Skip to content

Commit fd79a79

Browse files
committed
week 6 sections
1 parent fc755be commit fd79a79

File tree

4 files changed

+44
-40
lines changed

4 files changed

+44
-40
lines changed

VSP-0020/main.tex

Lines changed: 9 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ \subsection*{Subspaces of $\RR^n$}
153153
Let $S$ be any set of vectors in $\RR^n$. Then $\mbox{span}(S)$ is a subspace of $\RR^n$.
154154
\end{theorem}
155155

156-
In particular, if we take $S$ to be the single vector $\vec{v}$, we have that $\text{span}(\vec{v})$ is a subspace of $\RR^n$. Geometrically, this subspace is a line in the direction of the vector $\vec{v}$. Similarly, the span of two vectors is a subspace of $\RR^n$. If the two vectors are linearly independent, then the subspace is a plane in $\RR^n$.
156+
In particular, if we take $S$ to be the single vector $\vec{v}$, we have that $\text{span}(\vec{v})$ is a subspace of $\RR^n$. Geometrically, this subspace is a line with a direction vector $\vec{v}$. Similarly, the span of two vectors is a subspace of $\RR^n$. If the two vectors are linearly independent, then the subspace is a plane in $\RR^n$.
157157

158158
Not every line or plane in $\RR^n$ is a subspace, however. The following important result provides us with a quick way to determine that some subsets are not subspaces.
159159

@@ -174,10 +174,7 @@ \subsection*{Subspaces of $\RR^n$}
174174

175175
\section*{Practice Problems}
176176

177-
\emph{Problems \ref{prob:Y^+1}-\ref{prob:Y^+2}}
178-
179-
Let $Y^+$ be the set of all vectors in $\mathbb{R}^2$ whose $y$ components are non-negative.
180-
\begin{problem}\label{prob:Y^+1}
177+
\begin{problem}\label{prob:Y^+1} Let $Y^+$ be the set of all vectors in $\mathbb{R}^2$ whose $y$ components are non-negative.
181178
Is $Y^+$ closed under vector addition?
182179

183180
\begin{multipleChoice}
@@ -186,7 +183,7 @@ \section*{Practice Problems}
186183
\end{multipleChoice}
187184
\end{problem}
188185

189-
\begin{problem}\label{prob:Y^+2}
186+
\begin{problem}\label{prob:Y^+2} Let $Y^+$ be the set of all vectors in $\mathbb{R}^2$ whose $y$ components are non-negative.
190187
Is $Y^+$ closed under scalar multiplication?
191188

192189
\begin{multipleChoice}
@@ -197,11 +194,7 @@ \section*{Practice Problems}
197194

198195

199196

200-
\emph{Problems \ref{pr:R^3axes1}-\ref{pr:R^3axes2}}
201-
202-
Let $X$ be the set of all vectors in $\RR^3$ that lie on either the $x$-axis, the $y$-axis, or the $z$-axis.
203-
204-
\begin{problem}\label{pr:R^3axes1}
197+
\begin{problem}\label{pr:R^3axes1} Let $X$ be the set of all vectors in $\RR^3$ that lie on either the $x$-axis, the $y$-axis, or the $z$-axis.
205198
Is $X$ closed under vector addition?
206199

207200
\begin{multipleChoice}
@@ -210,21 +203,16 @@ \section*{Practice Problems}
210203
\end{multipleChoice}
211204

212205
\end{problem}
213-
\begin{problem}\label{pr:R^3axes2}
206+
\begin{problem}\label{pr:R^3axes2} Let $X$ be the set of all vectors in $\RR^3$ that lie on either the $x$-axis, the $y$-axis, or the $z$-axis.
214207
Is $X$ closed under scalar multiplication?
215208

216209
\begin{multipleChoice}
217210
\choice[correct]{Yes}
218211
\choice{No}
219212
\end{multipleChoice}
220213
\end{problem}
221-
222-
223-
\emph{Problems \ref{prob:closedmultchoice1}-\ref{prob:closedmultchoice2}}
224-
225-
For each figure below, determine whether the set $V$ of vectors shown in the figure is closed under vector addition and scalar multiplication. Justify your responses.
226214

