6^){JEoKJ^icM@tQ2c=WeRJ4c`jSspGJYscI^9E|54#)V4n$tSpDin z?9FWo>>W8Hns?rb9h$U~b!bs#IoN`|8S{-4=V`K4djCjUU54E*rf=cubm76s2-XR_889IqZxg4{Y z^vq06_db_lmx6=gH_^bW1~umpR}eRe7TT&(!uL)rSbP9$lQrq|s53ake8Oj{0ci35 z1lPfH3eFvH!XNUlL3Lz4y^frS2M&#=$e3vkkdSVm&75+iq*VjAbaD3z6_gy07B6w#$Y zbxCY-au(ziKgWvAEOs2T#j515_-wrn&V5scZ$7-n&6O3nDliLwkNFDIr1zuP2YF06 z7z@r}r*O$FzQ8T>1PB**!HdT4`1s9ixOQII&InXPC$L+u*)x6FmK}9@{g|qjH`OEq(r4pnJd)s$T8Ih+#>}=?KR>ds*}; zcwwP%M4rDDqVfKVWX!u~P7S9QpyRLIczR$fM9t(frIMm?cJx1dv(b*(J+c|a-VZ?K zN^#6N)5bhXJ`1i^eQ;sK3?KEpzyysLeDT5%=gp7CyWY!Sb+0SJ!&v6I%o&inra-$6 zzsB$ZZ5%b=i5D`Y;HldHr5l>DXV%Mb%%n3bH`k9fkBeo)gPO56em1M`^qxM))UZ3m z2dT4qGR@(3gWpW+aL@aEO4o8>52fm|w)ei#%0hpxukSwBAAOegMJ2NlS9MtM9>dnW zGhmgLEn~Ay6UM%OxPeuWcVmML)!19BkWGE$$zHueY|v3PcK(4hc9j1; zifNw8ekq>F`Zxr!K06H9j;IQD-?;!b(Dxy2AO1!)4_C4`G&JaZWIRd!x@4qyx(ME{ zJBtd%QVdM}fCoK9sJbo@Hu|lFD1#8Z-o(9+v&Q0ZMg??~?gt0KY+U=i095oipUyxN z(^xzJ_pQsobKPl(_BjP>>Mz0T4sq0J6v3abxQw-?=eVIu9z`pcU{ZS;^y+J&Tc9N- zeeDJ59|6Gp?q>e8ScLm#l|lW%c>s)mY}ge6dlfIkQvW$v`ACJo?UOh@G|L1- zwck+DSpgTgY*Ce$wivQV6c>R#mo0h4}>cJ5_zT{gf{-V9jtb~{+EO9kD8^UOOgKUFffp2->tgYAmd z49G8p{R?Fv%Rm|X?Un$)t3%+sFb1wpxyp>%bqQ*74>7mABL!~{pJ!T4^O(_Rjp5tF zOR(P%nD$|YF}K{z_Q+?A8w6wN@LBw46Q_#Y+*WUptvmBUEBm(uFOR+3M)TnZ- zKQzhez>Y;4m@;-7I&8Rx2gJ@mZ!pIh2K+Xyxc>Dg8RCJa>ul4nKh5r(CW=iogHy=Ye_ZE0GCmiq3Zh?>i5e%NU0x|*u z7{v=0Vchgp@O&KuIf|ngvpWwNyFDL_?`=2a{BRYpUo{gOBu50#udhI=&}05ik-+2Y z_u!N(XQBU`66mr%;I~r`*Iu=NpLh9!u)il^@{MZ7W0o7fZfb$m^9w-yN;VkIE`fSu zM-=Px#fL@<;j{zC)?|)@m#SLuZ&nEA9gak~mnX3?Lm!Jj1mcwUefa%9H{zXj#Wfu= zRCsuk>8!vYRAWEFp>=OiEM_zM)n8$%R!l+Fr(Gy@e6c{!<1-THi&kTH;ZsV&epP>L zEgZ}L;hTzcjKCGG_Hx;@{Lna@I!>^~bxI%3vLyF<9V%AZqM=VxNfhEKO>8?Xe&G-wI;dkT)v;-4-*x_{S=x{rqNic~;Pm4gwn<<=DKF`f!_j?&3z;h@$jLH6?^ zY3kCslyowJOzKLg{MK^1HPVV-YTPL0YZ^9ODyO0!i%GA~ljaJw*p`1qwB~daeJa!A zx|>!~s^wJ1bNUEw*>;Dii{ZnSfk^W7wf@Zx|qvpmiw2Y1C_8rUVfd3L)kb4;{pGt9__iTFX zJRU|Jr~@`eADsVbkhNGSRcukBuIeAqq^3lVWqD-LqCyvE%}3dZ;TA3jPGM{9Q}gGm z^WZ}+ATPj_wjWEwFC#nSw;Q4SSfXVFZI zH(l7E!_yk9M!S{op;^O#Zs_XKi>zl*#@Z;z==&--VEG}pw{>kFOg8Th=t85Py*?mW@Ymu%gT%J@_O!j`|Bx4t$T0k;jPCHD;6csgFX1GFc5!E zUuB{b@)SR|hLM=Ze!OH=%WN|}!&`IwA+yz1gummPClh3o%9yBYqZ!8pY-m1;m*!0u z6z^cL+}O$J!LdK!wa^8(^KRgO5z*+=Qv}CH9YY_{P=0*)BVKE_7TPZQ!BfxNj6=mU z>C%K|>Dg1t^LlzwWpJB2T{Q~bZy}LVU z%(RK{GVnYzL7|ZfD^~a;of4w1jp3cS>9RGjD zJs#%|$1zu!jN&Ad^G`&l=o2puUdivxikMFgPGTExf(2e8&U5*Bzhiw%0-*Dx! zk*A_1F9IJt|Bi)v(ng#Ike;Mnz;hedU>o$I_*|B=C~icb$qiUrAWM@r*-*SLpn{|b zs^0(0bD8|sbQAZk*qHQx{(qsCBBk5=wfkd}+ zsO4fqS;_f$`OFIV$g%cc#yG&6$S73r6vJJIe5C~R{96K$`n96a3KuwG*GKiMsP@ECS?00fvLq8X4{2q z?k*Mq&xQg`2XeG9$R!FUUbzl!y0)e!Cr&{Se~#%9#h=EPj{~gPJ_YSmPrd&K1qq*A!QQRa@G@0Sa5r2X_QXblhH*bLP=rR0V=@Gqm;b?ixg6$8r7MgK zX2W9(&QB?N37)t~@l+Rc&yPn9zbro;MBIKrRZ1F2*Q9}wdMeE7Fvh31gmC0m2pqOA zN3|Q_c;JyA6KYrux9I~jJtPraK0k)L>7&ss70EK} z7K|Hbh_9oYVT0NpTz|=2@NSbmc5gU=cdCwIcm5^F8(7Jx{hH1w&P#^8qjTwH=rQz) z-zqR(xf3QUIP;S@o^zc;HT?W4ftgQv==k#j6yGq${N=r%Ke-h;R|(mRF41S=sf(ne7`?# zXU`~vLiYQ8<9(lV-ET!xL`FMJh4#>(lCndQk?cy6nGhm0wUrSKX&I@EN=p0VcYS|< zfCrC<`?~LQopWB#XH)-8FfwvQgHthl^Sr86EhNX17zv_Vd0|{^bmxa$bSI zBKpm)U_S-*!hxPwcr#fM%_;vf{!Alie*J)!zLW(@`ImY6oA7&YD=4bofF8=fRBp8f z`?@j^qx{Q`*^2ZG@4=O6tMMz%i5;dj$3pF+@Kt0Bp4BXbrV1H6NBNfv%G8Mb8F}2^ z*aQ4ae;}ykD@a>9qJ5eXdgxZ+&?N=_3P{DNQl;2c6Uiu0{^cRczx?zm6CW+L#6{;4 zc!pc9vCo2c@w?qwoLB6~WF5MO%ct4k2<2Z^84y$+pN{dAf7wHM^LpR+VCVQs)TDjV z0L7GIcYX^n#4tn2XBcQr(ZegvD?pYX|2AG_xNg@z9|V8p|f9ZD3y*Q2>0Y)}W& zy;s0&>TYm8Fa|%HEfttCnm9P^JA{Yaf^%E@;YhHUsqU8({I3H|5JTBik8H}|*i9*1 zum1~HZ+Xq8*kyu$d5hJ09%Z+N#PI7U0_?hU6ubrxz_;{kZ0@}*xLGBQj_(XnLe3GM z*(bslzid!#GC?Kp2uObv2bKI9rdG)T4%AP;s>j|yy##Rh!6yiLEXI9UFCf1wr=q?6 zS6p}TILV_s(6+ljpgOz7Y^vi0?9p<=0K=)=q6zECA$Jwv$GjpUi!{i@c*;+X+C$QV ztFU=V90@$QgN!{ML84AA!fmo$xO{IYX{a7St7j@?OJxMv_}ztQWGLhJ%}Dz`H_7U^ zk8sF37i~T_!df#0R(>*%EH0Q%#>pNdoqyDcXVyC6>flM#_FgBp)t%(?y456a>VcicZt6jSPnuKr`(ZPtQs$34Z)%TC}v zUxUnk@D{IoN05Oh3S??bJPBP%nbEy3V5*S`EdQtq``8NtFUMiHZ5jdto3xpzKhG$) zOUUe2+lP8PYC%5iCUaYDH3VIZVXp*=!$h4(a2ps8*Bo+TU?2{>9wfp0S%)mNl)TyI z89DHQw*(9;8(8ZHHPE%@CQM`}F{eKzqI9+c4)2$O$M@c`_uMz~D_C*3{;#kPpoevZHGV$1*+hBBk2*PJA!xF!C5S;3UqPA3kx54bJ?sO2%u4MoG zy9OdEDsV$Q3L|}WVP~QjY!ZLY&L67@`l+`35n=&VO`>e+d3SiUCI%`Fii2DJ0(3u8 z4N@IOV6pi$l+4J3X>To=$m?I(H{y5A7pJcPgXrJv&y6Oy#r6%W*u0oG?d*Nn`Thz7 zxXMGoJ1;mJ-3rez8kW%hs}Tf(+QTBIVZRDQZ@A3r?Ur!q3)GBd_A-Z!jDH` zrq@LFh1*4KqgFTwTf1yp}`mY*Gyj3;)Dg6Kq9Ty%IH%G7MdOGkh6 zmAggoh6RTjZQ?NSc@h85^+Cba)K~n0rBnGg0yN0qWM2&PsNnt6umgp&r}@dVd(3Mz ziXrjZ5}2<-nV8!>Vfn)@_*}IXq_e~*Cv7(EF+@S0*(zpzuB2dNj0e0Kj0BCbV~E!Z z6NoCWgvoX)q#Zx7%BH8;=-nR$yS=J0Nkf}NZ5?18ejH#L!aMm#?yE4L25Rv3zj-+Q zO(%uFii1po2F%%$&lZ1p2+~j8QOT%_FI@N@NZWFO=&2UCGVuVEO}-0PPM!ptsuI(4 zAI71nS~Tu)q@10~FYs+&D15)W3H9=-&@Ouh7UivEFAtuBs{iIgvz9Iv58i=8Hh)1f zGaWWOcD6DcjW8Q;zZag=T!DvC3V8p}F}_Jex2etfDU|;xj>9VM@LsVKlH0o>yeXd1 z{ksJ(-!j3(q+^271%~Xzuf#~QORO?m1 zl%J+hFGw)wx_Y2_NhM#vox;}lV_=Pk5^T9z2oK9|3yO^-xGUnDxf9$C&guPD?)^Xm zcT3rY(w>4j-3QLxzRQu^*^K4f&6zda=sY=Y^clyw4|sD0lY_X_I}u!3RtQ%Ye(P z`X_basKvZMMf7UF$eu0hg$ahQv7XjHZ)yEwn%xMmr9Pr`u`xcT_0P#koAB5EHu$*o z2B_|d#Fs7BFnqZT^l1I#nyrYf%l*-E{%TDBI0>JPrS%-`Pa24C!5+&09#buYSEk5P z4u={ETP}~Hl>faZ>kqh6{&(vZNBlqoar1|6tb7M5_en;C2yu&ge!N$xMiOm zxq9s)5;^}Er&gfBoj;LGwuSyB?>q%W*0z}RMJAKLv#FeA=qfT4-;VdQHgTQNq1>-6 z`-xJLfHS^o$+d}za|twWGcR!`W$kfvFD8y#_g0g;uRKU{Y4+!V(20|=jv=Rg^2n>n z=G+@UUCvnTB~drh<^0{xf^~uqOp3DP1d|=PS5`WlYgHU)zD=8J{BJL}VxBHnrr=N5 zy4Bp^Pz1SIsm@uI&EwQo8FNmtpI6P~w|G!6H!8B4}D#R}H2c`&2GmDuETpl^vRYqCcQ_x_uTK3+x`|CjQEHBVyFc01g* z_ay!+wuSRw2C@Cc4Mv^LHFn)vLOzI1CY#mD@y*#l9N3kJ&1=J! z=%L8BetSx@l_bU8|Ja?@@M zJd=z^?6dLADIu#r&k$dHr_7bUC|KS;2ga{+0o|{2Kw;}{2Bd7rXDG$`=jrhHZ700{ zRKYC1yp(yDKLxvz@4>$G04!?g0sC)u`2ODwsLr=W;jle4IvQY+RxLBMdM=b04TAKZ zZm2gHLmst1gY-cqjHi0mkny3g$R`ClE+)V|nxlR;LixdN!4NkxVD7fm1fJ2kj==X0 zwknSZq4?3QW#`Wm{= z$K^rRKRS!dbbz&DCKg!(85VkD5}-Ft*;;7Y#QvwxFg}B>{I1`0H+OLXX#Wkz9z8Xj zk!T=zOnHqyt>fTRf+;(-WjlVRyYiD#_u_{dPxw9I8JjDk&m6iO&w9tN#oojsZ0!l9 zcYhsSFle+i8M51GFhKJc;bUO%b#Q4uVYY1a|F~atJoySsY&JU}5he z5BUyFFzj3|2x*~g)$wkEOsRF&V>X@uLlOdwnm1XC3)ZmrNi)>{yaomRW7$hXKA41n z>g^5Yx;g{=9lPiAu3ZlWg@cOBL)ReY!^?B%CO!mafe%@ulT}b}d=6dKGH4k!3FqyK zVhfJH0O7wr{;%P=pfAvaV;z<3{L@PXr6jG-f3G%mZJBM;tg!Vfj9_Ss0*GKrwYoC z&t<3ct)Y~o{KRen>wQs-iS@4np@JO7?=}JbOJ%S}%LUe4`UD*c+=bKkx#8!c!f$`uIooA_$gQwM zZrr+du8=1#tR$~Eb&Da+!}>ROQ{oHP6S0w#)okGwe9h*j{EX&IjncV)$DVSv{SDkU z`ZKSiYq&`*D>y-dzHoz5GH0!JkK3y-iMwBt!9A<}!&Ovm>Ma(zl2WQS54x1_|D z+c<3vhyH)LiSu%~j?oP6&%hfle}6pp^x;>or(-_aHeKQ(cG_^QL$<7$EjVt$F1Z_xs(KLPMPxGTCLroy>U94ZhZ^t zStb1b>tI5~Sg8N88Dn80&MNR?51sYHgA1#fc7+sp-9{OMnYwK6 zgGiWLCq{A(#6rZ9G5BXi6#n)a0V^*R-uboCu>C6S-HtnpPm~acWvYlB<-genSYbct zz>^=VvELA&TNWtSXc(fLmJm1f$IRAE9L`)U1^-e0o5*EN>~?m*ziWNrrkRj>!*clk zZmJe%=X>&AR^G?D-424puzTb!Y=>#Tu0sj!7hh%XgYNJWctv}@OWVfdMFmH4WkC#- z`j)T<<3xx#WhDM~z6;SW>~VtT8Q88H4lS=rv6A+Yp2kR%CC+!?Kl2vo)GNTPVlN?p zHwi0EvcS_{8!v@27|Qm*fy~nwQ&&U3GbP}8XeR*eGOow0VOV!fY=)w=#c zjD2s$;>>5R_%o*ftN$C1)horY|3@+I6O2LciAM0ZRRb^Z_QCP?r|5ew4lBc#!sH?9 z_bCp=yh<%BEj^007pN<=XA~udXnxW~63t7Mh;d2*T#{NR0A>(I>P3iUx++uSZAt9* zB|w2m4A>3M!Nf{^^c$Xp4og?VNtGVxohOT}ov9WdZ#Ke;#SUce+ARL--?mt2Iv(vC zX{`|_h72pfX?mORZgl~6&LenDcm?)s5aVUO&cw(#C)_llgtV+Qh10n_{EzbX*Njv_ z-OR8 zJN`u9n7XF-J%aYpC%AcuJ8V2sjh}@d!HLRUmL&y{MzM)F_oyb`xBG}M1N|}U$~{52 zj~ux@Wup0Z>&e`MuCqcLy&pokvOk<)<9eH$PQQeK&Fh7RdS`{_51kiIR6iulDIOG> zUkMgQ9N`I_)d2*Vdr$4Qvnx*$Gr-L^X8@r{gMKNe7~K-#MTqS1tUj< z3$9z)SRL0E{x>00sAsWBIAMK-u-KzSDB2P%PzJcCB|$J$}g=Io}8j!Q}gtM z@Ll#k;WC@o!V`TLgb|ZRgn}Qdg;`UZgf+}W8;u{CLO;EW!oB?S!ixzZ!j-%P;o`F@ zHg{ZKbI~*V(JM<$%;3Iq&Z)v*yP9jg+Io~?MBOkAKtYY8D zHd)_kvBgW@ZqS|2Ht@c49Ik6r3pC%w@QR)#L-M;@KsIGqgnmfFf6K}lYWr4S^I%18y49Xdt zfvBsk@WZbZPJgwMeLh-X)*ydOyh-pLXt zzEf#hv^oa2B+o*Jzq@dqdKAW*C*kOraYT2+QyeeUBg_s}^2_5BY&d%qBLn%sr?W%9 zf<<_-GZSq_D34744sM@+ma|Da%FPvB!X;gM#`#Y?$t}tmC0+I_xpQiPj>mg& z{S}9}2a11)$nl+^yRw#Rxn01${QZ<*bR2bWj*w_;MJ}^{7B{_UIaj4@i-Da^obC}l zZZPI0*Z%D5uyNd~B~jehZHAm#$4nx-y4Ffq3D9C{z@=Q-%;~S2 z#jP&*$Nj#e!ZDv-5`zUdxNW-%xs(`Pu85h>mBj{gYg~?SC(ZV8Z5K{)gY`k2?_o>s zBW0_vX*A~aH6?_96XtOVdnLIZK?b+rOe6^%UJ3rIDv0~uKWKA_$GIdYa{Wdw9PC|6 zexx{(RI#IIS3iW_G6p2ZRub%u+UdLA1pb8CVeyh{=s(euczGJ5cQ&w%zj(x9)nroE z8;a$L4fxEWj%L~t@$u&-ydLlw4QEv0dQ*2?`Zg6!eoEp3_g*CWD>12~6@4;7AYq+4 z3GpumtL&pVVEZ0-cQOK%@Ic(J<%dUx6-nNB>PS-5C3i)|N$as!cy)9XuSSXCm!Ahn zk99Na7k3JD-VfvCOUgv5`7=)1ABz%FS$NeV1GNtG(dbn1FjS=De2?wvUeyYF9QR)20_w;Lsa$C^NXUYh{Q zQ*B}Cr6E`{@C{UMCqdnu4mN~3b#4D9v+vJ@fw9DHfo;}ea5FW93&D9%wf!PZ*`0&~ z*>>>6b1$?o3b3baJp^|Qvm!^dVWmkq9Q&hyPj}qs&lisZ!`2u`zMl-&CLaMA@d$Vc zO^kA}Kim=($CrI0tjk|L5V;zHcizk3eq9^(UWhNah^>c-6E?shIodx$ngKn$7}hKc zfZaWkXniJ)`8PKX4^gJ`o7s0D=RznNgxRoq_xC`FZW_$>jDuMhH}V(co`W3KbF8=d zWnNPB1$b*T6SQh2EZz)PGEY?F*hISq-j_cIVJ>R~0pc6s{l^4oFfC-0G7(#VR|Ce~Ph^K@n8BB~&-uPlAHci*kHy%26PP?N6fQig zVs|Ib;Gc3Tl%|v)Fro6LZzcl<%7!!sccrv+82jR%&PV3SPXa65Mqw zWos3C_=asEjGE^Uwyz=(9_*`SQ)fxQ-|_@j@8d@J!rN%E%kwqNetHqZR!U&x_gN6v zM|ZgHl{4;iZg9vZ+5G!a4Qp511i|=U4Se$#cDQ}*L7t-A0rv0}Gt9D=Az!9%K#vFe z*z9Yq7X3Q2ut9hm@BBJ%_R;zl;^V6ZWnm@&c@wsTBw$s&YL#D4^qBI!?W;xWliq-W(=%dUcg3{ZGmlF)8N2$GyarnYY3YX3$t#&XFtT4vCa9h?CG!? zcJr$UcH7WgL13*NxHek~p8E{4zG6vWm0k}2z0+lKU;WR)UIIgdyJ*jTn60gR&+1OJ z1b+S*IC3eBIV`OWPomW5%-jK1OgP1s#kMd3h6_ODr#7rsHNYPhDXjOCXUtQhJ8brx z2sXi!0fTL{|3BWBRng}_b6GXaT%p5mIkt$6l^%hQhT3pEAPnBRMzW)OtXZwik>)Rs zZDp%1^T}LS2YkMQI>zg?Ik%(r~pg2UNJex zJ4=3CpTuobzDVke?vaw@Dcp<+N}T#J8^YLk69fIzL_VmDw0(Mk))L1__enEu%%Aa&o-jE_NUo_K!Al46JO3bM*IyzA z<43V{^LFB=D#z{m6-fFs#Ys|GEHQJc!hb8LljH3rs!V{xw8*@o$o(+(aHY_K;IS2Jn8d9VspONZi%CNYj}|Bxv>q&hc&+ znH;9T9eSCB)@ut$$iN%oWTV6t1|B8z|8pdB^*V`qZHh43PMokL0*f9m%~_ zPnN~rr@4S9M0RZ+*)?B{yRhOqS;7vX{HGh6)(=f0HgNH?LuT zpCOK`(SbC2Hp>E}s9&L*Cq4EWMAiKk{KwCSYuQ4S%ZX?2i5&uA)Is>~)?Tp7YlN@f z!>rMg9TZJ)0mi+v#ICs-aD7yO-cATUQq^>?JC4^c>mX=x@L|FoKY{N|Mfwb>;Es#- z*!uh--M2W69*xVfSJs=Il}Pu^WD{_`wj@SO8-wHg8F0w0ge6n;;TZLQhEo2+!XyDY zQ~txGqGzB?`47_O7MP?<`T8GzC?|4}L-l-3FQ~p8I2}cXx7Eg>m_??$@ z+7u!}zO&vcA=C?!Pybi3OsSHh_2`Z?6u7R!I-v=U)}3ZLQd{|n-dV6`w*t~Iw4ki$ z1?5}Dv9o82?oDr*@Zv|Mz?F%KRFHWXHky#$v%AmkKm(?S~!G zKCtds5ClXOgLh{M^p`vXKjSB?U8gL+JYJkR_uSpQo2bLSZSO&X@<#ibHp3p%ZSd@R z5IeLjhVuCup>=x=uXH{SlD&$}J*)+c$~h6X_w@``GD(%$o4bJbosEW~FNa`NVwJ!< zU@iD=e{WeczMgTryPtpirwk-_6MpRk2{>9V#`2wcVDKh_H-7GX5KBJI2Fy1z(Wo3N zSf<88!P-ZHm1lIpS@N^le;#4XmS+ngZ&v_}_Ag=!Xy1EE%n18w-DK#g34^5xQ`oMD zi@+sWocHOoIjk=ZfLo7rVd7XDc=Nlfiz~F^DRanv8;g0h|JZF)C!qf72kfNSO3M{}^O(Ez zJjl(T%2%Im2H94N7`FKlc#XtcWmQL@!)OUyva_|gBY%|*(RqjJUnN0}dXnE>J<7CK z=kY&8=7P_Hm+&ij2x6W~p`msd`z?I|-7{ioANwV!T6cr*k%NrU$;Ei%L<-tZP{gMF z>F7Ljxj?c{95rW7Mavb1VA%Zy%<5Rw&~CBT&8PgIO*0tL;1Y|*@I*%bE64j*(+%F} zfm%)8n3waG_f|#>N9FB6i@MyEE-T^ng}>OvW1KK;pdS+S1u(lz0=F$mV_o~g*v&Jl zVXQ-^V2quB)!TD}t>3GK5V-@AS7g9rgU6s!6(|@u^Ob!%&Wo)}D~F8Ng#v@f`|$Xz z9RzLGfFpxe&^Nq=jg0SsB{M?dH0_P~(|wMJquDTDRfKVRqljrXciHprE%~4KSi`wx z0zuM^I^MCgYS{GZJUD&a4>5ZX#HQYdMg8S;t~1VhRdg==6mhWZKM{dB{6a|B+sJln zE5XNIA7H{zo^j=levr@q!+zWR3LH--KvSwDgapS!bOm+BCU^^0e2T*xEt14!#S}d1 zG>X|fHOYwt7qVK^orM4SiE)W$q+s3+9Qk}3Zxm>eMU|T{f9zQ>JeG^?x&?Um=zHAd zJf6hR`{wGsK@cxBj75^C(8Ie255G|)ucUIYPa_#C3I?!*`qDS(X^`UZ059mU@-Bpwg=zU)r zN0;QGlln(ADiI+c=PQ%YFhaDy#G`V>S?oP#hRQ<%660n}Tpb^v?@BrHnpcZQU#6hy zgjC9Ir?X8jQTCqiR?|xt=U{k{IGI}eee#UTKTzJA02M(RkldOK7tZa(Pe2^>t^4W9%%ajEresBB%u zGFn1Zd8bLPPFxN93$H-vr1jwX^t537HC2>27X=P9Gr;Veh{a-n@BaLPHTM-z@m0Lw z1Sy0dn*tPBAV$(QE{0f%%ltf64zJQ)){?C+;M++*7!Kl4lkQE`Bu2nvH6{GCbrohx zAB3Tcy6BD6Hzalp|M)LN$?jB~(q#i()*85I*CT!$n~GUuCCua#_<@+>wLl5<+12a1g&cM?@gMwF8GJ zD_{q$z04$`e*u=-BI8j80&9@Ha=k;yn zeSfXYKQiYXBq_FFXY`?)3W!I{J>QF!BZroQZq5s_Xha? z`UZMVS1@BiCC%%uW75Z#pxl)O9^~cA0dUi7hf>7Ox}nwu8rtDNrDNqK7lFbFW^yCF!X!nXEH}wwWzGok%t{@c zy{#8ZUn*E?I|ssfsZVHRD!_o_r?9|5h*rAU*!-uCvRd6hb=(2`e!~#Yj?Dzo3#Z_d z>L^bm<0%{PG=v#d9D<>a7`zrMhkdSVAbQ;*oTKA{sp}I_qkk(z=^bLzr;g(OtL~U3 z9}Js|_M!KOJFslha$GGaU}8Q@!dd;jyok0Zp!a(b$e8c9+K|u#|EUzi?{j8Mf@P<` zInsscOVeV$CC(5e426Mhz;|4Dgb?~=lModwN z9-CWuo>N=FjrWxAa%q&6R;l9+ywQMKfh4r#SC};__y`84?T7iI)FmgU05`J|nb-Dn zEq?VDfn{MGG-%#sZPT|vh*1(7KClSN%KF$(>dV=9qxB%yd`l2~SqIld4UzDc+62ylnYxenIM>n8qRPKHSu_2iirJzLl28n-dPSOVAnfga>@z#pxSQ5I9ug+5^YnFEyZ(3uIif=Q% zJN+3%r-YKS^JoI*H#G8#I$nYP zjGvI^F&0u}TVYJuNtp6Nz|D&D6y8~`E9^O%$DPsk5zgQ=g*C7La5MeRaJRO+;4&+8 zgqlz7g{u^Gg+|HQ+>M(OLe&$}!oywCLe(fSVb0cXT=RgIkpEp)7}qW@jI960eGgX> z_HHQQ9;-+THE-w$Ws_LpGkHZ}yN8}IcAA}V{H~)Cs}_Q&C~#a1KY8orDGHUEH(Hrb4?tvxQ9oW!x13E#|&faPF_A zgrzZay?wsPS&BP=AV|Fd$!2xY~d(ymjAL zm?TrkO%ttx;l~wtMZ4R=e4Hut&{B`ESykT~Re+JXVcVoY-a^RP&G$gut=Ac&~ z!X&t)L+^zg$`Sp|3j5}>cEdZc@a`!q^O#gdro<2eJ&rPQOEl;`^Z*##lOuz(tMK!8 zS-5<}(>(M3MrQJ$8Jh5m;f{VPYkOoCb5d_7v+nkC{$ooWSk=E5oa1V7;FJq~*pP=y zCK`f$-&|H+Zkx5~{6f^QmSQ@#J40V#5q|rp4caH%`4)GA*q0xFv8Kn$V0MZClzr3K zqMx!5x33Z{cXoiJ*>Ye)#3@0MB@#@Fi^k z9Ma~a*xS$6>t0#=C5e_WZVLv8JW5MM-EArX{A?p+j zE!Yax;uQjR>kLK*H?d;l0x)LPAjHi{VlPIO!|t)`+1o?bk8}j6 zRGMLMd^zN&Jz_IT<*?EG9qTjc0&)lCuu19;ys)nX53GWS%vkHU;m-J>@G!eGB>>9} z?bv461b>EQasLwu{Ey~enNkDnpgFXv4_~qAttV-mvI<*bWk{y96Qf8SVd^vcz_za& zP3CRD-HXcDZN)KRtSR=lF5{8@4OWC6X!pY6k{UGLL~B&dPk16ogB&?qhR!NiAw#JcoyUH`^mHF~^kE(@44sUx zcsIfCim~8<;I%;eNjSEdrz5{)K6<$Sfs^rkocpQ^@6mZ!z>Pq(dfI}_U+Qp+_(+|w z1vqVUElMu`$lup7fyc$9dAWR*8X*PGyXSTKSZ6{@8yVfRXDDw zv?O2dXQKIyc#Nm#zHU|r3QK2_;Bz$JV)Pah$QH8sz65p5?rQZb+goti;WWOi9%1%jDRoC3(!JzQgsM z=)7Bn_=+whkKHoRtS*j~juR(3n|MTeYZ!6bm4RW4<%qLa0y)r}h|ks=lD~Q@iLmD& zF{tgvTR&eC72aH3yk|`99X#I1J`Wi(uyTbNF=MM%dB41oLOS!1h5=w4Iv`LZ?7; z7dof!F1!cLn`LnRp#+p&6ol@3O;P&cOZxjQv3>hAB-dA)@Qz4Qm$^Dl-*y}KTskUn zP%8wdHV^!}<1aie>;yWLgJ#1SxM|vX^xW(UPoJN`f>6rT7~=q~?kjQ3*}42}RjaTk zhh_9aZ$a#$YF5+gpFpeUH|(=qjZd2*K>FPn>XL(?#TbJw7FP{%0AP55G5J?IwQg|$_0AdfP5gF>?5-ULh7bZY?I zepd;s{__Kyp}XwcyFrj8M_^xPHSCal4yzlcqr??`Tu_+88Yim4=4l0xbnh@b5YP&L zihH0iqm%tcHw+c0x?yf2ff=f@;AuV|gE9)hV!?Hon>L5$0nA|2Au-flQpgUvTzH^NGIaKkyIQ{IWUIQf7W%C`p+o;b-AJ=3YTm~(@6yw z(@pti2|egd`LAcF|7^^8C%jzHf-gq(u>6WNo44B;f7aVkc2ohJIMIynDE~DnP943X zC<|?cCG*p56K?8M$A^7^xa#8!#+LG5|4sOZy4B%$lX^FO93|=A^jiG-UoG8ZxrURe z3*u0W0f`-?ywil`7}#>2?@1kP-v7lSw2UQ=N-m^5t{>-$n2{@AC{$#MIc~abOGf?2 zl7$h6x$~3uk-nHJ+zdHnXX_(8m&?NW=ex*)H=e}x_bsyG-c^#3WI;Z1E7;3*3&}lP zN8F2KNXG9#LRl!}Ug1OX`$7?l)@|dsN%my@yi&rpuf&haZaDtfGIB*ihij;A!ulL} zZu&710;-KzVq`${=Me5xlN2}onhW=0O*+o4(%@d)--Vi*ow#uId(!&7k^H2dUi(vO z+=l%#@K%{3H~mK*nR88ti}j?o7oElAQ_eC{Oy3tth0ZiTWCPZsRB1#Fu@J+D` zEG=jRoqfqD+I|+RWO&T1zjN^SSFMXAF!QBLJjrbW>>Hv)9?;#KNjKC%bs}JCk%~mnc)ccS@0yw8`FPG z;8zBz7doEX%Vzb zf#tf7v$JxP;G4;BHnJm>H?4gSW#XP;lYAbq3(e)=zFM+{Nt3N0jL^GY`#ZSlAIhG; z_KZ!_&twl42eZqUuVyzdi(%`FC&5$xSpLK5-RzfOMVPdu0-}5LVOOFSF|YU*nBUzs2#%o-US=Tn~oJZ?VGN85C?tGSE)?~}=7Ls8O}V?|D9=fJ8T zV@QN&AIi=g%kDV)1`q9v$L*;ziL+Z5o}aHqRLWaHTF;cMGPsI@KxGnnc_TV|%aVhU z$+&u|DLx8OB`3x)n~O@u7|EJk9+HKE&+HhAj3 z1jQYj=Ox0)a}ROjj9s|ssS{>Qup$}v)ksNbIfP$*1xsXE$lO)}xA}GOUDKL> z@dXd(Do9vl^?qV2!W3Yw%w#Nk;>*t+onRq!JcHMtr@^p#hk1AF6yQ&vKv}oVsQAPK zT-PgOZAz|%MT`WV&KqF$MrdB8bQ(6ve#G%|B7BdaXuf(y3~bMRjN0?2;R26uux)dR zdGrYn#<2Y(Y_9GH<;S8#`ML#qO-O`>Dj`2<&LQkpSqg=_?!)C97p+gow^=)P4S~x3 zqi{)MHGjsvR`&74BapHrg!TD#0)waJ!JUao;4`irg7-wR>CxXHJUW!ml|5$FRc@oZ z|4YSITs;WXv(I8eUb<6@Yj zX#gpTD`8(?2~(RvV08-R#cz0SJ#gX#d`yspW0p>^$k+fahs-hho*J&ysD01W{%elIDeniS0g5@*rXm z728_ysp=*ieZP}rzh+77p%++H%#eV>DX90xn}{}VB^9)%^LR!KxpRCG8KL)x1JP?q zc99L{1=!+Q2QT>gPKx~g6@lX4Z;*bsq&?;!X{^&CJGAnNiijy$ ztUx0WzJ+=#w{4Ux$? zgZ0j@iEqjY6f|uk(z2@Lwnj8}WaTu z#olOWB1JXyy|wco!T+jI=g=FB*`5N+*A76^^H1dE^*HJT7LmKdSw#P#JZaHc zN@N$FBCc~Llj$SVi2IGLOdOULF9;=5aVsX9}SotTEt-96FZ7uxm7@ zGy5lm!B_WOcziwqC(S<2FZ@k+I%oM{w$*NY>EVJhemn?V<;>o2HN@o+)37h^57-_z z!!-HD>{Oropj!F{vfl{MEjkKsSdYP#hY}#BcoO~&)x_UtOX1{bCdi6Q!u0+7U}0w; zyF1zvpKN5={`K#{{-ZP&KkEShBrQ}J+m5oDY3MObU2|V|L%HAxI9>H)!{6$lPp}9& zAHM`0BlZ|WopL3w2jF|;VRXo$p676B^!57*9=AnsqiHKlX|lkk6{9fQ7;xz~L+;nf zv7GzME>d~$0=dn;BdfNHao;YF;ZFSiiz&{dq%kCb_*GVNJ~9%Vg?|bf{S2yc4k(%@79O_rSXf$`kWpjeVSs7o~7HKHBmHEt6X;p%7Y<06ku;>^amaSCO>$SkRS-1T=x zoZrDM)QVFJJdpXy8-gBPkxxe4fN1S{4>@KzSmEtz{hSOld z6fh(0V7+cG>=0zLzG9B(J$npBzmLbD+1AiwJRUwC;n(xEH6Y15a^FwCMb3>)g##-N zLy_N15TuU9g!lj8cE}po_^ks^ev5(yOUL7bKY^fh{W7RN4ue`bA6%j^72g=GhwQ$Q z7%7_%hN(QCc-CsTxUrW#GoPRBO7DW_?R@_DXDnVDt;##rrQp`Go zK9(}ZF|$VDZSzK$e3SPcRX&Au^Qlm5TLbfr|B_&-46N>Tz)9NjFl?R*2`(Bap*kKP zM+&ie?q&E?UW8>kdm!a%HP4?M#HzK%LdPz?ldsnR9~uYArguA`W1b4$b;u)iVJoB1!nY1lbB^NYS0K?BBnp~gp-p^pTI#Uxr#_q$uf?q`Prwtf~OM+F= zV(3nhB(w~tr@;1a+@B*qw%fhk{Z9dB=0HOVDP#GOc z{)SD!t}olj+6Y&n!kh89ba529TNce|%uj}zBm+zmW|77cegNb82riJ@M6x-ZnIh{A zEvE;_+4J4->23;~pP59|epiBq_7ljnYA~D5U;EB)(NI=rj^4*dU_;k1VJ^zY{N7WiY)cFwv569&&2sV;er zv7h_UWcL)_FR6n;f_catdS^Z-T6GMjdqv`1TQ3k>m4e^S zCkl_xF2t%EmCUO&f{touFm%;u#^j(i(v}hULbVZ#m-Ft3)?6GhEe6A1?L_PBbljo& zKv=e?0S#xA5=AbI&7U#@Lmyp4W<(~w?XHLY5?=V5Ic2^U_Cm-BdA$AYBIz|1!xx`+ z(@lL#L524VSp3a{pB?Wod(mZf!t^xUFsK3Zw{Js(N7nRifGdp+k)*d89qF9EvvKMT zMY_A5pHqKXgT+hr=+$>E{Mp|r{8n5}Y(=hkEJKB6hHRn+&I~=jZZo~Q(~0i(T|$4m zxYO(N{jjj*2+g*;kJ^qC=~`6+Glz1FyhujlWBXi2-`Mp;T=5F>2O^dGTU|O z1!73A{6lZbif?`& zflrr>@%xJ;R%^d1uDBWpCp~ypkDUk)%526Hy@%oI@rk%u(+^ezO+{rv4fK9%2LH!r zfamaHG895h>pFA>7r1v&8dZ&cnsdwLuw2s{EY=?-54Ex|Vg7W4Vt!prN7KUt>A0bK zJe{8%ffrTF@kzD>(ykA9<#Zb!T^NlD9b0j-!V2tf_dvtb67<@|Bs?%T0q5{65uXng zMEUAD9J!?(`#v4TOM11C-nNDA=u79l2jlSm<{h|ie=MwDqe3f^7UD|(Jve%U9j*+o z!6w~GkX%uO!3w_kN_CG}pR6;gF7W2LJx3VXc{zA&a1oxAmZw*|PGHm}1A0794Evqc z&G)~FMBT)-WVfU?HPsqVt4Fy)t4}ASoWF@P9zJ4&q8{MI^ho@0t`;K<6EJoCX*lF)cMT$q~h|2n%MPA>wioOhu7HQWyi0br$L^oq! zbC%LM+{2fBT==a+BD+aDMEAq^uUco0C_2eWRIt}ww7UH%-=Q-QEm5@=t(<#`TeY!{ zi-}q!+O|SVG<%kWNbpHp^vY3Bq#PbB%J^<1vifT$%E*l7`e%(5Np;Q>6~E*}KbyCU z&MCg-c2~HHw!97HM!75&JwLfo%sfon@ew--+qJ*f>7{kd?4i&$DxpCLs)MCTdF=wEsrM14wkt>C%76^q^_2H1F#(u*bAUWaO~4Q1ZbHLhX(}mw5l#6s`t(kF?Ect>?)oS2 z_1Q7>gwH*^uRWc56--496(8*K9z|b|7(pv#uL$E;^x;PX9Zvpmn(@-Zceq!DgY?R= z2J*Z0Ceqb6scLN#+JAS)00%MZutbM`5Hn-meLIZm%`dpRrZC}*mUjI7`#w7R*W*OK zcXGG29-IAQ=+v}ydaps6K2KagTmSmwqY9v#Za>55LuTBz$L_?Zk)sp2Gniv|n)mbR z(HFO}P*X9*xF+d5zELovb}M&6oD`)Udk&(`oP+dAfRAzZ?reJV*%|&h=}ZT07SQMg zE4V?vi>?wCgl4vh*l^E@&j8({zjCbUn36WyZyLc3-JA@gQ#m?C>>Ax1qfQ%!elc+a zE4fMsbtn`rqW?)`($#&cC|mA8_0xY)p>PCkdkl24b26A^Wnl7@XIQYUj_yfRrbWHC zU{(2Q>Z!VizE6>&Sw*90NplDW=1!-E57p@T^ab?Ku|(XFIE3|aP3X9D91VQ(9Cz{a zoYbe9H0y~h9dmIvJ+$W>K7JrUO?zah;q$pTEb$zuxH7Hd9q(3rFZ*D)Ih~ZCMDuTZ z(!!I=sHNUE+CB3yt(`4HQ$0u0+hK8ZncXwAZxPY;4?g29-naf`vj@HQvJt=4&7-p( z4B?M=dnq4@qLE(e^v{NB{QX>vhP+dxNqSRh<=R=YJqf4165*4+INVzO8n@jL1Gpu? z!>4o5CqW%AO^(8NH60B8JQsE9T0t-93zlDS!HoHt$QG91F@9ZCkT8S^b^OGy#{+7b ze#7jT_4vS13EwO=1DS=-F-pmXiCZ3tJDszT$loxD*?ofq+oogpp0(I=@FW%;N<^Ku zT>?e3D1L5Qjc%s(>@~qyrnLPm7RQR2`;1$_v)xkAR42nQc7!1YInBiZ?OEt~F9D;C zidZ$jIIM^|hA)yAGS*)ch}D|?RCCo9;pa2Gv^M`det!^8vY+Q-Th=@5wW)?vV+}BD z{wjPL<%!!vzrzwY5q66oqZt(fW|y}*`c&!S+R;oS%OSV%Sy>dAoOj3eT~D#GJA_K!Sd23j`k=8+38U+Sv25dQ z?8#ds*sD5>rAgj2zsU}i->yfcM}??vB*56=Av3{eGrI2mCZqH#Q_!YtBRCnf5t~n~ zP{4D(=unbL!s=6yenB9Nx11!@`x{L*S2<&^TP~@XQ)tqA?gIpb07lgx0OQ3wK(*rz zIk_Q7I4xxyh)qid6~#`Wl6Nlr-Cj%_-)scKlxlE}7ssXhe95k(p+?K*9VFpAvk6RE zh};7|lJ_x_)kwZBi1?+5mhbvt+J;Ba#xuU;J+{E=QzJpobO`)<4 zpo7Le_*owd+t<7#Iwgl-z4(4e91O>aSHq!YMFQNH=!ISR1H_B(#Y_zof^yQ#*hN?+&B4tR5!&1Xd4^p|ngYwEZeqBUIki%f2(#0t)G%?56{ zp^)?15hA*llfvDM)Z|vb3+JTXJm*SpU*d+J7E)gmJ&_os(3O`8AdQA zhH)z?M$HIw{O}=&nI>tD??)&y>kW&{Cj_gZUtTZz{!J5jA6$beb1PuU+R3mfH&c+- zup9TU_ao#hNoP=TL2wN2XWK=HK5{n3T{MI zf#&XfaB|xT(!BrO?~|9jsgSy-C%7fem6p?%^d zp4GC7xK@ZmT3WZjMfVT6KRgBR>4f3^*jEDnwTZpD^BCLvgxK@`_x0*S@ZZ84B%AlY z=OtR9;aCEHMqXyBfB%6Q$e2fMiaZhCW^_EKEm;S#-+v3DY z>HR9=XVgHPt6GKH7T55J`%5e_pN2Ok97QFwrzG;gJ<|pIbzsAaPTZU8CtOgFf)PEx z*-VLf=%4?Sus4v}vJR8m)o9RX3AFQ{ zNDu4+da%fjy}jHP-#OmLPOaB8US5GWSF~IAePV#+|?Tlp3H$3>FnqE5TZkSXWMDJ`!ME$N7;TlmTGSMmc z#m|HGOYETU_*{vxe!|Kgcl@%T3pc$vi}96tSj@84aFqG!G?B?5lpj@Z~H}IebH*9Ff zp#eE6K1mZN2M$s1BWo~u^fcN#RgcR)HyIC&^QHUm%TPbTKKh%_1>b*aPZy}1A~*Bn zsLw*gfE)oGu~?crTXB$v+Ke{Y#rwa@C+e^hKM(TP%hFk|FCZ?-HMeSQVc!lep&vXd zY3;!Q-B&ob4hsV@wKrZXF$;#(S z!jHaj{wPO$kix$-3nYdfVhy8+>o;8I?9DM0{*O9dE<6V546^9xm(s1RV z5&n9gh!rc_g*ro>;CUyQpJ`NK1)EN%q+Ei>%kSaRaWyoR=d=e0#9?GcItG8)Pdjc) zaiRVnFvnLyD7hyX_enoP2fs~pu4WP)2;4%W%QvIMMR|Nat`=rx$>OGo&G2&15hEX- zQ@WUcs4NJy0*|nGNc|RsHYTdz(6fM9!Aj!~n;W2RIg3fZPy|~g9pR_8D*BAwggS?_ zA?^Gw=KkJln3&%US^I9oNtWN6`!qm`^9wdA>6^Jlni&3#vcdhT_d))eF7&3yF`?7a z36!1@Z2Ryoj)d$GAqbAw^t}Tw;C+%{0Y@*ASW)L6^`_i07u;=KwWmhW8Q~hq~wMs zc9lZ0sANH)9EBarbwGBZKlnX(V;qCq1>3)9po{-g;!(Q*UWQ&l-RHaEe$gn? zwhhL3PVX^MKCXs#%67uMBfHGkvWnEvW+6Tpy3B6r-30p9D)8*-F%oT(K+N}vV{_+x z*!cJ&=t-5aZxvi{z`x7LD{YFlI8K6_nWpUTEIX1bZVs0U<|c`ot;HZ! z{+4;lx=3bhhbQEm;X8!8wu1VPWOifxau^*@K+-J~P^ak)tZtl+y7{BX3ZDNHmEg}V zc<)cHUhg8~w&s$sv_aCodJ4E7;azFW2bf@^3^Pr6{tr_`#`^#q?L0<&P34H&_k8F$ z8pkH3*~1i`|8vy#G&73tf9P%(rxsO-!jOzVu$EtI>h4zu1%nj0_{aw>+Frx9@^|q4 ztu#71PNezgUlXYXE>!x#E!>wOY4m+x3T@EO!o!NwVJ6@I7zp15^({WQitm45|8kNn zEyBcC9|v7aW3+at%}>$R71qjTLYVCxGW;f)=qbG;TM}l&j&-phi131oP5dl>@;2cc z&qGjvRphC$E?DyY$S;CfaIjYcHe1W1{Zf5r5 z#>2BF37BWs#=BXj!UI2j82lsXIew{?AjOXJtS8ry(0~XCxGx_>fI=tf6&T zAGzr=AD$J}8_yi&2-dZAOtH%`!(#_kn2ejJ!D~_qv-)4BFh-{U53gAYq0;>*883wk z?S>&J?kaRx*+R9{D9kOf2WZkTSs^9PbZ;{PHIW_8z4HZ6TFLR=loe!Cz;jl(U=^s` zYUi0G*-$&DgH`yM0~>s9!qH=^p!V$%cprAnbfe!`u-9mZ)Qzv8wrvEuPM!u#pb9jE zhd__dW5~EP4$|rmL&5b}%%0Elab_!H)6+v_`9VAUt`|J@Qb8FkUaW^73?4xDjFtHO z$r_9_HWiLungR#>u0Z$ibo}fc3$JqsTsM(J`Qyg8_j@@MOllEqX{pC|JVSH%J<@Lw)9qcJr!c`nePwtkw_q(p;CUSr^Yo9UbD@zg`V zjGIin=vc>Nw0wRMHL>%fDr;P6PI4l3GR>nh&_``~KKq>$n>d5wKnm}&sjI{^8mJ=A z&3f%ktc26RJfYxERvhJ?=EroA0i_KT7jBMOt!4ic1+glM7rb zLw8pO)A##rx$yZf>5S-LEaAp+vlplEImEfRv7sGT9LlAzU^Sic`2hVqV-A{p97Tt> zjib?<&8WZS5FX;0o(DFIkUrKzYjX}2%FJnzMI(;cGK7nH->=$z8;~iqq`v*(cB!Vd~36X!j)q zFID!#g+LC!wf{r8{(L;US%Y`W{6c0+7p`63i{lQC#PVhlU2$5R9+WA>HFwM?d3qT? zXM6>fH@6`Fn+P5_pMv_c5;)rE0^=ez1Qz4?Y{f=t7%dqN`l_+KTVn;WynjpB;6DyG zAC|+{TI1m|w+u!v*MqLB1z>RM2u#?^cUAl)P~wd=T;ALOU;OWbw?jM};N1n6h605q z2aZGjY8R9bn1`wm&&=rL0{|YZnQMi&aojsKtlE(WBX+$7?Ry~*>NXOMw?~5I%*9|b zITRv><{;-{#ccm{9)1L$fY1ZQFzvdEu;;3X&&KfkQzswR(EbBxuR8?|X@;0P`2g?x zZZ!9qJqt`H8Jcb6{f}btmtZrW5h-gmhA^=!aO&y?_G}=*-qXu5B4{FN4;!P7b}Wn> znnJx7&&Co_I5zt>qQ%@`^qDV@rG6JtupA!ZYj?vRo{jgMF~)}{mH8g*V`LYP!4JDqAp{$s|NV4S;K9kd z?xQg(AOSy>Y{TBop=A8yTR3OC6b20jfoLB~H7uWlZ0C6#H^~fzQFWx_pgiuZnT>a} zVlZZ94sJi*fohq2S9WkVKDo9H*1OI^m!o%aXsj-mFEe$<8q4J4!1g)x&?QT}@G%hl8o%OyyPc^X@6?U_5rS_y33^hW z#Zk65@Oq;GksG=%d~yD-Nsr=Pp_jQ3OJ$^~>*kfT>~1DAux}eFekVr{bdT35QY)g1 zbR}p-yBrz2PzuL=NyIm6_*qoVVjPeb!#)0+P|H!Cs#@HD5`|3aRV{6JKA7j?alLRO z>ooka&w;4U2=o{^k2(~7!4OLpkG0Q-wSS^uB=07kJX0F8b#kfyC5F|z_#Rh_ufQ2k zo8V3RQglD*$LEifm<-)=S`ZqA(zRwNVdR3BUQWdcC0#s6Ac#R!kK<6!S7Wcw!)14lb7DapfrVY#5_k|Jt+93hA`NG0D)KbzN&m`WwJ zd3>iisTc;;b+ZV7e|iyP(+AIHfVt>EC(13k+WcnNDG*T4xb;jx#26 zubc8codwjOSsz}lb;5^VJ_tj^!UWmrHOAue&Ila~b>K<^&tO^e4SyaV1@d3{Ii&kZ zfUhUv$To4j6yYYUs+@@@|4n7z2fBcnuOIQfi|~2UNywXUnU$&-AnQijgPocTQ|x&P zw(n|(W}DUEeX5iETi17;NWx!uOwn@R@};E*kTle5p<&YV9{bYDEXxFy}d(|LzZa z{oOEhR}y>ulQyJTJc1jiw4r$ZU!wL(8x$T46Rp5$V7MilEN|va-X)rXnU=_;O>rd1 z-kr!6Z(Rw?+M|UdI~|OFc*e429V4KpeVf5MyM54fN(nOmj3mb@XTyz^cgW&_JSJkY z3?6TcB{zeINU6mv2uR>LSZ<4m^N-iWUAK%RuM&e*V@=2;lheY1=OU)uHcr@_aFh%W zD}a`U9GNY?5{BtYcywkPMCeNr(FQTJ)zO4AiVI2myT^n*a*OP`SxRzzCcuWhn~7PI zIy-;u7Z7TtgWSL-xN5SD`SDXobUMG2JnI)^Vz)K9@Y)qmmfT|kK znP_3w9Cd@SRR`hvzZmHKZ!*{=7%+Otouu_dhj3v|B%f2@^C9zt;i-QPS>Y!DqcQ2M zN6Rzfqm@AJ9cICDvlz6whOqVQGVr2aZ?Vb*)O%w1 z&Ugy>c7tGK_Cg~3Z2(UaUVwDWScny^C3=VDNwlL5yEeB3mZWY0H{pNmOqpHm&s`<3 zFYko#g{BpZY+~Waz%xko%r;ReV_;l~FEAz%Cdbd65Y(?;hd*-?&`46is9cG|-6zU% zMEXUXxiiXUa=X#Z(*}wzPTcf{+J5p z4*<=?%W++cfL>Xt3kJ1{c)Q~gPE^?kHJQ$!d}t|uP3y63+X;;4eX|n5$*Au*nGW;Z z^rprxR67uZOP$Y~J&qcSa!&Sm$nLyw^i3P|~J7Mc~H^&sdM(GeloP zmJY|N;gYG#46@$3LR`;oc(CgXpHFWC$!Do>a9Xp#c*9R{mwp6wqr*Uk?|&Y?V}OTt z$-qOt|M_*<66jGC!@`Gckihppd*?3{x_2}Qmo9n=qg<+BBH#aPxjPmcvaL~z?|*K7 z%lAL$FN39IF?4o30}tV6c+BU8qI9Ft>MFsUR13&0D})Tb|EZcj3jgu_&u_QZz{IOT z5PL<4(Vr)v{2X=Wi^p^L9ySOc-BdwW=Po3l%7XsKPAKMF1A(`vf)?*T(JU%}{oB6@ z&*pw5t;bCm$XE%yAe5YxFvJzE-Q=twTu|q64Z?ftAdvT;JV|zk{^+}~deaejQ7Vo> zn-0L}5*6XBy-Lusu7-qdEP>>#b};AtCo8)oo7{&{M-))G;=M`X zt11)m6bfY*M?zVdF*v@kgSSOz;O;Y1sCuCWHv?CLZE6JiD(R4N1zRZN{U>Go=XCvQ z0*84{5XEP&4=mgaS-k&5mG__AjKb)OtKz4T~!w&uHP}e;l z)aE5K&z8?di5eZyI}k%Mhc;rMSPst4u7b6n``~Pg0Myl4NT0rgnQ^ET?J`C}>g^su zy{S3wksFCK&s`udr;ou6UuI#tm<5@CcL-9_hv5SLM{dnD!7ZCi*&?pH_;e+^@^hD^kV3e1(qM3{3Ai=c$>KK5Rg$ANbrL4RZ<;>`Du zoG%SpmGj|*<2I5TWDK|8>Y$|TI@CD70v^8i=D7fQU=igCce+OLc^DBs@c0AqJOjMp zN&?Vdi8wLC0!J&)ft5ZQ*tSX?B{FiLXZvyVIPMA_|3#YVtNK&Ro|W{cQx$GiT0`r# zUebeeZ27%hCiUkFM6;r%(VV-2}f@8n51f&-Wgoit^6%#et8MyX#2@A{}U*-8`xj6Ha|%{ixge zqjXkCDF%P-#$7Li!NJNE1fPDI8O11q{QyJyz066|0v9l~I%?1_TTf=01hHMOTOoGP zi5z}t$=2d1$dKV@o6pn8-)beuh$#i-u|LSDvH!?=ss%Pv2TZO!vLVwe21!OLV?HQt z2DZx=fa=>R#+&S7%z&S1hEG!k-=0+@CbZJHF0;URonI7bUb&FGxYSD4J?kas&dr1a z{o5eR`v$qN-U>{L!kG>;-rrkkZoVPvt#Ohzzn0fAgqqRMN%!I^_M*gI;=j+27_SvT zo8tu7BN`Uuzfp%Tdd-k3`j1>tDkH;V-U>sf`odTJDBuk#U?{be$koo^#;)8U$|}ha z=?%T)=9}LTeR0_#dR)6oR8S}<`txh7==IaZA}imuqJQcOMHh~J;=VnV5XtxseN$L~6wbqU|Aaq8rt#M5VD?MBdjbL<*-CalgI7L|tmHxl5@V zL_7VqizWw2iX1&GMeoM?iS~S+ESh7sP4sI|0JrKKic-gn6FqHC7fCF#7yYQP7k%&& z7oCz07Fj;nDzY&>ENV+J5WRFa5H%f}B|83jfoM~$n`k>5z>VH90@h9~#=6=&g0<46 zkS)9h=}y8H1B?vYeTPT=3aJC7T$v?Flu;YTobEP)%YZwPlw ziXCe-rBktaN!2bCICfRuk9Mg#v==*g-O_vea4b2CS#N)(M>yzLd4#DQVA*8^0 z8$7FYhKElR1Y(uq%zUR&clU4^zqGf^w(E&Go>!wn2TfPd>dwRaTsQfI}IPx4x1fJo&^_5vZ3H% zC_KOW0DF47No`LMIXcz^wbk8-)SM1bE{Y&!$mj2Fog;%1s*s!P1WyP5Lh;MnDN(0i~8xx@UCenyY9-sTb~ zg>i5`ol~fk6BQp^%~i$4b8XXAM908r;G~cbb7%ugZuAq zE_dxf9EYu0++(LI&Nq84_4ss@D>@LsiKXx4dK}MlzE?`QhXG^xoZTL}WL*X~C#izl z|HX~F+~dVP{%6f~t6Ojz+fq1(+yw5PQzU2V7|8YL{o|&;Ucznb8s=1g%;qeFs$9x~ zvs_sDFx|bmoEya+=KaKpT%%e)_pJ0K=P)9e#)ZDbOas2_T|5r;e8lOb6)tq@n@^x1 zVMpsf$zt7Gf7FaB!=I(wv2r)xm%FXF~-BmJp~T@828J-Q2JE5G6Fz#hD`ej)yHaD`juX?V>=f{uT(7e8sg#S0VjAh`7w zbb2PEy^oM8{7Hn|wN~hE{|)n#E&+2d8ePvm#m_r0;Dn97c=aBOiYp}PMa7pGyg85b zor=a6&vs(jj~M#&)KnU9upT3%<)~Rt96CL!FiZ7XMMr;*hGV3dKU>Vk_U=sF*K--m zI#;3Dp2>{fXMXN3(uD@{ndC?}LpRT=HK5mE7k}o^ZZelVZ0?5Es!Tz=!Z@t=eM4?