Skip to content

Latest commit

 

History

History
401 lines (298 loc) · 13.7 KB

readme_api.md

File metadata and controls

401 lines (298 loc) · 13.7 KB

LlamaIndex+InternLM API 实践

本文将分为以下几个部分来介绍

  • 前置知识
  • 环境、模型准备
  • 是否使用 LlamaIndex 前后对比
  • LlamaIndex Web

1. 前置知识

正式介绍检索增强生成(Retrieval Augmented Generation,RAG)技术以前,大家不妨想想为什么会出现这样一个技术。 给模型注入新知识的方式,可以简单分为两种方式,一种是内部的,即更新模型的权重,另一个就是外部的方式,给模型注入格外的上下文或者说外部信息,不改变它的的权重。 第一种方式,改变了模型的权重即进行模型训练,这是一件代价比较大的事情,大语言模型具体的训练过程,可以参考InternLM2技术报告。第二种方式,并不改变模型的权重,只是给模型引入格外的信息。类比人类编程的过程,第一种方式相当于你记住了某个函数的用法,第二种方式相当于你阅读函数文档然后短暂的记住了某个函数的用法。

image

对比两种注入知识方式,第二种更容易实现。RAG正是这种方式。它能够让基础模型实现非参数知识更新,无需训练就可以掌握新领域的知识。本次课程选用了LlamaIndex框架。LlamaIndex 是一个上下文增强的 LLM 框架,旨在通过将其与特定上下文数据集集成,增强大型语言模型(LLMs)的能力。它允许您构建应用程序,既利用 LLMs 的优势,又融入您的私有或领域特定信息。

RAG 效果比对

如图所示,由于xtuner是一款比较新的框架, 浦语 API 训练数据库中并没有收录到它的相关信息。左图中问答均未给出准确的答案。右图未对 浦语 API 进行任何增训的情况下,通过 RAG 技术实现的新增知识问答。

image

2. 环境、模型准备

2.1 配置基础环境

这里以在 Intern Studio 服务器上部署LlamaIndex为例。

首先,打开 Intern Studio 界面,点击 创建开发机 配置开发机系统。 image

填写 开发机名称 后,点击 选择镜像 使用 Cuda12.0-conda 镜像,然后在资源配置中,使用 30% A100 * 1 的选项,然后立即创建开发机器。 image

点击 进入开发机 选项。 image

进入开发机后,创建新的conda环境,命名为 llamaindex,在命令行模式下运行:

conda create -n llamaindex python=3.10

复制完成后,在本地查看环境。

conda env list

结果如下所示。

# conda environments:
#
base                  *  /root/.conda
llamaindex               /root/.conda/envs/llamaindex

运行 conda 命令,激活 llamaindex 然后安装相关基础依赖 python 虚拟环境:

conda activate llamaindex

安装python 依赖包

pip install einops==0.7.0 protobuf==5.26.1

环境激活后,命令行左边会显示当前(也就是 llamaindex )的环境名称,如下图所示: image

2.2 安装 Llamaindex

安装 Llamaindex和相关的包

conda activate llamaindex
pip install llama-index==0.11.20
pip install llama-index-llms-replicate==0.3.0
pip install llama-index-llms-openai-like==0.2.0
pip install llama-index-embeddings-huggingface==0.3.1
pip install llama-index-embeddings-instructor==0.2.1
pip install torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cu121

2.3 下载 Sentence Transformer 模型

源词向量模型 Sentence Transformer:(我们也可以选用别的开源词向量模型来进行 Embedding,目前选用这个模型是相对轻量、支持中文且效果较好的,同学们可以自由尝试别的开源词向量模型) 运行以下指令,新建一个python文件

cd ~
mkdir llamaindex_demo
mkdir model
cd ~/llamaindex_demo
touch download_hf.py

打开download_hf.py 贴入以下代码

import os

# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')

然后,在 /root/llamaindex_demo 目录下执行该脚本即可自动开始下载:

cd /root/llamaindex_demo
conda activate llamaindex
python download_hf.py

更多关于镜像使用可以移步至 HF Mirror 查看。

推荐用户从modelscope下载

https://modelscope.cn/models/Ceceliachenen/paraphrase-multilingual-MiniLM-L12-v2/summary

git lfs install

git clone https://www.modelscope.cn/Ceceliachenen/paraphrase-multilingual-MiniLM-L12-v2.git

2.4 下载 NLTK 相关资源

我们在使用开源词向量模型构建开源词向量的时候,需要用到第三方库 nltk 的一些资源。正常情况下,其会自动从互联网上下载,但可能由于网络原因会导致下载中断,此处我们可以从国内仓库镜像地址下载相关资源,保存到服务器上。 我们用以下命令下载 nltk 资源并解压到服务器上:

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pages
cd nltk_data
mv packages/*  ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip

之后使用时服务器即会自动使用已有资源,无需再次下载

3. 是否使用 LlamaIndex 前后对比

3.1 不使用 LlamaIndex RAG(仅API)

