Skip to content

Commit 4ca876d

Browse files
committed
week 13 v2
1 parent 67997fb commit 4ca876d

File tree

2 files changed

+220
-1
lines changed

2 files changed

+220
-1
lines changed

VEC-0073/main.tex

Lines changed: 219 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,219 @@
1+
\documentclass{ximera}
2+
\input{../preamble.tex}
3+
\title{Orthogonal Projections} \license{CC BY-NC-SA 4.0}
4+
5+
\begin{document}
6+
\begin{abstract}
7+
\end{abstract}
8+
\maketitle
9+
10+
\begin{onlineOnly}
11+
\section*{Orthogonal Projections}
12+
\end{onlineOnly}
13+
14+
Given a line $l$ and a vector $\vec{v}$ emanating from a point on $l$, it is sometimes convenient to express $\vec{v}$ as the sum of a vector $\vec{v}_{\parallel}$, parallel to $l$, and a vector $\vec{v}_{\perp}$, perpendicular to $l$. If you have taken a physics course, you may have seen a force vector decomposed into the sum of two components: one parallel and one perpendicular to the direction of motion.
15+
16+
\begin{center}
17+
\begin{tikzpicture}[scale=.8]
18+
\draw[line width=2pt,red,-stealth](3.6, 0.8)--(2,4);
19+
\node[red] at (3.5, 2.2) (a) {$\vec{v}_{\perp}$};
20+
\node[red] at (1.5, -0.95) (b) {$\vec{v}_{\parallel}$};
21+
\node[] at (5, 1) (c) {$l$};
22+
\node[blue] at (-0.8, 1.9) (d) {$\vec{v}=\vec{v}_{\perp}+\vec{v}_{\parallel}$};
23+
\draw [-,line width=1pt] (-3,-2.5)--(5, 1.5);
24+
\draw[line width=2pt,blue,-stealth](-2, -2)--(2,4);
25+
\draw[line width=2pt,red,-stealth](-2, -2)--(3.6, 0.8);
26+
\end{tikzpicture}
27+
28+
\end{center}
29+
30+
Suppose $\vec{d}$ is a direction vector for $l$. Then $\vec{v}_
31+
{\parallel}=k\vec{d}$ for some scalar $k$. Our goal is to find $k$.
32+
\begin{align*}\vec{v}\dotp\vec{d}&=(\vec{v}_{\parallel}+\vec{v}_{\perp})\dotp\vec{d}\\
33+
&=(k\vec{d}+\vec{v}_{\perp})\dotp\vec{d}\\
34+
&=k\vec{d}\dotp\vec{d}+\vec{v}_{\perp}\dotp\vec{d}\\
35+
&=k\norm{\vec{d}}^2+0\\
36+
&=k\norm{\vec{d}}^2
37+
\end{align*}
38+
We conclude that $$k=\frac{\vec{v}\dotp\vec{d}}{\norm{\vec{d}}^2}$$
39+
and $$\vec{v}_{\parallel}=k\vec{d}=\left(\frac{\vec{v}\dotp\vec{d}}{\norm{\vec{d}}^2}\right)\vec{d}$$
40+
41+
The vector $\vec{v}_{\parallel}=\left(\frac{\vec{v}\dotp\vec{d}}{\norm{\vec{d}}^2}\right)\vec{d}$ is called the \dfn{projection of $\vec{v}$ onto $\vec{d}$}. In our discussion, $\vec{d}$ is a direction vector for line $l$. So, we can also say that $\vec{v}_{\parallel}$ is the \dfn{projection of $\vec{v}$ onto $l$}.
42+
43+
To find $\vec{v}_{\perp}$, observe that $\vec{v}_{\perp}=\vec{v}-\vec{v}_{\parallel}$.
44+
45+
46+
\begin{definition}\label{def:projection}
47+
Let $\vec{v}$ be a vector, and let $\vec{d}$ be a non-zero vector. The \dfn{projection of $\vec{v}$ onto $\vec{d}$} is given by
48+
$$\mbox{proj}_{\vec{d}}\vec{v}=\left(\frac{\vec{v}\dotp\vec{d}}{\norm{\vec{d}}^2}\right)\vec{d}$$
49+
\end{definition}
50+
51+
\begin{example}\label{ex:projection1}
52+
Find the projection of $\vec{v}$, shown below, onto the line given by $y=\frac{1}{2}x-1$.
53+
54+
\begin{center}
