diff --git a/notebooks/SUOX/SUOX.ipynb b/notebooks/SUOX/SUOX.ipynb index 29f87378d..cc712385e 100644 --- a/notebooks/SUOX/SUOX.ipynb +++ b/notebooks/SUOX/SUOX.ipynb @@ -77,7 +77,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Patients Created: 100%|██████████| 35/35 [01:26<00:00, 2.46s/it]\n", + "Patients Created: 100%|██████████| 35/35 [00:00<00:00, 691.09it/s]\n", "Validated under none policy\n", "No errors or warnings were found\n" ] @@ -214,26 +214,26 @@ " \n", " \n", " \n", - " Abnormality of extrapyramidal motor function\n", - " HP:0002071\n", + " Hypertonia\n", + " HP:0001276\n", " 11\n", " \n", " \n", " \n", - " Hypertonia\n", - " HP:0001276\n", + " Abnormality of extrapyramidal motor function\n", + " HP:0002071\n", " 11\n", " \n", " \n", " \n", - " Hypohomocysteinemia\n", - " HP:0020222\n", + " Microcephaly\n", + " HP:0000252\n", " 10\n", " \n", " \n", " \n", - " Microcephaly\n", - " HP:0000252\n", + " Hypohomocysteinemia\n", + " HP:0020222\n", " 10\n", " \n", " \n", @@ -282,6 +282,14 @@ " \n", " \n", " 3\n", + " 12_56004039_56004039_G_A\n", + " c.650G>A\n", + " p.Arg217Gln\n", + " MISSENSE_VARIANT\n", + " \n", + " \n", + " \n", + " 3\n", " 12_56004485_56004485_C_T\n", " c.1096C>T\n", " p.Arg366Cys\n", @@ -297,14 +305,6 @@ " \n", " \n", " \n", - " 3\n", - " 12_56004039_56004039_G_A\n", - " c.650G>A\n", - " p.Arg217Gln\n", - " MISSENSE_VARIANT\n", - " \n", - " \n", - " \n", " 2\n", " 12_56004933_56004933_A_ACAATGTGCAGCCAGACACCGTGGCCC\n", " c.1549_1574dup\n", @@ -314,14 +314,6 @@ " \n", " \n", " 2\n", - " 12_56004771_56004771_A_T\n", - " c.1382A>T\n", - " p.Asp461Val\n", - " MISSENSE_VARIANT\n", - " \n", - " \n", - " \n", - " 2\n", " 12_56004905_56004909_ATTGT_A\n", " c.1521_1524del\n", " p.Cys508ArgfsTer109\n", @@ -337,19 +329,27 @@ " \n", " \n", " \n", + " 2\n", + " 12_56004771_56004771_A_T\n", + " c.1382A>T\n", + " p.Asp461Val\n", + " MISSENSE_VARIANT\n", + " \n", + " \n", + " \n", " 1\n", - " 12_56004183_56004183_C_A\n", - " c.794C>A\n", - " p.Ala265Asp\n", + " 12_56004525_56004525_A_G\n", + " c.1136A>G\n", + " p.Lys379Arg\n", " MISSENSE_VARIANT\n", " \n", " \n", " \n", " 1\n", - " 12_56004669_56004669_C_A\n", - " c.1280C>A\n", - " p.Ser427Ter\n", - " STOP_GAINED\n", + " 12_56004120_56004124_CTCTT_C\n", + " c.734_737del\n", + " p.Leu245ProfsTer27\n", + " FRAMESHIFT_VARIANT\n", " \n", " \n", " \n", @@ -390,13 +390,13 @@ " \n", " \n", " \n", - " STOP_GAINED\n", - " 10\n", + " FRAMESHIFT_VARIANT\n", + " 9\n", " \n", " \n", " \n", - " FRAMESHIFT_VARIANT\n", - " 9\n", + " STOP_GAINED\n", + " 10\n", " \n", " \n", " \n", @@ -428,7 +428,16 @@ "execution_count": 5, "id": "615010fa", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_36711/3306755006.py:7: DeprecationWarning: Use `configure_default_protein_metadata_service` instead\n", + " pms = configure_protein_metadata_service()\n" + ] + } + ], "source": [ "from gpsea.model.genome import GRCh38\n", "from gpsea.preprocessing import configure_protein_metadata_service, VVMultiCoordinateService\n", @@ -458,7 +467,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABiIAAAKrCAYAAAB80pW4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD96ElEQVR4nOzdd1hUx9fA8e/Sm1TBggqIvUfsDTuiEbvBDtbYiEaj0RgBjRp7DPZoxP5TrNHYW9Ro1Nhir6CRWADFBorAvH/47sZ1QUCxJDmf59kn7txzZ869W8jO3DujUUophBBCCCGEEEIIIYQQQggh3gKj952AEEIIIYQQQgghhBBCCCH+vWQgQgghhBBCCCGEEEIIIYQQb40MRAghhBBCCCGEEEIIIYQQ4q2RgQghhBBCCCGEEEIIIYQQQrw1MhAhhBBCCCGEEEIIIYQQQoi3RgYihBBCCCGEEEIIIYQQQgjx1shAhBBCCCGEEEIIIYQQQggh3hoZiBBCCCGEEEIIIYQQQgghxFsjAxFCCCGEEEIIIYQQQgghhHhrZCBCCCGEEEJ80MLDw9FoNERFRemVT5w4kYIFC2JsbEy5cuUAcHd3JyAg4J3n+KZq165N7dq1M4zbs2cPGo2GPXv2vPWcPhQBAQG4u7u/83a177vff//9nbednqy+/pl9X6VFo9EQEhLyWvsKIYQQQgjxMhmIEEIIIYQQ2erUqVO0bt0aNzc3LCwscHV1pUGDBoSFhWVbG9u2bWPIkCFUr16dBQsWMHbs2DTjzp49S0hIiMEghvjnSkhIICQk5D81GCOEEEIIIcQ/ncn7TkAIIYQQQvx7HDhwgDp16lCgQAF69OhB7ty5+fPPP/ntt9+YNm0a/fv3z5Z2du3ahZGREfPnz8fMzExXfuHCBYyM/r7W5uzZs4SGhlK7du33clV9Zm3btu19p/DB+uGHH0hNTdU9T0hIIDQ0FOC1r/b/r5D3lRBCCCGE+FDIQIQQQgghhMg2Y8aMwc7OjiNHjmBvb6+37c6dO9nWzp07d7C0tNQbhAAwNzfPtjbepZePQ/zN1NT0fafwj5OQkICVlZW8r4QQQgghxAdDpmYSQgghhBDZ5sqVK5QsWdJgEALAxcVF9++oqCg0Gg3h4eEGcRnNTa/RaFiwYAGPHz9Go9Ho1fPiGhHh4eG0adMGgDp16uhiX5zSZ/PmzdSsWRNra2ty5MhBkyZNOHPmTKaO9erVq7Rp0wZHR0esrKyoUqUKP//8s277uXPnsLS0pHPnznr77d+/H2NjY4YOHaorS2su/xs3btC8eXOsra1xcXFh4MCBPH361CCPffv20aZNGwoUKIC5uTn58+dn4MCBJCYm6sXdunWLwMBA8uXLh7m5OXny5KFZs2YG01a9yTlJi0ajoV+/fkRERFCiRAksLS2pWrUqp06dAmDOnDkUKlQICwsLateubZDPi2tEREVF4ezsDEBoaKjuNX3x/bJr1y5d/vb29jRr1oxz584Z5BUdHU23bt3Imzcv5ubmeHh40Lt3b5KSkvTinj59yueff46zszPW1ta0aNGCmJgYg/pmzpxJyZIlMTc3J2/evPTt25f4+Hi9mNq1a1OqVCnOnj1LnTp1sLKywtXVlQkTJhjUl9nXX1vn0aNHqVWrFlZWVgwfPly37cX3VVJSEiNHjsTLyws7Ozusra2pWbMmu3fvNqhXCCGEEEKI7CR3RAghhBBCiGzj5ubGwYMHOX36NKVKlXorbSxevJi5c+dy+PBh5s2bB0C1atUM4mrVqkVQUBDff/89w4cPp3jx4gC6/y5evJguXbrg4+PD+PHjSUhIYNasWdSoUYPjx4+/ciqn27dvU61aNRISEggKCsLJyYmFCxfi5+fHqlWraNGiBcWLF2f06NF88cUXtG7dGj8/Px4/fkxAQADFihVj1KhR6dafmJhIvXr1uH79OkFBQeTNm5fFixeza9cug9iIiAgSEhLo3bs3Tk5OHD58mLCwMG7cuEFERIQurlWrVpw5c4b+/fvj7u7OnTt32L59O9evX9cd65uck1fZt28fP/30E3379gVg3LhxfPzxxwwZMoSZM2fSp08f7t27x4QJE+jatWuaxwng7OzMrFmz6N27Ny1atKBly5YAlClTBoAdO3bg6+tLwYIFCQkJITExkbCwMKpXr86xY8d0+f/1119UqlSJ+Ph4evbsSbFixYiOjmbVqlUkJCTo3UnQv39/HBwcCA4OJioqiu+++45+/fqxYsUKXUxISAihoaHUr1+f3r17c+HCBWbNmsWRI0f49ddf9e7quHfvHo0aNaJly5a0bduWVatWMXToUEqXLo2vry+QtdcfIC4uDl9fX/z9/enYsSO5cuVKM+7BgwfMmzePdu3a0aNHDx4+fMj8+fPx8fHh8OHDukXfhRBCCCGEyHZKCCGEEEKIbLJt2zZlbGysjI2NVdWqVdWQIUPU1q1bVVJSkl5cZGSkAtSCBQsM6gBUcHCw7vmCBQsUoCIjI3VlXbp0UdbW1gb7urm5qS5duuieR0REKEDt3r1bL+7hw4fK3t5e9ejRQ6/81q1bys7OzqD8ZQMGDFCA2rdvn16dHh4eyt3dXaWkpCillEpJSVE1atRQuXLlUrGxsapv377KxMREHTlyRK8+b29v5e3trXv+3XffKUCtXLlSV/b48WNVqFAhg+NJSEgwyG/cuHFKo9Goa9euKaWUunfvngLUxIkT0z2mNz0n6QGUubm53us3Z84cBajcuXOrBw8e6MqHDRuW5mvt5uamex4TE2PwHtEqV66ccnFxUXFxcbqykydPKiMjI9W5c2ddWefOnZWRkZHB66CUUqmpqUqpv9939evX15UppdTAgQOVsbGxio+PV0opdefOHWVmZqYaNmyoe92VUmr69OkKUD/++KOuzNvbWwFq0aJFurKnT5+q3Llzq1atWunKsvL6a+ucPXu2wbG8/L5KTk5WT58+1Yu5d++eypUrl+ratateeXrnWAghhBBCiNchUzMJIYQQQohs06BBAw4ePIifnx8nT55kwoQJ+Pj44Orqyk8//fS+09PZvn078fHxtGvXjtjYWN3D2NiYypUrZzhVzaZNm6hUqRI1atTQldnY2NCzZ0+ioqI4e/YsAEZGRoSHh/Po0SN8fX2ZOXMmw4YNo0KFChnWnydPHlq3bq0rs7KyomfPngaxlpaWun8/fvyY2NhYqlWrhlKK48eP62LMzMzYs2cP9+7deyvn5FXq1aundzdF5cqVged3aeTIkcOg/OrVq1lu4+bNm5w4cYKAgAAcHR115WXKlKFBgwZs2rQJgNTUVNatW0fTpk3TfB00Go3e8549e+qV1axZk5SUFK5duwY8vwsjKSmJAQMG6C2U3qNHD2xtbfWm64Ln75OOHTvqnpuZmVGpUiW9Y87K6w/P10YJDAxM/+T8P2NjY93dHqmpqdy9e5fk5GQqVKjAsWPHMtxfCCGEEEKI1yUDEUIIIYQQIltVrFiRNWvWcO/ePQ4fPsywYcN4+PAhrVu31nXQv2+XLl0CoG7dujg7O+s9tm3bluHC2teuXaNo0aIG5dppn7Sd1ACenp6EhIRw5MgRSpYsyddff51hfteuXaNQoUIGneJptXn9+nVd57uNjQ3Ozs54e3sDcP/+feB5R/X48ePZvHkzuXLlolatWkyYMIFbt25l2zl5lQIFCug9t7OzAyB//vxplqc3WPIq2nOe3usSGxvL48ePiYmJ4cGDB5meOuzl3B0cHPRyTK9dMzMzChYsqPdeAMiXL5/B6+rg4KB3zFl5/QFcXV0zvTD1woULKVOmDBYWFjg5OeHs7MzPP/+se68IIYQQQgjxNsgaEUIIIYQQ4q0wMzOjYsWKVKxYkSJFihAYGEhERATBwcEGHaxaKSkp7yS31NRU4PmaCLlz5zbYbmKSvf+bvG3bNuD52gRxcXFptvk6UlJSaNCgAXfv3mXo0KEUK1YMa2troqOjCQgI0B0nwIABA2jatCnr1q1j69atfP3114wbN45du3bx0UcfvdVzYmxsnKVypdRrt5XdsjvHt3HML94V8ypLliwhICCA5s2b88UXX+Di4oKxsTHjxo3jypUrr92+EEIIIYQQGZGBCCGEEEII8dZpp8C5efMm8PdV5fHx8XpxL189/qbSG/Dw9PQEwMXFhfr162e5Xjc3Ny5cuGBQfv78ed12rdmzZ7N9+3bGjBnDuHHj6NWrF+vXr8+w/tOnT6OU0juGl9s8deoUFy9eZOHChXTu3FlXvn379jTr9fT0ZNCgQQwaNIhLly5Rrlw5Jk+ezJIlS974nLwr6b2m2nOe3uuSM2dOrK2tsbS0xNbWltOnT2dLPi+2W7BgQV15UlISkZGRr/3+yszrn1WrVq2iYMGCrFmzRq/e4ODgN6pXCCGEEEKIjMjUTEIIIYQQItvs3r07zSu7tfPza6eWsbW1JWfOnOzdu1cvbubMmdmaj7W1NWA44OHj44OtrS1jx47l2bNnBvvFxMS8st7GjRtz+PBhDh48qCt7/Pgxc+fOxd3dnRIlSgAQGRnJF198QatWrRg+fDiTJk3ip59+YtGiRRnW/9dff7Fq1SpdWUJCAnPnztWL015d/+I5V0oxbdo0vbiEhASePHmiV+bp6UmOHDl4+vQp8Obn5F2xsrICDF/TPHnyUK5cORYuXKi37fTp02zbto3GjRsDz9ftaN68ORs2bOD33383qD+rdybUr18fMzMzvv/+e71958+fz/3792nSpEmW6oPMv/5Zldb75dChQ3rvYyGEEEIIId4GuSNCCCGEEEJkm/79+5OQkECLFi0oVqwYSUlJHDhwgBUrVuDu7q63oG737t359ttv6d69OxUqVGDv3r1cvHgxW/MpV64cxsbGjB8/nvv372Nubk7dunVxcXFh1qxZdOrUifLly+Pv74+zszPXr1/n559/pnr16kyfPj3der/88kuWL1+Or68vQUFBODo6snDhQiIjI1m9ejVGRkYopejatSuWlpbMmjULgF69erF69Wo+++wz6tevT968edOsv0ePHkyfPp3OnTtz9OhR8uTJw+LFi3Wd8FrFihXD09OTwYMHEx0dja2tLatXrzZYY+HixYvUq1ePtm3bUqJECUxMTFi7di23b9/G398feD44lNlzEhUVhYeHB126dCE8PPx1X57XYmlpSYkSJVixYgVFihTB0dGRUqVKUapUKSZOnIivry9Vq1alW7duJCYmEhYWhp2dHSEhIbo6xo4dy7Zt2/D29qZnz54UL16cmzdvEhERwf79+7G3t890Ps7OzgwbNozQ0FAaNWqEn58fFy5cYObMmVSsWFFvYerMyuzrn1Uff/wxa9asoUWLFjRp0oTIyEhmz55NiRIlePTo0RvVLYQQQgghxKvIQIQQQgghhMg2kyZNIiIigk2bNjF37lySkpIoUKAAffr0YcSIEXodvCNHjiQmJoZVq1axcuVKfH192bx5My4uLtmWT+7cuZk9ezbjxo2jW7dupKSksHv3blxcXGjfvj158+bl22+/ZeLEiTx9+hRXV1dq1qypN2CSlly5cnHgwAGGDh1KWFgYT548oUyZMmzYsEF3BXxYWBh79uxh9erVODs76/adP38+pUqVokePHvz8889p1m9lZcXOnTvp378/YWFhWFlZ0aFDB3x9fWnUqJEuztTUlA0bNhAUFMS4ceOwsLCgRYsW9OvXj7Jly+ri8ufPT7t27di5cyeLFy/GxMSEYsWKsXLlSlq1aqWLy+w50XZa58mTJwuvRvaZN28e/fv3Z+DAgSQlJREcHEypUqWoX78+W7ZsITg4mJEjR2Jqaoq3tzfjx4/Hw8NDt7+rqyuHDh3i66+/ZunSpTx48ABXV1d8fX1fq7M/JCQEZ2dnpk+fzsCBA3F0dKRnz56MHTsWU1PTLNeX2dc/qwICArh16xZz5sxh69atlChRgiVLlhAREcGePXteu14hhBBCCCEyolEf0kpwQgghhBBCiA/ezJkzGTJkCFeuXCFXrlzvOx0hhBBCCCHEB07WiBBCCCGEEEJkye7duwkKCpJBCCGEEEIIIUSmyB0RQgghhBBCCCGEEEIIIYR4a+SOCCGEEEIIIYQQQgghhBBCvDUyECGEEEIIIYQQQgghhBBCiLdGBiKEEEIIIYQQQgghhBBCCPHWyECEEEIIIYQQQgghhBBCCCHeGhmIEEIIIYT4gAQEBODu7v6+0xBCpCM8PByNRkNUVNT7TkUIIYQQQoh/DBmIEEIIIcQH78CBA4SEhBAfH/++U/mgbdq0iZCQkDeuR6PRoNFomDx5ssE2bSfs77//risLCQlBo9FgZGTEn3/+abDPgwcPsLS0RKPR0K9fvyznc+7cORo1aoSNjQ2Ojo506tSJmJgYg7jU1FQmTJiAh4cHFhYWlClThuXLlxvEHT58mD59+uDl5YWpqSkajeaV7c+fP5/ixYtjYWFB4cKFCQsLM4hZu3YtPj4+5M2bF3Nzc/Lly0fr1q05ffq0XlxcXBwTJ06kVq1aODs7Y29vT5UqVVixYoVBnWfOnKFNmzYULFgQKysrcubMSa1atdiwYUOaea5cuZIqVapgb2+Pk5MT3t7e/Pzzz2nGXrlyhfbt2+Pi4oKlpSWFCxfmq6++euV5ANi5cyddu3alSJEiWFlZUbBgQbp3787Nmzcz3PdD8NdffxESEsKJEyfedyoZ2rNnj+6zePToUYPtAQEB2NjY6JXVrl1bt49Go8HR0ZGKFSvy448/kpqamqX2M/t5gsx/RseMGYOfnx+5cuVCo9G88vsqOjqatm3bYm9vj62tLc2aNePq1at6MX/++SehoaFUqlQJBwcHcubMSe3atdmxY4dBfS+fmxcfpqamerHu7u5pxn366ad6cdrvw7Qet27d0ot98uQJ48aNo0SJElhZWeHq6kqbNm04c+ZMuufgdc+dEEIIIcSHyOR9JyCEEEIIkZEDBw4QGhpKQEAA9vb27zudt+qHH37Icoeh1qZNm5gxY0a2dVBNnDiR3r17Y2Vllal4c3Nzli9fzpAhQ/TK16xZ89o53Lhxg1q1amFnZ8fYsWN59OgRkyZN4tSpUxw+fBgzMzNd7FdffcW3335Ljx49qFixIuvXr6d9+/ZoNBr8/f11cZs2bWLevHmUKVOGggULcvHixXTbnzNnDp9++imtWrXi888/Z9++fQQFBZGQkMDQoUN1cadOncLBwYHPPvuMnDlzcuvWLX788UcqVarEwYMHKVu2LAAHDx7kq6++onHjxowYMQITExNWr16Nv78/Z8+eJTQ0VFfntWvXePjwIV26dCFv3rwkJCSwevVq/Pz8mDNnDj179tTFhoWFERQURJMmTfj222958uQJ4eHhfPzxx6xevZqWLVvqYk+cOEHt2rVxdXVl0KBBODk5cf369TQHkV42dOhQ7t69S5s2bShcuDBXr15l+vTpbNy4kRMnTpA7d+4M63if/vrrL0JDQ3F3d6dcuXKvVUenTp3w9/fH3Nw8e5N7hZCQkHQHoF6WL18+xo0bB0BMTAyLFi2iW7duXLx4kW+//TbTbWb285SVz+iIESPInTs3H330EVu3bk237UePHlGnTh3u37/P8OHDMTU1ZerUqXh7e3PixAmcnJwAWL9+PePHj6d58+Z06dKF5ORkFi1aRIMGDfjxxx8JDAzUO57u3bvrtfP48WM+/fRTGjZsaJBDuXLlGDRokF5ZkSJF0sx31KhReHh46JW9/LeqQ4cO/PTTT/To0YPy5cvz119/MWPGDKpWrcqpU6dwc3NL93xA5s+dEEIIIcQHSwkhhBBCfOAmTpyoABUZGZlhbEpKikpMTHz7SWWzR48evXEdffv2Vdnxv3eAKleunALU5MmT9bYtWLBAAerIkSO6suDgYAWoli1bqnLlyhnU16BBA9WqVSsFqL59+2Ypl969eytLS0t17do1Xdn27dsVoObMmaMru3HjhjI1NdWrPzU1VdWsWVPly5dPJScn68pv3bqlEhISlFKvPmcJCQnKyclJNWnSRK+8Q4cOytraWt29e/eVud+6dUuZmJioXr166cquXr2qoqKi9OJSU1NV3bp1lbm5eYbvg+TkZFW2bFlVtGhRvfLChQurihUrqtTUVF3Z/fv3lY2NjfLz89OVpaSkqFKlSqnKlSvrzkFW/PLLLyolJcWgDFBfffVVlut7U6mpqVk6jiNHjihALViw4O0llU12796t91k8evSo3vYuXbooa2trvTJvb29VsmRJvbLHjx+rfPnyKWtra5WUlJSptrPyecrsZ1QppfsOj4mJUYAKDg5Os/3x48crQB0+fFhXdu7cOWVsbKyGDRumKzt9+rSKiYnR2/fJkyeqWLFiKl++fBke5+LFixWgli5dqlfu5uZm8LlPS1rfh2m5ceOGAtTgwYP1ynft2qUANWXKlAzbyuy5E0IIIYT4UMnUTEIIIYT4oIWEhPDFF18A4OHhoZv2Qjs/u3a6n6VLl1KyZEnMzc3ZsmULAJMmTaJatWo4OTlhaWmJl5cXq1atMmhDW8e6desoVaoU5ubmlCxZUleP1sOHDxkwYADu7u6Ym5vj4uJCgwYNOHbsmF7coUOHaNy4MQ4ODlhbW1OmTBmmTZum266dUuXKlSs0btyYHDly0KFDB922F9eIiIqKQqPRMGnSJKZOnYqbmxuWlpZ4e3vrTfsTEBDAjBkzdMejfWjdvHmT8+fP8+zZs0yd9+rVq1O3bl0mTJhAYmJipvZp3749J06c4Pz587qyW7dusWvXLtq3b5+pOl62evVqPv74YwoUKKArq1+/PkWKFGHlypW6svXr1/Ps2TP69OmjK9NoNPTu3ZsbN25w8OBBXXmuXLmwtLTMsO3du3cTFxenVydA3759efz4cbrTHmm5uLhgZWWlN6WYh4eHwZXPGo2G5s2b8/TpU4OpZ15mbGxM/vz5DaYpe/DgAS4uLnqvua2tLTY2NnrHum3bNk6fPk1wcDCWlpYkJCSQkpLyyjZfVKtWLYyMjAzKHB0dOXfuXKbreZF2epu9e/fSq1cvnJycsLW1pXPnzty7d08v1t3dnY8//pitW7dSoUIFLC0tmTNnDgBXr16lTZs2ODo6YmVlRZUqVfReoz179lCxYkUAAgMDdZ+R8PBwXcyhQ4do1KgRdnZ2WFlZ4e3tza+//ppmvi+uEaHNa//+/VSqVAkLCwsKFizIokWLDI73ypUrXLlyJdPnp3///jg4OLz2nU7ac/H48eM0p0tKS1Y+T5n9jAKZXv9m1apVVKxYUfd6ARQrVox69erp1VmyZEly5sypt6+5uTmNGzfmxo0bPHz48JXtLFu2DGtra5o1a5bm9qSkJB4/fpypnB8+fJjuZ0mbR65cufTK8+TJA5Cp7yNZO0gIIYQQ/3QyECGEEEKID1rLli1p164dAFOnTmXx4sUsXrwYZ2dnXcyuXbsYOHAgn3zyCdOmTdN12EybNo2PPvqIUaNGMXbsWExMTGjTpk2aHcj79++nT58++Pv7M2HCBJ48eUKrVq2Ii4vTxXz66afMmjWLVq1aMXPmTAYPHoylpaVeB+z27dupVasWZ8+e5bPPPmPy5MnUqVOHjRs36rWXnJyMj48PLi4uTJo0iVatWr3yPCxatIjvv/+evn37MmzYME6fPk3dunW5ffs2AL169aJBgwYAunO0ePFi3f7Dhg2jePHiREdHZ+a0A88HgW7fvs2sWbMyFV+rVi3y5cvHsmXLdGUrVqzAxsaGJk2aZLpdrejoaO7cuUOFChUMtlWqVInjx4/rnh8/fhxra2uKFy9uEKfdnlXafV5u38vLCyMjozTrjI+PJyYmhlOnTtG9e3cePHhAvXr1MmxLO5/8y52q8Hz6mNjYWK5cucLUqVPZvHmzQZ21a9dmy5YthIWFERUVxfnz5+nbty/379/ns88+08Vp5843NzenQoUKWFtbY2Vlhb+/P3fv3s0wz7Q8evSIR48epZl7VvTr149z584REhJC586dWbp0Kc2bN0cppRd34cIF2rVrR4MGDZg2bRrlypXj9u3bVKtWja1bt9KnTx/GjBnDkydP8PPzY+3atQAUL16cUaNGAdCzZ0/dZ6RWrVrA8++RWrVq8eDBA4KDgxk7dizx8fHUrVuXw4cPZ5j/5cuXad26NQ0aNGDy5Mk4ODgQEBBgsAZAvXr1MvWe0LK1tWXgwIFs2LDBYNAzs65evYqxsXGmp7bL7OcpK5/RzEpNTeWPP/5It84rV65kOMBw69YtrKysXjmtXExMDNu3b6d58+ZYW1sbbN+1axdWVlbY2Njg7u6uN5j8sjp16mBra4uVlRV+fn5cunRJb7unpyf58uVj8uTJbNiwgRs3bnD48GE+/fRTPDw89Ka6EkIIIYT413rft2QIIYQQQmTkVVMzAcrIyEidOXPGYNvLU7YkJSWpUqVKqbp16xrUYWZmpi5fvqwrO3nypAJUWFiYrszOzu6VUwslJycrDw8P5ebmpu7du6e37cUpc7p06aIA9eWXXxrU0aVLF+Xm5qZ7HhkZqQBlaWmpbty4oSs/dOiQAtTAgQN1Za+aZkjbZmamt+KFKZTq1KmjcufOrTuXr5qaKSYmRg0ePFgVKlRIt61ixYoqMDDQoN7M0E6js2jRIoNtX3zxhQLUkydPlFJKNWnSRBUsWNAg7vHjx+mea6Vefc769u2rjI2N09zm7Oys/P39DcqLFi2qAAUoGxsbNWLECIOpjF4WFxenXFxcVM2aNdPc3qtXL12dRkZGqnXr1gbTQt2+fVvVq1dPFweonDlzqgMHDujF+fn5KUA5OTmpDh06qFWrVqmvv/5amZiYqGrVqum9TzNr9OjRClA7d+7M8r5K/f2e8vLy0ps6aMKECQpQ69ev15W5ubkpQG3ZskWvjgEDBihA7du3T1f28OFD5eHhodzd3XWvQXpTM6WmpqrChQsrHx8fvXOQkJCgPDw8VIMGDQzyffGzpM1r7969urI7d+4oc3NzNWjQIL223Nzc9D7j6dFOzRQREaHi4+OVg4OD3jRb6U3NVKxYMRUTE6NiYmLUuXPnVFBQkAJU06ZNM2xTK7Ofp6x8Rl/0qumFtNtGjRplsG3GjBkKUOfPn08390uXLikLCwvVqVOnVx2iCgsLU4DatGmTwbamTZuq8ePHq3Xr1qn58+ermjVrKkANGTJEL27FihUqICBALVy4UK1du1aNGDFCWVlZqZw5c6rr16/rxR46dEh5enrqfUa9vLzUzZs3X5nny2RqJiGEEEL8U8kdEUIIIYT4x/P29qZEiRIG5S9Od3Hv3j3u379PzZo107yquH79+nh6euqelylTBltbW72pcuzt7Tl06BB//fVXmnkcP36cyMhIBgwYYHDl8YtT5mj17t07w2PTat68Oa6urrrnlSpVonLlymzatClT+4eHh6OUyvL0HiEhIdy6dYvZs2dnKr59+/ZcvnyZI0eO6P77utMyaaeESmtRYAsLC72YxMTETMVltf0XF9p9ud606lywYAFbtmxh5syZFC9enMTExFdOfZSamkqHDh2Ij48nLCwszZgBAwawfft2Fi5ciK+vLykpKSQlJenFWFlZUbRoUbp06UJERAQ//vgjefLkoWXLlly+fFkX9+jRIwAqVqzIkiVLaNWqFaNGjWL06NEcOHCAnTt3ZnheXrR3715CQ0Np27YtdevWzdK+L+vZsyempqa6571798bExMTgPe7h4YGPj49e2aZNm6hUqRI1atTQldnY2NCzZ0+ioqI4e/bsK9s+ceIEly5don379sTFxREbG0tsbCyPHz+mXr167N27N8NF5EuUKEHNmjV1z52dnSlatKjBdFtRUVF60zplhp2dHQMGDOCnn37K8C6D8+fP4+zsjLOzM8WLFycsLIwmTZrw448/Zrq9zH6esvIZzUrbr1tnQkICbdq0wdLSMsOFuZctW4azs7PuTrIX/fTTTwwZMoRmzZrRtWtXfvnlF3x8fJgyZQo3btzQxbVt25YFCxbQuXNnmjdvzujRo9m6dStxcXGMGTNGr04HBwfKlSvHl19+ybp165g0aRJRUVG0adOGJ0+evPqkCCGEEEL8C8hAhBBCCCH+8Tw8PNIs37hxI1WqVMHCwgJHR0ecnZ2ZNWsW9+/fN4h9cX5zLQcHB7056idMmMDp06fJnz8/lSpVIiQkRK+TUTvve6lSpTLM2cTEhHz58mUYp1W4cGGDsiJFimS5QzOratWqRZ06dTK9VsRHH31EsWLFWLZsGUuXLiV37tyv3UGtHUh6+vSpwTZtx502xtLSMlNxWW3/5Q7/F+tNq86qVavi4+ND79692bp1K0uWLGHYsGHpttG/f3+2bNnCvHnzKFu2bJoxxYoVo379+nTu3JmNGzfy6NEjmjZtqjdlUZs2bbh+/Trh4eG0bt2awMBA9uzZQ1JSEl999ZXeMQG66c60tINFBw4cSDfXl50/f54WLVpQqlQp5s2bl+n90vPye9zGxoY8efIYvMfT+rxfu3aNokWLGpRrpxa6du3aK9vWTqXTpUsXXSe+9jFv3jyePn2a5vfGizLzHfImPvvsM+zt7TNcK8Ld3Z3t27ezY8cO9u/fz61bt9i4cWOWps7K7OcpK5/RrLT9OnWmpKTg7+/P2bNnWbVqFXnz5k23jatXr3Lw4EE++eQTTExMMsxJo9EwcOBAkpOT2bNnzytja9SoQeXKlXXToAG6QfCqVasybtw4mjVrxqBBg1i9ejX79+9nwYIFGeYghBBCCPFPJwMRQgghhPjHS6tTat++ffj5+WFhYcHMmTPZtGkT27dvp3379gZzzsPzRYDT8mJs27ZtuXr1KmFhYeTNm5eJEydSsmRJNm/enOWczc3NDRb9/VAFBwdz69Yt3aLAGWnfvj0rVqxg2bJlfPLJJ699nNqFXG/evGmw7ebNmzg6Ouqums6TJw+3bt0yeG21+76qU/JV7aekpHDnzh298qSkJOLi4jKs08HBgbp167J06dI0t4eGhjJz5ky+/fZbOnXqlOm8WrduzZEjR7h48SLwvFN1y5Yt+Pn56cU5OjpSo0YNvcWWtTm/vGiui4sLQKY7zf/8808aNmyInZ0dmzZtIkeOHJnO/029zqBSRrR3O0ycOJHt27en+bCxsXllHZn5DnkTmb0rwtramvr161OvXj2qV6+ue22zIrOfp6x8RjNLu096db7Y/ot69OjBxo0bCQ8Pz3DwU7uOTYcOHTKdV/78+QEytZZK/vz59eJWr17N7du3DT6j3t7e2NraGiyILoQQQgjxb/TP+PUrhBBCiP+0tKY1ysjq1auxsLBg69atdO3aFV9fX+rXr//GueTJk4c+ffqwbt06IiMjcXJy0k3BoZ3a6fTp02/czsteXvwU4OLFi3pTLb3OecoMb29vateuzfjx4zN1V0T79u25efMmFy9efO1pmQBcXV1xdnbm999/N9h2+PBhypUrp3terlw5EhIS9BYOBzh06JBue1Zp93m5/d9//53U1NRM1ZmYmJjmlfQzZswgJCSEAQMGMHTo0CzlpX0NtPVqFyxPawqoZ8+ekZycrHvu5eUFYLBouXa6sRcXgU9PXFwcDRs25OnTp2zdulXXGf2mXn6PP3r0iJs3b2ZqOjE3NzcuXLhgUH7+/Hnddkj/M6L97Nra2lK/fv00Hy9OG/W+aKd9Cw0NfavtZPbzlJXPaGYZGRlRunTpNOs8dOgQBQsWNBj4+uKLL1iwYAFTp041uNsnLcuWLcPT05MqVapkOi/t3W+Z+YxcvXpVLy69z6hSipSUFL3PqBBCCCHEv5UMRAghhBDig2dtbQ1AfHx8pvcxNjZGo9HodfxERUWxbt2618ohJSXFoEPZxcWFvHnz6qYQKV++PB4eHnz33XcGub7pVdHr1q3T6zw+fPgwhw4dwtfXV1f2qvN08+ZNzp8/z7Nnz16rfe1aEXPnzs0w1tPTk++++45x48ZRqVKl12pPq1WrVmzcuJE///xTV7Zz504uXrxImzZtdGXNmjXD1NSUmTNn6sqUUsyePRtXV1eqVauW5bbr1q2Lo6Mjs2bN0iufNWsWVlZWNGnSRFf28l0T8Pz9tnPnTipUqKBXvmLFCoKCgujQoQNTpkxJt/206nz27BmLFi3C0tJSty5KoUKFMDIyYsWKFXrvsxs3brBv3z4++ugjXVmzZs0wNzdnwYIFemseaKdWenG+/LTeM48fP6Zx48ZER0ezadOmNKcMe11z587Va2vWrFkkJyfrvcfT07hxYw4fPszBgwf1cp07dy7u7u66c5XeZ8TLywtPT08mTZqkW0fjRTExMa9zSGm6cuWKbhq3rNLeFbF+/XpOnDiRbTm9LCufp8x+RrNCe9fPi4MRFy5cYNeuXQZ1Tpw4kUmTJjF8+HA+++yzDOs+fvw4586dS3eQ9O7duwYDBs+ePePbb7/FzMyMOnXq6MrTel9s2rSJo0eP0qhRI11ZkSJFAPjf//6nF/vTTz/x+PFjvc/o/fv3OX/+fIZTgQkhhBBC/NNkPCGmEEIIIcR7pr2K+6uvvsLf3x9TU1OaNm2q61RMS5MmTZgyZQqNGjWiffv23LlzhxkzZlCoUCH++OOPLOfw8OFD8uXLR+vWrSlbtiw2Njbs2LGDI0eOMHnyZOD5lbyzZs2iadOmlCtXjsDAQPLkycP58+c5c+YMW7dufb0TwPPO5ho1atC7d2+ePn3Kd999h5OTE0OGDNHFaM9TUFAQPj4+GBsb4+/vD8CwYcNYuHAhkZGRWV6wGp7fFeHt7c0vv/ySqfjMdAhmxvDhw4mIiKBOnTp89tlnPHr0iIkTJ1K6dGkCAwN1cfny5WPAgAFMnDiRZ8+eUbFiRdatW8e+fftYunSp3rQ5165dY/HixcDfdzt88803wPMr57XTJFlaWjJ69Gj69u1LmzZt8PHxYd++fSxZsoQxY8bg6Oioq7N06dLUq1ePcuXK4eDgwKVLl5g/f76uA1Pr8OHDdO7cGScnJ+rVq2cwbVO1atUoWLAgAL169eLBgwfUqlULV1dXbt26xdKlSzl//jyTJ0/WTRXk7OxM165dmTdvHvXq1aNly5Y8fPiQmTNnkpiYqLdGRe7cufnqq68YOXIkjRo1onnz5pw8eZIffviBdu3aUbFiRV1sWu+ZDh06cPjwYbp27cq5c+f0rpi3sbGhefPmuuchISGEhoaye/duateuneFrnZSURL169Wjbti0XLlxg5syZ1KhRw2A6m7R8+eWXLF++HF9fX4KCgnB0dNTlvnr1at30YJ6entjb2zN79mxy5MiBtbU1lStXxsPDg3nz5uHr60vJkiUJDAzE1dWV6Ohodu/eja2tLRs2bMgwj8yoV68ewGuv7/LZZ58xdepUTp48+crvwDeRlc9TZj+jAIsXL+batWskJCQAzxc71372OnXqpLtzpU+fPvzwww80adKEwYMHY2pqypQpU8iVKxeDBg3S1bd27VqGDBlC4cKFKV68OEuWLNFrr0GDBgbTkGk/c+lNy/TTTz/xzTff0Lp1azw8PLh79y7Lli3j9OnTjB07lty5c+tiq1WrxkcffUSFChWws7Pj2LFj/Pjjj+TPn5/hw4fr4po2bUrJkiUZNWoU165do0qVKly+fJnp06eTJ08eunXrpndMgYGBLFiwgICAgCyfOyGEEEKID5YSQgghhPgHGD16tHJ1dVVGRkYKUJGRkUoppQDVt2/fNPeZP3++Kly4sDI3N1fFihVTCxYsUMHBwerl/wVKrw43NzfVpUsXpZRST58+VV988YUqW7asypEjh7K2tlZly5ZVM2fONNhv//79qkGDBrq4MmXKqLCwMN32Ll26KGtr6zRz7tKli3Jzc9M9j4yMVICaOHGimjx5ssqfP78yNzdXNWvWVCdPntTbNzk5WfXv3185OzsrjUajd5xdunTRO2+vkt752L17twIUoI4cOaIr157TmJiY16o3I6dPn1YNGzZUVlZWyt7eXnXo0EHdunXLIC4lJUWNHTtWubm5KTMzM1WyZEm1ZMmSVx7Hyw9vb2+D+Llz56qiRYsqMzMz5enpqaZOnapSU1P1YoKDg1WFChWUg4ODMjExUXnz5lX+/v7qjz/+0ItbsGBBum0DasGCBbrY5cuXq/r166tcuXIpExMT5eDgoOrXr6/Wr19vkOOzZ89UWFiYKleunLKxsVE2NjaqTp06ateuXQaxqampKiwsTBUpUkSZmpqq/PnzqxEjRqikpCS9uLTeM25ubunm/uL7VimlBg0apDQajTp37pxBDmmdk19++UX17NlTOTg4KBsbG9WhQwcVFxenF+vm5qaaNGmSZj1XrlxRrVu3Vvb29srCwkJVqlRJbdy40SBu/fr1qkSJEsrExMTgnB8/fly1bNlSOTk5KXNzc+Xm5qbatm2rdu7caZDvy+clrby8vb0N3lNubm4G5yot2vdpRESEwTbtZ+7l7xFvb29VsmTJDOvOjMx+npTK/GfU29s73ffP7t279WL//PNP1bp1a2Vra6tsbGzUxx9/rC5duqQXoz0Pma0zJSVFubq6qvLly6d73L///rtq2rSpcnV1VWZmZsrGxkbVqFFDrVy50iD2q6++UuXKlVN2dnbK1NRUFShQQPXu3TvNY797964aOHCgKlKkiDI3N1c5c+ZU/v7+6urVq3px2vfXi+/LrJ47IYQQQogPkUapbFo9TQghhBBCZLuoqCg8PDyYOHEigwcPft/pCJFplSpVws3NjYiIiFfGhYeHExgYyJEjRwymsRJCCCGEEEL8O8jUTEIIIYQQQohs9eDBA06ePMnChQvfdypCCCGEEEKID4AMRAghhBBCiHcuJibGYEHYF5mZmemtwSD+WWxtbXWLuIsPR2JiYoaLIDs6OmJmZvaOMhJCCCGEEP8VMhAhhBBCCCHeuYoVK3Lt2rV0t3t7e7Nnz553l5AQ/wErVqwwWED6ZZldXFwIIYQQQoiskDUihBBCCCHEO/frr7+SmJiY7nYHBwe8vLzeYUZC/PvdvHmTM2fOvDLGy8sLBweHd5SREEIIIYT4r5CBCCGEEEIIIYQQQgghhBBCvDVG7zsBIYQQQgghhBBCCCGEEEL8e8lAhBBCCCGEEEIIIYQQQggh3hpZrFpkm+vXr1O8eHESEhLedypCiH84Kysrzp07R4ECBd53KkIIIYQQQoh/AOmTEEKI5z7UPhUZiBDZJjY2loSEBJYsWULx4sXfdzpCiH+oc+fO0bFjR2JjYz+4P5pCCCGEEEKID5P0SQghxIfdpyIDESLbFS9enPLly7/vNIQQQgghhBBCCPEfI30SQgjxYZI1IoQQQgghhBBCCCGEEEII8dbIQIQQQgghhBBCCCGEEEIIId4aGYgQ/1kajYaQkJD3ncZ/Tu3ataldu/b7TkMIIYQQQgghhBAfgPDwcDQaDb///vv7TuWtCwkJQaPREBsb+1r7165dm1KlSmVzVu9XQEAANjY2mYp9G315L9epfT9GRUVlaztC1ogQ78nNmzeZN28eu3fu5GH8faxz5KBytap8+umneHh4ZLqe8PBwAgMDAdi3bx81atTQ266UokCBAty4cYMmTZqwcePGbD2Of7pjx47h5eXFV199xTfffJNmzKVLlyhSpAgDBw5kypQp7zjD17Np0yYOHz4sA01CCCGEEEIIIQC4fv36a3f+fghy5syZqYVnr1y5woQJE9i+fTt//fUXZmZmlC5dmrZt29KzZ08sLS0z3WZCQgITJkyQCwqFENlCBiLEO/Xw4UP69unD8uXLMVMafFJt8MSEB6Qw9+AhJk6cyMeNG/PD/PnkypUr0/VaWFiwbNkyg4GIX375hRs3bmBubm6wT2JiIiYm/+2PQPny5SlWrBjLly9PdyBi2bJlAHTs2DFb2ty2bVu21PMqmzZtYsaMGTIQIYQQQgghhBCC69evU6xYMRITE993Kq/N0tKS8+fPv3Iw4ueff6ZNmzaYm5vTuXNnSpUqRVJSEvv37+eLL77gzJkzzJ07N9NtJiQkEBoaCiADEeKD8C768jp16oS/v3+afYnizfy3e2HFOxUfH0/dWt5cOXuOSSl56IIT9i+8BRNSUlnOXUZs2UnVipXYe+BX8uXLl6m6GzduTEREBN9//73eF9KyZcvw8vJK86oHCwuLNz+of4EOHTrw9ddf89tvv1GlShWD7cuXL6dYsWKUL1/+jdpJSEjAysoKMzOzN6pHCCGEEEIIIYTIitjYWBITE+nXrx+urq668ocPH7J7927Onz/PgwcPsLGxIU+ePFSvXp1ChQplWO/cuXPJkycPTZs2fZvpEx0dzfTp04mNjU13ICIyMhJ/f3/c3NzYtWsXefLk0W3r27cvly9f5ueff36reb4PSimePHmSpTs9xD/Xu+jLMzY2xtjY+K23818ka0SId8a/TVuizp5nX0ohPiOX3iAEgBVGdCMnv6UUIvlmDB838iU5OTlTdbdr1464uDi2b9+uK0tKSmLVqlW0b98+zX1engPu4cOHDBgwAHd3d8zNzXFxcaFBgwYcO3ZMF3Pp0iVatWpF7ty5sbCwIF++fPj7+3P//n29upcsWYKXlxeWlpY4Ojri7+/Pn3/+qRejndfv7Nmz1KlTBysrK1xdXZkwYYJBrmFhYZQsWRIrKyscHByoUKGC7k4FrejoaLp27UquXLkwNzenZMmS/Pjjjxmeuw4dOgAY1Adw9OhRLly4oItZv349TZo0IW/evJibm+Pp6cno0aNJSUlJ89iOHj1KrVq1sLKyYvjw4bptL15JkZSUxMiRI/Hy8sLOzg5ra2tq1qzJ7t279eqMiopCo9EwadIk5s6di6enJ+bm5lSsWJEjR47o4gICApgxYwbw/DXWPoQQQgghhBBC/Le5urpSsGBBChYsiI2NDbNmzeLPP/8kMDCQSZMm8fXXX1OxYkU2b96si3vVw9LSEjs7u0zFvsnjxcGT9EyYMIFHjx4xf/58vUEIrUKFCvHZZ58B4O3tTdmyZdOsp2jRovj4+BAVFYWzszMAoaGhut/WL/aj7Nq1i5o1a2JtbY29vT3NmjXj3LlzBnVGR0fTrVs3XV+Ch4cHvXv3JikpSS/u6dOnfP755zg7O2NtbU2LFi2IiYnRi3F3d+fjjz9m69atVKhQAUtLS+bMmQPA1atXadOmDY6OjlhZWVGlShWDwZc9e/ag0WhYuXIloaGhuLq6kiNHDlq3bs39+/d5+vQpAwYMwMXFBRsbGwIDA3n69KnBMWWm3+dVYmNjadu2Lba2tjg5OfHZZ5/x5MmTTO+fmb6kp0+fEhwcTKFChTA3Nyd//vwMGTLE4Hg0Gg39+vUjIiKCEiVKYGlpSdWqVTl16hQAc+bMoVChQlhYWFC7du001044dOgQjRo1ws7ODisrK7y9vfn1118zfTzw/PXz8fHB2tqavHnzMmrUKJRSBrm++B7Urrlx+fJlAgICsLe3x87OjsDAQBISEgzOx8CBA3F2diZHjhz4+flx48YNgzzSWiNC+77bv38/lSpVwsLCgoIFC7Jo0SKD/f/44w+8vb2xtLQkX758fPPNNyxYsEDWnUDuiBDvyJEjR9i6YzurKEgZrF4Z64Y5K5MLUPXMaX7++WeaNWuWYf3u7u5UrVqV5cuX4+vrC8DmzZu5f/8+/v7+fP/99xnW8emnn7Jq1Sr69etHiRIliIuLY//+/Zw7d47y5cuTlJSEj48PT58+pX///uTOnZvo6Gg2btxIfHw8dnZ2AIwZM4avv/6atm3b0r17d2JiYggLC6NWrVocP34ce3t7XZv37t2jUaNGtGzZkrZt27Jq1SqGDh1K6dKldcfxww8/EBQUROvWrXV/mP744w8OHTqkG2S5ffs2VapU0f3xcHZ2ZvPmzXTr1o0HDx4wYMCAdI/bw8ODatWqsXLlSqZOnao36qsdnNC2Ex4ejo2NDZ9//jk2Njbs2rWLkSNH8uDBAyZOnKhXb1xcHL6+vvj7+9OxY8d0p9p68OAB8+bNo127dvTo0YOHDx8yf/58fHx8OHz4MOXKldOLX7ZsGQ8fPqRXr15oNBomTJhAy5YtuXr1KqampvTq1Yu//vqL7du3s3jx4gxfdyGEEEIIIYQQ/z3z589Ho9EwZswYvaus8+fPT506dZg1axYPHjxg6NChum3Jycn07t2bdu3acf78ec6ePcvZs2fZvHkz8PwiQhcXF86ePcuSJUu4du0aNjY2eHt788knn+h+b6emprJhwwZ27txJXFwcdnZ21K9fn5YtW7728WzYsIGCBQtSrVq1DGM7depEjx49OH36tN7Cx0eOHOHixYuMGDECZ2dnZs2aRe/evWnRooUutzJlygCwY8cOfH19KViwICEhISQmJhIWFkb16tU5duwY7u7uAPz1119UqlSJ+Ph4evbsSbFixYiOjmbVqlUkJCTozZrQv39/HBwcCA4OJioqiu+++45+/fqxYsUKvfwvXLhAu3bt6NWrFz169KBo0aLcvn2batWqkZCQQFBQEE5OTixcuBA/Pz9WrVpFixYt9OoYN24clpaWfPnll1y+fJmwsDBMTU0xMjLi3r17hISE8NtvvxEeHo6HhwcjR47U7ZuVfp/0tG3bFnd3d8aNG8dvv/3G999/z71799Ls2H5ZZvqSUlNT8fPzY//+/fTs2ZPixYtz6tQppk6dysWLF1m3bp1enfv27eOnn36ib9++uvPz8ccfM2TIEGbOnEmfPn24d+8eEyZMoGvXruzatUu3765du/D19cXLy4vg4GCMjIxYsGABdevWZd++fVSqVCnDY0pJSaFRo0ZUqVKFCRMmsGXLFoKDg0lOTmbUqFGZOp8eHh6MGzeOY8eOMW/ePFxcXBg/frwupnv37ixZsoT27dtTrVo1du3aRZMmTTKsW+vy5cu0bt2abt260aVLF3788UcCAgLw8vKiZMmSwPNBtzp16qDRaBg2bBjW1tbMmzdPpnnSUkJkk6NHjypAHT161GBbYECAKmBiqZIprxRemXpUNs6hGtar/8o2FyxYoAB15MgRNX36dJUjRw6VkJCglFKqTZs2qk6dOkoppdzc3FSTJk309gVUcHCw7rmdnZ3q27dvum0dP35cASoiIiLdmKioKGVsbKzGjBmjV37q1CllYmKiV+7t7a0AtWjRIl3Z06dPVe7cuVWrVq10Zc2aNVMlS5Z8xVlQqlu3bipPnjwqNjZWr9zf31/Z2dnpzkl6ZsyYoQC1detWXVlKSopydXVVVatW1ZWlVU+vXr2UlZWVevLkicGxzZ492yDe29tbeXt7654nJyerp0+f6sXcu3dP5cqVS3Xt2lVXFhkZqQDl5OSk7t69qytfv369AtSGDRt0ZX379lXy9fbP9arvEiGEEEIIIYRIy6t+R2i3jRs3Tq1YsULNnz9faTQa5e/vr1asWJHmY9SoUcrIyEjNnj1bVzZo0CBlbm6uFi5cqBYsWKCKFCmi6tWrp+bMmaPmzJmjli9frmbNmqXMzc1Vw4YN1ZQpU9TgwYNVjhw5VOvWrXX1+Pn5KWtra9WnTx81bdo0FRoaqnr27JluLuPGjXvlb6T79+8rQDVr1ixT5yo+Pl5ZWFiooUOH6pUHBQUpa2tr9ejRI6WUUjExMQZ9J1rlypVTLi4uKi4uTld28uRJZWRkpDp37qwr69y5szIyMlJHjhwxqCM1NVUp9XffTv369XVlSik1cOBAZWxsrOLj43Vlbm5uClBbtmzRq2vAgAEKUPv27dOVPXz4UHl4eCh3d3eVkpKilFJq9+7dClClSpVSSUlJuth27dopjUajfH199eqtWrWqcnNz0z3PSr9PWoKDgxWg/Pz89Mr79OmjAHXy5MlX7p/ZvqTFixcrIyMjvfOhlFKzZ89WgPr11191ZYAyNzdXkZGRurI5c+YoQOXOnVs9ePBAVz5s2DAF6GJTU1NV4cKFlY+Pj95rl5CQoDw8PFSDBg1eeTxKKdWlSxcFqP79++vKUlNTVZMmTZSZmZmKiYnRy/XF96P2fL7Yf6SUUi1atFBOTk665ydOnFCA6tOnj15c+/btDerUvh9fPB/a993evXt1ZXfu3FHm5uZq0KBBurL+/fsrjUajjh8/riuLi4tTjo6OBnW+LR9yn4pMzSTeiTWrVhOQbI8xmZ8ip2uKA9t27uDhw4eZim/bti2JiYls3LiRhw8fsnHjxnSnZUqLvb09hw4d4q+//kpzu/aOh61btxrc3qW1Zs0aUlNTadu2LbGxsbpH7ty5KVy4sMF0QzY2NnqLQJuZmVGpUiWuXr2ql9eNGzf0ph96kVKK1atX07RpU5RSeu36+Phw//59veml0vLJJ59gamqqNz3TL7/8QnR0tG5aJkBvzsWHDx8SGxtLzZo1SUhI4Pz583p1mpubExgY+Mp24fnce9orIFJTU7l79y7JyclUqFAhzbw/+eQTHBwcdM9r1qwJoHfOhBBCCCGEEEKI9Ny6dQul1CunPCpatCh58+Zl7969urI9e/ZQpUoVLCwssLKywsTEBDMzM+zt7bG3t8fIyIht27bh5ORE165dcXV1pWLFirRp04aNGzeSmppKYmIimzdvpkOHDnh7e5M7d26KFStGvXr1Xvt4Hjx4AECOHDkyFW9nZ0ezZs1Yvny5buqblJQUVqxYQfPmzbG2tn7l/jdv3uTEiRMEBATg6OioKy9TpgwNGjRg06ZNwPPf+OvWraNp06ZUqFDBoJ6Xp1Hu2bOnXlnNmjVJSUnh2rVrenEeHh74+PjolW3atIlKlSpRo0YNXZmNjQ09e/YkKiqKs2fP6sV37twZU1NT3fPKlSujlKJr1656cZUrV+bPP//UTR2e1X6f9GjvPNDq37+/7jgykpm+pIiICIoXL06xYsX08qxbty6AQZ716tXT3cWiPW6AVq1a6b2vtOXatk6cOMGlS5do3749cXFxunYeP35MvXr12Lt3L6mpqRkeE0C/fv10/9bO+JGUlMSOHTsy3PfTTz/Ve16zZk3i4uJ0nw3teQ0KCtKLe9UMIi8rUaKErg8KwNnZmaJFi+qd9y1btlC1alW92T0cHR31+tb+y2QgQrx1ycnJ3H/0EDeytkixO89vW7p7926m4p2dnalfvz7Lli1jzZo1pKSk0Lp160y3N2HCBE6fPk3+/PmpVKkSISEhel8mHh4efP7558ybN4+cOXPi4+PDjBkz9NaHuHTpEkopChcujLOzs97j3Llz3LlzR6/NfPnyGfzhdXBw4N69e7rnQ4cOxcbGhkqVKlG4cGH69u2rN89eTEwM8fHxzJ0716BN7UDAy+2+zMnJCR8fH9auXaubk3DZsmWYmJjQtm1bXdyZM2do0aIFdnZ22Nra4uzsrPvj9/I6Ga6urplemHrhwoWUKVMGCwsLnJyccHZ25ueffzaoEzBYmEs7KPHiORNCCCGEEEIIIdKj7XzPSN26ddmzZw8A8fHxnDhxgjp16rxynxs3blC4cGG93/pFixblyZMn3L17l+joaJ49e0bp0qVfO/+X2draAmT6Qk543hF//fp19u3bBzyfaun27dt06tQpw321AwNFixY12Fa8eHFdR3RMTAwPHjzQm/7pVTL7e9/DwyPNnNLL58Wc02tLe/Fp/vz5DcpTU1N1/RNZ7fdJT+HChfWee3p6YmRklKk1BDLTl3Tp0iXOnDljkGORIkUAw36irJwP+Ps1uXTpEgBdunQxaGvevHk8ffqU+/fvk5SUxK1bt/QeL643amRkRMGCBfXa0uaamXOS0Xvn2rVrGBkZ4enpqReX1nsms21o23nxvF+7di3Nhe7TKvsvkjUixFtnbGyMsZExT1Mz94de6ynPR0yzMo9a+/bt6dGjB7du3cLX1zdT8/JptW3blpo1a7J27Vq2bdvGxIkTGT9+PGvWrNHNsTd58mQCAgJYv34927ZtIygoSDefX758+UhNTUWj0bB582a9tRa0bGxs9J6nFQP6/1NUvHhxLly4wMaNG9myZQurV69m5syZjBw5ktDQUN3IcseOHenSpUua9WnncHyVjh07snHjRjZu3Iifnx+rV6+mYcOGusWp4uPj8fb2xtbWllGjRuHp6YmFhQXHjh1j6NChBiPcL9498SpLliwhICCA5s2b88UXX+Di4oKxsTHjxo3jypUrBvGZOWdCCCGEEEIIIUR68uTJg0ajITo6+pVxtWrVYtmyZVy8eJELFy7g4uKi69h+XZm9YC8rbG1tyZs3L6dPn870Pj4+PuTKlYslS5ZQq1YtlixZQu7cualfv36255dZmf29n9n+htdpK6Mcstrvk1kvDyy8SmbOU2pqKqVLl2bKlClpxr48wPAm5wNg4sSJBmt8atnY2PDrr78aDOJFRkbq3YXxJt5FX5H0R705GYgQb51Go6GIpye/XI6lt3LO9H57eIijnR1OTk6Z3qdFixb06tWL3377zWAxo8zIkycPffr0oU+fPty5c4fy5cszZswY3UAEQOnSpSldujQjRozgwIEDVK9endmzZ/PNN9/g6emJUgoPDw/dyG12sLa25pNPPuGTTz4hKSmJli1bMmbMGIYNG4azszM5cuQgJSXljf6Hwc/Pjxw5crBs2TJMTU25d++e3q1je/bsIS4ujjVr1lCrVi1deWRk5Bsd26pVqyhYsCBr1qzR+8MbHBz82nVm5Q+4EEIIIYQQQoj/FhsbG8qWLcu2bdvw9fXVW6wa4PHjx1hbW5MjRw4qVqzInj17uHjxIt7e3npxJiYmBhfl5cuXj0OHDqGU0v02vXDhApaWljg6OmJra4uZmRmnTp16o+mYXvbxxx8zd+5cDh48SNWqVTOMNzY2pn379oSHhzN+/HjWrVtHjx499Dpb0/tt7ebmBjw/rpedP3+enDlzYm1tjaWlJba2tlkaIHldbm5u6eaj3Z4dsqvf59KlS3p3dly+fJnU1NRs65j39PTk5MmT1KtX7632kWjvMLC1tX1ln1TZsmXZvn27Xlnu3Ll1/05NTeXq1at65/TixYsA2XJO3NzcSE1N5cqVK3p3QaT1nnnTdi5fvmxQnlbZf5FMzSTeiV59+7CaeG7xLFPxCaSywDiebj176s3ZlxEbGxtmzZpFSEgITZs2zfR+KSkpBtMAubi4kDdvXp4+fQo8n3NROyegVunSpTEyMtLFtGzZEmNjY0JDQw1GRJVSxMXFZTonrZf3MTMzo0SJEiilePbsGcbGxrRq1YrVq1en+cc9JiYmU+1YWlrSokULNm3axKxZs7C2tqZZs2a67dr/GXnxuJKSkpg5c2aWj+lFadV76NAhDh48+Np1auezjI+Pf6PchBBCCCGEEEL8O3Xt2pXU1FS++uorDh06xM2bN7lx4wabN29mxIgRuri6devq1lB8eSDC2dmZy5cvc+fOHR48eEBqaioNGzYkLi6OBQsWEB0dzZEjR4iIiKBJkyYYGRlhZmaGn58fS5cu5ZdffuHWrVtcvHiRXbt2vdHxDBkyBGtra7p3787t27cNtl+5coVp06bplXXq1Il79+7Rq1cvHj16pLfuAICVlRVg+Ns6T548lCtXjoULF+ptO336NNu2baNx48bA8+l2mjdvzoYNG/j9998NcsrOK8kbN27M4cOH9foSHj9+zNy5c3F3d6dEiRLZ0k529fvMmDFD73lYWBiA3oWwb6Jt27ZER0fzww8/GGxLTEzk8ePH2dKOl5cXnp6eTJo0iUePHhls1/ZJOTg4UL9+fb3HywOA06dP1/1bKcX06dMxNTXNlgE77Xn9/vvv9cq/++67N677RT4+Phw8eJATJ07oyu7evcvSpUuztZ1/KrkjQrwTXbp0YfiXXzL8STTzcUOTwaLV33KL+NRn9OrV67XayqqHDx+SL18+WrduTdmyZbGxsWHHjh0cOXKEyZMnA7Br1y769etHmzZtKFKkCMnJySxevFg3EADPR4K/+eYbhg0bRlRUFM2bNydHjhxERkaydu1aevbsyeDBg7OUW8OGDcmdOzfVq1cnV65cnDt3junTp9OkSRPdgkHffvstu3fvpnLlyvTo0YMSJUpw9+5djh07xo4dOzK9zkbHjh1ZtGgRW7dupUOHDnoLVFWrVg0HBwe6dOlCUFAQGo2GxYsXv/H/OHz88cesWbOGFi1a0KRJEyIjI5k9ezYlSpRI849YZnh5eQHPFyHy8fHB2NgYf3//N8pTCCGEEEIIIcS/R65cufj2229Zu3Ytixcv5t69e9ja2lKwYEG6d++uiytdujQODg7ky5dPb2FmeP57dubMmQwaNIikpCTCwsJwcXHhyy+/ZMmSJezcuRMbGxvq1q1Ly5Ytdfu1atUKY2NjIiIiuHv3rq6T9k14enqybNkyPvnkE4oXL07nzp0pVaoUSUlJHDhwgIiICAICAvT2+eijjyhVqpRuYePy5cvrbbe0tKREiRKsWLGCIkWK4OjoSKlSpShVqhQTJ07E19eXqlWr0q1bNxITEwkLC8POzo6QkBBdHWPHjmXbtm14e3vTs2dPihcvzs2bN4mIiGD//v1ZmlL7Vb788kuWL1+Or68vQUFBODo6snDhQiIjI1m9ejVGRtlzLXZ29ftERkbi5+dHo0aNOHjwIEuWLKF9+/aULVs2W/Ls1KkTK1eu5NNPP2X37t1Ur16dlJQUzp8/z8qVK9m6dWuaC4hnlZGREfPmzcPX15eSJUsSGBiIq6sr0dHR7N69G1tbWzZs2JBhPRYWFmzZsoUuXbpQuXJlNm/ezM8//8zw4cN1U4a/iXLlytGuXTtmzpzJ/fv3qVatGjt37sz2OxWGDBnCkiVLaNCgAf3798fa2pp58+ZRoEAB7t69+5+fwUMGIsQ7YW9vz4xZswgMDCQHxkwhH8ZpDEYoFOO5zWhuMuabMQaLyLwtVlZW9OnTh23btrFmzRpSU1MpVKgQM2fOpHfv3sDz28h8fHzYsGED0dHRWFlZUbZsWTZv3kyVKlV0dX355ZcUKVKEqVOnEhoaCjyfe69hw4b4+fllObdevXqxdOlSpkyZwqNHj8iXLx9BQUF6V2jkypWLw4cPM2rUKNasWcPMmTNxcnKiZMmSjB8/PtNt1a1blzx58nDz5k29aZng+YLWGzduZNCgQYwYMQIHBwc6duxIvXr18PHxyfJxaQUEBHDr1i3mzJnD1q1bKVGiBEuWLCEiIkK3KFhWtWzZkv79+/O///2PJUuWoJSSgQghhBBCCCGEEHocHBzo2rUrXbt2TTfm6dOnPHr0KM1FqvPmzcs333xjUF6iRAnGjh2bbp1GRka0bNlSb3AiO/j5+fHHH38wceJE1q9fz6xZszA3N6dMmTJMnjyZHj16GOzTuXNnhgwZku4i1fPmzaN///4MHDiQpKQkgoODKVWqFPXr12fLli0EBwczcuRITE1N8fb2Zvz48XpTDrm6unLo0CG+/vprli5dyoMHD3B1dcXX11d3x0V2yJUrFwcOHGDo0KGEhYXx5MkTypQpw4YNG2jSpEm2tQPZ0++zYsUKRo4cyZdffomJiQn9+vVj4sSJ2ZajkZER69atY+rUqSxatIi1a9diZWVFwYIF+eyzz7J1OvHatWtz8OBBRo8ezfTp03n06BG5c+emcuXKmb7A2NjYmC1bttC7d2+++OILcuTIoXtvZZcff/wRZ2dnli5dyrp166hbty4///yzwXoZbyJ//vzs3r2boKAgxo4di7OzM3379sXa2pqgoCCDu0D+azRKVtQQ2eTYsWN4eXlx9OhRg1F0rVmzZtGvbz8KGFvwabIDn+CAEyY8IIW1xDPT5C7nkh/z9ddfExoa+p8fKRTivygz3yVCCCGEEEII8aJX/Y7Qbhs3bhwFCxbMVH2pqak8fPiQjRs3cuDAAb7//vt0F6t9265evcqwYcPeym+kadOmMXDgQKKioihQoEC21i2EeG7AgAHMmTOHR48evfXvkQ+5T0XuiBDvVO/evalUqRJhYWEEL1vOl8+idduMjYxo0awFs/r3N5h3UQghhBBCCCGEEOJNREdHZxz0/+7du8eECROws7OjdevWXLt27S1m9mpZyTsrlFLMnz8fb29vGYQQIpskJiZiaWmpex4XF8fixYupUaPGexvM/FDIQIR457y8vAgPD2fy5Mn89ttvPHjwABsbG8qXL4+rq+v7Tk8IIYQQQgghhBD/Ijlz5sTS0lJvMdzMun//PvPnz38LWWWNpaUlOXPmzJa6Hj9+zE8//cTu3bs5deoU69evz5Z6hRBQtWpVateuTfHixbl9+zbz58/nwYMHfP311+87tfdOBiLEe+Pk5JTt8/QJIYQQQgghhBBCvKhAgQKcP3+e2NjY953Ka8uZM2e23bUQExND+/btsbe3Z/jw4a+1nqUQIm2NGzdm1apVzJ07F41GQ/ny5Zk/fz61atV636m9dzIQIYQQQgghhBBCCCH+1QoUKCDTD/0/d3d3ZMlYId6OsWPHvnKx+v8yo/edgBBCCCGEEEIIIYQQQggh/r1kIEIIIYQQQgghhBBCCCGEEG+NDESI90YpRVxcHFFRUcTExJCamvq+U/pH0Gg09OvXL8O48PBwNBoNUVFReuUTJ06kYMGCGBsbU65cubeTZDbZs2cPGo2GPXv2vO9UhBBCCCGEEEKIfw13d3cCAgLedxpCiP8QWSNCvHMPHz5k6dKlTP9+OmfOndGVe7h50KdfHwIDA3FycspUXeHh4QQGBqa5bejQoXz77bfZkvO/xbZt2xgyZAgdO3YkJCSEnDlz8tdffzF37lyaN2+e4cCEn58fO3bs4Pbt2+TIkSPNmA4dOhAREcHNmzcz/Tq+TwkJCUyYMIHatWtTu3bt952OEEIIIYQQQoi34Pr16//qxaq1/SNHjhyhQoUKBttr165NbGwsp0+ffptpCiFEumQgQrxTBw4cwO9jP+7F36MMZehOd6yx5glPOHHtBMOGDiN4ZDD/W/E/mjZtmul6R40ahYeHh15ZqVKlsjv9f5ROnTrh7++Pubm5rmzXrl0YGRkxf/58zMzMAPj9998JDQ3F3d09w4GIDh06sGHDBtauXUvnzp0NtickJLB+/XoaNWqULYMQtWrVIjExUZfr25CQkEBoaCiADEQIIYQQQgghxL/Q9evXKV68OAkJCe87lddmZWXFuXPnsm3B7QsXLmBkJBOlCCHeHRmIEO/Mb7/9Rr269SjwrACD1WAccdTbXp7ytE5tzbIny2jerDnr1q/L9GCEr69vmiP+aXny5AlmZmb/+j+4xsbGGBsb65XduXMHS0vL1+7Y9/PzI0eOHCxbtizNgYj169fz+PFjOnTo8Fr1a734GllYWLxRXUIIIYQQQggh/ttiY2NJSEggPHwcxYs/v4hx1KiZPHyYwMSJg/Vijx49Q58+o9mxYz6mpqYkJCTi6Gj3PtLWOXcukoCAYcTGxmbbQMSLFy0KIcS78O/uiRUfjKSkJFo2a0m+5Hz0T+1vMAihZYstPVVPylIW/0/8iYuLe6N2tWsM/O9//2PEiBG4urpiZWXFgwcPuHv3LoMHD6Z06dLY2Nhga2uLr68vJ0+eTLOOlStXEhoaiqurKzly5KB169bcv3+fp0+fMmDAAFxcXLCxsSEwMJCnT58a5LJkyRK8vLywtLTE0dERf39//vzzT72YS5cu0apVK3Lnzo2FhQX58uXD39+f+/fvG9S3bt06SpUqhbm5OSVLlmTLli16219eI0Kj0bBgwQIeP36MRqNBo9EQHh5OxYoVAQgMDNQrT4ulpSUtW7Zk586d3Llzx2D7smXLyJEjB35+flk+v2m9RmmtEbFv3z7atGlDgQIFMDc3J3/+/AwcOJDExES9egMCArCxsSE6OprmzZtjY2ODs7MzgwcPJiUlBYCoqCicnZ0BCA0N1R1/SEhImscvhBBCCCGEEOKfq3hxDz76qAQffVQCR0d77Oxy6J5rH4ULuwNQpkxRqlYtR716VQ1i3vVDO3iSnV5eI0Lbh/Drr7/y+eef4+zsjLW1NS1atCAmJkZv39TUVEJCQsibNy9WVlbUqVOHs2fPprnuRHx8PAMGDCB//vyYm5tTqFAhxo8fL+uECvEfJHdEiHdizZo13Lxzk2CCMePVV+MbYUR71Z5hT4cRHh7OoEGDMqz//v37BnM95syZU/fv0aNHY2ZmxuDBg3n69ClmZmacPXuWdevW0aZNGzw8PLh9+zZz5szB29ubs2fPkjdvXr36xo0bh6WlJV9++SWXL18mLCwMU1NTjIyMuHfvHiEhIfz222+Eh4fj4eHByJEjdfuOGTOGr7/+mrZt29K9e3diYmIICwujVq1aHD9+HHt7e5KSkvDx8eHp06f079+f3LlzEx0dzcaNG4mPj8fO7u8rMPbv38+aNWvo06cPOXLk4Pvvv6dVq1Zcv3493SmRFi9ezNy5czl8+DDz5s0DoHDhwowaNYqRI0fSs2dPatasCUC1atXSPdcdOnRg4cKFrFy5Um/R7Lt377J161batWuHpaUlZ86cydL5Tes1SktERAQJCQn07t0bJycnDh8+TFhYGDdu3CAiIkIvNiUlBR8fHypXrsykSZPYsWMHkydPxtPTk969e+Ps7MysWbPo3bs3LVq0oGXLlgCUKVMm3eMXQgghhBBCCPHfsGjRegYNmkBMzK/A87sofvppNwMGdCY0dAb37j3Ax6cGs2cHkyOHNQAPHz6mb9/R/PTTLmxtbRg0KJANG3ZTtmxRJk8eCsDTp0mMHPk9K1ZsIT7+ASVLFmLs2IF4e1d845zT6h8BePbsWab279+/Pw4ODgQHBxMVFcV3331Hv379WLFihS5m2LBhTJgwgaZNm+Lj48PJkyfx8fHhyZMnenUlJCTg7e1NdHQ0vXr1okCBAhw4cIBhw4Zx8+ZNvvvuuzc6ViHEP4sMRIh3YkbYDIoZFyNvSt6Mg3l+Z4RXqhczwmYwcODADKdRql+/vkGZUkr37ydPnvD7779jaWmpKytdujQXL17Uq7tTp04UK1aM+fPn8/XXX+vVl5yczC+//IKpqSkAMTEx/O9//6NRo0Zs2rQJgD59+nD58mV+/PFH3UDEtWvXCA4O5ptvvmH48OG6+lq2bMlHH33EzJkzGT58OGfPniUyMpKIiAhat26ti3txQEPr3LlznD17Fk9PTwDq1KlD2bJlWb58ud7gwIs6duzIjh07OHbsGB07dtSVGxsbM3LkSKpWrapXnp66deuSJ08eli1bptdWREQEz549003LlNXzm9ZrlJbx48frxfTs2ZNChQoxfPhwrl+/rneb6pMnT/jkk090bX366aeUL1+e+fPn07t3b6ytrWndujW9e/emTJkymTp+IYQQQgghhBD/XVev/slPP+1i7dow4uMf0L79F0yYMJ/Ro4MA+OKLiRw8eII1a77HxcWJ0NCZHD9+jrJli+rq+OyzsZw7d5UlS8aTJ48L69fv5OOPe3Ps2GoKF3Z7o/zS6h/RKlmyZIb7Ozk5sW3bNjQaDfD87ofvv/+e+/fvY2dnx+3bt5kyZQrNmzdn7dq1uv1CQ0MNZheYMmUKV65c4fjx4xQuXBiAXr16kTdvXiZOnMigQYPInz//axylEOKfSKZmEm+dUorDRw5TOqV0lvYrS1kir0Vy9+7dDGNnzJjB9u3b9R4v6tKli0EHt7m5ua6TPCUlhbi4OGxsbChatCjHjh0zaKNz5866QQiAypUro5Sia9euenGVK1fmzz//JDk5GXh+N0hqaipt27YlNjZW98idOzeFCxdm9+7dALo7HrZu3ZrhAlr169fXDULA8yv4bW1tuXr16iv3yw7Gxsb4+/tz8OBB3bRP8Hxaply5clGvXj0g6+c3rdcoLS/GPH78mNjYWKpVq4ZSiuPHjxvEf/rpp3rPa9as+U7OkxBCCCGEEEKID9umTXtxcKis92jatM8r90lNTWX+/G8oVaowNWp40b79x+zefQh4fjfE4sU/8e23n1O3bhVKlSrMvHmjdNMDA1y/fpOFC9ezfPkkatTwwtMzP59/HkD16h+xcOG6Nz6mtPpHtm/fnuk7/3v27KkbhIDnv6FTUlK4du0aADt37iQ5OZk+ffTPU//+/Q3qioiIoGbNmjg4OOj1h9SvX5+UlBT27t37BkcqhPinkTsixFuXkpJC0rMkLMm4k/lF2vhHjx7pTbOUlkqVKr1ysWoPD8P5FFNTU5k2bRozZ84kMjJS738M0pre6OUFobQDBy+P3tvZ2ZGamsr9+/dxcnLi0qVLKKV0o/8v0w5ueHh48PnnnzNlyhSWLl1KzZo18fPzo2PHjnrTMqWVC4CDgwP37t1Ls43s1qFDB6ZOncqyZcsYPnw4N27cYN++fQQFBekWyM7q+U3rNUrL9evXGTlyJD/99JPB8b68loaFhYVuDQitd3mehBBCCCGEEEJ8uGrXrkhY2Ai9ssOHTxEQMCzdfdzcXHXTMAHkyeNMTMzzCyivXr3Bs2fJVKz494WYdnY5KFLEXff89OlLpKSkULJkU716nz59hqOj/RsczXPp9Y9oBwMy8nJ/g4ODA4Dud7R2QKJQoUJ6cY6OjrpYrUuXLvHHH38Y/C7XSmvtSSHEv5cMRIi3zsTEBAszCx4lPcrSfo94Hm9ra/vGOaR1pf3YsWP5+uuv6dq1K6NHj8bR0REjIyMGDBiQ5qJJ2g72zJZrp4ZKTU1Fo9GwefPmNGNtbGx0/548eTIBAQGsX7+ebdu2ERQUxLhx4/jtt9/Ily9fptt827y8vChWrBjLly9n+PDhLF++HKWUblomyPr5zczdECkpKTRo0IC7d+8ydOhQihUrhrW1NdHR0QQEBBjUm955EkIIIYQQQgghrKwsKVRIv+M9Ovr2K/cxNdXvStNoIDU187/FHz1KwNjYmN9++5/Bb1YbG6tM1/O2ZGd/Q2pqKg0aNGDIkCFpbi9SpEiW6xRC/HPJQIR4J2rXqc3xHcfxSfHJ9D5HNUcpXby0wYh6dlm1ahV16tRh/vz5euXx8fEZ3oGRFZ6eniil8PDwyNQf2dKlS1O6dGlGjBjBgQMHqF69OrNnz+abb77Jtpxe9OItl1nRoUMHvv76a/744w+WLVtG4cKFqVjx74W13sb5PXXqFBcvXmThwoV07txZV/7yVFxZ8brHL4QQQgghhBBCvKhgwXyYmprw+++nKVAgDwD37z/k0qVr1KzpBUC5csVISUkhJuYuNWp4vc90X4ub2/M1LC5fvqw3s0FcXJzB7AOenp48evToletWCCH+O2SNCPFO9O3Xl8iUSCKJzFT8Xe7yB3/QN6jvW+soNjY2NhjRj4iIIDo6OlvbadmyJcbGxoSGhhq0p5QiLi4OgAcPHujWldAqXbo0RkZGPH36NFtzepG19fNbSuPj47O0n/buh5EjR3LixAm9uyHg7Zxf7ZUZL9arlGLatGmvXaeV1fMrTrJ6/EIIIYQQQgghxIty5LCmUyc/hg2bwp49hzlz5jI9ewZjZGSk69soUsSddu2a0LXrV6xdu4PIyBscOXKK8ePnsWnTh79mQr169TAxMWHWrFl65dOnTzeIbdu2LQcPHmTr1q0G2+Lj4w36QIQQ/25yR4R4J3x9fSnsWZjF1xYzKHkQ1linG5tEEguMF+Bg62DQuZ2dPv74Y0aNGkVgYCDVqlXj1KlTLF26lIIFC2ZrO56ennzzzTcMGzaMqKgomjdvTo4cOYiMjGTt2rX07NmTwYMHs2vXLvr160ebNm0oUqQIycnJLF68GGNjY1q1apWtOb2cn729PbNnzyZHjhxYW1tTuXLlDNds8PDwoFq1aqxfvx7A4LV6G+e3WLFieHp6MnjwYKKjo7G1tWX16tVvtOaDpaUlJUqUYMWKFRQpUgRHR0dKlSpFqVKlXrtOIYQQQgghhBD/TRMnfkHfvqNp3rwftrY2DBoUyI0btzA3N9fFzJs3irFj5zJ06CSio++QM6cDlSqVoXHjWu8x88zJlSsXn332GZMnT8bPz49GjRpx8uRJNm/eTM6cOfUuJv3iiy/46aef+PjjjwkICMDLy4vHjx9z6tQpVq1aRVRUVLbOSCGE+LDJQIR4J4yNjdnw8waqVanG5EeT6ZTcCXfc0aB/t0M00SwzXsYNkxvs+nmX3voJ2W348OE8fvyYZcuWsWLFCsqXL8/PP//Ml19+me1tffnllxQpUoSpU6cSGhoKPF/kumHDhvj5+QFQtmxZfHx82LBhA9HR0VhZWVG2bFk2b95MlSpVsj0nLVNTUxYuXMiwYcP49NNPSU5OZsGCBZlaPLpDhw4cOHCASpUqGSxU9TbOr6mpKRs2bNCtnWFhYUGLFi3o168fZcuWfe16582bR//+/Rk4cCBJSUkEBwfLQIQQQgghhBBC/IvNn5/29Mfe3hVJSvoDgM6dm9G5czPdtpEj+zByZB+9+KCgTgQFddI9z5HDmkWLvtU9f/w4gW++mU337q11ZaampgQH9yU4uG+2HMu7Nn78eKysrPjhhx/YsWMHVatWZdu2bdSoUQMLCwtdnJWVFb/88gtjx44lIiKCRYsWYWtrS5EiRQgNDcXOzu49HoUQ4l3TqHe1uq341zt27BheXl4cPXqU8uXLpxlz4cIFmjZpyqUrl3A3dqd8SnlssCGRRE4an+RiykXy5MrD2vVrqVy58js+AiHEhyAz3yVCCCGEEEII8aJX/Y7QbgsPH0fx4hlfdPcmLlyIJCrqL0qW9OTRo0Tmz1/NsWNnWb36O+ztbV+rznPnIgkIGPZB/0aKj4/HwcGBb775hq+++up9pyPEf9aH3Kcid0SId6po0aKcu3COLVu2MGP6DDbt3sSTp08wNzWnUqVKjOo/ihYtWmBmZva+UxVCCCGEEEIIIcS/QM6cObGysiIgYNh7y8HHp+cb7W9lZfXBTGOUmJiIpaWlXtl3330HQO3atd99QkKIfwQZiBDvnLGxMU2aNKFJkyYAJCcnY2Iib0UhhBBCCCGEEEJkvwIFCnDu3DliY2PfdyqvLWfOnBQoUOB9pwHAihUrCA8Pp3HjxtjY2LB//36WL19Ow4YNqV69+vtOTwjxgZLeX/HeySCEEEIIIYQQQggh3qYCBQp8MB35/3RlypTBxMSECRMm8ODBA90C1t98k/a6G0IIATIQIYQQQgghhBBCCCGEyKTy5cuzY8eO952GEOIfxuh9JyCEEEIIIYQQQgghhBBCiH8vGYgQ4l8gJCQEjUbzXtres2cPGo2GPXv2vJf2hRBCCCGEEEII8e+UVn+Hu7s7AQEB7yehV3hfeX2o50OIl8nUTOK9OX/+PHv27OHhw4dYW1tTuXJlvLy8slzPqVOnCA0N5ciRI9y+fRsnJydKlCiBn58f/fv318WNHTuWEiVK0Lx582w8iqz7448/mDp1Knv27OHmzZuYmJhQqFAhGjZsyKeffkrBggXfa35CCCGEEEIIIcS/zfXr1//Vi1WHh4cTGBjIkSNHqFChgsH22rVrExsby+nTp99mmuItOXDgANu2bWPAgAHY29u/73SEeC0yECHeuQ0bNvDd1Mns2v0LRkaQw9qYx4mpJCcrKlUsT/+ggXTo0CFTV/gfOHCAOnXqUKBAAXr06EHu3Ln5888/+e2335g2bZrBQETr1q3f60DEDz/8QO/evcmZMycdOnSgWLFiJCcnc/r0aRYtWsR3331HYmIixsbGWap3xIgRfPnll28payGEEEIIIYQQ4p/r+vXrFC9elISEJ+87lddmZWWBo2NOBg0axIABA953Ou/VhQsXMDL68CZ5eZt5HThwgNDQUAICAgwGIj7U8yHEy2QgQrwzSim++uorxo0bR7Wyxiz9BlrVBXOzFJKTYdOvMCPiBJ06dWLnzh3Mmzc/ww75MWPGYGdnx5EjRwy+iO/cufMWjybrDhw4QO/evalevTobN24kR44cetsnT57MmDFjXqtuExMTTEzk4yyEEEIIIYQQQrwsNjaWhIQnLFkCxYs/LwsOhocPYcoU/djff4devWDPHnjpZ/t7c+4cdOz4BDu7lPedygfB3Nz8faego5TiyZMnWFpavre8PqTzIcSryHCZeGfGjx/PuHHjmPgZ7J+XQvtGYG72fJuJCfh5w9bpqSweBYsXL2LAZ59lWOeVK1coWbJkmrelubi46P6t0Wh4/PgxCxcuRKPRoNFo9ObPO378OL6+vtja2mJjY0O9evX47bff9OoLDw9Ho9Gwd+9eevXqhZOTE7a2tnTu3Jl79+5lmGtoaCgajYalS5caDEIAWFhYMHr0aL3Bl3379tGmTRsKFCiAubk5+fPnZ+DAgSQmJurtm9aciRqNhn79+rFu3TpKlSqFubk5JUuWZMuWLQZtR0dH07VrV3LlyqWL+/HHHw3ibty4QfPmzbG2tsbFxYWBAwfy9OnTDI9dCCGEEEIIIYR434oXh/Llnz+cnMDe/u/n2keRIs9jy5Y13Pa+HtrBk+yUnJzM6NGj8fT0xNzcHHd3d4YPH27wG9/d3Z2PP/6YPXv2UKFCBSwtLSldurRuncg1a9ZQunRpLCws8PLy4vjx4wZt7dq1i5o1a2JtbY29vT3NmjXj3LlzBnH79++nYsWKWFhY4OnpyZw5c9LM/eU1EbT9Nfv37ycoKAhnZ2fs7e3p1asXSUlJxMfH07lzZxwcHHBwcGDIkCEopfTqTE1N5bvvvqNkyZJYWFiQK1cuevXqZdDfoz0fW7du1Z0PbZ4v56Xtf0rrERUVBTyfvjsgIICCBQtiYWFB7ty56dq1K3Fxcbp6QkJC+OKLLwDw8PAwqCOtNSKuXr1KmzZtcHR0xMrKiipVqvDzzz/rxWjX/Fy5ciVjxowhX758WFhYUK9ePS5fvpzmuRfiTcgl1OKduHXrFiNHfs2QzjC406tjOzaGew8UQZNm0LNXL0qXLp1urJubGwcPHuT06dOUKlUq3bjFixfTvXt3KlWqRM+ePQHw9PQE4MyZM9SsWRNbW1uGDBmCqakpc+bMoXbt2vzyyy9UrlxZr65+/fphb29PSEgIFy5cYNasWVy7dk33BZ6WhIQEdu3aRe3atcmXL9+rT8ALIiIiSEhIoHfv3jg5OXH48GHCwsK4ceMGERERGe6/f/9+1qxZQ58+fciRIwfff/89rVq14vr16zg5OQFw+/ZtqlSpohu4cHZ2ZvPmzXTr1o0HDx7obvlMTEykXr16XL9+naCgIPLmzcvixYvZtWtXpo9HCCGEEEIIIYT4J1m9GkaOhMuXIU8e6N8fBg36e7u7O3TvDhcvwpo1zwc4wsKgatXn5Tt3QsGC8OOP8OLSDRnVe+cOdOsGO3aAo2Pm871//36aa2E8e/ZM73n37t1ZuHAhrVu3ZtCgQRw6dIhx48Zx7tw51q5dqxd7+fJl2rdvT69evejYsSOTJk2iadOmzJ49m+HDh9OnTx8Axo0bR9u2bfWmCtqxYwe+vr4ULFiQkJAQEhMTCQsLo3r16hw7dgx3d3fg+fqfDRs2xNnZmZCQEJKTkwkODiZXrlyZPvb+/fuTO3duQkND+e2335g7dy729vYcOHCAAgUKMHbsWDZt2sTEiRMpVaoUnTt31u3bq1cv3TobQUFBREZGMn36dI4fP86vv/6KqampLvbChQu0a9eOXr160aNHD4oWLZpmPosXLzYoGzFiBHfu3MHGxgaA7du3c/XqVQIDA8mdOzdnzpxh7ty5nDlzht9++w2NRkPLli25ePEiy5cvZ+rUqeTMmRMAZ2fnNNu9ffs21apVIyEhgaCgIJycnFi4cCF+fn6sWrWKFi1a6MV/++23GBkZMXjwYO7fv8+ECRPo0KEDhw4dyvS5FyJTlBDZ5OjRowpQR48eNdj2zTffKEsLI3V3F0r9nvEj6TdU7pwmqnfv3q9sc9u2bcrY2FgZGxurqlWrqiFDhqitW7eqpKQkg1hra2vVpUsXg/LmzZsrMzMzdeXKFV3ZX3/9pXLkyKFq1aqlK1uwYIEClJeXl179EyZMUIBav359unmePHlSAWrAgAEG2+Li4lRMTIzu8fTpU922hIQEg/hx48YpjUajrl27pisLDg5WL3+cAWVmZqYuX75skEdYWJiurFu3bipPnjwqNjZWb39/f39lZ2eny+G7775TgFq5cqUu5vHjx6pQoUIKULt37073+IXIild9lwghhBBCCCFEWl71O+LvbSilnj+6dEE1a/b3c+1j924UoO7dQ/3+O8rICDVqFOrCBdSCBShLy+f/1ca7uaEcHVGzZ6MuXkT17o2ytUU1aoRaufL5fs2bo4oXR6WmPt8nM/X6+qLKlkUdPIhasuR5Tubm5mrq1KlpHr+2z+JVj5IlSyqllDpx4oQCVPfu3fXqGDx4sALUrl27dGVubm4KUAcOHNCVbd26VQHK0tJSr29izpw5Bv0D5cqVUy4uLiouLk5XdvLkSWVkZKQ6d+6sK2vevLmysLDQq+/s2bPK2NjYoL/Dzc1Nr39He+w+Pj4qNTVVV161alWl0WjUp59+qitLTk5W+fLlU97e3rqyffv2KUAtXbpUr50tW7YYlGvPx5YtW9TLXs7rZdr+o0WLFunK0ur3Wb58uQLU3r17dWUTJ05UgIqMjMyw3QEDBihA7du3T1f28OFD5eHhodzd3VVKSopSSqndu3crQBUvXlyvL2ratGkKUKdOnUr3WMSH60PuU5GpmcQ7MX/eHNo1TMXBNnPxpibQo3kyixeHv3LqnwYNGnDw4EH8/Pw4efIkEyZMwMfHB1dXV3766acM20lJSWHbtm00b96cggUL6srz5MlD+/bt2b9/Pw8ePNDbp2fPnnoj4b1798bExIRNmzal2462Du2I94sKFiyIs7Oz7vFi3paWlrp/P378mNjYWKpVq4ZSKs3bHV9Wv3593Z0fAGXKlMHW1parV68Cz+cyXL16NU2bNkUpRWxsrO7h4+PD/fv3OXbsGACbNm0iT548tG7dWleflZWV7g4TIYQQQgghhBDin2TjRrCx0X/4+v69fcoUqFcPvv76+ZRNAQHQrx9MnKhfT+PGz9eVKFz4+V0ODx5AxYrQps3z/YYOfb7Ow+3bmav34kXYvBl++AGqVPl7aqbMTI08Y8YMtm/fbvAoU6aMLkbbf/H555/r7Tvo/2/JeHkKnxIlSlC1alXdc+3MEXXr1qVAgQIG5do+h5s3b3LixAkCAgJwfOG2jjJlytCgQQNdHikpKWzdupXmzZvr1Ve8eHF8fHwyPGatbt266c1UUblyZZRSdOvWTVdmbGxMhQoVdDnC89ko7OzsaNCggV6/iJeXFzY2NuzevVuvHQ8PjyzlBbB7926GDRtG//796dTp76lCXuz3efLkCbGxsVSpUgVA1x+TVZs2baJSpUrUqFFDV2ZjY0PPnj2Jiori7NmzevGBgYGYmZnpntesWRNA7xwJkR1kIEK8dampqURdu0Glklnbr3IpePQoUW9evLRUrFiRNWvWcO/ePQ4fPsywYcN4+PAhrVu3NvhyfVlMTAwJCQlp3kZXvHhxUlNT+fPPP/XKCxcurPfcxsaGPHny6ObmS4t2TYhHjx4ZbFu/fj3bt29n0qRJBtuuX7+u+4NtY2ODs7Mz3t7ewPPbLTPy4h9wLQcHB90chzExMcTHxzN37ly9wRBnZ2cCAwOBvxf9vnbtGoUKFTKYfiq9WxCFEEIIIYQQQogPWZ06cOKE/mPevL+3nzsH1avr71O9Oly6BCkvrBv9Qh8/2pmEXpxlWlv2/z+vM6z33Lnna2l6eenHpLXe5MsqVapE/fr1DR4ODg66mGvXrmFkZEShQoX09s2dOzf29vZcu3ZNr/zlvgU7OzsA8ufPn2a5ts9BW096fS6xsbE8fvyYmJgYEhMTDfpb0ts3PVnJ88W1Hy5dusT9+/dxcXEx6Bt59OiRrl9Ey8PDI9M5wfP1Nj/55BOqV6/OlJdWR7979y6fffYZuXLlwtLSEmdnZ139men3Scu1a9fSPefa7S96+bxp3yuZWQ9ViKyQNSLEW6f+/77CF9ZgzhTj/x8mS3nxr/srmJmZUbFiRSpWrEiRIkUIDAwkIiKC4ODgLGac/QoVKoSJiQmnT5822KYdWDAx0f84pqSk0KBBA+7evcvQoUMpVqwY1tbWREdHExAQQGpqaobtGqdz0tX/L8qkraNjx4506dIlzdgXr5oQQgghhBBCCCH+Layt4aW+eG7cyHo9L0yagPbavbTKMvEz/p1Kb53Ll6XXt5BRn8O7lpU8X8wxNTUVFxcXli5dmub+L6/F8OJdDBlJSkqidevWmJubs3LlSoO+n7Zt23LgwAG++OILypUrh42NDampqTRq1ChT/T7Z4UN7HcW/lwxEiLfO2NiYnDntuXQ9Pkv7XbwORkZGukWVs6LC/68AdfPmTV1ZWn9gnZ2dsbKy4sKFCwbbzp8/j5GRkcHI+aVLl6hTp47u+aNHj7h58yaNGzdONx9ra2vd4tfR0dG4urpmeAynTp3i4sWLLFy4UG8Bpe3bt2e4b2Y5OzuTI0cOUlJSqF+//itj3dzcOH36NEopvXOZ1rkTQgghhBBCCCH+6YoXh19/1S/79dfn0yll9WLLrNRbrBgkJ8PRo8+neNJ6+PDh6zf6Ajc3N1JTU7l06ZLuKnl4vshxfHw8bm5u2dYOpN1vcP78eXLmzIm1tTUWFhZYWlpy6dIlg7h30efg6enJjh07qF69epYGGTIjKCiIEydOsHfvXoOFt+/du8fOnTsJDQ1l5MiRuvK0zkNmB43g+XlP75xrtwvxPsjUTOKd8PfvSPjPJiQ9y1y8UvDDOhOaNWuKlZVVunG7d+9Oc4RWO8/gi7eiWVtbEx8frxdnbGxMw4YNWb9+vd7USrdv32bZsmXUqFEDW1v9hS3mzp3Ls2d/H8isWbNITk7G98WJJNMwcuRIUlJS6NixY5pTNL18HNoR6RfLlVJMmzbtle1khbGxMa1atWL16tVp3q0RExOj+3fjxo3566+/WLVqla4sISGBuXPnZls+QgghhBBCCCHEh2LQINi5E0aPfr5uw8KFMH06DB78dustWhQaNXq+7sShQ8+nagIwNzd/s4b/n/ZCyu+++06vXDttUJMmTbKlnTx58lCuXDkWLlyo1x9z+vRptm3bpsvD2NgYHx8f1q1bx/Xr13Vx586dY+vWrdmSy6u0bduWlJQURo8ebbAtOTnZoC8psxYsWMCcOXOYMWMGlSpVMtieVr8PGL4u8LxPC8hULo0bN+bw4cMcPHhQV/b48WPmzp2Lu7s7JUqUyMJRCJF95I4I8U706dOH6dOns/hn6NY84/itB+H05WS+m93/lXH9+/cnISGBFi1aUKxYMZKSkjhw4AArVqzA3d1dt84BgJeXFzt27GDKlCnkzZsXDw8PKleuzDfffMP27dupUaMGffr0wcTEhDlz5vD06VMmTJhg0GZSUhL16tWjbdu2XLhwgZkzZ1KjRg38/PxemWvNmjWZPn06/fv3p3DhwnTo0EGX88WLF1m6dClmZmbkzp0bgGLFiuHp6cngwYOJjo7G1taW1atXZ/scfd9++y27d++mcuXK9OjRgxIlSnD37l2OHTvGjh07uHv3LgA9evRg+vTpdO7cmaNHj5InTx4WL178yoEiIYQQQgghhBDin6p8eVi58vkC1KNHQ548MGrU88Wl33a9CxZA9+7g7Q3a5R1eXPD5TZQtW5YuXbowd+5c4uPj8fb25vDhwyxcuJDmzZvrzQLxpiZOnIivry9Vq1alW7duJCYmEhYWhp2dHSEhIbq40NBQtmzZQs2aNenTpw/JycmEhYVRsmRJ/vjjj2zLJy3e3t706tWLcePGceLECRo2bIipqSmXLl0iIiKCadOm0bp16yzVGRsbS58+fShRogTm5uYsWbJEb3uLFi2wtbWlVq1aTJgwgWfPnuHq6sq2bduIjIw0qM/r/xcM+eqrr/D398fU1JSmTZvqBihe9OWXX7J8+XJ8fX0JCgrC0dGRhQsXEhkZyerVqzEykuvSxfshAxHinShevDgdOrSj38QVeLimUrdi+rEnLkD7EcbUqV2dunXrvrLeSZMmERERwaZNm5g7dy5JSUkUKFCAPn36MGLECOzt7XWxU6ZMoWfPnowYMYLExES6dOlC5cqVKVmyJPv27WPYsGGMGzeO1NRUKleuzJIlS6hcubJBm9OnT2fp0qWMHDmSZ8+e0a5dO77//vtM3SbXu3dvqlatytSpU4mIiODWrVuYmpri6elJly5d6N27N56engCYmpqyYcMGgoKCGDduHBYWFrRo0YJ+/fpRtmzZDNvKrFy5cnH48GFGjRrFmjVrmDlzJk5OTpQsWZLx48fr4qysrNi5cyf9+/cnLCwMKysrOnTogK+vL40aNcq2fIQQQgghhBBCiLctPDzt8tq1n8/SoNWq1fNHel6YXEHn5Ykb3N0NyzKqN3du2Ljx+b+PHXu+cPXGjRspX758+jtlwbx58yhYsCDh4eGsXbuW3LlzM2zYsGxfZ7N+/fps2bKF4OBgRo4ciampKd7e3owfP15v0ecyZcqwdetWPv/8c0aOHEm+fPkIDQ3l5s2bb30gAmD27Nl4eXkxZ84chg8fjomJCe7u7nTs2JHqL68sngmPHj3iyZMnnD17lk6dOhlsj4yMxNrammXLltG/f39mzJiBUoqGDRuyefNm8ubNqxdfsWJFRo8ezezZs9myZQupqam6Ol6WK1cuDhw4wNChQwkLC+PJkyeUKVOGDRs2ZNvdLkK8Do2SlUdENjl27BheXl4cPXo0zT+MT548oZlfU3bv2Un/toreraHQC8svRN+BuWthylJjihYrxfYdu3HQDvt/AMLDwwkMDOTIkSO6NSiEENkvo+8SIYQQQgghhHjZq35H/L3t+d0I/zTagQj5jSSEyMiH3Kcid0SId8bCwoKNP28iJCSE2bOnM2XpAyqUMCanfSr3Hxlx+EwqlpYWdAnsyrfffouNjc37TlkIIYQQQgghhBD/Etq1Fv5p/ql5CyHEi2QgQrxTpqamjBkzhhEjRrBy5Up2797NgwcPcPa0oUPPynTq1MlgcWghhBBCCCGEEEKI15UzZ06srCzo2PHJ+07ltVlZWZAzZ873nYYQQrw2GYgQ74WlpSVdunShS5cu7zsVIYQQQgghhBBC/IsVKFCAc+cuEBsb+75TeW05c+akQIEC7zsNIYR4bTIQIUQmBQQEEBAQ8L7TEEIIIYQQQgghRBYVKFBAOvKFEOI9MnrfCQghhBBCCCGEEEIIIYQQ4t9LBiKEEEIIIYQQQgghhBBCCPHWyECEEEIIIYQQQgghhBDigxQSEoJGo3nfabxSeHg4Go2GqKio952KEB8sWSNCZLtz58697xSEEP9g8h0ihBBCCCGEyG7Xr1//Vy9WHR4eTmBgIAD79u2jRo0aetuVUhQoUIAbN27QpEkTNm7c+FbzFUKIl8lAhMg2OXPmxMrKio4dO77vVIQQ/3BWVlbkzJnzfachhBBCCCGE+Be4fv06xYoWJ/FJwvtO5bVZWlhx/sK5DBfctrCwYNmyZQYDEb/88gs3btzA3Nz8bab5n9WpUyf8/f3l/ArxCjIQIbJNgQIFOHfu3D/6CgMhxIcho6t9hBBCCCGEECKzYmNjSXySgL/rNFzMC7H9zhTOPdpJqRy+1HXupxe7O3Ympx78THGbejRw+fw9ZazvztPL/C/6M2JjYzP8ndS4cWMiIiL4/vvvMTH5u9tv2bJleHl5SZ/NW2JsbIyxsfH7TkOID5oMRIhsVaBAAek8FEIIIYQQQgghxAfHxbwQ+SxLY2XigL1pXi4//pV2+aZhamQBwLPUJ1x+tA97U1esTBzIZ1n6PWecde3atWPt2rVs374dX19fAJKSkli1ahUjRozg+++/N9jn8ePHjBw5kpUrV3Lnzh3c3d3p0aMHgwYNMlibYcmSJXz//fecPn0ac3NzSpcuzYgRI2jYsKEuZubMmcyYMYPLly/j5OREixYtGDNmDPb29hnmv3//fgYOHMipU6dwdXVlyJAhacYlJyczbtw4wsPDuXHjBnny5KF9+/YEBwfr3ZXg7u5OqVKlGDx4MIMHD+bMmTMUKlSIsLAwateuzZo1awgODubSpUuULFmSefPm8dFHH+n2/+OPP5gyZQp79+7lr7/+wt7ensaNGzNx4kScnJx0cdqpsSIjI3F3d9dr+8svv+Tzzz/njz/+IG/evISEhNC5c+cMz4UQ/zayWLUQQgghhBBCCCGE+E9xtSiFvWkeTj3YrCs7/WAL9qauuFqU1ItNTn3K+psjCT3/EcPPFmZmZEv+TDypF3PryQV+vBbA1+dKMOJccWZGtiIuKQqAVJXK9jvfMeZCJYadLcTUK4248HDPWzkud3d3qlatyvLly3Vlmzdv5v79+/j7+xvEK6Xw8/Nj6tSpNGrUiClTplC0aFG++OILPv9c/46Q0NBQOnXqhKmpKaNGjSI0NJT8+fOza9cuXUxISAh9+/Ylb968TJ48mVatWjFnzhwaNmzIs2fPXpn7qVOnaNiwIXfu3CEkJITAwECCg4NZu3atQWz37t0ZOXIk5cuXZ+rUqXh7ezNu3Lg0j/Hy5cu0b9+epk2bMm7cOO7du0fTpk1ZunQpAwcOpGPHjoSGhnLlyhXatm1Lamqqbt/t27dz9epVAgMDCQsLw9/fn//97380btwYpdQrj0fbduvWrWnQoAGTJ0/GwcGBgIAAzpw5k+G+QvzbyB0RQgghhBBCCCGEEOI/p4L9J/wev5Ly9i0AOBK/ggoObbj6+De9uJ9vj+XUg8184joFB1NX9sTNZt61jgwttA8rE3vuP7vF7Kg2FLSqSk/35VgY5SAq4XdSVAoA++N+ZF/cD7TMO468FiX5/d4Kwv/sxueeO3A298j242rfvj3Dhg0jMTERS0tLli5dire3N3nz5jWI/emnn9i1axfffPMNX331FQB9+/alTZs2TJs2jX79+uHp6cnly5cZNWoULVq0YNWqVRgZ/X1ts7ZDPiYmhnHjxtGwYUM2b96siylWrBj9+vVjyZIlugW10zJy5EiUUuzbt08320arVq0oXVr/zpSTJ0+ycOFCunfvzg8//ABAnz59cHFxYdKkSezevZs6dero4i9cuMCBAweoWrUqACVKlMDHx4cePXpw/vx5XVsODg706tWLvXv3Urt2bV29gwYN0mu/SpUqtGvXjv3791OzZs1XvhYXLlxg7969uri2bduSP39+FixYwKRJk165rxD/NnJHhBBCCCGEEEIIIYT4zylv34L/Y+++46Oq8v+Pv6ekTHpCEloSQggloSOhd7CAig3s3dVd3RXburvqF+yru7r2VRf0J7uWVdG1KygISqSHKr2FAKGF9DaZZO7vj5iRkAQSMpNJeT0fjzySuffccz8zuUkm855zTnrxGuWUHVBO2QGlF6/RoNBLq7UpcxZrRc47Or/9Q+oVPF7t/XtoWqe/ycfkr1W570uSlmX/W/7mYF0T+4pibf0V5ZeglPDLFe3XTZL04/F/aVzk7RoQOlXRft00pcOD6uSfrNTjb3rkfl1++eUqKSnRl19+qYKCAn355Ze6+uqra2379ddfy2KxaMaMGdW233fffTIMQ998Uzli5NNPP5XT6dSsWbOqhRCSXNM3LVy4UGVlZbr77rurtbn11lsVEhKir776qs6aKyoqtGDBAl188cXVpvxOSkrSueeeW6NmSTVGbFQFBiefJzk52RVCSNLQoUMlSRMmTKh2rqrte/bscW2z2Wyur0tLS5WVlaVhw4ZJktauXVvn/Tnx3CeGFVFRUerZs2e1cwBtBSMiAAAAAAAA0OYEWdupV9AErcmdJ0OGkoInKNAaUa3N8bJ9qjAcig8Y7NpmMfko1jZAR+27JEmZpVvUNWCILCafGucorShQfvkRdTnheEnqYhusQ/atHrhXlS92T5o0Se+9956Ki4tVUVGhadOm1dp237596tSpk4KDg6ttT0pKcu2XpN27d8tsNis5ObnO81a17dmzZ7Xtvr6+SkhIcO2vzbFjx1RSUqLu3bvX2NezZ09X+FB1HrPZrMTExGrtOnTooLCwsBrnOXkt09DQUElSbGxsrdtzcnJc27Kzs/Xoo4/q/fff19GjR6u1z8vLq/P+1HVuqXLkxYnnANoKgggAAAAAAAC0SSnhl+vTQ7MkSRd3fPyM+vAx+buzJLe4+uqrdeutt+rw4cOaPHlyvRaKbmlOXki7LhaLpUHbT1z74fLLL9eyZct0//33a8CAAQoKCpLT6dR5551XbS2Jhp67PutLAK0NUzMBAAAAAACgTeoZNE4VRpmchkM9g8bW2N/Ot4ssJl+lF69xbaswHDpQskHt/Srfvd/Rv5f2Fq9ShVFzMWZ/S7BCrO2174TjJWlfyRrX8Z5wySWXyGw2a8WKFXVOyyRJXbp0UWZmpgoKCqpt37Ztm2u/JHXr1k1Op1Nbtmw5ZV9S5boIJyorK9PevXtd+2sTFRUlm82mnTt31th3cn9dunSR0+ms0fbIkSPKzc095XkaIicnR4sWLdJf/vIXPfroo7rkkkt09tlnKyEhwS39A20NQQQAAAAAAADaJLPJoj8mfq/7EhfJbKr57nVfc4CGh1+rr448qe0FS3SkdIc+yvyzyowSpYRfIUkaEXGjSp2Fenf/H7S/ZIOO2fcqLfdjHbXvliSNjfytlmS9pvV5n+uofbe+PvKUMku3aGTEzR67X0FBQXrttdf0yCOP6MILL6yz3ZQpU1RRUaFXXnml2vbnn39eJpNJkydPliRdfPHFMpvNeuyxx2qMBKh6d/+kSZPk6+url156qdo7/t98803l5eXp/PPPr7MOi8Wic889V59++qkyMjJc27du3aoFCxbUqFmSXnjhhWrbn3vuOUk65Xkaomo0w8mjF04+L4D6YWomAAAAAAAAtFn+luBT7p/c/i8y5NT7B++W3VmkGFtf/abLOwqwhEmSAq3h+m38+/rq8JN6fe/lMpss6uSf7FpXYmTEzSqtKNBXh59QYcVxRft1142xbyrKr6tH79cNN9xw2jYXXnihxo8fr4ceekjp6enq37+/vv32W3322We6++671a1b5YLbiYmJeuihh/T4449r9OjRuvTSS+Xn56fVq1erU6dOeuqppxQVFaUHHnhAjz76qM477zxNnTpV27dv16uvvqqUlBRde+21p6zl0Ucf1fz58zV69GjdcccdKi8v18svv6zevXtr48aNrnb9+/fXDTfcoNmzZys3N1djx47VqlWr9O9//1sXX3yxxo8f37gH7hchISEaM2aM/v73v8vhcKhz58769ttvtXfvXrf0D7Q1BBEAAAAAAABoM67o/Nwp998Q90a12z5mf13U8TFd1PGxOo/p6J+k38S/U+s+s8mss6Pv0dnR9zS8WA8zm836/PPPNWvWLH3wwQd66623FB8fr2eeeUb33XdftbaPPfaYunbtqpdfflkPPfSQAgIC1K9fP1133XWuNo888oiioqL0yiuv6J577lFERIRuu+02/fWvf5WPT83FvE/Ur18/LViwQPfee69mzZqlmJgYPfroozp06FC1IEKS3njjDSUkJGju3Ln65JNP1KFDBz3wwAN6+OGH3ffgSHrvvfd055136p///KcMw9A555yjb775Rp06dXLreYC2wGSwOgoAAAAAAABasLVr1+qss85SWlqaBg0aVOu+GQlfKcbW10sVnrkDJZv00p7za71vAHCiU/0u9DZGRAAAAAAAAKDVO2rf5e0SzkhLrRsATkQQAQAAAAAAgFYrMjJSNv8AvX/wLm+XcsZs/gGKjIz0dhkAcMYIIgAAAAAAANBqxcXFadv2rcrKyvJ2KWcsMjJScXFx3i4DAM4YQQQAAAAAAABatbi4OF7IBwAvMnu7AAAAAAAAAAAA0HoRRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB7DGhEAAAAAAABoFbZu3ertEgDAa5rz70CCCAAAAAAAALRokZGRCggI0LXXXuvtUgDAqwICAhQZGentMmowGYZheLsIAAAAAAAAoDEyMjKUlZXl7TIAwKsiIyMVFxfn7TJqIIgAAAAAAAAAAAAew2LVAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHEEQAAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHEEQAAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHEEQAAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHEEQAAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHEEQAAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADzG6u0CAAAAAAAtl2EYOnr0qI4e2qr8nMNyVhRLhiGZrPKzhSkisqs6x3WXzWbzdqkAAADwEpNhGIa3iwAAAAAAtCyGYWj3zo06kL5OUdal6ui/WKG++2UxlbvalJSHKtveQxn2aTL5Jyq5/ySFhIR4sWoAAAB4A0EEAAAAAKBBCgoKtH7VV+poeV8JQV/IbHKe9pgiR6TW5/1JEZ3HqGdyisxmZgoGAABoKwgiAAAAAAD1dvz4Mf28ep4Ghz2sQJ+sBh1rGNKewgt1zHqrhow4nzACAACgjWCNCAAAAABAveTn5+vn1R9qeMT98rWUNPh4k0nqFvyF/IrylbbCosHDJ8tkMnmgUgAAADQnvP0EzZrJZDrlxyOPPOLtEgEAAIA2wel0at2qLzUkfOYZhRAnign8QQGln2j/vp1uqg4AAADNGVMzoVkbOnSoduzYUWN7bm6upMoF8gAAAAB43vbNq+SX9bDig+a7pT+nYdHS4//UsHE3ys/Pzy19AgAAoHliRASatZUrVyonJ6faR9euXSVJVisziwEAAABNwel06tCBjeoS6J4QQpLMpgolBryl9N2b3NYnAAAAmieCCLQ469atkyT94Q9/8HIlAAAAQNuQeTBDnfwWyN3LOXS0rdKhA5sY6QwAANDKEUSgRcnIyHB9/fzzz3uxEgAAAKDtOHJwszr7L3F7v2aToWDLLhUVFbm9bwAAADQfBBFoUUaNGiVJCggI8HIlAAAAQNtRXHhcAdYsj/QdYVmtnJzjHukbAAAAzQOT7KNF2b9/vyTpn//8Z51tli9frpkzZ9a6Ly8vT7t27dLf/vY33XbbbR6pEQAAAGhtTEaR26dlqhJszdCxvEwptotnTgAAAACvMxlMxtkqTJ48WatWrdLx47++kygxMVG7d++WJPn5+am0tNRb5bnF999/r4kTJ0rSKeeQnTRpkhYtWnTKvsLCwpSTk+PW+gAAAIDWKvXbf2pUO8+s0ZZd2k2Hgt5S7/6jPdI/AAAAvI8REa3E/Pnzq92+6667XCGEJNntdgUFBamwsLCpS3Obyy67TJLUrl27U7Z7/PHH69yXlpam3NxcJSQkuLU2AAAAoDUzTJ7717Hc8JfVx+ax/gEAAOB9BBGtiK+vr+vrV199VZI0e/Zs3XrrrTKZTC1+Abjc3FxJ0hdffHHKdsOHD9fChQtr3Vc1WiI8PNzd5QEAAACtlskSLKdhltnkdHvfueVJCo2IcXu/AAAAaD5YrLoV8fPzc31dXl4uSbr11lslSUFBQV6pyV1ee+0119fDhw/3YiUAAABA2xMcGq38Ms+EBTmOgbxRCAAAoJUjiGhFqkY8PP3005KkgIAA1z6Hw+GVmtzl3nvvlSR169bNy5UAAAAAbU9M/EDtK7nY7f06nDaVmeOrvakKAAAArQ9TM7USJpNJTqdTZrPZtZDzE0884dpvt9u9VZpbVC20vWrVKi9XAgAAALQ9ERER+tmZonKnr6zmMrf1m150nrokDnFbfwAAAGieGBHRSlStiVAVQkRHR+uee+6RJH355ZeSJLO55X67DcOQYRiKiIjwdikAAABAm2MymdQ9ebQ25//WbX2Wloco03GpYmIT3NYnAAAAmqeW+8o0qpkwYYLrxXrDMHTkyBHXvnHjxumTTz7RwYMHvVghAAAAgJasU+custvOVVZJUqP7MgxpXd6f1W/w+S36DVMAAACoH57xtRImk0kjR46sdV9QUJCeffZZdezYsYmrAgAAANCaDEw5R5tL/k+59i5n3IdhSOtz71Z0/PksUg0AANBGEES0Itu2bTujfQAAAABQHz4+Pho25jJtLHla+4vGNPh4e0WgVmY/quDYG9StR38PVAgAAIDmiMWq24jCwkJvlwAAQKvjdDp1cN8+5ezep7KSUpnNZvkGB6pz32Te5Qu0cYZh6Ojhwzq6dafKikskSb4BNkUn91B0+/YymUxervDM+fn5aeS46dr6c2cdPPKjkoJfV6jvgVMeU2FYtb9ovNLt16rvoMlqFxnVRNUCAACgOSCIaME6d+6szMxM1+3s7OwW/Q8NAAAtRUlJiXanrVfWtl3qPH+NuqzcJp8iuwyLWaVhgUq/aIQ2DUxU3OD+ik3sJovF4u2SATSRsrIypf+8VZkbtyhq6SbFLlon34LKIMIeHKDMswdp66je6tQvWfG9k+Tr6+vlis+MxWJRn/6jlZ/fXzu3DFJx1m5F+q5ShHWdgnyOyGSqkMMZoNyyRB0vH6qCit6K6TpQoxOS+J0IAADQBpkMwzC8XQTOjI+Pj8rLy+vd/oYbbtDcuXM9V1ALMGnSJC1atEgTJ07UwoULvV0OAKAFOpyxX9u/+E5Jr3+lqJ/3qa63AJT7+WjfpAE6cM1EDbn4fNlstiatE0DTy83J0bpPvlL3Nxeo04ptMjtr/1fLaTErc1gv7bzlXA265HyFhoU1baEe4HA4lJOTo5ysDBUVHNXRrFJ17BCisHZdFR4RpeDgYN40BQAA0IYxIqIFczgcrq9NJpMiIiJ0/PhxL1YEAEDrdnDPXmW894VGPfauLI6KU7a12h3q9tVqRa3brZVlDg29/GLCCKAVy8nO1sb3PtGIB+fK75cREHUxVzgV89MWRW5K18oSu/pfdYnCWvh0bj4+PoqOjlZ0dLQkKTU1Vf3PGuXlqgAAANBcsFh1K2EYBiEEAAAelHP8uPZ+skBDHnnntCHEiUIyszXoobe06tOvVFFR/+MAtBwlJSXa8L+vNOwvb502hDiRf36xhv3lLa3/31cqLS31YIUAAACAdzEiohX6/vvvtWjRolpf7Hj66ae9UBEAAC3ftsWpOuvJ92WpcDb42JCD2er8wRIdTBmouMRuHqgOgDftWpWm3v/4WH5FDQ8T/ApKlPz8/7SrR4L6jB7hgeoAAAAA7yOIaCU2btyogQMHyuk89YsjLSmI6Nu3r37++eda9w0bNkzLly9v4ooAAG1VcXGxTDv3y5ZTeMZ9dFmwVisuX0cQAbQyFRUVyt6+R322HTjjPqI2Z2jLtt1yjhwms5lB6wAAAGh9CCJaif79+7u+9vPzk5+fnxercS+TyaTQ0NBq226++WYvVQMAaIv2pK1XwjuLGtWHT2mZAjbuVu6UXIW1goVpAVQ6uGevOn+1ss6F6+vDJKnz/NU6OHGkYhMS3FUaAAAA0GwQRLQyhmF4uwS3i4qK0pEjR7xdBgCgDcves0+9t+xvdD9xny1X5tRxChsx1A1VAWgODm7cqrMWrm90P3HfrdP6DVsIIgAAANAqMe63FQkICPB2CR6zYMECHT582NtlAADaKLO9vFHvdq7in1eksoIiN/QEoLmosNvlU2xvdD++hSVy2MvcUBEAAADQ/DAiohUpLi72dgkecfToUZ133nmu22PHjtWSJUu8VxAAoM1x14hDU7lTzooKt/QFoJkwDLcElTIkwzj1em9AY5SXlytjx04d3rxdFWUOyWySr82mLikD1L5TJ5lMbrmSAQAAakUQ0Ur89re/1b/+9S+ZTCZNmDBB06ZNU1BQUI121113nReqOzM2m02SFBwcrJCQEB09elQOh0M//PCDzj33XC1YsMDLFQIA2gwfi1u6KQvyl2+gzS19AWgeTD5WVVjMslQ0LkSo8LXK6uPjpqqAX5WVlWnLj8uUv2Ov4j5dpiE//iyr3SFDUmlooNIvHqZtY/urU79kdR/Un0ACAAB4BEFEK/Gvf/3L9fX333+v77//vtZ2LSmIWLVqVY1tt912m+bMmaNvv/3WCxUBANoq/8gIFbYPU9CR3Eb1c2RUb7XrFu+WmgA0D+3iY3V0QII6pu1qVD9HBiYoIj7WTVUBlYqLi7Xq4y/U+6n3NWBr9bWOTJJseUVK+vci9fzP99pz0VCtvPl8pUw5RxaLewJ4AACAKgQRrYTFYmkT71yZPXu25syZI0nKzs5WREREjTbLly/XzJkzaz0+LS1NkpSTk+O5IgEArU63UUO1+8qx6v/iZ2fch9Nk0pHx/dWrc2c3VgbA27r276u0q8Y1OohIv3KcBvft7aaqgMqREKs+/kKD759z2iDdbBhK/HSFbMfylWYxK2XyOW3i/0sAANB0CCJaifLycm+X0GTMZrOcTqeWLVumCy64oMb+mTNnatGiRafsY8+ePZ4qDwDQCkVEROjnwT1V7mOV1XFmf3MPn9VNHfr04oUdoJXx8/OTNTFOhVGhCjqWd0Z9FHQIl2+3WPn5+bm5OrRlPy9JVZ+//rdBo/k6/7RFuR8uVmZyL3WO7+K54gAAQJtDEIEWx+msnH933Lhxte5//PHH6zw2LS1Nubm5SkhI8ERpAIBWLH7IQG295Rz1ff3rBh/r8PPRjt9M1vB+fTxQGQBvSxw9TJvuukjDZv5Hpgaube80mbRpxkVKGjXMM8WhTXI4HCrama7IbQcafGz3j5Zq1eQhBBEAAMCtCCJamcGDB2vz5s11jpBwOBxNXNGZe+2113T77bdX2zZlyhTX17Utxi1Jw4cP18KFC2vdN2nSJC1atEjh4eHuKxQA0CbE9eiuDZefrV1HcpX4ybJ6H1fuY9Wqx69X74vO5d3OQCsVERGh9lMnav3xAg144ZN6hxGGSVp/7yXqNHUiz0/hVhnbdijuf6lndKxvkV1+W9JVUFCg4OBgN1cGAADaKrO3C4B7vP322zKZTEpLS1NpaanKy8tr/WhJ7rjjDplMJvn4+CgoKEhms1nffPONt8sCALRh/caNUvGM6dp4+/kq9/M5bfuiqBAt+8dvlHjVVEV16NAEFQLwloS+vRVyw0VaNesa2YP8T9veHmzTykeuVdgNFym+d1ITVIi25PCWHYr5cfMZHx/72TId2rnbjRUBAIC2jhERrcT1118vSWrXrp2uu+46vfDCC+revbvGjRvnWtz5ueee82aJDebn5ye73d4iQxQAQOtkMpnUb9xo7Y/ppGUj+yh43S51e2+xQg5lu9o4TSYdGdRNe68aJ0tirAaMH62QkBAvVg2gqXTr30ch7SO1JjlePtv2qdvbixSx65CqVoYxJB3v3km7r5uo8p5x6jFmOCElPMJZ5pClvOKMj/fLK1ZZfqEbKwIAAG0dQUQrYjKZlJWVpblz50qqXNR59uzZmj17tkwmk+69917dc8893i2yAUpLS6vdZnFPAEBzEZvYTbGJ3ZQzJUc7xg9SybFsmRzlkskkw89XkT0SNKh/H/n7n/5d0QBal6gOHRR1+SUqLCzU7lEDtWX/IZkcDhkySb5WhcZ2Vu+UgXVOMwq4Q2P/dTLMZpnMTKAAAADchyCiFQkMDJQkDRkyRJJUUFDg2hcQEKDi4mKv1OUO/fv3lyRNnTpVn3/+uZerAQCgUnh4uAaff67rdlpams466ywvVgSguQgKClL/CWNdt/n9gKZksfmrLNBPvkX2Mzq+ODpM/hFh7i0KAAC0abzFoRWpGkGQnJwsSTp69GiNfS1Rdna2Nm7cKEn67LPPvFwNAAB1Kykp8XYJAJopfj+gKcWe1V/pU4ac8fEZ00apc2KCGysCAABtHUFEK3LiOgomk0nl5eXy8fGRj4+PnE6nFytrnJiYGEnSq6++6uVKAAAAAKD56xQXq8xzz5JxBlM0FUWFyNItlukFAQCAWzE1UysxdepUzZ8/X1u2bFFycrL++9//6sorr6wWTjz11FNerPDMzJ07VyUlJfL19dXtt9/u7XIAAAAarKKiQgf3pitj9XoZBUWSYciw+al9757q2re3fH19vV0igFbGbDarfe8e2nfOIMUvWFtjv2vh9LMHqCzIJsmQYTYp6FCOihM7KWnU0CavuSVxOp06kHFAW1duVVlemQzDkMXfos49O6vXgF6nDXGcTqf2p+/XtlXbVJb/y/E2i+KS4tSjXw/5+fk10T0BAKDpEES0EidPWXTFFVfoiiuu0Lx58xQSEqJzzz23jiObt5tuukmStHnz5nofs3z5cs2cObPWfWlpaZKknJycxhcHAABwGkf2H9DWb5co5vMVGvrtWvmUlkmSnGaTDg3poZVXjVP08EHqMXiQTI1dXRYATtBzyGCt+O0R+R/LU4e1u13bS8KDtOa2cxWacUy95/2koGN5rn058dHa3iFCu35apdDzz5HVyksGJzt27JhWfLlCBfMLVPRVkYwio3KHSTo64Kj2Xr1XcUPjNGhU7b/Xjxw6opXfrFT+V/kq/qZYqpq1zSQdG3xMu67epa5Du6r/sP78XQAAtCo8q2jlpk+f7u0Sztgtt9wiSfL399c///nPGvvvueceDRo0SNddd1217TNnztSiRYtO2feePXvcVygAAEAtDu3L0N73Pteoh9+R1VFebZ/Zaajziu3qtGK7tt54tjbfUqY+o4Z7qVIArZHZbNaQCydrtdmsvHe/U8LnK1Vu89WKOy/Q4DkLFHyo5puzwtOPatjfPtKxPqu1zG7XiEsvJIw4wdEjR5X6XqqyHsr6NUCoYkiOdQ4dW3dMxZcWq8xepmETh1ULEw4dPKRl7y3T8ZnHpZPXETekstVlOrb6mEquLlGZvUxDxp35Oh8AADQ3PKNoocLCwiRVLkjt6+vrun06ubm5HqvJ3VatWiWpcqHtF154ocb+F154QSaTqUYQ8fjjj9fZZ1pamnJzc5WQwMJrAADAc+x2u3Z8tUijZr0tS3lFne1MkpLnfqe1EUE60i1e7Tt2bLoiAbR6VqtVQy+crP3JPbXi4pEqOXRMw/7xaa0hxImift6nimc+1KaIcA2cNK5pim3mysvLtfzL5cp6MEsqPXXbov8VKT0sXR3jOyo+MV6SVFZWppVfrtTx/zsulZ36+ML3CrU3fK86JXRSTFyMe+4AAABeRhDRQuXlVQ6fzcjIUGJiout2azJjxgw98sgjNbZnZmZKkjp16qTBgwfX2D98+HAtXLiw1j4nTZqkRYsWKTw83K21AgAAnGjvxp/Vfe63pwwhTpT85gKtHdZH7adf5OHKALQ1ZrNZXbonKiw6Sjv+9i+FHMqWJKXdcrbOevO7Oo/rsGandmzfI8fYkfLx8WmqcputvTv3Kn9e/mlDiCoF7xZo64StriBi15Zdynsn77QhRJX8ufnaPHozQQQAoNUgiGih7rvvPklSYmJitdutya233qpbb721xvaqoa0HDx5s6pIAAABOyzAMHf55u3qs2VXvY/zzimXZsU9FRUUKDAz0YHUA2qrdK9ao+3uLXbdLIoJPe0yXj1OVMWaIuvXt48nSWoSdaTtV8v3J8zGdgl0q3FCo3PNzFRYWpj0b9si+/OT5mOpmFBkq3FKogoICBQef/nsFAEBzRxDRQj377LOurzMyMrR9+3YNHDhQjz32mBercq9p06bp448/9nYZAAAADeJwOGQ7lC2zYTTouMhlW5V7Yy5BBACPKDp6XGH7jjXomOj1e7Q5fb/UxoMIwzBkz7ZLjoYdV/hDoY7/5riCgoLkOOaQ6jdIzqXgxwLl/iaXIAIA0CqYvV0AGi8oKEhffvml/v73v3u7FLdas2aNpMp5TQMDA+Xn5+faxz/oAACguaqoqJDFXs+5N05gKSpRRUUDX6UCgPpyNvz3i6XMoYp6TjHXmjmdTqm84ccZZYYcpQ45nU4Z9oaF05JklBpy2BuYfgAA0EwxIqIViIiIkPTLk6NWJD09vca27OxstWvXTkVFRU1fEAAAQD34+PjIHtrwN03YO7ZTqK+vByoCAMnk46MKi1mWivr/31gaEihfm82DVbUMFotFZlvD38dpibDIFmKT1WqVKcTU4ON92vvIP8C/wccBANAcMSKilfDz85PD4dDbb7/t7VI8qip0AQAAaK6sVqsUEy17UP1fPDIkHR7XT1FRUZ4rDECb1j65hzJHJjfomIwLh6rzoL4eqqhlCekUInNUw15CCZkaoo6dOspsNiu4Y7BMoQ0LI4LOCVJ0dHSDjgEAoLkiiGgljF/mIL7++utlMpnk4+MjPz+/ah/+/i3znRQ//vij5syZo9/97nct9j4AAIC2peuwwdo7dVi922d376iwHgmyWCwerApAWxbfO0np00bXu32FxaysEckEpL/oO7KvQq4MqXd7c0ez2nVrJ99fRrr1GdlHQZcF1ft4SxeLohOjK8NtAABaAf6itRJlZdXnIS4vP4MJLJupsWPH1tj2/vvve6ESAACA+ukQ01m7po5Qh9TNCss49eKwZTZf/XzfNKUMPauJqgPQFvn4+KjdoN7adekIJf5v2SnbGpI23H2xEkekyGRq+JRCrVG7du0UMS5Chd8Vqnzbaf7f9pHa/aWdBowZ4NrUvkN7RZwXoeIlxarYc5p1N/ykdn9qp34j+jW+cAAAmgmCiFbivvvu83YJHnP11VdrzZo1OnLkiPLy8iRJmZmZXq4KAACgbmazWUMumqIV5RVK/tsHit6UXmu7wqhQpT1yrfpeOkUBAQFNWySANidpxFCtLSzSNpufjDryBYefjzbedZGCp52jmO6JTVtgM2YymTT2wrFaVL5Ih587rLKVZbW3Czep3cPtNOzSYQoJCal2/PiLxlce/8xhOdbVvgi1qZ1JkY9EasRlIxQUVP8RFAAANHcmo2pOH6CFqHpHjt1udw1zPdHy5cs1c+bMWo9NS0tTbm6uBg0apLS0NI/WCQBoe1JTUzVq1Chvl4FmxOFwaPOPPyl/Z7piPluh8O37ZapwqqhDuPZNHyNLtxglTxqr4OBgb5cKD2trvx/a2v1tSQzD0J5Nm7Vp82YlLt6kjos3yFpaprIgm/ZfOEyF/bspccQQderaxdulNkvl5eVav2y9Dm47qIKvC2TfaJdRbsgcaVbY9DCFdA/RWRPPUnh4eJ3Hr126Vod2HFL+F/kq21Imo9yQJdqi0MtDFZoYqpRJKdVCDAAAWgOCCLQ4QUFBKioq0nXXXaf//Oc/NfZPmjRJixYtOmUfYWFhysnJ8VSJAIA2ihfeUJfy8nId2LNXhZlHlJmXo65duii2Vw/Wv2pD2trvh7Z2f1uipUuXqkf37sratVcHj2cpNrq9OvTqXucL6KiuoqJC+9P3K+tAlo7lHlNcbJy69upa79FtFRUVytiToeOZx3Us95i6xHVR115dZbPZPFw5AADewdRMrciFF16oL7/88pRtWkPuVLX+xZ49e2rd//jjj9d5bNWIiISEBI/UBgAAUBur1ar4Ht2lHt2Vm5qq7gOY9xuAd5lMJrXv0EHtO3RQTmqqkoYP8XZJLYrFYlF8t3jFd4tXamqqeg/q3eDju3bvqq7duyo1NVXJA5M9VCkAAM0DQUQr0bdvX/3888/eLsOtXn75Zd15553VtmVkZMhut0uSHnvssVqPGz58uBYuXFjrvqrRErzLBwAAAAAAAACahtnbBcA9qkKIL774QrNnz5YkJSUlyTAMjRgxQpIUHx/vrfLOyIwZM2QymeTj46Pg4GD5+PioS5fKeUp9fX01YcIEL1cIAAAAAAAAADgdgohWxNfXVxdccIFrUauqKYx++uknmc1mpaene7G6hrNYLJIq70dhYaHr/thsNteoCAAAAAAAAABA80YQ0Yr4+PhIki655BJJUlZWlmtfS1zwqqKiQlLl3KVBQUGyWitnEispKXHdRwAAAAAAAABA80YQ0YoUFxdLqhwZIUk5OTmufUVFRV6pqTFSUlK0c+dOOZ1OFRQUyOFw6Oabb5Ykffrpp94tDgAAAAAAAABQLwQRrYTZbJZhGDp8+LAkuaZnMplMMplMkn4dMdFSrFq1SomJidW2vfnmm16qBgAAAAAAAABwJggiWrATpyfau3ev3nrrLQUFBUmS8vLyFBYW5tofEhKisrKypi7R7VrDfQAAAAAAAACAtoQgogX79NNPZTKZ5OfnpzfeeEM33nijK4iQKqdmMgxDhmEoLy/Pi5W6T/v27SVJwcHBXq4EAAAAAAAAAFAfVm8XgDNnNpvldDpVVlamxx9/XI8//riCgoL09ttv6+KLL/Z2eW53zTXXKDc3V5KUnp5eZ7vly5dr5syZte5LS0uTVH39DAAAAAAAAACA5xBEtGAVFRWSpKFDh2r16tUyDEOFhYWuKZvat2+v1NTUGusstETPPvus3nvvPUnSE088oYiIiDrbzpw5U4sWLTplf3v27HFrfQAAAAAAAACA2hFEtAIrV66UJBUWFmrAgAHavXu3JOnIkSPq3r27JCkpKUlbtmzxWo2N8emnn+r++++XJE2bNk0PPfTQKds//vjjde5LS0tTbm6uEhIS3FojAAAAAAAAAKB2BBGtSFBQkHbt2iVJ2rJli8aPH6+jR49KkrZu3SqTySTDMLxZYoNt3LjRNcJjyJAhmjdv3mmPGT58uBYuXFjrvkmTJmnRokUKDw93a50AAAAAAAAAgNqxWHUrlZycrK1btyomJsbbpZyx7Oxs9e/fX5LUpUsX18gPAAAAAAAAAEDLQRDRCvXv318mk0nt2rXTgQMHXNvj4+O9V9QZiIyMdH29b98+mUwm1wcjGgAAAAAAAACgZSCIaCUmT54si8Uik8mkjRs3uraHh4frhx9+kGEY2rt3rxcrbLhTTSOVm5vbdIUAAAAAAAAAAM4Ya0S0YL///e81e/ZslZeXV9vu7++v5557TrfffruXKnMPwzC0ZcsWff311/rjH/+ocePG6YcfflBISIjy8vK8XR5aMKfTqR1r1unolh0y2ctkbRemnuNGKuKEUTi1MQxDGdt3KGPNBqmwRKaQQCUMH6xOXeObpvBGyNiboS3Lt6gsv0zWIKt6Du6phJ4JMplM3i5NUuX3ZNf6jTq8aZtMJXZZIkLVfcwwRXXo4LFzHj1yVBt+2KCS7BKZbWZ17dtVSQOSZDbXL6M/mnlIO5YuV0FOkYocVpkMHwVGBanvyL7qHNfZ7fWWlJRo26alKsjNkCQFhcUqqe8Y2Ww2t58rc3+mNv20SfZcuyyBFnUf2F3de3dvNtcL3OvY0WNa/8P6yp8Ff7Pi+8QreWByvX8W6uPA7r3au3KNTPnFMoID1CVlgOJ6dK+zfVFRkbb+8JOKDx6RzCaFxseqx4gh2rdxs45u3Vn5uzsyvPJ3d7t2bqsTOBOFhYXauiRVpZlHZVjMCkvool4jh8rX19dt5zh+7Jh2/LBM5cdzZfj7qn1yT8X1SdL2n1YqP/2AZBgKjOmgpLEjFRAQ4Lbz1qa8vFzbV6xW1s69MjvK5RsdoV7jRik0LMzVprS0VHnHsvTjG+80aW112b9vl9J3rZScBZI5WPGJQxXbJbFGO4fDoW2blyvn6C6ZVC6/wPbq1Xe8QkJCvFB17QoLC7VtyU8qPnREhtksS7swVRQUyVJUKoUEquvws9S5a1dvlwkAAFADQUQL9uqrr7q+tlqtuummmzR79mwvVuR+ycnJSk5O9nYZaEUMw9CqL+er40v/06jvN8hsGCoJDVTaQ5nqee0liupY9wvfW35aIb31hUa8vUgWR4Uc/r7adMf5Kr1+qhL6923Ce9Ew2zZs08Z/b1Tua7lSqSQfKe/6POXflK+BIwd6uzxJUtr8hYp49RON+maNzE5DpcE2rfvzdJVfe7E6dolz+/kOZhzUindWKPvpbBkFhmSWcibn6PjtxzXm/DGnP37XHh145zNZ9xxXTn68Cr8qkcql47Zs5d+Vr0HXDlJi75ovcJwpu92ulT9+qH5Bjymi3R5JUo69q1b+OEvDxl4pf39/t51r99bdWvvOWuW+kCuj2JCsUt70POX8JkdDJwx123nQPBw6cEjL3lmm7KeyZeQbkknKOS9Hx+84rrEXjHXLOXamrVfRfz7XsH99Ix+7Q+W+Vm296WxtvWGqkoan1GhfXFys1f/9nwY++o5CDxyXJB1NitHiuy5S7w+XavTijTIZUkl4kNIeylSvay9RZPv2bqkVaKjCwkKtee9jDXr0XYVkZsuQdKxPFy1/8CqNnH6xrNbG/7t1NPOQdr7ziQb99QPZ8orkNJm0Z/Jg/XBBigY//6kid2ZKknLjorTq4aMaetWlHgmppco3Diz/5Et1+8c8Ja/cLpOkoqgQpc06on7XXqawsDCVlZVpxbzPZNt7UGMefq/JaqvL9i2rVJr5bw0PfVNWs13lTj9t3nWLiotuUM/kIa52FRUVWv7j/9TD92/qE7FOJpNU4Givtcse1sAR1zSLMKKoqEhr/vs/DXr0HYUczNaWS4apwtdHSf9bLqujvPK56e3nq/T6C9VtQD9vlwsAAFANUzO1YCaTSSNHjpRhGHI4HK0uhAA84XhWlgK+W60ui9bL/Mv0X7a8Ig19+G1tW5xa53F2u125qzep9//7VhZHhSTJp7RMA5/7RPtXrlNFRUWT1N9QFRUV2r5iu3Kfz60MISTJIRW8WaD01emy2+3eLE9S5VRr5qXr1e2r1TI7K78n/gUlGvLou9rx4/JTTtN2JgzD0Pof1uv4I8crQwhJckolX5XoyNIjp536zTAM7UxdqT6vfK7MiDgVfuaUqgamlUi5f8vVlhVb5HQ63Vbz7h1p6hXwgiL897i2hfvtVVLAc9q9fY3bzuN0OrV52WblPJVTGUJIUrlU+N9CHVx1UMXFxW47F5qHdUvW6fjDxytDCEkypJJvSnT0h6PKyclpdP/l5eU6tGqd+r/0uXzsDkmStaxcff71jbLWbFBZWVmNY7b/tFL9/vq+K4SQJJOkzkt/VpfvK0MISbLlFGrIrLe17fu6f3cDnrb9x+Ua+Ph7CsnMllR5rUb/vE9d3lqgjO073XKObYtTNWTW27LlFUmSzIahcrPU563vXCGEJIVlHFOfv32gnSvc93fhZIcy9iv64x/V6ZcQQpICj+Vr8Ky3tfX7pZKkvRt/Vvd/fi7fwlLXcWEZx9Tn6Q+0w4O11cbhcOjI/tXqF/aqrObK5zxWs139Ql/Vkf2r5XA4XG0P7N+tTpb31CGgMoSQpGCfIzor7FFt27SkSeuuy/alyzXgyf8q5GC27IH+yu7WUX0/WCqro/KJiE9pmQY+/4kONOPnpgAAoO0iiGjBnE6nUlP55xtoiMNbd6jzN6trbPcpKZP5UFaNqc6qHDt2TB2+rfnPs0lS5JodzXbdkpycHJWsLql1X8F3BcrKymriimo6smuvYr5aWWO7xVEh274jbg9L7Ha77Bl2yVFzX8GXBdq/c/8pjy8uLlbwroPK6hWj/LRa3ulqSKUbS5Wfn++miqXjR/eovW1Dje3Rtk3KPua+9X8KCgpk32yXasl+8r7I05FDR9x2LnhfWVmZSg+USjWzAOV/la+M7RmNPkdOTo6ilm/TyZN6mSR1+H6Djh8/XuOYwgOHFLG3+rV2uF+84pZtq9HWt9guHT7OC27wmuJDR6qFZlVifvxZh7fsaHT/DodD1swsV5BXJSspVp3W7KrRvt2OTOVlHGj0eetyePM2xXy/vsb2gJxClR+pfE5xdOcedVxV876325mpfA/WVpvs7Gy1912qk2cWNJmk9r4/VvsddPjAZsUELK7RR5DPEdmLDnm61HopzDyisH3HJElZvWLUYX3N5wAmSVGrtrslTAYAAHAngggAbYrV30/lttrnbHb6+tQ5J7rValV5aFCt+xzBAbJYLG6r0Z2sVqvMQXXcp1Brs6jb4u8rR0DtUwuV+/u6dZ56SbJYLDL5177WgSnIJB8/n9MeXx7gJ6vdIYut9tEa5kCzWx9bk8mqCqNmXU7DRyaz+2ZZtFgsMgXW/thYwiyy+jCjY2tiNptl8qv9+20OMMvH/9Q/C/VhsVhUHlz7z7cjNLDWnxPDYpHzpFcNLfbKKUdq4/S1sn4JvMawWGTUcvk5bL6yuOF3ptlsltO35s+iubxCFbX8vTIsZsmDf9stvr51/yz+Mg2VxWpVRS2/PzxdW20sFovKjdqnVCo3QqpNnWW1+qrcWXPaKMOQnGr870O3OOF6s5Q56nxO6wi2NYvneAAAACciiECrs3z5ck2aNKnWj7S0NEniHUJtWGzvJO2+ZkKNN3znd4qQb1yHOl/0joqK0qFJA1Vhrf5PXZnNV7n9ExQaGuqhihsnNDRUAYMCpJP/r/aRAicEKioqyit1nSgmsZv2Xjm2xvekKDJEiu/o1sU+JcnHx0dBXYJkjqr5vQ69IlTxPeJPeby/v78cCZ0Vsu+YgodWSCf9n28KNCkgOUDBwcFuq7lzlwHaWzSlxvb0onPVKc59c0AHBQUpoFeATMEnvapmlkIuDFHHTh3ddi54n9VqVXBcsMzRtfwsXBWqrj0bv9hpeHi4jqf0kuOkF0zLfaw6OqavIiMjaxzTPrm7DozuXW1b3PJt2nFhSo3fE3kx7eQf29HtgSVQX5E9uylzSM8a23dPH624lAGN7t9iscga10EFHcOrbY9ZsV07p5xVo33GhH7q0KdXo89bl7iz+mv31eNrbM/qFaOQ+BhJUuygftp90bCatY3vpw69PVdbbSIiInTMMVzlTr9q28udfjrmGKGIiAjXtriEFO0qvKJGH0dK+isiqpvHa62PqF6JOjg8qfLrLft1eEBXVfhUfyLisPkqZ1B3hZ2weDgAAEBzwFsb0erMnDlTixYtOmWbPXv2nHI/Wq/AwEBFThyh1TPt6vnWt7JlF+rwkB7ac9M5GnJ2zX+sq1gsFvWcNEbLnilR0mtfKmR/lnK6d9K2352vvpMnNtt345pMJg09b6h++sdPyn49W+U7y2WJsyjidxE665yzmsW75fz9/dV5wgitfLxUvd74RgFH83R0UDftuuU8DT5vokfOOfy84Sr5W4ly3syRfa1d5mizwn4TpuQJyfVa+LnflElKKypWl4Xr5by3p3I+NaviQIV8elkV8dt2Gjal5gswjdGlaw+tzLxR5fnBig/4UpKh9KLzlWudpqEJSW491/Apw/Xjsz8qe3a2HFscsnSyKPx34RowcYBbFl1F81L1s5D9ZrbsaXaZIyt/FpImJLllQVmTyaTe543Xsn+UqNe/vlLErkPKjY/W1t9doKSzx9YaICQO7K/ld16i0ugwxX23VhVWi9KnDlNZv0StfuhK9Zz7nWw5Vb+7z9XQs8c1uk7gTPVIGaTl905T8fuLFbtwnSr8fLR72ig5Lh6rDp06ueUc/c6doFVPFajb/1ug9mt2qqRdsDLPGaSS7jEyQoPU9bPlMlUYyjjvLGVdPk7D+vY+fadnKCIiQgcnj9JaR7m6v7dEvgUlyhzdWxnXTdLwsSMlSZ27xmv1NeeoIH2/iiOCZK5wat95gytr6+e52mpjNpuVPPA8LVv7rHoFva5wvz3KsXfVtqLfKXnAudV+B0VGRelg2EVanyMlBn0gH3OJDhSP1cHyazR82Igmrbsu3c8aoOV3X6aSDt8rduF6xS/eqB/+7wr1fe9HhWUcVXbiL89Nz5vQbJ+bAgCAtstkuHsVUMBDxo0bpx9++EEhISHKy8urs93y5cs1c+bMWvelpaUpNzdXgwYNco2OQNuUk5Oj9FXrdCg/Rz169FCX5F7y8Tn9sPuioiLtWbNe+48eVnxMrLoO6OuWF+s8raSkRNvWbVPOoRzZfe0aM2GMAgMDvV1WNXl5edq7aq0yc7OV2C1R8X2S3D4a4kRlZWXauXmnjuw9olJzqUaOH9mgkS12u13pmzbr6L79yipzyGSxqmtcV/Uc0LNeYUZDGYahQ5n7dSB9vY7nlqn/gCHq0DHGI+8ELy0t1Y4NO5R1IEt2H7tGjR/l1hEerVlqaqpGjRrl7TIaxOFwaOfPO3V472GVmEs0ctxIt7+TtqSkRHvWblDB4WMq8DNrxPhxp/wd5HQ6dXDfPh3asEXHK8o0cPhQte/YUbm5uUpfuVaHCnLVo2dPdUnqWa/f3c1NS7xOULeKigod3JuuQ5u2Kdso06DhwxTdoUONF4Ib8313OBxK37JNx3enK89saOi4MQoNDdXhgwd1YO0mZZWVqO/gs9QpLrZJRghlZWVp36p1OlJcoKQ+vRWb2K1aWG0YhhYtXKjQkvJfahukTnFxXhu9VFxcrL0716og/4gKiv00cvQEBQQE1GhnGIayjh3Tvt2rdPR4qXr37qeYuG7N4o0bVZxOpw7uTVfmxq3KdpYpedAA5WdkVj437RyjrgP71fu56YnXJL+XGqexjx+PPwCgLeCtjWh1hg8froULF9a6b9KkSVq0aJHCw8Nr3Y+2Izw8XOHnTlBRaqoS+/et93GBgYHqO3ak8lJTlTx8iAcrdC+bzaaBIwZKqvxHp7mFEFLlNFIDzh6vwtRU9RjU3+Pn8/X1Ve+BvdV7YG+lpqY2eHotPz8/9Rw8SD0HD1Jqaqokqf8wz9VtMpnUqXOcOnWOU2pqqjp1jvPYufz9/dVvaD9paOX1QgjRuvn4+Ch5YLKSByYrNTXVI9N52Gw29R5ZOVKoPr+DzGazYrt2VWzXrkpNTXW9szw8PFzh502s/N3dr4/b6wTOhMViUVxiN8UldlNqaqrad3T/NHY+Pj7q3r+vuvfvW+3ntGNMjDrGxCg1NVUx8V3cft66REZGKnLK2UpNTVXXXjWnpjKZTPK32ZRy9qhfaotvstpqExAQoN79f33BvbYQQqqsOyo6WlHRFyg1NVVduvZoyjLrxWw2K7ZbgmK7JfxSY1epa9fK56Yjhnq7PAAAgDoxoW4r8eOPP8pkMumaa67xdiluZ7PZ5OPjox9++EGSlJ+fLx8fH/n4+OjTTz/1bnEAAAAAAAAAgFMiiGglqtY8WLdunSTpyy+/lMlk0rnnnuvNshpty5YtKi0tVXl5ebXt5eXlKi8vd4UTAAAAAAAAAIDmiamZWrCqeWf9/PzUoUMHSXLNu5qVlSVJ2r9/v3eKc5PevSsXtDOZTAoICFBRUZEkaeDAgVq7dq03SwMAAAAAAAAA1ANBRAvm5+cnu90uu92uffv2SZI2b94sHx8ftW/fXpK8tiCcO1Qt1uXr6yu73S5J2rhxo/r37+8a+QEAAAAAAAAAaN5a7qvUUGlpqQzDkGEYuuyyy1zby8vLdfDgQUmVwYTFYlFcXJzmzp3rpUrPzPLlyyVJH3/8sWtbv379ZLVW5mcPPfSQV+oCAAAAAAAAANQfQUQLdsstt7i+vuCCCyRJSUlJMgxDN9xwg2uf0+nU/v37ddNNNzV5jY3hdDol/XrfqnTr1k2S9J///KfJawIAAAAAAAAANAxBRAv2//7f/5PJZJLJZHKFElWLOo8bN07Sr8HEhg0blJKS4q1S3apv376SpOzsbC9XAgAAAAAAAAA4HdaIaMEuuOACLV68WEVFRa7RAzt37nSFE9KvwUS/fv20atUqr9XqTtHR0ZKkiooKL1cCAAAAAAAAADgdgogW7IsvvnB9PWfOHN12220ym82udSOkX4MJSYqIiNDx48e9Uqs7HT16VJJksVhq3b98+XLNnDmz1n1paWmSpJycHM8UBwAAAAAAAACohiCilfDx8ZEk9ezZU1u2bHEFE1arVYZhqKKiotVMZbRp0yZJlcFKbWbOnKlFixadso89e/a4vS4AAAAAAAAAQE0EEa1EYGCgJCk4OFjSr8FE9+7dtWXLFklSYWGhd4o7QyaTSYZh6Msvv6y2YPXu3bslSddff32txz3++ON19pmXl6ddu3bpb3/7m3uLBQAAAAAAAADUiiCilZg+fbprOiZJioyMlCTFxsa6tgUFBTV5XY0xfPhwLVu2TJdddpnsdrskacuWLa51L5588sk6j1u4cGGT1QkAAAAAAAAAqJvJOPHVa6CZqVrfwmw2y2azqaioSFLl4tsbNmzwZmloJVJTUzVq1KgmO64hMjIylJWV5fZ+MzMz1alTJ7f36y7eqK+x58zMzJSkJqu7tnojIyMVFxdXa/vGXEuZmZnq16+f4uLiPHZNtibN/efrdJqi/oaeo7b2PM5ork71vXXX9705/UzU5/5Wfa76O+XtvyX1faxaws/piTWeSb2NPR6/csdzyZby+J/qOScAAKdkAM3Yhg0bDJPJZEhyfXTr1s3bZaEVWbp0aZMeV1/79u0zbDZbtWvfXR/333+/R/ptyfU19pz3339/k9Zd27lsNpuxb9++Wq+lgICARp0rICDAWLZsmWHzP/N+2spHc//5ag71N/QctbXnceajuX6c6nvrru97c/qZqM/9rfps86/8WxIQ4N9sv0fN4TE90/tyJvU29ng+an8svXF8U34EBPjX+pwTAIDTYWomNGv9+vWT0+n0dhlAk8vKylJJSYn+8Ic/qHPnzm7tu3379nrqqafc2qc7eaO+xp6zffv2ktRkdZ9c78GDB/XKK68oKyurxjvUsrKyVFxcrLlzn1JSUtcGn2v37mIVFxdrz549Kikt1pWdX1S0X2Kj70NrlRBQohkJX3m7jDPWFPU39By1tedxRnN1qu+tu77vzelnoj73NyGgRFd2flHvH7xLe/bsUXFxqd55R0pKauJif5GZKV15pfvaedOJNZ5JvY09Hr9q7OPXUh7/rVula68trfU5JwAAp0MQAQDNWOfOnZWQkOD2fj3Rpzt5oz53nLMp627ouZKSumrgwOQGn+fIkS3Vbkf7JSrG1rfB/bQV/pZtirH18nYZZ6wp6m/oOWprz+OM5upU31t3fd+b089Efe6vv2Wbov1s1fYlJUmDBjVFhTUVF9fv3PVt500n1ngm9Tb2ePyqsY8fjz8AoC0we7sAAAAAAAAAAADQehFEAAAAAAAAAAAAjyGIAACgDbLby7xdAgAAAAAAaCMIIgAAaEM2btyhAQMuUa9eUyRJa9du0V/+8pyXqwIAAAAAAK0ZQQQAAG3Ivfc+rX/+c6YiIyMkSQMHJumbb5Z6uSoAAAAAANCaWb1dANCafffddyotLfV2GTgFu92uL774osmOq6/du3d7rG+0Xj/++KMOHjxYbdvJ11JhYbFGjhzkum0ymeTr63PavteuXeueIgEAbRZ/S4DWobbnnKfi7++vs88+24MVAQBaAoIIwINKS0tVUlLi7TJwGmf6PfLk95YAC2eitt85J19LVqtFDodDJlPl7f37D8tiqXuApPWXZwplZawpUR8VBb7eLqFRmqL+hp6jtvY8zmiuTvW9ddf3vTn9TNTn/lZ+dkhqHn9LbLZst7bzphNrPJN6G3s8ftXYx6+lPf78nwsAOBNMzQQAQBty++1Xadq0u5WVlaNZs17WhAk36r77bqqzfbt2TVhcK5D9dYK3S2iUpqi/oeeorT2PM5qrU31v3fV9b04/E/W5v83tej/rrDfd2s6bTqzxTOpt7PH4VWMfPx5/AEBbwIgIAADakGuuuUAJCTH6/PPFKitzaO7cv1abqgkAAAAAAMDdCCIAAGhjhg8foOHDB3i7DAAAAAAA0EYQRAAA0IacffYtrvUhqoSGhmjYsH76wx+ukZ8fc9cDAAAAAAD3Yo0IAADakEGDkmS1WnXjjZfqppsula+vjzp1ilJa2hbdffdT3i4PAAAAAAC0QoyIAACgDVm+fIMWL54ri8UiSZo27RyNH3+jliz5twYOvMzL1QEAAAAAgNaIEREAALQhx4/nynTC3Ewmk0k5OfmyWq3y9/fzYmUAAMCbHnlENaZvBAAAcBdGRAAAanX48GF9/vnn2rRpk3JycmS1WhUbG6vhw4dr0qRJ8vWt31oCdrtdn3/+uZKTk9W7d28PV43TmTBhqC688A5dddX5kqQPPvha48cPUWFhsfz8fLxcXeu3JmeePsy8T5J0e/xH6ho4pNp+wzD01x3DlFd+SL2CJujmLnO9UCUA4FTmzpVuuklavVoaPLjm/nHjpKws6eefm7oyAACA5osgAgBQw9q1a/X888/Lx8dHY8aMUWxsrMrLy7Vt2za98847OnDggG677bZ69WW32/XRRx9p2rRpBBHNwPPP/0Vz5nykzz//XpI0ZcpY3XrrNFmtVqWmvuvl6toOq8lP6/M+qxFE7CleobzyQ7KaGJ0CAAAAAGg9CCIAANUcPXpUL774oiIjIzVr1iyFh4e79p177rk6fPiw1q5d68UK0RhWq1W3336lbr/9Sm+X0qb1CpqgjflfaWrHR2Ux/fp0bF3ep+rs31fFFTlerA4AAAAAAPciiAAAVPP555+rtLRUv/vd76qFEFU6dOigKVOm6JFHHlFRUZGeeeaZGm3uvvtuRUVF6dZbb9Wdd94pSfroo4/00UcfSZKmTZum6dOnS5J+/vlnzZs3T3v37pXFYlFycrKuuuoqxcTEVOszOztbH374odavX6+CggKFh4drwIABuvHGG2W18uesvnJz8zVnzkfas2e/yssrXNvnzHnMi1W1PQNCp2pzwXztLFyqXsHjJUnlzjJtyv9aEyNn6Kfst2ocU+Ys1oKj/9DGvC9VWHFc4T4xGhp+lca0u63auh+StDb3f/op+y0dLt0uq8lXHfx7aWLUDPUIGuNqsyz7P1qe/W9lle1TgCVMfYLP03nt75fNEurZOw8AbUx5ufTUU5VTOh04IHXsKF19tfTww5LfCQPg4uOlPn2kP/6x8mPzZikxUXr55crpnv73v8pjdu6UeveW3nhDGjiw+rm+/76yzdq1ko+PNHas9PTTUlJS9XapqdI990ibNkmdO0t/+pOHHwQAANDm8coNAKCatLQ0tW/fXj179jxlu9GjR2v27NnKyMhQXFyca/uuXbt06NAhXXrppQoJCdFvfvMbvfHGG0pJSdHQoUMlydV+48aNevrppxUdHa1p06aprKxM8+fP16xZs1zbpcoQ4sEHH1RxcbEmTpyoTp06KScnRytWrJDdbieIaIArr7xPkZHhGjasvywWi7fLabPCfWMUZxuk9XmfuYKI7YVLVFpRoP6hF9YIIgzD0NyMm7W7aLlSwq5QJ//e2l70g7468qTyHIc1tePDrrbfHX1e3x17Xl1sZ+mc6PtkMfkoo2S9dhX95Aoivj36nBYee0HdA0dpWPh1Ola2Ryuy39aB0g26o+v/ZDGxXggAnE5eXuVaECdzOKrf/s1vpH//W5o2TbrvPmnlyspgYutW6ZNPqrfdtasypPjtb6Vrr5WefVa68ELp9delBx+U7rijst1TT0mXXy5t3y6ZzZXbFi6UJk+WEhIqF54uKakMMUaOrAwm4uMr223aJJ1zjhQVVdmuvLwyvGjf3o0PDgAAwEl45QYA4FJcXKzs7GwNrm3lxZMMHz5cb731llJTU3X11Ve7tqempsrPz09DhgyRv7+/hg4dqjfeeENdunTR6NGjq/Xx7rvvKigoSE888YSCgoIkSSkpKfrzn/+sefPm6fe//70k6b///a9yc3P15JNPqlu3bq7jL7/8chmG4Y673mYcOpSl+fPneLsMSBoYerG+Ofo3OZyl8jH7a13eJ0oIHKZQnw412m4p+E67ipbp3Oj7NTGqcpTRiHY36O39v9NP2f9PI9vdoHa+8cqyp2vhsRfVJ/g8XRv7uswms6uPqp+VwvLjWpz1qnoEjtHNXf7jahPt202fHp6ptbmfKCX88iZ4BACgZZs0qe59VctibdhQGUL85jfSnF/+/N5xhxQdXRkyLF4sjR//63Hbt0vLlknDh1feTk6Wzj1XuvVWads2qeq9H+HhlWHFjz9WjpaQpPvvlyIipOXLKz9L0sUXV46aePjhyjokadYsyTCkpUt/7e+yy6S+fRv7iAAAANTNfPomAIC2oqSkRJJks9lO2zYgIECDBw/WTz/95HqB0+l0atmyZUpJSZG/v/8pj8/JyVF6errGjh3rCiEkqUuXLurXr5/WrVvn6nP16tU666yzqoUQVU6ekganlpAQo9zcfG+XAUn9Qi+Qw1mqrQULVVpRqK0FizQg9KJa224r/F5mWTQy4qZq28e0u02GDG0rWCJJ2lywQIacmhR1V7UQQvr1Z2VnUaoqjDKNandLtTZDwq+SvzlY2woXue9OAkAr9s9/St99V/OjX79f23z9deXne++tfux991V+/uqr6tuTk38NISTpl8GkmjDh19DgxO179lR+PnRIWr9euvHGX0MIqbKWs8/+tY6KCmnBgsqA4sT+kpIqAw8AAABPYUQEAMClKoCoCiROZ+zYsVq+fLm2bt2q5ORkbdy4UXl5eTVGPtTm2LFjkqROnTrV2Ne5c2dt2LBBpaWlKi0tVUlJiWJjYxtwT1CXgACbhg69QuecM1L+/r9OTP3MM/d7saq2KcjaTt2DRmld3mcqM0rklFP9QqbU2jbHcVAhPu3lbwmqtj3aL9G1X5KOl+2TSWZF+3Wv87y5ZQckSVF+CdW2W82+ivCNU07ZwTO+TwDQlgwZItU2iDQ8/Ncpm/btq5w6KTGxepsOHaSwsMr9JzoxHJCk0F+W7Tn5aVDV9pycX88jSbXNrJmUVBk+FBVJBQWVUzZ1r+XPRM+evwYWAAAA7kYQAQBwCQgIUHh4uPbv31+v9v3791doaKhSU1OVnJys1NRUhYWFqd+JbwVEs9KrV1f16tXV22XgFwNCL9LHmX9RQfkx9Qoax0LRANBK1XcAZ13LN9W1nRkqAQBAS0EQAQCoZtCgQVq0aJF27NihHj16nLKt2WzWqFGjtGTJEl199dVavXq1Jk6cKLP51+le6po6KSoqSpKUmZlZY19mZqaCg4Pl7+8vX19f2Wy2eocjOLWZM2/3dgk4QZ/g8/Q/PaCMkrW6JuafdbYL9+msXYWpKq0orDYq4ph9t2u/JLXz7SJDTh2171QnW+9a+wrzjfnl2D1q59vFtb3cWabssv3qHjSy0fcLAFCpSxfJ6ZR27qwcmVDlyBEpN7dyv7vOI1WuMXGybdukyEgpMFDy95dstsp6TlbbsQAAAO7CGhEAgGqmTp0qPz8//etf/1Jubm6N/YcPH9bXJ4zbHz16tIqKijRnzhyVlpZq1KhR1dr7+VVO/1NUVFRte3h4uOLj4/XDDz9U25eRkaENGzZo4MCBkirDjpSUFKWlpWn37t016mGx6vpZsOAnSdIrr7xb6we8w88SqEs6Pamzo+5RcvDZdbbrFTRBTlVoWfbcatuXHn9DJpnUK3icJKl38LkyyayFx16U03BWa1v1s9I9cJQsJl/9lP1WtZ+f1bkfqNSZr15BE91z5wAAmvLLjHsvvFB9+3PPVX4+/3z3nKdjR2nAgMoFqU98+vbzz9K33/5ah8VSuRbEp59KGRm/ttu6tXL6JgAAAE9hRAQAoJoOHTpoxowZeuGFF3TvvfdqzJgxio2NVXl5uXbs2KEVK1Zo7NixrvZdu3ZVbGysVqxYoc6dOyshofq8876+voqJidHy5cvVsWNHBQUFKTY2VnFxcbrmmmv09NNP6//+7/80YcIElZWVaf78+QoICND06dNdfVx11VXauHGjHn30UU2cOFGdO3dWTk6OVqxYoccee0yBgYFN9vi0VPv2VY48Wb9+W419LPjtXYPDpp+2TVLwJHULHKEFR59RjuOAOvona2fhj9pc8K1GRdyidr7xkqRIv3hNiLpTi469qNf2XqY+IZNlNfnqQMkGhfi01+T2f1GQtZ3GR96hhcde0Jv7rlNy8Nk6VrZby7PfVqytvwaFXeLhewwAbUf//tINN0izZ1cGBGPHSqtWVQYGF18sjR/vvnM984w0eXLlYte33FK5FsTLL1euJ/HII7+2e/RRaf58afRo6Y47pPLyyna9e0sbN7qvHgAAgBMRRAAAahg8eLCeeeYZffHFF1qzZo2+++47+fj4KC4uTtddd50mTqz+jukxY8bo3XffrXOR6t/+9rd666239J///Efl5eWaNm2a4uLi1K9fPz3wwAOaN2+ePvzwQ1ksFiUnJ+vqq69WdHS06/iIiAg9+eST+uCDD5SamqqSkhJFRERowIABrhEXOLVevbrqiy8W66KLJni7FJwBs8msG2Pf1LfH/qENeV9oTe48hfvE6Pz2D2lMu9uqtT03+j5F+MTqp+y5WnD0GfmY/dXRL0mDwi51tTkn+l4FWdppWfa/9cWRx2SzhGlo+NU6r/2fZDH5NPXdA4BW7Y03pIQEae5c6ZNPKheqfuAB6eGH3XueSZMqA4aHH5ZmzZJ8fCqDj7/9Tep6wvJQ/fpVjn64997KdjExleHEoUMEEQAAwHMIIgAAterYsaNuu+220zeUZLVaZTKZ6gwievTooaeeeqrWfX379lXfvn1Pe47IyEj9/ve/r1c9qOm///1awcGVI0fWrt2is85Kdi1waTJJF17oxrdkok6Dw6drcPjpR0A80GNZjW1+lkBd2GGWLuww67THp4RfrpTwy0/ZZkS7GzSi3Q2n7QsAUN2NN1Z+1GXJkuq3rdbKF/xnnebXd3p67dtrm4UyPr727RMnVn6czpgx0po1NbefOHICAADAnQgiAACNYhiGFi9erKSkJEVGRnq7HNThtddmaeDAZElSSsrl+vbbN71cEQAAAAAAaCsIIgAP8vf393YJaKFawrVTWlqqtLQ0bd68WRkZGbr//vu9XVKb5+/vL5vNVmPbyc5kSQhfX98zLQsAAEn8LQFai9qec56uPQAABBGAB5199tneLgEt1Nq1a71dwmnl5+frpZdeUmBgoC655BINHjzY2yW1eWPGjNGgQYOqbXPXtXRyvwAANBR/S4DWobbnnAAAnA5BBADgjERHR+uDDz7wdhmop50798liqfyzX1Ji16ZNO6rNLd2vXw8vVQYAAAAAAFo7gggAANqA++9/Vn5+Pq7bl102w/W1yWTS9u3feKMsAAAAAADQBhBEAADQBnz66cuuxaoBAAAAAACaktnbBQAAAAAAAAAAgNaLIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAY1ogAgGbs4MGD3i4BLUB9rpOtW/eeUd8nH3fUvuuM+gEAtF0n/+3YutVLhQBoFH52AQCNQRABAM1QZGSkbDabXnnlFW+XghbCZrMpMjKyxvbIyEgFBAToxhsfOOO+AwIClJCQIJt/gN4/eFdjygQAtFE2/8q/JQEB/rr22lJvlwPgDAUE+Nf6nBMAgNMxGYZheLsIAEBNGRkZysrK8nYZaCEiIyMVFxdX677GXktVfXNNAgDOFH9LgNbhVM85AQA4FYIIAAAAAAAAAADgMSxWDQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHWL1dANCaZWVlacGCBYqPj5fNZvN2OWgDSkpKlJ6ezjUHr+D6gzdx/cFbuPbgTVx/8Jb6XHtVbc4991xFRkY2cYUAgOaGIALwoAULFujaa6/1dhkAAAAAAHjFO++8o2uuucbbZQAAvIwgAvCg+Ph4SZVPvJKSkrxbDNqErVu36tprr+Wag1dw/cGbuP7gLVx78CauP3hLfa69qjZV/xcDANo2ggjAg6qGqCYlJWnQoEFergZtCdccvInrD97E9Qdv4dqDN3H9wVvqc+0xbRgAQGKxagAAAAAAAAAA4EEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEArUivXr2UlpamXr16ebsUtEFcf/Amrj94C9cevInrD97CtQcAaCirtwsAALhPQECABg0a5O0y0EZx/cGbuP7gLVx78CauP3gL1x4AoKEYEQEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEA0MKkpaXpvPPOU0hIiIKDg3XOOedo/fr1tbZdtmyZRo0apYCAAHXo0EEzZsxQYWFh0xaMFqmwsFAPP/ywzjvvPEVERMhkMmnu3Lm1tv3www81bNgwhYWFqV27dho7dqy++uqrGu2cTqf+/ve/q2vXrvL391e/fv303//+18P3BC3N6tWr9Yc//EG9e/dWYGCg4uLidPnll2vHjh3V2plMpjo/zj777GptufZQX5s3b9b06dOVkJCggIAARUZGasyYMfriiy9qtHU6nXrttdc0YMAA2Ww2tWvXThMmTNCGDRtqtOP6w5l48sknZTKZ1KdPn2rbx40bV+vvvvPOO69GH3a7XX/+85/VqVMn2Ww2DR06VN99911T3QW0EEuWLKnzb+qKFStqPSY3N1fR0dEymUz66KOPauy32+166aWXJEkjRozg2gMAyOrtAgAA9bd27VqNGjVKsbGxevjhh+V0OvXqq69q7NixWrVqlXr27Olqu379ek2cOFFJSUl67rnndODAAT377LPauXOnvvnmGy/eC7QEWVlZeuyxxxQXF6f+/ftryZIltbZ7+eWXNWPGDJ1//vl6+umnVVpaqrlz5+qCCy7Qxx9/rEsvvdTV9qGHHtLTTz+tW2+9VSkpKfrss8909dVXy2Qy6corr2yie4bm7m9/+5t++uknTZ8+Xf369dPhw4f1yiuvaNCgQVqxYoXrBbm33367xrFr1qzRiy++qHPOOafadq491Ne+fftUUFCgG264QZ06dVJxcbE+/vhjTZ06Vf/617902223udrefPPNevfdd3X99dfrD3/4g4qKirRu3TodPXq0Wp9cfzgTBw4c0F//+lcFBgbWuj8mJkZPPfVUtW2dOnWq0e7GG2/URx99pLvvvlvdu3fX3LlzNWXKFC1evFijRo3ySO1ouWbMmKGUlJRq2xITE2ttO2vWLBUXF9fZ14033qh58+ZJkv74xz/q+++/59oDgLbOAOAxaWlphiQjLS3N26WglZgyZYoRHh5uZGVlubZlZmYaQUFBxqWXXlqt7eTJk42OHTsaeXl5rm1z5swxJBkLFixosprRMpWWlhqHDh0yDMMwVq9ebUgy3nrrrRrtunfvbqSkpBhOp9O1LS8vzwgKCjKmTp3q2nbgwAHDx8fH+P3vf+/a5nQ6jdGjRxsxMTFGeXm55+4MWpSffvrJsNvt1bbt2LHD8PPzM6655ppTHnvLLbcYJpPJ2L9/v2sb1x4aq7y83Ojfv7/Rs2dP17YPPvjAkGT873//O+WxXH84U1dccYUxYcIEY+zYsUbv3r2r7attW21WrlxpSDKeeeYZ17aSkhKjW7duxvDhw91eM1quxYsXG5KMefPm1av9pk2bDKvVajz22GO1Hld17d11112u/4e59gAATM0EAC3I0qVLNWnSJLVr1861rWPHjho7dqy+/PJL17RL+fn5+u6773TttdcqJCTE1fb6669XUFCQPvzwwyavHS2Ln5+fOnTocNp2+fn5rmH5VUJCQhQUFCSbzeba9tlnn8nhcOiOO+5wbTOZTLr99tt14MABLV++3L13AC3WiBEj5OvrW21b9+7d1bt3b23durXO4+x2uz7++GONHTtWMTExru1ce2gsi8Wi2NhY5ebmurY999xzGjJkiC655BI5nU4VFRXVeizXH87Ejz/+qI8++kgvvPDCKduVl5efcsrNjz76SBaLpdpIHn9/f91yyy1avny59u/f766S0YoUFBSovLz8lG3uuusuXXLJJRo9enSt+6uuvRNHxnLtAQAIIgCgBbHb7dVe3K0SEBCgsrIy/fzzz5KkTZs2qby8XIMHD67WztfXVwMGDNC6deuapF60fuPGjdP8+fP18ssvKz09Xdu2bdPvf/975eXl6a677nK1W7dunQIDA5WUlFTt+CFDhrj2A3UxDENHjhxRZGRknW2+/vpr5ebm6pprrqm2nWsPZ6KoqEhZWVnavXu3nn/+eX3zzTeaOHGipMoAdtWqVUpJSdGDDz6o0NBQBQUFKSEhoUbQz/WHhqqoqNCdd96p3/zmN+rbt2+d7Xbs2KHAwEAFBwerQ4cOmjlzphwOR7U269atU48ePaq9KUX69fqra40xtF033XSTQkJC5O/vr/Hjx2vNmjU12sybN0/Lli3T3//+9zr7qbr2goKCqm3n2gOAto01IgCgBenZs6dWrFihiooKWSwWSVJZWZlWrlwpSTp48KAk6dChQ5IqR0ucrGPHjlq6dGkTVYzW7qWXXlJWVpZmzJihGTNmSJIiIyO1aNEiDR8+3NXu0KFDat++fbWRE9Kv12hmZmbTFY0W591339XBgwf12GOPnbKNn5+fpk2bVm071x7OxH333ad//etfkiSz2axLL71Ur7zyiiRp9+7dMgxD77//vqxWq/7+978rNDRUL774oq688kqFhIS4Fg3m+kNDvf7669q3b58WLlxYZ5tu3bpp/Pjx6tu3r4qKivTRRx/piSee0I4dO/TBBx+42h06dKjO54IS1x9+5evrq8suu0xTpkxRZGSktmzZomeffVajR4/WsmXLNHDgQElSSUmJ/vjHP+qee+5RfHy80tPTa+2Paw8AUBuCCABoQe644w7dfvvtuuWWW/SnP/1JTqdTTzzxhCt4KCkpqfbZz8+vRh/+/v6u/UBjBQQEqGfPnoqJidEFF1yggoICPf/887r00ku1dOlS1wKHJSUldV6PVfuB2lSNshk+fLhuuOGGWtvk5+frq6++0pQpUxQWFlZtH9cezsTdd9+tadOmKTMzUx9++KEqKipUVlYmSa6pcI4fP64VK1Zo6NChkqSpU6eqa9eueuKJJ1xBBNcfGuL48eOaNWuWZs6cqaioqDrbvfnmm9VuX3fddbrttts0Z84c3XPPPRo2bJgkrj/U34gRIzRixAjX7alTp2ratGnq16+fHnjgAc2fP1+S9PTTT8vhcOjBBx88ZX9cewCA2jA1EwC0IL/73e/04IMP6r333lPv3r3Vt29f7d69W3/6058kyTX8uWr6JrvdXqOP0tLSWqd3As7E9OnTlZGRoblz52ratGm66aabtGTJEpWVlemhhx5ytbPZbHVej1X7gZMdPnxY559/vkJDQ13zTdfm448/VmlpaY1pmSSuPZyZXr16adKkSbr++utdazBdeOGFMgzDdc107drVFUJIlX+DL7zwQq1atco1vzrXHxri//7v/xQREaE777yzwcfed999klRtJAXXHxojMTFRF110kRYvXqyKigqlp6frmWee0ZNPPlljyqWTce0BAGpDEAF4UK9evZSWlqZevXp5uxS0Ik8++aSOHDmipUuXauPGjVq9erWcTqckqUePHpJ+HfZcNVLiRIcOHVKnTp2armC0Wnv27NH8+fM1derUatsjIiI0atQo/fTTT65tHTt21OHDh2UYRrW2Vdco1yROlpeXp8mTJys3N1fz588/5TXy7rvvKjQ0VBdccEGNfVx7cIdp06Zp9erV2rFjh+uaad++fY120dHRcjgcrsWruf5QXzt37tTs2bM1Y8YMZWZmKj09Xenp6SotLZXD4VB6erqys7PrPD42NlaSqrXp2LFjnc8FJa4/nF5sbKzKyspUVFSkWbNmqXPnzho3bpzr+jx8+LAk6dixY0pPT3f9T1J17Z38/zDXHgC0bQQRgAcFBARo0KBBCggI8HYpaGXCw8M1atQo1yKGCxcuVExMjOtJfp8+fWS1WmssMFdWVqb169drwIABTV0yWqEjR45IqlxY82QOh8P1jmBJGjBggIqLi7V169Zq7arWN+GaxIlKS0t14YUXaseOHfryyy+VnJxcZ9tDhw5p8eLFuuyyy2qdBoJrD+5QNY1IXl6eOnXqpA4dOrjWZTpRZmam/P39FRwcLInrD/V38OBBOZ1OzZgxQ127dnV9rFy5Ujt27FDXrl1PuU7Onj17JKnalE4DBgzQjh07lJ+fX60t1x/qa8+ePfL391dQUJAyMjK0a9cuJSQkuK7Pq666SlLl9LFdu3Z1XWtV1155eXm1/4e59gCgbSOIAIAW7oMPPtDq1at19913y2yu/LUeGhqqSZMm6Z133lFBQYGr7dtvv63CwkJNnz7dW+WiFUlMTJTZbNYHH3xQ7d2+Bw4c0NKlS10LG0rSRRddJB8fH7366quubYZh6PXXX1fnzp2rzUuMtq2iokJXXHGFli9frnnz5lVb9Lw277//vpxOZ63TMklce2iYo0eP1tjmcDj0n//8RzabzRWKXXHFFdq/f7++++47V7usrCx99tlnmjBhguvvMdcf6qtPnz765JNPanz07t1bcXFx+uSTT3TLLbcoPz+/xpQ3hmHoiSeekCSde+65ru3Tpk1TRUWFZs+e7dpmt9v11ltvaejQoa5RFMCxY8dqbNuwYYM+//xznXPOOTKbzXriiSdqXJ+PP/64JOlPf/qTPvnkEwUGBkri2gMA1I7FqgGgBfnxxx/12GOP6ZxzzlG7du20YsUKvfXWWzrvvPN01113VWv75JNPasSIERo7dqxuu+02HThwQP/4xz90zjnnuBbRBE7llVdeUW5urjIzMyVJX3zxhQ4cOCBJuvPOOxUVFaWbb75Zb7zxhiZOnKhLL71UBQUFevXVV1VSUqIHHnjA1VdMTIzuvvtuPfPMM3I4HEpJSdGnn36qpUuX6t13361z7n+0Pffdd58+//xzXXjhhcrOztY777xTbf+1115b7fa7776rTp06ady4cbX2x7WHhvjtb3+r/Px8jRkzRp07d9bhw4f17rvvatu2bfrHP/7hmhf9gQce0IcffqjLLrtM9957r0JDQ/X666/L4XDor3/9q6s/rj/UV2RkpC6++OIa21944QVJcu1bsmSJrrrqKl111VVKTExUSUmJPvnkE/3000+67bbbNGjQINexQ4cO1fTp0/XAAw/o6NGjSkxM1L///W+lp6fXWPAabdsVV1whm82mESNGKDo6Wlu2bNHs2bMVEBCgp59+WpI0atSoGseFhYVJklJSUqpdv1x7AIBaGQCAFmPXrl3GOeecY0RGRhp+fn5Gr169jKeeesqw2+21tl+6dKkxYsQIw9/f34iKijJ+//vfG/n5+U1cNVqqLl26GJJq/di7d69hGIbhcDiMl19+2RgwYIARFBRkBAUFGePHjze+//77Gv1VVFQYf/3rX40uXboYvr6+Ru/evY133nmnie8VmruxY8fWed2d/NR127ZthiTj3nvvPWWfXHuor//+97/GpEmTjPbt2xtWq9UIDw83Jk2aZHz22Wc12u7evdu45JJLjJCQEMNmsxkTJkwwVq1aVaMd1x8aY+zYsUbv3r1dt/fs2WNMnz7diI+PN/z9/Y2AgADjrLPOMl5//XXD6XTWOL6kpMT44x//aHTo0MHw8/MzUlJSjPnz5zflXUAL8OKLLxpDhgwxIiIiDKvVanTs2NG49tprjZ07d57yuMWLFxuSjHnz5tXYx7UHADiZyTBOWjkNQKMUFhbqmWee0cqVK7Vq1Srl5OTorbfe0o033ujt0gAAAAAAaLAlS5Zo/Pjxte5bvny5hg0bVmN7bm6uevTooWPHjmnevHmaNm1ao/oDALRsTM0EuFlWVpYee+wxxcXFqX///lqyZIm3SwIAAAAAoNFmzJihlJSUatsSExNrbTtr1iwVFxe7rT8AQMtGEAG4WceOHXXo0CF16NBBa9asqfGkCgAAAACAlmj06NHVRjbU5eeff9Zrr72mWbNmadasWY3uDwDQ8pm9XQDQ2vj5+alDhw7eLgMAAAAAALcrKChQeXn5KdvcdddduuSSSzR69Gi39AcAaPkIIgAAAAAAAHBaN910k0JCQuTv76/x48drzZo1NdrMmzdPy5Yt09///ne39AcAaB2YmgkAAAAAAAB18vX11WWXXaYpU6YoMjJSW7Zs0bPPPqvRo0dr2bJlGjhwoCSppKREf/zjH3XPPfcoPj5e6enpjeoPANB6EEQAAAAAAACgTiNGjNCIESNct6dOnapp06apX79+euCBBzR//nxJ0tNPPy2Hw6EHH3zQLf0BAFoPpmYCAAAAAABAgyQmJuqiiy7S4sWLVVFRofT0dD3zzDN68sknFRQU1Oj+AACtC0EEAAAAAAAAGiw2NlZlZWUqKirSrFmz1LlzZ40bN07p6elKT0/X4cOHJUnHjh1Tenq6nE5nvfsDALQuTM0EAAAAAACABtuzZ4/8/f0VFBSkjIwM7dq1SwkJCTXa3XHHHZKknJwchYWF1as/AEDrQhABAAAAAACAOh07dkxRUVHVtm3YsEGff/65Jk+eLLPZrCeeeEJZWVnV2vz888+aOXOm/vSnP2n48OEKDAysd38AgNaFIALwgFdeeUW5ubnKzMyUJH3xxRc6cOCAJOnOO+9UaGioN8sDAAAAAKDerrjiCtlsNo0YMULR0dHasmWLZs+erYCAAD399NOSpFGjRtU4rmr0Q0pKii6++OIG9QcAaF1MhmEY3i4CaG3i4+O1b9++Wvft3btX8fHxTVsQAAAAAABn6KWXXtK7776rXbt2KT8/X1FRUZo4caIefvhhJSYm1nnckiVLNH78eM2bN0/Tpk1rdH8AgJaLIAIAAAAAAAAAAHgMk+4BAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAABtlslkkslk8nYZAAAAANCqEUQAAADAraZMmSKTyaTrr79ekuTv79/gF/uff/55mc1mV1BQ9eHj46N58+Z5omwAAAAAgIeYDMMwvF0EAAAAWo+goCAVFRXJbrfL19fXFULU92nnmDFjtHTpUtftgIAASVJxcbFrm7uewja0NgAAAABAwzEiAgAAAG5VVFQkSfL19XVt8/Pzq9ex8+bNc4UQV199tQzDUFFRkYqKimQYhp577jlZrVb3Fw0AAAAA8BiCCAAAADTaBx98oDlz5mjOnDmSKkcazJkzR9OmTZMkRUdHa86cOfr+++9P2c8111wjSYqIiNC7775bY/8999wjh8NRbVtAQECNKZxqm74pKCioWpsBAwbUWsPLL79co7/Q0NAadZhMJvn5+dXod8yYMdXaPvvsszX6M5lMuueee075WAAAAABAa8HUTAAAAGi0hqwBcaqnn1X97Ny5U4mJiafty2q1qqKiQlLlWhR2u93V/759+xQXFydJCg4OVmFhYa3tTqxpzZo1SklJcdXi5+en0tJSSar29T333KMXXnjBdbyPj48kuUKSE89ddZ/MZrMCAgJUWlqq8vJy9evXTxs2bDjtfQQAAACAlo4REQAAAGi0s846Sz169JDZXPn0MiEhQT169HDt79Gjh3r06OEaIXE69QkhXnvtNVcIUVBQoJKSEjmdTtlsNklSnz59JEkZGRmuEGLnzp2udoGBgTX6HDVqlCQpPDxcTqdTJSUl2rdvnyTJbrdrwYIFNY55//33VVZWprKyMnXu3LlaP1UjM3x9fVVRUaGCggI5HA4ZhkEIAQAAAKDNYEQEAAAA3MZsNsswDNcIA5PJJKvVWmM6pbo0ZPHodu3aKTs7W/Hx8dq7d69r+65du9S9e3dXP0OHDtWqVasUEBDgWr9CqgwounTpUu18VecvKChQUFCQq21kZKSOHz+u2NhYZWRkVBsRcWKtH3zwga688krX6IktW7aod+/ekioDiyuuuKJejwMAAAAAtCaMiAAAAECjfPrpp671IQzDcK0PceONN0r6dX2ITz/91K3nLSgokCRNmTKl2vaTR1Ps3r1bklyhQ5WqqZNqc2IIIUlDhgyRJGVlZVXbXjUlU5WqoKFqpEZycrJroe4rr7xSJpNJvr6+evbZZ+s8NwAAAAC0NlZvFwAAAICW7ZJLLql22zAM3Xbbba7bmZmZrtv1HYy7a9euek3P5G11rY1x4v0sLS3V7373O7311lsqKyuTw+HQ/fffr++++67WqZ4AAAAAoLVhRAQAAAAaZcKECerRo4es1sr3uNS1PsSECRNO21dVH0OHDj1t2+DgYEnS119/XW37rl27qt3u1q2bJLnWeqiSkZFRZ99Va0pUWbVqlaTKKZrOxOuvv+5aIPvmm2+WJH377bdn1BcAAAAAtDQEEQAAAGiURYsWafv27XI6nZIqp0Lavn27pMo1I7Zv367t27dr0aJFp+3rnXfekSRlZ2e7pnY60csvv+yaDumJJ56QJKWnp6usrMzVpn///pJ+DSqqFowuLi6uFlIkJyfX6L9qGqUTp3E6fPiwjh8/LkmaM2fOae/DiZYvX66NGzdW2/biiy82qA8AAAAAaOlYrBoAAABuceJC0xs3blT//v3VuXNnHThwoEH9jBw5UsuWLXPdDggIkFQZJFSpegprtVpd6zHYbDaVlpa69u3bt8+1DkRQUJBroWp/f3/X6IST+1uzZo1SUlJc96dq0WlJ1b6uWqza19dXdru9xuNgsVhUXl6uyZMna/78+a7zms1m1/1o3769Dh8+3KDHBgAAAABaIkZEAAAAoNGys7MlSWFhYZLkmn7ooYceanBfP/30k5566ilXsFFcXOx68d5qteqLL75wtS0vL5fNZpMklZSUuAKFDz/8sNpi1IWFha5AoyqsqBo5caLBgwfrpZdeklQZTlQFDyEhIa6vG6Jq8eqq81bdj+joaEIIAAAAAG0GIyIAAAAAAAAAAIDHMCICAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHEEQAAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAPj/7dmxAAAAAMAgf+tR7CuNAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAT7cin33Vai7EAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiIAAAKrCAYAAAB80pW4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD96ElEQVR4nOzdd1hUx9fA8e/Sm1TBggqIvUfsDTuiEbvBDtbYiEaj0RgBjRp7DPZoxP5TrNHYW9Ro1Nhir6CRWADFBorAvH/47sZ1QUCxJDmf59kn7txzZ869W8jO3DujUUophBBCCCGEEEIIIYQQQggh3gKj952AEEIIIYQQQgghhBBCCCH+vWQgQgghhBBCCCGEEEIIIYQQb40MRAghhBBCCCGEEEIIIYQQ4q2RgQghhBBCCCGEEEIIIYQQQrw1MhAhhBBCCCGEEEIIIYQQQoi3RgYihBBCCCGEEEIIIYQQQgjx1shAhBBCCCGEEEIIIYQQQggh3hoZiBBCCCGEEEIIIYQQQgghxFsjAxFCCCGEEEIIIYQQQgghhHhrZCBCCCGEEEJ80MLDw9FoNERFRemVT5w4kYIFC2JsbEy5cuUAcHd3JyAg4J3n+KZq165N7dq1M4zbs2cPGo2GPXv2vPWcPhQBAQG4u7u/83a177vff//9nbednqy+/pl9X6VFo9EQEhLyWvsKIYQQQgjxMhmIEEIIIYQQ2erUqVO0bt0aNzc3LCwscHV1pUGDBoSFhWVbG9u2bWPIkCFUr16dBQsWMHbs2DTjzp49S0hIiMEghvjnSkhIICQk5D81GCOEEEIIIcQ/ncn7TkAIIYQQQvx7HDhwgDp16lCgQAF69OhB7ty5+fPPP/ntt9+YNm0a/fv3z5Z2du3ahZGREfPnz8fMzExXfuHCBYyM/r7W5uzZs4SGhlK7du33clV9Zm3btu19p/DB+uGHH0hNTdU9T0hIIDQ0FOC1r/b/r5D3lRBCCCGE+FDIQIQQQgghhMg2Y8aMwc7OjiNHjmBvb6+37c6dO9nWzp07d7C0tNQbhAAwNzfPtjbepZePQ/zN1NT0fafwj5OQkICVlZW8r4QQQgghxAdDpmYSQgghhBDZ5sqVK5QsWdJgEALAxcVF9++oqCg0Gg3h4eEGcRnNTa/RaFiwYAGPHz9Go9Ho1fPiGhHh4eG0adMGgDp16uhiX5zSZ/PmzdSsWRNra2ty5MhBkyZNOHPmTKaO9erVq7Rp0wZHR0esrKyoUqUKP//8s277uXPnsLS0pHPnznr77d+/H2NjY4YOHaorS2su/xs3btC8eXOsra1xcXFh4MCBPH361CCPffv20aZNGwoUKIC5uTn58+dn4MCBJCYm6sXdunWLwMBA8uXLh7m5OXny5KFZs2YG01a9yTlJi0ajoV+/fkRERFCiRAksLS2pWrUqp06dAmDOnDkUKlQICwsLateubZDPi2tEREVF4ezsDEBoaKjuNX3x/bJr1y5d/vb29jRr1oxz584Z5BUdHU23bt3Imzcv5ubmeHh40Lt3b5KSkvTinj59yueff46zszPW1ta0aNGCmJgYg/pmzpxJyZIlMTc3J2/evPTt25f4+Hi9mNq1a1OqVCnOnj1LnTp1sLKywtXVlQkTJhjUl9nXX1vn0aNHqVWrFlZWVgwfPly37cX3VVJSEiNHjsTLyws7Ozusra2pWbMmu3fvNqhXCCGEEEKI7CR3RAghhBBCiGzj5ubGwYMHOX36NKVKlXorbSxevJi5c+dy+PBh5s2bB0C1atUM4mrVqkVQUBDff/89w4cPp3jx4gC6/y5evJguXbrg4+PD+PHjSUhIYNasWdSoUYPjx4+/ciqn27dvU61aNRISEggKCsLJyYmFCxfi5+fHqlWraNGiBcWLF2f06NF88cUXtG7dGj8/Px4/fkxAQADFihVj1KhR6dafmJhIvXr1uH79OkFBQeTNm5fFixeza9cug9iIiAgSEhLo3bs3Tk5OHD58mLCwMG7cuEFERIQurlWrVpw5c4b+/fvj7u7OnTt32L59O9evX9cd65uck1fZt28fP/30E3379gVg3LhxfPzxxwwZMoSZM2fSp08f7t27x4QJE+jatWuaxwng7OzMrFmz6N27Ny1atKBly5YAlClTBoAdO3bg6+tLwYIFCQkJITExkbCwMKpXr86xY8d0+f/1119UqlSJ+Ph4evbsSbFixYiOjmbVqlUkJCTo3UnQv39/HBwcCA4OJioqiu+++45+/fqxYsUKXUxISAihoaHUr1+f3r17c+HCBWbNmsWRI0f49ddf9e7quHfvHo0aNaJly5a0bduWVatWMXToUEqXLo2vry+QtdcfIC4uDl9fX/z9/enYsSO5cuVKM+7BgwfMmzePdu3a0aNHDx4+fMj8+fPx8fHh8OHDukXfhRBCCCGEyHZKCCGEEEKIbLJt2zZlbGysjI2NVdWqVdWQIUPU1q1bVVJSkl5cZGSkAtSCBQsM6gBUcHCw7vmCBQsUoCIjI3VlXbp0UdbW1gb7urm5qS5duuieR0REKEDt3r1bL+7hw4fK3t5e9ejRQ6/81q1bys7OzqD8ZQMGDFCA2rdvn16dHh4eyt3dXaWkpCillEpJSVE1atRQuXLlUrGxsapv377KxMREHTlyRK8+b29v5e3trXv+3XffKUCtXLlSV/b48WNVqFAhg+NJSEgwyG/cuHFKo9Goa9euKaWUunfvngLUxIkT0z2mNz0n6QGUubm53us3Z84cBajcuXOrBw8e6MqHDRuW5mvt5uamex4TE2PwHtEqV66ccnFxUXFxcbqykydPKiMjI9W5c2ddWefOnZWRkZHB66CUUqmpqUqpv9939evX15UppdTAgQOVsbGxio+PV0opdefOHWVmZqYaNmyoe92VUmr69OkKUD/++KOuzNvbWwFq0aJFurKnT5+q3Llzq1atWunKsvL6a+ucPXu2wbG8/L5KTk5WT58+1Yu5d++eypUrl+ratateeXrnWAghhBBCiNchUzMJIYQQQohs06BBAw4ePIifnx8nT55kwoQJ+Pj44Orqyk8//fS+09PZvn078fHxtGvXjtjYWN3D2NiYypUrZzhVzaZNm6hUqRI1atTQldnY2NCzZ0+ioqI4e/YsAEZGRoSHh/Po0SN8fX2ZOXMmw4YNo0KFChnWnydPHlq3bq0rs7KyomfPngaxlpaWun8/fvyY2NhYqlWrhlKK48eP62LMzMzYs2cP9+7deyvn5FXq1aundzdF5cqVged3aeTIkcOg/OrVq1lu4+bNm5w4cYKAgAAcHR115WXKlKFBgwZs2rQJgNTUVNatW0fTpk3TfB00Go3e8549e+qV1axZk5SUFK5duwY8vwsjKSmJAQMG6C2U3qNHD2xtbfWm64Ln75OOHTvqnpuZmVGpUiW9Y87K6w/P10YJDAxM/+T8P2NjY93dHqmpqdy9e5fk5GQqVKjAsWPHMtxfCCGEEEKI1yUDEUIIIYQQIltVrFiRNWvWcO/ePQ4fPsywYcN4+PAhrVu31nXQv2+XLl0CoG7dujg7O+s9tm3bluHC2teuXaNo0aIG5dppn7Sd1ACenp6EhIRw5MgRSpYsyddff51hfteuXaNQoUIGneJptXn9+nVd57uNjQ3Ozs54e3sDcP/+feB5R/X48ePZvHkzuXLlolatWkyYMIFbt25l2zl5lQIFCug9t7OzAyB//vxplqc3WPIq2nOe3usSGxvL48ePiYmJ4cGDB5meOuzl3B0cHPRyTK9dMzMzChYsqPdeAMiXL5/B6+rg4KB3zFl5/QFcXV0zvTD1woULKVOmDBYWFjg5OeHs7MzPP/+se68IIYQQQgjxNsgaEUIIIYQQ4q0wMzOjYsWKVKxYkSJFihAYGEhERATBwcEGHaxaKSkp7yS31NRU4PmaCLlz5zbYbmKSvf+bvG3bNuD52gRxcXFptvk6UlJSaNCgAXfv3mXo0KEUK1YMa2troqOjCQgI0B0nwIABA2jatCnr1q1j69atfP3114wbN45du3bx0UcfvdVzYmxsnKVypdRrt5XdsjvHt3HML94V8ypLliwhICCA5s2b88UXX+Di4oKxsTHjxo3jypUrr92+EEIIIYQQGZGBCCGEEEII8dZpp8C5efMm8PdV5fHx8XpxL189/qbSG/Dw9PQEwMXFhfr162e5Xjc3Ny5cuGBQfv78ed12rdmzZ7N9+3bGjBnDuHHj6NWrF+vXr8+w/tOnT6OU0juGl9s8deoUFy9eZOHChXTu3FlXvn379jTr9fT0ZNCgQQwaNIhLly5Rrlw5Jk+ezJIlS974nLwr6b2m2nOe3uuSM2dOrK2tsbS0xNbWltOnT2dLPi+2W7BgQV15UlISkZGRr/3+yszrn1WrVq2iYMGCrFmzRq/e4ODgN6pXCCGEEEKIjMjUTEIIIYQQItvs3r07zSu7tfPza6eWsbW1JWfOnOzdu1cvbubMmdmaj7W1NWA44OHj44OtrS1jx47l2bNnBvvFxMS8st7GjRtz+PBhDh48qCt7/Pgxc+fOxd3dnRIlSgAQGRnJF198QatWrRg+fDiTJk3ip59+YtGiRRnW/9dff7Fq1SpdWUJCAnPnztWL015d/+I5V0oxbdo0vbiEhASePHmiV+bp6UmOHDl4+vQp8Obn5F2xsrICDF/TPHnyUK5cORYuXKi37fTp02zbto3GjRsDz9ftaN68ORs2bOD33383qD+rdybUr18fMzMzvv/+e71958+fz/3792nSpEmW6oPMv/5Zldb75dChQ3rvYyGEEEIIId4GuSNCCCGEEEJkm/79+5OQkECLFi0oVqwYSUlJHDhwgBUrVuDu7q63oG737t359ttv6d69OxUqVGDv3r1cvHgxW/MpV64cxsbGjB8/nvv372Nubk7dunVxcXFh1qxZdOrUifLly+Pv74+zszPXr1/n559/pnr16kyfPj3der/88kuWL1+Or68vQUFBODo6snDhQiIjI1m9ejVGRkYopejatSuWlpbMmjULgF69erF69Wo+++wz6tevT968edOsv0ePHkyfPp3OnTtz9OhR8uTJw+LFi3Wd8FrFihXD09OTwYMHEx0dja2tLatXrzZYY+HixYvUq1ePtm3bUqJECUxMTFi7di23b9/G398feD44lNlzEhUVhYeHB126dCE8PPx1X57XYmlpSYkSJVixYgVFihTB0dGRUqVKUapUKSZOnIivry9Vq1alW7duJCYmEhYWhp2dHSEhIbo6xo4dy7Zt2/D29qZnz54UL16cmzdvEhERwf79+7G3t890Ps7OzgwbNozQ0FAaNWqEn58fFy5cYObMmVSsWFFvYerMyuzrn1Uff/wxa9asoUWLFjRp0oTIyEhmz55NiRIlePTo0RvVLYQQQgghxKvIQIQQQgghhMg2kyZNIiIigk2bNjF37lySkpIoUKAAffr0YcSIEXodvCNHjiQmJoZVq1axcuVKfH192bx5My4uLtmWT+7cuZk9ezbjxo2jW7dupKSksHv3blxcXGjfvj158+bl22+/ZeLEiTx9+hRXV1dq1qypN2CSlly5cnHgwAGGDh1KWFgYT548oUyZMmzYsEF3BXxYWBh79uxh9erVODs76/adP38+pUqVokePHvz8889p1m9lZcXOnTvp378/YWFhWFlZ0aFDB3x9fWnUqJEuztTUlA0bNhAUFMS4ceOwsLCgRYsW9OvXj7Jly+ri8ufPT7t27di5cyeLFy/GxMSEYsWKsXLlSlq1aqWLy+w50XZa58mTJwuvRvaZN28e/fv3Z+DAgSQlJREcHEypUqWoX78+W7ZsITg4mJEjR2Jqaoq3tzfjx4/Hw8NDt7+rqyuHDh3i66+/ZunSpTx48ABXV1d8fX1fq7M/JCQEZ2dnpk+fzsCBA3F0dKRnz56MHTsWU1PTLNeX2dc/qwICArh16xZz5sxh69atlChRgiVLlhAREcGePXteu14hhBBCCCEyolEf0kpwQgghhBBCiA/ezJkzGTJkCFeuXCFXrlzvOx0hhBBCCCHEB07WiBBCCCGEEEJkye7duwkKCpJBCCGEEEIIIUSmyB0RQgghhBBCCCGEEEIIIYR4a+SOCCGEEEIIIYQQQgghhBBCvDUyECGEEEIIIYQQQgghhBBCiLdGBiKEEEIIIYQQQgghhBBCCPHWyECEEEIIIYQQQgghhBBCCCHeGhmIEEIIIYT4gAQEBODu7v6+0xBCpCM8PByNRkNUVNT7TkUIIYQQQoh/DBmIEEIIIcQH78CBA4SEhBAfH/++U/mgbdq0iZCQkDeuR6PRoNFomDx5ssE2bSfs77//risLCQlBo9FgZGTEn3/+abDPgwcPsLS0RKPR0K9fvyznc+7cORo1aoSNjQ2Ojo506tSJmJgYg7jU1FQmTJiAh4cHFhYWlClThuXLlxvEHT58mD59+uDl5YWpqSkajeaV7c+fP5/ixYtjYWFB4cKFCQsLM4hZu3YtPj4+5M2bF3Nzc/Lly0fr1q05ffq0XlxcXBwTJ06kVq1aODs7Y29vT5UqVVixYoVBnWfOnKFNmzYULFgQKysrcubMSa1atdiwYUOaea5cuZIqVapgb2+Pk5MT3t7e/Pzzz2nGXrlyhfbt2+Pi4oKlpSWFCxfmq6++euV5ANi5cyddu3alSJEiWFlZUbBgQbp3787Nmzcz3PdD8NdffxESEsKJEyfedyoZ2rNnj+6zePToUYPtAQEB2NjY6JXVrl1bt49Go8HR0ZGKFSvy448/kpqamqX2M/t5gsx/RseMGYOfnx+5cuVCo9G88vsqOjqatm3bYm9vj62tLc2aNePq1at6MX/++SehoaFUqlQJBwcHcubMSe3atdmxY4dBfS+fmxcfpqamerHu7u5pxn366ad6cdrvw7Qet27d0ot98uQJ48aNo0SJElhZWeHq6kqbNm04c+ZMuufgdc+dEEIIIcSHyOR9JyCEEEIIkZEDBw4QGhpKQEAA9vb27zudt+qHH37Icoeh1qZNm5gxY0a2dVBNnDiR3r17Y2Vllal4c3Nzli9fzpAhQ/TK16xZ89o53Lhxg1q1amFnZ8fYsWN59OgRkyZN4tSpUxw+fBgzMzNd7FdffcW3335Ljx49qFixIuvXr6d9+/ZoNBr8/f11cZs2bWLevHmUKVOGggULcvHixXTbnzNnDp9++imtWrXi888/Z9++fQQFBZGQkMDQoUN1cadOncLBwYHPPvuMnDlzcuvWLX788UcqVarEwYMHKVu2LAAHDx7kq6++onHjxowYMQITExNWr16Nv78/Z8+eJTQ0VFfntWvXePjwIV26dCFv3rwkJCSwevVq/Pz8mDNnDj179tTFhoWFERQURJMmTfj222958uQJ4eHhfPzxx6xevZqWLVvqYk+cOEHt2rVxdXVl0KBBODk5cf369TQHkV42dOhQ7t69S5s2bShcuDBXr15l+vTpbNy4kRMnTpA7d+4M63if/vrrL0JDQ3F3d6dcuXKvVUenTp3w9/fH3Nw8e5N7hZCQkHQHoF6WL18+xo0bB0BMTAyLFi2iW7duXLx4kW+//TbTbWb285SVz+iIESPInTs3H330EVu3bk237UePHlGnTh3u37/P8OHDMTU1ZerUqXh7e3PixAmcnJwAWL9+PePHj6d58+Z06dKF5ORkFi1aRIMGDfjxxx8JDAzUO57u3bvrtfP48WM+/fRTGjZsaJBDuXLlGDRokF5ZkSJF0sx31KhReHh46JW9/LeqQ4cO/PTTT/To0YPy5cvz119/MWPGDKpWrcqpU6dwc3NL93xA5s+dEEIIIcQHSwkhhBBCfOAmTpyoABUZGZlhbEpKikpMTHz7SWWzR48evXEdffv2Vdnxv3eAKleunALU5MmT9bYtWLBAAerIkSO6suDgYAWoli1bqnLlyhnU16BBA9WqVSsFqL59+2Ypl969eytLS0t17do1Xdn27dsVoObMmaMru3HjhjI1NdWrPzU1VdWsWVPly5dPJScn68pv3bqlEhISlFKvPmcJCQnKyclJNWnSRK+8Q4cOytraWt29e/eVud+6dUuZmJioXr166cquXr2qoqKi9OJSU1NV3bp1lbm5eYbvg+TkZFW2bFlVtGhRvfLChQurihUrqtTUVF3Z/fv3lY2NjfLz89OVpaSkqFKlSqnKlSvrzkFW/PLLLyolJcWgDFBfffVVlut7U6mpqVk6jiNHjihALViw4O0llU12796t91k8evSo3vYuXbooa2trvTJvb29VsmRJvbLHjx+rfPnyKWtra5WUlJSptrPyecrsZ1QppfsOj4mJUYAKDg5Os/3x48crQB0+fFhXdu7cOWVsbKyGDRumKzt9+rSKiYnR2/fJkyeqWLFiKl++fBke5+LFixWgli5dqlfu5uZm8LlPS1rfh2m5ceOGAtTgwYP1ynft2qUANWXKlAzbyuy5E0IIIYT4UMnUTEIIIYT4oIWEhPDFF18A4OHhoZv2Qjs/u3a6n6VLl1KyZEnMzc3ZsmULAJMmTaJatWo4OTlhaWmJl5cXq1atMmhDW8e6desoVaoU5ubmlCxZUleP1sOHDxkwYADu7u6Ym5vj4uJCgwYNOHbsmF7coUOHaNy4MQ4ODlhbW1OmTBmmTZum266dUuXKlSs0btyYHDly0KFDB922F9eIiIqKQqPRMGnSJKZOnYqbmxuWlpZ4e3vrTfsTEBDAjBkzdMejfWjdvHmT8+fP8+zZs0yd9+rVq1O3bl0mTJhAYmJipvZp3749J06c4Pz587qyW7dusWvXLtq3b5+pOl62evVqPv74YwoUKKArq1+/PkWKFGHlypW6svXr1/Ps2TP69OmjK9NoNPTu3ZsbN25w8OBBXXmuXLmwtLTMsO3du3cTFxenVydA3759efz4cbrTHmm5uLhgZWWlN6WYh4eHwZXPGo2G5s2b8/TpU4OpZ15mbGxM/vz5DaYpe/DgAS4uLnqvua2tLTY2NnrHum3bNk6fPk1wcDCWlpYkJCSQkpLyyjZfVKtWLYyMjAzKHB0dOXfuXKbreZF2epu9e/fSq1cvnJycsLW1pXPnzty7d08v1t3dnY8//pitW7dSoUIFLC0tmTNnDgBXr16lTZs2ODo6YmVlRZUqVfReoz179lCxYkUAAgMDdZ+R8PBwXcyhQ4do1KgRdnZ2WFlZ4e3tza+//ppmvi+uEaHNa//+/VSqVAkLCwsKFizIokWLDI73ypUrXLlyJdPnp3///jg4OLz2nU7ac/H48eM0p0tKS1Y+T5n9jAKZXv9m1apVVKxYUfd6ARQrVox69erp1VmyZEly5sypt6+5uTmNGzfmxo0bPHz48JXtLFu2DGtra5o1a5bm9qSkJB4/fpypnB8+fJjuZ0mbR65cufTK8+TJA5Cp7yNZO0gIIYQQ/3QyECGEEEKID1rLli1p164dAFOnTmXx4sUsXrwYZ2dnXcyuXbsYOHAgn3zyCdOmTdN12EybNo2PPvqIUaNGMXbsWExMTGjTpk2aHcj79++nT58++Pv7M2HCBJ48eUKrVq2Ii4vTxXz66afMmjWLVq1aMXPmTAYPHoylpaVeB+z27dupVasWZ8+e5bPPPmPy5MnUqVOHjRs36rWXnJyMj48PLi4uTJo0iVatWr3yPCxatIjvv/+evn37MmzYME6fPk3dunW5ffs2AL169aJBgwYAunO0ePFi3f7Dhg2jePHiREdHZ+a0A88HgW7fvs2sWbMyFV+rVi3y5cvHsmXLdGUrVqzAxsaGJk2aZLpdrejoaO7cuUOFChUMtlWqVInjx4/rnh8/fhxra2uKFy9uEKfdnlXafV5u38vLCyMjozTrjI+PJyYmhlOnTtG9e3cePHhAvXr1MmxLO5/8y52q8Hz6mNjYWK5cucLUqVPZvHmzQZ21a9dmy5YthIWFERUVxfnz5+nbty/379/ns88+08Vp5843NzenQoUKWFtbY2Vlhb+/P3fv3s0wz7Q8evSIR48epZl7VvTr149z584REhJC586dWbp0Kc2bN0cppRd34cIF2rVrR4MGDZg2bRrlypXj9u3bVKtWja1bt9KnTx/GjBnDkydP8PPzY+3atQAUL16cUaNGAdCzZ0/dZ6RWrVrA8++RWrVq8eDBA4KDgxk7dizx8fHUrVuXw4cPZ5j/5cuXad26NQ0aNGDy5Mk4ODgQEBBgsAZAvXr1MvWe0LK1tWXgwIFs2LDBYNAzs65evYqxsXGmp7bL7OcpK5/RzEpNTeWPP/5It84rV65kOMBw69YtrKysXjmtXExMDNu3b6d58+ZYW1sbbN+1axdWVlbY2Njg7u6uN5j8sjp16mBra4uVlRV+fn5cunRJb7unpyf58uVj8uTJbNiwgRs3bnD48GE+/fRTPDw89Ka6EkIIIYT413rft2QIIYQQQmTkVVMzAcrIyEidOXPGYNvLU7YkJSWpUqVKqbp16xrUYWZmpi5fvqwrO3nypAJUWFiYrszOzu6VUwslJycrDw8P5ebmpu7du6e37cUpc7p06aIA9eWXXxrU0aVLF+Xm5qZ7HhkZqQBlaWmpbty4oSs/dOiQAtTAgQN1Za+aZkjbZmamt+KFKZTq1KmjcufOrTuXr5qaKSYmRg0ePFgVKlRIt61ixYoqMDDQoN7M0E6js2jRIoNtX3zxhQLUkydPlFJKNWnSRBUsWNAg7vHjx+mea6Vefc769u2rjI2N09zm7Oys/P39DcqLFi2qAAUoGxsbNWLECIOpjF4WFxenXFxcVM2aNdPc3qtXL12dRkZGqnXr1gbTQt2+fVvVq1dPFweonDlzqgMHDujF+fn5KUA5OTmpDh06qFWrVqmvv/5amZiYqGrVqum9TzNr9OjRClA7d+7M8r5K/f2e8vLy0ps6aMKECQpQ69ev15W5ubkpQG3ZskWvjgEDBihA7du3T1f28OFD5eHhodzd3XWvQXpTM6WmpqrChQsrHx8fvXOQkJCgPDw8VIMGDQzyffGzpM1r7969urI7d+4oc3NzNWjQIL223Nzc9D7j6dFOzRQREaHi4+OVg4OD3jRb6U3NVKxYMRUTE6NiYmLUuXPnVFBQkAJU06ZNM2xTK7Ofp6x8Rl/0qumFtNtGjRplsG3GjBkKUOfPn08390uXLikLCwvVqVOnVx2iCgsLU4DatGmTwbamTZuq8ePHq3Xr1qn58+ermjVrKkANGTJEL27FihUqICBALVy4UK1du1aNGDFCWVlZqZw5c6rr16/rxR46dEh5enrqfUa9vLzUzZs3X5nny2RqJiGEEEL8U8kdEUIIIYT4x/P29qZEiRIG5S9Od3Hv3j3u379PzZo107yquH79+nh6euqelylTBltbW72pcuzt7Tl06BB//fVXmnkcP36cyMhIBgwYYHDl8YtT5mj17t07w2PTat68Oa6urrrnlSpVonLlymzatClT+4eHh6OUyvL0HiEhIdy6dYvZs2dnKr59+/ZcvnyZI0eO6P77utMyaaeESmtRYAsLC72YxMTETMVltf0XF9p9ud606lywYAFbtmxh5syZFC9enMTExFdOfZSamkqHDh2Ij48nLCwszZgBAwawfft2Fi5ciK+vLykpKSQlJenFWFlZUbRoUbp06UJERAQ//vgjefLkoWXLlly+fFkX9+jRIwAqVqzIkiVLaNWqFaNGjWL06NEcOHCAnTt3ZnheXrR3715CQ0Np27YtdevWzdK+L+vZsyempqa6571798bExMTgPe7h4YGPj49e2aZNm6hUqRI1atTQldnY2NCzZ0+ioqI4e/bsK9s+ceIEly5don379sTFxREbG0tsbCyPHz+mXr167N27N8NF5EuUKEHNmjV1z52dnSlatKjBdFtRUVF60zplhp2dHQMGDOCnn37K8C6D8+fP4+zsjLOzM8WLFycsLIwmTZrw448/Zrq9zH6esvIZzUrbr1tnQkICbdq0wdLSMsOFuZctW4azs7PuTrIX/fTTTwwZMoRmzZrRtWtXfvnlF3x8fJgyZQo3btzQxbVt25YFCxbQuXNnmjdvzujRo9m6dStxcXGMGTNGr04HBwfKlSvHl19+ybp165g0aRJRUVG0adOGJ0+evPqkCCGEEEL8C8hAhBBCCCH+8Tw8PNIs37hxI1WqVMHCwgJHR0ecnZ2ZNWsW9+/fN4h9cX5zLQcHB7056idMmMDp06fJnz8/lSpVIiQkRK+TUTvve6lSpTLM2cTEhHz58mUYp1W4cGGDsiJFimS5QzOratWqRZ06dTK9VsRHH31EsWLFWLZsGUuXLiV37tyv3UGtHUh6+vSpwTZtx502xtLSMlNxWW3/5Q7/F+tNq86qVavi4+ND79692bp1K0uWLGHYsGHpttG/f3+2bNnCvHnzKFu2bJoxxYoVo379+nTu3JmNGzfy6NEjmjZtqjdlUZs2bbh+/Trh4eG0bt2awMBA9uzZQ1JSEl999ZXeMQG66c60tINFBw4cSDfXl50/f54WLVpQqlQp5s2bl+n90vPye9zGxoY8efIYvMfT+rxfu3aNokWLGpRrpxa6du3aK9vWTqXTpUsXXSe+9jFv3jyePn2a5vfGizLzHfImPvvsM+zt7TNcK8Ld3Z3t27ezY8cO9u/fz61bt9i4cWOWps7K7OcpK5/RrLT9OnWmpKTg7+/P2bNnWbVqFXnz5k23jatXr3Lw4EE++eQTTExMMsxJo9EwcOBAkpOT2bNnzytja9SoQeXKlXXToAG6QfCqVasybtw4mjVrxqBBg1i9ejX79+9nwYIFGeYghBBCCPFPJwMRQgghhPjHS6tTat++ffj5+WFhYcHMmTPZtGkT27dvp3379gZzzsPzRYDT8mJs27ZtuXr1KmFhYeTNm5eJEydSsmRJNm/enOWczc3NDRb9/VAFBwdz69Yt3aLAGWnfvj0rVqxg2bJlfPLJJ699nNqFXG/evGmw7ebNmzg6Ouqums6TJw+3bt0yeG21+76qU/JV7aekpHDnzh298qSkJOLi4jKs08HBgbp167J06dI0t4eGhjJz5ky+/fZbOnXqlOm8WrduzZEjR7h48SLwvFN1y5Yt+Pn56cU5OjpSo0YNvcWWtTm/vGiui4sLQKY7zf/8808aNmyInZ0dmzZtIkeOHJnO/029zqBSRrR3O0ycOJHt27en+bCxsXllHZn5DnkTmb0rwtramvr161OvXj2qV6+ue22zIrOfp6x8RjNLu096db7Y/ot69OjBxo0bCQ8Pz3DwU7uOTYcOHTKdV/78+QEytZZK/vz59eJWr17N7du3DT6j3t7e2NraGiyILoQQQgjxb/TP+PUrhBBCiP+0tKY1ysjq1auxsLBg69atdO3aFV9fX+rXr//GueTJk4c+ffqwbt06IiMjcXJy0k3BoZ3a6fTp02/czsteXvwU4OLFi3pTLb3OecoMb29vateuzfjx4zN1V0T79u25efMmFy9efO1pmQBcXV1xdnbm999/N9h2+PBhypUrp3terlw5EhIS9BYOBzh06JBue1Zp93m5/d9//53U1NRM1ZmYmJjmlfQzZswgJCSEAQMGMHTo0CzlpX0NtPVqFyxPawqoZ8+ekZycrHvu5eUFYLBouXa6sRcXgU9PXFwcDRs25OnTp2zdulXXGf2mXn6PP3r0iJs3b2ZqOjE3NzcuXLhgUH7+/Hnddkj/M6L97Nra2lK/fv00Hy9OG/W+aKd9Cw0NfavtZPbzlJXPaGYZGRlRunTpNOs8dOgQBQsWNBj4+uKLL1iwYAFTp041uNsnLcuWLcPT05MqVapkOi/t3W+Z+YxcvXpVLy69z6hSipSUFL3PqBBCCCHEv5UMRAghhBDig2dtbQ1AfHx8pvcxNjZGo9HodfxERUWxbt2618ohJSXFoEPZxcWFvHnz6qYQKV++PB4eHnz33XcGub7pVdHr1q3T6zw+fPgwhw4dwtfXV1f2qvN08+ZNzp8/z7Nnz16rfe1aEXPnzs0w1tPTk++++45x48ZRqVKl12pPq1WrVmzcuJE///xTV7Zz504uXrxImzZtdGXNmjXD1NSUmTNn6sqUUsyePRtXV1eqVauW5bbr1q2Lo6Mjs2bN0iufNWsWVlZWNGnSRFf28l0T8Pz9tnPnTipUqKBXvmLFCoKCgujQoQNTpkxJt/206nz27BmLFi3C0tJSty5KoUKFMDIyYsWKFXrvsxs3brBv3z4++ugjXVmzZs0wNzdnwYIFemseaKdWenG+/LTeM48fP6Zx48ZER0ezadOmNKcMe11z587Va2vWrFkkJyfrvcfT07hxYw4fPszBgwf1cp07dy7u7u66c5XeZ8TLywtPT08mTZqkW0fjRTExMa9zSGm6cuWKbhq3rNLeFbF+/XpOnDiRbTm9LCufp8x+RrNCe9fPi4MRFy5cYNeuXQZ1Tpw4kUmTJjF8+HA+++yzDOs+fvw4586dS3eQ9O7duwYDBs+ePePbb7/FzMyMOnXq6MrTel9s2rSJo0eP0qhRI11ZkSJFAPjf//6nF/vTTz/x+PFjvc/o/fv3OX/+fIZTgQkhhBBC/NNkPCGmEEIIIcR7pr2K+6uvvsLf3x9TU1OaNm2q61RMS5MmTZgyZQqNGjWiffv23LlzhxkzZlCoUCH++OOPLOfw8OFD8uXLR+vWrSlbtiw2Njbs2LGDI0eOMHnyZOD5lbyzZs2iadOmlCtXjsDAQPLkycP58+c5c+YMW7dufb0TwPPO5ho1atC7d2+ePn3Kd999h5OTE0OGDNHFaM9TUFAQPj4+GBsb4+/vD8CwYcNYuHAhkZGRWV6wGp7fFeHt7c0vv/ySqfjMdAhmxvDhw4mIiKBOnTp89tlnPHr0iIkTJ1K6dGkCAwN1cfny5WPAgAFMnDiRZ8+eUbFiRdatW8e+fftYunSp3rQ5165dY/HixcDfdzt88803wPMr57XTJFlaWjJ69Gj69u1LmzZt8PHxYd++fSxZsoQxY8bg6Oioq7N06dLUq1ePcuXK4eDgwKVLl5g/f76uA1Pr8OHDdO7cGScnJ+rVq2cwbVO1atUoWLAgAL169eLBgwfUqlULV1dXbt26xdKlSzl//jyTJ0/WTRXk7OxM165dmTdvHvXq1aNly5Y8fPiQmTNnkpiYqLdGRe7cufnqq68YOXIkjRo1onnz5pw8eZIffviBdu3aUbFiRV1sWu+ZDh06cPjwYbp27cq5c+f0rpi3sbGhefPmuuchISGEhoaye/duateuneFrnZSURL169Wjbti0XLlxg5syZ1KhRw2A6m7R8+eWXLF++HF9fX4KCgnB0dNTlvnr1at30YJ6entjb2zN79mxy5MiBtbU1lStXxsPDg3nz5uHr60vJkiUJDAzE1dWV6Ohodu/eja2tLRs2bMgwj8yoV68ewGuv7/LZZ58xdepUTp48+crvwDeRlc9TZj+jAIsXL+batWskJCQAzxc71372OnXqpLtzpU+fPvzwww80adKEwYMHY2pqypQpU8iVKxeDBg3S1bd27VqGDBlC4cKFKV68OEuWLNFrr0GDBgbTkGk/c+lNy/TTTz/xzTff0Lp1azw8PLh79y7Lli3j9OnTjB07lty5c+tiq1WrxkcffUSFChWws7Pj2LFj/Pjjj+TPn5/hw4fr4po2bUrJkiUZNWoU165do0qVKly+fJnp06eTJ08eunXrpndMgYGBLFiwgICAgCyfOyGEEEKID5YSQgghhPgHGD16tHJ1dVVGRkYKUJGRkUoppQDVt2/fNPeZP3++Kly4sDI3N1fFihVTCxYsUMHBwerl/wVKrw43NzfVpUsXpZRST58+VV988YUqW7asypEjh7K2tlZly5ZVM2fONNhv//79qkGDBrq4MmXKqLCwMN32Ll26KGtr6zRz7tKli3Jzc9M9j4yMVICaOHGimjx5ssqfP78yNzdXNWvWVCdPntTbNzk5WfXv3185OzsrjUajd5xdunTRO2+vkt752L17twIUoI4cOaIr157TmJiY16o3I6dPn1YNGzZUVlZWyt7eXnXo0EHdunXLIC4lJUWNHTtWubm5KTMzM1WyZEm1ZMmSVx7Hyw9vb2+D+Llz56qiRYsqMzMz5enpqaZOnapSU1P1YoKDg1WFChWUg4ODMjExUXnz5lX+/v7qjz/+0ItbsGBBum0DasGCBbrY5cuXq/r166tcuXIpExMT5eDgoOrXr6/Wr19vkOOzZ89UWFiYKleunLKxsVE2NjaqTp06ateuXQaxqampKiwsTBUpUkSZmpqq/PnzqxEjRqikpCS9uLTeM25ubunm/uL7VimlBg0apDQajTp37pxBDmmdk19++UX17NlTOTg4KBsbG9WhQwcVFxenF+vm5qaaNGmSZj1XrlxRrVu3Vvb29srCwkJVqlRJbdy40SBu/fr1qkSJEsrExMTgnB8/fly1bNlSOTk5KXNzc+Xm5qbatm2rdu7caZDvy+clrby8vb0N3lNubm4G5yot2vdpRESEwTbtZ+7l7xFvb29VsmTJDOvOjMx+npTK/GfU29s73ffP7t279WL//PNP1bp1a2Vra6tsbGzUxx9/rC5duqQXoz0Pma0zJSVFubq6qvLly6d73L///rtq2rSpcnV1VWZmZsrGxkbVqFFDrVy50iD2q6++UuXKlVN2dnbK1NRUFShQQPXu3TvNY797964aOHCgKlKkiDI3N1c5c+ZU/v7+6urVq3px2vfXi+/LrJ47IYQQQogPkUapbFo9TQghhBBCZLuoqCg8PDyYOHEigwcPft/pCJFplSpVws3NjYiIiFfGhYeHExgYyJEjRwymsRJCCCGEEEL8O8jUTEIIIYQQQohs9eDBA06ePMnChQvfdypCCCGEEEKID4AMRAghhBBCiHcuJibGYEHYF5mZmemtwSD+WWxtbXWLuIsPR2JiYoaLIDs6OmJmZvaOMhJCCCGEEP8VMhAhhBBCCCHeuYoVK3Lt2rV0t3t7e7Nnz553l5AQ/wErVqwwWED6ZZldXFwIIYQQQoiskDUihBBCCCHEO/frr7+SmJiY7nYHBwe8vLzeYUZC/PvdvHmTM2fOvDLGy8sLBweHd5SREEIIIYT4r5CBCCGEEEIIIYQQQgghhBBCvDVG7zsBIYQQQgghhBBCCCGEEEL8e8lAhBBCCCGEEEIIIYQQQggh3hpZrFpkm+vXr1O8eHESEhLedypCiH84Kysrzp07R4ECBd53KkIIIYQQQoh/AOmTEEKI5z7UPhUZiBDZJjY2loSEBJYsWULx4sXfdzpCiH+oc+fO0bFjR2JjYz+4P5pCCCGEEEKID5P0SQghxIfdpyIDESLbFS9enPLly7/vNIQQQgghhBBCCPEfI30SQgjxYZI1IoQQQgghhBBCCCGEEEII8dbIQIQQQgghhBBCCCGEEEIIId4aGYgQ/1kajYaQkJD3ncZ/Tu3ataldu/b7TkMIIYQQQgghhBAfgPDwcDQaDb///vv7TuWtCwkJQaPREBsb+1r7165dm1KlSmVzVu9XQEAANjY2mYp9G315L9epfT9GRUVlaztC1ogQ78nNmzeZN28eu3fu5GH8faxz5KBytap8+umneHh4ZLqe8PBwAgMDAdi3bx81atTQ266UokCBAty4cYMmTZqwcePGbD2Of7pjx47h5eXFV199xTfffJNmzKVLlyhSpAgDBw5kypQp7zjD17Np0yYOHz4sA01CCCGEEEIIIQC4fv36a3f+fghy5syZqYVnr1y5woQJE9i+fTt//fUXZmZmlC5dmrZt29KzZ08sLS0z3WZCQgITJkyQCwqFENlCBiLEO/Xw4UP69unD8uXLMVMafFJt8MSEB6Qw9+AhJk6cyMeNG/PD/PnkypUr0/VaWFiwbNkyg4GIX375hRs3bmBubm6wT2JiIiYm/+2PQPny5SlWrBjLly9PdyBi2bJlAHTs2DFb2ty2bVu21PMqmzZtYsaMGTIQIYQQQgghhBCC69evU6xYMRITE993Kq/N0tKS8+fPv3Iw4ueff6ZNmzaYm5vTuXNnSpUqRVJSEvv37+eLL77gzJkzzJ07N9NtJiQkEBoaCiADEeKD8C768jp16oS/v3+afYnizfy3e2HFOxUfH0/dWt5cOXuOSSl56IIT9i+8BRNSUlnOXUZs2UnVipXYe+BX8uXLl6m6GzduTEREBN9//73eF9KyZcvw8vJK86oHCwuLNz+of4EOHTrw9ddf89tvv1GlShWD7cuXL6dYsWKUL1/+jdpJSEjAysoKMzOzN6pHCCGEEEIIIYTIitjYWBITE+nXrx+urq668ocPH7J7927Onz/PgwcPsLGxIU+ePFSvXp1ChQplWO/cuXPJkycPTZs2fZvpEx0dzfTp04mNjU13ICIyMhJ/f3/c3NzYtWsXefLk0W3r27cvly9f5ueff36reb4PSimePHmSpTs9xD/Xu+jLMzY2xtjY+K23818ka0SId8a/TVuizp5nX0ohPiOX3iAEgBVGdCMnv6UUIvlmDB838iU5OTlTdbdr1464uDi2b9+uK0tKSmLVqlW0b98+zX1engPu4cOHDBgwAHd3d8zNzXFxcaFBgwYcO3ZMF3Pp0iVatWpF7ty5sbCwIF++fPj7+3P//n29upcsWYKXlxeWlpY4Ojri7+/Pn3/+qRejndfv7Nmz1KlTBysrK1xdXZkwYYJBrmFhYZQsWRIrKyscHByoUKGC7k4FrejoaLp27UquXLkwNzenZMmS/Pjjjxmeuw4dOgAY1Adw9OhRLly4oItZv349TZo0IW/evJibm+Pp6cno0aNJSUlJ89iOHj1KrVq1sLKyYvjw4bptL15JkZSUxMiRI/Hy8sLOzg5ra2tq1qzJ7t279eqMiopCo9EwadIk5s6di6enJ+bm5lSsWJEjR47o4gICApgxYwbw/DXWPoQQQgghhBBC/Le5urpSsGBBChYsiI2NDbNmzeLPP/8kMDCQSZMm8fXXX1OxYkU2b96si3vVw9LSEjs7u0zFvsnjxcGT9EyYMIFHjx4xf/58vUEIrUKFCvHZZ58B4O3tTdmyZdOsp2jRovj4+BAVFYWzszMAoaGhut/WL/aj7Nq1i5o1a2JtbY29vT3NmjXj3LlzBnVGR0fTrVs3XV+Ch4cHvXv3JikpSS/u6dOnfP755zg7O2NtbU2LFi2IiYnRi3F3d+fjjz9m69atVKhQAUtLS+bMmQPA1atXadOmDY6OjlhZWVGlShWDwZc9e/ag0WhYuXIloaGhuLq6kiNHDlq3bs39+/d5+vQpAwYMwMXFBRsbGwIDA3n69KnBMWWm3+dVYmNjadu2Lba2tjg5OfHZZ5/x5MmTTO+fmb6kp0+fEhwcTKFChTA3Nyd//vwMGTLE4Hg0Gg39+vUjIiKCEiVKYGlpSdWqVTl16hQAc+bMoVChQlhYWFC7du001044dOgQjRo1ws7ODisrK7y9vfn1118zfTzw/PXz8fHB2tqavHnzMmrUKJRSBrm++B7Urrlx+fJlAgICsLe3x87OjsDAQBISEgzOx8CBA3F2diZHjhz4+flx48YNgzzSWiNC+77bv38/lSpVwsLCgoIFC7Jo0SKD/f/44w+8vb2xtLQkX758fPPNNyxYsEDWnUDuiBDvyJEjR9i6YzurKEgZrF4Z64Y5K5MLUPXMaX7++WeaNWuWYf3u7u5UrVqV5cuX4+vrC8DmzZu5f/8+/v7+fP/99xnW8emnn7Jq1Sr69etHiRIliIuLY//+/Zw7d47y5cuTlJSEj48PT58+pX///uTOnZvo6Gg2btxIfHw8dnZ2AIwZM4avv/6atm3b0r17d2JiYggLC6NWrVocP34ce3t7XZv37t2jUaNGtGzZkrZt27Jq1SqGDh1K6dKldcfxww8/EBQUROvWrXV/mP744w8OHTqkG2S5ffs2VapU0f3xcHZ2ZvPmzXTr1o0HDx4wYMCAdI/bw8ODatWqsXLlSqZOnao36qsdnNC2Ex4ejo2NDZ9//jk2Njbs2rWLkSNH8uDBAyZOnKhXb1xcHL6+vvj7+9OxY8d0p9p68OAB8+bNo127dvTo0YOHDx8yf/58fHx8OHz4MOXKldOLX7ZsGQ8fPqRXr15oNBomTJhAy5YtuXr1KqampvTq1Yu//vqL7du3s3jx4gxfdyGEEEIIIYQQ/z3z589Ho9EwZswYvaus8+fPT506dZg1axYPHjxg6NChum3Jycn07t2bdu3acf78ec6ePcvZs2fZvHkz8PwiQhcXF86ePcuSJUu4du0aNjY2eHt788knn+h+b6emprJhwwZ27txJXFwcdnZ21K9fn5YtW7728WzYsIGCBQtSrVq1DGM7depEjx49OH36tN7Cx0eOHOHixYuMGDECZ2dnZs2aRe/evWnRooUutzJlygCwY8cOfH19KViwICEhISQmJhIWFkb16tU5duwY7u7uAPz1119UqlSJ+Ph4evbsSbFixYiOjmbVqlUkJCTozZrQv39/HBwcCA4OJioqiu+++45+/fqxYsUKvfwvXLhAu3bt6NWrFz169KBo0aLcvn2batWqkZCQQFBQEE5OTixcuBA/Pz9WrVpFixYt9OoYN24clpaWfPnll1y+fJmwsDBMTU0xMjLi3r17hISE8NtvvxEeHo6HhwcjR47U7ZuVfp/0tG3bFnd3d8aNG8dvv/3G999/z71799Ls2H5ZZvqSUlNT8fPzY//+/fTs2ZPixYtz6tQppk6dysWLF1m3bp1enfv27eOnn36ib9++uvPz8ccfM2TIEGbOnEmfPn24d+8eEyZMoGvXruzatUu3765du/D19cXLy4vg4GCMjIxYsGABdevWZd++fVSqVCnDY0pJSaFRo0ZUqVKFCRMmsGXLFoKDg0lOTmbUqFGZOp8eHh6MGzeOY8eOMW/ePFxcXBg/frwupnv37ixZsoT27dtTrVo1du3aRZMmTTKsW+vy5cu0bt2abt260aVLF3788UcCAgLw8vKiZMmSwPNBtzp16qDRaBg2bBjW1tbMmzdPpnnSUkJkk6NHjypAHT161GBbYECAKmBiqZIprxRemXpUNs6hGtar/8o2FyxYoAB15MgRNX36dJUjRw6VkJCglFKqTZs2qk6dOkoppdzc3FSTJk309gVUcHCw7rmdnZ3q27dvum0dP35cASoiIiLdmKioKGVsbKzGjBmjV37q1CllYmKiV+7t7a0AtWjRIl3Z06dPVe7cuVWrVq10Zc2aNVMlS5Z8xVlQqlu3bipPnjwqNjZWr9zf31/Z2dnpzkl6ZsyYoQC1detWXVlKSopydXVVVatW1ZWlVU+vXr2UlZWVevLkicGxzZ492yDe29tbeXt7654nJyerp0+f6sXcu3dP5cqVS3Xt2lVXFhkZqQDl5OSk7t69qytfv369AtSGDRt0ZX379lXy9fbP9arvEiGEEEIIIYRIy6t+R2i3jRs3Tq1YsULNnz9faTQa5e/vr1asWJHmY9SoUcrIyEjNnj1bVzZo0CBlbm6uFi5cqBYsWKCKFCmi6tWrp+bMmaPmzJmjli9frmbNmqXMzc1Vw4YN1ZQpU9TgwYNVjhw5VOvWrXX1+Pn5KWtra9WnTx81bdo0FRoaqnr27JluLuPGjXvlb6T79+8rQDVr1ixT5yo+Pl5ZWFiooUOH6pUHBQUpa2tr9ejRI6WUUjExMQZ9J1rlypVTLi4uKi4uTld28uRJZWRkpDp37qwr69y5szIyMlJHjhwxqCM1NVUp9XffTv369XVlSik1cOBAZWxsrOLj43Vlbm5uClBbtmzRq2vAgAEKUPv27dOVPXz4UHl4eCh3d3eVkpKilFJq9+7dClClSpVSSUlJuth27dopjUajfH199eqtWrWqcnNz0z3PSr9PWoKDgxWg/Pz89Mr79OmjAHXy5MlX7p/ZvqTFixcrIyMjvfOhlFKzZ89WgPr11191ZYAyNzdXkZGRurI5c+YoQOXOnVs9ePBAVz5s2DAF6GJTU1NV4cKFlY+Pj95rl5CQoDw8PFSDBg1eeTxKKdWlSxcFqP79++vKUlNTVZMmTZSZmZmKiYnRy/XF96P2fL7Yf6SUUi1atFBOTk665ydOnFCA6tOnj15c+/btDerUvh9fPB/a993evXt1ZXfu3FHm5uZq0KBBurL+/fsrjUajjh8/riuLi4tTjo6OBnW+LR9yn4pMzSTeiTWrVhOQbI8xmZ8ip2uKA9t27uDhw4eZim/bti2JiYls3LiRhw8fsnHjxnSnZUqLvb09hw4d4q+//kpzu/aOh61btxrc3qW1Zs0aUlNTadu2LbGxsbpH7ty5KVy4sMF0QzY2NnqLQJuZmVGpUiWuXr2ql9eNGzf0ph96kVKK1atX07RpU5RSeu36+Phw//59veml0vLJJ59gamqqNz3TL7/8QnR0tG5aJkBvzsWHDx8SGxtLzZo1SUhI4Pz583p1mpubExgY+Mp24fnce9orIFJTU7l79y7JyclUqFAhzbw/+eQTHBwcdM9r1qwJoHfOhBBCCCGEEEKI9Ny6dQul1CunPCpatCh58+Zl7969urI9e/ZQpUoVLCwssLKywsTEBDMzM+zt7bG3t8fIyIht27bh5ORE165dcXV1pWLFirRp04aNGzeSmppKYmIimzdvpkOHDnh7e5M7d26KFStGvXr1Xvt4Hjx4AECOHDkyFW9nZ0ezZs1Yvny5buqblJQUVqxYQfPmzbG2tn7l/jdv3uTEiRMEBATg6OioKy9TpgwNGjRg06ZNwPPf+OvWraNp06ZUqFDBoJ6Xp1Hu2bOnXlnNmjVJSUnh2rVrenEeHh74+PjolW3atIlKlSpRo0YNXZmNjQ09e/YkKiqKs2fP6sV37twZU1NT3fPKlSujlKJr1656cZUrV+bPP//UTR2e1X6f9GjvPNDq37+/7jgykpm+pIiICIoXL06xYsX08qxbty6AQZ716tXT3cWiPW6AVq1a6b2vtOXatk6cOMGlS5do3749cXFxunYeP35MvXr12Lt3L6mpqRkeE0C/fv10/9bO+JGUlMSOHTsy3PfTTz/Ve16zZk3i4uJ0nw3teQ0KCtKLe9UMIi8rUaKErg8KwNnZmaJFi+qd9y1btlC1alW92T0cHR31+tb+y2QgQrx1ycnJ3H/0EDeytkixO89vW7p7926m4p2dnalfvz7Lli1jzZo1pKSk0Lp160y3N2HCBE6fPk3+/PmpVKkSISEhel8mHh4efP7558ybN4+cOXPi4+PDjBkz9NaHuHTpEkopChcujLOzs97j3Llz3LlzR6/NfPnyGfzhdXBw4N69e7rnQ4cOxcbGhkqVKlG4cGH69u2rN89eTEwM8fHxzJ0716BN7UDAy+2+zMnJCR8fH9auXaubk3DZsmWYmJjQtm1bXdyZM2do0aIFdnZ22Nra4uzsrPvj9/I6Ga6urplemHrhwoWUKVMGCwsLnJyccHZ25ueffzaoEzBYmEs7KPHiORNCCCGEEEIIIdKj7XzPSN26ddmzZw8A8fHxnDhxgjp16rxynxs3blC4cGG93/pFixblyZMn3L17l+joaJ49e0bp0qVfO/+X2draAmT6Qk543hF//fp19u3bBzyfaun27dt06tQpw321AwNFixY12Fa8eHFdR3RMTAwPHjzQm/7pVTL7e9/DwyPNnNLL58Wc02tLe/Fp/vz5DcpTU1N1/RNZ7fdJT+HChfWee3p6YmRklKk1BDLTl3Tp0iXOnDljkGORIkUAw36irJwP+Ps1uXTpEgBdunQxaGvevHk8ffqU+/fvk5SUxK1bt/QeL643amRkRMGCBfXa0uaamXOS0Xvn2rVrGBkZ4enpqReX1nsms21o23nxvF+7di3Nhe7TKvsvkjUixFtnbGyMsZExT1Mz94de6ynPR0yzMo9a+/bt6dGjB7du3cLX1zdT8/JptW3blpo1a7J27Vq2bdvGxIkTGT9+PGvWrNHNsTd58mQCAgJYv34927ZtIygoSDefX758+UhNTUWj0bB582a9tRa0bGxs9J6nFQP6/1NUvHhxLly4wMaNG9myZQurV69m5syZjBw5ktDQUN3IcseOHenSpUua9WnncHyVjh07snHjRjZu3Iifnx+rV6+mYcOGusWp4uPj8fb2xtbWllGjRuHp6YmFhQXHjh1j6NChBiPcL9498SpLliwhICCA5s2b88UXX+Di4oKxsTHjxo3jypUrBvGZOWdCCCGEEEIIIUR68uTJg0ajITo6+pVxtWrVYtmyZVy8eJELFy7g4uKi69h+XZm9YC8rbG1tyZs3L6dPn870Pj4+PuTKlYslS5ZQq1YtlixZQu7cualfv36255dZmf29n9n+htdpK6Mcstrvk1kvDyy8SmbOU2pqKqVLl2bKlClpxr48wPAm5wNg4sSJBmt8atnY2PDrr78aDOJFRkbq3YXxJt5FX5H0R705GYgQb51Go6GIpye/XI6lt3LO9H57eIijnR1OTk6Z3qdFixb06tWL3377zWAxo8zIkycPffr0oU+fPty5c4fy5cszZswY3UAEQOnSpSldujQjRozgwIEDVK9endmzZ/PNN9/g6emJUgoPDw/dyG12sLa25pNPPuGTTz4hKSmJli1bMmbMGIYNG4azszM5cuQgJSXljf6Hwc/Pjxw5crBs2TJMTU25d++e3q1je/bsIS4ujjVr1lCrVi1deWRk5Bsd26pVqyhYsCBr1qzR+8MbHBz82nVm5Q+4EEIIIYQQQoj/FhsbG8qWLcu2bdvw9fXVW6wa4PHjx1hbW5MjRw4qVqzInj17uHjxIt7e3npxJiYmBhfl5cuXj0OHDqGU0v02vXDhApaWljg6OmJra4uZmRmnTp16o+mYXvbxxx8zd+5cDh48SNWqVTOMNzY2pn379oSHhzN+/HjWrVtHjx499Dpb0/tt7ebmBjw/rpedP3+enDlzYm1tjaWlJba2tlkaIHldbm5u6eaj3Z4dsqvf59KlS3p3dly+fJnU1NRs65j39PTk5MmT1KtX7632kWjvMLC1tX1ln1TZsmXZvn27Xlnu3Ll1/05NTeXq1at65/TixYsA2XJO3NzcSE1N5cqVK3p3QaT1nnnTdi5fvmxQnlbZf5FMzSTeiV59+7CaeG7xLFPxCaSywDiebj176s3ZlxEbGxtmzZpFSEgITZs2zfR+KSkpBtMAubi4kDdvXp4+fQo8n3NROyegVunSpTEyMtLFtGzZEmNjY0JDQw1GRJVSxMXFZTonrZf3MTMzo0SJEiilePbsGcbGxrRq1YrVq1en+cc9JiYmU+1YWlrSokULNm3axKxZs7C2tqZZs2a67dr/GXnxuJKSkpg5c2aWj+lFadV76NAhDh48+Np1auezjI+Pf6PchBBCCCGEEEL8O3Xt2pXU1FS++uorDh06xM2bN7lx4wabN29mxIgRuri6devq1lB8eSDC2dmZy5cvc+fOHR48eEBqaioNGzYkLi6OBQsWEB0dzZEjR4iIiKBJkyYYGRlhZmaGn58fS5cu5ZdffuHWrVtcvHiRXbt2vdHxDBkyBGtra7p3787t27cNtl+5coVp06bplXXq1Il79+7Rq1cvHj16pLfuAICVlRVg+Ns6T548lCtXjoULF+ptO336NNu2baNx48bA8+l2mjdvzoYNG/j9998NcsrOK8kbN27M4cOH9foSHj9+zNy5c3F3d6dEiRLZ0k529fvMmDFD73lYWBiA3oWwb6Jt27ZER0fzww8/GGxLTEzk8ePH2dKOl5cXnp6eTJo0iUePHhls1/ZJOTg4UL9+fb3HywOA06dP1/1bKcX06dMxNTXNlgE77Xn9/vvv9cq/++67N677RT4+Phw8eJATJ07oyu7evcvSpUuztZ1/KrkjQrwTXbp0YfiXXzL8STTzcUOTwaLV33KL+NRn9OrV67XayqqHDx+SL18+WrduTdmyZbGxsWHHjh0cOXKEyZMnA7Br1y769etHmzZtKFKkCMnJySxevFg3EADPR4K/+eYbhg0bRlRUFM2bNydHjhxERkaydu1aevbsyeDBg7OUW8OGDcmdOzfVq1cnV65cnDt3junTp9OkSRPdgkHffvstu3fvpnLlyvTo0YMSJUpw9+5djh07xo4dOzK9zkbHjh1ZtGgRW7dupUOHDnoLVFWrVg0HBwe6dOlCUFAQGo2GxYsXv/H/OHz88cesWbOGFi1a0KRJEyIjI5k9ezYlSpRI849YZnh5eQHPFyHy8fHB2NgYf3//N8pTCCGEEEIIIcS/R65cufj2229Zu3Ytixcv5t69e9ja2lKwYEG6d++uiytdujQODg7ky5dPb2FmeP57dubMmQwaNIikpCTCwsJwcXHhyy+/ZMmSJezcuRMbGxvq1q1Ly5Ytdfu1atUKY2NjIiIiuHv3rq6T9k14enqybNkyPvnkE4oXL07nzp0pVaoUSUlJHDhwgIiICAICAvT2+eijjyhVqpRuYePy5cvrbbe0tKREiRKsWLGCIkWK4OjoSKlSpShVqhQTJ07E19eXqlWr0q1bNxITEwkLC8POzo6QkBBdHWPHjmXbtm14e3vTs2dPihcvzs2bN4mIiGD//v1ZmlL7Vb788kuWL1+Or68vQUFBODo6snDhQiIjI1m9ejVGRtlzLXZ29ftERkbi5+dHo0aNOHjwIEuWLKF9+/aULVs2W/Ls1KkTK1eu5NNPP2X37t1Ur16dlJQUzp8/z8qVK9m6dWuaC4hnlZGREfPmzcPX15eSJUsSGBiIq6sr0dHR7N69G1tbWzZs2JBhPRYWFmzZsoUuXbpQuXJlNm/ezM8//8zw4cN1U4a/iXLlytGuXTtmzpzJ/fv3qVatGjt37sz2OxWGDBnCkiVLaNCgAf3798fa2pp58+ZRoEAB7t69+5+fwUMGIsQ7YW9vz4xZswgMDCQHxkwhH8ZpDEYoFOO5zWhuMuabMQaLyLwtVlZW9OnTh23btrFmzRpSU1MpVKgQM2fOpHfv3sDz28h8fHzYsGED0dHRWFlZUbZsWTZv3kyVKlV0dX355ZcUKVKEqVOnEhoaCjyfe69hw4b4+fllObdevXqxdOlSpkyZwqNHj8iXLx9BQUF6V2jkypWLw4cPM2rUKNasWcPMmTNxcnKiZMmSjB8/PtNt1a1blzx58nDz5k29aZng+YLWGzduZNCgQYwYMQIHBwc6duxIvXr18PHxyfJxaQUEBHDr1i3mzJnD1q1bKVGiBEuWLCEiIkK3KFhWtWzZkv79+/O///2PJUuWoJSSgQghhBBCCCGEEHocHBzo2rUrXbt2TTfm6dOnPHr0KM1FqvPmzcs333xjUF6iRAnGjh2bbp1GRka0bNlSb3AiO/j5+fHHH38wceJE1q9fz6xZszA3N6dMmTJMnjyZHj16GOzTuXNnhgwZku4i1fPmzaN///4MHDiQpKQkgoODKVWqFPXr12fLli0EBwczcuRITE1N8fb2Zvz48XpTDrm6unLo0CG+/vprli5dyoMHD3B1dcXX11d3x0V2yJUrFwcOHGDo0KGEhYXx5MkTypQpw4YNG2jSpEm2tQPZ0++zYsUKRo4cyZdffomJiQn9+vVj4sSJ2ZajkZER69atY+rUqSxatIi1a9diZWVFwYIF+eyzz7J1OvHatWtz8OBBRo8ezfTp03n06BG5c+emcuXKmb7A2NjYmC1bttC7d2+++OILcuTIoXtvZZcff/wRZ2dnli5dyrp166hbty4///yzwXoZbyJ//vzs3r2boKAgxo4di7OzM3379sXa2pqgoCCDu0D+azRKVtQQ2eTYsWN4eXlx9OhRg1F0rVmzZtGvbz8KGFvwabIDn+CAEyY8IIW1xDPT5C7nkh/z9ddfExoa+p8fKRTivygz3yVCCCGEEEII8aJX/Y7Qbhs3bhwFCxbMVH2pqak8fPiQjRs3cuDAAb7//vt0F6t9265evcqwYcPeym+kadOmMXDgQKKioihQoEC21i2EeG7AgAHMmTOHR48evfXvkQ+5T0XuiBDvVO/evalUqRJhYWEEL1vOl8+idduMjYxo0awFs/r3N5h3UQghhBBCCCGEEOJNREdHZxz0/+7du8eECROws7OjdevWXLt27S1m9mpZyTsrlFLMnz8fb29vGYQQIpskJiZiaWmpex4XF8fixYupUaPGexvM/FDIQIR457y8vAgPD2fy5Mn89ttvPHjwABsbG8qXL4+rq+v7Tk8IIYQQQgghhBD/Ijlz5sTS0lJvMdzMun//PvPnz38LWWWNpaUlOXPmzJa6Hj9+zE8//cTu3bs5deoU69evz5Z6hRBQtWpVateuTfHixbl9+zbz58/nwYMHfP311+87tfdOBiLEe+Pk5JTt8/QJIYQQQgghhBBCvKhAgQKcP3+e2NjY953Ka8uZM2e23bUQExND+/btsbe3Z/jw4a+1nqUQIm2NGzdm1apVzJ07F41GQ/ny5Zk/fz61atV636m9dzIQIYQQQgghhBBCCCH+1QoUKCDTD/0/d3d3ZMlYId6OsWPHvnKx+v8yo/edgBBCCCGEEEIIIYQQQggh/r1kIEIIIYQQQgghhBBCCCGEEG+NDESI90YpRVxcHFFRUcTExJCamvq+U/pH0Gg09OvXL8O48PBwNBoNUVFReuUTJ06kYMGCGBsbU65cubeTZDbZs2cPGo2GPXv2vO9UhBBCCCGEEEKIfw13d3cCAgLedxpCiP8QWSNCvHMPHz5k6dKlTP9+OmfOndGVe7h50KdfHwIDA3FycspUXeHh4QQGBqa5bejQoXz77bfZkvO/xbZt2xgyZAgdO3YkJCSEnDlz8tdffzF37lyaN2+e4cCEn58fO3bs4Pbt2+TIkSPNmA4dOhAREcHNmzcz/Tq+TwkJCUyYMIHatWtTu3bt952OEEIIIYQQQoi34Pr16//qxaq1/SNHjhyhQoUKBttr165NbGwsp0+ffptpCiFEumQgQrxTBw4cwO9jP+7F36MMZehOd6yx5glPOHHtBMOGDiN4ZDD/W/E/mjZtmul6R40ahYeHh15ZqVKlsjv9f5ROnTrh7++Pubm5rmzXrl0YGRkxf/58zMzMAPj9998JDQ3F3d09w4GIDh06sGHDBtauXUvnzp0NtickJLB+/XoaNWqULYMQtWrVIjExUZfr25CQkEBoaCiADEQIIYQQQgghxL/Q9evXKV68OAkJCe87lddmZWXFuXPnsm3B7QsXLmBkJBOlCCHeHRmIEO/Mb7/9Rr269SjwrACD1WAccdTbXp7ytE5tzbIny2jerDnr1q/L9GCEr69vmiP+aXny5AlmZmb/+j+4xsbGGBsb65XduXMHS0vL1+7Y9/PzI0eOHCxbtizNgYj169fz+PFjOnTo8Fr1a734GllYWLxRXUIIIYQQQggh/ttiY2NJSEggPHwcxYs/v4hx1KiZPHyYwMSJg/Vijx49Q58+o9mxYz6mpqYkJCTi6Gj3PtLWOXcukoCAYcTGxmbbQMSLFy