You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Prove Properties \ref{item:inverseofid} and \ref{item:inverseofinverse} of Theorem \ref{th:invprop}.
302
-
\end{problem}
300
+
%\begin{problem}\label{prob:oroveinverseofid}
301
+
%Prove Properties \ref{item:inverseofid} and \ref{item:inverseofinverse} of Theorem \ref{th:invprop}.
302
+
%\end{problem}
303
303
304
-
\begin{problem}\label{prob:proveinverseka}
305
-
Prove Properties \ref{item:inversekA} and \ref{item:inversetranspose} of Theorem \ref{th:invprop}.
306
-
\end{problem}
304
+
%\begin{problem}\label{prob:proveinverseka}
305
+
%Prove Properties \ref{item:inversekA} and \ref{item:inversetranspose} of Theorem \ref{th:invprop}.
306
+
%\end{problem}
307
307
308
308
\begin{problem}\label{prob:illustratematinverse} Use the following invertible matrices to illustrate Properties \ref{item:inverseofinverse}, \ref{item:inverseofproduct}, \ref{item:inversekA} and \ref{item:inversetranspose} of Theorem \ref{th:invprop}.
Use the row-reduction method to prove Formula \ref{form:detinverse} for a nonsingular matrix. Show that if $ad-bc=0$ then $A$ does not have an inverse.
333
-
\begin{hint}After going through the row reduction, try it again, considering the possibility that $a=0$.
334
-
\end{hint}
335
-
\end{problem}
333
+
%\begin{problem}\label{prob:inverseformula}
334
+
%Use the row-reduction method to prove Formula \ref{form:detinverse} for a nonsingular matrix. Show that if $ad-bc=0$ then $A$ does not have an inverse.
335
+
%\begin{hint}After going through the row reduction, try it again, considering the possibility that $a=0$.
Give an example of a matrix $A$ such that $A^{2}=I$ and yet $A\neq I$
379
-
and $A\neq -I.$
380
-
\end{problem}
378
+
%\begin{problem}\label{prob:Asquaredid}
379
+
%Give an example of a matrix $A$ such that $A^{2}=I$ and yet $A\neq I$
380
+
%and $A\neq -I.$
381
+
%\end{problem}
381
382
382
-
\begin{problem}\label{prob:invofsymm}
383
-
Suppose $A$ is a symmetric, invertible matrix. Does it follow that $A^{-1}$ is symmetric? What if we change ``symmetric" to ``skew symmetric"? (See Definition \ref{def:symmetricandskewsymmetric}.)
384
-
\end{problem}
383
+
%\begin{problem}\label{prob:invofsymm}
384
+
%Suppose $A$ is a symmetric, invertible matrix. Does it follow that $A^{-1}$ is symmetric? What if we change ``symmetric" to ``skew symmetric"? (See Definition \ref{def:symmetricandskewsymmetric}.)
385
+
%\end{problem}
385
386
386
387
\begin{problem}\label{prob:sumofinvertible} Suppose $A$ and $B$ are invertible $n\times n$ matrices. Does it follow that $(A+B)$ is invertible?
0 commit comments