Skip to content

Commit 94f9b72

Browse files
committed
no \[ ... \] (to be checked !!!)
1 parent b32d48c commit 94f9b72

File tree

2 files changed

+12
-13
lines changed

2 files changed

+12
-13
lines changed

INDEX/main.tex

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -760,12 +760,13 @@ \subsection*{P}
760760
parametric equation of a line (\ref{form:paramlinend})
761761
\begin{expandable}{}{}
762762
Let $\vec{v}=\begin{bmatrix}v_1\\v_2\\\vdots\\v_n\end{bmatrix}$ be a direction vector for line $l$ in $\RR^n$, and let $(a_1, a_2,\ldots , a_n)$ be an arbitrary point on $l$. Then the following parametric equations describe $l$:
763-
\[
764-
x_1=v_1t+a_1\]
765-
\[x_2=v_2t+a_2\]
766-
\[\vdots\]
767-
\[x_n=v_nt+a_n
768-
\]
763+
$$x_1=v_1t+a_1$$
764+
%
765+
$$x_2=v_2t+a_2$$
766+
%
767+
$$\vdots$$
768+
%
769+
$$x_n=v_nt+a_n$$
769770
\end{expandable}
770771

771772
\href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/SYS-0050/main}{particular solution}
@@ -824,7 +825,7 @@ \subsection*{P}
824825

825826
% properties of matrix algebra
826827

827-
\href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/RTH-0035/main}{properties of orthogonal matrices)}
828+
\href{https://ximera.osu.edu/linearalgebradzv3/LinearAlgebraInteractiveIntro/RTH-0035/main}{properties of orthogonal matrices}
828829
\begin{expandable}{}{}
829830
If $Q$ is an orthogonal matrix, then...
830831
\begin{enumerate}

VOCAB_prelim/main.tex

Lines changed: 4 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -293,12 +293,10 @@ \section*{Vocabulary and Review Problems}\label{section:VOCAB_prelim}
293293

294294
\begin{expandable}{}{}
295295
Let $\vec{v}=\begin{bmatrix}v_1\\v_2\\\vdots\\v_n\end{bmatrix}$ be a direction vector for line $l$ in $\RR^n$, and let $(a_1, a_2,\ldots , a_n)$ be an arbitrary point on $l$. Then the following parametric equations describe $l$:
296-
\[
297-
x_1=v_1t+a_1\]
298-
\[x_2=v_2t+a_2\]
299-
\[\vdots\]
300-
\[x_n=v_nt+a_n
301-
\]
296+
$$x_1=v_1t+a_1$$
297+
$$x_2=v_2t+a_2$$
298+
$$\vdots$$
299+
$$x_n=v_nt+a_n$$
302300
\end{expandable}
303301

304302
\begin{tikzpicture}[scale=1]

0 commit comments

Comments
 (0)