` zHn4r>o#t9IoXFqeHBiQ%(=R%DpDdcN6P#4v38Io-!bWuqvg>0vshED)%)PA)3?Leq zgn1D1n&9Z}x1==eIt)LnBs#$tgzg6}z}{#*bQqRkMp!7JesvM4ue&V#Zp5+ger3Wg z^(W+Nu?09C+X9cm#)8$=1*AohgZe>d$laez)@*x97BAf`)SJ18cYxi5*R6+`e3=r~ zsN)bwXhI9eaE; ze3%l7(=sa{^+o~-?FUHpvjpqMZ;4pt3YZaj!lDu0cIF!i z_WzV*9G!Gv>3$=4?GjD)|CR*N9Sh7{u$ujy%=2XT6%mI60;VlH(yT_5KuCx(j;)R- z+f+-4SdY8;U+HJYC+19G{)J434j*rl+nx?a77NVn9*YS&cddoXPacEZR(*C>pO2u? zunK~XW|`dH7Y$s@PB^Wg2|ND98mM_TL89F(2yt#EIiWk5zh6{w&vxEr5v`5aHg5v^ zaVucQ*F)Gibd^;qTfP-q_t+m2g*+ba|5%-$dJM)e)tHd9hH*1T7RTYI0?^$F@nH5oqh-W|jSHrm5C$q(K zq#?KcDZBC2OLo%Bqr&_YcVUN%7_mN_NtC~(n*R#7go$z^$!f20%tFovME5)RuIoZp zZgVJ`U7XA&FY6%{(f!0?hYhh?w3XC^wy{;4g%B*S2J0ig5w^C8;qD(~FE6~yBzAhj z+k26Wg55^w+Ww!g)ayO#_&15fOpPQzU-9e_B|=MMd?|)Mh1t3~^kY;y{atVcKP(eZ)Aqxv=I!&EcMbcRqPSyO7eI~v#B8A%r{K97^O zZxcSBo(w*XxnOr(8{&Cq(O#tts4E-5gc&o5Z|Qg#avX-mpC{q&*}n)4E+TLCw3A=0 z*Mx~qU&+WnW1wGM9nO6SA>XYh!rS_1#N@IMj6CB8GE2WfRYWQLcQFHCnKU1=P=h(K zbMcw33k;JSjP~6Ky05c{Lu4wkiydKJI(8$pt7u{Rx|N_mY)iJ)$s^NK4$3jZ@%jq<*}XW<9#aQ%XStKLv8_z?gBP$oC!0KYpA8r7^x>QQ5oTJ~MrimIPx6FI zA(&?o*qbcC(wWyFps1H!D02)N{714KyL-s%qYqh^UGuRsTFpqYApwfz{c+4G9Z2dv zCtOszPx#W?0AfUsAo7|cI$3oQ&(})O+OYxbeWaL6JmXXSlrl^)u*S|W`9x!AF&nka z1#S&Ifw={-=-cE4O|_>WM`9LamoCOL3h@xP>JoVIT_&N6Bqm);hniF!^0he)(mh|Y zQJ;s2t$8NwOv-@kl^vk-DjY+2#>7)SW!P}Nm*4-!!iz6XVENS=7wnwC`=s_Txegbh zuhtc6-3|H9`c;ss=!GM8gT_6n{5kUyMNogb40L_HLAYlnuDcyX46C}BYbUm%v?!RI z<(E%P#2a>#Q5-7%h@>yGV_@@I11{%g29>^@1IzQY=)D+o+BSF_{apza|EWyh`IVx@ zTTgoR#Amb*KTG$Xlffm+Z{UxRBJ^3)ifP9J(DYRcX8t`y@1$&@Gta-oc^~<|T{H%r zQ>AI;$yR*wHjMuE8;O6n7}6;(45^YrDE_?Ri$4kPA6K(PZOaB4mvs#1MHS#c#1{nH z92`(sODp+&;jh-sG)iXyPPijaXKhTOW-cl8O6V$j^;-^Z-1rfrZOU=;!gJKO?E|E_ zPNAk3TImzE0arh|jjzAWq^IaX$HjbFj` zSQWXUW<>f%j({J%vN)|z7UlBRfmp+M7*SUN;fJcB%Xc+2j!Ga7phZ4p`r-2ED2!8P zK{?Zg?aCCv&0anWS0IMh*Lo5O`BqpL!23pxTHw>W8g|jivCu0!EOeICgJ_qdWa6Cd zki3q=z5_9Ev}-Q85k3uW{%(cayZISJ#Uivg{1?8a<}ixd!l?(IJb*x!cP^XiLgToR z@VfUq$#IJ(Ju3G}o}vb^vQ|e|ol3H=y%|QZ0LEfV;M2-mWMg|JSlKv{$GKgQcjunb z&@Bd~PS^?h(k5d-^BSV?;}uGZreRgVJam*>ZoIz31Ji7ZjKn7R;&0=1R6SN7^?rUb zzkPhXacV8kJZ*Qw8mCuA1Jftrux>GI6-A-aAvfI8?T^pKA7gw@3-O}UJXmI22YG*X zfaL06kWIcyUi6J+Zgw>C>=S-=@jV8WgxAO-j}yWjt}B^yaV_YYbQh{Ec(z-@O7w`} zxt0$m!HR-xs4GZ^iX@6vFMpW0CSC>$kN;q7TnFF1e*o`glyQ^KN6>8vg_kw{V0-j3 zj6SG=b>brQ@wCAD)&uZazC)lf-U1{w7Yj2UPr`2|RcQS{nr>cGWvY7MFwxy|NBGyP zo2-286#)m0FmuNX@y!Krns_P&R-A<9k8bQRpPy@t$ zPC(=H`=p;rKucdX`JL6ue&Ms8?rX1+7wxNH_Iy3FgDu|7kFw|FV0k~$$W9YxH>E+T z(j}toR0PK3vISlz>dEPQ)7U;D32E=ONrF>6`EmX%DgJg{xNGPFal6$;_C51r_`Npi zTdf7xnDgY`?8iiRO$k$RI7iSU^&g29H-w8nG9k(FE9qDt0heMm$T^8TChL?q$gW8v zBbj{jdv8bb_s>=mIa2{{m|2r9RT&IOHN>l)7T|s5Bt)0mVE?|)*!Q^_Q-0ZiVXqWM zbr8Iz(1f-!uVC571JK21`Smh#p(St-)>>D9>cK=v+arau2EBPl5%249wZJ@fA>JIK z7;!3)zi--MQu7JeVk?8qyRMlF$(*3PQ*JC3qd2_n$LErg4LmSkau}AI%|x< zT$>JI=*6k%mG~3&VhX`b!UjXv$-%nQJ{UUsJ-BRh!L}9eL1yoL@EiFDl00+B{e|_& zS?z(3mum3LkQ!>5@IB>(kr)IUaa?K;dVWubBso_Mvf*cFeD`;+#dTqvQ!wV=n2pYo zBT#0+CD_(qi+BE8%pB$WQu}ZU^SRti`1bl2!J)q=*)hCPOX5wv(IejBbYsL!JkhR> zGZyn1pQcuZ%-w2e&FMg8`g<^Zwuo6My%YnSHZgXVHAME%0FmA;iQ*3#GU)!u)9>1vBArxIX!=7YVgmeZ+iz4cN`+ zAVs}GxM7hc+?Zw$QkltMfAJEz^k6MpA6f|5g4E|6d_^ibD zPI>;xMVnhBd)Ef&O|6E;3>iEerwMD0bwZz47Q9dkWX!TvU_h$b(DPra!KBNvrV-a| z%>Qk4Wt^QSGotZXP?32WV%z@_V(SFMYvowqfKXHKNj9bpn-R~1A7UoXolRcs=o9Mk z`>)ZBv1a?j1$>7{3ape@GMB2V$?ggKefj#US)-IJ$Va^vwtE*a3Vb%={f;LfrxOdc zFF54R>*rprgG3%HwO`qO8GO@@L`-5}Szl+l=~jNMNQO{~P@1oy;#8{G)$6^_=C19vxl^d5Q)AB=gvPQq{S zOt{Nry<7m13cFBlRY2&H^V^MVoTtIoCz%kx z_PufV%XWx9^pBZX6T;kA$zYPE1E?EW7_$nhq&SCPBN?TV8LHQ(PHwQqE89zmqko9e zVxxB94~#_3--TxH6aND&9bxd_T77}_JT>r%w}M{l@2uIQGNPyW++6);9dXT9#KMNz zu)%6JNwUabf_?r#_wGgbc~TFtGUFX1SNAbfu55-S6YrC#$DM3M$zQVWeh$51a3;+M)Lz+lcIVPxU*f`q~t(^`GlQi@LN^_o|mnH zXAguzS8Fq&Qa}{Zc8w(FcPGF@rC=D@H=aafcoGB4^Q4MvVtXW~K*D`}Vc@_QGE>BW zpVv+}SXm4OmCMkvj(Da6WAlk(?Fx_E=joRBrLGYB3HMU8)oDV3MQmmGfe(F zp<9g}gig!hJE$%2_q#4Q%V>hfDsAFvIU0oNmJq4gEVNtpm`Iih7#mYHLEIV#cGQJI z^X$)QOrmA6(5c22o@(=%POEn2oAy;=m0M%_DOby6U-DhX^2Kvfo%z>fd{R1Dm^Wy$ zFYq$ak7*S&_&1Z4qMt1HHQq$7MTt#JuOWW*HLSl~4*4?vuF&qg0`vZ^9!yRf1v~pc zvOmuikqnn45@s?;9{-RAo31kU6B|z^+>SOfJXJ!TOc8@`2ltWp!YWe88n6q)WkDlJ z3#uc7%y(WsPV9G9lS0!>VR*GS`TTXFNx1S}rj2EoGnR}=m+~)iIjoMP_TK~9;d@Y! z?+l$Qcbe4)zk&(kJpcE(A5-zKhi$rWUwCTIRbhGC3^t-a7(VufFx!h8h03Oj;99>E zM4~i&pI=8F{8-5TD^oD{$iE>}<@vwoj68&DJpWhY$xLIF)?u>#xvo&`q&gfolZ3*7 zZGz=S8(B8n4+{SVfp@nY)JRq{Om+hE=5z^IF0TVA%{H<$#S0uv5{dICXSka6o-7-? zf{fz1;pf|0*ak6G$eA7jKPMi6`^+JQMb`7&Joj~;m$XQsl%|G+7Nt@d-%2Tx zD2fUpkx|I16e%(biIN7Tp+tp5DH{Cm-~XLAUhs_jI?wC#IgYN=B+I{*b5?V{(=~E1 zJ-QWZxy-4=+!pe|se-#Z|3$_X^udkib@-&_1ktVh-}}7_y#GzbsGkWiK4l-|9NPnX z>bT#3?gRV%CJ|h{l5gWbX5zT}l<|}9Eu?0~1$cDF3tn@XnNUe*j(b(W`t-jeiM?E3 zW6Mm2?%ab{Mz@%5{n^4>Z~9cw&-rg})P%5)ci!gBIUj{~Rq`BTvmAaZDUy!-S78{N=aybj%4JetHT7Eg(GCG$SHIUe=v1$SV<5b*3RGIx0cU- z<#OxW%E&i)JEOyCJd+XwGuS$rbIBbW63~Zd;3qxLi2D_oJg`5?Q+{|Cy_@%$SU&sA zez$tY`#N$Agj|dm(O>!CI{7<^=Z7#0uS^iE;e36&T1JW9+k2R5-N#E-U&Zv^u7O!) zf8bZI2-nxu1byF2tZpm8+pfB>*KgQd^OXwbNjsZKmfl9A`}^SVnQb`0dB*fCB>8(H z5po?uVdcgU2wa;?b_k^L#`W{2ORc8kyOeLdLtMTbHNBW+zwJ$98gt?E{garW@E**U zzsCn{JK%e88!H-Vi^W^!VPIzq-_T|{+Y9G-!s`y3+E0GVIJpPI!{fHRbF%xG7LyQc z&~`r%^FDlbg-F-0 z?0shke)g^u^L2;k!#QJQrLH!^vH}n0zvbCX0#61_X8@Xtt|8W~))2aFI-4G0juZA= zf&NSXnXRmy2D{(xv07t{{1`6_2ByXM&%UL1eq{BlVQV;C%U?&#`2UC;$79I9-wxiC^Dr1bHVH?M_99e8FN^ECA!qPz?>)(ew+SDe$@7{se!*Q@Fz~yWyW=1 z#qq~g+1MwKiF+rDF7_JOS)Iu5Dzb$9$#Sr86A#k!&k&;M(zU2ET9QD%D zfM4?ru=G5fZvV~?D3{}SVnuAmhW$*h%}M4&Xa{fk1p>#p{fl9>9S*JYBv(HfQcd3k zUTTmE#)bR?btiFp1M_?(Pn3)wM(sF4JG~#sqQ=WAKQ}9kdI& z#4+7Y)0?Hs(5j&Y>&`!dKPiuJd)iW*{pc^YYu!PqxO7N5a~0*%V&O(qDe_mm zBQG!JGm(F*KzT|QFrI#RE+ii7H@tzjFR$Y)7g2O6vjJ1ie;0qwhMA>w4_fwaGi3%0 z1p75&*o|2=|L?!^ubsj-5II2nuW^2nm6CM3xhHNf-A5iv95)fsw!u>eY7iUZ86L-! zcxGPcqHTa_jQH}|VDUd;Ui0eZ?rq@V&# zlnhYu;yXC{p%kN5Bte$33(j2T23>7;z~oK>fB!polkmugWXd8RIB;MdmY&kU@x6l} zw?i07zZ+xdvlZjaXMo233+!+HG*huxEbf_qp9FdChCN&^*>s5m*vNe+=Z6Ymtkwbp zE&uTrjb?%;=Tuo$cLx($YgE}<$jkd01WQ*hqIdn?lFlWg5NlZpdg^NQb`3IDX&o7G9fPGkKYL244SM2$C;(G<$@i?zJME?9H+AU%X&e zl&V=dNY8L8H44+@bg2#qV@8dtPS-_5jzEda!_X?S$FJ%`+*TY{$P^zM7c>aaJlP$ugWb z+*Se1@}*534!XhqWxC*^bDivVm_oLWUf@?~Tbb;-tOvtSbYa7axp2H;K5E`GB+}X& zK>bu4k$CZ$P=6ITwILl8W6O!PV+&CjyuzL=7h^})<(YcY}i|{ z@JJOTUEV<&6NHHRDk(mu|GETycq3>4Q2St#gkLGRvV z^b1R)A{Qj+*G`Ue^m7&su-%T!-cLcpt*xX-a{?{hS%fh{X&BKjV{!0r0u@gAgI7iK z@%5UGSaRqzHS69*=2}_M)tbZD=d{gY?dG3??^Oj@Yo}`w?AVH~YoE~M7c01~k3Q74 zJ6T+saSp$YKBYx@a?~*17p-nir1l5$VDOVFeIS+wV$W^SQLc(^H=9d~(z)mO!(6&- zoCUTmccf+_%~*Uj5_a{y#hY;t(a=;I=aaqoY)F^}*6+XrWdhdg;v%YNR71kE_8C4Q zLM9#|W03Vj6hwQ!f!Q-_SZZkrjE*zg{FTc_ezE~4pBE(g^-0h(KTn1}d?qPni}*`5 z76U1*h6*DaNFH~^++tD*nRH$iG_qHLuj~<`Q#=Kv;@?Bj7d6PE z!P8IqMIM}eNJbkvN!yuPrg2vh^V=*K5=+04138PqF-D%atw=DPH#Pz8H=T$3bB@E! z`Uvv+T{0AZ{Kl2X^N44|9F7YvWF(S!47%Tik%`>QJ4@vi8M5&)QMyzQztn`FUDzBf zKZKJE$9Q;u?ho-0zC>1}TmeV2TM)`m;BvUZdfx{AGv9Hn6dtV(WVR*mWYl)QhA*!k zfQst_I5_eZs+nkVBf%ccL-et>SR4w=9>b<7xjgpEOw-A!F~qAx2CuJ_$ABUo{H~Qq zrWws(gL74&|GFHw<*UP;WI2$vmn1ta7NAytIT2zX;x}(C-u2J7;PN?Rh(GzAjkQUD z^M6@f;}&arvS1Dtj!47AEGP2)MJh3fNJTv}Ym63Eqz8MBfkM{>tnqg-KJ7gXmX-g3 znhz_{Zo~(iVr=opraS|kqA0YNUx!oY?ZT{^2AJ3P2%M)0z&oWAt_^H}!YltVvp4-F z;ZcoD)|VZOLuNH^n$tVbO+RD0Z$St%VA%>OZQC)nagdx?xd}who`99>KBL^nHDGsj zIsD-~Q)22o)3);wOgxt{3aV@b1CHS|E<_X+RBgdZ-(6tlw+@o)lOe5c2ArI_7*3D9 zC8Hv-kg(LBoX`xy0mWK=E6IW8t;vF&mCuPs{TtZ5Jru{Ty*F-Zn1l|VuSvxFI&ypW zd*IL9iDfZToD<1TU@wKmhmx&#+@~t z;8S-P%_UCb)M<6Fp6i;9cB_(Ju6ME3_z-it^gSt?(QmlNSD#^y=kbfLzQL%RLS~v# zndynp)pVcFI$D_b9aRz(=^M@W_@-o`MbiBZw0NE~8YoCo?a&p530oI39>dXC5TQX& zn^w{qpOZA;loHN+Fv8AHmZ!mYM^UNAA4U5F)M5Tqy3#F&9)9%)y3O<~`i%aeQQ~>3 z)gg&(PfnrXuT^xn_a_?WcpcjRbx=R`H<)px0d~J`#OE_iEd190p)DH~E%du4VQQ0z zg~%U&W>;MqdR&=FpDHKPR*kp#c+wAA7A(XFKd7U@E|GNOG9`xrHdHCM<1Rh+Zh9?>)(DIXOap%EwG+J>JCVt!qH$7+Iq3x73x~{_Po!23@Dg}L5 z6?{Lo6XSMz;M61aP#t$4)*H^lsnKgtMl=B$;_EyuvY#a zqYq2nD zc#VPR3l_>Nw?Nj@iR|Ik>mmQU3@SEVg|*_72#NBAF=ifiERKQ}k$C9u)(1uVBAC<_ z3>uILORpF)^JdgB8(*1W&%2*w%B4#%aY_c9U9`Zs^X)z^mm|aRDtkd>>vK4AR~56U zKiQ%Y!D`O00;4611-nx`!LLsRHM_^rjhD{Rts2@Wy}5(FF0ZC~G9pybI)+{|I6`fP z{i)KkPI~&6BfX|1M7LC^SbVq?M8l2iXyEUwkTIx7AKYC|kG&GmZUsKwmm^GlJeJbM z5?*w-c`GJAyFw?lJ%gW*gJ`_c33}*RIrZOo4kHY0=z`P$TJ$@XrlxCA36Tl(zN-P9 z*f&BKS5KnKe-d%p>>&D2?*a`AmO$%JA{;mScEf{QZgf8DL&TncWy1?kLMwX$#veeIKS3CI2dWt1 z(XXUJ|0ujl{z4W^zf2Z|kHU__4n(pim@MpkNPeF)hv$JGVYI@O>y?IqdYBG;y(Wvd z!(SLq${vS5dXk944`qlj+s%Jh@rhNnmW9J|TiAbt*U7}0d(22gI#G9hM2akC5d~!v za^a%{8WnVa$=#VCD)j*(e*XaDykgTmg_R`rq&FFzC=B1$=HcbHDJ1ciD8y^BoXh3_ z@%=Cxiy|7?n=+NG{x2P3^*k0Xwx0&eF$MTJF^_*~O%R%r>x|QXa$LXQ8mS2Cf~B`! zqjI(!#(1Pd_eak6A@muwho@o2Qb~GOYa1@T+5$_HE5X(`3|AKlK%@IQj58FYT3K=! z?&OD`8CP62Ll=XU#83hwV143tELFS$XKzSi<#Z{UQ>jelyQNX}X(!|){(V5UocJ6~-WfH*^KsV=lf8oZH&ot1 zF2}$4C^*5h2wp>`ar}#!3yWddxBx=1oXC_#GPA=(VN7oYbcgza?_Z8hAm@sQdTf}O zjGa6=bqaiKJrFDkfUb`n?PTFTou(`we$CGJtWAVEl(Y$J92*GDz^2D2mDD^1^1>X(qVd*yxS*&AD1kI5AC;s z_cNb;r?d(+UM4ZyCYu|VR>b1l#VhdQJg(<*-2i+~48jkt|GeqfbjVzI3DT~M;+R_m zqtx*i+GIjuyPpKKuM2~b4^jAG*qIEN9AV<3CZbD(3~El+fVP3vaM@`p_ngm!qRYpj z*7^(4+$)OxUnC&Ns~nuT{`0GIXSmn51_sp)`FFTGz9mkp@Y+#ZY<`q$YT8l>!##ZS zb$cXv_l8w5RV4#hk#2aJc@!GgkHZV$C*bJMrSL#C6vSrDM}hG;#yz+gE~ln~%Dx;3 zF22j(I@J=Ka3jWU+QUwc=!JFv>px#I!fQxS;D_T}Fgk5$u2_}~=5tHogP0`h zR-3?>$UVra8Zg~*#|^(luY%9jnW$@QizA$8cE=WqV9|$%QiE`l^G)<`&&CmfAFi5z z3EUVx?7B7^7rohrU#b>S3m0>o8O1S;xI8Tpc?psSHMnQ%U)Z7=53vP0Ao{%p{`HUI z(tEc-S(jq$?u}$yjwrp;Xo2BT|G?&M95lE)qtwNG9GqZ)`?_0T#k*SOj*kwi@FL)_ z_cpnEfE&d7--Iz{lP=@B ziA~_x-$s5Usp6+DN3;=o02NzAagsjb?vK3+ zrbF)I=fs6QLhf+0geYx+9gf?W#57BYq@84KRx-25vECf|o!@eyVu(GWU zypjS0vO@k4ak!Y68rZ>qtHa^dG(}T^!U}j)$n|Tv{r(CWF?5R(L7}<&kSfpvGu|0^ zaqtKn<2a$><9G6!o4CE&4h7)=^+mFwW)9s+-Aei)-Yxy%?!ByiRoQ84)Q3 zK6qz2!?Fxn(0LdQ5!nT%GqvN1(5GTj#FVlRGuIox*?5C(YF>oKo85_!k0hC1;$!~z zF4tLdCouQXUAF9D330A^1j0sRq-3Eo6rR@ zv590|i3qk2xWTjET4b+;A89h+&b}5lgbh(5AFQvEj&xBljGP0bzb4S>lj=}>ia$o^ zwxYs8ZA#!DyqG3MPpm63$v<%jb@zzUA%A!3cTfSB4}_C#6Hj7$;d;DvEC|g75va%g z%pWtt@x0?GRyBYtJRdWD9paQL<>BW&F36ich+(6Y3de52SCbo1B1V>eUusXgG&n{; zun>My7GpMe9OaK(lc$fzO{1MN6lsNy68&Nmh{76oeCShbxE1cAq+ftGFsQ!Oo=xO^H!nVP}VM`u{kS<=us91kU(&*A)t z7aULe2!4|sppG7gGFV6A?{HmZ%LX>huL-UMT_HREZXkP4E&}=CWuS0e7@uhM!&i=f z}f~fs-SSCI)uAB z{!5>abUFzrAlc}nE4p`r_-rp!Y3dU0aH z@sFZiMml|m$+cPfa6USNd++wZ`W7XqVanjSVK#X(4ngr#6!Gns zA||7k!7c6-8~x7#gm>11-O_Pq1`>y{r4FIXAI-7HWAK$H;*cCjx4bHj8RTc zvG#f~x3QL{5gNiY^xaOpV^M@PjHt!H&S$Vfm%BSnxklsSlj-i>47~qahmP6wK!5m3 z`Y84s7VGw-+^9OWQ9XkJLKEo?NH4Fg*8#sMqP$hi@4F|d*&F}=0f#q0#V}0IrQ(;r43%bXmP6o4_KNpw)$f* z*q4MsdP~uH_$s*jKL)vX+i~xJCTdNbg@el~A?_2A^n6^{ zoQ3(EgKY4;9_SS}a9!TtaH~5U6Q`tbOmQK6m3|e}%@Is;CZo}*6kzo)!Q~8Z%4WEs z;ud-I`+f>`j2{6VMFRxx`R~Y6Lh}Q~xX$4VIY0k6)-BkEGm+cVKjLx)$EwhK`DJ|k zaXyL;cM#Wy${1c-fLhIE@He6!iiE|f^qv^FwctAF^mF~`!Hej$;t`%$vIQk1XJN`Q zPvog7qm$qh6l~uH*F9f>uCWme`r8VGzseJy^$+MxABVkPtQqxQQ`r3WCNog21bJ2V zu!eJns-27Dn;mS1MI$;O7`q42R!^Ar{nc%|9Mjj43(FVxl&WvuMxt$0zVsm_#$=K8>s{Bg<<&3TELt9eGs;< zx(h4smJpBe@-S|q4Rb($3(;LS52xvg6aO(K;~N9v#@)u+CT^NbU~S87sN;&`KCRKH zfX$KWcxa{$%4(m*C2#9N|H)>ypwxj}IH0)<8@(LylmBH{sl>;GsR_6tWiHxidShY^H(zp`=3n~) ziCWoSyp>Z3%L^zv_P0We#}Q(!l!z1GcEP&L5VRRnf*I+#_-(idzpYuu{#1Gh6J7IA zSEdY?`#$A97iK0qTo=G5{pq}LDQ%os9Rsor{Y4>=c^#y9c|!h|v@-&w1>@C&B(=N`Cy}W^rpHMrg2(9UDr5m;`Cusu&6z zJR_j2aX!%-QN-(0tl&+nCTN@Zq9FG(OzLhW&oqPhXVij0o@7JS+gdWRSQJ;c4wC+6 zQT+U_7Bsl;@S;=0Bxl=qq8)_5{<{iNF1B#4$(?h!y@jH!J>>EpUp(;mEaY5~;J!mo zf_RcSsE+r7JiThDi+M{f%|41(!Y>nLcRfa^AOV8jnE>y~N$9M0mIREk02InaA*4P4uKn%65eo!#%8%K5RjL$O}~gu3`m zdv?!;o#)<-^{ENGL*nb`xS%}j43uS4TN~l6>@QTR`$7!wkFr{-r{M3A9Z151Ob;;q zL^HyRE}jr?()8pe)E(w_!GZ(8%zVUgJ~-aZ{?+*1AOTd8X%jM|VwWp!Kz7W=lc|pwpgAVq$QGa{`ya>9Dq9NLJ zX+4h}C(!}Frg9!tC23qb7{>GUA3@2xS4 zPMdf<+IoWX+(zS!);~B)n)}`f%EZW93#q{lON^dfgvBB?oL?&lQyz1imZKx6Fye;6 zUQ?)|i7;i@0`%Fp9+$SqV41rZwM@K>y?l;Qzb2bHeZNiRxQe#)FO1%tKtbpn z+HK3i5oS6So#;u!&W2Kvf(VScfOO`gk9hyQI!zuFruSTaVePkC=-DPkchoAO*8P)k z@U0|Gz*>CHccLmEo6$NooQ{^-(O5qn+Et)P&lwUrp=Bz)8+nSZxqFPx>y^S=pA>1A zWf+~4v5gu@FQ?hxZD?%4PP%1|6@8~`NmVD5V6%2SmCCEa=hyA&Uz6!HMdB>|dsBz{ zE|#Qa`zKMaltelV3u#C6beg#!7H8Orpo+T;eLeIN^Rp>+>?uHlq_s45aVI*r?ZaWA zLK+4FD$BX|M*oS>D|SlMC~Z3H7BY6>Q#70D3a!jSWu=ck4}lQrdSk5AI~(R zl`9X@l&3|=POhd6WHQ}k7KigqR?^CnOq`Kx1r|f@&?g#CwuohcbXqBS(WXF5q6Ufg z#?P$NA2rz5YYa_~&Op7A6l|F;&JJYTz^9rBPf2QW{@nYgatww8Rcw zs@k!i-sM>QS$-q5{%;?CcwUHV87pvg%mkc$`~mb$u;SRmGPI|~ht^DgibH0uv}jft zEuB1ot9s{B9Vt_~d*e6s4RWLJ1)d)|BGZ})^(#{zJ29>=L;MnUNBR1{g}2q~Wk z>>MzGCu;LZ)9YsPCQt?rZ@mTCj1S-1A`bMqSzSHdfbn!PM33dS(Iq|~G3h>J=)U2- zwD||cixrvFz)0x!4S?W-dZ1SDmi+BYV>%{m=KlB5sO$cP=<4;uEZgzOe*QvozLY_r zrW@=_x5IVEjDat_k-uj_IJ8c0AOdG8(|!BvpoEEpIE`i!aXJGUm43mbc`<(IJG7O(`{owIrk@&yexwxxi)ywHULdQs~8)u zBYZpE084UXfGrh)hgIWodR7?Y#_f0%4so20U0=wvhfVOuFB2*@HWBSqWt?R{mxTVb zf=wUA@Ti|J7;UL%#@Bt|SDv{8pMnp=+S@D?&$~dF-KOX|=tmxu{3gd{USm#->*v__ z(_y^G928HvMvOeBqw~X2B3Y;c9@^Hpbi^N+<>UAxi$u{_GLFm~=mm>kv9QItoU9#6 z1NM3t`z|DeZ#BaQj^FFyOTSGZ<(p2D&*^>OojydGQugt#H{OPGryEGdtQ(BoH34{X zd$)u@bx;qEfj!&)kvp$a_@m>sVE)Ef_*wIp#GFciQ?o;0#I}RoZ#5uDjBADf`DbLf zy^XAq^d$#Q6!0L=|01ty%Aj zhauMRF|(1|CwnYc=Ixj!1BwlD@HV-7Z0!Q6|N z0)w;!(5iK2W=xm~H@O_bwl7Ofg3g?SVBuQQxNANP%Ra-)5;5>nX%{YSZ6muL#uCTS zM0ja53v-7X0SdYE`x_mSv9Zl0dr=^W9p*v)o-{Zuyqewr^8zW8ECP4_R6HXZjt9ds z;ji^#2p(Py#Xh-kuA?2+HfiJakRWoWVj7yX#DLLNJy^Im8v16OXG$iYhTytra8;Lp zgF@R$3g^ut+OI(6sU-Y6&-oZCluZN&&W-f0V6~nH_VGz616h2}o z%pR>J>z@R`3n>9_-{#Fw;-SsoF(sNp$eDa&Id`?&53rIkWCs_ikxv|F!nB&}iyylL`@`a z|6&KX^dGWjdQvccJjZBRDgrY<3d4)llJNZEQ*cp!L;l+(0%kiiNQJg4d5j8V$D^Ob zuqlkIhCG0ITP#WbYjK?W`a5xLaszqKrSNl~9Qt}`f77zt}E9j6+Cd-7mztiOq;c5CpyF9?(z6$bY^)K?! zzLK5!DG_kL04BSCB#S;bkunnx*!7<}h&2l!GAD_M?>+_fmixdiNri2TQ38wB&1AMg zFnCWfz>4uxP})8OTt8ih!GC>F(excQJ3W9j2aYFau7$t!cjKml7O39LXJaLGKnr)F zxp)keYkYzaqp~<9PMUQ}T#wh+EyP5z9Fi{Wh>4bzoOzc6r-aVImV>MC(^y#^K* zW{`1`|6qrYJbrM9A)>uv=(Ix?wNgV+e0d*v?H!D8dIYu&#p6~k2R?B|K09MkCZr6U z!_wxJXz@z`M>dOq?y{Zu@O38q=e-{qG<9g-{!h?(Yz&;?AxzmPM%}2K(VDLaF=fS! zRICoB>LIG$vfU$4OZy*5*wF&{jwc4Nl4V21xV(eR3i1b)uw z!V~|^#CyN{&`xt4oqL(P*L!jlCo87mZp}ta8mGlQrp#H9^-eJQcs+J(v!!iUk3ihG zAZ&ks3x}EqvFN2C@}6)EK{Y=V-z7@VZEz)@Iu>B@Yg=N^F{~q0^GtNQ`XHt5JZW7o zfV)*Eh;rg))@i#4e5n3IHcJHZc6xjzHN7!R<7*3&bKjfv9oPuQ+7+ygmJrYAN;6R& z3nj~{PcsWHSPWafxA*}m^HOU_jA$RkrCzw{76yK>U>!~#S*(uo0;=6(G4 z&QSVOCh_`MLXxv`$ad`$?7PuI{=a>S{4B>U#8E|=1lIl}hg36o%Qi@WrH>hF8}N_B z$sT1_srbO!=PLZag3ki$*X<@7QwQ1GC1ngNafh)B{$V7*<2Z}8*cuDbh>C+%rh#b`M!h~%=V4-D zIk5?%ui?*&4^y`W$+F=n*W3@FccKk`B%_}C*Wu~(&G%|*1z<+D$ zVvgh6Wgv^LREb)x(6#ts_L8QQPqp~w!g05r-=L`~6D(qqbEwRwY`T|!j-FqZM@70m z(E#-ev^Vi4jq})PAy-{b2h}ehLz%c41Yf-hLSxM!nYA9AM9;xF|5>=M zL=&R>zk^KE4w(FMCcKhqC-25@HTlZr=vANHfu*ZTOoz3k(b<|M(}MIrZwdQ-Ka_qOGEaJb!nn7j5vG53f;TlTFvV^>IcIGGZl`=%af6BE z;3qM#U1|cxJ-wu=_c&Ayo*^=moFV>2A`JF8LvZ98&QY)i7O75#`j&M5=WE`uVB&bl zQgj1n_k7a5P!x_ot|g%5T*W&2as>EB2Y`kY|_PfK{RdYHi+!Kjw(zMH5l-z~vwNFg=iY zSHi=id%dwKWF9;%mtrDs^3hslBG`H6l8a7pc;xmTe7D9B4mK1*amx?*Q1${s&THb2 z3u91jRLb4osbcmlLvnApfbVHJ-aMx-9NyQjc(jo^}k@eq#BBu{@i)TNEuZl z`DmhPh10FtKz8X1R=JkzFueRi@*~&6O=}NWJlPJfb55j!s$%oN))D9u6T_zIRge*q zh-S{GQTx6kq+|_{AD(9LT&~2ducMq@a8$s1Q@WPDG_VAg-haq%R(1!gR+g8^>9WU(xypaAerblOqH+QWPV*q&t&K^qLmk(9 z5QiJ@uaHW?byA(5MJ|1M%WhAVVC6=-NrTo!lA@Ig^w>$}QAa2Hc#0kr6$_E<#A`(S zyB(3=8O6KG66AkyC9iHxVh2}_k$WO%NmIl*k{)l)__=tIstLyh1wT?qW$>upxnOPLNwi2#MLzM!rXGXU!jQ{V4es*uLO3d)~g7)QwkTSC@4YZ?(C+bA|KZ zK>QY_J?{Y#{?8WFZ+bB{Pd`C9*GK(jE>EtU$|l-PHH?zW2a?orTks$@4NPXHvHu`} zDL+(5j*pxqnCL}L2hD`PQ?g0I)-fV{Cln_2SP{3TdS>r8E$|EAT&=FR$j1XtgzAosVj^UG!?*|9;pKmO$-PyM+#b(FaB=4_h}6#nCkgH@($pQNhc7|XZAVxIpHX;a(F-Bf z>UfJi%k@%fA%2-1F{}hw!d`+SVtrtK(gjk3-jg-r8SF~kHD)$WYJzDxL!j=fkC6@I z@!HEK_S%$K#`ouCh>$LX4N(B8%B}2hpg1b=mw=4z7ozBQ7($lZg0-rOU?W;WvNx{8 zTL-4Vg|(^1chu71>aAI1ig*v)c$UQFBtuB&NFee2*#Uk^A9#4{FeKmJ!R!@Q#9t0# zD4cW+<`;j52S2r$YoZtV>k99})|?;kBlH*R9ykIg^K(Gu^gcmzUOwdZ&V}@Et)RdU zg2O?L#Ong!{DykCwm}7!2UwzTjxlJQREDwx6F_6-A29X4MTREaf!kd_AYq$5C~UPQ za}|q0u=@-=Km88+&d0;n%_*2y8c)Pk9ALGJ6DTkVFzK}#{0r`eNyj2!YDFPP=xBrL z;R+IeR2%1}4UjWMLMZ+|mi^Xn9^9IPL2}9oDC=~B4cnXW*u;GDA@>#db$=!kxO|k1 z#0-=eE(f7+y0FkA747R*!OJz=eodZZhcrgRyOdmZwV^u}PudMWff=R?o;u-~=lYz& z?vo{HzaGAL;UG@C4 zOO!!7;scP?`i#`}{vn~)x`^7mo4g|rxzB*TCpoWpm96)d!SGpPWV6!~csnnS-yjo9 zY>dybHv71q$Ywus>(o?SZj(WpO|#&>jUD^-Q7h4COMu7P&)C%!DcpI|06)ZUVTW9% z!*08iZo~M>ZJIXHIA6ztOYQ zY*jgxdoY=%ow2mIu4PJ}Y@0~Eobzbli+gmuubf53q8d7X`DDtvNzsPhM4GL}`Q!sj zImTo(&3NHU=R2m*9OWecR)j^?e^JlzD((FY^yBORs%-I(dOm+jE8F)|gDnhw95ul09iP!T;?Gfg>nFPY zXfb6@CPHOr9(2x}2Clun-0V1~?bAny((zP1Y>cAvML?@KMS~Ypq8fxvRhdYO>_pUz7wp) zwU2}!@YCeQ`xTHGo@dgfbCNumGy&e!2f>2;7}jI^T-fQ61j{OmSlzi5WEOuC9GEl{ z+7_OMn8l&|-s}Rhdf|5F?pHO^`*aD28O(&}rkQY+JE|71FND?y?GPwJV4%GKVqcen z)KO>VQVZv^+|6gw9(^T_MzU~xjXoZ%2%kE5S%d$^E)}0aBJ4OM#p|w}0kxKsK(662 z=S*JU*R4w&9W{!T1GAih5wm3t=jL*AzFao&nd1QyA;nhdB57YS=zp2U~sb3N}eU6*TW3 zfLON(sAQ(`O&+!oN@#* znBdor@psI@X!>Nhvmu0RRXIa$hE{_`qYrO+Z5xqV7Yd>a%Rr_hk1Sqe3+{2RiEYm! zh$Qx4BiTrn4ecQ@v(iAXwUj+wwgts&??Hm%YK(A4Y=GvgM* zTzo*pT`XWew?jC7=oEa^Zh%K&T9{D0gY)=B5zX1b@LJ4bn#Qi5#EKe%&Y@-^dsm9z zob3%Y&#PcZ;vB)5ZWClS$TFrT6R@p>kJ5i`@=kxd1ou8wLH0d)oL%q0DCSnforMcw z(5;GH*H8q!jz?sWW8|E#J_TpK6+zvn71-&qOs?zyB0bZZd}X+Y9;E>pAvtls0qdtsx98I08{}w}{^1SmyaBX+~hy zNc0P@Ol#^iWqt`WCjF1v`QK*+llbH~5>qtS{GruecJy;G8@T5xY5jPCV>MUtH4gtG zuU;R7?VhD%_k2;%xq6z6v)cxu%l9+=2?yEnN86z^HI2Dn`3w%baT$+>yCh=8Ak3S= z`MuYK!A}h!8=qu@g6CyH=8FPu&Z>pE+E2lMSq*csEgHfD&A6TPa-1~Y9g-R{q3Wp& zFE9Kdm>#&vJXjM7&qdP6sIDCJ?tDq4qn?A#mq74xcnbQa(O~v-9}ach6t@aG}m6IIG(PGRWsYHhTbFNpnC!P%fB0&<|F7ByijWL=CRnx2M+ymhFGU zAN1H|wqR~MJTQ{RfQ_zD{&*@@H0^ zSdr;>;0G@ix6Zo^H7^{{LF_hOk8r`ewX;z{)E#BYEKxmiKgUwNfIQu=F!p^RKD|*x zUPn`~i`~c9IOxyKAz_3!B#e{yd$1i2wPca+Zu0eID%hIb5VUO~+k# zp2LZ>Z0=qn!RXqm=}5-t5RJsA@(jzEs8_Q@xy3$ za|8J|Wd$~zor1IW#Nw{DZK!ZF0e{$d0nvJj8>H(n!B(0(yB@?2v08Mw>rQfeRUggX})vfG6s;Z=ze1a7~GlB*l>nYcA(zBmDqtF5tdmp)udPOr&o95v}os+Cqs64e6FU6PJZ^Bpe$2ciD6wmH|Leiz8$z;nG66RtA zYxnJk#&7+C`?K7j{_GS+-CP_@4@wdnZ#k$ro4`JLu!=7({e@LMTTeoZ)ySsXLNGV* z3@|pq#I)n6=>t=3bJ94%YOmz>!SWuEGqIdqm3kB=&lE?U=iUOVy>rMti5wy_v>CpV z43ZQQO&&b877R!~Fz#zz$g{g@g1W`;fE>-_mwaCXYeu({*t<4lwPzp{ifO{_3qeGE zmKsR>34`N#y(A#}3ZWi$5V**nq|{7Cx8(x(Y+b_n0%n8qMm|(lpA`H$wh`XkKSqij ze!|6(%VuT!&B>?4^Z!TPo5w>HzJJ{Iy{y@j%FfJS?(05t&X86qT11kfw2Puet3rrm z3l)lxos!CO&LC;AwP>ML5iOJ!g-YrhVO}PtIV=j_tubDae0i z2Um|uBZH=ooXq>XA))C6vi&z54TKo;NB>ybPOKe4Tb9=F`{hocgUf`RWp5`yMwb#S zYfwN3D_AwGjUR7woxLPgRGj9S2)EB_(oIcc( zG7Z9ZwV=K?8r$CVEzCj$7} zANBJ0=`;KT@A}b<>1H53Z2}y3b%WjhD`EJ0J6bpU6U+>r27h8MpkKdLA<7^Z$!@rW zMjJH1XQea@&6*Doc!@W{c!RRnW|Si|gNf6R@ZPpa!)U-M^m*5Aez0vmulZLbdjHk~ zi4A80jZ(Sc*&V2mV}{;)7{Fpjc{s9PhBw{#AoqZLJ3l9KGZZ;RL#ly@)w?E|mRUbR zU5g~ZTo?tZ+S>5PZVEhHw*-wkSD*v=>X029i=-qY;CzuUa<_FtwP82-k}9$=p>Zg1T@shH^YVeMU{aZUAI~^Eua^f$$BEoi|)`n z*n|pnO3}s_eMq=Y5o&(wLPyVJSbaVT%DyYZtPlgZz5EF59(sWKtr+gZmgQJv+Rv|B zZUw5xT`gv@+TK%>OyRF~3U6;m1aE_QF8@IP1$5eW6R7O{#LZ>(qzBkF(;{&*Slh>P z@;{bx9(*0+4PEJlbJ3w-J2evN9gYLJ3!0q4J#ol0oULs#T?%5%9WcGugZPhSz$Hur zhEqd9e@iI}S1Gq$Rp^2i%5Oz}xlR0*-RW?S&9A>|Nkg4OvY>l?DYV?S22%JF+>=g$ zv)T5vI{ z8pa~K$Yy@i@om6d=|^st$5HR%rD!AhlAqQthPvfaQD&zS$WKY<&0zIItCni>Cf~Ws z*W6}+>Qr{xM2m&+MrAWN%gxkbt7I6wew@vn=lquKSMT{Jxz^~&Hx1tO(u-*OUo+l< zhu*ds4&Lb3a~}GquZ@VJYqk!@dikyQkMNGJFSANK1$=0g8=3WvMXq+iJ*9 z1}%>}hNf03S#h0R zYXh>myUa%KOC?NgJdNz;tU><1ifDW7HT304xJ6#YL^P5he}ox_e<8ebq8?Y#fz)oaed+h4N39tU`|iMtHARKC*iA z!^V1i%_HQvzy@V1dvm{DOyTc4@smGy;2XawJ&E^hn-N-KMOZcSy!p#c$047WX?%zU zpcmg^^8sgUmqcW8Pem@YmOVOzHb=AjeN#i^@4ue^e6pF93S-94NUcOoU-sF8ry>fh zjYJ*Z+bs!Gf4FmDKWsbjlHa?bf%m9wCOT^zfb>}Ijd#vD+f|`}I_}cet(MOaqd5W0 zl9gaP=MXA7`G`L{zMfYWI}-vFEO?>e;-Iyi;_SUXiBHB|L)Q9D{2AB0P=NwQQ)b2^ zgMz#0tH>JE-QsyAhn}G~#Wmc_{)hYn-yR}&FGF5Is~3NitIP|m9YkLpFQCdHOYZKy zbCL0wJqkKE5xGWaaopu)_#Pk6^F(|1a?X`~<;!|Kw_WyVH@YUG`IGr0HWTeacn6ns zTd!(a247;c`IDCxqy73-wik<9cnXuY@io-%BB8Dc|Deqf|Mmd|H0SdIuB7%%m}@Y? z-*);fy7_nkS6aaiE!!9g(&;|P*dxvsdWFysz6_n`tO0q8Y4B@O0~*!ML7Cr=qg9$| zmao?7z)rbF?y*g4AW&$Ju4*eIcFsnTwSV|qVlZ|n9EFa~U8srWh8a!{WapMM+>2{x zK)7-<=gCzQ*zsZ~YWuVw|GN1O{1dNni%(C*Sz98&TTBZ&)B?d}S2QHJq=A%r7Ti_P zfIsF&{MAcOK-(@2P+nS&5=ClYWL^&rClzsTc^gtWZHk|K;$TI6c0T`-Vk738X*siR z2e+p+7Yd&&f~C$!VQg<4sBQfYK57FndOI7Ew??oviL!XNp*Tvby8+fQ$?$4X6a1@Y z=ilUXXx_U8JZdE|^^fI&nkr*>`~U{;guz80MVxnKFDUMALsRskk@`0YtT1*T=GGsD zovCqfiOt`StkQs8NoRPJ&n)TTdIcSf?LsL=QfSL|N!BM8 z@dm%$M-?WwxNnv}L7kUec;rq`i2cFl*X@6zd6AE8eH*7kijfM`EPMzWP>*_cZ-?9E zHDKPEh!jd=konqjWRZHC*Ew<@m2AsJg1S$fV0P>fR{lm3EZ4NmX$PbhtD+5X1$OB~ zSkLrY$2na#gl^4T%T1D5j?7Btqqj8UTBZt$Y=x0Y7&jabh>2*AilsSneVMCDn z>S*11%96L_Sdrzt6qea+bQ-Ob6vFudcFnT-5qiFdZ#x*a5Nudu!#}fgLFw-T-U{j{ z44%Eof7Wyiq}??kvQ7-fMGN^I`w>jo^cLl^y71nWX(%yW8wl1r$c-?;o1fe_PqR<3 zt=c^obd1^WsEcJGTmC|=X$L^Fi9!1!ta<%s%%H=rhBw*t7q@tWE!YYKI1qlUOA4O4*x~Asm`GH?gK)@7m%(ZTjpKrgCd@q z!mfqW(FQh-^2PBM>NXlgpVqGBX_mX8%ywwN0)vUpqT9IHqCb^7+@WkbpNHJv`OwrsqiF{l=9$3SI>k%!3ShN zF%_DrFy!A^fi&B0p_iG)P+k3)ANrvjeM{8jiT!?#8cR(ecG@&_mZt}@+8PncUzRkCC!zgykES1Hnt%ih>)`q2NHd)s`v7+=gOVIFKR* zZ1pZ$>K6~8N%8ROfHlmy?+di0IoQ1@vTa$>!+)x96Fu+kM0eKu!Tg1C(08>AKInSz zRlXa*FQ3P#r6LE-uv-NqpR;-D#}0EjizPubZ89i){EnWASHe5NT9{iIz)#pZ3H;7v z@Z6h0LPblSt_PEJGaHu?-KX?s2+_H;JnB9V3e=Wc}E(%G;bf9_XKcdjjd!aRk z1Ns|Tr%{v5mP(#tC}GeXWkbuB>yB_>u& zzE0vHf_DJ4 zmd}J7au5!keFA#bEL$ik8ZUCuzz(}+0e7AR@9m50Jh6uR{5Otma7Se~{!=B5$8xH` zudx+Ax-u|(=V_ebB!fFuK^dKGFH{lUJYpsT7)oFr~ z*8-?eOX7rS_+zX7Oej>b<0%aLtP+Ynl2OY`AnvY8WAD)PR@;zZ& z{CPA_#s-~X`5YX%*AQnN0k+R);|Hc*=y&Xx(v3PA-bz-HcS@uixX( z`hVA>em2gGTKxHft+&yx8(FaMq!7IKDS?0rhi6d~eE)F}xX+jKN3}C7ue3Sx>_Q)- zGgTBqL_6#lVb>+AGhxERY!JQqh2CvE#81kb36pBgInVl);A5r*tgB4oEsl&u>u=qH zk4rppj`?%Yw`Lt$4ynQ6sTcX%oxVe_c{n`s?&o^`c>*U-9^e(--HX?47r}Vc1YUrO z4-7twLniwrp>60W==W;_)0qeE9}^+tcq$AQNL!@_Z9t2uJXmAt0blj*pcBmu{Mg(G z`OeK&`MH~j^N}ZnZk#%3n2Nm zhAXq=J1V%{!5QH#LCq6lc%Rl75#r^RVD>eLyOQPl-PoIlX9xdAQ<7Yftws=Dofl~{ z%o*Vp))~R{r%6^Ru9}c|{vaDyP$YiNtHx2M6d)oim8W7P$Nlid0m4tk>WdK`4vDq6{`U;m z)h(CvNg@{Z4y*>BAR4dD8Ha%mPxSk`CNCjW7mVeeLgC3XygZidU%w-c6R?8e;_*Db zd<+9$c)6%4;})k-^$hZBm&85w_mE0O7Mj)fmw#sS44zr@EzaB=MYz#1Z1vr%9Sy5& zqp_~=>S!;@xm0T-qt%AG zKZN7Mey!*fTW?>VjbNqL4bJk6Q)u0UWfq5}WUXp?7Fp&Gt>E4oEn>eP1S>9zKPsOMdW23SZ(SZPSUX3pR3FjT-S{ zm0yIT<3pG#Zh~JWMdG*-J&Y%dkkgaLAnR<*8Sa~cyH{QWp8Ym_A-5VF2cmFpBS}PR zOyt_%AK|8o+v5pZNw_g)iA7wUDtGY(JbxY>FMzx^3Q ze9?9#%7es-s|S*akz8@&^TVCQ;I<6d^+}P}uO3BIq@KW=!iVv{JIAr^*+=-YqXcp8 z$uWG;DFhs6p5)BkewBMOk7esMm~sQ!0*;VdFE&k9%W&?2m&vhYY? zwv~miC7%77hBrA&c-658PhI(r!_s*G4(=zeyqraNjUL6f8~iQA_l4UAcNr62uj;VL z?)&`i<$k;`S)VxJIFBW!RubS4v1CiFV(C>PgE;Bx4L zRx6whc(mMpEI&I9zx!rDRK$2f!k@EXBCgKUm}3q#6OV!M<|DksMfad?ScPXkKb4bg zw$pYq0) zvv8oj2TbFBfZ3f8FlTvix))r*+MBJZt?YsyTWiqOCF8KSD*^V-8GbAEM!Hw>|B zc&z3OPpl)*KBvRr`9T*L@7277;*%_+%aJ#b+hKlzj^k+E8|9Xbvo)(bW3b=-7qI2? zN2?>g2;Q-rTJ?hERtIF2pkMb3%6FRsmVw6J(!5D!l!@?@V&JS zRC~06qdt{4MfnmN_gxEaC!e7Jvs}Kr3qVi$RycP&8tOvgc_Ag2Va04^{8h;oW^8eW ziMht`U8#WkRalFZoM*su??Uvi`~WC-oCH@j*2lqkH@yBA21_1Sp)Z$>A&~t{-quOn znRPncu8U7#?TmW3ds-Q++_fMlBOhosUuUwE-KTFZv^DIZH3ijr=c9x>ySaznZGtR1AuM;PfkR|{RVFIRt1xLhop{Wg$JT3PiC?cN z+`Xn23kN>pBeS0&FWo+TK2M7nyeUsm%O(?Lxi9hLPeI(-@E&J6n_#@27Z?hlp`FJ32NDYl>POFe*{#={8J z!`pcYE}lf6?lCyg$0O?2JjPzURRsC135!{i#AULTZ?K=u<>L;^$VckLNu3t_@N_1A z=bwt3qq_0i(J@Y&$s+7`_6p8Yd}5iz=Hr#Et+7;ZKKytz3Mb+VVE-IF95~FuLd_ze z>A7solMj~PKEm-;Vpv~hKTl^?5U#lS40i6i0OMO)VaI_4*sNO!JJ|K`cjaV6F^c#E zJBM9-t zo&$r6E1}mT9<*P*2ctjrc;_hxNI#eZypqHGW^MK&mEGB!Mj}vms z2=G-Dh_Q@iUmH8hb#r&+j8X)h!l`tv!v8 zZAla;%7+nd6SV~oenbnh`((*XctcDWcPCWp#RaQBtrpCxP7tJ2q!3-Jvjqbkw&b*% zmk584PlVTXFM;aKLBe!iF!tN2PmYzC5DU&4n@L@5;9S%GjeFj0G0O~V!F!U7a7(Q> z98+C{4~Bli<_^o?*;OeJyvc%`^-_4({37T$c@myFd*SX4i!F<C4$>2Y3ZS2~m0*rq@0==CpaX>SV^W3KZ>(;2^+j6TQ@xXKFX}JzqO%m^ZTg2Vu zr-eUCMRNPO`#C*AL+-+lx zJk7A-W7Z>L;0_d)5JcUnGrT$PSRaA2F<9$!1Qx!%f---xIqZ2}_+QmmJn7+X+}n4A z*8@*k50iYnMxq2SH=jdX<-bDt9mcE=kRkT;io%?67u?z$jd}Ub5F{AKxu0+2c?EG+ z$2Gn2m7E;Bc7-C&YVPJf`6^dCeqmxfdaowdj zyihWow+#J+m?>xQ6<-4W?O2B|_j=)CwV8O|thZdx@w>Py@QRtigha$d7l4)A0#4`D zV<0|}gtpN>&~wX2?O7`JsdoW?upObxfs~6ouTUcM5vG$D+m@NrCx^F=7%u#go z1RHDFz5uTK&B2*Bw(#U6>d~w!1PdEuV0fej4X~^UzqY>;k8gOc2j_>j~yVIHlz@G*WwA&wF`)G@vX$a z%SwXz{i%eh`BlP4-ia6=dWroUx`?TY5e;*! zi0s3rL}1_v!MsN-KSEB8_+$}Eyz8hyF%PPl?092X_-|mwX`ZjyDJd zoK&KC$uHcU8buuNc}@5&wh@Tk(Z*HZTZnCL7X+T}S%gkRG;v*IE)bt_li1*3OuX8j zFNoAU2BMD<+^23HwqGr0;Vn{OJnOzkxQZx%wV6)5N!_R6&ZRqWDnS!ARR@CC(J-a{G$#G6;cqK{fXb>)`khTrd!=u!-mto z4D{75BF6{LI3;T`&vWl`NQyqkqn3xki}T%}&uW@Sbq~M+UMI@FH5K-+--)L=Mc{d_ zTTJ3qoN&Q+L*nEF5A-x*9F9%a$9&)rlziT!p_^>tf%Ft^}~L3-PtL@F=Gg+eObOaxZ+u z6Xu*DrY)3##diIWZpw-^y0&ARbcIc35?uLiqXSmOQZ6mdzw>NNv+_@$^8&rD0k z?sd2E$CmThXXGVTF(7gKx7AqIWdkO9cM*>m1>)H&dE)rFe>i32BMv?!Ls&$IgG>4v zoIGYwO9rhK>fnn33&E@;jMv6`zx)Zc!2;LI&@L|lXJ5FX z#=c3oQ^Ek7$a$mKMM+RKro?^zo$YT$$~gLn0h;yJ46e1l!!adq(K^);m>;qU+c>mB z*)(;|p_@lgiQgmq9Fz$Y4rCrdf7w5K~IkHL>hFLGhz$hI^^AJM~!wZ06*5g&xvS?s;4Cst4 z#!n4RxYaGwu*v>0mia?~{p=C2E8yR31Q26I_LvBHvI6t-VDa>PI0QtuD9B)H4 z)+5Oo!UJ27hj+EDaLE`yrR5@;^gI^kHk?IMesx%mh8@D`P0x z#&AK)6Sn{2!Gxf@VDl`3JN-RC)8-}C3A;{0uFe_!%g!C>xJ&qO%w)V!KN_~}PsYpZ z!azFF1p?y^W1rIf_<`AH^jg=6`%7{^-owLq=ckvpNjZ`@)OQ2RTKNfw0{7wXb&1&J zt^)tYDtnyo+W`Ok?I7h8Ta%RY4BF}>(3;OaxZy=MuueFvN7(|9*zbZ*yT|~}&*j@M zbA?Hp12JQE7PRB@V2?}>P=Pu)Nb4GC$W)==C2yeGaXq+8H^WbJNt|w|jpe={vpJ+v z0xnupvBY-_mt(YW;;CtvseKK{xI-}hNSr_a%OUKL!Rm7(dDwdG9DF-bkM$xMft8g- zc=jTFaPqQ&#}Q3PqCXJ&QYPSOwt+m4v*T!1=o8*058$qJU5KXYe1WjliJW^LisqJ; zH(~mXMUYaj30mV*ptoYLeUFk_ZBTW=1&eJH&hmR*^f@b+Cqcm$w*GA80RP#|>#$JQ9UK~x z_yskwAlWzterqH_!evX|u!W!P&^)ERNGMjjcIongmy*C^YC|4o)98LHMH> z&?*~7U$d$?Z+%Ol`kW6x>8dKSHxls=Ti!xpp{5}7Dh0&Wh+(coHZ1CmAiNGA!lDuh zLHFJs{J1|D=5kl>5uh=C3seD3bDp@7&~T$;A~BX zc$y=x=L0|nUhgDqBnV+cqt$Q_5-ih9t#RnPGkhc6R<1-s8Fp*4;cTXp9wF1OeFI2)^n##h{8zj6)s)1 zo{gglvHQ9-EcJOV`1+EZdt;8c*+3T;rrqTo-MWosl^b&8*N<@powisd+X+`;cCY-> z0>2w}#1h_#xMS&O2(K;XO;qQVR6HK56e*hR+bd^rY`}nLsFDcMqikHh@h*=0CWTc)CKHFV zHHjlZ3;B~gop8pY0$e&+4vI5f@YiTl?0KmhzDecc!wwU1kmxOEtTPF}=#?ePyBFd! z&Y@VWbqZm4EgRqU=3}cHUvRS075wAJJUqrsA{KQGf_GCoF3Mj_Y-(_XcL8;{uxB+s z#ZTetJZM7t_U`zM+Iet}^@X_RNGw)Xgy;5O!