diff --git a/R/generics_and_methods.R b/R/generics_and_methods.R index bd46cab..657eaae 100644 --- a/R/generics_and_methods.R +++ b/R/generics_and_methods.R @@ -28,15 +28,15 @@ #' @export #' @examples #' # See README for a more verbose version -#' -#' male_penguins <- tibble::tribble( +#' library(tibble) +#' male_penguins <- tribble( #' ~name, ~species, ~island, ~flipper_length_mm, ~body_mass_g, #' "Giordan", "Gentoo", "Biscoe", 222L, 5250L, #' "Lynden", "Adelie", "Torgersen", 190L, 3900L, #' "Reiner", "Adelie", "Dream", 185L, 3650L #' ) #' -#' female_penguins <- tibble::tribble( +#' female_penguins <- tribble( #' ~name, ~species, ~island, ~flipper_length_mm, ~body_mass_g, #' "Alonda", "Gentoo", "Biscoe", 211, 4500L, #' "Ola", "Adelie", "Dream", 190, 3600L, @@ -50,8 +50,8 @@ #' check = check_specs(implicit_keys = "ignore", duplicate_keys_right = "inform") #' ) #' -#' df1 <- tibble::tibble(id = 1:3, value = c(10, NA, 30)) -#' df2 <- tibble::tibble(id = 2:4, value = c(22, 32, 42)) +#' df1 <- tibble(id = 1:3, value = c(10, NA, 30)) +#' df2 <- tibble(id = 2:4, value = c(22, 32, 42)) #' #' # handle conflicted columns when joining #' power_left_join(df1, df2, by = "id", conflict = `+`) @@ -122,15 +122,15 @@ #' ) #' #' # fill unmatched values -#' df1 <- tibble::tibble(id = 1:3) -#' df2 <- tibble::tibble(id = 1:2, value2 = c(2, NA), value3 = c(NA, 3)) +#' df1 <- tibble(id = 1:3) +#' df2 <- tibble(id = 1:2, value2 = c(2, NA), value3 = c(NA, 3)) #' power_left_join(df1, df2, by = "id", fill = 0) #' power_left_join(df1, df2, by = "id", fill = list(value2 = 0)) #' #' # join recursively -#' df1 <- tibble::tibble(id = 1, a = "foo") -#' df2 <- tibble::tibble(id = 1, b = "bar") -#' df3 <- tibble::tibble(id = 1, c = "baz") +#' df1 <- tibble(id = 1, a = "foo") +#' df2 <- tibble(id = 1, b = "bar") +#' df3 <- tibble(id = 1, c = "baz") #' power_left_join(list(df1, df2, df3), by = "id") #' power_left_join(df1, list(df2, df3), by = "id") #' diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 6359912..18c9be4 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -2,5 +2,5 @@ pandoc: 2.14.0.3 pkgdown: 2.0.1 pkgdown_sha: ~ articles: {} -last_built: 2022-01-12T22:43Z +last_built: 2022-01-13T00:26Z diff --git a/docs/reference/power_left_join.html b/docs/reference/power_left_join.html index c86b99e..f554508 100644 --- a/docs/reference/power_left_join.html +++ b/docs/reference/power_left_join.html @@ -157,15 +157,15 @@

Value

Examples

# See README for a more verbose version
-
-male_penguins <- tibble::tribble(
+library(tibble)
+male_penguins <- tribble(
   ~name,    ~species,     ~island, ~flipper_length_mm, ~body_mass_g,
   "Giordan",    "Gentoo",    "Biscoe",               222L,        5250L,
   "Lynden",    "Adelie", "Torgersen",               190L,        3900L,
   "Reiner",    "Adelie",     "Dream",               185L,        3650L
 )
 
-female_penguins <- tibble::tribble(
+female_penguins <- tribble(
   ~name,    ~species,  ~island, ~flipper_length_mm, ~body_mass_g,
   "Alonda",    "Gentoo", "Biscoe",               211,        4500L,
   "Ola",    "Adelie",  "Dream",               190,        3600L,
@@ -190,8 +190,8 @@ 

Examples#> 2 Gentoo Biscoe #> 3 Adelie Dream -df1 <- tibble::tibble(id = 1:3, value = c(10, NA, 30)) -df2 <- tibble::tibble(id = 2:4, value = c(22, 32, 42)) +df1 <- tibble(id = 1:3, value = c(10, NA, 30)) +df2 <- tibble(id = 2:4, value = c(22, 32, 42)) # handle conflicted columns when joining power_left_join(df1, df2, by = "id", conflict = `+`) @@ -242,7 +242,12 @@

