-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
131 lines (116 loc) · 4.87 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
from typing import List
import torch
from cog import BasePredictor, Input, Path
from diffusers import (
StableDiffusionInstructPix2PixPipeline,
PNDMScheduler,
LMSDiscreteScheduler,
DDIMScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
)
from PIL import Image
MODEL_ID = "timbrooks/instruct-pix2pix"
MODEL_CACHE = "diffusers-cache"
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
print("Loading pipeline...")
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
MODEL_ID,
cache_dir=MODEL_CACHE,
local_files_only=True,
revision='fp16',
torch_dtype=torch.float16,
).to("cuda")
# self.pipe.enable_xformers_memory_efficient_attention()
# self.pipe.enable_vae_slicing()
@torch.inference_mode()
def predict(
self,
prompt: str = Input(
description="The prompt or prompts to guide the image generation.",
default="A fantasy landscape, trending on artstation",
),
negative_prompt: str = Input(
description="The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).",
default=None,
),
image: Path = Input(
description="Image which will be repainted according to prompt.",
),
guidance_scale: float = Input(
description="Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.", ge=1, le=20, default=1.5
),
image_guidance_scale: float = Input(
description="Image guidance scale is to push the generated image towards the inital image image. Higher image guidance scale encourages to generate images that are closely linked to the source image `image`, usually at the expense of lower image quality.", ge=1, le=20, default=1.5
),
num_images_per_prompt: int = Input(
description="The number of images to generate per prompt.",
ge=1,
le=8,
default=1,
),
eta: float = Input(
description="Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [schedulers.DDIMScheduler], will be ignored for others.",
default=0.0,
),
num_inference_steps: int = Input(
description="The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.", ge=1, le=500, default=50
),
scheduler: str = Input(
default="DPMSolverMultistep",
choices=[
"DDIM",
"K_EULER",
"DPMSolverMultistep",
"K_EULER_ANCESTRAL",
"PNDM",
"KLMS",
],
description="Choose a scheduler.",
),
seed: int = Input(
description="Seed. Leave blank to randomize the seed.", default=None
),
) -> List[Path]:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
self.pipe.scheduler = make_scheduler(scheduler, self.pipe.scheduler.config)
generator = torch.Generator("cuda").manual_seed(seed)
extra_kwargs = {
"image": Image.open(image).convert("RGB"),
}
output = self.pipe(
prompt=[prompt] * num_images_per_prompt if prompt is not None else None,
negative_prompt=[negative_prompt] * num_images_per_prompt
if negative_prompt is not None
else None,
guidance_scale=guidance_scale,
image_guidance_scale=image_guidance_scale,
generator=generator,
eta=eta,
num_inference_steps=num_inference_steps,
**extra_kwargs,
)
output_paths = []
for i, sample in enumerate(output.images):
output_path = f"/tmp/out-{i}.png"
sample.save(output_path)
output_paths.append(Path(output_path))
return output_paths
def make_scheduler(name, config):
return {
"PNDM": PNDMScheduler.from_config(config),
"KLMS": LMSDiscreteScheduler.from_config(config),
"DDIM": DDIMScheduler.from_config(config),
"K_EULER": EulerDiscreteScheduler.from_config(config),
"K_EULER_ANCESTRAL": EulerAncestralDiscreteScheduler.from_config(config),
"DPMSolverMultistep": DPMSolverMultistepScheduler.from_config(config),
}[name]