You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: LTR-0030/main.tex
+3-3Lines changed: 3 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -243,9 +243,9 @@ \section*{Practice Problems}
243
243
\begin{problem}\label{prob:noinversetrans}Explain why linear transformation $T:\RR^2\rightarrow\RR^2$ given by $$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right)=\begin{bmatrix}2x+2y\\-3x-3y\end{bmatrix}$$ does not have an inverse.
244
244
\end{problem}
245
245
246
-
\begin{problem}\label{prob:inverseislinear}
247
-
Prove Theorem \ref{th:inverseislinear}.
248
-
\end{problem}
246
+
%\begin{problem}\label{prob:inverseislinear}
247
+
%Prove Theorem \ref{th:inverseislinear}.
248
+
%\end{problem}
249
249
250
250
\begin{problem}\label{prob:compofinvisinvofcomp} Suppose $T:U\rightarrow V$ and $S:V\rightarrow W$ are linear transformations with inverses $T'$ and $S'$ respectively. Prove that $T'\circ S'$ is the inverse of $S\circ T$.
0 commit comments