Examples female_penguins %>% select_keys_and(female_name = name), by = c("species", "island") ) -#> Error in male_penguins %>% select_keys_and(name): could not find function "%>%" +#> # A tibble: 3 × 4 +#> species island name female_name +#> <chr> <chr> <chr> <chr> +#> 1 Gentoo Biscoe Giordan Alonda +#> 2 Gentoo Biscoe Giordan Mishayla +#> 3 Adelie Dream Reiner Ola # semi join power_inner_join( @@ -250,7 +255,12 @@

Examples female_penguins %>% select_keys_and(), by = c("species", "island") ) -#> Error in female_penguins %>% select_keys_and(): could not find function "%>%" +#> # A tibble: 3 × 5 +#> name species island flipper_length_mm body_mass_g +#> <chr> <chr> <chr> <int> <int> +#> 1 Giordan Gentoo Biscoe 222 5250 +#> 2 Giordan Gentoo Biscoe 222 5250 +#> 3 Reiner Adelie Dream 185 3650 # agregate without repeating keys power_left_join( @@ -258,7 +268,12 @@

Examples female_penguins %>% summarize_by_keys(female_weight = mean(body_mass_g)), by = c("species", "island") ) -#> Error in male_penguins %>% summarize_by_keys(male_weight = mean(body_mass_g)): could not find function "%>%" +#> # A tibble: 3 × 4 +#> species island male_weight female_weight +#> <chr> <chr> <dbl> <dbl> +#> 1 Adelie Dream 3650 3600 +#> 2 Adelie Torgersen 3900 NA +#> 3 Gentoo Biscoe 5250 4625 # pack auxiliary colums without repeating keys power_left_join( @@ -266,7 +281,13 @@

Examples female_penguins %>% pack_along_keys(name = "f"), by = c("species", "island") ) -#> Error in male_penguins %>% pack_along_keys(name = "m"): could not find function "%>%" +#> # A tibble: 4 × 4 +#> species island m$name $flipper_length… $body_mass_g f$name $flipper_length… +#> <chr> <chr> <chr> <int> <int> <chr> <dbl> +#> 1 Gentoo Biscoe Giord… 222 5250 Alonda 211 +#> 2 Gentoo Biscoe Giord… 222 5250 Misha… 215 +#> 3 Adelie Torgersen Lynden 190 3900 NA NA +#> 4 Adelie Dream Reiner 185 3650 Ola 190 # fuzzy join power_inner_join( @@ -274,7 +295,11 @@

Examples female_penguins %>% select_keys_and(female_name = name), by = c(~.x$flipper_length_mm < .y$flipper_length_mm, ~.x$body_mass_g > .y$body_mass_g) ) -#> Error in male_penguins %>% select_keys_and(male_name = name): could not find function "%>%" +#> # A tibble: 1 × 6 +#> flipper_length_mm.x body_mass_g.x male_name flipper_length_mm.y body_mass_g.y +#> <int> <int> <chr> <dbl> <int> +#> 1 185 3650 Reiner 190 3600 +#> # … with 1 more variable: female_name <chr> # fuzzy + equi join power_inner_join( @@ -282,7 +307,11 @@

Examples female_penguins %>% select_keys_and(female_name = name), by = c("island", ~.x$flipper_length_mm > .y$flipper_length_mm) ) -#> Error in male_penguins %>% select_keys_and(male_name = name): could not find function "%>%" +#> # A tibble: 2 × 5 +#> island flipper_length_mm.x male_name flipper_length_mm.y female_name +#> <chr> <int> <chr> <dbl> <chr> +#> 1 Biscoe 222 Giordan 211 Alonda +#> 2 Biscoe 222 Giordan 215 Mishayla # define new column without repeating computation power_inner_join( @@ -290,18 +319,28 @@

