|
| 1 | +\documentclass{ximera} |
| 2 | +\input{../preamble.tex} |
| 3 | + |
| 4 | +\title{Linear Combinations and Alternative Coordinate Systems} \license{CC BY-NC-SA 4.0} |
| 5 | + |
| 6 | +\begin{document} |
| 7 | + |
| 8 | +\begin{abstract} |
| 9 | +\end{abstract} |
| 10 | +\maketitle |
| 11 | + |
| 12 | +\begin{onlineOnly} |
| 13 | +\section*{Linear Combinations and Alternative Coordinate Systems} |
| 14 | +\end{onlineOnly} |
| 15 | + |
| 16 | + |
| 17 | + |
| 18 | +\section*{Explorations} |
| 19 | + |
| 20 | +\begin{exploration}\label{exp:coordSystemLinCombs} |
| 21 | +Use the interactive below to answer the questions |
| 22 | +% https://www.geogebra.org/classic/qw5dpmqq |
| 23 | +\begin{center} |
| 24 | + \geogebra{qw5dpmqq}{800}{600} |
| 25 | +\end{center} |
| 26 | +\begin{question} |
| 27 | + List the coordinates for each $P_i$ with respect to the given coordinate system. Your coordinates should be of the form $(A\text{-coordinate}, B\text{-coordinate})$. |
| 28 | + $$P_1=\left(\answer{1},\answer{1}\right)$$ |
| 29 | + $$P_2=\left(\answer{-2},\answer{0}\right)$$ |
| 30 | + $$P_1=\left(\answer{0},\answer{-1}\right)$$ |
| 31 | + $$P_1=\left(\answer{-2},\answer{3}\right)$$ |
| 32 | + $$P_1=\left(\answer{3},\answer{-2}\right)$$ |
| 33 | +\end{question} |
| 34 | + |
| 35 | +\begin{question} |
| 36 | +Move point $B$ to coincide with $P_3$ |
| 37 | + List the coordinates for each $P_i$ with respect to the new coordinate system. Your coordinates should be of the form $(A\text{-coordinate}, B\text{-coordinate})$. |
| 38 | + $$P_1=\left(\answer{1},\answer{-1}\right)$$ |
| 39 | + $$P_2=\left(\answer{-2},\answer{0}\right)$$ |
| 40 | + $$P_1=\left(\answer{0},\answer{1}\right)$$ |
| 41 | + $$P_1=\left(\answer{-2},\answer{-3}\right)$$ |
| 42 | + $$P_1=\left(\answer{3},\answer{2}\right)$$ |
| 43 | + How do these coordinates compare to the coordinates in the previous question? Explain why this is happening. (Hint: you can use the RESET button to return to the original coordinate system to compare.) |
| 44 | +\end{question} |
| 45 | + |
| 46 | +\begin{question} |
| 47 | +Press RESET to return to the original coordinate system. Move point $A$ to coincide with $P_1$ |
| 48 | + List the coordinates for each $P_i$ with respect to the new coordinate system. Your coordinates should be of the form $(A\text{-coordinate}, B\text{-coordinate})$. |
| 49 | + $$P_1=\left(\answer{1},\answer{0}\right)$$ |
| 50 | + $$P_2=\left(\answer{-2},\answer{2}\right)$$ |
| 51 | + $$P_1=\left(\answer{0},\answer{-1}\right)$$ |
| 52 | + $$P_1=\left(\answer{-2},\answer{5}\right)$$ |
| 53 | + $$P_1=\left(\answer{3},\answer{-5}\right)$$ |
| 54 | + How do these coordinates compare to the coordinates in the original coordinate system? Explain why this is happening. (Hint: you can use the reset button to return to the original coordinate system to compare.) |
| 55 | +\end{question} |
| 56 | + |
| 57 | +\begin{question} |
| 58 | + Press RESET to return to the original coordinate system. Express each $\overrightarrow{OP}_i$ as a linear combination of $\overrightarrow{OA}$ and $\overrightarrow{OB}$. |
| 59 | +$$\overrightarrow{OP}_1=\answer{1}\overrightarrow{OA}+\answer{1}\overrightarrow{OB}$$ |
| 60 | +$$\overrightarrow{OP}_2=\answer{-2}\overrightarrow{OA}+\answer{0}\overrightarrow{OB}$$ |
| 61 | +$$\overrightarrow{OP}_3=\answer{0}\overrightarrow{OA}+\answer{-1}\overrightarrow{OB}$$ |
| 62 | +$$\overrightarrow{OP}_4=\answer{-2}\overrightarrow{OA}+\answer{3}\overrightarrow{OB}$$ |
| 63 | +$$\overrightarrow{OP}_5=\answer{3}\overrightarrow{OA}+\answer{-2}\overrightarrow{OB}$$ |
| 64 | + |
| 65 | +Discuss the relationship between your answers to the first question and your answers here. |
| 66 | +\end{question} |
| 67 | + |
| 68 | +\end{exploration} |
| 69 | + |
| 70 | +\end{document} |
0 commit comments