forked from mlcommons/inference
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtf_freeze_bert.py
130 lines (106 loc) · 4.7 KB
/
tf_freeze_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import array
import json
import os
import sys
sys.path.insert(0, os.path.join(os.getcwd(), "DeepLearningExamples", "TensorFlow", "LanguageModeling", "BERT"))
sys.path.insert(0, os.getcwd())
import modeling
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import graph_util
from tensorflow.python.tools import optimize_for_inference_lib
from tensorflow.tools.graph_transforms import TransformGraph
def save_model(fname, sess, graph=None):
def save(fname, graph_def):
pass
with tf.Graph().as_default() as g:
tf.import_graph_def(graph_def, name='')
graph_def = g.as_graph_def(add_shapes=True)
tf.train.write_graph(graph_def, ".", fname, as_text=False)
if graph == None:
graph_def = sess.graph_def
else:
graph_def = graph.as_graph_def(add_shapes=True)
input_nodes = ['IteratorGetNext:0', 'IteratorGetNext:1', 'IteratorGetNext:2']
output_nodes = ['logits']
graph_def = graph_util.convert_variables_to_constants(
sess=sess,
input_graph_def=graph_def,
output_node_names=output_nodes)
graph_def = graph_util.remove_training_nodes(graph_def, protected_nodes=output_nodes)
graph_def = optimize_for_inference_lib.optimize_for_inference(graph_def, [], output_nodes, dtypes.float32.as_datatype_enum)
transforms = [
'remove_nodes(op=Identity, op=StopGradient)',
'fold_batch_norms',
'fold_old_batch_norms',
]
graph_def = TransformGraph(graph_def, input_nodes, output_nodes, transforms)
save("build/data/bert_tf_v1_1_large_fp32_384_v2/model.pb", graph_def)
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, use_one_hot_embeddings):
"""Creates a classification model."""
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings,
compute_type=tf.float32)
final_hidden = model.get_sequence_output()
final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3)
batch_size = final_hidden_shape[0]
seq_length = final_hidden_shape[1]
hidden_size = final_hidden_shape[2]
output_weights = tf.get_variable(
"cls/squad/output_weights", [2, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"cls/squad/output_bias", [2], initializer=tf.zeros_initializer())
final_hidden_matrix = tf.reshape(final_hidden, [batch_size * seq_length, hidden_size])
logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
logits = tf.reshape(logits, [batch_size, seq_length, 2], name="logits")
return logits
def main():
bert_config = modeling.BertConfig.from_json_file("bert_config.json")
init_checkpoint="build/data/bert_tf_v1_1_large_fp32_384_v2/model.ckpt-5474"
input_ids = tf.placeholder(tf.int32, shape=(1,384), name="input_ids")
input_mask = tf.placeholder(tf.int32, shape=(1,384), name="input_mask")
segment_ids = tf.placeholder(tf.int32, shape=(1,384), name="segment_ids")
logits = create_model(
bert_config=bert_config,
is_training=False,
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
use_one_hot_embeddings=False)
tvars = tf.compat.v1.trainable_variables()
initialized_variable_names = {}
(assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tf.compat.v1.train.init_from_checkpoint(init_checkpoint, assignment_map)
predictions = {
"logits": logits
}
output_spec = tf.estimator.EstimatorSpec(
mode=tf.estimator.ModeKeys.PREDICT, predictions=predictions)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
save_model("bert_large_nv.pb", sess)
if __name__ == "__main__":
main()