1
- [2025-01-31 13:36:22,880 main.py:229 INFO] Detected system ID: KnownSystem.ab508c0ea568
2
- [2025-01-31 13:36:22,961 harness.py:249 INFO] The harness will load 2 plugins: ['build/plugins/NMSOptPlugin/libnmsoptplugin.so', 'build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so']
3
- [2025-01-31 13:36:22,962 generate_conf_files.py:107 INFO] Generated measurements/ entries for ab508c0ea568_TRT /retinanet/MultiStream
4
- [2025-01-31 13:36:22,962 __init__.py:46 INFO] Running command: ./build/bin/harness_default --plugins="build/plugins/NMSOptPlugin/libnmsoptplugin.so,build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so" --logfile_outdir="/mlc-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=64 --test_mode="AccuracyOnly" --gpu_copy_streams=1 --gpu_inference_streams=1 --use_deque_limit=true --gpu_batch_size=2 --map_path="data_maps/open-images-v6-mlperf/val_map.txt" --mlperf_conf_path="/home/mlcuser/MLC/repos/local/cache/get-git-repo_02ea1bfc/inference/mlperf.conf" --tensor_path="build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear" --use_graphs=true --user_conf_path="/home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/16e46cedee994e58a8cd7ad1a4822c10.conf" --gpu_engines="./build/engines/ab508c0ea568/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan" --max_dlas=0 --scenario MultiStream --model retinanet --response_postprocess openimageeffnms
5
- [2025-01-31 13:36:22,962 __init__.py:53 INFO] Overriding Environment
1
+ [2025-02-02 14:44:24,694 main.py:229 INFO] Detected system ID: KnownSystem.Nvidia_6c664cb8da3e
2
+ [2025-02-02 14:44:24,777 harness.py:249 INFO] The harness will load 2 plugins: ['build/plugins/NMSOptPlugin/libnmsoptplugin.so', 'build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so']
3
+ [2025-02-02 14:44:24,777 generate_conf_files.py:107 INFO] Generated measurements/ entries for Nvidia_6c664cb8da3e_TRT /retinanet/MultiStream
4
+ [2025-02-02 14:44:24,777 __init__.py:46 INFO] Running command: ./build/bin/harness_default --plugins="build/plugins/NMSOptPlugin/libnmsoptplugin.so,build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so" --logfile_outdir="/mlc-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=64 --test_mode="AccuracyOnly" --gpu_copy_streams=1 --gpu_inference_streams=1 --use_deque_limit=true --gpu_batch_size=2 --map_path="data_maps/open-images-v6-mlperf/val_map.txt" --mlperf_conf_path="/home/mlcuser/MLC/repos/local/cache/get-git-repo_02ea1bfc/inference/mlperf.conf" --tensor_path="build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear" --use_graphs=true --user_conf_path="/home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/b30b7d4a245d4171982ce8623ea29614.conf" --gpu_engines="./build/engines/Nvidia_6c664cb8da3e/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan" --max_dlas=0 --scenario MultiStream --model retinanet --response_postprocess openimageeffnms
5
+ [2025-02-02 14:44:24,777 __init__.py:53 INFO] Overriding Environment
6
6
benchmark : Benchmark.Retinanet
7
7
buffer_manager_thread_count : 0
8
8
data_dir : /home/mlcuser/MLC/repos/local/cache/get-mlperf-inference-nvidia-scratch-space_fe95ede4/data
@@ -12,7 +12,7 @@ gpu_copy_streams : 1
12
12
gpu_inference_streams : 1
13
13
input_dtype : int8
14
14
input_format : linear
15
- log_dir : /home/mlcuser/MLC/repos/local/cache/get-git-repo_e7fa5107/repo/closed/NVIDIA/build/logs/2025.01.31-13.36.21
15
+ log_dir : /home/mlcuser/MLC/repos/local/cache/get-git-repo_e7fa5107/repo/closed/NVIDIA/build/logs/2025.02.02-14.44.23
