Skip to content

results missing, ValueError: Input #20

@maciejkos

Description

@maciejkos

This can be hard to figure out since I can't share the data. I am running it in Google Colab.

automl_grid_search(csv_path='/content/CLT_all_tasks_trial_level.csv', target_field='correctResp', model_name='tpu', tpu_address = tpu_address)

Solving a binary_classification problem, maximizing accuracy using tensorflow.

Modeling with field specifications:
Subject: categorical
Finished: categorical
TrainingDay: categorical
Condition: categorical
CondPrev: categorical
TaskNumber: categorical
TaskId: categorical
TrialNumber: numeric
PresentationStimulus: numeric
StimTime: numeric
RespToTime: numeric
RT: numeric
SubjResp: categorical
OutcomeInt: categorical
TaskOutcomeInt: categorical
StimDim1: categorical
StimDim2: categorical
StimDim3: categorical
StimDim4: categorical
IntendedRule: categorical
Background: categorical
StimDimWord1: categorical
StimDimWord2: categorical
StimDimWord3: categorical
StimDimWord4: categorical
ExpResp: categorical
DistinctDays: categorical
out: categorical
StimType: categorical
0% 0/100 [00:00<?, ?trial/s]
0% 0/20 [00:00<?, ?epoch/s]
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-16-ca69e1157d4e> in <module>()
      2                    target_field='correctResp',
      3                    model_name='tpu',
----> 4                    tpu_address = tpu_address)

/usr/local/lib/python3.6/dist-packages/automl_gs/automl_gs.py in automl_grid_search(csv_path, target_field, target_metric, framework, model_name, context, num_trials, split, num_epochs, col_types, gpu, tpu_address)
     92                     header=(best_result is None))
     93 
---> 94         train_results = results.tail(1).to_dict('records')[0]
     95 
     96         # If the target metric improves, save the new hps/files,

IndexError: list index out of range

Here is the log.


Apr 3, 2019, 5:31:44 PM | WARNING | ValueError: Input contains NaN, infinity or a value too large for dtype('float32').
-- | -- | --
Apr 3, 2019, 5:31:44 PM | WARNING | raise ValueError(msg_err.format(type_err, X.dtype))
Apr 3, 2019, 5:31:44 PM | WARNING | File "/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py", line 56, in _assert_all_finite
Apr 3, 2019, 5:31:44 PM | WARNING | allow_nan=force_all_finite == 'allow-nan')
Apr 3, 2019, 5:31:44 PM | WARNING | File "/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py", line 573, in check_array
Apr 3, 2019, 5:31:44 PM | WARNING | y_pred = check_array(y_pred, ensure_2d=False)
Apr 3, 2019, 5:31:44 PM | WARNING | File "/usr/local/lib/python3.6/dist-packages/sklearn/metrics/classification.py", line 1763, in log_loss
Apr 3, 2019, 5:31:44 PM | WARNING | logloss = log_loss(y_true, y_pred)
Apr 3, 2019, 5:31:44 PM | WARNING | File "/content/tpu_train/pipeline.py", line 1126, in on_epoch_end
Apr 3, 2019, 5:31:44 PM | WARNING | callback.on_epoch_end(epoch, logs)
Apr 3, 2019, 5:31:44 PM | WARNING | File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/callbacks.py", line 251, in on_epoch_end
Apr 3, 2019, 5:31:44 PM | WARNING | callbacks.on_epoch_end(epoch, epoch_logs)
Apr 3, 2019, 5:31:44 PM | WARNING | File "/usr/local/lib/python3.6/dist-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py", line 1734, in _pipeline_fit_loop
Apr 3, 2019, 5:31:44 PM | WARNING | validation_steps=validation_steps)
Apr 3, 2019, 5:31:44 PM | WARNING | File "/usr/local/lib/python3.6/dist-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py", line 1633, in _pipeline_fit
Apr 3, 2019, 5:31:44 PM | WARNING | steps_per_epoch, validation_steps, **kwargs)
Apr 3, 2019, 5:31:44 PM | WARNING | File "/usr/local/lib/python3.6/dist-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py", line 1532, in fit
Apr 3, 2019, 5:31:44 PM | WARNING | batch_size=64 * 8)
Apr 3, 2019, 5:31:44 PM | WARNING | File "/content/tpu_train/pipeline.py", line 1095, in model_train
Apr 3, 2019, 5:31:44 PM | WARNING | model_train(df, encoders, args, model)
Apr 3, 2019, 5:31:44 PM | WARNING | File "model.py", line 69, in <module>
Apr 3, 2019, 5:31:44 PM | WARNING | Traceback (most recent call last):

AFAIK, the largest number in the dataset is 12007245.

Thanks for the help!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions