Skip to content

Commit 89b085f

Browse files
committed
week 2 homework update
1 parent 1db0cab commit 89b085f

File tree

2 files changed

+37
-37
lines changed

2 files changed

+37
-37
lines changed

SYS-0010/main.tex

Lines changed: 22 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -29,21 +29,21 @@ \subsection*{Algebra of Linear Systems}
2929

3030
$$ \begin{matrix}
3131
2x& -&y&=&-4\\
32-
7x & +&0y&= &\answer{-7}
32+
7x & +&0y&= &-7
3333
\end{matrix}$$
3434

3535
Note that this step eliminates $y$ from the second equation.
3636

3737
Next we divide both sides of the second equation by $7$. $$\frac{1}{7}R_2\rightarrow R_2$$
3838
$$\begin{matrix}
3939
2x& -&y&=&-4\\
40-
x & &&= &\answer{-1}
40+
x & &&= &-1
4141
\end{matrix}$$
4242

4343
We now know what $x$ is. Our next goal is to eliminate $x$ from the first equation. To this end, we subtract twice the second row from the first row and replace the first row with the difference. $$R_1-2R_2\rightarrow R_1$$
4444

4545
$$\begin{matrix}
46-
0x& -&y&=&\answer{-2}\\
46+
0x& -&y&=&-2\\
4747
x & &&= &-1 \\
4848
\end{matrix}$$
4949

@@ -495,7 +495,7 @@ \subsection*{General Systems of Linear Equations}
495495

496496
\section*{Practice Problems}
497497
\begin{problem}\label{prob:sysgraphillustration}
498-
Give a graphical illustration of each of the following scenarios for a system of three equations and two unknowns:
498+
Give a graphical illustration (draw a picture) for each of the following scenarios for a system of THREE equations and TWO unknowns:
499499
\begin{enumerate}
500500
\item The system of three equations is inconsistent, but a combination of any two of the three equations forms a consistent system.
501501
\item The system is consistent and has a unique solution.
@@ -504,11 +504,10 @@ \section*{Practice Problems}
504504
\end{enumerate}
505505
\end{problem}
506506

507-
\emph{Problems \ref{prob:solvesys1}-\ref{prob:solvesys3}}
508-
509-
Solve each system of linear equations or demonstrate that a solution does not exist, and interpret your results geometrically.
510507

511508
\begin{problem}\label{prob:solvesys1}
509+
Solve the given system of linear equations algebraically or algebraically demonstrate that a solution does not exist. Interpret your results geometrically.
510+
512511
$$\begin{array}{ccccc}
513512
x & +&3y&= &4 \\
514513
x& -&2y&=&-6
@@ -518,6 +517,8 @@ \section*{Practice Problems}
518517
\end{problem}
519518

520519
\begin{problem}\label{prob:solvesys2}
520+
Solve the given system of linear equations algebraically or algebraically demonstrate that a solution does not exist. Interpret your results geometrically.
521+
521522
$$\begin{array}{ccccc}
522523
-3x & +&2y&= &7 \\
523524
6x& -&4y&=&5
@@ -526,6 +527,8 @@ \section*{Practice Problems}
526527

527528

528529
\begin{problem}\label{prob:solvesys3}
530+
Solve the given system of linear equations algebraically or algebraically demonstrate that a solution does not exist. Interpret your results geometrically.
531+
529532
$$\begin{array}{ccccccc}
530533
x & -&2y&+&z&= &0 \\
531534
3x& -&2y&+&4z&=&2\\
@@ -534,29 +537,25 @@ \section*{Practice Problems}
534537

535538
Solution: $$(\answer{4},\answer{1},\answer{-2})$$
536539
\end{problem}
537-
538-
539-
\emph{Problems \ref{prob:sysnosolfindk}-\ref{prob:sysinfmanysolfindk}}
540-
541-
Consider the following system of equations.
540+
541+
\begin{problem}\label{prob:sysnosolfindk}
542+
Consider the following system of equations.
542543
$$\begin{array}{ccccc}
543544
kx & +&8y&= &4 \\
544545
2x& +&ky&=&-2
545546
\end{array}$$
546-
547-
\begin{problem}\label{prob:sysnosolfindk}
548-
Find all possible values of k such that this system has no solution.
549-
550-
Solution: $$k=\answer{4}$$
551-
\end{problem}
552-
553-
\begin{problem}\label{prob:sysinfmanysolfindk}
554-
Find all possible values of k such that this system has infinitely many solutions.
547+
548+
\begin{enumerate}
549+
\item Find all possible values of $k$ such that this system has no solutions.
555550

556-
Solution: $$k=\answer{-4}$$
557-
\end{problem}
551+
Answer: $$k=\answer{4}$$
558552

553+
\item Find all possible values of k such that this system has infinitely many solutions.
559554

