Skip to content

Commit d53dbdf

Browse files
committed
Update main.tex
1 parent c12d42c commit d53dbdf

File tree

1 file changed

+21
-27
lines changed

1 file changed

+21
-27
lines changed

VEC-0100/main.tex

Lines changed: 21 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -98,7 +98,7 @@ \subsection*{Redundant Vectors}
9898
$$\mbox{span}\left(\begin{bmatrix}1\\2\\-1\end{bmatrix},\begin{bmatrix}2\\0\\1\end{bmatrix},\begin{bmatrix}4\\4\\-1\end{bmatrix}\right)=\mbox{span}\left(\begin{bmatrix}1\\2\\-1\end{bmatrix},\begin{bmatrix}2\\0\\1\end{bmatrix}\right)$$
9999

100100
We conclude that vector $\begin{bmatrix}4\\4\\-1\end{bmatrix}$ is redundant. Can each of the other two vectors in the set
101-
$\left\{\begin{bmatrix}1\\2\\-1\end{bmatrix},\begin{bmatrix}2\\0\\1\end{bmatrix},\begin{bmatrix}4\\4\\-1\end{bmatrix}\right\}$ be considered redundant? You will address this question in Practice Problem \ref{prob:redundant1}.
101+
$\left\{\begin{bmatrix}1\\2\\-1\end{bmatrix},\begin{bmatrix}2\\0\\1\end{bmatrix},\begin{bmatrix}4\\4\\-1\end{bmatrix}\right\}$ be considered redundant? You will address this question in the problem set. %Practice Problem \ref{prob:redundant1}.
102102
\end{exploration}
103103

104104
Collections of vectors that do not contain redundant vectors are very important in linear algebra. We will refer to such collections as \dfn{linearly independent}. Collections of vectors that contain redundant vectors will be called \dfn{linearly dependent}. The following section offers a definition that will allow us to easily determine linear dependence and independence of vectors.
@@ -119,16 +119,16 @@ \section*{Linear Independence}
119119
\item Can we write one element of $X$ as a linear combination of the others?
120120
\item Does $X$ contain redundant vectors?
121121
\end{enumerate}
122-
It turns out that these questions are equivalent. In other words, if the answer to one of them is ``YES", the answer to the other two is also ``YES". Conversely, if the answer to one of them is ``NO", then the answer to the other two is also ``NO". We will start by illustrating this idea with an example, then conclude this section by formally proving the equivalency.
122+
It turns out that these questions are equivalent. In other words, if the answer to one of them is ``YES", the answer to the other two is also ``YES". Conversely, if the answer to one of them is ``NO", then the answer to the other two is also ``NO". We will start by illustrating this idea with an example, then conclude this section by formally proving the equivalency in Theorem \ref{th:lindeplincombofother}.
123123
\end{remark}
124124

125125
\begin{example}\label{ex:linind}What can we say about the following sets of vectors in light of Remark \ref{remark:LinIndEquiv}?
126126

127127
\begin{enumerate}
128128
\item \label{item:linindpart1}
129-
$$\begin{bmatrix}2\\-3\end{bmatrix}, \begin{bmatrix}0\\3\end{bmatrix},\begin{bmatrix}1\\-1\end{bmatrix},\begin{bmatrix}1\\-2\end{bmatrix}$$
129+
$$\left\{\begin{bmatrix}2\\-3\end{bmatrix}, \begin{bmatrix}0\\3\end{bmatrix},\begin{bmatrix}1\\-1\end{bmatrix},\begin{bmatrix}1\\-2\end{bmatrix}\right\}$$
130130

131-
\item \label{item:linindpart2} $$\begin{bmatrix}2\\1\\4\end{bmatrix},\begin{bmatrix}-3\\1\\1\end{bmatrix}$$
131+
\item \label{item:linindpart2} $$\left\{\begin{bmatrix}2\\1\\4\end{bmatrix},\begin{bmatrix}-3\\1\\1\end{bmatrix}\right\}$$
132132
\end{enumerate}
133133
\begin{explanation} \ref{item:linindpart1}
134134
We will start by addressing linear independence. To do so, we will solve the vector equation
@@ -187,6 +187,8 @@ \section*{Linear Independence}
187187
\end{explanation}
188188
\end{example}
189189

190+
We now formalize Remark \ref{remark:LinIndEquiv} as a theorem.
191+
190192
\begin{theorem}\label{th:lindeplincombofother}
191193
Let $\vec{v}_1,\vec{v}_2,\dots ,\vec{v}_k$ be a set of vectors in $\RR^n$ containing two or more vectors. The following conditions are equivalent.
192194
\begin{enumerate}
@@ -355,13 +357,8 @@ \section*{Practice Problems}
355357
\end{enumerate}
356358
\end{problem}
357359

358-
359-
360-
\emph{Problems \ref{prob:linindmultchoice1}-\ref{prob:linindmultchoice4}}
361-
362-
Are the given vectors linearly independent?
363-
364-
\begin{problem}\label{prob:linindmultchoice1}
360+
\begin{problem}\label{prob:linindmultchoice1}
361+
Are the vectors below linearly independent?
365362
$$\begin{bmatrix}-1\\0\end{bmatrix}, \begin{bmatrix}2\\3\end{bmatrix},\begin{bmatrix}4\\-1\end{bmatrix}$$
366363

