Skip to content

Commit d268e8e

Browse files
committed
week 8 homework
1 parent 534f215 commit d268e8e

File tree

2 files changed

+34
-17
lines changed

2 files changed

+34
-17
lines changed

LTR-0010/main.tex

Lines changed: 28 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -698,12 +698,31 @@ \subsection*{Linear Transformations of Subspaces of $\RR^n$}
698698

699699
\section*{Practice Problems}
700700
\begin{problem}\label{prob:sum}
701-
702-
Show that (\ref{lin2}) of Exploration \ref{init:lintransintro} holds for vectors $\begin{bmatrix}3\\4\end{bmatrix}$ and $\begin{bmatrix}-2\\1\end{bmatrix}$.
701+
Define $T_1$ as follows
702+
$$T_1:\RR^2\rightarrow\RR^2$$
703+
$$T_1\left(\begin{bmatrix}
704+
x\\
705+
y
706+
\end{bmatrix}\right)=\begin{bmatrix}
707+
x-y\\
708+
x
709+
\end{bmatrix}$$
710+
(See Exploration \ref{init:lintransintro})
711+
Use vectors $\begin{bmatrix}3\\4\end{bmatrix}$ and $\begin{bmatrix}-2\\1\end{bmatrix}$ to illustrate that $T_1(\vec{u}+\vec{v}) = T_1(\vec{u})+T_1(\vec{v})$.
703712
\end{problem}
704713

705-
\begin{problem}\label{prob:prob2}
706-
Use a counter-example to prove (\ref{t2}) of Exploration \ref{init:lintransintro}.
714+
\begin{problem}\label{prob:prob2} Define $T_2$ as follows
715+
$$T_2:\RR^2\rightarrow\RR^2$$
716+
$$T_2\left(\begin{bmatrix}
717+
x\\
718+
y
719+
\end{bmatrix}\right)=\begin{bmatrix}
720+
-x+y+1\\
721+
y-2
722+
\end{bmatrix}$$
723+
(See Exploration \ref{init:lintransintro})
724+
725+
Use a counter-example to prove that $T_2(\vec{u}+\vec{v}) \neq T_2(\vec{u})+T_2(\vec{v})$
707726
\end{problem}
708727

709728
\begin{problem}\label{prob:imageoflincomb}
@@ -714,7 +733,7 @@ \section*{Practice Problems}
714733

715734

716735
\begin{problem}\label{prob:notlinear}
717-
Let $\vec{u}$ be a fixed vector. Define $T_{\vec{u}}:\RR^2\rightarrow\RR^2$, by $T_{\vec{u}}(\vec{x})=\vec{u}-\vec{x}$.
736+
Let $\vec{u}$ be a fixed non-zero vector. Define $T_{\vec{u}}:\RR^2\rightarrow\RR^2$, by $T_{\vec{u}}(\vec{x})=\vec{u}-\vec{x}$.
718737
\begin{enumerate}
719738
\item
720739
Describe the effect of this transformation by sketching ${\bf x}$ and $T_{\vec{u}}({\bf x})$ for at least four vectors ${\bf x}$ and a fixed vector $\vec{u}$ of your choice.
@@ -741,22 +760,18 @@ \section*{Practice Problems}
741760
$$T\left(\begin{bmatrix}1\\1\\-2\end{bmatrix}\right)=\begin{bmatrix}\answer{-6}\\\answer{3}\\\answer{11}\end{bmatrix}$$
742761
\end{problem}
743762

744-
\begin{problem}\label{prob:idtrans} Prove Theorem \ref{th:idlintrans}\end{problem}
745-
746-
\begin{problem}\label{prob:zerotrans} Prove Theorem \ref{th:zerolintrans}\end{problem}
747-
748-
\emph{Problems \ref{prob:domaincodomain1}-\ref{prob:domaincodomain2}}
763+
\begin{problem}\label{prob:idtrans} Prove that the identity transformation is linear. (Theorem \ref{th:idlintrans})\end{problem}
749764

750-
For each matrix $A$ below, find the domain and the codomain of the linear transformation $T:\RR^n\rightarrow\RR^m$ induced by $A$; find and draw the image of $T$. (Hint: See Example \ref{ex:lineartrans3}.)
765+
\begin{problem}\label{prob:zerotrans} Prove that the zero transformation is linear. (Theorem \ref{th:zerolintrans})\end{problem}
751766

752-
\begin{problem}\label{prob:domaincodomain1}
767+
\begin{problem}\label{prob:domaincodomain1} Find the domain and the codomain of the linear transformation $T:\RR^n\rightarrow\RR^m$ induced by $A$; find and draw the image of $T$.
753768
$$A=\begin{bmatrix}0&0\\1&1\\2&0\end{bmatrix}$$
754769
Domain: $\RR^n$, where $n=\answer{2}$.
755770

756771
Codomain: $\RR^m$, where $m=\answer{3}$.
757772
\end{problem}
758773

759-
\begin{problem}\label{prob:domaincodomain2}
774+
\begin{problem}\label{prob:domaincodomain2} Find the domain and the codomain of the linear transformation $T:\RR^n\rightarrow\RR^m$ induced by $A$; find and draw the image of $T$.
760775
$$A=\begin{bmatrix}3&-1\\-3&1\end{bmatrix}$$
761776
\end{problem}
762777

LTR-0070/main.tex

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -789,6 +789,8 @@ \section*{Practice Problems}
789789
\includegraphics[height=3in]{sheep_pic.jpg}
790790
\end{image}
791791

792+
$$M=\begin{bmatrix}\answer{1} & \answer{\frac{1}{\sqrt{3}}}\\\answer{0} & \answer{1}\end{bmatrix}$$
793+
792794
% \begin{center}
793795
% \begin{tikzpicture}[scale=2]
794796
% \node[inner sep=0pt, anchor=base] (gulls) at (8.75mm,0)
@@ -850,7 +852,7 @@ \section*{Practice Problems}
850852
\begin{problem}\label{prob:translationtrans}
851853
A transformation $T:\RR^2\rightarrow \RR^2$ that shifts all points in the plane horizontally or vertically by a fixed amount is called a \dfn{translation}. Is $T$ a matrix transformation? Prove your claim.
852854
\begin{hint}
853-
Use Problem \ref{prb:6.4}
855+
What is the image of $\vec{0}$ under $T$?
854856
\end{hint}
855857
\end{problem}
856858

@@ -860,9 +862,9 @@ \section*{Practice Problems}
860862
\end{hint}
861863
\end{problem}
862864

863-
\begin{problem} \label{prob:imageofj}
864-
Verify Equation (\ref{eq:imageofj}).
865-
\end{problem}
865+
% \begin{problem} \label{prob:imageofj}
866+
% Verify Equation (\ref{eq:imageofj}).
867+
% \end{problem}
866868

867869
\begin{problem}\label{prob:fixedpoint}
868870
Prove that every point along the line $y=\frac{3}{5}x$ in Example \ref{ex:reflectedduck} is a fixed point.

0 commit comments

Comments
 (0)