Skip to content

Commit 84d35d3

Browse files
committed
Results from GH action on NVIDIA_RTX4090x1
1 parent 5a90305 commit 84d35d3

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

51 files changed

+20394
-20394
lines changed

open/MLCommons/measurements/RTX4090x1-nvidia-gpu-TensorRT-default_config/retinanet/multistream/README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ pip install -U mlcflow
1717

1818
mlc rm cache -f
1919

20-
mlc pull repo mlcommons@mlperf-automations --checkout=02683cf5e8beb0cc5baaf27802daafc08fe42e67
20+
mlc pull repo mlcommons@mlperf-automations --checkout=edb3ade38dc98ee91905c6445dabd084010cf9e7
2121

2222

2323
```
@@ -40,4 +40,4 @@ Model Precision: int8
4040
### Accuracy Results
4141

4242
### Performance Results
43-
`Samples per query`: `11960473.0`
43+
`Samples per query`: `11488606.0`
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
1-
[2025-01-31 13:36:22,880 main.py:229 INFO] Detected system ID: KnownSystem.ab508c0ea568
2-
[2025-01-31 13:36:22,961 harness.py:249 INFO] The harness will load 2 plugins: ['build/plugins/NMSOptPlugin/libnmsoptplugin.so', 'build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so']
3-
[2025-01-31 13:36:22,962 generate_conf_files.py:107 INFO] Generated measurements/ entries for ab508c0ea568_TRT/retinanet/MultiStream
4-
[2025-01-31 13:36:22,962 __init__.py:46 INFO] Running command: ./build/bin/harness_default --plugins="build/plugins/NMSOptPlugin/libnmsoptplugin.so,build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so" --logfile_outdir="/mlc-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=64 --test_mode="AccuracyOnly" --gpu_copy_streams=1 --gpu_inference_streams=1 --use_deque_limit=true --gpu_batch_size=2 --map_path="data_maps/open-images-v6-mlperf/val_map.txt" --mlperf_conf_path="/home/mlcuser/MLC/repos/local/cache/get-git-repo_02ea1bfc/inference/mlperf.conf" --tensor_path="build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear" --use_graphs=true --user_conf_path="/home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/16e46cedee994e58a8cd7ad1a4822c10.conf" --gpu_engines="./build/engines/ab508c0ea568/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan" --max_dlas=0 --scenario MultiStream --model retinanet --response_postprocess openimageeffnms
5-
[2025-01-31 13:36:22,962 __init__.py:53 INFO] Overriding Environment
1+
[2025-02-02 14:44:24,694 main.py:229 INFO] Detected system ID: KnownSystem.Nvidia_6c664cb8da3e
2+
[2025-02-02 14:44:24,777 harness.py:249 INFO] The harness will load 2 plugins: ['build/plugins/NMSOptPlugin/libnmsoptplugin.so', 'build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so']
3+
[2025-02-02 14:44:24,777 generate_conf_files.py:107 INFO] Generated measurements/ entries for Nvidia_6c664cb8da3e_TRT/retinanet/MultiStream
4+
[2025-02-02 14:44:24,777 __init__.py:46 INFO] Running command: ./build/bin/harness_default --plugins="build/plugins/NMSOptPlugin/libnmsoptplugin.so,build/plugins/retinanetConcatPlugin/libretinanetconcatplugin.so" --logfile_outdir="/mlc-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=64 --test_mode="AccuracyOnly" --gpu_copy_streams=1 --gpu_inference_streams=1 --use_deque_limit=true --gpu_batch_size=2 --map_path="data_maps/open-images-v6-mlperf/val_map.txt" --mlperf_conf_path="/home/mlcuser/MLC/repos/local/cache/get-git-repo_02ea1bfc/inference/mlperf.conf" --tensor_path="build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear" --use_graphs=true --user_conf_path="/home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/b30b7d4a245d4171982ce8623ea29614.conf" --gpu_engines="./build/engines/Nvidia_6c664cb8da3e/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan" --max_dlas=0 --scenario MultiStream --model retinanet --response_postprocess openimageeffnms
5+
[2025-02-02 14:44:24,777 __init__.py:53 INFO] Overriding Environment
66
benchmark : Benchmark.Retinanet
77
buffer_manager_thread_count : 0
88
data_dir : /home/mlcuser/MLC/repos/local/cache/get-mlperf-inference-nvidia-scratch-space_fe95ede4/data
@@ -12,7 +12,7 @@ gpu_copy_streams : 1
1212
gpu_inference_streams : 1
1313
input_dtype : int8
1414
input_format : linear
15-
log_dir : /home/mlcuser/MLC/repos/local/cache/get-git-repo_e7fa5107/repo/closed/NVIDIA/build/logs/2025.01.31-13.36.21
15+
