Skip to content

Commit 2ce5503

Browse files
committed
Update main.tex
1 parent c8ed603 commit 2ce5503

File tree

1 file changed

+12
-23
lines changed

1 file changed

+12
-23
lines changed

SYS-0030/main.tex

Lines changed: 12 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ \section*{Gaussian Elimination and Rank}
1616

1717
\subsection*{Row Echelon and Reduced Row Echelon Forms}
1818

19-
In \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/SYS-0020/main}{Augmented Matrix Notation and Elementary Row Operations}, we learned to write linear systems in \dfn{augmented matrix} form and use elementary row operations to transform an augmented matrix to \dfn{row-echelon form} and the \dfn{reduced row-echelon form} in order to solve linear systems.
19+
In \textit{Augmented Matrix Notation and Elementary Row Operations}, we learned to write linear systems in \dfn{augmented matrix} form and use elementary row operations to transform an augmented matrix to \dfn{row-echelon form} and the \dfn{reduced row-echelon form} in order to solve linear systems.
2020

2121
Recall that a matrix (or augmented matrix) is in \dfn{row-echelon form} if:
2222
\begin{itemize}
@@ -130,7 +130,7 @@ \subsection*{Row Echelon and Reduced Row Echelon Forms}
130130

131131
Because both systems are equivalent to the original system, it is not surprising that back substitution yields the same solution for both systems.
132132

133-
$$x=\answer{0},\quad y=\answer{-1},\quad z=\answer{-1}$$
133+
$$x=0,\quad y=-1,\quad z=-1$$
134134

135135
%From the last equation we get $z=-1$.
136136
%Next, from the second equation we have $12y-18(-1)=6$, which yields $y=-1$.
@@ -554,13 +554,7 @@ \section*{Practice Problems}
554554
$$\left[\begin{array}{ccc|c} 2&1&1&3\\-1&0&1&2\\1&1&-2&0
555555
\end{array}\right]$$
556556

557-
\begin{pdfOnly}
558-
Access interactives through the online version of this text at
559-
560-
\href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro}{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro}.
561-
\end{pdfOnly}
562-
563-
\begin{onlineOnly}
557+
564558
\begin{prompt} $\frac{1}{2}R_1\rightarrow R_1$.
565559
$$ \left[\begin{array}{ccc|c} \answer{1}&\answer{1/2}&\answer{1/2}&\answer{3/2}\\-1&0&1&2\\1&1&-2&0
566560
\end{array}\right]$$
@@ -618,7 +612,7 @@ \section*{Practice Problems}
618612
\end{problem}
619613
\end{problem}
620614
\end{problem}
621-
\end{onlineOnly}
615+
622616
\end{problem}
623617

624618
\begin{problem}\label{prob:twowaystorref2}
@@ -627,14 +621,8 @@ \section*{Practice Problems}
627621
$$\left[\begin{array}{ccc|c} 2&1&1&3\\-1&0&1&2\\1&1&-2&0
628622
\end{array}\right]$$
629623

630-
\begin{pdfOnly}
631-
Access interactives through the online version of this text at
632624

633-
\href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro}{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro}.
634-
\end{pdfOnly}
635625

636-
637-
\begin{onlineOnly}
638626
\begin{prompt} $R_1+R_2\rightarrow R_1$.
639627
$$\left[\begin{array}{ccc|c}
640628
\answer{1}&\answer{1}&\answer{2}&\answer{5}\\-1&0&1&2\\1&1&-2&0
@@ -697,36 +685,37 @@ \section*{Practice Problems}
697685
\end{problem}
698686
\end{problem}
699687
\end{problem}
700-
\end{onlineOnly}
688+
701689
\end{problem}
702690

703691

704-
\emph{Problems \ref{prob:rankofmat1}-\ref{prob:rankofmat4}}
705-
706-
Find the rank of each matrix.
707692

708693
\begin{problem}\label{prob:rankofmat1}
694+
Find the rank $A$.
709695
$$A=\begin{bmatrix}4&3&-1\\-8&-6&2\end{bmatrix}$$
710696
Answer:
711697

712698
$$\mbox{rank}(A)=\answer{1}$$
713699
\end{problem}
714700

715701
\begin{problem}\label{prob:rankofmat2}
702+
Find the rank $B$.
716703
$$B=\begin{bmatrix}1&1\\2&-2\\3&-1\end{bmatrix}$$
717704
Answer:
718705

719706
$$\mbox{rank}(B)=\answer{2}$$
720707
\end{problem}
721708

722709
\begin{problem}\label{prob:rankofmat3}
710+
Find the rank $C$.
723711
$$C=\begin{bmatrix}1&0&1\\2&1&3\\0&1&-2\end{bmatrix}$$
724712
Answer:
725713

726714
$$\mbox{rank}(C)=\answer{3}$$
727715
\end{problem}
728716

729717
\begin{problem}\label{prob:rankofmat4}
718+
Find the rank $D$.
730719
$$D=\begin{bmatrix}1&1&2\\-1&-2&1\\1&0&5\end{bmatrix}$$
731720
Answer:
732721

@@ -735,7 +724,7 @@ \section*{Practice Problems}
735724

736725

737726
\begin{problem}\label{prob:rankofmat5}
738-
Suppose $A$ is a $5\times 7$ matrix. Which of the following can be true?
727+
Suppose $A$ is a matrix with 5 rows and 7 columns. Which of the following can be true?
739728
\begin{multipleChoice}
740729
\choice{$\mbox{rank}(A)=7$}
741730
\choice{$\mbox{rank}(A)=6$}
@@ -760,12 +749,12 @@ \section*{Practice Problems}
760749
\choice[correct]{$A$ has at least $25$ entries}
761750
\choice[correct]{Any row-echelon form of $A$ will have exactly $5$ nonzero rows}
762751
\choice{Some row-echelon forms of $A$ may have more than $5$ nonzero rows}
763-
\choice{Some row-echelon forms of $A$ may have less than $5$ nonzero rows}
752+
\choice{Some row-echelon forms of $A$ may have fewer than $5$ nonzero rows}
764753
\end{selectAll}
765754
\end{problem}
766755

767756
\begin{problem}\label{prob:rankaugvscoeff}
768-
In this problem we will discuss how the rank of the {\it coefficient matrix} associated with a linear system compares to the rank of the {\it augmented matrix} associated with the system.
757+
In this problem we will consider how the rank of the {\it coefficient matrix} associated with a linear system compares to the rank of the {\it augmented matrix} associated with the system.
769758
\begin{enumerate}
770759
\item Explain why the rank of the augmented matrix has to be greater than or equal to the rank of the coefficient matrix.
771760
\item Prove that for a {\it consistent} system the rank of the coefficient matrix will be the same as the rank of the {\it augmented} matrix.

0 commit comments

Comments
 (0)