367364
\begin{multipleChoice}
@@ -374,6 +371,7 @@ \section*{Practice Problems}
374371
\end{problem}
375372

376373
\begin{problem}\label{prob:linindmultchoice2}
374+
Are the vectors below linearly independent?
377375
$$\begin{bmatrix}1\\0\\5\end{bmatrix}, \begin{bmatrix}2\\2\\3\end{bmatrix},\begin{bmatrix}-1\\0\\1\end{bmatrix}$$
378376

379377
\begin{multipleChoice}
@@ -386,6 +384,7 @@ \section*{Practice Problems}
386384
\end{problem}
387385

388386
\begin{problem}\label{prob:linindmultchoice3}
387+
Are the vectors below linearly independent?
389388
$$\begin{bmatrix}3\\0\\5\end{bmatrix}, \begin{bmatrix}2\\0\\2\end{bmatrix},\begin{bmatrix}-1\\0\\-5\end{bmatrix}$$
390389

391390
\begin{multipleChoice}
@@ -398,6 +397,7 @@ \section*{Practice Problems}
398397
\end{problem}
399398

400399
\begin{problem}\label{prob:linindmultchoice4}
400+
Are the vectors below linearly independent?
401401
$$\begin{bmatrix}3\\1\\4\\1\end{bmatrix}, \begin{bmatrix}-2\\1\\1\\1\end{bmatrix}$$
402402

403403
\begin{multipleChoice}
@@ -410,13 +410,8 @@ \section*{Practice Problems}
410410

411411
\end{problem}
412412

413-
414-
\emph{Problems \ref{prob:TFlinind1}-\ref{prob:TFlinind2}}
415-
416-
True or False?
417-
418413
\begin{problem}\label{prob:TFlinind1}
419-
Any set containing the zero vector is linearly dependent.
414+
(True or False?) Any set containing the zero vector is linearly dependent.
420415
\begin{multipleChoice}
421416
\choice[correct]{TRUE}
422417
\choice{FALSE}
@@ -427,7 +422,7 @@ \section*{Practice Problems}
427422
\end{problem}
428423

429424
\begin{problem}\label{prob:TFlinind2}
430-
A set containing five vectors in $\RR^2$ is linearly dependent.
425+
(True or False?) A set containing five vectors in $\RR^2$ is linearly dependent.
431426
\begin{multipleChoice}
432427
\choice[correct]{TRUE}
433428
\choice{FALSE}
@@ -438,12 +433,10 @@ \section*{Practice Problems}
438433
\end{problem}
439434

440435

441-
\emph{Problems \ref{prob:linindmultchoice5}-\ref{prob:linindmultchoice7}}
442-
443-
Each problem below provides information about vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$. If possible, determine whether the vectors are linearly dependent or independent.
444-
445436
\begin{problem}\label{prob:linindmultchoice5}
437+
Given that
446438
$$0\vec{v}_1+ 0\vec{v}_2+ 0\vec{v}_3=\vec{0}$$
439+
what (if anything) can we conclude about linear independence of vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$?
447440
\begin{multipleChoice}
448441
\choice{The vectors are linearly independent}
449442
\choice{The vectors are linearly dependent }
@@ -452,7 +445,9 @@ \section*{Practice Problems}
452445
\end{problem}
453446

454447
\begin{problem}\label{prob:linindmultchoice6}
448+
Given that
455449
$$3\vec{v}_1+ 4\vec{v}_2- \vec{v}_3=\vec{0}$$
450+
what (if anything) can we conclude about linear independence of vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$?
456451
\begin{multipleChoice}
457452
\choice{The vectors are linearly independent}
458453
\choice[correct]{The vectors are linearly dependent }
@@ -461,7 +456,9 @@ \section*{Practice Problems}
461456
\end{problem}
462457

463458
\begin{problem}\label{prob:linindmultchoice7}
459+
Given that
464460
$$2\vec{v}_1+ 0\vec{v}_2+ 0\vec{v}_3=\vec{0}$$
461+
what (if anything) can we conclude about linear independence of vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$?
465462
\begin{multipleChoice}
466463
\choice{The vectors are linearly independent}
467464
\choice[correct]{The vectors are linearly dependent }
@@ -471,12 +468,8 @@ \section*{Practice Problems}
471468

472469

473470

474-
\emph{Problems \ref{prob:linindmultchoice9}-\ref{prob:linindmultchoice10}}
475-
476-
Each diagram below shows a collection of vectors. Are the vectors linearly dependent or independent?
477-
478-
479471
\begin{problem}\label{prob:linindmultchoice9}
472+
Are the vectors in the diagram linearly dependent or independent?
480473
\begin{multipleChoice}
481474
\choice{The vectors are linearly independent}
482475
\choice[correct]{The vectors are linearly dependent }
@@ -496,6 +489,7 @@ \section*{Practice Problems}
496489
\end{problem}
497490

498491
\begin{problem}\label{prob:linindmultchoice10}
492+
Are the vectors in the diagram linearly dependent or independent?
499493
\begin{multipleChoice}
500494
\choice[correct]{The vectors are linearly independent}
501495
\choice{The vectors are linearly dependent }

0 commit comments

Comments
 (0)