16
16
map_path : data_maps/open-images-v6-mlperf/val_map.txt
17
17
mlperf_conf_path : /home/mlcuser/MLC/repos/local/cache/get-git-repo_02ea1bfc/inference/mlperf.conf
18
18
multi_stream_expected_latency_ns : 0
@@ -21,14 +21,14 @@ multi_stream_target_latency_percentile : 99
21
21
precision : int8
22
22
preprocessed_data_dir : /home/mlcuser/MLC/repos/local/cache/get-mlperf-inference-nvidia-scratch-space_fe95ede4/preprocessed_data
23
23
scenario : Scenario.MultiStream
24
- system : SystemConfiguration(host_cpu_conf=CPUConfiguration(layout={CPU(name='AMD Ryzen 9 7950X 16-Core Processor', architecture=<CPUArchitecture.x86_64: AliasedName(name='x86_64', aliases=(), patterns=())>, core_count=16, threads_per_core=2): 1}), host_mem_conf=MemoryConfiguration(host_memory_capacity=Memory(quantity=131.080068, byte_suffix=<ByteSuffix.GB: (1000, 3)>, _num_bytes=131080068000), comparison_tolerance=0.05), accelerator_conf=AcceleratorConfiguration(layout=defaultdict(<class 'int'>, {GPU(name='NVIDIA GeForce RTX 4090', accelerator_type=<AcceleratorType.Discrete: AliasedName(name='Discrete', aliases=(), patterns=())>, vram=Memory(quantity=23.98828125, byte_suffix=<ByteSuffix.GiB: (1024, 3)>, _num_bytes=25757220864), max_power_limit=450.0, pci_id='0x268410DE', compute_sm=89): 1})), numa_conf=None, system_id='ab508c0ea568 ')
24
+ system : SystemConfiguration(host_cpu_conf=CPUConfiguration(layout={CPU(name='AMD Ryzen 9 7950X 16-Core Processor', architecture=<CPUArchitecture.x86_64: AliasedName(name='x86_64', aliases=(), patterns=())>, core_count=16, threads_per_core=2): 1}), host_mem_conf=MemoryConfiguration(host_memory_capacity=Memory(quantity=131.080068, byte_suffix=<ByteSuffix.GB: (1000, 3)>, _num_bytes=131080068000), comparison_tolerance=0.05), accelerator_conf=AcceleratorConfiguration(layout=defaultdict(<class 'int'>, {GPU(name='NVIDIA GeForce RTX 4090', accelerator_type=<AcceleratorType.Discrete: AliasedName(name='Discrete', aliases=(), patterns=())>, vram=Memory(quantity=23.98828125, byte_suffix=<ByteSuffix.GiB: (1024, 3)>, _num_bytes=25757220864), max_power_limit=450.0, pci_id='0x268410DE', compute_sm=89): 1})), numa_conf=None, system_id='Nvidia_6c664cb8da3e ')
25
25
tensor_path : build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear
26
26
test_mode : AccuracyOnly
27
27
use_deque_limit : True
28
28
use_graphs : True
29
- user_conf_path : /home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/16e46cedee994e58a8cd7ad1a4822c10 .conf
30
- system_id : ab508c0ea568
31
- config_name : ab508c0ea568_retinanet_MultiStream
29
+ user_conf_path : /home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/b30b7d4a245d4171982ce8623ea29614 .conf
30
+ system_id : Nvidia_6c664cb8da3e
31
+ config_name : Nvidia_6c664cb8da3e_retinanet_MultiStream
32
32
workload_setting : WorkloadSetting(HarnessType.LWIS, AccuracyTarget.k_99, PowerSetting.MaxP)
33
33
optimization_level : plugin-enabled
34
34
num_profiles : 1
@@ -40,15 +40,15 @@ power_limit : None
40
40
cpu_freq : None
41
41
&&&& RUNNING Default_Harness # ./build/bin/harness_default
42
42
[I] mlperf.conf path: /home/mlcuser/MLC/repos/local/cache/get-git-repo_02ea1bfc/inference/mlperf.conf
43
- [I] user.conf path: /home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/16e46cedee994e58a8cd7ad1a4822c10 .conf
43
+ [I] user.conf path: /home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/b30b7d4a245d4171982ce8623ea29614 .conf
44
44
Creating QSL.
45
45
Finished Creating QSL.
46
46
Setting up SUT.