`W*T3C&!89A(>!P4?Zzjjy}#8mS2U zgekVX`05+3YOlnpDaypV>m;_{R|SC`L0IQiCHG{x7_oY?HKuG$h;d)FWEPKI1q^bF9T`NG6&-#D70E@X~a);YR_N z5&0?)n6{I6;`A~cu5cGpT@20hJYL~3seUY$XpE1rV@;c-BUUW3#My>ZaLSZ)Z1}Mf zC)_>)TV2(#s3H-Vov~Q^U;v1(K8>YI8?D0T6k)xWtsKWRgf+DrQowLMoc;hZ&|JZU+eV~Lxc=_=BYd_xb>pDNoEFFhS zYD0e);8~v$POzSf-{@^6G&HS=EW1EFMvq~c1@9on^)X(ue-w%I%vr|9Iy`URG1Ofr zAohIvjaT@%V)X}>#M0JMyp?4}Zua?(Q|!fv{^$NUb?FRZcK3GN@>va!RvgCX9G!7_ zSsWHBW#PR)2O!M47+-0TB+{#ESxTq6Fk9J~zmfK>d z>p+MbrQp}q+4%kW-`IoAAE=ovA{@*fWAS5qux)DvE}X1DJYV`A2jz-be`S{C<9`(! zc(Aqp_kV!BpG))`dtWHx9uJC#>cSYpqo|5!pHM`s zdoqRK_r~$$|9Rrw@2!Zg;A*TJyx8o^s20A!)_r^JE8$%_=YUm5Hwps37V*WG{ehAa z8-g=+9=?5j3=%aw@m_@)cu~L>BJ3~+i_`D39x~yJ}<%a+*I zRqZEoLelUmiHXF{qqFd*pzH8Uav1E{{xx@LCBE|v^J2eU#2y=$5$n2GLG<>y_~Wiz zLMOWkPdKW_w{*aSYnu~Cd$<_}FP!C%<(|TgnYKi!kqox_wTjoh|1s`-Ombx-Jn@n( z)A22RX&jU3%S$fz(f$k$(BNFJ3ZTK z$krIUs;$J^r;I}U3N`G^`WZAW)#b%*HzO=shWY6dkIf$yJmIOgpWx_yn~MLYCu0w- zGVK1`8KPO{!~M}rn0KcHoqlVE1(Q?Y->5xydauA8J=ur&R?ASZQWX%L;}E!RgAHyi zghTO%aNzhFP-1mK_l{RW#-Rcb1nz`0thVLk!-f3n#o^eaN*;Qe^4zOI@1F>+OkRn0?2rWE=M|hTIaY6$ZH%4KQLJ~}(Zbu6zzx@uxI3>Q zw$AA-$g2EhnTBnsjb->te{sO~yZCS_{S7z9?GNZDJJ`yx#Y{Jrz6F)=ZrIs!l5ZIC z0tSK<(e2`y_{&#ca9m%EMd}CO&xsO<4fDkhoiji^c@k;8ub4a=`hc|Q+)gHx8dL8c zTp)+nCX<$p2T942BjnrBa1u#=BGYcKBM&W{M4H*vlRIUOkn0uO$Qdi5$qgm3WJvZI zvU^7!nJTuGd~CRhRMNRXHcQ5k(^iF&PZi_HRJAB_`{4*u!TB_4Bm7CeKha6vl8h!3 zJr>?Ac9wiqB$~kRmt|nfU-<&+^Z(!#bwb=^sR#;`6VCEi#Pu@Sc*yDjT%5#; z2G+7;_Qb=OuRa4Gxb+LZx7@%LP8nF{;#7QDwFkCIe1u}{B6gn?fXOAB!8@-U79WZN zWoa3_=KMVtpL zBgv?(w$$ZgPskJUH0fH}O3wA>l9F?dlA1|h$sLN74agQEYWQ0Pq2(U zB4~am;h%qrD17scnDFZdPBx|pR}~#%!}V9h`!^?vwZXfIy|S-}3JFVrJe#M;O$#DE z#5^FbJw8NS%MJ!j-Pgpn?5Tvfn6#L<82j_zzy7Py{;wl3aq<6oVCH`xiHZGhE6JY! zuQRHKQ^chH`<$VemYkSY=zpFkEhhKh=OrX0{`&%Q|GA!|xK+mgJpX^+=|3+Ji}~L_ z{y)*KUHyvLaO^gWvh+->qN@TP}(!&dCT5Y5b;l zAK58Np0z-vl2;+p`@2B&*vp&6)*h!kg5!h=b4?gxO&jAEC150c%S9TiACuEXfs8_5 zJM&m<6{C7clKGW>U!)Rxlycc9E4pluBwA{1nQ;Q76M33`K z?VRdbsL%r@qPa3Dw3ww;joYESl-=z=!m-3MW}4Y?Cc`P1X*(e+5(tciMaDPj|L5)p zyR-j)xF3?+bIF@`=ToXx+o2EnA>VJvKC;Vjhsxc6s)(X-3qRh0;{*y2X?%BSXE5m!=-H zP!!7HQdeE3Q7K}&RMh88D$>uBTGnJjIrJD(8t+A<@1K`s%0oMf(lVq$4T5AE-*bs3WK|{f5-pzq%COdzAVe)kywd?+3I0?x*7a z)4l)Cal!CEy?5q++W$TNzdv5MWc}y<_}@$Y=gRy3)BeBHm=6chRrR;&_FG;xNtc#Y zQ@rhhgT43Y*cTTVIAzVqINzZsE?8J2JP{$dbo(@&AR9<@P^)TUh0`ddM~4NcPpUCL zT03e^en_je5dW()#)o=0?IxM&Z*PhBA;7w5FR= z7GGym!Y*stF@K0!Cvkz6at)x)wtXbSe{z{mr}F5rc@C8Mhykg5DV>aZW+B?MK!@pG zR7RU!%3$PgH3}Xy?_(M|HdWu5B}cvP3Zf>w>8GdqSd&U&-vmlC-;j$bPS11HVK%9`GYit>seWreX6;xpiMkbN-Qumx+c0rzTBtvh zqv}etSabUP9HDUWDQo(5?g)9OA(^h>k@WMP0NN>kib(&CIn(<14tcxa0=c4Inp(Dg z7BlO>X8N)0M{=4urq=2Fpo&(PlDv*?+9=M4G2G*ettF?Dyt)vf^lM3`^HL0bWZ4nY ztFlzoYp_iu_r+E?Vpz^7E;vD+dhwZ&{=JymcrcCHuuh%Py!nsPSo2f+y&oh_qMbTfchA{4e6O`B+H{p!q;S zy7owql71dWy}Tu&-lAh<@84j7<2(hXzhnwCG-gFj-kw4mr>ZmMi>6Xa3Q_df?Fg#- zXF86y=qFRzlD-Y88ce;7E%Qb@h4I^+NZag=XSU6u89xVg(T^fqde6CMf`_L&$hfgM zdQy89^$p(FY-7h+sV+yRGVCZ*dS?rBT~CjR{nSi4+Q-q4=WC0;)~GWV&h;^Vt{{A- zdXUOexX-kw{-IAK@t6(W%Y?yQTv33Hl8`4Vp^?d8&9xbI%-chW%$teD%;Y+0q4tb3 z%mv>KHC0xzw9eH`YF~FLIsZoj6V!EvvNlr?pjZjvtJj<8vyS(Kt=)xm#JOjTOI|z^ zwmGm$F2z*j$gW{cr1J!_W1Zw&GLc;Ra0VmQVnIoYU#3ON&QlJ{CyIXbUM3sVuHg19 zSE*sC#f-<_GD_B@l8KF;#(dCFWS0Ju6ERwwsFWYeDU~i@rgfZPWU^w&ad!nu>EQ`# z-I7~$P^p7ZeoUD;`-h^w#&j~jo5BQosi&CXBNS8DUdp`7H4`>1J;9{hn?uImjb?TP zYLQK$4wT-neaz*zW>m_gD8_p2INdR&iu|KvAk>yr5+${XQ>LpMnJ*dZ=!?GvjCiyT zJ?En|WjQ;SSz2a74m^sdS|>(Qo9-%z#+>zpf1HX1@mJ*;kH)o>%Z?UuMt=^uUnz}| zYwn|+Rb`pi0qIQpL@~nUr8zBE`lm+W@EReRXy+XU`zh{1BU1zrBg;JicawutX zj!1aOh#6Qpz>LIZF#67q$*#4TjAc4#e2 zMZLoKYo4Q)iKmgBe}Y7pWTw#OI~I|qks8e6_;|`o0@GU?)u^_jrF83jW1&Yv52Loa zfXaq?CQdes^evyqyiwRdNe^sdxbLr1wcm1?!=pN)d*2+W7%^KW>dSRnxWrzhZ+nIk z-*uK;J|02U^RF;xDxxUox+TmgY-co@e5m$=h!XLus9=v(%=eaZCcA34aQF5|;+@Al za&dq^b92HG^2mAVn%FI;X*019LVm_{X0BT)Z59(ldv26w_U`*aYn;@j1IBhSU-$>B zmnx?+d-naM>YHX#{au0N>EA%f86GE*x2EvkQgKn9tW34^hPQ&vH(t~89(oDx6(}-4 zCsvR@lF!f&gX2iG$sW9hXMA5hIr83`Uc#_i|jMHO&O?1KY z(@g%xPE!Afx^RX;7^7zOh>i|DOx67=rp}yG6JGy7#)Kj@NRLsT9>f;)bOciIgP-n(G=5qc=LDnY+CTLR~vAN_qUH-a=(Z7{T zUJP8#+%o)39}du<_k>0>TR5-CBK&}6a&}X5od&2`Tf>+r&15Fy)CyAnhc{I+_bwA* zBSCGip37*M_A#EXb88e|8d7C%Yl*;*GnnRIf2rY;FbZ#|rHw3q(N7Eqsm6yx^zDYj z^vi*I#*$JN@J`CEHBK?yLhPxYN!IH*px#J8*O7lcZ5h>B6?F9YB=Ti;7%6sS4pWmHD3Ub0M~CS+RDZo3Srd?;N9G$8 z(Q8yU(`EsZRL*-T3jB;k*Q#bw!eeD5o@GYqjyEtdJ3|C>-a9Z(jz4SqE?|a{n83xTKA| z^dXH5E*6jhAGcB8W*=je)qgV8W0mBN>2dUvr&C1s@;21rPqkG0v2!(ZO=YNgM*GRH zzW&1Mz=fim0Yj1ImlDy)Bwt2ZS4=pteF>xbd@22IRF;|CzJc1gXa*^mHkVYc&!iKl zrVA?~Gnv};+nB9`?u^SlMv%RN5{32oRqdWwML(P9L9eerNlL$d#a!I6kgo4`uNkf$ zrX=)TL|-58q?G@dh}IeTkc$)j7#CzEY~vmiU94^+g*AkzYef$;QXoko_1RQ6JI8nD z-LJX0*@cok(Lo&ue@ZUP8)xc$3xwl0f|>gDGE~y@Qu>7JFufgd8PSfV^rNQ|%)I?g zbd2+Bx@YTY=6B3*T6)h1a*5b|a@mh88e$}=wx(bv_gfV8?^qHQ7ZgH8R7#1i`54en zibyo=!62htTuDDUG(?_CZez;XxmKJzP90bhPv%LXH#b-aPWC`t+Yi)H~jOYR||fhS1k#cDu}Q%F6#u%20G zF@q9QjjFQLN)dkkWI>(3t;U%3KPHpCb*U_eeay1cij4dI9rVxkK4!}r(`t*DNeq_^ zq?)6QsCN-vOx{l~DwX_K<1==fZa(sz9Iif6^Hhe{3eWS^RoNZage4EftN17aE>`rM2OYiQYEh37j zowqMATmB|cKflR|R>{jV?KOw!7;6tozbB4bJ%gY#wmqQy(tc2@Uj@@wL)5GP#!eCX z%xbH-xVK6WcGr&uC4I zqvrgzV%8lmp>MAFNiQwytl><4LffuMCU@H3WvVtAGj|^;h+HHt)33Km3Eg&Vq1R~C zQO5I&sTZS5m^vZJ1jpDh0W zS)_0!gDkThrc?G93Ew6aQjF&p@{P+T>Z*zyrD3QdOn4Q~%vdvzk(Owp3M^}B^P3yV zJx?vQ3a5y6iby7uUmOs=9gHEX13Z{y$!m;N zMhLxf)Rg(XHd-{Vw2{8+n@dXsN;Bd2t(d_5_DsHI041)FNA+dSXKkr2Q2ty@`5Nd` zH6<}j)wWH{wlkH?P3>$ZHd&lWnq$ZW$~uWmd>%0=o5iR&yCi0Z)Hgci?;55o(w6Sr z*GJBK`!kFz>J4ya-Kas;81)-nkajJ}_8M&R2f(3vl!owxc9 zvukVvJ#oVA3yIXXzrT|S?VPm>k(FWoP^l9a@V z`Ytka<${@S)10XA^KZ!aR#MalSx4f|heEPBVo`OTTnLl5H%$gbd9JMWsk3MPi?8-JuN0P-ZfPNQR=2h-lKNdD0-Is8ph; zd#{~}ND-mTA&E-Jte^3{kMHsO<9pxld*0)Cj_-KC=dbJD$FcUh_ugx|u5+E&xmebQ zF`^-33Q63)LMpW%BE|euyw2$s1b^1$cMST)m&bMTkA9|+^QGCe)ibkff3==qCVs+n zkIWV;(oTM^wgZdpc*K4kU&O}eNHdw~PiTbp8Z!6g3)*6+&D#2sU&^j+;umRx2}hrk=#)x`^H$^dJYf$CJhviQKilsm|_NjK8D_kJU~We1B`l!EhvqsWlf`*laAWT->?5{gzp+Qzj>2(yE8+c+ExharLi+36 z8-(w%39rrl8zY@sPczu{?+mbruER1hTXj=mPwZv&GlQtR;G^->VtSR zJE*d`liM&MD}bio{LN0bE#SR|ON%#~%8KOP_Z2?p{UGOwJe$?pL)YD0%AUULBUB77 zVL3`Q{MV!P?0b6-PDi~hOZ&cpHckB?zUQkZ$`xv%+)X_DK9$EluoT zyP6$tJ;Dr&=P*x}M;#&uvB!Fkn6k7f4T~5n-Yav0pP4w24Lxhj%fj0R0x6N^(*cGI<9~rIQ?B%-8hM-O<7zj^TWYZ!VJzF&BF{g#=EsjzI>bs4anUJcp2M#2#(iFqk1rBQ=c|kC&T3suDLl!-*4^Y265?3x z8((UF+K^YZ;fX6LDN!k!Rj z9624^EBjI9x?U{uxdD4+?Z`}?zafW9zmiFQvsh7Q2FdC9#C-eP6OD(VRD5S0ef~^V z@RohRA6lv+AheHA`8AgGIb21Zi>#?|&V`>mV>yXT?nO_Jna-Bys|h4^4byN+5uZQf z!}`sC$hMEN;Y~%0Sn8Pt?7@xN^V)6|{LSAd`HwR;v%})mytVyB-ul{6WLD}6Yt&@~ zuW|8gn~Id^>!4b({i|s4pk>Z9HM{vGj2aqsv3Gs`;p6iq!Z&yB^DTXE@ojg;F?GvcH1g^qUZFOHt!x}e z*N|x}P`F4`=IBzp?gSbrnS7n4x3F?AC02i>o~*c-PS1Kv2`L5cO!;mg>usaJx@Ybp zt_Jnwd1wSbedlR@=FOwjX4+07zx*gsyK1<#@X?UD-=z1;GVW z!$iRHU%sp=r2k%NhU_%{i$Y++RjOG>*hQvjPH0BZ4Q8--6fYrmiaqUkYP;(c^%a#7(WQ@k zzlG6MzUDKU$F30yvfar&gKTlB&0SLN@RZNm(vR+HZ06t3@MaHBT2qJf&TOM>1lzr@ zKXLz}#Ba2m!&_A2qOAh|thbtQ zw^Kvx-0+>MK7U6XM@Nd~-^+`%RhO|?g+s*VnmSt^>df}+h+>iPHT=zWGD5TP1lraI z>3nKHe%Gke)?riFx6y9=?!$M>c33YUxBlGW_v}2(zM6?>w`Mr+|N0}JOAEx2I|j4x z7$eE)2o-#ybRv7>y@SPUAH#f=QmJS79vW%zi$prblN~D0i0-iz)=~2lKi3wp-}mp+ z`JIn>_jUE`%^fL>nkkQ>JJLdAd;;T!y%n2nKF59!ZR4}2KW6gZj+61j^w|-=-Xi_J z#=_Q=6#k8}17GR8h1Ts?q2>o8$jTw7*(?1=%(DGC`&RsvJ-F5+*+1?lIw7tht*2hn z_JUI4X7iI&hXt|>yC^m_+d+b5X7YDUAF^EeA@s?@Eavg@E{kuDG4v1|>k7rfdFZt8gWQC5an)Iie zA+rd7N=NPPVCE|2tjhT}a~U^Lc(3q<>--%O&^%+cm+Enug z&&Z2>jE<314Kc|ZX+~Q=%wx%lUhK_nLl)^*!uuQWtgz6Zzq>$|k^up%!%YWT${tK@ zS33z%?4d4?RmDqIOVcUUhgjX$r#x$~;a~oFPR10-2|Lf;BuUGq$vOW(vLoa;oL760 z!c#%i(Q+ewvb|nxp^?L$#P<_wL9I5I8bK(%OoP89X zB4r9O%s%{?*g$>$w%)uC=EFA`H1x;ytXKR`8rcl|t+KchbsWq0*y`G%RyL~$*> zw_qmA_by}`E^cPVf+NcvVaVNh_Cfq!V=}9G^;ldbcM=09-y`ELdC-RX8s75cRg!wZ zgIH$7v)qXa%<+0(Uccv+*u{AlTXjwr=lZ15)jwRR=N%_{M<$gP+H12_Td#1FTki6z zGbhtNQ?&#y`$YEH&{C*U-CUZ`>C0aDbrAP|!5ZCinUj?_hC>uJ|pYpQpShVO`RK)jP?W-lQm~JD%mme&Mu^kD!Y73T(pe zc)H2xExN7^DPe!u(^Oc;z{#==`UL+3q)`EPYQB zt(@B>9&0s}mW=D>SN(Rz34?N0?-WZc(i>R)<#4iPiwEsBIuuMm&7^e4=^e1`{ujVIPB!v!Yrx z(W?u~S;ddj)X21yO>H(}3Fb3|!+Y{sTS7YRJl#P(hS~E&4)o9;x+2lUm2K47z>IbD zETz@Ak5cPq8Fu>he%3W-4ZGHuET%(d^2%#tnW;@{SzOgLX5Soug6ga6#t=((z^{x* z)I<3f%M^viDK6n!d?E=o3-LK2-igRGTvS?) zj(m2{5b?J@|1hF;kQjdsfUU=Newp$RayGVry>BjN8~6aKaLki;C`@3Do$DC)Pbhm| zGLAlw0#U0-Ct=5|S<#YY7L(e;E1h}Ir(BbVZ%rhX`8=5K`J*nnprA;f-Y+2c?=N76 z-)@$Lho57b?`K=)Z>VQ@72Q+`}L##4!1 z9zUJUKWM|AJh&_#Yn(&&ma4MsgNteH!jF7(OAg&=k;9)k5zMXWE@a}!d_KOPC0n$l znx2&K%ryNx`Doec^g?3`IZ_-<#W&LVU~@eYS+Rkyn{uDH`W$9kY?SF7ejXcvszd!yQUG#cCaeq1$3B4;J z(~&2hH#wjGF*=6b(n{e)W46;r9ZuA8K_Ce->PP!#2GYLk{dhge-qWbhDgO`rnEz9J zh*g#U9r+O1nu*+ocZayIZPHlaaGs0)S;8H2Tgv6PY=KT^0oU=^lnajk&MkhB!R_n0 z!bxAs;U+u#aXPkFILjMdT-T6^usIsRRsL~+x~UPK>y&fzFDBv=H;YsEe8QFAo5YFF zwsU>@_;b727QB@ihr5Py=*mmw-aZY%ytM7O-9H26#UXfeY9WHA%|-IsG)z8d48`sM zjJYriu3dI$s&_)K1}T)@wMVV37XF-eK#0j!*c23Eo{KFCZWAmUKM9&~Hi(d|#(Jx* zxOhsESN+x(hxHw?H%f#jCtPuT#&isER>GVM8n_s942iG&(8q5$)?ZnH47Ef&`BQ=? z>Hl!kN(ZC1J_$9my1AbzQV=b9&1Fw9#lvZt=sxrT?Y1LO`@s@`1 zdsFhdLh{a@h446#3)9=bFju(`c@v%lea$kwZwo-&`H|Stm5NOtcfob`Q?Qlm5pbmq zTG}^pzk32H@GVB|j%+*&zJxy0pMV>Y&aL2rA*ZB7M!t;1smIwcI9&?uJy)LamZsg-B z6fs|60qmUDaU)k zn&hs564Bh8$4xekz?YQ1WRK_>ycT94XUA|NTsww@@AFWTQwUYh7l=x0gZGpUSkCo> z8FMGsXPkiVB?a73y@mrtvoNPB7Y4_YVQuOGxtBIXA$A!tQHsR#js*BmE5>c&4VCa* z>{xpR?nSns?K$p{HF3d(tv%3EyozIAP9x!57z_-e zks4%8u0Oer#I$0Z4Jd%6T_w)7DGobS2Ry`QwlN)hXItCG`M&wfNGQ2ngjCyE_+gU5|YIh&xd(woC@V(&>Ld2hmr1)6y7CyU(k*=YGQ5<8x8m@4mu z{>SISZg>=;wi1{fbHPsIZP@j62WCDTf$u?4IR0uMR@B?!)}2y>yE`J_*nD8mIBao= zz#QoXxZ{)v?++K@A#a7(7gpixm5&(T$B-BBBk2|Jenp+mW*B-)o8h~LlL(y-^9Mpeu!6{iAl}a& z5aEZY25U6VH^D#EKe!{EhcI>KB0Sfu=WaR8!;R<>*eBUaP8r<~Dza_dNbl*G@~MXl zjN1hJ#{=-u{VUD4oW1?JTRaocBZtZ4w}YqfP!K+EGDEMi zS=?xcCiHrfiPWeyP&Aj!8}`NM37JGz9hSizasr1lYLR)oljFQ%;UgHrbj@yT)KMZc zg@I(}lPG-qz8Lib(@^7(j{2sRC}P=|w}|1L%M+Yx*27rkaKw2!p+;pkx@mvHHcOGs zR&j_Mxd3N%9TB7EM1u9(U@+?=GR!)#LwYBU8fKs=wE$1RD|2TAP4&$ign|~ds4mGRSs47puh&y3Orb@(QQZy!nY{mBj9I&(w z+YX+_lhxrk$_3!uy*cPtavUCye`5Q#3e+uZz?8S`$i^JxtS`mu*b;2huf@reSMY3C z0ZR0e(6eh2mW+DHndu(F{JfFq|4#;nub%~N{kPct`y66>y72aP9EMdMMwCS;ELT@y zMdbyqQ27EPLIY66g(K0X7|stF7BmLI@Yf!^zqArn>$-7PDF%Piq={?OGgxm7B5g^U znA&$EuJ&!l{p;EYusMX!okQTeFc34PT!}_wIN3IP4_@5#hSrB%Y#en8AI~gAMte3I z(TiNIA4tX~s-bmf7UT?Oq0GJz?^!6hWvEOxv{s^JVJc)yli~a^olFUN3kQ>OOuy3x zyB!bUVsA(09$tqP>;G`0$MpbPZgS7R?Sj3R5k{9}qEJN0Vy}5bbAAGbzAi@WyHd0r z$-;c86m*B)fX|>;I95D{IES=w{T_zkf%-@kk4ZpO$1HMCS%JtVU59IcFXA+PV6f#R z8BtRVE0SM!)xkNw5~o5<>fo!uq(7GGdzMy(W>x}s}U^W^WK*zWlQ4SOZO%B8xjjniyYhk0pAQ; zU^{IoYD~tEsFq?>9n67=Suxgx3Mk+42rr&Bp{S)CWBp1nb>KVn+Z%#e1D~RIO(SNW zxdFL~zNC7PBJsT30-4v6HkUl-y!CxZ$qzZQzZO->Yrnp%_veeJqW*l9s#C_ z@G?mZ<-;fOZD}%g_8f-nx}|VeF~^48(@?)#28LI*!tK^<9Nlmq>Gh)}Tx1(GZmh?b zh~L~2`xK15G8gY0M&g^oK=R}87>u(y!WmT!Mbkwu?9_jWDkpy!c{LzhF&zIqT!?!X zJj|6mkTcE&&DyslW7ZU1A4<_s;{~_n_fe#hgqU~k*pR#gJF*^e+dugstvwW@Pp<)4 zJ`GpSJ0tgy2c{ohg+{#;yp!-5Pw(``7LR<$O8og*LwL@4+-c~2*o@`*(TEWaK`T23 zzuV+7qA38Hi?-w8k!)P{tc2CF6F5FE0;cxICHt;lVC0m84`a> zVVK}-hZh64pd$1F?y1Hjr0PBlw(o`4$3r;2YCF`IMIb9jhqz^B!^_7M`x7=J{_P$} zG{3Pba6iU9&&D!kQ^a3i2-YM`8txWg-_HGL**gllFIQqphZBx`JcI31brHKc1`ccU z5IylQ7XALoeOoaTWqc@PG6o~CPatyMsX#+$!%r1EY%_d}mF6xGZ`+HTEw%{PJAl)- zG%)UGAU4kS!DF3uxb!F(rw=^D+|}lodt*0F%ex^-=@ANVH{tW+Ohhbg$MaWXh{oCH zlCd`zCp}(c|3ZdGlSgCThgiJ%d;}}IzGB^+`9#Te6}a1#aLB5I&;IRrX8#@6Bym&L ztU5ea7*0C(reI!?9fH1=z*FBJzi(O*uZv=+=(fYYbTb5k0=;7L}2RE z037M3hv!CisPvqKoSS1YsxurXUIjz9^8zj^ed10A7eo75Hn%F!9T)EgVaS*Vu>P|G zO{S7FXXmYhvTirr7T?03kWa{Y_7Bbkj)T5*4V-!&V!Zk_JfU?c&Jn}2s0cf^j>gtt z6(}8v!s68&hHs9>2AOp1TV01(E&^s{eaX3kSlEq;!SFptA$Rfx$`6Ecj-j1c=eiRb zSsBotQ-Zh=k5Fafix7Dym>RBuYm*(h`^uawQlCoJ1e=koEQge8=@HduNAc5i3W=HY z1SNwmLZi<=kpAZl@;_`RW88y?RL2W^O_C=?H+9I(nSU^uNRzb@LrI+1Wb)0?kxZWV z4hzq>qjtDF$+CV5XRToJYv&{q<{~1|(r5T2dRqtUsPWKR;fm3<;pk_#5{a@;uubzd2B)q>%!(Vh(o=?J$=v>?U@x-s zj>Elw3~pq<$5x*>1Rb)*@KyP+3YGMy-c69}pO1FEO1ygihgk|-N_jDOsQ z4^cPB=6&fH>Ae%&*chm0h%ktsOp>j;xwI8~xNpik@B{m}qRbi4%#(+<<1g-N?l96i z(2`tP-xrE{17O~?7FRZ!q4>cPcvO2JYTapAkW84&JIY4bLae7-K-WaApL8A=!+dhEESd&*DcVM)iB3bip z4h$qQ)6u=sWNeKlxuPra1=JoQW4{79FXc(L>aId$p9yHFJ%cZ$6h*qe==wAWZ4#eO zZdDL&>+Qz7yhA7t4}j6^4XAZ;#@Ju&+^@ZMI99n0>lUX$Q%i*5EE>+jcBC6DLFBS7 z+)DAnOAQ-14X{C~Srmqh+yyQ53Peq=gr%D&hR%(^+P$~XY4Z;bZXO}YLs2CY3qFBc zE{W-FV=&*aFKNHwKu&I!CwnFs5Ytm>?K0tIP4kQywFG6igUvjVdBwErB5Q~cw$bn}@ zu(%tJu|IM#yZH%rFD`@5cpGFG6=Ox;DAUHt1ML@TW)Du;t2ba9_e9+I9?Y+NR>^ zl^jG8W8B}n5rL;p!TRhS2@a}(5bI)$J#h@Do;qU99#!IPaUH9!24awU63(>M!7v=%@q(uE3?uA0TwzhHJuIyk3)w^PywN8}D1_uXzl*_pV~Wgga=c zJb^e{F=iE=gy){#WJ=Q{vc56`)&7eR_o5z;_w0e~`?HV)=XkjK6+FFFNsMI-{A?{@ zBAHXXS9N2f2}gYQ*FbyNb?lA_#c;J0*nI(s7CB+Unxo(!f50I>DKaUcFEJT89g%T^ z$@C@(CNuOWw{y)oyvde)qfrkrRWB58S{s0qJcK3L2=Hsbfe96mTIY#LUI8eqk|OHw zjmU*IDQNzaDB;lAqt~$t_$Qvns7E#=Zg~z)^nH$*Hfi`QGlwX(S|G7#DXxzUL$SyO z)3lajdF2{(ax?Jq(R?gY*oViS#oX!?;6%q{^m;i1@9b9LQR>! zxo-x_%jUsMs)sxBk0Z9Mbi~FlHn{&~9p3IS#uU+8uI-i)Zh7W&eZQaMJR*v?H8Eo_ zSm!$D)SQF&Uxs0gsz1z3jBwMZ4>ly6gYQ~3w7)N#m@d@^^IDA1VWoq8S9CCDxEX4% zSVR6uGN-sugv}3XvHeId65p5tE7v%fP3^#+m4k`mrZbo@`4@5$By&w;8GLUZfs0!P z?nii{y*mU-&8N`am&b<;d1Cf86rqnJQB+V2L(c|W3^O9?&4sW@v&DIxix@I65>wKG zvHylWHh2`_&%!u~K64NjCv@Xdw-qMr_QBeZv8aCJgQGWgK}r(ml|&3f>cJGGh_+zm z`!T4LnS{i_(s&zX0%xX#9W}D}^}dlGyy7a{1`B$(WD$E@i0oN>Z1RLxdJ;>YzkS}gHH&;LMjzaZRlP$C=04?@@F zRM^;EfYv=@ShpNP+z(q^`LYRUK8N0kmmnh(j@erxka#x^!lFDREeXKISN^y;pd6P! zRU&o5E@bZ0gm2OkG^X!^pZ_PUyCF-)O__qb%?A-zg3L?COka)5GVCDh|U*P zlJrWBbWS)A!-?N;NmYZOxCG%PS5SFB8%3AzLF&CU(OscQu0x-ea434U0tFFv#d+p&{G>QzOM%H_6>o0jXw(3 z6KK6L#W3$Ls7)P0=6*6Jff9~rO6No}(?p9nNMf>M#nEUGmJzk}Qsm;}TnslJM|7?~ z!}>$2r1yGN^6O(dZZa+6eoKJ}^`W>?Fok?w{|27BBv|=}T|_fhgB+842#?`i@R`<| z)b+6=8S7hNCBb$T`qjXpSc^1Xa3B^e6!8;JqW*XnIuQ-a>3zsj#Z(OIdkjD0vp^>M zAhXIFE|(=*t>tkj8e9%-i(qJ+J&LEF=0WCSESjZ4u`d1~L?gDK{_;f(-dBO(E%V?R zC69s6zj8;{-bSOtaj5*tfJ6Ui3~~y?U8MrL**Xyl4QMU0RcKAzT>{pQp7f--ry?rQ^wBe_9mIx7_K#)#6biX#@*RF&3 zaXk|!_ZLGr=!cSJQLqfC!mpF-@VsvYJnatP`^OlJ*jxr%zw3}oUI713yK!-tfOn4w zyxPLCSGzBHc&r}n_a*qv-H{T1<|R7n9wDhm4l176@b-wtrcMU)$NA`VIELJabFjM~ zjPSlim?oLuuYC@J(wjIex&I!5uK}s~X$$$Md$AiU5ug+c`IOTb+^J7uE8;O-Dn?TG zR=Ad!6O-}hG5OUe4BFa^&W4j{{8@>nmF1T!shNGv|j9h%x{UVvFuyiKeQL3XjN?Djma{_K~TSSo0B)U!ola8 zpt|@TQj7ypD}5YoA^tEPGYg)J@*#6A1PXbj=yyx9&iNdJ=^F`#dD{=QM!WE7=P~sA zc>!kzAArTJQ<&Kj2$wNwh|jA=?pu2ppO*CFjgo#=F%p&QkHM&U5sI%Z$3SyKk})L> zza;ORs5Kj1sbzR=`U3Yg3y{~AkH>4nai~`v>VH>5T)hL9kHfHV@;VH3%EP0iP?X&{ zjI&zrxY~tjFmnmP1-*xy#f1davAIZXj)c7JU?k5mz^&hL5KFL)LeUu9ZrFrM#F z8;1D$a%?Smh=CZ6&7YIu(CiMy(fctXV-GCNuOQ576jqtIuGVvIHN>MVeP6rmok+M;$qQTkDV1b0dh<>V-sMX(HxzO~<>7 z1n)Cl5PKjPO)KwVzV0iWbJT-l4aJph6sJBfN1rQ;NKpJ;oVuBdRSS&}m^=fH&sUSx zhK@+w6pm}rrr5G^2h>lGLP4(*$kvUAROfyin6(lUY=W_?Fc9PPP2l)72xCoFKs7`f zH$7u9;$Q}zx!S=mdNtBcuE4O#@3`&~0jCXoa60D$cV+4XNo*w9hx9&y1v@ul(Zd{= zO*TQD_b+ajOCoBn4I!T#zvA+<(PY>rEt0v85W^woG1{eqd$fE!IrEQXPCJ~1vu#hH zc=#p~m)Q{w11C}|G~s)v4smGxh}rfZVfvs8pDkOVS zCG2`C5H}$RVXA$hF{%U$2D(5>vfujT>s~0>d13RR1Bja?=>yL9Fs@TFMq>ieBqu}U z_TRvns8;UXH5sz$+bV?U?nJHBatTgaiB1_K+-|xHkNHX%DOvM3bBA#0>@iq~tnlTo z1grLo!1lNx1Z)q6s?;=WvJQjavK{CfqyW>@5SR^Lfknq%(6H16c5iCXaW@tpw`3!3 zZy0(L5HRSdFl&iQLZf{jkU73a7hM1M5spQLQI~Ex#qc zv7$Cir+oh3>c{*m-te#euj@g$w)_YG!S{a>e)#XDA5%QHhv{t9Wi>6j%&B`Y%MyHq z5_c29SCXSru{@eR*Y0AX#Z!boij^#tE8v4eQ|P{eE;hyAmsZVOEQ~l1OS`v^Vlpvm z)J-8#I8u_t$lEHR+T2U1e>aK9taKAyI`^EUUaO$ZIcXyQ9p`9wunr~BVS@h_Ez!Rp zXYAh}i$>9N%!wR{cHd0`La z@})VOSYAC(ENA{9-odBI$8$Hy$fr%D{`fUw+pbC@pVg3cf%}Q2=_L}fqllCj4WwWB zHlimhLtigRCGNC@bb61c|7&~vM-Ts3H|O7W82I<|{m<9`_4WyT`M2lw`?qEO!|wUN zU;ZDy%G-OLseNBS3mzS!=gvJ77M>B&KiRW|RvSNI)96m|16esyvT>Sd{ei`Fu_%sw zv?oM%fV*hty+4dfc-Z^X<(TphU!nYL1&ft#7n!fGrN=#vkc7BQ@^Y18`5)ao^c$X0 zy^Te*N@^dy@A{Cf$XY^oPb#L`OXFzz)uH^WA^*_FFM114n~Uk9FZ~3kQK59_hU*q3TsnTE;9B3x`^9LAM!b-suU176orMR9$=+e2>%AV()&m;k zaeWcZHjgCl^sA^$>XKgVE6B;j{xnu)wvgL1nSE57OO@=z zv|^$nRc)6MZL)I}4PN6;jhCCyLrI!c!|9_?^tF?O%^b&)f8+}uZ_o2BJvpMSGmNO| zBY*zjUVXv3k|T>!Z!j&S(DzC|`1YewOwDd0l~-1yNspG(rDNjA*O3xlmfczLqKP8< zsr?8QHSNN}FbL;mPw*>7n26R$xc*C1PZGE3_VlT33zgFeWA*!cX!Q6CLQ~y+TJ|lF zY!XeR87UX}$Em)epAKuOo9zc7H)NTxnHiWZyp-2-ap0 z4KBXVR1Qn>@$D`PZ+9D!zCR98oAMm;IdnK%W2Hvzl#|%+I2XQ_OJ(;e`iu6Iy(3M{ zQB+pnT=X=@Ur@-=X32b4D~juE}PAICQth7;}WLy6U_6T;55psPqJ-M1-} z6t-QYqm;AhExi+GokHzmZ-yF z3mpN827`JcuC|5PL zMZ*Xgxsi2b?5!Z$abpEZEwvU^yj>*vu+@sT z6#rt0uDglLYza?zmo`5^qP#KV*F0Y8!%jNZ>2_o7~82miu%4}Cf{Q8YX#n?75|2_r1xNw;|(9cjOm<#aH%En*3k z`ZJ)cKwCtmow|s0@@mn*mU=!)!JleJfehOl#NKMG5DCu z^Dl(q_ye8}D_l%!IwsR#vzhd~tRGPce<^4uY{(N^r^PjXFhOOH_v`rlg;V6!hqBhBELE*(TjtAg0k-=!EQ$`+jv^l(yDn} z`Man&#N>cBDaw07qlEkX@jk^gNJWtbIV_=R-#vtRe%D0?N@3)Ms-`Gr^d;i(ZV-Fj zvQAJRt3%D2dtl=!MH@Fq(3H;cB4L7V`4gLPdgR_68t2tV*wp!D;&Kf!?NU8YuZB&a zdyhnu9TQtci?(M9a%B@GQYRc{^pz6yzE}y0{l|;GF4#w0EY?!3Udlp8y^m;<7^?%6s~$UM#RiHm*d@K5TjxM&~kX-uFKb6iQ% znjkX$gGKqLv$_1E#oOrYAr{p1gbjUFPepQlt?9k`nRJTl6``R00t)gN>03QY)cRr~ zIiW8WuUil(I2$C2+G@^N6YhjWS4e2ob<(ILE-Pa#<_ zKv&ci;ZJ|eJ56uFk@OiEL*F*(2nL(Zq49w$`JP_S)O+1$#~lY!`SdTWCOVjwUXkP+ z@=wW4I}@6bS5IqC6$&qFqpA1OW|GkpC+e9tQ4}jmqc@$aNy_>--J zp3riWZa&291xq~;N$;gq3I|?X6%}vNY=J(?o&j8x>rP-&)jFf z54BRa85|9F%oiNe)r2paF?4mI9r27@DO|7hp_##tMcZ8(h3>JHME9vbi+}G%s@JuU zQI&6*k>50$*6$kI?vqCM)&8Kq!KHBAC(&x;73ku;^YrzI8nX4=VS2j%3vxc1G_ux|_)GWz2PHae7WEc%`Kd(uE}j!YXGZY+p?w1Vph-iTW{IK_2GZ_D zg(NQ^RgjDE6os3s&}G)+$&TvH!q|S-xe#|1(GG+8LW^ZA{nOu$=u7e}SU@VBS2$M) zT3Sl^yRn3O6ee`4x{8!Vm+9@|?__kg0;#swV|%ab)A->FL|3$Clc!T}(+;}^fx2Dz z|Ir_gfB)anA1>@nB?gXpoJ886MBgeWx1CH$*u49s6Vgfwk43n*fgt4hkOs2 zOLsb~B3lks!f$#w4XG^P3U17YtI0-ME;otH*}t3aEqw)t1E)}N%!OD@XrSj`o+Oig zh~a&+k*se`#a-(wwCKkkGUdx{TsT>aBcjpNVS)(>aXmzD6J=~WoJp>n96;3b^2is1 z3q-lmolZ;K$sN{>q8$&$(`B)PaI03I9xS~re7u z7t*46(HQ6$L`L}T=6t)!#LM@NaSBJ15xIFWtrETB_?RH9z2+lo$f|~H%~dYROq=@a z`EffYc#4i}T@0yJF}SKD(a~sqhC{FFN&jQ20i1!@y$U7->#56Puxw@Pvy`j1D(xW`2KwJm;&hmyc(Q}W_{2Y#uf z&_CiAoaSsoVxBf&>CWRAHcO(9(qYTFEjYzJ==jb_y-ehSW*ndgFO4HRtwxadl01^1 z;#=I^Ghz%F-okx*Y{pe)uOt?&nq-=77fH6NLFa&dWYWjp^xN|QT0VL)$+YN;%O@^# zxsR3Ty^K22oXXHR$b?FDq*C9kR+PJ+K{4wDlLca9j#D8(J|T zNtR|j@xu0)!Su3KFB;H&pSF$IkA;{?#+>~??pm0Tg0%yP^>KgP2>0O@x1=IbqD8AD zwxWxUkD>~*_L2)D)##&%yU3zmgqn7Zr8>Q~b4#yUiazvqg67^va$K)oWVZhs%5O-~ z1@9X$-N_3>>~chDd#6&TG>$Cp&C~A*A>4y38_`tPS%@?1joX2`+&igHX!N~KmfQ%X z+m2LF>VF-d)<|*=6i10tHqWDW$+wZev>LPf?&P+N86@g2XG~9g2_tuYSkOmDFLCxd zN9koZ10tOk&sp*}xc1p0#P9h=y6c)2arQ4DJsVP>dviL(Gg3&}IT77`e+Y_Sjint8 z0c6sodt^!f3+USKNLSo&rxnw$a+PZb(1P!G$y2q9WNGvioV^-LgBDGfoaix-%z5rc z_YIGRN9jU3%5OF8H*p^~cYO-kb88?57(4nPQC(_fcv9#7!g*cnt;Zl1$(`$xdr0aVkf-;XG zvwaR%adQh9c~TGEl01-7qjcKj`T%%1oLae6PQ2}C!)>@#M*@?z5G>IH+OX~?*DlGc z*Q(1ET|PRPE(=|bzB~MA*g`d^K1vd;Z*Jfw<-RB0ZG}|*#6YCHA0(20=|Mz)o*?)^ z3o2x#i1X89WX<{g1P3C>tlnG5i6up3SAqxG-m8Y_eb|RzBTUHusP4*xn!JK|2!|C( zRESEc2TE12fFhc=yQx&I1PY3fs;GFS+$l#bN2}5TDy0G*5YT`I6%+$_AgE~Y1gk|w zpw)UHQ512cAPBU075mu^ooVe~o#{;bzS(c*n|b@s&d$93e!IVYPuAbYfMy@qYc`bb z$Olm1p5t(%wh{B4Q@P%(bUNU{-BF}F!X8yspi@>BxOKfi>zYKInkf^<7IW7DJx!Ag zEX{#dzn@s+b`eRN`vTuBRg!u z?DmWEzcU_eR3{)qYc4t6 zwUn}#6~P6mGx?a?;e`e+mu@vfy_;?@YXf3T{X`=*OUD%PF`ozKRZv{|s^(LHjzKoTYJW{qQ@zIKv==ES7 z9#^`9EP6b~h$et>MzFZ8JW1l9UV@iSSabcgrOe)8r zD;q|_8e}2rUEH6w7j-`54xVLpq@O9lTrV~1GFmXKd=OjTe=j6p8Yr!{;f=4I$aVf3 zIH%$s)ro{KTq}a?VarLjv<;U(sD{?ktt?eR)ugT}?^!U70PN zFdc*YxO4Q>$^yKXU;}4o-p19geAcGzhDS5LqKDH)q3kCi&fTPg2>W{UE!dCKtBk3= zMo5+$e4%!yisc&)p^1$>a4RPZk4*(!DPGHTj)y?*eG(n?w~^lumhdt;0h*)E(pMZO z}FJXJb;>kfDuiqACPD6je~Xy$mkel}}dW zD8ZvASMvTdb9%$G8N}K1$O5oV^qLmn(7-xYdLP!-07c#r`8**kIn)uuRkf5<-rG8!SH0S3Ri04@Us7M z{Gu!nW*FMBE@=u)db=OCriNjpY`56JAQ4pUj^r=f^fz zSH28N3ZJ1m<5R6hzgwGj#X^!^D=2gQam2BrYN>XrGF0+9{{CB|bc}5QE0NL|#k})`u(b z+6q&Q9HGLu%JcCp)eiJ@*W-(Lz0o<67n)-e^d1*luSC!rVw{fqtuPqsA1U{fN6PIL z5#eEfHO Date: Fri, 20 Dec 2024 18:10:08 -0500 Subject: [PATCH 58/84] librerias en desuso --- src/comparative_analysis/main.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/src/comparative_analysis/main.py b/src/comparative_analysis/main.py index e98386386..07447aadf 100644 --- a/src/comparative_analysis/main.py +++ b/src/comparative_analysis/main.py @@ -5,10 +5,8 @@ from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler, OneHotEncoder - import numpy as np import pandas as pd -import tensorflow as tf import keras # Crear la instancia de Flask From b8965c6ae4c194cebee8e4a8f3c327fcad7fcdc2 Mon Sep 17 00:00:00 2001 From: CarlosKC26 Date: Fri, 20 Dec 2024 23:41:27 -0500 Subject: [PATCH 59/84] Ya se puede consumir la red neuronal desde el Endpoint /predict --- src/comparative_analysis/apiRest/get.py | 34 +++++++++- src/comparative_analysis/apiRest/post.py | 54 ---------------- src/comparative_analysis/main.py | 60 +++++------------- .../models/{ => DBScan}/DBScan.py | 0 .../models/RedNeuronal/modelo_entrenado.keras | Bin 331615 -> 331615 bytes .../models/RedNeuronal/preprocessor.pkl | Bin 0 -> 19783 bytes .../models/RedNeuronal/test.py | 10 --- .../models/RedNeuronal/train.py | 3 + 8 files changed, 52 insertions(+), 109 deletions(-) rename src/comparative_analysis/models/{ => DBScan}/DBScan.py (100%) create mode 100644 src/comparative_analysis/models/RedNeuronal/preprocessor.pkl delete mode 100644 src/comparative_analysis/models/RedNeuronal/test.py diff --git a/src/comparative_analysis/apiRest/get.py b/src/comparative_analysis/apiRest/get.py index e55fec284..c2bac0dd1 100644 --- a/src/comparative_analysis/apiRest/get.py +++ b/src/comparative_analysis/apiRest/get.py @@ -28,4 +28,36 @@ def get_product_by_id(): return jsonify(product_info) except Exception as e: - return jsonify({"error": str(e)}), 500 \ No newline at end of file + return jsonify({"error": str(e)}), 500 + + +# Ruta GET para obtener productos por número de cluster +def get_products_by_cluster(): + cluster_number = request.args.get('cluster') # Obtener el número de cluster desde los parámetros + + if not cluster_number: + return jsonify({"error": "Se requiere un número de cluster"}), 400 + + try: + file_path = 'src/comparative_analysis/models/RedNeuronal/productos_con_clusters.xlsx' + df = pd.read_excel(file_path) + + # Verificar que la columna "Cluster" exista en el archivo + if 'Cluster' not in df.columns: + return jsonify({"error": "El archivo no contiene la columna 'Cluster'"}), 500 + + # Filtrar los productos por el número de cluster + filtered_products = df[df['Cluster'] == int(cluster_number)] + + if filtered_products.empty: + return jsonify({"error": f"No se encontraron productos para el cluster {cluster_number}"}), 404 + + # Convertir los datos filtrados a un diccionario + products_dict = filtered_products.to_dict(orient='records') + + return jsonify({"cluster": cluster_number, "products": products_dict}), 200 + + except ValueError: + return jsonify({"error": "El número de cluster debe ser un valor entero"}), 400 + except Exception as e: + return jsonify({"error": str(e)}), 500 diff --git a/src/comparative_analysis/apiRest/post.py b/src/comparative_analysis/apiRest/post.py index 52ac46681..3519fa08c 100644 --- a/src/comparative_analysis/apiRest/post.py +++ b/src/comparative_analysis/apiRest/post.py @@ -1,12 +1,7 @@ from flask import jsonify, request import pandas as pd import re -import pickle -# Cargar el encoder, scaler y modelo KMeans guardados -encoder = pickle.load(open('src\comparative_analysis\models\K-MeansV1\encoder.pkl', 'rb')) -scaler = pickle.load(open('src\comparative_analysis\models\K-MeansV1\scaler.pkl', 'rb')) -kmeans = pickle.load(open('src\comparative_analysis\models\K-MeansV1\kmeans_model.pkl', 'rb')) # Ruta POST para buscar productos por diferentes parámetros def get_products_by_parameters(): @@ -31,54 +26,5 @@ def get_products_by_parameters(): products_info = filtered_df.to_dict(orient='records') return jsonify(products_info) - except Exception as e: - return jsonify({"error": str(e)}), 500 - - -def preprocess_data(new_data): - # Cargar el dataset original para obtener las columnas dummy - df_original = pd.read_excel('src/comparative_analysis/database/Adidas_etiquetado.xlsx') - df_dummies_original = pd.get_dummies(df_original, dummy_na=True) - - # Convertir los datos nuevos en un DataFrame - df_new = pd.DataFrame([new_data]) - - # Convertir las columnas categóricas del nuevo producto en variables dummy - df_dummies_new = pd.get_dummies(df_new, dummy_na=True) - - # Alinear las columnas del nuevo producto con las del dataset original - df_dummies_new = df_dummies_new.reindex(columns=df_dummies_original.columns, fill_value=0) - - # Escalar los nuevos datos con el scaler previamente entrenado - X_scaled_new = scaler.transform(df_dummies_new) - - return X_scaled_new - - -def predictKMeansV1(): - try: - new_data = request.json # Obtener datos del producto del cuerpo de la solicitud - if not new_data: - return jsonify({"error": "No se enviaron datos para predecir el cluster"}), 400 - - # Preprocesar los datos del nuevo producto - X_scaled_new = preprocess_data(new_data) - - # Asignar el producto a un cluster - cluster_label = kmeans.predict(X_scaled_new)[0] - - # Obtener los productos originales - df_original = pd.read_excel('src/comparative_analysis/database/Adidas_etiquetado.xlsx') - - # Agregar los clusters asignados a cada producto - df_original['cluster'] = kmeans.predict(scaler.transform(pd.get_dummies(df_original, dummy_na=True))) - - # Filtrar los productos que pertenecen al mismo cluster - products_in_cluster = df_original[df_original['cluster'] == cluster_label] - - # Convertir a JSON y devolver los productos - products_info = products_in_cluster.to_dict(orient='records') - return jsonify(products_info) - except Exception as e: return jsonify({"error": str(e)}), 500 \ No newline at end of file diff --git a/src/comparative_analysis/main.py b/src/comparative_analysis/main.py index 07447aadf..7ac9569ee 100644 --- a/src/comparative_analysis/main.py +++ b/src/comparative_analysis/main.py @@ -1,13 +1,9 @@ from flask import Flask, jsonify, request -from apiRest.get import test, get_product_by_id -from apiRest.post import get_products_by_parameters, predictKMeansV1 -from sklearn.pipeline import Pipeline -from sklearn.compose import ColumnTransformer -from sklearn.impute import SimpleImputer -from sklearn.preprocessing import StandardScaler, OneHotEncoder -import numpy as np +from apiRest.get import test, get_product_by_id, get_products_by_cluster +from apiRest.post import get_products_by_parameters import pandas as pd import keras +import joblib # Crear la instancia de Flask app = Flask(__name__) @@ -15,58 +11,34 @@ # Registrar las rutas GET app.add_url_rule('/api/test', view_func=test, methods=['GET']) app.add_url_rule('/api/product', view_func=get_product_by_id, methods=['GET']) +app.add_url_rule('/api/similarProducts', view_func=get_products_by_cluster, methods=['GET']) # Registrar las rutas POST app.add_url_rule('/api/products', view_func=get_products_by_parameters, methods=['POST']) -app.add_url_rule('/predict/KMeansV1', view_func=predictKMeansV1, methods=['POST']) model = keras.saving.load_model(".