Skip to content

NeuralNetwork returns result as an empty array  #1493

@kokoxuya

Description

@kokoxuya

Hii! The array returned from my brain.classify is empty although my inputs are correct :'))

let troo = false;
let video;
let poseNet;
let pose;
let poses = [];
let skeleton;
let beiande;
let currlabel = 0;
let endofexercise = 0;
let elmo = 6;

//let x = document.createElement("a");

let brain;
let state = 'waiting';
let targetLabel;
let testvid;

let currat = 0;

function keyPressed() {
beiande = key;
if (key == 'r')
{
setTimeout(function() {
console.log('collecting');
state = 'collecting';
setTimeout(function() {
console.log('not collecting');
state = 'waiting';
}, 10000); //wait then run
}, 2000);
setTimeout(function()
{
brain.saveData("traindata");
},13000);
}
if (key =='n')
{
brain.loadData('traindata.json',function()
{
brain.normalizeData();
brain.train(
{epochs:50},
function(){
console.log('model trained!:)');
});
});
brain.save();
console.log('done');
}
}

function gotPoses(results)
{
poses = results;
if (poses.length > 0)
{
skeleton = poses[0].skeleton;
if (state == 'collecting')
{
setTimeout(function()
{
if (currlabel == 144)
{
//console.log('start of new exercise');
currlabel = 0;
}
else
{
currlabel += 6;
}
addData(results);
},400);
}
}
}

let req = [[11,5,7],[12,6,8],[5,7,9],[6,8,10],[11,13,15],[12,14,16],[5,11,13],[6,12,14]];
function addData(poses)
{
if (poses.length > 0)
{
let pose = poses[0].pose;
let keyp = pose.keypoints;
let inval = [];
for(let i = 0; i < req.length; i++)
{
let secval = [];
for (let ii = 0; ii < 3; ii++)
{
secval.push([keyp[req[i][ii]].position.x,keyp[req[i][ii]].position.y]);
}
inval.push(secval);
}

//nose, eye, leftshoulder,rightshoulder
let secval = [];
secval.push([keyp[0].position.x,keyp[0].position.y]);
secval.push([keyp[2].position.x,keyp[2].position.y]);
secval.push([keyp[5].position.x,keyp[5].position.y]);
secval.push([keyp[6].position.x,keyp[6].position.y]);

inval.push(secval);

let compy = calang(inval);
console.log(compy.length);
brain.addData(compy,[currlabel]);

}
}

function setup() {
createCanvas(640, 480);
video = createCapture(VIDEO);
video.hide();
poseNet = ml5.poseNet(video, function(){console.log('posenet ready')});
poseNet.on('pose', gotPoses);
//console.log('yay3');

let options = {
inputs: 9,
outputs: 25,
task: 'classification',
debug: true
}
brain = ml5.neuralNetwork(options);

const modelInfo = {
model: 'model1/model.json',
metadata: 'model1/model_meta.json',
weights: 'model1/model.weights.bin',
};

//console.log('yay4s');
brain.load(modelInfo, function()
{
console.log('model ready!:)');
});
}

function calang(myvalues)
{
let currval = myvalues[myvalues.length - 1];
//nose, eye, leftshould,rightshould
let t1 = currval[3][0] - currval[2][0];
t1/=2;
let t2 = currval[1][0] - currval[0][0];
t1 -= t2;

let pushin = [currval[1],[currval[3][0] - t1,currval[3][1]],currval[3]];
myvalues.pop();
myvalues.push(pushin);

//console.log('atp ok');
let retval = [];
for (let i = 0;i < (myvalues.length); i++)
{
let currang = 0;
currval = myvalues[i];

//up,down,side
let y = currval[0][1]- currval[1][1];
let x = currval[0][0] - currval[1][0]; 

currang = atan2(y,x);

y = currval[2][1] - currval[1][1];
x = currval[2][0] - currval[1][0];

currang -= (atan2(y,x));
retval.push(currang);

}
//console.log('checkpojnt 1');
return retval;
}

let count = 0;
function classifyPose()
{
if (poses.length > 0)
{
let pose = poses[0].pose;
let keyp = pose.keypoints;
let inval = [];
for(let i = 0; i < req.length; i++)
{
let secval = [];
for (let ii = 0; ii < 3; ii++)
{
secval.push([keyp[req[i][ii]].position.x,keyp[req[i][ii]].position.y]);
}
inval.push(secval);
}

//console.log('pls work:\')');
//nose, eye, leftshoulder,rightshoulder
let secval = [];
secval.push([keyp[0].position.x,keyp[0].position.y]);
secval.push([keyp[2].position.x,keyp[2].position.y]);
secval.push([keyp[5].position.x,keyp[5].position.y]);
secval.push([keyp[6].position.x,keyp[6].position.y]);

//console.log('jiuming');
inval.push(secval);

let compy = calang(inval);
console.log(compy.length);
console.log('compy',compy);
brain.classify(compy,gotResults)

}
}

function gotResults(error,results)
{
console.log(error);
console.log('results',results);
console.log(results[0].label);
let t1 = results[0].label;
let t2 = results[0].confidence;
if (t1 == currat && t2 > 0.75)
{
currat += elmo;
updateCount();
}
}

function draw() {
translate(video.width,0);
scale(-1,1);
image(video, 0, 0, video.width, video.height);
drawKeypoints();
drawSkeleton();
classifyPose();
}

function drawKeypoints() {
for (let i = 0; i < poses.length; i += 1)
{
const pose = poses[i].pose;
for (let j = 0; j < pose.keypoints.length; j += 1)
{
const keypoint = pose.keypoints[j];
if (keypoint.score > 0.2) {
fill(255, 0, 0);
noStroke();
ellipse(keypoint.position.x, keypoint.position.y, 10, 10);
}
}
}
}

function drawSkeleton()
{
for (let i = 0; i < poses.length; i+=1)
{
const pose = poses[i].pose.keypoints;
let tt = [];
for (let j = 0; j < req.length; j+=1)
{
for (let i = 0; i < 3; i++)
{
tt.push(pose[req[j][i]]);
}
}
stroke(255, 0, 0);
line(tt[0].position.x, tt[0].position.y, tt[1].position.x, tt[1].position.y);
line(tt[1].position.x,tt[1].position.y,tt[2].position.x,tt[2].position.y);
}
}

function updateCount(poseLabel){
fill(0,0,255);
noStroke();
textSize(100);
textAlign(TOP);
text(count,width-60,height-420);
fill(0,255,255);
textSize(40);
textAlign(BOTTOM);
text("Confidence level =",width-300,height-50);
text(Math.round(poseLabelConfidence100)/100, width-80, height-50);
if (currat == (6
25)){
count++;
count = 0;

updateDisplay();
console.log("count is:",count);

}
}

function updateDisplay(){
document.getElementById('exercise-count').innerText= count;
// document.getElementById('confidence-level').innerText= Math.round(poseLabelConfidence*100)/100;
}

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions