-
Notifications
You must be signed in to change notification settings - Fork 14
/
chain.go
194 lines (168 loc) · 4.57 KB
/
chain.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// Package addchain provides addition chain types and operations on them.
package addchain
import (
"errors"
"fmt"
"math/big"
"github.com/mmcloughlin/addchain/internal/bigint"
"github.com/mmcloughlin/addchain/internal/bigints"
)
// References:
//
// [efficientcompaddchain] Bergeron, F., Berstel, J. and Brlek, S. Efficient computation of addition
// chains. Journal de theorie des nombres de Bordeaux. 1994.
// http://www.numdam.org/item/JTNB_1994__6_1_21_0
// [knuth] Knuth, Donald E. Evaluation of Powers. The Art of Computer Programming, Volume 2
// (Third Edition): Seminumerical Algorithms, chapter 4.6.3. 1997.
// https://www-cs-faculty.stanford.edu/~knuth/taocp.html
// Chain is an addition chain.
type Chain []*big.Int
// New constructs the minimal chain {1}.
func New() Chain {
return Chain{big.NewInt(1)}
}
// Int64s builds a chain from the given int64 values.
func Int64s(xs ...int64) Chain {
return Chain(bigints.Int64s(xs...))
}
// Clone the chain.
func (c Chain) Clone() Chain {
return bigints.Clone(c)
}
// AppendClone appends a copy of x to c.
func (c *Chain) AppendClone(x *big.Int) {
*c = append(*c, bigint.Clone(x))
}
// End returns the last element of the chain.
func (c Chain) End() *big.Int {
return c[len(c)-1]
}
// Ops returns all operations that produce the kth position. This could be empty
// for an invalid chain.
func (c Chain) Ops(k int) []Op {
ops := []Op{}
s := new(big.Int)
// If the prefix is ascending this can be done in linear time.
if c[:k].IsAscending() {
for l, r := 0, k-1; l <= r; {
s.Add(c[l], c[r])
cmp := s.Cmp(c[k])
if cmp == 0 {
ops = append(ops, Op{l, r})
}
if cmp <= 0 {
l++
} else {
r--
}
}
return ops
}
// Fallback to quadratic.
for i := 0; i < k; i++ {
for j := i; j < k; j++ {
s.Add(c[i], c[j])
if s.Cmp(c[k]) == 0 {
ops = append(ops, Op{i, j})
}
}
}
return ops
}
// Op returns an Op that produces the kth position.
func (c Chain) Op(k int) (Op, error) {
ops := c.Ops(k)
if len(ops) == 0 {
return Op{}, fmt.Errorf("position %d is not the sum of previous entries", k)
}
return ops[0], nil
}
// Program produces a program that generates the chain.
func (c Chain) Program() (Program, error) {
// Sanity checks.
if len(c) == 0 {
return nil, errors.New("chain empty")
}
if c[0].Cmp(big.NewInt(1)) != 0 {
return nil, errors.New("chain must start with 1")
}
if bigints.Contains(bigint.Zero(), c) {
return nil, errors.New("chain contains zero")
}
for i := 0; i < len(c); i++ {
for j := i + 1; j < len(c); j++ {
if bigint.Equal(c[i], c[j]) {
return nil, fmt.Errorf("chain contains duplicate: %v at positions %d and %d", c[i], i, j)
}
}
}
// Produce the program.
p := Program{}
for k := 1; k < len(c); k++ {
op, err := c.Op(k)
if err != nil {
return nil, err
}
p = append(p, op)
}
return p, nil
}
// Validate checks that c is in fact an addition chain.
func (c Chain) Validate() error {
_, err := c.Program()
return err
}
// Produces checks that c is a valid chain ending with target.
func (c Chain) Produces(target *big.Int) error {
if err := c.Validate(); err != nil {
return err
}
if c.End().Cmp(target) != 0 {
return errors.New("chain does not end with target")
}
return nil
}
// Superset checks that c is a valid chain containing all the targets.
func (c Chain) Superset(targets []*big.Int) error {
if err := c.Validate(); err != nil {
return err
}
for _, target := range targets {
if !bigints.Contains(target, c) {
return fmt.Errorf("chain does not contain %v", target)
}
}
return nil
}
// IsAscending reports whether the chain is ascending, that is if it's in sorted
// order without repeats, as defined in [knuth] Section 4.6.3 formula (11).
// Does not fully validate the chain, only that it is ascending.
func (c Chain) IsAscending() bool {
if len(c) == 0 || !bigint.EqualInt64(c[0], 1) {
return false
}
for i := 1; i < len(c); i++ {
if c[i-1].Cmp(c[i]) >= 0 {
return false
}
}
return true
}
// Product computes the product of two addition chains. The is the "o times"
// operator defined in [efficientcompaddchain] Section 2.
func Product(a, b Chain) Chain {
c := a.Clone()
last := c.End()
for _, x := range b[1:] {
y := new(big.Int).Mul(last, x)
c = append(c, y)
}
return c
}
// Plus adds x to the addition chain. This is the "o plus" operator defined in
// [efficientcompaddchain] Section 2.
func Plus(a Chain, x *big.Int) Chain {
c := a.Clone()
y := new(big.Int).Add(c.End(), x)
return append(c, y)
}