log_dir : /home/mlcuser/MLC/repos/local/cache/get-git-repo_e7fa5107/repo/closed/NVIDIA/build/logs/2025.02.02-14.44.23
1616
map_path : data_maps/open-images-v6-mlperf/val_map.txt
1717
mlperf_conf_path : /home/mlcuser/MLC/repos/local/cache/get-git-repo_02ea1bfc/inference/mlperf.conf
1818
multi_stream_expected_latency_ns : 0
@@ -21,14 +21,14 @@ multi_stream_target_latency_percentile : 99
2121
precision : int8
2222
preprocessed_data_dir : /home/mlcuser/MLC/repos/local/cache/get-mlperf-inference-nvidia-scratch-space_fe95ede4/preprocessed_data
2323
scenario : Scenario.MultiStream
24-
system : SystemConfiguration(host_cpu_conf=CPUConfiguration(layout={CPU(name='AMD Ryzen 9 7950X 16-Core Processor', architecture=<CPUArchitecture.x86_64: AliasedName(name='x86_64', aliases=(), patterns=())>, core_count=16, threads_per_core=2): 1}), host_mem_conf=MemoryConfiguration(host_memory_capacity=Memory(quantity=131.080068, byte_suffix=<ByteSuffix.GB: (1000, 3)>, _num_bytes=131080068000), comparison_tolerance=0.05), accelerator_conf=AcceleratorConfiguration(layout=defaultdict(<class 'int'>, {GPU(name='NVIDIA GeForce RTX 4090', accelerator_type=<AcceleratorType.Discrete: AliasedName(name='Discrete', aliases=(), patterns=())>, vram=Memory(quantity=23.98828125, byte_suffix=<ByteSuffix.GiB: (1024, 3)>, _num_bytes=25757220864), max_power_limit=450.0, pci_id='0x268410DE', compute_sm=89): 1})), numa_conf=None, system_id='ab508c0ea568')
24+
system : SystemConfiguration(host_cpu_conf=CPUConfiguration(layout={CPU(name='AMD Ryzen 9 7950X 16-Core Processor', architecture=<CPUArchitecture.x86_64: AliasedName(name='x86_64', aliases=(), patterns=())>, core_count=16, threads_per_core=2): 1}), host_mem_conf=MemoryConfiguration(host_memory_capacity=Memory(quantity=131.080068, byte_suffix=<ByteSuffix.GB: (1000, 3)>, _num_bytes=131080068000), comparison_tolerance=0.05), accelerator_conf=AcceleratorConfiguration(layout=defaultdict(<class 'int'>, {GPU(name='NVIDIA GeForce RTX 4090', accelerator_type=<AcceleratorType.Discrete: AliasedName(name='Discrete', aliases=(), patterns=())>, vram=Memory(quantity=23.98828125, byte_suffix=<ByteSuffix.GiB: (1024, 3)>, _num_bytes=25757220864), max_power_limit=450.0, pci_id='0x268410DE', compute_sm=89): 1})), numa_conf=None, system_id='Nvidia_6c664cb8da3e')
2525
tensor_path : build/preprocessed_data/open-images-v6-mlperf/validation/Retinanet/int8_linear
2626
test_mode : AccuracyOnly
2727
use_deque_limit : True
2828
use_graphs : True
29-
user_conf_path : /home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/16e46cedee994e58a8cd7ad1a4822c10.conf
30-
system_id : ab508c0ea568
31-
config_name : ab508c0ea568_retinanet_MultiStream
29+
user_conf_path : /home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/b30b7d4a245d4171982ce8623ea29614.conf
30+
system_id : Nvidia_6c664cb8da3e
31+
config_name : Nvidia_6c664cb8da3e_retinanet_MultiStream
3232
workload_setting : WorkloadSetting(HarnessType.LWIS, AccuracyTarget.k_99, PowerSetting.MaxP)
3333
optimization_level : plugin-enabled
3434
num_profiles : 1
@@ -40,15 +40,15 @@ power_limit : None
4040
cpu_freq : None
4141
&&&& RUNNING Default_Harness # ./build/bin/harness_default
4242
[I] mlperf.conf path: /home/mlcuser/MLC/repos/local/cache/get-git-repo_02ea1bfc/inference/mlperf.conf
43-
[I] user.conf path: /home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/16e46cedee994e58a8cd7ad1a4822c10.conf
43+
[I] user.conf path: /home/mlcuser/MLC/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/b30b7d4a245d4171982ce8623ea29614.conf
4444
Creating QSL.
4545
Finished Creating QSL.
4646
Setting up SUT.
4747
[I] [TRT] Loaded engine size: 73 MiB
4848
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +6, GPU +10, now: CPU 124, GPU 888 (MiB)
4949
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +2, GPU +10, now: CPU 126, GPU 898 (MiB)
5050
[I] [TRT] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +68, now: CPU 0, GPU 68 (MiB)
51-
[I] Device:0.GPU: [0] ./build/engines/ab508c0ea568/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan has been successfully loaded.
51+
[I] Device:0.GPU: [0] ./build/engines/Nvidia_6c664cb8da3e/retinanet/MultiStream/retinanet-MultiStream-gpu-b2-int8.lwis_k_99_MaxP.plan has been successfully loaded.
5252
