-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata_analysis.py
197 lines (145 loc) · 6.3 KB
/
data_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
import json
import re
import time
from datetime import datetime
import numpy as np
import pandas as pd
from utils.data_reader import (
add_parser_db_args,
case_insensitive_lookup,
load_csv,
load_db,
)
def parse_args():
parser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(
"--csv",
help="Location of pii-TIMESTAMP.csv file to analyze",
)
group.add_argument(
"--db",
help="Connection string for DB to analyze",
)
add_parser_db_args(parser)
args = parser.parse_args()
return args
def analyze(data, source):
stats = {}
raw_values = {}
stats["number_of_rows"] = len(data.index)
record_id_col = case_insensitive_lookup(data, "record_id", source)
record_id_stats = top_N(record_id_col)
stats["total_unique_record_ids"] = len(record_id_stats)
record_id_dups = {k: v for (k, v) in record_id_stats.items() if v > 1}
stats["record_ids_with_duplicates"] = len(record_id_dups)
if len(record_id_dups) > 0 and len(record_id_dups) < (len(record_id_stats) * 0.2):
# only report individual IDs if there are less than 20% dups
raw_values["duplicate_record_ids"] = record_id_dups
dob_col = case_insensitive_lookup(data, "DOB", source)
notnull_dobs = dob_col.dropna()
stats["dob"] = {
"min": str(notnull_dobs.min()), # str-ify because we get Timestamp from DB
"max": str(notnull_dobs.max()), # which is not serializable
"missing": int(dob_col.isna().sum()),
}
if source == "csv":
if "-" not in notnull_dobs.iloc[0]:
# the date format will either be YYYY-MM-DD or YYMMDD
# we'll assume it's consistent across a single file
# if YYMMDD, any '90s dates or earlier in there
# will mean the min/max aren't correct.
# YYYY-MM-DD preserves normal sorting,
# so don't spend time parsing it
parsed_dobs = notnull_dobs.map(yymmdd_to_date)
stats["dob"]["min_parsed"] = str(
parsed_dobs.min()
) # str-ify the Timestamps again
stats["dob"]["max_parsed"] = str(parsed_dobs.max())
sex_col = case_insensitive_lookup(data, "sex", source)
stats["sex"] = top_N(sex_col)
zip_col = case_insensitive_lookup(data, "zip", source)
data["zip_format"] = zip_col.map(to_format)
stats["zip_format"] = top_N(data["zip_format"])
stats["top_10_zip_codes"] = top_N(zip_col, 10)
phone_col = case_insensitive_lookup(data, "phone", source)
data["phone_format"] = phone_col.map(to_format)
stats["phone_format"] = top_N(data["phone_format"])
# Note: the following top 10s are limited to anything that occurs 3+ times,
# in order to limit the potential spill of PII.
# For this analysis, any names that appear 2 or fewer times
# are not especially useful.
given_name_col = case_insensitive_lookup(data, "given_name", source)
raw_values["top_10_given_names"] = top_N(given_name_col, 10, 3)
family_name_col = case_insensitive_lookup(data, "family_name", source)
raw_values["top_10_family_names"] = top_N(family_name_col, 10, 3)
address_col = case_insensitive_lookup(data, "address", source)
raw_values["top_10_addresses"] = top_N(address_col, 10, 3)
raw_values["top_10_phone_numbers"] = top_N(phone_col, 10, 3)
stats["field_summaries"] = {}
for col in [given_name_col, family_name_col, address_col, zip_col, phone_col]:
stats["field_summaries"][col.name] = summary(col)
# TODO: possible quick win: look at the year/month/day breakdown in dates
return (stats, raw_values)
def yymmdd_to_date(yymmdd):
if yymmdd[0] in ["0", "1", "2"]:
# if the 3rd digit in year is 0, 1, or 2
# we assume it's in the 2000s
# note this is incorrect for dates <= 1929
# but we expect that there won't be a lot of those here
# (native date parsing for 2 digit years uses a cutoff for 19/20 at 68)
century = "20"
else:
century = "19"
return datetime.strptime(century + yymmdd, "%Y%m%d")
def to_format(numeric_string):
# turn, ex, 123-4567 into ###-####
if not numeric_string or pd.isnull(numeric_string):
return ""
no_digits = re.sub("[0-9]", "#", numeric_string)
no_letters = re.sub("[A-Za-z]", "X", no_digits) # just in case
return no_letters
def top_N(series, N=0, lower_limit=1):
# return a dict of the top N most prevalent entries in the column
# and the count of each
top_n = series.value_counts()
if N > 0:
top_n = top_n[:N]
if lower_limit > 1:
# filter anything below a certain count
# for example, don't return names that only appear once
top_n = top_n[top_n >= lower_limit]
top_n = top_n.to_dict()
return top_n
def summary(series):
# 1. count the number of missing (null or blank string) entries
missing = series.replace(r"^\s*$", np.nan, regex=True).isna().sum()
# 2. basic descriptive statistics on the length of the values
length = series.str.len().describe().to_dict()
# 3. count the characters across all values
list_chars = series[series.notna()].map(list)
# list_chars is a list of lists e.g: [[J,o,h,n],[J,a,n,e],...]
flat_list = [item for sublist in list_chars.tolist() for item in sublist]
# flat_list is now a single list [J,o,h,n,J,a,n,e,....]
total_chars = pd.Series(flat_list, dtype=str).value_counts().to_dict()
return {"missing": int(missing), "length": length, "characters": total_chars}
if __name__ == "__main__":
args = parse_args()
if args.csv:
csv_data = load_csv(args.csv)
results = analyze(csv_data, "csv")
source = "csv"
if args.db:
db_data = load_db(args)
results = analyze(db_data, args.schema)
source = "db"
timestamp = int(time.time())
results_file = f"results_{source}_{timestamp}.json.txt"
with open(results_file, "w") as outfile:
json.dump(results[0], outfile, indent=2)
print(f"Wrote aggregate results to {results_file}")
results_file = f"private_results_{source}_{timestamp}.json.txt"
with open(results_file, "w") as outfile:
json.dump(results[1], outfile, indent=2)
print(f"Wrote PRIVATE results to {results_file}")