55+
\begin{tikzpicture}[scale=.7]
56+
57+
\draw[thin,gray!40] (-3,-3) grid (5,5);
58+
\draw[<->] (-3,0)--(5,0);
59+
\draw[<->] (0,-3)--(0,5);
60+
\draw[red, dashed] (2,4)--(3.6, 0.8);
61+
\draw [-,line width=1pt] (-3,-2.5)--(5, 1.5);
62+
\draw[line width=2pt,blue,-stealth](-2, -2)--(2,4);
63+
\draw[line width=2pt,red,-stealth](-2, -2)--(3.6, 0.8);
64+
\node[blue] at (-0.5, 1.5) (a) {$\vec{v}$};
65+
\node[red] at (1.9, -0.9) (b) {$\vec{v}_{\parallel}$};
66+
\end{tikzpicture}
67+
\end{center}
68+
69+
\begin{explanation}
70+
We begin by finding vectors $\vec{v}$ and $\vec{d}$. The tail of $\vec{v}$ is located at $(-2, -2)$, and the head of $\vec{v}$ is at $(2, 4)$. Using the ``head-tail" formula we get
71+
$$\vec{v}=\begin{bmatrix}2-(-2)\\4-(-2)\end{bmatrix}=\begin{bmatrix}4\\6\end{bmatrix}$$ The direction vector for the line $y=\frac{1}{2}x-1$ is $$\vec{d}=\begin{bmatrix}2\\1\end{bmatrix}$$
72+
We find that $\vec{v}\dotp\vec{d}=14$ and $\norm{\vec{d}}^2=5$.
73+
Thus $$\mbox{proj}_{\vec{d}}\vec{v}=\left(\frac{\vec{v}\dotp\vec{d}}{\norm{\vec{d}}^2}\right)\vec{d}=\frac{14}{5}\begin{bmatrix}2\\1\end{bmatrix}=\begin{bmatrix}28/5\\14/5\end{bmatrix}$$
74+
\end{explanation}
75+
\end{example}
76+
77+
\subsection*{A Visual Guide to Creating an Orthogonal Basis}
78+
Given an arbitrary basis $\{\vec{v}_1, \vec{v}_2\}$ of $\RR^2$, let's start building our orthogonal basis, $\{\vec{f}_1, \vec{f}_2\}$, by setting $\vec{f}_1 = \vec{v}_1$. To find the next element of our orthogonal basis, consider the orthogonal projection of $\vec{v}_2$ onto $\vec{f}_1$. (See the figure below.)
79+
\begin{center}
80+
\begin{tikzpicture}[scale=1.2]
81+
\draw[<->] (-1,0)--(5,0);
82+
\draw[<->] (0,-1)--(0,5);
83+
\draw[line width=6pt,-stealth, black!20!white](0,0)--(2,4);
84+
\draw[line width=2pt,red,-stealth](0,0)--(1,2);
85+
\draw[line width=2pt,blue,-stealth](0,0)--(4,3);
86+
\draw[line width=2pt,-stealth](2,4)--(4,3);
87+
\node[] at (0.7, 2.8) (p2) {$\mbox{proj}_{\vec{f}_1}\vec{v}_2$};
88+
\node[] at (3.9, 3.8) (p2) {$\vec{f}_2=\vec{v}_2-\mbox{proj}_{\vec{f}_1}\vec{v}_2$};
89+
\node[red] at (-0.1, 1) (p2) {$\vec{v}_1=\vec{f}_1$};
90+
\node[blue] at (2, 1.2) (p2) {$\vec{v}_2$};
91+
%\draw[line width=2pt,-stealth](0,0)--(2,-1);
92+
%\node[] at (1.1, -0.3) (p2) {$\vec{f}_2$};
93+
\end{tikzpicture}
94+
\quad\quad
95+
\begin{tikzpicture}[scale=1.2]
96+
\draw[<->] (-1,0)--(5,0);
97+
\draw[<->] (0,-1)--(0,5);
98+
% \draw[line width=6pt,-stealth, black!20!white](0,0)--(2,4);
99+
\draw[line width=2pt,red,-stealth](0,0)--(1,2);
100+
%\draw[line width=2pt,blue,-stealth](0,0)--(4,3);
101+
%\draw[line width=2pt,-stealth](2,4)--(4,3);
102+
%\node[] at (0.7, 2.8) (p2) {$\mbox{proj}_{\vec{v}_1}\vec{v}_2$};
103+
%\node[] at (3.9, 3.8) (p2) {$\vec{f}_2=\vec{v}_2-\mbox{proj}_{\vec{f}_1}\vec{v}_2$};
104+
\node[red] at (0.2, 1) (p2) {$\vec{f}_1$};
105+
%\node[blue] at (2, 1.2) (p2) {$\vec{v}_2$};
106+
\draw[line width=2pt,-stealth](0,0)--(2,-1);
107+
\node[] at (1.1, -0.3) (p2) {$\vec{f}_2$};
108+
\end{tikzpicture}
