forked from mlcommons/inference
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathonnxruntime_SUT.py
84 lines (72 loc) · 3.28 KB
/
onnxruntime_SUT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# coding=utf-8
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import array
import json
import os
import sys
sys.path.insert(0, os.getcwd())
import mlperf_loadgen as lg
import numpy as np
import onnxruntime
from transformers import BertConfig, BertForQuestionAnswering
from squad_QSL import get_squad_QSL
class BERT_ONNXRuntime_SUT():
def __init__(self, args):
self.profile = args.profile
self.options = onnxruntime.SessionOptions()
self.options.enable_profiling = args.profile
print("Loading ONNX model...")
self.quantized = args.quantized
if self.quantized:
model_path = "build/data/bert_tf_v1_1_large_fp32_384_v2/bert_large_v1_1_fake_quant.onnx"
else:
model_path = "build/data/bert_tf_v1_1_large_fp32_384_v2/model.onnx"
self.sess = onnxruntime.InferenceSession(model_path, self.options)
print("Constructing SUT...")
self.sut = lg.ConstructSUT(self.issue_queries, self.flush_queries, self.process_latencies)
print("Finished constructing SUT.")
self.qsl = get_squad_QSL()
def issue_queries(self, query_samples):
for i in range(len(query_samples)):
eval_features = self.qsl.get_features(query_samples[i].index)
if self.quantized:
fd = {
"input_ids": np.array(eval_features.input_ids).astype(np.int64)[np.newaxis, :],
"attention_mask": np.array(eval_features.input_mask).astype(np.int64)[np.newaxis, :],
"token_type_ids": np.array(eval_features.segment_ids).astype(np.int64)[np.newaxis, :]
}
else:
fd = {
"input_ids": np.array(eval_features.input_ids).astype(np.int64)[np.newaxis, :],
"input_mask": np.array(eval_features.input_mask).astype(np.int64)[np.newaxis, :],
"segment_ids": np.array(eval_features.segment_ids).astype(np.int64)[np.newaxis, :]
}
scores = self.sess.run([o.name for o in self.sess.get_outputs()], fd)
output = np.stack(scores, axis=-1)[0]
response_array = array.array("B", output.tobytes())
bi = response_array.buffer_info()
response = lg.QuerySampleResponse(query_samples[i].id, bi[0], bi[1])
lg.QuerySamplesComplete([response])
def flush_queries(self):
pass
def process_latencies(self, latencies_ns):
pass
def __del__(self):
if self.profile:
print("ONNX runtime profile dumped to: '{}'".format(self.sess.end_profiling()))
print("Finished destroying SUT.")
def get_onnxruntime_sut(args):
return BERT_ONNXRuntime_SUT(args)