[E] [TRT] 3: [runtime.cpp::~Runtime::401] Error Code 3: API Usage Error (Parameter check failed at: runtime/rt/runtime.cpp::~Runtime::401, condition: mEngineCounter.use_count() == 1 Destroying a runtime before destroying deserialized engines created by the runtime leads to undefined behavior.)
5353
[I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 53, GPU 900 (MiB)
5454
[I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 53, GPU 908 (MiB)
@@ -59,7 +59,7 @@ Setting up SUT.
5959
[I] Creating batcher thread: 0 EnableBatcherThreadPerDevice: false
6060
Finished setting up SUT.
6161
Starting warmup. Running for a minimum of 5 seconds.
62-
Finished warmup. Ran for 5.14309s.
62+
Finished warmup. Ran for 5.14291s.
6363
Starting running actual test.
6464

6565
No warnings encountered during test.
@@ -72,34 +72,34 @@ Device Device:0.GPU processed:
7272
PerSampleCudaMemcpy Calls: 0
7373
BatchedCudaMemcpy Calls: 12392
7474
&&&& PASSED Default_Harness # ./build/bin/harness_default
75-
[2025-01-31 13:37:50,565 run_harness.py:166 INFO] Result: Accuracy run detected.
76-
[2025-01-31 13:37:50,565 __init__.py:46 INFO] Running command: python3 /home/mlcuser/MLC/repos/local/cache/get-git-repo_e7fa5107/repo/closed/NVIDIA/build/inference/vision/classification_and_detection/tools/accuracy-openimages.py --mlperf-accuracy-file /mlc-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy/mlperf_log_accuracy.json --openimages-dir /home/mlcuser/MLC/repos/local/cache/get-mlperf-inference-nvidia-scratch-space_fe95ede4/preprocessed_data/open-images-v6-mlperf --output-file build/retinanet-results.json
75+
[2025-02-02 14:45:14,634 run_harness.py:166 INFO] Result: Accuracy run detected.
76+
[2025-02-02 14:45:14,634 __init__.py:46 INFO] Running command: python3 /home/mlcuser/MLC/repos/local/cache/get-git-repo_e7fa5107/repo/closed/NVIDIA/build/inference/vision/classification_and_detection/tools/accuracy-openimages.py --mlperf-accuracy-file /mlc-mount/home/arjun/gh_action_results/valid_results/RTX4090x1-nvidia_original-gpu-tensorrt-vdefault-default_config/retinanet/multistream/accuracy/mlperf_log_accuracy.json --openimages-dir /home/mlcuser/MLC/repos/local/cache/get-mlperf-inference-nvidia-scratch-space_fe95ede4/preprocessed_data/open-images-v6-mlperf --output-file build/retinanet-results.json
7777
loading annotations into memory...
78-
Done (t=0.45s)
78+
Done (t=0.41s)
7979
creating index...
8080
index created!
8181
Loading and preparing results...
82-
DONE (t=20.10s)
82+
DONE (t=16.35s)
8383
creating index...
8484
index created!
8585
Running per image evaluation...
8686
Evaluate annotation type *bbox*
87-
DONE (t=131.75s).
87+
DONE (t=120.92s).
8888
Accumulating evaluation results...
89-
DONE (t=34.34s).
89+
DONE (t=45.11s).
9090
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.373
9191
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.522
9292
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.404
9393
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.023
9494
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.125
95-
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.412
95+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.413
9696
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.419
97-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.598
98-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.627
99-
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.083
97+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.599
98+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.628
99+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.082
100100
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.344
101-
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.677
102-
mAP=37.312%
101+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.678
102+
mAP=37.328%
103103

104104
======================== Result summaries: ========================
105105

open/MLCommons/measurements/RTX4090x1-nvidia-gpu-TensorRT-default_config/retinanet/multistream/os_info.json

+1-1
Original file line numberDiff line numberDiff line change
@@ -26,5 +26,5 @@
2626
],
2727
"MLC_HOST_PLATFORM_FLAVOR": "x86_64",
2828
"MLC_HOST_PYTHON_BITS": "64",
29-
"MLC_HOST_SYSTEM_NAME": "ab508c0ea568"
29+
"MLC_HOST_SYSTEM_NAME": "6c664cb8da3e"
3030
}

0 commit comments

Comments
 (0)