\src\comparative_analysis\models\RedNeuronal\modelo_entrenado.keras") +# Cargar el preprocessor +preprocessor = joblib.load(".\src\comparative_analysis\models\RedNeuronal\preprocessor.pkl") -# Ajusta las columnas según tu caso real: numerical_cols = ['Drop__heel-to-toe_differential_', 'Weight', 'regularPrice','undiscounted_price','percentil_discounted'] categorical_cols = ['Midsole_Material', 'Cushioning_System', 'Outsole', 'Upper_Material', 'Additional_Technologies', 'Gender'] -numeric_transformer = Pipeline(steps=[ - ('imputer', SimpleImputer(strategy='median')), - ('scaler', StandardScaler()) -]) -categorical_transformer = Pipeline(steps=[ - ('imputer', SimpleImputer(strategy='most_frequent')), - ('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False)) -]) - -preprocessor = ColumnTransformer( - transformers=[ - ('num', numeric_transformer, numerical_cols), - ('cat', categorical_transformer, categorical_cols) - ] -) - - -categories = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] - -@app.route('/classify', methods=['POST']) -def classify(): - # Se espera un JSON con las llaves que coincidan con las columnas esperadas +@app.route('/predict', methods=['POST']) +def predict(): + # Recibir datos en formato JSON data = request.get_json() - # Crear DataFrame con el nuevo elemento - # Asumimos que 'data' es un dict con las columnas correctas - nuevo_elemento = pd.DataFrame([data]) # Convierte el dict a DF con una fila + df_new = pd.DataFrame([data]) - # Preprocesar - #preprocessor.fit_transform(nuevo_elemento) - X_new_processed = preprocessor.fit_transform(nuevo_elemento) + # Procesar los datos usando el preprocessor cargado + X_new_processed = preprocessor.transform(df_new) + # Hacer predicción con el modelo + predictions_proba = model.predict(X_new_processed) + predictions = predictions_proba.argmax(axis=1) # Obtener la clase con mayor probabilidad - # Predecir - y_pred_proba = model.predict(X_new_processed) - y_pred_class = np.argmax(y_pred_proba, axis=1) - predicted_cluster = categories[y_pred_class[0]] - - # Retornar la predicción en formato JSON - return jsonify({'prediction': predicted_cluster}) + return jsonify({'prediction': int(predictions[0])}) # Ejecutar la aplicación diff --git a/src/comparative_analysis/models/DBScan.py b/src/comparative_analysis/models/DBScan/DBScan.py similarity index 100% rename from src/comparative_analysis/models/DBScan.py rename to src/comparative_analysis/models/DBScan/DBScan.py diff --git a/src/comparative_analysis/models/RedNeuronal/modelo_entrenado.keras b/src/comparative_analysis/models/RedNeuronal/modelo_entrenado.keras index d1bb586eaac663ab55948981873abf9ac3b0c821..c8fe737829c67a68ca2e1a5900d6aca0a055b6ba 100644 GIT binary patch literal 331615 zcmeFY2Uu0jk}gb6qU0zd!7PddCG1tL2qGwo2?YTW$x4!>fPo~SWDo@jDkzAef~bVu zwFE^}%%XxB6Xq-eiu!L9&V1*aIdf+2eg1oA?tF`9@7~>A-Cgx|b*<{^X5MT;A$h*v zk0#&SrUKuoyiDI`Fz@5%5#s9Z8sa)}WpIFhq}D2rAlG1*Fpr>Mp8$U?Qw=SHiAEDA zY3XQa@rXQJf?dNr-2004C+Qnb(9@rwKWUo2zNvwcsiB_M`gwmh(sD<;kQiw`zP`^O z-bii%{+>Qw{p0urxQF_B^!4;>#J&OCd|iWsUHo1BeibkDSRLx&AL8Tc`>XC(TON6& z)&N29-w0d``$$59Tz&jqSN!TUBq-FQkL8f?z`o8Rwf^aF7K?bK^8$Q*+`|9Cc%Hri zt|12cTI+co2YGn;1c!J8dAJYo>mTat%c}_XcI_(+Sh3Q>EyTsA4=Oz)J!3tCDF(*+ z`o_k6jeT9idGPXT9RC$x6Z`9URDX|#wSQn}h)rL^KXJFhHN?%^g*WUkK^=dyVPI(D z%!)wdaRi6mn4E-AlH}Mbk!M_0cJ7u5g8xRx_V(0JU84%?6C%l3^eyzB^nf-TX zMXQgm|4lxYdISahX76wF_3w|_FFkKPg!;M${X^;hQ2%d8Z}UqB{-7eh`aBFLO`J4I z@82K&m&AYQo7bv;9rp9Z>ofS5T?qM?s$Y%%RmDFZh&SsiLVbMQUH-t}@5SBVIRd0e*o#z8-&crvd^)eEj~Q^Z2*gf5UY&b9eo-zdYbR@piSp zs(d|MgZzE`y4d88!gWX(txOwvYfq=eEM*kRIL9XsTy#8EV z-P}U`cy4&#p2dZ?I}PmHr3`2tZ`}qFa@auU@m}JBw zarF!C>zUW&7wiB2%eRj`9;KEW&-wET2=d`E>f*-RN(A%x;(4*Zw$#5w_zm(O7~_Q> zc;tNrjyy-lEi}lLCw8Ag{-)&ZrT>MZUzVUye-{r|FOMMKK7a;*{UxwVphu94$661! z(Eg2^9Ys--~PA${>%FK zv;O{*Vg9QAe;k27>+gUaOYFC61L60^#QXmE-T*Ma;zhhne|(6qKYlcjchT!7{9Uf!AH(9~ z(-`RBPw79>-$2#hgz0L((|@MF(we{N2I5nH8s@L;|KkY!S$_xO))oEwGa&xJInO|x z)M}vOe=+?XCl}^LaDP8m{dzml|DW}EAWm+T^qb;ubp84Cl;0(j`umH*zo*;RpFexz zclm&v8gYM5XVstgj{jY*(cho_@xP~w>d)`0`CZ;m_J2J2N9SesTEAIY-p|oLvjb z*Y@XgH2%X~{*NRaI4}D%UjM7-Wqo#e;JmEw?5pp*?bn?2PYgfbm|r;a3;Zr{?k}JA ztCWxL&v`-Kjg&qT8I9rnXIC10N@9FU8~f?|-UNO10s_A~6zjjiBFKMM`%hi=XV>

^GDI~QPCJVb0(0W)wm>K0$!Wp0ZFw@+#h$HsrD3gtW%nc z8Q)XzZd)Ywy361hzaV_pc8!~JsveulB|*`%3}08rpu=)YD33memrc4Do$eeA@{31} z*u(fxz6f=?(=qRaFRI44BXx7(Jdus2qf(4<+vhswcu_R&zqboTh17}3wOD*`>KNT> z^PS5{QbnuiP|Te;AE(!a;%)bC%3)5U#k~ETv0#q#oV?Ndn;;%_{=kf07>+gdR^H^kURVvN7gD2jV1JGi`5jovNH%Y<_hD!DRmHKDL|gR(JcvyWC*kIFBVwF1 zg4{||#rT#I`XJ*O6VQGIo`hS`!pftZQyX;gP>?^`IS*nF4T*uCuT2nVZ~z9`4?_Mu zThWex3AnxgfWG-pVdjbF$UrTVzgCT%WLb{ocHJ0Qd=uiwX|WNl@i?z_BPQGk!i!jd z5+3Fdmyk_&E(izfrwm=$x{0!8Y9u6N0qIN)#NKF~x_upu%)(rE_NAg6*j@F5;#p@v ztmYYgJO3KIJ2wmVXxXv%Y&N0);Q83}x`Fw&*pbuvU^4iwS;L3~)Z!!OOPuRR>#=8T z0git80q!c)Ff;4b+3I_j@pM=e)5*7nvB+5qmZ>?+OwTZ;_~Ivc^{xj$yWWJUhIQ~d zLz6YLjAGtjzQcL2_7ulGL;&}*)8RE*ur`vrKzPj!Fu9hAM*BOk#z_%pImv?Gx+&n6 zQA|6hOeFbKe~0f@9ET)D@E?-LnQ`#cd%}icbT-QGrb2dqY}n*Mc>J>har+ zeelD45Pj5;1vj6?hJVZvD!+CoSg$$AS#fqAxMUq+Ue*_xX1?fvuCF`rMrbjrzkLF^@QjoF za1B%i+(7SzEnJ0^r?_Tu4pX&EgkjgcKy~kHoX1QWOx)9gUqoZDusNi5+N-lL$Xk?M zts{fGdp#L9{-JakBZs6+0c+o{r@77};Pmun9P+T7=Abb1XqqsL*?oqSw{Qx$dT+z5 zSsKhH*)yi^-&z8E^hbwtsm#+Kp48EI54dP!nkmEkP6TT1=lj__-+$(dv++}8(zRf30Xr) zTNe{M<^X!AJ}_O>bR6~PDZ`DBESl!CofF1Uhe!P1>B2&OY@Q$t2 z>QZ{M`2>hH8H0I@1~Yk>EQUEmQ<|bfzv;Hs+@am_@AjBrYi;VDFPm~hN!PsV){uT zg~?Aaz%Bm!L2zTFyyCV_PK3uO=I%>AEDUYn+8b9;^)Kh~Yep1kmcM02m7c~so3nBK zPerynim*4D>ls6xr?|pTflkq?!N$WY(e?N(&fZ;oWaa7_ytsKMIIJB?8otiJ3&tAQ z^H7eRYy1X%1Jz;nD-j~PryJMVOS8j2YT=MKGuh(ZQtYgU2XX4;mlz+I#eYI>SWTqCN&*MnC%GrP{P}q;Ft4rYUB~SFZiLmJF0p{X| zYp9@%S5s2z0_v$K^nhR7Bm9V;KhStJUVSOaT{NW9|HE_h)q`^W94&5 z-MbV7S6`)B)k@^&K`y;?OPEMmixcyps~}cw#Y~zUhlK$mRB7>7dZqa_J)1li6J58X z(h?7>dUlHzP0Itfd*g`IDQkE>V=$|*FB&AnmFcB-d%&b=E!627aHrjy4f|FX;T3m1 zOgVrw#+lWdDYSjl1NBSUv39q!2v6fp;}GFqfoVO(R4$F%Ru?7>(nmcsWcE_gqNC+%e{87o~(Bcc|f4p-hJOUCeBn zeHw-8L$Tr+z^Eu)`k1?lRu&%y*{A&SbZilf-q0i$z2pEDxapm1VcwV{+;CThzc_{o z;wl-9xaPz?ohg8x7nf7(#x%NLE{DmLD1_2a#~|W$1ZuoI0-1M2I3G-2!@A(nRH`Qi zN4tw){6f9#u8$6=d44LYG>pPG#sbvZZV!#vrAM+q-avb;g&3!nfJ~cY=G34}IDexA zd|#eNA7gVetXP+SnU#0iQf;Vb-!;urSOWr&f)} zTy=Z+dhap5*{+2%{mW=azyqkr`A$Q*hLE*<0$X`I7h9j~$J5hE{;b!6w8X}O=yfMC zZ$*TlV)PCs@I?${hRtW@p5?vEN_R3(9yY^cqgimeQI{#2El6H5%{Wsa9qXR8!<|N! z(_x*%6qrTHo^q0B8^yN4#TSTIo*%@rQ{qI$J`2-}<4#GWBnaD~Dq(0;GSjD5G4 zdwXLV_%vSzhu&}C(sTjLubgEBEAM0S&2+LUr~ykozkyP_2!xH?g4K6Q;qmSgZ1t)| zm7K$15Os1U=E-`Z@o5a3c>FCM zgmKKq{e~^eG<2KQ+tDBg)oB(=$ybsL}=41A_P6Id1H_Xk-9SY-2$H2<& zAyi&^706qr(#!MRnR&(!n8J*G^y5xn`o#GMr=)Z_6IywmDcIP|qz;-#Zxz&Yx$aNs zm5_JL>Cd@vPEP{fEGnUOvlc>rof2kCbaHzv1@UP_I}^X{CwG>NG!?p=0|xQgjGE4F z$gC73++#Uhr>9@IhU@qs>-0+IE2oF9$cn+$xD}K}RbgoP5sV+NjxJ?sIELE|;%2TG zrx%6kQ*PnSTZ?(P2III}3&FFe6t88ep*T$<#~u}6`vFgq82SdoVpB*;TNL>@;uF#kiM~06*t`hL{JvaAV2|G?(vz_z%+9)@4QRoXSMCoh&}sS_#V*x8U<# z)i_Cc3G9mLfedkNo{u+$fIdHaZ0sGB-PlSC&+8Hcxiqrn*m!buT>(aKZH4AJWtecL z48LnVrZqFJ!`R6I%y5Ils4SXD7QBdtJ4Y2r*EkJw+Ql4$zAVT3(^JX&2gT6oyby!0 zA5`uMxwQRZW;sXy>PD!YmIM1=uQausvWr1L zNpAGIpzX6b->IJUW9DYkCET)l3w?LL09)hC;hnW`-J#aaoYGfvocUi2@*iKZWzHBa z#=TGFm@G+Kx^>Z6#*rhNnG&glnFY3R;kb>m^|%MLWLiFVgV*`Gy!4UWi}fjVg2Ogu zoV7bA`tdki-eLiz`Y{k!L>b$)Q{+djyGDn+uu}Os;vDnZH3`geN6TJFwg8yn(()POlBTf_Y9+`jbnqhiG#33!_ZNvf*!1$m?NJ z5IeXBlh%J^N|q%Md0A`ne*YJI^KLt_aM5N(SA~=Fe4(t&b91)%_F^{rS`17Y*^8l> zr%`u)4<1%>VRvh}kn2$f?8P&H(b!TyHmI&=n%Zyrp}?b%H-B@!7n zy9-7SThG24=fwWRDt!K7GW*f907p$Pf$tWpG2~t% zO6Gi@t%nL;YrzLA(Ou|0I!{}IceEI@>YSo@NA@8E?lC*g&p*^a~fuyX`<>M zs?ag*IkU!P3?2D(3vLXvA!8p7stJ6Sf=h1Rq1F?H;l8FSxNla&Gi?u{^nMgXi;ZJv z>OO^``}E1%hkjI+TZ}Rv_L?S@)hWNPxC&{;IiNn+7_ZB-FllxI+I&1=l4|BoJMG&r zeCm#cpPXjE6|~08(OsOfLE^pQeTJCu5+ZvCEt`JQ+md>)+C%im50%s}B5P!fE5SD3I*ZWTtluDb+g0(_Y^D zOq{o;4h-(8UDucd2S((giY-{&(~@w&=5|M(E}o0f-%lh)9ls|{$L!W;9V zuH3bi{`9+3H07pl;SAxH)8@7_5b%07uCqPQY^iKw;!cFabxs4F6{ZN+nn5;-QHEg~ z-(;CqPC_qwha)lG1DsBE!shHFux@@^=0sT~8AlmQ+EQl%R&RGRm(U8Tq;qhFl|Qa- z$)b<56KNrJ`?nLUoe+LwV zYjf5#jiO@Bd#T2{pVXwq4+~P>(%rS;zOAWZuw+_LE zsVX>_+TsQ2Gx#Y;2rjIiOb;D9fcqxA$}QN>rE#4eFmzlq^_(ysBZQOby<|n)weuQ0 zeWI?M-2RP|^`e7rJ=6?qccfAOSWW2Fb->n)>C7Rq1x&=5Q(Py}T26(05#z188$uj; z_TuXo`f^D=HCreNdM9^H;;3met?#43(p-vp@M;%56wyiVzrH}b6Ov(mWEn@r)R>4PKW!Bki3pz5^ zOnS*6lJGtQnfzmQ4*pVPeUcQbcx@K?-?~Ia*YlC%y1OyWZ5M?@mvGNSd6smSV?z*t zf9h1+7tjWa#ixN*QXx&Arc8^Q17UP}B{OPRHoA^>rQ*FCf%A3`tjkzack6Q{%nLH2 zjx~oN)AjMx(5uvSqc+Ecs$j*6AB<(>QMziPJIILyP$lU@aEwz3W>JDTyCs8aEHz+S zB@QyWGpk{<)^f0TZVj|%fmdU& z#q2XT?&w~ws;vO`uuwP?_@EGM+fG1z(m@E*ILl~$T$81`jt>V{PQfM9Y&a)o4T0(D zqBQep9b0_;E5qOXi>2uhVbR$f#;)5$ILQkB=>Fx<2Dh_{nOFFIg&#i-&>*o z&;88v-cszSKgy9z-oUZnUdOohOfj8My9s41>X;m>7N}jJ3E{q)s5dDHZNDVJ;shZw z)V&Gc-&SW_N86D)og#cFyBl{V4rP1qCgBXuPF(q<16vM9lFbo0+}aJA7%F!h&v1%C zPx~v5t-Q))A2*U2dg~4PBnYr|S|`z_%YZPsgV{+}k~nilsnUDH>NzhDl~d1-7;@<4 z7u+#B7Bf_9QR-nWofsA^Kd(3lh3-@np_&u$?%j6~pWTf|jA1PUlg|IerDeO zSOiWTvc&3u5m@YaNh=%T+3wesxW%p>rWkcXnN16gHWgs!_y~{(XE&mu+Ic3Sc|N-& z&y$dl*lJ=>z-8Mg)eil{7@ye zZ_cO1Gaq1#-zvI@bBW&IMl+u-N6F&k$GBNU7ew_G!RzQ_2;VjWp1t~x$$|o;bL|4g z-t`bTEI5KkOB3KiWhuHpZQzQoo1S}QjV)c&DnwE|GMQq97P{1F82*U5AeSL{5=y>Z zryHe&a+_4&!Z=Pmc-tk?gUVb^YIiD}o2bsc`}jH?cJ2Y^=h8atEZB$hwj8B5n7wdc z{09v<=`v-MnjqR-%!Pe2IttpI3rB4CJcEH7ju|Jv)R0}sKZ1-mt3`nxY0^tNxx@4g z73`$LpOKHblRBo;g*iWP!qhCVt5N}jW)pJnzCL7Yjo}WSGMdbY zo6o5i)~2~7{CM)zIgGiM%sH&$!rW1i0QFA>+-H7D*t6{>M0yvYo;=#AfJGIF;*K9c+`P|FM-2=RuBSDI!JmK|Q3s_=x4pPmH z@_lrF($X24czS9Z%vDQaRGq@0;ha6^%;*_8OS+ZG1=BIOy8Z{Pm@u0vCOM#OxU*ci zwj$nsdYqZS?tqlaN$iG_F7R9}fa}Z@Fjeg~w2!<7+jcxlw^-A13zmZArSoPY}!^QiaE?@V@^9o}2E5d9O&U}mT!JH6L@yRKI$u6lUf z(0q0xcT2n+X>nPHJG$O*-!2h`CSMPFONfx6M(=rkwj9_Omnzu}=WYWB_cjju)-7_qhYneRX%l|BQBeMYo3PjmU@rKB4`vDi5<;m7d zPw8G+K6cfHaQqTGn$+L@4BrmR5yNdpnX{thXwe!mRIU#;o;O#PIEwyYJ~U=vSa*TK zS6LP8@Q>hzPrRf0&LjaHZkcC({yB#h2WX(Av>thzAV6gz{9yhZ9Z-+Z8QOY@4>Lb( z!}~_s;KpykFoW*k)u3&#DSS8^HewS9PV!M+zv z5_6J2(N@f-GC7WHK*b=kHe(4>c6>Q5-VsLvb+2NIeHZu#@pM;@pQL<~M*9!z@xV+0 zwvl~}@|N}_T5cz%#-2g?VK-BKd>g|vHl!+7pXGY2XYC5p$j~K0aXY^%T8Gxd z`xYi=+xJ3N`m8+B*SCPpKP*W6)+#){Q<;V(8iN0}XRs=KGCP!$kYztgAEqyP&eXiL z$I!7_c&|5>dof5;cD8*KLbZ8y(Skaz(ZmRuK{taau{(`5MM|)6!!Vc|cOTx+IA-Yk zhj{*S6G-1`VVY`3fK1L7eDE;=_M8mI2QPH-$J8s_x;jUCyl^j!(3OT@%{ZDJ8-pVi zC+7BEtb|vl_E>YZE&X%JFjCQ62zu0j?vs_NIoNCt@y;4BH&mK4b9Fs4Sob(y>k*Y} z4L3zompC}{F%plD-zFc`5=9-vwnJf|4m=)}&FEC-qrfiPx*h(zxz<_2#MAIA4(&Jz zl6k{%_T)#hUPqJ_ZBB=Pf3^?zYxp%LF*CZ(Op|w}Asd7~ud~qcnE__0*HK?n?E_+}hd6e0-)%uQXTcosa0^DqZTUFZcM#lt zeulRn)?sg&Cvo&7r{vgu^o2P+4YYGY6t=!gM4$98C^ly#x3>2ttPB+;!Zka0+}Lv$ zF345VWLZU`lEERHOa_r>))H*Vj74hT%Oo0*lMJ7xjX+VrG0Hdz8% zy`|VAA>F1Cg_baEv zw8Na~g0(-vcK0aqdax4d*{~8LB#StfM_Z}$Z6ziUyWeFF>nd_K3b84+z!Pi zK5No7)ft!nFlP%B4A?Q3G|9xl8wsE2G`75RDoL9*o;%kg2Xo$s6Lmdx92_b{)+WC4WiyF39{b17@Q}Yfoh~A zEag5@EYQPhPGMUt_FD@|nB=kP<&8$Rc25I(U+>@<+Ut@(W9VZb)3b9NiP8Scl4 zFLB45ms5dLD2=vF8}LQcWf;Ax8D%u9xnXUoxUB3Dj<&tdiy6OH36{w)omu}LR@B9l zADgDJ&lW{N(U9{@IUR{fc{|`vU<6s8ri|NkmC4*89VnC(O<(ZcfTbJiU}4EaRKGiv zPPl8pp7OI~JGSnEk7Ds8lXDJ(KPq5@`+DN^)Q+_}c^FhJj3FdTgK$HQaBQ*{oDSc} zR+K-+EGu>9u=#Ud-5h%Pr0mGaPJaO}#IHf1PaXu`b0FDfTzqp|iZC6L#Cnl5E_!UmDmMp{BWaUZ zeH&52{Va>Q+eEQCA(R>Eq>e*IDzH6Sio`R}mfd4&M;eYqu?h1Q!7R(G#O_aTMw+)V+b0p6{2C*IGH4tXt#@>7_ z&WWnON-XZoBvrF{`ee|;bWd!6NeQcP_Ngj-RV)clp1xtSxSFKf;VUkXt_BHFe)jD5 zz2sS86IR#f!_vEy1R#ekS}VZDDpf(FK?a78^I@&a4nn(ECYdlIm7b`!Ag%fNcz(xl zcF=nUGa{Vfr%O9r)J}kN&5ls}9HPEv+QCpvxvh+Ia8tIL~kG*M9;B4ll zP6G{DBAEF@8?V<164&H8^vn!Tx?*D|SKY4>-nvM^rElqYbWamZ+$F?b*%}A@ zWr|oN)=9sU5?HvXf;uIQ>7#9aM4l+7wuk0r7UFd z{H!9nG5i*W+&5)P9beIF!|q~4)?>&Lu)~kMGtzH!oM_?Ib+#94~Hz$#v_Z~$abICN7;QYbhcLw-W?l_Au)UC zBdW-BmTd*+MlSkk9EDwA4g4ZS;QTI$zS&+zXO_H&AIsuknCB(R4d$H@sr=vsZ8M}g zJ5QnAxaoMTRE}DVKF2+oD#DEXe21H+&0$lIeg*&FVsh`*aP}a%09&O6Sh-mRX!!gb z4S)6tEH}u4tktQk=M;jU?Myek?MP(ws{*~$`HcarM67^^&fI~Vk)Sem^`HGEKpQjy#!;Q z1aJioDk+Hf?1l#pKFkHh?UTzM?wP)y*`LJFeVC*+*&T%yhx9Vgx-ayn&; zAFz0RDws#AGn{ZmR_di7Te5R93Y<=-B}eojq+lk>n!E&OFGKR3?<7tQ0=$)30H@Y5 zWa{{ZFg3n}J7vvV`s3;oSTo9)CdyudL-ECM{(US?=ZN9ReR(n~MK06HW!vTW3c6{> zq=ldsFTTCKZWl8welt!J$V*!+u}f~4%MO%MamMuIY{;w9gyAYvA+WlPS#%~13uUiR zcPD#z6t$hEnUumKzaflqx_ZrKaeHQ+%30>3;&vu1>l`e8s?Su7sbxkk@RvVcHC1lj z@U;-O%o%vs%&^O94?cf*UuA~jUAW&i6?ZC(Z?w=?=Gm5h|_DmA-S=L*;k$fN9XT= zgoVj)lAq@Tsq1j;kKdvYoe1x&(m0(O>aadc9_E`oWg3^U@Nkw8TO8q!v+hSSUtcuT z2`qO-@x%6b#I1o@s6UaqZWxQt4hq8c=M}Qir5zb3+|@WAHQT{d$OgFn@^F%e!`B7x zs84D%Gi0$Sx%A{DI5WHOgZMbP{j-(8B6m1icD4%5!rrr$Yk3nMc&Q{YVIB>dP6{QA4mc1I7RtXq!Eii331j2Sp+J_n{4@1+5U zf|wl%`{}dM&M^1t7!1Z@YW?~G*MoBkn&hLI{JjETT=y0>ev=?0k6(tdNB2N&(kB$l z<0IpjSYYKK6)=9c855Qr#F6h5NJ_XUyT<-3j&81nq(D1-dQF`aXW6qiH2@SE7o*Z% z9inw#oi$v14!vCWp>U)!dsp2S;_^nZbIpPw``QLFGj$d2Uib~n>b%JP^w$`?nU4f) z6J%3PCc&r}bF#jq9j513L)tlER$=i{&Lh7=^ty;8YMD>O<1}U`Xc1T}S=hO*DC-=mcCI_mjRlGUI32(>zdU|ymwiB!>HMfu({ zXP3ouqD0LwdFV0Tep-SSb(q%~21ldDEHT1+{U5tMv%Kck)* zcW|@mgNc6B;_+l`^m;;<^`3{&f}J3^w+IY}Y^ad&&7^sQ51@Bf2InkEp#_0m%+4{3 za89x)zBpDwo7dacEp9x-XsFfDsppS!eXJLuU``VAFm)Vc-?wE(>;UXt=ZE@l>$oO4 z%P_>O93L;+0%>~=fQZas=I5(DOs9mb>W;8|vr<6a;^f=2TyN%GHnRrj`e)sP8sGjOX2* z{j9!=a@5{3n+pbkEKm$IECe%TUKm@up9BKmA!^=Bh{aTrf{F+4qA5KPXT95M*Ral&_Knzq?um>&{6OXwPY)X7IjlU7aMPPxPirVP1&>Jq&m-|?MJWJ@90X&yKqC3G6Q1YdYWfcfV8Op!7l@h=}m zK8cuu)9Mv?S$7bSxNvA3-vZq`yYQJo7u>%jgP}Xp@!|W6aP+$q{h%9%N5;&gmO~ZL zwu~~8oyP!rCX&GqRLPNy2s96#geSHqW8!mVymI#*9n&(AauiR|){H7VJAvmmmr0rW z+b-sae6`1q#U8XqT?O96R?v*XcqrH_Ky!D-Le|I6w7eh+r!Uu|KH_8WPOvE4Cw!oA zvW!`0CWd1psu=%zJN)od5E?B7u!Y=IDh>Oqf0PAjhe8{(r3^i>a7gmmd^NWnxA6tXiRNGU$yOK7<``9=9 zxLcO6x!b{3+J@ERoq>snd}5BKoB}5yg38WX%I_GTyopwcB>G z&YqF%+%uo?(pzQ} zyMM=v?RMx^;pC6o@%sK)TscF5ebeO0mOc<7#`m_8-g$g*D(E488?}YH{>WrM*OU;C zA4@@M@Odoo)Mx8NTEPDN5cZB6ml`j-gsvUwoWRot=r;8(41PWl?}Y5f@p6NR`*3M` zk9!t37;tHGoD^wSvm{zI4QN(jz?`V%Lsgw4c=^~y_+Hh@QP$TWj?=~1up7zD7sost zl{uR1ifrP}2o}c6?>MNgyu(z?SdWpk-AWCo$S7^j%)lY;i=oI&5rQnE@aVR|WR0OY zRGf2y1CbBmbVV54zpBq_UmQycR?H@s*HA2wtbqLjO5|}^G)yqC!uRE;@Q!K{t~)8k zyC>6zM)C46=Z6~T0w1f(;JvC1M>(UJ zKAO3k8@$X5=el`9*cJ}7HB2FSv9Gx|{eE)NuiZeI_I!{_+DA*v*Wj%|DtOgyF!mHI zg-1KJF{t@RrZrzM6B?a~;*rlGtj!e~+LfVtS}J{>C<~vZ)XBpKcbU}4Rk-bNFK8{< z0`qdu;wyFyG=K;Z7dC;IkwJ0-J_mU?Z^l8syX76^Z{yv;qReuacq-E_UiZ3Gmek6m z5?Rjh-q^a@&ogJC|a0jw?}nJs#0{4tA}G!E(VcQkPN(5%P_&S$!{K zbMGA0l5rwB67{HUn}X|$yO?!Fx~#BGHny$YjVtmN!p}H2@V4$o7mWx)L^tBFbG&;u zSsifSW*Qk;EkHK)@Xl2#K7+TT6012Q8MX!J5skuCq|s0q)fU{uM6ndys1}1!InU9^ zX&)LFXt5QWa&Y~<+4ySXBx3FEND5yzG4I{1*#+!tIJV6L9WonX=wVaRSTz}6-M9z6 zT{p38Lj>wCW^s*%E!iDfOqJ5xV3J%YZnUeUB;JIrKYyDJ|8WS7J<^G-pE(Gnmcq)y z58TvnMT5gm461pzbH3Mh!I+C(uy)@9C|FPe>34LYTPvH(H;WH9j>wjKyLUYEBvz0t zF^k7fSb;iQ9x@?US-5tMi=tvaXd)hrDcANwgSI>Md!(PdL29F|{+WDdZDps5Z_fmQuc} z%kW&55U~vI21C#3aKV$GjUHVGu^VEIt>&nKP+1#OzULj?YWbGgicQQcZC(08YZwM@ zO~5a_yVqhjuAuc0e#q4AW>SA>pu&#;Y_T`wCdwG1P7-FT)YqDRksmRBV@)wQHt9l1 z=phI{rAu=>gP#wEBS}@03Z!#y#z3GC~ zcc#(1w$Qlj$uQh-zmde#G&q$iNp)h4RgCSMxQ&(DmF7L-!yy?_m?RRy2sspHS$rAF zdAEXrBUd)j!-BnB$(JS6Pw)cs?!9=XcI=$GcALfUdFLUTzAYK(~pe5$_QC=vvlUQlpCW&EVEYh9$?;FcVWf}?#oi`5U4xj_>qRs9|YUBW@o+I zTE)l&ed4y5-lt-^861^E5()Iq;&3iHay>^nZ5MPFFaF z%{x}ZgmF7fYg)fR?}Tw!J;D-IH~V0-XE`c zOT`Kpo?eShX>$~j-;yVY&&Ld@>-vz!v5{TL6kPPg%u_?MJGYBsY{44HI+p-Dgp!$# z_;nyGl?OkwmGRvYWzL&`L>lpBCX=A^jFC7q8lHybGVe12wi=bJ2EN%nvYVV@sN%y( z^h-=3iWnEs16G4ENr9hP=DCR(ulbO>UAUGrqec{s!%ora9|DlS*9Dq(%0cSe5%Olf zk|4c6gmO-p!G_LM`11N2)Aj9&$(Hz+)No54U7B%r`w{dVtGN_ep^n?P;EG4nYN~GrCT{nerv#JwhRNep@&dotq|s1O$6VN z;i$82C9ZtW;=;pi7?w~0PHlWB^fL+dg16wZMx#8vt$O(6&^>0OwFI5Uw+v%r&clVR z{A{E5VW{jlh##!Sle(uTVQB@Shs;A@H{TGP_(>3d3QALf!%YxnJsUQhIgPj0&xaxH zF6cV;0N9!i#fs0TXhGU3Xw}I;58gTdpsWP2nzR#|-`Ub9hMz$_|79(;7Dwsf2KZq9 z0hqjUI7u<&C+Bav;^`A#AkI&MH8zUN{kmF&dGLHbjESr}9B#A*udTNs4gvAZu!*XK z1`i?nJ73}I;)8hF>=-zEKZ4f=%j!};?%i>Av^cY_V0+C7Jj{6{@s8fKQ^BI$aS-?U zHPt*ah08eTU~S4cdcLxdM%UX=|E8~Wk5?Vte>wri2nBIN^Y1YWO=RdR9~NpnQ$eEq zF?ZC0D0nq}F)sF#J#MdC1;$2_mqBiNky+N+{GU^QVjNsi@ zI5+}(-dv_vwwf^W_9QZ65{JR5H4-qU%mAHlm@wU&?CGuCT-f$~DA|L<7YQSAz^P%mqHFQsph2fS-v~^Y%4ZHLmI>guW#=b;D zU<-_DZf10y4Qb@ke0-s=!CovbL+uIYxHc-P4BoF{&P|BK=EnIr^0@N{hJ|9g{sC6ZE{r-l| zJQM|nYOx@o=+4jRQ>)35tb!irzCKSiSIE_V1 z5iwAdx&gy^cifytAg9jTiDZi)NBXg@DL=TM4Q&V8YaQkKGV z^C0Ys&BX{saTpe62mc>Q=i!d^_r`H6DNmIL!z4um% z%19w9e9rx$5}GPWL$r7FEz+QVpX>Vl2ha69&vnN8e!XAkUHT!>f`yetY0_LII!Dky z{XTr3stq?Po^eM%?H2CD>L}+u2J`*Tv1dJhNzChY?DfyZ{K*18&eO=44vh|j^EDIb zs}gBGCHETyxLt#Jqm$V{pexGX>H#UOx9p?3EbqH?0u&E!r1!2$QW_kN7f#LL{RU>z zQK9AJo~VvZziZCN^mpLdibP?ZUx1evEAT^muA|G6c@TCsg`RPD;+1YG@$)^5>A~Lv zqQe0r;lx)Dnq(~wF}pX?D`KV-V3wYM=j7NUIKHEPU8DtL{QUnQalcy z$d7cN&Bty&PVL_M@;}zd@+z-9S!|~cZ+egt?e%A=ij5{MkUR&bE`f0D@c@ogcUpJe&4)ITEnBp7c>PoP6G z#~{q3{GEp`IPab_FJUbq+@-_O_{CrNUEZX2e&S3%!|xSZ$DR-+4p(FDu_=VD)PPHM z<8bzkq5QMGv*~FGH=Oun09_xJ!@B(Y5W!Ezp$*Hh^ItapFqY*fT{4DUi3PSNC#sRz zODRk>GQ}g2qp4CD#U=Hhx%&UM({KO9!^Cd}G(_m)6zI2-(&kPW|J#t?H8q;OKam1Q z?;K-;dxX32#Ynb&N+=tXWWcS95ofy(hT;B;hADq0>;Pp?9ro^>65dljLprM)l2W;H z5QWPTh2KTolIxz}u9ILB+M^9to0BnCAck(9OGDj6F?^UXAFm`XM^BkiaNw*doPJQD zX3(>gvr1V4X5ZV$_L**Y;QLw5dR;mczRdzVKPgzgK8F>{4kz_xQ^~UaxtWXRDB?o* z@S63ik5kNiy>aW1Zql~lEIx47w2ie`K<3oN!^LgMHJ@id+Kry!czLuUd|0yy`_s0; zWu*vw;L#3KzcIGl^J1-U+gqY>&>Su`9b%$UBWNu2VvgMd?8*FxUCTnL)vPy=FSUf~ zt!O5zoXVlBw46#5)Z^5!q5OeVUv6@f7QeO7kzX$wL|0u|dV78k57_(^1oh@b%(rdAEy&%&k!# z&BxtB>!Hegxq&^esv*sft*0pcu18?gv+0?uCiJZA7GBY01jVgEh>!QtN59i(o5d6K zc{!4XJ@Mq%D_7tTMI}DL;5L-KmchLpBDy6+4xMvjh}xwS_-TnTYz@AL4d0H^UmeZx z=}|0fQ6I~l`K3TCS0#}!=NUEPdxJ5hBns!6gkauGHOS5ngrX_KL>qqG<}~ie;|wAH zI+7`gi+((W^1C_A!}$xbB5sgr9Rh77u0jtqShRt=$n5%(;c#OrKC6$wk>jsHY|}m# zq-Ku(-W1pF`NO*2){5r)KY)mh<6-U4`;dIm7wevX;sWfBGXKD2=6dTMe1CR}jdGZU zGa8O!y-GNGYD>V*x9jo2J26TYmEwMBU!wf?E4f~*0`D!o*@vO&*r=>S+0^wQ>vUMn z$!ZK_3t8vKlOn{jB+MgaY+7VCW;>TMg&JKpHTWhuKQj;pCY%ALtI7X$Lfm|&22~>J zM48`Z=uZg^p@UWjoS!#)v@Z_K4-cgq{}bl;YxdxqQVp7$ZHy_OC0ObsXX^G(joMZg z;lDsf{NYgoUUQnbJ-(F1e5wfU!7r*P!*{rJ&$9PKXOjPp)r z!IcRrSo~!MlfQ2SfA?=kkDpaUBGU#>MOtvPqYB|_5?!pc)G5%w# z4qdQ#B$&GHhGo@%p+()8KecitwJ5p-`QPKg`LHsK*H6b4^26bSawuk3X|Q8*d-0bU zWiw{K!__M<5`&EkD7h)jeM3_4Rf2WR=YlFU^LP(>jsbLX$VP!T`Ueg9BXGKxJnd1d zg1zeXVDRGz_xGV5Js0>Ar%HXnbtVYvgJY?t#%^M~z#a=$|AGLUBbe5=oCSTGi}ao? z&5b&W+hvnsa>FGYaWM#w>V>g2$;0S2kGpt$#XazQ69ZqI?4k5QIUIjh0~hs#+`gnA zV@&U{i@NJ+@bL%mQ~J5ch%Kg0!|m~?;bFYwYD+6v8dI2Y93Oo@T6@323aw}SAc;DN z-36g26)aA7ALenXz`=bu`wM-&vTpx`f~xwZGWPuSZ+MXNA819CV|#7|hRsYw z{qW~D2L=tOp`0V#Kc^c_%g50(^P}*`;p0N5OOD3={RcaIdB_ia3R_=K<+o2igV(0K zfHg_`MaOfFV5fn&z=-^Y-hp;3N$X^Gnk(_XjW^w;?|~B+9EFb0+34!tiwC8&aPja+ zqVqi;C7(^9@_kdusH!PYV(tLf4#mKVyfTul+k_`WK5_a^I@IXvTQKkphFcm7sKumA zOtoLYjK58yl{$v3_vB;rX`7e&R7sj|m|a3nx^&@Z)7|JW`V(wRzJ!M5U)iqsS$yMy zZ+L2vIlVwGfxxWb-`aABjaY;4Or(K6Jk9RCafj^l(ikB-3&Okqk*3*K*?^N2c0EzY z1E1b-?NYBn`9U3M42gs-3x;7%)O@o4zyT7~s0HtDCgC^LT<}kx1?HpAvsK|ZlnKNgbxPS1(Ur&UlJe;3l^+H3Ewh*5RA$>Z`#Mr6g{8Bt0`2q}pu zWfzV{iM%38h`;zUJY!VNcKqmIDSl_z;?9S)Q%~q%t+R`ozb`a zF7`V;!VBw#&QZQIUT2Tsag`m+N$_Jbi7S|@!EU%+TS>f|v$1T913PV;F7!Ay!O9F@ zTes;?AaUAF?tPd%K8Jds$qetkaS?UBd&8Dx*kQ5KW{5aF2mS7~;Dfi>P~B_AR#wL_ zu}KS2dxZo>zZ^m$P5!dh@%LEExU=MrPB9xkPGHJI6L9gE0nm{a!=K@&fIWRkG8ttS zpMEpBp&!WVk>W)AKo_+Bs;*r9FytU}1Y zeY4M!>r!2~e6lIB7#$23^6%?HPuqK`G%Z{rNj+z#;g+FwcwkB_W<i2^8j1xE~dk>o>8O8fF zs!{9dGE^gFEM$u$`KQBQmZX#Kr4dyul(f z8|+6&qQ~DO=)UP7u@}!~YO;ECoT>sHFg0Q>%S-T3Q0;+>u|%gSy=K}L#zhMZ%U^INa+Vh%@!UcZ za#t4(Y!ES#*?9#fZMd1nNtv3k z+r`RwbJaJ; z{XNWP|4=BZ>%hpb8uTGcL&KVJAoVv0rz#wTjbBeOP9h(Z%#M=wJ`GOHP6CvA`q21% zHk8@DgysBf(2* z0*c%^(0hsvE?sPuR%Pl7cV6m~<%ajjb;o?1x@{yC-IhZY&B^TLz7B{F-GsjHRhY-# zlcJ~#nYhhT1?7Kfr7O?B39nb%V?*{qP(QK}hQ#<|#_O}>t!Egzr*Flv6aFKG?ys5c z5ocCqbsVEst|MN1T%mTwa5TAF&hm`yQ2nJnjx@QzKAY?ZiMvl(?FylDe*6VkrXIsL zn+sv;pd|A#)u4OxCQ=zYEly&C7+t^K0E4VXVMv%hs~wmFy2mxCib^PonVo}$xl_^o z>q!VtSi{B++0TXsG{8*p2Il58lye`L0rsETVPNrW@bzhf9S0ww+F+5826#UTlc zFsEuw8noWJO!)l2;O%*J<}Elw<~K=j*QT|BV)RQ}X)g(sIc7vPfB#38-cp5Ur_|^W z$M>vwf(9mjZG`Ds1H^TYh>y}wM4KC?)F|7M*Ol3bnS)-u>CEYT`rgCz=CRkT*Hnyu zYd?t9yMN${ehEI%G8eKc5m(;0h8xu@Y2p%H{^Z3WRMvYZ#_!Lj?Lr40=EkAzmf2LZ z?+p&@%fUNVJK$upCe0fmN3%C8@!n})Ay4f*+CK21dOiK9H8C8WMhv5DTO;O3N%5LB zbs*F3O3fUsVSca*eN#D%f0XnAk2SC57rUK@F>br*sFerkF_U$|3}ZCSO_;;ypF#Yh zV1^r|htqHs2NDr~1~q-w(X@v$H1hWzs-Uonie{+uRxi7eBXenD!6s@WvlNe%#cBp> zF3@&4SSpJCI|HiMMUiV7`nL5EBjD1?X7%aXa%Ap;Ue)MxiA20SpYyZ63zng_X~!RR zDudY|TfF@d=~@wwFR#Y2r!fJzF1w?4Mx?1I!OjPW?{Jp-t21?C(?W92*d1+_k045k zHZ0404{^!26%m+&I09&G6d)gVetMMAV*S{pWW|x^~OC@BuWud{G z7F6A7iL1YqqI~c#XkHsH8h!dPZMxuF&xdDRi)WF9Vlz5*7OCrO&!ZI)Q5 zOm&^@!TA1DNGQDpBFhOhZ{-NOMB)q#`Id?HPxA3^X&XGsv&Bg*58>8iU-q#vl=*uM zvdyP7d9zj4Sd<>jeon}Ti;j}?#W3W?T>HhTFB<_T?xq4J(7ZYN%8!#?u9xpj75HX$Wlx&ACf) zp`Rc5^6>;)v^yW{$u^Shp9Tq5+TdZ^B4`E0kbBsX{|0mp_lFu{PtxUzdJdVLu) zQd1p@B_7fv5L-?E;ua=g10utO;qxXai;xk0(tL=%zcQ0+}nBSQ?m)*v~ zT$ADW$DoR3e3_0r9s_P&#&Fy(W4Ob|+1m9jfx|-ox8jHxB+iS4K5jBv*&1@^mro%+ zsX64)`+WE)?Fmoz7r}~?UK~9b!uDO4ge{}T!{ZJ4sPiih-2b+a&3)C3WfhdTcInx8q`ag$o{SoYP)whqjI?k#=AL*)Gcq4vpZGT zf3)lUXy1hsa}cB6V|Ds4{P6^P?TG$MF=2 zzGK09!h=MyEgEFqkU603D^MrUCtuHuTpSgUc))Z{lc>_gbBcLi{ z6+f#I#v7v>>4}>XRo)}Oz_D?$-6PQ)vP?_ z#r}3Y?UTp`a@;Z3c*`>N^`LdXnfFDmrAFh(m_wLDL~!%-4$)tqYh2_lI~vk@i)xb!e*Q zpKF@X+VO-n{}u;ogrK9`McM-l)!F1(0`pPA6l@gPFOx!cK2q=uH7`d8IR(sr7)1h^ zF{JM-0!7C>lF>689jAUIpYwZIw}gm9h6`>2d&o>*q)POI%h^5w&eW ztJdoGELv9)gvVlxd8?fjuy%ty|8?A9`sUXbKEq)tzmwSVjfG3;w@G)%D7#qrF}4jp zx7%a*Ie~rHk;3P0J5syoK`33HyasDz2-^J|PG^r4!;tY;$!d~|Lsy-Jxko5pe10V_ z|3;U$v!whsX)C&SjuB+uUxbfeB(N8e!1g&B(EXO{g&fI+95}Rv_Hr3iraF!)ZiwR@ z*B4o|8{3X&ESKYrU#g-{mDQL!$C{q}`GdTE z*NMsNXH&1p6moe`n$C0oz=p3;r)ru~=r1YcfGd*8$8Epyk+UQXsQyg)$vxEk`U01i z08L9+Mim}Iar`}rj>3V}lJr`|CkUJnE-E!!h3ZE&aG%jhu4(^kW-Pc#M{Zh( z+p6^N$a>*Cd^7~?2d~2Q%{8!NoH{?F$RjoxbU?{6>TqxPDChT0t%{+|;6ad9%0m8f7wamws#tkCJc{|_EMc}?t(ucJeT zwBU%5f5Cf0JS}leqX|Rvxn~9f3Z=fvzuBnnbTHIAf+HS(gjaiyvyDBo`L#N2MDC0Y)XX}EX+s;CvUoHq z?-UF+Zqs2*-)1tq_9MP3JwaPNx6)!0H#!fTxmlSrdDP0LO9u{u;+gl1tWSYfr`i0o zZ2|l;^CA4rRmS|w{#a(K`x5cr)UK` z(NzN3nH3mt?K~^LdJFWk%JEj|)7lI_Lt%eTMW;I_pwb!f-R}v|BY1TvcA!c+YgPi&l zRpp3oPVO**-&_v6S4_aB`WtLR#}RZbnSqdM28urRAo=zjKHe+|I#bULUSN8f?Eu1G{c|m*e#n@S=~Qn(tgE zV!rw|7i1e-tEA-$qhF+QQ?j3s^#Y^NVq*kLy$^zJ`c!Vs6Fs=RGgiHSV?Ot|&w>Po z+QG{g9pp#BY_73zCCQwvi=BJsfwX$Q?cTvDEJl2Qe2QJg%&V1Zm!#&B6meB(Ihv-` zQ1FZ#$5ZGiaVdH9rY;XoQw*Oo{>965@1*3fOq>n$Pl?PeA@Ox?n~=!c-7>C+ndwyd8qK8 zY`n`VZ$E&j6embDh(%qMUmzd$1Vr$I6_lpJk*}uIVreeSX;0z?ja^Xp&wea_+e&Pw z|F&@%m%`LEjG6K078n}dBFw!j(V`; zV0pgNcMUbU{etwZE``~x$1pYF1H2NCL61KLu+P|yX6&heqT#3TyZ2MLbYKG09astb zlruo=$b6jdv49^ZvgPxP(?EGJ1II_l!OBHFTzTRd(bB&r)LdsY9ceY4*55iL_(9TG zrF;k#4bNn)spp|^{0M%bSqoV)Y!q6>R${Ny2i#6ag1NXE-KI61PZA3kyh(Qaj3=#l zaMEmku|_6L+f@lq=N7T`CpL1^cFhG%!7Zlsu!gg{6$&p}#rPc8o8;WOMsT}cg1ORC z_~6_!?*7oPEYQLOuJ}*jvv&-o1wSqMbrP5H&zV^Ey3>uiZE)mgmUm$IGA&qr-iFRp zI|tw1JL3s%4xZKNMVqe6=&AG+jF($uwwW(~$^8->j}64Vx87q=#yBdqrx4~%SH;E} z8Gc$*1E*qP#}pdXpm*OrDBUkcqm?r$oDu^E!*cA6OQwPQ8Zoc>I>^5+Ced;+5P$0= z$EE!vAuaWSXYVvu*8T@>x$5z1q8!}tT!GiS)0vW=;lP_zMBz#&TeP^L%a5CrgB8X~ zbl;R}9I{Ao?Dx*r`YbKQS8yJrPRQ>*R819K9oWe|(=Q>LT=$Kc{!R>D4I1)y0-WLV z(fjz&?~iSo+ZiZ)YD43s=JBE|AHs-jw;_lUNZoCcOOQ%l=+a7*%4U3r4kQsRpzlyxMm_g|B%3(i;ZZ#S_#NJw6iryxWOXk z=X2@@9ntmBQh1Sel+6BPL(PS?UFGjlW=YPX;qzBOvR)7=h3D*Je;PX=FgF^#&zXv| z0_UaJrxsTtg{O8PvMF<*`{`ORI#mh$zjU^^bU>x+eog z-c8=rUZVu&TN<$YvNF7Q;S$U`6okv)-6GMmHJQiL*4pN!*WvbKJ8(}^hF?2wkeazl zS|^j5HfUFW%D=ZaW&wmq9^JxIFz zqOs-PQ0Q5aAzGF-&bDBm4BNge5(jVIVIPxn*nj29%r@wxZsMv_+%uuX7M5zQb9LxE zOzf4#qzgyLEMi-SJaoI*x(mzk5VN@j6L6XU%5%lrdMSvZU_u z!c6mRFgevVJwwu91>|_lWPO|3tjAsaK|B}eVf5k<*yqO8UTrjl&2QyIW2T(IscB$2ob74}{4?bm?A`PRKNju9>6&#|sX83q%^t&Ce7ayja|2G@6-v^_ z9U=dn_huT;j_BEG?O|f)juWY*v21-~91e>rfm@qPr?r0x!6mcP)LiC%<0NL7k!m#! zEIqD8C$H0m_dl;-;bFm3@$Mq@O8T=Z?-EuuQt)w)|C?>$Uj}nx^B{?BKx@xdqO&`g zm2~t~{84$q5`!wRrR^lduhJJe_nX3~DV`Xqe3qMdbqe?7x~$;AbYjZoVpQ+IX!vBl z2*+-TWcDLA;+OgiTywUSRDK>JlB>&uzJG_w?Yx&h{XUk<}v z72%=hJT&)IV(vY0Af?2E)qx2(y~Y|^D=aws!~&??uZ@%Kh9f`aI2Kh&LBiu<>}-P= zMlGvXb@lqnZhhSdp(Advn%E}XHzJ1R&ElADbQ{zUeUsGMnnb*|IEuP*Zotg{qFB)V zP+)qQ_+#Y~A``Kch&NSnpFf-ywk2y*f&VcT&m)wg5QP{CCiHv<>U|S>ptZJdb6MR$V zjc+oJ35$Z0?dN+}Vfe&sC@*>I{H<#E+a^n|YE+7}X1W4jauy?Q zlgCe!uZPvk(ut(L1TFk71?H@P`JT%Z9ba*b$yG4zpa6M+uDSgYn`aZ_PG!|L!T}YJf%f%lrf{N5=0B;;}@~#tp7|3Zan155|)nO zZT`$ajSHbZGTHX9hr`Wf@9-Asv&Xsu8w1dC4khuE9BX~Z)}bC2IyOKjqtTUx!2>`K`dq+ z`k#vvZOxF!8?BLe;h+pkHlBsW3ICB@$&=2c%57Zx z-RJ7p{xxzthfA>Z{L^f>X9QD!uVHiM`8f7sQ!=Oa;u)-NRm17-QrP?`Otdvs1^+-PB zhaO^Gs3r>TpM_VWEOgGxC9=&aYq-5dWu$ca2|OQq9NJB{qiVJ*av>Lq_vlbqXW2;P zR3x=VI9Y<6XBKn&J07f;x5Cl+lVHyM5A5d4gE-37h&WwG z`l=_s&CrML!?N&j#72?RJ!