47
47
[I] [TRT] Loaded engine size: 73 MiB
48
48
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +6, GPU +10, now: CPU 124, GPU 888 (MiB)
49
49
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +2, GPU +10, now: CPU 126, GPU 898 (MiB)
50
50
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +68, now: CPU 0, GPU 68 (MiB)
51
- [I] Device:0.GPU: [0] ./build/engines/ab508c0ea568 /retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan has been successfully loaded.
51
+ [I] Device:0.GPU: [0] ./build/engines/Nvidia_6c664cb8da3e /retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan has been successfully loaded.
52
52
[E] [TRT] 3: [runtime.cpp::~Runtime::401] Error Code 3: API Usage Error (Parameter check failed at: runtime/rt/runtime.cpp::~Runtime::401, condition: mEngineCounter.use_count() == 1 Destroying a runtime before destroying deserialized engines created by the runtime leads to undefined behavior.)
53
53
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 53, GPU 900 (MiB)
54
54
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 53, GPU 908 (MiB)
@@ -59,7 +59,7 @@ Setting up SUT.
59
59
[I] Creating batcher thread: 0 EnableBatcherThreadPerDevice: false
60
60
Finished setting up SUT.
61
61
Starting warmup. Running for a minimum of 5 seconds.
62
- Finished warmup. Ran for 5.14309s .
62
+ Finished warmup. Ran for 5.14291s .
63
63
Starting running actual test.
64
64
65
65
No warnings encountered during test.
@@ -72,34 +72,34 @@ Device Device:0.GPU processed:
72
72
PerSampleCudaMemcpy Calls: 0
73
73
BatchedCudaMemcpy Calls: 12392
74
74
&&&& PASSED Default_Harness # ./build/bin/harness_default
75
- [2025-01-31 13:37:50,565 run_harness.py:166 INFO] Result: Accuracy run detected.
76
- [2025-01-31 13:37:50,565 __init__.py:46 INFO] Running command: python3 /home/mlcuser/MLC/repos/local/cache/get-git-repo_e7fa5107/repo/closed/NVIDIA/build/inference/vision/classification_and_detection/tools/accuracy-openimages.py --mlperf-accuracy-file /mlc-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy/mlperf_log_accuracy.json --openimages-dir /home/mlcuser/MLC/repos/local/cache/get-mlperf-inference-nvidia-scratch-space_fe95ede4/preprocessed_data/open-images-v6-mlperf --output-file build/retinanet-results.json
75
+ [2025-02-02 14:45:14,634 run_harness.py:166 INFO] Result: Accuracy run detected.
76
+ [2025-02-02 14:45:14,634 __init__.py:46 INFO] Running command: python3 /home/mlcuser/MLC/repos/local/cache/get-git-repo_e7fa5107/repo/closed/NVIDIA/build/inference/vision/classification_and_detection/tools/accuracy-openimages.py --mlperf-accuracy-file /mlc-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy/mlperf_log_accuracy.json --openimages-dir /home/mlcuser/MLC/repos/local/cache/get-mlperf-inference-nvidia-scratch-space_fe95ede4/preprocessed_data/open-images-v6-mlperf --output-file build/retinanet-results.json
77
77
loading annotations into memory...
78
- Done (t=0.45s )
78
+ Done (t=0.41s )
79
79
creating index...
80
80
index created!
81
81
Loading and preparing results...
82
- DONE (t=20.10s )
82
+ DONE (t=16.35s )
83
83
creating index...
84
84
index created!
85
85
Running per image evaluation...
86
86
Evaluate annotation type *bbox*
87
- DONE (t=131.75s ).
87
+ DONE (t=120.92s ).
88
88
Accumulating evaluation results...
89
- DONE (t=34.34s ).
89
+ DONE (t=45.11s ).
90
90
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.373
91
91
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.522
92
92
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.404
93
93
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.023
94
94
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.125
95
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.412
95
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.413
96
96
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.419
97
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.598
98
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.627
99
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.083
97
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.599
98
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.628
99
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.082
100
100
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.344
101
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.677
102
- mAP=37.312 %
101
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.678
102
+ mAP=37.328 %
103
103
104
104
======================== Result summaries: ========================
105
105
0 commit comments