227-
\begin{problem}\label{prob:closedmultchoice1}
215+
\begin{problem}\label{prob:closedmultchoice1} Determine whether the set $V$ of vectors shown in the figure is closed under vector addition and scalar multiplication. Justify your responses.
228216
$V$ consists of all vectors in $\mathbb{R}^3$ in a slanted half-plane which has the $x$-axis as a boundary.
229217

230218
\tdplotsetmaincoords{70}{130}
@@ -255,7 +243,7 @@ \section*{Practice Problems}
255243
\end{multipleChoice}
256244
\end{problem}
257245

258-
\begin{problem} \label{prob:closedmultchoice2}
246+
\begin{problem} \label{prob:closedmultchoice2} Determine whether the set $V$ of vectors shown in the figure is closed under vector addition and scalar multiplication. Justify your responses.
259247
$V$ consists of all vectors along the line, as shown.
260248

261249
\begin{tikzpicture}[scale=0.5]
@@ -286,11 +274,11 @@ \section*{Practice Problems}
286274

287275

288276
\begin{problem}\label{prob:opposite_in_subspace}
289-
Prove Theorem \ref{th:opposite_in_subspace}.
277+
Prove that if $V$ is a subspace of $\RR^n$, then for any vector $\vec{v} \in V$, the opposite vector, $-\vec{v}$, is also in $V$. (Theorem \ref{th:opposite_in_subspace})
290278
\end{problem}
291279

292280
\begin{problem}\label{prob:null(A)_is_subspace}
293-
Let $A$ be an $m \times n$ matrix. Let $V$ be the subset of $\RR^n$ consisting of all vectors $\vec{x}$ such that $A \vec{x} = \vec{0}$. Prove that $V$ is a subspace of $\RR^n$. (Note that this subspace is called the null space of the matrix $A$ and we will denote it $\mbox{null}(A)$.)
281+
Let $A$ be an $m \times n$ matrix. Let $V$ be the subset of $\RR^n$ consisting of all vectors $\vec{x}$ such that $A \vec{x} = \vec{0}$. Prove that $V$ is a subspace of $\RR^n$. (This subspace is called the null space of the matrix $A$. We will denote it $\mbox{null}(A)$.)
294282
\end{problem}
295283

296284
\end{document}

VSP-0030/main.tex

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -275,12 +275,10 @@ \subsection*{Definition of a Basis}
275275

276276

277277
\section*{Practice Problems}
278-
\emph{Problems \ref{prob:coordvect1}-\ref{prob:coordvect2}}
279278

280-
Let $\mathcal{B}=\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}-1\\2\end{bmatrix}\right\}$ be a basis for $\RR^2$. (Do a mental verification that $\mathcal{B}$ is a basis.) For each $\vec{v}$ given below, find the coordinate vector for $\vec{v}$ with respect to $\mathcal{B}$.
281279

282280
\begin{problem}\label{prob:coordvect1}
283-
Vector $\vec{v}$.
281+
Let $\mathcal{B}=\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}-1\\2\end{bmatrix}\right\}$ be a basis for $\RR^2$. Find the coordinate vector for $\vec{v}$ with respect to $\mathcal{B}$.
284282
\begin{center}
285283
\begin{tikzpicture}[scale=0.6]
286284
\draw[thin,gray!40] (-4,-2) grid (4,4);
@@ -295,7 +293,7 @@ \section*{Practice Problems}
295293
\end{problem}
296294

297295
\begin{problem}\label{prob:coordvect2}
298-
Vector $\vec{v}$.
296+
Let $\mathcal{B}=\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}-1\\2\end{bmatrix}\right\}$ be a basis for $\RR^2$. Find the coordinate vector for $\vec{v}$ with respect to $\mathcal{B}$.
299297
\begin{center}
300298
\begin{tikzpicture}[scale=0.6]
301299
\draw[thin,gray!40] (-1,-1) grid (4,8);

VSP-0035/main.tex

Lines changed: 17 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -126,43 +126,45 @@ \subsection*{Every Subspace of $\RR^n$ has a Basis}
126126
\end{proof}
127127

128128
\section*{Practice Problems}
129-
\emph{Problems \ref{prob:finddimension1}-\ref{prob:finddimension3}}
130129

131-
For each given set $S$ of vectors, find $\mbox{dim}(\mbox{span}(S))$.
132-
\begin{hint}
133-
Use Theorem \ref{th:linindandrank} of VEC-0110.
134-
\end{hint}
130+
131+
% \begin{hint}
132+
% Use Theorem \ref{th:linindandrank} of VEC-0110.
133+
% \end{hint}
135134