Examples female_penguins %>% select_keys_and(female_name = name), by = ~ (mass_ratio <- .y$body_mass_g / .x$body_mass_g) > 1.2 ) -#> Error in male_penguins %>% select_keys_and(male_name = name): could not find function "%>%" +#> # A tibble: 3 × 5 +#> body_mass_g.x male_name body_mass_g.y female_name mass_ratio +#> <int> <chr> <int> <chr> <dbl> +#> 1 3900 Lynden 4750 Mishayla 1.22 +#> 2 3650 Reiner 4500 Alonda 1.23 +#> 3 3650 Reiner 4750 Mishayla 1.30 power_inner_join( male_penguins %>% select_keys_and(male_name = name), female_penguins %>% select_keys_and(female_name = name), by = ~ (mass_ratio <- .y$body_mass_g / .x$body_mass_g) > 1.2, keep = "none" ) -#> Error in male_penguins %>% select_keys_and(male_name = name): could not find function "%>%" +#> # A tibble: 3 × 3 +#> male_name female_name mass_ratio +#> <chr> <chr> <dbl> +#> 1 Lynden Mishayla 1.22 +#> 2 Reiner Alonda 1.23 +#> 3 Reiner Mishayla 1.30 # fill unmatched values -df1 <- tibble::tibble(id = 1:3) -df2 <- tibble::tibble(id = 1:2, value2 = c(2, NA), value3 = c(NA, 3)) +df1 <- tibble(id = 1:3) +df2 <- tibble(id = 1:2, value2 = c(2, NA), value3 = c(NA, 3)) power_left_join(df1, df2, by = "id", fill = 0) #> # A tibble: 3 × 3 #> id value2 value3 @@ -318,9 +357,9 @@

Examples#> 3 3 0 NA # join recursively -df1 <- tibble::tibble(id = 1, a = "foo") -df2 <- tibble::tibble(id = 1, b = "bar") -df3 <- tibble::tibble(id = 1, c = "baz") +df1 <- tibble(id = 1, a = "foo") +df2 <- tibble(id = 1, b = "bar") +df3 <- tibble(id = 1, c = "baz") power_left_join(list(df1, df2, df3), by = "id") #> # A tibble: 1 × 4 #> id a b c diff --git a/docs/reference/preprocess_inputs.html b/docs/reference/preprocess_inputs.html index deb9637..4141602 100644 --- a/docs/reference/preprocess_inputs.html +++ b/docs/reference/preprocess_inputs.html @@ -106,7 +106,7 @@

Examples#> [[1]] #> <quosure> #> expr: ^Sepal.Width -#> env: 0x1120a4208 +#> env: 0x113548a10 #> #> # see `?power_left_join` or README for practical examples diff --git a/man/power_left_join.Rd b/man/power_left_join.Rd index 9684b84..2733b8a 100644 --- a/man/power_left_join.Rd +++ b/man/power_left_join.Rd @@ -118,15 +118,15 @@ Power joins } \examples{ # See README for a more verbose version - -male_penguins <- tibble::tribble( +library(tibble) +male_penguins <- tribble( ~name, ~species, ~island, ~flipper_length_mm, ~body_mass_g, "Giordan", "Gentoo", "Biscoe", 222L, 5250L, "Lynden", "Adelie", "Torgersen", 190L, 3900L, "Reiner", "Adelie", "Dream", 185L, 3650L ) -female_penguins <- tibble::tribble( +female_penguins <- tribble( ~name, ~species, ~island, ~flipper_length_mm, ~body_mass_g, "Alonda", "Gentoo", "Biscoe", 211, 4500L, "Ola", "Adelie", "Dream", 190, 3600L, @@ -140,8 +140,8 @@ power_inner_join( check = check_specs(implicit_keys = "ignore", duplicate_keys_right = "inform") ) -df1 <- tibble::tibble(id = 1:3, value = c(10, NA, 30)) -df2 <- tibble::tibble(id = 2:4, value = c(22, 32, 42)) +df1 <- tibble(id = 1:3, value = c(10, NA, 30)) +df2 <- tibble(id = 2:4, value = c(22, 32, 42)) # handle conflicted columns when joining power_left_join(df1, df2, by = "id", conflict = `+`) @@ -212,15 +212,15 @@ power_inner_join( ) # fill unmatched values -df1 <- tibble::tibble(id = 1:3) -df2 <- tibble::tibble(id = 1:2, value2 = c(2, NA), value3 = c(NA, 3)) +df1 <- tibble(id = 1:3) +df2 <- tibble(id = 1:2, value2 = c(2, NA), value3 = c(NA, 3)) power_left_join(df1, df2, by = "id", fill = 0) power_left_join(df1, df2, by = "id", fill = list(value2 = 0)) # join recursively -df1 <- tibble::tibble(id = 1, a = "foo") -df2 <- tibble::tibble(id = 1, b = "bar") -df3 <- tibble::tibble(id = 1, c = "baz") +df1 <- tibble(id = 1, a = "foo") +df2 <- tibble(id = 1, b = "bar") +df3 <- tibble(id = 1, c = "baz") power_left_join(list(df1, df2, df3), by = "id") power_left_join(df1, list(df2, df3), by = "id")