109+
\end{center}
110+
Next, let $\vec{f}_2=\vec{v}_2-\mbox{proj}_{\vec{f}_1}\vec{v}_2$. Observe that $\vec{f}_2$ is orthogonal to $\vec{f}_1$ (See Theorem \ref{th:orthDecompX} of \href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/RTH-0010/main}{Orthogonality and Projections}). This gives us an orthogonal collection $\mathcal{B}=\{\vec{f}_1,\vec{f}_2\}$. It is intuitively clear that $\vec{f}_1$ and $\vec{f}_2$ are linearly independent. Therefore $\mathcal{B}$ is an orthogonal basis of $\RR^2$.
111+
112+
The following exploration illustrates this process dynamically.
113+
114+
\begin{exploration}\label{exp:orth1}
115+
Choose an arbitrary basis $\{\vec{v}_1, \vec{v}_2\}$ of $\RR^2$ by dragging the tips of vectors $\vec{v}_1$ and $\vec{v}_2$ to desired positions. Use the navigation bar at the bottom of the interactive window to go through the steps of constructing an orthogonal basis of $\RR^2$.
116+
117+
\pdfOnly{
118+
Access GeoGebra interactives through the online version of this text at
119+
120+
\href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro}{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro}.
121+
}
122+
123+
\begin{onlineOnly}
124+
\begin{center}
125+
\geogebra{xtqppyav}{800}{600}
126+
\end{center}
127+
\end{onlineOnly}
128+
\end{exploration}
129+
130+
We can apply this process to any two-dimensional subset of $\RR^n$. The following exploration will guide you through the process of constructing an orthogonal basis for a plane spanned by two arbitrary vectors in $\RR^3$.
131+
132+
\begin{exploration}\label{exp:orth2}
133+
Let $W =\mbox{span}\left({\bf v}_1,{\bf v}_2\right)$. $W$ is a plane through the origin in $\RR^3$. Use the navigation bar at the bottom of the interactive window to go through the steps of constructing an orthogonal basis for $W$. RIGHT-CLICK and DRAG to rotate the image for a better view.
134+
135+
\pdfOnly{
136+
Access GeoGebra interactives through the online version of this text at
137+
138+
\href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro}{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro}.
139+
}
140+
141+
\begin{onlineOnly}
142+
\begin{center}
143+
\geogebra{zghsfkym}{900}{600}
144+
\end{center}
145+
\end{onlineOnly}
146+
\end{exploration}
147+
148+
In the next exploration, we take the process of constructing an orthogonal basis to the edge of the visual realm and construct an orthogonal basis for $\RR^3$.
149+
150+
\begin{exploration}\label{exp:orth3}
151+
In the GeoGebra interactive below $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis of $\RR^3$. Use check boxes to go through the steps for constructing an orthogonal basis starting with the given basis. RIGHT-CLICK and DRAG to rotate the image for a better view.
152+
153+
\pdfOnly{
154+
Access GeoGebra interactives through the online version of this text at
155+
156+
\href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro}{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro}.
157+
}
158+
159+
\begin{onlineOnly}