_VDaS_a&XNv`{_lVE70}x(Ruc6SE%v8mS@#g~twm7Yr z1$}x(cEyR|ylq2)MMQ~Kjs3!8ockEpbcwXrR_ZhjxPaHgRMF>Q1cJ|3;kJcO)MtrR zroVdouROf|){>EhJ)!vYOV2@XZ^}GezC7m>dy*Q4qlZVhT<3e&yj8;)= z2|ZD*edRKFdBc>idzCD>F~d=EWHBt4ew(y)9D&3oEsTE2=4}5XY;VQ~+fPJ1DYPjX z74(m>u8i`GOICM;H(G@6ZT-)haNj<*{dya^FMTFjpr1}!isrD}llH)qe`)MvyBM#a z_yj!S4uCmkbK5y16swrbSysxYZBTqop03_%Gj~hLv|l($LoVJJC*JesB5Ngp=50oa zx2AM@_ob|9H<0M39>R4;3E1 zebE9ov~9BWNXbpPBJdsK*Bs56J1kppZ1)qNm;cpFY)IF98LX4S93<~0Xl%#^WkL3{$> z`!AwCDMsS6-0;fpZCXyN@1|WMqhV2}i`j&ro6PfIDKMvk8ehX&Sn}^UoIEoN1BJZ7 z@9=%{AVM1+y;LDh8=BzjHB+)SLWN$NK9QF>Wk!0#ECIf9kovX~$JS{>vd=fz_v0hv zF0TdS{M8uu=^}J1_=wz&B#Yc`ZRHGq*mB<5UqmfZBk0Rtv7pf0jGxUdVAi61RE;bl zTNaMsPj_7crQ_qkrzr(md<-EfSDnAxbsNv^bY**%#?v7~*F(yvJ~;Tm9FDhX^Am$YPEu;={}cW>Pkv&S_1B zn=Aid+VdRpLY{*-#idj?_Z+xI8qmla<~18XX~3P|+e8hU8VC!MX9vO)Y_H^&;EbG? z&_=IZc&<5?489o!lLYU&deuLs?|+c++jL0!(Ok&=Q2>rkbLKI&#%~60b$`QdnY4gx_(jij*%zjK8tM_8q_Phj?=Fh}W zXEWh=nZOAi@PoHw`PwaWYdJ|eflUxxMJf{upx|Qy1m{me>uqZynjf zi`Fnbath~Fd>K+JKe5ak0T>%6!Iwxkl4>gjwxnblz8IOBo;|UTt^T|b3eG-Y^PBZ> z>$DhF_31FTOgLxO1;0#PkBP*U=UIR04RHMx%ihGskiNWCXxzJoIIbHUx8d$J*=(AjAHq_HR-)+N7;@EKE$WojZTPchFAFqq59!vl-UuEWp8%Dv6zRf=tVs$ z7UrT=ZUnS_UV#6W?6M8Lx&zlA<>0if1?(UxaHUraDt$JvcI!s;P)GsKDbMkTZz0#~ zlE#ViN_79R0vzg`3)4H&088J)3+?+bP<%?XukQ(j4g6v&T93hsTiIEOHx+Q4(h^Dh7)?n`}q3Z2bJ$ zUljlQJTo|am8g6=MmCAQu*DLN^m~pyy!~W_BYNXOG;KN2XrC!seCIxn$=*p?d-+;C zPystjGhu{QIWt`JmQ-&KA}YeY-d~{(@B7Wc(xy^kT)vOpOTNp_-zZ`^we#U(hPX|A zdobqNO2V_V+jaO}o?SH+=D)e&5Ijr*=4VWR_pir_s&?_&x0+7Eh7c|@dg2{&Ke0hK#-aoK}un5rUhTeH1D)uNWT8J^P|dsJ{! z{d&S2ilt!NoFEt`dm2{BDXI-$x(RnwhT5)uHk3)1tYgyJayW5)3EMbjBHES7BXP6_ z1>rZD(&&$RpF%aGx&J<>tyuWI zRvmLxu8HKHR-#I`Jhi`mL`%9cTnz$-fx69c(WUA!{OMh-oVnWr9F`vo!-()^ozD+g zQ!t(=wba#$TW63>Tpr3e*a15$hT@7LOiQ@`{O#F|lA8a(zi@)B)!#jAET4+QWi?U9 zD^YOT+o0R%)o}BY34|(ipkK)uP|Q6IW0KOKpz9ua94ki}dc{Ou53j;xpQWhWG{kzw zF%4LGVGTy@4(2?QF2koaldym0FgjbThiz097x?A?bo)F6@2uylX(7~lKrY-4-EZU0sa|ksZ-jd;rUAA+VOw< zG1_=I$!neno2O)`sH-VrR=qtW37*8DzFT;AmI(@0HjD}x2Nw^8bNjoaxEtq2!>bNU z9D6fSv>+fJe(S4~|At6&>fnvaUG+fY-^9{wQgZbddDyow0m1e3_6LJ}Jp?-yzc2 zsBn_?Yb5G@S(d`WB4ScaDnz8XaRW^IH4Dz}X|$R9FX^m$#RkaV=5I5~_%4b0(;~WQ zcAwmnicO7vC4bV4EI)L!3*7-WNl^;P<~W(X ze=Msz`k!Tzc<>uhy6qFPt9l$vpBG*m+hYlIb`v=^stDeP`QfMY;-qWdHc}MQuG;;w zOLQv85MvddaCVia*_@y|EZOWh>3C+$43}iFy4GdZP&*9@gGa$FX%qM`zKJ{-l_u(H zO#=7yzoG*l>R8Di8P>14UhOn@imgf*P~CZU2kGf=C)Z=^nT&AmEVH`9){c?Fn?pQc z<(&(JF5*bni@l=s!_naJCzAP@d%>)q2f*@L9XKCUW_++4Q!6vW{i*hsmj6*dnads?E@0b#tbtVh3*;Rc3ldUK zVNtR^Y%^-W)YuvHx~&h$-aG|YKMaE@=a#@I#|F%{?%<}itI>*@qi{Ob2NLe56Qla? zY^9?Z%}y8Iun^9c&%GYPeFc3wC@Vqt-8dm|Ok(tqrWTsHsNjqlKk@#81{kx9K>Lvd zI(5@c(lOM5p7l4NPHj6GZ<2ze_a=hs%!yPgJs3W{iUQ}Sj{K1Bqnw!VzKCXeA*&Vm z2xA*hq`8xx0CpYBk--| zzYOb__Q|U&Byq-o934H>38pPjhibJ_I1}H^-sr3l)yACxjjuOA+R_f+jGB^LeC{E! z_%jNZDmAjvIZv^~^F6y<9?l)QDTQz$7w#*60srtq+bgxZQo{#V!L8sN7V#kr#%3J_ zojd37m8$`qaFfMhW%VrJ!*cxN;RX9wo?=BG%mlYvF}qc@0!ZLg^n1bB_)Q($i)m?K z;Cqyij7pMG6pyw!v+$7mCehiV+syTMBq`4@VM7mRq53d!Dn8{1%huM$w}EpJvyNlU zj4-Sa&e!WcXxp;Z*%;(7i9TDV%xf&xqW<*{@T&b7I`WSKJ$t^5eVjcHvQ$-2w$m63 zjl4w9h6{ZGt;fRKyOMm&*5?o#r6+u5ZMw+52+90B#)o9W$-r?~_%xpTEzBSPP12@K zI17fW9)mxxKd_ztqp+yIl#A$BptYYZsM>8sD)-tRul>7A22;-B{_V+Fc6usNoOT-m zGrdV`bS54cBY3(0HNw#jN9x+Qn=UCez`m#?v_ISpyF&eltC|>1&C{eN2dpq?!z?Q9 za4O|a`32Z!$B8`S^r+?1C+Jz`NAQs(bxA0}fJuU{W!f=tEcnG$no7_k8M9FSsVWT) zh(m`zv5=f!g{m7PF(LOobi5P#QSM8ai^~KYzxF7+@moyqnY@DAr%kByR|T3DxC-mn z?g8gjGHA1;i;TKuM*Z`ZX~@xG@|I83(xyCseAk|eplclkTqiX zMtlm$7Jh<@l!G-TZ^$;Y$@Gz)67Z6jn97knOe(adDXIcHb!!#;iR~sUo^Ha9yQf4C zUG%6|{V$PnrXnjg^Too1)hypmj!#?k8`X#0hSmo?Fjn>|co;>)r1l@2?ZWZUE4;^W zc2^V3@7v7cHu}QUfFJBy%_tgdby--8PJzU{YK)DkgE-+m+_J)}Y{N}^P^N7#w)d1M zQqxlOQ(lMvvpa_PxnCjs#_WT%EA4n-y91n=aFy&_;Y1IQI)hGY+Top%kkyXpv-MbK zpYErrYr1mc5;861HI%$Iq<)KwiCN|g629xC%HIBuDmxww*UWa2Oir^J4|DxDgVEYI zEc?O*7Bx6NM!LOLGni+$w`l!%r<%2k zl$g;O3)CCPfKgh**-sl+SiYuN@ce!rCYAC zpi@N~$g~v!247KN9qR6rG1ZmG2wJk(IqisAwC7N;%JcJ&~1CX(*#Kq&*}J zTF9oXW0oRCH0=4@*U5-zhonT&F7139QorZ-7o6AYyv}*<=f1Ab=lw2CmjwD<07GV% z!1c#YvOdI&jA4PgEP*;{S;lY{&p_8Td9Q+(E`3j#xu6of5x3sOVMuWKjw>G zB)rPn42LzwV*LT2c0c3ceH}k{9=j2nmPG?Okf1KpmPi&39RPzud2Fqp&&?%sab@i; z&hN-*D!0TG4Xyf_0I^2FD?w!Kz_CpjW1z(6%#v{IkTTr8+l9tLD>Pg$#@@eHMfZ%| z2VLi_vDNH1qzTkSGg1ekaRGx5v#yXMObYF_nw0u?e;Sq1#cVizJ(Vhznb!Wr$Tm1aN;}2Rs{KISewjtyo7%(dHhP+&WU!7*HjX>>1HL`=4;}&>&H4 zoB@x9q(zl!iDX>RCvLgE5nFRC7!CLF-}8qaa;`%NNy5wIMDZ9ti%N+9vbDr{Iq$CY z+Di8IvdlG}xnui>!GLUU(&=Uff-Pm-3rhp?z~>U#+cKK{{ZN|fP8bigvIp6>A3(Bs zIUHA=3K|R5SfwAa==`n2+Bj}H`Pe8AF?|-e%89|kXSSdcI~HeTCEz~)9=h5&ol|;R z!_~JA{eTcAz-JqgiLIiLUk|9 z=iT&Qpl|j28q0C6uutnOaVhLXaanmzlB9vP)G4R^v$S*SgAq}SJ?k>OFj)X<0msPXE@g0NmxEo4io}LdCY~Xil6q9qsmCr<>h<)aIOcN?&gC$J#PAc;#k6-+#+zB&;qIf8zwA z8d^`+ZJEZ^H%$Tm?{!4JEd)~AZh{=W06&q@eHuyo!>h& z_w9)QKYw|^iGRt9P+7R|CkZ~S{&d=AH4=Eqgd3$dF~zpj4@ygpP|=w*IuJEEX;IGn zn&ey^?u%jzH_1Q|(!bh*>4Li2Gjg`fj^!L#UY|>6PUm-ZiD}^ceT#a*t}?Rrb$-n$ zFIC!`Vvsr&wP}SzDBn-lCMEwqayLBN=r;W@u)1|@RMYb^I$$nM_RP~Io*PqP^`E<( zYK$7h+o==t=sn3#C2wd4%ytLG-X&;na)UeUR>xtB5forY=tMms%v~RI5@&GNJrP`Be|DO+x&F;Ha-DW4Cp@9LXZVnfZ z+|D@_U4#dB_T&9Su2nmEhQZn6@}ow^4ih?Un6BuWD^ya_SL@MTL|Tt|pgGse$d56C zuetvbu`PS`+m|jQXFe0SJ^d|LbR!X@y@JUm+Z|+G%1+4QnYDvgZ85Y> zqf6Hb(3^;oCw+f% zsgu@6TsdEY?g(fiGN*fBK)HmD@EagzlcV5wR|vRzh2io4#Mq$u-XNa$mQ0xzO`CaE zL<*zFdYp{_IR`&@C%2U6c|L=7gLZm#?{a$EZ9c|rDj?HZN66liDM_AR8gyV{3 z@jtn7H1Na|L5}HnCMn+r>(3zCc}Riz@EFmYT`R!t$0(+|qYoSR?_?H9 z2s@3IVe^Wo^zAb{IDa$)O?F*?yCGZAZq{|`a}i+W8FRL^_&tWE=hNr>d%)FadSL!^ zGYp@OBks#)kOV0!!P2LPYjeIogp0k=m?r;|xwcM%-CZ~XwfVSCrGG3K&b|oeLdMdd zmyxKabqEK{$Khd_2$mnLqK98T9+3*bX$g%YSz~inYL^~6@tLA%TB(sJFQ^htL~f$K zZx^V9?pF3k5i4r47|Sk>3YWC47NzwTO_V{2%H+i(znw6e=j99uNncrl}4rB`0 z*FrIoa8yRi7K>z(7~NQFu?RQ>*#MHO1U+L^`^0KyX6L)@YECO_#4s~-z@foLLgff zpaZbCgS`1=j$yJr^oZYlk=^Ggw7%U`lLA?}?Q;Z@r#tcw)VY}p#+2 z*KE{wT{@2&8m3_xKM%i>y$_~V?xZ{JX3*m>nUKGdB>dt?l=B!*CUUOi_P7^x++`)K z9`*yN1)m`>@+@U9X(92gp&@Mw?1!{{Fm2@;=xp1PG;g4gJM~kQ``PE5WOSRtp&>B{ z-r2*2&pwn0P6r;wR)w}`4!3G8}Tj+fM9(0*Yx>Fjw7_JeVl^RS}!&UF`|Xe4r=GTJYk_HoQK)6=xj;Xx%>!Yw2w`=0Ny!WG77)KSb}n z+68^7#bl;3&lo*nPq%vofm#-Y6N_7!<}=%Y9M`3=UKKrf{=*KXpY&bDDdr@nPkh$i zrs5`BL3e01y&hVD^{1b~Vn?3g@WK?E6eaMvmjvJQc7oo90V*fDN98Tc$iLgCxq`bb zDe=-@XIGY{fbhda41Us2UAslp((MNk&)cOQ@VT1^gJZY@%4d?s_8*1hr_<10@x1WQ z&--LS<_ha!#+dhciVM__d|;9$pWx0}q>)mmN2;v9B-ilRM(4`9F-ew7{b;jL7W8@l z+_kme$eRz%T<-dl$xP2^km`xR%BB&usv{Wa`976w_!CQHWt1?uH6hto#fUCCXo|sM z%8+;OCK)k)fIbM^!KB;UaiKrzs;x}CGY1VP*1opc2d~sLQccgjr9YI24 zX~f$rT(V98q-G3hy1IMQDbboKnXzI?DZ2Av^``T5M8+!`Q(vc1x%irDp2j_JlS#*j z?U}Ttyx#DWYmj3g;{SNjMA7=oCz0$GH~oKb+zGcR`Y$-Yir9W{(LVp z0IFq8{92`XA;4djId$)1qHw7GxA&?HnF zCHOn5Iyh(rjJ)D2P*JO)UV>pYnN&r3|M3}krC!X9Zum!6tUb*o4&8veJDv4{X3R|5 zDn5d1J|HKoY*Pno-c2<+v{QTH#X+^THw?J;QQ?rGdJq)CpK~u3x6+3PV!5uz$r?pN zvDmarhguq*O>$mr%3Yr#j;m@%5Vy;9bbq}m;WjMd;uB_oP3#1`!gDl5XM7>5svQm+ zd4uqt5`GAcBXeW+64}kxNDJf0%&=2%|CbKV8Q2M~e1(OiE~L5#D=frwim9XQ!eeYmfNTV8Y8q-Z65F7lJ_-aZYr9Uvx@Is?0s~de$hEx zvwJ}VZI7hf9vuvj;O6&fGr{xKoo*645jPG%R4IHUldjV8md zZI8*Z?=_r_qZW+$o=>NDdcwmQ8g%=>?Ai@F`DEL>81=O~Usg@_2ql|(96;Fhn@sn< zPBxpk&MudX5#%0Oh~I+N5amR?jlkx2b(6Zx6C8jJ@Iu(+p+r-jP! zXWVF9?x4ixH)r74b0@%Zv;&+V{I2v-9QQ>dlR3>8)4VCWU}^I!vKmrA&2a|W-kJjn z+NI>asuI+@JZIKyeN0r|nW9p(E$=;3A%5rcpz>oeq(8U~>wlGi#aC0@j?19vLo}9M zlVm4;O<-0AcnU6rXF`&~W7MpZVxPGrkh>WxDKl~j3P;|9dhc|&v_79%8Fv=Mf?w0~ z@dUy?he2pg0K7?VhvoKf;qMwr*l3+iT-{>vhG-0JwEaq|Gc{SSR0opvNuGp`dcbX1 zGg!M`FqvFB6I0_op^3Cl_|AyW3*s_M<++gP?{C7fWw=56rk_DIf7={mOoW!UY331m)$6!tz|2G?dpqERJ< zjTTS&&LYoJ4_}E7jqh+ux-MApM}hQ9{X_Gm%Bc4BCp3-pMBh;_xV6a&sQWh(p?Ebp z8>gUgL4^Si-3ztq);$o^(NoLxXOa37zF1sANY}<>(tYZdbzz8Xs)=|gkv*!wP97Bj zF}_l@HRa2gITvpdq5gT^_4=N!+MfvWT6s9JCI1o3e&?L^h|;buU_oQK%XT zioOpgV@5#Kj>hUmrt83@Nr1RnGu2j637_Sd;dO5x%>(-!aYoZPSiVJ>ktvB`)=q37 zM*1enHI=WJGMtSqxdUA5E_GJ6>n4m`69Zj;j8J)CVGZlGgs!N6iGllE;hAa}nX^3t zxqE{oz;Yw{4@F_5@>{i6ddp#AZZQ}rs$^UcNaBAhlvtgAQD={NhvUVX?HG8f3$C{n zRqyYM#PYQ4WVwA2WjA`F$?6p<#P{TF{8&(jg5+YD*Hyr0fhVPWyjeo6XO7Xap7#`; z(!apeKVkS`M;@Lq9KojVJSR}9Ou#3r2h?mfw&0;3g~aQ6Hm_aPO zLC&f#y!S_+T6spnBr^qao-Bryf4x!oJrU);j}vJ*{=&>eCD!2BIT9RxV$}W$FPcBu znLNMAkg)-OP+@L6j9z<#%$75^&RZ+4`TgZv@a)f`cS9$L`gGJFH;k`(noUgJofnVG zC4N`?W`3@zDXW2Op*T7HAdEh+O=s@AL?&zva_3$q&BeZ5R*>#6Iw|&XK3JG-z%Utq z>n=G{3`_LEMt!ZCin0_iN&kgIK|A#J%bmc7GmM3axm`?_eFIG0J4_#xnb1aNF>&?q zrTfe@*{5e@*%f+ibiC1AD0iQSo-4<2VKSdEU%d!Tvg*O_^%M9$i}D@GXVftMBJsT; zPfj0;L>KalJFVw|jp96a)leVhkDiAIxB9^>(zmuwsu}kf*I`;}E<8P%1=&~JA#Xr3 zX_i7DIXrqb`nEV)J6l|a9dm9Gy%YufEPqDRKw}5`Io-4FFFv9^>WvlOt?5jD#RsA$ zltfd@B|R|yNgh2raXwt*0%(Q~mG#>esf)tE$=w zp!Q@1s@~$=k{2(~(Vdboz4f?Wzr5I}2Y(#YgFiT&sCXv@vajN>;eKe+#e5~^;egOu zxKDw!J&*u{+uO+13DOXheVTyswxmU3M`(loWxC2kGv)M413Z{99WMHW*SeY~3U2Lf zrz)X7!Z;;gVm{swU4Qndo0j^(obpsKvGay^+5>d>-VLE*@e|sWm`Lku$G{oI2ZEAY zikP?4g7HeVr>$>%=^ZN{{Rhp-WNg)V*gve4_B`f6jY{x#Xb1_NE^YLbe#m%5)&(Qy zsjr#&SH6!fjm^^Y{Fg)4t~^EjW5R|vwmoH%9>EQhHhq=h$AtYRp4ek5i_i0 zLG8QZ>{^e^+S-mF%Ir>5>k`Ni^XY%UVE1!X$Xtl-tE{N3@@(*1bq2?*G!(^`UF4tn z5nvw}Y5hd18*&YAlL|jM;gg1JI_1h5Xp9}glPjd@hgIX@-STO|oKRhWNq2arMGnTX zPU?7aC&q{I_qNj0)J4(OTJwA&JP!}WOgC9kZ^$Y5wl@Wa2W&XbuMMX*Nw6f zKRKTNmrfdp(l^i?)cE{hEQ$W_GFJv;QNMUGcKZ8(_P%wrf6+S{G44*1cyJ%r*r|&J z6Rc3OY?zy;dXrW(tfks~2Y|jc!+0-Q2p0Q~Gj=w>FsE>^n^?isf-d(_nNuyn;exG>ihrrpYdDF)t{WO|HfdyK}Ze3wpn)(pnxnFYP( zGZCMzw!!%uGKlS8F+TU$pY-Zo6=%4nfh>D>k8FD+4Np7#q2RnFa!K zbbUHK*v9){*R6#s+idWWayRkW{RhO)sKDpN*(v2tLv&H^XDY3v1&N;golIJqO#C#* z@cU_R^73K^Oe^PeY!2ZVEzYy4f7ilYLlGSw;ey|yV>ox`GSs}j8xqGXMq9b1*k@FQ zBR2C{-pREvd3+3pY~_8F4}C~}dNPfkas>v}6`;r$SkKbea5>unn@n0^%@J9y#?gzK znO32RK_Qk)9m4A$~z({yw5T8oWo{}Xi0;-|(2_2gTu}`B27pxr3j(zx!1V*;PT;tc!={5!3nm3Dz56r54293D)=29p~ z(-s-&=wr}(Ra%*Tl+-#*QIj5tnEF;gMRHpBW(reT*aYq?=Rgu_u$PWH-=sj~C>CkvZ-(*+fi-j?#~I0mL(0EOSaqF<3+_ zgzRw{sj8MQiQeILX#6<~)xK;Oeri*Ky8Wk;gLpRGqAew)Z|jazYeT8};R_Ps^nx*b80z#E@iCM zoA6Rtb$C6QF(AvhZ+C~_lWKTtdm!`3$qT={YaqTJM|3(rolb$c*?8qwHn-AsDQ@Zx zVA3x7!Fc}tS9NkpdH9`Mi@||evzWWZzmrf(yA(48&|4kM+K2$6>;C?wv6LkB@{KvD0uZiOEWWg3#&>IA6Jik&=j)2_#9bY3> zTg;Su7t;$aS76nLozSHi2!8^WYvq3Sf=?-YucBj9lEA}?292IT!aE&kc4IX&J+qD! zzL*I^@7iI~O@x&#`>FHYbeg4=K&1sTceyRw^o_pcC zL#b#!^?q_<_-G=!qK7+ORPfTdBhWp061)0s77f=t!kr#6g_}1r`E#95tJ!BWpTvH^ zah)xwck;Q~{rhz&|E3JqHo23r502p#zWoZ7Gx-qYEY;45-P_9qtmZu9O%DGb!I=V8D(~!cDCN*Y%)wm zi(0e^3|fHEi(*u$2K={Y4_&R)P3D?~g6)+Ik|fNf&!?Qj|K8+-eDgTg#&SFimiVE5 z;&SLJ$$)j`kI90wzWBEECXmoR|SkH^6V4^OBG%SW^G zJ+$BaE8ch~i*KzhF$@>ONLHNv*Bv5opI$M_^-MN*Me~~aUU46MCrW}BoxtI6AZ(rD z49E7YQEMGDg8i?s1Go<&_+=PCN?+H}l?8lrQJ_Gxo{!*;S1u$*5>?Q7HxygvU!(ur z3h;@Z0?%IBKqXAa5XGlDMF0Lm)Ji*p5z{20Xx(o>|B=ExM<;a9)MMQGK279pJ|dzL)$9wbZWZpZD+ zTT;BG1B7dIQP9~825YV}udexEVaH4Iu>CTfNP{vn}_9mHB!0yS4og>rv?qFq}~UN0C;gG|3NOBOid+E4qyVXhiz21?<~ z#=kInlr8F*bW$D5ArkkomsY0TBD$G=%-#zdn85nyMBD6R@?d^NZRgHjrfpUj$r-nr z3NBN4s(Xk0lMExz6gXPzIg$Lm5CgNf-N$FMkAurXx8&SBYnZyWiTc@T5V4Fl!T#5h z*!e1zJ{&g{tL)amOv_FZyX1SV+PXAap1%)rZZ%-Q{$U7mRlucn`7qso9L%1}($-R)j zwUPefpUbCt{_B|+YJ#}o70lbG_wg~$e=Shfg>c?~wozsi+_)h|%fSlHCtpNq)$M4o z@CqGv&7^x*$b+k`7{p(ggbVY2(O(K8((UMrcCP^}L6s9dPzA~L5jYOjSc41+c5>Yi zF3^%J)2cx~%$%m)F{IL17)BidwRXv4mZf5v><2d{phQA%`8?jH!c%W-_3 z5we!@)JnRkcBA$yG&)(0L7R(k@tF}U^Ik=C{%{mqaA*jw@!Ys~8k5=hZSpv0tRC+Q z;9V)7CJ1>ghz64`oR=fyg8b_=Le#CYh!R(eG4opD2ANB;WTjP zA^JD@7u<->furw6g3RsrRq5|}(C`U$h+qGT+T}6iP0}dqN#?Yu zD2R8T?&GHI2O1T}sm^;p9iE=yGyN-6KzmOEV;7VLMSU_g8ZQc&mSs;gJw`1gN%>1F zPxAA0=Xs|&kK=RU#Wh7}dhMNY^TU?%3q=#i58cBg;?YuJYwR;7*vFr1s3@eF`;QiP zHky-(&L@c4L!qEGwVhFve!;yhna&M(#t=5Dg}YKT6~LC~&x*~V%m#h9Ulhk>9KS?5 z67MHPbX3tdf?(Kt%9DFKeLfj#b!RfahcgL_wn5YfOAKfhWRzN~(z!S83d(JQQ+F8j z)aKk6h4b4@$3#ajfQ?czFa`F~{Jm8q;_@rzRd{J)%!6aq&a?P=v3ox=I&cmS&(jB+ z1x-v~b|^@WYzFo8O1O0E6?`t^9Y$xCakeMYAbI*lvdrrobm)u+9Gw7L9kn>KUY`Hg zX$%3;mtfk(S-3P`2^vn+)1^FfOjvEgYKh8-X1g`5w>4k{KUTo59wlsk-v}T2k3(LK z2x?7RNLJcBJoZu>$MScvl8+~--eY}KscWL@c|bid9Lst`$#<5&x8(0f`-%ok@ymhB zlEY-j@kivOqcaF?=7IKUQ?#rIMk%L@%-ePuLH_> zc=Av9ve6n6XV(#j=9An`xgpYLDG7T$!xQ&*BqY~(AI9O}T9W7+M~~F<*&>IJv~Hh; zzPs}=m{+K-SyH9I92gpbG0lsyWy%uuwST^-|2!H_#B^R(%)Fk(C>Iv+&kHrm^@Pwf z648QxWA!24>@v5$E|^)cMhB$oKTxHb2=K%ba-cbv+B&PDD;AqE75n~6!*@GS z_PU4;7|7s$z5}e`B!w@6S(5ZL1+?uZfnD(jeD?7x`Kvhrwdbyew6I&`qPvRL-wFlV zceH_ayv$Hj{2WNnTvB6{CwAyGj4%Q9AtarqQka+SDm1S)q0!8E+8L4wSBe)fu0Fhr zD!mrQ-dO;x5{EET$^k6OKh~aFDbFrdn#rAau7ZX#cQiQ13RZu52f{hYXr_IRT$S6& zsoG!V8GU`Qryz=VLI`1@R|a zOqQ4dqO>`nbzPoyShohl=qNZE$iK_1F^0kQNigfADW4n6gb&tnxZK(nyJk*NZ?Qyl zTk#ubM|Y^w#8Yr{!57+8(8QTbZb$4Zfypf~+#KJ_!p#Tvk)L0aah}jeSvM|)D>E9x zhU`k3p`K4t{fwab&^?SDS_TsLAHn%KpP7k=Bcbc(Uwlwq#J!UIiLXoyL3{84dD_Ff zk$rl>>vcJEJ2rq`S4sxa7Y21|OJM4!0jx~n87700tVz8bb+xFcYyPaF_qT-6&>a%& zEz7OcdPfHQ(uhFYOaIaQ|Fn3IOA_@y9f=i2+9EMli|z9?gzRL7Z0_2Ic9R9@QT7DZ zuG|UQ^Gk63zp>Q1rVsk~xzWR-U)A7}Mq<`UQYI-y zLrd18*-bq8u*@>bf+a5BtKTcrl$5K$$&vIT#?Va!i6Qr=rV^w;gN^F5Ez(=O-{*hMS2{&mD5L$foxEE zGmov9v6i24d}P*}&*Tj17sC@jces#b2g^UzVPn3C>zE?O4j%i6nMT1iQ9qWG(BK%T zli+=w{U3-{#%}x=B02jS&l$a8wgzl-!%@>Y61MAY;i8V+pl6RRp`Yu6A*uKTmv<-- z%!TJ5$~uKu#+$PB_Q??57%MQ{{uGYL*22s3E|gig9$qC{u}ix7UBF|8cWcfT`9404 z*G4I`fZOzG<^k8(FNLK1q~x-IaXwQee+sIw#mObev1Q_!nB*>agU2 z4m-U5HrS{>gva6&So?Y7@KNb^EQ%-vpYO9#J!=}fKj1KY4th?SMvf8592L^6;}hAm z6LZYaL}tzWr6}>v79Z6%GMCItXntcRv-aK+ zv>fA$|6BsWpn5ERZ*#>RCil3%rtx^dgyTZ59EA1d;?A<`KuP7 z-0OBYxM)0^_+|?icc=j(mAbhb#gR0v>OT&b+=1cR)e!yK6T8VNxYSyV*B9Hv0jX&G zSx`pd zDE*VVbj|W86j`if=6)-nn<96UmaS(&O-C2b2l&uQNtfVg%?kKabOB!WjARGDrJySf z!{OUW(6e;{k$-1M0>@89Edw3mr_?QI4ydOVn-}7PIqK+hU_3nG^EVBD9jN!T%~a*( zBdYNH168>_pIm#!GmgJ}p;sjMEU^D*W~qKH?DL$)ed%fg@r+pF;Jk(Y&2J>Tg>`iC zqX=62J%x<5+XNBKVPKP4u2EX#1M^)+Qp=XL;2QR_CgI>|=82>XC>?)AQ{@9_vw8su z`WX$?(ogsSMJjQ9{ec-DbPyE_+GvgHdr*79^BYSpfWOg6LFd61h*%zi+M~S5ruIzY zWjun+`_jUF`Aun5@krLtu#DKx4JLDB+aXcqA|qvUh*R(jfI_biL@@R#$mAVF|E3#I z{XPla`t8H!gC#U^*CMKSESkG+@=f*JXGM`|(PPl@uP3P+(;#C`0K!_as>b)*;cHVn zj;r&>U(LF##ocq*v~V^I7G8y+mGUBPTP!!>#~6@58_)4d*Ozb z2X2bDhp_w{{Gr~3x$(EvGZ#5=g- zjD9UhF;4*T!=Y$Wu>y}POVM#h_hW&|V~}0=-g?5iLVUDo0&CkJP8a$pumY28Y#KR% zEq|PbV>gvy!mtzWI#7XjB`)k>upt>4+D9*pzKkcF9N5zfz1iCI@uH}ClQG9Hn58S` zv-$~-AZt}JR(pHVf|HgkIZ%fWH70@AdUbsKOGmUVWC#yV*#ZZQ=He4WL)@w|12(;kz6$j*WCtipI0bZVEz(Pu3kqwJvnd>ETGp<6u>rz z3aaI~g=|VV1{MJw;FK^+lyW^BZLMBF7SFR&nmr6ZD;)6NMhVU?E0+KTh=MzKYJn0i zNqYkcl{`Cgx;N2{>0`DXPJ}yOSAepm7G&y4kvhj{YUnNoSsIUUdaM z=0V(3Rqp6-Y3MU@gX@+NptXU)z`OUr+uI)cq;;Y8Ccgulx(PZri__j8&17`VB-qaD zG(ONvSn5>8_~Hz9{{1{Ewt5K-aURd-hk36k-{DH#bp+gd2QlrEE%-){K_}r7{$0rv zjHhveco=o$_?Tie(sUX6p)X9)X++O82xVFSa(oF&NM^vrE&Yr? z-_0^?lm?##VxnhzddQDz{yr=F9>V^ub9cR3VfH(zbg{H zI_$-f+y0Sp8FiqgYJw*92!p4(3G|d=lg=D`cI6Iq><=gZEo528-Ina32jfNaGxBg? zawg335HdmQMxjM)6>c>6!=H~s)bh_aoUai?9<<-3TXU{~^F^(GO9Z|eK1Hj$ZcvLieenER2aK2RgP(J*GD=^GD5s9YwA0l*yIhZU z4J-5g%pQJkeE}^)WJTE)CHVXEMTjaq%%4A5ns@nbTX(%O8**+H9l`rnK6hBLYSDZj zcc*zuoyITl+>;8@@qrk6)l6i)Et)9xNwGWYM{~+L=kcD=T4Fcy6sAwtWz9}q;=Rm< z+(XT~;C9%I|8I4}$>UF{hebBA8k`WR|zx zC9eCu;K$B9vSsfbu5qDCjX}U3ShDCa{KvDCR;dPK)%Rf{wA920N(ad6l!Lg&(gU?e z7_n=w*-(F<1UNe39lc#R6`$C?X0~VQvR`;-o$nYW)}ftY<=c9YlLX8i(1T6-PvGjG za#++_N>l#c0|7o~eyueXy_I^5@qYA!6OeXi#Z^3-@OEus~4P3r?4N zNyGi~M6}t4-F)1DXwB4tRf~Bi!JR?;$Fqx+hvnHUHUNf5wuOpM8~!q_;nZ zi%-z0|Fp?svuIwtnLt~cI9N1PiOZ~XP=(b(8k59X+BvE9g{WZn9ewuI@6%w% z?@5n)tJ2V!4)l!15$>u(J$I%|mglf$kSBGH^nv?A&feP_$J}^AS36!JVbNA_Q|o7S zVd^jJ6(=?qm%Z`S@z&cB2!k4yW%VAwOIsPSGI^Tw_F*T#t>ReEDXA#-y zlY&{jw@8UVAG5Y8V}bNum}M@6(YqfLS0&z&t#!F}K&%GE{LNu&%2kG2HxC>K8A(fmy>st)#x+*J;IBJ8=0;C_Zj6qpP@Ffm;U#~042ihNxUE$4!Q8> z%hu!c{LNOnWK%wb_)V_$n5GEXSV>liwlnXw0p7cAsOa5mi;E59AkjGjx)XD>W>-n$ za-A`taPknHwqO!YwEuuhDBzy=C&=Gx3&}_0AlMhLL?hguV!gvbuovwIg(GvIefl1Z z-rEF%_aRAdBbE?{H$2kh+NDJ6Y;z_uwU*0Pi?uet>jN3--dOik65KY`2}dd(B~!}2 za#D#e$#fSH=a+p`O=!~zxneO`6m<p+!uJKi_oN$EW@ywYfhq z>4psJ+8#|^Mn8kXnOQL7yc;|FpexvvOOle|v7$V`>r^I7n|1hjfIdn!6zO+8hQn=E ztmC{*BEhyPqH|kaVD#V;kknp8CilIjPIo49hrTUD&zS{msRzNEkNi=oZY`YuS3sW? z&(>U@C7$;7LKdw3tcVrU3z1%o!}gL7WY&=t+Go3p)Me>u&F$gqk^{$0gs1%ZXdmX3 zX|lpSe)@#w%304D8kf;QdVVT%ep*+EZ)iPpYRwX@=TPum}F-ku5v zYx8Eis*FYHIC=C^64RLcKAAZB@5A18ldZ3&20*@bGwgf!kfdBT#Z0HG>RacP(1h|x zs>?IyRl=%>P$mmgOP|qx;T3fV-j1JI+)`I*X+jS;K=zbG^?`Xm1YUP-p~uRX+w3Wk zder_c6A)8F|NT6u;yd0ITNZWcey{$--;2tLo_Yd(^l^3VY$tn-&fiibVZ9!a4-+w) z;_lM&yL_*W&lL8)8K5rCkEoZV1gT7TN~`akrl*@-_)2FuR&ETU<=YeBQ2GHzPiG%A zUDu)&E3bn0-Q95e+9f}BM&+yF9EOMxQ5A@CDT{Vup&#;}}4X#Ni+kT(Nr1m~isl+pU z4`e~Y<4Mea)$-8Z8BG0!*XSjCgVa;HDNww~0A{|iN5wT``MrB8Fq}8sT4W1TPL9CG za&j79!$*Uf{4n`yd=-xlimP2E612%?9Xs^cQ1n|*Rq+|Qh|Tf%h3>L0S{*r%vDE4r9Q17`?gu$C`L;KeGo6`ixbij@ zPh_!i`mw~`+{0+TwUQQei!s~2Wz)*n>)}p_Rn3@INmhKHm`KOmfs?EM1KBlFtmA+R zD}BEOXM`sag%)Ef*Qbi-+B0F()tkiisR&Q4D5Pg6grWGCcr1LBpcy`67Ce=yg~35B z^{?d&-FTSyo*x#cJHBCi$I#PyQipV`3F zn5hxTst45OQU{k|U5qw8>LMW-Chmcjc<}W(B1M0ZV}S?gW~*$-7Zb;mZjYGEJGMmo zT{HObS>f`#;$YCPoWbj~V5+7yX?EI4Cnj|f;S>`P@_ojX$Cp8&^gW;XzeYz}&7lny zlVH?P4jDDM0O$`6_jk9WW#dwA#DA2I3O~kfxu*+Zmu4_(S9Y;zISPXUAAqO+FU~Gc z!1fH6GAj@MCe;ElHgt+4s-Dqh8{f_bCqB!isKCD&U)+u71EtuxCpFOOS1tT(D8^Ur zIxyFK2bztOW(&r?BpcV3aoJ;2A%%Mfw>Hb;rA0lEzs!}@wHhZnHc^@_p12N{e*ML5 zvk-&A5xjT##zQdDu|p5Ckru2`NLt@{nobOuLpuW|F=}qFd7s%d+-0#Dw#jYA*s#6O z?r@xWSGY>B=(iqR4c>@xjoy$@mx`k|Xi&|Rc)XHs%pRzn44l_{`W)`@nF)Dz^!#xU zS^Ny5s?Wojmiu)7p-|?Jo)Y!3t0JwumpVt`I=oYy4x4?7iP!xpm?|TunSRHSY|1%{ zD;&D%hQ%L+;)^tEb7PzFU5_u$8~Kl0UHXVI8usIYgaVv%aRj3^M~)p8-UpBQbJ{W0 zjO{*s6ob_z!26yZPUW)6hwa-mu1T*3g{STy@O@Do5_b>(oOC7=zicF?g-UFBs|>E@ z;g$Q{x`{P&5xoD7!Us!TU}5zE66L2SSh7hM7>BNu{uePklQ9ARO*E{I49Fm2XRNs3 zco0PWRwpSPD?y;Ql6FsM7LGHH;`>S`VAGB-BqxZFC-!M@Dk>dzgg)miKGkrJysyr38eW=3ioZUG|0Fsg8!&-$T;4k9%VWx z*qTK*yX3+rNmXd{e?!(x-3b#vK25U_?-h1*jz^VnWw>wAOzNmK6b8v9o3}M{$3pozNy3DalEYIptQ4kmYoZlu-GA+*rw>erTeGjxXLKPRXp#fh zjSApA5K+(}X%w4=QqB|Db5_GdE<&m_QS z{Q}4x^PF>NOsB1qay9n4^WcNxC|GlT66{dEPWBFtBXgS*p=29>9*u0EimMul)_7F= zd+t0f-x4Ambf3qx9eYQ{EJ>rq#X?xU^E3TEdIAnOza|qN5%|8Ln&fbkX@yBF3|$JR z>sAP$s5A^(h9kinUvUxVrqCTZf2rf1_R7BUQ`~Hi%NjZxc^8(M3H2-+fttF`aHEU? z=bO2t`qG2sksJOa8k{P9Z#)7v1vQiH*JleZ-7F$DSu^l;eF9CLImo%*=UIZk^93#* zzA$VjLyY#u(j_x(==v&uYJWVJzCF1bT+Cufxu+7;?mUGxdre_y;(403d^Ww5punv@ zYKZx=rW&(cWnnN$fr#n;2ixQ2ao~9kY#*VW@pJBdG;#@npUy|A^l@*f>bOgSRf9Fi52{hqB9ML@_XYr*(J-&*ojo45JfT1xhF-4M5I!wv>}zGRhvDs8~d7lElUye zoMS60iWdATEff{)+O_yU|M&C8T;p8l-1qnU`78*WK&s3R#MtUK4Ed}g(ai<0_)!p1 zQBTLYB`e9JvDqX&eG)IC58?>(&*a5>NusPF#p~VLN!)S@sUJ&3NcWAiB=F{K^rJ{c z$x`AxD)%tQUk0DRxzcBX^)lzU)f;w`6&nybRX7(}*1G@hfsfLuSn6RQ3EV2k-D`lQVzNbh3U zxdFMbN@)wLCMpp~eH7kts2_9mBjLT!E)uNT+GJs23tF-3u}$wwu(it~hXam5jOZ`y z$eItX=f{am?ni;`KgPrM>^$x4cn$x>i6rCq7ZgMYWS-K8c3l5lco~H^pXY1$KMz0WEm+3Rx5eksI=s zsLVW?{`4pfPVMF6@B1vXryd%?K2{-7t5hI~;dij~;9VSbzJT1Cl!5#A2PtJgBVrgA z3Thoal!28IeP<5EeR7TQ0WoKRn*9y#yZrgE{mx1L0cSSuuDO72_(^ke>!e6)##8o< zT3ygER)aGutYI;yMn(PYLe>5p3-G?GO-jAiQn@qtfWOlz?2Kk)Jih)2f6Xh!%Gw7= zTfl)NPA-!lK#q)pDMq>wY(6SB4k?EX`f8&GK zTq$D4aHOWJ<7v~BPRQI`E|_tFhtJC@5Csu&e)UNg!cn}3*O{*&r21e|-`0Q+`z!NudjRDX#pu_GkwW{K~oi8fb+$j(W@^G>`* zqg)|O{k{R275+3tGkgT*|L)|FD5>#Vi$%SL(Ak~I1V6fubN*d~y+4JCNN)n{>iUmb z*8PT@G&Vvr7|-A0S>2%5(2VE*TMs@?-N;~R0rhsF7g_8b4vv98FfMC^1YAcaTwx*A z>z33PUMN!CUx${;T|m;i_7nb=k9b3I4m>_Ige1H6lWxf^cv7q!e@g#=uNml&N9-u5 zf6Qdt3pJqJN0+wOEkN@xXrKXqWAe~<0_kqJ2P^K}g|X60~5o$v*&R1@O4^x+X`yKTovGkC*$p|k?cG9=YTbJomKuLou(cb z<7DQ&wl2^OQ(kZIywk#H!PamTD*lW9@hlGAe9nw|e$67A>kCnE4znMxlY?ZFk<_K$ z&CK3c9B=B}goGUOVe7+(Nc8tD3(v@L{3$yF3q?Xq)+sj8PQOjHYB-Sl!eYta%idAR zANo=HCr?Nh^MszTGUi>BMNNo_km<|4VRqOW#x*sRG1-)`RAE6i`P_6-X`139Vro!` zUf$-bkJ7$yac2h7S@09{y2n_%?yN^%kteA3mnpEe&K4bO)r7gGA(_Gp`oX1i5ftQ0 zGj}=RNALtlcB+UcYrQia!jGn1Zn*bN`hF{Gh#9+Q*Ifn(lw zda#3T~{=S`CuP4Xc$H&6e zkLfsQbCkln-{#oFGLcBlD8?lZ!dTC3zbha^37(ky?B=Jk>7-whU@y)(By_SQQBvp& zJ*~HdxeH$BI8B%0Ef7s6v-WPpJ8D`MF&S6h2xm^YpnRr(G5Z~dSMNOzS7q;j>`IO1=hsrHVUra4OlFIU z_I|166PzsC=G}exyEcGK>=K1bpO<6xY7t)LLOW!a?!X>?F2<8NMv?Kw9OAw24nF;> zn~3Vsq&49m7)@&O(iv{h@zQ)~>aB&aGlrO)V)k;(&R%KBR^`*~zRa6t59UtYgpf^| zpwe&;xg#SIo7$fIuRSUCXUrVDM&@@?W>Fk|i5RA*ih|PQxp(Z>S2p5WW-i^b0*XQ-1Me z`zA3+WVj(qMM7~`Vi@D_n7~lP21oJaq{{v_q&!BW@l}q_p@u0qK;o&3wcQMX;f50Zxsh~4jGnE$apeOui>gfID{ zg!Io%(cSCsUc zWmuK(g66w!#g4r*(3|kHf_vLC>8yrNU>)8XZ@pv)9m2=a!$ZZeNIM%&DLbpMxx3)Y z!&$^N|AdBRNH&vMTo0Qs6r&eh5&Z7KHOQj7=v~@zaCFfJ+N(4QH~;=cX{)GUqg6nH zG=8AHuclMRJRz7jI)O%m#7J%55fVQ!2X867ZSHuk6COC-g5b0I+&vdH!2Q#(pd+14 z)~=4hGBT2AH_M)SVHrU`*0O{8*{)5C+c9o>zy%G3DE>4_7A1TA0vv6Mf!@>mn;!OE zi?3-dr;S8ClVt<;aL)8lj900Yy?VL^*S>Z;-MnoZ#ZKAG{`P!1N7DKoRuilejQ2+- z#sspJ7aZZE^~ZYBa$A|RFjxflr1YVa_wG2Z9$gz zPa*bsDOyRg2F1?U#IiKpjFvs2acF%Pc37!EPYC8?S^bN6O=TzbVc!>IuKb$1m+8$g zl=R5eZd3fX*91E`5>$4*4t3EksF~u=(QL!Wak8gjtFJIA52$Qvzv_n`y4^EhHn0`j zw+g{RhEZLyG!1<|@D>$nyiO8o9!(40>4Y-&G5Iu^yVx#MBh%%n2TDjuO?_u3jWQz5 z(n`j!&=K8F(M7kLcxotvJ{Uk0+V?kFtXzB$FAcU54BIFsXFJ#{O-j5)7Q8A->_!+; ztY+cPQ)Aq&R~GQ|i56Y*;vRY%Q9}**E@W?$ji>q&x1o;@{b;qpjHExuIOyx`b15Nn z)}n-}S#)B?k=o(Gbb<3l;4~~M#b4vYxn}C6=+x{s>fu~Xs@^$`cD;HI>D?408eE9A z@Ni0_eDZ%%_f8k4>@reELKnjoX1?E>xMJuYML%7SY+t3L7bZ{fCXO21>$pjcn@Pgd z?2jnZUKG!mX_Xv6A>`mS8+{rJ0D}t(++wXpSp9VeWWSn?2AulZV+&1QrHj0-q29N5(fA{Act2}3kfRJ|d!;h$U9<~+gxDd^Eo;fFs37DK zat`bq3BFMnkHR;OLFoG*=uEzRx^+V-UT`spT>qm87VI*tH(eZs>3vY;k0+y$E*`i# zZzE+m0`TqH$|}ac~@N_CARn_rFEw6H-yj4jWiu zYeqHLsVIuidk*8F1$eFcF>I7yOyBx$P3#ulN%EMdjyF>~XrtXha4fZ!sALDj>4z5B z@{$8dzoQ70N*K%#KLi#w6KP7ZHBhUTj_tRsgFq!YUiZHlVDqI7cNc{dl#qbc=PBdZ zxBd8J@DqGv$rUVqYA<^eU3|pEF?Flz8emv& z)S)H{BFi`6?v2se?cQgxfzm7VSxH5`{!<&gOH+p6iz|ry5)0UFXM|xBU-9^w5@f%z z1kChyF&iiI-YAyAGz zj9wo+Mj|A?qc=A;0o$)#aKn{P4V_TtDW`6Oj;)5Qm0633Zue)7+LN6~s@97# zB>OzZ@pR902#Wo{z0C3RirTxQa=UQdsv?ic@n;$Emg7qhdQ96pP~qVA!2*JeRs zC&PP;mrg5_Rffvw$z-lpo_hUYPSZuZ4wN_B1Pre!lgdZ>@TpywI>vG$nNjgsNB&y? zzFTD|iv|vqRxxuZ|JC?t_#9~Q_k^9yd@Z|e2HSi*mz>||jlT!9q%a&|w6Lro(K%2E zN8}$Pts}EBttSef|89cc8{abDgFp7VpaoQq4soBXqHi5HhvzT(WecZABgex1?9~w! zIL*44TZ?Lt+&L-s{>|cGlIcW09i*F7W)VSE$4AP)s2T^BNyGcGTl9&r(|E%F z3+8Pb2H^cyrQ~SSdz=x520#Z2E)QUz*GP9 z8%*<=4ENHV%^BK_@Y3TgR1{xCsofXQ^8ra-McN`Bw#p=;^JTE1kfw!*+!>gqw2!>X zsw5vj?*+YHg=Q@02PPl3lQef(-lgg=YD6WCtj`*RIs3GmYf78(=Ie7|-jRMd-Y`L0 z7KxCS-p}xDjPO(riEekt~p2ADFr?aOb{lNO9EegDF7`L?h z&}WL7b40O*wad2;2FPEusYjAB?9D(DH!PH11o)6xnG?9~mM>1ft(zR;eT$lwI>GFI zifGxiHavRP7=Pod5y_y#sMh!^w@%XzMkOe^RaBIy^hv-1g(IN*$`em2B#;?ndl{~% z2wT!n8d?1OL$&Jq%s8QY9*sOx#FCL=OTIdu!PO@c@xwwh2pQHPMv9u?7Rm7G!{_4) zv1O!ld>1ydiGol4#-Lce2P}BPfZPJf;Pp88sxW|eF3d!m{pInDWJhwxqaRZ2!${%_ zAMD1k2(IM#&^CT4aHd44d0}}DC1IsXo__8|@8)$95e}EMZ+?ZZ$;FYYLYI+*g+BIp zzX~3bYcL~y5BJyMCTc_VSMSd|}w8Yk%Sm9JGT(8Z8L4`;NT6!N%Et*cs*Tqn; zUmd@?H!GC&b3H=4zMey4SIz-H{wR?dl|%aF-el#|7jQc8E`ArApk8T{12NT%|8pvs ztU5bJHU82kTEPO+$DT)gAJ)LFoFdYgdIS#2&4Qxgf4DVKgL|~~1JrD|M-G}dqxm9X zDE_Pwb*MZD!Y#v~Shk5ye6b!b{MSk(K2qd(eI|)a?(-dG=#i0`OSeKV2r zlxJ#x1~T=>VB3<7f6qXVhW=`@-qz%_Bt08IIzrZ-d=D)XjCC`lP;OTw6N-iWM6641s(0UKx>2yPM z$D{|}9k!$|%~U1{*9=&r=aiO40E0Tz(ub}iszl$g6Sw&ak-GFPWS80<`qoET6biK} z!ht6^xjBDO_3m%@{EwR`Xn%$71A?ItsbmZx~vzDf0b%bTYXOAv%AAl#h3pm`I-5&g`PY}3*APK zO%t)(S@FvWyr_s9Qcf5vOq)}n{rOTy|jC{HHC4R z4EoZSbV||2{NJP`zL?4F{K6a+HF8;G1ChU_gA5L=CRI#tW2?z#WPUA(?3dxd0<~Mv z_2mdx_hAD)TpCQOEx0-LGSLB+L7hGF1zg__=#V91bWnaZhN;>Eo ze;+<$Q^xn73!&tZmGl}RaeQQ+8MHgjBQ3WmNMa@94CYSGzV!)xpfahipY)JYFP+}E zF)?-jfu*$iPGxZGT!_T$1IaFM!n@7JaLe!lfd2&aXTKtB{6qvqb3=&5^n;{u!CiK| z^flCK2-uvvg7O8V#Chcanq6}dt>W(iwVQ$LH%8j9$xV_}_-s_V(Dw|@ zH*ZI$ZaB#!K|d{|I1{4Z)u8Yn>hLn;45TOn<0dP`fxc2uT)!2Ci36&8xtA^Nor@mo ze8-78t@OO_$qN5C!mPLlN@#P+qU7G)GgCS8{)%mtuUTO&(Rj1UQakNyyw{(j+O$`>Ys?-fkU)PdyA1`x6CP$Ax%5 zM-=h!&dcanoh$fj?nQ&jQoR1G9mFTZ28Y_LAgg+ry|B|!klYr7z7a05KmDA%u$#ft zJvJYI%%`w}w&7fR`9FGYgx*Y|i za27_kvTktKgL!xFSq!q>^_1J{Z4fB!nR++-ztpi@F8o=!=&ytdezz(FCU-MCpr?AtCl_4?xBKZZ z;}XO7Si?oCCFW?)m<6(oJ;6N~8JE`mK!W_fke`yLa|LZJlYmDYQ?x`$UM=JJYMQ;g z-$JK!0eyZ&1k2W{n7H*CLDT^Yh?rBsce|5Kdd+r|+HGFM@JTrCkGY796FTs;hudL} z=6oo~{3#fTF;4t({1P>9)iP`{k`0p2MrnbersDa#1z_#64P7l-m1OSz2bU!I(58;L zNiMc>a65Md4KLM$Zv9*wUiarx+>#i4D)~IQcV->T+W!K1pO-|MpQDKZYmziM$I%1K zoKR;l5!mqsSVe>jw?7u6i8MFR9ezq{&D)1f{-%Kc?Q-}F_mSk@zx1U-Ll_O1ML9HV zAj??}v@RK-GB(O2@k9H$=gW(zy;H8__-H%?%64FPRR%d|DnSevMxk`xI-}T;Gvd8`oBv8ySIn#u-}aqY$+qYVqAe{h%O|3u^?9e4T0>f(-wgZ-XOd*4$ob7 z1>JsI*XZkV4o@}6QE=ov9_-u+HRl|N%b*!~xUU<(TRH(Y5>^m9kwVgSmXn{oD!f_g ziLfIpi>$f)0lnc~hA%R{u;Yd>npLhuM)Rz(h4B}ncKZnVZYRm)P3A$kz?7cWr3m)F zTw(jPJlMVVD1AIFA2JK>A`juGxTrsle*Dmanz8dSVwI%h!RISsz+pMlYb>G{7+fF+ zk4F-RNi($5wGurI7oz{#J*3HzAYxjcs~Q+94}rd2XjY&(NV%*>CaeS|3vP^?`U1Ig zFYN%o@N3k=E>lnqR|2@8fSxJ7;uaYVqteoqczH<+C8D<(E*-KYe{B5V_{>o}t{BZ8$QElZBD>DcD)R49zv#NV>1wrtRJ+a8}i5l5Jw=$g@)%{!w#R#lWMN>Egu= z(0xb-9O}MuV;d&G_x+&^ud`zUepmp`ja-Z}x828wW2azjRlZ8SoGxqNjVn%iqYQ$S zW-_=rgiM6_6ZAe4WP7&a(6_a4DD)zBub>ngMl12R>xRTi5Td$lojno$i9mOTHNR-S zG~ujLg0FTL_y-OKk>-z+cpyrgwET%j-#;%UIUY1j_n!}ikAO6EUxfRkCE&>1W2U~I zVOT_w0Mmq%Zk~}wqPLcS*^du=sS0KeP{7PvJSFjAOI0YiCrxw)6?lPChO9Ft+3+pO zh#X2+Afuf%c=De&`SBu zn)ykHJLEjgVp5?F_a1hqRc6?MYZF4p(}OAqn|W{MlR=PaFM)j;;yD z>*x04=}Y2})%VBrw@D^nw$7VYi#iS3?E4=R}o`Q zEO*HwH7ste26g=T^dI*SQe7BFy7{3*HH_h_-8cbn4dkij_dWEXKue-haT%ATh>*D{ z0%nJ$O5_wiAUkzWrjK|6W>>fpdzY)&qt}}(m`sAh9?|5Z>PC|9aTC73JBaL+4atLt z#l%19F=guKMoulf1FfHoK;N?ugb)73uihF`f~`6D@QoxKwfZguyjh2xBmGHHPy{(M z?HTDKsc8MXo#fKMOL+FLjhwk*jSL^>pu1zQ;G3xzMoj;_ctbJFn%50qB8NF6mR>L} z!2!QPBeH5m3h{nfg9|(}NZpz${0k6nc-w{S2R>8nZ3i^|?Q6QMJkyThpMJtt`DTrQ z?ul4U=mmP3H9yg&=_>V;62=Lc;fWiy=K#G2V}-gL8~P8czFv%0M;Oox zSKAT1_O{}f>Plo%^%A9Cm`JgUo5Xvb$is#ho8;J^!?@BooUXjS94#MANFjT6;G_qN ziUp@@St46!qr-RZ&;h1*D6xqg^`3JD$@-b1@X$CO-|x?+gC&;;@;f3>T!(au^ZSHM zv!X=qNxLf6)}3A`+E$V5SkjV|aCatK+xl>Qzt0=Aax$C>^&Y0Lo959=KBOW^*FwcD z4OW?{GFwR*kNseH=>Y#&Q;_H;+aa#%i&9=?1~!FSSkfFpJbKlj5Y7yEe72 zFbB8rM~QX|_WCxJu22Lp>R|vM0F?nZK{Y z+gc?Bg##^|?j8yJdT}W1ENR3dy7l=EE9&8VtTgmURx4}!r=O7vbW&0SEBZmCUh|F{(Jlg=+iLa)*UZlx(H@lFTv z(^t_*{f{TIswu-S^QL3-^I=r_)H$TM31g#9Y_YsO7F|(n0W%9jusd>+?EjFA`V#6< z^vs!fE#FTdo4gc^a+q$&B}??hWUy)B-<9M=zboI^@G!a{eHUuxj47$KJ;(no`vO~? zoT#+1NK8JsVAr)K3~xh&Z67jaMyJa28^1JV(o{i!b-*0-(=44!ZRTjsM#Hk-`c|mz73J|20C!hJ6jx3HWhyJ=y{wueQn5wR63R*|77$MtR?0o{#}p%y;hEt336Wge?po{v_PdXtjah1C9wTj{6w ztU!j-ulo3IXi5n3O`O=6n&rGN0hLsVlFoqTNd@AuDZO_e6=o#Fqbv3o(Z*et7DvQ!b6<_TY*-A@M7eajyv&TD5} zc0b=XJ>uvl&rA46M{7wSv$pk=+Ddn#kf1?5Y>H1R^uC1ddxa4X$4G3`eH>Ks1K{y5 zEhKhz08fs3Wu%F+aJSbA`ibmkG-{p2NlL~;gxc0-aCH;s$i9kamo z*07Sj+BPgGFo#_mw$;l0@WG3>PDdv!=OF30#hkF_Y#f!Vk*c#;Q!uT<5CyyDq9uDG z@k86-WX^M&B+stD$W|kgtUBdERxPLx5*HtYuVfa&yLX(d`HvI~uAFHpHNa~vz}&&A>{=lQ|!nD7ry&(?F1my)OC`yv>n@2IbG|cv zhp%{sycTpHNw5&`4-i3S0sX^@!eOJHI7%&mZS0>~`p8CN> zA%^$MzIW!e6kyTuS9&~^;}XcdDKL&Q&ORBJfU%JY%jWX{0d(8$_Vf2kU_$w zvpHexPzceJCQkA0_>ud3IBF;i4b~E1?tF5gSj}0BEmziZYs5>)8G9OS(EW?