136135
\begin{problem}\label{prob:finddimension1}
136+
Find $\mbox{dim}(\mbox{span}(S))$.
137137
$$S=\left\{\begin{bmatrix}1\\1\\0\\1\end{bmatrix}, \begin{bmatrix}0\\1\\1\\1\end{bmatrix}, \begin{bmatrix}1\\0\\1\\1\end{bmatrix}, \begin{bmatrix}1\\1\\0\\1\end{bmatrix} \right\}$$
138138
Answer: $\mbox{dim}(\mbox{span}(S))=\answer{3}$
139139
\end{problem}
140140

141141
\begin{problem}\label{prob:finddimension2}
142+
Find $\mbox{dim}(\mbox{span}(S))$.
142143
$$S=\left\{\begin{bmatrix}3\\-2\\1\\1\end{bmatrix}, \begin{bmatrix}2\\3\\3\\-2\end{bmatrix}, \begin{bmatrix}1\\-5\\-2\\3\end{bmatrix}\right\}$$
143144
Answer: $\mbox{dim}(\mbox{span}(S))=\answer{2}$
144145
\end{problem}
145146

146147
\begin{problem}\label{prob:finddimension3}
148+
Find $\mbox{dim}(\mbox{span}(S))$.
147149
$$S=\left\{\begin{bmatrix}1\\1\\-3\end{bmatrix}, \begin{bmatrix}-3\\2\\1\end{bmatrix}, \begin{bmatrix}5\\-2\\4\end{bmatrix}\right\}$$
148150
Answer: $\mbox{dim}(\mbox{span}(S))=\answer{3}$
149151
\end{problem}
150152

151153

152154
\begin{problem}\label{prob:atmostnlinindinrnproof}
153-
Prove Lemma \ref{lemma:atmostnlinindinrn}.
154-
\begin{hint}
155-
Look at the proof of Theorem \ref{th:dimwelldefined}.
156-
\end{hint}
155+
Prove that if a linearly independent subset of $\RR^n$ contains $m$ vectors, then $m\leq n$. (Lemma \ref{lemma:atmostnlinindinrn})
156+
% \begin{hint}
157+
% Look at the proof of Theorem \ref{th:dimwelldefined}.
158+
% \end{hint}
157159
\end{problem}
158160

159-
\begin{problem}\label{prob:matrixtimesbasisvectors}
160-
Let $\mathcal{B}=\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ be a basis of $\RR^3$. Suppose $A$ is a nonsingular $3\times 3 $ matrix. Show that $\mathcal{C}=\{A\vec{v}_1, A\vec{v}_2, A\vec{v}_3\}$ is also a basis of $\RR^3$.
161-
\begin{hint}
162-
To show that $\mathcal{C}$ spans $\RR^3$, express $A^{-1}\vec{v}$ as a linear combination of $\vec{v}_1$, $\vec{v}_2$ and $\vec{v}_3$.
163-
\end{hint}
161+
% \begin{problem}\label{prob:matrixtimesbasisvectors}
162+
% Let $\mathcal{B}=\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ be a basis of $\RR^3$. Suppose $A$ is a nonsingular $3\times 3 $ matrix. Show that $\mathcal{C}=\{A\vec{v}_1, A\vec{v}_2, A\vec{v}_3\}$ is also a basis of $\RR^3$.
163+
% \begin{hint}
164+
% To show that $\mathcal{C}$ spans $\RR^3$, express $A^{-1}\vec{v}$ as a linear combination of $\vec{v}_1$, $\vec{v}_2$ and $\vec{v}_3$.
165+
% \end{hint}
164166

165-
\end{problem}
167+
% \end{problem}
166168

167169

168170

week6.tex

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,16 @@
1+
\documentclass{xourse}
2+
3+
\input{preamble.tex}
4+
5+
\title{Week 6}
6+
7+
\begin{document}
8+
\begin{abstract}
9+
\end{abstract}
10+
\maketitle
11+
12+
%\part{Week 6 assignments}
13+
\activity{VSP-0020/main}
14+
\activity{VSP-0030/main}
15+
\activity{VSP-0035/main}
16+
\end{document}

0 commit comments

Comments
 (0)