Skip to content

Commit 1e43e24

Browse files
committed
Update main.tex
1 parent d238671 commit 1e43e24

File tree

1 file changed

+31
-30
lines changed

1 file changed

+31
-30
lines changed

MAT-0050/main.tex

Lines changed: 31 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -297,20 +297,22 @@ \section*{Practice Problems}
297297

298298

299299

300-
\begin{problem}\label{prob:oroveinverseofid}
301-
Prove Properties \ref{item:inverseofid} and \ref{item:inverseofinverse} of Theorem \ref{th:invprop}.
302-
\end{problem}
300+
% \begin{problem}\label{prob:oroveinverseofid}
301+
% Prove Properties \ref{item:inverseofid} and \ref{item:inverseofinverse} of Theorem \ref{th:invprop}.
302+
% \end{problem}
303303

304-
\begin{problem}\label{prob:proveinverseka}
305-
Prove Properties \ref{item:inversekA} and \ref{item:inversetranspose} of Theorem \ref{th:invprop}.
306-
\end{problem}
304+
% \begin{problem}\label{prob:proveinverseka}
305+
% Prove Properties \ref{item:inversekA} and \ref{item:inversetranspose} of Theorem \ref{th:invprop}.
306+
% \end{problem}
307307

308308
\begin{problem}\label{prob:illustratematinverse} Use the following invertible matrices to illustrate Properties \ref{item:inverseofinverse}, \ref{item:inverseofproduct}, \ref{item:inversekA} and \ref{item:inversetranspose} of Theorem \ref{th:invprop}.
309309
$$A=\begin{bmatrix}2&0\\4&-3\end{bmatrix}\quad\text{and}\quad B=\begin{bmatrix}2&-1\\1&5\end{bmatrix}$$
310310
\end{problem}
311311

312312
\begin{problem}\label{prob:solvesysbyinverses}
313313
In Example \ref{ex:inverse3} we found the inverse of $$A=\begin{bmatrix}1&-1&2\\1&1&1\\1&3&-1\end{bmatrix}$$
314+
to be
315+
$$A^{-1}=\begin{bmatrix}2&-5/2&3/2\\-1&3/2&-1/2\\-1&2&-1\end{bmatrix}$$
314316

315317
Use $A^{-1}$ to solve the equation
316318
$$A\vec{x}=\begin{bmatrix}3\\-2\\4\end{bmatrix}$$
@@ -328,11 +330,11 @@ \section*{Practice Problems}
328330
\end{problem}
329331

330332

331-
\begin{problem}\label{prob:inverseformula}
332-
Use the row-reduction method to prove Formula \ref{form:detinverse} for a nonsingular matrix. Show that if $ad-bc=0$ then $A$ does not have an inverse.
333-
\begin{hint}After going through the row reduction, try it again, considering the possibility that $a=0$.
334-
\end{hint}
335-
\end{problem}
333+
% \begin{problem}\label{prob:inverseformula}
334+
% Use the row-reduction method to prove Formula \ref{form:detinverse} for a nonsingular matrix. Show that if $ad-bc=0$ then $A$ does not have an inverse.
335+
% \begin{hint}After going through the row reduction, try it again, considering the possibility that $a=0$.
336+
% \end{hint}
337+
% \end{problem}
336338

337339

338340
\begin{problem}\label{prob:useformforinv}
@@ -344,24 +346,23 @@ \section*{Practice Problems}
344346

345347
\end{problem}
346348

347-
\emph{Problems \ref{prob:notinv1}-\ref{prob:notinv3}}
348-
349-
For each matrix below refer to Formula \ref{form:detinverse} to find the value of $x$ for which the matrix is not invertible.
350-
351349
\begin{problem}\label{prob:notinv1}
350+
Find the value of $x$ for which the matrix is not invertible.
352351
$$\begin{bmatrix}1&2\\4&x\end{bmatrix}$$
353352
Answer: $x=\answer{8}$
354353
\end{problem}
355354

356-
\begin{problem}\label{prob:notinv2}
357-
$$\begin{bmatrix}3&2\\3&x\end{bmatrix}$$
358-
Answer: $x=\answer{2}$
359-
\end{problem}
355+
% \begin{problem}\label{prob:notinv2}
356+
% Find the value of $x$ for which the matrix is not invertible.
357+
% $$\begin{bmatrix}3&2\\3&x\end{bmatrix}$$
358+
% Answer: $x=\answer{2}$
359+
% \end{problem}
360360

361-
\begin{problem}\label{prob:notinv3}
362-
$$\begin{bmatrix}5&4\\-5&x\end{bmatrix}$$
363-
Answer: $x=\answer{-4}$
364-
\end{problem}
361+
% \begin{problem}\label{prob:notinv3}
362+
% Find the value of $x$ for which the matrix is not invertible.
363+
% $$\begin{bmatrix}5&4\\-5&x\end{bmatrix}$$
364+
% Answer: $x=\answer{-4}$
365+
% \end{problem}
365366

366367
\begin{problem}\label{prob:cancelprop}
367368
Suppose $AB=AC$ and $A$ is an invertible $n\times n$ matrix. Does it
@@ -374,14 +375,14 @@ \section*{Practice Problems}
374375
\end{problem}
375376

376377

377-
\begin{problem}\label{prob:Asquaredid}
378-
Give an example of a matrix $A$ such that $A^{2}=I$ and yet $A\neq I$
379-
and $A\neq -I.$
380-
\end{problem}
378+
% \begin{problem}\label{prob:Asquaredid}
379+
% Give an example of a matrix $A$ such that $A^{2}=I$ and yet $A\neq I$
380+
% and $A\neq -I.$
381+
% \end{problem}
381382

382-
\begin{problem}\label{prob:invofsymm}
383-
Suppose $A$ is a symmetric, invertible matrix. Does it follow that $A^{-1}$ is symmetric? What if we change ``symmetric" to ``skew symmetric"? (See Definition \ref{def:symmetricandskewsymmetric}.)
384-
\end{problem}
383+
% \begin{problem}\label{prob:invofsymm}
384+
% Suppose $A$ is a symmetric, invertible matrix. Does it follow that $A^{-1}$ is symmetric? What if we change ``symmetric" to ``skew symmetric"? (See Definition \ref{def:symmetricandskewsymmetric}.)
385+
% \end{problem}
385386

386387
\begin{problem}\label{prob:sumofinvertible} Suppose $A$ and $B$ are invertible $n\times n$ matrices. Does it follow that $(A+B)$ is invertible?
387388
\end{problem}

0 commit comments

Comments
 (0)