-
Notifications
You must be signed in to change notification settings - Fork 560
/
Copy pathrag_module.py
190 lines (152 loc) · 6.91 KB
/
rag_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import logging
from typing import Optional
import yaml
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores.utils import filter_complex_metadata
from langchain_core.globals import set_debug, set_verbose
from langchain_core.prompts import ChatPromptTemplate
from langchain_mongodb.vectorstores import MongoDBAtlasVectorSearch
from langchain_ollama import ChatOllama, OllamaEmbeddings
from pymongo import MongoClient
# Enable verbose debugging
set_debug(True)
set_verbose(True)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def load_config(config_file: str = "config.yaml"):
"""Load configuration from a YAML file."""
with open(config_file) as file:
return yaml.safe_load(file)
class ChatPDF:
"""A class designed for PDF ingestion and question answering using RAG with detailed debugging logs."""
def __init__(self, config_file: str = "config.yaml"):
"""
Initialize the ChatPDF instance using configuration from a YAML file.
"""
config = load_config(config_file)
# Read values from config
llm_model = config["llm_model"]
embedding_model = config["embedding_model"]
mongo_connection_str = config["mongo_connection_str"]
database_name = config["database_name"]
collection_name = config["collection_name"]
self.model = ChatOllama(model=llm_model)
self.embeddings = OllamaEmbeddings(model=embedding_model)
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024, chunk_overlap=100
)
self.prompt = ChatPromptTemplate.from_template(
"""
You are a helpful assistant answering questions based on the uploaded document and the conversation.
Conversation History:
{conversation_history}
Context from Documents:
{context}
Question:
{question}
Provide a concise, accurate answer (preferably within three sentences), ensuring it directly addresses the question.
"""
)
# Setup MongoDB connection
self.client = MongoClient(
mongo_connection_str, appname="devrel.showcase.local_rag_pdf_app"
)
self.collection = self.client[database_name][collection_name]
# Verbose connection check
doc_count = self.collection.count_documents({})
logger.info(f"MongoDB Connection Established - Document Count: {doc_count}")
# Initialize the vector store with MongoDB Atlas
self.vector_store = MongoDBAtlasVectorSearch(
collection=self.collection,
embedding=self.embeddings,
index_name="vector_index",
relevance_score_fn="cosine",
)
# Create vector search index on the collection
# Adjust dimensions based on your embedding model
self.vector_store.create_vector_search_index(dimensions=768)
logger.info("Vector Store Initialized")
self.retriever = None
def upload_and_index_pdf(self, pdf_file_path: str):
"""
Upload and index a PDF file, chunk its contents, and store the embeddings in MongoDB Atlas.
"""
logger.info(f"Starting ingestion for file: {pdf_file_path}")
docs = PyPDFLoader(file_path=pdf_file_path).load()
logger.info(f"Loaded {len(docs)} pages from {pdf_file_path}")
chunks = self.text_splitter.split_documents(docs)
logger.info(f"Split into {len(chunks)} document chunks")
# Optional: Log some sample chunks for verification
for i, chunk in enumerate(chunks[:3]):
logger.debug(f"Chunk {i+1} Content: {chunk.page_content[:200]}...")
chunks = filter_complex_metadata(chunks)
# Add documents to vector store and check embeddings
self.vector_store.add_documents(documents=chunks)
logger.info("Document embeddings stored successfully in MongoDB Atlas.")
def query_with_context(
self,
query: str,
conversation_history: Optional[list] = None,
k: int = 5,
score_threshold: float = 0.2,
):
"""
Answer a query using the RAG pipeline with verbose debugging and conversation history.
Parameters:
- query (str): The user's question.
- conversation_history (list): List of previous messages in the conversation.
- k (int): Number of retrieved documents.
- score_threshold (float): Similarity score threshold for retrieval.
Returns:
- str: The assistant's response.
"""
if not self.vector_store:
raise ValueError("No vector store found. Please ingest a document first.")
if not self.retriever:
self.retriever = self.vector_store.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"k": k, "score_threshold": score_threshold},
)
# Generate and log query embeddings
query_embedding = self.embeddings.embed_query(query)
logger.info(f"User Query: {query}")
logger.debug(
f"Query Embedding (sample values): {query_embedding[:10]}... [Total Length: {len(query_embedding)}]"
)
logger.info(f"Retrieving context for query: {query}")
retrieved_docs = self.retriever.invoke(query)
if not retrieved_docs:
logger.warning("No relevant documents retrieved.")
return "No relevant context found in the document to answer your question."
logger.info(f"Retrieved {len(retrieved_docs)} document(s)")
for i, doc in enumerate(retrieved_docs):
logger.debug(f"Document {i+1}: {doc.page_content[:200]}...")
# Format the input for the LLM, including conversation history
formatted_input = {
"conversation_history": (
"\n".join(conversation_history) if conversation_history else ""
),
"context": "\n\n".join(doc.page_content for doc in retrieved_docs),
"question": query,
}
# Build the RAG chain
chain = (
RunnablePassthrough() # Passes the input as-is
| self.prompt # Formats the input for the LLM
| self.model # Queries the LLM
| StrOutputParser() # Parses the LLM's output
)
logger.info("Generating response using the LLM.")
response = chain.invoke(formatted_input)
logger.debug(f"LLM Response: {response}")
return response
def reset_retriever(self):
"""
Reset the retriever and optionally clear the vector store or other states.
"""
logger.info("Resetting retriever and clearing state.")
self.retriever = None