{`Y$Gv zIn!~dZ$17fwT5_fFH}09m4NiVF*D=4-bstU{laUX*1}YAxgi;7FL|D3HQBv z8sEsuk$+z!SQjeUsZDK>lzTED-G6hrFS7cTUY)<9BDJZ5j@eZOm%IGIO(7f}DMaJ3 zBYzUb+1d)b7UZZ`xvoubkm$tLJ8R(Ute6yQgSEt)f1j=8^Y zwnV$bkyxrv;qv?uWVN!U>Da|cRFZlMXKyzn9XTPWbbbM3KUAa7ON!G^qIbehnM#Fm z+X;N}zZZC@cb@w9r`-q+?IfFjMKqlrs6{GTsn}D!6vC2*Qu0pffZgs|MI~h)(EPNI z%+6L+=I*Pc`D9({K1(UqW9H80*t(r4z*bsif-fjjOF-i*N;&&G4zoX%__8kOnX@+T zISn)H=aRu?vstH&PII%(WE#D$+kxMe%}C&=%;~p^r!1Cpky+xc^ywK{IC;)ABBc8? zS;t0%eExU?U9nsx*l2o(31KKE}GKVVK)rNm)@23ow^-zAxj^d=WP^EvD%+U4UPtjFL-;^f5 ze+|RCCK<>5p|pb<%dwH3Ieu?(44I2=P&E$kp|`3&Njl@HayhEiQSdW9M)0Y22R2C% zQ|8Opu)iGSK(_2AvZS&TcdB1uehch_Pt;6su%WrdVvCHC`E&mM>Ddk6DAsw{6*nKg%ta_2s+tU ziT)`i(=VT_qECq}#~bt$=!DZ%*nN_n7U^7vgg#0^>DG|c=+0>-6;;^%R>hKwF6wRw)F^)Jfw)Z0wFnYr5Ze7DP;ej9J7Q-beS+JSrjO`m&60w!n*n09c@S(|p z{HGY2az|iPy?JdN2n*~V4J(FB7T$G$MZ56q(wog;i-=I@`LcL;mgS)n;&DTOn)$6vyvEfamm&PH*j>78TWqKEwu|hS^N)< znJD|%LB2%NFsk_=Mot}C&DpW&FPd{VhAOV{g5k8sXrZ|~-K<`M7kN*-L09HMX( z-`)QV|I;-=eX7M|$5;kRX^v~MNDQT+EedUSzYt$4txP*->XUQlUC_hSHpKcB0q3s2 zK}*Eh#HCN1-KQQ#Z~XI2;q`-q=;-1pWclb4))`Yn@0Y4KT94T`UO05hME0^Lx~l6A z?hltG>*hP8_)kVbN2U}tKV<~pX&J@;F+S+BKVsPLuZ+qHR)bohTL^W3_Hi`5M-#mk zk7qa)*Ap%&_K~MKA3*bMEv|c$s^p@-m#lMmg-rAQvsiQREfUpr#X5`38P@b8hJ`m< zP_pehdEX^P&d%MOLJp5XqP-!R(t3xd{@X_md&q$Gau&`V8-(tK9Yr&~xy;?`uSzB> z7zX~&r{vEHRoL}60%C-^6}NbAK;AVH)OSx&GIPf~^7LmM66Ngz_g~XVrf3j*{jH5K zJot{3NdywHhz;<1Rw-+J@HIM3FOCQtLixhEL0p^qNbqkB23ynCOurUOV*21AJU%^# zt4yAd{G+1HSNh_?>gIb=WRrp$OkQR7Hl5eFd`pvh_A-wsRp#Lj%U2}+yC<#O`E(;d zkp^+O*hkM=+DhAhXL@mwTB&bEOsO=(wfK#?mdeBKTTpsIf_yR%HeaSDN?z1nP1?M> z4BDpe!##hk@OI7L_%4%8%j+mZs&j3@&i#4n@_`3R+jY!Us`Nbtl<9V|*ZK@nx)uaF z*15Rdyal zn+%E7r6f=387(0>liw!pM4Yvbft<&AG_LvpyJv~-Ot!NFHYmF zag2brZ&SEIKA(Q^D;V&&8f7rau+=F!-`AoJ#^}E@h_qLEK%`Zz@x1C`Hzn;bmJAI3U?f(EPqRcQsr7m>InD zP(p#ritz24p#&S(ChU-=hyA~#!)Rn4IKBA~UBB{~T4l>g2@-aSGwhOATePAl^TknH zH2C%p`s^*E^k~L?&a0q1i7yVnN7*|?!mv_pFo~D&lzt>PEy1@SJEKOg_~+xv`w-skrgYTC;J)Zko6A1Oz~=q zd%n7$Z`qFC`&J7cxH8?RI2ZVoa+`9G0g6Nq(bmU5(I3^$n@dC(!{Qjb_+y=| zl~i$U2_$DP23zZyC_F=eOUi864&a-qWRa_6;4z%kXW3585G()(VB=i82D|#XBz-&U z0RQ2+*xyYmdBbIOfyg>Fz&rif!~3U0{I?JkS1_G6^!X`}jtHZ#)57G_mutA(jZ5{9 z%}L%Bcva9_cL*6t%TO?7PX;$_Py)YgT7}p2G29vT zGfA#qIg}{7NAXHfXiDgt7$~%_BF--y68ZDu(Hc=_mYDMa@Enq%db|1DZ|eu}3XupD z_Tp2*`OcXj&HSx)<8fTcW7!OU>J{$F9mFY=KF-8_{f%X@zzo9Jf`Am1VbxX0uNUSIf&1ZGCfk)nD?;;Rq| zP!Z#0M$h84zYuM1J+Ht^j3i{^<|v|d#i&`)s)R(Ev3TO!G$CRw)0@1rgp8%O!MZL> z##tlY+?MznpP%PJ0>u_LtFP}O2dg8Xe0vE_nJgv2Wg5+K4pPk>-1nes)&cZ+eO`p4 z9M(V6&p7Ba$$EZH^2IYZpmo_in3Jl5?U*j5?c)1n?$_V+>v6`X#H}DpMpcM^s~l{1 zZX`Z>t9SwR`9!gJ1Z=bjTH6<`U zF9mgBvnWYm*zYP=@ye_c{M>8;FUb|66_%}m1=HQJq1=^JUAJbz`p9w|HzZDNN)jU5 z)}_Ki%L2ipo+T7KyhndqDn@VqxtuKV9Zd?-rJ(KEdS)-O9DhDLgfepTx%$&OsZ<$l zbl22n{^M7DSKoFE;Q;c6Qnn7EOP*dwXZ9;Le=&FtBA3+2h*1stmQzbVA7B{f_x#vY zVlocvlgU*4e34jFi^=uwF%lJMo`T1tlm~9@C3ohhG>tNT*281bs7YNO_r08+7&fz$ zVJEhd1^qryeLo)#=hQcOjC_Ku+nW5nZ*tQw%nm~->^gjKX%ushx(!$MeFR&j1QM+! z%YI;RiQ(APpakCr__ud`=GT+bEW5Gw%9e?`!1X$mwk5TPJ5sF6u=rci=I(AzyxJ7u zEIdqFJ2MG6G!Gh^e&E8B1Ju)PWu)Sj6Vvl#e9z2Wql}xFET{Pysr|};p@0flUK|g! zZ4#<&NCLxw2gI-E3*1Tf!C6y<=-h7mMS+*3i1xaq1n1iw$oo1dJ>5Q?*bV5A)N*tlyx+zPu$IP5F%Hnsa~@!=!U5I$A`tz9ok-xC*b>QY3-YNBdd8&?vEI&XA( zrx#3mgu&-Cj<7fJJkv=_hYOEGilP>EFif#I zYL*z+-)I)*9C*cKfvRzS+D69l90YdOrZ9BHkJ#)Ch58gGPqW&K>|C%8>|Mj)t3+qg ztpH|cpR@tbZSjD8n}k6EkD=;khH#|0fiC}W1-bspqjSF);{k@-J1zJoIo*5!{>#xp zp>l;O@*87`mD^16PP`qfgqaeXscn!@vW~PwQ&8(ggF~M(6hFGA;Pjkfbs$v|{T+kK zRGPX)UI3kUH47Sk0?2B}@Y9*SWz=Lj-oCGoTGWvM2DjYM-2?w%qw8EUyKx*zUXCT7 z1_Y$tuMn~iJc7&=?5ZgS`@&x4g$%!6u#*cIY?bGA(DUGpYo|8WVy! z73%aoSd4=F1_jmYMDhGqJyK8aCq_Xspjt2@h@Fw0>|)QH`#NSM`J4)U%-b8!tO^2~ z!#Q~N4G!cfaNuX4J=_XV;0WiQ6HNB!ld6?FL4tRV^Sk}G;7qh4kCR{ov&&>zv!62^ zpo_6|#@uGEP+K5Axt&lRWX8V0@y1@3C;3ItlQ<3g5KD;8E2cRSmmSWVYKy z;yud-$LH2#)tJwav~34oHctt3PN~r+PN>3Bk*9)%#Y$-RQeobuLvgTf;c@(Al_GZy z)r5rnjA?HW7qUKQedHe>v+A!2~qIX%d z!>z~US-m@9r7t5(syWCz+K=3kzeY!WROTIt{YgCc+mVdsZsI5{2JiL<5Hv@Fx0SvP zXKQ!!zP)-W2zB2F6|d8AV()g|6W?BlbC-tr(c7f@Xb~AWx(zB_-w|%}YTo*r5&oe8L6@jW?+QWa!eH7lpdVeRu*7A}?@{fcWQJ*Rj4QIohgSF? z0$1?TWS8cb%Jxp-v=Qk-yWKvaP}U}8TjtGoUQ!7sFL{poP9)>9Sfl#bLwqbB^@DF@ z5X8Q}`X$aiaKGslOON;*-vx~5k($#HNgqMS(1}5HGO9ZRhWrmBnRS&|^^_yx-tmL` zjtV#+5%7zGH*}}HKAhRI2fi^*OqKdV#iZ|f*e*8(Ih^q!*&{&fc$?580V$}<&y6zQ zrvWC%4CpPDpE$qF6k%;fL{r9|nYg7sh@R;af^wtY(Jy~9yF7Cla4oRL!Tas;o1Pqq zyP^)gQ(U6C2w{zXj5B$826@T+j^ZX$@$`WY(B!uX-PHL2f21q8kCpWV|1rId4K1t5 z&4tyVP^b@@Wfp{Nmq4~ZVqy8OuP~-tkLw%Fq5s}uTGuib3hkIo#L=DP&(=-E_rLQ9 zzmmlr(!cQjr&`K8J~iW86T4yDp$iwK+`(-9Xx#nJ0V`<@Kv=a@T8Cp2Iuw_J!%MqB zj`{4mODAA~(|)o$cqQ6!NFNEEzDVCKnSpOunt_{36Kq#3fQ(hPB>iYQ`loiX>AS)E zg_Av^u=hYSv@5EUm=B1&^ZSN7rha1yk%JH#@4=eA>zVr6v@*OhVLAx!{(;O{5+D{S zffx0vrSt3J;LoKp1&55@6hvC-s|^35sbRHJ-K9qvZ0VUB1Ywza;6=H&^4zS=&tAuo!E?zxB(F2BH=M((58VS(tl*{ej! zyji$F@+)=@*G!r9xnE^uumCNspKIYEw}J7ex#60xrg$c+B=N$CD^OD&H&HapsBRw-(wV2mB6+URO4;` zqv$*wv3lPyjzWd(y+TGRDGBenZ_zLc4JD;vwKX)Tq{v>$-m+5BFtXnBJSatjluANr zNJ~k(uhH-P{)Km(^E~%`U7yc0Lt->_m?ZhU;sp;xkm}=tuw(ZL2#3Gynd!&y?nZH% z{N9ANjmx6mIu>WwN@COT$=OaVH!x+n2svvdidi$dK`ea~hBO{qOg{aQyv@lVC*P~c zwjGtFH&@8hk^JR!Xt`vP3VBFEExO?y-HhR{8==MUEIsEj1x}f9-t6D2s1U0H z^g*BVRSL~fr&IeikIQWIKw=>m_l{t1>@EXhCZ|1i3vsAd0_4_ z!oG>2d`&=kXEz*aolG5W=A+4;*)+%EKBKZ~8az7%WP(Q&*;^ft*=3iQ{F>{`gk=k{ zuKOjk=tdUaKQ)u+7k5z~y_=|Md54*oy^to$cv0k-P- z@9|bl+PVrp3Ix%+z2T7NkjE~Rkc82fZE$Tc2~V3JA*%NS$oS1Ar1ZTP>3BXHwFd=I zX0b7EE58F{x?IS%v}tf38QzlP5g_pIIJwWZve%@qvqk|N8!YxXe)hja3{PIGN)EWj zl+F7Jf@dgMxH^_NU;IdV3@IyY0`Q5;X5Kg`LcO>7()^isQ2K^1sr0 zHn{J8ku-mD%NieY!U#tx2;!Jv?^MfJ5$Pw)k=C2ccipMP@RSlBtxDjF#Jy+FNAcL( zYP0A?%TOY{_%W3w(m1X?kM$Q&DQ3dfDf32`H;ay1AQ zH!IT{p?ZmOVxF+jIf*VbK8?G&Jn-%fUo7)?rh1b;!%b}^%X0ZuM5MTZmZd$#>#y&i zpXpqBb$tn5Nforbs2q=r>N-fV^~Yviz^U24Cx|5&1zCx-K@FM#l#i zegnGvBvw0D6bGu)$xn7o^`M>s4OF~GTrPN`(Y|9S99YF<2P|ZEuYOM?KQ*F1S`+Kf zCNwc>5T=4N$-Q9(3KA4fb9Vu^m-C2I|2Uri+XEvxp3Jw+yWs*flHuKTH#ilu zuI*t&{Y8Dc`KToN$+mOsl`Us87hOg9VIxeq>`p_BEKoN?mrOmWPc!)fI5&6(PB!6k z((6}azKkqMO;0BZVr6wlG|X|P-*k)^G{C5PEug{icfEZgan!?=Z5mZ3?9D2sN^V@* zm~++9kP9-4HXq~lEfUR9uVULQX${7yHEOIyDAtZ&&?B~<@FuM{1w z6f&Q~rq$mL9VQe0xp3WrJ-F6&CB5@R0gudYq@lkSS&m;s?pZlbTr}h@HyY{D1+8=H zbw{IUXnHseD{9569w*B+hraX9Pt8R$CY8GO_@a36w(69Hh16hyD_Z)cr_c{d^^c#( zTi#H6j(dJc*3bPGl$>iVU*BB&19kdlV9?fumKxhwnN4Ni=vazf{lP=aiD%XbEt7LklsRc(bDv-DXLiF7q9=_|ZVFiGAJ z*UyW@c#$t0PjE{89xfBMA-of}22LhvS`FmY_h`^5nnlZB#bQZdKb~;Wq^mdTqQ!$( zt~bEanjy$qbp@_lCShH)4*7g+8s^p-5Cy7( zp1QiUeo`IDZ#yJ^&e{x(ZFiB`1N&IFtLM=0kOSTOOPW00Glma7s4;A6F>&smPe*ek z=&W6LN!}wuF7Om2VXJJ0c8Y6L-+EJ8C3dG9EAf(#K(=W$^R!R2)0=gI)Du zk8-Jz1$FvnL}sR(M@2;sOk*NYWzY?e1WZmgcAk`)Ew(&Kd+fMuW78t&>x;n&DLi?1 zzeVzQT|e?Ko=414{Y@0KKC#7LpAv!cNm$(OAbVQt5{hhDMx?!XWc6)tP`DAD!Xxs{cqP8=9-^w)ak>wl06*o2kQQ%vNjxc;4<`NdB4KnU zpST65;jRb)<{C#?l#d@Lmo2WaCHE{@x%Nr)wl3$6n01@DZAnCq8%^h@tfyx#ou=Lo z^5{^=55}dR$ze6J_7Rbq(ssX^NHisKjGI7^N;$AZ*jDa$se>oj(* zBc4yTN2?hkmg9CYB*pd;(QoJ2O!xNUq1*Sl_fiyUYQJY!$C;9-GkLToE}kl+?xaWc z@37u2*O=I(Vff%wgd$7cv2%Y}F|7_YSjqpxe(F9>Tm)LEV@M8Gzn@5FWhSLc6bH7`aC+Jt&^Tv-e`lznYkwx3d(^7pzXY% z5Yaoq4X(S{2cHN{0``6Q(cRJ*?*}3#-U=KAAwUE<| zYsFQ!0;%_{L+m0>`+Cm%3x=mv@mn7k$SS71;9TNYhy`uouRX*u^5@sk2hx7@i)t5^ zdd9&^&aJLj9Rzo}K4Z3A1e;jxfdl0-mKhTSnM~VNoP#@z$lVj6T2-I9GpiilANvWu z{)oj7r(*UqQM?|T0uSngaJrl@ZM&yKa=oMJ^Cwd=tTu|xc%x45CdFew%@!Q*O-03w z^)lOi3sC3v7L??2oeys8L`g4cJWyOt`U5l3ih0Egk=jlN)8Bxc)<2LvKAF0i4Ab{S zojTUpv*-C-RwAnfhL$+c(eXEs{_P~n7Y5=Z^~TSbrpwve=FkCr5(sRcF}9G1+AM?WxX{73A}hBWMWq8Q#IejmaUL2j>t-e_TNAH*6&N{f_YXSUR;GF`$n&ouHjvn^?)k zTJ)sO5Zl>*kMzts3Ny#J_ouxhx%Tla)n6iu`|2iQqi+Y3vGxW#-`I=Dm2Sq(k2tEz zS7X=^{Ttjm7uU&gXJyBXEj0bnE|M@a26E55CJUC_s}((zLitT8utvNa;_eY*bzT#N zgeOs(WexI^XHA4;A7*US!=2KL$u4XoSGxuyc7@$SxO;{Q<~Il<;1 zyHSX982Z{IHqE(CoLfVQz~z-3w^El+ZQZfCM+4_CFK24=9I3R*5^!2AL9!1&0)>}T z@OFzEo5MyxqlaZ(r|&iC@rl*s?u2T1-XqSWPgqZ!_ExfXM)%<9l=9T7GdZMxN+rF% zWeM6p`wkC-W-&R_7S$`Y#o^E3T6*(A6PlLuIIltuS~}C^~lKhO3GnsCA zE^U+@KAM0BLyYn9B6~XU^%1t0Y-B@ip5dzNyXeP9@l101E9%iJP(RsqCO)~AOD7g6 z!uG9qp=Np=eLbE--rR9OhmZD5cH}b18LHw~Bq20*>Gb-Gmm`U{)F89Jv>~+K51=<`@b-;MlrGjOCOtsrt|p z!K7@*09AfD-%|NkC%v~woVrgFLDLL5;<#WAIrB&a93`@8^SlyTajuVc?o35rB}M84 z&&bZpx8;P7E~R(u#j#j962y1)liFWCcq~PNYV4Q6%jPyP*HRO&PF+b7J{aLvD_{Bk zQ<9#46^6SEoe~oq{IRp)FKj4V#rm2rVU2id_~XeU#`yPfsuDYa2)2yEm6muk7<>RR zfA-_=Gh4`{FQ(-GjJjc&dSanZ$g~}u#En;Gawq>2lfa!v51cZlPH(+&7^jhE8Jfx8 z=KdwukGGKv+fwk;S;vep9epA($sQB7o~1u;S7H5bTgaZ3OchtKZXC=e9yW{OZ?3j~8)7rzRWkov)yevbb_@cC@@htz<%*piNixue#HsTn+ z#hNVdPhy7V_>*qwI`Yyq2&;TofV58l8fFKAX^}rREv+EOxLeayIVI{Ix*jiu7Q&p@ zpBPeRr+nDY99r}OaMkS^d~(8uov^?Z4_sLeD&PM?8OeYLi80txR7?{lwNS~};M$FS zqI9R8IyN7A!wz*+vTybquqqEF@Mn(~%#0a;nfZEP^T7_bRxQO0t&3!t)GyY-Nf?ei zT$iD|E+J{%t#E#4IAynd6NkHAH^`HAtiekiKrALkS_*zUzW#2na9JTsy>^&=mm4&-g}7D20* zW2}fqJ1pR}Lc&rr5L28>emT^UuAF!xKB*G|4{71K+MoPD-I;J`hY|fd+YTzO*3cav z=CKbeEaWmR;-fM}*_3OEL`X-8Y&R)kEjs3w(cFlsH;4nfht#(OJ$9V4_R`&CTw{ z2OWPHp`SltrH28Obk2vV(~i@_yS?PZT;1`#U>Y7&HYH=*)4@w-kdaaMmp|Hm29kpc z5-;u^C8y8xWhT!50M9ipf@?z-_}2}~KEKnSGQaFH*|9nne9R=t(x+Y=k2RQmx}i*^ zR?iG;cm9)^6Puaz*yA<%X0AXltxc3s^t_rn{nKY)D}7*f$rHY-?K+%49LZ0zG2$56 zH-O){1w|CJ$O$b6nEC1hNVko0PB=kSFw8}@fov#H<0-A3-bA_skMP*g!!nUR{$%{= zLBjtSL#BOeAmS;vYxX`g1CQT4tO(?s9kaG`^PY>$KUE!?ma`W(EAL19s7EO?2EH&S z*NW4rlWWerDLljT4`ks^#bR^K*l9SedKM}w%_rAGvJ>mq1%W2V(QgtkLR0F?9I)wt zp%_OD@YxP$1?^zS^*J1l|H|9(V;^p}8e@xmVi0=-=;v_*l5|4=4~BAc)EOg8HuDI+ zn+Q;aYtA@$!=Cx|R32GXUugbw7gi6PC;MR{$4OzC@>X>wIM1i9@%T#a9HD^uBh_G+ zzXZQ_NOOCLCbXY@n|N0!Ff!j5q*~O`K}s5{)F;rFSDV>io0h}St^-V| zas+Xe+eBJpH$ZG^GMWEl2__{^#uQCThQ9j1{5{!x&qLB^AudLmO``aljH1}w`4j2R z7xQrS!Wp>o!3&TK>V${3hhWndWxVpi5rP-a#+>Qx`0j-SEm5$b+oZ9s;Zy=uh+Tvx z2`uNXyg~%_ti`cIzc>f@6|@#V2HhKbz^GiC4h$c`sq6g6!!&mag-_7j`vMBRH~`as zE~W+Z@=$ie4f^!x6>?^EC9z8Tg12(BNZvV9JhZ!-m++zkbam6=c(s2~4w3O+cP5JD(lPef~K^yu=`ySd&8SJm?(N?jzTr}yaO$D_Xw$T=Hd9tL55u>q{l9f?8m!inb2k6o@o2sSHVUjMD}0XebkCEL$xY_ z`eT)$bXh|VIc?I8AEza9%-Jq7*gwR7{5podu&$?lyX#YaU(l$ZfBrxI#Of7E`ac~h zGtS*r^@4ED+x2x%)s;XkpnIKSu)bAKpYPWd@3t7P8#R`66W<}tn3H8Ui?Hq;p}Q&W(b ztU=!IzshD`av_pa9`my6z9%LJ0NvO^fUnPSEc)XiBJl&`_>KDyUl?coU<(9g_ran> zXKc60tLS~?_w_uw@LnwQpyUq>Z2H0d?rdPkx_cZ` zeIJ%u?5CPhdvFs;#afRbG&^lZS9k{FQ6U$4bMh&YIP*OI`X*Fg6gF(upBj57Fu?=<{VE zR3<7iVZ=le@8=kE?DK|U61zOOo?E`&m9gjh>M8@p{cMkcz0Apqc0DFH3`sIS)b3hN#$j|0G&qeGU zz6!6`a_qdPt~E7ZN^wHCD&5wkEF&Lq5k?x{f)_8CWGg-aZDgqPGkxgP3xGwRUXqrt z;q;S6Cfep&V5)2b*=pOvnmQ)~4DhIdMpZ_hjS}niG!MUh%fMTnD)ix%MznVbr3LBN zp@-Y0WZnA)Zf<+%vb_dGAhkYGA*+I84xXhx;aAC;)I#uek)d60|FE%YXRh5g)MJ<4 zE5P%SV%5y=74(78VN|U71YgE)LO9o}uu#{>fN)l2LA*XX`3Ncwad%k1z<;DKw~>+N z{J@$|OlU=Kka>npDhe&@u5(x8LVW7Jc^f$(G zd-VUvz`_b<#e%gmnp!b3iHib70%k$xNaw<-oM8`rYs@43C)fCxGr zO_UK|zJ$!4v6Gqd{t}3OY6d5RI_P_T02WqzvMXG-!uzWsB-YzL?YeL!2;)bE){{T|uUHGO*$mtQ?4HGRWP;uF%yH_b^;KK8VfUy|m^CQ9nkMAvkSKc*QVWAh9g z_BSys#eEbG6_yOXvB z&ap}Cs6;IZ5H({9nl;EW-&C@>DFB6A7Q;!2JVvx-CiSmwCg06|!q51N0`?3=~_Tqj&jM93iX zM&}k;Fl>gIY8%mM>l3Dt+jYDAGL*i*twSmGod>&pa1CygiiIyWqn&X(E z;*SccI%sn=jicQWnDH%_JQ*8L?3yvg#A3|A6 zj$<#dm%Vk*5YG)vXU06P@DkbM*uGMW443u6we54r9%DCTLN6#2fBa-yw);Xb z$0l9)itCaGyk#D(zXRRds!8x-VN@89#ao+%@Fp*s>>Cz^H?acvww`mi#LMDMMg$9{ zkAi5T5@x%HLP(hb`5syT{aO<(%{Lq4jfIJHsNxocRJ>)*AA12lZbx8W^B{Dz%)m(| z^QpuSK|B>_L~bpgN`~i_lNot@a9o)NZ~IEwth^X#u;-DofFt;wVfjzapEf@~><9Bs z1hJCu=AqpsZC+kL9oyL3Y%XG|gVWdE2Y)#sEO*NUsl}qaseJ=%&t|&Hf%$f*#wI;JyAQ8(e;Y zH8~tg{K*h3%~(K23!cHJ$ZJeuR1c3IcZRI-TTJE;#_}7*`q|?69!7SRG`eqbVgl=8 zAb!g-91WgKtd55>%DIyg|9p~y%|eP;H=`Nm|2hFa52MIK+biVOPkTACeNl!?pD;7y zR07kHq6}<(9+|QZpv>)JLdOb$y0F)=`N_Qxcx=LFAA0|nm36~+*~>-JcwQv-Uhf`Tdh_!%k`lRp0@O{(Q0_~=rB#~4#c5@s`a@y&(Z&6dvJoTYQ6cQ1d9LZ(#`Wl zEcwp2X`Y^f<>byzxbn4tywho7D$P5H_4etoY40UoPUu?@Sa=!^#g)NpEge+Yq?0uJ zbT~QL9!?teT_Znzrz+O1lINGG7Qpa=MD~fDM;&uz7bw9YvN&Oc?0stmrhPBqlm)=o z?)@3<#a!R?Ju^2QMz^}K(cKZ)duI(q&lbtNKO4$-?Jgzq93R6w!RB2KL{gP|)|kuS;IwaK%(DfZ_fJ51 zt8?JE;B2DcT_5`A`#EOU@vNj5mnFF_Ks{-yZY5t-Cy~n|6RFR%`S9Q06dc$Ct}{XNqFl!5F@# z(_$L=O+0l`f*}dKr%MF(p1^1CGr>zh6F*&b#`lu>$+esGsD9%qIpfa{YaiM1@XSOm z!|nW!-F4m$H6P`w#N`^O#9$Sj3K+G#)j@KRimf4IdtW73H*D;gE%-|LNBMkUBb8czZ9K_q>G!J~Y8B zt7^H<s`>6XM=2!SM$=jQguqbV#-o?CH`Z=?`V7 z{pE~>>Enwme_|p&ENryETavhMXBbtWxyUYyzZ&%T8&kKsI9}$dhB{q3Ujm=hUZk@MA3|EnzcrEe`oAYBL zt%wsO7fiO{!jpw$oE>aUVjQjRW$JWupVf3}>Y${b)k{(>=u7 zUIKZC7ts4jA}B_I~^nQo{(e`PR0_q!8_Ys@X%gVC4b#fywoK?UvYbVITwn7 zz1g@()Xs9!ITs9!{!T8IzCeq!)ucE!9hWv|!IFKGFsm&TuF9-I>x5yVqQ8v(>8Qr- z77_HZmKeGGpHlreJCW@4^rhhq1$6f`xsUbFyJ0AFuI1Tp zSE#jDCGk3PfndQm44Cb~>=?KMatmbP)+0x%_xdrpqW2zEm32wOj#17xy#uR!RH^UH zNSfEV8S{)ZF#f;$#PRZ4`YJnIK)Wa zDdv^5sn_HV%Ui7NO5-hgRzSugKC`*Cb%}Goh2Vd8gRbtGbeT;)>`n0fc2sch0SLa$ zh8uilKfDtsR@0WIezePismEn7QvNJiGB+{x>Ua&T-58@@sZkEj0jF60l$Asx>@!%o zN?)jVkzvyfb@0Ozj)9l9jGUWh4(r#&^12p9l6CuXNNalptS>Ugc<-IKN~l7?byG8R zt`8>vEjLfzn~@A9FB%#9=-Fh=-#N5BGz)(@T!r|WWjM#j0iS6LvP&C6h}70PD9PRi zf0dHRyEAL$#{8ndYNieGYi@$&jXCmlj`Pq%$`vLCttF42HS>(k7XZVtzn*_@AUZoc z;c#9YJg+#4$!qn?pP8A-m^_Px_kV+d7FV&+hw}L?QA2Eyk|MEH)aR$mJ(2%pe1JH~ zj}iC_IPf^9uKvMVY4fkW5H)EJIX!m@Y8y|%)VtG&#Nm9{bU6u64rP;b&!j*xQ=F;= zwZYfwO3>bOiLpK&M7lb{VCbS6Uh^7byB--PSN&YWh8r*EY3VodzM24e7bQf0?$?+0 z7@CR`m>5q;jW9X0_f zF8qU-5MTCwW<2Zk;T_w1Tf^e_*$U`7TUi&_;SR@V=CWxEWYMGGDLWX|btcWR5JsPb zlEeS$LWdX+mEWEsiym_OWg{Kj`F$dgJ<|zG1V~cvHmsVVjw4M4j92o1>KK-77HJr|(*TN-GK8kAVwR2%7$VbO?(qtt^ zLXs^ZrB;*)9(e=DD>hn8y}1&Xow>)~bpN^Z=BKaVaE1WMm}vpJ4<>D0VHV5H{muRFEyqXSDqyB!e(juk4U`S*VB`m+VEe5q#=t2IH%*?)&e6F@ zn9m0khZcV3_=d6=zd``-&1_?>U9@q$y9DN)Tg7}?2W;o1TQL1y9ElywtotERNep82 zxSl~Z7VP~`+EO5??uy+i!f^fGTD9x!p(UB@7ANjG9kGx7Yqyhg2uOo(U=exU8$`CO z2t#_=kVM?QoQgWl>;orN8e?A!SNL|QB49zA%$DFib8{>RUd~%T@{e%tYSy53Evg5| zVYjXjCfNL9g%4gKrJ7NoXVph;tCgpY)J?^E25a#^iyWQ#wuO}s#%o{iw=1vw9*u3O z3&3l#_GkAskU8K%5AEuP{qGi*AXv@ z-hNy8rJ=4o6;lc#vQfN%zG+Y>wF}%6CM4B|s6dpwJ6OH>#COj>EdStv8hrX@$#*$d z4~KEZXy^7g2+w}aJ6L&KHCp{Pbd6j} za-Mln-X-i?Qsi0jM7iekMD5W$*nK}Zp)OWm=Iaj@TEo?errSxzdTExq;@3geVCWkx zSKG+Gh_`{kV_XzVYp?vmn@Y?^)ksEYO_xRCu;|t6GUYJsbpg{oeG9NZ&hQmZU9`C9 z#_?@bZOlIld?c#YMNC!Y8ra)s#ctdZ0X`?$)Zumc%rU_WsjcCjOz9vh^xk6x`YAgyD2oQWmB@fx7t0bm zC@2kJl*BPpO5<+T^TPpfYmY9m=GQ>``xtO9E|T%SE6+rIFX7#KKargrGADgSc6se~ zHAS|5?ol?>T^42@QLf=2l@rL_kq}G~_g%w*| zlw8G}(GVwX7rFP;`GKU)Rd3j^5>*luxP<&&{};+djiFq}TDBv{jc*YCiiCTHWlEH+ zAlv07h<$~)LK>HGJpLjcVzv62o4Xys`n?*yKcvl*(D`U~vidnM!YL9qvfLT8>TL36 zu2;kujFRfJ;pj8tAAIwkfhLnwu>S0WB>md~_|)M%863_f0+o`?33p&^K6_^!IP;Hf zzS0hB(z*E?>qpfU^YHhd`82OfhlX_t-d=S6hx&-B`-O)kiStZYRLwY(!fx@ z+^csGb&B)(9dY7ztz17cyh%D)cnz#8olK8T?Bu=9G$yqbi?H>QeXY8iD)uN9lkX>u z;kNQ0){bo?Z_iI6^$?0yzAnJ-=?3GEp{#z<0ok@XKW0#hWn-1|pn0(q3)3QD=AS-( zlL8Bjm>}mI`$s}Ho+dd1ZNx?9mb7l7CU0Vt5RvSN;?79gWY^E^gq#K2(cs;0_QsOA z^w@^qjQ*n<;O|s{a4tV(W8(xpUv0?*F0->@^f0{N=nmV21EdQNeU}Zf^}-zc_%Z>- zIeHbgIRuU?P-{sScKh>w-kn96oa1K&1of;S!#Y#x51(G%X08KXcuohu`oYlOOz|>SL&Uq!d2wpGM z;8_k7K(gl&>5GHe|I%lno$7Oc7T zzD$nanv=qMZ*{2aJA8-P?8IX?W*wFbD$e39IHg0RhPk_3q!p|D?k?Q*tA&&D9iY_X zLX!r1*(c&(Nzeo_JajM?Gc%7_98+*3iC$v#$LDu4emNQzdQy3e)mtwp_+ZP7EItf> zvKUhJp_Ki1)`BP%?vbziwgzXom_b2DFZ^!W0!^Q0QdcsYc^5s8_OSV&yp#c*t=sTn zUlg08vXl8bq>bl3jj~ZQ1-N|71#L*V^uGGyo zKj1hrRe!-{K_~1LmB7K=6iC~nhZY?#$r=e??3eb!zu#X$L!W?(hLRQ4;EO_v--blm z{N~yWOMSYpN`uNTi6OOBmgH-w9WJ|JC|hJyoFSoUI*p9_n3LFuEFs@S=R7# z1+1$$#t)hO4gN`(VzIP1-V|2kcY7D{2gfr>dW|H*U(q5j!Ofl>@)r?L%M3yW6j>+J z*Ub3xLKrJ}3`S}Wbm5OBa6zSn4D|+r*1>TY_$a{>8Hs}4|Mcl*S)a@wNBioQ8;Zc1 z<`^dU)MV6qWX?QSSw=^^+Su@ap{&o_eTje1Yhy=2341l4+b=M=khwTNrJC9BSw` z0W>D_Aj5D=o_5RW${XI&uNw&eXnA+xju%L`6%J>Tyq@z>kn+?L~8DL z2=w}e(PU)=S)e92PgJmwF)MYz^deoEu4#_}+cRkQ^CzsSof&4N|AddLYhcf!Ok6Kz zOpmM_kVqAOuKWxpQMi`~=Wx5xp#0i`kQDZ( za1K@LvBIBe_u}uKKTGSKP0{1kE4cTf6IVsYk-9xGwExf`jNLCK+bSy=Pk95PH+n|4 zz%!C2jMmc0#p7hMm>D(K(aT!=VJB9rKBQy8#q@`#0JldK1E)RGDAc$d*Zli$;NG6h8cI`sE79{R#!-i^Tdgx7w3Hc;oN}2w=;;*U3=Ih6G9afO`~XT96cO|OwWwLI zOTH{rz{1M`Ao!%1;Qny7i+k4wtoxQ^cQukmm5hQ)tQj6O8DMswSVLxTS*_AbZz16I zV|IFXOp5ZOZ~S|c?3sm1A~f;J=GsTLdbK{|N67__X?S;&D{9S?rk&d+Qr+Qj=DX`e z>@&Q@b^l+2d~Z}@N9_Wl>u-YAG?l5{%ekSP1t@c)4bqOQ!sXa*2yu|3&daXAt;;iU zUJ`eQojO?OC#Hf8hr1#Aab!~VT@zH3kfz?xpYj)nWigU2dZ>J19?8|uMw3u^66w?; z)s!kqyE%{E*56!bJSm^|h_9EV-n)ZNTk$I8{qzj9E-1k1^V?xrl``qME}z+Eoj@Y5 zZb`FozbV(^`3m-f4Nl82CI@yMl&xx=P8V+IhnY_TX`qfGM9aw23C?Els;WnBlG|0> zcKiXj{yQljY4R3M<;^68BOdS)2m=68z;Llpiy36vJfdK zQK5?$j=(>^nIxjxkaKZI!Qz+^s{MTw{`*fES88A7J+Sknx7Ts*1hD?J{U117yxFM0;a+IObUKdf~z!v(2?Sr`Di;2J2ik{gN=|)1o=CN<~ zd6M^@1~Pu$%czNDEw7e84*&Jv#jR~c;8>=@JYO|Qwyfi#+?p$Tese&Fz$Y@I~&NQYHhs4P&+5 zl}@-?w1f&zUy8%4{*yb`@fHp$cqy13U4^NmE9h;(6Eb>T*<|aT?nLV!x_IfME?U|- zQWuGOy0xYNe<#kPU(_D5B0a&x;reli)7MJ+vyPr#_|1;K4=BW6w$1qacsTKis!7_P zqlEJmp5ZR*EyQ)f8!BWOE88}|o{oqqQi;h|$`)r_CtXFyQf*}?Sk6{LI`PFIDciVF z+I>a`)#*$k#xt+s(*13$p-2%9uT8-$&1SNE?ge`Km|*>s2F_F4b`_r*e&Tk6lwyoI zm!*1$Zd!4a%kRkzUjE7^`-fo8E-8%ZlfXibu|DVY!`h;#6ch?K#H6s-RI~0JIz*qK z8MWh7er)iO!PmGO&=y{vR) zL}FETr{agJ&lCkw5m)WX!p9$vQ0;+})Wa!4y6)_46xsipie|<^%X2Y0xr_5srp`{^ zCG#E^jV*wbKZ`8l*PMlMIZuVZzx(N9J0I{5k+)26(3f3QKTZ}!d*D4eZ(2D}Ot(94 zqnF;_pnt42&`tC-Ic9bqRog6yO=S}m{{0yDdEP_1qKB}@ia3@{2EK{#&tAVpi?`$G zbuvxxOJbp*I4x7EX1cd`GLpq{RA*f`eXvcy(ksxFE-F2X`&^bK^DmULJrm;TO|cRp zEiC~$yXPqW@;q~KyKXp4w*oYMdI|4on=p40Lt$6q5+%nKOOkG zc=)6+xR~{kO$nUKC}ls+xE#R>Sw166_iVyD*#pYr`^DhLcU?%;GLj9OoJHD|Qo$j# zvFe+lC8%xjrtOll_*`C%jQyVz17_&g4&|FfpH;=#QfRWA9DCdiuJ)@#avJ z2F=M3(twiG_pH^R$WWwINR%m(j47fy&6-D%WU3TO)A#HhNkwT8B^fh?%<)5p_xx^p z-}nD}{`dcRulu?F&-+}@eSfd3);{~}v-du0uRWZ-*ZQnshjQU~_Gpt8Zi+0QYcIWC z$_5NMm?3yu3)ZGy;fZosjh93FO)d;Ifim-vtj?|>+`3~YjDIJ{!soSu+BZtV&5{J9pNyeLOjHb&QfqL1$Ib{oU+63n6yiy)bs9 zXCT>?5ybF)6~O+GI9Z%KJxOh(1Y8W%Ar|L!!DotC>cu?HkMjB&zFEa-*g4vSv0P@w z8}Q2DT@CxnKcH^FjFY=3_Nd}Bgk`3F0srX}-l}MEY zDt($MzLHp_U|uQ{#SA4E4MG@e?*-)K4>L$tO=HgG#*wch9bl~0L^h>$1lnwqB0Y27 zGgDgy*q%;%zHUws3zv70;b(GT{p?F@>%>yN_vFS_ z^KvQlbq534mr0guTxSZ)IsNy~eQe&?$)vC13{zAZNEYq=!X!4A^7Zu&k}o?xvc}%+ zOjW%i30%1tGW;hpXQziSt4~&Cl#P1JJGV0`QQ~vVjnj#F&`Y6@y}zKeyR^Lydb9Aa}>JQ6$#B6Fu(aVgbNRb0D1LopVim9s9v^cjJ6c|m zb-T;p%UenMLnoM>eDf($x!Ou{rru!w7+Xbr)~1jlA-C9BAEyvs2TkbRYym{kmv~Md zPoF8>WM12-WA6_UR26v6NB2Z1Wc`_I-#HzV8)EE(nbpkAb@k-u@N`Jp7|U*FuHZ4N#gIn0n%OTk@i zJ_z3MV5i7gfn$t2REEZ}KNqzU5s5uyl@w>A{iB+E_Kr)u-_*;lb?f3=2fLFyDx5E& zZAaPr?N3N&=_(jGPmw53SWmuRG2~S^=Ce%oXt}(XONigL@6hvFgry-0cqpf=a)MkJ zyT)k>Iegp*cy+amxk4pdB^A$pPjhC1BX<)+7gr+WTnOv;f2jH}CWPHkdy<*@haluP zTx9i+n2^Nk0yuWGlPSXv=q_91i3(0ERELL#W zRWfweLt^R}MRdMy2hrpVlGB#1lD0gYoIFAK$0Qe%*U^PgD;~rQm3&Ra(u3eYy*fG7 zIG3z*k*(yjF>J_#YMGr49%Spu@1U6;#<=dvhXe9%tdU>^d*Z4MsfpYJML&KrWEj^M z!wgsvtDJPZib?cG#|pAq_7rrOon|5pEZLOnMf`$WA<%Iygl}W1N+iotV0-^?*zcpN zIC1n$`JI|M;BA*I!~e01v&izJjl zI+LgNJry#im%#}8sbuX-ef|R#O&A}q#&nyw6QOsP*j#P5qS>3%IXQ`%dR5zRiy z4oHZAOx6Z=-BT7quY6;4?zQu4#iWV?uUIjA*LNxOu2YcD2W8gt;8fVE<`3gfi}Nd= z-DYKl^o*NYZ!qD_40&6AgiTu&lFV?JX`=ck*^`Q6$z@%ZO}9=UV|Em9cDC;liwi5N zE)i)a^Xw#&wM!GE{g%V+Y4#l6b}ujKjw=ihA=0iif=s?Jl>O|{&eX~Vz~ZXwe2*pN z%0k_QwRl;}ESjZ8%2(L3zS=#!tOMVf_y&8v_BLU-wfky9*|)X?jaO>$W{xzO5>Q)J z*Cql#=fAF+@}ZMEyWL;Wwm}af@(sy;zp*s2(+6DUhmrel4iI_wl|1$R(u~2pTRbg^ z7i^2bHKGteIBex;xNLTTiF#F1CEC}^JLYZ;FW=54?uLb0`en0@2focy~{D zk;#h`i0)SoYvIjTMoZL}pDdaM?N4%(eoR^h$G&XkO&#wE*Oh0I9gYS}?aN@OxZBM- zHAz-&S*Zy}Psp&d6jb0)u^oB$b{#w`u4RQUk{cjOP)0aGA=z2Sp}(5U|%YjypN(~%apdm%-gZ# zqe&mD@WL^3R=A-Ylzw72_;P+NMhd~>n^MG}GZ-$)Y=`ekE0~_Cxy(jbO*%_Dm?v(R zSka9daNEC4G6_Y3Md0Fh!E|+xM~dz8vOK_%O2T#td?*7J3EoXZ(bEhdd8lIlxLrrAJV%) zdYJ%pgy+D$s8=xGY6y9oUkJqO8wkx6L1y!QxVfT-Ec_Za)9BR{NPoYb?GU-c^LcDQ z9%r<&zHTqrp7T=qP&d7Z9_<(@9~vFkaA%l4Rw2~q^8ef z9(r9Pr3VsI=4CjQwu*R@k?SV`Kf;Vr*PG1wK8}_euT{nOv5N%JXO-lq?i(+5~k`ng4iUxDgT%FZa5ReO2 zK0^Fs_>9p}&S(8L7xqolZZgg;6fDMae#kPeun|Y3NcPuQXj*p>CbtgH^&6YQJ2g3& z2xRGif#ee7F0WfA@`i4}*-SAhOD2$&eRj|~GFk4sLkzpmHJ54gX=8f_`dCGBgu@PP z<83^5i;+Eaij@(2%AdHK(=Yp6zhE&k{@)O4+DoNQKoU_2j=smzN+mn;~?># z0U5VNp0{lC6W%g|E?%q6eV)cPea6|yoLCDTjpvV;3KJ5y!{gFuotChTATiC0{iG}g zJL_&&DcP@L;_Yw1_`t=W*}notYQL&7(L79aXGQXCpL}B##&2Zq?Nv|p@+zx(8|HFq zm#sboRXa0hKdfN9v?hX~P^#QDUwc-)=xTDmFvIUo&8rH~dc%~?w>23qqE717Eg7-0 z4yMe&g}w0VDXVfUiY?~kGNR;g)zdL!z_D3_-Mn{<+`Rj3{7dQKN&1cpNN&h6{)3a1 zJh_v`$woFKdHt6Zfwv}+)+LxMh)SjXB0X~S%@AtcZ}74pJ-nW2vy zz_)?JrgE0Vo)_DRLcTbC!eL{-cS>SAFZ%MI+mGalOAM!@qxveHPo)wY`AblBM}^l~ za{=zB`@n(SRb)zY2Txdog%@k>*yUOBgjbhFy4!V$YTG_~?bt|aAgzphi6)HhQ-;W@ zZdQ^rz%)NzNcQJ$B@crEoqh)Kavsfvc5y{Gdm#a=^|B#N=mBv$9uKGGW1#g#Brn+F z4iSI449q`&V@yQE@K!=P6VxHWOw#oMBcX3#{NW(f&R9owEZ+l-#Un6ae<-L8xkA*2 z3@1+8$b6mD2ewo}3*;5-eMmLH@v|s?>@qlI^GuF9(7vR~7p)jxC&57;jmb zuR3`!ZrN^DrYTQ0<;Q-I>uq2Yw}-**>%-VKPS5j+lpkYyHG+9PCx$QZeI~0_X3hDt z(M^%JOd&11Y(XMEl5JUB#y4K{n$f)LmL@!7Ett*RNp#n&%^0DbC2Q=@?Qhj8fYu#7 z(hxp=q~78R-W=mYq%Am|6+ax$^oVXH&Nox|NA;x0mwb8h^Fpgk!<8;3-@pkD;ZfPV z#|;Ta=x#ALa@@b0s+j-oyE?1B!EoUdv@wuc_JFy0U^gN z7{#*vuqJUXbI9ba%(wLwY{{yNAa`N{2v5r8duph$XXP?Uv&NJpx3?u^g5VKZkvL(# z*yzJNgK1gByyqobr^qLU%ZfP_1*hZ!>P}v63S#Gt9}Dx%Pjf!3<3U?PkmzdXFr(H* zvTmQ_!PSkhA+{5tLn&FVCB_e4H>Im=sWv1{^$V~T#?ADi~K(1&H$r*kKcr#eovnHO%$GVVx zI^)@hC)up^x0~r-CXS#>b1%W2Ijb1EHEEEyb}bpshqRlCxba1Hi>%<(qb&>@Xt0y%e&)kkU;4^=eOy3< zn?_=BR1_<)I3MymL!s4gFPwNViCr7{W0 zr9bmS(E;|Y915oTCrMH1X_9I6oDJi>WJU`W@DJ7)5U1@6u!b2s=g9eRnLl-f26+#ovH_C^+crx}*aVm*! zCLs^=m=9Akm^P5d2Q!~BzI=IHv);2Z%ua;f$eP3YD}+MyL`ml6^6Aj`(~8LLb|ovu z>?C5wisbm%UT8a($IMJ#qbN|doK@a`hL@^6wMstf4N0|VhcVoEJxSu2QQiZWL@PfT zob*Ya&GUFpD!F#pIr=haoVt)6&tZGM`!JNzUleZgCjU5ee;L9{dL7E17@5Euwo@%> zK(?mpLZ$`bkCG#ePQ?i=5eGpF16i|O3RV7`Z|l`dI1G#w@x;!ewiJcEg}e-#Hs%sj z1bb&CnCxr%$aqPsr(X2RVI9L%Qr7n+^9+L0`5_E=>vrs=c>NxYAP2sTM{MxgK z#Tge??Zad;Q<(?rYDB6&L@7WcoM8hFH7T_=EM%S;I1<+`Gu}&{9s9ImA`@k0t$1&V z0@)QF4IlkhWnC}3%S!4V&(Hv8vf@~!k5^KwrPhn14d z*p{~>JTd8DwGU~eCr&WssSi2EY`r6*kXEDzStA5VjTNt$&OBcAlNDj#Tr>gmo7M`{ z(U`rwyMw*$c7*kli)W>mN|C~2E2>nFG|5hQn9jSYHi55s$L^w&!z6C)W zKe7pJUwKj=IDgAOI@w79xolkB0@gOepL`f9ONL$E55si3c@_@MkeoY%FPVQ5`bMO| zl*^C!xi?cm@;i^sf3dkljF3WqCY3Cy)KYDp8=qU+-6A1}wkP_uoE{Rc}T6j={;JIvu~LIhNLM#I3@+pPZxk5OUV zxzhWl$IO2JDB#W9PMjCrfui9We8*3LjPW9Q2t3Z|4E0)~l@#Z9cYik6ro+;8t4W@i}@og5| z`QsQE?b!s@#&ICKV;`i5kA~4_L16t#4F*Maw#+sy9mpZPO-YxJk*#Yi@QeZ;KuD2$UF@jaEpJ#s+)d?g|q5lZ^t+0 z$jJ$$uS5rne~99<^P9m&TNb`)Dq*>iF34#ZkgA4s_}(voZF@Cah2_rEkf($pP zV}x6U;3G+arth4;m3OjaZ+s`Cvd09TS8Rfep;6G9`{=-n@dLbj*DmmbpO_lIy2iqE z|3F4-&0T(^f?;N(>T`Z##u`{OV=_cO91V$1ip++fYbNtc=R$r>6ns9c#eNH14)I1K zU~hIl-|*CIQm}gnsjawEl_zV@#>eD<&+8iiL&M>M_Bi|=rii^eI)T_-g}^XLY*APU zKc@OI3dcV|ro(*jkP}1cy(i%K=`D=V6e~tY=om=1N^T5<42$lyF19{K+OCRRLTuZwLzF8Uk8`Dylx~k2m6kJn_kI&$%MQ+W9JkhJapoJZzQd|FCPKd4DCV}+Ex5s*z08mN1Oq<7 zu;a{4__n_m=2wK8gl!rDN#j&tgh(a(Hg6;(wrv7!i+7-|`Vbl}PQ~OeaV9fntb{Y+ z`^gGn14ehf7B6ZTpE2O@|TF+x!ASA^MbwhU5X?*5;5Mrw=}5c%6Z4FQEA0tx}Y z(}{8|^5=aaA)&uzFywcB!h#whzjFLl-0$QZiTGc^{{kUxCo51eI0jRw_8x$ty! z8wjdoK)b;d&|f5u#ohBEOiBRXCu@3#!dLH4wsKa6_D*-O$&%gWzn=mKxSGvLe zIT-&h`p>}uYb*0bf4-^n@7En1e#_eP9QdpJ4vu5izsI$~*Bq4FzX|(b*!E&G4{`zPYS zU&oojdGgF}`59!zf7U!Ho%l;0SN$&d-;>|Kl3(cu>pfWCf6;#q4*XSq2frJ({2tc^ zxiIy2VA^l`OKJpukH&+k{?F-O=gA>)zj7SRck1u!MSrQs|9J`j94QCq$-naJADt)v zoHYmM$v^i8{_Xz4q`xs%@YnXh|7?Gazs3G9c^JI@$M+iolYYy>U{=3N@cm8y?~vB5 z)7a0-oQ_aiCI%klqd==QuKjchyH?JjleRn1+hgb9^*Rmuq)3*guhFCP^5a0fZxwx4 zHiYrqlZ?*d3Xr_54qETn((}68V8@CAeE!^+=7;XW=C7fc8$FSJZC{N^y@#lXP8@lw zwhko<2H5%AZs7b>3owZ@Lajrh6mQH#!)H&3RxXF@85MxMN#n3pqnM}|N7Im%+i_;x z32u*C8Exwf(BtJRwlj7eGNa8ZQg)@o3zgZVF?%1;G1FseT|3asIub{x77%PcNVci_ z(^*01*d=dGLEdd6-F*KDy|g?773#;q+BNgoR{wG!-)FI}GajJu^y~0*;|v=6(39## z0zLIMjqWUu#vJKRcz4bb$Et)-yY_HK#L0z(^hDtg+4BGkBAxO&3jA7(g zH0~-@MS_E2stFfL%j!#r{G00Mt%Wp z6_`LJ`|80X`8f!Eya#UEBe9}qsd592yIX!=E4w2V}v=L(hRw1?U3$EgCa(eVQB zP0J%>_@Z>Wpcn{t*WiWg;W&HJDzuVm;Z2geOq)34TFY_zc>3cs`l+&xNM19+FXajN zdc!_^`=T9vW>i5}WGrl*T8LfuhY?;%Jgh%@k%^hDh}SZA(#B3P_VyEDYp1$ETiAd+>3x2pAdOqFt{;@kZG-P`BuZX@wWbK?4Ug zzr3EfJC_ovuM#w;T!yOpkHS~8Hjy7Yve3cal1`4VN2}aQ>JXelEe-dh<=nk^dzS|_ zQcy;pstvTeyMP|smVl3M?52lR6Jgj(b+nJU0gkF#csy}6PCu1LwKHp=WS$8%oPPP`?b0;z?Liz^Jqf+|HzAk9+TGs%3jF7}GY)=ZQ8E5H3~~Jl-(WV)gG>xQ zy9K9>wIW_sxx{MP33y+Zg`cWph*!~1*6Cg)4!>!K1^bgQk(T4Q_$l~&r4~YVEZI3u z4g>o$SO@iqbnCgXWJ$vwzOo}=+`J(6w5dCh-}sHJZIPjcAJp;9VI`{ESb`@+^vI~% zVp`B;M<2W#NhD2DXlLsHtZN=Y4{Y$oFoR06JK{dEF^Iur<2?NFBmz9e57HZ+&&ZQ! z>g3sUaZ{;@b;M$zl3!hY1!SuoAv)0wBGYQf?%WLWL6@OnRdDKOALEk5KFN7r6c-L=Rq4q-Q_(ftHsc^?5LdI6T?HYZKXlu8Z72b)cPqav^6U zRgd1XWpFwA3TjU`Mos4c^5|YAGlV(Bys3WxH_y6aAM3)`^Ir!6hXiO*-f%QI{DtJt znh4FUnK&(IC1IZsUa64+7SXuT zbMUqP3K@G}jS5Q{QrB-&>CUcFI{ns1lH;z=uSm(n#wo)v)FvObHYNjy%8ClnV{r?I z>mP2KOSCqhLx+v8$yCvTsyN{>xZWj|F6otL^#m7zejf`TFNaZ$_GtRxyBf@r`waBf zZPN21kjhj`vF}?c}N}QZPrx_ohA3H+P=GiOUUgnHd6QgkE zd|}4BYcg%$Vnkox%*WgV+H@_?pMObhC=FXRj4B%_LA2LY+!b|*r?oQ_@6Gr`4Eh|| zzFl95c1;5HzUBkxuGzr_R+~O<^rQ*r(ok9E0fClYT-hf~rO0_a^Wh#=%Bd3j#rm+{ zUx9KXCX5M)!jAG{G+%d~#<(_+=JI+*aocHj*mymnBArvIyvGo?caNsb@f^J6o=b1{ zq{5@l@pSxBmMCv9WP~r5Ay3+Z`Wv|s&)RIJ$U}p~E&m3~i+54?1Ys=xP)lE(TZNBj zZlTZaf5O{ZUok^rB1%{NLA(PF(Zro`_=ytYdnN`CKk9?&{Va z5k@cGPp{i0K$B+>+U^jB?pJ$R0p}Bpi?v!S4YCN(+e5r?p-)= zLx##O)+7horc=#v6X>C*3qW~+KW>;Vh2NDd>FrfX*zlng)AZcv&C4sOcl3Jtvnvfv z3M5S*8A-$J{ycI@&WBDIGmRR$7J}lla!~L&0Hy1*&`= zqYiUi%BItymJD-Ii_<@uhvd?d5BO0;6Q8T->e^u1Uxq&}WZ}BFNpzGUXX{s1 zOKd+1aK4#~saR4j8b2za%Wl=;t|#MAs&N?PJ>5=%HJ9O)C6(Y5bc(;JI22yUd_%s( zEI6y4hSQ5Tv(TeLP#^PuYp3Xk1a&$=H;{M>x?z2~D((mop|5m3>1;V& ztSPO=_0B~o+Hr`Oe>}#<40A-=O%gPB+cqNJb{@P0r0LI1{p47T8XkBofU7uP)1ftI zpz*9awr=sI%MWutt~zd!rky>|>2w%fO8Deacof!N+rX_2Y9VXYRq*zUCJwT}bf>u) z+rxFw`xlCEYL6c6-;xHsUXA#;Q=I0lmcq<;2|Tkif~MnZB4}6TMYLU9NY{tQk}C>b zut6e*dh3sXC_8y#rMsUVk~3mQsn=svLn;;fYK#NXfDdscHOT6OZ_mn@48v0Ndq0hq z)t@4=D<8p&sC4kZcaxrcF@s7vDxjo80uJy_6L}#CYTYuQR!Rk6|MEvfhlt}uyIdSz z9f9%>TgcR@DOk1CoZeg|hjOCsV%;_L_N;dFNIwJ~BX(iU%~H^P5yY0M zb+glp8QN)k9BLkXM%0NywR&4Ly%B`k1wkl$6mboeM}g#c+V3SvKiQ?w8KWNH%Yzr-NMy$)rpDp!Mh^PpQ0P{;9wBunaw0`_ry}?PYdvZ{91Hc8V+0ku%}&j7E$Me zwiwpD0CL#_46ot|YdWC|#ccPGQ9{E_Tckzc{0?25soemZIsb-V%>AfI(+_fUMHf5Q z_7lvnn}JgD*^tk*oy!|*nz&^o{c0#ueWktzt!Mp&f@FE@dR9gR!=B=^Fh3eHIh-)3 zO2|3iJ4E`aD?az%MlGWC$d=l9Oy~g@I`{iXbkF6Jx^XS6z`_~$Eb0lnXyt00RAGak zl_F@hmMt}Wp+^O@MNHG{)96qtNp7_Iu#Xm9g2xg;xH4oEUF@!w$=pD(T5z3iZYC4Q&6*%Fg zi=$BcVL80W)JDHgs?