0KIcS78O/uiRUfjKSkJFo2a0m+5Hz0T+1vMAihZYstPVVPylIW/0/8iYuLe6N2tWsM/O9//2PEiBG4urpiZWXFgwcPuHv3LoMHD6Z06dLY2Nhga2uLr68vJ0+eTLOOlStXEhoaiqurKzly5KB169bcv3+fp0+fMmDAAFxcXLCxsSEwMJCnT58a5LJkyRK8vLywtLTE0dERf39//vzzT72YS5cu0apVK3Lnzo2FhQX58uXD39+f+/fvG9S3bt06SpUqhbm5OSVLlmTLli16219eI0Kj0bBgwQIeP36MRqNBo9EQHh5OxYoVAQgMDNQrT4ulpSUtW7Zk586d3Llzx2D7smXLyJEjB35+flk+v2m9RmmtEbFv3z7atGlDgQIFMDc3J3/+/AwcOJDExES9egMCArCxsSE6OprmzZtjY2ODs7MzgwcPJiUlBYCoqCicnZ0BCA0N1R1/SEhImscvhBBCCCGEEOKfq3hxDz76qAQffVQCR0d77Oxy6J5rH4ULuwNQpkxRqlYtR716VQ1i3vVDO3iSnV5eI0Lbh/Drr7/y+eef4+zsjLW1NS1atCAmJkZv39TUVEJCQsibNy9WVlbUqVOHs2fPprnuRHx8PAMGDCB//vyYm5tTqFAhxo8fL+uECvEfJHdEiHdizZo13Lxzk2CCMePVV+MbYUR71Z5hT4cRHh7OoEGDMqz//v37BnM95syZU/fv0aNHY2ZmxuDBg3n69ClmZmacPXuWdevW0aZNGzw8PLh9+zZz5szB29ubs2fPkjdvXr36xo0bh6WlJV9++SWXL18mLCwMU1NTjIyMuHfvHiEhIfz222+Eh4fj4eHByJEjdfuOGTOGr7/+mrZt29K9e3diYmIICwujVq1aHD9+HHt7e5KSkvDx8eHp06f079+f3LlzEx0dzcaNG4mPj8fO7u8rMPbv38+aNWvo06cPOXLk4Pvvv6dVq1Zcv3493SmRFi9ezNy5czl8+DDz5s0DoHDhwowaNYqRI0fSs2dPatasCUC1atXSPdcdOnRg4cKFrFy5Um/R7Lt377J161batWuHpaUlZ86cydL5Tes1SktERAQJCQn07t0bJycnDh8+TFhYGDdu3CAiIkIvNiUlBR8fHypXrsykSZPYsWMHkydPxtPTk969e+Ps7MysWbPo3bs3LVq0oGXLlgCUKVMm3eMXQgghhBBCCPHfsGjRegYNmkBMzK/A87sofvppNwMGdCY0dAb37j3Ax6cGs2cHkyOHNQAPHz6mb9/R/PTTLmxtbRg0KJANG3ZTtmxRJk8eCsDTp0mMHPk9K1ZsIT7+ASVLFmLs2IF4e1d845zT6h8BePbsWab279+/Pw4ODgQHBxMVFcV3331Hv379WLFihS5m2LBhTJgwgaZNm+Lj48PJkyfx8fHhyZMnenUlJCTg7e1NdHQ0vXr1okCBAhw4cIBhw4Zx8+ZNvvvuuzc6ViHEP4sMRIh3YkbYDIoZFyNvSt6Mg3l+Z4RXqhczwmYwcODADKdRql+/vkGZUkr37ydPnvD7779jaWmpKytdujQXL17Uq7tTp04UK1aM+fPn8/XXX+vVl5yczC+//IKpqSkAMTEx/O9//6NRo0Zs2rQJgD59+nD58mV+/PFH3UDEtWvXCA4O5ptvvmH48OG6+lq2bMlHH33EzJkzGT58OGfPniUyMpKIiAhat26ti3txQEPr3LlznD17Fk9PTwDq1KlD2bJlWb58ud7gwIs6duzIjh07OHbsGB07dtSVGxsbM3LkSKpWrapXnp66deuSJ08eli1bptdWREQEz549003LlNXzm9ZrlJbx48frxfTs2ZNChQoxfPhwrl+/rneb6pMnT/jkk090bX366aeUL1+e+fPn07t3b6ytrWndujW9e/emTJkymTp+IYQQQgghhBD/XVev/slPP+1i7dow4uMf0L79F0yYMJ/Ro4MA+OKLiRw8eII1a77HxcWJ0NCZHD9+jrJli+rq+OyzsZw7d5UlS8aTJ48L69fv5OOPe3Ps2GoKF3Z7o/zS6h/RKlmyZIb7Ozk5sW3bNjQaDfD87ofvv/+e+/fvY2dnx+3bt5kyZQrNmzdn7dq1uv1CQ0MNZheYMmUKV65c4fjx4xQuXBiAXr16kTdvXiZOnMigQYPInz//axylEOKfSKZmEm+dUorDRw5TOqV0lvYrS1kir0Vy9+7dDGNnzJjB9u3b9R4v6tKli0EHt7m5ua6TPCUlhbi4OGxsbChatCjHjh0zaKNz5866QQiAypUro5Sia9euenGVK1fmzz//JDk5GXh+N0hqaipt27YlNjZW98idOzeFCxdm9+7dALo7HrZu3ZrhAlr169fXDULA8yv4bW1tuXr16iv3yw7Gxsb4+/tz8OBB3bRP8Hxaply5clGvXj0g6+c3rdcoLS/GPH78mNjYWKpVq4ZSiuPHjxvEf/rpp3rPa9as+U7OkxBCCCGEEEKID9umTXtxcKis92jatM8r90lNTWX+/G8oVaowNWp40b79x+zefQh4fjfE4sU/8e23n1O3bhVKlSrMvHmjdNMDA1y/fpOFC9ezfPkkatTwwtMzP59/HkD16h+xcOG6Nz6mtPpHtm/fnuk7/3v27KkbhIDnv6FTUlK4du0aADt37iQ5OZk+ffTPU//+/Q3qioiIoGbNmjg4OOj1h9SvX5+UlBT27t37BkcqhPinkTsixFuXkpJC0rMkLMm4k/lF2vhHjx7pTbOUlkqVKr1ysWoPD8P5FFNTU5k2bRozZ84kMjJS738M0pre6OUFobQDBy+P3tvZ2ZGamsr9+/dxcnLi0qVLKKV0o/8v0w5ueHh48PnnnzNlyhSWLl1KzZo18fPzo2PHjnrTMqWVC4CDgwP37t1Ls43s1qFDB6ZOncqyZcsYPnw4N27cYN++fQQFBekWyM7q+U3rNUrL9evXGTlyJD/99JPB8b68loaFhYVuDQitd3mehBBCCCGEEEJ8uGrXrkhY2Ai9ssOHTxEQMCzdfdzcXHXTMAHkyeNMTMzzCyivXr3Bs2fJVKz494WYdnY5KFLEXff89OlLpKSkULJkU716nz59hqOj/RsczXPp9Y9oBwMy8nJ/g4ODA4Dud7R2QKJQoUJ6cY6OjrpYrUuXLvHHH38Y/C7XSmvtSSHEv5cMRIi3zsTEBAszCx4lPcrSfo94Hm9ra/vGOaR1pf3YsWP5+uuv6dq1K6NHj8bR0REjIyMGDBiQ5qJJ2g72zJZrp4ZKTU1Fo9GwefPmNGNtbGx0/548eTIBAQGsX7+ebdu2ERQUxLhx4/jtt9/Ily9fptt827y8vChWrBjLly9n+PDhLF++HKWUblomyPr5zczdECkpKTRo0IC7d+8ydOhQihUrhrW1NdHR0QQEBBjUm955EkIIIYQQQgghrKwsKVRIv+M9Ovr2K/cxNdXvStNoIDU187/FHz1KwNjYmN9++5/Bb1YbG6tM1/O2ZGd/Q2pqKg0aNGDIkCFpbi9SpEiW6xRC/HPJQIR4J2rXqc3xHcfxSfHJ9D5HNUcpXby0wYh6dlm1ahV16tRh/vz5euXx8fEZ3oGRFZ6eniil8PDwyNQf2dKlS1O6dGlGjBjBgQMHqF69OrNnz+abb77Jtpxe9OItl1nRoUMHvv76a/744w+WLVtG4cKFqVjx74W13sb5PXXqFBcvXmThwoV07txZV/7yVFxZ8brHL4QQQgghhBBCvKhgwXyYmprw+++nKVAgDwD37z/k0qVr1KzpBUC5csVISUkhJuYuNWp4vc90X4ub2/M1LC5fvqw3s0FcXJzB7AOenp48evToletWCCH+O2SNCPFO9O3Xl8iUSCKJzFT8Xe7yB3/QN6jvW+soNjY2NhjRj4iIIDo6OlvbadmyJcbGxoSGhhq0p5QiLi4OgAcPHujWldAqXbo0RkZGPH36NFtzepG19fNbSuPj47O0n/buh5EjR3LixAm9uyHg7Zxf7ZUZL9arlGLatGmvXaeV1fMrTrJ6/EIIIYQQQgghxIty5LCmUyc/hg2bwp49hzlz5jI9ewZjZGSk69soUsSddu2a0LXrV6xdu4PIyBscOXKK8ePnsWnTh79mQr169TAxMWHWrFl65dOnTzeIbdu2LQcPHmTr1q0G2+Lj4w36QIQQ/25yR4R4J3x9fSnsWZjF1xYzKHkQ1linG5tEEguMF+Bg62DQuZ2dPv74Y0aNGkVgYCDVqlXj1KlTLF26lIIFC2ZrO56ennzzzTcMGzaMqKgomjdvTo4cOYiMjGTt2rX07NmTwYMHs2vXLvr160ebNm0oUqQIycnJLF68GGNjY1q1apWtOb2cn729PbNnzyZHjhxYW1tTuXLlDNds8PDwoFq1aqxfvx7A4LV6G+e3WLFieHp6MnjwYKKjo7G1tWX16tVvtOaDpaUlJUqUYMWKFRQpUgRHR0dKlSpFqVKlXrtOIYQQQgghhBD/TRMnfkHfvqNp3rwftrY2DBoUyI0btzA3N9fFzJs3irFj5zJ06CSio++QM6cDlSqVoXHjWu8x88zJlSsXn332GZMnT8bPz49GjRpx8uRJNm/eTM6cOfUuJv3iiy/46aef+PjjjwkICMDLy4vHjx9z6tQpVq1aRVRUVLbOSCGE+LDJQIR4J4yNjdnw8waqVanG5EeT6ZTcCXfc0aB/t0M00SwzXsYNkxvs+nmX3voJ2W348OE8fvyYZcuWsWLFCsqXL8/PP//Ml19+me1tffnllxQpUoSpU6cSGhoKPF/kumHDhvj5+QFQtmxZfHx82LBhA9HR0VhZWVG2bFk2b95MlSpVsj0nLVNTUxYuXMiwYcP49NNPSU5OZsGCBZlaPLpDhw4cOHCASpUqGSxU9TbOr6mpKRs2bNCtnWFhYUGLFi3o168fZcuWfe16582bR//+/Rk4cCBJSUkEBwfLQIQQQgghhBBC/IvNn5/29Mfe3hVJSvoDgM6dm9G5czPdtpEj+zByZB+9+KCgTgQFddI9z5HDmkWLvtU9f/w4gW++mU337q11ZaampgQH9yU4uG+2HMu7Nn78eKysrPjhhx/YsWMHVatWZdu2bdSoUQMLCwtdnJWVFb/88gtjx44lIiKCRYsWYWtrS5EiRQgNDcXOzu49HoUQ4l3TqHe1uq341zt27BheXl4cPXqU8uXLpxlz4cIFmjZpyqUrl3A3dqd8SnlssCGRRE4an+RiykXy5MrD2vVrqVy58js+AiHEhyAz3yVCCCGEEEII8aJX/Y7QbgsPH0fx4hlfdPcmLlyIJCrqL0qW9OTRo0Tmz1/NsWNnWb36O+ztbV+rznPnIgkIGPZB/0aKj4/HwcGBb775hq+++up9pyPEf9aH3Kcid0SId6po0aKcu3COLVu2MGP6DDbt3sSTp08wNzWnUqVKjOo/ihYtWmBmZva+UxVCCCGEEEIIIcS/QM6cObGysiIgYNh7y8HHp+cb7W9lZfXBTGOUmJiIpaWlXtl3330HQO3atd99QkKIfwQZiBDvnLGxMU2aNKFJkyYAJCcnY2Iib0UhhBBCCCGEEEJkvwIFCnDu3DliY2PfdyqvLWfOnBQoUOB9pwHAihUrCA8Pp3HjxtjY2LB//36WL19Ow4YNqV69+vtOTwjxgZLeX/HeySCEEEIIIYQQQggh3qYCBQp8MB35/3RlypTBxMSECRMm8ODBA90C1t98k/a6G0IIATIQIYQQQgghhBBCCCGEyKTy5cuzY8eO952GEOIfxuh9JyCEEEIIIYQQQgghhBBCiH8vGYgQ4l8gJCQEjUbzXtres2cPGo2GPXv2vJf2hRBCCCGEEEII8e+UVn+Hu7s7AQEB7yehV3hfeX2o50OIl8nUTOK9OX/+PHv27OHhw4dYW1tTuXJlvLy8slzPqVOnCA0N5ciRI9y+fRsnJydKlCiBn58f/fv318WNHTuWEiVK0Lx582w8iqz7448/mDp1Knv27OHmzZuYmJhQqFAhGjZsyKeffkrBggXfa35CCCGEEEIIIcS/zfXr1//Vi1WHh4cTGBjIkSNHqFChgsH22rVrExsby+nTp99mmuItOXDgANu2bWPAgAHY29u/73SEeC0yECHeuQ0bNvDd1Mns2v0LRkaQw9qYx4mpJCcrKlUsT/+ggXTo0CFTV/gfOHCAOnXqUKBAAXr06EHu3Ln5888/+e2335g2bZrBQETr1q3f60DEDz/8QO/evcmZMycdOnSgWLFiJCcnc/r0aRYtWsR3331HYmIixsbGWap3xIgRfPnll28payGEEEIIIYQQ4p/r+vXrFC9elISEJ+87lddmZWWBo2NOBg0axIABA953Ou/VhQsXMDL68CZ5eZt5HThwgNDQUAICAgwGIj7U8yHEy2QgQrwzSim++uorxo0bR7Wyxiz9BlrVBXOzFJKTYdOvMCPiBJ06dWLnzh3Mmzc/ww75MWPGYGdnx5EjRwy+iO/cufMWjybrDhw4QO/evalevTobN24kR44cetsnT57MmDFjXqtuExMTTEzk4yyEEEIIIYQQQrwsNjaWhIQnLFkCxYs/LwsOhocPYcoU/djff4devWDPHnjpZ/t7c+4cdOz4BDu7lPedygfB3Nz8faego5TiyZMnWFpavre8PqTzIcSryHCZeGfGjx/PuHHjmPgZ7J+XQvtGYG72fJuJCfh5w9bpqSweBYsXL2LAZ59lWOeVK1coWbJkmrelubi46P6t0Wh4/PgxCxcuRKPRoNFo9ObPO378OL6+vtja2mJjY0O9evX47bff9OoLDw9Ho9Gwd+9eevXqhZOTE7a2tnTu3Jl79+5lmGtoaCgajYalS5caDEIAWFhYMHr0aL3Bl3379tGmTRsKFCiAubk5+fPnZ+DAgSQmJurtm9aciRqNhn79+rFu3TpKlSqFubk5JUuWZMuWLQZtR0dH07VrV3LlyqWL+/HHHw3ibty4QfPmzbG2tsbFxYWBAwfy9OnTDI9dCCGEEEIIIYR434oXh/Llnz+cnMDe/u/n2keRIs9jy5Y13Pa+HtrBk+yUnJzM6NGj8fT0xNzcHHd3d4YPH27wG9/d3Z2PP/6YPXv2UKFCBSwtLSldurRuncg1a9ZQunRpLCws8PLy4vjx4wZt7dq1i5o1a2JtbY29vT3NmjXj3LlzBnH79++nYsWKWFhY4OnpyZw5c9LM/eU1EbT9Nfv37ycoKAhnZ2fs7e3p1asXSUlJxMfH07lzZxwcHHBwcGDIkCEopfTqTE1N5bvvvqNkyZJYWFiQK1cuevXqZdDfoz0fW7du1Z0PbZ4v56Xtf0rrERUVBTyfvjsgIICCBQtiYWFB7ty56dq1K3Fxcbp6QkJC+OKLLwDw8PAwqCOtNSKuXr1KmzZtcHR0xMrKiipVqvDzzz/rxWjX/Fy5ciVjxowhX758WFhYUK9ePS5fvpzmuRfiTcgl1OKduHXrFiNHfs2QzjC406tjOzaGew8UQZNm0LNXL0qXLp1urJubGwcPHuT06dOUKlUq3bjFixfTvXt3KlWqRM+ePQHw9PQE4MyZM9SsWRNbW1uGDBmCqakpc+bMoXbt2vzyyy9UrlxZr65+/fphb29PSEgIFy5cYNasWVy7dk33BZ6WhIQEdu3aRe3atcmXL9+rT8ALIiIiSEhIoHfv3jg5OXH48GHCwsK4ceMGERERGe6/f/9+1qxZQ58+fciRIwfff/89rVq14vr16zg5OQFw+/ZtqlSpohu4cHZ2ZvPmzXTr1o0HDx7obvlMTEykXr16XL9+naCgIPLmzcvixYvZtWtXpo9HCCGEEEIIIYT4J1m9GkaOhMuXIU8e6N8fBg36e7u7O3TvDhcvwpo1zwc4wsKgatXn5Tt3QsGC8OOP8OLSDRnVe+cOdOsGO3aAo2Pm871//36aa2E8e/ZM73n37t1ZuHAhrVu3ZtCgQRw6dIhx48Zx7tw51q5dqxd7+fJl2rdvT69evejYsSOTJk2iadOmzJ49m+HDh9OnTx8Axo0bR9u2bfWmCtqxYwe+vr4ULFiQkJAQEhMTCQsLo3r16hw7dgx3d3fg+fqfDRs2xNnZmZCQEJKTkwkODiZXrlyZPvb+/fuTO3duQkND+e2335g7dy729vYcOHCAAgUKMHbsWDZt2sTEiRMpVaoUnTt31u3bq1cv3TobQUFBREZGMn36dI4fP86vv/6KqampLvbChQu0a9eOXr160aNHD4oWLZpmPosXLzYoGzFiBHfu3MHGxgaA7du3c/XqVQIDA8mdOzdnzpxh7ty5nDlzht9++w2NRkPLli25ePEiy5cvZ+rUqeTMmRMAZ2fnNNu9ffs21apVIyEhgaCgIJycnFi4cCF+fn6sWrWKFi1a6MV/++23GBkZMXjwYO7fv8+ECRPo0KEDhw4dyvS5FyJTlBDZ5OjRowpQR48eNdj2zTffKEsLI3V3F0r9nvEj6TdU7pwmqnfv3q9sc9u2bcrY2FgZGxurqlWrqiFDhqitW7eqpKQkg1hra2vVpUsXg/LmzZsrMzMzdeXKFV3ZX3/9pXLkyKFq1aqlK1uwYIEClJeXl179EyZMUIBav359unmePHlSAWrAgAEG2+Li4lRMTIzu8fTpU922hIQEg/hx48YpjUajrl27pisLDg5WL3+cAWVmZqYuX75skEdYWJiurFu3bipPnjwqNjZWb39/f39lZ2eny+G7775TgFq5cqUu5vHjx6pQoUIKULt37073+IXIild9lwghhBBCCCFEWl71O+LvbSilnj+6dEE1a/b3c+1j924UoO7dQ/3+O8rICDVqFOrCBdSCBShLy+f/1ca7uaEcHVGzZ6MuXkT17o2ytUU1aoRaufL5fs2bo4oXR6WmPt8nM/X6+qLKlkUdPIhasuR5Tubm5mrq1KlpHr+2z+JVj5IlSyqllDpx4oQCVPfu3fXqGDx4sALUrl27dGVubm4KUAcOHNCVbd26VQHK0tJSr29izpw5Bv0D5cqVUy4uLiouLk5XdvLkSWVkZKQ6d+6sK2vevLmysLDQq+/s2bPK2NjYoL/Dzc1Nr39He+w+Pj4qNTVVV161alWl0WjUp59+qitLTk5W+fLlU97e3rqyffv2KUAtXbpUr50tW7YYlGvPx5YtW9TLXs7rZdr+o0WLFunK0ur3Wb58uQLU3r17dWUTJ05UgIqMjMyw3QEDBihA7du3T1f28OFD5eHhodzd3VVKSopSSqndu3crQBUvXlyvL2ratGkKUKdOnUr3WMSH60PuU5GpmcQ7MX/eHNo1TMXBNnPxpibQo3kyixeHv3LqnwYNGnDw4EH8/Pw4efIkEyZMwMfHB1dXV3766acM20lJSWHbtm00b96cggUL6srz5MlD+/bt2b9/Pw8ePNDbp2fPnnoj4b1798bExIRNmzal2462Du2I94sKFiyIs7Oz7vFi3paWlrp/P378mNjYWKpVq4ZSKs3bHV9Wv3593Z0fAGXKlMHW1parV68Cz+cyXL16NU2bNkUpRWxsrO7h4+PD/fv3OXbsGACbNm0iT548tG7dWleflZWV7g4TIYQQQgghhBDin2TjRrCx0X/4+v69fcoUqFcPvv76+ZRNAQHQrx9MnKhfT+PGz9eVKFz4+V0ODx5AxYrQps3z/YYOfb7Ow+3bmav34kXYvBl++AGqVPl7aqbMTI08Y8YMtm/fbvAoU6aMLkbbf/H555/r7Tvo/2/JeHkKnxIlSlC1alXdc+3MEXXr1qVAgQIG5do+h5s3b3LixAkCAgJwfOG2jjJlytCgQQNdHikpKWzdupXmzZvr1Ve8eHF8fHwyPGatbt266c1UUblyZZRSdOvWTVdmbGxMhQoVdDnC89ko7OzsaNCggV6/iJeXFzY2NuzevVuvHQ8PjyzlBbB7926GDRtG//796dTp76lCXuz3efLkCbGxsVSpUgVA1x+TVZs2baJSpUrUqFFDV2ZjY0PPnj2Jiori7NmzevGBgYGYmZnpntesWRNA7xwJkR1kIEK8dampqURdu0Glklnbr3IpePQoUW9evLRUrFiRNWvWcO/ePQ4fPsywYcN4+PAhrVu3NvhyfVlMTAwJCQlp3kZXvHhxUlNT+fPPP/XKCxcurPfcxsaGPHny6ObmS4t2TYhHjx4ZbFu/fj3bt29n0qRJBtuuX7+u+4NtY2ODs7Mz3t7ewPPbLTPy4h9wLQcHB90chzExMcTHxzN37ly9wRBnZ2cCAwOBvxf9vnbtGoUKFTKYfiq9WxCFEEIIIYQQQogPWZ06cOKE/mPevL+3nzsH1avr71O9Oly6BCkvrBv9Qh8/2pmEXpxlWlv2/z+vM6z33Lnna2l6eenHpLXe5MsqVapE/fr1DR4ODg66mGvXrmFkZEShQoX09s2dOzf29vZcu3ZNr/zlvgU7OzsA8ufPn2a5ts9BW096fS6xsbE8fvyYmJgYEhMTDfpb0ts3PVnJ88W1Hy5dusT9+/dxcXEx6Bt59OiRrl9Ey8PDI9M5wfP1Nj/55BOqV6/OlJdWR7979y6fffYZuXLlwtLSEmdnZ139men3Scu1a9fSPefa7S96+bxp3yuZWQ9ViKyQNSLEW6f+/77CF9ZgzhTj/x8mS3nxr/srmJmZUbFiRSpWrEiRIkUIDAwkIiKC4ODgLGac/QoVKoSJiQmnT5822KYdWDAx0f84pqSk0KBBA+7evcvQoUMpVqwY1tbWREdHExAQQGpqaobtGqdz0tX/L8qkraNjx4506dIlzdgXr5oQQgghhBBCCCH+Layt4aW+eG7cyHo9L0yagPbavbTKMvEz/p1Kb53Ll6XXt5BRn8O7lpU8X8wxNTUVFxcXli5dmub+L6/F8OJdDBlJSkqidevWmJubs3LlSoO+n7Zt23LgwAG++OILypUrh42NDampqTRq1ChT/T7Z4UN7HcW/lwxEiLfO2NiYnDntuXQ9Pkv7XbwORkZGukWVs6LC/68AdfPmTV1ZWn9gnZ2dsbKy4sKFCwbbzp8/j5GRkcHI+aVLl6hTp47u+aNHj7h58yaNGzdONx9ra2vd4tfR0dG4urpmeAynTp3i4sWLLFy4UG8Bpe3bt2e4b2Y5OzuTI0cOUlJSqF+//itj3dzcOH36NEopvXOZ1rkTQgghhBBCCCH+6YoXh19/1S/79dfn0yll9WLLrNRbrBgkJ8PRo8+neNJ6+PDh6zf6Ajc3N1JTU7l06ZLuKnl4vshxfHw8bm5u2dYOpN1vcP78eXLmzIm1tTUWFhZYWlpy6dIlg7h30efg6enJjh07qF69epYGGTIjKCiIEydOsHfvXoOFt+/du8fOnTsJDQ1l5MiRuvK0zkNmB43g+XlP75xrtwvxPsjUTOKd8PfvSPjPJiQ9y1y8UvDDOhOaNWuKlZVVunG7d+9Oc4RWO8/gi7eiWVtbEx8frxdnbGxMw4YNWb9+vd7USrdv32bZsmXUqFEDW1v9hS3mzp3Ls2d/H8isWbNITk7G98WJJNMwcuRIUlJS6NixY5pTNL18HNoR6RfLlVJMmzbtle1khbGxMa1atWL16tVp3q0RExOj+3fjxo3566+/WLVqla4sISGBuXPnZls+QgghhBBCCCHEh2LQINi5E0aPfr5uw8KFMH06DB78dustWhQaNXq+7sShQ8+nagIwNzd/s4b/n/ZCyu+++06vXDttUJMmTbKlnTx58lCuXDkWLlyo1x9z+vRptm3bpsvD2NgYHx8f1q1bx/Xr13Vx586dY+vWrdmSy6u0bduWlJQURo8ebbAtOTnZoC8psxYsWMCcOXOYMWMGlSpVMtieVr8PGL4u8LxPC8hULo0bN+bw4cMcPHhQV/b48WPmzp2Lu7s7JUqUyMJRCJF95I4I8U706dOH6dOns/hn6NY84/itB+H05WS+m93/lXH9+/cnISGBFi1aUKxYMZKSkjhw4AArVqzA3d1dt84BgJeXFzt27GDKlCnkzZsXDw8PKleuzDfffMP27dupUaMGffr0wcTEhDlz5vD06VMmTJhg0GZSUhL16tWjbdu2XLhwgZkzZ1KjRg38/PxemWvNmjWZPn06/fv3p3DhwnTo0EGX88WLF1m6dClmZmbkzp0bgGLFiuHp6cngwYOJjo7G1taW1atXZ/scfd9++y27d++mcuXK9OjRgxIlSnD37l2OHTvGjh07uHv3LgA9evRg+vTpdO7cmaNHj5InTx4WL178yoEiIYQQQgghhBDin6p8eVi58vkC1KNHQ548MGrU88Wl33a9CxZA9+7g7Q3a5R1eXPD5TZQtW5YuXbowd+5c4uPj8fb25vDhwyxcuJDmzZvrzQLxpiZOnIivry9Vq1alW7duJCYmEhYWhp2dHSEhIbq40NBQtmzZQs2aNenTpw/JycmEhYVRsmRJ/vjjj2zLJy3e3t706tWLcePGceLECRo2bIipqSmXLl0iIiKCadOm0bp16yzVGRsbS58+fShRogTm5uYsWbJEb3uLFi2wtbWlVq1aTJgwgWfPnuHq6sq2bduIjIw0qM/r/xcM+eqrr/D398fU1JSmTZvqBihe9OWXX7J8+XJ8fX0JCgrC0dGRhQsXEhkZyerVqzEykuvSxfshAxHinShevDgdOrSj38QVeLimUrdi+rEnLkD7EcbUqV2dunXrvrLeSZMmERERwaZNm5g7dy5JSUkUKFCAPn36MGLECOzt7XWxU6ZMoWfPnowYMYLExES6dOlC5cqVKVmyJPv27WPYsGGMGzeO1NRUKleuzJIlS6hcubJBm9OnT2fp0qWMHDmSZ8+e0a5dO77//vtM3SbXu3dvqlatytSpU4mIiODWrVuYmpri6elJly5d6N27N56engCYmpqyYcMGgoKCGDduHBYWFrRo0YJ+/fpRtmzZDNvKrFy5cnH48GFGjRrFmjVrmDlzJk5OTpQsWZLx48fr4qysrNi5cyf9+/cnLCwMKysrOnTogK+vL40aNcq2fIQQQgghhBBCiLctPDzt8tq1n8/SoNWq1fNHel6YXEHn5Ykb3N0NyzKqN3du2Ljx+b+PHXu+cPXGjRspX758+jtlwbx58yhYsCDh4eGsXbuW3LlzM2zYsGxfZ7N+/fps2bKF4OBgRo4ciampKd7e3owfP15v0ecyZcqwdetWPv/8c0aOHEm+fPkIDQ3l5s2bb30gAmD27Nl4eXkxZ84chg8fjomJCe7u7nTs2JHqL68sngmPHj3iyZMnnD17lk6dOhlsj4yMxNrammXLltG/f39mzJiBUoqGDRuyefNm8ubNqxdfsWJFRo8ezezZs9myZQupqam6Ol6WK1cuDhw4wNChQwkLC+PJkyeUKVOGDRs2ZNvdLkK8Do2SlUdENjl27BheXl4cPXo0zT+MT548oZlfU3bv2Un/toreraHQC8svRN+BuWthylJjihYrxfYdu3HQDvt/AMLDwwkMDOTIkSO6NSiEENkvo+8SIYQQQgghhHjZq35H/L3t+d0I/zTagQj5jSSEyMiH3Kcid0SId8bCwoKNP28iJCSE2bOnM2XpAyqUMCanfSr3Hxlx+EwqlpYWdAnsyrfffouNjc37TlkIIYQQQgghhBD/Etq1Fv5p/ql5CyHEi2QgQrxTpqamjBkzhhEjRrBy5Up2797NgwcPcPa0oUPPynTq1MlgcWghhBBCCCGEEEKI15UzZ06srCzo2PHJ+07ltVlZWZAzZ873nYYQQrw2GYgQ74WlpSVdunShS5cu7zsVIYQQQgghhBBC/IsVKFCAc+cuEBsb+75TeW05c+akQIEC7zsNIYR4bTIQIUQmBQQEEBAQ8L7TEEIIIYQQQgghRBYVKFBAOvKFEOI9MnrfCQghhBBCCCGEEEIIIYQQ4t9LBiKEEEIIIYQQQgghhBBCCPHWyECEEEIIIYQQQgghhBDigxQSEoJGo3nfabxSeHg4Go2GqKio952KEB8sWSNCZLtz58697xSEEP9g8h0ihBBCCCGEyG7Xr1//Vy9WHR4eTmBgIAD79u2jRo0aetuVUhQoUIAbN27QpEkTNm7c+FbzFUKIl8lAhMg2OXPmxMrKio4dO77vVIQQ/3BWVlbkzJnzfachhBBCCCGE+Be4fv06xYoWJ/FJwvtO5bVZWlhx/sK5DBfctrCwYNmyZQYDEb/88gs3btzA3Nz8bab5n9WpUyf8/f3l/ArxCjIQIbJNgQIFOHfu3D/6CgMhxIcho6t9hBBCCCGEECKzYmNjSXySgL/rNFzMC7H9zhTOPdpJqRy+1HXupxe7O3Ympx78THGbejRw+fw9ZazvztPL/C/6M2JjYzP8ndS4cWMiIiL4/vvvMTH5u9tv2bJleHl5SZ/NW2JsbIyxsfH7TkOID5oMRIhsVaBAAek8FEIIIYQQQgghxAfHxbwQ+SxLY2XigL1pXi4//pV2+aZhamQBwLPUJ1x+tA97U1esTBzIZ1n6PWecde3atWPt2rVs374dX19fAJKSkli1ahUjRozg+++/N9jn8ePHjBw5kpUrV3Lnzh3c3d3p0aMHgwYNMlibYcmSJXz//fecPn0ac3NzSpcuzYgRI2jYsKEuZubMmcyYMYPLly/j5OREixYtGDNmDPb29hnmv3//fgYOHMipU6dwdXVlyJAhacYlJyczbtw4wsPDuXHjBnny5KF9+/YEBwfr3ZXg7u5OqVKlGDx4MIMHD+bMmTMUKlSIsLAwateuzZo1awgODubSpUuULFmSefPm8dFHH+n2/+OPP5gyZQp79+7lr7/+wt7ensaNGzNx4kScnJx0cdqpsSIjI3F3d9dr+8svv+Tzzz/njz/+IG/evISEhNC5c+cMz4UQ/zayWLUQQgghhBBCCCGE+E9xtSiFvWkeTj3YrCs7/WAL9qauuFqU1ItNTn3K+psjCT3/EcPPFmZmZEv+TDypF3PryQV+vBbA1+dKMOJccWZGtiIuKQqAVJXK9jvfMeZCJYadLcTUK4248HDPWzkud3d3qlatyvLly3Vlmzdv5v79+/j7+xvEK6Xw8/Nj6tSpNGrUiClTplC0aFG++OILPv9c/46Q0NBQOnXqhKmpKaNGjSI0NJT8+fOza9cuXUxISAh9+/Ylb968TJ48mVatWjFnzhwaNmzIs2fPXpn7qVOnaNiwIXfu3CEkJITAwECCg4NZu3atQWz37t0ZOXIk5cuXZ+rUqXh7ezNu3Lg0j/Hy5cu0b9+epk2bMm7cOO7du0fTpk1ZunQpAwcOpGPHjoSGhnLlyhXatm1Lamqqbt/t27dz9epVAgMDCQsLw9/fn//97380btwYpdQrj0fbduvWrWnQoAGTJ0/GwcGBgIAAzpw5k+G+QvzbyB0RQgghhBBCCCGEEOI/p4L9J/wev5Ly9i0AOBK/ggoObbj6+De9uJ9vj+XUg8184joFB1NX9sTNZt61jgwttA8rE3vuP7vF7Kg2FLSqSk/35VgY5SAq4XdSVAoA++N+ZF/cD7TMO468FiX5/d4Kwv/sxueeO3A298j242rfvj3Dhg0jMTERS0tLli5dire3N3nz5jWI/emnn9i1axfffPMNX331FQB9+/alTZs2TJs2jX79+uHp6cnly5cZNWoULVq0YNWqVRgZ/X1ts7ZDPiYmhnHjxtGwYUM2b96siylWrBj9+vVjyZIlugW10zJy5EiUUuzbt08320arVq0oXVr/zpSTJ0+ycOFCunfvzg8//ABAnz59cHFxYdKkSezevZs6dero4i9cuMCBAweoWrUqACVKlMDHx4cePXpw/vx5XVsODg706tWLvXv3Urt2bV29gwYN0mu/SpUqtGvXjv3791OzZs1XvhYXLlxg7969uri2bduSP39+FixYwKRJk165rxD/NnJHhBBCCCGEEEIIIYT4zylv34L/Y+++46Oq8v+Pv6ekTHpCEloSQggloSOhd7CAig3s3dVd3RXburvqF+yru7r2VRf0J7uWVdG1KygISqSHKr2FAKGF9DaZZO7vj5iRkAQSMpNJeT0fjzySuffccz8zuUkm855zTnrxGuWUHVBO2QGlF6/RoNBLq7UpcxZrRc47Or/9Q+oVPF7t/XtoWqe/ycfkr1W570uSlmX/W/7mYF0T+4pibf0V5ZeglPDLFe3XTZL04/F/aVzk7RoQOlXRft00pcOD6uSfrNTjb3rkfl1++eUqKSnRl19+qYKCAn355Ze6+uqra2379ddfy2KxaMaMGdW233fffTIMQ998Uzli5NNPP5XT6dSsWbOqhRCSXNM3LVy4UGVlZbr77rurtbn11lsVEhKir776qs6aKyoqtGDBAl188cXVpvxOSkrSueeeW6NmSTVGbFQFBiefJzk52RVCSNLQoUMlSRMmTKh2rqrte/bscW2z2Wyur0tLS5WVlaVhw4ZJktauXVvn/Tnx3CeGFVFRUerZs2e1cwBtBSMiAAAAAAAA0OYEWdupV9AErcmdJ0OGkoInKNAaUa3N8bJ9qjAcig8Y7NpmMfko1jZAR+27JEmZpVvUNWCILCafGucorShQfvkRdTnheEnqYhusQ/atHrhXlS92T5o0Se+9956Ki4tVUVGhadOm1dp237596tSpk4KDg6ttT0pKcu2XpN27d8tsNis5ObnO81a17dmzZ7Xtvr6+SkhIcO2vzbFjx1RSUqLu3bvX2NezZ09X+FB1HrPZrMTExGrtOnTooLCwsBrnOXkt09DQUElSbGxsrdtzcnJc27Kzs/Xoo4/q/fff19GjR6u1z8vLq/P+1HVuqXLkxYnnANoKgggAAAAAAAC0SSnhl+vTQ7MkSRd3fPyM+vAx+buzJLe4+uqrdeutt+rw4cOaPHlyvRaKbmlOXki7LhaLpUHbT1z74fLLL9eyZct0//33a8CAAQoKCpLT6dR5551XbS2Jhp67PutLAK0NUzMBAAAAAACgTeoZNE4VRpmchkM9g8bW2N/Ot4ssJl+lF69xbaswHDpQskHt/Srfvd/Rv5f2Fq9ShVFzMWZ/S7BCrO2174TjJWlfyRrX8Z5wySWXyGw2a8WKFXVOyyRJXbp0UWZmpgoKCqpt37Ztm2u/JHXr1k1Op1Nbtmw5ZV9S5boIJyorK9PevXtd+2sTFRUlm82mnTt31th3cn9dunSR0+ms0fbIkSPKzc095XkaIicnR4sWLdJf/vIXPfroo7rkkkt09tlnKyEhwS39A20NQQQAAAAAAADaJLPJoj8mfq/7EhfJbKr57nVfc4CGh1+rr448qe0FS3SkdIc+yvyzyowSpYRfIUkaEXGjSp2Fenf/H7S/ZIOO2fcqLfdjHbXvliSNjfytlmS9pvV5n+uofbe+PvKUMku3aGTEzR67X0FBQXrttdf0yCOP6MILL6yz3ZQpU1RRUaFXXnml2vbnn39eJpNJkydPliRdfPHFMpvNeuyxx2qMBKh6d/+kSZPk6+url156qdo7/t98803l5eXp/PPPr7MOi8Wic889V59++qkyMjJc27du3aoFCxbUqFmSXnjhhWrbn3vuOUk65Xkaomo0w8mjF04+L4D6YWomAAAAAAAAtFn+luBT7p/c/i8y5NT7B++W3VmkGFtf/abLOwqwhEmSAq3h+m38+/rq8JN6fe/lMpss6uSf7FpXYmTEzSqtKNBXh59QYcVxRft1142xbyrKr6tH79cNN9xw2jYXXnihxo8fr4ceekjp6enq37+/vv32W3322We6++671a1b5YLbiYmJeuihh/T4449r9OjRuvTSS+Xn56fVq1erU6dOeuqppxQVFaUHHnhAjz76qM477zxNnTpV27dv16uvvqqUlBRde+21p6zl0Ucf1fz58zV69GjdcccdKi8v18svv6zevXtr48aNrnb9+/fXDTfcoNmzZys3N1djx47VqlWr9O9//1sXX3yxxo8f37gH7hchISEaM2aM/v73v8vhcKhz58769ttvtXfvXrf0D7Q1BBEAAAAAAABoM67o/Nwp998Q90a12z5mf13U8TFd1PGxOo/p6J+k38S/U+s+s8mss6Pv0dnR9zS8WA8zm836/PPPNWvWLH3wwQd66623FB8fr2eeeUb33XdftbaPPfaYunbtqpdfflkPPfSQAgIC1K9fP1133XWuNo888oiioqL0yiuv6J577lFERIRuu+02/fWvf5WPT83FvE/Ur18/LViwQPfee69mzZqlmJgYPfroozp06FC1IEKS3njjDSUkJGju3Ln65JNP1KFDBz3wwAN6+OGH3ffgSHrvvfd055136p///KcMw9A555yjb775Rp06dXLreYC2wGSwOgoAAAAAAABasLVr1+qss85SWlqaBg0aVOu+GQlfKcbW10sVnrkDJZv00p7za71vAHCiU/0u9DZGRAAAAAAAAKDVO2rf5e0SzkhLrRsATkQQAQAAAAAAgFYrMjJSNv8AvX/wLm+XcsZs/gGKjIz0dhkAcMYIIgAAAAAAANBqxcXFadv2rcrKyvJ2KWcsMjJScXFx3i4DAM4YQQQAAAAAAABatbi4OF7IBwAvMnu7AAAAAAAAAAAA0HoRRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB7DGhEAAAAAAABoFbZu3ertEgDAa5rz70CCCAAAAAAAALRokZGRCggI0LXXXuvtUgDAqwICAhQZGentMmowGYZheLsIAAAAAAAAoDEyMjKUlZXl7TIAwKsiIyMVFxfn7TJqIIgAAAAAAAAAAAAew2LVAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHEEQAAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHEEQAAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHEEQAAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHEEQAAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHEEQAAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADzG6u0CAAAAAAAtl2EYOnr0qI4e2qr8nMNyVhRLhiGZrPKzhSkisqs6x3WXzWbzdqkAAADwEpNhGIa3iwAAAAAAtCyGYWj3zo06kL5OUdal6ui/WKG++2UxlbvalJSHKtveQxn2aTL5Jyq5/ySFhIR4sWoAAAB4A0EEAAAAAKBBCgoKtH7VV+poeV8JQV/IbHKe9pgiR6TW5/1JEZ3HqGdyisxmZgoGAABoKwgiAAAAAAD1dvz4Mf28ep4Ghz2sQJ+sBh1rGNKewgt1zHqrhow4nzACAACgjWCNCAAAAABAveTn5+vn1R9qeMT98rWUNPh4k0nqFvyF/IrylbbCosHDJ8tkMnmgUgAAADQnvP0EzZrJZDrlxyOPPOLtEgEAAIA2wel0at2qLzUkfOYZhRAnign8QQGln2j/vp1uqg4AAADNGVMzoVkbOnSoduzYUWN7bm6upMoF8gAAAAB43vbNq+SX9bDig+a7pT+nYdHS4//UsHE3ys/Pzy19AgAAoHliRASatZUrVyonJ6faR9euXSVJVisziwEAAABNwel06tCBjeoS6J4QQpLMpgolBryl9N2b3NYnAAAAmieCCLQ469atkyT94Q9/8HIlAAAAQNuQeTBDnfwWyN3LOXS0rdKhA5sY6QwAANDKEUSgRcnIyHB9/fzzz3uxEgAAAKDtOHJwszr7L3F7v2aToWDLLhUVFbm9bwAAADQfBBFoUUaNGiVJCggI8HIlAAAAQNtRXHhcAdYsj/QdYVmtnJzjHukbAAAAzQOT7KNF2b9/vyTpn//8Z51tli9frpkzZ9a6Ly8vT7t27dLf/vY33XbbbR6pEQAAAGhtTEaR26dlqhJszdCxvEwptotnTgAAAACvMxlMxtkqTJ48WatWrdLx47++kygxMVG7d++WJPn5+am0tNRb5bnF999/r4kTJ0rSKeeQnTRpkhYtWnTKvsLCwpSTk+PW+gAAAIDWKvXbf2pUO8+s0ZZd2k2Hgt5S7/6jPdI/AAAAvI8REa3E/Pnzq92+6667XCGEJNntdgUFBamwsLCpS3Obyy67TJLUrl27U7Z7/PHH69yXlpam3NxcJSQkuLU2AAAAoDUzTJ7717Hc8JfVx+ax/gEAAOB9BBGtiK+vr+vrV199VZI0e/Zs3XrrrTKZTC1+Abjc3FxJ0hdffHHKdsOHD9fChQtr3Vc1WiI8PNzd5QEAAACtlskSLKdhltnkdHvfueVJCo2IcXu/AAAAaD5YrLoV8fPzc31dXl4uSbr11lslSUFBQV6pyV1ee+0119fDhw/3YiUAAABA2xMcGq38Ms+EBTmOgbxRCAAAoJUjiGhFqkY8PP3005KkgIAA1z6Hw+GVmtzl3nvvlSR169bNy5UAAAAAbU9M/EDtK7nY7f06nDaVmeOrvakKAAAArQ9TM7USJpNJTqdTZrPZtZDzE0884dpvt9u9VZpbVC20vWrVKi9XAgAAALQ9ERER+tmZonKnr6zmMrf1m150nrokDnFbfwAAAGieGBHRSlStiVAVQkRHR+uee+6RJH355ZeSJLO55X67DcOQYRiKiIjwdikAAABAm2MymdQ9ebQ25//WbX2Wloco03GpYmIT3NYnAAAAmqeW+8o0qpkwYYLrxXrDMHTkyBHXvnHjxumTTz7RwYMHvVghAAAAgJasU+custvOVVZJUqP7MgxpXd6f1W/w+S36DVMAAACoH57xtRImk0kjR46sdV9QUJCeffZZdezYsYmrAgAAANCaDEw5R5tL/k+59i5n3IdhSOtz71Z0/PksUg0AANBGEES0Itu2bTujfQAAAABQHz4+Pho25jJtLHla+4vGNPh4e0WgVmY/quDYG9StR38PVAgAAIDmiMWq24jCwkJvlwAAQKvjdDp1cN8+5ezep7KSUpnNZvkGB6pz32Te5Qu0cYZh6Ojhwzq6dafKikskSb4BNkUn91B0+/YymUxervDM+fn5aeS46dr6c2cdPPKjkoJfV6jvgVMeU2FYtb9ovNLt16rvoMlqFxnVRNUCAACgOSCIaME6d+6szMxM1+3s7OwW/Q8NAAAtRUlJiXanrVfWtl3qPH+NuqzcJp8iuwyLWaVhgUq/aIQ2DUxU3OD+ik3sJovF4u2SATSRsrIypf+8VZkbtyhq6SbFLlon34LKIMIeHKDMswdp66je6tQvWfG9k+Tr6+vlis+MxWJRn/6jlZ/fXzu3DFJx1m5F+q5ShHWdgnyOyGSqkMMZoNyyRB0vH6qCit6K6TpQoxOS+J0IAADQBpkMwzC8XQTOjI+Pj8rLy+vd/oYbbtDcuXM9V1ALMGnSJC1atEgTJ07UwoULvV0OAKAFOpyxX9u/+E5Jr3+lqJ/3qa63AJT7+WjfpAE6cM1EDbn4fNlstiatE0DTy83J0bpPvlL3Nxeo04ptMjtr/1fLaTErc1gv7bzlXA265HyFhoU1baEe4HA4lJOTo5ysDBUVHNXRrFJ17BCisHZdFR4RpeDgYN40BQAA0IYxIqIFczgcrq9NJpMiIiJ0/PhxL1YEAEDrdnDPXmW894VGPfauLI6KU7a12h3q9tVqRa3brZVlDg29/GLCCKAVy8nO1sb3PtGIB+fK75cREHUxVzgV89MWRW5K18oSu/pfdYnCWvh0bj4+PoqOjlZ0dLQkKTU1Vf3PGuXlqgAAANBcsFh1K2EYBiEEAAAelHP8uPZ+skBDHnnntCHEiUIyszXoobe06tOvVFFR/+MAtBwlJSXa8L+vNOwvb502hDiRf36xhv3lLa3/31cqLS31YIUAAACAdzEiohX6/vvvtWjRolpf7Hj66ae9UBEAAC3ftsWpOuvJ92WpcDb42JCD2er8wRIdTBmouMRuHqgOgDftWpWm3v/4WH5FDQ8T/ApKlPz8/7SrR4L6jB7hgeoAAAAA7yOIaCU2btyogQMHyuk89YsjLSmI6Nu3r37++eda9w0bNkzLly9v4ooAAG1VcXGxTDv3y5ZTeMZ9dFmwVisuX0cQAbQyFRUVyt6+R322HTjjPqI2Z2jLtt1yjhwms5lB6wAAAGh9CCJaif79+7u+9vPzk5+fnxercS+TyaTQ0NBq226++WYvVQMAaIv2pK1XwjuLGtWHT2mZAjbuVu6UXIW1goVpAVQ6uGevOn+1ss6F6+vDJKnz/NU6OHGkYhMS3FUaAAAA0GwQRLQyhmF4uwS3i4qK0pEjR7xdBgCgDcves0+9t+xvdD9xny1X5tRxChsx1A1VAWgODm7cqrMWrm90P3HfrdP6DVsIIgAAANAqMe63FQkICPB2CR6zYMECHT582NtlAADaKLO9vFHvdq7in1eksoIiN/QEoLmosNvlU2xvdD++hSVy2MvcUBEAAADQ/DAiohUpLi72dgkecfToUZ133nmu22PHjtWSJUu8VxAAoM1x14hDU7lTzooKt/QFoJkwDLcElTIkwzj1em9AY5SXlytjx04d3rxdFWUOyWySr82mLikD1L5TJ5lMbrmSAQAAakUQ0Ur89re/1b/+9S+ZTCZNmDBB06ZNU1BQUI121113nReqOzM2m02SFBwcrJCQEB09elQOh0M//PCDzj33XC1YsMDLFQIA2gwfi1u6KQvyl2+gzS19AWgeTD5WVVjMslQ0LkSo8LXK6uPjpqqAX5WVlWnLj8uUv2Ov4j5dpiE//iyr3SFDUmlooNIvHqZtY/urU79kdR/Un0ACAAB4BEFEK/Gvf/3L9fX333+v77//vtZ2LSmIWLVqVY1tt912m+bMmaNvv/3WCxUBANoq/8gIFbYPU9CR3Eb1c2RUb7XrFu+WmgA0D+3iY3V0QII6pu1qVD9HBiYoIj7WTVUBlYqLi7Xq4y/U+6n3NWBr9bWOTJJseUVK+vci9fzP99pz0VCtvPl8pUw5RxaLewJ4AACAKgQRrYTFYmkT71yZPXu25syZI0nKzs5WREREjTbLly/XzJkzaz0+LS1NkpSTk+O5IgEArU63UUO1+8qx6v/iZ2fch9Nk0pHx/dWrc2c3VgbA27r276u0q8Y1OohIv3KcBvft7aaqgMqREKs+/kKD759z2iDdbBhK/HSFbMfylWYxK2XyOW3i/0sAANB0CCJaifLycm+X0GTMZrOcTqeWLVumCy64oMb+mTNnatGiRafsY8+ePZ4qDwDQCkVEROjnwT1V7mOV1XFmf3MPn9VNHfr04oUdoJXx8/OTNTFOhVGhCjqWd0Z9FHQIl2+3WPn5+bm5OrRlPy9JVZ+//rdBo/k6/7RFuR8uVmZyL3WO7+K54gAAQJtDEIEWx+msnH933Lhxte5//PHH6zw2LS1Nubm5SkhI8ERpAIBWLH7IQG295Rz1ff3rBh/r8PPRjt9M1vB+fTxQGQBvSxw9TJvuukjDZv5Hpgaube80mbRpxkVKGjXMM8WhTXI4HCrama7IbQcafGz3j5Zq1eQhBBEAAMCtCCJamcGDB2vz5s11jpBwOBxNXNGZe+2113T77bdX2zZlyhTX17Utxi1Jw4cP18KFC2vdN2nSJC1atEjh4eHuKxQA0CbE9eiuDZefrV1HcpX4ybJ6H1fuY9Wqx69X74vO5d3OQCsVERGh9lMnav3xAg144ZN6hxGGSVp/7yXqNHUiz0/hVhnbdijuf6lndKxvkV1+W9JVUFCg4OBgN1cGAADaKrO3C4B7vP322zKZTEpLS1NpaanKy8tr/WhJ7rjjDplMJvn4+CgoKEhms1nffPONt8sCALRh/caNUvGM6dp4+/kq9/M5bfuiqBAt+8dvlHjVVEV16NAEFQLwloS+vRVyw0VaNesa2YP8T9veHmzTykeuVdgNFym+d1ITVIi25PCWHYr5cfMZHx/72TId2rnbjRUBAIC2jhERrcT1118vSWrXrp2uu+46vfDCC+revbvGjRvnWtz5ueee82aJDebn5ye73d4iQxQAQOtkMpnUb9xo7Y/ppGUj+yh43S51e2+xQg5lu9o4TSYdGdRNe68aJ0tirAaMH62QkBAvVg2gqXTr30ch7SO1JjlePtv2qdvbixSx65CqVoYxJB3v3km7r5uo8p5x6jFmOCElPMJZ5pClvOKMj/fLK1ZZfqEbKwIAAG0dQUQrYjKZlJWVpblz50qqXNR59uzZmj17tkwmk+69917dc8893i2yAUpLS6vdZnFPAEBzEZvYTbGJ3ZQzJUc7xg9SybFsmRzlkskkw89XkT0SNKh/H/n7n/5d0QBal6gOHRR1+SUqLCzU7lEDtWX/IZkcDhkySb5WhcZ2Vu+UgXVOMwq4Q2P/dTLMZpnMTKAAAADchyCiFQkMDJQkDRkyRJJUUFDg2hcQEKDi4mKv1OUO/fv3lyRNnTpVn3/+uZerAQCgUnh4uAaff67rdlpams466ywvVgSguQgKClL/CWNdt/n9gKZksfmrLNBPvkX2Mzq+ODpM/hFh7i0KAAC0abzFoRWpGkGQnJwsSTp69GiNfS1Rdna2Nm7cKEn67LPPvFwNAAB1Kykp8XYJAJopfj+gKcWe1V/pU4ac8fEZ00apc2KCGysCAABtHUFEK3LiOgomk0nl5eXy8fGRj4+PnE6nFytrnJiYGEnSq6++6uVKAAAAAKD56xQXq8xzz5JxBlM0FUWFyNItlukFAQCAWzE1UysxdepUzZ8/X1u2bFFycrL++9//6sorr6wWTjz11FNerPDMzJ07VyUlJfL19dXtt9/u7XIAAAAarKKiQgf3pitj9XoZBUWSYciw+al9757q2re3fH19vV0igFbGbDarfe8e2nfOIMUvWFtjv2vh9LMHqCzIJsmQYTYp6FCOihM7KWnU0CavuSVxOp06kHFAW1duVVlemQzDkMXfos49O6vXgF6nDXGcTqf2p+/XtlXbVJb/y/E2i+KS4tSjXw/5+fk10T0BAKDpEES0EidPWXTFFVfoiiuu0Lx58xQSEqJzzz23jiObt5tuukmStHnz5nofs3z5cs2cObPWfWlpaZKknJycxhcHAABwGkf2H9DWb5co5vMVGvrtWvmUlkmSnGaTDg3poZVXjVP08EHqMXiQTI1dXRYATtBzyGCt+O0R+R/LU4e1u13bS8KDtOa2cxWacUy95/2koGN5rn058dHa3iFCu35apdDzz5HVyksGJzt27JhWfLlCBfMLVPRVkYwio3KHSTo64Kj2Xr1XcUPjNGhU7b/Xjxw6opXfrFT+V/kq/qZYqpq1zSQdG3xMu67epa5Du6r/sP78XQAAtCo8q2jlpk+f7u0Sztgtt9wiSfL399c///nPGvvvueceDRo0SNddd1217TNnztSiRYtO2feePXvcVygAAEAtDu3L0N73Pteoh9+R1VFebZ/Zaajziu3qtGK7tt54tjbfUqY+o4Z7qVIArZHZbNaQCydrtdmsvHe/U8LnK1Vu89WKOy/Q4DkLFHyo5puzwtOPatjfPtKxPqu1zG7XiEsvJIw4wdEjR5X6XqqyHsr6NUCoYkiOdQ4dW3dMxZcWq8xepmETh1ULEw4dPKRl7y3T8ZnHpZPXETekstVlOrb6mEquLlGZvUxDxp35Oh8AADQ3PKNoocLCwiRVLkjt6+vrun06ubm5HqvJ3VatWiWpcqHtF154ocb+F154QSaTqUYQ8fjjj9fZZ1pamnJzc5WQwMJrAADAc+x2u3Z8tUijZr0tS3lFne1MkpLnfqe1EUE60i1e7Tt2bLoiAbR6VqtVQy+crP3JPbXi4pEqOXRMw/7xaa0hxImift6nimc+1KaIcA2cNK5pim3mysvLtfzL5cp6MEsqPXXbov8VKT0sXR3jOyo+MV6SVFZWppVfrtTx/zsulZ36+ML3CrU3fK86JXRSTFyMe+4AAABeRhDRQuXlVQ6fzcjIUGJiout2azJjxgw98sgjNbZnZmZKkjp16qTBgwfX2D98+HAtXLiw1j4nTZqkRYsWKTw83K21AgAAnGjvxp/Vfe63pwwhTpT85gKtHdZH7adf5OHKALQ1ZrNZXbonKiw6Sjv+9i+FHMqWJKXdcrbOevO7Oo/rsGandmzfI8fYkfLx8WmqcputvTv3Kn9e/mlDiCoF7xZo64StriBi15Zdynsn77QhRJX8ufnaPHozQQQAoNUgiGih7rvvPklSYmJitdutya233qpbb721xvaqoa0HDx5s6pIAAABOyzAMHf55u3qs2VXvY/zzimXZsU9FRUUKDAz0YHUA2qrdK9ao+3uLXbdLIoJPe0yXj1OVMWaIuvXt48nSWoSdaTtV8v3J8zGdgl0q3FCo3PNzFRYWpj0b9si+/OT5mOpmFBkq3FKogoICBQef/nsFAEBzRxDRQj377LOurzMyMrR9+3YNHDhQjz32mBercq9p06bp448/9nYZAAAADeJwOGQ7lC2zYTTouMhlW5V7Yy5BBACPKDp6XGH7jjXomOj1e7Q5fb/UxoMIwzBkz7ZLjoYdV/hDoY7/5riCgoLkOOaQ6jdIzqXgxwLl/iaXIAIA0CqYvV0AGi8oKEhffvml/v73v3u7FLdas2aNpMp5TQMDA+Xn5+faxz/oAACguaqoqJDFXs+5N05gKSpRRUUDX6UCgPpyNvz3i6XMoYp6TjHXmjmdTqm84ccZZYYcpQ45nU4Z9oaF05JklBpy2BuYfgAA0EwxIqIViIiIkPTLk6NWJD09vca27OxstWvXTkVFRU1fEAAAQD34+PjIHtrwN03YO7ZTqK+vByoCAMnk46MKi1mWivr/31gaEihfm82DVbUMFotFZlvD38dpibDIFmKT1WqVKcTU4ON92vvIP8C/wccBANAcMSKilfDz85PD4dDbb7/t7VI8qip0AQAAaK6sVqsUEy17UP1fPDIkHR7XT1FRUZ4rDECb1j65hzJHJjfomIwLh6rzoL4eqqhlCekUInNUw15CCZkaoo6dOspsNiu4Y7BMoQ0LI4LOCVJ0dHSDjgEAoLkiiGgljF/mIL7++utlMpnk4+MjPz+/ah/+/i3znRQ//vij5syZo9/97nct9j4AAIC2peuwwdo7dVi922d376iwHgmyWCwerApAWxbfO0np00bXu32FxaysEckEpL/oO7KvQq4MqXd7c0ez2nVrJ99fRrr1GdlHQZcF1ft4SxeLohOjK8NtAABaAf6itRJlZdXnIS4vP4MJLJupsWPH1tj2/vvve6ESAACA+ukQ01m7po5Qh9TNCss49eKwZTZf/XzfNKUMPauJqgPQFvn4+KjdoN7adekIJf5v2SnbGpI23H2xEkekyGRq+JRCrVG7du0UMS5Chd8Vqnzbaf7f9pHa/aWdBowZ4NrUvkN7RZwXoeIlxarYc5p1N/ykdn9qp34j+jW+cAAAmgmCiFbivvvu83YJHnP11VdrzZo1OnLkiPLy8iRJmZmZXq4KAACgbmazWUMumqIV5RVK/tsHit6UXmu7wqhQpT1yrfpeOkUBAQFNWySANidpxFCtLSzSNpufjDryBYefjzbedZGCp52jmO6JTVtgM2YymTT2wrFaVL5Ih587rLKVZbW3Czep3cPtNOzSYQoJCal2/PiLxlce/8xhOdbVvgi1qZ1JkY9EasRlIxQUVP8RFAAANHcmo2pOH6CFqHpHjt1udw1zPdHy5cs1c+bMWo9NS0tTbm6uBg0apLS0NI/WCQBoe1JTUzVq1Chvl4FmxOFwaPOPPyl/Z7piPluh8O37ZapwqqhDuPZNHyNLtxglTxqr4OBgb5cKD2trvx/a2v1tSQzD0J5Nm7Vp82YlLt6kjos3yFpaprIgm/ZfOEyF/bspccQQderaxdulNkvl5eVav2y9Dm47qIKvC2TfaJdRbsgcaVbY9DCFdA/RWRPPUnh4eJ3Hr126Vod2HFL+F/kq21Imo9yQJdqi0MtDFZoYqpRJKdVCDAAAWgOCCLQ4QUFBKioq0nXXXaf//Oc/NfZPmjRJixYtOmUfYWFhysnJ8VSJAIA2ihfeUJfy8nId2LNXhZlHlJmXo65duii2Vw/Wv2pD2trvh7Z2f1uipUuXqkf37sratVcHj2cpNrq9OvTqXucL6KiuoqJC+9P3K+tAlo7lHlNcbJy69upa79FtFRUVytiToeOZx3Us95i6xHVR115dZbPZPFw5AADewdRMrciFF16oL7/88pRtWkPuVLX+xZ49e2rd//jjj9d5bNWIiISEBI/UBgAAUBur1ar4Ht2lHt2Vm5qq7gOY9xuAd5lMJrXv0EHtO3RQTmqqkoYP8XZJLYrFYlF8t3jFd4tXamqqeg/q3eDju3bvqq7duyo1NVXJA5M9VCkAAM0DQUQr0bdvX/3888/eLsOtXn75Zd15553VtmVkZMhut0uSHnvssVqPGz58uBYuXFjrvqrRErzLBwAAAAAAAACahtnbBcA9qkKIL774QrNnz5YkJSUlyTAMjRgxQpIUHx/vrfLOyIwZM2QymeTj46Pg4GD5+PioS5fKeUp9fX01YcIEL1cIAAAAAAAAADgdgohWxNfXVxdccIFrUauqKYx++uknmc1mpaene7G6hrNYLJIq70dhYaHr/thsNteoCAAAAAAAAABA80YQ0Yr4+PhIki655BJJUlZWlmtfS1zwqqKiQlLl3KVBQUGyWitnEispKXHdRwAAAAAAAABA80YQ0YoUFxdLqhwZIUk5OTmufUVFRV6pqTFSUlK0c+dOOZ1OFRQUyOFw6Oabb5Ykffrpp94tDgAAAAAAAABQLwQRrYTZbJZhGDp8+LAkuaZnMplMMplMkn4dMdFSrFq1SomJidW2vfnmm16qBgAAAAAAAABwJggiWrATpyfau3ev3nrrLQUFBUmS8vLyFBYW5tofEhKisrKypi7R7VrDfQAAAAAAAACAtoQgogX79NNPZTKZ5OfnpzfeeEM33nijK4iQKqdmMgxDhmEoLy/Pi5W6T/v27SVJwcHBXq4EAAAAAAAAAFAfVm8XgDNnNpvldDpVVlamxx9/XI8//riCgoL09ttv6+KLL/Z2eW53zTXXKDc3V5KUnp5eZ7vly5dr5syZte5LS0uTVH39DAAAAAAAAACA5xBEtGAVFRWSpKFDh2r16tUyDEOFhYWuKZvat2+v1NTUGusstETPPvus3nvvPUnSE088oYiIiDrbzpw5U4sWLTplf3v27HFrfQAAAAAAAACA2hFEtAIrV66UJBUWFmrAgAHavXu3JOnIkSPq3r27JCkpKUlbtmzxWo2N8emnn+r++++XJE2bNk0PPfTQKds//vjjde5LS0tTbm6uEhIS3FojAAAAAAAAAKB2BBGtSFBQkHbt2iVJ2rJli8aPH6+jR49KkrZu3SqTySTDMLxZYoNt3LjRNcJjyJAhmjdv3mmPGT58uBYuXFjrvkmTJmnRokUKDw93a50AAAAAAAAAgNqxWHUrlZycrK1btyomJsbbpZyx7Oxs9e/fX5LUpUsX18gPAAAAAAAAAEDLQRDRCvXv318mk0nt2rXTgQMHXNvj4+O9V9QZiIyMdH29b98+mUwm1wcjGgAAAAAAAACgZSCIaCUmT54si8Uik8mkjRs3uraHh4frhx9+kGEY2rt3rxcrbLhTTSOVm5vbdIUAAAAAAAAAAM4Ya0S0YL///e81e/ZslZeXV9vu7++v5557TrfffruXKnMPwzC0ZcsWff311/rjH/+ocePG6YcfflBISIjy8vK8XR5aMKfTqR1r1unolh0y2ctkbRemnuNGKuKEUTi1MQxDGdt3KGPNBqmwRKaQQCUMH6xOXeObpvBGyNiboS3Lt6gsv0zWIKt6Du6phJ4JMplM3i5NUuX3ZNf6jTq8aZtMJXZZIkLVfcwwRXXo4LFzHj1yVBt+2KCS7BKZbWZ17dtVSQOSZDbXL6M/mnlIO5YuV0FOkYocVpkMHwVGBanvyL7qHNfZ7fWWlJRo26alKsjNkCQFhcUqqe8Y2Ww2t58rc3+mNv20SfZcuyyBFnUf2F3de3dvNtcL3OvY0WNa/8P6yp8Ff7Pi+8QreWByvX8W6uPA7r3au3KNTPnFMoID1CVlgOJ6dK+zfVFRkbb+8JOKDx6RzCaFxseqx4gh2rdxs45u3Vn5uzsyvPJ3d7t2bqsTOBOFhYXauiRVpZlHZVjMCkvool4jh8rX19dt5zh+7Jh2/LBM5cdzZfj7qn1yT8X1SdL2n1YqP/2AZBgKjOmgpLEjFRAQ4Lbz1qa8vFzbV6xW1s69MjvK5RsdoV7jRik0LMzVprS0VHnHsvTjG+80aW112b9vl9J3rZScBZI5WPGJQxXbJbFGO4fDoW2blyvn6C6ZVC6/wPbq1Xe8QkJCvFB17QoLC7VtyU8qPnREhtksS7swVRQUyVJUKoUEquvws9S5a1dvlwkAAFADQUQL9uqrr7q+tlqtuummmzR79mwvVuR+ycnJSk5O9nYZaEUMw9CqL+er40v/06jvN8hsGCoJDVTaQ5nqee0liupY9wvfW35aIb31hUa8vUgWR4Uc/r7adMf5Kr1+qhL6923Ce9Ew2zZs08Z/b1Tua7lSqSQfKe/6POXflK+BIwd6uzxJUtr8hYp49RON+maNzE5DpcE2rfvzdJVfe7E6dolz+/kOZhzUindWKPvpbBkFhmSWcibn6PjtxzXm/DGnP37XHh145zNZ9xxXTn68Cr8qkcql47Zs5d+Vr0HXDlJi75ovcJwpu92ulT9+qH5Bjymi3R5JUo69q1b+OEvDxl4pf39/t51r99bdWvvOWuW+kCuj2JCsUt70POX8JkdDJwx123nQPBw6cEjL3lmm7KeyZeQbkknKOS9Hx+84rrEXjHXLOXamrVfRfz7XsH99Ix+7Q+W+Vm296WxtvWGqkoan1GhfXFys1f/9nwY++o5CDxyXJB1NitHiuy5S7w+XavTijTIZUkl4kNIeylSvay9RZPv2bqkVaKjCwkKtee9jDXr0XYVkZsuQdKxPFy1/8CqNnH6xrNbG/7t1NPOQdr7ziQb99QPZ8orkNJm0Z/Jg/XBBigY//6kid2ZKknLjorTq4aMaetWlHgmppco3Diz/5Et1+8c8Ja/cLpOkoqgQpc06on7XXqawsDCVlZVpxbzPZNt7UGMefq/JaqvL9i2rVJr5bw0PfVNWs13lTj9t3nWLiotuUM/kIa52FRUVWv7j/9TD92/qE7FOJpNU4Givtcse1sAR1zSLMKKoqEhr/vs/DXr0HYUczNaWS4apwtdHSf9bLqujvPK56e3nq/T6C9VtQD9vlwsAAFANUzO1YCaTSSNHjpRhGHI4HK0uhAA84XhWlgK+W60ui9bL/Mv0X7a8Ig19+G1tW5xa53F2u125qzep9//7VhZHhSTJp7RMA5/7RPtXrlNFRUWT1N9QFRUV2r5iu3Kfz60MISTJIRW8WaD01emy2+3eLE9S5VRr5qXr1e2r1TI7K78n/gUlGvLou9rx4/JTTtN2JgzD0Pof1uv4I8crQwhJckolX5XoyNIjp536zTAM7UxdqT6vfK7MiDgVfuaUqgamlUi5f8vVlhVb5HQ63Vbz7h1p6hXwgiL897i2hfvtVVLAc9q9fY3bzuN0OrV52WblPJVTGUJIUrlU+N9CHVx1UMXFxW47F5qHdUvW6fjDxytDCEkypJJvSnT0h6PKyclpdP/l5eU6tGqd+r/0uXzsDkmStaxcff71jbLWbFBZWVmNY7b/tFL9/vq+K4SQJJOkzkt/VpfvK0MISbLlFGrIrLe17fu6f3cDnrb9x+Ua+Ph7CsnMllR5rUb/vE9d3lqgjO073XKObYtTNWTW27LlFUmSzIahcrPU563vXCGEJIVlHFOfv32gnSvc93fhZIcy9iv64x/V6ZcQQpICj+Vr8Ky3tfX7pZKkvRt/Vvd/fi7fwlLXcWEZx9Tn6Q+0w4O11cbhcOjI/tXqF/aqrObK5zxWs139Ql/Vkf2r5XA4XG0P7N+tTpb31CGgMoSQpGCfIzor7FFt27SkSeuuy/alyzXgyf8q5GC27IH+yu7WUX0/WCqro/KJiE9pmQY+/4kONOPnpgAAoO0iiGjBnE6nUlP55xtoiMNbd6jzN6trbPcpKZP5UFaNqc6qHDt2TB2+rfnPs0lS5JodzXbdkpycHJWsLql1X8F3BcrKymriimo6smuvYr5aWWO7xVEh274jbg9L7Ha77Bl2yVFzX8GXBdq/c/8pjy8uLlbwroPK6hWj/LRa3ulqSKUbS5Wfn++miqXjR/eovW1Dje3Rtk3KPua+9X8KCgpk32yXasl+8r7I05FDR9x2LnhfWVmZSg+USjWzAOV/la+M7RmNPkdOTo6ilm/TyZN6mSR1+H6Djh8/XuOYwgOHFLG3+rV2uF+84pZtq9HWt9guHT7OC27wmuJDR6qFZlVifvxZh7fsaHT/DodD1swsV5BXJSspVp3W7KrRvt2OTOVlHGj0eetyePM2xXy/vsb2gJxClR+pfE5xdOcedVxV876325mpfA/WVpvs7Gy1912qk2cWNJmk9r4/VvsddPjAZsUELK7RR5DPEdmLDnm61HopzDyisH3HJElZvWLUYX3N5wAmSVGrtrslTAYAAHAngggAbYrV30/lttrnbHb6+tQ5J7rValV5aFCt+xzBAbJYLG6r0Z2sVqvMQXXcp1Brs6jb4u8rR0DtUwuV+/u6dZ56SbJYLDL5177WgSnIJB8/n9MeXx7gJ6vdIYut9tEa5kCzWx9bk8mqCqNmXU7DRyaz+2ZZtFgsMgXW/thYwiyy+jCjY2tiNptl8qv9+20OMMvH/9Q/C/VhsVhUHlz7z7cjNLDWnxPDYpHzpFcNLfbKKUdq4/S1sn4JvMawWGTUcvk5bL6yuOF3ptlsltO35s+iubxCFbX8vTIsZsmDf9stvr51/yz+Mg2VxWpVRS2/PzxdW20sFovKjdqnVCo3QqpNnWW1+qrcWXPaKMOQnGr870O3OOF6s5Q56nxO6wi2NYvneAAAACciiECrs3z5ck2aNKnWj7S0NEniHUJtWGzvJO2+ZkKNN3znd4qQb1yHOl/0joqK0qFJA1Vhrf5PXZnNV7n9ExQaGuqhihsnNDRUAYMCpJP/r/aRAicEKioqyit1nSgmsZv2Xjm2xvekKDJEiu/o1sU+JcnHx0dBXYJkjqr5vQ69IlTxPeJPeby/v78cCZ0Vsu+YgodWSCf9n28KNCkgOUDBwcFuq7lzlwHaWzSlxvb0onPVKc59c0AHBQUpoFeATMEnvapmlkIuDFHHTh3ddi54n9VqVXBcsMzRtfwsXBWqrj0bv9hpeHi4jqf0kuOkF0zLfaw6OqavIiMjaxzTPrm7DozuXW1b3PJt2nFhSo3fE3kx7eQf29HtgSVQX5E9uylzSM8a23dPH624lAGN7t9iscga10EFHcOrbY9ZsV07p5xVo33GhH7q0KdXo89bl7iz+mv31eNrbM/qFaOQ+BhJUuygftp90bCatY3vpw69PVdbbSIiInTMMVzlTr9q28udfjrmGKGIiAjXtriEFO0qvKJGH0dK+isiqpvHa62PqF6JOjg8qfLrLft1eEBXVfhUfyLisPkqZ1B3hZ2weDgAAEBzwFsb0erMnDlTixYtOmWbPXv2nHI/Wq/AwEBFThyh1TPt6vnWt7JlF+rwkB7ac9M5GnJ2zX+sq1gsFvWcNEbLnilR0mtfKmR/lnK6d9K2352vvpMnNtt345pMJg09b6h++sdPyn49W+U7y2WJsyjidxE665yzmsW75fz9/dV5wgitfLxUvd74RgFH83R0UDftuuU8DT5vokfOOfy84Sr5W4ly3syRfa1d5mizwn4TpuQJyfVa+LnflElKKypWl4Xr5by3p3I+NaviQIV8elkV8dt2Gjal5gswjdGlaw+tzLxR5fnBig/4UpKh9KLzlWudpqEJSW491/Apw/Xjsz8qe3a2HFscsnSyKPx34RowcYBbFl1F81L1s5D9ZrbsaXaZIyt/FpImJLllQVmTyaTe543Xsn+UqNe/vlLErkPKjY/W1t9doKSzx9YaICQO7K/ld16i0ugwxX23VhVWi9KnDlNZv0StfuhK9Zz7nWw5Vb+7z9XQs8c1uk7gTPVIGaTl905T8fuLFbtwnSr8fLR72ig5Lh6rDp06ueUc/c6doFVPFajb/1ug9mt2qqRdsDLPGaSS7jEyQoPU9bPlMlUYyjjvLGVdPk7D+vY+fadnKCIiQgcnj9JaR7m6v7dEvgUlyhzdWxnXTdLwsSMlSZ27xmv1NeeoIH2/iiOCZK5wat95gytr6+e52mpjNpuVPPA8LVv7rHoFva5wvz3KsXfVtqLfKXnAudV+B0VGRelg2EVanyMlBn0gH3OJDhSP1cHyazR82Igmrbsu3c8aoOV3X6aSDt8rduF6xS/eqB/+7wr1fe9HhWUcVXbiL89Nz5vQbJ+bAgCAtstkuHsVUMBDxo0bpx9++EEhISHKy8urs93y5cs1c+bMWvelpaUpNzdXgwYNco2OQNuUk5Oj9FXrdCg/Rz169FCX5F7y8Tn9sPuioiLtWbNe+48eVnxMrLoO6OuWF+s8raSkRNvWbVPOoRzZfe0aM2GMAgMDvV1WNXl5edq7aq0yc7OV2C1R8X2S3D4a4kRlZWXauXmnjuw9olJzqUaOH9mgkS12u13pmzbr6L79yipzyGSxqmtcV/Uc0LNeYUZDGYahQ5n7dSB9vY7nlqn/gCHq0DHGI+8ELy0t1Y4NO5R1IEt2H7tGjR/l1hEerVlqaqpGjRrl7TIaxOFwaOfPO3V472GVmEs0ctxIt7+TtqSkRHvWblDB4WMq8DNrxPhxp/wd5HQ6dXDfPh3asEXHK8o0cPhQte/YUbm5uUpfuVaHCnLVo2dPdUnqWa/f3c1NS7xOULeKigod3JuuQ5u2Kdso06DhwxTdoUONF4Ib8313OBxK37JNx3enK89saOi4MQoNDdXhgwd1YO0mZZWVqO/gs9QpLrZJRghlZWVp36p1OlJcoKQ+vRWb2K1aWG0YhhYtXKjQkvJfahukTnFxXhu9VFxcrL0716og/4gKiv00cvQEBQQE1GhnGIayjh3Tvt2rdPR4qXr37qeYuG7N4o0bVZxOpw7uTVfmxq3KdpYpedAA5WdkVj437RyjrgP71fu56YnXJL+XGqexjx+PPwCgLeCtjWh1hg8froULF9a6b9KkSVq0aJHCw8Nr3Y+2Izw8XOHnTlBRaqoS+/et93GBgYHqO3ak8lJTlTx8iAcrdC+bzaaBIwZKqvxHp7mFEFLlNFIDzh6vwtRU9RjU3+Pn8/X1Ve+BvdV7YG+lpqY2eHotPz8/9Rw8SD0HD1Jqaqokqf8wz9VtMpnUqXOcOnWOU2pqqjp1jvPYufz9/dVvaD9paOX1QgjRuvn4+Ch5YLKSByYrNTXVI9N52Gw29R5ZOVKoPr+DzGazYrt2VWzXrkpNTXW9szw8PFzh502s/N3dr4/b6wTOhMViUVxiN8UldlNqaqrad3T/NHY+Pj7q3r+vuvfvW+3ntGNMjDrGxCg1NVUx8V3cft66REZGKnLK2UpNTVXXXjWnpjKZTPK32ZRy9qhfaotvstpqExAQoN79f33BvbYQQqqsOyo6WlHRFyg1NVVduvZoyjLrxWw2K7ZbgmK7JfxSY1epa9fK56Yjhnq7PAAAgDoxoW4r8eOPP8pkMumaa67xdiluZ7PZ5OPjox9++EGSlJ+fLx8fH/n4+OjTTz/1bnEAAAAAAAAAgFMiiGglqtY8WLdunSTpyy+/lMlk0rnnnuvNshpty5YtKi0tVXl5ebXt5eXlKi8vd4UTAAAAAAAAAIDmiamZWrCqeWf9/PzUoUMHSXLNu5qVlSVJ2r9/v3eKc5PevSsXtDOZTAoICFBRUZEkaeDAgVq7dq03SwMAAAAAAAAA1ANBRAvm5+cnu90uu92uffv2SZI2b94sHx8ftW/fXpK8tiCcO1Qt1uXr6yu73S5J2rhxo/r37+8a+QEAAAAAAAAAaN5a7qvUUGlpqQzDkGEYuuyyy1zby8vLdfDgQUmVwYTFYlFcXJzmzp3rpUrPzPLlyyVJH3/8sWtbv379ZLVW5mcPPfSQV+oCAAAAAAAAANQfQUQLdsstt7i+vuCCCyRJSUlJMgxDN9xwg2uf0+nU/v37ddNNNzV5jY3hdDol/XrfqnTr1k2S9J///KfJawIAAAAAAAAANAxBRAv2//7f/5PJZJLJZHKFElWLOo8bN07Sr8HEhg0blJKS4q1S3apv376SpOzsbC9XAgAAAAAAAAA4HdaIaMEuuOACLV68WEVFRa7RAzt37nSFE9KvwUS/fv20atUqr9XqTtHR0ZKkiooKL1cCAAAAAAAAADgdgogW7IsvvnB9PWfOHN12220ym82udSOkX4MJSYqIiNDx48e9Uqs7HT16VJJksVhq3b98+XLNnDmz1n1paWmSpJycHM8UBwAAAAAAAACohiCilfDx8ZEk9ezZU1u2bHEFE1arVYZhqKKiotVMZbRp0yZJlcFKbWbOnKlFixadso89e/a4vS4AAAAAAAAAQE0EEa1EYGCgJCk4OFjSr8FE9+7dtWXLFklSYWGhd4o7QyaTSYZh6Msvv6y2YPXu3bslSddff32txz3++ON19pmXl6ddu3bpb3/7m3uLBQAAAAAAAADUiiCilZg+fbprOiZJioyMlCTFxsa6tgUFBTV5XY0xfPhwLVu2TJdddpnsdrskacuWLa51L5588sk6j1u4cGGT1QkAAAAAAAAAqJvJOPHVa6CZqVrfwmw2y2azqaioSFLl4tsbNmzwZmloJVJTUzVq1KgmO64hMjIylJWV5fZ+MzMz1alTJ7f36y7eqK+x58zMzJSkJqu7tnojIyMVFxdXa/vGXEuZmZnq16+f4uLiPHZNtibN/efrdJqi/oaeo7b2PM5ork71vXXX9705/UzU5/5Wfa76O+XtvyX1faxaws/piTWeSb2NPR6/csdzyZby+J/qOScAAKdkAM3Yhg0bDJPJZEhyfXTr1s3bZaEVWbp0aZMeV1/79u0zbDZbtWvfXR/333+/R/ptyfU19pz3339/k9Zd27lsNpuxb9++Wq+lgICARp0rICDAWLZsmWHzP/N+2spHc//5ag71N/QctbXnceajuX6c6nvrru97c/qZqM/9rfps86/8WxIQ4N9sv0fN4TE90/tyJvU29ng+an8svXF8U34EBPjX+pwTAIDTYWomNGv9+vWT0+n0dhlAk8vKylJJSYn+8Ic/qHPnzm7tu3379nrqqafc2qc7eaO+xp6zffv2ktRkdZ9c78GDB/XKK68oKyurxjvUsrKyVFxcrLlzn1JSUtcGn2v37mIVFxdrz549Kikt1pWdX1S0X2Kj70NrlRBQohkJX3m7jDPWFPU39By1tedxRnN1qu+tu77vzelnoj73NyGgRFd2flHvH7xLe/bsUXFxqd55R0pKauJif5GZKV15pfvaedOJNZ5JvY09Hr9q7OPXUh7/rVula68trfU5JwAAp0MQAQDNWOfOnZWQkOD2fj3Rpzt5oz53nLMp627ouZKSumrgwOQGn+fIkS3Vbkf7JSrG1rfB/bQV/pZtirH18nYZZ6wp6m/oOWprz+OM5upU31t3fd+b089Efe6vv2Wbov1s1fYlJUmDBjVFhTUVF9fv3PVt500n1ngm9Tb2ePyqsY8fjz8AoC0we7sAAAAAAAAAAADQehFEAAAAAAAAAAAAjyGIAACgDbLby7xdAgAAAAAAaCMIIgAAaEM2btyhAQMuUa9eUyRJa9du0V/+8pyXqwIAAAAAAK0ZQQQAAG3Ivfc+rX/+c6YiIyMkSQMHJumbb5Z6uSoAAAAAANCaWb1dANCafffddyotLfV2GTgFu92uL774osmOq6/du3d7rG+0Xj/++KMOHjxYbdvJ11JhYbFGjhzkum0ymeTr63PavteuXeueIgEAbRZ/S4DWobbnnKfi7++vs88+24MVAQBaAoIIwINKS0tVUlLi7TJwGmf6PfLk95YAC2eitt85J19LVqtFDodDJlPl7f37D8tiqXuApPWXZwplZawpUR8VBb7eLqFRmqL+hp6jtvY8zmiuTvW9ddf3vTn9TNTn/lZ+dkhqHn9LbLZst7bzphNrPJN6G3s8ftXYx6+lPf78nwsAOBNMzQQAQBty++1Xadq0u5WVlaNZs17WhAk36r77bqqzfbt2TVhcK5D9dYK3S2iUpqi/oeeorT2PM5qrU31v3fV9b04/E/W5v83tej/rrDfd2s6bTqzxTOpt7PH4VWMfPx5/AEBbwIgIAADakGuuuUAJCTH6/PPFKitzaO7cv1abqgkAAAAAAMDdCCIAAGhjhg8foOHDB3i7DAAAAAAA0EYQRAAA0IacffYtrvUhqoSGhmjYsH76wx+ukZ8fc9cDAAAAAAD3Yo0IAADakEGDkmS1WnXjjZfqppsula+vjzp1ilJa2hbdffdT3i4PAAAAAAC0QoyIAACgDVm+fIMWL54ri8UiSZo27RyNH3+jliz5twYOvMzL1QEAAAAAgNaIEREAALQhx4/nynTC3Ewmk0k5OfmyWq3y9/fzYmUAAMCbHnlENaZvBAAAcBdGRAAAanX48GF9/vnn2rRpk3JycmS1WhUbG6vhw4dr0qRJ8vWt31oCdrtdn3/+uZKTk9W7d28PV43TmTBhqC688A5dddX5kqQPPvha48cPUWFhsfz8fLxcXeu3JmeePsy8T5J0e/xH6ho4pNp+wzD01x3DlFd+SL2CJujmLnO9UCUA4FTmzpVuuklavVoaPLjm/nHjpKws6eefm7oyAACA5osgAgBQw9q1a/X888/Lx8dHY8aMUWxsrMrLy7Vt2za98847OnDggG677bZ69WW32/XRRx9p2rRpBBHNwPPP/0Vz5nykzz//XpI0ZcpY3XrrNFmtVqWmvuvl6toOq8lP6/M+qxFE7CleobzyQ7KaGJ0CAAAAAGg9CCIAANUcPXpUL774oiIjIzVr1iyFh4e79p177rk6fPiw1q5d68UK0RhWq1W3336lbr/9Sm+X0qb1CpqgjflfaWrHR2Ux/fp0bF3ep+rs31fFFTlerA4AAAAAAPciiAAAVPP555+rtLRUv/vd76qFEFU6dOigKVOm6JFHHlFRUZGeeeaZGm3uvvtuRUVF6dZbb9Wdd94pSfroo4/00UcfSZKmTZum6dOnS5J+/vlnzZs3T3v37pXFYlFycrKuuuoqxcTEVOszOztbH374odavX6+CggKFh4drwIABuvHGG2W18uesvnJz8zVnzkfas2e/yssrXNvnzHnMi1W1PQNCp2pzwXztLFyqXsHjJUnlzjJtyv9aEyNn6Kfst2ocU+Ys1oKj/9DGvC9VWHFc4T4xGhp+lca0u63auh+StDb3f/op+y0dLt0uq8lXHfx7aWLUDPUIGuNqsyz7P1qe/W9lle1TgCVMfYLP03nt75fNEurZOw8AbUx5ufTUU5VTOh04IHXsKF19tfTww5LfCQPg4uOlPn2kP/6x8mPzZikxUXr55crpnv73v8pjdu6UeveW3nhDGjiw+rm+/76yzdq1ko+PNHas9PTTUlJS9XapqdI990ibNkmdO0t/+pOHHwQAANDm8coNAKCatLQ0tW/fXj179jxlu9GjR2v27NnKyMhQXFyca/uuXbt06NAhXXrppQoJCdFvfvMbvfHGG0pJSdHQoUMlydV+48aNevrppxUdHa1p06aprKxM8+fP16xZs1zbpcoQ4sEHH1RxcbEmTpyoTp06KScnRytWrJDdbieIaIArr7xPkZHhGjasvywWi7fLabPCfWMUZxuk9XmfuYKI7YVLVFpRoP6hF9YIIgzD0NyMm7W7aLlSwq5QJ//e2l70g7468qTyHIc1tePDrrbfHX1e3x17Xl1sZ+mc6PtkMfkoo2S9dhX95Aoivj36nBYee0HdA0dpWPh1Ola2Ryuy39aB0g26o+v/ZDGxXggAnE5eXuVaECdzOKrf/s1vpH//W5o2TbrvPmnlyspgYutW6ZNPqrfdtasypPjtb6Vrr5WefVa68ELp9delBx+U7rijst1TT0mXXy5t3y6ZzZXbFi6UJk+WEhIqF54uKakMMUaOrAwm4uMr223aJJ1zjhQVVdmuvLwyvGjf3o0PDgAAwEl45QYA4FJcXKzs7GwNrm3lxZMMHz5cb731llJTU3X11Ve7tqempsrPz09DhgyRv7+/hg4dqjfeeENdunTR6NGjq/Xx7rvvKigoSE888YSCgoIkSSkpKfrzn/+sefPm6fe//70k6b///a9yc3P15JNPqlu3bq7jL7/8chmG4Y673mYcOpSl+fPneLsMSBoYerG+Ofo3OZyl8jH7a13eJ0oIHKZQnw412m4p+E67ipbp3Oj7NTGqcpTRiHY36O39v9NP2f9PI9vdoHa+8cqyp2vhsRfVJ/g8XRv7uswms6uPqp+VwvLjWpz1qnoEjtHNXf7jahPt202fHp6ptbmfKCX88iZ4BACgZZs0qe59VctibdhQGUL85jfSnF/+/N5xhxQdXRkyLF4sjR//63Hbt0vLlknDh1feTk6Wzj1XuvVWads2qeq9H+HhlWHFjz9WjpaQpPvvlyIipOXLKz9L0sUXV46aePjhyjokadYsyTCkpUt/7e+yy6S+fRv7iAAAANTNfPomAIC2oqSkRJJks9lO2zYgIECDBw/WTz/95HqB0+l0atmyZUpJSZG/v/8pj8/JyVF6errGjh3rCiEkqUuXLurXr5/WrVvn6nP16tU666yzqoUQVU6ekganlpAQo9zcfG+XAUn9Qi+Qw1mqrQULVVpRqK0FizQg9KJa224r/F5mWTQy4qZq28e0u02GDG0rWCJJ2lywQIacmhR1V7UQQvr1Z2VnUaoqjDKNandLtTZDwq+SvzlY2woXue9OAkAr9s9/St99V/OjX79f23z9deXne++tfux991V+/uqr6tuTk38NISTpl8GkmjDh19DgxO179lR+PnRIWr9euvHGX0MIqbKWs8/+tY6KCmnBgsqA4sT+kpIqAw8AAABPYUQEAMClKoCoCiROZ+zYsVq+fLm2bt2q5ORkbdy4UXl5eTVGPtTm2LFjkqROnTrV2Ne5c2dt2LBBpaWlKi0tVUlJiWJjYxtwT1CXgACbhg69QuecM1L+/r9OTP3MM/d7saq2KcjaTt2DRmld3mcqM0rklFP9QqbU2jbHcVAhPu3lbwmqtj3aL9G1X5KOl+2TSWZF+3Wv87y5ZQckSVF+CdW2W82+ivCNU07ZwTO+TwDQlgwZItU2iDQ8/Ncpm/btq5w6KTGxepsOHaSwsMr9JzoxHJCk0F+W7Tn5aVDV9pycX88jSbXNrJmUVBk+FBVJBQWVUzZ1r+XPRM+evwYWAAAA7kYQAQBwCQgIUHh4uPbv31+v9v3791doaKhSU1OVnJys1NRUhYWFqd+JbwVEs9KrV1f16tXV22XgFwNCL9LHmX9RQfkx9Qoax0LRANBK1XcAZ13LN9W1nRkqAQBAS0EQAQCoZtCgQVq0aJF27NihHj16nLKt2WzWqFGjtGTJEl199dVavXq1Jk6cKLP51+le6po6KSoqSpKUmZlZY19mZqaCg4Pl7+8vX19f2Wy2eocjOLWZM2/3dgk4QZ/g8/Q/PaCMkrW6JuafdbYL9+msXYWpKq0orDYq4ph9t2u/JLXz7SJDTh2171QnW+9a+wrzjfnl2D1q59vFtb3cWabssv3qHjSy0fcLAFCpSxfJ6ZR27qwcmVDlyBEpN7dyv7vOI1WuMXGybdukyEgpMFDy95dstsp6TlbbsQAAAO7CGhEAgGqmTp0qPz8//etf/1Jubm6N/YcPH9bXJ4zbHz16tIqKijRnzhyVlpZq1KhR1dr7+VVO/1NUVFRte3h4uOLj4/XDDz9U25eRkaENGzZo4MCBkirDjpSUFKWlpWn37t016mGx6vpZsOAnSdIrr7xb6we8w88SqEs6Pamzo+5RcvDZdbbrFTRBTlVoWfbcatuXHn9DJpnUK3icJKl38LkyyayFx16U03BWa1v1s9I9cJQsJl/9lP1WtZ+f1bkfqNSZr15BE91z5wAAmvLLjHsvvFB9+3PPVX4+/3z3nKdjR2nAgMoFqU98+vbzz9K33/5ah8VSuRbEp59KGRm/ttu6tXL6JgAAAE9hRAQAoJoOHTpoxowZeuGFF3TvvfdqzJgxio2NVXl5uXbs2KEVK1Zo7NixrvZdu3ZVbGysVqxYoc6dOyshofq8876+voqJidHy5cvVsWNHBQUFKTY2VnFxcbrmmmv09NNP6//+7/80YcIElZWVaf78+QoICND06dNdfVx11VXauHGjHn30UU2cOFGdO3dWTk6OVqxYoccee0yBgYFN9vi0VPv2VY48Wb9+W419LPjtXYPDpp+2TVLwJHULHKEFR59RjuOAOvona2fhj9pc8K1GRdyidr7xkqRIv3hNiLpTi469qNf2XqY+IZNlNfnqQMkGhfi01+T2f1GQtZ3GR96hhcde0Jv7rlNy8Nk6VrZby7PfVqytvwaFXeLhewwAbUf//tINN0izZ1cGBGPHSqtWVQYGF18sjR/vvnM984w0eXLlYte33FK5FsTLL1euJ/HII7+2e/RRaf58afRo6Y47pPLyyna9e0sbN7qvHgAAgBMRRAAAahg8eLCeeeYZffHFF1qzZo2+++47+fj4KC4uTtddd50mTqz+jukxY8bo3XffrXOR6t/+9rd666239J///Efl5eWaNm2a4uLi1K9fPz3wwAOaN2+ePvzwQ1ksFiUnJ+vqq69WdHS06/iIiAg9+eST+uCDD5SamqqSkhJFRERowIABrhEXOLVevbrqiy8W66KLJni7FJwBs8msG2Pf1LfH/qENeV9oTe48hfvE6Pz2D2lMu9uqtT03+j5F+MTqp+y5WnD0GfmY/dXRL0mDwi51tTkn+l4FWdppWfa/9cWRx2SzhGlo+NU6r/2fZDH5NPXdA4BW7Y03pIQEae5c6ZNPKheqfuAB6eGH3XueSZMqA4aHH5ZmzZJ8fCqDj7/9Tep6wvJQ/fpVjn64997KdjExleHEoUMEEQAAwHMIIgAAterYsaNuu+220zeUZLVaZTKZ6gwievTooaeeeqrWfX379lXfvn1Pe47IyEj9/ve/r1c9qOm///1awcGVI0fWrt2is85Kdi1waTJJF17oxrdkok6Dw6drcPjpR0A80GNZjW1+lkBd2GGWLuww67THp4RfrpTwy0/ZZkS7GzSi3Q2n7QsAUN2NN1Z+1GXJkuq3rdbKF/xnnebXd3p67dtrm4UyPr727RMnVn6czpgx0po1NbefOHICAADAnQgiAACNYhiGFi9erKSkJEVGRnq7HNThtddmaeDAZElSSsrl+vbbN71cEQAAAAAAaCsIIgAP8vf393YJaKFawrVTWlqqtLQ0bd68WRkZGbr//vu9XVKb5+/vL5vNVmPbyc5kSQhfX98zLQsAAEn8LQFai9qec56uPQAABBGAB5199tneLgEt1Nq1a71dwmnl5+frpZdeUmBgoC655BINHjzY2yW1eWPGjNGgQYOqbXPXtXRyvwAANBR/S4DWobbnnAAAnA5BBADgjERHR+uDDz7wdhmop50798liqfyzX1Ji16ZNO6rNLd2vXw8vVQYAAAAAAFo7gggAANqA++9/Vn5+Pq7bl102w/W1yWTS9u3feKMsAAAAAADQBhBEAADQBnz66cuuxaoBAAAAAACaktnbBQAAAAAAAAAAgNaLIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAY1ogAgGbs4MGD3i4BLUB9rpOtW/eeUd8nH3fUvuuM+gEAtF0n/+3YutVLhQBoFH52AQCNQRABAM1QZGSkbDabXnnlFW+XghbCZrMpMjKyxvbIyEgFBAToxhsfOOO+AwIClJCQIJt/gN4/eFdjygQAtFE2/8q/JQEB/rr22lJvlwPgDAUE+Nf6nBMAgNMxGYZheLsIAEBNGRkZysrK8nYZaCEiIyMVFxdX677GXktVfXNNAgDOFH9LgNbhVM85AQA4FYIIAAAAAAAAAADgMSxWDQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHWL1dANCaZWVlacGCBYqPj5fNZvN2OWgDSkpKlJ6ezjUHr+D6gzdx/cFbuPbgTVx/8Jb6XHtVbc4991xFRkY2cYUAgOaGIALwoAULFujaa6/1dhkAAAAAAHjFO++8o2uuucbbZQAAvIwgAvCg+Ph4SZVPvJKSkrxbDNqErVu36tprr+Wag1dw/cGbuP7gLVx78CauP3hLfa69qjZV/xcDANo2ggjAg6qGqCYlJWnQoEFergZtCdccvInrD97E9Qdv4dqDN3H9wVvqc+0xbRgAQGKxagAAAAAAAAAA4EEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEArUivXr2UlpamXr16ebsUtEFcf/Amrj94C9cevInrD97CtQcAaCirtwsAALhPQECABg0a5O0y0EZx/cGbuP7gLVx78CauP3gL1x4AoKEYEQEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEA0MKkpaXpvPPOU0hIiIKDg3XOOedo/fr1tbZdtmyZRo0apYCAAHXo0EEzZsxQYWFh0xaMFqmwsFAPP/ywzjvvPEVERMhkMmnu3Lm1tv3www81bNgwhYWFqV27dho7dqy++uqrGu2cTqf+/ve/q2vXrvL391e/fv303//+18P3BC3N6tWr9Yc//EG9e/dWYGCg4uLidPnll2vHjh3V2plMpjo/zj777GptufZQX5s3b9b06dOVkJCggIAARUZGasyYMfriiy9qtHU6nXrttdc0YMAA2Ww2tWvXThMmTNCGDRtqtOP6w5l48sknZTKZ1KdPn2rbx40bV+vvvvPOO69GH3a7XX/+85/VqVMn2Ww2DR06VN99911T3QW0EEuWLKnzb+qKFStqPSY3N1fR0dEymUz66KOPauy32+166aWXJEkjRozg2gMAyOrtAgAA9bd27VqNGjVKsbGxevjhh+V0OvXqq69q7NixWrVqlXr27Olqu379ek2cOFFJSUl67rnndODAAT377LPauXOnvvnmGy/eC7QEWVlZeuyxxxQXF6f+/ftryZIltbZ7+eWXNWPGDJ1//vl6+umnVVpaqrlz5+qCCy7Qxx9/rEsvvdTV9qGHHtLTTz+tW2+9VSkpKfrss8909dVXy2Qy6corr2yie4bm7m9/+5t++uknTZ8+Xf369dPhw4f1yiuvaNCgQVqxYoXrBbm33367xrFr1qzRiy++qHPOOafadq491Ne+fftUUFCgG264QZ06dVJxcbE+/vhjTZ06Vf/617902223udrefPPNevfdd3X99dfrD3/4g4qKirRu3TodPXq0Wp9cfzgTBw4c0F//+lcFBgbWuj8mJkZPPfVUtW2dOnWq0e7GG2/URx99pLvvvlvdu3fX3LlzNWXKFC1evFijRo3ySO1ouWbMmKGUlJRq2xITE2ttO2vWLBUXF9fZ14033qh58+ZJkv74xz/q+++/59oDgLbOAOAxaWlphiQjLS3N26WglZgyZYoRHh5uZGVlubZlZmYaQUFBxqWXXlqt7eTJk42OHTsaeXl5rm1z5swxJBkLFixosprRMpWWlhqHDh0yDMMwVq9ebUgy3nrrrRrtunfvbqSkpBhOp9O1LS8vzwgKCjKmTp3q2nbgwAHDx8fH+P3vf+/a5nQ6jdGjRxsxMTFGeXm55+4MWpSffvrJsNvt1bbt2LHD8PPzM6655ppTHnvLLbcYJpPJ2L9/v2sb1x4aq7y83Ojfv7/Rs2dP17YPPvjAkGT873//O+WxXH84U1dccYUxYcIEY+zYsUbv3r2r7attW21WrlxpSDKeeeYZ17aSkhKjW7duxvDhw91eM1quxYsXG5KMefPm1av9pk2bDKvVajz22GO1Hld17d11112u/4e59gAATM0EAC3I0qVLNWnSJLVr1861rWPHjho7dqy+/PJL17RL+fn5+u6773TttdcqJCTE1fb6669XUFCQPvzwwyavHS2Ln5+fOnTocNp2+fn5rmH5VUJCQhQUFCSbzeba9tlnn8nhcOiOO+5wbTOZTLr99tt14MABLV++3L13AC3WiBEj5OvrW21b9+7d1bt3b23durXO4+x2uz7++GONHTtWMTExru1ce2gsi8Wi2NhY5ebmurY999xzGjJkiC655BI5nU4VFRXVeizXH87Ejz/+qI8++kgvvPDCKduVl5efcsrNjz76SBaLpdpIHn9/f91yyy1avny59u/f766S0YoUFBSovLz8lG3uuusuXXLJJRo9enSt+6uuvRNHxnLtAQAIIgCgBbHb7dVe3K0SEBCgsrIy/fzzz5KkTZs2qby8XIMHD67WztfXVwMGDNC6deuapF60fuPGjdP8+fP18ssvKz09Xdu2bdPvf/975eXl6a677nK1W7dunQIDA5WUlFTt+CFDhrj2A3UxDENHjhxRZGRknW2+/vpr5ebm6pprrqm2nWsPZ6KoqEhZWVnavXu3nn/+eX3zzTeaOHGipMoAdtWqVUpJSdGDDz6o0NBQBQUFKSEhoUbQz/WHhqqoqNCdd96p3/zmN+rbt2+d7Xbs2KHAwEAFBwerQ4cOmjlzphwOR7U269atU48ePaq9KUX69fqra40xtF033XSTQkJC5O/vr/Hjx2vNmjU12sybN0/Lli3T3//+9zr7qbr2goKCqm3n2gOAto01IgCgBenZs6dWrFihiooKWSwWSVJZWZlWrlwpSTp48KAk6dChQ5IqR0ucrGPHjlq6dGkTVYzW7qWXXlJWVpZmzJihGTNmSJIiIyO1aNEiDR8+3NXu0KFDat++fbWRE9Kv12hmZmbTFY0W591339XBgwf12GOPnbKNn5+fpk2bVm071x7OxH333ad//etfkiSz2axLL71Ur7zyiiRp9+7dMgxD77//vqxWq/7+978rNDRUL774oq688kqFhIS4Fg3m+kNDvf7669q3b58WLlxYZ5tu3bpp/Pjx6tu3r4qKivTRRx/piSee0I4dO/TBBx+42h06dKjO54IS1x9+5evrq8suu0xTpkxRZGSktmzZomeffVajR4/WsmXLNHDgQElSSUmJ/vjHP+qee+5RfHy80tPTa+2Paw8AUBuCCABoQe644w7dfvvtuuWWW/SnP/1JTqdTTzzxhCt4KCkpqfbZz8+vRh/+/v6u/UBjBQQEqGfPnoqJidEFF1yggoICPf/887r00ku1dOlS1wKHJSUldV6PVfuB2lSNshk+fLhuuOGGWtvk5+frq6++0pQpUxQWFlZtH9cezsTdd9+tadOmKTMzUx9++KEqKipUVlYmSa6pcI4fP64VK1Zo6NChkqSpU6eqa9eueuKJJ1xBBNcfGuL48eOaNWuWZs6cqaioqDrbvfnmm9VuX3fddbrttts0Z84c3XPPPRo2bJgkrj/U34gRIzRixAjX7alTp2ratGnq16+fHnjgAc2fP1+S9PTTT8vhcOjBBx88ZX9cewCA2jA1EwC0IL/73e/04IMP6r333lPv3r3Vt29f7d69W3/6058kyTX8uWr6JrvdXqOP0tLSWqd3As7E9OnTlZGRoblz52ratGm66aabtGTJEpWVlemhhx5ytbPZbHVej1X7gZMdPnxY559/vkJDQ13zTdfm448/VmlpaY1pmSSuPZyZXr16adKkSbr++utdazBdeOGFMgzDdc107drVFUJIlX+DL7zwQq1atco1vzrXHxri//7v/xQREaE777yzwcfed999klRtJAXXHxojMTFRF110kRYvXqyKigqlp6frmWee0ZNPPlljyqWTce0BAGpDEAF4UK9evZSWlqZevXp5uxS0Ik8++aSOHDmipUuXauPGjVq9erWcTqckqUePHpJ+HfZcNVLiRIcOHVKnTp2armC0Wnv27NH8+fM1derUatsjIiI0atQo/fTTT65tHTt21OHDh2UYRrW2Vdco1yROlpeXp8mTJys3N1fz588/5TXy7rvvKjQ0VBdccEGNfVx7cIdp06Zp9erV2rFjh+uaad++fY120dHRcjgcrsWruf5QXzt37tTs2bM1Y8YMZWZmKj09Xenp6SotLZXD4VB6erqys7PrPD42NlaSqrXp2LFjnc8FJa4/nF5sbKzKyspUVFSkWbNmqXPnzho3bpzr+jx8+LAk6dixY0pPT3f9T1J17Z38/zDXHgC0bQQRgAcFBARo0KBBCggI8HYpaGXCw8M1atQo1yKGCxcuVExMjOtJfp8+fWS1WmssMFdWVqb169drwIABTV0yWqEjR45IqlxY82QOh8P1jmBJGjBggIqLi7V169Zq7arWN+GaxIlKS0t14YUXaseOHfryyy+VnJxcZ9tDhw5p8eLFuuyyy2qdBoJrD+5QNY1IXl6eOnXqpA4dOrjWZTpRZmam/P39FRwcLInrD/V38OBBOZ1OzZgxQ127dnV9rFy5Ujt27FDXrl1PuU7Onj17JKnalE4DBgzQjh07lJ+fX60t1x/qa8+ePfL391dQUJAyMjK0a9cuJSQkuK7Pq666SlLl9LFdu3Z1XWtV1155eXm1/4e59gCgbSOIAIAW7oMPPtDq1at19913y2yu/LUeGhqqSZMm6Z133lFBQYGr7dtvv63CwkJNnz7dW+WiFUlMTJTZbNYHH3xQ7d2+Bw4c0NKlS10LG0rSRRddJB8fH7366quubYZh6PXXX1fnzp2rzUuMtq2iokJXXHGFli9frnnz5lVb9Lw277//vpxOZ63TMklce2iYo0eP1tjmcDj0n//8RzabzRWKXXHFFdq/f7++++47V7usrCx99tlnmjBhguvvMdcf6qtPnz765JNPanz07t1bcXFx+uSTT3TLLbcoPz+/xpQ3hmHoiSeekCSde+65ru3Tpk1TRUWFZs+e7dpmt9v11ltvaejQoa5RFMCxY8dqbNuwYYM+//xznXPOOTKbzXriiSdqXJ+PP/64JOlPf/qTPvnkEwUGBkri2gMA1I7FqgGgBfnxxx/12GOP6ZxzzlG7du20YsUKvfXWWzrvvPN01113VWv75JNPasSIERo7dqxuu+02HThwQP/4xz90zjnnuBbRBE7llVdeUW5urjIzMyVJX3zxhQ4cOCBJuvPOOxUVFaWbb75Zb7zxhiZOnKhLL71UBQUFevXVV1VSUqIHHnjA1VdMTIzuvvtuPfPMM3I4HEpJSdGnn36qpUuX6t13361z7n+0Pffdd58+//xzXXjhhcrOztY777xTbf+1115b7fa7776rTp06ady4cbX2x7WHhvjtb3+r/Px8jRkzRp07d9bhw4f17rvvatu2bfrHP/7hmhf9gQce0IcffqjLLrtM9957r0JDQ/X666/L4XDor3/9q6s/rj/UV2RkpC6++OIa21944QVJcu1bsmSJrrrqKl111VVKTExUSUmJPvnkE/3000+67bbbNGjQINexQ4cO1fTp0/XAAw/o6NGjSkxM1L///W+lp6fXWPAabdsVV1whm82mESNGKDo6Wlu2bNHs2bMVEBCgp59+WpI0atSoGseFhYVJklJSUqpdv1x7AIBaGQCAFmPXrl3GOeecY0RGRhp+fn5Gr169jKeeesqw2+21tl+6dKkxYsQIw9/f34iKijJ+//vfG/n5+U1cNVqqLl26GJJq/di7d69hGIbhcDiMl19+2RgwYIARFBRkBAUFGePHjze+//77Gv1VVFQYf/3rX40uXboYvr6+Ru/evY133nmnie8VmruxY8fWed2d/NR127ZthiTj3nvvPWWfXHuor//+97/GpEmTjPbt2xtWq9UIDw83Jk2aZHz22Wc12u7evdu45JJLjJCQEMNmsxkTJkwwVq1aVaMd1x8aY+zYsUbv3r1dt/fs2WNMnz7diI+PN/z9/Y2AgADjrLPOMl5//XXD6XTWOL6kpMT44x//aHTo0MHw8/MzUlJSjPnz5zflXUAL8OKLLxpDhgwxIiIiDKvVanTs2NG49tprjZ07d57yuMWLFxuSjHnz5tXYx7UHADiZyTBOWjkNQKMUFhbqmWee0cqVK7Vq1Srl5OTorbfe0o033ujt0gAAAAAAaLAlS5Zo/Pjxte5bvny5hg0bVmN7bm6uevTooWPHjmnevHmaNm1ao/oDALRsTM0EuFlWVpYee+wxxcXFqX///lqyZIm3SwIAAAAAoNFmzJihlJSUatsSExNrbTtr1iwVFxe7rT8AQMtGEAG4WceOHXXo0CF16NBBa9asqfGkCgAAAACAlmj06NHVRjbU5eeff9Zrr72mWbNmadasWY3uDwDQ8pm9XQDQ2vj5+alDhw7eLgMAAAAAALcrKChQeXn5KdvcdddduuSSSzR69Gi39AcAaPkIIgAAAAAAAHBaN910k0JCQuTv76/x48drzZo1NdrMmzdPy5Yt09///ne39AcAaB2YmgkAAAAAAAB18vX11WWXXaYpU6YoMjJSW7Zs0bPPPqvRo0dr2bJlGjhwoCSppKREf/zjH3XPPfcoPj5e6enpjeoPANB6EEQAAAAAAACgTiNGjNCIESNct6dOnapp06apX79+euCBBzR//nxJ0tNPPy2Hw6EHH3zQLf0BAFoPpmYCAAAAAABAgyQmJuqiiy7S4sWLVVFRofT0dD3zzDN68sknFRQU1Oj+AACtC0EEAAAAAAAAGiw2NlZlZWUqKirSrFmz1LlzZ40bN07p6elKT0/X4cOHJUnHjh1Tenq6nE5nvfsDALQuTM0EAAAAAACABtuzZ4/8/f0VFBSkjIwM7dq1SwkJCTXa3XHHHZKknJwchYWF1as/AEDrQhABAAAAAACAOh07dkxRUVHVtm3YsEGff/65Jk+eLLPZrCeeeEJZWVnV2vz888+aOXOm/vSnP2n48OEKDAysd38AgNaFIALwgFdeeUW5ubnKzMyUJH3xxRc6cOCAJOnOO+9UaGioN8sDAAAAAKDerrjiCtlsNo0YMULR0dHasmWLZs+erYCAAD399NOSpFGjRtU4rmr0Q0pKii6++OIG9QcAaF1MhmEY3i4CaG3i4+O1b9++Wvft3btX8fHxTVsQAAAAAABn6KWXXtK7776rXbt2KT8/X1FRUZo4caIefvhhJSYm1nnckiVLNH78eM2bN0/Tpk1rdH8AgJaLIAIAAAAAAAAAAHgMk+4BAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAABtlslkkslk8nYZAAAAANCqEUQAAADAraZMmSKTyaTrr79ekuTv79/gF/uff/55mc1mV1BQ9eHj46N58+Z5omwAAAAAgIeYDMMwvF0EAAAAWo+goCAVFRXJbrfL19fXFULU92nnmDFjtHTpUtftgIAASVJxcbFrm7uewja0NgAAAABAwzEiAgAAAG5VVFQkSfL19XVt8/Pzq9ex8+bNc4UQV199tQzDUFFRkYqKimQYhp577jlZrVb3Fw0AAAAA8BiCCAAAADTaBx98oDlz5mjOnDmSKkcazJkzR9OmTZMkRUdHa86cOfr+++9P2c8111wjSYqIiNC7775bY/8999wjh8NRbVtAQECNKZxqm74pKCioWpsBAwbUWsPLL79co7/Q0NAadZhMJvn5+dXod8yYMdXaPvvsszX6M5lMuueee075WAAAAABAa8HUTAAAAGi0hqwBcaqnn1X97Ny5U4mJiafty2q1qqKiQlLlWhR2u93V/759+xQXFydJCg4OVmFhYa3tTqxpzZo1SklJcdXi5+en0tJSSar29T333KMXXnjBdbyPj48kuUKSE89ddZ/MZrMCAgJUWlqq8vJy9evXTxs2bDjtfQQAAACAlo4REQAAAGi0s846Sz169JDZXPn0MiEhQT169HDt79Gjh3r06OEaIXE69QkhXnvtNVcIUVBQoJKSEjmdTtlsNklSnz59JEkZGRmuEGLnzp2udoGBgTX6HDVqlCQpPDxcTqdTJSUl2rdvnyTJbrdrwYIFNY55//33VVZWprKyMnXu3LlaP1UjM3x9fVVRUaGCggI5HA4ZhkEIAQAAAKDNYEQEAAAA3MZsNsswDNcIA5PJJKvVWmM6pbo0ZPHodu3aKTs7W/Hx8dq7d69r+65du9S9e3dXP0OHDtWqVasUEBDgWr9CqgwounTpUu18VecvKChQUFCQq21kZKSOHz+u2NhYZWRkVBsRcWKtH3zwga688krX6IktW7aod+/ekioDiyuuuKJejwMAAAAAtCaMiAAAAECjfPrpp671IQzDcK0PceONN0r6dX2ITz/91K3nLSgokCRNmTKl2vaTR1Ps3r1bklyhQ5WqqZNqc2IIIUlDhgyRJGVlZVXbXjUlU5WqoKFqpEZycrJroe4rr7xSJpNJvr6+evbZZ+s8NwAAAAC0NlZvFwAAAICW7ZJLLql22zAM3Xbbba7bmZmZrtv1HYy7a9euek3P5G11rY1x4v0sLS3V7373O7311lsqKyuTw+HQ/fffr++++67WqZ4AAAAAoLVhRAQAAAAaZcKECerRo4es1sr3uNS1PsSECRNO21dVH0OHDj1t2+DgYEnS119/XW37rl27qt3u1q2bJLnWeqiSkZFRZ99Va0pUWbVqlaTKKZrOxOuvv+5aIPvmm2+WJH377bdn1BcAAAAAtDQEEQAAAGiURYsWafv27XI6nZIqp0Lavn27pMo1I7Zv367t27dr0aJFp+3rnXfekSRlZ2e7pnY60csvv+yaDumJJ56QJKWnp6usrMzVpn///pJ+DSqqFowuLi6uFlIkJyfX6L9qGqUTp3E6fPiwjh8/LkmaM2fOae/DiZYvX66NGzdW2/biiy82qA8AAAAAaOlYrBoAAABuceJC0xs3blT//v3VuXNnHThwoEH9jBw5UsuWLXPdDggIkFQZJFSpegprtVpd6zHYbDaVlpa69u3bt8+1DkRQUJBroWp/f3/X6IST+1uzZo1SUlJc96dq0WlJ1b6uWqza19dXdru9xuNgsVhUXl6uyZMna/78+a7zms1m1/1o3769Dh8+3KDHBgAAAABaIkZEAAAAoNGys7MlSWFhYZLkmn7ooYceanBfP/30k5566ilXsFFcXOx68d5qteqLL75wtS0vL5fNZpMklZSUuAKFDz/8sNpi1IWFha5AoyqsqBo5caLBgwfrpZdeklQZTlQFDyEhIa6vG6Jq8eqq81bdj+joaEIIAAAAAG0GIyIAAAAAAAAAAIDHMCICAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAAAAwGMIIgAAAAAAAAAAgMcQRAAAAAAAAAAAAI8hiAAAAAAAAAAAAB5DEAEAAAAAAAAAADyGIAIAAAAAAAAAAHgMQQQAAAAAAAAAAPAYgggAAAAAAAAAAOAxBBEAAAAAAAAAAMBjCCIAAAAAAAAAAIDHEEQAAAAAAAAAAACPIYgAAAAAAAAAAAAeQxABAAAAAAAAAAA8hiACAAAAAAAAAAB4DEEEAAAAAAAAAADwGIIIAAAAAAAAAADgMQQRAAAAAAAAAADAYwgiAAAAAAAAAACAxxBEAAAAAAAAAAAAjyGIAAAAAAAAAAAAHkMQAQAAAAAAAAAAPIYgAgAAAAAAAAAAeAxBBAAAAAAAAAAA8BiCCAAAAAAAAAAA4DEEEQAAAAAAAPj/7dmxAAAAAMAgf+tR7CuNAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAjIgAAAAAAgI2IAAAAAAAANiICAAAAAADYiAgAAAAAAGAT7cin33Vai7EAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -611,15 +620,223 @@ "id": "8357f23c", "metadata": {}, "source": [ - "## Genotype Phenotype Correlation Analysis analysis" + "## Genotype phenotype correlation analysis" + ] + }, + { + "cell_type": "markdown", + "id": "8684a75c", + "metadata": {}, + "source": [ + "### Genotype predicate" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "9e1f53e4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'Which genotype group does the patient fit in: HOM_REF, HET, BIALLELIC_ALT'" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from gpsea.model import VariantEffect\n", + "from gpsea.analysis.predicate.genotype import VariantPredicates, ModeOfInheritancePredicate\n", + "\n", + "is_missense = VariantPredicates.variant_effect(VariantEffect.MISSENSE_VARIANT, SUOX_transcript_id)\n", + "moi_predicate = ModeOfInheritancePredicate.autosomal_recessive(\n", + " variant_predicate=is_missense,\n", + ")\n", + "moi_predicate.display_question()" + ] + }, + { + "cell_type": "markdown", + "id": "83fb2a82", + "metadata": {}, + "source": [ + "These are the categorizations that can be produced:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "3564694a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(Categorization(category=HOM_REF),\n", + " Categorization(category=HET),\n", + " Categorization(category=BIALLELIC_ALT))" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cats = moi_predicate.get_categorizations()\n", + "cats" + ] + }, + { + "cell_type": "markdown", + "id": "fc32bb65", + "metadata": {}, + "source": [ + "However, we are only interested in comparing `HET` vs `BIALLELIC_ALT`, so we will filter the other category away:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "50f42273", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'Which genotype group does the patient fit in: HET, BIALLELIC_ALT'" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from gpsea.analysis.predicate.genotype import filtering_predicate\n", + "\n", + "cats_of_interest = (cats[1], cats[2])\n", + "gt_predicate = filtering_predicate(\n", + " predicate=moi_predicate,\n", + " targets=cats_of_interest,\n", + ")\n", + "gt_predicate.display_question()" + ] + }, + { + "cell_type": "markdown", + "id": "6ec1d80e", + "metadata": {}, + "source": [ + "### Phenotype predicates" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "21d4e4cd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "64" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from gpsea.analysis.predicate.phenotype import prepare_predicates_for_terms_of_interest\n", + "\n", + "pheno_predicates = prepare_predicates_for_terms_of_interest(\n", + " cohort=cohort,\n", + " hpo=hpo,\n", + " missing_implies_excluded=False,\n", + " min_n_of_patients_with_term=2,\n", + ")\n", + "len(pheno_predicates)" + ] + }, + { + "cell_type": "markdown", + "id": "0e9a9dd3", + "metadata": {}, + "source": [ + "### MTC phenotype filter" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "ade36715", + "metadata": {}, + "outputs": [], + "source": [ + "from gpsea.analysis.mtc_filter import HpoMtcFilter\n", + "mtc_filter = HpoMtcFilter.default_filter(\n", + " hpo=hpo,\n", + " term_frequency_threshold=0.2,\n", + ")\n", + "mtc_correction = 'fdr_bh'\n", + "mtc_alpha = 0.05" + ] + }, + { + "cell_type": "markdown", + "id": "efe92d03", + "metadata": {}, + "source": [ + "### Count statistic" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "b4c8a4d1", + "metadata": {}, + "outputs": [], + "source": [ + "from gpsea.analysis.pcats.stats import FisherExactTest\n", + "\n", + "count_statistic = FisherExactTest()" + ] + }, + { + "cell_type": "markdown", + "id": "12af4002", + "metadata": {}, + "source": [ + "### Finalize the analysis" ] }, { "cell_type": "code", "execution_count": 14, - "id": "531e077d", + "id": "7a9ad29e", "metadata": {}, "outputs": [], + "source": [ + "from gpsea.analysis.pcats import HpoTermAnalysis\n", + "\n", + "analysis = HpoTermAnalysis(\n", + " count_statistic=count_statistic,\n", + " mtc_filter=mtc_filter,\n", + " mtc_correction=mtc_correction,\n", + " mtc_alpha=mtc_alpha,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "531e077d", + "metadata": {}, "source": [ "from gpsea.analysis import configure_cohort_analysis, CohortAnalysisConfiguration\n", "\n", @@ -649,247 +866,42 @@ { "cell_type": "code", "execution_count": 15, - "id": "f4fb138e", + "id": "4847121e", + "metadata": {}, + "outputs": [], + "source": [ + "result = analysis.compare_genotype_vs_phenotypes(\n", + " cohort=cohort,\n", + " gt_predicate=gt_predicate,\n", + " pheno_predicates=pheno_predicates,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "217afa4e", "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
MISSENSE_VARIANT on NM_001032386.2BothOneNeither
CountPercentCountPercentCountPercentp valueCorrected p value
Cognitive regression [HP:0034332]6/1250%0/50%0/80%0.0233431.0
Hypotonia [HP:0001252]10/1191%2/540%3/743%0.0395301.0
Seizure [HP:0001250]12/1867%5/683%11/11100%0.0826401.0
Abnormality of extrapyramidal motor function [HP:0002071]8/1267%1/520%2/825%0.1393771.0
Neurodevelopmental delay [HP:0012758]4/1233%0/50%4/850%0.1518741.0
...........................
Decreased head circumference [HP:0040195]4/4100%2/2100%4/4100%1.0000001.0
Abnormality of the head [HP:0000234]4/4100%2/2100%4/4100%1.0000001.0
Abnormal circulating homocysteine concentration [HP:0010919]7/7100%2/2100%1/1100%1.0000001.0
Abnormal urine metabolite level [HP:0033354]9/9100%3/3100%2/2100%1.0000001.0
Abnormal circulating amino acid concentration [HP:0003112]8/8100%2/2100%5/5100%1.0000001.0
\n", - "

64 rows × 8 columns

\n", - "
" - ], "text/plain": [ - "MISSENSE_VARIANT on NM_001032386.2 Both One \\\n", - " Count Percent Count \n", - "Cognitive regression [HP:0034332] 6/12 50% 0/5 \n", - "Hypotonia [HP:0001252] 10/11 91% 2/5 \n", - "Seizure [HP:0001250] 12/18 67% 5/6 \n", - "Abnormality of extrapyramidal motor function [H... 8/12 67% 1/5 \n", - "Neurodevelopmental delay [HP:0012758] 4/12 33% 0/5 \n", - "... ... ... ... \n", - "Decreased head circumference [HP:0040195] 4/4 100% 2/2 \n", - "Abnormality of the head [HP:0000234] 4/4 100% 2/2 \n", - "Abnormal circulating homocysteine concentration... 7/7 100% 2/2 \n", - "Abnormal urine metabolite level [HP:0033354] 9/9 100% 3/3 \n", - "Abnormal circulating amino acid concentration [... 8/8 100% 2/2 \n", - "\n", - "MISSENSE_VARIANT on NM_001032386.2 Neither \\\n", - " Percent Count Percent \n", - "Cognitive regression [HP:0034332] 0% 0/8 0% \n", - "Hypotonia [HP:0001252] 40% 3/7 43% \n", - "Seizure [HP:0001250] 83% 11/11 100% \n", - "Abnormality of extrapyramidal motor function [H... 20% 2/8 25% \n", - "Neurodevelopmental delay [HP:0012758] 0% 4/8 50% \n", - "... ... ... ... \n", - "Decreased head circumference [HP:0040195] 100% 4/4 100% \n", - "Abnormality of the head [HP:0000234] 100% 4/4 100% \n", - "Abnormal circulating homocysteine concentration... 100% 1/1 100% \n", - "Abnormal urine metabolite level [HP:0033354] 100% 2/2 100% \n", - "Abnormal circulating amino acid concentration [... 100% 5/5 100% \n", - "\n", - "MISSENSE_VARIANT on NM_001032386.2 \n", - " p value Corrected p value \n", - "Cognitive regression [HP:0034332] 0.023343 1.0 \n", - "Hypotonia [HP:0001252] 0.039530 1.0 \n", - "Seizure [HP:0001250] 0.082640 1.0 \n", - "Abnormality of extrapyramidal motor function [H... 0.139377 1.0 \n", - "Neurodevelopmental delay [HP:0012758] 0.151874 1.0 \n", - "... ... ... \n", - "Decreased head circumference [HP:0040195] 1.000000 1.0 \n", - "Abnormality of the head [HP:0000234] 1.000000 1.0 \n", - "Abnormal circulating homocysteine concentration... 1.000000 1.0 \n", - "Abnormal urine metabolite level [HP:0033354] 1.000000 1.0 \n", - "Abnormal circulating amino acid concentration [... 1.000000 1.0 \n", - "\n", - "[64 rows x 8 columns]" + "9" ] }, - "execution_count": 15, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "from gpsea.model import VariantEffect\n", - "from gpsea.analysis.predicate import PatientCategories\n", - "from gpsea.analysis.predicate.genotype import VariantPredicates\n", - "\n", - "is_missense = VariantPredicates.variant_effect(VariantEffect.MISSENSE_VARIANT, SUOX_transcript_id)\n", - "missense = analysis.compare_hpo_vs_recessive_genotype(is_missense)\n", - "missense.summarize(hpo, PatientCategories.YES)" - ] - }, - { - "cell_type": "markdown", - "id": "31eea804", - "metadata": {}, - "source": [ - "Test for presence of genotype-phenotype correlations between subjects with >=1 allele of a variant vs. the others." + "result.total_tests" ] }, { "cell_type": "code", - "execution_count": 16, - "id": "743954bd", + "execution_count": 17, + "id": "0327c94f", "metadata": {}, "outputs": [ { @@ -912,10 +924,9 @@ "\n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -924,195 +935,168 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "
variant has ID of 12_56004589_56004589_C_GBothOneNeitherWhich genotype group does the patient fit inHETBIALLELIC_ALT
PercentCountPercentCountPercentp valueCorrected p valueCorrected p valuesp values
Hypotonia [HP:0001252]0/10%1/425%14/1878%0.0328691.0
Ectopia lentis [HP:0001083]0/10%2/2100%5/1533%0.1372551.02/540%10/1191%0.3936650.063187
Neurodevelopmental delay [HP:0012758]0/10%Cognitive regression [HP:0034332]0/50%8/1942%0.1757581.06/1250%0.3936650.102295
Abnormality of extrapyramidal motor function [HP:0002071]0/10%1/520%10/1953%0.3405801.08/1267%0.3936650.131222
Cognitive regression [HP:0034332]0/10%Ectopia lentis [HP:0001083]3/475%3/1127%0.4689080.235165
Neurodevelopmental delay [HP:0012758]0/50%6/1932%0.4528511.04/1233%0.4689080.260504
...........................Seizure [HP:0001250]5/683%12/1867%0.9430000.628667
Abnormality of the head [HP:0000234]1/1100%1/1100%8/8100%Hypertonia [HP:0001276]2/540%5/1145%1.0000001.0
Seizure [HP:0001250]2/2100%4/580%22/2879%1.0000001.0
Abnormal circulating homocysteine concentration [HP:0010919]0/00%2/2100%8/8100%Microcephaly [HP:0000252]2/450%4/1040%1.0000001.0000001.0
Abnormal urine metabolite level [HP:0033354]0/0Xanthinuria [HP:0010934]0/20%2/2100%12/12100%2/729%1.0000001.0000001.0
Abnormal circulating amino acid concentration [HP:0003112]1/1100%2/2Abnormal nervous system physiology [HP:0012638]5/5100%12/1217/17100%1.0000001.0NaNNaN
\n", - "

64 rows × 8 columns

\n", "" ], "text/plain": [ - "variant has ID of 12_56004589_56004589_C_G Both One \\\n", - " Count Percent Count \n", - "Hypotonia [HP:0001252] 0/1 0% 1/4 \n", - "Ectopia lentis [HP:0001083] 0/1 0% 2/2 \n", - "Neurodevelopmental delay [HP:0012758] 0/1 0% 0/5 \n", - "Abnormality of extrapyramidal motor function [H... 0/1 0% 1/5 \n", - "Cognitive regression [HP:0034332] 0/1 0% 0/5 \n", - "... ... ... ... \n", - "Abnormality of the head [HP:0000234] 1/1 100% 1/1 \n", - "Seizure [HP:0001250] 2/2 100% 4/5 \n", - "Abnormal circulating homocysteine concentration... 0/0 0% 2/2 \n", - "Abnormal urine metabolite level [HP:0033354] 0/0 0% 2/2 \n", - "Abnormal circulating amino acid concentration [... 1/1 100% 2/2 \n", + "Which genotype group does the patient fit in HET \\\n", + " Count Percent \n", + "Hypotonia [HP:0001252] 2/5 40% \n", + "Cognitive regression [HP:0034332] 0/5 0% \n", + "Abnormality of extrapyramidal motor function [H... 1/5 20% \n", + "Ectopia lentis [HP:0001083] 3/4 75% \n", + "Neurodevelopmental delay [HP:0012758] 0/5 0% \n", + "Seizure [HP:0001250] 5/6 83% \n", + "Hypertonia [HP:0001276] 2/5 40% \n", + "Microcephaly [HP:0000252] 2/4 50% \n", + "Xanthinuria [HP:0010934] 0/2 0% \n", + "Abnormal nervous system physiology [HP:0012638] 5/5 100% \n", "\n", - "variant has ID of 12_56004589_56004589_C_G Neither \\\n", - " Percent Count Percent \n", - "Hypotonia [HP:0001252] 25% 14/18 78% \n", - "Ectopia lentis [HP:0001083] 100% 5/15 33% \n", - "Neurodevelopmental delay [HP:0012758] 0% 8/19 42% \n", - "Abnormality of extrapyramidal motor function [H... 20% 10/19 53% \n", - "Cognitive regression [HP:0034332] 0% 6/19 32% \n", - "... ... ... ... \n", - "Abnormality of the head [HP:0000234] 100% 8/8 100% \n", - "Seizure [HP:0001250] 80% 22/28 79% \n", - "Abnormal circulating homocysteine concentration... 100% 8/8 100% \n", - "Abnormal urine metabolite level [HP:0033354] 100% 12/12 100% \n", - "Abnormal circulating amino acid concentration [... 100% 12/12 100% \n", + "Which genotype group does the patient fit in BIALLELIC_ALT \\\n", + " Count Percent \n", + "Hypotonia [HP:0001252] 10/11 91% \n", + "Cognitive regression [HP:0034332] 6/12 50% \n", + "Abnormality of extrapyramidal motor function [H... 8/12 67% \n", + "Ectopia lentis [HP:0001083] 3/11 27% \n", + "Neurodevelopmental delay [HP:0012758] 4/12 33% \n", + "Seizure [HP:0001250] 12/18 67% \n", + "Hypertonia [HP:0001276] 5/11 45% \n", + "Microcephaly [HP:0000252] 4/10 40% \n", + "Xanthinuria [HP:0010934] 2/7 29% \n", + "Abnormal nervous system physiology [HP:0012638] 17/17 100% \n", "\n", - "variant has ID of 12_56004589_56004589_C_G \n", - " p value Corrected p value \n", - "Hypotonia [HP:0001252] 0.032869 1.0 \n", - "Ectopia lentis [HP:0001083] 0.137255 1.0 \n", - "Neurodevelopmental delay [HP:0012758] 0.175758 1.0 \n", - "Abnormality of extrapyramidal motor function [H... 0.340580 1.0 \n", - "Cognitive regression [HP:0034332] 0.452851 1.0 \n", - "... ... ... \n", - "Abnormality of the head [HP:0000234] 1.000000 1.0 \n", - "Seizure [HP:0001250] 1.000000 1.0 \n", - "Abnormal circulating homocysteine concentration... 1.000000 1.0 \n", - "Abnormal urine metabolite level [HP:0033354] 1.000000 1.0 \n", - "Abnormal circulating amino acid concentration [... 1.000000 1.0 \n", + "Which genotype group does the patient fit in \\\n", + " Corrected p values \n", + "Hypotonia [HP:0001252] 0.393665 \n", + "Cognitive regression [HP:0034332] 0.393665 \n", + "Abnormality of extrapyramidal motor function [H... 0.393665 \n", + "Ectopia lentis [HP:0001083] 0.468908 \n", + "Neurodevelopmental delay [HP:0012758] 0.468908 \n", + "Seizure [HP:0001250] 0.943000 \n", + "Hypertonia [HP:0001276] 1.000000 \n", + "Microcephaly [HP:0000252] 1.000000 \n", + "Xanthinuria [HP:0010934] 1.000000 \n", + "Abnormal nervous system physiology [HP:0012638] NaN \n", "\n", - "[64 rows x 8 columns]" + "Which genotype group does the patient fit in \n", + " p values \n", + "Hypotonia [HP:0001252] 0.063187 \n", + "Cognitive regression [HP:0034332] 0.102295 \n", + "Abnormality of extrapyramidal motor function [H... 0.131222 \n", + "Ectopia lentis [HP:0001083] 0.235165 \n", + "Neurodevelopmental delay [HP:0012758] 0.260504 \n", + "Seizure [HP:0001250] 0.628667 \n", + "Hypertonia [HP:0001276] 1.000000 \n", + "Microcephaly [HP:0000252] 1.000000 \n", + "Xanthinuria [HP:0010934] 1.000000 \n", + "Abnormal nervous system physiology [HP:0012638] NaN " ] }, - "execution_count": 16, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "is_variant = VariantPredicates.variant_key('12_56004589_56004589_C_G')\n", + "from gpsea.analysis.predicate import PatientCategories\n", "\n", - "by_variant = analysis.compare_hpo_vs_recessive_genotype(is_variant)\n", - "by_variant.summarize(hpo, PatientCategories.YES)" + "result.summarize(hpo, PatientCategories.YES).head(10)" ] }, { @@ -1140,7 +1124,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.10" + "version": "3.12.3" } }, "nbformat": 4,