You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: VSP-0020/main.tex
+9-21Lines changed: 9 additions & 21 deletions
Original file line number
Diff line number
Diff line change
@@ -153,7 +153,7 @@ \subsection*{Subspaces of $\RR^n$}
153
153
Let $S$ be any set of vectors in $\RR^n$. Then $\mbox{span}(S)$ is a subspace of $\RR^n$.
154
154
\end{theorem}
155
155
156
-
In particular, if we take $S$ to be the single vector $\vec{v}$, we have that $\text{span}(\vec{v})$ is a subspace of $\RR^n$. Geometrically, this subspace is a line in the direction of the vector $\vec{v}$. Similarly, the span of two vectors is a subspace of $\RR^n$. If the two vectors are linearly independent, then the subspace is a plane in $\RR^n$.
156
+
In particular, if we take $S$ to be the single vector $\vec{v}$, we have that $\text{span}(\vec{v})$ is a subspace of $\RR^n$. Geometrically, this subspace is a line with a direction vector $\vec{v}$. Similarly, the span of two vectors is a subspace of $\RR^n$. If the two vectors are linearly independent, then the subspace is a plane in $\RR^n$.
157
157
158
158
Not every line or plane in $\RR^n$ is a subspace, however. The following important result provides us with a quick way to determine that some subsets are not subspaces.
159
159
@@ -174,10 +174,7 @@ \subsection*{Subspaces of $\RR^n$}
174
174
175
175
\section*{Practice Problems}
176
176
177
-
\emph{Problems \ref{prob:Y^+1}-\ref{prob:Y^+2}}
178
-
179
-
Let $Y^+$ be the set of all vectors in $\mathbb{R}^2$ whose $y$ components are non-negative.
180
-
\begin{problem}\label{prob:Y^+1}
177
+
\begin{problem}\label{prob:Y^+1} Let $Y^+$ be the set of all vectors in $\mathbb{R}^2$ whose $y$ components are non-negative.
181
178
Is $Y^+$ closed under vector addition?
182
179
183
180
\begin{multipleChoice}
@@ -186,7 +183,7 @@ \section*{Practice Problems}
186
183
\end{multipleChoice}
187
184
\end{problem}
188
185
189
-
\begin{problem}\label{prob:Y^+2}
186
+
\begin{problem}\label{prob:Y^+2} Let $Y^+$ be the set of all vectors in $\mathbb{R}^2$ whose $y$ components are non-negative.
For each figure below, determine whether the set $V$ of vectors shown in the figure is closed under vector addition and scalar multiplication. Justify your responses.
226
214
227
-
\begin{problem}\label{prob:closedmultchoice1}
215
+
\begin{problem}\label{prob:closedmultchoice1} Determine whether the set $V$ of vectors shown in the figure is closed under vector addition and scalar multiplication. Justify your responses.
228
216
$V$ consists of all vectors in $\mathbb{R}^3$ in a slanted half-plane which has the $x$-axis as a boundary.
229
217
230
218
\tdplotsetmaincoords{70}{130}
@@ -255,7 +243,7 @@ \section*{Practice Problems}
255
243
\end{multipleChoice}
256
244
\end{problem}
257
245
258
-
\begin{problem} \label{prob:closedmultchoice2}
246
+
\begin{problem} \label{prob:closedmultchoice2} Determine whether the set $V$ of vectors shown in the figure is closed under vector addition and scalar multiplication. Justify your responses.
259
247
$V$ consists of all vectors along the line, as shown.
Prove that if $V$ is a subspace of $\RR^n$, then for any vector $\vec{v} \in V$, the opposite vector, $-\vec{v}$, is also in $V$. (Theorem \ref{th:opposite_in_subspace})
290
278
\end{problem}
291
279
292
280
\begin{problem}\label{prob:null(A)_is_subspace}
293
-
Let $A$ be an $m \times n$ matrix. Let $V$ be the subset of $\RR^n$ consisting of all vectors $\vec{x}$ such that $A \vec{x} = \vec{0}$. Prove that $V$ is a subspace of $\RR^n$. (Note that this subspace is called the null space of the matrix $A$ and we will denote it $\mbox{null}(A)$.)
281
+
Let $A$ be an $m \times n$ matrix. Let $V$ be the subset of $\RR^n$ consisting of all vectors $\vec{x}$ such that $A \vec{x} = \vec{0}$. Prove that $V$ is a subspace of $\RR^n$. (This subspace is called the null space of the matrix $A$. We will denote it $\mbox{null}(A)$.)
Let $\mathcal{B}=\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}-1\\2\end{bmatrix}\right\}$ be a basis for $\RR^2$. (Do a mental verification that $\mathcal{B}$ is a basis.) For each $\vec{v}$ given below, find the coordinate vector for $\vec{v}$ with respect to $\mathcal{B}$.
281
279
282
280
\begin{problem}\label{prob:coordvect1}
283
-
Vector $\vec{v}$.
281
+
Let $\mathcal{B}=\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}-1\\2\end{bmatrix}\right\}$ be a basis for $\RR^2$. Find the coordinate vector for $\vec{v}$ with respect to $\mathcal{B}$.
284
282
\begin{center}
285
283
\begin{tikzpicture}[scale=0.6]
286
284
\draw[thin,gray!40] (-4,-2) grid (4,4);
@@ -295,7 +293,7 @@ \section*{Practice Problems}
295
293
\end{problem}
296
294
297
295
\begin{problem}\label{prob:coordvect2}
298
-
Vector $\vec{v}$.
296
+
Let $\mathcal{B}=\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}-1\\2\end{bmatrix}\right\}$ be a basis for $\RR^2$. Find the coordinate vector for $\vec{v}$ with respect to $\mathcal{B}$.
Let $\mathcal{B}=\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ be a basis of $\RR^3$. Suppose $A$ is a nonsingular $3\times3$ matrix. Show that $\mathcal{C}=\{A\vec{v}_1, A\vec{v}_2, A\vec{v}_3\}$ is also a basis of $\RR^3$.
161
-
\begin{hint}
162
-
To show that $\mathcal{C}$ spans $\RR^3$, express $A^{-1}\vec{v}$ as a linear combination of $\vec{v}_1$, $\vec{v}_2$ and $\vec{v}_3$.
%Let $\mathcal{B}=\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ be a basis of $\RR^3$. Suppose $A$ is a nonsingular $3\times 3 $ matrix. Show that $\mathcal{C}=\{A\vec{v}_1, A\vec{v}_2, A\vec{v}_3\}$ is also a basis of $\RR^3$.
163
+
%\begin{hint}
164
+
%To show that $\mathcal{C}$ spans $\RR^3$, express $A^{-1}\vec{v}$ as a linear combination of $\vec{v}_1$, $\vec{v}_2$ and $\vec{v}_3$.
0 commit comments