#TalZ{tbgwf4rdGyA3c}#2Uge^g4$hn`y znrs~^J3$h+2(86by*BbupoJNwdYv2qHE@`ej62%SW0S#k_E=dXiNM9U(t}59&ui27 z!mq*I;sAWx&SLP97vS!_jm9agrn@GWpu~26yr^#n&ySv<18-8uUd?B4HBBEca%~V; zX$rFzkD@i>Pvh<}PBeIdBUNY>CG!-Yt0GRG+7bn-AjihVeMo@ z%>q0=`4au`mBAw;l1TZ8Hk7}j4sq3=VcyeRdckN|we{iqI45U29$0$<&F5@}6=CD~ zN#<{P@+*hq&@BQe79)-qBNo$aVu9+SH8}GlpxUC1xN_zkn&O;Gs-=e^|E4e1@#<&G z4`*T3#!b+-ZW5uDoG5qr$5qWlfdgA` zQ$07&eOrRTdwRj;(Il|(KqBxBaK=r0I?b|`bdSh^wPhL58dtEQo&gfOdms+W9m z+=x?3kD_biN~*Bh5)JG2!qQQPsKUb>IQU5kv+}m%%R@)VCV^RK9-fPExe+&+IIvbH zJ4nv!F2?QTT>5O=S#*lmX5I(f!3E}5QEsaPO&NUiEEJoyt}(Nx zx?{wGUhMMQ4WVKy&~RfGh6YzbYU2yi9lw??u<)RZCfAdSN12#;nNVecJcjdQ2k&oO zV~Qs1A*{DJeNp!u(=8O?Ora^&pT8I-lGP#LekJRkl1L2`y4cxmdr{`B0CRpx6aHAL zL!a@M(CMw)(8W)KO5{3Y%F1xY{?Tv@R+)o}tPD;*c%INl>oAVt?c; z^;S`Y>O=PEqdw6^hs9K-$QKH12sO)~!#(BRdnR zaNQboIlmAOO!*E+4%4av|ub^4N93HJ!34R&&1;LJ6E7yfkF{e=a z^ygaKK4cbWCo~#MoVDnZYt^LwRy_J%?8WXU-1?*DFqCB|FyGuG&{rn_9$#NXX|f>N z#pf~#Eput1w;q+4yN`Uzd4&f0LHM&@6qhb^rV&FzVfrP)_FQ^GYcuWW%5RHsL*;DN zBRmYO_M9PaxV?y~hj#c;y@>x^#*PfRc@|%)T7&fLU9@4x1!CRlf<0~fDgRX(nm_G> zsLMY%%*SlZt6WSDY$0SIy^_Sf`~-(3V`$`(Gz`Fxu@ZMX*Pe4=r9`4ugY#}d`Yr8ci@y8hjH2rKMZge$GQkF zlCD0PZdxzH?)hYZqRX>EdCddfv>y*i!0y*zd(jVuR*BJ*%?k8UyDi51+0t{1(mnDcW%%R=R z=jdAxRlKpxXrLdGLPL0PB6YmnhGljuyNpaHTK`^xg~NIF&HmaH5%r&Dw|! zm!A>!ud1}?k8IqiQjK%$TgcLgFd7xhqdX~lOlob%@N=7K$y8PN@-UH{^`A=gUTmQ< zI+x)3n|!+N(_5mPw+PhUno);WR;=In8z?p18aJJ6BYN$N=Hp2 zCagRKiX&3+^`;l#6B~#ld>z2(jwk)m@CW(wGKuQQ#j-w&D{$iqN7R;@fa>gFTz+RQ z&9+LyF`-#xXO$W2>wkh5=O@4WUsq%DEMM zPn_r5oh@hI23No$B{ll7))hBi4#F{O?}2IR1?YV$g8{vIIAwVd+-we^Lgk&97C0BA zBEwLxa3A#UnTDPEnRw7~7L^`7iN-0vWEwY}rnjg><@CVrwEtau%fZcwM^T$3ea^qD)h0MKW<)Dgucmy z^jq&j$$lYri_%=;68aXB`kIONs|*q`S(BcM-v&K5jPT3c7^>`D3ZXHV`8%?<;i~XC z*!*G^F|`X*jbx&6laz>q>-OPw_U4nuGy;v*@TwXFMrjPSfU% zp=VNp(c{|`>X|qJ9XTEgM}A{`jrQQsZ33oYyN(g_P5aqi5)PqSSDCEzOSpWeC7rdZ zoXxO^!z+H{anZYK`m^>3YzYaZ?fQ#I^W{mnY=Q{gCFVn(#_z&en#MRW&WW}~)Dyp; zZnUvYrurTtByX$~#*6Qva-F6)Uh577&;P`hxTjOW(up`tFc2F3+X*!u%f?$SLyzMH zczcQ>7C}AL%=d)-UPTzZ(g%bJF7srnK9C3LMR+5!h7MW2oPKR?!pGg>$e3@%g|>x6 zW8G6)`u!AEIIHnphNoi4=CQcR`XxLTUxe;eo9MGQOX)o$Tg)7LkN5RNCSPzGL*+BN z@ok$o^VPSWEa#7)pKZ^fZ@@#wVy`Q^q%8;~`$X|vw=~wQ$st3pTVRmtDaQDZb9jAn zDvZ250>=zfXQCD_r)`SrD7`BM>emU-{i8E*oGzbkNL-6%$$E6`Q65t>V=jH|bd-MF zR0nr#Q)569D&UleFxk{fEOPQk>Sa|DBefj)Mn z(_Q3f__t%2+&3LwYpY;zeFWX>kqKg*Pl(E@CQLhj7@pg-LRVV>M0!3ZvG%1{e>{XN zcnowxXg@EK^`b)WWwElyl!(09M~(d7!g}|4xT{Z=uI1Ku4NduU?@x7fou-Ljb629w z6K!^%q6SFR?}Rzp4P^Gi0El!>cpjgWLxh5=#v*wUaW!%Vg*qml(QvLIN(Y z?j$so<1Izoie0DPvnzj z&N3+T;}xzMeiZu^OzB*3CL#9~=);&M6r1i!FSwj0rJT|Bsi0nRE$|CDKRFw-l`R<0 zXE&JUr3dK-*K_3S2}8`*_yc!5&?n;APl#dM31a@@I(sp(6PKOsqk9fD!$ZmMxYkx2 zXX?J^+ll*AGo?b@F!Bm{DEg7C4IGM9sp2p$Z#oKJMRd8~K<0SMQJ1|NY3Q7b#;cw4 z@M~lz*o7M)*<1=bpLe1O4WO|TN26u>RA|V2z@{|UuxV?;(IRCQEtuJjMqzuYvDGnF zRiT-vwyRMytt?V9Pyl>cb#}3z0DcOXfa?nWs7khH@UYQv>L<+MfEr#!gIhaj=doP$ zE$f27+rz0%^Cr4#%QE~XBZ}c_hrz4iAgnlk66*@~(dpg?aOsc|j4}8?uIkRmnLiiN zkg<7atSt_OAu~{a=q>0;7d8oY<8)*l4$(33vq@~tVN?;QVeZ(CpqtZn(Gzdn=({B= z*?Xn+P?zh84+O;U@|u-&_}MDr{$UfQ6q{2o8*}P9&xdj6#bd71A{sGa3XtmK^k#Q7 zwLCS0y;gh+ymlEGt+RXNfu__3?nZrFEVegU1tr>SkW&(jdAX~QYI!m8!ZOn@JE*vU45e!kDQ66 z^Wr>F*<~xWeZ3yj0t`{~Nif-%;0D1U;c z-LR&vo^SBYtu*{__Zn$6Y9pD?GMU+J4tTmU2CX8xU`~_{PiY_v@2X9uoBGz!b+0=4 z2R$Bw@7U2)@u?>LQV%%cc`s`3&LAz{Kd~#S5~(`FQhGB2AI(d{=b;nv)6VzgLgol6 zIeaPI+0w|^iod}Kf!j>V(JLf-e>uAP#S+2NbC@8qlv*zcLFuqbaB1=-Mr7qsJk@xT zhJ@YHieO01NX?!9yzwIMFe&%JBz!F&QjS-RS^H2%fviv!?lZ#lXnS!u!4>S zC@&^%T2vrK$E%9c!1i&(aG@sSk+B=Q&F?~j*#$VCpoC({oO};xk`Y##jPl-#P!m6g zdOp0u%#J&SLS7qi!0r|~y;g_*alMS#nswl8OE0>{dKBKOIz)#Y9!|UG*&6=Ti93kbP<5^!8RJG?7)#IxQ5;Ewka+a#2$O&(UB_6ZXlwkf2Zm-sAE;_DP zq1Ccu=)%tlutTgKwv|0#L;mn#j=MEO<+@e$&EphIUgt)o>+Nye<^obumVvmc0NwUY zVBW_#6Sii<=YfIkh~e~ z-*{3LKSTVZz=yhDnSu5@#UVjVpMG`Bz{7U$fs8Z^XDgSPWDp z_+!q=FU()c{FIZqVby@gY+NQBe`|{ z7v}?i=Qv0r1_S>ksLNFVgU`7zwoMm4hL3`ca$Yc^Ntc+UWn z3cJRvxl#iG7hb}lhZCW;JO%RV7jpK3?BBH;2`u}?y_||)^xxAbyv6^O?w9uMe+kz9 zs}lc-9Qdm~;o$gp;kWz@R^>lSA6A3>lE+oQ3;vhg$Y2Zni~hfH;IHyKIF1GW9@hq+ z`6X2X0*eMC{)6_$%h9%mY=f3?`ZH%|&&`ju`_zW&=a#J^tX|C0lM9cKpT$==`cGx+d-);wul`%4~I z{Vw?5li!M#U+D+yJy_p=(SHsO{8fGj?M6=4{E~}7E=>I$`2Wjp#O%Va@&-%w_LT?#Q#O6G4*3?VC zx_$0O%y}}R`h9Lbr?>PO-p+YMGv_zbRmQ;}-;hr#)_!CpM1oL4un(KwFTYmCvfw^y^O}5;dt*_9}NRxn9Si58r^n;fnGC=98!-P zZ^q$?A&=ughWUr^)zvN(b>7-h~bOH&Ds_Qqmq*>k#Ir%%(BSDfkh`7LN_cm+pR51}p%*Xg#xA*K_(JZSCf2Xvp?Q>wnOn+}b> zME&BlX;#2yIwZaiT$jzNj&k%t(c}{_MduH)r~E8Tx?D(wXRf0qdsAshsTEZcy@}g? z%2f*RI5cV*dGz%bjI#2=kTmCNeYY_B#9a!mGBRLx+YR;QjH+{@r=$8! z!RnK~k73x&#h5QPnWhy_tG>VQ0lBO$QH^3JLCR$*))>W*yFcsbGRb^$QgH%ZQpMpm zofu06hd2^UDi-ZBNZj-y$v#^+k}No zQ;s^(sJR(*Q@uJ~oBx5@99V^|BK_3Usf3Q4_!Mo!O}REH#Vw}s^r?Rh{U7YTdpK3! z_b={#7a<8DiAo`1&AHaLiBeQj5{eQkN+}^l<$k|JZn=k$6uIm*=i2Nol_Hf&l1fy1 zmsCm@>GtzE@Avzh=X^fT_j{h_`#k4-&+nYG|5$6yHOE?OuCc}*bB@=TbBypgS9sH+ z?wWs_T66Pi-%B3%mzKHN{8aXx^>g?uh7j+#XEA$@$8&R)6Z*W!MI;Z2-(@S=#;|*Y zba;^~HF*aDs#<>Nak$G4pMoE?9`kff&ybJaF5o}3X*O5aJI!7orOZ!E6y}fh2(l@e znQYy533j5FCN-XLi2d{O_U2;Anf!so$1OFiJe~?Kgcs&_fc?OKoc%6>&E~AQ%WIj{ z(PG*d%YNlBonPyo&dVE>=ARrY@3G@n;e!4sI8Gts(5lKrs#5Ic8E zIIn8eBX*XsHhb4Ee|9{XPwjXn%KtE~%X@i5oqzC)ezR!qPu{2E3+#Xe*)0dZ$?+SM z&ay8>M6pAdc3%1$%zm@_H!ssYkbNRomS0-f&6aX%;`QuE;+>41ni)On$5RcQ&trG` z@ahD_copx&&7ph{Z^@{H#pDfPHe2N!@AIflOW##Ze%W|3FLYruyItdX3oBCE!Xu%? z{6p4xUa-0b|D=x`|Ge2{UP{9duaI$Li#+(!@`t<_zjDxr!N`u`(3BEsOC)NCfWRuZFIqdt^A#sTF=*Jp78QG+ganZ zx!d8{to>^Y+4KDD*=?Do=3lzL^42e~;a_sxz?S^Fnn$10VDGVyWpJ1}}I$%}yCE;;m>+ zW=mVz@$N+zu{S&!W?S8!$G?7HiTUWz7|ZI+d-LJXmAus8AH4E+VeHbU!hBZjM|0uT zaptZW>FjC?1D@i8!)!2fKA&p^_!+`}Ee_VA`~+hT?{h$Ui^>LZzDvnv_IZKn7CX1? z;>pOQus5Hd!RPO)<%NaNyn@g&w(OpCUhWHdK0Evvj|o@iD>#hvJ_Sbd^4WsCj=iHi z(d6FejQnkD+ynLYpg3AVCwjQJYGPa{VJ-r)=X?9vF4L$?wLg{FV|t%V}Hq zG0AHg3F;?LYmN_FfD$!#b_n7z^W^y5j(2(dM3?3O)yFNBQ?V6e&z7@2zx47}O&pri z({uR`HyiOs(g^L#TwrCS$EivUl#D1J{7l=ei7o|zMa5}4Hn~%uUO1J zwlvLLu1JW#tF(}9=9J9KohHYZzr-oSplN_D&Fg5agTFM_MwiyzaOLix6*&LtMB}6+5ES<|C^8g)voyO{f2+r6Mygj z<93An-9I_+@K5ZH|EKbQZt>ORR1S~V^1P2(Da~~|9L)ErRkfr9A2siJlVI+9QmVyU z&%SwAW@$^$cQy0PU2ZK7&#GE7Q)JASsjXlQb@()|RUlX=R~4HdQ*<%!S}8>RTli-D zU)-qb`I9UEBYbG^!Jl;h58wRHm5=|dr~flP^tV2{{+Imx-LC&t_~!hFf6AlBUl0CM zeue(c_;Druf6{CHMPD%VXSB?J)&_r7|G(Y;VI25de(U~vufNfw(ZN6E;D6TZ{<9xY z>;9i|_~&*izT#hHpTG3$|EzZW|NXvy=|5{Mr%D1-QS1J#_`11&X`FxVF-!i-b^p6>%>LmVo%;PLzY_m7{$c!I zdiT%Tf8GAwFT8s6H|PG9<{xKV{yH7_;@|)OdHh8e{r=yl^ZAP|bMoJ(+y58cr|G?fvKSf7}+38Tjkgf8X-2C;Z(j{8jv4yt~#v!Zd!hgQ3ltcv?#* zu6A^1JX%^92Mcp%yfPoJo4$@I><&Ri2Nyx#@UyNL`0Bt4 z=8>);6XkdU(`!8#UQi*dSZjtFB1&Mu)&iJUb)7sudp;JNSkLrNuVg$oR>FuRO_DSz zCSSet!27Lc!JLGAIy&k$LpM&K@KxJ@zk3;Du=fd9%~*|FvdNJ%rD@`e2Q!3v8kz0G8K1X1>dx_I~WkBm`GGnF*ZMa6tc;94Ymb6r*QxC4)K zDSdt#cW=^qEL?pP&XrMYKHD0_)!(f~ne@%(PV3WQ9dP?i&3~1`^?7iI+8&g{J+^i_ zS-91KyHo8N_a3ldnthwOoUfJSYK?A2o>PRkJoY15m8q~!X+8Jb3(U2=Pz^gxw5jx~ zLX5e(JRVw+PZ6D|+|02)ZpV8o+}~qN2?f`2RaqyQ{-_LU?)y-#?uA6kCB6^Ne|?+U zv80|`CMU;zAA5jxLNA}xzO{w136|pK=!8$@|4E`0_O^0^t~ql9oSM0v6;j+9w=(jM z+B$A!Q6l%*CEw<|x^-N?#vfE~QA+dKwd&+zLa_NGr-2*1xVG6*t%#+2-JY7|8^E12 ztA!gTn97}@n9h||oZWKDyOz{=QA)nyB~rxKyOiTip_Y6FKUV*y0`B=Oh2-S>FX+t2 zMJzGdW@=2~8r9oA!s5K8nXOl-X2VcE>$k2xi}lu#HKWFhTVhGEhQlsU@dnluK9Rva zVx2)o#($^om(?;eJMHl9ilxnVGoNvls1Gb<4M%F?{7rJHo>0qYMS1G;rWdTmuadcI za$Q)3NspM19bEEDlnPfkB-#9y6r}3n-HD}k)?5>zvvA9uBIfvyuVk-$Iv$Oc=7wyG zZO+=P#(h#JOXYuVZH|uV#3iOyjQk8Y@`z4$^E*Ed%Q3>0tef4$Ew2-6ZaphQ-hPo>AimdI0K-BQ&4bGhJgZ45b9wwLO4 zjN-QSS&*H{uH2IDA@15lCG)})7nyL}Mdp*r40C-~%>5QFL&eKgGm878 zn6H}#NU1{-=6V%vq^{3lZm+E#sdC$xI}SCO1MGWD8B zUg>1^L@7|4(`_itRbI`%bRwzrX$lncNrNJfR*(gTI$Y&d>$vl`j4?co7?xt$5Xt-A zMh=^)vqt|IBgaNwkxP*&E1SQ7)we>67&cB|hSbZ*%|r`%*fpPO|ENZ3is&%LbFOer zwy~L8X=_+#mF>BAbOotv?Yo+Z={b-Cvsp!#QpitUaj0{%s#w#3jI6D;PNq&^2^@>s z1x@b=LHnkfCdm&CGU)@FoJCJ;WpP3X@bi2?=fqBet6z7@?o`tgz4c`~5@{PJLyB zg|IbC01A}LOEjk!qR(54Z0 z(k8U^jT+g8p{R0T2AX%6Lz^ofz&g7$xK#ne)C{L;YNN|H=7EYLY%{!xD-5-%oyQO0 z&b(p9Yo-Pz!PVw=O0Oi&*hay3$3>{n8R?WlVHS5=d`QuN5~=XUr}S1aF|vQ4`n+x2@xfWFKLmbJp(ilc zHwBYwuVVU6}IRHH&LqZv~NP9xh`tsb4q^ zDjYNcEa5TEw8}(AXx2u&&YWWMgJ0s_xC=O9Ybs87^b5*dT*Lg{ITzJtnv(n94A4dz zlj#0rAbKArh*HB1Npj5&@}i6msT*ejcMI=AU*E@)ia!&vWBocf+u$F)u3EoO|oJl1@-+piykBvqKwtLWY!H5l)tIQ zpB6{JXKyD^j(;NFdWt6WS1S?=6fK%PRm4NI(n}l;7Oga!{3OhTZ3)Cic`i_NQ-oQ^d@6(-L}E|RcC_X^BBE&%+RJfsfZBCfc2Y0V?GNm#l0^CVCDWa zeD_r;z0T<*J^BX=K9iUp8@{;4^!F13af4g7bkI6M8IMzm(p4&QqC37MVV8W7*17e9?SKUXDz>J(#G8u%8eT)4<-pWK2pE1jWJybJxx*$+3h#=_&L z9>lG=+)KL)3!xOeA3ZWOrZe6+fnW(58W}w&OXc36)RVSkzv|JL&524-bE1Vwy{rm@ zR4|i$wvS|g|B1mO9lX+y#FnfJWU_5I^fvEA8~4ak3K9))xIKzFsOCvlhl)_cEhNJT z9>nd*`%tpK5R$3g0>_Bu=%vsgQF<C(j`JM)NbJ{eKOx2SS#lN6HCsiVtF41%jU%-8z5#~Ckf z0Xn6#ma;j&j=c1y35OkXr#$*t*i>~P&@6w|dMWr(F>=7h$ zT!LD-qz1RDWFt{v#VpD6raqPBflE>m1-J>K!viIO{<05=A z#|T%yZDXSF5$24{W%&7g5>#=>z-{kjn5VKENzzW4SvEkBzi*st62E7H0xY5kHKC_; z-Kq}See*Q>{;_bhcKt43_n2$ids7g-OrVgp;bS`YY9j&n%>%pz)x-v^Bj|iyBDhjg zEy3LA1&f71!ZvEX)?A3B{em#(YTK_YAoQ0Ga}44&WwPZx%UJ%12Na0v7T zIYO0>zv!mlzd4G2^MHx4K6pKL1Px}j(~VPM2aAIQan**kIELGZCKM&`VDSy`>ryZ{ zx=;(-%-xB@W9Bq|w{XI5JzfwcrxxPJ=l#%%>z8Mq@^2fFU4 zK}uc#A2XbTUO4?m8ZY|6A)6AYN{T_wCQB^5;3RrrH3utye*)v4Y`_XLoN)5=Lij_> z60cdh6(4)Q6izH%j)VL5!A#$Ua7plTY~7iPR~sSZ(vo6UKusr)8}%W-^7AOYV&=NE(dUG@ z&m|CcB2jc!)sF;WPBCf+6=1P9fp3N$L+@K;@Yjw)Vp92Iqn%wOabL59xUOlCcD;8M z;7`**6D{+J9h?+;8jApyfhwX_E(1^(V*M&{JzhjV6 z(&fsuj0S>GkE2sMPXQ6tA<=vEN_6`8Y?Nv%fgZ0eqRj$4>9x=5@T$Wvnf^vg#%kRR zt~F~mwQa#prbtPYYE17zg_3lpeR)mr!kR6q$`SD5oT4a?*NaU-^+<4OH=a#-aHj!aueP1|(?Z*bYe?QFfn zT!{F9C7YVDM(cTMblD8jI9#7P8cV>Y>GP08ojG$r-i5o;q#vEEe}LcHwL>$beOUUi z1T}L{Ao}T*Os@D9PIdeiCX-)D;~8hfsr~k^nAds6RDIZd?(}u{@ehe4a$ubT`OdzR ziT+jz-nU%9%h!BG-&{xWyx)M@EOrtLwb_H5w9~j2-bUL$+``7cGw_IMC#pY>P~we9 zket5+ulX$rQuoL(nv(|*vsM6hOVopsAPqc{zZ6SV--q>nZD@ITF5Ex65-mI~NW$#r z&}>62GMjS^#TA}I?|I*WaBnHPasCouT5WG&K_cc#}epdm#pj&!MuLS66qA87dvBslsm5bNJ5 zgzS@Mc*su$4m2;o^5iIZA9xa;S8ssUHkweoDgiKg9-{3u#0wsB=+pB@3GZ8a!1F4A ztVEl};~o1szmA+isx4k%nVce?eB_1Kc<)6|#H8UiRsxYJCk|sz%|iCSL(t0F({$Ej zX}ryQh>kq|4*k#$qn+|h(Q5U_NP;SdrOt&HMdmERwjT4);;~$i*YFhRcs-_f=5B-c zF4}`ajSG0%CKim-aDg{eby4liab(p06r~?)PAdNS1#s8QhL>iaM<2WALzzYMF}rto zX|Q=St;cf2&fjl?gxi}r23MMZ{)H@b_~0VUT5E20R4*Bg<;=yaPK^TI^UWyiniGA^ zITrbDX5*gwPVsJ{d1l@E>yw5Gx`2I5H2t!`5n7fnK^unIxOh|-nlSg#*`?}GpBoBv zqIr@(ET;HeyroI>$_n~qxgk7O2cdvPH|o?=kM+pzFzc)Kqr=zKp+zpQ(bfJ?_;b4n zk_Z=tl6w15RiTd9$NJ0k_g}}F+~lIoYAmAAt>K@k!VuCZW8EvXv520g~-18272f2j|uCocso@}+K*1HP}=7$%bn7jLewqhmx?gj zdgvbQv(65g$poR&4-2_2%9qWyy3(Xy{z6>5dnfGg4`NOS3dNso`$AUr!hTMv8!@*NRZOfh1b6^dp?H zErwLO5erAVN@0J56~}%2Ic&==g7Q`?;G?6hU{{M5a;q|er=M$+Dwc+Tr)h``_GZGt zDKqQX$r$EFXe9h`vIgGXGeKx;9)c$umy}%R zBqFwA4*H31%(ss&Y+x&ws5ItGH{&C#=DB8>A{)|%u|sCZw4iC_4aJ& zZ^^}1%4Ja3;vD?NP79jV2GGkhrNFt%UvRmb4mv;JhP}=Cv{*(Gl=|EWijDi=jkH1f zr>O)}mvo)RCbyyUt;o(Y)B1l5dofp zr{Id9ct$^^l=g19iYDh>Cr}5)%)Pgq6bfbVN~s}yaLr6IP2>;~cV7n2PHco@j`_6K zQxTl#_65CF^#&*VI}yug1O3^x9?ehPg`3(Vm}oPp=nYHG;0K-7WbFMIJdnN#D=0=_ zJd+7vCzNO%mxKDJ~MlIJ3!~@nonqO#@n7=0W`lTUhWZfXq12kHxmdK-0_&rhRt^ zJmSBf?1cBR)`oh{*0@7_jqIWleswN_f04THVEB|5+~;34V5cIOBV9biO_6d zK6DeTEEECz3|^as3s6n%DTkouqa1v-q?;HKk3wA}2}=+7(Vn?4In)Y5=JApex^&wS zD05_z0LgBsReFBYjVBAmY28eqdTBoTUMM27A*}+X4-bH+-j*nWylB=Fs05`O^pVlk zdenUL5K<8LgtG57a8>4Ma79J|%AFrYE5q^(Tc2!zcllayrn7xKwa+%kVu>I;7#eMS z&`ex3xX=aJ#dN`>FMas9gCzPe_DI~NM=H)k?UjjT+YmkH#&$?=)uZivU1?_lHWo=J z2d`EzAbB4L`pi)U=F23JOJ4#^2G5DLjxDqpy_I(CvB7-bD6^NBEJ3|nC})v=GNB$g zh@`Ss!&SU_*zUqCoZ2M_f1Znj(@wC#w>7uG0c$(xv0?xvlt;nQ;uctcrW1(0auXB( zsgJ`ZW&z7Lxpb~gGJ5UcgYKo&A$#=-RB=ca=XMQ%@U#$kRMQp4lSlE5AL{Ulwlt3U zu^9%wsfTwLL?ou3tp(WSJ2Jn!)9iDTIBhmDAH4YR#Y|Pr1YRf=M5fYdXzpMQ($;uJ zc-v+oKf)ab1T_N7BbuP*4+T*4$C5M~V-pan)Ihjh4@J)1gG9*?!WKT^;_5s;Q$g@>s&Z;_8W?1rpwp zW^i%;4I*ykV&c8lH$t)SCzw2K0gar$bJpBaLE-mrp%;gn5EPHVH?1w;or4P@vmgiD z3@`xi4MMQnJzaY7J~`ae)&gW)J zMnR+W>&Q`aFSY32P15t@Ib4GzsqadADUBy{nfaatUuw&m_kpEf6Jd>g9&(*~40rk6Mg;}FT>lmx6IPxI+5MU^+2k$K zYmF_r`-XwBnq3I9f2Az*>;3}FsKa>n;sQMT^8wEMZ9XYtk!twGqL!G=PSzmg^Cgrs zPz)D-l0;2PF=TLk1Cy$mJ1y700aX;~~dMU!k$p~*K%4M^8Ak)t4xg>Q4d;k+wN_)V_^wIFL4 zinedV=Qe)8C&ZWFS3;uLKS3QwJ-ds9+^g_nOJ97OS;YXWhv-AGF%T$?){} z%;@lA_SS0{6^;&He9kEZskCtRRG(sQ1gqBXK_|T~A+*t6${<4bV5Ye)yGG=##@r7T$*(-rc~<o?rCGwqi!DLSI@* z=CSS_+KpY@Ptmri;w(d5Lkv?rZOv#d=Fvxw&d+T6PQh{hM-ga!Uo;U2Mei-`dNxwH^Wsr2+O_@f|qT zo<<=S8fK!%2!5NP4P|!~ATm}BDCFjWAIUjjV}T&r@BP+H($)ii0BUCMpDPor^b*wZ z_6j)IeiKy;O@nj)=%ytkt|R}vMx?X&Cio&M3{y(&;qrO*aJ@B&)RwD)C0m!kfUfOu zzQI$J)833+-!&n%mjd+GY63yU$7pnoAh;_~Mn87?hAb~;!P>){;KS#_VAe=7I(N7U z?2GzDOU>H^pRaI)FXu!M+24(5<>U8Isp4#O!#e_<@(_hWYfVsCS&Ny;Pit^RX8~=o znS+ksPsHo>egG5d0DQ5=96WW_g05>*DJPASWPHv}?!%}!YKO~8#!?=z#BC&5r@Uzx zydni_gs+A>tT|MAS{ZW~<}xX1ugH({a>?XgB`W(l%?*4ui>%!y#_fK3lB>dgO}ZaT zrk3BYf+^RRlI2FJO!*GLbsg0pm+cd$48CLL^w?`c$|i)V*MQugAy2vY)V@(Ka%I3X z{{Zs!FE6UA3{kqR_So`LEOS9|8*|J+fGVt8%T>Ku#@sd7!?G4rpw2|vGh*S($n%f# z8B5~==&Wha{eE#e*6z^dmKAP;0Vb=d`zJN2ullbTCB6OFrZ|yYXFr>JQYf7AEZ#t6 zjPzi=gGr==-Zp*pkdl8>qC?2=@FDz!Y9K#!64#GLa(E z%xK3BT#uZ|8RCkNYubg(g}#y+vgvSl_9{k3vjElk4kLy54q#qiglCnAqBe$r{d;#Z ztvi~a!>dUgzdR5!);Ey;=4JHO^bq`Dybs=t+l43cE15*2ZuGICfGOKD z@P;XW$P0yX#tiL%FI-(@j9I4X~3ja%h5(HjR=p2VFS%@ zvS95XVpV>Fp}H&Zd(~?k^CJ?t-FqI+@Qs8A&84T!GM|fNyoF(EQ6hNW-is%{$&uQ% z3z*Yc+hAr(8NMT)g~t@ww1Z+j=ah*iPKdaN>`W@b@60iV>Um3Ux>ZEFbdJFCwKMU_ z{mt~_>91hk`*KViTEryRh~nF_t4ZO}a>o6uJ62*L##P81ULw4)SVbbjwHJ6; zRbv&26dba}i!psK#jKx}igy_one_xYk}D)KP;k{g+<%(J*8*pdPyF2&d-eq!pyfio zzGaQq+9smG^VgXmq=Yx0{(+A)p5(5dYtGy{%BJGmVj1t-E=;kyXtV$K8eHWU$-Fq1 zPTgEmLB2Rw%q^`-qdcS6kkz7hxZ!0hNOyrt+^x}WWFU;>ehq#^P2VF)YALC*Ry`M| z%JTKNLHEb7lUqO3xcQKBX&NAp1TNx!Ja2*d_yl+0B<40sCt@62f@6BW znBPZNanJ2O!`)fUr!HM_B4x#;@Jv@-s`|AgYa||UUy09cwvLUaQN}NEDR-LXdCJpI27f{0jFQU< zCgje0cv18dwp|*BJJ;#MT??+F!)&%&fn_?Jy!}dLXMw7{qkYhT&@NCk{=?@^ceKi(ugs6m5=+{uK?5B@TrJ{ z8cq#7NcN8{tiHo?-oeou^ED00MOd_wv6tA<6fPUv1kjL(NLf}R@`o5|NjoBTh zX(mGQ%Mi!{4$T4nnKSL|+Y;fR33%=Sz z;qWhP5W7eNPgmT8#&{i|f6jMUQ|f~f4A0Q&&mSW8yWjL+PBI#K?h3<}`_tNYgap;BIv>AlCGw$1agLKJY9(c78T_OL!a(M4rMk-FtB8>`MG8<}5xY z(hiSTDl(yawaBRBnaJkRZ#;+bL!GUJd9B0ZaC!hobaoEmo$1=YBs zX-fw2j7~+YtcYv!?kRzIej@%rX=BO7a?t3+eR!&-2+3S{41i`1^vKbI%d!{3R&bpo zzA6paERBK*r)V_MpoRSg6hSSS59I@XbJSlRhf2QdfXp8m#GN16X!-r7slKli1B-8F zmt>Vuex?YMd~nLvWxpe~_a;J*8&^=#FB(sWl1!jU7G93T@Z8EEVuSMrymXg1IpA{w z#!j$7+<{oI#dI$mSk6U$%q(0wp@I`L)alXQ?R4KHO{5w}p&OLymCTJi0OK4)~J44j<{855wtv;QabLR-LX*m(SM2 z@fVijCo<(|wxuJ!KVFOd?=?ctjXHSQ_)?To6M%bGEXO0x2_V?I37#Zvxx&sAb^-jshgduFB*%Ut7dzN8E1R*VW{NpRsbCyCo-A(8s9RnQ9 zzl&Hk7xULjsbU2gCnP)2hXzN~@aK7U1n+FTeN;Dv(jBB!kkZzs=VZHG&9oT$1s!i`OxOC<^m8Ef97f{ryY_8~DSO+pqw5pG6RTBbytq6XZk%c0ju z`l9aKSktVo`?&o8fB~l#Bk7wfASv{eu#Fr=c6$%tw<9}Yw`&?mG{m%V^D-c1^9WhB zHKEtD9Pq}UNIOmu?*w1KjEBkepmc;Ot6KnOo_xu9vTO;OBT*ZD z(k~IrSICYs>)L}HK3zA2O6|r~b*u`&)X5lC22SLToWYkje37o(C z9(ddn0=3TaaW*fXi(pkTDDvt8a2J{KyGSWwjV;%bZSHP?5n9h_=cSWPrN5(zoyE@R z!sIbpuXlmyl|wbe%WvK>A7>aPoGv>aTUuuX7R+umUF2S7dTz#fl>2l99Jp;soZW$t zL&Fd#7^c9MmMSTl^e3TJ}kBLPkCpWf=^h!zd*LIXEW0O5C{qM;`KF{z8SQI1d- z*b^=fY~7oIk#RUN(#%0;zm*eKceeob;%U$@^fme@x;ti_VZA zi;#HkX3ib~QT&m!5RR$LLAT{6z`&CeG3zxgq1|?W^mK^?&^{{)BX(`X%f1wvy|exU zZP-5(%@dABlTU?#ipEX!ZoWG(Z_G#Aypw>c-9409Lz;Hiyyn1mNoN@YS_gtj@VS>)NT#b76yTh+3573z$7uZ|0lK5n?0diNDz>LgxU>mp$wmrRy z$LrH@?auY^z)mi_J?V_ceAhz3V~6prFT(IwS1MGuJPWjbNr35oDIhL&fVPvD1J0}S z(cy7DIJ8F$v3;(f9<2lz%##Gq_xj>r?a6TH?J}&iEjXt1SP`=1E8|(#6;S!zUAjqR z9lX9t5IB@;!>TDP(&_jK)KTdRs!~sJK1W&-tqwjx^63E4(RB5S{QpwTuLez}_k$DCE@fY5hnp09Y*&Wna1Bli_Zygwb< zZ!?8+ugNFbENDXtcV@$(pWcMBO{M8b;1!x4Q^)TQ2B5ynZ$QSkQTn=AC2+O!uCP2i zKu@c-!Ogz+nmDeQNIb}fs;A$efZz7S0hc}a=Yg4kFt;aq?wlr)H?(r>wu<5C8FDCb zw-(~`mLMeCf^LLP;cAbSP|k4`d>N&q#;}Dj@98>dcX1DTu6}|zO1LEp8|9z}Nly~% z?D7EnbP1ijH~}Rh0cd!3BNFU#<%qQ>pw+%S)78nMaJsQ9)|k-5A2lSPz)%q9_fJh| zb-9gmPQx4BR1!iaXZ9iwqg}|=SO`g3uLnAx>yRzV!|`eNfspTWRC@dxy5##As41vm zsT?85EqMeuGcFN=v(r(~M~ns&4Uuk&Hh%u}BJm2S!TS6J^t`4C9qWxFto-%p+n20q z<>HkvdbK(#3J3%jb>wjO7E@H!Vh$#wpA*Aj?@<1?4&+mJhyI%4iX@w~;keo=R90Gw z>W23d;=&%N&0vlA$o%I7m2FF$7_kN|FUrtIpHF56&i45Fmo#)iFdjWTED4sQ8Khh3 zHm34jGUe8Dl>6#jBUe>Pm;38o7F5vao|;$ZOTJQZgqNhPxJwspVeEUKL$Je~nZ1i5 zH*HTNo7`f#>+9UPS6?MjTYY@V$i#z;X1FVrechAmwm$(y)uxj%4MN4As778s+ zA7ZYxX>+f}EoN-v2APV86;!MHIZC=Xmkem}JX#)rk#;?(c@jaVj(LmsS0jL)PuGk&y{adMDglGHad{y*N5C_sxj^dg;d z>(ZfK%XKmaoa-dViA8dy^eN}P9^7$*r{o8B6SBzn39Wfx7La;lf_FM>gF5laNG!+| zw53FVk(aeJvF8ln&G`oMBAtLsRWZJv%E#e4bKuV%N-#Os2y@F)fJ?>(n0$XL-W0kE zvkscV*Cj%jU8##de@RAJSyMjYbu*AnX&h3HwT5k1cVL(02_X0SP3$FTja$|hp~keQ zNX9=HUkTex+_sY8_zx^ZiXHQD>8K;zXx)V-9TM;v5ow&%`GasNhIu&_%so{I&(V%{{ z0C>+1}`u9g`c#$Gk*ve;KgwYcyMZ*ZklHX zZ;zG1x|#B@VcrkCU;ZuL0Ih69wmUdT8-(8p${vI!H% zM_BFU6*@0Ng&Dodfs>~*8FAmYc++@1j!Vy7K2d`tS$A(PEOK6W+ucC-yn z9#=vFTic0&F>_pyrvPs)RwjFz6q|%XJ8KoVFuDl#eiQJ$(nhl$F7e9T(|#-R-zPEdXyBv7z^` z(Zf4!`jP#@3dr2QNf-u2BEN7wEdY(3n5`T{7rAqy9&Xkn3c zzDT{%7fut*MZ<6*KB|`rx8KeN^@}MOZd(BBPT%F!$a&x_x6N>Yw+7R{<{D(|(@+OX zb_$~}#YVk?rZbmk!52ZEP`GF%a{sjzzj7bPl}~S>FZWDH--@p=bL=X3T(}R#`)iWi zgY#h$Y=*wR%kWjR>9{CuE7XnKIyx`&uvy1eRziKKCi`#A2-6J zr-{I!+Y6o_h=jzAR8Wz19lZ?G2hu*tQ2E#sqV3o^kmF+q^D4e_Y%UAp*Ge&Hoozl6 z)rlrTBhSD^LRC;aXbGJ5(jTyNAnLiRO8dl0#;Sd-KsTP=1MOY=iTz6Y*k=}jrw4h! zPb*&|GFt(c1(%>zJ6@UHj&DTE4wb^(t*e@1S8IbcL(}N2$X`G}RR?n-hR_?iEcC8y zy=Y!RC3^SJ5=zAgAf@{YagpL;u;O4AJ#VfG5I^OOOJuf!lT$uM74b(1Zi|5P>onj< zupw^H$iPBfHpgvVwCJ#C`yO>KWM6!-GhjO@(HVP)gp6YFsdo##L9-X(x~qiG)MDbE zlgY$6Z#LQ;AtJi-;C14ekSzG{ZA_H&s@Y6cCKlBNyMgY4Ut(LP7lB7FMQJH(W0W3o zcPfp8M%-_*h_3HiV)m#bRWz8T2opEmMMhTwf!ncRASm#L{`GNFOi;%%baQ>Kgt3Si zS^+y~Nqq^tTu?jt+16AkuCO60(rzW9)cj%gc^l+b9tisz7vL*Nt71yz8<6GZ6HrXY zjJ~3y01IE$p@H}hDN*{3=zFO+T&fW#?a-u+HJ_>AP{(79T8Uunv2n)rQU||jB@O> zp9Hpd6>D1Kgy_jZAuRKC5mKKc9G}ApK$4{cK*8lcN9m&m?teEzdwePYB4hEU7Fi3- z&S}p^V&|Q}{8CXc&?g66g~d@sS6E!5SQzN`JQQ_Pvy)CU^hQSKijh;)8G2AB54{!O zn$;)Q5&IRMadf^xlzZF_70eAmhd0IpOG`mc$Z`d6Ok=xPd+`Y(r`?1Izjx47^1cB4 zX=MS}E1ON?4slSG&t0T0GAeaxoex^FaseVQ%Hn-Pig7(hTj*~ocBm>!*z6Ri7sUK1 zLmm=4z+-De`skh;V0+g_@N$xfksTBVr&@aqD`0fqwjqMNGEg&RQu=!cJEz)2SGHVs|E4e%5{M4u#fop zZIlqYrw;ernS*1$s^gb|LqNdJ2$q^2LVXt<;0Dv;hQ)X6(5E#wklsWNm>;$cZuIwq zy|e4ktqylsm7a#}qJPL1+*wTc9XbTU<>>PMgvH=Yb|iGJxP+7?7eLm7Iq=tyL^OU# z9xHqlh5FkTz>Q@u8kNqzOKA$E>GjfC4HI7li5yoiq*J^FsfzJ{%2Xd*{%H~Na{5B6 zIP0RU;lrG?4Ic?Fw>Y%aZ#|00o5I3VTseE&UBUPLBz>qs1AcbD4)mo9IkcWMlxJT+ zt@%k84wtl<8GKWOO0f#WeDSG8h1XXDna7XC?39AQxiuq5VDn=1Ozs-!U7dj<)zi_0 z=_u#+iPeN^u`lo+T?np;aglYZGV%YBbe{24zJDCIH=&HIC?Z4|=f1A{sAN?}N*bi0 zsUn(+?7a!8NJf#+FwXtG?jsR}evuX>MIkh#z3YEoum98Y#CdRBE+8(y^oL=!EvG)UV+3$_yRZb$C z=NxpUWx^Uke8MFee{^Y)9~!QV#&sVSqAL~gsBO_&?02Cb9OSi0namtwnw|}IQJWc& zn&pCfyEkZs++bckwqs_SN5YM>{y0rHo&?}yAgwEcGsB!PJk2M6ZaAUe2@y^bz`KR*<@>Ht$_G>0@wA0w)kcVX}36JAk_B-8SII(FP7 zkX7dJU}4!75V3oYQeuCgJyy%ColqcB_v=O;4K++!?Dx9N=m}I+#D}26+ZlVIVn#7{ z8(xxQjz8S2gOKzj$(7g`5e-wq;Pq7C*fwE;S68ulE{!@ss4gGbIgp}NB*>4T39&NNiU z)?3e@>)F4+W<(hxnJnbzHI;0aSV-1|$036*LB>$-1Cw$}Na#%(SO~cI?xr#HGW!k3 z_}_JA;SxZ+CS|hTV~pv%@4yr`Qm95J8y36PlP`-6xoUWfY!_4J7OV2<`OG|Wd%p@_ zCg&|(IqektCC;BVx}8GrSbdq^Xmtzk{K?t{$0KSXrFPVQrk)3iFrlug_I z1l!zkAd5IVXnP+K?zU|=;Dz!SdU`*f#Qfb$f9yTQZh3bYe_a2O4s#V_-^n$x{SK?i z)a3hQ)QF;wXTQXAw`$Pm>YoYtu|)Qp3zt43GL7}`2&O{QoAAvzQSN&eHT-o`3afeK zG?|zt$G)lEO2?fu;a;*EhB%oRGIi-fI&V;rGtRQ%JA6rC)q3|J-{dH|VAfA|=u!=t z;v%>i9Jx;~W+Yfi!5`q>zrrstD&*c?6oW!IJY3EsI>D@llZD#AK)0>7Z`DrCB%niHM>_i}!|6PAS(eItf9hc+r4+qcU zs^yH=9Y2-q8eZr_2X()q53txMMK>ML{$F-hLk&!ONH2laezUOqV+H z3mR5)6GBdM2M^vSGmm6biLMs(!q|AejaNMD(rjh?|h=~ zA3D#MtgNFB&+p`(o|wVd{b$K{=-zAd#&-t4@P;}abUq268t7xczTL=m)OSZg9pc=L z)34G;tm_!}iAhwmsEtXBsb%Cm%!yc|BrIPOgYKuwkk=8jh|)wx+(>|{rQo({w4v5G`xdEZW@}iqn%ND@eBpe zI0L6l3}pSSl!;XppD{{;_#tv0dQ2+N+mdNy>2S2wzqU5msn!Pl3XQc@o7@s6ZA_`w zxN!(|ZHCYQbySyC15@gk;^}%RF!*a9ia%+GJPKzMgAa$8<~O!D=|c=jbv?tDNnRxn z)Jw<)O?x6&VMBekizM1_9q4%zqok%;p0I-cdhAOb0oNQw9?F~}yW1p46T6ZQG7*q@ zBUxDP_6gk2e1p;J0rcThe+k~o!xQ7T5fVE`-%m$)R@E|+Y>~`9iHv3&)qC-Kk*(zK z#ZIzPXC2BKGoU{PFDAQC83~H4B?GPFxZ<5W={3_LGqlF>!EMPnYDya6YkbC2{Ff5g z+k`*TQS=t)7}E1O3VZCzA?tGvuyk`UIk5aW_A*i?Fd2sj_WKi&iPiLR2Mb~n@R(+= znUlP2Ds;B6J(_PU%Z66^L+?y)%CV{)#wNeliaSVPVKaG>_ihF;IrRvok3{nNzR$oL zL(6%yN{_%DLH@PwLI8}4tcAjDe;Bpg6=+?EyCdIFODGl#T)%YfS6bZGH+KoAx)Av9!#=|C1|0|Yw?NGTiCu2 zNAdgZcEr4`h%9)&mT1u0^rMslQtwqnW^TSsa@?Qet)=zYo42?&bCv?FvSB@)7}9_p zY>we8-AU}(DLJ6%KhAc7CY$~|j%?2KrMuR;;*l;dVrTY^&c7OuO^<4_Kd!Y9x&EnZ)MDrr+ zpw$g8?XuXaYpVRUsu}p*%uPh`!wtG-e->No=ZTw3gt1lCKFZly81H#3V2LK`=uP47 z?f&2HEJjQQg|HJnM=_FL#k-;b|mGoriUE3&fY& zm%@5aIb5K34R>9;L&r?tKyGc9p{IDLS&gZD#W}XuSf}PrtY#d^{>>VrFFccGFP@5p zbPsP5yQPbsOc$m-!+50s?I^u8vmTnu*Rw}*o$0!VLR_w!C9AzUl-N5wMmrQ)SQpuZ ztDl5}?GegqwrMAtucXsAWi0* z1^ewg?E6?1(=v1DSv)@+zi}tM|Is`$@@Fai)u0b=;N_vHf_qeNQE2?%?33iUwIq9E zl;FzHbEMz z-;McH|J1KF;qf&?(iC(P?CPhmnyaoL&+lg7Fr$GpJ<=YTs}(`1PZda zd1B|Z1AezLSiw61e+>PB65dwBu@@WR>(GCwYVllHaYL1azursi&5LmR(okyM(u*AT zJ|9w-Yk`~h))0r^pv*Ls}ZLWU?2Q9L|+S|XPDeG&Y zs$?F%Bh9N*BV&&V;Potk%B@^ zvPtl<5N2I^7Ww6?fYNoQkkPz6TzKayaW>0^_7}P2>CweF&qSLU+rApb-1tg3pZj5w z??X&o4}h_D3MNkfp&I$?7=N%PE<40nB`S)kKRbe_M&5wReVd?sswS=$UrX0^M#*wSZ%m?jEQ(D13mv;Q;n|zgV9uqLXx8FN%6a@U)9?Ke-6JWe1kO;U7ph5Jh7eme zu7{VU7-7@o|L5OlZ?42%_c(;kj3LjBw&E>k6u?iAe_wj1#^gHABktcWfzGA73b`S-#FcVJy^ z66rg=i6jW}@5smZkbBpVptF>TMkT#D{vIo^%#lLs>^EVOMu$*;dk>?RjfYU|Y!g)8 zf1I2@I|`i#s^Gg$8Wda4B{4`HkGK4zas+dvJ5hf4WPJ&HWq~jEws;)(m1O}pI?K(b z`(ZghE8GaCZ1dtOx;1jw$UUS52PwXNmlC(`xG28?xDAtIa{Ql@M*QXbq#CRSOo`BD z6`O+x#ck9bH*;tsmH5|?v+4JAvbvLA>1`Q66f`L8Pm z_#sz&`2E^pHpYk5xn5Ue=p$SUT6M!|zKELy_mqwYt=n&GbMntzE`3kLCcH`6=8>vu zL$uZ?H}cR$G^}jG9lR&c?>i;JpQ~BN7tP70>r;!_xuson)6vemJf^gBV`d(CEc|Mr3(wLc(yS_76Z^=EFh)0ADs6g=nM zB;5N}0X=Ea5UQ7hewLQw!r&@=yXFTI`(QfxtYg8sD5r-U?3D4TR7D&ViLh$vz1WC@ z-Qd%2gnx&uWB!tAYw36uNZj}xIEMm2*5(x&(0tEa*foLt#x9@V{7f85Yy>kNuLt!- z3v($QDHq%!`wk*^T&K#5caS~XR8i@fCJt|OJ4)Ew&g*sg3oHMcz+qnB%&3xnN0-f4>2a=ATfr`6@g=)fIkSN~5$E%ZkfgKL+_PJ!3A2%|!mCg-nth z3rlwG!u8%iNOVI!v8qtUKCO${@0KNS`?@(R#jeDD`BSl?t_fOmrIAR>PGw)8_dxy~ zZB+hY!RLDK~i5Og%%?dGxgbv{{QRD{gtM-k6M zf6+$CBqEhj0jrvQSx#;m+fa~&Z*b|Rfw{N9R431?z80sm%oPYRY# zPen}!50c@aZ}^vCcY^4xY4~lmE#*J&EEP|zNtrpC@tw6%;~%wH6bh zYD_Gg0x)wm1&^OnlKP`IfzFf(4wh4GMdy!dm=yHJP)oMU%J^;OX zZP2h*Cyw{#OC}FHK<4IuZW9T;g5I(B&@f)=+d)>?(oCA@e-PVu3Iz>BL1t13 zyjVS*F369AXhF|EB6}CKdFL>rd5zd?W*3uxL6M~KxOi^Od=eCtP?xmHn?QB}(ikqo zl%fPprpuD~23BO*h&U965qL|TLZuZevHhJ=ve~>I_unnV%`wN2+p5#d3QB}?dd(u* z$n7)UKHr8287JVZkVbO!MIQ7OpF+R;GsvX$FS6R@6`81MBtm(A>YEgX5tsf4eiJ#Q zKlL44nOjco*L5+@M}?vDqy$kOHKT`I0si?Ae^qeRXpj zTsaGsi6!Xkh%gCoj|7oV1K^wN1g5TU?V$ zV-x+8>f~3YNvN2@#}`*nnpB_kgTJAS@zp~-VmyhU*)=+-1!G&mN# zdD-x-treP`$H>! zntH~uQ5r>>u56)go|QwcvL&|A@uahcGvLA>7QR^T#{p(Xpwlg$Q1c%M{3$O`P3J{Q z;ix!0;|q^+P_(Dp-(k3YkB{z;oFJtU3-IZj3}OeD;qhs2EY~yuig7I|y#vbAwwV_o z%epDJ=EQAu-~~+@pR}Si(I?`LFW2SO{u%I;<=DDFGV%?yB5JtBk~TMpXp zIVmTEXQNss6U}lisUKbT0YTzg5?JBQWX+t3*)tu$897T?*1v*+XCdTt**(PYjBr#h z2k$oc41-4=bL>1XOBwI*=a|i~M_!I5apn~pvCXG@CHjd7&4ziMM6T{w;{`j?IS~0PeqEVG3}z) zpi}HYjTo+vs~TtL&f{>PFp;OE=#4}-D&n2%ZqxIwPvstYeU`n^b0jWlJce7r@YpAU z{;!nnODd#Pk=5B_FM$_tV6Ih4kohXZ^jnu$v^3eA9<$WuzAy=-JwE;;%}=bjN5n_b z>5Lz=(^pkiW;ls|?zs^4&U`C`$rrJc?;AM#w}-J3LG!p#HeUDxQ+@k^n?ur@@Q#xgK4SUl*o94t_X0NV%25yIAv4i(XIGB@%mR*`kTIUORpZ*i{ ztDBKTzciYccb)>-|L%}CrbpQ7Z9oEZEJ@e5GWvLlIsLP&mpqWqqyP9_#j_Xv;I$au zz^AuP#YvV^(5vFBxXn14tlzc*&(c^(`%UkKw}Su2OB-jBBC#0qE!T<;i7v;*hX+Yh zlQmiN;T-&qK2G1#dL&qri;2w3typ8#8eA1!LLYtNLK1C%q9xu5tY+H@d}DD0y(&77 zjZ5T`o(<8o*LQPTwfZ~HY?(D+0F56ByptS!1!RXzST6 zwU!z$Q-S|bA19owrYx?K;frQup}-$+e{x3D|i0Bd`b5fZ(yjOy}+m;Hc|0GG>iSp!Kx zrtd`F=WUYFTu)xW<1ftPDiN4r@rN^ZMVdF?d!M*xdl%!d1VLAS8#sS%L;r-jPlGTBIt?3T9qvlV(p`#dwQD1S$OZ7PQ(tk>&|5ZuYu@9rDIe$1@%1_H!hT z*XE+H1`pBR2e)wP7gJ*797H0P858vl!zfbdEG&*+3hVeCNT@6nJ+X^s;$MD*&VnlV zc=}%beDB31ddGIM!P|>WDYn8U$%*9eG9_|k$xpcaNdx=7CD)ge>fvhTFb2 zlNBkNw8_j%@)HJT@p%&Kv8r0XI4wz9$DUfTT3T_x-xntM#-pTS}1be{sEc*CG8mdYBZ|Sj0UBQ5cWY= z5;>-*O3#)mBO+=m$-Agj`kkjdz2oQ*Qde&$J|Ar0+T03qKO>hcRhNUAWyb`0fD2BZ zvk`75)}pZ&Hwm?=2Qm*X$C?{Yanhs>$kgsGbfN49*7tBG&JuTVUu`01hkP%V)^o-l zck<8={S4H#n*mR^K_sMXO;#V-f&1@skeeY*T-C+t%!OV^>~u5siHrtg69CiJ0KDy% z1RHzBjeTh%0h}wj;9E*TT5VZnDQ z??<1PY(iU__TtQ4)ts$y4lt7ENPcwRV{#j;z*MKydcB1;=*M3K-F$^Qb$cr{O{3BQ$zG5j_`lR=+;DP5Vn-Bueabwtjg#t-I_l=kxwO z+^gv#HlKHUV@^*7;jU1CpdW7Bt#9S|@7q)8(WfnRRa_OFC~)p1c-8PPy)d8yc%H0Z zr6<|(a6c&;66ZcJKFz+5xl1=5&|!a?C-c9~RR#N97Wj<^VzqMlP+4$*BpK=R^Nk$% z_?#*?ny<>;7O%zzxtnr>Qd78RZKV1abj~Apox=-9JhH!lQ1+HhN1_xTbp?L69BHGypDDz)lqByLiXOJq_OA$-!tfQ&nvgH<`0mZP zHOiY@n%xV2uOpz)G6Re`3yAx^a2zL%$IDjcJ0v9yig; z_H>eZ@DR`BLIv}Cs{zA}GMCXa3}j53*D}n{?V#`A#|#Y|haQ`7@pCDI)ZMxh_`m_V z`b!6EP~d_S*z#;M>N_3>tpXR_)1L20Z}BRe^qhdct4e}x#dJFRR2nBN?EwnAOOsW0 zE67~eQPRao(us9_V!5f0#-%@9Pj+zza$qk|75QQc0e=Fm{fv#5G1zSi2^K z6m@;op{U_f<_&PxV=pSm8yKH{XXi!NsP=~J#rE((!eM&FE-~J>(%GnJ3;OHgjw`vBvQC+AH zRFiNyv=&F7(LfuUmcq^xs%W#$A5;~5IBwz2W?XiEHMt`79d#WJfbOXjIcG1$bJwqq z3H!*Rh+jGAL$@Q@3%?Tj?qbq$-UbT3-DKQy?x95~p=3|o8SwuUB{9%AjZ(~&CMID? z)R6;DctLeOcG2fCbp|4wHiszGH$$5Ew?%{5%em8Vry{*FcI@Cy> zIm_}z*2;6gW;`a*uG6_Kp}~0n${g;|S|wDi5>NUL3cSIg&76o^PDE_43->_qB>1_f zvOPvWNV`lfH`DA21gGlLkJs{$LZuCvT(^s_9IDR;HHQ%oF74Q}e69cKA`0iI* zmYMdRmhxVM12#6(k4!_j$HEHn1?x~MQ*fq_51U|NRE=vgb2h)wY8o{XX+gjC3`cry zKiP17Z5;hs4~r-0LdfzVR5{OutGi2<91837VOa8G zE8K8@PGWqd=;Ld{aI|9us`3!0_|vDeGY;(+xa*#g4N`w`_=RZ^v1(P8JZGLn`yU!1GMz#6)ks-(vk-+_ z4oTtnb}sB+pD(ygJStgSc@CBw(n3pi%2QfrvC$Ui*=(#0{*|mVFlSU^Es_?PH=vyzm4U7{lSGCUn*91 zH?(YYA-~!e!eh(hQ1m7MZ}1X0+J)>%zjisbxbw5%{u+u34BwH|GkpB>^$B)Z9Q7iF+e{<+>L-usd z5iiovsRF#;k?7Qy54^;|8ItE;i<0F_9LY$-BGz2M|KF4-WYYpaGsoLk(&{a8xc#mg zEI9cU)HGz+O=ni%?9=(=U0)f_c^*#o2W+4_oejj3$L7+`&!ougi@J%fS#!wEE7Nhj z^vU|3;cWEg58!tDcOdomCdVOn8d0CWfkgSaF?LQdBxn2)xJSN((?|W#&t{b5Occ#vM2fJSKf`25SBw1d+S+@x~t$br#G!%I{wj^ED-n z>D6!KwU~Wjj6R=X#y@UCS~>l&d@Z2XuyRUfN3zw?Qk(i3X?^l`$6F>d=O^=@9iMm9 zZc<*Q#1Qmz)v(p?Eose#ui&!#atK^HLA{-7g95)#g+w<#((Njw?q6O(1x8rocSs#c zkLDophH1>FyPFvG3wOnK+)ScU^sA}jJEqCmp3R6mPapnpcow}OttfrYUU>ak8Hc+5 zs|&r9j3x~qar`C~iKtK+lb$CFg)??D$17i=x~}^$r2mMI3r?vis8$Sc8gIR0UM;r<-{p<4_$?