555+
Answer: $$k=\answer{-4}$$
556+
\end{enumerate}
557+
\end{problem}
558+
560559
\begin{problem}\label{prob:nonzeroprovision}
561560
Why is there a non-zero provision in Part \ref{item:constantmult} of Definition \ref{def:elemrowops}? Why is there not a non-zero provision in Part \ref{item:addrow}?
562561
\end{problem}

SYS-0020/main.tex

Lines changed: 15 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -49,13 +49,7 @@ \subsection*{Augmented Matrix Notation}
4949

5050
In this problem, we prompt you to perform elementary row operations on (\ref{eq:sys20originalsystem1}) and ask you to fill in the coefficients in the resulting equations. This is a multi-step process. Steps will unfold automatically as you enter correct answers.
5151

52-
\begin{pdfOnly}
53-
Access interactives through the online version of this text at
5452

55-
\href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro}{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro}.
56-
\end{pdfOnly}
57-
58-
\begin{onlineOnly}
5953
\begin{problem}
6054
We start by subtracting twice row 1 from row 2. ($R_2-2R_1\rightarrow R_2$)
6155

@@ -127,7 +121,7 @@ \subsection*{Augmented Matrix Notation}
127121
\end{array}
128122
\end{equation}
129123
Now we see that $(-1, -1, 2, 1)$ is the solution.
130-
\end{onlineOnly}
124+
131125

132126
Observe that throughout the entire process, variables $x$, $y$, $z$ and $w$ remained in place; only the coefficients in front of the variables and the entries on the right changed. Let's try to recreate this process without writing down the variables. We can capture the original system in (\ref{eq:sys20originalsystem1}) as follows:
133127
$$\left[\begin{array}{cccc|c}
@@ -521,11 +515,10 @@ \subsection*{Row-Echelon and Reduced Row-Echelon Forms}
521515
\end{example}
522516

523517
\section*{Practice Problems}
524-
\emph{Problems \ref{prob:rrefmultchoice1}-\ref{prob:rrefmultchoice5}}
525-
526-
Determine whether each augmented matrix shown below is in reduced row-echelon form.
527518

528519
\begin{problem}\label{prob:rrefmultchoice1}
520+
Is the augmented matrix shown below in reduced row-echelon form? Explain.
521+
529522
$$\left[\begin{array}{cccc|c}
530523
0&1&1&0&2\\1&-3&0&1&4\\0&0&1&0&-1
531524
\end{array}\right]$$
@@ -536,6 +529,8 @@ \section*{Practice Problems}
536529
\end{problem}
537530

538531
\begin{problem}\label{prob:rrefmultchoice2}
532+
Is the augmented matrix shown below in reduced row-echelon form? Explain.
533+
539534
$$\left[\begin{array}{cc|c}
540535
1&1&1\\0&1&0\\0&0&0
541536
\end{array}\right]$$
@@ -546,6 +541,8 @@ \section*{Practice Problems}
546541
\end{problem}
547542

548543
\begin{problem}\label{prob:rrefmultchoice3}
544+
Is the augmented matrix shown below in reduced row-echelon form? Explain.
545+
549546
$$\left[\begin{array}{cc|c}
550547
1&0&1\\0&1&0\\0&0&0
551548
\end{array}\right]$$
@@ -556,6 +553,8 @@ \section*{Practice Problems}
556553
\end{problem}
557554

558555
\begin{problem}\label{prob:rrefmultchoice4}
556+
Is the augmented matrix shown below in reduced row-echelon form? Explain.
557+
559558
$$\left[\begin{array}{ccc|c}
560559
1&0&1&0\\0&1&0&0\\0&0&0&1
561560
\end{array}\right]$$
@@ -566,6 +565,8 @@ \section*{Practice Problems}
566565
\end{problem}
567566

568567
\begin{problem}\label{prob:rrefmultchoice5}
568+
Is the augmented matrix shown below in reduced row-echelon form? Explain.
569+
569570
$$\left[\begin{array}{ccc|c}
570571
1&1&0&2\\0&1&0&9\\0&0&1&-1
571572
\end{array}\right]$$
@@ -597,11 +598,9 @@ \section*{Practice Problems}
597598
\end{multipleChoice}
598599
\end{problem}
599600

600-
\emph{Problems \ref{prob:sys20solvesys1}-\ref{prob:sys20solvesys2}}
601-
602-
Solve each system of equations.
603-
604601
\begin{problem}\label{prob:sys20solvesys1}
602+
Solve the system using augmented matrix notation.
603+
605604
$$\begin{array}{ccccccc}
606605
x & +&3y&-&2z&= &-11 \\
607606
2x& +&y&+&4z&=&12\\
@@ -613,6 +612,8 @@ \section*{Practice Problems}
613612
\end{problem}
614613

615614
\begin{problem}\label{prob:sys20solvesys2}
615+
Solve the system using augmented matrix notation.
616+
616617
$$\begin{array}{ccccccc}
617618
3x & -&y&+&z&= &-5 \\
618619
x& +&2y&-&z&=&-3\\

0 commit comments

Comments
 (0)