浦语官网和硅基流动都提供了InternLM的类OpenAI接口格式的免费的 API,可以访问以下两个了解两个 API 的使用方法和 Key。

浦语官方 API:https://internlm.intern-ai.org.cn/api/document
硅基流动:https://cloud.siliconflow.cn/models?mfs=internlm

运行以下指令,新建一个python文件

cd ~/llamaindex_demo
touch test_internlm.py

打开test_internlm.py 贴入以下代码

from openai import OpenAI

base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/",
api_key = "sk-请填写准确的 token!"
model="internlm2.5-latest"

# base_url = "https://api.siliconflow.cn/v1"
# api_key = "sk-请填写准确的 token!"
# model="internlm/internlm2_5-7b-chat"

client = OpenAI(
    api_key=api_key , 
    base_url=base_url,
)

chat_rsp = client.chat.completions.create(
    model=model,
    messages=[{"role": "user", "content": "xtuner是什么?"}],
)

for choice in chat_rsp.choices:
    print(choice.message.content)

之后运行

conda activate llamaindex
cd ~/llamaindex_demo/
python test_internlm.py

结果为:

image

回答的效果并不好,并不是我们想要的xtuner。

3.2 使用 API+LlamaIndex

conda activate llamaindex

运行以下命令,获取知识库

cd ~/llamaindex_demo
mkdir data
cd data
git clone https://github.com/InternLM/xtuner.git
mv xtuner/README_zh-CN.md ./

运行以下指令,新建一个python文件

cd ~/llamaindex_demo
touch llamaindex_RAG.py

打开llamaindex_RAG.py贴入以下代码

import os 
os.environ['NLTK_DATA'] = '/root/nltk_data'

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.settings import Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.callbacks import CallbackManager
from llama_index.llms.openai_like import OpenAILike


# Create an instance of CallbackManager
callback_manager = CallbackManager()

api_base_url =  "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
model = "internlm2.5-latest"
api_key = "请填写 API Key"

# api_base_url =  "https://api.siliconflow.cn/v1"
# model = "internlm/internlm2_5-7b-chat"
# api_key = "请填写 API Key"



llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)


#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
    model_name="/root/model/paraphrase-multilingual-MiniLM-L12-v2"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model

#初始化llm
Settings.llm = llm

#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
index = VectorStoreIndex.from_documents(documents)
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")

print(response)

之后运行

conda activate llamaindex
cd ~/llamaindex_demo/
python llamaindex_RAG.py

结果为:

image

借助RAG技术后,就能获得我们想要的答案了。

4. LlamaIndex web

运行之前首先安装依赖

pip install streamlit==1.39.0

运行以下指令,新建一个python文件

cd ~/llamaindex_demo
touch app.py

打开app.py贴入以下代码

import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.callbacks import CallbackManager
from llama_index.llms.openai_like import OpenAILike

# Create an instance of CallbackManager
callback_manager = CallbackManager()

api_base_url =  "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
model = "internlm2.5-latest"
api_key = "请填写 API Key"

# api_base_url =  "https://api.siliconflow.cn/v1"
# model = "internlm/internlm2_5-7b-chat"
# api_key = "请填写 API Key"

llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)



st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
st.title("llama_index_demo")

# 初始化模型
@st.cache_resource
def init_models():
    embed_model = HuggingFaceEmbedding(
        model_name="/root/model/paraphrase-multilingual-MiniLM-L12-v2"
    )
    Settings.embed_model = embed_model

    #用初始化llm
    Settings.llm = llm

    documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
    index = VectorStoreIndex.from_documents(documents)
    query_engine = index.as_query_engine()

    return query_engine

# 检查是否需要初始化模型
if 'query_engine' not in st.session_state:
    st.session_state['query_engine'] = init_models()

def greet2(question):
    response = st.session_state['query_engine'].query(question)
    return response

      
# Store LLM generated responses
if "messages" not in st.session_state.keys():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]    

    # Display or clear chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

def clear_chat_history():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]

st.sidebar.button('Clear Chat History', on_click=clear_chat_history)

# Function for generating LLaMA2 response
def generate_llama_index_response(prompt_input):
    return greet2(prompt_input)

# User-provided prompt
if prompt := st.chat_input():
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.write(prompt)

# Gegenerate_llama_index_response last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            response = generate_llama_index_response(prompt)
            placeholder = st.empty()
            placeholder.markdown(response)
    message = {"role": "assistant", "content": response}
    st.session_state.messages.append(message)

之后运行

streamlit run app.py

然后在命令行点击,红框里的url。

image

即可进入以下网页,然后就可以开始尝试问问题了。

image

询问结果为:

image

5. 小结

恭喜你,成功通关本关卡!继续加油!你成功使用 LlamaIndex 运行了浦语API,并实现了知识库的构建与检索。这为管理和利用大规模知识库提供了强大的工具和方法。接下来,可以进一步优化和扩展功能,以满足更复杂的需求。

6. 作业

作业请访问作业