You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: LTR-0010/main.tex
+28-13Lines changed: 28 additions & 13 deletions
Original file line number
Diff line number
Diff line change
@@ -698,12 +698,31 @@ \subsection*{Linear Transformations of Subspaces of $\RR^n$}
698
698
699
699
\section*{Practice Problems}
700
700
\begin{problem}\label{prob:sum}
701
-
702
-
Show that (\ref{lin2}) of Exploration \ref{init:lintransintro} holds for vectors $\begin{bmatrix}3\\4\end{bmatrix}$ and $\begin{bmatrix}-2\\1\end{bmatrix}$.
701
+
Define $T_1$ as follows
702
+
$$T_1:\RR^2\rightarrow\RR^2$$
703
+
$$T_1\left(\begin{bmatrix}
704
+
x\\
705
+
y
706
+
\end{bmatrix}\right)=\begin{bmatrix}
707
+
x-y\\
708
+
x
709
+
\end{bmatrix}$$
710
+
(See Exploration \ref{init:lintransintro})
711
+
Use vectors $\begin{bmatrix}3\\4\end{bmatrix}$ and $\begin{bmatrix}-2\\1\end{bmatrix}$ to illustrate that $T_1(\vec{u}+\vec{v}) = T_1(\vec{u})+T_1(\vec{v})$.
703
712
\end{problem}
704
713
705
-
\begin{problem}\label{prob:prob2}
706
-
Use a counter-example to prove (\ref{t2}) of Exploration \ref{init:lintransintro}.
714
+
\begin{problem}\label{prob:prob2} Define $T_2$ as follows
715
+
$$T_2:\RR^2\rightarrow\RR^2$$
716
+
$$T_2\left(\begin{bmatrix}
717
+
x\\
718
+
y
719
+
\end{bmatrix}\right)=\begin{bmatrix}
720
+
-x+y+1\\
721
+
y-2
722
+
\end{bmatrix}$$
723
+
(See Exploration \ref{init:lintransintro})
724
+
725
+
Use a counter-example to prove that $T_2(\vec{u}+\vec{v}) \neq T_2(\vec{u})+T_2(\vec{v})$
707
726
\end{problem}
708
727
709
728
\begin{problem}\label{prob:imageoflincomb}
@@ -714,7 +733,7 @@ \section*{Practice Problems}
714
733
715
734
716
735
\begin{problem}\label{prob:notlinear}
717
-
Let $\vec{u}$ be a fixed vector. Define $T_{\vec{u}}:\RR^2\rightarrow\RR^2$, by $T_{\vec{u}}(\vec{x})=\vec{u}-\vec{x}$.
736
+
Let $\vec{u}$ be a fixed non-zero vector. Define $T_{\vec{u}}:\RR^2\rightarrow\RR^2$, by $T_{\vec{u}}(\vec{x})=\vec{u}-\vec{x}$.
718
737
\begin{enumerate}
719
738
\item
720
739
Describe the effect of this transformation by sketching ${\bf x}$ and $T_{\vec{u}}({\bf x})$ for at least four vectors ${\bf x}$ and a fixed vector $\vec{u}$ of your choice.
\begin{problem}\label{prob:idtrans} Prove that the identity transformation is linear. (Theorem \ref{th:idlintrans})\end{problem}
749
764
750
-
For each matrix $A$ below, find the domain and the codomain of the linear transformation $T:\RR^n\rightarrow\RR^m$ induced by $A$; find and draw the image of $T$. (Hint: See Example \ref{ex:lineartrans3}.)
765
+
\begin{problem}\label{prob:zerotrans} Prove that the zero transformation is linear. (Theorem \ref{th:zerolintrans})\end{problem}
751
766
752
-
\begin{problem}\label{prob:domaincodomain1}
767
+
\begin{problem}\label{prob:domaincodomain1} Find the domain and the codomain of the linear transformation $T:\RR^n\rightarrow\RR^m$ induced by $A$; find and draw the image of $T$.
753
768
$$A=\begin{bmatrix}0&0\\1&1\\2&0\end{bmatrix}$$
754
769
Domain: $\RR^n$, where $n=\answer{2}$.
755
770
756
771
Codomain: $\RR^m$, where $m=\answer{3}$.
757
772
\end{problem}
758
773
759
-
\begin{problem}\label{prob:domaincodomain2}
774
+
\begin{problem}\label{prob:domaincodomain2} Find the domain and the codomain of the linear transformation $T:\RR^n\rightarrow\RR^m$ induced by $A$; find and draw the image of $T$.
% \node[inner sep=0pt, anchor=base] (gulls) at (8.75mm,0)
@@ -850,7 +852,7 @@ \section*{Practice Problems}
850
852
\begin{problem}\label{prob:translationtrans}
851
853
A transformation $T:\RR^2\rightarrow\RR^2$ that shifts all points in the plane horizontally or vertically by a fixed amount is called a \dfn{translation}. Is $T$ a matrix transformation? Prove your claim.
852
854
\begin{hint}
853
-
Use Problem \ref{prb:6.4}
855
+
What is the image of $\vec{0}$ under $T$?
854
856
\end{hint}
855
857
\end{problem}
856
858
@@ -860,9 +862,9 @@ \section*{Practice Problems}
860
862
\end{hint}
861
863
\end{problem}
862
864
863
-
\begin{problem} \label{prob:imageofj}
864
-
Verify Equation (\ref{eq:imageofj}).
865
-
\end{problem}
865
+
%\begin{problem} \label{prob:imageofj}
866
+
%Verify Equation (\ref{eq:imageofj}).
867
+
%\end{problem}
866
868
867
869
\begin{problem}\label{prob:fixedpoint}
868
870
Prove that every point along the line $y=\frac{3}{5}x$ in Example \ref{ex:reflectedduck} is a fixed point.
0 commit comments