160+
\begin{center}
161+
\geogebra{qjpvmsws}{900}{800}
162+
\end{center}
163+
\end{onlineOnly}
164+
\end{exploration}
165+
166+
What we saw above are low-dimension examples of what is known as \dfn{Gram Schmidt Orthogonalization}.
167+
168+
169+
\section*{Practice Problems}
170+
171+
\begin{problem}\label{prob:proj1a}
172+
Find $\mbox{proj}_{\vec{d}}\vec{v}$ if $\vec{d}=\begin{bmatrix}-1\\3\end{bmatrix}$ and $\vec{v}=\begin{bmatrix}1\\4\end{bmatrix}$.
173+
$$\mbox{proj}_{\vec{d}}\vec{v}=\begin{bmatrix}\answer{-1.1}\\\answer{3.3}\end{bmatrix}$$
174+
\end{problem}
175+
176+
\begin{problem}\label{prob:proj1b}
177+
Find $\mbox{proj}_{\vec{d}}\vec{v}$ if $\vec{d}=\begin{bmatrix}0\\2\\1\end{bmatrix}$ and $\vec{v}=\begin{bmatrix}-1\\-4\\2\end{bmatrix}$.
178+
$$\mbox{proj}_{\vec{d}}\vec{v}=\begin{bmatrix}\answer{0}\\\answer{-2.4}\\\answer{-1.2}\end{bmatrix}$$
179+
\end{problem}
180+
181+
\begin{problem}\label{prob:proj3}
182+
Show that $\mbox{proj}_{\vec{d}}\vec{v}$ does not depend on the length of $\vec{d}$ by proving that $\mbox{proj}_{\vec{d}}\vec{v}=\mbox{proj}_{k\vec{d}}\vec{v}$ for $k\neq 0$. What does this result mean geometrically? Illustrate your response with a diagram.
183+
\end{problem}
184+
185+
\begin{problem}\label{prob:proj2}
186+
Find the projection of vector $\vec{v}$ onto line $l$. (If entering answers in decimal form, round to the nearest one hundredth.)
187+
188+
\begin{center}
189+
\begin{tikzpicture}[scale=.6]
190+
\draw[thin,gray!40] (-2,-2) grid (9,4);
191+
\draw[<->] (-2,0)--(9,0);
192+
\draw[<->] (0,-2)--(0,4);
193+
\node[blue] at (6, 1) (a) {$\vec{v}$};
194+
\node[] at (-2.4, 1) (b) {$l$};
195+
\draw [-,line width=1pt] (-2,0.8)--(9, -1.4);
196+
\draw[line width=2pt,blue,-stealth](7, -1)--(4,3);
197+
\end{tikzpicture}
198+
\end{center}
199+
200+
Answer:
201+
$$\begin{bmatrix}\answer[tolerance=0.005]{-95/26}\\\answer[tolerance=0.005]{19/26}\end{bmatrix}$$
202+
\end{problem}
203+
204+
205+
206+
\begin{problem}\label{GS1}
207+
Convert the given basis $\mathcal{B}$ of $\RR^2$ to an orthogonal basis by following the procedure described in this section with $\vec{v}_1=\begin{bmatrix}2\\ 1\end{bmatrix}$.
208+
$$\mathcal{B} = \left\{ \begin{bmatrix}2\\ 1\end{bmatrix}, \begin{bmatrix}1\\ -1\end{bmatrix}\right\}$$
209+
210+
$$\left\{\begin{bmatrix}2\\1\end{bmatrix},\begin{bmatrix}\answer{-3/5}\\\answer{6/5}\end{bmatrix}\right\}$$
211+
212+
\end{problem}
213+
214+
% \begin{problem}\label{GS2}
215+
% Convert the given basis $\mathcal{B}$ of $\RR^2$ to an orthogonal basis by projecting the first vector onto the second.
216+
% $$\mathcal{B} = \left\{\begin{bmatrix}2\\ 1\end{bmatrix}, \begin{bmatrix}1\\ 2\end{bmatrix}\right\}$$
217+
% \end{problem}
218+
219+
\end{document}

week13v2.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111

1212
%\part{Week 13 assignments}
1313
\activity{RTH-0032/main}
14-
\activity{VEC-0075/main}
14+
\activity{VEC-0073/main}
1515
\activity{RTH-0030/main}
1616

1717
\end{document}

0 commit comments

Comments
 (0)