*ISikIlg z4}ZOhZYeOIG0gjves%ZzZ|MAK<+Hse=vo zE~}SslZ90(?TG6b#Wr;mv9~5KbfUuyXfh?cm2Pq?WbYsu5Uxz1y!+$XT^%Fj!Ravk zq09}JU8tZrflC?tp3-yF>|FF;$XtA-Re^BEcEQV#cR0i~jc(a}gYo;?NyVs~Kx*ON z;oh2el(_S1wEC>z4FH9H-u|(F)XtGhNF+T2WLv8dFZC|e9-jwgQOrMUFi zbZW!jolG$G4SCc~M+>WzN#uJOylc(}R2NE>c3R{bAYBfRR$=RrN?lNqbnT)DL zrZW2}4U+MA4b$S%z&M|Ds*)b(64h>j!&ZJBG*@L=d%wSrR$Tgv%+sf#cmqsr7r5?X zUyLGdsT=m5QGsHb&u~fvyhwzh3Q7A?pR!whlK1vP6q>Tmj@fiQ8XNoUN0pV?=+VCd zUM=H>0z4(G3@_e7C&wi@v+7==-fqCM>$c0ocR5^|)C8vmT%Wz2DBi0OjT6f;DY(9v z9L_C-UkZXgcF}f{-q->`>!#72w|dE`#}`1%TN0bjR>yVGt&CWD9FBiI01iwf`QCCB z4Ln`M_VirErY%#T$RnFVld%nVda-<2CD@;C&$nZc$Mvn0d_Eb39V=qrkNly2FAIqDw(p>loCue6i5WY~pFY zKE-Q0ri*121f#v9=i#JIBX!;Q2bJinjYbp|(C4+0u|WrP1zyqzsOD}W({ab25z2Z3 zCv+cC&ByAfwMO|=iNtYGUKjzL1Iy7ITP^stGo&u##dXd++-IdSDU*MAB+ z<}-~1T>Oo64m3h|@F}RDA&c5ikD?uN_ox@e^3;XkN_6C+IGEU1px#J~cQNJ2ddd<| zt#|{^RRgJ)+NMmU@gNg&{U^LxBm*Dv`yjQx3gX7HQP0i|Xe*<_Y*K#1IPPvkGY1o) zO&|l>P$!C`OO7ShialdwUn-D|f83Y{84sAF=UhJ-+!-Ce8co&whhg3?4ru%6 zBj3@^)ZT5kQTQ1xYI#R75_!LYDB7kZY#ulrXL4aL^W^e=iM?$qSmobL+{e|%PM((X zlvP1eL!U;9&IOxzkp0Ct-X1_j*VNNnzJ|sn7?;(g-fTpSy*$P3Chv3geR-Ik+Sx?KxvA4=}r|gq{hP^pYM=&u+>18FQuWP{u(F>GN{Dy zo3JY}1)_`%@_hxli@};&s#;N!4E+%$hh%DC=^Qf{RKCdA7RgG8OuNJ=Kd4F<%Fsqy zzx}*(5)rpF3orKuQAtZY>5heQXXNm?Ws8sWSeYcch5+8-! zEwRX^Ne@{@3tXHwUhvu>9gd1A;O*K&Oc7 z*}5<0K%SJM^UtGzE`5ZoJ#3N9n?O`PBMedBD92|$yIN#w~sfBLAUK5H|~r3be3 zvau!!ti~)OZeCX{y(8`rE4uFjz0PMUKlUBs-@ceZTXYw)kz1zX`x}f|G3_2YYjr;@ z_EC!eW&169mqR-}BG{WO4JG)z&{N#L;SX%=^kT-d<{P`n@+f^OwVeEC;LE*yay^&l zbDeegqszA5P2`>!=qEV~viS41gs~f!A^z)XX}+<+0DWDzg;bmk3pfjZyuFx?`qD@|W^Ux${)%Ald!3<0e_HW>R<2~D-mPH$$GT{h z&rS4JsXlty-UPNn^A4SF-bF$NyxEE9*-T^gD)7#pOSYStneT7l^;UYGMYBB#4ynN$a|6=BP7D4%0+ckcoUmy#u=I59gzt{?ANo?k(6+ zwF?jW7Be9;t+2=8ePmRn6aCvgpZ@%OH|#UPWT^28-Z@Q<%vHTiHpltZFI>@rUSC^Q zUz#TmcU)g1rO_C+adAEiTf4BkHAy#=Lk;c<2neeeVX3eG6%OhWJ4fz_`cVt=2qpp&Mm5N}>9?f9mU4N{PT9~-)vH2DNJ&2kD`Yv6`I z-*m?<8D(@#dj%|3DbSNVT#jCZs^Em5rsR2L4S3QYvC_kE+G%Pbwc)Nc)US-f9n%SU ztWs33q+L&zv?MW`blk|5yk|J#cP`GmU&{vFTt_BPDiB_#9vf(R3*UaT8}}dFi@n#B zljp+E$@TP=Or%mG9LNmBW?%bpseKX-cqz@!dHoan01bDHx$JS(3fLf4Ex6k?;kD0? zk*SC3u}p;o2)``H2fwYw10`G7y*^7=-F^e?+9@h{1E>{dM7iJ_y$Sg4!!2aTtX@b} zh#+$DO=Ph3I<00ngd_K;VU202=p>U$4Go$StryR5NrWGPPdd=Q?+a4zoJaN~ z$l_8bSJv^YGClBnFT2q7IvjtWOYH6nxKpnb`28|mz!z-Bt}C0+G`ku!$k~fuD$j$= zg%XIfbSde!m`3NP{X%DM3S44+f_YYaY~AnDJ7ldP4?CsY#ZJ;@WSjnGIH z^L-x27~W;t7g)ia&_c*}h(?Cv8EB?oEKDtIgwwutu*kU#^=D2)V! zwNlDhEv_F$pE4nXp}XK4GtR8x&%@$2MY2VMs#N3Rt7u(~3-1RV#VqtUM`C)D%$xG# zNcKkxdTaQA^X94yZU{GrJGPCy;ecDnbAA_649Z6Nq6UatGl%ilVVO%Sm56n#Hnxe> z#uJyaaC$=@teY9Z&_9}Re#B{>veJ2qyby=OR};xYS8m;Dch&x zjrcPD8Gk)iGIc&)u5M5K&0~1X^i$SyN=DdfcrH^gl8mh~Jt&L$YGi!xFk`#834SED zfzI1CSm)Lubh>;RmdJG^TyKrI(Ru4pYX1@9rQ`Ev!lxDF9UR!GcaJJMY!gO9Hu zXmw2wvqt_j;>L)P-c6@baBL_%O|Il|1#Yk9M=9c9n2&;UOPN|c70&NhAWI(%LbjtE z6Zaz?9!Hl@>JhUM&n1)`wm6Aqjy0ieGiuRC!9eNdpJCWP=Z3X)KsH+0@D9X2?U~im%mBE5#14JQ@8=9emQWgzY2t6PD!4y zESId~)}a^slrf(!M`y$pu&C=}=3Pyyg4NBM7;R2-sKZz79UWN=*Epdk5vBR+A z-!q78c0gzKE{I)nxQW)So}A|6tw_EM1`YI>iu)*x)P$Gv`i7VBWRh3H{_F0@ zv2%nna{7(h-U~DR+m)HrZzWhM-qIQ|BmIL6#=ExgwAo~X`L=(XJaJ& z`}=QZQpX@-6m(1_h^ir>5ksaFQV zvK6l(D=h-$UDTJ<488>h69Lv@YjhZ$mWf!^7!k>leHC);{aeANKG5=BQ(D}rEK#2I ztk-F)68hq5`)pCK(MD$dT!Od;SL*N2oTP5rZ$p=ts^QY~CRm>Mi!(7`PJQI=6aT%o zouhR_8dBe}$j5yl{E`+0v18Z4)l3n2+NLmP;>Io1mqo(vrxVPZJ*vbv+k+|ScnBFP zW+-C0JSFW@%%mF|!RbAk5=nm!f}Y@Q7~|+=lt;b`(hH47qfgg?mA)=IVwMJ;yJz6p zF?y)$zg5U{voKTHu^5g0dQSE5($K1%aWFY-jvq$rG8;#BQsrNjN!itSo>_qbu{xgZs{7QE zW*a6V*BI{L1hijyyOKjjO?T3Z)wx}KhNSzj0CbJlc!;Ey)jpFp(akk4^U_6b^1bpFgw^) zf>V3q*+Kh*w9EGnBocLvs5V5=tw9d7+4lkR^?E*Wcp^%#Po2vJ125L&NH_c6w=g>K z*)E!Np1@y(<*-mU;@G6!XRE%~(q^F!5P7hLPCR6bGDUr9TT`Yk<%1{5kbEofg^7?0 zFQd?zsz2zH;y=`3w-x1Q?iQ@!^KpdlJ_x({2Da`}K}~8w^+rWXpyGEGRQS)CWio=< zZQprnnbA*l>EgJ|(KYJgrSUDWN<$gHNLEAw?Kk>W5Qmhacpzz2YrWA|7^p}UoU9WA zUS@MM_+GO3;DId0ra%wY&$cH<0{`0=Q^Eah_y+8rW{UqQ4I-;E;*?@SdhFUZN9;8a z0=x}!Sm}id&dl6ITE#LcBjxu@zTGS^evtz&S{zZjfG>J??e8lXfPG=HN}K?c)v zw;5(1z5-K5w8)32sSsj*i&2#-!e=>UFkYC6?UMu^BWnqP2O*ysIsXfNP}+uPJDrD? zxPCG;u?I%XROpoS*ZBK@C+V;}LqrPtNv(hxY(6VPN7f9I)M9zsJ39sbyC=^6S#<@3 z8*-S?vN-(enhy#eQY5AgpCRa@I7$CK%nU9NV$%3Zv~OcIepEG&)>AwK?m6*9eV;!0 z9;QO3>8++uW;Ejxb_uz1H4dA7DaLzq)X~wPVbalN0Czsp^sNkkoK!04c-me@zaA$M zmHKS#TD_1y98pgCugXhgS0u2TUVq_a9t$SY)ho#{(Np!eWnyuUmJ$7;vyBOG^Jcs3 zq?ng&+i^*6oM2DgL%MQANm}YSIn%J0R#f!D>+4cTW05Ys+UWw`q~8q3qyO2kjs6EJHm7rZM`4^IX|(X+)R_`SX}yF|?bYb;q#yV|&;6MsA9Up8(e z_^TqFUFs^~7@LOQG^>z}Dk3OqyqdYwA?U3aHZ%GuJh9jzRb+TTRc=Gz7MQ%HhmKZW zr4v-H!M1HH$*KeTtndn1@^9n{YOTCOl2ziNMXeCM_*ckQWh4H>iy<~Ght6CDM=#ILfQI8+C(IU7KH3%UnAKnMaXjJoVh9`g|sN4 ztkIqd+1m7*=lB2pW1jomJ2U6=dB0z;I9^hnFvoP*kQ27`1u1G$$_e!jqrGn1@_wwg z=gr+rp-*((Wc;mfIXd+TWY(vjJVk*q`nkpuleJ}O9C_{|l5dwkXYQ0&gPYm|{G>{N z^Q)wcvm}|3{bc3w_G&eg_xfUad)8|;_^Y?^j(?q{2fG4I#zp%$kyDxtzmO)+`K|?T zh5UI=(wGq5uB*Y}=ZMe_diObUe?)jfO)8{kngu7T{~Ea{;6FO&sW7j`F`njI-p|YV z`hY}Db{wyROUUYHhP*{8aV9Ru_VMUe4QTA4$!QIFPdnc1=4i@Q@&e*7as0mU;k)Mi zRMUp#;(Xnk)$Y&A5|Udt!X=fRFyicMLj9g0TVT^`p+z70qLv5YmuTc(?<5R&9hMbMnR|^>>L2 zxvQeqs{ceUVqA&D8H$*lC}UlpE@5AlD;HJ}%3QR^9zA*2A>AFy}`vDp>4}vqREt#%W5q0Q84tR8- z9G`qD3xc(C!PAeQiHV~-VZLnwo+ZNBWqSjuk5!f^rBD|>!ewx$&J3E~E`w!9tEeTB zkI)rsH`r;e#QGch4a9zZU2n-}i&VXW!HGjrY^UU#+=5X8HRhz@2&?m$SxU2mCrj|^ zmH*HxO|SaC<#pg-`6vi?eab0yT!eF2_4IwM47xuv*JRtiUNZTU9X+2*VNG&`*#)X& z-6!cKD>n=WuQO>-t>E<-gyW~7>2&vR zf}?fOf|I;C9{YdSHd%e+9=^3YmG{a@(nPGFm@{EI$63{|pO-jT%Q?FKHhcWpO>#OS zfwygDlv0nMBvti|u(;N3>h$k$@}i9<@34-x3EdM0pZF`1i~ThkZd&TX@DFk(nm<BjhZ0;HlubVwuTP;BnAk8x$5 zgrAt+#?P1jKvh``2peeO5AXHhk5v}rj{Xbv9~B2c#Oe;>af2Q0y81HOvYbU8UN48P z7e+7~Nqw|(z8ZN;XBlN)`i#6Iu^OHHbP@)JX*0~#HvBASA-t~_hl(uYfceP+pxruW z{Bd0#wg2)fw#fxqu;OkWwcyGG7w;IMezzBcHu*=O_p&JxT=NP2Xnlyz!XBhGE(k*3 zTmcbFbcj{F4k5AV8encCh4+ff!MA4LfXlsTf~dCyWb;|#L3<18JtzS9iycL^r|Jmn z;1SUNL>1Ug7*gU>SxDYw0m<0(GJTIC zVv1Ks?RIUV;=8n>#!oz_O2^A76+08c>sc5xdwoM)e!EQEJ6#&=d{hkd4wb}wd;JCI ziYNksS%2{JT|BVcBMb!GWl(d+EZb!hvv)+_VqTed1H~v3%_Rw;Z;PEH*_TY}ERuTb zudfrMeB~{HRw@n34&_q+`TfWKW-17}Wyh&^PG=DnQVrU~b%f=3K0s0_8F3gkk#5~# zQRnovXePN8Jcv(2k%{8$Lw6$)H+>282$VlRyhjMBE$1g*9g_gIJ_c~|^e1Kxz$L_v zdJv<|U!p5t?MQf*$cLTU-=JC%%-!{J7uRJ>93)s&i)j9mHp+Q%0w{HhCynpj4QY`R z*x*t}<=)~rh`*f^st#hZ9pA5k74R7Pt{#sTs3zc=>2p;5_ygpXFV8TNdstmB#U(!U zNPxbwli~`!U6nIF&q~QEQM>NE)o-acw)qG8fX-<1DA|*#Afq^nVz>fwAR=d zx)5V6##*aBSZW zJQp69`8(LnwKlj6{I8l*A^$4TPNrY;IBXTDY?z1kcmHMwvsJN!-8=MY-&Mf>ISQ@s zy@n!GgyG=db_5zCMdEDKk8yY2lLpS65arVqKws%wI_;m)8;%923Vt7tm zo4yC1ksY^XdDBOPIkju_dAmI+Jf&|-wskHbMeaNDMz`|Qw>^_-r72ai&1Y+b;q zwXee|&%?=x6JPQ4t`eNoW>1P`GtPmca85+e1jni4KICWe$`!|dW53SboR{I;E^WL zF!1AbRB;>93TF<%I2UW=8KBMEnkLQL?d-_eo2Sc}UAK;gF0!2Khsrp+YgX_U-gryD zHWtGttrpW~ir8e;^Ydi1OCjfT|7rSj?-)5LnH-)`zbbi;iZ_LYNn1}Bq)&!utD+$zrPqibnoa{)bnu@PNCOJIMN z5?(3U6$b*gaj*7EUvFB>0!RE-!1CH;boMN;cjh-@v*TeR};Ux*MJ2&t(&=o$bZ(mVs@w8b&2 zOdm!w{D)(WxfCD6f0$7%f}-_*h|K0F`VeS<#q||%p3^!|AHD%D?%YV0?ngOaXsV8SXL z_pZsMZZX_~Tal7LrBe*EuV=%T#~X0p#xP21bsCnp9{`@=K9tOo&EO8he<)n1$aOPx z!Lwf#*iySMLaD?ypxfRDD@8Q0dhJJiPc4RebhZO>WW$(Vk{deMwF^3rGyI2N;oxt$ zGrYk!MBK887S;WB(|{9m2+Y*W;HC4l(Z`cJf%^gvuWxM{y(z@09(Wm*F8kya*@r|xp!Op<75`)Aezf%B+(cuVX~pv9^> z!8~iu86kRMEGn3F2HV(rsMB+t_0QB6T>YGmhCN!?6+4dr_Ss}0&=CO?o(fUMuN8z- z_Wv=`7A-)h*S3L-)&gq4r4dCs=2J1Rjge{wQ?TyOv)Je)d9+aZQ;hlAV^N$-2~=8b3DG{a3~g;liMC$n z6cx+nhu4@HxPfH{r81un#%{k40!^1ii#SILp}f-+J;8~wVLWk5e-xvc1J{I}HB;4# zk2x5b_30q_D@=drhdq(%;|M;)lq08$g0VU3->9G#8!rEqkc5W3MIbDy6Vz-sq09om zpzW8135)$_L~gx00!CsMVyi=E0pFZ7RCam`yj2B(TsjA}PjXnl%gT_^8Au(2bL@fB zHwdk&F7&8oANnOY54pHyptn#ps`B_t;+$*{c<-eqQem|ED@=`&Q1*cit%kt!w>+?_-Hr@m z)QB+4NRXzxP0I4vK~{5S6kf~OB`hf2Mg(olLF@ip7I&<@V3ejW&;9#D658}{!@kNC z_l$`dUY%S3{;XRcb7VjUp8U0vdKXnD*tnwu-iyz}zlwE;Q|oGhqB@s&@b_oE+|&r# zocWRAN^}rrUwyEr7xVJ5vmCs8Gzi+ucM&$<7`My5Ebf0o3`Z@~8%Y|PzfU7PBrhw2O7IY5sVbINkaotXbVH%fAu4XlW2 zIG^3Dl~uXeh8Pmq4)g`(i4QrMR7UhA?(ea;)SpME>J-QJvj59mNd;DpfUZw0{P?o2 zu_u~PKUZ-h8vFbwQAi~{j*G3g1NYwCR3qGh6eiAp%Erk6mGKo@^0JfUL z4ZP<}IVcq}x~%*JZ)grZ&WX zBmoDOP!L6D!wtec;8S@4a28Fa#y5o_H$OpmFFb=1WhlWbMFs06)J!Pt$S`BK%0nnX zvw(F;R1UTq`?EVb|ANo<)=1NlAKq>VWH}b>MiB)upgV63dTE{wh*LwL+tHo-D!P!6 z@Hq*8qu0cweKwMx{|2P>|3kJ8s<8LlR(!qS1=_X~qh|Lt2yMN}xa1*Wbi)@P;R{9H z%eKSlRTRoKoZ#L`I)#*-CQ#WK1>&mG-Kagujez+j5QB%;!|~cUs`JoiVwZC(vXgqu z7TQr~tYhL~g!Dzk42+h8p1x4{!$ug&D(|Z+|HbfE|EhySfeYcX({fBNRs!0nYvSOY zbzBdv#mGLS2YtM=1wGADXK6=&h>l-B3RZe^NX@oNq~QJ-P71z5eRF$+Ra|W-9HI%X z5*jJbo{RCazRKaQc@fl@%mp%SM2y(K&5$@2CJN(Lrqn2I^MleVUC4VTOVrs}m);|j zj5Z{?hy*N3LuHP7H9n5xgn$pS@h<&$em43t|zSA42gzUa7a9y zEcvnyf0md8Z??W9GsH>ZfQcy5p4yf$XLW;oTAD~#kDDREfl?Bl4WcjJy=h!II0o(X zwzC#?EQZgQ`r`{CApgc|yH!jWQ{?vlQ0^qa$l>#v-oF2ptgmn&?LC+AHD3Y;aQ zkFoHloCiJ>n{6qoHT2c*GY~X{d0@R{(+~>nZX>+x~8sT-{H%UPgg+BHop^MbC+9S69 zQ=P~=e7m>;vnNT>Z3pn;!WFSH<+^Zf!EZE`S!sC2{XA*#A(j5TV+|=JDaEV0uz_5b zR4F}_v>fZXRYnWA=HPGZKch_TjSPR8xIS(r}T8tY+|p_%&kenIXoU6*Z9ND z4}Jrt9L3<=o(@nIbPVmSH;q1(K0r;y+9KXIKM-}FO(cH|MT6f@54%5~D`Ah8@v zR%Z{>5qW@W5;jXhI#PijS=&qU=NFPf@j+lj=GJ?47l|AT!uNqo!-x3upe;J(S>_@gABV-Ot z#ft>ITn5~F1srlO>E)72wRjE4*-h3pevX#X^uwe-m7$k&t z?u(}i0$-9Eua4rXU>dv&v4@IL?r<*U0=oNbB{oVE;dUi6v!J3U5T_N>KifNy)21;h zdFf}ISK!MHunEH_nVScnX96w8$;9A@5dN$C24z^f(2@*OHuFp;c5)0eu8!v6^b6g@ zqfi6lp|aPx%{R-q@qdOX%iwk7$~FHHHO+~Te;bEFi+H%^b2y0d@ux`%DVTUTgK{!D zh;$gXmbK1p!uN$QENM3e63*6f{?k$Dp3hn|n(GU8KYL8QXp&-gm#@j_8JD2<3O)gv zC7M`=;TQ4d%fY@gi{Qd^J#=c#22$~OCU+vKf>aTTN!bhV?b>&RXz;A66%Z7g3`ox&`;lq4h!$mcoY{xio zW=V5okKV^}Us`!x`;|z?`#VUMt0Z|WfhOfnOYyihZX8MGGeOy9c*{rv&sk@P=c>2U zw|{sOaBiX0bD8{STlVa-Ch*C=s&O~z!sadlo5CDHB!sx&JjZ`)smWB zfY;eIJyYRe|MF!rpnk?T@ zrO^SndqxtuFH@srl&eAda~ZgEeKc02k_n0x2aNrXvF&qo;dFHuDp1#oDoz(e3QcNg zp0S45`ckDB)6^2;VL^v+{L1x^bs`&yOFYHxa4}rSbO8@M4NKVG`By}ES{APun~$zM zOGnqpJ?sjO(Tbw~x!Ik+;>Lb)_}e`08pn_e_Lh-8jeo=>5((;a>|i^6CQ`-xCeK{1AoqZ=;Y* z!YIQ48KgG85JndIf2pXWV$jh)5BRgY!S%_fqT*++1Krn5-)s4o=r5&y)Su4Pgv*Qt zGgqu*59cU=^Wm-!88kk+9!z?N0VK}{ z2P2H3{GzMiMb>$?OP&F`@L3s;?p_AD3i%W`U5vJLuctz>Dh%847`*!W7nNrGCoX%X z5So_Aa!;&tM~&4IIOOwwJY71D-$qwqQZ)sqwHzT2?Yf9wbvls|=M2dQr53XJp|vI@ynBGt5F znJ_2mpAE(91$feY7woPO#%7FEgof&GpUaJZU~YzA)b#a@bVxBnmj@OcG}|kxLw;=r6wzCQaVL?)zuKvu*%SZ4)Jp z_dcd7F8b4tI~SAGydre_;31rPL;-F;@!UA^@(y%H zI~|)mkCfW88L^HP((^Uf@!GD{({Fc+g2{)OWPX@0Yfs_BtN9mNu^-`)V`cQ<+Iu8VdLQ06-xUpxDB-z*gLLdcn$$1GOjgZ| zEL|x{a*HQO)wTcN?#VQ=Ch#39ow6eL<@F%Fb7#0gi~Ddxc@EL&Tt)5t_<(Fan2DcB zIFg#tE68E_d-yMtd3IT~7u73Vh?8^| zWxQC1gx%=+l!99HS#8}L>P z0FT@TbmNJiuyunFq;CxvPu#tXm0ftKu#@TCSO>7alLJPr(T@`UjHpBd#d*Za;tJ$_ z{Q$S%g#_kv7Qj2U^N6<@c`QSRP%2BzoIZ5S2dl3=K^I+xyt z&i}}#d~a+;tWbS17iRwdQ!0n8|JoIL+U=mOC{GZ_I_^*neOjQ@To>HzOF+vO%*O(X z1?aHrKA@Yh1m||dQ%j$y;XK)Ns#xnd*c1_q5(8Ef8rzLQ7PFiBed9FfPB25&`%ZyN z>UE4mCEzMFl&9Garl@&q@^)?K2;)SIJ{|4wc|!Zv(>)pTz@@7s2`> z6*!cwkGYKhEX;ogocOUAYxSJQE{{@S1(#yn~aB_{r(@SbugOM&tl0OpC$G<@XXHx-lS#;lCz)U4e5M{;Ln!j;`6oVW$cY z9K`TnZ;o_;y^Q}X;?Y}>;o!oa%3cS(`y$b;5q|tSolW%m%fZNiKv2zD363>4<55K? zbgg0su{|OmiRtoV1C!5S(SAOlBl;Hw)SiOn35GOhM`nT?JkK^=95fD?iLEW>Ohpft&;fu^E&&IZa$b6 zPZ15`egHE@)@W%^k}%L)kG!6JK_0#$;6IRbH_NYuivn@k%Uw>I9|F?g#2TOUkPFEs^S~hSJ)DVd{-Nl$c z7+y+=tf}G3Zao7m+{2-xZwcCNdJHr0No4X>n)q^UDU8IUp(%Em(5`0oj539&fQa+yjkTh z+Q3_)04bVo0DWf!2(z?75SVJfUR7|GjmvXlBb(ZZUj2}&gr%D(v93eJhR2NeiOB?N zjy{uEJM*Z#QaOgmNs|FCGU6g3j)mNjNENQ>zd)4#{Y&Xfzukm(c@=T0xzFg-xB}rW zJ3_Jib+}Wfg~6a%I=5p#)2m#52ZR_~Qdu7lgN;IC+>7K*_Kt%mB6mc+p&a|fVbY89 zgq_+|ZXcdtH)V#hFYl-W0nF~8!HZ8iBW^nt6@8xjY`u!OdJ;czamzh)jPGNb+lgFo zqQel>`_)r=#k%0Y-tAP+E`cZ)!=p9J9^D2Wp@~F_x;p1ihyqVEI*8r&k{^0@q@f0j z?Qm%6R?c~3N7&i!Agh0W1835ifOr`{Zz8#tY_&F|E%{e+z4hBDQI~D7y;Oj+TbRi$ zAKOe%#N;A9he49xJ(+G#kKk~ON~xGNA!wNS&qTj&rAkXTL%9DgnWH4ZS^D7;&A(R& z+Ga#>+BztDV6`hRIwBLtf@s5i=Vriq({ z1_bM?B$`U{Wd9zv00Q0bs8Rb#aDOlW6n5?awKn^r($b1h-;o@u=)yPgo!vBgkvbnO z{#^g;3`sEZhr=xU(xlFei15RG+4i2HPqGG4Nkq#XXStJ zLqF4{uyB8gkmzGY_+S$oYpxNb`xz(PaQ=Vz*{v*YY2u{t<<2}JZ|z@Xq@p3TN+}WM z8u#M2mS)J;C=Bu#_XB5+#169YFv83T@?=*7v~U*WA6ZQ7Dav@A zyeQ|CSseVF$aq>Ru8@P{yGi>YZ!rAnFuDFu80MWw#@cLi(0R}iN2K2%cjWiM^G{RJ zr}I0QzGVX)+igQWezl#P&7224lAq!l0g^{0-DmIi>mWz^BeCI@1*rOK3_Wo{oQ(eE zj8>fgOd1q+(SJ(EsnEhj)EnVqde8g2bey{i5P!qs92qYmpO`RCST|8}@K+$+b7~YH zTufs9mNC-cuoL~zCXm!JE2IK#j9{_U11$T<2%h{@g&g#+qtX$1EOh@U){jTH=!Yy2 z@PA9B8OGwPzvrWr4?*mTS5~Ccc76DwOdMWb6apPXFJt%jtKpSZZ}6K=A>8j53j($6 zxYrnmgXd9(hpqjRnOPF_RDvFw_UJ~_x7ARR&~nuLL>FIW_^tLnH^KJVrTAs45%#Zc z1_SRO-~*HrE`6Jd#)^`RtF>>Tv9xn&cyJZWyx@ks#F=~V`B>`orWhbStVj%ZX90(Z zdXTWKfa|vQA&Rd(g|9ENfTeT|zPiW?-Y%NKODtbtx>pqbl&%M_)*QkrUM=Vvu^4+a z%F$Y9j-Xe*3RrMbfURA+8b}BJ06BIYFn``0+N{}2T&BFxYj6O{mF|L}pXbvb9|FiF zZUOs``{_ZytB|+yJKRN@Jl;bYtp2PaSqWIVQuY~IX54g-}0W8qJ3EjIg@DtfgRBg2tcjfEh4KEwu z(Z4GQ5*86#e(%S^iAx~AWepOL?=|jNJ_pN=ro-vYY;3$;7=P7t^mr}9WC<8<09mXTaAQL%V6o?KIGP` zf)|aZ11p&}wAtmE@#g<{XjSQTG`}dG%HCrHeahCrBM0J8hhaYTuZ^G%Fy6AaOL$oM zr!FPX60k9&!*p(b{8h&!m7ssa{=AE7_*JXUNsQ-r3YS@3F91NRDHjU zirl>mY})J29ZRTyD%WgiXe>y+(o2FlmQ6q-@;(R))+ZZ7gb6-lPj=dudHC`RcNlVR z7Od$vM*khpLqttB)*_i5SL++}aEM`ypRA+)GTehP5W#rfAHypNE%c!l3JVl;0`svC zcwe_D!;^0(&gF~3_rQ=2rYXEw<{WC@}lQZ=>;Fi^)$k&3m+m@Nd;Kna|OG5lTdEHII%1L6?&8R9DTVOfdji- z5h=>__udY(?N#;QW_B&!mbn%h`Tk<^2ON01VJZ1dTOMd6s>17$%gK*zdq8z6#;!qq zX#U!9uET4lS5(o6URSRMLn{0vtviUU1VzvvA4zOpAoAJsF6qM(M9;yaSy7&c_CS?HwItiC*#lUH}Uob+1P688op!w z1#S&qKzA}PoPqPsA=QOabl~6-bmH%_dh>xAcsh@Timori=5J@wq1{fnWlLmr`_gf4 z!LqkdM^+N9s!}7H6VFqo12)*CFPAzpJr8AfT9EGCN?6T2pZ2_IfE*hGDEvMKxlb>o zYfLPdbMR{NY2QicpRJAgbuNMIe=!6nA`DrTwNY_F^7UyghtaFk9jNqZ9`c=21^0c% z(F49o%G{1eEo<(ha*Wfdk*PGoNHhs8n%#^nCVzm>pW2Q4*D1q7o*2`kQ-_LtmkG0k zDoQkTB{5hig&wO!a+OQA5Q`Vy1X4Az;Ido^5xc&fz1d(MC1~phJ~&O+H8uuOX=he} zxn_tI_gtn|G6_PIC!hbJh5tx*p=Y=nwC|bpaJE6h+62!=3wmDHGES?$|~na52~e z*gjkbXV?-98D$K-uK5eN`4K3lWG#~7RuMBIY~u8m#gPFM8!>CQ9kjnt&Yt4k1>0PE z5IXRxDs=64;)vo_Z1VLPO7?Yu_kw2_>h(qN?fyKNnH`Qf5qF7DUp{cTa8BrUlq5)V zyGfW@YT|2Rzfjr=XJi{8T(h@77ku9>40kB8S#g81)Sby%;3fP5OypX_f0$aBIy8ME}RF3Ms=a&wkZ(9x9sLn~G&~EhZq&q^_YR>;fwACy$!qw@a|9dg zcnYtWXQGPaf6&VG6ZcNwX28|ofQxs%K`a|hs9yIQIhWKx`(AJOesK!hb%z!yxN#cE z>FK~ezFcgmSBy?CdI6WFD$#SFH#1pe7Cx$NPK5n3#jIEssM}@(4mN6IkFQVhMCCB% z7#)Qf$M%we&h^MsNrZieUo`3CSuWN~B$Hy?FnSmCPEcCf5PjVrKs zkobBo5{)kT4IJDIsh~f;$UXEGd*haC=v`PCx-XfHgn8G&YDydIAl^_vzfy?4WP=Ry zYoW;Q=ip?#I&vy9K>G@H(V)hCq`FO!`mga3Gxt_S8hqtwd~YGT!R+&jS6#2q%$;A; zdfNc#1taA3Z3(`7AQsJk69(tx-l2vr54dwQ57ewCs4w>uk=mYRn6?TBW%^?1V%$BH z;k*(xcg~`rVy1_-!v^lk_M}?sgvd3*>(G6*6{ujnGbKyTptH~IP*CI2+O45Zz|O3n zvR!@w{hp{`G9vr*MZPFfiBUSl0UH)lFFgl81pA;Gj|VW>Sr}dVp~f9kSOw3K>!DQ( z^F`*yqn-RRumbO3X7d{W``=0GM_>+;b}YnItK+%0zz5ZTIfvF}(?G;m8Q2!wg!^_v z_;ZsRP+Xpe7D>ub5*v3zpKspq<>m`Wud0)f;?)4V2XV;g{%T z6n={W&UkS)4P4}CnExSFy5EuWcWfYqb-m~=@mSt7SzBI*#}Q7m<$(sv2`+i;nx4t_ z{8~=_$4Fkrkc7!Q&sp|k zxk*q{GB0@cCudlHfaKpBN!#$Pqs#tWrhT8AaSW;_=)le(x>ul$K5A>O3(0kv7gg;_oaPJ>I##|d5>N3o0A0V zLpK;sP@zI(CO{T*j}SNJ;K1}l*wT6)&^Rgxd)s|6lR^OgyWYVySJ%R24Oj4;UvnsQ z%o`VuE}^BT^#L$a#kW%h;IhbEEPJJ$C?1Rk6M|CYMwcYecj!HOe5MEPYO#i^SQu2H{deW9aGH3}3W(Q9*Uu@Skfe9QOPOrpk43{q^HW`#~x` zQ4|aty;%6shVA%tvpb#)<;NaK>p!eM?0zLZ#$)A@!pzkeY`$)^-4PC&K)9j%_>~2s|{7(TA@=_y4+Jn z5c)dFlCu4BWlv8`1UG5T^j-mrHm`8Mo4 zsrfArR@ZnysUR<$QL>-(j#i)zazf!MWmn20vG@?B)V@fr+o=7ZVKj9}n* z7hG~q6ju2Kkpt0bX!Frb5V&6WpHxYf5w1PQFiRf{RFg@{~J#BMq4_OuY5H~hlz!mL1@Y8}(x%$!DNU^$(YBn4| za?d2O=$I;QJAR*dv^P^CY3Fmnqtek_FE?krXU|t`W@aCKf7vEvx#j?QZqZ?s*IR-Y zHpQck$RR4S(S`7g?4&r3#gzI=JL0v=L-Vy?qUa!gh>tYk zNBWBRNsk0BbWx)2_@q-jHxsHqQi^nw#>7(ZvuJv1DH%N+#eF6oO@8T5L${+{VeO?8 zbiBnG%8xonh8>i^WBpHJ@^W+W#A{P5T^NZ}J~iN51I?hb`WD;COM|uZLOY1;0;ngRL-0Lt zApY&Ufzh*H<*r3TFvvCmMm-)3v@p0 z2X~kmt9p+(I@i4$JxSDooUGBhhv`)WULwW#h<(^4t>%EQztWfyLnHot9=LCp0z8){ ziJjRZhmu3i5tfsARIkliB-^qR8*O-l^h4HAN-KYIxh4|eut+Gy-*19z*Iov%Z{7hB z@0`K4@vq4FsUTFyJivPG!X?iC$B$oiC9-r?b`d7K3XD(i-!eSz>3Ly3vfJjRqP?m$nqn!D@95pI;R|a^OE689I(uiK>y} zS^1n;eF~Z``$0D(c9Qx(nCwz*HbVnkMsgWwTkCZY>Y=TQM^Ts?KcVBkTKw6v_$cQPCGfPz zgLPr5h3zR;h8p%-N>%O)WgUKhscO;Qc=Wy`6RAos=RUpLLx7v{M1DwG?7@5Qk-U!q zp8Dm;+Q9`I{~kns ze3Qo09?yh=&s;$6S84WPQwUB=A4D%WEY#_>3C*e{MDN?whK?ML5an||Na#0buzN2h zvMN$6*u9b^K(SPStK9lb^uzZoqA#=*J=2YsIB|Y2`m9?|LPb~~ zpaYx*o>0f5Hv`*WX{^;vHb7)iCUT6@MeL9qaMLdw+5Ov%%W}uK+t3xT@=Q1N<;n`+ zD;|v`HS&oKnKJk#GgC3=xBw%@|89Rsn(gEZ*e<`1QqOz?jALy}Mg5dV!NUkgu;vR7 zMW(j1zor!eV~zqW`J_kLUv1*ZK}RxyT2U6m%J7EbkQ#|H%az7h({9)5kJ zjYvg+58KRUi#`!l#;3EBalX%=a}!5DQL`3`m}~Zk%P$xWJzNG*@Mj+s{7*TiT;Lh_ z_-S?g!cNcngTIcW43$VQ(u7RNWKmbHBZB^^&>Oju~!BQ&3i<&g$pNa2rPw7?oL25@gLfz*Ny6o zF-XvU0|Mt#!RDa|U{|7tw!N06T7C)v)%&7gx1Iu?StyR%I0~dL!+}ZT-v~!l^x!Lj z6qvo`9_$*Z0pE5iLWh0rc+{|+t2LX2jcyLYgde-0X`~G;wtq27^b5yZBV_61yBpy5 z#V6n@D=DP9bS>`QWK8=s$-uU+(YP_Rvfk5zk34YiJnZ@;Op9fFfvvhxM3DLhx^784 z?ilmMCnRHVL7xlWO5K1s0*8-YMeD;@q)6ohSRG~$(6@QUJD(pTQnI`#!JZAKh|h$ z{|=nmb_3?`Uj?T;ePG9V3;NA@4(VuRM~{n%&{`fks82=%iD-MUcb%96mTMKksW>Ot zq+Y5-!$&t{Y!PO+xYO_E346$&TQ~? z%>vYtngR|6ZpX<%iEOiShQqcj9dcT{DRk@{6#klzM*MdGX_Da}abtjxVU{o#{Xl)U z`qAMwZf#|dIlkp`kIG%_kM2li!3CzvsY}z{$l;J8$hex#Ju_s4pJ&R!4n@XCu{40H ztgfM^_os-eYz25Tt$>hq6iG%QBo)%QqrFrb zN@$mM_ndPZ5=9{+p_E99d=Xl*e)sn$-1~TZKA&^m@7L@3glA*~p-)X4rC2RUnsz&a zXKuG}zmEyLKP3rg*E|+AUKbCfek}w(75C{?^&VV};O$hI_hWjE>M>yOvXDw^v&Z*x z7GcNwLOgN%8#?7Y1wI!0fG3S|REGB?s48}qsM)SB>OjxH_mvo6uI4Og)jR~OjEm6p zs$r2UKZW5b9}mvS$~<=cSB&nD)!`2=>4_yRu|n1xX!uHjCq37)aRhK>ASQCtPzX3OymRwCftX z@w;~dNHe>iTOwMD%rti5=-zA8o~#t$HL41h7CR6TzFWd5#0wV*^if@_wox`aMMRil zo3Mh7BTklmBE5qrFBLs#M%_HCUz@DPcO?{lMxT^T(XmT49Ia+ayzBB1SMN#-_%k?3 zH4M3d0WVve6TTQY$Hbz2C(`Ove*5BA144L1nj+Ep;EdAC+cEsG3Ro!EQ!~e|qhXJ( z27xsO^IRtaagF1BVNdDkhAM4$5Pl>D2pry4FLy{BY)~k`J@Frbta}F7)$If}%zujB z%2)%_{cow!UKb!(bPA^=3qn7kf7~*IXewf<08#3QP?Vt2Gl|tNNsAKjm;0aYF7|zcN>tRt-7c@{) zj~id)o0WO6@$^YmXsxM3f&#YT|ID(Hji)6p_%lLH-aCe~M-V={Pm{>`*n=2bUHrS{ zHrhKGX0~xZ2YX8=vq$+ma<%L&^udA6u&BWXyYx!KlZ^_J0a5D-{8h_`-&^6Jx1}I~ z&+45K$f2e*UU82xi@<>|bfA2ce;x{35BqMn<4QdmOj4i1bx{KNi$WQ;uZ@rCHHCf!F?s8@gy6y!9{! zF(2J9UAm$ZR|-9#OIxl-A(OUd5B~F`y`gBJ#dQU|`j-aR(~i{t8`wpSPSv4y9ToWO z!QTe8*Rn7sW)%tCR?mH)vlLJC=HQHxI`CiHDeykT6*bt;hXVy(*zuqk9NHd3v)%Uq zY+u`tX49OpT;5|~XT`);i*o9JugVANqzPTrwSkEu3&`z|QouRFf2TO`XTKwk1Qn&B zZ#*_uNNz)|w;ECYHVLBEybnY@SqRT1uz)e&3&Fc(1Kq556PbuHij^qHG1Wc?M(%Be zrP)t_ZHzWNq%Ka-Tmts(i=^>BEERoz;|%(?wwlt(DGjn^;Ju_-mD(L&H>UatdaOJOkV9vZ#MrKO2S{ zEUCZ08}Y`BAz*9~X4b0w6GW*Wpxt~f1Rb5U;3l36+wJfI4B}7V^p!r~Oj2jKEfN~xc_W_# zL&&p~0~fAe$F}F=rs<9ruuSMx7!V~3&W zSxebC;gJaTUE?_NB-GecGN^;QXOT8m;(IRscr#IT$3ygH@SK^@4;ko@8IB``L-EOk zSj_pc8WwK4-e900K*DY_;VF$)*5eJS2)pm69K|^JXu)DMwx|mjD&2>|L8^?Oy-JNi zcb1#KaTzo9TNA=)P)MUUx}9Vs6qoQa2c@|$SF!LT4F**Bx&R-_U);DdUmhP$&xQ)B zuI87sM9pPuB3p{=I46h|}0B#!F#m}SF5z^BDw%I<7rxoyjoeNB;Dh(a3EicLX#IBre;mjq2mNHm^uv!bxX`m2jY}^8_@XnB<`y=q#n!Ah-UV6~szY;z}+Xzo4Si|ji{qV_o58;t@ z+hI{{I!?~10WS>>OjZx#DoNV7&2W; z>%(~PIDT_)A(5#Mhb=M%)WPN~((YOTT%P{|zZdcF9_uzL=79r*)UB?M0S`wsqY7(w$d=_cPt6* z3I}tce1Gwz9`t@+jkIfyljvQ~vC`K4)ZU&^zN_js+5VeArPto1#zhn=xlYmB_XfeN zUzTLyHVTY9S_)iaBh7@?4O79FRPhp@UdnKxs)<_EBqf?vk8_KX*_&(AfYI^mtm~>) z=$M`lzRs}2%G$e-bSxXcs%fNC>}pEz%TKOxX&*AM(!?R3D{y4^HgLef6|BA@3BHyl z#_TkH2TpgGQhc@({-z`gzw?%Zb5dMW5X{9~^aNjQ-9G=j?IFBO^aUkF7b4o{mD#r+ z+(ZxUH1Rp3E%Y~rz2MGgzOU~qzhAQI4EFZB4=m3g1!?~#q(ql4paQbq;QTsuu^iVS zEGC_df|R+^p$VJ7i(|InPV-}&Ip#Uk^d5jW%n15wbr#r>sU($s&<;A4 z@xal*Ts)Cp!5*AjK-`(}c*Ui1U}30>KPfMU+D8(xzf1yr%pV50f4zoIk%L^ZqFC@i zK^oc!Ji<&xP5d*x0x3N`0=rd8fU!aV<@f}H59vp^N}XB2`)WKEJ2Hyht^}G??)bQ$Cws(*PsFZVdg>ETfDPUhbEh4%38lP9Lo18F&;IjlXAf+=)9Sq zVO?Fx{I6vrq6r&<@kKD&%37>3;R;J`Rx1)O$bbSu<>l>FZMyF%)u%&`I=UkrHmiLqRrKg$^7OGbrMp9W!j z{@aTA4n?*g0O&xlqgu`3pk1nFfka2g?*!u2qA9h0g^L-VQN45-pGi>3Y~ zVYARcT*dF4Hn_2<+g(yH!_@_wiNt&ysEzYs6-^cDM8QiIgG zv#@?e4|u#kfV#%d3m#fmg0C)n$`M?e7UPf^LBA=~OzWx^#?tj>(9PyvbXW5Y)~b)L zNZ2(6#9oad%InWF?qwmJWj|RxG%@eI9po$+y*Or!;{v zGXzIIdBNJ=IEPhQYC)@1F7~~QkY7|R4t;bEm;Igs$y%?4ygi(8S4$z7H81B%RSDvW zWs70!5=ErFxE{-xeFLYi)g(?mJ%|^SDB;LI5LoKj2M!F( zH_Ke!LU{3}4cXF%@psQ3pu*cfBQgf;Ez@LyjYTv(s2D6zDRL5mm;WeJODBjou1VuM=pC4paq2X))z1HDqaQK{+K6jeUuUOi7! z9XmC@Gfmg8rTWf2Fg}+zgg8m-L8{FQO6kyJs%fPqPu`|4o8anoyvUe54 zE&=XR%hn3v9gRj351M=FJET{{YBdXRzwWEy&cEITRDUMmG)rUJgdWq>ym}IE5c^Gi zPEMw2x#`6I>};jx59}xBEfipGISoq>rJBXO+Cx}}jB!xU5IN@Xjvn;=BJGvGH?o=# zhre8IqU4NRnuAOx$&*zUQIISFA)8#WU~Y#NSH~WTCPs;zV)mh(qA$ResypQ0o+EJj zUOT=roy!eBbBQ`5D$81_&F8p%8wO89GKj$rZBfVbqo9zsO+2XP0IhfXQSde(nY1QE z0DbW}dSxEpNl;r#$R{~y+hYaptvQS@wH)TGoy>#T>IrD6@93*1iF@<*bF4BgW*= z9vwjU+YGvll7YZ|9{q%s3_kv9956qALltGa@R7>^ZTE_I#=NGdrgGBWH*q`x`TRq=y=x|F-gpr^#vB5UoH1}%I0t-a6{J>~slt7-G%UQ~ zK2V^ag}b^Fz`%*+I6!iSpO5K9!Z-Dh-m4+Bc~Ly}^AN`~KOW)E3Kul?;X1fGQcu0c zNv82CPPpw)J75HVKygY%V4>kWSg<9K1*Zn7*Yq*0CoG9GHus>Q4X&VSLIu}X>;z5h zg;=f|;=G*{R{154?bm)5*Alu1()OxSm)KW9zkMe9aVIiqX;VAG6Xl>5B}o_6R>Q8{ zQSjhlee(0ZH2hio6elpXqfIVe0WWlvVArOTAT&S`UtX_-7*4;;_G#(GjF?^^1I(3X zviy7F)OHzQ!hV9)qB3!^qd461>IQd2umc3vkD%^d{NEfg3@(84)a;|+7}+Ud-J zc})#K!KI(BXFr3jt{ny|I~IdGmzR(om!yDV|85wnPSMNHMNw9fz71(wg}B5$8LrT_ zgV&DS5<1Js#Q{PoB70|j(FeKbc%<$Tz7@Qb_G(EnT=H%lD@SbuSW}enUI>7Zyc(dZ zdIx>Fu!zs=JcHLf!!UBpm)M_U^8Wq#$S9S4%iC#x75Xp*7`K8miHDCHZ{7XRphM>v z<7Hj}!$+!>d0eje<8^b6($9A$u>f5dtF zLu|F?I;kt==Orgp;K;Wzs9RJ?@@9X)`gA+8lVgNM_ORe`k#a_0_a+AX7Rb=D*9Oux z@5%Q+2~a-E8BaKP;Y&+wiRzwGqRWmTuU|l()!qo=wr>auHBLd@&_nPH13_hJXEd94 zoL9NApUPPGmB9-Q;3e)gQ%PK-3m$LoE%z@zek+$}`+|Nr~vobB;DAx z0-Fyt3tJpJAIftw@1TdpP>Pa8$&aUvc6}_K?XAt`4<1=FT5mk%vyYh!+DSFuHE|X5NUeCr z;wyRKBYN)h8P_eO+x)K3vCJ zF=cN4xcDVFB4BN9dAHO2d|xe(_prlU{_`&0{jW}VQ`^`1#G5AOPb9%mZZY<05{5E~ zG*UalMgFyglKx(LxO1UA%_1a@<|Fcz3UvMhw)8mhU4$d(W4FBU&}|H2m9i+QClknu z+Q2n@{g%2F;X(UtZv>-sJg|<*D>I%>KFAk)%bt?vKZ+L$u+;$_QY%!%21Ei{lXalg zb0OSw>N{FKRek}?g-MI(4RSl^uw?jCG zCr0->D#mRrQx-ZC(NFzM>!(CL-+-LM!#E>nK9v{w0Pook;o{W_c-dViY1IlIHR-{3 zef8&ZU-0=_xnVbOO}-5ITOW^w7j}W^qDrdU@+lC>xdigW z8Ygx%Zra4=N%SPbK|ArLy{?fK7OhJejI6iBp6>&g+#hak8z^HQfDSUs-zr$_t}o>0 zkNBDY^#T@!e@>ZOiZq#96q>>%P1yX8t2_QQ9m9LxT1xa^sPVSn+sg2~O(TKM7>@U+ znHT?x=T&yAS;V=-^P-=!8M4nt8Ve>jHyZHy4VJF@jpw=w@bW9N7&TFD4C{s5fHo9_inop-YQP6xIBbR2-_(bP zN_P{H&dosgc^Pb*V~`Lb8r=KjFXHeWWFMkh@Z#zu81Tgso*n;;U!5~1Tjv&&hqqsV z=GUvh)KgthFEm8`;l0O|U&4tIO$kaykAlV{I>3;*0v7&$?nJ`e!{eqTs&~S=>lu%Wjgi*Zm%Gk6o*3?L71eRN4MQP?Q z!7m*xxO|oax850I`}~&@{U1d+tcx2!Q->+W9ctjC?o005U%^yBO0ASfo9l z1;OnkY-h9&==HUrh`7Z7l@5_4A4{~e^E%hD`5@?K8q;jT-mTYui>>&Esd^ng?ZnQ-uK<;ull&z zhFKQ0v$7!Raw5ofW&^OQ(MLOmb75sqC_OXNADdmzM%xE%p>X`@o`Y(`GB(Ch43lsgm>6+M{p(%%;DV2?JZUtfk(s>c^`jZlV-DMf}nC z5enDG+}V<$RO zOs<#)5hlM-fg_Ck5bcFy)KKb)Y_S%abQJb(MMWfgSngxtqsq@r4@Ojfm+ITWF|to2XvQfAyS!)mgM2Cyk)TPqZhGCbpg5b7}(l%j>HE(0&|c3@%rZq(EYz!l>BJ|9I4vM zaGrmMl4`ByGmdV-QjZOA*(4yMAN=5Np+u7P^(%4qRU;XPzS7&oy(z~{hxnZnF>oX` z1)uP{#CAC-;>JQ%{6ke>MufxaLxSw`Z~a8%iVxUPZ6E4e zE=vB$Q?O-GzS-v!$un{N6usA)wfT7@3GvGX zX9nr$=7wgWQ1!pyYY!JE6kuGYdJ`YgYs5XrFJhsz7r_7Ianf_xA8gc0r#&5wp&z8% z;I+Oi(oHULWqQX%S`yXa&;N9(e#tmi{jQ7n`!5}C1aM?=%irSR8%*xex*I@wmj}$f zDq3K%conYgoCik=ZURHPA}N|mqD+J0GpfX~J$5t6>=19+I?$NLBhW=obO>TPuIy^YRMZmD&Q7-GwZc(BW11 zkfjIt95;#2l~I&z`9b=5>%*{)&t7C8S1kAU5$<2T5n4|#CN+g2;21Rvk{`Oj=@=!{ zFntRf@r6VAuA5C)JDw*yw}`>#-I_S`y&}1oRzQel2Ui^;!V%m_^`#s}y5F8-hpXw_ z);;#{<}XLGO?x{Oo41`Be%}EE=PncRdTqF?Z5mfJo*@BYf4~M346gKxz}!~?Fs4lx zs&Zz4FhBc=RFmMKqX?8gvx$V|mysVKUASZHN<9_Cf#d%bz&DY8#5s%ug4}K4>Al%p zc!LVTut<+6#`X_m38u2$Sd^nL}mg_JLyQ1z`0454Mo^K5&-t9os4oqZ5tq@JyQl zZi>G}xqLZ^b1VO28A+MrvCu!*;FUe?n}JvKZMD~R&lH+)+s-1u@hv0@MW%3*wpikc zJ8ccu+buyt{x`blyIUxN|9|%cl*Bny3ZODsA==v_^p&Av3{5cqD9|>mz|EVVzU(f_ihHz^2dd?8+}LT zQnEmz?NQ;7y-X0UK@fFIt6`(Hg1E|eDLi#0iMDdh0{F0|0*`;ch>ct@?mah+ zE%KzH#^`0lD^aWWcq|OvS7u^oxI}I|aq$ zqbQq8Z>2WZ3X{VAL25?&DQfQi2ad~^p?M150Ntqzz1n;N#94HJp4DP()$<*c-N)P9 zo1UA%kyPpD5fL`F!;>i#60+HZ&UCYIL7pqNVI4y(ixljz;8lZR zJPn?5;O{@TX^^3rXTX2mQ*P6&I#j<@!gbKShIhydV(EgTm_BhCD<_BG=g3H$a4d9@PG9@fy&msOt-11w5;?&T z|Ni|jR#815-sEvrX#KiuYE8Q?KC4LK_RmT{MeQV#KNimF)D#5AlrpI+5?AR?)r)}P z5fR|M&7W(Ur-rt(%B2M=`fF!NMR3|PDGFIDqy1~o0xMl{tJdSO@$w(ndTV{)>L z`qnRpJ)O!pp{`zdYQx|6l2`Ysl? zp9fw?2~rnD%cWH|WU-sX#VHf7l~^aTl^b};7x;X6OlOu>aB@lo62ouS)t#5U&-C6R zjhma7;)lb3nO%yZRj#9?vf5@jZhW2!o|MhM-I-N?p!p78j}e(Hs+IQcQA2}TO^A@+U+419z@&1Oq%6wPIK z_kJ<{JbH&~XOsXmw%!MlM}vem9ea)$h&2@r?`BlKipP#0CzbsXlt}I< zdhL20#Z;-$IcGg_0<{KOMnu3yrOhBseFfgy_X%9xn}tu*?xX@7tVox`axnk6EtInQ z1B#oX@x9O-aFo|n_v2Fxe*UEx7nKCSB9m&dh$IG{b2LNR@gj8nTQTs>mS!Yu zu#V0>G$M2|ZI^+3S{ChPudmd(o-APDua4g3E28}>$JsH8Dy(P~DX=?U9S0rL#=6c? zR8&no@SV|Osn@XL1#;rhQ%a6@%)kJ|uhzw_UXLTd8oRnmeJT3yZ*5e@E+K0ARX~GR zm;^5FKTLUN$8dCiE8zRFsG<1iBKBPTJm8+N8#TK#xNHM0+`9FGF{3dz(e%V1KigqO zx%@W9MKZGBAoBpuvGb%D!Z`>?9bjd2e53^J1PvtyW>9@^9QX6adbD*miazkK5><2d zAoUWi^j*F^yI`XcI6YrOL|nava(9gfw407B)fXbztnW37wsWE^G|I(q%I!kl{-Lx5 zPI5GV@s*&@MHsoY>!UY862dtHn^|xDJE(ZS8a(m$G(FW?5ZQ?d;pa{7CD&;63g^A? zCO>r=693!$gi;9Q?-MllvCQv?n$3%|Q4$Hdjk!l7Nkx*LiTLjd)X~KPztvXK(yT;a z)N|XqlA;Lavo-hl(7QpdZR9=fotJaqzpYQ}Yh41xh$k1+55n~xM&MrQQf|VZd-dnjk4Y%(@WyeS zwIn>PuY!L(!w=9RzX`m5xEOl>u4Z`~V?8h;oX+_M*btT`s+-D?Mq zT-}6)i@u6i&KIe6>65O{3XP)#zODiPc2V_{s*kwW4lY9h4pFQh=ND0_P7CVKg*@U6 zuoFRQVGK33$AEs`;|kyTrUGtlHKY~o6$L-X?_h_wxs*^$1pWT<0kE03n|fE#iYiY1 zk;qAUf}-o2k@YAO`7GyAPTlM9fzTwhBWwm;GqXii?=K071>Qg`#tG0}Tq3qep#vrA z#DGSpcf~&)2he5FDAehi!smtW6B(0zg!Gh3MPEL-T<^WgnqJ=`0}NcRqJ=grPVI+& z=HH1U;E2r^>|J{cNAaKYviB7reBL2ZU$vdIQxTJ2lwl7!aRL!f%%S=9=)C?vHkfLC(XiAoLs)ug!YMe7i~zpM1%8Gaoz- z)=bJ#`z)W~$)Q+!zPKr3$s{8GeI5b8k3_nh10Ft#6FR$Ukz&GslvCdebXUiv{#}Z!2yl2$>(^@s8s=sUZKDP* z&8rpuXk0@2%%?dA@kZ3G^UzGrVWSMYLZ;pzdG(m*$ z>6$a|7E5YkomY|PR>6>W3whl3oTFk$1UaVrcis!)l^R#$=j2QmebvsY& za6h9iKbGtXeH;C8BMbN-J)j}!POH=RW~eV&3R^ipG7kPK$Gd6+xw+vxc}*cPT>btn zjQf>;go?U5MXZ1^v>Lk&OZroBjr?V?t#e*+QM7s>>ah^^97qGIVlt34#!$0w>Y1S{ zjD#rn8`1}q1SCGN6nanC=cN+TNZ<-I}B;jx_`m*XkoG`_BgsyTZKau z&td6P`#^Y$0VUHJS#LYqLjAkX_mlm002}Waf>s~{sV_YA{;(X%-gzF3EN~PGloiL6 z82`L%)F*M$*N}Ve+8u1_QC6pO$sXkJSy&NQgrU0SL(!nuck$qDAF(buG4wbr9#4tA zj$L%ByV6FsHKHPeKJ=U!6MmFo-{?^`u8?_T)czd z!xAAY1OjNoHamckEUV^p+D&RUu*bc7(Ly0kJhZsL^P0JS( zPEo^wdUw;yrH_I{uXt3c{|u*b=FC#-#i`MZi%3~8T@0%X)AQVYfphX=cICFx6#=_F z!1h~$vBA3w@X(gM=s+45g0Yq-@$$TxCXnYVWf{pP3!c-PKBMLm|WM;eQ1 z&-9Yfnld{)7a@y3{8BXA>6lB^>~p1AKh2;$7@482R5nOE|1t&@{@YQ&T~lU+;u